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There isn’t time, so brief is life.
There is only time for loving,
and but an instant, so to speak, for that.

(Mark Twain)
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Resumo

O crime no século 21 é dividido em dois mundos. O mundo virtual se transformou em uma
ameaça global para o bem-estar e a segurança das pessoas no mundo real. Os desafios que apre-
senta devem ser enfrentados com uma cooperação global unificada e devem contar mais do que
nunca em ferramentas automatizadas, porém confiáveis, se quisermos combater a crescente dos
crimes online. Mais de 10 milhões de denúncias de abuso sexual infantil são enviadas ao Cen-
tro Estadunidense para Crianças Desaparecidas & Exploradas todos os anos, com mais de 80%
dessas de natureza primariamente virtual. Centros de investigação e instituições de acolhimento
são, portanto, incapazes de processar e investigar manualmente todas as imagens com a precisão
necessária. Diante disso, há a necessidade de ferramentas automatizadas confiáveis que possam
trabalhar esse tipo de material com segurança e eficiência é primordial. Particularmente, o re-
conhecimento de cenas é a tarefa de entender os contextos do ambiente a partir de qualquer tipo
de imagem. Essa tarefa é considerada útil para agrupar e classificar dados de abuso sem usar
modelos treinados necessariamente em dados sensíveis. A escassez e as limitações envolvidas
no trabalho com imagens de abuso sexual infantil levam ao uso do aprendizado autossupervi-
sionado, uma nova metodologia de aprendizado de máquina que aproveita dados não rotulados
para produzir representações robustas capazes de ser mais facilmente transferidas para tarefas
de destino. Esta dissertação de Mestrado desenvolveu modelos de aprendizado profundo autos-
supervisionados pré-treinados em dados focados em cenas com 71,6% de acurácia balanceada
em nossa tarefa de classificação de cenas de ambientes internos e, em média, 2,2 pontos percen-
tuais de desempenho melhor do que uma versão totalmente supervisionada. Cooperamos com
especialistas da Polícia Federal para avaliar nosso modelo em material de abuso sexual infantil
e encontramos 36,7% de acurácia balanceada na classificação de cenas, mostrando que há uma
lacuna entre a maneira como os ambientes são representados no conjuntos mais populares de
classificação de ambientes e em material sensível.



Abstract

Crime in the 21st century is split into two worlds. The virtual world has become a global men-
ace to people’s well-being and security in the real world. The challenges it presents must be
faced with unified global cooperation and must rely more than ever on automated yet trustwor-
thy tools if we wish to combat the ever-growing nature of online offenses. Over 10 million
child sexual abuse reports are submitted to the US National Center for Missing & Exploited
Children every year, with more than 80% from online sources. Therefore, investigation centers
and clearinghouses cannot manually process and correctly investigate all imagery. In light of
that, reliable automated tools that can securely and efficiently work this material is paramount.
In this sense, scene recognition is the task of understanding environment contexts from any
kind of image. This task can help group and classify child sexual abuse data without requiring
training on sensitive material. The scarcity and limitations involved in working with child sex-
ual abuse images lead to self-supervised learning, a novel machine learning methodology that
leverages unlabeled data to produce powerful representations that can be more easily transferred
to target tasks. This Master’s thesis shows that self-supervised deep learning models pretrained
on scene-centric data can reach 71.6% balanced accuracy on our indoor scene classification
task, and on average 2.2 percentage points better performance than a fully supervised version.
We cooperate with Brazilian Federal Police experts to evaluate our indoor classification model
on actual children abuse material and find 36.7% balanced accuracy on scene classification,
showing a gap between the features on popular scene datasets and those depicted on sensitive
material.
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Chapter 1

Introduction

The virtual world has been part of society for over three decades now, and for many of us, it
became an essential element of our lives once the COVID-19 lockdown had started to be en-
forced worldwide. In particular, our entertainment, our families, our jobs, our routines, and
our privacy grew more attached to the such world, making some people question how we will
ever disconnect. Since the popularization of the internet in the 1990s, the modern world has
been deemed to exist without physical borders, undeniably changing how we obtain informa-
tion, communicate, work, consume and socialize, but also providing an environment for misuse
and abuse.

New vicious forms of crime include spreading malicious software, global networks of abuse
imagery, drug trafficking, illegal organ supply chains, and even artificial intelligence (AI) en-
abled blackmail. As crime develops and changes in the age of connected societies, so must
policing, for “the world is becoming a single jurisdiction” [60] and the efforts to fight crime in
the 21st century must be made at an international level.

We emphasize that child sexual abuse networks are an ever-growing problem that has lacked
proper efficient solutions for too long. In this Master’s thesis, we focus on studying how to
tackle the distribution of Child Sexual Abuse Material (CSAM) through AI applications. The
worldwide consumption of this sort of imagery has become prevalent in the last few years, with
millions of reports being received monthly by law enforcement agencies and clearinghouses
worldwide. Such a phenomenon leads to the classification of thousands of related and unrelated
material at each new accusation, leading to slower investigations and emotionally harmed per-
sonnel [15]. Thus, the demand for automated solutions becomes louder every year, with several
different approaches to solve the CSAM classification problem. In light of the ethical and legal
questions within this subject, for over a decade, hashing comparison has been the most com-
mon method for dealing with this kind of data, in which Microsoft Photo DNA became the best
known CSAM hash database [76].

Given the ascension of deep learning in computer vision, many neural network solutions
have attempted to aid this task. However, the barriers to working with this kind of data and the
limited amount of annotations have so far seriously complicated the evolution of most initia-
tives. Jahankhani et al. [60] pointed out that “the complexity of the child abuse images space
means that the application of the same techniques will not garner similar results”, but there
is room for improvement when multiple approaches are used in combination [76], meaning
CSAM direct classification is not the only way to go.
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As Brazil figures in the top 10 countries with the most annual CSAM reports [15], solutions
able to confidently speed up the investigations are welcomed by the police force, but most
importantly by the helpless children facing abuse where they should find affection.

With that in mind, scene recognition would be beneficial in speeding up investigations and
finding the most probable cases to lead to an arrest [15]. For instance, detecting multiple images
of a child’s room potentially indicates the presence of children’s images in a database, even
though they are not naked or undergoing any sexually explicit activity. This approach focuses
on a less abstract feature and can be intensively tested and tuned, as it serves a more general
purpose than CSAM classification while simultaneously being simple to find reliable, abuse-
free material for training.

In view of this scenario, we propose addressing the indoor classification problem through
self-supervised learning [62], focusing on contrastive frameworks [83]. Such a methodology
helps develop a more robust model and performs better than supervised transfer learning by
using large amounts of unlabeled data to generate general representations that can be finetuned
on downstream (target) tasks [36].

1.1 Problem Description

Deep learning has proven itself to be one of the most successful methods for creating general
and scalable models using only raw data as a source of knowledge [75]. However, the recent
advances in neural network architectures to produce state-of-the-art classifiers demand massive
computational resources and labeled data [11, 13, 103]. Unsupervised approaches started to
receive more attention in the face of the costs of annotating large amounts of data, leading to
the field of self-supervised learning (SSL) [24]. The development of this area evolved fast, and
several state-of-the-art models in natural language processing and computer vision are based on
self-supervision [21, 62]. Many other areas that lack vast amounts of annotated data can benefit
from self-supervised pretrained models, as they are especially effective in transfer learning,
surpassing other supervised versions [36].

We use self-supervised learning to improve scene classification. Under this approach, we
can leverage large amounts of unlabeled data to produce a more robust model for finetuning
on domains other than regular transfer learning, thus surpassing supervised learning models on
several tasks. SSL has been successfully applied on scene classification with SwAV [17] and
SEER [42] on the Places205 dataset [134], and on scene understanding using real and synthetic
images for depth measurement and object segmentation [36, 106]. However, it has yet to be
tried in the indoor classification subset with the intent of helping CSAM recognition.

Whereas scene recognition may be acknowledged as a homogeneous classification task
[129], indoor and outdoor environments vary greatly in textures, objects, colors, shadows, fram-
ing, and many other features. Indoor environments contain large non-textured regions that are
extremely rare in outdoor environments, which can make models with impressive results for
outdoors utterly fail at indoor scenes [127]. Moreover, the distribution and variety of objects
are much denser in indoor environments, thus making segmentation images of these scenes
more expensive and prone to error [106]. In that sense, several researchers have used synthetic
datasets for indoor research, providing much more reliable depth, segmentation, and lighting
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maps than real ones [107].
In the end, scene recognition is still a difficult task because one object may be essential to de-

fine the context of a whole scene [99]. This means the comprehension of an indoor scene relies
on the relation between various pixel-level features, which we hypothesize to be a characteristic
it has in common with the context-based nature of indecency in CSAM. The ambiguity between
play and abuse can only be unraveled by techniques able to deal with dense-level information,
which in turn leads us to tackle this problem with SSL.

1.2 Motivations and Challenges

The last couple of decades have seen exponential growth in the number of CSAM reports re-
ceived by the US National Center for Missing & Exploited Children (NCMEC) and worldwide
law enforcement agencies (LEA), reaching over 10 million in 2018 alone. The authorities point
out the origin or distribution source for most abusive imagery found today to be the online
collaborative platforms, such as peer-to-peer and social networks, which have grown exponen-
tially in this century [15]. The largest hindrance to effectively combating CSAM is the lack of
proper legal tools in most countries. The International Centre for Missing & Exploited Chil-
dren (ICMEC) advocates that there should exist a global level of cooperation, and all countries
should satisfy the five criteria below:

1. Existence of national legislation with specific regard CSAM;

2. CSAM definition;

3. Criminalization of technology-facilitated CSAM offenses;

4. Criminalization of CSAM possession, regardless of the intent to distribute;

5. Internet Service Providers’ (ISPs) responsibility to report suspected CSAM to law en-
forcement or other mandated agency.

In 2018, 118 out of 196 countries were reported to have fulfilled at least four of the five cri-
teria, whereas 16 countries still do not have any legislation addressing CSAM, and most punish
only possession, yet allowing online visualization. Furthermore, the borderless characteristic of
the internet allows for websites to be hosted in countries that do not prohibit this sort of material
while it is being consumed by countries that do, making investigations extremely hard to find
proof or trails of the committed crimes [60]. CSAM classification constitutes a laborious and
emotionally expensive task, prone to personal bias and unintentional human subjectivity.

Thus, automatic CSAM detection has been emphasized as one of the most requested tools
by agents around the world [85]. For context, the United Kingdom’s government has already
invested £7 million in 2020/21 to build a Child Abuse Image Database (CAID), which contains
over 18.8 million indecent images of children, to help develop a classification system for inves-
tigation efficiency and reduced human contact with that kind of material [52, p. 42]. Currently,
a hash comparison is the most used method for automated CSAM detection, already responsi-
ble for most of the alerts emitted today despite its limited flexibility, leading to multiple entries
for the same original image on many hash databases [76]. For reports and investigations with
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never-before-seen data, law enforcement personnel is still responsible for manually auditing the
material, which is not only a source of bias but also a psychological strain on the agents’ mental
health [67].

Notwithstanding these efforts, CSAM classification presents several challenges before accu-
rate predictions can be made automatically. As Macilotti [86] explains, the decision of whether
an image is explicit enough to be considered indecent is not well defined: the notion of “sex-
ually explicit” may sound straightforward but becomes extremely subtle more often than not,
given the context of the image or the culture of the viewers. Kloess et al. [67] argue that “nu-
dity alone is not indicative of indecency” whereas posing fully clothed can be considered erotic
under some circumstances, mainly if other images depicting the same child in more abusive
material is found during the investigation. From such, the most often used guidelines for clas-
sifying CSAM material, the Offense categories from the UK Sentencing Guidelines Council,
shown in Table 1.1, try to encompass all these possibilities and function as a general meter of
severity, but without specifying excessive detail.

Table 1.1: Offense categories from the Sentencing Guidelines Council. Categories A, B, and C
represent the offense levels of the current classification system used in the United Kingdom to
categorize indecent images of children according to the degree of severity depicted within them.

Level Description
A Images involving penetrative sexual activity, possession of images

involving sexual activity with an animal or sadism
B Possession of images involving non-penetrative sexual activity
C Images of erotic posing

Additionally, determining the actual age of the victim is particularly challenging, and even
experienced human experts have difficulty correctly defining the child’s age using only images
as reference [86]. Rondeau [109] illustrates that it is possible to build an accurate classifier for
the apparent age, i.e., the age humans guess the person has, while biological age still lacks
enough precision to be used on CSAM classification. In this sense, it is possible to reach more
consistent results by segmenting through age groups, such as child and adolescent, instead of
attempting to define one’s age numerically [37]. On the other hand, the stiffness of the law is
usually hard to tackle, for the distance between ages 17 and 18 is also the difference between
guilt and innocence.

In light of the ethical and legal hurdles involved in working with CSAM, anyone outside
of the police, including researchers, can absolutely never have direct access to reports or any
sensitive imagery in any nation forbidding such practices, making contact with police experts
a hard requirement for the study to go forward [15, 76]. Similarly, accessing a labeled CSAM
database is hard, and the large ones available, such as CAID, forbid access for deep learning
research or international cooperations as a security measure besides sharing the images hashes
[52, p. 43].

Despite the obstacles discussed in this section, several approaches exist to assist CSAM
recognition using publicly available data. Many studies have focused on detecting indecency or
age measurement, which are essential yet complex features to achieve useful accuracy levels.
Bursztein et al. [15] bring to discussion the fact that both review and investigation could benefit
from scene clustering and recognition, with the former focusing on grouping imagery from the
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same location and the latter reporting objects, environments, and landmarks different materials
may have in common.

With that in mind, this Master’s thesis focuses on scene classification as a means of helping
CSAM investigation. As most CSAM happens indoors, experts can gather information from
contextual factors to determine if children are involved in the image or even if the image depicts
indecency. As Kloess et al. [67] exemplify, the background and colors can “give clues as to the
type of room in which the image was taken, and whether it is likely to belong to a child or an
adult” or even indicate the image was taken in “an environment that minimizes the likelihood
of detection, where the victim is unaware they have been photographed”.

As stated by Bursztein et al. [15], “a key challenge for law enforcement is prioritizing the
reports which are most likely to lead to an arrest”. Scenes like children’s rooms, playrooms,
bathrooms, and showers may indicate the presence of children or nudity, which can alert inves-
tigators for images most probable to be CSAM. Deep learning models that can narrow down
the amount of material to be analyzed would thus be easier to develop than pure CSAM clas-
sifiers because they could use more data, receive more precise hyperparametrization, be better
proof-tested, calibrated, and checked for bias and weak points.

On the other hand, the more data is available and the model is tuned, the more time and
other resources are consumed. In particular, self-supervision is especially data-hungry, which
makes it extremely expensive to train SSL models from the ground up [42]. Regardless, a
second pretraining task is still expensive enough that researchers must carefully decide which
models and data should be used. Models that use negative samples will be computationally more
expensive, as the increasing number of entries requires more neural network calls. However,
it is empirically accepted that pure positive models do not have the general performance of
traditional contrastive learning, partly because the contrastive loss improves the variance of
learning parameters when there are more negative samples [83].

Moreover, most literature on self-supervised and contrastive learning methods is fairly re-
cent, with a large portion of results published between 2020 and 2021. Thus, one should be in
close contact with the ongoing research to understand the advantages and shortcomings of the
disposable models.

Additionally, the concerns with inductive biases, in general, are maximized in public SSL
models. Traditionally, when training and testing machine learning models, we must assume
the real-world data conforms to our dataset’s distribution, which frequently fails in experi-
ments [83]. Therefore, the lack of variety on the pretraining tasks can potentially harm the
generalization and domain transferring ability these models can have, meaning that data with a
higher variation of features is crucial in self-supervised pretraining [42], which we plan to deal
by using large and more diverse datasets, similar to reality.

1.3 Objectives and Research Questions

1.3.1 Objectives

This Master’s thesis primary goal is to seize self-supervised learning for scene classification. In
this sense, we summarize our objectives as:
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O1. To build indoor classification models focused on CSAM environments.

O2. To compare the performance of self-supervision pretraining versus fully-supervised
approaches in the indoors recognition field.

O3. To support the CSAM investigation process with a reliable indoor classification
model.

1.3.2 Research Questions

The key research questions this Master’s thesis aims to answer are:

Q1. Does self-supervised outperform supervised learning for indoor classification?

Q2. Can we boost self-supervised target task performance by adding a pretraining task
that uses synthetic images and their segmentation maps?

Q3. Are popular scene recognition datasets representative enough of CSAM environ-
ments that a scene classification model built from them can be used on such sensitive
data?

1.4 Contributions

This Master’s thesis contributes to the field of scene recognition by applying multiple SSL
techniques to tackle scene classification for the first time. In this regard, we show SSL surpasses
supervised learning on this task with high confidence.

Beyond that, we test our best-trained model on real CSAM and show the distribution of
scenes in this data and its distinct features compared to popular scene recognition datasets.

Finally, our experiments show that combining publicly available SSL models with scene
datasets improves indoor classification overall, also helping CSAM recognition and triage.

1.5 Outline

The Master’s thesis is organized as follows. In Chapter 2, we review supervised, unsupervised,
self-supervised, and contrastive learning frameworks under deep learning. In Chapter 3, we
bring the most recent works on CSAM investigation and scene recognition. In Chapter 4, we
describe the general pipelines used for pretraining and finetuning models that will answer the
proposed questions and reach this research’s objectives. Then, in Chapter 5, we present the
used datasets, the experimental design, and its results for our target task and real CSAM data.
Finally, we summarize our conclusions in Chapter 6, pointing out the contributions, challenges,
and possible routes for future work.

We use the terms deep learning and neural networks interchangeably along the text.
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Chapter 2

Background

Machine learning is an interdisciplinary field of statistics and computer science that builds gen-
eral models exclusively from data. The field is constituted by various methods, algorithms, and
procedures under which raw or processed data is used for computer vision, natural language
processing, audio recognition, machine control, and many others.

In that sense, the methods that can be applied are limited by the amount of data and labels
available. In general, the presence of labeled data, even in small quantities, is a hard requirement
of most artificial intelligence approaches, but the high costs involved in getting millions of
data points to be labeled are prohibitively expensive and time-consuming. Hence the desire
to leverage raw and unlabeled data together with labeled material in the process, namely self-
supervised learning.

In this chapter, we explain the different kinds of machine learning approaches in terms of
the presence or absence of labeled data (Section 2.1). We focus on self-supervised learning
and the contrastive learning approach, with a short review of the topic and the most important
contributions. Then, we emphasize the techniques used in this Master’s thesis (Section 2.2)
and the optimizations essential for the obtained outcomes (Section 2.3). In the end, we briefly
explain the statistical method applied to analyze the results (Section 2.4).

2.1 Types of Machine Learning

2.1.1 Supervised Learning

Supervised learning is a machine learning approach to build models exclusively from annotated
data. Let X be a feature data set and Y the set of their labels. A supervised learning algorithm
seeks a function f : X → Y and requires both X and Y for this task.

In classification tasks, X usually is a set of images or video frames, and Y is the class each
image represents. Moreover, under the deep learning approach, the function f is an artificial
neural network classifier that receives an image and outputs its class representation.

Classic supervised learning is limited by the amount of annotated data for training. Thus,
this method is not scalable nor cost-effective when we consider it has to discard all unlabeled
data. Even though the latter is much more abundant than the former, especially in real-world
applications [62].
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2.1.2 Unsupervised Learning

Unsupervised learning is a machine learning approach to build models exclusively from unla-
beled data. Let X be a feature data set. An unsupervised learning algorithm seeks labeling
set Y for X and a mapping f : X → Y . Some algorithms might need the size of set Y
as a training hyperparameter, particularly in clustering algorithms such as k-Means or Feature
Agglomeration [96].

In computer vision, pure unsupervised learning algorithms have yet to show results compa-
rable to supervised ones, especially considering that most still rely on linearly separable features
or spherical distributions [122].

2.1.3 Self-Supervised Learning

Self-supervised learning (SSL) is a machine learning approach for building models using both
unlabeled and labeled data. The usage of unannotated data reduces data annotation costs while
also finds purpose to the massive amounts of unlabeled images and texts published daily all
over the world [42]. Therefore, self-supervision follows a pattern similar to supervised transfer
learning with a pretraining step, commonly called pretext task, which is designed to extract
features from unlabeled data.

In short, SSL is simply a two-stage training: a pretext task using unlabeled data for a generic
model pretraining and a downstream task using labeled data for specializing the model on a
selected target task.

We can summarize the SSL pretext task with two goals [83]:

1. To obtain pseudo labels from the data itself, which can be produced automatically. These
must be designed to teach the model general semantic features within the data set.

2. To predict or recover part of the data from other parts, where “other parts” could be
transformed or corrupted data

Then, the first step in the SSL pretext task is to produce pseudo labels pi for each entry
xi from a feature data set X . The pseudo labels are automatically generated without human
annotations and can be produced with minimal cost. Thus, given n entries in X , we have a set
P = {pi}ni=0, and the self-supervised loss L is defined similarly to the supervised loss.

L(X,P ) = min
1

n

n∑
i=1

loss(xi, pi). (2.1)

In computer vision, common pretext tasks are grayscale colorization [74], jigsaw puz-
zle, cutout reconstruction, image inpainting, resolution upscaling, foreground object segmenta-
tion, clustering, temporal order verification, visual-audio correspondence verification, and con-
trastive representation comparison (Figure 2.1). Additionally, it is crucial that such tasks can be
solved from image features, which exclude hashes or metadata as viable pseudo labels [62].

Afterward, the resulting model is finetuned on specific downstream tasks, which must use
a labeled dataset Z, with the difference that here it is not required to have large amounts of
data (Figure 2.2). There are no limitations to the domain of the downstream task. However, it
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Figure 2.1: Typical self-supervision transformations: colorization, super-resolution, and in-
painting. Given the original image on the left, models are asked to recover it from various
partial inputs given on the right. Figure extracted from Liu et al. [83].

has been empirically shown that ideally X and Z should be constituted of images with similar
properties, such as textures, shapes, and color gamut [36].

Figure 2.2: The general SSL pipeline. Simple visual features are learned through Convolutional
Neural Networks (CNNs) pretraining with pretext tasks pseudo labels. Next, the learned param-
eters are finetuned into proper downstream tasks, whose performance measures the quality of
the learned features. Figure extracted from Jing and Tian [62].

At first glance, this process might be taken as a rather complex version of supervised learn-
ing, with the addition of a new training step that requires large amounts of data most practi-
tioners and scientists would not dispose of or would not have the resources to use. Generally,
however, supervised learning produces specialized systems, oftentimes lacking out-of-domain
robustness. On the other hand, SSL simplifies the usage of deep learning because it detaches
the general representation learning from the specialized and application-related one [10].

Initially, we employ the pretext tasks to produce a model that learned generic image repre-
sentations, able to be further improved on more specific tasks. From an interpretability stand-
point, a well-trained self-supervised model should encompass highly general detectors for fea-
tures such as textures, colors, and shapes for dense, pixel-level structures. On the other hand,
at this point of training, the network shall not hold detectors for people, animals, objects, or
places, as those would be too specialized for the pseudo labels to contain any information.
Hence self-supervised models contrast with supervised versions trained on the same dataset
because the former possesses more general representations than the latter, reducing the gap
when they are transferred into other domains [8], i.e., when the pretrained model is trained on a
new different task, e.g., pretraining in ImageNet and retraining on medical images. Moreover,
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self-supervised training can use several different pretext tasks, increasing the robustness of the
low-level abstractions created on the first layers of the network.

Finally, it has been demonstrated that self-supervised models outperform their supervised
counterparts for ResNet-50 on image classification, detection, and segmentation in multiple
benchmarks [36]. Therefore, SSL shows real advantages over supervised learning, given its
higher robustness and generally better performance, especially when the downstream task has
less than a hundred thousand images in the dataset [30].

Contrastive Learning

Regular self-supervision follows an unstructured application of the pretext tasks in the sense that
adding a new pretext task can greatly influence the training time as it must be applied to every
image in the dataset. This process cannot use multiple images to simultaneously solve one task,
adding further complexity to model pretraining. Also, this can lead to limited generalization
capacity of the self-supervised pretrained model because it is never shown in the context of the
image, making for less useful representations.

Contrastive learning was developed as a new paradigm for self-supervised pretraining. This
method focuses on creating a model that, ideally, compares two samples numerically (e.g.,
two images), therefore grouping similar images while pushing different ones apart. Within an
unlabeled dataset, there is no prior distance measurement, and thus, for an anchor image sample,
any transformed version is labeled as “similar” (or positive), and all other samples are labeled
as “different” (or negative), see Figure 2.3.

Figure 2.3: A simplified view of the general contrastive learning process. An anchor image and
its augmented view are pushed closer while negative images are moved away. Figure extracted
from Jaiswal et al. [61].

Contrastive learning is closely related to metric learning, an unsupervised learning subfield
that aims to construct a specialized distance metric from weakly supervised data [9]. Under
the deep learning umbrella, specific objective functions have been formulated to adapt metric
learning to neural networks, with InfoNCE (Info Noise Contrastive Estimation) being the first
one proposed [94], shown in Equation 2.2.
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L = E[− log
ef(x)

T f(x+)

ef(x)T f(x+) +
∑

k e
f(x)T f(x−

k )
], (2.2)

where x+ is similar to x, x− is dissimilar to x and f is an encoder.
In most published papers, the encoder is of the ResNet family [48] and the losses sometimes

employ different similarity measures and weights between x, x+ and x−, but the framework
remains the same. On the other hand, “the art of self-supervised learning primarily lies in
defining proper objectives for unlabeled data” [83], and contrastive losses are one of the most
studied topics with new variations being proposed after each breakthrough.

The original contrastive learning framework is the end-to-end mechanism, in which two
encoders are trained simultaneously with the contrastive loss. The first methods to propose
this kind of instance discrimination were IntDisc [122], CMC (Contrastive Multiview Coding)
[118], and Deep InfoMax [54]. However, it was notoriously successful with Chen et al. [24],
which best demonstrated the importance of hard positive samples by introducing a set of 10
data augmentations from which transformations are sampled.

Despite its state-of-the-art performance on several downstream tasks, the end-to-end train-
ing is sensitive to batch size, demanding as many as 8196 samples on the best SimCLR (Simple
framework for Contrastive Learning of visual Representations) model. Therefore, on MoCo
(Momentum Contrast) [50], researchers replace one of the encoders at the original contrastive
learning framework for a momentum version of the other one and add a queue of negative sam-
ples to handle the large batch size employed by other methods so far. MoCov2 [26] brings some
improvements over the original algorithm following the contributions laid down by SimCLR,
especially regarding the hard positive sampling.

Following this path, BYOL (Bootstrapping Your Own Latents) [45] attempts to overcome
the aforementioned problems regarding negative sampling by completely removing them from
training. It argues that these negative views bring value only when a negative sample is similar
to the anchor image, which is so rare on most datasets that it usually demands huge amounts
of data per batch to find a few. To prove that statement, the researchers had to add a layer to
one encoder and use an exponential moving average to update the other one, inspired by MoCo.
Furthermore, the contrastive loss is the mean square error, in contrast to the usual cross-entropy
function. These changes led to a better model on most downstream tasks and were more robust
to smaller batch sizes than SimCLR and MoCov2.

In SimSiam (Simple Siamese) [25], this pure positive methodology is further studied but
also simplified, removing the need for moving averages or momentum encoder. They found
that the stop-gradient operation is the most crucial for stable learning. These changes led to a
faster convergence rate, robust to even smaller batch sizes, and comparable performance.

Additionally, there is a cluster-based approach to contrastive learning. DeepCluster (Deep
Clustering) was the first method of this kind to achieve competitive performance by attempting
to cluster image representations as means of pretraining the network [16]. More prominently,
SwAV (Swapping Assignments between multiple Views) was the model that brought clustering
closer to contrastive learning by proposing a swapped prediction contrastive loss that compares
representation vectors with cluster codes, which helps assign the same image’s view to the same
clusters. SwAV outperforms other contrastive methods on small models; it is robust to batch
sizes as small as 256, and it is more computationally efficient [17]. Moreover, DeepClusterv2
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was proposed together with SwAV to update the DeepCluster algorithm to more recent con-
trastive learning findings, and it was shown to match SwAV performance.

Ericsson et al. [36] performed a comprehensive evaluation of the aforementioned contrastive
learning methods on ResNet-50 encoders and discovered that self-supervision downstream
training outperforms plain supervised learning on classification, detection, depth estimation,
and semantic segmentation on most Kornblith datasets [68] with the only exception being few-
shot learning. None of these datasets indulge in scene recognition, but a correlation was shown
between performance on ImageNet and the other datasets when the images are similar or de-
pict the same objects, with DeepClusterv2 [16] and SwAV [17] figuring as the best algorithms
overall.

On the other hand, contrastive learning has its pitfalls, and it should be considered when
using pretrained models on downstream tasks. He et al. [49] found that ImageNet pretrained
models have limited performance on MS COCO object detection, and Zoph et al. [135] showed
it could be attributed to the gap between the instance discrimination and object detection, which
limits the trustworthiness of dense classification that may depend on pixel-level information.
Furthermore, contrastive methods that use SimCLR data augmentations for positive sampling
tend to discard color information [36], which may be crucial for some specialized classification
tasks that cannot rely on edges or texture.

Contrastive learning brings state-of-the-art models with more reliable and simpler transfer
learning mechanisms, making it most suitable for projects with limited amounts of annotated
data despite the differences between domains, especially in classification scenarios [83]. For
reference, we show a comprehensive list of important contrastive learning publications of the
past four years in Table 2.1.

2.2 Methods

2.2.1 SimCLR

The Simple Contrastive Learning of Visual Representations method (SimCLR) [24] is an end-
to-end training framework for contrastive learning, which introduced composing data augmen-
tations, nonlinear transformations in the projection head, and larger batch sizes to achieve better
performance.

As illustrated in Figure 2.4, the method augments a minibatch of N images into 2N samples
{x̃i}2Ni=1. For each positive pair x̃i, x̃j (derived from the same original sample), the remaining
2(N − 1) are treated as negative, and therefore the positive pair NT-Xent loss, normalized
temperature-scaled cross entropy loss, becomes

li,j = − log
esim(zi,zj)/τ∑2N

k=1[i ̸= k]esim(zi,zk)/τ
, (2.3)

where [i ̸= k] is the Iverson bracket, τ denotes the temperature parameter and sim(zi, zj) is
the cosine similarity between the normalized representations zi and zj of augmented samples x̃i

and x̃j , respectively. Thus, the total minibatch loss is
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Table 2.1: List of important contrastive learning studies ordered by published date. Acc. stands
for the published ImageNet-1k top-1 accuracy. ∗Tiny ImageNet.

Method Pub. Characteristics Acc. (%) Backbone Batch
Year Size

DeepCluster [16] 2018 not contrastive, unsupervised clustering
feature vectors, clusters with k-means
(k ≈ 10, 000)

41.0 AlexNet 256

IntDisc [122] 2018 instance discrimination, data samples
versus noise samples

54.0 ResNet-50 256

DeepInfoMax [54] 2019 maximizes mutual information, in-
stance discrimination

∗38.1 ResNet-50 4096

CMC [118] 2019 multiple views (color channel, depth,
segmentation), instance contrastive,
memory bank

42.8 AlexNet 4096

MoCo [50] 2019 instances kept in queued memory bank,
momentum encoder to improve the
representation consistency between the
current and earlier seen keys

60.6 ResNet-50 256

SimCLR [24] 2020 instance contrastive method, two equal
encoders, combined augmentations

76.7 ResNet-50 2048

MoCov2 [26] 2020 improves MoCov1 inspired by Sim-
CLR: MLP projection head and more
data augmentations

67.5 ResNet-50 256

BYOL [45] 2020 pure positive contrastive: no negative
instance discrimination; online and tar-
get encoders with different sizes, ap-
plies moving average and 3 phases rep-
resentation, projection, prediction

74.3 ResNet-50 4096

SimSiam [25] 2020 one network, each step two results,
swapped loss, stop-gradient to prevent
collapse, same image - no negative pairs

68.1 ResNet-50 512

SwAV [17] 2020 clustering contrastive method, online
learning, latent variable, clustering

75.3 ResNet-50 256

DeepClusterv2 [17] 2020 improves DeepClusterv1 with ResNet-
50, better augmentations, cosine learn-
ing rate schedule, MLP projection head,
use of centroids

75.2 ResNet-50 256

Barlow Twins [128] 2021 batch contrastive, low negative size,
low batch size, benefits from high-dim
representations, cross-correlation loss,
maximizes mutual information

71.8 ResNet-50 2048

MoCov3 [27] 2021 introduces vision transformer architec-
ture in MoCo

79.9 ViT-B 1024

DINO [18] 2021 student-teacher architecture, vision
transformers

80.1 DeiT-S/16 1024

SEER [42] 2021 SwAV on 1B Instagram Images for 1
epoch, RegNetY Scalable Architecture

84.2 RegNetY-256 8704

Data2Vec [6] 2022 multi-model general representation
(deals with text, audio, and vision),
applies vision transformer architecture

84.2 ViT-B 2048



27

L = E[l] =
1

2N

N∑
i=1

l2i−1,2i + l2i,2i−1. (2.4)

Figure 2.4: SimCLR framework: two data augmentation operators are sampled from the same
distribution (t ∼ T and t′ ∼ T ) and applied to each sample to obtain a positive pair. A
base encoder network f and a projection head g are trained to maximize agreement using a
contrastive loss. f is the output of this self-supervised pretraining algorithm. Figure extracted
from Chen et al. [24].

Figure 2.5: Isolated views of the transformations proposed for SimCLR yet commonly used on
other contrastive learning applications. Figure extracted from Chen et al. [24].

While self-supervised learning makes intensive data augmentations on pretext tasks a sys-
tematic way to generate pseudo labels, several transformations have been proposed with varied
usage throughout the literature [62]. In that regard, SimCLR introduced a set of data augmenta-
tion operations that other contrastive learning techniques have widely adopted [17, 25, 45, 128],
namely crop, resizing, flip, color jitter, color drop, 90º rotations, cutout, noise, blur, and Sobel
filtering, as shown in Figure 2.5.
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These augmentations are randomly sampled to generate positive pairs on the contrastive
framework, but it is crucial to notice that they act as a source of invariance, meaning that the
contrastive loss will teach the model that it should treat an image and any of its positive pairs
evenly. For instance, if the positive pair is under a grayscale transformation, it might lead
the model to discard color information entirely, which has been verified for most contrastive
learning pretrained models [36], but is potentially undesired for many applications that do not
wish such an invariant. One possible solution is to execute the second round of SSL pretraining
with a domain-specific dataset under a curated set of transformations.

One of the limitations of the SimCLR technique is the huge dependency on batch size,
requiring at least 2048 images on each minibatch to show competitive performance with su-
pervised frameworks. The larger batch sizes provide more negative examples, increasing the
probability of similar negative pairs, and facilitating convergence with fewer epochs [24].

Finally, SimCLR is a simple yet effective contrastive learning technique, making it quite
useful to check the self-supervision concept on new tasks and domains, even though it is limited
by the maximum batch size the training infrastructure can withstand.

2.2.2 SwAV

This contrastive learning technique of Swapping Assignments between multiple Views of the
same image (SwAV) [17] introduced a scalable online clustering loss and multi-crop strategy
to self-supervised learning. This method does not require pairwise comparisons between views
and instead compares image representations with clustering codes, which makes it more mem-
ory efficient as it can be trained with much smaller batch sizes than SimCLR [24].

The method starts from a multi-crop input, which uses two crops of predefined resolution
and sample V extra low-resolution crops. For example, 2×224 pixels + 6×96 pixels, resulting
in a total of 8 square views. Thereafter, the method augments a minibatch of N images into
(V + 2)N samples {x̃i}(V+2)N

i=1 . Next, a code qi is computed from the representation zi =

fθ(x̃i)/||fθ(x̃i)|| by mapping a set of K trainable prototype vectors {c⃗i}Ki=1, where we denote C
as the matrix whose columns are ci. This process is shown in Figure 2.6.

qi = sinkhorn(ziC), (2.5)

where sinkhorn is a function that executes the sinkhorn-knopp algorithm on the matrix multi-
plication of zi and C to obtain the code qi.

Then, the loss between one representation zt and code qs is calculated as a dot product
between the code qs and pt, the log of a softmax of the dot products of zt and all prototypes
in C.

l(zt, qs) = q⃗s · p⃗t (2.6)

pt[k] = − log
e

1
τ
z⃗t·c⃗k∑

k′ e
1
τ
z⃗t·c⃗k′

(2.7)
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From such, we compute the swapped loss L as

L(z1, z2, ..., zV+2) =
2∑

i=1

V+2∑
v=1

[v ̸= i]l(zv, qi) (2.8)

= l(z1, q2) + l(z2, q1) +
2∑

i=1

V+2∑
v=3

l(zv, qi), (2.9)

where we made the swapped part explicit in Equation 2.9. Notice the codes are not computed
from low-resolution crops, which has been shown to increase the computational time without
improving performance [17].

Finally, this loss function is averaged over all the images in the minibatch and is minimized
with respect to C and parameters θ of fθ.

Figure 2.6: SwAV framework: two data augmentation operators are sampled from the same
distribution (t ∼ T and t′ ∼ T ) and applied to each sample to obtain a positive pair. A
base encoder network fθ outputs features z1 and z2 for each pair and codes q1 and q2 are then
produced by assigning features to learnable prototype vectors. The system is trained to solve a
swapped prediction problem, i.e., maximize agreement between the pairs (z1, q2) and (z2, q1).
Figure extracted from Caron et al. [17].

Although it requires a clustering procedure to be trained alongside the neural network,
SwAV shows significant gains in performance over SimCLR, and other SSL techniques [17]. In
particular, SwAV can train efficiently with a batch size of 256, while other contrastive methods
typically require at least four times as much to get comparable results.

Besides that, SwAV demands less data synchronization between GPUs in multi-node or
multi-GPU distributed training than SimCLR, which makes it more efficient in these cases. The
multi-crop strategy is also important for this method, increasing top-1 accuracy on ImageNet
by 4% on SwAV and increasing by 2% on SimCLR [17].

All in all, SwAV uses intricate clustering to build a less expensive contrastive method with
even better performance when compared to other SSL techniques.

2.2.3 Barlow Twins

The Barlow Twins SSL method [7], named after Horace Basil Barlow, follows the hypothesis
that sensory processing algorithms intend to transform highly redundant inputs into a factorial
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code, which is made only of statistically independent components. This technique aims to
simplify contrastive learning algorithms while keeping competitive performance.

Following Figure 2.7, the method augments a minibatch of N images into 2N samples
{Y A

b , Y B
b }Nb=1, where b is the image index in the minibatch and A,B are the two augmented

versions of the same image. Then, the batch cross-correlation matrix C is defined in terms of
the normalized representations zAb,i and zBb,j

Cij =
∑N

b=1 z
A
b,iz

B
b,j√∑

b(z
A
b,i)

2
√∑

b(z
B
b,j)

2
. (2.10)

Notice C is the cross-correlation matrix for each two coordinates in the embedding space for
the whole batch, meaning that C is calculated once per minibatch.

Figure 2.7: Barlow Twins framework: a positive pair is obtained from two distorted versions of
an image that had transformations from a set T applied to it. A base encoder-projector network
fθ then outputs features z for each pair. The system measures the joint cross-correlation matrix
for all embedding pairs in a batch and tries to make this matrix as close to identity as possible.
Figure extracted from Zbontar et al. [128].

Hereafter, the goal is to train the model to produce C = I. In other terms, we must have
Cii = 1 and Ci ̸=j = 0, which suggests a loss of the form

L =
∑
i

(Cii − 1)2 + λ
∑
i

∑
i ̸=j

(Cij)2, (2.11)

where λ ∈ R+ is a constant trade-off of the importance between the first and second terms.
This loss is composed of two terms: the invariance term

∑
i(Cii − 1)2 tries to equate C main

diagonal to 1, which means it intends to make the embedding invariant to transformations; the
redundancy reduction term

∑
i

∑
i ̸=j(Cij)2, on the other hand, tries to get the off-diagonal ele-

ments to 0, an attempt to decorrelate the different embedding vector components and therefore
reduce redundancy. In the end, this formula is a sum of strictly positive terms, so if it reaches
the minimum value of zero, we must have C = I.

In conclusion, Barlow Twins introduces a novel yet simple approach to contrastive learn-
ing, with a completely new loss while being robust to small batch sizes and without relying
on clustering, which can potentially collapse into trivial solutions. Moreover, Barlow Twins
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Figure 2.8: Comparison between fully-supervised cross-entropy loss, self-supervised con-
trastive loss, and supervised contrastive loss. (a) The fully-supervised cross-entropy loss uses
labels and a softmax loss to train a classifier directly. (b) The self-supervised contrastive loss
uses contrastive loss and data augmentations to learn representations without previous label
knowledge. (c) The supervised contrastive loss also learns representations using a contrastive
loss, but uses label information to group positives in addition to augmentations of the same
image. Figure extracted from Khosla et al. [65].

greatly benefit from larger embedding dimensions, whereas other methods quickly saturate in
performance [128].

2.2.4 Supervised Contrastive Learning

Supervised Contrastive Learning (SupCon) [65] borrows techniques from contrastive learning,
particularly SimCLR, to perform a pretraining step leveraging known image labels. It extends
the SSL approach to the fully-supervised setting by pulling together representations of images
belonging to the same class while pushing apart representations of different classes.

As illustrated in Figure 2.8, the method augments a minibatch of N images into 2N samples
{x̃i}2Ni=1 and labels {ỹi}2Ni=1. Then, we define the positive set with respect to sample i as P (i) =

{p : ŷp = yi, p ̸= i} and normalized representations z⃗i which is the set of indices which share
the same label as i in the augmented minibatch, while the remaining are treated as negatives.

The knowledge of P (i) permits an extension of the NT-Xent loss, introduced by SimCLR
[24], to a version that is averaged over all positives.

L = −
2N∑
i=1

1

|P (i)|
∑

p∈P (i)

log
e

1
τ
z⃗i·z⃗p∑

j ̸=i e
1
τ
z⃗i·z⃗j

. (2.12)

Since the SupCon loss is a direct extension of the NT-Xent loss, it shares many of its prop-
erties, advantages, and shortcomings. In particular, it relies on large batch sizes, requiring over
4096 images per batch to achieve good performance. Moreover, as with fully-supervised learn-
ing, the quality of the representations will depend on the labeling quality, meaning that it might
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suffer in weekly supervised scenarios [65].
Overall, SupCon has shown itself better than fully-supervised and even SSL in some cases,

although requiring larger networks like ResNet-200 to beat the latter on the popular bench-
marks [65].

2.3 Optimizations

Modern deep learning algorithms train models with millions or billions of parameters, requiring
massive computing power to finish in a viable time. Parallel to that, many optimizations have
happened on hardware and software to enable faster deep neural network (DNN) training with
no loss in performance. In this section, we explain the deep learning optimizations used in this
Master’s thesis to make training feasible.

2.3.1 Automatic Mixed Precision

Deep Learning traditionally uses IEEE single-precision (FP32) [64, 66, 91], but it is possi-
ble to optimize the whole procedure by using half precision (FP16) without performance loss.
Automatic Mixed Precision (AMP) is the combined use of different numerical precisions in a
computational method [2].

The effectiveness of AMP is a feature of modern GPU architectures1, which can process
FP16 operations much faster than FP32 with less memory consumption. Numerically, we have

1. 1/2× memory consumption

2. 2× memory throughput

3. up to 48× compute speedup2

However, all this speedup is not directly transferred to deep learning, and some operations
must still be kept in FP32 to prevent numeric losses. In simple terms, FP16 precision is enough
to process convolutions, general matrix multiplications (GEMMs), and most pointwise trans-
formations (e.g., ReLU). On the other hand, FP32 must be used on all accumulated procedures,
weight updates, and non-linear functions (losses, softmax, normalization) [90].

In the end, the final speedup and memory savings depend on the DNN architecture used,
but it is certain to give at least 3.3× compute speedup on the most popular ones without any
hyperparameter change, or performance loss [90].

2.3.2 Layer-wise Adaptive Rate Scaling

Layer-wise Adaptive Rate Scaling (LARS) is an optimization technique for Large Batch Train-
ing of Convolutional Networks (LARC). DNN training is only possible with online training,
i.e., one epoch happens in several batches of the dataset. In order to maximize efficiency and

1Also available in TPUs with 60% compute speedup [1].
2NVIDIA reports tensor cores with 8× compute speed up on Volta/Turing architectures, 16× compute speedup

on Ampère architecture and 48× average compute speed up on the Hopper architecture.
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use the most resources available, the batch size is required to be increased, but this is not trivial
and is met with high instability in training [126].

This instability is due to a “generalization gap”, a side-effect of elevated batch size dur-
ing training: for a given dataset of size N , the higher the batch size B, the fewer the num-
ber of weight updates N/B, which can prevent the model convergence. As demonstrated by
Krizhevsky [69], this effect can be reduced by increasing the learning rate (LR), but the model
can diverge in the initial steps if the LR gets too high.

LARS improves the convergence of neural networks on large batch training by using a dif-
ferent LR for each layer, where the update is defined by the ratio between weights and gradient
magnitudes.

Therefore, the weight update ∆wl on the weights wl is defined by

∆wl = γλl∇L(wt), (2.13)

where γ is a global LR and λl is the local LR for each layer l, calculated as

λl = η
||wl||

||∇L(wl)||+ β||wl||
, (2.14)

where β is the weight decay.
In practical terms, You et al. [126] showed that LARS enables training ResNet-50 with batch

sizes up to 32,000 without loss in accuracy. Thus, LARS is crucial if training in a multi-node
or multi-GPU environment, where the effective batch size (sum of a batch in each GPU) gets
large quickly.

2.3.3 Activation Checkpointing

Activation checkpointing (or gradient checkpointing) is a technique to reduce memory usage by
storing only a subset of the network activations and recomputing them during a backward pass.
DNN training is order of magnitudes more memory-intensive than inference, simply because
it stores much more than just the network itself [23]. There are three main sources of GPU
memory consumption during training:

1. Model memory: used to store weights and biases;

2. Optimizer memory: used to store gradients and momentum buffers;

3. Activation memory: the outputs of each layer consist of the forward activation memory,
and the gradients computed from them during backpropagation are the backward activa-
tion memory. The sum of these consists of the activation memory.

The activation memory is often considerably larger than model and optimizer memory, as
shown in Figure 2.9, which is an effect of their dependency on the model and batch sizes.
In this sense, the activation checkpointing technique saves memory by discarding most of the
forward activation memory, which is later recomputed during backpropagation when needed.
The effect is numerically equivalent whether checkpointing is used or not, which excludes any
memory-accuracy trade-off. On the other hand, there is a memory-compute trade-off given that
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Figure 2.9: Distribution of training memory consumption for WideResNet on CIFAR-10 (left)
and DC-Transformer on IWSLT’14 German to English (right). In both cases, activations rep-
resent more than 75% of everything the GPU stores while training. Figure extracted from
Sharad Sohoni et al. [111].

some operations will have to be repeated, but this method can reduce nearly 50% of activation
memory while inducing less than 1% increase in FLOPs (Figure 2.10).

Figure 2.10: Compute FLOPs comparison for various checkpoiting methods. On the plot, (A) is
the baseline of Checkpoint-None, (B) InPlace-ABN, (C) CHECKPOINT-RESIDUAL-1*, (D)
CHECKPOINT-RESIDUAL-2*. Figure extracted from Sharad Sohoni et al. [111].

There are many available activation checkpointing techniques, each one with different com-
pute-memory trade-offs. The default strategy in most DNN frameworks is known as Checkpoint-
None, which simply stores all activations during training [111]. In-Place Activated Batch Nor-
malization (InPlace-ABN) stores all activations except the outputs of normalizations and its
subsequent ReLU operations, as these are computationally inexpensive to recompute but con-
sume excessive memory [14]. Finally, there is CHECKPOINT-RESIDUAL-m*, an extension to
the previous one but with the addition of a recursive approach to store only the output of every
m residual block and always discard the rest [23].
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Overall, the memory savings in activation checkpointing supersede the extra computing,
especially considering that with extra memory available, larger networks can be used and/or the
batch size can be increased. Such factor enables faster model convergence or even better final
performance, which is generally desired in deep learning [23, 111].

2.3.4 Synchronized Batch Normalization

Batch Normalization (BN) is a neural network layer introduced by Ioffe and Szegedy [57] to
provide faster convergence while making training more robust to weight initialization and higher
learning rates. In simple terms, this layer produces y by normalizing the output x of the previous
layer and keeps two trainable parameters for scale γ and shift β.

y = γ
x− µ√
σ2 + ε

+ β, (2.15)

where µ stands for the minibatch mean, σ stands for the minibatch standard deviation, and ε is
a small constant to prevent divergence or zero division errors.

However, the standard implementations of BN in public frameworks (such as Caffe, MXNet,
Torch, TensorFlow, and PyTorch) normalize the data within each GPU, which means it will not
use the actual training batch size. In computer vision tasks using small batch sizes, this can lead
to intensive performance degradation [130], and the simplest solution is to replace the layer for
synchronized batch normalization (SyncBN).

SyncBN computes the global values of
∑

x and
∑

x2 to then calculate a synchronized µ

and σ. Similarly, there is a second synchronization for the gradients during backpropagation.
Finally, global γ and β are updated.

Importantly, the synchronization does slow down the training depending on the number of
SyncBN layers, but it does not become a significant time-consuming step. In the end, SyncBN
generally increases model quality on distributed training scenarios [130].

2.4 Bayesian Estimation Technique

Statistical inference usually requires comparing two or more groups to understand which is
larger than the other or simply to verify if they are different.

A statistical hypothesis test is often employed in such comparisons, but this approach is sel-
dom correctly conducted, and the results are easily misinterpreted. The choice of the statistical
test, null hypothesis, significance threshold, and more are usually inherited by traditions [63].
This leads to arbitrary checks that would not formally satisfy the requirements and tend to in-
correctly go against the null hypothesis [41].

Thereafter, comparing different samples based on estimation techniques is far more effec-
tive. By such methods, we intend to measure the difference among said groups and estimate the
associated uncertainty instead of performing a simple binary check.

A strong statistical model is required because true differences are noise-related, preventing
conclusions from being drawn from differences calculated directly from the observed data. For
that end, we employ the BEST technique, which is a complete replacement for the t-test by
embracing uncertainty while maintaining simplicity [116].
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Bayesian Estimation (BEST) models the data as samples from a t-distribution, which is a
Gaussian-like distribution with the addition of a normality parameter ν to control the prevalence
of outliers [71]. Thus, given two samples y1 and y2, we take the following prior distributions in
the model

µ1 ∼ Normal(µ̂, 2 σ̂)

µ2 ∼ Normal(µ̂, 2 σ̂)

log(σ1 / σ̂) ∼ Uniform(log(1 / 2), log(2))

log(σ2 / σ̂) ∼ Uniform(log(1 / 2), log(2))

ν ∼ Exponential(1 / 27.5) + 2.5

y1 ∼ tν(µ1, σ1)

y2 ∼ tν(µ2, σ2),

where µ̂ is the pooled mean and σ̂ is the pooled standard deviation [119], so the goal is to check
if we are indeed able to distinguish two distributions from the pooled statistics.

This version of the model differs from the one originally presented by Kruschke [71] as the
goal of BEST in this Master’s thesis is to compare different models by the balanced accuracy.
First, we rescale the standard deviation choice of priors, as the accuracy cannot go beyond the
range of (0, 1) [116]. Moreover, the normality lower bound is also increased to 2.5, so that
most of the distribution is kept within µ± 5σ while preventing strong outliers from generating
exploding standard deviations [119].

2.5 Conclusion

All the methods mentioned above are used as building blocks of our experiments. Each con-
trastive learning technique (SimCLR, SwAV, BarlowTwins, and SupCon) will be tried as part
of the scene classification training process. Given how expensive these methods are, however,
we implement the optimizations throughout the process in order to improve training speed. Fi-
nally, we use bayesian estimation to discover which technique had the best performance and to
measure the confidence that it is indeed the best overall.
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Chapter 3

Related Work

Child sexual abuse material (CSAM) has been propagating exponentially on the online media
in the last couple of decades, but it is still difficult for law enforcement to efficiently recognize
CSAM and identify the victims. Scene understanding and recognition can thus be leveraged
to aid in this task and rapidly reduce the millions of images awaiting processing without even
needing for sensitive material during training.

In this chapter, we introduce the topic of scene recognition and highlight the challenges that
make it particularly complex compared to object recognition (Section 3.1). We overview the
research in this field, emphasizing the SSL approaches. Also, we summarize recent methods for
CSAM recognition, focusing on machine learning-based ones and how scene recognition can
help this problem (Section 3.2).

3.1 Scene Recognition

Human beings are profoundly efficient in analyzing their environment and important events, but
machines and algorithms have long stayed behind in this topic. Even humans have problems
fully comprehending certain scenes, but we are fairly good at classifying them, and when it is
not possible to understand them globally, we find ways to grasp them from local parts. As we
can check in Figure 3.1, sometimes we take time to find Waldo or to understand what the people
in the image are doing, but we know almost instantly that the scene is an amusement park.

In that sense, the task of scene recognition has the sole purpose of distinguishing scenes: se-
mantically coherent views of real-world environments containing objects, textures, and a back-
ground spatially separated [35, 51]. This is a well-studied field with a particular interest in
surveillance, autonomous driving, and robotics navigation, but still lacking in performance,
especially within indoor classification [100].

On the small datasets, “simple” DNN models such as AlexNet trained on ImageNet achieve
accuracy comparable with the best non-deep learning methods [70], but some recent approaches
have finally reached valuable performance for real-world applications [129]. In this section,
we explain the problems involved in scene classification and how they differ from other deep
learning tasks and also show the most recent advances being done in the field, with special
attention to self-supervised methods.
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Figure 3.1: Despite a large number of people, objects, and actions, we can readily verify that
the scene is an amusement park. Figure extracted from the book “Where is Waldo?”, by Mar-
tin Handford.

3.1.1 Challenges

Scene classification is closely related to object and texture classification, but with the presence
of multiple objects, textures, backgrounds, and intricate relations between them. Thus, one
could imagine scene classification as multiple local classifications happening simultaneously to
provide a context and a set of items or actions. However, such a process would be practically
impossible: the high variance and natural complexity of real-world scenes are too large and, in
fact, simpler visual cues should be used for classification [129].

Humans can quickly and unconsciously spot small signs in the background and within object
disposition to classify a scene [35], but the dense amount of information united with pixel-level
cues is not easily grasped by machine models. Overall, this is represented by large intraclass
variation and interclass semantic ambiguity.

First, the intraclass variation initially arises from the wide range of objects, backgrounds,
and human actions a scene can display, which is shown in Figure 3.2. Beyond that, one sin-
gle scene accepts large variations in object scale, illumination, occlusion, clutter, shading, blur,
contrast, motion, or can be shot from multiple viewpoints and with different item distribu-
tions [129].

Next, the interclass semantic ambiguity is related to the intersections of objects, textures,
and backgrounds among different classes, with subtle changes in the numerical or visual distri-
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Figure 3.2: Depiction of intraclass variation in a dataset. All images have the classroom label
and were taken from Places365 [134]. It is possible to see variations in objects, presence of
people, viewpoints, background (open vs. walls), colors, lighting, and overall content.

butions to define the scene [84]. As shown in Figure 3.3, this is even a challenge for humans, as
scene classification is sometimes subjective and prone to cultural differences, where two very
distinct places for some can be taken as the same scene to others. This difficulty becomes more
noticeable the higher the total number of categories a dataset has, with a single scene actually
belonging to multiple classes [12].

(a) Bedroom (b) Children Room (c) Dorm Room (d) Hospital Room (e) Hotel Room

Figure 3.3: Illustration of interclass semantic ambiguity. All images below share objects, gen-
eral layout and distribution of items, but small cues put them in their own different classes.
Images taken from Places365 [134].

Additionally, the human brain has specialized areas to represent the geometric structure of
scenes from background elements [35], which is a topic where neural networks still face great
limitations unless specific handcrafted hints and constraints are given initially to the system [58,
115].

Finally, similar issues exist in other computer vision and machine learning problems, from
where several specialized solutions got inspiration.



40

3.1.2 Deep Learning and Scene Classification

For a long time, scene classification relied on pure handcrafted solutions, but the current most
successful solutions in scene classification use deep learning and scene representation. Here we
provide a simple review of the work done in the field and its current state-of-the-art.

Neural Networks used for scene classification are typically convolutional nets (CNN) with
popular architectures such as VGGNet or ResNet. However, CNNs are not usable in this field
without being trained on large amounts of data, meaning most of the works perform transfer
learning [129].

However, transfer learning is usually limited by the similarity between the source and target
domains, meaning that ImageNet pretrained models are, on average, less effective than Places
pretrained versions. This happens because ImageNet is considered an object-centric dataset,
producing models with object descriptors, i.e., the extracted features are for individual or ho-
mogeneous objects in specific scales. For example, the class Ball in ImageNet would hardly
provide images where the ball would be mostly hidden or occupying less than a third of the
image, so the model learns that balls are only meaningful in certain specific conditions [132].

On the other hand, it is far more common to find ImageNet pretrained CNNs than Places
pretrained ones, forcing some researchers to use the former models. After a pretrained model
is selected, several works concentrate on developing specialized finetuning routines which can
extract the most scene-centric features in the target dataset [134].

These models are designed to extract effective scene representations by changing the usual
CNN architecture. Simple finetuning can even harm performance, as the most common target
datasets are too small compared with ImageNet and Places [134]. In this case, data augmenta-
tion can sometimes help, but changes in scale worsen results given that it generates completely
different images with the same label, leading the model to respond equally to most images, a
consequence of the interclass ambiguity [53].

Initially, most works designed CNN architectures that still extract global features, i.e., pre-
dict the scene classes from the whole image. This approach is faster overall since it does not
go too far from the original deep learning pipeline, but the performance is highly dependent
on the richness of the scene datasets. For example, GAP-CNN replaces fully connected layers
for global average pooling (GAP) to focus on class-specific regions while using fewer param-
eters [133]; Hierarchical LSTM (HLSTM) uses four LSTM modules in an attempt to capture
spatial dependencies [136]; DL-CNN proposes Dictionary Learning (DL) layers to obtain sparse
representations and reduce the total number of a parameter; finally, the Spatially Unstructured
(SU) layer was designed to help cope with layout deformations and scale changes in scene
recognition [47].

However, global CNN feature methods do not exploit a scene’s visual or semantic relations.
In this sense, some methods propose training from patches of the original image to derive robust
representations against geometrical variations. These image patches can be produced randomly
or extracted using a different algorithm. Later, encoding techniques that produce spatially in-
variant representations are applied to produce spatial invariant representations: FV-CNN [29]
and MFAFVNet [78] use Improved Fisher Vector (IFV) while MOP-CNN [40] and SDO [28]
employ a Vector of Locally Aggregated Descriptors (VLAD) to cluster local features. In the
end, such an approach heavily increases the number of images to be processed and the overall
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training complexity, so it tends to be orders of magnitude more expensive than common deep
learning while introducing excessive noise, as most patches do not help classify the scene [129].

Additionally, object detectors have been used to help with identification of important regions
within the scene [80], such as Fast-RCNN [39], SSD [82] and YOLO [104, 105]. Using the
patch generator from the previous approach in this pipeline is also possible to use semantic
features from different scales. With two semantic features, one for larger and another for small
objects, it is already possible to represent the whole scene [34]. This forces the model to pay
attention to particular objects and helps deal with interclass semantic ambiguity.

In other words, as shown in Figure 3.4, to distinguish between two rooms, the model must
consider many parts of the scene to understand the context. Additionally, Qiu et al. [99] showed
that a scene is constituted of minor and essential objects, and only the essential ones matter
for the final scene classification, while minor elements can be removed without impact. How-
ever, the number of minor objects is usually much higher and is basically noise, which can be
accounted as factual evidence of the intraclass variation in scene recognition.

Figure 3.4: A hotel room image is an input (a), and the essential and minor objects are detected
(b). The image with essential elements preserved but minor ones inpainted (c) is still classified
as a hotel room. However, in this case, the bed is inpainted, an essential object in a hotel room.
The scene will be recognized as a living room instead. Figure extracted from Qiu et al. [99].

Semantic feature methods have demonstrated good performance [22, 72, 131], but rely on
the quality of object detectors. Typically, this dependency introduces two-stage training [123],
meaning that learning has to be split between the object detector and classifier.

In this context, several scene classification methods have used multiple layers’ outputs to
improve scene representation. The high CNN layers are too compact for the dense level fea-
tures required for scene recognition, keeping only large objects, while the low CNN layers still
keep the small ones [121]. Thus, harnessing multi-layer features reaches overall better repre-
sentations, but careful feature fusion design is required [81]. Ultimately, this is the most struc-
turally complicated approach and the fused features generate high-dimensional arrays, making
the model overfit easily the more layers are used [124].

In conclusion, most deep learning works so far have relied on pretrained neural networks and
small-scale datasets to solve the problem of scene classification. The development of specific
neural network architectures to work this task was, however, crucial, and the current state-of-
the-art FTOTLM [81] shows top-1 accuracy of 94.1% on MIT Indoors [100] and 85.2% on SUN
RGB-D [114] with a multi-layer architecture. In large-scale datasets, the Layout Graph Network
(LGN) [22] is the state-of-the-art supervised model, having reached 56.5% top-1 accuracy on
Places365-Standard.
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3.1.3 Self-Supervised Learning applied to Scene Recognition

Scene recognition has made significant progress in the last couple of decades, but the chal-
lenging nature of this task maintains some unsolved problems. As mentioned before, there is a
high dependence on dataset size and richness, and while much of the success of deep learning
depends on labeled data, it is always very limited to rely on that.

In this scenario, self-supervised learning becomes very appealing when looking to increase
the model’s richness and diversity without increasing the cost, as there is no human labeling
involved. Furthermore, Quattoni and Torralba [100] pointed out that scene classification “is
related to work on learning distance functions for visual recognition”, also known as metric
learning. Such a remark was made a decade before contrastive learning became a topic in the
deep learning field, yet it shall serve as the initial motivation for applying contrastive methods
to indoor classification.

However, to the best of our knowledge, few works try to solve scene classification with
self-supervised learning. In scene semantic segmentation, McCormac et al. [88] showed an im-
proved model on NYUv2 and SUN RGB-D benchmarks using a model pretrained on a 5M
image 3D rendered dataset called SceneNet RGB-D. In order to tackle the PASCAL VOC
benchmark (11,530 images containing 27,450 ROI annotated objects and 6,929 segmentations),
Ren and Lee [106] proposed a multi-task learning approach that pretrains an AlexNet model
to predict edges, surface normals, and depth maps from SceneNet RGB-D images and a dis-
criminator to distinguish the synthetic images from the Places365 images. Similarly, She and
Xu [112] added a SimCLR contrastive loss as a new pretext task, setting as positive pairs all
viewpoints of a single scene. The aforementioned methods were able to reach comparable per-
formance or even outperform other SSL techniques using the same neural network architecture,
but underperformed when compared to the state-of-the-art method for the tested benchmarks.

Whereas scene classification with SSL has not been found in the literature by this thesis’
researchers, the articles which propose new self-supervised techniques commonly check the
performance of their proposed models on Places205 (2,5 million images), an older version
of the Places365 dataset. In that sense, self-supervised methods present the state-of-the-art
with SwAV having reached 56.7% top-1 accuracy [17] using a ResNet-50, while SEER set
the mark of 69% with a RegNetY-128GF-10B-384px [42]. Hence other contrastive learning
and self-supervised tools should be most suited to perform recognition in indoor scenes. It is
noticeable that these values of accuracy are much less than what is usually seen on other image
classification datasets, such as ImageNet, and this is due to the greater number of high-level
features scene recognition demands [42] and the difficulties involved in dealing with intraclass
variation and interclass ambiguity.

In short, scene recognition demands richer datasets but, simultaneously, supervised learning
is not scalable as it explicitly requires labeled data. Therefore, methods looking to reduce the
dependence on labeled scene images seem to be good opportunities to improve deep learning in
scene classification.
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3.2 CSAM Recognition

Easy access and impunity led to a frenzied growth in the consumption and distribution of CSAM
over the past few years, with hundreds of millions of images circulating through the web today
[15]. In a world where access to CSAM is oversimplified and bears a low risk of getting caught,
people may stumble upon such content and develop more interest, while others also make it an
income source [89]. In this section, we list some recent approaches to CSAM recognition and
several other tools used to help.

The automation of CSAM recognition can protect adults and children, more easily blocking
that sort of content in social media and thus preventing trauma [76], but this is still a challenging
field of research. Such datasets are and must stay accessible exclusively to law enforcement
personnel, dramatically increasing the difficulties in comparing possible models or performing
benchmark evaluations [73].

Moreover, NCMEC shows that hash comparison tools used by Internet Service Providers
(ISPs) are already the largest source for reports today. However, when dealing with never-
before-seen data, law enforcement personnel are the exclusive mechanism responsible for au-
diting CSAM, which not only is the source of bias but also of psychological strain on the agents’
mental health [85].

In light of these issues, researchers have attempted to design more scalable and reliable
methodologies to tackle CSAM recognition. Image hash databases, web crawlers, and file
metadata are most commonly used to detect CSAM sources and find the criminals [46, 95, 113].
In a more versatile method, NuDetective de Castro Polastro and da Silva Eleuterio [31] and
iCOP Peersman et al. [97] make use of handcrafted nudity image descriptors to build fast CSAM
detectors, and Sae-Bae et al. [110] used textures and facial distances to distinguish adult from
child nudity. However, these solutions are sensitive to slight modifications, demanding constant
updates to stay functional.

With the recent developments in computer vision detectors, machine learning algorithms
started to be used for CSAM recognition as well. Ground-up training and transfer learning of
CNNs were shown to outperform current forensic and commercial tools easily and can be made
into portable tools for search and seizure procedures [120]. Moreover, Gangwar et al. [37]
demonstrated that pornography and age-group recognition could be leveraged for CSAM with
substantial gains in accuracy for binary classification, and Macedo et al. [85] used a single-
model estimation of child presence, age, and gender to improve the performance. Rondeau
[109] arguments apparent age and nudity detection could also be leveraged for CSAM, while
Castrillón-Santana et al. [19] focused on non-adult people detection in images for CSAM age
estimation, reaching over 90% accuracy on their proposed dataset.

All these studies firmly outline that deep learning can contribute to child abuse inquiries.
However, most published works focus on detecting children and nudity/pornography [5, 59, 98]
and highlight the difficulties of finding large annotated CSAM databases to experiment with,
even with the help of law enforcement agents. Several works focus exclusively on age estima-
tion within CSAM, and children’s images are collected to build datasets that help accomplish
such tasks. For instance, Anda et al. [4] proposed VisAGe and Castrillón-Santana et al. [19]
AgeMega, databases focused on age estimation with thousands of underage and adult facial im-
ages, while Castrillón-Santana et al. [19], Chaves et al. [20], Gangwar et al. [37] gather images
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from several age estimation databases. Beyond that, Al-Nabki et al. [3], Tabone et al. [117] in-
cluded sexual organ detection to aid CSAM detection, while Yiallourou et al. [125] used facial
expressions to distinguish sensitive from non-sensitive material, which is one of the main chal-
lenges in the field. Lee et al. [76] call attention to the fact that “the best results can be achieved
if multiple methods are used in combination”, meaning that CSAM is a complex enough prob-
lem that age, nudity, and pornography detectors do not fulfill all the roles for possible feature
extractors that can aid on this task.

On this matter, Laranjeira et al. [73] designed an aggregated analysis pipeline to aid CSAM
recognition research by showing plots of statistical distributions of some features, such as scene,
objects, faces, skin tone, nudity, image sharpness and more, from the region-based annotated
child pornography dataset (RCPD) [85], without publicizing information on individual samples.
This dataset is a private database used internally by the Brazilian Federal Police and contains
2138 images among CSAM, pornography and non-sensitive categories. There is, however,
another image set with over 45 thousand images available, which was used by this thesis to
conduct experiments.

In this context, most databases used for CSAM recognition could suffer from biased distri-
butions, not actually representing what is found in the real world. Laranjeira et al. [73] show
that CSA data shared online differs from reported cases of physical abuse in Brazil in terms of
race: “most reported victims of child sexual abuse in Brazil are black and brown girls from 8
to 14 years old, but RCPD depicts mostly white children being abused and most of the mate-
rial apprehended in Brazil has different tendencies than reports of sexual abuse with physical
contact.”

With this in mind, CSAM classification could take advantage of non-direct CSAM recogni-
tion, and scene recognition should greatly help. Bursztein et al. [15] emphasize the investigation
should optimally consider scene information as means to cluster similar imagery and “report ob-
jects that are present, its environment, and potentially identify landmarks that will help locate
the region where an abusive image originated”. Experts use scene information to gather context
and understand what is happening in the image or video, especially in low-resolution scenarios
and when people are covered or with their backs turned [67]. CSAM distribution is a massive
problem worldwide, and, for the sake of the children under abuse, combating it demands new
data-driven scalable solutions that can find patterns human beings would not often notice.
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Chapter 4

Methodology

This work focuses on quantitative and reproducible research, thus simplifying possible repli-
cation or extension endeavors. We follow a methodology split into self-supervised pretraining
and cross-validation model finetuning. Our goal is to verify that it is possible to help CSAM
investigation with indoor recognition.

Figure 4.1: Full pipeline flowchart defining the two different set of experiments in SSL. The
pretext task uses unlabeled data and runs the SSL technique, while the downstream task uses
labeled data from our target task and initializes from SSL pretrained models.

We aim to investigate the reliability of self-supervision for scene recognition and if large
amounts of synthetic data can be employed to easily replace the requirement for real indoor
environments. We hypothesize that photorealistic synthetic data can bring more diversity to
the final representation, as it contains images of the same environment in different lighting and
angles, providing better-detailed features with less semantic ambiguity than real datasets.

With such intent, we initially selected real and synthetic datasets suitable for the task, fil-
tered in indoors-related categories, and used them to finetune pretrained models. ImageNet
pretrained models come from public “model zoos” while scene-centric SSL pretrained models
are pretrained by ourselves. We built a small test dataset that could lighten some of the model
flaws and evaluated the best model against real CSAM to determine if we are indeed able to
help with this material.

The full training and testing pipeline is presented in Figure 4.1. In the following sections,
we explain each of the sub-pipelines for pretraining (Section 4.1) and finetuning (Section 4.2).
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4.1 Self-Supervised Learning Pipeline

Figure 4.2: Self-supervised flowchart used for model pretraining. A model is initialized and
trained following a specific SSL procedure on the selected dataset. This process outputs a
pretrained model, which will be further specialized on downstream tasks.

1. Dataset: the dataset used for model pretraining, e.g., Hypersim [107]. For self-supervised
learning, labels are not required, so labeled and unlabeled data can be used.

2. Weight Initialization: the network weights can start randomly or come from another
pretrained model, e.g., an ImageNet model available on a public model zoo.

3. SSL Technique Pipeline: the pretraining step in which a specific self-supervised pipeline
is used, e.g., SimCLR [24], SwAV [17].

4. Pretrained Model: the final pretrained model weights are used in weight initialization
on downstream tasks in the finetuning step.

Self-supervision is a tool for helping generate good representations from unlabeled data.
This deep learning approach has proved to be more flexible and reliable than traditional super-
vised learning on several applications [36, 62]. With this line of thought, we use SSL to increase
the general performance of machine learning models for scene classification.

In particular, SSL starts with a pretext task (Figure 4.1), which is a pretraining task in an
unlabeled dataset before the target dataset is used. This step is developed from the selected
datasets to understand if we can aid scene recognition with large scene datasets.

With the dataset in hand, the pretext task pipeline is always a contrastive learning method,
following one of the techniques listed in Section 2.2, and a general schema of this process is
shown in Figure 4.2. As explained earlier, SSL does not benefit from a validation set, so it is
not reliable to early stop the training when the validation loss is at its minimum. Therefore, we
train the model for all predefined epochs, which makes it one of the most expensive steps of this
Masters’s thesis.

Moreover, the proposed pipeline allows for a flexible generation of pretrained models. This
is a result of the number of SSL techniques used and the fact that they all have ImageNet SSL
models available. Therefore, we produce two models for a single pretraining dataset and SSL
technique: one trained from scratch (random weight initialization) and another trained from the
ImageNet models’ weights.
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Finally, considering the adoption of SwAV, SimCLR, BarlowTwins, and Supervised Con-
trastive techniques, for a single pretraining dataset, we produce eight pretrained models. We
decided not to combine different techniques to reduce the total number of experiments and
computation costs.

4.2 Cross-Validation Model Finetuning Pipeline

Figure 4.3: Cross-validation flowchart used for model finetuning. The dataset is split into
training, validation, and test sets, and the search for the best model happens using a k-fold
cross-validation protocol. Given that the best hyperparameters are found, the best model is then
trained on the whole training set and evaluated on the test set.

1. Weight Initialization: for finetuning, the network weights come from a pretrained model:
either an ImageNet model available on a public model zoo or one of the models produced
on the last SSL pretext task.

2. Parameters: grid search of hyperparameters. Each combination of hyperparameters de-
fine a cross-validation experiment. These include, but are not limited to learning rate base
value, self-supervised technique, and number of pretrained epochs.

3. Dataset: the dataset defines the downstream task being tackled. All datasets in the model
finetuning step were human labeled, e.g., Places365.

4. Training/Validation Data: the dataset is split into training, validation and test data in a
stratified manner. The training and validation data will be used in the cross-validation to
find the best possible model.

5. Test Data: the dataset is split into training, validation and test data in a stratified manner.
The test data is held off for the final evaluation, when the best model has been selected.
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6. Cross-validation: k-fold cross-validation in the training data in a stratified manner. A
validation subset is also used on this step for early stopping.

7. Best Parameters: cross-validation produces k values for each metric, which can be used
to select a combination of the best parameters. A box-plot, mean plus standard deviation
or student t-test are viable selection techniques.

8. Retrained Model: the best parameters and all training data are used to produced a re-
trained model, the best found model.

9. Final Evaluation: the best-trained model is then evaluated on the test set, which was kept
away until this part. We report metrics and scores of this final evaluation.

In this work, all downstream tasks are classification problems. Therefore, we follow the
k-fold cross-validation schema shown in Figure 4.3 to find the best possible model for a given
dataset.

Consequentially, k-fold cross-validation considerably increases the total number of exper-
iments, as each experiment becomes a loop of k new iterations. This problem influenced the
design of our experiments and led to constraints on what we were able to do. In turn, such a
procedure makes our results more reliable and statistically more accurate.

As will be shown further, the validation set comes from the original dataset. It is relatively
small compared to the size of our training set, which initially led to a heavy similarity of metrics,
making it statistically unreliable to select the best possible model.

Thus, cross-validation increases our results’ trustworthiness and disambiguate each model’s
quality more clearly.
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Chapter 5

Experimental Results

In this chapter, we start showing the datasets selected for the tasks and explaining how they were
remapped, filtered and joined together to construct our pretext and target tasks (Section 5.1).
Next, we present the experimental design following the pipelines defined in Chapter 4 to under-
stand the best conditions for scene recognition in each scenario (Section 5.2). Then, we execute
the experiments to find the best model and, after it is selected, evaluate it on images outside
of the target set and also hand it to the authorities in possession of real CSAM data for a final
test on this kind of material (Section 5.3). Finally, we conclude with some comments on the
hardware used and implementation details (Section 5.4).

5.1 Datasets

In the context of scene classification, we chose scene-centric datasets with a high diversity of
displayed objects and features.

In this section, we present scene datasets from the literature (Section 5.1.1) and the ones we
built for our indoor classification task (Section 5.1.2). These datasets can be realistic or syn-
thetic; we subset and reorganized them for the best usability towards our objectives. Also, we
introduce our Litmus Test dataset, a “litmus test” to check if the model performance generalizes
(Section 5.1.3). Table 5.1 summarizes all datasets used for pretext and downstream tasks.

Table 5.1: Datasets we used in scene recognition for pretext and downstream tasks. Size stands
for the total number of images, Density stands for the range of images for each class, and Synth
stands for synthetic datasets. For the synthetic datasets, a Class is defined as a single frame, i.e.,
the photorealistic render and its different visualization maps. †Custom datasets.

Dataset Size Density Objects Scenes Classes Synth Year

Places365 [134] 8,496,949 3168 – 40,100 – 365 365 ✗ 2017
InteriorNet [77] 4,000,000 10 50 9 40,000 ✓ 2018
Hypersim [107] 1,432,480 9 – 18 20 12 143,248 ✓ 2021
OpenRooms [79] 118,233 3 44 1287 39,411 ✓ 2021
Places8 (ours)† 407,640 14,137 – 111,724 – 23 8 ✗ 2022
Indoors.all (ours)† 7,778,152 3 – 40,100 > 114 1467 222,818 ✓ 2022
Indoors.real (ours)† 2,490,632 3168 – 40,100 – 159 159 ✗ 2022
Litmus Test (ours) 80 10 – 8 8 ✗ 2022
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5.1.1 Literature Datasets

Places365 is a 10 million image dataset focused on scene recognition. It is composed of four
different subsets, Places88, Places205, Places365-Standard, and Places365-Challenge, in which
the Places365 family is the last updated version and thus the one recommended for training
machine learning models. This dataset is composed of real images extracted from image search
engines, their categories all come from WordNet scene semantic terms, and its ground truth
labels were produced with Amazon Mechanical Turk.

WordNet provides a hierarchy graph among the classes, split into three major groups: in-
doors, natural outdoors, and urban outdoors (Figure 5.1). We used a subset of Places365-
Challenge composed only of indoor scenes, totaling 2,490,632 images split among 159 cate-
gories and ranging between 3,168 and 40,100 images per class.

Figure 5.1: Places365 scenes are grouped into three major groups: indoors, natural outdoors,
and urban outdoors. Figure extracted from Zhou et al. [134].

InteriorNet is an end-to-end pipeline able to render an RGB-D-inertial1 benchmark for large-
scale interior scene understanding. The publicly available dataset contains 4 million images of
9 environments: bedroom, guest room, bathroom, living room, kitchen, dining room, balcony,
study, and kids’ room, ranging from 58,600 to 1,724,400 images per environment. Beyond that,
each frame has eight different views: original, diffuse albedo, surface normal world/camera,
depth, illumination, and random lighting illumination/camera, which some renders can be seen
in Figure 5.2.

Hypersim is a photorealistic synthetic dataset for holistic indoor scene understanding. It offers
many images with per-pixel ground truth labels generated by a computer graphics engine using
only publicly available 3D assets. The renders display complete scene geometry, material,
lighting information, and scene segmentation for every scene while factoring every image into

1An RGB-D image combines an RGB image and its corresponding depth image. A depth image is an image
channel in which each pixel relates to a distance between the image plane and the corresponding object in the
RGB image.
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Figure 5.2: Semantic segmentation of different frames of the InteriorNet dataset. Each pho-
torealistic render is followed by its segmentation map on the right. From left to right, top to
bottom: a dining room, living room, stairs, hair saloon, hallway, lobby, office, locker room, and
bedroom. Figure extracted from Li et al. [77].

diffuse reflectance, diffuse illumination, and a non-diffuse residual term that captures view-
dependent lighting effects [107].

This dataset is composed of 1,432,480 images, around 10 images for each frame, with a
maximum of 18 views for each frame, including color, gamma, surface normals from the camera
and world matrices, texture coordinates, semantic instantiation and segmentation, depth, tone
maps, diffuse illumination, diffuse reflectance, entity id, difference, residual, Lambertian and
non-Lambertian maps. We show the used views in Figure 5.3, in which only one of the available
surface normal views was selected, and the difference view was removed due to being mostly
black images.

Figure 5.3: Hypersim views of the same frame. From left to right, top to bottom: color, dif-
fuse illumination, tonemap, semantic segmentation, diffuse reflectance, Lambertian, semantic
instantiation, non-Lambertian, depth, residual, surface normal, entity id, and texture maps. Fig-
ure extracted from Roberts et al. [107].
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OpenRooms is a framework for photorealistic indoor scene datasets. It can produce high dy-
namic range (HDR) images with ground-truth depths, surface normals, spatially-varying bidi-
rectional reflectance distribution function (BRDF), light sources, and per-pixel spatially-varying
lighting and visibility masks for every light source (Figure 5.4). Considering this framework,
the number of available images is not the maximum possible, and users can render more im-
ages from the given assets as they need. Despite that, we used the publicly available dataset,
composed of 118,233 images, with three images per frame, resulting in 39,411 frames [79].

Figure 5.4: Some of the possible views from OpenRooms for the same single frame. The
publicly available dataset contains the original rendered image and two versions of the diffuse
albedo view. Figure extracted from Li et al. [79].

5.1.2 Custom Datasets

In our experiments, remapping and filtering the datasets mentioned in the last section were
employed to build the target task for this Master’s thesis.

Places8

All datasets mentioned earlier are primarily used for self-supervised pretraining in indoor envi-
ronments, but we constructed a smaller dataset for finetuning purposes. Places8 is a subset of
Places365-Challenge focused on environments most common in CSAM.

Initially, to increase the number of images per class and therefore raise the intraclass diver-
sity while reducing the interclass ambiguity, we grouped Places365-Challenge indoor classes
from 159 to 62 new categories following WordNet synonyms and sometimes direct hyponyms
or related words. For example, bedroom and bedchamber were joined, while child room was
kept in a separate category given its importance in CSA investigation. The complete remapping
can be seen in Table 5.2 under “Original Categories”.

Next, we filtered the remapped dataset into 8 final classes from 23 different scenes of
Places365-Challenge. The selection of such scenes followed conversations with Brazilian Fed-
eral Police agents experts in CSAM investigation and labeling, which constantly helped with the
research. We emphasize, however, that some classes mentioned by the practitioners were not
found within Places365-Challenge, such as photographic studio. Thus, we selected the related
category of a television studio, for it depicts photo and video cameras and people posing.

Places365-Challenge already provides training and validation splits mapped accordingly.
The test split was then generated from a stratified 10% split from the training set, given that the
remapping and filtering made for a highly imbalanced dataset. A small sample of the training
set can be seen in Figure 5.5 while numeric details on the final dataset produced are shown in
Table 5.2.
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(a) bathroom (b) bedroom

(c) child’s room (d) classroom

(e) dressing room (f) living room

(g) studio (h) swimming pool

Figure 5.5: Example of image samples for each class within the custom Places8 dataset.

Table 5.2: Description of the Places8 dataset. The class represents the final label used, while the
original categories stand for the original Places365 labels. Places365 already provides training
and validation splits mapped accordingly. The test set comes from a stratified 10% split from
the training set.

Class Test Training Validation % Original Categories

bathroom 5740 51,655 200 13.4 bathroom, shower
bedroom 11,112 100,012 600 25.9 bedchamber, bedroom, hotel room,

berth, dorm room, youth hostel
child’s room 4650 41,849 300 10.8 child’s room, nursery, playroom
classroom 3751 33,763 200 8.7 classroom, kindergarden classroom
dressing room 2432 21,889 200 5.7 closet, dressing room
living room 9940 89,458 500 28.7 home theater, living room, recreation

room, television room, waiting room
studio 1404 12,633 100 3.3 television studio
swimming pool 1505 13,547 200 3.5 jacuzzi, swimming pool

Total 40,534 364,806 2300 100

Indoors.all & Indoors.real

We proposed two pretraining datasets for self-supervision: Indoors.all and Indoors.real. The
former comprises all chosen Hypersim [107], OpenRooms [79], InteriorNet [77], and Places365-
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Challenge [134] indoor images, while the latter is then simply the Places365-Challenge indoor
images. Indoors.all contains 7,778,152 images and Indoors.real 2,227,439 images, both used in
contrastive pretext tasks.

For comparison, Indoors.all contains over 6 times as much images as ImageNet-1k2. This
fact led us to reduce the number of epochs so that the total number of images the model sees in
the pretraining part is near equal with the model zoo ImageNet pretrained models, which were
mostly pretrained for 100-200 epochs. Therefore, Indoors.all SSL pretraining was executed
with 25 epochs, and Indoors.real with 50 epochs.

However, we emphasize Indoors.all contains not only real but also synthetic images and
their rendered views (depth, segmentation, etc.). These views are used as pseudolabels in the
SSL pretext task, which we believe is more informative than random augmentations and could
potentially produce better models.

5.1.3 Litmus Test Dataset

Beyond simply checking balanced accuracy, responsible machine learning must also understand
the limitations and flaws of produced models [43, 44]. In particular, this work aims at helping
people in general, considering the various possible demographics and social backgrounds from
which data can come. This is not a simple task in most cases, and it is virtually impossible to
find all deficiencies, but we can focus on a few specific, and well-defined features [32].

The machine learning model planned for this Master’s thesis will be used for CSAM inves-
tigation, but one should notice that it can serve other purposes. We assess its level of gener-
alization with a small custom dataset that considers some underrepresented features from the
Places8 dataset as means of testing, auditing, and even understanding the models produced.
This step does not require large amounts of data, but different enough imagery is arranged to
break the classifier and expose its most serious flaws.

Thus, we produce a small “litmus dataset” from online images to check if the model per-
formance holds outside of the controlled nature of Places8. The dataset comprises 10 images
per class, with the 8 original Places8 classes: bathroom, bedroom, child’s room, classroom,
dressing room, living room, studio, and swimming pool.

The Litmus Test dataset is a sample of images taken from Google images, Bing images,
and the Dollar Street dataset [108]. All images have a free license to share, modify and use,
including Dollar Street, licensed under CC-BY 4.0 Commercial.

Dollar Street is an annotated image dataset of 289 everyday household items photographed
from 404 homes in 63 countries worldwide. It contains 38,479 pictures, split among abstrac-
tions (image answers for abstract questions), objects, and places within a home. This dataset
explicitly depicts underrepresented populations and is grouped by country and income. Not all
countries are present, but there is a balanced amount of pictures per region, and most images
come from families who live with less than USD $1000 per month [108].

The dataset (Figure 5.6) is split into folders with the label name, but an accompanying meta-
data YAML 3 file identifies each image with an id, file path, source, URL, and label. In that

2ImageNet-1k contains 1,281,167 training images, 50,000 validation images, and 100,000 test images
3YAML was selected for its better readability and is user-friendliness in comparison to other used metadata

schemas, such as JSON
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regard, we selected all images using the label keyword in the Google/Bing search engine or Dol-
lar Street folder (when possible, given that Dollar Street does not contain all Places8 classes).
However, they were chosen, so there was a mix of simple and challenging classifications.

(a) bathroom (b) bedroom

(c) child’s room (d) classroom

(e) dressing room (f) living room

(g) studio (h) swimming pool

Figure 5.6: Example of image samples for each class within the custom Litmus Test dataset.

We emphasize that this is a dataset aimed at inference with a simple check, and no training
is performed. A complete datasheet of the Litmus Test dataset’s information can be found in
Appendix A.

5.2 Experimental Design

Following the pipelines presented in Chapter 4, we conducted a sequence of pretraining and
finetuning experiments to find the best model for the indoor scene classification task (our target
task).

We explored four SSL techniques for comparison against a full supervised baseline trans-
ferred from ImageNet. We selected ResNet-50 (1×) as the main backbone for all experi-
ments, given the wide adoption of such neural network architecture on both supervised and
self-supervised learning and the fact most released pretrained models are available with this
architecture.
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We carried out the experiments on the Places8 dataset as our target task. Therefore, the
main results presented and the models built are centered and hyperoptimized around this partic-
ular task.

In this context, all experiments share a few constant parameters used throughout the pre-
training and finetuning steps (Table 5.3). These values mostly come from settings and recom-
mendations from other machine learning and self-supervision community researchers.

Table 5.3: List of most essential constants used for all experiments targeting the Places8 dataset.

Parameter Values

batch size per GPU 1024
image size 224×224 pixels
network backbone ResNet-50
AMP enabled true
AMP settings PyTorch mixed precision default
activation checkpointing enabled true
activation checkpointing settings 2 splits
optimizer LARS
optimizer clip gradient enabled true
optimizer LARS epsilon 1e-08
optimizer LARS trust coefficient 1e-03
optimizer weight decay 1e-06
optimizer momentum 0.9
optimizer Nesterov enabled true
optimizer regularize batch normalization false
optimizer regularize bias true
learning rate auto-scaling enabled true
learning rate base batch size 1024
number of epochs 100
early stopping warmup range 5
early stopping min delta 0.1
early stopping patience 5
number of cross-validation folds 5

All experiments were set to run for 100 epochs. The validation loss with early stopping
is used to determine when the training has reached its optimal point. Our early stop procedure
started after the first 5 epochs and checked at every epoch if the validation loss had raised beyond
0.1 from the minimum seen value or patience of 5 epochs. Early stopping was fundamental to
reach the best possible models with minimal wasted training time.

We applied a 5-fold cross-validation classification protocol. It gives reliable results and
enough points for comparison while keeping the number of experiments in a feasible state.

5.2.1 Pretrained Models

Several experiments had the model weight initialization from other pretrained neural networks,
which other researchers released. Starting from pretrained weights generally allows for better
final representations while exempting us from having to train any ImageNet models.
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In this regard, all pretrained models gathered were trained on the ImageNet-1k with a
ResNet-50 architecture and using a temperature equal to 0.1, shown in Table 5.4. For the sake
of convenience, we fetch the model with the highest ImageNet top-1 score for each technique,
but it is essential to notice that pretrained models starting from 100 epochs and various batch
sizes are released, all with quite close accuracy metrics. However, some selected models have
accuracies different than those published (Table 2.1), as these models were not always made
publicly available or fully compatible with our deep learning tools.

In light of that and given the time constraints, all SSL pretraining made by ourselves occurs
with no more than the equivalent image amount as 100 ImageNet epochs4.

Table 5.4: Pretrained models used for weight initialization on some of the SSL pretraining and
model finetuning experiments. Accuracy stands for ImageNet-1k top-1 accuracy.

Method Pretrain Epochs Pretrain Batch Size Accuracy (%) Source

Supervised – – 75.45 VISSL Model Zoo
SimCLR 800 4096 69.68 VISSL Model Zoo
SwAV 800 4096 74.92 VISSL Model Zoo
BarlowTwins 1000 2048 71.80 VISSL Model Zoo
SupCon 1000 1024 79.10 SupContrast

5.3 Results

5.3.1 Supervised Baseline

Initially, we carried out a sequence of finetuning experiments from an ImageNet supervised
backbone to find the optimal supervised baseline for our main target task. The goal is to make
an extensive comparison when looking for the best possible model, so this baseline is, later
on, going to be compared with the SSL models. We optimized this supervised pipeline more
thoroughly to make it more challenging than the SSL counterparts.

We applied a 5-fold cross-validation end-to-end finetuning from a ResNet-50 backbone pre-
trained in ImageNet with a supervised pipeline. This set of experiments explored different
learning rate scenarios to find the best model for the Places8 dataset.

Some critical constants and parameters used in these experiments are shown in Table 5.5.
The hyperparameterized column in this table defines which parameters were tried in the grid
search procedure and all values checked are separated by commas. Beyond that, each experi-
ment was repeated four times to diminish the possible effects of shuffling during the training
and get a more stable result.

The best-supervised model gets 84.9% ± 2.8% average accuracy on Places8 and uses a base
learning rate of 0.001 with the cosine half wave 3× restarts scheduler and batch size per GPU
of 1024. There is a significant dependency of the performance with the learning rate value, as
shown in Figure 5.7(a), where the impact of the lower learning rate is visible.

Figure 5.7(a) is a violin plot of all experiments made with the supervised learning model
grouped by the initial learning rate value. The violin plot is a distribution plot, which shows if

4https://github.com/facebookresearch/vissl/blob/main/MODEL_ZOO.md

https://github.com/facebookresearch/vissl/blob/main/MODEL_ZOO.md
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Table 5.5: List of constants and hyperparameters used in the supervised baseline experiments
in the Places8 dataset.

Parameter Values Hyperparameterized

augmentations horizontal flip
network head MLP 2048×8
learning rate base value 0.1, 0.01, 0.001 yes
learning rate scheduler linear warmup + cosine half wave 3x restarts, yes

linear warmup + cosine,
linear warmup + constant with 3 decays

optimizer SGD, Adam, LARS yes
batch size per GPU 64, 256, 1024 yes

the data points are equally distributed around the mean or if there are possibly multiple clusters.
When performing multidimensional hyperparametrization and k-fold cross-validation, the vio-
lin plot is a helpful tool to find possible imbalances in the data while also allowing for a quick
comparison analysis. Particularly in Figure 5.7(a), each violin is composed of 20 data points
because each of the 5 folds is repeated four times.

Table 5.6: Hyperparameters for the best-supervised model.

Hyperparameter Value

learning rate base value 0.001
learning rate scheduler linear warmup + cosine half wave 3x restarts
optimizer LARS
batch size per GPU 1024

The plot in Figure 5.7(b) is the output of the BEST analysis explained in Section 2.4. It
shows the fitted gaussian distribution for the difference of means among the balanced accuracy
of two different models. The orange vertical line is a reference for the value of zero, and the
orange headers signal how much of the plotted area is before and after this reference. The
fact that over 99.9% of the distribution lies after zero implies a 99.9% confidence rate that
0.001 is superior to 0.01 as a learning rate. Beyond that, the value at “mean” represents the
average difference of balanced accuracies, so the learning rate of 0.001 increases the balanced
accuracy of the model by 14 percentage points on average when compared to the learning rate
of 0.01. Finally, the High-Density Interval (HDI) indicates the interval of values where 94% of
the distribution mass lie, similarly to a confidence interval [71].

In particular, the results were statistically equivalent for the other hyperparameters tested,
so the LARS optimizer and batch size per GPU values were selected to minimize the training
time while maintaining good model performance. Beyond that, considering the large sizes of
the datasets used, this batch size is still far from the noise scale and, together with the usage of
the LARS optimizer, represents minimal chances for a generalization gap [55, 87]. The batch
size of 1024 per GPU, LARS optimizer, and learning rate scheduler of cosine half wave 3×
restarts were kept the same for all remaining experiments.

Beyond that, we are also interested in understanding how ambiguous the classes are among
themselves for the trained model, and the normalized confusion matrix is an excellent tool to
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(a) (b)

Figure 5.7: Results for the supervised learning model finetuned on Places8. (a) Violin plots of
balanced accuracy versus the different initial learning rates. (b) BEST difference of means with
learning rate base values of 0.001 and 0.01.

capture such kind of trouble. Figure 5.8 shows the most significant confusion between the
bedroom and living room (11.8%), child’s room and classroom (10.2%), dressing room and
bathroom (8.2%), and even child’s room and bedroom (6.9%). On the other hand, the bathroom,
swimming pool, and studio seem more easily distinguishable for this model overall.

Figure 5.8: Confusion matrix for the best-supervised model finetuned on Places8 with values
normalized by a number of elements in each class.
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5.3.2 SSL Hyperparametrization

These initial SSL experiments intend to understand the best settings for self-supervision. The
goal is to find the best optimizer configurations, such as pretraining and finetuning learning
rates, that will be repeated for the other SSL techniques evaluated.

These SSL experiments attempt to find the best-pretrained model by starting from the same
settings used in the literature and varying some hyperparameters to find the best for our target
task. However, it is essential to notice that there is no way to evaluate an SSL pretrained
model in isolation, only by finetuning on a downstream task. Therefore, each one of the models
produced on this step was further hyperoptimized at cross-validation model finetuning.

Along this line, the finetuning model experiments also started from settings similar to those
found in the literature, with minor variations.

To such end, the SwAV technique was chosen for this particular set of experiments given
it has been verified as the most reliable on ImageNet similar data [36] and, as mentioned on
Chapter 2, it is more efficient in a distributed training environment and gives better results even
with small batch sizes.

Moreover, we used an ImageNet pretrained SwAV model released by Meta AI as one of the
options for weight initialization on both SSL pretraining and finetuning. This means that some
models were pretrained from scratch on scene-centric datasets while others were pretrained
from object-centric models, and also that some models were finetuned without any scene-centric
pretraining, i.e., were finetuned direct from the ImageNet SwAV model.

Consequently, this step helps us to understand the best average conditions for self-supervised
learning and reduces the total number of experiments.

In short, this set of experiments relied not only on the SwAV technique but also involved
pretraining with two different datasets, Indoors.all and Indoors.real, and using two different
weight initialization techniques. Among other hyperparameters tried, these let us understand
how SSL algorithms best specialize in the scene recognition domain. Other training settings
were kept equal to the supervised baseline.

In that sense, Tables 5.7 and 5.8 show all constants and parameters hyperoptimized for
SSL pretraining and 5-fold cross-validation end-to-end finetuning, respectively. Similar to the
supervised baseline, grid search was used, and each experiment was repeated four times (two
times for each SSL pretraining and two times for each model finetuning).

Moreover, the two chosen pretraining datasets had far different sizes, so the total number
of epochs was balanced off a 100 epochs pretraining on ImageNet following the Equation 5.1.
In short, the number of epochs for Indoors.all and Indoors.real were rounded to 25 and 50,
respectively. This allows the models to be more fairly compared, as they would be exposed
to approximately the same number of images. On the other hand, the limit of 100 ImageNet
epochs was chosen exclusively out of time constraints, for each SSL pretraining took around
30 hours.

dataset epochs =
ImageNet size

dataset size
∗ 100 epochs (5.1)

The best SwAV pretrained model reached 80.0% ± 1.6% average accuracy on Places8 and
used a learning rate pretraining and finetuning base value of 0.01, with the Indoors.real dataset
and was initialized from the SwAV ImageNet pretrained model, as shown in Table 5.9.
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Table 5.7: List of constants and hyperparameters used in the SwAV hyperparametrization ex-
periment during self-supervised pretraining step. Some of these parameters are specific to the
SwAV technique.

Parameter Values Hyperparameterized

multicrop 2×160 pixels + 4×96 pixels
augmentations horizontal flip, color distortion,

gaussian blur
network head MLP 2048×2048×128
temperature 0.1
number of clusters (SwAV specific) 3000
learning rate pretraining base value 0.01, 0.001 yes
learning rate scheduler linear warmup

+ cosine half wave 3× restarts
pretrain dataset Indoors.real, Indoors.all yes
weight initialization glorot, ImageNet pretrained model yes

Table 5.8: List of constants and hyperparameters used in the SwAV hyperparametrization ex-
periment during the cross-validation model finetuning step.

Parameter Values Hyperparameterized

augmentations horizontal flip
network head MLP 2048×8
learning rate finetuning base value 0.01, 0.001 yes

Table 5.9: Hyperparameters for the best SwAV pretrained model.

Hyperparameter Value

learning rate pretraining base value 0.01
learning rate finetuning base value 0.01
pretrained dataset Indoors.real
weight initialization ImageNet pretrained model

In this regard, we aim to thoroughly understand the impact of the hyperparameters in this
set of experiments.

Weight Initialization

Weight initialization stands for the option of using another model pretrained weights as a start-
ing point. Specifically, we compared the glorot initialization with an ImageNet pretrained
SwAV version.

The violin plots in Figure 5.9(a) show SwAV to be a slightly better option in terms of the
mean balanced accuracy, but there is clearly a bimodal distribution. Based on the difference
of means from the BEST methodology in Figure 5.9(b), we found SwAV initialization posi-
tively impacted the balanced accuracy with 96.9% confidence and an average increase of 3.1%
compared to the random initialized models.
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(a) (b)

Figure 5.9: Results for the SwAV pretrained models finetuned on Places8. (a) Violin plots of
balanced accuracy versus the different weight initializations. (b) BEST difference of means
between the SwAV pretrained models with random and ImageNet pretrained initializations.

Pretraining Dataset

We analyzed each pretraining dataset’s impact to disambiguate the pretraining scenarios more
meticulously. For that matter, we analyzed the experiments as having three possible pretraining
datasets: Indoors.all, Indoors.real and ImageNet, where the ImageNet pretraining comes from
the SwAV ImageNet pretrained model. Therefore, we have five possible configurations:

1. Indoors.all: randomly initialized model pretrained on Indoors.all for 25 epochs and fine-
tuned on Places8;

2. Indoors.real: randomly initialized model pretrained on Indoors.real for 50 epochs and
finetuned on Places8;

3. ImageNet: SwAV ImageNet initialized model directly finetuned on Places8 (no second
pretraining);

4. ImageNet + Indoors.all: SwAV ImageNet initialized model with a second pretraining step
on Indoors.all and then finetuned on Places8;

5. ImageNet + Indoors.real: SwAV ImageNet initialized model with a second pretraining
step on Indoors.real and then finetuned on Places8.

The violin plots in Figure 5.10 show all random initialized models had some collapsed
models (balanced accuracy < 0.4), whereas the models with ImageNet initialization did not.
Despite that, it is not possible to determine the best pretraining dataset configuration.

Based on the difference of means from the BEST methodology in Figure 5.11(a), we verify
that the Indoors.real second step versus the Indoors.all second step positively impacted the
balanced accuracy with 62.3% confidence and an average increase of 1%.
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Figure 5.10: Violin plots of balanced accuracy versus the different pretrain datasets configura-
tions tried for the SwAV pretrained models finetuned on Places8. The presence of the ImageNet
dataset means the weights were initialized from a SwAV model pretrained on ImageNet.

(a) (b)

Figure 5.11: BEST difference of means between the SwAV pretrained models with a second
step on (a) Indoors.real versus Indoors.all, and (b) Indoors.real and without it.

This result alone shows it is pretty hard to say Indoors.real is better than Indoors.all as a
better second pretraining dataset. All in all, they could most likely be equivalent.

With that in mind, we question if there is any impact on adding this costly second pretraining
step. We observe then in Figure 5.11(b) that an Indoors.real addition positively impacted over
ImageNet alone with 80.5% confidence and an average increase of 3.3%, which is definitely
more significant.

Learning Rates

We analyzed the impact of different pretraining and finetuning learning rates as a final compari-
son. The violin plots in Figure 5.12 show the higher learning rates to be a better option in terms
of the mean balanced accuracy on both pretraining and finetuning.

Finally, we question which learning rate had the higher impact on the final model perfor-
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Figure 5.12: Violin plots of balanced accuracy versus the different pretraining and finetuning
learning rates configurations tried for the SwAV pretrained models finetuned on Places8.

mance. For that matter, once more, we employed the BEST analysis, showing that, on average,
the pretraining learning rate increase led to a 10 percentage points improvement in balanced
accuracy while the same finetuning learning rate increase led to a 7.2 percentage points im-
provement (Figure 5.13).

(a) (b)

Figure 5.13: BEST difference of means between (a) pretraining learning rates and (b) finetuning
learning rates for the SwAV pretrained models finetuned on Places8.

Confusion Matrix

In summary, we have the higher learning rates as a confident better choice for SwAV on Places8,
which is in opposition to the results from the supervised learning. Plus, employing an ImageNet
pretrained model and a second pretraining step with a scene-centric dataset was beneficial, even
though the best scene-centric dataset could not be determined with high confidence.
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Beyond that, we are also interested in understanding how ambiguous the classes are among
themselves for this SSL model. The normalized confusion matrix in Figure 5.14 shows overall
higher error rates values for the same pair of classes we had in the supervised experiment:
bedroom and living room (19.1%), dressing room and bathroom (18.0%), bedroom and child’s
room (14.4%), and even classroom and child’s room (14.1%). In particular, several classes seem
to be confused with living room for this model, which is likely an effect of the high diversity in
this class, given it is a union of multiple Places365 classes. On the other hand, swimming pool
still seems to be more easily distinguishable for this model.

Figure 5.14: Confusion matrix for the best SwAV pretrained model finetuned on Places8 with
values normalized by a number of elements in each class.

5.3.3 Self Supervised Technique Comparison

Beyond SwAV, other SSL techniques can be tried out on the target task. We selected one
technique to find the best hyperparameters and reused them on others primarily due to time
constraints: grid-search hyperparametrization and SSL pretraining are expensive enough that
we cannot repeat said experiments for all other SSL techniques.

With that in mind, we chose SimCLR [24], BarlowTwins [128] and Supervised Contrastive
(SupCon) [65] as extra SSL methods to be tried out. The option for these specific techniques was
due to the availability of public ResNet-50 models and the level of performance on ImageNet
and ImageNet similar datasets [36].
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In particular, SupCon [65] can leverage classes to enhance the SSL pipeline, and it was
selected for this Master’s thesis as we hypothesize that the usage of the datasets categories
could improve the quality of the final representations. With this set of experiments, we intend
to find the best SSL model for our target indoor recognition task.

Thus, given that a set of hyperparameters was obtained for the SwAV technique, we pre-
trained and finetuned the other self-supervised models to check if a different SSL technique
could provide better results on Places8. This set of experiments follows the same steps de-
scribed in the previous sections, and Table 5.10 shows all constants and parameters specific to
each SSL technique.

Table 5.10: List of constants and hyperparameters used in the self-supervised pretraining step.
Some of these parameters are technique specific.

Parameter Values

temperature (all SSL) 0.1
embedding dimension (all SSL) 128
number of clusters (SwAV) 3000
lambda (BarlowTwins) 0.0051
scale loss (BarlowTwins) 0.024

Moreover, we still pretrained on our two datasets, Indoors.all and Indoors.real, to improve
the confidence level to assess better the dependency of different pretraining options on the
downstream task.

In that sense, we initialized all models with the ImageNet pretrained versions (there was
no cross pretraining, i.e., no BarlowTwins pretraining happened on, for example, the SimCLR
ImageNet model or vice-versa). The training from scratch was not tried in this batch of exper-
iments because we observed in the last section that there is a clear and definite advantage to
starting from ImageNet.

Even including the SwAV benchmarks, the best SSL-based model found gets 86.3% ±
2.4% average balanced accuracy for Places8 with the BarlowTwins technique pretrained on the
Indoors.real dataset and initialized from the BarlowTwins ImageNet pretrained model, as shown
in Table 5.11.

Table 5.11: Hyperparameters for the best SSL pretrained model.

Hyperparameter Value

SSL technique BarlowTwins
pretrain dataset Indoors.real
weight initialization ImageNet pretrained model

Similar to the last section, we aim to thoroughly understand the importance of these param-
eters on the Places8 classification task.

SSL Technique

Initially, we compare the differences between the different self-supervision techniques. The
violin plots in Figure 5.15 show BarlowTwins to clearly be a better option in terms of the mean
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Figure 5.15: Violin plots of balanced accuracy versus the different SSL technique models fine-
tuned on Places8.

balanced accuracy.

Pretraining Dataset

To confidently decide which pretraining case is better, we again compare the influence of the
pretraining dataset on the final downstream performance. Since only ImageNet pretrained mod-
els are used on the weight initialization, there are now three possible dataset configurations:

1. ImageNet: ImageNet initialized model directly finetuned on Places8 (no second pretrain-
ing);

2. ImageNet + Indoors.all: ImageNet initialized model with a second pretraining step on
Indoors.all and then finetuned on Places8;

3. ImageNet + Indoors.real: ImageNet initialized model with a second pretraining step on
Indoors.real and then finetuned on Places8.

The violin plots in Figure 5.16 show there were some collapsed models (balanced accuracy
< 0.4) among the ImageNet only set, whereas the models with a second pretraining step on an
indoor dataset never displayed such behavior.

Based on the difference of means from the BEST methodology in Figure 5.17(a), we ver-
ify the Indoors.real second step had a more positive impact on the balanced accuracy than
Indoors.all with 88.7% confidence and an average increase of 3%.

Compared with the results from the last section, it is now possible to say with actual con-
fidence Indoors.real is a better second pretraining step than Indoors.all. Thus, using synthetic
images along with real ones was not beneficial to the final performance on Places8, even though
the total number of images was much higher. We hypothesize this problem could be due to the
difference in epochs between Indoors.real and Indoors.all (which is more thoroughly analyzed
in the ablation study in Section 5.3.4). However, the presence of synthetic views (depth, seg-
mentation map) in the dataset most likely disturbed the self-supervised learning process, given
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Figure 5.16: Violin plots of balanced accuracy versus the different pretrain datasets configura-
tions tried for the SSL pretrained models finetuned on Places8. The presence of the ImageNet
dataset means the weights were initialized from a model pretrained on ImageNet.

(a) (b)

Figure 5.17: BEST difference of means between the SSL models with a second step on (a) In-
doors.real versus Indoors.all, and (b) Indoors.real and without it.

there were no similar images in the downstream task (Places8 has no images like those). Then,
it might be useful to attempt a new indoor dataset containing only photorealistic figures.

Again, we question if there is any impact at all on adding this costly second pretraining
step. We notice then in Figure 5.17(b) the experiments made show an Indoors.real addition had
a positive impact over ImageNet alone with 96.2% confidence and an average increase of 6%,
which is definitely significative for machine learning, especially on a hundred thousand image
dataset like Places8.

5.3.4 Ablation Study

Any statistical study is filled with multiple coupled components and hyperparameters influenc-
ing the model performance in complex ways. It is thus essential to investigate the performance
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of an AI system by removing or altering specific parts in isolation to understand its contribution
to the whole system.

Toward the best overall model, we designed some particular experiments to understand
better the behavior of the created models under different training conditions.

In this section, we aim to discover how SSL pretraining affects the final model performance.
We verify how different pretraining datasets and the number of pretraining epochs influence the
final model performance. Considering the SSL pretraining step is the most expensive part of
the pipeline, it is helpful to find the best conditions and limitations of this step, so researchers
can maximize the performance while minimizing the costs.

Pretraining Epochs

Given the expensive nature of SSL pretraining, we finetune separate models that have been
pretrained with BarlowTwins on our pretraining datasets for 1, 2, 3, 5, 10, 20, 30, 40, and 50
epochs and report the top-1 accuracy on Places8, as shown in Figure 5.18.

Figure 5.18: Lineplot of top-1 balanced accuracy on Places8 versus the number of pretraining
epochs on each pretraining dataset for BarlowTwins initialized from an ImageNet pretrained
model. The bands around the line represent the standard deviation on all experiments done for
one particular epoch.

The results show overall Indoors.real converges quicker than Indoors.all, which takes 50
epochs to reach performance that the first reached on 20 epochs. On the other hand, we notice
Indoors.real performance decreases in later epochs. This experiment starts from an ImageNet
pretrained model, so the conclusions will likely differ if starting from scratch.

5.3.5 Final Results on Places8

A summary of all experiments conducted in these previous step is found in Table 5.12 and,
together with Figure 5.19, we see the best SSL model (Table 5.11) performs better on Places8
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than the best-supervised counterpart (Section 5.3.1) with 98.7% confidence and, on average,
shows a 2.2% increase in the balanced accuracy.

Therefore, we can confidently affirm that an SSL model should be used for this task and
proceed with training/test this model, specified in Table 5.11, on the Places8 dataset, without
cross-validation.

Table 5.12: Summary of results for each attempted technique

Technique Hyperparameters Experiments Best Model Average Balanced Accuracy
Supervised 4 540 84.9% ± 2.8%

SwAV 4 320 80.0% ± 1.6%
SimCLR 2 160 73.9% ± 4.4%
SupCon 2 160 77.3% ± 0.7%

BarlowTwins 2 160 86.3% ± 2.4%

Figure 5.19: BEST difference of means between the best SSL and supervised models. The
BEST model is input with the balanced accuracy of each cross-validation fold test.

For the final evaluation, the model was finetuned on all Places8 training sets and evaluated
on the test set, which was held out up to this point, following the pipeline from Section 4.2.
The results showed 71.6% balanced accuracy on this task, which is expectedly lower than the
average balanced accuracy on cross-validation, but it is still an acceptable result considering
scene classification often demonstrates low accuracies on the Places dataset [129].

In spite of that, when we look at the confusion matrix in Figure 5.20, the differences among
the classes show how the test set can be much more challenging than cross-validation. Here
“dressing room” is the best-performed class, with “bathroom” and “living room” following in
terms of true positives. However, this model clearly avoids classifying images as “bedroom” or
“classroom”, in opposition to what has been seen in the cross-validation phase, as in Figure 5.14
for example. Overall, the model has unbalanced performance yet reaches satisfactory results in
most classes.

5.3.6 Litmus Test

The model inferred on 80 images, with 62 right and 18 wrong classifications, which represents
77.5% accuracy, higher than our final reported test accuracy on Places8, which is an acceptable
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Figure 5.20: Confusion matrix for the best model on Places8 test set with values normalized by
a number of elements in each class.

result when we look at the images within the litmus dataset.
First, “classroom” is the class with the best overall performance, with all instances cor-

rectly classified and no false positives, i.e., no other image was misclassified as classroom (Fig-
ure 5.21).

On the other hand, child’s room seems to be the most difficult classification, with the model
often preferring bedroom instead, even for the “magazine cover” images. However, it seems the
model can be fooled to generate false positives when children are present in the image, which
should be an expected bias, as shown on the fourth image in the “studio” row in Figure 5.21.

In that sense, even though the Places8 “studio” class was trained from the original “televi-
sion studio” Places365 category, the model seems to be able to adapt to other kinds of studios,
seemingly focusing on the presence of lights or homogeneous backgrounds. However, it cannot
correctly identify “studio pictures”, a kind of picture commonly present among CSAM.

Beyond that, swimming pool is still correctly classified when depicted outdoors. The water
texture may be such a clear sign of the pool that even with unseen traits, such as the sky, it can
still classify it correctly. The only exception is when the picture is taken from inside the pool,
as shown on the second image in the “swimming pool” row in Figure 5.21, which was selected
to trick the classifier.

Finally, there seems to be a high level of confusion between bedroom, living room, and
child’s room, especially when looking at low light and non-standard images (Dollar Street),
which we believe is capable of improvement.



72

Figure 5.21: Image grid of inference results on the Litmus Test dataset. Each row represents
one label, and the name on the left is the true label for each image, while the name above it is
the predicted label. A green frame highlights if the prediction matches the true label; otherwise,
a red frame is placed on the image.

5.3.7 CSAM Final Test

A Brazilian Federal Police agent evaluated our best scene classifier on CSAM data. We created a
script, which will be available in the final repository without sensitive information, that executes
the model through all images within a directory and outputs a dataframe (tabular data) with the
predicted class for each image. A subset of the results was manually checked to confirm the
model’s performance on this data. We emphasize that only inference is made in this step, and
this Master’s thesis performs no training whatsoever with CSAM.

The script was made to run inside a Docker container, and it was accompanied by a deep
learning model as a .torch file. All required files were zipped together and sent via email to
the agent. We emphasize that no CSAM was sent or shared using email or any communication
protocol, only the script and the model trained on the Places8 dataset.

In total, 46,006 images had their scenes classified by the model, and the agent manually
labeled 615 of those. This subset is grouped into two categories of child abuse material: CSAM
and CSAM Suspect. The CSAM category is constituted of levels A and B from Table 1.1,
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which are the most serious and sensitive classes. The CSAM Suspect category is thus level C
from Table 1.1 and does not show any nudity yet hints of eroticism. Among these, there are 313
images from the CSAM category and 302 images from the CSAM Suspect category.

The histogram with the labeled scenes is depicted in Figure 5.22, in which there are more
classes than Places8 was trained to classify. In particular, many images focused on body parts
and were thus labeled “undefined”.

On a different note, it is clear that some classes are more common in one category than the
other, with “studio” being especially prevalent in CSAM Suspect (the agent affirms there is a
correlation between this kind of scene and erotic posing). Moreover, the scenes of “classroom”
and “dressing room” are not seen in any image.

Figure 5.22: Histogram of labeled scenes within CSAM and CSAM Suspect categories.

The model achieved a balanced accuracy of 36.7% among the classes in Places8. This result
is lower than what has been seen in the training dataset, and it demonstrates the difficulties in
working with this kind of data.

Beyond that, the balanced accuracies for CSAM and CSAM Suspect categories were 40.0%
and 34.1%, respectively, showing a balanced performance despite the differences between the
two groups.

Finally, to understand the model’s weaknesses, we plot the confusion matrix for the clas-
sification process in Figure 5.23, in which it is possible to see some clear biases, which were
noticed during the manual labeling process.

First, “bathroom” and “swimming pool” seem to be a point of confusion, possibly due to the
presence of water in both scenes. Besides, “studio” seems to have been completely confused
for “dressing room”, an issue which had already been seen in Figure 5.21. In there, studio
photography images of people posing had the same misclassification, possibly due to the large
portion of the image being occupied by clothes. In that sense, we notice that by exchanging
labels between these two classes, the balanced accuracy increases to 45.9%. In the end, “Child’s
room” was also commonly classified as “bedroom”, a problem expected, as there is a level of
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Figure 5.23: Confusion matrix for Places8 scenes classified in the CSAM dataset with values
normalized by the number of elements in each class.

ambiguity in many cases.
Ultimately, this test was essential to understand the model’s limitations in real-world condi-

tions, with entries that do not fit any of the trained classes and the learned features do not show
up with the same distributions. There is a prolonged discussion on the topic in Appendix B.

5.4 Infrastructure and Implementation Details

All experiments were conducted using 6 NVIDIA RTX GPUs A6000 with 48 GiB each. We
used PyTorch 1.105 as the deep learning framework with the VIsion library for state-of-the-art
Self-Supervised Learning (VISSL)6. The experiments and model checkpoints were managed
with the free education version of Weights & Biases SaaS7.

Sided with the hardware infrastructure, the deep learning optimizations of Automatic Mixed
Precision and Activation Checkpointing were indispensable for training multiple models with
multi-million image datasets for many epochs. The objective of all optimizations was to in-
crease the convergence rate, i.e., the time until an experiment reaches the same level of perfor-

5https://pytorch.org
6https://vissl.ai
7https://wandb.ai

https://pytorch.org
https://vissl.ai
https://wandb.ai
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mance without it. In that sense, we could get around 1.5 hours per epoch for model pretraining
on 8 million images and 3 minutes per epoch for model finetuning on 300,000 images, using a
batch size of 1024 images per GPU.

The CSAM test was executed in a GPU workstation owned by a Federal Police Agent, and
inference ran on 46,006 images within 30 minutes.
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Chapter 6

Conclusions

This Master’s thesis applied deep learning tools to tackle scene recognition in both general
and specific scenarios. We applied self-supervision to indoor classification to help with CSAM
triage and recognition, showing that SSL can leverage scene images to perform better than
supervised learning.

Furthermore, we compare SSL performance in multiple conditions, using real and synthetic
images, common and sensitive data. The inference in real CSAM is a vital result, bringing
the real distribution of scenes in this data and how a model trained with data from the Places
dataset [134] performs on it.

Our experiments show that combining publicly available self-supervision models with large
scene recognition datasets for a pretext task helps indoor classification, even on the scenes
prevalent in CSAM. However, sensitive material apparently shows unique features, which these
datasets do not commonly provide.

In the end, we compare various SSL techniques in one specific task and understand the best
scenario for its solution. From our perspective, it should serve as a reference for other endeavors
in both scene classification and CSAM recognition.

6.1 Answers to Research Questions

The research questions were designed to guide the research process and define the experiment
set. Following the experiment results, we answer each question accordingly.

Q1. Does self-supervised outperform supervised learning for indoor classification?
Yes. Within Places8, our target indoors task, we can assess with over 98% confi-
dence that SSL outperforms supervised methods with an average improvement of
2.2 percentage points in balanced accuracy (Figure 5.19).

Q2. Can we boost self-supervised target task performance by adding a pretraining
task that uses synthetic images and their segmentation maps? No, not with syn-
thetic images. The usage of synthetic images in the pretext task did not improve
the performance of the final model in comparison with the pretext task that only
used real images. We hypothesize that using synthetic masks (e.g., depth, segmenta-
tion, optical flux, Lambertian) the same way we use real or photorealistic images in
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contrastive learning methods impacted convergence and required the model to train
longer to reach the same level of performance without it (Figure 5.18). All in all, us-
ing a custom-tailored pretext task is welcome when using self-supervision, but more
data does not always translate into better performance.

Q3. Are popular scene recognition datasets representative enough of CSAM envi-
ronments that a scene classification model built from them can be used on such
sensitive data? No, not for all classes. Based on the analyzed CSAM, we can say
some classes from Places8 have matching features while some do not. In particular,
“bathroom” and “swimming pool” seem representative enough in both datasets, but
Places8 “studio“ had almost no match in CSAM and was mostly taken as “dressing
room”, which was actually absent from the CSAM data. Furthermore, the semantic
ambiguity (explained in Chapter 3) among “bedroom”, “child’s room” and “living
room” seems to be too hard for the model to distinguish and seemingly made it look
for inconsistent features during classification, e.g., the presence of children or toys
for child’s room, bed or pillow for bedroom, sofa or coffee table for living room. The
results obtained are useful and should serve as a starting point for further investiga-
tions on the topic.

6.2 Challenges and Future Work

The level of performance we reached in our target task was optimal under the conditions we
worked, but far better results can be achieved if some constraints are either changed or removed.

First, the current solution is not particularly useful for CSAM recognition and triage in its
current state, classifying at most two scenes with ideal performance. Given the diversity of
features unique to this kind of data, a more robust target task must also be more general: it
must be able to classify not only indoor scenes but possibly objects, people, body parts and
some outdoor scenes as well. Also, feature fusion with the scene model could improve current
CSAM classifiers and improve overall representations.

Additionally, all experiments used ResNet-50, which is fairly popular in SSL research, but
multiple other architectures have gained much research interest after their sustained accom-
plishments on various tasks, such as the larger RegNets [42, 101], and Visual Transformers
[18, 27, 33]. Also, ResNet variations have been tailored for scene recognition and can perform
better than its general version [129]. It might be possible to adapt the SSL pipeline to these neu-
ral networks, even reusing the pretrained weights, to reach improved models without complex
changes to the process.

Moreover, we believe the synthetic data was not used properly when setting the pretext
tasks, and any synthetic masks (e.g., depth, segmentation, optical flux, Lambertian) should not
be treated the same way as real or photorealistic images by the contrastive mechanism. Either
a different usage of the synthetic data or an adapted loss should be used. For example, the
Indoors.all dataset could be restricted only to photorealistic images, thus reducing its size and
possibly converging faster and to better representations. Another viable possibility would be
to use the original labels from the synthetic images in a downstream task since some synthetic
datasets have the scene labeled.
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On a different approach, we tried to provide a comparison using four different SSL mod-
els and extensive hyperparametrization, SimCLR [24], SwAV [17], BarlowTwins [128], and
SupCon [65], which limited our ability to pretrain for longer epochs. Thus, as Section 5.3.4
discusses, it might be useful to pretrain the models longer, even without changes to the original
datasets.

Taking this into account, the largest challenge with SSL pretext tasks is the high cost of
memory and compute power required. The usage of the optimization strategies presented in
Section 2.3 was essential to the success of the work, and other techniques, such as microbatch-
ing [56], a.k.a gradient accumulation, pruning [92], and sharded training [93, 102] could be
added to this process for larger convergence rates.

Finally, CSAM is a challenging research topic on both experimental and psychological lev-
els. However, it is an essential subject that society must face and find smart solutions to stop its
spread, speeding up police work and simultaneously helping to keep more children safe.



79

Bibliography

[1] Mixed precision: Tensorflow core. URL https://www.tensorflow.org/

guide/mixed_precision.

[2] A. Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Dongarra, M. Gates,
T. Grützmacher, N. J. Higham, S. Li et al. A survey of numerical methods utilizing
mixed precision arithmetic. arXiv preprint arXiv:2007.06674, 2020.

[3] M. W. Al-Nabki, E. Fidalgo, R. A. Vasco-Carofilis, F. Janez-Martino and J. Velasco-
Mata. Evaluating performance of an adult pornography classifier for child sexual abuse
detection. arXiv preprint arXiv:2005.08766, 2020.

[4] F. Anda, N.-A. Le-Khac and M. Scanlon. Deepuage: improving underage age estimation
accuracy to aid csem investigation. Forensic Science International: Digital Investigation,
32:300921, 2020.

[5] S. Avila, D. Moreira, M. Perez, D. Moraes, V. Testoni, S. Goldenstein, E. Valle and
A. Rocha. Multimodal and real-time method for filtering sensitive media, 2019. US
Patent 10,194,203.

[6] A. Baevski, W.-N. Hsu, Q. Xu, A. Babu, J. Gu and M. Auli. data2vec: A general frame-
work for self-supervised learning in speech, vision and language. In International Con-
ference on Machine Learning, pages 1298–1312, 2022.

[7] H. B. Barlow. Possible principles underlying the transformation of sensory messages.
Sensory communication, 1(01), 1961.

[8] D. Bau, B. Zhou, A. Khosla, A. Oliva and A. Torralba. Network dissection: Quantifying
interpretability of deep visual representations. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6541–6549, 2017.

[9] A. Bellet, A. Habrard and M. Sebban. A survey on metric learning for feature vectors
and structured data. arXiv preprint arXiv:1306.6709, 2013.

[10] Y. Bengio, Y. Lecun and G. Hinton. Deep learning for ai. Communications of the ACM,
64(7):58–65, 2021.

[11] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi, Q. Fis-
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Appendix A

Datasheet for Litmus Test Dataset

Simultaneously important as obtaining data is documenting its process of acquisition and pur-
poses. When working with data-driven technologies, transparency is crucial to prevent unde-
sired, possibly harmful results and allow for constructive critique. With that in mind, we present
the datasheet for our Litmus Test dataset, as proposed by Gebru et al. [38].

Motivation

1. For what purpose was the dataset created? We attempt to build a small yet diverse
dataset to check if the produced model performance holds outside of the controlled nature
of Places8.

2. Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)? The author of this Master’s thesis
created the dataset on behalf of the Institute of Computing, University of Campinas.

3. Who funded the creation of the dataset? No funding.

Composition

1. What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? Photos of places and environments.

2. How many instances are there in total (of each type, if appropriate)? There are 10
images per category, with 8 categories totaling 80 images.

3. Does the dataset contain all possible instances or is it a sample (not necessarily ran-
dom) of instances from a larger set? It is a sample of images: 5 images were selected
from Google images and another 5 from Dollar Street, each from a different household
(Dollar Street contains 289 households). When Dollar Street did not contain the specified
class, the 5 images were taken from Bing images for variety.

4. What data does each instance consist of? JPEG images
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5. Is there a label or target associated with each instance? Yes. Each image contains one
of 8 possible labels: bathroom, bedroom, child’s room, classroom, dressing room, living
room, studio, and swimming pool.

6. Is any information missing from individual instances? No.

7. Are relationships between individual instances made explicit (e.g., users’ movie rat-
ings, social network links)? There is no direct relation besides the label, but the source
of each image (Google/Bing images or Dollar Street) are distinguished in the metadata
file accompanying the dataset.

8. Are there recommended data splits (e.g., training, development/validation, testing)?
No, the dataset is created for testing only.

9. Are there any errors, sources of noise, or redundancies in the dataset? No.

10. Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? The dataset is self-contained, i.e., it contains all
images, but some of the original links to the images are provided in the metadata file.

11. Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor–patient confidentiality, data that includes
the content of individuals’ non-public communications)? No.

12. Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? No.

13. Does the dataset relate to people? The dataset comprises indoor environments of peo-
ple’s homes, and some images contain people.

14. Does the dataset identify any subpopulations (e.g., by age, gender)? The Dollar Street
original images list income and country.

15. Is it possible to identify individuals (i.e., one or more natural persons), either directly
or indirectly (i.e., in combination with other data) from the dataset? Yes, people are
found in some images.

16. Does the dataset contain data that might be considered sensitive in any way (e.g.,
data that reveals race or ethnic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial or health data; biometric or
genetic data; forms of government identification, such as social security numbers;
criminal history)? No.

Collection

1. How was the data associated with each instance acquired? The dataset is a combi-
nation of images collected online. Some images were found on Google/Bing using the
class name as a search keyword, while others were taken from the associated label in the
Dollar Street dataset.
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2. What mechanisms or procedures were used to collect the data (e.g., hardware ap-
paratus or sensor, manual human curation, software program, software API)? The
images were collected manually to fetch diverse enough environments that would be hard
for the model to classify appropriately.

3. If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)? There is no specific
sampling process. We captured 5 images from the three possible sources with manual
human curation.

4. Who was involved in the data collection process (e.g., students, crowdworkers, con-
tractors) and how were they compensated (e.g., how much were crowdworkers paid)?
The author of this Master’s thesis.

5. Over what timeframe was the data collected? All dataset was collected on July 2nd,
2022.

6. Were any ethical review processes conducted (e.g., by an institutional review board)?
No.

7. Did you collect the data from the individuals in question directly, or obtain it via
third parties or other sources (e.g., websites)? The data was obtained from third parties:
Google/Bing images and the Dollar Street dataset.

8. Were the individuals in question notified about the data collection? All Dollar Street
images are taken with the consent of the owners of the place.

9. Did the individuals in question consent to the collection and use of their data? All
Dollar Street images are taken with the consent of the owners of the place.

10. If consent was obtained, were the consenting individuals provided with a mechanism
to revoke their consent in the future or for certain uses? Not for this dataset, but the
third-party providers enable this resource.

11. Has an analysis of the potential impact of the dataset and its use on data subjects
(e.g., a data protection impact analysis) been conducted? No.

Preprocessing

1. Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or
bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal
of instances, processing of missing values)? Yes, all images are JPEG compressed. No
other preprocessing is done.

2. Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g.,
to support unanticipated future uses)? Raw images are not provided.

3. Is the software used to preprocess/clean/label the instances available? No.
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Uses

1. Has the dataset been used for any tasks already? Yes. This Master’s thesis used this
dataset as an inference test for deep learning models.

2. Is there a repository that links to any or all papers or systems that use the dataset?
No.

3. Is there anything about the composition of the dataset or the way it was collected
and preprocessed/cleaned/labeled that might impact future uses? No.

4. Are there tasks for which the dataset should not be used? No.

Distribution

1. Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? Yes, a public
repository for keeping the files is shared.

2. How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?
GitHub repository.

3. When will the dataset be distributed? When this Master’s thesis is concluded and
publicly released.

4. Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? No. All images are originally
free to use, edit and share.

5. Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? No.

6. Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? No.

Maintenance

1. Who will be supporting/hosting/maintaining the dataset? The author of this Master’s
thesis.

2. How can the owner/curator/manager of the dataset be contacted (e.g., email address)
GitHub issues open in the repository are the preferred method, but the email address is
also shared.

3. Is there an erratum? No, but a changelog can be appended to the repository and serve
as a reference for version management.



94

4. Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? Yes, until this Master’s thesis is publicly released.

5. If the dataset relates to people, are there applicable limits on the retention of the
data associated with the instances (e.g., were individuals in question told that their
data would be retained for a fixed period of time and then deleted)? No.

6. Will older versions of the dataset continue to be supported/hosted/maintained? Yes,
older versions can be found in the repository as well.

7. If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anism for them to do so? One can open a GitHub issue, pull a request, or fork the
repository to make changes.
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Appendix B

Considerations on CSAM Data

The CSAM test enabled a real-world evaluation of our process, but the created model was lim-
ited to 8 classes, whereas the annotated data had more possible scenes, including ‘undefined‘,
which the model does not expect.

Figure B.1 complements the analysis of the model performance, by including the classes of
“beach/lake”, “outdoors” and “undefined” in the confusion matrix. Seemingly, the presence of
water or shades of blue favors the classes “bathroom” and “swimming pool”, which explain why
“beach/lake” (water) or “outdoors” (sky) were labeled as such. On the other hand, “undefined”
had distributed results, not focusing on one specific scene.

Figure B.1: Confusion matrix for all scenes classified in the CSAM dataset with values normal-
ized by the number of elements in each class.
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Beyond classifying scenes, this experiment provides the chance to analyze patterns in CSAM
from a different perspective. Looking at all 46,006 images in the dataset, we have other cat-
egories besides “CSAM” and “CSAM Suspect”, which are possible images found in the ap-
prehended computers. Namely, the other possible categories are “Cartoon”, “Money Bill”,
“Digitalization”, “Document”, “Violence”, “People”, “Pornography” and “Others” and their
distribution is represented on the histogram in Figure B.2.

Figure B.2: Histogram of CSAM dataset categories.

Moreover, Figure B.3 shows the distribution of each classified scene in each dataset cate-
gory. It is visible that some categories seem to have unique characteristics, which can match the
features the scene classifier is looking for, e.g., most “child’s room” seems to be concentrated
in the “cartoon” bucket, which is a known bias of Places365, that includes toy and cartoon
advertisements in the “child’s room” class [134].

Figure B.3: Histogram of labeled scenes within all of the dataset categories.

Even considering the errors and bias, we can take the different categories of the dataset
and correlate them with each other through the distribution of scenes. Figure B.4 shows the
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correlation matrix following this process and we highlight the findings that “Document” is sim-
ilar to “Digitalization”, that “Money bill” follows “Cartoon”, but in special that “Pornography”
and “CSAM” have quite high correlation. Even though there are no scenes in “Document”
or “Digitalization” for instance, the similarity of the images in these groups from the model’s
perspective led it to classify it with equally similar distributions of scenes.

Figure B.4: Correlation matrix of different CSAM categories based on the distribution of clas-
sified scenes. Pearson’s linear coefficient is used as a measurement of correlation.

We emphasize the importance of this last remark: whereas the other categories do not repre-
sent places, “Pornography” and “CSAM” to have the same distribution of scenes is an important
connection between the two groups that, in principle, could not be true.

In other words, these two groups differentiate themselves in legal terms, but there is likely a
high similarity in how they are depicted. These two classes can be hard to differ when looking
only through the lens of scene recognition, an essential consideration if applied in the real world.
Nevertheless, CSAM and CSAM Suspect are different in meaning and in the distribution of
their scenes.

These results show how this kind of triage is not indirectly helpful but fits into the problem
of child sexual abuse recognition. To put it simply, the action correlates to the place it happens.
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