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Resumo

Problemas de decomposicao, que incluem particionamento, cobertura e empacotamento,
constituem um assunto central em Pesquisa Operacional. Estudamos variagoes geométri-
cas NIP-dificeis desses problemas no plano e apresentamos modelos de programacao linear
inteira (PLI) e heuristicas para eles. Langamos também as bases para mais investigagoes
com novos algoritmos e estruturas de dados, juntamente com benchmarks disponibili-
zados publicamente. Em primeiro lugar, estudamos o Problema da Particao Convexa
Minima de Conjuntos de Pontos, cujo objetivo é particionar a envoltoria convexa de um
conjunto de pontos P em um nimero minimo de poligonos convexos vazios (sem pontos
de P em seu interior) com vértices em P. Propomos um modelo PLI baseado em grafos
e outro baseado em arranjos. Para o segundo modelo, fornecemos uma implementacao
eficiente utilizando geracao de colunas, juntamente com heuristicas, pré-processamento
e regras de ramificagao geométricas. Identificamos um pequeno subconjunto de faces do
arranjo, ou seja, restrigoes, suficientes para expressar o modelo, bem como uma estru-
tura de dados que permite consultas rapidas sobre somas de variaveis duais associadas a
elas. Em segundo lugar, investigamos a Quadrangulacao Convexa de Conjuntos de Pontos
Bicromaticos com Inversoes Minimas. Nesse problema, dado um conjunto de pontos bi-
cromatico P, pede-se para encontrar o niimero minimo de inversoes de cores que permite
que a envoltoria convexa de P seja particionada em quadrilateros convexos vazios com
vértices em P e cujas arestas tém extremidades de cores diferentes. Introduzimos um
modelo PLI baseado em grafos e outro baseado em arranjos. O segundo modelo é uma
nova abordagem que nos permite expressar coloragao e particionamento do espago como
um modelo compacto de particionamento. Usamos esse modelo para derivar heuristicas
analogas a abordagens de emparelhamento da literatura. Em terceiro lugar, estudamos
o problema da Coesao em que, dado um conjunto de pontos bicroméatico P, busca-se
particioné-lo usando poligonos convexos maximizando a diferenca minima no nimero de
pontos de cada cor cobertos por cada poligono. Descrevemos um modelo PLI com ntimero
exponencial de variaveis que é eficientemente implementado usando geracao de colunas.
A combinacao da relaxacao desse modelo com uma heuristica da literatura produz um
algoritmo iterativo de pré-processamento polinomial. Esse algoritmo foi capaz de resol-
ver otimamente grande parte do nosso benchmark. Finalmente, estudamos um problema
de cobertura inspirado em redes sem fio, chamado de Cobertura Minima 3-Colorivel por
Discos Unitarios. Neste problema, dado um conjunto de pontos P e um conjunto D de
discos de mesmo raio, deseja-se encontrar uma cobertura minima de P selecionando um
subconjunto de D que pode ser colorido com até 3 cores. Descrevemos um modelo PLI
e mostramos como ele pode ser estendido e implementado iterativamente usando Decom-
posicao de Benders Baseada em Logica. Essa decomposi¢ao tem um problema mestre de
cobertura e um subproblema de 3-coloragao. Provamos que a solugao da primeira iteragao
usa no méaximo 18 vezes o menor niimero de cores dentre todas as coberturas de P por
D. Também apresentamos algoritmos geométricos e baseados em resultados de teoria de
grafos para obter cortes mais fortes, reduzindo significativamente o tempo de execugao.



Abstract

Decomposition problems, which include set-partition, set-cover and set-packing, consti-
tute a core subject in Operations Research. We study NIP-hard planar geometric variants
of these problems and present integer linear programming (ILP) models and heuristics for
them. We also lay the groundwork for further investigations with novel algorithms, data
structures, and publicly available benchmarks. Firstly, we study the Minimum Convex
Partition of Point Sets, where the goal is to partition the convex hull of a point set P into
a minimum number of empty (with no points of P in their interior) convex polygons whose
vertex set is P. We propose a graph-based and an arrangement-based ILP model for this
problem. For the arrangement-based model, we provide an efficient column generation
implementation, together with heuristics, preprocessing and geometry-based branching
rules. We identify a small subset of faces of the arrangement, i.e., constraints, that suffice
to express the model, as well as a data structure that enables fast queries on sums of dual
variables associated to them. Secondly, we investigate the Convex Quadrangulation of
Bichromatic Point Sets with Minimum Flips. In this problem, given a bichromatic point
set P, one is asked to find the minimum number of color flips that allows the convex hull
of P to be partitioned into empty convex quadrangles whose vertex set is P, and whose
edges have endpoints of different colors. We introduce a graph-based and an arrangement-
based ILP model for this problem. The second model is a novel approach that allows us
to express coloring and space partitioning as a compact set-partition model. We use this
model to derive heuristics analogue to matching approaches from the literature. Thirdly,
we study the Coarseness problem where, given a bichromatic point set P, one seeks to
partition P using convex polygons while maximizing the minimum difference between the
number of points of each color covered by each polygon. We describe an ILP model with
an exponential number of variables that is efficiently implemented using column genera-
tion. We combine the relaxation of this model with a heuristic from the literature leading
to a polynomial-time iterative preprocessing algorithm. This algorithm solved to proven
optimality a large portion of our benchmark. Lastly, we investigated a wireless network
inspired set cover problem, called Minimum 3-Colorable Discrete Unit Disk Cover, where,
given a point set P and a set D of disks of the same radius, one is asked to find a minimum
cover for the points of P using a subset of D that can be colored with at most 3 colors.
We describe an ILP model and show how it can be extended and implemented iteratively
using Logic-based Benders Decomposition. This decomposition has a set-cover master
problem and a 3-coloring subproblem. We prove that the solution of its first iteration
uses at most 18 times the minimum number of colors from among all covers of P that use
disks in D. We also present graph-theoretical and geometric algorithms to derive stronger
cuts that significantly reduce the running time.
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Chapter 1

Introduction

The interplay between Computational Geometry (CG) and Operations Research (OR) has
been gaining traction from both communities in recent years. The quest for fast algorithms
for hard geometric problems using OR techniques has led to significant advances. In
particular, this cooperation between both communities resulted in the CGSHOP [7], an
annual competition focused on solving NP-hard geometric problems.

In the context of OR, several important problems are formulated, or at least illustrated,
in geometric settings. Although very general, problems such as the Traveling Salesman
Problem [2| and the Facility Location Problem [8|, were first inspired by geometric
instances, usually involving geographical maps. Naturally, many geometric variants of
core problems in OR have also been investigated.

In this dissertation, we study geometric decomposition problems, which are geometric
variations of set-partition, set-cover and set-packing. Decomposition problems are central
to the field of OR. Not only are they employed to model industrial applications [22], but
they also appear as a substructure that can be leveraged in more complex settings.

When it comes to the CG literature, spatial decomposition appears as a key step in
the development of efficient algorithms, either exact, approximation or heuristics [16].
Decomposing a region into smaller, simpler regions before solving a problem can lead
to algorithms that are easier to implement, debug and usually have better performance.
Notably, problems that partition regions into triangles, known as triangulation problems,
are among the most researched topics in the field [6].

In this work, we focus on decomposition into convex regions, which can be regarded
as a superset of triangles. Moreover, convex partitions induce fewer parts when compared
to triangulations. Although triangles are very simple regions, the strong properties that
emanate from convexity can still be leveraged when applying algorithms to each part [5].

In particular, practical applications of spatial decomposition in the context of assigned
regions for human supervision, such as in airspace sectorization, can benefit from the
simplicity of convexity [9].

Before stating the problems studied in this work, we provide some fundamental
definitions and concepts from computational geometry.

Herein, we consider all objects to be embedded in the plane, and coordinates of points
to be given as two rational numbers.

A cyclic sequence of distinct points in the plane suffice to characterize a polygon p.
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Figure 1.1: Example of a convex polygon with vertices pg, p1, p2, p3, P+ and ps in blue and
edges e, €1, €9, €3, €4 and e; in black. The set of edges determines its boundary, while its
interior is shown in gray.

These points are the wvertices of p, and the segments between consecutive points are the
edges of p. In this dissertation, we only consider simple polygons, i.e., polygons whose
edges do not intersect unless they are consecutive, in which case they must only share a
vertex. Figure illustrates a convex polygon.

The closed cyclic sequence of edges of a simple polygon p forms a Jordan (polygonal)
curve, called the boundary of p, that divides the plane into two regions: a bounded one,
called the interior of p and an unbounded region, called the ezterior of p.

Whenever no confusion arises, we also refer to the union of the boundary of p with its
interior simply as p.

A polygon p is convez if the line segment between any two points in the interior of p
is entirely contained in the union of the interior and the boundary of p.

Given a point set P, its conver hull, denoted by CH(P), is the smallest convex polygon
that contains P.

A polygon is said to be empty with respect to a point set P if there are no points of
P in its interior. When the point set P is made clear from context, we only say that the
polygon is empty.

A partition of CH(P) is a set of interior-disjoint empty polygons with vertices in P
whose union covers CH(P). In other words, a partition of CH(P) can be seen as a planar
subdivision obtained by connecting pairs of points of P with non intersecting segments
such that no point is left disconnected. If all polygons are convex, we say that the partition
is conver, otherwise, the partition is non-convez. Figure shows a point set, its convex
hull and two partitions of its convex hull.

We say that a point set P is bichromatic if each of its points is colored either blue
or red. This color assignment partitions the point set into two subsets. To distinguish
between the two colors, we denote such set as P = RUB, with RNB = (). In a bichromatic
setting, a color flip is the operation of inverting the color of a given point.

Next, we define two problems studied here in which the goal is to partition the convex
hull of a point set.
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(a) Point set P. (b) CH(P). (¢) A non-convex  (d) A convex parti-
partition of CH(P). tion of CH(P).
Figure 1.2: Convex Hull Partitioning
[ ]
[ ]
[ ]
[ ] [ ]
[ ] [ ]
[ ]
(a) Point set P. (b) Suboptimal partition of (¢) Minimum partition of

CH(P). CH(P).

Figure 1.3: Minimum Convex Partition of Point Sets

Minimum Convex Partition of Point Sets In the Minimum Convex Partition
Problem (MCPP), given a point set P, one wants to find a partition of CH(P) into a
minimum number of convex polygons that are empty with respect to P. Figure[I.3|shows
a point set and two partitions of its convex hull.

Convex Quadrangulation of Bichromatic Point Sets with Minimum Flips In
the Convex Quadrangulation of Bichromatic Point Sets with Minimum Flips (CQBPS),
given a bichromatic point set P = RUB, with RN B = (), the goal is to find the minimum
number of color flips, such that the convex hull of the resulting bichromatic point set can
be partitioned into bichromatic quadrangles that are empty with respect to P or decide
that this is not possible. Figure shows a bichromatic point set and a bichromatic
quadrangulation that requires the minimum number of flips.

Note that all quadrangulations have the same number of faces.

To present the next problem, we need to define new relations between polygons and
bichromatic point sets.

Given a bichromatic point set P = RU B, with RN B = (), a set of points Q C P is
called an island if there is a convex region S such that ) = PN S. Alternatively, ) C P
is an island if, and only if, P N CH(Q) = Q. Figure illustrates the concept of islands.

We denote the set of all islands of P by Z(P) and say that two islands are disjoint
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minimum flips.

Figure 1.4: Convex Quadrangulation of Bichromatic Point Sets with Minimum Flips.

Bold points indicate color flips.
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Figure 1.5: Example of a point set P = {A, B,C, D} and an island Q@ = {A,C, D}.
Dashed shapes are some of the infinitely many convex shapes that determine ). Except
for {A, B,C}, all non-empty subsets of P are islands.
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Jo Sk

) Partition of P with discrepancy 0 ) Partition of P with discrepancy 2

Figure 1.6: Point set P and two partitions of its points into disjoint islands. Discrepancy
of the islands and the resulting partitions are shown.

if their convex hulls are disjoint. Thus, it might be helpful to think of an island as its
convex hull, i.e., a (not necessarily empty) convex polygon with vertices in P.

The discrepancy of an island @), denoted by V,, is the absolute difference between the
number of red and blue points in it, and is given by Vg = ||[RN S| — |BNS||.

Given a partition IT = {Q1, @2, -+ ,Qx} € Z(P) of P, its discrepancy, denoted by Vp
is the minimum discrepancy among its islands, and it is given by Vi = mingen Vg.

Figure illustrates two partitions and their discrepancies.

With this, we can define the following problem.

Coarseness In the Coarseness problem, given a bichromatic point set P = R U B,
with RN B = (), one wants to find a partition of P into disjoint islands with maximum
discrepancy.

Between the two partitions shown in Figure [I.6] the one in Figure not only has a
larger discrepancy, but it is an optimal partition of P.

To define the last problem, we introduce some definitions relating disks and points.

Given a point set P and a disk set D, we say that D covers P if for each point in
P there is at least one disk in D that contains, or covers, it. A disk set D is said to be
k-colorable if there is a assignment of at most k colors to the disks of D such that no two
disks of the same color overlap. Lastly, a unit disk is a disk of radius one.

Minimum 3-Colorable Discrete Unit Disk Cover In the Minimum 3-Colorable
Discrete Unit Disk Cover, given a set D of unit disks and a point set P, the goal is to
find a minimum cardinality 3-colorable subset of D that covers P.

Figure [1.7| shows an instance and an optimal cover.

Observe that given a disk set and a point set, if all disks in a disk set have the same
radius, we can change the scale so that all disks have radius one.

To conclude the presentation of the problems, we note that they are all known to be
NP-hard.
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(a) Instance (b) Solution

Figure 1.7: Example of an instance of the Minimum 3-Colorable Discrete Unit Disk
Cover Problem and an optimal solution.

1.1 Background

Each of the following chapters corresponds to a self-contained published or submitted
paper. Each paper introduces the necessary concepts from both subjects, Combinatorial
Optimization and Computational Geometry. To guide the unfamiliar reader, we provide
below brief introductions and references for some recurring topics in this dissertation.

1.1.1 Integer Linear Programming

Integer Linear Programming is a core technique used throughout this dissertation. Next,

we will define some fundamental concepts of linear and integer linear programs that are

necessary for understanding the remainder of this work. For more comprehensive texts on

integer linear programming, in particular the branch-and-cut framework, refer to [15, 24].
A Mixed-Integer Linear Program (MILP) is an optimization problem of the form

min czr + dy (1.1a)
st. Avx+By>b (1.1b)
x e, yeRyY, (1.1c)

where c is a 1 X n, vector, d is a 1 x n, vector, A is an m X n, matrix, D is an m X n,
matrix and b is an m x 1 vector. This problem has n, integer variables 2 and n,, continuous
variables y, totalling n = n, + n, variables. Function is the objective function of the
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Figure 1.8: Branch-and-Cut Flowchart

program, or model, and inequalities define its constraints. Matrices A and B are
called coefficient matrices and vector b is simply called the right-hand side. Inspired by
the matricial notation, we might refer to variables as columns and constraints as rows.

When there are only integer variables, the problem is called an Integer Linear Program
(ILP). Conversely, when there are only continuous variables, the problem is called a Linear
Program (LP).

While linear programs are solvable in polynomial time, the requirement that at least
some variables be integral makes both ILP and MILP NP-hard problems in general.

W.lo.g, for the remainder of this chapter, we consider all (M)ILPs to be minimization
problems.

Given an (M)ILP, a (linear) relaxation is obtained by making all integer variables
continuous. This relaxation is very useful since it gives, in polynomial time on the size of
the model, a lower bound for the (M)ILP.

The most popular technique to solve MILPs is the Branch-and-Cut (B&C) algorithm
based on linear relaxations. This approach consists of implicitly enumerating a search
tree, recursively. A simplied version of this algorithm is illustrated in Figure and
described below.

The first step of the B&C consists of preprocessing. In the preprocessing phase,
the solver attempts to remove redundant variables and constraints to reduce the size
of the problems. In some cases, based on the structure of the ILP, the solver might add
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constraints that are known to increase the lower bound given by linear relaxation of the
model.

When all preprocessing is done, the first node of the tree, known as the root node, is
added to the pool of nodes. This node corresponds to the preprocessed ILP. Then, the
node processing loop is started.

At each iteration, the solver selects a node in the pool to be processed. The B&C
algorithm terminates when there are no nodes left to process.

A node is pruned if we are guarantee not to improve our best known solution by further
exploring the subtree rooted at that node.

The first step when processing a node is to solve its relaxation. Next, we check the
status of the solution. If the relaxation is not feasible, the node is pruned by infeasibility.
If all relaxed integer variables were assigned integer values, a solution to the original
problem was found, and the node is pruned by integrality. Finally, if the lower bound
given by the relaxation of a node is larger than the best known integer solution, the node
is pruned by suboptimality.

If the node was not yet pruned, at least one of its relaxed integer variables was assigned
a fractional value. We then call the Cutting Plane algorithms. The goal of a Cutting Plane
algorithm is to produce constraints, also known as cuts, that are valid for all integer
solutions, but are violated by the current fractional solution. If such cut is found, the
relaxation is solved again. This process is repeated until no cutting plane is found.

The addition of cutting planes might increase the objective value of the relaxation, or
even make it infeasible, leading to the node being pruned. Modern solvers have several
classes of general cutting planes implemented, however, problem-specific cuts can be added
with the goal of levering the combinatorial properties of the problem.

Then the solver might call heuristics, passing the value of the current relaxation as
input. The goal of a heuristic is to construct good feasible solutions for the original
problem using the information derived from the relaxation of a given node. The upper
bound provided by feasible solutions helps prune nodes by suboptimality, even when
the solutions are not optimal. As with cutting planes, even though modern solvers are
equipped with several general heuristics, problem-specific heuristics can be added.

To concluded the node processing, a branching rule is called. A branching rule selects
one of the relaxed integer variables, say x, assigned a fractional value z* by the relaxation
and creates two new child nodes. Each child node contains all constraints in the current
node, both inherited from its parent, as well as its on cuts, plus additional branch
constraints. For one node the branch constraint is x < [z*]|, while for the other it is
x > [2*]. These branch constraints ensure that the two nodes correspond to two disjoint
subproblems, and neither contains the solution to the relaxation of its parent. A good
branching rule leads to child nodes with search subtrees of similar size, while also having
its cuts increase the lower bound for both child nodes with respect to the parent. Once
again, modern solver are equipped with powerful branching rules, but a problem-specific
one can be added, leveraging the combinatorial properties of integral solutions.

When processing a node has finished, be it by being pruned or by branching, a new
one is selected from the pool of nodes, and the process repeats until the entire tree is
implicitly searched.
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To summarize, when it comes to improving solver performance, some of the key
components of the B&C are: preprocessing, heuristics, cutting plane algorithms and
branching rules.

Next, we discuss more advance techniques for solving MILPs.

Row Generation

In order to solve a MILP model, it can be useful to initially omit some of its constraints
and work with a reduced MILP. This may occur when there are too many constraints to

be included or when they (even if few) significantly increase the solving time.
Consider the following ILP.

min cx (1.2a)
st. Ar >b (1.2b)
Alz >0 (1.2¢)
r€eZ" (1.2d)

Let Constraints (1.2¢) be the complicating constraints to be omitted. Then, instead
of solving Model ((1.2)), we solve

min cx (1.3a)
st. Az > b (1.3b)
velZt (1.3¢)

However, to ensure that the solution found is correct, Constraints must still be
enforced. To this end, a separating procedure is called when an integer feasible solution
is found for the reduced MILP and it either certifies that the solution is feasible for the
original model or provides a set of constraints that were missing and are violated by said
solution. This is called the lazy separation, and the constraints found are called lazy
constraints.

Notably, since we are only omitting constraints, a relaxation of the reduced problem
still gives a valid, although likely weaker, dual bound, allowing the problem to be solved
using traditional B&C, as long as integral feasible solutions found during the search are
properly separated.

In Figure[1.9] we show an updated version of the B&C flowchart, including where row
generation routines are called.

It is important to highlight the difference between Cutting Planes and Lazy Constraint
Separation. While the former is used to improve dual bounds, the later is necessary to
ensure that the model provides valid solutions.

In order to improve performance, one might adapt the Lazy Constraint Separation
routine to also separate fractional solutions, adding a Cutting Plane routine to find
the violated omitted constraints. This ensures that the dual bound provided by the
reduced MILP is equivalent to the one of the original MILP. However, the effectiveness of
separating fractional solutions is dependent on the MILP being solved.
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Given a solution z* to Model (L.3), we can naively check for each constraint ajz > b
whether a/z* > b, is violated.

Alternatively, one can instead solve an optimization problem that implicitly decides
whether an omitted constraint is violated. The most well-known application of implicitly
lazy constraint separation appears in formulation of routing problems and is known as
Sub-cycle Elimination|24].

The most notable result in Row Generation applies when lazy constraints are implicitly
separated as cutting planes, and can be expressed as follows [23].

Theorem 1. Giwen a MILP M, if we omit a set of constraints R such that the remaining
of M s polynomual in size and there is a polynomial-time separation routine for relazation
solutions with respect to R, then the relazation of M can be solved in polynomial time.

The strength of this result comes from the fact that R can be comprised of exponen-
tially many constraints.

Next, we discuss a very important usage of row generation called Benders Decompo-
sition. This decomposition allows us to leverage problem structure to split the variables
of the problem.

Let = be a set of integer variables and y a set of continuous variables. A special case
of Benders Decomposition, where y is not part of the objective function, applies to the
following model.

min cx (1.4a)
s.t. Ax + By >b (1.4b)
Dzx >d (1.4c)

Dy >d (1.4d)

reZ", yeRt (1.4e)

This model presents a block structure as its constraints are separated into three sets.
Constraints [1.4b| are the linking constraints, and have both x and y variables, while
Constraints and [[.4d] contain only = and y variables, respectively.

Instead of solving the entire model, we can solve a reduced MILP, called the master
problem, and rely on an auxiliary problem, simply called subproblem, to validate solutions
to the master problem.

The master problem is restricted to only x variables and is as follows.

min cx (1.5a)
s.t. Dx > d (1.5b)
veZt (1.5¢)

The subproblem is constructed for a given solution x* of the master problem as follows.
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min 0 (1.6a)
st. By >d— Azx” (1.6b)
D'y > d (1.6¢)

y € R* (1.6d)

Since, in the special case that we are interested in, the y variables are not part of the
objective function, the subproblem is only responsible for checking feasibility.

By solving the subproblem, we either obtain a valid assignment y* of y, such that
(z*,y*) is a solution to Model or find a constraint that can be added to it so that x*
is no longer feasible.

There are two standard ways of implementing this decomposition. The first one uses
lazy constraints, in such a way that one search tree is used and the subproblem is solved
when an integer solution is found. This is known as the lazy implementation. One
drawback of this approach is that, since the model being solved is not completely known
at the start, most preprocessing algorithms must be disabled.

Alternatively, one can solve Model to optimality as a separate ILP and then
separate the optimal solution. If it does not lead to a feasible solution, a new ILP that
includes the violations found by the subproblem is solved almost from scratch. This is
done iteratively until either a solution is found or the master problem becomes infeasible.
This approach enables preprocessing to be used at each iteration, but, since each iteration
requires an ILP to be solved from scratch, a large number of iterations might make the
procedure prohibitively time-consuming.

When the variables in the subproblem are indeed continuous, linear programming
duality gives us infeasibility cuts for infeasible solutions to the master problem as a
byproduct of solving this subproblem as an LP.

However, if one wants to apply the decomposition when the variables in the subproblem
are integral, infeasibility cuts must be derived for the specific problem. In this case, the
decomposition is called Logic-Based Benders Decomposition.

For more details and more general cases of Logic-Based Benders Decomposition, the
reader may refer to [11].

Next, we discuss how to handle complicating variables.

Column Generation

In some cases, one might want to omit some of the variables of a model in order to solve
it, but it does not have the block structure necessary to apply Benders Decomposition. In
this case, a different approach, known as Column Generation, works on variables similarly
to how Row Generation works on constraints.
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Consider the following ILP

min cz + 'y (1.7a)
st. Az + By >b (1.7b)
relt, yelZt, (1.7¢)

and let the y variables be the complicating variables to be omitted.
In this case, we start with a reduced MILP, called the Restricted Master Problem
(RMP) comprised only of the = variables, as follows.

min cx (1.8a)
st. A > b (1.8b)
r el (1.8¢)

In contrast to Row Generation, any integer solution restricted to the z variables can
be extended to the original problem by assigning zero to all y variables. However, given
a solution to the relaxation of Model it is not guaranteed to be a lower bound for
the original problem. In fact, the removal of variables might lead to an infeasible reduced
MILP, while the original problem was feasible.

Thus, to obtain a lower bound, an auxiliary problem, known as the Pricing Problem,
is called when a relaxation is solved in a node. If there are any variables that could
improve the value of the relaxation but are missing from the RMP, the Pricing Problem
must provide at least one of them. This process is repeated until there are no variables to
be added, only then the relaxation is considered solved and its objective value is a valid
lower bound for the node problem. Due to the numerical nature of solving the RMP, it
is usually said that it converged when no improving variable is found.

The pricing uses a solution to the dual of the master problem to construct variables
that could improve the objective value, if there are any.

Before continuing, some matrix notation must be introduced. Given an m by n matrix
M, let M" denote its transpose and M. ; denote the n by 1 vector corresponding to its
J-th column.

Associating dual variables a to Constraints (1.7D)), the dual of (the relaxation of)
Model is as follows.

min b (1.9a)
st.aA <c (1.9b)
aB' <d (1.9¢)

a € RT, (1.9d)

Let @ be an optimal solution to the dual of the master problem, i.e., Model (|1.9)
without Constraints ((1.9¢). The reduced cost of a variable y; w.r.t. @, denoted by ¢/;, is
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given by
gz‘ = C; — aB:,i- (]_]_0)

To improve the solution to the current relaxation, one must find variables with negative
reduced cost. Since we solved the relaxation of RMP, all x variables have non-negative
reduced costs.

For the y variables, let Y be the set of combinatorial objects associated to each of
them. A variable with the minimum reduced cost can be found by solving the following
presentation of the Pricing Problem.

 min = min ¢, — aB.; (1.11)
1y, €Y ’

Similarly to Row Generation, this problem can be solved by inspection. However,
since our goal is to avoid enumerating the set of variables, this problem is usually solved
implicitly.

If ¢, is negative, we add the corresponding variable, say y;, to the master problem,
which includes adding column B.; to A. Otherwise, the relaxation of the master problem
already has the same value as the relaxation of the original problem.

In the case where the master problem is infeasible, the pricing problem has to be
slightly modified, replacing the ¢’ side by 0, as follows [1].

Fonin = Z1216:()1/0 —abB.; (1.12)

This problem is known as the Farkas Pricing Problem, as it is a consequence of the
well-known Farkas Lemma. If its solution is non-negative, then the relaxation is indeed
infeasible. Otherwise, we add the variable found to the master problem. Feasibility checks
become particularly useful when enumerating the search tree, as branching decisions
naturally lead to nodes corresponding to infeasible subproblems.

To conclude the presentation of Column Generation, we discuss some difficulties that
may arise when using it and how to minimize their impact.

Firstly, the subproblem is called at each node, possibly several times until the relax-
ation is solved and a valid dual bound is obtained. For problems for which the Pricing
Problem is time-consuming to be solved to optimality, it is possible to to use heuristics to
find variables with a negative, but not necessary minimum, reduced cost. It might also
be beneficial to add multiple variables at once to speed up convergence.

Secondly, any constraints added to the master problem, be them from cutting planes
or even from branching, incur a new dual variable. If some of the omitted variables have
non-zero coefficients in these newly added constraints, a new dual variable is introduced
into the pricing problem. The introduction of new dual variables modifies the pricing
problem and has to be handled carefully.

Thus, to include column generation into a B&C framework, one needs to ensure that
the algorithm used to solve the subproblem can handle the branching rule and the cutting
planes included.

Alternatively, the study of cuts that do not involve the omitted variables, known as
Robust Cuts, removes this difficulty. An example of the usage Robust Cuts is presented
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in Chapter [3]

The resulting algorithm, which may even contain row generation, is called Branch-
Cut-and-Price (BC&P). Its execution is illustrated in Figure [1.10]

Similarly to Row Generation, Column Generation disables most preprocessing, as the
model is not entirely known at the start.

The reader may refer to [4] for a comprehensive introduction to the subject. Alterna-
tively, a gentler introduction can be found in [24].

1.1.2 Basics of Computational Geometry

Fundamentals of computational geometry can be found in [6]. Most of the necessary
concepts were already presented in the beginning of this chapter as the problems were
first introduced. We are only missing one key geometric structure used to write ILP
models for geometric problems: arrangements.

Arrangements

A finite set of curves in the plane, such as lines, line segments or circles, induces a planar
subdivision which partitions the plane into an arrangement. The zero-, one- and two-
dimensional objects of an arrangement are its vertices, edges and faces, respectively, and
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(a) Arrangement of circles. Its vertices are (b) Dual of an arrangement of circles. Its
shown in green, its edges in red and its vertices are shown in blue and its edges in
faces in white. black.

Figure 1.11: Illustration of an arrangement of circles {dy,d;,d>}, which has faces

{fo, f1, f2, f3, fas f5, f6, f7} and its dual.

are called the elements of the arrangement. An example of a arrangement of circles is
shown in Figure

The dual of an arrangement is a graph with a vertex for each face in the arrangement
and an edge connecting pairs of vertices that represent faces that share an edge in the
arrangement. The dual of the arrangement in Figure is shown in Figure [[.110]

Both the arrangement and its dual can be traversed very efficiently. For the problems
studied in this dissertation, the number of elements in the arrangements is quadratic on
the number curves used to construct it.

This discretization of the plane into elements of an arrangement enables us to express
problems using constraints and even variables associated to said elements. For example,
in Figure [I.1Ta] each point in the interior of a given face is covered by the same set of
disks.

Theoretical aspects of geometric arrangements can be found in [10|, while more
practical discussions, including implementations, are presented in the documentation of
the CGAL Library [21]. This library provides implementation not only of arrangements
but also of several algorithms and data-structures commonly used in CG.

1.2 Contributions

A goal of this dissertation is to develop tools to tackle geometric decomposition problems
that can be used for solving other similar hard geometric problems. To this end, we
investigated ILP models for the problems studied, together with theoretical and empirical
results obtained by solving these models, as listed below.

Minimum Convex Partition of Point Sets (MCPP) Our earliest paper presented the
first ILP model for the MCPP problem, which was graph-based, and derived heuristics
based on its relaxation. Our second paper presented an arrangement-based model, which
was able to solve instances with twice as many points as the previous model when run on
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similar hardware. This model included a data structure and a pricing algorithm that can
be generalized to other problems involving convex hull partitioning. We also incorporated
the graph-based variables from the first model, adapting cuts and heuristics proposed for
it. This combination allowed us to draw connections between geometric aspects of the
problem and classical results in set-partitioning. The final result is a framework that can
be adapted to solve additional convex hull partitioning problems.

Convex Quadrangulation of Bichromatic Point Sets with Minimum Flips
(cqQBPS) We introduced this new optimization variation of the quadrangulation problem
where we want to minimize color flips. We presented two ILP models for it; the best one of
which handles both convex hull partitioning and color assignment as a pure set-partition
problem. We used the convex hull partitioning constraints introduced for the the MCPP
and also presented several heuristics, based on the ones introduced for the MCPP in our
previous papers. These new heuristics draw connections with matching approaches from
the quadrangulation literature.

Coarseness We presented a novel ILP model to compute the coarseness of a bicolored
point set and proposed several improvements to it. This model was implemented using
column generation and its relaxation could be solved in polynomial time. This relaxation
was used in an iterative preprocessing algorithm to find successively tighter lower bounds
and used these bounds to remove variables. When combined with a heuristic from the
literature, this polynomial-time iterative procedure was find optimal solutions of large
portion of our benchmark.

Minimum 3-Colorable Discrete Unit Disk Cover (M3CDUDC) We introduced
the first ILP model and the first known exact algorithm for the M3CDUDC problem. Our
best implementation uses row generation in the form of Logic-Based Benders Decompo-
sition. We provided logic-based feasibility cuts, and presented several improvements to
make them stronger. The resulting algorithm solved instances with thousands of disks
and points, which compares very favorably with the rather impractical approximation
algorithms from the literature. We also proved that the first iteration of our decomposi-
tion, which corresponds to a pure set cover problem, produces solutions with a number
of colors bounded by a constant times the minimum number of colors among all covers.
Overall, we show in this dissertation how geometric decomposition problems can
be solved efficiently in practice by either row or column generation, with a classical
decomposition problem as a master problem and a subproblem that can better take
advantage of the geometry. We also show that using the geometry of the problem in
other components of the branch-and-cut, or branch-cut-and-price, algorithms, such as
heuristics, branching rule or preprocessing, is key for the success of these techniques.

1.3 Text Organization

This dissertation is presented in an alternative format introduced by the University of
Campinas some years back. In this format, the Introduction is followed by one chapter for
each paper either published or submitted during the doctorate program and its respective
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bibliography, while the last chapter presents concluding remarks. Chapter[2and Chapter 3]
correspond to our studies of the MCPP. Chapter [4 presents our work on the CQBPS. Next,
Chapter [5] shows our results for the Coarseness Problem. Finally, Chapter [6] presents our
results for the M3CDUDC. A final discussion is presented in Chapter [7] followed by a
bibliography containing the works cited in the introduction and conclusion.
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Chapter 2

Minimum Convex Partition of Point
Sets

In the following, we present the first empirical study of the Minimum Convex Parti-
tion of Point Sets. We present an ILP model based on constructing a planar subdi-
vision and derive heuristic from it. This chapter corresponds to the work [20] pre-
sented at the 11th International Conference on Algorithms and Complexity (CIAC
2019) [20]. It was co-authored with Pedro J. de Rezenddl] and Cid C. de Souzalf]

Abstract A convex partition of a point set P in the plane is a planar subdivision of
the convex hull of P whose edges are segments with both endpoints in P and such
that all internal faces are empty convex polygons. In the Minimum Convex Partition
Problem (MCPP) one seeks to find a convex partition with the least number of faces.
The complexity of the problem is still open and so far no computational tests have been
reported. In this paper, we formulate the MCPP as an integer program that is used both to
solve the problem exactly and to design heuristics. Thorough experiments are conducted
to compare these algorithms in terms of solution quality and runtime, showing that the
duality gap is decidedly small and grows quite slowly with the instance size.

2.1 Introduction

Let P be a set of n points in the plane in general position, i.e., with no three points being
collinear. We say that a simple polygon is empty, w.r.t. P, if it contains no points of P in
its interior. Denote by H(P) the convex hull of P. A convex partition (or decomposition)
of P is a planar subdivision of H(P) into non overlapping empty convex polygons whose
vertices are the points of P. The Minimum Convex Partition Problem (MCPP) asks to find
a convex partition of P minimizing the number of faces. These concepts are illustrated
in Fig.

A practical application of the MCPP in the area of network design is described in [7].
The goal is to form a communication network connecting the points of P. When the edges

nstitute of Computing, University of Campinas, Campinas, Brazil
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) ) © @
Figure 2.1: Point set P; H(P); minimal and optimal partition.

used as links in the network form a convex partition of P, a simple randomized algorithm
can be used for routing packages [2|. Hence, one way to build a low-cost network, i.e.,
one with few links that still enables the application of that routing algorithm, is to solve
the McCPP for P.

Besides the actual application outlined above, the MCPP lies in the broader context

of polygon decomposition, an important topic of study in computational geometry |[6].
A frequently used approach for designing divide-and-conquer algorithms for geometric
problems for general polygons is to decompose these into simpler component parts, solve
the original problem on each component using a specialized algorithm and then combine
the partial solutions. Convex polygons are often the best choice for the role of the
smaller components. This is, in fact, a reason why triangulations of sets of points, and
of polygons in general, have been so extensively studied and became a central problem
in computational geometry. Since triangulations are special cases of convex partitions, a
deeper understanding of the MCPP gains importance.
Literature overview. To the best of our knowledge, the complexity of the MCPP remains
unknown. Moreover, even though some articles describe non-polynomial algorithms to
solve the problem, no implementations or results were found that make an empirical
assessment of the efficiency of those algorithms.

Fevens et al. [3] proposed an exact algorithm for the MCPP using dynamic program-
ming. If h denotes the onion depth of P, i.e. the number of nested convex hulls that
need to be removed before P becomes empty [8|, the complexity of this algorithm can

3h+3) and is, therefore, exponential in h, which can actually be

be expressed as O(n
as large as ©(n). Spillner [10] designed another exact algorithm whose complexity is
O(2%k*n3 + nlogn), where k = |I(P)| is the number of points of P in the interior of
H(P). Moreover, Spillner et al. 7| present a %—factor approximation algorithm for the
MCPP.

Other papers investigate the MCPP in an attempt to find theoretical bounds for the
optimal value. Let Inst(n) be the set of all MCPP instances of size n. Denoting the
optimal value of an instance ¢ € Inst(n) by OPT(i), define F(n) = max;cmsin) OPT (i),
that is, F'(n) is the maximum among all optima for instances of size n. The best known
lower bound for F'(n) is %n — 2 as shown in [4], for n > 4, whereas the best upper bound
proven to date is [@1, see [5]. It is shown in [9] that any minimal convex partition
has at most @ faces, which also serves as an upper bound on F'(n).

Our contribution. In this paper, we introduce the first known integer linear program-
ming formulation of the MCPP. Through extensive experimentation, we show that the
solutions of the linear relaxation of this model provide invaluable information on which
segments are likely to be in an optimal solution of the problem. From this observation,

we derive a powerful heuristic for the MCPP that is capable of producing high quality
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solutions for instances with up to one hundred points in no more than a few minutes
of computation on a currently standard machine. We hope that the present work will
spearhead efforts of researchers in the field to publish computational evaluation of algo-
rithms for the MCPP. To this end, all instances we used and their solutions, are made
available [1].

Organization of the text. The next sections of the paper are organized as follows.
Section [2.2] describes the computational environment in which our tests were carried out.
Section presents an integer programming formulation for the MCPP and reports on
experiments with this model. Section is devoted to the discussion of the heuristics
developed in this work, whereas in section we analyze the results yielded by these
algorithms. Section contains a few conclusions and points out future research direc-
tions.

2.2 Experimental Environment

In the following sections, we propose exact and heuristic algorithms for the MCPP and
report on their experimental evaluation. Since observations made from initial empirical
results had an impact on the design of these algorithms, it is necessary to first introduce
the computational environment where tests were carried out and to describe how the
benchmark instances were created.

Software and Hardware. All experiments were run on an Intel Xeon E5-2420 at
1.9GHz, and 32GB of RAM running Ubuntu 14.04. The algorithms were implement
in C++ 11 and compiled with GCC 7.2.0. Geometrical structures and procedure were
implement using CGAL 4.2-5, library Gmpq was used to represent rational numbers
exactly. To solve integer linear programs and relaxations, we used CPLEX 12.8.0, in
single-thread mode, with default configurations, except for a time limit of 1200 seconds.
Instances. Instances consist of points whose x and y coordinates were randomly
generated in the interval [0, 1] according to a uniform distribution. For an instance of
size n, points were created in sequence until n points in general position were included.
To that end, when a newly spawned point resulted collinear with a previously generated
pair the former was rejected, otherwise it was accepted.

Two sets of instances were generated, with different instance sizes. For each size, 30
instances were created. The set T'1 is comprised of instances of sizes 30, 32, 34, ..., 50.
For each size, we chose the first 30 found to be optimally solvable within 20 minutes. The
second set, T2, simply contains instances of sizes 55, 60, 65, ..., 110 for which optimal
solutions are still not known.

2.3 A Mathematical Model for the mcrpr

In this section, we propose an Integer Linear Programming (ILP) formulation for the
MCPP and discuss its correctness and performance on the randomly generated instances
described in Section 2.2

Model Description. Before describing the model itself, we need to introduce some
terminology and notation. Recall that P denotes a set of n points in general position.
The set of internal points of P, denoted I(P), is the subset of P formed by the points
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that are not vertices of the convex hull of P, H(P). Let S denote the set of ©(n?) line
segments whose endpoints belong to P. Given a pair of segments ij, k¢ € S, we say that
ij and kf cross when ij Nkl \ {i,j, k, 0} # 0.

Consider the complete (geometric) undirected graph G = (P, E(P)), induced by P,
where E(P) = {{i,j} | ij € S}. We will refer to an edge {i,j} of F(P) and its
corresponding segment ij in S interchangeably. We will also need to allude to the set
of pairs of crossing edges (segments), denoted S¢. These pairs, (ij, kf) | ij and k£ cross,
may easily be identified in O(n*) time using simple geometric procedures. Similarly, a
complete directed graph = (P, A(P)) can be defined, whose arcs correspond to the
segments of S with either one of the two possible orientations: (i,j) € A(P) iff ij € S.

A few additional terminologies are needed before we can present the model and argue
about its correctness. Given two points a, b in the plane, we denote by CCW (ab) (CW (ab))
the set of points ¢ in the plane such that the triple abe is positively (negatively) oriented,
ie., 0° < <abe < 180° (—180° < <tabc < 0°). Let a be a point in the plane and L be a list
of non collinear segments, all sharing a as one of their endpoints. Assume that |L| > 2
and that its segments are given in a clockwise circular order around a. Point a is called
reflex with respect to L if there are two consecutive segments in L, say ba and ca, so that
¢ € CW(ba). Notice that this is equivalent to say that CCW(ac) contains no endpoints
of segments in L. With respect to L, when a is not reflex, we call it convez.

Lastly, to each edge {i,j} € E(P), we associate a binary variable z;; whose value is
one iff {i,7} is in the solution. In the formulation below, the unique variable associated
to the segment ij is naturally referred to as x;; and as x;;. Accordingly, the proposed ILP
model, referred to as BASIC, reads:

z = min Z Tij (2.1a)

{i.j}€E(P)
s.t. Tij + xp < 1 V{{i,j}, {k,(}} € S° (2.1b)
Yo ap>1 V(i,j) € A(P),i € I(P) (2.1d)
keCCW (ij)NP
> ay >3 Vi e I(P) (2.1¢)
jeP

The objective function can be expressed in terms of the number of edges in
a solution because Euler’s formula implies that minimizing the number of edges in a
connected planar graph (subdivision) is equivalent to minimizing the number of faces of
any planar embedding of that graph. That is, if f, e and v denote, respectively, the
number of faces, edges and vertices of an embedding of a planar graph, then f =e—v+2.
Since we seek to build a planar connected subdivision and v = | P| is given, minimizing e
is equivalent to minimizing f.

Constraints guarantee planarity since they prevent that both edges of a crossing
pair be included in a solution. Constraints establish that the edges of the convex
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Figure 2.2: An instance of the MCPP whose solution of the the RELAX model without
constraints (2.1€) has a vertex p with fractional degree 2.5. Dashed edges have value 0.5
and solid edges have value 1.

hull of P are included in the solution.  Constraints ensure that any point ¢ in
I(P) is convex with respect to the set of segments that are in the solution. As shown
in Proposition , the degree constraints are redundant when we consider integer
solutions and constraints . However, we opted to keep them in the formulation
because we verified that they improve the value of the relaxation. Figure depicts an
instance whose solution of the relaxation of the BASIC model without constraints
has an internal point with fractional degree less than three. Finally, constraints
require all variables to be binary.

Proposition 1. Let ¥ be the incidence vector of a subset L of segments in S satisfying
all constraints [2.1d)). Then, x¥ also satisfies constraints (2.1¢]).

Proof. Denote by G(L) the subgraph induced by L in G. Due to constraints , the
degree in G(L) of any point i € I(P) is at least one, meaning that, at the minimum,
there is one segment 4a in L for some a € P. Now, taking j = a in constraint ([2.1d),
we obtain that there must be another point b in CCW (ia) N P for which 4b is also in L.
Hence, i has degree at least two. By construction, a must be in CW(ib). Together with
constraint for (i, b), this implies that there must be a third point ¢ in CCW(ib) N P
so that the segment ic is in L. U O

Theorem 2. The BASIC model is a correct formulation for the MCPP.

Proof. First, we show that the incidence vector x” of any set L of segments in S that
corresponds to a feasible solution of the MCPP satisfies all the constraints of the BASIC
model. By definition, 2% is a binary vector and hence, constraint holds. The
feasibility of L implies planarity, so o’ satisfies all constraints . Besides, as the
segments in the convex hull of P are all present in any feasible solution, constraints
are also verified by z*. Proposition (1] implies the fulfillment of constraints (2.1¢]). It
remains to prove that z’ satisfies constraints as well. Let L; be the clockwise
ordered subset of segments of L that are incident to i € I(P). The feasibility of L requires
¢ to be convex with respect to L;, or else ¢ would be a reflex vertex of a face in the planar
subdivision corresponding to L, contradicting the hypothesis that the set is a feasible
solution for the MCPP. As a consequence, for any direction o, the set CCW (i(i + 7))E|
contains at least one endpoint of a segment in L;. Hence, for any (i,j) € A(P), at least
one variable xX; in the summation on the left of constraint has value one, ensuring
that the inequality is satisfied by z*.

2Here, (i + ) denotes any point obtained by a translation of i in the direction .
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We now focus on the proof that the set L associated to any incidence vector z’

satisfying the linear system (2.1b)—(2.1) is a convex partition of P. Let G(L) denote the
subgraph of G induced by L. Because of , L is planar and, due to , it contains
all the segments in H(P). From Proposition , the degree of any point i € I(P) in G(L)
is at least three. For L; defined as before, we claim that ¢ is convex with respect to L;.
To see this, suppose by contradiction that i is reflex. So, w.l.o.g, there is a segment ia
in L; such that, for any b with ib € L;, b is in CW(ia). This implies that there is no
k € CCW (ia) N P so that ik is in L. Consequently, z” does not satisfy constraint
for (i,a), contradicting the feasibility of . We next show that G(L) is connected.

By contradiction, suppose that G(L) has two or more connected components. Since L
contains the segments in H(P), the points in at least one of these connected components
must all be internal. Let ¢ be the rightmost point in this component. Since ¢ is not
connected to any point to its right and has degree at least three, i must be reflex relative
to L. But then, constraint for (i, j) is violated by =%, where ij is the first segment
visited when L; is traversed starting from a vertical line that goes through .

On the other hand, we can also prove that G(L) contains no articulation points (and
hence, no bridges) by applying arguments similar to those employed above. It then
follows that each segment in L \ H(P) is incident to exactly two (distinct) faces of the
planar subdivision defined by L and that all faces in this subdivision are empty polygons.
Moreover, as all points in [(P) are convex w.r.t. L, these polygons are convex. The
minimization condition is ensured by . 0 O]

Empirical Evaluation. We now describe the empirical evaluation of the BASIC model
for the benchmark set T'1. Recall that to construct the 330 instances in 7’1, we sought
to have only instances for which an optimal solution could be found. To achieve that, a
sequence of instances was generated for each of the 11 intended sizes and we attempted
to solve them to optimality within the time limit of 20 minutes of computation. Those
instances for which this process was successful were kept and the failed ones were discarded
and replaced.

As a form of probing the space of possible instances in regard to how much harder
it gets, as sizes increase, for finding instances that are solvable within our time limit,
consider Fig. [2.3a] It shows how many instances had to be generated until a set of 30
instances could be found that satisfied our criteria. One can see that the first 30 instances
of sizes between 30 and 42 were all solvable. Differently, from size 44 onwards, some
instances timed out and had to be replaced. Clearly, solvable instances within our time
frame become rarer as the size increases.

One of the major drawbacks for the performance of the BASIC model is the huge
number of crossing constraints (2.1b)), which is O(n*). For instances with 100 points,
the formulation is too big even to be loaded into memory. A conceivable approach in
this case is to implement a branch-and-cut algorithm to compute the BASIC model where
the crossing constraints are added as they are needed. Initially, no constraints are
included in the model. The processing of a node in the enumeration tree involves the
execution a cutting-plane algorithm that is composed of the following steps. In the first
one, the current linear relaxation is computed. Then, a separation routine is run that
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Figure 2.3: @ Number of instances generated until 30 were solved exactly, and
@ cardinality of the support of z*, as functions of the instance size.

checks for crossing constraints that are violated by the optimal solution. The latter can
be done by inspection in O(n?) time and, if violated constraints are found, they are added
to the current relaxation and the previous steps are repeated; if not, the processing of the
node halts and branching takes place provided that the current solution is not integral.

Having implemented and tested this algorithm, we noticed that the computation of
the linear relaxation via the cutting-plane algorithm was faster than solving the complete
relaxed model. This proved helpful for developing our heuristics. However, considering
the imposed time limit and the size of the tested instances, the branch-and-cut algorithm
as a whole was slower than the standard branch-and-bound algorithm used by CPLEX
when applied to the full model.

The difficulty in computing optimal solutions motivated us to design heuristics for the
MCPP. The starting point for the development of such algorithms came from observations
on the solutions of the relaxation of the BASIC model.

Given a vector y € RIFPI the support of y is the set of edges of E(P) for which
the corresponding variables have positive values in y. Now, let RELAX be the linear
relaxation of the BASIC model, * an optimal solution of RELAX and E~°(x*) the support
of z*. Similarly, let E=!(2*) be the subset of edges of F(P) corresponding to the variables
of value one in z*.

With these definitions, we are ready to analyze the quality of optimal solutions of the
linear relaxation of the BASIC model computed by CPLEX. We consider the support of
x* to be good if it is small-sized and there exists an optimal (integer) solution of BASIC
whose support intersects E~%(z*) for a large number of edges. In that vein, Fig. [2.3b
shows the average number of edges in E~%(z*) for instances in the set T'1. Notice that
this value grows linearly in n, even though there are ©(n?) edges in F(P). Since any
convex partition of P has Q(n) edges, E~%(z*) is indeed small-sized.

To estimate the quality of the support of the solutions found by CPLEX, we modify the
BASIC model to look for an optimal solution with the largest intersection with E~%(z*).
To achieve this, the weights of the variables in the objective function are changed. A null
weight is assigned to edges in E~°(2*) while a weight of one is assigned to all remaining
variables. To ascertain that the solution found is optimal for the MCPP, we add the
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Figure 2.4: Ratio between the minimum number of @ zeros in x* that changed to ones
in an optimal solution of value dy; @ ones in z* that changed to zeros in an optimal
solution of value d;, and the optimum (23 (P)) of the MCPP.

following constraint: . ppy@e = z5(P), where zj(P) is the number of edges in a
minimum convex partition of P. Objectively, we seek an optimal solution having as few
edges not in E~%(z*) as possible. Let do(P) be the optimum of the modified model.

Figure shows the ratio between do(P) and z}(P) obtained for each size for the
instances in T'1. Note that this value is quite small, with an average of less than 10%.
This suggests that the support of * contains most of the edges present in some optimal
solution.

Another important observation for the development of heuristics for the MCPP concerns
the number of edges in E=!(x*) that do not appear in an optimal solution. To assess
this quantity, we modify the BASIC model again but this time to find a minimum convex
partition of P that uses as many ones from x* as possible. As before, we add the constraint
Y e B(p) Te = 23 (P) to ensure that the solution found is an optimal solution for the MCPP.
Also, we alter the objective function by replacing it with |E=!(z*)| — ZeeE=1(x*) Z.. This
function computes the number of variables that have value one in x* but not in the
solution of the new model. Hence, minimizing its value is tantamount to obtaining an
optimal convex partition with as many edges in E=!(z*) as possible.

Now, let d; (P) be the optimal value of the latter model. Figure displays the ratio
between d;(P) and z},(P) obtained for each size for the instances in 7'1. As can be seen,
the ratios are minute, meaning that a very small fraction of the edges in E=!(2*) are not
present in some minimum convex partition.

Inspired by the two previous remarks, we decided to develop heuristics for the MCPP
based on the optimal solutions of the RELAX model. Accordingly, we explored such
solutions prioritizing the use of edges in their support, noticeably those at value one. The
next section explains how this is done.

2.4 Heuristics

We now describe our proposed heuristics for the MCPP. The general framework of the
heuristics is summarized by the following steps:
Step 1: Solve the RELAX model and let z* be the optimal solution found;
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Step 2: Using z*, build a subset B of E(P) that induces at least one convex partition

of P and, for the sake of efficiency, having O(n) crossings;

Step 3: Find a smallest convex partition S" of P in B and return this solution.
From the discussion in the previous section, in Step 2 we try to use the information
conveyed by x* to select edges that have a high probability of belonging to a minimum
convex partition. We devise different procedures to construct the set B containing these
edges, which results in the heuristics that are detailed below. The main strategy here is
to pack B with more edges than are really needed to obtain a convex partition of P and
then, in Step 3 to select among them a subset of minimum size that is a feasible solution
for the MCPP.

Steps 1 and 3 are addressed in the same way in all heuristics developed in this work.
Step 1 corresponds to solving the RELAX model, in our case using CPLEX, to obtain
z*. As for Step 3, S" is computed by solving a restricted version of the BASIC model
where the variables z;; for (i, j) not in B are removed from the model (equivalently, one
could set them to zero a priori). It only remains to decide how the set B is to be built
in Step 2. Alternatives are proposed below to accomplish this task giving rise to four
distinct heuristics.

The GREEDY Heuristic. In this heuristic, the set B in Step 2 is constructed as follows.
Initially, B is empty and the edges in E(P) are organized in a sorted list o in non increasing
order of their corresponding value in x*. Ties are broken by the number of times the edge
crosses the support of the relaxation; edges with less crossings appear earlier in 0. Then,
a triangulation of P is constructed iteratively in a greedy fashion. At each iteration, the
next edge e in o is considered. If it does not cross any of the edges already in B, the
set is updated to B U {e}; otherwise, B remains unchanged. Clearly, the greedy strategy
prioritizes the edges in the support of z*, which is in consonance with the results seen in
Section In the end, since all edges in F(P) have been considered, B must determine
a triangulation of P. Thus, the BASIC model relative to B computed in Step 3 has no
constraints of the form . In the experiments reported at the end of this section,
it is shown that the computation of this restricted version of the BASIC model does not
compromise the efficiency of the GREEDY heuristic. In fact, the algorithm turned out to
be remarkably fast.

The MAXSUP Heuristic. The previous heuristic constructs B as the set of edges of a
greedy triangulation of P by favoring edges in the support of 2* which, as seen, are more
likely to be in a minimum convex partition. In a similar mode, the MAXSUP heuristic
provides an alternative way for obtaining B. The set is initialized with a convex partition
of P having the largest possible intersection with the support of x*. Next, edges are added
to B in a greedy fashion until a triangulation is formed whose associated BASIC model is
computed in Step 3.

The difficulty with this approach lies on obtaining a convex partition of P that
maximizes the number of edges that are in the support of x*. This can be accomplished
by modifying the costs of the variables in the objective function of the BASIC model and
changing the problem into one of maximization. In the new formulation, the costs of
the variables associated to edges in the support of x* are set to one and all others to
zero. Besides, variables related to edges in E='(z*) are fixed to one. Since this ILP has
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fewer variables with positive costs, in practice, it can be computed faster than the original
model.

Adding Flips to a Triangulation. In an attempt to improve the results from the
heuristics even further, we decided to forgo the planarity requirements for B in Step 2.
By this strategy, we expect to increase the search space in Step 3, potentially leading
to better solutions. Nonetheless, some of the constraints will have to be brought
back into the model in Step 3, which could severely impact its runtime. To avert this,
we strive to keep its size linear in n.

With that intent in mind, assume that initially B determines a triangulation of P.
We say that an edge e € B\ H(P) admits a flip if the two triangles incident to e form a
convex quadrilateral. If e admits a flip, its flip edge f., which is not in B, corresponds to
the other diagonal of this quadrilateral. Clearly, each edge in B has at most one flip edge
and, hence, there are O(n) flip edges in total. Let F'(B) be the set of flip edges of the
edges in B (that admit one). Evidently, B U F'(B) has O(n) edges and the total number
of pairs of edges in this set that cross each other is also O(n). Thus, in Step 2, if B is
initialized as a triangulation of P and is later extended with its flip edges, in Step 3 we
have to solve a shorter version of the BASIC model with O(n) variables and constraints.

Notice that interchanging an edge of a triangulation and its flip edge gives us an
alternative triangulation. Therefore, one can think of the effect of Step 3 when B is
replaced with B U F'(B) as the computation of the smallest convex partition that can be
obtained from a triangulation generated from B by a sequence of flips involving the edges
of BU F(B).
when compared to the use of a single triangulation. Of course, this is only worthwhile

Observe that this amounts to a considerable growth in the search space

when the computing time does not increase too much while the solution quality improves.
As we shall see later, the expected benefit is confirmed in practice.

Motivated by the preceding discussion, we created one new heuristic from each of the
previous ones by aggregating flip edges. The enhanced version of GREEDY (MAXSUP)
using flip edges is called GREEDYF (MAXSUPF).

2.5 Computational Results

We now assess the results from the four heuristics discussed above comparing them in
regard to solution quality and running time. Firstly, we analyze the performance of the
heuristics for the instances with known optimum (7'1). The first row of the table below
displays statistics on the mean values, per instance size, of the average relative gap given
by 100(z% — 23%)/z%, where 23 and 2% are the cost of an optimal and of the heuristic
solution, respectively. The minimum, average, standard deviation and maximum values
are given for each heuristic.

GREEDY MaxSup GREEDYF MaxSupF
mean gap (min/avgtstd/max) 0.0/4.2+2.4/12.5 | 0.0/3.0+1.9/9.0 | 0.0/1.94+1.6/7.5 | 0.0/1.1£1.2/6.0
% of instances solved to optimality 7.58 12.12 27.58 43.33

The improvements caused by considering flips are evident. The version of each
heuristic including flips reduces the gap by more than half when compared to their original
counterparts. When flips are taken into consideration, no gap exceeds 8%. As expected,

MAXSUP has a better overall performance relative to GREEDY. The second row of the
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table above shows the percentage of instances for which the optimum was found in each
case. Again, the benefit of including flips and the superiority of MAXSUP over GREEDY
are clear. In fact, there was no instance where any other heuristic found a better solution
than MAXSUPF.

The mean values of the average ratio, per instance size, between the time spent by
each heuristic and the BASIC model is given in the next table. On average, the additional
computational cost incurred by considering flips is quite small both for GREEDY and for
MAXSUP. Together with the enhancement in solution quality this favors even more the
latter strategy. Although both heuristics took just a fraction of the time spent by the
BASIC model, one can see that the GREEDY versions used about half the time needed by
their MAXSUP equivalents. Also, as revealed by the maximum values, the time required
by the MAXSUP heuristics can surpass that of the BASIC model. This occurs because

these heuristics compute two ILPs, and the instances in T'1 are small.

time ratio relative to BASIC GREEDY MAXSUP GREEDYF MAXSUPF
mean (min/avg+std/max) | 0.3/13.24+13.4/60.6 | 0.5/28.7+28.7/146.8 | 0.3/15.5+15.9/82.2 | 0.5/31.14+31.3/169.3

Next, the heuristics are evaluated for the instances in 72. While the optimum in this

case is unknown, we observed that in all instances of T'2 the best heuristic solution was
again found by MAXSUPF. Therefore, for comparison purposes, MAXSUPF is used as
reference, playing a role similar to that of the BASIC model in the analysis of the instances
in T'1. The table below exhibits, per instance size, the mean of the average gap between
each heuristic and MAXSUPF. As before, the minimum, average, standard deviation and
maximum values are given.

GREEDY MAXSUP GREEDYF MAXSuUPF
mean gap (min/avgtstd/max) | 0.0/6.0+£2.3/14.5 | 0.0/3.6+1.5/9.0 | 0.0/1.4+1.4/6.4 | 0.0/0.0£0.0/0.0

The same pattern perceived for T'1 is observed here with GREEDYF performing slightly

worse than MAXSUPF, while the versions with flips outstrip by far their original coun-
terparts. Mean solving times relative to MAXSUPF for all heuristics are shown in the
next table. Once again, we observe the insubstantial impact of the inclusion of flips in
the running time of the algorithms. The fact that the MAXSUP versions are almost four
times slower on average than their GREEDY equivalents is remarkable. This is due to the
fact that the computation of the additional ILP in MAXSUP to find the triangulation with

the largest intersection with x* consumes too much time as the instance size grows.
time ratio relative to MAXSUPF GREEDY MaxSup GREEDYF MAXSUPF
mean (min/avg+tstd/max) 1.7/25.3+£16.2/55.2 | 44.0/98.44+14.1/264.5 | 1.7/27.0£17.5/59.4 | 100.0/100.0£0.0/100.0

From the previous discussions, we are left with two competitive heuristics: GREEDYF
and MAXSUPF. In Fig. [2.5a we compare the solutions found by MAXSUPF and
GREEDYF with the dual bound given by the RELAX model and the optimal solution,
when available. We also extrapolate the partial average function corresponding to the
optimal solution for the instances with sizes equal to those in T2 and, as expected,

the extrapolation corresponds to a linear function since the optimum of the MCPP for
a point set P is in O(|P|). The graph reveals that the quality of the heuristic solutions
deteriorates quite slowly as the instance sizes increase. In particular, the distances between
the values of the MAXSUPF and GREEDYF solutions and between the dual bound and
the (estimated) optimum seem to grow at no more than a constant rate, as the instance
sizes get larger. With this in mind, one can estimate the error incurred by the algorithm
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when executed on an instance of a given size.

Similarly, we analyze the total time spend by MAXSUPF and GREEDYF in Fig. 2.5b]
comparing them to the total time to solve the model and to find optimal solutions for the
instances in T'1. We notice an erratic behavior for the BASIC model at around size 45. This
correlates to the difficulty of finding harder instances that are still solvable to optimality
within our preset time limit above size 42, as shown in Fig. [2.3al This suggests that the
estimating curve should actually grow even faster if no instances had to be discarded.

The MAXSUPF heuristic eventually becomes less efficient since it involves the solution
of two 1LPs. However, it still remains much faster than computing a true optimum. Thus,
if more running time is allowed, and solution quality is a prime concern, MAXSUP should
be considered an effective alternative when solving the MCPP. On the other hand, we
can see that, on average, running RELAX and GREEDYF are both very fast. In fact, at
the expense of a small loss in quality, the GREEDY approach takes less than one minute,
on average, to find solutions for random instances of up to one hundred points. Thus,
it is also a viable option to obtain high quality solutions quickly. Furthermore, both
heuristics endorse that using the support of linear relaxations to guide heuristics is a
powerful strategy.

2.6 Final remarks

In this paper, we investigated the problem of finding a minimum convex partition of
a set of points. An ILP model was developed that enabled the computation of exact
solutions for small-sized instances. The linear relaxation of this formulation served as a
guide for the design of heuristics that lead to demonstrably high quality solutions within
reasonable runtimes. To the best of our knowledge, both the ILP modeling and the
extensive computational experimentation with MCPP algorithms done here are novelties
on the study of this problem and may lead to further practical developments. Moreover,
research directions currently being pursued include the development of new mathematical

models for this problem aiming at solving larger instances to optimality.
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Chapter 3

Solving the Minimum Convex Partition
of Point Sets with Integer Programming

In this work, we propose a new ILP model for the Minimum Convex Partition of Point
Sets. This novel model has variables associated to convex polygons and has much better
dual bounds when compared to the previous one, which had edge variables. The final
model combines elements from both approaches and has much better performance.

This chapter contains the article [19] published at the journal Computational Geome-
try: Theory and Application, Volume 99. 1t was co-authored with Pedro J. de Rezenddﬂ
and Cid C. de Souzall]

Abstract The partition of a problem into smaller sub-problems satisfying certain proper-
ties is often a key ingredient in the design of divide-and-conquer algorithms. For questions
related to location, the partition problem can be modeled, in geometric terms, as finding
a subdivision of a planar map — which represents, say, a geographical area — into regions
subject to certain conditions while optimizing some objective function. In this paper,
we investigate one of these geometric problems known as the Minimum Convex Partition
Problem (MCPP). A convex partition of a point set P in the plane is a subdivision of the
convex hull of P whose edges are segments with both endpoints in P and such that all
internal faces are empty convex polygons. The MCPP is an NP-hard problem where one
seeks to find a convex partition with the least number of faces.

We present a novel polygon-based integer programming formulation for the MCPP,
which leads to better dual bounds than the previously known edge-based model. More-
over, we introduce a primal heuristic, a branching rule and a pricing algorithm. The
combination of these techniques leads to the ability to solve instances with twice as many
points as previously possible while constrained to identical computational resources. A
comprehensive experimental study is presented to show the impact of our design choices.

nstitute of Computing, University of Campinas, Campinas, Brazil



48

3.1 Introduction

Partitioning problems constitute a fundamental topic in Computational Geometry. One
of the best studied among them is the Triangulation Problem where we are given a
point set P in the plane, and the goal is to partition its convex hull into triangles using
line segments with endpoints in P. There are many variations of this problem that
optimize different metrics such as segment length and minimum angle [6]. The widespread
applicability of triangulations stems from a core idea of the divide-and-conquer paradigm:
if a problem is too complex to be solved at once, break it into smaller, more tractable, sub-
problems. Geometric problems tend to benefit from spacial subdivisions generated from
their input where sub-problems can more easily be dealt with by considering the faces of
the resulting arrangement. In two dimensions, for instance, it is desirable that these faces
be regions satisfying properties that can be explored to make the algorithms more efficient.
Therefore, an often desired structure for the faces is that they are convex polygons. The
smallest convex polygons being triangles, it is understandable why questions regarding
triangulations are so vastly investigated. For an in-depth discussion on triangulations,
including structural properties, algorithms and applications, we refer to the book of de
Loera et al. [8]. However, all triangulations of a given point set have the same number
of triangles and edges and they may be too much of a refinement among the possible
convex subdivisions. Hence, from the perspective of divide-and-conquer algorithms, when
it comes to the number of sub-problems to be dealt with, which is strongly related to the
overall complexity, a triangulation might be just as good as another.

This is where the relevance of the Minimum Convex Partition Problem (MCPP) stands
out. The MCPP is a generalization of the triangulation problem in that one seeks a
partition of the convex hull of a point set into the minimum number of convex polygons
— some of which might even be triangles.

3.1.1 Our Contribution

Besides our earlier work [29], there are only a few attempts to solve the MCPP exactly, and,
to date, no other comprehensive experimentation has been reported in the literature. By
casting the problem as an integer linear program (ILP) and designing several algorithmic
strategies, we were able, in [29], to solve instances of up to 50 points.

In the present paper, we explore further the usage of ILP to compute optimal solutions
for the MCPP. Our main contribution is a new integer programming formulation for the
MCPP, whereby we solve to provable optimality instances of up to 105 points, while using
the same amount of computational resources as in our previous work, thus more than
doubling the size of the largest instances with known optimum. To achieve this, we
devise a primal heuristic and a branching rule, and show their effectiveness through
experimentation. Also, since the number of variables in the new proposed model is
exponential in the cardinality of the input point set, we resort to the use of column
generation, which leads to the development of a branch-and-price algorithm. Since ILP
is often applied in Operations Research, but much less frequently in Computational
Geometry, this article can be seen as a further contribution towards bridging these two
communities [7, 9, 12, 13, 16, 27, 33].
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3.1.2 Literature Review

The MCPP has been studied from different perspectives in the literature, including the
development of exact and approximation algorithms, heuristics and theoretical bounds on
the optimal value.

Fevens et al. [14] proposed a dynamic programming formulation for the problem. Let h
be the depth of P, defined as the number nested convex hulls that need to be removed from

3h+3) " therefore

P before it becomes empty. Their algorithm has time complexity of O(n
exponential in A, which can be as large as ©(n). Spillner et al. [31] proposed another
exact algorithm with complexity O(2¥k*n® + nlogn), where k is the number of points of
P in the interior of its convex hull.

A compact ILP formulation for the MCPP based on the construction of a planar
subdivision representing a partition obtained by selecting line segments with end-points in
P was proposed by Barboza et al. [29]. The authors presented empirical results showing
that, when fed as input to a state-of-the-art ILP solver, it could solve instances with up
to 50 points in general position to provable optimality. They also show how to use the
linear relaxation of the formulation to find good heuristic solutions for instances with up

to 105 points. Those instances were made publicly available [4].

30

£7» was proposed by

The best approximation algorithm for the MCPP, with factor of
Spillner et al. [21].

Bounds on the value of optimal solution as a function of n were also studied. Let F'(n)
denote the maximum cardinality of the minimum convex partition among all instances of
size n in general position. The tightest known bounds for F(n) are 2 — 2 < F(n) <
=18 where the lower bound was shown in [18] and the upper bound in [26].

The 2020 Computational Geometry Challenge (CGSHOP) [10] motivated the advance-
ment of the state-of-the-art for the MCPP from both theoretical and heuristic points of
view. When the challenge was announced in September 2019, the complexity of the MCPP
was still open and the only known empirical study was by Barboza et al. [29]. The chal-
lenge consisted in finding good solutions for 346 instances, with sizes ranging from 10 to
1,000,000 points and with different sets of instances, including sets with a large number
of collinear points. Those instances and the best solution found were made publicly avail-
able. Details about the competition and the teams’ progresses are discussed in [10]. The
top three competitors proposed heuristic solutions based on local search.

In November 2019, Grelier [19] announced a proof of NP-hardness for the case when
the point set is not in general position. Their proof relies heavily on the construction of

instances with a large number of points lying on the same straight line.

3.1.3 Organization of the text

This paper is organized as follows. Section describes a polygon-based formulation for
the MCPP with an exponential number of variables. In Section [3.3] we address the issue
of the number of variables being exponential by describing a column generation approach
to solve its linear relaxation. Section explains how we incorporate column generation
into a branch-and-pricing framework in order to solve the problem to integrality, which
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includes a branching rule and implementation details. Computational experiments and
their corresponding results are discussed in Section [3.5]

3.1.4 Basic Notation

A polygon p of size t can be defined as a cyclic sequence of ¢ distinct points in the plane
Do, P1, -+, Pi—1, called the vertices of p. Two consecutive points p; and p; 1 of p define a line
segment p;p;11, called an edge of p, with addition taken module t. We say that p; and p; 1
are the endpoints or extremes of the edge p;p;11. Sometimes, for practicality, we consider

polygons as given by their cyclic sequence of edges (Dop1, P1P2;- - - » Di—2Pt—1, De—1D0) -
A polygon is called simple if the intersection between two distinct edges is empty

unless they are consecutive, in which case they only share an endpoint. This essentially
means that no two edges have a proper crossing. We refer to the sequence of edges of a
simple polygon as its boundary.

Since the boundary of a simple polygon p constitutes a closed planar curve, by the
Jordan Curve Theorem, it divides the plane into an unbounded and a bounded region.
The latter is called the interior of p, denoted INT(p), while the former is the ezterior of
p. Two polygons are said to be interior-disjoint if their interiors do not overlap.

Given a sequence of three points (k,[,m) in the plane, we say that they are collinear,
positively oriented, or negatively oriented depending on the value of the cross product
kl x Im being 0, positive or negative. To simplify notation we write CVX(k, [, m) = true
(or simply CVX(k, [, m)) when (k, [, m) is positively oriented. A geometrical interpretation
is that a sequence (k, [, m) is positively (negatively) oriented when we make a left (right)
turn at [ as we traverse segment kl followed by Im.

We say that a polygon p is given in counterclockwise (CCW) order if INT(p) is always
to the left as one traverses the edges of p in the given order. It can be proved that this
may be checked by verifying that CVX(p,_1, p;, pj+1) is true when p; is the lowest vertex
of smallest abscissa. We assume that all simple polygons are given in CCW order. A
simple polygon p is convez if CVX(p;_1,p;, piv1) for all 0 <7 < t. For convenience, given
a simple polygon p, we may often employ the term polygon to also refer to the union of
the boundary and the interior of p.

Given a set P of n points in the plane and a polygon p, we say that p is empty with
respect to (w.r.t.) P, if p contains no points of P in its interior. When P is understood
from the context, we simply say that p is empty. Denote by S(P) the set of all convex
polygons with vertices in P that are empty w.r.t. P, and by C H(P) the convex hull of P.

In this paper, unless otherwise noted, we do not assume that the sets of points are
in general position, i.e., multiple collinear points are allowed. Moreover, henceforth all
polygons referred to will be convex, unless stated otherwise.

A set U C S(P) of interior-disjoints polygons is called a convezx partition of P if
CH(P)= U p

peU
Given a set P of n points, let L(P) denote the set of ©(n?) line segments whose

endpoints belong to P. The complete (geometric) graph induced by P is G(P) =
(P,E(P)), where E(P) = {{i,j} : ij € L}. In this text, we refer to a segment ij € L
and the corresponding edge in {i,j} € E(P) interchangeably. Similarly, we denote the
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complete oriented graph induced by P as B(P) = (P, A(P)), where the arcs in A(P)
correspond to the two orientations of the edges in E(P). Notice that, when multiple
collinear points are present, we need to restrict L(P) to include only segments that do
not contain points of P in their interior.

For each convex partition U of P, there is a unique planar graph Gy = (P, EY) C G,
where EY denotes the set of edges whose line segments belong to polygons in U.

The set of line segments L(P) determines a planar subdivision called the arrangement
of P. Assuming that P is in general position and n > 3, this arrangement contains
an unbounded face, corresponding to the exterior of CH(P), while all other faces are
bounded. We denote the set of bounded faces of the arrangement of P by A(P). It can
be proved that each face f of the arrangement A(P) is a convex polygon and that if
fNp# 0 for some p € S(P), then f C p. In this sense, we say that every face of an
arrangement A(P) is atomic. Moreover, a polygon p € S(P) is said to contain a face
f € A(P), denoted by f C p, if the interior of p contains the interior of f. Lastly, a line
or line segment ¢ supports a face f € A(P) if £ contains one of the edges of f.

3.2 A Set Partition Model for the mcrpr

In this section, we present a new Integer Linear Programming (ILP) model for the MCPP
from a standard set partition point of view. Again, let P be a set of n points in the plane.

In this model, we associate a binary variable u, with each polygon p € S(P) such that
polygon p is used in the partition of CH(P) if and only if u, = 1. This polygon-based
approach is different from the edge-based model presented in [29], which will be discussed
in Section

Recall that A(P) denotes the set of faces of the arrangement of segments induced by
the edges in E(P). We use f C p to indicate that polygon p € S(P) contains (or covers)
face f € A(P).

We now introduce the following Model [M1}

min Z Up (1a)

pES(P)

s.a. Z up, =1 Vf e A(P) (1b)
peS(P):fCp
u, € {0,1} Vp € S(P) (1c)

This model is very straightforward as it has only one family of constraints, namely
, which ensure that each face of the arrangement is covered by a polygon in the
solution exactly once. The objective function minimizes the number of polygons
forming the partition.

The main issue with this model, which will be addressed in t