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Resumo
Este trabalho propõe um novo modelo de reconstrução de imagem tridimensional para
Difração Coerente de Raios-X. O método proposto evita que seja realizada a Aproximação
da Projeção, a qual é tradicionalmente aplicada à equação que modela a interação radiação-
matéria: a equação de Helmholtz inomogênea (IHE).

Imagem por Difração Coerente de Raios-X pode ser realizada em duas etapas: recuperação
de fase e tomografia. A primeira consiste na recuperação da informação de fase que é
perdida quando realizamos um medida de intensidade de um padrão de difração por um
detector de área. Quando a amostragem do padrão de difração é feita de forma adequada,
podemos, em princípio, recuperar a informação de fase utilizando métodos computacionais.

Num experimento, coleta-se múltiplos padrões de difração para diferentes posições da
amostra. Para cada padrão, aplica-se a etapa de recuperação de fase. Em seguida, algoritmos
de tomografia são aplicados para se obter uma imagem. É nesta etapa em que propomos
um novo método. Demonstramos que a interação radiação-matéria pode ser modelada por
uma matriz-sistema, a qual denominamos “Matriz-M”. A relação linear entre a matriz da
amostra e a Matriz-M permitiu que adaptássemos a Técnica de Reconstrução Algébrica ao
nosso modelo, o qual nos referimos neste trabalho como algoritmo “M-ART”.

O principal objetivo deste trabalho foi avaliar se o algoritmo M-ART poderia melhorar a
qualidade da reconstrução de imagem. Em particular, técnicas tradicionais baseadas na
Aproximação da Projeção apresentam um limite inerente para a resolução que pode ser
alcançada quando se reconstrói uma amostra de certa espessura. Como M-ART dispensa a
Aproximação da Projeção, fizemos a hipótese de que poderíamos superar esse limite de
resolução. Se correta, a hipótese permitirá melhor aproveitar o potencial das novas fontes
de luz coerente ao redor do globo, as quais possibilitam o estudo de amostras de tamanho
micrométrico com resolução nanométrica.

Implementamos e validamos os algoritmos de recuperação de fase e M-ART separadamente
realizando simulações em linguagem Python. No entanto, uma validação completa do
método combinando ambas as etapas provou-se mais difícil do que antecipado Isso é
consequência direta do custo computacional do algoritmo iterativo, o qual aprensenta
complexidade Opn3

q. Isso impossibilitou simulações de amostras maiores, necessárias para
uma avaliação completa da reconstrução combinando ambas as etapas.

A simulação obtida do algoritmo M-ART indica sua superioridade comparada a Aproxi-
mação da Projeção. M-ART não piora fortemente a qualidade da reconstrução conforme



aumenta-se a espessura da amostra. Porém, ainda é possível que tal resultado possua um
viés de “crime inverso”, isto é, ao fato de sintetizarmos o dado de simulação utilizando o
mesmo modelo que resolve o problema inverso posteriormente.

Como perspectiva futura, este trabalho pode otimizar a velocidade do algoritmo M-ART
por meio de estratégias de computação de alto-desempenho como: computação paralela,
cálculos em GPU, e converter partes críticas do código para a linguagem C.

Palavras-chave: Imagem por Difração Coerente. Tomografia. Reconstrução de Imagem.



Abstract
This work proposes a new three-dimensional image reconstruction model for Coherent
X-ray Diffraction. The method we propose innovates by circumventing the Projection
Approximation (PA) that is traditionally applied to the equation that models the radiation-
sample interaction, namely, the inhomogenous Helmholtz equation (IHE).

Coherent X-ray Diffraction image (CDI) reconstruction may be performed in two-steps:
phase-retrieval and tomography. The first consists in the recovery of the phase information
that is lost when an intensity measurement of a diffraction pattern is performed by an area
detector. When properly sampled, the diffraction pattern in principle allows the retrieval
of the lost phase information using iterative computational methods.

In an experiment, one collects multiple diffraction patterns for different positions of the
sample. For each pattern, we employ the phase-retrieval step. Afterwards, tomography
algorithms can be employed to reconstruct the three-dimensional image. This is the step
where we propose a novel approach. We demonstrate that the radiation-sample interaction
can be modelled by a system-matrix, which we call the "M-matrix". The linearity between
sample matrix and the M-Matrix allowed us to adapt the Algebraic Reconstruction
Technique to our model, which we refer in this work as the "M-ART" algorithm.

The main goal of this project was to evaluate if M-ART could improve the quality of image
reconstruction. In particular, traditional reconstruction techniques based on the Projection
Approximation present an inherent limit to the resolution that can be achieved when
reconstructing a sample of a certain thickness. Since we managed to dispense with the
Projection Approximation, we hypothesized we could dispose of such resolution limitation.
If correct, the hypothesis will allow us to better explore the potential of the novel Coherent
light sources around the globe, which in principle make it possible to study samples of
micro-metric size with nano-resolution.

We managed to implement and validate both the phase-retrieval and M-ART algorithms
separately performing simulations in Python language. Nonetheless, the complete validation
of the method combining the two steps proved to be more difficult than anticipated. This
is a direct consequence of the computational cost of the iterative algorithm, which presents
Opn3

q complexity. This hindered the use of the bigger samples we needed to successfully
perform the full CDI simulation combining the two reconstruction steps.

The simulation of the M-ART algorithm alone indicates its superiority compared to the PA.
M-ART does not strongly deteriorate reconstruction quality as one increases the thickness



of the sample. Nonetheless, it is still possible that this result is being influenced by an
"inverse crime" bias, that is, the act of synthesizing the simulation data using the same
model that solves the inverse problem afterwards.

A future perspective for this work is to improve the speed of the M-ART algorithm, by
employing high-performance computing strategies such as GPU and parallel computing,
as well as converting the critical parts of the code to the faster C language.

Keywords: Coherent Diffraction Imaging. Tomography. Image Reconstruction.
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1 Introduction

1.1 Imaging and X-rays
The evolution of science in the past few centuries has been, to a large extent,

linked to the development of imaging. From the early telescopes and microscopes used
to observe stars and microorganisms, humans have used images to properly analyze and
characterize nature. The advances in imaging techniques continue up to this day and,
thanks to the great advances in mechanical and control engineering, optics, computational
hardware, software, among others, we are now able to obtain images of distant galaxies as
well of the atomic structure of matter.

In particular, material science has evolved rapidly during the past few decades
due to developments in microscopy and other imaging techniques, such as electron micr-
socopy, crystallography and coherent diffractive imaging (CDI). Each imaging technique
makes use of a distinct mechanism, presenting a different domain of application together
with particular advantages. Naturally, the most common and well-known technique is
visible light microscopy. The downside is that the resolution ∆x that can be achieved with
such microscopes is limited by the Rayleigh resolution, also known as the diffraction-limit:

∆x “ 0.61 λ

NA (1.1)

where λ is the wavelength light and NA the numerical aperture of the lens. Therefore, due
to the wavelength of visible light ranging from 400 - 700 nm, the achieved resolution is
typically limited to a few hundred nanometers.

X-ray and Electron microscopes circumvent this limitation due to their lower
wavelengths. The former can in principle be used to achieve resolutions of a few nanometers,
while modern electron microscopes reach sub-nanometer resolutions [2]. However, such
increase in resolution comes with a cost. First, the higher energy of the beams may cause
radiation damage to the sample. In particular, this becomes a bigger issue for biological
samples and partly justifies the success of light microscopy in this field, since visible light
will not cause such damage, allowing to probe biological phenomena over longer periods of
time.

1.2 Radiation Damage and Penetration Distance
Although X-rays achieve lower resolutions when compared to electron mi-

croscopy, it presents a clear advantage: how far it penetrates in matter. This is essential if
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Figure 1 – Penetration distance of X-rays and mean free path of electrons as a function of
energy for water (blue) and a protein (black). Figure from [1].

one wishes to obtain information about the internal structure of matter. Indeed, X-ray
imaging allows us to obtain tridimensional images of matter, with modern techniques
being able to reach, in principle, resolutions of a few nanometers.

Naturally, each material will interact differently with the radiation. The linear
attenuation coefficient µ quantifies how strongly it gets attenuated as it propagates through
matter. Considering a material of thickness t and an incident radiation of intensity I0,
Beer’s law gives us that the intensity is exponentially decaying

I “ I0 exp p´µtq (1.2)

One can rewrite this as
I “ I0 exp

ˆ

´
µ

ρ
x

˙

(1.3)

where x “ ρt is called the mass thickness, defined as mass per unit area. The quantity µ{ρ

is called the mass attenuation coefficient. It is is commonly used to quantify the interaction
of the material with the radiation, as we shall see in the next section.

Figure 1 shows the penetration distances as a function of energy in the soft
x-ray region1. One can see that the distance for X-rays is greater over almost all the energy
range shown. The curves show data for water and a protein (representing carbon). One can
see a great difference in the penetration distance of X-rays in the energy region between
290 eV and 540 eV, the K shell absorption edges of carbon and oxygen in water. This is
1 We consider soft x-rays to be those with energy from roughly 250 eV to about 10keV. Above this

energy, we shall refer to them as hard x-rays.
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the so-called "water windows", which does not occur for electrons. This energy region is
suitable, for instance, for obtaining great contrast for biological imaging, since organic
matter will not be as transparent as water, presenting yet another advantage of X-rays
over electrons.

Figure 2 – Radiation dose imparted by X-rays and electrons for proteins in ice as a function
of ice thickness. Figure from [1].

Figure 2 shows yet that radiation damage also limits what can be achieved with
electron microscopy, especially when dealing with biological samples. We have the dose
imparted to a sample of proteins in ice as a function of the ice thickness for achieving a
resolution of 10 nanometers using phase contrast imaging. We see that only for a thickness
up to a micron the radiation dose of electrons is lower than that of X-rays. Consequently,
one needs X-rays to image bigger samples such as entire eukaryotic cells, not only because
of the higher penetration of X-rays (allowing to probe the sample tridimensionally), but
also because only then the radiation damage would be small enough to allow the image
acquisition process to occur.

1.3 Interaction of X-rays with Matter
Different phenomena may happen when radiation interacts with matter. We

will here restrict ourselves to those that happen within the energy range of interest to
X-rays, namely: photoelectric absorption, elastic (or Rayleigh) scattering and inelastic
(or Compton) scattering. Other effects such as pair production, triplet production and
photonuclear interaction [3] are not treated here, since these are restricted to higher photon
energies outside our scope.

The interaction of radiation with matter is quantified using the cross-section
σ, which can be thought of as an effective area for intercepting an incoming photon. The
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Figure 3 – X-ray cross-sections of Carbon for absorption, elastic scattering and inelastic
scattering as a function of energy. Figure from [1].

cross-section is typically described in units of barns (“ 10´24cm2). The total cross-section
σt is a direct sum of the respective cross-sections of each phenomena

σt “ σa ` σe ` σi (1.4)

where σa, σe and σi are the cross-sections for photoelectric absorption, elastic scattering and
inelastic scattering, respectively. The cross-section directly relates to the mass attenuation
coefficient according to [4]:

µ

ρ
“

σt

uA
“

pσa ` σe ` σiq

uA
(1.5)

where A is the relative atomic mass of the element and u the atomic mass unit. Tabulated
values are usually given in mass attenuation coefficient units.

Figure 3 shows the cross-section of Carbon for energies between 10 eV to 1 MeV.
Notice that for energies up to about 10 keV, absorption dominates over scattering. This
indicates that multiple scattering events are rare at such energies, since after scattering a
first time, the photon will likely be subsequently absorbed. As seen in Figures 1 and 2,
this energy range comprises the water window and also can be an appropriate region for
experimenting without causing too much radiation dose to the sample. Consequently, many
synchrotron beamlines operate at such energies. In that case, the majority of incident
photons will be absorbed instead of elastically scattered. Therefore, scattering techniques
require a high flux of photons so that the detector collects a sufficient number of scattered
photons in reasonable time for satisfactory levels of photonics noise.
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1.4 Synchrotron Light Sources
Synchrotron light sources are arguably one of the most versatile machines for

studying materials. Electrons are accelerated in a controlled manner such that they emit
photons in a vast spectrum and in vast quantity. Figure 4 illustrates the electromagnetic
spectrum energy and wavelength values. The shaded region in pink corresponds to those
energies covered by lasers. Synchrotrons also cover this range, as well as orders of magnitude
above it in the X-ray spectrum, as shown by the shaded yellow region. Roughly, the
synchrotron light spectrum covers the range of 0.1 eV up to 1 ˆ 106 eV [5].

Figure 4 – Electromagnetic spectrum energy and corresponding wavelengths. The shaded
regions in pink show values typically covered by lasers and synchrotron light
sources. The shaded region in yellow represents the X-ray frequencies also
generated by the synchrotron. Adapted from [5].

Furthermore, the huge number of emitted photons makes synchrotron light
sources the only practical option for many scientific cases of interest, since an experiment
that would take weeks in a common laboratory X-ray source, would take only minutes
with the synchrotron. The quality of the synchrotron is usually measured by its brilliance,
defined as

Brilliance “
photons/second

(source size [mm2]) (source divergence [mrad2]) (0.1% bandwidth)
(1.6)

Hence, for high brilliance one needs high flux (number of photons per second) and a small
beam with low divergence. Usually, one quantifies beam size B and divergence B1 together
by the emittance ϵ, defined as (Figure 5):

ϵxy “ BxyB
1
xy (1.7)

The new Brazilian Synchrotron, Sirius, is the second fourth-generation syn-
chrotron light source to start operations, the first experiments being performed in late
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Figure 5 – Illustration of the parameters that define the emittance of the synchrotron light
beam. Figure from [5].

2020. It is a 3 GeV storage ring with 518 m circumference, presenting a low emittance of
0.25 nm rad [6].

Of particular interest for this work is the Cateretê beamline of Sirius, which
started accepting external users in April 2022. This beamline is dedicated for the techniques
of Coherent Diffractive Imaging (CDI), X-ray Photon Correlation Spectroscopy (XPCS),
Small Angle and Ultra-Small Angle X-ray Scattering (SAXS and USAXS). Cateretê works
in the energy range of 3 to 23 keV and has a fully-coherent beam with variable focus of
1 ˆ 1 µm2 to 30 ˆ 30 µm2 full-width at half-maximum (FWHM). An area detector with
3072 ˆ 3072 pixels (each with 55 ˆ 55 µm2 size) is placed in vacuum, with adjustable
distance from 1 to 28 meters. Coherent flux is 1011 ph/s at 6 keV, 1010ph/s at 9 keV [7].
We further discuss CDI in the next section, as this is the technique of main interest for
this work.

1.5 Coherent Diffractive Imaging
Traditionally, imaging systems make use of lenses to recover an image. Lenses

can be thought of a device that inverse-Fourier transforms the wavefield that has undergone
a Fourier transform due to free-space propagation. This is illustrated in Figure 7 (left).
Nonetheless, several issues arise at X-ray wavelengths when using lenses. Since the refractive
index is close to unity, one needs to use several lenses together (compound refractive lenses)
in order to focus the radiation. This is not only complex to fabricate, but also strongly
attenuates the radiation. Another option is the use of Fresnel Zone Plates, which focus
radiation by diffracting the X-ray beams. However, the focal length of such component
depends on the wavelength, which deteriorates the focus and, consequently, the spatial
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resolution. Furthermore, if one wishes to reach a resolution ∆x of a few nanometers,
fabrication of such components becomes extremely complicated because the width ∆wN

of the outermost ring relates to ∆x as [5]:

∆x “ 1.22∆wN (1.8)

At last, the power efficiency of X-ray optics is usually quite low (below 60% [1, Chapter
10]), making it impractical in many situations.

An alternative to lenses is the use of lensless imaging techniques, where the
resolution is no longer limited by the lens, but rather by three other parameters: the
wavelength λ of the incident radiation, the detector-sample distance L, and the detector
size D:

∆x “ 4λ L
D

(1.9)

This allows one to achieve, in principle, a resolution of a few nanometers, as shown in
Figure 6.

Figure 6 – Spatial resolution, computed from equation 1.9 for the parameters of Cateretê
(D “ 55 ˆ 3072 µm and L “ 1 m) as a function of the energy range covered
by the beamline. In principle, a resolution of only a few nanometers may be
achieved via lensless imaging techniques.

In these diffraction experiments, a detector will measure the scattering pattern
of the sample. This consists in an intensity measurement and brings significant difficulty
to the imaging problem. The intensity measurement in the Fraunhofer regime consists in
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Figure 7 – A typical imaging experiment uses an optical component (such as a lens of
Fresnel Zone plate) to recover and image of the object (left). On the other hand,
Coherent Diffractive Imaging relies on measuring the reciprocal space of the
object and then recovering the image with the aid of computational methods
(right). Figure from [5].

the absolute squared value of the Fourier Transform (FT) of the electron-density2:

I “ |Fpρpxqq|
2 (1.10)

An intensity measurement, therefore, is a measurement of the object’s reciprocal space
which looses all phase information about the scattered wave. Consequently, to recover the
three-dimensional structure of the object, one cannot simply perform an inverse Fourier
Transform to the measured signal, since part of the information is missing. Instead, one
must rely on numerical computational methods to recover the lost phase information and
then obtain an image. Figure 8 qualitatively illustrates the relevance of the information
content carried by the phase. The original image on the left is Fourier transformed and an
inverse Fourier transform is applied separately to the magnitude (central image) and phase
content (right image) of reciprocal-space. It is evident that the information recovered only
from the magnitudes does not resemble the original signal, while the one recovered from
the phases does. This is a strong indicator of the necessity to properly retrieve the phase
for a reliable image reconstruction.

We note that the intensity measurement being directly related to the Fourier
Transform brings yet another advantage to the lensless techniques. Due to the properties
of the FT, a shift of ρpxq in space results only in a phase-shift of its Fourier Transform.
This means the technique is robust against mechanical vibrations of the sample during the
experiment, since the recorded diffraction pattern over time will not become blurred due
to integration in the detector.

Coherent Diffractive Imaging is broadly used to refer to different techniques,
2 As we shall detail in section 1.3, this is the case strictly when working at high energies far from

absorption edges.
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Figure 8 – Qualitative example of the information contained in the magnitude and in
the phase of a signal. The original image is Fourier Transformed (FT). The
central image is then recovered by performing the inverse Fourier transform
(IFT) using only the magnitudes of the FT, whereas the image on the right
is recovered via the IFT of the phases. One can clearly see that the recovered
image using the phases resembles the original image, but the same cannot be
said about the image from the magnitudes. Figure from [1].

the main ones being Plane Wave Coherent Diffractive Imaging and Ptychography 3. In this
work, we use the CDI abbreviation to refer strictly to the Plane-Wave technique. Although
the novel development of this work applies to both techniques, we chose to focus on Plane
Wave CDI for two main reasons: first, due to its simplicity compared to Ptychography;
second, because the existence of analytical forms of the diffraction pattern for some object
geometries (section 3.2.5) would in principle help us validate the newly proposed method.

CDI reconstruction may be performed in two different ways, which we call single
and two-step reconstruction. Although experimentally similar, the two methods differ in
the approach used to recover the three-dimensional structure of the sample. In single-step
reconstruction [9], one performs multiple measurements to probe the 3D reciprocal space of
the object. After phase-retrieval, one has complete information of the object’s 3D reciprocal
space and can recover the image via a direct 3D inverse Fourier transform. On the other
hand, the more common two-step reconstruction relies on obtaining 2D projection images
from multiple measurements, and then using tomographic reconstruction algorithms to
recover the three-dimensional structure.

Traditionally, the tomographic part of the two-step reconstruction relies on the
Projection Approximation (PA) [10]. In this scenario, the Radon transform applies and
traditional tomography algorithms such as Filtered Backprojection (FBP) may be applied
to recover the 3D image [11]. Unfortunately, under this approximation there is a limit to
3 Ptychography combines Scanning X-ray microscopy and plane-wave CDI. It relies on performing multiple

measurements while scanning the sample using a small beam. The overlapping of the illuminated
regions between each diffraction measurement provides us with redundant information so that one
obtains a well-posed phase-retrieval problem. We do not focus on Ptychography in this text and refer
the reader to other texts for details [1, 5, 8].
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Figure 9 – Limit sample thickness as a function of energy for different reconstruction
resolutions. Figure from [12].

the reconstruction resolution ∆r that can be achieved for a sample of thickness t being
imaged under radiation of wavelength λ:

t “
4

0.61
∆r2

λ
(1.11)

This equation4 is plotted in Figure 9 for different resolution values. From the 5 nm curve,
we see that we need to limit ourselves to samples only 1 micron thick, even for X-ray
energies as high as 12 keV. Such thickness is small compared to the size of the 30 ˆ 30 µm2

FWHM coherent beam one has access to in a fourth-generation beamline such as Cateretê.
Limiting ourselves to a sample thickness of only 1 micron would impede us, for instance, to
reliably study in ultra-high resolution biological samples such as bacteria and eukaryotic
cells, greatly limiting the potential of fourth-generation Synchrotron light sources for
scientific discovery.

In this work, we were able to develop a numerical reconstruction method to
recover the 3D sample without the need to make the Projection Approximation. Then,
we attempted to answer the following question: by avoiding the PA, are we able to go
beyond the reconstruction resolution limit posed by equation 1.11? As we shall see in
section 4, we have encountered several challenges when trying to answer this question,
especially due to the computational cost of the newly proposed reconstruction model.
Nonetheless, the obtained simulation results indicate that, indeed, going beyond the
Projection Approximation helps us to obtain better reconstructions.

4 There is some variation in the literature regarding the constant factor [1] in equation 1.11, depending
on how one defines resolution.
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2 Objectives

This Masters’ project main objective was the development and simulation
of a new three-dimensional image reconstruction model for X-Ray Coherent Diffractive
Imaging (CDI). The most widely used 3D reconstruction method in CDI relies on two-steps:
phase-retrieval and tomography.

The first consists in performing multiple scattering experiments rotating a
sample, in which a diffraction pattern is measured by an area detector for each sample
position. The acquisition consists in an intensity measurement, which lacks information
about the phase of the measured wavefield. Nonetheless, given the right experimental
conditions (more specifically an appropriate combination of detector distance, detector
pixel-size and radiation energy), one may use computational techniques to retrieve the
phase information that is encoded in the diffraction pattern – also referred to as speckle
pattern in the case of coherent radiation. The goal of the first step is to apply such
techniques in order to successfully retrieve a two-dimensional projection of the sample. A
first objective of this work was then to implement Phase-Retrieval algorithms that would
allow us to eventually have a complete simulation of the CDI reconstruction process.

By the end of the first step, one has several 2D projections, each acquired for a
different incidence angle of the radiation with respect to the sample. These projections
then allow us to move to the second-step: the tomographic reconstruction. This is the step
for which we propose a new approach called M-ART. Traditionally, tomography relies on
an approximation of the inhomogenous Helmholtz equation (IHE) called the Projection
Approximation (PA), under which the Radon transform applies. In this case, one can use
the fast tomography Filtered Backprojection (FBP) algorithm to obtain a 3D sample from
the multiple 2D projections obtained in the first step. However, within the PA, there is an
inherent limit to the resolution ∆r that can be achieved for a sample of thickness t.

The second main objective was the development of a discrete matrix model of
the IHE without the PA, that allows us to relate the interaction of the incident radiation
and a sample of arbitrary size. Throughout this work, we refer to the matrix as the
"M-Matrix". Under this condition, the FBP algorithm can no longer be used. Fortunately,
the linear relationship between M-Matrix and sample allowed us to use well established
Algebraic Reconstruction Techniques (ART) to perform the tomographic part of the
reconstruction. The next main goal was to adapt the ART algorithm to the proposed
matrix method and simulate the second-step to validate it.

ART algorithms are known for being slow due to their iterative nature. In
our case, the matrix model complicates the problem even further, since it necessarily
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causes the algorithm to have Opn3
q complexity instead of Opnq, as in the PA scenario.

The computational cost for performing the reconstruction indeed turned out to be huge,
which made it difficult and prevented us from achieving some of the secondary goals of
this project, namely: the full-simulation of a 3D CDI reconstruction using the proposed
method, and the validation of the method using real experimental data from a beamline.
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3 Theory

3.1 Wave propagation
In this initial section, we give an overview of the models of interaction of

propagating electromagnetic radiation with matter, more specifically for the case of
interest: X-rays. We particularly find to be lacking in the literature a unified, yet simple
review of the theoretical topics needed to understand Coherent Diffraction Imaging with
all its prerequisites. This section aims at providing such simplified overview of all the
required topics and hopefully to serve as an useful reference for the future.

The text herein presented is compiled from multiple references [1, 5, 10, 13–20].
For the sake of comprehensibility, some cumbersome demonstrations are not included and
we refer the reader to the references for more details.

3.1.1 Vacuum propagation

We start by reviewing the propagation of electromagnetic waves in vacuum. In
a synchrotron experiment, the propagation of the wave from the sample to the detector
may occur in air or in vacuum, depending on the experiment’s purpose. In the case of CDI
at Sirius’ Cateretê beamline, a low vacuum environment is created with approximately
1 ˆ 10´3 mbar. It is useful to see how the free-space propagation works. Starting from
Maxwell’s equations in vacuum [21]

∇ ¨ E⃗ “ 0 ∇ ¨ B⃗ “ 0

∇ ˆ E⃗ “ ´
BB⃗

Bt
∇ ˆ B⃗ “ µ0ε0

BE⃗

Bt

(3.1)

with ε0 and µ0 being the electric permittivity and magnetic permeability of vacuum,
respectively. Using vector calculus identities, we can deduce the wave-equations both for
the electric E and magnetic B field vectors

„

ε0µ0
B2

Bt2
´ ∇2

ȷ

Epx, y, z, tq “ 0 (3.2)

„

ε0µ0
B2

Bt2
´ ∇2

ȷ

Bpx, y, z, tq “ 0 (3.3)
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It is convenient to switch the mathematical treatment to the scalar wave-equation1 [10],
such that

„

ε0µ0
B2

Bt2
´ ∇2

ȷ

Ψpx, y, z, tq “ 0 (3.4)

where Ψpx, y, z, tq is a scalar wavefunction representing any component of the electromag-
netic field. The complex wavefunction may not be monochromatic, that is, it may be a
wave composed of multiple frequencies. We can then decompose Ψ as a superposition of
monochromatic components ψω

Ψpx, y, z, tq “
1

?
2π

ż 8

0
ψωpx, y, zq expp´iωtqdω (3.5)

Combining the above equations, we obtain the Helmholtz equation for each monochromatic
component:

r∇2
` k2

sψωpx, y, zq “ 0, k “ ω{c (3.6)

Therefore, the problem of solving the wave-equation is substituted by solving the simpler
Helmholtz equation for each monochromatic component, which is solely a function of
space, and then performing the integral in equation 3.5 for recovering Ψ. For simplicity,
we refer herein to the monochromatic ψω simply as "complex wavefunction".

Intensity

We first point out that the electromagnetic field is in reality a real quantity.
The complex wavefunction ψω of a monochromatic wave is therefore used for mathematical
convenience. One can simply recover the real wavefunction by taking the real part ψR “

ℜpψωq. The intensity can then be calculated as a function of both quantities. It is defined
as the optical power per unit area, which is the average of the squared real wavefunction
or, conveniently, as the absolute square of the complex wavefunction:2

Iprq “ 2 ă ψ2
Rpx, y, z, tq ą“ |ψωpx, y, zq|

2 (3.7)

The plane and spherical waves

Two solutions admitted by the Helmholtz equations are the plane and spherical
waves. A plane wave is a solution of the form

ψωpx, y, zq “ ψpx, y, zq exp p´ik ¨ rq “ ψpx, y, zq exp r´ipkxx ` kyy ` kzzqs (3.8)
1 As pointed out by [10], it is not immediate to see why can make a transition to a scalar field to describe

E and B in free space. We refer the reader to the references therein for such explanation.
2 We assume here the average to be performed for a time long compared to the frequency of the wave.
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where r “ px, y, zq and

k2
“ k2

x ` k2
y ` k2

z (3.9)

ψpx, y, zq is the called the complex envelope of the wave. To understand why the plane
wave is named like so, note that the phase of the complex wavefunction is

argψωpx, y, zq “ argψpx, y, zq ´ k ¨ r (3.10)

Equating this to a constant phase value of 2πq (q P Z) we obtain the equation for the
surfaces of constant phase (also called wavefronts):

k ¨ r “ kxx ` kyy ` kzz “ 2πq ` arg pψpx, y, zqq (3.11)

In this case, this is precisely the equation of planes perpendicular to the wavevector k,
each plane being separated by a distance equal to the wavelength λ “ 2π{k. Hence the
name plane wave. The spherical wave solution, on the other hand, writes

ψωprq “
ψ

r
exp p´ikrq (3.12)

which, following the same procedure as for the plane wave, can be shown to be precisely
concentric spherical wavefronts separated by a radial distance λ [14].

Fourier Decomposition

Analogous to the temporal frequency decomposition of the complex wave-
function into monochromatic components (equation 3.5), we can decompose each ψω for
different spatial frequencies as a sum of plane waves

ψωpx, y, zq “
1

?
2π

ż ż

ψ̂ωpx, y, zqe´ipkxx`kyy`kzqdkxdkydkz (3.13)

The above equation turns out to be precisely a tridimensional Fourier Transform with
respect to the spatial frequencies ki. ψ̂ω is called the Fourier Transform of ψω. Decomposing
the wave into planar components also greatly simplifies how we treat wave propagation, as
we shall see ahead.

Paraxial waves

In ray optics, a paraxial ray is said to be those rays that make a small angle
with respect to the optical axis of the system. In the context of wave optics, these can be
thought to be the normal vector to the wavefronts. Considering the optical axis to coincide
with the z-direction, a paraxial wave is described as

ψωprq “ ψprq exp p´ikzq (3.14)
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where the complex amplitude ψprq is a a slowly varying function of position3. From
equation 3.14, the real wavefunction in ψR writes

ψRpr, tq “ |ψpx, y, zq| cos pωt ´ kz ` argψpx, y, zqq (3.15)

As illustrated in Figure 10, the above equation indicates that, if ψprq varies slowly, the
amplitude |ψprq| is a slow varying envelope of the sinusoidal wave (Figure 10a). Furthermore,
at a specific time t, the surfaces of constant phase will change little due to the argψpx, y, zq

factor, such that kz ` argψpx, y, zq « kz “ 2πq, meaning the wavevectors bend only
slightly as the wavefront propagates (Figure 10b), maintaining the paraxial nature of the
wave.

Figure 10 – On the left, a "side-view’ of the wave, showing the amplitude |ψRp0, 0, zq|

for the real wavefunction. The amplitude of the complex envelope |ψ| (here
denoted by |A|) varies slowly in comparison to the wavelength. On the right,
we see the surfaces of constant phase (wavefronts) "from above", where the rays
bend slightly with z because of the slow variation of the phase arg pψRp0, 0, zqq.
Figure from [14].

3.1.2 Fresnel and Fraunhoffer Regimes

We now briefly turn our attention back to the spherical wave solution. Consider
the wave to originate at the origin, as is in fact the case for equation 3.12. Consider also
we are dealing with points in an output plane at z such that z ąą

a

px2 ` y2q “ a.4. In
that case, 3.12 can be approximated by:

ψωpx, y, zq «
ψ

z
exp p´ikzq exp

ˆ

´ik
x2 ` y2

2z

˙

(3.16)

3 Meaning both the amplitude and its derivative vary little within the distance of one wavelength.
4 If the rays reaching this circle of radius a in the output plane were originated at the origin, one could

consider these to be paraxial rays.
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Figure 11 – Illustration of the a spherical wave wavefront originating at (x,z) = (0,0).
The scale of the drawings show that for medium distances, the wavefronts
become apparently paraboloidal, whereas for the last values of z the curvature
is barely noticeable, indicating the plane wave approximation. Figure from
[14]

which is known as the Fresnel regime of the spherical wave. Equation 3.16 can be interpreted
as a plane wave ψ exp p´ikzq modulated by the factor exp

ˆ

´ik
x2 ` y2

2z

˙

{z. In that case,
the surfaces of constant phase amount to be the paraboloid of revolution

x2 ` y2

z
“ 2πq, q P Z (3.17)

If we consider yet bigger value of z (larger propagation distances), the quadratic expo-
nential term tends to zero, whereas the exponential dependence on z dominates over
1{z, and we recover a plane wave ψωpx, y, zq “ ψpx, y, zq exp p´ikzq. This evolution of
the wavefront curvature is illustrated in Figure 11 and is referred to as the Fraunhoffer
regime. Additionally, when we mention large values of z, it is important to have mind: large
with respect to what? Besides the radius a of the region of interest in the output plane
indicating one relevant dimension to our problem, the wavelength is another important
one. As a rule of thumb, the Fresnel approximation is valid when

Nf

4
a2

z2 ăă 1 (3.18)

where
Nf “

a2

λz
(3.19)

and Nf is called the Fresnel number. Since a ăă z implies that a2
{z2

ăă a2
{z, it is usually

sufficient to guarantee that Nf ăă 1. On the other hand, besides the condition of equation
3.18, the Fraunhoffer approximation requires that

NF “
b2

λz
ăă 1 (3.20)
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where b is the radius of the region of interest in the input-plane – for instance, the radius
of a circular aperture through which the wave propagates. These approximations are
convenient to help us simplify the mathematics of wave propagation. Consider a plane
wave

ψωpx, y, zq “ exp r´ipkxx ` kyy ` kzzqs (3.21)

Using equation 3.9, one can rewrite it as

ψωpx, y, zq “ exp p´ipkxx ` kyy ` kzzqq

“ exp p´ipkxx ` kyyqq exp
´

´iz
b

k2 ´ k2
x ´ k2

y

¯

“ exp
´

´iz
b

k2 ´ k2
x ´ k2

y

¯

ψωpx, y, zq

“ T pkx, ky, zqψωpx, y, z “ 0q

(3.22)

That is, in order to obtain the wave at a position z ą 0 from a position z “ 0, one has
to simply multiply the former wave by T pkx, ky, zq “ exp

´

´iz
b

k2 ´ k2
x ´ k2

y

¯

, called the
free-space propagator or the transfer function of free space. One interesting aspect is worth
mentioning when we rewrite T as a function of wavelength. Note that:

T pkx, ky, zq “ exp
´

´i2πz
b

λ´2 ´ ν2
x ´ ν2

y

¯

, kxy “ 2π{νxy (3.23)

For ν2
x ` ν2

y ď λ´2, the exponential becomes a negative real quantity. In other words, the
transfer function becomes an attenuation factor. Consequently, one can show that, for
propagation distances z ąą λ, any plane wave of spatial frequencies above the cutoff
frequency λ´1 will quickly be attenuated. In some sense, one might say that free-space
propagation acts a low-pass filter. This is a profound realization that closely relates
to the diffraction limit of light: any spatial frequency of the wave that is finer than a
wavelength (information finer than λ) will not be transmitted by the wave over distances
z ą λ. Consequently, the resolution of imaging techniques is intrinsically limited by the
wavelength of the radiation.

Fresnel and Fraunhoffer Diffraction

From equation 3.13, we have seen that an arbitrary wave may be decomposed
as a sum of plane waves via the Fourier Transform F . Consequently, the wave at a position
z “ L may be obtained from its configuration at z “ 0 simply by decomposing it into its
plane wave components, propagating these components to the position z “ L with the
transfer function T pkx, ky, z “ Lq, and then finally composing to total wave again using
an Inverse Fourier Transform F´1. In operator notation, we have DL
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DL “ F´1 exp
´

´iL
b

k2 ´ k2
x ´ k2

y

¯

F (3.24)

such that
ψωpx, y, z “ Lq “ DLψωpx, y, z “ 0q (3.25)

where the subscript L denotes the propagation distance.

It is important to emphasize here that the wavefunction ψωpx, y, z “ 0q at
the beginning is arbitrary. Therefore, this may be for instance the wave conformation
after it has interacted with matter, where z “ 0 would be the output plane of a sample.
As we shall see in section 3.1.3 ahead, the interaction of an incident wave with matter
will produce such an arbitrary output wave with amplitude and phase modulations with
respect to the incident one. In the particular case where the incident wave is a perfect
plane wave propagating in the z direction, the operator DL may be directly applied to the
transfer function of the sample. This may be a complex sample, causing both attenuation
and phase-shits, as well as a simple slit that blocks part of the incident radiation. This
interaction is actually a diffraction phenomena, and therefore DL is also referred to as a
diffraction operator.

The Fresnel approximation may be once again applied here to the square-root
term in equation 3.24, such that we get the Fresnel approximation Df of the diffraction
operator when Nf ăă 1:

ψωpx, y, z “ Lq « Df
L ˆ ψωpx, y, z “ 0q

“ exp pikLqF´1 exp
„

´iLpk2
x ` k2

yq

2k

ȷ

F ˆ ψωpx, y, z “ 0q
(3.26)

as well as DF
L for the Fraunhoffer approximation when NF ăă 1:

ψωpx, y, z “ Lq « DF
L ˆ ψωpx, y, z “ 0q

“ ´
ik exp pikLq

L
exp

„

ik

2Lpx2
` y2

q

ȷ

ˆ ψ̂ω

ˆ

kx “
kx

L
, ky “

ky

L
, z “ 0

˙

(3.27)

ψ̂ω being the Fourier Transform of ψω. Note that the Fourier Transform is calculated
at frequency points ki “ i{L, , i “ tx, y, zu

5. Therefore, equation 3.27 tells us that,
5 Rigorously speaking, sin pθiq “ ki{k, with k2 “ k2

x ` k2
y ` k2

z and θi being the angle the component
ki makes with the propagation direction. Furthermore, simple trigonometry gives us tan pθiq “ i{L.
Combining these equations we obtain

ki “ k sin parctan pi{Lqq «
ki

L
“

2πi

λL
(3.28)

the approximation being valid when we have θi ăă 1 (paraxial approximation).
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Figure 12 – The different diffraction regimes for an object composed of absorptive (dark)
and phase-shifting (light) discs. Figure from [5].

for NF ăă 1 (usually meaning long propagation distances), the wave will be a direct
measurement of the frequency-space of the input complex amplitude, each point in the
output plane representing a specific frequency of the plane waves composing the signal.

To summarize, we illustrate in Figure 12 the different diffraction regimes for an
object composed of absorptive and phase-shifting discs. For small propagation distances
(big NF ), the wave conformation resembles a projection of sample in the so called contact
regime. As propagation distances increases such that NF « 1, one enters the Fresnel regime
where interference between different plane wave components start to happen, causing the
appearance of fringes around the object. At big distances (NF ăă 1), each plane wave
component gets completely separated and one measures the diffraction pattern.

3.1.3 Waves in matter and the Projection Approximation

We now proceed to the modelling of a wave propagating through a material
medium. The process is analogous to the one presented for the vacuum equations, where
we reach a more refined version of the Helmholtz equation 3.6. Under both the paraxial
approximation already discussed and the important Projection Approximation (PA), this
equation presents a simple solution. Nonetheless, the validity of such approximation is
questionable under certain circumstances, which is the central problem this work has tried
to improve upon.

To arrive at the Projection Approximation, one starts from Maxwell’s equations
in material media and makes a series of assumptions about our sample [10]:

• Linear isotropic material (D⃗ “ εE⃗ and B⃗ “ µH⃗);

• Static material (ε and µ independent of time);
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• Non-magnetic material (µpx, y, zq “ µ0);

• Neither current nor charge densities are present (ρpx, y, z, tq “ J⃗px, y, z, tq “ 0);

• Scatterers are sufficiently slowly varying over length scales comparable to the wave-
length of the X-ray radiation.

These assumptions allows once again to describe the electromagnetic field by the scalar
theory, where the complex scalar field Ψpx, y, z, tq now obeys a slightly modified version of
equation 3.4:

„

εpx, y, zqµ0
B2

Bt2
´ ∇2

ȷ

Ψpx, y, z, tq “ 0 (3.29)

The complex wavefunction can be decomposed into monochromatic components
(as in equation 3.5), which when substituted into 3.29 provides us (after some algebra)
with the “inhomogenous”6 Helmholtz equation

r∇2
` k2n2

ωpx, y, zqsψωpx, y, zq “ 0 (3.30)

The above equation differs from 3.6 only by the position and frequency dependent n2
ωpx, y, zq

refractive index term that indicates the presence of the material medium.

Now, suppose we have an incident plane wave from the left reaching a scattering
volume contained in the region where 0 ă z ă z0, as shown in Figure 13. We propose the
following ansatz to the above equation:

ψωpx, y, zq “ ψpx, y, zq exppikzq (3.31)

That is, once again an unscattered plane wave exppikzq modulated by an envelope ψpx, y, zq.
Substituting it into equation 3.30, we arrive at

„

2ik B

Bz
` ∇K `

B2

Bz2 ` k2
rn2

px, y, zq ´ 1s

ȷ

ψpx, y, zq “ 0 (3.32)

where we have split the Laplacian ∇ “ ∇K `
B2

Bz2 into its transversal and longitudinal
components. Within the paraxial approximation mentioned in section 3.1.1, we can neglect
the second derivative in z to arrive at the inhomogeneous paraxial Helmholtz equation:

„

2ik B

Bz
` ∇K ` k2

rn2
px, y, zq ´ 1s

ȷ

ψpx, y, zq “ 0 (3.33)

6 This is said to be inhomogeneous in the sense that we are dealing with an inhomogeneous medium,
not in the traditional mathematical sense of inhomogenous equation.
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Figure 13 – Incident plane wave reaching a scattering object from the left. Only a "projected
ray-path" entering the sample at px, y, 0q and leaving at px, y, z0q is responsible
for influencing phase and absorption changes to the complex amplitude of the
wave. In other words, the only regions of the sample that influence the ray are
those that the wave would have travelled in vacuumm, had the object been
absent. Figure from [10].

In vacuum, n “ 0 and 3.33 reduces to the classic paraxial Helmholtz equation, for which
the Gaussian beam is one of its solutions.

We subsequently perform the Projection Approximation. It consists in assuming
that scattering is sufficiently weak so that the wavefield at the exit surface (z “ z0) will
be determined only by amplitude and phase shifts accumulated along the "projected"
ray-paths between the input and output planes. In other words, a ray entering the sample
at px, y, 0q and leaving at px, y, z0q will be influenced only by those points through which
the wave would have travelled in vacuumm, were the sample absent [10]. In the above
equation, this means neglecting the transverse Laplacian, which is the term that couples
neighboring trajectories. We are then left to solve a simple partial differential equation

B

Bz
ψpx, y, zq «

k

2ir1 ´ n2
px, y, zqsψpx, y, zq (3.34)

Therefore, the wave-field envelope at the exit surface is

ψpx, y, z “ z0q « exp
ˆ

k

2i

ż z“z0

z“0
r1 ´ n2

px, y, zqsdz

˙

ψpx, y, z “ 0q (3.35)

For frequencies in the X-ray range, the refractive is slightly lower than unity. It is then
convenient to rewrite it as
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n “ 1 ´ δ ` iβ (3.36)

with both δ and β being real values. Kepping only first-order terms in δ and β we obtain

1 ´ n2
« 2pδ ´ iβq (3.37)

which allows to rewrite the wavefield at the exit plane z “ z0 as

ψpx, y, z “ z0q « exp
ˆ

´ik

ż z“z0

z“0
pδpx, y, zq ´ iβpx, y, zqqdz

˙

ψpx, y, z “ 0q

“ TP Apδ, β, z0q ˆ ψpx, y, z “ 0q

(3.38)

TP A works in analogous manner to the transmission function of equation 3.23. Such output
wavefunction may then be further propagated using the diffraction operators 3.24, 3.26
and 3.27. Note that the argument ϕ of the exponential term is

ϕ “ ´ik

ż z“z0

z“0
pδpx, y, zq ´ iβpx, y, zqqdz

“ ´ik

ż z“z0

z“0
δpx, y, zqdz ´ k

ż z“z0

z“0
βpx, y, zqdz

(3.39)

Therefore, equation 3.38 may be rewritten as

ψpx, y, z “ z0q « exp
ˆ

´ik

ż z“z0

z“0
δpx, y, zqdz

˙

exp
ˆ

´k

ż z“z0

z“0
βpx, y, zqdz

˙

ψpx, y, z “ 0q

(3.40)
Note that the first exponential in the above equation is imaginary, while the second is real.
Therefore, we see that the real part δ of the refractive index relates to a phase shift (i.e.
refraction) of the wave as it propagates through the object, whereas the imaginary part β
relates to the attenuation. We will further discuss this relationship in section 3.2.7.

3.2 Scattering of Radiation
In this section, we provide a more detailed description on how radiation gets

scattered by matter. This will show us how the different physical quantities are related
to each other, allowing us to conclude what information we try to recover in imaging
experiments with X-rays. In other words, we will link how an intensity measurements from
the experiments can be related to the refractive index of the sample and, in the particular
case where absorption is absent, to its electron density.
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Figure 14 – Scheme illustrating the scattering of secondary spherical wavelets within the
First Born Approximation. Figure from [10].

3.2.1 First Born Approximation

Our model works within the first Born Approximation. In essence, it states
that we have weak scattering. As illustrated in Figure 14, given an incident plane wave,
the total scattered wave will be the result from the interference of the incident wave ψinc

and the secondary spherical wavelets originating from each scattering source. The weak
scattering relies on assuming that no secondary scattering events will happen and that the
incident wave barely changes upon interaction. In other words, a scattered wave exiting
the sample will have interacted with only a single scattering source. Naturally, as the size
of the sample increases, the wave is also more likely to interact multiple times with the
sample and, therefore, the validity of the approximation is put under question.

This is indeed a reasonable assumption. As we have previously shown (Figure
3), the scattering cross section in an X-ray experiment is orders of magnitude lower than
the absorption cross section for most of the energy range of interest. This indicates that
the vast majority of photons that interact a second time with the sample will be absorbed
instead of being scattered once again. Photons that indeed managed to escape the sample
are more likely to have been scattered only once.

Quantum mechanics shows us how the first Born approximation gives a simple
yet powerful result when modelling the interaction of the wave with matter [19, 20]. Starting
from the time dependent Schrodinger’s equation, with V prq representing a potential of
finite range caused by the distribution of electronic charge density (in the case of X-rays),
we have:

„

ℏ2

2m∇2
` V prq

ȷ

ψpr⃗q “ Eψpr⃗q (3.41)
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A following solution of the form exists, consisting in the combination of an incident plane
wave with scattered spherical wave (Huygens principle [14]):

ψpr⃗q “ ψinc ` ψscattered “ eik⃗r⃗
` fpθ, ϕq

eikr

r
(3.42)

where fpθ, ϕq is called the scattering factor. If the scattering were isotropic, we would
expect a spherically symmetrical outgoing wave in which this factor would not depend on
the angles. The scattering factor can then be thought of as a measure of the anisotropy of
the scattering event. Using Green’s function formalism [21] and assuming the First Born
approximation, this term is found to be

fpθ, ϕq “
´2m
ℏ2

1
4πFtV prqu (3.43)

where F denotes the Fourier Transform7.

In an experiment, the potential V prq is what contains the information about
our sample. If the scattering amplitude is what tells us something about the potential, we
must connect fpθ, ϕq to a measurable quantity. As we shall see ahead, this connections
happens precisely through the differential scattering cross-section.

3.2.2 Scattering Factor and the Cross-section

As introduced in section 1.3, the total atomic cross-section σT is the effective
area the material has to scatter the incident radiation. It is defined as the ratio between
the average scattered radiation power P scatt by the average incident power P inc:

σT “
P scatt

P inc
(3.45)

In practice, one cannot measure the photons scattered to all directions, but instead uses a
detector that covers a region in space. If we consider this region to be sub-intended by a
solid angle dΩ and measure the number of photons that reach this region per unit time
normalized by the incident flux (Φinc), we have the differential scattering cross-section,
which may also be described in terms of the radiated and incident electric field as [17]:

dσ

dΩ “
I

Φinc∆Ω “
|Erad|2R2

|Einc|2
(3.46)

7 Note that we have an angular dependence of θ and ϕ on the left hand side that does not appear in the
right hand side. Actually, this Fourier Transform is written as

fpθ, ϕq “
´1
4π

ż

e´iQ¨rV prqd3r (3.44)

that is, the Fourier Transform is evaluated at the momentum transfer Q (or scattering vector). This is
where the angles θ and ϕ are “hidden”.
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The total cross-section can be calculated by integrating over the entire sphere:

σT “

ż

4π

ˆ

dσ

dΩ

˙

dΩ (3.47)

Given an incident sinusoidal plane wave of the form

Epr, tq “ E0e
´ipωt´k¨rq (3.48)

we will show how different structures scatter the radiation, giving different results for
the scattering cross-section. For such, we need first to remind ourselves that accelerated
charges radiate. The electric field caused by an accelerated charge is given by

Epr, tq “
e

4πε0c2
aT pt ´ r{cq

r
(3.49)

where aT is the acceleration component in the transverse direction with respect to the
propagation direction of the electric field. It can be shown that the total power radiated
by the accelerated electron will then be [16]

P “
8π
3

ˆ

e2|a|2

16πε0c3

˙

(3.50)

Therefore, by calculating the acceleration of the excited electron, one can obtain the
scattering cross-section using equation 3.45. In the next sections we shall see how different
structures scatter the incident radiation, namely: the free electron, a simple two-electron
structure, an atom containing a cloud of free-electrons and, finally, the most realistic case
of an atom containing bound-electrons.

3.2.3 Scattering: Free electron

Consider first a free-electron and the incident plane wave. The force acting on
this electron will be given by the Lorentz force

Fdriving “ epEi ` v ˆ Biq (3.51)

For non-relativistic velocities, the magnetic force is negligible in comparison with the
electric. Hence, from Newton’s second law, we get

apr, tq “ ´
e

m
Eipr, tq (3.52)

Considering that the wave direction makes an angle Θ with respect to the electron
acceleration, we have aT “ a sin pΘq. Then, from equation 3.49:
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Epr, tq “ ´reEi
e´iωpt´r{cq

r
sin pΘq (3.53)

where re is the classical electron radius

re “
e2

4πε0mec2 “ 2.82 ˆ 10´5 Å (3.54)

From the formula for the differential scattering cross-section (equation 3.46) we obtain

dσ

dΩ “ r2
e sin2

pΘq (3.55)

where the sin2
pΘq is called the polarization factor. On the other hand, equations 3.45 and

3.508 can be used to calculate the total scattering cross-section of the free-electron.

σT “
8π
3 r2

e “ 0.665 barn (3.56)

For other electronic configurations with multiple electrons, the scattering factor fpQq

consists in a term that relates the electric field scattered by the respective configuration
in comparison with the free electron. In other words, the scattering factor indicates both
the anisotropy of the scattering (due to its angular dependence) as well as the strength in
comparison with the free-electron scenario.

3.2.4 Scattering: Two electrons

Since we assume the electron to be structureless, we start of with the simplest
possible structure in order to arrive at the atomic scattering factor: a pair of electrons.
Consider the case presented in Figure 15 (left), where one electron is at the origin and the
other is at position r. We consider the scattering to be elastic, where the scattered k1 and
incident k wavevectors possess the same magnitudes.

∆ϕprq “ k ¨ r ´ k’ ¨ r “ pk ´ k’q ¨ r “ Q ¨ r (3.57)

Q is called the scattering vector.9 Since scattering is elastic (k “ k1) the scattering vector
has magnitude

Q “ 2k sin θ “
4π
λ

sin θ
8 The power per unit area for the incident wave can be shown to be [16]:

Sinc “
1
2

c

ε0

µ0
|Ei|

2k0

with k0 the wavenumber of the incident field.
9 We further assume that the measurements are perform at the far-field limit, i.e. we operate in the

Fraunhoffer regime.
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Figure 15 – Two-electron system consists in a base case for understanding the multiple
electron atom. Figure from [17].

where 2θ is the angle between k and k1, called the scattering angle. Assuming the polar-
ization factor from the previous section to be unity, we have that the scattering amplitude
for the two-electron system is

ApQq “ ´re ´ ree
´iQr

“ ´rep1 ` e´iQr
q

where the exponential phase factor for the second electron arises because its position r with
respect to the one at the origin (equation 3.57). Consequently, the intensity IpQq “ |ApQq|

2

equals

IpQq “ ApQqA*
pQq “ 2r2

ep1 ` cos pQ ¨ rqq (3.58)

The extension of the above amplitude for an ensemble of N electrons is straightforward:

ApQq “ re

N
ÿ

j“1
e´iQ¨rj (3.59)

where rj is the position of the jth electron. To plot equation 3.58, one needs to specify
the angles between the two vectors. For many systems, the position r of the scatterer is
oriented randomly for a given Q. In theses cases, an orientational averaging is performed
by integrating the equation over all possible angles.

3.2.5 Scattering: Atom

For an atom, we consider a continuous electronic cloud of density ρeprq sur-
rounding the nucleus such that, in a volume dr, we have ρeprqdr electrons. The integral
over the whole volume should give the total number of electrons Z. The total scattering
amplitude is then the continuous case of equation 3.59, where we consider that each point
of the cloud at position r will contribute with a phase factor e´iQ¨r such that
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Figure 16 – For an atom, we consider a continuous electronic cloud where each point
contributes to a phase shift e´iQ¨r. Figure from [17].

f 0
pQq “

ż

ρprqe´iQ¨rdr (3.60)

Note that we are missing the ´re factor10, meaning we are writing f 0
pQq in units of the

free-electron scattering length. f 0
pQq is also called the atomic form factor. Furthermore,

note that

f 0
pQq “

$

&

%

Z for Q Ñ 0

0 for Q Ñ 8

The first case is a direct consequence of the definition of the electronic density: the integral
of the density over the whole volume equals the number of electrons. The second case
indicates that, as Q gets bigger (meaning the wavelength gets smaller), the phase factor
gets large, such that any small variation in r will cause a big overall phase fluctuations.
This amounts to a destructive interference happening for the waves scattered from the
different electrons of the atom, nulling the form factor.

Spherical atomic form factor

We treat here a special case of a spherical electronic density, since this geometry
is used as a study case for the simulations performed in this work. Consider the electronic
density to be constant in a spherical volume of radius R. In that case, we can calculate
the atomic form factor analytically through the integral in equation 3.60, obtaining

f 0
pQq “ 3

„

sin pQRq ´ QR cos pQRq

pQRq3

ȷ

(3.61)

Figure 17 (left) shows the two dimensional plot of the above equation for spatial frequencies
qx, qy, where Q “

b

q2
x ` q2

y . We consider a sphere of radius R “ 100 nm with 3 keV energy
for a detector containing N “ 1024 squared pixels of size p “ 55 µm placed at a distance
10 Or, more precisely, the ´re| sin pΘq|2 factor
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L “ 7.98 m from the sample. The spatial frequencies are calculated according to the
frequencies values expected from the Fraunhoffer regime for small angles as

Q “
2π
λ

Npr

L
(3.62)

where r is the distance from the optical axis at the detector plane.

Figure 17 – Intensity I of the spherical form factor for a sphere of constant density (left)
and the corresponding central slice in the horizontal direction showing the
normalized intensity profile.

The analytical form factor above is precisely the diffraction pattern expected
to be measured from a spherical sample. In principle, this allows us to perform a CDI
experiment simulation starting from a "perfect" analytical diffraction pattern, without
errors from numerical calculations.

3.2.6 Resonant Scattering: bounded-electrons

Close to absorption energies, we can no longer consider that the electrons will
respond freely to the incident radiation. In that case, a useful approach is to model the
electron-radiation interaction as a damped-driven harmonic oscillator [16, 18].11 In this
model, we consider that three forces act upon the electron. First, there is the binding force
between the nucleus and the electron of the form

Fbinding “ ´kx “ ´mω2
0x (3.63)

that is, as a spring restoration force. Second, we have the damping force
11 The quantum model is shown to give analogous, although more complete results. We refer the reader

to [13] for such details.
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Fbinding “ ´mγ
dx
dt

(3.64)

which in part can be attributed to the energy loss due to the radiation of the accelerated
charge. At last, there is the driving Lorentz force from the incident field:

Fdriving “ epEi ` v ˆ Biq (3.65)

Once again, the magnetic term of the Lorentz force is considered negligible for non-
relativistic velocities. As a result of the oscillating electric field, Fdrivingptq “ eEi exppiωtq
12, and Newton’s second law gives

m
d2x

dt2
“ Ftotal “ Fbinding ` Fdamping ` Fdriving (3.66)

In the steady-state, the system will oscillate together with the driving frequency: Xpx, tq “

x exppiωtq. Substituting the corresponding terms and applying the derivatives, we get

x “
1

ω2 ´ ω2
0 ` iγω

eEi

m
(3.67)

which gives an acceleration
a “

´ω2

ω2 ´ ω2
0 ` iγω

eEi

m
(3.68)

Following the same procedure as before for the free-electron, this corresponds to a scattering
cross-section

σT pωq “
8π
3 r2

e

ω4

pω2 ´ ω2
0q2 ` pγωq2 (3.69)

Different from the free-electron case, where the cross-section was independent of the
radiation energy, the cross-section for the bound electron will depend on the frequency ω,
presenting a maximum peak value for the resonant frequency ω “ ω0.

To generalize the above result for a multi-electron atom, the total electric field
scattered from all the electrons is given by

Epr, tq “
e

4πε0c2

Z
ÿ

s“1

aT,spt ´ rs{cq

rs

(3.70)

where the subscript s denotes the individual acceleration and position of the sth electron.
The acceleration is analogous to the one presented in equation 3.68, but presents now an
extra phase factor that accounts for the position ∆rs of each electron:

as “
´ω2

ω2 ´ ω2
s ` iγω

e

m
Eie

´ipωt´Qi¨∆rsq (3.71)
12 We model the equation using the complex exponential, whose real part should be considered the result.
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where ωs is the resonant frequency of the sth electron. Plugging this expression in equation
3.70 we obtain for the electric field:

Epr, tq “ ´
re

r
fpQ, ωqEi sin Θe´iωpt´r{cq (3.72)

where

fpQ, ωq “

Z
ÿ

s“1

ω2e´iQ¨∆rs

ω2 ´ ω2
s ` iγω

(3.73)

is the complex atomic scattering factor. With the electric field, one can once again obtain
the differential and total scattering cross-sections for the bounded-electrons case:

dσpωq

dΩ “ r2
e sin2

pΘq|fpQ, ωq|
2 (3.74)

σT pωq “
8π
3 r2

e |fpQ, ωq|
2 (3.75)

Comparing equation 3.55 with 3.74 and equation 3.56 with 3.75, we see that they differ
only by a |f |

2 factor which depends on the frequency. The particular limiting case of
scattering in the forward direction (θ “ 0) allows us to simplify equation 3.73 to

f 0
pωq “

Z
ÿ

s“1

ω2

ω2 ´ ω2
s ` iγω

(3.76)

where the 0 superscript is used here to denote the forward scattering.

A more precise variation of the above equation introduces the oscilattor strengths
gs which account for the number of electrons associated with resonant frequency ωs, where

Z
ÿ

s

gs “ Z (3.77)

Therefore, the complex atomic scattering for the forward scattering case can be separated
into a real f 0

1 and an imaginary f 0
2 part:

f 0
pωq “

Z
ÿ

s“1

gsω
2

ω2 ´ ω2
s ` iγω

“ f 0
1 pωq ´ if 0

2 pωq (3.78)

The real part, on the other hand, can be split into two others: the original f 0 of an
unbound electron from equation 3.60 and another f 1

pωq term that reduces the value of
the scattering factor in comparison to the unbounded case. The total complex scattering
factor then writes:
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fpQ, ωq “ f 0
1 pωq ` if 0

2 pωq “ f 0
pQq ` f 1

pωq ` if2
pωq (3.79)

As we shall see ahead, the above equation allows us to related the scattering
factor to the real and imaginary parts of the refractive index.

3.2.7 Relationship to the Refractive Index

From Maxwell’s equations in material media, we are able to deduce the following
wave equation when we assume we have transverse waves and consider forward-scattering
only [16]

„

B2

Bt2
´

c2

n2pωq
∇2

ȷ

ETpr, tq “ 0 (3.80)

where npωq is recognized as a frequency dependent refractive index

npωq “

«

1 ´
e2ρa

ε0m

ÿ

s

gs

pω2 ´ ω2
sq ` iγω

ff1{2

« 1 ´
1
2
e2ρa

ε0m

ÿ

s

gs

pω2 ´ ω2
sq ` iγω

(3.81)

and ρa is the atomic number density. The approximation in equation 3.81 holds for X-ray
frequencies, since in that case ω2

ąą ω2
s [1]. By rewriting it in terms of the electron radius

re (equation 3.54) and using ω “ 2πc{λ, one recognizes the real and imaginary parts of
the complex atomic scattering factor, obtaining

npωq “ 1 ´
reρaλ

2

2π
“

f 0
1 pωq ´ if 0

2 pωq
‰

(3.82)

For X-ray frequencies, the refractive index is slightly lower than unity. It is then useful to
rewrite it in the the complex form

npωq “ 1 ´ δ ` iβ (3.83)

By doing so, we can see how each term contributes to the interaction of the wave with a
sample. Considering a plane wave propagating in a homogeneous medium:

Epr, tq “ E0e
´ipωt´k¨rq

“ E0e
´iωpt´ k

ω
¨rq (3.84)

One can rewrite it in terms of the refractive index using k{ω “ n{c “ p1 ´ δ ` iβq{c such
that

Epr, tq “ E0e
´iωpt´r{cqe´i2πδr{λe´2πβr{λ (3.85)
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Figure 18 – Illustration of the phase-shift and absorption suffered by a wave travelling
through a material. Figure from [22].

Figure 19 – Real and imaginary parts of the complex atomic scattering factor for Gold
(yellow) and Carbon (black). For high-energies, that is β Ñ 0, we obtain
pf1pωq ´ if2pωqq Ñ Z. Figure from [1].

The first exponential represents the standard propagation in vacuum. The second expo-
nential is complex and indicates a phase shift caused by the medium, while the third (real)
exponential indicates a decay. Consequently, the δ is associated to the refraction effects,
while β to the attenuation in the medium, as illustrated in Figure 18.

If we now compare equations 3.82 and 3.83, it is immediate to recognize a
direct relationship between the real and imaginary terms of the refractive index and of the
complex atomic scattering factor:
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δ “
reρaλ

2

2π f 0
1 β “

reρaλ
2

2π f 0
2 (3.86)

Consequently, f 0
1 and f 0

2 can also be associated with the refraction and absorption in the
medium, respectively. Figure 19 shows values of f 0

1 and f 0
2 for Gold and Carbon as a

function of energy. For some values, we see a sharp increases in f 0
2 (indicating absorption

edges) while there is a corresponding sharp decrease in f 0
1 . In particular, at high-energies

f1pωq approaches the constant value of Z. In other words, f 1
pωq Ñ 0. At the same time,

f2pωq decays with λ2. In other words, electrons start to behave freely and we approach
once again the behaviour described in equation 3.60. This behavior also indicates that
phase-contrast imaging becomes favorable in comparison with absorption-contrast as we
reach higher X-ray energies.

At last, it is worth noting that it has been experimentally verified that f 0
1 is

usually positive, while f 0
2 is always positive for ordinary matter [23, 24]. This positivity

has important consequences, since it serves as a constraint for the convergence of Phase-
Retrieval algorithms, as shall be discussed in section 3.4.3.

3.2.8 Relationship to the Electron Density

The fact that at high-energies and away from absorption edges we have pf1pωq´

if2pωqq Ñ Z has one profound consequence. In this limit, equation 3.82 gives

npωq “ 1 ´
reλ

2ρa

2π
“

f 0
1 pωq ´ if 0

2 pωq
‰

Ñ 1 ´
reλ

2

2π ρaZ (3.87)

Since the electron density relates to the atomic density as ρe “ Zρa, we obtain a direct
relationship between the electron density ρe and the real part of the refractive index δ:

ρe “
2π
λ2re

δ (3.88)

To conclude, we show in Figure 20 values of the "effective" electron density calculated
using known values of δ in the above equation to recover ρ, and compare it with the real
value of the electron density for the semiconductor GaAs. We see that both curves indeed
agree well only within the expected energy values, that is, for those higher-energies above
1 keV and away from absorption edges.
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Figure 20 – Effective electron density of GaAs (black, continuous) as "felt" by the X-ray
photons compared to the physical ρe (yellow, dashed). Figure from [5].

3.3 Imaging

3.3.1 Absorption and Phase-Contrast

In order to distinguish one object from another, imaging techniques rely on two
contrast mechanisms: absorption-contrast and phase-contrast. As we have seen in equation
3.85, the real and imaginary parts of the refractive index quantify the phase-shift and
attenuation of the travelling wave, respectively.

The absorption of X-rays has been present in both material science and medicine
for over a hundred years now, since the discovery of X-ray radiation by Röntgen in 1895.
On the other hand, X-ray phase-contrast took much longer to be discovered. As we have
seen in Figure 19, the real part f1 of the complex atomic scattering factor is greater than
the complex part f2 for most energies, especially above 1 keV. This is also shown in Figures
21 and 22, where we have the absorption and phase cross-sections both as a function of
energy and atomic number. Although this strongly indicates the viability of phase imaging,
this contrast mechanism only arose decades later. As pointed out by [1] in his book, page
156:

"In hindsight it is obvious that one should exploit the phase-shifting part
δ of the X-ray refractive index for high-contrast imaging, but the first clear
statement of this came somewhat late in the history of the field via a conference
presentation in August 1986 by Schmahl and Rudolph [Schmahl 1987], who
discussed soft X-ray microscopy but also pointed towards the potential for using
higher-energy X rays. (An earlier paper by Bonse and Hart on an X-ray crystal
interferometer [Bonse 1965] mentioned the possibility of phase contrast X-ray
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Figure 21 – Attenuation and phase cross-sections as a function of atomic number Z. Figure
from [22].

imaging with further brief comments appearing in subsequent reviews [Hart
1970b, Hart 1975], but Schmahl and Rudolph were the first to directly point
out the potential for reduced radiation dose). In fact, it is truly remarkable
that absorption contrast X-ray radiography has been used for over a century in
medical imaging with nobody thinking of the potential of using phase contrast
for lower radiation exposure – even though Einstein speculated on how n “ 1´δ

might produce grazing incidence reflection effects in medical imaging (Section
2.2) way back in 1918. Contemplate for a moment the collective blindness of so
many X-ray scientists (myself included, in spite of work in X-ray holography
around this time [Howells 1987]) for so long!"

From equations 1.2 and 3.85, one can show that the linear attenuation coefficient
µ relates to the imaginary refractive index β as

µ “
4πβ
λ

(3.89)

For a material composed of many elements, µ is calculated as a weighted sum of the
mass attenuation coefficient µ{ρ of each element. Consequently, µ increases for higher-Z
materials and we expect absorption contrast to be advantageous for such materials (Figure
21). As also indicated in Figure 22, working at lower energies can also be a good strategy
for absorption contrast, since the phase (σp) and absorption (σa) cross-sections are similar
at such energies. Furthermore, the optimized energy for transmission (where a sufficient
number of photons, but not all, get absorbed) depends a lot on the material, which
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Figure 22 – Attenuation and phase cross-sections as a function of energy E for carbon
and titanium. Figure from [22].

complicates imaging compound materials. Once again, phase-contrast imaging becomes
the natural candidate. Furthermore, light materials present low fluorescence yield [1],
essentially a measurement of how much fluorescence will occur for the element. Since
both absorption and fluorescence are not advantageous for low-Z, phase-contrast is the
natural candidate in this case. As shown by the plots, σp is not only higher than σa for
practically all the energy range of interest, it also varies much less with both energy and
atomic number, indicating the possible advantage to image a wider range of materials
using phase-contrast. Added to the better spatial resolution achieved by such techniques –
as is the case of CDI, it is clear that phase-contrast consists in a promising alternative to
many investigations.

There are numerous imaging techniques based on phase-contrast: propagation
based phase-contrast, grazing incidence imaging, Zernike phase-contrast, holography,
differential phase-contrast imaging, to name a few.13 Herein, we focus only in Coherent
Diffractive Imaging, more specifically Plane Wave CDI, as it is the phase-contrast technique
of interest for this work.

The equations presented in section 3.1.3 already gave us the required tools to
discuss the contrast mechanisms of CDI. It is worth emphasizing that we deal with the
recovery of a complex object, meaning we recover both phase and absorption information.
As pointed-out with equation 3.38, within the projection approximation, the object’s
13 We refer to reader to the books of [17], [1] and [22] for a more detailed explanation of such techniques.
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complex transmittance T px, yq is given by

T px, yq “ exp
ˆ

´ik

ż z“z0

z“0
pδpx, y, zq ´ iβpx, y, zqqdz

˙

(3.90)

The presence of δ naturally indicates the existence of a phase-contrast mechanism for the
technique. T px, yq can be thought of as a "projected thickness", that is, the total phase-shift
δtpx, yq and absorption βtpx, yq imparted to the wave after it propagates through a material
of thickness z0 is equivalent to that of a material whose thickness were to be projected to
single slice that would impart the same phase-shift and absorption, δtpx, yq and βtpx, yq.

As we shall see later on, this work focuses on modelling the interaction between
matter and radiation beyond the projection approximation for energies far from absorption
lines, meaning and we have purely a phase-contrast mechanism due to negligible absorption.
In that case, the idea of a projected thickness breaks down. Nonetheless, we will see that
the phase-shift mechanism is expanded so that multiple regions beyond the projected ray
(illustrated in Figure 13) influences the wave at a specific point px, y, z0q of the output
plane.

3.3.2 X-ray Diffraction

X-ray diffraction has been used for recovering the structure of crystals for over
a hundred years now and, although one does not directly recover an image of the sample,
we get enough information to infer the crystal structure.

When an incident X-ray beam hits a crystalline structure, part of the radiation
undergoes reflection by the crystalline planes. Although the efficiency of such reflection
is low (weak scattering), the reflected waves from adjacent planes separated by a certain
distance d will interfere constructively since the optical path difference of each wave equals
an integer number of wavelengths λ, as illustrated in Figure 23. These planes will differ
according to the incidence angle θB with respect to the crystalline planes. This gives rise
to the famous "Bragg’s law"

nλ “ 2d sin pθBq (3.91)

where n is an integer.

The constructive interference from the reflected waves will then be intense
enough for one to measure sharp diffraction peaks at a detector. As it turns out, such
model is analogous to the one presented in section 3.2.5. The peaks are also a measurement
of reciprocal space, that is, the measured intensity is also the absolute square of the Fourier
Transform of the electronic density:
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Figure 23 – Illustration of the optical path difference from rays reflected by adjacent
crystalline plane. Those planes separated by a distance such that the path
differs by an integer number of wavelengths will result in constructive. Figure
from [1]

I “ |Frρprqs|
2 (3.92)

The position of such sharp peaks can then be used to retrieve the relative positions of
atoms in the crystalline lattice. Note, however, that the intensity measurement is also a
case of the phase problem already mentioned. Nonetheless, a solution to the phase problem
in crystallography arose much earlier than for CDI, since the periodicity of the sample
helps providing additional information to circumvent the phase problem.14

Nonetheless, crystallography relies on the existence of periodic structures.
Simple molecules, virus capsids and even some macro-molecules can be crystallized and
studied with such technique, Nonetheless, this applies only to a fraction of samples
of interest in science [1]. In fact, biological samples tend to become more and more
heterogeneous as physical dimensions increases. Such is the case for eukaryotic cells, for
instance.

When the sample lacks regularity required for crystallography to be used, one
must rely on the coherent diffraction of non-periodic objects. Given enough photon flux,
a diffraction pattern may be obtained even for such structures, with the difference that
it will not present sharp peaks as in the case of crystallography. Instead, the diffraction
pattern becomes continuous. Figure 24 compares how the diffraction pattern evolves as we
increase the number of repeated structures. Note from the insets on the bottom-left that
the "lumpiness" of the diffraction pattern increases as we reduce the number of objects.

If one is able to obtain a diffraction pattern even for incoherent radiation, it
14 We refer the reader to the book of [5] for explanations about phase recovery in crystallography.
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Figure 24 – A picture of David Sayre is repeated to form a periodic structure, with the
corresponding diffraction patterns shown on the right of each sample. Figure
from [1].

is natural to ponder: why the need for coherence? In fact, it has been pointed out that
optical imaging under fully coherent illumination results in a lower spatial resolution than
with incoherent illumination [25, Chapter 8]. The need for coherence arises because in such
situation the diffraction pattern encodes the spatial structure of the object in a unique
way [26] and, therefore, this structure can be uniquely recovered. That becomes the scope
of Coherent Diffractive Imaging techniques, such as plane-wave CDI and Ptychography.
In the next sections we define coherence and then explain how the wanted information is
encoded in the diffraction pattern through the so-called speckles.

3.3.3 Ewald Sphere

We return now to the First Born approximation introduced in section 3.2.1.
We saw that this approximation assumes that scattering is weak (no multiple scattering
events for a single photon) and that the scattered wave is a spherical wavelet. In these
conditions, we assume that the scattered amplitude is composed of the amplitude of the
incident wave together with the amplitude of the scattered wavelets. Suppose that the
incident plane wave wavevector k0 is aligned with the z-axis. Therefore, the resulting
scattering amplitude ψ will be

ψprq “ ψinc ` ψscattered “ eik0r
` fp∆kq

eikr

r
(3.93)
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Figure 25 – (a) Scheme for visualizing the construction of the Ewald sphere in the simplified
case of a plane. In this case, the direction of the scattered wavevector r̂ is shown
as x̂. (b) Changing the energy means one changes the radius of the Ewald
sphere, and one can access more points than a single surface in reciprocal
space. (c) The same can be accomplished by changing the direction of the
incident radiation with respect to the sample, since then the Ewald sphere
will be rotated around the origin. Figure from [10].

where the scattering factor fp∆kq can also be calculated as [10]

fp∆kq “
k2

4π

ż ż ż

pn2
pr1

q ´ 1qe´i∆k¨r1

dr (3.94)

with r1
“ px1, y1, z1

q. The scattered wavevector is k “ kr̂ and

∆k “ k ´ k0 “ p∆kx,∆ky,∆kzq “ pkx, ky, kz ´ k0q (3.95)

where |k0| “ k0.

Equation 3.94 is a three-dimensional Fourier Transform evaluated at points
∆k. In principle, if one had access to all points in reciprocal space, a simple inverse
Fourier Transform would allow us to access the values of npr1

q. Nonetheless, for a particular
experimental condition, that is not the case. Since the incident radiation is scattered to
all directions, the scattered wavevector direction r̂ may assume any value. If we consider
the incident wavevector k0 to be constant, we have that the set of values assumed by
∆k are spanned by a spherical surface, called the Ewald sphere. Figure 25(a) shows a
simplified two-dimensional scheme of Fourier space to help us understand how this sphere
is formed. The incident wavevector k0 is fixed and points towards the origin O of Fourier
space. Assuming elastic scattering, we have k “ k0, but the direction of the scattered
wavevector r̂ may vary freely. Therefore, for all possible directions, the points ∆k over
which the Fourier Transform is calculated will span a spherical surface. Since k0 “ 2π{λ,
the radius of the sphere will depend on the wavelength of the incident radiation.
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Figure 26 – In practice, one only measures part of the Ewald sphere due to the limited por-
tion of the wavefield captured by the area detector. To gather three-dimensional
information about the sample, one needs to perform the experiment rotating
the sample to sweep out a volumetric region of F-space. Figure from [1].

Consider now that this Ewald sphere is located in Fourier space (F-space).
Consider also that the 3D Fourier Transform fp∆kq of pn2

pr1
q ´ 1q (equation 3.94) is

located in that same space. For a particular experimental condition (meaning a given λ and
direction of the incident radiation with respect to the sample), one only has "access" to the
points in reciprocal space spanned by the Ewald sphere. In other words, the wavefield for a
particular experimental condition will contain information only of a two-dimensional region
of reciprocal space. There are two approaches one can use to obtain more information of
the reciprocal space. The first is to perform multiple measurements varying the wavelength
of the incident radiation. In this way, one varies the radius of the Ewald sphere and access
more points of F-space, as illustrated in Figure 25(b). Another option is to keep the
energy constant, but to change the direction of the incident radiation with respect to the
sample (for instance, rotating the sample while keeping the incident radiation constant).
In this manner, one rotates the Ewald sphere around the origin of F-space (Figure 25(c)).
With these strategies, one is able to "scan" a volume in reciprocal space, gathering more
information.

In synchrotron imaging experiments, the most feasible and therefore common
approach is to rotate the sample instead of varying the energy of the incident radiation.
Nonetheless, it is important to emphasize that, although scattering happens in all directions,
one does not measure the wavefield over the whole sphere around the sample. Instead, one
places an area detector at a certain distance from the sample. This means that for each
experiment one does not gather information over an entire spherical surface, but rather
over a portion of it, i.e. a spherical cap, as shown in Figure 26 (left). If one rotates the
sample, the spherical cap will rotate around the origin of reciprocal space, and one will
then gather information over the volume spanned by the multiple spherical caps.

With the picture of the Ewald sphere and the different approaches one can
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use to measure a volume over reciprocal space, we can summarize the different imaging
modalities available, as illustrated in Figure 27. For an experiment using an incident
plane wave (i.e. collimated illumination) of specific energy (monochromatic), the scattered
wavefield will contain information over the Ewald sphere, i.e. a spherical region in reciprocal
space (Figure 27(a)). Nonetheless, one measures in practice only part of this spherical
surface because just a portion of the scattered wavefield is captured by the detector (Figure
27(b)). If instead one varies the energy of the incident radiation, the radius of the Ewald
will change and a volume of reciprocal space will be scanned (gray region, Figure 27(c)).
On the other hand, if the incident radiation is not a perfect plane wave (non-collimated),
the different travelling directions of the plane wave components will cause the Ewald
sphere to rotate around the origin, so again a volume of reciprocal space will be scanned
(Figure 27(d)). The most common scenario is to use monochromatic radiation and rotate
the sample, illuminating the sample through different directions. In that case, multiple
spherical caps are collected throughout reciprocal space (Figure 27(e)).

The cases illustrated in Figures 27(f) and (g) bring us back to the Projection
Approximation. As will be seen in section 3.5.2, when we assume the PA we are actually
assuming that we collect not a spherical cap over Fourier Space, but rather a plane passing
through the origin (Figure 27(f)). In that case, each plane in F-space is associated to
a projection of the sample in real-space. Therefore, during an imaging experiment, the
sample is rotated with respect to the beam and multiple planes are collected in F-space
(Figure 27 (g)).

3.3.4 The First Born Approximation and the Far-field regime

We briefly return to equations 3.38

ψpx, y, z “ z0q « exp
ˆ

´ik

ż z“z0

z“0
pδpx, y, zq ´ iβpx, y, zqqdz

˙

ψpx, y, z “ 0q

and 3.94
fp∆kq “

k2

4π

ż ż ż

pn2
pr1

q ´ 1qe´i∆k¨r1

dr

to provide the link between the Born Approximation and Fraunhoffer diffraction measure-
ment. Making use of equation 3.83, we can rewrite 3.94 as
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Figure 27 – Different possibilities of gathering information in reciprocal space. Figure from
[1].

fp∆kx,∆ky,∆kzq “ ´
k2

2π

ż `8

x1“´8

ż `8

y1“´8

e´ip∆kxx1`∆kyy1q

ˆ

"
ż z0

z1“0
pδpx1, y1, z1

q ´ iβpx1, y1, z1
qqe´ip∆kzz1qdz1

*

dx1dy1

« ´
k2

2π

ż `8

x1“´8

ż `8

y1“´8

e´ip∆kxx1`∆kyy1q

ˆ

"
ż z0

z1“0
pδpx1, y1, z1

q ´ iβpx1, y1, z1
qqdz1

*

dx1dy1

(3.96)

For the above approximation to hold, we assumed that the incident wave exppikzq travels
in the z direction and that we are within the paraxial approximation, which means we
have small scattering angles. Since scattering is elastic (k “ k0), we have small kx and ky,
meaning kz « k0. Therefore, ∆kz « 0 and the exponential within the braces in equation
3.96 is replaced by 1. Furthermore, if we assume Born Approximation (weak scattering),
we may linearize the exponent of the transmission function in 3.83:

exp
ˆ

´ik

ż z“z0

z“0
pδpx, y, zq ´ iβpx, y, zqqdz

˙

« 1 `

ˆ

´ik

ż z“z0

z“0
pδpx, y, zq ´ iβpx, y, zqqdz

˙

ψpx, y, z “ z0q « ψpx, y, z “ 0q `

ˆ

ik

ż z“z0

z“0
pδpx, y, zq ´ iβpx, y, zqqdz

˙

ψpx, y, z “ 0q

(3.97)
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Since the incident plane wave ψpx, y, z “ 0q “ exppik0q “ 1 at the incidence plane, if we
further discard the remaining unscattered component ψpx, y, z “ 0q in the above equation,
we get

ψpx, y, z “ z0q « ik

ż z“z0

z“0
pδpx, y, zq ´ iβpx, y, zqqdz (3.98)

Now, the above integral can be substituted back in equation 3.96

fp∆kx,∆ky,∆kzq « ´
k2

2π

ż `8

x1“´8

ż `8

y1“´8

e´ip∆kxx1`∆kyy1q

"

ψpx, y, z “ z0q

ik

*

dx1dy1

“
ik

2π

ż `8

x1“´8

ż `8

y1“´8

ψpx, y, z “ z0qe´ip∆kxx1`∆kyy1qdx1dy1

(3.99)

where the integral can be recognized as the Fourier Transform of ψpx, y, z “ z0q:

fp∆kx,∆ky,∆kzq «
ik

2πFtψpx, y, z “ z0qu (3.100)

From equation 3.7, we saw that the intensity is calculated as the absolute squared of the
complex wavefunction. If we now return to equation 3.93 and discard the unscattered
component, we get:15

I “ |ψprq|
2

«

ˇ

ˇ

ˇ

ˇ

ik

2π
eikr

r
Ftψpx, y, z “ z0qu

ˇ

ˇ

ˇ

ˇ

2

“
1

r2λ2 |Ftψpx, y, z “ z0qu|
2 (3.101)

Therefore, we once again see that, within the Born and Projection approximations, the
measured intensity is proportional to the absolute squared Fourier Transform of exit
wavefield ψpx, y, z “ z0q. Note yet the inverse-squared dependence with the distance r, as
expected for the decaying intensity due to isotropic propagation.

3.3.5 Resolution and the Validity of the Projection Approximation

Traditionally, imaging systems make use of lenses. As we have seen in section
3.1.2, free space propagation acts as a Fourier Transform to the wavefield. Lenses are
nothing more than devices that perform an inverse Fourier-transform to the same wavefield,
recovering the image (original wavefield) at the focal plane. If we think of the lens as a
Fourier Transform device, we realize that a point-source will become a plane-wave after
the lens. Inversely, an incident plane wave is focused to a point. Nonetheless, this assumes
15 The unscattered beam is usually ignored experimentally by placing a beam stopper before the detector

that block the direct beam. This is done because the high intensity of the direct beam may easily
saturate the detector pixels and even damaged them, otherwise.
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an infinite-extent lens, capable of gathering all the light from the wave. In reality, lenses
have a finite aperture function P .

In the case of an infinitely small point source, the effect of this aperture is to
"spread" the ideal point focus, also known as a point-spread function. One can use the
particular case of a circular aperture to obtain an estimate to the theoretical resolution limit
of an imaging system, the diffraction limit. The image of such infinitely small point-source
at the focal plane becomes the Airy disk

A “
2J1prq

r
(3.102)

where J1 is the Bessel function of the first kind of order one. If one has two point sources
being imaged, one has the intensity of two Airy disks imaged in the focal plane, as shown
in Figure 28. The distance δr between the point sources allows us to quantify the resolution
limit of the system. As this distance decreases, the Airy functions start to overlap, up to
the point that the maximum of the first Airy intensity pattern reaches the first minimum
of the other Airy pattern. This characterizes the Rayleigh resolution criterion given by

δr “ 0.61 λ

NA (3.103)

where NA is the numerical aperture of the lens defined as

NA “ n sin θ (3.104)

with θ being the maximum angle sub-intended by the aperture from the optical axis and
n the refractive index of the medium. The overlap between the Airy functions is further
illustrated in Figure 29. This configures a criteria for the limiting distance two objects can
be apart from each other and still be distinguished by an imaging system.

Nonetheless, the criterion above makes use of an imaging system containing
a focusing optics. How does one define such resolution limits when we are dealing with
a lensless imaging system, such as the case of Coherent Diffractive Imaging? Typically
this is done by associating the maximum detected scattering angle θ with the Numerical
Aperture NA, and the thickness t of the object being image with the Depth of Field (DOF)
of the imaging system16. If one considers an object of thickness t, one can show that [1,
Chapter 4]

t “
λ

θ2 ðñ DOF “
λ

NA2 (3.105)
16 Intuitively, the depth of field can be thought of as the depth in which objects can still be recognized as

"in focus" by the imaging system. Therefore, if the whole object lies within the DOF, all the imaging
planes through the object will in principle be in focus.
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Figure 28 – Two Airy patterns plotted for different separation distances. For a certain
distance, one can no longer distinguish the two patterns, which gives us a way
of defining a resolution criterion for a certain wavelength. Figure from [1].

Figure 29 – The Rayleigh resolution is defined by considering the distance over which the
maximum of one Airy pattern reaching the first minimum of the other Airy
pattern. Figure from [1].
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Figure 30 – Depth of Field (DOF) versus transverse resolution for multiple X-ray energies.
Figure from [1].

DOF “ 4∆r2

λ
(3.106)

Using the Rayleigh resolution criterion, one can also calculate the DOF for a lens imaging
system [1], which turns out to be

DOF “ 5.4∆r2

λ
(3.107)

indeed a close value to the lensless case. Of course, one must keep in mind that such criteria
are somewhat arbitrary. Indeed, different expressions for the DOF of lensless imaging
systems can be found in the literature (see [1], section 4.2.5 and references therein), but
all with reasonable agreement with each other.

The DOF expression 3.106 is a core equation for this work. If we think that the
DOF sets a limit to the thickness of the object being imaged, this equations shows us that,
for a given energy, the thicker the object, the worst is the expected transverse resolution
achieved. This is illustrated in the plot of Figure 30 for multiple X-ray energies. It is
worth noting that the above equations are deduced within assumptions of the Projection
Approximation. A core objective of this work was to evaluate if, by circumventing the
Projection Approximation, the resolution limit given by equation 3.106 could also be
surpassed.

At last, we summarize below the three important points that must be taken
into consideration when we consider the limits of the Projection Approximation:

• Ewald Sphere Curvature: as extensively discussed in section 3.3.3, a particular
experimental configuration maps a spherical cap in Fourier space instead of a plane,
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as assumed by the PA.

• Fresnel diffraction: a propagating wave will naturally continue to evolve even
within the sample. Therefore, for thicker samples one expects that Fresnel diffraction
will eventually become relevant. This is problematic, since it means that intermediary
planes within the sample will not see the same plane-wave incident field as the input
plane.

• Violation of the Born Approximation: the weak-scattering assumption may
also break down for thicker samples. As the wave needs to propagate longer distances
within the sample, it becomes more likely that it will undergo a second scattering
event.

3.3.6 Coherence

In many of the derivations previously made, such as in the section about
Scattering, we have assumed that the incident radiation was a perfect plane-wave: that is,
it consisted of a wave of unique temporal and spatial frequency, meaning single wavelength
and propagation direction. Nonetheless, in practice a wave will not be perfectly plane. The
two ways in which it can deviate from this perfect state are quantified by the coherence
lengths. The first is the longitudinal (or temporal) coherence length and the second is the
transversal (or spatial) coherence length, both described ahead.

Longitudinal Coherence

Consider two plane waves A and B travelling in the same direction but with
slightly different wavelengths, λ and pλ´ ∆λq, as depicted in Figure 31. At the beginning,
the waves are in phase. The longitudinal coherence length Ll is the distance the waves
travel until they are out of phase. Hence, the waves will be in phase again after travelling
a distance 2Ll. This will happen precisely when the wave of shorter wavelengths has had
one full oscillation more than the other, meaning

2Ll “ Nλ “ pN ` 1qpλ ´ ∆λq (3.108)

The second equality implies N « λ{∆λ for big N , which then gives through the first
equality

Ll “
1
2
λ2

∆λ (3.109)

That is, the longitudinal coherence length will be inversely proportional to the bandwidth
∆λ of the radiation, as expected.
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Figure 31 – Illustration of two plane-waves of different wavelengths traveling at the same
direction. Figure from [17].

A condition for full longitudinal coherence is that the path length difference
travelled by different waves due to the width w and thickness l of the sample is smaller
than Ll. One can show that [26]

λ2

∆λ “ 4l sin2
pθq (3.110)

where 2θ is the scattering angle of the waves. Therefore, the longitudinal coherence sets a
limit to the bandwidth of the radiation given a certain sample of interest.

Transversal Coherence

Consider now that waves A and B have the same wavelength, but slightly
different propagation directions, as in Figure 32. After travelling a distance R from the
source, their wavefronts meet at point P. The distance travelled along the wavefront A
until it is out-of-phase with B defines the transversal coherence length. Considering that
the difference in propagation direction arises due to a distance D between each source,
simple trigonometry shows us that

Lt “
λ

2
R

D
(3.111)

Note that ∆θ “ D{R is the divergence of the beam. For scattering to be fully-coherent in
the transverse direction, one needs the dimension a of the object to be smaller than Lt,
meaning
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∆θ “
D

R
ă
λ

a
(3.112)

That is, the transversal coherence length sets a maximum desired divergence of the beam
for a certain object size.

Figure 32 – Illustration of two plane waves with the same wavelength travelling in different
directions. Figure from [17].

Speckles

For many decades X-ray imaging has been performed without the need for
coherent radiation. Why then the need for coherence? The answer lies on the fact that,
by using coherent radiation, the measurement will uniquely encode the position of all
scattering sources of the sample. In other words, if one uses incoherent radiation, two
different electronic configurations might yield the same intensity pattern. That does not
happen when we deal with perfect monochromatic plane waves. As illustrated in Figure 33,
the measured diffraction pattern will present small features named speckles when we use
coherent radiation. In contrast, the use of incoherent radiation results in a more "blurred"
diffraction pattern.

It is this unique speckle configuration that encodes the information needed to
recover the phase of the wavefield. In order to retrieve the phase, one needs to properly
sample the diffraction (or speckle) pattern. We shall further explain oversampling in detail
in section 3.4. Figure 34 further illustrates how the diffraction pattern changes as one
degrades the coherence of the incident wave, where a blurring of the diffraction pattern
intensifies as coherence is lost.

3.4 Phase Retrieval
Throughout the text, we have mentioned the fact that CDI relies on an intensity

measurement, such as equation 1.10:
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Figure 33 – The diffraction pattern when using incoherent radiation differs from that
obtained in the presence of coherent radiation by the emergence of the so-
called speckles. These small features uniquely encode the positions of the
scattering centers in the sample. Figure from [26].

Figure 34 – Speckle pattern degrades as the incident wave looses its coherence, here
quantified by the number of coherent-modes present in the wave. Figure from
[1].
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I “ |Fpρpxqq|
2

When we perform an intensity measurement, all phase information is lost. Therefore, one
cannot recover an image from the intensity pattern via a simple inverse Fourier Transform.

It was suggested long ago [27] that, if one is able to sample the diffraction
pattern finely enough (oversampling), the speckle pattern encodes the phase information
and it can then be retrieved numerically using computational methods. The classic phase
retrieval algorithm has its roots in electron microscopy [28], where one uses the magnitude
information previously know for both real and reciprocal spaces. In the X-ray diffraction
problem, one has only information about the latter, which requires the introduction of
further a priori knowledge to successfully retrieve the phase. This was first proposed
by [29], using support and positivity constraints, as we shall detail in sections 3.4.2 and
3.4.3. We detail ahead how the oversampling of the speckles allow us to retrieve the phase
information.

3.4.1 Oversampling

Before moving forward to the algorithms, we shall further discuss the oversam-
pling condition. It is important to emphasize that such condition comes directly from the
mathematical relationship between real and reciprocal space. We start by defining the
equations to reach such conclusion and later on give another physical interpretation to the
oversampling condition.

We start by defining the Discrete Fourier Transform (DFT) of a signal gpxnq,
given by

Gpfkq “

N´1
ÿ

0
gpxnq exp p´i2πfkxnq (3.113)

where the real and reciprocal space variables xn and fk assume discrete values according to

xn “ n∆x , n “ 0, 1, ..., N ´ 1

fk “ k∆f , k “ 0, 1, ...N ´ 1

∆x and ∆f correspond to the sampling interval in real and reciprocal space, and N is the
number of sampling points. The duality between both spaces is shown by the following
equations

Lx “ N∆x , Lf “ N∆f (3.114)
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Figure 35 – Scheme illustrating the effect of increasing the number of points to better
sample the reciprocal space. In real space, this action is equivalent to increasing
the size of the signal. Figure from [30].

with

∆x “
1
Lf

and ∆f “
1
Lx

(3.115)

That is, there exists an inverse relationship between the dimension of real space with
respect to the sampling of reciprocal space, and vice-versa.

The oversampling condition states that the diffraction pattern (i.e. a reciprocal
space measurement) should be sampled finely enough to guarantee that one has enough
information to recover the phase. From the above equations, we can see that sampling the
diffraction pattern with a smaller ∆f is equivalent to having a larger size of real space Lx.
This idea is illustrated in Figure 35. If one doubles the number of points in real space (by
zero padding the data matrix, for instance), the reciprocal space will have twice as many
(2N) points spanning the same frequency range.

That being said, we can now show why we need the oversampling condition to
properly reconstruct the phases of our signal, which directly relates to the Nyquist sampling
theorem. This theorem states that a signal that is non-null over a range a can be perfectly
reconstructed as long as it is sampled with a frequency of at least 1{a. Equivalently, one
can say that if the highest frequency component in the signal is f , one needs to sample it
at a frequency f 1

ě 2f , known as the Nyquist frequency.
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Now, we refer back to equation 1.10. If we inverse Fourier Transform our signal,
we obtain

F´1
|Fpρpxqq|

2
“ F´1

rFpρpxqqF˚
pρpxqqs

“ F´1
rFpρpxqqs f F´1

rF˚
pρpxqqs

“ ρpxq f ρp´xq

(3.116)

where f is the convolution symbol. In the above equation, we have made use of the
Fourier convolution theorem. The obtained result ρpxqfρp´xq is the density autocorrelation
function. If ρpxq is non-zero over a length a, this function will be non-zero over a length
2a. Consequently, in order to reconstruct it,it has to be sampled at a frequency 1{2a
according to Nyquist. This amounts to saying that we will sample reciprocal space with
half the desired sampling frequency of 1{a, i.e. we shall oversample the diffraction pattern.
As previously shown in equation 3.4.1, this means having a real-space twice as big. This
gives rise to the so called support condition, which is essential for the convergence of the
phase-retrieval algorithms. By support we mean the region where the sample is located
in space. In other words, zero-padding the sample to have twice the number of points is
equivalent to oversampling the object’s reciprocal space. Furthermore, by zero padding the
sample, we are equivalently stating we know where the region of non-null electron-density
is located.

Another approach to understanding the need for oversampling relies on the
size of the speckles in the diffraction pattern. These consist in the small features in the
diffraction pattern that arise due to the scattering of the coherent radiation. The speckles
are uniquely determined by a certain electron-density configuration. They present an
angular size of λ{a, where λ is the wavelength and a the size of the illuminated sample
area [26]. If one considers a detector with pixel size p placed at a distance L from the
sample, the angular size of the pixel will be p{L. The oversampling ratio σ can be analyzed
in terms of the ratio between these dimensions [31]:

σ “
λ{a

p{L
(3.117)

If we consider a hypothetical one-dimensional diffraction pattern, one must have σ ą 2 for
the oversampling condition to be satisfied. One can then in principle recover the phase
information. This is equivalent to saying that the angular size of the pixel must be at least
2 times smaller than the size of the speckle, so that the speckle information is properly
sampled according to the Nyquist sampling theorem. In fact, for higher dimensional spaces
this condition is relaxed [31] and one can recover the phase information for

σ ě
N
?

2 (3.118)
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Figure 36 – Fluxogram of the Error Reduction algorithm.

where N is the number of dimensions of the sample. In order to have a well-posed problem
and ease the convergence of the phase retrieval algorithms, one should have a value of σ
as high as possible. Experimentally, this means having a detector with small pixel size
p placed as far as possible from the sample. Notice also that, having a bigger coherently
illuminated sample of size a will decrease the oversampling ratio. Therefore, it is vital
to have flexibility to place the detector far away from the sample, to adjust σ depending
on the sample to be imaged. This is one of the strengths of Cateretê beamline at Sirius,
which allows the detector to be place up to 30 meters away under vacuum.

We detail ahead the Phase-Retrieval algorithms used in this work. These were
originally proposed by [29], namely the Error Reduction and, its most used variant, Hybrid
Input-Output algorithms.

3.4.2 Error Reduction (ER)

Assuming we have measured a diffraction pattern in oversampling condition,
the Error Reduction algorithm iteratively alternates the image between real and reciprocal
spaces, imposing constraints on the signal at each iteration. Figure 36 shows a fluxogram
of the algorithm.

We start with an initial guess zi for the complex image. One can compose this
image with an amplitude and an initial random phase ϕrandom. The amplitude can be, for
instance, a rough guess such as the amplitude of the reciprocal space |Dpfq|, that is, the
diffraction pattern intensity measurement itself.17 We then apply the Fourier Transform to
17 Although clearly a wrong guess, the idea is to at least use the same consistent initial guess for the

amplitude an let only the phase be random when we start the algorithm. As an alternative, we may
use a constant amplitude of ones, for instance.
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this initial guess, obtaining a complex signal Zpfq in reciprocal space that can be divided
into an amplitude |Zpfq| and phase components exppiϕZq as

Zpfq “ Ftzipxqu “ |Zpfq| exppiϕZq (3.119)

Afterwards, we impose the reciprocal-space restriction, which is to substitute the amplitude
of the signal by its the correct value, which is our measurement |Dpfq| itself, obtaining an
updated version of Z 1

pfq:

Z 1
pfq “ |Dpfq| exppiϕZq (3.120)

We then inverse-fourier transform Z 1
pfq signal to obtain an updated version zpxq of the

real space signal, which can again be decomposed into amplitude and phase components:

zpxq “ F´1
tZ 1

pkqu “ |zpxq| exppiϕzq (3.121)

Finally, the last step of the iteration consists in applying a priori known real space
information, the so-called support constraint. By support we mean the region of non-zero
density, that is, the points of the image where the sample is located. At this step, we
impose all the signal outside the support region to be null, as in equation 3.122:

z1
pxq “

#

zpxq, P S

0, R S
(3.122)

The updated signal z1
pxq is then Fourier Transformed again, and the algorithm repeats for

a chosen number of iterations or until an error metric is met. The convergence error is
tracked separately for both real and reciprocal spaces. For reciprocal space, we use the
normalized absolute difference as

Ef “

ř

k ||Zpfq| ´ |Dpfq||
ř

k ||Dpfq||
(3.123)

where the sum spans across all k pixels of the image. On the other hand, since we do not
have a real-space measurement to compare with, the following error metric is typically
used:

Er “

ř

xRS

|zpxq|2

ř

xPS

|zpxq|2
(3.124)

We expect this error to go to zero, since the numerator – corresponding to the sum of
values outside the support – will approach zero, while the denominator approaches a
constant value.
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3.4.3 Hybrid Input-Output (HIO)

The Hybrid Input-Output algorithm is a slight variation of the ER algorithm.
The only difference occurs in the last step of the iteration, where it also applies the
positivity constraint in real space. This constraint uses the a priori knowledge that the
electron density is related to the complex atomic scattering factor f1 ` if2 and that f1 is
usually positive, whereas f2 is always positive [23, 24].

This constraint corresponds to keeping unaltered every positive pixel within
the support. Nevertheless, if the pixel is located outside the support or if it is negative
inside the support, it shall be corrected according to the following

z1
pxq “

#

zpxq, P S and zpxq ą 0
zipxq ´ βzpxq, R S or P S with zpxq ă 0

(3.125)

In this manner, the lower equation will gradually shifts negative values towards positive
ones. This corresponds to a more subtle change of values compared to the ER equation
3.122 and helps the algorithm avoid being stuck at local minima at the first few iterations.

There are further variations of phase-retrieval iterative projection algorithms
that have been compared in the literature [32]. These are usually more complex than HIO
and ER, and tend to present better results. Nonetheless, we chose to focus on the more
intuitive and widely-used ER and HIO algorithms since the focus of the work lies on the
second step of the CDI reconstruction technique. We shall present the simulation results
used the validate both ER and HIO in section 4.3.

3.5 Tomography
In this final theory section, we introduce tomography algorithms that can be

used to perform the second step in CDI reconstruction. These are namely Filtered Back
Projection (FBP) and the Algebraic Reconstruction Technique (ART). The former may
be used within the Projection Approximation and we introduce the Radon Transform
and the Central Slice Theorem in order to better understand the reciprocal-space picture
already shown in Figure 27. To understand FBP, we anticipate some plots obtained from
simulation results of this algorithm, which we implemented following the nearest-neighbor
interpolation strategy for rotations. The equations herein are mainly due to [11].

3.5.1 Radon Transform

The Radon Transform consists in a linear operator R : U ÞÑ V that maps
the Cartesian into polar coordinates px, yq Ñ pt, θq through an integral operator between
Hilbert spaces: the feature space U and the so-called sinogram space V. We show the
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Figure 37 – Illustration of the xy-Cartesian plane with an object (brown). The line lt,θ
(blue) passes through point pt,θ (green) and is normal to the n̂ vector . An
object is represented by the brown shape.

Cartesian plane in Figure 37, where an object is illustrated by the brown shade. First, we
define the line lt,θ that passes through point pt,θ “ pt cos θ, t sin θq and is perpendicular to
the unit vector n⃗ “ p´ sin θ, cos θq. The point pt,θ makes an angle θ with the x-axis and is
a distance t from the origin. Therefore, all possible lines lt,θ is the set of values

tlt,θ : t ě 0, 0 ď θ ď 2πu (3.126)

We note that n⃗ is perpendicular to pcos θ, sin θq, and therefore every point on the line lt,θ
can be given as the vector sum

pt,θ “ tpcos θ, sin θq ` sp´ sin θ, cos θq (3.127)

with ´8 ă s ă `8. Therefore, any line can be parameterized by s as

lt,θ “ tpt cos θ ´ s sin θ, t sin θ ` s cos θq : ´8 ă s ă `8u (3.128)

With such parameterization, we define the Radon Transform R as the operator
that integrates the function fpx, yq over the line lt,θ by varying the parameter s:

Rfpt, θq “

ż

lt,θ

fds “

ż `8

s“´8

fpt cos θ ´ s sin θ, t sin θ ` s cos θqds (3.129)

We note further that R is a linear transformation, that is

Rpαf ` βgq “ αRf ` βRg (3.130)
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Figure 38 – Shepp-Logan phantom and the corresponding projection in the y-axis for
rotations of 0o, 45o and 90o.

Figure 39 – The Shepp-Logan phantom in px, yq-coordinates and its sinogram in pθ, tq.

In the sense of equation 3.129, the Radon transform can be thought of as a
"projection" of the values of the object for a given an angle θ. The famous Shepp-Logan
phantom [33] is used in Figure 38 to illustrate this idea. The upper plots show the phantom
rotated for angles of 0o, ´45o and ´90o, whereas the lower plots show the value of their
projections over the vertical direction. Rotating the sample by ´θ is equivalent to varying
the direction of the projection by θ. The Radon transform is popularly referred to as a
sinogram. Figure 39 shows Shepp-Logan phantom in the xy-Cartesian plane together with
its corresponding sinogram in pθ, tq coordinates. Each column of the sinogram corresponds
to a projection for a certain angle, as shown in the lower plots of Figure 38.

In practice, the function f over which we apply the Radon transform can be
thought of as the linear absorption coefficient of the sample at each point for absorption
contrast, and as a phase-shift value for phase contrast.
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Figure 40 – Illustration of three backprojections of the Shepp-Logan phantom being per-
formed for the angles of 0o, 45o and 90o from left to right.

3.5.2 Image Reconstruction

How can one recover the function fpxq given its sinogram? This is the main
question to be answered in order to perform an image reconstruction. We first introduce
the concept of a Backprojection (BP) and then its modified version, Filtered Backprojection
(FBP), which gives a perfect reconstruction in an ideal-case.

Backprojection

Given point px, yq in the plane, for each θ there is one value of t for which lt,θ

passes through the point px, yq: t “ x cos θ ` y sin θ. In other words, lx cos θ`y sin θ,θ passes
through px, yq. The Backprojection B of a function f is defined as

Bfpx, yq “
1
π

ż π

θ“0
fpx cos θ ` y sin θ, θqdθ (3.131)

and is nothing more than the average value of point px, yq for all angles.

For the specific case of the Radon transform, we have Rfpx cos θ ` y sin θ, θq

as the line integral over the line lt,θ passing through px, yq. Therefore, the Backprojection
of the Radon transform can be thought of as the average of all line integrals Rfpx, yq

through which the point px, yq was accounted for.

BRfpx, yq “
1
π

ż π

θ“0
Rfpx cos θ ` y sin θ, θqdθ (3.132)

In this sense, the Backprojection BRfpx, yq can be thought of as a first "averaged out"
guess for the value of f at point px, yq. In Figure 40, we illustrate the Backprojection of
the Shepp-Logan phantom for three angle values. At each line in the projection direction,
the same value is attributed for all points. The process is repeated for each angle, where
the value of the point is updated by summing the value from each projection. At the end,
one obtains the smoothed-out image shown in Figure 42 (top-center).
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Central Slice Theorem

The Central Slice Theorem is an important result that relates the Radon
and Fourier Transforms of a function, and it is important when deriving the Filtered
Backprojection formula in the next subsection. Although we do not show the demonstration
here (see [11]), we show this result since it relates to the mapping of reciprocal space
already mentioned in section 3.3.3. The theorem states that

F2 tfpt cos θ, t sin θqu “ F tRfpt, θqu (3.133)

where F and F2 represent the one-dimensional and two-dimensional Fourier Transforms,
respectively. In simple words, it states that the Fourier Transform of the Radon transform
of a function F pRfq is contained in the two-dimensional Fourier Transform of that function
(F2f). More precisely, it is a central slice of such 2D Fourier Transform whose direction
depends on θ. We illustrate this idea in Figure 41.

Figure 41 – Illustration of the Central Slice Theorem. The Radon Transform is calculated
over object fpx, yq, resulting in a projection ppxq. The Fourier Transform of
this projection is shown besides as P pqxq and corresponds to a central slice fo
the 2D Fourier Transform F pqx, qyq of the original object fpx, yq. This central
slice goes through the origin and will be rotated around the qz axis for the
Radon transform of other θ values. Figure from [17].

In summary, we have that the Radon transform of a function f for certain angle
θ gives a projection of f in that direction. For that reason, the Projection Approximation
applies. As we saw earlier in Figure 13, the PA assumes that only those straight paths
from the input and output planes would affect the wave travelling through the sample. In
practice, the function f could represent a map of the linear attenuation coefficient for an
absorption measurement, or the electron-density in a scattering experiment away from
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absorption edges. Furthermore, looking from a reciprocal-space perspective, the Central
Slice Theorem allows us to understand how the PA deviates from the correct result. As we
already illustrated in Figure 27, the mapping of measured frequencies in reciprocal-space is
given by a section of the Ewald sphere. Nonetheless, the PA assumes that we are actually
mapping a plane passing through the origin. Consequently, one can say that the Projection
Approximation better represents the true signal for the lower spatial frequencies where a
section of the Ewald sphere may be approximated by a plane. In that sense, we expect the
errors from the Projection Approximation to be greater for the higher frequencies of the
reconstructed image.

Filtered Backprojection (FBP)

With the aid of the Central Slice Theorem, one can show that a slight mod-
ification to the Backprojection of the Radon transform actually is capable of perfectly
reconstructing the function f , if one has access to all value of θ from 0 to 180o. This result
is know as the Filtered Backprojection of f , given by

fpx, yq “
1
2BF´1

r|ν|FpRfqpS, θqspx, yq (3.134)

The absolute value function |ν| acts as a filter that multiplies the frequencies of the
Radon transform in reciprocal-space. Note that if this function were absent, the Fourier
Transforms cancel out, and we recover the Backprojection of the Radon transform from
equation 3.132. It is important noticing that in practice one does note have access to all
values of θ, but only to a discrete number of angles. The above equality will then only be
an approximation, the better the most angles we use. In fact, one needs at least a number
Nθ of angles

Nθ “
π

2N (3.135)

to have sufficient information to reconstruct a sample of N2 pixels, which is known as
the Crowther criterion [1]. Figure 42 compares the reconstruction of the Shepp-Logan
phantom using both the BP and FBP methods. For FBP, we used a modified version of
the absolute value filter, known as the Shepp-Logan filter SSL:

SSL “

$

&

%

|ω| cos
´πω

2L

¯

, if |ω| ă L,

0, otherwise.
(3.136)

This filter is a modified version of the absolute-value filter, which differs from it by not
attenuating high frequencies values as much, as shown in the lower-left plot of Figure 42.
Below each reconstruction, we shown the reconstruction error with respect to the phantom.
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Figure 42 – Comparison between of a N2
“ 160 ˆ 160 pixels Shepp-Logan phantom with

its reconstructions using Backprojection and Filtered Backprojection. The
rightmost plot shows the error between the model and the FBP reconstruction.
The values of θ were varies from 0o to 180o with steps of 0.5o, totalling 360
angles. According to the Crowther criterion, one would need Nθ “ 160π{2 «

252 angles in this case to have sufficient information for reconstruction. The
Shepp-Logan filter used in the FBP was calculated for L “ 19 and ´20 ă ω ă

20 and is shown and the continuous-red curve in the lower left plot, together
with the absolute value function (dashed-black line). Mean error value for
reconstructions are EBP “ 0.55 and EFBP “ 0.07.

Table 1 – Maximum, mean and standard deviation values of the FBP reconstruction errors
using the two filters.

Filter Max Mean StdDev
Absolute value 0.67 0.040 0.077
Shepp-Logan 0.71 0.067 0.070

Note that all colorbars are in the same scale, and it becomes evident that the error of the
BP reconstruction is much higher than the error of FBP.

We end this section by noting that the reconstruction of the FBP equation
3.134 is exact when using the absolute value filter, so we would in principle expect the
reconstruction to be better using such filter. We compare the reconstruction using both
filters in Figure 43. In this specific case, FBP with absolute-value filter does present a
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Figure 43 – Comparison between FBP reconstruction using the absolute-value and Shepp-
Logan filters. The latter case present bigger maximum and mean errors, but
presents better contrast with respect to the original. The original phantom
was also normalized.

lower maximum and mean error value, as shown in Table 1. Nonetheless, the Shepp-Logan
filter does not remove much of the high-values of the image, resulting in a contrast that
better resembles the original images in a normalized-color plot.

3.5.3 Algebraic Reconstruction Techniques

The FBP algorithm has become one of the most used in Tomography recon-
struction because of its speed. The fact that it is based on the Fourier Transform allows
one to perform fast computations using the well established Fast-Fourier Transform (FFT)
algorithm. Nonetheless, it relies on assuming the Projection Approximation, which is
precisely what we wanted to avoid in this work. In that case, we need to rely on an older
and more slow algorithm to perform the second step of the reconstruction. This is known
as the Kaczmarz’s method, popularly referred to as the Algebraic Reconstruction Technique
(ART). In section 4.1, we will show that our proposed discrete model of the inhomogenous
Helmholtz equation allows one to use ART to perform the tomographic reconstruction. To
understand ART, we first refer to a few definitions and theorems ahead, as given by [11].
Given a linear system

Ax “ p, (3.137)

where x and p are N-dimensional vectors and A is a M ˆ N matrix, the ART algorithm
can be used to find an approximate solution p̂ to such a system. By "approximate" we
mean the vector p̂ that is the closest to p in the least-squares sense, that is, we look for
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the vector x̂ such that

}Ax̂ ´ p} “ min
xPRN

}Ax ´ p} (3.138)

To understand ART, we need first to introduce the concepts of an affine space
and of an affine projection:

Definition 1 (Affine space). For a fixed n-dimensional vector r and a number p, the affine
space Sr,p is defined as the set

Sr,p “ tx P Rn : r ¨ x “ pu (3.139)

The affine space differs from a vector subspace in the sense that the latter
must contain the origin. An affine space will be a subspace of Rn if, and only if, p “ 0.
Therefore, the affine space can be thought of a copy of a subspace that has been shifted
by a fixed vector. One important aspect that we will use ahead, is that the vector r is
orthogonal to Sr,p [11].

Definition 2 (Affine projection). Given a vector u and an affine space Sr,p for some
vector r and some number p, the affine projection of u in Sr,p is the vector u˚ in Sr,p that
is closest to u amongst all vectors in Sr,p.

The idea behind an affine projection is illustrated in Figure 44. We wish to find
the vector u˚ that gives the closest point in Sr,p that is the closest to u. Therefore, we start
at vector u and have to move in the direction orthogonal to Sr,p. Since, r is orthogonal to
Sr,p, we can move in its direction. Therefore, for some real value λ:

u˚
“ u ´ λr (3.140)

One can show that [11] λ is given by

λ “
pr ¨ uq ´ p

r ¨ r
(3.141)

Therefore, equation 3.140 becomes

u˚
“ u ´

pr ¨ uq ´ p

r ¨ r
(3.142)

With these equations, we are able to state the iterative formula of the ART
algorithm. Given the linear system Ax “ p, each equation rix “ pi defines an affine space.
Therefore, given an initial guess x0, Kaczmarz’s method says
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Figure 44 – Illustration of the affine projection in R2 into the affine space Sr,p

xi,e
“ ui,e´1

´
pri ¨ ui,e´1q ´ pi

ri ¨ ri
(3.143)

where the superscript e indicates the number M of equations of the linear system (i.e.
the number of lines of matrix A), whereas the superscript i indicates the number of
K iterations of the ART algorithm. Starting from an initial guess x0,0, one applies the
above formula consecutively for x0,1, x0,2, ..., x0,M, ..., xK,0, ..., xK,M. By doing this, the
following theorem guarantees the existence of a solution:

Theorem 1. If the linear system Ax “ p has at least one solution, then Kaczmarz’s
method converges to a solution of this system. Moreover, if x0 is in the range of AT , then
Kaczmarz’s method converges to the solution of minimum norm.

Figure 45 illustrates two scenarios for the convergence of the ART iterative
algorithm for x P R2, which help us get an intuitive notion of how the method works. The
idea is that consecutive projections in each of the affine spaces will lead to the solution of
the system. On the left, we have M “ 2, meaning two affine spaces, and the consecutive
affine projections quickly converge to the intersection between the affine spaces. On the
right, for M “ 3 we see that the method stagnates into a triangle pattern.

In summary, given a linear system, one can find a least-squares solution to it
via the ART iterative method. Nonetheless, the fact that one needs to iterate through all
equations of the system one by one indicates that this method can become slow for a large
number of equations. Indeed, as we shall see, this became the main issue of the proposed
M-matrix method and, consequently, the biggest and yet to be resolved challenge faced
during the research.
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Figure 45 – Illustration of consecutive projection between two (left) and three (right)
affine spaces. On the former, the solution quickly converges to a single points,
whereas for the latter the solution gets stuck in a triangle. Figure from [11].
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4 Results

In this chapter we present the main results obtained throughout this Masters
project. We start by presenting the core novelty of this work: the numerical modelling of
the inhomogenous Helmholtz equation that culminates in a system-matrix form of this
equation. We call this matrix the "M-matrix". Afterwards, we present the simulations
we did to solve the Phase-Retrieval problem. We show implementations for the Error
Reduction, Hybrid Input-Output and a mixture of both algorithms together. The third
section shows simulations of the M-matrix model being used in conjunction with ART
to solve the tomographic step of the reconstruction, which we call "M-ART". Although it
indicates the efficacy of the ART algorithm using the M-matrix for obtaining a 3D image,
we can not yet affirm it considerably improves the reconstruction quality in comparison to
the Projection Approximation because of the occurrence of an "inverse-crime", as we shall
discuss in the last section.

By "inverse-crime" we mean the act of synthesizing the input data for the
reconstruction using the same model that does the reconstruction afterwards. In that
scenario, the reconstruction may be successful and precise not necessarily because of the
quality of the method itself. The idea of avoiding such an inverse-crime was a goal from
the beginning of this project. It was one of the reasons we chose to focus on Plane-Wave
CDI instead of Ptychography. By using Plane-Wave CDI, we would in principle be able
to validate the model using analytical diffraction patterns for simple geometries, such as
the spherical one presented in section 3.2.5. Therefore, one would be able to avoid the
inverse-crime by starting the reconstruction from "the end": first performing phase-retrieval
over the analytical diffraction pattern, and afterwards performing the M-matrix ART
three-dimensional reconstruction. Nonetheless, the unanticipated huge computational cost
of the proposed method introduced difficulties to this original plan, because we had to
work with extremely small simulated samples (N ă 65). The numerical errors due to such
small resolution prevented us from validating M-ART in the absence of the inverse-crime.

4.1 The M-matrix model
We start by introducing the new proposed numerical model of the inhomogenous

Helmholtz equation in three-dimensions. The method herein presented is the generalization
of the initial work from the advisor and collaborators [12], which showed the M-matrix
equation for the simpler two-dimensional case. In this work, we present for the first time the
generalized three-dimensional case together with the proofs for the respective equations.
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We start from the paraxial Helmholtz equation (3.33) and assume no absorption
β “ 0. Furthermore, we assume a perfect incident plane of the form

ψpx, y, zq “ ψ0 exp pikzq, ψ0 “ const. (4.1)

In that case, equation 3.33 becomes

„

i2k B

Bz
`

B2

Bx2 `
B2

By2 ´ 2k2δpx, y, zq

ȷ

ψpx, y, zq “ 0 (4.2)

We then discretize the above equation, using the following forms of the first (forward-
difference) and second derivatives:

Bψpx, y, zq

Bz
«
ψpx, y, z ` 1q ´ ψpx, y, zq

∆z (4.3)

B2ψpx, y, zq

Bx2 «
ψpx ` 1, y, zq ` ψpx ´ 1, y, zq ´ 2ψpx, y, zq

∆x2 (4.4)

B2ψpx, y, zq

By2 «
ψpx, y ` 1, zq ` ψpx, y ´ 1, zq ´ 2ψpx, y, zq

∆y2 (4.5)

Figure 46 illustrates the discretization of our space in the xz directions, where the incident
wave-field is ψ0 and ψn represent the wavefield at the exit of voxel n. Note that the indices
span 1 ă x ă X, 1 ă y ă Y and 1 ă z ă z0. Substituting the numerical derivatives in
the differential equation and considering ∆x “ ∆y “ ∆z “ ∆, we obtain the following
recursive relation:

ψpx, y, z ` 1q “

ˆ

1 `
2
ik∆ ´ ik∆δpx, y, z ` 1q

˙

ψpx, y, zq`

´
1

2ik∆ pψpx ` 1, y, zq ` ψpx ´ 1, y, zq ` ψpx, y ` 1, zq ` ψpx, y ´ 1, zqq (4.6)

Note that, in the left-hand side, the complex amplitude ψ is calculated for a point at the
z ` 1 plane, whereas the ψ terms in the right-hand side are all for plane z. In other words,
one uses five values of the wave amplitude at a plane z to calculate a single point of the
wave at the consecutive z ` 1 plane.

Our goal, nonetheless, is to solve the inverse problem: we know the complex
amplitude ψpx, y, z “ z0q at the exit plane of the sample for all x and y, but we do not
know the values δpx, y, zq (i.e. the sample). Hence, we cannot perform a propagation in
the above manner.
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Figure 46 – Convention of indices for the discretization of 2D-space. Figure adapted from
[10].

4.2 General Matrix form of the IHE
To solve the inverse-problem, we propose a matrix form of the IHE, modelling

the radiation-sample interaction by a simple Hadamard product1 of the system M-matrix
and the sample δ matrix. We shall prove by mathematical induction that the wavefield at
voxel ψpx0, y0, z0q is given by the general formula

ψpx0, y0, z0q “ ψ0p1 ´ M
x0,y0,z0

˝ δM q “ ψ0

˜

1 ´

X
ÿ

x“1

Y
ÿ

y“1

z0
ÿ

z“1
Mpx, y, zq

x0,y0,z0
δpx, y, zq

¸

(4.7)

where M
x0,y0,z0

is the system M-matrix that generates a point of the wave-field ψpx0, y0, z0q

and δM is the matrix of the refractive index values at each voxel.

To ease the mental picture of what we are modelling, we anticipate an illustration
of the M-matrix and compare it with the Projection Approximation scenario in Figure
47. The plots show the absolute value of the system-matrices for the PA and M scenarios.
The system-matrix is essentially a matrix that weights the contribution of each voxel of
the sample to the wave at a particular point in the output plane. One can think of the
Projection Approximation as the case in which the system-matrix contains a single line
of non-null voxels (Figure 47, left). On the other hand, our system M-matrix presents a
pyramid shape (Figure 47, right), showing a whole region of the sample actually contributes
to the wavefield, but gets ignored in the PA.
1 The Hadamard product, here denoted by ˝, is the element-wise multiplication followed by sum of

resulting matrix terms.
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Figure 47 – The absolute value of the system matrices for a small discretized space with
N3

“ 173 voxels. On the left, we have the system-matrix for the Projection
Approximation case (PA-matrix), whereas on the right we have our system-
matrix (M-matrix) obtained without the PA. The color code illustrates higher
to lower values from warmer to colder colors in log-scale.

We emphasize that the above model gives one matrix for each point
ψpx0, y0, z0q in the output plane. That is, we perform an element-wise multiplication of
the M-matrix Mpx, y, zq

x0,y0,z0
with the object voxel values δpx, y, zq, followed by the sum of

all voxels of the resulting matrix, to generate the single point ψpx0, y0, z0q in the output
plane.

In the following, we demonstrate the general formula 4.7 through mathematical
induction. In other words, we first prove that it obeys 4.7 for z “ 0. Afterwards, assuming
it works for z, we prove that it also works for z ` 1.

• Base case (z “ 0):

For the base case, we start at plane z=0, which gives

ψpx, y, 1q “

ˆ

1 `
2
ik∆ ´ ik∆δpx, y, 1q

˙

ψ0 ´
1

2ik∆ pψ0 ` ψ0 ` ψ0 ` ψ0q (4.8)

hence,
ψpx, y, 1q

ψ0
´ 1 “ ´ik∆δpx, y, 1q (4.9)

which indeed, is an equation of the form of the wanted general formula 4.7. For the
consecutive planes, we use this result back in the recursive formula for z “ 1, and so on,
consecutively. For the next plane, for instance, one would get2:
2 We neglect second-order terms in δ since δ2 « 0 for X-Rays.
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ψpx, y, 2q

ψ0
´ 1 “ ´p2 ` ik∆qδpx, y, 1q`

`
1
2pδpx ` 1, y, 1q ` δpx ´ 1, y, 1q ` δpx, y ` 1, 1q ` δpx, y ´ 1, 1qq ´ ik∆δpx, y, 2q (4.10)

• Inductive case: (z Ñ z ` 1)

Having shown that the general formula holds for z “ 0, to finish our proof of
the general formula we must show that, if the formula holds for z, so it must for z ` 1.
For such, we substitute the ψ terms in the recursive formula 4.6 using 4.7:

ψpx0, y0, z0 ` 1q

ψ0
“

ˆ

1 `
2
ik∆ ´ ik∆δpx0, y0, z0 ` 1q

˙

˜

1 ´

X
ÿ

x“1

Y
ÿ

y“1

z0
ÿ

z“1
Mpx, y, zq

x0,y0,z0
δpx, y, zq

¸

´
1

2ik∆

˜

4 ´

X
ÿ

x“1

Y
ÿ

y“1

z0
ÿ

z“1

ˆ

Mpx, y, zq
x0`1,y0,z0

` Mpx, y, zq
x0´1,y0,z0

` Mpx, y, zq
x0,y0`1,z0

` Mpx, y, zq
x0,y0´1,z0

˙

δpx, y, zq

¸

(4.11)

Distributing the multiplications, we get

ψpx0, y0, z0 ` 1q

ψ0
“ 1 ´

X
ÿ

x“1

Y
ÿ

y“1

z0
ÿ

z“1
Mpx, y, zqδpx, y, zq

x0,y0,z0
`

2
ik∆`

´
2
ik∆

X
ÿ

x“1

Y
ÿ

y“1

z0
ÿ

z“1
Mpx, y, zqδpx, y, zq

x0,y0,z0
´ ik∆δpx0, y0, z0 ` 1q ´

2
ik∆`

`
1

2ik∆

X
ÿ

x“1

Y
ÿ

y“1

z0
ÿ

z“1

ˆ

Mpx, y, zq
x0`1,y0,z0

` Mpx, y, zq
x0´1,y0,z0

` Mpx, y, zq
x0,y0`1,z0

` Mpx, y, zq
x0,y0´1,z0

˙

δpx, y, zq (4.12)

Note that non-linear terms 2
ik∆ cancel each other out. Therefore, we are left with

ψpx0, y0, z0 ` 1q

ψ0
“ 1 ´

ˆ

1 ´
2
ik∆

˙ X
ÿ

x“1

Y
ÿ

y“1

z0
ÿ

z“1
Mpx, y, zqδpx, y, zq

x0,y0,z0
`

`
1

2ik∆

X
ÿ

x“1

Y
ÿ

y“1

z0
ÿ

z“1

ˆ

Mpx, y, zq
x0`1,y0,z0

` Mpx, y, zq
x0´1,y0,z0

` Mpx, y, zq
x0,y0`1,z0

` Mpx, y, zq
x0,y0´1,z0

˙

δpx, y, zq`

´ ik∆δpx0, y0, z0 ` 1q “ 1 ´ M
x0,y0,z0`1

˝ δM “ 1 ´

X
ÿ

x“1

Y
ÿ

y“1

z0`1
ÿ

z“1
Mpx, y, zq

x0,y0,z0`1
δpx, y, zq (4.13)

where the equality in the last line is once again the application of the 4.7, now for
ψpx0, y0, z0 ` 1q. If we separate the z0 ` 1 term in the last summation of the right-hand



Chapter 4. Results 94

side and group the terms within the summation on the left-hand side, we get the following
equality, where the 1s have been canceled out:

X
ÿ

x“1

Y
ÿ

y“1

z0
ÿ

z“1
´

ˆ

1 ´
2
ik∆

˙

Mpx, y, zq
x0,y0,z0

δpx, y, zq`

`

X
ÿ

x“1

Y
ÿ

y“1

z0
ÿ

z“1

1
2ik∆

ˆ

Mpx, y, zq
x0`1,y0,z0

` Mpx, y, zq
x0´1,y0,z0

` Mpx, y, zq
x0,y0`1,z0

` Mpx, y, zq
x0,y0´1,z0

˙

δpx, y, zq

´ik∆δpx0, y0, z0`1q “

X
ÿ

x“1

Y
ÿ

y“1

z0
ÿ

z“1
´Mpx, y, zq

x0,y0,z0`1
δpx, y, zq´

X
ÿ

x“1

Y
ÿ

y“1
Mpx, y, z0 ` 1q

x0,y0,z0`1
δpx, y, z0`1q

(4.14)
For the above equality to hold, the coefficients that multiply the same δpx, y, zq must be
equal. Therefore, the inductive case is valid as long as we have:

• For z “ z0 ` 1:

Mpx, y, z0 ` 1q
x0,y0,z0`1

“

$

&

%

ik∆ if x “ x0 and y “ y0

0 , otherwise
(4.15)

• For z ď z0:

Mpx, y, zq
x0,y0,z0`1

“

ˆ

1 `
2
ik∆

˙

Mpx, y, zq
x0,y0,z0

`

´
1

2ik∆

ˆ

Mpx, y, zq
x0`1,y0,z0

` Mpx, y, zq
x0´1,y0,z0

` Mpx, y, zq
x0,y0`1,z0

` Mpx, y, zq
x0,y0´1,z0

˙

(4.16)

Note that, due to the symmetry of the problem and the fact that the input wave ψ0 is
constant, the matrix Mpx, y, zq

x0˘1,y0˘1,z0

that generates a neighbor point to px0, y0, z0q is simply a

shifted version of Mpx, y, zq
x0,y0,z0

. That is, we have the following equality for the matrices of
different points

Mpx, y, zq
x0,y0,z0

“ Mpx ˘ 1, y, zq
x0˘1,y0,z0

“ Mpx, y ˘ 1, zq
x0,y0˘1,z0

(4.17)

This simplifies equation (4.16) considerably, since we can write the matrix for ψx0,y0,z0`1

strictly as a function of the matrix for ψx0,y0,z0 at points px`1, y, zq, px´1, y, zq, px, y`1, zq

and px, y ´ 1, zq:

Mpx, y, zq
x0,y0,z0`1

“

ˆ

1 `
2
ik∆

˙

Mpx, y, zq
x0,y0,z0

´
1

2ik∆

ˆ

Mpx ´ 1, y, zq
x0,y0,z0

` Mpx ` 1, y, zq
x0,y0,z0

` Mpx, y ´ 1, zq
x0,y0,z0

` Mpx, y ` 1, zq
x0,y0,z0

˙

(4.18)
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In summary, for the general formula to hold, equations (4.15) and (4.18) must be satisfied.
Equation (4.18) states that five points of the M-matrix of thickness z can be used to obtain
a point of the M-matrix of thickness z ` 1 (i.e. the matrix that models a thicker sample).
By repeating the above formula for all px, yq values in each plane, one can in principle
construct an M-matrix of arbitrary thickness.

4.2.1 Recursive relation for M-matrix of arbitrary size

Although equation 4.18 allows us to obtain the M-matrix that models the
radiation-sample interaction, it would be a very time consuming process since an entire
system matrix of size N ˆ N ˆ N would be needed to construct another of size N ˆ N ˆ

pN ´ 1q. This latter matrix, on the other hand, would required yet another matrix of
size N ˆ N ˆ pN ´ 2q, and so forth. Fortunately, the symmetry of the problem allows us
to build a M-matrix of arbitrary size in a fast way. We illustrate this idea qualitatively
through Figure 48. Equation 4.15 gives the last z-plane of the M-matrix. Therefore, the
M-matrix M

x0,y0,0
containing a single plane will be given by such formula. This matrix for

the central pixel px0, y0q is illustrated on the top-left corner of Figure 48. This matrix is
then used to build the next M-matrix M

x0,y0,1
, containing two planes in the z-direction, as

shown in the next column of the figure. Once again, the last line (now the plane z “ 1) is
given by equation 4.15. To obtain the plane z “ 0, we then use equation 4.16.

If we continue this process indefinitely, we are able to build at each step a
"thicker" M-matrix in the z-direction, as illustrated by the following lines in the figure. At
each step, the process is the same: generate the last plane using equation 4.15, then use
equation 4.16 to obtain the previous plane from the next. Note from Figure 48 that, from
one M-matrix to another, the difference is that we are simply adding a new plane at z “ 0.
The remaining planes are identical to the planes of the previous matrix. Consequently, one
can generate a matrix of arbitrary size simply by following the algorithm illustrated in
Figure 49: start by defining an empty matrix of the arbitrary size wanted; define the last
plane with equation 4.15; then, "back-propagate" the matrix with the aid of equation 4.16.

Therefore, the back-propagation strategy allows us to quickly calculate an
M-matrix as needed. We reinforce here that the M-matrix is complex-valued and that the
size in computer memory required to store it quickly increases with the number N of pixels,
as shown in Table 2. This fact means we are not able to previously calculate and store all
the M-matrices needed for the ART reconstruction. Instead, we store a single M-matrix in
memory and perform operations on it (translations and rotations) to obtain the correct
M-matrix at each iteration of the algorithm. As we shall see ahead, this necessity became
problematic for the strict validation of the proposed model, due to the time it takes to
operate sequentially with the M-matrix at each iteration.
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Figure 48 – Illustration of the z planes of each M-matrix of different sizes. Each new
matrix differs from the previous one by the a new plane in the z “ 0 column.

Table 2 – Size required in bytes to store a M-matrix of N3 pixels. The value N “ 3072 in
the last column shows how big an M-matrix would in the worst case scenario
for the Cateretê beamline which has a detector with 3072 ˆ 3072 pixels2.

N 16 32 64 128 256 512 3072
Size 0.0625 MBs 0.5 MBs 4.0 MBs 32.0 MBs 256 MBs 2 GBs 432 GBs

4.3 Phase Retrieval Simulations
The original idea of the project was to implement and validate the algorithms

concerning the first and second-steps of the two-step reconstruction process separately,
and only afterwards merge the whole process together. As we shall see, this full simulation
also became problematic to perform. In this section we present our results for the Phase
Retrieval simulations.

We first simulated the phase-retrieval of the real-valued image shown in Figure
50 using the HIO algorithm. The support was placed tightly around the image, and
the initial values of the magnitude and phase were the rough guesses in Figure 50. The
simulated diffraction pattern was obtained by first calculating the Fast-Fourier Transform
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Figure 49 – Illustration of the "back-propagation" strategy to quickly create a M-matrix
of arbitrary size.

Figure 50 – Image to be reconstructed with the HIO algorithm is shown on the left,
together with the used support region. The initial guesses for amplitude and
phase are shown on the right.

of the original image and then obtaining the intensity from its absolute value squared (see
equation 3.7).

Figure 51 shows the simulation results after 200 iteration of HIO. The right-most
column shows the reconstruction error along the iterations. The frequency-space error Ef

was calculated comparing the simulated diffraction pattern |F pkq| with the reconstructed
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Figure 51 – Phase retrieval result after 200 iterations of the HIO algorithm. On the
top row we have, from left to right: original image to be reconstructed,
real-space magnitude of the reconstructed signal, real-space phase of the
reconstructed signal, real-space reconstruction error along the 200 iterations.
On the bottom from left to right: original simulated diffraction pattern,
frequency-space magnitude of the reconstructed signal, frequency-space phase
of the reconstructed signal, frequency-space reconstruction error along the 200
iterations.

signal diffraction pattern at each iteration according to

Ef “
ÿ

k

||Zpkq| ´ |F pkq||
2 (4.19)

Since in an experiment we do not have access to the true signal in real-space, the real-space
error ER cannot be calculated in the same manner. Instead, we use the ratio of the signal
outside of the support with respect to the signal inside the support, which we expect to
approach zero as the algorithm converges, since the signal outside the support should
approach that value:

Er “

ř

xRS

|z1pxq|2

ř

xPS

|z1pxq|2
(4.20)

We see that the retrieved magnitudes in real and reciprocal-space (second
column in the image) greatly resembles the original image and its simulated diffraction
pattern. Some noise was still noticeable in the region outside the support of the recon-
structed image. The error had almost stagnated by the 200th iteration and, in fact, would
not change much even if we left it running for as many as 1000 iterations.

We also simulated the Phase-Retrieval of a spherical sample using not the
diffraction pattern calculated from the FFT of a simulated sphere, but instead the analytical
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Figure 52 – Phase-Retrieval from the analytical diffraction pattern of the sphere using the
HIO algorithm.

formula presented in section 17. A successful phase-retrieval in this case would be vital for
us to validate the efficacy of the proposed M-ART reconstruction, since it would allow us to
perform a complete reconstruction (phase-retrieval followed by ART, without committing
an "inverse-crime").

The initial simulation results using the HIO algorithm are shown in Figure 52
for 100 HIO iterations. One can clearly see that the sphere projection seems to be recovered,
but that the recovered F-space magnitude does not resemble the analytical diffraction
pattern as before. In fact, we see that the F-space error seems to reach a minimum after
about 30 iterations, and then starts to increase once again.

We tried implementing several strategies to improve the quality of the recon-
struction in this case. Among them, making the support as tight as possible around the
sphere, implementing positivity constraints with all three possibilities (only real, only
imaginary and to both parts of the signal) as well as varying simulation parameters to
increase the oversampling of the problem (equation 3.117). Although some variation was
noticed in each trial, none of them were successful enough to provide a satisfactory recovery
of the diffraction pattern. The relative simplicity and symmetry of the spherical sample
might justify why such a bad diffraction pattern would still provide a real-space magnitude
that resembles the expected spherical projection.

The only strategy that in the end worked to successfully recover the frequency-
space magnitude was the combination of the HIO and ER algorithms, as shown in Figure
53. We first performed HIO for 150 iterations, followed by 50 iterations of ER. This
strategy worked best than using only ER, only HIO or even ER followed by HIO. This
can be intuitively understood as follows: the ER algorithm is quite "brute" since it forces
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Figure 53 – Phase-Retrieval from the analytical diffraction pattern of the sphere using a
combination of the HIO algorithm for 150 iterations followed by 50 iterations
of the ER algorithm.

all values outside the support to zero. Using this algorithm immediately at the beginning
usually causes it to get "stuck" in a local minimum solution. The HIO circumvents this
problem by slowly taking the values outside the support towards zero. Nonetheless, in
some cases it stagnates in a local minimum. We then use ER at the end to force it out
of such local minimum to finally reach the desired solution. The error plots in Figure 53
show a sharp drop when the algorithm switches from HIO to ER.

4.4 Tomography Simulations
To validate the M-matrix reconstruction based on the ART algorithm (M-ART),

we first needed to generate the simulated data. For that, we created a sinogram of a 3D
model δM by multiplying it by a M-matrix Mθ,p. The indices θ and p here indicate that
we have a different M-matrix of each angle θ of the sample (angle with respect to the
direction of the incident radiation) and each pixel p in the output plane of the sample.
In the simulations, for a sample δM of size N3 we have N2 pixels in the output plane.
Moreover, we considered 2N values of θ to sufficiently satisfy the Crowther criterion. This
amounts to a total of 2N3 matrices. For each value of θ, the N2 matrices for each output
pixel are simply a translated version of each other. Because of the considerable size of the
M-matrix above N ą 128, as we showed in Table 2, and the huge number of matrices, it
would be inpractical to store all of them in memory. Instead, we had to adopt the strategy
of defining an "oversized" matrix with twice the dimensions of the sample in each direction
(that is, 2N ˆ 2N ˆ 2N) centered at the central pixel of the output plane (as illustrated in
Figure 47), so that we could properly translate and rotate the matrix from ´90o to `90o

and obtain a complete Mθ,p for all θ and p values. We refer to this as the "base M-matrix".
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The linear relation between the the M-matrix and sample matrix δM given by
the general formula 4.7 required us to adapt the iterative Kaczmarz equation to our case,
such that

δk`1px, y, zq “ δkpx, y, zq ´
Mθ,ppx, y, zq

|Mθ,ppx, y, zq|2
pMθ,ppx, y, zq ˝ δkpx, y, zq ´ ψθ,pq (4.21)

where ψθ,p represents the value of pixel p of the sinogram for angle θ, and k runs from
0 ď k ď M ˆ 2N ˆN2

“ 2MN3. In other words, the iteration process requires us to loop
through three nested loops, namely:

• The innermost loop containing N2 iterations for each pixel p in the output plane;

• The middle loop containing 2N iterations concerning each rotation angle θ;

• The outermost loop containing M iterations concerning the repetitions of the ART
algorithm.

This corresponds to a problem the scales with OpN3
q complexity. Whatever calculations

had to be performed, they would necessarily be repeated 2MN3 times. This huge number
is a consequence of the linear relation between the system and sample matrices being and
operation from R3

Ñ R1, that is, each M-matrix models a single pixel in the output plane.
Within the Projection Approximation, the iterative method (PA-ART) becomes much
faster, since a single matrix is capable of mapping the entire output plane at once, by
simple "repeating" the projection ray (illustrated in Figure 47, left) for all px, yq positions
of the cube, totalling only 2MN operations (OpNq complexity).

After generating the whole sinogram for all 2N values of θ for the sample shown
in Figure 54, we used equation 4.21 to reconstruct the sample. For each iteration, the base
M-matrix had to first be translated to the pixel p of interest and then accordingly rotated
by the angle θ before calculating the next ART iteration. Figure 55 shows the central slice
of the object in each of the three directions on the bottom row, compared to the same
slices after 5, 10 and 20 iterations of M-ART.

Having successfully implemented the M-ART algorithm, we moved forward to
compare it against PA-ART. The PA reconstruction could in principle be performed quickly
using the FBP algorithm. Nonetheless, in order to reliably evaluate the improvement of
the M-matrix model over the PA, we chose to do both reconstructions using the PA and
M system-matrices through the ART algorithm.

To compare PA-ART and M-ART, we used the spherical sample shown in
Figure 56, with N “ 33. The successful reconstruction of it using the ART method is
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Figure 54 – Illustration of the sinogram generation process using the simulated sample
and "base" M-matrix. The central plot in blue illustrates the three-dimensional
sample used to simulate and validate the ART algorithm. One M-matrix
generates a single pixel of the sinogram. Consecutive translations of the base
matrix provide the matrix we use to generate all the pixels of a single sinogram
frames. The base matrix is then rotated and the translation process is repeated
to generate the next sinogram frame.

illustrated in Figure 57, where again we have the three central slices of both the model
and of the reconstructed sample after 20 ART iterations. The reconstruction error along
iterations for the above sample is plotted for both PA-ART and M-ART in Figure 58. This
was a first indication of an improvement of the reconstruction quality of the M-ART over
PA-ART. We see that the error of M-ART is not only lower, but also that it continues to
drop more steeply compared to the PA-ART error. This error EART was calculated as the
mean absolute error between model and reconstructed object

EART “

ř

N3 |Object ´ Model|
N3 (4.22)

We finally proceeded to answer the main question posed by the project from the
beginning: would a model that skips the Projection Approximation be able to reconstruct
samples with thicknesses t above the theoretical limit imposed by equation 3.106 without
deteriorating resolution?

t “ DOF “ 4∆r2

λ
(3.106)

To answer that question, we performed multiple reconstructions of the spherical sample,
each for 10 ART iterations, for both PA-ART and M-ART, and varying its diameter
at each reconstruction. The final reconstruction error was calculated an plotted against
sphere diameter in Figure 58. We also include in the plot the thickness limit from equation
3.106. One can see here that the reconstruction error for PA-ART indeed grows as we
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Figure 55 – Central slices in each of the three directions for the original sample (fourth
row), reconstruction using the M-matrix after 5 iterations (first row), 10
iterations (second row) and 20 iterations (third row). All plots have their
respective color map normalized by the maximum value of the image.
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Figure 56 – Spherical sample used to further validate and test the M-matrix based ART
reconstruction.

Figure 57 – Central slices in each of the three directions for the original sample (top) and
reconstruction using the M-matrix for 20 iterations of the ART algorithm
(bottom).
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Figure 58 – Reconstruction error of the sphere along iterations for both PA-ART and
M-ART. The red-dashed line indicates the thickness limit given by equation
3.106.

Figure 59 – Mean absolute error of the sphere reconstruction using both the PA and M
matrices as a function of the diameter of the sphere.

increase the size of the sphere, especially above the thickness limit. On the other hand,
the reconstruction error for M-ART barely increases for all sphere diameters.

This result was the strongest indication of the superiority of M-ART over PA-
ART that we obtained so far. Nonetheless, rigorously speaking it is still not a conclusive
result because of the already mentioned "inverse-crime" problem. From the above results,
we could not yet affirm that the superiority of M-ART over PA-ART came from the quality
of the model itself, or from the fact that the sinogram was first synthesized using the
M-matrix instead of the PA-matrix.
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Table 3 – Time estimate of ten complete M-ART reconstructions as a function of matrix
size N , each with ten iterations of the outermost loop.

N 17 33 65 129 257 513
Time [hours] 0.17 0.58 17.24 1131 164706 11882468
Time [days] 0.01 0.02 0.72 47 6862 495102

4.4.1 Full simulation

To overcome the inverse-crime bias that might be present in the above results,
we moved forward to perform a "full simulation": first doing the Phase-Retrieval from the
analytical sphere form-factor (which we already presented the result in section 4.3, Figure
53) followed by the tomographic reconstruction.

Nonetheless, performing the full simulation turned out to be quite problematic,
primarily because of the biggest issue we had been facing: the enormous computational
cost of the M-ART method. To further elucidate on this problem, we first note that all
the tomography results presented so far were performed for very small N values. Because
we needed to use an "oversized" M-matrix, as mentioned in the beginning of this section,
we usually had an M-matrix of N “ 653 and a sample matrix of N “ 333 points.

We estimated in Table 3 the time it would take to repeat the analysis presented
in Figure 59, for oversized M-matrices with different N-values. The estimate was calculated
by performing a single operation of the innermost loop of the algorithm and then multiplying
the time this operation took by 10 ˆ 2 ˆ 10 ˆN3 (since M “ 10 and we wanted to perform
a total of 10 reconstructions, each for a different sphere diameter). One can see that the
OpN3

q complexity indeed makes the problem unfeasible to solve for N ą 65, since a single
analysis would take 47 days to complete.3 Therefore, we had to limit our analysis in a first
moment to such small matrices with N ď 65. This shows how the computational cost of
the method is indeed challenging for the practical implementation at a beamline such as
Cateretê, where N ď 3072.

Reconstruction from the phase-retrieved projections

The initial M-ART reconstructions were performed by obtaining the projection
from the HIO+ER approach shown in Figure 53. Because in principle one expects com-
plete symmetry of the sphere over rotations, the retrieved amplitude from the analytical
diffraction pattern should, in principle, be the same. Therefore, we performed a single
phase-retrieval and repeated the obtained projection for all sinogram angles. Subsequently,
this sinogram was used as the input to the M-ART algorithm. The results showed no differ-
ence between M-ART and PA-ART. We hypothesised that this could be a consequence of
3 All simulations results presented were performed in a personal computer CPU (Intel Core i5) with 8

GBs of RAM.
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Figure 60 – Reconstruction using M-ART from a sinogram containing the "perfect retrieved
magnitude" shown in the left. The lack of spherical symmetry due to the low
number of pixels made it impossible to properly reconstruct the sphere, since
a rotation of the sphere would not provide the same projection of it for each
angle.

Figure 61 – Difference in the projection of a sphere of N “ 17 when rotated by different
angle values. This lack of symmetry impedes the faithful reconstruction using
the M-ART method.

the big errors from the phase-retrieval step. Therefore, we further simplified the analysis by
supposing that the phase-retrieval step was "perfect", that is, that the retrieved amplitude
was the perfect projection shown in Figure 60 (left). This amplitude was calculated simply
by integrating the spherical sample over one axis, and then repeating it for all angles of
the sinogram. In this manner, if the reconstruction was not successful, it could only be
because of the tomographic part. Indeed, that was the case. As we shown in Figure 60,
the reconstruction of the central slices is far from perfect. It differs a lot from the model
and from the reconstructed slices we had obtained before (Figure 57).

After thorough investigation, we concluded that this was a consequence of the
lack of symmetry of the sphere due to the low number of points of the object. That is,
ideally, when we calculated the projection of a rotated sphere, the resulting projection
should remain the same. Nonetheless, we can see from Figure 61 that it is not the case when
we are dealing with such low values of N : the pixelated "sphere" lacks spherical symmetry.
Consequently, we concluded that we could not escape the fact that the computational cost
of the M-ART method had to be reduced if we wanted to reliably confirm its superiority.
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Figure 62 – The M-matrix maps each voxel of the sample independently and may allow
us to perform a local reconstruction and resolution of smaller regions of the
sample that have been pre-reconstructed using more traditional methods.

4.5 Perspectives
In this final section we lay out some future perspectives for this project in

face of the challenges we encountered. The natural target for the M-ART method would
be, first, to further validate it with more robust simulations. After doing so, we would
eventually use it to reconstruct images using experimental data and verify the cost-benefit
of the method in comparison to other techniques. A first robust simulation would be the
full CDI simulation mentioned in section 4.4.1. To achieve that nonetheless, we must
improve the computational speed of the method, as the results have evidenced. We carefully
timed the different sections of the code and confirmed that the main issue lies not on the
computational cost of the operations themselves, but at the sheer number of operations
that need to be performed. Among the operations, the most expensive one is the rotation
of the M-matrix.

A few strategies have already been tried to improve speed. First, we tried to
perform the rotations in GPU using the CuPy library [34]. This strategy turns to be
advantageous only when the mathematical operations involves big matrices. Otherwise,
the time (also known as overhead) taken for the matrices to be transferred from CPU
to GPU and, after operations, back from GPU to CPU, may be even longer the the
computing time itself. For the matrix sizes we tested (up to N “ 512), CuPy did not seem
to be advantageous. This is likely because the vectorized form of the rotation function
we implemented was already considerably optimized. We also tried parallel computing
strategies to perform the rotation. Since the rotation is around the z-axis, each slice of the
3D matrix could be rotated in parallel. However, some overhead is also present to perform
such operations, and it turned out to be roughly equivalent to the vectorized form we had
implemented for matrices with sizes up to N “ 512.



Chapter 4. Results 109

We then tried to encapsulate the entire nested loops of the algorithm within
the GPU calculations (i.e. ART iteration, translations and rotations), so that the writ-
ing/reading operations between CPU and GPU had to occur only before starting the loop
and after finishing it. By doing this, we seem to have gained a factor of approximately 2
times in speed for small matrices (N ď 32). Notwithstanding the fact that this is expected
to increase when tested for bigger values of N, it is far from the orders of magnitude
improvement we would need to actually simulate it with bigger matrices and, hopefully,
with experimental data.

Another proposition is to perform the update of the ART operations in batches,
so we can make use of parallel computing. Since the rotation operation is much slower
than the ART update itself, we believe we should be able to perform some rotations of
different matrices in parallel, and then apply the Kaczmarz method for the batch of rotated
matrices consecutively. However, how fast this could get would also depend on resources,
because of the huge RAM required to story many matrices, which would require powerful
machines with dozens gigabytes of RAM available.

The most promising idea would be implement the code, or at least the entire
M-ART nested loops in C language. C is a compiled language which may become even
thousands of times faster than Python, an interpreted language. However, the downside
comes from the more complicated low-level syntax of the C language. We estimate it would
require at least a few months to complete such code translation, since we currently lack
the expertise in such a language. This strategy, by itself, may be sufficient to gain sufficient
speed up to allow the full simulation to be performed in feasible time using matrices of
N ě 128.

Last but not least, we illustrate in Figure 62 the idea of M-ART as a refinement
method. Since the M-matrix maps a specific region of the sample, one may be able to use a
smaller portion of it to reconstruct a local region of the sample. Consequently, even if the
big computational cost cannot be circumvented up to the required level, smaller matrices
can be used to refine the resolution of reconstructions in a local region of interest – the
price to pay being a small deterioration of reconstruction quality, since the model would
not be strictly followed. In other words, one would first obtain images using traditional
methods based on the Projection Approximation, select a particular region of scientific
interest, and then later refine the resolution in such smaller location using M-ART.
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5 Conclusion

In this Masters project, we proposed a discrete model of the inhomogenous
Helmholtz equation that allows us to perform three-dimensional image reconstruction with
Plane-Wave Coherent Diffractive Imaging without using the Projection Approximation
(PA). Traditional tomographic reconstruction relies on this approximation and therefore
presents an intrinsic limit to the resolution that can be achieved in the final image for
a sample of certain thickness. We intended on evaluating if this limitation could be
circumvented if the Projection Approximation was avoided.

We demonstrate that this discrete model can be written in a matrix form,
which linearly relates the system-matrix and object-matrix. Consequently, Algebraic
Reconstruction Techniques may be applied to perform the tomographic reconstruction.
We name the system-matrix as the "M-Matrix" and the ART iterative algorithm adapted
to it as the "M-ART" algorithm. Furthermore, we demonstrate a simple recursive relation
to generate a system M-Matrix of arbitrary size.

The downside of the method turns out to be its computational cost. The
iterative character of the ART algorithm, together with the fact that the we need a full
system-matrix to model a single point of the wavefield at the output plane of the sample,
results in a problem of OpN3

q complexity. Therefore, we had to perform simulations with
very small samples of size N3

ď 333. Even for such small matrices, the obtained results
indicate that the M-ART algorithm is indeed superior to the PA based reconstruction
method, in the sense that it improves the reconstruction error. Nonetheless, the low
number N of pixels prevented us from performing a more reliable analysis in the absence
of an "inverse-crime" when solving the inverse problem. Notwithstanding the challenges
we faced, we believe the computational-cost can still be reduced with the application of
high-performance computing strategies. This may at least allow the method to work as
a local refinement method for the current Coherent Diffracting Imaging reconstruction
techniques.
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