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Resumo

O inicio e a evolugao do vértice de estol dindmico (DSV, do inglés dynamic stall vortez)
sao analisados por meio de simulacoes de grandes escalas de um aerofélio SD7003 em
movimento de plunge periédico em um escoamento com ntimero de Reynolds Re = 6 x 10%.
Interacoes entre as instabilidades de Kelvin-Helmholtz que se propagam a montante e
uma camada de cisalhamento formada no bordo de ataque do aerofélio desencadeiam
a separacao do escoamento. A primeira instabilidade parece estar relacionada com as
ondas acusticas geradas no bordo de fuga devido ao desprendimento inicial de vortices.
Dois nimeros de Mach do escoamento livre (M, = 0.1 e 0.4) sdo empregados para
examinar as diferencas do escoamento devido as variagoes de compressibilidade. A
existéncia de um tempo comum para as perturbacoes acisticas em ambos os escoamentos
sugere uma possivel invaridancia do nimero de Mach para o nascimento da instabilidade
de Kelvin-Helmholtz. O aumento da compressibilidade, no entanto, induz flutuacoes
mais precoces na direcao da envergadura, maior tridimensionalidade do escoamento
e um DSV mais fraco e difuso, que é formado mais a jusante do bordo de ataque
e tem menor tempo de residéncia. Para melhor caracterizar o inicio do DSV, dois
critérios empiricos sao avaliados: o pardmetro de suc¢ao do bordo de ataque (LESP,
do inglés leading edge suction paramenter) e a altura da camada de cisalhamento normal
a corda. Os resultados demonstram uma maior robustez deste tltimo parametro com
relacao as variagoes do nimero de Mach. Uma decomposicao modal, realizada tanto
com a decomposicao em modos dindmicos (DMD) classica quanto com sua variante
multi-resolugdo (mrDMD), destaca as principais tendéncias e demonstra a capacidade
do mrDMD de extrair estruturas do escoamento fisicamente significativas relacionadas ao
inicio do estol. Essa caracterizacao detalhada da camada de cisalhamento pode ser usada
para uma exploracao sistematica de estratégias de controle de escoamentos para aerofélios
nao-estacionarios.

No presente trabalho, também realizamos simulagdes de grandes escalas (LES) para
investigar a equivaléncia pitch-plunge de um aerofélio SD7003 submetido a movimentos de
rampa constantes para um nimero de Reynolds Re = 6 x 10*. A equivaléncia é construida
com base no angulo de ataque efetivo geométrico de acordo com a teoria de aerofdlios
finos quasi-estacionarios. Duas taxas de descida (ou pitch up/arfagem) sao analisadas
para diferentes niimeros de Mach para se investigar os efeitos da compressibilidade na
evolugdo do DSV. Durante o inicio do DSV e seu transporte ao longo da superficie
do aerofélio, notaveis semelhancas sdo encontradas entre pitch e plunge em termos

de topologia do escoamento, coeficientes aerodindmicos e assinaturas de pressao na



parede e coeficientes de atrit. No entanto, essa semelhancas cessam em condigoes de
alto carregamento a medida que o DSV se torna mais suscetivel as peculiaridades do
movimento do aerofdlio, manifestado por diferentes vértices de borda de fuga (TEVs,
do inglés trailing-edge vortices). O emprego uma corregdo para o efeito de cambagem
aparente induzida por rotagao presente no caso de pitching, que resulta da teoria de
aerofélio fino quasi-estacionario, melhora a concordancia entre pitch e plunge, no entanto,
nao ¢ suficiente assimilar seus sistemas de ponta de fuga dispares. Os resultados também
demonstram que o angulo limite no qual a equivaléncia pitch-plunge permanece valida
diminui para nimeros de Mach mais altos.

Por fim, propomos um framework em que os dados de simulagdbes numéricas sao
aproveitados para extrair informacgoes relevantes de visualizacOes experimentais. Para
tanto, o bloco convolucional de uma rede InceptionV3 pré-treinada é utilizado para
construir um modelo de regressao que vincula o mapa de coeficiente de pressao aos
coeficientes aerodinamicos do aerofdlio. A rede neural convolucional (CNN, do inglés
Convolutional Neural Network) resultante interpreta corretamente os atributos presentes
na imagem do escoamento usada como entrada. Aspectos da generalizacdo do modelo
sao discutidos e o desempenho do campo de velocidade como entrada para o modelo é
avaliado. Os resultados mostram que a pressao é preferivel a velocidade quando se trata
de construir nosso modelo de regressdo. No entanto, demonstramos que a velocidade
pode ser usada para sintetizar qualquer quantidade fisica correspondente através de uma
abordagem de traducao de imagem para imagem. Aqui, o mapeamento entre o campo de

coeficiente de velocidade e pressao é usado como exemplo.

Palavras-chave: Estol dindmico, dindamica dos fluidos computacional, decomposicao

modal de escoamentos, redes neurais convolucionais.



Abstract

The onset and evolution of the dynamic stall vortex (DSV) are analyzed by means of
large eddy simulations (LES) of an SD7003 airfoil undergoing periodic plunging motion
in a transitional Reynolds number flow (Re = 6 x 10%). Interactions between upstream
propagating Kelvin-Helmholtz instabilities and a shear layer formed at the leading edge
trigger flow separation. The former appear to be related to acoustic waves scattered
at the trailing edge due to initial vortex shedding. Two freestream Mach numbers
(Ms = 0.1 and 0.4) are employed to examine the flow differences due to compressibility
variations. The existence of a common timing for the acoustic perturbations in both
flows suggests a possible Mach number invariance for the birth of the Kelvin-Helmholtz
instability. Increasing compressiblity, however, induces earlier spanwise fluctuations,
higher flow three-dimensionality and a weaker and more diffuse DSV, which is formed
further downstream of the leading edge and has lower residency time. In order to better
characterize the onset of the DSV, two empirical criteria are assessed: the leading edge
suction parameter (LESP) and the chord-normal shear layer height. Results demonstrate
a higher robustness of the latter with respect to Mach number variations. Modal
decomposition, performed with both the classical dynamic mode decomposition (DMD)
and its multi-resolution variant (mrDMD), highlights key trends and demonstrates the
capacity of the mrDMD to extract physically meaningful flow structures related to the
stall onset. Such detailed characterization of the shear layer can be used for a systematic
exploration of flow control strategies for unsteady airfoils.

In the present work, we also perform LES to investigate the pitch-plunge equivalence
of an SD7003 airfoil undergoing constant ramp motions at Reynolds number Re = 6 x 10%.
The equivalence is constructed based on the geometric effective angle of attack according
to the quasi-steady thin-airfoil theory. Two rates of descent (or pitch up) are analyzed
for different Mach numbers in order to investigate the effects of compressibility on the
evolution of the DSV. During the onset of the DSV and its transport along the airfoil
surface, remarkable similarities are found between pitch and plunge in terms of flow
topology, aerodynamic loads and signatures of wall pressure and friction coefficients.
However, these flow similarities cease at high-load conditions as the DSV becomes
more susceptible to the peculiarities of the airfoil motion, manifested here by different
trailing-edge vortices (TEVs). Employing a correction for the rotation-induced apparent
camber effect present in the pitching case, which results from the quasi-steady thin-airfoil
theory, improves the agreement between pitch and plunge. However, it is not sufficient to

assimilate their disparate trailing-edge systems. Results also demonstrate that the limit



angle at which pitch-plunge equivalence remains valid decreases for higher Mach numbers.

Finally, we propose a framework whereby numerical simulation data is leveraged
to extract relevant information from experimental visualizations. To this end, the
convolutional block of pre-trained InceptionV3 network is used to build a regression model
that links the map of pressure coefficient to aerodynamic coefficients of the airfoil. The
resulting convolutional neural network (CNN) correctly interprets the attributes present
in the input flow image. Aspects of the generalization of the model are discussed and
the performance of the velocity field as input is assessed. Results show that pressure
is preferable to velocity when it comes to building our regression model. Nonetheless,
we demonstrate that the velocity can be used to synthesize any corresponding physical
quantity through an image-to-image translation approach. Here, the mapping between

velocity and pressure coefficient field is used as example.

Keywords: Dynamic stall, computational fluid dynamics, flow modal decomposition,

convolutional neural networks.
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1 Introduction

Wings or blades subjected to a large transient increase in effective angle of attack,
whether due to some maneuver or an unsteady incoming flow, exhibit a flow condition
referred to as dynamic stall. This condition is frequently associated with an increase in
unsteady loading that leads to large torsional forces and mechanical vibrations (Corke
and Thomas, 2015; Eldredge and Jones, 2019). Dynamic stall influences the performance
and fatigue life of several mechanical systems, such as helicopter rotors, wind turbines
and flapping wing aerial vehicles, and understanding this phenomenon is of paramount
importance to predict performance parameters and improving the design of the mentioned
engineering systems (Corke and Thomas, 2015; Buchner et. al, 2018; Fouest and
Mulleners, 2022).

Extensive studies of airfoils undergoing sinusoidal pitch motions have been carried
out by aeroelasticians and dynamic stall researchers, specially aiming for flow conditions
of helicopter rotor flight (Carta, 1979). However, a renewed interest in unsteady low
Reynolds number aerodynamics has emerged due to applications in small and micro
unmanned aerial vehicles (UAVs) and small wind turbines, some of which are inspired
by the demonstrated success of natural fliers (Shyy et. al, 2007). Novel bio-inspired
turbines, for example, use the motion of a flapping foil to drive a generator, by which
power is typically extracted from the plunging motion (Young et. al, 2014).

Another intriguing aspect of the low Reynolds aerodynamics of plunging motions was
recently brought up by Gursul and Cleaver (2019). They found that, in a periodically
plunging airfoil, the leading-edge vortex can adversely affect thrust generation, going
against what is commonly suggested in the literature of flapping wings (Anderson et. al,
1998; Wu et. al, 2020). In addition to its impact on flight stability and performance, the
dynamic stall vortex (DSV) can also cause fatigue problems due to the increased unsteady
loads that lead to large torsional forces and mechanical vibrations on the blade. These
drawbacks offer scope for a myriad of flow control studies focusing on the leading edge
(Lombardi et. al, 2013; Beahan et. al, 2014; Miller-Vahl et. al, 2016; Ramos et. al, 2019).
Particularly, Chandrasekhara (2007) discusses that above a threshold level, the vorticity
coalesces into a vortex whose behaviour cannot be controlled. Hence, understanding the
flow physics near the leading edge is crucial to the effectiveness of control strategies that
mitigate the formation of the DSV.

The present work seeks to elucidate the onset mechanisms of dynamic stall occurring
on a periodically plunging airfoil, which is more closely related to the emulation of gust
effects or flapping wings. In addition, we also assess in what sense pitch and plunge

can be taken as equivalent. The importance of this study lies on the scarce research



13

on dynamic stall for plunging airfoils, especially at low and moderate Reynolds numbers.
Although one could establish a relationship between the study of pitch-plunge equivalence
and the onset mechanisms in periodically plunging airfoils, these topics will be treated
as separate problems in what follows. Throughout the work, data-driven techniques are
applied in order to better understand the physical phenomena involved. In this sense,
machine learning is applied for developing surrogate models and extracting features from

high-fidelity simulation data.

1.1 Dynamic stall onset

The main characteristics of dynamic stall are considered to be well established,
specially for deep stall conditions. However, the underlying mechanisms of flow separation
are still a topic of research. One of the reasons for this is the poor understanding of the
viscous effects in unsteady aerodynamics, which are hampered not only by the inherently
complex flow dynamics, but also by the influence of multiple interrelated parameters such
as compressibility, transition and airfoil geometry. Moreover, the amplitude, frequency
and type of airfoil motion also play a key role on the onset of dynamic stall.

Depending on the preceding factors, the dynamic stall inception exhibits different
phenomena such as shear layer instabilities (Mulleners and Raffel, 2012), transition to
turbulence (Ekaterinaris and Platzer, 1998), laminar separation bubble bursting (Visbal,
2014), shock-induced separation (Bowles et. al, 2012; Corke and Thomas, 2015), boundary
layer separation (Gupta and Ansell, 2020) and airfoil-vortex interactions (Jones and
Cetiner, 2021). For low Mach numbers, when shock waves are absent, the onset mechanism
of dynamic stall may involve a bubble burst and its subsequent breakdown owing to strong
adverse pressure gradients typically found along the airfoil leading edge (McAlister and
Carr, 1979; Doligalski et. al, 1994; Lee and Gerontakos, 2004). In a classical description
of the phenomenon, a leading edge vortex is formed after a boundary layer flow reversal
that moves upward from the trailing edge to the leading edge over the airfoil suction
side (McAlister and Carr, 1979; Doligalski et. al, 1994; Lee and Gerontakos, 2004).

Several experimental investigations performed in the past years have provided a
significant amount of information on the overall flow features and aerodynamic coefficients
observed during the dynamic stall process and its incipient moment. Experimental
techniques such as flow visualizations (McAlister and Carr, 1979), force measurements
(Strickland and Graham, 1987; Jumper et. al, 1987), surface pressure and hot-film
measurements (Lorber and Carta, 1988; Lee and Gerontakos, 2004; Gardner et. al, 2014b),
interferometric techniques (Chandrasekhara et. al, 1994), and particle image velocimetry
(Mulleners and Raffel, 2012; Pruski and Bowersox, 2013) have been applied to investigate

dynamic stall. Attempts to reproduce and describe dynamic stall by computational means
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were also carried out by several groups and a review is provided by Ekaterinaris and
Platzer (1998).

Examples of simulations include 2D studies at laminar (Visbal and Shang, 1989;
Choudhuri et. al, 1994; Choudhuri and Knight, 1996) and transitional/turbulent
(Ekaterinaris et. al, 1995; Sangwan et. al, 2017) Reynolds numbers, some of them
also accounting for different compressible regimes. For high Reynolds number flows,
numerical studies have traditionally employed turbulence models partially corrected by
the incorporation of empirical transitional models to obtain an effective eddy viscosity.
Recently, Sangwan et. al (2017) performed a 2D simulation without any transition or
turbulence model to capture the physics of the dynamic stall process. These authors
observed that, for an increasing Mach number, the cycle hysteresis in the fluid dynamic
forces and moments is attenuated, reducing the vulnerability to stall flutter but also
attaining similar maximum load coefficients, what is a favorable behavior to helicopter
designers. In addition, a change in the dynamic stall vortex mechanism along with
multiple shock formations was observed at freestream Mach number M., = 0.5.

Reynolds-averaged Navier-Stokes (RANS) computations, and their unsteady
counterpart (URANS), have been employed for probing massively separated flows. These
techniques should be used with a judicious choice of proper turbulence models. Although
continually employed (Costes et. al, 2015; Kaufmann et. al, 2017), these formulations
cannot be expected to truly predict the dynamic stall phenomenon given the complex
flow physics at play near the leading edge. In particular, viscous mechanisms such
as the development of the boundary layer, incipient separation and noise generation
(Nagarajan et. al, 2006a) that occur in dynamic stall are hardly characterized from a
RANS perspective, although advances are being made in this area (see Bernardos et. al
(2019) for instance). Similar limitations also apply to experimental studies that rely on
flow visualizations or low spatio-temporal resolution techniques. The lack of information
about the events occurring inside the boundary layer end up limiting the exploration
of active flow sensing, control strategies and the development of new turbulence and
reduced-order models for dynamic stall.

With recent progress in numerical methods and the increase in computational power,
high-fidelity numerical simulations can be used as a predictive tool in the design stage.
In this sense, wall-resolved large eddy simulations (wrLES) are increasingly being used to
address the onset of dynamic stall at a broad range of Reynolds numbers, providing
essential information about the boundary layer dynamics, including its separation.
Motivated by micro air vehicle applications, the first investigations of dynamic stall under
a transitional flow regime using implicit large eddy simulations (ILES) were presented
by Visbal (2009, 2011) for a periodically plunging airfoil. Visbal observed that, at
low Reynolds numbers (Re = O (10%)), transition effects played a critical role in the

leading edge vortex dynamics and, in turn, to the aerodynamic coefficients, even when



15

the incipient separation and DSV formation were initially laminar. The leading edge
vortices were found to experience an abrupt breakdown into fine-scale turbulence due to
spanwise instabilities. This resulted in a subsequent vorticity cancellation that led to a
rapid reduction of the maximum values of phase-averaged vorticity. These investigations
were further extended to higher Reynolds numbers (Re = 2 x 10° and 5 x 10°) for a
constant pitching rate motion by Visbal (2014), where it was found that the onset of
dynamic stall was characterized by the presence of a laminar separation bubble (LSB)
near the leading edge.

Just recently, the importance of the LSB on the dynamic stall onset could be verified.
This difficulty stems from the small spatial scales associated with the LSB and from the
high sensitivity of the phenomenon to the state of the boundary layer. Benton and Visbal
(2018a) observed through the use of wall-resolved ILES that, when the separated flow
at the trailing edge moves upstream and reaches the LSB, bubble bursting is triggered.
The bursting, in turn, results in the formation of a small leading edge vortex that rolls
up the separated flow to develop the dynamic stall vortex. By using high-frequency flow
actuation, they demonstrated the role of the LSB on the onset of dynamic stall, showing
that when its presence is overshadowed by the actuator, the classic trailing edge stall
takes place with a dynamic stall vortex originating only near the mid-chord.

As an extension of the previously mentioned work, Benton and Visbal (2018b)
conducted a parametric study of pitching parameters for NACA0009 and NACA0012
airfoils to understand the role of the LSB and the sensitivity of the pitching motion on
the dynamic stall process. They concluded that, although the flow is dominated by the
reversed flow, the LSB is a key factor for the development of the leading edge vortex,
highlighting the implications of not resolving the transitional features of the flow in a
numerical simulation. Also, they attribute the variability in the location and timing
of the dynamic stall vortex to the delay between the LSB and its interaction with the
upstream propagation rate of the turbulent separation.

A wide range of control approaches has been investigated to mitigate or fully suppress
the formation of the stall vortex by both active and passive means. Usually, these
efforts were targeted primarily in the reduction of the unsteady fluctuations of lift
and pitching moment, while avoiding the loss of mean lift. Inspired by the boundary
layer theory of Prandtl (Prandtl, 1904), particular attention was historically given to
constant suction (Karim and Acharya, 1994) and blowing (Gardner et. al, 2014a) as
flow control concepts. In these applications, when the jet momentum from the constant
blowing exceeds a critical value, an offset of the adverse pressure gradient that would
otherwise promote separation is observed. Zero-net-mass-flux excitation, which relies
on the amplification of periodic disturbances through a Kelvin—Helmholtz instability
mechanism, has also been shown to effectively suppress the formation of dynamic stall

(Greenblatt and Wygnanski, 2001). Recently, high-fidelity simulations performed by
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Ramos et. al (2019) for a plunging SD7003 wing section under a Re, = 6 x 10* and
My, = 0.1 showed an effective frequency range in which the actuation exhibits a more
pronounced disruption of the dynamic stall vortex.

The present work seeks to elucidate the onset mechanisms of dynamic stall occurring on
a periodically plunging airfoil. The present wrLES methodology (see discussion on § 2.1) is
able to resolve the flow features of the unsteady separation; such a level of understanding is
a prerequisite to the systematic exploration of flow control strategies for unsteady airfoils.
To this end, the same configuration from Visbal (2011) is employed here since it serves as
a starting point in terms of validation. However, different analyses are carried out in the
present work which include a detailed inspection of the boundary layer characteristics,
besides the onset and evolution of the DSV. Moreover, differences in phenomenology due to
Mach number variations are examined by considering the time-variations of lift, drag and
pitching moment coefficients, including their connection with the instantaneous flowfield
and instabilities that initiate the formation of the DSV, as discussed in § 3.1. A detailed
analysis of the physical processes related to the dynamic stall onset is provided in § 3.2.
Although different compressible regimes are studied, aspects of shock-induced separation
are not present in the flows of interest here since they would alter the underlying onset
mechanisms. For a comprehensive parametric study of compressibility effects on dynamic
stall, the reader is referred to Bowles (2012); Bowles et. al (2012); Corke and Thomas
(2015); Sangwan et. al (2017), and Benton and Visbal (2020).

1.1.1 Empirical criteria for dynamic stall onset

Given our interest in the DSV inception, the present analysis can benefit from the
incorporation of indicators of flow separation. Over several decades, researchers recognized
the importance of the flow parameters at the leading edge as a factor in the DSV initiation
(Evans and Mort, 1959; Ekaterinaris and Platzer, 1998; Ramesh et. al, 2018). These
parameters serve as indicators of massive flow separation, allowing the construction of
dynamic stall models (Ramesh et. al, 2014; Eldredge and Jones, 2019) and the definition
of control strategies for mitigation of the DSV (Chandrasekhara, 2007; Sedky et. al,
2020b). A particular flow parameter that gained popularity recently is that from Ramesh
et. al (2014), termed the leading edge suction parameter (LESP). By calculating the
first term Ay of the Fourier series for the distribution of a vortex sheet along the camber
line using thin airfoil theory, the previous authors observed that the airfoil can support
a maximum amount of leading edge suction. When this limit is exceeded, vorticity is
released from the leading edge giving rise to the dynamic stall vortex.

For a specific airfoil shape and flow Reynolds number, the LESP threshold has a

constant value, regardless of motion kinematics, as long as there is no trailing edge flow
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separation. Under this assumption of attached flow, the instantaneous value of the LESP
can be calculated from unsteady airfoil theory (Ramesh et. al, 2014), what makes it
of particular interest for reduced order modeling. However, since most occurrences of
dynamic stall exhibit some degree of trailing edge separation and flow reversal, researchers
are focused on better understanding the behavior of this parameter (Narsipur et. al,
2020; Hirato et. al, 2021). In addition, different onset criteria and thoughts about the
criticality of the flow parameters have emerged in the literature. For instance, He et. al
(2020) studied the influence of trailing edge flap kinematics on the critical values and
timing of the LESP and suggested that the dynamic stall development is governed by
characteristic stall delays rather than a critical LESP threshold. Deparday and Mulleners
(2019) observed that the critical values of the chord-normal shear layer height and the
airfoil circulation were invariant with respect to the airfoil motion and, thereby, served as
better indicators of the dynamic stall onset. However, the effects of compressibility on the
applicability and reliability of these criteria were not assessed. Moreover, the shear layer
height criterion was never applied for airfoils under ramp conditions, where the effective
angle of attack increases with a constant rate. In § 4.6, an assessment of the LESP and
chord-normal shear layer height criteria is presented to characterize onset of the DSV for
a periodic plunging airfoil. Both indicators of DSV onset are evaluated from the context

of compressibility to verify their validity range.

1.1.2 Flow modal analysis

Modal decomposition techniques are also applied in the context of dynamic stall to
offer a global perspective of the frequency dynamics in a spatially organized manner.
These can eventually provide suitable actuation parameters for flow control. The benefits
of the dynamic mode decomposition (DMD) (Schmid, 2010; Tu et. al, 2014) was shown
by Dunne et. al (2016) for the identification of the time scales associated with dynamic
stall. Mohan et. al (2016) combined the proper orthogonal decomposition (POD) with
DMD to identify transient energetic flow structures relevant to dynamic stall. However,
in their analysis, no attention was given to the inception of the unsteady separation, and
this work seeks to fill this gap. Hence, DMD and its multi-resolution variant (mrDMD)
(Kutz et. al, 2016) are used in § 4.7 to identify and characterize the spatial structures that
appear at specific frequencies during the onset of dynamic stall, including compressibility
effects. We show that there is considerable advantage in applying the mrDMD due to the
highly transient nature of the problem, where different events have time scales that vary
widely. This technique is able to represent the transient or intermittent dynamics that
the standard DMD fails to capture.

Other modal decomposition techniques have also been employed to investigate the
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dynamic stall process. For instance, the empirical mode decomposition (EMD) was used
by Ansell and Mulleners (2020) to extract physically meaningful intrinsic mode functions
and by Gupta and Ansell (2020) to identify the spectra of the velocity fluctuations near
the leading edge. Coleman et. al (2019) applied the parametric modal decomposition
(PMD), which provides globally optimized modes across the entire parameter space of
a series of experiments, and Melius et. al (2016) applied POD to identify and quantify
relevant flow features related to the DSV. However, it is important to mention that one
of the main focus of the present study is on dynamic stall onset, which is a phenomenon
occurring at a short temporal scale. Hence, the mrDMD is the method of choice since it
is capable of extracting meaningful flow features at particular temporal windows. To the
authors’ knowledge, this is the first time that the mrDMD is applied in the context of

dynamic stall.

1.2 Pitch-plunge equivalence

Aimed to better understand the increased torsional motions encountered on flexible
blades, the helicopter industry concentrated efforts to generate a substantial body of data
for airfoils oscillating in pitch about the quarter-chord (Carta, 1979). As a consequence,
research on dynamic stall for plunging airfoils is more scarce, especially at low and
moderate Reynolds numbers.

Historically, the lack of experimental results for plunging airfoils entailed the usage
of pitching data to predict plunging responses. The validity of the assumptions made to
sustain such motion interchange was questioned by Carta (1979) after noticing occasional
discrepancies between them, particularly at high-load conditions. It was postulated that
the pitch-plunge mismatch upon departure from small-amplitude linearizations was caused
by the distinct dynamic stall breakdown processes. Later on, Ericsson (1995) attributed
the variations in the aerodynamic response to the differences in the so-called moving-wall
effects. The relative importance of different flow physics contributions to the pitch-plunge
equivalence was brought out by McGowan et. al (2011) in going from quasi-steady
thin-airfoil theory to Theodorsen’s model. In this manner, the effects of noncirculatory
contributions and wake vorticity could be included, and a limit for when linear predictions
remain valid in massively unsteady flows was proposed. In a similar fashion, a new
equivalence criterion based on the unsteady lifting line theory (Bird and Ramesh, 2021)
was explored by Bird and Ramesh (2018), whereby accurate results were produced
for high amplitude oscillations. Expanding on past studies that have examined only
linear superposition of pitch and plunge motions, Elfering and Granlund (2020) analysed
airfoils undergoing surge—pitch-plunge combinations using the Greenberg lift equation

(Greenberg, 1947) to account for the phase shift between the sinusoidal combinations
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of these motions. Baik et. al (2012), in turn, studied the role of Reynolds number,
reduced frequency and Strouhal number on the aerodynamics of pitching and plunging
flat-plate airfoils. Efforts to determine pitch-plunge equivalence for three-dimensional
problems are also arising. Recently, Bird and Ramesh (2018) extended the 2D lift-based
approaches from McGowan et. al (2011) to finite wings employing unsteady lifting line
theory, Theodorsen-based strip theory, and simulations of the Navier-Stokes equations.

Most studies in the context of pitch-plunge equivalence are devoted to predicting
plunging response based on tables of existing pitching data, which predominantly use
periodically oscillating airfoils. Under periodic motion, vortices that are being advected
downstream with the flow interact with the trailing edge, leading to a change in the
airfoil circulation and affecting the subsequent stages of the flow dynamics Corke and
Thomas (2015); Darakananda and Eldredge (2019). In order to suppress the additional
complexities of periodic motion history effects, constant rate pitching motion has been
widely used to investigate the dynamic stall inception (Lorber and Carta, 1988; Benton
and Visbal, 2018b,a; Visbal and Garmann, 2018). Studies of large amplitude constant
pitch rate setups find application in fixed wing aircraft under drastic gust load scenarios
(Ol et. al, 2009; Fouest et. al, 2021). In this sense, Schreck et. al (2002) and Eldredge et.
al (2009) investigated the influence of pitch rate and Reynolds number on the formation
of the leading-edge vortex (LEV). These studies were later extended to include the effects
of pitch pivot point location by Granlund et. al (2013); Yu and Bernal (2017), and Yu
et. al (2018). The role of a laminar separation bubble on stall onset was analyzed for
pitch ramp airfoils by Benton and Visbal (2018a, 2019b,a) and Gupta and Ansell (2019),
and the effects of compressibility on the bubble bursting and the subsequent development
of the dynamic stall vortex (DSV) were studied by Chandrasekhara et. al (1994) and
Benton and Visbal (2020). The existence of flow three-dimensionality in both the LEV
and trailing-edge vortex (TEV) was also examined considering pitch ramp maneuvers
(Buchner et. al, 2012; Yu and Bernal, 2017).

To investigate the pitch-plunge equivalence problem of ramp configurations, Ol et. al
(2009) conducted a water tunnel experiment and performed 2D vortex-particle simulations
and observed that the equivalence fails due to different TEVs. In fact, the peculiarities
of the trailing-edge dynamics have also been reported in other cases besides the ramp
motion (Ol et. al, 2008; Rival and Tropea, 2010; Prangemeier et. al, 2010; Baik et. al,
2012; Lee et. al, 2022). Naturally, the mismatch between pitch and plunge under certain
conditions resulted in questioning the validity of the effective angle of attack definition
(McGowan et. al, 2008; Ol et. al, 2008). Recently, Visbal and Garmann (2022) attributed
the differences between pitch and plunge to the rotation-induced apparent camber effect.
After subtracting this contribution from the pitching airfoil, the previous authors were
able to reconcile lift and moment coefficients for periodic maneuvers. However, there

is still an open question whether this correction is sufficient to establish a pitch/plunge
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motion equivalence for ramp maneuvers and high effective angles of attack. Addressing
this question is important as it dictates the extent to which dynamic stall is mostly
influenced by geometric effects. Such level of understanding of the phenomena can, in
principle, help to improve existing models. For instance, Darakananda and Eldredge
(2019) presented an efficient two-dimensional vortex model for real-time flow estimation
and found good agreement with simulations of highly unsteady airfoils. They highlighted
the importance of accounting for viscous mechanisms and the interplay between LEV and
TEV on the flow dynamics, which could be incorporated to their model using data-driven
techniques.

Due to its easy interpretability, several authors (Ol et. al, 2009; Baik et. al, 2012;
Sedky et. al, 2020a; Visbal and Garmann, 2022) have used the geometrical effective
angle of attack to study different airfoil kinematics, even in cases where the assumptions
involved in the derivation from quasi-steady thin-airfoil theory (inviscid, incompressible,
attached flows, small angles; thin airfoil, and small camber) are violated. A number of
recently developed theories of unsteady aerodynamics (Ramesh, 2020; Bird and Ramesh,
2021; Taha and Rezaei, 2019, 2022) make the usage of a pure-geometrical criterion far
from adequate; they are, nevertheless, encouraging and indicative of possible fruitful
exploration of better criteria to be used from here on. In this context, a comparison of
the equivalence using the expressions from Bird and Ramesh (2018), Ramesh (2020), Xu
and Lagor (2021) and Taha and Rezaei (2019, 2022) is highly desirable. However, the
objective of the present work is not to look for the best equivalence criterion. Instead,
here we assess the validity of a simple criterion based on the geometric effective angle
of attack due to its easy interpretability and its high adoption in the literature. This is
motivated by the abstraction of the airfoil kinematics into a ramp-type motion, which
builds upon the work of Ol et. al (2009). Here, high-fidelity simulations are employed
to extend the analyses to a higher Reynolds number, where the flow is turbulent. An
assessment of compressibility effects is also presented, differently from other studies.

One of the purposes of this study is to address the pitch-plunge equivalence problem
through an assessment of airfoil kinematics and Mach number variations that lie
beyond the assumptions of previous work that considered incompressible potential flows
(McGowan et. al, 2011; Bird and Ramesh, 2018; Baik et. al, 2012; Ol et. al,
2009). A natural step to facilitate the understanding of pitch-plunge equivalence in
this case is to simplify the airfoil kinematics into a constant-ramp motion, where the
induced angle of attack of the plunging configuration matches the geometric angle of
attack of the equivalent pitching case. Two rates of descent (or pitch up) are analyzed
together with the effects of compressibility for an SD7003 airfoil at Re = 6 x 10%.
For a given Mach number, different maneuvers are simulated starting from the exact
same steady solution, thereby minimizing possible variations due to different initial

conditions. The pitch-plunge equivalence is then investigated through a comparison
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of aerodynamic coefficients, instantaneous pressure distributions, visualization of flow
topologies and friction coefficient maps. The frequency and spatial information provided
by flow modal decomposition techniques could eventually be used to provide suitable
actuation parameters for flow control. In this work, dynamic mode decomposition (DMD)
(Schmid, 2010; Tu et. al, 2014) and its multi-resolution variant (mrDMD) (Kutz et. al,
2016) are chosen to identify and characterize the spatial structures that appear at specific

frequencies during the onset of dynamic stall.

1.3 Surrogate models using deep learning

Unsteady aerodynamic loads generated during dynamic stall play a critical role in
determining both the mechanical life span and performance of unsteady lifting devices
such as helicopter rotors and wind turbine blades. To control these loads, it is required
both an understanding of the unsteady flow conditions as well as providing mechanisms
for prescribing the ensuing flow-wing interactions. However, the temporal and spatial
complexity of unsteady separated flows renders them difficult to fully characterize and
understand. It comes as no surprise that, thus far, unsteady separated flows have defied
obtaining general analytical solutions.

Although potentially accurate, numerical simulations of unsteady separated flows
require large amounts of computational time. Experiments are also complex and time
consuming. As such, the broad parameter space encompassed by unsteady separated
flows hamper exhaustive characterization by computational or experimental means.
This precludes prediction and control across the broad range of conditions likely to be
encountered in the flight regime. Fortunately, the emerging of machine (deep) learning
techniques could provide more ideas for leveraging models. The era of big data and
the significantly improved computing power have laid a good foundation for applying
machine learning techniques to complex problems. Therefore, the provided massive
labeled flowfield data makes it promising to expand these techniques to unsteady fluid
mechanics applications.

Since the 1990s, researchers have shown that neural networks can predict flowfield
evolution under static (Linse and Stengel, 1993; Ha, 1995) and dynamic conditions (Faller
et. al, 1994; Schreck et. al, 1995), and also construct accurate models and efficient
real-time control strategies for highly time-dependent, unsteady separated flows such as
those encountered in dynamic stall problems (Kawthar-Ali and Acharya, 1996). Overall,
these early attempts demonstrate the capacity of neural networks to model aerodynamic
coefficients from simulated flight-test data with a few number of hidden layers and
nodes when compared to the current state-of-the-art network architectures. Despite

their success, deep neural networks were mostly abandoned in the early 2000s due to
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the unstable gradients observed as the algorithm progresses down to the lower layers. It
was only after Glorot and Bengio (2010) that some light was shed on the causes of the
unstable gradients, making deep learning popular again.

In recent years, machine learning has emerged as a promising technique for various
applications in fluid mechanics, like turbulence modeling (Ling et. al, 2016; Wu et. al,
2018; Maulik et. al, 2019; Duraisamy et. al, 2019; Ahmed et. al, 2021), reduced order
modeling (Rowley and Dawson, 2017; Lui and Wolf, 2019; Wang et. al, 2019; Eivazi
et. al, 2020; Fukami et. al, 2021), flow control (Raibaudo et. al, 2020; Zhou et. al,
2020; Cornejo Maceda et. al, 2021), among others. To mention a few examples, Lui
and Wolf (2019) presented a numerical methodology for construction of reduced order
models of fluid flows through the combination of flow modal decomposition and nonlinear
regression analysis. Their approach allowed the prediction of the flow field beyond the
training window and with larger time increments than those used by the full order model.
Kochkov et. al (2021), in turn, used deep learning inside traditional fluid simulations to
improve both accuracy and speed even on examples very different from the training data.
Their method uses machine learning to interpolate better at a coarse scale, achieving the
same accuracy as traditional finite difference/finite volume methods, but with a much
coarser resolution. As a result, they were capable of expanding the Pareto frontier of
efficient simulation in CFD. Complementary information on the use of machine learning
for fluid dynamics can be found in many recent reviews (see Brunton et. al (2020); Willard
et. al (2022); Rabault et. al (2020); Pandey et. al (2020); Fukami et. al (2020); Kou and
Zhang (2021) and Brunton (2021) for instance).

It is still unclear how far the applications of machine learning in fluid mechanics can
reach. Above all, more studies need to be carried out to determine the applicability and
reliability of machine learning in fluid mechanics, not only on turbulence modeling (Kutz,
2017), but also on feature characterization, reduced order modeling, and flow control.
For instance, in a myriad of engineering situations, we often hope to establish a model
capable of predicting load conditions around structures through flow features detection
or vice versa. For this reason, in the present work, we focus on the relationship between
the flow structure and the concerned flow statistics.

Success on ImageNet Classification' with convolutional neural networks (CNNs) makes
them an interesting technique due to its fewer connections and parameters (Krizhevsky
et. al, 2012). CNNs have been successfully applied to identify features in fluid flows
by Strofer et. al (2019). Jin et. al (2018) designed a CNN architecture to predict the
velocity field around a cylinder using measurements of the surface pressure as input.
Ye et. al (2020) used the classical simple network LeNet-5 to predict the pressure

on a cylinder from the velocity distributions along its wake. CNNs were also shown

ImageNet is a large database of images classified into many classes, commonly used to evaluate
computer vision systems
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to be viable alternatives for detecting shock waves, with less time consumption than
traditional methods (Liu et. al, 2019). This class of network was also employed in a new
technique to extract underlying flow features from the original flow field data, as proposed
by Obayashi et. al (2021). These authors made use of the nonlinear decomposition
from the CNN process to extract flow features different from those of proper orthogonal
decomposition in each mode. Guastoni et. al (2021) and Giiemes et. al (2021) used
CNNs to predict two-dimensional instantaneous velocity-fluctuation fields at different
wall-normal locations from wall measurements.

The studies mentioned above demonstrate the possibilities that CNNs exhibit in the
detection of features in fluid mechanics. For this reason, here, we chose this class of
artificial neural network to study the flowfields from our numerical simulations. Different
CNN architectures are employed in the hope of finding the mapping relation between
the flow structures and the underlying airfoil responses. Dynamic stall is taken here
as an example since the flow has a common structure owning certain complexity as well.
Despite that, the concepts applied herein can be easily extended to other branches of fluid
mechanics where a regression task is involved. That said, based on any fluid property
from the unsteady flowfield, the network between the existing flow structures and some
concerned flow feature is constructed. This CNN-based deep learning method, then, links
the map of fluid property to the aerodynamic coefficients, which represents the feature
learned from the flow field.

Quantifying the flow dynamics in engineering systems is the centerpiece of this work
and the aforementioned CNN method is only one step towards this goal. Here, we
ailm at reusing or transferring information from previously learned tasks to extract
quantitative information from available flow visualizations. Despite substantial advances
in experimental fluid mechanics, the use of measurements to reliably infer fluid properties,
like density, velocity, pressure or stress fields, is not a straightforward task. This
information, though, comes natural to CFD practitioners. So, in our study, we address the
question of using the information learned from numerical simulation datasets to extract
fluid properties from experiments that until then would be very complicated or even
impossible to obtain.

Pressure is a good example of thermodynamic quantity that plays a key role in fluid
mechanics. It is of utmost importance in aerodynamic load prediction, noise generation,
flow instability and turbulence, among others. The increase of time resolution in velocity
field measurements during the last decade has opened the path to obtaining instantaneous
pressure fields by combining the experimental data with the governing equations (van
Oudheusden, 2013; van Gent et. al, 2017). But often, the available high-speed cameras
and lasers for Particle Image Velocimetry (PIV) do not offer a high enough sampling
frequency for flows of practical interest, which hinders this approach. In case of poor time

resolution, the pressure field can be obtained by solving a Poisson equation if the flow is
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incompressible. But still, the missing time information poses specific constraints in the
boundary conditions (Van der Kindere et. al, 2019; Chen et. al, 2022).

Recent developments on machine learning have recently been paving the way to new
interesting research avenues without the need of time-resolved field measurements to
estimate pressure. Using velocity-probe measurements with high sampling frequency, Jin
et. al (2020) combined POD with recurrent neural networks to reconstruct the spatial
distribution of velocity, retrieving the time resolution from PIV. Raissi et. al (2020)
used a physics-informed neural network (PINN) to construct computationally efficient
and fully differentiable surrogates for velocity and pressure fields from the transport of
passive scalars. Their technique allows the extraction of quantitative information from
available flow visualizations such as the transport of dye or smoke in physical systems
and contrast agents in biological systems. PINNs were also used to quantify velocity and
pressure fields from tomographic background oriented Schlieren (Cai et. al, 2021) and
PIV images (Wang et. al, 2022).

The quest to amplify the scope of information extracted in experimental fluid
mechanics is one of the major pursuits of the current work. But differently from the
cited references, here, we propose a framework whereby numerical simulation data is
leveraged to extract relevant information from experimental visualizations. From the
theoretical standpoint, the flowfield represented in the input image is already a result
of the Navier-Stokes equations. Even though the prior knowledge of the Navier-Stokes
equations introduces an effective regularization mechanism in the training of neural
networks (Raissi et. al, 2019), no physical information had to be inferred to the CNN to
accomplish the purpose of our work. Results show that the neural network can successfully
predict the pressure field or any other fluid property from velocity inputs. Wang et. al
(2019) show that forecasting future dynamics can benefit from physical guidance, but
predicting future frames is not the scope of our work. Here, we seek to extract more

information from already existing experimental imaging data.

1.4 Objectives and thesis outline

The primary objective of this work is to study the onset and evolution of the DSV
for a transitional Reynolds number flow (Re = 6 x 10*), also examining the differences
in phenomenology due to compressibility variations. Although compressibility effects are
present in many cases of dynamic stall, they have been little studied. Such level of
understanding of the onset mechanisms and state of the boundary layer is paramount for
designing effective control strategies to mitigate dynamic stall. For this task, initially,
an SD7003 airfoil under periodically plunging motion is considered at freestream Mach
numbers My, = 0.1 and 0.4. Then, the airfoil kinematics is modified to address the
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pitch-plunge equivalence problem. Such study can be considered as a second objective
from this thesis, and it is motivated by the need for outlining the limits at which dynamic
stall is mostly influenced by geometric effects. Finally, another objective of this work
consists in developing novel strategies of reduced order modeling and feature extraction
from the high fidelity dynamic stall datasets. For this, machine learning appears as a
natural candidate.

The first /present chapter of this thesis presented a literature review of several studies
on dynamic stall, including both numerical simulations and experiments. An overview
of different modal decomposition techniques applicable in the context of dynamic stall
as well as onset criteria of DSV were presented. These topics play a key role in the
characterization of dynamic stall. In this chapter, we also introduced the pitch-plunge
equivalence problem and how it fits into the context of using already existing data for
an intended aerodynamic purpose. Then, the last part of the literature review discussed
emerging machine learning researches applied to fluid mechanics as well as past studies
carried out on dynamic stall in the late 1990s.

The second chapter describes the theoretical formulation and the numerical methods
employed herein to compute the flow fields. The computations are performed with
an in-house Navier-Stokes solver written in generalized curvilinear coordinates in fully
contravariant form. Theoretical implications of this contravariant notation are presented
and a new formulation is proposed (see Appendix A). Post-processing techniques are
discussed for the unsteady flows at hand. These include the standard DMD algorithm
and its multi-resolution variant, and some empirical criteria for assessing dynamic stall
onset.

The third chapter is dedicated to the analysis of the onset of dynamic stall. We
simulate an SD7003 airfoil undergoing periodic plunging motion following earlier studies
as they serve as benchmark for validation. However, in contrast to these works, we
focus on the incipient moment of the flow separation while accounting for compressibility
effects. In this sense, earlier spanwise fluctuations and higher flow three-dimensionality
are observed in the higher compressible regime. Despite that, an apparent Mach number
invariance seems to exist during the birth of the Kelvin-Helmholtz instability that precedes
the dynamic stall onset. The separation, in turn, follows the van-Dommelen-Shen process
and the robustness of some empirical separation criteria to compressibility variations is
assessed. Finally, in this chapter, modal decomposition analyses are carried out aiming
to extract the embedded dynamics associated with the separation process and their
respective frequency content. This level of understanding of the onset phenomenon is
crucial for the design of effective flow control strategies to mitigate the DSV formation.
In this scenario, finding a proper algorithm capable of extracting physically meaningful
flow structures marks an important milestone in the overall context of this thesis.

The fourth chapter of this thesis refers to the pitch-plunge equivalence problem. Here,
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the airfoil and flow conditions are kept the same as in the previous chapter (Reynolds
and Mach numbers, and the static angle of attack) and only the motion prescribed by the
airfoil is changed. The equivalence is constructed based on the geometric effective angle of
attack according to the quasi-steady thin-airfoil theory. Flow topology, acrodynamic loads
and signatures of wall pressure and friction coefficients are then compared on a time-wise
basis for pitching and plunging airfoils under constant ramp motions. It is important to
mention, however, that the flow topology and onset mechanisms of the cases simulated in
this chapter are completely different from those in the previous one. Changing the airfoil
kinematics from periodical to ramp-type motion drastically change the flow topology and,
hence, the overall results. In this chapter, we demonstrate that the LEV is strongly driven
by the rate of change of the effective angle of attack, but we also reinforce the need for
a more rigorous definition of the effective angle of attack that takes into account the
trailing-edge dynamics and compressibility effects.

Finally, the fifth chapter presents a CNN-based surrogate model developed to predict
the aerodynamic coefficients from images of the flow field. The network is capable of
identifying relevant flow features present in the image and associate them to the airfoil
response. Preliminary results demonstrate that the model is effective in interpolating
between flow parameters. Now, research is being done to verify the extrapolation capacity
of the model. In addition to this regression task, we propose a model that generates
synthetic images of any fluid property of interest given an input image. Preliminary
results demonstrated in this chapter show that this is indeed a promising topic for future
exploration.

The overall conclusions and findings of this work as well as suggestions for future work

are provided in the last chapter of the thesis.

1.5 Contributions of the present work

The main findings of the work are summarized below:

o Detailed description of the separation process for a dynamic stall configuration: For
the periodic plunging motion, it is shown that the separation process contains two
stages: the first being composed by Kelvin-Helmholtz instabilities and the second
being a secondary instability that obeys the van Dommelen and Shen model. Results
suggest a possible Mach number invariance for the birth of the Kelvin-Helmholtz
instability, which appears to be connected to the acoustics at the trailing-edge.
Increasing compressiblity, however, induces earlier spanwise fluctuations, higher flow

three-dimensionality, and a weaker and more diffuse DSV, with lower residency time.

o Ezxploration of the mrDMD algorithm in dynamic stall applications: To the authors’
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knowledge, this is the first time that the multi-resolution DMD (mrDMD) is applied
to a problem of dynamic stall. As shown in the results, the mrDMD technique
overcomes the standard DMD, especially when transient or intermittent events such

as dynamic stall onset are to be investigated.

Assessment of the robustness of empirical criteria to compressibility variations: To
the authors’ knowledge, this is the first time that the robustness of the leading-edge
suction parameter (LESP) and of the chord-normal shear layer height technique
is assessed under different compressible regimes. Results demonstrate a higher
robustness of the latter with respect to Mach number variations. Moreover, in
the present analysis, we take advantage of the numerical simulation data to propose

a new numerical procedure to calculate the chord-normal shear layer height.

Pitch-plunge equivalence for ramp motion airfoils: We draw on the geometric
effective angle of attack to investigate the pitch-plunge equivalence problem for
constant ramp motions. With this simple kinematics, we show that the LEV
formation and its subsequent evolution is strongly driven by geometric effects.
However, this simplistic criterion is not sufficient to maintain the equivalence beyond
the point when the TEV system begins. We also report an earlier equivalence

breakdown with increasing compressibility due to lower DSV residency time.

Investigation of the rotational pseudo-forces: With the airfoil pitching up at a
constant angular velocity, the angular acceleration term vanishes. This condition
simplifies the problem and opens for the possibility of exploring how each
pseudo-force contributes to the flow dynamics. A detailed explanation around the
subject is given, and we conclude that the contribution of the non-inertial forces to
the momentum equation is negligible suggesting that the evolution of the DSV is

dominated by the apparent camber effect.

Development of CNN regression models: We build a CNN model that predicts the
airfoil response based on relevant features extracted from the input image. Provided
that the covariance shift is small between the images generated from numerical
simulations and those obtained experimentally, this model could potentially be used

as a substitute for sensors in experimental campaigns.

Image-to-image translation as generators of synthetic fluid properties: In order to
amplify the scope of information extracted in experimental fluid mechanics, we
propose a framework whereby numerical simulation data is leveraged to extract
relevant information from experimental visualizations. In particular, we uniquely
treat the image semantic segmentation as an image-to-image translation task that

infers semantic labels of structures from the input images in a supervised way. Given



28

an input image of velocity, the resulting model generates synthetic images of any

corresponding fluid property of interest.

1.6 List of publications

The publications of the present dynamic stall studies include:

e Preliminary results of the pitch-plunge equivalence problem were presented in the
ATAA Aviation 2021 Forum (Miotto et. al, 2021a).

o Final results of the pitch-plunge equivalence problem were submitted for publication

in the ATAA Journal (currently under review).

o Preliminary results of the periodically moving airfoils were presented in the ATAA
Scitech 2021 Forum (Miotto et. al, 2021b).

e Preliminary results of the periodically moving airfoils were presented in the 18th
Brazilian Congress of Thermal Sciences and Engineering (ENCIT) 2020 (Miotto
and Wolf, 2020).

o Final results of the periodically moving airfoils were published in the Journal of
Fluid Mechanics (Miotto et. al, 2022).

Additional studies published during the PhD include:

» Studies on installed jet noise were published in the Journal of the Acoustical Society

of America (Nogueira et. al, 2019).

o Studies on leading-edge noise prediction based on Amiet’s theory were published in

the ATAA Journal (Miotto et. al, 2018b).

e Preliminary results of the leading-edge noise prediction studies were published in
the 2018 ATAA/CEAS Aeroacoustics Conference (Miotto et. al, 2018a).

Preliminary results of the periodically moving airfoils were also presented in:

o The Direct In-person Colloquium on Vortex Dominated Flows (DisCoVor) (2022,

Villars-sur-Ollon, Switzerland).
« The Remote Colloquium on Vortex Dominated Flows (ReCoVor) (2021, Online).

o The Army Research Office (ARO) Dynamic Stall Workshop (2019, Georgia Institute
of Technology).

o 72nd Annual Meeting of the APS Division of Fluid Dynamics (2019, Seattle)
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1.7 Useful links and supplemental movies

Supplemental movies can be found in:

» Movies related to Chapter 3:
https://doi.org/10.1017/jfm.2022.165 (see “Supplementary materials”

section)

» Movies related to Chapter 4:
https://drive.google.com/drive/folders/10xs7t7MEJrdjJjD2A31Fu-UPpzCZxzCs?

usp=sharing

PyDMD project that implements the Dynamic Mode Decomposition algorithm and
its variants can be found in https://mathlab.github.io/PyDMD/.


https://doi.org/10.1017/jfm.2022.165
https://drive.google.com/drive/folders/10xs7t7MEJrdjJjD2A31Fu-UPpzCZxzCs?usp=sharing
https://drive.google.com/drive/folders/10xs7t7MEJrdjJjD2A31Fu-UPpzCZxzCs?usp=sharing
https://mathlab.github.io/PyDMD/
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2 Methodology

In this chapter we describe the numerical methods used in our in-house LES solver
and the post-processing techniques employed to study the current flows. This includes
the definitions of the leading-edge suction parameter and chord-normal shear layer height;
the modal analysis algorithms, and the neural networks used herein.

Appendix A contains a dedicated space for discussing the formulation implemented in
our LES solver since the present approach is not commonly seen in standard CFD codes.
Here, the Navier-Stokes equations are cast in a fully tensorial form. For that reason, the
tensor formalism is presented in the Appendix A along with an alternative formulation

that better relates our approach with standard CFD codes.

2.1 Numerical solution of the aerodynamic field

Simulations of dynamic stall are conducted solving the compressible Navier-Stokes
equations. The SD7003 airfoil is selected for the present study because of its better
suitability to low Reynolds number applications. An O-type grid is employed along the
airfoil and, hence, the equations are solved in a general curvilinear coordinate system.
In order to resolve the most energetic flow scales, large eddy simulations are performed
without the explicit use of a subgrid scale (SGS) model. Hence, to control high-frequency
numerical instabilities that would be damped by an SGS model, a sixth-order compact
high-wavenumber filter (Lele, 1992) is applied with a proper treatment of wall boundaries
(Visbal and Gaitonde, 2002). The transfer function associated with such filters has been
shown to provide an approximation to SGS models (Mathew et. al, 2003). The implicit
LES methodology is chosen based on extensive results presented by Visbal and co-authors
(Visbal, 2011, 2014; Benton and Visbal, 2018b,a; Visbal and Garmann, 2018; Benton and
Visbal, 2020).

The flow equations are solved using a staggered grid approach as presented by
Nagarajan et. al (2003). Therefore, the numerical methodology employed in the spatial
discretization combines the application of sixth-order accurate compact schemes for
calculation of derivatives and interpolations on the collocated and staggered grids. The
time integration is performed using an explicit third-order compact storage Runge-Kutta
scheme (Wray, 1986) in regions away from solid boundaries. Near the airfoil surface,
an implicit second-order Beam-Warming scheme (Beam and Warming, 1978) is applied
to overcome the stiffness problem typical of boundary layer grids. Sponge layers and

characteristic boundary conditions based on Riemann invariants are applied along the
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farfield boundaries and adiabatic no-slip boundary conditions are used at solid boundaries.
The present flows are three-dimensional, but a periodic boundary condition is enforced
along the spanwise direction. Despite being three-dimensional, most of the results are

presented in terms of spanwise-averaged quantities to improve the flow statistics.

2.1.1 Governing equations

The compressible Navier-Stokes equations are solved in nondimensional form and in a
non-inertial frame of reference. The characteristic length, velocity components, density,
pressure, and temperature values used in the nondimensionalization procedure are given,
respectively, by the airfoil chord ¢, freestream speed of sound a., freestream density po,
poa®,, and (y — 1)T,,. Here, T, is the freestream temperature and ~ is the ratio of
specific heats. In a non-inertial Cartesian system attached to the airfoil, the equations

are written as

gf +div (pu') =0, (2.1)
a(pul) : Iyl AN I N _ C R
5 +div(pu'u' +pl — 7') = =2pQ2 AU — pQ A (QANZ) — pQ AT — pX | (2.2)
and
8E : !/ !/ /
E—kdlv[(E—kp)u—‘r-u +q]=0, (2.3)

where, X = (0,h(t),0) and 2 = (0,0,Q7) are the position and angular velocity of the
non-inertial frame, respectively, and primed quantities represent variables measured with
respect to the moving frame. The four terms appearing in the right hand side of Eq. 2.2
are pseudo forces defined for frames accelerated in commonly occurring ways: the first
two, the Coriolis and Centrifugal forces, involve rotation; the third term is called Euler
force, which is caused by a variable rate of rotation, and the last force is caused by the
rectilinear acceleration of the moving frame. The total energy and the heat flux for a fluid

obeying Fourier’s law read as

E=7]';1+;p[u’-u’+(X+Q/\w').(X+Q/\w’)}
and
q= _Rel:Pr gradT' ,

respectively. Finally, the viscous stress tensor is given by

1
Re,

/
T =

2
218" — M divu'I| ,



32

where

S’ = ; (grad u' + (grad u’)T) ,
is the strain rate tensor and Re, = Re/M, is the Reynolds number based on the speed
of sound. Assuming the medium to be a calorically perfect gas, the set of equations is
closed by the equation of state
p= vv_lpT :

For the sake of a clear readability, the previous governing equations were presented
in terms of a Cartesian system. In Appendix A, we show the same equations cast in the
tensorial form, as they are numerically solved herein. A parallel with the mixed notation

usually employed in computational fluid dynamics is also provided.
2.1.2 Spatial Discretization

The numerical scheme which will be employed for the spatial discretization is a
sixth-order accurate compact scheme (Nagarajan et. al, 2003) implemented on a staggered
grid. In a general curvilinear coordinate system, the staggered first derivative, f , of a

function f at interior nodes is computed as

o bfj+3/2 — [i-3/2 n afj+1/2 — fi-1/2

3Ax Ax ’ (2:4)

O{f]/-_l + fjl + Oéf]l'_;_

where a = 9/62, a = 3/8(3 —2«v) and b = 1/8(—1422a). The use of a staggered variable
arrangement requires a mid-point interpolation formula. The implemented sixth-order

accurate formula is given by

= bfj+3/2 - fj73/2 + afj+1/2 - fj71/2

I I I
afj—1+fj + o Jj+ ) ) )

(2.5)

where o = 3/10, a = 1/8(9 + 10«) and b = 1/8(—1 + 6c). The boundary and
near-boundary nodes require one side derivative and interpolation formulas that can be
found in Nagarajan (2004).

Compact finite-difference schemes are non-dissipative and numerical instabilities
arising from insufficient grid resolution, mesh non-uniformities, approximate boundary
conditions and interpolation at grid interfaces have to be filtered to preserve stability of
the numerical schemes. The high wavenumber compact filter presented by Lele (1992) is
applied to the computed solution at prescribed time intervals in order to control numerical

instabilities. A one parameter family of sixth-order filters is constructed using

fivr+ fima +cfj+2+fj—2+dfj+3+fj—3
2 2 2 ’

afi1+ fi+afjn=af;+0 (2.6)
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where f; is the filtered solution, a = 1/16(11+10a), b = 1/32(15+34a), ¢ = 1/16(—3+60)
and d = 1/32(1—2«). The spectral response of the filter is adjusted by the filter coefficient
a that ranges from —0.5 < o < 0.5. Higher values of « provide less dissipation. The

boundary nodes use different filtering formulas that can be found in Bhaskaran and Lele
(2010).

2.1.3 Time Integration

Far away from the solid boundaries, the governing equations are integrated using an
explicit third-order compact storage Runge-Kutta scheme (Wray, 1986). After the spatial
discretization, the set of partial differential equations become a set of ordinary differential
equations that can be expressed in the form

aqQ

=1, 2.7

This set of ordinary differential equations can be integrated from t" to t"*! using the

following third-order Runge-Kutta scheme

Qn+1/3 — Qn + 185Atf(Qn,tn)

1 3

Qn+2/3 _ Qn + ZAtf<Qn,tn) + EAtf(Qn+1/3,tn+l/3)

1 3
Qn—l—l _ Qn + ZAtf(Qn7 tn) + ZAtf(Qn—i—Q/S’ tn-l—Q/B)7
where the intermediate time levels are t"t1/3 and t*+2/3.

The time integration of the fluid equations is carried out by a fully implicit
second-order Beam-Warming scheme (Beam and Warming, 1978) in the near-wall region

in order to overcome the time step restriction. The second-order implicit method is given
by

3 n+1 _ 40™ n—1

e @) 2.9

The right hand side is solved through approximate factorization followed by

diagonalization of the implicit matrix in the x and z directions. Details about the

approximate factorization are presented by Nagarajan (2004).

2.1.4 Boundary Conditions

Sponge layers and characteristic boundary conditions based on Riemann invariants are

applied at inflow and outflow boundaries. For a subsonic inflow boundary, four incoming
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quantities must be specified along with one outgoing quantity computed from the interior
domain. In the current study, the entropy, tangential and spanwise velocities and incoming
Riemann invariant will be constrained. The outgoing Riemann invariant can then be
computed by extrapolation from the interior nodes neighboring the inflow boundary. For
a subsonic outflow boundary, one incoming quantity must be specified along with four
outgoing quantities computed from the interior domain. Here, the incoming Riemann
invariant should be imposed and the entropy, tangential and spanwise velocities and
outcoming Riemann invariant can be computed by extrapolation from the interior nodes
neighboring the outflow boundary. A damping sponge layer will also be applied along the
inflow and outflow boundaries to minimize reflections of disturbances (Nagarajan, 2004;
Bhaskaran and Lele, 2010).

Adiabatic, no-slip boundary conditions will be applied at the solid boundaries. The
wall density can be obtained by the solution of the continuity equation (Eq. 2.1). The
momentum and energy equations are replaced by the constraints on the velocity (pu; = 0)
and temperature (07/0n = 0), where the term 0(.)/On represents a derivative in the

wall-normal direction.

2.2 Empitical criteria for dynamic stall onset

2.2.1 Leading edge suction parameter (LESP)

Having an indication of massive dynamic flow separation near the leading edge is
of paramount importance for understanding the onset of the dynamic stall. This will
allow the construction of dynamic stall models and the definition of control strategies
for mitigation of the DSV. In that sense, Ramesh et. al (2014) recently proposed a new
stall onset criterion based on the idea that an airfoil can support a maximum amount
of leading edge suction. By calculating the first term, Ag, of the Fourier series for the
distribution of vortex sheet strength along the camber line in thin airfoil theory, they
have numerically observed a critical threshold of suction when the leading edge vortex is
being formed. When this limit is exceeded, vorticity is released from the leading edge to
give rise to the dynamic stall vortex. The term Ay was referred to as leading edge suction
parameter (LESP) and it depends on the airfoil shape and flow Reynolds number, being
independent of the airfoil kinematics, except in scenarios where a large trailing edge flow
separation is present.

Since most occurrences of dynamic stall exhibit some degree of trailing edge separation
and flow reversal, a new quantifiable feature was proposed by Deparday and Mulleners

(2019) to predict the dynamic stall vortex inception together with an improved model of



35

the LESP. In their approach, critical values of the chord normal shear layer height and
the airfoil circulation were observed to be invariant to motion and, thereby, being better
indicators of dynamic stall onset. The LESP model was also modified by the previous
authors to account for the evolution of the shear layer during the stall development.

As discussed by Ramesh et. al (2014), the LESP parameter Ay can be used to indicate
the onset of the DSV, which occurs when the maximum value of this parameter is achieved.
According to Deparday and Mulleners (2019), the LESP can be computed directly from

numerical or experimental data as

Ag = senfcos(A — a)]\/i||§w||| cos(h — )| . (2.9)

In Eq. 2.9, «a is the effective angle of attack and A is the angle formed between the
incoming flow and the leading edge suction vector Spp. This vector is determined by
integrating the pressure signals along the first 10% of the airfoil chord. Hence, S gives
the net force from the surface pressure integration. Here, the sign function is included to
yield a continuous result when cos(\ — a) goes from positive to negative and vice-versa.
A schematic representation of the terms used to evaluate Ay according to Deparday and
Mulleners (2019) is presented in Fig. 2.1 (a). In this figure, the 10% frontal portion of

the airfoil chord is colored in blue and the chord line is shown by a dashed line.

SLE

>

a

Us (a) (b)
Figure 2.1: Schematic of the relevant parameters used in the calculation of the LESP (a)
and entropy measure showing the evaluation of the chord-normal shear layer height (b).

2.2.2 Chord-normal shear layer height

The applicability and reliability of the LESP hinge upon a prior knowledge of the
critical thresholds of the leading edge suction as a function of the parameters of the
airfoil motion. However, the dependency of this suction on the kinematics and flow
compressibility impairs its usage as a universal dynamic stall onset indicator for several
realistic flow applications. With the aim of overcoming this limitation, the shear
layer height criterion proposed by Deparday and Mulleners (2019) was shown to be a
more precise, motion independent, indicator although not easily accessible outside of a
laboratory environment.

In this previous reference, the shear layer height was evaluated through an averaged

location of clockwise rotating shear layer vortices identified using an Eulerian vortex
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criterion from the individual snapshots of the velocity field. Here, as we know the values
of all conserved variables from the numerical simulation, it is possible to estimate the chord
normal shear layer height, Az, in a simpler manner. We compute contours of an entropy
measure and select a small threshold (0.05 in this case) as a limit for the viscous region. A
representation of the procedure is shown in Fig. 2.1 (b), where the blue region indicates
the portion of the fluid within the limit where entropy values change above the 0.05
threshold. Then, uniformly distributed chord-normal lines are drawn and their distances
from the airfoil surface to the entropy contour boundary are measured. These lines are
represented in Fig. 2.1 (b) in yellow color and their distances are nondimensionalized
by the airfoil chord. Here, 100 lines are used in the analysis, but only a few appear in
the figure for better visualization. If a given chord-normal line intersects the limiting
entropy level more than once, for instance, in the rightmost yellow line in the figure, a
separate distance is computed for each intersection and all such distances are subsequently

averaged out to obtain Az.

2.3 Modal analysis

As experiments and calculations become more advanced, they generate ever-increasing
amounts of data. While having a massive amount of data is an advantage, the size of
the datasets presents its own challenges. This has led to a growing need for data-driven
methods that can take a dataset and meaningfully characterize it with minimal guidance.
Several researchers in fluid mechanics have considered modal decomposition as the tool
of choice for data-driven analysis (Taira et. al, 2017, 2020). Among the different modal
decomposition techniques, the proper orthogonal decomposition (POD) is one of the most
popular. It was introduced to the fluid dynamics/turbulence community by Lumley (1967)
as a mathematical tool to extract coherent structures from turbulent flow fields. Naturally,
POD has been widely used in the context of dynamic stall (see Mohan et. al (2016);
Coleman et. al (2019); Lui and Wolf (2019); Mallik and Raveh (2020) to cite a few). The
extraction of the POD modes is based on optimizing the mean square of the field variable
being examined.

Our hope when performing a modal analysis is that the modes identify features of the
data that elucidate the underlying physics. However, there is a foundational theory upon
which these decomposition methods can rest. Without sound theory, we may apply or
design algorithms that in some cases produce results that we cannot explain or trust. In
the case of POD, the data is expected to be a zero-mean second-order stochastic signal.
These conditions, though, are hardly satisfied in dynamic stall for the transient nature of
the problem. This makes interpreting POD modes from dynamic stall data very difficult.

Fortunately, the meaning of the modes depends on the particular type of decomposition
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used, and there are other options besides POD.
2.3.1 Dynamic mode decomposition (DMD)

Dynamic mode decomposition (DMD) (Schmid, 2010; Tu et. al, 2014) is a technique
that isolates the most dynamically significant modes containing low-rank flow structures
oscillating at a single frequency. The algorithm employed here builds upon the singular
value decomposition (SVD) of the snapshot data and computes a finite-dimensional
approximation of the infinite dimensional Koopman operator (Tu et. al, 2014).

In the algorithm, the dynamical system (which can be nonlinear) is reconstructed as
a linear best-fit (least-squares) approximation X’ ~ AX, where matrices X and X’ €
C™* =1 and store the snapshots in columns. Then, the best-fit linear operator A and its
eigendecomposition are evaluated to extract the DMD modes .

In this section, we provide more details about the DMD algorithm. It proceeds as

follows:

1 The snapshots are stored colunmwise in two separate matrices X and X’ € C™*7~1
such that

where x;, for i = 1,2, 3,...,n, represent the i-th snapshots. Here, m is the number

of grid points and n is the total number of snapshots.

2 The SVD of X is computed to obtain a low-rank representation of the data as
X~ UXV*

where U € C™*" 3 € C"™", V € C™*" and * denotes the conjugate transpose. Here,
r is the rank of the reduced SVD approximation to X and that can be computed
using the recent hard-thresholding algorithm of Gavish and Donoho (2014). The
matrices U and V are named the left singular vectors and right singular vectors of

X, respectively, and X is a diagonal matrix containing the singular values.

3 The best-fit linear operator A is computed to map X' =~ AX through a

pseudo-inverse of the SVD approximation of X:

A =XVX U,
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In practice, however, the operator A can be prohibitively large for the next step of
the algorithm and a matrix similarity A = U*AU, which defines a low-dimensional
approximation of the linear dynamical system X1 = A%y, is used instead. In this

sense, we have

A=UXVE".
The eigendecomposition of A is computed as
AW = WA,

where W is the matrix containing the eigenvectors (stored columnwise) and A is a

diagonal matrix with the corresponding eigenvalues Ag.

The eigendecomposition of the original system is reconstructed using either
® = UW (Projected)

or
¢ =X'VE'W (Exact).

Each eigenvector ¢ of ® represents a DMD mode. These two distinct ways to
reconstruct the modes occur because Tu et. al (2014) showed that the ezact modes
are the actual eigenvectors of matrix A, in contrast to the original definition of
Schmid (2010) for the projected modes. However, they tend to converge if X and

X’ have the same column spaces.

Finally, the initial amplitudes by of each mode are found such that the solution is

approximated by

x(t) ~ 27’: o exp(wit)b, = P exp(Qt)b. (2.10)

k=1

Here, wy = In(A\x)/At and €2 is a diagonal matrix whose entries are the wy values.
There exists different ways to evaluate the initial amplitude. By considering the

first snapshot at time t; = 0, which gives x; = ®b, one can evaluate it as
b= @Txl,

where 1 stands for the Moore-Penrose pseudo-inverse. Following Tu et. al (2014), it
is possible to use the principal component (POD) subspace to determine b through

less expensive computations as

b~ (WA) 'ay,
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where «; is obtained from the matrix product XV* associated with the first
snapshot, i.e., x; & UXV* = Uq;. As proposed by Jovanovi¢ et. al (2014),

another possibility to calculate b is given by

-1

b= [(W*W)o(Vana Vi) diag(Vana VE"W),
where, in this case, * denotes the self-adjoint (Hermitian) operator while the overline
is the complex-conjugate. The term o represents the elementwise multiplication and

V 4na is the Vandermonde eigenvalue matrix.

This classical DMD approach has been used for analyzing unsteady flow features in
several applications, for example in jets (Semeraro et. al, 2012), cavities (Seena and
Sung, 2011), wakes (Muld et. al, 2012), detonation waves (Massa et. al, 2012) and also in
dynamic stall (Dunne et. al, 2016; Mohan et. al, 2016), as mentioned earlier. In this work,
we also employ a recent variation of DMD labelled as multi-resolution DMD (mrDMD).
The implementation for both algorithms can be found in the PyDMD package (Demo et.
al, 2018) available at https://mathlab.github.io/PyDMD/. It is worth mentioning that

the present author is one of the contributors of this project.
2.3.2 Multi-resolution dynamic mode decomposition (mrDMD)

This algorithm variant consists of a recursive computation of DMD to remove
low-frequency, or slowly varying, features from the collection of snapshots (Kutz et. al,
2016). Its primary advantage stems from its ability to separate long-, medium-, and
short-term trends in data. The resulting output, then, provides a means to better
analyze transient or intermittent dynamics that the normal DMD fails to capture.
Furthermore, the mrDMD is able to handle translational and rotational invariances of
low-rank embeddings that are often undermined by other SVD-based methods.

In a wavelet-based manner, the time domain is divided into two segments recursively
to create multiple resolution levels until a desired termination. Since only the lowest
frequencies are removed from each bin, data can be sub-sampled to increase computational
efficiency. Denoting by L, J and m; the number of decomposition levels, temporal bins per

level, and modes extracted at each level [, respectively, the dynamical system is expressed

as
L J my
i 1.7 1.7 1.7
x(t) =S5 5 () exp(wt) b7,
=1 j=1k=1

In the expansion above, f%9(t) is an indicator term that acts as a sifting function for each


https://mathlab.github.io/PyDMD/
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temporal bin and is defined as

1, telt, tjn]

i) =  withj=1,2, ... Jand J =201,

0, elsewhere

Artificial high-frequency oscillations may be introduced by the hard cutoff of the time
series in each sampling bin but they are naturally filtered out by the lowest frequency
selection during the recursion. For a detailed description of the mrDMD algorithm the
reader is referred to Kutz et. al (2016).

2.4 Convolutional neural networks (CNNs)

Part of this study consists of designing a CNN architecture to capture relevant
flow structures and establish a mapping relationship between these structures and the
aerodynamic coefficients on the airfoil. Both the location and the morphology of the flow
structures with respect to the airfoil must be properly inferred by the neural network for
an accurate estimation of the aerodynamic loads. For that, we used convolutional neural
networks (CNNs) for their success in identifying flow features (see §1.3). It is worth
mentioning that this is an ongoing study. Although preliminary, the results presented in
this thesis are very promising.

Unlike other supervised machine learning approaches, CNNs are pattern recognition
algorithms that discover meaningful features, in essence making a feature vector, and
then extract information from these features in order to make inferences. An important
milestone in computer vision was the famous LeNet-5 architecture proposed by Lecun et.
al (1998), which introduced the building blocks used in modern CNNs: the convolutional
layers and the pooling layers. The last few layers in the network are composed of fully
connected layers that compile the data extracted by previous layers to form the final
output.

Convolution is a mathematical operation that slides one function over another and
measures the integral of their point-wise multiplication, acting as a weight averaging
method. A convolutional layer contains a series of filters known as convolutional kernels,
each taking a summation of Hadamard product of a subset of the input pixel values and a
corresponding value in the kernel. This kernel, then, strides over the input matrix to scan
the entire data/image. The pooling layer, in turn, subsamples the input data in order to
reduce the computational load, the memory usage, and the number of parameters. By
doing so, it also limits the risk of overfitting and introduces some level of invariance to
small translations (Lecun et. al, 1998). Dropout is another regularization method usually

applied to the fully connected layers to prevent overfitting (Krizhevsky et. al, 2012).
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2.4.1 Input data

The starting point of the method is the input images of fluid flow fields, such as those
from a 2D cross section or spanwise averaged data. Any physical property of interest
could be used as input of the network. Here, we trained a CNN that takes u- and
v-velocity components as input and another one that uses the pressure coefficient (C,)
field. The reason behind these quantities is because the velocity field can be directly
obtained experimentally, through PIV technique, and the pressure is closely related to
the airfoil aerodynamic loads. Figure 2.2 shows examples of images used as input to the
CNN. These images are not at scale, though. They had to be resized to fit in the present

document.

(a) u-velocity (b) v-velocity (c) Cp
Figure 2.2: Examples of images used as input to the CNN.

Our dataset consists of nearly 20,000 RGB images for each physical property and of
size 600 x 600 pixels each. These images consider all simulations of dynamic stall cases
reported in this manuscript, which include the periodic plunging airfoil and the constant
ramp pitching and plunging motions for Mach numbers 0.1 and 0.4. When generating
the images, it is important to keep a fixed range for the contour levels of the property
of interest. We used the values [—2,2] for both velocity components and [—4,0] for C,.
Notice that the velocity components are already non-dimensionalized by the freestream
velocity. Finally, this collection of images was shuffled and arbitrarily divided into groups
of nearly 16,000, 2,000 and 2,000 images to form the training, validation and test sets
respectively.

Data augmentation is used to artificially increase the size of the training set. Realistic
variants of each training instance were generated by shifting, rotating, and resizing
every picture through preprocessing layers (Shorten and Khoshgoftaar, 2019). The
transformations applied to the input images are only geometrical and, therefore, preserve
the semantics of the images. Moreover, the DSV and the entire airfoil are fully framed
in all generated instances. In our preliminary study, no noise was added to the generated

instances. Although PIV images contain a substantial amount of noise (Scharnowski and
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Kéhler, 2016), we did not apply our model to PIV data just yet. In fact, we are eager
to access experimental data to proceed with this study. In this case, we expect that the

network will perform better after being trained with noisy data.

2.4.2 Fine tuning

Initially, many attempts were made to build sequential models of convolutional,
pooling and fully connected layers capable of predicting the aerodynamic coefficients from
flow field images. The number of layers, the size of each layer and the number of filters
were varied, generating models containing from nearly 3,000,000 to more than 52,000,000
parameters. These networks were built from scratch with randomly initialized weights
and employed L2 regularization and dropout techniques to prevent overfitting. Using
the framework of maximum likelihood estimation, the mean-square-error cost function is
preferred for regression problems, but here we used the logarithm of the hyperbolic cosine
function (logcosh) as it is not strongly affected by occasional wildly incorrect predictions.
Different activation functions, such as ReLU and ELU (Clevert et. al, 2015), and different
optimizers, such as Adam (Kingma and Ba, 2015) and Nadam (Dozat, 2016), were tested.
However, despite the many combination of hyperparameters covered, virtually all resulting
models were highly biased, meaning that they were too simple to learn the underlying
structure of the data. Due to the unsuccessful attempts using these simple sequential
models, we took a different turn and used transfer learning.

Transfer learning is a useful approach to speed up training considerably while also
requiring significantly less training data to bootstrap computer vision models (Zhuang
et. al, 2021). It consists of using pre-trained models to leverage features learned on one
problem and use them on another problem. Here we used many architectures pre-trained
on the ImageNet dataset, which are readily available for Tensorflow Abadi et. al (2015)
via Keras API (Chollet et. al, 2015). That is the tool we employed in this work. Even
though pictures related to fluid flow problems are absent from ImageNet, the method used
generalize well to our dynamic stall problem. However, as some of these architectures
contain many parameters, running them can be expensive, especially when working on
CPUs. So we used the strategy described by Chollet (2016a) to train our network in a

computationally efficient way for transfer learning. It goes as follows:

1. Instantiate a pre-trained model (in §2.4.3 we show the architectures we used) taking

only the convolutional part, up to the fully connected layers.

2. Run this model on the training and validation data only once and record its output.
We call this output "bottleneck features" for it is the activation maps immediately

before the fully connected layers.
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3. Define a fully-connected model to add on top of the convolutional base. But before
that, train this small fully-connected model separately, using the bottleneck features
as input. This step prevents the large gradient updates triggered by the randomly
initialized weights from wrecking the learned weights in the convolutional base. Also,
by doing so, the computational efficiency is improved. At this stage, an arbitrary

value of 15 epochs is considered for training.
4. Add the previously trained fully-conected layers on top of the convolutional base.

5. Fine-tune the convolutional block with a very slow learning rate to make sure that
the magnitude of the updates will not wreck the previously learned features. In this

sense, SGD optimizer is preferred.

The pre-trained models assume that the images are pre-processed in a specific way.
Hence, the pre-processing step is not only used for data augmentation, but also to properly
scale the pixel range or resize the picture to the size expected by the original model. All
layers were trained using 300 epochs with an early stopping of 50 epochs based on the

mean-square-error metric.

2.4.3 CNN architectures

A few CNN architectures were selected to solve our regression problem. Among them,
we have the VGG16 (Simonyan and Zisserman, 2015), the InceptionV3 (Szegedy et. al,
2016), the Xception (Chollet, 2016b) and the EfficientNet-B3 (Tan and Le, 2019). The
VGG16 is a simple and classical architecture built from the stack of groups of 2 or 3
convolutional layers, each followed by a pooling layer. By using very small filters (3x3),
the VGG16 pushes the depth to 16 weight layers totaling approximately 138 million
parameters.

The InceptionV3, in turn, uses subnetworks called inception modules, which were
initially proposed by Szegedy et. al (2015). These modules allow for more computationally
efficient and deeper networks through a dimensionality reduction with stacked 1x1
convolutions. In an InceptionV3 model, several techniques for optimizing the network have
been put for easier model adaptation. This includes exploring factorized and asymmetric
convolutions, and the use of an auxiliary classifier as a regularizer. A high-level diagram of
the model is shown in Fig. 2.3 below. It is worth mentioning that only the convolutional
blocks were fine-tuned in the present work and the dense layers, and thereby the output,

is not identical to the one shown in the figure.
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Input: 299x299x3, Output:8x8x2048
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Figure 2.3: Diagram of an InceptionV3 network. The dense layers (denoted as “Final
part” in the figure) and the output were modified in the present work. Digital image
extracted from Advanced Guide to Inception v3, accessed 12 August 2022
<https://cloud.google.com/tpu/docs/inception-v3-advanced>

Another variant of the architecture proposed by Szegedy et. al (2015) is the Xception
network (Chollet, 2016b). It relies on the concept of depthwise separable convolutions,
which splits the channelwise and spatial-wise computations into two steps. The depthwise
convolution applies a single convolutional filter per each input channel, while pointwise
convolution is used to create a linear combination of the output of the depthwise
convolution. Inception module reverses these operations. Compared with conventional
convolutions, it is not necessary to perform convolution across all channels, resulting in
fewer operations and a lighter model. In addition, the Xception extensively uses residual
connections (He et. al, 2016) and does not apply non-linearity (ReLU or ELU) after the
depthwise operation.

Finally, the family of EfficientNet architectures (Tan and Le, 2019) worked towards
balancing network depth, width and resolution to improve performance. Based on the
intuition that if the input image is bigger, then the network needs more layers to increase
the receptive field and more channels to capture more fine-grained patterns on the bigger
image, the authors proposed a new scaling method that uniformly scales all dimensions of
depth/width/resolution using a compound coefficient. Here we chose the EfficientNet-B3
variant for its relatively few number of parameters, compared to the aforementioned
architectures, and its accuracy.

As mentioned in the previous section, only the convolutional block of these pre-treined
models is used in our work. In fact, these networks were trained on classification problems,
whereas, here, we are interested in a regression task. Therefore, it is necessary to change
the top layers of the network to adjust them to our problem. How this is done will
depend on the number of outputs we want the neural network to have. In this sense,
two different fully-connected layers were designed to meet two distinct objectives: (1)

finding integrated aerodynamic coefficients, such as lift, drag and the quarter-chord pitch
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moment coefficient; and (2) finding the distribution of pressure coefficient over the airfoil
suction side. While in the former we only need 3 outputs (lift, drag and pitch moment),
the latter needs to be a large array to store the entire load distribution over the airfoil
surface. Here, we used the 337 grid points that compose the airfoil suction side in our
numerical simulation. Using grid points is acceptable in our case since all simulations
used the same mesh. To keep the data independent of the mesh, one can interpolate the
results to specific points on the airfoil surface and then use this data as output to train

the network. That said, we have the following fully-connected layers for each case:

1. Lift, drag and pitch moment: One dense layer of 256 units that uses the ELU
activation function and L2 normalization, followed by a dense layer of 3 units with

linear activation.

2. Pressure coefficient distribution: Two dense layers of 512 units that use the
ELU activation function and L2 normalization, followed by a dense layer of 337

units with linear activation.

2.4.4 Image synthesis

In addition to the regression model to obtain aerodynamic coefficients from images
of the flow, we are also interested in expanding the amount of information extracted
from experiments. While these two things might be somewhat related, we refer to them
separately. This is because we create a model to obtain the coefficients, and another
one to extract other information from the flow. Here, for example, this other information
consists in images. For this, we need to train a neural network capable of receiving images
of the flow as input and generating another image as output.

The motivation for this image-to-image translation stems from the fact that any
physical properties can be obtained from a numerical simulation, while the range of
information extracted from experiments is very limited or too complex to be acquired.
Although the flow field resulting from a numerical simulation can significantly vary from
an experimental flow visualization of the same problem, there exists common high-level
semantics between them.

Image synthesis with supervised machine learning is the process of artificially
generating images that contain some particular desired content, associated with a specific
label. The most prominent machine learning model for generating content is known as
generative adversarial networks (GANs) (Goodfellow et. al, 2014). The GAN is based
on game theory, where we have two networks competing with each other to generate
the best segmentation. One neural network, called the generator, generates new data
instances, while the other, the discriminator, evaluates them for authenticity. But,

differently from the aforementioned networks, GANs are fully convolutional networks
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(FCN) (Long et. al, 2015), which are similar to a common convolution neural network,
but the fully connected layers are typically replaced by transposed convolutional layers.
These transposed convolution, first introduced by Zeiler et. al (2010), allows one to
upsample the input feature map to a desired output feature map using some learnable
parameters.

Certainly, the nature of having a discriminator model in a GAN provides us with
output-target differences on the pixel level, which emerges from a deeper understanding
of the images. However, GANs are often difficult to train and tune (Gui et. al, 2021), and
a simpler approach to synthesize an image is to use the U-net (Ronneberger et. al, 2015),
a network developed to work with fewer training images and produce accurate biomedical
image segmentation. This network resembles an encoder-decoder structure, but with the
addition of skip connections that are used to transfer fine-grained information from the
low-level layers of the contracting path to the high-level layers of the expanding path. The
U-net combines a pixel-wise softmax over the final feature map with the cross entropy
loss function. For its simplicity, it is the architecture that we will use in the present work.

In our implementation of the U-net, the images of the velocity components are
resized to 256x256 pixels and concatenated channelwise. Hence, we have the following

architecture shown in Fig. 2.4:
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Figure 2.4: U-net architecture.

2.4.5 Domain adaptation

In the present work, we seek to adapt a model trained with annotated C), field samples
from CFD simulations (source), to operate on an experimental (target) distribution, for
which no annotations are given. However, the covariance shift that occurs due to different
distributions between source and target often causes model performance to deteriorate on
target data (Wang and Deng, 2018). To address this issue without any need for training
beyond the primary task of our image-to-image translation, we use the unsupervised

domain adaptation (UDA) method proposed by Yang and Soatto (2020). Their method
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minimizes the distributional misalignment across different domains by replacing the
low-level frequencies of the target images into the source images using the fast Fourier
transform. As a result, the original model trained only on a given source distribution

generalizes better across different domains.
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3 Dynamic stall onset

Two different freestream Mach numbers are investigated in this work to assess
compressibility effects on deep dynamic stall of a periodic plunging airfoil. Simulations are
performed for M., = 0.1 and 0.4, the former being also studied by Visbal (2011), Mohan
et. al (2016) and Ramos et. al (2019). Mesh refinement and domain extension studies are
discussed by the references previously cited and, in the present work, we employ the same
grid resolution used by Ramos et. al (2019), which has 480 x 350 x 96 (=~ 16 million)
points along a z/c = 0.4 span. An extensive literature (see Visbal (2011); Visbal and
Garmann (2018) and Benton and Visbal (2019b, 2020) for instance) provides compelling
evidence that this spanwise extension is sufficient to accurately capture the aerodynamic
loadings and the relevant dynamics associated with the dynamic stall onset. The studied
configuration comprises an SD7003 airfoil at oy = 8° static angle of attack. The airfoil
trailing edge is rounded with an arc of radius r/c = 0.0008 to facilitate the use of an
O-mesh topology and to keep metric terms smooth.

It is worth mentioning that, in this work, we employ the same numerical method
and grid used by Ramos et. al (2019) for the M, = 0.1 flow, whose results compare
well with those from Visbal (2011), both in terms of local flow structures and integrated
loads. However, in order to validate the results for M, = 0.4, a refined grid of size
576 x 444 x 120 (=~ 31 million points) was designed to have 25 to 40% improvement in
resolution on the suction side, depending on the direction, after a localized distribution of
points. Computations showed an excellent agreement between the two grids and, hence,
results will be shown only for the smaller grid.

The airfoil vertical displacement h(t) is specified as a function of nondimensional time

t, reduced-frequency k and maximum plunge amplitude hq as
h(t) = hgsin(2kt). (3.1)

Here, the parameters are set as £ = 0.25 and hy = 0.5 to reproduce the deep stall
flow configuration studied by Visbal (2011) and Ramos et. al (2019). Although the
numerical formulation uses a non-dimensionalization of flow velocities and time scale by
speed of sound, the parameters in Eq. 3.1 are based on the freestream velocity, similar
to the previous references. The maximum plunging amplitude is normalized by the chord
length and the airfoil undergoes a variation in effective angle of attack in the range of
—6° < aepp < 22°

For the present plunging airfoil at M, = 0.1, Ramos et. al (2019) show that

discarding the first cycle is sufficient to remove transient features from the numerical
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procedure, which assumes an initial uniform flow in the entire domain. We performed
the computation of another cycle for M, = 0.4 and observed similar changes in the
aerodynamic coefficients compared to those shown by Ramos et. al (2019). Hence, results
are shown for the second cycle and, although cycle-to-cycle variations indeed occur, we
emphasize that the effort here is to focus on the onset of dynamic stall, where one cycle
should be sufficient to capture the main trends associated to the formation of the DSV.
Phase-averaged results of this case can be found in Visbal (2011) and Ramos et. al
(2019), and the effects of cycle-to-cycle variations are discussed by the latter authors. It
is also important to note that, differently from the previous references, here, we define the
reference position for the phase angle ¢ = 0° at h(t) = 0 and not at the topmost position
h(t) = hg = 0.5. This difference is just a matter of preference. Therefore, at ¢ = 0° the
airfoil is moving upward with maximum vertical velocity. The airfoil reaches the topmost
position at ¢ = 90° with zero vertical velocity and, then, starts the descending motion.
At ¢ = 180° it has the maximum downward velocity and at ¢ = 270° it reaches the

bottom-most position. Then, it moves upward and repeats the cycle.

3.1 General flow features

Figure 3.1 shows the lift (C}), drag (Cy) and pitching moment (C,,) coefficients as
a function of the effective angle of attack for freestream Mach numbers M, = 0.1 and
M., = 0.4. The dashed blue lines indicate the phase-averaged coefficients obtained by
Visbal (2011) after six cycles, for M., = 0.1. From this figure, a good agreement is
observed between the present results and those from Visbal, despite the differences in the
numerical methods, computational grids and phase averaging effects. At this point, it
is important to reiterate that our results display the aerodynamic loadings for a single
cycle, and that they lie within the cycle-to-cycle variations shown in Visbal’s work. The
dashed red lines, in turn, stand for the results obtained by 1 cycle of the M, = 0.4
flow with the finer grid. Differences observed are due to the sensitivity of the flow to
the initial conditions, as it would occur due to cycle-to-cycle variations. The phase angle
¢ is also shown in the plots for particular instants of the motion, and the circle and
cross symbols on C; and C, plots mark the dynamic stall onset time based on different
criteria (further details provided in § 4.6). It is observed that compressibility acts on the
sense to attenuate the aerodynamic loads in the hysteresis loop while maintaining their
maximum and minimum values, a trend that was also observed by Sangwan et. al (2017)
for a two-dimensional simulation of a pitching airfoil. Here, we observe that the largest
changes in Cj and Cy occur when the effective angle of attack is reduced from a.ss ~ 18°
to 10°, which corresponds to the time interval when the airfoil is ceasing its downstroke

motion. At a.ss = 8°, the airfoil is at the bottom-most position for the downstroke.
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Figure 3.1: Lift, drag and pitching moment coefficients as a function of the effective
angle of attack for M, = 0.1 and 0.4. Dashed blue lines are phase-averaged results from
Visbal (2011) and dashed red lines are results for M, = 0.4 with a finer grid. Circle and
cross symbols represent onset time based on LESP and Az criteria, respectively (see

§ 4.6).

These results, especially the accentuated decay of the coefficients during the post-stall
period with the increasing Mach number, can be better understood from Figs. 3.2 and 3.3.
The former exhibits the spanwise-averaged pressure coefficient (C,) contours at different
flow instants for the two Mach numbers investigated (first two rows) and its distribution
over the airfoil suction side (bottom row). The formation of the DSV is also shown in
gray shade using a flow entropy measure defined as (p/po)/(p/po)? — 1, where py = 1/~
and pyp = 1 are reference values for pressure and density, respectively. This entropy
measure gives a better visual representation of the separated flow since it indicates the
regions where entropy is changing due to viscous effects. The latter figure presents the
full history of pressure (C,) and skin friction (C}) coefficients along the suction side of

the airfoil.
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Figure 3.2: Spanwise-averaged pressure coefficients at different flow instants for
M, = 0.1 (first row) and M., = 0.4 (second row), and C), over the airfoil suction side
(third row). The evolution of the DSV can be seen in the supplemental movie at
https://doi.org/10.1017/jfm.2022.165.
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Figure 3.3: Comparison of pressure (top) and skin friction (bottom) coefficients for
My = 0.1 (left) and M, = 0.4 (right). Auxiliary lines and markers are included to
facilitate the comparison between the two flows and to represent specific events as
described in the text.
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From Fig. 3.2, two immediate observations can be drawn. The first is that the suction
peak is reduced near the leading edge for the higher Mach number flow, as demonstrated in
the bottom row of the figure for ¢ = 4.5. This condition is accompanied by a weaker, more
diffuse, pressure core of the DSV. The second concerns the gestation period and residence
time for which the DSV remains over the airfoil. A heuristic reasoning to explain the
weakening of the DSV strength with compressibility is provided by Chandrasekhara and
Carr (1990). They argue that, for higher Mach numbers, the pressure gradient is reduced
near the leading edge due to the smaller curvature of the streamlines from the earlier
flow separation. At this condition, the net vorticity introduced is lower, which leads to
a weaker vortex formation. With respect to the second observation, Fig. 3.2 shows that
the DSV residence time is smaller for M., = 0.4, and that it is more spread at t = 6.5,
spanning a larger region over the airfoil suction side. On the other hand, the DSV is
relatively concentrated at the mid-chord location for the lower Mach number case. At
t = 7.5, the DSV is already leaving the airfoil surface for the higher Mach number flow,
followed by a trailing edge vortex.

The same conclusions can be drawn from the map of C), over the airfoil suction side,
depicted in the top row of Fig. 3.3. In this x/c - ¢t diagram, the dark blue contours
represent the signature of the DSV over the airfoil suction side followed by the formation
of the trailing edge vortex. We observe that the C, contours are lighter for M., = 0.4 (see
marker #4 in the figures) indicating the presence of a weaker pressure core. Moreover,
with closer inspection, it is possible to measure a delay of 17° in the phase angle between
the formation of the trailing edge vortex for the two Mach number flows, as indicated by
the horizontal black lines on marker #5. The solid and dashed horizontal lines show the
initial formation of the trailing edge vortex for the M., = 0.1 and 0.4 cases, respectively.
While the trailing edge vortex starts to form at ¢ = 213° for M., = 0.4, its appearance
occurs at ¢ = 230° for M, = 0.1.

The Cf plots in the lower row of Fig. 3.3 present further information about the flow
history over the suction side of the airfoil. At about 90° phase angle, an oscillatory pattern
appears close to the airfoil trailing edge as shown by marker #1. These oscillations arise
due to initial shedding of von Karméan vortices from the airfoil trailing edge, which exhibit
a higher frequency at the lower Mach number flow. This vortex shedding can be better
visualized in the supplemental movie at https://doi.org/10.1017/jfm.2022.165. In
the following moments, high-frequency C} variations can be observed spanning almost
the entire chord (denoted by marker #2) in the range 120 < ¢ < 130° for both flow
conditions, but they are more pronounced for the M, = 0.1 case. These fluctuations
are due to Kelvin-Helmholtz instabilities forming during the downstroke motion. Figure
3.4 shows this primary instability stage of the flow at different instants using entropy
contours. As is evident, the instabilities arise initially closer to the trailing edge but

rapidly develop along the entire suction side. They appear to form at an earlier time for
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the lower Mach number and exhibit a more organized and denser behavior where flow
structures display a higher wavenumber.
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Flgure 3.4: Entropy contours showmg the development of Kelvin-Helmholtz instabilities
(here called the primary instability stage) along the airfoil suction side for M., = 0.1
(top) and M, = 0.4 (bottom).

For both cases investigated, the formation of the dynamic stall vortex appears just after
the Kelvin-Helmholtz instabilities approach the leading edge, at a phase angle ¢ ~ 135°,
shown by marker #3 in Fig. 3.3. In the same figure, the traveling signature of the DSV
can be noticed by the negative C'y values shown in blue contours along the airfoil chord for
intermediate phase angles ¢. Auxiliary black lines are included to facilitate the comparison
of the mean velocity at which the DSV is being transported for each compressible regime.
The lines represent an approximate path of the DSV when moving, considering the center
of the blue region. The solid line corresponds to the DSV signature of the M., = 0.1 flow
while the dashed one refers to the M., = 0.4 case. They are repeated in both subplots to
facilitate the comparison of their slopes and show that the DSV is being advected faster in
the higher Mach number flow. The weaker signature of friction coefficient for M, = 0.4
is also noticeable compared to that for M, = 0.1.

The skin friction maps in Fig. 3.3 also display the presence of a flow reversal at
earlier times that progressively advances over the airfoil suction side from the trailing
edge towards the leading edge as ¢ increases. This region appears for ¢ < 120 in
light blue contours, below markers #1, #2 and #3. The time (here also visualized as a
function of the plunge cycle angle ¢) in which the flow reversal initiates does not appear
to change under the distinct compressible regimes investigated. The main differences in
C'y between the two flows start after the beginning of the primary instabilities (marker
#2), which are more sparse for the higher Mach number flow. As mentioned before, the
transport of the DSV over the suction side is faster for M, = 0.4 and its signature is
more diffuse. Moreover, the point where the development of the DSV occurs changes
from approximately z/c = 0.1 for My, = 0.1 to x/c = 0.2 for M, = 0.4 (see different
positions of marker #3). This behavior can be better understood through an inspection
of the boundary layer forming over the airfoil suction side, which will be discussed in the

following section.
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Figure 3.5: Spanwise-averaged z- vortlclty field near the leadlng edge (x/c <0.25)
revealing the sudden boundary layer separation for M., = 0.1 (top) and M., = 0.4
(bottom). Dashed and solid lines represent the boundaries for which u = 0 and v = 0,
respectively, indicating flow regions where velocity components change direction.

3.2 Onset of dynamic stall

Figure 3.5 shows the spanwise-averaged z-vorticity contours in a short time window
that marks the moment of formation of the DSV. As can be seen from the figure, At = 0.3
based on the freestream velocity, which corresponds to nearly 2.4% of the plunging cycle
period. Unlike for steady separation, in dynamic stall the outer flow continues to follow
the airfoil contour besides the presence of flow reversal. As a consequence, a local shear
layer forms between the displaced leading edge boundary layer and the reversed fluid
layer which is, at a later stage, subjected to inflectional instabilities. This leads to the
generation and growth of coherent structures that can be visualized in Fig. 3.5. In the
figure, auxiliary lines are plotted to indicate regions where u- and v-velocity components
change directions, from which we identify the presence of flow reversal and the shear layer
over the leading edge.

In previous work by van Dommelen and Shen (1980), it is speculated that the onset of
the unsteady separation phenomenon is an inviscid process, independent of the Reynolds
number. This characteristic is attributed to the fact that the initial flow reversal near
the surface, which is triggered by a strong adverse pressure gradient, is later governed by
inertial effects on the zero vorticity line. Along this line, formed as the fluid approaches
the separation region, the convective terms dominate over the viscous effects justifying
the inviscid assumption. Under the influence of the increasing adverse pressure gradient,
the local reversed flow begins to accelerate rapidly upstream near the leading edge region

generating an intense shear. Because of the presence of the solid surface, fluid is propelled
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away from the wall. Meanwhile, the vorticity conservation yields an outward distortion
of the zero vorticity line, destabilizing the local vorticity distribution and resulting in the
formation of a large vortical structure. The development of this vortex and its induced
secondary separation leads to its ejection from the surface.

The process described above is visualized in Fig. 3.6, where the local Mach number is
plotted along with the zero-vorticity lines during the dynamic stall onset. In this figure,
a straight line measuring 0.06¢ in length is plotted normal to the airfoil surface, from
which tangential and normal velocity components are computed to describe the evolution
of the local velocity field. The placement of these lines is chosen in order to highlight
similar behavior of the velocity field at ¢ = 4.4, but since separation occurs at different
chord positions depending on the freestream Mach number, they are placed with different
distances from the airfoil leading edge for each flow. The values z/c = 0.11 and 0.15 are
chosen for M., = 0.1 and M., = 0.4, respectively. We stress that these values are not
meant to indicate the precise location of the separation but only to help illustrate the
van Dommelen and Shen model. With that clarification, Fig. 3.7 shows the profiles of
tangential (u;) and normal (u,) velocity components in blue and red colors, respectively.
The corresponding vectors are also displayed in the figure. The tail of each vector is

placed at the respective normal distance where its velocity components are shown.
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Figure 3.6: Local Mach number contours near the leading edge (z/c < 0.25) for
M, = 0.1 (top) and M., = 0.4 (bottom). White dashed lines represent the
zero-vorticity lines and solid red lines represent regions of sonic flow.
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Figure 3.7: Tangential (u;, blue) and normal (u,, red) velocity profiles for M, = 0.1
(top) and M, = 0.4 (bottom).

In Fig. 3.6, the flow continues to accelerate up to a point further downstream of the
leading edge where it encounters the reversed flow accelerating along the inner layer in
the opposite direction. This acceleration is also evident in the increment of the tangential
velocity between the first and second columns in Fig. 3.7. In this region, a mutual
interaction is apparent between the outer flow and the flow inside the zero vorticity line
to form a low pressure core (not shown). At M, = 0.4, the strong acceleration of
the reversed flow is sufficient to achieve sonic speeds along the zero vorticity lines (red
lines in Fig. 3.6 represent regions of M = 1). The flow, however, is decelerated almost
isentropically and no shock waves are observed despite the sonic flow regions. The strong
shear accompanied by the low pressure on the aft portion of the separation region results
in the flow reversal being ejected away from the surface as shown by the velocity vectors
in the third and fourth columns of Fig. 3.7. The interaction of the ejected flow with the
outer flow creates a vortical structure that intensifies the instabilities in the region. The
dynamics observed in Figs. 3.5 and 3.6 appear to agree well with the overall concept of
the van Dommelen and Shen model, which provides the description of the flow up to the
early stages of separation.

As observed from the previous figures (Figs. 3.5 and 3.6), the onset of the DSV appears
further downstream from the leading edge with an increase in Mach number, as was also
reported by Chandrasekhara and Carr (1990) and Benton and Visbal (2020) for pitching
airfoils. In their work, compressibility caused the leading edge separation to occur at
an earlier time and, consequently, at a lower effective angle of attack. Therefore, the
separation for higher Mach number flows would experience a less pronounced curvature

of the streamlines and a weaker pressure gradient. However, this earlier separation is
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not observed in our simulations at Re = 6 x 10%, suggesting that the pressure gradient
reduction may not be a direct consequence of the lower effective angle of attack. It is
important to mention that the observations from the previous authors are for higher
Reynolds numbers than that considered in the present work.

For the present periodic plunging motion, the leading edge separation seems to be
related to the primary instabilities developing at the trailing edge region and, later,
spanning the entire airfoil suction side as shown in Fig. 3.4. These instabilities approach
the leading edge and interact with the secondary instability presented in Figs. 3.5 and
3.6. Notice that the term secondary instability does not refer to the jargon commonly used
in classical stability analysis. This term is only used here to differentiate the leading edge
instability from the Kelvin-Helmholtz one. Particularly, we notice from Fig. 3.4 that the
primary instabilities reach further upstream for the M., = 0.1 case. On the other hand,
for M, = 0.4, a wider favorable pressure gradient region along the leading edge causes
the formation of secondary instabilities to be shifted downstream over the airfoil suction
side and slightly delayed in time (see first two columns of Fig. 3.5). This is illustrated in
Fig. 3.8, which shows the instantaneous covariant derivative of pressure along the airfoil.
The variable & = &(x,y) is the curvilinear coordinate of the O-mesh topology, which
goes along the airfoil profile, and d§/|d{]| is introduced to remove the influence of the
mesh orientation of the covariant derivative. The basis of the curvilinear system is also
normalized to yield a scale in physical units. As discussed in literature (Li et. al (2019)),
compressibility has a stabilizing effect that delays the laminar to turbulence transition in
free shear flows. Here, the mechanism appears to be similar although the plunging motion

together with the surface presence lead to a more complex flow.

Figure 3.8: Pressure gradient contours (blue and red colors) in the streamwise £
direction and contours of entropy (transparent shading) for M., = 0.1 (left) and
M = 0.4 (right) at t = 4.25.

Given the importance of the pressure gradient on the dynamic stall onset, we display
the pressure gradient history along the & direction over the airfoil suction side in Fig.
3.9. The saturation level is kept high to call attention to the features marked in the
figure. Von Karman vortices are shed from the airfoil trailing edge before the primary
instability stage. These vortices induce flow fluctuations that are scattered by the trailing

edge generating acoustic waves which propagate upstream. These waves are perceived
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as the white ribbons in marker #3. The traces of the acoustic waves start at ¢ ~ 60°
and can be observed up to ¢ ~ 120°. The black arrows are tangent to their traces and
it is possible to conclude that, for the M, = 0.4 flow, the acoustic waves propagate
upstream at a lower speed than for M, = 0.1 due to the Doppler effect. Moreover, the
larger thicknesses of the ribbons reflect the fact that the frequency at which the acoustic
waves are generated is lower for M., = 0.4. The arrows also show the path taken by a
particular wave that coincides with the inception of the Kelvin-Helmholtz instabilities for
each flow (the latter being represented by marker #2). The black circles in both subplots
are positioned in the same spatio-temporal coordinates, emphasizing that the mechanism
that creates the primary instability originates from the trailing edge at the same time
for the two compressible regimes. However, since the upstream propagation speed of
the acoustic wave is lower for the higher Mach number, the perturbation takes longer
to reach x/c = 0.65, where the Kelvin-Helmholtz instability starts. This chord location
appears to be the same for both flows and it is represented by the vertical dashed line in
each subplot. In the region of marker #2, we observe the Kelvin-Helmholtz instabilities
that, analogously to what happens with the acoustic waves, display a lower frequency for
M, = 0.4.
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Figure 3.9: History of pressure gradient in £ direction over the airfoil suction side for
My, = 0.1 (left) and M., = 0.4 (right). The graph below shows the pressure gradients

computed along the horizontal green line, which corresponds to t = 4.25.

Shih et. al (1995) pointed out that, although a flow reversal extends from the
trailing edge over the airfoil suction side, there was insufficient time for this flow to

reach the leading edge region. Therefore, they postulated that the flow reversal near
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the leading edge and the eventual initiation of the unsteady separation were essentially
local phenomena. The trailing edge, in turn, was considered responsible for influencing
the separation indirectly, through the increase of global circulation around the airfoil
by shedding counter-rotating vorticity into the wake. In our compressible simulations,
the importance of the trailing edge lies in what appears to be the acoustic triggering of
Kelvin-Helmholtz instabilities, but it is unclear whether the trailing edge is of secondary
importance to the onset of the DSV. The Kelvin-Helmholtz instabilities occur due to shear
but our results suggest that the trailing-edge acoustics might act as an initial disturbance
that triggers the formation of such instabilities. Moreover, at marker #1 in Fig. 3.9, we
see that the onset of the DSV occurs at nearly the same time for the two regimes, as do the
acoustic waves that possibly trigger the primary instability. Since these latter propagate
at different speeds, this means that the acoustic disturbance does not directly influence
the dynamic stall onset. On the other hand, separation only occurs when the primary
instability reaches the leading edge region and the trailing edge seems to be important in
the generation of this primary instability. Other studies (Benton and Visbal (2020)) have
shown that the turbulent separation from the trailing edge can play an important role in
the dynamic stall onset depending on the flow configuration. However, such trailing edge
separation is not present in our results.

In order to better assess the differences in pressure gradient between the two flows,
we plot the values of the & pressure gradient component over the horizontal green line
displayed in Fig. 3.9, which corresponds to ¢ = 4.25. The time instant is the same as
that shown in Fig. 3.8, which displayed a wider region of favorable pressure gradient
along the leading edge for M, = 0.4. This more extensive region of favorable pressure
gradient delays the formation of secondary instabilities in the higher Mach number case.
From the figure, we can see that the adverse pressure gradient region (positive values) is
shifted downstream from the leading edge at higher Mach number. We also notice that
the magnitudes of the pressure gradient fluctuations are higher for the M, = 0.1 case.
In addition, high frequency oscillations and a strong peak appear close to the leading
edge for M, = 0.1. These are related to the beginning of the destabilization of the local
vorticity distribution described by the van Dommelen and Shen model. Finally, this plot
provides another interesting observation about the wavelengths of the Kelvin-Helmholtz
instabilities: for the higher Mach number case, longer wavelengths are observed near the
trailing edge region (say x/c > 0.6) while shorter ones can be seen around the mid-chord.
For the lower Mach number flow, on the other hand, the wavelengths appear to be more
uniform. Since our results are presented in terms of spanwise-averaged quantities, this
fact possibly indicates a higher three-dimensionality of the flow structures close to the
trailing edge for M, = 0.4.

In a recent work from Benton and Visbal (2020), simulations of a static NACA

0012 at 8° of angle of attack and Re = 10° showed the presence of a wider spectrum
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of three-dimensional (oblique) modes in the transition process at the leading edge as
compressibility was increased. Based on their observations, we investigate the presence
of three-dimensional disturbances in the flow for the current plunging airfoil. Results
are shown in Fig 3.10 where iso-surfaces of g-criterion, @ = 1/2 (||Q||*> — [|S]|?), colored
by z-momentum are plotted over the airfoil suction side. The figure is presented for
t = 4.4, which corresponds to a moment before the ejection of the first leading edge
vortex (see third column of Fig. 3.6). Results show that the higher Mach number
flow is more three-dimensional along the entire airfoil suction side. Given the quicker
breakup of spanwise coherence of Kelvin-Helmholtz instabilities for M., = 0.4, it could
be that non-normality plays an important role in this case. Even the leading edge vortices
related to the secondary instability mechanism display spanwise modes at this higher Mach
number. On the other hand, the rolls of the M, = 0.1 flow are mostly two-dimensional,

except close to the trailing edge where transition sets in.

My =0.1

Figure 3.10: Iso-surfaces of ¢-criterion colored by z-momentum for M., = 0.1 (left) and
M, = 0.4 (right) computed at ¢t = 4.4.

Since vorticity is an important quantity in the onset and development of dynamic stall,
an analysis of its evolution was also conducted to better understand how its dynamics
and related flow structures are affected by compressibility. However, we decided to leave
this discussion for the Appendix B in order to convey a clear message to the reader along
the main text. The key takeaway from this analysis is that the baroclinic torque present
in the vorticity transport equation acts as a stabilizing term as it opposes the dilatation

one.

3.3 Analysis of empirical criteria for dynamic stall

onset

The temporal evolution of the LESP for the periodic airfoil motion is shown on the left
hand side of Fig. 3.11 for the two Mach numbers investigated. Relevant values of the phase
angle ¢ are marked in the figure and the green and purple dots are the LESP thresholds,
plotted along with their respective coordinates (¢, Ag). The green dots represent the first
local maxima found in Ay while the purple dots show the global maximum. According to

the previous references, the global maximum should indicate the instant of the DSV onset.
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However, we find here that the first local maximum provides a better estimate for the
onset. Deparday and Mulleners (2019) show that after the onset of the DSV, the LESP is
susceptible to fluctuations from the separated flow. Moreover, the secondary instabilities
develop downstream 10% of the chord in the present flows. These characteristics could
impact on the calculation of the LESP, since they may lead to new maximum values.
Hence, the green dots will be used to provide the time instant of dynamic stall onset.
Comparing the blue and red lines from Fig. 3.11, which correspond to the values of Ay
for Mach numbers M., = 0.1 and M., = 0.4, respectively, we notice that the maximum
suction is reduced as compressibility increases. This is a consequence of the weaker low
pressure core formed close to the leading edge during the onset of dynamic stall, as shown
in Fig. 3.2, and which directly influences the magnitude of the suction vector. Despite

this observation, the dynamic stall onset occurs almost at the same time for both Mach

numbers.
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Figure 3.11: LESP and chord normal shear layer height for the airfoil in periodic motion
at M, = 0.1 and M, = 0.4.

The temporal evolution of Az for the two Mach number flows is shown in the right
hand side of Fig. 3.11. From this figure, we see that during the lifetime of the dynamic
stall vortex the shear layer height exhibits a high-frequency oscillatory behavior. This
is a consequence of locally non-convex topological spaces formed when the flow is highly
separated, causing the normal lines to have multiple intersections. This noise, however,
does not degrade the capability of the method in finding the critical shear layer height
since it is obtained by the intersection of two linear fits. According to Deparday and
Mulleners (2019), these fits are comprised of the primary instability stage displayed by
the dark gray line in Fig. 3.11, and the vortex formation stage represented by the first
slope crossing this line. To draw the linear fits, a time window ranging from 3 <t <4 is
used for the dark gray line, while for the vortex formation stage, the windows 4.5 <t <6
and 4.5 < t < 5 are used for M,, = 0.1 and 0.4, respectively. For our simulations, the
instant of formation of the DSV is marked by the intersection of the green with the gray



62

dashed lines shown in the right plot of Fig. 3.11.

The threshold value based on the shear layer height of Az ~ 0.02 remains the same for
both Mach numbers. According to Deparday and Mulleners (2019), this critical value of
Az is invariant with respect to the kinematics. For the present periodical motion, in the
absence of shock waves, we find that it is also invariant to the freestream Mach number.
Further analysis should be conducted to verify if shock-induced separation would alter
this threshold. Figure 3.11 indicates that, at the time instant shown in the abscissa of
the first local maximum value of the LESP, a reasonable match is obtained with that
computed by the critical shear layer height. However, when the global maximum value of
the LESP is used, it indicates a more advanced stage characterized by the roll up of the
shear layer into a large scale DSV as the onset point. Despite the small time lapse between
results from the two different methods, both answers are reasonable and consistent with
the skin friction maps of Fig. 3.3.

At this point, it is important to mention that to the present date there is no consistent
definition of “stall onset” in the literature. For example, McCroskey (1981) defines it as
the regime where maximum lift is produced. Mulleners and Raffel (2012), on the other
hand, consider the point when the DSV detaches from the airfoil surface. Here, we do not
infer a precise moment to the stall onset, but instead, consider a range of possible values
starting from the time that the secondary instabilities initiate near the leading edge to
that when the DSV detaches. Some studies (see Narsipur et. al (2020) and Deparday and
Mulleners (2019)) reported that the LESP reaches its critical value well after the onset of
instabilities near the leading edge. From the perspective of an effective control strategy,
it is important to predict the stall onset before the DSV formation (Chandrasekhara,
2007). Overall, our results for LESP and Az criteria agree reasonably well with the
features seen in Figs. 3.5 and 3.6 (where the secondary instabilities are shown), in the
sense that the critical values lie inside or close to this time interval. With increasing
Mach number, however, both criteria indicate that the onset occurs earlier in time. This
is consistent with the observations from Chandrasekhara and Carr (1990), who reported
that increasing Mach number makes the DSV to form at a lower effective angle of attack
and further downstream the leading edge. However, our simulations may not share this
trend depending on how one defines the stall onset. By the inspection of either Fig. 3.5 or
3.6, it is possible to see that the instabilities appear sooner for the Mach 0.1 case, but the
detachment of the leading-edge vortex comes after that for Mach 0.4. Hence, it is possible
to conclude that both criteria are more closely related to the definition of stall onset as
being the time when the DSV detaches from the airfoil surface, what could potentially be

detrimental to the effectiveness of dynamic stall control.
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3.4 Modal Analysis

Modal decomposition is now performed using the flow snapshots to identify the
relevant flow dynamics related to stall onset in terms of low-rank features. As noted
earlier, several different types of such decompositions exist, each with its own benefits
and shortcomings. Typically, these approaches assemble snapshots in time and extract
modes and corresponding eigenvalues, whose interpretation depends on the underlying
theory. The benefits of applying modal decomposition in general, and DMD in particular,
to examine dynamic stall may be found in Dunne et. al (2016); Mohan et. al (2016)
and Ramos (2019). For DMD, the modes and corresponding eigenvalues obtained in
the manner of § 2.3.1 and 2.3.2 represent a decomposition into coherent structures,
each associated with a magnitude, growth or decay rate and characterized by a specific
frequency.

The transient nature of the current problem, where some phenomena such as stall onset
are relatively rapid and dominant in a short time range of the imposed period, motivates
the need for special care in the interpretation of the results. Indeed, as shown in this
section, application of the original DMD as in the cited references is problematic for the
current dataset; this motivates the adoption of the relatively more recent multi-resolution
variant (mrDMD), whose properties are more suited to datasets where the condition of a
zero-mean second-order stochastic process is not appropriate.

In the standard DMD algorithm, the resulting modes can be ranked by either mode
frequency or amplitude. Here, we chose to rank the modes in decreasing order by their
amplitudes b; from Eq. 2.10, with j being the index of the mode. A collection of 1024
snapshots of pressure coefficient is used to build the matrices X and X' (details of the
algorithm are provided in § 2.3.1) within a time period of 7/k, corresponding to a full cycle
of the airfoil motion, where k = 7 fc/U,, = 0.25 is the reduced-frequency. Analogously to
the observation of Dunne et. al (2016) and Mohan et. al (2016), when ranked by their
amplitudes, the first modes exhibit frequencies that may be associated with the harmonics
of the imposed motion. Here, we leave the discussion of these harmonics to the §3.4.1
because, despite giving a global perspective about the effects of increasing compressibility
on dynamic stall, the harmonics by themselves do not elucidate the underlying physics
associated to the dynamic stall onset. To fill this gap, we search for modes which
emphasize the contribution to the dynamics near the leading edge.

Some selected modes are presented in Fig. 3.12 together with their respective
frequencies. The modes are arranged so that similar events can be compared for the
two Mach numbers. Here, we stress that the results obtained from the classical DMD
approach provide no guarantee that similar dynamical mechanisms are being compared.

Indeed, there is no a priori assumption that similar mechanisms should exist at the two
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Mach numbers. Thus, by similar events, we mean that the spatial distributions of the
modes are comparable. If more than one mode has a similar spatial distribution, we
select the one with the closest frequency. Therefore, the rationale behind the selection of
the DMD modes is the presence of a spatial distribution that could be associated with
the DSV onset. Hence, after obtaining the DMD modes, we selected those whose spatial
distribution had a clear relationship with the primary or secondary instability stages. Note
that the growth rates of the modes are not presented because they are not representative
of a linear stability analysis in this case, and saturation yields eigenvalues close to the

unit circle.
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Figure 3.12: DMD modes for M., = 0.1 (top) and M. = 0.4 (bottom) for the periodic
motion.

The standard DMD algorithm essentially combines data from all snapshots; for
example, as shown in Fig. 3.12, all modes containing coherent structure information
near the leading edge also include the influence of the flow from post-stall stages. Colored
regions away from the airfoil surface in all subplots are a remnant indication of the passage
of the DSV. They arise from the fact that the extracted modes exist throughout the entire
temporal window analyzed, which impairs the capacity of the algorithm to highlight events
that may be dominant only in a finite time window of the cycle. The signature of such
events is effectively spread out over the cycle and complicates the interpretation of the
DMD modes. This issue is also related to the inefficacy of SVD based approaches to
extract low-rank dynamics from data with translational and rotational invariance, as
discussed in the work from Kutz et. al (2016), where the mrDMD algorithm is proposed.

Despite these limitations, some useful observations can still be drawn from these
modes. For instance, the intense structures close to the airfoil surface, especially around
the leading edge region, are shifted slightly downstream for the M., = 0.4 case. The
results also suggest that the frequencies of the structures associated with dynamic stall
onset between the two Mach number flows are similar and range from St ~ 1 to 40. In
Fig. 3.12, only a few modes are shown, so it does not cover all frequencies mentioned in

that range. Moreover, these values are not precise as they are derived from a nonlinear
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collection of snapshots, and only provide a perception of the order of magnitude of the
frequencies at play during the dynamic stall onset. The persistence of the flow structures
and their corresponding frequencies across the compressible regimes investigated indicate
a possible correlation of mode shapes from a parametric modal decomposition perspective,
as reported by Coleman et. al (2019).

The limitations of the standard DMD are now lifted by applying the mrDMD algorithm
proposed by Kutz et. al (2016). Using the same procedure as before and the binning
technique of § 2.3.2, some of the most interesting modes are presented in Fig. 3.13. In the
multi-resolution approach, the modes are no longer ranked by their amplitude so that,
instead of showing the index of a given mode, it is more suitable to discuss the resolution
level and the bin where it resides. For clarity, the levels and bins are converted into their
equivalent time periods At and the modes are judiciously organized in the figure so that

the same period of time is assimilated between the two different Mach number flows.
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Figure 3.13: DMD modes obtained from the mrDMD algorithm for M., = 0.1 (top) and
M, = 0.4 (bottom) for the periodic motion.

Comparing Figs. 3.12 and 3.13, it is evident that the multi-resolution variant has a
better capability to deal with the transient nature of dynamic stall and is able to extract
clean and physically interpretable modes. Starting from the leftmost column of Fig. 3.13,
we observe the structures that represent the Kelvin-Helmholtz instability formed along
the airfoil suction side. Note that the time period encompassed by this mode coincides
with the time window when the instability develops, as shown in Fig. 3.4 and also the
pressure gradient plot of Fig. 3.9. For the M, = 0.4 case, acoustic waves are also
seen propagating from the trailing edge due to a scattering mechanism, but these are not
visible for the M., = 0.1 case since the acoustic waves have a lower amplitude for this flow.
The spatial distribution of the modes is also different. While a quasi-continuous train of
Kelvin-Helmholtz disturbances appears as a wavepacket at M., = 0.1, the structures are
more sparsely distributed for M., = 0.4, being more concentrated at the mid-chord. This
is consistent with the observation of high frequency oscillations in the skin friction and

pressure gradient maps of Figs. 3.3 and 3.9, respectively. It is also interesting to note
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that the frequencies between the two compressible cases are much alike, and this holds
for all subplots.

The modes depicted in the subsequent columns are associated with the growth of the
shear layer instabilities close to the leading edge and the separation process that leads
to the formation of the DSV. In the second column, the modes represent the advection
of vortical structures formed in the leading edge shear layer instability, which coalesce
afterwards to form the DSV. The frequencies represented in this second column (St ~ 7)
are close to that obtained by Ramos et. al (2019) during their attempt to suppress
the DSV formation with a zero-net flux actuator. Finally, the last two columns refer
to the same time period and mark the separation process described earlier in Figs. 3.5
and 3.6, where nonlinear mechanisms govern the evolution of the flow. As indicated in
Fig. 3.13, the frequencies increase substantially at this stage, independently of the Mach
number. While the structures observed in the last two columns are more organized and
compact for M, = 0.1, those appearing in the M., = 0.4 flow are composed of a wider
range of spatial scales. This observation may reflect the higher three-dimensionality of
the M, = 0.4 flow, as shown in Fig. 3.10. As discussed before, the structures are also
formed downstream for the M., = 0.4 case and extend over a larger portion of the airfoil
chord. For these DMD modes, one can also see that acoustic waves are generated by the
hydrodynamic fluctuations near the leading edge. These waves have higher wavenumbers
for the M, = 0.4 flow and may contribute to the earlier breakdown into three-dimensional

structures.

3.4.1 Harmonics of the periodic motion

In this section, we demonstrate that, when ranked by their amplitudes, the first modes
exhibit frequencies that may be associated with the harmonics of the imposed motion.
Similar observations were also made by Dunne et. al (2016) and Mohan et. al (2016).
Within a time period of 7 /k, corresponding to a full cycle of the airfoil motion, where
kE 2 nfc/Usx = 025 is the reduced-frequency, we define the Strouhal number based
on the nondimensional airfoil chord (¢ = 1) as St & fc/Uy, = k/m =~ 0.07958. This
nondimensional frequency of the plunging motion matches that of the dominant (first)
dynamic mode, which is plotted in Fig. 3.14 along with the extracted frequencies from
DMD. In this figure, the modes corresponding to the harmonics of St = 0.07958 are
also included for both Mach numbers and the saturation levels are kept the same for all
subplots, ranging from -0.004 to 0.004. The DMD is computed here using snapshots of
pressure coefficient

Comparing the different Mach number solutions in Fig. 3.14, a striking resemblance

of the dominant dynamic mode and its harmonics is noted. This occurs because these
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Figure 3.14: DMD domlnant mode and sub-harmonics for M., = 0.1 (top) and
= 0.4 (bottom) for the periodic motion.

modes are related to the airfoil kinematics, which is the same for both Mach numbers
investigated. Nevertheless, some characteristics of the higher Mach number flow are still
visible in these modes, such as the weaker DSV strength. For instance, the harmonics of
the M, = 0.4 flow have a slightly smaller area in blue color, and the levels in these regions
are reduced when compared to the M., = 0.1 case. Inspection of the 3rd harmonic for both
Mach numbers shows a weaker presence of the leading edge red structure for M., = 0.4;
this indicates that the leading edge dynamics occurs with a different phase compared
to that of the M, = 0.1 case. Overall, at higher harmonics, the disparities caused by
the phase lag between the two flows become more accentuated. The cause of this phase
variation is the different gestation period and residency time of the DSV over the airfoil

between the two Mach number flows.
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4 Pitch-plunge equivalence

In this section, LES results are presented for an SD7003 airfoil under deep dynamic
stall for both pitch and plunge ramp motions. All simulations are performed at Reynolds
number Re = 6 x 10*. It is worth mentioning that, in this work, we employ the same
numerical method and grid used by Ramos et. al (2019) for a periodically plunging airfoil
at Mo, = 0.1, whose results compare well with those from Visbal (2011), both in terms
of local flow structures and integrated loads. Here, the airfoil kinematics is changed to
investigate the pitch-plunge equivalence problem.

An O-type grid is used in the simulations and contains 480 x 351 x 32 (& 16 million)
points in the streamwise, wall-normal and spanwise directions, respectively. To check
whether this grid is still valid for our cases, a refined grid of size 576 x 444 x 120 (=~
31 million points) was designed to have 25 to 40% improvement in resolution on the
suction side, depending on the direction, after a localized distribution of points. Then,
two additional simulations (one for pitch and one for plunge motions) at Q* = 0.10 and
M, = 0.1 are performed using this refined computational grid. Similar conclusions are
obtained between the two grids and, hence, results will be shown only for the smaller one.
The discussion about the refined cases are presented in §4.5.

The airfoil span length is set as s = 0.1¢, where ¢ is the airfoil chord, based on
studies reported in the literature (Visbal, 2011; Visbal and Garmann, 2018). These
previous investigations show that a relatively small span can properly capture the flow
features associated with the onset and evolution of the DSV. An extensive literature (see
Visbal (2011); Visbal and Garmann (2018); Benton and Visbal (2019b, 2020) for instance)
provides compelling evidence that this spanwise extension is sufficient to accurately
capture the aerodynamic loadings and the relevant dynamics associated with the dynamic
stall. To certify that the s/c = 0.1 span is sufficient to accurately represent the current
dynamic stall problems, we performed an additional simulation of a pitching airfoil at
Qt =0.10 and M = 0.1 with s/c = 0.4. These results are also shown in §4.5.

4.1 Apparent Camber Effect

As a way of alleviating the lack of a more rigorous treatment on the definition of the
equivalence, we use the concept of virtual (apparent) camber. Accordingly, quasi-steady
thin-airfoil theory establishes that during pitch-up maneuvers, the apparent camber
induced by the variable angle of attack along the chord produces higher C; and lower
Cpn. Based on this fact, Visbal and Garmann (2022) could successfully reconcile lift and
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moment coefficients by subtracting the rotation-induced apparent camber contributions
AC; and AC,, present in the pitching case. In the present work, this correction is
experimented for ramp-type maneuvers. For brevity, we only show the final expressions
in what follows and refer the reader to Visbal and Garmann (2022) for a detailed

development. According to the previous reference, the AC; and AC,, terms are given

by:
dC; 3
AC, = — ( ) (x - ) OF cos (au;) (4.1)
daesy / static "o
and
AC,, = —gQJF cos (Qess) (4.2)

where ), is the pivot location (x, = 1/4 in our simulations). The term (dCj/daeyy)gtatic
is the airfoil static lift slope, obtained through line fitting over 10 < a.fr < 17 in the
present simulations. This angle range is chosen due to the quasi-linear behavior of C; x a5 ¢
observed in the results.

In what follows, we begin our discussion presenting the pitch-plunge equivalence for
constant-ramp motion. Two different rates of motion are analyzed in this work, Q" = 0.05
and 0.10. Based on the fact that the literature of pitch-plunge equivalence usually assumes
incompressible flows, we set the freestream Mach number as M., = 0.1 in a first analysis.
This value guarantees that the compressibility effects will be minimum while allowing for
feasible computations using the present compressible solver. Then, we assess the effects
of compressibility on pitch-plunge equivalence by increasing the freestream Mach number
to M., = 0.4. Thereby, a series of 8 different simulation setups are investigated in this

work.

4.2 Pitch-plunge equivalence for constant-ramp

motions

As pitching and plunging motions are fundamentally different, it would be beneficial
to establish an equivalent comparison between them to assess their role on dynamic stall.
Most studies of pitch-plunge equivalence are available in the literature for periodic motions
owing to the already existing large database of periodically pitching foils. However,
periodicity introduces complications due to the different initial conditions imposed to
the flow from cycle-to-cycle. Fortunately, airfoils in pitching ramp motion, which are
commonly used for the study of dynamic stall (Lorber and Carta, 1988; Ol et. al, 2010;
Yu et. al, 2018; Benton and Visbal, 2019b), are known to successfully suppress this
difficulty. Motivated by this fact, in this session we define a ramp motion for plunging

airfoils that can be directly compared to their pitching counterpart. A similar approach
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was carried out by Ol et. al (2009).

The term ramp used throughout the text refers to the fact that the effective angle of
attack aesy is continually increasing, for example, as in a pitch-up movement with a fixed
angular velocity. In a plunging airfoil, however, the motion requires the descent velocity
to continuously increase following a tangent-like curve to match the geometric angle of

attack of the pitching maneuver. For that, the descent velocity must be specified as
h(t) = —tan(Q*t) [1 — exp(—at)] (4.3)

where 27 is the rate at which the effective angle of attack increases (say c.rr = Q7), and
a is a constant used for exponential smoothing set as a = 9.2 in the present calculations.
The values of Q* analyzed in this work are Q* = 0.05 and 0.10 and the parameters h, QF
and a are presented here nondimensionalized by the freestream velocity (instead of the
speed of sound) to follow other studies available in the literature. The airfoil static angle
of attack is kept as ay = 8°.

Equation 4.3 deserves a special attention and we first neglect the exponential
smoothing term to show how QF and the descent velocity & are interrelated. Considering

ap as the static angle of attack, aeys relates to h by the following expression
N .
Qeff = ap + arctan (—h(t)) :

which is also equal to a.fr = g+ Q"¢ for a constant ramp motion. This condition implies
that A(t) = —tan(Q"t). Then, we add the exponential term on the descent velocity to
smooth out the initial transient of motion and to make it more physically representative,
taking us to Eq. 4.3. It is worth mentioning that there exist other ways to construct the
angle-of-attack schedule. Eldredge et. al (2009), for example, use an alternative definition
for the smoothing function. That said, the impact of this term on results will be shown
in §4.4, but for what matters, we can say that the results are robust with respect to it.

It is interesting to note that Eq. 4.3 has singularities depending on the value of Q*t¢.
Physically, it means that, at some point, for the effective angle of attack to continue
increasing, the velocity would tend to infinity. This condition corresponds to a purely
normal relative velocity of incidence and imposes that the simulation time must be
bounded to t < w/(2Q7). Despite the temporal restriction, the dynamic stall can still be
studied using the proposed ramp motion because the formation of the DSV takes place
at short times for practical QT values.

In the pitching ramp motion, the angular rotation rate is prescribed by the following
equation

Guogs(£) = 1 — exp(—at)],
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which can be directly integrated to give the instantaneous angle of attack,
Qepf(t) = ag + QH{t + 1/a[exp(—at) — 1]} (4.4)

The values of Q" and a in Eq. 4.4 are the same as those employed in the plunging motion
of Eq. 4.3 so that the effective angle of attack in both cases increases at the same rate,
allowing a direct comparison.

We begin the analysis for the ramp simulations with Q% = 0.05. Results are shown in
Figs. 4.1 and 4.2 in terms of the aerodynamic loads and contours of pressure coefficient,
respectively. The red dashed lines in Fig. 4.1 indicate the corrected lift and moment
coefficients that take into account the rotation-induced apparent camber present in
the pitching case (Visbal and Garmann, 2022), as discussed in §4.1. The immediate
observation from Fig. 4.1 is the similarity of the pitching and plunging aerodynamic
coefficients within the analyzed time window (see solid lines). Both lift and drag continue
to increase until reaching o.ry ~ 22.5°. At this point, a sudden drop occurs, indicating
the detachment of the DSV. This drop is more pronounced for the pitch motion (red
curve) while the trend is reversed for the moment coefficient. Soon after, a rapid recovery
in lift and drag coefficients occurs for both motions. However, the recovery starts at an
earlier angle of attack of aesy ~ 25.0° for the plunging case. In this figure, it is possible
to notice that the pitch-corrected solution has an even better agreement in terms of C}

and C,, for lower angles of attack, as expected from theory.
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Figure 4.1: Pitch/plunge effects on lift, drag and moment coefficients for M., = 0.1 and

QF =0.05.

Figure 4.2 depicts the flowfields computed for the pitch and plunge cases labeled in
Fig. 4.1 at specific effective angles of attack. This figure shows the pressure coefficient
(in color) together with plots of an entropy measure (Visbal and Garmann, 2022; Miotto
et. al, 2022) (in gray scale) defined as (p/po)/(p/po)” — 1. The values py = 1/~ and py =
1 are reference values for nondimensional freestream pressure and density, respectively.
This entropy measure gives a better visual representation of the separated flow since
it indicates the regions where entropy is changing due to viscous effects. This figure

provides a qualitative perspective of the flow and allows an interpretation of the evolution
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Figure 4.2: Pressure coefficient contours shaded by an entropy measure (superposed in
gray scale) and instantaneous C,, distributions on the airfoil suction side at different
time instants for M, = 0.1 and Q" = 0.05.

of aerodynamic coefficients. While the C), contours allow for visualization of the pressure
variations due to the DSV and TEV, the superposed gray shade of entropy measure
shows the flow separation. Faint white lines are plotted in the figures to allow a better
comparison of the DSV and TEV positions for the different motions. Movies are submitted
as supplemental material to provide a better comparison among all flow configurations
studied in the present work. They can be found at https://drive.google.com/drive/
folders/10xs7t7MEJrdjJjD2A31Fu-UPpzCZxzCs7usp=sharing. In one of the movies,
results are compared based on the simulation time, while in the other, the effective angle
of attack variation is kept the same. The cases discussed in Figs. 4.1 and 4.2 are referred
to in the leftmost two columns of the top row in the movies.

Figure 4.2 also presents the C), distributions along the airfoil suction side for the same
effective angles of attack. As can be observed from these plots, the pressure distributions
have excellent agreement for pitch and plunge, except when the TEV dynamics plays
a major role. This can be seen in the rightmost plot for a.;r = 25.0° where, for the
plunging motion, the TEV has a more pronounced suction peak at the trailing edge. For
both cases, the TEVs form and move upstream along the airfoil suction side (we refer to
the supplemental movie for a complete visualization of this effect) leading to the recovery
in lift coefficient and the drag increase shown in Fig. 4.1. However, the stronger TEV
(higher suction) from the plunging case leads to larger C; and C, values. Moreover, since
the TEV advances upstream earlier for the plunging case, the lift recovery also occurs for
lower effective angles of attack.

Results for QT = 0.10 are shown in Figs. 4.3 and 4.4 (see also the rightmost two
columns of the top row in the movies), where the aerodynamic coefficients are much alike
up to a.rr ~ 25.0°. Beyond this angle of attack, up to a.rs ~ 30.0°, the lift coefficients

continue to increase due to the transport of the DSV along the airfoil suction side. This


https://drive.google.com/drive/folders/10xs7t7MEJrdjJjD2A31Fu-UPpzCZxzCs?usp=sharing
https://drive.google.com/drive/folders/10xs7t7MEJrdjJjD2A31Fu-UPpzCZxzCs?usp=sharing
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shift of the maximum lift and drag to higher incidence angles with increasing rate is
expected from the literature (Eldredge et. al, 2009; Granlund et. al, 2013). However,
there is a notable difference between the coefficients for pitch and plunge ranging from
25.0° to 35.0°, which we will comment on shortly. The TEV, in turn, forms at ae¢r =~ 35.0°
as can be seen in the third column of Fig. 4.4, and at higher angles of attack, the
trailing-edge dynamics becomes relevant. For this case, the TEV is still the main cause of
the equivalence breakdown and we can use an analogous discussion as that presented for
Q" = 0.05 to explain the loss of equivalence between pitch and plunge. As such, although
including the correction for the pitch apparent-camber effect improves the agreement of
lift and pitch moment coefficients for the rates Q" = 0.05 and Q* = 0.10, it is not sufficient
to accommodate the dissimilar dynamics that occur after the TEV is formed. This means
that while the LEV formation and its subsequent evolution is driven by the rate of change
of the effective angle of attack, the entire dynamic stall phenomenon cannot be described
in a purely geometric sense. This fact conflates with the conclusions from Ol et. al (2008)
and McGowan et. al (2008) who questioned the validity of the definition of the effective

angle of attack used to construct the airfoil motions after noticing a mismatch of the wake

patterns.
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Figure 4.3: Pitch/plunge effects on lift, drag and moment coefficients for M., = 0.1 and

Qf =0.10.

In Fig. 4.3, a difference is observed in the maximum values of C; between pitch and
plunge, specifically from a.rs = 25.0° to 35.0°. The second column of Fig. 4.4 shows that,
at aerr = 30.0°, the DSV is at the airfoil semi-chord and no significant pressure forces
are observed at the trailing edge. Despite the similarities between the two flows, the
instantaneous pressure distributions along the airfoil suction side show that the plunging
case has a slightly stronger suction along the entire chord, which causes the discrepancy
in maximum lift. The differences in the aerodynamic loads could be then justified by
either a possible higher sensitivity of the airfoil response with respect to the higher rate
QF, or one could attribute this to the distinct inertial reaction during the beginning of
the motion.

As shown in §4.4, we observed a noticeable sensitivity of the flow to smoothing at high
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Figure 4.4: Pressure coefficient contours shaded by an entropy measure (superposed in
gray scale) and instantaneous C,, distributions on the airfoil suction side at different
time instants for M, = 0.1 and Q" = 0.10.

incidence angles, contradicting some earlier observations from Gendrich et. al (1995).
These authors concluded that the non-circulatory contributions should only influence the
flow during the acceleration period and a relatively short time afterwards. On the other
hand, Granlund et. al (2013) showed a noticeable sensitivity due to smoothing transients
at higher angles of incidence and Mancini et. al (2015), in turn, demonstrate that higher
acceleration of a surging airfoil impacts the force history for long convective times after
its cessation, mostly due to the circulatory effect. An inspection of the C, fields shows
that, despite the nearly identical flow topologies between pitch and plunge, the locations
of the low pressure cores of the LEVs are not precisely the same with time advancement,
which should cause the bound circulation to vary between the two motions. A small shift
in the LEV trajectory was also reported by Lee et. al (2022) and Mancini et. al (2015).
However, the latter authors primarily attribute the variations of the airfoil response to a
stronger LEV formed on fast airfoils. As the observations suggest, it is possible that the
discrepancies in the aerodynamic loads between pitch and plunge from a.rr = 25.0° to
35.0° are linked to their initial accelerations.

To strengthen our observations about the equivalence, we draw maps of skin friction
coefficient C'y over the airfoil suction side as a function of the effective angle of attack for
both pitching and plunging motions in Fig. 4.5. These maps allow the visualization of the
DSV and TEV traces along the airfoil chord. In this figure, the rows indicate a fixed rate
Q" while the type of motion is ordered columnwise. Additional axes carrying time labels
are included to allow a better comparison between the different rates of motion Q" and to
identify the instants of the DSV onset. Note that since we double Q7| the time to reach the
same effective angle of attack is expected to be halved. By comparing the columns, i.e.
the types of motion, one can immediately observe the remarkable similarities between

pitch and plunge prior to the formation of the TEV, represented by the red contours
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observed near the upper right corners in all figures. For QT = 0.10 (bottom row), the

earlier formation of the TEV for the plunge motion is evident.
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Figure 4.5: Comparison of skin friction coefficients of plunging (left) and pitching (right)

ramp motions for M., = 0.1, with Q" = 0.05 (top) and QT = 0.10 (bottom).
From the maps of skin friction coefficient in Fig. 4.5, we observe the presence of
a separation bubble from the moment when the airfoil starts the ramp motion (static
angle of incidence at ap = 8°). The bubbles start at z/c ~ 0.25 and move towards the
leading edge with the increasing angle of attack until z/c ~ 0.15 and a.fr ~ 15°. Then,
they burst giving rise to the development of the LEV. Both the separation bubble and the

signature of the DSV can be seen from the blue color contours in the skin friction coefficient
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distributions. The importance of a laminar separation bubble (LSB) on the dynamic
stall onset has only recently become possible to evaluate. This difficulty comes from the
small spatio-temporal scales associated with the LSB and from the high sensitivity of the
bursting phenomenon to the state of the boundary-layer. In recent studies, Benton and
Visbal (2018a,b) observed through the use of wall-resolved LES that the bubble bursting
results in the formation of a small LEV that rolls up the separated flow to develop the
DSV. In their work, the bubble bursting involved flow separation at the trailing edge
that reaches the LSB near the leading edge to trigger the bursting. They attributed the
variability in the location and timing of the DSV to the delay between the LSB formation
and its interaction with the upstream propagation of the turbulent separation. In our
simulations, such turbulent separation does not exist and the bubble bursting occurs due
to a local process. The absence of the separated flow can be justified by the different
airfoil configuration, Reynolds number and static angle of attack adopted in this study.
Nonetheless, it is important to mention that this is not the first time that bubble bursting
is described in terms of a local process (i.e., without the turbulent separation). We will

return to that discussion later in this chapter.
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Figure 4.6: Tangencial velocity profiles measured at x/c = 0.99 on the airfoil pressure
side for M, = 0.1 and Q" = 0.10.

In summary, we show that the pitch-plunge equivalence holds for the cases of
constant-ramp motion investigated until the formation of the TEV, at high effective
incidence angles. A recent model from Xia and Mohseni (2017) establishes that the rate
of circulation being shed from the trailing edge is impacted by the tangential velocities
arriving on both sides of the trailing edge. In Fig. 4.6, we show an evolution of the
tangential velocity profiles u; near the trailing edge (at the 0.99 chord station on the
pressure side) for pitch and plunge. The airfoil is also represented in this figure along
with the line on which the velocity profiles are measured. This line is 0.0015¢ high. Note
that the y-axis of the plots (wall-normal distance) is inverted to better match the line
from which the data was extracted. Results show that the velocities are different before
the formation of the TEV. The only case in which the TEV is already formed is that
for the plunging case at a.ry = 35.0° in the last column. Therefore, the differences in

TEVs between pitch and plunge could be associated to the different velocity profiles. In
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addition, the viscous extension of potential-flow unsteady aerodynamics from Taha and
Rezaei (2019, 2022) also cast light on the probable reasons for the equivalence breakdown.
Accordingly, their study demonstrate that the viscous contribution induces a significant
phase shift in Theodorsen’s lift response at high frequencies. In our case, this could be
translated to a lag in the TEV formation between pitch and plunge due to different viscous
responses. However, we emphasize that the trailing-edge systems of the present cases are

also influenced by the LEVs and, therefore, should not be treated in isolation.

4.3 Earlier equivalence breakdown due to

compressibility

In the previous section, we showed how the pitch-plunge equivalence holds for
constant-ramp motions of the cases investigated. The aerodynamic coefficients and
flow topologies are very similar between pitching and plunging motion, and noticeable
differences would only occur at high loading conditions, especially when the TEV starts
to form. In this section, we investigate the robustness of the pitch-plunge equivalence to
compressibility variations. Even at the low /moderate Reynolds number considered in this
work, compressibility effects should not be overlooked. For instance, many small wind
turbines have high tip-speed ratios and some micro-air vehicles operate at high speeds,
and this gives rise to situations where compressibility may influence performance. To this
end, we consider a freestream Mach number M., = 0.4 and replicate the same airfoil
kinematics from before. This value is chosen to avoid the presence of shock waves since
they would alter the underlying onset mechanisms.

Following the previous analyses, the aerodynamic coefficients for the pitch and plunge
cases are presented followed by the contours of pressure coefficient and entropy measure.
Results of simulations for M, = 0.4 and QT = 0.05 are presented in Figs. 4.7 and
4.8 (see also the first two columns of the bottom row in the movies). We also plot the
aerodynamic coefficients for M., = 0.1 in Fig. 4.7 and the C), distributions over the airfoil
suction side in Fig. 4.8 to establish a better comparison between the two compressible
regimes. In both figures, results for M, = 0.1 are shown by semi-transparent dashed
lines. As the correction for apparent camber in pitching airfoils does not depend on any
flow parameter, but only on the airfoil kinematics, this analysis has been omitted from
the following results. With this, we draw the reader’s attention only to the effects of
compressibility. In this case, the pitch-plunge equivalence holds up to a.rr = 17°, beyond
which the curves vary drastically between pitch and plunge. When compared to the
M., = 0.1 cases, it corresponds to a drop of 5° of effective angle of attack over which
the equivalence remains valid. From the figure, one can also see that the lift coefficients

display a similar behavior for both M., = 0.1 and 0.4 up to a.ss ~ 17°. However, the
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higher compressibility results in an increased drag and magnitude of pitching moment

coefficients that starts from the beginning of the motion.
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Figure 4.7: Pitch/plunge effects on lift, drag and moment coefficients for M., = 0.4 and
Q1 = 0.05 (solid lines). Results for M,, = 0.1 are replicated by the dashed
semi-transparent lines.
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Figure 4.8: Pressure coefficient contours shaded by an entropy measure (superposed in
gray scale) and instantaneous C,, distributions on the airfoil suction side at different
time instants for M, = 0.4 and QT = 0.05.

In summary, the higher compressibility results in a scenario in which an overall increase
of drag occurs. This contradicts the main trends observed by Miotto et. al (2022) for
an SD7003 airfoil under periodic motion. In this previous reference, an increase in Mach
number resulted in an improved aerodynamic performance in terms of drag. To address
this antagonistic effect of compressibility, we compare the first two columns from Figs.
4.2 and 4.8. From these figures, we notice that the increase of drag forces occurs due
to the higher separation and the more evenly distributed pressure forces over the airfoil
chord at M, = 0.4. In the second column of Fig. 4.2, we see the development of the LEV
for the M., = 0.1 cases. However, this more coherent flow structure seems to be absent
in the M., = 0.4 flows as depicted in Fig. 4.8. As a matter of fact, the large separation

of the flow hinders the coalescence of the smaller vortical structures making the cohesive
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dynamic stall vortex to manifest posteriorly, as observed in the third column of the same
figure.

From Fig. 4.8, it is possible to see that the DSV is more diffuse and weaker for the
M, = 0.4 flows. This is also manifested in the the plots of C, distribution, from which it
is easier to compare the two compressible regimes. The arrival of the DSV at the trailing
edge region is sufficient to drastically change the aerodynamic loads between pitching and
plunging. The disparate evolution of each type of motion is not an exclusive consequence
of the pressure core itself, but of how it interacts with the trailing edge. For example, at
aepp = 22.5°, a strong TEV forms over the airfoil in the plunging motion for M, = 0.4.
This vortex is weaker and positioned further downstream for the pitching case. In the last
column of the figure, at a.sy = 25.0°, we confirm that the TEV continues to grow further
downstream of the airfoil for the pitching case compared to the plunging one. A similar
trend, but less pronounced, is observed for the M., = 0.1 cases as the large low pressure
core of the DSV approaches the trailing edge. The reason for the earlier differences seen
in the aerodynamic coefficients computed for plunge and pitch at M., = 0.4 relates to
this fact. By comparing Figs. 4.2 and 4.8, specially the third column, we also observe the
smaller residency time of the DSV at M., = 0.4, which is a phenomenon well established
in the literature (Chandrasekhara and Carr, 1990; Corke and Thomas, 2015).

Results for Qt = 0.10 and M., = 0.4 are shown in Figs. 4.9 and 4.10 (see also
the rightmost two columns of the bottom row in the movies). For M, = 0.1, we have
seen that the aerodynamic coefficients and the flow topologies are much alike within the
time period investigated, despite the gap in both C; and Cj between the plunge and
pitch solutions between a.rr = 25° and 35° (these results are replicated in Fig. 4.9 by
the dashed semi-transparent lines). The lift for M., = 0.1 also exhibited a small shift
between pitch and plunge until reaching a.sy = 25°. Similarly to the lower Mach case,
one can see a shift between the red and blue curves of Fig. 4.9 along the interval from
8.0° < apr < 17.0° in the lift coefficient, beyond which the lift curves show an almost
perfect agreement. This shift, however, still persists in both drag and moment coefficients

until a. sy ~ 30.0°. From this point forward, the curves follow completely different trends.

Such different behavior, both in the sense of compressiblity effects and pitch-plunge
equivalence, is better understood through the inspection of Fig. 4.10, from where we
observe significant flow variations between the pitching and plunging motions. At a.rr =
12°, the larger flow separation is responsible for the increased drag when compared to
the results for M., = 0.1 (see Fig. 4.4 for comparison). In the second column of Fig.
4.10, a strong low-pressure core can be identified in the pitching motion, but it appears
more diffuse and slightly displaced downstream for the plunging case. This fact, however,
does not seem to affect the equivalence observed for the lift coefficients. The equivalence

breakdown only occurs at a.rs ~ 30.0° due to the formation of the TEV. From the third
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Figure 4.9: Pitch/plunge effects on lift, drag and moment coefficients for M., = 0.4 and
QF =0.10 (solid lines). Results for M., = 0.1 are replicated by the dashed
semi-transparent lines.
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Figure 4.10: Pressure coefficient contours shaded by an entropy measure (superposed in
gray scale) and instantaneous C,, distributions on the airfoil suction side at different
time instants for M, = 0.4 and Q" = 0.10.

column of Fig. 4.10, it is possible to see the earlier evolution of the TEV for the plunging
motion in comparison with that for the pitching case. Finally, the noticeable increase in
lift and drag coefficients revealed in Fig. 4.9 for ¢y > 38.0° occurs due to the inception
of a second DSV, which is accompanied by a significant pressure drop on the entire airfoil
suction side for the plunging motion. This phenomenon can be seen in the supplemental
movie.

Similarly to what is done for the M, = 0.1 cases, we plot maps of skin friction
coefficient over the airfoil suction side in Fig. 4.11 for the M, = 0.4 flows. In contrast
to the M., = 0.1 cases, the presence of the separation bubble is almost entirely masked
from these maps for M, = 0.4 as there is no concentrated zone of separation. Figure
4.12 shows the instantaneous entropy measure contours for a.;r = 8.0°, immediately
before the airfoil motion. In the bottom row, the same figure presents the spanwise and
time-averaged entropy contours with the streamlines to better visualize the recirculation

zones for the two compressible initial flow conditions. From these plots, it becomes evident
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that the recirculation region in the M., = 0.4 flow is more pronounced, extending further
downstream that for M, = 0.1. For the higher Mach number flows, a very elongated
recirculation region settles down until half-chord at the static angle of attack and, then,
it breaks and propagates when the airfoil initiates the ramp motion. This can be seen in
Fig. 4.11 by the light blue traces appearing for 8.0° < a.ry < 12.0°, for Q" = 0.05, and
8.0° < s < 15.0°, for QF = 0.10, along 0.5 < z/c < 1. Figures 4.7 and 4.9 show that
this process is characterized by the ejection of a primary separated flow structure from

the mid-chord during the early stages of the airfoil motion.
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Figure 4.11: Comparison of skin friction coefficients of pitching and plunging ramp
motions for M, = 0.4, with Q" = 0.05 (top) and Q* = 0.10 (bottom).
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My =0.1 My =04

Figure 4.12: Top row: Instantaneous entropy contours immediately before the airfoil
motion (arr = 8°) for Mo, = 0.1 (left) and M., = 0.4 (right). Bottom row: Spanwise-
and time-averaged result with streamlines revealing the presence of a separation bubble.

The different features observed for the two Mach number flows suggest the existence
of a strong connection between compressibility and the characteristics of the separation
bubble. Indeed, a recent work from Benton and Visbal (2020) shows that with an
increasing Mach number the bubble burst started to occur at earlier angles of attack,
and independently from the turbulent separation that moves upstream from the trailing
edge (this feature is not present in our simulations). It was hypothesized that the shift
from a trailing edge to leading edge stall process is due to the reduced entrainment of
high-momentum fluid from the inviscid region into the separation bubble, which causes it
to be larger and, thereby, more susceptible to bursting under an adverse pressure gradient.
In our results, however, the separation process, even at M., = 0.1, is already described
as of leading edge type due to the absence of a turbulent separation from the trailing
edge to trigger the bubble burst. Therefore, based on this hypothesis, by increasing the
compressibility, we are bringing the separation bubble into a more vulnerable state, which
explains the topological characteristics of the flow for the M., = 0.4 cases.

Figure 4.11 also shows that, after the airfoil starts to move and the primary flow
structure is ejected from the mid-chord, the flow develops to form the DSV, which is
characterized by the darker blue contours in the figure. The precise timing for the onset of
the DSV is hard to obtain from only a visual inspection of the skin friction maps, specially
for QF = 0.05. This is because the Cy patterns for M, = 0.4 are more diffuse, which
indicates that the DSV is weaker and more evenly distributed over the airfoil. At this
higher Mach number, larger discrepancies appear in the skin friction maps between these
two types of motion. For instance, one can see that the DSV is more diffuse and slightly
shifted downstream for the plunging motion at Q2 = 0.10 (notice the wider blue region in
the bottom left subplot in Fig. 4.11 in comparison to that from the right hand side). This
is also confirmed by Fig. 4.10 (in the second column), where the low-pressure core for
the pitching motion appears to be more concentrated. Furthermore, large differences can
be found regarding the TEV. For QT = 0.05, the red region above a.r; = 20.0° exhibits
a significant entrainment upstream of the trailing edge for the plunging motion, which

results in clipping the blue trace marking the signature of DSV between 0.6 < /¢ < 0.8
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at aerr ~ 24.0°. The same does not occur for the pitching airfoil, where we observe that
the blue region extends throughout the entire time period analyzed. According to Fig.
4.8 (last column), these differences are a consequence of the interaction between the DSV
and TEV that makes the former to be ejected away for the plunging airfoil. Finally, for
Qt =0.10 (bottom row of Fig. 4.11), the TEV is formed earlier during the plunge motion
and the evolution of the skin friction for a.sy > 35.0° is significantly different between
the two types of motion. One should notice, for example, the presence of a negative C/
region for the plunging airfoil at a.ss > 40°. This is due to the formation of a second
LEV which does not appear for the pitching case. This LEV is responsible for the drastic

increase of lift and drag coefficients reported in Fig. 4.9 for the plunge motion.

4.4 Smoothing function term

As discussed in the beginning of Chapter 4.2, the exponential terms appearing in
Egs. 4.3 and 4.4 are used to smooth out the initial transient. Therefore, it is important
to ascertain the sensitivity of the solutions to the smoothing function used to enforce a
physical (finite) airfoil acceleration. The reason for that is because the exponential term
acts on the descent velocity for the plunging cases and dey; o arctan(—h(t)), while in
Eq. 4.4, it acts directly on the pitch rate with é.rr oc QF. As a consequence, there is a
time lag in the effective angle of attack between the pitch and plunge motions when the
exponential smoothing term is present, which could lead to slightly different flow dynamics
and impair the comparison between them. Such time lag is observed in Fig. 4.13 that
describes the effective angle of attack as a function of time for the two types of motion,
with and without the smoothing term. The red line in this figure represents the function
Qepr = ap + Qt, which is followed by both pitching and plunging motions when the
exponential term is not accounted for. As one can see, the plunging motion has a steeper
acceleration at the early stages of the airfoil descent, forcing the angle of attack to quickly
converge to the red line. On the other hand, the pitching motion has a delay to reach a
nominal angle of attack, what creates a time lag with respect to plunging. As the rate
Q" increases, this lag becomes more evident even though it is less than 1°.

In order to investigate the impact of the added smoothing term in Eqs. 4.3 and 4.4,
we compare simulations with and without it by means of the aerodynamic coefficients.
Results are shown in Figs. 4.14 and 4.15 for the plunging and pitching cases, respectively.
For the pitching case, a discontinuity appears in the aerodynamic loads in the early stage
of motion when the smoothing term is not present, but the same does not happen for
the plunging simulations. In both figures, we notice a more prominent disagreement
occurring between the solid and dashed lines during high angles of attack, either when

the DSV detaches or the trailing-edge vortex starts to form. The deviation of the solid
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Figure 4.13: Effect of the exponential smoothing function on the effective angle of attack
for QT = 0.05 (left) and 0.10 (right).

and dashed lines is even more pronounced in the plunging case at My, = 0.4 (red lines),
which may be related to the steeper rate cer; during the earlier stages of the airfoil
descent, as shown in Fig. 4.13. These results demonstrate the existence of a robust region
of pitch-plunge equivalence at low angles of attack. However, at high incidence angles,
the trailing-edge vortex dynamics causes the airfoil response to differ even when the same
motion is being considered due to the high sensitivity to the initial conditions. This poses
a challenge to the development of models for pitch-plunge equivalence at high incidence
angles. Anyway, the time delay introduced by the smoothing term does not drastically
affect the flow response up to the trailing-edge vortex formation, making it possible to

draw a fair comparison between the two types of motion.

7
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Figure 4.14: Effect of the exponential smoothing function on lift, drag and moment

coefficients for M., = 0.1 with QT = 0.10 (plunging ramp motion).

4.5 Grid refinement

As mentioned in the beginning of Chapter 4, the grid used in this work was based on
previous studies reported in the literature and followed the best practices with regard to
grid resolution (Visbal, 2011; Ramos et. al, 2019) and spanwise extension (Visbal, 2011;
Visbal and Garmann, 2018; Benton and Visbal, 2019b, 2020). However, to strengthen our
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Figure 4.15: Effect of the exponential smoothing function on lift, drag and moment

coefficients for My, = 0.1 with Q" = 0.10 (pitching ramp motion).

conclusions, we designed a refined mesh with 25 to 40% improvement in resolution on the
suction side, depending on the direction (streamwise, wall-normal or spanwise).

In this section, we compare results for pitching and plunging motions considering
QT =0.10 and M, = 0.1 for two different grid resolutions. The first grid is the one used
to obtain the results displayed in the manuscript. It has 480 x 351 x 32 points and will
be labeled as “grid 1”. The finer grid, in turn, contains 576 x 444 x 120 points, and will
be labeled as “grid 2”. Moreover, to certify that the s/c = 0.1 span length was indeed
sufficient to accurately represent the current dynamic stall problems, we performed an
additional simulation with s/¢ = 0.4 for the pitching airfoil considering “grid 1”, but with
128 points along the span to keep the spanwise resolution the same.

Figure 4.16 displays the results in terms of the aerodynamic coefficients for all grids
tested. In blue color we have the plunging motion and both red and wine colors represent
the airfoils undergoing pitching. The solid lines are the same results reported previously in
the manuscript, i.e., it uses “grid 1” and s/c = 0.1, except for the solid wine color, which
considers s/c = 0.4. The dashed lines represent the results for “grid 2” and s/c = 0.1. As
it can be seen from the figure, the matching between solid and dashed lines is excellent
up to nearly a.rr = 25°, which coincides with the instant when pitch and plunge deviate
from one another for this particular rate Q*. Results of both motions follow similar trends
for the grid resolutions and spanwise extensions investigated. Major differences appear
in the pitching case, which show a drops in Cl and Cd, and a peak in C'm, slight shifted
in phase, at a.ys = 36°. This effect, however, is mostly related to small differences in the
initial state of the flow from one grid to the other. In the previous section we observe that
even with the same grid, a small difference in the initial conditions significantly influences
the behavior of the pitching motion at high a.ss (see blue lines in Fig. 4.15).

The local flow structures are compared in terms of pressure coefficient and entropy
measure for selected time instants in Figs. 4.17 and 4.18. For the plunging motion (Fig.
4.17), the evolution of the DSV is very similar between the two grids. The pitching motion
(Fig. 4.18), on the other hand, exhibits more pronounced variations in the location of

the DSV for angles beyond a.;r ~ 25°, which justifies the behavior observed in the
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Figure 4.16: Influence of grid resolution and spanwise extension on lift, drag and
moment coefficients for pitch and plunge (M = 0.1 and Q" = 0.10).

aerodynamic loads. In summary, this grid refinement study shows that “grid 1” provides

Qef f = 12.0 QAef f =25.0

grid 1

_—

grid 2

-6 -3 o *
Figure 4.17: Pressure coefficient and entropy measure for a plunging airfoil at M., = 0.1

and Q1 = 0.10, comparing the two grid resolutions.

Qeff = 12.0 Qeff = 25.0 Qeff = 35.0 Qeff = 40.0
grid 1 R
‘”Eh\f\ e A
grid 2

Figure 4.18: Pressure coefficient and entropy measure for a pitching airfoil at M., = 0.1
and Q7 = 0.10, comparing the two grid resolutions.

sufficient accuracy for the pitch-plunge equivalence analysis considering the present flow
parameters. Moreover, it also shows that a span of s/c¢ = 0.1 suffices to properly represent

the DSV onset and evolution.
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Figure 4.19: LESP (left) and shear layer height (right) for M., = 0.1 and M, = 0.4 for
the ramp motion with QF = 0.05.

4.6 Analysis of empirical criteria for dynamic stall

onset

In the present section, we evaluate the leading edge suction parameter and shear layer
height for the airfoils undergoing ramp motion. Results are shown in Figs. 4.19 and 4.20
for QT = 0.05 and 0.10, respectively. One can observe that Ag is drastically affected
by compressibility, with lower LESP values obtained as the freestream Mach number
increases. It is interesting to note that variations in the critical value of Ay due to
compressibility are much more pronounced than due to changes in the airfoil motion. For
instance, pitching and plunging configurations have similar critical Ag values for a fixed
M, with the largest difference observed for M, = 0.4 and Q* = 0.10. The influence
of the rate Q, in turn, can be seen through the comparison of Figs. 4.19 and 4.20 for
a fixed Mach number and type of motion. It is worth mentioning that, in the analysis
of Figs. 4.19 and 4.20, we are only focusing in the states prior to the moment when the
dynamic stall vortex is formed, i.e., before the maximum value of Aj.

At this point, we can infer that the critical LESP increases with the rate of motion.
This trend was reported by Deparday and Mulleners (2019) for an airfoil under periodic
motion, but nothing was said about the compressibility effects on the LESP. Here, we
investigate how different compressible regimes alter the prediction capabilities of the LESP
model. At a first glance, it may seem that the increment of the critical LESP is caused
by a higher local Mach number near the leading edge with increasing rate Qt. This
statement sounds reasonable as a higher suction could be associated to a higher local
Mach number. However, our results show that the role of compressibility is the opposite:
increasing the freestream Mach number reduces the values of Ay. The explanation for

this contradictory behavior can be taken from the flow topology shown in Figs. 4.2, 4.8,
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Figure 4.20: LESP (left) and shear layer height (right) for M, = 0.1 and M, = 0.4 for
the ramp motion with Q = 0.10.

4.4 and 4.10, which presents all the setup variations employed in our simulations. If we
consider the a.fs = 17.5 column for a given type of motion just for illustrating purposes,
we observe that as one increases the rate Q7 for a fixed Mach number, the pressure in
the leading edge region is reduced and, consequently, the magnitude of the suction vector
becomes larger. For a fixed rate, on the other hand, the increasing Mach number causes
the low pressure core to be more diffuse and weaker, what translates to a smaller leading
edge suction. Another conclusion drawn from Figs. 4.19 and 4.20 is that the onset of the
DSV occurs at lower effective angles of attack for lower values of Q7.

The temporal evolution of the shear layer height for the ramp simulations is shown in
the right hand side of Figs. 4.19 and 4.20. Miotto et. al (2022) computed the critical Az
for an airfoil undergoing a periodic plunging motion. This parameter was obtained by the
intersection of linear fits between a primary instability stage and the vortex formation
stage. In the periodic motion, the primary instability stage is defined by the appearance
of Kelvin-Helmholtz structures that move upstream near the airfoil surface and trigger
the onset of the DSV. For the ramp simulations, however, the critical value could not
be measured directly from the ramp data due to the nonexistence of a well defined stage
of primary instabilities. Furthermore, in the ramp motion, the shear layer height keeps
increasing constantly, what makes it hard to specify a proper fitting line. Besides that,
the threshold of Az = 0.02 obtained in the periodic airfoil simulations has already been
exceeded even before the airfoil started to move. This value is represented in Figs. 4.19
and 4.20 by the horizontal dashed green line. The many different attempts made to find
the critical parameter based only on the data from the ramp motion resulted in a wrong
prediction of the dynamic stall onset, in the sense that it did not match the time in the
skin friction maps (Figs. 4.5 and 4.11) in which one could consider as a potential point
where the dynamic stall vortex initiates.

Based on the assumption that there exists a minimum threshold for the nondimensional
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growth rate of Az for the shear layer to roll up into a primary dynamic stall vortex, we
are able to determine the moment when the onset of dynamic stall takes place using
only the information of the shear layer height. For that, we collect the growth rate of
Az during the vortex formation stage and its critical value from the previous study of
an airfoil in periodic motion (Miotto et. al, 2022) and apply it to the ramp cases. This
assumption holds for our simulations but its robustness to other airfoil kinematics and flow
conditions needs further investigation. For instance, we cannot infer how different reduced
frequencies of the periodic motion would affect the growth rate of the chord-normal shear
layer height during the vortex formation stage.

From the results of the periodic motion, we observed that the growth rate of Az
ranged from 0Az/0t = 0.09 to 0.11, depending on the time interval used in the least
square fit. Hence, using the value 0.10 as the minimum threshold, we draw a line Az =
0.10 t + B, where B is to be determined through visual inspection in such a manner that
this line touches the curve for Az from the right. This means that we are finding the
region beyond which the roll up of the free shear layer is capable of forming a large and
self-sustained dynamic stall vortex. These lines are dashed and represented in gray color
in Figs. 4.19 and 4.20. After projecting it towards the threshold chord normal distance,
0.02, represented by the green dashed line, we obtain the location of the dynamic stall
onset. This procedure seems to be suitable for cases of ramp motions, where usually a
large separation is already present.

When the rate is QT = 0.05 and the Mach number is fixed at a given value, not
only the maximum A, seems to be almost invariant to whether the airfoil is performing a
plunging or a pitching motion, but also the time when the onset of dynamic stall occurs is
very alike. This is verified by the abscissa of the coordinates of the green dots in Fig. 4.19.
However, the onset times from the critical Az obtained with our approach do not match
those from Ay. For M., = 0.1, the onset of the DSV based on Ag is around ¢t = 2, while it
is shifted to t = 2.41 when using the Az criterion. The opposite occurs for M., = 0.4, in
which it goes from ¢ ~ 1.60 for Ay, to ¢t = 1.31 for Az. Although these differences in the
abscissas may lead to questioning of the methods, their values are reasonably accurate.
From the skin friction maps (see the first row of Figs. 4.5 and 4.11), one can verify that
the abscissa values of the green dots and that of the dashed line crossings in Fig. 4.19
meet a plausible region where the dynamic stall is initiating.

Similar conclusions can be drawn from the simulations at Q7 = 0.10 (see Fig. 4.20)
except that, in this case, the abscissa of the intersection for the M., = 0.1 simulations in
the Az plot lies in between the time span observed by the green dots in the Ay plot. This
fact supports the validity of the critical Az value and, by consequence, the assumption
that exists a minimum threshold for the growth rate of the shear layer to develop a
dynamic stall vortex. Moreover, a distinct temporal evolution of Az is noticed between

pitching and plunging motions for M., = 0.4, with a gap being formed between the red
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and blue transparent lines in Fig. 4.20. This makes the pitching motion to have the same
onset indication of the M, = 0.1 flow, 7.e. ¢ = 1.31, while the onset occurs at earlier
times for the plunging airfoil. Such distinct evolution of the shear layer height between
the two types of motion is somewhat expected, since the evaluation of Az considers the
entire suction side of the airfoil, thereby, taking into account the flow topology that results
from each motion kinematics.

Once again, the skin friction maps of the simulations at Q7 = 0.10 can be used to
confirm the validity of the time indicated by the critical values in both Ag and Az criteria.
Particularly, we would like to bring the attention to the plunging airfoil at M., = 0.4 since
this simulation exhibited a considerable deviation from its pitching counterpart in terms
of the evolution of the shear layer height. This case is represented by the transparent
blue line in Fig. 4.20 and by the bottom left map in Fig. 4.11. According to the LESP
threshold, the dynamic stall onset of this case occurs at ¢ = 1.34, which corresponds to
nearly a.pr = 15°. At this angle, represented in the C'y map of Fig. 4.11 by the second
y-axis tick from bottom to top, an intense negative skin friction appears around z/c = 0.4
indicating that the dynamic stall vortex is already formed. The Az criterion, on the other
hand, says that the onset takes place at ¢ = 0.56, or at nearly a.fy = 11°. This angle is
just above the first tick that marks c.ss = 10° in the skin friction map and coincides with
the region around x/c = 0.3 from which the dynamic stall vortex seems to be originated.

Hence, the onset moment indication from Az appears to be more precise in this situation.

4.7 Flow modal decomposition

Recently, Miotto et. al (2022) showed that despite the DMD algorithm being able to
obtain the dynamic modes that correspond to the harmonics of an airfoil under periodic
motion, it fails to extract the modes associated to the onset of the dynamic stall vortex.
As a consequence, the standard DMD algorithm does not improve our understanding of
the underlying physics that governs the stall onset. The reason for the limiting capability
to extract physically meaningful modal features is that the DMD considers the modes to
exist throughout the entire temporal window analyzed. In the ramp motion, this problem
becomes even more evident as the airfoil kinematics and, consequently, the flow dynamics,
are transient in nature and there is no motion periodicity implied. Moreover, depending
on the time period considered in the construction of the linear operator, different results
can be obtained since the dynamics are constantly changing over time.

To illustrate how the algorithm performs in the ramp simulations, a few dynamic
modes of a plunging airfoil at M., = 0.1 and Q" = 0.05 are shown in Fig. 4.21. The
pressure coefficient is used to build the snapshot matrix and we consider 1400 snapshots

from 0 < t < 7. From this figure, it is clear that the modes carry information from
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Figure 4.21: DMD modes for plunging ramp motion at M., = 0.1 and Q* = 0.05.

post-stall stages with dynamical structures indicating the presence of the trailing edge
vortex, besides the onset and transport of the dynamic stall vortex. It is worth mentioning
that almost all DMD modes have similar behavior. The presence of this large number of
similar modes is not only attributed to the transient nature of the problem, but also to the
inability of SVD-based approaches to handle data with embedded rotations, translations,
and scaling (Mendible et. al, 2020), which results in several spurious modes.

Since the mrDMD approach is able to handle symmetries and translations (Kutz et.
al, 2016), we apply it in the ramp simulations seeking to extract low rank embeddings of
the data from which one can infer a possible physical interpretation. Results are shown
in Figs. 4.22 and 4.23 for Q* = 0.05 and Q7 = 0.10, respectively. In both figures, we
selected and displayed the modes in such a way that similar structures belonging to a
certain resolution level and bin could be compared among the different types of motion
for a fixed rate Qt and Mach number. Again, by similar structure, we mean that their
frequency and spatial distribution are alike. Moreover, in this procedure, we focus on
selecting modes that could be related to the dynamic stall onset. Hence, the bin of a
given resolution level is chosen to comprehend the inception period of the leading edge
vortex.

Differently from what is observed in the periodic motion (Miotto et. al, 2022), the
timing of the dynamic stall onset for ramp cases could not be determined precisely and
seemed to be highly sensitive to the airfoil kinematics and freestream Mach number.
We observed that the onset moment indicated by the critical Ag and Az values did not
match, but they lie within an interval where the dynamic stall inception possibly occurs,
confirmed by the skin friction maps. As a consequence, the columns of Figs. 4.22 and 4.23
do not necessarily compare the dynamic modes within the same time period. If we had
kept the bin number always fixed, there would be no guarantee that the mode is indeed
related to the stall onset for all situations present in that column. Thus, for each column,
we fixed a resolution level and selected the modes with similar frequency and spatial
distribution, but the bin location varies according to the Mach number in order to force
the time window of the bin, At, to be contained inside [min(ta,, ta,), max(ta,, ta.)l,
where t4, and ta, are the abscissa of the critical Ay and Az, respectively.

For the lower rate QF = 0.05 shown in Fig. 4.22, the modes of the pitching and
plunging motions are remarkably similar when the Mach number is fixed. The lower

frequencies (St ~ 10) shown in the first column of this figure appear to have little
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Figure 4.23: Multi-resolution DMD modes for M., = 0.1 and M., = 0.4 at Q" = 0.10.
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dependency on compressibility, except for the fact that the spatial extension of the mode
is slightly shifted downstream with increasing Mach number. However, at moderate and
high frequencies (St g 20), the spatial distributions of the modes change considerably
with compressibility. While the dynamic modes for M, = 0.1 are more concentrated
near the leading edge region, they become spread over the entire airfoil suction side for
M., = 0.4. This observation is related to the larger separation regions present in the
higher Mach number flows for lower angles of attack.

It was discussed earlier that compressibility reduces the entrainment of
high-momentum fluid from the inviscid region into the separation bubble. As result,
the bubble becomes taller and more susceptible to burst under a weaker adverse pressure
gradient. This translates into the formation of a larger recirculation zone shown by the
streamlines in Fig. 4.12. The susceptibility of the bubble to burst, in turn, causes a
coherent structure to detach from the mid-chord region when the airfoil starts to move
when M, = 0.4. This structure can be observed by the field of entropy measure above the
trailing edge region in Fig. 4.2 (see the two bottom rows and two first columns), and also
by the skin friction map in Figs. 4.5 and 4.11. In the mrDMD modes, this is expressed
by the pattern appearing just above the trailing edge for the plunging and pitching flows
at M., = 0.4. Notice that the time window of the bin, At, coincides with the time when
this primary separation from the mid-chord occurs.

Finally, Fig. 4.23 shows the selected mrDMD modes for QT = 0.10. At this rate,
even the low frequency modes change considerably for the different Mach numbers as
shown in the first column. At M, = 0.1, the flow event is concentrated closer to the
leading edge region in comparison to the M., = 0.4 case. The spatial distributions of the
modes also become more disparate when one switches the type of motion between pitching
and plunging. This opposes to the almost indistinct spatial distribution observed in the
QT = 0.05 cases in Fig. 4.22. In addition, these differences become more accentuated
as the Mach number increases, what is somewhat expected given the drastic topological
changes in the flows as previously observed. It is interesting to note, however, that the

frequencies are similar, independent of the rate, type of motion, and Mach number.
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5 Convolutional neural networks applied to dynamic
stall

In this chapter, we present the results obtained with our CNN models. Despite
being preliminary, these results are very promising and have been continuously improved
by the author. Here, they will be presented in 3 different sessions. The first (§5.1)
refers to regression models built to predict one or more scalar quantities, in this
case, the aerodynamic coefficients. Two models were built, one for predicting lift,
drag and quarter-chord pitch moment, and another for the distribution of C), along
the airfoil suction side. The convolutional layers process the pressure information by
extracting features, which are gathered by the fully connected layers to obtain the
aerodynamic coefficients. Hence, the difference between these two models resides only
in the fully-connected layers, as discussed in §2.4.3. Although we tested several different
neural networks, only the results for InceptionV3 will be shown here since this network
had the lowest mean squared error among the networks tested. The second session (§5.2),
in turn, presents the results of image-to-image translation using the U-net architecture.
Given the u- and v-velocity inputs, the model is able to predict the pressure coefficient
field with excellent accuracy. Finally, the last session (§5.3) discusses some possibilities

where the concepts proposed here can be applied.

5.1 Prediction of aerodynamic coefficients

To speed up the training process and yield more accurate results, we used an
InceptionV3 network pre-trained on ImageNet dataset. This model takes 299x299 RGB
images of pressure coefficient field and estimates lift, drag and quarter-chord pitch moment
coefficient. In Table 5.1, we present which simulations were used to train the neural
network. Essentially, all pitching and plunging cases presented earlier in this thesis were
included in the training set. After shuffling the collection of images, this dataset was
devided into nearly 16,000 images for training, 2,000 images for validation and another
2,000 images for test.

After training, we achieved a loss of 2.2693x10~% with mean square error of
3.5242x10~* and a validation loss of 2.5085x 10~* with mean square error of 3.8655x 1074
at the 126th epoch. An early stopping with patience of 50 epochs was set to prevent
unnecessary computation, which means that the neural network trained for 176 epochs.
Results for the aerodynamic coefficients for 100 random images of the test set are compared

against their true values in Fig. 5.1. In this figure, we observe that all 100 randomly



Reynolds Motion Mach | Rate / Reduced frequency
60,000 | Plunge periodic | 0.1 0.25
60,000 | Plunge periodic | 0.4 0.25
60,000 Plunge ramp 0.1 0.05
60,000 Plunge ramp 0.1 0.10
60,000 Plunge ramp 0.4 0.05
60,000 Plunge ramp 0.4 0.10
60,000 Pitch ramp 0.1 0.05
60,000 Pitch ramp 0.1 0.10
60,000 Pitch ramp 0.4 0.05
60,000 Pitch ramp 0.4 0.10
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Table 5.1: Simulations used to train the neural network.

selected images predicted the airfoil response with a great accuracy.
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Figure 5.1: Comparison between true (red) and predicted (blue) lift, drag and
quarter-chord pitch moment coefficients for 100 examples of the test set.

The previous result shows that the CNN is capable of processing the pressure
information by extracting relevant features from the input image. This information was
then translated into surface-integrated measurements, such as lift, drag and quarter-chord
pitch moment coefficients. However, these responses come with easy in an experimental
procedure. A more interesting result is the pressure distribution over the airfoil surface,
as this type of measurement requires the installation of several probes, which can be
structurally prohibitive or even very expensive. To this end, it is necessary to change the
fully-connected layers of our CNN. The model mentioned above outputs 3 values in the
last fully-connected layer, being one for each aerodynamic coefficient. Now, we want the
outputs to represent the probe values over the airfoil surface. The modifications we made
to the fully connected-layers was described in §2.4.3, to which the reader is referred for
more details. To train this new model, it is possible to reuse the convolutional layers of
our previously trained model and fine tune it. But here, we went with the convolutional
block pretrained on the ImageNet dataset since this training only took about 9.5 hours
in a NVIDIA Tesla A100.

In Fig. 5.2, we show the result for the C), distribution over the airfoil suction side

for some selected snapshots, which are reproduced in the right hand side of the figure.
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These images belong to the test set, so they were never seen by the network. From
the graphs, we observed a great agreement between the actual distribution of C, and
that predicted by the network. Some high-frequency fluctuations appear to be filtered
out by the network, possibly due to the limited resolution of the input image. But,
the significance of these results is much more optimistic: they tell us that if we can
operate this model on experimental images, the pressure sensors could be replaced by a
CNN-based model. This would have a huge impact on experimental campaigns. Before
that, however, there are many issues that need to be addressed. For example, how does
the model generalize to other flow or motion parameters? Can another fluid flow property

be used as an input, such as velocity, which can be obtained directly from PIV?

O_

—Predicted
—True

xTr/c
Figure 5.2: Pressure coefﬁcient/ distribution over the airfoil suction side (left) and
corresponding snapshot of pressure coefficient field (right). Top: plunge constant ramp
with QT = 0.05 and M., = 0.1. Middle: plunge constant ramp with Q" = 0.1 and
M, = 0.1. Bottom: plunge periodic with £ = 0.25 and M., = 0.4.

As this is a work in progress, we do not yet have all the answers to these questions. But
efforts have already been made in this direction. We start by investigating the model’s

ability to predict the airfoil response in a flow with an intermediate Mach number. For
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this, we run an LES of a periodically plunging airfoil at freestream Mach number of
My, = 0.2. Other parameters such as Reynolds number, reduced frequency, etc. were
kept the same. Despite never seen an image of dynamic stall problem for M., = 0.2, the
network successfully predicted the airfoil response, as shown in Fig. 5.3. Remember that
the model was trained with pictures of M, = 0.1 and M., = 0.4 flows. Thus, we verify
that the model is able to interpolate between different compressible regimes. Here, we
consider the network with 3 outputs (C;, Cyq and C,,), but similar conclusions are also

drawn for the network that predicts the C,, distribution.

—Predicted 0.0
9 - —True 0.3 -
0.2 —0.27
1 .
0.1 +
—0.4
0 0.0
T T T T T T
0 5 10 0 5 10 0 5 10
t t t

Figure 5.3: Lift, drag and quarter-chord pitch moment coefficient estimation for an
airfoil at Mach number 0.2, never seen by the model.

We still need to verify that the model is able to extrapolate between flow parameters.
This is probably a more delicate question, because depending on how far this extrapolation
goes, the fluid behavior can be very different from what the network was trained on. For
example, if we significantly increase the Mach number, the mechanism of dynamic stall
formation will involve shock waves, which have never been seen by the neural network.
We do not expect the model to be able to correctly interpret scenes with semantics very
different from those on which it was trained.

To illustrate this, let us use the data we already have at hand. We have plunge
simulations in periodic and ramp motion. In Fig. 5.4 we show how a CNN that was
trained only in cases of ramp motion operates on images referring to periodic motion. In
this figure, the blue lines were obtained by the CNN and the red ones indicate the correct
results. The solid lines stand for images of M., = 0.1 and the dashed lines for M., = 0.4.
The results show that the neural network prediction (blue lines) collapses at moments
when the flow is reattached. This is because the model was trained on images in which
the flow always had some degree of separation. Thus, the network could not predict that

the airfoil would experience negative lift and also thrust, as in the red lines.
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Figure 5.4: Results from a CNN trained on constant ramp-only data (blue) operating on
cases of periodic plunging motion (red). Solid lines refer to M., = 0.1 cases and dashed
ones to M, = 0.4.

We also tried the opposite situation: we trained our model on only periodic plunging
airfoil data and operated on images of airfoils in constant ramp motion. The results are
shown in Figs. 5.5 and 5.6, the first referring to a case of pitch in constant ramp motion
with QF = 0.05, and the second, with QT = 0.10 rate. Again, solid lines indicate results
for M., = 0.1 and dotted lines for M, = 0.4. In this scenario, the model has a better
performance, especially for the lowest rate (Fig. 5.5). However, we still notice some
discrepancies between the red and blue lines. For instance, the model under predicted the
lift coefficient for M., = 0.1 (solid lines) between ¢ = 4 and ¢t = 6 and it did not increase
again after ¢ = 6 as happens in the red line. This indicates that the dynamics in the
trailing edge region is not being interpreted correctly by the model. However, it is worth
mentioning that the network was trained with only 2 simulations of the periodic motion
and also that, in this type of maneuver, the trailing edge vortex behaves very differently

from the cases of ramp motion.

Gy
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Figure 5.5: Results from a CNN trained on periodic plunging data (blue) operating on a
constant ramp pitching airfoil at Q = 0.05. Solid lines refer to the M., = 0.1 flow and
dashed ones to M., = 0.4.

In essence, the network saw the DSV pass over the airfoil only twice and still was able
to get most of the coefficients right for the case of Q* = 0.05. So, it can be said that the

pitching-up airfoil at Q7 = 0.05 and the periodic plunging airfoil share similar semantics.
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But increasing the pitch-up rate Q* affects the perception of these semantics, which can
be verified by the more prominent mismatch between the red and blue lines in Fig. 5.6.
By comparing Figs. 4.2 and 4.4, we observe that the position of the DSV with respect to
the airfoil is a source of variability. Since this variability is not represented in the training
set, as it contains only two simulations in which the DSVs follow similar trajectories, the

model fails to generalize.
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Figure 5.6: Results from a CNN trained on periodic plunging data (blue) operating on a
constant ramp pitching airfoil at QT = 0.10. Solid lines refer to the M., = 0.1 flow and
dashed ones to M., = 0.4.

In summary, nuisance variability affecting the image domain will impair the
generalization ability of the model. This means that any sources of variability must
be included to force the model to learn it away. Fortunately, though, in fluid mechanics
most of the nuisance variability is already known and can be dealt with at the outset. For
example, we know that the position of DSV with respect to the airfoil is an important
parameter to be learned. So, the annotations of DSV appearing in different positions must
be included in our training if we want the model to generalize well. This goes in the same
direction with regard to building models for extrapolation. If perceptually significant
changes appear between this extrapolated condition and the annotated samples on which
the network was trained, the model will likely fail.

The final question that we addressed in this thesis is that of using another fluid flow
property as input of the CNN. For being directly obtained from a PIV technique, the
velocity field is a good candidate for input. So, we build a model that takes images of
u- and v-velocity components, concatenated channelwise, and predicts the aerodynamic
coefficients. We are using the same InceptionV3 architecture from before (pretrained on
ImageNet dataset) with 3 outputs in the fully-connected layers. The only difference is
that it receives 2 input images at the same time. The results are shown in Fig. 5.7,
obtained after training for 131 epochs, which corresponds to a loss of 0.0114 with mean
square error of 0.0225 and a validation loss of 0.0043 with mean square error of 0.0077.
The graphics displayed in this figure refer to the pitching-up airfoil with Q* = 0.05 in a

M, = 0.1 flow and they contain data from train, validation and test sets.
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Figure 5.7: Lift, drag and quarter-chord pitch moment coefficient estimation using the
velocity components as inputs.

From Fig. 5.7, we observe that the predicted coefficients oscillate around their
annotated values. This could be due to a high-bias model or an irreducible error in
the velocity data itself. By irreducible data error, we are not saying that the velocity field
is wrong, but rather that this image is inherently too noisy for the task. To verify if the
underfitting occurs due to high bias, we would need to use more complex networks. So
far, to generate these results that consider velocity components as input, we only used
the InceptionV3 network. So, we do not rule out the possibility that the result will be
better with other architectures. However, for what matters, the pressure coefficient field
is preferable to velocity when it comes to building our regression model. In principle, this
makes sense, since pressure is directly related to forces (and consequently to aerodynamic

coefficients).

5.2 Prediction of the pressure coefficient field

As we saw in the previous section, pressure coefficient is preferable to velocity when
it comes to building our regression model. But the role that pressure plays in fluid flow
analysis goes beyond simply obtaining aerodynamic loadings. In this session we will show
how neural networks can be used to extract the pressure field from the fluid flow velocities.
For now, all data used here come from numerical simulations. In fact, the neural network
is trained only with data from numerical simulations. But soon, we seek to apply this
model in experimental images to open new avenues in fluid flow analysis.

We draw on image-to-image translation and domain adaptation to amplify the scope
of information extracted in experimental fluid mechanics. We uniquely treat the image
semantic segmentation as an image-to-image translation task that infers semantic labels
of structures from the input images in a supervised way. Particularly, given the
source domain of numerically simulated images of the velocity field, we train a U-net
(Ronneberger et. al, 2015) to generate synthetic pressure coefficient fields. Then, global

photometric statistics of experimental images are manipulated using the Fourier Domain
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Adaptation method proposed by Yang and Soatto (2020) to improve the alignment of
the low-level statistics between the source and target distributions. This is especially
important since the networks do not transfer well across different low-level statistics
(Achille et. al, 2019).

In this thesis, only the results for the model operating in the source domain will be
presented. The application of the domain adaptation technique is still an ongoing work
since we currently lack experimental images of dynamic stall. Here, the U-net was trained
for 58 epochs yielding a loss of 1.0293x10~* with mean squared error of 2.0634x10~* and
a validation loss of 2.8063x10~* with mean squared error of 5.6276x10~%. The same
dataset from the regression model was used to train the U-net. However, the u- and

v-velocity components concatenated chanelwise were used as input instead of the C,, field.

This last flow quantity is now the output of the supervised setting.
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Figure 5.8: Input velocities and the comparison between true and predicted C,, fields.
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Figure 5.8 shows the input velocities, the actual pressure coefficient fields and
those predicted by the network. These results are displayed columnwise, each column
corresponding to a snapshot randomly selected from our test set. An excellent
agreement is observed between the true and predicted fields. This demonstrates that
a simple encoder-decoder architecture can correctly map the input attribute values to
the corresponding synthetic image. However, some fine details are missing out from the
predictions. For instance, the tail-like structure appearing on top of the DSV in the
first column is absent from the synthetic image. In the future, we plan tweaking the
hyperparameters of the U-net and also using GAN architectures to improve these results.
Moreover, we still need to evaluate how the synthetic C), images perform as input of the
regression models built previously. We hope that translating the velocity field into C, at

the outset can improve the loading estimation.

5.3 Other applications

In a previous section we showed how a U-net architecture, typically used for semantic
segmentation tasks, can be used to translate across different flow properties. In our
example, we mapped the velocity field to pressure given the importance it plays in fluid
mechanics. However, the computation of other flow properties entails no overhead. We
could have used density, temperature, vorticity, or any other property in place of pressure.
The proposed framework is still a proof of concept, but the results are very promissing
and represents a first step towards our goal of amplifying the information content of
experimental data.

In Appendix D, we demonstrate the usage of our method on barchan dunes. The U-net
architecture is trained on images obtained from numerical simulations of fluid-particle
interactions to establish the mapping relation between the dune morphology and the
underlying particle forces at the grain scale. Since we already have access to experimental
images of this problem!, we will apply the domain adaptation technique on barchan dunes.
This allows the acquisition of force measurements from experimental images, which would
be impossible otherwise. As a result, we believe that this study can provide valuable

insights to the the way sediment transport is modelled and to the grain scale dynamics.

!The numerical and experimental data of the barchan dunes are courtesy of Carlos Azael Alvarez
Zambrano and Erick de Moraes Franklin.



103

6 Conclusions and Future Work

The present thesis has tree main contributions to the state-of-the-art of dynamic stall:

o Characterization of both the onset of dynamic stall and the overall flow physics

during stall development;
o Better comprehension of the equivalence between pitch and plunge motions; and
o Development of surrogate models to analyze dynamic stall problems.

Each of these contributions is explained in detail below.

6.1 Dynamic stall onset on periodically plunging

airfoils

Large eddy simulations are performed to investigate the onset and evolution of dynamic
stall for an SD7003 airfoil undergoing a periodic plunging motion. Simulations are
performed for freestream Mach numbers M, = 0.1 and 0.4 for a fixed chord-based
Reynolds number Re = 6 x 10* to examine phenomenological variations due to
compressibility effects. Similar to previous observations reported for pitching airfoils,
it is found that both the residence time and strength of the dynamic stall vortex (DSV)
decrease for the higher Mach number flow. Hence, higher compressibility leads to lift and
drag reductions caused by the weakened DSV, which occurs when the airfoil is ceasing
its downstroke motion. For the rest of the periodic motion, the aerodynamic coefficients
display similar features at both Mach numbers.

For the present configurations, the onset of dynamic stall is marked by two major flow
features: a train of Kelvin-Helmholtz instabilities, referred here as primary instability
stage, and a secondary instability stage due to the breakdown of vortical structures along
a shear layer formed at the leading edge. With respect to the primary stage, acoustic
waves are scattered from the trailing edge due to vortex shedding apparently triggering
the formation of Kelvin-Helmholtz instabilities. This mechanism appears to be invariant
to the freestream Mach number although it is observed that higher compressibility induces
the flow to become more susceptible to three-dimensional spanwise disturbances.

With respect to the secondary stage of instabilities, the mechanisms of flow separation
observed in the present plunging airfoil display broad agreement with the van Dommelen
and Shen model for pitching airfoils. In this case, complex dynamics are observed along a

shear layer formed at the leading edge. The evolution of this shear layer causes the flow to
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eject vortical structures outward from the surface. The flow dynamics are similar for both
Mach numbers analyzed despite the different positions where they occur near the leading
edge. These spatial variations are directly affected by the pressure gradient distributions
over the leading edge. For M., = 0.1, the pressure gradient becomes adverse sooner than
for My, = 0.4, and the pressure gradient fluctuations are stronger causing the shear layer
to destabilize further upstream. We observe that the onset of dynamic stall is related to
the interaction of both primary and secondary instabilities that occur near the leading
edge.

In order to better characterize the stall onset, two empirical indicators are investigated:
the leading edge suction parameter (LESP) and the critical chord-normal shear layer
height, Az. The influence of compressibility on these stall indicators is also assessed.
It is observed that the maximum suction supported by the leading edge is reduced as
compressibility increases, revealing that the LESP is not only a function of the parameters
of the airfoil motion but also of the freestream Mach number. The Az criterion, on the
other hand, appears to be almost invariant to the freestream Mach number. We also find
that, although both criteria fit the observable moment when the DSV forms, they tend
to characterize the stall onset based on the point when the DSV detaches from the airfoil
surface and not when the secondary instabilities set in. From the perspective of dynamic
stall control, this fact reveals the need to create more conservative criteria to predict stall.
This is necessary since flow actuation should be applied prior to the formation of the DSV.

A decomposition of the pressure coefficient field into dynamic modes is also performed
to extract the low-rank spatial features from the datasets and their associated frequencies.
The detailed description of the boundary layer state with the modal support can help
the exploration of suitable actuation parameters for flow control. The standard DMD
algorithm is able to identify the modes associated with the periodic motion and its
harmonics, however, it fails to isolate the unsteady flow features that take place during
the onset of dynamic stall. This limitation arises from the fact that the extracted modes
exist throughout the entire temporal window analyzed. The multi-resolution variant of
the algorithm (mrDMD), on the other hand, successfully extracts clean and physically
interpretable modes for all cases investigated herein.

Although the spatial distribution of the modes related to the dynamic stall onset may
vary with compressibility, their frequency content are much alike.The mrDMD captures
the wavepacket structure of the Kelvin-Helmholtz instability and the modes associated to
the separation process that lead to the formation of the leading edge vortex. The effects
of increasing compressibility are also manifested in these modes. For instance, the sparser
distribution of Kelvin-Helmholz instabilities, the larger size of the secondary separation
of the shear layer and the displacement of the critical region further downstream of the

leading edge which occurs when the Mach number increases are all represented therein.
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6.2 Pitch-plunge equivalence

Large eddy simulations are performed to investigate the pitch-plunge equivalence for
an SD7003 airfoil undergoing constant ramp motions. For that, the ramp motion of the
plunging airfoils is set to match the geometric angle of incidence of equivalent pitch-up
airfoils with fixed angular velocity. Two different rates of motion at which the effective
angle of attack increases are employed and the freestream Mach number is varied in such a
way that one can see how each parameter (type and rate of motion, and freestream Mach
number) influences the equivalence. To be pragmatic, all simulations have the same initial
state for a given freestream Mach number. This study represents an important step to
discern how pitch and plunge motions behave when exposed to different compressible
scenarios.

Results show that the pitch-plunge equivalence holds until the formation of the TEV
for all rates of motion and Mach numbers analyzed. In this sense, the way the TEV
interacts with the DSV differs between pitch and plunge, causing the aerodynamic
coefficients to mismatch. After subtracting the rotation-induced apparent camber
contributions present in the pitching case, we reconciled lift and moment coefficients
for most of the time. However, this correction is not sufficient to extend the equivalence
beyond the point when the TEV system begins. The birth and development of the DSV, in
turn, is remarkably similar for the two types of motion, especially for low Mach numbers.
This implies that the LEV formation and its subsequent evolution is strongly driven by
the rate of change of the effective angle of attack.

Considerable topological changes occur in the flow fields when compressibility is varied,
even before the airfoil initiates its motion. At the static angle of attack, the higher Mach
number flow depicts a longer separation region formed further downstream the leading
edge compared to that observed for the lower Mach number case. During the airfoil
motion, the higher compressibility results in an overall increase of drag due to the more
evenly distributed pressure forces over the airfoil chord. In addition, the residence time
and strength of the DSV decrease with an increasing Mach number, the former being
responsible for the earlier breakdown of pitch-plunge equivalence since the TEV begins
to form at lower incidence angles.

Increasing compressibility also makes the peculiarities of each class of motion more
pronounced. This is especially due to the primary separation arriving at the trailing edge
region and the smaller residency time of the DSV. At the higher rate of motion, the DSV
of the pitching airfoil evolves into a more concentrated structure. On the other hand,
the incipient DSV is more diffuse for the plunging motion. These topological differences,
however, do not compromise the pitch-plunge equivalence for lower angles of incidence,

but reinforce the need for a more rigorous definition of the effective angle of attack that
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takes into account the trailing-edge dynamics and compressibility effects.

6.3 Applications of machine learning

Based on the pressure coefficient from the unsteady flowfield, a pre-trained InceptionV3
network rendered the backbone of a neural network model that links the existing flow
structures to the aerodynamic coefficients. The CNN correctly inferred the attributes
present in the flow image even in a compressibility regime for which no annotations were
given. As a result, an excellent agreement between predicted and ground truth values
was obtained. This fact demonstrates that CNN-based models can be used to interpolate
between flow parameters. Now, more studies need to be conducted to determine the
ability of the neural network to extrapolate the source domain. In this sense, we provide
evidence that not including sources of variability in the training set can lead to a significant
deterioration of the model’s performance. By training our model on different types of
simulation parameters, we demonstrate that the position of the DSV with respect to the
airfoil as well as the trailing edge vortex are sources of variability that must be learned
for the model to generalize well.

Our goal is to bridge the gap between numerical simulations and experiments. In this
sense, the adoption of PIV techniques by fluid dynamicists forms a compelling argument
for using velocities as input to our model instead of the C, field. The results, however,
show worse predictive accuracy for translating between velocity field and airfoil loadings.
In principle, the direct relationship between pressure and force seems to support the
claim that velocity data introduce irreducible errors. However, it is necessary to run more
complex neural networks to be able to prove this.

The question of using velocities as input to the model is also addressed in tasks other
than regression. Here, we use the velocities to synthesize the corresponding pressure
coefficient field through an image-to-image translation. The results show that a simple
U-net architecture can infer the semantic labels of structures present in the input velocity
images. In fact, the proposed framework can be used to extract any physical quantity of
interest and is not limited to estimates of C},. Most of the fine-grained details in the scene
was captured by the network, but we believe there is room for improvements in this regard.
Finally, we intend to combine the aforementioned models with an unsupervised domain

adaptation method to extract relevant information from experimental visualizations.
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6.4 Future work

As we showed in this thesis, the transient nature of dynamic stall makes it difficult to
extract physically meaningful structures from the application of standard DMD. In fact,
the same holds if one analyzes probe signals of a dynamic stall problem using a Fourier
scope. Fourier spectral analysis is a well-established method for examining the global
energy-frequency distributions of linear, time-invariant systems. However, its resulting
spectrum may be misleading if the process is not linear or if the data is non-periodic or
non-stationary. The Hilbert-Huang transform (HHT) makes use of the empirical mode
decomposition (EMD) to decompose the data into a finite and often small number of
complete and nearly orthogonal basis functions, called intrinsic mode functions (IMFs);
and of the Hilbert spectral analysis on these IMFs to obtain the energy-frequency-time
distribution, designated as the Hilbert spectrum, from which the time localities of the
events are preserved. In a future work, we are interested in applying the EMD and
some of its variants to study the acoustics of dynamic stall and also to extract suitable
actuation parameters for flow control. In this sense, we have seen that the frequency and
spatial information provided by mrDMD offer a range of possibilities to explore various
control actuations. We are now looking to gather the information obtained by these
different techniques and use it to design actuators to suppress DSV formation or alleviate
its impact on aerodynamic fluctuations.

Because the mrDMD was able to provide physically meaningful structures with spatial
support and their frequency content, this technique can be used to explore the different
trailing-edge systems between pitch and plunge motions. This research may provide
directions for better comprehension of the causes of the equivalence breakdown. In this
same line, we also seek to explore some other equivalence criteria that are based on
recently-developed theories of unsteady aerodynamics.

Finally, we are currently working on accessing experimental data of dynamic stall to
test our CNN-based method. As mentioned in §5.3 and in Appendix D, we are already
working on the problem of barchan dunes. This study will continue and we believe that
positive results will come from it. In addition, the robustness of the method to interpolate
and extrapolate the source domain will be investigated considering a broader range of
the parameter space. This includes Reynolds numbers and airfoil kinematic parameters
(amplitude, rate, reduced frequency). Overall, if our optimistic observation comes to pass,
it is possible that sensors will be replaced by neural network-based data. For instance,
using our proposed framework, the velocities from PIV images could be first mapped to
C, field, which in turn will be used as input to a regression model that determines the

wall forces.
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6.4.1 Extending beyond the scope of this work

So far, we have listed some immediate possibilities for future work, given the new
contribution to the state-of-the-art brought by this thesis. Despite the importance of
providing a direct continuation of the present work, the dynamic stall problem is not
limited to the scopes discussed here. Thus, in this session, we leave other possibilities
for future work that extend beyond what we studied, but which are still relevant to the
research topic.

Because vertical axis wind turbines (VAWT) operate at lower speeds, lower height,
and have a different visual signature, they have greater potential to be deployed in urban
settings than conventional wind turbines. The benefits also extend to environmental and
health issues. Several studies link the noise generated by wind turbines to annoyance and
sleep disorders (Karanikas et. al, 2021; Monazzam et. al, 2019; Botelho et. al, 2017), as
well as impacts on birds and wildlife (DREWITT and LANGSTON, 2006; Shaffer and
Buhl, 2016; Dai et. al, 2015; Chowdhury et. al, 2022). In this sense, the lower sound
emission of VAWTs (Chowdhury et. al, 2022) brings another competitive advantage in the
search for sustainable solutions in power generation. However, the emergence of VAWT
as a renewable energy source has been hampered by their low efficiency and structural
reliability, which are related to the occurrence of dynamic stall (Buchner et. al, 2018).

These technical limitations offer a potential research pathway that we intend to
explore. Particularly, the characterization of the noise generated by an airfoil under
dynamic stall has received little attention (Mayer et. al, 2020). Addressing the problem
of dynamic stall noise will not only benefit the development of quieter wind turbines, but
will also be relevant to urban air mobility. For instance, the new VTOL suite of services
such as passenger air taxis and cargo drones calls for quieter engineering solutions. Thus,
this research could provide directions for technical optimizations and modification of the
relevant policies related to urban air mobility and wind farms. Interestingly, one of the
first studies regarding dynamic stall noise is that from Nagarajan et. al (2006b), the main
developer of the LES code we use in this work.

Working on ways to develop VAWT that can reach parity on energy output with
traditional turbines while ensuring structural integrity, Fouest and Mulleners (2022)
showed that light dynamic stall offers the best compromise between torque production and
structural resilience. However, the nature of the pitching moment response during light
dynamic stall can lead to negative aerodynamic damping, which results in stall flutter.
Thus, the aerodynamic damping needs to be investigated carefully. In the future, we want
to run simulations under motion kinematics that configure light stall regimes to explore
this topic further. By changing the motion kinematics, we also seek to study thrust

and propulsive efficiency of the airfoil. This is intimately related to the Knoller-Betz or
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Katzmayr effect.
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APPENDIX A - Tensor formalism

In applying a numerical technique to solve the Navier-Stokes equations (or any other
physical problem), it is more convenient to represent the equations in a form ideally suited
to that particular numerical technique. Hence, we may base ourselves on fundamental
principles to cast the equations in a more general form than those dictated by the
requirements of an analytical solution.

In order to satisfy conditions on boundaries of arbitrary shape, the generalised
curvilinear coordinates are often applied, allowing the direct application of finite difference
formulas. Since tensor calculus provides a symbolism which avoids reference to particular
coordinate systems, we make use of its formalism to express the equations to be solved

numerically. The reader not familiarized with tensor calculus is referred to Synge and

Schild (1978) and Aris (1989) for details.
Suppose that 2!, 22, 23 are rectangular Cartesian coordinates and let £, €2, €3 be any
system of curvilinear coordinates in a Riemannian space. Hence, we define the covariant

and contravariant metric tensors, respectively, as follows

5 Oz*0a i s 08 08

93 = pei oei = Ok Ok
such that ) . ,
oxt o o0gm 4 98 i 07

oei I g o gem

With no loss of generality, we take g;; symmetric, i.e. g;; = gji.
The governing equations given by Egs. 2.1, 2.2 and 2.3 for a curvilinear coordinate

system are rewritten respectively as

dp
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where
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with

G — ; (gjkui‘k —i—gikuj‘k) .

Here, the vertical stroke stands for the covariant derivative. Note that these previous
equations are directly obtained from that written in the physical space through the process
of lowering and raising of suffixes, and that the Kronecker delta consequently vanishes
(e.g.5 (pg™0")1; = (97D)yy)-

Introducing the Christoffel symbols of the first type

oo 1 (0gk | Ogi  Ogij

(o) =il

the conservation equations in curvilinear coordinates are read in a non-Euclidian

and of the second type

Riemannian space as
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Call g = det|g;;| = J?, where J = det |02"/0¢?| is the Jacobian. After applying the

Voss-Weyl formula for the divergence, the Navier-Stokes equations reduce to

and

0 0
a(gmﬂ) +
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Equations A.5, A.6 and A.7 are the ones solved by our LES code. However, while
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the use of curvilinear systems with fully tensorial components simplifies the handling of
boundary conditions, the presence of an undifferentiated term appearing together with the
Christoffel symbol prevents the achievement of overall conservation of mass, momentum
and energy in flows with discontinuities. Equation A.6 is, then, said to be in a weak
conservation-law form, and it would lead to an inferior shock capturing capability Vinokur
(1974). This condition can be problematic for dynamic stall applications. That is because
the high suction due to the airfoil motion usually induces a rapid and local acceleration of
the flow, which can lead to the formation of shock waves even if at low-speed freestream
conditions, where the flow field could safely be viewed as incompressible.

Even though we address compressibility effects, our focus is on low-Reynolds
aerodynamics. Hence, it is important to pay attention to the fact that shock waves
are rarely encountered in realistic applications of low-Reynolds aerodynamics. Another
justification for avoiding shock waves here is the fact that they would change the
dynamic stall inception mechanisms, making it hard to assess what the phenomenological
differences due to Mach number variations actually are. We accomplished this by choosing
proper values for the flow conditions and kinematic parameters based on those commonly
used in the literature. Nonetheless, it is still valid to discuss the implications of the weak
conservation-law form and how we can get around this.

The undifferentiated term in Eq. A.6 is analogous to fictitious centrifugal and Coriolis
forces which result from the curvature of the coordinate system, and it is unavoidable if the
equation is expressed in a fully tensorial form. However, the existence of a conservation
law is related to the isotropicity and homogeneity of the space-time and to the invariance
of a given action under the transformation of spatiotemporal coordinates Vinokur (1974).
So that, it is a consequence of the underlying symmetries of the system as stated by
Noether’s theorem.

For generalised coordinate systems, it follows that the metric tensor g;; is forminvariant
under infinitesimal transformations £ — & = &' + n*(¢7) if there exist a vector n; that
satisfies the Killing equation ( 75 + 15, = 0 ). This equation admits six independent
solutions, corresponding to the translations and rotations of the flow. Nonetheless, the
angular momentum is already conserved for perfect fluids and the rotational Killing
vectors may be ignored.

The strong conservation-law form of the momentum equation is obtained by the

contraction of the flux tensors with the translational Killing vector such that

o
(pu') 4 n; 11

Mo (pmsu®) + (1) — 117

g ot
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= a(pmui) + (ml17); = n; (r.hus.) .

In this case, we choose 7; as the basis vector of the transformation, n; = g;, with g,

satisfying g;; = g; - g;. Moreover, g, is related to the Cartesian quantities by g, =
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027 /0" e;, where e; forms the basis of the Cartesian system. Hence, we are left with
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where u = u'g; = u' 027 /0" e; is the Cartesian velocity vector and g7 = 9¢7 /0x" €

The viscous term in Eq. A.8 is written, in terms of the Cartesian components, as
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When deriving the viscous term above, we used the fact that v/ = u - g’ and that
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The resulting equation might be analagous to momentum equation usually employed in
CFD codes written in the generalized curvilinear form.
Instead of solving for Eq. A.8, we rewrite this equation in contravariant form since it

is more suitable for the staggered grid implementation. Hence, we have that

at(g“zpu >+g ~a§j{gig”2<pu u]+9”p—7j>} = 2¢"2pg" e jutQl —
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where the viscous stress and the strain rate tensors are evaluated, respectively, as
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APPENDIX B - Analysis of vorticity transport for the

periodic motion

In this section, we assess how vorticity is affected by compressibility effects during the
onset and development of dynamic stall. To this end, we consider the periodic case of
Chapter 3 since it is there that the dynamic stall onset is discussed in depth. Assuming a
constant viscosity, which is reasonable for the present investigations at low and moderate

Mach numbers, the vorticity transport equation for a compressible flow is given by

Dw;  Ow; L+ %
Dt — ot ' o,
ou; Ouy 0 (1) op  pu Pw; 0 (1) OTige

= Wj — W; — €45 - + — +eiika—\—| 57/
T Ox; 0z ]kaxj p) Oz, pOx;0x, ]kaxj p) Oz

(B.1)

Here, the terms appearing in the right hand side of the vorticity equation are,
respectively, vortex stretching, volumetric dilatation, baroclinic torque, viscous diffusion
and shear stress-density gradient torque. In compressible flows, density inhomogeneities
may yield the generation/destruction of vorticity due to possible additional rotation being
created as inertial forces accelerate fluid elements of different densities. This effect is
represented by the baroclinic term, which arises from the misalignment of the material
acceleration (via pressure gradient) and density gradient vectors. Also, another two extra
terms exist compared to the incompressible case, being the volumetric dilatation and the
shear stress-density gradient torque. The contributions of the individual terms appearing
in Eq. B.1 are investigated here and presented in Figs. B.1 and B.2, in which we highlight
time instants at the onset of dynamic stall and during its transport over the airfoil suction
side. Note that the spanwise averaged results do not facilitate an explicit accounting of
the vortex stretching term that affects the 3D results and is hence not considered. We
also leave the convection term out to focus only on those terms that act as sources and
sinks in a Lagrangian description of the vorticity evolution. With the aim to better
visualize the contributions to the vorticity field, the z-vorticity contours are also plotted
in both figures, resulting in the shaded green and pink regions appearing in the subplots.
These regions indicate positive (pink) and negative (green) z-vorticity and can be better
visualized in the plot of shear stress-density gradient (far right), since this latter term is
almost nonexistent in the present contour scales, leaving the shaded contours clearer. All

source (sink) terms are plotted in red (blue) colors on top of the z-vorticity contours.
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Figure B.1: Vorticity transport in the leading-edge region (z/c < 0.25) at t = 4.6 for
My = 0.1 (top) and M, = 0.4 (bottom). Green and pink contour shades indicate
negative and positive fields of z-vorticity, respectively.

Dilatation Baroclinic Diffusion Shear stress-density
gradient

-5 0 5
Figure B.2: Vorticity transport at ¢t = 6.5 for M, = 0.1 (top) and M., = 0.4 (bottom).

Green and pink contours indicate negative and positive fields of z-vorticity, respectively.

From Fig. B.1, we see that the dilatation and diffusion terms dominate the evolution of
vorticity for the lower Mach number case. While the former appears due to compressibility
effects, the latter is related to incompressible mechanisms. The dilatation term is
composed of small scale structures inside the shear layer and the diffusion term is
smoother, being more relevant near the wall and along the thin shear layer at the leading
edge. A similar behavior is observed for the higher Mach number flow but the spatial
scales in the dilatation term are larger for this case. When compressibility is increased,
the impact of the baroclinic torque also becomes more relevant. For M., = 0.4, this term
opposes that due to dilatation, indicating that the former acts as a stabilizing term for the
latter. A comparison of the diffusion terms, on the other hand, shows that the diffusion
levels are similar for both Mach numbers and concentrated either in the viscous interface
aft of the airfoil leading edge or in localized spots near the wall. This indicates that the
primary role of viscous diffusion is to transport vorticity from the higher vorticity regions
to the outside irrotational flow or to the zero vorticity line. Finally, the shear stress
density gradient has a negligible contribution to the spanwise vorticity, as shown in the
figure.

Figure B.2 presents the spatial distribution of the vorticity sources and sinks at
a later time instant. Here, the DSV is already formed, being transported over the

airfoil. Compressibility impacts the behavior of the dilatation term considerably. For
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the lower Mach number case, it is composed of more isotropic small-scale fluctuations
while, for the higher Mach number flow, fluctuations show a more coherent pattern
with larger structures. As previously noted, the baroclinic torque is pronounced only
for the higher Mach number case. For this term, coherent patterns are observed along the
boundaries of the DSV and they are in phase opposition with the vorticity dilatation. The
diffusion term is composed of isotropic fluctuations along the entire DSV independently of
compressibility, and the shear stress-density gradient again has a negligible impact on the
vorticity evolution. The present analysis of the sources and sinks of vorticity facilitates
a further assessment of compressibility effects on the onset and evolution of the dynamic

stall vortex.
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APPENDIX C - Analysis of non-inertial forces

In Chapter 4, the equivalence between pitch and plunge was investigated under
constant ramp motions. While for plunging motion there exists only the translational
acceleration, the constant rate pitching cases are directly affected by Coriolis and
centripetal accelerations. For this reason, it is important to discern how each pseudo-force
contributes to the flow dynamics. To this end, consider the material derivative of the
velocity u’ of a fluid particle, which is written as

Du' Dz’

. o' . 12
Dt = Dr ~ & = g TN Feradgit (C1)

This expression is valid for either a moving or a stationary frame, provided that all
quantities are measured in relation to that frame (in a fixed frame, the quantities would
not be primed). In practical applications, it is desired to measure forces apparent to
observers stationary with respect to the airfoil, which is in relative motion to the reference
(fixed) frame. In this case, & must include quantities measured at the two distinct frames,
which are in relative motion. To do that, let Cartesian axes be employed in each frame
and primes denote quantities associated with the airfoil system (moving frame). Let X
and € denote the position and angular velocity of the airfoil, respectively. Then, the
accelerations can be compared for the two frames as
53:a;:—i—%?/\w’—i—ﬂ/\(ﬁ/\w')—i—ZQ/\dcl—i—i?/. (C.2)
Assuming that the moving frame does not have linear and rotational accelerations,
ie., 90X /0t =0 and 02/0t = 0 (this represents our constant-ramp pitching airfoil), and
substituting the term &’ from Eq. C.1 in Eq. C.2, we have

-/

T = 3821; + (w' +2Q) A&’ + grad 3[27 + (Q - &) — Q%] . (C.3)
Thus, the acceleration for an observer at the moving frame (Eq. C.1) has the same form
as that in a inertial frame (Eq. C.3). To obtain this expression, we use the fact that the
centrifugal acceleration is independent of the flow and conservative, which implies that
QA (QAZ') = grad .. The term ¢. = 1[(2-x')? — Q?2"] is the centrifugal potential and
it acts in the sense of reducing the apparent squared speed 32, since ¢, < 0. The vector
w' + 202 = w is the absolute vorticity, which indicates that the apparent local angular
velocity 3w’ is increased by €.

The centrifugal potential can be absorbed into an equivalent pressure term (p, =
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p + po.) in the Navier-Stokes equations and, since ¢. < 0, it reduces the equivalent
pressure. Since the centrifugal term acts as a potential forcing, it does not generate
vorticity directly, but rather alters the vorticity distribution and strength of the DSV
through pressure variations.

The Coriolis force, on the other hand, generates a non-conservative field. To better
understand how the Coriolis acceleration @’ = —2€ A &’ serves as an internal source of
relative vorticity, let us consider the rate of change of circulation of a closed material
surface . Knowing that curla’ = —2D’' - Q, where D' = Idivae’ — (gradz’)T is the

surface deformation-rate tensor (Wu et. al, 2006), the Stokes theorem yields

dr’

e /Scurla dS = 20 /dS D (C.4)

where dS is the material surface element, with normal pointing outward. To evaluate this
integral, we rely on the kinematics of surface integrals. According to Truesdell (1954),
the material derivative of the flux of an arbitrary continuously differentiable tensor field

®’ across a material surface S is given by
D/ dS - &' — / [AS - (@' + &' diva) - grad ' - dS - @]
Dt Js S '
By taking ®' as the identity matrix I, we get
= / s = / ds - [Tdivé' — (grad )" / ds-D' . (C.5)

Substituting Eq. C.5 into C.4 leads to

ar

as dS,
L _ 9. / 4s = 20 -
a Dt

i _2QE , (C.6)
where S is the material surface spanned by the closed circulation loop, and S is the area
enclosed by the projection of S upon a plane perpendicular to 2.

In the present two-dimensional problem, one can think, for example, of a cylindrical
surface over the airfoil with its end caps. Then, the projected surface would be a circular
region surrounding the airfoil. Since the projected material surface §; changes in time
due to velocity variations along the airfoil in the non-inertial frame of reference, Eq. C.6
establishes that a variation in the circulation will occur inside the closed region.

The rationale behind the analysis of the non-inertial terms is that if pitch and plunge
are equivalent, then these non-inertial contributions should also be similar between the two
constructed motions. The opposite also holds; if the equivalence breaks, then different
pseudo-forces should be driving the flow to different states. However, despite acting
as a source of net vorticity, we observed that the contribution of the Coriolis force

to the momentum equation is negligible (not shown here). In fact, all pseudo-forces
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(translational, Coriolis and centrifugal) were found to be relatively small. This fact
suggests that the differences between pitch and plunge cannot be directly explained in
terms of these pseudo-forces, which is quite intriguing as the only differences between
these two classes of motion reside fundamentally in the non-inertial terms. In Chapter
4, we discussed that the trailing-edge system differs between pitch and plunge, but the
cause of such discrepancies is not yet fully understood. For this reason, this topic deserves

further investigation.
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APPENDIX D - Barchan dunes

Barchan dunes, or simply barchans, are crescent-shaped dunes resulting from the
transport of grains, usually sand, by a one-directional fluid flows in a mode of transport
called bedload (Charru et. al, 2013). Their migratory behavior occurs in different
environments and scales and may pose risks to human activity with regard to the accretion
on roads, railways and communication lines (Dong et. al, 2000, 2004). Due to its
ubiquitous nature and impact on the landscape, the morphodynamics of barchans has
been the subject of research through field measurements on Earth (Sauermann et. al,
2000; Yang et. al, 2019; Bourke, 2010) and Mars (Bourke, 2010; Schatz et. al, 2006;
Runyon et. al, 2017). But often, these measurements involve large time and length scales
and uncontrolled conditions, which makes it difficult to track the evolution of the bedform
over a long period of time. Moreover, thus far, little information can be extracted from
Aeolian and Martian barchans at the grain scale.

Given the smaller and faster scales of subaqueous barchans, the initial and long-time
evolution of the barchan morphology (Hersen et. al, 2002; Runyon et. al, 2017) and
the typical trajectories and velocities of moving grains (Alvarez and Franklin, 2018;
Wenzel and de Moraes Franklin, 2019; Alvarez and Franklin, 2019) could be obtained
from controlled experimental studies carried out in water channels and tanks. Such level
of understanding of how dunes perform at smaller scales is crucial to improving dune
models that couple local sand motion with turbulent flow across a complex topography
(Assis and Franklin, 2021). In addition to experiments in water, numerical simulations
have also been employed to address grain scale dynamics. Kidanemariam and Uhlmann
(2014, 2017) used direct numerical simulations (DNS) to fully solve the flow around each
grain, being the most accurate representation of the physics where sediment transport
takes place. However, in their method, the time required for obtaining developed barchans
is seldom reached due to the exceedingly high computational cost involved (Colombini,
2014). In recent work, Alvarez and Franklin (2020, 2021) used LES to compute the flow
around dunes at a much lower computational cost. Not only they were able to accurately
reproduce previous experimental data, but also the numerical results revealed quantities
not accessible from experiments, such as the resultant force acting on each grain. These
forces represent an important step towards a realistic representation of fluid-sediment
interactions and can, in principle, support or invalidate existing models down to the grain
scale.

In this part of the work, we propose a framework whereby numerical simulation data

is leveraged to extract relevant information from experimental visualizations of barchans.
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To this end, we uniquely treat the image semantic segmentation as an image-to-image
translation task that infers semantic labels of structures from the input images in a
supervised way. Particularly, given the source domain of numerically simulated images
of dune morphology, we train a U-net (Ronneberger et. al, 2015) to generate synthetic
force distribution at the grain scale. Then, global photometric statistics of experimental
images are manipulated using the Fourier Domain Adaptation method proposed by Yang
and Soatto (2020) to improve the alignment of the low-level statistics between the source
and target distributions. This is especially important since the networks do not transfer
well across different low-level statistics (Achille et. al, 2019).

The U-net was trained for 103 epochs yielding a loss of 0.0023 with mean squared
error of 0.0047 and a validation loss of 0.0033 with mean squared error of 0.0067. Our
dataset contains nearly 1800 images devided into train (1400 images), validation (160)
and test (180) sets. Some results performed on the test set are displayed on Fig. D.1.
The agreement between the predicted and annotated forces suggests that our simple
encoder-decoder model is effective at managing the categorical interpretation of the

barchan dunes. We believe that some defective regions in the synthetic images can be

improved by increasing the number of training data or applying a more complex network.

Predicted

Figure D.1: Dune morphology (first row), the corresponding force distribution (middle
row) and that predicted by the CNN (bottom row).
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