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Resumo

Agrupamento de dados é amplamente reconhecido como uma técnica fundamental em
reconhecimento de padrões e mineração de dados, sendo extensivamente utilizado em
um vasto espectro de aplicações em diversos campos das ciências, negócios e engenharia.
Atualmente, apesar do grande número de métodos de agrupamento já conhecidos, apenas
um pequeno conjunto deles aproveita a conectividade ótima entre amostras visando obter
um agrupamento mais efetivo.

Neste trabalho, apresentamos um arcabouço para agrupamento de dados baseado em
grafos, chamado Floresta de Caminhos Ótimos Iterativa (IOPF), a qual explora a conec-
tividade ótima para o projeto de métodos de agrupamento aprimorados. O arcabouço
IOPF consiste em quatro componentes fundamentais: (i) amostragem de um conjunto
de sementes, (ii) partição do grafo induzido pelas amostras da base de dados através da
Floresta de Caminhos Ótimos (OPF) enraizada no conjunto de sementes, (iii) recompu-
tação do conjunto de sementes a partir de partição prévia do grafo e, após várias iterações
das duas últimas etapas, (iv) seleção da floresta com o menor custo total entre todas as
iterações.

O arcabouço IOPF pode ser visto como uma generalização da Floresta Geradora Ite-
rativa (ISF), uma metodologia proposta para segmentação de superpixels que consiste de
uma sequência de Transformadas de Imagem-Floresta (IFTs), do domínio da imagem para
o domínio do espaço de características. Além disso, exploramos o uso da estimação dinâ-
mica de peso de arco enquanto as árvores de caminhos ótimos crescem – uma estratégia
que demonstrou fornecer um delineamento mais preciso para segmentação de superpixels
e segmentação interativa de objetos em trabalhos recentes.

Nesse contexto, a abordagem proposta é utilizada para projetar métodos de agrupa-
mento aprimorados. Apresentamos quatro soluções de agrupamento baseadas no IOPF
para ilustrar escolhas distintas de seus componentes constituintes. Esses métodos são sub-
sequentemente usados na abordagem de três aplicações diferentes, a saber, segmentação
de objetos não-supervisionada, análise de redes rodoviárias e agrupamento de bases de
dados sintéticas bidimensionais, de modo a avaliar a efetividade dos métodos sob várias
topologias de grafo, assim como para determinar sua eficácia e robustez quando compa-
rados com baselines competitivos. Além disso, introduzimos um procedimento de seleção
de sementes baseado em uma sequência de execuções do OPF, o qual fornece um conjunto
apropriado de sementes iniciais que melhoram a precisão dos métodos baseados no IOPF.



Abstract

Data clustering is widely recognized as a fundamental technique in pattern recognition
and data mining, being extensively used in many fields of the sciences, business and engi-
neering, covering a broad spectrum of applications. Currently, despite the large number of
clustering methods, only a few of them take advantage of optimum connectivity between
samples for more effective clustering.

In this work, we present a graph-based data clustering framework, named Iterative
Optimum-Path Forest (IOPF), that exploits optimum connectivity for the design of im-
proved clustering methods. The IOPF framework consists of four fundamental compo-
nents: (i) sampling of a seed set, (ii) partition of the graph induced from the dataset
samples by an Optimum-Path Forest (OPF) rooted on the seed set, (iii) recomputation
of the seed set based on the previous graph partition and, after multiple iterations of the
last two steps, (iv) selection of the forest with the lowest total cost across all iterations.

IOPF can be seen as a generalization of the Iterative Spanning Forest (ISF), a frame-
work proposed for superpixel segmentation consisting of a sequence of Image Foresting
Transforms (IFTs), from the image domain to the feature space. Moreover, we explore the
use of dynamic arc-weight estimation, as the optimum-path trees grow – a strategy that
has been demonstrated to provide more accurate delineation for superpixel segmentation
and interactive object segmentation in recent works.

In this context, our approach is employed to design improved clustering methods. We
present four IOPF-based clustering solutions to illustrate distinct choices of its constituent
components. These methods are subsequently used to address three different applications,
namely, unsupervised object segmentation, road network analysis and clustering of two-
dimensional synthetic datasets, in order to assess their effectiveness under various graph
topologies and to ascertain their efficacy and robustness against competitive baselines.
Furthermore, we introduce a seed selection procedure based on a sequence of OPF ex-
ecutions, which provides a suitable set of initial seeds that improve the accuracy of the
IOPF-based methods.
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Chapter 1

Introduction

A vast amount of data is generated by a wide range of sources in the current digital
age. This data needs to be processed, analyzed, and transformed into valuable insights
to support decision-making tasks. However, intensive computing resources and sophis-
ticated techniques are required to efficiently and effectively extract the necessary infor-
mation. Conventionally, these techniques are categorized into supervised, unsupervised
and semi-supervised in accordance to their dependency on labeled data. Supervised and
semi-supervised methods depend on labeled datasets whose construction might be time-
consuming and tedious in some situations. Unsupervised approaches can considerably
alleviate this problem. Among the available unsupervised techniques, data clustering has
become a crucial and widely used technique to discover hidden patterns and relationships
in the data. By assuming that samples in a same cluster have the same label, it can
considerably reduce the dependency of labeled data.

Clustering is a fundamental process that seeks to identify the intrinsic grouping in a set
of unlabeled data based on some similarity measure. The goal of clustering is to partition
a set of unlabeled objects into subsets (clusters) so that those falling within the same
subset are more closely related (similar) to each other than to those in different subsets.
Therefore, a relevant research topic is to design practical clustering algorithms aiming to
maximize intra-subset similarity and inter-subset dissimilarity according to a similarity
rule. Clustering has a variety of applications in a wide range of domains, including
plant and animal ecology, sequence analysis, human genetic clustering, medical imaging,
market research, social network analysis, image segmentation, evolutionary algorithms,
crime analysis, petroleum geology, physical geography, and so forth [26].

A significant number of algorithms addressing this problem through different ap-
proaches can be found in [69, 83]. Clustering algorithms can be comprehensively cat-
egorized into hierarchical and partitional, based on their solving strategies. Hierarchical
clustering algorithms attempt to recursively find nested clusters representing the final
result by means of dendrograms or trees. On the other hand, partitional clustering algo-
rithms aim to simultaneously discover clusters by decomposing the dataset into disjoint
subsets [43]. Figure 1.1 illustrates each of these categories with an example.

K-means, a partitional algorithm, is one of the most commonly used algorithms for
clustering found in the literature, mainly because of its simplicity of implementation and
intuitiveness. It is a numerical, non-deterministic, and iterative method that approximates
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(a) Hierarchical clustering (b) Partitional clustering

Figure 1.1: Categorization of clustering algorithms. An example of hierarchical clustering
following an agglomerative approach is shown in (a). In (b), we illustrate an example of
partitional clustering through k-means, where centroids are marked with red crosses (x).

each cluster’s center by representing the objects as data points in Euclidean space and
measuring the dissimilarity between two points by their Euclidean distance [43]. The
objective of k-means is to minimize the sum of the squared distances between every point
and its nearest centroid, also known as sum-of-squared-errors (SSE). However, variants
of k-means aim to minimize other objective functions. Despite it being widely used, k-
means presents some shortcomings, such as: (i) the clustering result depends heavily on
the initial centers as it is prone to convergence to local optima, (ii) it can only identify
spherical-shaped clusters, and (iii) scales poorly for large datasets [59]. Several extensions
have been proposed to overcome these limitations [29, 65], addressing, however, only a
subset of these issues. Figure 1.2 illustrates how k-means is not capable of detecting
nonspherical clusters.

(a) Noisy circles (b) Noisy moons

Figure 1.2: Clustering results of k-means on the noisy circles (a) and the noisy moons (b)
datasets. It can be seen that k-means fails to identify nonspherical clusters.

1.1 Motivation

Recently, a graph-based iterative framework called Iterative Spanning Forest (ISF) [78]
was proposed for superpixel segmentation. An ISF-based solution entails selecting four
fundamental components: (i) a seed set sampling strategy, (ii) a connectivity function,
(iii) an adjacency relation, and (iv) a seed set recomputation scheme. It consists of
a sequence of executions of the Image Foresting Transform (IFT) [31] framework from
enhanced seed sets spawned by (iv). Depending on the selection of the components, the
user can design different ISF-based methods suitable for a particular application. The
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ISF framework has proven to be effective at creating superpixel segmentation methods
that are either competitive or superior to several other state-of-the-art solutions [11, 48].

On the other hand, a graph-based clustering algorithm called Iterated Watersheds,
hereafter referred to as IW, was introduced as an extension of k-means, introducing the
notion of connectivity among the samples in a dataset. As with ISF, it also works through
multiple executions of the IFT framework following an iterative procedure until conver-
gence is reached. The initial seed set is chosen randomly, and a seed set recomputation
procedure is carried out at the end of each IFT execution. It has been shown to achieve
superior performance compared to other state-of-the-art clustering algorithms on image
segmentation and emergency station allocation problems. The IW algorithm can be re-
garded as an ISF-based method generalized to the feature space from its design.

Another relevant work is the Dynamic IFT (DynIFT) [14] framework, which extends
the general IFT algorithm by dynamically estimating arc weights while extracting object
information as the trees evolve from the seed set. This approach has been shown to
improve object delineation in comparison to its graph-based counterparts significantly.

Accordingly, the motivation for creating a graph-based clustering framework that fol-
lows an iterative approach stems from the following considerations: in [76], the study of
IW is restricted to the use of the additive connectivity function (fsum) and the employment
of the general IFT algorithm as the main component of the iterative solution. Thus, the
use of a different connectivity function (e.g., the maximum connectivity function (fmax))
and the IFT algorithm with dynamic arc-weight estimation under an iterative clustering
scheme remains unexplored. We believe that its generalization to encompass a broader set
of configurations is a plausible research direction. Moreover, its applicability is restricted
to graphs whose adjacency relation is either already defined or can be intuitively derived
from the nature of the problem (e.g., image processing). Hence, defining a graph topology
for datasets with no evident relationship among the samples becomes a challenging task.
Furthermore, since the clustering result of seed-based algorithms (e.g., k-means) relies
heavily on the choice of the initial seeds, the formulation of a seed selection strategy is
necessary.

1.2 Objectives

In this context, the present work aims to explore graph-based clustering solutions for
different applications through the proposal of a novel graph-based iterative clustering
framework based on a sequence of Optimum-Path Forest executions. The first objective
of this work is to formally present Iterative Optimum-Path Forest (IOPF), which can be
regarded as a generalization of the ISF framework from the image domain to the feature
space. IOPF, through the different selection of its components, is capable of creating a
variety of clustering solutions that preserve connectivity among the samples of a dataset.

Once the IOPF framework has been established and explained, our second objective
is to study and analyze the application of IOPF-based solutions under different graph
topologies while showcasing its flexibility, extensibility, and applicability to a wide variety
of problems. Furthermore, we plan to explore different approaches towards defining a
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graph topology based on the context of the problem. For instance, road networks or
image processing problems offer enough information about the relationship among the
samples in the dataset to build a graph. In contrast, generic datasets do not present an
intuitive way to identify the relationships between samples, requiring the introduction of
strategies to build a suitable graph topology.

Moreover, we also aim to analyze the effect of using OPF with dynamic arc-weight
estimation under an unsupervised iterative scheme. Previous works [14, 12] have shown
the effectiveness of using IFT with dynamic arc-weight estimation in superpixel and object
segmentation. However, the generalization of this strategy to the feature space is still
unaddressed.

1.3 Contributions

Our main contribution is the proposal of a graph-based clustering framework, namely
Iterative Optimum-Path Forest (IOPF), which, through a sequence of OPF executions,
each followed by a seed recomputation stage, aims to partition a dataset while preserving
connectivity within each cluster. This framework can be regarded as a generalization of
the ISF framework from the image domain to the feature space. A previous work [76]
presented an algorithm with a similar formulation, which, can be viewed as an IOPF-based
solution. However, it restricted its choice of components to the general IFT algorithm
with the fsum connectivity function. Thus, the inclusion of IFT with dynamic arc-weight
estimation along with the fmax connectivity function as part of the set of framework
components are also part of our contribution.

We explore the effectiveness of IOPF-based solutions in various applications, including
allocation of emergency stations in road networks, clustering of datasets of arbitrary
shapes, and object delineation. These applications will allow us to show the flexibility
of the framework under different graph configurations. Therefore, our contributions also
include the analysis of IOPF-based solutions under the following graph settings: (i) the
adjacency relation and arc-weights are established from the problem definition; (ii) only
the adjacency relation comes from the problem definition; (iii) neither the adjacency
relation nor the arc-weights are determined from the problem definition. For the graph
setting given in (iii), we also introduce strategies to build suitable graph topologies.

1.4 Document Organization

The remainder of this work is structured as follows: Chapter 2 starts by introducing some
notations and definitions that set the ground for presenting the theoretical background
to provide context to forthcoming chapters. Chapter 3 presents the related work found in
the literature. The proposed framework and its constituent components are described in
detail in Chapter 4. The experimental analysis and discussion of the results are presented
in Chapter 5. Lastly, the conclusion and future work is stated in Chapter 6.
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1.5 Concluding Remarks

In this chapter, we present a brief introduction to clustering while pointing out some
of the disadvantages of k-means, one of the most popular clustering algorithms, which
narrows its applicability to certain kinds of problems. Next, the motivation, objectives and
contributions of this work are introduced. Lastly, we end the chapter with the document’s
organization of this master’s work. In the next chapter, we introduce the theoretical
background, which establishes the essential concepts to present the Iterative Optimum-
Path Forest (IOPF) framework in Chapter 4.
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Chapter 2

Theoretical Background

This chapter presents essential concepts that set the groundwork for describing the method-
ology proposed in future chapters. We start off by introducing some notations and defi-
nitions in Section 2.1. Next, the Image Foresting Transform and the Iterative Spanning
Forest, two important graph-based techniques used for image and superpixel segmenta-
tion, are presented in Sections 2.2 and 2.3, respectively. In Section 2.4, we describe the
use of Image Foresting Transform with dynamic arc-weight estimation for superpixel and
interactive object segmentation. Finally, in Section 2.5, we include the description of the
Optimum-Path Forest framework and its variants for supervised, semi-supervised, and
unsupervised machine learning.

2.1 Notations and Definitions

An image is a pair (DI , I), whose domain DI ⊂ Zn, for n ∈ N∗, is comprised of spatial
elements, called pixels (picture elements), or more generically known as spels (spatial
elements), and I : DI → Rm, for m ∈ N, a function that maps each pixel p ∈ DI
to a vector of image features (e.g., color space components). In this work, we use two-
dimensional colored images. Therefore, each color pixel p ∈ Z2 is a bidimensional position
vector and I(p) ∈ R3 assigns to each pixel a triplet containing the components of a color
space (e.g., CIELAB).

The norm ‖ · ‖i, i ∈ N, of an m-dimensional vector v = {x1, . . . , xm}, is denoted as

‖v‖i =

(
m∑
j=0

(xj)
i

) 1
i

(2.1)

Thus, the notations ‖p−q‖1 and ‖p−q‖2 stand for the Manhattan and Euclidean distance,
respectively, between two pixels p, q ∈ DI . The same notation applies to the feature
vectors of the image – i.e., ‖I(p)− I(q)‖1 and ‖I(p)− I(q)‖2.

An image I can be rendered as a directed graph (N ,A) under various configurations,
depending upon how nodes N ⊆ DI and edges are defined. In the present work, we define
nodes as pixels (N = DI) and edges are determined by A ⊆ N ×N , an irreflexive binary
relation on N (i.e., adjacency relation); thus p, q ∈ DI are considered adjacent pixels if
(p, q) ∈ A.
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An adjacency relation can be established in many different ways. However, in this
work, we use the Euclidean adjacency relation Ar, for a given radius r ∈ R, defined as

Ar = {(p, q) ∈ DI ×DI | ‖q − p‖2 ≤ r} (2.2)

A path π is defined as a finite sequence of distinct adjacent pixels in the image graph
– i.e., π = 〈p1, p2, . . . , pn〉, such that (pi, pi+1) ∈ A for 1 ≤ i < n. A path is simple if
n > 1, otherwise, it is trivial. The pixels p1 and pn are designated as start and terminus
of path π, and this can be denoted as either πp1 pn or πpn with root R(pn) = p1. A
cycle is a simple path where the start and terminus pixels are the same – i.e., πp p. Let
Π be the set of all possible paths in the image graph. A pixel q is connected to a pixel
p 6= q if there is a path πp q ∈ Π. Furthermore, the concatenation of two paths πp ∈ Π

and τp q ∈ Π is denoted by πp · τp q with the two occurrences of p merged into one. An
edge with endpoints p and q is given by 〈p, q〉, while the concatenation of πp and 〈p, q〉 is
denoted as πp · 〈p, q〉.

A subgraph of (N , A) is a pair (N ′, A′), such that N ′ ⊆ N and A′ ⊆ A. Let Π′ the
set of all possible paths in (N ′,A′), then the subgraph (N ′, A′) is said to be connected if
∀p, q ∈ N ′ there is a path πp q ∈ Π′. A subgraph is spanning if N ′ = N and is acyclic
if it contains no cycles. A connected and acyclic subgraph is a tree and a collection of
trees is called a forest. A partition of the pixels of an image graph is a set of connected
subgraphs (N ′i , A′i), i ∈ {1, . . . , n}, such that ∪ni=1N ′i = N and ∩ni=1N ′i = ∅.

2.2 Image Foresting Transform

The Image Foresting Transform (IFT) [31] is a framework for the design, implementation
and evaluation of image processing operators based on optimum connectivity between
pixels. The IFT reduces optimal image partition problems to a shortest-path forest prob-
lem in a graph derived from the image (image graph), leading to a unified and efficient
approach for the design of image processing operators.

In most applications, the implementation of IFT algorithms can achieve linear time
complexity (proportional to the number of vertices in the graph). A path-cost function
associates a value to any path π ∈ Π, measuring how strongly connected the start and
terminus nodes are. Given an image graph (N , A) and a path-cost function f , the IFT
minimizes a path-cost map C : N → R,

C(q) = min
∀πq∈Πq

{f(πq)}, (2.3)

where Πq denotes the set of all possible paths in the graph with terminus q.
The IFT is a practical tool whose effectiveness, efficiency and flexibility have been

widely demonstrated in various applications. In [51], Lotufo et al. introduced the IFT-
watersheds from gray-scale marker exploiting the IFT to improve the efficiency of wa-
tershed transforms. A work by Falcão et al. [32] leverages the IFT for the design of the
following connected image operators: cutting-off-domes and filling-up-basins. Moreover,
the IFT has also been used to address the problem of one-pixel-wide connected multiscale
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skeletonization in [33]. In [16], the IFT is used for the characterization of the cortex
in cerebral MR images using a combination of two different procedures: an IFT-based
watershed-from-markers transform and IFT-based skeletonization.

The definition of a path-cost function suitable to the addressed problem is a critical
step towards creating an effective IFT-based solution. For instance, in image segmenta-
tion, it is expected that pixels located in a region of uniform texture be strongly connected
in the image graph.

Let S ⊂ DI be a set of seed pixels. To define a path-cost function (connectivity
function) f∗ : Π→ R for any path π ∈ Π, the IFT algorithm starts with trivial paths for
all nodes q ∈ DI , whose path-cost f∗(〈p〉) is given by the following rule:

f∗(〈q〉) =

{
0 if q ∈ S ⊂ DI
+∞ otherwise.

(2.4)

During the execution of the algorithm, the current path πq is replaced by πp · 〈p, q〉
for (p, q) ∈ A, whenever f(πq) > f(πp · 〈p, q〉) and the cost map C(q) is updated to
f(πp · 〈p, q〉). Accordingly, since all paths stem from S, the seeds become the roots of the
trees comprising the forest.

The similarity of color between two adjacent pixels can be defined by a non-negative
function w : A → R. For instance, in Equation 2.5, the arc-weight for (p, q) ∈ A is
determined from the Euclidean distance between the pixels’ feature vectors.

w(p, q) = ‖I(p)− I(q)‖ (2.5)

It is easy to see that a connectivity function f∗ can then recursively assign a cost to
any π ∈ Π. As an example to illustrate this assignment, we use the function fmax, defined
in Equation 2.6, which returns the largest arc-weight in a path.

fmax(〈q〉) =

{
0 if q ∈ S ⊂ DI
+∞ otherwise

fmax(πp · 〈p, q〉) = max{fmax(πp), w(p, q)},
(2.6)

A path πp is called optimum if f∗(πp) ≤ f∗(τp) for any other path τp ∈ Π, regardless
of its starting node. The IFT algorithm partitions the graph into an optimum-path forest
P through the minimization of the path-cost map C(q) = min∀πq∈Πq{f∗(q)} using the
recursive rule above. P : DI → DI ∪ {nil} is an acyclic predecessor map that attributes
to each node p ∈ DI either a predecessor P (p) ∈ DI in the optimum-path πp or a
distinguished marker P (q) = nil /∈ DI if p ∈ S. A root map R : DI → DI may also be
generated either recursively from the predecessor map or iteratively during the execution
of the algorithm.

R(q) =

{
q if P (q) = nil

R(p) if P (q) = p 6= nil
(2.7)

If the connectivity function f∗ does not satisfy the properties of a smooth-function [20],
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the generated forest P is not an optimum-path forest but a spanning forest whose every
tree T = (N T ,AT ), of root p ∈ DI , has its vertex set and adjacency relation given by:

N T : {q ∈ DI | R(q) = p}
AT : {(P (q), q) ∈ A | p 6= q ∈ DI},

(2.8)

Mansilla et al. [55] studied the application of the IFT with non-smooth connectivity
functions for the 3D segmentation of MR images, demonstrating outstanding results and
suggesting that a spanning forest may also be used to address different problems due to
its interesting properties.

Following a procedure similar to the one used to generate the root map, a distinct
label λ(p) ∈ {1, . . . , |S|} can be assigned to each seed p ∈ S, which is then propagated
to its most closely connected pixels during the execution of the algorithm or via the root
map. The latter procedure generates a label map L : DI → {1, . . . , |S|} defined by

L(q) =

{
λ(q) if q ∈ S
λ(R(q)) otherwise.

(2.9)

The IFT is a generalization of Dijkstra’s algorithm to multiple sources and more
general path-value functions [20]. The IFT employs a priority queue Q ⊆ DI to compute
a predecessor map P rooted in the elements of S with respect to a connectivity function
f∗. At the end of the procedure, a root map R and a label map L are generated, where
the latter represents the image segmentation.

Algorithm 1: Image Foresting Transform (IFT)
Input : Image I = (DI , I), adjacency relation A, connectivity function f∗, seed

set S, and labeling function λ : S → {1, . . . , |S|}
Output : Predecessor map P , root map R, cost map C, and label map L
Auxiliar: Priority queue Q and variable tmp

1 Q = ∅
2 foreach q ∈ DI do
3 R(q)← q, P (s)← nil
4 C(q)← +∞, L(q)← 0
5 if q ∈ S then
6 C(q)← 0, L(q)← λ(q)
7 Insert q into Q
8 while Q 6= ∅ do
9 Remove p from Q, such that p = argminq∈Q{C(q)}

10 foreach (p, q) ∈ A | q ∈ Q do
11 tmp ← f∗(πp · 〈p, q〉)
12 if tmp < C(q) then
13 R(q)← R(p), P (q)← p
14 C(q)← tmp, L(q)← L(p)

Algorithm 1 depicts the pseudocode of the IFT for a connectivity function f∗. Lines 3–
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7 initialize the maps for node q ∈ DI . Next, q is inserted into the priority queue Q in
Line 7. The aforementioned procedure is carried out for all nodes q ∈ DI . Lines 8–14
are responsible for the graph partition into a spanning forest. In Lines 13–14, a pixel q is
conquered by p (i.e., label propagation from p to q) if the extended path’s cost evaluated
by f∗(πp · 〈p, q〉) is lower than the current optimal cost C(q). Next, the maps’ values
corresponding to q are updated accordingly. Eventually, all pixels will be conquered by
some seed, partitioning the graph into either an optimum-path forest if f∗ is a smooth-
function or a spanning forest otherwise.

2.3 Iterative Spanning Forest

Vargas-Muñoz et al. introduced a framework called Iterative Spanning Forest (ISF) [78]
for superpixel segmentation. The ISF is based on a sequence of Image Foresting Trans-
forms consisting in the selection of four components: (i) a seed sampling strategy; (ii)
a connectivity function; (iii) an adjacency relation; and (iv) a seed recomputation pro-
cedure. The framework starts with an initial set of seeds obtained by a given strategy.
Next, a sequence of IFT executions, each of them followed by a seed recomputation pro-
cedure, is carried out for a fixed number of iterations. Each IFT execution partitions the
graph into a set of spanning trees (superpixels) rooted in the seed set. Next, the seed
recomputation procedure outputs a seed set, based on the previous partition, to generate
an improved set of connected superpixels (supervoxels in 3D) per iteration. Such a frame-
work permits creating several solutions by combining different strategies for its individual
components, such as seed estimation, seed recomputation, and arc-weight estimation for
a given connectivity function. As such, this work can be seen as an extension of the ISF
to the feature space. Figure 2.1 illustrates the general flowchart of the ISF framework.

Initial Seed Selection

Superpixel  Generation

Seed Recomputation

x N

Figure 2.1: Flowchart of the Iterative Spanning Forest framework.

Due to its flexibility and proven effectiveness, the ISF has been extended and used to
create solutions for various applications. In [17], Castelo-Fernandez and Falcão extended
the ISF to generate superpixels from multiple images of a same class for interest point
detection, to build class-specific visual dictionaries subsequently. Martins et al. [56] in-
troduced SymmISF, a supervoxel segmentation method based on the ISF, which extracts
symmetrical supervoxels from left and right brain hemispheres aiming to identify super-
voxels with abnormal asymmetries in MR images of the brain in an unsupervised fashion.
Another work by Galvão et al. [48], namely Recursive Iterative Spanning Forest (RISF),
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extends the ISF to generate multi-scale superpixel segmentation over region adjacency
graphs (RAGs), obtaining results in execution times and boundary adherence superior to
existing ISF-based methods, without compromising the benefits of the original framework.
Belém et al. presented Object-based ISF (OISF) [11], an extension of the ISF framework
for superpixel segmentation that incorporates object information from an object saliency,
improving the boundary adherence when compared to other state-of-the-art methods.

2.3.1 Seed Selection

Superpixel segmentation methods require unsupervised and automatic techniques for sam-
pling the seed set S. The challenge of these strategies lies in the fact that seeds should
be selected from regions within the boundary of the objects of interest, leading to precise
boundary adherence while avoiding the “leakage” of superpixels near the boundaries. The
IFT performs superpixel delineation by seed competition, where each superpixel is repre-
sented as an optimum-path forest rooted in its internal seed. Thus, in order to guarantee
one seed per object, including the background, the number of seeds should be significantly
greater than the number of objects.

2.3.2 Grid Sampling

In grid sampling [1] (GRID), seeds are collected at regularly spaced intervals in the image
so that superpixels are generated with approximately the same sizes and to guarantee
the presence of seeds within the objects of interest, given that no prior information is
available about their location. This sampling strategy has been broadly used in several
studies [1, 2, 49, 50, 78, 82] due to its intuitiveness and ease of implementation.

In order to sample a given number k ∈ N of seeds, the GRID strategy first determines
an estimate of the area of superpixels z (in number of pixels) with respect to the total
size of image I (total number of pixels in I).

z =
|DI |
k

(2.10)

Therefore, to comply with this size criterion, seeds must be spaced d =
√
z pixels apart

to attain a regular seed distribution on the image surface. Such criterion prevents the
selection of seeds close to the image boundary, which may compromise the homogeneity
of superpixel regions. Thus, every seed s estimated using the criterion mentioned above
is collected from regions with low color variance with respect to an adjacency relation A1

Algorithm 2 depicts the pseudocode for the GRID strategy for a given gradient function
∇I defined over pixel intensities in DI . Line 2 calculates the distance d between seeds to
guarantee equidistant spatial grid representation. Lines 4–12 carry out the sampling of
the elements of S. In Lines 7–10, for each pixel p ∈ DI in Line 7, the pixel to be collected
as the next seed is the one with the lowest gradient among the pixels in the adjacency set
A1(p). Figure 2.2 illustrates two examples of grid sampling with different values of k.
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(a) Grid sampling (k = 100) (b) Grid sampling (k = 250)

Figure 2.2: Grid sampling examples with different values of k. In (a) we use k = 100 and
in (b) we use k = 250.

2.3.3 Mixed Sampling

A natural image is typically composed of objects at many different scales presenting strong
correlations within objects while having weaker correlations between objects, leading to
regions in the image with high-intensity variance. In these cases, a more robust seed
sampling strategy is required. Mixed sampling (MIX) aims to alleviate this problem by
sampling more seeds from regions with high entropy while keeping the grid distribution of
seeds over the image to guarantee the regularity of superpixel shapes. In some datasets,
the use of this strategy led to an improvement in boundary adherence after superpixel
segmentation.

A quadtree G is a tree-like data structure built by a recursive decomposition of the
image domain into quadrants (i.e., nodes) Q ⊂ DI where each node either terminates on
a leaf or branches into four sub-level quadtrees for each hierarchy level.

Algorithm 2: Grid sampling GRID
Input : Image I = (DI , I) with dimensions nx × ny, gradient function ∇I, and

number of superpixels k
Output : Seed set S

1 S ← ∅
2 z ← |DI |

k
, d←

√
z

3 x← bd
2
c

4 while x < nx do
5 y ← bd

2
c

6 while y < ny do
7 p← (x, y)
8 if p ∈ DI then
9 s← argmin∀q∈A1(p){‖∇I(q)‖2}

10 S ← S ∪ {s}
11 y ← y + bd

2
c

12 x← x+ bd
2
c
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The MIX algorithm computes the normalized Shannon’s entropy (NSE) to measure
the degree of heterogeneity in a quadrant Q ∈ G. Equation 2.11 expresses the formula to
determine the NSE as a function E : G → R:

E(Q) = −
∑n

i=1 p(i) log2(p(i))

log2(n)
(2.11)

where p : R → [0, 1] is the probability of occurrence of intensity i among the n pixels
within quadrant Q. Once E is computed for all Q ∈ G, we evaluate the mean µ(E) and
standard deviation σ(E) for the four quadrants in each hierarchy level (see Equation 2.12).

µ(E) =

∑4
i=1 E(Qi)

4

σ(E) =

√∑4
i=1(E(Qi)− µ(E))2

3
.

(2.12)

To generate the next hierarchy level, we evaluate the following expression ‖E(Q) −
µ(E)‖1 > σ(E) for quadrant Q. If the inequality holds, then Q is divided into four
subquadrants followed by the calculation of their entropies. Once the second hierarchy
has been defined, a number k′ of seeds, directly proportional to the leaf’s entropy, is
computed for each leaf in the set of leaves L of the quadtree G (see Equation 2.13).

k′ = k · E(Q)∑
Q′∈LE(Q′)

(2.13)

Lastly, sets of k′ seeds are sampled from each leaf quadrant using the GRID strategy,
and the union of these sets comprises the final seed set S. Figure 2.3 illustrates two
examples of mixed sampling with different values of k.

(a) Mixed sampling (k = 100) (b) Mixed sampling (k = 250)

Figure 2.3: Mixed sampling examples with different values of k. In (a) we use k = 100
and in (b) we use k = 250.

Algorithm 3 depicts the pseudocode for the MIX strategy. The first level of G is
defined in Line 3 while the entropy for each quadrant is calculate in Lines 4–5. Next,
mean and standard deviation for the quadrant’s entropy are computed in Lines 6 and 7,
respectively. In Lines 8–14, the entropy of each quadrant is evaluated to identify whether
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a subsequent partition is required to construct the second level of G. Lastly, once G has
been constructed, the computation of the number of seeds (i.e., k′) to be collected from
each leaf, and their respective sampling through the GRID strategy are carried out in
Lines 15–17.

Algorithm 3: Mix sampling (MIX)
Input : Image I = (DI , I), gradient function ∇I, and number of superpixels k
Output : Seed set S

1 S ← ∅
2 Partition DI into four quadrants G ← {Q1, Q2, Q3, Q4}
3 x← d

2

4 foreach Q ∈ G do
5 Calculate E(Q)← −

∑n
i=1 p(i) log2(p(i))

log2(n)
for pixel intensities i from (Q, I).

6 µ(E)←
∑4

j=1 E(Qj)

4

7 σ(E)←
√∑4

j=1(E(Qj)−µ(E))2

3

8 foreach u ∈ {1, 2, 3, 4} do
9 if ‖E(Qu)− µ(E)‖1 > σ(E) then

10 Partition Qu into four quadrants Qu = {Qu,1, Qu,2, Qu,3, Qu,4}
11 Remove Qu from G
12 foreach v ∈ {1, 2, 3, 4} do
13 G ← G ∪Qu,v

14 E(Qu,v)← −
∑n

i=1 p(i) log2(p(i))

log2(n)
for pixel intensities i from (Qu,v, I).

15 foreach Q ∈ L do
16 k′ ← k · E(Q)∑

Q′∈LE(Q′)

17 S ← S ∪GRID((Q, I),∇I, k′))

2.3.4 Superpixel Segmentation

The original ISF paper [78] considered three connectivity functions, namely f1, f2, and
f3 for the computation of the IFT. The first two of them, namely f1 and f2, are based
on an additive connectivity function with different arc-weight functions to control super-
pixel regularity and boundary adherence. Even though these functions do not guarantee
an optimum-path forest, they can efficiently deal with the problem of intensity inhomo-
geneity [55]. On the other hand, the third connectivity function (i.e., f3), based on the
maximum connectivity function, guarantees the generation of an optimum-path forest
since it meets the conditions of a smooth function. However, ISF-based methods that
incorporate this connectivity function presented inferior performance than their counter-
parts, as is demonstrated in [78].

For a given seed set S ⊂ DI , the additive connectivity function, fsum, is defined
recursively in Equation 2.14 for an arc-weight function w.
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fsum(〈q〉) =

{
0 if q ∈ S ⊂ DI
+∞ otherwise.

fsum(πp · 〈p, q〉) = fsum(πp) + w(p, q),

(2.14)

where (p, q) ∈ A. Moreover, let si ∈ S for iteration i ≥ 1 during the ISF execution, and
µ(T ) the function that computes the mean feature vector of tree T = (DIT ,AT ) defined
in Equation 2.15.

µ(T ) =

∑
p∈DIT I(p)

‖DIT ‖
(2.15)

Next, we define the function M : S → Rm that maps a seed si to a representative
feature vector, which, according to Equation 2.16, can either be the same seed if i = 1 or
be derived from the tree Tsi−1 generated in the previous iteration of the ISF execution.

M(si) =

{
I(si) if i = 1
µ(Tsi−1) otherwise.

(2.16)

Based on these definitions, we define the arc-weight functions w1 and w2 in Equa-
tion 2.17, where α ≥ 0 and β ≥ 1 control the compromise between superpixel regu-
larization and boundary adherence, respectively. The value chosen for α is inversely
proportional to the regularity of superpixels compromising the boundary adherence. Fur-
thermore, for a suitable value of α, the value for β is chosen directly proportional to the
boundary adherence.

w1(p, q) = (α‖I(R(p))− I(q)‖2)β + ‖p− q‖2

w2(p, q) = (α‖M(R(p))− I(q)‖2)β + ‖p− q‖2

(2.17)

The aforementioned arc-weight functions can be plugged into fsum to obtain f1 and f2

as described by Equation 2.18.

f∗(〈q〉) =

{
0 if q ∈ S ⊂ DI
+∞ otherwise.

f1(πp · 〈p, q〉) = f1(πp) + w1(p, q)

f2(πp · 〈p, q〉) = f2(πp) + w2(p, q)

(2.18)

The third connectivity function, f3, is based on the fmax connectivity function and
defined in Equation 2.19. The connectivity function f3 substitutes the arc-weight w(p, q)

in the original definition of fmax (see Equation 2.6) by the value of the gradient image for
pixel q represented by D(q), while keeping the same initialization function.

f3(πp · 〈p, q〉) = max{f3(πp), D(q)}. (2.19)
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2.3.5 Seed Recomputation

The recomputation procedure is carried out after the superpixel segmentation by means
of a recomputation function r∗ : S → DI , which determines a set of seeds S ′ ⊆ DI that
are the seeds for the next iteration. This procedure aims to improve the representativity
for each superpixel by selecting the seeds that most likely will provide optimum paths
with less cost than the seed set from the previous iteration, therefore, producing more
homogeneous superpixels.

An intuitive strategy to address the selection of S ′ is through the identification of the
pixel closest, in terms of the Euclidean distance, to the centroid of each superpixel. Let
Ts = (DITs ,ATs) be the tree rooted in s ∈ S and generated in the previous iteration.
Then, a new seed is calculated through the function r1 defined in Equation 2.20.

r1(s) = argmin
p∈DITs

{‖p− c‖2}

c =
1

|DITs|

∑
p∈DITs

p
(2.20)

Despite the intuitive appeal of the strategy mentioned above, r1 does not consider the
distribution of the feature vectors of the pixels within Ts in the feature space. Following
this line of thought, S can also be obtained using the function rmed that selects the pixel
whose feature vector is the closest, in terms of the Euclidean distance, to the mean feature
vector of the tree (superpixel) to which it belongs. The function r2 formally implements
this strategy in Equation 2.21.

r2(s) = argmin
p∈DITs

{‖I(p)− µ(Ts)‖2}

µ(Ts) =
1

|DITs|

∑
p∈DITs

I(p)
(2.21)

Seeds of subsequent iterations may not significantly alter their position, leading to
insignificant differences in the delineation of their corresponding superpixels. Therefore,
an additional criterion is introduced to determine whether a new seed will be generated
for a given superpixel to accelerate the convergence process. Let mc,ms ∈ R be two
thresholds computed using the feature vectors and coordinates of pixels, respectively,
defined in Equation 2.22.

mc =

∑
p∈DI ‖I(p)− I(R(p))‖2

|DI |

ms =

∑
p∈DI ‖p−R(p)‖2

|DI |

(2.22)

Thus, a seed s will be recomputed for a given superpixel if any of the following condi-
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tions presented in Inequalities 2.23 is met; otherwise, the same seed s is kept for the next
iteration.

√
mc < ‖I(s)− I(r∗(s))‖2
√
ms < ‖s− r∗(s)‖2

(2.23)

The pseudocode for this seed recomputation strategy is depicted in Algorithm 4.
Lines 2 and 3 compute the thresholds mc and ms, respectively, while Lines 4–8 evalu-
ate whether the new seed r∗(s) will be included in S ′ (Line 6) or if s will be kept for the
next iteration (Line 8).

Algorithm 4: Seed recomputation (SEEDRECOMP)
Input : Image I = (DI , I), seed set S, recomputation function r∗, and root

map R
Output : Seed set S ′

1 S ′ ← ∅
2 mc ←

∑
p∈DI

‖I(p)−I(R(p))‖2
|DI |

3 ms ←
∑

p∈DI
‖p−R(p)‖2
|DI |

4 foreach s ∈ S do
5 if

√
mc < ‖I(s)− I(r∗(s))‖2 or

√
ms < ‖s− r∗(s)‖2 then

6 S ′ ← S ′ ∪ {r∗(s)}
7 else
8 S ′ ← S ′ ∪ {s}

2.3.6 ISF Algorithm

In the original ISF work [78], Vargas-Muñoz et al. presented five different ISF meth-
ods, defined through various combinations of its components. The first two methods,
namely ISF-GRID-ROOT and ISF-MIX-ROOT, are based on grid and mixed sampling,
respectively, and use both the f1 connectivity function and the r2 recomputation function
based on the mean feature vector. On the other hand, the third and fourth methods,
namely ISF-GRID-MEAN and ISF-MIX-MEAN, are also based on grid and mixed sam-
pling, respectively, and use both the f2 connectivity function and the r1 recomputation
function based on the geometric center of the superpixel. A fifth ISF method, called ISF-
REGMIN, relies on grid sampling and the f3 connectivity function. ISF-REGMIN uses a
single iteration of the IFT with no seed recomputation, thus leading to a faster execution
time. In ISF-REGMIN, the seeds are replaced by any pixel located at the closest regional
minimum in the gradient magnitude image. The ISF-GRID-ROOT and ISF-MIX-MEAN
methods achieved better performance than their counterparts on most datasets.

A single execution of the IFT attains a complexity of O(|DI | log(|DI |)) (linearithmic
time) if the priority queue Q is implemented as a binary heap data structure. Thus, given
that the time for seed recomputation is linear, the complexity of the ISF using a binary
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heap is linearithmic as well, regardless of the number of superpixels. Algorithm 5 depicts
the pseudocode of the ISF using GRID sampling.

Algorithm 5: Iterative Spanning Forest (ISF)
Input : Image I = (DI , I), adjacency relation A, gradient function ∇I,

connectivity function f∗, recomputation function r∗, number of
superpixels k, and maximum number of iterations T

Output : Predecessor map P , root map R, cost map C, and label map L
Auxiliar: Seed set S ′

1 iter ← 0
2 S ′ ← GRID(I,∇I, k)
3 while iter < T do
4 S ← S ′
5 (P,R,C, L)← IFT(I,A, f∗,S)
6 S ′ ← SEEDRECOMP(I,S, r∗, R, P, C)
7 iter ← iter + 1

2.4 Dynamic Trees

In [14], Bragantini et al. introduced the Dynamic IFT (DynIFT), an extension of the IFT
framework for interactive image segmentation that aims to leverage object information
for dynamic arc-weight estimation as the trees evolve from the seed set during the IFT
algorithm. Thus, the optimum-path trees evolve dynamically from the seed set as arc-
weights in the graph are estimated from increasing object knowledge, leading to a more
effective object delineation. In [12], Belém et al. presented a method called Dynamic
Iterative Spanning Forest (DISF) that leverages the DynIFT algorithm to achieve more
effective superpixel delineation for smaller numbers of superpixels. The following two
sections present these approaches.

2.4.1 Dynamic Trees for Interactive Image Segmentation

Let S be a seed set comprised by labeled pixels (e.g., labeled scribbles drawn by the user) in
each object (including background). The DynIFT aims to partition the image into objects
such that pixels enclosed within an object’s boundary are more strongly connected to its
internal seeds than to any other. An object labeling function λO uniquely identifies each
seed s ∈ S with a belonging label among c objects such that λO(s) ∈ {0, . . . , c} with 0 as
the background. Since different markers may comprise the same object, a marker labeling
function λM(s) is also implemented, so that it identifies the marker containing the seed
s among m markers with λM(s) ∈ {0, . . . ,m}. The marker labeling function may also be
used to control the addition and removal of markers during segmentation correction.

Therefore, in addition to the cost map C, predecessor map P , and root map R,
the DynIFT algorithm propagates to every node p ∈ DI the object label map L(p) =

λO(R(p)) ∈ {0, . . . , c}, and the marker label map M(p) = λM(R(p)). The object label
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map represents the resulting segmentation after the algorithm’s execution. The growing
optimum-path trees Ts, for each seed s ∈ S are referred as dynamic trees in the context
of this algorithm.

Algorithm 6 depicts the pseudocode for the DynIFT. Lines 1–5 initialize all maps and
insert all pixels p ∈ DI in a priority queue Q. Next, in Lines 6–13, an optimum-path
forest rooted in the seeds in S is computed. In Line 7, a pixel p with minimum path-
cost value is removed from Q and inserted into the dynamic tree TR(p) corresponding
to the root of p. As the tree TR(p) rooted in R(p) is evolving, it increasingly contains
information about the region within its boundary (including pixel p). The marker map
M identifies all trees rooted at seeds with marker label M(p) ∈ {1, . . . ,m} represented
by
⋃
∀r∈S|M(r)=M(p) Tr, while map L identifies all trees rooted at seeds with object label

L(p) ∈ {1, . . . , c} represented by
⋃
∀r∈S|L(r)=L(p) Tr. The dynamic estimation of arc-weights

is carried out by leveraging color, texture, and shape about the object or its regions
expressed through a dynamic arc-weight function.

Algorithm 6: Dynamic IFT (DynIFT) for fmax and w2

Input : Image I = (DI , I), adjacency relation A, connectivity function fmax,
arc-weight function w1, and seed set S with labeling functions λO and
λM

Output : Object label map L
Auxiliar: Priority queue Q = ∅, dynamic sets Tr = ∅, ∀r ∈ S, maps C, R, P ,

and M , and variable tmp

1 foreach p ∈ DI do
2 C(p)← +∞, R(p)← p, and P (p)← nil
3 if p ∈ S then
4 C(p)← 0, L(p)← λO(p), and M(p)← λM(p)
5 Insert p ∈ Q
6 while Q 6= ∅ do
7 Remove p from Q, such that p = argmin∀q∈Q{C(q)} and TR(p) ← TR(p) ∪ {p}
8 foreach (p, q) ∈ A | q ∈ Q do
9 Estimate w1(p, q) as w1(p, q) = min∀r∈S|L(r)=L(p) ‖µr − I(q)‖

10 tmp ← max{C(p), w1(p, q))}
11 if tmp < C(q) then
12 C(q)← tmp, R(q)← R(p)
13 L(q)← L(p),M(q)←M(p), and P (q)← p

Thus, the following dynamic arc-weight functions based on the tree’s mean feature
vector (color) µR(p) of the pixels p ∈ TR(p) and the object’s mean feature vector (color)
µL(p) of the pixels p ∈

⋃
∀r∈S|L(r)=L(p) Tr.
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w1(p, q) = ‖µR(p) − I(q)‖, (2.24)

w2(p, q) = min
∀r∈S|L(r)=L(p)

‖µr − I(q)‖, (2.25)

w3(p, q) = ‖µL(p) − I(q)‖, (2.26)

w4(p, q) = w1(p, q) + ‖I(q)− I(p)‖, (2.27)

w5(p, q) = w2(p, q) + ‖I(q)− I(p)‖, (2.28)

w6(p, q) = w3(p, q) + ‖I(q)− I(p)‖. (2.29)

The arc-weight function w1 considers the mean feature vector (color) of TR(p) as more
representative than the feature vector I(p) since is being constantly updated as the tree
grows. Therefore, it substitutes I(p) in the standard arc-weight formulation. Thus, each
seed will conquer pixels whose feature vector is similar to their respective regions’ mean
feature vector. In contrast, w2 relaxes this criterion by considering the closest mean
feature vector among all dynamic trees rooted at seeds with object label L(p), therefore,
favoring the delineation of objects comprised of disjoint regions. On the other hand, w3

uses the mean feature vector of all pixels comprising all dynamic trees rooted at seeds
with object label L(p). The remaining functions add the local arc-weight ‖I(q)− I(p)‖ to
the definition of the previous functions to assess the importance of local contrast between
regions.

The DynIFT was compared to the power watershed algorithm [25], the IFT algorithm
with fmax and arc-weight function w(p, q) = ‖I(q) − I(p)‖ [31], and the min-cut/max-
flow algorithm [13, 70]. The DynIFT-based methods displayed an improvement in the
accuracy of object delineation in comparison to their counterparts. Furthermore, the
relaxed versions of w1, represented by w2 and w5 achieved a better performance than the
other arc-weight functions, whereas w3 and w6 obtained the worst performance among all
other arc-weight functions.

2.4.2 Dynamic and Iterative Spanning Forest for Superpixel Seg-
mentation

The Dynamic and Iterative Spanning Forest (DISF) algorithm for superpixel segmentation
consists of the following steps. (i) a seed set is oversampled from an image graph, such
that its size is significantly larger than the number of desired superpixels; (ii) the IFT
algorithm with dynamic arc-weight estimation is executed to partition the image into
connected superpixels; (iii) A procedure entailing the deletion of superpixels based on a
relevance criterion is carried out. Next, steps (ii) and (iii) are repeated until the desired
number of superpixels is attained.

Step (i) aims to increase the likelihood of selecting seeds that lead to superpixels
that preserve boundary adherence, while the objective of step (iii) is to identify and keep
these seeds in subsequent iterations in order to improve boundary delineation. In step (ii),
superpixel delineation is carried out using the IFT with dynamic arc-weight estimation
to leverage object information as the trees grow, aiming to take advantage of the object
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delineation properties of this formulation to achieve superpixels with better boundary
adherence.

The DISF method uses the GRID sampling strategy for seed oversampling since it
possesses the following properties: its definition does not take into account any prior
object information, it increases the probability of setting a seed within the object of
interest, and, last but not least, it generates a large number of seeds, which makes it
suitable for this type of application. The GRID strategy selects equally-spaced seeds laid
out in a grid pattern on the image as detailed in Section 2.3.2.

The superpixel segmentation is achieved by executing the IFT with dynamic arc-weight
estimation using the arc-weight function w1(p, q) = ‖µR(p) − I(q)‖2, previously defined in
Equation 2.24, where µR(p) is the mean feature vector of the dynamic tree containing pixel
p and rooted at R(p), denoted TR(p) – i.e., µR(p) = 1

|TR(p)|
∑
∀q∈TR(p)

I(q).
The DISF method, in contrast to most recent seed-based superpixel approaches,

starts with a number of seeds considerably larger than the number of desired super-
pixels aiming to include, in an unsupervised manner, seeds that produce superpixels
that are effective in preserving boundary adherence. Therefore, the challenge relies
on identifying and preserving these seeds for subsequent iterations. DISF introduces
a relevance-based strategy to preserve and delete superpixels contingent on their at-
tributed relevance. The relevance assigned to each seed is conditioned to the size of
the superpixel it produces and the homogeneity of the region to which it belongs. Let
P be the set of optimum-path trees generated by the execution of the IFT algorithm
with dynamic arc-weight estimation. Then, a tree-adjacency relation B is defined as
B = {(TR(p), TR(q)) ∈ P × P | ∃(p, q) ∈ A and R(p) 6= R(q)} and the relevance map
V : S → R is defined as V (s) = |Ts|

|DI |
min∀(Ts,Tt)∈B{‖µR(s) − µR(t)‖2}.

Let N0 be the number of seeds at iteration i = 0 and Nf the number of desired
superpixels at the last iteration i = T−1. The number of highest priority seeds selected for
iteration i is defined by N(i) = max{N0 exp(−i), Nf}. Once the superpixel segmentation
has been obtained, every seed s ∈ S from the current iteration i, i ∈ {0, . . . , T − 1}, is
inserted into an empty priority queue Q with priority V (s). Then, for the next iteration,
i+ 1, S is comprised only of the N(i+ 1) seeds of highest relevance in Q. Moreover, the
positions of the elements of S in Q are maintained for iteration i + 1 aiming to preserve
segmentation consistency and boundary adherence in subsequent iterations.

Algorithm 7 presents a pseudocode for the DISF method. Line 1 initializes variable i,
which will act as an iteration counter. Line 2 initializes the seed set S by seed oversampling
using the GRID sampling strategy for N0 � Nf seeds. Lines 3–16 represent the main
loop of the algorithm, which stops when the size of S is equal to Nf (number of desired
superpixels) as per if statement in Lines 5–6. The superpixel segmentation occurs in
Line 4 with the execution of the DynIFT algorithm where we adapt Algorithm 6 to only
use a single labeling function λ for labeling superpixels and to return the tuple of maps
(P,R,C, L). In Lines 7–10 a relevance value V (s) is associated to each seed s ∈ S based
on the size of Ts and the distance of the centroids of Ts and Tt, ∀(Ts, Tt) ∈ B, then seed s
is inserted into the priority queue Q with priority V (s). Afterwards, the number of seeds
N for the next iteration is computed in Line 11 and, in Lines 12–15, the seed set S is
established for the next iteration by selecting the N seeds with highest relevance. Lastly,
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the iteration counter i is updated in Line 16.

Algorithm 7: Dynamic Iterative Spanning Forest (DISF)
Input : Image I = (DI , I), adjacency relation A, gradient function ∇I,

connectivity function fmax, arc-weight function w1, labeling function λ,
number of initial seeds N0, and number of desired superpixels Nf

Output : Predecessor map P , root map R, cost map C, and label map L
Auxiliar: Priority queue Q, seed set S, and variables N and i

1 i← 0
2 S ← GRID(I,∇I, N0)
3 while |S| ≥ Nf do
4 (P,R,C, L)← DynIFT(I,A, fmax, w1,S, λ)
5 if |S| = Nf then
6 break
7 Q ← ∅
8 foreach s ∈ S do
9 Estimate V (s) as V (s) = |Ts|

|DI |
min∀(Ts,Tt)∈B{‖µR(s) − µR(t)‖2}

10 Insert s in Q with priority V (s)

11 N ← max{N0 exp(−(i+ 1)), Nf}
12 S ← ∅
13 while |S| < N do
14 Remove s from Q, such that s = argmax∀t∈Q{V (t)}
15 S ← S ∪ {s}
16 i ← i + 1

The DISF mehod was compared with other five other state-of-the-art superpixel seg-
mentation algorithms: (i) SLIC [1]; (ii) SH [81]; (iii) LSC [49]; (iv) ISF-GRID-ROOT;
and (v) ISF-MIX-MEAN in the task of object delineation on three image datasets: (i)
Birds [54]; (ii) Liver [78]; and (iii) BSDS500 [10]. For evaluation purposes, two popular
metrics Boundary Recall (BR) [1] and Under-Segmentation Error (UE) [58] were consid-
ered to assess object boundary preservation and to measure to what extend superpixels
overlap object boundaries. The experiments were carried out in an interval from 20 to
1000 superpixels and DISF was executed with N0 = 8000 for all datasets. DISF has
shown outstanding results, outperforming its counterparts for BR and was among the
best methods for UE.

2.5 Optimum-Path Forest

The Optimum-Path Forest (OPF) [61] is a framework that can be tailored to implement
graph-based pattern recognition techniques to address a variety of problems [15, 62, 52,
68]. Essentially, OPF extends the IFT framework [31] from the image domain to the
feature space. The OPF-based techniques reduce a pattern recognition problem to the
computation of an optimum-path forest in a graph derived from the samples in the training
set. It can provide effective supervised, unsupervised, and semi-supervised solutions,
which we further detail in the following sections.
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2.5.1 Supervised Learning with OPF

In [63], Papa et al. employed the OPF framework to develop a supervised classification
method where the training set samples are modeled as the nodes of a complete graph,
whose arcs are weighted by the distances between the feature vectors of their extreme
nodes. The induced graph is then partitioned into an optimum-path forest comprised of
optimum-path trees, each of them representing a single class, rooted at their most repre-
sentative elements, known as prototypes. The prototypes are chosen from the minimum
spanning tree of the induced graph by selecting samples belonging to the boundary of
classes, in other words, samples of distinct classes that share an arc in this representa-
tion. Next, the prototypes carry out a competition procedure so that each sample in
the training set ends up connected to its most strongly connected prototype through a
minimum-cost path. The OPF-based classifiers present the following advantages over
other state-of-the-art supervised classifiers (e.g., support vector machines (SVMs) and ar-
tificial neural networks (ANNs)): (i) it is free of parameters; (ii) it does not make any
prior assumption about the shape/separability of the feature space; and (iii) it has a fast
training time allowing the development of real-time applications [66].

Let Z1, Z2, and Z3 be the training, evaluation and test sets, respectively, with |Z1|,
|Z2| and |Z3| samples each. Z1 is used to create the classifier, while Z3 is used to determine
the prediction accuracy. Z2 is used to further improve the accuracy of the classifier by
randomly exchanging samples in Z1 with misclassified samples from Z2. Let λ(s) be
a labeling function that assigns the correct class label i ∈ {1, . . . , c} to each sample
s ∈ Z1 ∪Z2 ∪Z3, and v be a feature extractor function that extracts n features from any
sample s ∈ Z1 ∪ Z2 ∪ Z3, based on sample measurements, returning a vector v(s) ∈ Rn.
A set S ⊂ |Z1| represents the set of prototypes. The distance d(s, t) ≥ 0 between the
feature vectors of two samples, s and t, is given by any distance function suitable to the
problem at hand (e.g., the Euclidean distance ‖v(t) − v(s)‖). Thus, the pair (v, d), also
known as descriptor, determines how the feature vectors of the samples are distributed in
the feature space.

The problem here entails the creation of a classifier that successfully predicts the
ground-truth label given by λ(s) for any sample s ∈ Z3. The training phase consists of
the definition of a discrete optimal partition of Z1 in the feature space represented by an
optimum-path forest rooted at a set of prototypes S ∈ Z1. The classification phase for
any sample s ∈ Z3 is carried out by evaluating the optimum paths, incrementally, with
terminus s and assigning to it the label of its most strongly connected prototype.

Let G = (Z1,A) be a complete graph whose nodes are represented by the training
samples in Z1 and A ∈ Z1×Z1 be the adjacency relation for any pair of distinct samples
s, t ∈ Z1. A connectivity function f stipulates a path-cost value f(πt) to any sequence of
distinct samples (e.g., path) πt = 〈s1, s2, . . . , t〉 in G. The definitions for a path, detailed
in Section 2.1, are also valid in this context by replacing pixels with samples. In [63],
the connectivity function fmax (see Equation 2.6) is used, such that the minimization of
fmax assigns to every sample t ∈ Z1 an optimum path rooted at a prototype s ∈ S ⊂ Z1

leading to the partition of the graph into an optimum-path forest. The aforementioned
procedure leads to the propagation of a predecessor map P , cost map C, and label map
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L for all samples in Z1.
Algorithm 8 depicts the pseudocode of an OPF-based classifier executed on a complete

graph and using the fmax connectivity function. Lines 1–5 initialize the cost, predecessor,
and label maps and insert the prototypes in the priority queue Q. Next, the while loop in
Lines 6–14 computes an optimum-path forest rooted at S with terminus at every sample
s ∈ Z1 \ S in a nondecreasing order of minimum cost. At each iteration in Line 6, we
remove the nodes with minimum cost from Q, such that a path of minimum cost C(s)

with terminus s is obtained. Then, for each sample t ∈ Z1, where s 6= t and t has not
been previously removed from Q, we evaluate if the path with terminus s extended by
the arc (s, t) (e.g., πs · 〈s, t〉) offers a lower path-cost value than the current path with
terminus t and update the position of t in Q, as well as the map values C(t), L(t), and
P (t).

Algorithm 8: OPF-based classifier on a complete graph
Input : Graph G = (Z1,A), prototype set S ⊂ Z1, labeling function λ,

connectivity function fmax, and descriptor (v, d) for feature vector and
distance computations

Output : Predecessor map P , cost map C, and label map L
Auxiliar: Priority queue Q and variable tmp

1 foreach s ∈ Z1 do
2 C(s)← +∞
3 if s ∈ S then
4 C(s)← 0, P (s)← nil, and L(s)← λ(s)
5 Insert s in Q
6 while Q 6= ∅ do
7 Remove s from Q, such that s = argmin∀t∈Q{C(t)}
8 foreach t ∈ Z1 | t 6= s and C(t) > C(s) do
9 tmp ← max{C(s), d(s, t)}

10 if tmp < C(t) then
11 if C(t) 6= +∞ then
12 Remove t from Q
13 C(t)← tmp, P (t)← s, and L(t)← L(s)
14 Insert t in Q

Once the classifier has been projected, the classification phase occurs in such a way
that, for any sample t ∈ Z3, we extend all possible paths with terminus s ∈ Z1 with the arc
(s, t) (e.g., πs · 〈s, t〉) to determine the optimum path π∗t rooted at S that offers the lowest
path-cost value, and label t with the same class as its most strongly connected prototype.
The path π∗t can be identified incrementally by C(t) = min∀s∈Z1{max{C(s), d(s, t)}}.

The evaluation phase may occur in applications with large datasets, where identifying
the most informative samples to project a more effective classifier becomes a daunting
task. Therefore, the use of a third evaluation set Z2 aims to improve the informativeness
of samples comprising the training set Z1 without increasing its size. The projected
classifier is evaluated on Z2, and the misclassified samples are exchanged with randomly
selected samples in Z1. These misclassified samples are considered to contain valuable
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information and are included in Z1 to retrain the classifier, aiming to improve its accuracy.
The updated sets Z1 and Z2 are used to repeat this procedure for a fixed number of
iterations, and the classifier with the highest accuracy among all iterations is selected.

The flexibility of the OPF framework allows the creation of classifiers using different
graph topologies, different connectivity functions, and other strategies to estimate pro-
totypes and improve the classifier effectiveness from the evaluation set. In this context,
Papa and Falcão [60] propose an OPF-based classifier where the arcs of the graph are
established by the k-nearest neighbors of each node in the feature space. The nodes are
weighted by their probability density value (pdf), and prototypes are selected from the
maxima of the pdf.

2.5.2 Unsupervised Learning with OPF

Rocha et al. [68] proposed an unsupervised variation of the optimum-path forest frame-
work for data clustering. This work explores the assumption that natural groups can
be viewed as regions with a high density of samples represented by the plateaus of their
probability density function (pdf) and exploits optimum connectivity between samples in
the feature space. These plateaus or maxima are then determined, and the estimation of
its influence zones through the computation of an optimum-path forest defines a group
as an optimum-path tree. However, this approach may not lead to the desired number of
groups (i.e., optimum-path trees), so a process of cluster reduction is carried to remove
“irrelevant” clusters.

Let G = (Z,A) be a graph whose nodes are represented by the samples in Z, and A
defines the adjacency relation such that t ∈ A(s) if t is a k-nearest neighbor of s in the
feature space where k > 0 is an integer parameter. Let v be a feature extractor function,
and d(s, t) (e.g., d(s, t) = ‖v(t) − v(s)‖2) be the distance function that determines the
distance between samples s and t in the feature space. The graph nodes are weighted by
their probability density values ρ(s) estimated via the Parzen-window technique with a
Gaussian kernel (see Equation 2.30). The value of σ is set to guarantee the inclusion of
the most adjacent samples in the pdf estimation.

ρ(s) =
1√

2πσ2|A(s)|

∑
t∈A(s)

exp

(
−d2(s, t)

2σ2

)

σ = max
∀(s,t)∈A

{
d(s, t)

3

} (2.30)

The selection of k to define the adjacency relation A is strongly related to the final
graph partition. Therefore, different choices of k may lead to distinct graph partitions
(optimum-path forest). Accordingly, the value of k is selected as the one that leads to
an optimum-path forest that minimizes a graph-cut measure. The computation of the
optimum-path forest leads to the estimation of the influence zones of the pdf’s maxima.
However, the maximum of the pdf may present adjacent samples with the same density
value. Therefore, it is required to guarantee connectivity between any pair of samples
in such a region. Thus, the adjacency relation A is extended to be symmetric in the
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plateaus of ρ as follows: if t ∈ A(s), s /∈ A(t) and ρ(s) = ρ(t), then A(t) ← A(t) ∪ {s}.
This approach considers the weights of the nodes instead of the arc-weights towards
determining the strength of connectedness for a given path between two samples. Hence,
every sample t ∈ Z will be assigned to an optimum path π∗t rooted at its most strongly
connected maximum among the pdf’s maxima for a smooth connectivity function f(πt)

(e.g., C(t) = max∀πt∈(Z,A){f(πt)}). Since we have no prior knowledge about the maxima
of the pdf, a handicap value f(〈t〉) = h(t) < ρ(t), for all t ∈ Z, is defined to preserve
the relevant maxima of the pdf and discard the domes that can be reached by optimum
paths rooted at such maxima. Therefore, the connectivity function f , also known as fmin,
is defined in Equation 2.31.

fmin(〈t〉) =

{
ρ(t) if t is a relevant maximum
h(t) otherwise

fmin(πs · 〈s, t〉) = min{f(πs), ρ(t)},
(2.31)

Algorithm 9 presents the pseudocode of OPF-based clustering with connectivity func-
tion fmin. The relevant maxima are identified and labeled with a consecutive integer l.
Then, optimum paths rooted at the maxima are computed for fmin following a nonin-
creasing order of path-cost values. The maps C(t), L(t), and P (t) store the optimum
path-cost, root label, and predecessor for all t ∈ Z, respectively.

Algorithm 9: Clustering by optimum-path forest for fmin

Input : Graph G = (Z,A) and functions h and ρ, h(t) < ρ(t) for all t ∈ Z
Output : Label map L
Auxiliar: Predecessor map P , cost map C, priority queue Q, and variables tmp

and l

1 l← 1
2 foreach s ∈ Z do
3 P (s)← nil and C(t)← h(t)
4 Insert s in Q
5 while Q 6= ∅ do
6 Remove s from Q, such that s = argmax∀t∈Q{C(t)}
7 if P (s) = nil then
8 L(s)← l, l← l + 1, and C(s)← ρ(s)
9 foreach t ∈ A(s) | C(t) < C(s) do

10 tmp ← min{C(s), ρ(t)}
11 if tmp > C(t) then
12 L(t)← L(s), P (t)← s, and C(t)← tmp
13 Update position of t in Q

Lines 1–4 initialize variable l, and predecessor and cost maps for each sample t ∈ Z
followed by the insertion of t into priority queue Q. At a single iteration of the main loop
in Lines 5–13, we remove sample s with maximum path-cost C(s) from priority queue Q
such that an optimum path π∗s is obtained. Next, the test P (s) = nil identifies whether
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the sample s is a maximum. If the equality holds, s becomes a root of the forest, its label
L(s) is set to l, and its path-cost value C(s) is updated to ρ(s), so it can conquer the rest
of the samples in such maximum. Lines 9–13 evaluate whether the path with terminus
s extended by the arc (s, t) offers a higher path-cost value than the current path with
terminus t and update the map values L(t), P (t), and C(t) as well as its position in Q,
accordingly.

The final result of the clustering relies on the choice of A and, therefore, on the value
of k, which defines the k-nearest neighbor graph. A graph-cut measure C(k) is employed
to determine the most suitable k-nearest neighbor graph. Equation 2.32 defines C(k)

where c is the number of generated groups and k ∈ [1, |Z| − 1].

C(k) =
c∑
i=1

W ′
i

Wi +W ′
i

Wi =
∑

(s,t)∈A|L(s)=L(t)=i

1

d(s, t)

W ′
i =

∑
(s,t)∈A|L(s)=i,L(t)6=i

1

d(s, t)

(2.32)

Algorithm 9 is executed for different values of k within a range [1, kmax], for kmax �
|Z|. Then, k is selected as the value that minimizes the graph-cut measure – i.e., k =

mink∈[1,kmax] C(k). This OPF-based clustering solution has been successfully applied to
interactive image segmentation [68], brain tissue MR-image segmentation [15] and active
learning [72].

2.5.3 Semi-supervised Learning with OPF

Semi-supervised learning approaches address the problem of training a classifier when
only a scarce amount of labeled data is available. Amorim et al. [8] introduced a semi-
supervised extension of the OPF framework executed on a complete graph and using the
maximum arc-weight path-value function (i.e., fmax) to project a classifier in cases when
labeled data is limited.

Let Z1, Z2, and Z3 be the training, evaluation, and test sets. Let Z1 be comprised of
a set of labeled samples Z ′1 and a set of unlabeled samples Z ′′1 , such that Z1 = Z ′1 ∪ Z ′′1 .
A labeling function λ assigns the correct labels to every labeled sample. The set Z1 is
used to project the semi-supervised classifier, while the set Z3 assesses the classifier’s
accuracy. The evaluation set Z2 is assumed to be larger than Z ′1 and is used to improve
the classifier’s accuracy further and to reduce the propagation error in Z ′′1 by randomly
replacing samples in Z ′1 with misclassified samples in Z2. The set of prototypes S ⊂ Z ′1
propagates their labels to the samples in Z ′′1 during the training process.

Let G = (Z1,A) be a complete graph whose nodes are represented by the train-
ing samples in Z1 = Z ′1 ∪ Z ′′1 and the adjacency relation A is defined by each pair of
samples s, t ∈ Z1, such that s 6= t. The training phase starts by defining a set of
prototypes S from the most representative samples of each class. The set S can be deter-
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mined from several heuristics, among which is the computation of a minimum-spanning
tree on the graph (Z ′1,A) followed by the selection of samples of distinct classes that
share an arc on the minimum-spanning tree representation. Next, the OPF algorithm
with connectivity function fmax is executed on G aiming to minimize the path-cost map
C(t) = min∀πt∈Πt{fmax(πt)} for all t ∈ Z1. Afterward, an optimum-path forest (i.e.,
semi-supervised classifier) rooted at S is generated, such that all samples in Z1 end up
labeled. According to the original work, it is recommended to retrain the OPF-based
semi-supervised classifier with the labeled samples in Z1 in order to improve the proto-
type set S. The classification phase for a new sample t ∈ Z3 (or Z2) using the projected
semi-supervised classifier considers that t is connected to all nodes in training set Z1.
Next, the path with minimum cost π∗t among all possible paths Πt (i.e., paths rooted at
S and terminus t) in the training graph is identified, and afterward, t adopts the class
label corresponding to the root of path π∗t .

This semi-supervised approach was compared against the traditional Optimum-Path
Forest (OPF) and Transductive Support Vector Machines (TSVM) [22] on four datasets
from various domains. The evaluation measures were the mean accuracy, the error rate of
label propagation on the training set, and the Friedman’s statistical test. The OPF-based
semi-supervised approach showed the best performance on all four datasets.

2.6 Concluding Remarks

This chapter reviews the related work
Clustering algorithms Partitional Clustering Algorithms Hierarchical Clustering Algo-

rithms Graph-based Clustering algorithms
K-means
Iterated Watersheds
Clustering by OPF
essential theoretical concepts that set the ground to introduce the Iterative Optimum-

Path Forest (IOPF) framework. The Image Foresting Transform (IFT) framework is intro-
duced as a key concept towards presenting the Iterative Spanning Forest (ISF) framework,
which is used to design effective superpixel segmentation methods. The ISF framework is
described thoroughly, detailing each of its constituent components. Next, the concept of
dynamic arc-weight estimation is presented along with applications in interactive image
segmentation and superpixel segmentation. Lastly, the Optimum-Path Forest (IOPF)
framework, a generalization of the IFT framework from the image domain to the feature
space, is introduced with applications to supervised, unsupervised and semi-supervised
learning. The next chapter presents the related work and provides basic definitions re-
garding this master’s work.
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Chapter 3

Related Work

This chapter reviews the related work concerning clustering algorithms and their cate-
gorization based on their solving strategy. Furthermore, we describe several OPF-based
clustering algorithms that can be found in the literature. The chapter starts with a
brief definition of data clustering and a broad categorization of clustering algorithms in
Section 3.1. Next, k-means, a widely popular clustering algorithm, is presented in Sec-
tion 3.2. Section 3.3 describes the Iterated Watersheds (IW) algorithm, a variation of
k-means that exploits optimum connectivity through a sequence of OPF executions. IW
can be regarded as a particular implementation of the IOPF framework introduced in
this work. Lastly, state-of-the-art OPF-based clustering algorithms are briefly reviewed
in Section 3.4.

3.1 Clustering algorithms

The goal of data clustering, also known as clustering analysis, is to identify the natural
grouping of a set of objects aiming to get insights into its underlying structure to perform
further analysis and extract knowledge intrinsic to the data.

Clustering can be defined as the process of partitioning a set of n objects, represented
by their feature vectors, into k groups, such that objects belonging to the same group
displaying a high degree of similarity according to a given similarity measure. Clusters
can be found in a variety of shapes, sizes, and densities (see Figure 3.1). Ideally, a cluster
should be compact and isolated. However, real-life data usually contains noise, which
thwarts the task of cluster identification and separation [43].

A cluster may also be thought of as an abstract entity whose significance and in-
terpretation depend on the observer’s domain knowledge. While humans are excellent
cluster detectors in two and possibly three dimensions due to their visual capabilities,
most problems are better explained in higher dimensions. Therefore, the creation of auto-
matic clustering solutions to address high-dimensional data becomes a necessary endeavor.
This challenge led to the proposal of several clustering that tackles this problem using a
wide variety of strategies and techniques. In this context, another interesting problem is
identifying the number of “natural” clusters for a given set of objects.

Clustering analysis is predominant in disciplines related to the study and analysis of
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Figure 3.1: Diversity of clusters. The clusters in (a) (indicated by distinct colors in (b))
differ in shape, size, and density. Adapted from [43]

multivariate data, such as sequence analysis, image segmentation, and others. There ex-
ists an extensive literature on a number of scientific fields and applications encompassing
clustering techniques for solving many related problems. Similarly, existing algorithms
may also be tailored to address a particular problem, resulting in a variant of the origi-
nal algorithm. Some problems that might not seem related to clustering analysis can be
formulated as a clustering problem, for instance, image segmentation, a critical subarea
of computer vision, can be defined as a clustering problem [21]. Clustering analysis can
also be used in document categorization to generate hierarchies of topics for efficient in-
formation access and retrieval; customer segmentation to group customers into different
categories for efficient marketing; clustering of genome data to discover potential relation-
ships among genomic clusters; also clustering of search engine results to present the vast
number of available web pages in an organized fashion [43].

The main usages of data clustering, based on their applications, can be categorized
within three primary purposes according to Jain in [43]: discovering and exploring the
underlying structure of the data, natural classification – to determine the degree of sim-
ilarity among the elements of a dataset, and compression – to summarize the data by
choosing representative elements from the clusters.

Clustering methods can be broadly categorized into different paradigms according to
the approach followed to partition the data. Among these paradigms, we find partitional
clustering, hierarchical clustering and graph-based clustering which are further described
in the following sections. Let Z be a dataset where |Z| = n and let v be a function such
that it assigns a feature vector v(s) ∈ Rm to every sample s ∈ Z.

3.1.1 Partitional Clustering Algorithms

Partitional clustering attempts to discover a k-partition of Z given by C = {C1, . . . , Ck}
with 1 ≤ k ≤ n, such that

1. Ci 6= ∅,∀i ∈ {1, . . . , k}

2.
⋃k
i=1 Ci = Z

3. Ci ∩ Cj = ∅, ∀i, j ∈ {1, . . . , k} and i 6= j
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Therefore, Z is partitioned into a prespecified number of non-overlapping groups k with
no hierarchical structure, such that each sample s ∈ Z is assigned to only a single cluster
or subset. In principle, the optimal partition, that is, the partition maximizing both
intra-clustering similarity and inter-clustering dissimilarity given by the minimization of
an expected loss, can be found by exhaustive enumeration. However, such a brute-force
procedure becomes computationally intractable and, therefore, unfeasible for practical
purposes. Thus, heuristic solutions have been developed to address this problem and seek
for an approximate solution.

A critical component in partitional clustering is the criterion function [40]. The sum-
of-squared error (SSE) stand out as one of the most widely used criteria. Let sj ∈ Z, j ∈
{1, . . . , n} be the samples of Z and let C = {C1, . . . , Ck} the k subsets, in which Z is
partitioned. We define Γ = {γij} as a partition matrix such that

γij =

{
1 if sj ∈ Ci
0 otherwise

(3.1)

with
∑k

i=1 γij = 1,∀j ∈ {1, . . . , n}, that is, each sample sj belongs to only one cluster.
Moreover, we defineM = {mi}, i ∈ {1, . . . , k} as a cluster prototype or centroid matrix
where mi = 1

ni

∑n
j=1 γijsj and ni is the number of elements of cluster Ci (i.e., |Ci| = ni).

Based upon the previous definitions, we define the SSE in Equation 3.2.

J (Γ,M) =
k∑
i=1

n∑
j=1

γij‖sj −mi‖ (3.2)

Therefore, the objective of partitional clustering methods is to minimize such function
following a certain heuristic. The k-means algorithm is by far the best-known and most
widely used squared error-based clustering algorithm [43, 53].

3.1.2 Hierarchical Clustering Algorithms

Hierarchical clustering methods construct a tree-like nested structure partition of Z repre-
sented by an ordered set of hierarchy levels H = {H1, . . . ,Hq}, q ≤ n, where each element
Hm ∈ H represents a level of the hierarchy, such that if Ci ⊂ Hm, Cj ⊂ Hl, and m > l

imply that Ci ⊂ Cj or Ci ∩ Cj = ∅ for all i, j 6= i and m, l ∈ {1, . . . , q}. Therefore, H1 and
Hq constitute the highest and lowest level of the hierarchy, and Ci, Cj represents a subset
of a partition of Z in hierarchy levels Hm,Hl, respectively.

Hierarchical clustering performs the grouping of data samples following a sequence of
partitions, either from singleton clusters to a single cluster containing all individuals (e.g.,
bottom-up) or the other way around (e.g., top-down). The results of hierarchical cluster-
ing methods are regularly depicted by a binary tree or dendrogram. The root node of the
dendrogram is regarded as the entire data set, whereas each leaf node represents a single
data sample. On the other hand, intermediate nodes describe groups of samples based
on their proximity to each other. At the same time, while the height of the dendrogram
expresses the distance between pairs of objects or clusters, as well as an object and a
cluster. A given partition of Z is obtained by cutting the dendrogram at different levels.
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The dendrogram representation provides a visual tool that enables users to describe and
unveil potential hierarchical relations in the data.

Hierarchical clustering algorithms are broadly categorized into two categories: agglom-
erative and divisive methods. Agglomerative clustering starts with n singleton clusters.
Next, a sequence of merge operations is carried out, creating a hierarchical structure, end-
ing up with a single cluster containing all samples in Z. In contrast, divisive clustering
follows an inverse procedure, starting with a single cluster containing all samples in the
dataset. Then, a divisive procedure is applied successively on the initial cluster, ending
up with a set of n singleton clusters. However, this approach is not commonly used since
for a cluster of n samples, there are 2n−1−1 possible pairwise combinations, which turns it
computationally prohibitive. The MONothetic Analysis (MONA) and DIvisive ANAlysis
(DIANA), two popular divisive clustering algorithms, are further described in [47].

Let M = {mij} be a n × n symmetric matrix, called proximity matrix, such that
the element mij, for i, j ∈ {1, . . . , n}, represents the similarity or dissimilarity measure
between the ith and jth elements according to a similarity metric. Thus, the distance
between clusters Ci, Cj can be denoted as δ(Ci, Cj) = mij according to the proximity matrix
M.

Algorithm 10: General algorithm for agglomerative clustering
Input : Dataset Z
Output : Hierarchical clustering structure C
Auxiliar: Clusters Ci and Cj

1 C ← ∅
2 foreach s ∈ Z do
3 C ← {{s}}
4 Compute the proximity matrixM of the set C with |C| = n
5 while |C| > 1 do
6 Search the pair Ci, Cj such that δ(Ci, Cj) = min

∀Ck,Cl∈C,k 6=l
δ(Ck, Cl)

7 C ← C \ {Ci ∪ Cj}
8 C ← C ∪ {{Ci, Cj}}
9 Update the proximity matrix by computing the distances between the new

cluster {Ci, Cj} and the remaining clusters in C.
10 return C

Algorithm 10 depicts a general algorithm for agglomerative clustering. In Lines 1–3,
the set C is initialized with singleton clusters for each sample s ∈ Z, such that |C| = n.
During each iteration of the loop in Lines 5–9, the pair of clusters Ci, Cj ∈ C with minimal
distance δ(Ci, Cj) are identified among all pairs of clusters with i 6= j. Next, both clusters
Ci, Cj are removed from C, then a new cluster {Ci, Cj} is created and subsequently included
in C. Then, the proximity matrix is updated by computing the distances between the
recently created cluster and the remaining clusters in C. Finally, the hierarchical structure
C is returned.

Based on the selection of the distance function between two clusters, many agglomer-
ative clustering algorithms can be cited. The two most popular agglomerative techniques



45

are single linkage [75] and complete linkage [77]. The single linkage strategy determines
inter-cluster distance by computing the distance between the two closest elements located
in distinct clusters, whereas for the complete linkage strategy, it is determined by the far-
thest distance between a pair of elements, each located in different clusters. The selection
of more complex distance functions led to the proposal of other agglomerative clustering
algorithms, namely group average linkage, median linkage, centroid linkage, and Ward’s
method [57].

Usually, hierarchical clustering solutions present the following drawbacks: (i) they
are sensitive to noise and outliers; (ii) they are not able to correct misclassifications;
(iii) they display a high time complexity, being at least O(n2) for most algorithms, and
therefore becoming computationally prohibitive for large datasets; and (iv) they assume
the clusters to be spherical. Recently, several other techniques have been proposed aiming
to overcome some of the aforementioned drawbacks with special emphasis on processing
large-scale datasets, namely CURE [38], ROCK [39], Chameleon [46], and BIRCH [85].

3.1.3 Graph-based Clustering Algorithms

Graph-based clustering algorithms use the concepts and properties of graph theory such
that the clustering problem is described by means of graphs. According to Aggarwal [5],
graph clustering algorithms may be categorized into node clustering and graph clustering.
However, only related works falling in the first category will be reviewed.

The nodes of a weighted graph G represent the samples of the dataset Z in the feature
space, while arcs are built through spatial proximity, reflecting a potential relationship
between each pair of samples. A threshold value δ0 may be selected to define the edges of
G in such a way that for any pair of samples s, t ∈ Z with s 6= t an edge connecting such
nodes is created if δ(s, t) < δ0 for a given distance function δ (e.g., Euclidean distance).

Graph-based methods can be applied in both hierarchical and partitional clustering.
In hierarchical clustering, for instance, both single linkage and complete linkage clus-
tering can be described as a graph problem equivalent to seeking maximally connected
subgraphs (components) and maximally complete subgraphs (cliques) [44], respectively.
Chameleon [46] is a agglomerative clustering algorithm based on the k-nearest neighbor
(k-NN) graph. It starts by partitioning the k-NN graph into a set of subclusters with
the minimal edge cut. Next, the characteristics of potential clusters are explored through
the computation of the relative interconnectivity and relative closeness. Then, such small
subsets are merged, ending up with the final graph partition (clustering).

On the other hand, in the context of partitional clustering, Zhan [84] proposed a graph-
based clustering algorithm consisting of identifying and discarding inconsistent edges in
the minimum spanning tree (MST) from an input weighted graph to partition it into
compact subgraphs. Hartuv and Shamir [41] presented Highly Connected Subgraphs (HCS)
where “highly connected” is equivalent to say that the connectivity (i.e., the minimum
number of edges to remove to disconnect the graph) of a subgraph is at least half as great
as the number of vertices. HCS determines these subgraphs recursively using the minimum
cut procedure. CLICK [74] is another algorithm that can be regarded as an adaption of
the HCS algorithm on weighted similarity graphs. The edges of the graph are weighted
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using a probabilistic approach, and clusters are formed based on the computation of the
minimum-weight cut.

Spectral clustering methods constitute another strategy, which may be divided into
three steps: (i) create a weighted graph, with samples as nodes and arcs between adjacent
samples; (ii) compute the first k eigenvectors of its Laplacian matrix to define a feature
vector for each sample in the Rk space; and (iii) execute the k-means algorithm in the Rk

space to identify and label the groups [19].
A more detailed list of graph-based clustering algorithms may be found in the works

by Aggarwal [5] and Schaeffer [73].

3.2 K-means

The k-means algorithm is probably the best-known squared error-based partitional clus-
tering solution [35, 43]. Even though k-means was originally proposed for the first time
more than 50 years ago, it remains one of the most commonly used clustering algorithms.
Its popularity stems from its ease of implementation, simplicity, efficiency, and empirical
success [43].

Let Z be a set of n m-dimensional objects to be partitioned into a set of k disjoint
clusters represented by C = {C1, . . . , Ck}. The pseudocode of the k-means algorithm is
depicted in Algorithm 11. It starts by randomly selecting k cluster prototypes si, i ∈
{1, . . . , k} from Z in Line 1. Then, in Lines 2–3, the set of centroids represented by
µi, i ∈ {1, . . . , k} are initialized to the set of initial cluster prototypes. Next, an iterative
procedure is carried out consisting in assigning each object s ∈ Z to the nearest cluster
(Lines 7–9), subsequently followed by the recomputation of the centroids based on the
current partition (Lines 10–11). The main loop in Lines 4–11 iterates until there is no
change for each cluster. Lastly, in Line 12, the set of centroids computed during the last
iteration is returned.

Algorithm 11: K-means algorithm
Input : Dataset Z and number of clusters k
Output : Set of centroids {µ1, . . . , µk}
Auxiliar: Set of clusters {C1, . . . , Ck}

1 Select k random seeds from Z: {s1, . . . , sk}
2 for i = 1 to k do
3 µi ← sk
4 while convergence is not achieved do
5 for i = 1 to k do
6 Ci ← ∅
7 foreach s ∈ Z do
8 j ← argmin1≤j′≤k ‖µj′ − s‖
9 Cj ← Cj ∪ {s}

10 for i = 1 to k do
11 µi ← 1

|Ci|
∑

s∈Ci s

12 return {µ1, . . . , µk}
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The k-means algorithm works very well for compact and hyperspherical clusters. It
has a time complexity of O(nkm) where the values of k and m are usually much less
than n. Therefore, it can be used to partition large datasets effectively. However, there
is no universal method for selecting the initial cluster prototypes. Therefore, a general
strategy is to run k-means several times and choose the best partition according to an
evaluation metric. On the other hand, k-means presents the following drawbacks: (i) the
number of clusters k must be given in advance; (ii) the final partition is heavily dependent
on the choice of initial cluster prototypes; (iii) The iteratively optimal procedure of k-
means cannot guarantee convergence to a global optimum. Thus, k-means computes local
optimal partitions; and (iv) k-means is sensitive to outliers and noise [71]. Many variants
and advances of k-means have been proposed aiming to overcome these issues and to
address a wide range of applications. Some of these works can be found in [6].

3.3 Iterated Watersheds

Recently, Soor et al. [76] proposed a graph-based variant of k-means, called Iterated Wa-
tersheds (IW), that exploits optimum connectivity between a set of prototypes and the
remaining samples in the dataset. This graph-based clustering solution consists of a
sequence of applications of the watershed transform through various executions of the
OPF with restricted graph topology from enhanced sets of prototypes. The IW algo-
rithm comprehends three fundamental steps: (i) sampling of the initial set of prototypes
(seeds) S; (ii) graph partitioning by Optimum-Path Forest (OPF); and (iii) recomputa-
tion of S based on the graph partitioning of (ii). Next, steps (ii) and (iii) are repeated
until a maximum number of iterations is attained or until there is no change for each
graph partition (cluster). The steps (ii) and (iii) can be regarded as equivalent to the
expectation-maximization steps of k-means.

Let G = (Z,A) be a graph where the set of nodes is given by the samples of Z and the
adjacency relationA is issued by the problem definition. For instance, in the original work,
IW is applied in image segmentation and road network analysis. In image segmentation,
the pixels represent the nodes, while the edges are given by the 4-neighborhood adjacency
between pixels. On the other hand, in road network analysis, the reference points in the
cities represent the nodes, and the roads linking such points represent the edges.

For a fixed number of clusters k, let S = {r1, r2, . . . , rk} be the number of initial cluster
prototypes or seeds which are selected randomly from Z at the outset of the algorithm.
The IW algorithm frames the problem of clustering with connectivity constraint as the
minimization of a dissimilarity measure between samples and cluster prototypes. In the
context of k-means, this dissimilarity measure is given the Euclidean distance between
samples and cluster prototypes. Conversely, in IW, it is represented by the value given
by a path-cost function (i.e., connectivity function), which measures the connectedness
between samples and cluster prototypes through a path in G. The OPF assigns each
sample s ∈ Z to its most closely connected prototype, that is, the prototype that offers
the minimum path-cost among all paths connecting a prototype r ∈ S and s. Thus, the
objective of IW is to minimize the total path-cost given by
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∑
s∈Z

min
πs∈Πs

f(πs) (3.3)

where Πs represents the set of all paths in G rooted at S with terminus s and f is a
smooth path-cost function. The connectivity function used by IW for all applications was
fsum which determines the sum of all arc-weights along a path. Algorithm 12 depicts the
IW algorithm to solve the aforementioned optimization problem. The algorithm starts by
selecting k seeds ri, i ∈ {1, . . . , k} from the dataset Z in Line 1. Then variables iter and
converged are initialized to control the number of iterations and algorithm’s convergence,
respectively. Next, the main loop in Lines 3–20 carries out steps (ii) and (iii). In Lines 4–
9, priority queue Q, and cost map C and label map L are initialized. The cluster sets Ci
are initialized with seeds ri, i ∈ {1, . . . , k} followed by the insertion of all samples s ∈ S
into Q. In Lines 11–16, the graph partitioning occurs assigning each sample to the cluster
set containing its most strongly connected seed based on the connectivity function fsum.
Next, in Lines 17–19, a seed ri ∈ S is recomputed by selecting the sample closest to
the mean feature vector µi for each cluster set Ci, i ∈ {1, . . . , k}. Lastly, when either

Algorithm 12: Iterated Watersheds algorithm for fsum

Input : Graph G = (Z,A), seed set S with labeling function λ, descriptor
function v, number of seeds k ≥ 1, and maximum number T ≥ 1 of
iterations

Output : Label map L
Auxiliar: Priority queue Q, cluster sets Ci,∀ri ∈ S, i = 1, . . . , k, maps C and L,

and variables tmp and converged

1 Pick randomly k seeds from Z: S = {r1, . . . , rk}
2 iter← 1, converged ← false
3 while iter ≤ T and converged = false do
4 Q = ∅
5 foreach s ∈ Z do
6 C(s)← +∞, L(s)← 0
7 if s = ri ∈ S, i ∈ {1, . . . , k} then
8 C(s)← 0, L(s)← i
9 Ci ← ∅, Ci ← Ci ∪ {ri}

10 Insert s in Q
11 while Q 6= ∅ do
12 Remove s from Q, so that s = argmint∈Q{C(t)} and CL(s) ← CL(s) ∪ {s}
13 foreach (s, t) ∈ A | t ∈ Q do
14 tmp ← C(s) + ‖v(t)− µL(s)‖
15 if tmp < C(t) then
16 C(t)← tmp, L(t)← L(s)

17 Sprev ← S, S ← ∅
18 foreach i ∈ {1, . . . , k} do
19 ri ← argmins∈Ci

{‖v(s)− µi‖}, S ← S ∪ {ri}
20 converged ← (S = Sprev), iter← iter + 1

21 return L
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the maximum number of iterations or convergence is achieved the label map L generated
during the last iteration is returned.

The IW algorithm was applied in image segmentation and road network analysis, ob-
taining outstanding results. In image segmentation, the IW was compared to k-means,
spectral clustering, and isoperimetric partitioning on the Weizmann 1-Object and 2-
Object datasets obtaining superior performance based on four popular metrics, namely
adjusted mutual information (AMI), adjusted rand index (ARI), F-score (F), and cluster-
ing accuracy (CA). On the other hand, in road network analysis, the IW displayed the
best performance compared to k-means and greedy k-centers on identifying “ideal” points
to establish emergency stations on road network maps.

3.4 Clustering by OPF

The graph-based clustering algorithms presented in Section 3.1.3 do not exploit optimum
connectivity between samples and seeds for cluster delineation. In this context, several
OPF-based clustering algorithms have been introduced to bridge this gap under different
approaches. The OPF-based clustering solutions can be broadly categorized into density-
based and centroid-based algorithms.

Rocha et al. [68] introduced a first clustering method based on optimum connectivity
– the maxima of a probability density function (pdf) compete among themselves to con-
quer the remaining samples of the dataset, and each maximum (dome of the pdf) defines
a cluster as an optimum-path tree rooted on it. The pdf is estimated from a k-Nearest
Neighbor (kNN) graph, and the choice of k is attained by finding the solution that min-
imizes a normalized graph-cut measure. This algorithm relies on the pdf estimation for
a suitable choice of an interval [kmin, kmax] in which the best value of k must be found;
however, the pdf estimation may become computationally prohibitive for large datasets.
Moreover, it does not provide user control in determining the number of desired clusters.
This algorithm is further described in Section 2.5.2. The selection of the best value of
k within an interval [kmin, kmax] is carried out through exhaustive search, which may be-
come computationally intractable for datasets with millions of samples. Costa et al. [24]
propose nature-inspired optimization techniques to speed up the selection of k for pdf
estimation with application to intrusion detection in computer networks.

Cappabianco et al. [15] extended the OPF-based clustering approach for large datasets
by subsampling training samples, generating candidate solutions, and selecting the most
plausible one. The authors demonstrated the advantages of the method for MR-brain
tissue segmentation.

Montero and Falcão [27] propose a two-level divide-and-conquer clustering approach
based on density-based OPF clustering. This algorithm is well suited to handle large
datasets. Firstly, the dataset is divided into a reasonable number of disjoint blocks. Next,
OPF-based clustering [68] is used to cluster the samples in each block, such that each
block ends up with a set of prototypes that summarize the block’s information. These
prototypes are then joined together to create a new dataset in which OPF-based clustering
is executed once again, obtaining a good approximation of the original dataset’s underlying
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partition. Lastly, label propagation occurs in a cascade manner, from prototypes to the
remaining elements in each block.

Chen et al. [18] presented an improved OPF-based clustering algorithm for segmen-
tation of remote sensing images based on the principle that cluster centers display high
local densities, whereas samples surrounding centers usually exhibit relatively low local
densities. In addition, cluster centers are often located far away from samples with higher
local densities. Thus, cluster centers are characterized by their densities and the distances
between them and samples with higher densities. Following this line of thought, the prob-
ability density function of OPF-based clustering is modified for each sample in the dataset
to include the distance to samples with higher densities.

Afonso et al. [3] introduced a multi-layered OPF-based clustering algorithm inspired by
hierarchical clustering. This algorithm, called Deep Optimum-Path Forest, builds a model
comprised of a fixed number of stacked layers, such that the last layer contains the desired
number of clusters. Each layer of the model partitions the input dataset, consisting of
the prototypes obtained from the previous layer’s clustering, into an optimum-path forest
using density-based OPF-based clustering. This procedure is repeated until the last layer
is reached. Recently, this algorithm was used in [4] to design visual dictionaries for the
automatic identification of Parkinson’s disease.

Soor et al. [76] propose the Iterated Watersheds (IW), a graph-based clustering algo-
rithm based on iterative applications of watershed transforms in a feature space based
in a sequence of OPF executions from sets of enhanced cluster prototypes (seeds). This
algorithm is a modified version of k-means with connectivity constraints, which turns out
to be a particular configuration of the iterative optimum-path forest (IOPF) framework
proposed herein. This algorithm is further detailed in Section 3.3.

3.5 Concluding Remarks

This chapter provides the related work concerning this master’s work. It starts with a
discussion of partitional, hierarchical and graph-based clustering algorithms. Next, the
k-means algorithm, a popular partitional clustering algorithm, is described. Afterward,
the Iterated Watersheds (IW) algorithm, regarded as a particular implementation of the
IOPF framework, is presented. Lastly, a study of OPF-based clustering algorithms is
introduced, highlighting the most relevant works. The next chapter comprehensively
introduces the Iterative Optimum-Path Forest (IOPF) framework.
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Chapter 4

Iterative Optimum-Path Forest

In this chapter1, we comprehensively introduce Iterative Optimum-Path Forest, hereafter
referred to as IOPF, a graph-based iterative clustering framework consisting of four com-
ponents: (i) sampling of the initial seed set S, (ii) graph partition by OPF from S in
a graph derived from the dataset, (iii) recomputation of S based on the previous graph
partition, and after multiple iterations of the last two steps, (iv) selection of the forest
with the lowest total path cost among all executions.

4.1 Notations and Definitions

Let Z be a dataset such that for every sample s ∈ Z there is a feature vector v(s) ∈
Rm. For a given adjacency relation A ⊆ Z × Z, the pair G = (Z,A) defines a graph.
The adjacency relation A can be defined in different ways, based on the definition of
the problem. In some cases, the adjacency relation of the graph is given beforehand,
whereas in some other cases it must be built from scratch. For instance, if Z is the set
of pixels s = (xs, ys) in the bi-dimensional domain of an image, A may be defined as
Ar = {(s, t) ∈ Z × Z | 1 ≤ ‖(xt, yt) − (xs, ys)‖ ≤ r}. In this regard, the most notable
adjacency relations on this domain are A1 and A√2, referred to 4- and 8-neighborhood,
respectively. As r increases, the local image feature space is explored with less spatial
constraint. For arbitrary datasets, we may define A as follows:

1. A = {(s, t) ∈ Z × Z | s, t ∈ Z ∧ s 6= t}, so that G represents a complete graph; or

2. A = {(s, t) ∈ Z × Z | v(t) is a k-nearest neighbor of v(s)}, for a fixed k

However, in (2) it is important to make sure that all nodes in Z are reachable from
any seed in the seed set; therefore, two conditions should be met: (i) if (s, t) ∈ A, then
(t, s) ∈ A; and (ii) G must be a single component.

The objective of an IOPF-based solution is to estimate the graph partition that mini-
mizes the total path-cost given by the sum of path-costs between samples and their most
strongly connected seeds in G. The minimization of this objective function is addressed

1The text of this chapter is to appear as part of a book chapter entitled “An Iterative Optimum-Path
Forest Framework for Clustering” in [34]
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following an iterative approach consisting in, given a fixed number of groups k, partition-
ing the graph G into k optimum-path trees by multiple OPF executions from enhanced
sets of seeds. Each OPF execution will output a triplet (L,C,P ) consisting of a label
map L, a cost map C, and a predecessor map P , leading to the computation of the total
path-cost (TPC) given by

∑
∀x∈Z C(x). The set of enhanced seeds is computed, selecting

the samples closest to each optimum-path tree’s mean feature vector, and the iterative
procedure is repeated until either seed set convergence is achieved or a fixed maximum
number of iterations is reached. A search is carried out across all iterations to identify
the triplet (L,C, P ), providing the lowest total path-cost, which is returned as the final
output of the framework. Figure 4.1 depicts the pipeline of the IOPF framework where
initial seeds are selected randomly, and seed convergence is achieved at the fourth itera-
tion. In this example, the third iteration minimizes

∑
∀s∈Z C(s), and hence it is returned

as the final clustering.

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Initial Seeds

Dataset Final Clustering
Seed Recomputation Seed Recomputation Seed Recomputation

Figure 4.1: IOPF pipeline. Initial seeds are selected randomly and seeds recomputed at
the end of each single OPF execution. In the example, seed convergence is attained at
the fourth iteration. Lastly, the partition that minimizes

∑
∀s∈Z C(s) across all iterations

is returned as the final clustering.

Based on these definitions, we introduce the individual framework components in the
following sections.

4.2 Seed Set Selection

The performance of seed-based algorithms, like k-means, is highly sensitive to the choice
of the initial seed set, given that these techniques rely on a local optimization approach.
Thus, the initial seed set selection represents a critical element in the framework design.
In this work, we present two strategies to address this problem.

For a fixed number of groups, k, the IOPF framework starts off by selecting a set of
samples S ⊂ Z, such that |S| = k. The first strategy selects randomly the elements of S
This initialization technique provides a different result for each run, therefore allowing to
improve results through repetition (restarting) of the algorithm.

As second strategy, we propose an initial seed set sampling that builds S, with one seed
per object, by searching the least strongly connected samples (after discarding outliers)
by a sequence of OPF executions. Algorithm 13 outlines such iterative procedure.
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Given a graph G = (Z,A), number of seeds k ≥ 1, an estimated percentage of outliers
0 < h < 1, and the sum path-cost function (fsum). The algorithm starts in Line 1 with
an initial seed set S consisting of an arbitrary node s ∈ Z, which is discarded after the
first OPF execution to obtain more statistically consistent seeds. Thus, only the seeds
acquired at the end of each OPF execution are considered towards establishing the initial
seed set S. During each iteration in Lines 2–20, the OPF execution is interrupted after
(1 − h) × |Z| nodes have been processed (i.e., nodes removed from priority queue Q) in
Lines 10–15. Next, in Line 14, the last node s removed from Q is selected as the next
seed and inserted into S. This procedure is repeated with the updated seed set S until
the desired number of seeds is attained and lastly, the seed set S is returned in Line 21.
The nodes are removed from Q in a non-decreasing order of their path-cost values, hence,
all nodes left in Q have a path-cost value greater than or equal to the path-cost value
of the last removed node s. These nodes are “farther” away from the seeds contained in
S than is s and therefore can be regarded as outliers. Figure 4.2 depicts the functioning
of the seed selection algorithm where the initial seed is selected randomly and discarded
after the first seed was identified by means of an OPF execution. Later, the seed set is
progressively built based on a sequence of OPF executions.

Algorithm 13: Seed set selection algorithm for fsum

Input : Graph G = (Z,A), number of seeds n ≥ 1, and estimated percentage
of outliers 0 < h < 1

Output : Seed set S
Auxiliar: Priority queue Q = ∅, maps C and P , and variables tmp and first-time

1 S ← random element from Z, first-time ← true
2 while |S| < k do
3 foreach s ∈ Z do
4 C(s)← +∞, P (s)← nil
5 if s ∈ S then
6 C(s)← 0
7 Insert s in Q
8 while Q 6= ∅ do
9 Remove s from Q, such that s = argmint∈Q{C(t)}

10 if h× |Z| ≥ |Q| then
11 if first-time then
12 S ← {s}, first-time ← false
13 else
14 S ← S ∪ {s}
15 Q ← ∅ and break
16 foreach (s, t) ∈ A | q ∈ Q do
17 w(s, t) = ‖v(t)− v(s)‖
18 tmp ← C(s) + w(s, t)
19 if tmp < C(t) then
20 C(t)← tmp, P (t)← s

21 return S
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Discarded seed First seed identified Second seed identified Third seed identified

Figure 4.2: Seed selection procedure. It starts by randomly choosing a seed, which is then
discarded after the first seed has been identified. Next, the second and third seeds are
progressively identified and the resultant seed set is returned.

4.3 Clustering by Optimum-Path Forest

Once the initial seed set S has been finally established, an iterative procedure based on a
sequence of OPF executions is carried out until either convergence or a preset maximum
number of iterations T > 0 is achieved. In this context, convergence is attained when the
seed sets obtained in consecutive iterations are equal (i.e., have the same elements), since
this will lead to the same graph partition.

Given a fixed number of groups k, the objective of each single OPF execution is to
exploit optimum connectivity by partitioning the graph G = (Z,A) into k optimum-
path trees (clusters) Ti, i ∈ {1, . . . , k} which altogether form an optimum-path forest.
Each optimum-path tree Ti is rooted at seed si ∈ S, i ∈ {1, . . . , k}, such that the nodes
constituting Ti are more strongly connected to si, than to any other seed in S.

Let Ci ⊂ Z be the cluster defined by optimum-path tree Ti, i ∈ {1, . . . , k}, such that
∪ki=1Ci = Z and ∩ki=1Ci = ∅. By assigning a distinct group label i ∈ {1, . . . , k} to each seed
s ∈ S, the OPF algorithm propagates the corresponding label L(s) to its most closely
connected samples in Z, creating a label map L.

In this work, we address two ways of determining the arc-weights, namely fixed and
dynamic arc-weights. The arc-weight for an edge (s, t) ∈ A is represented by w(s, t). For
fixed arc-weights, it is determined through the Euclidean distance of the feature vectors
of s and t – i.e., w(s, t) = ‖v(t)− v(s)‖, whereas for dynamic arc-weights we use instead

w(s, t) = ‖v(t)− µL(s)‖,

µL(s) =
1

|CL(s)|
∑

∀x∈CL(s)

v(x) (4.1)

where CL(s) is the growing cluster (optimum-path tree) that contains s by the time a path
πs · 〈s, t〉 reaches a node t ∈ Z \∪ki=1Ci under evaluation. The dynamic approach leverages
cluster information as the trees grow from the seed set, aiming to obtain more compact
clusters since centroids are recomputed as the trees grow, and optimum connectivity is
evaluated between such centroids and the remaining samples.
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4.4 Seed Recomputation

The seed recomputation stage occurs after each single OPF execution. This procedure
aims to obtain enhanced seed sets using clustering information. The seeds are recomputed
by selecting the sample whose feature vector is the closest to the mean feature vector of
their corresponding cluster. This seed recomputation strategy stems from the idea that
seeds that minimize the total path-cost may be located in dense regions of nodes, therefore,
an approximation of such regions can be obtained through the centroid estimation for each
cluster.

For a fixed number of groups k, let Tij, i ∈ {1, . . . , k} be the k optimum-path trees
generated by the seed set Sj after a single OPF execution during iteration j. The nodes
comprising the optimum-path tree Tij define the cluster Cij for all i ∈ {1, . . . , k}. There-
fore, each element si,j+1, i ∈ {1, . . . , k} of the seed set for the next iteration Sj+1 is
calculated as

si,j+1 = argmin
s∈Cij

{‖v(s)− µij‖},

µij =
1

|Cij|
∑
∀x∈Cij

v(x)
(4.2)

4.5 Returning the Forest with Lowest Total Path-Cost

Since the objective of the proposed framework is to minimize the objective function given
by the total path-cost

∑
∀s∈Z C(s), the triplet (L,C, P ) consisting of label map L, cost

map C, and predecessor map P , that leads to the lowest total path-cost must be returned.
This stage is carried out once either seed set convergence has been achieved or the

maximum number of iterations has been exhausted. Conversely to IW, the triplet corre-
sponding to the last iteration is not returned since the total path-cost between consecutive
iterations is not monotonically decreasing, therefore, a search must be carried out across
the triplets of all iterations to identify the one that leads to the lowest total path-cost.

4.6 Algorithm Outline

Algorithm 14 depicts the pseudocode of IOPF with dynamic arc-weight estimation for
fmax. The algorithm starts off by initializing the cost map C∗, label map L∗, and prede-
cessor map P ∗ in Lines 1–2. These maps are updated throughout the execution of the
algorithm aiming to minimize the total path-cost value derived from C∗. Later, in Line 3,
k seeds ri ∈ Z, i ∈ {1, . . . , k} are picked, such that each is uniquely identified as belonging
to one among k clusters.

In Lines 4–24, Algorithm 14 computes k optimum-path trees (clusters) from a seed
set S, recomputes the seed set S in Lines 18–20, and repeats both operations until either
the convergence criterion is met or a preset maximum number of iterations T is reached.
In Line 5, it sets the dynamic sets Ci, i ∈ {1, . . . , k} to empty. In Lines 8–11, it initializes
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label map L, cost map C, and predecessor map P , and inserts all nodes into a priority
queue Q. In Lines 12–17, the algorithm maintains the dynamic sets Ci, i ∈ {1, . . . , k},
label map L, cost map C, and predecessor map P . At each iteration of this loop, a node
s of minimum cost C(s) is removed from Q and inserted into the corresponding dynamic
set CL(s) in Line 13. At this moment, the current path πs is optimum (i.e., its cost is
minimum among all possible paths with terminus s and rooted at S). In Lines 14–17,
node s offers an extended path πs · 〈s, t〉 to a node t ∈ Q (i.e., t ∈ Z \ ∪ki=1Ci). The path
value fmax(πs · 〈s, t〉) is computed and stored in tmp in Line 15. If tmp is less than the cost
C(t) of the current path πt in P , then πt is replaced by πs · 〈s, t〉 in Line 17 by updating
the values of the predecessor P (t), cost C(t), and label L(t) corresponding to t to s, tmp,
and L(s), respectively.

In Lines 18–20, the algorithm saves the current seed set S into S ′, resets the seed set
S to empty and then recomputes it by selecting the nodes ri ∈ Ci that are closest to the

Algorithm 14: IOPF for fmax and dynamic arc-weight estimation
Input : Graph G = (Z,A), seed set S with labeling function λ, number of

seeds k ≥ 1, and maximum number of iterations T ≥ 1
Output : Label L∗, cost C∗, and predecessor P ∗ maps
Auxiliar: Priority queue Q, dynamic sets Ci,∀ri ∈ S, i = 1, . . . , k, maps C, L

and P , and variables iter, converged and tmp

1 foreach s ∈ Z do
2 C∗(s)← +∞, L∗(s)← 0, P ∗(s)← nil
3 Pick k seeds from Z: S = {r1, . . . , rk}, iter ← 1, converged ← false
4 while iter ≤ T and converged = false do
5 Ci ← ∅,∀i ∈ {1, . . . , k}
6 Q = ∅
7 foreach s ∈ Z do
8 C(s)← +∞, L(s)← 0, P (s)← nil
9 if s = ri ∈ S, i ∈ {1, . . . , k} then

10 C(s)← 0, L(s)← i
11 Insert s in Q
12 while Q 6= ∅ do
13 Remove s from Q, so that s = argmint∈Q{C(t)} and CL(s) ← CL(s) ∪ {s}
14 foreach (s, t) ∈ A | t ∈ Q do
15 tmp ← max{C(s), ‖v(t)− µL(s)‖}
16 if tmp < C(t) then
17 C(t)← tmp, L(t)← L(s), P (t)← p

18 Sprev ← S, S ← ∅
19 foreach i ∈ {1, . . . , k} do
20 ri ← argmins∈Ci{‖v(s)− µi‖} and S ← S ∪ {ri}
21 converged ← (S = Sprev)
22 if

∑
∀s∈Z C(s) <

∑
∀s∈Z C

∗(s) then
23 (L∗, C∗, P ∗)← (L,C, P )
24 iter← iter + 1

25 return (L∗, C∗, P ∗)
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mean feature vector of their resulting optimum-path tree Ti, i ∈ {1, . . . , k}. The mean
feature vector is defined as the arithmetic mean of the feature vectors of the elements
contained in Ci. Next, in Line 21, S ′ is compared to S to test for convergence and the
result of this comparison is saved in converged. In Lines 22–23, we test whether the map
C provides a lesser total path-cost value than the map C∗, if that is so, then, L∗, C∗, and
P ∗ are updated with the maps L, C, and P , respectively. Lastly, the tuple (L∗, C∗, P ∗)

with minimum total path-cost value among all iterations is returned in Line 25.
The algorithm for IOPF with fixed arc-weights differs only in Line 15, where the arc-

weight between nodes s and t is estimated as ‖v(t) − v(s)‖. Thus, Line 15 should be
modified to tmp← max{C(s), ‖v(t)− v(s)‖}.

In order to reduce the complexity of the algorithm, we can store the mean feature
vector of each dynamic set and its size, so that these measures can efficiently be updated
during label propagation. Therefore, each time a new element s is added to the dynamic
set, the mean feature vector and the dynamic set size are updated as in Equation 4.3,
where v(s) represents the feature vector of s, µprev and µnext are the previous and next
mean feature vectors, while nprev and nnext represent the size of the dynamic set before
and after the update.

µnext = µprev +
v(s)− µprev
nprev + 1

nnext = nprev + 1

(4.3)

4.7 Application to Object Delineation

Since IOPF is a generalization of the ISF framework from the image domain to the feature
space, its application in the image domain is straightforward. We call the methods for
object delineation Iterative Dynamic Trees (IDT). A two-dimensional image is a pair
(DI , I), such that I(p) assigns local image features (e.g., color space components) for
each pixel p ∈ DI ⊂ Z2. An image can be rendered as a graph (N ,A) under various
configurations, depending upon how nodes N ⊆ DI and adjacency relation A ⊂ N ×N
are defined. We define pixels as nodes (N = DI), such that I(p) represents the CIELab
color components of pixel p, and the 8-neighborhood relation defines the arcs.

Given a seed set S, we wish to partition the image into objects such that the pixels
enclosed by an object are more closely connected to the seed within the object than to any
other seed. A unique object identifier is given to each seed p ∈ S by a labeling function
λ(p) ∈ {1, . . . , c}, where c is the number of objects.

Therefore, this application focuses on object delineation as a superpixel segmentation
task that defines each object by a single superpixel. The IDT algorithm consists of four
steps: (i) initial seed estimation with one seed per object, (ii) object delineation as an
optimum-path tree, (iii) seed set improvement and the loop of steps (ii)–(iii) for a preset
number of iterations or up to seed set convergence. After that, step (iv) completes the
process by selecting the optimum-path forest from loop (ii)–(iii) whose total path cost
is minimum. The IDT algorithm may be regarded as a new method based on the Itera-
tive Spanning Forest (ISF) framework [78], which adds step (iv) and drastically reduces
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the number of superpixels to the number of objects. In ISF, more accurate delineation
can be achieved by dynamic arc-weight estimation, as the optimum-path trees grow –
a strategy that has been demonstrated for superpixel segmentation [12] and interactive
object segmentation [14]. In IDT, we exploit this property in ISF for unsupervised object
segmentation for the first time.

All the framework components presented in previous sections are valid for this applica-
tion. However, given the nature of the problem, some other strategies can be introduced
as components for the framework. Following this line of thought, we present a new seed
recomputation strategy in the image domain. In Section 4.4, during iteration j, new seeds
are selected as the nodes closest to the mean feature vector for each optimum-path tree
Tij, i ∈ {1, . . . , k}. Nevertheless, in the image domain, we may also select the new seeds as
the nodes closest to the mean pixel of each optimum-path tree. The mean pixel is defined
as the arithmetic mean of pixel coordinates of the elements of clusters Cij, i ∈ {1, . . . , k}.
Thus, each seed ri,j+1, i = 1, . . . , n for iteration j + 1 is determined as

ri,j+1 = argmin
p∈Ci

{‖p− 1

|Ci|
×
∑
∀q∈Ci

q‖} (4.4)

Figure 4.3 depicts the application of the IDT algorithm from a randomly selected
initial seed set and maximum number of iterations set to 20. The seed set is recomputed
at the end of each single iteration and the optimum-path forest with the lowest total cost
is returned as the final output.

Figure 4.3: Object segmentation using the IDT algorithm.

4.8 Concluding Remarks

In this chapter, we comprehensively present the main contribution of this master’s work,
the Iterative Optimum-Path Forest (IOPF) framework, describing in detail its constituent
components: (i) a seed selection strategy, (ii) clustering by OPF, (iii) a seed recompu-
tation procedure and (iv) the return of the forest with lowest total path-cost. Next, an
application of the IOPF framework to object delineation is presented, where an alter-
native seed recomputation method is introduced in the context of images. In the next
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chapter, we discuss the experiments and results of the IOPF framework applied to three
problems that impose different restrictions on the definition of the graph topology.
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Chapter 5

Experiments and Results

In this chapter1, we present three applications to show the robustness and flexiblity of
the IOPF framework by designing suitable and effective IOPF-based methods for each
problem context. The first application in Section 5.1 addresses the problem of object
delineation following an unsupervised approach. The second application in Section 5.2
addresses the analysis of road networks by establishing emergency stations in strategic
locations, such that the distance between reference points and emergency stations is min-
imized. Lastly, the third application in Section 5.3 addresses the problem of clustering
synthetic two-dimensional datasets presenting a wide variety of shapes and distributions.

5.1 Object Delineation by Iterative Dynamic Trees

To demonstrate the advantages of step (iv) and random seed sampling in step (i) in the
context of object delineation, we compare four versions of IDT. IDT1 is the proposed
version, as described in Section 4.7 using the connectivity function fmax. IDT2 is IDT1

without step (iv), it selects the last optimum-path forest after T iterations, as proposed
in the original ISF framework and adopted by all previous ISF-based methods, such as
DISF [12]. IDT3 is IDT1 with grid sampling (seed sampling with uniform distance among
seeds) in step (iii), as used in some ISF-based approaches, such as DISF [12] and most
superpixel segmentation methods. IDT4 is IDT1 with seed recomputation based on the
mean feature vector instead of the mean pixel, as is detailed in Section 4.4.

To demonstrate the improvement of IDT for object delineation, we compare it against
DISF and IW [76] with two path-cost functions in the IFT algorithm: IW-max computes
the cost of a path as the maximum arc weight along it, for fixed arc weights ‖I(q)− I(p)‖,
and IW-sum computes the cost of a path as the sum of its arc weights. Like IDT1 and
IDT2, both IW-based methods start from a random seed set of size equal to the number of
desired objects (and background) [76]. DISF starts from a set with 150 seeds selected by
grid sampling for all images and reduces the seed set size at every iteration until it reaches
the number of desired objects [12]. IW has already been demonstrated to be superior to
spectral clustering [80], isoperimetric partitioning [37] and k-means in the task of object

1The text of this chapter is to appear as part of a book chapter entitled “An Iterative Optimum-Path
Forest Framework for Clustering” in [34]
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delineation.

Table 5.1: AMI, ARI, Boundary Recall and Cluster Accuracy (Mean +/- Std. Deviation)
for Weizmann 1-Object and 2-Object datasets for IDT variants, DISF, IW-max and IW-
sum.

Method AMI ARI BR CA

1-
O
bj
ec
t

IDT1 0.564673 ± 0.283 0.613058 ± 0.317 0.657833 ± 0.241 0.908387 ± 0.091
IDT2 0.344623 ± 0.270 0.363208 ± 0.323 0.433819 ± 0.276 0.841895 ± 0.114
IDT3 0.366932 ± 0.307 0.372370 ± 0.363 0.458131 ± 0.285 0.860064 ± 0.107
IDT4 0.471829 ± 0.281 0.512906 ± 0.319 0.586976 ± 0.243 0.885122 ± 0.097
DISF 0.304520 ± 0.282 0.282088 ± 0.347 0.398606 ± 0.296 0.836631 ± 0.112

IW-max 0.397320 ± 0.278 0.419055 ± 0.318 0.473212 ± 0.276 0.856288 ± 0.112
IW-sum 0.352781 ± 0.257 0.373990 ± 0.300 0.330048 ± 0.243 0.847699 ± 0.108

2-
O
bj
ec
t

IDT1 0.589247 ± 0.278 0.600024 ± 0.345 0.748527 ± 0.194 0.953605 ± 0.054
IDT2 0.587252 ± 0.278 0.614408 ± 0.333 0.730065 ± 0.207 0.946522 ± 0.064
IDT3 0.386087 ± 0.279 0.334149 ± 0.328 0.518125 ± 0.263 0.902305 ± 0.100
IDT4 0.553327 ± 0.274 0.566872 ± 0.324 0.711618 ± 0.204 0.943516 ± 0.064
DISF 0.420036 ± 0.295 0.376453 ± 0.352 0.582483 ± 0.263 0.919615 ± 0.078

IW-max 0.435559 ± 0.330 0.544933 ± 0.311 0.615948 ± 0.231 0.921671 ± 0.086
IW-sum 0.395757 ± 0.242 0.347743 ± 0.299 0.496769 ± 0.224 0.895421 ± 0.097
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Figure 5.1: Results obtained in each dataset for AMI, ARI, BR and CA. (a) Weizmann
1-Object dataset, (b) Weizmann 2-Object dataset.

For evaluation of object segmentation, we use the Weizmann 1-Object and 2-Object
datasets [7], containing 100 images each, along with ground-truth segmentations. Images
in these datasets (available at http://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_
DB/) depict one or two objects in the foreground. For assessment of the methods, we use
four popular effectiveness measures: (i) Adjusted Mutual Information (AMI) [79], which
is an adjustment of the Mutual Information (MI) score to account for chance, (ii) Ad-
justed Rand Index (ARI) [42], which determines the Rand index (RI) score adjusted for
chance, (iii) Boundary Recall (BR), which measures boundary adherence [1], and (iv)

http://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB/
http://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB/
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Cluster Accuracy [30], which measures the degree of intersection between predicted and
ground-truth segmentation.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

(y) (z) (aa) (ab) (ac) (ad)

(ae) (af) (ag) (ah) (ai) (aj)

Figure 5.2: Segmentation results for Weizmann 1-Object dataset. (a)–(f) Original images,
(g)–(l) Ground-truth, (m)–(r) IDT1, (s)–(x) DISF (No = 150), (y)–(ad) IW-max and
(ae)–(aj) IW-sum.

The experiments were conducted using the same sets of initial seeds for IDT1, IDT2,
IDT4, IW-max and IW-sum. To guarantee the best result from each algorithm, they are
executed 20 times for each image, from which the best object segmentation is selected
according to the evaluation metrics. Next, mean and standard deviation are computed
from these values across all images for each dataset. Table 5.1 shows the effectiveness
of object segmentation for all methods according to four different metrics (AMI, ARI,
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Figure 5.3: Segmentation results for Weizmann 2-Object dataset. (a)–(f) Original images,
(g)–(l) Ground-truth, (m)–(r) IDT1, (s)–(x) DISF (No = 150), (y)–(ad) IW-max and
(ae)–(aj) IW-sum.

BR and CA). IDT1 is the best approach, being worse than IDT2 in only a single case,
according to ARI for the 2-object segmentation task. IDT1 exhibits superior results than
IDT4 suggesting that the seed recomputation based on the mean pixel is the best option
in the context of image segmentation.

An important finding from the experiments showed that DISF relies heavily on the
size of the initial seed set, imparting outstanding results for some images while failing
for others. The results also show that random sampling suffices for step (i), and step
(iv), added by the proposed approach to the ISF framework, is vital for improved object
segmentation. The results raise the question of how good it would be IDT for superpixel
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Figure 5.4: Segmentation results for Weizmann 1-Object dataset. (a)–(f) IDT1, (g)–(l)
IDT2, (m)–(r) IDT3 and (s)–(x) IDT4.
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(s) (t) (u) (v) (w) (x)

Figure 5.5: Segmentation results for Weizmann 2-Object dataset. (a)–(f) IDT1, (g)–(l)
IDT2, (m)–(r) IDT3 and (s)–(x) IDT4.
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Figure 5.6: Results obtained for IDT1 with Algorithm 13 under different values of esti-
mated seed of outliers (h) in the range [0.05%, 30%] in each dataset for AMI, ARI, BR
and CA. The score of IDT1 with random initial seed set (see Table 5.1) is shown in dashed
lines for all metrics. (a) Weizmann 1-Object dataset, (b) Weizmann 2-Object dataset.

segmentation (when the number of seeds is higher than the number of desired objects),
which we will leave for future work. Figures 5.2 and 5.3 show the segmentation results for
IDT1, DISF, IW-max and IW-sum on some images of Weizmann 1-Object and 2-Object
datasets, respectively, where it can be seen that the IDT1 method achieves the best object
segmentation for all image instances in contrast to its counterparts. Next, Figures 5.4
and 5.5 show the segmentation results for IDT1, IDT2, IDT3 and IDT4 on the same images
as in Figures 5.2 and 5.3. From these figures, it can be seen that IDT1 stands out from
its variants as the most effective method for object delineation.

In this context, the seed set selection algorithm was also tested to determine whether
this proposed methodology may positively affect the performance of IDT1. IDT1 originally
starts with a random seed set. However, in this experiment, the algorithm will start with
initial seed sets output by Algorithm 13. The seed set selection algorithm was executed
with different values of h (estimated percentage of outliers) in the range of 0.05% to
30% with step size of 2.5%. Figure 5.6 exhibit the performance of this methodology
expressed in four different metrics for both Weizmann 1-Object and 2-Object datasets.
From the figure, we see that as we increase the estimated percentage of outliers, the
algorithm’s performance, assessed by BR and CA, slightly increases in both datasets.
Conversely, the algorithm’s performance is barely increasing and sometimes decreasing
for some values of h when assessed by AMI and ARI. Nevertheless, these scores are lower
than its counterpart IDT1 with random initial seed set (shown in dashed lines). Therefore,
this result suggests that combining the seed selection strategy with IDT1 does not improve
the original formulation where the seed set is selected randomly, and thus we can conclude
that in order to attain the best performance in object delineation, IDT1 with random seed
selection is the most suitable configuration.
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Figure 5.7: Road network of the city of São Paulo, Brazil.

Figure 5.8: Road network of the city of Rio de Janeiro, Brazil.
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(a) Belo Horizonte (b) Recife

Figure 5.9: Road networks of the cities of (a) Belo Horizonte and (b) Recife in Brazil.

(a) Porto Alegre (b) Salvador

Figure 5.10: Road network of the cities of (a) Porto Alegre and (b) Salvador in Brazil.
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5.2 Analysis on Road Networks

Road networks impose a new constraint on the graph’s adjacency relation since it is
already predefined by the road network map where edges are defined by the roads con-
necting two reference points. This experiment addresses the following problem of, given
a road network instance, identifying suitable points for placing emergency stations, such
that, each emergency station reach the point of incident in the minimum time possible.
The following points should be taken into consideration to devise a solution to this prob-
lem: (i) The emergency station must be reachable from the point of incident in a short
time interval (i.e., the distance between these two points must be minimized) and (ii)
The number of emergency stations spread across the map must be as low as possible to
minimize the establishment costs.
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Figure 5.11: Average total path costs for the Brazilian cities of Belo Horizonte, Porto
Alegre, Recife, Rio de Janeiro, Salvador, and São Paulo for the algorithms IW-sum, IW-
max, IOPF-dynsum, and IOPF-dynmax with a varying number of centers.

A road network will induce a weighted graph G = (Z,A), where the nodes are defined
by a set of reference points spread across the road map which constitute the dataset Z
and are uniquely identified by a pair of coordinates x = (x1, x2). An emergency station
must be established at one of such points. The adjacency relation A that defines the arcs
of the graph is given by the set of pairs (x, y) ∈ Z × Z, such that x and y are connected
by a road. The arcs are weighted by their corresponding road lengths, which are provided
beforehand for this experiment.

Based on the above definition, we may formulate this problem as the discovering of
a set of k emergency points ci ∈ Z, i ∈ {1, . . . , k}, such that sum of path-costs between
each reference point s ∈ Z and its most closest emergency station – i.e.,

∑
s∈Z f(πs)), is

minimized across all reference points for a given connectivity function f , therefore, the
application of the IOPF framework to this problem is straightforward. In this context, the
problem described above may be divided into two subsequent stages or subproblems. The
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Table 5.2: Average total path costs for the Brazilian cities of Belo Horizonte, Porto Alegre,
Recife, Rio de Janeiro, Salvador, and São Paulo for the algorithms IW-sum, IW-max,
IOPF-dynsum, and IOPF-dynmax with a varying number of centers.

# Centers IW-sum IW-max IOPF-dynsum IOPF-dynmax

B
el

o
H

or
iz

on
te

3 50392.84 ± 1873.05 59173.66 ± 4721.73 49879.25 ± 441.97 49052.51 ± 1071.37

6 39271.38 ± 1024.23 46087.54 ± 2813.85 39890.12 ± 1393.49 39326.05 ± 1186.43

9 32266.13 ± 1047.32 40395.69 ± 4305.03 33035.27 ± 1223.22 32909.83 ± 1297.82

12 27348.55 ± 1148.55 34701.26 ± 2364.85 28533.93 ± 1179.58 28714.03 ± 1045.76

15 23766.05 ± 703.01 31133.95 ± 2348.54 25295.12 ± 1083.38 25642.89 ± 957.62

P
or

to
A

le
gr

e

3 97407.88 ± 3809.96 121376.97 ± 24728.46 96640.18 ± 603.42 97018.90 ± 4720.06

6 70961.53 ± 3290.43 85313.21 ± 7292.24 71178.73 ± 3009.31 73312.43 ± 5177.42

9 54750.34 ± 4342.36 71823.30 ± 7011.44 54571.08 ± 2361.63 56983.83 ± 4804.08

12 46793.18 ± 932.39 61733.62 ± 4060.54 47611.60 ± 1677.85 48224.04 ± 1923.37

15 42094.06 ± 1369.52 54474.27 ± 6210.77 41996.50 ± 1673.19 42888.86 ± 1887.78

R
ec

if
e

3 47465.21 ± 1071.42 56321.18 ± 5700.37 48564.26 ± 2418.34 47793.52 ± 560.23

6 31560.96 ± 780.89 39324.44 ± 4542.26 31759.04 ± 497.83 32420.76 ± 1992.57

9 26036.27 ± 971.14 32790.09 ± 2602.29 26178.34 ± 1167.90 26766.27 ± 1484.19

12 22326.89 ± 754.97 28792.67 ± 2907.76 22475.01 ± 713.84 23276.13 ± 1102.17

15 19550.77 ± 430.20 24273.99 ± 1740.91 19781.37 ± 567.09 20289.22 ± 1009.53

R
io

d
e

Ja
n
ei

ro

3 208968.97 ± 7704.59 308388.16 ± 83156.19 210828.25 ± 12300.04 231768.06 ± 53873.91

6 152151.05 ± 8669.53 201568.28 ± 61683.35 151757.59 ± 7249.10 147985.06 ± 4118.53

9 126027.29 ± 6118.03 149069.25 ± 14838.43 125305.51 ± 5534.58 122329.64 ± 5945.00

12 105914.04 ± 3594.79 132210.23 ± 9104.88 106830.88 ± 3795.28 105052.38 ± 4250.77

15 92811.58 ± 4231.72 112041.85 ± 8576.53 94756.97 ± 4602.93 94047.29 ± 4831.71

S
al

va
d
or

3 26953.18 ± 2587.67 34741.45 ± 4769.68 25786.45 ± 1544.62 27255.29 ± 3135.52

6 17782.28 ± 648.34 23527.57 ± 4215.90 17970.04 ± 828.34 18591.79 ± 612.93

9 14645.86 ± 436.67 19189.59 ± 3306.66 14777.55 ± 646.55 15838.72 ± 1589.64

12 12812.38 ± 811.51 16319.22 ± 1732.45 12857.59 ± 847.78 13392.92 ± 869.91

15 11037.27 ± 764.02 14287.47 ± 1239.53 11280.82 ± 853.77 11615.92 ± 1083.61

S
ão

P
au

lo

3 225694.20 ± 2862.17 268244.34 ± 16638.99 226909.29 ± 6658.03 226372.56 ± 684.42

6 165991.84 ± 3441.19 211433.73 ± 16557.69 168775.45 ± 4092.53 169531.03 ± 5047.84

9 142613.33 ± 2214.72 183700.73 ± 15373.26 143098.41 ± 1907.44 143415.22 ± 3057.78

12 124687.04 ± 2041.82 154775.17 ± 8153.19 126028.38 ± 2688.92 126033.73 ± 3403.75

15 112642.07 ± 1868.52 142541.69 ± 11614.11 113465.35 ± 2149.23 114127.19 ± 2769.51

first stage entails discovering the set of k emergency points through the IOPF framework,
which can be carried out under different combinations of connectivity functions and arc-
weight estimation strategies. Next, the second stage determines the sum of path-costs
between each of the emergency stations discovered during the first stage and its most
closest points, which is obtained through a single execution of the OPF algorithm with
fsum using the emergency station points as seeds. The ideal number of emergency stations
is identified after repeating the experiment with a sequence of increasing values. The ideal
number of stations is selected at the point where the reduction of

∑
s∈Z f(πs)) does not

compensate the placing costs of establishing an additional emergency station.
In this experiment, our objective is to determine the IOPF configuration that suits

better the problem described above. Therefore, we compare four versions of IOPF, where



70

3 6 9 12 15
Number of centers

25000

30000

35000

40000

45000

50000
Av

g.
 T

ot
al

 P
at

h 
Co

st
IW-sum
IW-sum (1%)
IW-sum (5%)
IW-sum (10%)

(a) Belo Horizonte

3 6 9 12 15
Number of centers

40000

50000

60000

70000

80000

90000

100000

Av
g.

 T
ot

al
 P

at
h 

Co
st

IW-sum
IW-sum (1%)
IW-sum (5%)
IW-sum (10%)

(b) Porto Alegre

3 6 9 12 15
Number of centers

20000

25000

30000

35000

40000

45000

Av
g.

 T
ot

al
 P

at
h 

Co
st

IW-sum
IW-sum (1%)
IW-sum (5%)
IW-sum (10%)

(c) Recife

3 6 9 12 15
Number of centers

100000

120000

140000

160000

180000

200000

220000

Av
g.

 T
ot

al
 P

at
h 

Co
st

IW-sum
IW-sum (1%)
IW-sum (5%)
IW-sum (10%)

(d) Rio de Janeiro

3 6 9 12 15
Number of centers

10000

15000

20000

25000

30000

Av
g.

 T
ot

al
 P

at
h 

Co
st

IW-sum
IW-sum (1%)
IW-sum (5%)
IW-sum (10%)

(e) Salvador

3 6 9 12 15
Number of centers

120000

140000

160000

180000

200000

220000

Av
g.

 T
ot

al
 P

at
h 

Co
st

IW-sum
IW-sum (1%)
IW-sum (5%)
IW-sum (10%)

(f) São Paulo

Figure 5.12: Average total path costs for the Brazilian cities of Belo Horizonte, Porto
Alegre, Recife, Rio de Janeiro, Salvador, and São Paulo for IW-sum with random seed
selection and IW-sum using the seed selection algorithm with estimated percentage of
outliers (h) of 1%, 5%, and 10% with a varying number of centers.

each of them presents a variation in their configurations on either the connectivity function
or the arc-weight estimation strategy. IW-sum and IW-max determine the cost of a path
using the fsum and fmax connectivity functions, respectively, for fixed arc weights ‖x− y‖.
On the other hand, IOPF-dynsum and IOPF-dynmax determine the cost of a path using
the fsum and fmax connectivity functions for dynamic arc-weight estimation.

The road networks for this experiments are taken from [45] (available at https:
//figshare.com/articles/dataset/Urban_Road_Network_Data/2061897). In [76], a simi-
lar experiment was conducted with the road networks corresponding to the Indian cities
of Mumbai, Hyderabad, Chennai, Bengaluru, Calcuta, and Delhi. The IW algorithm was
compared to k-means and greedy k-center exhibiting a better performance than its coun-
terparts. This experiment uses the road networks corresponding to the Brazilian cities
of São Paulo, Rio de Janeiro, Belo Horizonte, Recife, Porto Alegre and Salvador. IOPF-
based algorithms assume that the graph on which are executed is connected. Therefore,
we need to make sure that the graph induced by a road network is connected. To simplify
this task, we select the largest connected component in each road network as the graph
induced by the road network. Figures 5.7, 5.8, 5.9, and 5.10 show the graph induced by
the road networks of the Brazilian cities where blue dots represent the nodes or reference
points, while black lines linking pairs of reference points represent the edges or roads.

The experiments were carried out using the same sets of initial seeds for IW-sum,
IW-max, IOPF-dynsum and IOPF-dynmax. For each city’s road network, each method
is executed thirty times for a varying number of centers, then the sum of path-costs
across all nodes

∑
s∈Z f(πs) is averaged across all executions to assess its effectiveness.

Table 5.2 shows the comparison of the average values of the total path costs
∑

s∈Z f(πs)

with 3, 6, 9, 12 and 15 centers for each city’s road network. IW-sum appears to be the

https://figshare.com/articles/dataset/Urban_Road_Network_Data/2061897
https://figshare.com/articles/dataset/Urban_Road_Network_Data/2061897
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Figure 5.13: Road network of the city of São Paulo, Brazil.

Figure 5.14: Road network of the city of Rio de Janeiro, Brazil.
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(a) Belo Horizonte (b) Recife

Figure 5.15: Road networks of the cities of (a) Belo Horizonte and (b) Recife in Brazil.

(a) Porto Alegre (b) Salvador

Figure 5.16: Road network of the cities of (a) Porto Alegre and (b) Salvador in Brazil.

most suitable IOPF-based method in most of the cases achieving a lower value than its
counterparts, and being worse than IOPF-dynsum and IOPF-dynmax in only a few cases
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where the difference in values is not significant. Furthermore, it can also be observed
that both IOPF-dynsum and IOPF-dynmax obtain average values which are very similar
to those obtained by IW-sum in contrast to IW-max, which obtain the largest average
values. Figure 5.11 illustrate this comparison through a line chart for each city’s road
network. Each line chart shows the average total path cost across an increasing number
of centers for each method, where IW-sum stands out as the method that minimizes the
total path cost in most of the settings. On the other hand, in order to identify whether
the seed selection algorithm may improve the effectiveness of the IW-sum method, we
executed the seed selection algorithm for different values of h, namely 5%, 10% and
15%. From Figure 5.12, we can see that some improvement is achieved when coupling
the seed selection algorithm with the IW-sum method. This becomes more noticeable as
the number of centers increases. We believe that this result can be further improved by
incorporating local density information to the seed selection algorithm. This idea stems
from the fact that seeds should be chosen from dense regions of points, however, the
seed selection algorithm only takes into account distances along a path measured by a
given connectivity function. Nevertheless, density computation for large datasets may
become computationally expensive, impairing performance. Accordingly, research should
be conducted to introduce density information into the seed selection procedure without
compromising performance.

Figures 5.13, 5.14, 5.15 and 5.16 show the clustering result of IW-sum with fifteen
centers for each city’s network, where each cluster is colored with a different color and
the centers (i.e., emergency points) are marked with a cross surrounded by a circle.

5.3 Experiments on Synthetic Datasets

In order to ascertain the performance and robustness of the IOPF framework in a broader
variety of datasets, we evaluate several IOPF-based methods on synthetic datasets that
exhibit a wide spectrum of shapes and distributions. In the first part of this experiment, we
use five synthetic datasets generated with sklearn, a Python library that implements most
of the state-of-the-art machine learning algorithms and techniques. These five datasets
are shown in Figure 5.17, where it can be seen that the noisy circles and noisy moons
datasets comprise two groups, while the varied, aniso and blobs datasets comprise three
groups. All these datasets consist of 1500 samples each and exhibit a diversity of shapes
and distributions, which will allow us to assess the framework’s robustness in these case
scenarios.

In this kind of datasets, we do not possess enough information about the underlying
relationship among the samples to establish a suitable graph topology, conversely to what
happens in Sections 5.1 and 5.2. Therefore, a strategy to build suitable graph topologies
in the general case is still a topic under investigation. In Chapter 4, we introduced
two examples of graph topologies. Let Z be a dataset such that each sample s ∈ Z is
represented in the feature space by a feature vector v(s) ∈ Rn. The adjacency relation
A ⊆ Z × Z may be defined in such a way that the induced graph G = (Z,A) can be
established either as a complete or k-nearest neighbor graph. If G is defined as a complete
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Figure 5.17: Synthetic datasets created with sklearn.

graph, IOPF with fixed arc weights and fsum connectivity function (i.e., IW-sum) is
expected to behave in a similar way as k-means. In this setting, the edge connecting any
seed to any of the remaining samples is selected as the path with the minimum cost over
any other path connecting such pair of samples in the graph. This fact can be explained
by means of the triangle inequality extended to polygons, and therefore, its behavior
matches that of k-means, which considers direct distances between centroids and samples
to form the clusters.

We conducted experiments with four configurations of IOPF to ascertain its effective-
ness under a complete graph topology. IW-sum and IW-max use fixed arc weights with
fsum and fmax connectivity functions, respectively. On the other hand, IOPF-dynsum and
IOPF-dynmax use dynamic arc weight estimation with fsum and fmax connectivity func-
tions, respectively. We compare the aforementioned IOPF-based methods with k-means
on the task of clustering the synthetic datasets. Figure 5.18 shows the clustering results
for k-means, IW-sum, IW-max, IOPF-dynsum and IOPF-dynmax. For each dataset, the
same initial seeds are selected for all methods, which are marked with crosses (×), while
the final medoids are marked with triangles (N). From the results in Figure 5.18, we can
see that the final clusterings achieved by k-means, IW-sum, IOPF-dynsum and IOPF-
dynmax are similar for all datasets, however, the position of the final medoids differ, and
this fact is more evident for the noisy moons dataset in the second row. The k-means,
IW-sum, IOPF-dynsum and IOPF-dynmax algorithms fail to separate the clusters for the
noisy circles, noisy moons, varied and aniso datasets, which are represented in the first
four rows of Figure 5.18. These algorithms only succeed when separating the groups in the
blobs dataset, where the clusters are well-defined, well-separated, and exhibit spherical
shapes. On the other hand, the IW-max method successfully separates the groups for all
synthetic datasets, albeit the final result of the clustering relies heavily on the selection of
the initial seeds. IW-max is very sensitive to isolated points or outliers, penalizes spatial
gaps in the dataset, and works independently of the clusters’ shape. Figure 5.19 shows the
clustering results using IW-max, where it fails to separate the groups due to bad initial
seeds and spatial gaps in the dataset. Therefore, in an effort to circumvent these cases,
we employ the seed selection algorithm (see Algorithm 13) with estimated percentage of
outliers h = 5%, as shown in Figure 5.20. It can be seen from the figure that seeds are
chosen from dense regions of samples with similar inter-seed distance. In some cases, the
algorithm starts with one seed from each cluster (which is the ideal scenario) succeeding
in separating the groups. Accordingly, combining IW-max on a complete graph topology
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with the seed selection algorithm seems a good approach to address the clustering problem
in the general case.

Figure 5.18: Clustering results on the synthetic datasets for k-means, IW-sum, IW-max,
IOPF-dynsum and IOPF-dynmax on a complete graph topology. The initial seeds are
marked with crosses (×), while the final medoids are marked with triangles (N). In cases
where the initial seeds are equivalent to the final medoids, only the final medoids are
marked.

Alternatively, we may as well define G as a k-nearest neighbor graph, where each
sample s ∈ Z is linked through an edge to its k closest neighbors for a fixed k. This con-
struction is straightforward, however, we need to make sure that two conditions are met.
If (u, v) ∈ A, then (v, u) ∈ A, and G must be connected. If G is not connected, the edges
of the minimum spanning tree containing all samples in Z are added to G in increasing
order of weight, joining the connected components, until there is a single connected com-
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Figure 5.19: Clustering results on the synthetic datasets for IW-max where it fails at
separating the groups due to bad initial seeds and spatial gaps in the dataset.

Figure 5.20: Clustering results on the synthetic datasets for IW-max where initial seeds
are selected through the seed selection algorithm with estimated percentage of outliers
(h) of 5%.

ponent in G. We conducted experiments using a k-nearest neighbor graph topology with
k = 15 where the steps described above were applied. Figure 5.21 shows the results of
running k-means, IW-sum, IW-max, IOPF-dynsum and IOPF-dynmax on the synthetic
datasets. From the figure, it can be seen that IW-sum now is able to successfully separate
the groups for the noisy circles, noisy moons, aniso and varied datasets. Therefore, impos-
ing restrictions in the graph topology leads to improvements in the clustering capabilities
of IW-sum. On the other hand, IOPF-dynsum and IOPF-dynmax still fail at separating
the groups for the noisy circles, noisy moons, varied and aniso datasets. IW-max still
performs well under this restriction on the graph topology, obtaining a similar result to
the case of a complete graph.

To ascertain the framework’s effectiveness and robustness against other state-of-the-
art clustering algorithms, we compared IW-max using a complete graph topology and
the seed selection algorithm where h = 5% with five popular clustering algorithms: (i)
mean shift, (ii) spectral clustering, (iii) DBSCAN, (iv) Gaussian mixture, and (v) agglom-
erative clustering. Mean shift [23] is a nonparametric iterative mode-seeking clustering
algorithm which works by means of maximizing the kernel density estimate to locate
the modes in the data. It is widely used in pattern recognition and computer vision.
Spectral clustering [80] is a graph-theoretic technique that computes the Laplacian of the
graph and exploits its properties to partition the data regardless of the clusters’ shapes.
DBSCAN [28] is a density-based clustering technique that is capable of discovering ar-
bitrary shape clusters and effectively handling noise and outliers during the clustering
process. Gaussian mixture [67] is a parametric probability density function expressed as
a weighted sum of a finite number of Gaussian distributions and determine its parameters
through expectation maximization (EM). Agglomerative clustering [64] is a hierarchical
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Figure 5.21: Clustering results on the synthetic datasets for k-means, IW-sum, IW-max,
IOPF-dynsum and IOPF-dynmax on a k-nearest neighbor graph topology with k = 15.

clustering technique that follows a bottom-up approach to progressively partition the data
outputting a hierarchical structure.

Figure 5.22 shows the result of this comparison on the synthetic datasets. It can be
seen that, in contrast to its counterparts, IW-max successfully separates the groups for all
synthetic datasets. The spectral clustering algorithm is also able to separate the groups
for most of the datasets, however, it fails for the aniso dataset, not being able to fully
separate the blue and green clusters. Similarly, the agglomerative clustering algorithm
only fails to identify the correct groups for the aniso dataset, while correctly separating
the groups in the rest of the cases. As expected, the Gaussian mixture algorithm correcty
identifies elliptical shape clusters, while failing for the noisy circles and noisy moons
datasets. DBSCAN works effectively when clusters are dense and well-separated by low
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density regions, however, it is unsuccessful when clusters’ boundaries are too close as in
the cases of the varied and aniso datasets. Mean shift, on the other hand, is not able
to identify the clusters in the noisy circles, noisy moons and aniso datasets. Finally, all
algorithms identify effectively the groups in the blob dataset, where the clusters exhibit
spherical shape and are well separated in the feature space.

Figure 5.22: Clustering results on the synthetic datasets using IW-sum with a complete
graph and the seed selection algorithm, where h = 5%, against mean shift, spectral
clustering, DBSCAN, Gaussian mixture and agglomerative clustering.

To further assess the framework’s performance, we employed seven additional datasets
collected from [36]. Each dataset presents some challenges due to their inherent structure
and distribution. Figure 5.23 shows the datasets employed in this experiment. The jain
and flame datasets comprise two clusters each, where the clusters’ density in the jain
dataset is not uniform. The spiral datasets comprise three clusters shaped as curves. The
r15, s1 and s2 datasets consist of fifteen clusters each, with different degrees of separation.
The unbalance dataset consists of eight clusters where the three groups on the left are
considerably denser than the five clusters on the right, hence the clusters are unbalanced.
Table 5.3 summarizes the datasets’ information. We compare IW-max on a complete
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graph with the seed selection algorithm against k-means, mean shift, spectral clustering,
DBSCAN, Gaussian mixture, and agglomerative clustering. Figure 5.24 shows the results
of the clustering experiments. Different values of estimated percentage of outliers (h) were
used for the seed selection algorithm based on the data distribution and density. For the
jain, spiral, flame and r15 datasets, we used h = 10%. For the s1 and s2 datasets, we used
h = 2% and lastly, for the unbalance dataset, we used h = 1%. From the figure, it can
be observed that IW-sum successfully separates the clusters in all datasets. Moroever,
through the seed selection algorithm, we are able to locate a seed within each cluster for
each dataset, therefore, it serves as a key tool to achieve robust clustering results.

Table 5.3: Number of samples and clusters for each synthetic dataset.

Dataset # of Samples # of Clusters

Jain 373 2

Spiral 312 3

Flame 240 2

R15 600 15

S1 5000 15

S2 5000 15

Unbalance 6500 8
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Figure 5.23: Synthetic datasets collected from [36].

The clusters in the jain dataset are only correctly identified by IW-max, while its
counterparts are not able to effectively discover the groups. The clusters in the spiral
dataset are only correctly detected by IW-max, DBSCAN and agglomerative clustering,
while for the flame dataset, the IW-max and DBSCAN are the ones that stand out from
the rest. For the r15 dataset, IW-max, k-means, mean shift, and Gaussian mixture are
the methods that accurately identify the groups. In the case of the s1 and s2 datasets,
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Figure 5.24: Clustering results on the synthetic datasets using IW-max with a complete
graph and the seed selection algorithm against k-means, mean shift, spectral clustering,
DBSCAN, Gaussian mixture and agglomerative clustering.

the only methods that correctly discover the clusters are the IW-max and Gaussian mix-
ture techniques. Lastly, for the unbalance dataset, the methods that effectively separate
the groups are IW-max, k-means, DBSCAN and Gaussian mixture. DBSCAN works
effectively in cases where the clusters are well-separated and inter-cluster proximity is
significantly larger than the distances between samples within a cluster. However, this is
clearly not the case for the jain, s1 and s2 datasets. Gaussian mixture works better for
clusters of elliptical shape and when there is no inter-cluster overlapping.
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5.4 Concluding Remarks

In this chapter, we discuss the experiments and results of applying the IOPF framework
to the following three applications: (i) object delineation, (ii) analysis on road networks
and (iii) clustering of synthetic datasets, which impose different constraints on the defini-
tion of the graph topology. In this context, we design four IOPF-based solutions, namely
IOPF-dynsum, IOPF-dynmax (IDT), IW-sum and IW-max, to address the aforemen-
tioned problems. The best IOPF-based methods for each applications are IOPF-dynmax
(IDT), IW-sum and IW-max, respectively. Additionally, the inclusion of the seed selection
algorithm proposed in Section 4.2 and the imposing of restrictions on the graph topology
may improve the results obtained by IW-sum and IW-max. In the next and final chapter,
we state the conclusion and future work.
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Chapter 6

Conclusion and Future Work

We introduced a flexible and robust graph-based clustering framework, called Iterative
Optimum-Path Forest (IOPF), that employs subsequent executions of the Optimum-Path
Forest algorithm from reestimated seed sets to partition an input dataset. This frame-
work allows the design of connectivity-based clustering methods by suitable choice of its
constituent components. In addition, we introduced an algorithm to select initial seeds
for data clustering, improving a previous work [76]. In this context, we presented four
IOPF-based clustering methods, IW-sum, IW-max, IOPF-dynsum and IOPF-dynmax.
We evaluated them for object delineation, identification of emergency stations in road
networks, and clustering of synthetic datasets with various shapes and sizes in a 2D fea-
ture space.

We observed that IW-sum improves its effectiveness when the graph topology is con-
strained to the k-nearest neighbors. On the other hand, IOPF-dynmax, previously called
IDT [9], is identified as the best approach for object delineation; IW-sum is the best
method for identification of emergency stations in road networks, and IW-max is the
winner in the clustering of two-dimensional datasets. Finally, it is worth noting that
the proposed versions of IW-sum and IW-max adopt the initial seed selection method
introduced in Section 4.4 and the choice of the forest that minimizes the total path-costs,
as presented in Section 4.5. Therefore, we can conclude that IW-sum and IW-max are
relevant improvements concerning their original versions [76].

The results show that IOPF-dynmax (IDT) can be more effective than DISF [12]
for object delineation, leaving as future work a comparative study between them for
superpixel segmentation. In the identification of emergency stations in road networks,
IW-sum has already shown superior performance than k-means in a previous work [76].
In the present work, we demonstrate the advantages of IW-max over k-means, spectral
clustering, DBSCAN, mean shift, Gaussian mixture models, and agglomerative clustering
using synthetic datasets. Hence, we may conclude that IOPF is a flexible and robust
framework that can be used to design clustering solutions to address a wide variety of
problems, being IW-sum, IW-max, and IOPF-dynmax (IDT) its best clustering methods.

As future work, we intend to investigate new techniques for seed recomputation to fur-
ther improve the effectiveness of IOPF-based methods, to include local density information
to identify initial seeds, and to explore new applications for IOPF-based techniques, more
specifically, in the context of the clustering of multidimensional datasets. Furthermore,
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we believe that the development of strategies to design a suitable graph topology, in
cases where it can not be induced from the problem definition, seems a plausible research
direction as well.



84

Bibliography

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. Slic superpixels
compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 34(11):2274–2282, 2012.

[2] R. Achanta and S. Susstrunk. Superpixels and polygons using simple non-iterative
clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4651–4660, 2017.

[3] L. Afonso, A. Vidal, M. Kuroda, A. X. Falcão, and J. P. Papa. Learning to classify
seismic images with deep optimum-path forest. In 2016 29th SIBGRAPI Conference
on Graphics, Patterns and Images (SIBGRAPI), pages 401–407, 2016.

[4] L. C. Afonso, C. R. Pereira, S. A. Weber, C. Hook, A. X. Falcão, and J. P. Papa. Hier-
archical learning using deep optimum-path forest. Journal of Visual Communication
and Image Representation, 71:102823, 2020.

[5] C. C. Aggarwal. Graph Clustering, pages 459–467. Springer US, Boston, MA, 2010.

[6] M. Ahmed, R. Seraj, and S. M. S. Islam. The k-means algorithm: A comprehensive
survey and performance evaluation. Electronics, 9(8), 2020.

[7] S. Alpert, M. Galun, R. Basri, and A. Brandt. Image segmentation by probabilistic
bottom-up aggregation and cue integration. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, June 2007.

[8] W. P. Amorim, A. X. Falcão, and M. H. d. Carvalho. Semi-supervised pattern
classification using optimum-path forest. In 2014 27th SIBGRAPI Conference on
Graphics, Patterns and Images, pages 111–118, 2014.

[9] D. Aparco-Cardenas, P. J. de Rezende, and A. X. Falcão. Object delineation by
iterative dynamic trees. In Iberoamerican Congress on Pattern Recognition, pages
1–10, 2021.

[10] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierar-
chical image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(5):898–916, 2011.

[11] F. Belém, S. J. F. Guimarães, and A. X. Falcão. Superpixel segmentation by object-
based iterative spanning forest. In Iberoamerican Congress on Pattern Recognition,
pages 334–341. Springer, 2018.



85

[12] F. C. Belém, S. J. F. Guimarães, and A. X. Falcão. Superpixel segmentation using
dynamic and iterative spanning forest. IEEE Signal Processing Letters, 27:1440–1444,
2020.

[13] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(11):1222–1239, 2001.

[14] J. Bragantini, S. B. Martins, C. Castelo-Fernandez, and A. X. Falcão. Graph-based
image segmentation using dynamic trees. In Iberoamerican Congress on Pattern
Recognition, pages 470–478. Springer, 2018.

[15] F. A. Cappabianco, A. X. Falcão, C. L. Yasuda, and J. K. Udupa. Brain tissue
mr-image segmentation via optimum-path forest clustering. Computer Vision and
Image Understanding, 116(10):1047–1059, 2012.

[16] G. Castellano, R. A. Lotufo, A. X. Falcão, and F. Cendes. Characterization of the
human cortex in mr images through the image foresting transform. In Proceedings
2003 International Conference on Image Processing (Cat. No.03CH37429), volume 1,
pages I–357, 2003.

[17] C. Castelo-Fernández and A. X. Falcão. Learning visual dictionaries from class-
specific superpixel segmentation. In International Conference on Computer Analysis
of Images and Patterns, pages 171–182. Springer, 2019.

[18] S. Chen, T. Sun, F. Yang, H. Sun, and Y. Guan. An improved optimum-path
forest clustering algorithm for remote sensing image segmentation. Computers &
Geosciences, 112:38–46, 2018.

[19] F. R. Chung and F. C. Graham. Spectral graph theory. Number 92 in Regional
Conference Series in Mathematics. American Mathematical Society, 1997.

[20] K. C. Ciesielski, A. X. Falcão, and P. A. Miranda. Path-value functions for which
dijkstra’s algorithm returns optimal mapping. Journal of Mathematical Imaging and
Vision, 60(7):1025–1036, 2018.

[21] G. B. Coleman and H. C. Andrews. Image segmentation by clustering. Proceedings
of the IEEE, 67(5):773–785, 1979.

[22] R. Collobert, F. Sinz, J. Weston, L. Bottou, and T. Joachims. Large scale transduc-
tive svms. Journal of Machine Learning Research, 7(8), 2006.

[23] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space
analysis. IEEE Transactions on pattern analysis and machine intelligence, 24(5):603–
619, 2002.

[24] K. A. Costa, L. A. Pereira, R. Y. Nakamura, C. R. Pereira, J. P. Papa, and A. X.
Falcão. A nature-inspired approach to speed up optimum-path forest clustering and
its application to intrusion detection in computer networks. Information Sciences,
294:95–108, 2015.



86

[25] C. Couprie, L. Grady, L. Najman, and H. Talbot. Power watershed: A unifying
graph-based optimization framework. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(7):1384–1399, 2011.

[26] K. S. Dar, I. Javed, W. Amjad, S. Aslam, and A. Shamim. Survey of clustering appli-
cations. Journal of Network Communications and Emerging Technologies (JNCET),
4(3), 2015.

[27] A. Echemendía Montero and A. X. Falcão. A divide-and-conquer clustering approach
based on optimum-path forest. In 2018 31st SIBGRAPI Conference on Graphics,
Patterns and Images (SIBGRAPI), pages 416–423, 2018.

[28] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, KDD’96, page
226–231. AAAI Press, 1996.

[29] R. M. Esteves, T. Hacker, and C. Rong. Competitive k-means, a new accurate and
distributed k-means algorithm for large datasets. In 2013 IEEE 5th International
Conference on Cloud Computing Technology and Science, volume 1, pages 17–24,
2013.

[30] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya, S. Foufou, and
A. Bouras. A survey of clustering algorithms for big data: Taxonomy and empirical
analysis. IEEE Transactions on Emerging Topics in Computing, 2(3):267–279, 2014.

[31] A. X. Falcão, J. Stolfi, and R. de Alencar Lotufo. The image foresting transform:
theory, algorithms, and applications. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(1):19–29, 2004.

[32] A. X. Falcão, B. S. Cunha, and R. A. Lotufo. Design of connected operators using the
image foresting transform. In M. Sonka and K. M. Hanson, editors, Medical Imaging
2001: Image Processing, volume 4322, pages 468 – 479. International Society for
Optics and Photonics, SPIE, 2001.

[33] A. Falcão, L. da Fontoura Costa, and B. da Cunha. Multiscale skeletons by image
foresting transform and its application to neuromorphometry. Pattern Recognition,
35(7):1571–1582, 2002.

[34] A. X. Falcão and J. P. Papa. Optimum-Path Forest: Theory, Algorithms, and Appli-
cations. Academic Press, 2022.

[35] E. Forgey. Cluster analysis of multivariate data: Efficiency vs. interpretability of
classification. Biometrics, 21(3):768–769, 1965.

[36] P. Fränti and S. Sieranoja. Clustering basic benchmark. http://cs.joensuu.fi/
sipu/datasets/. Accessed: 2020-09-30.

http://cs.joensuu.fi/sipu/datasets/
http://cs.joensuu.fi/sipu/datasets/


87

[37] L. Grady and E. L. Schwartz. Isoperimetric graph partitioning for image segmenta-
tion. IEEE transactions on pattern analysis and machine intelligence, 28(3):469–475,
2006.

[38] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for large
databases. ACM Sigmod record, 27(2):73–84, 1998.

[39] S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering algorithm for categor-
ical attributes. Information systems, 25(5):345–366, 2000.

[40] P. Hansen and B. Jaumard. Cluster analysis and mathematical programming. Math-
ematical programming, 79(1):191–215, 1997.

[41] E. Hartuv and R. Shamir. A clustering algorithm based on graph connectivity.
Information Processing Letters, 76(4):175 – 181, 2000.

[42] L. Hubert and P. Arabie. Comparing partitions. Journal of classification, 2(1):193–
218, 1985.

[43] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern recognition letters,
31(8):651–666, 2010.

[44] A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice-Hall, Inc.,
1988.

[45] A. Karduni, A. Kermanshah, and S. Derrible. A protocol to convert spatial polyline
data to network formats and applications to world urban road networks. Scientific
data, 3(1):1–7, 2016.

[46] G. Karypis, E.-H. Han, and V. Kumar. Chameleon: Hierarchical clustering using
dynamic modeling. Computer, 32(8):68–75, 1999.

[47] L. Kaufman and P. J. Rousseeuw. Finding groups in data: an introduction to cluster
analysis, volume 344. John Wiley & Sons, 2009.

[48] F. Lemes Galvão, A. X. Falcão, and A. Shankar Chowdhury. Risf: Recursive iterative
spanning forest for superpixel segmentation. In 2018 31st SIBGRAPI Conference on
Graphics, Patterns and Images (SIBGRAPI), pages 408–415, 2018.

[49] Z. Li and J. Chen. Superpixel segmentation using linear spectral clustering. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1356–1363, 2015.

[50] Y. Liu, M. Yu, B. Li, and Y. He. Intrinsic manifold slic: A simple and efficient
method for computing content-sensitive superpixels. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(3):653–666, 2018.

[51] R. A. Lotufo, A. X. Falcão, and F. A. Zampirolli. Ift-watershed from gray-scale
marker. In Proceedings. XV Brazilian Symposium on Computer Graphics and Image
Processing, pages 146–152, 2002.



88

[52] E. J. d. S. Luz, T. M. Nunes, V. H. C. De Albuquerque, J. P. Papa, and D. Menotti.
Ecg arrhythmia classification based on optimum-path forest. Expert Systems with
Applications, 40(9):3561–3573, 2013.

[53] J. MacQueen et al. Some methods for classification and analysis of multivariate ob-
servations. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[54] L. A. C. Mansilla and P. A. V. Miranda. Oriented image foresting transform seg-
mentation: Connectivity constraints with adjustable width. In 2016 29th SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI), pages 289–296, 2016.

[55] L. A. C. Mansilla, P. A. V. V. Miranda, and F. A. M. Cappabianco. Image segmen-
tation by image foresting transform with non-smooth connectivity functions. In 2013
XXVI Conference on Graphics, Patterns and Images, pages 147–154, 2013.

[56] S. B. Martins, G. Ruppert, F. Reis, C. L. Yasuda, and A. X. Falcão. A supervoxel-
based approach for unsupervised abnormal asymmetry detection in mr images of the
brain. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI
2019), pages 882–885, 2019.

[57] F. Murtagh. A survey of recent advances in hierarchical clustering algorithms. The
computer journal, 26(4):354–359, 1983.

[58] P. Neubert and P. Protzel. Superpixel benchmark and comparison. In Proc. Forum
Bildverarbeitung, volume 6, pages 1–12, 2012.

[59] J. P. Ortega, M. Del, R. B. Rojas, and M. J. Somodevilla. Research issues on k-means
algorithm: An experimental trial using matlab. In CEUR workshop proceedings:
semantic web and new technologies, pages 83–96, 2009.

[60] J. P. Papa and A. X. Falcão. A new variant of the optimum-path forest classifier. In
International Symposium on Visual Computing, pages 935–944. Springer, 2008.

[61] J. P. Papa and A. X. Falcão. Optimum-path forest: a novel and powerful framework
for supervised graph-based pattern recognition techniques. Institute of Computing -
University of Campinas, 2010.

[62] J. P. Papa, A. X. Falcão, V. H. C. De Albuquerque, and J. M. R. Tavares. Efficient
supervised optimum-path forest classification for large datasets. Pattern Recognition,
45(1):512–520, 2012.

[63] J. P. Papa, A. X. Falcão, and C. T. N. Suzuki. Supervised pattern classification based
on optimum-path forest. International Journal of Imaging Systems and Technology,
19(2):120–131, 2009.

[64] S. Patel, S. Sihmar, and A. Jatain. A study of hierarchical clustering algorithms.
In 2015 2nd International Conference on Computing for Sustainable Global Develop-
ment (INDIACom), pages 537–541. IEEE, 2015.



89

[65] D. Pelleg, A. W. Moore, et al. X-means: Extending k-means with efficient estimation
of the number of clusters. In Icml, volume 1, pages 727–734, 2000.

[66] C. C. Ramos, A. N. Souza, J. P. Papa, and A. X. Falcão. Learning to identify
nontechnical losses with optimum-path forest. In Proceedings of the 17th Interna-
tional Conference on Systems, Signals and Image Processing (IWSSIP 2010), pages
154–157, 2010.

[67] D. A. Reynolds. Gaussian mixture models. Encyclopedia of biometrics, 741:659–663,
2009.

[68] L. M. Rocha, F. A. Cappabianco, and A. X. Falcão. Data clustering as an optimum-
path forest problem with applications in image analysis. International Journal of
Imaging Systems and Technology, 19(2):50–68, 2009.

[69] M. Z. Rodriguez, C. H. Comin, D. Casanova, O. M. Bruno, D. R. Amancio, L. d. F.
Costa, and F. A. Rodrigues. Clustering algorithms: A comparative approach. PloS
one, 14(1):e0210236, 2019.

[70] C. Rother, V. Kolmogorov, and A. Blake. "grabcut": Interactive foreground extrac-
tion using iterated graph cuts. In ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04,
page 309–314, New York, NY, USA, 2004. Association for Computing Machinery.

[71] Rui Xu and D. Wunsch. Survey of clustering algorithms. IEEE Transactions on
Neural Networks, 16(3):645–678, 2005.

[72] P. T. Saito, P. J. de Rezende, A. X. Falcão, C. T. Suzuki, and J. F. Gomes. A data
reduction and organization approach for efficient image annotation. In Proceedings
of the 28th annual ACM symposium on applied computing, pages 53–57, 2013.

[73] S. E. Schaeffer. Graph clustering. Computer science review, 1(1):27–64, 2007.

[74] R. Sharan and R. Shamir. Click: a clustering algorithm with applications to gene
expression analysis. In Proceedings of the 8th International Conference on Intelligent
Systems for Molecular Biology, volume 8, page 16, 2000.

[75] P. H. Sneath. The application of computers to taxonomy. Microbiology, 17(1):201–
226, 1957.

[76] S. Soor, A. Challa, S. Danda, B. Daya Sagar, and L. Najman. Iterated watersheds,
a connected variation of k-means for clustering gis data. IEEE Transactions on
Emerging Topics in Computing, pages 1–1, 2019.

[77] T. A. Sorensen. A method of establishing groups of equal amplitude in plant sociology
based on similarity of species content and its application to analyses of the vegetation
on danish commons. Biol. Skar., 5:1–34, 1948.

[78] J. E. Vargas-Muñoz, A. S. Chowdhury, E. B. Alexandre, F. L. Galvão, P. A. Vechiatto
Miranda, and A. X. Falcão. An iterative spanning forest framework for superpixel
segmentation. IEEE Transactions on Image Processing, 28(7):3477–3489, 2019.



90

[79] N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance. J. Mach.
Learn. Res., 11:2837–2854, Dec. 2010.

[80] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007.

[81] X. Wei, Q. Yang, Y. Gong, N. Ahuja, and M. Yang. Superpixel hierarchy. IEEE
Transactions on Image Processing, 27(10):4838–4849, 2018.

[82] X. Xiao, Y. Zhou, and Y. Gong. Content-adaptive superpixel segmentation. IEEE
Transactions on Image Processing, 27(6):2883–2896, 2018.

[83] D. Xu and Y. Tian. A comprehensive survey of clustering algorithms. Annals of
Data Science, 2(2):165–193, 2015.

[84] C. T. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters.
IEEE Transactions on Computers, C-20(1):68–86, 1971.

[85] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data clustering method
for very large databases. ACM sigmod record, 25(2):103–114, 1996.


	Introduction
	Motivation
	Objectives
	Contributions
	Document Organization
	Concluding Remarks

	Theoretical Background
	Notations and Definitions
	Image Foresting Transform
	Iterative Spanning Forest
	Seed Selection
	Grid Sampling
	Mixed Sampling
	Superpixel Segmentation
	Seed Recomputation
	ISF Algorithm

	Dynamic Trees
	Dynamic Trees for Interactive Image Segmentation
	Dynamic and Iterative Spanning Forest for Superpixel Segmentation

	Optimum-Path Forest
	Supervised Learning with OPF
	Unsupervised Learning with OPF
	Semi-supervised Learning with OPF

	Concluding Remarks

	Related Work
	Clustering algorithms
	Partitional Clustering Algorithms
	Hierarchical Clustering Algorithms
	Graph-based Clustering Algorithms

	K-means
	Iterated Watersheds
	Clustering by OPF
	Concluding Remarks

	Iterative Optimum-Path Forest
	Notations and Definitions
	Seed Set Selection
	Clustering by Optimum-Path Forest
	Seed Recomputation
	Returning the Forest with Lowest Total Path-Cost
	Algorithm Outline
	Application to Object Delineation
	Concluding Remarks

	Experiments and Results
	Object Delineation by Iterative Dynamic Trees
	Analysis on Road Networks
	Experiments on Synthetic Datasets
	Concluding Remarks

	Conclusion and Future Work
	Bibliography

