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RESUMO 
Introdução: A incorporação de métodos de processamento de imagem e inteligência artificial (IA) na 

área médica está se desempenhando um papel transformador na medicina personalizada. Portanto, é 

importante reconhecer a natureza multidisciplinar das equipes envolvidas no desenvolvimento e 

implementação de novas abordagens de Machine Learning (ML) para câncer de cabeça e pescoço 

(CCP) e promover uma comunicação eficiente entre patologistas, médicos, cirurgiões e cientistas da 

computação. Em patologia oral e maxilofacial, pesquisadores enfatizam o desenvolvimento de 

modelos de ML para diagnóstico e prognóstico de desordens orais potencialmente malignas (DOPM) e 

carcinoma espinocelular (CEC) oral, um desafio frente aos sistemas subjetivos de classificação de 

displasia epitelial oral (DEO). Além disso, Modelos Preditivos (MPs) baseados em características 

radiômicas, clínicas, patológicas, dosimétricas para prever toxicidades em pacientes submetidos ao 

tratamento de CCP têm sido propostos, e alguns estudos demonstram que MPs baseados em imagem 

não apresentam desempenho superior aos modelos convencionais sem biomarcadores de imagem 

(BMIs). Objetivos: O presente estudo produziu evidência acerca de quatro objetivos principais: 1) 

ampliar a compreensão de patologistas orais, estomatologistas e cirurgiões de cabeça e pescoço sobre 

as abordagens diagnósticas baseadas em IA, com foco especial em Convolutional Neural Networks 

(CNNs), sintetizando fundamentos teóricos e conceituais; 2) implementar sete arquiteturas de Deep 

Learning (DL) para gradação de DEO em imagens histopatológicas de lâminas digitalizadas; 3) avaliar 

a percepção de clínicos ao avaliar DOPM que possa prejudicar desenvolvimento de modelos de DL; e 

4) fazer uma revisão sistemática (SR) sobre modelos de ML atualmente usados para prever toxicidades 

relacionadas ao tratamento de CCP de modo a avaliar as evidências sobre o impacto de BMIs em PMs. 

Métodos: 1) Para a presente revisão conceitual, os autores resumiram e contextualizaram conceitos 

importantes comuns ao campo da engenharia para melhorar a compreensão de tais conceitos por 

patologistas e clínicos. 2) Para o estudo primário com foco em DEO, uma coorte de 82 pacientes (98 

WSI corados por H&E) de três centros brasileiros foi recuperada, anotada, segmentada em patches e 

augmentada, gerando um total de 81.786 patches para treinar sete CNNs (ResNet50, InceptionV3, 

VGG16, Xception, MobileNet, DenseNet e EfficientNetB0) para a classificação de baixo risco (LR) e 

alto risco (HR) de malignização de acordo com o Sistema Binário. 3) Para avaliar a percepção dos 

clínicos sobre DOPM, 46 imagens de leucoplasias foram classificadas às cegas e anotadas por três 

observadores, e a concordância interobservador foi avaliada por meio de Fleiss Kappa e a média pixel-

wise Intersection Over Union (IoU). 4) Para a RS, o acrônimo PICOS foi usado para orientar a questão 

da RS (os MPs podem prever com precisão as toxicidades do tratamento do CCP e os critérios de 

elegibilidade. A busca eletrônica em banco de dados abrangeu PubMed, EMBASE, Scopus, Cochrane 

Library, Web of Science e LILACS. O risco de viés (RoB) foi avaliado por meio da ferramenta 

PROBAST e os resultados foram sintetizados com base no formato dos dados (com e sem BMIs) para 

permitir a comparação das duas modalidades de dados. Resultados: 1) Uma revisão conceitual 

detalhada sobre terminologias e metodologia foi apresentada. 2) Os resultados do estudo primário 

demonstraram que quase todos os modelos apresentaram uma alta taxa de aprendizado, mas um 

potencial de generalização muito baixo. No desenvolvimento do modelo, a VGG16 teve o melhor 

desempenho, mas apresentou overfitting. A EfficientB0 possui métricas comparáveis e a menor loss 

entre todas as CNNs, sendo ótima candidata para novos estudos. 3) A concordância interobservador 

para a análise de OPMD foi substancial e moderada, e a média de IoU foi de 0,675 (±0,030 std).  4) 

Um total de 28 estudos (4.713 pacientes) foram incluídos da RS. Um alto risco de viés foi identificado 

em 23 estudos. A meta-análise (MA) não mostrou diferença entre os modelos com e sem BMI. 

Conclusão: 1) O presente trabalho apresenta uma visão interdisciplinar privilegiada sobre técnicas de 

ML para processamento de imagens. A implementação de modelos de IA e visão computacional para 

reconhecimento de padrões na análise de imagens clínicas e histopatológicas de CCP tem o potencial 

de auxiliar no diagnóstico e na previsão prognóstica. 2) A avaliação comparativa das arquiteturas para 

classificação de DEO indicou que os modelos não foram capazes de generalizar o aprendizado usando 

a presente metodologia de anotação. 3) A percepção dos clínicos pode introduzir viés nas anotações 

utilizadas para treinar modelos de DL. 4) A heterogeneidade dos estudos incluídos na RS, bem como 

as métricas não padronizadas, impedem a comparação adequada dos estudos, e a ausência de um teste 

independente/externo não permite avaliar a capacidade de generalização do modelo.  

Palavras-chave: Microscopia; Análise; Boca - Doenças.  



 
 

 

 

ABSTRACT 

 
Introduction: The incorporation of image processing methods and artificial intelligence (AI) in the 

medical field is revolutioning the personalized medicine. Therefore, it is important to recognize the 

multidisciplinary nature of teams involved in the development and implementation of new Machine 

Learning (ML) image-based approaches for head and neck cancer (HNC) and to promote efficient 

communication among oral pathologists, oral medicinists, head and neck surgeons and computer 

scientists. In oral and maxillofacial pathology, researchers give special emphasis to the development 

of ML models for oral potentially malignant disorders (OPMD) and oral squamous cell carcinoma 

(OSCC) diagnosis and prognosis, which is a great challenge since dysplasia grading systems for oral 

epithelial dysplasia (OED) are a source of disagreement among pathologists. Additionally, 

multivariable prediction models (PMs) based on radiomic features and non-imaging data (clinical, 

pathological, dosimetric features) to predict toxicities in patients that underwent HNC treatment have 

been proposed, and some studies demonstrates that image-based PMs does not outperform 

conventional models without image biomarkers (IBMs). Aims: The present study aim to accomplish 

four main objectives: 1) to enhance the comprehension of oral pathologists, oral medicinists and head 

and neck surgeons regarding to AI-based diagnostic approaches, with a special focus on CNNs, by 

summarizing theoretical and conceptual foundation; 2) to implement seven state-of-the-art Deep 

Learning (DL) architectures for oral epithelial dysplasia grading in histopathological images from 

wholes slide images (WSI); 3) to assess clinician’s perception on OPMD that can limit DL 

approaches; and 4) to do a systematic review (SR) on Machine Learning (ML) models currently used 

to predict HNC treatment-related toxicities to assess the evidence regarding  the impact of IBMs in 

PMs. Methods: 1) For the present conceptual review, the authors summarized and contextualized 

important concepts common to the engineering field to enhance the understanding of such concepts by 

pathologists and clinicians. 2) For the primary study, a cohort of 82 patients (98 H&E-stained WSI) 

with OED from three brazilian centers were retrieved, annotated, segmented in patches and 

augmented. A total of 81,786 patches were used to train seven CNNs (ResNet50, InceptionV3, 

VGG16, Xception, MobileNet, DenseNet, and EfficientNetB0) for the classification of OED in low 

risk (LR) and high risk (HR) according to the Binary System for malignization risk. 3) To assess 

clinician’s perception, 46 images were blindly classified and annotated by three observers, and 

interobserver concordance was evaluated through Fleiss Kappa and mean pixel-wise Intersection Over 

Union (IoU). 4) For the SR, the acronym PICOS was used to orientate the focused review question 

(PMs can accurately predict HNC treatment toxicities?) and the eligibility criteria. Electronic database 

search encompassed PubMed, EMBASE, Scopus, Cochrane Library, Web of Science, and LILACS. 

Risk of Bias (RoB) was assessed through PROBAST and the results were synthesized based on the 

data format (with and without IBMs) to allow comparison. Results: 1) A conceptual review focusing 

on terminology and methodologies is presented. 2) Results from the primary study demonstrated that 

almost all of the models presented a high learning rate, yet very low generalization potential. At the 

model development, VGG16 performed the best, but with massive overfitting. EfficientB0 has 

comparable metrics and the lowest loss among all CNNs, being a great candidate for further studies. 3) 

The interobserver agreement was substantial and moderate, with mean IoU of 0.675 (±0.030 std). 4) A 

total of 28 studies and 4,713 patients were included in the SR. Xerostomia was the most frequently 

investigated toxicity. A high RoB was identified in 23 studies. Meta-analysis (MA) showed no 

difference among IBM- and non-IBM-based models. Conclusion: 1) The present work presents a 

privileged interdisciplinary view on ML techniques for image processing. The implementation of AI 

models for clinical and histopathological image analysis of HNC has the potential to aid diagnosis and 

prognostic prediction. 2) The comparative assessment of DL architectures for OED classification 

indicated that the models were not able to generalize using the present annotation methodology, due an 

overlapping of features between the two classes, which can be a confounding factor for the CNN 

training. 3) Clinicians’ perception can introduce bias in the ground truth annotations used to train a DL 

model. Additionally, 4) the heterogeneity of the studies included in the SR, as well as non-

standardized metrics, prevent proper comparison of studies, and the absence of an 

independent/external test does not allow the evaluation of the model’s generalization ability. 

Keywords: Microscopy; Review; Mouth - Diseases. 
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1 INTRODUÇÃO 

Inteligência Artificial (IA) é uma definição guarda-chuva para sistemas que podem 

reproduzir a inteligência humana e que tem sido utilizados com sucesso na análise de imagens 

médicas. Nesse domínio, o desenvolvimento de algoritmos para análise de imagens tem 

motivado a utilização desses sistemas para diagnóstico objetivo, precoce e preciso do câncer. 

Machine Learning (ML) é uma subárea da IA que desenvolve e aplica algoritmos treinados 

para resolver problemas de reconhecimento de padrões sem serem explicitamente  

programados. Dentro desta subárea, as modalidades de treinamento são definidas de acordo 

com a rotulagem dos dados como aprendizado supervisionado (dados rotulados), weekly 

supervised, e aprendizado não supervisionado (Krohn et al., 2019; Zhang et al.,2021).   

No pool de algoritmos de aprendizado supervisionado podem ser enquadrados 

diversos algoritmos clássicos lineares e não lineares (alguns reposicionados da estatística 

convencional) quanto algoritmos mais modernos que se encaixam no conceito de 

Representation Learning (RL), que é uma modalidade de aprendizado na qual algoritmos 

identificam representações consistentes diretamente nos dados (do inglês feature learning). O 

Perceptron, neurônio artificial na sua forma mais primitiva, a Multilayer Perceptron e as 

Redes Neurais Convolucionais (do inglês Convolutional Neural Network (CNN)] são 

exemplos de algoritmos de RL referenciados como modernos (Krohn et al., 2019; Zhang et 

al.,2021; McCulloch and Pitts, 1990; Rosenblatt, 1998).  

A Multilayer Perceptron (MLP) é uma rede neural artificial [do inglês Artificial 

Neural network (ANN)] composta por uma camada de entrada (composta essencialmente 

pelos dados) e duas camadas de nós Perceptron (uma camada oculta e uma camada de saída), 

na qual a camada de entrada está ligada ao número de atributos necessários para definir as 

classes, que são orientadas pela rotulação dos dados. Dessa forma, se duas características -

formato e tamanho nuclear – são atributos para a classificação, são necessárias duas camadas 

de entrada conectadas aos neurônios da camada oculta, os quais conduzirão interações 

cruzadas entre os atributos nas camadas de entrada e ocultas para compor o valor de saída que 

aponta a probabilidade de uma amostra pertencer à uma determinada classe.  

Em computer vision aplicada à Patologia, o desenvolvimento e implementação de uma 

MLP requer uma etapa prévia de engenharia de atributos, na qual cientistas da computação 

extraem os dados necessários (ex., circunferência do núcleo, distância das margens do núcleo 

para as margens da membrana celualr) que serão então uttilizados para o treinamento da MLP. 

As CNNs, ao contrário, são ANN com a adição de uma camada convolucional para a extração 
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automática desses atributos. Durante o treinamento, ANN classificam o conjunto de dados de 

treinamento (imagens, no presente contexto) repetidamente durante um número 

predeterminado de épocas (número de vezes que o conjunto de dados passa pela CNN). Os 

elementos estruturais predefinidos pelo cientista de dados antes do treinamento são chamados 

de hiperparâmetros (ex., número de neurônios, o número de kernels e a camada 

convolucional) e os elementos que são reajustados pela ANN durante o treinamento, como os 

pesos e a função kernel, são chamados de parâmetros. O processo de treinamento da CNN é 

dividido em 3 etapas explicadas a seguir. 

A etapa Feed-forward é definida pela imagem de entrada sendo apresentada à rede. As 

camadas convolucionais são compostas por combinações de operações de convolução e 

ativação (conv+activ), agrupamento [do inglês polling (Pol)] e achatamento [do inglês 

flatenning (Flat)] na última camada convolucional. A camada convolucional é uma função de 

correlação que calcula semelhanças entre características específicas relacionadas à classe das 

imagens e alguns filtros ou kernels (k), potencializando o reconhecimento de características 

viáveis através da correlação entre uma imagem e um kernel. O cálculo resulta em 

coeficientes de correlação cruzada junto com o sinal ou imagem. Quanto maiores os 

coeficientes, maior a correlação (semelhança) entre a máscara e a função. Enquanto a 

correlação é usada para extração de recursos, a convolução é essencialmente uma função de 

filtragem. Em resumo, enquanto a camada convolucional extrai as características mais 

discriminativas, a camada fully connected atualiza os pesos. A operação de polling reduz o 

tamanho do mapa de ativação resultante (redução de dimensionalidade), mantendo as 

características importantes da imagem. Sequencialmente, a operação de nivelamento 

decompõe os mapas de ativação filtrados e redimensionados em vetores. Os vetores são 

distribuições de valores das feições extraídas que podem variar, por exemplo, de 0 a 1. Por 

fim, esses vetores passam pela MLP para serem classificados (Krohn et al., 2019; Zhang et 

al.,2021). Na etapa de Backpropagation, um processo de otimização calcula o erro e=|y-yd | 

entre a saída (y) e o rótulo (yd ). Em uma visão cartesiana, esse processo de treinamento é 

representado pelo ajuste do hiperplano no espaço de atributos.  A configuração preenche o 

espaço de recursos com amostras de conjuntos de dados e o hiperplano os separa de acordo 

com a classe determinada (por exemplo, classe 1 = câncer, classe 0 = não câncer). (Krohn et 

al., 2019; Zhang et al.,2021). 

Em termos práticos, MLP e CNNs aprendem a partir do erro e=|y-yd |, que representa 

a diferença entre a saída (y) e o rótulo (yd). No início do treinamento, uma ANN não treinada 
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classifica incorretamente as amostras e o ajuste do gradiente dos erros durante o treinamento é 

usado para a terceira etapa, que envolve a atualização dos parâmetros da rede – 

especificamente, os pesos (ωi) e o bias (θ) para MLP e a função kernel (k) para as camadas 

convolucionais. O ajuste dos pesos ocorre para equilibrar o contribuição de cada atributo, 

melhorando a classificação. Essa capacidade de atualizar os parâmetros a partir dos erros 

(verificando rótulos) até atingir uma classificação ótima é o que interpretamos como 

aprendizado supervisionado (Rosenblatt, 1998). Em outras palavras, a função de loss mede o 

quão errado o modelo está classificando, permitindo atualizar os pesos na direção correta do 

gradiente desta função para o menor valor da função de loss, otimizando o treinamento. Ao 

final de cada época, é realizada uma etapa de validação para verificar os parâmetros e 

hiperparâmetros e avaliar o potencial de aprendizado. Ao final do treinamento, é criado um 

mapa de ativação contendo recursos para discriminar classes. Essa correspondência entre 

máscara e imagem explica por que as CNNs são classificadas como modelos de aprendizado 

profundo [do inglês Deep Learning (DL)], pois aprendem “diretamente a partir dados”. 

A revisão de literatura apresentada refere-se à uma interpretação adaptada ao conceito 

de IA aplicado à patologia (Krohn et al., 2019; Zhang et al.,2021), que embasa os próximos 

capítulos da presente tese, que tem como objetivos principais: 1) ampliar a compreensão de 

patologistas orais, médicos orais e cirurgiões de cabeça e pescoço sobre as abordagens 

diagnósticas baseadas em IA, com foco especial nas CNNs, sintetizando fundamentos teóricos 

e conceituais; 2) implementar sete arquiteturas de Deep Learning (DL) de última geração para 

gradação de displasia epitelial oral em imagens histopatológicas de lâminas digitalizadas; 3) 

avaliar a percepção de clínicos ao avaliar DOPM que possa prejudicar desenvolvimento de 

modelos de DL, e 4) fazer uma revisão sistemática (SR) sobre modelos de ML atualmente 

usados para prever toxicidades relacionadas ao tratamento de HNC de modo a avaliar as 

evidências sobre o impacto de BMIs em PMs. Este estudo primário está de acordo com o 

Guidelines for less biased data collection and algorithm evaluation (Marée, 2017) e o 

TRIPOD statement (Collins et al., 2015; Moons et al., 2015). A presente RS foi conduzida 

seguindo as diretrizes do Guidance for defining review question (CHARMS Checklist) 

(Moons et al., 2019), do Guide for SR and meta-analysis of Prediciton Model Studies (Debray 

et al., 2017), do Preferred Reporting Items for Systematic Reviews and Meta-Analysis 

(PRISMA) (Page, McKenzie, Bossuyt, et al., 2021; Page, Bossuyt, Boutron, et al., 2021) e da 

lista de verificação PRISMA-P (Moher et al., 2015; Shamseer et al., 2015). 
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Abstract 

 

Introduction: The incorporation of image processing methods and artificial intelligence (AI) 

is shaping up to play a transformative role in personalized medicine. These AI models and 

networks can learn and process dense information in a short time, leading to an efficient, 

objective and accurate clinical and histopathological analysis, which can inform treatment 

modalities and improve prognostic outcomes. Methods: This paper targets oral pathologists, 

oral medicinists and head and neck surgeons to provide them with a theoretical and 

conceptual foundation of AI-based diagnostic approaches, with a special focus on 

Convolutional Neural Networks (CNNs), the state-of-the-art in AI and Deep Learning (DL). 

Conclusion: The development of these models and computer vision methods for pattern 

recognition in clinical and histopathological image analysis of head and neck cancer (HNC) 

has the potential to aid diagnosis and prognostic prediction. 

 

Keywords: Artificial Intelligence; Deep Learning; Artificial Neural Network; Supervised 

Learning; Oral Cancer; Head and Neck Cancer; Oral Potentially Malignant Disorders  
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1. Artificial Intelligence basic concepts and approaches 

Artificial Intelligence (AI) is an umbrella definition for systems that can reproduce 

human intelligence and have been successfully used in the analysis of medical imagens. In 

this domain, the development of algorithms for image analysis have motivated the use of 

these systems for objective, early and accurate cancer diagnosis. 

Machine Learning (ML) is a subarea of AI that develops and applies algorithms to 

solve pattern recognition problems by learning from the data without being explicitly coded. 

These algorithms can be used in a data science pipeline, which include other data analysis 

steps, such as data transformation, data cleaning and feature engineering, which includes the 

extraction of relevant and measurable features through techniques that can be handcrafted to 

extract particular aspects of a dataset or learned directly form the data. The information about 

which feature is relevant or not for classification is not provided for the model, so it 

undergoes self-learning with better generalization ability than humans when dealing with 

similar amounts of data1,2. 

 When the dataset is composed by images, relevant and measurable “low level” 

features (i.e., texture, morphometry, color, and histogram) can be manually extracted by the 

engineer and used as input data to train either a “traditional” ML algorithm (e.g., Random 

Forest, Support Vector Machine) or a “modern” Artificial Neural Network (ANN), which are 

based on the structure and functioning of the human nervous system1,2.  

Deep Networks (DNs) are ANNs with more than 2 layers of neurons with added 

convolutional layers for automatic feature extraction. DNs are trained by Deep Learning (DL) 

algorithms that automatically identifies consistent representations within the data 

(Representation Learning). DN models learn “high-level” features directly from the data and 

improve accuracy from previous “experience” (i.e., extensive data visualization), which is the 

ultimate emulation of the human brain learning function1. 

This review targets oral pathologists, oral medicinists and head and neck surgeons and 

aims to provide them with a conceptual explanation of ML algorithms usually employed in 

human pathology with focus on Convolutional Neural networks (CNN).  
 

2. Artificial neuron, Multilayer Perceptron, and Convolutional Neural Networks 

McCulloch and Walter Pitts3 in 1943 proposed the first unit of an ANN, the 

McCulloch-Pitts (MCP) neuron, a supervised classifier that emulates the structure and 

functioning of a biological neuron. The MCP neuron takes Boolean values as input {0,1} and 
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returns Boolean values as output {0,1} (e.g., 0 = noncancer, 1 = cancer), which gives a binary 

nature to the decision boundary suitable for binary classification problems. The sum is a linear 

function, which means that this neuron can only distinguish linearly separable examples. 

In 1958, Rosenblatt4 proposed an artificial neuron unit formally known as Perceptron 

(Figure 1), a mathematical operation that, from a range of input values {-∞ → +∞}, returns 

Boolean values as output {0,1}. In a practical image context, input values range from 0 to 1 or 

0 to 255, which allows classification from a correspondent combination of inputs (n) (e.g., 

nuclear morphology, size, and color). Essentially, the output values of 0 or 1 are due to the 

intrinsic Boolean activation function of the Perceptron. 

 

 

Figure 1: Artificial neuron (Perceptron), biological neuron correlation and feature space 

partition. (A) Neurotransmitters or input data (𝑥1, 𝑥2…) are presented to the neuron, which is 

activated by the sum of excitatory stimuli. This means that the neuron node processes image 

information that results in an output value for classification. The classification error  adjusts 

the weights (ω1, ω2, ω3…) and bias (θ) (B, C) by repositioning the line (2-dimensional) or 

the hyperplane (3 or n-dimensional). From a mathematical visual perspective, while the 

weights alter the inclination of the hyperplane, the bias (θ) adjusts the level, dislocating it 

forward and backward, setting the threshold to better address the class separability. 
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The input data (x1, x2…) are equivalents to the neurotransmitters released in the 

synaptic cleft, which are represented by the weights (ω 1, ω 2, ω 3…) in the artificial computer 

model. To activate the neuron, a sum (Σ) of excitatory stimulus (xi ⋅ ωi) – interaction between 

the neurotransmitters and the gamma-aminobutyric acid (GABA) receptors in the synaptic 

cleft – leads to the activation threshold or “bias” (θ) to reach a critical stage, which 

corresponds to the opening of calcium channels in the postsynaptic membrane. The neuron is 

activated, resulting in the propagation of the action potential (u), an aggregation of excitatory 

stimulus from the dendrites that flows within the neuron axon. The activation function [ƒα(u)] 

modulates the received stimulus to the output, which is essentially a value for classification 

(Figure 1A). 

A Multilayer Perceptron (MLP) is a classical ANN composed of an input layer 

containing the data input and two more layers of perceptron nodes: a hidden layer and an 

output layer (Figure 2).  

 

 

Figure 2: Multilayer Perceptron and Convolutional Neural Network. 

 

The input layer is connected to the number of features necessary to define a class in a 

due problem. In a computational context, it also defines the feature space partition (FSP), in 

which the number of descriptive characteristics for a specific classification problem is 

equivalent to the number of dimensions (Figures 2B and 2C). For a better understanding of 

the FSP, the following explanation will consider a 2-class problem (e.g., cancer, noncancer) 

explored within a 2-dimensional FSP (e.g., two features will be taken into account: nuclear 
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pleomorphism and hyperchromatism) (Figure 1B). Since the features are essentially diverse 

(morphological and coloring), during the training stage, the weights of each feature are also 

widely variable, requiring updating and balancing to an optimal value (Figure 1B – green 

line). The more pleomorphic and hyperchromatic the nuclei are, the more likely it is to be 

classified as a cancer cell. However, some cells with hyperchromatic nuclei may not represent 

cancerous cells, as shown in Figure 1B. Expanding this example, if the two features are not 

ideal for proper class separation, a third feature can be used, resulting in a 3-dimensional FSP, 

as seen in Figure 1C. It is worthwhile to note that an MLP for histological image recognition 

can process numerous features and readjust thousands of parameters (i.e., weights, internal 

kernel function) during training. Moreover, cross-interactions among all neurons in input and 

hidden layers form the output value, and since a formal MLP would also return a binary 

classification, the number of classes of a problem determines the number of neurons that 

should be used in the output layer’s nodes. This means that if there is a 3-class problem, at 

least 2 output neurons should be used); hence, three combined values (0, 0), (0, 1), and (1, 0) 

can be used to define each class. However, the most used form of designing the output is 

using one-hot, one output neuron dedicated to each class; thus, the corresponding three 

combined values become (0, 0, 1), (0, 1, 0), and (1, 0, 0). In addition, this output structure 

permit showing the probability of the sample belonging to each class, ex. (0.01, 0.02, 0.97).  

The addition of a convolutional layer in an MLP replaces the feature engineering step 

and composes the basic structure of a CNN (Figure 2). The number of neurons, number of 

kernels, and the convolutional layer are the predefined structural elements called 

hyperparameters. 

 

3. CNN training 

During training, the CNN model (convolutional layers and MLP) classifies the training 

dataset repeatedly during a predetermined number of epochs (number of times the dataset 

passes through the CNN). The CNN training process is divided into 3 steps, which are further 

explained. 

The Feed-forward step is defined by the input image being presented to the network. 

The convolutional layers are composed of combinations of convolution and activation 

(conv+activ), polling (Pol), and flattening (Flat) operations in the last convolutional layer. 

The convolutional layer is a correlation function that calculates similarities between specific 

features related to the class from the images and some filters or kernels (k), enhancing the 
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recognition of feasible features through the correlation between an image and a kernel. The 

calculation results in coefficients of the cross-correlation along with the signal or image. The 

higher the coefficients are, the higher the correlation (similarity) among the mask and 

function. While correlation is used for feature extraction, convolution is essentially a filtering 

function. In summary, while the convolutional layer extracts the most discriminative features, 

the fully connected layer update the weights, both occurs during training stage. The polling 

operation reduces the resultant activation map size (dimensionality reduction) while 

maintaining the important image features. Sequentially, the flattening operation decomposes 

the filtered and resized activation maps into vectors. The vectors are distributions of values of 

the extracted features that can range, for example, from 0 to 1. Finally, these vectors pass 

through the MLP to be classified. 

In the Backpropagation step, an optimization process computes the error 𝑒 = |𝑦 − 𝑦d| 

between the output (𝑦) and ground truth label (𝑦d)5. In a cartesian view, this training process 

is represented by hyperplane adjustment in the FSP (figures 2B-green line) and (Figure 1C-

blue plane). The setup populates the space of features with dataset samples and the 

hyperplane separates them according to the determined class (e.g., class 1 = cancer, class 0 = 

noncancer). 

In practical terms, at the beginning of the training, a “naïve” CNN is expected to 

misclassify samples. From misclassification, the gradient of the errors during training is used 

to guide the update parameters step – specifically, weights (ωi) and bias (θ) for MLP, and 

kernel function (k) for convolutional layers (Figure 3A) – toward balancing the contribution 

of each extracted feature and weights of neurons and improving classification. This ability to 

update the parameters from the errors (by checking labels) until reaching an optimum 

classification is what we interpret as supervised learning4. Additionally, at the end of each 

epoch, a validation step is carried out to check the parameters and/or hyperparameters and to 

evaluate the potential of learning. During training, the loss function measures how wrong the 

model is classifying, allowing it to update the weights in the right direction of the gradient of 

this function towards the lowest value of the loss function. 
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Figure 3: Correlation and convolution. A CNN is trained with 2-class labelled images with 

benign and malignant histopathological representations. From classification error, the CNN 

updates its parameters until fully trained and generates a stellated mask that corresponds to 

malignant features. The mask is automatically generated according to relevant features to 

maximize class separation, which is the basic process for image feature recognition. (A) A 

malignant histopathological image being presented to a trained CNN that has a star as a mask. 

The stellated mask sweeps the images searching for correspondence highlighting cells with 

similar features. An activation map is generated from this similarity. (B) A benign 

histopathological image paired with the same mask. Since there is no similarity, the map is 

not activated. In flattening (B and C), the activation map is vectorized, and the given 

coefficients are higher for the image corresponding to the mask that identify relevant features 

of malignancy (star) than when compared to coefficients from the benign image. 
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At the end of the training, an activation map containing features to discriminate classes 

is created, hereby represented by a stellated mask. Figures 4 B and C exemplify the 

correlation between a mask generated by a trained CNN and two different input images: a 

stellated malignant and a rounded benign image. At the end of this interaction, the activation 

map will be only “highlighted” if the corresponding malignant cells are presented in the 

image. This correspondence between mask and image explains why CNNs are classified as 

DN models that learn “directly from the data”. 

 

 

Figure 4. Image annotation, segmentation and data augmentation. (A) Clinical photograph 

annotations of actinic cheilitis and a salivary gland tumor in the palate (first row). The white 

plaque is adjacent to areas with flash reflex in the lower lip vermilion, which could lead to 
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misclassification; the tumor in the palate presents saliva strings in the oral mucosa surface. 

Clinical photograph annotations of oral potentially malignant disorders (OPMD) in the tongue 

and soft palate according to three observers (second row). The red arrow indicates a 

leucoedema lesion susceptible to being misclassified as a premalignant lesion. (B) 

Segmentation masks, union and intersection of all annotations. The union is commonly used 

as the ground truth to train the model, minimizing the false negatives. (C) Data augmentation 

of resized clinical images and masks. (To be continued). 
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Figure 4. (Continuation) (D) Annotation and segmentation of the region of interest (ROI) in 

a histopathological digital slide. In the present case, the inclusion of normal connective tissue 

is not feasible but should be considered in lichenoid lesions, for example. If the classification 

problem is not simply tumor versus nontumour, it is important to include sufficient features 

that compound the diagnosis, and this can be variable according to the disease of interest. (E) 

Random data and color augmentation of histopathological patches.  

 

4. Application of image-based AI models in oral medicine and head and neck oncology 

The prospect of obtaining new clinicopathological correlations from image biomarkers 

through pattern recognition of subtle information in histopathological images has the potential 

to improve diagnosis, guide treatment, and improve prognosis6. Additionally, image analysis 

has the potential to reduce the need for immunohistochemical staining to reach a conclusive 

differential diagnosis of histologically similar lesions7. 

Traditional ML approaches for classification and segmentation of histopathological 

images are the most used thus far in oral medicine and pathology8 with a special emphasis on 

oral potentially malignant disorders (OPMD) and oral squamous cell carcinoma (OSCC) 

diagnosis. These classical models presented good results for the proposed image recognition 

task, with an accuracy of up to 95%9-14. However, these studies have limited context 

considering the amount of data variability, sampling strategies and non-standardized reported 

metrics.  

DL-based models for histopathological image analysis were not widely used until 

recently15,16 and should be investigated. Moreover, models for the clinical diagnosis of H&N 

cancer17 and approaches that use radiographs for the context of CCP to provide decision 

support for cancer treatment and outcome prediction have been proposed18,19. 

Articles using DN models for the early diagnosis of OPMD based on clinical images 

demonstrate high-performance metrics. Shamin17 recently reported a screening DL-based 

model to detect OPMD with a mean accuracy of 0.98 using Vgg19. Camalan20 performed 

transfer learning on Inception-ResNet-V2 to classify photographic images as suspicious or 

normal (accuracy of 90.9%), and class activation maps were further generated to evaluate the 

most discriminative regions for the classification task. Jubair21 proposed a pretrained CNN 

(EfficientNet-B0) to differentiate normal images from premalignant/malignant images. This 

light CNN achieved an accuracy of 85.0%. Tanriver22 compared 2 segmentation methods 

(semantic and instance) and performed an object detection experiment and further 3-class 
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problem classification (benign, OPMD, and malignant). Classification experiments compared 

five “state-of-the-art” architectures with encouraging results. A multi-institutional study23 to 

detect oral squamous cell carcinoma (OSCC) using DL achieved 0.93 in the external test set, 

demonstrating a satisfactory generalization ability of the model. The final goal of these 

approaches is to develop an automated method to support the clinical decision of oral 

medicine doctors in oral cancer screening and early identification. 

Additionally, prognostic models based on low-level imaging features (nuclear shape 

and texture)24 and clinical and genomic markers25,26 have been proposed. Kim27 compared 

traditional classifiers and a DL model for survival prediction of oral cancer patients, with 

DeepSurv out-performing random survival forest (RSF) and the Cox proportional hazard 

model (CPH). Mahmood28 correlated cytological features of oral epithelial dysplasia in glass 

slides with transformation and recurrence using Cox proportional hazard regression and 

Kaplan‒Meier curves with a fair prediction power. 

Treatment-related toxicity prediction models are usually based on the inclusion of 

image biomarkers known as radiomic features or non-imaging data (clinical, pathological, 

dosimetric features)29-38. These multivariable models provide a wide range of interpretive 

possibilities and results of the area under the receiver operation curve (AUROC) reaches 

values between 0.43 and 0.98. Despite these encouraging metrics, further conclusions on the 

reliability of these models to predict radiation-induced toxicity in HNC are otherwise 

shallow38. Published studies are not externally validated, an important step to test the 

generalization ability of the model in unseen data. Additionally, the lack of standardization in 

research limits the interpretation of the results. 

 

5. Methods for image-based DL model training for diagnosis 

5.1 Clinical actions 

Image acquisition and data collection 

Image acquisition refers to the digitalization of a glass slide and clinical photography. 

The quality of imaging datasets is conditioned on the early construction phases (case retrieval, 

review, and selection), as well as on the equipment used. According to the Guidelines for less 

biased data collection and algorithm evaluation39, technical and biological variabilities, 

particularities of training set, class definition, sampling, evaluation, and quality control 

protocols, reproducibility, traceability, and software variations should be considered to 

construct realistic ground-truth datasets. 
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Technical variations on glass slide preparations or different scanner equipment can 

generate a variety of color matrices and intensity. Ignoring color variation in dataset 

construction can affect the performance of a DL model affecting its capacity to generalize the 

data. It is important to construct a training dataset composed of a realistic, rich, and balanced 

variation of possible features and colors, since a varied but realistic dataset potentializes 

generalization during learning, as a test is performed in a blind dataset40.  

Technical variability is important to reflect the clinician’s reality and to build a robust 

model for image classification. Therefore, a previous computer processing step of color 

normalization, color augmentation and conversion to grayscale can be applied41. Nevertheless, 

the utilization of samples from different institutions and obtained from different equipment is 

encouraged39. 

Despite not having a consensus on the proper number of patients/images, the 

recommendation is to include a wide sample, but most importantly, the representation of each 

class should cover all possible biological variations (e.g., histological variations, subtypes, or 

patterns of a tumor in WSI and race representation in clinical photographs). This can be 

challenging at the onset of some pools of lesions, especially for rarer tumors. 

A certain imbalance feature variation is, therefore, expected but should be minimized 

by data augmentation, a technique that aims to generate more examples with a diversity of 

characteristics, increasing the size and variety of the sample for training, which is one of the 

most important aspects to consider when training a DL model. 

 

Annotation 

Image annotation is one of the most important and challenging steps of computer 

vision research and requires experienced professionals’ involvement to label the data. 

Learning modalities are defined according to the data labeling as i) Supervised, ii) Semi-

Supervised and iii) Unsupervised. Random Forest, Support Vector Machines (SVM), and 

ANN (including DNs) are models trained with labeled data (annotated images) in which a 

previous determination of each class was assigned by a panel of experts to provide a reference 

standard, a ground truth for the model to learn (Supervised Learning).  

Annotating WSI is a time-consuming task, and despite some attempts to automatize 

regions of interest (ROI) detection42,43, manual annotation remains the best strategy to set a 

reference standard for the model, providing examples of representative areas of tumors, 

improving the training time and increasing the classification accuracy44. From our 
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perspective, the quality of the annotation relies on the gray area of human interpretation, and 

this subjectivity can be transferred to the model since the classification provided by digital 

systems seeks to quantify expert perception. Otherwise, this entanglement does not affect the 

reliability of the artificial model but mimics human perception and decision-making. 

 When not crucial for classification, the stroma (connective tissue) should not be 

included since the inclusion of common image information for both classes can either be 

disregarded or even generate overoptimistic performance results. To overcome 

methodological bias, WSI should be reviewed by an expert panel to decide and supervise ROI 

annotation with at least three observers being enrolled in radiographic and clinical 

photography annotation, which should be biopsy proven. The subjective and highly variable 

limits of some lesions, particularly thin white plaques and striated lesions (e.g., leucoplakias 

and lichenoid lesions), are particularly challenging, as are overlapping histopathological 

features among distinct grades (e.g., dysplasia grading) (Figure 4). 

 

5.2 Computational actions 

Pre-processing 

Pre-processing aims to remove image noise, which is virtually any information not 

wanted for the classification task. A classic example is a misclassification due the presence of 

hair along with the skin lesion45. 

In the domain of oral clinical photographs, saliva and humidity-associated flash reflex 

can be present according to the location of the lesion and light incidence, which can be 

misclassified as a white lesion according to the pixel value. The same applies to regions with 

augmented vascularization, such as the soft palate, floor of mouth and red lesions (Figure 4). 

 Conversely, when dealing with WSIs, it is impractical to remove artifacts, which 

could lead to an unrealistic biased sample. According to the guidelines for generating less 

biased datasets for algorithm evaluation39, one of the recommendations highlights the 

importance of including real-life and equally balanced technical variations as focus-related 

artifacts, dark spots, fingerprints, HE-staining scheme46, bubbles, tissue tears/folds, autolysis 

artifacts, and formalin pigments47. 

 

Image segmentation 

Image segmentation is the contour definition and the separation of relevant 

information from nonrelevant background. In WSI, it identifies and separates the ROI from 
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nontumour areas according to the reference annotation48. In clinical photographs, it is useful 

to separate the lesion from surgical retractors, teeth, gauze and gloved fingers retracting the 

oral mucosa, which are usually framed with the lesion, leaving the ROI with only relevant 

information for further classification17,21,22 (Figure 4). 

Segmentation can be manual, in which an experienced professional manually 

delineates the ROI (image annotation); semiautomatic, with seed or approximate contour; and 

automatic, defined by the format variability and image quality. A practical example is pixel 

classification given a set of discriminant features (e.g., color matrix, intensity) within a range 

of values given by an activation function (semantic classification). 

 

Patch generation (fragmentation) 

WSI fragmentation generates smaller image samples (patches) with dimensions 

according to the CNN-model input structure and kernel size (e.g., 2562x256 for AlexNet; 

299x299 for InceptionV3). Ideally, the input size is fitted to pursue a minimally efficient 

template for learning, respecting the median minimum size of the most important structures 

(e.g., acini). This strategy reduces the computational complexity while preventing image 

information loss49. 

WSI can exceed gigabytes per image, and since the majority of CNNs have 

limitations regarding larger image sizes, fragmentation is required. However, small patch 

sizes can interfere with the accuracy50, and this is particularly true for histological images that 

should have sufficient information to map the input to the output in one patch. An 

intermediate patch size can be arbitrarily chosen to avoid losing information when resizing the 

patches to fit in several CNNs but a drastic resizing can distort the image information. 

Additionally, fragmentation of segmented images creates patches from both classes separately 

while fragmenting a no segmented image generates patches from the transitional zone, which 

could improve training efficiency51. 

Fragmentation in clinical photographs was reported by Camalan20 in an approach that 

created heatmaps based on the patch predicted class to identify regions in the image most 

significant in classification. Class activation map interpretation was more expressive for the 

fragmented images, providing a better understanding. For clinical images, the most common 

reduction strategy reported is resizing17,21,22. 
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Data augmentation 

Data augmentation comprises strategies to increase the dataset size and variability, 

either because there is a limited dataset regarding the variation of important features or 

because the dataset does not have an even distribution among classes. An unbalanced sample 

affects the performance of ML-based classifiers since it can induce the CNN to classify 

according to the most common class, especially in a small dataset52. The imbalance of the 

dataset classes is an important factor when evaluating the sensitivity of the proposed method. 

Data augmentation involves several techniques to artificially generate random 

variations in original images (rotation, zoom, flipping, mirroring, resizing, blurring, noising 

sharpening, elastic deformation, brightness, contrast and color variation) to increase the 

number of samples available for training and, therefore, improve the models’ performance39-

54. Color augmentation is a specific augmentation technique focused on color variation – red, 

green, and blue combination (RGB) – of the underlying image. Additionally, perturbation of 

the RGB color space automatically generates stain variation, mimicking technical variations 

in glass slide processing55-57 (Figure 4). The variation in feature characteristics provided by 

augmentation provides better learning, thus improving the generalization ability of the model. 

This is important, as the differences among datasets are considered the main cause for inter-

dataset dissimilarities40. Data augmentation can also be used to eliminate site-specific 

signatures58. 

 

Sampling 

Sampling methods are strategies to split the full dataset into training:validation:test 

sets (Figure 5). Usually, the validation set is reserved to test the parameters, while the test set 

is used to assess the performance of the model. Proportion is chosen according to sample size 

and aims to provide a representative and large enough dataset for training, as well as 

sufficient samples for validation and testing (e.g., 80%:10%:10% or 70%:20%:10%). When 

dealing with WSIs, special attention is required for patient distribution to prevent the 

inclusion of patches from a single patient in both the training and test sets to prevent data 

leakage. 
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Figure 5. Sampling methods. Training and validation data are used 

to build, train the model and fit the hyperparameters. Test data 

remains unseen and are further used to evaluate the generalization 

ability of the model (class discrimination power). 

 

k-fold cross validation is a sampling method that allows training ML models with 

limited data in a mutually exclusive way, resulting in less biased/overestimated performance 

metrics. In this procedure, the full dataset is randomly split into k groups in which one group 

is held out for validation while the remaining is used for training with each fold representing 

the group shifting. This strategy eventually allows the model to be trained with the entire 

dataset. When the number of folds is equal to the number of samples (k=n), the cross-

validation method is called leave-one-patient-out (LoPo) (Figure 5). 
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Transfer Learning 

Transfer Learning is a strategy in which parameters (pre-trained weights) from a 

previously trained model are reused as initialization in other CNN for the same, similar, or 

different classification tasks, and Since DN models do not use tissue-specific information, it is 

feasible to apply the same model for different problems51. This strategy is usually applied 

when the current dataset is insufficient for training a model for a given task or for improving 

the computing time since it requires less training time. However, if there is a large amount of 

data and proper hyperparameters the recommendation is not to use transfer learning, since 

learning from scratch provides better performance if taking into account sample-dependent 

features6,44. 

DN models have better generalization ability when compared to classical ML-based 

classifiers, and this tends to improve once the dataset increases. On the other hand, increasing 

the dataset size does not seem to affect classical ML-based classifier performances. 

Ultimately, there is no difference between the SVM and DL performances when using a small 

dataset49. 

 

Conclusion 

The incorporation of ML-based models in the diagnostic process has the potential to 

reveal new correlations between clinical-pathological characteristics and image processing for 

an early and accurate diagnosis. This contributes to personalized treatment planning, which 

consequently improves survival rates, reducing the need for invasive and mutilating surgeries 

and the risk of recurrence or metastatic disease. The distinct complexion of the 

multidisciplinary teams involved in the development of new approaches can delay or generate 

inefficient communication between individual teams specialized in the medical and 

biomedical engineering fields. The present work presents a privileged interdisciplinary view 

that aims to unify the perception resulting from the performance of oral pathologists, oral 

medicinists, head and neck surgeons and computer scientists, focusing on promoting the 

development and implementation of new ML image-based approaches for H&N cancer 

diagnosis. 
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Abstract 

 

The proper assessment of oral potentially malignant disorders (OPMD) enrolls the oral 

epithelial dysplasia (OED) grading. In this context, patients with higher grades of OED have 

increased risk for cancer progression. Dysplasia grading systems for OED are a source of 

disagreement among pathologists and Machine Learning (ML) can  aid in the oral cancer 

screening, improve early detection of OPMD and, consequently, improve diagnostic and 

treatment. This is a cross-sectional study is composed by a cohort of 82 patients with OPMD 

and correspondent 98 H&E-stained whole slide images (WSI) with biopsied-proven 

dysplasia. All WSI were manually annotated based on the Binary System for OED. The 

annotated regions of interest (ROI) were segmented and fragmented into small patches 

(299x299 pixels) and non-randomly sampled into development data and test data. The 

development data was color augmented, resulting in a total of 81,786 (32,608 LR patches and 

49,178 HR patches) for training. The holded-out test set enrolled a total of 4486 patches 

(HR=2.724; LR=1.762). State-of-the-art convolutional neural networks (CNNs) as ResNet50, 

InceptionV3, VGG16, Xception, MobileNet, DenseNet, and EfficientNetB0 were trained, 

validated and tested with the same datasets. Results: Almost all of the models presented a 

high learning rate, yet very low generalization potential. At the model development, VGG16 

performed the best, but with massive overfitting. In the test set, VGG16 presented the best 

accuracy, sensitivity, specificity, and AUROC (62%, 62%, 66%, and 65%, respectively), 

associated with the higher loss among all CNNs tested. EfficientB0 has comparable metrics 

and the lowest loss among all CNNs, being a great candidate for further studies. Using the 

present annotation methodology, the models were not able to generalize enough to be applied 

in real-life datasets due an overlapping of features between the two classes, which can be a 

confounding factor for the CNN training. 

 

Keywords: Artificial Intelligence; whole slide images; leukoplakia; erythroleukoplakia; 

dysplasia grading. 

  



38 
 

 

 

Introduction 

Oral potentially malignant disorders (OPMD) are defined by the World Health 

Organization1 (WHO) as a group of lesions that present an increased risk to develop oral 

squamous cell carcinoma (OSCC), the most common cancer in head and neck, and are 

clinically characterized by leukoplakia and its variants (verrucous proliferative leukoplakias, 

erythroplakias, etc.). The malignization risk ranges from 3% in homogeneous leukoplakias to 

14.5% non-homogeneous leukoplakias within a period of five years2 with some authors 

indicating percentages ranging from 2.6 to 29.2%, depending on the dysplasia grade and with 

malignant transformation occurring in the dysplastic site3. In this context, patients with 

OPMD requires proper follow-up to manage biopsy-proven dysplastic lesions accordingly 

(i.e., surgical excision, CO2 laser therapy, photodynamic therapy), and professionals should be 

aware of recurrency rate of 30%4. 

Dysplasia grading systems for oral epithelial dysplasia (OED) are a source of 

disagreement among pathologists, and Machine Learning (ML) models to assist in the 

malignant transformation prediction are being developed5. These methods have great potential 

to overcome these limitations regarding assessment of OED, and can aid in the diagnosis and 

proper management of OPMD, allowing close surveillance for cancer progression.  In the 

context of OPMD, previous work reported traditional ML-based approaches for segmentation6 

and classification7–10of cell components/dysplasia identification with accuracy values varying 

from 88,69% to 95.7% depending on the feature descriptor and classifier used. Baik11 

developed a new algorithm to identify nuclear phenotypic changes based on morphometric 

data and voting scores to discriminate normal and abnormal nuclei to differentiate OPMD at 

low risk from those at high risk, which showed 80% classification rate at cellular level. 

Moreover, histopathological DL-based models were reported for segmentation12,13 and 

prognostication5,14–17 of OSCC.  
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The present study is based on the TRIPOD18,19, a checklist for reporting diagnostic and 

prognostic prediction modelling studies, and aimed to develop and validate a DL-based model 

for OED grading accordingly to the Binary Classification1,20. The present work is the first to 

provide DL results for OED grading based on histopathological images. 

 

Methods 

Dataset 

This is a cross-sectional diagnostic modelling study in which the study cohort is 

composed by 82 patients sourced from the primary care of three institutions from three 

different regions in Brazil: 42 patients from the Piracicaba Dental School -FOP (Piracicaba, 

São Paulo, Brazil), 19 patients from the Federal University of Minas Gerais - UFMG (Belo 

Horizonte, Minas Gerais, Brazil), 21 patients from the Federal University of Pará - UFPA 

(Belém, Pará, Brazil). The dataset comprises a total of 98 H&E-stained whole slide images 

(WSI) of OPMD (i.e., leukoplakia, erythroleukoplakia, proliferative verrucous leukoplakia) 

with all grades of dysplasia retrieved between 2005 and 2020. All patients should have at least 

one year of follow-up and complete photographic documentation. Patients with oral lichen 

planus were not considered as OPMD given the controversial nature of this lesion. Two 

patients with a medical history of Lupus and Fanconi’s anemia were also excluded. Regarding 

dysplasia grading, patients presenting mild, moderate and severe/carcinoma in situ)21 were 

included. Patients with micro or frankly invasive carcinoma were not included.  

The glass slides were scanned using the Aperio Digital Pathology System (Leica 

Biosystems, Wetzlar, Germany) with a spatial sampling of 0.47μm per pixel, with automated 

focusing and magnification at ×20. WSI were primarily diagnosed by several pathologists 

(OPA, PAV, FPF, RAM, HARP) with vast experience, and according to the three-level WHO 

2005 system21, which is based on the architectural and cythological changing and the 
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distribution of atypia within the epithelium.  For the present research, all cases were blindly 

and independently reviewed by ALDA and BALAM to assess dysplasia grade according to 

the BS for OED grading1,20. The BS improves interobserver agreement over the three-level 

method by reducing the complexity of the grading scheme, limiting the experienced-based 

subjective interpretation and allowing reproducibility among pathologists22–24. 

The BS proposed by Kujan20 and further recommended by the WHO 20171 evaluates: 

i) architecture changes (irregular epithelial stratification, loss of polarity of basal cells, drop-

shaped rete ridges, increased number of mitotic figures, abnormally superficial mitoses, 

premature keratinization in single cells, presence of keratin pearls, and loss of epithelial 

cohesion);  and ii) cytological changes (abnormal variation of nuclear and cell size and shape, 

increased nuclear-cytoplasm ratio, presence of atypical mitosis, increased number and size of 

nucleoli and hyperchromatism). The cut-off for LR lesions is to present less than four 

architectural and/or less than five cytological changes.  

 

Pre-processing, data augmentation and sampling 

Representative areas of both classes compose the region of interest (ROI), which were 

classified and manually annotated by an expert (ALDA) accordingly to the pre-defined 

architectural and cytological criteria, with some patients’ biopsies having annotations of both 

high risk (HR) and low risk (LR) of malignization, and avoiding major artifacts (folds, tears). 

The H&E staining of slides was widely variable (figure 1).   
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Figure 1. Methodology 
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 The annotated ROI were segmented and fragmented into small patches (299x299 

pixels). This image size is supported by the chosen architectures’ inputs, and it is sufficient to 

provide important histopathological elements for classification. Initially, a total of 45,379 

patches were non-randomly split into, 90% (40,893 patches) for models’ development, and 

10% (4,486 patches) for the testing set, with special attention to preserve the test set (10 

patients) unseen to evaluate models’ diagnostic performances. This sampling method is 

considered an intermediary between “internal” and “external validation” and characterizes the 

present study as of type 2b18,19. Additionally, in accordance with the Guidelines for less 

biased data collection and algorithm evaluation25, this nom-random strategy aims to provide 

an equitable balance in terms of the institutions of origin (staining variations), population 

(biological variance), and classes (HR:LR) for each set while maintaining the right pre-

determined proportion of patches. 

In the next step, the 40,893 patches reserved for developing the model were randomly 

split into 36,804 for training and 4,089 for validation. To increase the robustness of the 

predictive model and account for staining variations influence in models’ performances, the 

images of the training and validation set were submitted to color augmentation by randomly 

altering up to 50% of the image intensity (saturation) and brightness, and by adding variations 

in the color distribution of red, green, and blue (RGB) channels. This approach reproduces 

real-life technical variations (stainning, image acquisition) and diminishes the possibility of 

the staining scheme being outstandingly accountable for classification. Therefore, each patch 

generated one correspondent augmented patch with random variable parameters, resulting in a 

total of 81,786 (32,608 LR patches and 49,178 HR patches used for training and validation. 

The high number of samples of both classes is important to provide a rich variety of 

complementary clinical information, minimizing the possible effect of the HR and LR 
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unbalancing (figure 1). Accordingly, given the imbalance of LR and HR, patches, a 

corresponding normalization was performed. 

The holded-out test set enrolled a total of 4486 patches (HR=2.724; LR=1.762). 

 

Architectures and implementation 

State-of-the-art CNNs widely validated for several applications as ResNet5026, 

InceptionV327,28, VGG1629, Xception30, MobileNet31, DenseNet32, and EfficientNetB033 were 

trained, validated and tested with the same datasets (figure 1). To provide an even 

comparison among models, architectures were implemented based on their original 

publication; hence, the activation functions, number of convolutional layers, kernels, neurons, 

layers, and sublayers of the fully connected (FC) layer were kept as the original publications. 

Accordingly, during training procedure, the same optimizer (Adam) with a learning rate 

lr=0.0001, and 75 epochs were used, and predefined weights such as “imageNet” were not 

applied; thus, a unique input size (299x299 pixels) could be used to every structure. 

The algorithm was implemented using Python 3.6 and several open-source libraries 

specific to machine learning and image processing (TensorFlow, Keras, Scikit-Learn, and 

OpenCV). The training was carried out until accuracy stabilized and validation loss reduced it 

variation.  

CNN training was conducted using an Intel CORE i7 3.50 GHz computer processor 

with 32GB RAM and 1TB, available at the Signal and Image Processing Laboratory at the 

Institute of Science and Technology, Federal University of São Paulo (ICT-Unifesp).  After 

training/validation, the corresponding CNN models were fed by the input patches of the test 

set. 
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Results 

Training and validation 

The training and validation accuracy and loss curves are illustrated in figure 2. Almost 

all of the models presented a high learning rate, yet very low generalization potential. 

Specifically, regarding learning capacity, ResNet50 and InceptionV3 behave similarly, 

increasing training accuracy over time and stabilizing around 30th epoch, with validation 

accuracy presenting more instable in ResNet50. The VGG16 and Xception quickly reached 

training accuracy over 95% before the 10th epoch, indicating that these two architectures have 

a great learning potential with fast improvement, but with similar unstable validation accuracy 

values. DenseNet improved accuracy slowly until reached stability around the 50th-60th 

epochs, while MobileNet and EfficientNetB0 did not stabilized their training accuracy curves 

within the given training time. Despite EfficientNetB0 having required a long time to learn 

(i.e., to improve accuracy), it also presented the most stable validation accuracy curves among 

all CNNs.  

The training loss curves of ResNet50, InceptionV3, VGG16, Xception, and DenseNet 

behave as expected, but the gap between training and validation loss indicates overfitting. 

Additionally, validation loss curves of the aforementioned CNNs show severe instability with 

drastic ups and downs, which indicates unrepresentative validation data when compared to 

what the models were learning to interpret the training data.  

MobileNet presented a divergent gap between training and validation loss curves, 

indicating significant overfitting. EfficientNetB0 took a long time to learn (improve accuracy) 

but also had the best validation and training loss curves among all CNNs, presenting the 

lowest loss curve since the beginning of the training, as well as the most stable validation loss 

curve with less variation and few overfitting. 
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In Summary, ResNet50, InceptionV3 and DenseNet performed similarly. VGG16, 

Xception and MobileNet presented expressive overfitting, with MobileNet showing the worst 

results. EfficientNetB0 may be promisor for the present classification task but requires further 

investigation with specific adaptations for our purpose. Among all CNNs, VGG16 performed 

the best, since it learned quickly and maintained the accuracy during training. However, the 

loss indicates a massive overfitting. 

 

 

Figure 2. Training and validation metrics (accuracy and loss) (to be continued) 
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Figure 2. Training and validation metrics (accuracy and loss) (continuation) 

 

Test 

Test metrics are summarized in table 1, which specifically corroborates the low 

generalization potential, yet showing important differences. VGG16 presented the best 

accuracy, sensitivity, specificity, and AUROC (62%, 62%, 66%, and 65%, respectively), 

associated with the higher loss among all CNNs tested. EfficientB0 has comparable metrics 

and the lowest loss among all CNNs, being a great candidate for further studies. The 

confusion matrix displays how predictive is the model, allowing evaluation of false positives 

(FP)/type I errors and false negatives (FN)/type II errors, while the  AUROC curves show the 

differentiation behavior in the classification task (figure 3).  
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Table 2. Test performances metrics 

 ResNet 50 InceptionV3 VGG16 Xception MobileNet DenseNet EfficientNetB0 

Time*  114s 128s 123s  116s  49s  146s  102s  

Loss   3,60 3,90 5,00 3,60 3,00 3,50 1,90 

Accuracy  (Total) 0,54 0,55 0,62 0,55 0,57 0,54 0,58 

Accuracy (Normalised)  0,55 0,59 0,62 0,55 0,59 0,56 0,56 

TP  1400,00 1100,00 1700,00 1400,00 1300,00 1300,00 1500,00 

TP% 0,53 0,41 0,62 0,50 0,49 0,47 0,55 

FP 780,00 410,00 670,00 680,00 540,00 610,00 670,00 

FP% 0,44 0,23 0,38 0,39 0,31 0,35 0,38 

TN 980,00 1400,00 1100,00 1100,00 1200,00 1200,00 1100,00 

TN% 0,56 0,77 0,62 0,61 0,69 0,65 0,62 

FN 1300,00 1600,00 1000,00 1400,00 1400,00 1400,00 1200,00 

FN% 0,47 0,59 0,38 0,50 0,51 0,53 0,45 

Precision 0,65 0,73 0,71 0,67 0,71 0,68 0,69 

Sensitivity 0,53 0,41 0,62 0,50 0,49 0,47 0,55 

Specificity  0,56 0,77 0,62 0,61 0,69 0,65 0,62 

F1Score  0,58 0,53 0,66 0,57 0,58 0,56 0,61 

AUC 0,59 0,63 0,65 0,59 0,61 0,61 0,63 

*To classify 4486 patches from the test set 
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Figure 3. Test metrics (confusion matrix and AUROC curves), and metrics of an additional 

test with augmented data. 
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After the test, an additional analysis to test the variability of the augmentation was 

conducted by testing the models for 40 loops with augmented data. In each individual loop, 

the original test dataset is randomly transformed into a new augmented test dataset. 

Accordingly, a new test procedure is carried out; hence, the parameters of performance 

corresponding to the regarding loop are computed.  As it can be seen from the regarding 

distributions (figure 3), the results were very similar to the one using the original data (table 

1). From these results, it is possible to conclude that only the augmentation is not enough to 

prevent overfitting and improve generalization.  In other words, this overfitting demonstrated 

that the learned characteristics to classify the training data were not probably relevant to 

potentially generalize the result. 

 

Discussion 

The diagnosis of HNC and OPMD by using classic ML-based models for 

classification and segmentation of histopathological image analysis have been reported by 

several groups6–10,34–36, with only a few DL-based studies reported12,14. The present study is 

the first to apply Deep CNN for OED grading based on the BS. 

The BS has sensitivity of 85%, specificity of 80% and accuracy of 82%, and greatly 

improved the grading of moderate dysplasia cases as high-risk progression cases that should 

be clinically supervised. Moreover, this system presents prognostic value, allowing outcome 

prediction (malignization) of 85% of patients20. The present protocol is based on the BS in 

accordance with evidence suggesting this system improves interobserver agreement and 

reproducibility among pathologists when compared to the TLS22–24, but a recently published 

systematic review has demonstrated that this association remains inconclusive. 

 To improve reproducibility and interobserver agreement, Nankinvell37 suggested a 

cut-off point up to four architectural and cytological changes. In the present work, the authors 
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considered the original cut-off points of four architectural and five cytological changes to 

preserve a more balanced proportion of HR and LR, since a natural imbalance is already seen 

with the majority of cases being classified as HR. This bias occurs because stable clinical 

lesions that are usually present LR malignization risk are not commonly biopsied until clinical 

changes became drastic.  

The separation between training and validation loss curves, especially if the gap has a 

divergent tendency as in MobileNet, indicates that the model is overfitting since it works well 

on the training data but not quite in the validation data. This separation means the model it is 

not generalizing enough to perform well in external data. The representation of the validation 

loss curve over the training loss curve also can indicate that validation data is harder for the 

model than training data. In this context we also can see up and down jumps in the validation 

loss curves in six of the seven tested models, which indicates that the validation data is not 

representative when compared to the training data. A possible solution to this is the addition 

of dropout by setting a certain percentage of the neurons to zero, not using all neurons during 

training, but effectively using all neurons during validation. This should lead the model to be 

more robust in validation, and as such, the validation loss curve would be lower than the 

training loss curve.   

The proper assessment of cytological and architectural criteria aims to provide an 

objective OED grading, but authors report interobserver agreement among 62% and 90%23,38. 

The authors acknowledge that support systems for OED grading should overcome this 

percentage but particularities in the data curation and the investigated disorders should be 

taken into account. A statistically significant increase in nuclear volume density, nuclear-cell 

ratio, nuclear area and perimeter are found in dysplastic cells when compared within different 

dysplasia grades, with higher values in increasing grades39. This premise corroborates that 

shape and size of nuclei can help in the differentiation among dysplasia grading. The CNN 
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convolutional layer filters relevant features for the classification task and the flattening 

function provides values corresponding to each class. Therefore, a CNNs should be able to 

correlate the features and learn the differences that stand for HR and LR. However, the way 

annotations are made, enrolling all epithelium extension, and the fragmentation process may 

insert bias by providing a great intersection of features that characterize both OED classes 

when using the BS grading system. Since the cut-offs rely solely on the quantification of the 

cytological and architectural changes, some cases may present severe changes (attending to 

the cut-off criteria for high malignization risk) but yet, presenting alterations limited to the 

basal cell layer, with superior epithelium levels preserved (figure 4). In this scenario, patches 

originating from dysplastic areas at the basal layer will be correctly labelled as HR, while 

patches from the abovementioned area may display not enough changes to fit in HR 

classification. Ultimately, an annotated ROI can generate widely different patches according 

to the epithelium level. These patches may present characteristics common to both classes but 

annotated under the same label, which can generate confusing “gold standard” with possible 

correlated information, confusing the CNNs, impairing learning and favoring “memorization” 

and overfitting. 

 

Figure 4. Pitfall explanation. A. Dysplastic lesion presenting mild dysplasia and labelled as 

low risk, and B. lesion presenting moderate dysplasia and labelled as high risk, according to 
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the Binary System. Note that generated patches are very similar and can be present in both 

classes according to the extension of dysplasia within the epithelium, despite the labels 

provided in the context of the architectural and cytological changes. These areas can be a 

confounding factor for the CNN training, resulting in overoptimistic results in training as the 

CNN “memorizes” patches. Additionally, since both patterns will be present at some level 

independently on the ground truth label, accuracy at patch-level may not be any better than 

chance (around 50%). 

 

 The authors also considered using the three-level grading21, but this system is based 

on the distribution of dysplastic characteristics along the epithelium levels, requiring analysis 

of the full epithelium architecture to assess dysplasia extension. Since histopathological 

images are fragmented to fit the CNNs’ kernels, the proper application of both BS (as 

conducted in the present work) and the three-level system is compromised. Maybe a more 

assertive methodology is to use the outcome as image labels, not the dysplasia grade. 

Alternatively, authors can include only the dysplastic area in annotations of ROIs and label 

the patient according to the BS to reduce inter-variability as much as possible. It is expected 

that the predominance of alterations should be enough to allow differentiation between LR 

and HR lesions. 

The use of slides from different institutions and the technical differences in H&E 

preparation (e.g., section thickness and staining variation) represent real aspects of clinical 

pathology routine, which brings the developed model closer to a real-life condition of use and 

raises the challenge of achieving good results and increases the robustness of the model. Color 

augmentation has the potential of improving the model’s generalization ability by creating 

samples with a wider variety of color distribution  for training; hence, artificially reproducing 
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laboratory technical differences in slide preparation, our results show that augmentation alone 

was not enough to improve the performance of the tested model’s system for our purpose. 

We tested seven important DL-based systems for binary classification of epithelial 

dysplasia in histopathological images of OPMD. This is the first published work to apply and 

evaluate performance of known Deep CNN for OED grading based on the BS. The use of DL 

models is due to eliminating inter-pathologist variability in the analysis of OED, a known 

pitfall. Our test results indicate that, using the present annotation methodology (including all 

epithelium, with labels based on the BS) the models, in their original structure, were not able 

to generalize enough to be applied in real-life datasets, despite the great learning capacity of 

these models. Additionally, dysplasia grading alone does not predict malignant 

transformation40, and requires clinical correlation. This may limit these models’ applications, 

since the recognition of dysplasia are limited to the moment of the biopsy, not taking into 

account treatments and the outcome. Nonetheless, the proposed investigation and results 

provided are important to be evolved, and the accumulated knowledge and information may 

be the starting point for researchers on this subject. Future work will compare different 

annotations methodologies (based on the patient outcome and annotations limited to the 

dysplastic area), as well as to develop and implement a novel DL architecture to recognize 

dysplasia in histopathological images. Additionally, we will investigate the use of multi-data 

(clinical images, histopathological images and clinical data) to assess prognostication and 

ultimately predict if a patient will develop OSSC. Moreover, investigations on the ability of 

DL models to differentiate high and low malignization risk in clinical images from OPMD 

and differentiate OPMD clinical images from incipient lesions of oral squamous cell 

carcinoma are currently under investigation.  
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Abstract 

Introduction: The use of Artificial intelligence (AI) for image analysis based on Supervised 

Learning (SL) requires image annotation to provide ground truth reference to train Deep 

Learning (DL) algorithms. This step should be accurately performed to provide a good 

reference for the model. The present study aims to evaluate and quantify the clinician’s 

perception on the oral potentially malignant disorder (OPMD)  to understand the source of 

interobserver variability while assessing these disorders. Study Design: A dataset of 46 

clinical images from 37 patients clinically diagnosed with leukoplakias were reviewed, 

classified, and manually annotated at pixel level by three labelers. For the clinical criteria, we 

assessed the κ statistics (Fleiss’s Kappa) to establish the interobserver agreement, and 

annotations were compared using mean pixel-wise Intersection Over Union (IoU). Results: 

The interobserver agreement for homogeneous/non-homogeneous criteria was considered 

substantial (κ=63, with 95% CI, ranging from 0.47 to 0.80). For the subclassification of non-

homogeneous lesions, the interobserver agreement was considered moderate (κ=43, with 95% 

CI, ranging from 0.34 to 0.53) with p value <0.001. A mean IoU of 0.53 (±0.22 std) was 

obtained and considered low. Conclusion: These results demonstrate that there is an important 

disagreement among clinicians while evaluating OPMDs using known clinical criteria. The 

analysis of annotated images corroborates these findings. From this analysis, the authors 

acknowledge that there is a substantial probability of transferring the subjectivity of human 

analysis to AI models during training and recommend managing this bias by including at least 

two experienced clinicians in the dataset construction and to use the image of the union as the 

ground truth reference for CNN training. 

Keywords: Supervised Learning; Oral Potentially Malignant Disorders; Oral Cancer; Head 

and Neck Cancer;  
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Introduction 

Leukoplakia is a clinical diagnosis for asymptomatic white lesions defined as a patch 

or plaque with well-defined borders that cannot be scrapped off, which occurrence is not 

linked to traumatic events, and has been biopsy-proven not to be any other known white 

disorders. These lesions can be classified as homogeneous (slightly elevated, predominantly 

smooth with or without crack fissures), and non-homogeneous (irregular surface and/or mixed 

in colour), represented by white plaques associated with erosive (red) areas (i.e., speckled), as 

well as texture alterations (i.e., verrucous/exophytic or nodular). Additionally, there is also a 

subset of epithelial dysplasia (ED) lesions presenting lichenoid features and reticular 

formation [1,2] (figure 1). 

At the histopathological examination, leukoplakias can vary from presenting no 

dysplasia to some grade of dysplasia, with some having a squamous cell carcinoma (SCC) 

diagnosis, even when presenting a misleading clinically indolent appearance. Additionally, 

non-homogeneous leukoplakias tends to have higher epithelial dysplasia (ED) grade and 

malignization risk rates [1]. This motivates investigation regarding the application of 

computer vision approaches to develop and implement image-based machine learning (ML) 

models for detection and classification of such confounding lesions to support oral 

medicinists in the screening and diagnosis of oral potentially malignant disorders (OPMD).  

Therefore, an important step of data construction is the manual annotation (figure 2A) 

of clinical images by clinicians to separate only relevant information from the background. 

The segmented images (figure 2B and 2C) will provide a ground truth reference to train a DL 

model through supervised learning for segmentation. This is not an easy task if we consider 

the widely variable and highly subjective criteria to classify OPMD lesions based on eye-ball 

observation and personal experience.  
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 Figure 1. Clinical aspects of leukoplakia: thin smooth (A), thick smooth (B) and thick 

fissured (C) homogeneous leukoplakias. Non-homogeneous leukoplakias with speck-led (D), 

fissured (E), granular/with excrescencies (F), nodular (G), lichenoid (H), and verrucous (I) 

features.   

 

The present study aims to evaluate and quantify the clinician’s perception on the 

OPMD’s clinical aspect, while evaluating, classifying and manually annotating photographic 

images of oral leukoplakias, as well as to understand the source of interobserver variability 

while assessing these lesions. 

 

Methods 

This cohort comprises 46 clinical photographs from 37 patients clinically diagnosed 

with oral leukoplakias between 2005 and 2020, and biopsied-proven as and presenting ED at 

the histopathological exam, retrieved from the Piracicaba Dental School (Piracicaba, São 
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Paulo, Brazil) archives. Patients with oral lichen planus were not included given the 

controversial nature of this lesion but ED with lichenoid features were included since it may 

represent a great pitfall in the present context. This study was performed in accordance with 

the Declaration of Helsinki and is a pilot study of the protocol approved by the Piracicaba 

Dental Ethical Committee, Registration number CAAE: 42235421.9.0000.5418, which also 

comprised Material Transfer Agreements between co-participant Institutions to share digital 

slides.  

A total of 46 images were independently reviewed, classified and manually annotated 

at pixel-level by three labelers (ALDA, ISPF and CSS). Clinical characteristics and 

histological findings are shown in table 1. 

Table 1. Clinical characteristics and dysplasia grade 

Gender 

Male 

Female 

 

35 (76%) 

11 (23%) 

Location 

Tongue 

Buccal mucosa 

Floor of the mouth 

Palate 

Gingiva 

Alveolar ridge 

Tonsilary fossa 

Vestibular fold 

 

21 

6 

3 

9 

2 

1 

2 

2 

Histologic findings 

No dysplasia 

Mild 

Moderate 

 

0 (0%) 

13 (28.2%) 

33 (71.7%) 
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The cohort was classified into homogeneous (slightly elevated white plaque, with 

discrete and shallow fissures) and non-homogeneous (more drastic alterations in texture 

and/or color). Lesions classified as non-homogeneous were clinically subclassified as 

speckled (red and white), fissured, nodular, verrucous, and lichenoid [1,2]. 

For the clinical criteria, we assessed the κ statistics (Fleiss’s Kappa) to estab-lish the 

interobserver agreement, in which values of κ < 0.00 indicates poor agreement, 0.0–0.2 slight 

agreement, 0.2–0.4 fair agreement, 0.4–0.6 moderate agreement, 0.6–0.8 substantial or good 

agreement, and > 0.8 excellent or almost perfect agreement [3]. Statistical analyses were 

conducted using Real Statistics Resource Pack for Excell (Release 7.6)  Copyright (2013 – 

2021) Charles Zaiontz. www.real-statistics.com. 

To evaluate the agreement between labelers’ annotations, the mean pixel-wise 

Intersection Over Union (IoU) was calculated comparing three-paired annotation for each 

image and dividing Intersection Pixel Count by the union Pixel Count [4]. The mean IoU 

represents the coincident areas in all annotations, the area that all labelers considered as 

“lesion”.  

  

Results 

The interobserver agreement for homogeneous/non-homogeneous criteria was 

considered substantial (κ=63, with 95% CI, ranging from 0.47 to 0.80). For the sub-

classification of non-homogeneous lesions, the interobserver agreement was consid-ered 

moderate (κ=43, with 95% CI, ranging from 0.34 to 0.53). A mean IoU of 0.53 (±0.22 std) 

was obtained, which corroborates the Fleiss kappa analysis, ultimately pointing to a 

significative discrepancy among the three labelers’ annotations.   
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Table 2. Fleiss kappa analysis 

Metric Classificationa Subclassificationb 

kappa 0.639 0.436 

s.e. 0.085 0.048 

z-stat 7.510 9.014 

p-value 1.767 <0.001* 

lower 0.472 0.341 

upper 0.806 0.531 

ahomogeneous/non-homogeneous; bspeckled (red 

and white), fissured, nodular, verrucous, and 

lichenoid; *statistically significant 

 

Table 3. Analysis of annotations’ interobserver agreement. 

Metrics Intersection Over Union 

1st and 2nd 1st and 3rd 2nd and 3rd All observers 

count     96.000000 97.000000 79.000000 272.000000 

mean        0.691998 0.604695 0.636715 0.644808 

std         0.195882 0.222336 0.208343 0.211753 

min         0.063777 0.000000 0.000000 0.000000 

25%         0.610898 0.491974 0.535257 0.550713 

50%         0.730431 0.639990 0.670263 0.678382 

75%         0.831222 0.770541 0.793060 0.803272 

max         0.961309 0.943191 0.937528 0.961309 

Count: cases counting; std: standard deviation; min: minimum; ma: 

maximum; 1st quartile (25%); 2nd quartile (50%); 3rd quartile (75%); 
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Discussion 

In the domain of oral and maxillofacial diseases, there are a few previously published 

studies that aimed to develop an automated method to support oral medicine doctors in the 

screening and early identification of OPMD and OSCC in clinical photographs [5-15]. All 

approaches begin with detection and classification of objects, known as image segmentation. 

Automatic segmentation techniques are defined as unsupervised, in which the so called 

“classic” algorithms explores the data sets and drawn inferences, or supervised (i.e., based on 

image annotation, which is the core of ML-based algorithms).  

Manual image annotation conducted by experienced medicinists is, therefore, an 

important step of supervised learning, which compares ground-truth annotation with the 

predicted segmented image. A pitfall identified in the present study was the difficulty in 

delimiting the borders of the lesions, especially in out-of-focus areas and locations were a 

poor vascularization gives a paler aspect to the mucosa (e.g., lateral border of the tongue, 

when the clinicians is pulling the tongue to take the photo) (figure 2), which could be a 

confounding factor.  The present application faces not only the challenging identification of 

sometimes subtle white plaques, but also the identification of reddish nuances discriminative 

of erosive areas with great chances of presenting higher dysplasia grades in non-homogeneous 

leukoplakias. Camalan [5] considers manual annotation prone to error due inter and intra-

labeller variability and proposed that automatic segmentation techniques can be valid 

alternatives to overcome this limitation. Our research was able to quantify variability in 

assessing OPMDs by measuring how differently such lesions are perceived by oral 

medicinists through interobservers’ agreement of clinical criteria and by calculating the IoU 

of segmented images. The present appraisal provides a unique evaluation perspective of 

annotations’ discrepancies and corroborates this already known subjectivity.  



68 
 

 

 

Unsupervised segmentation approaches as Clustering-based algorithms (e.g., k-means) 

partition the image by grouping the similar pixels in a pre-defined number of clusters (Figure 

3A), while threshold-based algorithms (e.g., Otsu) groups the pixels according to intensity 

values by assessing the histogram in an automatic or static way (Figure 3B). Unsupervised 

segmentation approaches are usually associated with texture descriptors since relying only on 

the pixel value could exclude important areas from the segmented image, requiring extensive 

calibration steps. Additionally, the presence of “noise” as surgical retractors, gloved fingers, 

gauze, lips/skin/hair, teeth, and other lesions and oral conditions not related to the 

classification task, greatly impacts the use of automatic segmentation compromising the use 

of such algorithms are not ideal for the intended clinical application. 

 

Figure 2. Annotation (A) and Intersection over Union for all labellers (B). Annotation. Note 

the disagreement regarding the inclusion of a white area in the base of the tongue, that can be 

either an ill-defined leukoplakia or ischemia due holding and pulling the tongue.  

Figure 3: Unsupervised segmentation with K-means (A) and Otsu multi-tresholding 

algorithms. 
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Supervised segmentation approaches have been consistently applied in clinical images 

of oral cancer and OPMD. In these approaches, a CNN (e.g., U-Net) is trained with manually 

annotated images (ground-truth annotation) to learn how to proper segment valid image 

information from the background. These segmented images (area containing the lesion and/or 

normal areas) will be used to train a CNN for further classification. Ferrer-Sánchez [6] 

implemented U-Net for segmentation and a multi-task CNN for the classification of OPMD to 

assist in the prediction of malignant transformation. Semantic and instance segmentation were 

investigated by Tanriver [12], which further trained a CNN for benign, OPMD, and malignant 

classification. Semantic segmentation is considered pixel-wise, as it assigns each pixel to a 

class by grouping multiple objects in one category. In contrast, instance segmentation distinct 

each object within a category. Instance segmentation is considered an upgraded version of 

semantic segmentations, as it delineates object’s boundaries by combining both object 

detection and semantic segmentation tasks. Warin [14] reported results of segmentation using 

Faster R-CNN (two-stage object detection algorithm) and YOLOv4 (one-stage object 

detection algorithm), and classification using DenseNet-121 and ResNet-50 for normal versus 

OPMD classification, in which the intersection of three labeller’s annotations was used as the 

ground truth for CNN training. In a different approach, Warin [15] adopted Faster R-CNN, 

YOLOv5, RetinaNet and CenterNet2 to detect OSCC and OPMDs in clinical photographs. 

Alternatively, Thomas [13] applied active contour without edges, a semiautomatic approach 

that improves segmentation time. 

The definitive diagnosis of oral leukoplakia should always enrol histopathological 

analysis to discard other known lesions, but there are reports of unexplained striking 

proportions (11 – 17%) of lesions diagnosed solely based on clinical skills [16,17]. Within the 

scope of OPMD, the clinician’s perception variability is reported by some authors, with 

reports of 58.7% of practitioners facing difficulties in this diagnosis [18]. Over the past years, 
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clinicians were consistently prone to the improvement of leukoplakia identification from 

46.15% in 1983 to 76% in 2015 [19].  

Clinical criteria are widely variable among studies and the importance of establishing 

a good representation of the lesion conflates the concepts of non-homogeneous clinical 

appearance and a higher malignization risk [20]. In previous work, homogeneous leukoplakia 

classification allowed the inclusion of fissured lesions [21,22], while non-homogeneous 

leukoplakias are defined by a range of clinical presentations as erythematous, granular, 

nodular, polypoid or with excrescences lesions [22,23], with verrucous leukoplakia being 

classified separately as a non-homogeneous exophytic lesion with wrinkled or corrugated 

surface [24]. These wide range of clinical criteria suffered adjustments over the years [1,2] 

and may justify, along with the different educational backgrounds, the source of disagreement 

between the enrolled labellers. This is a variation that should be taken into account and 

handled. 

Our results demonstrate an important interobserver disagreement while analysing 

OPMD using known clinical criteria evaluation. This known subjectivity is corroborated by 

the IoU quantification that reflect this diverse perception. From this analysis, the authors 

acknowledge there is a substantial probability of transferring the subjectivity of human 

analysis for CNNs during training. The use of large datasets holds the potential to overcome 

this limitation. However, despite being prone to interobserver variability, manual 

segmentation remains the best strategy to set the models with a close-to-real-life reference, 

providing individualized clinical data and contributing to build a robust model. Moreover, the 

authors understand the urge of research in oral medicine field and recommend managing this 

bias by including at least two experienced clinicians in the dataset construction and to use the 

image of the union as the ground truth reference for CNN training, since it is better to include 

false positive areas than to neglect true positive areas. 
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Conclusion 

The present work aimed to assess clinical images annotation of OPMD and early 

OSCC to understand the sources of disagreements to aid in the understanding of interobserver 

variability during dataset construction.  

The assessment of OPMD is subjective, with widely variable criteria that have 

changed over the years, and usually rely on eye-ball observation. Additionally, these clinical 

criteria are adopted in a heterogeneous way by clinicians and specialists who have different 

educational backgrounds and personal experience. These factors together explain the 

difference in the interpretation of these lesions. 

 Our results illustrated how the clinicians’ perception can introduce bias in the ground 

truth annotations used to train DL models for object segmentation and further classification, 

especially in the domain of bland, white, striated lesions. The authors accept the risk of 

including false positive reference in the segmented image and recommend using the union of 

more than one annotation as ground truth for CNN training. Standardization in ML-based 

methodologies for OPMD and early HNC diagnosis is required for a better assessment and 

accurate diagnosis. Further work will encompass the classification of the segmented images. 
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Abstract 

 

Introduction: The aim of the present systematic review (SR) is to summarize Machine 

Learning (ML) models currently used to predict head and neck cancer (HNC) treatment-

related toxicities, and to understand the impact of image biomarkers (IBMs) in prediction 

models (PMs). The present SR was conducted following the guidelines of the PRISMA 2022 

and registered in PROSPERO database (CRD42020219304). Methods: The acronym PICOS 

was used to develop the focused review question (PMs can accurately predict HNC treatment 

toxicities?) and the eligibility criteria. The inclusion criteria enrolled Prediction Model 

Studies (PMSs) with patient cohorts that were treated for HNC and developed toxicities. 

Electronic database search encompassed PubMed, EMBASE, Scopus, Cochrane Library, Web 

of Science, and LILACS. Risk of Bias (RoB) was assessed through PROBAST and the results 

were synthesized based on the data format (with and without IBMs) to allow comparison. 

Results: A total of 28 studies and 4,713 patients were included. Xerostomia was the most 

frequently investigated toxicity (17;  60.71%). Sixteen (57.14%) studies reported using 

radiomics features in combination with clinical or dosimetrics/dosiomics for modelling. High 

RoB was identified in 23 studies.Meta-analysis (MA) showed an area under the receiver 

operating characteristics curve (AUROC) of 0.82 for models with IBMs and 0.81 for models 

without IBMs (p value <0.001), demonstrating no difference among IBM- and non-IBM-

based models. The evidence was appraised as of low certainty. Discussion: The development 

of a PM based on sample-specific features represents patient selection bias and may affect a 

model’s performance. Heterogeneity of the studies as well as non-standardized metrics 

prevent proper comparison of studies, and the absence of an independent/external test does 

not allow the evaluation of the model’s generalization ability. Conclusion: IBM-featured 

PMs are not superior to PMs based on non-IBM predictors. 
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Introduction 

Prediction Models (PM) applied to oncologic patients enhance the identification of 

treatment endpoints (i.e.,  structural changes, toxicities, organs-at-risk dose, complications 

and treatment failure), as well as oncologic outcomes, and pathologic findings [1]. The use of 

PM to identify head and neck cancer (HNC) treatment toxicities can aid in the 

individualization of treatment plans and requires the implementation of multi-variable models 

able to process data from different sources, as charting data, health records, 

dosiomics/dosimetric parameters, genomics, pathological and a wide range of quantitative 

image biomarkers (IBMs) extracted from imaging data as computed tomography (CT) and 

magnetic resonance image (MRI) defined as radiomics features.  

Conventional Normal Tissue Complication Probability (NTCP) models for treatment 

toxicity prediction are based on a mathematical function in which multiple input variables 

such as clinical, demographic and dosimetric parameters [2], as well as baseline complaints 

(e.g., patient-rated xerostomia and sticky saliva) are used to predict an outcome. These models 

evolved from the Lyman–Kutcher–Burman model [3] and are known to have limited learning 

capacity, since they require the user’s feedback to establish the correct correlation of the 

prediction made with the inputs selected to compose the model, making it an almost empirical 

process. Additionally, there is still an unexplained variance in predicting such outcomes with 

NTCP models [4], which could be improved by dose-independent radiomic-based approaches, 

allowing  use of models prior to treatment planning for fast identification of susceptible 

patients [5]. 

To overcome these drawbacks, novel ML models for toxicity prediction consider 

individual patient characteristics and allow association with IBMs automatically extracted 

from radiomic features which, in theory, perform at least as well as the conventional NTCP 

models or are likely to outperform them, since training models with image characteristics and 

personalized data can be more representative and lead to more realistic outputs. However, 

previously published articles demonstrate that performance improvement of models was 

minor [6] while some authors state that radiomic data does not show superiority over NTCP 

models [5,7]. 

Within this frame of reference, the aim of this systematic review (SR) is to summarize 

Machine Learning (ML) models currently used to predict HNC treatment-related toxicities, 

with no restrictions on treatment modalities or data type, and focusing on the performance of 

models used and their reliability for clinical decision support. The present SR is based on the 
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following review questions: i) PMs can accurately predict HNC treatment toxicities? 

Additionally, we aim to identify the toxicities currently under investigation, to identify the 

type of PMs used to predict the endpoints, and to understand the impact of IBMs in the 

performance of PMs. 

 

Methods 

Eligibility Criteria 

The acronym PICOS was used to develop the focused review question and the 

eligibility criteria - which were framed based on the Guidance for defining review question 

(CHARMS Checklist) and the Guide for SR and meta-analysis of PMSs [8,9] - in which 

Participants/Populations are HNC patients, Intervention are the cancer treatments (any 

modality of radiotherapy and/or chemotherapy), the Outcome is the prediction of a given end 

point (toxicity), and the included Studies are prognostic PMSs that developed the model in a 

retrospective cohort of patients (Appendix I). Since some studies report IBM-based models 

only without directly comparing their results with standard non-IBM-based models using the 

same dataset, the authors decided to include studies that only report non-IBM-based models 

as well, if they fit all the other criteria. Studies that aimed to develop a framework for data 

mining, and to predict OARs, disease-free survival/recurrence or response to treatment were 

not included. Performance metrics are widely variable within studies. To provide a better 

assessment of the results and allow comparison of performances, only studies reporting at 

least one of the following metrics were included: area under the Receive Operation 

Characteristics (ROC) curve (AUROC), accuracy, sensitivity, specificity, precision, and F1-

score. To be included in the meta-analysis (MA) of the AUROC curve, studies should provide 

AUROC, confidence interval, and standard error values (or allow calculation). The full 

eligibility criteria and article selection flowchart are shown in figure 1. 
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Figure 1. Eligibility criteria and article selection flow 

 

Information sources and search strategy  

Individualized search strategies were carried out on June 18th, 2022 for the following 

electronic databases: PubMed, EMBASE, Scopus, Cochrane Library, Web of Science, and 

LILACS. Additionally, the gray literature was retrieved on Google Scholar, ProQuest, and 

Open Grey. Furthermore, the reference lists of included studies were screened to identify any 

additional relevant reference that could be missed in search strategy. The complete search 

strategy is shown in Appendix I. 

 

Selection process 

The study selection was made in two phases and by two independent reviewers 

(ALDA and MCM). The first phase was performed by reading titles and abstracts on Rayyan 

[10], excluding papers non-related to the SR subject. The second phase was proceeded with 

full-text reading of articles, applying the same eligibility criteria previously established. 

Divergences in any phase were resolved by mutual agreement among authors.  
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Data Collection process and data items 

The choice of data that should be extracted from each included article was made by 

discussion among authors. The data was collected by one reviewer (ALDA) and cross-

checked by a second reviewer (MCM). The variables encompassed author, year, cancer type, 

treatment modality, toxicity, data modality, model, the most discriminative features 

(predictors), sampling methods, performance metrics, and conclusion. 

 

Risk of Bias (RoB) assessment 

RoB of each study was assessed independently by two authors (ALDA and MCM) 

was assessed through PROBAST [8,11], a tool designed for PMSs. Additionally, an analysis 

of the included studies based on the TRIPOD [12,13], a guideline to develop PMSs, is 

provided, enlightening the methodological flaws of primary studies.  The PROBAST-AI and 

TRIPOD-AI [14], extensions tools specifically designed for ML-based PMSs, are currently 

being developed and further studies should apply them.   

 

Effect measures 

This SR aims to summarize the performance of ML-based PMs used to predict HNC 

treatment-related toxicities, with no restrictions on treatment modalities or data type. The 

effect measures considered were AUROC and confidence interval, since this metric allows to 

evaluate class separation and generalization of the PM. 

 

Synthesis Methods 

The learning modalities were classified as supervised and unsupervised, and the 

predictive models as classical/traditional and modern (i.e., representative learning models). 

When possible, missing metrics were calculated based on reported metrics. 

Given the methodologies’ heterogeneity, common in PMSs, data was organized in 

clusters for analysis. First, a descriptive analysis based on the given endpoint was conducted. 

Accordingly, since the goal of the present SR is to retrieve information of PM about toxicity, 

with and without IBMs, a comparative analysis  was oriented by data format (i.e. clinical, 

dosimetrics, dosiomics and radiomics). Within this setting, when a study brings results 

comparing different associations of predictors for the same model, only the model with the 

best predictors combination was included, and when a study compares several AI models with 
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and without IBMs, the best performance for each model and each modality of data was 

included to allow comparison. 

For the MA, an analysis of the (AUROC) was conducted in MedCalc by entering area 

under the curve (AUC) and standard error. For a better assessment, two MA were conducted 

among studies that presented external validation: one for IBM-based prognostic models (2 

studies, 10 models) [5,15] and the other for non-IBM-based (2 studies, 3 models) [5,16]. 

Statistical heterogeneity was calculated using an inconsistency (I2>50% = significant 

heterogeneity). Since a high heterogeneity was present, the random effect model was chosen 

to evaluate AUROC curves and compare the IBM-based models and the non-IBM-based 

models. 

 

Certainty Assessment 

The certainty of the evidence (high, moderate, low, or very low) was appraised using 

the Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) 

instrument [17] as reference and the GRADEpro [18], which is based on study design, risk of 

bias, inconsistency, indirectness, imprecision, and other considerations, including publication 

bias and effect magnitude. The assessment was scored as high, moderate, low, or very low. 

 

Results 

Study selection 

Amongst a total of 818 records identified through the search strategy, 28 articles [2,4–

7,15,16,19–39] fulfilled eligibility criteria and were included in the qualitative synthesis. The 

study selection process is summarized in the PRISMA Flowchart (figure 2) and the reasons 

for exclusion of each article read in full text in the second phase are described in Appendix 

II.  
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Figure 2. PRISMA Flowchart 
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Study characteristics 

A total of 4,713 patients treated for HNC comprised the cohorts used for developing 

and validating all models. The tumor sites were cochlea, oral cavity, nasal cavity, paranasal 

sinus, nasopharynx, oropharynx, hypopharynx, larynx, parotid, and unknown primary site. All 

included studies reported radiotherapy (RT) modalities as treatments (e.g., IMRT, 3DCRT, 

ST-IMRT, SW-IMRT, VMAT, TomoTherapy) in combination or not with chemotherapy, 

cisplatin, or cetuximab.  

Xerostomia was the end point most frequently investigated (17;  60.71%) 

[4,6,7,16,21,22,26,28,30–35,37–39]. Five studies (17.85%) enhanced the use of parotid-

sparing RT in the cohorts [4,6,37–39]. Xerostomia PM were based on patient-rated 

xerostomia in 6 (35.3%) studies [4,6,21,37–39], physician-rated in 1 (6%) [28], while the 

remaining studies were based on different xerostomia criteria. Among these 17 studies, 3 

(10.7%) also investigated sticky saliva prediction [6,7,21]. Dysphagia was the second most 

commonly investigated endpoint, with 3 (10.7%) studies [2,15,36], followed by weight 

loss/need for feeding tube (2; 7.1%) [23,25] mucositis (1; 3.5%) [24], saliva amount (1; 3.5%) 

[29], osteoradionecrosis (1; 3.5%) [27], sensorineural hearing loss (1; 3.5%) [19], and 

radiation-induced hypothyroidism (1; 3.5%) [5], and radiation-related caries (1; 3.5%) [20]. 

The majority of included studies (27; 96.4%) applied supervised learning modalities, 

with Logistic Regression (LR), Multivariable LR, and Penalized LR being the most frequent 

classifier (19; 67.8%) [2,4–7,15,16,21,23–25,27–30,34–39] in comparison or not with other 

traditional classifiers or modern models, while only 6 (21.4%) studies reported RL models 

(i.e., Multilayer Perceptron and Convolutional Neural Networks) [5,16,20,25,27,30] and the 

remaining had reported classical methods for toxicity prediction. Among studies using RL 

models, 1 (1; 3.5%) study also developed an ensemble model which associated a logistic 

regression model and a CNN for image processing [25]. One study (1; 3.5%) applied an 

unsupervised data mining approach (clustering) [2]. More details on feature (predictor) 

selection and classification algorithm are shown in table 1. 
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Table 1. Included studies (to be continued) 

Author/ year Toxicity Feature 

selection 

Classification model/ 

algorithm 

I 

B 

M 

Data P 

M 

St 

Train/ 

valid 

set 

Test 

set 

AUC CI SE Study conclusion and most 

important predictors 

Abdollahi et 

al, 2018 [19] 

Sensorineural 

hearing loss 

CfsSubsetEval  Decision Stump  Y D/C/R 1b 47 NA NI NI NI Prediction improvement when 

using gEUD effect. Needs 

validation in larger sample. 

Hoeffding    Y D/C/R 1b NI NI NI 

LASSO 

penalized LR 

all ML models 

without gEUD effect 

Y D/C/R  1b NI NI NI 

all ML models with 

gEUD effect 

Y D/C/R 1b 0.79 NI NI 

Elastic-Net 

Regularized GLM 

(“Glmnet”) 

Y D/C/R 1b 0.88 NI NI 

Araújo Faria 

et al, 2021 

[20] 

Radiation-related 

caries 

KBestSelect ANN Y R 2a 10* 5* 0.98 NI NI 1. High accuracy to select the 

best radiomic features. 2. The 

selection approach for the best 

features is crucial. 3. Needs 

validation in larger sample. 

Beetz et al, 

2012a [21] 

Xerostomia at 12 

months after 

radiotherapy 

Pearson 

correlation, FS 

and extended 

bootstraping 

M-LR N D/C 1a 178 NA 0.68 (0.60-0.76) NI Indicate which OARs should be 

spared to optimise current 

treatment with IMRT. The  two-

factor model containing base line 

xerostomia and the mean dose to 

the contralateral gland performed 

significantly better in that 

respect. 

Sticky saliva until 

the end of treatment 

M-LR N D/C 1a 0.68 (0.60-0.76) NI 

Beetz et al, 

2012b [7] 

Xerostomia at 12 

months after 

radiotherapy 

Pearson 

correlation, FS 

and extended 

bootstraping  

M-LR N D/C 1a 165 NA 0.82 (0.76-0.89) NI Dose distributions in the minor 

salivary glands have limited 

significance for the develop ment 

of patient-rated symptoms related 

to salivary dysfunction among 

patients treated with 3D-CRT. 

Patient-rated xerostomia and 

sticky saliva cannot be predicted 

with one simple relationship 

between the dose distribution in 

an OAR and an endpoint.  

Sticky saliva until 

the end of treatment 

M-LR N D/C 1a 167 0.84 (0.78-0.90 NI 
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Table 1. Included studies (continuation) 

Author/ year Toxicity Feature 

selection 

Classification model/ 

algorithm 

I 

B 

M 

Data P 

M 

St 

Train/ 

valid 

set 

Test 

set 

AUC CI SE Study conclusion and most 

important predictors 

Buettner et 

al., 2012 [22] 

Xerostomia at 12 

months after 

radiotherapy  

Bayesian 

model-

selection 

algorithm  

Bayesian M-LR 

(mean dose model) 

N D/C 3 63 48 0.73 NI NI Dose–response models based on 

morphological descriptors of the 

dose distribution are more 

accurate than standard mean-dose 

models.  When generating IMRT 

treatment plans, spatial 

information should be taken into 

account and could result in lower 

complication rates.  

Bayesian M-LR     

(morphological model 

6) 

N D/C 3 0.8 NI NI 

Cheng et al., 

2019 [23] 

Weight loss LASSO LR Y D/C/R 2a 63 100 NI NI NI The predictions may be 

optimized by our inclusion of 

radiomics features into the 

model. Features included volume, 

shape, first-order statistics for the 

distribution of intensities, and 

texture20 for the parotid and 

submandibular glands, larynx, 

and superior constrictor muscles. 

Dean et al,  

2017 [24] 

Mucositis grade (2 

or lower = severe) 

LASSO Penalised LR Y D/C/R 2a 179 NA 0.71 NI  

0.10  

Using a novel mucosal surface 

contour organ at risk did not 

improve the predictive 

performance of severe acute 

mucositis NTCP models. 

RF Y D/C/R 2a 0.69  NI 0.09 

Dean et al, 

2018 [15] 

Dysphagia [severe 

(grade 3 or worse) 

and non-severe 

(less than grade 3)] 

LASSO Penalized LR 

(standard) 

Y D/C/R 3 173 90 0.82 NI 0.004* 1. The authors recommend the 

model in xx for clinical decision-

support, due its superior 

performance when compared to 

the model developed by the 

authors in terms of the 

probability calibration. 2. Doses 

of approximately 1 Gy/fraction 

were most strongly associated 

with severe dysphagia. 
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Table 1. Included studies (continuation) 

Author/ year Toxicity Feature selection Classification model/ 

algorithm 

I 

B 

M 

Data P 

M 

St 

Train/ 

valid 

set 

Test 

set 

AUC CI SE Study conclusion and most 

important predictors 

Dohopolski 

et al., 2022 

[25] 

Need for a feeding 

tube (G-tube or 

NG-tube) or 10% 

or more weight loss 

during RT 

RFE  LR N C 2* 162* 55 0.69 (0.63-0.76) NI 1. An ensemble model combining 

clinical parameters and 3D 

imaging was statistically superior 

to the clinical model alone, 

highlighting how DL may 

augment clinical care.2. External 

test is required to incite more 

immediate clinical changes.  

SVM N C 1b 0.68 (0.62-0.75) NI 

MLP N C 1b 0.66 (0.60-0.73 NI 

NA  ResNet-50 Y R 1b 0.63 (0.56-0.70) NI 

MedicalNet (transfer 

learning with a 

ResNet-based model) 

Y R 2* 0.73 (0.67-0.79) NI 

Ensemble clinical LR 

model and MedicalNet 

imaging model 

Y C/R 2* 0.75 (0.69-0.81) NI 

Gabry´s et al, 

2018 [26] 

Xerostomia (early) UFS-F k-nearest neighbors Y D/R 1b 153 NA 0.65  (0.62–0.68) NI 1. Due to strong dependence on 

patient-specific factors, there is a 

need for personalized data-driven 

risk profiles in future 

development of NTCP. 2. Feature 

selection allowed for a reduction 

of model complexity. 3. In small 

clinical datasets, simple LR can 

perform as well as top-ranking  

ML algorithms.  

Xerostomia (late) MB-LR Gradient tree boosting Y D/R 1b 0.65 (0.59–0.70) NI 

Xerostomia  

(long term) 

MB-LR Extra trees Y D/R 1b 0.88 (0.84–0.91) NI 

Xerostomia 

(longitudinal) 

RFE-LR Gradient tree boosting Y D/R 1b 0.63 (0.52–0.71) NI 

Humbert-

Vidan et al, 

2021 [27] 

Osteoradionecrosis Univariate 

analysis, χ2 and 

Mann–Whitney U 

Non-parametric 

test. 

M-LR  N D/C 2* 96 20 NI NI NI Successfully prediction of ORN 

using ML methods.  SVM  N D/C 2* NI NI NI 

RF N D/C 2* NI NI NI 

AdaBoost N D/C 2* NI NI NI 

ANN N D/C 2* NI NI NI 

Jiang et al, 

2019 [28] 

Xerostomia at 3 

months of follow 

up 

U-LR  Ridge LR N D/C 2a 427 NA 0.69 NI 0.08 1. The AUC performance using 

dosimetric features is not 

significantly different from 

voxel-dose features. 2. The 

specific subvolume in the PG and 

SMG of the contralateral PG are 

the most predictive features.   

U-LR  LASSO LR N D/C 2a 0.67 NI 0.06 

U-LR RF N D/C 2a 0.69 NI 0.07 
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Table 1. Included studies (continuation)            

Author/year Toxicity Feature 

selection 

Classification 

model/algorithm 

I 

B 

M 

Data P 

M 

St 

Train/ 

Valid 

Set 

Test 

set 

AUC CI SE Study conclusion and most important 

predictors 

Liu et al, 2019 

[29] 

Saliva amount RFE Linear regression Y C/R 3 35 4 NI NI NI 1. The proposed method was able to 

accurately predict patients’ saliva amount 

at early stage and prevent the xerostomia 

symptom in advance. 2. 10 of 14 selected 

features were radiomics, which can 

effectively represent features’ changes 

during RT. 

Men et al, 

2019 [30] 

Xerostomia NA 3D rCNN Y D/R 2a 706* 78* 0.84 (0.74-

0.91) 

NI 1. The present automatic extraction of 

both radiomics and dosiomics features is 

a great advantage over the traditional LR 

model. 2. The inclusion of CT image 

could improve the performance. 3.  Even 

without the input contour, CNN could 

achieve slightly inferior/ comparable 

performance. 4. More studies are 

warranted. 

3D rCNN Y D/R  

(no 

contour) 

2a 0.82 (0.72-

0.90) 

NI 

3D rCNN  Y D/R  

(no CT) 

2a 0.78 (0.67-

0.88) 

NI 

3D rCNN Y R 2a 0.7 (0.58-

0.80) 

NI 

FS  LR N D  2a 0.68 (0.56-

0.80) 

NI 

LR N D/C 2a 0.74 (0.64-

0.84) 

NI 

Nakatsugawa 

et al, 2019 

[31] 

grade >2 

xerostomia at 3 

to 6 months of 

follow up 

FS Bivariate LR  N D/C NA 297 NA 0.6164 NI NI Updating prediction models with 

prospective data collection is effective for 

maintaining the performance of our 

xerostomia prediction. 

Nardone et al, 

2018 [32] 

Xerostomia at 12 

months after 

radiotherapy 

Correlation 

and FS  

Bivariate LR  N D/C 2a 78 NI 0.77 (0.65-

0.99) 

NI 1. Texture analysis seems to improve the 

knowledge of the predictive factors of this 

kind  of radiation therapy’s toxicity. 2. 

Textural features (RLNU and GLCM) 

could be associated with radiosensitivity 

of the PG (lower number of acinar cells, 

vascularization or greater ratio of adipose 

tissue. 3. Further studies on a large 

population are needed to better estimate 

the actual preliminary data. 

Y D/C/R 2a 0.91 (0.75-

0.98) 

NI 
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Table 1. Included studies (continuation) 

Author/ year Toxicity Feature 

selection 

Classification model/ 

algorithm 

I 

B 

M 

Data P 

M 

St 

Train/ 

valid 

set 

Test 

set 

AUC CI SE Study conclusion and most 

important predictors 

             

             

Pota et al, 

2017 [33] 

Xerostomia at 12 

months after 

radiotherapy 

FS 

  

Likelihood-Fuzzy 

Analysis  

N C 1b 19 NA NI NI NI  1. Models reached high accuracy 

thanks to the employment of 

radiomics-based features. 2. This 

work can address future studies in 

considering radiomics features 

besides parotid shrinkage in the 

construction of normal tissue 

complication probability (NTCP) 

models. 3. The performance of 

both single variable and multiple 

variables models, obtained by 

different methods are very 

similar. 4. Different methods 

identify the same best predictors 

for both endpoints. 

N D 1b NI NI NI 

Y R 1b NI NI NI 

Y R 1b NI NI NI 

Y R 1b NI NI NI 

Naïve Bayes  N C 1b NI NI NI 

N D 1b NI NI NI 

Y R 1b NI NI NI 

Y R 1b NI NI NI 

Y R 1b NI NI NI 

Rosen et al, 

2018 [34] 

Xerostomia (grade 

≥1)  

LASSO  Penalized LR N D/C 1b 105 NA 0.71 (0.60-0.81) NI Early treatment  CBCT-measured 

PG density changes were shown 

to be associated with long-term 

xerostomia and improved 

predictions over PG dose alone. 

Y D/C/R 1b 0.72 (0.60-0.83) NI 

Xerostomia (grade 

≥2)  

Penalized LR  N D/C 1b 0.69 (0.62-0.77) NI 

Y D/C/R 1b 0.78 (0.64-0.91) NI 

Sheikh et al, 

2019 [35] 

Xerostomia Spearman 

correlation, 

LASSO, and 

internal LOO-

cross-validation  

GLM  N D 3 216 50 0.63 (0.51–0.81) NI 1. Image features from salivary 

glands significantly contributed to 

xerostomia prediction. 2. Higher 

order texture features for both 

ipsi- and contralateral salivary 

glands were important predictors. 

3. combining multimodal image 

features with dosimetry features 

improved xerostomia prediction. 

4. The model’s performance 

improved with DVH+CT+MR 

features compared to DVH or 

CT+MR. 

Y R 3 0.57 (0.45–0.71) NI 

Y R 3 0.66 (0.54–0.82) NI 

Y R 3 0.7 (0.57–0.82) NI 

Y D/R 3 0.7 (0.57–0.82) NI 

Y D/R 3 0.56 (0.40–0.68) NI  
Y D/R 3 0.6 (0.50–0.73) NI 

Y C/R 3 0.73 (0.62-0.86) NI 

Y D/C/R 3 0.68 (0.52–0.80) NI 
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Table 1. Included studies (continuation) 

Author/ 

year 

Toxicity Feature 

selection 

Classification 

model/ 

algorithm 

I 

B 

M 

Data P 

M 

St 

Train/ 

valid 

set 

Test 

set 

AUC CI SE Study conclusion and most important 

predictors 

Smyczynska 

et al., 2021 

[5] 

Radiation-induced 

hypothyroidism 

t-tests, 

hierarchical 

clustering and 

FS  

GP (variant Ia) N D 3 98 60 0.9 NI 0.07 Our models tend to be slightly less 

sensitive, but more specific and 

accurate. Radiomic-based models are 

dose-independent (can be used prior to 

treatment planning allowing faster 

selection of susceptible population) but 

did not outperform state-of-art NTCP 

models. Radiomic features came from 

original, logarithm, exponential and 

wavelet (LLL, HHH) images (measured 

nonuniformity of the thyroid region as 

coarseness, zone percentage) and were 

higher in patients who developed the 

toxicity. The only feature lower in these 

patients was least axis length of thyroid.  

GP (variant Ib) N D 3 0.9 NI 0.07 

GP (variant II) N D 2a 0.95 NI 0.05 

LR (variant Ia) Y R 3 0.89 NI 0.07 

MLP4 (variant 

Ib) 

Y R 3 0.94 NI 0.05 

MLP4 (variant 

II) 

Y R 2a 0.91 NI 0.07 

MLP2 (variant 

Ia) 

Y C/R 3 0.95 NI 0.05 

MLP4 (variant 

Ib) 

Y C/R 3 0.94 NI 0.05 

MLP2 (variant 

II) 

Y C/R 2a 0.92 NI 0.06 

Soares et al, 

2018 [16] 

Xerostomia at 12 

months 

Clinical 

knowledge***  

RF N D/C 3 114 24 0.69 NI 0.018371 RF presented high performance and 

good  discriminative ability. The role of 

age, gender, severity of xerostomia prior 

to radiation therapy and planned mean 

physical dose in the contralateral and 

ipsilateral parotids appeared to be of 

main importance.  

Stochastic 

Boosting 

N D/C 2a 0.65 NI NI 

SVM N D/C 2a 0.66 NI NI 

LR N D/C 2a 0.47 NI NI 

Clustering  N D/C 2a 0.43 NI NI 

NA ANN N D/C 2a 0.61 NI NI 

Ursino et al, 

2021 [36] 

Dysphagia  

(disturbed swallowing 

(penetration/ 

aspiration) at 12 

months) 

a pipeline 

specifically 

designed using 

CERR  

Linear SVM Y D 1b 38 NA 0.85 NI NI Swallowing organs at risk have been 

poorly considered until recently and are 

worth further investigating in clinical 

research. 

LR Y D 1b 0.82 NI NI 

RF Y D 1b 0.94 NI NI 



93 

 

 

Table 1. Included studies (continuation) 

Author/ 

year 

Toxicity Feature selection Classification 

model/ 

algorithm 

I 

B 

M 

Data P 

M 

St 

Train/ 

valid 

set 

Test 

set 

AUC CI SE Study conclusion and most important 

predictors 

van Dijk et 

al., 2017a [6] 

Xerostomia Pearson correlation 

and LASSO  

M-LR N D/C 1b 249 NA 0.75 (0.69–0.81) NI Prediction significantly improved by 

including CT biomarker ‘‘Short Run 

Emphasis” (might be a measure of non-

functional fatty parotid tissue). The 

maximum CT intensity was associated 

with sticky saliva (probably related with 

vascularization). These IBM are a first 

step to identifying patient characteristics 

that explain the patient-specific response 

of healthy tissue to dose. 

Xerostomia M-LR Y D/C/R 1b 0.77 (0.71–0.82) NI 

Sticky saliva M-LR N D/C 1b 0.74 (0.67–0.80) NI 

Sticky saliva M-LR Y D/C/R 1b 0.77 (0.71–0.83) NI 

van Dijk et 

al., 2017b 

[37] 

Xerostomia at 12 

months 

NA M-LR  

(Ref. modelre) 

N D/C 4 107 107 0.76 (0.67–0.86) 
 

Mean PG dose significantly correlated 

with ΔPG-surface and did not add 

information to the ΔPG-surface model in 

predicting late xerostomia in this cohort. 

The model with DPG surface and acute 

xerostomia early after radiation therapy 

significantly improved model 

performance to predict late xerostomia. 

Pearson correlation, 

stepwise FS 

repeated in 1000 

bootstrapped 

samples  

LR Y R 1b 0.76 (0.66–0.85) 
 

LR Y C/R 1b 0.82 (0.72-0.91) 
 

LR Y D/C/R 1b 0.82 (0.73-0.91) 
 

LR N C 1b 0.85 (0.77-0.93) 
 

LR Y C/R 1b 0.9 (0.84-0.96) 
 

van Dijk et 

al., 2018a [4] 

Xerostomia NA M-LR  

(Ref. modelre) 

N D/C 4 161 161 0.73 (0.65-0.81) 
 

The addition of the predictive intensity 

PET-IBM (90th percentile of SUV) to a 

model with parotid gland dose and 

baseline xerostomia improved the 

prediction performance. Resulting from 

both the Lasso regularisation and forward 

selection, the 90th percentile of SUVs 

(P90) was the most predictive of all 

intensity PET-IBMs. The most predictive 

textural PET-IBM was the Long Run 

High Grey-level Emphasis 3 

(LRHG3E).The SRE neither significantly 

improved the reference model  nor did it 

add to the PET-IBM models with P90 and 

LRHG3E in this cohort subset. 

LASSO  M-LR  Y D/C/R 1b 0.77 (0.69–0.84) 
 

M-LR  Y D/C/R 1b 0.77 (0.70–0.84) 
 

M-LR  Y D/C/R 1b 0.77 (0.69–0.84) 
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* calculated by the authors 

** 2 (did not mention if the split was random);  

***In this article, no statistics were used to select the predictors (the study has less bias than if univariate analysis was done); 

ANN: Artificial Neural Network; 

AUC: area under the curve; 

C: clinical; 

CI: Confidence interval; 

Table 1. Included studies (continuation) 

Author/ 

year 

Toxicity Feature 

selection 

Classification 

model/ algorithm 

I 

B 

M 

Data P 

M 

St 

Train/ 

valid 

set 

Test 

set 

AUC CI SE Study conclusion and most important 

predictors 

van Dijk et 

al., 2018b 

[38] 

Xerostomia at 12 

months after 

radiotherapy 

NA M-LR  

(Ref. modelre) 

N D/C 4 43 25 0.65 (0.41-0.88) NI The prediction performance of xerostomia 

based on parotid dose and baseline 

xerostomia only was improved by the 

addition of the predictive intensity MR-IBM 

P90 (high fat concentration is related to a 

higher risk of developing xerostomia). More  

research is needed. 

Step-wise FS  M-LR Y D/C/R 3 0.83 (0.66-0.99) NI 

M-LR Y D/C/R 3 0.83 (0.67-0.99) NI 

van Dijk et 

al., 2019 

[39] 

Xerostomia at 12 

months after 

radiotherapy 

Not performed M-LR N D/C 2* 56 14 0.80 NI NI  Mid-treatment parotid gland changes 

substantially improve the prediction of late 

radiation induced xerostomia. 

FS M-LR Y C/R 2* 0.85 NI NI 

M-LR Y D/C/R 2* 0.93 NI NI 

Wentzel et 

al., 2020 [2] 

Dysphagia hierarchical 

agglomerative 

clustering 

(data mining) 

LR Y C/R NA 200 NA 0.84 NI NI  The proposed methodology of automatically 

generating a simple stratified risk score for 

dysphagia could be applied to identifying 

high-risk groups of other negative patient 

outcomes and better guide future treatment 

recommendations.  

The combination of T-stage and spatial 

clusters notably improves performance. 

Spatial clusters and clinical features 

combined reached the best performance. 

Y R NA 0.68 NI NI 

N C NA 0.7 NI NI 

Y C/R NA 0.82 NI NI 

N C NA 0.79 NI NI 

Y R NA 0.77 NI NI 

Y C/R NA 0.8 NI NI 

Feeding tube Y C/R NA 0.71 NI NI 

Y R NA 0.64 NI NI 

N C NA 0.6 NI NI 

Y C/R NA 0.76 NI NI 

N C NA 0.64 NI NI 

Y R NA 0.72 NI NI 

    Y C/R NA   0.67 NI NI  
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CNN: Convolutional Neural Network; 

D: dosimetrics;   

DVH: dose–volume histogram; 

FS: forward selection approach/forward method of Sequential Feature Selector; 

gEUD: generalized equivalent uniform dose  

GLM: Generalized linear models (multiple LR); 

GP: Gaussian Process;  

IBM: image biomarkers;  

LASSO: least absolute shrinkage and selection operator;  

LOO: leave-one-out; 

LR: logistic regression;  

MB-LR: model based feature selection by logistic regression; 

MLP2: Multilayer Perceptron with 2 neurons in single hidden layer;  

MLP4: Multilayer Perceptron with 4 neurons in single hidden layer;  

M-LR: multivariate logistic regression; 

NA: not applicable; 

NI: not informed; 

NN: Neural Network;  

OARs: organs at risk;  

PG: parotid gland; 

PMSt: Prediction Model Studies type;  

R: radiomics;  

rCNN: residual Convolutional Neural Network; 

Ref. modelre : reference model retested (model proposed by Beetz 2012; Howeling, 2010); 

RFE: recursive feature elimination; 

RFE-LR: recursive feature elimination by logistic regression; 

SE: standard error; 

SVM: Support Vector Machine;  

UFS-F: univariate feature selection by f-score; 

U-LR: univariate logistic regression; 
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Among the 28 included studies, 11 (%) reported NTCP models [4–

7,15,21,22,24,26,37,38], 1 (3.5%) reported models with only dosimetrics [36] and 1 (3.5%) 

reported a model using only radiomics [20], and 4 (14.3%) reported multivariable models 

trained with dosimetrics, clinical and radiomics features combined [15,19,23,24]. The 

remaining included articles reported models trained with different combinations of data (e.g., 

dose and clinical, clinical and radiomics, dose and radiomics, etc). In total, 16 (57.14%) 

studies reported using radiomics features in combination with clinical or 

dosimetrics/dosiomics for modelling, in which 12 (42.85%) compare different models with 

and without IBMs using the same dataset  (per study) [2,4–6,25,30,32,34,35,37–39] (table 1). 

For the purposes of the present systematic review, data modalities frequencies and 

performances of models using IBMs are displayed in comparison with those not using IBMs 

for a comparative visual perspective in figure 3, as well as performances according to the 

Learning Modalities.  

 

 

Figure 3. Data modalities frequencies and visual comparison of models performances 
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RoB in studies  

To provide an idea of how consistent methodologies are and to enlighten 

methodological flaws in primary studies, an evaluation based on the TRIPOD Checklist 

[12,13] was conducted. Among the included studies, only 3 (10.7%) mentioned relying on 

TRIPOD to develop their PMs. Overall quantification of items identified that source of data is 

unclear in 6 (21%) of studies, and in 10 (36%) the number/ location of centers, the eligibility 

criteria and/or treatments were not mentioned. Only 12 (43%) of the studies reported 

performances with confidence interval. 

An important delimitation the TRIPOD provides is regarding the type of PMSs 

according to the data sampling. Among the included studies, 2 studies reported 4 models 

classified as type 1 [7,21] (development only), 8 studies reported 23 models classified as type 

2a [5,16,20,23,24,28,30,32] (development and validation with random sampling), seven 

studies reported 27 models classified as type 3 [5,15,16,22,29,35,38] (development and 

validation with non-random sampling), and three studies reported 3 models classified as type 

4 [4,37,38] (validation only). Three studies reported 11 models in which it was not possible to 

identify if the split was random or not [25,27,39]. This classification did not apply to 1 study 

that aimed to evaluate the impact of continuous model update [31] and 1 study that applied 

unsupervised clustering classification [2], both methodologies not driven by sampling 

methods. Only models reporting external validation metrics were considered for meta-

analysis, encompassing 3 studies and 13 models (10 with IBMs and 3 without IBMs). Only 4 

(14%) describe the medical context and specify the studies’ objectives. The majority of 

studies do not define if the study describes the development of the model, validation, or both. 

Seven (25%) studies randomly split their dataset to develop and validate the proposed 

model internally [20,23,25,27,30,32,39]. Among these, two studies [25,30] evenly split their 

data set into a training, validation, and test set, but these were not considered external 

validation because data set splitting fit the study as type 2a [30] or did not fit in any type 

because splitting modality was unclear [25]. For those performing external validation, a total 

of 1010 patients were included in the development of the model, and 569 patients were 

included in the external test set [4,5,15,16,22,29,35,37,38]. 

PROBAST [8,11] was checked for RoB assessment and applicability of primary 

PMSs. 
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Table 2. Risk of Bias in included studies 

  ROB  Applicability   

 Author/ year [ref] Participants Predictors Outcomes Analysis  Participants Predictors Outcomes ROB Applicability 

1 Abdollahi et al, 2018 [19] ? + + -  + + + - + 

2 Araújo Faria et al, 2021 [20] + + + -  + + + - + 

3 Beetz et al, 2012a [21] + - - +  + + + - + 

4 Beetz et al, 2012b [7] + + - +  + + + - + 

5 Buettner et al., 2012 [22] + + + -  + + + - + 

6 Cheng et al., 2019 [23] ? + + -  + + + - + 

7 Dean et al, 2017 [24] + + + -  + + + + + 

8 Dean et al, 2018 [15] + + + -  + + + - + 

9 Dohopolski et al., 2022 [25] + - - +  + + + - + 

10 Gabry´s et al, 2018 [26] + + + +  + + + - + 

11 Humbert-Vidan et al, 2021 [27] + + + -  + + + - + 

12 Jiang et al, 2019 [28] + + + -  + + + - + 

13 Liu et al, 2019 [29] ? + + -  + + + - + 

14 Men et al, 2019 [30] + + + +  + + + + + 

15 Nakatsugawa et al, 2019 [31] + + + -  + + + - + 

16 Nardone et al, 2018 [32] + + + +  + + + + + 

17 Pota et al, 2017 [33] ? ? ? -  + + + - + 

18 Rosen et al, 2018 [34] + + + +  + + + + + 

19 Sheikh et al, 2019 [35] + + + +  + + + + + 

20 Smyczynska et al., 2021 [5] + ? ? -  + + + - + 

21 Soares et al, 2018 [16] ? + - -  + + + - + 

22 Ursino et al, 2021 [36] + + + -  + + + - + 

23 van Dijk et al., 2017a [6] + - - +  + + + - + 

24 van Dijk et al., 2017b [37] + - - +  + + + - + 

25 van Dijk et al., 2018a [4] + - - +  + + + - + 

26 van Dijk et al., 2018b [38] + - - +  + + + - + 

27 van Dijk et al., 2019 [39] + - + -  + + + - + 

28 Wentzel et al., 2020 [2] + - - -  + + + - + 
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PROBAST = Prediction model Risk Of Bias ASsessment Tool; ROB = risk of bias. 

* + indicates low ROB/low concern regarding applicability; − indicates high ROB/high 

concern regarding applicability; and ? indicates unclear 

ROB/unclear concern regarding applicability. 

 

In the Patient domain, 3 studies [16,29,33] presented unclear RoB regarding the 

omissions of the reasons for patient exclusions. Studies presenting high RoB for the 

Predictors domain were those using subjective measurements of the endpoint (e.g., patient-

rated xerostomia) [4,6,21,25,37–39] when it is expected to use a guideline/criteria or when 

different endpoint measurements (inconsistent predictors) were made within the same cohort 

[2,25]. For the Outcome domain, as all outcomes were determined appropriately in a standard 

way, a high RoB was identified when the outcome was not defined and determined in a 

similar way for all participants [2,25]. In some studies, predictors were not excluded from the 

outcome definition (i.e., to predict xerostomia, baseline xerostomia was used as a predictor). 

In the present analysis, the authors considered the use of baseline xerostomia as a source of 

bias [4,6,7,16,21,37,38]. Blinding of predictor (i.e., to assess predictor without the knowledge 

of the outcome status) does not apply to ML-based PM, since we need the conclusion for each 

patient to properly train a model with retrospective data. Therefore, this signalling question 

does not apply to the present studies, as well as the time interval between assessments. In the 

Analysis domain, studies considered as having high RoB were those in which the authors 

used univariable analysis to select the predictors [27,28], those in which the model 

performance metrics were not properly evaluated (i.e., studies not presenting AUROC – the 

only metric that properly evaluates the separation of the patients who developed the endpoint 

from those who did not – or those presenting only AUROC without confidence interval) 

[2,5,15,16,19,20,22–24,27–29,31,33,36,39]. Overfitting and optimistic performance were 

accountable in all models reporting model development with proper internal validation (cross-

validation, bootstrapping) with only one study presenting an unclear status for this domain 

[5]. Sample size considerations are also important, but criteria are not clear for development 

studies [8] Therefore, only model validation studies were evaluated for this signalling 

question, with 5 from a total of 9 studies having an appropriate sample size (up to 100 

participants) [4,15,16,35,37]. A high RoB was identified in 23 studies (table 2). No 

applicability concerns were raised. 
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 Results of syntheses 

The MA of the AUROC of studies that presented external validation [5,15,16] is 

shown in (figure 4). The RoB of the studies included in MA were considered low [15], 

unclear [5], and high [16]. Additionally, since the studies are highly heterogeneous for both 

IBM-based models [5,15] (I2=87,36%), and for non-IBM-based models [5,16] (I2=97.89%), 

the authors considered the random effect model to evaluate AUROC curves and compare the 

IBM-based models and the non-IBM-based models, avoiding relying on overestimated 

results. This analysis shows an AUROC area of 0.82 for models with IBMs and 0.81 for 

models without IBMs (p value <0.001), meaning there is no difference between the prediction 

performance of  IBM- and non-IBM-based models, with IBM-based models performing only 

slightly better. 

 

Figure 4. Meta-analysis 
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Certainty of evidence 

The certainty of the body of evidence from studies included in MA were appraised as low 

certainty of evidence downgraded for bias and inconsistency (Appendix III). This result was 

mainly due the high RoB and great inconsistency (I2) of studies that contribute to MA. It is 

worthy to mention that, since these models are developed and tested based on the real 

outcome (i.e., toxicity development) of a cohort of patients, the impact of the outcome and 

their importance rating does not fit in the present analysis. A narrative GRADEpro table is 

presented, without the magnitude of the effect estimation, since confidence intervals were not 

reported by the studies included in the MA. 

 

Discussion 

The present SR evaluated PMSs based on multi-variable models to predict a wide 

range of toxicities from HNC treatment. Multi-variable models based on LR are on the 

frontier of statistics and ML-based modelling. The primary researcher (ALDA) conducted a 

previous literature review to identify the state-of-the-art for toxicity prediction and retrieved 

two relevant Systematic Reviews (SR) regarding the use of radiomics and ML for 

radiotherapy in HNC, which included several outcomes (such as HPV status, distant 

metastasis, etc.) [40], and addressed the radiation-induced toxicity prediction in HNC through 

radiomics [41]. Despite these findings, the authors proceed with the present SR because it is 

suitable to identify PMSs that address a wide range of HNC treatments, including not only 

toxicities but also common complications of HNC treatment, and compares models developed 

using IBMs against not using IBMs.   

 Some authors [26] advocate that there are no published studies systematically 

evaluating how distinct RL-based models are from NTCP models. Essentially, this distinction 

relies mostly upon Deep Learning models being essentially different from classical ML 

models like LR, and therefore, data modality and selection of predictors are also distinct. 

There is an urge to understand if there is a gain in prediction power by using these models, 

since NTCP models present a series of limitations as they discard organ-specific spatial 

information, and are usually based on a single CT. Moreover, data format, treatment 

modalities/planning, patient population, cancer type, and predictors enrolled in developing a 

PM can affect the interpretability of the results. 

Traditional models are dependent on the sample size and need more examples to better 

separate classes. A methodological intrinsic bias of such studies may be modelling according 
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to sample-specific features, as when, if all patients receive similar radiation dose, these 

metrics will not be statistically significant to be discriminative. This patient selection bias 

affects the model’s performance and jeopardizes consistent conclusions from primary studies, 

whose rationale is the prediction of toxicities to facilitate clinical conduct towards a 

personalized treatment plan. Additionally, it reinforces the need for more personalized 

treatments (how can we train a model to correctly address and personalize treatment if the 

model was trained with a standard and generic profile?). According to the present SR, the 

distinction among RL models performing better than classical models was not clear. 

Models based only on dosimetric features use mean dose and partial information from 

the dose-volume histogram (DVH), while conventional NTCP models utilize all information 

of the DVH curve by concatenating all metrics to a single factor with dose-response functions 

(DRFs). Radiomics models, on the other hand, extract features directly from medical images 

(known as textural or intensity features). Similarly, Dosiomics attempt to extract 3D spatial 

features from radiation therapy dose distribution. For this reason, to allow proper comparison 

and analyses of the reported PMs, the present SR takes into account PMs based on imaging 

data PMs based on non-imaging data (clinical and dosimetric). 

According to some authors, radiomic data does not show superiority over NTCP 

models [5,7]. According to the present SR, no inference can be made regarding the use of 

IBM-based models performing better than non-IBM-based models. The authors expected to 

visualize differences between studies not using imaging data and those using it by plotting the 

AUROC curves, but no sufficient distinction among the values was seen to stand for one 

modality. MA is highly indicated to properly assess all available well-reported evidence. 

The TRIPOD statement is a checklist for reporting multivariable PM for individual 

prognosis or diagnosis. This tool is designed to aid in the transparent reporting of PMSs and 

the authors suggest that a copy of this checklist must be provided along with the primary 

prognostic study in submission. When a single dataset is available, all data can be used to 

develop the model (types 1a) or to develop and “internally validate” the model through 

resampling strategies (type 1b) as cross-validation, with both fitting in the model development 

category. When a single dataset is split for development and validation purposes, this split can 

be random (type 2a) or non-random (type 2b), with type 2a being an inefficient form of 

internal validation [11] and type 2b being considered an intermediary between “internal” and 

“external validation”. If separate data sets are available for development and validation, it 

characterizes an “external validation study” (type 3). Type 4 studies are those validating the 
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performance of previously published studies on separate data, also fitting in external 

validation. According to the retrieved papers, frequently the same study conducts different 

splitting regimens for each model, thus the reviewers conducted this analysis for each model 

according to the sampling strategy [12]. The type of study is a great source of bias according 

to the PROBAST. 

PROBAST [8,11] is a tool for RoB assessment and applicability of PMSs. The first 

step of PROBAST focuses on specifying the review question [11]. For the present SR, the 

intended use of the model is for toxicity prediction, the targeted participants are HNC 

patients, the predictors used in the modelling are clinical, dosiomic and radiomic features, and 

the predicted outcomes are HNC treatment toxicities. The second step addresses the 

classification of PMSs, which can be defined as: i) a development study, which focuses on 

developing the model without external validation, frequently including resampling strategies 

or “internal validation” (e.g., cross-validation, bootstrapping) to assess the predictive 

performance without bias; ii) a validation study, which quantifies the predictive performance 

in an “external dataset”; and iii) both. This assessment applies to each different model 

reported in studies.  The third next step is to assess RoB and applicability, with all domains 

being evaluated separately for each distinct model in each study. RoB can occur if the design, 

conduction, or analysis are not ideal, which could lead to systematic error occurence and 

distortion of a model’s performance estimation. Applicability concerns refers to a situation 

when the study population, predictors or outcomes differ from those specified in the review 

question, which can easily occur since SR questions are usually broad. A high RoB was also 

identified in studies that quantifies the predictive performance of the model in the same 

dataset, which tends to provide an over-optimistic performance (even more if the univariable 

analysis is used to select the predictors, or if forward stepwise selection takes place in 

multivariable analysis). In such case, an internal validation step with bootstrapping or cross-

validation is required [8]. 

Since xerostomia is the most investigated endpoint, the authors made a specific 

assessment of the design of these PMSs. The impact of using this predictor for training ML 

classifiers is uncertain, as frequently, a pre-selection step is conducted to identify which 

predictors are most likely to be associated with the outcome; additionally,  some studies 

consistently apply xerostomia baseline to train the models. In the present analysis, the authors 

considered the use of baseline xerostomia as a source of bias [4,6,7,16,21,37,38]. Xerostomia 

is a complex endpoint due to the subjectivity and the influence of associated factors such as 
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age, dosimetric parameters and baseline xerostomia. According to [21], the response curve for 

baseline xerostomia patients is different from patients without baseline xerostomia and 

therefore, this methodological choice inserts bias in PMSs. This multifactorial influence also 

applies to baseline xerostomia being used as a predictor to train the model, meaning the 

patients may present none or some level of baseline xerostomia prior to treatment, which is 

usually referred to by some authors as the models having the best prediction power, which 

could be simply an over-optimistic result. As demonstrated by [4,39], IBMs predictors are not 

associated with xerostomia baseline and, in fact, IBMs are responsible for improving the 

results. Additionally, the association of baseline xerostomia with the outcome may be only a 

coincidence, since the dose usually correlates with xerostomia[39]. Therefore, if a predictor 

defines or composes the outcome, it is most likely to lead to over-optimistic results [8].  

There is a trend where using imaging biomarkers has been shown to improve toxicity 

prediction [4,6,34,37–39] but according to the present meta-analysis, multimodality image-

featured models have a similar performance when compared to those without imaging data. 

Regarding the studies included in the present meta-analysis, there is only a marginal 

improvement seen in IBM-based PMs. It is worth considering that, even though these are 

based on types 3 and 4 PMSs, and being corrected based on heterogeneity for MA, only three 

studies attend the criteria to be included in the meta-analysis. The high heterogeneity of 

primary studies is explained by the tumor’s site and treatment modalities being highly 

variable, as well as the selected predictors, and the models to predict the endpoints [9]. The 

authors advise the readers to have a critical interpretation of the results. Additionally, in 

medical research, the amount of data is crucial and, frequently, not easy to retrieve in terms of 

complete medical documentation and follow-up. Ideally, external validation or independent 

test should be performed for better assessment of models’ generalization ability. This final 

step is important to provide a notion of how well the model can perform when assessing 

unseen data.  

Finally, the scientific literature on AI for medical imaging is vast and diverse, with 

results being reported in metrics and graphical illustrations, sometimes indicated for punctual 

purposes. The Pattern Recognition Community [42] adopts true positives (TP), false negatives 

(FN), classification accuracy (TP+TN)/n and F1-score [2TP/(2TP+FP+FN)] to evaluate 

models’ performances. However, to perform a meta-analysis, an evaluation of the pooled 

AUROC curve requires values of confidence interval and standard error (calculated from the 

square root of the test sample and standard deviation) [43]. The area under the receiver 
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operating characteristic (AUROC) curve is considered a more intuitive, discriminatory, and 

consistent measure than accuracy and shows the true positive rate (TPR) against the false 

positive rate (FPR) [FP/(FP+TN] to further evaluate the model. This metric provides a 

quantitative notion of class separation, recommended when there is a binary classification 

problem [44]. 

 

Main conclusions 

The development of a PM according to sample-specific features represents patient 

selection bias and may affect a model’s performance. This is the major drawback that impairs 

good performance models to be developed and implemented, preventing the dissemination of 

these support systems. Feature selection is a great challenge in radiomic studies and special 

attention should be given to retrieval of reliable information on several biomarkers and their 

correlated clinical outcomes. For future studies and based on the present SR, we recommend 

the readers to check a summary of data and a specific set of features that has proven to be 

more representative and has reached better performances  

An important methodological choice that impairs proper evaluation is the 

heterogeneity of the studies and the absence of an independent/external test to assess the 

generalization ability of the models. Moreover, performance metrics are widely variable 

within studies. The authors suggest that the following metrics should be reported to allow fair 

comparison and future meta-analysis: sensitivity (recall), precision (positive predictive value), 

specificity, AUROC, confidence interval, and standard error. The authors also highly 

recommend that future studies should always report the confusion matrix, since it allows the 

calculation of several metrics. The absence of metrics impaired studies to be included in 

meta-analysis, which limits further conclusions. To conclude, IBM-featured PMs are not 

superior to PMs based on non-IBM predictors. However, it is important to state that the 

present MA was conducted among models from only three studies that present high 

inconsistency, high RoB and low certainty of evidence. 

 

Other Information 

Protocol and registration 

The present SR was conducted following the guidelines of Preferred Reporting Items for 

Systematic Reviews and Meta-Analysis (PRISMA) [45,46] and the PRISMA-P [47,48] 
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checklist, which is registered at the International Prospective Register of Systematic Reviews 

(PROSPERO) database under protocol number CRD42020219304. 

 

Acknowledgments 

The authors would like to gratefully acknowledge  the Coordination for the Improvement of 

Higher Education Personnel (CAPES/PROEX, Brazil) process number 001, the National 

Council for Scientific and Technological Development (CNPq, Brazil), and the grants from 

São Paulo Research Foundation (FAPESP, Brazil) process number 2019/26676-7. 

 

Ethics Approval 

Not applicable. 

 

Author contribution 

All authors made substantial contributions to the conception, draft, and review of the data for 

the work. 

 

Funding 

None. 

 

References 

[1] Chinnery T, Arifin A, Tay KY, Leung A, Nichols AC, Palma DA, et al. Utilizing 

Artificial Intelligence for Head and Neck Cancer Outcomes Prediction From Imaging. 

Canadian Association of Radiologists Journal 2021;72:73–85. 

https://doi.org/10.1177/0846537120942134. 

[2] Wentzel A, Hanula P, van Dijk L v., Elgohari B, Mohamed ASR, Cardenas CE, et al. 

Precision toxicity correlates of tumor spatial proximity to organs at risk in cancer 

patients receiving intensity-modulated radiotherapy. Radiotherapy and Oncology 

2020;148:245–51. https://doi.org/10.1016/j.radonc.2020.05.023. 

[3] Kutcher GJ, Burman C. Calculation of complication probability factors for non-uniform 

normal tissue irradiation: The effective volume method gerald. International Journal of 

Radiation Oncology*Biology*Physics 1989;16:1623–30. https://doi.org/10.1016/0360-

3016(89)90972-3. 

[4] van Dijk L v., Noordzij W, Brouwer CL, Boellaard R, Burgerhof JGM, Langendijk JA, 

et al. 18F-FDG PET image biomarkers improve prediction of late radiation-induced 

xerostomia. Radiotherapy and Oncology 2018;126:89–95. 

https://doi.org/10.1016/j.radonc.2017.08.024. 

[5] Smyczynska U, Grabia S, Nowicka Z, Papis-Ubych A, Bibik R, Latusek T, et al. 

Prediction of Radiation-Induced Hypothyroidism Using Radiomic Data Analysis Does 

Not Show Superiority over Standard Normal Tissue Complication Models. Cancers 

(Basel) 2021;13:5584. https://doi.org/10.3390/cancers13215584. 



107 
 

 

 

[6] van Dijk L v., Brouwer CL, van der Schaaf A, Burgerhof JGM, Beukinga RJ, 

Langendijk JA, et al. CT image biomarkers to improve patient-specific prediction of 

radiation-induced xerostomia and sticky saliva. Radiotherapy and Oncology 

2017;122:185–91. https://doi.org/10.1016/j.radonc.2016.07.007. 

[7] Beetz I, Schilstra C, Burlage FR, Koken PW, Doornaert P, Bijl HP, et al. Development 

of NTCP models for head and neck cancer patients treated with three-dimensional 

conformal radiotherapy for xerostomia and sticky saliva: The role of dosimetric and 

clinical factors. Radiotherapy and Oncology 2012;105:86–93. 

https://doi.org/10.1016/j.radonc.2011.05.010. 

[8] Moons KGM, Wolff RF, Riley RD, Whiting PF, Westwood M, Collins GS, et al. 

PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model 

Studies: Explanation and Elaboration. Ann Intern Med 2019;170:W1. 

https://doi.org/10.7326/M18-1377. 

[9] Debray TPA, Damen JAAG, Snell KIE, Ensor J, Hooft L, Reitsma JB, et al. A guide to 

systematic review and meta-analysis of prediction model performance. BMJ 

2017;356:i6460. https://doi.org/10.1136/bmj.i6460. 

[10] Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile 

app for systematic reviews. Syst Rev 2016;5:210. https://doi.org/10.1186/s13643-016-

0384-4. 

[11] Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. 

PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model 

Studies. Ann Intern Med 2019;170:51. https://doi.org/10.7326/M18-1376. 

[12] Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a 

multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The 

TRIPOD Statement. Ann Intern Med 2015;162:55–63. https://doi.org/10.7326/M14-

0697. 

[13] Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, et 

al. Transparent Reporting of a multivariable prediction model for Individual Prognosis 

Or Diagnosis (TRIPOD): Explanation and Elaboration. Ann Intern Med 2015;162:W1–

73. https://doi.org/10.7326/M14-0698. 

[14] Collins GS, Dhiman P, Andaur Navarro CL, Ma J, Hooft L, Reitsma JB, et al. Protocol 

for development of a reporting guideline (TRIPOD-AI) and risk of bias tool 

(PROBAST-AI) for diagnostic and prognostic prediction model studies based on 

artificial intelligence. BMJ Open 2021;11:e048008. https://doi.org/10.1136/bmjopen-

2020-048008. 

[15] Dean J, Wong K, Gay H, Welsh L, Jones A-B, Schick U, et al. Incorporating spatial 

dose metrics in machine learning-based normal tissue complication probability (NTCP) 

models of severe acute dysphagia resulting from head and neck radiotherapy. Clin 

Transl Radiat Oncol 2018;8:27–39. https://doi.org/10.1016/j.ctro.2017.11.009. 

[16] Soares I, Dias J, Rocha H, Khouri L, do Carmo Lopes M, Ferreira B. Predicting 

xerostomia after IMRT treatments: a data mining approach. Health Technol (Berl) 

2018;8:159–68. https://doi.org/10.1007/s12553-017-0204-4. 

[17] Schünemann H, Brożek J, Guyatt G, Oxman A, editors. GRADE handbook for grading 

quality of evidence and strength of recommendations. The GRADE Working Group, 

2013. Available from guidelinedevelopment.org/handbook; n.d. 

[18] GRADEpro GDT: GRADEpro Guideline Development Tool [Software] McMaster 

University and Evidence Prime, 2022. Available from gradepro.org. n.d. 

[19] Abdollahi H, Mostafaei S, Cheraghi S, Shiri I, Rabi Mahdavi S, Kazemnejad A. Cochlea 

CT radiomics predicts chemoradiotherapy induced sensorineural hearing loss in head 



108 
 

 

 

and neck cancer patients: A machine learning and multi-variable modelling study. 

Physica Medica 2018;45:192–7. https://doi.org/10.1016/j.ejmp.2017.10.008. 

[20] de Araujo Faria V, Azimbagirad M, Viani Arruda G, Fernandes Pavoni J, Cezar Felipe 

J, dos Santos EMCMF, et al. Prediction of Radiation-Related Dental Caries Through 

PyRadiomics Features and Artificial Neural Network on Panoramic Radiography. J 

Digit Imaging 2021;34:1237–48. https://doi.org/10.1007/s10278-021-00487-6. 

[21] Beetz I, Schilstra C, van der Schaaf A, van den Heuvel ER, Doornaert P, van Luijk P, et 

al. NTCP models for patient-rated xerostomia and sticky saliva after treatment with 

intensity modulated radiotherapy for head and neck cancer: The role of dosimetric and 

clinical factors. Radiotherapy and Oncology 2012;105:101–6. 

https://doi.org/10.1016/j.radonc.2012.03.004. 

[22] Buettner F, Miah AB, Gulliford SL, Hall E, Harrington KJ, Webb S, et al. Novel 

approaches to improve the therapeutic index of head and neck radiotherapy: An analysis 

of data from the PARSPORT randomised phase III trial. Radiotherapy and Oncology 

2012;103:82–7. https://doi.org/10.1016/j.radonc.2012.02.006. 

[23] Cheng Z, Nakatsugawa M, Zhou XC, Hu C, Greco S, Kiess A, et al. Utility of a Clinical 

Decision Support System in Weight Loss Prediction After Head and Neck Cancer 

Radiotherapy. JCO Clin Cancer Inform 2019:1–11. 

https://doi.org/10.1200/CCI.18.00058. 

[24] Dean JA, Welsh LC, Wong KH, Aleksic A, Dunne E, Islam MR, et al. Normal Tissue 

Complication Probability (NTCP) Modelling of Severe Acute Mucositis using a Novel 

Oral Mucosal Surface Organ at Risk. Clin Oncol 2017;29:263–73. 

https://doi.org/10.1016/j.clon.2016.12.001. 

[25] Dohopolski M, Wang K, Morgan H, Sher D, Wang J. Use of deep learning to predict the 

need for aggressive nutritional supplementation during head and neck radiotherapy. 

Radiotherapy and Oncology 2022;171:129–38. 

https://doi.org/10.1016/j.radonc.2022.04.016. 

[26] Gabryś HS, Buettner F, Sterzing F, Hauswald H, Bangert M. Design and Selection of 

Machine Learning Methods Using Radiomics and Dosiomics for Normal Tissue 

Complication Probability Modeling of Xerostomia. Front Oncol 2018;8. 

https://doi.org/10.3389/fonc.2018.00035. 

[27] Humbert-Vidan L, Patel V, Oksuz I, King AP, Guerrero Urbano T. Comparison of 

machine learning methods for prediction of osteoradionecrosis incidence in patients 

with head and neck cancer. Br J Radiol 2021;94:20200026. 

https://doi.org/10.1259/bjr.20200026. 

[28] Jiang W, Lakshminarayanan P, Hui X, Han P, Cheng Z, Bowers M, et al. Machine 

Learning Methods Uncover Radiomorphologic Dose Patterns in Salivary Glands that 

Predict Xerostomia in Patients with Head and Neck Cancer. Adv Radiat Oncol 

2019;4:401–12. https://doi.org/10.1016/j.adro.2018.11.008. 

[29] Liu Y, Shi H, Huang S, Chen X, Zhou H, Chang H, et al. Early prediction of acute 

xerostomia during radiation therapy for nasopharyngeal cancer based on delta radiomics 

from CT images. Quant Imaging Med Surg 2019;9:1288–302. 

https://doi.org/10.21037/qims.2019.07.08. 

[30] Men K, Geng H, Zhong H, Fan Y, Lin A, Xiao Y. A Deep Learning Model for 

Predicting Xerostomia Due to Radiation Therapy for Head and Neck Squamous Cell 

Carcinoma in the RTOG 0522 Clinical Trial. International Journal of Radiation 

Oncology*Biology*Physics 2019;105:440–7. 

https://doi.org/10.1016/j.ijrobp.2019.06.009. 

[31] Nakatsugawa M, Cheng Z, Kiess A, Choflet A, Bowers M, Utsunomiya K, et al. The 

Needs and Benefits of Continuous Model Updates on the Accuracy of RT-Induced 



109 
 

 

 

Toxicity Prediction Models Within a Learning Health System. International Journal of 

Radiation Oncology*Biology*Physics 2019;103:460–7. 

https://doi.org/10.1016/j.ijrobp.2018.09.038. 

[32] Nardone V, Tini P, Nioche C, Mazzei MA, Carfagno T, Battaglia G, et al. Texture 

analysis as a predictor of radiation-induced xerostomia in head and neck patients 

undergoing IMRT. Radiol Med 2018;123:415–23. https://doi.org/10.1007/s11547-017-

0850-7. 

[33] Pota M, Scalco E, Sanguineti G, Farneti A, Cattaneo GM, Rizzo G, et al. Early 

prediction of radiotherapy-induced parotid shrinkage and toxicity based on CT 

radiomics and fuzzy classification. Artif Intell Med 2017;81:41–53. 

https://doi.org/10.1016/j.artmed.2017.03.004. 

[34] Rosen BS, Hawkins PG, Polan DF, Balter JM, Brock KK, Kamp JD, et al. Early 

Changes in Serial CBCT-Measured Parotid Gland Biomarkers Predict Chronic 

Xerostomia After Head and Neck Radiation Therapy. International Journal of Radiation 

Oncology*Biology*Physics 2018;102:1319–29. 

https://doi.org/10.1016/j.ijrobp.2018.06.048. 

[35] Sheikh K, Lee SH, Cheng Z, Lakshminarayanan P, Peng L, Han P, et al. Predicting 

acute radiation induced xerostomia in head and neck Cancer using MR and CT 

Radiomics of parotid and submandibular glands. Radiation Oncology 2019;14:131. 

https://doi.org/10.1186/s13014-019-1339-4. 

[36] Ursino S, Giuliano A, Martino F di, Cocuzza P, Molinari A, Stefanelli A, et al. 

Incorporating dose–volume histogram parameters of swallowing organs at risk in a 

videofluoroscopy-based predictive model of radiation-induced dysphagia after head and 

neck cancer intensity-modulated radiation therapy. Strahlentherapie Und Onkologie 

2021;197:209–18. https://doi.org/10.1007/s00066-020-01697-7. 

[37] van Dijk L v., Brouwer CL, van der Laan HP, Burgerhof JGM, Langendijk JA, 

Steenbakkers RJHM, et al. Geometric Image Biomarker Changes of the Parotid Gland 

Are Associated With Late Xerostomia. International Journal of Radiation 

Oncology*Biology*Physics 2017;99:1101–10. 

https://doi.org/10.1016/j.ijrobp.2017.08.003. 

[38] van Dijk L v., Thor M, Steenbakkers RJHM, Apte A, Zhai T-T, Borra R, et al. Parotid 

gland fat related Magnetic Resonance image biomarkers improve prediction of late 

radiation-induced xerostomia. Radiotherapy and Oncology 2018;128:459–66. 

https://doi.org/10.1016/j.radonc.2018.06.012. 

[39] van Dijk L v., Langendijk JA, Zhai T-T, Vedelaar TA, Noordzij W, Steenbakkers 

RJHM, et al. Delta-radiomics features during radiotherapy improve the prediction of late 

xerostomia. Sci Rep 2019;9:12483. https://doi.org/10.1038/s41598-019-48184-3. 

[40] Giraud P, Giraud P, Gasnier A, el Ayachy R, Kreps S, Foy J-P, et al. Radiomics and 

Machine Learning for Radiotherapy in Head and Neck Cancers. Front Oncol 2019;9. 

https://doi.org/10.3389/fonc.2019.00174. 

[41] Carbonara R, Bonomo P, di Rito A, Didonna V, Gregucci F, Ciliberti MP, et al. 

Investigation of Radiation-Induced Toxicity in Head and Neck Cancer Patients through 

Radiomics and Machine Learning: A Systematic Review. J Oncol 2021;2021:1–9. 

https://doi.org/10.1155/2021/5566508. 

[42] Bradley AP. The use of the area under the ROC curve in the evaluation of machine 

learning algorithms. Pattern Recognit 1997;30:1145–59. https://doi.org/10.1016/S0031-

3203(96)00142-2. 

[43] Borenstein M, Hedges L, Higgins J, Rothstein H. Introduction to meta-analysis. 

Chichester, UK: Wiley; 2009. 



110 
 

 

 

[44] Jin Huang, Ling CX. Using AUC and accuracy in evaluating learning algorithms. IEEE 

Trans Knowl Data Eng 2005;17:299–310. https://doi.org/10.1109/TKDE.2005.50. 

[45] Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The 

PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 

2021;372:n71. https://doi.org/10.1136/bmj.n71. 

[46] Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 

2020 explanation and elaboration: updated guidance and exemplars for reporting 

systematic reviews. BMJ 2021;372:n160. https://doi.org/10.1136/bmj.n160. 

[47] Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred 

reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 

statement. Syst Rev 2015;4:1. https://doi.org/10.1186/2046-4053-4-1. 

[48] Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred 

reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: 

elaboration and explanation. BMJ 2015;349:g7647–g7647. 

https://doi.org/10.1136/bmj.g7647. 

   



111 
 

 

 

APPENDIX I - PROTOCOL 

 

Machine Learning for the prediction of toxicities from head and neck cancer treatment:  

a systematic review with meta-analysis (PROSPERO protocol number: CRD42020219304) 

 

Review question: Prediction Models can accurately predict head and neck cancer treatment 

toxicities? 

 

II) What are the most addressed toxicities in prediction studies? 

III) Which machine learning models were reported for toxicity prediction? 

IV) Image-based models have better performance when compared to non-image-based 

models?  

 

PICOS strategy 

P - Head and neck cancer patients 

I – Cancer treatment  

C – not applicable 

O - Toxicity prediction 

S - Prediction Model Studies 

 

Searching keywords 

#1 “head and neck” 

‘head and neck’ (Embase variation) 

“head and neck” OR “cabeça e pescoço” OR “cabeza y cuello” (LILACS variation) 

#2 “cancer treatment” OR radiotherapy OR “radiation therapy” OR “radiation oncology” 

OR “intensity modulated radiation therapy” OR chemotherapy OR “concomitant 

chemotherapy”  

‘cancer treatment’ OR radiotherapy OR ‘radiation therapy’ OR ‘radiation oncology’ OR 

‘intensity modulated radiation therapy’ OR chemotherapy OR ‘concomitant 

chemotherapy’ (Embase variation) 

#3a “side effects” OR “adverse effects” OR “adverse events” OR outcome OR toxicit* OR 

“radiation toxicit*” OR “radiotherapy-induced toxicity” 

‘side effects’ OR ‘adverse effects’ OR ‘adverse events’ OR outcome OR toxicit* OR 

‘radiation toxicit*’ OR ‘radiotherapy-induced toxicity’ (Embase variation) 

#3b “side effects” OR “adverse effects” OR “adverse events” OR outcome OR toxicit* OR 

“chemotherapy toxicit*” OR “chemotherapy-induced toxicity” OR “drug-induced 

toxicity” 

‘side effects’ OR ‘adverse effects’ OR ‘adverse events’ OR outcome OR toxicit* OR 

‘chemotherapy toxicit*’ OR ‘chemotherapy-induced toxicity’ OR ‘drug-induced 

toxicity’ (Embase variation) 

#4 prediction 

#5 “artificial intelligence” OR “machine learning” OR “deep learning” OR “convolutional 

neural network” OR “artificial neural network” 

‘artificial intelligence’ OR ‘machine learning’ OR ‘deep learning’ OR ‘convolutional 

neural network’ OR ‘artificial neural network’ (Embase variation) 

“artificial intelligence” OR “inteligência artificial” OR “inteligencia artificial” 

(LILACS variation) 

#6 radiomic* 

radiomic* OR radiômica* OR “radiómico” (LILACS variation) 
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Strategy I) #1 #2 #3a #4 #5 

Strategy II) #1 #2 #3b #4 #5 

Strategy III) #1 #2 #5 #6 

 

Database # Query 

Search date: 18th june, 2022 

Results 

PubMed I (((("head and neck") AND ("cancer treatment" OR 

radiotherapy OR "radiation therapy" OR "radiation 

oncology" OR "intensity modulated radiation therapy" OR 

chemotherapy OR "concomitant chemotherapy")) AND 

("side effects" OR "adverse effects" OR "adverse events" 

OR outcome OR toxicit* OR "radiation toxicit*" OR 

"radiotherapy-induced toxicity")) AND (prediction)) AND 

("artificial intelligence" OR "machine learning" OR "deep 

learning" OR "convolutional neural network" OR 

"artificial neural network") 

126 

II ((((“head and neck”) AND (“cancer treatment” OR 

radiotherapy OR “radiation therapy” OR “radiation 

oncology” OR “intensity modulated radiation therapy” OR 

chemotherapy OR “concomitant chemotherapy”)) AND 

(“side effects” OR “adverse effects” OR “adverse events” 

OR outcome OR toxicit* OR “chemotherapy toxicit*” OR 

“chemotherapy-induced toxicity” OR “drug-induced 

toxicity”)) AND (prediction)) AND (“artificial 

intelligence” OR “machine learning” OR “deep learning” 

OR “convolutional neural network” OR “artificial neural 

network”) 

III (((“head and neck”) AND (“cancer treatment” OR 

radiotherapy OR “radiation therapy” OR “radiation 

oncology” OR “intensity modulated radiation therapy” OR 

chemotherapy OR “concomitant chemotherapy”)) AND 

(“artificial intelligence” OR “machine learning” OR “deep 

learning” OR “convolutional neural network” OR 

“artificial neural network”)) AND (radiomic*) 

Embase I 'head and neck' AND ('cancer treatment' OR radiotherapy 

OR 'radiation therapy' OR 'radiation oncology' OR 

'intensity modulated radiation therapy' OR chemotherapy 

OR 'concomitant chemotherapy') AND ('side effects' OR 

'adverse effects' OR 'adverse events' OR outcome OR 

toxicit* OR 'radiation toxicit*' OR 'radiotherapy-induced 

toxicity') AND prediction AND ('artificial intelligence' OR 

'machine learning' OR 'deep learning' OR 'convolutional 

neural network' OR 'artificial neural network') 

281 

II 'head and neck' AND ('cancer treatment' OR radiotherapy 

OR 'radiation therapy' OR 'radiation oncology' OR 

'intensity modulated radiation therapy' OR chemotherapy 

OR 'concomitant chemotherapy') AND ('side effects' OR 

'adverse effects' OR 'adverse events' OR outcome OR 

toxicit* OR 'chemotherapy toxicit*' OR 'chemotherapy-

induced toxicity' OR 'drug-induced toxicity') AND 
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prediction AND ('artificial intelligence' OR 'machine 

learning' OR 'deep learning' OR 'convolutional neural 

network' OR 'artificial neural network') 

III 'head and neck' AND ('cancer treatment' OR radiotherapy 

OR 'radiation therapy' OR 'radiation oncology' OR 

'intensity modulated radiation therapy' OR chemotherapy 

OR 'concomitant chemotherapy') AND ('artificial 

intelligence' OR 'machine learning' OR 'deep learning' OR 

'convolutional neural network' OR 'artificial neural 

network') AND radiomic* 

Scopus I ( TITLE-ABS-KEY ( "head and neck" )  AND  TITLE-

ABS-KEY ( "cancer treatment"  OR  radiotherapy  OR  

"radiation therapy"  OR  "radiation oncology"  OR  

"intensity modulated radiation therapy"  OR  

chemotherapy  OR  "concomitant chemotherapy" )  AND  

TITLE-ABS-KEY ( "side effects"  OR  "adverse effects"  

OR  "adverse events"  OR  outcome  OR  toxicit*  OR  

"radiation toxicit*"  OR  "radiotherapy-induced toxicity" )  

AND  TITLE-ABS-KEY ( prediction )  AND  TITLE-

ABS-KEY ( "artificial intelligence"  OR  "machine 

learning"  OR  "deep learning"  OR  "convolution neural 

network"  OR  "artificial neural network" ) ) 

103 

II ( TITLE-ABS-KEY ( "head and neck" )  AND  TITLE-

ABS-KEY ( "cancer treatment"  OR  radiotherapy  OR  

"radiation therapy"  OR  "radiation oncology"  OR  

"intensity modulated radiation therapy"  OR  

chemotherapy  OR  "concomitant chemotherapy" )  AND  

TITLE-ABS-KEY ( "side effects"  OR  "adverse effects"  

OR  "adverse events"  OR  outcome  OR  toxicit*  OR  

"chemotherapy toxicit*"  OR  "chemotherapy-induced 

toxicity"  OR  "drug-induced toxicity" )  AND  TITLE-

ABS-KEY ( prediction )  AND  TITLE-ABS-KEY ( 

"artificial intelligence"  OR  "machine learning"  OR  

"deep learning"  OR  "convolutional neural network"  OR  

"artificial neural network" ) ) 

III ( TITLE-ABS-KEY ( "head and neck" )  AND  TITLE-

ABS-KEY ( "cancer treatment"  OR  radiotherapy  OR  

"radiation therapy"  OR  "radiation oncology"  OR  

"intensity modulated radiation therapy"  OR  

chemotherapy  OR  "concomitant chemotherapy" )  AND  

TITLE-ABS-KEY ( "artificial intelligence"  OR  "machine 

learning"  OR  "deep learning"  OR  "convolutional neural 

network"  OR  "artificial neural network" )  AND  TITLE-

ABS-KEY ( radiomic* ) ) 

Cochrane I “head and neck” in Title Abstract Keyword AND “cancer 

treatment” OR radiotherapy OR “radiation therapy” OR 

“radiation oncology” OR “intensity modulated radiation 

therapy” OR chemotherapy OR “concomitant 

chemotherapy” in Title Abstract Keyword AND “side 

effects” OR “adverse effects” OR “adverse events” OR 

7 
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outcome OR toxicit* OR “radiation toxicit*” OR 

“radiotherapy-induced toxicity” in Title Abstract Keyword 

AND prediction in Title Abstract Keyword AND 

“artificial intelligence” OR “machine learning” OR “deep 

learning” OR “convolutional neural network” OR 

“artificial neural network” in Title Abstract Keyword 

II “head and neck” in Title Abstract Keyword AND “cancer 

treatment” OR radiotherapy OR “radiation therapy” OR 

“radiation oncology” OR “intensity modulated radiation 

therapy” OR chemotherapy OR “concomitant 

chemotherapy” in Title Abstract Keyword AND “side 

effects” OR “adverse effects” OR “adverse events” OR 

outcome OR toxicit* OR “chemotherapy toxicit*” OR 

“chemotherapy-induced toxicity” OR “drug-induced 

toxicity” in Title Abstract Keyword AND prediction in 

Title Abstract Keyword AND “artificial intelligence” OR 

“machine learning” OR “deep learning” OR 

“convolutional neural network” OR “artificial neural 

network” in Title Abstract Keyword 

III “head and neck” in Title Abstract Keyword AND “cancer 

treatment” OR radiotherapy OR “radiation therapy” OR 

“radiation oncology” OR “intensity modulated radiation 

therapy” OR chemotherapy OR “concomitant 

chemotherapy” in Title Abstract Keyword AND “artificial 

intelligence” OR “machine learning” OR “deep learning” 

OR “convolutional neural network” OR “artificial neural 

network” in Title Abstract Keyword AND radiomic* in 

Title Abstract Keyword 

Web of 

Science 

I “head and neck” (Topic) and “cancer treatment”  OR 

radiotherapy  OR “radiation therapy”  OR “radiation 

oncology”  OR “intensity modulated radiation therapy”  

OR chemotherapy  OR “concomitant chemotherapy” 

(Topic) and “side effects”  OR “adverse effects”  OR 

“adverse events”  OR outcome  OR toxicit*  OR “radiation 

toxicit*”  OR “radiotherapy-induced toxicity” (Topic) and 

prediction (Topic) and “artificial intelligence”  OR 

“machine learning”  OR “deep learning”  OR 

“convolutional neural network”  OR “artificial neural 

network” (Topic) 

 

https://www.webofscience.com/wos/woscc/summary/adbd

661d-58af-4bdc-86e6-427076980465-

3ebf771e/relevance/1 

52 

II “head and neck” (Topic) and “cancer treatment”  OR 

radiotherapy  OR “radiation therapy”  OR “radiation 

oncology”  OR “intensity modulated radiation therapy”  

OR chemotherapy  OR “concomitant chemotherapy” 

(Topic) and “side effects”  OR “adverse effects”  OR 

“adverse events”  OR outcome  OR toxicit*  OR 

“chemotherapy toxicit*”  OR “chemotherapy-induced 
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toxicity”  OR “drug-induced toxicity” (Topic) and 

prediction (Topic) and “artificial intelligence”  OR 

“machine learning”  OR “deep learning”  OR 

“convolutional neural network”  OR “artificial neural 

network” (Topic) 

 

https://www.webofscience.com/wos/woscc/summary/938f

c58b-2d49-4c59-8c1c-e176d16e864b-

3ebfc592/relevance/1 

III "head and neck" (Topic) and "cancer treatment" OR 

radiotherapy OR "radiation therapy" OR "radiation 

oncology" OR "intensity modulated radiation therapy" OR 

chemotherapy OR "concomitant chemotherapy" (Topic) 

and “artificial intelligence” OR “machine learning” OR 

“deep learning” OR “convolutional neural network” OR 

“artificial neural network” (Topic) and radiomic* (Topic) 

https://www.webofscience.com/wos/woscc/summary/6f0c

2a6f-3ccd-4b6e-9d07-8c3eb8b53336-

3ebfb6bc/relevance/1 

Lilacs  (“head AND neck” OR “cabeça e pescoço” OR “cabeza y 

cuello” ) AND (radiomic* OR radiômica* OR 

“radiómica”) 

133 

Google 

Scholar 

 “head and neck” AND toxicity AND prediction AND 

radiomics 

99** 

ProQuest  TI,AB("head and neck") AND TI,AB(toxicity) AND 

TI,AB(prediction) AND TI,AB(radiomics) 

5 

OpenGrey  “head and neck” AND toxicity AND prediction AND 

radiomics 

0 

 

This search was conducted in June 18th, 2022. 
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PPENDIX II - EXCLUDED ARTICLES AND REASONS FOR EXCLUSION 

 

Supplementary Table 1: Excluded articles and reasons for exclusion (to be continued) 

 Author Title Year Country Journal/Conference name Exclusion Criteria 

1 Abe K., et al The feasibility of MVCT-based radiomics 

for delta-radiomics in head and neck cancer 

2019 Japan Medical Physics Conference abstract 

2 Abusaif A., et al  Radiomic Correlates of Mandibular 

Osteoradionecrosis After Radiation 

Treatment of Head and Neck Cancer 

Patients 

2021 US International Journal of 

Radiation Oncology Biology 

Physics 

Conference abstract 

3 Berger T., et al Predicting xerostomia in head and neck 

cancer using imaging biomarkers from daily 

tomotherapy MVCTs 

2020 UK Radiotherapy and Oncology Conference abstract 

4 Elgohari B., et al Mid-Treatment Apparent Diffusion 

Coefficient Predicts Late Xerostomia 

following Head and Neck Cancer 

Radiotherapy 

2020 Egypt International Journal of 

Radiation Oncology Biology 

Physics 

Conference abstract 

5 Elhalawani H., et 

al 

Exploration of an Early Imaging Biomarker 

of Osteoradionecrosis in Oropharyngeal 

Cancer Patients: Case-Control Study of the 

Temporal Changes of Mandibular 

Radiomics Features 

2018 US International Journal of 

Radiation Oncology Biology 

Physics 

Conference abstract 

6 Hernandez A.M., et 

al  

The role of ensemble machine learning 

algorithms to predict weight loss following 

head and neck radiation therapy 

2016 US International Journal of 

Radiation Oncology 

Conference abstract 

7 Hui X., et al  A risk prediction model for head and neck 

radiation toxicities: Novel insights to reduce 

the risk of head and neck radiation-induced 

xerostomia 

2016 US International Journal of 

Radiation Oncology 

Conference abstract 
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Supplementary Table 1: Excluded articles and reasons for exclusion (continuation) 

8 Humbert-Vidan L., 

et al  

Prediction of voxelwise mandibular 

osteoradionecrosis maps in HNC patients 

using deep learning 

2019 UK Radiotherapy and Oncology Conference abstract 

9 Lakshminarayanan 

P., et al  

A shape-based dose model for the 

prediction of high grade radiation induced 

xerostomia for head and neck cancer 

patients 

2017 US International Journal of 

Radiation Oncology Biology 

Physics 

Conference abstract 

10 Maffei N., et al  A Neural Network predictions and follow-

up toxicity correlation to validate re-

planning during RT 

2016 Italy Radiotherapy and Oncology Conference abstract 

11 Men K., et al  A deep learning method for xerostomia 

prediction in head-and-neck radiotherapy 

2019 US Medical Physics Conference abstract 

12 Nakatsugawa M., 

et al  

The value of continuous toxicity updates on 

the accuracy of prediction models within a 

learning health system 

2017 US International Journal of 

Radiation Oncology Biology 

Physics 

Conference abstract 

13 Nakatsugawa M., 

et al  

Prediction of toxicity in irradiated head and 

neck cancer patients based on the geometry 

of high/middle/low ptvs to surrounding oars 

2015 US International Journal of 

Radiation Oncology Biology 

Physics 

Conference abstract 

14 Neves L.V.F., et al  Feasibility Of Prediction Of Radiation-

Related Caries In Head-Neck Cancer 

Patients Using Machine Learning And 

Radiomics Features 

2020 Brazil International Journal of 

Radiation Oncology Biology 

Physics 

Conference abstract 

15 Noble D., et al  Does delivered OAR dose improve 

prediction of late toxicity in head & neck 

cancer patients? 

2020 UK Radiotherapy and Oncology Conference abstract 

16 Pilz K., et al  Prediction of dysphagia and xerostomia 

based on CT imaging features of HNSCC 

patients 

2017 Germany Radiotherapy and Oncology Conference abstract 
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Supplementary Table 1: Excluded articles and reasons for exclusion (continuation) 

17 Reddy J.P., et al  Applying a Machine Learning Approach to 

Predict Acute Radiation Toxicities for Head 

and Neck Cancer Patients 

2019 US International Journal of 

Radiation Oncology Biology 

Physics 

Conference abstract 

18 Reiazi R., et al  The prediction of mandibular 

osteoradionecrosis in head and neck cancer 

patients using CT-derived radiomics 

features 

2021 US Clinical Cancer Research Conference abstract 

19 Reiazi R., et al  The Prediction of Mandibular 

Osteoradionecrosis (ORN) in Head and 

Neck Radiotherapy Using CT-Derived 

Radiomic Features 

2021 US International Journal of 

Radiation Oncology Biology 

Physics 

Conference abstract 

20 Sharma D., et al  Predicting Radiotherapy Response in Head 

and Neck Patients Using Quantitative 

Ultrasound 

2018 US IEEE Computer Society Conference abstract 

21 Tseng H.H., et al  A recurrent neural network for xerostomia 

prediction in head and neck cancer from 

daily CBCT images 

2018 US Medical Physics Conference abstract 

22 Van Dijk L.V., et al  Prediction of late xerostomia with clinical, 

atlas based and deep learning contours 

2020 US Radiotherapy and Oncology Conference abstract 

23 Yaohua W., et al  Predicting late symptoms of head and neck 

cancer treatment using LSTM and patient 

reported outcomes 

2021 US Proc Int Database Eng Appl 

Symp 

Conference abstract 

24 Wojcieszynski 

A.P., et al Moore 

J.H., 

Metz J.M. 

 

Machine Learning to Predict Toxicity in 

Head and Neck Cancer Patients Treated 

with Definitive Chemoradiation 

2019 US International Journal of 

Radiation Oncology Biology 

Physics 

Conference abstract 

25 Chinnery T., et al A CT-based radiomics model for predicting 

feeding tube insertion in oropharyngeal 

cancer 

2022 US Proceedings Volume 12033 

Spie Medical Imaging 

Conference abstract 
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Supplementary Table 1: Excluded articles and reasons for exclusion (continuation) 

26 Zhang H.H., et al Modeling plan-related clinical 

complications using machine learning tools 

in a multiplan IMRT framework 

2009 USA Int J Radiat 

Oncol Biol Phys 

Small sample size 

27 Zhang H.H., et al The minimum knowledge base for 

predicting organ-at-risk dose-volume levels 

and plan-related complications in IMRT 

planning 

2010 USA Phys Med Biol Small sample size 

28 Pardo-Montero J., 

et al 

Classification of tolerable/intolerable 

mucosal toxicity of head-and-neck 

radiotherapy schedules with a 

biomathematical model of cell dynamics.  

2021 Spain, UK Med Phys Biomathematical model of cell 

dynamics 

29 El Naqa I., et al Predicting radiotherapy outcomes using 

statistical learning techniques.  

2009 USA Phys Med Biol Metric - Matthews correlation 

coefficient 

30 Drago GP., et al Forecasting the performance status of head 

and neck cancer patient treatment by an 

interval arithmetic pruned perceptron. 

2002 Italy IEEE 

Transactions on 

Bio-medical 

Engineering. 

To predict the Karnofsky 

performance status 

31 Beetz I., et al External validation of three-dimensional 

conformal radiotherapy based NTCP 

models for patient-rated xerostomia and 

sticky saliva among patients treated 

with intensity modulated radiotherapy 

2012 Netherlands Radiotherapy and 

Oncology 

Models developed based on a 

population treated with a 

specific technique and 

extrapolated to a population 

treated with another technique 

without external validation 

32 Blanco AI., et al Dose-volume modeling of salivary function 

in patients with head-and-neck cancer 

receiving radiotherapy. 

2005 USA Int J Radiat Oncol 

Biol Phys. 

Metric - Akaike information 

criteria and Bayesian 

information criterion 

33 El Naqa I., et al Multivariable modeling of radiotherapy 

outcomes, including dose-volume and 

clinical factors 

2006 USA Int J Radiat Oncol 

Biol Phys. 

Metric - Akaike information 

criteria and Bayesian 

information criterion 

 

USA: United states of America; UK: United Kingdom
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APPENDIX III - GRADEpro 

 

Question: Prediction Models can accurately predict head and neck cancer treatment toxicities?  

Explanations 

a. Dean et al, 2018 [15] have high RoB for Analysis domain. 

b. Regarding Inconsistency: MA demonstrated a high heterogeneity of models with IBM (87.36%) and without IBM (97.89%), which is a reflex 

of confidence intervals of individual studies varying more than just by chance. This can be explained by expressive variation in: i) the predicted 

toxicity; ii) the data format (even among those using IBM, the modality of images and features selected are different for each study); iii) the 

feature selector; and iv) the classification model. 

c. Smyczynska et al., 2021 [5] have unclear RoB in two domains (Predictors and Outcomes) and high RoB for Analysis domain. 

d. Soares et al, 2017 [16] have unclear RoB in Participants domain and high RoB for Outcomes and Analysis domains. 

 

№ of 

studies 

Certainty assessment impact Certainty Importance 

Study design Risk of 

bias 

Inconsistency Indirectness Imprecision Other 

considerations 

Dysphagia [severe (grade 3 or worse) and non-severe (less than grade 3)] (assessed with: AUROC curve) 

1 observational 

studies 

seriousa seriousb not serious not serious none Not 

applicable 
⨁⨁◯◯ 

Low 

Not 

applicable 

Radiation-induced hypothyroidism (assessed with: AUROC curve) 

1 observational 

studies 

seriousc seriousb not serious not serious none Not 

applicable 
⨁⨁◯◯ 

Low 

Not 

applicable 

Xerostomia at 12 months (assessed with: AUROC curve) 

1 observational 

studies 

seriousd seriousb not serious not serious none Not 

applicable 
⨁⨁◯◯ 

Low 

Not 

applicable 
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3 DISCUSSÃO 

De modo a ampliar a compreensão de patologistas orais, médicos orais e cirurgiões de 

cabeça e pescoço sobre as abordagens diagnósticas baseadas em IA, com foco especial nas 

CNNs, fundamentos teóricos e conceituais foram sumarizados e adaptados para a 

compreensão do público-alvo. Este artigo conceitual é um marco especial na literatura 

relacionada à CCP e vem de encontro a necessidade urgente de aproximar profissionais 

clínicos da área da saúde de conceitos importantes da engenharia biomédica, a fim de facilitar 

a compreensão das etapas envolvidas no processamento de imagens para fins de 

desenvolvimento de sistemas de apoio ao diagnóstico e prognóstico clínico e histopatológico. 

A implementação de sete arquiteturas de Deep Learning (DL) de última geração para 

gradação de displasia epitelial oral em imagens histopatológicas de lâminas digitalizadas, por 

sua vez, é um trabalho de originalidade ímpar, sem precedentes na literatura, e vem de 

encontro a necessidade de expandir abordagens focadas em DL para o diagnóstico de DOPM. 

Adicionalmente, a condução de uma RS sobre modelos de ML atualmente usados para prever 

toxicidades relacionadas ao tratamento de CCP de modo a avaliar as evidências sobre o 

impacto de BMIs em PMs, permite a compreensão de quais metodologias mais apropriadas 

para treinar PM, bem como a caracterização de banco de dados e personalização individual de 

tratamento em point-of-care que forneça condições reais que culminem em predições 

realistas, e a compreensão de como a falta d epadronização tanto na execução dos estudos 

primários quanto o reporte de resultados influencia profundamente na interpretação dos 

estudos. 

A avaliação adequada dos critérios citológicos e arquiteturais visa objetificar a 

classificação de displasia epitelial oral (DEO). No entanto, mesmo fazendo uso desse sistema, 

a concordância interobservador pode ficar limitada entre 62% e 90% (Speight et al., 2015; 

Ranganathan et al., 2019). Estudos assistidos por sistemas digitais demonstram um aumento 

estatisticamente significativo na densidade de volume nuclear, razão célula-núcleo, área 

nuclear e perímetro de células displásicas quando comparadas em diferentes graus de 

displasia, com valores maiores a medida que o grau de displasia aumenta (Prema et al., 2020). 

Essa premissa corrobora que a forma e o tamanho dos núcleos é um importante atributo para a 

diferenciação de diferentes graus de displasia. Essas evidências sugerem que há potencial em 

métodos que apliquem visão computacional para diferenciar graus de displasia de modo a 

superar a subjetividade envolvida nessas análises. No entanto, anotação das imagens 

associada à fragmentação em patches pode inserir viés ao fornecer uma grande interseção de 

características que descrevem ambas as classes abordadas no presente estudo. Nesse cenário, 
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fragmentos de imagens (patches) originário de áreas displásicas na camada basal serão 

corretamente rotuladas como possuindo alto risco de malignização (do inglês high risk (HR)], 

enquanto patches da área mais superior do epitélio podem apresentar alterações insuficientes 

para se enquadrar na classificação de HR. Em resumo, uma área anotada pode gerar patches 

muito diferentes de acordo com o nível do epitélio e esses patches estariam anotados sob um 

mesmo rótulo, o que pode gerar confusão do “padrão ouro”, confundindo as CNNs, 

prejudicando o aprendizado e favorecendo a “memorização” e o overfitting. 

Os critérios clínicos para descrever e classificar DOPM são amplamente variáveis 

entre os estudos e a importância de estabelecer uma boa representação da lesão confunde os 

conceitos de aspecto clínico não homogêneo e maior risco de malignização (van der Waal, 

2015). Essa ampla gama de critérios clínicos sofreu ajustes ao longo dos anos e pode 

justificar, juntamente com as diferentes formações educacionais, fonte de discordância entre 

os observadores. Esta é uma variação que deve ser levada em consideração ao desenvolver 

modelos de DL para o diagnóstico de DOPM. Uma limitação identificada no presente estudo 

foi a dificuldade em delimitar as bordas das lesões, principalmente em áreas desfocadas e 

locais onde a má vascularização confere um aspecto mais pálido à mucosa (por exemplo, 

borda lateral da língua quando o clínicos está tracionando para a tomada da foto), o que pode 

ser um fator de confusão quando a classificação de pixels está em andamento (figura 1). 

Abordagens baseadas na faixa de valores de pixel geralmente são associadas a descritores de 

textura para determinar se uma área deve ser segmentada e, dependendo da faixa de valores 

de pixel pré-determinada, essa abordagem pode excluir áreas importantes da imagem 

segmentada, exigindo importantes etapas de calibração, que representa um desafio quando se 

trata de lesões não homogêneas onde a faixa de valores representativos dos pixels deve incluir 

áreas avermelhadas e esbranquiçadas (figura 2) . 

Para a predição de toxicidade em pacientes submetidos à radioterapia e quimioterapia 

para tratamento de cancer de cabeça e pescoço (CCP), modelos baseados apenas em 

características dosimétricas usam dose média e informações parciais do histograma dose-

volume (DVH), enquanto os modelos convencionais ( do inglês Normal Tissue Complication 

Probability (NTCP)] utilizam todas as informações da curva DVH concatenando todas as 

métricas em um único fator com funções dose-resposta (DRFs). Os modelos de Radiômica, 

por outro lado, extraem características diretamente de imagens médicas (conhecidas como 

características de textura ou intensidade). Da mesma forma, a Dosiômica tenta extrair 

características espaciais 3D da distribuição de doses de radioterapia. Por esta razão, para 

permitir a devida comparação e análise dos MPs relatados, a presente RS leva em 
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consideração modelos preditivos (MPs) baseados em biomarcadores de imagem (BMIs) e em 

dados não-imaginológicos (clínicos e dosimétricos). 

Há uma tendência em afirmar que o uso de biomarcadores de imagem (BMIs) melhora 

o poder de predizer a ocorrência de toxicidades (van Dijk et al., 2017a; van Dijk et al., 2017b;      

van Dijk et al., 2018a; van Dijk et al., 2018b; Rosen et al., 2018; van Dijk et al., 2019) mas, 

segundo alguns autores, modelos baseados em BMIs não apresentam superioridade sobre os 

modelos NTCP (Beetz et al., 2012; Smyczynska et al., 2021). De acordo com a presente RS, 

nenhuma inferência pode ser feita em relação ao uso de modelos baseados em BMIs terem 

desempenho melhor do que modelos não baseados em BMIs. Os autores esperavam visualizar 

as diferenças entre os estudos que não usam dados de imagem e aqueles que os usam, 

traçando as curvas AUROC, mas não foi observada distinção suficiente entre os valores para 

nenhuma das modalidades. Em relação aos estudos incluídos na presente meta-análise, há 

apenas uma melhora marginal observada em PMs baseados em BMIs. Vale ressaltar que 

apenas três estudos atendem aos critérios para serem incluídos na MA. A alta heterogeneidade 

dos estudos primários é explicada pelo local do tumor e as modalidades de tratamento serem 

altamente variáveis, bem como os preditores selecionados e os modelos para prever os 

desfechos (Debray et al., 2017). Os autores aconselham os leitores a ter uma interpretação 

crítica dos resultados. Além disso, na pesquisa médica, a quantidade de dados é crucial e, 

muitas vezes, não é fácil de recuperar em termos de documentação médica completa e 

acompanhamento. Idealmente, a validação externa ou teste independente deve ser realizado 

para melhor avaliação da capacidade de generalização dos modelos. Esta etapa final é 

importante para fornecer uma noção de quão bem o modelo pode executar ao avaliar dados 

não vistos. 

Por fim, a literatura científica sobre IA para imagens médicas é vasta e diversificada, 

sendo os resultados relatados em métricas e ilustrações gráficas, algumas vezes indicadas para 

fins pontuais. A Pattern Recognition Community (Bradley, 1997) adota verdadeiros positivos 

(TP), falsos negativos (FN), precisão de classificação (TP+TN)/n e F1-score 

[2TP/(2TP+FP+FN)] para avaliar o desempenho dos modelos. A área sob a curva da 

característica de operação do receptor (AUROC) é considerada uma medida mais intuitiva, 

discriminatória e consistente do que a precisão e mostra a taxa de verdadeiros positivos (TPR) 

contra a taxa de falsos positivos (FPR) [FP/(FP+TN] para analisar a capacidade de 

generalização do modelo. Esta métrica fornece uma noção quantitativa de separação de 

classes, recomendada quando há um problema de classificação binária (Jin et al., 2005). Para 

realizar uma meta-análise de curva AUROC agrupada, é necessário que os estudos reportem 
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valores de intervalo de confiança e erro padrão (calculado a partir da raiz quadrada da amostra 

de teste e desvio padrão) (Borenstein et al., 2009). Foi constatado que a maioria dos estudos 

não possuem todas as métrica snecessárias para a correta interpretação dos dados dos estudos 

prímários, inviabilizando a inclusão de estudos importantes na MA. 
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4 CONCLUSÃO 

De acordo com cada estudo desenvolvido, o presente trabalho pode concluir que: 

• A compreensão sistêmica dos conceitos de IA e Medicina/Patologia é indispensável para 

promover comunicação eficiente entre os times multidisciplinares envolvidos.  

• Foi possível observar um grande potencial de aprendizado das redes estudadas. No 

entanto, com base na presente metodologia de anotação das imagens e nos 

hiperparâmetros utilizados, não foi possível atingir uma boa capacidade de generalização 

dos modelos para serem aplicados em conjuntos de dados da vida real.  

• A percepção dos clínicos pode introduzir viés nas anotações usadas para treinar modelos 

de DL para detecção e classificação de objetos, especialmente no domínio de lesões 

brancas e estriadas. 

• MPs que utilizam BMIs não são superiores aos que não usam BMAs. No entanto, é 

importante ressaltar que a presente MA foi realizada entre modelos de apenas três estudos 

que apresentam alta inconsistência, alto risco de viés e baixa certeza de evidência.
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* De acordo com as normas da UNICAMP/FOP, baseadas na padronização do International 

Committee of Medical Journal Editors - Vancouver Group. Abreviatura dos periódicos em 

conformidade com o PubMed. 
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ANEXOS 

Anexo 1 - Comitê de Ética em Pesquisa 
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Anexo 2 - Situação do Projeto na Plataforma Brasil (print) 
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Anexo 3 - Documento de aceite do artigo (print do sistema online de submissão) 
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Anexo 4 - Relatório de similaridade da Plataforma Turnitin 

 

 


