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Resumo

Seja M uma variedade compacta munida de um par de folheagoes complementares (vertical
e horizontal). O objetivo desta tese é estudar decomposigdes de fluxos de difeomorfismos
em um contexto de baixa regularidade. Provamos que dado um semimartingale Z; (o qual
pode ter infinitos saltos em intervalos compactos), entao, até um tempo de parada 7, um
fluxo de difeomorfismo em M dirigido por Z; pode ser decomposto em um processo no
grupo de Lie de difeomorfismos cujas trajetorias caminham ao longo das folhas horizontais
composto com um processo no grupo de difeomorfismos cujas trajetérias caminham ao
longo das folhas verticais. Equagoes para estes processos sdo determinadas. Os processos
estocasticos com componentes de saltos sao gerados por equagoes de Marcus (como em
Kurtz, Pardoux and Protter, Annal. I.H.P., section B, 31 (1995)). Generalizamos ainda
mais este contexto geométrico para quaisquer tipo de semimartingales. Mostramos também
que esta decomposi¢ao também funciona para solugoes de equagoes diferenciais de Young
e exploramos alguns aspectos geométricos da integral de Young. No contexto de saltos,
nossa técnica é baseada em uma extensao da formula de It6-Ventzel-Kunita para processos
com saltos. No contexto de integrais de Young, fazemos uma aplicacao de uma férmula
de Ito-Ventzel-Kunita para caminhos a-Holder Continuos proposta por Castrequini e
Catuogno (Chaos Solitons Fractals, 2022). Algumas obstrugoes geométricas e topoldgicas

para decomposicoes também sao consideradas.

Palavras-chave: Decomposicao de fluxos, processos com saltos, integral de Young, integral

de Marcus, formula de It6-Ventzel-Kunita.



Abstract

Let M be a compact manifold equipped with a pair of complementary foliations, say hori-
zontal and vertical. This thesis aims to study a decomposition of flows of diffeomorphisms
in the low regularity context. Namely, we prove that given a general semimartingale Z;
(which can have an infinity number of jumps in compact intervals) up to a stopping time
7, a stochastic flow of local diffeomorphisms in M driven by Z; can be decomposed into a
process in the Lie group of diffeomorphisms which trajectories remain along the horizontal
leaves composed with a process in the Lie group of diffeomorphisms which trajectories
remain along the vertical leaves. SDEs of these processes are shown. The stochastic flows
with jumps are generated by the classical Marcus equation (as in Kurtz, Pardoux and
Protter, Annal. I.H.P., section B, 31 (1995)). We enlarge the scope of this geometric
decomposition and consider flows driven by arbitrary semimartingales with jumps. We
show that this decomposition also holds for solutions of Young differential equations
exploring the geometry of Young integrals. In the jump context, our technique is based
on our extension of the [t6-Ventzel-Kunita formula for stochastic flows, which may jump
infinitely many times. In the Young integral context, we apply a Young It6-Kunita formula
for a-Holder paths proved by Castrequini and Catuogno (Chaos Solitons Fractals, 2022).
Geometrical and other topological obstructions for the decomposition are also considered,

e.g., sufficient conditions for the existence of global decomposition for all ¢ > 0.

Keywords: Decompositions of flows, jump processes, Young integral, Marcus integral,

[t0-Ventzel-Kunita formula.
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Introduction

In this thesis, we study some geometric aspects of decomposition of flows and dynamics
generated by Marcus and Young differential equations. Motivated by the fact that in many
kinds of dynamical systems, in order to obtain local or asymptotic parameters of the
dynamics, one performs a befitting decomposition of the associated flow, our main example
of application of this low regularity techniques in manifolds concerns a decomposition of
the associated Marcus and Young flows. For good references related to Marcus integral and
discontinuous noise, we recommend Marcus [45], Lévy [37], Protter [53], Kurtz et al. [33],
Oksendal and Sulem [51], Applebaum [2], Hartmann and Pavlyukevich [26], [27], among
many others. For works related to a-Hoélder trajectories with av € (1/2,1] (our case) and
Young integral, see e.g. the classical [65], or more recent Hairer and Friz [22], Gubinelli et
al. [24], Lyons [38], Castrequini and Russo [13], Castrequini and Catuogno [15], Cong [19],

Ruzmaikina [57], and others.

Generally, decomposition of flows appears in the literature related to distinct geometrical
or analytical contexts. We mention few of them: given a system in a semi-simple Lie group,
we get much information if we decompose the system into each component of the Iwasawa
decomposition (see, e.g. in the stochastic context Malliavin and Malliavin [44]); given a
stochastic flow in a Riemannian manifold, one can write this flow (up to some conditions)
as a Markovian process in the group of isometries of the manifold composed with a process
in the Lie group of diffeomorphisms which fix the initial condition and has derivatives at
this point given by an upper triangular matrix, see Ming Liao [40], [41]. Also, given a flow
in an m-dimensional manifold with a pair of complementary foliation (i.e., locally, the
manifold and foliations are diffeomorphic to R* x R™™*), then locally, in time and space,
a stochastic flow can be written as a composition of diffeomorphisms which preserve each
of these foliations, see [47], [46]. We will make this last example more precise and explore

its potential in the Marcus and Young integral context.

The decomposition of Marcus and Young flows is allowed thanks to It6-Ventzel-Kunita
type formulas in this low regularity context, Theorem 18 due to Castrequini and Catuogno
[15] for flows generated by Young differential equations, and Theorem 11 for Marcus
equation context. The framework where we apply those formulas is a pair of geometrical
distributions (involutive, i.e., which generates a foliation or not). The main results in this
framework establish the local decomposition of Marcus and Young flows of diffeomorphisms
as one component given by a diffeomorphism generated by vector fields in one distribution
and another component given by a diffeomorphism generated by the other distribution.

Precise definitions are given in chapter 3. In this scenario of low regularity of trajectories,
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the geometric Young [t6 Formula, Theorem 14, opens the possibility to many basic
geometric constructions on this dynamics. These topics are explored in the next section,
where we prove the existence of horizontal lifts on principal fiber bundles with an affine
connection. In particular, considering a Riemannian manifold and its orthonormal bundle,
parallel transport and covariant derivatives can be established along a-Hoélder trajectories.

Development and anti-development can also be constructed.

The thesis is organized as follows: in the first chapter, we recall basic properties and defini-
tions of foliated spaces, Young integrals, and stochastic processes with jump components
(general semimartingales), and we prove the relevant geometric results for later use. In
chapter 2, we study the decomposition of stochastic flows defined over a Riemannian
manifold M starting at an initial point xqg € M and running exclusively along vertical
concatenate with horizontal trajectories. We will study some geometrical and analytical
conditions for the existence of decomposition of flows along the leaves of a foliated space.
Some of these conditions can be intrinsically related to the manifold. In chapters 3 and 4,
we prove the decomposition of Marcus and Young flows given complementary distributions.
In chapter 5, we present examples. Initially, linear systems are treated with a pair of
foliations given by affine parallel hyperplanes. We present conditions for the existence of
global decomposition at any time in this context. The last example provides explicit calcu-
lations for decomposition of jump dynamics in the case of fiber bundles over homogeneous
space G — M = G/H where G is a Lie group and H < G is a closed subgroup. The last
section of this work states some open problems related to the decomposition of flows and

stochastic optimal control.
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1 Preliminaries

1.1 Foliations

Given an n-dimensional smooth manifold M, a foliation F of dimension 1 < k < n in M is
a partition of M into immersed connected submanifolds of dimension k, called the leaves
of F with local foliated chart. More precisely, locally, (M, F) is diffeomorphic to open sets
of R® = RF x R®* in such a way that the leaves have constant second coordinate. In fact,
a foliation (M, F) is identified with a foliated atlas which is coherent along the leaves in

the following sense:

Definition 1. Let M be a smooth n-dimensional manifold. A (smooth) k-dimensional

foliated atlas A of M is a maximal atlas on M which satisfies:

1) If (U,a) € A, then a(U) = Uy x Uy = R x R"™* for Uy, U, open subsets of R* and

R™* respectively.

2) Given two local charts (U, «), (V,5) € A, with U n'V # &, then the change of
coordinate map is given by ao 87 (z,y) = (hi(x, ), ha(y)), for some smooth maps

hy and hs in the appropriate domain.

A foliated atlas A is said to be regular if it is locally finite and for any foliated chart
(U, «) € A, the closure of its domain U is a compact set contained in V, the domain of
another foliated chart (V, 3). The sets o~ '(B, {y}) = M, for (U,a) € A, B = R* open set
such that (B, {y}) < a(U) are called plaques of the atlas.

Consider the equivalence relation in M given by z ~ y if and only if there exists a
finite sequence of plaques Fy, P,..., P, with x € Iy, y € P, and P, n P,_; # J for all
i =1,...,p. The equivalent classes here determine a one-to-one correspondence between
regular foliated atlases and the leaves F' of a foliated manifold (see e.g. [11, Thm. 1.2.18]).
Given a point p € M, the unique leaf of the foliation passing through p is denoted by F(p).
The set F(S) = UpesF(p), for S < M, is called the saturation of S by F.

Example 1. (Trivial foliation). Let M be an n-dimensional manifold. Then, M x R, for
k € N, is a foliation. In fact, its leaves are M x {p}, for p € R* and the leave space is R¥. In
general, given a submersion g : M — @, where @) is a k-dimensional manifold, the fibers

of g can be seen as leaves of some foliation and () as the leave space.
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Example 2. (Fibre bundles). Let E, B and F' be differentiable manifolds and consider a
diferential map 7 : E — B, a cover {U,};c; of B and a family of diffeomorphisms ¥;, such

that the following diagram commutes:

E—%U,xF

B
In the diagram, p; is the projection map in the first component of U; x F', for all i € I.
The group {¥;; = ¥, o \I/j_l}UmUﬂé@ is called the structure group of E. The sets 7 *(b),
b € B are called fibers and the fibers generate a foliation in the space E whose leaves are

diffeomorphic to the connected components of F'.

Example 3. (Foliations defined by submersions). Let M™ and N" be Riemannian mani-
folds with dimensions m and n respectively. Consider f : M™ — N™ a smooth submersion.
By the local form of submersion, it follows that for all p € M, there exists local charts
(U, ) on M and (V,4) on N, such that pe U, ¢ = f(p) € N and

o(U) =U; x Uy c R™" x R",
and
U = Vi = 9(V),
with
Yofop iUy xUy — U,
(z,y) — v

Therefore, the chart (U, ) define a foliation structure on the manifold M, where the leaves

are generated by the connected components of f~(c), ce N.

Example 4. (Non-singular vector fields). Let M be a Riemannian connected manifold
and X be a non-singular vector fields on M. Consider the following ordinary differential

equation:

dx
i X(x). (1.1)

The solution curve of equation (1.1) is a leave of a 1-dimensional foliation for each initial

condition zop =y e M.

In some cases, we need the foliation to be well-behaved, i.e, we need it to be regular in the

following sense:
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i) The closure of each open set is a compact subset of some foliated chart.
ii) Each covering by coordinate systems is locally finite.

iii) The closure of each plaque of one chart intersects at most one plaque in each other

chart.

In the sequel, we state two important definitions.

Definition 2. We say that the maximal atlas of (M, H, V) is transversely orientable (for
the horizontal foliation) if for all change of coordinate map y; : ¢2(U; n Uy) — R, with

¢1 o ¢2_1 = (yb -'-;yn)

O(Yn—k+1, - Yn)

det
O(Tp—kat1y ey Tn)

> 0. (1.2)

Unless otherwise stated, we are going to assume that our foliation (M, F) is tranversely
orientable. This is not quite a restriction since if F is not transversely orientable, it can
be lifted to a transversely-oriented foliation on a double covering of M, see e.g. [11, Prop.
3.5.1].

Definition 3. Let H and V be two complementary foliations on M. A is a biregular atlas
on (M, H,V) if A is foliated and regular for H and V simultaneously. Namely, given two
biregular coordinate systems (U, ) and (V, ), with U n'V # &, then the change of
coordinate map is given by oy o ay ' (z,y) = (hi(x), ha(y)), for some smooth maps h; and

hs in the appropriate domain.

The following basic result is crucial on determining the topology of relevant sets we are
going to introduce in chapter 3. It is a nontrivial result if one considers, for example,

non-compact or dense leaves in a compact foliated space.

Proposition 1 (Uniform tranversality). Consider (M, H, V), a manifold with complemen-
tary foliations H and V. Fix a leaf I, say, in ‘H. Given two points p,q € I, let V,,,V, € V
be the vertical leaves passing thorough p and ¢ respectively. Then, there exist open sets
in the intrinsic topology Dy < V,, Dy < V, with p € Dy, ¢ € Dy and a diffeomorphism
f: Dy — Dy such that f(L n D) = L n Dy for every horizontal leaf L in H.

Proof. Consider biregular charts ¢, : U, — U; x Uy and ¢, : U, — Uy x Uy in a
neighbourhood of p and ¢ respectively, with Uy, U; < R* and Us,, Uy < R"*. By the
uniform transversality theorem, see e.g. [10, Thm. 3, Ch.III] there exist submanifolds Ny
and N, with p € Ny and ¢ € N, transverse to F' and a diffeomorphism f : N7 — Ny such
that f(L n N;) = L n Ny for all horizontal leaf L .
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To conclude the proof, we just have to show that N; and Ny above can be chosen as open
sets Dy and D, of the vertical leaves V,, and V;. Since N; is transverse to F' at p, then the
derivative at p of the non-linear projection ¢, := ¢, ({0} x T 0 ¢, 04) : Ny =V}, is an
isomorphism between the tangent spaces T, Ny and T,,V},, where ¢ : N; — M is the inclusion
and 7 : R" — R"* is the projection. By the classical local inverse theorem, there exists
an open set D; where the restriction of 1y, is a diffeomorphism. By the same argument, we
have that there exists an open set Dy where the restriction of v, := ¢ ({0} x 3 0 04 04)

is also a diffeomorphism.

The diffeomorphism f : D; — D, of the statement is given by f = 1, o f o w;l with
Dy = (D1 ~ f7H(D3)) and Dy = 1, (f(D1) n Dy).

O]

1.2 Distributions

Here we present another perspective of studying foliations which can be done via differ-
entiable vector fields. These ideas are well known in the literature and can be found in

Nomizu [49], Candel and Colon [11], Camacho and Lins Neto [10], among many others.

Definition 4. Let M be a Riemannian connected manifold. A distribution A, with
dimension k, is a map that assigns each point p € M, a subspace A,. The distribution A
is said to be differentiable if each point p € M has a neighbourhood U, such that for all

q € U, there exists a family of smooth vector fields X;(q), for i = 1,..., k, which forms a
basis for A,.

In this context, we say that a differentiable vector field defined over U belongs to the
distribution A, if X (p) € A,, forall pe U.

Definition 5. A differentiable distribution A is said to be involutive if for all local basis
Xi,..., Xy of A, the brackets [ X;, X;] belong to A, i.e, the distribution is a Lie subalgebra
of X(M).

Usually in the literature, the manifold M is called an integral manifold of the distribution
A if A, = T, M, for all p € M. The next theorem shows that foliations are sometimes
generated by infinitesimal data, such as a smooth k dimensional distribution A < T'M.
The involutiveness condition of a distribution is the classical result known as the Frobenius

theorem.

Theorem 1 (Frobenius). Let M be a connected Riemannian manifold and A be a
distribution in 7'M . Then, there exists a foliation on M such that its leaves are integral

manifolds of A, if and only if, A is involutive.
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1.3 The a-Holder space

Let E be a Banach space and C([0,T], E) be the space of all continuous paths = : [0,7] —

E, with the norm:

l|z]lo = sup |z¢|. (1.3)
te[0,T]

For a € [0, 1), we define the a-Holder seminorm of a path x by:

|t
(67 = 9 ]_.4
ol = sup 21 (1)

where z4 = 2, — ;. We denote by C*([0,T], E) the space of all continuous paths, such

that ||x||, < 0. In the sequel, we remark some well-known properties of the seminorm 1.4.

Remark 1.

1. If 0 < a < <1, then C°([0,T], E) = C*([0,T], E). In fact, note that:

|t
||z|[a = sup

t— s|P7 < ||x||g TP
0<s,t<T ]t - s’ﬁ| | || ||,3

2. C*([0,T], E) is a Banach space with the norm:
[#]o = |o] + [[]]a-
3. If € C*([0,T], E), then z is a ;—variation path. Indeed, let 7 be a partition of the
interval [0,7']. Then, for p = i,

Ml = wal? < Y (fllaltion — %) = ||zl [T

tiem tiem

Hence,

1
p
|x|P = ( Sup 2 |xti+1 — Ty p) < HSL’HQTQ.
7eP[0,1] 7
4. Lower semicontinuity and interpolation. Let 2", x € C*([0,T], E), such that
lin;C 2" = x pointwise. Then,
l|z]|o < liminf ||2"]],.

And

@[Q

1—
k3
el < llell ( sup |)
0<s,t<T

It follows straightforward from inequalities:

|x?t

[ = lim inf
|t — s|® noJt—s|e

[e%
£ sl 7, 1-e
iost  \jpospm) [l 7

< lim inf ||

And
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The next classical result states a condition for the possibility of approximating an a-Holder
path by a differentiable path in C*([0, 7], E). We denote by C**([0,T], E) the closure of
all differentiable paths in C*([0,T], E).

Proposition 2. A path z e C**([0,T], E), if and only if,

lim sup 2 = 0.
0=0 |s_yj<g |t — 5|*

For a proof, see Friz and Hairer [22].

Corollary 1. Let 0 < o < 8 < 1. Then,

C7([0, T, B) = ¢*([0,T], E).
Proof. Take x e C*([0,T], E) and consider a fixed § > 0. Let s,¢ € [0,7T], such that
|t — s| < 0. It follows that:

|xst| . |$st‘ B—a B—a
|t—8|o‘ - |t—8|ﬁ|t_8| §|I|55 :

Hence,

lim sup 2 = 0.
3=0 |y _sj<s [t — 8]|*

By proposition (2), we conclude that z € C**([0,T], E).

]

Example 5. Let z : [0,7] — R be a path defined by z, = t%, for a € (0,1). For
0 < s,t <71, we have that:

mal sl = () _1-5

S
t

f=sl" " J=s T3 T 1o

Then, ||z||o <1 and z € C*([0,T],R). Moreover, we have that for all ¢ € (0,7T]:

2
[t — 0]« to
Then,
1. |xst|
im sup

d—0 [t—s|<d |t — S|a -
By proposition (2), z € C**([0,T],R).

Lemma 1 (Sewing Lemma). Let E be a Banach space and A : A} — E a continuous
functions. Where A% = {(a,b); 0<a<b<T}. For 0 <s <u<t<T, we set:

6Asut = Ast - Asu - Aut-
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We assume that there exist A > 0 and € > 0, such that:
10 Ague|] < At — s|'T.

Then, there exists a continuous path o : [0,7] — FE, with oy = 0, and a constant
C = C(€) > 0, such that:

loe — 0s = Aw|| < CAJt — 5],
for all (s,t) € A%. Moreover, it holds that:

lim Z A, = 0p — 0.

0
= [w,v]er

The next theorem states the existence of the called Young integral, for more details about

the its convergence and properties, see the classical paper by Young in [65].

Theorem 2. Let E and F be two finite dimensional Banach spaces, take «, § € (0, 1],
such that o + 8 > 1, x € C*([0,T], E) and y € C°([0,T], L(E, F)). Then for all ¢ € [0,1],

there exists the following limit:

t
rdxr = lim uLuv,
Jy e =, 3

0 u,v]em

where 7 € P[0, T]. This limit is called the Young integral of y with respect to x. Moreover,
it holds that for all (s,t) € AZ,

< Kllyllsll=llalt — s[**7.

t
J yrd'rr — YsTst
0

Where K is a constant which depends only on a + 5.

Proof. set Ay = ysxs. Then,

5Asut = Ast - Asu - Aut
= YsTst — Yslsu — Yulut
= Ys(Tst — Tou) — Yulut
= YsTut — YuLut
= “YsuTut-

Therefore,

16 Asue| = lysuwuel < [yllsllallalt — s[**7.

The existence of the Young integral follows directly from lemma (1).
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[

The next classical theorem states the existence and uniqueness of solutions generate by
Young differential equations. The proof follows via fixed point theorem. Again we refer

the reader to [65], for more details.

Theorem 3. Let z € C*([0,T],R?), with 8 € (1/2,1], f € CZ(R™, L(R%, R™)) and y € R™.
Then, there exists a unique y € C*([0,T],R™), such that:

t
Y=y + f fys)dzs,
0

for all t € [0,T].

The following theorem is an adaptation of H. Kunita result (see [32]) about composition of
flows. In this context, the composition is considered for flows defined by Young differential

equations.

Theorem 4. Let U, V and W be Banach spaces. Consider x € C*([0,T],V) and h :
[0,T] x U — L(V,W) a differentiable map on U such that:

e (t,z) — Dhy(z) is continuous.

« he CWU,CP0,T], L(V,W))), for ; <pB <1,

Consider a map ¢ : [0,T] x U — W, two times differentiable on U, such that the functions
(t,2) — Dg,(z) and (t,z) — D?g,(x) are continuous. Assume that g satisfies:

t

9:(x) = go() +J hs(z)dzs.

0
Then, for any u e C*([0,7],U),

t

) = o) + [ mutr, + | ' Dyguu)dus,

0

Where the integral

L Dga(us)dus (15)

is understood in the Riemann-Stieltjes sense. If Dg € C(U,C7([0,T], L(V,W))), for
v € (1/2,1], the integral (1.5) is a Young integral and ¢ — g;(u;) € C(W).
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Proof. see Castrequini and Catuogno [12, Thm. 3.1].
[

The next following corollaries are important tools which are going to be applied in the

decomposition studied in Chapter 4. For a proof, see [12].

Corollary 2. Consider z € C*([0,T],V), y € C*([0,T],U), f e C*(W,L(V,W)) and g €
C*(W, L(U,W)). Let n and 1 be solution maps associated with the YDE’s dn, = f(n,)dz;
and dy; = g(1,)dy; respectively. Then, the map ¢; = n; o 1y satisfies:

dor = f(pe)day + neg(@r)diy.

Where 1.9 := (D15 - g) o W;l(l')-

Corollary 3. Let u be a solution map associated with the YDE:
dug = f(ug)dz,.
Then, the inverse map ¢ — u; *(2) satisfies the YDE:
dzy = —Dug(z) " fug(2))d,.

With initial condition zy = 1.

1.4  Stochastic processes with jump components

For the reader’s convenience, in this section we state the main results about stochastic
processes with jump components. Those topics will be crucial in Chapter 3 where we
propose a decomposition for diffusion generated by Marcus differential equations. For more

details see e.g. Protter [53], Kurtz et al [33], among many others.

We consider a complete probability space (£, F, F;, P), with a given filtration (F;)o<i<oo-
(By filtration we mean a family of o-algebras F; which increases as: F, < Fy, if s < t). In
this sense, a complete filtered probability space (2, F, (F)o<i<w, P) is said to satisfy the
usual hypotheses if the filtration has the following properties:

o If Ae F, with P(A) =0, then A € F.
o Fi = NustFu, forall 0 <t < .

With this concept, a stochastic process x is said to be adapted if x; € F;, for each t > 0.

From now on, we will always assume that the usual hypotheses hold.
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Definition 6. A stochastic process x is called cadlag if a.s. its trajectories are right
continuous, with left limits. (cadlag is actually an acronym from the french phrase:

continue a droite, limite a gauche).

1.4.1 Lévy processes

Lévy processes were the first class of stochastic processes to be studied in a modern way
back in the mid-1900s. It includes Brownian motions and Poisson processes as special cases,
which is not actually expected since those are very different. Even though sample paths of
Brownian motions are continuous and Poisson processes have discontinuous trajectories,
there is one thing in common about these processes, both of them are Cadlag as do all

Lévy processes.

Hence, in recent decades the study of Lévy processes as a whole class, rather than splitting
up into individual cases, has become an attractive field of research which unifies all
continuous and discontinuous processes theory. Of course there are many interesting books
that deal with Lévy processes, see e.g. Khintchine [29], Applebaum [2], Lévy [37], Protter

[53], among others.

Definition 7. An adapted process Z; = (Z;)i=0, with Zy = 0 a.s. is called a Lévy process

if it satisfies the following properties:

1. Z has independent increments, i.e. Z; — Z, does not depend on F;, for t > 0.
2. Z has stationary increments, i.e. Z; — Z; 4 Zi_g, for t = 0.

3. Z is stochastically continuous, which means that for all €, £, s > 0,

ymP(\Zt — Zs| > ¢€) =0.

Example 6 (Brownian motion). An adapted process B = (B;);~¢ is said to be a standard

Brownian motion if it is a Lévy process such that:

1. By ~ N(0,tI), for each t > 0.

2. B has continuous trajectories.

The Brownian motion is a Lévy process which has been intensively studied since early
years of the twentieth century when it was introduced. It is important mentioning two

basic properties: the Brownian motion is locally a-Hélder continuous for a € (0,1/2), i.e.
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for all stopping time 7" > 0, and w € 2, it follows that there exists a constant K = K (t,w),
such that:
| Bi(w) = Bs(w)| < Kt — s,

for ¢ = 0, and the sample paths t — B;(w) are a.s. nowhere differentiable. For further
examples and details of the proofs, we strongly recommend the classical Sato [61] and

Revuz and Yor [56], among others.

Example 7 (The Poisson process). A Poisson process is a Lévy process N, such that
N, e Nu{0},t >0, and

)™
P(N;, =n) = (A) e M
n!
For each n = 0,1, 2, ... where X is called intensity or characteristic exponent of the Poisson

process N. In this case, we use the notation: N; ~ 7(At). Poisson processes are exhaustively

studied and used in applications, see e.g. Kingman [30] and references therein.

Example 8 (The compound Poisson process). Consider a sequence of iid random variables
Z,, n € N taking values in R* and let N be a Poisson process as in example (7), that is
independent of all Z,,. We define

Y;IZZl—i-...-i-ZNt.

For t > 0. The process Y is called compound Poisson process. Note that Y; is a Lévy
process (it is straightforward from Lévy definition and dominated convergence theorem).

For k =1 it is also a Poisson process.

Example 9 (Interlacing processes). Let Y and B be two independent compound Poisson

process (as in example (8)) and Gaussian Lévy process (as in example 6) respectively. We
define:
St - Bt + Y;

For all ¢ > 0. Observe that S; is a Lévy process (it follows directly from the definition,
since B and Y are also Lévy processes). The next recursive formula shows that S have
jumps of random size occurring at random times. Using the notation of examples (7) and
(8), we have that for a sequence of stopping times T} < Ty < ... < T,:

-

B, for 0<t<T)
S’t _ ) BT1 + Zl, for ¢t = T1

STl + Bt — BTI, for T1 <t < T2

STQ + Z2, for t = TQ.

And so on recursively.
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Another Lévy property we want to remark is the infinitely divisibility.

Definition 8. A random variable Z; has infinitely divisible distribution if for all n € N,

there exists a sequence of iid variables Y;, Y5, ..., Y, such that:
d

Note that Lévy processes have infinitely division distribution. In fact, suppose that 7 is a

Lévy process, since it has stationary independent increments, for each n € N:

ZtIZL—i-(Zﬁ—ZL) + (Zﬁ—Zﬁ>+...+(Z@—Z(n—l)t>.

n

Where the increments are independent with the same distribution.

1.4.2 The jumps

Another characteristic of Lévy process is the instantaneous change of positions (jump).
We formally define this using a very important process associated to a Lévy process Z

called jump process, which is given by:
AZt = Zt - tha

for each t = 0, where Z,- is the left limit at time ¢. If |AZ;| < C' < w0 a.s, for a non-random

constant C', we say that Z has bounded jumps.

Let A be a borel set in R, such that 0 € A, where A is the closure of A. We define the

following random variables:

T, = inf{t>0; AZ e}

T = inf{t > T}; AZ e A}

Note that the set {T} > t} € F; (it follows by the fact that Z has cadlag paths and 0 ¢ A),
thus T} is a stopping time (more details can be found in Protter [53]). Moreover, by

construction, it holds that lir{‘lo T\ = oo a.s. We define the following process:
n—

ee}
N} = ) 1A(AZ) = ) Lgmey
n=1

O<s<t

The set functions A — N (w) and v(A) = E[N{] define a o-finite measure on R\{0}, see

[Thm 35, [53], this measure is called Lévy measure of the Lévy process Z.
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A commun difficulty in manipulating Lévy processes arises when:

Z |AZg| =0 as.

0<s<t
Which is possible to occur. This problem in some cases can be solved using the fact that

we always have:

Z IAZ* <o as.

0<s<t

This property and the next result will be crucial in Chapter 3.

Theorem 5. Let Z;, t > 0 be a stochastic process. If Z; is Cadlag, then the set
S = {t, AZ, # 0} is at most countable.

Proof. For a proof, see [Thm 2.8.1, [2] |.

1.4.3 The Lévy-Khintchine formula

The Lévy - Khintchine formula is one of the key results in the basic theory of Lévy
processes which decomposes sample paths into continuous and jump parts. It gives an
analytic expression for the characteristic function, which allows mathematicians to work
with it in order to understand some probabilistic and/or geometric properties of Lévy
processes, see Khintchine [29]. In the following we state the 1-dimensional version of Lévy

- Khintchine formula.

Theorem 6 (Lévy - Khintchine formula). Consider a € R, b € [0,90) and a measure v on
R\ {0}, such that:

J min(1, z%)v(dr) < co.
R\{0}

For all A € R, we define a function h(\) by:

b2 ,
h()\) =ia\+ — + J (1 — + i)\$1{‘x|<1}) l/(d:IJ)
R\{0}

Then, there exists a unique Lévy process Z = (Z;);=0, which satisfies:
E [ez’)\Zt:I _ ot

For all ¢t > 0.
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1.4.4 General semimartingales

We say that an adapted stochastic process Z is a semimartingale when it can be decomposed

as:
Zt:ZO+Mt+Ct7

where M = (M;);>0 is a local martingale (in the classical sense) and C' = (C});>0 is an

adapted process with finite variation.

Theorem 7. Lévy processes are semimartingale

Proof. 1t follows by the Lévy - 1td6 decomposition, [Thm 2.4.11, [2]].
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2 The existence of decomposition, geometri-

cal and topological aspects.

Throughout this chapter, we study the decomposition of stochastic flows defined over a
Riemannian manifold M starting at an initial point xq € M and running exclusively along
vertical concatenate with horizontal trajectories. We are going to study some geometrical
and analytical conditions for the existence of decomposition of flows along the leaves of
a foliated space. Some of these conditions can be intrinsically related to the manifold,
some examples are given in section 2.1.1, where is stated the concept of attainability index
(which sometimes can be considered as a topological obstruction for the existence of this

decomposition). We also state a technique to perform a decomposition of the form:

(pt(mo) = nfvsk. © wf\/sk. ©...0 ?7.32 o 17/}.?2 o 77;1 © wil (mo) (21)
Where " and £ are purely vertical and horizontal components respectively. This kind of

decomposition is called of alternate decomposition.

2.1 Decomposition of diffeomorphisms in foliated spaces

The existence of the biregular atlas of the previous chapter is straightforward, see e.g.
[11, Lemma 5.1.4]. Given an initial condition xy € M, we take a local coordinate system
a: U, © M — R* x R" The product R* x R" can be seen as a canonical Cartesian

k-dimensional pair of foliations on R".

Remark 2. Given a diffeomorphism ¢ with initial condition z(, it can be written as
Q= (gol (z,v), o*(, y)), where z, o' (z,7) € R* " and y, ©*(x,y) € R. It follows directly
by the inverse function theorem that there exists a unique (reducing the domain if necessary)
decomposition ¢ = n o1 in a neighbourhood of xy, where n and 1 are horizontal and

vertical preserving dffeomorphismes, if and only if

06” (20)
dy

det # 0. (2.2)

Applying this characterization for a flow of diffeomorphism ¢, one can guarantee the local
existence of decomposition ¢; = n; 0 ¥, up to a stopping time 7, where 7, and 1), are flows

of diffeomorphisms preserving horizontal and vertical components respectively and

0% (x,y)

T = sup {t > 0;det 2

#Oforall()ését}. (2.3)
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For more details see e.g. Melo et al [47]. In some cases, there exists some degree of
compatibility of the vector fields with the complementary distributions in such a way that
the decomposition presented above holds for all time ¢, see [46]. A basic but important
example is a linear system on R™\{0} endowed with spherical and radial foliations, note
that in this specific case, the system sends radial leaves into radial leaves, therefore the
decomposition holds for all time. Another standard example in this context is the derivative
flow @y : Tyo M — T, (50) M, for xy € M, in the linear frame bundle 7 : BM — M. Note
that ¢ is an isomorphism between the fibres 7 '(20) and 7 *(p(z0)), for all t > 0,

therefore ¢, has a decomposition @, = 7, 0 ¢, for all time.

2.1.1 Attainability index and topological obstruction

In many interesting pairs of foliations, given an initial condition xq € M, there exists
a set of points which one cannot reach by a vertical trajectory concatenated with a
horizontal path. Even if we are allowed to concatenate a number of alternating vertical and
horizontal paths, see example (10). This topological restriction to accessibility represents
also an obstruction for the decomposition of a dynamics given by a continuous family of
diffeomorphisms ¢, which, say, send x( into a non-accessible point. This leads us to the

following concept:
Definition 9. The k-attainable points from x € M with respect to the pair of foliation
(M,H,V) is the composition of saturated sets

Ab(z) = —HV(HV(2))) . (2.4)

~
2k times

In other words, we have k compositions of the pair of composed saturation (H o V)(-).

Note that A" (x) is horizontally saturated for all & € N and for all 2 € M. If a diffeomorphism
¢¢(z) is decomposable (in the sense of (2.1)) in a neighbourhood of x, then ¢,(z) e A*(x)
for k € N (the converse is not true: rotations of 7/2 are counterexamples). Hence we
can consider the non-k-attainability as an intrinsic obstruction to the decomposition of a

diffeomorphism.

Proposition 3. Given a biregular foliated space (M, V,H), the attainable sets A*(z)

are open sets for all x € M and k € N.

Proof. Consider initially & = 1 and a point y € A'(x). By definition, there exists at least
one point z € H(y) NV (z). By Proposition 1, there exists an open set z € Dy < V(z) = V(z)
which is sent diffeomorphically to an open set y € Dy < V(y) along the same horizontal
leaves. Using a local biregular chart at y we conclude that the horizontal saturation of Dy

contains an open neighbourhood of y.
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For k£ > 2 one just has to write

A= | Aw.

ye A1 (z)

The result follows by induction.

]

Proposition 4. Given a biregular foliated space (M,V,H), if M is connected then
M = Upen A" () for all 2 € M.

Proof. Indeed, we only have to prove that Uy A" is a closed set. Suppose that there
exists a point x € 0 Ugen AF. There exists a local biregular chart in a neighbourhood of
x which is mapped in an open rectangle in R” x R"™". An infinite number of points of
Uken A" are also mapped in this open rectangle. Trivially, these points can also reach
with just one more step: vertical and horizontal trajectory. We conclude that = € Upen A”

hence this set is open and closed in M.

O

It is particularly interesting when one can reach the whole manifold in a finite number of

steps. This leads us to the following definition:

Definition 10. The index of attainability at = € M with respect to (M, H, V) is defined

as the natural number
Ia(z,H,V) = min{k e N; A¥(z) = M}, (2.5)
when it exists. Otherwise we say that I4(x, H,V) = .

In other words, the attainability index of x € M is the maximal number of composition by
horizontal and vertical foliations in such way that any point on the manifold is attainable
from x. Decomposition of flows always open an interesting questions about the reversibility

and commutativity of it. This motivate us to state the following definition.

Definition 11. The co-k-attainable set of x € M with respect to (M, H,V) is defined as

Ck(z)=HoVoHo---oV(x)nVoHoVo - oH(x). (2.6)
2k t‘ifmes 2k t‘z'(mes

A point y € C*(2), if y € A*(x) and z € AF(y).

Since for each x € M, A*(z) is open and leaves of H are everywhere transverse to the
leaves of V, then points close enough to each other have the same k-attainable sets for

all k. In particular, for each x € M, there exists a neighbourhood Uy of x, such that all
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points in Uy have the same attainability index. Give x € M and for 1 < k < I4(z,H,V),

there exists a natural chain
Alz) ¢ A(z) ¢ A2) & - ¢ AMEHI) (z) = M (2.7)

Example 10. Consider M = R* = R?\{(0,0)} with the horizontal foliation given by
H = {(x,y) € R*; 2y = o, with a € R} and let the vertical foliation V be the rotation by
7/4 on the leaves of H. H and V are given by grey and blue curves in the figure (1). For
p = (1,1), we have A(p) = {(z,y) € R*;y + > 0}, A*(p) = M. Then I4(p,H,V) = 2,

and

Cp) = {(z,y) eR*™; >0,y >0}
C*(p) = {(z,y) e R™; y>0}.

Figure 1 — Example of a biregular atlas with I4(p, H,V) = 2

In many interesting cases the index of attainability is infinite, see the next example.

Example 11. For M = R*\{(0,0)} with horizontal foliation H = {(x, y) e RA{(0,0)};y =
’ 1
sin(x)

’ + ¢, for ¢ € R\{O}} v {x = (2r + 1)%; re Z} and vertical foliation given by

V= {(m,y) e R\{(0,0)};y = _‘sinl(x)‘ +¢, for ¢ € R\{O}} U {x =

figure (2). In this case, note that for p = (0,1):

2rm

— re€ Z}, see
2

Awp) = {(z.y) e RA{(0,0: 3

Ap) = {@y) e R0,0) -7 <<
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In general,

<z <(2n-— l)g}

e

A'p) = (@) e RA{(0,0)-(2n— 1)

Thus,
J A" () = BA\{(0.0)}

Therefore, we conclude that I4(p, H,V) = c. Moreover, 14(p, H,V) = oo for all point in
(R*\{(0,0)},H, V).

Figure 2 — A biregular atlas with 74(p, H,V) = oo for all point p.
Proposition 5. Let M be a compact connected manifold. For each x € M and k € N,

i) If A*(x) = C*(z), then A*(z) = M.

i) ClA@"V)(z) = VoHo... VoH(x).

.

"

2k times

Proof. i) Let y € 0A" which implies that V(y) n A*(x) is not empty, since 0A" is
H-saturated. Then, there exists z € V(y) n A*(x). On the other hand, by the fact
that z € A¥(z), it follows that z € C*(z), therefore V(y) n H(x) is not empty. Now,
let v be a horizontal curve starting at x and ending at the point w € V(y) n H(z).
Either all vertical leaves of V(y) intersect 0.4 or none of them intersects it, since 0.4
is H-saturated and M is compact. But V(w) = V(y), hence V(x) intersects d.A"(x),
thereby 0.A*(z) = A¥(z) and we conclude that A*(z) = M since M is connected.
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ii) By definition,

CIA(l"-va)(x) = AlaHYV) (x)nVoHoVo--oH(x)

~

2k times

= MnVoHoVo-- oH(x)

J/

2k times

= YVoHoVo---oH(x).

Y
2k times

2.1.2 Alternate decomposition

In this section, we introduce a technique to rescue the decomposability of some flows of
diffeomorphisms which in another way would not be possible to be performed: either by
analytical or topological restrictions. It consists on stopping the decomposition close to
the point where it no longer would exist and restart, from the identity, another couple
of vertical-horizontal diffeomorphisms. In other words: just before the flow approaches a
non-decomposable set in the group of diffeomorphisms, we restart the decomposition with
a more convenient topological-analytical settings. This succession of dual decomposition,
vertical composed with horizontal, represented by (H)V), will be called a cascade or alter-
nate decomposition. So, typically, a cascade decomposition has the alternating structure
HY ... HV. The last term on the left hand side being H or V is not relevant since ending
with V means that the omitted H part is the identity.

Let (¢¢)te[0,a) be a family of global diffeomorphisms on M, with ¢y = Id. Fix a point p € M.
Throughout this section, we consider two local biregular coordinate systems on possibly dis-
joint neighbourhoods: ay, : U, @ M — R" 7% x R* and g, (p) : Up, () = M —> R % x R”,
where U, and Uy, (,) are neighbourhoods of p and ¢;(p) respectively. With respect to these
systems, one writes ¢;(z,y) = (¢1 (z,y), #2(x,y)). We shall use the following notation: for

0<u<v, weset gy, = ¢, 00,

Definition 12. Let (M,H,V) be transversely orientable. The family of diffeomorphisms

¢ above is said to preserve locally transverse orientation at p € M along the interval

[0,s) if det 00i ()

oy

> 0, for all t € [0, s) and all elements o, and ag,(,) in the atlas.

Preserving locally transversal orientation is a geometrical property which does not depend

on the local biregular coordinate systems:

Lemma 2. Let (M,H,V) be transversely orientable. Preserving locally transversal

orientation does not depend on the local biregular coordinate system.
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Proof. Suppose we have two local biregular coordinate systems «; and as in a neighbour-
hood of p. For a fixed time ¢ in the interval of definition, suppose we have also two local
biregular coordinate systems (; and (3 in a neighbourhood of ¢;(p). By Definition 3 we
have that the derivatives of the coordinate change iy o ;' and 310 85 * lie in the subgroup

of matrices in GI(n,R) of the form

with a positive minor of the lower right submatrix (n — k) x (n — k). Hence, we have that

0
det@ [510¢toafl]>0,

implies

0
det@ [B2 0 ¢y 0ayt] > 0.

[

The next proposition, give us some properties of the dynamics on the leaves along

components of a decomposable flows.

Proposition 6. Suppose ¢, is a flow of diffeomorphism which can be decomposed as

¢t(x) = (nf\/skfl © wf\/sk—l) ©...0 (77?2 © 32) © (77;1 © 511)’

up to a time 7 > 0, where ¢* and 7’ are purely vertical and horizontal components

respectively and 0 = sp < §1 < $9 < ... < S, = Sy41 = ... = T is a non-decreasing
sequence of times. Then, for 0 < ¢ < 7, i(z) € V() n H (n; o ¢i(x)) and ni(y) €
H(y) vy o (V(y)-

Proof. In fact, for the first statement, note that ¢(z) € V(z), fori = 1,...,k and x in
the appropriate domain. In addition, 7; preserves horizontal leaves for all ¢ < 7, then
since H (n; o ¥j(z)) = H (;(x)), it implies that v(z) € H (n; o ¢;(x)). For the second
statement, observe that n!(y) € H(y) and y € V(y), therefore n!(y) € n o YL (V(y)).

]

Before we state the main theorem of this chapter, consider an important theorem about

decomposition of diffeomorphisms in a biregular atlas.

Theorem 8. Suppose that (M, H,V) is transversely orientable for the horizontal foliation.
Then ¢; is globally decomposable (in the sense of remark (2)) for all 0 < ¢ < a, if and only

if, it preserves transverse orientation.
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Proof. For a proof, see [47, Thm. 2.5].
[

Theorem 9 (Alternate decomposition). For any fixed x € M, there exists an increasing
sequence of times 0 = 59 <51 < S92 < ... <S8, = Sp31 = ... =a, (re Nu {0}) such that
for all t € [0, a), there exists a neighbourhood U, of x, where we have the following foliated

decomposition:

¢t(x) = (nfk,l,t © §k71,t) ©...0 (77?1,82 © 31782) © (77511 © 1/}511)(:6)’

for t € [sg_1, sk, with nfk_l = Id and ¢§k_l = Id. Here 1/ and v’ are horizontal and

vertical diffeomorphisms respectively for all 5 € N.

Proof. For each xy € M, we consider a neighbourhood U,, of zy and a coordinate system
Qy 2 Uyy © M —> R¥ x R"* with respect to it, we write ¢,(p) = (¢} (x,y), #*(z,v)), for
p € Uy, s > 0 and we define

2
s1 = inf {s € [O,a);deta;;t = 0} — €,

for €; > 0 small enough. For s < s1, ¢s(xo) preserves transverse orientation. Applying a

local version of Theorem 8, it follows that for all x € U,,, ¢s(p) has a foliated decomposition

ds(p) = s 0 vi(p),

where i} and 1! are horizontal and vertical flows of diffeomorphism respectively. If s; = a,

the proof is done, otherwise, for s > s;, we can write ¢ (x) as

¢S(p) = ¢51,so¢51(p>
= o150 (M5, 095, (D).

1

s, (p) and considering u; as the initial value of diffeomorphism ¢,, , we

Taking u; = 1, o ¢
set

2

0
Sg = inf {s € [s1,a); det ?Zs(ul) = 0} — €,

for a small €5 > 0. For s; < s < s5, we apply again theorem 8, and rewrite ¢,(p) as

ds(p) = (03, 02 ) o (my, o) (p),

where n? and 1? are horizontal and vertical diffeomorphisms respectively. If s, = a, the

proof is done. For s > s5, we rewrite ¢(p) as
¢S(p) = ¢82,5 o (7752,5 © 5275) © (77;1,32 © ;1,82)(23)

= 7722,8 o 22,8 o (7731,52 o .31,52) © (77511 o ;1)<p)
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Recursively, for all p € Uy, and s > s;_1, we take u; = (n} ot} )o...o(n2, 002 )o(ns ol )(p)

to be the initial point of diffeomorphism ¢, , s and we define

2

f5lo
s; = inf {s € [si-1,a); det ;z;,s (ui—1) = O} — €.

For ¢; > 0 small enough. Using the above construction, we rewrite ¢(p) as

k k 2 2 1
¢t(p) = (nsk_l,t © sk_l,t) ©...0 (7751,82 © 51,52) © (77;1 © sl)(l’),
for all t < s;, where 1’ and ¢’ are horizontal and vertical diffeomorphisms and s, = s1 =
...=a.
L]

Proposition 7. Suppose that (M, H,V) is transversely orientable for the horizontal
foliation. If ¢4(p) approaches the boundary 0.4%(p) of the k-attainable set, the determinant
2

0P
of 2 (¢s,_,(p)) goes to zero.

Proof. The decomposition occurs in fact on A'(¢,, (p)), hence if ¢.(p) = ¢s, ,.+(p) ap-
proaches the boundary 0.4%(p), then ¢, (p) necessarily approaches the boundary 0.4 (¢s, (p)).

Therefore, ¢4(p) is non-decomposable and by the analytical obstruction (2.2), it follows

a 2
that det M =0.
y

Example 12. Consider the following pure rotation system:

0 -1
Ty = T, 2.8
t ( 1 0 > t (28)
whose solution flow is given by:

cost —sint
o=\ . :
sint cost
Note that this system is not decomposable (in the sense of Remark 2 ) for ¢t = g, however,

for all m/4 <t < 3w/4, ¢; has the following cascade decomposition:

Rot (t _ %) o Rot (Z)

B sec(t — m/4) —tan(t —7w/4) 1 0
B 0 1 sin(t — w/4) cos(t — 7 /4)

V2/2 -1 1 0
0 1 V2/2 £2/2 )

o

@)
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The next example shows that Theorem 9 may hold even if (M, H,V) is not transversely

orientable for the horizontal foliation.

Example 13. Let M = [0,1]*/ ~, where ~ is the identification of the following faces of
the cube [0, 1]°:

(,0,2) ~ (1 —x,1,1 - z2), (2.9)

1
such that the section | x,y, 5 n [0,1]® turns into a Mobius strip S. Note that M is

a tubular neighbourhood of S. In this context, the horizontal and vertical foliations H
and V are given by the image of the horizontal and vertical plaques respectively. It is
worth mentioning that (M\S,H) is transversely orientable, but (M, #) is not. Consider
a complete family of diffeomorphisms given by ¢(x,y,z) = (x,y + t,2). In this case,
¢; is a horizontal flow with respect to the pair of foliation (#,)), hence it can be
decomposed as ¢; = 1 o ¢y, where n, = ¢, and ¢y = Id, for small ¢ > 0. In the
non-transversely orientable foliation case (M,H), ¢; has an alternate decomposition
Gr(zo) = (o)) o...o(n2 ow?) o (nh ol )(z), where s; € {(2k + 1)27, with k € Z},
for a local biregular coordinate system in a neighbourhood of an initial condition x( € S.
Each pair 77{ ot is given by the projection of the two reverting orientation diffeomorphisms
n(z,y,2) = (y,z,2) and ¢ (x,y,2) = (x,y,1 — 2), since ¢, reverses the orientation of
both vertical and horizontal components just before t = s;. In the manifold (M\S, #H), the

decomposition is guaranteed by Theorem 8.

Corollary 4. Suppose that ¢, preserves transverse orientation over A'(x) and I (z, H,V) <
oo for all x € M. Then there exists an increasing sequence of times 0 = sy < 51 < §9 < ... <
Sp = Sp41 = ... =a, (r € Nu {w}) such that, locally, ¢; has an alternate decomposition
for all t € [0,a) as

¢t(x) = (nfk—lat © fk—ht) ©...0 (7731,82 © ¢§1782> © (77;1 © w;)’

i
Si—1,54

with a finite number of pairs (77;, s O ), where 1/1§i, and 77; are purely vertical and

horizontal diffeomorphisms respectively and k < Ia(x, H, V).

Proof. By Theorem 9, there exists a non-decreasing sequence of times 0 = sy < §7 < S5 <

.. < 8 = Sp41 = ... = a, such that ¢, has an alternate decomposition given by

Se(@) = (5,10 V_in) 00 (Mo 0 U3 ) © (05, 0 ¥s)) (2).

Since ¢, preserves transverse orientation over Al(x) for all x, by Proposition 7, the subde-
2
S

oy

terminant (¢s:i_1(p)) gOes to zero just before it reaches A'(¢s, ,(p)), it follows that the
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sequence ($;);eny must be finite.

[

The next theorem states that the alternate decomposition holds also for stochastic flows
of diffeomorphisms. Consider the following Stratonovich Stochastic differential equation
on the manifold M:

k
dr, = . X(x,) 0 AW}, (2.10)
i=0
with initial condition zy € M, where Xy, X1,..., X, are smooth vector fields on M,

(W}, ..., W}) is a Brownian motion on R*, and (W) = t. We suppose that all this
structure is well defined over an appropriate filtered probability space (2, F, (F)i=0, P).
Let ¢y : Q2 x M — M be the stochastic flow associated to the diffusion generated by
equation (2.10). If we assume that the derivatives of the vector fields are bounded, then ¢,
exists for all t > 0.

Theorem 10. There exists a non-decreasing sequence of stopping times 0 =ty < t; <

to <...<t, =t.11 =...=asuch that, locally, ¢;(w, ) is alternately decomposable as

qbt(w’ ZL’) = (T]fk_l,t © wfk_l,t) ©...0 (T]t21,t2 © wi,tg) © (171511 © ¢t11) (W, x)’ (211)

where 1/ and 1/ are horizontal and vertical diffeomorphisms respectively for all j € N,
t € [tp_1,tx] and w e Q.

Proof. Theorem 9 guarantee that the alternate decomposition holds in the space of

trajectories. Now consider the sequence of stopping times (;);en, defined by

Blors
ti(w,z) ;= inf {t € [tic1(w, ), a);det ngy_”(z) = O} — €, (2.12)

for ¢; > 0 small enough, w € €2, and an appropriated z in a neighbourhood of ¢;, (). By

theorem 8 and the cocycle property for stochastic flows, it follows that

¢t(wa l‘) = Cbtk,t(gtk (w)’ uk’) ©...0 ¢t1,t2(9t1 (w)v ul) © ¢t1 (wv .’B)
= (nfk—lat © ¢fk_17t) R (ntzl,tz © wt21,t2) © (771511 © wtll)@"}’ l‘),

where 6, is the canonical shift operator on the probability space and 7/, 1/ are horizontal

and vertical stochastic flows of diffeomorphisms.

]
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3 Decomposition of flows of diffeomorphisms

with jump components

3.1 A generalization of |to-Ventzel-Kunita formula

An interesting problem related to decomposition of stochastic flows of diffeomorphisms
relates to discontinuous noise. In particular, we shall consider semimartingales with jumps
such that the trajectories are cadlag. The main result in this chapter, Theorem 11, is a
generalization of It6-Ventzel-Kunita formula for flows generated by the classical Marcus
equation as in Kurtz, Pardoux and Protter [33]. We enlarge the scope of this formula
allowing the noise to perform infinitely many jumps in compact intervals, it turns possible
to use a big variety of noises which includes, for example, Lévy noise, see e.g. Applebaum
2], Protter [53], Oksendal and Sulem [51], among others.

3.1.1 Stratonovich SDE with jumps (SDEJ)

For the reader’s convenience, we recall the main aspects and definitions of stratonovich
SDEJ in the sense of Marcus equation. Let Z = {Z;,t > 0} be a k-dimensional semi-
martingale, with Z, = 0, and let [Z, Z] = [Z7, Z™] be the covariation matrix which can
be decomposed into [Z, Z] = [Z, Z]° + [Z, Z]*, where [Z, Z]° and [Z, Z]* represent the
continuous and purely discontinuous parts respectively. In Kurtz, Pardoux and Protter
[33], it was proposed the following: Let Y e C*(R% L(R* R?)) with Y = (Y*,...,Y")
k-vector fields in RY. Given an JFy initial condition zo, the equation

t
Ty = T + J Y(xs) o dZs, (3.1)
0

has a unique solution up to a stopping time 7. Here, the continuous part of the solution
corresponds to the classical Stratonovich equations and the jump part are performed along
ficticious time (jumps of AZ) along the deterministic flow of the corresponding vector field.
See details in [33, Eq. (2.2)]. Moreover, although Marcus equation has many restrictions,

a change of variables can be obtained in the following sense:

Proposition 8. If z; is the solution of equation (3.1), then for any function f e C*(R%):
¢
flzy) = flxo) + J f(x)Y (x5) odZs, t=0. (3.2)
0
For a proof and precise definition, see [33, Prop. 4.2].

In a differentiable manifold, the natural extension is given by the following: let X €
C*(M; L(R*, TM)), such that for each x € M the linear map X () sends a vector z € R
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into X (z)z € T, M. Assume that the vector field X is smooth on M and consider the
equation

dry = X(x;) 0 dZ;, 2(0) = xo. (3.3)

In this context, x, € M, t = 0 is a solution of equation (3.3) if for all f € C*(M),

Fx) = flao) + fo Pla)X () odZ,

in the sense of [33, Def. 4.1], if X = (X1,..., X"):

flz) = L t df X7 (xs) dZ7 + ;f: V2f(XdZ, XdZ)(z,)
+ ) [f0(XAZ,00)) = flae) = X fla)AZ]. (3.4)

O<s<t

The first term on the right hand side of equation (3.4) is a standard It6 integral of the
predictable process df X7 (x,) with respect to the semimartingale Z,. The second term is a
Stieltjes integral of the Levi-civita connection applied in the derivative of the function f,
with respect to the continuous part of the quadratic variation of Z;. In the third term:
d(XAZ, z,-) indicates the solution at a fictitious time ¢ = 1 of the ODE generated by
the vector field XAZ, and initial condition z,—. Thus, the jumps of this equation occurs
in deterministic directions. It is worth mentioning that some regularities conditions over
the linear map X (x) and its derivatives guarantee the existence of a unique Stratonovich
flow of diffeomorphisms ¢, which is solution of equation (3.3). Moreover, for an embedded
submanifold M in an Euclidean space, the support’s theorem [33, Prop. 4.3] states that
the solution still remains on the manifold after a jump. The next proposition is a change

of variables formula for equation (3.1)

The next result shows an expression for equation (3.4) when it is written with respect to a

coordinate system.

Proposition 9. Suppose that x;, ¢ > 01is a solution of equation 3.3 and o : U ¢ M — R"
is a coordinate system of M in a neighbourhood of x;. Then equation 3.4 can be written

in R" as
Fr = x0+JX -)dZs + = JXX $)d|Z, Z]S

- Q(XAZy, x5-) — s — X (T4 )AZ]. (3.5)

O<s<t

Where X (i) = Da(z,)X (z;) (the derivative of the coordinate system applied on the
vector field X), #, = a(z;) and ¢(XAZ,, x,-) = a(p(XAZ,, x,-)). Moreover, i, is a

semimartigale for all coordinate system.

Proof. Tt follows straightforward by equation 3.4 and Proposition 8.
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3.1.2 1té6-Ventzel-Kunita for Stratonovich SDEJs

In order to prove one of the main results in this chapter, which is an extension of the
It6- Ventzel- Kunita formula (infinite jump version), one needs to define the following
integral that generalizes the classical Marcus integral (3.1). Precisely, let X and Y be two
smooth vector fields on R? and consider F, and Gy, flows of diffeomorphisms generated by
dF, = X(F}) o dZ; and dG, = Y (Gy) ¢ dZ;, SDEJs in the sense of Marcus with respect to

the same general semimartingale Z;. We define the following integral:

Jt<Fs*Y<Gs)) odZs = Jt(Fs*Y(Gs—))dZs

0 0

+ ; f (X(YV(G) + FulVY)dIZ, 2

0

+ Y {qs(XAZS,FSf(qs(YAZS,Gf))—¢(XAZS,st(Gs*>>

0<s<t

— (FLY(G))AZ, (3.6)

where the first term on the right hand side is the It6 integral of Fi,Y (G- ) with respect to Z;.
In the second term, note that (X'(Y(Gs))+ Feu (YY) = dFs. Y (Gs)(Fs: Y (Gy)), so the sec-
ond integral corresponds to the finite variation such that its continuous part satisfies the clas-
sical It6 - Ventzel - Kunita. On the last term, the expression ¢(XAZ,, Fy- (p(YAZ,, G,-))
has the following geometrical meaning: for a jump time s € [0,¢], the flow G, jumps
at r = s in the direction of solution ¢ with order AZ;, then it is corrected by the flow
F,: M — M, r€|0,t], then it jumps in the direction of X with order AZ;. It is important
to notice that the sum term is absolutely convergent, in fact, applying Taylor’s theorem in

the map u — ¢(XAZ, Fo- (0(YAZ,, G4, u), 1), one gets

HXAZ, Fr(6(YAZ, Gy 1),1) = O(XAZ, Fy (Gy)) + (Fu Y (G))(Fs 0 Go)AZ,

+ ;(Fs_*Y(GS_))’(FS*Y(GS))S(%a92)AZSAZ§-

Where S(01,05) = ¢(XAZ, Fo- (0(Y A Z, G-, 01),0,), for 6,05 € (0,1) which depends

on (s,w,z), with x € M. Therefore,

> [6(XAZ F (60 AZ,Gy)) = 6(XAZ Fe (G) = (FuY (G)))(Fe 0 Gy)AZ|

0<s<t

< sup (X(Y(F)) + Fa(YY ) fO(XAZ Fe (oY AZ, G 00).02))] Y |A,ZP

0<s<t O<s<t

< K D) |AZP

O0<s<t

Which converges since K (w) is finite and the sum of squares of the jumps of a general

semimartingale is always finite a.s. The next theorem states an extension of 1t6 - Ventzel
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- Kunita for general semimartingales. In this context, an infinite number of jumps may

occur.

Theorem 11. (Ito-Ventzel-Kunita for Stratonovich SDE, infinite jump version) Suppose
that F and G, are solutions of SDEJs driven by the same general semimartingale Z, and

with respect to smooth vector fields X and Y on R? respectively, for s € [0,a], Then:

R(G) = FiGo) + [ X(RG) iz, + [ Fulv(@) o2, (37)

Proof. 1t is known that formula (3.7) holds if Z; is continuous for each t € [0, a], see e.g.
Kunita [33, Thm. 8.3]. Moreover, in Melo et al [46] it was proven that if Z has a finite
number of jumps on compact intervals, then formula (3.7) still holds. We are interested in
proving this Theorem in the context where the semimartingale Z; may jump infinitely many
times. In this case the problem arises when the set of jump times have some accumulation
points. We are going to overcome this problem by splitting the set of jump times of Z;,
into two disjoint subsets, A = A(e,t) and B = B(e, t), such that A has a finite number of
elements and Z(AZS)Q < ¢, where A U B exhausts the jump set of Z;. Let

seB
> Az

s<t,seB

Consider F* and G2, solutions of equations dF/* = X (F)odZ! and dG* = Y (G odZ?,
respectively. Since formula (3.7) holds for all s € A, it follows that

FAGH = o) + [ X(ENGH) 0 a2+ [ FAV(GN) 0 a2 (3.

Note that if s is a jump time on the interval [0, ¢], then s € A for € small enough. Therefore,
the solutions EA and Gf converge to solutions F; and G; a.s respectively, moreover, we

have:

|[ xeamoaz: - [ xir

< ZB H{QS(XAZS, Fo (Gy)) = Fo (Geo)
|

- X(Fs— (Gs—))AZs}

- 5eaf
seB

< e

Similarly,

H f )odZA — f; F.(Y(G,

<3z <
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Therefore, when € goes to zero, formula (3.8) converges to formula (3.7) a.s.

]

The next corollary states a Leibniz formula for Stratonovich SDEJs. The proof follows
directly from Theorem (11). It will be used basically in the next section in order to compute

explicit expressions for the components of a decomposition.

Corollary 5. (Leibniz formula) Let F; and G be flows generated by Stratonovich SDEJs

with respect to the same general semimartingale Z;. Then

od(F o G)y = od(Fy) o Gy + (Fy)y 0 0dG. (3.9)

By Proposition (8) and local coordinate arguments we can easily extend all results in this

section for a Riemannian manifold.

3.2 Decomposition of flows of diffeomorphism generated by SDEJs

Let Diff(M) be the infinite dimensional Lie group of smooth diffeomorphisms of a compact
connected manifold M. The Lie algebra associated to Diff(M) is the infinite dimensional
space of smooth vector fields on M, see e.g. Neeb [48], Omori [52], among others. The
exponential map exp{tY'} € Diff(M) is the associated flow of diffeomorphisms generated
by the smooth vector field Y. In this context, given an element ¢ € Diff(M) the derivative
of the right translation is given by R,.Y = Y (¢) for any smooth vector Y. The derivative
of left translation LY = Dp(Y), and Ad(p)Y = 0. (Y (™).

Interesting problems arise when one decomposes a (flow of) diffeomorphism ¢ € Diff(M),
into composition of convenient prescribed components. This kind of decomposition appears
in the literature, for example, in Bismut [8], Kunita [32] and many others. In particular, it
is also relevant when each component of the decomposition belongs to prescribed subgroups
of Diff(M), see e.g Melo et al [46], Catuogno et al [15], Iwasawa and non-linear Iwasawa

decomposition [18], Ming Liao [40] among many others.

Suppose that locally M is endowed with a pair of regular differentiable distributions: i.e.,
every point z € M has a neighbourhood U and differentiable mappings A' : U — Gry(M)
and A? : U — Grp,_(M) respectively, where
Grp(M) = | ] Gry(T. M)
xeM
is the Grasmannian bundle of p-dimensional subspaces over M, with 1 < p < m. We
assume that A' and A? are complementary in the sense that A'(z) @ A?*(z) = T, M, for

all z € U. With this notation we define the subgroup of Diff(M) which is generated by a
certain distribution A by:
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Diff(A, M) = cl{exp(t; X1) ... exp(t,X,,), with X; € A ¢t; € R,Vn € N}.

Note that if a distribution A is involutive, then each element of the group Diff(A, M)

preserves the leaves of the corresponding foliation.

Definition 13. We say that an element 1 € Diff(M) preserves transversality of A' and
A? in a neighbourhood U < M if n,A* (n7'(p)) n A'(p) = {0}, for all pe U.

3.2.1 Geometric set up

In the Lie group of diffeomorphisms Diff(M), the dynamics of the stochastic flow ¢;, which
is solution of the stratonovich SDEJ (3.3), is written as the following right invariant SDEJ:

ngt = R‘PfX < dZt (310)

Using the same notation as in equation (3.3), we can write:

d
Xdz, =) X;odZ].

i=1

The Lie group Diff(A, M) contains two important Lie subgroups: the group of all purely
horizontal diffeomorphisms denoted by Diff(A', M) and the group of all purely vertical
diffeomorphisms denoted by Diff(A%, M). Locally, the intersection of these subgroups is the
identity and each element of these groups preserves the leave of the corresponding foliation.

The main result of this chapter consists of a decomposition of a flow of diffeomorphisms
¢; € Diff(A, M) into two components F; € Diff(A', M) and G, € Diff(A*, M).

3.2.2 The existence of the decomposition

In the next result, we assume the condition of transversality preservation along Diff(A", M)
for the distributions A' and A?. The next theorem states a decomposition of flows for the

continuous case.

Theorem 12. Given a continuous stochastic flow ¢ € Diff(A, M), up to a stopping time,
there exists a factorization ¢, = F} o Gy, where F; is a continuous diffusion on Diff(A', M)

and G is a continuous process in Diff(A%, M).

For a proof, see [15, Thm. 2.2]. A straightforward extension of this theorem for processes
with jump components was proven in [46, Prop. 1] (considering that the process jumps just
a finite number of times on compact intervals), this extension is easily proved if one consider

that the flow of diffeomorphisms always jumps to a decomposable diffeomorphism. This
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assumption cannot be removed, in fact, consider the pure rotation system dx; = Ax; ¢ dZ;,

such that Z; is a general semimartingale. The flow of this system is given by:
cos Z; —sinZ;
Pt = . :
sin Z;  cos Z;
Locally, the flow ¢; can be decomposed by

B sec(Zy —m/4) —tan(Z, — m/4) 1 0
o 0 1 sin(Z, — w/4) cos(Z, —w/4) |

T
Note that if ¢y is a jump time such that the process jumps to Z,, € {5 + km, ke Z}, then
the above decomposition will no longer exist. The next theorem is the main result of this

chapter.

Theorem 13. The stochastic flow of local diffeomorphisms ; can be decomposed (locally,
up to a stopping time) as
or = Fy oGy,

where F; is solution of an (autonomous) SDEJ in Diff(A', M) and G, is a process in
Diff(A?, M). The decomposition is unique.

Proof. Let )?Z be an element in the Lie algebra of the group Diff(A', M), given by:
Xi(z) = Xi(z) — Vi(z) € A"

Where V; is the unique vector such that X’z is horizontal in T, M. We define the component
F, as the solution of the Marcus equation in Diff(A', M) given by:

dF, = Ry, Xodt + Y Rp, X, 0 dZ].

i=1
The second component is defined as G; = F,"' o ¢,. In order to find a Marcus equation
whose solution flow is Gy, one needs to apply Theorem 11 (It6-Ventzel-Kunita for general

semimartingales). Hence,

dG; = F ' o dipy + odF7 " (ipy). (3.11)
For each F} € Diff(A', M). On the other hand, note that:
dF; ' = =Ly Xodt — i Ly X o0dZ]. (3.12)
i=1
By (3.11) and (3.12), it follows that:
4G, = 3 Ad(G ) (Vi(G)(F) o dZ.
i=0

It is important mentioning that Ad(F; ) (V;)(x) € A*(x), for all z € M. Then, G; €
Diff(A?, M).

O]
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4 Geometry of young integral: decomposition

of a-Holder continuous paths

In this chapter we study geometric aspects of dynamics generated by Young differential
equations (YDE) driven by a-Hoélder trajectories with o € (1/2,1]. More precisely, given a

smooth manifold M, we focus on geometrical properties of equations of the type:
df[}t = X(fft) dZt, (41)

with initial condition xp € M at t = 0, where z — X(z) € L(R% T,M) is a smooth
assignment of d vector fields on M and z € C*([0,T],R?) is an a-Holder continuous
trajectory in R?. We say that a path 2 : [0,T] — M is a solution of equation (4.1) if for
all test function f € C(M;R) we have that

flz) = flxo) + L X f(zs) dzs, (4.2)

where X f is a short term for ZD f(z)X (x)e;, with e;’s the elements of the canonical
basis of R?. The last term of equation (4.2) is an integral in the Young sense, see e.g.
the classical [65], or more recent Hairer and Friz [22], Gubinelli et al. [24], Lyons [38],
Castrequini and Russo [13], Castrequini and Catuogno [15], Cong [19], Ruzmaikina [57],
among many others. We also encourage the readers to check our submitted paper [14],

which includes the majority of results in this chapter.

4.1 Some geometric aspects of Young integral

In this section, we study some geometric aspects of dynamics generated by Young differential
equations (YDE) driven by a-Holder trajectories with o € (1/2,1). We present a number
of properties and geometrical constructions on this low regularity context: Young It0
geometrical formula, horizontal lift in principal fibre bundles, parallel transport, covariant

derivative, development and anti-development, among others.

4.1.1 Young differential equation on manifolds

We recall that for a general metric space (M,d), a curve o : [0,T] — M is a-Hélder

continuous, with a > 0 if there exists a constant C' > 0, such that

d(o(t),o(s)) < C|t — s|?, (4.3)
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for all s,t € [0,T]. This concept extends naturally to a Riemaniann manifold, since it

carries the well known induced metric d(z,y) given by
1

d(xz,y) = inf {J |~/ (¢)]|dt; ~ :[0,1] — M differentiable such that v(0) = z, v(1) = y}
0

See e.g. [20] among many other classical books. Hence, naturally, a-Holder paths are
also well defined in Riemannian manifolds. Most of the classical analytic results on this
regularity theory also holds for a-Hoélder paths in a Riemannian manifold. For instance,
composition of a differentiable function with an a-Hélder trajectory is also an a-Holder

path. Particularly, in a geometrical context, for readers convenience we prove the following

Proposition 10. Let M and N be Riemannian manifolds, dim N > 1. A path o : [0,T] —
M is a-Holder continuous on M if and only if, for all differentiable map f: M — N, the
path f(o(t)) is a-Hoélder continuous on N.

Proof. There are many interesting ways to prove this result. Here, we use an embedding
argument. Initially consider that N is an Euclidean space R" and take o(t) an a-Holder
trajectory on M. There exists an isometric embedding i : M — R? for a sufficiently large

integer d (Nash theorem). For sake of notation we write o, := o(t).

Since ||i(z) — i(y)|re < dp(z,y) for all z,y € M, we have the following inequalities:

li(or) —i(0s)|re < du(ov,05) < Clt —s|%

which implies that i(0;) is a-Hélder in RY. Now, for any differentiable function f : M — R™,
use the fact that it can be extended to a differentiable function f : U — R™ defined in
a tubular neighbourhood U of i o ¢([0,T]) in RY. Hence, f(o) = f(i(o;)). Since Holder
regularity is preserved by differentiable functions on Euclidean spaces, f(o;) is a-Holder
continuous in R". Mind that, in fact, in the compact set i(o;) the metrics dy;, and ¢5 in
R? are uniformly equivalents, see Lemma 2.2 [35]. Hence, fo-norm Hélder regularity in R?

is equivalent to Holder regularity on (M, dyy).

For a general Riemannian manifold N and a differentiable map f : M — N, consider
another isometric embedding 7/ : N — R? for an integer d sufficiently large. Then, the
last paragraph shows that i’ o f(o) is a-Holder in RY. From Lemma 2.2 [35] we have that

there exists a positive constant C'; such that

dy(f(or), f(os)) < Cilli(f(or)) = i(f(00))[pe < Calt — 5[

for a positive constant Cy, which shows that f(o;) is a-Holder continuous in N.

Conversely, suppose that f(o;) € N is a-Holder for all differentiable function f: M — N.
Denote the projections of i(a;) € R? by o] := pjoi(oy) foreach 1 <j<d Let p:V —
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W < N be a local parametrization for N, with V' an open set in an Euclidean space.
There exist another local parametrization obtained from the previous one, just enlarging
the domain by homothety, if necessary, which we call again by ¢ : V. — W < N such
that the set {(x,0,...,0);z = o?(t) for some t € [0,T]} = V for all 1 < j < d. Consider
the differentiable functions f; : M — N given by f;(z) := ¢(p,(i(x)),0,...,0)). Then
fi(oy) == (01,0,...,0)) is a-Hélder by hypothesis. By metric equivalence in compact sets

in the domain of the local parametrization, we have that o} is a-Holder for all 1 < j < d.

We conclude that o(t) € M is a-Hélder continuous on M.

[

Before we show conditions for existence and uniqueness of solutions for equation (4.1), we
state the main geometric theorem that is a version of It6’s formula for a-Holder continuous
paths. We start with the definition of the Young integral of a real 1-form:

Definition 14 (Integration of real 1-forms). Let N be an n-dimensional differentiable mani-

1 1
fold with /\(N) the space of real 1-forms. Consider 3 € /\(N) and a chart (U, (y1,...,Yn))

in N such that
B=> Bidy'". (4.4)
=1

The integral of § along an a-Hoélder path z : [0,T] — N is defined by

T n T _
| sedn = | s (15)
0 i=1Y0

where the above integrals are Riemann-Stieltjes integral of §; with respect to the i-th
coordinate of the path x;. Among others properties, this integration is independent of the
local chart, see e.g, Abraham, Marsden and Ratiu [1] and Ikeda and Manabe [28].

The integration of real 1-forms above allows one to integrate many tensor fields in a

manifold. In particular, if F': M — R? is a smooth function, the integration

¢
f DF(xy) dxg
0

makes sense, looking at each coordinate of R%. Also, if F : M — N, with N another

differentiable manifold, then we define

L t DF(z,) dz, := L t Dé o F(x,) dr,, (4.6)

where, ¢ is a local chart of N. Standard rough path calculus in Euclidean space (in
particular, substitution formula) guarantees that this definition is independent of the local
chart. Next Theorem is the basic property of the the a-Holder calculus we are treating in

this chapter.
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Theorem 14 (Young It6 Formula). Let M and N be Riemannian manifolds. Consider
x € C*([0,T], M) and a smooth function F': M — N. Then

dF(x;) = DF (xs) dxs. (4.7)

Remark: We highlight that formula (4.7) above means that if 5 is a 1-form in N then

L ' dP(x,) = | (dF(2))" d, (48)

0

In particular, if NV is an Euclidean space:

F(x,) = F(xg) + Jo DF(x)dxs. (4.9)

Proof. Initially we prove the result for an Euclidean space N = RY. We use again the em-
bedding argument from Nash’s theorem: there exists a sufficiently large p € N such that M
can be isometrically embedded into R™*?. Abusing notation, we have z € C*([0, T, R™*?),
F is defined in a tubular neighbourhood of the image of M and DF(z) € L(R™"?,R%). By

Taylor’s formula in Euclidean space,
F(xt) - F('rs) = DF(xs) : (xt - xs) + R(Q?S,It),

with
1

R(zs,x) = L (1 —u)Hess (F)(zs + u(xy — x5)) (2 — x5, 14 — x5) du.

Since F' is smooth,
|R(@s, 20)| < Clla — ]* < O]t — s

Let m = {s;} be a partition of [0,7"]. Then
F(ay) = F(zo) = 3} F(20.,) = F(as) = Y DF(23) (20, = 2) + 3 Rt 70,)- (4.10)
We have that
Z |R(xs;, xs,p )| < C'Z |sip1 — 8% < C'T'sup |si11 — s 2a—1

Thus, since a > 1/2 we have that

|7|—0

lim Z HR(‘rSi7‘r3i+1)H = 0.

Take the limit 7| — 0 in equation (4.10) and the definition of Stieltjes (Young) integral

to finish the proof in this context.

In general, when NN is a Riemannian manifold, consider a local chart ¢. The previous

calculations hold with ¢ o F' whose integration is independent of the coordinate system.
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[

Note that multidimensional forms of It6 formula above, integration by parts, etc can be
obtained from formula (4.7) considering the manifold M above as appropriate product

spaces. We proceed to prove a Theorem of existence and uniqueness of solution for equation
(4.1).

Theorem 15. Given an initial condition xq € M, there exists a unique maximal solution
of the Young differential equation (4.1) such that x(0) = 5. Moreover, there exists a flow

of (local) diffeomorphisms associated to the solutions.

Proof. A simple way to proof the result for local solutions is based on the existence and
uniqueness results in the Euclidean space. In fact, given the initial condition zy, let (U, ¥)
be a chart on M with z € U. Let X := DU(X (¥ ~!(p))) be the induced vector field in the

image of ¥. The Young differential equation dy; = X (y;)dz; has a unique solution local
solution y, with yo = W(xg). See e.g. Lejay [36], Caruana, Lyons and Thierry [43], Li and
Lyons [38], Friz and Hairer [22] and references therein. Take 2, = U™ (y,) < U. We claim
that x; is a solution of equation (4.1). In fact, consider a test function f € C*(M). By
Theorem 14, it follows that

FU () = f<w-1<yo>>+f0 D(f o U (y,)dy,
— () + f DU WX () dz,

t
= flxo) + J X f(xs)dzs.
0
Moreover, the solution x; does not depend on the choice of local coordinate. In fact, let
(V, ®) be another chart on M, with z; € U n'V and let z; be the solution of the Young
differential equation dw; = ®, X (w;)dz;. Then
dyr = W X(y)dz
= \D*(I);l(b*X(Zt)dZt
= U, d 'dw,.
Hence y; = $® *(w;) and therefore ®'(w;) = U (y,) = ;. A maximal solution is ob-
tained in the classical way by extending a local solution up to its explosion time. The

existence of local flow of (local) diffeomorphisms is also concluded from the Euclidean case

using the same local chart argument.

]

4.1.2 Horizontal lifts

Let {P,M,G, 7} be a principal fibre bundle with base M, structure group G and total

space P. In this case M is a smooth, connected and paracompact manifold. The projection
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7 is taken as m : P — M. The group G acts freely on P on the right by the action
R, : P — P defined by R,(u) = ug, for ue P and g € G. Let g be the Lie algebra of G,
then an element A € g generates the exponential {exptA, ¢t € R}, which induces a vector

field on P by

d
A*u = %Rexp(tA)u ‘t:(]’

If T*(TP) is the section of all smooth vector fields on P, then the map A — A*, from
g into T'*(T'P) is a Lie algebra homomorphism. For more details, see e.g. Shigekawa
[62], the classical Kobayashi and Nomizu [31] among many others. The tangent space
TP has a naturally defined subspace called the vertical tangent bundle VT P given by
VT,P := kerdn, for all u e P. Note that A*ue VT,P for all A€ g.

A connection in the principal fibre bundle is an assignment of a horizontal subspace HT, P

of T,, P which is the kernel of a g-valued 1-form w in P with the following properties:

(i) (well-behaved vertically) wdR, = Ad(g ')w, for all g € G. Here the linear map
Ad(g™') : g — g is the derivative at the identity of the adjoint Ad(¢g™!) : G — G
defined by Ad(g )a = g 'ag.

(ii) (vertical calibration) w(A*) = A, where A* is a vector field on VT P.

Such 1-form w is called a connection form in the principal fibre bundle {P, M, G, r}.
Moreover, w defines the horizontal tangent bundle HT' P given by HT, P = ker w,.. Hence,
for all uw € P, the tangent space T, P splits into HT,,P® VT, P and dR,(HT, P) = HT,,P.

Now we have the geometric set up to define the horizontal lift of a-Hoélder continuous

paths.

Definition 15. Let = : [0,7] — M be an a-Hélder continuous path. Consider u € P,
with 7(u) = x¢. The horizontal lift of x; starting at u is a path ¥ : [0,7] — P such that:

(ii) 7(z;) = x; for all ¢ € [0, T7].

t
(iii) J w dTs =0 for all t € [0,T].
0
Next result shows the existence and uniqueness of the horizontal lift for an a-Holder
continous path in a manifold. In the proof we apply the same technique used in Kobayashi
and Nomizu [31] and in Shigekawa [62] where the existence and uniqueness of horizontal

lift were proved in the context of C' paths and semimartingales respectively.
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Theorem 16. Given an a-Hoélder continuous path z : [0,7] — M and an element u in the
fibre 7% (z¢), there exists (up to a explosion time) a unique horizontal lift ¥ : [0,7] — P

with Zg = u.

Proof. Consider a local trivialization ¢ : 7 *(U) — U x G with 2o € U and take the
a-Holder path v, = ¢ '(xy,e). If the horizontal lift of z, exists at all, it has to be of
the form 7; = v,a;, where a; € GG is an appropriate path which makes Z; horizontal and

Vo Qg = U.

Let ¥ : P x G — P be the right free action of G on P. Then, by Theorem 14 we have that
di’t = 81\I/(Vt, CLt) th + ag\ll<l/t, at) dat.

Hence:

t t t
J wdl, = f (1 (v, ap))*w dvy + f (O2W (14, aq))*w day.

0 0

¢ ¢
= f R w di +J 0 day, (4.11)
0 0

by the vertical calibration of the connection w, where 6 is the canonical Cartan 1-form
given by 6,(dR,A) = A for all g € G and A € g. The lift 7; is horizontal if and only if
equation (4.11) vanishes for all ¢ € [0, 7], i.e. if and only if Ad(a; ')w dv; = —0 da,. Let
Fi,...,F, be a basis of the right invariant Lie algebra g. For all ¢ € [0,T], there exist

a-Hoélder continuous real functions ay, ..., af, such that:

t n
J w dyg = ZFia,’;. (4.12)
0 i=1

Using this notation we have that a necessary and sufficient condition such that equation
(4.11) vanishes is that

¢ n_ et t
J wdr = ZJ Ad(a; ) E; da’ + J dR -1 da; = 0,
i=1+0 0

0

for all t € [0,T1, i.e., trajectory a; has to satisfy

n
da; = — ) dR,, Ad(a;")F; do,
i=1
with initial condition ag. There exists a unique solution by Theorem 15, hence there
exists a unique horizontal lift Z; up to a explosion. Mind that at the border of the local
trivialization, one can extend further the solution applying again the same construction
above. The maximal solution covers the whole interval [0, 7] (by compactness) if there is

no explosion in the fibre.
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Note that for initial element in the fibre agg, the horizontal lift is given by a,g.
[]

In the sequel, we show another proof for Theorem 16. In this alternative proof, we write

the canonical 1-form in terms of its local coordinates.

Proof. Let a; be the unique solution of the following Young differential equation in G:
diy, = Y Fi(@,)day, (4.13)
i=1
where F(;) = dRg,(F})) Take a; = @; '. Note that a, is a a-Holder path and satisfies the
following equation:

n t
da, = Y J Ad(a=Y) F(a)da. (4.14)
i=1+0

See Castrequini and Catuogno [12]. We aim to prove that Z; = v,a; is a horizontal lift of ;.

In fact, note that 7, € cmin{a.s ), and by construction, 7(%) = x;. We just need to prove

that f w = 0. Consider the action ¢ : P x G — P, given by ¥(x,y) = xy and let
Z[0,T1]

(z',...,2™) and (y',...,9") be local coordinates in G and P respectively. Let a! = z'(a;),
vi=y'(1y) and w = Zwidyi. Applying the [t6’s formula for a-Holder paths (theorem 14
i=1
), it follows that:
s _ o W, f o X 4
T= 7+ L vhal, . a™)dal + vio vt al, o a™dy
Lo 2 J() aas 2 gyl )
By the definition of integrals of 1-forms, remark 14, the connection 1-form w can be written
as:
w(d¥) = ) wi(®,)d,
i—1
m n (,.) 7
= Z w1($t) v (st ) gvai’ ,a;”)daé
i=11¢=1 aag
ShS ~ (’/),l/}Z 1 n 1 m %
+ ;;wi(mt)ayé(ys7 » Vs Ys ) g )dys
We define:
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Hence,
wdTy = (o, w)dvy + (V) w)day. (4.15)

Note that ¥ *w is the pull-back of the 1-form by the action ¢ and ,,9* is the differential
of the right translation R,,. We are going to use that fact that R} w = Ad(a; ')w and
Yy, w = 0, where ¢ is the canonical 1-form on G defined by 6,(A(g)) = A for g € G and
A € g, see e.g [31, chapter 9]. Thus we have that:

[[wr = [Gans [ @i

0 0 0

t t
= J R} wdy, —i—f Oda,
0 0

n t n t

- ZJ Ad(a; ') Fida' — ZJ Ad(a; ) Fyda!
i=1J0 ;=10
0.

Now, suppose that the horizontal lift is not unique. In this case, let Z; and Z; be horizontal
lifts of xy, with Ty = 2y and 7(Z;) = m(Z;) = 2y, for all t € [0, T]. Thus, there exists u; € G,
with uy = e, such that T; = Zu,, for all ¢ € [0,T]. It is easy to show that u, is a-Holder.

Applying equation (4.15), we have:

t t t
f wdTs = J Odu; + f Ad(u; Y wdz; = 0.

0 0 0

t t
Since J Ad(u;"wd?z = 0, it follows that J fdu; = 0 for all ¢t € [0,T]. Therefore, u; must
0 0

be the constant u; = e, then we conclude that z, = Z;, for all ¢ € [0, T].

[

Besides the dynamics and the principal fiber bundle approach presented so far (which are
basic to the next Sections), this low regularity 1t6-Young calculus of Theorem 14 allows
one to develop further geometrical properties. We mention the following three classical

geometric aspects:

A. Parallel Transport and covariant derivative: Given a smooth manifold M, consider
the frame bundle BM — M of basis u : R" — T,M, with p € M, with the structure group
G = Gl(n,R). Last Theorem applied in this context establishes a parallel transport along
a-Holder path x; € M. In fact, given a horizontal lift u;, the parallel transport of a vector
veT,,M is obtained by

// v =1 ouy(v) € TyuyM.
t

It does not depend on the choice of the horizontal lift. Moreover, if we take the orthonormal

frame bundle OM — M of basis orthonormal basis given by linear isometries v : R" —
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T,.M, with x € M, with the structure group G = O(n,R), the parallel transport is also an

isometry.

Covariant derivative can now be defined along an a-Hoélder path z; € M. Given a differen-

tiable vector field Y, we have that its covariant derivative along x(t) is given by:

DY (x) ://t d//t_l Y ().

where the differentials are interpreted in the sense of Young (Definition 14).

B. Development and anti-development: Let M be an m-dimensional Riemannian
manifold, and consider an a-Holder continuous path « : [0, 7] — R™. Take the horizontal
operator H : OM x R™ — HTOM where H(u,v) is the horizontal lift of u(v) € Ty M
up to HT,,OM. The development of x; on M with initial orthonormal frame ug is obtained
from wu;, the solution of the YDE:

dut = H(ut, dl‘t),

i.e. m(uy) is the development of z(¢) on M (rolling without slipping, with initial “contact
plane” given by ug). On the other hand, the anti-development of an a-Hélder continuous
path x : [0,T] — M is described using its horizontal lift Z; (Theorem 16) with initial

condition Zg:
¢
~—1
Yp = f T, dxs.
0

Note that, as expected, y; depends on the choice of Zy. Compare this approach with the
classical Brownian motion approach by Eells and Elworthy [21], and the isotropic Lévy

processes approach in Applebaum and Estrade [3], among many others.

C. Continuous a-Holder paths in M are solutions of Young differential equations:
As established before, solutions of Young equations driven by a-Holder paths on a manifold
are also a-Holder continuous paths. Reciprocally, every a-Hoélder continuous paths on M is
a solution of a Young differential equation (YDE) driven by an a-Hélder functions. In fact,
take an embedding ¢ : M — R™P of M into a sufficiently large dimensional Euclidean
space. Let U be a tubular neighbourhood with 7 : U — (M) a projection of U into i(M).
Given an a-Holder path y; on M, let z; = i(y;). Then z; is an a-Holder trajectory in R™*?.
Consider the YDE in i(M):
dxy = Dr(xy) dz.

Then z; is the solution of this YDE with initial condition xy = zp: just check that the
YDE is the differential version of the identity z; = 7(z;), according to Young It6 formula
of Theorem 14. If the projection 7 is orthogonal, as in Elworthy [21] then the vector fields
are gradients of the embedding. In general, the dynamics of other trajectories starting at
xo # Yo depends on the embedding and on the projection. This is an interesting topic to
be studied further.
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4.2 Decomposition of flow generated by Young differential equation

In the Lie group notation, a solution flow ¢, of an YDE is written as the solution of a

right invariant Young differential equation in the Lie group of diffeomorphisms Diff(M):
d(pt = th*X dZt. (416)

Here we abuse notation in the sense that (using the same notation as in equation 4.1) one
can write .
Xdz, =) X;dz},
i=1
where X; = X(e;) with e; the elements of the canonical basis. Hence, equation (4.16) have
to be interpret as

Ry, X;dz.

d
dpy =

=1

In this section, we explore the Young calculus to proof the existence of a geometrical

decomposition of flows generated by a-Holder systems ¢, given by equation (4.1).

In particular, in this Section we focus on the subgroups Diff(A!, M) and Diff(A%, M). The
main result of this paper (Theorem 18) establishes a local decomposition of the solution
flow ¢, into two components: a curve (solution of an autonomous YDE) in Diff(A', M)

composed with a non-autonomous path in Diff(A?, M).

By continuity, for any pair of complementary distributions, there always exists a neigh-
bourhood of the identity 1d € Diff(M) where all elements in this neighbourhood preserve
transversality. Moreover, if the distribution A' is involutive then all elements in Diff(A', M)
preserves tranversality of A' and A?: in fact, the derivative 7, above is a linear isomorphism
which sends tangent spaces of the associated foliation to tangent spaces in the same leaf.
In the sequence, we state an extended scope of the It6-Kunita formula (see [32] ) in the

geometrical Young calculus.

Theorem 17 (Young Ité-Kunita formula). Let X, Y € C*(M,L(RY, TM)) and z €
C*([0,T],R%)) and suppose that 7, and 1), are solutions maps associated to the Young
differential equations dn, = X (n;)dz; and diy, = Y (¢;)dz; respectively. Then, ¢, = 1, o ¢y

is the solution map associated with the Young differential equation
dpy = X (pr)dzy + Ad(ny)Y (1) dzs. (4.17)
For a proof in this low regularity context, see Castrequini and Catuogno [12, Thm. 4.1].

Next Corollary shows that the inverse of the solution flow of an YDE is also a-Hdélder

continuous.
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Corollary 6. If n; is the solution flow the Young differential equation on M
d$t = X(l't) dzt, (418)
then, the inverse map 7; ' is the solution of the Young differential equation on M

duy = — Dy (ug) X (1, (ug))d 2. (4.19)

Proof. In fact, just apply expressions (4.18) and (4.19) into equation (4.17).
[

For a constructive proof of last Corollary see [12, Thm. 4.2]. Next Theorem states the

main result of this section:

Theorem 18 (Decomposition of flows of YDE). Up to a life time 7 € [0, 7], the solution

flow ¢; can be locally decomposed as
Pt = 1 © Yy,
where 7, is solution of an (autonomous) Young differential equation in Diff(A', M) and

1y is a path in Diff(A?, M).

Proof. Given p € M, take n € Diff(A', M) sufficiently close to the identity such that it
preserves tranversality, i.e. Ad(n,)A% and A' are complementary. The tangent vector(s)

X(p) can be decomposed uniquely as

X(p) = h(p) + V(nep), (4.20)

where h(p) € A'(p) and V (1, p) € Ad(n,)A%(p), for all p e M. We take the first component
n; as the solution map of the following Young differential equation in Diff (A, M):

Tt

with initial condition 79 = 1d, the identity. Even though the equation above is described in
terms of a right translation, it is not a right invariant equation since h in general depends
on 7;. We obtain the second component of decomposition of ¢, using that v, = 1, o ¢;.

Applying Corollary 6, it follows that:
dn; ' = —Lnt—*l hdz,

where Lnt—*l is the derivative of the left translation at the identity by n; '. Finally, we find
a equation for ¢, by applying Theorem 17:

diy

(77t_1h n Yy — 77t_1X ) dzy

= Ad(n, )V (n) dz. (4.22)
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Note that V(n,p) does not necessarily belong to A?. Still, di), € A? since
diy; € Ad(n~1)Ad(n)A? = A% Then v is the A*-component of ;.

[

Corollary 7. If the distributions A and A? are integrable, then the decomposition of

Theorem 18 is unique.

Proof. In fact, in this case Diff(A', M) n Diff (A%, M) = {1d}.
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5 Examples and open problems

In this chapter, we consider the same geometric structure used in chapter 4, i.e, a principal
fibre bundle {P, M, G, }, with base M, structure group G and total space P. Our main
goal is to apply the decomposition which was proposed in Theorem 18 in general fibre
bundles. Important notions such as 1-forms connection on fibre bundles, horizontal and
vertical tangent bundles and others were discussed briefly in chapter 4, more details can
be found for example in Kobayashi and Nomizu [31]. In the last section of this chapter,
we also state some interesting open problems related to the decomposition of flows and

stochastic optimal control.

5.1 Linear systems

Consider an Euclidean space R", with a pair of complementary foliations given by the
trivial Cartesian product R¥ x R?, with k + ¢ = n. More precisely, the horizontal foliation
Fg is given by parallel leaves generated by affine translations x + (R”C x {0}), with = € R".
Analogously, the vertical foliation Fy- is given by parallel vertical leaves z + ({0} x R?),

for all z € R". We consider the linear Young differential equation:
dlL’t = A[L’t dZt, (51)

with o € R" and z; an a-Holder continuous trajectory in the real line. The Young calculus
presented in the previous section shows that the fundamental linear solution flow of (5.1)
is the exponential

Fy = exp{A(z — z0)}. (5.2)

ao () ()

(1) ().,

The decomposition we are interested here is

F, =m0y

such that 7, € Diff(A', M) and v € Diff(A? M). In general 7, and 1), does not have to be
linear, even in quite symmetric situations. For example, if the pair of foliations in R™\{0}
are given by radial and spherical coordinates, the components of the decomposition are not
necessarily linear: in fact, the linear radial diffeomorphisms is reduced to a one dimensional
group of uniform contractions and expansions A\1d, with A > 0, which, obviously, is not

big enough to perform the decomposition. For the Cartesian pair of foliation R¥ x R
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considered in this section, we do have that 7, and ¢, are linear. In fact, in coordinates,

(Fl(t)>k><k (FZ(t))kXZ

(), (70),,

Since 7; does not change the last ¢ coordinates the diffeomorphisms ¢ must satisfies
(1a) 0
kxk

Fg(t) F4(t)

write

Ft:

U =

Hence diffeomorphisms v, and 7, when exist, are global and linear.

A simple example: A system which illustrates not only these formulae, but also the

lifetime of the decomposition is the pure rotation in R? given by

0 -1
dx; = Ty dz,
t (1 O)t t

whose decomposition of flow can be easily calculated as:

cosz; —sinz B secz; —tanz 1 0 (5.3)
sinz;  cosz 0 1 sinz cosz | .

Note that if z; € {g + km, ke Z}, then the decomposition (5.3) no longer exists at the

corresponding time t, i.e. we have explosion of the solutions of equations (4.21) or (4.22).

[

Back to the general linear case, the components of the decomposition in fact lie in the Lie

group:

(1a) 0
Yre Gy =4 9g€eGl(nR); g = ok
g3 94>
1294
whose Lie algebra is given by the vector space generated by

0.
) ()

where () means nonzero matrices of the appropriate dimension. Analogously for the

horizontal component:

o)., »
neGy=1{9geGl(nR);g= 0 o <1d)
Ixt
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whose Lie algebra is given by the vector space generated by

(Do ()i
o).,

Using the properties of the Young integral, we find the differential equations for the
constituents submatrices g1, g» and gs, g4 of 7, and 1), respectively. Let 1 : RF x R — R¢

be the projection on the second subspace. From formula (4.20) we have that
V(n,-) =nomoA().

In fact, it is enough to check that V' (n,-) is in the image of the vertical component by 7
and that mV'(n, ) = mA(-). From this formula, equations (4.21) and (4.22) we find the
autonomous equation:

dny = (1d — ny o mo) Ay dzy,

and the well expected nonautonomous vertical diffeomorphisms:

dipy = 7y Ay oy dz.

Rewriting each constituent submatrices we find:

dgi(t) = [A1 g1(t) — g2(t) As g1(t)] dz (5.4)
dgs(t) = [A1g2 + Ag g2(t) Ay — g2 As gg(t)] dz, (5.5)
dgs(t) = [Asgr + Asgags + Asgs|dz (5.6)
dgs(t) = [A3929s + Asga]dz. (5.7)

Explosion in the solutions of the equations of g; and go can appear if Az is not zero (see
example of equation (5.3), where A3 = [1]). Otherwise, if A3 = 0 then there exists the
decomposition for all time ¢t > 0. Using this feature, and the Jordan canonical form we
can extend the scope of the decomposition in the next Proposition. Before that, let us fix
a notation. Given two complementary subspaces E; @ Ey = R", let us denote by F(Ej)

and F(FE3) the corresponding pair of complementary parallel foliations in R".

Proposition 11. Consider a Young linear system in R"
dl’t = Al't dZt. (58)

If dimension n > 2, then there exist a pair of parallel foliations F(E} ), F(Es) generated by
complementary subspaces F; and F5 such that the decomposition of the flow of equation
(5.8) exists for all time ¢ € [0,T], i.e. there is no explosion time of the decomposition.
Dimension of E; can be chosen as a number of the form (a + 2b) where a = 0,1,...,r =

#{real eigenvalues with multiplicities}, and b = 0,1,...,(n —1)/2.
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Proof. Let A = P JP~! be the canonical real Jordan form of A, with the choice of bases
P such that the nilpotent component has, if necessary, 1’s and identities I5’s above the

diagonal. The change of coordinates y = P x establishes the conjugate Young system:
dys = Jys dz.

If n > 2, it is possible to write

o () (2)

(%) (#)

£xe
with k£ = a + 2b and its complementary ¢ = n — k, such that the submatrix (J3),xx = 0.
The number a represents the number of real eingenvalues in the block J3 and b represents
the number of pairs of conjugate nonreal eigenvalues in this block. Hence, equations (5.7)
guarantee the there is no explosion in the decomposition of y;. By conjugacy, there is also
no explosion in the decomposition of the linear fundamental solution F; of (5.8) along
the foliations generated by E; = P (R* x {0}) and Ey = P ({0} x R). This proves the

proposition.
[]

Using the notation in the proof of last proposition, the decomposition of F; = 7, o1, above
are such that 7, lies in the group P Gy P~ and v, lies in PGy P~ L.

5.2 Principal fibre bundles over homogeneous spaces

Let G be a connected Lie group with a closed subgroup H and denote by g and h their
Lie algebras of right invariant vector fields, respectively. The group G acts on H by left
translation gH, for all g € G and the orbits generate the homogeneous space M := G/H,
see e.g. [31]. We have a principal fibre bundle given by the canonical projection 7 : G — M.

Given an element A € g consider the right invariant YDE:

As it was done in chapter 4, here, we consider a connection w in the principal fibre bundle
m : G — M. In this example we construct our decomposition of flow according to the
vertical subspaces (involutive) and the horizontal subspace established by this connection.

The solution flow (global in G up to lifetime of Z;) is given by left action:

ei(x) = i,

where g, = exp{A Z,}. In this example the distributions A' and A? in the tangent space

TG are given by the horizontal subspaces with respect to the connection w and the tangent
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to the fibres gH (involutive). In order to decompose the flow ¢, as in Theorem 18, one has

to identify the vector fields V and h as in equation (4.20) in the proof of the Theorem, i.e.:
Az :=h+V(n,x).

Elements 7 € Diff(A', G) can be written pointwise (with respect to z € G) as a left action
of elements of G at x. This action preserves the vertical component, i.e. g,A? = A? for all

g € G. Hence, vector field V' above is independent of n and one can easily calculate:
V(z) =w(Az)* and h=Ag—w(Ax)*.

By equations (4.21) and (4.22) we have that each component of the decomposition
wi(+) = ny o Yy(+) are given by:

A1y = Ry (Ane(-) — w(Ane(-))") (5.10)

and
dvpy = Ad(n:) w(An(-))* (5.11)

Let denote by ¢/ € G the a-Hélder curve in G such that g/« is the horizontal lift of
7(g ) starting at x, i.e. g/""x is horizontal and g;""z = g, z v, for some v, € H. With this
notation, fixing the action at a point z € GG, the equations above reduce to well known

finite dimensional equations (in G). This is the content of the following

Proposition 12. Consider the decomposition ¢:(-) = 7 0 ¢4(+) of the solution flow of
equation (5.9) according to horizontal and vertical distribution of the fibre bundle in the
sense of Theorem 18. Then, at each point x € GG, the first component can be written as
the left action:

Ut(x) = gfl’zxu

and the second component can be written as the right action:

¢t(I) =X ht

where hy = 27 (/") L g .

Proof. The proof of the first equation follows straightforward when one applies equations
(5.10) at a fixed inicial condition = € G: it is the horizontal lift of 7(g;x), cf. Theorem
16, using It6 formula 14. Regarding the second equation of the statement, one sees that
(7' (gf"")" g, &) € H by definition of the horizontal lift: g/ = g, x v, for some v, € H.
One checks that it solves (5.11) at a fixed point z.

]
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5.2.1 Trivial fibre bundles

As a particular case, consider a trivial principal fibre bundle 7 : G x H — H with strutural
group H, where G and H are connected Lie groups. The trivial connection is given by
Wiy (g0, 1) = y~'hy, € h. Consider a right invariant YDE in G x H:

d(zi,y) = (A x B) (24, y1) d2

where A € g and B € b, the Lie algebras of G and H respectively, with an initial condition
(x0,Y0). Since the connection in this case is invariant by left action of G x {1d}, the
factor g/" € G x H of Proposition 12 does not depend on (z,7). One recovers the trivial
components of the decomposition. In fact we get a global decomposition where the first

component is given by the left action:
m(-, ) = (exp(Az), 1d)(-, ).
And the second (vertical) component is given in terms of the right action:
i) = () (1d, )

where hy, = y ! exp(Bz)y, according to Proposition 12.

5.3 Jump dynamics on reductive homogeneous spaces

We say that the homogeneous space M is reductive if the Lie algebra g contains a subspace
n, such that Ad(H)(n) < n and g can be written as the direct sum g = h @ n. It is worth
mentioning that each fibre 7! (z) is diffeomorphic to H. A similar decomposition was

considered by Li [39] in the context of standard Brownian motion.

Corollary 8. For S € C}G,L(R% b)) and Y e CZ(G,L(R% n)). Let Z, be a general
semimartingale and ; and 7, be solutions associated with the Marcus differential equations
diy = S* (1) © dZ; and dn, = Y™*(n) o dZ;. Then,

d(mipe) = Ryxdn, + (L¢;1d¢t)*(77t¢t)- (5.12)
Proof. By Corollary 5, it follows that

d(nt@/ft) = Rsz* (Wt)dZt + L(ntwt)*Lwl*S* (77t¢t)d2t
= Ry,sdng + (Ly—d)™ (nady).

]

Let ¢y, t <T', be the flow of diffeomorphism of the following canonical Marcus stochastic

differential equation,
dpy = W*(py) © dZy. (5.13)
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Where W is a element of the Lie algebra g.

In the next theorem, we find explicit Marcus differential equations for the vertical and
horizontal components of the solution ¢,. Let w be the canonical connection 1-form on
the principal bundle (P, G, H,m, M). As defined in chapter 4, w(X) = 0 for all vector field
X en, and w(A*) = A if A eh. We suppose that the Lie algebra g is reductive, therefore
it can be written as the direct sum g = h@n. Thus, the vector field W can be decomposed
into W*(g) = h*(g) + V*(g), where h*(g) € h and V*(g) € n.

Theorem 19. The solution flow ¢; can be decomposed into ¢; = 1,4, such that the
components 7; and 1), satisfies the following system of Marcus differential equations:

dipy = V*(¢y) o dZy, (5.14)
(Ad()h)* (m) o dZ:. (5.15)

dn;

Proof. Note that ¢, is a diffeomorphism for all £ > 0, than it sends each fibre in another
fibre, hence ¢, is decomposable for all t < T, see e.g. [46, Corollary 2], thus the solution
flow ; can be rewritten as ¢; = 7; o 1y, where 7, and 1, are horizontal and vertical

semimartingales respectively up to a stop time T'. By Corollary 8, we have that:
dpy = Ry, dn + <Lw;1d¢t> (1)- (5.16)
Applying the 1-form w at dp;:

w(dyy) = w (Lwldwt)* (pr) = Ly-rdify.

Hence,
Lyady = w(W(pi) 0 dZ;)
= w (h*(QOt> < dZt + V* ((‘015) <& dZt)
= Vo dZt
Therefore,

dyy = V(i) o dZ;.

Using the identity 1, o ¢; ' = 1 and Corollary 8, it follows that:

;' = —RyV o dZ,.
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Applying Corollary 8 once again, for 1, = ¢; 0 9, !, we have:

dpy = Ry-rdo, + Lydiy!
= Ry (W*(gr) 0 dZy) — Ly, (Rw;lv o dZt>
= [RyprLeW - Ry L V] 0 d2,
— | Ry LaLuh] 0 dz,
= Ly Ad($)hodZ, = (Ad()R)* () o dZ,.

[

Let vy = 7(¢:), we want to compute a Marcus differential equation for 1. Using the fact
that dn(V*(p)) = 0, it follows that:

dvy = dm(dypy) = drm (W) o dZy
= dr (h*(¢r) + V*(er)) 0 dZ;
= dﬂ'h* (gOt) & dZt

Therefore
dvy = Ly, Ly,«dm(h) o dZ;, (5.17)

where L, is the left translation on the base space M, for a € G. Then, w0 L, = L, o 7.

Proposition 13. The process n;,t < T satisfies the equation (5.15), if, and only if, it is

a horizontal lift of v,.

Proof. Suppose that 7, is a solution flow of equation (5.15). Since wy, (dn;) = 0, and ¢y € H,
taking x; = m(n,), it holds that:

dr, = dr (Ad(¢;")h)" () o dZ,
— dr th_leth) (1) © dZ,

therefore, z; satisfies equation (5.17), by uniqueness of solution of Marcus differential

equations, we conclude that x; = w(n;).

On the other hand, suppose that 7, is a horizontal lift of v, up to a stopping time 7'. Since
¢ is a solution of equation (5.13) and 7(¢:) = m(n:), then ¢; and n; belong to the same
fibre for all ¢t < T'. Therefore, there exists C; € G, such that n,C; = ¢, for t < T. By
Corollary 8:

di = Rerdepy + (Lo, dCY)™ ()
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We rewrite the above expression by:
di = Reor (W) + V() 0 dZy + (Le,dCr )™ ()

= Reah*(pe) 0 dZ + R VF(0) 0 dZy + (L, dC) () (5.18)
(A(C)R)* (mi) © dZ, + (A(COV)* (i) © dZ; + (LeydCH)* ().

Now, applying the connection 1-form w to the expression (5.18):

0 = w, (chlv*(gpt)) o dZ, + Le,dC;t
= wy, (AA(CH(V))* (1)) © dZ; + Le,dC; (5.19)
— Ad(C)V odZ, + Le,dCi .

Here we used the fact that w(dn;) = 0 and Ad(Cy)(h) € n.
From expression (5.19), it holds that:
dC;" = —Re1V o dZ,.

Hence,

dCt = V*<Ct) < dZt

Then, C is a solution of equation (5.14). By expression (5.19),
(LedCy )™ (n) = —(AA(COV)* (mi) © dZy. (5.20)
Finally, combining expressions (5.18) and (5.20), it follows that:

dn, = (Ad(C)h)* () © dZ,.

5.4 Open problems

This section discusses some open problems related to the decomposition of flows. Note
that in many cases we are dealing with low regularity problems which comes from a
geometric and probabilistic context, since the decomposition’s trajectories usually have

low regularities besides a probabilistic struture.

5.4.1 Dynamics of cadlag and a-Hélder continuous paths

Recently, the literature has shown a great interest in the study of differential equations
driven by rough path and by a-Holder continuous path with a € (0, 1]. Of course, the level
of difficulty also depends on the sub-interval that includes the parameter a. See e.g. Lyons

et al [43], Friz and Hairer [22] among many others. Recently, in Castrequini and Catuogno
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[12], it was proposed a It6-Ventzel formula in the Young integral context ([65], [19], [13],

[57]) which motivated our submitted paper [14] (the chapter 4 of this thesis). An interesting
11

33)
Using those trajectories we are going to be able to generalize Theorem 11 and develop

problem would be work with a-Holder trajectories with jump components for a €

some basic geometric properties in this context of low regularities and jumps such as:
horizontal lifts, parallel transport, covariant derivative, development and anti-development,
etc. Note that here, the Marcus jumps described in chapter 3, are actually geodesic jumps
and we definitely need to explore it. Another problem is to understand the construction of
Lévy processes on manifolds using the development technique (see page 55) in the same
sense of Applebaum and Estrade [3]. The idea is to use just the geometric properties
of principal fibre bundles in order to construct a Lévy process which is not necessarily
isotropic on a manifold. This technique is used by Elworthy in [21] in order to construct

the trajectories of Brownian motion on manifolds.

5.4.2 Rough paths

11
Let E be a vector space. An a-rough path, for a € (3, 2) is a pair X = (X, X), such

that X : [0,T] — E is an a-Hélder continuous and X : [0,T]* - E ® E is 2a-Hoélder

continuous path, such that the following relation (Chen relation) holds:
Xo = Xy + Xt + Xou ® Xt (5.21)
Where, X,, = X, — X, for 0 < s <u <t <T. Consider the following equation:
dry = F(x)dX;. (5.22)

Which has the following integral form:

t
Ty = To + J F(z,)dX,.
0

Where F' = (Fi, ..., Fy) is a smooth vector field and the above integral must be undestood
in the rough sense, see [22]. This type of equation was widely studied on manifold context,
see e.g. Bailleul [6], however, an interesting question still needs to be answered: is it
possible to perform a decomposition in the solutions of equation (5.22) in the same sense of
Theorem 187 In this context, it is reasonable to expect that if ¢, is a solution of equation
(5.22), then it can be decomposed as ¢, = n; © ¥, where 7, and v, are diffeomorphisms
satisfying:

dn, = H(n) dXy,
dipy = (mV (071)) (40r) dX. (5.23)

Of course, in order to prove this result, we need to develop some tools such as: change of

variables and some It6-Ventzel adapted formula for rough paths.
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5.4.3 An averaging principle for systems driven by fBM

Basically, an averaging principle refers to a interlacing between two dynamics in such way
that one of them is, somehow, slower and it is affected by the other. In other words, the
problem consists of studying the possibility, by some topology, of approximating those
two dynamics. This problem appears in many works such as Arnold [4], Sanders et al
[59], Sebastian Ledesma and Fabiano Silva [35], Gargate and Ruffino [23], Li [39], among
others. In the sequel we do a brief description of the problem: given a Riemannian foliated
manifold (M, F) and let U be a open subset of M, the idea is considering diffeomorphisms
of the form ¢ : U — L,, x V, where V' < R? is an open connected subset which contains
the origin and L,, is the leaf passing through a point zo € M. Consider the following

stochastic differential equation:

d
dry = Xo(x,)dt + ) Xy(xy) 0 dBf (¢). (5.24)

k=1
Where X, for k = 1,...,d is a smooth vector field on M and By(t) = (Bg(t), ..., B&4(t))
is a d-dimensional fraction Brownian motion (fBM). Let K be another smooth vector field
on M, if we make a small perturbation of order € > 0 in the direction of K, then we can

rewrite the system (5.24) as:

d
dy; = Xo(ys)dt + ) Xp(ys) o dBf(t) + eK (yf)dt. (5.25)
k=1
If z; and y; are solutions of systems (5.24) and (5.25) respectively, the idea is to explore

the convergence of the following expression:

HENTE f<:cs>|f°)]’i .

SKEATE

Where 7€ is a stopping time of the process y; and f : M — R is a Lipschitz and continuous
function. We believe that the projection of y; into the subset V' converges for the solution
of a deterministic equation when € — 0, we are looking forward to find good estimates for

the rate of convergence (part of the ergodic estimates will be based on Hairer [25]).

5.4.4 ¢ - Optimal stochastic control for non-Markovian systems (in Lie groups)

Control theory plays a major role in most applications of differential equation in any
physical system. This theory is crucial when one can control — either constant in time or
time-dependent, one or more parameters of a system, say, with conditions like: temperature,
pressure, concentration of substances, investments, humidity, position and velocity of
autonomous vehicles, satellites, electromagnetic parameters, action with vaccination in
a population etc, just to mention few of them. Around the last few decades of the 20th

century, emboldened by the well development of deterministic control theory and the



Chapter 5. Examples and open problems 70

constant improving of stochastic analysis and stochastic dynamics, the theory of stochastic
control started to develop rapidly thanks also to a countless number of relevant application.
As for the deterministic control theory, among hundreds of excellent introductory literature,
we mention e.g. Colonius and Kliemann [17], Bullo and Lewis [9], Bacciotti [5], Tan [63],
Ren and Tan [55], Zhang and Zhuo [66] and references therein; yet, for stochastic analysis,
dynamics and control, among a list of excellent introductory texts, see e.g. Arnold [4],
Oksendal [51], Protter [53], Ledao et al [34], Zhou [67], Saporito [60], Qiu [54], Nutz [50]
and references therein. Control theory in stochastic systems is fascinating in the sense that
although the outcome is random and unpredictable, nevertheless in many cases, its law as
a random variable can be controlled. It means that many useful properties and tools can

be applied in order to optimise the chance that the outcomes are favourable.

Besides the pure geometrical motivation on extending the control settings to Lie groups,
we point out some other applied importance: 1) this theory encapsulates the multiplicative
approach, in the sense that the products here can be considered as the usual product of
square matrices; 2) Lie groups are the appropriate frame to work with linear systems: in
many of these cases G is the group (or a closed subgroup ) of positive determinant n x n-
matrices GI* (n,R); 3) this approach also includes the framework for any homogeneous
space via quotient by closed subgroups, e.g. n-dimensional spheres, torus, Grasmannian,
projective spaces, hyperboloid model and many others. In all these cases, the properties
of the Lie group theory are important tools in the analysis and interpretation of the
dynamics: decompositions (Iwasawa, polar, eingenvectors etc), invariance by translations,
adjoints, geometrical structures of fibre bundles, connections, local diffeomorphism with
to the corresponding Lie algebra, and many more. A vast and wide-ranging literature are
available from applied to more theoretical approach. Just to mention few of them, see e.g.
from the classical [16], the well known [64], the more introductory [7] or the more recent

[58], including all references therein.

Let G be a connected Lie group with its corresponding Lie algebra g, identified with the
tangent space T,.G, where e is the identity of G. The dynamics of the controlled trajectories
X*(t) € G, with initial condition X“(0) = e in this context is described by the right

invariant vector fields:

dX"(t) = d(Ryun)e a(t, X2, ut)) dt + d(Ryei)e o(t, X", u(t) dBy(t),  (5.26)

where a and 3 are g-valued functions, d(Rxu))e : T.G' — Txu()G is the derivative at the
identity of the right translation Rxu(t) : g — gX"“(t). The functions o and  depend on
time ¢, the past trajectory s — X“(s) with s € [0,¢] and the control function (bounded
measurable) u. If the Lie group G is a subgroup of matrices, equation (5.26) can be written

with a much more familiar notation

dXU(t) = a(t, X¥, u(t)) - X*(t) dt + o(t, X, u(t)) - X*(t) dBy(t),
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where - stands for the usual product of square matrices.
Let € : Cp — R be a Borel functional, where Cr is the set of continuous trajectories in G.
Hence, for a certain final time 7" > 0 one is looking for the optimal performance given by

sup E[¢(XY)] . (5.27)

ueUT
The idea here is to create an algorithm that will return good estimates for expression
(5.27). We expect that for all € > 0 it is possible, numerically, estimate a stochastic control
u*, such that:

E[£(X*)] > sup E[£(X")] . (5.28)

ueUT

This idea of studying a stochastic optimal control on Lie groups was motivated by our

recent paper [42].
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