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Resumo
Seja M uma variedade compacta munida de um par de folheações complementares (vertical
e horizontal). O objetivo desta tese é estudar decomposições de fluxos de difeomorfismos
em um contexto de baixa regularidade. Provamos que dado um semimartingale Zt (o qual
pode ter infinitos saltos em intervalos compactos), então, até um tempo de parada τ , um
fluxo de difeomorfismo em M dirigido por Zt pode ser decomposto em um processo no
grupo de Lie de difeomorfismos cujas trajetórias caminham ao longo das folhas horizontais
composto com um processo no grupo de difeomorfismos cujas trajetórias caminham ao
longo das folhas verticais. Equações para estes processos são determinadas. Os processos
estocásticos com componentes de saltos são gerados por equações de Marcus (como em
Kurtz, Pardoux and Protter, Annal. I.H.P., section B, 31 (1995)). Generalizamos ainda
mais este contexto geométrico para quaisquer tipo de semimartingales. Mostramos também
que esta decomposição também funciona para soluções de equações diferenciais de Young
e exploramos alguns aspectos geométricos da integral de Young. No contexto de saltos,
nossa técnica é baseada em uma extensão da fórmula de Itô-Ventzel-Kunita para processos
com saltos. No contexto de integrais de Young, fazemos uma aplicação de uma fórmula
de Itô-Ventzel-Kunita para caminhos α-Hölder Contínuos proposta por Castrequini e
Catuogno (Chaos Solitons Fractals, 2022). Algumas obstruções geométricas e topológicas
para decomposições também são consideradas.

Palavras-chave: Decomposição de fluxos, processos com saltos, integral de Young, integral
de Marcus, fórmula de Itô-Ventzel-Kunita.



Abstract
Let M be a compact manifold equipped with a pair of complementary foliations, say hori-
zontal and vertical. This thesis aims to study a decomposition of flows of diffeomorphisms
in the low regularity context. Namely, we prove that given a general semimartingale Zt
(which can have an infinity number of jumps in compact intervals) up to a stopping time
τ , a stochastic flow of local diffeomorphisms in M driven by Zt can be decomposed into a
process in the Lie group of diffeomorphisms which trajectories remain along the horizontal
leaves composed with a process in the Lie group of diffeomorphisms which trajectories
remain along the vertical leaves. SDEs of these processes are shown. The stochastic flows
with jumps are generated by the classical Marcus equation (as in Kurtz, Pardoux and
Protter, Annal. I.H.P., section B, 31 (1995)). We enlarge the scope of this geometric
decomposition and consider flows driven by arbitrary semimartingales with jumps. We
show that this decomposition also holds for solutions of Young differential equations
exploring the geometry of Young integrals. In the jump context, our technique is based
on our extension of the Itô-Ventzel-Kunita formula for stochastic flows, which may jump
infinitely many times. In the Young integral context, we apply a Young Itô-Kunita formula
for α-Hölder paths proved by Castrequini and Catuogno (Chaos Solitons Fractals, 2022).
Geometrical and other topological obstructions for the decomposition are also considered,
e.g., sufficient conditions for the existence of global decomposition for all t ě 0.

Keywords: Decompositions of flows, jump processes, Young integral, Marcus integral,
Itô-Ventzel-Kunita formula.
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Introduction

In this thesis, we study some geometric aspects of decomposition of flows and dynamics
generated by Marcus and Young differential equations. Motivated by the fact that in many
kinds of dynamical systems, in order to obtain local or asymptotic parameters of the
dynamics, one performs a befitting decomposition of the associated flow, our main example
of application of this low regularity techniques in manifolds concerns a decomposition of
the associated Marcus and Young flows. For good references related to Marcus integral and
discontinuous noise, we recommend Marcus [45], Lévy [37], Protter [53], Kurtz et al. [33],
Oksendal and Sulem [51], Applebaum [2], Hartmann and Pavlyukevich [26], [27], among
many others. For works related to α-Hölder trajectories with α P p1{2, 1s (our case) and
Young integral, see e.g. the classical [65], or more recent Hairer and Friz [22], Gubinelli et
al. [24], Lyons [38], Castrequini and Russo [13], Castrequini and Catuogno [15], Cong [19],
Ruzmaikina [57], and others.

Generally, decomposition of flows appears in the literature related to distinct geometrical
or analytical contexts. We mention few of them: given a system in a semi-simple Lie group,
we get much information if we decompose the system into each component of the Iwasawa
decomposition (see, e.g. in the stochastic context Malliavin and Malliavin [44]); given a
stochastic flow in a Riemannian manifold, one can write this flow (up to some conditions)
as a Markovian process in the group of isometries of the manifold composed with a process
in the Lie group of diffeomorphisms which fix the initial condition and has derivatives at
this point given by an upper triangular matrix, see Ming Liao [40], [41]. Also, given a flow
in an m-dimensional manifold with a pair of complementary foliation (i.e., locally, the
manifold and foliations are diffeomorphic to Rk ˆ Rm´k), then locally, in time and space,
a stochastic flow can be written as a composition of diffeomorphisms which preserve each
of these foliations, see [47], [46]. We will make this last example more precise and explore
its potential in the Marcus and Young integral context.

The decomposition of Marcus and Young flows is allowed thanks to Itô-Ventzel-Kunita
type formulas in this low regularity context, Theorem 18 due to Castrequini and Catuogno
[15] for flows generated by Young differential equations, and Theorem 11 for Marcus
equation context. The framework where we apply those formulas is a pair of geometrical
distributions (involutive, i.e., which generates a foliation or not). The main results in this
framework establish the local decomposition of Marcus and Young flows of diffeomorphisms
as one component given by a diffeomorphism generated by vector fields in one distribution
and another component given by a diffeomorphism generated by the other distribution.
Precise definitions are given in chapter 3. In this scenario of low regularity of trajectories,
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the geometric Young Itô Formula, Theorem 14, opens the possibility to many basic
geometric constructions on this dynamics. These topics are explored in the next section,
where we prove the existence of horizontal lifts on principal fiber bundles with an affine
connection. In particular, considering a Riemannian manifold and its orthonormal bundle,
parallel transport and covariant derivatives can be established along α-Hölder trajectories.
Development and anti-development can also be constructed.

The thesis is organized as follows: in the first chapter, we recall basic properties and defini-
tions of foliated spaces, Young integrals, and stochastic processes with jump components
(general semimartingales), and we prove the relevant geometric results for later use. In
chapter 2, we study the decomposition of stochastic flows defined over a Riemannian
manifold M starting at an initial point x0 P M and running exclusively along vertical
concatenate with horizontal trajectories. We will study some geometrical and analytical
conditions for the existence of decomposition of flows along the leaves of a foliated space.
Some of these conditions can be intrinsically related to the manifold. In chapters 3 and 4,
we prove the decomposition of Marcus and Young flows given complementary distributions.
In chapter 5, we present examples. Initially, linear systems are treated with a pair of
foliations given by affine parallel hyperplanes. We present conditions for the existence of
global decomposition at any time in this context. The last example provides explicit calcu-
lations for decomposition of jump dynamics in the case of fiber bundles over homogeneous
space G Ñ M “ G{H where G is a Lie group and H ă G is a closed subgroup. The last
section of this work states some open problems related to the decomposition of flows and
stochastic optimal control.
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1 Preliminaries

1.1 Foliations
Given an n-dimensional smooth manifold M , a foliation F of dimension 1 ď k ă n in M is
a partition of M into immersed connected submanifolds of dimension k, called the leaves
of F with local foliated chart. More precisely, locally, pM,Fq is diffeomorphic to open sets
of Rn “ Rk ˆRn´k, in such a way that the leaves have constant second coordinate. In fact,
a foliation pM,Fq is identified with a foliated atlas which is coherent along the leaves in
the following sense:

Definition 1. Let M be a smooth n-dimensional manifold. A (smooth) k-dimensional
foliated atlas A of M is a maximal atlas on M which satisfies:

1) If pU, αq P A, then αpUq “ U1 ˆ U2 Ă Rk ˆ Rn´k for U1, U2 open subsets of Rk and
Rn´k respectively.

2) Given two local charts pU, αq, pV, βq P A, with U X V ‰ H, then the change of
coordinate map is given by α ˝ β´1

px, yq “ ph1px, yq, h2pyqq, for some smooth maps
h1 and h2 in the appropriate domain.

A foliated atlas A is said to be regular if it is locally finite and for any foliated chart
pU, αq P A, the closure of its domain Ū is a compact set contained in V , the domain of
another foliated chart pV, βq. The sets α´1

pB, tyuq Ă M , for pU, αq P A, B Ă Rk open set
such that pB, tyuq Ă αpUq are called plaques of the atlas.

Consider the equivalence relation in M given by x „ y if and only if there exists a
finite sequence of plaques P0, P1, . . . , Pp with x P P0, y P Pp and Pi X Pi´1 ‰ H for all
i “ 1, . . . , p. The equivalent classes here determine a one-to-one correspondence between
regular foliated atlases and the leaves F of a foliated manifold (see e.g. [11, Thm. 1.2.18]).
Given a point p P M , the unique leaf of the foliation passing through p is denoted by Fppq.
The set FpSq “ YpPSFppq, for S Ă M , is called the saturation of S by F .

Example 1. (Trivial foliation). Let M be an n-dimensional manifold. Then, M ˆ Rk, for
k P N, is a foliation. In fact, its leaves are M ˆ tpu, for p P Rk and the leave space is Rk. In
general, given a submersion g : M Ñ Q, where Q is a k-dimensional manifold, the fibers
of g can be seen as leaves of some foliation and Q as the leave space.
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Example 2. (Fibre bundles). Let E, B and F be differentiable manifolds and consider a
diferential map π : E Ñ B, a cover tUiuiPI of B and a family of diffeomorphisms Ψi, such
that the following diagram commutes:

E

π
��

Ψi // Ui ˆ F

p1
{{

B

In the diagram, p1 is the projection map in the first component of Ui ˆ F , for all i P I.
The group tΨij “ Ψi ˝ Ψ´1

j uUiXUj‰H is called the structure group of E. The sets π´1
pbq,

b P B are called fibers and the fibers generate a foliation in the space E whose leaves are
diffeomorphic to the connected components of F .

Example 3. (Foliations defined by submersions). Let Mm and Nn be Riemannian mani-
folds with dimensions m and n respectively. Consider f : Mm

Ñ Nn a smooth submersion.
By the local form of submersion, it follows that for all p P M , there exists local charts
pU,φq on M and pV, ψq on N , such that p P U , q “ fppq P N and

φpUq “ U1 ˆ U2 Ă Rm´n
ˆ Rn,

and

U2 Ă V1 “ ψpV q,

with

ψ ˝ f ˝ φ´1 : U1 ˆ U2 Ñ U2

px, yq Ñ y.

Therefore, the chart pU,φq define a foliation structure on the manifold M , where the leaves
are generated by the connected components of f´1

pcq, c P N .

Example 4. (Non-singular vector fields). Let M be a Riemannian connected manifold
and X be a non-singular vector fields on M . Consider the following ordinary differential
equation:

dx

dt
“ Xpxq. (1.1)

The solution curve of equation (1.1) is a leave of a 1-dimensional foliation for each initial
condition x0 “ y P M .

In some cases, we need the foliation to be well-behaved, i.e, we need it to be regular in the
following sense:
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i) The closure of each open set is a compact subset of some foliated chart.

ii) Each covering by coordinate systems is locally finite.

iii) The closure of each plaque of one chart intersects at most one plaque in each other
chart.

In the sequel, we state two important definitions.

Definition 2. We say that the maximal atlas of pM,H,Vq is transversely orientable (for
the horizontal foliation) if for all change of coordinate map yi : ϕ2pU1 X U2q ÝÑ R, with
ϕ1 ˝ ϕ´1

2 “ py1, ..., ynq

det Bpyn´k`1, ..., ynq

Bpxn´k`1, ..., xnq
ą 0. (1.2)

Unless otherwise stated, we are going to assume that our foliation pM,Fq is tranversely
orientable. This is not quite a restriction since if F is not transversely orientable, it can
be lifted to a transversely-oriented foliation on a double covering of M , see e.g. [11, Prop.
3.5.1].

Definition 3. Let H and V be two complementary foliations on M . A is a biregular atlas
on pM,H,Vq if A is foliated and regular for H and V simultaneously. Namely, given two
biregular coordinate systems pU, α1q and pV, α2q, with U X V ‰ H, then the change of
coordinate map is given by α1 ˝ α´1

2 px, yq “ ph1pxq, h2pyqq, for some smooth maps h1 and
h2 in the appropriate domain.

The following basic result is crucial on determining the topology of relevant sets we are
going to introduce in chapter 3. It is a nontrivial result if one considers, for example,
non-compact or dense leaves in a compact foliated space.

Proposition 1 (Uniform tranversality). Consider pM,H,Vq, a manifold with complemen-
tary foliations H and V . Fix a leaf F , say, in H. Given two points p, q P F , let Vp, Vq P V
be the vertical leaves passing thorough p and q respectively. Then, there exist open sets
in the intrinsic topology D1 Ă Vp, D2 Ă Vq with p P D1, q P D2 and a diffeomorphism
f : D1 Ñ D2 such that fpL X D1q “ L X D2 for every horizontal leaf L in H.

Proof. Consider biregular charts φp : Up Ñ U1 ˆ U2 and φq : Uq Ñ Ũ1 ˆ Ũ2 in a
neighbourhood of p and q respectively, with U1, Ũ1 Ă Rk and U2, Ũ2 Ă Rn´k. By the
uniform transversality theorem, see e.g. [10, Thm. 3, Ch.III] there exist submanifolds N1

and N2, with p P N1 and q P N2 transverse to F and a diffeomorphism f̃ : N1 Ñ N2 such
that f̃pL X N1q “ L X N2 for all horizontal leaf L .
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To conclude the proof, we just have to show that N1 and N2 above can be chosen as open
sets D1 and D2 of the vertical leaves Vp and Vq. Since N1 is transverse to F at p, then the
derivative at p of the non-linear projection ψp :“ φ´1

p pt0u ˆ π2 ˝ φp ˝ iq : N1 Ñ Vp is an
isomorphism between the tangent spaces TpN1 and TpVp, where i : N1 Ñ M is the inclusion
and π2 : Rn Ñ Rn´k is the projection. By the classical local inverse theorem, there exists
an open set D̃1 where the restriction of ψp is a diffeomorphism. By the same argument, we
have that there exists an open set D̃2 where the restriction of ψq :“ φ´1

q pt0u ˆ π2 ˝ φq ˝ iq

is also a diffeomorphism.

The diffeomorphism f : D1 Ñ D2 of the statement is given by f “ ψq ˝ f̃ ˝ ψ´1
p with

D1 “ ψppD̃1 X f̃´1
pD̃2qq and D2 “ ψqpf̃pD̃1q X D̃2q.

l

1.2 Distributions
Here we present another perspective of studying foliations which can be done via differ-
entiable vector fields. These ideas are well known in the literature and can be found in
Nomizu [49], Candel and Colon [11], Camacho and Lins Neto [10], among many others.

Definition 4. Let M be a Riemannian connected manifold. A distribution ∆, with
dimension k, is a map that assigns each point p P M , a subspace ∆p. The distribution ∆
is said to be differentiable if each point p P M has a neighbourhood U , such that for all
q P U , there exists a family of smooth vector fields Xipqq, for i “ 1, . . . , k, which forms a
basis for ∆q.

In this context, we say that a differentiable vector field defined over U belongs to the
distribution ∆, if Xppq P ∆p, for all p P U .

Definition 5. A differentiable distribution ∆ is said to be involutive if for all local basis
X1, . . . , Xk of ∆, the brackets rXi, Xjs belong to ∆, i.e, the distribution is a Lie subalgebra
of XpMq.

Usually in the literature, the manifold M is called an integral manifold of the distribution
∆ if ∆p “ TpM , for all p P M . The next theorem shows that foliations are sometimes
generated by infinitesimal data, such as a smooth k dimensional distribution ∆ Ă TM .
The involutiveness condition of a distribution is the classical result known as the Frobenius
theorem.

Theorem 1 (Frobenius). Let M be a connected Riemannian manifold and ∆ be a
distribution in TM . Then, there exists a foliation on M such that its leaves are integral
manifolds of ∆, if and only if, ∆ is involutive.
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1.3 The α-Hölder space
Let E be a Banach space and Cpr0, T s, Eq be the space of all continuous paths x : r0, T s Ñ

E, with the norm:

||x||8 “ sup
tPr0,T s

|xt|. (1.3)

For α P r0, 1q, we define the α-Hölder seminorm of a path x by:

||x||α “ sup |xst|

|t ´ s|α
, (1.4)

where xst “ xt ´ xs. We denote by Cα
pr0, T s, Eq the space of all continuous paths, such

that ||x||α ă 8. In the sequel, we remark some well-known properties of the seminorm 1.4.

Remark 1.

1. If 0 ă α ă β ď 1, then Cβ
pr0, T s, Eq Ă Cα

pr0, T s, Eq. In fact, note that:

||x||α “ sup
0ďs,tďT

|xst|

|t ´ s|β
|t ´ s|β´α

ď ||x||βT
β´α.

2. Cα
pr0, T s, Eq is a Banach space with the norm:

|x|α “ |x0| ` ||x||α.

3. If x P Cα
pr0, T s, Eq, then x is a 1

α
-variation path. Indeed, let π be a partition of the

interval r0, T s. Then, for p “
1
α

,
ÿ

tiPπ

|xti`1 ´ xti |
p

ď
ÿ

tiPπ

p||x||α|ti`1 ´ ti|
α
q
p

“ ||x||
p
αT

α.

Hence,

|x|p “

˜

sup
πPPr0,T s

ÿ

i

|xti`1 ´ xti |
p

¸
1
p

ď ||x||αT
α.

4. Lower semicontinuity and interpolation. Let xn, x P Cα
pr0, T s, Eq, such that

lim
nÑ8

xn “ x pointwise. Then,

||x||α ď lim inf ||xn||α.

And
||x||α ď ||x||

α
β

β

ˆ

sup
0ďs,tďT

|xs,t|

˙1´ α
β

.

It follows straightforward from inequalities:
|xs,t|

|t ´ s|α
“ lim inf

n

|xnst|

|t ´ s|α
ď lim inf

n
||x||α.

And
|xs,t|

|t ´ s|α
“

ˆ

|xs,t|

|t ´ s|α

˙
α
β

|xst|
1´ α

β .
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The next classical result states a condition for the possibility of approximating an α-Hölder
path by a differentiable path in Cα

pr0, T s, Eq. We denote by C0,α
pr0, T s, Eq the closure of

all differentiable paths in Cα
pr0, T s, Eq.

Proposition 2. A path x P C0,α
pr0, T s, Eq, if and only if,

lim
δÑ0

sup
|s´t|ăδ

|xst|

|t ´ s|α
“ 0.

For a proof, see Friz and Hairer [22].

Corollary 1. Let 0 ă α ă β ă 1. Then,

Cβ
pr0, T s, Eq Ă C0,α

pr0, T s, Eq.

Proof. Take x P Cβ
pr0, T s, Eq and consider a fixed δ ą 0. Let s, t P r0, T s, such that

|t ´ s| ă δ. It follows that:

|xst|

|t ´ s|α
“

|xst|

|t ´ s|β
|t ´ s|β´α

ď |x|βδ
β´α.

Hence,
lim
δÑ0

sup
|t´s|ăδ

|xst|

|t ´ s|α
“ 0.

By proposition (2), we conclude that x P C0,α
pr0, T s, Eq.

l

Example 5. Let x : r0, T s Ñ R be a path defined by xt “ tα, for α P p0, 1q. For
0 ď s, t ď T , we have that:

|xst|

|t ´ s|α
“

|tα ´ sα|

|t ´ s|α
“

|1 ´
`

s
t

˘α
|

|
`

1 ´ s
t

˘α
|

ď
1 ´ s

t

1 ´ s
t

“ 1.

Then, ||x||α ď 1 and x P Cα
pr0, T s,Rq. Moreover, we have that for all t P p0, T s:

|x0t|

|t ´ 0|α
“
tα

tα
“ 1.

Then,
lim
δÑ0

sup
|t´s|ăδ

|xst|

|t ´ s|α
ě 1.

By proposition (2), x P C0,α
pr0, T s,Rq.

Lemma 1 (Sewing Lemma). Let E be a Banach space and A : ∆2
T Ñ E a continuous

functions. Where ∆2
T “ tpa, bq; 0 ď a ď b ď T u. For 0 ď s ď u ď t ď T , we set:

δAsut :“ Ast ´ Asu ´ Aut.
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We assume that there exist λ ą 0 and ϵ ą 0, such that:

||δAsut|| ď λ|t ´ s|1`ϵ.

Then, there exists a continuous path σ : r0, T s Ñ E, with σ0 “ 0, and a constant
C “ Cpϵq ą 0, such that:

||σt ´ σs ´ Ast|| ď Cλ|t ´ s|1`ϵ,

for all ps, tq P ∆2
T . Moreover, it holds that:

lim
|π|Ñ0

ÿ

ru,vsPπ

Auv “ σt ´ σs.

The next theorem states the existence of the called Young integral, for more details about
the its convergence and properties, see the classical paper by Young in [65].

Theorem 2. Let E and F be two finite dimensional Banach spaces, take α, β P p0, 1s,
such that α ` β ą 1, x P Cα

pr0, T s, Eq and y P Cβ
pr0, T s,LpE,F qq. Then for all t P r0, ts,

there exists the following limit:
ż t

0
yrdxr “ lim

|π|Ñ0

ÿ

ru,vsPπ

yuxuv,

where π P Pr0, T s. This limit is called the Young integral of y with respect to x. Moreover,
it holds that for all ps, tq P ∆2

t ,
ˇ

ˇ

ˇ

ˇ

ż t

0
yrdxr ´ ysxst

ˇ

ˇ

ˇ

ˇ

ď K||y||β||x||α|t ´ s|α`β.

Where K is a constant which depends only on α ` β.

Proof. set Ast “ ysxst. Then,

δAsut “ Ast ´ Asu ´ Aut

“ ysxst ´ ysxsu ´ yuxut

“ yspxst ´ xsuq ´ yuxut

“ ysxut ´ yuxut

“ ´ysuxut.

Therefore,
|δAsut| “ |ysuxut| ď ||y||β||x||α|t ´ s|α`β.

The existence of the Young integral follows directly from lemma (1).
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l

The next classical theorem states the existence and uniqueness of solutions generate by
Young differential equations. The proof follows via fixed point theorem. Again we refer
the reader to [65], for more details.

Theorem 3. Let x P Cβ
pr0, T s,Rdq, with β P p1{2, 1s, f P C2

b pRm,LpRd,Rmqq and y P Rm.
Then, there exists a unique y P Cβ

pr0, T s,Rmq, such that:

yt “ y `

ż t

0
fpysqdxs,

for all t P r0, T s.

The following theorem is an adaptation of H. Kunita result (see [32]) about composition of
flows. In this context, the composition is considered for flows defined by Young differential
equations.

Theorem 4. Let U , V and W be Banach spaces. Consider x P Cα
pr0, T s, V q and h :

r0, T s ˆ U Ñ LpV,W q a differentiable map on U such that:

• pt, xq Ñ Dhtpxq is continuous.

• h P CpU,Cβ
pr0, T s,LpV,W qqq, for 1

2 ă β ď 1.

Consider a map g : r0, T s ˆU Ñ W , two times differentiable on U , such that the functions
pt, xq Ñ Dgtpxq and pt, xq Ñ D2gtpxq are continuous. Assume that g satisfies:

gtpxq “ g0pxq `

ż t

0
hspxqdxs.

Then, for any u P Cα
pr0, T s, Uq,

gtputq “ g0pu0q `

ż t

0
hspusqdxs `

ż t

0
Dxgspusqdus.

Where the integral
ż t

0
Dxgspusqdus (1.5)

is understood in the Riemann-Stieltjes sense. If Dg P CpU,Cγ
pr0, T s,LpV,W qqq, for

γ P p1{2, 1s, the integral (1.5) is a Young integral and t Ñ gtputq P Cα
pW q.
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Proof. see Castrequini and Catuogno [12, Thm. 3.1].

l

The next following corollaries are important tools which are going to be applied in the
decomposition studied in Chapter 4. For a proof, see [12].

Corollary 2. Consider x P Cα
pr0, T s, V q, y P Cα

pr0, T s, Uq, f P C2
pW,LpV,W qq and g P

C2
pW,LpU,W qq. Let η and ψ be solution maps associated with the YDE’s dηt “ fpηtqdxt

and dψt “ gpψtqdyt respectively. Then, the map φt “ ηt ˝ ψt satisfies:

dφt “ fpφtqdxt ` ηt˚gpφtqdψt.

Where ηs˚g :“ pDxηs ¨ gq ˝ η´1
s pxq.

Corollary 3. Let u be a solution map associated with the YDE:

dut “ fputqdxt.

Then, the inverse map t Ñ u´1
t pzq satisfies the YDE:

dzt “ ´Dutpztq
´1fputpztqqdxt.

With initial condition z0 “ 1.

1.4 Stochastic processes with jump components
For the reader’s convenience, in this section we state the main results about stochastic
processes with jump components. Those topics will be crucial in Chapter 3 where we
propose a decomposition for diffusion generated by Marcus differential equations. For more
details see e.g. Protter [53], Kurtz et al [33], among many others.

We consider a complete probability space pΩ,F ,Ft,Pq, with a given filtration pFtq0ďtď8.
(By filtration we mean a family of σ-algebras Ft which increases as: Fs Ă Ft, if s ď t). In
this sense, a complete filtered probability space pΩ,F , pFq0ďtď8,Pq is said to satisfy the
usual hypotheses if the filtration has the following properties:

• If A P F , with PpAq “ 0, then A P F0.

• Ft “ XuątFu, for all 0 ď t ă 8.

With this concept, a stochastic process x is said to be adapted if xt P Ft, for each t ě 0.
From now on, we will always assume that the usual hypotheses hold.
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Definition 6. A stochastic process x is called càdlàg if a.s. its trajectories are right
continuous, with left limits. (càdlàg is actually an acronym from the french phrase:
continue à droite, limite à gauche).

1.4.1 Lévy processes

Lévy processes were the first class of stochastic processes to be studied in a modern way
back in the mid-1900s. It includes Brownian motions and Poisson processes as special cases,
which is not actually expected since those are very different. Even though sample paths of
Brownian motions are continuous and Poisson processes have discontinuous trajectories,
there is one thing in common about these processes, both of them are Càdlág as do all
Lévy processes.

Hence, in recent decades the study of Lévy processes as a whole class, rather than splitting
up into individual cases, has become an attractive field of research which unifies all
continuous and discontinuous processes theory. Of course there are many interesting books
that deal with Lévy processes, see e.g. Khintchine [29], Applebaum [2], Lévy [37], Protter
[53], among others.

Definition 7. An adapted process Zt “ pZtqtě0, with Z0 “ 0 a.s. is called a Lévy process
if it satisfies the following properties:

1. Z has independent increments, i.e. Zt ´ Zs does not depend on Ft, for t ě 0.

2. Z has stationary increments, i.e. Zt ´ Zs
d
“ Zt´s, for t ě 0.

3. Z is stochastically continuous, which means that for all ϵ, t, s ą 0,

lim
tÑs
Pp|Zt ´ Zs| ą ϵq “ 0.

Example 6 (Brownian motion). An adapted process B “ pBtqtą0 is said to be a standard
Brownian motion if it is a Lévy process such that:

1. Bt ∼ Np0, tIq, for each t ě 0.

2. B has continuous trajectories.

The Brownian motion is a Lévy process which has been intensively studied since early
years of the twentieth century when it was introduced. It is important mentioning two
basic properties: the Brownian motion is locally α-Hölder continuous for α P p0, 1{2q, i.e.
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for all stopping time T ą 0, and ω P Ω, it follows that there exists a constant K “ Kpt, ωq,
such that:

|Btpωq ´ Bspωq| ď K|t ´ s|α,

for t ě 0, and the sample paths t Ñ Btpωq are a.s. nowhere differentiable. For further
examples and details of the proofs, we strongly recommend the classical Sato [61] and
Revuz and Yor [56], among others.

Example 7 (The Poisson process). A Poisson process is a Lévy process N , such that
Nt Ă NY t0u, t ě 0, and

PpNt “ nq “
pλtqn

n! e´λt.

For each n “ 0, 1, 2, . . . where λ is called intensity or characteristic exponent of the Poisson
process N . In this case, we use the notation: Nt ∼ πpλtq. Poisson processes are exhaustively
studied and used in applications, see e.g. Kingman [30] and references therein.

Example 8 (The compound Poisson process). Consider a sequence of iid random variables
Zn, n P N taking values in Rk and let N be a Poisson process as in example (7), that is
independent of all Zn. We define

Yt :“ Z1 ` . . . ` ZNt .

For t ě 0. The process Y is called compound Poisson process. Note that Yt is a Lévy
process (it is straightforward from Lévy definition and dominated convergence theorem).
For k “ 1 it is also a Poisson process.

Example 9 (Interlacing processes). Let Y and B be two independent compound Poisson
process (as in example (8)) and Gaussian Lévy process (as in example 6) respectively. We
define:

St “ Bt ` Yt.

For all t ě 0. Observe that St is a Lévy process (it follows directly from the definition,
since B and Y are also Lévy processes). The next recursive formula shows that S have
jumps of random size occurring at random times. Using the notation of examples (7) and
(8), we have that for a sequence of stopping times T1 ă T2 ă . . . ă Tn:

St “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Bt, for 0 ď t ă T1

BT1 ` Z1, for t “ T1

ST1 ` Bt ´ BT1 , for T1 ă t ă T2

ST2 ` Z2, for t “ T2.

And so on recursively.
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Another Lévy property we want to remark is the infinitely divisibility.

Definition 8. A random variable Zt has infinitely divisible distribution if for all n P N,
there exists a sequence of iid variables Y1, Y2, . . . , Yn, such that:

Zt
d
“ Y1 ` . . . ` Yn.

Note that Lévy processes have infinitely division distribution. In fact, suppose that Z is a
Lévy process, since it has stationary independent increments, for each n P N:

Zt “ Z t
n

`

´

Z 2t
n

´ Z t
n

¯

`

´

Z 3t
n

´ Z 2t
n

¯

` . . . `

´

Znt
n

´ Z pn´1qt
n

¯

.

Where the increments are independent with the same distribution.

1.4.2 The jumps

Another characteristic of Lévy process is the instantaneous change of positions (jump).
We formally define this using a very important process associated to a Lévy process Z
called jump process, which is given by:

∆Zt “ Zt ´ Zt´ ,

for each t ě 0, where Zt´ is the left limit at time t. If |∆Zt| ď C ă 8 a.s, for a non-random
constant C, we say that Z has bounded jumps.

Let Λ be a borel set in R, such that 0 P sΛ, where sΛ is the closure of Λ. We define the
following random variables:

T 1
Λ “ inftt ą 0; ∆Zt P Λu

...
T n`1

Λ “ inftt ą T nΛ ; ∆Zt P Λu.

Note that the set tT nΛ ě tu P Ft (it follows by the fact that Z has càdlàg paths and 0 R sA),
thus T nΛ is a stopping time (more details can be found in Protter [53]). Moreover, by
construction, it holds that lim

nÑ8
T nΛ “ 8 a.s. We define the following process:

NΛ
t “

ÿ

0ăsďt

1Λp∆Zsq “

8
ÿ

n“1
1tTn

Λ ďtu.

The set functions Λ Ñ NΛ
t pωq and νpΛq “ ErNΛ

1 s define a σ-finite measure on Rzt0u, see
[Thm 35, [53], this measure is called Lévy measure of the Lévy process Z.
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A commun difficulty in manipulating Lévy processes arises when:

ÿ

0ďsďt

|∆Zs| “ 8 a.s.

Which is possible to occur. This problem in some cases can be solved using the fact that
we always have:

ÿ

0ďsďt

|∆Zs|2 ă 8 a.s.

This property and the next result will be crucial in Chapter 3.

Theorem 5. Let Zt, t ě 0 be a stochastic process. If Zt is Càdlàg, then the set
S “ tt, ∆Zt ‰ 0u is at most countable.

Proof. For a proof, see [Thm 2.8.1, [2] ].

l

1.4.3 The Lévy-Khintchine formula

The Lévy - Khintchine formula is one of the key results in the basic theory of Lévy
processes which decomposes sample paths into continuous and jump parts. It gives an
analytic expression for the characteristic function, which allows mathematicians to work
with it in order to understand some probabilistic and/or geometric properties of Lévy
processes, see Khintchine [29]. In the following we state the 1-dimensional version of Lévy
- Khintchine formula.

Theorem 6 (Lévy - Khintchine formula). Consider a P R, b P r0,8q and a measure ν on
Rzt0u, such that:

ż

Rzt0u

minp1, x2
qνpdxq ă 8.

For all λ P R, we define a function hpλq by:

hpλq “ iaλ `
bλ2

2 `

ż

Rzt0u

`

1 ´ eiλx ` iλx1t|x|ă1u

˘

νpdxq.

Then, there exists a unique Lévy process Z “ pZtqtě0, which satisfies:

E
“

eiλZt
‰

“ e´thpλq.

For all t ě 0.
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1.4.4 General semimartingales

We say that an adapted stochastic process Z is a semimartingale when it can be decomposed
as:

Zt “ Z0 ` Mt ` Ct,

where M “ pMtqtě0 is a local martingale (in the classical sense) and C “ pCtqtě0 is an
adapted process with finite variation.

Theorem 7. Lévy processes are semimartingale

Proof. It follows by the Lévy - Itô decomposition, [Thm 2.4.11, [2]].

l
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2 The existence of decomposition, geometri-
cal and topological aspects.

Throughout this chapter, we study the decomposition of stochastic flows defined over a
Riemannian manifold M starting at an initial point x0 P M and running exclusively along
vertical concatenate with horizontal trajectories. We are going to study some geometrical
and analytical conditions for the existence of decomposition of flows along the leaves of
a foliated space. Some of these conditions can be intrinsically related to the manifold,
some examples are given in section 2.1.1, where is stated the concept of attainability index
(which sometimes can be considered as a topological obstruction for the existence of this
decomposition). We also state a technique to perform a decomposition of the form:

φtpx0q “ ηkt_sk
˝ ψkt_sk

˝ ... ˝ η2
s2 ˝ ψ2

s2 ˝ η1
s1 ˝ ψ1

s1px0q. (2.1)

Where ψi and ξi are purely vertical and horizontal components respectively. This kind of
decomposition is called of alternate decomposition.

2.1 Decomposition of diffeomorphisms in foliated spaces
The existence of the biregular atlas of the previous chapter is straightforward, see e.g.
[11, Lemma 5.1.4]. Given an initial condition x0 P M , we take a local coordinate system
α : Ux0 Ă M ÝÑ Rk ˆ Rn´k. The product Rk ˆRn´k can be seen as a canonical Cartesian
k-dimensional pair of foliations on Rn.

Remark 2. Given a diffeomorphism φ with initial condition x0, it can be written as
φ “

`

φ1
px, yq, φ2

px, yq
˘

, where x, φ1
px, yq P Rn´k and y, φ2

px, yq P Rk. It follows directly
by the inverse function theorem that there exists a unique (reducing the domain if necessary)
decomposition ϕ “ η ˝ ψ in a neighbourhood of x0, where η and ψ are horizontal and
vertical preserving dffeomorphisms, if and only if

det Bϕ2px0q

By
‰ 0. (2.2)

Applying this characterization for a flow of diffeomorphism ϕt, one can guarantee the local
existence of decomposition ϕt “ ηt ˝ ψt up to a stopping time τ , where ηt and ψt are flows
of diffeomorphisms preserving horizontal and vertical components respectively and

τ “ sup
"

t ą 0; det Bϕ2
spx, yq

By
‰ 0 for all 0 ď s ď t

*

. (2.3)
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For more details see e.g. Melo et al [47]. In some cases, there exists some degree of
compatibility of the vector fields with the complementary distributions in such a way that
the decomposition presented above holds for all time t, see [46]. A basic but important
example is a linear system on Rnzt0u endowed with spherical and radial foliations, note
that in this specific case, the system sends radial leaves into radial leaves, therefore the
decomposition holds for all time. Another standard example in this context is the derivative
flow φt˚ : Tx0M ÝÑ Tφtpx0qM , for x0 P M , in the linear frame bundle π : BM ÝÑ M . Note
that φt˚ is an isomorphism between the fibres π´1

px0q and π´1
pφtpx0qq, for all t ě 0,

therefore φt˚ has a decomposition φt˚ “ ηt ˝ ψt for all time.

2.1.1 Attainability index and topological obstruction

In many interesting pairs of foliations, given an initial condition x0 P M , there exists
a set of points which one cannot reach by a vertical trajectory concatenated with a
horizontal path. Even if we are allowed to concatenate a number of alternating vertical and
horizontal paths, see example (10). This topological restriction to accessibility represents
also an obstruction for the decomposition of a dynamics given by a continuous family of
diffeomorphisms φt which, say, send x0 into a non-accessible point. This leads us to the
following concept:

Definition 9. The k-attainable points from x P M with respect to the pair of foliation
pM,H,Vq is the composition of saturated sets

Ak
pxq “ ¨ ¨ ¨ HpVpHVpxqqq

looooooooomooooooooon

2k times
. (2.4)

In other words, we have k compositions of the pair of composed saturation pH ˝ Vqp¨q.

Note that Ak
pxq is horizontally saturated for all k P N and for all x P M . If a diffeomorphism

ϕtpxq is decomposable (in the sense of p2.1qq in a neighbourhood of x, then ϕtpxq P Ak
pxq

for k P N (the converse is not true: rotations of π{2 are counterexamples). Hence we
can consider the non-k-attainability as an intrinsic obstruction to the decomposition of a
diffeomorphism.

Proposition 3. Given a biregular foliated space pM,V ,Hq, the attainable sets Ak
pxq

are open sets for all x P M and k P N.

Proof. Consider initially k “ 1 and a point y P A1
pxq. By definition, there exists at least

one point z P HpyqXVpxq. By Proposition 1, there exists an open set z P D1 Ă Vpxq “ Vpzq

which is sent diffeomorphically to an open set y P D2 Ă Vpyq along the same horizontal
leaves. Using a local biregular chart at y we conclude that the horizontal saturation of D2

contains an open neighbourhood of y.
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For k ě 2 one just has to write

Ak
pxq “

ď

yPAk´1pxq

A1
pyq.

The result follows by induction.

l

Proposition 4. Given a biregular foliated space pM,V ,Hq, if M is connected then
M “ YkPNAk

pxq for all x P M .

Proof. Indeed, we only have to prove that YkPNAk is a closed set. Suppose that there
exists a point x P B YkPN Ak. There exists a local biregular chart in a neighbourhood of
x which is mapped in an open rectangle in Rr ˆ Rn´r. An infinite number of points of
YkPNAk are also mapped in this open rectangle. Trivially, these points can also reach x

with just one more step: vertical and horizontal trajectory. We conclude that x P YkPNAk

hence this set is open and closed in M .

l

It is particularly interesting when one can reach the whole manifold in a finite number of
steps. This leads us to the following definition:

Definition 10. The index of attainability at x P M with respect to pM,H,Vq is defined
as the natural number

IApx,H,Vq “ mintk P N; Ak
pxq “ Mu, (2.5)

when it exists. Otherwise we say that IApx,H,Vq “ 8.

In other words, the attainability index of x P M is the maximal number of composition by
horizontal and vertical foliations in such way that any point on the manifold is attainable
from x. Decomposition of flows always open an interesting questions about the reversibility
and commutativity of it. This motivate us to state the following definition.

Definition 11. The co-k-attainable set of x P M with respect to pM,H,Vq is defined as

Ckpxq “ H ˝ V ˝ H ˝ ¨ ¨ ¨ ˝ Vpxq
looooooooooooomooooooooooooon

2k times
X V ˝ H ˝ V ˝ ¨ ¨ ¨ ˝ Hpxq
looooooooooooomooooooooooooon

2k times
. (2.6)

A point y P Ckpxq, if y P Ak
pxq and x P Ak

pyq.

Since for each x P M , Ak
pxq is open and leaves of H are everywhere transverse to the

leaves of V, then points close enough to each other have the same k-attainable sets for
all k. In particular, for each x P M , there exists a neighbourhood U0 of x, such that all
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points in U0 have the same attainability index. Give x P M and for 1 ď k ď IApx,H,Vq,
there exists a natural chain

Apxq ⊊ A2
pxq ⊊ A3

pxq ⊊ ¨ ¨ ¨ ⊊ AIApx,H,Vq
pxq “ M. (2.7)

Example 10. Consider M “ R2˚
“ R2

ztp0, 0qu with the horizontal foliation given by
H “ tpx, yq P R2˚;xy “ α, with α P Ru and let the vertical foliation V be the rotation by
π{4 on the leaves of H. H and V are given by grey and blue curves in the figure (1). For
p “ p1, 1q, we have Appq “ tpx, yq P R2˚; y ` x ą 0u, A2

ppq “ M . Then IApp,H,Vq “ 2,
and

Cppq “ tpx, yq P R2˚; x ą 0, y ą 0u

C2
ppq “ tpx, yq P R2˚; y ą 0u.

Figure 1 – Example of a biregular atlas with IApp,H,Vq “ 2

In many interesting cases the index of attainability is infinite, see the next example.

Example 11. For M “ R2
ztp0, 0qu with horizontal foliation H “

!

px, yq P R2
ztp0, 0qu; y “

ˇ

ˇ

ˇ

1
sinpxq

ˇ

ˇ

ˇ
` c, for c P Rzt0u

)

Y

!

x “ p2r ` 1q
π

2 ; r P Z
)

and vertical foliation given by

V “

!

px, yq P R2
ztp0, 0qu; y “ ´

ˇ

ˇ

ˇ

1
sinpxq

ˇ

ˇ

ˇ
` c, for c P Rzt0u

)

Y

!

x “
2rπ
2 ; r P Z

)

, see

figure (2). In this case, note that for p “ p0, 1q:

Appq “

!

px, yq P R2
ztp0, 0qu; ´

π

2 ď x ď
π

2

)

A2
ppq “

!

px, yq P R2
ztp0, 0qu; ´

3π
2 ď x ď

3π
2

)

.
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In general,

An
ppq “

!

px, yq P R2
ztp0, 0qu; ´p2n ´ 1q

π

2 ď x ď p2n ´ 1q
π

2

)

.

Thus,
8
ď

n“1
An

ppq “ R2
ztp0, 0qu.

Therefore, we conclude that IApp,H,Vq “ 8. Moreover, IApp,H,Vq “ 8 for all point in
pR2

ztp0, 0qu,H,Vq.

Figure 2 – A biregular atlas with IApp,H,Vq “ 8 for all point p.

Proposition 5. Let M be a compact connected manifold. For each x P M and k P N,

i) If Ak
pxq “ Ckpxq, then Ak

pxq “ M .

ii) CIApx,H,Vq
pxq “ V ˝ H ˝ . . .V ˝ Hpxq

looooooooooomooooooooooon

2k times
.

Proof. i) Let y P BAk which implies that Vpyq X Ak
pxq is not empty, since BAk is

H-saturated. Then, there exists z P Vpyq X Ak
pxq. On the other hand, by the fact

that z P Ak
pxq, it follows that z P Ckpxq, therefore Vpyq X Hpxq is not empty. Now,

let γ be a horizontal curve starting at x and ending at the point ω P Vpyq X Hpxq.
Either all vertical leaves of Vpyq intersect BAk or none of them intersects it, since BAk

is H-saturated and M is compact. But Vpωq “ Vpyq, hence Vpxq intersects BAk
pxq,

thereby BAk
pxq Ă Ak

pxq and we conclude that Ak
pxq “ M since M is connected.
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ii) By definition,

CIApx.H,V q
pxq “ AIApx.H,V q

pxq X V ˝ H ˝ V ˝ ¨ ¨ ¨ ˝ Hpxq
looooooooooooomooooooooooooon

2k times
“ M X V ˝ H ˝ V ˝ ¨ ¨ ¨ ˝ Hpxq

looooooooooooomooooooooooooon

2k times
“ V ˝ H ˝ V ˝ ¨ ¨ ¨ ˝ Hpxq

looooooooooooomooooooooooooon

2k times
.

l

2.1.2 Alternate decomposition

In this section, we introduce a technique to rescue the decomposability of some flows of
diffeomorphisms which in another way would not be possible to be performed: either by
analytical or topological restrictions. It consists on stopping the decomposition close to
the point where it no longer would exist and restart, from the identity, another couple
of vertical-horizontal diffeomorphisms. In other words: just before the flow approaches a
non-decomposable set in the group of diffeomorphisms, we restart the decomposition with
a more convenient topological-analytical settings. This succession of dual decomposition,
vertical composed with horizontal, represented by pHVq, will be called a cascade or alter-
nate decomposition. So, typically, a cascade decomposition has the alternating structure
HV . . .HV . The last term on the left hand side being H or V is not relevant since ending
with V means that the omitted H part is the identity.

Let pϕtqtPr0,aq be a family of global diffeomorphisms on M , with ϕ0 “ Id. Fix a point p P M .
Throughout this section, we consider two local biregular coordinate systems on possibly dis-
joint neighbourhoods: αp : Up Ă M ÝÑ Rn´k

ˆ Rk and αϕtppq : Uϕtppq Ă M ÝÑ Rn´k
ˆ Rk,

where Up and Uϕtppq are neighbourhoods of p and ϕtppq respectively. With respect to these
systems, one writes ϕtpx, yq “ pϕ1

t px, yq, ϕ2
t px, yqq. We shall use the following notation: for

0 ď u ď v, we set ϕu,v :“ ϕv ˝ ϕ´1
u .

Definition 12. Let pM,H,Vq be transversely orientable. The family of diffeomorphisms
ϕt above is said to preserve locally transverse orientation at p P M along the interval
r0, sq if det Bϕ2

t ppq

By
ą 0, for all t P r0, sq and all elements αp and αϕtppq in the atlas.

Preserving locally transversal orientation is a geometrical property which does not depend
on the local biregular coordinate systems:

Lemma 2. Let pM,H,Vq be transversely orientable. Preserving locally transversal
orientation does not depend on the local biregular coordinate system.
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Proof. Suppose we have two local biregular coordinate systems α1 and α2 in a neighbour-
hood of p. For a fixed time t in the interval of definition, suppose we have also two local
biregular coordinate systems β1 and β2 in a neighbourhood of ϕtppq. By Definition 3 we
have that the derivatives of the coordinate change α1 ˝α´1

2 and β1 ˝β´1
2 lie in the subgroup

of matrices in Glpn,Rq of the form
˜

p˚qkˆk 0
0 p˚q

¸

nˆn

,

with a positive minor of the lower right submatrix pn´ kq ˆ pn´ kq. Hence, we have that

det B

By
rβ1 ˝ ϕt ˝ α´1

1 s ą 0,

implies
det B

By
rβ2 ˝ ϕt ˝ α´1

2 s ą 0.

l

The next proposition, give us some properties of the dynamics on the leaves along
components of a decomposable flows.

Proposition 6. Suppose ϕt is a flow of diffeomorphism which can be decomposed as

ϕtpxq “
`

ηkt_sk´1
˝ ψkt_sk´1

˘

˝ . . . ˝
`

η2
s2 ˝ ψ2

s2

˘

˝
`

η1
s1 ˝ ψ1

s1

˘

,

up to a time τ ą 0, where ψi and ηi are purely vertical and horizontal components
respectively and 0 “ s0 ă s1 ă s2 ă . . . ă sr “ sr`1 “ . . . “ τ is a non-decreasing
sequence of times. Then, for 0 ď t ă τ, ψitpxq P Vpxq X H

`

ηit ˝ ψitpxq
˘

and ηitpyq P

Hpyq X ηit ˝ ψit pVpyqq.

Proof. In fact, for the first statement, note that ψitpxq P Vpxq, for i “ 1, . . . , k and x in
the appropriate domain. In addition, ηt preserves horizontal leaves for all t ă τ , then
since H

`

ηit ˝ ψitpxq
˘

“ H
`

ψitpxq
˘

, it implies that ψitpxq P H
`

ηit ˝ ψitpxq
˘

. For the second
statement, observe that ηitpyq P Hpyq and y P Vpyq, therefore ηitpyq P ηit ˝ ψit pVpyqq.

l

Before we state the main theorem of this chapter, consider an important theorem about
decomposition of diffeomorphisms in a biregular atlas.

Theorem 8. Suppose that pM,H,Vq is transversely orientable for the horizontal foliation.
Then ϕt is globally decomposable (in the sense of remark (2)) for all 0 ď t ă a, if and only
if, it preserves transverse orientation.
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Proof. For a proof, see [47, Thm. 2.5].

l

Theorem 9 (Alternate decomposition). For any fixed x P M , there exists an increasing
sequence of times 0 “ s0 ă s1 ă s2 ă . . . ă sr “ sr`1 “ . . . “ a, pr P NY t8uq such that
for all t P r0, aq, there exists a neighbourhood Ux of x, where we have the following foliated
decomposition:

ϕtpxq “
`

ηksk´1,t
˝ ψksk´1,t

˘

˝ . . . ˝
`

η2
s1,s2 ˝ ψ2

s1,s2

˘

˝
`

η1
s1 ˝ ψ1

s1

˘

pxq,

for t P rsk´1, sks, with ηksk´1
“ Id and ψksk´1

“ Id. Here ηj and ψj are horizontal and
vertical diffeomorphisms respectively for all j P N.

Proof. For each x0 P M , we consider a neighbourhood Ux0 of x0 and a coordinate system
αx0 : Ux0 Ă M ÝÑ Rk ˆ Rn´k, with respect to it, we write ϕsppq “ pϕ1

spx, yq, ϕ2
spx, yqq, for

p P Ux0 , s ą 0 and we define

s1 “ inf
"

s P r0, aq; det Bϕ2
t

By
“ 0

*

´ ϵ1,

for ϵ1 ą 0 small enough. For s ă s1, ϕspx0q preserves transverse orientation. Applying a
local version of Theorem 8, it follows that for all x P Ux0 , ϕsppq has a foliated decomposition

ϕsppq “ η1
s ˝ ψ1

sppq,

where η1
s and ψ1

s are horizontal and vertical flows of diffeomorphism respectively. If s1 “ a,
the proof is done, otherwise, for s ą s1, we can write ϕspxq as

ϕsppq “ ϕs1,s ˝ ϕs1ppq

“ ϕs1,s ˝ pη1
s1 ˝ ψ1

s1qppq.

Taking u1 “ η1
s1 ˝ ψ1

s1ppq and considering u1 as the initial value of diffeomorphism ϕs1,s, we
set

s2 “ inf
"

s P rs1, aq; det
Bϕ2

s1,s

By
pu1q “ 0

*

´ ϵ2,

for a small ϵ2 ą 0. For s1 ă s ă s2, we apply again theorem 8, and rewrite ϕsppq as

ϕsppq “ pη2
s1,s ˝ ψ2

s1,sq ˝ pη1
s1 ˝ ψ1

s1qppq,

where η2 and ψ2 are horizontal and vertical diffeomorphisms respectively. If s2 “ a, the
proof is done. For s ą s2, we rewrite ϕsppq as

ϕsppq “ ϕs2,s ˝ pη2
s2,s ˝ ψ2

s2,sq ˝ pη1
s1,s2 ˝ ψ1

s1,s2qppq

“ η3
s2,s ˝ ψ3

s2,s ˝ pη2
s1,s2 ˝ ψ2

s1,s2q ˝ pη1
s1 ˝ ψ1

s1qppq.
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Recursively, for all p P Ux0 and s ą si´1, we take ui “ pηisi
˝ψisi

q˝. . .˝pη2
s2 ˝ψ2

s2q˝pη1
s1 ˝ψ1

s1qppq

to be the initial point of diffeomorphism ϕsi´1,s and we define

si “ inf
"

s P rsi´1, aq; det
Bϕ2

si´1,s

By
pui´1q “ 0

*

´ ϵi.

For ϵi ą 0 small enough. Using the above construction, we rewrite ϕsppq as

ϕtppq “
`

ηksk´1,t
˝ ψksk´1,t

˘

˝ . . . ˝
`

η2
s1,s2 ˝ ψ2

s1,s2

˘

˝
`

η1
s1 ˝ ψ1

s1

˘

pxq,

for all t ď si, where ηj and ψj are horizontal and vertical diffeomorphisms and sk “ sk`1 “

. . . “ a.

l

Proposition 7. Suppose that pM,H,Vq is transversely orientable for the horizontal
foliation. If ϕsppq approaches the boundary BAk

ppq of the k-attainable set, the determinant

of Bϕ2
s

By
pϕsk´1ppqq goes to zero.

Proof. The decomposition occurs in fact on A1
pϕs1ppqq, hence if ϕsppq “ ϕsk´1,sppq ap-

proaches the boundary BAk
ppq, then ϕsppq necessarily approaches the boundary BA1

pϕs1ppqq.
Therefore, ϕsppq is non-decomposable and by the analytical obstruction (2.2), it follows

that det
Bϕ2

s0px, yq

By
“ 0.

l

Example 12. Consider the following pure rotation system:

9xt “

˜

0 ´1
1 0

¸

xt, (2.8)

whose solution flow is given by:

ϕt “

˜

cos t ´ sin t
sin t cos t

¸

.

Note that this system is not decomposable (in the sense of Remark 2 ) for t “
π

2 , however,
for all π{4 ď t ď 3π{4, ϕt has the following cascade decomposition:

ϕt “ Rot
´

t ´
π

4

¯

˝ Rot
´π

4

¯

“

˜

secpt ´ π{4q ´ tanpt ´ π{4q

0 1

¸˜

1 0
sinpt ´ π{4q cospt ´ π{4q

¸

˝

˜ ?
2{2 ´1
0 1

¸˜

1 0
?

2{2
?

2{2

¸

.
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The next example shows that Theorem 9 may hold even if (M,H,V) is not transversely
orientable for the horizontal foliation.

Example 13. Let M “ r0, 1s
3
{ „, where „ is the identification of the following faces of

the cube r0, 1s
3:

px, 0, zq „ p1 ´ x, 1, 1 ´ zq, (2.9)

such that the section
ˆ

x, y,
1
2

˙

X r0, 1s
3 turns into a Mobius strip S. Note that M is

a tubular neighbourhood of S. In this context, the horizontal and vertical foliations H
and V are given by the image of the horizontal and vertical plaques respectively. It is
worth mentioning that (MzS,H) is transversely orientable, but pM,Hq is not. Consider
a complete family of diffeomorphisms given by ϕtpx, y, zq “ px, y ` t, zq. In this case,
ϕt is a horizontal flow with respect to the pair of foliation (H,V), hence it can be
decomposed as ϕt “ ηt ˝ ψt, where ηt “ ϕt and ψt “ Id, for small t ą 0. In the
non-transversely orientable foliation case pM,Hq, ϕt has an alternate decomposition
ϕtpx0q “

`

ηkt ˝ ψkt
˘

˝ . . . ˝
`

η2
s2 ˝ ψ2

s2

˘

˝
`

η1
s1 ˝ ψ1

s1

˘

px0q, where si P tp2k ` 1q2π,with k P Zu,
for a local biregular coordinate system in a neighbourhood of an initial condition x0 P S.
Each pair ηjt ˝ψjt is given by the projection of the two reverting orientation diffeomorphisms
ηjt px, y, zq “ py, x, zq and ψjt px, y, zq “ px, y, 1 ´ zq, since ϕt reverses the orientation of
both vertical and horizontal components just before t “ si. In the manifold (MzS,H), the
decomposition is guaranteed by Theorem 8.

Corollary 4. Suppose that ϕt preserves transverse orientation over A1
pxq and IApx,H,Vq ă

8 for all x P M . Then there exists an increasing sequence of times 0 “ s0 ă s1 ă s2 ă . . . ă

sr “ sr`1 “ . . . “ a, pr P NY t8uq such that, locally, ϕt has an alternate decomposition
for all t P r0, aq as

ϕtpxq “
`

ηksk´1,t
˝ ψksk´1,t

˘

˝ . . . ˝
`

η2
s1,s2 ˝ ψ2

s1,s2

˘

˝
`

η1
s1 ˝ ψ1

s1

˘

,

with a finite number of pairs
`

ηisi´1,si
˝ ψisi´1,si

˘

, where ψisi
, and ηisi

are purely vertical and
horizontal diffeomorphisms respectively and k ď IApx,H,Vq.

Proof. By Theorem 9, there exists a non-decreasing sequence of times 0 “ s0 ă s1 ă s2 ă

. . . ă sr “ sr`1 “ . . . “ a, such that ϕt has an alternate decomposition given by

ϕtpxq “
`

ηksk´1,t
˝ ψksk´1,t

˘

˝ . . . ˝
`

η2
s1,s2 ˝ ψ2

s1,s2

˘

˝
`

η1
s1 ˝ ψ1

s1

˘

pxq.

Since ϕt preserves transverse orientation over A1
pxq for all x, by Proposition 7, the subde-

terminant Bϕ2
s

By
pϕsi´1ppqq goes to zero just before it reaches A1

pϕsi´1ppqq, it follows that the
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sequence psiqiPN must be finite.

l

The next theorem states that the alternate decomposition holds also for stochastic flows
of diffeomorphisms. Consider the following Stratonovich Stochastic differential equation
on the manifold M :

dxt “

k
ÿ

i“0
Xipxtq ˝ dW i

t , (2.10)

with initial condition x0 P M , where X0, X1, . . . , Xk are smooth vector fields on M ,
pW 1

t , . . . ,W
k
t q is a Brownian motion on Rk, and pW 0

t q “ t. We suppose that all this
structure is well defined over an appropriate filtered probability space pΩ,F , pFqtě0,Pq.
Let ϕt : Ω ˆ M ÝÑ M be the stochastic flow associated to the diffusion generated by
equation (2.10). If we assume that the derivatives of the vector fields are bounded, then ϕt
exists for all t ě 0.

Theorem 10. There exists a non-decreasing sequence of stopping times 0 “ t0 ă t1 ă

t2 ă . . . ă tr “ tr`1 “ . . . “ a such that, locally, ϕtpω, xq is alternately decomposable as

ϕtpω, xq “
`

ηktk´1,t
˝ ψktk´1,t

˘

˝ . . . ˝
`

η2
t1,t2 ˝ ψ2

t1,t2

˘

˝
`

η1
t1 ˝ ψ1

t1

˘

pω, xq, (2.11)

where ηj and ψj are horizontal and vertical diffeomorphisms respectively for all j P N,
t P rtk´1, tks and ω P Ω.

Proof. Theorem 9 guarantee that the alternate decomposition holds in the space of
trajectories. Now consider the sequence of stopping times ptiqiPN, defined by

tipω, xq :“ inf
"

t P rti´1pω, xq, aq; det
Bϕ2

ti´1,t

By
pzq “ 0

*

´ ϵi, (2.12)

for ϵi ą 0 small enough, ω P Ω, and an appropriated z in a neighbourhood of ϕti´1pxq. By
theorem 8 and the cocycle property for stochastic flows, it follows that

ϕtpω, xq “ ϕtk,tpθtkpωq, ukq ˝ . . . ˝ ϕt1,t2pθt1pωq, u1q ˝ ϕt1pω, xq

“
`

ηktk´1,t
˝ ψktk´1,t

˘

˝ . . . ˝
`

η2
t1,t2 ˝ ψ2

t1,t2

˘

˝
`

η1
t1 ˝ ψ1

t1

˘

pω, xq,

where θt is the canonical shift operator on the probability space and ηj, ψj are horizontal
and vertical stochastic flows of diffeomorphisms.

l
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3 Decomposition of flows of diffeomorphisms
with jump components

3.1 A generalization of Itô-Ventzel-Kunita formula
An interesting problem related to decomposition of stochastic flows of diffeomorphisms
relates to discontinuous noise. In particular, we shall consider semimartingales with jumps
such that the trajectories are càdlàg. The main result in this chapter, Theorem 11, is a
generalization of Itô-Ventzel-Kunita formula for flows generated by the classical Marcus
equation as in Kurtz, Pardoux and Protter [33]. We enlarge the scope of this formula
allowing the noise to perform infinitely many jumps in compact intervals, it turns possible
to use a big variety of noises which includes, for example, Lévy noise, see e.g. Applebaum
[2], Protter [53], Oksendal and Sulem [51], among others.

3.1.1 Stratonovich SDE with jumps (SDEJ)

For the reader’s convenience, we recall the main aspects and definitions of stratonovich
SDEJ in the sense of Marcus equation. Let Z “ tZt, t ě 0u be a k-dimensional semi-
martingale, with Z0 “ 0, and let rZ,Zs “ rZj, Zm

s be the covariation matrix which can
be decomposed into rZ,Zs “ rZ,Zs

c
` rZ,Zs

d, where rZ,Zs
c and rZ,Zs

d represent the
continuous and purely discontinuous parts respectively. In Kurtz, Pardoux and Protter
[33], it was proposed the following: Let Y P C8

pRd; LpRk,Rdqq with Y “ pY 1, . . . , Y k
q

k-vector fields in Rd. Given an F0 initial condition x0, the equation

xt “ x0 `

ż t

0
Y pxsq ˛ dZs, (3.1)

has a unique solution up to a stopping time τ . Here, the continuous part of the solution
corresponds to the classical Stratonovich equations and the jump part are performed along
ficticious time (jumps of ∆Z) along the deterministic flow of the corresponding vector field.
See details in [33, Eq. (2.2)]. Moreover, although Marcus equation has many restrictions,
a change of variables can be obtained in the following sense:

Proposition 8. If xt is the solution of equation (3.1), then for any function f P C2
pRdq:

fpxtq “ fpx0q `

ż t

0
f 1

pxsqY pxsq ˛ dZs, t ě 0. (3.2)

For a proof and precise definition, see [33, Prop. 4.2].

In a differentiable manifold, the natural extension is given by the following: let X P

C8
pM ; LpRk, TMqq, such that for each x P M the linear map Xpxq sends a vector z P Rk
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into Xpxqz P TxM . Assume that the vector field X is smooth on M and consider the
equation

dxt “ Xpxtq ˛ dZt, xp0q “ x0. (3.3)

In this context, xt P M , t ě 0 is a solution of equation (3.3) if for all f P C2
pMq,

fpxtq “ fpx0q `

ż t

0
f 1

pxsqXpxsq ˛ dZs

in the sense of [33, Def. 4.1], if X “ pX1, . . . , X
k
q:

fpxtq “

ż t

0
dfXj

pxsq dZ
j
s `

1
2

ż t

0
∇2fpXdZ,XdZqpxsq

`
ÿ

0ăsďt

rfpϕpX∆Zs, xs´qq ´ fpxs´q ´ Xfpxs´q∆Zss . (3.4)

The first term on the right hand side of equation (3.4) is a standard Itô integral of the
predictable process dfXj

pxsq with respect to the semimartingale Zt. The second term is a
Stieltjes integral of the Levi-civita connection applied in the derivative of the function f ,
with respect to the continuous part of the quadratic variation of Zt. In the third term:
ϕpX∆Zs, xs´q indicates the solution at a fictitious time t “ 1 of the ODE generated by
the vector field X∆Zs and initial condition xs´ . Thus, the jumps of this equation occurs
in deterministic directions. It is worth mentioning that some regularities conditions over
the linear map Xpxq and its derivatives guarantee the existence of a unique Stratonovich
flow of diffeomorphisms φ, which is solution of equation (3.3). Moreover, for an embedded
submanifold M in an Euclidean space, the support’s theorem [33, Prop. 4.3] states that
the solution still remains on the manifold after a jump. The next proposition is a change
of variables formula for equation (3.1)

The next result shows an expression for equation (3.4) when it is written with respect to a
coordinate system.

Proposition 9. Suppose that xt, t ě 0 is a solution of equation 3.3 and α : U Ă M ÝÑ Rn

is a coordinate system of M in a neighbourhood of xt. Then equation 3.4 can be written
in Rn as

x̃t “ x̃0 `

ż t

0
X̃px̃s´qdZs `

1
2

ż t

0
X̃ 1X̃px̃sqdrZ,Zs

c
s

`
ÿ

0ăsďt

“

ϕ̃pX∆Zs, xs´q ´ x̃s´ ´ X̃px̃s´q∆Zs
‰

. (3.5)

Where X̃px̃tq “ DαpxtqXpxtq (the derivative of the coordinate system applied on the
vector field X), x̃t “ αpxtq and ϕ̃pX∆Zs, xs´q “ αpϕpX∆Zs, xs´qq. Moreover, x̃t is a
semimartigale for all coordinate system.

Proof. It follows straightforward by equation 3.4 and Proposition 8.

l
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3.1.2 Itô-Ventzel-Kunita for Stratonovich SDEJs

In order to prove one of the main results in this chapter, which is an extension of the
Itô- Ventzel- Kunita formula (infinite jump version), one needs to define the following
integral that generalizes the classical Marcus integral (3.1). Precisely, let X and Y be two
smooth vector fields on Rd and consider Ft and Gt, flows of diffeomorphisms generated by
dFt “ XpFtq ˛ dZt and dGt “ Y pGtq ˛ dZt, SDEJs in the sense of Marcus with respect to
the same general semimartingale Zt. We define the following integral:
ż t

0
pFs˚Y pGsqq ˛ dZs :“

ż t

0
pFs˚Y pGs´qqdZs

`
1
2

ż t

0
pX 1

pY pGsqq ` Fs˚pY 1Y qqdrZ,Zs
c
s

`
ÿ

0ďsďt

!

ϕpX∆Zs, Fs´pϕpY∆Zs, Gs´qq ´ ϕpX∆Zs, Fs´pGs´qq

´ pFs˚Y pGsqq∆Zs
)

, (3.6)

where the first term on the right hand side is the Itô integral of Fs˚Y pGs´q with respect to Zs.
In the second term, note that pX 1

pY pGsqq`Fs˚pY 1Y qq “ dFs˚Y pGsqpFs˚Y pGsqq, so the sec-
ond integral corresponds to the finite variation such that its continuous part satisfies the clas-
sical Itô - Ventzel - Kunita. On the last term, the expression ϕpX∆Zs, Fs´pϕpY∆Zs, Gs´qq

has the following geometrical meaning: for a jump time s P r0, ts, the flow Gr jumps
at r “ s in the direction of solution ϕ with order ∆Zs, then it is corrected by the flow
Fr : M Ñ M , r P r0, ts, then it jumps in the direction of X with order ∆Zs. It is important
to notice that the sum term is absolutely convergent, in fact, applying Taylor’s theorem in
the map u ÝÑ ϕpX∆Zs, Fs´pϕpY∆Zs, Gs´ , uq, 1q, one gets

ϕpX∆sZ, Fs´pϕpY∆sZ,Gs´ , 1q, 1q “ ϕpX∆sZ, Fs´pGs´qq ` pFs˚Y pGsqqpFs ˝ Gsq∆Zs

`
1
2pFs´˚Y pGs´qq

1
pFs˚Y pGsqqSpθ1, θ2q∆Zs∆Zt

s.

Where Spθ1, θ2q “ ϕpX∆sZ, Fs´pϕpY∆sZ,Gs´ , θ1q, θ2q, for θ1, θ2 P p0, 1q which depends
on ps, ω, xq, with x P M . Therefore,
ÿ

0ăsďt

ˇ

ˇ

ˇ
ϕpX∆sZ, Fs´pϕpY∆sZ,Gs´qq ´ ϕpX∆sZ, Fs´pGs´qq ´ pFs˚Y pGsqqpFs ˝ Gsq∆sZ

ˇ

ˇ

ˇ

ď sup
0ăsďt

1
2

ˇ

ˇ

ˇ
pX 1

pY pFs´qq ` Fs˚pY 1Y qqfpϕpX∆sZ, Fs´pϕpY∆sZ,Gs´ , θ1q, θ2qq

ˇ

ˇ

ˇ

ÿ

0ăsďt

|∆sZ|
2

ď K
ÿ

0ăsďt

|∆sZ|
2.

Which converges since Kpωq is finite and the sum of squares of the jumps of a general
semimartingale is always finite a.s. The next theorem states an extension of Itô - Ventzel
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- Kunita for general semimartingales. In this context, an infinite number of jumps may
occur.

Theorem 11. (Itô-Ventzel-Kunita for Stratonovich SDE, infinite jump version) Suppose
that Fs and Gs are solutions of SDEJs driven by the same general semimartingale Zs and
with respect to smooth vector fields X and Y on Rd respectively, for s P r0, as, Then:

FspGsq “ F0pG0q `

ż t

0
XpFspGsqq ˛ dZs `

ż t

0
Fs˚pY pGsqq ˛ dZs (3.7)

Proof. It is known that formula (3.7) holds if Zt is continuous for each t P r0, as, see e.g.
Kunita [33, Thm. 8.3]. Moreover, in Melo et al [46] it was proven that if Z has a finite
number of jumps on compact intervals, then formula (3.7) still holds. We are interested in
proving this Theorem in the context where the semimartingale Zt may jump infinitely many
times. In this case the problem arises when the set of jump times have some accumulation
points. We are going to overcome this problem by splitting the set of jump times of Zt,
into two disjoint subsets, A “ Apϵ, tq and B “ Bpϵ, tq, such that A has a finite number of
elements and

ÿ

sPB

p∆Zsq2
ă ϵ, where A Y B exhausts the jump set of Zt. Let

ZA
t “ Zt ´

ÿ

sďt,sPB

∆Z.

Consider FA
t and GA

t , solutions of equations dFA
t “ XpFA

t q˛dZA
t and dGA

t “ Y pGA
t q˛dZA

t ,
respectively. Since formula (3.7) holds for all s P A, it follows that

FA
s pGA

s q “ F0pG0q `

ż t

0
XpFA

s pGA
s qq ˛ dZs `

ż t

0
FA
s˚pY pGA

s qq ˛ dZA
s . (3.8)

Note that if s is a jump time on the interval r0, ts, then s P A for ϵ small enough. Therefore,
the solutions FA

t and GA
t converge to solutions Ft and Gt a.s respectively, moreover, we

have:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż t

0
XpFA

t pGA
t qq ˛ dZA

s ´

ż t

0
XpFspGsqq ˛ dZs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ď

ÿ

sPB

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

!

ϕpX∆Zs, Fs´pGs´qq ´ Fs´pGs´q

´ XpFs´pGs´qq∆Zs
)ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

sPB

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∆Zt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
ď ϵ.

Similarly,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż t

0
FA
s˚pY pGA

s qq ˛ dZA
s ´

ż t

0
Fs˚pY pGsqq ˛ dZs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ď

ÿ

sPB

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∆Zt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
ď ϵ.
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Therefore, when ϵ goes to zero, formula (3.8) converges to formula (3.7) a.s.

l

The next corollary states a Leibniz formula for Stratonovich SDEJs. The proof follows
directly from Theorem (11). It will be used basically in the next section in order to compute
explicit expressions for the components of a decomposition.

Corollary 5. (Leibniz formula) Let Ft and Gt be flows generated by Stratonovich SDEJs
with respect to the same general semimartingale Zt. Then

˛dpF ˝ Gqt “ ˛dpFtq ˝ Gt ` pFtq˚ ˝ ˛dGt. (3.9)

By Proposition (8) and local coordinate arguments we can easily extend all results in this
section for a Riemannian manifold.

3.2 Decomposition of flows of diffeomorphism generated by SDEJs
Let DiffpMq be the infinite dimensional Lie group of smooth diffeomorphisms of a compact
connected manifold M . The Lie algebra associated to DiffpMq is the infinite dimensional
space of smooth vector fields on M , see e.g. Neeb [48], Omori [52], among others. The
exponential map expttY u P DiffpMq is the associated flow of diffeomorphisms generated
by the smooth vector field Y . In this context, given an element φ P DiffpMq the derivative
of the right translation is given by Rφ˚Y “ Y pφq for any smooth vector Y . The derivative
of left translation Lφ˚Y “ DφpY q, and AdpφqY “ φ˚pY pφ´1

qq.

Interesting problems arise when one decomposes a (flow of) diffeomorphism φ P DiffpMq,
into composition of convenient prescribed components. This kind of decomposition appears
in the literature, for example, in Bismut [8], Kunita [32] and many others. In particular, it
is also relevant when each component of the decomposition belongs to prescribed subgroups
of DiffpMq, see e.g Melo et al [46], Catuogno et al [15], Iwasawa and non-linear Iwasawa
decomposition [18], Ming Liao [40] among many others.

Suppose that locally M is endowed with a pair of regular differentiable distributions: i.e.,
every point x P M has a neighbourhood U and differentiable mappings ∆1 : U Ñ GrkpMq

and ∆2 : U Ñ Grm´kpMq respectively, where

GrppMq “
ď

xPM

GrppTxMq

is the Grasmannian bundle of p-dimensional subspaces over M , with 1 ď p ď m. We
assume that ∆1 and ∆2 are complementary in the sense that ∆1

pxq ‘ ∆2
pxq “ TxM , for

all x P U . With this notation we define the subgroup of DiffpMq which is generated by a
certain distribution ∆ by:
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Diffp∆,Mq “ cl
␣

exppt1X1q . . . expptnXnq, with Xi P ∆, ti P R, @n P N
(

.

Note that if a distribution ∆ is involutive, then each element of the group Diffp∆,Mq

preserves the leaves of the corresponding foliation.

Definition 13. We say that an element η P DiffpMq preserves transversality of ∆1 and
∆2 in a neighbourhood U Ă M if η˚∆2 `η´1

ppq
˘

X ∆1
ppq “ t0u, for all p P U .

3.2.1 Geometric set up

In the Lie group of diffeomorphisms DiffpMq, the dynamics of the stochastic flow φt, which
is solution of the stratonovich SDEJ (3.3), is written as the following right invariant SDEJ:

dφt “ Rφ˚
t
X ˛ dZt. (3.10)

Using the same notation as in equation (3.3), we can write:

X dZt “

d
ÿ

i“1
Xi ˛ dZi

t .

The Lie group Diffp∆,Mq contains two important Lie subgroups: the group of all purely
horizontal diffeomorphisms denoted by Diffp∆1,Mq and the group of all purely vertical
diffeomorphisms denoted by Diffp∆2,Mq. Locally, the intersection of these subgroups is the
identity and each element of these groups preserves the leave of the corresponding foliation.
The main result of this chapter consists of a decomposition of a flow of diffeomorphisms
φt P Diffp∆,Mq into two components Ft P Diffp∆1,Mq and Gt P Diffp∆2,Mq.

3.2.2 The existence of the decomposition

In the next result, we assume the condition of transversality preservation along Diffp∆1,Mq

for the distributions ∆1 and ∆2. The next theorem states a decomposition of flows for the
continuous case.

Theorem 12. Given a continuous stochastic flow φ P Diffp∆,Mq, up to a stopping time,
there exists a factorization φt “ Ft ˝Gt, where Ft is a continuous diffusion on Diffp∆1,Mq

and Gt is a continuous process in Diffp∆2,Mq.

For a proof, see [15, Thm. 2.2]. A straightforward extension of this theorem for processes
with jump components was proven in [46, Prop. 1] (considering that the process jumps just
a finite number of times on compact intervals), this extension is easily proved if one consider
that the flow of diffeomorphisms always jumps to a decomposable diffeomorphism. This
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assumption cannot be removed, in fact, consider the pure rotation system dxt “ Axt ˛ dZt,
such that Zt is a general semimartingale. The flow of this system is given by:

φt “

˜

cosZt ´ sinZt
sinZt cosZt

¸

.

Locally, the flow φt can be decomposed by

φt “

˜

secpZt ´ π{4q ´ tanpZt ´ π{4q

0 1

¸˜

1 0
sinpZt ´ π{4q cospZt ´ π{4q

¸

.

Note that if t0 is a jump time such that the process jumps to Zt0 P

!π

2 ` kπ, k P Z
)

, then
the above decomposition will no longer exist. The next theorem is the main result of this
chapter.

Theorem 13. The stochastic flow of local diffeomorphisms φt can be decomposed (locally,
up to a stopping time) as

φt “ Ft ˝ Gt,

where Ft is solution of an (autonomous) SDEJ in Diffp∆1,Mq and Gt is a process in
Diffp∆2,Mq. The decomposition is unique.

Proof. Let rXi be an element in the Lie algebra of the group Diffp∆1,Mq, given by:

rXipxq “ Xipxq ´ Vipxq P ∆1.

Where Vi is the unique vector such that rXi is horizontal in TxM . We define the component
Ft as the solution of the Marcus equation in Diffp∆1,Mq given by:

dFt “ RFt˚
rX0dt `

m
ÿ

i“1
RFt˚

rXi ˛ dZi
t .

The second component is defined as Gt “ F´1
t ˝ φt. In order to find a Marcus equation

whose solution flow is Gt, one needs to apply Theorem 11 (Itô-Ventzel-Kunita for general
semimartingales). Hence,

dGt “ F´1
t˚ ˛ dφt ` ˛dF´1

t pφtq. (3.11)

For each Ft P Diffp∆1,Mq. On the other hand, note that:

dF´1
t “ ´LF´1

t˚

rX0dt ´

m
ÿ

i“1
LF´1

t˚

rXi ˛ dZi
t . (3.12)

By (3.11) and (3.12), it follows that:

dGt “

m
ÿ

i“0
AdpG´1

t qpVipGtqqpFtq ˛ dZi
t .

It is important mentioning that AdpF´1
t qpViqpxq P ∆2

pxq, for all x P M . Then, Gt P

Diffp∆2,Mq.

l
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4 Geometry of young integral: decomposition
of α-Hölder continuous paths

In this chapter we study geometric aspects of dynamics generated by Young differential
equations (YDE) driven by α-Hölder trajectories with α P p1{2, 1s. More precisely, given a
smooth manifold M , we focus on geometrical properties of equations of the type:

dxt “ Xpxtq dzt, (4.1)

with initial condition x0 P M at t “ 0, where x Ñ Xpxq P LpRd, TxMq is a smooth
assignment of d vector fields on M and z P Cα

pr0, T s,Rdq is an α-Hölder continuous
trajectory in Rd. We say that a path x : r0, T s Ñ M is a solution of equation (4.1) if for
all test function f P C8

pM ;Rq we have that

fpxtq “ fpx0q `

ż t

0
Xfpxsq dzs, (4.2)

where Xf is a short term for
ÿ

DfpxqXpxqei, with ei’s the elements of the canonical
basis of Rd. The last term of equation (4.2) is an integral in the Young sense, see e.g.
the classical [65], or more recent Hairer and Friz [22], Gubinelli et al. [24], Lyons [38],
Castrequini and Russo [13], Castrequini and Catuogno [15], Cong [19], Ruzmaikina [57],
among many others. We also encourage the readers to check our submitted paper [14],
which includes the majority of results in this chapter.

4.1 Some geometric aspects of Young integral
In this section, we study some geometric aspects of dynamics generated by Young differential
equations (YDE) driven by α-Hölder trajectories with α P p1{2, 1q. We present a number
of properties and geometrical constructions on this low regularity context: Young Itô
geometrical formula, horizontal lift in principal fibre bundles, parallel transport, covariant
derivative, development and anti-development, among others.

4.1.1 Young differential equation on manifolds

We recall that for a general metric space pM,dq, a curve σ : r0, T s Ñ M is α-Hölder
continuous, with α ą 0 if there exists a constant C ą 0, such that

dpσptq, σpsqq ď C|t ´ s|α, (4.3)
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for all s, t P r0, T s. This concept extends naturally to a Riemaniann manifold, since it
carries the well known induced metric dpx, yq given by

dpx, yq “ inf
!

ż 1

0
||γ1

ptq||dt; γ : r0, 1s Ñ M differentiable such that γp0q “ x, γp1q “ y
)

.

See e.g. [20] among many other classical books. Hence, naturally, α-Hölder paths are
also well defined in Riemannian manifolds. Most of the classical analytic results on this
regularity theory also holds for α-Hölder paths in a Riemannian manifold. For instance,
composition of a differentiable function with an α-Hölder trajectory is also an α-Hölder
path. Particularly, in a geometrical context, for readers convenience we prove the following

Proposition 10. Let M and N be Riemannian manifolds, dimN ě 1. A path σ : r0, T s Ñ

M is α-Hölder continuous on M if and only if, for all differentiable map f : M Ñ N , the
path fpσptqq is α-Hölder continuous on N .

Proof. There are many interesting ways to prove this result. Here, we use an embedding
argument. Initially consider that N is an Euclidean space Rn and take σptq an α-Hölder
trajectory on M . There exists an isometric embedding i : M Ñ Rd for a sufficiently large
integer d (Nash theorem). For sake of notation we write σt :“ σptq.

Since }ipxq ´ ipyq}Rd ď dMpx, yq for all x, y P M , we have the following inequalities:

}ipσtq ´ ipσsq}Rd ď dMpσt, σsq ď C|t ´ s|α,

which implies that ipσtq is α-Hölder in Rd. Now, for any differentiable function f : M Ñ Rn,
use the fact that it can be extended to a differentiable function f̄ : U Ñ Rn defined in
a tubular neighbourhood U of i ˝ σpr0, T sq in RN . Hence, fpσtq “ f̄pipσtqq. Since Hölder
regularity is preserved by differentiable functions on Euclidean spaces, fpσtq is α-Hölder
continuous in Rn. Mind that, in fact, in the compact set ipσtq the metrics dM , and ℓ2 in
Rd are uniformly equivalents, see Lemma 2.2 [35]. Hence, ℓ2-norm Hölder regularity in Rd

is equivalent to Hölder regularity on pM,dMq.

For a general Riemannian manifold N and a differentiable map f : M Ñ N , consider
another isometric embedding i1 : N Ñ Rd1 for an integer d1 sufficiently large. Then, the
last paragraph shows that i1 ˝ fpσq is α-Hölder in Rd1 . From Lemma 2.2 [35] we have that
there exists a positive constant C1 such that

dNpfpσtq, fpσsqq ď C1}ipfpσtqq ´ ipfpσtqq}Rd1 ď C2|t ´ s|α,

for a positive constant C2, which shows that fpσtq is α-Hölder continuous in N .

Conversely, suppose that fpσtq P N is α-Hölder for all differentiable function f : M Ñ N .
Denote the projections of ipσtq P Rd by σjt :“ pj ˝ ipσtq for each 1 ď j ď d. Let φ : V Ñ
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W Ă N be a local parametrization for N , with V an open set in an Euclidean space.
There exist another local parametrization obtained from the previous one, just enlarging
the domain by homothety, if necessary, which we call again by φ : Ṽ Ñ W Ă N such
that the set tpx, 0, . . . , 0q;x “ σjptq for some t P r0, T su Ă Ṽ for all 1 ď j ď d. Consider
the differentiable functions fj : M Ñ N given by fjpxq :“ φppjpipxqq, 0, . . . , 0qq. Then
fjpσtq :“ φpσjt , 0, . . . , 0qq is α-Hölder by hypothesis. By metric equivalence in compact sets
in the domain of the local parametrization, we have that σjt is α-Hölder for all 1 ď j ď d.
We conclude that σptq P M is α-Hölder continuous on M .

l

Before we show conditions for existence and uniqueness of solutions for equation (4.1), we
state the main geometric theorem that is a version of Itô’s formula for α-Hölder continuous
paths. We start with the definition of the Young integral of a real 1-form:

Definition 14 (Integration of real 1-forms). LetN be an n-dimensional differentiable mani-

fold with
1
ľ

pNq the space of real 1-forms. Consider β P

1
ľ

pNq and a chart pU, py1, . . . , ynqq

in N such that

β “

n
ÿ

i“1
βi dy

i. (4.4)

The integral of β along an α-Hölder path x : r0, T s Ñ N is defined by
ż T

0
βpxtq dxt “

n
ÿ

i“1

ż T

0
βidx

i
t, (4.5)

where the above integrals are Riemann-Stieltjes integral of βi with respect to the i-th
coordinate of the path xt. Among others properties, this integration is independent of the
local chart, see e.g, Abraham, Marsden and Ratiu [1] and Ikeda and Manabe [28].

The integration of real 1-forms above allows one to integrate many tensor fields in a
manifold. In particular, if F : M Ñ Rd is a smooth function, the integration

ż t

0
DF pxsq dxs

makes sense, looking at each coordinate of Rd. Also, if F : M Ñ N , with N another
differentiable manifold, then we define

ż t

0
DF pxsq dxs :“

ż t

0
Dϕ ˝ F pxsq dxs, (4.6)

where, ϕ is a local chart of N . Standard rough path calculus in Euclidean space (in
particular, substitution formula) guarantees that this definition is independent of the local
chart. Next Theorem is the basic property of the the α-Hölder calculus we are treating in
this chapter.
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Theorem 14 (Young Itô Formula). Let M and N be Riemannian manifolds. Consider
x P Cαpr0, T s,Mq and a smooth function F : M Ñ N . Then

dF pxtq “ DF pxsq dxs. (4.7)

Remark: We highlight that formula (4.7) above means that if β is a 1-form in N then
ż t

0
β dF pxsq “

ż t

0
pdF pxsqq

˚β dxs. (4.8)

In particular, if N is an Euclidean space:

F pxtq “ F px0q `

ż t

0
DF pxsqdxs. (4.9)

Proof. Initially we prove the result for an Euclidean space N “ Rd. We use again the em-
bedding argument from Nash’s theorem: there exists a sufficiently large p P N such that M
can be isometrically embedded into Rm`p. Abusing notation, we have x P Cαpr0, T s,Rm`p

q,
F is defined in a tubular neighbourhood of the image of M and DF pxq P LpRm`p,Rdq. By
Taylor’s formula in Euclidean space,

F pxtq ´ F pxsq “ DF pxsq ¨ pxt ´ xsq ` Rpxs, xtq,

with
Rpxs, xtq “

ż 1

0
p1 ´ uq Hess pF qpxs ` upxt ´ xsqqpxt ´ xs, xt ´ xsq du.

Since F is smooth,
}Rpxs, xtq} ď C}xt ´ xs}

2
ď C 1

|t ´ s|2α.

Let π “ tsiu be a partition of r0, T s. Then

F pxtq´F px0q “
ÿ

i

F pxsi`1q´F pxsi
q “

ÿ

i

DF pxsi
q¨pxsi`1 ´xsi

q`
ÿ

i

Rpxsi
, xsi`1q. (4.10)

We have that
ÿ

i

}Rpxsi
, xsi`1q} ď C 1

ÿ

i

|si`1 ´ si|
2α

ď C 1T sup
i

|si`1 ´ si|
2α´1.

Thus, since α ą 1{2 we have that

lim
|π|Ñ0

ÿ

i

}Rpxsi
, xsi`1q} “ 0.

Take the limit |π| Ñ 0 in equation (4.10) and the definition of Stieltjes (Young) integral
to finish the proof in this context.

In general, when N is a Riemannian manifold, consider a local chart ϕ. The previous
calculations hold with ϕ ˝ F whose integration is independent of the coordinate system.
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l

Note that multidimensional forms of Itô formula above, integration by parts, etc can be
obtained from formula (4.7) considering the manifold M above as appropriate product
spaces. We proceed to prove a Theorem of existence and uniqueness of solution for equation
(4.1).

Theorem 15. Given an initial condition x0 P M , there exists a unique maximal solution
of the Young differential equation (4.1) such that xp0q “ x0. Moreover, there exists a flow
of (local) diffeomorphisms associated to the solutions.

Proof. A simple way to proof the result for local solutions is based on the existence and
uniqueness results in the Euclidean space. In fact, given the initial condition x0, let pU,Ψq

be a chart on M with x0 P U . Let X̃ :“ DΨpXpΨ´1
ppqqq be the induced vector field in the

image of Ψ. The Young differential equation dyt “ X̃pytqdzt has a unique solution local
solution yt with y0 “ Ψpx0q. See e.g. Lejay [36], Caruana, Lyons and Thierry [43], Li and
Lyons [38], Friz and Hairer [22] and references therein. Take xt “ Ψ´1

pytq Ă U . We claim
that xt is a solution of equation (4.1). In fact, consider a test function f P C8

pMq. By
Theorem 14, it follows that

fpΨ´1
pysqq “ fpΨ´1

py0qq `

ż t

0
Dpf ˝ Ψ´1

qpysqdys

“ fpΨ´1
py0qq `

ż t

0
DfΨ´1

˚ Ψ˚Xpysqdzs

“ fpx0q `

ż t

0
Xfpxsqdzs.

Moreover, the solution xt does not depend on the choice of local coordinate. In fact, let
pV,Φq be another chart on M , with xt P U X V and let zt be the solution of the Young
differential equation dwt “ Φ˚Xpwtqdzt. Then

dyt “ Ψ˚Xpytqdzt

“ Ψ˚Φ´1
˚ Φ˚Xpztqdzt

“ Ψ˚Φ´1
˚ dwt.

Hence yt “ ΨΦ´1
pwtq and therefore Φ´1

pwtq “ Ψ´1
pytq “ xt. A maximal solution is ob-

tained in the classical way by extending a local solution up to its explosion time. The
existence of local flow of (local) diffeomorphisms is also concluded from the Euclidean case
using the same local chart argument.

l

4.1.2 Horizontal lifts

Let tP,M,G, πu be a principal fibre bundle with base M , structure group G and total
space P . In this case M is a smooth, connected and paracompact manifold. The projection
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π is taken as π : P Ñ M . The group G acts freely on P on the right by the action
Rg : P Ñ P defined by Rgpuq “ ug, for u P P and g P G. Let g be the Lie algebra of G,
then an element A P g generates the exponential texp tA, t P Ru, which induces a vector
field on P by

A˚u “
d

dt
RexpptAqu

ˇ

ˇ

t“0,

If Γ8
pTP q is the section of all smooth vector fields on P , then the map A Ñ A˚, from

g into Γ8
pTP q is a Lie algebra homomorphism. For more details, see e.g. Shigekawa

[62], the classical Kobayashi and Nomizu [31] among many others. The tangent space
TP has a naturally defined subspace called the vertical tangent bundle V TP given by
V TuP :“ ker dπu for all u P P . Note that A˚u P V TuP for all A P g.

A connection in the principal fibre bundle is an assignment of a horizontal subspace HTuP
of TuP which is the kernel of a g-valued 1-form ω in P with the following properties:

(i) (well-behaved vertically) ωdRg “ Adpg´1
qω, for all g P G. Here the linear map

Adpg´1
q : g Ñ g is the derivative at the identity of the adjoint Adpg´1

q : G Ñ G

defined by Adpg´1
qa “ g´1ag.

(ii) (vertical calibration) ωpA˚
q “ A, where A˚ is a vector field on V TP .

Such 1-form ω is called a connection form in the principal fibre bundle tP,M,G, πu.
Moreover, ω defines the horizontal tangent bundle HTP given by HTuP “ kerωu. Hence,
for all u P P , the tangent space TuP splits into HTuP ‘V TuP and dRgpHTuP q “ HTugP .

Now we have the geometric set up to define the horizontal lift of α-Hölder continuous
paths.

Definition 15. Let x : r0, T s Ñ M be an α-Hölder continuous path. Consider u P P ,
with πpuq “ x0. The horizontal lift of xt starting at u is a path rx : r0, T s ÝÑ P such that:

(i) rx0 “ u.

(ii) πprxtq “ xt for all t P r0, T s.

(iii)
ż t

0
ω drxs “ 0 for all t P r0, T s.

Next result shows the existence and uniqueness of the horizontal lift for an α-Hölder
continous path in a manifold. In the proof we apply the same technique used in Kobayashi
and Nomizu [31] and in Shigekawa [62] where the existence and uniqueness of horizontal
lift were proved in the context of C1 paths and semimartingales respectively.
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Theorem 16. Given an α-Hölder continuous path x : r0, T s Ñ M and an element u in the
fibre π´1

px0q, there exists (up to a explosion time) a unique horizontal lift rx : r0, T s Ñ P

with x̃0 “ u.

Proof. Consider a local trivialization ϕ : π´1
pUq Ñ U ˆ G with x0 P U and take the

α-Hölder path νt “ ϕ´1
pxt, eq. If the horizontal lift of xt exists at all, it has to be of

the form rxt “ νtat, where at P G is an appropriate path which makes rxt horizontal and
ν0 a0 “ u.

Let Ψ : P ˆG Ñ P be the right free action of G on P . Then, by Theorem 14 we have that

dx̃t “ B1Ψpνt, atq dνt ` B2Ψpνt, atq dat.

Hence:
ż t

0
ω d rxt “

ż t

0
pB1Ψpνt, atqq

˚ω dνt `

ż t

0
pB2Ψpνt, atqq

˚ω dat.

“

ż t

0
R˚
at
ω dνt `

ż t

0
θ dat, (4.11)

by the vertical calibration of the connection ω, where θ is the canonical Cartan 1-form
given by θgpdRgAq “ A for all g P G and A P g. The lift x̃t is horizontal if and only if
equation (4.11) vanishes for all t P r0, T s, i.e. if and only if Adpa´1

t qω dνt “ ´θ dat. Let
F1, . . . , Fn be a basis of the right invariant Lie algebra g. For all t P r0, T s, there exist
α-Hólder continuous real functions α1

t , . . . , α
n
t , such that:

ż t

0
ω dνs “

n
ÿ

i“1
Fiα

i
t. (4.12)

Using this notation we have that a necessary and sufficient condition such that equation
(4.11) vanishes is that

ż t

0
ω d rxt “

n
ÿ

i“1

ż t

0
Adpa´1

t qFi dα
i

`

ż t

0
dRa´1

t
dat “ 0,

for all t P r0, T s, i.e., trajectory at has to satisfy

dat “ ´

n
ÿ

i“1
dRat

Adpa´1
t qFi dα

i
t,

with initial condition a0. There exists a unique solution by Theorem 15, hence there
exists a unique horizontal lift x̃t up to a explosion. Mind that at the border of the local
trivialization, one can extend further the solution applying again the same construction
above. The maximal solution covers the whole interval r0, T s (by compactness) if there is
no explosion in the fibre.
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Note that for initial element in the fibre a0g, the horizontal lift is given by atg.

l

In the sequel, we show another proof for Theorem 16. In this alternative proof, we write
the canonical 1-form in terms of its local coordinates.

Proof. Let rat be the unique solution of the following Young differential equation in G:

drat “

n
ÿ

i“1
Fipratqdα

i
t, (4.13)

where Fipratq “ dR
ratpFiqq Take at “ ra´1

t . Note that at is a α-Hölder path and satisfies the
following equation:

dat “

n
ÿ

i“1

ż t

0
Adpa´1

t qFipatqdα
i
t. (4.14)

See Castrequini and Catuogno [12]. We aim to prove that rxt “ νtat is a horizontal lift of xt.
In fact, note that rxt P Cmintα,βu, and by construction, πprxq “ xt. We just need to prove
that

ż

rxr0,T s

ω “ 0. Consider the action ψ : P ˆ G ÝÑ P , given by ψpx, yq “ xy and let

px1, . . . , xmq and py1, . . . , ynq be local coordinates in G and P respectively. Let ait “ xipatq,

νit “ yipνtq and ω “

n
ÿ

i“1
ωidy

i. Applying the Itô’s formula for α-Hölder paths (theorem 14

), it follows that:

rxit “ rxi0 `

m
ÿ

i“1

ż t

0

Bψi

Bajs
pν1
s , . . . , ν

n
s , a

1
s, . . . , a

m
s qdais `

n
ÿ

i“1

ż t

0

Bψi

Bνls
pν1
s , . . . , ν

n
s , a

1
s, . . . , a

m
s qdνis.

By the definition of integrals of 1-forms, remark 14, the connection 1-form ω can be written
as:

ωpdrxtq “

n
ÿ

i“1
ωiprxtqdrxt

“

m
ÿ

i“1

n
ÿ

i“1
ωiprxtq

Bψi

Bajs
pν1
s , . . . , ν

n
s , a

1
s, . . . , a

m
s qdais

`

m
ÿ

i“1

n
ÿ

i“1
ωiprxtq

Bψi

Bνls
pν1
s , . . . , ν

n
s , a

1
s, . . . , a

m
s qdνis.

We define:

pψ˚
νt
ωqat :“

m
ÿ

i“1

n
ÿ

i“1
ωiprxtq

Bψi

Bajs
dais

patψ
˚ωqνt :“

m
ÿ

i“1

n
ÿ

i“1
ωiprxtq

Bψi

Bνls
dνis.
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Hence,

ωdrxt “ patψ
˚ωqdνt ` pψ˚

νt
ωqdat. (4.15)

Note that ψ˚ω is the pull-back of the 1-form by the action ψ and atψ
˚ is the differential

of the right translation Rat . We are going to use that fact that R˚
at
ω “ Adpa´1

t qω and
ψ˚
νt
ω “ θ, where θ is the canonical 1-form on G defined by θgpApgqq “ A for g P G and

A P g, see e.g [31, chapter 9]. Thus we have that:
ż t

0
ωdrxt “

ż t

0
patψ

˚ωqdνt `

ż t

0
pψ˚

νt
ωqdat

“

ż t

0
R˚
at
ωdνt `

ż t

0
θdat

“

n
ÿ

i“1

ż t

0
Adpa´1

t qFidα
i

´

n
ÿ

i“1

ż t

0
Adpa´1

t qFidα
i

“ 0.

Now, suppose that the horizontal lift is not unique. In this case, let rxt and rzt be horizontal
lifts of xt, with rx0 “ rz0 and πprxtq “ πprztq “ xt, for all t P r0, T s. Thus, there exists ut P G,
with u0 “ e, such that rxt “ rztut, for all t P r0, T s. It is easy to show that ut is α-Hölder.
Applying equation (4.15), we have:

ż t

0
ωdrxs “

ż t

0
θdut `

ż t

0
Adpu´1

s qωdrzt “ 0.

Since
ż t

0
Adpu´1

s qωdrz “ 0, it follows that
ż t

0
θdut “ 0 for all t P r0, T s. Therefore, ut must

be the constant ut “ e, then we conclude that rxt “ rzt, for all t P r0, T s.

l

Besides the dynamics and the principal fiber bundle approach presented so far (which are
basic to the next Sections), this low regularity Itô-Young calculus of Theorem 14 allows
one to develop further geometrical properties. We mention the following three classical
geometric aspects:

A. Parallel Transport and covariant derivative: Given a smooth manifold M , consider
the frame bundle BM Ñ M of basis u : Rn Ñ TpM , with p P M , with the structure group
G “ Glpn,Rq. Last Theorem applied in this context establishes a parallel transport along
α-Hölder path xt P M . In fact, given a horizontal lift ut, the parallel transport of a vector
v P Tx0M is obtained by

MM

t
v “ ut ˝ u´1

0 pvq P TxptqM.

It does not depend on the choice of the horizontal lift. Moreover, if we take the orthonormal
frame bundle OM Ñ M of basis orthonormal basis given by linear isometries u : Rn Ñ
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TxM , with x P M , with the structure group G “ Opn,Rq, the parallel transport is also an
isometry.

Covariant derivative can now be defined along an α-Hölder path xt P M . Given a differen-
tiable vector field Y , we have that its covariant derivative along xptq is given by:

DY pxtq “

MM

t
d
MM´1

t
Y pxtq.

where the differentials are interpreted in the sense of Young (Definition 14).

B. Development and anti-development: Let M be an m-dimensional Riemannian
manifold, and consider an α-Hölder continuous path x : r0, T s Ñ Rm. Take the horizontal
operator H : OM ˆ Rm Ñ HTOM where Hpu, vq is the horizontal lift of upvq P TπpuqM

up to HTuOM . The development of xt on M with initial orthonormal frame u0 is obtained
from ut, the solution of the YDE:

d ut “ Hput, dxtq,

i.e. πputq is the development of xptq on M (rolling without slipping, with initial “contact
plane” given by u0). On the other hand, the anti-development of an α-Hölder continuous
path x : r0, T s Ñ M is described using its horizontal lift x̃t (Theorem 16) with initial
condition x̃0:

yt “

ż t

0
x̃´1
s d xs.

Note that, as expected, yt depends on the choice of x̃0. Compare this approach with the
classical Brownian motion approach by Eells and Elworthy [21], and the isotropic Lévy
processes approach in Applebaum and Estrade [3], among many others.

C. Continuous α-Hölder paths in M are solutions of Young differential equations:
As established before, solutions of Young equations driven by α-Hölder paths on a manifold
are also α-Hölder continuous paths. Reciprocally, every α-Hölder continuous paths on M is
a solution of a Young differential equation (YDE) driven by an α-Hölder functions. In fact,
take an embedding i : M Ñ Rm`p of M into a sufficiently large dimensional Euclidean
space. Let U be a tubular neighbourhood with π : U Ñ ipMq a projection of U into ipMq.
Given an α-Hölder path yt on M , let zt “ ipytq. Then zt is an α-Hölder trajectory in Rm`p.
Consider the YDE in ipMq:

dxt “ Dπpxtq dzt.

Then zt is the solution of this YDE with initial condition x0 “ z0: just check that the
YDE is the differential version of the identity zt “ πpztq, according to Young Itô formula
of Theorem 14. If the projection π is orthogonal, as in Elworthy [21] then the vector fields
are gradients of the embedding. In general, the dynamics of other trajectories starting at
x0 ‰ y0 depends on the embedding and on the projection. This is an interesting topic to
be studied further.
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4.2 Decomposition of flow generated by Young differential equation

In the Lie group notation, a solution flow φt of an YDE is written as the solution of a
right invariant Young differential equation in the Lie group of diffeomorphisms DiffpMq:

dφt “ Rφt˚
X dzt. (4.16)

Here we abuse notation in the sense that (using the same notation as in equation 4.1) one
can write

X dZt “

d
ÿ

i“1
Xi dz

i
t,

where Xj “ Xpejq with ej the elements of the canonical basis. Hence, equation (4.16) have
to be interpret as

dφt “

d
ÿ

i“1
Rφt˚

Xi dz
i
t.

In this section, we explore the Young calculus to proof the existence of a geometrical
decomposition of flows generated by α-Hölder systems φt given by equation (4.1).

In particular, in this Section we focus on the subgroups Diffp∆1,Mq and Diffp∆2,Mq. The
main result of this paper (Theorem 18) establishes a local decomposition of the solution
flow φt into two components: a curve (solution of an autonomous YDE) in Diffp∆1,Mq

composed with a non-autonomous path in Diffp∆2,Mq.

By continuity, for any pair of complementary distributions, there always exists a neigh-
bourhood of the identity 1d P DiffpMq where all elements in this neighbourhood preserve
transversality. Moreover, if the distribution ∆1 is involutive then all elements in Diffp∆1,Mq

preserves tranversality of ∆1 and ∆2: in fact, the derivative η˚ above is a linear isomorphism
which sends tangent spaces of the associated foliation to tangent spaces in the same leaf.
In the sequence, we state an extended scope of the Itô-Kunita formula (see [32] ) in the
geometrical Young calculus.

Theorem 17 (Young Itô-Kunita formula). Let X, Y P C2
pM,LpRd, TMqq and z P

Cα
pr0, T s,Rdsq and suppose that ηt and ψt are solutions maps associated to the Young

differential equations dηt “ Xpηtqdzt and dψt “ Y pψtqdzt respectively. Then, φt “ ηt ˝ ψt

is the solution map associated with the Young differential equation

dφt “ Xpφtqdzt ` AdpηtqY pφtqdzt. (4.17)

For a proof in this low regularity context, see Castrequini and Catuogno [12, Thm. 4.1].
Next Corollary shows that the inverse of the solution flow of an YDE is also α-Hölder
continuous.
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Corollary 6. If ηt is the solution flow the Young differential equation on M

dxt “ Xpxtq dzt, (4.18)

then, the inverse map η´1
t is the solution of the Young differential equation on M

dut “ ´Dη´1
t putqXpηtputqqdzt. (4.19)

Proof. In fact, just apply expressions (4.18) and (4.19) into equation (4.17).

l

For a constructive proof of last Corollary see [12, Thm. 4.2]. Next Theorem states the
main result of this section:

Theorem 18 (Decomposition of flows of YDE). Up to a life time τ P r0, T s, the solution
flow φt can be locally decomposed as

φt “ ηt ˝ ψt,

where ηt is solution of an (autonomous) Young differential equation in Diffp∆1,Mq and
ψt is a path in Diffp∆2,Mq.

Proof. Given p P M , take η P Diffp∆1,Mq sufficiently close to the identity such that it
preserves tranversality, i.e. Adpηtq∆2 and ∆1 are complementary. The tangent vector(s)
Xppq can be decomposed uniquely as

Xppq “ hppq ` V pηt, pq, (4.20)

where hppq P ∆1
ppq and V pηt, pq P Adpηtq∆2

ppq, for all p P M . We take the first component
ηt as the solution map of the following Young differential equation in Diffp∆1,Mq:

dηt “ Rηt˚
h dzt, (4.21)

with initial condition η0 “ 1d, the identity. Even though the equation above is described in
terms of a right translation, it is not a right invariant equation since h in general depends
on ηt. We obtain the second component of decomposition of φt using that ψt “ η´1

t ˝ φt.
Applying Corollary 6, it follows that:

dη´1
t “ ´Lη´1

t˚
h dzt,

where Lη´1
t˚

is the derivative of the left translation at the identity by η´1
t . Finally, we find

a equation for ψt by applying Theorem 17:

dψt “ pη´1
t h ηt ψt ´ η´1

t X ηt ψtq dzt

“ Adpη´1
t qV pηtq dzt. (4.22)
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Note that V pη, pq does not necessarily belong to ∆2. Still, dψt P ∆2 since
dψt P Adpη´1

qAdpηq∆2
“ ∆2. Then ψt is the ∆2-component of φt.

l

Corollary 7. If the distributions ∆1 and ∆2 are integrable, then the decomposition of
Theorem 18 is unique.

Proof. In fact, in this case Diffp∆1,Mq X Diffp∆2,Mq “ t1du.

l
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5 Examples and open problems

In this chapter, we consider the same geometric structure used in chapter 4, i.e, a principal
fibre bundle tP,M,G, πu, with base M , structure group G and total space P . Our main
goal is to apply the decomposition which was proposed in Theorem 18 in general fibre
bundles. Important notions such as 1-forms connection on fibre bundles, horizontal and
vertical tangent bundles and others were discussed briefly in chapter 4, more details can
be found for example in Kobayashi and Nomizu [31]. In the last section of this chapter,
we also state some interesting open problems related to the decomposition of flows and
stochastic optimal control.

5.1 Linear systems
Consider an Euclidean space Rn, with a pair of complementary foliations given by the
trivial Cartesian product Rk ˆ Rℓ, with k ` ℓ “ n. More precisely, the horizontal foliation
FH is given by parallel leaves generated by affine translations x` pRk ˆ t0uq, with x P Rn.
Analogously, the vertical foliation FV is given by parallel vertical leaves x ` pt0u ˆ Rℓq,
for all x P Rn. We consider the linear Young differential equation:

dxt “ Axt dzt, (5.1)

with x0 P Rn and zt an α-Hölder continuous trajectory in the real line. The Young calculus
presented in the previous section shows that the fundamental linear solution flow of (5.1)
is the exponential

Ft “ exp tApzt ´ z0qu. (5.2)

A “

¨

˝

´

A1

¯

kˆk

´

A2

¯

´

A3

¯ ´

A4

¯

ℓˆℓ

˛

‚

The decomposition we are interested here is

Ft “ ηt ˝ ψt

such that ηt P Diffp∆1,Mq and ψt P Diffp∆2,Mq. In general ηt and ψt does not have to be
linear, even in quite symmetric situations. For example, if the pair of foliations in Rnzt0u

are given by radial and spherical coordinates, the components of the decomposition are not
necessarily linear: in fact, the linear radial diffeomorphisms is reduced to a one dimensional
group of uniform contractions and expansions λ1d, with λ ą 0, which, obviously, is not
big enough to perform the decomposition. For the Cartesian pair of foliation Rk ˆ Rℓ



Chapter 5. Examples and open problems 60

considered in this section, we do have that ηt and ψt are linear. In fact, in coordinates,
write

Ft “

¨

˚

˚

˚

˝

´

F1ptq
¯

kˆk

´

F2ptq
¯

kˆℓ

´

F3ptq
¯

ℓˆk

´

F4ptq
¯

ℓˆℓ

˛

‹

‹

‹

‚

.

Since ηt does not change the last ℓ coordinates the diffeomorphisms ψ must satisfies

ψt “

¨

˚

˚

˝

´

1d
¯

kˆk
0

F3ptq F4ptq

˛

‹

‹

‚

.

Hence diffeomorphisms ψt and ηt, when exist, are global and linear.

A simple example: A system which illustrates not only these formulae, but also the
lifetime of the decomposition is the pure rotation in R2 given by

dxt “

˜

0 ´1
1 0

¸

xt dzt,

whose decomposition of flow can be easily calculated as:
˜

cos zt ´ sin zt
sin zt cos zt

¸

“

˜

sec zt ´ tan zt
0 1

¸˜

1 0
sin zt cos zt

¸

. (5.3)

Note that if zt P

!π

2 ` kπ, k P Z
)

, then the decomposition (5.3) no longer exists at the
corresponding time t, i.e. we have explosion of the solutions of equations (4.21) or (4.22).

l

Back to the general linear case, the components of the decomposition in fact lie in the Lie
group:

ψt P GV “

$

&

%

g P Glpn,Rq; g “

¨

˝

´

1d
¯

kˆk
0

g3

´

g4

¯

ℓˆℓ

˛

‚

,

.

-

whose Lie algebra is given by the vector space generated by
¨

˚

˚

˚

˝

´

0
¯

kˆk
0

´

˚

¯ ´

˚

¯

ℓˆℓ

˛

‹

‹

‹

‚

,

where p˚q means nonzero matrices of the appropriate dimension. Analogously for the
horizontal component:

ηt P GH “

$

&

%

g P Glpn,Rq; g “

¨

˝

´

g1

¯

kˆk
g2

0
´

1d
¯

ℓˆℓ

˛

‚

,

.

-
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whose Lie algebra is given by the vector space generated by
¨

˚

˚

˚

˝

´

˚

¯

kˆk

´

˚

¯

kˆℓ

0
´

0
¯

ℓˆℓ

˛

‹

‹

‹

‚

.

Using the properties of the Young integral, we find the differential equations for the
constituents submatrices g1, g2 and g3, g4 of ηt and ψt respectively. Let π2 : Rk ˆ Rℓ Ñ Rℓ

be the projection on the second subspace. From formula (4.20) we have that

V pη, ¨q “ η ˝ π2 ˝ Ap¨q.

In fact, it is enough to check that V pη, ¨q is in the image of the vertical component by η
and that π2V pη, ¨q “ π2Ap¨q. From this formula, equations (4.21) and (4.22) we find the
autonomous equation:

dηt “ p1d ´ ηt ˝ π2qAηt dzt,

and the well expected nonautonomous vertical diffeomorphisms:

dψt “ π2 Aηt ˝ ψt dzt.

Rewriting each constituent submatrices we find:

dg1ptq “
“

A1 g1ptq ´ g2ptq A3 g1ptq
‰

dzt (5.4)
dg2ptq “

“

A1g2ptq ` A2 ´ g2ptqA4 ´ g2 A3 g2ptq
‰

dzt, (5.5)
dg3ptq “

“

A3 g1 ` A3 g2 g3 ` A4g3
‰

dzt (5.6)
dg4ptq “

“

A3 g2 g4 ` A4 g4
‰

dzt. (5.7)

Explosion in the solutions of the equations of g1 and g2 can appear if A3 is not zero (see
example of equation (5.3), where A3 “ r1s). Otherwise, if A3 “ 0 then there exists the
decomposition for all time t ě 0. Using this feature, and the Jordan canonical form we
can extend the scope of the decomposition in the next Proposition. Before that, let us fix
a notation. Given two complementary subspaces E1 ‘ E2 “ Rn, let us denote by FpE1q

and FpE2q the corresponding pair of complementary parallel foliations in Rn.

Proposition 11. Consider a Young linear system in Rn

dxt “ Axt dzt. (5.8)

If dimension n ą 2, then there exist a pair of parallel foliations FpE1q, FpE2q generated by
complementary subspaces E1 and E2 such that the decomposition of the flow of equation
(5.8) exists for all time t P r0, T s, i.e. there is no explosion time of the decomposition.
Dimension of E1 can be chosen as a number of the form pa ` 2bq where a “ 0, 1, . . . , r “

#treal eigenvalues with multiplicitiesu, and b “ 0, 1, . . . , pn ´ rq{2.
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Proof. Let A “ P JP´1 be the canonical real Jordan form of A, with the choice of bases
P such that the nilpotent component has, if necessary, 1’s and identities I2’s above the
diagonal. The change of coordinates y “ P x establishes the conjugate Young system:

dyt “ J yt dzt.

If n ą 2, it is possible to write

J “

¨

˝

´

J1

¯

kˆk

´

J2

¯

´

J3

¯ ´

J4

¯

ℓˆℓ

˛

‚

with k “ a ` 2b and its complementary ℓ “ n ´ k, such that the submatrix pJ3qℓˆk “ 0.
The number a represents the number of real eingenvalues in the block J3 and b represents
the number of pairs of conjugate nonreal eigenvalues in this block. Hence, equations (5.7)
guarantee the there is no explosion in the decomposition of yt. By conjugacy, there is also
no explosion in the decomposition of the linear fundamental solution Ft of (5.8) along
the foliations generated by E1 “ P pRk ˆ t0uq and E2 “ P pt0u ˆ Rlq. This proves the
proposition.

l

Using the notation in the proof of last proposition, the decomposition of Ft “ ηt ˝ψt above
are such that ηt lies in the group P GH P

´1 and ψt lies in P GV P
´1.

5.2 Principal fibre bundles over homogeneous spaces
Let G be a connected Lie group with a closed subgroup H and denote by g and h their
Lie algebras of right invariant vector fields, respectively. The group G acts on H by left
translation gH, for all g P G and the orbits generate the homogeneous space M :“ G{H,
see e.g. [31]. We have a principal fibre bundle given by the canonical projection π : G Ñ M .
Given an element A P g consider the right invariant YDE:

d gt “ Agt dZt. (5.9)

As it was done in chapter 4, here, we consider a connection ω in the principal fibre bundle
π : G Ñ M . In this example we construct our decomposition of flow according to the
vertical subspaces (involutive) and the horizontal subspace established by this connection.
The solution flow (global in G up to lifetime of Zt) is given by left action:

φtpxq “ gtx,

where gt “ exptAZtu. In this example the distributions ∆1 and ∆2 in the tangent space
TG are given by the horizontal subspaces with respect to the connection ω and the tangent
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to the fibres gH (involutive). In order to decompose the flow φt as in Theorem 18, one has
to identify the vector fields V and h as in equation (4.20) in the proof of the Theorem, i.e.:

Ax :“ h ` V pη, xq.

Elements η P Diffp∆1, Gq can be written pointwise (with respect to x P G) as a left action
of elements of G at x. This action preserves the vertical component, i.e. g˚∆2

“ ∆2 for all
g P G. Hence, vector field V above is independent of η and one can easily calculate:

V pxq “ ωpAxq
˚ and h “ Ag ´ ωpAxq

˚.

By equations (4.21) and (4.22) we have that each component of the decomposition
φtp¨q “ ηt ˝ ψtp¨q are given by:

d ηt “ Rηt˚pAηtp¨q ´ ωpAηtp¨qq
˚
q (5.10)

and
dψt “ Adpηtq ωpAηtp¨qq

˚. (5.11)

Let denote by gH,xt P G the α-Hölder curve in G such that gH,xt x is the horizontal lift of
πpgt xq starting at x, i.e. gH,xt x is horizontal and gH,xt x “ gt x vt for some vt P H. With this
notation, fixing the action at a point x P G, the equations above reduce to well known
finite dimensional equations (in G). This is the content of the following

Proposition 12. Consider the decomposition φtp¨q “ ηt ˝ ψtp¨q of the solution flow of
equation (5.9) according to horizontal and vertical distribution of the fibre bundle in the
sense of Theorem 18. Then, at each point x P G, the first component can be written as
the left action:

ηtpxq “ gH,xt x,

and the second component can be written as the right action:

ψtpxq “ xht

where ht “ x´1
pgH,xt q

´1 gt x.

Proof. The proof of the first equation follows straightforward when one applies equations
(5.10) at a fixed inicial condition x P G: it is the horizontal lift of πpgtxq, cf. Theorem
16, using Itô formula 14. Regarding the second equation of the statement, one sees that
px´1

pgH,xt q
´1 gt xq P H by definition of the horizontal lift: gH,xt x “ gt x vt for some vt P H.

One checks that it solves (5.11) at a fixed point x.

l
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5.2.1 Trivial fibre bundles

As a particular case, consider a trivial principal fibre bundle π : GˆH Ñ H with strutural
group H, where G and H are connected Lie groups. The trivial connection is given by
ωpx,yqpg

1
t, h

1
tq “ y´1h1

t P h. Consider a right invariant YDE in G ˆ H:

dpxt, ytq “ pA ˆ Bq pxt, ytq dzt

where A P g and B P h, the Lie algebras of G and H respectively, with an initial condition
px0, y0q. Since the connection in this case is invariant by left action of G ˆ t1du, the
factor gH,xt P G ˆ H of Proposition 12 does not depend on px, yq. One recovers the trivial
components of the decomposition. In fact we get a global decomposition where the first
component is given by the left action:

ηtp¨, ¨q “ pexppAztq, 1dqp¨, ¨q.

And the second (vertical) component is given in terms of the right action:

ψtp¨, ¨q “ p¨, ¨qp1d, htq

where ht “ y´1 exppBztq y, according to Proposition 12.

5.3 Jump dynamics on reductive homogeneous spaces
We say that the homogeneous space M is reductive if the Lie algebra g contains a subspace
n, such that AdpHqpnq Ă n and g can be written as the direct sum g “ h ‘ n. It is worth
mentioning that each fibre π´1

pxq is diffeomorphic to H. A similar decomposition was
considered by Li [39] in the context of standard Brownian motion.

Corollary 8. For S P C2
b pG,LpRd, hqq and Y P C2

b pG,LpRd, nqq. Let Zt be a general
semimartingale and ψt and ηt be solutions associated with the Marcus differential equations
dψt “ S˚

pψtq ˛ dZt and dηt “ Y ˚
pηq ˛ dZt. Then,

dpηtψtq “ Rψ˚
t
dηt ` pLψ´1

t
dψtq

˚
pηtψtq. (5.12)

Proof. By Corollary 5, it follows that

dpηtψtq “ Rψt˚Y
˚
pηtqdZt ` Lpηtψtq˚Lψ´1˚S

˚
pηtψtqdZt

“ Rψt˚dηt ` pLψ´1dψq
˚
pηtψtq.

l

Let φt, t ă T , be the flow of diffeomorphism of the following canonical Marcus stochastic
differential equation,

dφt “ W ˚
pφtq ˛ dZt. (5.13)
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Where W is a element of the Lie algebra g.

In the next theorem, we find explicit Marcus differential equations for the vertical and
horizontal components of the solution φt. Let ω be the canonical connection 1-form on
the principal bundle pP,G,H, π,Mq. As defined in chapter 4, ωpXq “ 0 for all vector field
X P n, and ωpA˚

q “ A if A P h. We suppose that the Lie algebra g is reductive, therefore
it can be written as the direct sum g “ h‘ n. Thus, the vector field W can be decomposed
into W ˚

pgq “ h˚
pgq ` V ˚

pgq, where h˚
pgq P h and V ˚

pgq P n.

Theorem 19. The solution flow φt can be decomposed into φt “ ηtψt, such that the
components ηt and ψt satisfies the following system of Marcus differential equations:

dψt “ V ˚
pψtq ˛ dZi

t , (5.14)
dηt “ pAdpψtqhq

˚
pηtq ˛ dZt. (5.15)

Proof. Note that φt is a diffeomorphism for all t ą 0, than it sends each fibre in another
fibre, hence φt is decomposable for all t ă T , see e.g. [46, Corollary 2], thus the solution
flow φt can be rewritten as φt “ ηt ˝ ψt, where ηt and ψt are horizontal and vertical
semimartingales respectively up to a stop time T . By Corollary 8, we have that:

dφt “ Rψtdηt `

´

Lψ´1
t
dψt

¯˚

pφtq. (5.16)

Applying the 1-form ω at dφt:

ωpdφtq “ ω
´

Lψ´1
t
dψt

¯˚

pφtq “ Lψ´1
t
dψt.

Hence,

Lψ´1
t
dψt “ ω

`

W ˚
pφtq ˛ dZi

t

˘

“ ω ph˚
pφtq ˛ dZt ` V ˚

pφtq ˛ dZtq

“ V ˛ dZt.

Therefore,

dψt “ V ˚
pψtq ˛ dZt.

Using the identity ψt ˝ ψ´1
t “ 1 and Corollary 8, it follows that:

dψ´1
t “ ´Rψ´1

t
V ˛ dZt.
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Applying Corollary 8 once again, for ηt “ φt ˝ ψ´1
t , we have:

dηt “ Rψ´1
t
dφt ` Lφtdψ

´1
t

“ Rψ´1
t

pW ˚
pφtq ˛ dZtq ´ Lφt

´

Rψ´1
t
V ˛ dZt

¯

“

”

Rψ´1
t
LφtW ´ Rψ´1

t
LφtV

ı

˛ dZt

“

”

Rψ´1
t
LηtLψth

ı

˛ dZt

“ LηtAdpψtqh ˛ dZt “ pAdpψtqhq
˚

pηtq ˛ dZt.

l

Let νt “ πpφtq, we want to compute a Marcus differential equation for νt. Using the fact
that dπpV ˚

pφqq “ 0, it follows that:

dνt “ dπpdφtq “ dπ pW pφtqq ˛ dZt

“ dπ ph˚
pφtq ` V ˚

pφtqq ˛ dZt

“ dπh˚
pφtq ˛ dZt.

Therefore
dνt “ L̄ηt˚L̄ψt˚dπphq ˛ dZt, (5.17)

where L̄a is the left translation on the base space M , for a P G. Then, π ˝ La “ L̄a ˝ π.

Proposition 13. The process ηt, t ă T satisfies the equation (5.15), if, and only if, it is
a horizontal lift of νt.

Proof. Suppose that ηt is a solution flow of equation (5.15). Since ωηtpdηtq “ 0, and ψ0 P H,
taking xt “ πpηtq, it holds that:

dxt “ dπ
`

Adpψ´1
t qh

˘˚
pηtq ˛ dZt

“ dπ
´

Rψ´1
t
Lψth

¯˚

pηtq ˛ dZt

“ L̄ηtL̄ψtdπh ˛ dZt,

therefore, xt satisfies equation (5.17), by uniqueness of solution of Marcus differential
equations, we conclude that xt “ πpηtq.

On the other hand, suppose that ηt is a horizontal lift of νt up to a stopping time T . Since
φt is a solution of equation (5.13) and πpφtq “ πpηtq, then φt and ηt belong to the same
fibre for all t ă T . Therefore, there exists Ct P G, such that ηtCt “ φt, for t ă T . By
Corollary 8:

dηt “ RC´1
t
dφt `

`

LCtdC
´1
t

˘˚
pηtq.
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We rewrite the above expression by:

dηt “ RC´1
t

ph˚
pφtq ` V ˚

pφtqq ˛ dZt `
`

LCtdC
´1
t

˘˚
pηtq

“ RC´1
t
h˚

pφtq ˛ dZt ` RC´1
t
V ˚

pφtq ˛ dZt `
`

LCtdC
´1
t

˘˚
pηtq (5.18)

“ pAdpCtqhq
˚

pηtq ˛ dZt ` pAdpCtqV q
˚

pηtq ˛ dZt `
`

LCtdC
´1
t

˘˚
pηtq.

Now, applying the connection 1-form ω to the expression (5.18):

0 “ ωηt

´

RC´1
t
V ˚

pφtq
¯

˛ dZt ` LCtdC
´1
t

“ ωηt ppAdpCtqpV qq
˚
pηtqq ˛ dZt ` LCtdC

´1
t (5.19)

“ AdpCtqV ˛ dZt ` LCtdC
´1
t .

Here we used the fact that ωpdηtq “ 0 and AdpCtqphq P n.

From expression (5.19), it holds that:

dC´1
t “ ´RC´1

t
V ˛ dZt.

Hence,
dCt “ V ˚

pCtq ˛ dZt.

Then, Ct is a solution of equation (5.14). By expression (5.19),

pLCtdC
´1
t q

˚
pηtq “ ´pAdpCtqV q

˚
pηtq ˛ dZt. (5.20)

Finally, combining expressions (5.18) and (5.20), it follows that:

dηt “ pAdpCtqhq
˚
pηtq ˛ dZt.

l

5.4 Open problems
This section discusses some open problems related to the decomposition of flows. Note
that in many cases we are dealing with low regularity problems which comes from a
geometric and probabilistic context, since the decomposition’s trajectories usually have
low regularities besides a probabilistic struture.

5.4.1 Dynamics of càdlàg and α-Hölder continuous paths

Recently, the literature has shown a great interest in the study of differential equations
driven by rough path and by α-Hölder continuous path with α P p0, 1s. Of course, the level
of difficulty also depends on the sub-interval that includes the parameter α. See e.g. Lyons
et al [43], Friz and Hairer [22] among many others. Recently, in Castrequini and Catuogno
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[12], it was proposed a Itô-Ventzel formula in the Young integral context ([65], [19], [13],
[57]) which motivated our submitted paper [14] (the chapter 4 of this thesis). An interesting

problem would be work with α-Hölder trajectories with jump components for α P

ˆ

1
3 ,

1
2

˙

.
Using those trajectories we are going to be able to generalize Theorem 11 and develop
some basic geometric properties in this context of low regularities and jumps such as:
horizontal lifts, parallel transport, covariant derivative, development and anti-development,
etc. Note that here, the Marcus jumps described in chapter 3, are actually geodesic jumps
and we definitely need to explore it. Another problem is to understand the construction of
Lévy processes on manifolds using the development technique (see page 55) in the same
sense of Applebaum and Estrade [3]. The idea is to use just the geometric properties
of principal fibre bundles in order to construct a Lévy process which is not necessarily
isotropic on a manifold. This technique is used by Elworthy in [21] in order to construct
the trajectories of Brownian motion on manifolds.

5.4.2 Rough paths

Let E be a vector space. An α-rough path, for α P

ˆ

1
3 ,

1
2

˙

is a pair X “ pX,Xq, such

that X : r0, T s Ñ E is an α-Hölder continuous and X : r0, T s
2

Ñ E b E is 2α-Hölder
continuous path, such that the following relation (Chen relation) holds:

Xst “ Xsu ` Xut ` Xsu b Xut. (5.21)

Where, Xsu “ Xu ´ Xs, for 0 ď s ď u ď t ď T . Consider the following equation:

dxt “ F pxtqdXt. (5.22)

Which has the following integral form:

xt “ x0 `

ż t

0
F pxrqdXr.

Where F “ pF1, . . . , Fdq is a smooth vector field and the above integral must be undestood
in the rough sense, see [22]. This type of equation was widely studied on manifold context,
see e.g. Bailleul [6], however, an interesting question still needs to be answered: is it
possible to perform a decomposition in the solutions of equation (5.22) in the same sense of
Theorem 18? In this context, it is reasonable to expect that if φt is a solution of equation
(5.22), then it can be decomposed as φt “ ηt ˝ ψt, where ηt and ψt are diffeomorphisms
satisfying:

dηt “ Hpηtq dXt,

dψt “
`

ηt˚V pη´1
q
˘

pψtq dXt. (5.23)

Of course, in order to prove this result, we need to develop some tools such as: change of
variables and some Itô-Ventzel adapted formula for rough paths.



Chapter 5. Examples and open problems 69

5.4.3 An averaging principle for systems driven by fBM

Basically, an averaging principle refers to a interlacing between two dynamics in such way
that one of them is, somehow, slower and it is affected by the other. In other words, the
problem consists of studying the possibility, by some topology, of approximating those
two dynamics. This problem appears in many works such as Arnold [4], Sanders et al
[59], Sebastian Ledesma and Fabiano Silva [35], Gargate and Ruffino [23], Li [39], among
others. In the sequel we do a brief description of the problem: given a Riemannian foliated
manifold pM,Fq and let U be a open subset of M , the idea is considering diffeomorphisms
of the form ϕ : U Ñ Lx0 ˆ V , where V Ă Rd is an open connected subset which contains
the origin and Lx0 is the leaf passing through a point x0 P M . Consider the following
stochastic differential equation:

dxt “ X0pxtqdt `

d
ÿ

k“1
Xkpxtq ˝ dBk

Hptq. (5.24)

Where Xk, for k “ 1, . . . , d is a smooth vector field on M and BHptq “ pB1
Hptq, . . . , Bd

Hptqq

is a d-dimensional fraction Brownian motion (fBM). Let K be another smooth vector field
on M , if we make a small perturbation of order ϵ ą 0 in the direction of K, then we can
rewrite the system (5.24) as:

dyϵt “ X0pyϵtqdt `

d
ÿ

k“1
Xkpyϵtq ˝ dBk

Hptq ` ϵKpyϵtqdt. (5.25)

If xt and yϵt are solutions of systems (5.24) and (5.25) respectively, the idea is to explore
the convergence of the following expression:

„

E
ˆ

sup
sďt^τϵ

|fpyϵsq ´ fpxsq|
p

˙ȷ
1
p

.

Where τ ϵ is a stopping time of the process yϵt and f : M Ñ R is a Lipschitz and continuous
function. We believe that the projection of yϵt into the subset V converges for the solution
of a deterministic equation when ϵ Ñ 0, we are looking forward to find good estimates for
the rate of convergence (part of the ergodic estimates will be based on Hairer [25]).

5.4.4 ϵ - Optimal stochastic control for non-Markovian systems (in Lie groups)

Control theory plays a major role in most applications of differential equation in any
physical system. This theory is crucial when one can control – either constant in time or
time-dependent, one or more parameters of a system, say, with conditions like: temperature,
pressure, concentration of substances, investments, humidity, position and velocity of
autonomous vehicles, satellites, electromagnetic parameters, action with vaccination in
a population etc, just to mention few of them. Around the last few decades of the 20th
century, emboldened by the well development of deterministic control theory and the
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constant improving of stochastic analysis and stochastic dynamics, the theory of stochastic
control started to develop rapidly thanks also to a countless number of relevant application.
As for the deterministic control theory, among hundreds of excellent introductory literature,
we mention e.g. Colonius and Kliemann [17], Bullo and Lewis [9], Bacciotti [5], Tan [63],
Ren and Tan [55], Zhang and Zhuo [66] and references therein; yet, for stochastic analysis,
dynamics and control, among a list of excellent introductory texts, see e.g. Arnold [4],
Oksendal [51], Protter [53], Leão et al [34], Zhou [67], Saporito [60], Qiu [54], Nutz [50]
and references therein. Control theory in stochastic systems is fascinating in the sense that
although the outcome is random and unpredictable, nevertheless in many cases, its law as
a random variable can be controlled. It means that many useful properties and tools can
be applied in order to optimise the chance that the outcomes are favourable.

Besides the pure geometrical motivation on extending the control settings to Lie groups,
we point out some other applied importance: 1) this theory encapsulates the multiplicative
approach, in the sense that the products here can be considered as the usual product of
square matrices; 2) Lie groups are the appropriate frame to work with linear systems: in
many of these cases G is the group (or a closed subgroup ) of positive determinant n ˆ n-
matrices Gl`pn,Rq; 3) this approach also includes the framework for any homogeneous
space via quotient by closed subgroups, e.g. n-dimensional spheres, torus, Grasmannian,
projective spaces, hyperboloid model and many others. In all these cases, the properties
of the Lie group theory are important tools in the analysis and interpretation of the
dynamics: decompositions (Iwasawa, polar, eingenvectors etc), invariance by translations,
adjoints, geometrical structures of fibre bundles, connections, local diffeomorphism with
to the corresponding Lie algebra, and many more. A vast and wide-ranging literature are
available from applied to more theoretical approach. Just to mention few of them, see e.g.
from the classical [16], the well known [64], the more introductory [7] or the more recent
[58], including all references therein.

Let G be a connected Lie group with its corresponding Lie algebra g, identified with the
tangent space TeG, where e is the identity of G. The dynamics of the controlled trajectories
Xu

ptq P G, with initial condition Xu
p0q “ e in this context is described by the right

invariant vector fields:

dXu
ptq “ dpRXuptqqe αpt,Xu

t , uptqq dt ` dpRXuptqqe σpt,Xu
t , uptqq dBHptq, (5.26)

where α and β are g-valued functions, dpRXuptqqe : TeG Ñ TXuptqG is the derivative at the
identity of the right translation RXuptq : g ÞÑ gXu

ptq. The functions α and β depend on
time t, the past trajectory s ÞÑ Xu

psq with s P r0, ts and the control function (bounded
measurable) u. If the Lie group G is a subgroup of matrices, equation (5.26) can be written
with a much more familiar notation

dXu
ptq “ αpt,Xu

t , uptqq ¨ Xu
ptq dt ` σpt,Xu

t , uptqq ¨ Xu
ptq dBHptq,
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where ¨ stands for the usual product of square matrices.

Let ξ : CT Ñ R be a Borel functional, where CT is the set of continuous trajectories in G.
Hence, for a certain final time T ą 0 one is looking for the optimal performance given by

sup
uPUT

E rξpXu
qs . (5.27)

The idea here is to create an algorithm that will return good estimates for expression
(5.27). We expect that for all ϵ ą 0 it is possible, numerically, estimate a stochastic control
u˚, such that:

ErξpXu˚

qs ą sup
uPUT

ErξpXu
qs ´ ϵ. (5.28)

This idea of studying a stochastic optimal control on Lie groups was motivated by our
recent paper r42s.
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