
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Allan Sapucaia Barboza

Geometric Decomposition Problems

Problemas Geométricos de Decomposição

CAMPINAS
2022

Allan Sapucaia Barboza

Geometric Decomposition Problems

Problemas Geométricos de Decomposição

Tese apresentada ao Instituto de Computação
da Universidade Estadual de Campinas como
parte dos requisitos para a obtenção do título
de Doutor em Ciência da Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Pedro Jussieu de Rezende
Co-supervisor/Coorientador: Prof. Dr. Cid Carvalho de Souza

Este exemplar corresponde à versão final da
Tese defendida por Allan Sapucaia Barboza
e orientada pelo Prof. Dr. Pedro Jussieu de
Rezende.

CAMPINAS
2022

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Barboza, Allan Sapucaia, 1992-
 B234g BarGeometric decomposition problems / Allan Sapucaia Barboza. – Campinas,

SP : [s.n.], 2022.

 BarOrientador: Pedro Jussieu de Rezende.
 BarCoorientador: Cid Carvalho de Souza.
 BarTese (doutorado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Bar1. Programação linear inteira. 2. Geometria computacional. 3. Método de

decomposição. I. Rezende, Pedro Jussieu de, 1955-. II. Souza, Cid Carvalho
de, 1963-. III. Universidade Estadual de Campinas. Instituto de Computação.
IV. Título.

Informações para Biblioteca Digital

Título em outro idioma: Problemas geométricos de decomposição
Palavras-chave em inglês:
Integer linear programming
Computational geometry
Decomposition method
Área de concentração: Ciência da Computação
Titulação: Doutor em Ciência da Computação
Banca examinadora:
Pedro Jussieu de Rezende [Orientador]
Alexandre Salles da Cunha
Yoshiko Wakabayashi
Rafael Crivellari Saliba Schouery
Lehilton Lelis Chaves Pedrosa
Data de defesa: 22-08-2022
Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-4763-9675
- Currículo Lattes do autor: http://lattes.cnpq.br/6901518758549730

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Allan Sapucaia Barboza

Geometric Decomposition Problems

Problemas Geométricos de Decomposição

Banca Examinadora:

• Prof. Dr. Pedro Jussieu de Rezende
Instituto de Computação - UNICAMP

• Prof. Dr. Alexandre Salles da Cunha
Instituto de Ciências Exatas - UFMG

• Profa. Dra. Yoshiko Wakabayashi
Instituto de Matemática e Estatística - USP

• Prof. Dr. Rafael Crivellari Saliba Schouery
Instituto de Computação - UNICAMP

• Prof. Dr. Lehilton Lelis Chaves Pedrosa
Instituto de Computação - UNICAMP

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 22 de agosto de 2022

À minha mãe.

Acknowledgements

Firstly, I want to thank my advisors, Pedro J. de Rezende and Cid C. de Souza. Their
genuine interest in my growth as a researcher was very apparent from the very beginning of
our work together, many years ago. Their patience and dedication allowed me to develop
many skills, while not losing track of something very important: having fun.

I also want to thank Andre Cire, for collaborating with us. His comments and belief
that there were more that could be done was crucial for shaping our work.

Without all my friends and colleagues, who had to endure so many bad drawings and
half complete ideas, this journey would have been much less enjoyable.

I would like to express my gratitude to my wife, Olivia, and the rest of my family for
their unconditional support.

This study was financed in part by the São Paulo Research Foundation (FAPESP),
under grant 2018/14883-5, and by the Coordination for the Improvement of Higher
Education Personnel – Brazil (CAPES) - Finance Code 001.

Resumo

Problemas de decomposição, que incluem particionamento, cobertura e empacotamento,
constituem um assunto central em Pesquisa Operacional. Estudamos variações geométri-
cas NP-difíceis desses problemas no plano e apresentamos modelos de programação linear
inteira (PLI) e heurísticas para eles. Lançamos também as bases para mais investigações
com novos algoritmos e estruturas de dados, juntamente com benchmarks disponibili-
zados publicamente. Em primeiro lugar, estudamos o Problema da Partição Convexa
Mínima de Conjuntos de Pontos, cujo objetivo é particionar a envoltória convexa de um
conjunto de pontos P em um número mínimo de polígonos convexos vazios (sem pontos
de P em seu interior) com vértices em P . Propomos um modelo PLI baseado em grafos
e outro baseado em arranjos. Para o segundo modelo, fornecemos uma implementação
eficiente utilizando geração de colunas, juntamente com heurísticas, pré-processamento
e regras de ramificação geométricas. Identificamos um pequeno subconjunto de faces do
arranjo, ou seja, restrições, suficientes para expressar o modelo, bem como uma estru-
tura de dados que permite consultas rápidas sobre somas de variáveis duais associadas a
elas. Em segundo lugar, investigamos a Quadrangulação Convexa de Conjuntos de Pontos
Bicromáticos com Inversões Mínimas. Nesse problema, dado um conjunto de pontos bi-
cromático P , pede-se para encontrar o número mínimo de inversões de cores que permite
que a envoltória convexa de P seja particionada em quadriláteros convexos vazios com
vértices em P e cujas arestas têm extremidades de cores diferentes. Introduzimos um
modelo PLI baseado em grafos e outro baseado em arranjos. O segundo modelo é uma
nova abordagem que nos permite expressar coloração e particionamento do espaço como
um modelo compacto de particionamento. Usamos esse modelo para derivar heurísticas
análogas a abordagens de emparelhamento da literatura. Em terceiro lugar, estudamos
o problema da Coesão em que, dado um conjunto de pontos bicromático P , busca-se
particioná-lo usando polígonos convexos maximizando a diferença mínima no número de
pontos de cada cor cobertos por cada polígono. Descrevemos um modelo PLI com número
exponencial de variáveis que é eficientemente implementado usando geração de colunas.
A combinação da relaxação desse modelo com uma heurística da literatura produz um
algoritmo iterativo de pré-processamento polinomial. Esse algoritmo foi capaz de resol-
ver otimamente grande parte do nosso benchmark. Finalmente, estudamos um problema
de cobertura inspirado em redes sem fio, chamado de Cobertura Mínima 3-Colorível por
Discos Unitários. Neste problema, dado um conjunto de pontos P e um conjunto D de
discos de mesmo raio, deseja-se encontrar uma cobertura mínima de P selecionando um
subconjunto de D que pode ser colorido com até 3 cores. Descrevemos um modelo PLI
e mostramos como ele pode ser estendido e implementado iterativamente usando Decom-
posição de Benders Baseada em Lógica. Essa decomposição tem um problema mestre de
cobertura e um subproblema de 3-coloração. Provamos que a solução da primeira iteração
usa no máximo 18 vezes o menor número de cores dentre todas as coberturas de P por
D. Também apresentamos algoritmos geométricos e baseados em resultados de teoria de
grafos para obter cortes mais fortes, reduzindo significativamente o tempo de execução.

Abstract

Decomposition problems, which include set-partition, set-cover and set-packing, consti-
tute a core subject in Operations Research. We study NP-hard planar geometric variants
of these problems and present integer linear programming (ILP) models and heuristics for
them. We also lay the groundwork for further investigations with novel algorithms, data
structures, and publicly available benchmarks. Firstly, we study the Minimum Convex
Partition of Point Sets, where the goal is to partition the convex hull of a point set P into
a minimum number of empty (with no points of P in their interior) convex polygons whose
vertex set is P . We propose a graph-based and an arrangement-based ILP model for this
problem. For the arrangement-based model, we provide an efficient column generation
implementation, together with heuristics, preprocessing and geometry-based branching
rules. We identify a small subset of faces of the arrangement, i.e., constraints, that suffice
to express the model, as well as a data structure that enables fast queries on sums of dual
variables associated to them. Secondly, we investigate the Convex Quadrangulation of
Bichromatic Point Sets with Minimum Flips. In this problem, given a bichromatic point
set P , one is asked to find the minimum number of color flips that allows the convex hull
of P to be partitioned into empty convex quadrangles whose vertex set is P , and whose
edges have endpoints of different colors. We introduce a graph-based and an arrangement-
based ILP model for this problem. The second model is a novel approach that allows us
to express coloring and space partitioning as a compact set-partition model. We use this
model to derive heuristics analogue to matching approaches from the literature. Thirdly,
we study the Coarseness problem where, given a bichromatic point set P , one seeks to
partition P using convex polygons while maximizing the minimum difference between the
number of points of each color covered by each polygon. We describe an ILP model with
an exponential number of variables that is efficiently implemented using column genera-
tion. We combine the relaxation of this model with a heuristic from the literature leading
to a polynomial-time iterative preprocessing algorithm. This algorithm solved to proven
optimality a large portion of our benchmark. Lastly, we investigated a wireless network
inspired set cover problem, called Minimum 3-Colorable Discrete Unit Disk Cover, where,
given a point set P and a set D of disks of the same radius, one is asked to find a minimum
cover for the points of P using a subset of D that can be colored with at most 3 colors.
We describe an ILP model and show how it can be extended and implemented iteratively
using Logic-based Benders Decomposition. This decomposition has a set-cover master
problem and a 3-coloring subproblem. We prove that the solution of its first iteration
uses at most 18 times the minimum number of colors from among all covers of P that use
disks in D. We also present graph-theoretical and geometric algorithms to derive stronger
cuts that significantly reduce the running time.

List of Figures

1.1 Example of a convex polygon with vertices p0, p1, p2, p3, p4 and p5 in blue
and edges e0, e1, e2, e3, e4 and e5 in black. The set of edges determines its
boundary, while its interior is shown in gray. 16

1.2 Convex Hull Partitioning . 17
1.3 Minimum Convex Partition of Point Sets 17
1.4 Convex Quadrangulation of Bichromatic Point Sets with Minimum Flips.

Bold points indicate color flips. 18
1.5 Example of a point set P = {A,B,C,D} and an island Q = {A,C,D}.

Dashed shapes are some of the infinitely many convex shapes that deter-
mine Q. Except for {A,B,C}, all non-empty subsets of P are islands. . . . 18

1.6 Point set P and two partitions of its points into disjoint islands. Discrep-
ancy of the islands and the resulting partitions are shown. 19

1.7 Example of an instance of the Minimum 3-Colorable Discrete Unit Disk
Cover Problem and an optimal solution. 20

1.8 Branch-and-Cut Flowchart . 21
1.9 Branch-and-Cut Flowchart including Row Generation 24
1.10 Branch-Cut-and-Price Flowchart . 29
1.11 Illustration of an arrangement of circles {d0, d1, d2}, which has faces

{f0, f1, f2, f3, f4, f5, f6, f7} and its dual. 30

2.1 A suboptimal and an optimal solution for an instance of the mcpp. 34
2.2 An instance of the mcpp whose solution of the the relax model without

constraints (2.1e) has a vertex p with fractional degree 2.5. Dashed edges
have value 0.5 and solid edges have value 1. 37

2.3 Evaluation of the support of x⋆. 39
2.4 Evaluation of the support of x⋆. 40
2.5 Summary graphs: solution quality and runtime. 44

3.1 P = {i, 0, 1, . . . , 8}, q ̸∈ P , CCW(i, q) = (0, 1, . . . , 8), CCW+(i, q) =
(0, 1, 2, 3, 4) and CCW−(i, q) = (5, 6, 7, 8) 52

3.2 Example of a point set P and its arrangement. Red faces are the only ones
that are not in P -wedges. 53

3.3 Example of a convex partition superimposed on the arrangement of Fig-
ure 3.2. Edges that belong to the polygons in the partition are heavier. . . 54

3.4 To illustrate Theorem 2.2, consider an uncovered region R supported by
edge e = {i, k}. This edge also supports face b of the arrangement, which
is already covered by polygon h. 54

3.5 Illustration of a Branch-and-Price algorithm. Adapted from [13]. 56
3.6 Example of a polygon whose last triangle is (k, l,m). Dashed lines show

how it can be decomposed into triangles with k as their leftmost vertex,
emphasizing the edges of (k, l,m). 57

3.7 An example of the circular order of i-faces around a given vertex i. Each
pair of consecutive points in a CCW ordering of P \{i} defines an i-wedge,
highlighted in red. 58

3.8 To illustrate the execution of the Column Pricing Algorithm 1. consider
how Pk is divided into the lists P−

lk and P+
lk by the oriented line

−→
lk , as well as

the movement of pointers l and o. Points in the gray region are candidates
for second-to-last point for polygons whose last triangle is (k, l,m). 59

3.9 Example of an instance with four points inducing four triangles and one
quadrilateral. Arc (1, 3) ∈ A(P) splits those polygons into four sets
S+
13 = {134}, S−

13 = {123}, Sover
13 = {124, 1234} and Sdisj

13 = {234}. 62
3.10 Example of two distinct polygons p and h that share edges. Edge ik belongs

only to p, but point i belongs to both polygons. Polygon h covers both the
(k − 1)-st and the k-th i-wedge while p only covers the k-th i-wedge. . . . 63

3.11 Lower bound of the relaxations given by the Compact Model and the Full
Set Partition Model for instances of size 55 compared with the optimal
solution. 68

3.12 Total solving time for the FullSP with different configurations. 69
3.13 Number of nodes of the search tree explored during for different configura-

tions of FullSP. 70
3.14 Lower bound of the relaxations given by the FullSP with and without

Degree Constraints for instances of size 90 compared with the optimal value. 70
3.15 Total solving time for the CGSP for different set stabilization methods. . . 71
3.16 Peak memory consumption for the two variations of the Set Partition

Model: full and column generation using the barrier method. 72

4.1 Illustration of the arrangement induced by L(P) for the set P of points
indicated by the larger disks. The smaller disks show vertices of the
arrangement that are crossings of line segments. Faces of the arrangement
that are not i-wedges are colored red. 83

4.2 Solving time per instance size for the Natural Model. 88
4.3 Solving time per instance size for the Set-partition Model. 89
4.4 Relative duality gap per instance size for the Natural Model. 90
4.5 Relative duality gap per instance size for the Set-partition Model. . . . 91
4.6 Solving time per instance size for the relaxation of the Set-partition

Model. Green stars indicate the median solving time for the exact model. . 93

5.1 Point set P and two partitions of its points into disjoint islands. 98
5.2 Coarseness, UB and value of the relaxation given by the base model for

instances with 20 points. 101
5.3 An island whose last triangle is (k, ℓ,m). Dashed lines show how it is

decomposed into triangles with k as the leftmost vertex. The edges of
(k, ℓ,m) are emphasized. 104

5.4 Illustration of the angular sweep technique. 106
5.5 Relative gap for different configurations of the Base model. 108
5.6 Total solving time for the relaxation of different configurations of the model.109
5.7 Total time for Base +heuLB +cut with and without itUB. 110
5.8 Total solving time and peak memory usage for Base +heuLB +itUB +cut

using Column Generation. Only instances that were solved to optimality
are included. 110

6.1 Example of an instance of the M3CDUDC with 80 points and 40 disks and
an optimal solution with 11 disks. Dashed circles correspond to disks in
the input that are not part of the solution. 115

6.2 Example of an arrangement of four disks. Face f0 is the unbounded face.
Faces f1 and f8 are convex. The remaining faces are non-convex. 118

6.3 Instance with five points and six disks and its optimal solution. 123
6.4 Solution to a hard instance constructed from 10 gadgets. The displayed

3-colorable cover contains 50 disks, while the minimum cover containing 40
disks has chromatic number four. 124

6.5 Instance with seven points and eight disks and its optimal solution. 125
6.6 Solution to a hard instance constructed from 10 gadgets. The displayed

3-colorable cover contains 70 disks, while the minimum cover containing 60
disks has chromatic number four. 125

6.7 Remaining cases for lifting proof based on the number of vertices of a
subgraph G′ that belong to clique K. 126

6.8 Illustration of the lifting algorithm. All disks here have radius 2. A
maximum clique of the vertices corresponding to disk centers that lie in
the face containing k leads to the strongest lifting. 126

6.9 Geometric construction used to establish an upper bound on the chromatic
number of a minimum cover. 130

6.10 An instance (a) showing a minimum cover (b) requiring 12 colors when a
cover that minimizes colors (c) requires only one. 131

6.11 Number of instances solved as a function of time by the Lazy model,
in combination with the heuristics Repair, Relax and Greedy, and the
Iterative_Benders algorithm. For a clearer presentation, we start with
Instances solved at 300. 135

6.12 Number of instances solved as a function of time for the Lazy_Benders
and Iterative_Benders. For a clearer presentation, we start Instances
solved at 700. 136

6.13 Example of an instance sampled from a population density distribution
with 1000 points and 250 disks. An optimal solution with 115 disks is also
shown, and dashed circles represent disks in the input that are not part of
the solution. 137

6.14 Number of instances solved, from the population benchmark, as a function
of time for Iterative_Benders and Lazy_Benders. The exclusion of
odd-wheels separation is denoted by no wheels and the exclusion of block-
cut tree decomposition by no decomp. 138

List of Tables

4.1 Analysis of the instances in the quadrangulable benchmark, averaged for
each instance size, where ‘# quads’ indicate the number of empty convex
quadrangles, ‘# i-wedges’ the number of i-wedges and ‘# faces’ the number
of faces of the arrangement. 87

4.2 Number of solved instances and of tight relaxations for the Natural and
Set-partition Model per size. 88

4.3 Description of the support of optimal linear relaxations found by the
Natural Model as a function of instance size. The first ten lines indicate
the percentage of edge values within the given interval. The last two lines
show the number of edge variables in the support and the total number of
edges. 92

4.4 Description of the support of optimal linear relaxations found by the Set-
partition Model as a function of instance size. The first ten lines indicate
the percentage of projected edge values within the given interval. The last
two lines show the number of projected edges variables in the support and
the total number of edges. 92

4.5 Number of quadrangles in each heuristic, and the number of quadrangles
in an unrestricted model per instance size. 92

4.6 Number of feasible solutions found by each heuristic (out of 60). 93
4.7 Solving time (in seconds) for each heuristic by instance size. For the ones

based on the relaxation, (+) indicates that the average time spend solving
the relaxation is shown separately. 93

4.8 Relative primal gap for each heuristic per instance size. Heuristics that did
not find solutions when the relaxation was not integral are indicated by *. 94

5.1 Number of instances solved by different methods using column generation
for different instance sizes. Solved in preprocessing indicates instances
where UB = LB. 110

6.1 Results for the arrangement-based model: all instances from the configu-
rations shown were solved to optimality. 132

6.2 Instances solved by the Lazy model alone and in combination with primal
heuristics. For each pair (r, n), best performing algorithm has its Max m
value in bold. 134

6.3 Instances solved by the Lazy_Benders model and Itera-
tive_Benders. For each pair (r, n), the best performing algorithm in
indicated by its Max m value being in bold. The number of lazy cuts
found by the Lazy_Benders implementation is denoted by “# Cuts”
while the number of iterations performed by the Iterative_Benders
implementation is denoted by “# Iterations”. 136

6.4 Instances from the population benchmark solved by the Itera-
tive_Benders. Instances not solved have been proven to be infeasible. . 138

Contents

1 Introduction 15
1.1 Background . 20

1.1.1 Integer Linear Programming . 20
1.1.2 Basics of Computational Geometry 29

1.2 Contributions . 30
1.3 Text Organization . 31

2 Minimum Convex Partition of Point Sets 33
2.1 Introduction . 33
2.2 Experimental Environment . 35
2.3 A Mathematical Model for the mcpp . 35
2.4 Heuristics . 40
2.5 Computational Results . 42
2.6 Final remarks . 44

Bibliography 46

3 Solving the Minimum Convex Partition of Point Sets with Integer
Programming 47
3.1 Introduction . 48

3.1.1 Our Contribution . 48
3.1.2 Literature Review . 49
3.1.3 Organization of the text . 49
3.1.4 Basic Notation . 50

3.2 A Set Partition Model for the mcpp . 51
3.3 Column Generation Algorithm for SPM . 55
3.4 Branch-and-Price . 60

3.4.1 Introducing Edges . 60
3.4.2 Primal Heuristic . 64
3.4.3 Initial Primal Solution . 65
3.4.4 Lower Bound and Early Stopping 65
3.4.5 Stabilization . 65
3.4.6 Degree Constraints . 67

3.5 Experimental Results . 67
3.6 Conclusions . 72

Bibliography 74
3.7 Additional Comments . 77

4 Convex Bichromatic Quadrangulation of Point Sets 78
4.1 Introduction . 79
4.2 Integer Linear Programming Model . 80
4.3 Pure Set-Partition Formulation . 82
4.4 Linear Relaxation Based Heuristics . 84

4.4.1 Quadrangulation-based . 85
4.4.2 Edge-based . 85
4.4.3 Triangulation-based . 85
4.4.4 Matchings and Edge-Flips . 86

4.5 Experiments . 86
4.6 Concluding Remarks . 90

Bibliography 95

5 Solving the Coarseness Problem by ILP Using Column Generation 97
5.1 Introduction . 98
5.2 ILP Model for the Coarseness Problem . 99
5.3 Improving the Base Model . 100

5.3.1 Lower Bound (LB) . 101
5.3.2 Upper Bound (UB) . 102
5.3.3 Least Discrepancy Constraints . 102

5.4 A Column Generation Algorithm . 102
5.5 Experimental Results . 106

Bibliography 111

6 Covering Points with Unit Disks under Color Constraints 113
6.1 Introduction . 114
6.2 Solving the M3CDUDC using ILP . 117

6.2.1 Notation and Concepts . 117
6.2.2 Arrangement-based Model . 118
6.2.3 Symmetry Breaking Constraints . 118
6.2.4 Convex Faces of the Arrangement 119
6.2.5 Lazy Coloring Constraints . 119

6.3 Extended Model . 120
6.3.1 Solving the Subproblems . 122

6.4 Heuristics . 126
6.4.1 Violation Repair . 127
6.4.2 Relaxation-based reduction . 127
6.4.3 Greedy Heuristic . 127

6.5 Analysing the decomposition . 128
6.5.1 Implementing Benders Decomposition 128
6.5.2 Coloring Minimum Covers . 129

6.6 Empirical Evaluation . 131

Bibliography 141

7 Conclusions 144

Bibliography 146

15

Chapter 1

Introduction

The interplay between Computational Geometry (CG) and Operations Research (OR) has
been gaining traction from both communities in recent years. The quest for fast algorithms
for hard geometric problems using OR techniques has led to significant advances. In
particular, this cooperation between both communities resulted in the CGSHOP [7], an
annual competition focused on solving NP-hard geometric problems.

In the context of OR, several important problems are formulated, or at least illustrated,
in geometric settings. Although very general, problems such as the Traveling Salesman
Problem [2] and the Facility Location Problem [8], were first inspired by geometric
instances, usually involving geographical maps. Naturally, many geometric variants of
core problems in OR have also been investigated.

In this dissertation, we study geometric decomposition problems, which are geometric
variations of set-partition, set-cover and set-packing. Decomposition problems are central
to the field of OR. Not only are they employed to model industrial applications [22], but
they also appear as a substructure that can be leveraged in more complex settings.

When it comes to the CG literature, spatial decomposition appears as a key step in
the development of efficient algorithms, either exact, approximation or heuristics [16].
Decomposing a region into smaller, simpler regions before solving a problem can lead
to algorithms that are easier to implement, debug and usually have better performance.
Notably, problems that partition regions into triangles, known as triangulation problems,
are among the most researched topics in the field [6].

In this work, we focus on decomposition into convex regions, which can be regarded
as a superset of triangles. Moreover, convex partitions induce fewer parts when compared
to triangulations. Although triangles are very simple regions, the strong properties that
emanate from convexity can still be leveraged when applying algorithms to each part [5].

In particular, practical applications of spatial decomposition in the context of assigned
regions for human supervision, such as in airspace sectorization, can benefit from the
simplicity of convexity [9].

Before stating the problems studied in this work, we provide some fundamental
definitions and concepts from computational geometry.

Herein, we consider all objects to be embedded in the plane, and coordinates of points
to be given as two rational numbers.

A cyclic sequence of distinct points in the plane suffice to characterize a polygon p.

16

ee00 = p = p00pp11

ee11 = p = p11pp22

ee22= p= p22pp33

ee33 = p = p33pp44

e4 = pe4 = p33pp55

pp55 = p = p55pp00
pp00pp11

pp22

pp33

pp44

pp55

Figure 1.1: Example of a convex polygon with vertices p0, p1, p2, p3, p4 and p5 in blue and
edges e0, e1, e2, e3, e4 and e5 in black. The set of edges determines its boundary, while its
interior is shown in gray.

These points are the vertices of p, and the segments between consecutive points are the
edges of p. In this dissertation, we only consider simple polygons, i.e., polygons whose
edges do not intersect unless they are consecutive, in which case they must only share a
vertex. Figure 1.1 illustrates a convex polygon.

The closed cyclic sequence of edges of a simple polygon p forms a Jordan (polygonal)
curve, called the boundary of p, that divides the plane into two regions: a bounded one,
called the interior of p and an unbounded region, called the exterior of p.

Whenever no confusion arises, we also refer to the union of the boundary of p with its
interior simply as p.

A polygon p is convex if the line segment between any two points in the interior of p
is entirely contained in the union of the interior and the boundary of p.

Given a point set P , its convex hull, denoted by CH(P), is the smallest convex polygon
that contains P .

A polygon is said to be empty with respect to a point set P if there are no points of
P in its interior. When the point set P is made clear from context, we only say that the
polygon is empty.

A partition of CH(P) is a set of interior-disjoint empty polygons with vertices in P

whose union covers CH(P). In other words, a partition of CH(P) can be seen as a planar
subdivision obtained by connecting pairs of points of P with non intersecting segments
such that no point is left disconnected. If all polygons are convex, we say that the partition
is convex, otherwise, the partition is non-convex. Figure 1.2 shows a point set, its convex
hull and two partitions of its convex hull.

We say that a point set P is bichromatic if each of its points is colored either blue
or red. This color assignment partitions the point set into two subsets. To distinguish
between the two colors, we denote such set as P = R∪B, with R∩B = ∅. In a bichromatic
setting, a color flip is the operation of inverting the color of a given point.

Next, we define two problems studied here in which the goal is to partition the convex
hull of a point set.

17

(a) Point set P . (b) CH(P). (c) A non-convex
partition of CH(P).

(d) A convex parti-
tion of CH(P).

Figure 1.2: Convex Hull Partitioning

(a) Point set P . (b) Suboptimal partition of
CH(P).

(c) Minimum partition of
CH(P).

Figure 1.3: Minimum Convex Partition of Point Sets

Minimum Convex Partition of Point Sets In the Minimum Convex Partition
Problem (mcpp), given a point set P , one wants to find a partition of CH(P) into a
minimum number of convex polygons that are empty with respect to P . Figure 1.3 shows
a point set and two partitions of its convex hull.

Convex Quadrangulation of Bichromatic Point Sets with Minimum Flips In
the Convex Quadrangulation of Bichromatic Point Sets with Minimum Flips (cqbps),
given a bichromatic point set P = R∪B, with R∩B = ∅, the goal is to find the minimum
number of color flips, such that the convex hull of the resulting bichromatic point set can
be partitioned into bichromatic quadrangles that are empty with respect to P or decide
that this is not possible. Figure 1.4 shows a bichromatic point set and a bichromatic
quadrangulation that requires the minimum number of flips.

Note that all quadrangulations have the same number of faces.
To present the next problem, we need to define new relations between polygons and

bichromatic point sets.
Given a bichromatic point set P = R ∪ B, with R ∩ B = ∅, a set of points Q ⊂ P is

called an island if there is a convex region S such that Q = P ∩ S. Alternatively, Q ⊂ P

is an island if, and only if, P ∩ CH(Q) = Q. Figure 1.5 illustrates the concept of islands.
We denote the set of all islands of P by I(P) and say that two islands are disjoint

18

(a) A non-quad-
rangulable point
set.

(b) Quadrangula-
ble point set P .

(c) Bichromatic
convex quadran-
gulation of P .

(d) Bichromatic
convex quadran-
gulation of P with
minimum flips.

Figure 1.4: Convex Quadrangulation of Bichromatic Point Sets with Minimum Flips.
Bold points indicate color flips.

AA BB

DD

CC

Figure 1.5: Example of a point set P = {A,B,C,D} and an island Q = {A,C,D}.
Dashed shapes are some of the infinitely many convex shapes that determine Q. Except
for {A,B,C}, all non-empty subsets of P are islands.

19

r = 1 r = 0

r(Π) = 0

(a) Partition of P with discrepancy 0

r = 3
r = 2

C(P) = r(Π) = 2

(b) Partition of P with discrepancy 2

Figure 1.6: Point set P and two partitions of its points into disjoint islands. Discrepancy
of the islands and the resulting partitions are shown.

if their convex hulls are disjoint. Thus, it might be helpful to think of an island as its
convex hull, i.e., a (not necessarily empty) convex polygon with vertices in P .

The discrepancy of an island Q, denoted by ∇Q, is the absolute difference between the
number of red and blue points in it, and is given by ∇Q = ||R ∩ S| − |B ∩ S||.

Given a partition Π = {Q1, Q2, · · · , Qk} ⊆ I(P) of P , its discrepancy, denoted by ∇Π

is the minimum discrepancy among its islands, and it is given by ∇Π = minQ∈Π∇Q.
Figure 1.6 illustrates two partitions and their discrepancies.
With this, we can define the following problem.

Coarseness In the Coarseness problem, given a bichromatic point set P = R ∪ B,
with R ∩ B = ∅, one wants to find a partition of P into disjoint islands with maximum
discrepancy.

Between the two partitions shown in Figure 1.6, the one in Figure 1.6a not only has a
larger discrepancy, but it is an optimal partition of P .

To define the last problem, we introduce some definitions relating disks and points.
Given a point set P and a disk set D, we say that D covers P if for each point in

P there is at least one disk in D that contains, or covers, it. A disk set D is said to be
k-colorable if there is a assignment of at most k colors to the disks of D such that no two
disks of the same color overlap. Lastly, a unit disk is a disk of radius one.

Minimum 3-Colorable Discrete Unit Disk Cover In the Minimum 3-Colorable
Discrete Unit Disk Cover, given a set D of unit disks and a point set P , the goal is to
find a minimum cardinality 3-colorable subset of D that covers P .

Figure 1.7 shows an instance and an optimal cover.
Observe that given a disk set and a point set, if all disks in a disk set have the same

radius, we can change the scale so that all disks have radius one.
To conclude the presentation of the problems, we note that they are all known to be

NP-hard.

20

(a) Instance (b) Solution

Figure 1.7: Example of an instance of the Minimum 3-Colorable Discrete Unit Disk
Cover Problem and an optimal solution.

1.1 Background

Each of the following chapters corresponds to a self-contained published or submitted
paper. Each paper introduces the necessary concepts from both subjects, Combinatorial
Optimization and Computational Geometry. To guide the unfamiliar reader, we provide
below brief introductions and references for some recurring topics in this dissertation.

1.1.1 Integer Linear Programming

Integer Linear Programming is a core technique used throughout this dissertation. Next,
we will define some fundamental concepts of linear and integer linear programs that are
necessary for understanding the remainder of this work. For more comprehensive texts on
integer linear programming, in particular the branch-and-cut framework, refer to [15, 24].

A Mixed-Integer Linear Program (MILP) is an optimization problem of the form

min cx+ dy (1.1a)

s.t. Ax+By ≥ b (1.1b)

x ∈ Znx
+ , y ∈ Rny

+ , (1.1c)

where c is a 1 × nx vector, d is a 1 × ny vector, A is an m × nx matrix, D is an m × ny

matrix and b is an m×1 vector. This problem has nx integer variables x and ny continuous
variables y, totalling n = nx + ny variables. Function 1.1a is the objective function of the

21

Preprocessing

Create root
node

Is
there a
node to

process?

Choose a
node

Solve
Relaxation

Cutting
Planes

Branch

Yes

Check
Status

Were cuts
generated?

End

Start

No

Heuristic

Fractional

No

Infeasible/Suboptimal

Yes

Integral

Figure 1.8: Branch-and-Cut Flowchart

program, or model, and inequalities 1.1b define its constraints. Matrices A and B are
called coefficient matrices and vector b is simply called the right-hand side. Inspired by
the matricial notation, we might refer to variables as columns and constraints as rows.

When there are only integer variables, the problem is called an Integer Linear Program
(ILP). Conversely, when there are only continuous variables, the problem is called a Linear
Program (LP).

While linear programs are solvable in polynomial time, the requirement that at least
some variables be integral makes both ILP and MILP NP-hard problems in general.

W.l.o.g, for the remainder of this chapter, we consider all (M)ILPs to be minimization
problems.

Given an (M)ILP, a (linear) relaxation is obtained by making all integer variables
continuous. This relaxation is very useful since it gives, in polynomial time on the size of
the model, a lower bound for the (M)ILP.

The most popular technique to solve MILPs is the Branch-and-Cut (B&C) algorithm
based on linear relaxations. This approach consists of implicitly enumerating a search
tree, recursively. A simplied version of this algorithm is illustrated in Figure 1.8 and
described below.

The first step of the B&C consists of preprocessing. In the preprocessing phase,
the solver attempts to remove redundant variables and constraints to reduce the size
of the problems. In some cases, based on the structure of the ILP, the solver might add

22

constraints that are known to increase the lower bound given by linear relaxation of the
model.

When all preprocessing is done, the first node of the tree, known as the root node, is
added to the pool of nodes. This node corresponds to the preprocessed ILP. Then, the
node processing loop is started.

At each iteration, the solver selects a node in the pool to be processed. The B&C
algorithm terminates when there are no nodes left to process.

A node is pruned if we are guarantee not to improve our best known solution by further
exploring the subtree rooted at that node.

The first step when processing a node is to solve its relaxation. Next, we check the
status of the solution. If the relaxation is not feasible, the node is pruned by infeasibility.
If all relaxed integer variables were assigned integer values, a solution to the original
problem was found, and the node is pruned by integrality. Finally, if the lower bound
given by the relaxation of a node is larger than the best known integer solution, the node
is pruned by suboptimality.

If the node was not yet pruned, at least one of its relaxed integer variables was assigned
a fractional value. We then call the Cutting Plane algorithms. The goal of a Cutting Plane
algorithm is to produce constraints, also known as cuts, that are valid for all integer
solutions, but are violated by the current fractional solution. If such cut is found, the
relaxation is solved again. This process is repeated until no cutting plane is found.

The addition of cutting planes might increase the objective value of the relaxation, or
even make it infeasible, leading to the node being pruned. Modern solvers have several
classes of general cutting planes implemented, however, problem-specific cuts can be added
with the goal of levering the combinatorial properties of the problem.

Then the solver might call heuristics, passing the value of the current relaxation as
input. The goal of a heuristic is to construct good feasible solutions for the original
problem using the information derived from the relaxation of a given node. The upper
bound provided by feasible solutions helps prune nodes by suboptimality, even when
the solutions are not optimal. As with cutting planes, even though modern solvers are
equipped with several general heuristics, problem-specific heuristics can be added.

To concluded the node processing, a branching rule is called. A branching rule selects
one of the relaxed integer variables, say x, assigned a fractional value x∗ by the relaxation
and creates two new child nodes. Each child node contains all constraints in the current
node, both inherited from its parent, as well as its on cuts, plus additional branch
constraints. For one node the branch constraint is x ≤ ⌊x∗⌋, while for the other it is
x ≥ ⌈x∗⌉. These branch constraints ensure that the two nodes correspond to two disjoint
subproblems, and neither contains the solution to the relaxation of its parent. A good
branching rule leads to child nodes with search subtrees of similar size, while also having
its cuts increase the lower bound for both child nodes with respect to the parent. Once
again, modern solver are equipped with powerful branching rules, but a problem-specific
one can be added, leveraging the combinatorial properties of integral solutions.

When processing a node has finished, be it by being pruned or by branching, a new
one is selected from the pool of nodes, and the process repeats until the entire tree is
implicitly searched.

23

To summarize, when it comes to improving solver performance, some of the key
components of the B&C are: preprocessing, heuristics, cutting plane algorithms and
branching rules.

Next, we discuss more advance techniques for solving MILPs.

Row Generation

In order to solve a MILP model, it can be useful to initially omit some of its constraints
and work with a reduced MILP. This may occur when there are too many constraints to
be included or when they (even if few) significantly increase the solving time.

Consider the following ILP.

min cx (1.2a)

s.t. Ax ≥ b (1.2b)

A′x ≥ b′ (1.2c)

x ∈ Z+ (1.2d)

Let Constraints (1.2c) be the complicating constraints to be omitted. Then, instead
of solving Model (1.2), we solve

min cx (1.3a)

s.t. Ax ≥ b (1.3b)

x ∈ Z+ (1.3c)

However, to ensure that the solution found is correct, Constraints (1.2c) must still be
enforced. To this end, a separating procedure is called when an integer feasible solution
is found for the reduced MILP and it either certifies that the solution is feasible for the
original model or provides a set of constraints that were missing and are violated by said
solution. This is called the lazy separation, and the constraints found are called lazy
constraints.

Notably, since we are only omitting constraints, a relaxation of the reduced problem
still gives a valid, although likely weaker, dual bound, allowing the problem to be solved
using traditional B&C, as long as integral feasible solutions found during the search are
properly separated.

In Figure 1.9, we show an updated version of the B&C flowchart, including where row
generation routines are called.

It is important to highlight the difference between Cutting Planes and Lazy Constraint
Separation. While the former is used to improve dual bounds, the later is necessary to
ensure that the model provides valid solutions.

In order to improve performance, one might adapt the Lazy Constraint Separation
routine to also separate fractional solutions, adding a Cutting Plane routine to find
the violated omitted constraints. This ensures that the dual bound provided by the
reduced MILP is equivalent to the one of the original MILP. However, the effectiveness of
separating fractional solutions is dependent on the MILP being solved.

24

Preprocessing

Create root
node

Is
there a
node to

process?

Choose a
node

Solve
Relaxation

Cutting
Planes

Branch

Yes

Check
Status

Were cuts
generated?

End

Start

No

Heuristic

Fractional

No

Infeasible/Suboptimal

Yes

Row
Generation

Integral

Row
Generation

Figure 1.9: Branch-and-Cut Flowchart including Row Generation

25

Given a solution x∗ to Model (1.3), we can naively check for each constraint a′ix ≥ b′i
whether a′ix

∗ ≥ b′i is violated.
Alternatively, one can instead solve an optimization problem that implicitly decides

whether an omitted constraint is violated. The most well-known application of implicitly
lazy constraint separation appears in formulation of routing problems and is known as
Sub-cycle Elimination[24].

The most notable result in Row Generation applies when lazy constraints are implicitly
separated as cutting planes, and can be expressed as follows [23].

Theorem 1. Given a MILP M , if we omit a set of constraints R such that the remaining
of M is polynomial in size and there is a polynomial-time separation routine for relaxation
solutions with respect to R, then the relaxation of M can be solved in polynomial time.

The strength of this result comes from the fact that R can be comprised of exponen-
tially many constraints.

Next, we discuss a very important usage of row generation called Benders Decompo-
sition. This decomposition allows us to leverage problem structure to split the variables
of the problem.

Let x be a set of integer variables and y a set of continuous variables. A special case
of Benders Decomposition, where y is not part of the objective function, applies to the
following model.

min cx (1.4a)

s.t. Ax + By ≥ b (1.4b)

Dx ≥ d (1.4c)

D′y ≥ d′ (1.4d)

x ∈ Z+, y ∈ R+ (1.4e)

This model presents a block structure as its constraints are separated into three sets.
Constraints 1.4b are the linking constraints, and have both x and y variables, while
Constraints 1.4c and 1.4d contain only x and y variables, respectively.

Instead of solving the entire model, we can solve a reduced MILP, called the master
problem, and rely on an auxiliary problem, simply called subproblem, to validate solutions
to the master problem.

The master problem is restricted to only x variables and is as follows.

min cx (1.5a)

s.t. Dx ≥ d (1.5b)

x ∈ Z+ (1.5c)

The subproblem is constructed for a given solution x∗ of the master problem as follows.

26

min 0 (1.6a)

s.t. By ≥ d− Ax∗ (1.6b)

D′y ≥ d′ (1.6c)

y ∈ R+ (1.6d)

Since, in the special case that we are interested in, the y variables are not part of the
objective function, the subproblem is only responsible for checking feasibility.

By solving the subproblem, we either obtain a valid assignment y∗ of y, such that
(x∗, y∗) is a solution to Model 1.4 or find a constraint that can be added to it so that x∗

is no longer feasible.
There are two standard ways of implementing this decomposition. The first one uses

lazy constraints, in such a way that one search tree is used and the subproblem is solved
when an integer solution is found. This is known as the lazy implementation. One
drawback of this approach is that, since the model being solved is not completely known
at the start, most preprocessing algorithms must be disabled.

Alternatively, one can solve Model 1.5 to optimality as a separate ILP and then
separate the optimal solution. If it does not lead to a feasible solution, a new ILP that
includes the violations found by the subproblem is solved almost from scratch. This is
done iteratively until either a solution is found or the master problem becomes infeasible.
This approach enables preprocessing to be used at each iteration, but, since each iteration
requires an ILP to be solved from scratch, a large number of iterations might make the
procedure prohibitively time-consuming.

When the variables in the subproblem are indeed continuous, linear programming
duality gives us infeasibility cuts for infeasible solutions to the master problem as a
byproduct of solving this subproblem as an LP.

However, if one wants to apply the decomposition when the variables in the subproblem
are integral, infeasibility cuts must be derived for the specific problem. In this case, the
decomposition is called Logic-Based Benders Decomposition.

For more details and more general cases of Logic-Based Benders Decomposition, the
reader may refer to [11].

Next, we discuss how to handle complicating variables.

Column Generation

In some cases, one might want to omit some of the variables of a model in order to solve
it, but it does not have the block structure necessary to apply Benders Decomposition. In
this case, a different approach, known as Column Generation, works on variables similarly
to how Row Generation works on constraints.

27

Consider the following ILP

min cx+ c′y (1.7a)

s.t. Ax+ By ≥ b (1.7b)

x ∈ Z+, y ∈ Z+, (1.7c)

and let the y variables be the complicating variables to be omitted.
In this case, we start with a reduced MILP, called the Restricted Master Problem

(RMP) comprised only of the x variables, as follows.

min cx (1.8a)

s.t. Ax ≥ b (1.8b)

x ∈ Z+, (1.8c)

In contrast to Row Generation, any integer solution restricted to the x variables can
be extended to the original problem by assigning zero to all y variables. However, given
a solution to the relaxation of Model (1.8) it is not guaranteed to be a lower bound for
the original problem. In fact, the removal of variables might lead to an infeasible reduced
MILP, while the original problem was feasible.

Thus, to obtain a lower bound, an auxiliary problem, known as the Pricing Problem,
is called when a relaxation is solved in a node. If there are any variables that could
improve the value of the relaxation but are missing from the RMP, the Pricing Problem
must provide at least one of them. This process is repeated until there are no variables to
be added, only then the relaxation is considered solved and its objective value is a valid
lower bound for the node problem. Due to the numerical nature of solving the RMP, it
is usually said that it converged when no improving variable is found.

The pricing uses a solution to the dual of the master problem to construct variables
that could improve the objective value, if there are any.

Before continuing, some matrix notation must be introduced. Given an m by n matrix
M , let M t denote its transpose and M:,j denote the n by 1 vector corresponding to its
j-th column.

Associating dual variables α to Constraints (1.7b), the dual of (the relaxation of)
Model (1.7) is as follows.

min αb (1.9a)

s.t. αAt ≤ c (1.9b)

αBt ≤ d (1.9c)

α ∈ R+, (1.9d)

Let α be an optimal solution to the dual of the master problem, i.e., Model (1.9)
without Constraints (1.9c). The reduced cost of a variable yi w.r.t. α, denoted by c′i, is

28

given by
c′i = c′i − αB:,i. (1.10)

To improve the solution to the current relaxation, one must find variables with negative
reduced cost. Since we solved the relaxation of RMP, all x variables have non-negative
reduced costs.

For the y variables, let Y be the set of combinatorial objects associated to each of
them. A variable with the minimum reduced cost can be found by solving the following
presentation of the Pricing Problem.

c′min = min
i:yi∈Y

c′i − αB:,i (1.11)

Similarly to Row Generation, this problem can be solved by inspection. However,
since our goal is to avoid enumerating the set of variables, this problem is usually solved
implicitly.

If c′min is negative, we add the corresponding variable, say yi, to the master problem,
which includes adding column B:,i to A. Otherwise, the relaxation of the master problem
already has the same value as the relaxation of the original problem.

In the case where the master problem is infeasible, the pricing problem has to be
slightly modified, replacing the c′ side by 0, as follows [1].

f ′
min = min

i:yi∈Y
0− αB:,i (1.12)

This problem is known as the Farkas Pricing Problem, as it is a consequence of the
well-known Farkas Lemma. If its solution is non-negative, then the relaxation is indeed
infeasible. Otherwise, we add the variable found to the master problem. Feasibility checks
become particularly useful when enumerating the search tree, as branching decisions
naturally lead to nodes corresponding to infeasible subproblems.

To conclude the presentation of Column Generation, we discuss some difficulties that
may arise when using it and how to minimize their impact.

Firstly, the subproblem is called at each node, possibly several times until the relax-
ation is solved and a valid dual bound is obtained. For problems for which the Pricing
Problem is time-consuming to be solved to optimality, it is possible to to use heuristics to
find variables with a negative, but not necessary minimum, reduced cost. It might also
be beneficial to add multiple variables at once to speed up convergence.

Secondly, any constraints added to the master problem, be them from cutting planes
or even from branching, incur a new dual variable. If some of the omitted variables have
non-zero coefficients in these newly added constraints, a new dual variable is introduced
into the pricing problem. The introduction of new dual variables modifies the pricing
problem and has to be handled carefully.

Thus, to include column generation into a B&C framework, one needs to ensure that
the algorithm used to solve the subproblem can handle the branching rule and the cutting
planes included.

Alternatively, the study of cuts that do not involve the omitted variables, known as
Robust Cuts, removes this difficulty. An example of the usage Robust Cuts is presented

29

Preprocessing

Create root
node

Is
there a
node to

process?

Choose a
node

Solve
Relaxation

Cutting
Planes

Branch

Yes

Check
Status

Were cuts
generated?

End

Start

No

Heuristic

Fractional

No

Infeasible/Suboptimal

Yes

Row
Generation

Integral

Row
Generation

Column
Generation

Were
columns

generated?

No

Yes

Figure 1.10: Branch-Cut-and-Price Flowchart

in Chapter 3.
The resulting algorithm, which may even contain row generation, is called Branch-

Cut-and-Price (BC&P). Its execution is illustrated in Figure 1.10.
Similarly to Row Generation, Column Generation disables most preprocessing, as the

model is not entirely known at the start.
The reader may refer to [4] for a comprehensive introduction to the subject. Alterna-

tively, a gentler introduction can be found in [24].

1.1.2 Basics of Computational Geometry

Fundamentals of computational geometry can be found in [6]. Most of the necessary
concepts were already presented in the beginning of this chapter as the problems were
first introduced. We are only missing one key geometric structure used to write ILP
models for geometric problems: arrangements.

Arrangements

A finite set of curves in the plane, such as lines, line segments or circles, induces a planar
subdivision which partitions the plane into an arrangement. The zero-, one- and two-
dimensional objects of an arrangement are its vertices, edges and faces, respectively, and

30

(a) Arrangement of circles. Its vertices are
shown in green, its edges in red and its
faces in white.

(b) Dual of an arrangement of circles. Its
vertices are shown in blue and its edges in
black.

Figure 1.11: Illustration of an arrangement of circles {d0, d1, d2}, which has faces
{f0, f1, f2, f3, f4, f5, f6, f7} and its dual.

are called the elements of the arrangement. An example of a arrangement of circles is
shown in Figure 1.11a.

The dual of an arrangement is a graph with a vertex for each face in the arrangement
and an edge connecting pairs of vertices that represent faces that share an edge in the
arrangement. The dual of the arrangement in Figure 1.11a is shown in Figure 1.11b.

Both the arrangement and its dual can be traversed very efficiently. For the problems
studied in this dissertation, the number of elements in the arrangements is quadratic on
the number curves used to construct it.

This discretization of the plane into elements of an arrangement enables us to express
problems using constraints and even variables associated to said elements. For example,
in Figure 1.11a, each point in the interior of a given face is covered by the same set of
disks.

Theoretical aspects of geometric arrangements can be found in [10], while more
practical discussions, including implementations, are presented in the documentation of
the CGAL Library [21]. This library provides implementation not only of arrangements
but also of several algorithms and data-structures commonly used in CG.

1.2 Contributions

A goal of this dissertation is to develop tools to tackle geometric decomposition problems
that can be used for solving other similar hard geometric problems. To this end, we
investigated ILP models for the problems studied, together with theoretical and empirical
results obtained by solving these models, as listed below.

Minimum Convex Partition of Point Sets (mcpp) Our earliest paper presented the
first ILP model for the mcpp problem, which was graph-based, and derived heuristics
based on its relaxation. Our second paper presented an arrangement-based model, which
was able to solve instances with twice as many points as the previous model when run on

31

similar hardware. This model included a data structure and a pricing algorithm that can
be generalized to other problems involving convex hull partitioning. We also incorporated
the graph-based variables from the first model, adapting cuts and heuristics proposed for
it. This combination allowed us to draw connections between geometric aspects of the
problem and classical results in set-partitioning. The final result is a framework that can
be adapted to solve additional convex hull partitioning problems.

Convex Quadrangulation of Bichromatic Point Sets with Minimum Flips
(cqbps) We introduced this new optimization variation of the quadrangulation problem
where we want to minimize color flips. We presented two ILP models for it; the best one of
which handles both convex hull partitioning and color assignment as a pure set-partition
problem. We used the convex hull partitioning constraints introduced for the the mcpp
and also presented several heuristics, based on the ones introduced for the mcpp in our
previous papers. These new heuristics draw connections with matching approaches from
the quadrangulation literature.

Coarseness We presented a novel ILP model to compute the coarseness of a bicolored
point set and proposed several improvements to it. This model was implemented using
column generation and its relaxation could be solved in polynomial time. This relaxation
was used in an iterative preprocessing algorithm to find successively tighter lower bounds
and used these bounds to remove variables. When combined with a heuristic from the
literature, this polynomial-time iterative procedure was find optimal solutions of large
portion of our benchmark.

Minimum 3-Colorable Discrete Unit Disk Cover (M3CDUDC) We introduced
the first ILP model and the first known exact algorithm for the M3CDUDC problem. Our
best implementation uses row generation in the form of Logic-Based Benders Decompo-
sition. We provided logic-based feasibility cuts, and presented several improvements to
make them stronger. The resulting algorithm solved instances with thousands of disks
and points, which compares very favorably with the rather impractical approximation
algorithms from the literature. We also proved that the first iteration of our decomposi-
tion, which corresponds to a pure set cover problem, produces solutions with a number
of colors bounded by a constant times the minimum number of colors among all covers.

Overall, we show in this dissertation how geometric decomposition problems can
be solved efficiently in practice by either row or column generation, with a classical
decomposition problem as a master problem and a subproblem that can better take
advantage of the geometry. We also show that using the geometry of the problem in
other components of the branch-and-cut, or branch-cut-and-price, algorithms, such as
heuristics, branching rule or preprocessing, is key for the success of these techniques.

1.3 Text Organization

This dissertation is presented in an alternative format introduced by the University of
Campinas some years back. In this format, the Introduction is followed by one chapter for
each paper either published or submitted during the doctorate program and its respective

32

bibliography, while the last chapter presents concluding remarks. Chapter 2 and Chapter 3
correspond to our studies of the mcpp. Chapter 4 presents our work on the cqbps. Next,
Chapter 5 shows our results for the Coarseness Problem. Finally, Chapter 6 presents our
results for the M3CDUDC. A final discussion is presented in Chapter 7, followed by a
bibliography containing the works cited in the introduction and conclusion.

33

Chapter 2

Minimum Convex Partition of Point
Sets

In the following, we present the first empirical study of the Minimum Convex Parti-
tion of Point Sets. We present an ILP model based on constructing a planar subdi-
vision and derive heuristic from it. This chapter corresponds to the work [20] pre-
sented at the 11th International Conference on Algorithms and Complexity (CIAC
2019) [20]. It was co-authored with Pedro J. de Rezende1 and Cid C. de Souza.1

Abstract A convex partition of a point set P in the plane is a planar subdivision of
the convex hull of P whose edges are segments with both endpoints in P and such
that all internal faces are empty convex polygons. In the Minimum Convex Partition
Problem (mcpp) one seeks to find a convex partition with the least number of faces.
The complexity of the problem is still open and so far no computational tests have been
reported. In this paper, we formulate the mcpp as an integer program that is used both to
solve the problem exactly and to design heuristics. Thorough experiments are conducted
to compare these algorithms in terms of solution quality and runtime, showing that the
duality gap is decidedly small and grows quite slowly with the instance size.

2.1 Introduction

Let P be a set of n points in the plane in general position, i.e., with no three points being
collinear. We say that a simple polygon is empty, w.r.t. P , if it contains no points of P in
its interior. Denote by H(P) the convex hull of P . A convex partition (or decomposition)
of P is a planar subdivision of H(P) into non overlapping empty convex polygons whose
vertices are the points of P . The Minimum Convex Partition Problem (mcpp) asks to find
a convex partition of P minimizing the number of faces. These concepts are illustrated
in Fig. 2.1.

A practical application of the mcpp in the area of network design is described in [7].
The goal is to form a communication network connecting the points of P . When the edges

1Institute of Computing, University of Campinas, Campinas, Brazil

34

(a) (b) (c) (d)

Figure 2.1: (a) Point set P ; (b) H(P); (c) minimal and (d) optimal partition.

used as links in the network form a convex partition of P , a simple randomized algorithm
can be used for routing packages [2]. Hence, one way to build a low-cost network, i.e.,
one with few links that still enables the application of that routing algorithm, is to solve
the mcpp for P .

Besides the actual application outlined above, the mcpp lies in the broader context
of polygon decomposition, an important topic of study in computational geometry [6].
A frequently used approach for designing divide-and-conquer algorithms for geometric
problems for general polygons is to decompose these into simpler component parts, solve
the original problem on each component using a specialized algorithm and then combine
the partial solutions. Convex polygons are often the best choice for the role of the
smaller components. This is, in fact, a reason why triangulations of sets of points, and
of polygons in general, have been so extensively studied and became a central problem
in computational geometry. Since triangulations are special cases of convex partitions, a
deeper understanding of the mcpp gains importance.
Literature overview. To the best of our knowledge, the complexity of the mcpp remains
unknown. Moreover, even though some articles describe non-polynomial algorithms to
solve the problem, no implementations or results were found that make an empirical
assessment of the efficiency of those algorithms.

Fevens et al. [3] proposed an exact algorithm for the mcpp using dynamic program-
ming. If h denotes the onion depth of P , i.e. the number of nested convex hulls that
need to be removed before P becomes empty [8], the complexity of this algorithm can
be expressed as O(n3h+3) and is, therefore, exponential in h, which can actually be
as large as Θ(n). Spillner [10] designed another exact algorithm whose complexity is
O(2kk4n3 + n log n), where k = |I(P)| is the number of points of P in the interior of
H(P). Moreover, Spillner et al. [7] present a 30

11
-factor approximation algorithm for the

mcpp.
Other papers investigate the mcpp in an attempt to find theoretical bounds for the

optimal value. Let Inst(n) be the set of all mcpp instances of size n. Denoting the
optimal value of an instance i ∈ Inst(n) by OPT(i), define F (n) = maxi∈Inst(n) OPT(i),
that is, F (n) is the maximum among all optima for instances of size n. The best known
lower bound for F (n) is 12

11
n− 2 as shown in [4], for n ≥ 4, whereas the best upper bound

proven to date is ⌈7(n−3)
5
⌉, see [5]. It is shown in [9] that any minimal convex partition

has at most 3(n−2)
2

faces, which also serves as an upper bound on F (n).
Our contribution. In this paper, we introduce the first known integer linear program-
ming formulation of the mcpp. Through extensive experimentation, we show that the
solutions of the linear relaxation of this model provide invaluable information on which
segments are likely to be in an optimal solution of the problem. From this observation,
we derive a powerful heuristic for the mcpp that is capable of producing high quality

35

solutions for instances with up to one hundred points in no more than a few minutes
of computation on a currently standard machine. We hope that the present work will
spearhead efforts of researchers in the field to publish computational evaluation of algo-
rithms for the mcpp. To this end, all instances we used and their solutions, are made
available [1].
Organization of the text. The next sections of the paper are organized as follows.
Section 2.2 describes the computational environment in which our tests were carried out.
Section 2.3 presents an integer programming formulation for the mcpp and reports on
experiments with this model. Section 2.4 is devoted to the discussion of the heuristics
developed in this work, whereas in section 2.5 we analyze the results yielded by these
algorithms. Section 2.6 contains a few conclusions and points out future research direc-
tions.

2.2 Experimental Environment

In the following sections, we propose exact and heuristic algorithms for the mcpp and
report on their experimental evaluation. Since observations made from initial empirical
results had an impact on the design of these algorithms, it is necessary to first introduce
the computational environment where tests were carried out and to describe how the
benchmark instances were created.
Software and Hardware. All experiments were run on an Intel Xeon E5-2420 at
1.9GHz, and 32GB of RAM running Ubuntu 14.04. The algorithms were implement
in C++ 11 and compiled with GCC 7.2.0. Geometrical structures and procedure were
implement using CGAL 4.2-5, library Gmpq was used to represent rational numbers
exactly. To solve integer linear programs and relaxations, we used CPLEX 12.8.0, in
single-thread mode, with default configurations, except for a time limit of 1200 seconds.
Instances. Instances consist of points whose x and y coordinates were randomly
generated in the interval [0, 1] according to a uniform distribution. For an instance of
size n, points were created in sequence until n points in general position were included.
To that end, when a newly spawned point resulted collinear with a previously generated
pair the former was rejected, otherwise it was accepted.

Two sets of instances were generated, with different instance sizes. For each size, 30
instances were created. The set T1 is comprised of instances of sizes 30, 32, 34, . . . , 50.
For each size, we chose the first 30 found to be optimally solvable within 20 minutes. The
second set, T2, simply contains instances of sizes 55, 60, 65, . . . , 110 for which optimal
solutions are still not known.

2.3 A Mathematical Model for the mcpp

In this section, we propose an Integer Linear Programming (ilp) formulation for the
mcpp and discuss its correctness and performance on the randomly generated instances
described in Section 2.2.
Model Description. Before describing the model itself, we need to introduce some
terminology and notation. Recall that P denotes a set of n points in general position.
The set of internal points of P , denoted I(P), is the subset of P formed by the points

36

that are not vertices of the convex hull of P , H(P). Let S denote the set of Θ(n2) line
segments whose endpoints belong to P . Given a pair of segments ij, kℓ ∈ S, we say that
ij and kℓ cross when ij ∩ kℓ \ {i, j, k, ℓ} ≠ ∅.

Consider the complete (geometric) undirected graph G = (P,E(P)), induced by P ,
where E(P) = {{i, j} | ij ∈ S}. We will refer to an edge {i, j} of E(P) and its
corresponding segment ij in S interchangeably. We will also need to allude to the set
of pairs of crossing edges (segments), denoted SC . These pairs, (ij, kℓ) | ij and kℓ cross,
may easily be identified in O(n4) time using simple geometric procedures. Similarly, a
complete directed graph

−→
G = (P,A(P)) can be defined, whose arcs correspond to the

segments of S with either one of the two possible orientations: (i, j) ∈ A(P) iff ij ∈ S.
A few additional terminologies are needed before we can present the model and argue

about its correctness. Given two points a, b in the plane, we denote by CCW(ab) (CW(ab))
the set of points c in the plane such that the triple abc is positively (negatively) oriented,
i.e., 0° < ∢abc < 180° (−180° < ∢abc < 0°). Let a be a point in the plane and L be a list
of non collinear segments, all sharing a as one of their endpoints. Assume that |L| ≥ 2

and that its segments are given in a clockwise circular order around a. Point a is called
reflex with respect to L if there are two consecutive segments in L, say ba and ca, so that
c ∈ CW(ba). Notice that this is equivalent to say that CCW(ac) contains no endpoints
of segments in L. With respect to L, when a is not reflex, we call it convex.

Lastly, to each edge {i, j} ∈ E(P), we associate a binary variable xij whose value is
one iff {i, j} is in the solution. In the formulation below, the unique variable associated
to the segment ij is naturally referred to as xij and as xji. Accordingly, the proposed ilp
model, referred to as basic, reads:

z = min
∑

{i,j}∈E(P)

xij (2.1a)

s.t. xij + xkℓ ≤ 1 ∀{{i, j}, {k, ℓ}} ∈ Sc (2.1b)

xij = 1 ∀{i, j} ∈ H(P) (2.1c)∑
k∈CCW(ij)∩P

xik ≥ 1 ∀(i, j) ∈ A(P), i ∈ I(P) (2.1d)

∑
j∈P

xij ≥ 3 ∀i ∈ I(P) (2.1e)

xij ∈ {0, 1} ∀{i, j} ∈ E(P) (2.1f)

The objective function (2.1a) can be expressed in terms of the number of edges in
a solution because Euler’s formula implies that minimizing the number of edges in a
connected planar graph (subdivision) is equivalent to minimizing the number of faces of
any planar embedding of that graph. That is, if f , e and v denote, respectively, the
number of faces, edges and vertices of an embedding of a planar graph, then f = e−v+2.
Since we seek to build a planar connected subdivision and v = |P | is given, minimizing e

is equivalent to minimizing f .
Constraints (2.1b) guarantee planarity since they prevent that both edges of a crossing

pair be included in a solution. Constraints (2.1c) establish that the edges of the convex

37

b

a

e

d

c

p

Figure 2.2: An instance of the mcpp whose solution of the the relax model without
constraints (2.1e) has a vertex p with fractional degree 2.5. Dashed edges have value 0.5
and solid edges have value 1.

hull of P are included in the solution. Constraints (2.1d) ensure that any point i in
I(P) is convex with respect to the set of segments that are in the solution. As shown
in Proposition 1, the degree constraints (2.1e) are redundant when we consider integer
solutions and constraints (2.1d). However, we opted to keep them in the formulation
because we verified that they improve the value of the relaxation. Figure 2.2 depicts an
instance whose solution of the relaxation of the basic model without constraints (2.1e)
has an internal point with fractional degree less than three. Finally, constraints (2.1f)
require all variables to be binary.

Proposition 1. Let xL be the incidence vector of a subset L of segments in S satisfying
all constraints (2.1d). Then, xL also satisfies constraints (2.1e).

Proof. Denote by G(L) the subgraph induced by L in G. Due to constraints (2.1d), the
degree in G(L) of any point i ∈ I(P) is at least one, meaning that, at the minimum,
there is one segment ia in L for some a ∈ P . Now, taking j = a in constraint (2.1d),
we obtain that there must be another point b in CCW(ia) ∩ P for which ib is also in L.
Hence, i has degree at least two. By construction, a must be in CW(ib). Together with
constraint (2.1d) for (i, b), this implies that there must be a third point c in CCW(ib)∩P
so that the segment ic is in L. □

Theorem 2. The basic model is a correct formulation for the mcpp.

Proof. First, we show that the incidence vector xL of any set L of segments in S that
corresponds to a feasible solution of the mcpp satisfies all the constraints of the basic
model. By definition, xL is a binary vector and hence, constraint (2.1f) holds. The
feasibility of L implies planarity, so xL satisfies all constraints (2.1b). Besides, as the
segments in the convex hull of P are all present in any feasible solution, constraints (2.1c)
are also verified by xL. Proposition 1 implies the fulfillment of constraints (2.1e). It
remains to prove that xL satisfies constraints (2.1d) as well. Let Li be the clockwise
ordered subset of segments of L that are incident to i ∈ I(P). The feasibility of L requires
i to be convex with respect to Li, or else i would be a reflex vertex of a face in the planar
subdivision corresponding to L, contradicting the hypothesis that the set is a feasible
solution for the mcpp. As a consequence, for any direction −→u , the set CCW(i(i + −→u))2

contains at least one endpoint of a segment in Li. Hence, for any (i, j) ∈ A(P), at least
one variable xL

ik in the summation on the left of constraint (2.1d) has value one, ensuring
that the inequality is satisfied by xL.

2Here, (i+−→u) denotes any point obtained by a translation of i in the direction −→u .

38

We now focus on the proof that the set L associated to any incidence vector xL

satisfying the linear system (2.1b)–(2.1f) is a convex partition of P . Let G(L) denote the
subgraph of G induced by L. Because of (2.1b), L is planar and, due to (2.1c), it contains
all the segments in H(P). From Proposition 1, the degree of any point i ∈ I(P) in G(L)

is at least three. For Li defined as before, we claim that i is convex with respect to Li.
To see this, suppose by contradiction that i is reflex. So, w.l.o.g, there is a segment ia

in Li such that, for any b with ib ∈ Li, b is in CW(ia). This implies that there is no
k ∈ CCW(ia) ∩ P so that ik is in L. Consequently, xL does not satisfy constraint (2.1d)
for (i, a), contradicting the feasibility of xL. We next show that G(L) is connected.

By contradiction, suppose that G(L) has two or more connected components. Since L

contains the segments in H(P), the points in at least one of these connected components
must all be internal. Let i be the rightmost point in this component. Since i is not
connected to any point to its right and has degree at least three, i must be reflex relative
to L. But then, constraint (2.1d) for (i, j) is violated by xL, where ij is the first segment
visited when Li is traversed starting from a vertical line that goes through i.

On the other hand, we can also prove that G(L) contains no articulation points (and
hence, no bridges) by applying arguments similar to those employed above. It then
follows that each segment in L \ H(P) is incident to exactly two (distinct) faces of the
planar subdivision defined by L and that all faces in this subdivision are empty polygons.
Moreover, as all points in I(P) are convex w.r.t. L, these polygons are convex. The
minimization condition is ensured by (2.1a). □

Empirical Evaluation. We now describe the empirical evaluation of the basic model
for the benchmark set T1. Recall that to construct the 330 instances in T1, we sought
to have only instances for which an optimal solution could be found. To achieve that, a
sequence of instances was generated for each of the 11 intended sizes and we attempted
to solve them to optimality within the time limit of 20 minutes of computation. Those
instances for which this process was successful were kept and the failed ones were discarded
and replaced.

As a form of probing the space of possible instances in regard to how much harder
it gets, as sizes increase, for finding instances that are solvable within our time limit,
consider Fig. 2.3a. It shows how many instances had to be generated until a set of 30
instances could be found that satisfied our criteria. One can see that the first 30 instances
of sizes between 30 and 42 were all solvable. Differently, from size 44 onwards, some
instances timed out and had to be replaced. Clearly, solvable instances within our time
frame become rarer as the size increases.

One of the major drawbacks for the performance of the basic model is the huge
number of crossing constraints (2.1b), which is O(n4). For instances with 100 points,
the formulation is too big even to be loaded into memory. A conceivable approach in
this case is to implement a branch-and-cut algorithm to compute the basic model where
the crossing constraints are added as they are needed. Initially, no constraints (2.1b) are
included in the model. The processing of a node in the enumeration tree involves the
execution a cutting-plane algorithm that is composed of the following steps. In the first
one, the current linear relaxation is computed. Then, a separation routine is run that

39

30 32 34 36 38 40 42 44 46 48 50

Instance size

30

32

34

36

38

40

42

44

#
o
f
g
e
n
e
ra
te
d
in
st
a
n
ce
s

(a)

30 32 34 36 38 40 42 44 46 48 50

Instance size

40

60

80

100

120

140

160

180

200

|E
>
0
(x
∗)
|

(b)

Figure 2.3: (a) Number of instances generated until 30 were solved exactly, and
(b) cardinality of the support of x⋆, as functions of the instance size.

checks for crossing constraints that are violated by the optimal solution. The latter can
be done by inspection in O(n4) time and, if violated constraints are found, they are added
to the current relaxation and the previous steps are repeated; if not, the processing of the
node halts and branching takes place provided that the current solution is not integral.

Having implemented and tested this algorithm, we noticed that the computation of
the linear relaxation via the cutting-plane algorithm was faster than solving the complete
relaxed model. This proved helpful for developing our heuristics. However, considering
the imposed time limit and the size of the tested instances, the branch-and-cut algorithm
as a whole was slower than the standard branch-and-bound algorithm used by cplex
when applied to the full model.

The difficulty in computing optimal solutions motivated us to design heuristics for the
mcpp. The starting point for the development of such algorithms came from observations
on the solutions of the relaxation of the basic model.

Given a vector y ∈ R|E(P)|, the support of y is the set of edges of E(P) for which
the corresponding variables have positive values in y. Now, let relax be the linear
relaxation of the basic model, x⋆ an optimal solution of relax and E>0(x⋆) the support
of x⋆. Similarly, let E=1(x⋆) be the subset of edges of E(P) corresponding to the variables
of value one in x⋆.

With these definitions, we are ready to analyze the quality of optimal solutions of the
linear relaxation of the basic model computed by cplex. We consider the support of
x⋆ to be good if it is small-sized and there exists an optimal (integer) solution of basic
whose support intersects E>0(x⋆) for a large number of edges. In that vein, Fig. 2.3b
shows the average number of edges in E>0(x⋆) for instances in the set T1. Notice that
this value grows linearly in n, even though there are Θ(n2) edges in E(P). Since any
convex partition of P has Ω(n) edges, E>0(x⋆) is indeed small-sized.

To estimate the quality of the support of the solutions found by cplex, we modify the
basic model to look for an optimal solution with the largest intersection with E>0(x⋆).
To achieve this, the weights of the variables in the objective function are changed. A null
weight is assigned to edges in E>0(x⋆) while a weight of one is assigned to all remaining
variables. To ascertain that the solution found is optimal for the mcpp, we add the

40

30 32 34 36 38 40 42 44 46 48 50

Instance size

0.00

0.05

0.10

0.15

0.20

d
0
/z

∗ E
(P

)

(a)

30 32 34 36 38 40 42 44 46 48 50

Instance size

0.00

0.02

0.04

0.06

0.08

d
1
/z

∗ E
(P

)

(b)

Figure 2.4: Ratio between the minimum number of (a) zeros in x⋆ that changed to ones
in an optimal solution of value d0; (b) ones in x⋆ that changed to zeros in an optimal
solution of value d1, and the optimum (z∗E(P)) of the mcpp.

following constraint:
∑

e∈E(P) xe = z∗E(P), where z∗E(P) is the number of edges in a
minimum convex partition of P . Objectively, we seek an optimal solution having as few
edges not in E>0(x⋆) as possible. Let d0(P) be the optimum of the modified model.

Figure 2.4a shows the ratio between d0(P) and z∗E(P) obtained for each size for the
instances in T1. Note that this value is quite small, with an average of less than 10%.
This suggests that the support of x⋆ contains most of the edges present in some optimal
solution.

Another important observation for the development of heuristics for the mcpp concerns
the number of edges in E=1(x⋆) that do not appear in an optimal solution. To assess
this quantity, we modify the basic model again but this time to find a minimum convex
partition of P that uses as many ones from x⋆ as possible. As before, we add the constraint∑

e∈E(P) xe = z∗E(P) to ensure that the solution found is an optimal solution for the mcpp.
Also, we alter the objective function by replacing it with |E=1(x⋆)| −∑

e∈E=1(x⋆) xe. This
function computes the number of variables that have value one in x⋆ but not in the
solution of the new model. Hence, minimizing its value is tantamount to obtaining an
optimal convex partition with as many edges in E=1(x⋆) as possible.

Now, let d1(P) be the optimal value of the latter model. Figure 2.4b displays the ratio
between d1(P) and z∗E(P) obtained for each size for the instances in T1. As can be seen,
the ratios are minute, meaning that a very small fraction of the edges in E=1(x⋆) are not
present in some minimum convex partition.

Inspired by the two previous remarks, we decided to develop heuristics for the mcpp
based on the optimal solutions of the relax model. Accordingly, we explored such
solutions prioritizing the use of edges in their support, noticeably those at value one. The
next section explains how this is done.

2.4 Heuristics

We now describe our proposed heuristics for the mcpp. The general framework of the
heuristics is summarized by the following steps:

Step 1: Solve the relax model and let x⋆ be the optimal solution found;

41

Step 2: Using x⋆, build a subset B of E(P) that induces at least one convex partition
of P and, for the sake of efficiency, having O(n) crossings;
Step 3: Find a smallest convex partition Sh of P in B and return this solution.

From the discussion in the previous section, in Step 2 we try to use the information
conveyed by x⋆ to select edges that have a high probability of belonging to a minimum
convex partition. We devise different procedures to construct the set B containing these
edges, which results in the heuristics that are detailed below. The main strategy here is
to pack B with more edges than are really needed to obtain a convex partition of P and
then, in Step 3 to select among them a subset of minimum size that is a feasible solution
for the mcpp.

Steps 1 and 3 are addressed in the same way in all heuristics developed in this work.
Step 1 corresponds to solving the relax model, in our case using cplex, to obtain
x⋆. As for Step 3, Sh is computed by solving a restricted version of the basic model
where the variables xij for (i, j) not in B are removed from the model (equivalently, one
could set them to zero a priori). It only remains to decide how the set B is to be built
in Step 2. Alternatives are proposed below to accomplish this task giving rise to four
distinct heuristics.
The Greedy Heuristic. In this heuristic, the set B in Step 2 is constructed as follows.
Initially, B is empty and the edges in E(P) are organized in a sorted list σ in non increasing
order of their corresponding value in x⋆. Ties are broken by the number of times the edge
crosses the support of the relaxation; edges with less crossings appear earlier in σ. Then,
a triangulation of P is constructed iteratively in a greedy fashion. At each iteration, the
next edge e in σ is considered. If it does not cross any of the edges already in B, the
set is updated to B ∪ {e}; otherwise, B remains unchanged. Clearly, the greedy strategy
prioritizes the edges in the support of x⋆, which is in consonance with the results seen in
Section 2.3. In the end, since all edges in E(P) have been considered, B must determine
a triangulation of P . Thus, the basic model relative to B computed in Step 3 has no
constraints of the form (2.1b). In the experiments reported at the end of this section,
it is shown that the computation of this restricted version of the basic model does not
compromise the efficiency of the Greedy heuristic. In fact, the algorithm turned out to
be remarkably fast.
The MaxSup Heuristic. The previous heuristic constructs B as the set of edges of a
greedy triangulation of P by favoring edges in the support of x⋆ which, as seen, are more
likely to be in a minimum convex partition. In a similar mode, the MaxSup heuristic
provides an alternative way for obtaining B. The set is initialized with a convex partition
of P having the largest possible intersection with the support of x⋆. Next, edges are added
to B in a greedy fashion until a triangulation is formed whose associated basic model is
computed in Step 3.

The difficulty with this approach lies on obtaining a convex partition of P that
maximizes the number of edges that are in the support of x⋆. This can be accomplished
by modifying the costs of the variables in the objective function of the basic model and
changing the problem into one of maximization. In the new formulation, the costs of
the variables associated to edges in the support of x⋆ are set to one and all others to
zero. Besides, variables related to edges in E=1(x⋆) are fixed to one. Since this ilp has

42

fewer variables with positive costs, in practice, it can be computed faster than the original
model.
Adding Flips to a Triangulation. In an attempt to improve the results from the
heuristics even further, we decided to forgo the planarity requirements for B in Step 2.
By this strategy, we expect to increase the search space in Step 3, potentially leading
to better solutions. Nonetheless, some of the constraints (2.1b) will have to be brought
back into the model in Step 3, which could severely impact its runtime. To avert this,
we strive to keep its size linear in n.

With that intent in mind, assume that initially B determines a triangulation of P .
We say that an edge e ∈ B \H(P) admits a flip if the two triangles incident to e form a
convex quadrilateral. If e admits a flip, its flip edge fe, which is not in B, corresponds to
the other diagonal of this quadrilateral. Clearly, each edge in B has at most one flip edge
and, hence, there are O(n) flip edges in total. Let F (B) be the set of flip edges of the
edges in B (that admit one). Evidently, B ∪ F (B) has O(n) edges and the total number
of pairs of edges in this set that cross each other is also O(n). Thus, in Step 2, if B is
initialized as a triangulation of P and is later extended with its flip edges, in Step 3 we
have to solve a shorter version of the basic model with O(n) variables and constraints.

Notice that interchanging an edge of a triangulation and its flip edge gives us an
alternative triangulation. Therefore, one can think of the effect of Step 3 when B is
replaced with B ∪ F (B) as the computation of the smallest convex partition that can be
obtained from a triangulation generated from B by a sequence of flips involving the edges
of B ∪ F (B). Observe that this amounts to a considerable growth in the search space
when compared to the use of a single triangulation. Of course, this is only worthwhile
when the computing time does not increase too much while the solution quality improves.
As we shall see later, the expected benefit is confirmed in practice.

Motivated by the preceding discussion, we created one new heuristic from each of the
previous ones by aggregating flip edges. The enhanced version of Greedy (MaxSup)
using flip edges is called GreedyF (MaxSupF).

2.5 Computational Results

We now assess the results from the four heuristics discussed above comparing them in
regard to solution quality and running time. Firstly, we analyze the performance of the
heuristics for the instances with known optimum (T1). The first row of the table below
displays statistics on the mean values, per instance size, of the average relative gap given
by 100(zhE − z∗E)/z

∗
E, where z∗E and zhE are the cost of an optimal and of the heuristic

solution, respectively. The minimum, average, standard deviation and maximum values
are given for each heuristic.

Greedy MaxSup GreedyF MaxSupF
mean gap (min/avg±std/max) 0.0/4.2±2.4/12.5 0.0/3.0±1.9/9.0 0.0/1.9±1.6/7.5 0.0/1.1±1.2/6.0
% of instances solved to optimality 7.58 12.12 27.58 43.33

The improvements caused by considering flips are evident. The version of each
heuristic including flips reduces the gap by more than half when compared to their original
counterparts. When flips are taken into consideration, no gap exceeds 8%. As expected,
MaxSup has a better overall performance relative to Greedy. The second row of the

43

table above shows the percentage of instances for which the optimum was found in each
case. Again, the benefit of including flips and the superiority of MaxSup over Greedy
are clear. In fact, there was no instance where any other heuristic found a better solution
than MaxSupF.

The mean values of the average ratio, per instance size, between the time spent by
each heuristic and the basic model is given in the next table. On average, the additional
computational cost incurred by considering flips is quite small both for Greedy and for
MaxSup. Together with the enhancement in solution quality this favors even more the
latter strategy. Although both heuristics took just a fraction of the time spent by the
basic model, one can see that the Greedy versions used about half the time needed by
their MaxSup equivalents. Also, as revealed by the maximum values, the time required
by the MaxSup heuristics can surpass that of the basic model. This occurs because
these heuristics compute two ilps, and the instances in T1 are small.

time ratio relative to basic Greedy MaxSup GreedyF MaxSupF
mean (min/avg±std/max) 0.3/13.2±13.4/60.6 0.5/28.7±28.7/146.8 0.3/15.5±15.9/82.2 0.5/31.1±31.3/169.3

Next, the heuristics are evaluated for the instances in T2. While the optimum in this
case is unknown, we observed that in all instances of T2 the best heuristic solution was
again found by MaxSupF. Therefore, for comparison purposes, MaxSupF is used as
reference, playing a role similar to that of the basic model in the analysis of the instances
in T1. The table below exhibits, per instance size, the mean of the average gap between
each heuristic and MaxSupF. As before, the minimum, average, standard deviation and
maximum values are given.

Greedy MaxSup GreedyF MaxSupF
mean gap (min/avg±std/max) 0.0/6.0±2.3/14.5 0.0/3.6±1.5/9.0 0.0/1.4±1.4/6.4 0.0/0.0±0.0/0.0

The same pattern perceived for T1 is observed here with GreedyF performing slightly
worse than MaxSupF, while the versions with flips outstrip by far their original coun-
terparts. Mean solving times relative to MaxSupF for all heuristics are shown in the
next table. Once again, we observe the insubstantial impact of the inclusion of flips in
the running time of the algorithms. The fact that the MaxSup versions are almost four
times slower on average than their Greedy equivalents is remarkable. This is due to the
fact that the computation of the additional ilp in MaxSup to find the triangulation with
the largest intersection with x⋆ consumes too much time as the instance size grows.

time ratio relative to MaxSupF Greedy MaxSup GreedyF MaxSupF
mean (min/avg±std/max) 1.7/25.3±16.2/55.2 44.0/98.4±14.1/264.5 1.7/27.0±17.5/59.4 100.0/100.0±0.0/100.0

From the previous discussions, we are left with two competitive heuristics: GreedyF
and MaxSupF. In Fig. 2.5a, we compare the solutions found by MaxSupF and
GreedyF with the dual bound given by the relax model and the optimal solution,
when available. We also extrapolate the partial average function corresponding to the
optimal solution for the instances with sizes equal to those in T2 and, as expected,
the extrapolation corresponds to a linear function since the optimum of the mcpp for
a point set P is in Θ(|P |). The graph reveals that the quality of the heuristic solutions
deteriorates quite slowly as the instance sizes increase. In particular, the distances between
the values of the MaxSupF and GreedyF solutions and between the dual bound and
the (estimated) optimum seem to grow at no more than a constant rate, as the instance
sizes get larger. With this in mind, one can estimate the error incurred by the algorithm

44

30 40 50 60 70 80 90 100

Instance Size

50

70

90

110

130

150

A
vg
.
#

o
f
E
d
g
es

MaxFracF

GreedyF

Opt

Opt(estimated)

Relaxation

(a)

30 40 50 60 70 80 90 100

Instance Size

0

100

200

300

400

500

600

700

A
vg
.
T
o
ta
l
ti
m
e(
s)

MaxSupF

GreedyF

Opt

Opt(estimated)

Relaxation

(b)

Figure 2.5: (a) Average number of edges in the solution; (b) Runtime (seconds)

when executed on an instance of a given size.
Similarly, we analyze the total time spend by MaxSupF and GreedyF in Fig. 2.5b,

comparing them to the total time to solve the model and to find optimal solutions for the
instances in T1. We notice an erratic behavior for the basic model at around size 45. This
correlates to the difficulty of finding harder instances that are still solvable to optimality
within our preset time limit above size 42, as shown in Fig. 2.3a. This suggests that the
estimating curve should actually grow even faster if no instances had to be discarded.

The MaxSupF heuristic eventually becomes less efficient since it involves the solution
of two ilps. However, it still remains much faster than computing a true optimum. Thus,
if more running time is allowed, and solution quality is a prime concern, MaxSup should
be considered an effective alternative when solving the mcpp. On the other hand, we
can see that, on average, running relax and GreedyF are both very fast. In fact, at
the expense of a small loss in quality, the Greedy approach takes less than one minute,
on average, to find solutions for random instances of up to one hundred points. Thus,
it is also a viable option to obtain high quality solutions quickly. Furthermore, both
heuristics endorse that using the support of linear relaxations to guide heuristics is a
powerful strategy.

2.6 Final remarks

In this paper, we investigated the problem of finding a minimum convex partition of
a set of points. An ilp model was developed that enabled the computation of exact
solutions for small-sized instances. The linear relaxation of this formulation served as a
guide for the design of heuristics that lead to demonstrably high quality solutions within
reasonable runtimes. To the best of our knowledge, both the ilp modeling and the
extensive computational experimentation with mcpp algorithms done here are novelties
on the study of this problem and may lead to further practical developments. Moreover,
research directions currently being pursued include the development of new mathematical
models for this problem aiming at solving larger instances to optimality.

Acknowledgments. This research was financed in part by grants from Conse-

45

lho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) #311140/2014-9,
#304727/2014-8, Coordenação de Aperfeiçoamento do Pessoal do Ensino Superior -
Brasil (Capes) #001 and Fundação de Amparo à Pesquisa do Estado de São Paulo
(FAPESP) #2014/12236-1, #2017/12523-9, #2018/14883-5.

46

Bibliography

[1] A. S. Barboza, C. C. de Souza, and P. J. de Rezende. Minimum Convex Partition of
Point Sets – Benchmark Instances and Solutions, 2018. www.ic.unicamp.br/~cid/
Problem-instances/Convex-Partition.

[2] P. Bose, A. Brodnik, S. Carlsson, E. D. Demaine, R. Fleischer, A. López-Ortiz,
P. Morin, and J. I. Munro. Online routing in convex subdivisions. International
Journal of Computational Geometry & Applications, 12(4):283–296, 2002.

[3] T. Fevens, H. Meijer, and D. Rappaport. Minimum convex partition of a constrained
point set. Discrete Applied Mathematics, 109(1-2):95–107, 2001.

[4] J. García-López and M. Nicolás. Planar point sets with large minimum convex
partitions. In Abstracts 22nd European Workshop on Computational Geometry, pages
51–54, 2006.

[5] K. Hosono. On convex decompositions of a planar point set. Discrete Mathematics,
309(6):1714–1717, 2009.

[6] J. M. Keil. Polygon decomposition. In J.-R. Sack and J. Urrutia, editors, Handbook
of Computational Geometry, pages 491–518. North-Holland, Amsterdam, 2000.

[7] C. Knauer and A. Spillner. Approximation algorithms for the minimum convex
partition problem. In Proceedings of the 10th Scandinavian Workshop on Algorithm
Theory (SWAT), volume 4059 of Lecture Notes in Computer Science, pages 232–241.
2006.

[8] M. Löffler and W. Mulzer. Unions of onions: Preprocessing imprecise points for fast
onion decomposition. Journal of Computational Geometry, 5(1):1–13, 2014.

[9] V. Neumann-Lara, E. Rivera-Campo, and J. Urrutia. A note on convex decom-
positions of a set of points in the plane. Graphs & Combinatorics, 20(2):223–231,
2004.

[10] A. Spillner. A fixed parameter algorithm for optimal convex partitions. Journal of
Discrete Algorithms, 6(4):561–569, 2008.

www.ic.unicamp.br/~cid/Problem-instances/Convex-Partition
www.ic.unicamp.br/~cid/Problem-instances/Convex-Partition

47

Chapter 3

Solving the Minimum Convex Partition
of Point Sets with Integer Programming

In this work, we propose a new ILP model for the Minimum Convex Partition of Point
Sets. This novel model has variables associated to convex polygons and has much better
dual bounds when compared to the previous one, which had edge variables. The final
model combines elements from both approaches and has much better performance.

This chapter contains the article [19] published at the journal Computational Geome-
try: Theory and Application, Volume 99. It was co-authored with Pedro J. de Rezende1

and Cid C. de Souza.1

Abstract The partition of a problem into smaller sub-problems satisfying certain proper-
ties is often a key ingredient in the design of divide-and-conquer algorithms. For questions
related to location, the partition problem can be modeled, in geometric terms, as finding
a subdivision of a planar map – which represents, say, a geographical area – into regions
subject to certain conditions while optimizing some objective function. In this paper,
we investigate one of these geometric problems known as the Minimum Convex Partition
Problem (mcpp). A convex partition of a point set P in the plane is a subdivision of the
convex hull of P whose edges are segments with both endpoints in P and such that all
internal faces are empty convex polygons. The mcpp is an NP-hard problem where one
seeks to find a convex partition with the least number of faces.

We present a novel polygon-based integer programming formulation for the mcpp,
which leads to better dual bounds than the previously known edge-based model. More-
over, we introduce a primal heuristic, a branching rule and a pricing algorithm. The
combination of these techniques leads to the ability to solve instances with twice as many
points as previously possible while constrained to identical computational resources. A
comprehensive experimental study is presented to show the impact of our design choices.

1Institute of Computing, University of Campinas, Campinas, Brazil

48

3.1 Introduction

Partitioning problems constitute a fundamental topic in Computational Geometry. One
of the best studied among them is the Triangulation Problem where we are given a
point set P in the plane, and the goal is to partition its convex hull into triangles using
line segments with endpoints in P . There are many variations of this problem that
optimize different metrics such as segment length and minimum angle [6]. The widespread
applicability of triangulations stems from a core idea of the divide-and-conquer paradigm:
if a problem is too complex to be solved at once, break it into smaller, more tractable, sub-
problems. Geometric problems tend to benefit from spacial subdivisions generated from
their input where sub-problems can more easily be dealt with by considering the faces of
the resulting arrangement. In two dimensions, for instance, it is desirable that these faces
be regions satisfying properties that can be explored to make the algorithms more efficient.
Therefore, an often desired structure for the faces is that they are convex polygons. The
smallest convex polygons being triangles, it is understandable why questions regarding
triangulations are so vastly investigated. For an in-depth discussion on triangulations,
including structural properties, algorithms and applications, we refer to the book of de
Loera et al. [8]. However, all triangulations of a given point set have the same number
of triangles and edges and they may be too much of a refinement among the possible
convex subdivisions. Hence, from the perspective of divide-and-conquer algorithms, when
it comes to the number of sub-problems to be dealt with, which is strongly related to the
overall complexity, a triangulation might be just as good as another.

This is where the relevance of the Minimum Convex Partition Problem (mcpp) stands
out. The mcpp is a generalization of the triangulation problem in that one seeks a
partition of the convex hull of a point set into the minimum number of convex polygons
– some of which might even be triangles.

3.1.1 Our Contribution

Besides our earlier work [29], there are only a few attempts to solve the mcpp exactly, and,
to date, no other comprehensive experimentation has been reported in the literature. By
casting the problem as an integer linear program (ILP) and designing several algorithmic
strategies, we were able, in [29], to solve instances of up to 50 points.

In the present paper, we explore further the usage of ILP to compute optimal solutions
for the mcpp. Our main contribution is a new integer programming formulation for the
mcpp, whereby we solve to provable optimality instances of up to 105 points, while using
the same amount of computational resources as in our previous work, thus more than
doubling the size of the largest instances with known optimum. To achieve this, we
devise a primal heuristic and a branching rule, and show their effectiveness through
experimentation. Also, since the number of variables in the new proposed model is
exponential in the cardinality of the input point set, we resort to the use of column
generation, which leads to the development of a branch-and-price algorithm. Since ILP
is often applied in Operations Research, but much less frequently in Computational
Geometry, this article can be seen as a further contribution towards bridging these two
communities [7, 9, 12, 13, 16, 27, 33].

49

3.1.2 Literature Review

The mcpp has been studied from different perspectives in the literature, including the
development of exact and approximation algorithms, heuristics and theoretical bounds on
the optimal value.

Fevens et al. [14] proposed a dynamic programming formulation for the problem. Let h
be the depth of P , defined as the number nested convex hulls that need to be removed from
P before it becomes empty. Their algorithm has time complexity of O(n3h+3), therefore
exponential in h, which can be as large as Θ(n). Spillner et al. [31] proposed another
exact algorithm with complexity O(2kk4n3 + n log n), where k is the number of points of
P in the interior of its convex hull.

A compact ILP formulation for the mcpp based on the construction of a planar
subdivision representing a partition obtained by selecting line segments with end-points in
P was proposed by Barboza et al. [29]. The authors presented empirical results showing
that, when fed as input to a state-of-the-art ILP solver, it could solve instances with up
to 50 points in general position to provable optimality. They also show how to use the
linear relaxation of the formulation to find good heuristic solutions for instances with up
to 105 points. Those instances were made publicly available [4].

The best approximation algorithm for the mcpp, with factor of 30
11

, was proposed by
Spillner et al. [21].

Bounds on the value of optimal solution as a function of n were also studied. Let F (n)

denote the maximum cardinality of the minimum convex partition among all instances of
size n in general position. The tightest known bounds for F (n) are 12n

11
− 2 ≤ F (n) ≤

10n−18
7

, where the lower bound was shown in [18] and the upper bound in [26].
The 2020 Computational Geometry Challenge (CGSHOP) [10] motivated the advance-

ment of the state-of-the-art for the mcpp from both theoretical and heuristic points of
view. When the challenge was announced in September 2019, the complexity of the mcpp
was still open and the only known empirical study was by Barboza et al. [29]. The chal-
lenge consisted in finding good solutions for 346 instances, with sizes ranging from 10 to
1,000,000 points and with different sets of instances, including sets with a large number
of collinear points. Those instances and the best solution found were made publicly avail-
able. Details about the competition and the teams’ progresses are discussed in [10]. The
top three competitors proposed heuristic solutions based on local search.

In November 2019, Grelier [19] announced a proof of NP-hardness for the case when
the point set is not in general position. Their proof relies heavily on the construction of
instances with a large number of points lying on the same straight line.

3.1.3 Organization of the text

This paper is organized as follows. Section 3.2 describes a polygon-based formulation for
the mcpp with an exponential number of variables. In Section 3.3, we address the issue
of the number of variables being exponential by describing a column generation approach
to solve its linear relaxation. Section 3.4 explains how we incorporate column generation
into a branch-and-pricing framework in order to solve the problem to integrality, which

50

includes a branching rule and implementation details. Computational experiments and
their corresponding results are discussed in Section 3.5.

3.1.4 Basic Notation

A polygon p of size t can be defined as a cyclic sequence of t distinct points in the plane
p0, p1, · · · , pt−1, called the vertices of p. Two consecutive points pi and pi+1 of p define a line
segment pipi+1, called an edge of p, with addition taken module t. We say that pi and pi+1

are the endpoints or extremes of the edge pipi+1. Sometimes, for practicality, we consider
polygons as given by their cyclic sequence of edges (p0p1, p1p2,. . . , pt−2pt−1, pt−1p0).

A polygon is called simple if the intersection between two distinct edges is empty
unless they are consecutive, in which case they only share an endpoint. This essentially
means that no two edges have a proper crossing. We refer to the sequence of edges of a
simple polygon as its boundary.

Since the boundary of a simple polygon p constitutes a closed planar curve, by the
Jordan Curve Theorem, it divides the plane into an unbounded and a bounded region.
The latter is called the interior of p, denoted INT(p), while the former is the exterior of
p. Two polygons are said to be interior-disjoint if their interiors do not overlap.

Given a sequence of three points (k, l,m) in the plane, we say that they are collinear,
positively oriented, or negatively oriented depending on the value of the cross product−→
kl ×−→lm being 0, positive or negative. To simplify notation we write CVX(k, l,m) = true
(or simply CVX(k, l,m)) when (k, l,m) is positively oriented. A geometrical interpretation
is that a sequence (k, l,m) is positively (negatively) oriented when we make a left (right)
turn at l as we traverse segment kl followed by lm.

We say that a polygon p is given in counterclockwise (CCW) order if INT(p) is always
to the left as one traverses the edges of p in the given order. It can be proved that this
may be checked by verifying that CVX(pj−1, pj, pj+1) is true when pj is the lowest vertex
of smallest abscissa. We assume that all simple polygons are given in CCW order. A
simple polygon p is convex if CVX(pi−1, pi, pi+1) for all 0 ≤ i < t. For convenience, given
a simple polygon p, we may often employ the term polygon to also refer to the union of
the boundary and the interior of p.

Given a set P of n points in the plane and a polygon p, we say that p is empty with
respect to (w.r.t.) P , if p contains no points of P in its interior. When P is understood
from the context, we simply say that p is empty. Denote by S(P) the set of all convex
polygons with vertices in P that are empty w.r.t. P , and by CH(P) the convex hull of P .

In this paper, unless otherwise noted, we do not assume that the sets of points are
in general position, i.e., multiple collinear points are allowed. Moreover, henceforth all
polygons referred to will be convex, unless stated otherwise.

A set U ⊆ S(P) of interior-disjoints polygons is called a convex partition of P if
CH(P) =

⋃
p∈U

p.

Given a set P of n points, let L(P) denote the set of Θ(n2) line segments whose
endpoints belong to P . The complete (geometric) graph induced by P is G(P) =

(P,E(P)), where E(P) = {{i, j} : ij ∈ L}. In this text, we refer to a segment ij ∈ L

and the corresponding edge in {i, j} ∈ E(P) interchangeably. Similarly, we denote the

51

complete oriented graph induced by P as
−→
G(P) = (P,A(P)), where the arcs in A(P)

correspond to the two orientations of the edges in E(P). Notice that, when multiple
collinear points are present, we need to restrict L(P) to include only segments that do
not contain points of P in their interior.

For each convex partition U of P , there is a unique planar graph GU = (P,EU) ⊆ G,
where EU denotes the set of edges whose line segments belong to polygons in U .

The set of line segments L(P) determines a planar subdivision called the arrangement
of P . Assuming that P is in general position and n ≥ 3, this arrangement contains
an unbounded face, corresponding to the exterior of CH(P), while all other faces are
bounded. We denote the set of bounded faces of the arrangement of P by A(P). It can
be proved that each face f of the arrangement A(P) is a convex polygon and that if
f ∩ p ̸= ∅ for some p ∈ S(P), then f ⊆ p. In this sense, we say that every face of an
arrangement A(P) is atomic. Moreover, a polygon p ∈ S(P) is said to contain a face
f ∈ A(P), denoted by f ⊂ p, if the interior of p contains the interior of f . Lastly, a line
or line segment ℓ supports a face f ∈ A(P) if ℓ contains one of the edges of f .

3.2 A Set Partition Model for the mcpp

In this section, we present a new Integer Linear Programming (ILP) model for the mcpp
from a standard set partition point of view. Again, let P be a set of n points in the plane.

In this model, we associate a binary variable up with each polygon p ∈ S(P) such that
polygon p is used in the partition of CH(P) if and only if up = 1. This polygon-based
approach is different from the edge-based model presented in [29], which will be discussed
in Section 3.4.1.

Recall that A(P) denotes the set of faces of the arrangement of segments induced by
the edges in E(P). We use f ⊂ p to indicate that polygon p ∈ S(P) contains (or covers)
face f ∈ A(P).

We now introduce the following Model M1:

min
∑

p∈S(P)

up (1a)

s.a.
∑

p∈S(P):f⊆p

up = 1 ∀f ∈ A(P) (1b)

up ∈ {0, 1} ∀p ∈ S(P) (1c)

This model is very straightforward as it has only one family of constraints, namely
(1b), which ensure that each face of the arrangement is covered by a polygon in the
solution exactly once. The objective function (1a) minimizes the number of polygons
forming the partition.

The main issue with this model, which will be addressed in the next section, is that
the number of polygons in S(P) is typically exponential in n = |P |, making it impractical
to enumerate all variables for large instances. Besides, the number of constraints in the
model, although polynomial in n, is also large since an arrangement of Θ(n2) line segments
can have O(n4) faces [2] and each of them corresponds to a constraint in (1b).

52

However, we show next that only a small fraction, Θ(n2), of those faces are necessary
to ensure that the area within CH(P) is correctly partitioned.

We start by defining necessary concepts and notations. Let q be an arbitrary point
in the plane. We denote by CCW(i, q) the sequence of n − 1 points in P \ {i} sorted
angularly w.r.t. the ray

7→
iq that starts at i an passes through q.

Recall that we use CVX(k, l,m) to denote that a sequence of points (k, l,m) is
positively oriented.

Let
−→
iq denote the oriented line that passes through i and q in this order, which divides

the plane into two half-planes, called left and right. A point k on the left (right) half-plane
of
−→
iq satisfies CVX(i, q, k) (CVX(q, i, k)). The remaining points are on

−→
iq itself. We define

CCW+(i, q) as the prefix of CCW(i, q) whose points are non-negatively oriented w.r.t. the
oriented line

−→
iq . Similarly, we use CCW−(i, q) to denote CCW(i, q) − CCW+(i, q); i.e.,

the suffix of CCW(i, q) whose points are negatively oriented w.r.t.
−→
iq . We illustrate these

concepts in Figure 3.1.

q

i

0

1

2

3

4

5 6

7

8

Figure 3.1: P = {i, 0, 1, . . . , 8}, q ̸∈ P , CCW(i, q) = (0, 1, . . . , 8), CCW+(i, q) =
(0, 1, 2, 3, 4) and CCW−(i, q) = (5, 6, 7, 8)

Let i ∈ P . A face f ∈ A(P) that has i as one of its vertices is called an i-wedge. Let
ix be the x-coordinate of i and ymax be the maximum y coordinate among all points in
P and consider the point q = (ix, ymax + 1). Let CCW(i, q) = (i0, i1, · · · , in−2). For each
consecutive pair of points (ik, ik+1) for 0 ≤ k < n− 1, addition being taken mod n− 1, we
have exactly one face of the arrangement A(P) that is incident to i and is supported by
the edges {i, ik} and {i, ik+1}. We call this face the k-th i-wedge. We denote by P -wedges
the set of all i-wedges for i ∈ P . Figure 3.2 shows the arrangement of a point set P and
highlights the faces that are not i-wedges.

Let U ⊂ S(P). We say that a face f of A(P) is exactly-covered by a polygon p ∈ U ,
if p is the only polygon in U that covers f . A face that is not exactly-covered by some
(single) polygon in U is called non-exactly-covered. A set of faces is exactly-covered if all
of its faces are exactly-covered.

In the next lemma, we show that if u is a solution of Model M1 with constraint
set (1b) limited to the equations associated to the faces of A(P) that are i-wedges and

53

Figure 3.2: Example of a point set P and its arrangement. Red faces are the only ones
that are not in P -wedges.

U = {p ∈ S(P) : up = 1}, then U is a partition of CH(P). Our goal is to show that there
are no faces in A(P) that are non-exactly-covered by polygons in U .

Lemma 3. Let u be a solution of Model M1 and U = {p ∈ S(P) : up = 1} be the
corresponding set of polygons. Then, if p is a polygon in U , each one of its edges that is
not an edge of CH(P) supports exactly one other polygon in U .

Proof. Let {i, k} be an edge of p that is not an edge of CH(P), and k−1 be the predecessor
of k in CCW(i, (ix, ymax + 1))). Suppose, w.l.o.g., that the (k − 1)-st i-wedge is exactly-
covered by p. As u is a solution of Model M1, there must be a polygon h in U that
covers the k-th i-wedge. Recall that there is no other edge in E(P) that corresponds to
a segment that contains (the segment that corresponds to) {i, k}. Also, the interior of
h cannot intersect the segment {i, k}, since, otherwise, both p and h would be covering
the (k − 1)-st i-wedge, violating (1b). Therefore, h shares the edge {i, k} with p. The
same holds if we exchange the roles of the k-th and the (k − 1)-st i-wedges. Figure 3.3
illustrates the polygons in a solution and the i-wedges they cover.

This result helps us to prove that constraints that do not correspond to i-wedges are,
in fact, redundant, and can be removed from the model, as follows.

Theorem 4. Let u be a solution of Model M1 without the Constraints (1b) that do not
correspond to i-wedges and U = {p ∈ S(P) : yp = 1} be the corresponding set of polygons.
Then, U covers each face of the arrangement A(P) exactly once.

Proof. First, we show that given a solution u of Model M1 without the Constraints (1b)
that do not correspond to P -wedges, there are no uncovered regions in CH(P).

Notice that the i-wedges are exactly-covered. Also, observe that non-exactly-covered
regions are formed by unions and intersections of polygons in U . Thus, the boundary of
each maximal connected non-exactly-covered region is comprised of of line segments.

Let R be a maximal connected region of CH(P) comprised by the union of uncovered
faces of A(P). Let e be an edge of R that does not lie on the boundary of CH(P). Such

54

Figure 3.3: Example of a convex partition superimposed on the arrangement of Fig-
ure 3.2. Edges that belong to the polygons in the partition are heavier.

edge always exists since each i-wedge is exactly-covered. Thus, R cannot be equal to
CH(P). Notice that there is a single edge in E(P), say {i, k}, that supports e. Since R

is maximal, there is a face b of the arrangement A(P) that is adjacent to e on the other
side of e relative to R and is covered at least once. Let h ∈ U be one of the polygons
covering b. As h cannot cover any part of R, it must include edge {i, k} on its boundary.
Figure 3.4 illustrates this configuration. By Lemma 3, there must be a polygon g ∈ U

that shares {i, k} with h on the same side of e as R. Thus, R ∩ g is covered, which is a
contradiction with the fact that R is entirely not covered.

i

k

k + 1R

k − 1

b

h

Figure 3.4: To illustrate Theorem 2.2, consider an uncovered region R supported by edge
e = {i, k}. This edge also supports face b of the arrangement, which is already covered
by polygon h.

Since U leaves no uncovered regions, we now focus on the proof that there is no region
of CH(P) that is covered by two or more polygons.

Let R be a maximal connected region of CH(P) comprised by the union of faces of
A(P) that are covered more than once by polygons in U . Let e be an edge of R that
does not lie on the boundary CH(P). Since R is maximal, one side of e is covered at
least twice and the other is covered exactly once, as previously discussed, implying that
there is a polygon g in U with an edge {i, k} supported by e on the same side as R. Let

55

us assume, w.l.o.g., that the (k − 1)-st i-wedge and R are on the same side of the line
supported by {i, k}, otherwise, we change the roles played by i and k. Let b be a face
of A(P) in R adjacent to e. Then, b is covered by g and there must be another polygon
h ∈ U that also covers b. As previously argued, there is no edge other than {i, k} in
E(P) that is supported by e. However, h cannot have {i, k} as one of its edges, since,
otherwise, the (k−1)-st i-wedge would be covered by both g and h. Also, since h is empty
(w.r.t. points in P), it cannot contain i or k in its interior. This means that polygon h

cannot have e on its boundary, and must cover a face c adjacent to e on the opposite side
of g relative to {i, k}. By Lemma 3, there is a polygon p that shares {i, k} with g and
covers c, implying that c is covered at least twice. We conclude that R∪ c is covered more
than once, contradicting our assumption that R is maximal.

3.3 Column Generation Algorithm for SPM

In this section, we address the issue of having an exponential number of variables in
Model M1. We solved this difficulty by the use of Column Generation.

Instead of enumerating all the variables, we start by solving the model with only a
small subset of them and proceed by generating new ones when necessary. This approach,
known as Column Generation, guarantees that, if our procedure for generating columns
with negative reduced cost is polynomial, the linear relaxation of Model M1 can be solved
in polynomial time [20].

To solve the linear relaxation of an LP model using column generation, we iterate
between solving the restricted master problem (RMP) and the pricing problem. The RMP
is the original model restricted to a subset of variables. At each iteration, an RMP is
solved to optimality and the pricing problem is used to find variables with negative (in
the case of minimization problems) reduced cost that should be added to the RMP. This
process stops when no variable has negative reduced cost. Figure 3.5 illustrates this
process.

Preliminary studies with different sets of initial polygons based on an starting solution
did not lead to a noticeable difference in performance compared to using all triangles.
Thus, we start the RMP with the variables corresponding to all triangles. Next, we show
how to solve the pricing problem for Model M1.

By associating a vector of variables α with Constraints (1b), we obtain the dual of the
linear program corresponding to the relaxation of Model M1, shown in Model M2 below.

max
∑
f∈A

αf (2a)

s.a.
∑

f∈A(P):f⊆p

αf ≤ 1 ∀p ∈ S (2b)

αf ∈ R ∀f ∈ A(P) (2c)

Let α be an optimal dual solution of the RMP in a given iteration of the column
generation procedure. We can express the reduced cost cp of the variable corresponding
to polygon p ∈ S(P) in Model M1 as:

56

Create root node

Restricted Master Problem (RMP)

Solve Relaxation of RMP

Solve Pricing Problem

Create branching nodes

Add such variables yes

no

Variables of negative
reduce cost found?

 yes no Is solution integral?

Select a node

Node is done

Figure 3.5: Illustration of a Branch-and-Price algorithm. Adapted from [24].

cp = 1−
∑

f∈A(P):f⊆p

αf . (3.3)

In other words, to compute the reduced cost of a variable, we need to sum up the values of
the dual variables associated with face constraints covered by the corresponding polygon.

In order to solve the pricing problem, we define a recurrence based on the idea of
constructing polygons by joining triangles that share an edge. However, dealing with
triangles of zero area involves an intricate implementation of a bookkeeping scheme
regarding i-wedges. We opted to leave this as an issue worth investigating (see Section 3.6)
and, for the description that follows, we assume that the points in P are in general position.

Let ∆(k, l,m) denote the reduced cost of a triangle (k, l,m) ∈ S(P), with respect to
the dual variables α, given by ∆(k, l,m) =

∑
f⊆(k,l,m) αf .

We now consider all polygons whose leftmost vertex k is preceded in CCW order by
vertices l and m. W.l.o.g., we say that k is the first vertex of such polygons, while l and
m are their second-to-last and last vertices, respectively. Since each of these polygons
has an associated variable, let B(k, l,m) denote the minimum reduced cost among these
variables. We say that (k, l,m) is the last triangle of those polygons. See Figure 3.6.

Let us denote CCW−(k, (kx, ymax + 1)) simply by Pk, notice that those are the points

57

k

l

m

o

Figure 3.6: Example of a polygon whose last triangle is (k, l,m). Dashed lines show how
it can be decomposed into triangles with k as their leftmost vertex, emphasizing the edges
of (k, l,m).

to the right of k sorted in CCW order. We use o ≤Pk
l to indicate that o precedes l in

the sequence Pk. Recall that CVX(o, l,m) denotes that the sequence (o, l,m) is positively
oriented.

Then, B(k, l,m) may be computed by following the recurrence formula:See Section 3.7.

B(k, l,m) =


∞, if m = l or kx > lx or m <Pk

l or (k, l,m) ̸∈ S (3.4a)

min
o∈Pk:
o<Pk

l

CVX(o,l,m)

{0, B(k, o, l)}+∆(k, l,m), otherwise (3.4b)

To explain this formula, we define a polygon and a triangle to be compatible if their
union is a convex polygon that is empty w.r.t. P . Recurrence (3.4) has two cases.
Case (3.4a) deals with invalid triplets of points, while in case (3.4b) we look for a minimum
cost polygon that is compatible with triangle (k, l,m).

Now, we discuss how to solve this recurrence in polynomial time using dynamic
programming. Recall that |P | = n.

There are O(n3) dynamic programming states, one for each B(k, l,m). The total time
complexity for processing each state is the O(n) time spent looking for the best compatible
polygon, or deciding that (k, l,m) is not empty, plus the time spent calculating ∆(k, l,m).
Naively, computing ∆(k, l,m) for a single triangle would take, in the worst case, O(n4)

time, as it would require processing all the faces in the complete arrangement. The final
complexity using this approach would be O(n7).

However, we can take advantage of the structure of the set of P -wedges to reduce the
time to compute ∆(k, l,m) of a triangle to O(1), with O(n2) preprocessing each time the
dual variables change.

This is accomplished by observing that ∆(k, l,m) is the sum of a range of consecutive
i-wedges in each of its vertices i, as shown in Figure 3.7. For each point i ∈ P , we can use
a data structure capable of answering range sum queries in O(1) time and which can be
built in O(n) time for a given set of dual variable values. Computing ∆(k, l,m) requires
only three such queries. Now, for each of the O(n3) states, it takes O(n) time to find the
compatible polygon with the smallest reduced cost, or decide that (k, l,m) is not empty,

58

and O(1) time to compute ∆(k, l,m), leading to a time complexity of O(n4).

i

l m

Figure 3.7: An example of the circular order of i-faces around a given vertex i. Each
pair of consecutive points in a CCW ordering of P \ {i} defines an i-wedge, highlighted
in red.

To reduce the complexity even further, we adapt the angular sweeping technique
presented by Avis and Rappaport [3] to solve the Largest Empty Convex Polygon Problem
and we achieve the same time complexity of O(n3) as they did for their problem. Notice
that by setting ∆(k, l,m) to −1, finding the polygon with minimum negative cost is the
same as finding an empty convex polygon with maximum number of vertices. As done
in [3], we implement an algorithm to check whether a triangle is empty in O(1) time per
query and O(n3) preprocessing time using visibility graphs. However, since we need to
solve this problem multiple times, we store all the empty triangles, increasing the space
complexity from O(n2) to O(n3).

Finally, we present the pricing algorithm, starting with the description of the angular
sweeping technique.

Given k and l, let P+
lk be the list CCW+(l, k) restricted to the points in Pk and,

similarly, P−
lk be the list CCW−(l, k) restricted to the points in Pk. We compute B(k, l,m)

for all possible m’s in O(n) total time, using two pointers as follows: m traverses P−
lk and

o goes over P+
lk . See Figure (3.8).

The procedure to compute the reduced cost B(k, l,m) is presented in Algorithm 1. To
simplify notation, if the triangle (k, l,m) is not empty, we set ∆(k, l,m) =∞.

Algorithm 1 works as follows. The loops defined by Lines 1 and 2 iterate over the
leftmost and second-to-last points of each state, respectively. Pointers m and o are
initialized to point to the beginning of their respective lists in Lines 3 and 5, and the
best compatible polygon is set in Line 4 to be the empty polygon. The loop between
Lines 5 and 9 moves pointer m, corresponding to the last vertex of the polygons being
constructed, one step at the time. The other pointer o, corresponding to the third-to-last
vertex, is handled by the loop between Lines 6 and 8: o moves forward as far as possible,
while the angle ∡oml is convex and updates the best compatible polygon found so far.
Finally, Line 9 computes the cost of B(k, l,m).

59

Algorithm 1: Column Pricing Algorithm
Input: Point set P , lists of points Pk, P+

lk and P−
lk

Output: Minimum reduced cost B(k, l,m)
1 for k ← 1 to n do
2 for l← 1 to |Pk| do
3 o← 1
4 bestV alueO ← 0
5 for m← 1 to |P−

lk | do
6 while o ≤ |P+

lk | and CVX(P+
lk [o], Pk[l], P

−
lk [m]) do

7 bestV alueO ← min(bestV alueO,B(k, P+
lk [o], Pk[l]))

8 o← o+ 1

9 end
10 B(k, l,m)← bestV alueO +∆(k, Pk[l], P

−
lk [m])

11 end
12 end
13 end
14 return B

k

l

m

o

P
−

lk

P
+

lk

−!
lk

Figure 3.8: To illustrate the execution of the Column Pricing Algorithm 1. consider how
Pk is divided into the lists P−

lk and P+
lk by the oriented line

−→
lk , as well as the movement

of pointers l and o. Points in the gray region are candidates for second-to-last point for
polygons whose last triangle is (k, l,m).

To conclude that the total complexity is indeed O(n3), we need to observe that each
one of the variables k, l and m always increases and at most O(n) times. Also, each step
is done in O(1) time, including computing ∆(k, l,m), as previously stated.

Notice that each one of the O(n3) dynamic programming states determines a polygon
with negative cost. Adding multiple variables with negative reduced cost in each pricing
iteration can potentially accelerate convergence [22]. This fact was confirmed by our pre-
liminary study. However, reconstructing the polygon given by the dynamic programming
table B(k, l,m) takes linear time, since we actually need to find the set of faces that
it covers. Doing that for each triplet k, l,m would increase the overall complexity by a

60

factor of n. To keep the complexity of the procedure at O(n3), we only consider the best
polygon for each pair k, l, limiting the output to O(n2) polygons.

3.4 Branch-and-Price

In the previous section, we discussed how to solve the pricing problem in polynomial time
within a Column Generation framework, allowing for the linear relaxation of Model M1
to be solved in polynomial time. In practice, the standard way to solve ILP models is
to use a Branch-and-Bound algorithm based on linear relaxation. The combination of
Branch-and-Bound and Column Generation is known as Branch-and-Price (BNP) [5].

In this section, we describe some details and the design choices we made to implement
a Branch-and-Price algorithm for Model M1.

We also discuss how the addition of variables representing edges to the model leads to
a specialized branching rule. Moreover, we elucidate how to find an initial viable solution,
called an incumbent solution, and how to use this solution to generate an initial set of
columns for the RMP. A similar approach is used to find viable solutions at each node of
the BNP tree. We conclude the section with additional implementation details that aim
to improve the performance of the BNP algorithm in practice.

3.4.1 Introducing Edges

One of the challenges faced when implementing Branch-and-Price algorithms is that
branching decisions are handled as additional constraints added to the newly created
sub-problems. These constraints have their own dual variables and might change the
pricing problem, when the variables being priced are involved. The introduction of
variables associated with edges allows for a stronger geometric-based branching rule so as
to completely avoid modifying the pricing problem throughout the branching decisions.

The idea to introduce edge variables to the Set Partition Model M1 comes from the
Compact Model introduced in [29]. Let SC denote the set of pairs of segment of E(P) that
cross and I(P) denote the set of points of P in the interior of CH(P). In the Compact
Model M3, shown below, we associate an edge variable xe to each edge e ∈ E(P).

min
∑

{i,j}∈E(P)

xij (5a)

s.t. xij + xkℓ ≤ 1 ∀{{i, j}, {k, ℓ}} ∈ Sc (5b)

xij = 1 ∀{i, j} ∈ CH(P) (5c)∑
k∈CCW+(i,j)

xik ≥ 1 ∀(i, j) ∈ A(P), i ∈ I(P) (5d)

∑
j∈P

xij ≥ 3 ∀i ∈ I(P) (5e)

0 ≤ xij ≤ 1 ∀{i, j} ∈ E(P) (5f)

xij ∈ Z ∀{i, j} ∈ E(P) (5g)

61

In the Compact Model M3, edge crossings are avoided by Constraints (5b). Con-
straints (5c) ensure that the edges belonging to the convex hull of P are part of the
solution, while Constraints (5d) ensure that the angles incident to a internal vertex are
all convex. Constraints (5e) are added to force every internal vertex to have degree at
least three. Finally, Constraints (5f) and (5g) guarantee that the variables are binary.

By including edges we can take advantage of the constraints and heuristic presented
in [29]. The edges are also natural candidates for branching.

A common drawback of Branch-and-Bound algorithms is the possibility of unbalanced
branching trees. When one of the branching choices is much more restrictive than the
other, the least restrictive node can have almost no impact in the value of the optimal
solution of the relaxation [15]. This happens, in particular, when branching on a single
variable, which is the default for commercial solvers.

For partitioning problems, one of the most well known balanced branching approaches
is the Ryan-Foster branching rule [15]. According to this rule, we find a pair of constraints
that are covered by distinct sets of variables but share at least one (fractional) variable,
and branch on two possibilities: forcing those two constraints to be covered by the same
variable or to be covered by two different variables.

In this section, we show that for Model M1, when the solution is fractional, there
is always a pair of adjacent i-wedges that can be used for branching according to the
Ryan-Foster rule. This branching can be interpreted geometrically as deciding whether a
particular edge of E(P) is part of the solution or not.

Consider edge ik ∈ E(P) and assume that k is preceded by k−1 and succeeded by k+1

in the CCW ordering around i. This edge has two corresponding arcs (i, k), (k, i) ∈ A(P),
one for each possible orientation. The polygons in S(P) can be split into four sets with
respect to the arc (i, k): the set of polygons S+

ik(P) that are supported by {i, k} and cover
the k-th i-wedge; the set of polygons S−

ik(P) that are supported by {i, k} and cover the
(k−1)-st i-wedge; the polygons Sover

ik (P) that cover both (k−1)-st and the k-th i-wedges;
and the set of polygons Sdisj

ik (P) that cover neither the (k−1)-st nor the k-th i-wedge. To
simplify notation, we omit the point set P from the notation of S and its subsets when
the context makes it clear. Figure 3.9 illustrates this notation. The same reasoning can
be used for the reverse arc (i, k), by exchanging the roles played by i and k.

Recall that the i-wedge supported by the edges i(k− 1) and ik is the k− 1-st i-wedge,
while the i-wedge between edges ik and i(k + 1) is the k-th i-wedge.

By denoting
∑

b∈B ub as u(B) for a given set B ⊆ S(P), we can rewrite equation (1b)
for those i-wedges as:

u(S−
ik) + u(Sover

ik) = 1 (3.6)

u(S+
ik) + u(Sover

ik) = 1, (3.7)

respectively. Notice that equality u(S+
ik) = u(S−

ik) follows from (3.6) and (3.7).
With this in mind, we can extend Model M1 by adding the set of binary variables xe

for each edge e ∈ E(P). Denoting that an edge e is in the border of a polygon p by e ∈ p,
we also add constraints relating polygons and edges.

An edge ik is in the solution if and only if there are two polygons supported by it, one

62

1

2

3

4

Figure 3.9: Example of an instance with four points inducing four triangles and one
quadrilateral. Arc (1, 3) ∈ A(P) splits those polygons into four sets S+

13 = {134},
S−
13 = {123}, Sover

13 = {124, 1234} and Sdisj
13 = {234}.

on each side. Taking the orientation from i to k, we can express this with the following
equations:

xik = u(S−
ik) (3.8)

xik = u(S+
ik). (3.9)

However, since u(S−
ik) = u(S+

ik), we can drop one of the constraints or combine both
to simplify notation.

To simplify notation and avoid splitting the constraints, the exterior of CH(P),
regarded as a polygon that covers the unbounded face of the arrangement, is included
in S. With this, all edges now support exactly two polygons. This allows us to express
the extended Model M4 as follows.

min
∑
p∈S

up (1a)

s.a.
∑

p∈S:f⊆p

up = 1 ∀f ∈ A (1b)

2xe =
∑

p∈S:e∈p

up ∀e ∈ E(P) (10a)

up ∈ {0, 1} ∀p ∈ S (1c)

xe ∈ {0, 1} ∀e ∈ E(p) (10b)

By branching on an edge variable xe, we are deciding whether the two consecutive i-
wedges are going to be covered by the same polygon or by different ones. This is analogous
to the Ryan-Foster branch rule, as previously discussed.

Lastly, we now show that we can branch only on edge variables.

Lemma 5. Let (u∗, x∗) be an optimal solution of the linear relaxation of Model M4.
Then, there is an edge e ∈ E(P) such that x∗

e is fractional if and only if there is a polygon
p ∈ S such that u∗

p is fractional.

63

Proof. (counterpositive proof of⇒): observe that if u∗
p is integral for all p, then, if e

is any edge in E(P), we either have u∗(Sover
e) = 0, which implies xe = 1, or u∗(Sover

e) = 1,
which ascertains that xe = 0.
(direct proof of ⇐): Let p be a polygon such that u∗

p is fractional and e′ = {i′, k′}
one of its edges. Assume w.l.o.g. that p covers the (k′ − 1)-st i′-wedge, i.e., p ∈ S−

e′ .
Case 1: If u∗(Sover

e′) > 0 then, as u(S−
e′) > 0, from Equations (3.6) and (3.7), we

have that u(S+
e) and u(S−

e) must both be fractional. Thus, from 0 < u(S+
e) + u(S−

e) < 2

and (10a) we get that xe is fractional.
Case 2: If u∗(Sover

e′) = 0, then there is a polygon h ̸= p that also covers the (k′ − 1)-
st i′-wedge such that 0 < u∗

h < 1. We can then traverse the edges of p in clockwise
order, starting at e′, until we find an edge e = {i, k} that belongs to p but not to h.
Assume w.l.o.g. that h covers both the (k− 1)-st and the k-th i-wedge (see Figure 3.10),
otherwise, just exchange the roles of p and h. By construction, p ∈ S−

e and h ∈ Sover
e and

the corresponding variables up and uh are both positive. Therefore, by Equation (3.6),
u(S−

e) is fractional and, by Equation (3.8), xe is also fractional.

i

k
k + 1

k − 1

h

p

i0

k0

Figure 3.10: Example of two distinct polygons p and h that share edges. Edge ik belongs
only to p, but point i belongs to both polygons. Polygon h covers both the (k− 1)-st and
the k-th i-wedge while p only covers the k-th i-wedge.

Hence, the following Corollary is immediate.

Corollary 5.1. If (u∗, x∗) is a fractional solution of Model M4, then there is a pair of
adjacent i-wedges that induce a Ryan-Foster Branching represented by an edge.

Notice that adding variables is not a necessary step to implement the branching
rule. We can simply add the corresponding constraints, replacing xe by zero or one,
to the respective child nodes. However, explicitly adding the variables facilitates the
implementation when using a commercial solver as it can take advantage of complex
single variable branching rules already in place such as strong branching.

64

The addition of Constraint (10a) affects the pricing algorithm and it needs to be
handled explicitly. On the other hand, the actual branching decisions, which add the
constraints xe = 0 or xe = 1 to the child nodes, do not involve polygon variables explicitly.
This allows for a slightly modified pricing algorithm that does not change as the branch-
and-price progresses.

Let βe be the set of dual variables associated with Constraints (10a). The new reduced
costs for the polygon variables in Model M4 are:

cp = 1−
∑

f∈A:f⊆p

αf −
∑
e∈p

βe ∀p ∈ S. (3.11)

Now, we need to slightly modify the pricing algorithm to accommodate the addition
of these constraints. The reduced cost of a triangle (k, l,m) is set to:

∆(k, l,m) = βkl + βlm + βkm +
∑

f⊂(k,l,m)

αf . (3.12)

Considering that the x variables represent support edges for the polygons, when
building the polygon as the union of a triangle and a compatible polygon, the cost of
the shared edge needs to be subtracted twice.

Notice that by setting an edge variable xe to one, we implicitly forbid any edge that
crosses it to be part of the solution. Hence, when making this branching decision, we also
explicitly set all crossing edges to zero in the corresponding sub-problems. Besides, to
prevent polygons with forbidden edges to be generated, we set the dual cost associated
with the constraints corresponding to those edges to an arbitrarily large number.

Instead of using the default branching rules, we implemented a simple one based on
the geometry of the problem. To that end, we say that a variable x in a given solution
is more fractional the closer the value of frac(x) = |0.5 − x| is to zero. Among all edge
variables xe such that frac(xe) is within 0.1 of the most fractional edge variable, we branch
on the one whose corresponding edge has the highest number of crossings with all other
edges in E(P). This branching rule turned out to be very fast when compared to the
default Strong Branching [1] implemented in SCIP.

3.4.2 Primal Heuristic

At the end of each BNP node, after pricing is finished, we use the edge variables to
construct a greedy triangulation and solve an instance of the mcpp restricted to a small
subset of edges, as described in [29], using Model (M3). This model can be modified
to handle collinearities, by allowing Constraints (5d) to include points that are collinear
with i and j in the set over which the left-hand side summation is applied. In the end of
this section, we discuss how to adapt Constraints (5e) to handle collinear points.

To build the greedy triangulation ∆, the edges of E(P) are sorted by descending value
of their corresponding variables in the current LP solution of the RMP and inserted, if
possible, in ∆, following this ordering. An edge is not inserted when it crosses one of
the edges previously added to ∆. The result is an inclusion maximal set of non-crossing
edges, which characterizes a triangulation.

65

A viable integer solution is then obtained by solving the mcpp restricted to the edges
of this greedy triangulation and its flip edges. This heuristic runs very fast, taking less
than 2 seconds for instances of up to 100 points.

It is possible that the solution found by an edge based heuristic contains polygons that
have not yet been included in the RMP. This is addressed by running a secondary pricing
algorithm whose purpose is solely to add the variables corresponding to the polygons
present in heuristic solutions to the RMP.

3.4.3 Initial Primal Solution

To find an initial primal solution, we use the same heuristic as in the previous section.
However, since no LP solution is available in the beginning, we replace the greedy
triangulation with the Delaunay Triangulation.

3.4.4 Lower Bound and Early Stopping

At iteration t, the optimal solution of the current RMP zt is not guaranteed to be a lower
bound for Model M4 unless no negative reduced cost variables were found by the pricing
algorithm.

When an upper bound on the sum of the variables being priced κ ≥∑
p∈S up is known,

a lower bound for the Complete Model M4 can be computed before pricing is finished. If
ct denotes the most negative reduced cost obtained during the t-th iteration of the pricing
algorithm, a lower bound for Model M4 is given by zt + κct. Since the objective function
of Model M4 is

∑
p∈S up, the value of any viable integer solution can be expressed as

κ. However, this lower bound is poor, possibly even negative, during the first iterations.
According to [22], a tighter bound zt for the particular case of unitary cost objective
functions, which does not depend on the quality of the incumbent solution, is given by:

zt =
zt

1− ctp
. (3.13)

Since all the coefficients in Model M4 are integers, knowing a lower bound for zt allows
for an early halt of the column generation procedure. If ⌈zt⌉ = ⌈zt⌉, the integer lower
bound at the current node cannot be improved by solving the RMP to optimality, and
we can proceed directly to branching.

3.4.5 Stabilization

The lower bound given by (3.13) can oscillate between iterations and its convergence
to the optimal value of the relaxation might be slow. Improving this convergence can
significantly reduce total solving time of the ILP. This can be accomplished by the use of
Stabilization techniques.

We can employ the dual bound given by (3.13) to assess the quality of a dual solution,
where a higher lower bound indicates a better solution. One way to stabilize the algorithm
is to minimize drastic changes in the dual solution, keeping it close to a known good

66

solution, also called the stabilization center. An in-depth discussion of the topic and
different techniques to address the issue can be found in [28].

The dual solution can be stabilized by applying the smoothing technique proposed by
Wentges [34]. Instead of using the current dual solution αt in the pricing subroutine, the
following convex combination can be considered

αt
STAB = αt + λ(αBEST − αt), (3.14)

where 0 ≤ λ < 1 is the smoothing factor and αBEST is the stabilization center correspond-
ing to the dual solution with best lower bound found so far. We remark that tuning the
parameter for this stabilization was very hard to accomplish, since instances would per-
form significantly better or worse as the parameter changed, averaging out little change.

Another way to reduce oscillations is to solve the linear relaxations using barrier meth-
ods instead of the commonly used Simplex algorithms. By changing the LP algorithm, we
can take advantage of the fact that barrier methods find solutions that lie in the center
of the optimal face, as opposed to the extreme points encountered by Simplex. In highly
degenerate problems, extreme points can oscillate significantly between iterations with
the addition of new columns and/or rows, while subsequent central points are uniquely
defined and close together. Another advantage of this approach is that no parameter
tuning is necessary [25].

On the other hand, when replacing Simplex with barrier methods, we lose the capa-
bility of fast re-optimization after branching, one of the most important features of Dual
Simplex algorithms explored when implementing branch and cut procedures [35]. Also,
due to the nature of the central solutions found by barrier methods, it is very unlikely
that they are integral, increasing the need of a good primal heuristic.

In pure branch-and-cut algorithms, when branching is done or violated cutting planes
are found, the addition of new constraints makes the current primal solution infeasible
while maintaining its dual feasibility. In this case, the use of Dual Simplex as the LP
algorithm to optimize the linear relaxations in the child nodes is recommended because,
starting from the current dual feasible basis, it usually requires far fewer iterations to
reach a new optimal solution than it would be necessary for a Simplex algorithm started
from scratch.

Pricing works similarly, however, the addition of columns makes the current dual
solution infeasible while maintaining primal feasibility. So, when combining both row and
column generation as in a Branch-and-Price algorithm, if a single Simplex algorithm is
used to compute relaxations, some re-optimization is inevitable, reducing the negative
impact of switching to barrier methods.

In Section 3.5 we show that, for this particular model, the more stable pricing
procedure obtained, by replacing Simplex with a Barrier Method, out-weights the re-
optimization cost.

67

3.4.6 Degree Constraints

The addition of edge variables allows for the inclusion of the following degree con-
straints (5e) introduced in the Compact Model M3 for point sets in general position:∑

j∈P\{i}

xij ≥ 3,∀i ∈ I(P) (3.15)

Notice that these constraints do not involve polygon variables and, therefore, do not
require modifications to the pricing problem.

In practice, we verified that the addition of degree constraints improved the quality
of the lower bound provided by the Set Partition Model, and the total solving time.
However, when using column generation, the simple addition of those constraints resulted
in a larger number of calls to the column generation procedure, considerably increasing
solving times.

To minimize this negative side effect, we separate the degree constraints after column
generation rather than adding them all at once, despite the fact that there are only O(n)

of them. The embedding of a cutting plane procedure in the Branch-and-Price algorithm
leads to a Branch-Cut-and-Price algorithm. Also, in our implementation, in an attempt
to limit the number of pricing rounds, we require that an inequality be violated by at
least 0.1 units to be inserted in the current linear relaxation. As shown in [29], the degree
constraints can increase the lower bound by 0.5 even in very simple instances that, after
rounding, may be just enough to assert a known primal solution as optimal, halting the
optimization sooner.

However, Constraint (3.15) is not valid when multiple collinear points are present, as
a vertex can have degree two and still be a vertex of a convex polygon.

The set of neighbors of i, denoted by Ni, is comprised of the points j ∈ P such
that {i, j} ∈ E(P). Among the neighbors of i, the ones in N c

i = {j : CVX(j, i, k) =

0 for some k ∈ Ni \{j}} are candidates for being the endpoints of edges incident to i in a
solution where i has degree two. Hence, we replace (3.15) by the following more general
(albeit equivalent when P is in general position) set of constraints:∑

j∈Ni\N c
i

xij +
∑
j∈N c

i

1.5xij ≥ 3,∀i ∈ I(P) (3.16)

3.5 Experimental Results

In this section, we show the positive impact of some design choices and compare Model M1
with Model M3, presented in [29].

All experiments were run on an Intel Xeon Silver 4114 at 2.2Ghz, and 32GB of
RAM running Ubuntu 16.04. Models and algorithms were implemented in C++ v.11
and compiled with gcc 5.5. Geometric algorithms and data structures were implemented
using CGAL 5.1 [32], using Gmpq for exact number representation. The compact model
introduced in [29] was implemented using CPLEX 12.10, while the set-partition Model M4
used SCIP 7.0 [17] with CPLEX as LP solver. A time limit of 3 hours was set for the ILP
solver for each instance.

68

When running times are presented, we consider both the time to generate and to solve
the model. Most of the data are presented in a standard boxplot, grouped by size. All
data used to generate the figures is available at [4].

To compare the algorithms, we employ the instances from [29], available at [4]. Those
instances had been generated by independently sampling x and y coordinates from a
uniform distribution, ensuring general position.

In this study, we only use the instances of 65 to 105 points, with 30 instances per size,
since smaller instances were too easy, while larger ones were too hard, given our limit of 3
hours of (exclusive) solver time. As we were pushing our models to their limit, we reached,
for size 105, a large enough instance size for which multiple failures began to appear. For
instances of 105 points, when more than one instance could not be solved by a given
configuration, the solving times for this size are omitted. Despite the fact that a few of
the instances could not be solved to optimality, we include them as clear outliers in some
of the forthcoming figures. Notice that the most basic configuration of Model M1 solved
all instances of 65 points in at most 242 seconds, see Figure 3.12a, while the compact
Model M3 failed to solve any of them in 2400 seconds to provable optimality.

The main reason for the difference in performance is the quality of the lower bound
provided by the relaxations of both models. See Figure 3.11.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Instance

34

36

38

40

42

Bo
un

d

opt
Set Partition
Compact

Figure 3.11: Lower bound of the relaxations given by the Compact Model and the Full
Set Partition Model for instances of size 55 compared with the optimal solution.

In the first three experiments, we show the impact of improvements to the Model M1
with all polygon variables, which we call FullSP, discussed in Section 3.4: branching on
edges, heuristic, and degree constraints. Our next experiment focuses on Model M4 using
column generation, which we call CGSP, comparing the different types of stabilization
methods and their impact. We conclude the experiments by comparing the memory
consumption of FullSP and CGSP. Each experiment includes the features introduced in
the previous ones.

Branch on Edge Variables We now discuss the impact of introducing edge variables
and the branching rule described in Section 3.4.1 to the basic FullSP model, leading
to Model M4. Figures 3.12a and 3.12b show the solving times, respectively, with and
without the inclusion of edge variables, while Figures 3.13a and 3.13b depict the number

69

of nodes explored. Although there is an increase in the number of nodes explored, our
implementation is faster than the one based on Strong Branch [1], the default branching
rule for SCIP, leading to better total running times.

65 70 75 80 85 90 95 100
size

0

2000

4000

6000

8000

10000

12000

to
ta

l t
im

e(
s)

(a) FullSP

65 70 75 80 85 90 95 100
size

0

2000

4000

6000

8000

10000

12000

to
ta

l t
im

e(
s)

(b) FullSP +EdgeBranching

65 70 75 80 85 90 95 100
size

0

2000

4000

6000

8000

10000

12000

to
ta

l t
im

e(
s)

(c) FullSP +EdgeBranching+Heur

65 70 75 80 85 90 95 100 105
size

0

2000

4000

6000

8000

10000

12000

to
ta

l t
im

e(
s)

(d) FullSP +EdgeBranching+Heur+Deg

Figure 3.12: Total solving time for the FullSP with different configurations.

Primal Heuristic Next, we investigate the effect of introducing a custom primal
heuristic. The positive impact of the inclusion of the primal heuristic described in
Section 3.4.2 is evidenced by comparing Figures 3.12b and 3.12c. The lower bound
provided by the model is very strong. Thus, having good heuristic solutions soon
considerably reduces the number of nodes explored. See Figures 3.13b and 3.13c.

Degree Constraints Finally, we discuss the impact of the introduction of con-
straints (3.15). The performance gain from this inclusion is shown in Figures 3.12c
and 3.12d. Degree constraints considerably increase the strength of the model, even
improving the lower bound of simple instances, as discussed in [29].This is shown in
Figure 3.14, where lower bounds of the FullSP, with and without Degree Constraints, are
compared with the optimal values. This stronger formulation leads to fewer nodes being
explored during search, as shown in Figure 3.13d. Instances with 105 points were solved,
on average ± std-dev, in 1356± 1102 seconds when using degree constraints.

70

65 70 75 80 85 90 95 100
size

0

100

200

300

400

500

no
de

s

(a) FullSP

65 70 75 80 85 90 95 100
size

0

100

200

300

400

500

no

de
s

(b) FullSP +EdgeBranching

65 70 75 80 85 90 95 100
size

0

100

200

300

400

500

no

de
s

(c) FullSP +EdgeBranching+Heur

65 70 75 80 85 90 95 100 105
size

0

100

200

300

400

500

no

de
s

(d) FullSP +EdgeBranching+Heur+Deg

Figure 3.13: Number of nodes of the search tree explored during for different configura-
tions of FullSP.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Instance

48

49

50

51

52

53

54

55

Bo
un

d

opt
deg
no deg

Figure 3.14: Lower bound of the relaxations given by the FullSP with and without
Degree Constraints for instances of size 90 compared with the optimal value.

71

Column Generation All the previously discussed features lead to our best performing
FullSP. However, due to the exponential number of columns, the model eventually
becomes too large to fit in memory. In our initial testing, instances with 190 points
used more than 32GB of RAM during model creation. For instances with 180 points, the
solver started running with less than 2GB left, it is very likely that there would not be
enough memory available after branching.

With the memory issue in mind, we try to find the best configuration for the CGSP.
The RMP is initialized with the set of all triangles and the polygons that belong to the
initial heuristic solution.

As mentioned in Section 3.4.6, the simple inclusion of the degree constraints signifi-
cantly worsen the performance of the model. We overcame this issue by implementing a
cutting plane procedure to separate degree constraints. Since the number of constraints is
O(n), the separation is made by inspection, only including cuts with a significant violation
of at least 0.1.

65 70 75 80 85 90 95 100
size

0

2000

4000

6000

8000

10000

12000

to
ta

l t
im

e(
s)

(a) No Stab

65 70 75 80 85 90 95 100
size

0

2000

4000

6000

8000

10000

12000
to

ta
l t

im
e(

s)

(b) Weingetz

65 70 75 80 85 90 95 100 105
size

0

2000

4000

6000

8000

10000

12000

to
ta

l t
im

e(
s)

(c) Barrier

Figure 3.15: Total solving time for the CGSP for different set stabilization methods.

Finally, we compare different approaches to stabilize the column generation. As dis-
cussed in Section 3.4.5, we studied three options: no stabilization, Weingetz Stabilization,
and Barrier Methods. For the Weingetz Stabilization, using the irace package [23], we
found that the best stabilization parameter is α = 0.55. The results are shown in Fig-

72

ure 3.15. As we can see, although no noticeable difference is observed when Weingetz
method is used compared to not applying any stabilization at all, by replacing Simplex
with the Barrier Method, we achieve a significant performance improvement. Instances
with 105 points were solved, on average ± std-dev, in 2666 ± 2711 seconds when using
the Barrier Method.

As expected, when the entire model fits into memory, a better performance is obtained
compared to running a column generation algorithm. This is due not only to the time
spent solving the pricing problem many times per node, but also to the fact that modern
ILP solvers are equipped with extremely powerful pre-processing routines that can reach
their maximum potential when the models are completely loaded into memory. However,
the trade off between solution time and memory consumption, illustrated in Figure 3.16,
reveal that column generation leads to significant savings in memory usage without drastic
losses in performance. Thus, the technique is a good alternative when memory becomes
the limiting factor to solving instances.

65 70 75 80 85 90 95 100 105
size

0

2

4

6

8

10

pe
ak

 m
em

or
y

us
ag

e
(G

B)

(a) FullSP

65 70 75 80 85 90 95 100 105
size

0

2

4

6

8

10
pe

ak
 m

em
or

y
us

ag
e

(G
B)

(b) CGSP Barrier

Figure 3.16: Peak memory consumption for the two variations of the Set Partition Model:
full and column generation using the barrier method.

3.6 Conclusions

In this paper, we discussed a new model for the mcpp featuring variables assigned also
to the convex polygons having vertices on the input point set, in contrast to the previous
known formulation that only contained variables associated to edges with endpoints in that
set. To cope with the exponential number of variables, we proposed a column generation
based algorithm and discussed implementation aspects that made it more efficient. The
aspects investigated include the deployment of stabilization methods, which led to the use
of the Barrier Method for solving linear relaxations, the development of a primal heuristic
and of a simple yet effective branching rule. Also, a family of cuts inspired by a previously
known ILP model was incorporated to the algorithm which, because of the dynamic and
simultaneous inclusion of variables and constraints to the model, is characterized as a
branch-and-cut-and-price algorithm. All those different aspects were assessed through a
series of experiments to show their individual contribution to the algorithm’s performance.

73

As a result, constrained to identical computational resources, the new algorithm was able
to solve instances with more than twice the size of what was possible in previous works.

A careful adaptation of the pricing algorithm to deal with multiple collinear points is
certainly worth investigating. Even though this might be seen as an implementation
issue, we could benefit from more general symbolic perturbation results such as [11]
and [30] when handling triangles of zero area. However, in practice, such techniques
can incur a high computational cost. A relevant topic for future work is to assess how
the model performs when solving more structured instances that are not sampled from a
uniform distribution. Other directions for further research include investigating a different
stabilization model, and finding facet defining cuts.

Acknowledgments This work was supported in part by grants from: Brazilian National
Council for Scientific and Technological Development (CNPq), #313329/2020-6, #309627/2017-
6, #304727/2014-8; São Paulo Research Foundation (Fapesp), #2020 /09691-0, #2018/26434-
0, #2018/14883-5. #2014/12236-1; and Fund for Support to Teaching, Research and Outreach
Activities (Faepex).

74

Bibliography

[1] T. Achterberg. Constraint Integer Programming. Doctoral thesis, Technische Uni-
versität Berlin, Fakultät II - Mathematik und Naturwissenschaften, Berlin, 2007.

[2] B. Aronov, H. Edelsbrunner, L. J. Guibas, and M. Sharir. The number of edges of
many faces in a line segment arrangement. Combinatorica, 12(3):261–274, 1992.

[3] D. Avis and D. Rappaport. Computing the largest empty convex subset of a set of
points. In Proceedings of the First Annual Symposium on Computational Geometry,
SCG’85, pages 161–167, New York, 1985. ACM.

[4] A. S. Barboza, C. C. de Souza, and P. J. de Rezende. Minimum Convex Partition of
Point Sets – Benchmark Instances and Solutions, 2018. www.ic.unicamp.br/~cid/
Problem-instances/Convex-Partition.

[5] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H.
Vance. Branch-and-price: Column generation for solving huge integer programs.
Operations Research, 46(3):316–329, 1998.

[6] M. W. Bern, H. Edelsbrunner, D. Eppstein, S. A. Mitchell, and T. S. Tan. Edge
insertion for optimal triangulations. Discrete and Computational Geometry, 10:47–
65, 1993.

[7] R. G. Cano, C. C. de Souza, P. J. de Rezende, and T. Yunes. Arc-based integer
programming formulations for three variants of proportional symbol maps. Discrete
Optimization, 18(C):87–110, November 2015.

[8] J. A. De Loera, J. Rambau, and F. Santos. Triangulations: Structures for Algorithms
and Applications. Springer, 1st edition, 2010.

[9] P. J. de Rezende, C. C. de Souza, S. Friedrichs, M. Hemmer, A. Kröller, and
D. C. Tozoni. Engineering art galleries. In L. Kliemann and P. Sanders, editors,
Algorithm Engineering - Selected Results and Surveys, volume 9220 of Lecture Notes
in Computer Science, pages 379–417. Springer, 2016.

[10] E. D. Demaine, S. P. Fekete, P. Keldenich, D. Krupke, and J. S. B. Mitchell.
Computing convex partitions for point sets in the plane: The CG: SHOP challenge
2020. CoRR, abs/2004.04207, 2020.

www.ic.unicamp.br/~cid/Problem-instances/Convex-Partition
www.ic.unicamp.br/~cid/Problem-instances/Convex-Partition

75

[11] H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: A technique to cope with
degenerate cases in geometric algorithms. ACM Transactions on Graphs, 9(1):66–104,
1990.

[12] S. P. Fekete, A. Haas, M. Hemmer, M. Hoffmann, I. Kostitsyna, D. Krupke, F. Mau-
rer, J. S. B. Mitchell, A. Schmidt, C. Schmidt, and J. Troegel. Computing nonsimple
polygons of minimum perimeter. Journal on Computational Geometry, 8(1):340–365,
2017.

[13] S. P. Fekete, W. Hellmann, M. Hemmer, A. Schmidt, and J. Troegel. Computing
maxmin edge length triangulations. Journal on Computational Geometry, 9(1):1–26,
2018.

[14] T. Fevens, H. Meijer, and D. Rappaport. Minimum convex partition of a constrained
point set. Discrete Applied Mathematics, 109(1-2):95–107, 2001.

[15] B. A. Foster and D. M. Ryan. An integer programming approach to the vehicle
scheduling problem. Journal of the Operational Research Society, 27(2):367–384,
June 1976.

[16] S. Friedrichs, M. Hemmer, J. King, and C. Schmidt. The continuous 1.5d terrain
guarding problem: Discretization, optimal solutions, and PTAS. Journal on Com-
putational Geometry, 7(1):256–284, 2016.

[17] G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse, P. Ge-
mander, A. Gleixner, L. Gottwald, K. Halbig, G. Hendel, C. Hojny, T. Koch,
P. Le Bodic, S. J. Maher, F. Matter, M. Miltenberger, E. Mühmer, B. Müller, M. E.
Pfetsch, F. Schlösser, F. Serrano, Y. Shinano, C. Tawfik, S. Vigerske, F. Wegscheider,
D. Weninger, and J. Witzig. The SCIP Optimization Suite 7.0. Technical report,
Optimization Online, March 2020.

[18] J. García-López and M. Nicolás. Planar point sets with large minimum convex
partitions. In Abstracts 22nd European Workshop on Computational Geometry, pages
51–54, 2006.

[19] N. Grelier. Minimum Convex Partition of Point Sets is NP-Hard. CoRR,
abs/1911.07697, 2019.

[20] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[21] C. Knauer and A. Spillner. Approximation algorithms for the minimum convex
partition problem. In Proceedings of the 10th Scandinavian Workshop on Algorithm
Theory (SWAT), volume 4059 of Lecture Notes in Computer Science, pages 232–241.
2006.

[22] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations
Research, 53(6):1007–1023, 2005.

76

[23] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, and M. Birattari.
The irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives, 3:43–58, 2016.

[24] M. Akella, S. Gupta and A. Sarkar. Branch and Price: Column generation for solving
huge integer programs, 2021. https://web.archive.org/web/20100821132913/
http://www.acsu.buffalo.edu/~nagi/courses/684/price.pdf, [Online; ac-
cessed 18-May-2021].

[25] P. A. Munari and J. Gondzio. Using the primal-dual interior point algorithm within
the branch-price-and-cut method. Computers & Operations Research, 40(8):2026–
2036, 2013.

[26] V. Neumann-Lara, E. Rivera-Campo, and J. Urrutia. A note on convex decom-
positions of a set of points in the plane. Graphs & Combinatorics, 20(2):223–231,
2004.

[27] M. J. O. Zambon, P. J. de Rezende, and C. C. de Souza. Solving the geometric
firefighter routing problem via integer programming. European Journal of Operational
Research, 274(3):1090–1101, 2019.

[28] A. A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. In-out separation and
column generation stabilization by dual price smoothing. In V. Bonifaci et al., ed-
itor, 12th International Symposium on Experimental Algorithms, SEA, Proceedings,
volume 7933 of Lecture Notes in Computer Science, pages 354–365. Springer, 2013.

[29] A. Sapucaia-Barboza, C. C. de Souza, and P. J. de Rezende. Minimum convex
partition of point sets. In P. Heggernes, editor, Algorithms and Complexity - 11th
International Conference, CIAC 2019, Rome, Italy, May 27-29, 2019, Proceedings,
volume 11485 of Lecture Notes in Computer Science, pages 25–37. Springer, 2019.

[30] R. Seidel. The nature and meaning of perturbations in geometric computing. Discrete
and Computational Geometry, 19(1):1–17, 1998.

[31] A. Spillner. A fixed parameter algorithm for optimal convex partitions. Journal of
Discrete Algorithms, 6(4):561–569, 2008.

[32] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 5.1
edition, 2020.

[33] D. C. Tozoni, P. J. de Rezende, and C. C. de Souza. Algorithm 966: A practical
iterative algorithm for the art gallery problem using integer linear programming.
ACM Transactions on Mathematical Software, 43:16:1–16:27, 2016.

[34] P. Wentges. Weighted Dantzig-Wolfe decomposition for linear mixed-integer pro-
gramming. International Transactions in Operational Research, 4(2):151–162, 1997.

[35] L. Wolsey. Integer Programming. John Wiley & Sons, Inc., 1998.

https://web.archive.org/web/20100821132913/http://www.acsu.buffalo.edu/~nagi/courses/684/price.pdf
https://web.archive.org/web/20100821132913/http://www.acsu.buffalo.edu/~nagi/courses/684/price.pdf

77

3.7 Additional Comments

Errata on Equation 3.4: As expressed in Equation 3.4, B(k, l,m) does not compute
the minimum reduce cost, which is instead given by 1 − B(k, l,m). Accordingly, in the
same equation, min should be replaced with max. This is a presentation error and does
not reflect how reduced costs were implemented.

78

Chapter 4

Convex Bichromatic Quadrangulation
of Point Sets

In this paper, we proposed a optimization variant of the Convex Bichromatic Quadrangu-
lation of Point Sets. To tackle this new variation, we introduced an ILP model, adapting
some of the results for the arrangement-based mode for the Minimum Convex Partition
of Point Sets. We also present heuristic based on this model, and draw connections with
matching approaches from the literature.

This chapter corresponds to the paper [17] presented at the 33rd Canadian Conference
on Computational Geometry (CCCG 2021). It was co-authored with Andre A. Cire1,
Pedro J. de Rezende2 and Cid C. de Souza2.

Abstract In this paper, we investigate an NP-hard optimization variant of the well-
known convex quadrangulation problem. Given a point set P and a bicoloring C, we
wish to find an alternative bicoloring C ′ that is (a) closest to C with respect to their
symmetric difference, and (b) such that P admits a bichromatic convex quadrangulation
under the new coloring C ′, i.e., a partition of the convex hull of P into convex quadrangles
where the endpoints of each edge have distinct colors in C ′. Thus, the resulting problem
combines, and provides solution insights to, two decision problems from the literature:
whether P has a convex quadrangulation, and whether P admits a bichromatic convex
quadrangulation under the original coloring C.

Due to our optimization perspective, we present two mathematical programming
approaches to address the problem. The first is an extension of the standard integer
linear model for the quadrangulation problem, and the second is a novel set-partition
formulation that enumerates colored convex quadrangles. We also derive new heuristics
that exploit the models’ linear programming relaxations, drawing connections to existing
matching approaches used for quadrangulation problems in the literature. We present
an empirical study assessing the effectiveness of the models for both exact and heuristic

1Department of Management, University of Toronto Scarborough, Canada
2Institute of Computing, University of Campinas, Campinas, Brazil. Supported by CNPq un-

der grants #313329/2020-6, #309627/2017-6, #306454/2018-1; and Fapesp under grants #2018
/26434-0, #2018/14883-5, #2014/12236-1.

79

approaches, along with comparisons between the heuristics. The benchmark used to
evaluate the performance of the models and heuristics is also made publicly available.

4.1 Introduction

A quadrangulation of a set P ⊂ R2 with n points is a partition of its convex hull, denoted
by CH(P), into interior disjoint quadrangles whose vertices belong to P and are empty,
which means that no points of P lie in their interior. We say that P is quadrangulable if it
admits a quadrangulation. A necessary condition for a point set P to be quadrangulable
is that CH(P) has an even number of vertices [3].

One of the most studied problems in computational geometry, both in theory and in
practice, is the Triangulation Problem, i.e., how to partition the convex hull of a point set
into interior disjoint triangles. The study of quadrangulations follows naturally because
it allows for the decomposition to use half as many partitions.

A quadrangulation is said to be convex if its quadrangles are convex. The Convex
Quadrangulation of Point Sets Problem (cqps) decides whether a point set admits a
convex quadrangulation, which is a required property in many practical applications [13].
The question of its complexity, however, is still open. As there are no known polynomial
algorithms for this problem, applications often relax the quadrangulation requirement and
strive for including as many quadrangles as possible, either allowing some triangles [1, 9]
or employing Steiner points to achieve a quadrangulation [6, 10]. An exact algorithm for
an optimization version of the problem was proposed in [5], with complexity O(n3h+1),
where h is the number nested convex hulls of P .

A coloring of a point set P is a partition of its points into disjoint subsets. Each of
these subsets is referred to as a color. A bicoloration C = (R,B) of a point set P is a
coloring of P into exactly two colors R and B. We say that a point p ∈ P is colored red,
with respect to (w.r.t.) C = (R,B) if p ∈ R. Similarly, if p ∈ B, p is said to be colored
blue. A point set P together with a bicoloration C = (R,B) defines a bichromatic point
set, denoted P |C.

Given a bichromatic point set P |C, a quadrangle with vertices in P is said to be
bichromatic if all its edges have endpoints of different colors. A quadrangulation of a
point set P is said to be bichromatic w.r.t. a bicoloration C if all its quadrangles are
bichromatic. In the Convex Quadrangulation of Bichromatic Point Sets Problem (cqbps),
we decide whether a bichromatic point set admits a bichromatic quadrangulation. This
problem was proposed in [8], where it was proved to be NP-hard.

All colorings are to be understood as bicolorations henceforth. A flip of a point
p ∈ P w.r.t. a coloring C corresponds to changing its color. The flip distance between
two colorings C and C ′ is the number of flips necessary to make them equal and is
denoted by F (C,C ′). The flip distance between C = (R,B) and C ′ = (R′, B′) is given
by F (C,C ′) = R∆R′ = B∆B′ = F (C ′, C), where ∆ denotes the symmetric difference.
Two colorings of P are opposite if their flip distance is n = |P |. It is easy to see that a
quadrangulation of a point set P induces two opposite colorings of P .
Problem Statement. In the Convex Bichromatic Quadrangulation of Point Sets with
Minimum Color Flips Problem (cqbpsmf), given a point set P and a coloring C, we want
to find a coloring C ′ of P , if it exists, with minimum flip distance from C such that P

80

admits a bichromatic convex quadrangulation with respect to C ′.
Unlike the previously introduced quadrangulation problems, the cqbpsmf is an

optimization problem and can have three possible answers. Either P does not admit
any convex quadrangulation and the sought after coloring C ′ of P does not exist; or
P admits a bichromatic convex quadrangulation w.r.t. C, i.e., C ′ = C; or C ′ exists and
F (C,C ′) > 0, meaning that P admits convex quadrangulations but no bichromatic convex
quadrangulation w.r.t. C. It follows that the cqbpsmf is also NP-hard from the hardness
proof of the cqbps [8].

Our Contributions. In this paper, we introduce a new optimization NP-hard variant of
the quadrangulation problem and present two Integer Linear Program models to solve it.
We also propose several heuristics that build upon such exact models. These heuristics
are compared with the matching approach for other quadrangulation problems from the
literature. A comprehensive empirical study assessing the models for both exact and
heuristic approaches is reported, as well as comparisons between the heuristics. To
allow for future comparisons to our results, the complete benchmark used to appraise
the performance of the algorithms is made publicly available.

The work is organized as follows. Section 4.2 presents an Integer Linear Program-
ming (ILP) model for the cqbpsmf, while Section 4.3 introduces a set-partition based
formulation. Section 4.4 studies heuristics based on the previously introduced models. An
empirical study of the exact and heuristic methods is shown in Section 4.5, and Section 4.6
presents our conclusions.

4.2 Integer Linear Programming Model

In this section, we introduce a formulation (model) for the the cqbpsmf. This is done by
starting from a standard set-partition formulation for the quadrangulation problem and
adding constraints and variables to assign colors and count flips. We begin by defining
important ILP concepts and notations.

A linear relaxation of an ILP model is obtained by dropping the integrality requirement
of its variables. In the case of binary variables, instead of assuming values in the set {0,1},
relaxed variables assume values in the interval [0,1]. In this text, we will refer to the linear
relaxation simply as relaxation.

Relaxations are a major component of the most popular algorithm for solving ILP
models, known as Branch-and-Bound. In a Branch-and-Bound algorithm, the set of
solutions of a model is searched in a rooted tree-like form. At each node, a linear relaxation
is solved obtaining an optimal solution x∗. If the relaxation has a worse objective function
value than the best known integral solution or is infeasible, nothing is done. If there are
any variables assuming a fractional value, one of them, say x∗

i , is selected for branching
leading to two sub-problems, one with the additional constraints xi ≤ ⌊x∗

i ⌋ and the
other with additional constraints xi ≥ ⌈x∗

i ⌉. Starting from a root node consisting of the
relaxation of the original model with no additional constraints, the algorithm proceeds
until there are no nodes left for processing. Additional heuristics are run at each node
with the goal of finding improved integral solutions, which results in fewer nodes having
to be explored.

81

A set-partition constraint is of the form
∑

x∈X x = 1, where X is a set of binary
variables. A set-partition formulation is a formulation comprised exclusively of set-
partition constraints.

Modern ILP solvers are equipped with different heuristics, preprocessing techniques,
and methods to derive additional constraints that reduce solving times of many formula-
tions, such as the ones investigated here.

Given a set P of n points, let L(P) denote the set of Θ(n2) line segments jk, where
j and k are distinct points in P . The complete (geometric) graph induced by P is
G(P) = (P,E(P)), where E(P) = {{j, k} : jk ∈ L(P)}. We refer to a segment jk ∈ L(P)

and the corresponding edge {j, k} ∈ E(P) interchangeably. An edge {j, k} ∈ E(P) is said
to be bichromatic with respect to a coloring C = (R,B) of P if its endpoints have different
colors, i.e., 1 = |{j, k} ∩R| = |{j, k} ∩B|.

Let A(P) denote the set of bounded faces of the planar arrangement induced by L(P),
and Q(P) denote the set of O(n4) empty convex quadrangles with endpoints in P . We
say that a quadrangle q ∈ Q covers a face f ∈ A(P), denoted by f ⊂ q, if the interior of
f is contained in the interior of q.

We associate a binary variable ri to each point i ∈ P , such that point i is assigned the
color red if, and only if, ri = 1. To each edge e ∈ E(P), we associate a binary variable
xe so that e is an edge of the quadrangulation if, and only if, xe = 1. Finally, to each
quadrangle q ∈ Q(P), we associate a binary variable uq that takes value 1 if, and only if,
q is part of the quadrangulation. This allows us to express our Model (4.1) as follows.

min
∑
i∈B

ri +
∑
i∈R

(1− ri) (4.1a)

s.t. xij + ri + rj ≤ 2 ∀{i, j}∈E(P) (4.1b)

xij ≤ ri + rj ∀{i, j} ∈ E(P) (4.1c)∑
q∈Q(P):f⊆q

uq = 1 ∀f ∈ A(P) (4.1d)

∑
q∈Q(P):{i,j}∈q

uq = 2xij ∀{i, j}∈E(P)\CH(P) (4.1e)

∑
q∈Q(P):{i,j}∈q

uq = xij ∀{i, j} ∈ CH(P) (4.1f)

ri ∈ {0, 1} ∀i ∈ P (4.1g)

uq ∈ {0, 1} ∀q ∈ Q(P) (4.1h)

xij ∈ {0, 1} ∀{i, j} ∈ E(P) (4.1i)

Constraints (4.1b) and (4.1c) ensure that an edge can only be selected if its endpoints
have different colors. Constraints (4.1d) enforce the partitioning of CH(P) into empty
convex quadrangles. Finally, Constraints (4.1e) and (4.1f) links edges and quadrangles.

In [11], we showed that for problems where the convex hull of a point set P has to
be partitioned into polygons with endpoints in P , only O(n2) faces of A(P) need to be
considered (as in Constraints (4.1d)). This will be discussed in detail in the next section.

Constraints (4.1d), together with quadrangle variables, define a standard set-partition
formulation, with a known strong linear relaxation [7]. A similar formulation was used

82

to solve the Minimum Convex partition Problem [11]. Formulations for the cqps and
cqbps can be trivially obtained from them.

On the other hand, Constraints (4.1b) and (4.1c), together with the edge and color
variables, correspond to a formulation for the classical MaxCut problem with positive
weights [4]. In the MaxCut problem, the goal is to find a bi-partition of the graph (in our
case each part corresponds to a color) such that the total weight of the edges between
both parts is maximized. This formulation only works for positive weights, as we are
allowed to not select an edge even if its endpoints are in different parts. Notably, this
MaxCut formulation is known for its weak linear relaxation. We will show in Section 4.5
that the linear relaxation of Model (4.1) behaves poorly as the size of instances grows,
resulting in the total solving times increasing very quickly.

4.3 Pure Set-Partition Formulation

In the previous section, we presented a model for the cqbpsmf and discussed that it is
not a strong one due to a subset of its constraints that define a weak formulation for the
MaxCut problem.

In this section, we introduce a new model that consists entirely of set-partition con-
straints, which are known to lead to a strong linear relaxation. To this end, we introduce
colored quadrangles and explore properties of the set partition constraints (4.1d).

First, notice that each quadrangle in Q(P) can be colored in only two ways such that
its edges are bichromatic. Let us denote the set of all colored empty convex quadrangles
of P by Qc(P).

As proved in [11], to reach a partition of CH(P), we are only required to use
Constraints (4.1d) for faces of A(P) with at least one vertex in P . The faces with i ∈ P as
one of their vertices are called i-wedges and we say that i is an anchor of these i-wedges.
Note that faces may have multiple anchors. We denote the set of anchors of an i-wedge
f by ANC(f). Finally, let us denote by W the set of i-wedges for all i ∈ P .

Given an i-wedge f ∈ W and an anchor i ∈ ANC(f), we can split the colored
quadrangles that cover f into two sets based on the color assigned to i in their coloration.
We denote by Rf

i and Bf
i the sets of colored quadrangles that cover f where point i is

colored red and blue, respectively. Figure 4.1 illustrate an arrangement and its i-wedges.
We write Constraints (4.1d) for the i-wedges inW considering the set of colored convex

quadrangles as ∑
q∈QC :f⊂q

uq = 1,∀f ∈ W .

The summation on the left-hand side can be split based on the color assignments to
the anchors of f , leading to∑

q∈Rf
i

uq +
∑
q∈Bf

i

uq = 1, ∀f ∈ W ,∀i ∈ ANC(f)

However, in any integral solution, there is only one colored polygon covering each
face f and, for all anchors i ∈ ANC(f), it must be from Rf

i when ri = 1, and from Bf
i ,

83

Figure 4.1: Illustration of the arrangement induced by L(P) for the set P of points
indicated by the larger disks. The smaller disks show vertices of the arrangement that
are crossings of line segments. Faces of the arrangement that are not i-wedges are colored
red.

otherwise. This allows us to split these constraints, leading to the following model.

min
∑
i∈B

ri +
∑
i∈R

(1− ri) (4.2a)

s.t.
∑
q∈Rf

i

uq = ri, ∀f ∈ W, ∀i ∈ ANC(f) (4.2b)

∑
q∈Bf

i

uq = 1− ri, ∀f ∈ W, ∀i ∈ ANC(f) (4.2c)

ri ∈ {0, 1} ∀i ∈ P (4.2d)

uq ∈ {0, 1} ∀q ∈ Q(P) (4.2e)

For better visualization of the model as a pure set-partition formulation and to better
interpret its constraints, an equivalent model can be obtained by adding binary variables
bi for all i ∈ P such that bi = 1− ri, allowing us to rewrite the model as follows.

84

min
∑
i∈B

ri +
∑
i∈R

bi (4.3a)

s.t. ri + bi = 1 ∀i ∈ P (4.3b)∑
q∈Rf

i

uq + bi = 1, ∀f ∈W, ∀i ∈ ANC(f) (4.3c)

∑
q∈Bf

i

uq + ri = 1, ∀f ∈W, ∀i ∈ ANC(f) (4.3d)

ri ∈ {0, 1} ∀i ∈ P (4.3e)

bi ∈ {0, 1} ∀i ∈ P (4.3f)

uq ∈ {0, 1} ∀q ∈ Q(P) (4.3g)

Constraints (4.3c) ensure that either point i is assigned the color blue or there is
exactly one colored quadrangle covering the i-wedge f where i is colored red. A similar
interpretation can be given to (4.3d) by exchanging the colors. Constraints (4.3b) where
added to ensure that a single color is assigned to each point.

This model performs significantly better in practice than the one introduced in the
previous section, as we will show in Section 4.5.

4.4 Linear Relaxation Based Heuristics

In this section, we propose a heuristic framework for the cqbpsmf, based on the strength
of the Model (4.2).

Our heuristics work in three steps. First, we solve the relaxation of Model (4.2),
obtaining a solution u∗. Based on u∗, a set of colored quadrangles Sc ⊂ Qc is constructed.
Finally, we solve Model (4.2) restricted to the colored quadrangles in Sc. Notice that if
the relaxation is infeasible, so is the restricted problem.

This is motivated by the global view that an linear programming relaxation provides,
as opposed to merely local properties provided by, for instance, projected Delaunay
Tetrahedralizations [13]. Thus, even when fractional, the values assigned to variables
are still within the constraints of the model, and might give a good guidance for heuristic
decisions.

An advantage of relaxation-based heuristics is the possibility of integrating them with
a Branch-and-Bound algorithm. This is possible since a solution to the linear relaxation
is always available. In particular, modern solvers are capable of finding good set-partition
solutions using their own internal heuristics. However, if new constraints and variables are
added with the goal of strengthening the model, the solver might face difficulties in finding
good solutions. With this in mind, even if the relaxation takes a considerable amount
time to be solved, having a fast relaxation-based algorithm can significantly speedup the
solution to an ILP model.

The choice of colored quadrangles in Sc plays an important role for the success of the
heuristic. In particular, a poor choice of quadrangles might lead to an infeasible model.
Conversely, if too many quadrangles are included, the problem may become as hard as

85

the unrestricted version. We propose three different ways to construct Sc: one is based
on quadrangles, one relies on edges and another is grounded on triangulations.

4.4.1 Quadrangulation-based

A trivial way to construct Sc, given a solution u∗ to its relaxation, is to include all
quadrangles whose variables have positive value in the relaxation, i.e., Sc = {q : u∗

q > 0}.
However, this choice fails to lead to feasible solutions for many instances.

This approach works best when there are ways to ensure feasibility by adding a specific
set of variables to the ILP model, or when good procedures to repair feasibility are known.

4.4.2 Edge-based

As an attempt to increase the number of feasible solutions found, one might expand the
quadrangles selected. In our case, we can explore a neighborhood of the polygons whose
values are positive in the relaxation. One way to achieve this is to project the values of
polygon variables onto edges, similarly to how it is done in Model (4.1).

For Model (4.2), the projected value of an edge e can be obtained, based on Constraint
(4.1f) and (4.1e), as

∑
ut:e∈t

uq

2
. This encourages us to include all polygons whose edges

have positive projected values, i.e., Sc = {q :
∑

ut:e∈t uq > 0,∀e ∈ q}. Indeed, this
approach results in a higher number of feasible solutions being found. However, the
growth in the number of quadrangles substantially increases solving times, leading to a
heuristic that does not scale well with the size of the set of points.

4.4.3 Triangulation-based

Lastly, we propose a third approach based on triangulations that tries to combine the
benefits of the previous heuristics. This insight comes from the fact that most of the
heuristics for the cqps are based on triangulations.

We begin with a greedy triangulation based on the value of the relaxation projected
onto the edges and find quadrangles supported by those edges. Actually, when starting
from a triangulation, the ILP model is not even necessary for solving the resulting
restricted model, as it becomes equivalent to finding a matching of adjacent triangles,
a standard approach used in the literature for quadrangulation problems [3, 9].

Let xe =
∑

ut:e∈t u
∗
q denote the projected value of edge e ∈ E(P). A greedy

triangulation can be constructed by sorting the edges of E(P) by their projected values in
descending order and attempting to add them, in that order, to an initially empty partial
triangulation. An edge is successfully added if it does not cross any previously inserted
edge, otherwise, it is rejected. The result is a greedy triangulation.

An edge of a triangulation admits an edge-flip if the two triangles adjacent to it can
be merged to form a convex quadrangle – one of whose diagonals is the given edge. Its
edge-flip is the other diagonal of this convex quadrangle.

If T denotes the set of all edges of a given (say, greedy) triangulation T and F denotes
the set of edge-flips of T , we can identify the set of the aforementioned quadrangles as
Sc = {q : e ∈ T ∪ F, ∀e ∈ q}.

86

4.4.4 Matchings and Edge-Flips

In the literature on the cqps, to the best of our knowledge, there are no prior attempts
at edge-flips. Most of the work based on triangle matching is either focused on specific
triangulations, such as Delaunay and Serpentine [2], or includes randomized components.
The larger angles on a Delaunay triangulation lead to more pairs of triangles that can be
matched. The Serpentine quadrangulation, in turn, admits a perfect match if convexity is
not required, provided that the convex hull of the point set has an even number of points.

We recall that a matching takes place on a subgraph H = (∆, D) of the dual graph
of a triangulation T , where each vertex in ∆ corresponds to a triangle, and the edges3 in
D are those that connect pairs of vertices that represent two triangles that share a side
thereby forming a convex quadrangle. A partial quadrangulation can be constructed by
finding a matching M on the graph H. However, this approach usually leaves unmatched
vertices of ∆, i.e., triangles of T .

Geometrically speaking, to exchange an edge e of T for its edge-flip e⊥ can be seen
as an operation that locally modifies T creating a new triangulation T ′. Let H ′ be the
subgraph of the dual graph of T ′ constructed in a fashion analogous to the description
of the previous paragraph. On H ′, most of the matching M is preserved. However, by
searching for augmenting paths for M on H ′, we may still be able to further reduce the
number of unmatched triangles. This can be thought of as a local search procedure.

In this context, solving an ILP restricted to the quadrangles obtained from both
the edges of a triangulation and their edge-flips is an attempt at globally navigating a
neighborhood (by edge-flips) of a given triangulation.

As we show in the next section, the resulting ILP can easily be solved by modern
solvers and this approach can straightforwardly be adapted for the cqps.

4.5 Experiments

In this section, we compare the solving time and strength of the relaxation of our two
exact models. We also show how our heuristics behave in practice.

To do this, we generated a benchmark comprised of two sets of instances, ranging in
size from 40 to 120 points, in steps of 10. We were able to determine quite fast which point
sets were not quadrangulable and collected them in the first set of instances. More on
this, below. The feasible ones were gathered in the second set, since these are, obviously,
the challenging instances. In both cases, 20 point sets of each size are generated by
sampling points uniformly on the [0, 1] × [0, 1] square. Next, each point set is assigned
three random colorings, also chosen uniformly. This results in 60 instances per size in each
set of instances. All these instances and their respective solutions are available at [12].

All experiments were run on a computer featuring an Intel Xeon Silver 4114 at 2.2Ghz
CPU with 10 cores, and 32GB of RAM, running Ubuntu 16.04. Models and algorithms
were implemented in C++ v.11 and compiled with gcc 5.5. Geometric algorithms and
data structures were implemented using CGAL 5.2 [14], and Gmpq for exact number

3The term edge is used in this text to refer to line segments between points, in a geometric context,
and as arcs between vertices, in the context of a graph.

87

representation. The ILP models and relaxations were coded using CPLEX 12.10 with the
default parameters. A time limit of 30 minutes was set for each CPLEX run.

Throughout this section, data will be presented mostly as standard boxplots4. Av-
erages will be expressed in the form avg± std, where avg is the average and std is the
standard deviation. All data used to generate the plots are accessible at [12].

In the first experiment, we compared Model (4.1), which we call Natural Model,
and Model (4.2), referred to as Set-partition Model.

Firstly, deciding that a point set with at most 120 points does not admit a quad-
rangulation was accomplished within 20 seconds using either model since the solver was
able to prove infeasibility during preprocessing. This turned out to be an efficient way to
separate our two sets of instances. As this is quite swift compared to optimizing (color)
flips in a feasible solution, the remaining of this section will be restricted to the set of
feasible instances.

To shed light on the ILP models being solved and on the intricacies our benchmark,
Table 4.1 shows the average number of empty convex quadrangles, number of i-wedges
and faces in the arrangement. For the sake of simplifying the implementation, i-wedges
were considered with multiplicities (for each anchor), leading to exactly n(n−1) i-wedges,
which CPLEX can easily remove as duplicated rows. We confirmed that restricting our
model to the i-wedges reduced the number of constraints drastically.

Table 4.1: Analysis of the instances in the quadrangulable benchmark, averaged for each
instance size, where ‘# quads’ indicate the number of empty convex quadrangles, ‘#
i-wedges’ the number of i-wedges and ‘# faces’ the number of faces of the arrangement.

40 50 60 70 80 90 100 110 120
quads 3455± 323 5659± 474 8671± 731 12329± 1023 16790± 980 21546± 640 27493± 1303 33675± 1127 41359± 1284

i-wedges 1560 2450 3540 4830 6320 8010 9900 11990 14280
faces 64381± 1809 161467± 5184 338360± 11217 636033± 13104 1097777± 25193 1760375± 41057 2717477± 48764 4006901± 58169 5726520± 86319

We say that the optimal value of a relaxation is tight if its ceiling (in the case of a
minimization problem) is equal to the optimal integral value. Table 4.2 shows how many
instances each model was capable to solve per size within our specified time limit. No
number is shown when at least 30% of the instances failed to be solved. The last two rows
show for how many instances the relaxation produced a tight bound. Figures 4.2 and 4.3
show, for the instances that were solved, the total solving time, grouped by instance size
for the Natural and Set-partition models, respectively. We can see that the Set-
partition model was much faster. While the Natural model began to founder for
instances of just 70 points, the Set-partition model only failed to solve instances of
110 or more points. As discussed in Section 4.3, this difference in performance is mostly
attributed to the stronger relaxation of the Set-partition Model.

If we denote the value of an optimal solution for an instance by OPT and the value
of an optimal solution of the linear relaxation of a given model for the same instance
by RLX, the relative duality gap can be defined as OPT−RLX

RLX
. The relative gap for the

Natural and Set-partition models in shown in Figures 4.4 and 4.5, respectively. As
can be seen, while the relative duality gap of the Set-partition model shows very little
variation as the size of instances increases, staying within 0.2, the relative duality gap

4See: https://en.wikipedia.org/wiki/Box_plot.

88

Table 4.2: Number of solved instances and of tight relaxations for the Natural and
Set-partition Model per size.

40 50 60 70 80 90 100 110 120
solved Natural 60 60 60 57 39 - - - -

solved Set-partition 60 60 60 60 60 60 60 51 32
tight Natural 32 14 9 9 3 - - - -

tight Set-partition 54 58 47 52 44 41 35 24 26

40 50 60 70 80
size

0
200
400
600
800

1000
1200
1400
1600
1800

to
ta

l t
im

e(
s)

Figure 4.2: Solving time per instance size for the Natural Model.

of the Natural model surpasses 0.4 for much smaller instances. The number of tight
relaxations shown in Table 4.2 corroborates with the observation that the Set-partition
model provides a much stronger relaxation.

The quality of the relaxation is a key element when solving ILP models. Poor
relaxations result in a larger number of nodes being explored in the search tree and
more difficulty in finding good integral solutions.

The support of a solution of a linear program is the set of variables assigned positive
values. Next, we discuss the support of the optimal solutions for both the Natural and
the Set-partition model.

Tables 4.3 and 4.4 show the average distribution of (projected) edge values in the
optimal solutions found for the Natural and the Set-partition models, as well as the
size of the corresponding support. For the purpose of deriving good heuristics, solutions of
the relaxation must have a large number of variables with high values (in the [0, 1] range),
as they are more likely to appear in an integral solution. In this case, while most of the
edge variables of the Natural model have value less than 0.1, the projected edge value
of the Set-partition model presented a much better distribution and are much more
informative. As a consequence, we confine the analysis of our heuristic to the relaxation

89

40 50 60 70 80 90 100 110 120
size

0
200
400
600
800

1000
1200
1400
1600
1800

to
ta

l t
im

e(
s)

Figure 4.3: Solving time per instance size for the Set-partition Model.

of the Set-partition model.
Even though the quality of the relaxation of the Set-partition model is significantly

higher, it suffers from one of the major drawback of set-partition models: slow conver-
gence. This is exacerbated as the model grows with instance size.

Total solving time for the relaxation of the Set-partition Model is shown in Fig-
ure 4.6. Comparing the solving time of the relaxation with the median solving time of
the exact model, we can see that solving the linear relaxation is a significant bottleneck.

Lastly, we show how the proposed heuristics perform on the benchmark. As small
instances were too easy to solve, the experiments with the heuristics are limited to
instances with at least 70 points.

We denote our quadrangle-based heuristic quad, our edge-based heuristic edge and
our heuristic based on the greedy triangulation greedytri. We also include the Delaunay
triangulation as an alternative to the greedy triangulation, denoted by Delaunay, for a
baseline comparison. For each heuristic that relies on triangulations, we append the suffix
-flips to indicate an alternative when edge-flips were added.

Table 4.5 shows the average number of quadrangles selected by each heuristic. As
can be seen, all heuristics use only a small fraction of the total number of quadrangles.
Notably, for small instances, where the relaxation performed well, the edge-based heuristic
starts with a small number of quadrangles, but it rapidly increases. As expected,
the Delaunay triangulation admits a larger number of empty convex quadrangles when
compared to the greedy triangulation.

Table 4.6 shows how many feasible solutions each heuristic found. The quad heuristic
only found solutions where the relaxation itself had already produced an integral one.
Both triangulation-based heuristics had a hard time finding quadrangulations without
edge-flips. The greedytri heuristic was the only one competitive with the edge-based one.

90

40 50 60 70 80
size

0.0

0.1

0.2

0.3

0.4

0.5
re

la
tiv

e
ga

p

Figure 4.4: Relative duality gap per instance size for the Natural Model.

The solving time for each heuristic is shown in Table 4.7. We can see that the time
just to solve the relaxation is more than 200 times larger than the specific solving time of
each of the heuristics.

One way to take advantage of this discrepancy in solving times is to add randomization
to the heuristics. For instance, one might consider adding perturbations to the weights
before running the greedy triangulation. Another approach is to run the heuristic before
the relaxation is solved optimally. With the exception of the edge-based one, all other
heuristics performed fast enough to be executed multiple times during the solution of the
relaxation of a node in a Branch-and-Bound algorithm. Alternative methods to solve the
linear relaxation approximately are also worth of consideration.

Let HEU be the number of (color) flips in a solution computed by a heuristic for a
given instance and recall that OPT denotes the optimal number of flips for that instance.
The relative primal gap is given by HEU−OPT

OPT
, similarly to the relative duality gap.

Table 4.8 shows the relative primal gap for all the heuristics. Even though the heuristic
based on the greedy triangulation with edge-flips proved competitive, yielding non-trivial
solutions for all instances, it is clear that the edge-based one was superior in finding
solutions of the highest quality.

4.6 Concluding Remarks

In this paper, we introduced and studied a new optimization variant of the quadrangula-
tion problem. This study focused on providing exact ILP models and heuristics derived
from their linear relaxations. Both approaches provide insight into two quadrangulation
decision problems from the literature.

We proposed two ILP models to solve this novel problem: one that arises naturally
from a model for the more general convex partitioning problem and another that is

91

40 50 60 70 80 90 100 110 120
size

0.0

0.1

0.2

0.3

0.4

0.5
re

la
tiv

e
ga

p

Figure 4.5: Relative duality gap per instance size for the Set-partition Model.

obtained from formulating the problem as a set-partition problem.
While the natural model failed to solve instances with 70 points within 30 minutes of

computing time, the set-partition model was successful in solving all instances of up to 100
points. This is due to a much stronger linear relaxation obtained from the set-partition
formulation.

We also proposed several heuristics based on the linear relaxation of the set-partition
model. These heuristics use a solution to the linear relaxation of the set-partition model
as a guide to select only a subset of all quadrangles and, subsequently, solve much smaller
instances of the set-partition model restricted to them.

Among these heuristics, our edge-based one shows superior performance in finding
many good quality feasible solutions. On average, it solved most of the benchmark
instances and arrived at solutions at most 3% worse than the optimal. Therefore, it
is an excellent candidate to be included in a Branch-and-Bound algorithm, to be run at
the end of the computation in each node.

The heuristic that is based on the greedy triangulation with edge-flips found a large
number of feasible solutions for all sizes, and was notably faster than the edge-based
one. As a result, it might be useful for successive executions, say, within a randomization
scheme.

Overall, the quality of the relaxation-based heuristic was also quite good. Finding
faster ways of solving or even approximating the linear relaxation is clearly a good venue
for future research related to heuristics.

Another topic of investigation that can benefit both the heuristics and the exact
algorithm is to look for preprocessing routines capable of fixing variables a priori, leading
to a reduced model size.

92

Table 4.3: Description of the support of optimal linear relaxations found by the Natural
Model as a function of instance size. The first ten lines indicate the percentage of edge
values within the given interval. The last two lines show the number of edge variables in
the support and the total number of edges.

40 50 60 70 80
% in (0.0,0.1] 30± 12 40± 13 46± 12 57± 6 60± 6
% in (0.1,0.2] 16± 8 17± 7 17± 6 16± 5 16± 5
% in (0.2,0.3] 10± 5 10± 5 9± 3 7± 3 7± 2
% in (0.3,0.4] 7± 4 6± 3 6± 2 5± 2 4± 1
% in (0.4,0.5] 5± 4 4± 2 4± 3 3± 1 3± 1
% in (0.5,0.6] 3± 2 3± 2 3± 1 2± 1 2± 1
% in (0.6,0.7] 3± 2 3± 1 2± 1 2± 1 2± 1
% in (0.7,0.8] 2± 2 2± 2 2± 1 2± 1 1± 1
% in (0.8,0.9] 2± 2 2± 2 2± 1 2± 1 1± 1
% in (0.9,1.0] 21± 27 13± 19 9± 13 5± 3 4± 2
Support size 215± 55 342± 74 482± 96 699± 78 913± 107

edges 780 1225 1770 2415 3160

Table 4.4: Description of the support of optimal linear relaxations found by the Set-
partition Model as a function of instance size. The first ten lines indicate the percentage
of projected edge values within the given interval. The last two lines show the number of
projected edges variables in the support and the total number of edges.

40 50 60 70 80 90 100 110 120
% in (0.0,0.1] 1± 3 3± 7 4± 9 8± 12 14± 15 14± 15 23± 17 27± 16 32± 15
% in (0.1,0.2] 3± 8 7± 12 7± 10 9± 12 10± 9 13± 12 16± 9 15± 9 17± 7
% in (0.2,0.3] 4± 10 7± 12 6± 10 5± 7 9± 9 9± 9 9± 6 11± 7 11± 5
% in (0.3,0.4] 4± 10 7± 12 9± 15 7± 10 9± 12 8± 10 7± 6 10± 9 7± 3
% in (0.4,0.5] 17± 24 8± 14 13± 19 11± 15 11± 14 9± 12 10± 11 9± 11 7± 9
% in (0.5,0.6] 1± 4 2± 4 2± 4 3± 4 3± 4 3± 3 4± 3 4± 2 3± 2
% in (0.6,0.7] 2± 6 4± 8 4± 7 3± 6 4± 6 4± 5 4± 3 4± 4 4± 2
% in (0.7,0.8] 2± 4 3± 6 2± 3 2± 3 2± 3 3± 4 3± 3 3± 2 4± 3
% in (0.8,0.9] 0± 1 1± 1 1± 2 2± 3 1± 2 2± 3 3± 3 3± 2 3± 2
% in (0.9,1.0] 67± 35 57± 37 52± 37 49± 36 36± 34 35± 35 22± 22 16± 18 13± 11
Support size 96± 31 142± 54 185± 74 234± 101 330± 138 380± 161 513± 182 628± 197 757± 218

edges 780 1225 1770 2415 3160 4005 4950 5995 7140

Table 4.5: Number of quadrangles in each heuristic, and the number of quadrangles in an
unrestricted model per instance size.

70 80 90 100 110 120
Delaunay 137± 4 158± 5 182± 5 202± 6 227± 7 247± 6
Delaunay-flips 538± 19 628± 16 719± 15 815± 23 919± 21 1000± 23
quad 163± 106 252± 148 293± 173 423± 203 499± 208 637± 243
greedytri 113± 10 135± 12 154± 14 177± 13 197± 12 217± 12
greedytri-flips 376± 40 448± 48 519± 52 601± 52 676± 50 743± 53
edges 293± 288 502± 419 597± 514 951± 647 1122± 687 1565± 889
unrestricted 12329± 1023 16790± 980 21546± 640 27493± 1303 33675± 1127 41359± 1284

93

40 50 60 70 80 90 100 110 120
size

0
200
400
600
800

1000
1200
1400
1600
1800

to
ta

l t
im

e(
s)

Figure 4.6: Solving time per instance size for the relaxation of the Set-partition
Model. Green stars indicate the median solving time for the exact model.

Table 4.6: Number of feasible solutions found by each heuristic (out of 60).

70 80 90 100 110 120
Delaunay 0 0 0 0 0 0
Delaunay-flips 3 3 0 0 2 0
quad 17 10 10 1 2 1
greedytri 19 10 11 1 2 0
greedytri-flips 51 44 51 48 42 37
edges 52 55 52 53 46 48

Table 4.7: Solving time (in seconds) for each heuristic by instance size. For the ones
based on the relaxation, (+) indicates that the average time spend solving the relaxation
is shown separately.

70 80 90 100 110 120
Delaunay 0.07± 0.00 0.09± 0.00 0.10± 0.00 0.12± 0.00 0.14± 0.01 0.16± 0.01
Delaunay-flips 0.11± 0.04 0.13± 0.04 0.15± 0.01 0.18± 0.01 0.22± 0.04 0.25± 0.01
quad (+) 0.08± 0.04 0.13± 0.05 0.15± 0.06 0.22± 0.08 0.27± 0.09 0.37± 0.14
greedytri (+) 0.08± 0.01 0.09± 0.01 0.10± 0.01 0.12± 0.01 0.14± 0.01 0.17± 0.01
greedytri-flips (+) 0.17± 0.04 0.20± 0.05 0.25± 0.05 0.31± 0.08 0.35± 0.10 0.39± 0.11
edges (+) 0.25± 0.35 0.51± 0.61 0.63± 0.78 1.31± 1.62 1.46± 1.52 3.12± 3.80
(+) relax time 24.02± 2.36 57.35± 5.61 105.90± 9.53 197.42± 24.73 363.48± 140.25 610.19± 128.95

94

Table 4.8: Relative primal gap for each heuristic per instance size. Heuristics that did
not find solutions when the relaxation was not integral are indicated by *.

70 80 90 100 110 120
Delaunay - - - - - -
Delaunay-flips 0.74± 0.17 0.57± 0.10 - - - -
quad * * * * * *
greedytri * * 0.03± 0.11 * * -
greedytri-flips 0.12± 0.15 0.21± 0.23 0.22± 0.24 0.26± 0.17 0.33± 0.21 0.30± 0.20
edges 0.02± 0.06 0.02± 0.04 0.01± 0.03 0.02± 0.07 0.03± 0.07 0.01± 0.02

95

Bibliography

[1] A. Biniaz, A. Maheshwari, and M. H. M. Smid. Compatible 4-holes in point sets.
In S. Durocher and S. Kamali, editors, Proceedings of the 30th Canadian Conference
on Computational Geometry, CCCG, August 8-10, 2018, University of Manitoba,
Winnipeg, Canada, pages 346–352, 2018.

[2] P. Bose, S. Ramaswami, G. T. Toussaint, and A. Turki. Experimental results
on quadrangulations of sets of fixed points. Computer Aided Geometric Design,
19(7):533–552, 2002.

[3] P. Bose and G. T. Toussaint. No quadrangulation is extremely odd. In J. Staples,
P. Eades, N. Katoh, and A. Moffat, editors, Proceedings of the 6th International
Symposium on Algorithms and Computation, ISAAC, Cairns, Australia, December 4-
6, 1995, volume 1004 of Lecture Notes in Computer Science, pages 372–381. Springer,
1995.

[4] W. F. de la Vega and C. Kenyon-Mathieu. Linear programming relaxations of
Maxcut. In N. Bansal, K. Pruhs, and C. Stein, editors, Proceedings of the 18th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, New Orleans, USA,
January 7-9, 2007, pages 53–61. SIAM, 2007.

[5] T. Fevens, H. Meijer, and D. Rappaport. Minimum convex partition of a constrained
point set. Discrete Applied Mathematics, 109(1-2):95–107, 2001.

[6] V. M. Heredia and J. Urrutia. On convex quadrangulations of point sets on the plane.
In J. A. et al., editor, Discrete Geometry, Combinatorics and Graph Theory, 7th
China-Japan Conference, Tianjin, China, Nov 18-20, 2005, volume 4381 of Lecture
Notes in Computer Science, pages 38–46. Springer, 2005.

[7] K. L. Hoffman and M. Padberg. Solving airline crew scheduling problems by branch-
and-cut. Management Science, 39(6):657–682, June 1993.

[8] A. Pilz and C. Seara. Convex quadrangulations of bichromatic point sets. Interna-
tional Journal on Computational Geometry and Applications, 29(4):289–299, 2019.

[9] S. Ramaswami, P. A. Ramos, and G. T. Toussaint. Converting triangulations to
quadrangulations. Computational Geometry, 9(4):257–276, 1998.

[10] S. Ramaswami, M. Siqueira, T. A. Sundaram, J. H. Gallier, and J. C. Gee. Con-
strained quadrilateral meshes of bounded size. International Journal on Computa-
tional Geometry and Applications, 15(1):55–98, 2005.

96

[11] A. Sapucaia, P. J. de Rezende, and C. C. de Souza. Solving the minimum convex par-
tition of point sets with integer programming. Computational Geometry, 99:101794,
2021.

[12] A. Sapucaia, C. C. de Souza, and P. J. de Rezende. Convex bichromatic quad-
rangulation of point sets: Benchmark instances. www.ic.unicamp.br/∼cid/Problem-
instances/BichromaticPartition, 2021.

[13] T. Schiffer, F. Aurenhammer, and M. Demuth. Computing convex quadrangulations.
Discrete and Applied Mathematics, 160(4-5):648–656, 2012.

[14] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 5.2
edition, 2020.

97

Chapter 5

Solving the Coarseness Problem by ILP
Using Column Generation

In this work, we proposed an ILP model for the Coarseness Problem. We then derived an
iterative preprocessing algorithm that combined the relaxation of this model, implemented
using column generation, and an heuristic from the literature. The resulting algorithm
was able to reduce the size of the model significantly, and even solve to proven optimality
a large portion of our benchmark.

This chapter corresponds to the paper [18] presented at the 21st International Confer-
ence on Computational Science and its Applications (ICCSA 2021). It was co-authored
with Andre A. Cire1, Pedro J. de Rezende2 and Cid C. de Souza2.

Abstract A core problem in machine learning is the classification of points in high dimen-
sions. In an attempt to minimize the resources required and facilitate data visualization,
a recent effort has been made to project the points non-linearly onto the plane and apply
classification methods. The quality of any such projection can be measured by evaluating
how the resulting points of different classes are set apart. In this paper, we study integer
linear programming (ILP) models to determine the coarseness of sets of bicolored points
in the plane, which measures how well-separated these two classes are. The complexity
of computing the coarseness of a point set is unknown, but conjectured to be NP-hard.
We present a base ILP model for the problem with an exponential number of variables
and constraints, followed by a series of improvements in the quality of its relaxation and
close with an efficient column generation implementation. These modifications allow us
to solve instances with three times as many points as the base model, within the same
time and memory limits. By combining of our preprocessing techniques and a heuristic
from the literature, we are even able to solve to proved optimality many instances of
our benchmark in polynomial time. A comprehensive experimental study is presented to
evaluate the impact of each improvement.

1Department of Management, University of Toronto Scarborough, Canada
2Institute of Computing, University of Campinas, Campinas, Brazil. Supported by CNPq under grants

#313329/2020-6, #309627/2017-6, #304727/2014-8; and Fapesp under grants#2020/09691-0, #2018/
26434-0, #2018/14883-5, #2014/12236-1.

98

5.1 Introduction

In this paper, we study integer linear programming (ILP) models to determine the
coarseness of sets of bicolored points in the plane. Given a bipartite planar point set
P = R ∪ B, with R ∩ B = ∅, we call R (red points) and B (blue points) classes of points
and say that P is a bicolored set. Intuitively, the coarseness of P is a measure of how
blended the two classes of points of P are.

A core problem in machine learning is the classification of points in high dimensions,
where two of the main issues are the necessary resources, time or memory, and the difficulty
in visually representing the data. Non-linear projection techniques, such as t-SNE [18],
are capable of projecting points from a high dimension onto the plane while attempting
to preserve neighborhood relationships. These projections allow for the development
of algorithms that first map the points to the plane and then work on classifying and
presenting them. Successful applications of this approach can be found in [4], [12] and [3].

In this context, non-linear projections can be evaluated by how well separated the
classes of points are in the plane after projection. This evaluation is particularly useful for
parameter tuning for the projection algorithms. The most popular metric for evaluating
projections for classification problems is Normalized Cuts [16], which is based on graph
theory. A geometric-based alternative metric is given by the coarseness of a point set
that is discussed below.

As before, let P = R ∪ B, with R ∩ B = ∅, be a bicolored planar point set. From here
on, unless stated otherwise, we assume that the points in P are in general position, i.e.,
no three points in P are colinear. A subset Q ⊆ P is an island if there is a convex region
C such that Q = C ∩ P . The set of all islands of P is denoted by I(P). We assume that
the sequence of vertices of the convex hull of island Q, denoted CH(Q), is always given
in counter-clockwise (CCW) order with respect to (w.r.t.) a point in its interior. Also,
INT(Q) denotes the subset of points of Q that do not lie on the boundary of CH(Q). As
island Q can be uniquely characterized by its convex hull, we may sometimes refer to Q

simply by the CCW sequence of vertices of CH(Q). Two islands are called disjoint if their
convex hulls are disjoint.

r = 1 r = 0

r(Π) = 0

(a) Suboptimal Partition

r = 3
r = 2

C(P) = r(Π) = 2

(b) Optimal Partition

Figure 5.1: Point set P and two partitions of its points into disjoint islands.

We associate a discrepancy with each island Q ∈ I(P), given by ∇Q = | |R∩Q|− |B∩
Q| |. Moreover, the discrepancy of a partition Π = {Q1, Q2, . . . Qk} ⊆ I(P) of P into k

99

pairwise disjoint islands, denoted by ∇Π, is given by ∇Π = minQ∈Π∇Q. The coarseness of
P , denoted by C(P), is the maximum discrepancy among all possible partitions of P into
pairwise disjoint islands. Figure 5.1 illustrates the concepts of discrepancy and coarseness.

Problem Statement. Given a bicolored planar point set, the Coarseness Problem
consists in determining its coarseness.

This problem was first introduced in [5]. In that paper, the authors conjectured that
the problem is NP-hard and studied theoretical bounds for the coarseness of point sets.
They also proposed exact polynomial-time algorithms for two special cases: when the
points are in convex position and when the partition is restricted to exactly two islands.
The algorithm for the later case is reviewed in Section 5.4. Also, a work leading to
polynomial algorithms for two other special cases is presented in [6], where the islands
are restricted to lie within strips or within boxes. We are not aware of any studies in the
literature that report experimental results regarding this problem.

Our Contributions. In this paper, we present an ILP model to compute the coarseness
of bicolored planar point sets. We also investigate a number of improvements to the initial
model, including a column generation approach, followed by a comprehensive experimental
study that shows the impact of each refinement in terms of computational efficiency. The
final model is able to solve instances with three times as many points when restricted to the
same computational resources. Many of those instances are solved to proved optimality
in polynomial time during preprocessing due to tight upper and lowerbound estimates.
The benchmark used to assess the performance of the model is made publicly available
to allow for future comparisons to our results.

This paper is organized as follows. In Section 5.2, we present a base ILP model for the
Coarseness Problem. In Section 5.3, we improve the base model. Section 5.4 introduces a
column generation algorithm. Lastly, Section 5.5 shows the empirical results comparing
the improvements previously introduced.

5.2 ILP Model for the Coarseness Problem

In this section, we present the base ILP model for the Coarseness Problem.
Given a set P of n points, let L(P) denote the set of Θ(n2) line segments jk where

j and k are distinct points in P . The complete (geometric) graph induced by P is
G(P) = (P,E(P)), where E(P) = {{j, k} : jk ∈ L(P)}. In this text, we refer to a
segment jk ∈ L(P) and the corresponding edge in {j, k} ∈ E(P) interchangeably. We
denote by SC(P) the set of edge pairs whose corresponding line segments share an interior
point, i.e., they cross each other.

Let LB and UB represent lower and upper bounds, respectively, for the coarseness of
a given bicolored point set P . Associating a positive variable uQ to each island Q ∈ I(P),
a binary variable xe for edge edge e ∈ E(P) and a binary variable zd for each possible
discrepancy value d, we can express the Coarseness Problem as Model (5.1).

Constraint (5.1b) ensures that only one discrepancy value is selected, while Con-
straints (5.1c) ascertain that if an island is selected, its discrepancy is an upper bound
on the discrepancy of the solution. Constraints (5.1d) guarantee that the points in P

are partitioned into islands. Constraints (5.1e) enforce that if an island is being used,

100

its edges are part of the solution. Constraints (5.1f), together with Constraints (5.1d),
require the islands to be disjoint.

Notice that there is potentially an exponential number of islands.
From Constraints (5.1d) and (5.1e), it follows that having integer values for edge

variables, (5.1h), implies that the island variables necessarily assume integer values. If
edge variables are integral, their corresponding line segments define a planar subdivision.
Now, assume that Q1 and Q2 are two different islands that share an edge and are fractional,
i.e., 0 < uQ1 ≤ 1 and 0 < uQ2 < 1, and uQ1 + uQ1 < 1. Since one of those islands must
have and edge that is not shared with the other, at least one of the edge variables must
assume a fractional value, which is a contradiction.

max
∑

LB≤d≤UB

dzd (5.1a)

s.t.
∑

LB≤d≤UB

zd = 1 (5.1b)

uQ ≤
∑

LB≤d≤∇Q

zd ∀Q ∈ I(P) (5.1c)

∑
Q∈I:p∈Q

uQ = 1 ∀p ∈ P (5.1d)∑
Q∈I:e∈CH(Q)

uQ = xe ∀e ∈ E(P) (5.1e)

xe + xf ≤ 1 ∀{e, f} ∈ SC(P) (5.1f)

uQ ∈ R+ ∀Q ∈ I(P) (5.1g)

xe ∈ {0, 1} ∀e ∈ E(P) (5.1h)

zd ∈ {0, 1} ∀d ∈ {LB,LB + 1, . . . ,UB} (5.1i)

Prior to investigating the geometrical structure of P , we can set LB = 1 and UB =

maxQ∈I(P)∇Q and solve the model by standard branch-and-bound (BnB) techniques,
which rely on solving its linear relaxation obtained by dropping the integrality constraints
on the variables. However, the relaxation is very weak, leading to a dual bound very close
to UB. Moreover, another feature of this model that makes it hard to solve in practice is
the exponential number of variables and constraints.

To overcome some of the deficiencies noted above, in the next section, we improve
the quality of the relaxation by finding, in polynomial time, tighter values for LB and
UB, and by adding a new class of constraints. Besides, in a subsequent section, a column
generation approach to address the exponential size of the model is presented.

5.3 Improving the Base Model

In this section, we propose methods to find better values for the bounds, LB and UB , for
the coarseness, as well as new constraints to strengthen Model (5.1).

As discussed in the previous section, the relaxation of our Model leads to a very weak
dual bound. For many instances, this poor bound is attained by assigning to zUB a value
close to 1 and setting zLB + zUB = 1. Notice that the value of zLB is an upper bound on

101

all island variables due to Constraints (5.1c).
To illustrate this point, let us make reference to a benchmark of 30 randomly generated

planar bicolored point sets of sizes {10, 15, . . . , 60} that we built for testing purposes. For
each point, both x and y coordinates are randomly chosen in the interval [0, 1] using
uniform distribution and the colors are also assigned at random, with equal probability.
This benchmark is available at [14]. Firstly, we observed that instances of size 20 are
the largest that could be solved within one hour on a fairly standard computer (see
Section 5.5) using the base model. Figure 5.2 shows the optimal value, the relaxation
dual bound and the upper bound UB = maxQ∈I(P)∇Q for all thirty instances of size
20. For those instances, the difference between UB and the relaxation value, given as
avg±stddev, is 0.017± 0.004.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Instance

2

3

4

5

6

7

8

9

10

11

12

13

14

Bo
un

d

UB
relax
opt

Figure 5.2: Coarseness, UB and value of the relaxation given by the base model for
instances with 20 points.

Based on these observations, we can infer that the quality of the relaxation could be
improved by tightening the LB and UB bounds.

5.3.1 Lower Bound (LB)

By finding a tighter value for LB , we not only get a stronger bound, but can also eliminate
from the model any island whose discrepancy is smaller than LB , effectively increasing
solving speed and reducing memory requirements.

Clearly, the discrepancy of any partition of P into islands, i.e., a primal solution for
Model (5.1), can be used to provide a lower bound. For example, a trivial solution would
simply be to regard P as comprised of a single island.

Now, when the two classes of points that comprise P are linearly separable, there exists
a partition that splits the points into two monochromatic islands, which obviously is an
optimal solution to the coarseness problem for P . As an educated guess, corroborated

102

by the aforementioned extreme case, we suspect that partitions into at most two islands
might lead to good quality solutions.

As discussed in the literature review (see the latter part of Section 5.1), there are
results regarding bounds for the coarseness of a point set that may serve our purpose.
In particular, we decided to use a polynomial time algorithm for the special case where
the partitions are restricted to two islands, as it is efficient and straightforward to be
implemented. That algorithm consists in finding a line that divides the plane into two
islands with the largest minimum discrepancy. In spite of the O(n2)-time algorithm
from [5], for solving this special case, we opted for a trivial O(n3)-time procedure since,
for the instances at hand, n = |P | is quite small. This algorithm inspects the partitions
obtained by using the lines supported by the Θ(n2) segments in L(P), corresponding to
edges in E(P) and returns the best value found.

5.3.2 Upper Bound (UB)

Denote by z∗UB the optimal solution to the relaxation of Model (5.1) for an instance
P using LB as described previously and an upper bound UB . Note that since z∗UB is an
upper bound on the coarseness of P , we can take UB = ⌊z∗UB⌋ as a new upper bound, since
coarseness is an integral number. This leads to an iterative procedure that successively
finds decreasing upper bounds UB by solving the linear relaxation until this process
converges, i.e., UB = z∗UB. As the coarseness of P is bounded by |P | = n, there are a
linear number of iterations which consist on solving the relaxation of Model (5.1).

In the next section, we show how to modify Model (5.1) so its relaxation can be solved
in polynomial time through column generation. This will allow the iterative procedure
we just discussed to be performed in polynomial time as well.

5.3.3 Least Discrepancy Constraints

We now improve Model (5.1) by observing that any optimal partition of discrepancy d

must include at least one island of discrepancy d. This requirement can be expressed by
the following linear constraints∑

Q:∇Q=d

uQ ≥ zd ∀d ∈ {LB,LB + 1, . . . ,UB}, (5.2)

which complements Constraints (5.1c).
Adding Constraints (5.2) prevents the solver from setting the value of zUB close to

1 without actually including an island of discrepancy UB . Indeed, we observed that
Constraints (5.2) improve the quality of the relaxation, as discussed in Section 5.5.

5.4 A Column Generation Algorithm

The number of variables and constraints in Model (5.1) makes it hard to solve instances
in practice due not only to the high memory requirements, but also to the time spent
enumerating them and building the model. In this section, we show how to use column

103

generation to solve the linear relaxation of this model in polynomial time. For this, we
need to improve a transient weakened version of the original model.

To create the set of all islands, we use an iterative procedure that generates islands by
the size of their convex hull. Initially, we generate all single points, segments and islands
whose convex hull is a triangle. Then, new islands are generated by adding a new point
to the islands of the preceding convex hull size in such a way that the resulting island has
all vertices from the previous island plus the new point as vertices. The algorithm stops
when no new island can be expanded in this fashion.

Instead of enumerating all variables, we can solve the relaxation of Model (5.1) by
starting with a small subset of variables and generating new ones when necessary. This
approach, known as Column Generation [2], consists of iterating between two problems:
the Restricted Master Problem (RMP) and the Pricing problem. The RMP solves the
original model restricted to a subset of variables. On the other hand, given an optimal
dual solution to the RMP, the Pricing problem seeks variables with positive (in the case
of maximization problems) reduced cost that, when added to the RMP, will potentially
increase the value of the objective function or, alternatively, certifies that no such variables
exist, in which case the procedure stops. The solution of the last RMP is optimal for the
relaxation of the complete model and, if the pricing algorithm runs in polynomial time,
then the relaxation also is solved in polynomial time [10].

By associating dual variables αQ ≥ 0 to Constraints (5.1c), βp to Constraints (5.1d),
γe to Constraints (5.1e) and δd ≥ 0 to Constraints (5.2), given a dual solution (α, β, γ, δ)

we can write the pricing problem, obtained from the dual problem, as:

c = max
Q∈I

−αQ −
∑
p∈Q

βp −
∑

e∈CH(Q)

γe + δ∇Q

 . (5.3)

If c > 0, then Q has a positive reduced cost and must be added to the RMP.
Notice that before island Q ∈ I is included in the RMP, αQ = 0, and after it is

included, its reduced cost is non-positive in any optimal solution of the RMP.
This being the case, to solve the pricing problem in polynomial time, we can use

dynamic programming. A similar approach proved successful for solving the pricing
problem in [13].

To express the pricing problem as a recurrence suitable for an efficient dynamic pro-
gramming implementation, it suffices to weaken the model by combining discrepancy
constraints (5.1c) in such a way that each dual variable is associated with a discrepancy
value, similar to the dual variable associated with Constraints (5.2), instead of to indi-
vidual islands. With this change, we can solve a recurrence that finds an island with the
maximum reduced cost that has k as its leftmost and first point, ℓ and m as the second-to-
last and last points and discrepancy d. Notice that, as is, we lack a necessary property to
devise divide-and-conquer algorithms for the pricing problem (5.3), since knowing whether
we have αQ > 0 is only possible after island Q is constructed by combining solutions to
sub-problems, changing the reduced cost of Q.

This is done by adding together all Constraints (5.1c) with the same discrepancy d and
noticing that, since we are partitioning n points of P into islands, we can have at most n

d

104

islands of discrepancy d in a solution. By doing this, we obtain the following constraints:∑
Q:∇Q=d

uQ ≤
n

d

∑
LB≤s≤d

zs ∀d ∈ {LB,LB + 1, . . . ,UB}. (5.4)

We can lift the new constraints by including all islands with discrepancy lower than
d, leading to these constraints:∑

Q:∇Q≤d

∇QuQ ≤ n
∑

LB≤s≤d

zs ∀d ∈ {LB,LB + 1, . . . ,UB}. (5.5)

By replacing Constraints (5.1c) with Constraints (5.5) and associating to them a dual
variable η, we obtain the following final pricing problem:

c = max
Q∈I

−∑
p∈Q

βp −
∑

e∈CH(Q)

γe +∇Q

∑
s≥∇Q

ηs − δ∇Q

 . (5.6)

We now solve this pricing problem using dynamic programming. We first provide an
O(n5) algorithm and show how to improve the time complexity to O(n4).

To this end, we extend the concept of discrepancy so that we know the exact value
of the resulting discrepancy when two islands are combined. For that, we introduce
the notation ∇± as the signed discrepancy. By assigning ∇±(r) = +1 for r ∈ R

and ∇±(b) = −1 for b ∈ B, the signed discrepancy of island Q ∈ I(P) is given by
∇±(Q) = |R ∩Q| − |B ∩Q| = ∑

p∈Q∇±(p).
Let B(k, ℓ,m, d) denote the maximum reduced cost from among all the islands with

k as the leftmost point (and first in CCW order), ℓ as the second-to-last, m as the last
point, and d as the signed discrepancy (w.r.t. the dual solution (β, γ, δ, η)). We say that
(k, ℓ,m) is the last triangle of such islands. Figure 5.3 illustrates these concepts.

k

`m

o

Figure 5.3: An island whose last triangle is (k, ℓ,m). Dashed lines show how it is
decomposed into triangles with k as the leftmost vertex. The edges of (k, ℓ,m) are
emphasized.

To simplify notation, let D(d) = |d|(∑|d|≤s≤UB ηs) − δ|d| denote the sum of the dual
variables associated with (signed) discrepancy d in (5.6) and ∆(k, ℓ,m) = −γk,ℓ − γℓ,m −
γm,k −

∑
p∈(k,ℓ,m) βp +D(∇(k, ℓ,m)) denote the reduced cost of triangle (k, ℓ,m).

Given a triangle (k, ℓ,m) and a discrepancy d, we wish to determine whether there
exists an island with maximum reduced cost that, once merged with triangle (k, ℓ,m),

105

leads to discrepancy d. We can compute the discrepancy necessary for such an island to
be mergeable with triangle (k, ℓ,m), and denote it by d′(k, ℓ,m, d) = d−∇±((k, ℓ,m)) +

∇±(k) + ∇±(ℓ). Note that since the points are in general position and k and ℓ are the
only points shared by both the island and the triangle, the last two additive terms are
necessary. To compute the resulting reduced cost of combining the triangle and an island,
we need to consider that both share edge {k, ℓ}, and also account for the reduced cost
associated to their own discrepancy. Lastly, since a triangle can be regarded as an island,
when its discrepancy is equal to the target discrepancy, island merging becomes optional.

Let Pk denote the list of points to the right of k, in increasing order of abscissae.
Given a sequence of three points (k, ℓ,m) in the plane, we say that they are colinear,
positively oriented, or negatively oriented depending on the value of the cross product−→
kℓ×−→ℓm being 0, positive or negative. For simplicity, we say that CVX(k, ℓ,m) = true (or
simply CVX(k, ℓ,m)) if (k, ℓ,m) are positively oriented. We can combine an island whose
last triangle is (k, o, ℓ) and triangle (k, ℓ,m) to form an island, as long as CVX(k, o, ℓ),
so that (k, o, ℓ) is a triangle given in CCW order, and CVX(o, ℓ,m), to ensure convexity.
Let Okℓm denote the set {o ∈ Pk : CVX(k, o, ℓ) ∧ CVX(o, ℓ,m)}.

To simplify notation, we introduce an auxiliary recurrence Bu(k, ℓ,m), which computes
a maximum reduced cost island that has (k, l,m) as its last triangle and discrepancy d

by merging this triangle with another island. Using the aforementioned notation, these
observations lead the following recurrence:

Bu(k, ℓ,m, d)=


−∞, if Okℓm = ∅
max

o∈Okℓm

{B(k, o, ℓ)}+∆(k, ℓ,m) +D(d)

+ 2γk,ℓ + β(k) + β(ℓ)

−D(∇±(k, ℓ,m))−D(∇±(d′(k, ℓ,m, d)

 otherwise

 (5.7)

B(k, ℓ,m, d) =

{
max{Bu(k, ℓ,m, d),∆(k, ℓ,m)} if d = ∇±((k, ℓ,m) (5.8a)

Bu(k, ℓ,m, d) otherwise (5.8b)

A naive implementation of this algorithm would have a time complexity of O(n5). This
is the result of having O(n4) states that require finding a maximum over O(n) candidates
plus the sum of costs associated with a triangle for each of them.

To calculate the costs associated with a triangle in constant time, we need to calculate∑
p∈(k,ℓ,m) βp and ∇±(k, ℓ,m) =

∑
p∈(k,ℓ,m)∇±(p) in O(1). Notice that the triangles are

not necessarily empty. This can be realized using a technique presented in [8] for: given
a set P of n weighted points, after an O(n2)-time preprocessing, compute, in O(1) time,
the sum of the weights of all points within a query triangle with vertices in P . The basic
idea is to precompute the sum above each segment in L(P) and use an inclusion-exclusion
principle to calculate the sum inside any triangle, based on its edges. To determine the
signed discrepancy of a triangle, we assign weights +1 and −1 to points in R and B,
respectively, and to compute the sum of the β variables of points within a triangle we
associate to each point its β value.

To reach our proposed time complexity target, we adapt an angular sweeping tech-

106

nique first introduced to find the Maximum Cardinality Empty Convex Polygon [1], and
recently employed in [13] to solve the pricing problem of an ILP model for the Minimum
Convex Partition Problem. This technique allows us to compute the maximum within
Equation (5.7), which corresponds to finding a third-to-last point for the island being
constructed, in amortized constant time.

While referring to Figure 5.4, notice that, for fixed k and ℓ, if we visit the possible last
points m in counter-clockwise order around ℓ, the list of candidates third-to-last points o
can also be visited in counter-clockwise order in such a way that each candidate is only
considered once. For further details, we refer the reader to [1] and [13].

k

`

m

o

Figure 5.4: Illustration of the angular sweep technique.

Finally, we use a technique of early stop to accelerate the convergence of the RMP.
Instead of halting the column generation algorithm when the maximum reduced cost c is
zero, we stop when it is small enough so that the floor of the current optimal of the RMP,
z∗RMP, cannot change. We can calculate a dual bound for the complete model based on
the maximum reduced cost as z∗ ≥ z∗RMP + cκ, where κ is an upper bound on the number
of islands in an optimal solution. Since we know that z∗ ≥ LB, we must have κ ≤ ⌊ n

LB⌋.
Finding a better LB reduces significantly the tailing-off effect, which is a frequent issue
for column generation, when the value of z∗RMP is very close to z∗ and yet many iterations
are needed to achieve a reduced cost of zero [11].

Now, we can solve to integrality the model that results from replacing Constraints (5.4)
with (5.5) and adding Constraints (5.2), by using Branch-and-Price (BnP) [2]. We start
the model with the islands corresponding to each individual point and use the pricing as
described. When solving multiple relaxation, as in the case of the iterative procedure to
find UB , we start the new relaxation with all islands generated to solve the previous one.
Branching is done on edge and discrepancy variables.

5.5 Experimental Results

In this section, we show the positive impact of the modifications to the basic model
described in the previous sections. All experiments were run on an Intel Xeon E5-
2420 at 1.9GHz and 32GB of RAM, running Ubuntu 18.04. Models and algorithms

107

were implemented in C++ v.11 and compiled with gcc 7.5. Geometric algorithms and
data structures were implemented using CGAL 5.2 [17], using Gmpq for exact number
representation. ILP models were implemented using SCIP 7.0.2 [9] with CPLEX 12.10 as
the LP solver. In each experiment, we use the instances from the benchmark described
in Section 5.3. A time limit of one hour was set for the ILP solver for each instance.

When running times are presented, we consider both the time to generate and to solve
the model. Most of the data are presented in a standard boxplot, grouped by size. All
data used to generate the figures is available at [14].

We begin by showing the impact of tightening the LB and UB bounds in the relaxation.
In Figures 5.5 and 5.6, the modifier +heuLB indicates that LB was found by a heuristic
solution, +itUB means that the iterative procedure was used to find UB and the addition
of the least discrepancy constraints is denoted by the +cut. The calculation LB and UB
are considered the preprocessing phase.

Figure 5.5 shows the relative gap, computed as RELAX−OPT
RELAX , where opt and relax

are the values of an optimal integer solution and optimal relaxation solution, respectively,
for instances of different sizes. The Base model could not solve instances with 25 or more
points within one hour, while instances with at least 35 points did not fit in 32GB of
memory without column generation.

As expected, improving LB by finding the best partition into 1 or 2 islands has
a positive impact in reducing the relative gap. The benefit of the least discrepancy
constraints can also be noted. The iterative algorithm to find a better UB yields a tight
bound for most instances.

Similarly, the total solving time for the same configurations is shown in Figure 5.6. In
order not to distort the scale and hinder details in the graph, two outlier instances with 30
points are not shown for the Base +heuLB +itUB +cut graph as they took 2359 and 3980
seconds, respectively, to be solved. This experiment shows the impact in performance of
the improved LB values, as that allows for the removal of a large number of variables,
drastically reducing both solving time and memory consumption, which, in turn, raises
the size of instances being solved from 20 to 30. Notably, the high quality bounds obtained
by using the iterative algorithms to find UB come with a cost in overall time. This extra
time is greatly reduced, along with the expected memory requirement, when solving the
relaxations using column generation, as we will see.

Next, we show, in Figure 5.7, the solving time to find exact solutions with and without
the tighter UB , while still using the least discrepancy constraints and the LB found by
the heuristic. As before, so as not to distort the scale, two outlier instances are omitted in
Figure 5.7b as they took 2594 and 4369 seconds, respectively, to be solved. Instances of
more than 30 points could not fit in 32GB of memory. Here, for most instances, we observe
the advantage of using the iterative algorithm to find UB when it comes to solving the
ILP. In such cases, the stronger bound compensates the extra time during preprocessing
leading to an overall performance gain.

Lastly, as our paramount result, we focus now on the solving times using the same
bounds as before, but employing column generation for both the iterative procedure to
find UB and for the actual ILP, as depicted in Figure 5.8a. Having thus lessened the
memory limitation, larger instances could now be solved and we set aside a time limit of

108

10 15 20 25 30
size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
re

la
tiv

e
ga

p

(a) Base

10 15 20 25 30
size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
la

tiv
e

ga
p

(b) Base +heuLB

10 15 20 25 30
size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
la

tiv
e

ga
p

(c) Base +heuLB +cut

10 15 20 25 30
size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
re

la
tiv

e
ga

p

(d) Base +heuLB +itUB +cut

Figure 5.5: Relative gap for different configurations of the Base model.

one extra hour just for the iterative procedure to find a tight UB value.
For the actual memory consumption, we refer the reader to Figure 5.8b. Notice that

the most remarkable development is the great reduction in memory usage, which allowed
us to solve instances with three times the number of points as before, using one tenth of
the total memory limit, on average. Moreover, the use of column generation sped up the
procedure to find UB . For more details, see Table 5.1.

Notably, the combination of itUB and heuLB was able to solve to proved optimality a
high number of randomly generated instances in polynomial time. This table also shows
that even when limited to a total of one hour for preprocessing and solving, the usage of
itUB increased the number of instances solved.

Final Remarks

In conclusion, we showed that by using column generation, in conjunction with the
improvements to the bounds on coarseness, we were able to solve to optimality instances
of triple the size (up to 60 points) from our benchmark that the initial model could solve,
with remarkably small memory requirement.

As to future work, we intend to investigate how to speed up the column generation

109

10 15 20
size

0

200

400

600

800

1000
to

ta
l t

im
e(

s)

(a) Base

10 15 20 25 30
size

0

200

400

600

800

1000

to
ta

l t
im

e(
s)

(b) Base +heuLB

10 15 20 25 30
size

0

200

400

600

800

1000

to
ta

l t
im

e(
s)

(c) Base +heuLB +cut

10 15 20 25 30
size

0

200

400

600

800

1000
to

ta
l t

im
e(

s)

(d) Base +heuLB +itUB +cut

Figure 5.6: Total solving time for the relaxation of different configurations of the model.

procedure since its convergence is central for solving large instances quickly. Improving
the heuristic is another venue of research, which might not only reduce the solving time
for the relaxation but also lead to a larger number of instances that can be solved during
preprocessing due to establishing a tighter lower bound.

Despite the fact that randomly generated point sets have a high probability of being in
general position, it is important to consider how our model might be adapted for instances
where this property may not be guaranteed. Besides the obviously intricate approach of
considering all different cases of collinearity that may appear during island construction,
it would be worth considering the alternative of applying symbolic perturbation schemes
such as [7] or [15], notwithstanding their well known impact in time complexity, in
practice.

110

10 15 20 25 30
size

0
250
500
750

1000
1250
1500
1750
2000

to
ta

l t
im

e(
s)

(a) Without itUB

10 15 20 25 30
size

0
250
500
750

1000
1250
1500
1750
2000

to
ta

l t
im

e(
s)

(b) With itUB

Figure 5.7: Total time for Base +heuLB +cut with and without itUB.

10 15 20 25 30 35 40 45 50 55 60
size

0

1000

2000

3000

4000

5000

6000

7000

to
ta

l t
im

e(
s)

(a) Time (s)

10 15 20 25 30 35 40 45 50 55 60
size

0

1

2

3

4

5

6

pe
ak

 m
em

or
y

us
ag

e(
GB

)

(b) Peak Memory Usage (GB)

Figure 5.8: Total solving time and peak memory usage for Base +heuLB +itUB +cut
using Column Generation. Only instances that were solved to optimality are included.

Table 5.1: Number of instances solved by different methods using column generation for
different instance sizes. Solved in preprocessing indicates instances where UB = LB.

Method ↓ | Size → 10 15 20 25 30 35 40 45 50 55 60
solved in preprocessing 27 25 28 26 26 25 23 21 27 19 18
solved with itUB 30 30 30 30 30 29 28 23 28 21 20
solved in 1h with itUB 30 30 30 30 30 29 28 23 27 19 18
solved without itUB 30 30 30 30 30 28 27 20 26 13 17

111

Bibliography

[1] D. Avis and D. Rappaport. Computing the largest empty convex subset of a set of
points. In Proceedings of the First Annual Symposium on Computational Geometry,
SCG’85, pages 161–167, New York, 1985. ACM.

[2] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H.
Vance. Branch-and-price: Column generation for solving huge integer programs.
Operations Research, 46(3):316–329, 1998.

[3] B. C. Benato, J. F. Gomes, A. C. Telea, and A. X. Falcão. Semi-supervised deep
learning based on label propagation in a 2d embedded space. CoRR, abs/2008.00558,
2020.

[4] B. C. Benato, A. C. Telea, and A. X. Falcão. Semi-supervised learning with
interactive label propagation guided by feature space projections. In Proceedings of
the 31st Conference on Graphics, Patterns and Images (SIBGRAPI), pages 392–399,
October 2018.

[5] S. Bereg, J. M. Díaz-Báñez, D. Lara, P. Pérez-Lantero, C. Seara, and J. Urrutia. On
the coarseness of bicolored point sets. Computational Geometry, 46(1):65–77, 2013.

[6] J. M. Díaz-Báñez, M. A. López, C. Ochoa, and P. Pérez-Lantero. Computing the
coarseness with strips or boxes. Discrete Applied Mathematics, 224:80–90, 2017.

[7] H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: A technique to cope with
degenerate cases in geometric algorithms. ACM Transactions on Graphs, 9(1):66–104,
1990.

[8] D. Eppstein, M. H. Overmars, G. Rote, and G. J. Woeginger. Finding minimum area
k-gons. Discrete Computational Geometry, 7:45–58, 1992.

[9] G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse, P. Ge-
mander, A. Gleixner, L. Gottwald, K. Halbig, G. Hendel, C. Hojny, T. Koch,
P. Le Bodic, S. J. Maher, F. Matter, M. Miltenberger, E. Mühmer, B. Müller, M. E.
Pfetsch, F. Schlösser, F. Serrano, Y. Shinano, C. Tawfik, S. Vigerske, F. Wegscheider,
D. Weninger, and J. Witzig. The SCIP Optimization Suite 7.0. Technical report,
Optimization Online, March 2020.

[10] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

112

[11] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations
Research, 53(6):1007–1023, 2005.

[12] A. Z. Peixinho, B. C. Benato, L. G. Nonato, and A. X. Falcão. Delaunay triangulation
data augmentation guided by visual analytics for deep learning. In Proceedings of the
31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pages
384–391, October 2018.

[13] A. Sapucaia, P. J. de Rezende, and C. C. de Souza. Solving the minimum convex par-
tition of point sets with integer programming. Computational Geometry, 99:101794,
2021.

[14] A. Sapucaia, C. C. de Souza, and P. J. de Rezende. Coarseness of point sets
– Benchmark instances and solutions, 2021. http://www.ic.unicamp.br/~cid/
Problem-instances/Coarseness.

[15] R. Seidel. The nature and meaning of perturbations in geometric computing. Discrete
and Computational Geometry, 19(1):1–17, 1998.

[16] J. Shi and J. Malik. Normalized cuts and image segmentation. In 1997 Conference
on Computer Vision and Pattern Recognition (CVPR’97), June 17-19, 1997, Puerto
Rico, pages 731–737. IEEE Computer Society, 1997.

[17] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 5.2
edition, 2020.

[18] L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(86):2579–2605, 2008.

http://www.ic.unicamp.br/~cid/Problem-instances/Coarseness
http://www.ic.unicamp.br/~cid/Problem-instances/Coarseness

113

Chapter 6

Covering Points with Unit Disks under
Color Constraints

In this work, we proposed an ILP model for the Minimum 3-Colorable Discrete Unit Disk
Cover Problem and solved it using Logic-Based Benders Decomposition. We provided
methods to derive strong cuts leveraging the geometry of the problem, leading to a
very efficient iterative implementation. We also provided theoretical insights into the
performance of this method.

This chapter corresponds to the paper submitted to the journal Discrete Applied
Mathematics. It was co-authored with Andre A. Cire1, Pedro J. de Rezende2, Susanna F.
de Rezende3 and Cid C. de Souza2.

Abstract In this paper, we study a wireless network-inspired set cover problem with
color constraints, called Minimum 3-Colorable Discrete Unit Disk Cover. In this problem,
given a point set P and a unit disk set D, one is asked to find a minimum cover for
the points of P using a 3-colorable subset of D. We describe an ILP model and show
how it can be extended and implemented using Logic-based Benders Decomposition. This
decomposition leads to a set-cover master problem and a 3-coloring subproblem. We show
that an iterative implementation of this decomposition outperform a more traditional one
based on cuts. From an theoretical point of view, we prove that the solution of the first
iteration, which is a pure set cover problem, uses at most 18 times the minimum number of
colors from among all covers of P that use disks of D. We also present graph-theoretical
and geometric algorithms to derive stronger cuts that significantly reduce the running
time. A comprehensive experimental study is presented to show the impact of our design
choices on instances sampled from both uniform and population density distributions.

1Department of Management, University of Toronto Scarborough, Canada
2Institute of Computing, University of Campinas, Campinas, Brazil
3Department of Computer Science, Lund University, Lund, Sweden

114

6.1 Introduction

The design of wireless networks typically involves the decision on where to install antennas
so that all customer regions are covered. There are also many different secondary goals to
consider such as minimizing the number of antennas, or ensuring that the network remains
operational even when some of the antennas are down. For the problem discussed in this
paper, the goal is to cover a set of clients using the minimum number of antennas while
avoiding destructive interference.

The most popular frequency band (2.4GHz) for WiFi is the IEEE 802.11 standard
where there are 11 channels available, each one with a slightly different frequency, for the
antennas to transmit and receive signals. Destructive interference between two antennas
occurs when they use the same channel and are too close to each other. To maximize the
spread of frequencies in order to reduce interference, it is recommended to use only three
channels (1, 6 and 11), as discussed in [7].

In this work, customer regions are modeled as points in the plane while a potential
position for installing an antenna is modeled by a disk representing its coverage area.
Colors are then used to represent the channel frequencies to be assigned to the antennas
associated with the disks. In this context, the overlap of two disks assigned to the same
color characterizes destructive interference between their corresponding antennas.

The above modeling corresponds to the optimization problem defined below that we
investigate in this article.

Minimum 3-Colorable Discrete Unit Disk Cover (M3CDUDC) Given a set P of
n points in the plane and a set D of m disks of the same radius and fixed centers, find
a minimum cardinality subset D′ of D so that each point in P is covered by at least one
disk in D′, subject to the requirement that each disk in D′ is assigned one of three colors
and no two disks of D′ with the same color overlap.

For an illustration of an instance of the M3CDUDC problem and its solution, see
Figure 6.1. A more detailed description of the M3CDUDC is given in Section 6.2 to allow
a better understanding of the mathematical formulations and algorithms we propose to
solve the problem.

Literature Review The decision version of this problem, called 3-Colorable Discrete
Unit Disk Cover (3CDUDC) Problem, where the goal is to decide whether there is a
3-colorable cover, is an NP-hard problem introduced in [5]. In the same work, a 2-
approximation algorithm, with respect to the number of colors, that runs in O(nm25) time,
was proposed. In other words, if there is a 3-colorable cover, the algorithm is guaranteed
to produce one with at most six colors, in polynomial time. A faster 2-approximation
algorithm for the 3CDUDC, with time complexity O(nm18), was proposed in [29] in the
context of solving a more general problem of finding k-colorable covers, where k is given
a priori.

Due to the impracticality of these high degree polynomial time complexities, we chose
not to implement these algorithms as they do not scale to the instance sizes that we solve
in this paper.

A closely related problem is the Minimum Ply Covering (MPC) Problem, where we
are given an instance comprised of a disk set and a point set, and wish to cover the point

115

Figure 6.1: Example of an instance of the M3CDUDC with 80 points and 40 disks and
an optimal solution with 11 disks. Dashed circles correspond to disks in the input that
are not part of the solution.

set using some of the disks. However, the objective there is to minimize the maximum
number of disks covering any single point in the plane, called the ply of that instance.
This problem was also investigated in [5], where a 2-approximation was proposed under
the assumption that the objective function is bounded by a constant.

Comparatively, while in the MPC we wish to minimize the worst interference, in the
M3CDUDC we want to find a minimum cover of the points such that, when limited to
the three recommended channels, no destructive interference occurs. Notably, it cannot
be guaranteed that an instance for which the ply is three can be covered by a set of
3-colorable disks [5].

Similar problems, where the modelling of the antennas is done using triangles instead
of disks, are studied in [2].

Next, we review the literature on wireless network inspired problems that capture
some of the features of the M3CDUDC.

To the best of our knowledge, the literature on disk covering is limited to unit disks.
A Unit Disk Graph is an intersection graph whose vertices correspond to equal-sized
disks and edges encode the fact that a pair of disks overlap. A comprehensive review
of properties of unit disk graphs can be found in [9]. These properties allow for strong
theoretical results, leading to efficient algorithms for problems that are hard to solve for
general graphs.

The problem of finding minimum discrete unit disk covers of point sets without coloring
constraints, which is a geometric variation of the classic Set Cover Problem, has been well
investigated. This problem is NP-hard and several approximation algorithms have been
proposed, among which we highlight those with the best ratios: an 18-approximation [11]
that runs in O(mn) time and a (9 + ε) PTAS [6].

There are also geometric set cover problems without coloring constraints where either

116

the point set or the disk set is not finite. The variation where the input consists only
of a point set and we want to find a minimum cover comprised of any unit disks in the
plane was studied in [6] and [17]. The first shows a simple 4-approximation that runs in
O(n log n) time while the latter presents a 7-approximation that runs in O(n) time. The
problem where the input consists of a disk set and a set of regions to be covered and we
want to find a minimum cover comprised of disks in the input was studied in [10].

Elsewhere, the coloring problem on unit disk graphs, which is also an NP-hard
problem, has also been studied and a 3-approximation algorithm was presented in [18].
An alternative and less restrictive definition of coloring, called conflict-free coloring, has
been investigated in [14], where it is shown that six colors are always sufficient.

For discussions on applications of unit disks for wireless network modelling, the
reader may refer to [3]. For a comprehensive text on frequency assignment problems,
we recommend [19].

In this paper, we study a new optimization version of a discrete unit disk cover problem
with coloring constraints. While our main goal is to investigate coverage by unit disks,
our models and algorithms can easily be adapted to handle disks with different radii.
Whenever possible, we show how our analysis can be adapted for the general case, as
well.

We were not able to find empirical studies that combine both covering and coloring,
which are the focus of our research. In the literature, instances for frequency assignment
are usually given as graphs without geometric information[23, 24], while the geometric
instances we found for related problems were restricted to either disk sets or point sets
[10, 13, 15].

Our Contributions In this paper, we introduce an optimization variant of the 3-
Colorable Discrete Unit Disk Cover. We investigate distinct Integer Linear Programming
models enhanced with improvements that leverage the geometry of the problem. We
also provide the first publicly available benchmark for instances composed of both disk
sets and point sets. Using this benchmark, we show that our best model, an iterative
Logic-Based Benders Decomposition approach, solved instances with thousands of points
and disks to optimality in under 20 minutes on a standard desktop machine. This model
compares favorably with the approximation algorithms in the literature for the decision
version of the problem, which are often not practical. We also present theoretical results
showing that the first iteration of our algorithm, which corresponds to a pure set cover
problem, finds solutions with at most a constant factor (18 times) the minimum number
of colors of any set cover.

This text is organized as follows: Section 6.2 introduces an initial model based on
geometric arrangements. In Section 6.3, we discuss how to modify the initial model and
solve it using projection methods. Heuristics are studied in Section 6.4. Section 6.5 is
dedicated to discussing implementation details and to analysing the behavior of our models
under some extreme circumstances. Section 6.6 contains a comprehensive empirical
evaluation of the algorithms proposed. Concluding remarks are presented in Section 6.6.

117

6.2 Solving the M3CDUDC using ILP

In this section, we propose a natural formulation using arrangement of circles and discuss
how to avoid enumerating the arrangement by using lazy constraints.

Unless we explicitly mention a different radius, we assume that all disks have the same
radius and, w.l.o.g., that this radius is 1, since this can be ensured by properly scaling
the instances.

6.2.1 Notation and Concepts

Let P be a set of n points and D be a set of m (closed) disks in the plane. Each a ∈ D

is described by its center c(a). The (euclidean) distance between two points p and q is
denoted by dist(p, q). We abuse this notation by writing dist(a, q) (or dist(q, a)) to denote
the distance between the center of disk a and point q and similarly dist(a, b) to denote
the distance between the centers of the disks a and b. Using this notation, a disk a is
said to overlap a disk b if, and only if, dist(a, b) ≤ 2. Similarly, a disk a is said to cover
a point p, denoted by p ∈ a, if, and only if dist(a, p) ≤ 1. Finally, a disk set D is said to
cover a point set P if for each point p ∈ P there is a disk d ∈ D that covers p.

The conflict graph of a disk set D is a graph where each vertex corresponds to a
disk in D and there is an edge between two vertices if the corresponding disks overlap.
The chromatic number of a graph is the minimum number of colors sufficient to color all
vertices such that no two adjacent vertices share the same color. The chromatic number
of a disk subset D′ ⊆ D, denoted by χ(D′), is the chromatic number of its conflict graph.

We generalize these notions by defining the chromatic cover number of an instance
of the M3CDUDC comprised of point set P and disk set D as the smallest chromatic
number among all subsets of D that cover P .

Given a set D of m disks, the arrangement of D is the planar subdivision induced
by the circles corresponding to the borders of the disks in D. Figure 6.2 illustrates this
definition. An arrangement of m disks is comprised of O(m2) faces, arcs and points. Each
face f of the arrangement is an atomic open region relative to disk coverage, in the sense
that all points in f are covered by the same subset of disks in D. Thus, a point p ∈ f is
covered by a disk a ∈ D if and only if f is fully contained in the interior of a. In this case,
we say that a covers f . Due to this atomicity property, we can represent each face of the
arrangement by a single one of its points. Let us then denote by F (D) a set obtained by
picking one (arbitrary) point in each face of the arrangement of D.

To simplify exposition and avoid intersections of disks that are single points (i.e., zero
dimensional), we increase the radius of each disk to 1 + ε, in such a way that all pairs of
non-overlapping unit disks remain non-overlapping and, moreover, any point of P that is
not covered by a given disk in D remains not covered by the larger disks. Given a disk
set D and a point set P , we can choose ε as follows.

ε = min

{
min

a,b∈D:dist(a,b)>2

{
dist(a, b)− 2

}
, min

d∈D,p∈P :dist(a,p)>1

{
dist(a, p)− 1

}}
/3.

Clearly, this change of radius does not alter any coverage or overlap. This allows us to

118

Figure 6.2: Example of an arrangement of four disks. Face f0 is the unbounded face.
Faces f1 and f8 are convex. The remaining faces are non-convex.

determine whether two disks overlap by finding a (two dimensional) face in A that is
covered by both disks.

Thus, for the remainder of this paper, we will consider intersections of disks to be two
dimensional.

6.2.2 Arrangement-based Model

Using the concept of arrangements, we can express an initial model for this problem
as follows. Denote by C = {R,G,B} the set of three recommended channels (“colors”)
mentioned in the introduction. We associate a binary variable xc

d to each disk d ∈ D and
each color c ∈ C, indicating whether disk d belongs to the cover and is assigned color c.
Then, we can write a model for the M3CDUDC that minimizes the number of disks in
the cover as follows:

min
∑

d∈D,c∈C

xc
d (6.1a)

s.t.
∑

c∈C,d∈D:p∈d

xc
d ≥ 1 ∀p ∈ P (6.1b)∑

d∈D:p∈d

xc
d ≤ 1 ∀p ∈ F, ∀c ∈ C (6.1c)

xc
d ∈ {0, 1} ∀d ∈ D, ∀c ∈ C. (6.1d)

The objective function (6.1a) minimizes the total number of disks in the cover. Con-
straints (6.1b) ensure that each point in P is covered while Constraints (6.1c) guarantee
that overlapping disks are not assigned the same color.

6.2.3 Symmetry Breaking Constraints

One of the main drawbacks of this model is its symmetry with respect to the colors. One
simple way to reduce symmetry is to add constraints to prioritize colors, as follows:∑

d∈D

xB
d ≥

∑
d∈D

xG
d (6.2)

119

∑
d∈D

xG
d ≥

∑
d∈D

xR
d . (6.3)

6.2.4 Convex Faces of the Arrangement

Another performance bottleneck for the model is the number of Constraints (6.1c), which
may be quadratic on the number of disks. Arrangements are very rich geometric structures
that allow the expression of many different problem as ILPs. However, many successful
applications of arrangements to the solution of hard problems avoid associating constraints
to each face of the arrangement [32, 12]. If we were to fully build the arrangement of
thousands of disks – as in many of our instances – using exact arithmetic (to prevent
inconsistencies), we would incur in a great computational cost since the number of faces
would be quadratic on the number of disks and might require overcoming redundancies.

To reduce the number of Constraints (6.1c) in the model, we can limit ourselves to
the convex faces of the arrangement. A face f is not convex if and only if there is an
arc of circle in its border that belonging to a disk d that does not cover f . In this case,
the constraint corresponding to the face f ′ adjacent to f and covered by d dominates the
one corresponding to f . This allows us to discard constraints that do not correspond to
convex faces. See Figure 6.2.

However, to the best of our knowledge, we cannot avoid computing the entire arrange-
ment. In fact, the question of enumerating convex faces appears to be closely related to
the question of counting disjoint lenses, which are faces corresponding to the intersection
of two circles, in an arrangement of circles. The number of disjoint lenses is conjectured
to be linear in the number of circles and this conjecture has been an open problem for a
long time [1]. However, even if the conjecture is proved true, the result is only useful to
our purposes if an algorithm exists that enumerates all the convex faces in sub-quadratic
time. As no such algorithm is known so far, we actually have to compute the whole
arrangement. This makes the process of building the model too resource intensive, both
in time and memory, even for a modest number of disks.

6.2.5 Lazy Coloring Constraints

We can avoid constructing the entire arrangement by separating Constraints (6.1c) lazily,
similarly to the iterative approach presented in [10] for another disk cover problem. By
starting the formulation with very few coloring constraints, we can drastically reduce the
time spent constructing the model. The remaining constraints, dubbed lazy ones, are
added to the model on the fly. In fact, although lazy constraints are required to ensure
the model’s correctness, they only become part of it when a primal solution is found
during the execution of the branch-and-bound algorithm that violates them.

The identification of a violated constraint, also called a cut, is performed by a
separation routine that works as follows. Suppose we have an integral solution to an
M3CDUDC model where not all coloring constraints (6.1c) are considered. To decide
whether there is a violated coloring constraint among those not present in the incomplete
formulation, we can iterate over all pairs of disks that are assigned the same color. Clearly,

120

if a coloring constraint exists that is violated by the current solution, there is a pair of
disks (a, b) of the same color, say c, that overlap. In this case, the current solution violates
the coloring constraint xc

a + xc
b ≤ 1. Of course, when the intersection of the two disks is

non-empty, there is a point p that belongs to both of them. Stronger and more general
coloring constraints can be derived from the one given above if we consider the set of all
disks covering p and all possible colors. This leads to the set of constraints∑

d∈D:p∈d

xc
d ≤ 1,∀c ∈ C. (6.4)

A practical issue to be considered when implementing the separation routine refers
to the computation of the coordinates of the point p from the discussion above. Even if
all input values are given as rational numbers, when finding p, one should avoid the use
of square roots, as they may lead to non-rational algebraic numbers. As a consequence,
since we are doing exact computations, square roots can become very expensive to operate
with. However, under the assumption of rational input data, non-rational algebraic
representations of p are unnecessary provided that we proceed as follows.

As before, let a and b be two overlapping disks and recall that their centers are denoted
by c(a) and c(b), respectively. To encompass the general case of non unit disks, let us
denote by r(a) and r(b) the radius of a and b, respectively. A point p that belongs to the
interior of both of these disks can be obtained as follows:

p = c(a) + (c(b)− c(a))
r(a)

r(a) + r(b)
. (6.5)

Also, when restricted to unit disks, p can be chosen as the midpoint of the segment that
connects the centers of the disks, i.e., this formula simplifies to:

p =
c(a) + c(b)

2
. (6.6)

Moreover, since the elements of the arrangement of m disks are atomic, be them faces,
arcs or points, we generate at most O(m2) lazy constraints.

6.3 Extended Model

In the previous section, we discussed how to address the symmetry of Model (6.1) as well
as the difficulties related to enumerating the arrangement. In this section, we modify
the previous model allowing it to be decomposed in a way that tackles both issues
simultaneously.

To do this, we associate a binary variable yd to each disk d ∈ D that is assigned the
value one if, and only if, d is part of the solution. Recalling that F is the set of points
representing the faces of the arrangement of D, we can write the model as follows:

121

min
∑
d∈D

yd (6.7a)

s.t. yd −
∑
c∈C

xc
d = 0 ∀d ∈ D (6.7b)∑

d∈D:p∈d

yd ≥ 1 ∀p ∈ P (6.7c)∑
d∈D:p∈d

xc
d ≤ 1 ∀p ∈ F, ∀c ∈ C (6.7d)

yd ∈ {0, 1} ∀d ∈ D (6.7e)

xc
d ∈ {0, 1} ∀d ∈ D, ∀c ∈ C. (6.7f)

Notice that Constraints (6.7b) are the link constraints while Constraints (6.7c)
and (6.7d) do not share variables of different types. We can apply Benders Decompo-
sition to this model [35], by splitting it into a master problem that has y variables and
a subproblem that contains only the x variables. This can be interpreted as the master
problem being responsible for covering the points while the subproblem handles colorings.
More specifically, the purpose of the subproblem is to decide whether the conflict graph
derived from the disks in a solution to the master problem admits a 3-coloring. When it
does not, the subproblem must provide a cut that separates this solution.

However, since deciding whether a graph is 3-colorable is NP-hard, we cannot rely
on LP duality to derive Benders Cuts. Alternatively, we can combinatorially construct
our cuts, which makes this an application of Logic-Based Benders Decomposition [21].
Notably, since the variables in the subproblem do not appear in the objective function,
we need only to provide feasibility cuts.

In this context, a violation v is a subset of disks Dv and an integer Sv such that if
there are more than Sv disks of Dv in the solution, the resulting conflict graph is not
3-colorable. Let V denote the set of all violations. We can express the master problem as
the following ILP.

min
∑
d∈D

yd (6.8a)

s.t.
∑

d∈D:p∈d

yd ≥ 1 ∀p ∈ P (6.8b)∑
d∈Dv

yd ≤ Sv ∀v ∈ V (6.8c)

yd ∈ {0, 1} ∀d ∈ D. (6.8d)

Let D′ be a solution to (6.8) and recall that F (D′) denotes a set of points corresponding
to faces in the arrangement of D′.

By associating a ternary variable cd ∈ {R,G,B} to disk d ∈ D′, we can write the

122

following Constraint Programming (CP) model to solve the coloring subproblem

all_different ({cd : p ∈ d}) ∀p ∈ F (D′) (6.9a)

cd ∈ {R,G,B} ∀d ∈ D′, (6.9b)

where the all_different constraints (c.f. [30]) ensure that disks covering the same face are
assigned different colors.

If the coloring subproblem of the conflict graph obtained from D′ is infeasible, we can
add the violation v where Dv = D′ and Sv = |D′| − 1 to the set V of violations. This cut,
called a no-good cut, is notably weak and will be further improved later in this section.

We have determined that this new decomposition leads to enormous speed ups. With
fewer variables and no color assignment, the master problem is close enough to a pure set-
covering problem that it is often easily computed by modern ILP solvers. The resulting
subproblem is a system of all_different constraints, a core constraint in Constraint
Programming, that is also easy to be solved by modern constraint programming solvers [4].

With this decomposition, we avoid having to explicitly enumerate the conflict graph,
or the arrangement, for the full set of disks while also removing coloring symmetries from
the master problem. Even if we still need to enumerate an arrangement and deal with
coloring symmetries for the resulting subproblems, by restricting ourselves to integral
solutions, we not only drastically reduce the number of disks involved, but we can also
use Constraint Programming to solve it. This performance gain can be further explained
by the fact that modern Constraint Programming solvers have built-in symmetry breaking
mechanisms, such as [27]. Thus, the resulting speedup is a consequence of combining the
strengths of both the ILP and the CP paradigms.

6.3.1 Solving the Subproblems

The success of this decomposition relies on the ability to identify small subsets of a solution
to the master problem that are not 3-colorable. By finding such small subsets, we can cut
many similar solutions at the same time, reducing the number of subproblems that need
to be solved.

In this section, we discuss how to generate strong cuts and present instances where
strong cuts avoid exploring an exponential number of solutions. To accomplish this, we
propose the methods described below.

Moreover, the impact of these methods on a family of very hard instances is discussed
in detail in Section 6.5.

Block-Cut Tree Decomposition

Let G be a graph, a block-cut tree decomposition is obtained by collapsing its biconnected
components. The resulting graph is a tree, called a block-cut tree. Each biconnected
component can be colored separately and a coloring for G can be obtained by traversing
the block-cut tree and permuting the colors of each biconnected component so as to avoid
conflicts [20].

123

This decomposition not only accelerates the coloring, which can be done in parallel on
smaller graphs, but also leads to multiple stronger cuts. Actually, each non 3-colorable
biconnected component provides a violation, exempting us from having to consider the
entire solution as the violation found.

Now, consider the gadget shown in Figure 6.3a. We argue that it admits two minimal
covers. The disks not in bold must be part of any feasible solution, since each one is
the sole disk covering a particular point of the instance. Among the three bold disks
in the upper part of the instance, there are two alternative minimal covers: the dashed
disk or the two solid ones. A minimum solution including the dashed disk is smaller,
but its conflict graph is a clique of four vertices, which is not 3-colorable. If, instead, we
choose the two solid disks, the resulting solution is larger, but is 3-colorable, as shown in
Figure 6.3b. Moreover, it is easy to see that the conflict graph of the disks in this gadget
is biconnected.

By carefully chaining together several of these gadgets side-by-side, in such a way
that each pair of consecutive gadgets have a pair of overlapping disks, we can construct
arbitrarily large instances that admit an exponential number of non 3-colorable covers
that are smaller than the unique 3-colorable one, illustrated in Figure 6.4. All these non
3-colorable solutions must be identified by the decomposition algorithm before proving
optimality.

(a) Instance (b) Optimal Solution

Figure 6.3: Instance with five points and six disks and its optimal solution.

By removing any one of the overlapping disks shared by two gadgets, the conflict
graph of the ensuing instance becomes disconnected. This implies that each gadget is a
biconnected component and the block-cut tree decomposition algorithm will generate one
cut for each gadget, leading to a linear number of cuts being added before the instance
is solved to optimality. For example, for the instance comprised of 10 gadgets shown in
Figure 6.4, at least 1024 non 3-colorable solutions must be explored before optimality can
be proved.

Odd-wheel Separation

An odd-wheel is a graph composed of an odd cycle with at least 3 vertices and a central
vertex connected to all vertices of the cycle. Odd-wheels form a class of non 3-colorable

124

Figure 6.4: Solution to a hard instance constructed from 10 gadgets. The displayed
3-colorable cover contains 50 disks, while the minimum cover containing 40 disks has
chromatic number four.

graphs that can be identified as a subgraph in polynomial time. Notably, any clique with
more than three vertices contains an odd-wheel. We call a wheel whose largest odd-cycle
has size n an n-wheel. In the remaining of this section, we will refer to a disk and its
corresponding vertices in the conflict graph interchangeably, as the context makes it clear
to which element we are referring. We denote the clique with four vertices by K4.

To separate the odd-wheels of a given graph, we consider each one of its vertices as a
central vertex, and look for odd cycles in its immediate neighborhood. Odd cycle detection
can be done in linear time on the size of the graph using a Breadth-First search. The
complexity of this odd-wheel detection algorithm for graphs with t vertices is O(tN 2),
where N denotes the size of the largest vertex neighborhood in the graph.

Let G = (V,E) be a graph and denote by W = (C, k) an odd-wheel with odd cycle
C ⊆ V and central vertex k ∈ V . The following constraint is a valid inequality to separate
3-colorable graphs: ∑

u∈C

yu + yk ≤ |C|. (6.10)

The separation is done independently on each biconnected component. We first use
the odd-wheel separation, and resort to solving Model (6.9) exactly only if it fails to find
any violations.

Similarly to what we did for the Block Graph Decomposition, we now show a family
of instances that required an exponential number of solutions to be explored by the
decomposition without the Odd-wheel Separation.

Now, observe the gadget depicted in Figure 6.5a, obtained by adding to the previously
discussed gadget two points and two disks that uniquely cover those points. Clearly, these
disks must be part of any cover of the instance shown. As before, it admits two minimal
covers: one requiring four colors and the other is 3-colorable, as shown in Figure 6.5b.
Now, when constructing instances by chaining together several of these gadgets, there
is no one disk that can be removed to make a resulting solution disconnected. Thus,
any solution must be comprised of a single biconnected component and, hence, the Block
Graph Decomposition can have no impact on it.

On the other hand, the non 3-colorable solution for each gadget is a 5-wheel. As a
consequence, an execution of the odd-cycle detection algorithm will find one odd-wheel
per gadget, taking a linear number of iterations to solve these instances.

As an example, an instance comprised of 10 gadgets is shown in Figure 6.6.

125

(a) Instance (b) Optimal Solution

Figure 6.5: Instance with seven points and eight disks and its optimal solution.

Figure 6.6: Solution to a hard instance constructed from 10 gadgets. The displayed
3-colorable cover contains 70 disks, while the minimum cover containing 60 disks has
chromatic number four.

Lifting Odd-wheels

The resulting odd-wheel cuts can be lifted by combining odd-wheels that share the same
odd cycle and have pairwise adjacent central vertices. Lifting of odd-wheel inequalities
has been studied in the context of strengthening stable set inequalities [8, 28]. Since it
is an NP-hard problem for general graphs, this lifting is usually done heuristically. Next,
we show how to perform the lifting for unit disk graphs exactly in polynomial time.

Let K ⊆ V be a clique and C ⊆ V \K be an odd cycle such that (C, k) is an odd-wheel
in G for all k ∈ K. Then, the following inequality is valid to separate 3-colorable graphs.∑

u∈C

yu +
∑
k∈K

yk ≤ |C|. (6.11)

The validity of this lifting can be proved by showing that there is no 3-colorable
subgraph G′ of G induced by |C|+ 1 vertices of C ∪K. To accomplish this, we split the
analysis into cases based on the number of vertices of K in G′. If it is exactly one, then
we have an odd-wheel. If there are two vertices k1 and k2 of K in G′, and u and ℓ are any
pair of adjacent vertices in C, then {k1, k2, u, ℓ} induces a K4, see Figure 6.7a. If there
are three vertices of K in G′, say k1, k2 and k3, then {k1, k2, k3, u} also induces a K4 for
any u ∈ C, see Figure 6.7b. Finally, if there are four or more vertices of K in G′, they
form a clique with at least four vertices.

Given an odd-wheel (C, k), we can find the strongest lifting exactly in polynomial time

126

(a) Two vertices from K (b) Three vertices from K

Figure 6.7: Remaining cases for lifting proof based on the number of vertices of a
subgraph G′ that belong to clique K.

using the following geometric construction.
Let W be an odd-wheel composed of a cycle C and a central vertex k. An arrangement

of disks is obtained by including, for every w ∈ W , a disk of radius 2 with the same center
as the disk represented by w. This construction is illustrated in Figure 6.8. Denote by
L ⊆ D the set of disks whose centers belong to the face that contains k. Notice that this
face is covered by all disks in the construction. It is easy to see that each one of these
vertices is central to an odd-wheel with cycle C and their corresponding disks overlap the
disk represented by k. Thus, we only need to find a maximum clique in L. Although a
maximum clique can be found in polynomial time for unit disk graphs [9], we chose to
find it here by solving the standard ILP formulation for maximum clique simply because
its solving time was negligible for all instances we encountered.

Figure 6.8: Illustration of the lifting algorithm. All disks here have radius 2. A maximum
clique of the vertices corresponding to disk centers that lie in the face containing k leads
to the strongest lifting.

6.4 Heuristics

When solving very large instances, we determined that it is difficult for the solver to
find good primal solutions. Since finding feasible solutions became an issue, we propose

127

three heuristics. One is based on repairing primal infeasible solutions discarded by the
subproblem, the second is based on the solution to the linear relaxation, and the third is
designed as a polynomial greedy algorithm. The heuristics based on solutions, be them
to the relaxation or to the master problem, work by fixing a large number of variables
and solving a much smaller instance of the original problem.

6.4.1 Violation Repair

Since the master problem is a combinatorial relaxation of the original problem, we
expect its solution that are infeasible – for the original problem – to still provide useful
information. This expectation naturally leads us to try to fix the infeasibilities present in
discarded (infeasible) solutions.

To do this, we force all disks not involved in violations to be part of the solution,
ignoring color assignments except when they are the result of branching decisions. Then,
we solve a smaller instance restricted to the uncovered points.

As long as the number of violations is small, the reduced problem is quite fast to solve.
However, in the case Model (6.1), very few solutions to the master problem are found,
which reduces the impact of this heuristic.

6.4.2 Relaxation-based reduction

A similar heuristic can be employed by using the current relaxation to create a reduced
instance, instead of an infeasible solution.

This is done by removing all disks whose corresponding variables have value zero in
the relaxation. Again, color assignments are only kept if there were branch decisions.

6.4.3 Greedy Heuristic

Next, we discuss a polynomial time heuristic called GreedyMinCol. In this heuristic,
we construct a solution one color at a time, as follows. The algorithm starts with all
available disks and a color. At each iteration, a disk is chosen greedily so as to maximize
the number of uncovered points that would be covered. Finally, we remove all disks that
overlap the chosen disk. When there are no more candidates or the remaining disks do
not cover any new points, we move to the next color, starting with disks not belonging to
the partial cover being constructed.

When starting the algorithm, or when moving to a new color, the algorithm computes
the number of uncovered points for each disks, which takes O(nm) time. At each iteration,
we must scan the O(m) disks to find the best candidate and then remove all the O(m)

disks that intersect with it, as well as all the O(n) points that it covers. Finally, we must
update the number of uncovered points that covered by each available disk. Since each
one of the O(n) disks might cover O(m) points, this update takes O(nm) time.

Since at each iteration a new point is covered, it takes at most n iterations, each taking
O(nm) time. Thus, the final time complexity is O(n2m).

In the case of unit disks, we can speed up this algorithm in practice by keeping two
2D-trees, one for the points and one for the centers of the disks. By doing so, the points

128

and disks to be removed are the nearest neighbors of the disk center with distance at most
2, in the case of removing overlapping disks, or distance at most 1.

If there are any uncovered points after the third color, we employ local search. This is
done by looking for a disk that can be swapped for a disk already in the solution so that
the number of uncovered points is reduced. We also remove disks whose covered points
are already covered by another disk, i.e., redundant disks. We repeat this process until
no disk can be swapped or removed.

To further improve the performance of the heuristic, we introduce randomization, and
allow it to be run several times. This randomization is introduced by choosing not the best
disk, but one among a fixed number of best candidates. The algorithm is executed until
a certain number of iterations have been processed without improving the best solution.

Since the corresponding decision problem is known to be NP-hard and the current
literature contains only rather impractical algorithms, the above greedy procedure proved
to be the most effective one for finding initial feasible solutions for the models.

6.5 Analysing the decomposition

In this section, we investigate theoretical aspects of the decomposition. We first discuss
how the decomposition is implemented. Next, we prove that for any instance the number
of colors required to color a minimum cover, which corresponds to the solution found
in the first iteration of the algorithm, is within a constant factor of the chromatic cover
number of the instance.

6.5.1 Implementing Benders Decomposition

There are two standard ways of implementing Benders Decomposition. The first one
consists in implementing lazy constraints for the master problem that attempt to detect
violations for each feasible solution found, while traversing the search tree. The second
consists in solving the master problem to optimality, adding violations found only in the
computed optimal solution. This procedure is repeated until no violations are found.
More sophisticated implementations have also been proposed. See [26] for an in-depth
discussion on how to implement the Benders Decomposition algorithm.

The lazy constraints approach has the advantage of always keeping a valid dual bound
and using a single search tree.

In contrast, the iterative approach has to restart the search each time a violation is
found. However, as the new ILP is entirely known in the beginning of each iteration,
we can use all the preprocessing techniques available in modern solvers. Also, a large
number of constraints may be added by the lazy approach that do not appear in near-
optimal solutions. Despite proving optimality not being necessary, these lazy constraints
make linear programs solved during enumeration harder to compute, leading to increased
solving time. For more details on how lazy constraints are implemented in modern solvers,
see [22].

The decision of which approach to use depends on the trade-off between the number
of restarts and the impact of the preprocessing techniques.

129

The results in Section 6.6 reveal that for the M3CDUDC, not only very few iterations
are necessary on average, but also that modern solvers are capable of taking advantage of
the fact that the master problem consists almost entirely of set cover constraints. These
observations shed light on why the iterative approach outperformed the lazy one in our
experiments.

Now that we understand how the decomposition is implemented, we can better
understand its performance. In particular, in which situations the algorithm is expected
to perform poorly.

Intuitively, it seems reasonable to assume that a hard instance for the decomposition
approach is one for which several iterations are required before the subproblem fails to
provide a no-good cut. Moreover, such a bad case is likely to occur when the sizes of
a minimum disk cover of the points in P and a minimum 3-colorable disk cover of the
same points differ by a large amount. This difference is exacerbated when there are many
solutions of the same size, since the computation of one subproblem may be needed to
eliminate each one of those solutions. In the next sections, we take a deep dive into these
questions.

6.5.2 Coloring Minimum Covers

Due to the inherent geometry of unit disk graphs, we will show that the number of colors
in a minimum cover is bounded by a constant factor w.r.t. the minimum number of colors
among all covers. This constant factor approximation can be interpreted as the first
master problem and the original model having a somewhat similar goal.

Given a point set P , a disk set D and a minimum-sized cover D′ ⊆ D of P , consider a
greedy coloring algorithm that sorts the disks in D′ by the x-coordinates of their centers,
and performs a horizontal left-to-right sweep to assign to each disk encountered the first
compatible color available. Without loss of generality, let us assume that there is no pair
of disks with the same x-coordinate, which can be accomplished by carefully rotating the
instance.

Given a disk d in D′, with center c(d), we denote by Ld the set of disks that overlap
d and lie to its left. These disks get assigned colors by the greedy algorithm before d

does. We now argue that the number of disks in Ld is at most some linear function of the
chromatic number of any cover of P comprised of disks in D.

Since the (unit) disks in Ld overlap d and are to its left, their centers must lie in a
half-circle of radius 2 with center c(d). This region, denoted by R(Ld), is illustrated in
Figure 6.9a.

Denote by Pd ⊆ P the set of points that are not covered by D′ \ (Ld ∪ {d}). Since, D′

is a minimum cover, Pd cannot be empty. Such points must lie in the region given by the
union of all unit disks centered at points in R(Ld). We denote this region by R(Pd) (see
Figure 6.9b).

Now, denote by χ the chromatic number of the instance comprised of point set P and
disk set D, i.e., χ is the minimum chromatic cover number among all covers of P using
disks in D. Also, denote by Dχ a cover of P with chromatic number χ, and by Dχ

d a set
of disks in Dχ that covers the points in Pd. Since these disks must at least touch R(Pd),

130

they have to lie entirely in the region given by the union of all unit disks that overlap
R(Pd). This region, which we denote by R(Dχ

d), is illustrated in Figure 6.9c.

–5–5 –4–4 –3–3 –2–2 –1–1 11 22 33

–5–5

–4–4

–3–3

–2–2

–1–1

11

22

33

44

55

00

(a) R(Ld)

–5–5 –4–4 –3–3 –2–2 –1–1 11 22 33

–5–5

–4–4

–3–3

–2–2

–1–1

11

22

33

44

55

00

(b) R(Pd)

–5–5 –4–4 –3–3 –2–2 –1–1 11 22 33

–5–5

–4–4

–3–3

–2–2

–1–1

11

22

33

44

55

00

(c) R(Dχ
d)

Figure 6.9: Geometric construction used to establish an upper bound on the chromatic
number of a minimum cover.

We proceed by computing the maximum number of non-overlapping disks that can fit
in R(Dχ

d). From elementary geometry, the area of R(Dχ
d), denoted by Area(Dχ

d), is

π52

2
+ 2

π32

4
+ 3× 4 = 17π + 12.

It follows from [34], as discussed in [16], that the convexity of R(Dχ
d) implies that its

area may contain at most
⌊
Area(Dχ

d)√
12

⌋
= 18 non-overlapping disks. Therefore, the largest

number of χ-colorable disks that can fit in R(Dχ
d) is 18χ. Hence, |Dχ

d | ≤ 18χ.
Finally, since D′ is a minimum cover, it follows that |Ld ∪ {d}| ≤ |Dχ

d |. This leads
us to conclude that Ld ∪ {d} ≤ |Dχ

d | ≤ 18χ, implying that a minimum cover can be
greedily colored using at most 18χ colors. Therefore, the number of colors a minimum
cover requires is at most 18 times the number of colors required by any cover.

This result can be generalized for disks of different sizes, assuming that the difference
in sizes is bounded by a constant. Indeed, assume that the largest disk u in D has radius
1 while the smallest has radius ρ, for a constant 0 < ρ ≤ 1. In the worst case scenario, if
there is a cover comprised only of disks of radius ρ, we can bound the size of Ld ∪ {u} to
at most

⌊
Area(Dχ

d)

ρ2
√
12

⌋
=

⌊
17π+12
ρ2

√
12

⌋
.

Unfortunately, we have not been able to determine how tight this bound actually is,
even in the case of unit disks. We were able, though, to construct an instance for which
the ratio between the minimum number of colors required by a minimum-sized disk cover
and the minimum number of colors required by any disk cover is 12. See Figure 6.10.
Nonetheless, this ratio is still below the theoretical value computed above.

131

(a) Instance (b) Cover with chromatic num-
ber 12 (zoomed in)

(c) Cover with chromatic num-
ber 1

Figure 6.10: An instance (a) showing a minimum cover (b) requiring 12 colors when a
cover that minimizes colors (c) requires only one.

6.6 Empirical Evaluation

In this section, we show empirical data to evaluate our models and algorithms in practice.
We begin by introducing our experimental setup and instances, followed by a comparison
of our algorithms using a benchmark generated from a uniform distribution, and conclude
with results on a benchmark generated from population density data.

Environment set up All experiments were run on a computer featuring an Intel Xeon
Silver 4114 processor with 12 cores at 2.2Ghz and 32GB of RAM, running Ubuntu 16.04.
Models and algorithms were coded in C++ v.14 and compiled with gcc 5.5. Geometric
algorithms and data structures were implemented using CGAL 5.4.1 [33], and the Gmpq
library for exact number representation. To solve the ILP models, we employed CPLEX
version 20.1.

Generating benchmarks and algorithm performance measures We present two
sets of instances, or benchmarks. The first was generated by uniformly sampling points
and disk centers in the unit square, and we call it the uniform benchmark. The second
was sampled from data obtained from the population density of France made available
at [36], and is named herein the population benchmark. All instances, as well as the data
used to generate the tables and figures in this section, are available at [31].

For both benchmarks, in order to evaluate the impact on the solving times of the ratio
between the area of the region where the points are sampled and the area covered by each
disk, we consider different values for the radii. This is done without loss of generality,
since we can scale each instance such that the resulting disk set is a unit disk set.

Thus, an instance is characterized by three parameters: number of points, n, number
of disks, m, and disk radius, r. For each configuration (n,m, r), ten instances were
generated.

For each instance, we fixed our running time limit to 20 minutes. If an instance was
not solved to optimality or shown to be infeasible within this time limit, it was regarded
as not solved. It is worth noting that it is challenging to generate feasible instances for
some combinations of small number of disks and small disk sizes, even when each point

132

was covered by at least one disk. For each algorithm being evaluated, and for each pair of
radius r and number of points n, we increased the number of disks up until the algorithm
failed to solve at least three instances of the given configuration. This was regarded as the
maximum number of disks in an instance that the algorithm could solve, for the given pair
of values of r and n. When comparing multiple algorithms, we considered all instances
from the benchmark that were solvable by at least one of them.

Testing the arrangement-based model We start by shedding light on the limitations
of the initial arrangement-based model described in Section 6.2 on the uniform benchmark.
For this benchmark, the set of values for numbers of points and disks is {100, 300, 700,
1000, 3000, 7000, 10000, 30000, 700000, 100000}, while the values for the radii are 0.0625,
0.1250, 0.2500 and 0.5000. However, instances with radius 0.5000 only appear early in
the experiments, as they proved to be trivial for most of our algorithms, while instances
with radius 0.0625 had to be introduced towards the end of the tests to help further
differentiate the performance of our best algorithms.

Table 6.1 shows the performance of the arrangement-based model on instances with
radius at least 0.1250. Column “Cover Size” gives statistics on the number of disks in a
solution for each value of radius, while column “Build Time” displays the time required to
build the formulation. Note that aggregated data are presented as mean ± standard de-
viation, with the standard deviation being omitted when null. This format is also used
in the subsequent tables.

Table 6.1: Results for the arrangement-based model: all instances from the configurations
shown were solved to optimality.

r n m Cover Size Build Time (s) Total Time (s)
0.125 100 300 19.10± 0.88 2.27± 0.13 4.71± 0.30
0.125 300 300 24.90± 0.88 2.34± 0.11 6.29± 0.73
0.125 700 300 28.80± 0.79 2.21± 0.12 10.59± 3.63
0.125 1000 300 29.90± 0.74 2.22± 0.12 21.87± 24.95
0.125 3000 300 32.70± 0.67 2.18± 0.09 105.73± 92.40
0.250 100 300 6.90± 0.32 9.56± 0.39 165.92± 17.62
0.250 300 300 7.90± 0.32 9.55± 0.56 209.49± 40.30
0.250 700 300 8.40± 0.52 9.45± 0.56 246.94± 114.75
0.250 1000 300 9.00 9.39± 0.45 223.95± 49.23
0.250 3000 300 9.00 9.43± 0.41 303.77± 109.20
0.500 100 300 3.00 27.86± 0.28 365.53± 19.19
0.500 300 300 3.00 27.85± 0.25 378.07± 47.37
0.500 700 300 3.00 27.80± 0.26 388.32± 30.62
0.500 1000 300 3.00 27.95± 0.20 374.08± 31.68
0.500 3000 300 3.90± 0.32 28.04± 0.21 381.22± 18.62

The arrangement-based model was unable to solve instances with 700 or more disks
due to high memory usage, while instances with 100 disks were easily solved in less than
20 seconds. For this reason, the results reported in Table 6.1 are limited to instances

133

with 300 disks. Throughout the experiments, we observed that even for a small set of
points, the algorithm had difficulties in dealing with the large number of constraints in
the model due to the superabundance of disk overlaps. We also noticed that the total
execution time grows rapidly with the radius of the disks, as can be seen, for instance, by
comparing rows 1, 6 and 11 of Table 6.1. Clearly, the complexity of the arrangement is the
main bottleneck for the scalability of the model. Larger disks, just like an increase in the
number of disks, cause more overlaps, which amplifies the complexity of the arrangement.
In fact, here, the build time alone is quite high when compared to the total solving time
for much larger instances when solved by algorithms presented later in this section.

The benefits of lazy separation and primal heuristics Next, we show how lazy
separation and the inclusion of the primal heuristics proposed in Section 6.4 impact the
computation time of the algorithm.

During preliminary testing with the lazy separation, we observed that the main issue
preventing instances from being solved was the lack of primal feasible solutions. This was
expected, as the introduction of lazy constraints disables most preprocessing procedures
and makes it hard even for a modern solver to handle the model. This was the main
motivation for the development of primal heuristics for which some implementation details
are presented below.

The randomized greedy heuristic (Greedy) is executed before invoking the solver.
At each iteration, it randomly chooses a candidate among the best four, according to the
greedy criteria, and runs until 40 iterations are executed with no solution improvement.
The choice of these parameter values was made after tuning them with the irace
package [25].

Both the repair heuristic (Repair) and the relaxation heuristic (Relax) were imple-
mented using the solver’s callback interface and are called several times during execution
of the enumeration algorithm. Repair is called when a primal solution is rejected by
the lazy separation, while Relax is called according to the solver’s inherent heuristics
manager.

For the subsequent experiments, we cast aside instances with a small number of disks
and restrict the number of points to the maximum quantity for which configurations with
3000 disks of radius 0.25 are still solvable.

To present the comparison between the algorithms on the uniform benchmark in a
compact manner, we group configurations by radius, r and number of points, n. Having
fixed these two parameters, we exhibit in Table 6.2 the maximum number of disks,
hereafter denoted by Max m, that results in a solvable configuration. Thus, for each
pair (r, n), the best performing algorithm is the one with the largest Max m. Ties are
broken by the highest number of instances solved, denoted by Sol, followed by the lowest
average total time. The aggregated data displayed is restricted to the instances that were
solved.

In Table 6.2, for each pair (r, n), we can perceive that the largest number of disks the
algorithm can handle has grown, clearly indicating that the memory issues are greatly
diminished, as expected, when lazy constraints are used. Contrarily to when the entire
arrangement is enumerated, complexity decreases as the radius shrinks when coloring

134

constraints are implemented in a lazy fashion. In fact, instances with radius 0.5 were so
trivial to be solved that we saw no reason to pollute the table with their results. Overall,
the maximum number of disks of the solved instances increases drastically when both the
number of points and the radius are fixed. Also, we can see that the number of lazy cuts
given in the “# Lazy Cuts” column is much smaller when the heuristics are included, as
they prevent the solver from separating covers with a large number of disks. In particular,
the number of cuts when using Greedy is the smallest, which indicates that the solutions
produced by this heuristic are of very high quality.

Table 6.2: Instances solved by the Lazy model alone and in combination with primal
heuristics. For each pair (r, n), best performing algorithm has its Max m value in bold.

Lazy Repair
r n Max m Sol Total Time(s) # Lazy Cuts Max m Sol Total Time (s) # Lazy Cuts

0.125 100 70000 9 564.73± 334.41 19.56± 23.44 70000 9 574.05± 340.87 19.22± 23.04
0.125 300 10000 10 248.99± 267.50 69.40± 32.34 10000 9 241.48± 181.40 63.11± 20.39
0.125 700 700 9 324.86± 276.56 178.56± 77.90 700 9 260.38± 283.49 156.67± 80.85
0.125 1000 700 7 569.74± 353.59 189.43± 76.80 300 9 140.02± 270.94 119.89± 26.01
0.125 3000 100 10 0.97± 0.11 0.00 - - - -
0.250 100 100000 9 635.85± 292.57 2.11± 4.14 100000 9 634.30± 292.31 2.11± 4.14
0.250 300 30000 10 369.63± 289.29 14.50± 13.65 30000 10 316.20± 197.12 13.70± 12.28
0.250 700 10000 10 425.74± 348.36 15.30± 16.88 10000 10 339.23± 231.23 12.60± 12.02
0.250 1000 7000 8 461.45± 274.02 12.50± 11.81 3000 9 271.27± 332.22 8.33± 10.44
0.250 3000 1000 8 228.76± 256.33 5.00± 4.54 - - - -

Relax Greedy
r n Max m Sol Total Time(s) # Lazy Cuts Max m Sol Total Time (s) # Lazy Cuts

0.125 100 100000 8 437.54± 179.88 6.50± 8.14 30000 10 189.40± 84.31 13.00± 8.72
0.125 300 3000 8 13.12± 4.39 37.12± 17.54 10000 8 224.49± 244.34 40.12± 27.59
0.125 700 300 8 249.80± 259.51 31.88± 10.83 1000 7 459.81± 304.86 167.00± 82.84
0.125 1000 100 10 2.29± 4.73 5.50± 7.32 300 10 213.37± 333.62 118.40± 26.66
0.125 3000 - - - - 100 10 4.90± 0.71 0.00
0.250 100 100000 10 325.80± 211.40 1.70± 2.87 100000 9 711.95± 235.81 0.78± 0.83
0.250 300 30000 9 271.74± 233.27 13.00± 13.46 30000 10 324.69± 136.41 6.60± 4.77
0.250 700 10000 10 220.20± 49.22 8.90± 5.97 10000 10 287.93± 169.61 3.60± 4.53
0.250 1000 10000 10 405.06± 164.59 6.20± 6.36 7000 8 528.42± 346.53 2.88± 2.75
0.250 3000 3000 8 704.27± 309.81 4.12± 4.26 3000 10 546.15± 124.86 0.40± 0.97

To further compare the heuristics, we show in Figure 6.11 how many instances (from
those in Table 6.2) were solved as a function of time. Instances with radius 0.5 were
excluded on account of their triviality. Although not part of the present analysis, the
graph also exhibits the curve relative to the Iterative_Benders algorithm, which we
will later discuss.

Now, back to the algorithms currently being compared, we can see in Figure 6.11
that the Repair heuristic causes a large overhead, leading to a significant decrease in
the number of solved instances for any given amount of time. Both the Greedy and the
Relax heuristics are comparable with the implementation with no heuristics, represented
by the Lazy curve, but Greedy slightly outperforms the other two methods. However,
we can observe that the relative performance of the Greedy heuristic deteriorates on
easier instances because, according to the parameters chosen for this heuristic, it iterates
at least 40 times before stopping.

135

Figure 6.11: Number of instances solved as a function of time by the Lazy model,
in combination with the heuristics Repair, Relax and Greedy, and the Itera-
tive_Benders algorithm. For a clearer presentation, we start with # Instances solved
at 300.

Gains obtained by the Benders Decomposition Next, we examine the two imple-
mentations of the Benders decomposition discussed in Section 6.5.1: the lazy and the
iterative one, called Lazy_Benders and Iterative_Benders, respectively. Unless
stated otherwise, we consider the inclusion of both block-cut tree decomposition and sep-
aration of odd-wheels procedures. For the Lazy_Benders implementation, we incor-
porated the Greedy heuristic. However, since preliminary experiments showed that the
Iterative_Benders implementation did not benefit from employing primal heuristics,
they were not applied in this case.

As previously stated, to further differentiate these methods, we decided to include
harder instances, of radius 0.0625, into the benchmark and to remove all those with
radius 0.5, since the former are much more challenging than the latter.

Table 6.3 shows how many instances each method solved. Clearly, the Itera-
tive_Benders implementation largely outperforms the Lazy_Benders. The advan-
tage of the iterative approach becomes even more evident when one examines Figure 6.12
that shows the number of solved instances over time by both algorithms. This gain in per-
formance is likely due to the small number of iterations required before reaching a feasible
solution, when compared to the necessary number of lazy cuts, and to the preservation of
the solver’s preprocessing capabilities when lazy constraints are disabled.

However, when a larger number of disks is available, the number of non 3-colorable
solutions found by both implementations is very low, as shown in columns “# Cuts” and
“# Iterations”. For the iterative implementation, there are many instances for which the
algorithm iterates only once, unveiling that often a minimum cover is 3-colorable when
there is a large number of well distributed disks. In these cases, the computational effort
is almost entirely dedicated to finding a minimum cover.

Finally, we turn our attention to the comparison between the arrangement-based and

136

the Benders decomposition models. Comparing Tables 6.2 and 6.3, we observe that both
implementations of the Benders decomposition are able to solve instances with many more
disks than the best implementation of the arrangement-based model, everything else being
equal. The difference in performance becomes even more perceptible when we examine
the curves in Figure 6.11.

Table 6.3: Instances solved by the Lazy_Benders model and Iterative_Benders.
For each pair (r, n), the best performing algorithm in indicated by its Max m value being
in bold. The number of lazy cuts found by the Lazy_Benders implementation is de-
noted by “# Cuts” while the number of iterations performed by the Iterative_Benders
implementation is denoted by “# Iterations”.

Lazy_Benders Iterative_Benders
r n Max m Sol Cover Size Total Time (s) # Cuts Max m Sol Cover Size Total Time (s) # Iterations

0.0625 100 100000 10 37.40± 1.26 154.86± 30.41 2.30± 0.48 100000 10 37.40± 1.26 0.60± 0.02 1.00
0.0625 300 30000 10 55.80± 1.69 44.60± 10.55 3.10± 0.88 30000 10 55.80± 1.69 0.37± 0.06 1.00
0.0625 700 7000 9 72.44± 0.73 286.63± 243.27 7.78± 2.28 7000 10 72.40± 0.70 41.62± 57.70 1.00
0.0625 1000 1000 10 91.80± 1.23 18.42± 8.35 31.70± 23.89 3000 7 81.57± 1.37 502.73± 417.07 1.00
0.0625 3000 300 10 infeasible 33.23± 11.37 3.10± 2.02 300 10 infeasible 0.22± 0.17 3.80± 2.44
0.1250 100 100000 10 15.80± 0.42 153.02± 21.76 2.50± 0.71 100000 10 15.80± 0.42 0.90± 0.03 1.00
0.1250 300 30000 10 20.50± 0.71 78.38± 45.52 4.00± 0.67 30000 10 20.50± 0.71 0.75± 0.12 1.00
0.1250 700 3000 10 24.00 13.95± 5.27 6.00± 1.49 3000 10 24.00 2.80± 1.20 1.00
0.1250 1000 7000 9 24.00 270.97± 358.70 6.33± 1.58 10000 10 24.20± 0.42 82.55± 131.85 1.00
0.1250 3000 700 7 29.86± 0.38 610.70± 407.62 601.00± 450.56 1000 9 28.89± 0.33 303.78± 205.10 19.67± 25.47
0.1250 7000 300 8 34.38± 0.52 223.27± 271.90 2661.62± 3187.26 300 7 34.43± 0.53 351.10± 357.09 508.00± 462.50
0.2500 100 100000 10 6.10± 0.32 161.25± 10.79 1.90± 0.32 100000 10 6.10± 0.32 2.06± 0.04 1.00
0.2500 300 30000 10 7.20± 0.42 125.79± 126.00 2.90± 0.74 30000 10 7.20± 0.42 15.23± 41.95 1.10± 0.32
0.2500 700 10000 10 8.00 48.22± 25.85 4.40± 1.65 10000 10 8.00 2.25± 0.59 1.10± 0.32
0.2500 1000 10000 10 8.00 56.24± 17.07 4.80± 1.48 10000 10 8.00 4.59± 2.05 1.10± 0.32
0.2500 3000 10000 9 9.00 390.59± 250.05 7.67± 2.00 10000 9 9.00 258.85± 216.34 2.22± 1.56
0.2500 7000 7000 8 9.00 474.80± 144.93 5.25± 1.67 7000 7 9.00 704.98± 309.55 1.43± 0.53

Figure 6.12: Number of instances solved as a function of time for the Lazy_Benders
and Iterative_Benders. For a clearer presentation, we start Instances solved at 700.

Testing on the population benchmark We now show how the Iterative_Benders
algorithm performs on instances from the population benchmark. These instances are
intended to more closely reproduce those arising from the wireless network design appli-
cation described in the introduction.

137

As said above, the population benchmark was sampled from the population density
data of France whose territory is represented by a 1700 by 1000 rectangular grid, where
each cell corresponds to a 1 km by 1 km region and has an associated population density.
When a cell is sampled, be it for a disk center or for a point, we assign to it the coordinates
of the cell’s top right corner. To generate the instances, we set the number of points to
3000, the number of disks to 1000, 5000 or 10000, and the radius to 30, 50 or 100 km. As
before, we ensure that all points are covered by at least one disk. A sample instance is
shown in Figure 6.13.

Figure 6.13: Example of an instance sampled from a population density distribution
with 1000 points and 250 disks. An optimal solution with 115 disks is also shown, and
dashed circles represent disks in the input that are not part of the solution.

Table 6.4 displays detailed information generated when using the Itera-
tive_Benders algorithm on our population benchmark. We can see that when
either the number of disks available or their radius increase, the number of iterations
required by the algorithm drops significantly, approaching one. When there are many
large disks to choose from, a solution can consist of disks that are more spread out and
fewer in number, while the overlaps are minimized. On the other hand, fewer alternatives
for covering each point can lead to more overlaps, requiring many smaller subsets of non
3-colorable disks to be separated, or, ultimately, making the instance infeasible.

Moreover, we see from the results that instances with radius 50 were harder to solve
than those with radius 30 and 100. This can be understood by observing that disk size
affects the hardness of instances in two ways. Larger disks induce smaller covers, which
are easier to solve due to the efficacy of the lifting procedure for odd-wheel constraints in
separating small infeasible solutions. On the other hand, smaller disks lead to solutions

138

with fewer overlaps, which are more likely to be 3-colorable.

Table 6.4: Instances from the population benchmark solved by the Iterative_Benders.
Instances not solved have been proven to be infeasible.

r n m Sol Cover Size Total Time (s) # Iterations # Wheels found Wheel Lift # Bicon. Comp.
30 3000 1000 10 infeasible 0.65± 0.35 3.60± 1.78 2.60± 1.78 8.78± 4.87 0.00
30 3000 5000 10 292.30± 3.62 4.03± 2.80 3.90± 2.85 2.80± 2.70 27.38± 31.81 151.70± 19.74
30 3000 10000 10 273.40± 3.37 4.23± 1.77 1.70± 0.95 0.70± 0.95 41.40± 54.16 173.40± 11.55
50 3000 1000 10 120.70± 63.69 1.98± 1.18 10.10± 5.90 9.10± 5.90 26.70± 23.04 12.80± 8.18
50 3000 5000 10 127.10± 1.79 44.53± 41.35 1.70± 1.25 0.70± 1.25 8.82± 13.10 29.10± 7.16
50 3000 10000 10 120.90± 1.37 168.42± 91.25 1.10± 0.32 0.10± 0.32 25.80± 81.59 39.10± 9.16

100 3000 1000 10 44.20± 1.14 2.90± 2.91 5.80± 6.09 4.30± 4.92 20.39± 20.76 3.88± 1.43
100 3000 5000 10 38.90± 0.57 27.35± 16.85 1.10± 0.32 0.10± 0.32 0.80± 2.53 4.80± 2.04
100 3000 10000 10 37.90± 0.32 80.01± 88.11 1.10± 0.32 0.00 - 4.80± 1.03

Analysing the merits of block-cut tree decomposition and odd-wheel separa-
tion Recall that the number of iterations is one more than the number of violations
found. By comparing columns “# Iterations” and “# Wheels found” in Table 6.4, we see
that almost all violations were separated using odd-wheels. We also perceive that, for
sparser instances, with smaller radius and larger cover size, the number of biconnected
components is higher. Thus, block-cut tree decomposition keeps the size of coloring sub-
problems, which must be solved exactly using constraint programming, small enough to
prevent this step from becoming a bottleneck in solving such instances.

Figure 6.14: Number of instances solved, from the population benchmark, as a function
of time for Iterative_Benders and Lazy_Benders. The exclusion of odd-wheels
separation is denoted by no wheels and the exclusion of block-cut tree decomposition by
no decomp.

To measure the impact of both block-cut tree decomposition and odd-wheel separa-
tion, we compare the number of instances solved with and without these improvements.
The results obtained by the different versions of Iterative_Benders for the population
benchmark are compiled in Figure 6.14. For comparison purposes, the results obtained by
Lazy_Benders are also exhibited in the figure. Notice that, without the improvements,

139

Iterative_Benders is significantly worse than its lazy counterpart, probably due to
the much larger number of iterations it takes to converge. The inclusion of block-cut tree
decomposition leads to more instances being solved. Also, note that the lazy implemen-
tation of the Benders decomposition with all the improvements performs better than a
naive iterative implementation. However, adding either the block-cut tree decomposition
or the odd-wheel separation to the iterative implementation suffices for it to significantly
outperform the lazy implementation.

Another relevant observation is that odd-wheel separation is so effective in boosting
the performance of Iterative_Benders, that there is no noticeable difference when it
is combined with block-cut tree decomposition. This can be surmised from Figure 6.14
by noticing that the two corresponding curves, denoted by “Iterative_Benders”
and “Iterative_Benders no decomp”, are almost identical, differing only for small
runtimes.

To further demonstrate the benefits of the proposed improvements, we discuss their
impact when solving the configuration with 3000 points, 1000 disks and radius 30. In
this case, we were not able to generate feasible instances. While Iterative_Benders
with all improvements proved infeasibility in less than one second on average, the naive
implementation, without the improvements, failed to do so for any of these instances even
after 20 minutes. For the ten instances with this particular configuration, the inclusion of
block-cut decomposition alone proved enough for solving seven of them, while odd-wheel
separation on its own led to all instances being solved.

This last analysis highlights the importance of the wheel separation and, to a lesser
extent, of the block-cut decomposition for an efficient implementation of the Benders
decomposition.

Concluding Remarks

In this paper, we introduced mathematical models for the Minimum 3-Colorable Discrete
Unit Disk Cover Problem (M3CDUDC) and devised various algorithmic strategies to
compute these models efficiently in practice. Moreover, we provide theoretical insights
on their performance. From our findings, we conclude that an extended formulation can
be solved by a Benders Decomposition algorithm for large instances with thousands of
points and disks, as long as the implementation includes the procedures described herein.
This is particularly prominent when compared with the approximation algorithms from
the literature that present prohibitively high time complexity [5, 29].

We also present the first empirical study of the problem. Through rigorous experi-
ments, we also gained insight on some factors that influence the hardness of instances.
Surprisingly, we observed that while smaller disks lead to larger covers, which increase the
hardness of the covering aspect of the problem, they may decrease the overlaps, leading
to cover solutions that are easier to color. Likewise, while a larger number of disks in the
input makes the covering aspect of the problem harder to solve, the more scattered they
are, the more dispersed the cover found will be, which also leads to fewer required colors.

With these results and observations, we lay the groundwork for further investigation of
the M3CDUDC problem, while also providing an efficient algorithm that can be used as a

140

baseline for future comparisons and to find exact solutions that can help the investigation
of new heuristics.

Acknowledgments This work was supported in part by grants from: Brazilian
National Council for Scientific and Technological Development (CNPq) #313329/2020-
6, #306454/2018-1; São Paulo Research Foundation (Fapesp) #2018/26434-0,
#2018/14883-5, #2014/12236-1; Knut and Alice Wallenberg Foundation KAW 2021.0307;
ELLIIT Excellence Center; and Natural Sciences and Engineering Research Council of
Canada (NSERC) Discovery Grant RGPIN-2020-06054.

141

Bibliography

[1] P. K. Agarwal, E. Nevo, J. Pach, R. Pinchasi, M. Sharir, and S. Smorodinsky.
Lenses in arrangements of pseudo-circles and their applications. Journal of the ACM,
51(2):139–186, March 2004.

[2] M. Basappa and S. Mishra. Interference reduction in directional wireless networks.
In D. Goswami and T. A. Hoang, editors, Distributed Computing and Internet Tech-
nology - 17th International Conference, ICDCIT 2021, Bhubaneswar, India, January
7-10, 2021, Proceedings, volume 12582 of Lecture Notes in Computer Science, pages
114–126. Springer, 2021.

[3] M. Baysan, K. Sarac, R. Chandrasekaran, and S. Bereg. A polynomial time solution
to minimum forwarding set problem in wireless networks under unit disk coverage
model. IEEE Transactions on Parallel and Distributed Systems, 20(7):913–924, 2009.

[4] D. Bergman and J. N. Hooker. Graph coloring inequalities from all-different systems.
Constraints, 19(4):404–433, 2014.

[5] T. Biedl, A. Biniaz, and A. Lubiw. Minimum ply covering of points with disks and
squares. Computational Geometry, 94:101712, 2021.

[6] A. Biniaz, P. Liu, A. Maheshwari, and M. Smid. Approximation algorithms for the
unit disk cover problem in 2d and 3d. Computational Geometry, 60:8–18, 2017.

[7] P. Brass, F. Hurtado, B. J. Lafreniere, and A. Lubiw. A lower bound on the area
of a 3-coloured disk packing. International Journal of Computational Geometry &
Applications, 20(3):341–360, 2010.

[8] S. S. Brito and H. G. Santos. Preprocessing and cutting planes with conflict graphs.
Computers & Operations Research, 128:105176, 2021.

[9] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete
Mathemathics, 86(1-3):165–177, 1990.

[10] C. Contardo and A. Hertz. An exact algorithm for a class of geometric set-cover
problems. Discrete Applied Mathematics, 300:25–35, 2021.

[11] G. K. Das, R. Fraser, A. López-Ortiz, and B. G. Nickerson. On the discrete unit disk
cover problem. International Journal of Computational Geometry & Applications,
22(5):407–420, 2012.

142

[12] P. J. de Rezende, C. C. de Souza, S. Friedrichs, M. Hemmer, A. Kröller, and
D. C. Tozoni. Engineering art galleries. In L. Kliemann and P. Sanders, editors,
Algorithm Engineering - Selected Results and Surveys, volume 9220 of Lecture Notes
in Computer Science, pages 379–417. Springer, 2016.

[13] E. D. Demaine, S. P. Fekete, P. Keldenich, D. Krupke, and J. S. B. Mitchell.
Computing convex partitions for point sets in the plane: The CG: SHOP challenge
2020. CoRR, abs/2004.04207, 2020.

[14] S. P. Fekete and P. Keldenich. Conflict-free coloring of intersection graphs. Interna-
tional Journal of Computational Geometry & Applications, 28(3):289–307, 2018.

[15] R. Friederich, M. Graham, A. Ghosh, B. Hicks, and R. Shevchenko. Experiments with
unit disk cover algorithms for covering massive pointsets. CoRR, abs/2205.01716,
2022.

[16] Z. Gáspár and T. Tarnai. Upper bound of density for packing of equal circles in
special domains in the plane. Periodica Polytechnica Civil Engineering, 44(1):13–32,
2000.

[17] A. Ghosh, B. Hicks, and R. Shevchenko. Unit disk cover for massive point sets. In
I. S. Kotsireas, P. M. Pardalos, K. E. Parsopoulos, D. Souravlias, and A. Tsokas,
editors, Analysis of Experimental Algorithms - Special Event, SEA 2019, Kalamata,
Greece, June 24-29, 2019, Revised Selected Papers, volume 11544 of Lecture Notes
in Computer Science, pages 142–157. Springer, 2019.

[18] A. Gräf, M. Stumpf, and G. Weißenfels. On coloring unit disk graphs. Algorithmica,
20(3):277–293, 1998.

[19] W. Hale. Frequency assignment: Theory and applications. Proceedings of the IEEE,
68(12):1497–1514, 1980.

[20] D. S. Hochbaum. Why should biconnected components be identified first. Discrete
Applied Mathematics, 42(2):203–210, 1993.

[21] J. N. Hooker and G. Ottosson. Logic-based Benders decomposition. Mathematical
Programming, 96:33–60, 2003.

[22] IBM Corporation. Differences between user cuts and lazy con-
straints. https://www.ibm.com/docs/en/icos/20.1.0?topic=
pools-differences-between-user-cuts-lazy-constraints. Accessed: 06-
21-2022.

[23] A. E. Kiouche, M. Bessedik, F. B. Tayeb, and M. R. Keddar. An efficient hybrid
multi-objective memetic algorithm for the frequency assignment problem. Engineer-
ing Applications of Artificial Intelligence, 87, 2020.

https://www.ibm.com/docs/en/icos/20.1.0?topic=pools-differences-between-user-cuts-lazy-constraints
https://www.ibm.com/docs/en/icos/20.1.0?topic=pools-differences-between-user-cuts-lazy-constraints

143

[24] F. Luna, C. Estébanez, C. León, J. M. Chaves-González, E. Alba, R. Aler, C. Segura,
M. A. Vega-Rodríguez, A. J. Nebro, J. M. Valls, G. Miranda, and J. A. G. Pulido.
Metaheuristics for solving a real-world frequency assignment problem in GSM net-
works. In C. Ryan and M. Keijzer, editors, Genetic and Evolutionary Computation
Conference, GECCO 2008, Proceedings, Atlanta, GA, USA, July 12-16, 2008, pages
1579–1586. ACM, 2008.

[25] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, and M. Birattari.
The irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives, 3:43–58, 2016.

[26] S. J. Maher. Implementing the branch-and-cut approach for a general purpose
Benders’ decomposition framework. European Journal of Operational Research,
290(2):479–498, 2021.

[27] C. Mears, M. Garcia De La Banda, B. Demoen, and M. Wallace. Lightweight dynamic
symmetry breaking. Constraints, 19(3):195–242, 2014.

[28] S. Rebennack. Stable set problem: branch & cut algorithms. In C. A. Floudas and
P. M. Pardalos, editors, Encyclopedia of Optimization, pages 3676–3688. Springer,
Boston, MA, 2009.

[29] M. S. Reyunuru, K. Jethlia, and M. Basappa. The k-colorable unit disk cover
problem. Computing Research Repository (CoRR), abs/2104.00207, 2021.

[30] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming,
volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

[31] A. Sapucaia, A. A. Cire, P. J. de Rezende, S. F. de Rezende, and C. C.
de Souza. Minimum 3-Colorable Discrete Unit Disk Cover – Benchmark In-
stances and Solutions, 2022. www.ic.unicamp.br/~cid/Problem-instances/
Colorable-Unit-Disk-Cover.

[32] A. Sapucaia, P. J. de Rezende, and C. C. de Souza. Solving the minimum convex par-
tition of point sets with integer programming. Computational Geometry, 99:101794,
2021.

[33] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board,
5.4.1 edition, 2022.

[34] L. F. Tóth. Lagerungen in der Ebene auf der Kugel und im raum. Springer, Berlin,
1953.

[35] L. Wolsey. Integer Programming. John Wiley & Sons, Ltd, 2nd edition, 2020.

[36] World Pop. Population Density. https://hub.worldpop.org/geodata/summary?
id=41221. Accessed: 06-30-2022.

www.ic.unicamp.br/~cid/Problem-instances/Colorable-Unit-Disk-Cover
www.ic.unicamp.br/~cid/Problem-instances/Colorable-Unit-Disk-Cover
https://hub.worldpop.org/geodata/summary?id=41221
https://hub.worldpop.org/geodata/summary?id=41221

144

Chapter 7

Conclusions

In this dissertation, we presented the first ILP formulations for several geometric decom-
position problems. The results obtained for these problems are likely to generalize to
other similar problems, laying the groundwork for studying other problems of a similar
nature.

For the mcpp, in Chapter 3, we presented a smaller set of constraints for convex
hull partitioning problems together with a data structure for computing the sum of dual
variables very efficiently. This data structure allowed us to solve the pricing problem
in polynomial time and avoided the need to completely enumerate arrangements. We
also showed how a novel geometric interpretation of the Ryan Foster branching rule
significantly reduces solving time, while fitting the pricing scheme without introducing
new complicating dual variables. The combination of these results sets up a framework
for solving convex hull partition problems that can easily be adapted, as we did for two
of the other three problems studied. These results were only possible due to the inclusion
of many features of the first model for the problem, presented in Chapter 2, including its
heuristics.

Regarding the cqbps, in Chapter 4, we showed how the techniques developed for the
mcpp generalize well for convex hull partitioning problems, even when the comparatively
small number of variables does not require column generation. We showed that the
coloring aspect of the problem could be reinterpreted as set-partitioning, leading to a pure
set-partitioning ILP and significantly decreasing solving time. Based on geometric and
graph-theoretical heuristics from the literature, we also showed how novel heuristics could
be proposed by solving the ILP restricted to a very small number of selected polygons.

The Coarseness problem, presented in Chapter 5, was the first problem that we studied
that is not a variant of convex hull partitioning. Even in this case, we showed that
some of the core ideas from the other problems still applied, such as the combination
of arrangement-based and graph-based components. We also managed to adapt the
pricing scheme used for the mcpp, even though it required a novel approach for the
fast computation of sums of dual variables.

Lastly, in the article that comprises Chapter 6, we presented our results for the
M3CDUDC. This problem is the only one we studied that has disks as the primary
geometric objects, as well as the only one where the objects being chosen are explicitly
given as part of the input. Once again, avoiding the enumeration of an arrangement was

145

crucial for the performance of the model. This was done using row generation, not only by
simply employing Lazy Cuts, but also by applying Logic-Based Benders Decomposition.
The decomposition worked very well indeed, enabling us to separate the covering and
the coloring aspects of the problem. However, as the coloring subproblem was an ILP,
it required problem-specific cuts to be introduced. The final algorithm significantly
outperformed the naive Lazy Cuts implementation, after several improvements were
introduced. We also showed how the solution to the first iteration of this algorithm
used at most 18 times the minimum number of colors used by all possible covers using
disks in D.

Additionally, for each of the problems studied, we were first to make publicly available
all instances and solutions, together with solving information used to compare perfor-
mance. This clearly allows for the comparison against future exact algorithms, but also
helps to better understand the practical quality of solutions found by approximation al-
gorithm and heuristics.

Notably, throughout this work, we observed how well both row and column gener-
ation work for solving geometric variants of decomposition problems. This is mostly a
consequence of how objects are implicitly given through geometric constructions.

Also, the master problem preserves most of the structure of the general decomposition
problems and can benefit from their vast literature. Besides, the subproblem can leverage
the geometry as a self-contained problem that can either be solved in polynomial time or
very efficiently in practice.

This approach worked very well for the classes of problem studied here and are likely
to be a good contender as a first approach when solving other hard geometric problems.

However, we also showed that these ideas can only achieve their full potential after
careful implementation, while being very sensible to problem specific improvements.

In particular, our formulations demonstrated how well arrangements work when mod-
eling geometric decomposition problems. As a tool for discretization of the space, it allows
the expression of constraints very naturally. However, the study of which faces are indeed
necessary for a given problem is a good research direction to improve performance.

For future work, all problems studied could benefit from adapting recent advances
from the literature, specially the ones that improve either column or row generation.
This includes modifying the pricing problems [14], or the lazy cut generation for Benders
Decomposition [12], apart from using fast numerical methods for solving the first relax-
ations [3]. Alternatively, studying better choices of initial constraints/variables and the
inclusion of new classes of constraints are proven directions to speed up both row and
column generation implementations.

146

Bibliography

[1] E. D. Andersen. How to use farkas’ lemma to say something important about
infeasible linear problems. Technical report, Mosek ApS, 2011.

[2] D. L. Applegate, R. E. Bixby, V. Chvatál, and W. J. Cook. The Traveling Salesman
Problem: A Computational Study. Princeton University Press, 2006.

[3] D. L. Applegate, M. Díaz, O. Hinder, H. Lu, M. Lubin, B. O’Donoghue, and
W. Schudy. Practical large-scale linear programming using primal-dual hybrid gradi-
ent. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, ed-
itors, Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pages 20243–20257, 2021.

[4] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H.
Vance. Branch-and-price: Column generation for solving huge integer programs.
Operations Research, 46(3):316–329, 1998.

[5] B. M. Chazelle. Computational Geometry and Convexity. PhD thesis, Yale University,
USA, 1980. AAI8110021.

[6] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer, 3rd edition, 2008.

[7] E. D. Demaine, S. P. Fekete, P. Keldenich, D. Krupke, and J. S. B. Mitchell.
Computing convex partitions for point sets in the plane: The CG: SHOP challenge
2020. CoRR, abs/2004.04207, 2020.

[8] Z. Drezner and Z. Drezner. Facility Location: A Survey of Applications and Methods.
Springer Series in Operations Research and Financial Engineering. Springer, 1995.

[9] T. A. Granberg, T. Polishchuk, V. Polishchuk, and C. Schmidt. Integer program-
ming–based airspace sectorization for terminal maneuvering areas with convex sec-
tors. Journal of Air Transportation, 27(4):169–180, 2019.

[10] D. Halperin and M. Sharir. Arrangements. In J. Goodman, J. O’Rourke, and C. Tóth,
editors, Handbook of Discrete and Computational Geometry, chapter 28. CRC Press
LLC, 3rd edition, 2017.

[11] J. N. Hooker and G. Ottosson. Logic-based Benders decomposition. Mathematical
Programming, 96:33–60, 2003.

147

[12] E. Karlsson and E. Rönnberg. Strengthening of feasibility cuts in logic-based benders
decomposition. In P. J. Stuckey, editor, Integration of Constraint Programming,
Artificial Intelligence, and Operations Research - 18th International Conference,
CPAIOR 2021, Vienna, Austria, July 5-8, 2021, Proceedings, volume 12735 of
Lecture Notes in Computer Science, pages 45–61. Springer, 2021.

[13] M. Akella, S. Gupta and A. Sarkar. Branch and Price: Column generation for solving
huge integer programs, 2021. https://web.archive.org/web/20100821132913/
http://www.acsu.buffalo.edu/~nagi/courses/684/price.pdf, [Online; ac-
cessed 18-May-2021].

[14] S. J. Maher and E. Rönnberg. Integer programming column generation: Accelerating
branch-and-price using a novel pricing scheme for finding high-quality solutions in
set covering, packing, and partitioning problems, 2021. Preprint.

[15] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley
Interscience Series in Discrete Mathematics and Optimization. Wiley, 1988.

[16] L. Palios. Decomposition Problems in Computational Geometry. Doctoral thesis,
Princeton University, USA, 1992. UMI Order No. GAX92-30247.

[17] A. Sapucaia, A. A. Ciré, P. J. de Rezende, and C. C. de Souza. Convex bichromatic
quadrangulation of point sets with minimum color flips. In M. He and D. Sheehy,
editors, Proceedings of the 33rd Canadian Conference on Computational Geome-
try, CCCG 2021, August 10-12, 2021, Dalhousie University, Halifax, Nova Scotia,
Canada, pages 185–194, 2021.

[18] A. Sapucaia, P. J. de Rezende, and C. C. de Souza. Solving the coarseness problem
by ILP using column generation. In O. Gervasi, B. Murgante, S. Misra, C. Garau,
I. Blecic, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha, E. Tarantino, and C. M.
Torre, editors, Computational Science and Its Applications - ICCSA 2021 - 21st
International Conference, Cagliari, Italy, September 13-16, 2021, Proceedings, Part
V, volume 12953 of Lecture Notes in Computer Science, pages 30–45. Springer, 2021.

[19] A. Sapucaia, P. J. de Rezende, and C. C. de Souza. Solving the minimum convex par-
tition of point sets with integer programming. Computational Geometry, 99:101794,
2021.

[20] A. Sapucaia-Barboza, C. C. de Souza, and P. J. de Rezende. Minimum convex
partition of point sets. In P. Heggernes, editor, Algorithms and Complexity - 11th
International Conference, CIAC 2019, Rome, Italy, May 27-29, 2019, Proceedings,
volume 11485 of Lecture Notes in Computer Science, pages 25–37. Springer, 2019.

[21] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board,
5.4.1 edition, 2022.

[22] R. R. Vemuganti. Applications of set covering, set packing and set partitioning mod-
els: A survey. In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial
Optimization: Volume1–3, pages 573–746, Boston, MA, 1998. Springer.

https://web.archive.org/web/20100821132913/http://www.acsu.buffalo.edu/~nagi/courses/684/price.pdf
https://web.archive.org/web/20100821132913/http://www.acsu.buffalo.edu/~nagi/courses/684/price.pdf

148

[23] L. Wolsey. Integer Programming. John Wiley & Sons, Inc., 1998.

[24] L. Wolsey. Integer Programming. John Wiley & Sons, Ltd, 2nd edition, 2020.

	Introduction
	Background
	Integer Linear Programming
	Basics of Computational Geometry

	Contributions
	Text Organization

	Minimum Convex Partition of Point Sets
	Introduction
	Experimental Environment
	A Mathematical Model for the mcpp
	Heuristics
	Computational Results
	Final remarks

	Bibliography
	Solving the Minimum Convex Partition of Point Sets with Integer Programming
	Introduction
	Our Contribution
	Literature Review
	Organization of the text
	Basic Notation

	A Set Partition Model for the mcpp
	Column Generation Algorithm for SPM
	Branch-and-Price
	Introducing Edges
	Primal Heuristic
	Initial Primal Solution
	Lower Bound and Early Stopping
	Stabilization
	Degree Constraints

	Experimental Results
	Conclusions

	Bibliography
	Additional Comments

	Convex Bichromatic Quadrangulation of Point Sets
	Introduction
	Integer Linear Programming Model
	Pure Set-Partition Formulation
	Linear Relaxation Based Heuristics
	Quadrangulation-based
	Edge-based
	Triangulation-based
	Matchings and Edge-Flips

	Experiments
	Concluding Remarks

	Bibliography
	Solving the Coarseness Problem by ILP Using Column Generation
	Introduction
	ILP Model for the Coarseness Problem
	Improving the Base Model
	Lower Bound (LB)
	Upper Bound (UB)
	Least Discrepancy Constraints

	A Column Generation Algorithm
	Experimental Results

	Bibliography
	Covering Points with Unit Disks under Color Constraints
	Introduction
	Solving the M3CDUDC using ILP
	Notation and Concepts
	Arrangement-based Model
	Symmetry Breaking Constraints
	Convex Faces of the Arrangement
	Lazy Coloring Constraints

	Extended Model
	Solving the Subproblems

	Heuristics
	Violation Repair
	Relaxation-based reduction
	Greedy Heuristic

	Analysing the decomposition
	Implementing Benders Decomposition
	Coloring Minimum Covers

	Empirical Evaluation

	Bibliography
	Conclusions
	Bibliography

