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ABSTRACT 

Drone-based Synthetic Aperture Radar (SAR) is a technology on the rise, though SAR is a well-

established technology for aircraft and satellite systems. This thesis focuses on developing 

techniques to acquire high-resolution 3D SAR images from a drone-borne SAR system. First, 

this thesis developed a Fast Factorized Back Projection (FFBP) algorithm with two original 

features, which is suitable for processing 3D images from data acquired by non-linear flight 

paths. While maintaining good focusing quality, the FFBP algorithm was up to 21 times faster 

than the Back Projection (BP) algorithm when processing 3D images and up to 13 times faster 

for 2D images. Second, this thesis introduced a method for designing spiral flight paths for 3D 

SAR based on a new acquisition geometry proposed here. The proposed conical spiral flight 

path achieved a 1.76 m vertical resolution for a quad-corner reflector, while the state-of-the-art 

cylindrical spiral flight path achieved 2.33 m. Both contributions were tested with simulation 

results and validated with actual SAR data acquired by a drone-borne SAR system operating 

on the P-band. 

 

Keywords: synthetic aperture radar; radar signal processing; 3D imaging; flight paths; drone 

aircraft. 

 

  



 

 

RESUMO 

O Radar de Abertura Sintética (SAR) é uma tecnologia bem estabelecida para sistemas de 

aeronaves e satélites. Por outro lado, o SAR embarcado em drone é uma tecnologia em 

ascensão. O foco desta tese é desenvolver técnicas para obter imagens SAR 3D de resolução 

fina com dados obtidos por um sistema SAR embarcado em drone. Primeiramente, 

desenvolveu-se um algoritmo Fast Factorized Back Projection (FFBP) com duas características 

originais, sendo adequado para processar imagens 3D a partir de dados adquiridos por 

trajetórias de voo não lineares. Mantendo a imagem bem focada, o algoritmo FFBP foi até 21 

vezes mais rápido que o algoritmo Back Projection (BP) ao processar imagens 3D e até 13 

vezes mais rápido para imagens 2D. Em segundo lugar, criou-se um método para projetar 

trajetórias espirais para SAR 3D baseado em uma nova geometria de aquisição proposta neste 

trabalho. A nova trajetória espiral cônica alcançou uma resolução vertical de 1,76 m para um 

refletor de quatro cantos, enquanto a trajetória espiral cilíndrica, que representa o estado-da-

arte, atingiu 2,33 m. Ambas as contribuições foram testadas com resultados de simulação e 

validadas com dados SAR reais adquiridos por um sistema SAR embarcado em drone operando 

na banda P. 

 

Palavras-chave: radar de abertura sintética; processamento de sinal de radar; imagem 3D; 

trajetórias de voo; aeronaves não tripuladas. 
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1 INTRODUCTION 

Synthetic Aperture Radar (SAR) is a coherent imaging radar. It is typically installed 

on a moving platform – such as satellites, aircraft, or drones – and provides high-resolution 

images. The origin of SAR dates back to 1951, when Carl Wiley of the Goodyear Aircraft 

Corporation first described the Doppler beam sharpening technique, now referred to as aperture 

synthesis [1]–[3]. The first successful SAR mission occurred in 1957. The radar was mounted 

on a C-46F aircraft, and the system also comprised a ground processing van. The total weight 

of the equipment was 700 lbs (317.5 kg). This mission was part of Project MICHIGAN, a 

research program at the University of Michigan sponsored by the US Army [4].  

Spaceborne SAR was introduced three decades later with the launch of NASA’s 

Seasat satellite in 1978. Seasat operated on the L-band, monitoring oceanographic phenomena. 

Its mission successfully demonstrated spaceborne SAR capabilities, though it lasted only 106 

days due to a short circuit in the electrical system [5]. Since then, there have been about twenty 

SAR satellite missions from different space agencies worldwide [6]. SAR imagery has been 

used for myriad remote sensing applications, including Earth topography, earthquake and 

volcano monitoring, forest biomass, ice and glacier cover, and ocean currents, to name a few. 

Moreover, data can be acquired day or night, independent of cloud coverage [2]. 

Another three decades passed until the rise of drone-borne SAR. One of the first 

successful experiments was reported in 2009 by researchers from the Technical University of 

Catalonia, Barcelona, Spain. They used a fixed-wing drone with a 2.5 m wingspan that had 45 

min autonomy with a 5 kg payload. This SAR system operated in the C-band (5.3 GHz), 

transmitting up to 2W. The first version of their SAR equipment weighed 2.5 kg and fitted 

inside a 15 × 25 × 9 cm³ box [7]. SAR drones are low-cost systems suitable for surveying small 

areas, opening new market possibilities [8]. 

 

1.1 THE DRONE-BORNE SAR SYSTEM 

This thesis uses data from the drone-borne SAR system depicted in Figure 1.1. The 

system operates in three bands – C, L and P – and has four antennas: two interferometric C-
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band antennas, one L-band antenna with two polarizations, and one P-band antenna. Each 

operating band has its particularities, which can be combined to produce further information. 

In [9], the drone-borne SAR system estimated the forest height by comparing the C- and P-band 

height profiles. While the forest is transparent to the P-band, the canopy reflects the C-band. In 

[10], data from the three bands were put together to calculate sugarcane biomass, which was 

then used to predict the harvest date and productivity. Finally, in [11], L-band data were used 

to generate growth maps for a coffee crop.  

 

Figure 1.1 –The drone-borne Synthetic Aperture Radar (SAR) system equipped with the L-band, C-

band, and P-band antennas. Source: Modified from Moreira et al. [8] © 2019 IEEE. 

The multi-rotor drone in Figure 1.1 also carries a motion sensing system (MSS) 

comprising a global navigation satellite system (GNSS) and an inertial measurement unit 

(IMU). The MSS is accurate thanks to the IMU and because a ground station provides 

differential GNSS processing. In particular, the absolute position error is 15 cm, and the relative 

position error is less than 1 cm. Furthermore, in [12], corner reflectors were used to assess the 

system’s accuracy when producing deformation maps. The standard deviation of the resulting 

error was 4-7.4 mm. 

In the research mentioned earlier, the drone-borne SAR system performed either 

linear or circular flight paths for producing 2D images and topographic maps. The data were 
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processed using range-Doppler or Back Projection (BP) algorithms. Range-Doppler is an 

efficient algorithm best suited for linear flight paths, while BP has a high computing cost but 

works for any flight path. 

 

1.2 THE THESIS 

This thesis focuses on techniques to obtain high-resolution 3D SAR images. First, 

the multi-rotor drone has much more flexible flight mechanics than aircraft. Such flexibility 

allows us to explore new flight paths and thus achieve better resolutions than the state-of-the-

art. Therefore, this thesis aims to create a method for designing flight paths from a vertical 

resolution requirement. Second, this investigation calls for a fast algorithm capable of 

processing 3D SAR images from arbitrary flight paths. 

The purpose of these techniques is to enable subsurface tomography in future 

developments. There are several applications for subsurface tomography, such as humanitarian 

demining, archeology, and forensic investigation. 

1.2.1 Contributions 

This thesis presents a Fast Factorized Back Projection (FFBP) algorithm with two 

original features. First, it takes a data mapping approach that makes no assumptions about the 

flight path geometry, therefore being suitable for any flight path. Second, it employs a modified 

version of a classical tree structure, which is very flexible and can effortlessly manage 2D and 

3D images.  

Furthermore, the same SAR image can be processed with different setups, with a 

trade-off between phase error and processing time. So, this thesis tests the hypothesis that 

parameters at the start of processing can predict the standard deviation of the phase error at the 

output.  

Moreover, this thesis introduces a new acquisition geometry that can perform better 

than the state-of-the-art: conical spiral flight paths. A method for designing such flight paths is 

also presented. This method depends on an analytical expression for the vertical resolution, 

which is also revised in this thesis. 
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1.2.2 Outline 

Chapter 2 explains some fundamentals of SAR, starting from how radars work. 

Then, it describes what is recorded in the SAR data and how standard processing algorithms 

work. It also compares frequency-domain and time-domain algorithms. 

Chapter 3 discusses FFBP, first reviewing the main strategies behind this type of 

algorithm. Then, the chapter details the proposed FFBP algorithm. Next, simulation results 

provide a proof of concept, showing that the FFBP algorithm works well in different conditions. 

Finally, a phase error analysis evaluating different setups is performed for actual SAR data 

acquired by the drone-borne SAR system. 

Chapter 4 addresses spiral flight paths. First, it reviews the state-of-the-art 

acquisition geometries. Then, it explains the wavenumber shift concept, which is key to revising 

the vertical resolution expression. Next, the revised expression is validated through simulation 

results, while the influence of different parameters of the spiral flight path is also investigated. 

Finally, the method for designing spiral flight paths is proposed and validated with actual SAR 

data from the drone-borne SAR system. 

Chapter 5 concludes this thesis. Lastly, the Appendix provides a parallel between 

the MATLAB code and the explanation of the FFBP algorithm in Chapter 3. 

1.2.3 Publications 

The subject of Chapter 3 yielded three publications: a conference paper [13], an 

article [14], and an open-access MATLAB code [15]. The findings detailed in Chapter 4 shall 

be published in the future. 
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2 SYNTHETIC APERTURE RADAR 

Imaging radars prior to SAR typically used narrow beamwidth antennas to obtain 

suitable resolutions in azimuth (along-track). The beamwidth of an antenna (𝜃𝑎 ) can be 

estimated from the wavelength (𝜆) and the aperture length (𝑑𝑎) [1]–[3]: 

 
𝜃𝑎 ≈

𝜆

𝑑𝑎
 (2.1) 

The narrower the beamwidth, the finer the azimuth resolution would be. However, the azimuth 

resolution would also depend on the range from the radar to the target (𝑅) [1]–[3]: 

 
𝛿𝑎 = 𝑅𝜃𝑎 = 𝑅

𝜆

𝑑𝑎
 (2.2) 

So if a system operated with a 3 cm wavelength and the antenna aperture were 3 m long, the 

azimuth resolution at 10 km from the radar would be 100 m. 

In contrast, SAR takes advantage of the platform movement and uses coherent 

processing to build a synthetic aperture far larger than the actual antenna aperture. Furthermore, 

in linear flight paths, the synthetic aperture increases with range. As a result, the azimuth 

resolution is no longer degraded as the range increases, and it is given by [1]–[3]: 

 
𝛿𝑎 ≈

𝑑𝑎
2

 (2.3) 

Thus, for the same antenna aperture 𝑑𝑎 = 3 m, the new azimuth resolution becomes 1.5 m, an 

impressive improvement over the previous example. 

As the platform moves forward, the SAR system periodically transmits 

electromagnetic pulses, making each radar pulse correspond to a different azimuth position. 

After each pulse transmission, the radar takes several samples of the backscattered echo. These 

samples translate into different range distances traveled by the signal and contain both 

amplitude and phase information. The result is a complex raw data matrix with one dimension 

associated with the azimuth positions and another with the range samples (see Figure 2.1).  
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Figure 2.1 – Basic SAR processing steps: range compression and azimuth compression. Schematic for 

a frequency-domain algorithm. Source: Moreira et al. [2] © 2013 IEEE. 

The SAR data must be processed before providing useful information. The first 

processing step, called range compression, consists of a matched filter operation using the 

transmitted pulse as a reference function. The second is called azimuth compression. Different 

algorithms can execute it: frequency-domain algorithms perform another matched filter 

operation in the azimuth direction (see Figure 2.1), while time-domain algorithms execute a 

coherent integration. 

After a brief introduction to radar fundamentals in Section 2.1, the following 

sections cover the processes and elements illustrated in Figure 2.1. Section 2.2 addresses range 

compression and the range reference function. Section 2.3 describes the azimuth reference 

function, then presents an overview of frequency-domain algorithms and their limitations. 

Finally, Section 2.4 details a key time-domain algorithm.    
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2.1 WHAT IS RADAR? 

Radar – radio detection and ranging – is an electromagnetic system for detecting 

and locating targets. It works by transmitting a signal (see Figure 2.2(a)), receiving its 

backscattered echo (see Figure 2.2(b)), and then extracting information from it. The most basic 

information is the time it takes for the echo to return. Since the signal speed is known, the return 

time estimates the range between the radar and the target. 

 

(a) 

 

(b) 

Figure 2.2 – Radar operation: (a) signal transmission and (b) reception of the backscattered echo. 
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Figure 2.2 shows a monostatic radar, which uses the same antenna for transmission 

and reception. If the transmitting and receiving antennas were separate, it would be a bistatic 

radar. However, bistatic operations shall not be covered in this thesis.  

2.1.1 Fundamental Relationships 

In radar operations, the signal travels from the radar to the target and back again 

(two-way range distance). In addition, the signal propagates at the speed of light (𝑐). Therefore, 

if 𝜏 is the return time of the backscattered echo and 𝑅 is the range between the radar and the 

target, then [3]: 

 
𝜏 =

2𝑅

𝑐
 (2.4) 

Another fundamental relationship is between the range and the return phase (𝜑). 

Each time the signal moves one wavelength (𝜆), its phase completes a 2𝜋 cycle. Thus, 𝜑 is 

given by [3]: 

 
𝜑 = −

4𝜋𝑅

𝜆
 (2.5) 

The negative sign denotes a phase delay. 

2.1.2 Radar Equation 

The radar equation is a valuable tool for designing radar systems. It calculates how 

much of the transmitted power is reflected by the target and received at the radar [1], [3]: 

( 
𝑃𝑟 = 𝑃𝑡𝐺 ×

𝜎

4𝜋𝑅2
×

𝐴𝑒
4𝜋𝑅2

 (2.6) 

The three factors on the right-hand side of (2.6) represent the physical processes that take place 

(see Figure 2.2): 

• The power that leaves the radar antenna is given by the transmitted power (𝑃𝑡) 

and the antenna gain (𝐺); 

• When the signal arrives at the target, the power has been distributed on a sphere 

of radius 𝑅. The amount reflected back to the radar is determined by the target’s 

radar cross-section (𝜎), which is measured in units of area; 
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• When the backscattered signal is received at the radar, it has been further 

attenuated by 4𝜋𝑅2. Also, the received power (𝑃𝑟) depends on the antenna’s 

effective area (𝐴𝑒). 

 The effective area of an antenna is related to the antenna gain by [3]: 

 
𝐴𝑒 =

𝐺𝜆2

4𝜋
 (2.7) 

Therefore, (2.6) can be rewritten as [3]: 

 
𝑃𝑟 =

𝑃𝑡𝐺
2𝜆2𝜎

(4𝜋)3𝑅4
 (2.8) 

2.1.3 Radar Frequency Bands 

Radar systems use a wide frequency spectrum from 30 MHz to 110 GHz [16], 

which can be conveniently grouped into bands. However, since these bands were defined during 

World War II, the chosen naming scheme was not immediately obvious for security reasons. 

Thus, the resulting letter designations have no apparent logic [3].  

Nonetheless, band letter designations are still used today and have become accepted 

practice amongst radar engineers. Letter designations can describe the band of operation 

without stating the frequency limits in numerical terms, such as in titles of published papers or 

advertising radar systems and components. In addition, letter designations can communicate 

concisely a whole set of characteristics, applications, and environmental constraints that 

distinguish each particular band [16]. 

Table 2.1 shows the frequency bands used for SAR remote sensing, using letter 

designations common to the radar community. Note that the actual frequencies allocated for 

radar use by the International Telecommunications Union are narrower bands within this broad 

classification [5].  

The drone-borne SAR system presented in Section 1.1 works in three bands: C, L, 

and P. Because the P-band has ground penetrating capabilities, it is suitable for SAR 

tomography. Therefore, only P-band results shall be presented in this thesis. 
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Table 2.1 – Letter designation of radar bands used for SAR remote sensing. Source: Modified from 

NASA SAR Handbook, 2019 [5]. 

Band 
Frequency 

[GHz] 

Wavelength 

[cm] 
Typical application 

P 0.3 – 1 100 – 30 
Biomass; vegetation mapping and assessment. Experimental 

SAR. 

L 1 – 2 30 – 15 

Medium resolution SAR (Geophysical monitoring; biomass 

and vegetation mapping; high penetration; SAR 

interferometry) 

S 2 – 4 15 – 7.5 
Little but increasing use for SAR-based Earth observation; 

agriculture monitoring 

C 4 – 8 7.5 – 3.8 

SAR workhorse (global mapping; change detection; 

monitoring of areas with low to moderate vegetation; 

improved penetration; higher coherence); Ice, ocean, 

maritime navigation 

X 8 – 12 3.8 – 2.4 

High-resolution SAR (urban monitoring; ice and snow, little 

penetration into vegetation cover; fast coherence decay in 

vegetated areas) 

Ku 12 – 18 2.4 – 1.7 Rarely used for SAR (satellite altimetry) 

K 18 – 27 1.7 – 1.1 Rarely used (H2O absorption) 

Ka 27 – 40 1.1 – 0.8 Rarely used for SAR (airport surveillance) 
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2.2 FAST-TIME AXIS 

The range axis of the SAR data matrices (see Figure 2.1) contains samples of the 

return signal, which travels at the speed of light. Typical sampling rates are a few tens of MHz 

or higher. Thus, the range axis is also called the fast-time axis [2]. 

2.2.1 Chirped Pulse 

2.2.1.1 Range resolution 

The radar range resolution is given by its ability to separate the backscattered 

echoes of two distinct point targets. For a square pulse, the limit condition is when the ending 

of the first echo coincides with the beginning of the second. In this case, the difference in 

returning time equals the pulse width (Δ𝜏). Therefore, the range resolution is [1], [3]: 

 
δ𝑟 =

𝑐∆𝜏

2
 

(2.9) 

However, square pulses are not practical for SAR applications. For example, 

suppose a SAR system requires a range resolution of δ𝑟 = 1.5 m. Then, the pulse width would 

need to be ∆𝜏 = 10 ns, which is highly impractical (see Figure 2.3(a)). The radar would have to 

transmit a prohibitive peak power during ∆𝜏 and then remain silent for a much longer period 

until the next pulse transmission. 

The solution is to employ pulse compression, illustrated in Figure 2.3(b,c). The 

radar transmits a modulated pulse of width 𝑇 and bandwidth 𝑊, with 𝑇 ≫ 1 𝑊⁄ . Nevertheless, 

after pulse compression, the width of the main lobe becomes ∆𝜏 ≈ 1 𝑊⁄ . Moreover, the 

transmit energy is distributed over 𝑇, so the peak power is no longer an issue. Then, the range 

resolution becomes [1], [3]: 

 δ𝑟 =
𝑐

2𝑊
 (2.10) 

For the previous example, a range resolution of δ𝑟 =1.5 m would require a 𝑊 = 

100 MHz bandwidth. In addition, suppose that 𝑇 = 20 μs, then the resulting peak power would 

be 2000 times lower for the same transmit energy. 
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(a) 

 

(b) 

 

(c) 

Figure 2.3 – Pulse widths for a high-resolution radar: (a) square pulse; chirped pulse (b) before and (c) 

after pulse compression. 

2.2.1.2 Linear frequency modulation 

SAR systems typically employ a linear frequency modulation, also called chirp. 

The chirped pulse has a constant amplitude during its width 𝑇 and a frequency that varies 

linearly over time, sweeping the bandwidth 𝑊 [1]: 

 𝑓𝑟(𝜏) = 𝑓0 + 𝜁𝜏, |𝜏| ≤ 𝑇 2⁄  (2.11) 

 
𝜁 = ±

𝑊

𝑇
 (2.12) 

The resulting phase is expressed as a quadratic function of time [1]: 

 
𝜑𝑟(𝜏) = 2𝜋∫𝑓𝑟(𝜏) 𝑑𝜏 = 𝜋𝜁𝜏2, |𝜏| ≤ 𝑇 2⁄  (2.13) 

Finally, the chirped pulse waveform is given by [1]: 

 𝑠𝑟(𝜏) = 𝐴𝑟 𝑒
𝑗𝜋𝜁𝜏2 , |𝜏| ≤ 𝑇 2⁄  (2.14) 

where 𝐴𝑟 is the pulse amplitude. Figure 2.3(b) shows only the real part of 𝑠𝑟(𝜏) with 𝑓0 = 0. 
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2.2.2 Range Compression 

Range compression is the first SAR processing step. It is a matched filter operation 

that uses the chirped pulse as a reference function. So, each line of the raw data matrix is cross-

correlated with the chirped pulse (see Figure 2.1). However, because the fast Fourier transform 

(FFT) and its inverse (IFFT) are fast, as the name implies, it is much more efficient to perform 

the analogous operation in the frequency domain. Therefore, the spectrum of each line is 

multiplied by the conjugate of the chirped pulse spectrum [2], [3]. 

2.2.2.1 Pulse compression 

Suppose for simplicity that the amplitude of the chirped pulse defined in (2.14) is 

𝐴𝑟 = 1 √𝑇⁄ . So, for large time-bandwidth products (𝑇𝑊), the spectrum of the chirped pulse 

can be approximated by [1]: 

 𝑆𝑟(𝑓) ≈ rect(𝑓 𝑊⁄ ), 𝑇𝑊 ≫ 1 (2.15) 

 
rect(𝑓 𝑊⁄ ) = {

1, |𝑓| ≤ 𝑊 2⁄

0, |𝑓| > 𝑊 2⁄
 (2.16) 

The assumption 𝑇𝑊 ≫ 1 is usually valid for SAR systems. Then, the resulting amplitude of 

the autocorrelation function is [1]: 

 |Ψ𝑠𝑟(𝜏)| = |(𝑠𝑟 ⋆ 𝑠𝑟)(𝜏)| ≈ |sinc(𝑊𝜏)|, |𝜏| ≪ 𝑇 (2.17) 

 
sinc(𝑥) =

sin (𝜋𝑥)

𝜋𝑥
 (2.18) 

Figure 2.3(c) shows the compressed pulse amplitude |Ψ𝑠𝑟(𝜏)|. As indicated before, the main 

lobe width is ∆𝜏 ≈ 1 𝑊⁄ . Also, the peak-to-sidelobe ratio (PSLR) is 13 dB. 

2.2.2.2 Sidelobe reduction 

A PSLR of 13 dB is not ideal. Thus, SAR systems often employ a window function 

to improve the PSLR. One of the most common window functions is the Hamming window 

with 𝜉 = 0.54 [1], [17]: 

 
𝑤𝐻(𝜏) = {

𝜉 + (1 − 𝜉) cos (2𝜋
𝜏

𝑇
) , |𝜏| ≤ 𝑇 2⁄

0,                                         |𝜏| > 𝑇 2⁄
 (2.19) 
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This window function increases the PSLR to above 40 dB at the cost of widening 

the main lobe. In Figure 2.4(a), for instance, the width of the main lobe goes from ~10 ns 

without a window function to ~15 ns with the Hamming window. In addition, the bandwidth of 

the resulting spectrum is ~40% of the original one, as shown in Figure 2.4(b). 

 

(a) 

 

(b) 

Figure 2.4 – Compressed pulse with and without Hamming window: (a) time and (b) frequency 

responses. 
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2.3 SLOW-TIME AXIS 

The azimuth axis of the SAR data matrices (see Figure 2.1) is associated with the 

platform movement, whose speed is far lower than the speed of light. In addition, the azimuth 

sampling rate is given by the pulse repetition frequency, whose values range from a few tens to 

a few thousand Hz, far lower than the range sampling rate. Therefore, the azimuth axis is also 

called the slow-time axis [2]. 

2.3.1 Stripmap SAR 

Stripmap SAR is the most basic SAR mode, illustrated in Figure 2.5. The platform 

moves in a linear flight path with constant velocity and altitude. The antenna looks sideways 

and down at the ground with a fixed pointing vector. The resulting swath width is the ground 

range extent of the imaged area, whereas the radar signal travels in the slant range (across-track) 

direction. The flight path direction is called azimuth (along-track). 

 

Figure 2.5 – Stripmap SAR imaging. 
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2.3.1.1 Azimuth resolution 

In Figure 2.5, 𝑅0 is the slant range at the point of the closest approach, 𝜃𝑎 is the 

antenna aperture in azimuth, and L𝑆𝐴 is the resulting synthetic aperture length [1]–[3]: 

 L𝑆𝐴 ≈ 𝑅0𝜃𝑎 (2.20) 

Note that L𝑆𝐴 increases from near-range to far-range while 𝜃𝑎 remains approximately the same.  

The corresponding synthetic aperture angle is Θ𝑆𝐴 [1]–[3]: 

 
Θ𝑆𝐴 =

𝜆

2𝐿𝑆𝐴
 (2.21) 

where 𝜆  is the radar wavelength, and factor 2 comes from the two-way nature of SAR. 

Therefore, the azimuth resolution is given by [1]–[3]: 

 
𝛿𝑎 = 𝑅0Θ𝑆𝐴 = 𝑅0

𝜆

2𝐿𝑆𝐴
=

𝜆

2𝜃𝑎
=
𝑑𝑎
2

 (2.22) 

2.3.1.2 Amplitude history 

Figure 2.6 shows how the stripmap acquisition geometry translates into the target’s 

amplitude history in the SAR data matrix. The resulting curve in Figure 2.6(b) is hyperbolic. 

 

(a) 

 

(b) 

Figure 2.6 –Stripmap SAR amplitude history: (a) acquisition geometry; (b) hyperbole on the data matrix. 
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In Figure 2.6, the slant range distance varies with the slow-time 𝑡. Without loss of 

generality, consider that the point of closest approach occurs at 𝑡 = 0, i.e., 𝑅(0) = 𝑅0. Then, 

the slant range 𝑅(𝑡) is given by [2], [3]: 

 
𝑅(𝑡) = √𝑅0

2 + (𝑉𝑡)2, |𝑉𝑡| < 𝐿𝑆𝐴 2⁄  (2.23) 

where 𝑉 is the platform speed. If 𝑉𝑡 ≪ 𝑅0, then the hyperbole in expression (2.23) can be 

approximated by a parabole [2], [3]: 

 
𝑅(𝑡) ≈ 𝑅0 +

(𝑉𝑡)2

2𝑅0
, 𝑉𝑡 ≪ 𝑅0 (2.24) 

The assumption above is usually valid for satellites and aircraft but not so much for drones. 

Note that the approximation (2.24) is made for simplicity. Accurate SAR processing should 

consider (2.23) instead [2]. 

2.3.1.3 Phase history 

Because the distance traveled by the radar pulses varies over time, the phase of the 

backscattered echoes varies accordingly [2], [3]: 

 
𝜑𝑎(𝑡) = −

4𝜋

𝜆
𝑅(𝑡) = 𝛷0 −

4𝜋

𝜆

𝑉2

2𝑅0
𝑡2 (2.25) 

where 𝛷0 is constant for a given target. Note how the phase exhibits parabolic behavior (see 

Figure 2.7(a)). 

 

..........(a) 

 

...(b) 

 

(c)................... 

Figure 2.7 –Stripmap SAR phase history: (a) phase, (b) Doppler frequency, and (c) resulting modulated 

signal against slow-time. 
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 Since the signal frequency is the derivative of the signal phase, it varies linearly 

with time (see Figure 2.7 (b)) [2]: 

 
𝑓𝐷(𝑡) =

1

2𝜋

𝜕

𝜕𝑡
𝜑𝑎(𝑡) = −

2𝑉2

𝜆𝑅0
𝑡 (2.26) 

Interestingly, the azimuth frequency turns out to be similar to that of a linear frequency 

modulated signal. Thus, the phase history takes the form of an azimuth chirp (see Figure 2.7(c)). 

Furthermore, the azimuth frequency is also called Doppler frequency, and the zero Doppler 

corresponds to the point of closest approach. 

2.3.2 Spotlight SAR 

Figure 2.8 shows another common SAR mode, called Spotlight SAR. Again, the 

platform moves in a linear flight path with constant velocity and altitude. However, the antenna 

pointing vector is steered in azimuth, so the radar keeps illuminating the same area. As a result, 

the imaged area is smaller, but the synthetic aperture is longer than Stripmap SAR, providing a 

finer resolution. 

 

Figure 2.8 – Spotlight SAR imaging. 
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2.3.3 Frequency-Domain Azimuth Compression 

Frequency-domain algorithms perform azimuth compression through a matched 

filter operation, using the amplitude and phase history as a reference function (see Figure 2.1). 

Note that the synthetic aperture length increases from near-range to far-range; thus, the 

reference function must be adjusted accordingly. Similar to range compression, instead of cross-

correlating in time, these algorithms conjugate the spectrum of the reference function and 

multiply in the frequency domain. This procedure is quite effective thanks to the FFT and IFFT 

[2], [3]. The following subsections shall present a few aspects of frequency-domain algorithms. 

2.3.3.1 Flight path dependence 

As detailed in Subsection 2.3.1, the azimuth reference function depends on the 

acquisition geometry. In other words, different acquisition geometries will have different 

reference functions. For example, even Stripmap and Spotlight SAR would not have identical 

azimuth and phase histories, which can be noticed by comparing Figure 2.5 and Figure 2.8. 

Therefore, frequency-domain algorithms depend heavily on the flight path [2], [3]. 

2.3.3.2 Motion compensation 

In Subsection 2.3.1, we assumed that the platform moved with constant velocity 

and altitude to determine the azimuth reference function. However, that will not hold for actual 

SAR systems. Consequently, the image data might be defocused, and thus a motion 

compensation procedure may be required. Motion compensation measures, records, and 

compensates for the deviations between the real and ideal flight paths [1], [3]. 

2.3.3.3 Range migration 

From equation (2.24), the difference between the maximum and minimum slant 

ranges will be equal to [1], [2]: 

 
Δ𝑅 = 

(𝑉𝑡)2

2𝑅0
=
𝐿𝑆𝐴

2

8𝑅0
 (2.27) 

If Δ𝑅 is greater than the range sampling interval, the amplitude response will occupy more than 

one range bin along its curvature. This issue is called range migration and needs to be addressed. 

Fortunately, there are well-established algorithms for that: wavenumber domain or 𝜔 − 𝑘 [18], 

range-Doppler [19], [20], and chirp scaling [21], [22] algorithms. 
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2.3.3.4 Autofocus 

Autofocus techniques take information from the image data to estimate and correct 

phase errors to provide a sharper image. The phase errors have many sources: uncompensated 

or unmeasured motion, atmospheric propagation effects, hardware limitations, and processing 

approximations. All these factors can deteriorate the image focus. Standard cost functions for 

optimizing focus in SAR applications are maximum contrast and minimum entropy [1], [23]. 

2.3.3.5 Ground range vs. slant range 

Frequency-domain algorithms produce the image data in a slant range geometry, 

though the imaged scene is in ground range geometry. Therefore, the pixels need to be projected 

onto the ground plane for comparing the image data with maps, for instance. The ground range 

spacing (𝛿𝑔𝑟) relates to the slant range spacing (𝛿𝑠𝑟) by [1]: 

 
𝛿𝑔𝑟 ≈

𝛿𝑠𝑟
cos(𝛾)

 (2.28) 

where 𝛾 is the grazing angle, which changes from near-range to far-range. Since the slant range 

spacing is typically constant (and slightly shorter than the range resolution), the ground range 

spacing will vary across the image data. Therefore, interpolation and resampling are necessary 

to provide an image in ground range geometry with regular spacing.  

2.3.3.6 Geocoding 

SAR geocoding references the image data into a geographic map projection, with 

each pixel corresponding to a latitude and longitude, or northing and easting coordinates. The 

purpose of geocoding is to describe the data in a common coordinate system so that it can be 

compared to data from different SAR acquisitions or even from different sensors. Proper 

geocoding requires a digital elevation model (DEM), which may be obtained with the SAR 

system by using interferometry [3], [24].  
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2.4 TIME-DOMAIN BACK PROJECTION 

In 1983, Munson et al. [25] demonstrated that Spotlight SAR could be interpreted 

as a tomographic reconstruction problem. Computed tomography (CT) is a technique that 

provides high-resolution medical images. A 2D tomographic image is a cross-section of a 3D 

object obtained by processing data from multiple X-ray measurements taken at different 

observation angles. Each X-ray measurement is a 1D projection, as illustrated in Figure 2.9(a). 

Something similar occurs in SAR, with a stronger analogy in the spotlight mode. For each 

observation angle, the radar takes several samples (1D projection) of the backscattered echoes 

coming from the imaged area (see Figure 2.9(b)). Munson et al. [25] also showed that an 

algorithm developed for CT could be adapted for SAR. That is how the time-domain BP 

algorithm originated. 

 

(a) 

 

(b) 

Figure 2.9 – Analogy between (a) computed tomography (CT) and (b) Spotlight SAR; 𝑠(𝑥, 𝑦) is the 

unknown 2D image, 𝑆(𝑢, 𝜙) is the 1D projection onto the 𝑢-axis, which rotates for each observation 

angle 𝜙. Source: Ponce et al. [26] © 2016 IEEE. 

2.4.1 Basic Algorithm 

The first key difference in the BP algorithm is that the information taken from the 

range-compressed data is processed onto an image sample grid. Figure 2.10 shows the steps of 

the BP algorithm. Step 2 is not required if the radar constantly illuminates the imaged area (e.g., 

Spotlight SAR). Furthermore, if step 2 is necessary (e.g., Stripmap SAR), it could be executed 

for image blocks instead of pixel by pixel [17]. Then, steps 3 to 7 must be repeated for each 

azimuth position that belongs to the synthetic aperture and for every pixel. 
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Figure 2.10 – Flowchart of the Back Projection (BP) algorithm. Source: Modified from Doerry et al., 

2016 [27]. 

2.4.1.1 Create the image sample grid 

To create the image sample grid, first, sample the area of interest so that each pixel 

corresponds to a position in space. Next, choose an appropriate sampling spacing to avoid 

aliasing, considering the flight path geometry and the original sampling rates in range and 

azimuth [17]. Finally, retrieve the height of each pixel using a DEM. Thankfully, data from the 

Shuttle Radar Topography Mission (SRTM) is openly available, covering over 80 % of the 

Earth’s land surface with a one arc-second sampling spacing (around 30 m) [28]. 

This procedure might require transformations between different coordinate 

systems. SRTM data is provided in geodetic coordinates. The area of interest could be sampled 

in geodetic coordinates or a local coordinate system, such as East-North-Up (ENU) or North-

East-Down (NED). The final image sample grid must be represented in the same coordinate 

system as the navigation data to allow calculations in the following steps. In addition, both must 

be represented in a cartesian coordinate system, which could be either a local system (e.g., ENU 

or NED) or the Earth-centered Earth-fixed (ECEF) system. Figure 2.11 shows the image sample 

grid and the radar positions in an ENU system. 
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Figure 2.11 – Schematic view of the reconstruction geometry for processing SAR data from a nonlinear 

flight path with the BP algorithm. Source: Modified from Frey et al. [17] © 2009 IEEE. 

2.4.1.2 Determine the synthetic aperture (optional) 

Determining the synthetic aperture is finding the radar positions (𝕂𝑚) for which the 

antenna is illuminating the pixel or image block. There are different methods to accomplish 

that. For instance, Frey et al. [17] use the antenna pointing vector and the Doppler frequency to 

indirectly measure the angle between the slant range and the antenna axis. However, as said 

before, this step might not be required.  

2.4.1.3 Calculate the slant range 

The slant range (𝑅𝑚,𝑘) is given by [17], [27]: 

 𝑅𝑚,𝑘 = ‖𝒉𝑚 − 𝒓𝑘‖ (2.29) 

where 𝒓𝑘  is the position vector of the 𝑘𝑡ℎ  radar position and 𝒉𝑚  is the position vector 

associated with the 𝑚𝑡ℎ pixel (see Figure 2.11). 
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2.4.1.4 Calculate the fractional range index 

The radar transmits a pulse, and after a buffer delay, it starts sampling the return 

signal. Thus, the slant range 𝑅𝑚,𝑘 corresponds to a specific range bin sample in the 𝑘𝑡ℎ azimuth 

line of the range-compressed data. To find the correct range bin, we need to calculate the 

fractional range index [27]: 

 
𝜈𝑚,𝑘 =

𝑅𝑚,𝑘 − 𝑅𝑑𝑒𝑙𝑎𝑦

𝛿𝑠𝑟
 (2.30) 

where 𝛿𝑠𝑟 is the range sampling interval, and 𝑅𝑑𝑒𝑙𝑎𝑦 is the slant range of the first range bin 

associated with the buffer delay. Note that 𝜈𝑚,𝑘 is not an integer number. 

2.4.1.5 Interpolate data 

The fractional range index 𝜈𝑚,𝑘  often falls between two range bin samples. 

Therefore, interpolation is required to find the equivalent value for 𝑔(𝑘, 𝜈𝑚,𝑘), where 𝑔 is the 

range-compressed data. Doerry et al. [29] propose a design methodology for an interpolation 

filter based on the following criteria: limiting the aliased energy into the bandwidth of interest 

to -40 dB. Then, each interpolation method will require a different fractional bandwidth (𝑏𝑤) 

to comply with the aliasing criteria: 

• The nearest neighbor interpolation requires 𝑏𝑤 = 0.02; 

• The linear interpolation requires 𝑏𝑤 = 0.184; 

• The cubic B-spline requires 𝑏𝑤 = 0.264. 

Therefore, if the range-compressed data has 𝑏𝑤 =  0.9, it will need to be up-

sampled by a factor of: 0.9/0.02 = 45 for the nearest neighbor interpolation; 0.9/0.184 = 4.89 

for the linear interpolation; 0.9/0.264 = 3.41 for the cubic B-spline interpolation. Up-sampling 

can be applied by zero-padding the data spectrum. 

2.4.1.6 Compensate for the return signal phase 

The data 𝑔(𝑘, 𝜈𝑚,𝑘) of pixel 𝒉𝑚 will have a different phase for each radar position 

𝒓𝑘. Therefore, we need to compensate for the phase differences so that all contributions are 

coherently combined [27]:  
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 �̃�(𝑘, 𝜈𝑚,𝑘) = 𝑔(𝑘, 𝜈𝑚,𝑘)𝑒
𝑗𝜑𝑚,𝑘  (2.31) 

 
𝜑𝑚,𝑘 = +

4𝜋

𝜆
𝑅𝑚,𝑘 (2.32) 

where 𝜆 is the radar wavelength. Note that the phase compensation term 𝜑𝑚,𝑘 has a positive 

sign for balancing the phase delay of the return signal in expression (2.5). 

2.4.1.7 Accumulate into the sample grid 

The last step is to accumulate the compensated data into the image grid. Finally, 

when steps 3 to 7 have been repeated for every radar position within the synthetic aperture (𝑘 ∈

𝕂𝑚), the image datum for the pixel 𝒉𝑚 becomes [27]: 

 𝑠(𝒉𝑚) = ∑ 𝑤𝑚,𝑘
𝑘∈𝕂𝑚

𝑔(𝑘, 𝜈𝑚,𝑘)𝑒
𝑗𝜑𝑚,𝑘  (2.33) 

The window function 𝑤𝑚,𝑘 can be chosen at will. For instance, Frey et al. [17] use a Hamming 

window function with the Doppler frequency in its argument in such a way that 𝑤𝑚,𝑘 = 1 when 

the antenna axis is pointing at the pixel. On the other hand, the window function could be as 

simple as 𝑤𝑚,𝑘 = 1 for all radar positions. Figure 2.12 summarizes the BP algorithm. 

 

Figure 2.12 – Flowchart of the BP algorithm with equations. 
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2.4.2 Comparison to Frequency-Domain Algorithms 

This subsection compares the BP algorithm to the frequency-domain algorithms of 

Subsection 2.3.3. Table 2.2 presents an overview, and the next paragraphs give further details. 

Table 2.2 – Comparison overview between azimuth compression algorithms. 

Frequency-Domain Algorithms Time-Domain BP Algorithm 

 Work for specific flight paths  Works with arbitrary flight paths 

 May need motion compensation  Does not need motion compensation 

 Need an additional step to represent the 

image data in ground range geometry 

 The image data is already represented in 

ground range geometry 

 Need an additional step to create a 

geocoded image data 

 The image data is already geocoded 

 

 May need autofocus  May need autofocus 

 Do not need previous knowledge of the 

terrain topography 

 Needs previous accurate knowledge of the 

terrain topography 

 Low computing cost  High computing cost 

2.4.2.1 Flight path dependence 

Frequency-domain algorithms depend highly on the flight path since an azimuth 

reference function is required to execute the azimuth compression. In contrast, The BP 

algorithm does not require an azimuth reference function, thus working for arbitrary flight path 

geometries. This characteristic is the main advantage of the BP algorithm. 

2.4.2.2 Computing costs 

Frequency-domain algorithms are cost-efficient, thanks to employing the FFT and 

the IFFT. In reverse, the BP algorithm has a high computing cost. The overall computing time 

can be somewhat reduced by parallelizing the data processing. Still, the high computing cost is 

the main disadvantage of the BP algorithm. 

Fortunately, another time-domain algorithm, called fast factorized back projection 

(FFBP), uses a divide-and-conquer strategy to reduce the computing cost [14], [30], [31]. 

Hence, a 3D FFBP algorithm is one of the contributions of this thesis. Incidentally, a divide-

and-conquer strategy is also the reason behind the efficiency of the FFT and IFFT [32]. 
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2.4.2.3 Other aspects 

Since the actual flight path is non-ideal, frequency-domain algorithms may require 

motion compensation. However, this procedure is unnecessary for the BP algorithm because it 

already uses the actual radar positions to perform azimuth compression. On the other hand, 

phase errors may defocus the image data, so both frequency- and time-domain algorithms may 

require autofocus to correct those errors. In the case of BP algorithms, phase errors can be 

caused by inaccuracies in the navigation data or the DEM [23]. 

Frequency domain algorithms need an additional step for representing the image 

data in ground range geometry and another for geocoding. In contrast, neither of these steps is 

required in the BP algorithm, thanks to the image sample grid. The only inconvenience is that 

the BP algorithm calls for previous knowledge of the terrain topography, which can be partially 

overcome thanks to SRTM data. 
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3 FAST FACTORIZED BACK PROJECTION* 

SAR image processing requires efficient algorithms in terms of accuracy and 

processing time. Frequency-domain algorithms are fast but perform better when the flight path 

is linear and free of motion errors. The time-domain BP algorithm can process SAR data for 

any flight path with high focusing quality but at high computing costs. FFBP algorithms can 

significantly reduce the processing time while maintaining the BP algorithm’s accuracy. 

However, the increased sophistication makes it challenging to formulate an FFBP algorithm 

suitable for any flight path. As a result, many FFBP algorithms either assume a linear flight 

path to simplify calculations [30], [31], [33], [34] or are tailored for circular flight paths [35], 

[36].  

This chapter proposes an FFBP algorithm with two key original features. First, 

unlike other FFBP algorithms, it is suitable for any flight path geometry, thanks to a data 

mapping approach. The only assumption is that the radar constantly illuminates the imaged area 

or volume. Second, it employs a flexible tree structure that can easily handle 2D and 3D data. 

This tree structure is a modified version of a classical tree structure. 

To the best of the author’s knowledge, the proposed FFBP algorithm is the first one 

capable of processing nonlinear SAR data in full-3D. Full-3D processing means that the 

volumetric image is not sliced into several 2D layers to be processed separately. Another work 

[37] presented an FFBP algorithm that could process images in full-3D. However, it was 

designed for downward-looking sonar systems moving in quasi-linear paths. 

The proposed FFBP algorithm is much faster than the BP algorithm. It achieves 

speed-up factors of up to 21 for 3D and 13 for 2D images while obtaining low phase errors and 

high degrees of coherence. 

Section 3.1 explains the main strategies behind FFBP algorithms. Then, Section 3.2 

describes the proposed FFBP algorithm. Next, Section 3.3 presents a proof of concept using 

simulation results. Finally, Section 3.4 performs a phase error analysis using actual SAR data. 

 

*  This chapter comprises revised and expanded material from two publications by the author. 

Sections 3.2 and 3.3 are derived from [13] © 2020 IEEE. Sections 3.2, 3.3.4 and 3.4 are derived from [14] licensed 

under CC BY 4.0. New details were added as text, equations, figures, tables and even subsections. 

https://creativecommons.org/licenses/by/4.0/
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3.1 PROCESSING TIME REDUCTION 

As seen before, the BP algorithm can produce well-focused images for arbitrary 

flight paths but at high computing costs. Such limitation is because the BP algorithm integrates 

the information from all SAR pulses in one go for each pixel or voxel. Thus, if the synthetic 

aperture has 𝑃  pulses and the output image has 𝑃2  pixels or 𝑃3  voxels, the number of 

operations is 𝒪(𝑃3) for the 2D image and 𝒪(𝑃4) for the 3D image. Figure 3.1 illustrates this 

for 𝑃 = 8. 

 

(a) 

 

(b) 

Figure 3.1 – The BP algorithm: (a) integrating one pixel of a 2D image; (b) integrating one voxel of a 

3D image. 

There are two main strategies for reducing processing time commonly seen in the 

literature: the divide-and-conquer strategy, first proposed in 1996 by McCorkle and Rofheart 

[30]; and representing data in polar coordinates, first proposed in 1999 by Yegulalp [38]. In 

2003, Ulander et al. [31] combined both strategies to reduce further the processing time; they 

also provided a means of controlling the phase error. More recent strategies include, for 

instance: processing range data as a bulk [39]; applying spectrum compressing filters to reduce 

the Nyquist rate [33]. 

The divide-and-conquer strategy is at the core of most FFBP algorithms. It shall be 

explained in Subsection 3.1.1. Many FFBP algorithms operate in polar coordinates. However, 

some authors still prefer to work with cartesian coordinates. The advantages and disadvantages 

of using polar coordinates shall be presented in Subsection 3.1.2. Then, Subsection 3.1.3 briefly 

discusses the error analysis performed by Ulander et al. [31]. 
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3.1.1 Divide-and-Conquer 

Chapter 2 shows that each radar pulse has a poor resolution in azimuth and that high 

resolution can be achieved by integrating the synthetic aperture. McCorkle and Rofheart [30] 

proposed making this integration in recursive steps: at each recursion, subapertures are merged, 

becoming progressively longer, whereas subimages are split, becoming increasingly smaller. 

This process constitutes the divide-and-conquer strategy. It is illustrated in Figure 3.2 and 

Figure 3.3 for 2D and 3D images, respectively. 

 

(a) 

 

(b) 

 

(c) 

Figure 3.2 – The divide-and-conquer strategy for a 2D image highlighting the parent-child dynamic: (a) 

the first recursion; (b) the second recursion; (c) the final recursion. 
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(a) 

 

(b) 

 

(c) 

Figure 3.3 – The divide-and-conquer strategy for a 3D image highlighting the parent-child dynamic: (a) 

the first recursion; (b) the second recursion; (c) the final recursion. 
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McCorkle and Rofheart [30] also proposed organizing the data into a tree structure. 

First, the root node represents all the original data, i.e., the inputs to the algorithm. Then, since 

the data are processed recursively, they are organized in a parent-child dynamic. The parent 

node represents all the data from the previous recursion; it behaves like the input SAR data of 

the BP algorithm. The child node represents the data processed in the current recursion. At the 

end of each recursion, children become parents. Figure 3.2 and Figure 3.3 also highlight the 

parent-child dynamic. 

3.1.1.1 Range samples 

Figure 3.4 shows another feature of McCorkle and Rofheart’s algorithm [30]. At 

each recursion, range samples are taken along the lines connecting the centers of each child 

subaperture and each child subimage. Since the dimensions of the child subimage decrease with 

each recursion, the number of range samples also decreases. When the desired resolution is 

reached, only one range sample remains per subimage (e.g., the right side of Figure 3.2(c) and 

Figure 3.3(c)).  

 

Figure 3.4 – The range samples taken at a child subimage and the triangle formed by a range sample, a 

child subaperture, and a parent subaperture. The slant range �̃� is estimated using the law of cosines. 

Source: Modified from McCorkle and Rofheart [30] © 1996 SPIE. 

Drawing a parallel with the BP algorithm, the parent range samples behave like the 

range bin samples of the SAR data, whereas the child range samples behave like the pixels of 

the processed image. Moreover, computing the child data requires estimating the slant range �̃� 

between each child range sample and each parent subaperture. These two points and the child 

subaperture form a triangle (see Figure 3.4), for which it is easy to determine two sides and one 

angle. Therefore, the slant range �̃� is estimated using the law of cosines. 
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3.1.1.2 Number of operations 

The divide-and-conquer strategy reduces processing time by lowering the number 

of operations. Let 𝐿 be the number of subapertures that are combined at each recursion. If the 

synthetic aperture has 𝑃 = 𝐿𝑁  pulses and the image has 𝑃2 = 𝐿2𝑁  pixels, then the FFBP 

algorithm will require 𝑁 = log𝐿 𝑃 recursions. 

At the 𝑛𝑡ℎ recursion, the number of operations depends on:  

• The number of parent subapertures merged into each child subaperture (𝐿); 

• The number of child subapertures (𝑄𝑛
𝑠𝑎);  

• The number of child subimages (𝑄𝑛
𝑠𝑖);  

• The number of range samples taken at each child subimage (𝑀𝑛). 

The number of child subapertures reduces by 𝐿 at each recursion [30]: 

 
𝑄𝑛
𝑠𝑎 =

𝑃

𝐿𝑛
 (3.1) 

In contrast, the number of child subimages increases by 𝐿2 at each recursion [30]: 

 𝑄𝑛
𝑠𝑖 = 𝐿2𝑛 (3.2) 

The number of range samples is proportional to the diagonal of the child subimage, 

which decreases by L at each recursion. Therefore, the number of range samples is [30]: 

 
𝑀𝑛 ∝

𝑃

𝐿𝑛
 (3.3) 

Consequently, the total number of operations is of the order [30]: 

𝒪 (∑𝐿 × 𝑄𝑛
𝑠𝑎 × 𝑄𝑛

𝑠𝑖 ×𝑀𝑛 

𝑁

𝑛=1

) = 𝒪 (∑𝐿 ×
𝑃

𝐿𝑛
× 𝐿2𝑛 ×

𝑃

𝐿𝑛
 

𝑁

𝑛=1

) = 𝒪 (∑𝐿𝑃2 

𝑁

𝑛=1

)

= 𝒪(𝐿𝑃2𝑁) = 𝒪(𝐿𝑃2 log𝐿 𝑃) = 𝒪(𝑃2 log 𝑃) 

(3.4) 

Since these are asymptotical approximations, we can neglect the constant 𝐿 and the 

logarithm base. As a result, the divide-and-conquer strategy can provide a speed-up factor of 

𝑃 log𝑃⁄  for 2D images. 

For 3D images, 𝑄𝑛
𝑠𝑖 = 𝐿3𝑛. Thus, expression (3.4) becomes: 
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𝒪 (𝐿𝑃2∑𝐿𝑛 

𝑁

𝑛=1

) = 𝒪 (𝐿𝑃2
𝐿(𝐿𝑁 − 1)

𝐿 − 1
) = 𝒪 (

𝐿2

𝐿 − 1
𝑃2(𝑃 − 1)) = 𝒪(𝑃3) (3.5) 

Therefore, for 3D images, the theoretical speed-up factor is 𝑃 rather than 𝑃 log 𝑃⁄ . 

An important implication is that processing an image in full-3D would be faster than processing 

its 2D layers separately. 

3.1.2 Polar Grids 

Yegulalp [38] proposed dividing the synthetic aperture into subapertures only once, 

i.e., not recursively, and then processing each subaperture with the BP algorithm. The key to 

reducing processing time is to use a coarse image grid for each subaperture. Once all 

subapertures have been processed, the images are upsampled to a full resolution and finally 

combined. Moreover, Yegulalp proposed creating the image grids in local polar coordinates to 

reduce even further the processing time. The reason is that polar grids have far lower azimuth 

bandwidths than cartesian grids, thus allowing for a coarser sampling.  

Figure 3.5(a) shows the image from a small subaperture processed onto a cartesian 

grid. This image has a high resolution in range but a low resolution in azimuth. Also, it was 

sampled close to the Nyquist rate, as indicated by its 2D FFT in Figure 3.5(b). If the sampling 

were even coarser, aliasing would occur. 

 

(a) 

 

(b) 

Figure 3.5 – Image from a small subaperture processed onto a cartesian grid: (a) processed image and 

(b) its 2D FFT. Source: Yegulalp [38] © 1999 IEEE. 

In contrast, Figure 3.6(a) shows the same data as Figure 3.5(a), but it was processed 

onto a polar grid. The azimuth bandwidth is narrow since the targets appear as straight lines 

rather than arcs, as seen in Figure 3.6(b). A narrow bandwidth means the image is oversampled; 

thus, the sampling could be much coarser. 
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(a) 

 

(b) 

Figure 3.6 – Image from a small subaperture processed onto a polar grid: (a) processed image and (b) 

its 2D FFT. Source: Yegulalp [38] © 1999 IEEE. 

This strategy can also reduce the processing time by lowering the number of 

operations. For instance, if a 2D image has 𝑃2 pixels and each subaperture has 𝑙 pulses, the 

maximum speed-up factor will occur when 𝑙 = √𝑃. Also, if the total number of radar pulses is 

𝑃, the number of operations is 𝒪(𝑃2.5). 

A speed-up factor of √𝑃 is lower than 𝑃 log𝑃⁄ . Therefore, polar grids are often 

combined with the divide-and-conquer strategy to produce more efficient algorithms. However, 

this combination generates some issues. 

3.1.2.1 Combining strategies 

Ulander et al. [31] were the first to propose combining polar grids with the divide-

and-conquer strategy. They also coined the name Fast Factorized Back Projection (FFBP). At 

each recursion, as subapertures are merged, becoming progressively longer, the beams in the 

polar grid are split, becoming increasingly narrower. After the final recursion, the polar grid is 

interpolated onto a cartesian grid (see Figure 3.7). 

The level of sophistication increases when introducing polar grids to a recursive 

process. Each polar grid is defined on a local coordinate system centered at the subaperture. 

Thus, their origins change with each recursion, as seen in Figure 3.7. Therefore, Ulander et al. 

[31] assumed a linear flight path to simplify calculations. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.7 – Combining polar grids with the divide-and-conquer strategy: (a) the first recursion; (b) the 

second recursion; (c) the final recursion; (d) from polar to cartesian coordinates. 
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Ponce et al. [35] adapted the FFBP to process circular flight paths, approximating 

them by equilateral polygons. In [26], however, it is implied that this algorithm can only process 

2D images. In contrast, Marston et al. [37] successfully processed 3D images by defining the 

image grids in spherical coordinates. However, not only did they assume linear paths, but they 

also simplified calculations by making each spherical grid point downwards. Unlike what is 

indicated in Figure 3.7, the axis of each spherical grid did not point to the image center. The 

reason is that their algorithm was proposed for a downward-looking sonar system. 

3.1.2.2 Issues 

Using polar grids may be cumbersome [39]. Each polar grid has a different origin, 

so merging them requires interpolation. The accumulated interpolation errors may result in a 

loss of accuracy of the final image [33], [34], [36]. In order to mitigate this issue, high-order 

interpolation kernels could be used, but that could lead to a loss of efficiency. Therefore, other 

solutions have been proposed in the literature. 

For instance, Dong et al. [33] apply spectrum compressing filters to reduce the 

Nyquist rate required for working with cartesian grids. As a result, their algorithm is faster and 

more accurate than an FFBP using polar grids. However, it only works for quasi-linear flight 

paths. On the other hand, Sun et al. [34] use a global polar coordinate system centered at the 

final synthetic aperture. Because of that, their algorithm also improves accuracy while reducing 

processing time. Nevertheless, it still assumes a linear flight path to simplify calculations. 

3.1.3 Phase Error 

According to McCorkle and Rofheart [30], their algorithm reduced computing costs 

at the expense of processing errors. However, these errors were controllable and could be 

balanced against speed in a direct trade-off. 

Later, Ulander et al. [31] provided a more thorough error analysis. By assuming a 

linear flight path, they found that the range error (Δ�̃�) is bounded by [31]: 

 

|Δ�̃�| ≤ {

𝛿𝑘∆𝑐

4�̃�
, 𝛿𝑘 ≤ 2�̃�

𝛿𝑘∆𝑐
2

, 𝛿𝑘 > 2�̃�

 (3.6) 

where �̃� is the estimated slant range (see Figure 3.4), 𝛿𝑘 is the length of the child subaperture, 

and ∆𝑐 is the width of the child subimage. In the case of deviations from a linear flight path, the 

range error would increase, and a different expression would be required. 
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The maximum range error in each recursion is given by [31]: 

 
|Δ�̃�| ≤

𝑁𝑝𝛿𝑝𝛿𝑘
0

4𝑅𝑚𝑖𝑛
 (3.7) 

where 𝛿𝑝 is the pixel spacing, 𝑁𝑝 is the number of pixels in the along-track direction, 𝛿𝑘
0 is the 

aperture spacing, and 𝑅𝑚𝑖𝑛 is the closest range from the radar to the image.  

Finally, the phase error can be obtained by multiplying the range error by 4𝜋 𝜆⁄ . 

Hence, Ulander et al. [31] proposed the following method to keep the phase error below a given 

threshold: 

• Calculate the maximum subimage size for the first recursion step using 

expression (3.7). Then, divide the image into blocks to be processed separately; 

• Compensate the increase in subaperture length with an equivalent decrease in 

subimage width to keep the range error constant (see expression (3.6)). 
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3.2 THE ALGORITHM 

The proposed FFBP algorithm employs the divide-and-conquer strategy, though it 

operates in cartesian coordinates. From Section 3.1, we know that cartesian grids make FFBP 

algorithms slower than polar or spherical grids. However, they are much easier to implement, 

allowing the design of an FFBP algorithm that processes images in full-3D for any flight path. 

The FFBP algorithm is parallelizable, so the image is split into blocks to be 

processed in parallel (see Figure 3.8(a)). Furthermore, the data are processed recursively in a 

parent-child dynamic (see Figure 3.8(b)). Moreover, the proposed FFBP algorithm is 

vectorized. So, in the following subsections, matrix indices shall be written within parentheses 

to distinguish them from for-loop indices, written as subscripts. Also, variables representing 

positions in the (𝑥, 𝑦, 𝑧) space shall be written in bold letters. 

 

(a) 

 

(b) 

Figure 3.8 – Flowchart of the Fast Factorized Back Projection (FFBP) algorithm: (a) an overview, 

highlighting the parallel processing; (b) inside the FFBP block, showing the recursive steps with a 

parent-child dynamic. Source: Góes et al., 2021 [14]. 
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3.2.1 Defining Child Subapertures 

The proposed FFBP algorithm employs an original method for defining child 

subapertures. This method is based on data mapping and does not depend on the flight path. 

Instead, it depends on a few observations: the flight path follows a continuous line, no matter 

how complex its geometry; the radar positions over the flight path are usually sampled at regular 

intervals; the distance between consecutive radar positions is nearly regular if the radar speed 

is constant. 

Figure 3.9 describes the proposed method for defining child subapertures. Blue 

squares represent the actual radar root positions (𝒓0), yellow circles represent the midpoints 

between them (�̂�0), and green diamonds represent the child subaperture centers at the 𝑛𝑡ℎ node 

(𝒓𝑛). This method has two particular cases and one general case, depending on the number of 

subapertures combined at each recursion (𝐿). 

 

(a) 

 

(b) 

Figure 3.9 – Defining child subapertures for (a) 𝐿 = 2 and (b) 𝐿 = 3. The blue squares, yellow circles, 

and green diamonds represent the radar root positions, the midpoints between them, and the child 

subaperture centers, respectively. Source: Góes et al. [13] © 2020 IEEE. 
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3.2.1.1 Case 1: 𝐿 is an even number  

When 𝐿 is even, 𝒓𝑛 is always a subset of �̂�𝟎 (Figure 3.9(a)). Hence: 

 
𝒓𝑛(𝑘) = �̂�0 (

(2𝑘 + 1)𝐿𝑛

2
− 1) (3.8) 

where 𝑘 = 0, 1, … , 𝐾𝑛 − 1, with 𝐾𝑛 = 𝐾0/𝐿
𝑛 being the number of child subapertures at the 𝑛𝑡ℎ 

node, and with 𝐾0 being the number of radar root positions. In this way, the calculation of mean 

positions is only performed in the root node when deviation errors are the least significant. 

3.2.1.2 Case 2: 𝐿 is an odd number  

When 𝐿 is odd, 𝒓𝑛 is always a subset of 𝒓0 (Figure 3.9(b)). In addition, if 𝒓𝑛−1 is 

the set of parent subaperture centers from the previous node, then 𝒓𝑛 is also a subset of 𝒓𝑛−1. 

Thus, either of the following expressions can be used: 

 
𝒓𝑛(𝑘) = 𝒓0 (

(2𝑘 + 1)𝐿𝑛 − 1

2
) (3.9) 

 
𝒓𝑛(𝑘) = 𝒓𝑛−1 (

(2𝑘 + 1)𝐿 − 1

2
) 

(3.10) 

where 𝑘 = 0, 1, … , 𝐾𝑛 − 1. 

3.2.1.3 General case 

 In Figure 3.9, 𝛀0 = 𝒓0 ∪ �̂�0. The set 𝛀0 can be also defined as: 

 𝛀0(𝑖) = 𝒓0(
𝑖
2⁄ ) (3.11) 

where 𝑖 = 0, 1, … , 2(𝐾0 − 1). Therefore, for any value of 𝐿, 𝒓𝑛 is always a subset of 𝛀0: 

 𝒓𝑛(𝑘) = 𝛀0((2𝑘 + 1)𝐿
𝑛 − 1) (3.12) 

where 𝑘 = 0, 1, … , 𝐾𝑛 − 1. Note that for all 𝑘, if 𝐿 is odd, then the argument on the right is 

always even, and vice versa. 

3.2.2 Generating Child Subimages 

Generating child subimages requires a flexible tree structure. The first reason is that 

the FFBP algorithm must provide both 2D and 3D images. Though this work focuses on SAR 



67 

 

tomography, there are many applications for 2D SAR. The second reason is that the FFBP 

algorithm must deal with non-uniform resolutions. For instance, Spiral SAR has better 

horizontal (𝑥, 𝑦) than vertical (𝑧) resolution.  

The FFBP algorithm uses an original tree structure called the modified Morton 

curve. It is a space-filling tree structure that arranges multi-dimensional data into a 1D curve 

that follows a Z pattern, much like the original Morton order curve [40], [41]. The modification, 

however, makes it more flexible, allowing for different splitting schemes beyond splitting in 

two in each direction at every recursion. For example, Figure 3.10 shows the first and the second 

recursions of the modified Morton order curve with a (3 × 3 × 2) split. 

 
 

 

(a) (b) (c) 

 
 

 

(d) (e) (f) 

Figure 3.10 – The modified Morton order curve with a (3 × 3 × 2) split: (a,d) perspective, (b,e) front, 

and (c,f) top views for the (a,b,c) first and (d,e,f) second recursions. Source: Góes et al. [13] © 2020 

IEEE. 

The splitting scheme is created by a function executed in the preparation step 

(Figure 3.8(a)), referred to as the splitting function. The splitting scheme is a table with as many 

lines as the number of recursion steps and whose columns contain the number of divisions in 

the 𝑥, 𝑦, and 𝑧 directions (𝐷𝑥, 𝐷𝑦, and 𝐷𝑧). These quantities are obtained from the dimension 
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and resolution of the output image, the first split into image blocks, and the number of 

subapertures combined at each recursion 𝐿. When working with 2D data, i.e., images with zero 

thickness, the splitting function makes 𝐷𝑧 = 1 for all recursions. 

After retrieving the splitting scheme for the current recursion, the algorithm finds 

all possible values of 𝑥, 𝑦, and 𝑧 coordinates for the child subimage centers in a local coordinate 

system with the origin at the parent subimage center. Now, let us define 𝐴𝑥𝑛, 𝐴𝑦𝑛 and 𝐴𝑧𝑛 as 

the dimensions of the child subimage at the 𝑛𝑡ℎ node, then: 

 
𝑥(𝑑𝑥) = 𝐴𝑥𝑛 (𝑑𝑥 −

(𝐷𝑥 − 1)

2
) , 𝐴𝑥𝑛 =

𝐴𝑥𝑛−1
𝐷𝑥

 (3.13) 

 
𝑦(𝑑𝑦) = 𝐴𝑦𝑛 (𝑑𝑦 −

(𝐷𝑦 − 1)

2
) , 𝐴𝑦𝑛 =

𝐴𝑦𝑛−1
𝐷𝑦

 (3.14) 

 
𝑧(𝑑𝑧) = 𝐴𝑧𝑛 (𝑑𝑧 −

(𝐷𝑧 − 1)

2
) , 𝐴𝑧𝑛 =

𝐴𝑧𝑛−1
𝐷𝑧

 (3.15) 

where 𝑑𝑥 = 0, 1, … , 𝐷𝑥 − 1, 𝑑𝑦 = 0, 1, … , 𝐷𝑦 − 1 and 𝑑𝑧 = 0, 1, … , 𝐷𝑧 − 1. 

Next, the possible values of 𝑥, 𝑦, and 𝑧 are arranged in a pattern similar to a truth table in digital 

systems theory to construct a Z-shaped curve of coordinates �̃�, �̃�, and �̃� (see  

 

Table 3.1). Then, the position of each child subimage center 𝒉𝑛(𝑐) is given by: 

 𝒉𝑛(𝑐) = [�̃�(𝑑) �̃�(𝑑) �̃�(𝑑)] + 𝒉𝑛−1(𝑝) (3.16) 

 𝑐 = 𝑝𝐷𝑛 + 𝑑 (3.17) 

where 𝒉𝑛−1(𝑝)  is the parent subimage center, 𝑑 = 0, 1, … , 𝐷𝑛 − 1 , 𝐷𝑛 = 𝐷𝑥𝐷𝑦𝐷𝑧  is the 

number of children generated by each parent, 𝑐 refers to a child subimage, and 𝑝 refers to a 

parent subimage. 

The positions 𝒉𝑛−1(𝑝)  and 𝒉𝑛(𝑐)  do not contain any topographic information. 

Thus, the terrain height 𝐻𝐷𝐸𝑀 needs to be interpolated from a DEM. Finally, the actual position 

of the child subimage �̃�𝑛,𝑐 is: 

 �̃�𝑛,𝑐 = 𝒉𝑛(𝑐) + [0 0 𝐻𝐷𝐸𝑀(𝒉𝑛(𝑐))] (3.18) 
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Table 3.1 – Order of arrangement of the 𝑥, 𝑦, and 𝑧 coordinates of the child subimage centers in a 

modified Morton order curve with a (3 × 3 × 2) split. Source: Góes et al., 2021 [14]. 

𝒅 �̃�(𝒅) �̃�(𝒅) �̃�(𝒅)  𝒅 �̃�(𝒅) �̃�(𝒅) �̃�(𝒅) 

0 𝑥(0) 𝑦(0) 𝑧(0)  9 𝑥(0) 𝑦(0) 𝑧(1) 

1 𝑥(1) 𝑦(0) 𝑧(0)  10 𝑥(1) 𝑦(0) 𝑧(1) 

2 𝑥(2) 𝑦(0) 𝑧(0)  11 𝑥(2) 𝑦(0) 𝑧(1) 

3 𝑥(0) 𝑦(1) 𝑧(0)  12 𝑥(0) 𝑦(1) 𝑧(1) 

4 𝑥(1) 𝑦(1) 𝑧(0)  13 𝑥(1) 𝑦(1) 𝑧(1) 

5 𝑥(2) 𝑦(1) 𝑧(0)  14 𝑥(2) 𝑦(1) 𝑧(1) 

6 𝑥(0) 𝑦(2) 𝑧(0)  15 𝑥(0) 𝑦(2) 𝑧(1) 

7 𝑥(1) 𝑦(2) 𝑧(0)  16 𝑥(1) 𝑦(2) 𝑧(1) 

8 𝑥(2) 𝑦(2) 𝑧(0)  17 𝑥(2) 𝑦(2) 𝑧(1) 

 

3.2.3 Computing Child SAR Data 

The child SAR data are both an output of the current recursion and an input for the 

next. For this reason, multiple range samples are required until the second to last recursion. 

Also, computing each child SAR datum requires an additional slant range distance, calculated 

from the range sample to the corresponding child subaperture. Nevertheless, of all steps in 

Figure 3.8(b), computing child SAR data is the one that most closely resembles the BP 

algorithm. Its process is illustrated in Figure 3.11. 

 

Figure 3.11 – Flowchart of the process for computing child SAR data. Source: Góes et al., 2021 [14]. 
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3.2.3.1 Range sampling and calculation 

Range samples are collected along a line defined by the center of the child 

subaperture 𝒓𝑛(𝑘) and the center of the child subimage �̃�𝑛,𝑐. A sample is always taken at �̃�𝑛,𝑐. 

Except for the last recursion, other samples are taken along the sphere’s diameter that 

circumscribes the child subimage, as depicted in Figure 3.12. Also, the range sampling interval 

is the same for all recursions. It is calculated in the preparation step (Figure 3.8(a)) and is equal 

to the resulting range bin spacing after upsampling the root SAR data. 

 

Figure 3.12 – The range samples at a child subimage and the geometry for calculating distances between 

a range sample, a child subaperture, and a parent subaperture. Source: Góes et al., 2021 [14]. 

Figure 3.12 also shows a triangle composed of the following vertices [30]: 

• C: the child subaperture center 𝒓𝑛(𝑘); 

• P: the parent subaperture center 𝒓𝑛−1(𝑙); 

• S: the 𝑚𝑡ℎ data sample within a child subimage centered at �̃�𝑛,𝑐.  
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The side 𝐶𝑃̅̅̅̅𝑛(𝑘, 𝑙) is determined by analytic geometry:  

 𝐶𝑃̅̅̅̅𝑛(𝑘, 𝑙) = ‖𝒓𝑛−1(𝑙) − 𝒓𝑛(𝑘)‖ (3.19) 

where 𝑙 ∈ 𝛬𝑛,𝑘 = {𝑘𝐿 + 𝑏|𝑏 = 0, 1, … , 𝐿 − 1} is the set of parent subapertures associated with 

the 𝑘𝑡ℎ child subaperture. 

Then, the side 𝐶𝑆̅̅̅̅ 𝑛,𝑐(𝑘,𝑚) is also determined by analytic geometry. Let 𝑀𝑛 be the 

number of range samples at the 𝑛𝑡ℎ node, thus:  

 
𝐶𝑆̅̅̅̅ 𝑛,𝑐(𝑘,𝑚) = ‖�̃�𝑛,𝑐 − 𝒓𝑛(𝑘)‖ + δ𝑠𝑟 (𝑚 −

(𝑀𝑛 − 1)

2
) (3.20) 

where 𝑚 = 0, 1, … ,𝑀𝑛 − 1, δ𝑠𝑟 is the range sampling interval. 

Next, the side 𝑃𝑆̅̅̅̅ 𝑛,𝑐(𝑘, 𝑙,𝑚) is calculated by the law of cosines: 

 𝑃𝑆̅̅̅̅ 𝑛,𝑐(𝑘, 𝑙,𝑚)

= √𝐶𝑃̅̅̅̅𝑛(𝑘, 𝑙)2 + 𝐶𝑆̅̅̅̅ 𝑛,𝑐(𝑘,𝑚)2 − 2𝐶𝑃̅̅̅̅𝑛(𝑘, 𝑙)𝐶𝑆̅̅̅̅ 𝑛,𝑐(𝑘,𝑚) cos(𝜃𝑛,𝑐(𝑘, 𝑙)) 
(3.21) 

 
cos(𝜃𝑛,𝑐(𝑘, 𝑙)) =

𝒓𝑛−1(𝑙) − 𝒓𝑛(𝑘)

𝐶𝑃̅̅̅̅𝑛(𝑘, 𝑙)
∙
�̃�𝑛,𝑐 − 𝒓𝑛(𝑘)

‖�̃�𝑛,𝑐 − 𝒓𝑛(𝑘)‖
 (3.22) 

3.2.3.2 Data interpolation 

From the distance 𝑃𝑆̅̅̅̅ 𝑛,𝑐(𝑘, 𝑙,𝑚), the FFBP algorithm can retrieve the parent data 

𝑠𝑛−1(𝑙, 𝜈𝑛,c(𝑘, 𝑙,𝑚), 𝑝), associated with the 𝑚𝑡ℎ data sample. The fractional index 𝜈𝑛,c(𝑘,𝑚, 𝑙) 

is given by [30]: 

 
𝜈𝑛,c(𝑘, 𝑙,𝑚) =

𝑃𝑆̅̅̅̅ 𝑛,𝑐(𝑘, 𝑙,𝑚) − 𝐶𝑆̅̅̅̅ 𝑛−1,𝑝(𝑙, 0)

δ𝑠𝑟
 (3.23) 

where 𝐶𝑆̅̅̅̅ 𝑛−1,𝑝(𝑙, 0) is the slant range from the parent subaperture to the first sample in the 

parent data. Then, the value 𝑠𝑛−1(𝑙, 𝜈𝑛,c(𝑘, 𝑙,𝑚), 𝑝) is determined via linear interpolation. 

3.2.3.3 Phase compensation  

To ensure good image quality, the FFBP uses the phase compensation term [39]: 
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𝜑𝑛,𝑐(𝑘, 𝑙,𝑚) =

4𝜋

𝜆
[𝑃𝑆̅̅̅̅ 𝑛,𝑐(𝑘, 𝑙, 𝑚) − 𝐶𝑆̅̅̅̅ 𝑛,𝑐(𝑘,𝑚)] (3.24) 

where 𝜆 is the radar wavelength. 

3.2.3.4 Data accumulation 

Finally, the child datum 𝑠𝑛(𝑘,𝑚, 𝑐) is given by the coherent sum [30]: 

 𝑠𝑛(𝑘,𝑚, 𝑐) = ∑ 𝑠𝑛−1(𝑙, 𝜈𝑛,c(𝑘, 𝑙,𝑚), 𝑝)

𝑙∈𝛬𝑛,𝑘

𝑒𝑗𝜑𝑛,𝑐(𝑘,𝑙,𝑚) (3.25) 

Each of the indices 𝑘, 𝑚, and 𝑙 corresponds to a different matrix dimension. Note 

that none of the variables denoting position (indicated in bold letters) depend on the data sample 

index 𝑚, so there is no need for a fourth matrix dimension to account for the (𝑥, 𝑦, 𝑧) triplets. 

3.2.4 Coherent Sum of Remaining Data 

After reaching the final recursion step (𝑛 = 𝑁), the remaining subapertures are 

coherently combined. This process has two main differences compared to computing the child 

SAR data: there is only one set of subapertures to take into account, 𝒓𝑁(𝑘); there is only one 

sample at each child subimage (𝑀𝑁 = 1). Therefore, the resulting SAR data are: 

 𝑠(𝑐) =∑𝑠𝑁(𝑘, 0, 𝑐)𝑒
𝑗�̃�𝑐(𝑘)

𝑘

 (3.26) 

 
�̃�𝑐(𝑘) =

4𝜋

𝜆
‖�̃�𝑁,𝑐 − 𝒓𝑁(𝑘)‖ (3.27) 

3.2.5 Data Mapping from 1D to 2D/3D 

Finally, the resulting serial data 𝑠(𝑐) are mapped into a data matrix. To retrieve the 

3D matrix subscripts (𝑢, 𝑣, 𝑤) from the index 𝑐 of the modified Morton order curve, the FFBP 

algorithm uses recurrent sequences. These sequences are also built in a parent-child dynamic to 

allow flexible splitting schemes. Let 𝑞𝑥𝑛, 𝑞𝑦𝑛, and 𝑞𝑧𝑛 be the recurrent sequences of the 𝑛𝑡ℎ 

recursion, then: 
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 𝑞𝑥0(0) = 𝑞𝑦0
(0) = 𝑞𝑧0(0) = 0 (3.28) 

 𝑞𝑥𝑛(𝑢𝐷𝑥 + 𝑑𝑥) = 𝐷𝑛𝑞𝑥𝑛−1(𝑢) + 𝑑𝑥 (3.29) 

 𝑞𝑦𝑛(𝑣𝐷𝑦 + 𝑑𝑦) = 𝐷𝑛𝑞𝑦𝑛−1
(𝑣) + 𝑑𝑦𝐷𝑥 (3.30) 

 𝑞𝑧𝑛(𝑤𝐷𝑧 + 𝑑𝑧) = 𝐷𝑛𝑞𝑧𝑛−1(𝑤) + 𝑑𝑧𝐷𝑥𝐷𝑦 (3.31) 

Recall that 𝑑𝑥 = 0, 1, … , 𝐷𝑥 − 1, with 𝐷𝑥 being the number of divisions in the 𝑥 direction, and 

the same for 𝑑𝑦, 𝑑𝑧, 𝐷𝑦 and 𝐷𝑧. 

Then, the mapping 𝑐 → (𝑢, 𝑣, 𝑤) follows the relationship: 

 𝑐 = 𝑞𝑥𝑁(𝑢) + 𝑞𝑦𝑁
(𝑣) + 𝑞𝑧𝑁(𝑤) (3.32) 

Expression (3.32) maps the modified Morton order curve into a 2D/3D matrix.  

Figure 3.13 demonstrates how equations (3.28-3.32) correspond to the curve shown 

in Figure 3.10(d,e,f). The sequences 𝑞𝑥  and 𝑞𝑦  are indicated on the axes, and each panel 

corresponds to a different element of 𝑞𝑧. The child subimage index starts with 𝑐 = 0 at the 

bottom left corner of Figure 3.13(a), then moves back and forth between the layers 𝑞𝑧 = 0 and 

𝑞𝑧 = 9 until reaching 𝑐 = 161 at the top right corner of Figure 3.13(b). Then, it continues at the 

bottom left corner of Figure 3.13(c), going back and forth between 𝑞𝑧 = 162 and 𝑞𝑧 = 171 up 

until the end, at the top right corner of Figure 3.13(d). 

3.2.6 FFBP Algorithm Improvements 

There were different versions of the FFBP algorithm throughout this work. Section 

3.3 presents simulation results obtained with a preliminary version of the FFBP algorithm. 

Although fully functional, it did not take advantage of the inherently parallel nature of FFBP 

algorithms. Also, it did not employ vectorized variables, making it inefficient when operating 

with actual SAR data.  

Therefore, vectorized variables were introduced in the second version of the FFBP 

algorithm to improve the processing time. At first, there were six concatenated for-loops, one 

for each of the indices in Subsections 3.2.1-3.2.5 (𝑛, 𝑝, 𝑐, 𝑘, 𝑙 and 𝑚). Afterward, there were 

only two (𝑛 and 𝑐). This change made the processing time drop more than 20 times, from 11 h 

30.5 min to 4.5 min. Both cases used the same data and setup: a 2D image, processed with 𝐿 = 

5 and a first split of (12 × 6 × 1). 
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(a) 

 

(b) 

 

(a) 

 

(b) 

Figure 3.13 – Child subimage indices 𝑐 at their positions over the modified Morton order curve with (a) 

𝑞𝑧 = 0, (b) 𝑞𝑧 = 9, (c) 𝑞𝑧 = 162, and (d) 𝑞𝑧 = 171. The recurrent sequences 𝑞𝑥 and 𝑞𝑦 are displayed 

on the axes. Source: Góes et al., 2021 [14]. 

However, when processing 3D images, that version still proved inefficient in 

memory consumption. So, the division into image blocks and parallel computing were 

introduced to mitigate this issue. Moreover, the splitting function was introduced in this more 

consolidated version of the FFBP algorithm. Prior to that, the splitting scheme was done 

manually. Section 3.4 presents experimental results obtained with the latest version of the FFBP 

algorithm, which is openly available at [15].  
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3.3 PROOF OF CONCEPT 

This section presents some simulation results carried out as proof of concept. The 

aim is to show that the FFBP algorithm can process images in full-3D for nonlinear flight paths. 

All results were obtained with the preliminary version of the FFBP algorithm, which employed 

neither parallel computing functions nor vectorized variables. For comparison purposes, the BP 

algorithm was written with these same conditions. All algorithms presented in this section were 

written in MATLAB R2018a, and all simulations were executed on an Intel(R) Core(TM) i7-

7700 CPU (3.60 GHz) with 64 GB RAM. 

3.3.1 Point Spread Function 

The first simulated scenario consisted of a drone-borne SAR system operating at 

the P-band and performing a spiral flight path with constant radius and speed (see Figure 3.14). 

Table 3.2 shows the simulated radar acquisition parameters. There were nine isotropic point 

targets in the imaged volume: one at the origin of a cartesian coordinate system and the others 

at the vertices of a cube of 8 m, centered at the origin.  

 

Figure 3.14 – Simulated spiral flight path. Source: Góes et al. [13] © 2020 IEEE. 

The FFBP algorithm was set up with six recursions. The subapertures were 

combined in groups of 𝐿 = 3, and the range sampling was 0.125 m. There were 174,960 

(36  240) radar root positions, and the imaged volume was 12.15  2.15  14.4 m3. The first 

recursion did not split the root subimage, i.e., a (1  1  1) split; the following four recursions 
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performed (3  3  2) splits (see Figure 3.10); the last recursion split each subimage into 

(3  3  3) smaller ones. Finally, the remaining 240 data blocks were coherently combined. 

Table 3.2 – Simulated radar acquisition parameters. Source: Góes et al. [13] © 2020 IEEE. 

Parameters Values Units 

Radar 

Wavelength 0.75 m 

Bandwidth 150 MHz 

Range resolution 1 m 

Pulse repetition frequency 200 Hz 

Flight path 

Radius 180 m 

Height at the top 120 m 

Height at the base 80 m 

Number of turns 5 - 

Drone speed 6.5 m/s 

 

The 3D output image had 243  243   voxels of dimension 5  5  30 cm3. 

Figure 3.15(a) shows the distribution of all nine targets after processing with the FFBP 

algorithm. Figure 3.15(b) shows a closer caption of the central target. It depicts a -3 dB 

isosurface in opaque red and -13 dB isosurfaces in translucent yellow. 

  

(a) (b) 

Figure 3.15 – Output image processed with the FFBP algorithm: (a) -3 dB isosurfaces for the entire 

imaged volume; (b) a -3 dB isosurface in opaque red, and -13 dB isosurfaces in translucent yellow for 

the target at the origin. Source: Góes et al. [13] © 2020 IEEE. 

Figure 3.16 displays the point spread function for the FFBP and the BP algorithms. 

Note that the plot curves are nearly the same for both algorithms. The (𝑥, 𝑦) plane had a refined 
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resolution of 16 cm but a poor PSLR of 9.1 dB. In contrast, the 𝑧 direction presented a coarser 

resolution of 1.53 m with a better PSLR of 28.7 dB. Furthermore, the mean phase error was 

~10-4 rad, and the standard deviation was 0.12 rad (7°), more than three times lower than the 

recommended threshold of /8 rad (22.5°) [31]. The mean and the standard deviation of the 

magnitude error were, respectively, 0.1 dB and 0.9 dB. Finally, the degree of coherence between 

the FFBP and the BP images was 0.9993. Table 3.3 summarizes these results. 

   

(a) (b) (c) 

Figure 3.16 – Comparison between the FFBP and the BP algorithms. Point spread function: normalized 

magnitude in dB against (a) 𝑥, (b) 𝑦, and (c) 𝑧. Source: Góes et al. [13] © 2020 IEEE. 

Table 3.3 – Summary of results for the point spread function. Source: Góes et al. [13] © 2020 IEEE. 

Parameters Values Units 

Image quality 

3 dB resolution in the (x,y) plane 16 cm 

3 dB resolution in the z-direction 1.53 m 

PSLR in the (x,y) plane 9.1 dB 

PSLR in the z-direction 28.7 dB 

Image 

comparison 

Mean phase error ~10-4 rad 

Standard deviation of the phase error 0.12 rad 

Mean magnitude error 0.1 dB 

Standard deviation of the magnitude error 0.9 dB 

Degree of coherence 0.9993 - 

Processing time 
FFBP 3.45 h 

BP 39.09 h 

 

The FFBP algorithm took 3.45 hours (~0.14 days) to process, while the BP 

algorithm took 39.09 hours (~1.6 days). This difference represents a 91.1 % reduction in 

processing time (or an 11.3 speed-up factor). This result concerns the FFBP using the general 
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case for defining child subapertures (3.12), which was 5.5 minutes faster than using the 

particular case (3.10), and 19.1 minutes faster than calculating weighted mean positions [30]: 

 
𝒓𝑛(𝑘) =

1

𝐿
∑ 𝒓𝑛−1(𝑙)

𝑙∈𝛬𝑛,𝑘

 
(3.33) 

where 𝛬𝑛,𝑘  is the set of parent subapertures that combine to create the 𝑘𝑡ℎ child subaperture. 

The low phase error was due, in part, to the choice of the subimages dimensions, as 

the analysis in [31] suggests (see Subsection 3.1.3). However, without (3.24), the results would 

be far worse. The standard deviation of the phase error would be 1.63 rad (93°), yielding a 

degree of coherence of 0.29. Indeed, Figure 3.17 shows the plane sections at 𝑧 = 0 m and 𝑧 = 

4 m for the BP and the FFBP output images, processed with and without phase compensation. 

Note that, without phase compensation, only the target at the center is processed correctly. The 

errors increase as we move away from the origin, and the targets at 𝑧 = 4 m are not well 

focused. 

   

(a).... (b) .... (c) .... 

   

(d) .... (e) .... (f) .... 

Figure 3.17 – Plane sections at (a,b,c) 𝑧 = 0 m and (d,e,f) 𝑧 = 4 m for the output images processed 

with (a,d) the BP, (b,e) the FFBP and (c,f) the FFBP without phase compensation. Normalized 

magnitudes in dB. 
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3.3.2 Random Phase Error 

The second simulated scenario also used the spiral flight path depicted in Figure 

3.14 with the radar acquisition parameters of Table 3.2. However, a random phase error was 

added to the simulated radar data to represent motion data inaccuracies. The total relative 

position error of the drone-borne SAR system was measured in [12] and had a standard 

deviation of 7.4 mm, corresponding to a phase error standard deviation of 0.12 rad (7°) at the 

0.75 m wavelength. Thus, the simulated radar data was perturbed by a random phase error. This 

error had a normal distribution with zero mean and the standard deviation above. 

Real radar cross-section data can be modeled as a cloud of isotropic point targets 

[42]. For that reason, a random distribution of point targets was adopted for this scenario. The 

initial target grid had 81  81   points with 0.15 m  0.15 m  1.5 m spacing. Each position 

corresponded to a Bernoulli random variable with a 0.001 probability of being a point target. 

The resulting distribution had 85 targets in total. It is illustrated in Figure 3.18(a,b,c). Figure 

3.18(d,e,f) shows the FFBP output image, depicting -6dB isosurfaces. 

   

..(a) .. (b) .. (c) 

   

.. (d) .. (e) .. (f) 

Figure 3.18 – Comparison between input and output target distributions: (a,d) perspective, (b,e) front 

and (c,f) top views for (a,b,c) the input point targets and (d,e,f) -6 dB isosurfaces of the FFBP output 

image. Source: Góes et al. [13] © 2020 IEEE. 
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Figure 3.19 shows a plane section of the FFBP and the BP output images. The two 

figures were nearly identical, thus suggesting that both algorithms were equally affected by the 

random phase error added to the simulated radar data. The degree of coherence between the 

two output images was 0.9992. The phase error had a ~10-4 rad mean and a 0.10 rad (6°) 

standard deviation. The mean magnitude error was 0.1 dB, and the standard deviation was 0.8 

dB. The processing time was 3.66 hours (~0.15 days) for the FFBP and 39.71 hours (~1.7 days) 

for the BP, corresponding to a 90.8 % reduction of processing time (a 10.8 speed-up factor). A 

summary is provided in Table 3.4. 

  

(a)....... (b) ...... 

Figure 3.19 – Plane section at 𝑧 = 0 m for (a) the BP and (b) the FFBP output images. Normalized 

magnitudes in dB. Source: Góes et al. [13] © 2020 IEEE. 

Table 3.4 – Summary of results with added random phase error. Source: Góes et al. [13] © 2020 IEEE. 

Parameters Values Units 

Image 

comparison 

Mean phase error ~10-4 rad 

Standard deviation of the phase error 0.10 rad 

Mean magnitude error 0.1 dB 

Standard deviation of the magnitude error 0.8 dB 

Degree of coherence 0.9992 - 

Processing time 
FFBP 3.66 h 

BP 39.71 h 
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3.3.3 Random Flight Path 

The third simulated scenario used a random spiral flight path, whose coordinates 

were defined by stochastic processes (see Figure 3.20). The distance was fixed from one step 

to the next, ∆𝑟 = 0.25 m, but the direction was random. The change in elevation angle was a 

uniform random variable, ∆𝜀 ~ U(-π/2, π/2). The change in azimuth angle was a function of the 

current position in azimuth ( 𝛼(𝑖) ) and a uniform random variable centered at π/2,  

∆𝛼 ~ U(-π/8, 9π/8). Thus: 

 𝑥(0) = 180 𝑚, 𝑦(0) = 0 𝑚, 𝑧(0) = 100 𝑚 (3.34) 

 𝑥(𝑖 + 1) = 𝑥(𝑖) + ∆𝑟 cos(∆𝜀) cos(𝛼(𝑖) + ∆𝛼) (3.35) 

 𝑦(𝑖 + 1) = 𝑦(𝑖) + ∆𝑟 cos(∆𝜀) sin(𝛼(𝑖) + ∆𝛼) (3.36) 

 𝑧(𝑖 + 1) = 𝑧(𝑖) + ∆𝑟 sin(∆𝜀) (3.37) 

 
𝛼(𝑖) = tan−1 (

𝑦(𝑖)

𝑥(𝑖)
) 

(3.38) 

The root node had 109,350 (36  150) radar positions, so only 150 blocks remained 

at the last step of the FFBP algorithm to be coherently combined. In all other aspects, the setup 

was the same as in Subsections 3.3.1 and 3.3.2. 

 

 

(b) 

 

(a) (c) 

Figure 3.20 – Random spiral flight path: (a) top, (b) perspective, and (c) front views. 
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This scenario also adopted a random distribution of isotropic point targets. There 

were 100 targets in total, and their positions were given by a multivariate normal distribution, 

with zero mean and covariance matrix: 

 
𝜎𝑥𝑦𝑧 = [

4 2 1
2 4 1
1 1 2

] (3.39) 

Figure 3.21 shows the input distribution of point targets as black dots. Figure 3.21 also shows 

the output image, processed with the FFBP algorithm, displaying -10 dB isosurfaces in 

translucent orange.  

 
 

(a) (b) 

  

(c) (d) 

Figure 3.21 – Comparison between target distributions: the black dots are the input point targets; the 

translucent orange curves are the -10 dB isosurfaces for the FFBP output image. Each panel shows a 

different view: (a) perspective, (b) top, (c) side, and (d) front. 
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Figure 3.22 shows a plane section of the FFBP and the BP output images. Again, 

the two figures were almost identical. The degree of coherence between them was 0.9996. The 

mean and the standard deviation of the magnitude error were, respectively, 0.03 dB and 0.7 dB. 

The mean and the standard deviation of the phase error were ~10-4 rad and 0.09 rad (5°). A 

summary is provided in Table 3.5. 

  

(a)....... (b) ...... 

Figure 3.22 – Plane section at 𝑧 = 0 m for (a) the BP and (b) the FFBP output images. Normalized 

magnitudes in dB. 

Table 3.5 also shows that the FFBP algorithm took 2.25 hours (~0.09 days) to 

process, while the BP algorithm took 26.65 hours (~1.1 days), corresponding to a 90.8 % 

reduction in processing time (an 11.8 speed-up factor). Note that these processing times are 

significantly lower than the ones presented in Table 3.3 and Table 3.4. The reason is that the 

random flight path of Figure 3.20 has 37.5 % fewer radar root positions than the flight path 

shown in Figure 3.14. 

Table 3.5 – Summary of results for the random spiral flight path. 

Parameters Values Units 

Image 

comparison 

Mean phase error ~10-4 rad 

Standard deviation of the phase error 0.09 rad 

Mean magnitude error 0.03 dB 

Standard deviation of the magnitude error 0.7 dB 

Degree of coherence 0.9996 - 

Processing time 
FFBP 2.25 h 

BP 26.65 h 
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3.3.4 Discussion 

The FFBP algorithm was tested in three simulation scenarios inspired by the drone-

borne SAR system of Section 1.1 and data acquisition techniques that produce high-resolution 

3D images [26]. The first scenario had an ideal spiral flight path; the second added a random 

phase error to the simulated radar data; the third used a random spiral flight path. Furthermore, 

the imaged volume had clouds of point targets, with different distributions for each scenario. 

The three scenarios prove that the FFBP algorithm can process data in full-3D for nonlinear 

flight paths. To the best of the author’s knowledge, it is the first algorithm capable of such a 

feat.  

Indeed, for the Multi-Circular SAR presented by Ponce et al. [5], different image 

layers were processed with a 2D FFBP customized for circular flight paths [6]. Ponce et al. did 

not pursue 3D-focusing with their FFBP for practical reasons [5]. Other Multi-Circular SAR 

solutions used the BP algorithm [7], [8], sparse reconstruction models [5], [9], [10], adaptive 

imaging [7], [11], or a combination of those. Apart from the choice of algorithm, there are two 

common approaches: either process each circular flight path independently and merge the 

outputs [5], [7] or make radial slices of the cylindrical synthetic aperture, process them 

separately, then combine the results [8]–[11]. For the spiral SAR presented in [12], the whole 

flight path was processed with the BP algorithm.  

Table 3.3 to Table 3.5 encapsulate the simulation results. The FFBP achieved over 

90% reduction in processing time without losing image quality. Indeed, the degree of coherence 

between the FFBP and BP images was nearly equal to one in each scenario. In addition, the 

phase error’s standard deviation was much smaller than the typical /8 rad threshold used for 

assessing FFBP algorithms. The proposed method for defining child subapertures was 8 % 

faster than the typical calculation of weighted mean positions (3.33). 

The speed-up factor could be further increased if another sampling strategy was 

used, possibly at the expense of a higher phase error. Taking the spheres that circumscribe each 

subimage into account helped ensure excellent image quality, as the results demonstrated. 

However, it is not a very efficient approach. In [39], instead of partitioning the range data, a 

fixed number of pivots is used for combining subapertures. Then, the range data are processed 

in bulk, using FFT interpolation to increase efficiency. 
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3.4 PHASE ERROR ANALYSIS 

Choosing the best setup when processing SAR data with an FFBP algorithm is not 

straightforward. In the latest version of the FFBP algorithm, a splitting function creates the 

splitting scheme. However, the first split into image blocks is still an input provided by the user. 

So, predicting how this choice will affect the quality of the output image is valuable 

information.  

Thankfully, Ulander et al. [31] analyzed the errors introduced by the FFBP 

algorithm and provided a way to control them (see Subsection 3.1.3). In essence, the range error 

increases with the length of the child subaperture and the width of the child subimage, and it 

decreases with the distance between those two entities. Furthermore, the average range error 

across all subapertures and recursions is proportional to the phase error. Thus, keeping the phase 

error below a particular threshold requires balancing the increase in subaperture length and the 

decrease in subimage width. 

However, it would not be possible to replicate their analytical development for 

arbitrary flight paths. Therefore, this thesis takes a different approach. This section uses a 

hypothesis test to investigate if we can predict the standard deviation of the phase error (𝜎∆𝜑) 

from parameters at the start of processing. Specifically, the goal is to test the following 

hypothesis: 

 
𝜎∆𝜑 ∝ 𝜅 =

4𝜋

𝜆
∙
𝛿𝑘∆𝑐
𝑅𝑚𝑖𝑛

 (3.40) 

where 𝑅𝑚𝑖𝑛 is the shortest distance from the radar to the imaged volume, 𝛿𝑘 is the length of the 

child subaperture, and ∆𝑐 is the diagonal of the child subimage.  

The subimage diagonal replaced the subimage width because the diagonal is more 

relevant to the FFBP algorithm presented in Section 3.2. Moreover, unlike [31], the FFBP 

algorithm does not assume a linear flight path to simplify calculations. Thus, expression (3.40) 

does not consider the effect deviations from a linear flight path would have on the phase error. 

3.4.1 The Case Study 

For testing the hypothesis (3.40), the case study used SAR data acquired by the 

drone-borne SAR system of Section 1.1 flying over a eucalyptus plantation with a spiral flight 
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path. Figure 3.23 displays a Google Earth image of the drone flight path over the imaged area; 

the eucalyptus plantation can be seen on the bottom left. The spacing between the trees was 

around 3 m. The survey took place in Mogi Guaçu, São Paulo, Brazil, on November 13, 2019. 

The drone-borne SAR system works with three different frequency bands, but only the results 

for the P-band were used for the case study. Table 3.6 shows the acquisition parameters. 

 

Figure 3.23 – Google Earth image of the spiral flight path over the imaged area. Source: Góes et al., 

2021 [14]. 

Table 3.6 – Acquisition parameters. Source: Góes et al., 2021 [14]. 

Parameters Values Units 

Radar 

Wavelength 70.54 cm 

Bandwidth 50 MHz 

Slant range resolution 2.4 m 

Pulse repetition frequency 64.95 Hz 

Antenna 

Antenna horizontal beamwidth 55.9 degrees 

Antenna vertical beamwidth 75.2 degrees 

Antenna depression angle 30 degrees 

Flight path 

Mean drone speed 8.5 m/s 

Mean flight radius 338 m 

Height at the top 120 m 

Height at the base 79 m 

Number of turns 3 - 

Number of radar root positions 48,128 - 
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In expression (3.40), the product 𝛿𝑘∆𝑐  should ideally be constant across all 

recursions, but in reality, it may vary. So, this product is evaluated in three situations, yielding 

different values of 𝜅: a value at the first recursion (𝜅1), an average value (𝜅𝑎𝑣𝑔), and a maximum 

value (𝜅𝑚𝑎𝑥). The goal is to compare the three situations to make sure that 𝜅1 is a good choice 

for predicting 𝜎∆𝜑. 

The reason for preferring 𝜅1 is that it is easier to determine 𝛿𝑘 and ∆𝑐 for the first 

recursion. For the other recursions, it is the splitting scheme that determines the balance 

between 𝛿𝑘 and ∆𝑐. At the start of processing, these values can be set indirectly by: 

• Choosing the number of subapertures that are combined at each recursion (𝐿); 

• Choosing the first split into image blocks; 

Moreover, to vary 𝑅𝑚𝑖𝑛, the analysis selects two image blocks, one close to the edge and one 

close to the center of the output image (see Figure 3.24). 

 

Figure 3.24 – Selected image blocks for analyzing the phase error as a function of processing inputs. 

Source: Góes et al., 2021 [14]. 

Table 3.7 shows the set of processing inputs selected for the case study. The 

splitting scheme in each setup is the same for all image blocks. Thus, the actual number of 

pixels or voxels might not match the one calculated from the dimension and resolution of the 

output image. Hence, there are two options: process the image with a different resolution or 

change the size of the processed image. The second option is adopted because a different 

resolution would hinder comparing the FFBP and BP images, which is necessary for 

investigating the hypothesis. 
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Table 3.7 – Processing inputs for the case study. Source: Góes et al., 2021 [14]. 

Processing Inputs Values 

Dimension of the output image 
2D 300 × 150 m2 

3D 300 × 150 × 2.4 m3 

Resolution of the output image 
2D 0.2 × 0.2 m2 

3D 0.2 × 0.2 × 0.2 m3 

𝑳 

 2 

 3 

 4 

 5 

First split into image blocks 

 8 × 4 × 1 

 12 × 6 × 1 

 16 × 8 × 1 

 20 × 10 × 1 

 24 × 12 × 1 

 

Therefore, the algorithm processes a larger image, and the unnecessary pixels or 

voxels are disregarded. In a previous version of the FFBP algorithm, the number of image 

blocks was kept equal to the first split given at the input, but that proved wasteful. Thus, in the 

current version of the FFBP algorithm, the actual number of image blocks might be larger to 

minimize waste. Ultimately, this results in a wider variation for ∆𝑐 and 𝑅𝑚𝑖𝑛. The outcome is 

figuratively represented in Figure 3.24. 

Both BP and FFBP algorithms were written in MATLAB R2018a with vectorized 

variables and parallel computing functions. All data were processed on an Intel(R) Core (TM) 

i7-7700 CPU (3.60 GHz) with 64 GB RAM. 

3.4.2 Phase Error vs. SNR 

Pixels close to the noise level could potentially deteriorate the standard deviation 

of the phase error even without providing much useful information. Figure 3.25 illustrates this 

concept. For instance, if the radar return signal has a magnitude of 100, an error of magnitude 

1 will result in a phase error of up to 0.01 rad. However, if the magnitude of the return signal is 

1, an error of 1 can result in much larger phase errors.  
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(a) 

 

(b) 

Figure 3.25 – The effect of magnitude over the phase error: (a) strong return signal, (b) return signal 

close to the noise level. The signal without error is in blue; the random error is in orange; the signal with 

error is in gray; the resulting phase error is in yellow. 

In order to prevent this, an SNR threshold was chosen for the analyses of the 

following subsections. This subsection explains this choice using a 2D and a 3D setup from 

Table 3.7, namely the setups that produced the highest phase error of the case study: 𝐿 = 5 with 

the first split into image blocks of (8 × 4 × 1). 

3.4.2.1 Output images 

Figure 3.26 and Figure 3.27 present the 2D output images processed by the BP and 

the FFBP algorithms. Note that both figures clearly show the tree lines of the eucalyptus 

plantation and that, qualitatively, they are very similar. Indeed, the degree of coherence between 

them was 0.9942; the magnitude error had a -0.2 dB mean and a 2.3 dB standard deviation; the 

mean phase error was 0.0004 rad (0.02°); and the standard deviation of the phase error was 0.33 

rad (18.8°), somewhat below π/8 rad.  

 

Figure 3.26 – 2D output image processed by the BP algorithm. Normalized magnitude in dB. Source: 

Góes et al., 2021 [14]. 
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Figure 3.27 – 2D output image processed by the FFBP algorithm with 𝐿 = 5 and a first split into image 

blocks of (8 × 4 × 1). Normalized magnitude in dB. Source: Góes et al., 2021 [14]. 

Figure 3.28 and Figure 3.29 show the 3D output images processed by the BP and 

the FFBP algorithms. They depict isosurfaces at -15 dB normalized magnitude, clearly showing 

that the radar detects each eucalyptus tree. Again, qualitatively, the differences between the two 

images are barely perceptible. The degree of coherence between them was 0.9916; the 

magnitude error had a -0.3 dB mean and a 2.5 dB standard deviation; the mean phase error was 

0.0007 rad (0.04°); and the standard deviation of the phase error was 0.35 rad (19.9°), also 

below π/8 rad. 

Figure 3.26 to Figure 3.29 show processed images from data acquired with a spiral 

flight path. If the same area were surveyed with a linear flight path, the resulting image would 

have a slant range resolution of 2.4 m (see Table 3.6). It would also have an azimuth resolution 

of 36 cm, calculated from the wavelength and the horizontal beamwidth (2.22).  However, 

thanks to the 360° acquisition, the resolution might be better than 36 cm across all directions in 

the (x, y) plane. Indeed, the best attainable resolution in the (x, y) plane would be a quarter of a 

wavelength (18 cm) [35], [43], [44]. 
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Figure 3.28 – 3D output image processed by BP algorithm. Perspective view of the isosurfaces at -15 

dB normalized magnitude. Source: Góes et al., 2021 [14]. 

 

Figure 3.29 – 3D output image processed by the FFBP algorithm with 𝐿 = 5 and a first split into image 

blocks of (8 × 4 × 1). Perspective view of the isosurfaces at -15 dB normalized magnitude. Source: Góes 

et al., 2021 [14]. 
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3.4.2.2 Comparing algorithms 

Figure 3.30 presents the phase error response between the 2D images shown in 

Figure 3.26 and Figure 3.27. Note that the darkest area of Figure 3.26 corresponds to an increase 

in phase error in Figure 3.30, which is a sign of noisy behavior. In the northwest corner of 

Figure 3.26, the mean normalized magnitude at a 30 × 30 m2 square was close to -40 dB. Thus, 

this value was considered the noise floor level for calculating the signal-to-noise ratio (SNR) 

for the upcoming analyses. 

 

Figure 3.30 – Phase error for the 2D FFBP image with 𝐿 = 5 and an (8 × 4 × 1) first split. Source: Góes 

et al., 2021 [14]. 

Figure 3.31 shows the difference between the 3D images of Figure 3.28 and Figure 

3.29, reproducing isosurfaces at -15 dB normalized magnitude. The differences were more 

pronounced when the return signal was close to the noise level, corresponding to the dark blue 

area in Figure 3.26. Thus, the northern and eastern boundaries are more prominent in Figure 

3.31. As a result, the DEM height variations are easy to see on these boundaries. 

3.4.2.3 SNR threshold 

Figure 3.32 displays three histograms for the 2D phase error in Figure 3.30: (a) with 

no SNR threshold, i.e., all pixels were taken into account; (b) with a 0 dB SNR threshold; and 

(c) with a 10 dB SNR threshold. The change was subtle between Figure 3.32(a) and Figure 

3.32(b), less than 0.02 for each bin. However, the standard deviation of the phase error 

decreased from 0.33 rad (18.8°) to 0.20 rad (11.4°). On the other hand, between Figure 3.32(a) 
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and Figure 3.32(c), the change was more pronounced, greater than 0.06 for the central bins. 

Thus, the standard deviation of the phase error decreased even more to 0.10 rad (5.9°). 

 

Figure 3.31 – Difference between the 3D BP image and the 3D FFBP image processed with 𝐿 = 5 and 

an (8 × 4 × 1) first split. Perspective view of the isosurfaces at -15 dB normalized magnitude. 

 

(a) (b)  (c) 

Figure 3.32 – Histogram of the phase error for the 2D FFBP image with 𝐿 = 5 and an (8 × 4 × 1) first 

split for (a) no signal-to-noise ratio (SNR) threshold, (b) SNR > 0 dB, and (c) SNR > 10 dB. Source: 

Góes et al., 2021 [14]. 
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Similarly, Figure 3.33 displays three histograms with different SNR thresholds, 

corresponding to the 3D phase error of Figure 3.29. Once again, from no SNR threshold (Figure 

3.33(a)) to a 0 dB threshold (Figure 3.33(b)), the change was subtle and less than 0.02 for each 

bin. Nevertheless, the standard deviation of the phase error decreased from 0.35 (19.9°) to 0.22 

(12.4°) rad. In contrast, from no SNR threshold (Figure 3.33(a)) to a 10 dB threshold (Figure 

3.33(c)), the change was more noticeable and greater than 0.06 for the central bins. Hence, the 

standard deviation of the phase error decreased further to 0.11 rad (6.5°). 

 

(a) (b)  (c) 

Figure 3.33 – Histogram of the phase error for the 3D FFBP image with 𝐿 = 5 and an (8 × 4 × 1) first 

split for (a) no SNR threshold, (b) SNR > 0 dB, and (c) SNR > 10 dB.  

Table 3.8 further compares the different SNR thresholds. It shows the percentage 

of pixels and voxels whose phase error is within the ranges ± π/8 and ± π/36 (5°). These ranges 

corresponded respectively to 18 and 4 bins at the center of the histograms since all bins were 

π/72 wide. Figure 3.32 and Figure 3.33 only show phase errors within ± π/4 (36 bins), but the 

total number of bins was 144 for no SNR threshold. Applying a 0 dB threshold did not change 

the number of bins, but applying a 10 dB threshold resulted in 93 bins for 2D and 129 bins for 

3D. Thus, the rate changes in Table 3.8 were less significant for the 0 dB threshold (up to 4.5%) 

than for the 10 dB threshold (from 8.8 to 18.3%). 

As the 10 dB SNR threshold might have eliminated valuable information, the 0 dB 

SNR threshold was selected for the analyses in the following subsections. 
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Table 3.8 – Percentage of pixels and voxels for which the phase error is within the indicated ranges. 

Image Phase Error Range No. Bins No threshold SNR > 0 dB SNR > 10 dB 

2D 
[-π/8, π/8] 18 90.6 % 94.9% 99.5 % 

[-π/36, π/36] 4 53.2 % 57.3 % 71.5 % 

3D 
[-π/8, π/8] 18 89.4 % 93.9 % 99.2 % 

[-π/36, π/36] 4 48.7 % 52.7 % 66.8 % 

 

3.4.3 Phase Error vs. Input Parameters 

In this subsection, we use linear regression models to verify if we can predict the 

standard deviation of the phase error (𝜎∆𝜑) from the term 𝜅, defined in (3.40). To assess the 

goodness-of-fit of each regression model, we check if they have high coefficients of 

determination (ℛ²) and low root-mean-square errors (RMSE). The ℛ² measures how well the 

regression model explains the data; its value is always within the interval [0,1]. Furthermore, 

to verify if 𝜎∆𝜙 ∝ 𝜅, we must test if the linear regression models have a statistically significant 

slope and a statistically insignificant intercept. 

Moreover, we first compare the performances of 𝜅1, 𝜅𝑚𝑎𝑥 and 𝜅𝑎𝑣𝑔 to ensure that 

𝜅1 is a good choice for predicting 𝜎∆𝜙. Then, we refine the linear regression models. 

3.4.3.1 Comparing performances 

Figure 3.34 to Figure 3.36 show scatter plots of 𝜎∆𝜙  against 𝜅1, 𝜅𝑚𝑎𝑥  and 𝜅𝑎𝑣𝑔 , 

with their respective linear regression models. In addition, Table 3.9 to Table 3.11 present the 

statistics for these models: the estimate, the standard error (SE), the 95% confidence interval 

(CI), and the p-value for the intercepts and the slopes, as well as the ℛ² and RMSE of each 

regression model. For every intercept, the p-value was much higher than 0.05, and the 95% CI 

crossed zero. Thus, every intercept was statistically insignificant. On the other hand, all slopes 

had infinitesimal p-values, and neither of their CIs crossed zero. Hence, we can reject the null 

hypothesis of zero slopes. Moreover, all linear regression models presented high ℛ² > 0.92 and 

low RMSE < 1° (0.017 rad). Therefore, the data supported the hypothesis (𝜎∆𝜙 ∝ 𝜅) in all three 

conditions for calculating 𝜅. 

Figure 3.34 and Table 3.9 show the results for the 2D dataset. Note that all data 

points coincided for 𝜅1 and 𝜅𝑚𝑎𝑥 and that hence their linear regression models were identical. 
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In contrast, the 𝜅1 estimated slope was outside the 𝜅𝑎𝑣𝑔 CI and vice versa. Therefore, these 

slopes were significantly different, even if there was a slight overlap between their CIs. The 

slope was greater for 𝜅𝑎𝑣𝑔 to compensate for the fact that 𝜅𝑎𝑣𝑔 < 𝜅1 for 70% of the data points. 

Note that, in Figure 3.34, most orange circles (𝜅1) and purple dashes (𝜅𝑚𝑎𝑥) are to the right of 

the teal crosses (𝜅𝑎𝑣𝑔). 

 

Figure 3.34 – Standard deviation of the phase error (𝜎∆𝜑) against 𝜅1, 𝜅𝑚𝑎𝑥 and 𝜅𝑎𝑣𝑔 for the 2D dataset. 

Table 3.9 – Statistics of the linear regression models for the 2D dataset. 

𝜿 Coefficient Estimate SE 95% CI p-Value 𝓡² RMSE 

𝜿𝟏 
Intercept 0.0029 0.0028 (-0.0029, 0.0086) 0.32 

0.943 0.0093 
Slope 0.0683 0.0027 (0.0628, 0.0738) ~10-24 

𝜿𝒂𝒗𝒈 
Intercept 0.0022 0.0018 (-0.0014, 0.0057) 0.22 

0.978 0.0058 
Slope 0.0767 0.0019 (0.0729, 0.0805) ~10-32 

𝜿𝒎𝒂𝒙 
Intercept 0.0029 0.0028 (-0.0029, 0.0086) 0.32 

0.943 0.0093 
Slope 0.0683 0.0027 (0.0628, 0.0738) ~10-24 

 

Figure 3.35 and Table 3.10 show the results for the 3D dataset. Now, only 35% of 

the data points in 𝜅1 were identical to 𝜅𝑚𝑎𝑥. Nevertheless, their slopes were statistically equal 

because the 𝜅1 CI contained the 𝜅𝑚𝑎𝑥 CI. The 𝜅1 CI also contained the 𝜅𝑎𝑣𝑔 estimated slope, 
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though in this case, the overlap between their CIs was not complete. Still, we cannot affirm that 

the linear regression models for 𝜅1 and 𝜅𝑎𝑣𝑔 were significantly different. 

In contrast, the 𝜅𝑚𝑎𝑥 estimated slope was outside the 𝜅𝑎𝑣𝑔 CI and the other way 

around. So, like before, these slopes were significantly different, and once again, the 𝜅𝑎𝑣𝑔 had 

a greater slope. Furthermore, every data point now had a 𝜅𝑎𝑣𝑔  (teal cross) lower than the 

corresponding 𝜅𝑚𝑎𝑥 (purple dash). 

 

Figure 3.35 – 𝜎∆𝜑 against 𝜅1, 𝜅𝑚𝑎𝑥 and 𝜅𝑎𝑣𝑔 for the 3D dataset. 

Table 3.10 – Statistics of the linear regression models for the 3D dataset. 

𝜿 Coefficient Estimate SE 95% CI p-Value 𝓡² RMSE 

𝜿𝟏 
Intercept 0.0001 0.0035 (-0.0069, 0.0071) 0.97 

0.943 0.0113 
Slope 0.0832 0.0033 (0.0765, 0.0899) ~10-24 

𝜿𝒂𝒗𝒈 
Intercept -0.0003 0.0020 (-0.0044, 0.0038) 0.88 

0.980 0.0067 
Slope 0.0896 0.0021 (0.0854, 0.0938) ~10-33 

𝜿𝒎𝒂𝒙 
Intercept -0.0021 0.0032 (-0.0086, 0.0044) 0.52 

0.952 0.0103 
Slope 0.0813 0.0030 (0.0753, 0.0873) ~10-26 

 

Figure 3.36 and Table 3.11 show the results for the combined dataset, comprising 

both 2D and 3D data. Because the 2D and 3D datasets had the same number of points (40 each), 

𝜅1 = 𝜅𝑚𝑎𝑥 for 67.5% of the data points. Again, the 𝜅1 CI contained the 𝜅𝑚𝑎𝑥 CI, so their slopes 
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were statistically equal. On the other hand, though they overlapped to some extent, neither the 

𝜅1 CI contained the 𝜅𝑎𝑣𝑔 estimated slope nor the 𝜅𝑎𝑣𝑔 CI contained the 𝜅1 estimated slope. Thus 

the 𝜅1 and 𝜅𝑎𝑣𝑔 slopes were significantly different. The 𝜅𝑎𝑣𝑔 slope was also different from the 

𝜅𝑚𝑎𝑥 slope because their CIs did not overlap. As before, 𝜅𝑎𝑣𝑔 had the smallest values for most 

data points, so its linear regression model had the highest slope. 

 

Figure 3.36 – 𝜎∆𝜑 against 𝜅1, 𝜅𝑚𝑎𝑥 and 𝜅𝑎𝑣𝑔 for the combined (2D & 3D) dataset. 

Table 3.11 – Statistics of the linear regression models for the combined (2D & 3D) dataset. 

𝜿 Coefficient Estimate SE 95% CI p-Value 𝓡² RMSE 

𝜿𝟏 
Intercept 0.0015 0.0026 (-0.0038, 0.0067) 0.58 

0.920 0.0122 
Slope 0.0758 0.0025 (0.0708, 0.0809) ~10-44 

𝜿𝒂𝒗𝒈 
Intercept 0.0006 0.0017 (-0.0029, 0.0041) 0.73 

0.965 0.0081 
Slope 0.0837 0.0018 (0.0801, 0.0873) ~10-58 

𝜿𝒎𝒂𝒙 
Intercept 0.0001 0.0024 (-0.0046, 0.0049) 0.96 

0.936 0.0109 
Slope 0.0753 0.0022 (0.0708, 0.0797) ~10-47 

 

For all datasets, the linear regression models of 𝜅1  and 𝜅𝑚𝑎𝑥  were statistically 

equivalent. These results can be explained by how the splitting function works. After the first 

split into image blocks and before the last recursion, the function makes the number of divisions 

𝐷𝑥 = 𝐷𝑦 = 𝐿; but at the last recursion step, it makes 𝐷𝑥 > 𝐿 and 𝐷𝑦 > 𝐿. Moreover, after the 
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number of voxels in the z-direction reaches (or surpasses) the expected value, the function keeps 

𝐷𝑧 = 1 for the remaining recursions. 

Ideally, the splitting function should divide the image by 𝐿 in each direction for all 

recursions to keep the product 𝛿𝑘∆𝑐  constant. However, that could lead to waste, as the 

algorithm would have to process a far larger image than required. So, as a compromise, the 

function tries to prevent the product 𝛿𝑘∆𝑐 from increasing to avoid deteriorating the phase error. 

This strategy worked well for the 2D dataset, to the point that all data points coincided for 𝜅1 

and 𝜅𝑚𝑎𝑥.  

The linear regression models that best fit the data were those for 𝜅𝑎𝑣𝑔. Indeed, the 

𝜅𝑎𝑣𝑔 linear regression models had the highest ℛ² and the lowest RMSE of each dataset. This 

result aligns with the error analysis in [31], where the phase error correlates to the average range 

error across all subapertures and recursions. However, 𝜅𝑎𝑣𝑔 is more difficult to determine a 

priori than 𝜅1. While 𝜅1 can be calculated at the start of processing, 𝜅𝑎𝑣𝑔 (and 𝜅𝑚𝑎𝑥) can only 

be calculated after generating the splitting scheme. Furthermore, the linear regression models 

for 𝜅1 also have good fits for all datasets. Therefore, we can use setup parameters to calculate 

𝜅1 and then predict 𝜎∆𝜙. 

3.4.3.2 Refining the regression models 

For all linear regression models above, the intercepts were statistically insignificant. 

Therefore, new linear regression models were created with zero intercepts to test hypothesis 

(3.40) again. However, this process was only conducted for 𝜅1.  

Figure 3.37 presents scatter plots of 𝜎∆𝜙  against 𝜅1 . Figure 3.37(a) shows two 

separate linear regressions for the 2D and 3D datasets; Figure 3.37(b) shows a single linear 

regression for the combined dataset. In Figure 3.37(a), the linear regression of the 3D dataset 

had a slightly steeper slope, indicating higher phase errors than for the 2D dataset. The reason 

is that the number of voxels in the x- and y-directions was significantly larger than in the z-

direction. Thus, the volumetric images were only split across the x- and y-directions for the last 

recursions in most setups. However, according to the method for controlling the phase error 

proposed in [31], the splitting scheme should keep the product 𝛿𝑘∆𝑐  constant across all 

recursion steps. Therefore, this balance was possible when processing the 2D images but not 

the 3D images. 
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Table 3.12 shows the statistics for all three linear regression models. All slopes had 

meager p-values, and none of their CIs crossed zero. Also, all linear regression models 

presented high ℛ² > 0.92 and low RMSE ≤ 0.0122 rad (0.7°). Therefore, hypothesis (3.40) was 

validated once again. 

 

(a) 

 

(b) 

Figure 3.37 – 𝜎∆𝜑 against 𝜅1, with (a) separate linear regressions and (b) a single linear regression for 

2D and 3D data. 

Table 3.12 – Statistics of the linear regression models with zero intercepts for 𝜅1. 

Data Estimate SE 95% CI p-Value 𝓡² RMSE 

2D 0.0707 0.0014 (0.0678, 0.0735) ~10-36 0.945 0.0093 

3D 0.0833 0.0017 (0.0799, 0.0867) ~10-36 0.943 0.0112 

2D & 3D 0.0770 0.0013 (0.0744, 0.0796) ~10-66 0.922 0.0122 

 

3.4.4 Phase Error vs. Processing Time 

In this subsection, we evaluate the performance of the FFBP algorithm in terms of 

processing time. Some results presented here were extracted from the same datasets of the 

previous subsection. However, instead of calculating 𝜎∆𝜙 for two selected image blocks (Figure 

3.24), 𝜎∆𝜙 was calculated for the whole image.   
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Figure 3.38 presents 𝜎∆𝜙 against processing time at different values of 𝐿 for the 2D 

dataset analyzed in the last subsection. Note that the smaller the phase error, the greater the 

processing time and vice versa, confirming the trade-off identified in [30]. 

 

Figure 3.38 – 𝜎∆𝜙 against processing time at different values of 𝐿 for the 2D dataset. Source: Góes et 

al., 2021 [14]. 

It is clear that the curve for 𝐿 = 2 is far slower than the others, but at closer 

inspection, we can see that all curves move left and upwards as 𝐿 increases. They behave this 

way because the highest the value of 𝐿, the longest the subaperture (𝛿𝑘). However, there was 

also another factor influencing the phase error. Though the first splits given at the input were 

the same, the actual values varied with 𝐿. As 𝐿 increased, the number of image blocks often 

decreased, thus producing longer subimage diagonals (∆𝑐). Table 3.13 shows the actual first 

split into image blocks as a function of 𝐿. The input first splits were repeated for convenience. 

Table 3.13 – First split into image blocks at the input and the actual first split as a function of 𝐿. 

 𝑳 First split into image blocks 

Input value  8 × 4 × 1 12 × 6 × 1 16 × 8 × 1 20 × 10 × 1 24 × 12 × 1 

Actual value 

2 12 × 6 × 1 16 × 8 × 1 24 × 12 × 1 24 × 12 × 1 32 × 16 × 1 

3 10 × 5 × 1 14 × 7 × 1 19 × 10 × 1 21 × 11 × 1 28 × 14 × 1 

4 9 × 5 × 1 14 × 7 × 1 19 × 10 × 1 24 × 12 × 1 25 × 13 × 1 

5 9 × 5 × 1 12 × 6 × 1 17 × 9 × 1 20 × 10 × 1 25 × 13 × 1 
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In Table 3.13, note that 𝐿 = 2 had the same actual first split for two different inputs: 

(16 × 8 × 1) and (20 × 10 × 1). As a result, their outputs had virtually the same performance in 

both processing time and phase error. Figure 3.38 shows one of the markers with a lighter shade 

of blue to highlight this issue. Table 3.13 is valid for both the 2D and the 3D datasets. 

Figure 3.39 shows 𝜎∆𝜙 against processing time for the 3D dataset of the previous 

subsection. Concerning how the value of 𝐿 affects the phase error, the same reasoning can be 

applied here. However, note that the curves in Figure 3.39 are not as smooth as in Figure 3.38. 

The reason is that the splitting function causes unnecessary waste and needs improvement. 

 

Figure 3.39 – 𝜎∆𝜙 against processing time at different values of 𝐿 for the 3D dataset. Source: Góes et 

al., 2021 [14]. 

If we define surplus as the percentage of pixels or voxels that are disregarded for 

exceeding the expected value, then the average surplus was 7.4% for the 2D dataset and 36.3% 

for the 3D dataset. This surplus increase can be explained by the excess of voxels in the z-

direction. Only the splitting schemes with 𝐿 = 4 produced the expected number of voxels in the 

z-direction (2.4 m/0.2 m = 12). That is why 𝐿 = 4 had the most well-behaved curve in Figure 

3.39. For 𝐿 =  2, 3 and 5, the number of voxels in the z-direction was 16, 18, and 15, 

respectively. 

Figure 3.40 shows 𝜎∆𝜙 against processing time for two additional datasets obtained 

using manual splitting schemes. Note that both the 2D and 3D datasets produced smooth curves, 
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thus confirming that the splitting function caused the odd behavior seen in Figure 3.39. 

Moreover, Figure 3.40 provides further detail into the trade-off between the phase error and 

processing time. If the number of image blocks is excessive, the processing time goes up 

without causing a significant change in phase error. On the other hand, if the number of image 

blocks is insufficient, the phase error is intensified, but the processing time scarcely improves. 

This dynamic is not so apparent in Figure 3.38 and Figure 3.39 because 𝜎∆𝜙 was kept below 

0.25 rad (14.3°), and the processing time was always under 14 min for the 2D dataset and 90 

min for the 3D dataset. 

 

(a) 

 

(b) 

Figure 3.40 – 𝜎∆𝜙 against processing time at different values of 𝐿 for the 2D and 3D datasets obtained 

with manual splitting schemes. 

Table 3.14 extracts some results shown in Figure 3.38 and Figure 3.39, listing the 

slowest, fastest, and average processing times of the FFBP algorithm. Table 3.14 also compares 

these processing times to the BP algorithm, showing the corresponding speed-up factors. As 

expected, the speed-up factor was higher for the 3D dataset than for the 2D dataset. From 

Section 3.1.1, FFBP algorithms can reduce the computing cost from 𝒪(𝑃3) to 𝒪(𝑃2 log 𝑃) for 

2D images and from 𝒪(𝑃4) to 𝒪(𝑃3) for 3D images. 
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Table 3.14 – Processing time of the slowest, fastest, and average FFBP configurations compared to the 

BP algorithm. Source: Góes et al., 2021 [14]. 

Image Type 
BP Processing  

Time 

FFBP  

Configuration Processing Time Speed-Up Factor 

2D 35 min 33 s 

Fastest 2 min 40 s 13.33 

Average 5 min 45 s 6.18 

Slowest 12 min 28 s 2.85 

3D 7 h 12 min 18 s 

Fastest 20 min 24 s 21.2 

Average 42 min 8 s 10.3 

Slowest 1 h 18 min 18 s 5.52 

 

3.4.5 Discussion 

Hypothesis (3.40) was successfully validated for the P-band data as the parameters 

at the start of processing truly can predict 𝜎∆𝜑 at the output. The hypothesis was also validated 

when combining the 2D and 3D datasets (Figure 3.37(b)), reinforcing that what matters most 

for this FFBP algorithm is the diagonal of the subimages, not their width. 

Hypothesis (3.40) was inspired by the range error analysis presented in [31]. 

However, it disregarded the effect of deviations from a linear flight path, as the phase 

compensation term (3.24) ensures good focusing quality for any flight path. This term was 

proposed in [39] but with a different goal: to avoid taking range samples at each recursion to 

accelerate processing. 

If (3.24) was removed from the FFBP algorithm, the outcome of this case study 

would be completely unsatisfactory. Indeed, Figure 3.41 shows the resultant 2D image with 

𝐿 = 2 and a (24 × 12 × 1) first split, i.e., the configuration with the lowest phase error standard 

deviation of all datasets. If Figure 3.41 is compared to the BP output image of Figure 3.26, the 

degree of coherence is a meager 0.12. 
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Figure 3.41 – 2D output image processed by the FFBP algorithm without the phase compensation term 

(3.24) for the setup with 𝐿 = 2 and a (24 × 12 × 1) first split. Normalized magnitude in dB. Source: 

Góes et al., 2021 [14]. 

The configuration with the lowest image quality (see Figure 3.27 and Figure 3.29) 

had the longest subaperture length and subimage diagonal, i.e., 𝐿 = 5 with an (8 × 4 × 1) first 

split. Likewise, the configuration with the highest image quality had the shortest subaperture 

length and subimage diagonal, i.e., 𝐿 = 2 with a (24 × 12 × 1) first split. Table 3.15 lists some 

figures of merit at these extremes for the 2D and 3D datasets, namely the phase error standard 

deviation, the degree of coherence, and an SNR of equivalent thermal noise. SNR of equivalent 

thermal noise can be understood as the signal-to-thermal noise ratio that would result in an 

interferometric image with the same degree of coherence. It is calculated according to [45]. 

Table 3.15 also shows the values for an average image quality, which corresponds to the 

following configurations: 

• 𝐿 = 5 with a (16 × 8 × 1) first split for 2D; 

• 𝐿 = 2 with an (8 × 4 × 1) first split for 3D. 

It is important to note that “lowest quality” refers to a relative comparison within 

the dataset, not to poor quality in absolute terms. Qualitatively, Figure 3.27 and Figure 3.29 

appear almost identical to Figure 3.26 and Figure 3.28, indicating that this image quality level 

is suitable for SAR processing. Indeed, in [9], the same drone-borne SAR system produced a 

high-accuracy forest inventory with SAR interferometry in the P-band. A 5% accuracy was 

possible thanks to the forest SNR being higher than 17 dB. Because the SNR of equivalent 



106 

 

noise was more than 20 dB, the configurations with the lowest image quality were already 

satisfactory. Moreover, they were also associated with the fastest processing times (see Table 

3.14), with speed-up factors of 13 and 21 for 2D and 3D images, respectively. 

Table 3.15 – Performance of the configurations with highest, average, and lowest image quality. Source: 

Góes et al., 2021 [14]. 

Dataset Figure of Merit 
Image Quality 

Highest Average Lowest 

2D 

Phase Error  

Standard deviation 
0.025 rad (1.4°) 0.073 rad (4.2°) 0.20 (11.7°) 

Degree of coherence 0.9999 0.9993 0.9945 

SNR of equivalent 

Thermal noise  
40 dB 31 dB 23 dB 

3D 

Phase Error  

Standard deviation 
0.026 (1.5°) 0.077 rad (4.4°) 0.22 rad (12.7°) 

Degree of coherence 0.9999 0.9988 0.9921 

SNR of equivalent 

Thermal noise  
38 dB 29 dB 21 dB 

 

On the other hand, the configurations with the highest image quality had 

unnecessarily slow processing times. For example, suppose a specific application would require 

an SNR higher than 20 dB. In that case, a configuration with average image quality could be 

employed. The average phase error standard deviation points were close to those with average 

processing time in Figure 3.38 and Figure 3.39. Therefore, more demanding applications could 

benefit from a speed-up factor of about 6 for 2D and 10 for 3D images. 
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4 SPIRAL SAR 

The SAR acquisition geometry directly impacts the performance of the output 

image. For example, high-resolution 3D SAR images can be obtained with multi-circular or 

spiral flight paths. Typically, these state-of-the-art acquisition geometries have constant radii 

due to practical reasons. Though thankfully, these limitations would not apply to a drone-borne 

SAR system. 

This chapter proposes a new acquisition geometry that can perform better than the 

state-of-the-art, consisting of spiral flight paths with variable radii: conical spiral flight paths. 

In addition, this chapter proposes a methodology for designing this type of flight path. Such a 

methodology relies on an analytical expression for the vertical resolution. However, the 

expression found in the literature is unfortunately inaccurate. Therefore, this chapter also 

proposes a new, revised expression. 

Section 4.1 reviews different SAR acquisition geometries found in the literature. 

Section 4.2 explains a key concept called the wavenumber shift and develops some analytical 

expressions, including the vertical resolution. Section 4.3 validates that expression using 

simulation results and investigates the influence of different parameters of spiral flight paths. 

Finally, Section 4.4 proposes a methodology for designing spiral flight paths and validates it 

with actual SAR data. 
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4.1 SAR ACQUISITION GEOMETRY 

As seen in Chapter 2, a radar system measures the delay of the return signal. When 

we integrate this information from different azimuth positions, we enhance the resolution in 

that direction. That is the principle of SAR. 

The SAR acquisition geometry can affect the resolution of the output image. Recall, 

from Chapter 2, that Stripmap SAR produces images with a finer azimuth resolution than slant 

range resolution. The first is proportional to the signal wavelength, while the second is inversely 

proportional to the bandwidth. However, we can obtain high-resolution 2D images with 

wavelength-dependent resolutions in both directions. To that end, another acquisition geometry 

is required, such as Circular SAR. 

Furthermore, the SAR acquisition geometry influences what information we can 

extract from the scene. For example, Stripmap SAR with only one receiving antenna will be 

limited to producing 2D images. The reason is that it cannot provide information on the 

elevation angle since the radar does not measure the direction of the receiving signal. Such 

information could be used, for instance, to determine the terrain topography. Therefore, to 

obtain 3D information, we must employ other acquisition geometries, namely SAR 

Interferometry, SAR Tomography, Multi-Circular SAR, or Spiral SAR. 

4.1.1 SAR Interferometry 

SAR Interferometry is a highly accurate technique that estimates the phase 

difference between two or more radar images acquired from different positions or at different 

times. SAR Interferometry has many applications, including creating topographic maps, 

monitoring crop growth [11], and measuring ground displacement [12]. 

Figure 4.1 illustrates the most basic type of SAR Interferometry: two antennas 

separated by a baseline (𝑏). The distance traveled by the two incoming signals is slightly 

different. That difference in distance (Δ𝑅) translates into a phase difference (Δ𝜑) between the 

two images, calculated by the interferogram [46]: 

 
Δ𝜑 =

4𝜋

𝜆
Δ𝑅 (4.1) 
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where 𝜆 is the signal wavelength. Then, height information (𝑧0) can be extracted from the 

interferometric phase. The expression will differ depending on whether the images were 

processed using frequency-domain [46] or time-domain [23] algorithms.  

 

Figure 4.1 – SAR Interferometry: two antennas separated by a baseline (𝑏), generating a difference in 

distance (Δ𝑅) between the two signal paths, which is used to obtain height information (𝑧𝐻). Other 

geometric parameters are the look-angle (𝜓), the tilt angle (𝛽), the effective baseline (𝑏⊥) and the 

difference in look-angle (Δ𝜓). 

4.1.2 SAR Tomography 

SAR Interferometry will not determine height correctly if several targets share the 

same resolution cell. SAR Tomography presents a solution to this issue: flying several tracks 

to build another synthetic aperture in elevation (see Figure 4.2), which shall be called the 

tomographic aperture from now on. Furthermore, in the case of a semi-transparent medium – 

such as a glacier or a forest – SAR Tomography makes it possible to obtain 3D images [47]. 
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In SAR Tomography, we can determine both the resolution (δ𝐿𝑂𝑆⊥ ) and the 

maximum width of the imaged object (𝐻𝐿𝑂𝑆⊥) perpendicular to the line-of-sight (LOS) direction 

[48]: 

 
δ𝐿𝑂𝑆⊥ =

𝜆𝑅0
2𝐵

 (4.2) 

 
𝐻𝐿𝑂𝑆⊥ ≤

𝜆𝑅0
2∆𝐵

 (4.3) 

𝐵 is the tomographic aperture length, Δ𝐵 is the sampling distance, i.e., the distance between 

tracks, and 𝑅0  is the shortest distance from the radar to the target. These equations were 

determined in [48] for a vertical tomographic aperture with the same mean height as the target. 

In practice, though, it is usual to build a slanted tomographic aperture, perpendicular to the LOS 

direction, as illustrated in Figure 4.2 [47], [49], [50]. 

 

Figure 4.2 – SAR Tomography: several flight tracks going into the page; they are separated by a 

sampling distance (∆𝐵), thus building a tomographic aperture in elevation (𝐵). The resolution (δ𝐿𝑂𝑆⊥) 

and maximum width (H𝐿𝑂𝑆⊥) perpendicular to the line-of-sight (LOS) direction are functions of the 

distance from the tomographic aperture to the target (𝑅0). 
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4.1.3 Circular SAR 

SAR configurations that rely on straight flight paths may become limited when 

many anisotropic targets (e.g., buildings) are present in the scene. A good alternative is the 

Circular SAR, which can see the targets from 360°. For this reason, Circular SAR produces 

images with very high resolution on the ground plane. Furthermore, Circular SAR can resolve 

altitude ambiguities, thus providing height information (see Figure 4.3) [43]. 

 

Figure 4.3 – Circular SAR: resolving altitude ambiguity. 

Ishimaru et al. [43] provided analytical expressions for both the ground resolution 

(𝛿𝑥𝑦) and the vertical resolution (𝛿𝑧). These expressions were calculated for an isotropic target 

located at the circular flight path axis (see Figure 4.4). The resolutions are given by [43]: 

 
𝛿𝑥𝑦 =

1.12𝜆

2𝜋 sin(𝜓)
 (4.4) 

 

𝛿𝑧 = √
ln(2)

𝜋

𝑐

𝑊 cos𝜓
 (4.5) 

where 𝜓 is the look-angle. Note that when 𝜓 = 45°, 𝛿𝑥𝑦 ≈ 𝜆/4. 

According to Ishimaru et al. [43], the target’s ground response takes the form of a 

zero-order Bessel function of the first kind, 𝐽0(𝑢). In contrast, the vertical response takes the 

form 𝑒−𝑢
2
. Originally, the ground resolution was determined at the first zero of the Bessel 



112 

 

function, and the vertical resolution was determined for the point where the amplitude reaches 

𝑒−1 of the maximum value. Therefore, expressions (4.4) and (4.5) were modified to obtain the 

half-power resolutions. 

 

Figure 4.4 – Circular SAR: geometry for calculating ground and vertical resolutions. 

4.1.4 Multi-Circular SAR 

Although Circular SAR allows for 3D imaging, information is distorted by strong 

conical sidelobes perpendicular to the LOS direction. Therefore, further knowledge is required 

to build a focused 3D image from Circular SAR [44]. Multi-Circular SAR solves this issue with 

multiple circular flight tracks at different heights, thus providing additional information on 

elevation [26]. To put it another way, Multi-Circular SAR can be considered the combination 

of Circular SAR and SAR Tomography (see Figure 4.5). Indeed, this acquisition geometry is 

also known as Holographic SAR Tomography [26]. 

Multi-Circular SAR can provide full-3D reconstruction with very high resolution. 

The ground resolution is the same as a single circular flight path (4.4). As for the vertical 

resolution, (4.5) still applies, but the diversity in elevation angle stretches the effective 

bandwidth, thus improving the vertical resolution. Furthermore, SAR Tomography expressions 

(4.2) and (4.3) also apply for the resolution and maximum width perpendicular to the LOS 

direction. However, we need to replace the tomographic aperture (𝐵) and the sampling distance 
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(∆𝐵) with their projections onto the direction perpendicular to the LOS [26]. Henceforth, these 

quantities shall be called the effective tomographic aperture (𝐵⊥) and the effective sampling 

distance (∆𝐵⊥). 

 

Figure 4.5 – Multi-Circular SAR: a combination of Circular SAR with SAR Tomography. 

Multi-Circular SAR has been applied to studying forests with L-band data [26], 

crops with C- and X-band data [51], and glaciers with P- and L-band data [52]. The data were 

acquired with a SAR system mounted on an aircraft. In addition, the radii of the multiple 

circular flight paths were roughly constant. 

4.1.5 Spiral SAR 

The sampling distance hindered Multi-Circular SAR for a system working in the 

THz band. Fortunately, this issue was overcome with a cylindrical spiral flight path with 

constant vertical speed [53]. 

Furthermore, Sego et al. [54] studied different flight path geometries, including a 

cylindrical spiral, a planar spiral, and a spherical spiral. Nevertheless, their study did not 

evaluate the different parameters that may affect the performance of each flight path geometry. 

Later, in [55], those three geometries were considered for performing an experimental flight. 

However, only the cylindrical spiral was selected for practical reasons. Specifically, the 

cylindrical spiral path is easier to fly manually in the test aircraft, a 1952 Cessna 170.  
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To the best of the author’s knowledge, all multi-circular and spiral flight paths used 

in SAR surveys in literature had nearly constant radii. A probable reason is the limitations posed 

by aircraft flight mechanics. Nevertheless, drone flight mechanics are more flexible than 

aircraft, making spiral flight paths with variable radii possible. Suppose we combine the slanted 

acquisition geometry used in SAR Tomography with a spiral flight path. In that case, we will 

get a cone-shaped flight path whose radius increases as the height decreases. This configuration 

would have better vertical resolution than state-of-the-art solutions.  
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4.2 THE WAVENUMBER SHIFT 

The wavenumber shift is a key concept for understanding the performance of Spiral 

SAR. The concept was first proposed for SAR Interferometry in [56]; then, it was applied to 

improve the ground resolution of linear flight paths in [57]. In both cases, the focus was the 

ground wavenumber shift. Later, in [26], the concept was also applied to Multi-Circular SAR, 

taking the vertical wavenumber shift into account to explain the improvement in vertical 

resolution. Unfortunately, although the reasoning was sound, the expressions provided in [26] 

are inaccurate. Therefore, this work proposes new, revised expressions. 

Moreover, the wavenumber shift concept may clarify why Spiral SAR worked for 

a given system when Multi-Circular SAR could not [53], as pointed out in Subsection 4.1.5. 

4.2.1 The Concept 

This subsection shall explain the wavenumber shift concept for two interferometric 

antennas. Figure 4.6 illustrates the main idea, highlighting the different quantities at play.  

 

Figure 4.6 - The wavenumber shift and the quantities at play. Source: Modified from Gatelli et al. [56] 

© 1994 IEEE. 
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The quantities in Figure 4.6 shall be detailed in the following paragraphs. 

Nevertheless, here is a high-level summary: 

• ①: A difference in look-angle (∆𝜓) occurs when the radar sees the target from 

different locations (e.g., two interferometric antennas separated by a baseline). 

• ②: The first leg of the triangle represents the wave vector shift (Δ�⃗� ), i.e., the 

change in direction caused by the difference in look-angle.  

• ③: The ground wavenumber shift (Δ𝑘𝑔) is the projection of the wave vector 

shift onto the ground plane. 

• ④: The other leg of the triangle represents the equivalent wave vector that 

would produce the same ground wavenumber but would have been caused by a 

spectral shift (Δ𝑓). 

• ⑤: The vertical wavenumber shift (Δ𝑘𝑧) is the projection of the wave vector 

shift onto the vertical direction. 

• ⑥: The hypotenuse is the phase-to-height sensitivity (𝜕𝜑 𝜕𝑧⁄ ); it should not be 

confused with the vertical wavenumber shift.  

4.2.1.1 The difference in look-angle 

Two interferometric antennas look at the target from different angles due to the 

baseline separating them. As depicted in Figure 4.1, the difference in look-angle (Δ𝜓) can be 

approximated by: 

 
Δ𝜓 ≈

𝑏⊥
𝑅0

 (4.6) 

where 𝑏⊥ is the effective baseline, perpendicular to the LOS direction, and 𝑅0 is the distance 

from the radar to the target. This approximation is valid for 𝑏⊥ ≪ 𝑅0. 

4.2.1.2 The wave vector shift 

The difference in look-angle makes the incident wave come from a different 

direction. In other words, it changes the direction of the wave vector. Indeed, the ground (�⃗� 𝑔) 

and vertical (�⃗� 𝑧) components of the wave vector are functions of the look-angle (𝜓) [56]: 

 |�⃗� 𝑔| = 𝑘𝑔 = 2𝑘 sin𝜓 (4.7) 
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 |�⃗� 𝑧| = −𝑘𝑧 = 2𝑘 cos𝜓 (4.8) 

where 𝑘 = 2𝜋 𝜆⁄  is the signal wavenumber, and 𝑘𝑔  and 𝑘𝑧  are the ground and vertical 

wavenumbers, assuming a flat terrain.  

4.2.1.3 The ground wavenumber shift 

The difference in look-angle generates a shift in the ground wavenumber (∆𝑘𝑔), 

which can be calculated using the first-order approximation below [56]: 

 
∆𝑘𝑔 ≈

4𝜋

𝜆
cos𝜓Δ𝜓 (4.9) 

Substituting (4.6) into (4.9), we get: 

 
∆𝑘𝑔 ≈

4𝜋𝑏⊥
𝜆𝑅0

cos𝜓 (4.10) 

4.2.1.4 The equivalent spectral shift 

If the shift in ground wavenumber had been caused by a spectral shift (∆𝑓) rather 

than a difference in look-angle, then we would have the following first-order approximation: 

 
𝑘𝑔 =

4𝜋𝑓

𝑐
sin𝜓 → ∆𝑘𝑔 ≈

4𝜋

𝑐
sin𝜓 ∆𝑓 (4.11) 

Therefore, the equivalent spectral shift is [56]: 

 
∆𝑓 = −

𝑐𝑏⊥
𝜆𝑅0 tan𝜓

 (4.12) 

In practice, if we compare the backscattered signal received by two interferometric 

antennas, the same components of the ground reflectivity spectrum will appear shifted by ∆𝑓. 

The spectral shift has two main effects: as ∆𝑓  increases, the common part of spectra will 

decrease, but the overall bandwidth will increase. In (4.12), the negative sign represents the 

reduction in the common part of spectra. Moreover, (4.12) is identical to the interferogram 

fringe frequency [56]. 
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If ∆𝑓 becomes equal to the signal bandwidth (𝑊), the two spectra will no longer 

overlap, the signals will become decorrelated, and interferometry will no longer be possible. In 

order to avoid this scenario, the baseline must not exceed the critical value [56]:  

 
𝑏⊥,𝑐 =

𝑊𝜆

𝑐
𝑅0 tan𝜓 (4.13) 

On the other hand, the spectral shift ∆𝑓 can be exploited to improve the resolution 

of SAR images. For instance, for linear flight paths, the ground resolution (𝛿𝑔) is [57]: 

 𝛿𝑔 =
𝑐

2𝑊 sin𝜓
 (4.14) 

If the two spectra are combined, the bandwidth will increase by |∆𝑓|, and the new ground 

resolution will be [57]: 

 𝛿𝑔 =
𝑐

2𝑊𝑔
 (4.15) 

 𝑊𝑔 = 𝑊 sin𝜓 + Δ𝑓𝑔 (4.16) 

 
Δ𝑓𝑔 = |∆𝑓| sin𝜓 =

𝑐𝑏⊥
𝜆𝑅0

cos𝜓 (4.17) 

where 𝑊𝑔 and Δ𝑓𝑔 are the effective bandwidth and the spectral shift in the ground plane. Note 

that (4.13) can also be found by making Δ𝑓𝑔 = 𝑊 sin𝜓. 

4.2.1.5 The vertical wavenumber shift 

Let us assume that the vertical wavenumber shift (∆𝑘𝑧) is also produced by the 

difference in look-angle. Then, much like the ground wavenumber shift, it can be calculated 

with a first-order approximation: 

 
∆𝑘𝑧 ≈

4𝜋

𝜆
sin𝜓 Δ𝜓 (4.18) 

 
∆𝑘𝑧 ≈

4𝜋𝑏⊥
𝜆𝑅0

sin𝜓 (4.19) 

Equation (4.19) is a revised expression proposed in this work. This quantity is unrelated to SAR 

Interferometry but is essential to Multi-Circular SAR and Spiral SAR. 
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4.2.1.6 The phase-to-height sensitivity 

The phase-to-height sensitivity is the interferometric phase change caused by a 

height change. It corresponds to the hypothenuse in Figure 4.6 and is given by [46], [56]: 

 𝜕𝜑

𝜕𝑧
= −

4𝜋∆𝑓

𝑐 cos𝜓
=
4𝜋Δ𝜓

𝜆 sin𝜓
 (4.20) 

 𝜕𝜑

𝜕𝑧
=

4𝜋𝑏⊥
𝜆 𝑅0𝑠𝑖𝑛 𝜓

 (4.21) 

Also, the phase-to-height sensitivity is associated with the height of ambiguity, 

which is the height change that causes a 2π change in the interferometric phase [46]:  

 
𝑧2𝜋 =

2𝜋

𝜕𝜑 𝜕𝑧⁄
=
𝜆𝑅0
2𝑏⊥

sin𝜓 (4.22) 

Note that the phase-to-height sensitivity is not the same as the vertical wavenumber 

shift caused by the difference in look-angle (∆𝑘𝑧). Rather, from Figure 4.6, it is equal to: 

 𝜕𝜑

𝜕𝑧
=
∆𝑘𝑔

tan𝜓
+ ∆𝑘𝑧 (4.23) 

However, the phase-to-height sensitivity was identified in [56] as ∆𝑘𝑧. That choice 

probably led to expression (4.21) being used instead of (4.19) to determine the vertical 

resolution for Multi-Circular SAR [26]. 

4.2.2 The Wavenumber Shift in Multi-Circular and Spiral SAR 

The wavenumber shift also occurs in Multi-Circular and Spiral SAR since the radar 

antenna looks at the target from different angles at each point across the tomographic aperture. 

However, a new distinction must be made, which did not apply to SAR Interferometry: the 

difference between the total and the incremental difference in look-angle. The first is due to the 

effective tomographic aperture (𝐵⊥) and the second is related to the effective sampling distance 

(Δ𝐵⊥). Therefore, either 𝐵⊥ or Δ𝐵⊥ will replace the effective baseline (𝑏⊥) on the expressions 

of Subsection 4.2.1.  

The sampling distance is either the gap between tracks in Multi-Circular SAR or 

the separation between turns in Spiral SAR. Suppose a spiral flight path has 𝑁𝑡 turns, and a 

multi-circular flight path has 𝑁𝑡 + 1 tracks. Then, if they have the same tomographic aperture 

(𝐵), they will have the same sampling distance, Δ𝐵 = 𝐵 𝑁𝑡⁄ . Figure 4.7 shows an example for 
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𝐵 = 40 m and 𝑁𝑡 = 5. Likewise, if the two flight paths have the same effective tomographic 

aperture (𝐵⊥), they will have the same effective sampling distance, Δ𝐵⊥ = 𝐵⊥/𝑁𝑡. Here, the 

word effective means perpendicular to the LOS direction. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.7 – Two flight paths with the same sampling distance: (a,b) perspective and (c,d) front views 

of (a,c) a multi-circular flight path with six tracks and (b,d) a spiral flight path with five turns. 

4.2.2.1 The vertical resolution 

Multi-Circular SAR and Spiral SAR can achieve better vertical resolutions than 

Circular SAR, thanks to the entire tomographic aperture widening the vertical bandwidth [26]. 

With this in mind, in order to find an expression for the vertical resolution, first, we need a new 

expression for the vertical wavenumber shift: 

 
∆𝑘𝑧(𝐵⊥) ≈

4𝜋𝐵⊥
𝜆𝑅0

sin𝜓 (4.24) 

Then, from ∆𝑘𝑧, we can derive the effective bandwidth (𝑊𝑧) and the spectral shift 

(Δ𝑓𝑧) in the vertical direction: 

 𝑊𝑧 = 𝑊 cos𝜓 + Δ𝑓𝑧 (4.25) 

 
Δ𝑓𝑧(𝐵⊥) =

𝑐𝐵⊥
𝜆𝑅0

sin𝜓 (4.26) 

Note that (4.25) and (4.26) are similar to (4.16) and (4.17), swapping sines and 

cosines. Finally, the vertical resolution is given by: 
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𝛿𝑧 = √
ln(2)

𝜋

𝑐

𝑊𝑧
 (4.27) 

Figure 4.8 illustrates the spectra for two different look-angles in the frequency 

domain. It highlights the effective bandwidths and spectral shifts in the ground plane and the 

vertical direction. 

 

Figure 4.8 – The effective bandwidths and spectral shifts in the ground plane and the vertical direction. 

4.2.2.2 The critical sampling distance 

The critical sampling distance may help explain why Spiral SAR worked in 

conditions where Multi-Circular SAR did not [53]. In SAR Interferometry, the critical baseline 

is the minimum baseline for which the ground spectra do not overlap. In Multi-Circular SAR, 

the critical sampling distance also considers the vertical spectra [26].  

Suppose that instead of representing the beginning and end of the tomographic 

aperture, Figure 4.8 represents two consecutive tracks in Multi-Circular SAR. Then, if either 

one of the following expressions is true, the tracks will become decorrelated: 
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 ∆𝑓𝑔(∆𝐵⊥) ≥ 𝑊 sin𝜓 (4.28) 

 ∆𝑓𝑧(∆𝐵⊥) ≥ 𝑊 𝑐𝑜𝑠 𝜓 (4.29) 

To avoid this scenario, the effective distance between tracks should not surpass the 

critical value: 

 
Δ𝐵⊥,𝑐 = min (

𝑊𝜆

𝑐
𝑅0 tan𝜓 ,

𝑊𝜆

𝑐

𝑅0
tan𝜓

) (4.30) 

 

Δ𝐵⊥,𝑐 =

{
 

 
𝑊𝜆

𝑐
𝑅0 tan𝜓 , 0 ≤ 𝜓 < 45°

𝑊𝜆

𝑐

𝑅0
tan𝜓

, 45° ≤ 𝜓 < 90°
 (4.31) 

Note that 𝑊𝜆 𝑐⁄  is the fractional bandwidth, whose values are typically low for 

SAR systems. Furthermore, the distance 𝑅0 will be small for most drone operations, which are 

usually not allowed to fly higher than 120 m (400 feet) above ground level [58]–[60]. 

Therefore, Multi-Circular SAR acquisitions require multiple tracks to keep the 

sampling distance below the critical value for drone operations. However, flying multiple tracks 

could potentially come across another issue: the drone’s limited autonomy. Indeed, the drone-

borne SAR system of Section 1.1 has an autonomy of about 20 min. 

Fortunately, decorrelation might not affect Spiral SAR because the wavenumber 

shift is almost continuous for isotropic targets. After all, the sampling would not be related to 

the distance between spiral turns but to the pulse repetition frequency. Figure 4.9 shows the 

wavenumber domain for a multi-circular flight path with five tracks and a spiral flight path with 

four turns. For both flight paths, 𝐵⊥ = 50 m, ∆𝐵⊥ = 12.5 m, 𝑅0 = 165 m, and 𝜓 = 55°. Also, 

the fractional bandwidth is 4.7 % in both cases. Therefore, ∆𝐵⊥ is above the critical value 

(∆𝐵⊥,𝑐 = 5.4 m).  

While Figure 4.9(e) shows clear gaps in 𝑘𝑧, in Figure 4.9(f), 𝑘𝑧 varies continuously 

throughout the flight path. Furthermore, because 𝜓 > 45°, ∆𝐵⊥,𝑐 is defined by ∆𝑓𝑧, not ∆𝑓𝑔. 

This dependence on ∆𝑓𝑧 can be verified when comparing Figure 4.9(c) and Figure 4.9(e). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 4.9 – Wavenumber domain for (a,c,e) a Multi-Circular SAR acquisition and (b,d,f) a Spiral SAR 

acquisition: (a,b) perspective, (c,d) top, and (e,f) front views. 

4.2.2.3 The height of ambiguity 

Although Spiral SAR might not be affected by decorrelation, Δ𝐵⊥ still contributes 

to the height of ambiguity: 

 
𝑧2𝜋 =

𝜆𝑅0
2Δ𝐵⊥

sin𝜓 (4.32) 

 
𝑧2𝜋 =

𝑁𝑡𝜆𝑅0
2𝐵⊥

𝑠𝑖𝑛 𝜓 (4.33) 

Note that (4.32) is SAR Tomography’s maximum width perpendicular to the LOS direction 

(4.3) projected onto the z-direction. 
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4.3 CONICAL SPIRALS AND THEIR PARAMETERS 

Section 4.1 argued that conical flight paths would perform better than cylindrical 

flight paths, i.e., those with constant radii. Furthermore, Section 4.2 hypothesized that 

decorrelation might not be an issue for Spiral SAR when working with isotropic targets. 

Moreover, Section 4.2 proposed a revised expression for the vertical resolution of Multi-

Circular SAR and Spiral SAR. That expression is a function of the effective tomographic 

aperture, which needs to be further detailed. 

In order to address all these matters, this section uses several simulation results. All 

simulation scenarios were processed with the FFBP algorithm presented in Section 3.2, written 

in MATLAB R2018a, and executed on an Intel(R) Core(TM) i7-7700 CPU (3.60 GHz) with 64 

GB RAM. 

4.3.1 Spiral Coordinates 

Before showing the simulation results, let us determine the coordinates of a spiral 

flight path from its geometric parameters. Figure 4.10 shows an illustrative example of a conical 

spiral flight path. The spiral moves downwards from the height at the top (𝑧𝑡𝑜𝑝) to the height at 

the base (𝑧𝑏𝑎𝑠𝑒), making four complete turns (𝑁𝑡 = 4).  

 

Figure 4.10 – A conical spiral flight path and its parameters: the top and base height (𝑧𝑡𝑜𝑝 and 𝑧𝑏𝑎𝑠𝑒) and 

radii (𝜌
𝑡𝑜𝑝

 and 𝜌
𝑏𝑎𝑠𝑒

), the azimuth angle (𝛼), the tomographic aperture (𝐵) and the tilt angle (𝛽). 
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Consider that the spiral radius varies at a constant rate from the top (𝜌𝑡𝑜𝑝) to the 

base (𝜌𝑏𝑎𝑠𝑒). In that case: 

 𝜌(𝑡) = 𝜌𝑡𝑜𝑝 + 𝑉𝜌𝑡, 0 ≤ 𝑡 < 𝑡𝑚𝑎𝑥 (4.34) 

 𝑉𝜌 =
𝜌𝑏𝑎𝑠𝑒 − 𝜌𝑡𝑜𝑝

𝑡𝑚𝑎𝑥
 (4.35) 

where 𝜌(𝑡) is the spiral radius as a function of time, 𝑉𝜌 is the radial speed, and 𝑡𝑚𝑎𝑥 is the time 

it takes to complete the spiral. Note that, for this example, 𝜌𝑏𝑎𝑠𝑒 > 𝜌𝑡𝑜𝑝, so 𝑉𝜌 > 0. 

Now, suppose that a drone flies through the conical spiral path with a constant 

tangential speed (𝑉0). Then, we can determine the angular speed and, thus, the azimuth angle: 

 
𝜕𝛼(𝑡)

𝜕𝑡
=

𝑉0
𝜌(𝑡)

→ 𝛼(𝑡) = ∫
𝑉0
𝜌(𝜏)

𝑑𝜏

𝑡

0

 (4.36) 

where 𝛼(𝑡) is the azimuth angle as a function of time. From (4.34) and (4.36), we get: 

 
𝛼(𝑡) =

𝑉0
𝑉𝜌
[𝑙𝑛(𝜌(𝑡)) − 𝑙𝑛(𝜌𝑡𝑜𝑝)], 0 ≤ 𝛼(𝑡) ≤ 2𝜋𝑁𝑡 (4.37) 

Note that 𝛼(𝑡𝑚𝑎𝑥) = 2𝜋𝑁𝑡 and that 𝜌(𝑡𝑚𝑎𝑥) = 𝜌𝑏𝑎𝑠𝑒. Thus, substituting (4.35) into (4.37) for 

𝑡 = 𝑡𝑚𝑎𝑥, we obtain: 

 
𝑡𝑚𝑎𝑥 =

2𝜋𝑁𝑡
𝑉0

𝜌𝑏𝑎𝑠𝑒 − 𝜌𝑡𝑜𝑝

𝑙𝑛(𝜌𝑏𝑎𝑠𝑒) − 𝑙𝑛(𝜌𝑡𝑜𝑝)
 (4.38) 

In the case of a cylindrical spiral, the radius is constant, i.e., 𝜌𝑏𝑎𝑠𝑒 = 𝜌𝑡𝑜𝑝 = 𝜌0. 

Therefore, expressions (4.37) and (4.38) become much more straightforward: 

 
𝛼(𝑡) =

𝑉0
𝜌0
𝑡 (4.39) 

 
𝑡𝑚𝑎𝑥 =

2𝜋𝑁𝑡
𝑉0

𝜌0 
(4.40) 

Now that we have determined the radius and the azimuth angle of the spiral flight 

path, we need an expression for its height. If we consider that the height also varies at a constant 

rate, then we get: 
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 𝑧(𝑡) = 𝑧𝑡𝑜𝑝 + 𝑉𝑧𝑡 (4.41) 

 
𝑉𝑧 = −

(𝑧𝑡𝑜𝑝 − 𝑧𝑏𝑎𝑠𝑒)

𝑡𝑚𝑎𝑥
 (4.42) 

where 𝑧(𝑡) is the spiral height as a function of time, and 𝑉𝑧 is the vertical speed. Note that, 

because the flight path moves downward, 𝑉𝑧 < 0. 

Next, we can obtain the cartesian coordinates of the spiral flight path using the 

following expressions: 

 𝑥(𝑡) = 𝜌(𝑡) cos(𝛼(𝑡)) (4.43) 

 𝑦(𝑡) = 𝜌(𝑡) sin(𝛼(𝑡)) (4.44) 

From a design perspective, it might be more interesting to describe the conical spiral 

flight path using other parameters, such as the mean height (𝑧0), the mean radius (𝜌0): 

 
𝑧0 =

𝑧𝑏𝑎𝑠𝑒 + 𝑧𝑡𝑜𝑝

2
 (4.45) 

 
𝜌0 =

𝜌𝑏𝑎𝑠𝑒 + 𝜌𝑡𝑜𝑝

2
 (4.46) 

Other important parameters are the tomographic aperture (𝐵) and the tilt angle (𝛽), 

both depicted in Figure 4.10 as elements of a right triangle: 

 
𝐵 = √(𝑧𝑡𝑜𝑝 − 𝑧𝑏𝑎𝑠𝑒)

2
+ (𝜌𝑡𝑜𝑝 − 𝜌𝑏𝑎𝑠𝑒)

2
 (4.47) 

 
𝛽 = tan−1 (

𝑧𝑡𝑜𝑝 − 𝑧𝑏𝑎𝑠𝑒

𝜌𝑏𝑎𝑠𝑒 − 𝜌𝑡𝑜𝑝
) (4.48) 

 Finally, instead of 𝑧0 and 𝜌0, we can describe the conical spiral flight path using 

the corresponding look-angle (𝜓0) and the mean distance (𝑅0) from the radar to a target at the 

origin:  

 𝜓0 = tan−1 (
𝜌0
𝑧0
) (4.49) 

 𝑅0 = √𝑧02 + 𝜌02 (4.50) 
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4.3.2 The Effective Tomographic Aperture 

In the last subsection, we have established that the tomographic aperture (𝐵) is a 

geometric parameter of the conical spiral flight path. However, 𝐵 does not directly affect the 

wavenumber shift. From Section 4.2, the wavenumber shift, and thus the vertical resolution, 

are functions of the effective tomographic aperture (𝐵⊥) instead. 

We know that 𝐵⊥ should be perpendicular to the LOS direction from an analogy 

with interferometry. The only issue here is how to define the LOS direction. This definition will 

affect how we measure the distance between the radar and the target, thus impacting how we 

calculate the vertical resolution. Unfortunately, we cannot assume that the distance variation is 

negligible or that 𝐵⊥ ≪ 𝑅0. First, the tomographic aperture is larger than an interferometric 

baseline. Second, when working with drones, the distances from the radar to the imaged area 

are way shorter than for aircraft or satellites. 

Figure 4.11 shows the proposed solution. First, we define the LOS direction from 

the midpoint of the tomographic aperture to a target at the origin. The magnitude of this vector 

is the mean distance (𝑅0) from the spiral flight path to the origin. Then, we project 𝐵 onto the 

direction perpendicular to the LOS: 

 𝐵⊥ = 𝐵|cos(𝛽 − 𝜓0)| (4.51) 

where 𝛽 is the tilt angle, and 𝜓0 is the midpoint look-angle. The reason for taking the absolute 

value is that 𝐵⊥ will be positive even when the cosine is negative (|𝛽 − 𝜓0| > 90°). 

 

Figure 4.11 – The effective tomographic aperture (𝐵⊥) as determined from the midpoint look-angle 

(𝜓0), 𝐵 and 𝛽. 𝐵⊥ is perpendicular to the LOS direction, which is defined using the mean distance (𝑅0). 
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4.3.2.1 Simulation setup 

Table 4.1 shows the setup parameters for the simulations presented in this 

subsection. The simulation batch consisted of 19 spiral flight paths with the same effective 

tomographic aperture (𝐵⊥), mean height (𝑧0) and mean radius (𝜌0). Thus, the midpoint look-

angle (𝜓0) and the mean distance (𝑅0) were kept constant. On the other hand, the tilt angle (𝛽) 

varied from 0° to 90° in increments of 5°; thus, the angle 𝛽 − 𝜓0 also varied. Therefore, to keep 

𝐵⊥ constant, the tomographic aperture (𝐵) had to be adjusted according to (4.51). The number 

of turns was also kept constant. In addition, it should be noted that the overall speed replaced 

the tangential speed (𝑉0) in equations (4.36-4.40) because the radial and vertical components 

of speed are much smaller than the tangential component. 

Table 4.1 - Parameters of the simulation batch with constant 𝐵⊥. 

Parameter Values Units 

Flight paths 

𝐵⊥ Effective tomographic aperture 50 m 

𝑧0 Mean height 95 m 

𝜌0 Mean radius 135 m 

𝛽 Tilt angle [0, 90] degrees 

Δ𝛽 Tilt angle increment 5 degrees 

𝑁𝑡 Number of turns 10 - 

𝑉0 Drone speed 7.5 m/s 

Radar 

𝜆 Wavelength 70.54 cm 

𝑊 Bandwidth after range compression 20 MHz 

∆𝑡 Pulse repetition interval 6.6 ms 

Δ𝑟 Range sampling interval 2.456 m 

FFBP setup 

 Number of voxels at the output image 81 × 81 × 36 - 

 Output image resolution 5 × 5 × 30 cm³ 

 

Output image center 

(0, 0, 0) m 

(𝑥𝑡, 0, 0) (20, 0, 0) m 

 (40, 0, 0) m 

𝐿 
Subapertures combined at each 

recursion 
3 - 

 First split into image blocks 1 × 1 × 1 - 

 

Figure 4.12 shows two flight paths from the simulation batch. The first (blue) is a 

conical spiral for which 𝛽 = 𝜓0, thus 𝐵 = 𝐵⊥. The second (yellow) represents the state-of-the-
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art: a cylindrical spiral. Figure 4.12(c) indicates that 𝐵 is about 60 m for the cylindrical spiral 

flight path, 20% longer than 𝐵⊥. Such a long tomographic aperture would become an issue in 

real life since the flight path would not comply with the flight ceiling requirement, which must 

be kept below 120 m. 

 

(a) 

 

(b) 

 

(c) 

Figure 4.12 – Spiral flight paths with the same 𝐵⊥: (a) the conical spiral with 𝐵 = 𝐵⊥ (𝛽 = 55°); (b) the 

cylindrical spiral (𝛽 = 90°); (c) a comparison of the two flight paths. There are three isotropic targets in 

the scene, at 𝑥𝑡 = {0, 20, 40} m. 

The simulation batch considered a drone operating in P-band, using parameters 

from a real-life drone-borne SAR system (see Table 3.6). It is worth noting that, although the 

chirp bandwidth is 50 MHz, the bandwidth after range compression (𝑊) is 40% of this value 

(20 MHz) due to the Hamming window (see Subsection 2.2.2). The simulations also took into 

account the two-way path loss of radar systems (2.6). 

Furthermore, the simulation batch considered three isotropic targets in the scene, 

each placed on the positive 𝑥-axis, at 𝑥𝑡 = {0, 20, 40} m, as shown in Figure 4.12. There was 
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only one raw radar data for each flight path, but the volumes around each target were processed 

separately. Each output image is 4.05 × 4.05 × 10.8 m³. Due to their small volume, splitting 

them into image blocks was unnecessary. Finally, the FFBP was set up with 𝐿 = 3 subapertures 

combined at each recursion.  

4.3.2.2 Simulation results 

Figure 4.13 shows the resolutions in space for each target against the tilt angle (𝛽). 

Note that all the resolution curves are nearly constant, whether ground (𝛿𝑥 and 𝛿𝑦) or vertical 

(𝛿𝑧). Recall that the vertical resolution depends on 𝐵⊥, 𝑊, 𝜆, 𝑅0 and 𝜓0 (4.25-4.27). Because 

all these values were kept constant, a constant vertical resolution was expected, as indicated by 

the theoretical value curve in Figure 4.13(c). 

 

(a) 

 

(c) 

 

(b) 

Figure 4.13 – Resolutions in space against 𝛽  for the simulation batch with constant 𝐵⊥ : ground 

resolutions, (a) 𝛿𝑥 and (b) 𝛿𝑦; (c) vertical resolution (𝛿𝑧). 

Because the ground resolution does not depend on the bandwidth, it is not affected 

by the wavenumber shift. Therefore, the theoretical value curves in Figure 4.13(a,b) correspond 

to the ground resolution of a singular flight path, determined by the mean radius (𝜌0) and the 

mean height (𝑧0). Recall that the ground resolution depends on 𝜆 and 𝜓0 (4.4). Once again, the 

expected result was a constant ground resolution because these values were kept constant. 
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In Figure 4.13(b), 𝛿𝑦 is almost identical for all three targets. On the other hand, in 

Figure 4.13(a,c), as the target moves away from the center, 𝛿𝑥 worsens, but 𝛿𝑧 improves. This 

behavior suggests that the radar positions closer to the target have a greater impact on the 

resolution. To make this statement clearer, consider the equivalent look-angle (�̃�0) and the 

equivalent bandwidth (�̃�) below: 

 
�̃�0 = tan−1 (

𝜌0 − |𝑥𝑡|

𝑧0
) (4.52) 

 
�̃� =

𝑊𝑧
cos(𝜓0)

 (4.53) 

where 𝑊𝑧 is the effective bandwidth in the vertical direction (4.25). Suppose we calculate the 

theoretic values of 𝛿𝑥 and 𝛿𝑧 considering a single circle flight path, with look-angle �̃�0 and 

bandwidth �̃� (4.4,4.5). In that case, the RMSE will improve, as shown in Table 4.2. Note that 

for 𝑥𝑡 = 0 m, �̃�0 = 𝜓0. 

Table 4.2 – RMSE for the simulation batch with constant 𝐵⊥, with and without considering the near-

range influence.  

Target 

Theoretical values  

with �̃�𝟎 
RMSE with 𝝍𝟎 RMSE with �̃�𝟎 

𝜹𝒙 [cm] 𝜹𝒛 [m] 𝒙 [cm] 𝒚 [cm] 𝒛 [m] 𝒙 [cm] 𝒛 [m] 

𝒙𝒕 = 0 m 15.46 1.21 0.36 0.36 0.05 0.36 0.05 

𝒙𝒕 = 20 m 16.40 1.09 0.68 0.46 0.10 0.26 0.02 

𝒙𝒕 = 40 m 17.88 0.98 1.92 0.75 0.33 0.50 0.11 

 

At first glance, path loss seems to be behind the behavior described above. 

However, it also occurs when path loss is not taken into account. Therefore, the explanation 

may lie elsewhere: the phase contributions from near-range and far-range are different because 

the sensitivity to a change in target position is not the same. 

On the other hand, path loss affects the amplitude of the output image. Figure 4.14 

shows the normalized amplitude at the 𝑧-axis, comparing the response of each target obtained 

with the two flight paths in Figure 4.12. All curves in Figure 4.14 were normalized to the same 

maximum value, corresponding to the outermost target and the cylindrical flight path. In 

addition, these curves were upsampled with a factor of 10. 
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      (a) 

 

      (b) 

 

      (c) 

Figure 4.14 – Normalized amplitude at the 𝑧-axis for two flight paths of the simulation batch with 

constant 𝐵⊥: the conical spiral with 𝐵 = 𝐵⊥ (𝛽 = 55°) and the cylindrical spiral (𝛽 = 90°). Each panel 

corresponds to the response of a different target: (a) 𝑥𝑡 = 0 m; (b) 𝑥𝑡 = 20 m; (c) 𝑥𝑡 = 40 m. 

Note that the amplitude increases as the target moves away from the center. Also, 

note that the sidelobes are stronger for the target at 𝑥𝑡 = 0 m. The most probable reason is that 

this target is right at the spiral flight path axis. Close to the center, the distance variation between 

the radar and the target is smaller, leading to the constructive sum of different contributions.  

Furthermore, the two flight paths produce similar results, even though the response is slightly 

stronger for the cylindrical flight path.  

Figure 4.15 shows the -3 dB (red) and the -13 dB (yellow) isosurfaces for the target 

at the center, comparing the responses of the two flight paths in Figure 4.12. The values in dB 

were calculated using the maximum amplitude of each volume as a reference. Note how similar 

the two responses are. Again, this similarity is expected because both cases have the same 𝐵⊥, 

𝑊, 𝜆, 𝑅0 and 𝜓0. 

Figure 4.16 shows the same isosurfaces for the flight path with 𝛽 = 55°, comparing 

the responses of each target. Note that the response is upright for the target at 𝑥𝑡 = 0 m and 

becomes increasingly tilted as the target moves away from the center. The sidelobes tend to 

spread in the LOS direction, and the main lobe approaches the direction perpendicular to the 

LOS. Also, note that the centers of the volumetric images always appear at the correct positions 

despite this tilting. This result is yet another evidence of the radar positions at near-range 

exerting more influence over the output image. 
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(a) 

 

(b) 

Figure 4.15 – Output images for the target at 𝑥𝑡 =  0 m, obtained with two flight paths from the 

simulation batch with constant 𝐵⊥: (a) the conical spiral with 𝐵 = 𝐵⊥ (𝛽 = 55°); (b) the cylindrical 

spiral (𝛽 = 90°). The -3 dB isosurfaces are opaque red, and the -13 dB isosurfaces are translucent 

yellow. 

 

     (a) 

 

    (b) 

 

     (c) 

Figure 4.16 – Output images obtained with the conical spiral flight path for which 𝐵 = 𝐵⊥ (𝛽 = 55°). 

The -3 dB isosurfaces are opaque red, and the -13 dB isosurfaces are translucent yellow. Each panel 

corresponds to the response of a different target: (a) 𝑥𝑡 = 0 m; (b) 𝑥𝑡 = 20 m; (c) 𝑥𝑡 = 40 m. 
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4.3.3 The Effect of Tilt Angle 

The last subsection showed that conical and cylindrical flight paths could produce 

similar results with the same effective tomographic aperture (𝐵⊥). However, the tomographic 

aperture (𝐵) of the cylindrical flight path was about 20% longer than the conical flight path 

with 𝐵 = 𝐵⊥. This subsection will explore what happens when we keep 𝐵 constant and vary 

the tilt angle (𝛽) to demonstrate that conical flight paths perform better than cylindrical flight 

paths under those conditions. 

4.3.3.1 Simulation setup 

Table 4.3 shows the setup parameters that changed from those in Table 4.1. The 

simulation batch consisted of 36 spiral flight paths with the same three isotropic targets as 

before, located at 𝑥𝑡 = {0, 20, 40} m. Figure 4.17 compares the conical spiral flight path for 

which 𝐵 = 𝐵⊥ (blue), and the cylindrical spiral flight path (yellow). 

Table 4.3 – Parameters of the simulation batch with constant 𝐵. 

Parameter Values Units 

𝐵 Tomographic aperture length 50 m 

𝛽 Tilt angle [0, 175] degrees 

Δ𝛽 Tilt angle increment 5 degrees 

 

 

Figure 4.17 – Spiral flight paths with the same 𝐵: the conical spiral with 𝐵 = 𝐵⊥ (𝛽 = 55°) and the 

cylindrical spiral (𝛽 = 90°). 
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Figure 4.18 shows another flight path of interest from this simulation batch. It is the 

conical spiral flight path for which 𝐵 is aligned with the LOS direction, i.e., 𝛽 = 𝜓0 + 90°. The 

blue flight path in Figure 4.17 is the opposite case: because 𝐵 = 𝐵⊥, it is perpendicular to the 

LOS. 

 

(a) 

 

(b) 

Figure 4.18 – The conical spiral flight path for which 𝐵 is aligned with the LOS direction (𝛽 = 145°). 

4.3.3.2 Simulation results 

 

(a) 

 

(c) 

 

(b) 

 

(d) 

Figure 4.19 – Simulated and theoretical ground resolution against 𝛽  for the simulation batch with 

constant 𝐵: 𝛿𝑥  for the target at (a) 𝑥𝑡 = 0 m, (b) 𝑥𝑡 = 20 m, and (c) 𝑥𝑡 = 40 m; (d) 𝛿𝑦  for all three 

targets. 
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Figure 4.19 shows the ground resolution (𝛿𝑥 and 𝛿𝑦) for the three isotropic targets 

against the tilt angle (𝛽). Like in the last subsection, the curves are nearly constant because the 

parameters that impact 𝛿𝑥 and 𝛿𝑦 were kept constant. Once again, the radar positions at the 

near-range have more influence over the output resolution than those at the far-range. However, 

since the targets are located at the 𝑥 -axis, the dynamic between near-range and far-range 

influence is not pronounced for 𝛿𝑦. Therefore, only one theoretical value was calculated for 𝛿𝑦 

(see Figure 4.19(d)).  

On the other hand, three different theoretical values were calculated for 𝛿𝑥 , as 

shown in Figure 4.19(a-c). The theoretical values for the off-center targets were obtained using 

the equivalent look-angle (4.52). This approach provides a good 𝛿𝑥 estimate for all 𝛽. 

Figure 4.20 shows the vertical resolution (𝛿𝑧) for the three isotropic targets as a 

function of 𝛽. Unlike before, 𝛿𝑧 varies significantly with 𝛽, even more so for the target at the 

center. For instance, in Figure 4.20(a), the simulated 𝛿𝑧 varies from 1.25 m to 7.00 m. 

 

        (a) 

 

        (b) 

 

        (c) 

Figure 4.20 – Simulated and theoretical 𝛿𝑧 against 𝛽 for the simulation batch with constant 𝐵. Each 

panel corresponds to the target at: (a) 𝑥𝑡 = 0 m; (b) 𝑥𝑡 = 20 m; (c) 𝑥𝑡 = 40 m. 

The best 𝛿𝑧  occurs when 𝐵  is perpendicular to the LOS direction (𝛽 = 𝜓0 ), 

represented by the blue flight path in Figure 4.17. Conversely, the worst vertical resolution 

occurs when 𝐵  is aligned with the LOS direction (𝛽 = 𝜓0 + 90°), such as the flight path 

depicted in Figure 4.18. In that case, the theoretical 𝛿𝑧 becomes equal to that of a single circle 

flight path because, in theory, the vertical spectral shift (4.26) is null. In reality, however, the 
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wavenumber shift will still occur even if the tomographic aperture is aligned with the LOS 

direction.  

The wavenumber shift will be more pronounced as the target moves away from the 

center. That is why the simulated curves in Figure 4.20(b,c) have much softer peaks than the 

theoretical curves. In Figure 4.20(b), the simulated 𝛿𝑧 varies from 1.12 m (𝛽 = 55°) to 2.06 m 

(𝛽 = 140°). In Figure 4.20(c), the simulated 𝛿𝑧 varies from 0.88 m (𝛽 = 50°) to 1.12 m (𝛽 = 

135°). Note that the minimum and maximum values are slightly shifted to the left compared to 

Figure 4.20(a). 

Once more, the radar positions at near-range exert more influence over the vertical 

resolution. That is why the theoretical curves of Figure 4.20(b,c) were determined using the 

equivalent bandwidth (4.53) and the equivalent look-angle (4.52). This approach provides a 

reasonable estimate when 𝛽 is close to 𝜓0. Meanwhile, in Figure 4.20(a), the theoretical curve 

matches the simulated curve well for all 𝛽, except at the peak. Table 4.4 presents two sets of 

RMSE values for 𝛿𝑧: one taking all 𝛽 into account; one for 30° ≤ 𝛽 ≤ 90°. 

Table 4.4 – RMSE for the simulation batch with constant 𝐵, considering the near-range influence. 

Target 

RMSE 

𝒙 [cm] 𝒚 [cm] 
𝒛 [m]  

∀𝛽 30° ≤ 𝛽 ≤ 90° 

𝒙𝒕 = 0 m 0.25 0.27 0.04 0.05 

𝒙𝒕 = 20 m 0.36 0.38 0.80 0.01 

𝒙𝒕 = 40 m 0.54 0.69 1.07 0.13 

 

Figure 4.21 shows the normalized magnitude in dB at the 𝑧-axis for each target, 

comparing the responses for the three flight paths in Figure 4.17 and Figure 4.18. All curves in 

Figure 4.21 used the same reference value: the maximum amplitude obtained by the cylindrical 

flight path at the outermost target. Also, the curves were upsampled with a factor of 10. 

Note that the resolution disparity decreases as the target moves away from the 

center, which is consistent with Figure 4.20. Nevertheless, the main lobe is always the narrowest 

for the conical flight path perpendicular to the LOS direction. On the other hand, the flight path 

aligned with the LOS direction has the worst performance in vertical resolution and PSLR. For 

the target at the center, this flight path has such a coarse vertical resolution that the main lobe 

is not fully contained within the imaged volume. 
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     (a) 

 

     (b) 

 

     (c) 

Figure 4.21 – Normalized magnitude in dB at the 𝑧-axis for three flight paths of the simulation batch 

with constant 𝐵: the conical spiral perpendicular to the LOS direction (𝛽 = 55°); the cylindrical spiral 

(𝛽 = 90°); the conical spiral aligned with the LOS direction (𝛽 = 145°). Each panel corresponds to the 

response of a different target: (a) 𝑥𝑡 = 0 m; (b) 𝑥𝑡 = 20 m; (c) 𝑥𝑡 = 40 m. 

 

(a) 

 

(b) 

Figure 4.22 – Output images for the target at 𝑥𝑡 =  0 m, obtained with two flight paths from the 

simulation batch with constant 𝐵: (a) the conical spiral perpendicular to the LOS direction (𝛽 = 55°) 

and (b) the cylindrical spiral (𝛽 = 90°). The -3 dB isosurfaces are opaque red, and the -13 dB isosurfaces 

are translucent yellow. 
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Figure 4.22 compares the responses of the conical flight path perpendicular to the 

LOS direction and the cylindrical flight path (see Figure 4.17), showing the -3 dB (red) and the 

-13 dB (yellow) isosurfaces for the target at the center. Again, the dB magnitudes were 

calculated using the peak amplitude of each volume as a reference. Comparing the volumes 

enclosed by the isosurfaces, the volume in Figure 4.22 (b) is the tallest, but their widths are 

about the same. This result is consistent with Figure 4.19 and Figure 4.20. 

4.3.4 Spiral SAR vs. Multi-Circular SAR 

This subsection shall investigate the hypothesis from Subsection 4.2.2.2 that Spiral 

SAR might not be affected by decorrelation issues when working with isotropic targets. We 

shall compare the performance of spiral flight paths with different numbers of turns with their 

equivalent multi-circular flight paths. Recall that a flight path with 𝑁𝑡 + 1 circular tracks has 

the same sampling distance as a spiral flight path with 𝑁𝑡 turns. 

4.3.4.1 Simulation setup 

This simulation batch took the spiral flight path with 𝐵 = 𝐵⊥ from the two previous 

batches, varying the number of turns (𝑁𝑡). In addition, it only took the target at the center into 

account. Table 4.5 shows the parameters that changed compared to Table 4.1. 

Table 4.5 – Parameters of the simulation batch investigating the number of turns/tracks. 

Parameter Values Units 

Flight path 
𝛽 Tilt angle 55 degrees 

𝑁𝑡 Number of turns {2, 4, 6, 8, 10} - 

FFBP setup 

 Number of voxels at the output image 81 × 81 × 81 - 

(𝑥𝑡, 0, 0) Output image center (0, 0, 0) m 

 First split into image blocks 1 × 1 × 3 - 

 

4.3.4.2 Simulation results 

The critical sampling distance for this simulation batch was already calculated in 

Subsection 4.2.2.2; it is ∆𝐵⊥,𝑐 = 5.4 m. Therefore, since 𝐵⊥ = 50 m, the only case in this 

simulation batch for which the effective sampling distance (∆𝐵⊥) is below the critical value is 

𝑁𝑡 = 10. Figure 4.23 shows the wavenumber domain for the minimum and maximum 𝑁𝑡. Note 

that, because the gaps were practically closed, Figure 4.23(c) and Figure 4.23(d) are much more 
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similar to each other than Figure 4.23(a) and Figure 4.23(b). Indeed, as 𝑁𝑡 increases, the degree 

of coherence increases between a spiral flight path and its equivalent multi-circular flight path 

(see Figure 4.24). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.23 – Wavenumber domain for (a,c) Multi-Circular SAR acquisitions and (b,d) Spiral SAR 

acquisitions with (a,b) 𝑁𝑡 = 2, and (c,d) 𝑁𝑡 = 10. 

 

Figure 4.24 – Degree of coherence against 𝑁𝑡 between a spiral flight path and its equivalent multi-

circular flight path. 

As 𝑁𝑡 increases, more data are integrated onto each image voxel, so the amplitude 

of the main lobe increases. Therefore, to compare the performance for different values of 𝑁𝑡, 

the amplitude of each output image was divided by the number of turns or tracks, depending on 

the type of acquisition. Figure 4.25 shows the 𝑧-axis response for Multi-Circular SAR and 

Spiral SAR with different numbers of tracks and turns. Note that the Spiral SAR responses 

converge much faster than the Multi-Circular SAR responses. 
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(a) 

 

(b) 

Figure 4.25 – Normalized amplitude at the 𝑧-axis for the simulation batch with variable 𝑁𝑡: (a) Multi-

Circular SAR and (b) Spiral SAR. Each panel shows the entire image height. 

Figure 4.26 highlights the main lobe of the 𝑧-axis response. Note that, for Spiral 

SAR, 𝑁𝑡 does not affect the vertical resolution. On the other hand, for Multi-Circular SAR, it 

does. Although it may seem that the flight path with three circular tracks performs better 

because it has the narrowest main lobe, this same flight path has the strongest side lobes and 

the shortest height of ambiguity, 𝑧2𝜋 = 1.9 m, calculated according to (4.32).  

 

(a) 

 

(b) 

Figure 4.26 – Normalized amplitude at the 𝑧-axis for the simulation batch with variable 𝑁𝑡: (a) Multi-

Circular SAR and (b) Spiral SAR. Each panel shows only the main lobe. 

Figure 4.27 and Figure 4.28 show -20 dB isosurfaces of output images produced 

with different 𝑁𝑡 by Multi-Circular SAR and Spiral SAR, respectively. Note that when 𝑁𝑡 = 4, 

the main response resembles the one obtained with 𝑁𝑡 = 10, but we can see a phantom at about 
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𝑧 = 5 m (see Figure 4.27(b,c) and Figure 4.28(b,c)). When 𝑁𝑡 = 2, both output images are 

distorted by artifacts (see Figure 4.27(a) and Figure 4.28(a)). This result is probably due to the 

height of ambiguity being too short to the point of the phantoms interfering with the primary 

response. If the cause were decorrelation, the output would resemble the response of a singular 

circular flight path, as noted in [26]. However, that does not seem to be the case since the output 

of a singular circular flight path has an hourglass shape. 

 
(a) 

 
(b) 

 
(c) 

Figure 4.27 - Output images produced by multi-circular flight paths with (a) 3 tracks (𝑁𝑡 = 2), (b) 5 

tracks (𝑁𝑡 = 4), and (c) 11 tracks (𝑁𝑡 = 10). The -20 dB isosurfaces are opaque green. 

Finally, Table 4.6 shows the simulated flight times for the different configurations 

in this simulation batch. On average, Spiral SAR was 1 min 56 s faster than Multi-Circular 

SAR. That difference is significant because the drone’s autonomy is quite limited (less than 20 

min depending on the payload [61]). The advantage of a lower flight time is clearer for the 

scenario with 𝑁𝑡 = 10. In that case, the flight time surpasses 20 min for Multi-Circular SAR 

but is kept below that threshold for Spiral SAR. 
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(a) 

 
(b) 

 
(c) 

Figure 4.28 – Output images produced by spiral flight paths with (a) 2 turns (𝑁𝑡 = 2), (b) 4 turns (𝑁𝑡 = 

4), and (c) 10 turns (𝑁𝑡 = 10). The -20 dB isosurfaces are opaque green. 

Table 4.6 – Simulated flight time for Multi-Circular SAR and Spiral SAR with different 𝑁𝑡. 

SAR Type 
Simulated Flight Time 

𝑵𝒕 = 2 𝑵𝒕 = 4 𝑵𝒕 = 6 𝑵𝒕 = 8 𝑵𝒕 = 10 

Multi-Circular 5 min 39 s 9 min 25 s 13 min 12 s 16 min 58 20 min 44 s 

Spiral 3 min 45 s 7 min 31 s 11 min 16 s 15 min 1 s 18 min 47 s 

 

4.3.5 Discussion 

This section demonstrated that conical flight paths could perform better than 

cylindrical flight paths, depending on the tilt angle. The best-case scenario occurs when the 

tomographic aperture is perpendicular to the LOS direction. Conversely, the worst-case 

scenario occurs when the tomographic aperture is aligned with the LOS direction. This section 

also confirmed that the vertical resolution is a function of the effective tomographic aperture. 
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Therefore, a cylindrical flight path could match the performance of the best-case scenario if we 

increased the height difference between the top and base of the spiral. However, that could 

become an issue when working with drones due to the low flight ceiling required for most 

operations. 

Furthermore, this section validated the vertical resolution equation (4.25-4.27) 

proposed in Section 4.2. It worked well for a target at the center, producing low RMSE values. 

In addition, this section offered a method for estimating the ground and vertical resolutions for 

off-center targets. This method came about after observing that near-range radar positions have 

more influence over the output result. It provided good estimations, with low RMSE, for tilt 

angles close to the midpoint look-angle. 

Moreover, this section showed that the advantage of Spiral SAR over Multi-

Circular SAR is twofold: Spiral SAR converges faster to a satisfactory response as the number 

of turns increases; Spiral SAR requires lower flight times. When combining those two 

advantages, Spiral SAR becomes a powerful tool for working with limited autonomy drones.  

On the other hand, the hypothesis that decorrelation does not affect Spiral SAR 

performance could not be confirmed. Because the simulations mimicked a drone operating on 

the P-band, the dimensions of the problem were too small to reproduce a scenario where 

decorrelation might occur. Indeed, Ponce et al. [26] observed decorrelation for an aircraft 

operating on the L-band and a spacing of over 100 m between tracks. With that in mind, the 

hypothesis needs further investigation. 

The results in this section comprised 63 different flight paths and 172 3D SAR 

images in total. If not for the FFBP algorithm, these analyses would have been impractical. 

Moreover, to the best of the author’s knowledge, this is the first study that investigated the 

effect of geometric parameters on the output image. Sego et al. [17] had studied different kinds 

of spiral flight paths, but with only one configuration for each kind.  
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4.4 FLIGHT PATH DESIGN 

Section 4.2 presented expression (4.27) for calculating the vertical resolution of 

spiral flight paths. Section 4.3 validated that expression and further investigated the 

performance of spiral flight paths using simulation results. This section provides a methodology 

for designing a spiral flight path that uses expression (4.27) and has two main components: 

design constraints and a trade-off. The methodology is an original contribution from the author. 

In addition, this section presents processing results from actual SAR data to verify 

the proposed trade-off. The SAR data were processed with the FFBP algorithm (see Section 

3.2) on an Intel(R) Core(TM) i7-7700 CPU (3.60 GHz) with 64 GB RAM. 

4.4.1 Design Constraints 

When designing a spiral flight path for any drone-borne SAR system, the primary 

constraints are the maximum and minimum height, the drone’s speed and autonomy, and the 

area constantly illuminated by the radar. The maximum height, or flight ceiling, is stipulated 

by aviation regulation agencies and is 120 m (400 ft) for most operations [58]–[60], as 

mentioned previously in Section 4.3. The minimum height might be adjusted according to a tall 

construction in the scene, or it can simply be arbitrary. For the drone-borne SAR system of 

Section 1.1, the maximum speed is 18 m/s with no wind, and the autonomy is less than 20 min 

with a full payload [61]. However, the flight path design should consider a margin for these 

constraints. The speed margin is to obtain high-quality images – the slower the drone flies, the 

better the output image quality. The autonomy margin is for performing ground operations 

before and after the flight. 

The autonomy provides an upper bound for the number of turns in the spiral flight 

path. In addition, the critical sampling distance could determine a lower bound (see Subsection 

4.2.2.2). The purpose of the lower bound would be to avoid decorrelation, but this effect needs 

further investigation (see Subsection 4.3.4).  

The last constraint is the area constantly illuminated by the radar, which is 

determined by the flight path. Let the radius of constant illumination (𝜌𝑐𝑖) be the radius of the 

area always seen by the radar throughout the flight path. Then, 𝜌𝑐𝑖 is defined by two limiting 

conditions: the maximum radius (𝜌𝑚𝑎𝑥) with the minimum height (𝑧𝑚𝑖𝑛) at the base of the flight 

path; the minimum radius (𝜌𝑚𝑖𝑛) with the maximum height (𝑧𝑚𝑎𝑥) at the top of the flight path.  
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Figure 4.29 illustrates the first condition, which results in the following expressions: 

 𝜌𝑐𝑖
𝑏𝑎𝑠𝑒 ≤

𝑧𝑚𝑖𝑛

tan(𝜃𝑓𝑎𝑟)
− 𝜌𝑚𝑎𝑥 (4.54) 

 
𝜃𝑓𝑎𝑟 = 𝜃𝑎𝑥𝑖𝑠 −

𝜃3𝑑𝐵
2

 (4.55) 

where 𝜃𝑓𝑎𝑟 is the far-range depression angle, 𝜃𝑎𝑥𝑖𝑠 is the depression angle of the antenna axis, 

and 𝜃3𝑑𝐵 is the antenna elevation beamwidth. 

 

Figure 4.29 – The first limiting condition for calculating the radius of constant illumination: the 

maximum radius (𝜌𝑚𝑎𝑥) and the minimum height (𝑧𝑚𝑖𝑛) at the base of the flight path. 

Figure 4.30 shows the second condition, which produces the expressions: 

 𝜌𝑐𝑖
𝑡𝑜𝑝 ≤ 𝜌𝑚𝑖𝑛 − 𝑧𝑚𝑎𝑥 tan(𝜃𝑛𝑒𝑎𝑟) (4.56) 

 
𝜃𝑛𝑒𝑎𝑟 = 90° − 𝜃𝑎𝑥𝑖𝑠 −

𝜃3𝑑𝐵
2

 (4.57) 

where 𝜃𝑛𝑒𝑎𝑟 is the near-range look-angle. 

Finally, the radius of constant illumination is given by: 

 𝜌𝑐𝑖 = min(𝜌𝑐𝑖
𝑏𝑎𝑠𝑒 , 𝜌𝑐𝑖

𝑡𝑜𝑝) (4.58) 

4.4.2 The Trade-Off 

In Subsection 4.3.2.2, it was implied that there is a trade-off between vertical and 

ground resolutions. This trade-off is made clear by the dependence of sine and cosine in 

equations (4.4) and (4.5). Likewise, this subsection shall present another trade-off between the 
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vertical resolution (𝛿𝑧) and the radius of constant illumination (𝜌𝑐𝑖). This trade-off must be 

taken into account when designing spiral flight paths for drones. 

 

Figure 4.30 – The second limiting condition for calculating the radius of constant illumination: the 

minimum radius (𝜌𝑚𝑖𝑛) and the maximum height (𝑧𝑚𝑎𝑥) at the top of the flight path. 

From the last subsection, we know that the minimum and maximum heights (𝑧𝑚𝑖𝑛 

and 𝑧𝑚𝑎𝑥) are two of the main design constraints. Suppose we fix these two quantities and 

choose an arbitrary value for the maximum radius (𝜌𝑚𝑎𝑥). Also, suppose we vary the minimum 

radius (𝜌𝑚𝑖𝑛) by making: 

 𝜌𝑚𝑖𝑛 = 𝜌𝑚𝑎𝑥 − ∆𝜌 (4.59) 

where ∆𝜌 is the radius variation. Then, the trade-off will be made clear when we plot 𝛿𝑧 against 

𝜌𝑐𝑖, as shown in Figure 4.31: 𝛿𝑧 improves (decreases) as 𝜌𝑐𝑖 declines. 

Figure 4.31 was drawn using 𝑧𝑚𝑎𝑥 = 114 m, 𝑧𝑚𝑖𝑛 = 84 m and 𝜌𝑚𝑎𝑥 = 118.5 m. 

Also, ∆𝜌 varied from 0 to 60 m in increments of 1 m, with ∆𝜌 = 0 m corresponding to the 

cylindrical flight path (green square) at the right end of the curve. As ∆𝜌  increases, the 

tomographic aperture (𝐵) increases, making both 𝛿𝑧 and 𝜌𝑐𝑖 decrease. What limited 𝜌𝑐𝑖 was the 

near-range look-angle, equal to 𝜃𝑛𝑒𝑎𝑟 =  22.2° for the P-band antenna. The tomographic 

aperture was 𝐵 = 30 m for the cylindrical flight path, 𝐵 = 36.6 m for the conical flight path 

with 𝛽 = 55° (yellow circle) and 𝐵 = 60 m for the conical flight path with 𝛽 = 30° (blue 

triangle). 
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Figure 4.31 – Trade-off curve: 𝛿𝑧 × 𝜌𝑐𝑖 . Flight paths of interest: cylindrical spiral, 𝛽 = 90° (green 

square); conical spiral with 𝛽 = 55° (yellow circle); conical spiral with 𝛽 = 30° (blue triangle). 

In Figure 4.31, the conical flight path with 𝛽 = 55° provides a good compromise 

solution. From the cylindrical flight path to that point, 𝛿𝑧 improved 1.5 times as 𝜌𝑐𝑖 decreased 

1.4 times. On the other hand, when we compare the cylindrical flight path with the conical flight 

path with 𝛽 = 30°, 𝛿𝑧 improved 2.3 times as 𝜌𝑐𝑖 decreased 3.4 times. 

To generate different design alternatives, we could repeat this procedure for 

multiple values of 𝜌𝑚𝑎𝑥 or vary 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥. Then, we would choose the best option for each 

application, taking the trade-off between 𝛿𝑧 and 𝜌𝑐𝑖 into account.  

4.4.3 The Flight Campaign 

A flight campaign to compare different flight paths from Figure 4.31 took place in 

Paulínia, São Paulo, Brazil, on July 30, 2021. The drone-borne SAR system (see Section 1.1) 

flew over an experimental farm with different crops and performed the cylindrical flight path 

(see Figure 4.32) and the conical flight path with a tilt angle 𝛽 ≈ 55° (see Figure 4.33). 

In Figure 4.32 and Figure 4.33, note that the flight paths are not smooth spirals but 

sequences of line segments. The reason is the limited number of waypoints for programming 

the drone’s flight path. Consequently, the radius variation is not null for the cylindrical flight 

path but 5.6 m. Nevertheless, this radius variation is still quite different from the conical flight 

path, which equals 20.7 m. Note that this difference is quite evident in Figure 4.32 and Figure 

4.33.  
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Figure 4.32 – Google Earth picture of the cylindrical flight path over the imaged area. The white marker, 

the yellow line, and the red line respectively indicate the position of the quad-corner reflector, the flight 

path, and its projection on the ground. 

 

Figure 4.33 – Google Earth picture of the conical flight path over the imaged area. The white marker, 

the yellow line, and the red line respectively indicate the position of the quad-corner reflector, the flight 

path, and its projection on the ground. 
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Moreover, a quad-corner reflector was used to evaluate the performance of each 

flight path in terms of vertical resolution. A white marker indicates the reflector position in 

Figure 4.32 and Figure 4.33. The quad-corner reflector is made of four trihedral corner 

reflectors with sides of 50 cm, as depicted in Figure 4.34. 

 

Figure 4.34 – The quad-corner reflector and its dimensions 

Table 4.7 shows the parameters for both flight paths. The mean drone speed was 

determined after removing spurious values. 

Table 4.7 – Radar acquisition parameters and parameters of the spiral flight paths 

Parameter 
Spiral 

Units 
Cylindrical Conical 

Flight paths 

Minimum radius 112.6 98.1 m 

Maximum radius 118.2 118.8 m 

Minimum height 83.2 84.4 m 

Maximum height 114.3 113.0 m 

Number of turns 4 4 - 

Mean drone speed 6.94 6.85 m/s 

Number of radar root positions 67,355 63,457 - 

Radar 

Wavelength 70.54 cm 

Bandwidth before range compression 50 MHz 

Pulse repetition interval 6.642 ms 

Range sampling interval 2.456 m 
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4.4.4 The Digital Terrain Model (DTM) 

From Sections 2.4 and 3.2, the BP and FFBP algorithms require height information 

for each pixel/voxel of the imaged area/volume. Although SRTM data is freely available [28], 

it might not be accurate enough to obtain a well-focused image with BP and FFBP algorithms. 

Therefore, we can first process the SAR data using SRTM data and then apply one of the 

techniques in Section 4.1 to find a more refined digital terrain model (DTM). 

This section is divided into two steps: creating and validating the DTM. The first 

step requires a 3D image encompassing the whole scene. The second step needs 2D images to 

compare the performances of the SRTM data and the refined DTM. Table 4.8 provides the 

FFBP setup parameters for both steps. 

Table 4.8 – FFBP setup parameters for creating and validating the Digital Terrain Model (DTM). 

Parameter Values Units 

3D Image 

Output image dimensions 120 × 120 × 7.2 m³ 

Output image resolution 10 × 10 × 30 cm³ 

Output image center (0,0,0) m 

Subapertures combined at each recursion (𝐿) 4 - 

First split into image blocks 4 × 4 × 1 - 

2D Images 

Output image dimensions 100 × 100 m² 

Output image resolution 10 × 10 cm² 

Output image center (0,0,0) m 

Subapertures combined at each recursion (𝐿) 4 - 

First split into image blocks 4 × 4 × 1 - 

 

4.4.4.1 Creating the Digital Terrain Model 

The cylindrical flight path was chosen for building the DTM since it provides a 

greater coverage area than the conical flight path. First, a 3D image was processed with the 

FFBP algorithm using SRTM data. Next, the output 3D image was divided into 12 × 12 m² 

blocks. Then, each image block was separated into 2D layers, and the entropy was calculated 

layer by layer. Entropy is a measure of focus: the lower the entropy, the more focused the image 

is [23]. Therefore, the layer with the minimum entropy was chosen for each image block. 

Finally, the mean position of each chosen layer was calculated, and its coordinates were 

incorporated into the DTM. This process is illustrated in Figure 4.35. 
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(a) 

 

(b) 

 

(c) 

Figure 4.35 – Building the DTM: (a) 2D layers of a 12 × 12 m² image block; (b) the entropy of each 

layer, with the minimum value indicated by a yellow circle; (c) the layer with the minimum entropy, 

with its mean position indicated by a white triangle. 

4.4.4.2 Validating the Digital Terrain Model 

Figure 4.36 compares 2D images processed using: (a,c) SRTM data and (b,d) the 

refined DTM. Overall, the images produced with the DTM are sharper, especially where 

artificial objects are located, such as the quad-corner reflector at (-2, 25.4) m, a standard corner 

reflector at (15, -22) m, and a concrete structure at (-37.5, -34.5) m. In addition, the northwest 

crop is more focused, and the southeast crop has stronger contrast for the images produced with 

the DTM. The only exception is the crop in the center-east, which appears to lose contrast. 

Note how the quad-corner reflector is more focused on the images produced with 

the conical flight path (Figure 4.36(c,d)) than on the images produced with the cylindrical flight 

path (Figure 4.36(a,b)). In addition, two vehicles were on the scene during the conical flight 

path but not during the cylindrical flight path. They appear in Figure 4.36(c,d) at around (-10, -

45) and (-4, -40) m. 

Note how the conical flight path loses focus near the image corners, i.e., when the 

coordinates approach (𝑥, 𝑦) = (±50, ±50) m. This response confirms the expected behavior 

regarding the radius of constant illumination (𝜌𝑐𝑖). From Figure 4.31, 𝜌𝑐𝑖 should be 51 m for 

the conical flight path and 72 m for the cylindrical flight path. The results presented in Figure 

4.36 are consistent with these values since the distance from the image center to the image 

corners is 50√2 m (70.7 m). In addition, the limited number of waypoints makes the flight path 

radius vary for the cylindrical flight path (see Figure 4.32), which could slightly degrade 𝜌𝑐𝑖. 
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Because the radar cross-section of the quad-corner reflector is far superior to any 

other target, the amplitude of each image was saturated at a specific value before normalizing. 

The saturation value was equal to the mean amplitude plus ten times the standard deviation of 

each image. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.36 – Output 2D images for the SAR data acquired with (a,b) a cylindrical flight path; (c,d) a 

conical flight path. The SAR data were processed using: (a,c) SRTM data; (b,d) the refined DTM. 

4.4.5 Output Resolution 

The last subsection confirmed that the conical flight path has a smaller radius of 

constant illumination than the cylindrical flight path. Nevertheless, we still need to verify the 
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vertical resolution to validate the trade-off presented in Subsection 4.4.2. For that purpose, 3D 

images enclosing the quad-corner reflector were processed with the FFBP algorithm. Table 4.9 

shows the FFBP setup parameters. 

Table 4.9 – FFBP setup parameters for the images encompassing the quad-corner reflector. 

Parameter Values Units 

Output image dimensions 6.4 × 6.4 × 6.4 m³ 

Output image resolution 10 × 10 × 10 cm³ 

Output image center (-2, 25.5, 0) m 

Subapertures combined at each recursion (𝐿) 4 - 

First split into image blocks 1 × 1 × 1 - 

 

The quad-corner reflector is neither an isotropic nor an omnidirectional target. 

Although its coverage is nearly 360°, its echo pattern has angles of maximum and minimum 

response [62], [63]. As a consequence, this amplitude modulation produces unwanted artifacts. 

Figure 4.37 shows the -3dB isosurfaces for the cylindrical and the conical flight paths. Since 

the quad-corner reflector is located at (-2, 25.4) m, an ideal response would contain only the 

main lobe found at that position. 

 

(a) 

 

(b) 

Figure 4.37 – Output 3D images for the quad-corner reflector with unwanted artifacts. The SAR data 

were acquired with: (a) the cylindrical flight path; (b) the conical flight path. The red curves are -3dB 

isosurfaces. 
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Thankfully this effect can be compensated by equalizing the input SAR data. First, 

data corresponding to the quad-corner reflector was determined for each radar position, using 

a nearest-neighbor interpolation to find the respective range bins. Then, the resulting signal was 

filtered using two moving averages with sliding windows of lengths 31 and 551 pixels. Next, 

each column of the SAR data matrix was divided by the filtered signal through a point-by-point 

division. Finally, the equalized SAR data were processed with the FFBP algorithm using the 

same setup parameters (see Table 4.9). Figure 4.38 shows the output 3D images after 

equalization. Admittedly, the equalizing function could be polished further, but the 

improvement was already significant. 

Note how the responses of both Figure 4.37 and Figure 4.38 are slightly tilted. This 

effect is consistent with the simulation results presented in Subsection 4.3.2 (see Figure 4.16). 

 

(a) 

 

(b) 

Figure 4.38 – Output 3D images for the quad-corner reflector after equalizing the SAR data for removing 

unwanted artifacts. The SAR data were acquired with: (a) the cylindrical flight path; (b) the conical 

flight path. The red curves represent -3dB isosurfaces. 



156 

 

Figure 4.38 exposes the difference in vertical resolution between the two flight 

paths, making it clear that the conical flight path performed better than the cylindrical in this 

respect. The vertical resolutions were 1.76 m for the conical flight path and 2.33 m for the 

cylindrical. Because the quad-corner is not an isotropic target, these values differ from the 

theoretical ones (see Table 4.10). However, the ratio between the cylindrical and conical 

resolutions is almost the same in each case: 1.32 for the actual values; 1.30 for the theoretical 

values considering a target at the center; 1.25 for the theoretical values considering a target at 

(-2, 25.4) m. Therefore, the results confirm the expected relative performance of the flight paths 

regarding vertical resolution. Thus, we can validate the trade-off proposed in Subsection 4.4.2. 

Furthermore, the results confirm the expected ground resolutions, as shown in Table 

4.10. Note that the actual values of 𝛿𝑦 are closer to the theoretical values calculated for a target 

at the center than for a target at (-2, 25.4) m. Either this result is a side effect of equalizing the 

SAR data, or the near-range effect is not as expressive in actual data. A more conclusive answer 

would require further investigation. 

Table 4.10 – Resolutions in space for each flight path, comparing the actual and theoretical values 

calculated for a target at the center (0, 0) m and a target at (-2, 25.4) m. 

Resolution 

Cylindrical Flight Path Conical Flight Path 

Theoretical Value Actual 

Value 

Theoretical value Actual 

Value (0, 0) (-2, 25.4) (0, 0) (-2, 25.4) 

𝜹𝒙 [cm] 
16.6 

16.8 16.6 
17.1 

17.3 17.3 

𝜹𝒚 [cm] 18.8  17.4 19.6 17.1 

𝜹𝒛 [m] 1.98 1.68 2.33 1.52 1.34 1.76 

 

4.4.6 Discussion 

This section proposed an original methodology for designing a spiral flight path. 

This methodology relies on a trade-off between the vertical resolution and the area of constant 

illumination. The trade-off was successfully validated using actual SAR data from a flight 

campaign with two different flight paths: conical and cylindrical spirals.  

The flight paths had roughly the same minimum and maximum heights and 

maximum radius. Originally, though, they were supposed to have the same mean radius. 

However, the height variation had to be shortened for practical reasons. So, the flight paths 

ended up with the same maximum radius. Also, the trade-off curve in Figure 4.31 had to be 
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redrawn to compare theory and practice better. Using the mean radius would be preferable for 

future designs since all fight paths in the trade-off curve would have the same ground resolution. 

Furthermore, as pointed out in Subsection 4.4.2, the number of design alternatives could be 

increased if several trade-off curves were drawn, varying the height limits and the mean (or 

maximum) radius.  

The cylindrical flight path represents the state-of-the-art techniques for providing 

3D SAR images with high resolution. Despite that, the conical flight path undoubtedly had a 

better performance in terms of vertical resolution than the cylindrical flight path, 1.76 m against 

2.33 m. Thus, the output images obtained from the quad-corner reflector support the claim made 

in Subsection 4.1.5.   

Note that these results were obtained with a drone-borne SAR system operating on 

the P-band. Ponce et al. [3] achieved a 2.0 m vertical resolution at the L-band for a Luneberg 

lens; their airborne SAR system performed multiple circular flight paths with constant radii. 

Given the difference in wavelength, obtaining a finer resolution with the P-band is quite an 

accomplishment. Therefore, this outcome highlights the potential of drone-borne SAR systems 

for applications that require high-resolution 3D SAR images. 

The quad-corner reflector used in the flight campaign was the first 360° reflector 

designed by our research group. Nonetheless, given that its resulting 3D image had the artifacts 

depicted in Figure 4.37, another 360° reflector has been recently designed. Therefore, future 

works shall benefit from a reflector with a better 3D response that might not require 

equalization. 

For the case study of Section 3.4, the data were also processed using a DTM. 

Another member of our research group had developed that DTM as part of their research 

project. However, the methodology was much more complex, and several 2D layers were 

processed using the BP algorithm. That is why a detailed description of that DTM was not 

pertinent to this thesis.  

Notwithstanding, the FFBP algorithm is a powerful tool for creating a DTM since 

a 3D SAR image is required. Take, for example, the 3D image in Subsection 4.4.4. It took 49 

min 35 s to process with the FFBP algorithm, but if the BP algorithm had been used instead, 

the processing time would have been more than 20 h. This estimation comes from multiplying 

the number of voxels by the number of radar positions and comparing the products. As a result, 
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the product of Subsection 4.4.4 is 3.4 times greater than that of the case study in Section 3.4, 

which took just over seven hours to process (see Table 3.14).  

The BP algorithm explained in Section 2.4 has an optional step for determining the 

synthetic aperture of each pixel or voxel, which can be performed by image block when 

necessary. However, the proposed FFBP algorithm, detailed in Section 3.2, does not contain 

such a step. That is why the images lose focus outside the radius of constant illumination (see 

Figure 4.36). Therefore, if that step is incorporated in future versions of the FFBP algorithm, 

the quality of the images shall improve, especially on the borders. Even so, the trade-off 

proposed here could still apply since the resolution would deteriorate outside the area constantly 

illuminated by the radar. 
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5 CONCLUSIONS* 

 

This thesis offers two solutions for producing 3D SAR images with a drone-borne 

SAR system: the FFBP algorithm and conical spiral flight paths. The FFBP algorithm can 

readily process 2D and 3D images thanks to a flexible tree structure named the modified 

Morton-order curve. Since it is a space-filling curve, volumetric images are processed in full-

3D rather than in several 2D layers. Furthermore, the FFBP algorithm features an original 

method for generating sub-apertures based on a data mapping approach. As demonstrated in 

Section 3.3, it works for random flight paths and is faster than recursively calculating weighted 

mean positions. 

The FFBP algorithm produces nearly identical images to those processed with the 

BP algorithm, only faster. The speed-up factor is up to 21 times for the 3D images and 13 times 

for 2D images, with a phase error standard deviation of ~12°. For higher image quality, with a 

phase error standard deviation of ~4°, the speed-up factor is 10 and 6 times for the 3D and 2D 

images, respectively. 

This thesis also provides a statistical phase error analysis to determine how the 

FFBP setup affects the quality of the output images. In Section 3.4, the same raw radar data 

were processed with the FFBP algorithm with different parameters to produce several 2D and 

3D SAR images. The analysis validates the hypothesis that geometric parameters defined at the 

beginning of processing can predict the phase error standard deviation at the output. In future 

works, the linear regression models generated in the analysis could be applied to determine the 

processing setup from a requirement in phase error. 

Since this thesis worked exclusively with P-band data, this statistical analysis 

should be repeated for other frequencies in the future, as the phase error also depends on the 

radar wavelength. Furthermore, it should be repeated for different SAR data to create a robust 

model. Then, this model would help set the processing parameters from a requirement in phase 

error, making the FFBP algorithm more user-friendly. Further improvements in the FFBP 

 

* The portion of this chapter that addresses the FFBP algorithm contains revised material from two 

publications by the author: [1] © 2020 IEEE and [2] licensed under CC BY 4.0.  

https://creativecommons.org/licenses/by/4.0/
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algorithm could include making the range sampling strategy more efficient and handling areas 

not constantly illuminated by the radar. 

The second solution for 3D SAR imaging is conical spiral flight paths. The claim 

that they can perform better than state-of-the-art solutions is validated with both simulated and 

actual SAR data. Under similar conditions, the configuration with the best vertical resolution is 

the spiral flight path with a tomographic aperture perpendicular to the LOS direction. However, 

as the tilt angle diverges from 90° (i.e., the cylindrical case), the area of constant illumination 

decreases. Therefore, this thesis proposes a method for designing spiral flight paths that 

consider the trade-off between area coverage and vertical resolution. The vertical resolution is 

calculated with a theoretical expression proposed by this thesis, which originates from the 

reasoning of Ponce et al. [3], but with a revised definition for the vertical wavenumber shift. 

The simulation results of Section 4.3 suggest that the radar positions closer to the 

target have more influence over the ground and vertical resolutions. This perception originated 

a new set of equations, accounting for the distance from the target to the spiral axis. That is an 

exciting development, given that the original Circular SAR expressions by Ishimaru et al. [4] 

could only be calculated analytically for a target at the axis. However, the near-range influence 

could not be observed in the flight campaign of Section 4.4, probably due to equalizing the 

input SAR data on account of the response of the quad-corner reflector. Nonetheless, the results 

confirm that the conical flight path performs better than the state-of-the-art cylindrical flight 

path. The P-band vertical resolution of the quad-corner reflector is 1.76 m for the conical flight 

path and 2.33 m for the cylindrical flight path. In addition, the proposed theoretical expression 

predicts the ratio between the two vertical resolutions with a 1.5 % accuracy. 

Section 4.3 also demonstrated that Spiral SAR converges faster than Multi-Circular 

SAR as the number of turns or tracks increases. However, the hypothesis that decorrelation 

does not affect Spiral SAR could neither be confirmed nor denied. The reason is that this thesis 

only presented P-band data results; thus, once again, the analysis should be repeated for other 

frequency bands. 

Overall, the two solutions proposed by this thesis are essential milestones for 

enabling subsurface tomography. Possible applications include, for instance: detecting ant nests 

in the soil with forest or vegetation cover, mapping the biomass of tubers, surveying 

underground galleries in a mining site, and estimating soil properties. Furthermore, since the 

conical flight paths produce images with high resolutions in the vertical direction, they have 
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great potential to enable the estimation of soil properties in different soil horizons. Indeed, the 

P-band vertical resolution achieved in this thesis (1.76 m) is better than that reported by Ponce 

et al. [3] for the L-band (2.0 m), also making evident the advantage of working with a drone-

borne SAR system. Finally, the FFBP algorithm already proved its value by facilitating the 

analyses of Chapter 4.  
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APPENDIX – FFBP CODE 

Section 3.2 presented the FFBP algorithm, the latest version of which is openly 

available on Zenodo [15]. This appendix explains some blocks of code, drawing a parallel with 

the equations presented in Section 3.2. Those equations shall be repeated here for convenience. 

Section A.1 refers to the line of codes that implement the FFBP algorithm. Section A.2 explains 

the function that creates the splitting scheme. 

A.1 IMPLEMENTING THE ALGORITHM 

A.1.1 Preparation Step 

This subsection explains a few operations executed before the code divides the 

image into blocks to be processed in parallel. 

88 % Adjustment of the number of azimuth lines -------------------- 

89 Nazm=Lc^steps*ceil(Nazm0/Lc^steps); 

90 rootXYZ = [rootXYZ; repmat(rootXYZ(end,:),Nazm-Nazm0,1)]; 

91 rootData = [rootData; zeros(Nazm-Nazm0,Nrng)]; 

92 % -------------------------------------------------------------- 

The first block of code shows the chosen solution for the following issue: how do 

we process data from an arbitrary number of radar root positions �̃�0 (Nazm0)? The solution 

here is to find the first integer 𝐾0 (Nazm) that: 

 𝐾0 > �̃�0 (A.1) 

 𝐾0 ∝ 𝐿
𝑁  (A.2) 

where 𝐿 (Lc) is the number of subapertures combined at each recursion step, and 𝑁 is the 

number of steps. Then, the last radar root position in 𝒓0 (rootXYZ) is repeated 𝐾0 − �̃�0 times 

and the SAR root data 𝑠0 is padded with zeros. 

94 % Set of all sub-aperture phase centers ------------------------ 

95 allX=spline(1:Nazm,rootXYZ(:,1),1:0.5:Nazm)'; 

96 allY=spline(1:Nazm,rootXYZ(:,2),1:0.5:Nazm)'; 

97 allZ=spline(1:Nazm,rootXYZ(:,3),1:0.5:Nazm)'; 

98 allXYZ=[allX allY allZ]; 

99 clear allX allY allZ 

100 % -------------------------------------------------------------- 
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Let 𝛀0  (allXYZ) be the set that comprises all radar root positions and the 

midpoints between them. This block of code uses interpolation to calculate 𝛀0 as (3.11): 

 𝛀0(𝑖) = 𝒓0(
𝑖
2⁄ ) (A.3) 

102 % Data upsampling ---------------------------------------------- 

103 upSampledData=interpft(rootData,upSampling*Nrng,2); 

104 rngIncr=rngBin/upSampling; 

105 clear rootData 

106 % -------------------------------------------------------------- 

Here, the code upsamples the SAR root data. Also, the code calculates the updated 

range sampling interval 𝛿𝑠𝑟 (rngIncr), which will be used throughout the code. 

The goal of upsampling is to avoid aliasing when interpolating the data. According 

to Doerry et al. [29], linear interpolation requires a fractional bandwidth of up to 0.184 to avoid 

aliasing. Therefore, if the root SAR data had a fractional bandwidth of 1.0, the upsampling rate 

(upSampling) should be at least 1.0/0.184 = 5.43.  

The upsampling rate is an input provided by the user. Since the function 

interpft expects an integer at its second argument (upSampling*Nrng), the user must 

choose an integer value for the upsampling rate. 

116 % Creating cell arrays ----------------------------------------- 

117 Dx = firstSplit(1); 

118 Dy = firstSplit(2); 

119 Dz = firstSplit(3); 

120 cellSize = [Dy Dx Dz]; 

121  

122 dataCell = cell(cellSize); 

123 xCell = cell(cellSize); 

124 yCell = cell(cellSize); 

125 zCell = cell(cellSize); 

126 % -------------------------------------------------------------- 

The imaged area or volume is split evenly into image blocks to be processed in 

parallel with the FFBP algorithm. The data are managed by creating a cell array for each output 

matrix, i.e., processed SAR data and voxel coordinates. All cell arrays have the same number 

of elements, and each cell index is associated with an image block. When an image block is 

processed, its results are stored in the corresponding data cell. Then, after processing all image 

blocks, each cell array is converted into a matrix that combines data for the whole output image 

(lines 409-433). 
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128 % Arranging the area/volume blocks in the cells ---------------- 

129 cellDim=newDim./firstSplit; 

130  

131 x1 = (-(Dx-1)/2:(Dx-1)/2);  

132 y1 = (-(Dy-1)/2:(Dy-1)/2); 

133 z1 = (-(firstSplit(3)-1)/2:(Dz-1)/2); 

134  

135 x2 = repmat(x1,Dy,Dz(3)); 

136 y2 = repmat(y1',Dx*Dz,1); 

137 z2 = repmat(z1,Dx*Dz,1); 

138     

139 cellCntr = [x2(:) y2(:) z2(:)].*cellDim + rootCntr; 

140 cellCount = size(cellCntr,1); 

141 % -------------------------------------------------------------- 

The modified Morton order curve is used here to determine the location of each 

image block and arrange them within the cell arrays. 

A.1.2 Parallel Processing 

This subsection explains some operations that occur inside the parallel for loop. 

Except in 0, they also occur inside the for loop that controls the recursion steps. 

202 % Split scheme ------------------------------------------------- 

203 Dpx = partition(s,1); 

204 Dpy = partition(s,2); 

205 Dpz = partition(s,3);         

206 Dp = Dpx*Dpy*Dpz; 

207 childCount = Dp*parentCount; 

208 childDim = parentDim./[Dpx Dpy Dpz]; 

209 % -------------------------------------------------------------- 

In this block of code, the number of divisions in each direction (𝐷𝑥, 𝐷𝑦, and 𝐷𝑧) are 

retrieved from the splitting scheme. As the number of child subimages increases by a factor 

𝐷𝑛 = 𝐷𝑥𝐷𝑦𝐷𝑧, their dimensions decrease according to (3.13-3.15): 

 
𝐴𝑥𝑛 =

𝐴𝑥𝑛−1
𝐷𝑥

, 𝐴𝑦𝑛 =
𝐴𝑦𝑛−1
𝐷𝑦

, 𝐴𝑧𝑛 =
𝐴𝑧𝑛−1
𝐷𝑧

 (A.4) 

where 𝐴𝑥𝑛, 𝐴𝑦𝑛 and 𝐴𝑧𝑛 are the dimensions of the child subimage (childDim) and 𝐴𝑥𝑛−1, 

𝐴𝑦𝑛−1 and 𝐴𝑧𝑛−1 are the dimensions of the parent subimage (parentDim). 
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211 % (x,y,z) coordinates ------------------------------------------ 

212 x1 = (-(Dpx-1)/2:(Dpx-1)/2); 

213 y1 = (-(Dpy-1)/2:(Dpy-1)/2); 

214 z1 = (-(Dpz-1)/2:(Dpz-1)/2); 

215         

216 x2 = repmat(x1',Dpy*Dpz,1); 

217 y2 = repmat(y1,Dpx,Dpz); 

218 z2 = repmat(z1,Dpx*Dpy,1); 

219      

220 auxCntr = [x2(:) y2(:) z2(:)].*childDim;        

221            

222 childCntr=zeros(childCount,3); 

223 for p=1:parentCount 

224  c = (p-1)*Dp+(1:Dp); 

225  childCntr(c,:)=auxCntr+parentCntr(p,:); 

226 end 

227 height=interp2(xDEM,yDEM,zDEM,childCntr(:,1),childCntr(:,2),... 

  'spline'); 

228 % -------------------------------------------------------------- 

This block of code finds the position of each child subimage center in 𝒉𝑛 

(childCntr) by creating a building block of the modified Morton order curve around the 

origin, then placing this building block at each parent subimage center in 𝒉𝑛−1 

(parentCntr). In order to create the building block, the code first finds all possible values 

of its coordinates (x1, y1, z1), which are dimensionless at first.  

Then, the code repeats these values in a certain way (x2, y2, z2), rearranging them 

to create a pattern similar to a truth table. Figure A.1 shows this process for 𝐷𝑥 = 𝐷𝑦 = 3 and 

𝐷𝑧 = 2. When the table is multiplied by the dimensions of the child subimage, the result is the 

coordinates �̃�, �̃�, and �̃� (auxCntr) of a Z-shaped curve.  

The corresponding equations are (3.13-3.17): 

 
𝑥(𝑑𝑥) = 𝐴𝑥𝑛 (𝑑𝑥 −

(𝐷𝑥 − 1)

2
) , 𝑑𝑥 = 0, 1, … , 𝐷𝑥 − 1 (A.5) 

 
𝑦(𝑑𝑦) = 𝐴𝑦𝑛 (𝑑𝑦 −

(𝐷𝑦 − 1)

2
) , 𝑑𝑦 = 0, 1, … , 𝐷𝑦 − 1 (A.6) 

 
𝑧(𝑑𝑧) = 𝐴𝑧𝑛 (𝑑𝑧 −

(𝐷𝑧 − 1)

2
) , 𝑑𝑧 = 0, 1, … , 𝐷𝑧 − 1 (A.7) 

 𝒉𝑛(𝑐) = [�̃�(𝑑) �̃�(𝑑) �̃�(𝑑)] + 𝒉𝑛−1(𝑝) (A.8) 

 𝑐 = 𝑝𝐷𝑛 + 𝑑 (A.9) 
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where 𝑑 = 0, 1, … , 𝐷𝑛 − 1, 𝑝 refers to a parent subimage, 𝑐 refers to a child subimage, and  𝑥, 

𝑦 and 𝑧 are the possible coordinates for the building block in meters. 

 

Figure A.1 – Creating a pattern similar to a truth table for 𝐷𝑥 = 𝐷𝑦 = 3 and 𝐷𝑧 = 2. 

Finally, the code uses the DEM and 𝒉𝑛 to interpolate the terrain height 𝐻𝐷𝐸𝑀 (line 

227). Recall that 𝒉𝑛−1 and 𝒉𝑛 have no topographic information. 

230 % Mapping sequences -------------------------------------------- 

231 n1 = repmat(1:length(parentSx),Dpx,1); 

232 n2 = repmat(1:length(parentSy),Dpy,1); 

233 n3 = repmat(1:length(parentSz),Dpz,1); 

234         

235 m1 = repmat((0:(Dpx-1))',1,length(parentSx)); 

236 m2 = repmat((0:(Dpy-1))'*Dpx,1,length(parentSy)); 

237 m3 = repmat((0:(Dpz-1))'*Dpx*Dpy,1,length(parentSz)); 

238         

239 childSx = parentSx(n1(:))*Dp+m1(:); 

240 childSy = parentSy(n2(:))*Dp+m2(:); 

241 childSz = parentSz(n3(:))*Dp+m3(:); 

242 % -------------------------------------------------------------- 

This block of code calculates the recurrent sequences that will be used later to map 

the 1D data into a 2D/3D matrix. The corresponding equations are (3.29-3.31): 
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𝑞𝑥𝑛(𝑢𝐷𝑥 + 𝑑𝑥) = 𝐷𝑛𝑞𝑥𝑛−1(𝑢) + 𝑑𝑥 (A.10) 

𝑞𝑦𝑛(𝑣𝐷𝑦 + 𝑑𝑦) = 𝐷𝑛𝑞𝑦𝑛−1
(𝑣) + 𝑑𝑦𝐷𝑥 (A.11) 

𝑞𝑧𝑛(𝑤𝐷𝑧 + 𝑑𝑧) = 𝐷𝑛𝑞𝑧𝑛−1(𝑤) + 𝑑𝑧𝐷𝑥𝐷𝑦 (A.12) 

where 𝑞𝑥𝑛 , 𝑞𝑦𝑛 , and 𝑞𝑧𝑛  are the child sequences (childSx, childSy, childSz) and 

𝑞𝑥𝑛−1, 𝑞𝑦𝑛−1, and 𝑞𝑧𝑛−1 are the parent sequences (parentSx, parentSy, parentSz).  

268 % Sub-apertures ------------------------------------------------ 

269 Nc=round(Np/Lc); 

270 k=1:Nc; 

271 j=zeros(1,1,Lc); j(:)=1:Lc; 

272 Jc=(k-1)'*Lc+j; 

273 childXYZ=allChildrenXYZ(Lc^s:2*Lc^s:end,:); 

274 % -------------------------------------------------------------- 

Here, the code defines the child subaperture centers in 𝒓𝑛 (childXYZ) using the 

general case (3.12): 

 𝒓𝑛(𝑘) = 𝜴0((2𝑘 + 1)𝐿
𝑛 − 1) (A.13) 

where 𝑘 = 0, 1, … , 𝐾𝑛 − 1. Furthermore, the code creates a 𝐾𝑛 × 1 × 𝐿 matrix (Jc) that maps 

which parent subapertures are combined into each child subaperture. The 𝑘𝑡ℎ  row in Jc 

corresponds to the set: 

 𝑙 ∈ 𝛬𝑛,𝑘 = {𝑘𝐿 + 𝑏|𝑏 = 0, 1, … , 𝐿 − 1} (A.14) 

290 % Child sub-aperture <--> parent sub-aperture ------------------ 

291 vec2parent=zeros(Nc,3,Lc); 

292 for j=1:Lc 

293  vec2parent(:,:,j)=parentXYZ(Jc(k,1,j),:)-childXYZ; 

294 end 

295 rng2parent=vecnorm(vec2parent,2,2); 

296 % -------------------------------------------------------------- 

Let 𝐶𝑃̅̅̅̅𝑛 (rng2parent) be the set of distances between each child subaperture and 

their corresponding parent subapertures in 𝒓𝑛−1 (parentXYZ). This block of code uses the 

Euclidean norm to obtain 𝐶𝑃̅̅̅̅𝑛, according to the expression (3.19): 

 𝐶𝑃̅̅̅̅𝑛(𝑘, 𝑙) = ‖𝒓𝑛−1(𝑙) − 𝒓𝑛(𝑘)‖ (A.15) 

Though both 𝒓𝑛−1 and 𝒓𝑛 have three columns to account for coordinates in space, 

𝒓𝑛−1 has 𝐾𝑛−1 rows, while 𝒓𝑛 has 𝐾𝑛 = 𝐾𝑛−1/𝐿 rows. Thus, their sizes are incompatible for 
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executing basic operations [64]. Therefore, the data are rearranged, making 𝐶𝑃̅̅̅̅𝑛 a 𝐾𝑛 × 1 × 𝐿 

matrix. Figure A.2 illustrates the different matrix dimensions for 𝐾𝑛 = 4 and 𝐿 = 2. 

 

Figure A.2– Matrix dimensions: 𝒓𝑛−1, 𝒓𝑛 and 𝐶𝑃̅̅̅̅𝑛. 

A.1.2.1 For each child subimage 

The following operations occur within a for loop controlled by 𝑐. 

302 % Child sub-aperture <--> Data sample -------------------------- 

303 vec2img=(childCntr(c,:)+[0 0 height(c)]-childXYZ); 

304 rng2img=vecnorm(vec2img,2,2); 

305 child2sample=rng2img+rngIncr*(m-(Mc+1)/2); 

306 % -------------------------------------------------------------- 

Let 𝐶𝑆̅̅̅̅ 𝑛,𝑐 (child2sample) be the set of distances between each child subaperture 

and the data samples within the current subimage. This block of code calculates 𝐶𝑆̅̅̅̅ 𝑛,𝑐 using 

both the Euclidean norm and vector scaling. The corresponding equations are (3.18, 3.20):  

 �̃�𝑛,𝑐 = 𝒉𝑛(𝑐) + [0 0 𝐻𝐷𝐸𝑀(𝒉𝑛(𝑐))] (A.16) 

 
𝐶𝑆̅̅̅̅ 𝑛,𝑐(𝑘,𝑚) = ‖�̃�𝑛,𝑐 − 𝒓𝑛(𝑘)‖ + δ𝑠𝑟 (𝑚 −

(𝑀𝑛 − 1)

2
) (A.17) 

where 𝑚 = 0, 1, … ,𝑀𝑛 − 1, with 𝑀𝑛 being the number of range samples at the 𝑛𝑡ℎ node, δ𝑠𝑟 

is the range sampling interval, and �̃�𝑛,𝑐  is the center of the child subimage, now including 

topographic information. 

No variable that depends on the range samples represents positions in space and 

vice-versa. Therefore, the same matrix dimension is used to represent both. Figure A.3 

illustrates the matrix dimensions in this block of code for 𝑀𝑛 = 5. Note that 𝐶𝑆̅̅̅̅ 𝑛,𝑐 is a 𝐾𝑛 ×𝑀𝑛 

matrix. 
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Figure A.3 – Matrix dimensions: �̃�𝑛,𝑐, 𝒓𝑛 and 𝐶𝑆̅̅̅̅ 𝑛,𝑐. 

308 % Parent sub-aperture <--> Data sample ------------------------- 

309 cosine=dot(vec2parent./rng2parent,... 

310  repmat(vec2img./rng2img,1,1,Lc),2); 

311 cosine(rng2parent==0)=0; 

312 parent2sample=sqrt(child2sample.^2+rng2parent.^2-... 

313  2*rng2parent.*child2sample.*cosine); 

314 % -------------------------------------------------------------- 

Let 𝑃𝑆̅̅̅̅ 𝑛,𝑐  (parent2sample) be the set of distances between each parent 

subaperture and the data samples within the current child subimage. This block of code 

calculates 𝑃𝑆̅̅̅̅ 𝑛,𝑐 using the law of cosines (3.21, 3.22): 

 
𝑐𝑜𝑠(𝜃𝑛,𝑐(𝑘, 𝑙)) =

𝒓𝑛−1(𝑙) − 𝒓𝑛(𝑘)

𝐶𝑃̅̅̅̅𝑛(𝑘, 𝑙)
∙
�̃�𝑛,𝑐 − 𝒓𝑛(𝑘)

‖�̃�𝑛,𝑐 − 𝒓𝑛(𝑘)‖
 (A.18) 

 𝑃𝑆̅̅̅̅ 𝑛,𝑐(𝑘, 𝑙,𝑚)

= √𝐶𝑃̅̅̅̅𝑛(𝑘, 𝑙)2 + 𝐶𝑆̅̅̅̅ 𝑛,𝑐(𝑘,𝑚)2 − 2𝐶𝑃̅̅̅̅𝑛(𝑘, 𝑙)𝐶𝑆̅̅̅̅ 𝑛,𝑐(𝑘,𝑚) 𝑐𝑜𝑠(𝜃𝑛,𝑐(𝑘, 𝑙)) 
(A.19) 

The first term in equation (A.18) depends on 𝑘  and 𝑙 , while the second term 

depends only on 𝑘. That translates into two matrices of different sizes. However, the dot product 

function (lines 309-310) requires that both input matrices have the same size. Therefore, the 

code makes 𝐿 copies of the second input matrix. Figure A.4 illustrates this process. 

On the other hand, all terms inside the square root in equation (A.19) represent 

matrices with compatible sizes for basic operations [64]. Therefore, calculating 𝑃𝑆̅̅̅̅ 𝑛,𝑐  is 

straightforward (lines 312-313). Figure A.5 shows the different matrix dimensions. Note that 

𝑃𝑆̅̅̅̅ 𝑛,𝑐 is 𝐾𝑛 ×𝑀𝑛 × 𝐿. 
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Figure A.4 – Matrix dimensions: 𝑐𝑜𝑠(𝜃𝑛,𝑐). 

 

Figure A.5 – Matrix dimensions: 𝐶𝑆̅̅̅̅ 𝑛,𝑐, 𝐶𝑃̅̅̅̅𝑛, 𝑐𝑜𝑠(𝜃𝑛,𝑐) and 𝑃𝑆̅̅̅̅ 𝑛,𝑐. 

316 % Value of the first range bin --------------------------------- 

317 childR0(:,c)=rng2img-rngIncr*(Mc-1)/2; 

318 rng0=permute(reshape(parentR0(:,p),[Lc,1,Nc]),[3 2 1]); 

319 % -------------------------------------------------------------- 

 Here, the code recalculates the distances from the child subapertures to the first 

sample in the child data, 𝐶𝑆̅̅̅̅ 𝑛,𝑐(𝑘, 0). Then, the data are stored for the next recursion in the 𝑐𝑡ℎ 

column of the matrix childR0. Also, the code retrieves 𝐶𝑆̅̅̅̅ 𝑛−1,𝑝(𝑙, 0) from the last recursion, 

which had been stored in the 𝑝𝑡ℎ column of the matrix parentR0. Likewise, 𝐶𝑆̅̅̅̅ 𝑛−1,𝑝(𝑙, 0) 

represents the distances from the parent subapertures to the first sample in the parent data. 

Finally, because 𝐶𝑆̅̅̅̅ 𝑛−1,𝑝(𝑙, 0) is a column vector of 𝐾𝑛−1 elements, the data are rearranged into 

a 𝐾𝑛 × 1 × 𝐿 matrix (rng0). The result is similar to the one shown in Figure A.2, but the 

process is different (see Figure A.6). 
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Figure A.6 – Rearranging data with the functions reshape and permute. 

330 % Fracional range index ---------------------------------------- 

331 rngIndex=1+(parent2sample-rng0)/rngIncr; 

332 lastIndex=floor(rngIndex); 

333 remainder=rngIndex-lastIndex; 

334 % -------------------------------------------------------------- 

This block of code calculates what is needed to perform a linear interpolation. The 

factional indices 𝜈𝑛,c (rngIndex) are given by (3.23): 

 
𝜈𝑛,c(𝑘, 𝑙,𝑚) =

𝑃𝑆̅̅̅̅ 𝑛,𝑐(𝑘, 𝑙,𝑚) − 𝐶𝑆̅̅̅̅ 𝑛−1,𝑝(𝑙, 0)

δ𝑠𝑟
 (A.20) 

The code also calculates the integer part of 𝜈𝑛,c  (lastIndex) and the remainder, which 

consists of numbers in the interval [0,1). All matrices calculated here are 𝐾𝑛 ×𝑀𝑛 × 𝐿. 

 

336 % Linear interpolation ----------------------------------------- 

337 i0 = find(rngIndex>1&rngIndex<Mp); % Only valid indices 

338 J0 = repmat(Jc,1,Mc,1); 

339 P0 = ones(Nc,Mc,Lc).*p; 

340 M1 = sub2ind(size(parentData),J0(i0),lastIndex(i0),P0(i0)); 

341 M2 = sub2ind(size(parentData),J0(i0),lastIndex(i0)+1,P0(i0)); 

342 interpData=zeros(size(rngIndex)); 

343 interpData(i0)=parentData(M1).*(1-remainder(i0))+... 

344  parentData(M2).*remainder(i0); 

345 % -------------------------------------------------------------- 

This block of code uses linear interpolation to determine the value of 

𝑠𝑛−1(𝑙, 𝜈𝑛,c(𝑘, 𝑙,𝑚), 𝑝), storing the result in a  𝐾𝑛 ×𝑀𝑛 × 𝐿 matrix (interpData). 

The function sub2ind (lines 340-341) requires all but the first input to have the 

same size. Therefore, the matrix that contains all indices 𝑙 (Jc) is repeated 𝑀𝑛 times to create 
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a 𝐾𝑛 ×𝑀𝑛 × 𝐿 matrix (J0). In addition, since 𝑝 is a single value, it is multiplied by a matrix 

filled with ones to create another matrix of the same size (P0). 

347 % Phase compensation and data combining ------------------------ 

348 phi=4*pi*(parent2sample-child2sample)/lambda; 

349 childData(k,m,c)=sum(interpData.*exp(1i*phi),3)/Lc; 

350 % childData(k,m,c)=sum(interpData,3)/Lc; 

351 % -------------------------------------------------------------- 

Here, the code calculates the phase compensation term 𝜑𝑛,𝑐 (phi) and performs the 

coherent sum of the interpolated parent data. The result is the child SAR data associated with 

the current child subimage, which is stored in the 𝑐𝑡ℎ  panel of 𝑠𝑛  (childData). The 

corresponding equations are (3.24, 3.25): 

 
𝜑𝑛,𝑐(𝑘, 𝑙,𝑚) =

4𝜋

𝜆0
[𝑃𝑆̅̅̅̅ 𝑛,𝑐(𝑘, 𝑙, 𝑚) − 𝐶𝑆̅̅̅̅ 𝑛,𝑐(𝑘,𝑚)] (A.21) 

 

𝑠𝑛(𝑘,𝑚, 𝑐) = ∑ 𝑠𝑛−1(𝑙, 𝜈𝑛,c(𝑘, 𝑙,𝑚), 𝑝)

𝑙∈𝛬𝑛,𝑘

𝑒𝑗𝜑𝑛,𝑐(𝑘,𝑙,𝑚) (A.22) 

where 𝜆0 is the radar wavelength. 

The commented line (350) performs an incoherent sum by removing the phase 

compensation term (A.21). It was used to generate Figure 3.17(c,f) and Figure 3.41, which 

demonstrated that the result is completely unsatisfactory without (A.21). 

A.1.2.2 Final steps 

The following operations occur after the last recursion step (𝑛 = 𝑁). 

380 % Coherent sum of remaining data ------------------------------- 

381 height=interp2(xDEM,yDEM,zDEM,parentCntr(:,1),... 

  parentCntr(:,2),'spline'); 

382 serialData=zeros(parentCount,1); 

383 for c=1:parentCount 

384  rng2img=vecnorm(parentXYZ-

(parentCntr(c,:)+[0,0,height(c)]),2,2); 

385  phi=4*pi*rng2img/lambda; 

386  serialData(c)=serialData(c)+... 

   sum(parentData(:,1,c).*exp(1i*phi)); 

387 end 

388 % -------------------------------------------------------------- 

This block of code coherently sums the data from the remaining subapertures. The 

corresponding equations are (3.26, 3.27): 
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 𝑠(𝑐) =∑𝑠𝑁(𝑘, 0, 𝑐)𝑒
𝑗�̃�𝑐(𝑘)

𝑘

 (A.23) 

 
�̃�𝑐(𝑘) =

4𝜋

𝜆0
‖�̃�𝑁,𝑐 − 𝒓𝑁(𝑘)‖ (A.24) 

where 𝑠 (serialData) is a 1D matrix that contains the processed SAR data. 

390 % 1D --> 2D/3D mapping ----------------------------------------- 

391 [x1,y1,z1]=meshgrid(parentSx,parentSy,parentSz); 

392 index=1+x1+y1+z1; 

393 dataCell{icell}=serialData(index); 

394     

395 x2 = parentCntr(1+parentSx,1); 

396 y2 = parentCntr(1+parentSy,2); 

397 z2 = parentCntr(1+parentSz,3); 

398      

399 [X3,Y3,Z3] = meshgrid(x2,y2,z2); 

400 xCell{icell} = X3; 

401 yCell{icell} = Y3; 

402 zCell{icell} = Z3; 

403 % -------------------------------------------------------------- 

Here, the code maps 1D data into 2D/3D matrices. First (lines 391-392), the code 

uses the recurrent sequences to map 𝑐 → (𝑢, 𝑣, 𝑤), according to the expression (3.32): 

 𝑐 = 𝑞𝑥𝑛(𝑢) + 𝑞𝑦𝑛
(𝑣) + 𝑞𝑧𝑛(𝑤) (A.25) 

 Then (line 393), the code rearranges the processed SAR data into a 2D/3D matrix 

and stores the result in a cell corresponding to the current image block. Next (lines 395-397), 

the code uses the recurrent sequences to extract the sets of 𝑥, 𝑦, and 𝑧 coordinates from the 

positions (�̃�, �̃�, �̃�)  on the modified Morton-order curve (parentCntr). It is the inverse 

process from that illustrated in Figure A.1. Finally (lines 399-402), the 𝑥, 𝑦, and 𝑧 coordinates 

are stored in a mesh grid format in their corresponding cells. 
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A.2 CREATING THE SPLITTING SCHEME 

This section details the latest version of the splitting scheme function, which was 

used to obtain the experimental results of Section 3.3. The inputs of this function are: 

• The dimensions of the output image (rootDim); 

• The resolution of the output image (resolution); 

• The first split into image blocks provided by the user (split0); 

• The number of subapertures that are combined at each recursion 𝐿 (Lc); 

• The number of radar root positions �̃�0 (Nazm). 

The outputs of the function are: 

• The splitting scheme (splitScheme); 

• The number of recursions steps 𝑁 (numSteps); 

• The updated dimensions of the processed image (newDim); 

• The updated split into image blocks (firstSplit); 

• The number of pixels/voxels of the output image (numPoints). 

Recall that the code processes an image larger than the output image, keeping the 

required resolution unchanged. 

465 % Number of pixels/voxels and number of recursion steps -------- 

466 numPoints = round(rootDim./resolution); 

467 Mazm = fix(log(Nazm)./log(Lc)); 

468 Mxyz = fix(log(numPoints./split0)./log(Lc)); 

469 maxMxyz = max(Mxyz); 

470 numSteps = min([Mazm maxMxyz+1]); 

471 % -------------------------------------------------------------- 

Here, the code determines the number of pixels/voxels and the number of recursion 

steps. The first is calculated directly from the dimensions and resolution of the output image. 

The second comes from the comparison of two quantities: 

• The maximum number of times that the code can combine subapertures in 

groups of 𝐿 until reaching �̃�0; 

• The maximum number of divisions from the first split into image blocks to the 

output number of pixels/voxels if the image is divided by 𝐿 × 𝐿 × 𝐿 at each 
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recursion. This calculation is performed for each direction, but only the 

maximum value is considered to find the number of recursions. 

473 % Split scheme for each direction ------------------------------ 

474 splitScheme = ones(numSteps,3); 

475  

476  

477 for i = 1:3 

478  if rootDim(i)~=0 

479   if Mxyz(i) <= numSteps-2 

480    lastSplit = ceil(numPoints(i)./split0(i)./... 

     Lc.^Mxyz(i)); 

481    bulk = 2:Mxyz(i)+1; 

482    last = Mxyz(i)+2; 

483   else 

484    lastSplit = floor(numPoints(i)./split0(i)./... 

     Lc.^(Mxyz(i)-1)); 

485    bulk = 2:Mxyz(i); 

486    last = Mxyz(i)+1; 

487   end 

488   splitScheme(bulk,i) = Lc; 

489   splitScheme(last,i) = lastSplit; 

490  end 

491 end 

492 % -------------------------------------------------------------- 

This block of code creates the splitting scheme. The splitting scheme is an 𝑁 × 3 

matrix whose rows contain the number of divisions 𝐷𝑥, 𝐷𝑦, and 𝐷𝑧 for each recursion.  

The code starts by creating a matrix filled with ones. There are three reasons for 

this choice. First, suppose the image is 2D (e.g., 𝐴𝑧 = 0). In that case, the image will not be 

divided in a certain direction (i.e., 𝐷𝑧 = 1 for every recursion). Second, because the image is 

already split into image blocks, 𝐷𝑥 = 𝐷𝑦 = 𝐷𝑧 = 1 for the first recursion. Third, suppose one 

direction has far fewer voxels than the others (lines 479-482). In that case, the required number 

of voxels for that direction will likely be attained before reaching the last recursion. Thus, the 

number of divisions in that direction will equal one for the remaining recursions. 

Taking that into account, this block of code determines the last recursion (last) 

in which the image will be divided in each direction. The code also calculates the corresponding 

number of divisions (lastSplit), an integer in the interval [𝐿, 𝐿²). Beyond that, after the 

first recursion and before the last division (bulk), the image is divided by 𝐿 in each direction. 
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494 % Adjustment of the imaged area/volume dimensions -------------- 

495 cellPoints = prod(splitScheme,1); 

496 firstSplit = ceil(numPoints./cellPoints); 

497 newDim = cellPoints.*firstSplit.*resolution; 

498 firstSplit(rootDim==0)=1; 

499 newDim(rootDim==0)=0; 

500 % -------------------------------------------------------------- 

From the splitting scheme, the code calculates the number of pixels/voxels at each 

image block. Then, the code updates the first split into image blocks and the dimensions of the 

processed image. Finally (lines 498-499), the code makes the necessary adjustments in the case 

of a 2D image. 
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