UNIVERSIDADE ESTADUAL DE CAMPINAS

Instituto de Matematica, Estatistica e
Computacao Cientifica

ADA CAROLINA GARCIA ROJAS

Symmetric spaces on the adjoint orbit

Espacos simétricos na orbita adjunta

Campinas
2022



Ada Carolina Garcia Rojas

Symmetric spaces on the adjoint orbit

Espacos simétricos na drbita adjunta

Tese apresentada ao Instituto de Matematica,
Estatistica e Computacao Cientifica da Univer-
sidade Estadual de Campinas como parte dos
requisitos exigidos para a obtencao do titulo de
Doutora em Matemaética.

Thesis presented to the Institute of Mathemat-
ics, Statistics and Scientific Computing of the
University of Campinas in partial fulfillment of
the requirements for the degree of Doctor in
Mathematics.

Advisor: Luiz Antonio Barrera San Martin

Co-supervisor: Lino Anderson da Silva Grama

Este trabalho corresponde a versao
final da Tese defendida pela aluna
Ada Carolina Garcia Rojas e orien-
tada pelo Prof. Dr. Luiz Antonio Bar-
rera San Martin.

Campinas
2022



Ficha catalogréfica
Universidade Estadual de Campinas
Biblioteca do Instituto de Matematica, Estatistica e Computacao Cientifica
Ana Regina Machado - CRB 8/5467

Garcia Rojas, Ada Carolina, 1993-
G165s Symmetric spaces on the adjoint orbit / Ada Carolina Garcia Rojas. —
Campinas, SP : [s.n.], 2022.

Orientador: Luiz Antonio Barrera San Martin.

Coorientador: Lino Anderson da Silva Grama.

Tese (doutorado) — Universidade Estadual de Campinas, Instituto de
Matematica, Estatistica e Computacao Cientifica.

1. Orbitas adjuntas (Matematica). 2. Variedades bandeira. 3. Espagos
simétricos. 4. Fibrado cotangente. I. San Martin, Luiz Antonio Barrera, 1955-. Il.

Grama, Lino Anderson da Silva, 1981-. lll. Universidade Estadual de
Campinas. Instituto de Matemética, Estatistica e Computacao Cientifica. IV.
Titulo.

Informacdes Complementares

Titulo em outro idioma: Espagos simétricos na Orbita adjunta
Palavras-chave em inglés:

Adjoint orbits (Mathematics)

Flag manifolds

Symmetric spaces

Cotangent bundle

Area de concentragdo: Matematica
Titulacdo: Doutora em Matemética

Banca examinadora:

Lino Anderson da Silva Grama [Coorientador]
Leonardo Francisco Cavenaghi

Viviana Jorgelina Del Barco

Alexandre José Santana

Ivan Struchiner

Data de defesa: 16-08-2022

Programa de Pos-Graduacdo: Matematica

Identificagéo e informagdes académicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0001-9727-9463
- Curriculo Lattes do autor: https:/lattes.cnpg.br/7399632676122061



Tese de Doutorado defendida em 16 de agosto de 2022 e aprovada

pela banca examinadora composta pelos Profs. Drs.

Prof(a). Dr(a). LINO ANDERSON DA SILVA GRAMA

Prof(a). Dr(a). LEONARDO FRANCISCO CAVENAGHI

Prof(a). Dr(a). VIVIANA JORGELINA DEL BARCO

Prof(a). Dr(a). ALEXANDRE JOSE SANTANA

Prof(a). Dr(a). IVAN STRUCHINER

A Ata da Defesa, assinada pelos membros da Comissdo Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertagdo/Tese e na Secretaria de P0s-Graduacao do Instituto de
Matematica, Estatistica e Computacdo Cientifica.



Acknowledgements

A Dios, a mis padres y hermanas. En cada etapa siempre me sostuvieron y gracias
a ellos consigo avanzar cada paso en mi vida. Ellos fueron mi luz en cada momento de

oscuridad.

Ao meu orientador Luiz S.M. por sempre ter uma boa disponibilidade, paciéncia e

gentileza, além do grande suporte académico.

Ao professor Lino Grama, a quem conheco desde o mestrado e sempre esteve preocu-
pado comigo, com muita paciéncia. Foi como um pai no Brasil, cada um dos seus conselhos

foram de bastante ajuda para mim.

A Juan Manzur, por mostrarme un panorama diferente de la vida, ayuddandome a

mantener una estabilidad emocional que me permitié avanzar con esta tesis.

A mi gran amiga Rafaela Lira, una excelente persona que me cuid6 y ensené tanto

en mi estadia en este hermoso pais.

A toda la universidad y el pais tan hermoso que me acogié en este periodo de estudio,
a los cuales describo como magnificos. Tienen una calidad humana y social muy alta, eso
me fue de gran apoyo siendo extranjera, ayudando en soporte académico, psicolégico y

emocional.

This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal
de Nivel Superior - Brasil (CAPES) - Finance Code 001.



Resumo

Estudamos os espacos simétricos sao variedades flag Fg. Mostramos que os fibrados
cotangentes dessas variedades flag também sao espagos simétricos. Estudamos propriedades
dos espagos simétricos duais de Fg como subvariedades da érbita adjunta Ad(G) - He para
o grupo de Lie complexo simples GG. Evidenciamos que as variedades simétricas Flag sao

de trés tipos e os descrevemos com maior detalhe.

Palavras-chave: Orbita adjunta; variedade flag; espaco simétrico; fibrado cotangente.



Abstract

We study the symmetric spaces which are also flag manifolds Fg. We show that the
cotangent bundles of these flags manifolds are also symmetric spaces. We study properties
of the dual symmetric spaces of Fg as submanifolds of the adjoint orbit Ad(G) - He for
the complex simple Lie group GG. We evidence that the flag symmetric manifolds are of

three types and we describe them in detail.

Keywords: Adjoint orbit; flag manifold; symmetric space; cotangent bundle.
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Adg(H)

adg(b)

List of symbols

Roots of an indicated complex Lie algebra.

The set of o fixed points in G: {g € G : 0(g) = g}.

Flag manifold determined by the subset © of simple roots.

The Cartan-Killing form.

The submanifold expv/—1m of the cotangent bundle of the flag.
Automorphism of a Lie group G, conjugation of the element g € G.

The unique connected Lie subgroup {eY1 e s 20Y € h} of the

Lie group G (indicated in the context) with Lie algebra b.

The orbit of the group G in the element X. After define the action of
a group, this notation means the adjoint orbit of the group G in an
element X of the Lie algebra of G.

Ad(g)X, for an element g of a Lie group G and an element X of the
Lie algebra of G.

Origin of the flag manifold Fg.
Lie algebra of the multipliative Lie group C\{0}.

Let H be a Lie subgroup of G and let g be the Lie algebra of G. Then
Ady(H) ={Ad(h):g— g, he H}.

Let b be a Lie subalgebra of g. Then ady(h) = {ad(X) : g — g, X € b}
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Introduction

The symmetric spaces have been well studied by several authors such as Berger,
Kobayashi, Nomizu, Helgason, among others. Kobayashi and Nomizu define the symmetric
spaces as triples (G, H, o) consisting of a connected Lie group G, a closed subgroup H and an
involutive automorphism o of G such that G§ < H < G?, where G = {g € G : 0(g) = g}
and G is the identity (connected) component of G?. If (G, H, 0) is a symmetric space, then
G/H is said to be an affine symmetric manifold. Let g and b be the Lie algebras of G and
H, respectively, then the symmetric Lie algebra (g, b, o) has the canonical decomposition
g = b + m satisfying [h,m| € m and [m,m] < h. If ady(h) is compact, then (g,b,0) is
called an orthogonal symmetric Lie algebra. In [3], is proved that the orthogonal symmetric
Lie algebras are of compact and non-compact type. Moreover they are of four classes. The

types of symmetric spaces are related to their geometric properties as follows

Theorem 0.0.1. [3/ Let (G, H,0) be a symmetric space with Adg(H) compact and let
(g,b,0) be its orthogonal symmetric Lie algebra. Take any G—invariant Riemannian
metric on G/H. Then we have.

(1) If (g,h,0) is of compact type, then G/H is a compact Riemannian symmetric space

with non-negative sectional curvature and positive-defined Ricci tensor;

(2) If (g,h,0) is of non-compact type, then G/H is a simply connected non-compact
Riemannian symmetric space with non-positive sectional curvature and negative-

definite Ricci tensor and is diffeomorphic to a Euclidean space.

In [4], Helgason shows a table with Riemannian symmetric spaces. Some of them
are: the Grassmannian SU(p + q)/S(U(p) x U(q)) of complex subspaces of C", the space
Sp(n)/U(n) of complex structures on H" compatible with the inner product and the space
SO(2n)/U(n) of orthogonal complex structures on R*". All these examples have orthogonal

symmetric Lie algebras.

The examples above are also described as complex flag manifolds of classical Lie
groups in [11]. Alekseevsky and Arvanitoyeorgos shows a list of all complex flag manifolds
in [11].

In [7], Berger says that the affine symmetric space G/H (resp. symmetric Lie algebra)
is said to be C-symmetric if there exists some complex structure of the vector space m,
invariant by the linear representation (Ad(H), m) [resp. (ad(h), m)]. On the other hand,
the affine symmetric space G/H (resp. the symmetric Lie algebra) is said to be semi-Kahler

if it is C-symmetric and for a fixed complex structure of m, the representation (Ad(H), m)
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[resp. (ad(h),m)] leaves invariant an Hermitian form of m, non-degenerate. Berger proved

the following proposition

Proposition 0.0.2. [7] Let (g, b, o) be a symmetric Lie algebra with g simple. The symmetric
Lie algebra is semi-Kahler if and only if the isotropy subalgebra b contains the Lie algebra
R.

If (g,h,0) is a symmetric Lie algebra, we call (g,h) by a symmetric Lie pair. Berger
gives a table of all symmetric Lie pairs indicating which are semi-Kahler. Some symmetric
semi-Kahler Lie pairs are: (sl(p + ¢, C), sl(p, C) @ sl(q,C) & C*), (sp(n,C),sl(n,C) dC")
and (s0(2n,C),sl(n,C) @ C*). Note that in those examples, the isotropy subalgebras

contain the complex vector space C, then they contain R as in Proposition 0.0.2.

The examples of semi-Kahler symmetric pairs are the cotangent bundle of the

examples of Riemannian symmetric spaces. This assertion shall be proved in this Thesis.

On the other hand, the adjoint orbit of a complex simple Lie group G has several
realization indicated in [1]. One of those realizations is as the cotangent bundle of a complex

flag manifold.

Recall that in [15] is indicated that every complex flag manifold is an homogeneous
space U/K where U is a compact real form of a complex Lie group and K < U is a
connected Lie subgroup of U. By 0.0.3, an adjoint orbit Ad(G)X for a characteristic
element X in g is a vector bundle over a complex flag manifold U/K, where U is the
compact (connected) real form of GG. The adjoint orbit of a complex simple Lie group G
is contained in the Lie algebra g, this allows inherit the required structures from the Lie

algebra.

Theorem 0.0.3. /1] The adjoint orbit O(He) =Ad(G) - He ~ G/Zg of the characteristic
element Hg is a C® wvector bundle over Fg that is isomorphic to the cotangent bundle
T*Fg. Moreover, we can write down a diffeomorphism ¢ :Ad(G) - Hg — T*Fg such that

(1) v is equivariant with respect to the (adjoint) action of U, that is, for all u e U,
toAd(u) =uou,
where U is the lifting to T*Fg (via the differential) of the action of uw on Feg; and

(2) the pullback of the canonical simplectic form on T*Fg by ¢ is the (real) Kirillov-

Kostant-Souriaux form on the orbit.

On the other hand, considere a symmetric Lie algebra (u,€,0). Let u = € + m be
the canonical decomposition. If we denote by g and § the complexifications of u and €,

respectively, and by ¢ the involutive automorphism of g induced by o. We set

u* = €+ v/~ Im. (0.0.1)
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If we set 0* = 0 | u*, then we obtain a symmetric subalgebra (u*, €, o*) of (g, b, c), which
is called the dual of (u,¢,0).

In this work, the flag manifolds U/K are affine symmetric manifolds and the adjoint
orbits of G contains the affine symmetric manifold U*/K, where U™ is the connected Lie
subgroup of G with Lie algebra u*. Again, we can inherit the required structures from the

Lie algebra g to U*/K seen as a submanifold of the adjoint orbit.

The goals of this Thesis are

e To prove that if a complex flag manifold U/K is a symmetric space, then the

cotangent bundle of U/K is a symmetric space.

e To determine an automorphism o of G such that (U, K,0) and (G,G°,0) are sym-

metric spaces with G/G? being a realization of the cotangent bundle of U/K.

e To find Lagrangian submanifolds of the adjoint orbit G/G’.

This Thesis focuses in three topics, symmetric spaces, complex flag manifolds and
adjoint orbits. Chapter 1 is dedicated to introducing the fundamental concepts that will
be used throughout this work. For instance to talk about flag manifolds and adjoint orbits
the preliminaries come mostly from the San Martin’s books [6] and [5]. We define simple
real and complex Lie algebras and real forms, Lie groups, actions of a Lie group, roots
spaces, Cartan subalgebra, Cartan-Killing form and Hermitian 2-forms generated by it,
homogeneous spaces and Riemannian and symplectic manifolds. Finally, we write a section

about symmetric spaces using the references [3], [2] of Kobayashi and Nomizu.

Chapter 2 starts indicating all Riemannian symmetric spaces (in Table A.3, referenced
from [4]) that are also complex flag manifolds (in Table A.2, referenced from [15]) and
notices that they are the homogeneous spaces SU(p + q)/S(U(p) x U(q)), Sp(n)/U(n)
and SO(2n)/U(n) of classes A, C and D, respectively. These manifolds are called flag
symmetric spaces. Since each of these symmetric spaces are flag manifolds, there exists a
compact Lie group U for each case acting on them. The Lie algebra of each U is a compact
real form u of a complex Lie algebra g. In [11] is proved that a complex flag manifold U/K
is determined by a subset of simple roots O of g, i.e. there exists an element Hg in a fixed
Cartan subalgebra of u, such that a(Hg) = 0 for all « € © and K = Zy(Hg). Thus, we
use the notation Fg := U/Ug for the complex flag manifolds, where Ug = Z;(Hg).

We state the theorem 2.0.1, it says that there exists an Hg as above such that if
0 := Cexp o, then (U,U%,0) and (G, G, 0) are symmetric spaces, where U and G are
the o-fixed points of U and G, respectively. This theorem is not proved in Chapter 2,
however it is proved throughout chapters 3, 4 and 5. Using the result 1.2.12, referenced
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from [1], Theorem 2.0.1 indicates that the cotangent bundle 7%(Fg) of the flag symmetric

spaces Fg or the adjoint orbit Ad(G)He are symmetric spaces.

The symmetric Lie algebra of a flag symmetric space Fg is (u,ug, o), where we
use also the notation o for the automorphism Ad(exp Hg) of g. This symmetric Lie
algebra has the canonical decomposition u = ug + m. Then we denote by S the subset
Ad(exp(v/—1m))Hg of the adjoint orbit Ad(G)He. One of the main results is Theorem
2.1.1, it says that S is a submanifold of the adjoint orbit Ad(G)Hg and has a realization a
the dual symmetric space of Fg. Furthermore, S is a Riemannian manifold diffeomorphic
to a vector space. If a fiber in the cotangent bundle T*Fg intersects S, then that fiber and

S are transverse.

The examples 2.0.1 and 2.1.1 show the case of the real flag manifold SO(2)/{+1} = S*,
which is a symmetric space. The cotangent bundle of S* has a realization as the one-sheeted
hyperboloid Q = {(z,y, z) € R* : 2* + 3* — 2* = 1} and it is also a symmetric space. The
flag S' is the intersection of @) with the plane z = 0. Here we study the orbit of the

exponential of symmetric zero-trace matrices in the matrix

(05)

This set has a realization as the curve C = {(0,y,2) € R* : y* — 2> = 1, y > 0}. This
curve is intuitively symmetric with respect to the axis Y, as we can see in Figure 1. In the
complex case, the generalization of this orbit is the submanifold & for the complex case.

In this example we can verify Theorem 2.1.1, replacing the submanifold S by the curve C.

Furthermore, in general the intersection of the submanifold & with the fibers of
the bundle Ad(G)Hg — Fg is either nule or a single point. Then the projection of the
cotangent bundle restricted to the submanifold S is an injective map, since each fiber
intersecting § does so in a single element. Then § is continuously deformed into a part of

the sphere Fg.

We define symplectic form
w(X,Y) =ImK(X,7Y), X,Y € g,

where K(+, ) is the Cartan-Killing form and 7 is the conjugation in g with respect to the
compact real form u. Since the adjoint orbit Ad(G)Hg is contained in the Lie algebra g,
the symplectic form w induces a symplectic form in the adjoint orbit through the pullback
of w. The submanifold S and the flag symmetric space Fg are Lagrangian submanifold of
Ad(G)Hg with respect to w. However, the submanifold S is not a Lagrangian submanifold
with respect to the KKS form 2.2.4.

The symmetric spaces are Riemannian considering the Cartan-Killing form as metric.

On the adjoint orbit of GG, this metric is indefinite and invariant with respect to the
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symmetries. However, in the flag manifold Fg it is the opposite of a (definite) Riemannian
structure and in the symmetric dual space it is an invariant metric by the non-compact
Lie group of symmetries. The Cartan-Killing form is the only metric that defines the affine
invariant connection with null torsion and curvature with zero covariant derivative. With
that connection, the geodesics are one-parameter subgroups and we can search geodesics

in the adjoint orbit that are projected on geodesics in the flag manifold Fg.

We evidence that if g € G, X e uand g € G — u € U, then the projection of the
geodesics {gexp(tX) - Holwer of the adjoint orbit Ad(G)He over F are also geodesics
{uexp(tX) - Ho}ier in the flag symmetric space Fg. Furthermore, if g € G, Y € ng, and
g € G — u € U, then the projection of the geodesics {gexp(tY') - Hg}ywer of the adjoint
orbit Ad(G)Hg over F are also a geodesic {u - Hg}, where ng is a subalgebra of g, as in
1.2.9, isomorphic to the fiber of the cotangent bundle 7*(Fg).

In the chapters 3, 4 and 5 we found the automorphisms ¢ of the symmetric spaces
(U,Ug, 0), its dual symmetric space (U*,(U*)?) and (G, G?). We look for an element Hg

such that go := exp(Hg) and Hg has the same centralizer in G and U, i.e.
Za(He) = Za(ge)  Zu(He) = Zu(ge). (0.0.2)

The automorphism o is given by Cy, for symmetric spaces and for symmetric Lie

algebras, we use the same notation o to the automorphism Ad(ge).
Assuming that p+ ¢ =1+ 1 and p < ¢, we get

G SI(1+1,C) Sp(1,C)  SO(21,C)

S S\ {ep} S\ {ou} S\ {ou}
Fo  SUp+q)/SU, xUy)  Sp(l)/U(1) SO@21)/U(1)
T*Fe G/S(Gl(p,C) x Gl(¢,C)) G/GI(I,C) G/GI(l,C)

and Hg satisfying 0.0.2 for A;, C; and D, cases are

ﬁw<qu 0 ) ﬁw(ldl 0)

[+1 0 —pl, 2 0 —Id,
\/—171' Idl 0
2 0 —Id;, /'

respectively.

Finally, in these three chapters, we proved the Proposition 2.1.2 calculating the

intersection S N (Hg + ng) for each case.
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1 Preliminaries

1.1 Introduction to Lie theory

In this section we shall use L. A. B. San Martin’s books [6] and [5] as main references.
A Lie algebra is a vector space g provided with a product (breacket or commutator)

[-,-] : 9 x g — g satisying the properties:

1. The bracket [-, -] is bilinear.
2. Antisymmetry, i.e. [X,Y] = —[Y, X], for all X,Y € g.
3. Jacobi identity:

[X,[Y,Z]]Z[[X,Y],Z]+[K[X,Z]] X, Y, Z eg.

A subspace h < g of a Lie algebra g is a Lie subalgebra if it is closed under the

bracket. In this case b is also a Lie algebra.

A subspace h < gisanidealifforallY € h, X € g,[X,Y] € b, i.e. |g,b] =spam{[ X, Y] :
Xeg Yebh}ch.
An example of Lie algebra is the set gl(n,R) consisting of real n x n matrices with

bracket given by the commutator of matrices

[A, B] = AB — BA.

A Lie group is a group that is also a differentiable manifold such that the product
operation
p:(g,h)e Gx G gheG

is differentiable.

Let G be a Lie group, a subgroup H < G of GG is a Lie subgroup of GG if H is an
immersed submanifold of GG, such that the product H x H — H is differentiable with

respect to the structure of H.

Example 1.1.1. Some examples of Lie groups and subgroups are:

1. The group Gl(n,R) of invertible n x n matrices over R. This group with the product

of matrices is a Lie group.
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2. If G is a Lie group, then any one-parameter subgroup {exp(tX): X € g,te R} is a
Lie subgroup. If t — exp(tX) is a closed curve, then we get an injective immersion

St — G. Otherwise, the one-parameter group defines an injective immersion R — G.
3. Some linear groups that are Lie subgroups of Gl(n,R) are:

(a) The special linear group Sl(n,R) = {g € Gl(n,R) : detg = 1},

b) The unitary group U(n) of n x n complex matrices such that g7 g = ¢g’ =1 is
Yy group p g g =49

a embedding submanifold.

(¢) The real symplectic group Sp(n,R) consisting of the 2n x 2n real matrices, such
that g7 Jg = gJg7 = J, where

idpxn 0

4. The vector spaces of finite dimension V' over R. There are abelian Lie groups with
the operation +. In particular (R, +) is a Lie group. The multiplicative groups R\{0}
and C\{0} are also Lie groups.

Given an element g € G, the left and right translations L, : h € G — gh € G and
R, : h e G+ hg e G are diffeomorphisms.

Definition 1.1.1. Let G be a Lie group. A vector field X in G is called

o right invariant if for every g € G, d(Ry)n(X (h)) = X (hg), for all h e G.

e left invariant if for every g € G, d(Ly)n(X(h)) = X(gh), for all h e G.

The right or left invariant fields are determined by its values at the identity element.
Hence, each element in the tangent space T)G determines a unique right invariant field
and a unique left invariant field. Denoting by Inv! and Inv"” the sets of the left and right
invariant fields respectively, they are Lie subalgebras of the Lie algebra of all vector fields
in G.

Definition 1.1.2. A Lie algebra of the Lie group G denoted by g is one of the isomorphic
Lie algebras Inv", I/, (T\G,[-,-].) or (TyG,[-,-]:). We consider the Lie algebra of the
left invariant fields in G.

Example 1.1.2. The right invariant fields in Gl(n,R) has the form X4(g) = Ag, with A
being a n x n matrix. The left invariant fields are Y4(g) = gA. In local coordinates, the

Lie bracket of two fields is given by

(X, Y] =dY(X) —dX(Y).
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For a matrix A, we get

[Xa, XB](9) = B(Ag) — A(Bg) = Xpa_as-

On the other hand, the Lie bracket of left invariant fields is [Ya, Y5s]| = Yap_pa. Hence,
the Lie algebras Inv” and Inv! can be identify with the space of n x n matrices. In Inv",

the bracket is [A, B] = BA — AB and in Inv' the bracket is [4, B] = AB — BA.

Example 1.1.3. If G is a discrete Lie group, dimG = 0 and hence g = {0}.

In [6], it is showed that the flow X; of a (right or left) invariant vector field X in the
Lie group G is
Xi(hg) = Xi(h)g X €Inv".

Likewise,

gYi(h) =Yy (gh) Y eInv'

Proposition 1.1.3 ([5]). Some properties of (right or left) invariant vector fields are:

e A (right or left) invariant field is complete
o If X elnv” then X; (1) = Xp(Xs(1)) = Xo(1)Xe(1) = Xi (1) Xs(1).
o If Y elnv' then Y, (1) = Y;(Y,(1)) = Y,(1)Y;(1) = Y,(1)Ys(1).

Definition 1.1.4. Let X € T\G. Then, expX = (X")—1(1) = (X")=1(1). That defines a
map exp: g — G, where g = T1G is a Lie group of G.

Proposition 1.1.5. [5] The following statements hold:

1. If X elnv” then X; =Leyex), ie. Xi(g) = eXg.
2. If X elnv® then X; =Regppux), i-e. Xi(g) = ge'~.

Example 1.1.4. The right invariant field in Gl(n,R) have the form X(g) = Ag, where
A is a n x n matrix. The exponential of matrices coincides with the exponential map
exp A = Z kl;!Ak in Gi(n,R) .

k=0
Proposition 1.1.6. [5] Let G be a connected Lie group and take g € G. Then, there are
Xy, , X, € gsuch that

g =exp(Xy)---exp(Xs).

Proposition 1.1.7. [5] Let G be a Lie group with Lie algebra g. Then, for any Lie subalgebra

h < g, there exists a unique connected subgroup H < G with Lie algebra b.
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Theorem 1.1.8. [5] Every closed subgroup H of a Lie group G is a Lie subgroup. Its Lie

algebra s

by ={Xeg:VteR, exptX e H}.

Theorem 1.1.9. /5] (Third Lie theorem) Let g be a real Lie algebra with dimg < co. Then

1. there exists a unique (up to isomorphism) simply connected and connected Lie group

G(g) with Lie algebra g;

2. if G is a connected Lie group with Lie algebra g, then G ~ G(g)/T, where T' < G(g)
is a central discrete subgroup, i.e. T is contained in the center Z(G(g)) of G(g). In

that case I' is isomorphic to the fundamental group m (G).

The third Lie theorem says that if g is a real Lie algebra with finite dimension, then

there is a connected Lie group G with Lie algebra (isomorphic to) g.

We can define representations on a Lie algebra g using the left and right translations
in the Lie group G, this representations are related to each other via the exponential map.
An element g € G defines the inner automorphism C,(x) := grg~' and this automorphism

allow us to define the following representations

Definition 1.1.10. The adjoint representation Ad: G — Gl(g) of G in its Lie algebra g
15 defined by
Ad(g) := d(Cy);. (1.1.1)

Furthemore,
gexp(X)g™" = exp(Ad(g)X).

Definition 1.1.11. Let g be a Lie algebra. Its adjoint representation is the application
ad: g — gl(g) defined by
ad(X)(Y) :=[X,Y].

Example 1.1.5. In Gl(n,R), the adjoint Ad(g) coincides with the conjugation Cy, i.e. if
A€ gl(n,R) and g € Gl(n,R) then Ad(g)A = gAg .

For two subsets A and B of the Lie algebra g, we shall use the notation [A, B] to
indicate the subspace generated by {[X,Y]: X € A,Y € B}. We define, by induction, the

following subspaces of g:
9(0) g = [g. q] .. g(k) _ [g(k_l),g(k_l)].

This sequence of ideals is known as derivative serie of g and its components are called

derivative algebras of g.
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Example 1.1.6. Let g be an algebra of upper triangular matrices

nxn

Then g is the algebra of upper triangular matrices with zero diagonal. Hence g = {0} if

k = kg for some kq large enough.

Example 1.1.7. If g is the Lie algebra sl(2,R), then g’ = g and hence, g = g for all
k= 0.

The descending central series of the Lie algebra g is defined by induction as

g'=9 ¢=[ogl=9 - ¢ =J[a0

Definition 1.1.12. An algebra is solvable if some of its derivative algebras is zero, i.e.
g(ko) =0

for some ko =1 (and hence g = 0 for all k = ko).

Example 1.1.8. The algebras of upper triangular matrices are solvable.

Example 1.1.9. The algebras sl(n) are not solvable since its derivative algebras coincide

with themselves.

Definition 1.1.13. A Lie algebra is called nilpotent if its descending central series vanishes

at some order, 1.e.
g = {0}

for some kg =1 (and hence, g* = 0 for every k > ko).
Example 1.1.10. 1. The abelian algebras are nilpotent.

2. The following matrices subalgebras are nilpotent

0 --- 0 0 --- a

nxn nxn
3. The algebra of upper triangular matrices is not nilpotent.

Proposition 1.1.14. Let g be a finite dimensional Lie algebra. Then, there exists in g a

unique solvable ideal v < g containing each solvable ideals of g.
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Definition 1.1.15. The ideal v of Proposition 1.1.14 is called a solvable radical (or just
radical) of g. The radical of g will be denoted by v(g).

Example 1.1.11. g is solvable if and only if t(g) = g.

Definition 1.1.16. A Lie algebra g is called semi-simple if t(g) = 0 (i.e. g contains no

soluble ideals in addition to 0).

Definition 1.1.17. A algebra g is simple if

1 The only ideals of g are 0 and g and

2 dimg # 1.

Every simple Lie algebra is semi-simple.

Example 1.1.12. The algebras sl(n, K) are simple if K has not characteristic equal to two.

We define the Cartan-Killing form in the Lie algebra g as the symmetric bilinear

form in g given by
K(X,Y) = tr(ad(X)ad(Y)), X,Y eg. (1.1.2)
Proposition 1.1.18. [6] If ¢ is an automorphism of the Lie algebra g and XY, Z € g, then

(a) K(¢X,9Y) =K(X,Y) and
(b) K([X, Y1, 2) + K(V.[X, Z]) = 0.
Theorem 1.1.19. The Cartan-Killing form of g is non-degenerate if and only if g s

semi-simple.

1.1.1 Semi-simple Lie algebras

This work is focused on studying semi-simple Lie algebras and how it can be

decomposed by its adjoint representation. Hence, we must define a Cartan subalgebra.

Definition 1.1.20. Let g be a Lie algebra. A Cartan subalgebra of g is a subalgebra b < g
satisfying

1. b is milpotent and
2. the normalizer of b in g coincides with . This condition is equivalent to

2°. If[X,h] < b then X € b.
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Example 1.1.13. For s[(2), the Cartan subalgebra b could be equal to

a 0 0 —a
or ,
0 —a a 0
since both h are abelian and if X € g then [h, X| < b if and only if X € b in both of cases.

Theorem 1.1.21. [6] In complex Lie algebras, the Cartan subalgebras are conjugate.

Let g be a semi-simple Lie algebra over C and h a Cartan-subalgebra of g. The

algebra can be decomposed as

g:h®ga1®"'®gaka

with aq,--- , a; the non-zero weights of the adjoint representation of b in g. These weights
will be called roots of h with respect to g and the set that contains all of them will be
denoted by II. The spaces g,, shall be called root spaces. Since the field is algebraically

closed, the representation of b in each g,, is given by the matrices

Ozz(H) #
ad(H) =
a;(H)

for each H € b. Furthermore, [ga,, 8a,] < Jaita;-

Lemma 1.1.22. [6] Let o and 5 be two weights of b (roots or nule weight). If X € g, and
Y € gg then
K(X,Y) =0,

unless f = —a.

Corollary 1.1.23. /6] The following assertions hold:

1. The restriction of K(-,-) to b is non-degenerate.
2. If a is a root, then —« is also a root.
3. For all X € g4, there exists Y € g_, such that K(X,Y) # 0.

Proposition 1.1.24. [6] For all H € h and every weight a, ad(H) |5, = «(H)id and the

linear transformations ad(H), H € b are simultaneously diagonalizable.

Proposition 1.1.25. h is Abelian.
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The Cartan-Killing form can also be “defined” in the dual h* of . Since K(-,-) is a

bilinear form, it defines a map h — h* by
H = ay() = K(H,).

Since the restriction of the Cartan-Kiling form to b is non-degenerate, this map is an
isomorphism between h and h*. For o € h*, its inverse image shall be denoted by H,, i.e.
H, is defined by

K(Ho,H) =«a(H), YHEeDH.

We can define a bilinear form in h*, using the same notation of the Cartan-Killing form, by
lC(a, 6) = K:(Hon HB) = Oé(H[g) = B(Ha)

if o and [ are linear functionals in . This is a symmetric, non-degenerate bilinear form in
h*. This will also be called to as the Cartan-Killing form.

By the isomorphism between h and h* defined from the Cartan-Kiling form, the roots
« € II define a finite number of special elements H, in §. As the set of roots generates h*,
the set {H, : a € II} generates b.

Let {vy,---, v} be an ordered basis of hg. Let v,w € V written in coordinates as

v= aiv; + -+ qU

w = b1’01+"'+bﬂ)l.

Fixed the lexicographic order in hg with respect to this basis defined by v < w if v = w or

if a; < b;, where 7 is the first index such that the coordinates of v and w are different.

Proposition 1.1.26. [6] The Cartan-Killing form restricted to bg (and bg) is an inner
product.

Definition 1.1.27. A root a € 11 is stmple -with respect to the fived order- if
(i) >0
(i) there are no B,~ € Il such that 5 and ~y are positive and o = [3 + 7.
The set of simple roots will be denoted by 3.
Lemma 1.1.28. /6] Let 5 € II with > 0. Then (3 is uniquely written as
B=nog+ - +no
with ny, -+ 0y integers = 0. In particular X generates hg.

Definition 1.1.29. A subset ¥ = {aq,--- ,q;} satisfying the two conditions:
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a) X is a basis of by and

b) each root B can be written as f = nijaq + -+ - + nya are integer coefficients and each

of them has the same sign,
15 called a simple root system.

Fixing a simple root system (or a lexicographic order), we can define

O ={aell:a>0} I =-M"={aell:a<0}.

Let us define the sets

n+:Zga n_:Zga'

a€ellt a€ell—

Then
g=n"®h@On" (1.1.3)

and n™ and n~ are dual by the Cartan-Killing form, since K(ga, g o) # 0 and K(ga, g95) = 0
if 3 # —a. The algebra n* is nilpotent, since if X € g, then ad(X)"gs C gras s, the same
is true for n~ which is isomorphic to n*. Thus b = h @ n* is a subalgebra and since n™ is

an ideal of b, this subalgebra is solvable. The subalgebra b is known as Borel subalgebra.

1.1.2 Semi-simple real Lie algebras

Let g be a complex Lie algebra, a real form of g is a real Lie algebra such that their
complexification is g, they are of two types compact and non-compact real forms. Every
complex algebra has a unique (up to isomorphism) compact real form and the structure
of these real forms is completly described by the complex algebra. The description of a
non-compact real form is made from the decomposition obtained intersecting it with the

compact real form (Cartan decomposition).

Let V be a real vector space and V¢ and its complexification. The elements of V¢ can
be expressed as u + v/ —1v, u,v € V. Writing the elements of V- as above, we can define

the conjugation o : Vo — V¢
o(u+v—=1v) =u—+—1v.

This conjugation satisfies 0> = 1 and it is antilinear (or sesquilinear) in Vg, i.e. o is linear

over the real vector space V' and
ozw) =zw zeC,we V.

It is clear that V = {w € V¢ : o(w) = w} .
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Definition 1.1.30. Let F' be a complex vector space. A conjugation in F is an antilinear

transformation o satisfying o = 1.

An invertible antilinear transformation o of g satisfying
l[oX,0Y] =0[X,Y] (1.1.4)
is called an anti-automorphism. Given an anti-automorphism in g, the real algebra
g0 — (X eg:0(X) = X}
has as complexification the complex Lie algebra g.

Definition 1.1.31. Let g be a complex algebra. A real form of g is a subalgebra go of the
realification g~, which is the subspace of fized points of a conjugation satisfying 1.1.4. If
that happens, g is the complexification of go.

Example 1.1.14. In g := sl(n, C), let ¢ be the map in g given by o(A) = —A” for A e g.
Then o is an automorphism. The Lie algebra of its fixed points is su(n) = {A € sl(n,C) :
A = —A"}, and hence it is a real form of sl(n, C).

Definition 1.1.32. A Lie algebra over R is called compact if its Cartan-Killing form is
negative defined.

Theorem 1.1.33. [6] Every semi-simple complex Lie algebra admits compact real forms. If
u; and uy are compact real forms of g, then there exists an automorphism of ¢ of g such

that ¢(u1) = uy and hence the compact real forms are isomorphic to each other.

Let g be a semi-simple complex algebra and let h be a Cartan subalgebra with roots
set I and let ¥ be the simple roots set in II. A Weyl basis of g is a basis of g consisting of
H,, ae¥ and X, € g,, a € Il satisfying

e [X,, X ,]=H, and

o [Xo, X3] = mapXaip with my s = 0 if @ 4+ 3 is not a root and such that m, s =

—M_q,—pg, then m, g is real.

Given a Weyl basis, let u be a real subspace generated by

v—1H,,
Aui= Xo— X o, (1.1.5)
Zo = V—=1(Xo + X _4),

with a in the set II" of positive roots. Then u is a compact real form.
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The Cartan-Killing form of u coincides with the restriction of the Cartan-Killing form
of g, since u is a real form. Furthermore, if two roots are not opposite, the corresponding

root spaces are orthogonal. Using the notation above
K(vV—1H,, Ap) = K(V—1H,, Z3) = K(Aa, Zg) = 0. (1.1.6)

We denote by b the real subspace of h generated by {H, : « € II}. Then, the subspace
v/ —1b is a Cartan subalgebra of u.

Lemma 1.1.34. [6] Let T be a conjugation with respect to the compact real form w of the

complex algebra g. Then, the expression
H(X,)Y)=-K(X,7Y) (1.1.7)
defines a hermaitian form in g.

Theorem 1.1.35. [6] Let g be a complex semi-simple Lie algebra and w a compact real form
of g. Let go any real form of g and let us denote by o the corresponding conjugation. Then,
there exists an inner automorphism ¢ of g such that o commutes with the conjugation with

respect to the compact real form ¢(u).

Corollary 1.1.36. [6] Let u; and uy be compact real forms of g. Then, there exists an
automorphism ¢ of g such that ¢p(uy) = us.

The bijection between the semi-simple complex and compact Lie algebras is also

used to develop compact algebras. Actually, the compact real forms are expressed as
u=v=1hr @ t, (1.1.8)

where ¢, is the space generated by A, and Z,. Finally, the compact real forms of the

classical Lie algebras are:

1. su(n) is a compact real form of sl(n, C).
2. A compact real form of so(n,C), n = 3, is so(n, R).

3. A compact real form of sp(n,C), is the subalgebra of anti-hermitian matrices in
sp(n,C). This algebra is denoted by sp(n):

sp(n) = sp(n,C) N su(2n) (1.1.9)

A —C
(0 i > (1.1.10)

with A being a n x n anti-hermitian and C' being symmetric.

and its elements have the form
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Let go be a non-compact real form of the semi-simple complex algebra g and o its

conjugation. If u is the compact real form of g with conjugation 7. Then
90 = E @57
where
t=gonu, 5 =gonv—lu (1.1.11)
This decomposition is known as Cartan decomposition of gg. The brackets of the elements
in the Cartan decomposition satisfy
[6,¢] € [t,s]c s [s,8] < & (1.1.12)
Hence ¢ is a subalgebra and s is invariant under the adjoint representation of €. The
subalgebra ¢ is called the compact component of the Cartan decomposition.
The restriction of H., to the real form gq is an inner product, since the Cartan-Killing

form of gq is the restriction of the Cartan-Killing form of g.

Proposition 1.1.37. [6] Given a Cartan decomposition go = €@ s, the involutive automor-
phism 6 defined by 6(X) = X if X e £ and #(Y) = —Y if Y € s is such that the bilinear
form

Bo(X,Y) := —K(X,6Y) (1.1.13)

is an inner product in gy. Conversely, given an automorphism 6 satisfying 1.1.13 is an inner
product in g and its eigenspaces determine a Cartan decomposition. The automorphism is

called Cartan involution.

Example 1.1.15. Taking g = sl(n, C), a compact real form is u = su(n) and if go = sl(n, R),
then go N u is the subalgebra of real anti-hermitian matrices, i.e. the subalgebra so(n) of
anti-symmetric matrices. In addition, go » +/—1u is the subspace of real matrices X such

that v/ —1X is anti-hermitian, i.e. the subspace of symmetric matrices. Then
sl(n,R) = so(n,R) P s
is a Cartan decomposition. The corresponding Cartan involution is (X ) = —X T since

0 =1inso(n,R) and # = —1 in s.

The Cartan-Killing form &y (X, Y") of go is negative defined in ¢ and positive defined
ins. If XetandY €s, then K (X,Y) = 0.

The Lie algebra £ is a maximal compact subalgebra in gg.

Theorem 1.1.38. [5] Let Gy be a connected semi-simple Lie group and let go = €@ s be a

Cartan decomposition of its Lie algebra. Write

K = {expt) and S = exps, (1.1.14)
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where {exp &) is the unique Lie subgroup of G with Lie algebra & and S is the image of exp
i s. Then,

o Gy =SK =KS and all g € Gy is uniquely written as

g=sk or g=ks, kekK, ses, (1.1.15)

e S is an embedding submanifold of Gg, diffeomorphic to s by the embedding exp:s — S,

e The functions K x S — Go; (k,s) — ks and (k,s) — sk are diffeomorphisms.

we can combine these tools of Lie theory with differential geometry for the study of

symmetric spaces. Now let’s detail some terms of differential geometry.

1.2 Foundations of differential geometry

In order to study the symmetric spaces, we must know about homogeneous spaces,
for that we shall use bibliography of San Martin ([5]) and of Kobayashi and Nomizu ([2]
and [3]).

A left action of a group G in a set X is a function that associates to g € G an

application a(g) : X — X and satisfy the properties:

1. a(1)(z) = z, for every z € X;
2. a(gh) = a(g) o a(h).

A right action is defined likewise, replacing the second property by a(gh) = a(h)oa(g).

A left action can be expressed using the notations g(x), g - x or gz to say a(g)z.

Given x € X, its orbit by GG, denoted by G - x or Gz, is defined as the set
G-z={greX: :geG}.
The set G of the elements of G fixing x is called isotropy subgroup or stabilizer of x:
G, ={9eG:gx =z} (1.2.1)
It is a subgroup of G since (gh)z = g(hz).

Definition 1.2.1. Let a be an action of G in X.

1. The action is said to be effective if ker(a) = {g€ G : a(g) = idx} = {1}, where 1 is
the identity element of G.
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2. The action is said to be free if the isotropy subgroups are equal to {1}.

3. The action is said to be transitive if X is an orbit of G, i.e. for every x,y € X,

there exists g € G such that gr = y.

An action of the Lie group G is a function ¢ : G x M — M, ¢(g,x) = gz, such that
the partial function g — ¢, ¢4(z) = ¢(g, ), is an homomorphism of G in the group of
the invertible transformations of M. The action is differentiable if ¢ is a differentiable

function.

Proposition 1.2.2. [6] Suppose that the action of G in X is transitive and take z € X.
Then, the map ¢ : gG, € G/G, — gz € X is a bijection between G/G, and X. The map
&, is equivariant, i.e. &, (91G.) = £((991)G2), g, g1 € G, that means £, commutes with the
actions of G in G/G, and X, respectively. Furthermore, if y = gz then §, = &, o D,,.

From the identification in the Proposition above, a quotient G/H is called a homo-
geneous space, as are called the sets where the groups act transitively. The point x chosen
to establish the identification of between X and G/G, is called of origin of base of the

homogeneous space X.

Theorem 1.2.3. [5] Let G be a Lie group and let H < G be a closed subgroup. Then, there
ezists a differentiable structure in G/H, compatible with the quotient topology, that satisfies

1. dimG/H = dimG — dimH.
2. The canonical projection m : G — G/H is a submersion.
3. The natural action a : (g,xH) € G x G/H — (gx)H € G/H 1is differentiable.

4. For each g € G, the induced map g : G/H — G/H, xH — gz H is a diffeomorphism.

The differentiable structure defined in the theorem above is called quotient differen-

tiable structure.

Definition 1.2.4. Let g be a Lie algebra and let M be a C™ manifold . Denote by T'(TM)
the Lie algebra of vector fields in M provided with the Lie bracket. An infinitesimal action
of g in M is an homomorphism of g — T'(TM).

A differential action of G in M induces an infinitesimal action of g as follows: given
X e gand x € M, the curve in M defined by t — ez is differentiable. Its derivative at

the origin
d

tX _d tX _
2170 0= 0a(e) fe=0= (dd2)1(X) (1.2.2)

is a tangent vector in 2 € M. Hence, z € M — X (z) € T, M defines a vector field in M.

X(z) =
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Proposition 1.2.5. [5] The function X € g+ X € I'(T'M) is an homomorphism if g is the

Lie algebra of right invariant vector fields in G.

As a particular case of infinitesimal action, consider the action of G in G/H, where
H is a closed subgroup. In this case, if o = 1 - H is the origin of G/H then ¢,, : G — M,
g — g-xo = gH, is the canonical projection 7 : G — G/H. Thus, the following description
of X holds

Proposition 1.2.6. [5] Let G be a Lie group and let H be a closed subgroup and denote by
7 : G — G/H the canonical projection. Let X be a right invariant field of G, i.e.

dry(X(9)) = X(7(9)),  geG. (1.2.3)

The corresponding differentiable action is € : g — (T M), e(X) = X. For z € M =
G/H, we define the subspace

T.M = {X(z): X € g}, (1.2.4)

for each x € M, since the action of GG in M is transitive.

We can define an action on the quotient spaces. Let H < G be a subgroup and denote
by G/H the set of all cosets gH, g € G. Then the map (g,91H) — g(q1H) = (991)H
defines a natural left action of G in G/H. The action of G in G/H is transitive. Every

transitive action is in bijection with a quotient space of G.

In a homogeneous space M = G/H (H closed), the invariant structures are given by
their values at the origin zp = 1- H. Since h(zg) = x¢ for every h € H, then its possible to
define a representation p : H —GIl(T,,M) of H in the tangent space T, M. This function

is called isotropy representation of G/H.

1.2.1 Fibre bundles

A principal bundle P(M, H) (often denoted by P — M) consists of the total space
P of the basis M, both topological spaces and of the structure group GG. These spaces are

related as follows:
1. The group H acts freely to the right in P by the action R : (p,g) — pg, pe P, g€ H.
(i.e. if pg = p for some p, then g = 1.)

2. The space of the orbits of this action is M. This means that there exists a sobrejective
function 7 : P — M, such that the orbits of H are the sets 7 '{z},7 € M.

3. P is locally trivial, i.e. for every x € M, there exists a neighborhood U of x and a

bijective function, named of local trivialization, ¥ : 7=*(U) — U x H, such that
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U(p) = (r(p), d(p)), where ¢ : 7 '(U) — H is a function satisfying ¢(pg) = ¢(p)g
for every pe 77 (U) and g€ H.

The bundle P — M is called topological bundle if the functions in the definition are
continuous (and homeomorphisms when are bijective functions). The principal bundle is

of class C*, k > 1, if the spaces involved are differentiable manifolds of class C*.

The fibers of the principal bundle are denoted by P, = 7~ '{z}, z € M, or P, =
wUn(p)}, pe P.

Example 1.2.1. G(G/H, H): Let G a Lie group and H a closed subgroup of G. The group
H acts on G by the right translation. We then obtain a differentiable principal bundle
G(G/H, H) over the base manifold G/H with structure group H.

Example 1.2.2. Let M be a differentiable manifold and T'M = U T, M its tangent bundle.

The bundle of linear frames of M is the set BM of all basis of TQQ?\A; A linear frame u € BM
is an ordered basis {f1, -, fu} of some tangent space T, M, x € M. In [3] is indicated
that the general linear group GL(n,R) acts on BM on the right and this action can be
accordingly interpreted as follows. Consider a = (a’) € GL(n, R) as a linear transformation

on R"™ which maps e; into Z aé-ei. Then ua : R™ — T, M is the composite of the following
i

mappings
R" % R™ 5 T, M.

Since H acts on P on the right, we can assign to each element A € h a vector
field A* on P as follows. The action of the 1—parameter subgroup a; = exptA on P
induces a vector field on P, which will be denoted by A*. The vector field A* is called the

fundamental vector field corresponding to A, and
A — (A"), (1.2.5)

is a linear isomorphism of ) onto H, for each u € P.

Let P(M, H) be a principal fiber bundle and F' a manifold on which H acts on the
left: (a,&) € H x F' — a& € F. Can be constructed a fiber bundle E(M, F, H, P) associated
with P with standard fiber F'. On the product manifold P x F', we let H act on the right
as follows: an element a € H maps (u, &) € P x F into (ua,a™'¢) € P x F, The quotient
space of P x F by this group action is denoted by £ = P xy F. A differentiable structure

will be introduced in F later and at this moment E is only a set.

Example 1.2.3. Tangent bundle: Let GL(n;R) act on R" as above. The tangent bundle
T (M) over M is the bundle associated with BM with standard fibre R. Tt can be easily
shown that the fibre of TM over x € M may be considered as T, M.
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1.2.1.1 Connections

Let P(M, H) be a principal fibre bundle over a manifold M with group H. For each
u € P, let T, P be the tangent space of P at u and G, the subspace of T, P consisting of

vectors tangent to the fibre through u. A connection I' in P is an assignment of a subspace
Q. of T,,P to each u € P such that

(a) T,P=H,®Q,
(b) Qua = (Ra)+Q. for every u € P and a € H; where R, is the transformation of P

induced by a € H, R,u = ua;

(¢) @, depends differentiably on w.

For each X € T, P, we define w(X) to be the unique A € b such that (A*), is equal
to the vertical component of X (component in H, of T, P). It is clear that w(X) = 0 if
and only if X is horizontal (belongs to @, < T, P). The form w is called the connection

form of the given connection I'.

A connection in the bundle BM of linear frames P over M is called a linear connection
of M. The canonical form 6 of BM is the R"-valued 1-form on BM defined by

0(X) = uH(r(X)), X eT,BM, (1.2.6)
This allows us define the torsion form ¢ of a linear connection I' by
¥ = DO (exterior covariant differential of 6).

Theorem 1.2.7. [3] Let w,d be the connection form and the torsion form of a linear

connection I' of M. Then, the first structure equation indicates that:
1

where X, Y € T,BM and ue BM.

Before defining a special type of connection, we need to define a Riemannian metric

and in addition to that, we define a Riemannian manifold.

Definition 1.2.8. A Riemannian metric m in a differentiable manifold M is a correspon-
dence that associates to each point p € M an inner product m,(-,-) (i.e. a symmetric
bilinear positive defined form) in the tangent space T,M. Furthermore, m is smooth in
the sense that for any smooth vector fields X and Y, the function p — m,(X(p),Y (p)) is
smooth. A differential manifold with a given Riemannian metric is called Riemannian

manifold.
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A Riemannian metric m(-,-) in the manifold M is invariant by the action of the
group G if the elements of the group are isometries of the metric, i.e. if for each g € G and
x € M, we have

Mye(dgzu, dg,v) = m(u,v) u,v e T, M.

If M = G/H is a homogeneous space, an invariant metric is absolutely determined
by its value at the origin x¢, which is an inner product in 7,,,G/H invariant by the isotropy

representation.

A necessary condition to the existence of an inner product my, is to the image p(H)
of H by the isotropy representation p be a subgroup of the orthogonal group and hence
p(H) has compact closure. In particular, if H is compact, then G/H admits invariant

Riemannian metrics.

Let M be an n-dimensional Riemannian manifold with metric g and O(M) the bundle
of orthonormal frames over M. Every connection in O(M) determines a connection in the
bundle BM of linear frames (see [3] for details of the proof), that is, a linear connection
of M. A linear connection of M is called a metric connection if it is thus determined by a

connection in O(M).

Among all posible metric connections, the most important is the Riemannian con-
nection (sometimes called the Levi-Civita connection) which is given by the following

theorem

Theorem 1.2.9. Fvery Riemannian manifold admits a unique torsion-free metric connec-

tion.

1.2.2  Complex flag manifolds

Let g be a complex semi-simple Lie algebra with Cartan subalgebra f and roots set
II. Let ¥ be a simple root system and let {H, : « € ¥} U {X, € g, : a € II} be a fixed
(complex) Weyl basis of g. The compact real form of g is denoted by .

An element Hg € b is characteristic for © < ¥ if © = {a € ¥ : a(Hg) = 0}.
A subset © defines a parabolic subalgebra pg with parabolic subgroup Pe and a flag
manifold Fg = G/Pg. In fact, the parabolic subalgebra is pg = @ys08), where A runs

through the non-negative eigenvalues of ad(Hg). Conversely, starting with Hy € h we
define O, = {a € X : a(Hy) = 0}. For instance, Fp, = Fo, .

For any subset ) < II of simples roots, we have the decomposition Q) = Q° U Q°,

Q°=Qn (—Q), Q% = Q\Q’ and we can denote by g(Q) the algebra

0(Q) == {[X0, X o] = Hy,a € Q)+ > CX, (1.2.7)
ae@

generated by Q.
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Fixing a subset © = {ay, -+, o} < X of simple roots, the set of roots generated by
O is denoted by (©). We denote the intersection (©) N II™ by (©)*. For each subset © we

get the decomposition of g:

g =ng @je Dng, (1.2.8)
where

ne = g(I'\(©)")
and

ng = g(II"\(6)") (1.2.9)

are nilpotent subalgebras of g. Also,

30 = b +9(0)

is a reductive subalgebra, with

8(0) = 9((8)) = (Ha)acty + ), CXa.
ae(®)

Then
30 = 35(Ho) (1.2.10)

A parabolic subalgebra p of a complex Lie algebra g is a subalgebra wich contains a
Borel subalgebra b. In [11], Alekseevsky constructs a parabolic subalgebra from a subset

O < ¥ of simple roots of g. A parabolic subalgebra of g has the form:
Po=b+g((®)" UII") =30 +n5= > go+b. (1.2.11)
ae(®)~

Now we define flag manifolds associated with any connected complex semi-simple Lie group
G. A parabolic subgroup Pg is the normalizer of pg in G, i.e. Po = {g € G : Ad(g)pe = po}
and the Lie algebra of Py is pe.

Definition 1.2.10. A flag manifold of a complex semi-simple Lie group G is the quotient
M = G/Pg of G by a parabolic subgroup Pg.

In [11], Alekseevsky proved the following proposition about flag manifolds.

Proposition 1.2.11. [11] Let G be a Lie group with compact real form U and let Pg be a
parabolic subgroup of G. Any flag manifold M = G/Pg can be identified with the quocient
U/Z§ = U/Ug of a semi-simple compact Lie group U < G modulo Z§ = Zy(ty), to e u
and, hence, with an adjoint orbit Ad(U)(to).

Now we provide a sketch of the proof:
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Proof. The decomposition in 1.2.8 induces a decomposition of some open subset of G
(connected complex semi-simple Lie group with Lie algebra g) into product of correspondent
subgroups:

Greg = Ng - Zo - Ng

with Zg n Ng = Ng n Ng = {e}.

The parabolic subgroup is
Po =Zg - Ng

This decomposition shows that the nilpotent subgroup Ng acts transitively on the
open dense subset Mo, = Greg/Po of the flag manifold M = G/Pg. Hence, any complex

coordinates on Ng define local complex coordinates on M.

Let 7 be the involution on g with respect to the real compact form u (the same
notation is used for the Lie groups). A maximal compact subgroup G™ =: U of G acts on

M transitively. For a fixed x € M, the isotropy subgroup in U will be denoted by U,.

U, =unpe=pg={Xepe:7X =X}

Since the subalgebra 3¢ = h + g(©) is invariant under the involution 7 and
7(ng) = ne,
since 7(X,) = —X_,, for all a € TI. Then
ue i=po =36 =h" + (9(0))" (1.2.12)

and is a compact form of the subalgebra 3. Therefore ug = 3¢ M u is the centralizer of a
comutative subalgebra hg := h N ug. On the other hand, he generates a torus 7' in the
compact connected semi-simple Lie group U. The centralizer of a torus in a connected
compact semi-simple Lie group is connected and there exists an element t, in v/—1hg such
that

Ue = Zu(he) = Zu(T) = Zy(to). (1.2.13)

]

In the Table A.2, we found all complex flag manifolds classified in [15]. We denote
the flag manifold G/Pg by Fe.

In [1] the cotangent bundle of the complex flag manifold Fg is realized by the adjoint
orbit G - Hg :=Ad(G)He (the realization of the cotangent bundle is with the coadjoint
orbit, however in the Example 1.3.1 this orbit is identify with the adjoint orbit) and is
also realized by the homogeneous space G/Zg, where Zg is the centralizer of Hg in G by

the adjoint representation.
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Theorem 1.2.12. [1] The adjoint orbit O(He) =Ad(G) - Ho =~ G/Zg of the characteristic
element Hg is a C* wvector bundle over Fg that is isomorphic to the cotangent bundle

T*Fg. Moreover, we can write down a diffeomorphism ¢ :Ad(G) - Hg — T*Fg such that

(1) v is equivariant with respect to the actions of U, that is, for all uw € U,
toAd(u) =uou,
where @ is the lifting to T*Fg (via the differential) of the action of u on Fg; and

(2) the pullback of the canonical simplectic form on T*Fg by ¢ is the (real) Kirillov-

Kostant-Souriaux form on the orbit.

The projection 7 : G - Hg — Fg is obtained via the action of G. The canonical
fibration gZg € G/Zg +— gPo € Fg has the fiber Pg/Zg. In terms of the adjoint action
the fiber is Ad(Pg) - He, which is the affine subspace Hg + ng (see [1]).

In [1] it is also described the isomorphism of the adjoint orbit G - Hg with the
cotangent bundle T*Fg. The tangent space T;,Fg of the flag manifold Fg at the origin be
can be identified with ng and the isotropy representation Ug —Gl(T,,Fe) becomes the
restriction of the adjoint representation. The subspace ng is isomorphic to the dual (ng)*
of ng via the Cartan-Killing form K(-,-) of g. Thus, the map X € n§ — K(X, ) € (ng)* is

an isomorphism.

1.3 Symplectic manifolds

In [1], each element of the Lie algebra g is associated with a Hamiltonian vector field
on T*Fg and they use the fact that g is semi-simple to interchange the representations
coadjoint and adjoint via the Cartan-Killing form and thus define the moment map
T*Fo — g of the Hamiltonian action of G on the cotangent bundle. That moment map
is a diffeomorphism transforming the canonical symplectic form of T*Fg in the Kirillov-
Kostant-Souriaux form on the adjoint orbit Ad(G)Hg. We also study the cotangent bundle
of a flag manifold as a symplectic manifold. Some definitions in [12] and [16] to understand

the symplectic manifolds are:

Definition 1.3.1. A symplectic form w in a vector space V (dimV < o) is a non-
degenerate asymmetric bilinear form, i.e. for every x € V, there exists y € V such that
w(z,y) # 0.

A symplectic form in a differentiable manifold M is a closed differential 2—form w

(dw = 0) and non-degenerate.

A manifold M provided of a symplectic form is called symplectic manifold.
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Definition 1.3.2. Let (M,w) be a 2n-dimensional symplectic manifold. A submanifold Y of
1
M is a Lagrangian submanifold if, at eachp € Y, wy, |1,y = 0 and dimT,Y" = idimTpM.

1.3.1 Coadjoint representation

The coadjoint representation Ad*(g) of G on the dual g* of the Lie algebra g is
defined by Ad*(g)a = acAd(g '), g € G and a € g*. Its infinitesimal representation
ad® : g — gl(g) is given by ad*(X)a = —aocad(X). The group G acts on g* by the
representation Ad*. For this action, the induced vector fields X, X € g, are given by

X =ad*(X).

For o € g*, the coadjoint orbit Ad*(G)« is identified with the homogeneous space
G/Z,, where Z, is the closed subgroup

Zo={9eG:ao0Ad(g ") = a}.

The Lie algebra 3, of Z, is given by 3, = {X € g : a o ad(X) = 0}. The tangent space of
Ad*(G)a at « is given by

To(Ad*(G)a) = {ad™(X)a : X € g}.

The symplectic form of Kirillov-Kostant-Souriaux 2 (KKS) in the coadjoint orbit
Ad*(G)a is given by the expression

Q(X(a),Y(a) =a[X,Y] X, Yeg. (1.3.1)

In [5] is proved that Q, is an invariant symplectic form in Ad*(G)a = G/Z,. In addition,
the form Q at § =Ad*(¢g)a = Ad*(G)a is given by
Qs(X(8), Y (8)) =Qaldgs ' X(8), dgs 'Y (8))
—0a(Ad(g )X (), Ad(g )Y (@)
=a[Ad(¢g7) X, Ad(g™)Y]
=a o Ad(g™H[X,Y].

This means

Qs(X(6),Y(8)) = B[X,Y]

has the same expression used to define €2,,.

Example 1.3.1. [5] The Cartan-Killing form /C(-,-) of a Lie algebra g of the semi-simple
group G is non-degenerate and define an isomorphism W : g — g* by W(X)(-) = K(X, ).
This isomorphism exchanges the adjoint and coadjoint representations, i.e.
WAd(g) =Ad*(g)W for every g € G, since K is Ad-invariant. Hence W applies dif-
feomorphically the adjoint orbits in the coadjoint orbits, this allows transform the KKS
symplectic forms €2 in the symplectic forms W*2 in the adjoint orbits. In the semi-simple

case, the adjoint representation behaves like the coadjoint representation.
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As a comment, we indicate a Poisson structure associated with Lie algebras. If g is

any Lie algebra, its dual g* carries the Lie-Poisson structure

(F.GYm) = G (5 5

oF
Here, Su and S are the differentials of ' and G considered as maps into g rather than
u H

g**, and {, ) is the pairing of g* with g. If X;,---, X,, form a basis for g and z1,--- ,z,
are the corresponding coordinate functions on g*, the basic bracket relations are
{zi, 25} = ZCijk$k7
k
where the ¢;j;’s are the structure constants of g. Conversely, any Poisson structure of
the form as the last equation arises in this way from a Lie algebra. For the Lie-Poisson
structure on g, the orbits of the coadjoint representation of a connected Lie group whose

Lie algebra is g has symplectic structure defined by Kirillov-Kostant-Souriau.

1.4 Symmetric spaces

In this section we shall use Kobayashi and Nomizu’s books [3] and [2] as main

references.

Let M be a n—dimensional manifold with an affine connection. The symmetry
s, at a point x € M is a diffeomorphism of a neighborhood U onto itself which sends
exp X, X € T, M, into exp(—X). Since the symmetry at = defined in one neighborhood U
of x and the symmetry at x defined in another neighborhood V' of x coincide in U NV,
we can legitimately speak of the symmetry at z. If {z',--- , 2"} is a normal coordinate
system with origin at z, then s, sends (z',---,2") into (—z',--- , —2"). The differential
of s, at = is equal to —1,,, where I, is the identity transformation of T, M. The symmetry
s, is involutive in the sense that s, o s, is the identity transformation of a neighborhood
of x. If s, is an affine transformation for every x € M, then M is said to be affine locally

symmetric.

A manifold M with an affine connection is said to be affine symmetric if, for each

x € M, the symmetry s, can be extended to a global affine transformation of M.

Theorem 1.4.1. [3] A complete, simply connected, affine locally symmetric space is affine

symmetric.

Theorem 1.4.2. [3] On every affine symmetric space, the group of affine transformations

18 transitive.

Kobayashi and Nomizu, in [2], proved that the group of affine transformations (M)
of M is known to be a Lie group. Let G denote the identity component of the {(M). The
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identity component of a Lie group acting transitively on a manifold M is itself transitive

on M, an affine symmetric space M may be written as a homogeneous space G/H.

Theorem 1.4.3. /3] Let G be the largest connected group of affine transformations of an
affine symmetric space M and H the isotropy subgroup of G at a fixed point o of M so that
M = G/H. Let s, be the symmetry of M at o and o the automorphism of G defined by

o(g) =s,0g0s,' forgeg. (1.4.1)

Let G, be the closed subgroup of G consisting of elements fized by o. Then H lies between
G, and the identity component of G, .

From Theorem 1.4.3, Kobayashi and Nomizu suggests the following definiton. A
symmetric space is a triple (G, H, o) consisting of a connected Lie group G, a closed
subgroup H of G and an involutive automorphism o of GG such that H lies between G,
and the identity component of GG,, where (G, denotes the closed subgroup of G consisting

of all elements left fixed by o.

We define now an infinitesimal version of a symmetric space. A symmetric Lie algebra
is a triple (g, b, o) consisting of a Lie algebra g, a subalgebra h of g, and an involutive

automorphism o of g such that b consists of all elements of g which are left fixed by o.

Every symmetric space (G, H, o) gives rise to a symmetric Lie algebra (g,b,0)
in a natural manner; g and h are the Lie algebras of G and H, respectively, and the
automorphism o of g is the one induced by the automorphism o of G by the automorphism
o of G. Conversely, if (g, b,0) is a symmetric Lie algebra and if G is connected, simply
connected Lie group with Lie algebra g, then the automorphism o of g induces an
automorphism ¢ of G and, for any subgroup H lying between G, and the identity
component of G, the triple is a symmetric space. The pair (G, H) is called a symmetric

pair.

A triple (G', H', o) is called a symmetric subspace of a symmetric space (G, H, o) if
G’ is a Lie subgroup of G invariant by o, if H' = G’ n H and if ¢’ is the restriction of o to
G/

Let (g,h,0) be a symmetric Lie algebra. Since o is involutive, its eigenvalues as

a linear transformation of g are 1 and —1 and b is the eigenspace for 1. Let m be the

eigenspace of —1. The decomposition
g=h+m (1.4.2)
is called the canonical decomposition of (g, b, o).

Proposition 1.4.4. [3] If g = h + m is the canonical decomposition of a symmetric Lie

algebra (g, b, o), then
[b:6] = b, [hm]cm, [mm]ch. (1.4.3)
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Proposition 1.4.5. [3] Let (G, H, o) be a symmetric space and (g, b, o) its symmetric Lie
algebra. If g = h + m is the canonical decomposition of (g, b, o), then

Ad(H)m c m. (1.4.4)

The following theorems guarantee the existence of an invariant affine connection over

the homogeneous symmetric space G/H.

Theorem 1.4.6 (Correspondence). [3] There is a one-to-one correspondence between the
set of G-invariant connections in G (connection in the bundle G(M, H) which is invariant

by the left translations of G) and the set of linear mappings Ay, : m — b such that
Aw(Ad(R)X) = Ad(h)(An(X)), X em,h e H, (1.4.5)

The correspondence is given by A : g — g

[ X, Xep
A(X) = { M, Xem (1.4.6)

To a G-invariant connection in G with connection form w there corresponds the linear
mapping defined by
AX) =w,(X)  Xeg,

where X denotes the natural lift to G of a vector field X € g of M = G/H and ug € G
fixed.

The invariant connection corresponding to A, = 0 is called canonical connection of
(G,H,o0) or G/H

Theorem 1.4.7. [natural torsion-free connection] [3] Every reductive homogeneous space
M = G/H admits a unique torsion-free G-invariant affine connection having the same

geodesics as the canonical connection. It is defined by

An(X)(Y) = ;[X, Y]e X,Yem. (1.4.7)

The invariant connection defined in the Theorem 1.4.7 shall called by the natural
torsion-free connection on G/H (with respect to the decompostion g = hdm). If (G, H, o)
is a symmetric space, then the homogeneous space G/H is reductive with respect to the
canonical decomposition, then [m, m] < b and the canonical connection coincides with the

natural torsion-free connection.

Theorem 1.4.8. [3] Let (G, H,o) be a symmetric space. The canonical connection is the

only affine connection on M = G/H which is invariant by the symmetries of M.

The canonical connection makes it possible to find geodesics in symmetric spaces.
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Theorem 1.4.9. /3] With respect to the canonical connection of a symmetric space (G, H, o),
the homogeneous space M = G/H with origin o is a (complete) affine symmetric space

with symmetries s, and possesses the following properties:

(1) For each X € m , define the curves f; = exptX in G and x; = fio in M = G/H.
Then the curve x; is a geodesic. Conversely, every geodesic in M starting from o is

of the form f; -0 =exptX -o for some X € m.

(2) The canonical connection is complete.

In [2], an indefinite Riemannian metric is defined as a symmetric covariant tensor
field m of degree 2 which is non-degenerate at each x € M, that is, m(X,Y) = 0 for all
Y € T, (M) implies X = 0. The difference with the Riemannian metric defined in the
section 1.2.8 is that an indefinite Riemannian metric associates p € M to non-degenerate

bilinear symmetric 2—form my(-, -) in 7, M instead of an inner product.

Example 1.4.1. An indefinite Riemannian metric on a non-compact, semi-simple Lie group

is given by the Cartan-Killing form.

Theorem 1.4.10. [3/ [Indefinite Riemannian metric] Let (G, H,o) be a symmetric space

with G semi-simple and let g = b + m be the canonical decomposition. Then

(1) the restriction of the Cartan-Killing form K(-,-) of g to m defines a G-invariant

(indefinite) Riemannian metric on G/H and

(2) this (indefinite) Riemannian metric induces the canonical connection on G/H .

In Chapter IV of [2] there is a theorem saying that every Riemannian manifold
admits a unique metric connection with vanishing torsion and that connection is called
Riemannian connection (sometimes called the Levi-Civita connection). Since the canonical

connection is also torsion-free by Theorem 1.4.7, it must be the Riemannian connection.

A homogeneous space M = G/H with a G-invariant indefinite Riemannian metric is
said to be naturally reductive if it admits an Ad(H )-invariant decomposition g = h@dm

satisfying the condition
B(X,[Z,Y]n) + B([Z,X]w,Y) =0, VXY, Zem (1.4.8)
where B(-, ) is an Ad(H )-invariant non-degenerate symmetric bilinear form on m. Therefore,

we can say every symmetric space is naturally reductive since [X, Y], = 0 for all X, Y € m.

Then the affine symmetric space G/H, with G semi-simple, is naturally reductive
with respect to the G—invariant indefinite Riemannian metric defined by the Cartan-

Kililng form. Furthermore, in [3] is proved that the indefinite Riemannian metric on m is



Chapter 1. Preliminaries 41

a Ad(H)-invariant, non-degenerate symmetric bilinear form that satisfies
K([Z,X],Y)o+ K(X,[Z,Y])s =0, X,Yem Zeb, (1.4.9)

where o is the origin of G/H. This metric is invariant by both right and left translations.

1.4.1 Riemannian symmetric spaces

A Riemannian manifold M is said to be Riemannian locally (or globally) symmetric

if it is affine locally (or globally) symmetric with respect to the Riemannian connection.

Theorem 1.4.11. /3] Let M be a Riemannian symmetric space, G the largest connected
group of isometries of M and H the isotropy subgroup of G at a point o of M. Let s, be the
symmetry of M at o and o the involutive automorphism of G defined by o(g) = s,0gos,*

for ge G. Let G, be the closed subgroup of G consisting of elements fixed by o. Then

1. G is transitive on M so that M = G/H;

2. H is compact and lies between G, and the identity component of G, .

If (G,H,o) is a symmetric space with compact Ady(H). Let g = h + m be the
canonical decomposition. Since h and m are invariant by Ady(H) (see Proposition 1.4.5)
and since Ady(H) is compact, g admits an Ady(H )-invariant inner product with respect
to which h and m are perpendicular to each other. This inner product restricted to m
induces a G-invariant Riemannian metric on G/H. By Theorem 1.4.10, any G-invariant
Riemannian metric on G/H defines the canonical connection of G/H. Hence G/H is a

Riemannian symmetric space.

1.4.1.1 Orthogonal symmetric Lie algebras

Let (g,b,0) be a symmetric Lie algebra. Consider the Lie algebra adgy(h) of linear
endomorphisms of g consisting of adX where X € f. If the connected Lie group of linear
transformations of g generated by ad,(h) is compact, then (g, b, o) is called an orthogonal
symmetric Lie algebra. If (G, H, o) is a symmetric space such that H has a finite number
of connected components and if (g, b, o) is its symmetric Lie algebra, then Ady(H) is

compact if and only if (g, b, o) is an orthogonal symmetric Lie algebra.

Proposition 1.4.12. Let (g, h,0) be an orthogonal symmetric Lie algebra with g simple.

Let g = h + m be the canonical decomposition. Then

1. adb is irreducible on m.

2. The Cartan-Killing form K of g is (negative or positive) defined on m.
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A symmetric Lie algebra (g, b, o) is said to be effective if h contains no non-zero

ideal of g.

An effective symmetric Lie algebra (g, b, o) is irreducible if ad(|m, m]) is irreducible

on m. If g is simple, then the symmetric Lie algebra is irreducible.

In general, an orthogonal symmetric Lie algebra (g, b, o) with g semi-simple is said
to be of compact type or non-compact type according as the Cartan-Kiling form C of g

is negative-defined or positive-defined on m.

1.4.2 The dual symmetric space

Consider an arbitrary (real) symmetric Lie algebra (g, b, o) with canonical decompo-

sition g = h + m.

If we denote by g° and h° the complexifications of g and b, respectively, and by ¢ the
involutive automorphism of g¢ induced by o, then (g¢ ¢, c¢) is a symmetric Lie algebra

and (g, h,0) is a (real) symmetric subalgebra of (g° b, o¢). We set
g* =bh++/—1m. (1.4.10)

If we set 0* = ¢° | g*, then we obtain a symmetric subalgebra (g*,h,0%) of (g% b, o),
which is called the dual of (g, b, o).

Theorem 1.4.13. /3] The irreducible orthogonal symmetric Lie algebras of compact type

are divided into the following two classes:

(I) (g,h,0) where g is a simple Lie algebra of compact type;

(II) (g+g,Ag, o) where g is a simple Lie algebra of compact type, o maps (X,Y)e g+g
into (Y, X) € g+ g and Ag is the diagonal of g + g.

The irreducible orthogonal symmetric Lie algebras of non-compact type are divided into the

following two classes:

(III) (g,b,0) where g is a simple Lie algebra of non-compact type which does not admit a

compatible complex structure;

(IV) (g, g,0) where g is a simple Lie algebra of compact type, g° denotes the complexifi-

cation of g, and o is the complex conjugation in g with respect to g.

An orthogonal symmetric Lie algebras of type (I) is the dual of an orthogonal symmetric
Lie algebra of type (II1). An orthogonal symmetric Lie algebra of type (II) is the dual of
an orthogonal symmetric Lie algebra of type (IV).
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The types of symmetric spaces are related to their geometric properties as follows.

Theorem 1.4.14. [3] Let (G, H, o) be a symmetric space with Adg(H) compact and let
(g,b,0) be its orthogonal symmetric Lie algebra. Take any G-invariant Riemannian metric
on G/H. Then we have.

(1) If (g,h,0) is of compact type, then G/H is a compact Riemannian symmetric space

with non-negative sectional curvature and positive-defined Ricci tensor;

(2) If (g,h,0) is of non-compact type, then G/H is a simply connected non-compact
Riemannian symmetric space with non-positive sectional curvature and negative-

definite Ricci tensor and is diffeomorphic to a Euclidean space.

The Riemannian symmetric manifolds with orthogonal Lie algebras of compact type

of class (I) and of non-compact type of class (III) are evidence in the Table A.3.



44

2 Symetric spaces on the adjoint orbit

Let g be a complex simple Lie algebra with compact real form u and let G be a
connected Lie group with Lie algebra g. Let U/K be a complex flag manifold and assume
that the Lie algebra of U is u and the Lie algebra of K is £. Comparing the tables A.2
and A.3, we can see that the symmetric spaces which are complex flag manifolds are
SUp+q)/SWU(p) x U(g)), Sp(l)/U(l) and SO(21)/U(l) of types A,C and D respectively.
These flag manifolds are Riemannian symmetric manifolds and (u, £, o) is an orthogonal

Lie algebra of compact type and class (I).

We call flag symmetric spaces to the symmetric spaces which are also complex flag
manifolds. We shall see these spaces as homogeneous spaces with the canonical connection,

which is also an invariant connection.

Throughout chapters 3,4 and 5, we shall prove Theorem 2.0.1, i.e. that the cotangent

bundle of a flag symmetric space is a symmetric space.

Theorem 2.0.1. Let Fg be a flag symmetric space identified with the homogeneous space
Fo = U/Us, (2.0.1)

as in Proposition 1.2.11 . Then, there exists an element Hg in a fired Cartan subalgebra

of the compact Lie algebra w such that for o := Cexp He

Uo ={ueU: Ceppg(u) =u}. (2.0.2)

Moreover, let G be the complex Lie group such that U is its compact real form. Then,

the cotangent bundle of Fg has a realization as a symmetric space.

If we use also the notation o for Ad,(exp Ho) and Adg(exp He), then (u,ue, o) and

(9,34(Ho),0) are symmetric Lie algebras.

This theorem shows that one element Hg in a Cartan subalgebra determines the

automorphism o for two symmetric spaces and then for two symmetric Lie algebras.

In this chapter we shall use the following notations: Let g be a complex simple Lie
algebra with compact real form u. Let G’ be a complex simple Lie group with Lie algebra
g and U the connected compact Lie subgroup of G with Lie algebra u. The flag symmetric
spaces shall be denoted by F = U/Ug, as in Proposition 1.2.11. The o-fixed points set in g
is denoted by

g

87 =30 = 3(Ho). (2.0.3)
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In addition, we shall use the notation used in the section 1.2.2 for the flag symmetric

spaces.

Moreover, the tangent space of the homogeneous space G/G° at the origin can be
identify by the (direct) sum

mg = ng + ng
Hence, the canonical decomposition of the complex Lie algebra is

g = 3o + mg. (2.0.4)

Since G = Zg, the adjoint orbit of G in Heg is G/G° (see 1.2.12) and its tangent

space at Hg is isomorphic to the vector space ng + ng.

Analyzing the flag symmetric space U/Ug from Theorem 2.0.1, we have that Ug =
Zy(He) and by (1.2.13) and (1.2.12), the compact real form of g has the canonical
decomposition:

u=1ug +m, (2.0.5)

where

m= > u, (2.0.6)

aell+\(0)+
with u, = Spang(Aa, Z,) as in 1.1.5, is isomorphic to the tangent space of the flag in the
origin. Then,

mg = m® (2.0.7)
where we identify mg with the complexification m® of the tangent space Ty Fo of Fg
at the point bg := eUg. Then mf, = {X € g,7X = X} is identified with T;,Fe and the
isotropy representation of Ug on (Tj,Fe)® can be identified with the restriction of the

adjoint representation Ady(Ueg) to me.

In the next chapters, let us characterize the flag symmetric spaces. They are only of
three classes. In the Chapters 3, 4 and 5 is proved that the involutive inner automorphism
o mentioned in Theorem 2.0.1 is a generalized Cartan involution (extension of a Cartan
involution from a noncompact real form to a complex Lie algebra) extended from a

noncompact real form of g, denoted by go, with Cartan decomposition
go=E+s, (2.0.8)

such that € = ug. By 1.1.11 and g = go + v —1go, we get u = £ + /—1s and the vector

subspace m is isomorphic to the symmetric part of u and we get the identification
m = 4/ —1s. (2.0.9)

Hence,

g7 = &+ /18, (2.0.10)
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since o is the Cartan involution on gg. The canonical decomposition of (g, g7, o) is

g=(E+v-18) + (s + v—1s) (2.0.11)
and the canonical decomposition of (u,u’, o) is:

u=¢++v-1ls=ug++v—1s (2.0.12)

Remark 1. A realization of the adjoint orbit in [1] is in Theorem 1.2.12. The adjoint
orbit is realized as the associated vector bundle U x, nd§ with principal bundle U — U,

where p is the adjoint representation restricted to Ug on ng. Additionally, G - Hg =
UAd(u)(H@ +nd) cg.
uelU

Since Lie groups here are all semi-simple, the Cartan Killng form &(-,-) is a non-
degenerate bilinear form. Since it is invariant by automorphisms, then it is Ad(H) invariant,
for H the isotropy subgroup both for the symmetric flag spaces and for the adjoint orbits.
In the case of symmetric flag spaces, the Cartan Killing form is negative definite, then
—K (-, -) generates a U-invariant Riemannian metric on Fg = U/Ug and for the cotangent
bundle T*Fg = GG/Zg there no exists an Ad(Zg)-invariant (definite) metric, because of

Zg is not a group of isometries.

The theory studied here is a generalization of the examples 2.0.1 and 2.1.1. We shall
show the case of an unidimensional real flag SO(2)/{+1d} which is a symmetric space and
its dual symmetric space contained in the bidimensional adjoint orbit diffeomorphic to the
cotangent bundle of SO(2)/{£1d}.

Example 2.0.1. Let us consider the base of s[(2, R):

A:<0 1), B:<1 0), C:(O 1). 2013
10 0 —1 -1 0

The compact Lie group

80(2):{<C?SS _Sln$>:seR}
sins coss

determines the maximal flag manifold

SO(2)-B = { < coss s > - B =sin(2s)A + cos(2s)B+0C : s € ]R}

sins coss

=51 (2.0.14)

contained in the real vector space s[(2,R) © s0(2) =span{A, B}. This flag manifold is a

symmetric space since is the 1-sphere S*.
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The adjoint orbit SI(2,R) - B := Ad(S1(2,R))B is the set of matrices A + yB + zC

for x,y, z € R, with eigenvalues +1, i.e.

10
det ( yooETz > — det < ) . (2.0.15)
rT—2z -y 0 -1

Then, the adjoint orbit SI(2,R) - B is the one-sheeted hyperboloid
Pty -2 =1 (2.0.16)

This manifold has a realization as the homogeneous space SI(2, R)/S(GI(1,R)xGI(1,R))
=S1(2,R)/R*, with R* = R\{0}.
The cotangent bundle of S* is also the union of fibers T*S* = U k- (B+n"),

keSO(2)
with n™ being the Lie subalgebra of s[(2,R) defined by the upper triangular matrices. For

each element

k= ( costsint > € S0(2), teR, (2.0.17)

—sint cost

the fiber k - (B + n") is the one-dimensional affine vector space

Ad(k)(gmﬂ;:{(j:rft §;2§>.[B+(g 0>]R}

cos(2t) — gsin(%) — sin(2t) + r(cost)?

= r relR
—sin(2t) — r(sint)®> —cos(2t) — 5 sin(2t)

={(—sin(2t) + g cos(2t))A

+ (cos(2t) + gsin(Qt))B + gc .r € R} (2.0.18)

A vector equation defining each fiber above is
x — sin(2t) cos(2t)
= cos(2t) |+ g sin(2t) reR. (2.0.19)

z 0 1

Example 2.0.2. Now we show a case of low dimension of the symmetric spaces studied in
Chapter 3. Consider the Lie group G = SI(2,C), with compact real form U = SU(2) and
take the element in the Lie algebra u = su(2)

/- 1
He = 17 0 ‘
2 0 -1

This element defines the maximal flag manifold Fg = U/Ug for © = &, where Ug is the
centralizer of Hg in U. The Lie group

SU(2) = {( “ 2 ) o+ 18P =1,a,8¢€ C} (2.0.20)
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is diffeomorphic to the 3—sphere S* and Zy(Hg) is the subgroup

S(U(1) xU(1)) = {(g >:|a\2=1,ae(C}
e’ 0
(% o) vewon)

diffeomorphic to the unidimensional sphere S*.

QI O

Then the flag manifold Fg is a symmetric space and is the Riemann sphere

SU(2)/S(U(1) x U(1)) = §3/St = CP! = 52

The cotangent bundle of SU(2)/S(U(1) x U(1)) has a realization as the homogeneous

space
G/ Zo(Ho) = SI(2,C)/S(GL(1,C) x GL(1,0))
with
0
S(GL(1,C) x GL(1,C)) = {( S . ) Lz C*} ~ C* = C\{0}.
z
In Chapter 3 we prove that in particular, the cotangent bundle of the 2—sphere is a

symmetric space, since the element Hg is a particular case of the matrix in the equation
3.0.2. Then the homogeneous space T*(S?) = SI(2,C)/C* is symmetric.

Furthermore we know another realization of the cotangent bundle of S? as the adjoint
orbit of G = S1(2,C) in He

Z1 Z2 )]
G-Hg = Heo D 2124 — 2023 = 1,21, 29,23 € C
23 24 —Z3 21

Vol f 14 22925 —22z129
= D 2124 — 2023 = 1,21,20,23€ C } .

2 22324 -1 - 22322

Remark 2. In the three cases of flag symmetric spaces, we have symmetric Lie algebras, in
the cotangent bundle, of the type (g, 30,0) with the following properties :

1. g is simple and is a vector direct sum ng + 3o + ng with the relations

[5@73@] < jo, [3@7“6] - n(:jv [5@7“(3] - n(iga

= - (2.0.21)
[ng,né] <30, [ne,ns] =0, [ng.né]=0;
2. The canonical decomposition g = 3¢ @ m¢ is given by the direct sum
Mg = Mg + e; (2.0.22)

3. With respect to the Cartan-Killing form & of g, the subspaces n{:% are dual to each

other and, moreover,

Kng,nd) =0 and Knd,nd) =0 (2.0.23)
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2.1 The dual symmetric space

We study the dual symmetric spaces of the flag symmetric spaces (u,ug, o). The

dual symmetric Lie algebra is the direct sum
u* =ug + v —1m, (2.1.1)

with 0* =Ad(e”®) |,+. In the expressions 3.0.15, 4.0.33 and 5.0.22, we shall show that u*
is isomorphic to a classical real Lie algebra and the decomposition above is the Cartan

decomposition of u* with Cartan involution given by o*

Let U* be the non-compact connected Lie subgroup with Lie algebra u*. This Lie

group is a real form of the complex Lie group G. In this section, we study the set

S:=Ad(eV""™Hg c G- He := Ad(G)He. (2.1.2)

The theorems 2.1.1 and 2.1.3 are the main results of this section.

Theorem 2.1.1. Let Fg = U/Ug be a flag symmetric space with symmetric Lie algebra
u=1ug+m (2.1.3)

Then

(i) S is a submanifold of the adjoint orbit G - Hg, with G being the complex Lie group

with compact real form U. Furthermore,
S = U"/Usg, (2.1.4)
where U* /Ug s the dual symmetric space of Fg.

(ii) The submanifold S is diffeomorphic to a vector space.

(iii) This homogeneous space is a Riemannian manifold with Riemannian structure defined
by the Cartan-Killing form.

(i) Let u-(Hg+ng) be a fiber in the cotangent bundle of Fg intersecting the submanifold

S, then both spaces are transverse.

Proof. (i) The quocient space U*/Ug is an affine symmetric space by definition of dual
symmetric space. Since U™ is a subgroup of G and Ug = U n Zg, then (U*,Ug, ")
is a symmetric subspace of (G, Zg,0), with 0 = ¢ |y+. By a theorem in [3], U/Ug
is a totally geodesic submanifold of G/Zg (with respect to the canonical connection
of G/Zg) and the canonical connnection of G/Zg restricted to U/Ug coincides with

the canonical connection of G/Ze.
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(i)
(iii)

The theorem 1.1.38 can be applied in the non-compact connected Lie group U*. Then,
U*/Ug is diffeomorphic to exp(y/—1m), which is simply connected. Furthermore, the
adjoint orbit

Ad(U*)He = Ad(eV™™)Ad(Ug)He = Ad(eV™™Hg =: S (2.1.5)

is diffeomorphic to U*/Ug. Hence, S is diffeomorphic to exp(y/—1m), and thus it is
diffeomorphic to the vector space v/ —1m.

Proved in the demonstration of (i).

The tangent space of the dual symmetric space U*/Ug at the origin is isomorphic to
v/—1Im and the Cartan-Killing form in v/—1m is K(v/—=1X,v/~1Y) = —K(X,Y) =:
(X,Y)for X, Y € m. Since m < u, then the Cartan-Killing form in v/—1m is positive
defined. The homogeneous space U* /Ug admits invariant metrics since Ug is compact.
A natural metric in U*/Ug is that given by the restriction of the Cartan-Killing form
to v/—1m. Since u* is simple, then the adjoint representation in v/—1m is irreducible

and the invariant metric is essentially unique, defined by the Cartan-Killing form.

Every fiber has the form u - (Hg + nd) = u - (Ng - Hg), for u € U. To say that S is
transverse to Hg + ng is equivalent to proving that for every x € S nu - (Hg + ng)

must be satisfied
T.(S) + Ty(u- (Ho + 1)) = T,.(G - Ho), (2.1.6)

for each uw € U such that S nu - (He +nd) # .

The Lie algebra g can be seen as the set of left invariant fields. From the equation

CC;t(Ad(e”()(Y)) mo=[X,Y](1), X,Yeg, (2.1.7)

the tangent space of S at e - Ho = u-(Hg + X) = ue? - Ho, with Ae v/—1m, X, Z €
ng, ue U and e - Ho = Ho + X, is [e? - Hg,v/—1m] and the tangent space to the

fiber u - (Ho + ng) at e - Ho is [e? - Ho,ng]. The sum of the two tangent spaces is
[e? - Ho,v/—1m] + [e? - Ho,nd] = [e* - Ho,vV—1m +nd] = [e? - Ho,mg], (2.1.8)

the tangent space to the adjoint orbit G - He at e - He.
m

Proposition 2.1.2. The intersection of & with the fiber Hg + ng is the point set {Ho}.

Proof. We shall compute the intersection of the submanifold S with the fiber Hg + ng in

the three cases of flag symmetric spaces. The results will be evidenced in 3.0.21, 4.0.40
and 5.0.27. =
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The symmetry ¢ in the submanifold S is given by

g: S — S

2.1.9
€A : H@ = CeH@ (GA) : H@, ( )

for A € v/—1m. Then 5(e*- Ho) = exp(Ad(e®)A) - Ho = exp(c(A))- He = exp(—A) - Ho,
since (u*, ug, o), ¢ =Ad(e”®) is a symmetric Lie algebra. Recall that we have the same

notation o for the automorphism in the Lie group and algebra.

Theorem 2.1.3. Suppose that, for some u € U, the fiber u - (Hg + ng) intersects the
submanifold S. Then, the fiber o(u) - (He + ng) intersects S.

Proof. Bach element e” - Hg of S is an element of some fiber of the cotangent bundle and
has the form u - (Hg + X) = ue? - Hg, for some u € U and Z, X € ng, since S ¢ G - He.

- (Ho + ng). (2.1.10)
O

However, not every fiber intersects S. The following theorem indicates us some fibers

which does not intersect S.

Theorem 2.1.4. The fiber u- (Hg + 1) does not intersect S if u-nd < u* and u- He ¢ ug.

Proof. Let u - (He + ng) a fiber such that u-nd < u* and u - Hg ¢ ug. Suppose that
u-(Ho + 1) nS # &. The fiber is cointained in u- Hg + u*. If u- (He + X) € S < u”,

with X € ng, then u - Hg € u* nu = ug and this is a contradiction. Hence
(u-(Ho + 1)) nS =02. (2.1.11)
]

Theorem 2.1.5. Let u- (Ho + X) € S © T*Fg be an element that satisfies u-nd nu* = {0}.
Then, the intersection of the submanifold S with the fiber u - (He + ng) is {u- (Ho + X)}.

Proof. Consider an element u - (Hg + Y') in the intersection S N u - (Hg + ng). Then
u-(Ho+Y)—u-(Ho+X) =u-(Y —X) €u-nf nu* = {0}, since S < u*. Hence
X =Y. [
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The projection 7 : u - (Hg + X) € T*Fg > u - Hg € Fg, for u e U, X € nd; restricts
to the submanifold S is an homeomorphism over 7(S). The adjoint orbit G - Hg is a
set of matrices in g with imaginary eigenvalues, since Hg belongs to the the Cartan
subalgebra of u. The elements in v/—1u do not intersect the adjoint orbit since ad(g -
Hg) =Ad(g)oad(He)oAd(g™"), for each g € G, has imaginary eigenvalues and the matrices
in ad(v/—1u) has real eigenvalues.

Example 2.1.1. This example is the continuation of Example 2.0.1.

The symmetric part of the Cartan decomposition of s[(2,R) is generated by the
matrices A and B (see 2.0.13). Thus, the submanifold S is represented by

Ad(e")B =:exp(tA) - B

ht sinht
_ oS Sl - B = 0A + cosh(2t)B — sinh(2t)C : t e R
sinht cosht

={(0,y,2)eR® 12— 22 =1, y >0} (2.1.12)

and it is the intersection of the hyperboloid z? + y* — 2> = 1 with the semi-plane

{r = 0,y > 0} contained in the vector space spang{B,C}. Here the submanifold S is
symmetric with respect to the abelian vector subspace of s[(2, R) generated by B. Hence
we have three symmetric spaces: The hyperboloid in 2.0.16, the 1-sphere and a branch of
the hyperbola 2.1.12 contained in the plane Y Z.

Figure 1 — Real adjoint orbit.

The intersection of S with the fiber k- (B + n) is the set of the vectors zA+yB + zC

in 2.0.18, such that x = 0 and y > 0. These conditions are equivalent to the system

{ e ,t e [0,7]. (2.1.13)

2 cos(2t) + rsin(2t) > 0

This system has solution only for t € (— ). Thus, the only fibers intersecting S are

)

AN
N

Y

k-(B+n)with k asin 2.0.17 and t € (— ). The intersection is the only vector satisfying

1
1
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the equation 2.0.19 with r = 2tan(2t). Furthermore, note that when k is equal to

1 (1 1 1 (1 -1
\/_§<_1 1>0r7§<1 1>, (2.1.14)

then k - B is equal to —A and A, respectively. Hence, the fibers passing by +A do not
intersect the submanifold S.

We can see this results in the Figure 2. All the lines in this figure are fibers and
the sky blue lines are the fibers passing by +A. We can see how the fibers passing by the
points in the (green) semicircle of radius 1 contained in {(z,y,0) : x € R,y > 0} intersect

the submanifold S represented by the red curve.
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Figure 2 — Fibers of T*(S') and the submanifold S.

Example 2.1.2. This example is a continuation of Example 2.0.2.

0 b
The manifold § :=(exps) - Hg, with s = 4/—1m = { < 0 > :be (C}, is

b
cosh(2]b]) ——sinh(21b|)
—1

S—eVmfy— VI 1 beC Y (2.1.15)

b
2 SR 1bl)  —cosh(21p)

The diagonal entries of the matrices in & are complex numbers with real part equal

to zero.
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B a

The fibers of the cotangent bundle are u - (He +n*), with u = ( “ ? ) e SU(2)

and each fiber is the set

—1m

5 2af = 1) + zaf —v/~1rafB + xa?

—/—1raf — xp? —\/?W(Q la)* — 1) — zaf

czeCy.  (21.16)

To find out which fibers intersect S, we are looking for elements in u - (Hg + n™) such

that for each a and [ as above, we must find if there exists x € C satisfying the following

conditions:
raf = —raf (2.1.17)
V—1rapB + za? = —v/—1raf — z/5° (2.1.18)
g(2k42—1)+1nmza6)>fg (2.1.19)

The first and second conditions come from the form of matrices in su(1,1) and the
third condition is because, from 2.1.15, the imaginary part of the first element in the

T
diagonal of matrices in S is greater than 5

If 3 =0, then uw e S(U(1) x U(1)) and a # 0, thus the fiber is (Hg + n*). The
unique x € C that satisfies the three conditions above is x = 0. Hence, the intersection
(Ho +n")nSis {He}.

If @ = 0, then |8] = 1 and the fiber is (Hg + n™). The equation 2.1.18 says us
that z = 0 and putting x = 0 in 2.1.19, we have a contradiction. Hence, the intersection
(Ho +n7) NS is empty.

If a # 0 # 8, from 2.1.17 and 2.1.18, we have the new condition

W —1rap = z(2]al* - 1). (2.1.20)
Here, we have two cases:

a) If 2 |04|2 — 1 =0, then 24/—17af = 0. This is a contradiction, since a3 # 0. Hence,
the fibers u - (Ho + n™) with

ue{( % ?):WPzWPzéaﬁeC}, (2.1.21)
— «

has empty intersection with the manifold S.
b) If 2 |04|2 —1#0, from 2.1.17 and 2.1.18, we find the complex number

2m/—1 _

r=——--—af. 2.1.22
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The condition 2.1.19, with x as above, becomes in the following condition
1 2
5 < la” < 1. (2.1.23)

Hence, (u- (Ho + n")) 1 S is not empty if
1
ue “ ? o <laP<L]a?+ |87 =1,a,8€C}. (2.1.24)

Furthermore,

2> =1\ —af -1

(u-(Ho +n*))nS = {\ﬁlﬂ < 1 of )} (2.1.25)

Considering the basis for u:

0 1 V-1 0 0 -1
€1=<1 0>,€2=< 0 _\/_71>,e3=<\/?1 0 >, (2.1.26)

the matrices in u - Hg, with u as in 2.1.24, have the decomposition
mlm(af)e; + g(2 la)® — 1)e; — TRe(af)es, (2.1.27)

with the second component greater than zero and
7T2 2 772
72 [Im(aB)]? + Z(2 la]® = 1) + 7*[Re(aB)]? = T (2.1.28)

This is, u - He, with u as in 2.1.24, is the semi-sphere {(a,b,c) € su(2) : a®> + b* + ¢* =
2

%, b > 0}. We can conclude that S is projected into the flag as the semi-sphere, through
the fibers.

Since the manifold S is contained in

5u(1,1)={<g _ﬁ ):ﬂeC,&:—a}.

We can express each of its elments as a combination of the matrices

0 1 V=1 0 0 -1
)5 D e () e

2
In that base, the manifold S is the part of the two-sheeted hyperboloid 22 + 2% — y? = _WZ

with positive Y-component:

S = {gsintsinh(%) A+ gcosh(ZT) -B — gcostsinh(Zr) -C:te|0,2n],r = O} .
(2.1.30)
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Note that, the set of matrices xA + yB + zC € su(1, 1) with determinant equal to
2 2

det(Hg) = % is the hyperboloid z? + 2% — 3 = —% and has |[W)| connected components,
where W is the Weyl group of sl(2,R). Also in this example, the flag is maximal and Hg
is a regular element. Let wy € W be the principal involution, then wy - Hg = —Hg and
the adjoint orbit A(Qi(SU(l, 1))(—Hg) = —Ad(SU(1,1))Hg is the sheet of the hyperboloid

o+ 22—yt = —% such that y < 0. Thus,

2 2
(M € sI(2,R) : det(M) = %} —{(r,y,2) eRP 2?4 22—y = _”Z}

—Ad(SU(1,1)) He U Ad(SU(1, 1))wo He

2.2 Symplectic form

Let us define the 2—form in g,

H(X,Y)= -K(X,7Y) X, Yeq (2.2.1)

It is an hermitian form in g and then
w(X,Y) = —ImH,(X,Y) X,Yeg (2.2.2)

is a symplectic form in g. In [8], it was proved that this 2-form induces a symplectic form
in the adjoint orbit through the pullback of w of the inclusion G - Hg — g and with
TynoG - Ho = |g,9- Ho), for each g € G.

The flag symmetric space Fg can be considered as the adjoint orbit Ad(U) - Hg of
the compact Lie group U, contained in u. Furthermore, the conjugation 7 restricts to u is

the identity function. Then, the symplectic form above in Ad(U) - Hg is

w(X,Y)=-ImK(X,Y) X, Yeu (2.2.3)

The Cartan-Killing form is a symmetric 2—form and w is anti-symmetric as well as

the Lie algebra u is real. Hence, the symplectic form in the submanifold Fg is zero.

Now let us see who is the restriction of the symplectic form above to the submanifold
exp(v—1m) - Hg = U* - Hg of G - He. This submanifold is contained in u* and each
tangent space 1,5, U* - Ho = [u*,v - Hg], for each v € exp(y/—1m), is also contained in
u*. The real Lie algebra u* is invariant by the conjugation 7. The Cartan-Killing form
restricted to u* coincides with the Cartan-Killing form of u*, since it is a real form. Then,

the symplectic form restricted to u* is equal to zero.

Theorem 2.2.1. The flag symmetric space Fg = U/Ug and its dual symmetric space S are
Lagrangian submanifolds of the adjoint orbit G - Hg with the symplectic form defined in
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On the other hand, the Kirillov-Kostant-Souriau symplectic form (KKS) restricted
to S is
Qe([X, €] [Y.€]) = K& [X,)Y]), X Yeu {es. (2.2.4)

If £ = Ho and X = v/—1A,,Y = v/—1Z,, for some a € [I"\(©)", then

K(He, [V—140,V=1Z,])
K(Heo, —[Aq, Za])
=K(Ho,2v—1H,,)
=2v/—1a(Hg)

#0.

Quo ([V—1A4, He|, [V =124, He))

Hence, the submanifold § is not Lagrangian with respect to the KKS form.

2.3  Geodesics

The tangent vector space to the adjoint orbit at the origin can be expressed in the

following ways (direct sums):

mg =m++/—1lm=m+nf. (2.3.1)

Hence, every X € mg have the decompositions

X=X, +X,, Xn,em, X,ev/—1Im (2.3.2)
X =X, + Xy, Xmem, X;end. (2.3.3)

With a canonical connection given by the Cartan-Killing form over G/Zg, the

maximal geodesics are the curves
V(t) = melgexp(tX)), geCG, Xemg (2.3.4)

where 7 : G — G/ Zg is the canonical projection defined by g € G — g-o0, with o = 1- Zg.

The maximal geodesics in G/Pg = U/Ug are the curves
Yo (t) = my(uexp(tA)), uwelU, Aem=TyFg (2.3.5)

where 7wy : U — U/Ug is the canonical projection defined by u € U — u - be.
Furthermore, we can define another projection

7m: G/Zg — G/Ps — U/Ug

(2.3.6)
9Ze — gPs — ulsg
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The following question arises: Is the projection of a geodesic in G/Zg a geodesic in
U/Ug? Here we analyze a case where the answer is yes and for this, we will focus on the

study of geodesics that pass through the origin.
From the decomposition in (2.3.3), if [ X, X¢] = 0, then exp(tX) = exp(tX,,) exp(tXy)

and
m(exp(tX) - 0) = exp(tXy) - bo (2.3.7)

since X,, € m and X; € ng.

When X; = 0, we get the geodesic v(t) = gexp(tXwm) - 0 is a horizontal curve in
the vector bundle G/Zg — U/Ug and the projection in U/Ug is the geodesic curve
Y (t) = wexp(tXnm) - bo, Tqu(g) = u is the projection of G in U, and we have also the
case when X, = 0, then the geodesic is in the fiber ng and the projection of this curve on
U/Ug is vy (t) = be.

From the realization T*Fg = G/Zg, the elements in g -0 € G/Zg can be viewed
as wv - Hg = u- (He + X) € T*Fg, with u € U,v € Ng such that ¢ = uv and v - Hg =
Hg + X. Thus, the projection will be u - (Hg + X) — u - Hg. Hence, for {u;} < U and
{Ho + X, ="' - Hg} € N& - Hg, we get

v(t) = €% - Hg = we"" - Ho = uy - (Ho + X3). (2.3.8)

Then, the projection of the geodesic is m(y(t)) = u; - Ho. When Z € m, the geodesic
v(t) = ge'” - 0 is a horizontal curve in the vector bundle for g € G and its projection on the

flag is the geodesic vy (t) = ue'? - be, with ey (g) = u € U. Moreover, when Z € ng, then

Y(t) = gexp(tZ) -0 = w(t) =u-be

the geodesic is into the fiber u - (He + ng) of the cotangent bundle and its vertical.
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3 Case 4

Let G be the Lie group Si(n,C) and let U be the compact Lie group SU(n), for
n = [+ 1, with Lie algebras g and u, respectively. The corresponding flag symmetric space

is the set of Grassmannian of complex p—dimensional subspaces of CP*4

Fo =SU(p+q)/S(U(p) xU(q)), n=p+gq, p<gq,

Wlth @ = E\{Oép} = {0[1 = /\1 - )\2, et ,Oép_l = )\p—l - )\p,Oép+1 = /\p+1 — )‘p+27 e, =
Al — Aiy1} and each ); is given by

i diag{ay, -, a1} — a; (3.0.1)

The compact real form of g is u = su(n) and an element in u that defines the flag

Feo is the matrix

) I 0
Ho:= T [ T e su(n) < sl(n, C). (3.0.2)
n 0 —pl,
It belongs to the Cartan subalgebra of su(n) and its exponential is the matrix
eI 0
ge = exp(Hg) = ( R ) . (3.0.3)
0 e,
Since p + ¢ = n, then ¢7*? = _1. So, we have €= - ¢/™n = —1. Therefore,
e = —e 7 (3.0.4)

and then

I 0
where [, , 1= ( 5 / )
g

Furthermore, g2 = (¢/™)2. I, = %™ . I,,. This verifies that (¢3)" = e*™ - I, = I,

ie., g5 € Z(SU(n)), since g3 is a nth root of unity.
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We shall use the same notation ¢ for both the symmetric automorphism for Lie

groups and algebras. Seeing that I ; = I, 4, the inner automorphism

o: SU(n) — SU(n)
h > Cu(h) = gohgg' = €™ I, he™ ™ [} = I, I,

: : . 2 2 72 '
is an involution, because of Cy_ (h) = I hl = h, for all h e SU(n). The fixed points set
of Cye in SU(n) is

{he SU(n): I,,hl,, = h}
=the SU(n): L, =h" 1Ipqh} ZSU(R)(Ip,q)

Apxp bpxq ) a —b . a b
AC b )eso (2 7)-(20)]
apxp 0O
:{( . dwq)eSU(n)}
=S(U(p) x U(q))-

Hence, the flag manifold SU(n)/S(U(p) x U(q)) is a symmetric space. The tangent

space to the flag symmetric at the origin is isomorphic to

0 Z .
m = ot ) Zpxq complex matrix (3.0.5)

and the symmetric pair is (su(n), ug), where the subalgebra ug consists of all elements in
su(n) which are fixed by C, and is the Lie algebra of S(U(p) x U(q))

to = { ( Agw foq ) Str(A) + tr(B) = 0, Ac u(p), Be u(q)} . (3.0.6)

In order to study the symmetry of the cotangent bundle of the flag symmetric space

Fgo, we study the centralizer of Hg in the Lie group G,

ZSl(n(C (H@) {hESl(n (C) Ad( )H@ = H@}
(e ( )= (% )
¢ dgxg 0 -—pl, 0 —pl
:{hesz<nc>-<qa —p”>:< @b )}
T\ ge —pd —pc  —pd
a 0
= {( 0 d ) € Sl(n,C) : apxp,quq}

—S(Gl(p,C) x Gi(g,C)) (3.0.7)

and note that the centralizer of the matrix [, in the group Sl(n,C) is
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a b I, 0 I, 0
Zamaoy( L) =fh =1 eSln,C):h| * = 7 h
Sl( 7C)( sz) { ( c dqxq ) ( ) ( 0 _Iq ) < O _[q ) }

—{he Sln,C): (‘;‘ :Z) — ( _“C _bd)}

a 0
:{( 0 d ) € Sl(n,(C) : apxpaquq}

=S(Gl(p,C) x Gl(q, C))
=Zsitn,c)(He)

We can extend the inner automorphism o = Cy, to the complex Lie group Si(n,C):

C

go -

Sl(n,C) — Sl(n,C)

. (3.0.8)
h = ghg™ = I, .hil,,

and we saw that it is an involution and its fixed points set is Zgi(n,c)(Ip,q) = Zsin,c)(He) =

S(Gl(p,C) x Gl(q,C)).

Hence the cotangent bundle of Fg, as homogeneous space,
Sl(n,C)/S(Gl(p,C) x Gl(q, C))

is a symmetric space associated to the symmetric pair (sl(n, C), sl(p, C) ®sl(q,C) & C*).
In fact, let A € s(gl(p, C) x gl(q,C)), then

(i) If A€ sl(p,C)@sl(q,C), then

-1, 0 I 0
A=A+ " p 7 p et B
o 2, 0o -2, q
q q
(ii) If A ¢ sl(p,C) @sl(q, C), then

A [A—lrtr(B) (IS _01 >] + t2(B) ( _OIP ]0 > s A + tx(B).

In both of cases, A" belongs to sl(p,C) ® sl(¢, C) @ C*. Hence s(gl(p,C) x gl(¢q,C)) <
sl(p,C) @sl(q,C) ® C*. The other containment is straightforward. Thus, this symmetric
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Lie algebra is in Table A.3. Furthermore, the tangent space of that symmetric space at

the origin is isomorphic to

mg =m++/—1lm

=ng + ng

0 A
= { ( B 0 ) : Apxq, Bgxp complex matrices} (3.0.9)

where the elements in ng are the matrices in 3.0.9 with A = 0, n§ is the set 3.0.9 with
B =0 and m is the set in 3.0.5.

Using the results in [1], we get

G-Ho = G/Zo = T*(UJU n Zo) = T*(U/Us)

Then

Sl(n, €)/5(Gl(p,C) x Gl(q,C)) = T*(SU(n)/S(U(p) x U(q)))

Thus, the cotangent bundle of the flag symmetric manifold SU(n)/S(U(p) x U(q))

is also a symmetric space with the same involutive automorphism o = Cj, .

Note that the inner automorphism can be lifted to the Lie algebra g = sl(n, C),

obtaining the function

o=Ad(ge): sl(n,C) — sl(n,C)

1 (3.0.10)
Z = goZ9s = lpgZlyy.

Denote by go the non compact real form su(p, ¢) of g, which elements are the n x n

complex matrices satisfying

_ 1, O
L X+X",,=0, I,,= < (;’ X > : (3.0.11)
T g

This Lie algebra is

axp

su(p,q) = {( Aper Brxg ) :Aeu(p), Ceu(q), tr(A+C) = 0}, (3.0.12)

and has the Cartan decomposition su(p,q) = € + s with £ = ug as in (3.0.6) and

0 B :
5= Ao : Bpyq complex matrix » . (3.0.13)

The involution Ad(exp(Hg)) in sl(n, C),

( A B ) ( A -B )
. (3.0.14)
C D —C D
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restricts to su(p, ¢) is also an inner automorphism since Hg € ug = ¢ and coincides with

the Cartan involution Z € su(p, q) — —Z7 € su(p, q).

From the definition of m in (3.0.5), we have that the vector space v/ —1m coincides

with s and therefore, the dual symmetric algebra of (su(n), €, o) is

su(n)* = su(p,q) = t+s. (3.0.15)

In this way, as studied in the section 2.1, the dual symmetric space
SU(p,q)/S(U(p) x U(q)) of SU(p + q)/S(U(p) x U(q)) is a submanifold of the adjoint
orbit Sl(n,C) - Hg (this Hg is from the A; case).

The dual symmetric space SU(p, q)/S(U(p) x U(q)) is diffeomorphic to S = exps-Hg.

To prove Proposition 2.1.2, let us calculate the intersection S n (He + ng). Initially, note
that

Ho € (Ho +nd) n Ad(S) - He < su(p,q) n (He + 1), (3.0.16)

where S is the exponential of the vector space s. To calculate the intersection su(p, q) N

(He + ng), we describe the elements of the fiber passing through the origin Hg:

=1
o o 3.0.17
\/_717_(_ ) ( e )
0 AL
n

with Z € ng. These matrices belong to su(p, q) if and only if they satisfy the expression

N —1r Vv-=1r
—q ——(¢

< I, O ) n I Z N n I, 0 ( I, 0O ) _0
_ v—1 - V=1 _

0 ]q 0 o ﬂ-pIq ZT qup 0 _[q

n n
which is equivalent to

0 Z

_ =0 Z=0. 3.0.18

( S ) (30.18)

It means that the intersection su(p,q) N (He + ng)) © {He}. As from (4.0.36), we
conclude that
su(p,q) N (Ho + 1) = {Ho}. (3.0.19)

Thus,

Hg e ((H@ + ng) N S) - (H@ + ﬂg) N EU(p, q)*(l) = {H@} (3020)

Hence,
(Ho + n&) nS = {Heo}. (3.0.21)
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However, the fiber —Hg + ng is

1
Tar, 0
n
N=d (3.0.22)
Zpxg Tp[q

The element Hg is the linear combination Hg = 2v/—1mq[Ha, +2H,, + - - -—i—pH%] +
2v—1npl(q —1)H,,,, +(q¢—2)Hq,,, +---+2H,,, , + Hy] and

IC(\/ —1Hap, H@) = —T.
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4 Case (]

Let G be the Lie group Sp(l,C) and U be the compact Lie group Sp(l) = Sp(l,C) n
SU(2l), with Lie algebras g and u, respectively. The corresponding flag symmetric manifold

is the space of complex structures on H' compatible with the inner product
Fo = Sp(1)/U(I)
with © = {A\; — A\g, -+, \;_1 — A} and each ); is given by
A - diag{aq, -+ a1} — a;. (4.0.1)

The Lie algebra u := sp(l) = sl(l,C) n su(2l) is the set

«1 b
sp(l) = {( a_ll_)l . ) | a € u(l), b : symmetric complex matrix} (4.0.2)

which is a compact real form of the Lie algebra of G, denoted by g := sp(l,C) = {A €
0 —Id

Id,
g are 2] x 2] complex matrices which can be represented in blocks as

M(21,C) : AJ + JAT = 0}, where J = with J? = —Idy. The elements of

axi b :
( T > , b, c: symmetric. (4.0.3)

C —a

Since a, b, ¢ are complex matrices, the matrix above is quaternionic. Furthermore,

the Lie group G is the set

0 1
Sp(l,C) = {M € My (C) : MTOM = Q}, Q= ( ) ol ) (4.0.4)
— 4

— {M — < g f) ) : A, B,C, D € Myy,(C),det(M) = 1} (4.0.5)

and

~CTA+ ATC =0,
—-CT'B+A™D =1,
-D'B+B"D =0 (4.0.6)

An element in the Cartan subalgebra v/—1hg of the compact real form u that defines

the symmetric flag manifold is

o ( V=lld, 0

Hg := 5 0 Waio) ) e sp(l) c sp(l,C) (4.0.7)
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and its exponential is the matrix
v —11d 0
go = e® = : (4.0.8)
0 —v/—11d,
Since Hg = gg@, then the centralizer of Hg in G,
Zo = Za(ge). (4.0.9)
and since
g = —Idy e Z(U) < Z(G), (4.0.10)
then the inner automorphism
=Cy : Sp([,C) — Sp(l,C
g ge p( Y ) p( Y ) . (4011)
h = Ch(h) = gohge
is an involution ( 0(h) = gghgs> = hgage> = h ) and its fixed points set is:
b
ZG(QG)) = Z@ = {h = ( ¢ d > € Sp(l,@) L a, b7 C>d€ M(Z,C),g@h = hg@}
c
a b
z{h=< >eSp(l,C):b=c=0}
c d
a 0
= e Sp(l,C
But also,
0
e Sp(l,C
p ) p(1,C)
T
0 0 Id a 0 0
< =
0 d —Id;, O 0 d —1d,
0 a'd 0 Id
< =
—d'a d —Id; 0
ed = (a")! (4.0.12)
Then
a 0
Zo = e Sp(l,C
o= 45w ey
=~ GIl(l,C) (4.0.13)
Thus,
G/Za(ge) = Sp(l,C)/GI(1,C) (4.0.14)

is a symmetric space with symmetric pair (sp(l, C),sl(l,C) ® C*). In fact, let A € gl(n,C).
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(i) If Aesl(n,C), then

-1 0
A=A+ 1
0 Infl
n—1

(i) If A ¢ sl(n,C), then A = lA -
sl(n, C) ® C*.

_l’_
tr

1 0 ) 1 .
0 — 1 - +—>A+1_n€51(n,(:)®(:.
n—1
),
n

] L, lA_ tr(A)[n] L)

n

Hence gl(n,C) < sl(n,C) @ C*. The other containment is straightforward. Hence, this
symmetric Lie algebra is in Table A.3. By adding the results in [1], the cotangent bundle

G/Zo =G - He = T*(U/Us) (4.0.15)

is a symmetric space. Since Ug = Zg n Sp(l) and using the fact that Sp(l) = Sp(l,C) N
SU(2l) , we have that

a 0
Ug = { ( 0 (™) ) e SU(2]) : ajx Complexa}
a 0 a’ 0
(5 )
_ {( g (aTo)l ) e SU2L) : apu € U(I) }

- U(l). (4.0.16)
Hence, the cotangent bundle of Sp(l)/U(l):

T*(Sp(1)/U(1)) = Sp(l,C)/GI(1,C) (4.0.17)

is a symmetric space.

The Lie algebra g = sp(l, C) has the real normal form gy = sp(l, R)

« b
go = {( dixi . ) | b, c symmetrics} (4.0.18)
c —a

which has the Cartan decomposition
go=%¢t+s

where

t= { ( Gixt —b ) |aeo(l),b: symmetric} =~ u(l) (4.0.19)
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« b
§ = { ( alb : ) s a, bsymmetries} : (4.0.20)
—a

The lift of the automorphism in (4.0.11) to the Lie algebra restricted to go is

= Ad ; ILR) — IR
X = Ad(ge)X = geXyge -
It does not coincide with the Cartan involution #(X) = —X*. However, we have the

symmetric pairs (sp(l),u(l)) and (sp(l,C),sl(l,C) & C), since the Lie algebra of Zg is
gl({,C) = sl({,C)d C.
The tangent bundle of the cotangent bundle of Fg, as a homogeneous space, at the

origin is isomorphic to

mg = ng +ng (4.0.22)
0 }/EXZ . :
= : X, Y symmetric complex matrices (4.0.23)
Xixi 0
= m++/—1m (4.0.24)

where ng is the set of matrices in (4.0.23) with X = 0 and Y = 0, respectively. The tangent

bundle of the flag symmetric manifold at the origin is isomorphic to

m = D ta (4.0.25)
aell+\(O)+
0 B .
= B o . Byx; symmetric complex (4.0.26)

0 E.+ E;
The subspace u, =spang{A,, Z,} is generated by A, = < i+ L )

—Ey; — Eji 0
and Z, — 0 V=1(E;; + Ej;)
1}, for E;; = 6! 1d.

) with o € [IN\(O)* = {N;+);,1 < i,j <

The involution ¢ for the symmetric Lie algebra (sp(l,C), gl(l,C), o) is the following
automorphism, with Hg € sp(l) as in 4.0.7,

Ad(eMe) < AZC” _i . ) e sp(1,C) — < _Ao _‘fT > | (4.0.27)

The involution above is also an automorphism of sp(l) and this symmetric Lie algebra

has the canonical decomposition

sp(l) = ug + m, (4.0.28)
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with m as in (4.0.26) and ug being the subalgebra such that o(W) = W, for all W € ug

ug = {( 1;1 S—l > tAe u(l)} =~ u(l). (4.0.29)

Then the dual symmetric Lie algebra of (sp(l),u(l), o) must have the canonical

decomposition
sp(l)* =ug +v—1m. (4.0.30)
The set /—1m is the vector space satisfying (W) = —W, for all W € /—1m, it is

0 B
{ ( B (Z_J : ) : A symmetric complex matrix} (4.0.31)
and then
A B . :

sp(l)* = 5 A : A € u(l), B symmetric complex matrix . (4.0.32)

Let us define the following function

< A B )  sp(l)* ( Re(A) + Re(B) Im(B) — Im(A)

B A Im(A) + Im(B) Re(A) — Re(B) > csp(LR). (40.33)

It is an isomorphism of Lie algebras since A € u(l) and B is symmetric. The function above

is known as the Cayley transform. Furthermore,
up =t = u(l), v—1lm s, (4.0.34)

where sp(l) = ¢ + s is the Cartan decomposition indicated in 4.0.19 and 4.0.20. Hence,
the dual symmetric Lie algebra is isomorphic to (sp(l,R), £, 6), with 6 being the Cartan
involution #(X) = QXQ™!, where Q is as in 4.0.4.

The function defined in 4.0.33 transforms Hg € sp(l) in

. J=In [ 0 —I,
Ho =Y T D) e sp(lLR). (4.0.35)
2 Iy 0

The dual symmetric space Sp(l)*/Ue = Sp(l,R)/U(l) is diffeomorphic to & =
expv—1m- Hg = exps - Hg. To prove Proposition 2.1.2, let us calculate the intersection
S n (Hg + ng). Initially, note that

Ho € (Ho + 1) nS csp(l)* n (He + ng). (4.0.36)

To calculate the intersection sp(l)* n (Hg + ng), we describe the elements of the fiber
passing through the origin Hg:
aST

—Lix Z
2 . 7 € My(C) . (4.0.37)
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with Z € n§. These matrices belong to sp(l)* if and only if they belong to the set in
4.0.32, i.e. Z is a symmetric complex matrix and —Z = 0. It means that the intersection
sp(l)* n (He +nd) © {Ho}. As from (4.0.36), we conclude that

sp(1)* n (He + nd) = {Ho}. (4.0.38)
Thus,
Hg e ((H@ + ng) N S) C (H@ + l’lg) M ﬁp(l)* = {H@} (4039)
Hence,
(Ho + n&) nS = {Ho}. (4.0.40)

The element Hg is the linear combination 27(l + 1)/ —1[Hyx, a, + 2H), g + -+ +
(I —1)Hy,_,—»] + (Il + 1)mv/—1Hs), and

K(V—=1Hayy,, Ho) = —4m(l + 1).
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5 Case Dy

Let G be the Lie group SO(2[,C) and U be the compact Lie subgroup SO(2[), with

b
Lie algebras g := s0(2[,C) = { < CZT p > € gl(21,C) : ajx;, dix; skew — symmetric} and
u := s50(2l) respectively. The corresponding symmetric flag manifold is the space of

orthogonal complex structures on R*

Fo = SO(21)/U(I)
with © = {A\; — Ao, -, N1 — A} and ¥ = © U {\_1 + \;} where each \; was defined in
4.0.1.

As s0(2l,C) is defined over an algebraically closed field; if two not degenerated
quadratic forms are equivalents, then the algebras of anti-symmetric matrices with respect

to the quadratic forms are both isomorphic.

Let be suppose that

0 I, 1 (V-1
F:<[z 0>’ fzﬂ( I \/—71[1>. >0

F=flIyf (5.0.2)

Then

and hence, the Lie algebra is isomorphic to

g1 = {Aesl(2,C): AF + FAT =0} (5.0.3)

Thus, A € s0(2l,C) if and only if fAf™" € g;. In other words fso(2[,C)f™ = g,
and the algebras s0(2(,C) and g; are isomorphic. To facilitate the process, we will use the
Lie algebra g instead of s0(2[). We shall denote by G the connected Lie group with Lie
algebra g;.

In [6], a Cartan subalgebra of g; is

A
h= { < 0 OA > : Ay diagonal matrix} . (5.0.4)

An element in the Cartan subalgebra v/—1hg of the compact real form fuf™' =
fso(20)f~! that defines the symmetric flag manifold Fg is

A I« 0
Hg := gﬁ( 101 s ) ev—lbr c g (5.0.5)
—4xl
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and
~ Iiii O
go :=exp(Hg) = v/—1 : (5.0.6)
0 —Iiq
Note that
g8 = —Idy € Z(Gy) (5.0.7)

Thus, the inner automorphism
o = Cg@ . Gl - G1
A~ Cy(A) = geAge'

is an involution, by 5.0.7, because of (C,,)*(A) = g5 A(gg')? = A. Let’s calculate the fixed
points set, which is the centralizer of gg in G1. Since Hg = gg@, then Zg, (He) = Zg, (g0),

in fact

Za,(ge) ={A € Gy : Cyy(A) = A}
={A e G, :goAgs' = A}

™
:{A € Gl : H@A = §Ag@}

:{<x’” Y )eGl:H@AZW\/—1<x _y>}
Z Wik 2 —"

\/—lwx \/—17Ty
Tixi Y o
={A = € Gy : HoA = 2 2
{ < Z Wixi ) 1 0 \/jlﬂz —\/jlﬂw }
2 2
:{A = < Tixl y ) € Gl : H@A = AH@}
z Wixi
=Za,(He). (5.0.8)

On the other hand, the set of fixed points of ¢ =Ad(ge) (which coincides with 4.0.27)

n g1 is

:{( ’ _zT ) e sl(21,C))

~gl(l, C). (5.0.9)

Using (5.0.8) and (5.0.9), we can see that

G/Ze = SO(21,C)/GI(1,C)
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is a symmetric space. Its corresponding symmetric pair is (so(2l, C), sl(l,C) ® C"). In fact,
the prove of this is in 4. Hence, this symmetric Lie algebra is in Table A.3. By adding the

results in [1], the cotangent bundle
G/Z6 = G- Ho = T*(U /Us)

is a symmetric space. In order to find out the set Ug. Since U = SO(2l), let us use the
matrix Ho = f 'Hef € s0(2]). This matrix is

™ 0 ]dl
Hg := — € s0(2l,R) c s0(2(,C). 5.0.10
0= 7 ( o ) (21.R) = 50(21,C) (50.10)

Then

U@ = {u = ( “ Z ) S SO(2Z) : CL,bE Mlxl(R),UH@ = H@u}

c
axi —b T T T T
= ) € SI2,R) : aa® + bb" = I;x;,ba” = ab
a
~{a +ibe GI(l,C) : (a +ib)(a + ib)* = Id}
~U(1) (5.0.11)

Hence, the cotangent bundle of SO(21)/U(l):
T*(SO(21)/U(1)) = SOc(21)/GI(1,C) (5.0.12)

is also a symmetric space.

The tangent space of the cotangent bundle of Fg at the origin is isomorphic to

Mg = 116 + 115
= m++/—1m
0 A . :
=~ B 0 : A, B anti — symmetric complex (5.0.13)
Ixl

where ng are isomorphic to the subalgebras of matrices in 5.0.13 with X =0 and Y = 0,
respectively. The tangent space of the flag symmetric manifold at the origin bg is isomorphic
to

3
IIe

> (5.0.14)

I\

- {( g —BA ) :A,Beso(l)}. (5.0.15)
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Another real form of so0(2[,C) is gy := s0*(2l) := sl(l,H) nso(2[,C) and its elements

are 2l x 2l complex matrices of the form

7 Z i
Lo 2=z 2y = 2, (5.0.16)
—Zy 7,

where Z; and Z, are [ x [ complex matrices.

The involution o in gy coincides with the Cartan involution and then, the Lie algebra

go has the Cartan decomposition gy = £ + s with £ = ug = u(l) is the Lie algebra of Ug

and § = v/ —1m.

In order to prove Proposition 2.1.2 let us study the intersection of the submanifold
S = exps - Hg with the fiber passing through the origin. The dual symmetric space
SO20)*/S(U(p) x U(q)) is diffeomorphic to & and the dual symmetric Lie algebra of
(s0(20)*,ug,0), with 0 =Ad(exp(Hg)) (5.0.10) being the function

A By D BT
: €s0(2D)* — € s0(20)", 5.0.17
(Y e () ewar, oo

s0(20)* = u(l) + v/—1m, (5.0.18)

with m as in (5.0.15) and ug as the subalgebra isomorphic to u(l):

ARZ
{ ( . ) : Zy € s0(l), Zy symmetric matrix} = 50"(2) N so(2l) (5.0.19)

—Zy I
Then
V—1Im = { ( gg —\\/ﬁ—iil ) : A,Be 50([)} = 50*(2n) N v/—1s0(20).  (5.0.20)

Since Hg € s0*(21) = sl(l,H) n s0(2l,C), then o is an automorphism of s0*(2l) and

coincides with ¢*. Hence, the dual symmetric Lie algebra is

50%(21) = 50(20)° ++/—1m (5.0.21)

Z Z =
= { ( Lo ) : Zye50(1,C), Z] = Zg} . (5.0.22)
—Zy Zy

Let us consider the isomorphism of so(2n,C) with the algebra in 5.0.3. Thus, the

fiber via this isomorphism is the affine vector space Hg + ng, defined by

\/—17T] v

A l

Ho + fudf ! = 2 — Y es0(l,C) 3 . (5.0.23)
0 R 17r[l

2
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Since fso(2n,C)f ' = g1, with f as in (5.0.1) and g; in (5.0.3), we can back to the

—

original fiber, calculating f~*M f, for every M € Hg + ng, where

V-1 1
— L —=1
f*l - \/§ \/5
i[ _7V_1[
Non V2
Then, Ho + ng =
v—1 V-1 1
= 5 L v ; Y gll+§Y .
- - 1Y e so(l
V-1 1 v—1 ’
o YT Ty Yoy
2 2 2 2
(5.0.24)
Thus, the elements of the fiber has the form
1 7 1 —1 1
—Im(Y) —I; + =Re(Y) —Re(Y) =Im(Y)
=2 202 +V-1{ 1 ? . (5.0.25)

with Y € so(l,C). Furthermore, the dual symmetric Lie algebra so(20)*, is the set of

matrices

A+V=IC B++y/=1D A B C D
<—B+ﬁp A—ﬁ(J):(—B A)Jrﬁ(D —0>’ (5.0-26)

with A, C, D € so(l,R) and B being a real symmetric matrix.

Looking at the real part of matrices in (5.0.25) and comparing with the real part of
matrices in (5.0.26), we can conclude that a matrix in the fiber belongs to so(20)* if and
only if Im(Y") and Re(Y") are equal to the null matrix, and then Y = 0. Hence

(Ho +n8) nso(2)* = {Ho}. (5.0.27)

The element Hg is the linear combination 2n(l — 1)V —=1[Hx, a, + 2Hyy 2y + - +
(l - 2)H/\l—2_>\l—1] + (l - 1)7T V _1[(l - 2)H>\l—1—>\z + ZH)\Z—H')\Z] and

’C(’\/ _1H>\l—1+)\l7 F[@) = —47T(l — 1)
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6 Conclusions and open questions

The cotangent bundle of a flag symmetric space Fg = U/Ug is an affine sym-
metric manifold. There exists an element Hg € 4/—1hg in the Cartan subalgebra of u
such that ge := exp He satisfies Zy(He) = Zy(ge), Us = Zy(He) and (U, Ug,0) and

(G,Zg(He), o) are symmetric spaces for o = Cy, .

The projection T*Fg — Fg induces an injective map from the submanifold S to the
flag symmetric space Fg. The submanifold S is a Lagrangian submanifold of the cotangent
bundle T*Fg with the symplectic form Im/C(-, 7-) given by the Cartan-Killing form I and

the conjugation 7 with respect to the compact real form u.

Considering the canonical connection defined by the Cartan-Killing form, the
geodesics are one-parameter curves. We asked ourselves the question whether the projection
of a geodesic in the cotangent bundle was a geodesic on the flag manifold, however that
question was only answered for geodesics on fibers and on the zero section, which are

trivial cases, therefore the question is open.

Another realization of the adjoint orbit indicated in [1] is that of submanifold of a
product of flag manifolds, the cotangent bundle is the orbit of the diagonal action of the
group G passing through the origin in the product of the flag manifold Fg with its dual
flag. This orbit is dense in the compact manifold. An interesting problem would be to see
what the & manifold is like inside in that realization, in addition to its geodesics, which

are uniparametric curves, and its projection on the flag manifold Fg.

In Tojo’s paper [10] it is shown that every flag manifold U/Ug is a k-symmetric space.
A natural question is: Does the automorphism of order k on U extended to G also make the
cotangent fibration of the flag manifold a k-symmetric space, and will the automorphism
o be inner? In fact, the problem of whether the cotangent bundle of any flag manifold is
k-symmetric was an inspiration for this Thesis and allows us to continue to deepen our

study.
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A Appendix

A.1 Classical semi-simple Lie algebras

This list of classical Lie algebras with its real forms are in chapter 12 of [6].

Complex Compact real | Type| Non-compact real forms
algebra form
A, Al | sl(n,R)
[=1 sl(n,C) su(n) AIl | sl(n/2,H), n even
n=ltd AIIl | su(p,q),p<q,p+q=n
By, 1= 2| s0(2l+1,C) | so(20 + 1) Bl |so(p,q),p<q,p+qg=20+1
G, sp(l) = CI | sp(lR)
[,C
[=3 sp(l, C) sp(l,C) nsu(2l)] o1 sp(p.q), p+q=1
Dy, DI | so(p,q),p<gqp+q=2
2(,C 21
(>4 |50 ) so(2) DIII | sl(l, H) ~ s0(21, C)

A.2 Complex flag manifolds

79

The complex flag manifolds of the classical Lie groups are classified in [15]. Here,

consider n = nq + - -+ + ng, My

k,m = 0.

> ...

=

>ng=zlandl=4L+ -+ l+m,l; =

Flag manifold

SU(n)/S(U(ny) x «--

x U(ns))

SOl +1)/U(ly)

X oo x U(l) x SO(2m + 1)

Sp()/U(L) x ---

x U(l) x Sp(m)

glQlm| =

SO@1)/U(I1) % ---

x U(l) x SO(2m)

> =1,



Appendiz A. Appendix 80

A.3 Symmetric spaces

In [4] we found the following table, which is a characterization of irreducible Rie-
mannian symmetric spaces of type I and III (see the theorems 1.4.13 and 1.4.14), with
p + ¢ = n. The symmetric spaces in red and blue are the flag symmetric spaces and its

dual symmetric spaces respectively.

Compaet symmetric space Non-compact symmetric type

Al SU(n)/SO(n) Sl(n,R)/SO(n)

AIl | SU(2n)/Sp(n) SU*(2n)/Sp(n)

Alll | SU(p +¢)/S(U(p) x U(g)) SU(p,q)/S(U(p) x ( )
BDI | SO(p + ¢)/SO(p) x 5O(q) 50,(p, q)/50(p) x SO(q)
DIIT | SO(2n)/U(n) SO*(2n)/U(n)

CI | Sp(n)/U(n) Sp(n, R)/U(n)

CIL | Sp(p + 4)/Sp(p) x Sp(q) Sp(p, q)/Sp(p) x Sp(q)

In [7], Berger shows a list of all symmetric Lie algebras (g, b, o) that we will show
here. The symmetric Lie algebras showed in chapters 3, 4 and 5 are in pink in the following
tables.

g b

sl(n,R) so(n)

sl(n,C) so(n, )

s[(2n, C) sp(n,C

sl(2n, C) su*(2n)

sl(n, C) sl(p,C) + sl(n — p,C) + C*
sl(n,C) su(p,n —p)

sl(n,R) sl(p,R) +sl(n —p,R) + s0(2)
sl(n,R) so(p,n — p)

sl(2n,R) sp(n, R)

s[(2n, R) sl(n,C) + s0(2)

su(n, R) s0(n)

su*(2n) sp(n)

su(2n) sp(n)

su(p, q) su(p) + su(g) + s0(2)

su*(2n) su*(2p) + su(2n — 2p) + so(2)
su*(2n) sp(p,n — p)

su*(2n) 50" (2n)

su*(2n) sl(n,C) + s0(2)
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g b

sp(n, R) su(n) + so0(2)

sp(n, C) sl(n,C) + C*

sp(n, C) sp(n, R)

sp(q,n —q) sp(q) +sp(n —q)
sp(n) sp(q) +sp(n —q)
sp(n, C) sp(q,C) +sp(n — ¢, C)
sp(n, C) sp(qg,n —q)

sp(n, R) sp(¢;R) +sp(n — ¢, R)
sp(n, R) sp(q,n —q) + s0(2)
sp(n, R) sp(g,n — q) +50(2)
sp(2n,R) sp(n, C)

sp(i,n —1) su(k,h) +su(i —k,n—k — h)
sp(p,n —p) 5u(p n—p)+so(2)
sp(n,n) u*(2n) + so0(2)
sp(n,n) ﬁp(m C)
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