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Resumo
Um dispositivo móvel é uma ferramenta essencial para o trabalho que vai substituindo
um computador desktop em muitas atividades da vida diária, mas em caso de perda do
despositivo, pode comprometer as informações pessoais.

Normalmente, um dispositivo móvel oferece apenas uma camada de segurança após o
primeiro acesso, como ser palavras-chave, PINs e perguntas secretas, não sendo suficiente
em um problema de autenticação contínua. É por isso que a autenticação contínua tem
sido um tópico ativo nos últimos anos, e tem proposto muitas técnicas para monitorar o
acesso aos usuários. A técnica mais comum é o reconhecimento de gestos, este metodo
utiliza sequências de movimentos na tela sensível ao toque para autenticação do usuário.
Além disso, através do uso de algoritmos de aprendizado de máquina, mostraram um
avanço significativo na área de segurança para telefones celulares.

Neste trabalho, propusemos dois novos tipos de algoritmos de autenticação contínua usando
deep learning: O primeiro baseado em software usando uma arquitetura convolucional
(Cifar-10) como extrator de recursos e um classificador Support Vector Machine (SVM)
para autenticação de usuários. Neste caso, os resultados foram ótimos para condições
normais onde o usuário interage em um único aplicativo, mas para um aplicativo diferente,
o sistema não se mostrou muito robusto para rejeitar pessoas falsas porque o esquema de
gestos depende do aplicativo gerado. Além disso, seu uso exaustivo causa a alocação de
uma grande quantidade de memória RAM, o que faz com que a bateria seja consumida
rapidamente.

O segunda proposta foi baseado em hardware e é chamado Mini Mind. A arquitetura Mini
Mind foi implementada em um Cyclone IV - FPGA com duas camadas de LSTM. Os
resultados do Mini Mind podem computar um gesto 2,5 vezes mais rápido que a CPU e
14 vezes mais rápido que a GPU. Em termos de consumo de energia, pode consumir 17
vezes menos do que uma CPU e 109 vezes menos que uma GPU.

Ambas as arquiteturas, software e hardware diferem significativamente entre desenho e
implementação. Mas ambos os pontos de vista são considerados em sistemas embarcados
para autenticação contínua de usuários.

Palavras-chaves: Redes neurais; FPGA; Sistemas embarcados.



Abstract
A mobile device is an essential tool for working and also it is replacing a desktop computer
in many activities of daily life, but in the case of lost, it could compromise the personal
information. Typically, a mobile device offers only one security layer after first access such
as keywords, PINs, and secret questions, being not enough in a continuous authentication
problem. That is why continuous authentication has been an active topic in the last year,
and it has proposed many techniques for monitoring all the time user access with the use
of sensors in a mobile device. The most common technique is gesture recognition, which
used touchscreen sequences movements for user authentication. Moreover, through the
use of algorithms of machine learning, they showed a significant advance in the area of
security for mobile phones.

In this work, we proposed two new types of continuous authentication algorithms using
deep learning: Based on software using a convolutional architecture (Cifar-10) as a feature
extractor and a Support Vector Machine (SVM) classifier for user authentication. In this
case, the results were optimal for normal conditions where the user interacts reasonably
in a single application, but for a different application, the system did not much robust
to reject fake people because the gesture scheme depends on the application generated.
Besides, its exhaustive use causes the allocation of a large amount of RAM, which causes
the battery to be consumed quickly.

The second-based hardware is called Mini Mind. Mini Mind architecture was implemented
in a Cyclone IV - FPGA with two layers of LSTM and fully connected. Also, it was
provided to be efficient in terms of power consumption and throughput for a continuous
authentication process. In this case, the results Mini Mind can compute one gesture 2.5
times faster than CPU and 14 times faster than GPU. In terms of power consumption, it
can consume 17 times less than CPU and 109 times less than GPU.

Both architectures, software, and hardware significantly differ between design and imple-
mentation. But both points of view are considered in embedded systems for continuous
user authentication.

Keywords: Neural Network; FPGA; Embedded Systems.
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1 Introduction

For the last decade, artificial neural networks have promoted a striking rebirth
of artificial intelligence. Dedicated hardware — and, in special, embedded hardware — for
them has attracted increasing interest. Embedded devices have gained attention in the last
year; applications such as image analysis, computer vision, and robotics have appeared. In
this context, using these devices requires an extra layer of security than the traditional
(e.g., Pin and screen pattern) to protect user data. That is why user authentication, which
we will choose as the main testbed for the hardware developed in this work (Chapter 3),
has attracted particular interest.

Artificial intelligence has been a very active topic in the last decade, with steep
advances in the art for many applications such as computer vision, speech recognition,
natural language processing, and support for many works (BENGIO; COURVILLE, 2016).
Deep learning, introduced about ten years ago, is the main (but not the only) responsible
for those advances. Deep learning models are “deep” artificial neural networks, i.e., they
have a large number of hidden layers. They are often end-to-end models, which work
seamlessly from raw data until decision output, without the need for handcrafted feature
extraction — which was critical for previous models. By combining many elementary
operations such as convolutions, dot products, and activation functions, those models can
make complex decisions with high accuracy.

The sheer number of parameters and operations (in the order of tens of millions)
makes deep learning models very computationally expensive in terms of space, time,
and power consumption!, creating a significant challenge for deploying those models in
embedded systems, which have stringent limitations of memory, processing, energy, or cost
(or all at once). Implementing deep models in embedded hardware is very challenging and
requires creative efforts to minimize models’ requirements, preserve prediction accuracy,
and maximize utilization of the limited hardware.

Consider user authentication in mobile devices — a market that is expected
to reach nearly 3.5 billion devices at the end of 2020, i.e., approximately half the global
population (2014, ; 2019, ; POPULATIONPYRAMID, ). Today’s cellphones recognize
fingerprints and even individual faces — very complex tasks — which must be performed
fast, dozens of times per day, without draining the device’s battery. Mobile devices are
essential for personal and professional life and provide access to very sensitive information
such as e-mail, schedules, lists of contacts — and increasingly also allow making payments.
Thus, authentication schemes must also be very reliable.

In terms of security, mobiles are not immune to attacks. For example, the
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screen lock type is vulnerable to smudge attacks, which use the residual oil left by the
user’s fingers on the device to make a replica that might fool the authenticator in a large
number of cases (AVIV et al., 2010). In the case of biometrics authentication, such as
fingerprint readers, iris, and face recognition, those offer only one security layer after the
first access. In this context, continuous authentication was proposed to improve security
by evaluating the entirety of the user interaction with the device instead of just the initial
access. Biometric (or behavioral, or usage) patterns that deviate too from the past may
reveal malicious access (PATEL et al., 2016). Those techniques employ various sensors in
a mobile device– gyroscopes, accelerometer, orientation sensors, pressure sensors, touch
screen– to create and validate the user’s profile.

In this thesis, we will design a new architecture for deep learning from the
ground up, aiming at very strict memory and processing constraints. We have chosen
continuous authentication — in our case by using the user’s gestures on the touchscreen

— as a testbed application for our hardware application to showcase its equivalence to a
solution implemented in software.

1.1 Motivation
Current technology faces a tension between artificial intelligence models that

are becoming increasingly computational complex and the growing popularity of low-power
computational devices brought by ubiquitous computing — the notion that everything,
from an airplane to a light switch, should be integrated into a cooperating network of
intelligent devices. As more and more objects around us become “smart”, the challenge of
bringing advanced intelligence to them grows.

One way to resolve that tension is by using connected networks and cloud
computing (Figure 1.1). In that model, made possible, for example, by the so-called
Internet-of-Things, smart devices have sensors and actuators but do not necessarily have
high computational capabilities: complex decisions are delegated to more powerful devices,
which can be very far away, in the “cloud” (SZE et al., 2016).

Cloud computing is a very successful model, but it is not a panacea for all
smart devices’ needs. Sometimes local processing becomes mandatory for many reasons,
including:

• Speed: network bandwidth and latency constraints may be unacceptable, especially
for real-time systems;

• Availability: a network may not be available where the system is deployed;

• Reliability: the rate of network or remote system failure may be unacceptable;
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Figure 1.1 – Deep learning in Cloud service and Hardware Accelerator

• Cost: the cost of communication and remote computation may be higher than
providing local computational power;

• Privacy and Security: it might be undesirable to transfer sensitive data to remote
servers.

In such cases, hardware accelerators may provide an optimal solution for
all local computational requirements (Figure 1.2). For desktops and servers, Graphics
Processing Units (GPUs) are, by far, the essential hardware accelerators for deep learning.
Indeed, the so-called GPGPU (General-Purpose computing on GPUs) has revolutionized
high-performance computing, deploying thousands of cores in a cheap, compact form
factor.

Most embedded systems, however, cannot support complex GPUs (or any GPU,
indeed). While GPUs are cost and energy-efficient for servers and desktops, their sheer
complexity makes them unfeasible for all but the most complex embedded systems, like
high-end cellphones and tablets. On the other hand, these devices - Application Specific
Integrated Circuits (ASICs) and Field-Programmable Gate Arrays (FPGAs) - are widely
used to perform several tasks in embedded systems, executing efficiently with low power
consumption and cost (Figure 1.2).

Therefore, we focused on deploying deep learning for embedded systems with all
limitations and restrictions in this work, using continuous authentication as a motivating
application.
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Figure 1.2 – Deep Learning in Hardware accelerator with a power consumption point of
view. Figure adapted from (CEVA, ).

1.2 Objectives and contributions
Our main goal is to study the implementation of deep learning models on

limited hardware, such as that used for embedded systems.

As specific objectives for this project, we have to:

• Proposing a novel hardware architecture for deep learning on hardware.
• Implementing and testing such architecture in an FPGA.
• Use a motivating application (Continuous Authentication) to validate our implemen-

tation by comparing its results with a reference software implementation.

1.3 Outline
This remainder of this thesis is organized as follows:

Chapter 2 - Literature Review starts with a brief introduction of deep learning (Sec-
tion 2.1). We focus on convolutional and recurrent neural networks, examining
their foundations. We explore hardware for deep learning, especially in embedded
systems, in Section 2.2. In Section 2.3, we briefly present our motivation application
of continuous authentication.

Chapter 3 - Proposed Architecture describes Mini Mind, the architecture we pro-
posed to accelerate deep learning algorithms in embedded systems.
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Chapter 4 - Experiments and Results shows our experiments, in which we contrast
two implementations of continuous authentication. The first uses an image RGB
based on gesture sequence as a new user authentication method. The second is the
Mini Mind design to perform the entire authentication process.

Chapter 5 - Conclusion synthesizes our contributions, with perspectives for future
contributions.
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2 Literature Review

Deep learning has attracted much attention as a proven method for learning
complex, accurate models in large datasets (BENGIO; COURVILLE, 2016). “Deep learning”
comprises a significant — and growing — family of models for tasks in essentially all areas
of machine learning: supervised, unsupervised, or semi-supervised learning, reinforcement
learning, generative models, etc. However, we will focus only on a narrow class of models:
convolutional and recurrent neural networks for image classification.

Convolutional neural networks (CNN) are widely used for classification and
object recognition. Implementing CNNs is highly challenging because the convolutional
layers are very greedy in terms of computation and memory bandwidth (ZHANG et al.,
2015). Recurrent neural networks (RNN), which are often used for sequences of data or
time series, present, thus, an exciting alternative for implementing simpler networks.

We divided this chapter into four sections: In the first, we survey the history
of deep learning history until the current state-of-the-art of deep learning, focusing on
CNNs and RNNs. In the second, we focus on the core of our work, deep learning on
embedded systems, especially FPGAs as accelerators. Next, we survey some cutting-edge
developments of deep learning in embedded hardware, which appeared in the last year,
after the development of our main results was well advanced. We focus on hardware
development in this work because it is a much more onerous endeavor than software
development. Thus, those developments could not be incorporated into our experiments
(Such as deep learning model optimization), but we comment on them to give the reader a
contemporary perspective of the area. Finally, we briefly survey the area of our case study
application, user authentication in low power devices, with the most relevant works in the
area.

2.1 Deep Learning History
Artificial intelligence is a thriving subject with a long and broad history, which

includes the application of patterns recognition to many fields. In 1943, (MCCULLOCH;
PITTS, 1943) introduced the first artificial model of the neurons and synapses of the
human brain. Based on this work, (HEBB, 1949) developed Hebb’s rule in his work
The Organization of Behavior, considering the first training method for Artificial Neural
Networks (ANN).

In 1958, (ROSENBLATT, 1958) introduced a new way to illustrate the arti-
ficial neural network (Backbone of AI) called Perceptron as shown in Figure 2.1a. The
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perceptron was a binary classifier that used a linear decision boundary to predict an output.
Perceptron’s design was the first generation of neural networks. Based on that, (WIDROW;
HOFF, 1962) and (WIDROW, 1964) developed Adaline and Madaline (Multiple Adalines)
networks for real applications. Those networks have better converge properties than the
perceptron due to stochastic gradient descent (SGD) in the learning phase. SGD was
introduced by (ROBBINS; MONRO, 1951), and modified to its more recognized form in
Machine Learning by (KIEFER; WOLFOWITZ et al., 1952).

In 1969, (MINSKY; PAPERT, 1969) established that Rosenblatt’s perceptron
— and almost all ANN models of the time — could not learn straightforward tasks (e.g.,
exclusive-OR), leaving a loss of interest in neural networks for many years. Such long
periods of loss of interest would become cyclical in the area and later denominated the
“winters of AI”.

The first winter began to thaw with the introduction of a new learning algorithm
called backpropagation (WERBOS, 1974). Backpropagation is an efficient method for using
derivatives to propagate the error signal — which is computed only on the last layer — to
earlier layers of a neural network, allowing to update the weights on every layer (WERBOS.,
1990). That work spurred renewed attention on ANN, showing how large neural networks
could be efficiently trained and solving previous problems introduced by Minsky’s work.

In 1975, (FUKUSHIMA, 1975) introduced a new feature extractor in neural
layers to recognize patterns called Cognitron but it had difficulty in achieving invariance to
translation. However, five years later, based on Cognitron’s architecture, (FUKUSHIMA.,
1980) introduced Neocognitron, solving previous problems in Cognitron design which can
recognize the shape of the pattern independently of it is size and position. Fukushima’s
works are considered the firsts algorithms of Convolutional Neural Networks.

In 1982, (HOPFIELD, 1982) introduced another architecture of neural network
called Hopfield Network, inspired by the biological interaction between neurons but imple-
mented with mathematical operations. That feed-forward neural net was called energy
based, and its properties derive from a global energy function. This network is composed
of binary threshold units with a recurrent connection between them, and it can store
memories as distributed patterns of activity.

In 1985, (RUMELHART; HINTON; WILLIAMS, 1985) introduced Multi-Layer
Perceptrons (MLP) (Figure 2.1b). It was a general model to represent complex neural
networks with many internal layers (called hidden layers in literature). Three years later,
(RUMELHART et al., 1988) introduced a parallel distributed processing (PDP) idea. It
was a framework for representing and understanding the computing potential of neural
networks. With those ideas, we reached the second generation of neural networks.

Many studies on pattern recognition and classification in many other fields
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(a) Perceptron by Rosenblatt. Figure reproduced
from (OMONDI; RAJAPAKSE, 2006).

(b) Multi-layer Perceptron.
Figure reproduced
from (OMONDI; RA-
JAPAKSE, 2006).

Figure 2.1 – Neural Networks

encouraged the third generation of neural networks. For example, in natural language
processing, (JORDAN, 1986) introduced recurrent neural networks (RNN) by creating the
idea of recurrence. This neural network understands time sequences with lexical categories
across different classes of items. Previous networks followed the feed-forward principle: the
input is fed to the first layer of the network, whose output is fed to the second layer, whose
output is fed to the third layer, etc., until the final output, without feedback. Recurrence
allowed a feedback, creating paths in which the output of a layer could be used as an input
to a previous layer. In a recurrent network, there is a time dependence on the output since
the output of a layer may chance according to the feedback it has received for a last layer
on the previous timestep. The first recurrent networks were called Jordan’s Networks and
were soon followed by Elman’s networks (ELMAN, 1990). The main difference between
Jordan’s and Elman’s networks was distributing the information in the recurrent paths. In
Elman’s networks, the hidden layer feeds retaining memory of past inputs, but in the case
of Jordan’s networks, they store the output layer into the state layer.

Before 1995, neural networks had several problems and limitations when data
were correlated (as is the case for images). Therefore, (LECUN; BENGIO, 1995) developed
another type of neural network called convolutional neural networks as they are currently
known. Combining local fields, sharing weights, and making spatial subsampling, those
networks learn some representations (Edges, lines, or corners) using filters, sharing that
feed information to other learned filters until, later in the network, conventional (non-
convolutional) layers, make the final decision. The convolutional model would, two decades
later, become state of the art in almost all image recognition tasks.

RNNs used Stochastic Gradient Descent (SGD) to learn sequence or time-series
prediction. However, (BENGIO; SIMARD; FRASCONI, 1994) showed that it could be
challenging to train an RNN for long-term sequences because the gradient of the loss
function decays exponentially with time (Called the vanishing gradient problem). Therefore,
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in 1997, (HOCHREITER; SCHMIDHUBER, 1997) introduced a novel efficient algorithm
called Long Short-Term Memory (LSTM). This new architecture could train very long
time series with the use of logic cells (variation to the traditional RNN architecture),
retaining more information through time.

In the mid-2000s, the first neural networks to tackle large-scale complex prob-
lems appeared. Those models, appropriately, required increasing amounts of data and
computation to converge. (HINTON; OSINDERO; TEH, 2006) developed Restricted Boltz-
mann Machine (RBM), the first real “deep” network to achieve success. RBMs used a faster
algorithm than backpropagation, which allowed it to require less data and computation
than a traditional MLP architecture. Those models are also called the third generation of
neural networks.

In 2012, (HINTON et al., 2012) introduced dropout regularization to avoid over-
fitting in neural networks. It consisted of dropping out some neurons, preventing complex
adaptations, and learning more representative data during the training set, showing
significant improvements when used in feed-forward architectures, e.g., Convolutional
Neural Networks ((KRIZHEVSKY; SUTSKEVER; HINTON, 2012)). In the same year,
(KRIZHEVSKY; SUTSKEVER; HINTON, 2012) won the ImageNet Challenge — a
competition involving more than a million images divided into a thousand classes — with
Alex-net architecture. They used GPUs to accelerate the computation of CNNs, and
Hinton’s dropout to prevent overfitting. That victory was a watershed for deep-learning
models in computer vision: soon after, deep learning became the main focus of most
research groups worldwide.

From a computational point of view (Table 2.1), Alex-net has 61 Million
parameters (249MB of memory) and performs 1.5 billion of 32-bit floating-point operations
to classify one single image (RASTEGARI et al., 2016), spending 90% of those operations on
the convolutional layers. That makes its implementation in embedded hardware challenging.
Moreover, with its dozen or so layers, Alex-net is very shallow for today’s standards.

Indeed, models have progressed steadily to increasing “deeper” learning (SZE
et al., 2017) with an ever growing number of hidden layers, reaching up to hundreds of
layers (SZEGEDY et al., 2015; HE et al., 2016) Correspondingly, the number of operations,
parameters (weights) — and accuracy — of models has also been steadily increasing
(Table 2.2).

Deep learning algorithms require large amounts of data for training, which is
not always feasible (In most cases). Therefore, Transfer Learning is often employed, which
consists of pre-training a model in a task for which data is readily available, and then
refining it for another where data is scarce (PAN; YANG, 2010). By recycling knowledge
from one task to another in learned model weights, transfer learning made it possible to
apply deep learning in virtually all image classification tasks.
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Table 2.1 – Number of operations of every single layer in Alex-net architecture. Table
adapted from (SUDA et al., 2016)

Layer Features Operations

Input image 224
Convolution-1/ReLU-1 96 211,120,800
Normalization-1 96 3,194,400
Pooling-1 96 629,856
Convolution-2/ReLU-2 256 448,084,224
Normalization-2 256 2,052,864
Pooling-2 256 389,376
Convolution-3/ReLU-3 384 299,105,664
Convolution-4/ReLU-4 384 224,345,472
Convolution-5/ReLU-5 384 149,563,648
Pooling-5 256 82,944
Fully connected-6/ReLU-6 4096 75,501,568
Fully connected-7/ReLU-7 4096 33,558,528
Fully connected-8 1000 8,192,000
Total Operations 1,455,821,344

Table 2.2 – Summary of popular deep neural networks. Table adapted from (SZE et al.,
2017)

Metrics Alexnet Overfeat – Fast Vgg – 16 Googlenet v1 Resnet 50
Top-5 error 16.4 14.2 7.4 6.7 5.3
Input Size 227 x 227 231 x 231 224 x 224 224 x 224 224 x 224
Filter sizes 3,5,11 3,5,11 3 1,3,5,7 1,3,7
# of Conv. Layers 5 5 13 57 53
# of FC. Layers 3 3 3 1 1
Total Weigths 61M 146M 138M 7M 25.5M
Total Operations 1.45G 5.6G 31G 2.86G 7.8G
Year of Publication 2012 2014 2014 2015 2015

2.2 Deep learning in Embedded Systems
In the history of neural networks in hardware, the primary focus has been

to obtain a design with high speeds at low costs. That implies exploiting the maximum
computational power of as few as possible hardware electronic elements. An additional
design goal is fault tolerance, where the system degrades “gracefully” when facing adverse
situations but might require some level of redundancy (Parallel and pipelined architecture).

According to the survey of (MISRA; SAHA, 2010), the last two decades
witnessed many approaches to neural networks in hardware: digital, analogic, hybrid, and,
finally, FPGA-based. Of all alternatives, FPGAs proved an excellent choice for quick
implementation due to their low cost and reconfigurable flexibility. However, implementing
large models with thousands of neurons is still a research challenge.



CHAPTER 2. LITERATURE REVIEW 24

(SHAWAHNA; SAIT; EL-MALEH, 2019) summarizes the most relevant neural
network implementations on FPGAs, comparing techniques used to optimize resource
utilization such as loop tiling, loop unrolling, and data reuse (memory or essential elements),
and operation pipelining.

In the remainder of this section, we will use the most relevant works in literature
(MISRA; SAHA, 2010; SHAWAHNA; SAIT; EL-MALEH, 2019; ABDELOUAHAB et
al., 2018) to develop our state-of-the-art of deep learning algorithms implementation on
FPGA.

The first implementation of neural networks in FPGA was called Ganglion
(COX; BLANZ, 1992). Ganglion’s architecture has 12 units in its input layer, 14 units
in its hidden layer, and four units in its output layer. That architecture is based on a
feedforward neural network, which is easier to implement in hardware than the Hopfield
network due to fewer interconnections, fewer units in the hidden layer, and an activation
function that can be determined immediately at the end of each unit.

xl
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∑
n=i

Al
ij ∗ Sl−1

ij + Bl
j (2.1)

Ganglion architectural contribution was the multiplication/accumulation be-
tween inputs and weights — Units in a feedforward neural network shown in Equation
(2.1). (COX; BLANZ, 1992) proposed to break a complex multiplication (8 × 8 bits) into
two smaller multiplications (8 × 4 bits) and one addition, as shown in Figure 2.2. In this
process, Ganglion uses two bytes as input S and A, and also U and L to represent nybbles.
The constants values 128 and 2048 are considered to guarantee the product in this process.
With that new approach, the Ganglion can compute 224 fixed-point multiplications per
clock, requiring fewer logic circuits to implement in hardware. Ganglion’s architecture
opened a new era for neural networks in embedded hardware because it shows another
way to represent a complex multiplication process into a simple one with fewer elements
in hardware.

Figure 2.2 – Implementation of Cox multiplication, where S and A are input bytes, and
U and L represent nybbles. In this architecture, (COX; BLANZ, 1992) break
a complex multiplication of 8 bits into one simple multiplication of nybbles
and one addition. Figure reproduced from (COX; BLANZ, 1992)

.
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2.2.1 Convolutional Neural Networks in Embedded Systems

The first implementation of a CNN in FPGA was the Virtual Image Processor
(VIP) (CLOUTIER et al., 1996). VIP had to control the numerical precision among
the convolutional operations and still had to use 5 FPGAs to gather - at that time -
enough elements to implement the CNN. In each multiplication unit, an FPGA uses
an embedded multiplier and also uses logic gates to do interconnections among other
FPGAs. Figure 2.3 shows the VIP architecture, which is composed of three components:
first, the processing matrix, which has the processing elements (PEs). Second, the SIMD
(Single Instruction Multiple Data) controls executing instructions among the processing
element (PEs) to perform matrix and vector operations. And finally, the input/output
controller. The matrix of PEs was implemented with a low precision provided to have an
excellent performance in hardware than the full precision in multipliers. In applications
such as image processing and pattern recognition, where RAM is a critical factor, this
new approach of VIP implementation uses only 1.5 MB of static memory RAM.

Figure 2.3 – Implementation of Cloutier is composed of: first, the processing matrix, which
has the processing elements (PEs), SIMD control to execute instructions PEs
and the input/output controller. Figure adapted from (CLOUTIER et al.,
1996)

In a few years, (FARABET et al., 2009) proposed the use of small kernels
filters (11 × 11 for a single kernel, 7 × 7 for two simultaneous kernels) and a pre-trained
neural network for real-time applications. The efficiency of that new architecture came
from performing multiplication and accumulation simultaneously at each clock cycle. They
employed 16-bit fixed-point arithmetic operations and 8 bits for the states. They were able
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to implement LeNet-5 (FARABET et al., 2009), a famous early CNN architecture known
for its high performance on the MNIST handwritten digit recognition challenge (LECUN
et al., 2015). Lenet-5 has three convolutional layers, two polling layers, and one fully
connected layer. This work marks a significant turning point in using FPGAs as accelerators
for artificial neural networks embedded vision applications.

For the following years, embedded hardware gained attention, employing Gen-
eral Purpose Processors (GPP), ASICs, GPUs, and FPGAs. Each of those platforms has
a particular characteristic, depending on the type of application. For example, GPPs
are highly flexible and allow easy and fast implementation of algorithms. ASICs provide
high performance, low power consumption, and small form-factors but are inflexible and
have substantial development costs. GPUs allow massively parallel implementation of
algorithms but have high per-unit costs and significant power consumption needs. In
contrast with these platforms, FPGAs have challenges but offer an exciting trade-off
between performance, power consumption, and programmability.

In deep learning, an FPGA design focuses on adapting algorithms for a fixed
computational structure, allowing more freedom to explore low-level optimizations than in
software. Optimization allows reusing resources to minimize the logical elements required
to deploy the hardware. Regarding disadvantages, an FPGA design requires many complex
low-level hardware control operations, which are often problematic and extremely difficult
using hardware description languages like VHDL or Verilog. However, in a complex
embedded system, the hardware provided by FPGA in terms of throughput, hardware
elements, and power consumption has made them the standard tool for real-time processing
applications.

In the past decade, deep learning models have steadily grown in size and
complexity, thus requiring more memory blocks and logic elements to be implemented
in hardware. The primary focus of their implementation in FPGAs was the data flow
during computations to extract the highest possible throughput from the limited number
of components. In this context, (GOKHALE et al., 2014) presented another FPGA-
based accelerator called nn-X, containing a register for weights in MAC units in direct
communication to a global buffer with all the network weights. That configuration minimizes
energy consumption for reading the weights and maximizes the use of registers. The design
of nn-X comprised a coprocessor, a host processor, an external memory, 16 bits fixed-point
precision multipliers (with 8 bits for the integer and 8 bits for the fraction part), and
piecewise linear approximation for the nonlinear functions. A significant advance of this
work was the use of the coprocessor to implement large convolutional units in parallel,
using pipelines (Figure 2.4), allowing it to process convolutional neural networks for vision
tasks (Images or videos) in real-time.

For implementing neural networks, the numerical precision of multipliers is
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Figure 2.4 – Implementation of Gokhale et al. Figure adapted from (GOKHALE et al.,
2014)

a critical factor since fixed-point arithmetics will typically be much faster and more
resource-consuming than floating-point. (COURBARIAUX; BENGIO; DAVID, 2014)
contrasted model accuracy using three precision formats, as shown in Figure 2.5. The first
precision format, floating-point, is more often used for real values because it uses a sign,
an exponent, and a mantissa to represent any number. Second, fixed-point uses signed
mantissa, and a global scaling factor is shared between all fixed-point variables. Moreover,
finally, dynamic fixed point, based on point format in which there are several scaling factors
instead of a single global one. They found that with 10 bits of fixed-point precision, it was
possible to train a Maxout network, a feedforward network with max-pooling activation
unit (GOODFELLOW et al., 2013). They also contrasted single-precision (32 bits) vs.
half-precision (16 bits) floating-point, finding that one can use the latter without much
impact in the training phase.

Figure 2.5 – Description of implementation floating and fixed point, using two signs
variables showing sign, exponent and mantissa distributions. Figure adapted
from (COURBARIAUX; BENGIO; DAVID, 2014)

(GUPTA et al., 2015) also studied the effect of limiting precision on neural
network training, concluding that the error in a training phase using only 16 bits fixed
point was equal to having 32 bits floating point operation using stochastic rounding.
More recently, (CARVALHO et al., 2016) proposed a new method for compressing a
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deep learning architecture by reducing the feature vectors and quantizing the remaining
elements, obtaining a compression rate of 98.4%. Those works suggest a large allowance in
the trade-off between numerical precision and model accuracy, both during the training
and inference phase, to better implement the networks in hardware.

Figure 2.6 – Implementation of Zhang et al. Figure adapted from (ZHANG et al., 2015)

(ZHANG et al., 2015) proposed a novel hardware accelerator using the Roofline
model (a metric that relates memory traffic and peak performance) to choose the design
with the best throughput. Figure 2.6 shows the basics components in that design, such as
processing elements (PEs composed of adders and multipliers), on-chip buffer, and external
memory. The significant advance in that design was implementing the PEs units in a
pipeline and extensively buffering memory (Input, weights, and output) among computing
processes, thus minimizing external memory accesses. (ZHANG et al., 2015) compared
their results with several others with similar designs using off-chip memory access, buffered
input and output, and parallel processing (Table 2.3).

In the modern design of hardware accelerators, each layer of a network is seen as
a collection of multiplications and accumulations. Thus, the parallelism of deep networks is
limited by the number of multipliers available on the FPGA (embedded multipliers or MAC
units). To deal with that issue, many authors proposed to reuse hardware to implement
deep learning architectures, such as that aimed at ImageNet (Table 2.1). (RAHMAN;
LEE; CHOI, 2016) implemented a 3D neuron array design with the use of a new technique
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called Input-Recycling Convolutional Array of Neurons (ICAN). That new architecture
can maximize the use of multipliers, applying one layer at a time, which is very efficient
regarding resources. In addition, in the same year, (DUNDAR et al., 2016) proposed to
optimize resources in hardware with the use of data concatenation without causing any
delay. The use of data concatenation increased the maximum speed-up among feature
maps used for object classification and object detection in real-time.

Figure 2.7 – Implementation of Suda. Figure adapted from (SUDA et al., 2016)

In order to find another way to multiply weights and inputs, (SUDA et al.,
2016) proposed the idea of flattening and rearranging input features, thus optimizing
memory usage. Figure 2.7 shows Suda implementation where the multiplication between
the matrix of convolutional weights and the rearranged matrix of inputs are loaded in
local memory, reducing the interaction with external memory and increasing performance.
(LI et al., 2016) employed the idea of network in network (LIN; CHEN; YAN, 2013),
implementing a recurrent convolutional neural network (RCNN), another way to implement
CNN in hardware, and applied a global summation instead of a fully connected layer
for classification. This implementation approach uses a pipeline form architecture, which
requires fewer operations, solves the memory access bottleneck problem, and dramatically
enhances parallelism.

(COURBARIAUX; BENGIO; DAVID, 2015) adapted convolutional networks
to bypass multiplications and minimize memory usage by employing binary values instead
of continuous values/weights. Based on that work, (RASTEGARI et al., 2016) presented
Xnor-Net, an architecture for the ImageNet task with binary weights and inputs. Xnor-net
is based on shift operations and dot products between two binary values (+1,−1). The
latter can be implemented by using the and operator and counting the active bits — two
operations that are usually very fast in current hardware. Binary operators are the most
promising way to approximate convolutional layers in limited hardware.

(HAN; MAO; DALLY, 2015) proposed Deep Compression, a method to compress
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Table 2.3 – Performance of most important papers of Deep Learning in FPGAs.

Precision Type GOPs 1 Power[w]
(LI et al., 2016) Fixed Object Classification 409.62 1

(DUNDAR et al., 2016) Fixed Object Classification 247.00 4
(SUDA et al., 2016) Fixed AlexNet 136.50 19

VGG 117.80
(RAHMAN; LEE; CHOI, 2016) Float AlexNet – CNN 80.78

(ZHANG et al., 2015) Float AlexNet – CNN 61.62 18
(PEEMEN et al., 2013) Fixed Sing Recognition 17.00 15

(CHAKRADHAR et al., 2010) Fixed CNN – Classification 16.00 14
(CADAMBI et al., 2010) Fixed CNN – Classification 7.00 14
(FARABET et al., 2009) Fixed LeNet- 5 5.25 15

(SANKARADAS et al., 2009) Fixed Face Detection 6.74 11

neural network models up to 59x without losing much accuracy. That process combines a
pipeline, a pruning phase, weight quantization, parameter sharing, and Huffman coding.
With that method, (HAN et al., 2016) proposed an efficient inference engine (EIE)
accelerator for CNNs and image recognition. That new type of accelerator can perform
modern networks such as AlexNet or VGG-16 because of weights compression (Prunning
and weight sharing). This architecture uses sparse matrix-vector multiplication, reporting
600 mW power and achieving 102 GOPS on a compressed network.

More recently yet, (WANG et al., 2017) proposed the DLAU design, which is a
scalable accelerator for large-scale deep learning networks using an FPGA as a platform.
The DLAU accelerator uses three units in the pipeline, dividing a considerable input into
small subsets with FIFO buffers to increase the throughput.

2.2.2 Recurrent Neural Networks in Embedded Systems

RNN architectures are often the most appropriate for serial data (e.g., speech),
as they naturally provide sequences both as input and output. As explained in Section 2.1,
RNNs differ from feed-forward architectures, by providing recurrent links to previous
layers.

One of the most used RNN architectures is LSTMs, which, compared with
traditional RNNs, contain temporal memory blocks in their recurrent hidden layer. Those
memory “cells” contain self-connections that store a temporary state (output at time t).
(GREFF et al., 2015) proposed another architecture evolution, removing the peephole
connection of LSTMs, without suffering any loss of accuracy. Based on that, (CHANG;
CULURCIELLO, 2017) implemented a Vanilla LSTM architecture in hardware, for learning
character text sequences, using 16-bit fixed-point numerical precision (Figure 2.8). Their
adapted LSTM architecture has three gates (input, forget, and output), block input, a
single cell (constant error carousel), a sigmoid output activation function for input, output,
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forget gate, and a hyperbolic tangent activation function for the candidate memory. The
input gate controls the flow of input activations into the memory cell, the output gate
controls the output flow into the rest of the network, and the forget gate selects which value
is relevant to store in the cell’s memory. That new architecture follows these equations:

Input gate:
it = σ(Wxi ∗ xt + Whi ∗ ht−1 + bi) (2.2)

Forget gate:
ft = σ(Wxf ∗ xt + Whf ∗ ht−1 + bf ) (2.3)

Output gate:
ot = σ(Wxo ∗ xt + Who ∗ ht−1 + bo) (2.4)

Candidate memory:
c̃t = tanh(Wxc ∗ xt + Whc ∗ ht−1 + bc) (2.5)

Memory cell:
ct = ft ⊙ ct−1 + it ⊙ c̃t (2.6)

Output vector, the final result of LSTM unit:

ht = ot ⊙ ct (2.7)

Where Wx_, Wh_ and b_ are the trainable network parameters — input weights, previous
output weights, and biases respectively — of each (input, forget, output, c̃andidate, cell,
houtput) gate; xt−1 is the input vector; ht−1 is the output vector of the previous timestep;
σ is the logistic sigmoid function; and ⊙ is the elementwise vector product, also known as
Hadamard product. Figure 2.8 shows a new implementation without peepholes connections,
which requires fewer elements in hardware, opening the possibilities for many applications.

(HAN et al., 2017) proposed another hardware accelerator called an efficient
speech recognition engine (ESE) for the LSTM network with a bit of variation in the base
process. For example, during pruning, they forced each row to have the same amount
of weights to implement hardware load balancing. They also proposed to compress the
LSTM model by x20 without sacrificing the prediction accuracy; working directly on the
compressed model enables ESE to have a significant advantage of parallelism.

The work proposed in this thesis, Mini Mind, uses hardware acceleration for a
continuous authentication process (Section 3. Our solution is based on implementing an
LSTM with a pipeline, using gesture information (Temporary sequence generated by a
user, Section 2.3) as input data to authenticate a user.

In terms of hardware-description languages (HDL) for the implementation of
neural networks, open computing language (OpenCL) has gained attention for CPUs, GPUs,
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Figure 2.8 – Vanilla LSTM architecture. Reproduced from (CHANG; CULURCIELLO,
2017)

DSPs, and most recently, FPGAs, allowing to implement complex parallel architectures in
a short time of design. OpenCL is a high-level language based on C (used for software),
which can then be processed by synthesis tools to be used as an HDL. More traditional
HDL choices are VHDL and Verilog, but for complex designs, they require elaborate
simulations (Design, test, power, and resource estimation), and expert knowledge to allow
implementation in an FPGA target. In contrast, OpenCL allows design and verification
to be integrated. Thus, design time using OpenCL is up to six times faster than using
traditional HDLs. Still, when efficiency is at stake, traditional HDL gets the upper hand
regarding the use of logic resources with 59% to 70% less logic, while they are maintaining
similar timing constraints (HILL et al., 2015). Because of those efficiency advantages, we
decided to make our implementations using VHDL in this work.

2.2.3 Latest Developments and and Future Directions

In this section, we will survey the most recent developments in the literature of
CNNs and RNNs on hardware, covering the past year until the publication of this thesis.
We cover those works separately due to the nature of the development of this work in the
hardware. Contrary to experiments performed in software, development in hardware is
much slower and cannot hope to be up-to-date with literature that is months old. Thus,
although presenting an exciting new frontier, the works covered in this section could not
be incorporated into our design. We hope they will inform future versions of our work.

(ABDELOUAHAB et al., 2018) mentions that the newest implementations
in hardware focus on the inference phase in order to bypass the complexity of training.
Indeed, computing the forward pass in a neural network is cheaper than computing the
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gradients required for backpropagation.

(WANG et al., 2019) summarizes 18 deep learning frameworks and libraries.
Those frameworks proved to be efficient in timely execution and precision and flexible in
numerical precision, allowing the choice between floating-point and fixed-precision and
between 32 and 16 bits precision. For research purposes (Based on GitHub community
statistics) are: Pylearn2, Tensorflow, Pytorch, Caffe, Keras, and Tensorflow are the most
commonly used due to flexibility, debugging facilities, and ease of use. Deeplearning4j and
Matlab are more stable and scalable than the other frameworks for industry use. With
this type of advances, in the following years, not only in the mobile environment, those
frameworks will have a significant impact on platforms such as FPGA and ASIC.

In terms of quantization, Angel-Eye (GUO et al., 2018) is a model which uses
conventional floating-point numbers, then in each layer, collects the statistics of feature
maps, especially the histogram of the parameters (weights), to calculate the best radix
position to represent those values in fixed-point numbers. They fix that radix-position
for all layers for adders and multipliers, thus reducing precision to 8 bits with negligible
accuracy loss in VGG-based architectures, with 16x better energy efficiency.

(JIANG et al., 2019) proposed a new model of hardware implementation called
FNAS (hardware-aware NAS framework), which emphasizes latency reduction, and allows
training the network in the FPGA as an option. The Neural Architecture Search (NAS)
frameworks proposed a new way to create architectures of neural networks. NAS uses
reinforcement learning and an evolutionary algorithm to search for the best possible
solution, which means it can find the optimal architecture of a neural network given a
dataset. However, most of them take a long time to find the optimal architecture due to
the vast search space to train and evaluate each candidate. The authors report that in
a dataset such as ImageNet, the FNAS architecture achieves 11.13× of speedup for the
search process, a 7.81× of latency, and less than 1% of accuracy loss.

Most authors propose weight pruning techniques to reduce computational costs
in previous works. Unfortunately, irregular computation and memory access in sparse
LSTM memory limit the realizable parallelism. To address that issue, some researchers
propose block-based sparsity patterns to increase the regularity of sparse weight matrices,
but those approaches suffer from deteriorated prediction accuracy. That is why (CAO et al.,
2019) proposed Bank-Balanced Sparsity (BBS), a new sparsity pattern that can maintain
model accuracy during the FPGA implementation. That new architecture contains a sparse
matrix-vector multiplication unit (SpMxV Unit), an element-wise vector operation unit
(EWOP Unit), a direct memory access module (DMA) for load/store operations on-chip
memory, and a central controller. BBS design improves by 3.7× on energy efficiency and a
reduction by 34.4× on latency with negligible loss of model accuracy in the best scenario.
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2.3 Selected Application: Continuous Authentication
User authentication is critical to enforcing security in computer systems. In

mobile devices, traditional methods of security for user authentication are passwords,
personal identification numbers (PINs), or secret questions. However, those techniques
are susceptible to multiple types of attacks, as users are notoriously bad at choosing good
passwords and keeping them secret.

In recent years, alternatives to passwords for authentication have appeared
based on users’ biometry — intrinsic biological characteristics. The most popular biometric
systems recognize users’ fingerprints, faces, voices, irises, and retinas.

In addition to single-point user authentication, continuous authentication re-
cently emerged as an alternative to make mobile devices more secure. It uses biometric
techniques to continuously evaluate user authentication in real-time after the first ac-
cess (PATEL et al., 2016). It uses sensors in a mobile environment such as a gyroscope,
touch screen, accelerometer, orientation sensor, and pressure to identify the user. Gestures
and gait are common biometric markers studied for continuous authentication.

Table 2.4 – User Gesture occurred on the screen’s horizontal axis (Figure 2.9 and Eq. 2.8).
Pressure and area values are constant between the same user but different
among other users

Action X Y Time Pressure Area Orientation
0 213 285 0 0.41 0.04 1
2 209 287 10 0.46 0.04 1
2 202 291 21 0.52 0.04 1
2 194 294 32 0.56 0.04 1
2 186 297 48 0.56 0.04 1
2 139 309 110 0.65 0.04 1
2 129 312 112 0.65 0.04 1
2 111 318 135 0.65 0.04 1
2 96 326 160 0.65 0.04 1
2 84 332 184 0.65 0.04 1
2 75 337 210 0.38 0.04 1
2 69 341 234 0.18 0.04 1
1 69 341 236 0.18 0.09 1

Gesture recognition is one of the most commonly used techniques for continuous
authentication. It is based on the hand and finger interaction with a touchscreen. A single
gesture considers how the user makes a finger swipe on a touchscreen while performing an
essential operation (Figure 2.9 and Eq. 2.8). Gesture recognition must work in low-power
devices (mobiles), using touchscreen interactions as input data, converting the gesture
sequence information into feature vectors used for authentication purposes. Each gesture
can provide a sequence of data such as:
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Figure 2.9 – Gesture of gesture data

Sn = (Tn, Xn, Yn, Pn, An, Or), n = {1, 2, 3..n} (2.8)

• Timestamp: Tn

• Position: Xn,Yn

• Pressure (calculated): Pn

• Area of the finger on the screen: An

• Orientation of the cellphone: Or

Gesture recognition works because people tend to be consistent in interacting
with the device. For example, some users tend to interact with their index fingers for
a particular task while using their thumbs for other tasks. Some users tend to interact
with slow fluid motions on specific tasks while using short “staccatto” motion on others.
Table 2.4 shows a gesture example where the values on the Y-axis are almost constant.
However, the X-axis values contain a high variation, which means that the movement or
gesture occurred on the screen’s horizontal axis. Also, pressure and area contain unique
values constant between the same user and other users. Those differences may be used to
detect malicious access (PATEL et al., 2016). Table 2.5 summarizes the most representative
works on gesture recognition, using equal error rate (EER) as a metric to compare their
results.

(SAE-BAE; MEMON; ISBISTER, 2012) introduced another authentication
using multitouch gestures. The main idea of this paper was to use all the critical features
in the hand geometry, creating a set of 22 gestures for authentication. (FENG et al., 2012)
proposed to use touch data, adding an extra digital sensor in order to obtain pressure and
acceleration, using false acceptance rate (FAR) and false rejection rate (FRR) to evaluate
their results. (LUCA et al., 2012) introduced another technique, using password patterns
with an additional security layer (transparent to the user). The authors conclude that
gesture recognition has good potential for user authentication in real-world applications in
those works.
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Table 2.5 – Gesture recognition: research work summary

Work Technique EER
(NGUYEN; SAE-BAE; MEMON, 2017) Draw PIN, PCA and DTW 4.84

(ROY; HALEVI; MEMON, 2014) Hidden Markov Models(HMM) 0.0 - 5.0
(FENG et al., 2014) 1-NN and DTW 10.0

(ZHAO; FENG; SHI, 2013) Images gray scale- z-score 6.3 - 15.4
(FRANK et al., 2013) k-NN technique and SVM to classify 0.0 - 4.0

(LUCA et al., 2012) DTW - compare distance between gestures 4.0
(SAE-BAE; MEMON; ISBISTER, 2012) k-NN technique, DTW and Frechet distance 1.58

(FENG et al., 2012) Decision tree, Random forest and Bayes net FAR - 7.5
FRR - 8.0

(FRANK et al., 2013) proposed an encoding for gesture information in order to
perform continuous authentication. In their encoding, they create a feature vector based on
30 behavioral features that can be extracted from the touch screen input of mobile devices
and used to train an authentication model. These behavioral features contains: coordinates
of the position of the finger during the stroke n, xn and yn; timestamp tn; finger pressure
pn; area covered by the finger an; and orientation of the device ofn and opn. In the latter
case, the cellphone’s orientation, the gestures can be different in portrait and landscape
orientation, i.e., in the portrait orientation, gestures are shorter on the x-axis than on the
y-axis. However, we have the opposite in landscape orientation, with rude gestures on the
y-axis but large gestures on the x-axis. They evaluated k-Nearest Neighbors (kNN) and
Support Vector Machines (SVM) as possible classifiers for authentication.

In addition, (ROY; HALEVI; MEMON, 2014) used the same data as (FRANK
et al., 2013), but replaced the kNN or SVM classifiers by a Hidden Markov Model (HMM).

With those works (FRANK et al., 2013; ROY; HALEVI; MEMON, 2014),
we can conclude that gesture sequences generated by one user are similar to each other,
provided the use case remains the same, e.g., we analyze data on the same task/application.
However, the similarity of each gesture sequence change if we change the application.
That means that: the user’s behavior is unique for each type of application, but data
for the same user may vary widely across different tasks/applications. That complicates
authentication considerably.

(ZHAO; FENG; SHI, 2013) proposed encoding the gesture information into a
grayscale image in order to use image-classification techniques for authentication. That
new type of image represented the movement of each user on a touchscreen, which is very
different among users but similar for the same user. (ZHAO; FENG; SHI, 2013) uses six
types of gestures to generate this type of image, such as coordinates, timestamps, and
pressure — the most relevant introduced by (FRANK et al., 2013)— and also, cubic
interpolation to normalize all of them. (ZHAO; FENG; SHI, 2013) uses three kinds of
score metrics to compare all images — normalized cross-correlation, L1 norm, and L2 —
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and chose L1 as the best metric.

The experiments were performed in controlled scenarios in all previous works,
which may not reflect real-world usage. To solve this problem, (FENG et al., 2014)
implemented a system of authentication in a cellphone’s background environment, obtaining
gestures in a more realistic scenario for continuous authentication - (FENG et al., 2014)
use, in this case, a background app for collecting all gestures around apps in mobile devices
-. (FENG et al., 2014) approach implements one gesture authentication by each application
in the mobile devices, which means because the gestures for one application are pretty
similar, but for another application, they are entirely different.

Finally, (NGUYEN; SAE-BAE; MEMON, 2017) proposed an alternative method
for user authentication during the entering of PINs. The key idea is to let a user draw the
PIN several times (e.g., Between 3 to 5 times) on a touch screen instead of typing. The
system extracts from each sample gesture information such as position, pressure, and size
of the touch area. The system uses principal component analysis (PCA) in the first phase
to discriminate all drawings and dynamic time warping (DTW) for user authentication.

We choose to use the features established by (ZHAO; FENG; SHI, 2013) and
(FRANK et al., 2013) such as position X, position Y , pressure, and area covered (the
latter two being estimated, not measured). We choose the method of images proposed by
(ZHAO; FENG; SHI, 2013), that encodes the data series into a gray-scale image, thus
allowing to use architectures such as convolutional neural networks for the task of user
authentication. We proposed to improve that scheme for continuous authentication by
using transfer learning: our results appear in Section4.2.3. We later modified our design
to deal with the gesture information directly, without the image encoding, allowing to
implement the model as a LSTM instead of a CNN.
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3 Proposed Architecture

This chapter describes our proposed solution based on a hardware design
we called Mini Mind. We first summarize our design process and then give a detailed
description of Mini Mind’s units and the interface and protocol used to connect Mini Mind
with a generic processor.

3.1 Methodology for Hardware and Software Design
Embedded systems design requires a rigorous methodology, which comprises

problem analysis, algorithm design, system modeling and simulation, hardware design,
and hardware deployment. State of the art on those methodologies has progressed steeply
in the last years, especially in what concerns FPGA prototyping. However, there are still
challenges to be overcome, depending on the type of application, since optimizing the
algorithm to fit into a limited number of logic elements, embedded memory used, power
consumption, and time constraints is far from obvious. Synchronization issues are also a
source of challenges.

For Mini Mind, we took inspiration from the works of (BARKALOV; TITARENKO;
MAZURKIEWICZ, 2019), (LI et al., 2019), and (VIDAL; CRUCES; ZURITA, 2014),
since their hardware/software co-design, and their platform-independence was particularly
useful to us. Using those tools, we could model the trade-off between network performance
and available logic elements in hardware, which was the main limiting factor in our design.

Considering the hardware we had available (Altera Cyclone IV) during the
design process, the original Mini Mind design changed. We attempted several alternatives
for the expensive linear processing, which involves large matrix-vector multiplications,
and non-linear activations, which involve approximating a transcendental function. When
we committed to a pipelined design, synchronization and timing considerations became
paramount. During that phase, in addition to the automated tool, we used free-hand
drawings and storyboards to guide our design (Figures 3.1a and 3.1c).

The significant advantage of mini mind is the management of internal memories
implemented in the pipeline, maximizing the throughput using a loop cycle that we
had to optimize by hand, using low-level tools/language (e.g., VHDL writing). Solving
synchronization issues took a significant part of the development process.
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(a) First Scratch - Estimation of computational re-
sources using all LSTM equations input gate
(2.2), forget gate (2.3), output gate (2.4), can-
didate memory (2.5), memory cell (2.6) and
output gate (2.7).

(b) Second Scratch
- Mini Mind De-
sign - Pipeline
approach

(c) Final Design from second Scratch- Pipeline approach

Figure 3.1 – Mini Mind Design Process: figures (a) and (b) are samples from the actual
design sessions during prototyping, which used extensive collaborative drawing
and redrawing on whiteboard. Figure (c) is a refined drawing of the resulting
architecture.
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Figure 3.2 – Mini Mind architecture
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3.1.1 Proposed Mini Mind Architecture

Mini Mind is a hardware accelerator based on the work of (CHANG; CULUR-
CIELLO, 2017). It has two LSTM layers and two fully-connected layers, each layer with
128 units. For todays’ standards, that is a relatively shallow network, but it still can be
used both as a discriminant and a generative model for many practical tasks. This work
will validate the design for continuous user authentication using gestures. The parameters
of our architecture will be described in detail in Section 4.

For the LSTM layers, the hardware implementation has to implement equations:
input gate (2.2), forget gate (2.3), output gate (2.4), candidate memory (2.5), memory cell
(2.6) and output gate (2.7). In this context, (CHANG; CULURCIELLO, 2017) proposed to
implement each unit separately for LSTM layer using a MAC unit. For a better explain,
Figures 3.3a and 3.3b show that approach, which considerably reduces the need for
multipliers, but increases the memory used to store the weights. The proposed process
performs multiplication and accumulation for all units, and stores the results in RAM. In
the speed vs. hardware size compromise, that design greatly emphasizes the latter: the
basic units are reused and there is no need for additional elements, but the whole process
is very time-consuming, because each network inference requires sequential computation
of the network layers, with intermediate storage and retrieving of partial results in RAM.

(a) Matrix-vector Multiplication (b) Multiply–Accumulate Operation
(MAC)

Figure 3.3 – Matrix Multiplication using MAC unit

Therefore, our model seeks a more balanced speed-vs.-hardware size compro-
mise than (CHANG; CULURCIELLO, 2017), by employing pipeline parallelism on the
network layers. That requires each layer to have its independent hardware components
but can significantly accelerate inference since the network can parallelize the processing
of its sequential input using the pipeline. That scheme also accelerates the matrix-vector
multiplications, processing all the gates and memories of a unit in parallel.

Managing numerical precision was another critical design decision. We followed
(CHANG; CULURCIELLO, 2017) and employed fixed-point 16-bit numbers, with 8 bits
for an integral part and 8 bits for the fraction (“Q8.8” for short).
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3.2 Mini Mind Design
In this section, we detail Mini Mind’s design, describing our choices for the

hardware implementation, the optimizations we made for speeding up the design, the
synchronization issues, and the numerical approximations.

3.2.1 Resources Estimation

Before carrying out the design, we created a model to estimate the needed
elements in hardware using the number of units of LSTM layers and the number of
multiplications for each layer (MAC units) and memories (Table 3.1). Those estimations
helped us optimize the design while ensuring it would fit the available hardware.

In both LSTM and fully-connected layers, the most critical operations are
linear matrix-vector multiplications, where the matrices store the model’s parameters, and
the vectors are the inputs to that layer (coming from the previous layer, or the user, in
the case of the first layer). The other essential operations are the non-linear activation
functions, but those are “simpler” since they are applied element-wise to the vectors and
have no learnable parameters.

Table 3.1 shows our estimations for two sizes of the LSTM layers (128 and 256).
In that table, we only rely on the number of basic elements necessary to implement such a
network. In our case, the most critical factors are the MACs and multipliers units. In the
most basic model of this table, the use of a single multiplier for each unit, as shown in
equations 2.2 , 2.3, 2.4, 2.5, 2.6, 2.7. The x2, x4 are MAC’s units required to implement
that factor. As previously stated, in the Mini Mind architecture, increasing the speed
factor is directly proportional to the number of multipliers involved, dividing the task and
increasing the final throughput.

That estimate depends on how many essential elements (lookup tables) will be
necessary to implement, the number of bits (system precision), and the synthesis tool’s
optimization. In addition, the FPGA board’s capacity since the number of Macs and
lookup table elements varies depending on the FPGA board and manufacturer. In the
memory factor, the memory value required does not change (Depending on the software
tool, memory values could change depending on the size and optimizations of software,
but for our analysis, we have not considered this variation). The memory of the network
weights used to implement is fixed in any situation. We used an estimated LSTM network
with 128 and 256 neurons in the table. In this time case, the estimate is not a linear factor
because adding adders is required after the multiplication process. In this case, the total
sum of each adder in the cascade is considered with an estimated processing time of a
clock cycle.

Table 3.1 reflects only the behavior of multipliers and memories for the LSTM
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Table 3.1 – Estimation of Mini Mind architecture. The units counted are DSPs and
multipliers. % over the total available in Altera Cyclone IV. Time in ms.

Design Units % used Memory % used Time
1 Sequential – 256 68 9.4 13 795 328 208 49
2 Sequential – 256 (x2) 104 14.4 13 795 328 208 27
3 Sequential – 256 (x4) 176 24.4 13 795 328 208 16
4 Sequential – 128 68 9.4 3 473 408 52 13
5 Sequential – 128 (x2) 76 10.6 3 473 520 52 8
6 Sequential – 128 (x4) 176 24.4 3 473 408 52 5

layers, and it was not made for fully connected layers because including additional
hardware would not have a significant impact on the final throughput. Another reason
for the bottleneck of the multiplication process in LSTM layers is the multiplication of
basic units, and that is why adding extra hardware (multipliers) in this process does
not substantially increase our throughput. Also, the fully connected architecture already
trained can be replaced with one multiplier, one adder, one activation function (Relu in
our case), and a memory block (Depending on the size of our layer - Number of neurons in
the layer), simplifying our hardware architecture (It only need one MAC unit to represent
an all fully connected layer operation ).

In LSTM networks, it is not always possible from a hardware point of view
the use external memory to partially store the results from the multipliers depending
on the size of the architecture. An LSTM architecture with 256 neurons could not be
deployed to our Cyclone IV boards because of memory limitations. That is why many
authors proposed optimizing or reusing the lower layers of deep learning architecture to
implement more complex architectures on even more limited hardware. In our context,
this approach is well received when we use CNN architectures when 90% of all parameters
are around the firsts layers. However, even with this approach, some FPGA boards cannot
implement a CNN network in a pipeline scheme because of the number of MAC units and
memory required by the whole network. However, in the case of LSTM architecture, it
is possible to implement in a pipeline all layers using the most straightforward hardware
architecture, one multiplier per basic unit.

3.2.2 Balancing Design Complexity and Numerical Accuracy

Managing numerical precision throughout the design is critical for implementing
neural networks in hardware. In particular, we approximate all non-linear functions with a
linear implementation, obtaining again in hardware implementations. In our case, we are
trying to implement the logistic sigmoid and the hyperbolic tangent activation functions,
both of which are transcendental and have to be approximated.

A single polynomial can approximate a function, but good approximations
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require high-order polynomials, presenting computational performance and numerical
stability issues. An alternative is to approximate them piecewise, in which case even low-
order polynomials, like linear functions, may provide reasonable approximations, provided
there are enough “pieces”. The number of pieces is directly proportional to the number of
the elements in hardware required and correlates with the approximation obtained.

Before committing to a given approximation in our hardware, we ran several
simulations in software (Figures 3.4 and 3.5). We fit piecewise linear approximations
for sigmoid and tangent functions using Matlab. In these graphs, we calculate the root
mean square to calculate the error between our approach line and the curve of the non-
linear function — considering the base result from Matlab. In this case, 35 simulations
were carried out in which it could be seen that as the use of points increases, the error
tends to decrease considerably. We vary the number of interpolation points N from 2
until 36, resulting, in each case, in N − 1 pieces. For each N , we calculated the root
mean square (RMS) error between the obtained approximation and the reference IEEE
754 implementation of those functions available in the software. As N increases, our
approximation gets very close to the reference implementation, but large values will need
more hardware elements in the final design.

Figure 3.4 – Logistic Sigmoid Approximation. Using piecewise function to approximate
the nonlinear function, where N is the number of points used in each graph.

Using preliminary experiments, as shown in Figure 3.4, we chose N = 4 for
the logistic sigmoid, corresponding to an activation function called “hard sigmoid” in
deep learning literature. Hard sigmoid is the default sigmoid function in Keras, which is
faster to compute than the full-precision sigmoid activation. We used the hard sigmoid to
perform both the training and the inference phase of the model.
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Figure 3.5 – TanH Approximation. Using piecewise function to approximate the nonlinear
function, where N is the number of points used in each graph.

For the hyperbolic tangent, as shown in Figure 3.5, we chose N = 12, which we
considered a good compromise between hardware parsimony and numerical approximation,
especially considering the intrinsic limitations of the Q8.8 fixed-point employed in our
design.

3.2.3 Implementation Details

As mentioned, we implemented Mini Mind architecture in an Altera Cyclone IV
FPGA. Specifically, we employed a prototyping/development board Altera Cyclone IV
GX, model EP4CGX150DF31.

Mini mind architecture optimizes matrix-vector multiplication in the LSTM
layers by using temporary memory to interconnect them in a pipeline (Figure 3.2. Inside
each layer, the datapath computes all gates and memories in parallel).

To allow testing, we implemented an additional layer able to communicate with
a Nios II processor (A generic processor to emulate a mobile device for sending data and
executing an instruction at each clock cycle), as shown in Figure 3.6. Using the Nios II
processor simulates a realistic scenario where Mini Mind can operate and communicate.

3.2.4 Input Data Sequence

Some choices we took for Mini mind were motivated by the application target
we chose, gesture recognition, and will be better motivated in the next chapter, in
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Figure 3.6 – Mini Mind architecture with avalon interface and Nios-II Processor

Section 4.1.0.2. For the moment, we ask the reader to accept that the input to our network
is a vector of size 32×4.

3.2.5 Input and Output

We used a memory buffer for the input and output phases. Those units have a
control unit based on Algorithm 1, with the primary purpose to synchronize all data flow
in all gates of the LSTM layers, shown in red in Figure 3.7a. The output memory saves the
results after the entire data sequence is processed, guided by the control unit, as shown in
Figure 3.7b. A library memory element provided by Altera — RAM: Single-port (ALTERA,
2014) — with 128 words is used for input and output.

(a) Input data flow in Mini Mind (b) Output data flow in Mini Mind

Figure 3.7 – Input/Output Units in Mini Mind
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3.2.6 Basic Mini Mind Unit

Figure 3.8 – Basic Mini Mind Unit - Gate

3.2.6.1 MAC unit

To perform the vector–matrix multiplications (Figure 3.3a) in the LSTM layers,
we developed a basic unit using MACs (Figure 3.3b). Those MAC units are used to
implement each gate (2.2), (2.3), (2.4), and (2.5) in parallel. To synchronize all blocks units
to perform matrix multiplication (Figure 3.9b), we use counter units, based on Algorithm 1,
which serve as pointers to address RAM. Using IP library elements, we could read one
value per clock cycle. In Algorithm 1, n represents the number of neurons in the design (In
our case, the counter is to 128). The values Read and Enable are for enabling a reading
process and MAC multiplication. Moreover, the Delay value represents the time necessary
for a temporal memory writing the last value when a complete matrix multiplication is
completed.
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Algorithm 1 Unit Basic of Multiplication
procedure Process MAC and RAM(Clock event)

if Counter1 <= n then
if Address = n then

Address = 0
Counter = Counter + 1

else
Address = Address + 1
Read = 1
Enable = 1

end if
end if
if Counter1 > n then ▷ Extra delay

Address = initvalue
Read = 0
Enable = 0
if Delay = m then

Counter = 0
Delay = 0

else
Delay = Delay + 1

end if
end if

end procedure

3.2.6.2 Gate unit

We created a generic hardware gate implementation, which we could use to
implement all gates in an LSTM layer: input, candidate, forget, and output. Figure 3.9a
shows the elements in the gate unit:

• Two MAC units, which can perform multiplication of two numbers of 16 bits, resulting
in 32 bits (which we truncate into 16 bits so that we can iterate the process).

• Three memory units that store all gate parameters: Wx, Wh and bn.

• Two 16-bit adders.

• One block of approximating the (sigmoid or hyperbolic tangent, depending on the
gate) activation function.

• One register for the result.

Equation 3.1 shows hard sigmoid we employed in the place of the logistic
sigmoid (as explained in Section 3.2.2).
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(a) Gate Unit Configuration (b) Temporal Memory Unit

Figure 3.9 – Basic Units in Mini Mind

HardSigmod(x) =


1 x > 2.5

0.25 ∗ x + 0.5 Otherwise

0 x < -2.5

(3.1)

For the hyperbolic tangent function, we employ 12 linear polynomials y =
a × x + b. A single MAC unit is employed, with parameters a and b selected according to
the value of x by the control unit.

We only use one unit of multiplier, adder, and control in our case. The values
a and b are updated by a control unit. A control unit depends on the value of x, selecting
the best line (Between 1 to 12) to perform an interpolation of x.

3.2.7 Temporal Unit Memory

The temporal memory module allows storing partial matrix multiplication in
vectors, as shown in Figure 3.9b. One of the essential advantages of Mini Mind is using
these temporary memories with control units, which allows us to use a pipeline architecture.
We need two temporal memories to provide all gates, both the previous output ht−1 (which
is used as an input to the gates) and the space to store the current output ht.

The temporal memory design, containing:

• Two RAMs of 128 words.

• One control unit, which can select the correct memory for writing and reading.

• One MUX unit.

In all this process, the control unit selects which memory to read and write,
i.e., the two temporal memories’ roles are switched when we progress from one timestep to
the next one, i.e., the memory used as output buffer (for ht) at time step t will be used as
the input buffer (ht−1 at timestep t + 1, and vice-versa. That scheme, coordinated by the



CHAPTER 3. PROPOSED ARCHITECTURE 50

control unit, allows efficient memory use, with the storage needed for a single timestep and
zero copying of data between buffers. With control and temporal units, we eliminate the
need to use large-size memories to store partial results by each LSTM layer (Limited by
the size of deep learning architecture to store all weights in the memory slots in FPGAs ).

3.2.8 Pipeline

One of the advantages of Mini Mind is the use of pipelines through the LSTM
layers, using small units, and reusing RAMs to store the network parameters and partial
results.A single LSTM layer has, for each gate, parameters Wx, Wh, and bn (Figure 3.2).
With small memories (on-chip block memory), it is possible to execute one multiplication
per clock cycle, parallelize all gates units, and use a pipeline architecture for all layers.
For that purpose, we use memories such as:

• Memories of 128 words: For input and output buffer, bias term, and temporal units.
Mini Mind contains 20 units.

• Memories of 512 words: The weights with direct operation with input vector in the
first layer of LSTM. Mini Mind contains four units.

• Memories of 16384 words: For the rest of the parameters, Mini Mind contains ten
units.

Those memory sizes, the number of units corresponding to the number of
neurons, and the number of hidden layers present in Mini Mind. As explained before, all
memories store 16-bit words of numbers in Q8.8.

3.3 Nios II Interconnection
Nios II is a 32-bit embedded-processor architecture explicitly designed for the

Altera family of field-programmable gate array integrated circuits. Nios II processor can
interconnect all components in the Altera Cyclone IV FPGA chip to form a complete
system (EKAS; JENTZ, 2003). Those elements use a bus data interconnector called Avalon
Switch Fabric. A host computer can control the Nios II processor (using the JTAG Debug
module) to perform operations such as uploading programs into its memory or collecting
data. (INTEL, 2016; ALTERA, 2011).

Figure 3.6 shows a schematic design of Mini Mind interconnection with the
Nios II processor using the Avalon bus. To interconnect Nios ii with Mini mind, it was
necessary to design a new component that transforms the Nios II preventive instructions
into 32 bits for a 16-bit system with Mini Mind.
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Figure 3.10 – Mini Mind architecture With Nios II
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The Nios II uses 32 bits per instruction so that the Mini Mind interface can
translate a single instruction by a processor into instruction for Mini Mind hardware,
for example: save data in the input buffer or read data from the result ram buffer. The
instructions for Mini Mind are:

• Input data (15 down to 0): The data in 16 bits.

• Address memory (22 down to 16): Used to indicate an address in input memory
buffer

• Instruction (25 down to 23): Instruction op-code, as indicated below:

– Address write (001): Enable writes mode for the address input buffer.

– No address write (010): Disable writes mode for the address input buffer.

– Reset all variables (011): Reset all memory counters and temporal variables.

– Enable mini mind (100): Start process.

– Disable mini mind (101): Stop process.

– Write weight memories (110): Enable update mode for the parameters in the
memory units.

– Read-only weight memories (111): Disable update mode for the parameters in
the memory units.

• Select Memory (30 downto 26): Allows selecting an specific parameter memory
(Wx, Wh and b) in Mini Mind to update (there are 29 parameter memory units,
besides the input/output data memories, which are not concerned here).

The Nios II processor was essential for fast data flow. The processor allows
moving data from memory to memory while keeping the design of the units reasonably
independent.

3.4 Discussion
The development and design of Mini Mind posed five significant challenges.

First is implementing the LSTM layers, which we tackled by splitting the architecture
into basic units. The numerical properties of the units — mainly the non-linear activation
functions — were first simulated in software (as explained in Sections3.2.2). Although the
isolated design of the basic units was relatively simple, the main challenge was in their
integration, where limitations due to the timing of the components became critical.

Second, a significant challenge was balancing the number of MAC units to
optimize the model’s time performance while still fitting it into the available hardware. The
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model we used as a baseline was optimized only for minimal hardware usage, sacrificing
speed. Instead, we chose to employ more logic units to allow the parallel computation of
the gates and pipeline the execution of the layers while still using a reasonable number of
units.

Third, carefully managing memory storage by carefully managing numerical
precision and by judiciously distributing storage of the weights, input, and output buffers.
The use of double-buffering for input/output between timesteps allowed us to move from
one timestep to the next while copying any data and keeping the pipeline flowing.

Fourth, the interconnection among LSTM layers. The interconnection between
the basic modules and the layers needs to be synchronous from beginning to end of all
processes. This module was necessary to include some extra control to perform this type
of synchronization because a slight variation in some modules can significantly impact
the final value during the inference process. Also, an LSTM architecture contains a
recursion module; that is why the error among modules tends to grow exponentially in
each processing cycle.

Finally, the interaction with a generic processor (NIOS II) was essential to run
the Mini Mind in real-time, providing the ability to initialize its weights, feed its input
and collect its output.
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4 Experiments and Results

In this chapter, we present our experimental results. We will showcase our
selected application — continuous authentication of users on mobile devices.

First, we will present a baseline solution, which was implemented only in
software, as an evolution over the works of (ZHAO; FENG; SHI, 2013) and (FRANK et
al., 2013). While they encoded their gesture data into grayscale images, we encoded ours
into RGB images, allowing more information. The images are then classified using deep
convolutional neural networks, which we implemented in software. Those are the earliest
results obtained in this thesis and served as a baseline for the remaining results. However,
as we advanced in the hardware design, we decided that convolutional networks were way
too expensive for the hardware we intended and moved towards recurrent networks.

The solution based on recurrent networks in shown next. We implemented it
twice, using software (in Python/Keras) and hardware (in Mini Mind, which we developed
and explained in the previous chapter). The software design also served as a baseline for
the hardware design.

We will start the chapter by reintroducing continuous authentication and
explaining the available data for our tests. We will then show the results we obtained for
each of our implementations.

4.1 Gesture Recognition for Continuous Authentication
As discussed in Section 2.3, gesture recognition for continuous authentication

is a relatively novel idea, with limited literature and even fewer works exploiting deep
learning, either with CNNs or LSTMs.

4.1.0.1 Public Dataset

The first dataset we employed in our experiments was the publicly available
Touchalytics dataset1, developed by (FRANK et al., 2013). It contains the raw touch data
(Complete sequence of a single gesture) of 41 users in scenarios like reading Wikipedia
articles or playing an image comparison game.

In the dataset created by (FRANK et al., 2013), we found that some gestures
have different sizes and lengths. The length of the gesture depends on how much time the
user interacts with the touch screen using their fingers. In this context, it is recommended
1 Available in http://www.mariofrank.net/touchalytics/data.zip
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to use a normalization process to leave all gestures the same size. In our case, we use
linear normalization, excluding gestures with lengths Less than six-time sequences. In
this process, we take off at least 15.16% of all gestures in that dataset. Table 4.1 shows a
summary of the rest of the gestures of each user class.

In this dataset, we selected random samples to authenticate users, and we
separated for each user 50% of the samples for training, 25% for validation, and the rest
for a test.

Table 4.1 – Number of Gestures per User

U-1 U-2 U-3 U-4 U-5 U-6 U-7 U-8
353 1012 651 219 381 532 369 437
U-9 U-10 U-11 U-12 U-13 U-14 U-15 U-16
445 374 434 270 284 503 420 362

U-17 U-18 U-19 U-20 U-21 U-22 U-23 U-24
670 455 290 255 692 322 590 359

U-25 U-26 U-27 U-28 U-29 U-30 U-31 U-32
377 185 561 550 341 203 311 296

U-33 U-34 U-35 U-36 U-37 U-38 U-39 U-40
581 593 1021 384 381 671 364 292

U-41
172

4.1.0.2 Private Dataset

The private dataset was the RECOD Gestures dataset, collected at RECOD–IC
and LCA-FEEC laboratories. In that dataset, the users have generated two types of gestures
(Flick left and flicked right) while viewing images in a simulated photo gallery. For this
purpose, we created a data collection application where each user performed the task of
browsing a gallery of approximately 50 photos with a neutral subject (views of the buildings
of the School of Electrical Engineering and of the Computing Institute of UNICAMP).
While the users performed that task in the foreground, a data collection process ran in
the background, collecting the position x-y, pressure, area, timestamp, or any interaction
with the touchscreen.

The dataset has the gestures of 40 volunteer users who continuously interacted
with their cellphone until 40 interactions were collected.

In the same case of the other dataset, we also selected random samples to
authenticate users, and approximately, we separated each user, 50% for training, 25% for
validation, and the rest for test data.
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4.2 First Solution: Image Encoding and Deep CNN
Based on our case of study gesture recognition, we based on the essential

features used by (FRANK et al., 2013) and (ZHAO; FENG; SHI, 2013) such as position
X, position Y , pressure, and area covered 2.

Sn = (Tn, Xn, Yn, Pn, An), n = {1, 2, 3..n} (4.1)

The dataset used to perform our experiments was developed by (FRANK et
al., 2013), it has 21174 gestures, and in the function of an application, the sizes may have
a different time sequence. To normalize, we used linear interpolation because it required
fewer operations in hardware and also decided to standardize all of them into a fixed size
time sequence (e.g., 32).

The value of 32 for gesture normalization was selected for two reasons: the
first, the CIFAR architecture using an input image of 32x32, the first software solution we
proposed in this work. Furthermore, changing the value of gesture normalization does not
improve the result of user authentication at the end.

The rest results of how this approximation was selected will be shown in the
experiments and results in Section 4

Our first implementation extended the works of (ZHAO; FENG; SHI, 2013) and
(FRANK et al., 2013), encoding gesture information into images we called GTGF-RGB,
which use all three channels to represent information such as pressure, finger area, position
x, and y with the equations in section 4.2.1.

We used a pre-trained deep network that has been trained on a large image
dataset (CIFAR-10) as a feature extractor. The networks receive the encoded gesture
images, and output feature vectors used to train our classifier. The aim, at the time, was
to have a low-power, low-memory implementation that could be deployed in an Android
OS phone model LG X Power K220.

We will first describe our scheme using RGB images for continuous authenti-
cation and then contrast them with the grayscale GTGF Images proposed by (ZHAO;
FENG; SHI, 2013) and (FRANK et al., 2013).

4.2.1 Image Generation

In our GTGF-RGB implementation, each image captures the following gesture
information:

• Position: Xn,Yn

2 In case of area covered and pressure are values estimated, not measured
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• Pressure (calculated): Pn

• Timestamp: Tn

• Area of the finger on the screen: An

• Orientation of the cellphone" Or

That information is the most critical of each gesture (Equation (4.2)). Before
converting a gesture into an image, it is necessary to normalize the size of each gesture.
We use linear interpolation for that purpose, using the size of 32 for all pressure values
(Equation 4.5) and 33 points for position values (Equations 4.3 and 4.4) because the
use of deltas (∆Xn ∆Yn) require an extra value, generating images of 32x32 pixels.
We did preliminary experiments with different time-sequence lengths without significant
improvement in the result.

Sn = (Xn, Yn, Tn, Pn, An, O) n ϵ 1, 2, ...n (4.2)

Ip
n =

[
Im ∗ Ux − ∆Xn

Ux

]
; ∆Xn = Xn+1 − Xn (4.3)

Ib
n =

[
Im ∗ Uy − ∆Yn

Uy

]
; ∆Yn = Yn+1 − Yn (4.4)

Hp
n =

[
Hc ∗ Pn

Lp

]
(4.5)

The variables Ux, Uy and Lp are validated with the Touchalytics training set
to guarantee intensity values in the range of 0 to 255, in the case of Lp in the range of
0 to 32 (size of the image). The values Im and Hc are 128 and 16 (half of the maximum
values of intensity and image), respectively.

Figure 4.1 shows a process for converting gestures into an images. First, we
create a zero-template (size of 32x32), then we divide into two parts: Upper and lower,
the middle part represent an initial point for intensity values. Equation 4.3 calculates an
intensity value of upper part corresponding a X values (X-Position value of gesture), each
value represent one single point of intensity. Equation 4.5 calculates a height value of each
intensity as shown in Figure 4.1a. We used the same process in lower part corresponding a
Y values (Y -Position value of gesture) with the Equations 4.4, 4.5 in Figure 4.1b. Finally,
we combine both parts generating the image based on gestures in Figure 4.1c.

(ZHAO; FENG; SHI, 2013) method only uses one single channel per image to
represent a little information of gesture (Position and pressure). However, in (FRANK
et al., 2013) method, they use several methods adding more information of each gesture
to increase accuracy. In this context, We modify the image GTGF proposed by Zhao
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(a) Gesture conversion - Upper
part

(b) Gesture conversion - Lower
part

(c) Image generated by ges-
tures

Figure 4.1 – Gesture convert into an Image

adding more channels (RGB) to represent more information of each gestures (area of the
finger and orientation of the smartphone). We create Equations 4.6,4.7 (Based on the
Equations 4.3,4.4,4.5).

Gun =
[

Xn

Maxx

]
; Gln =

[
Yn

Maxy

]
(4.6)

Ap
n =

[
An

La

]
(4.7)

The values Maxx and Maxy in Equation 4.6 (G-channel) depend of the orien-
tation of the phone. If the mobile is in portrait orientation, the maximum values are 1080
and 1920 for x and y. However, If the mobile is in landscape orientation, the maximum
values are 1920 and 1080 for x and y.

We consider those two new Equations (4.6,4.7) because some parts in the
touchscreen are very characteristics for each user and they are possible to assign intensity
values of each part of the screen, representing in a better way gestures movements. The
value La in Equation 4.7 (B-channel) is cross-validated with the training set to guaranty
intensity values between 0 to 255.
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(a) User-01 gestures 1-2-3 (move for right), gestures 4-5-6
(move for left)

(b) User-02 gestures 1-2-3 (move for right), gestures 4-5-6 (move
for left)

Figure 4.2 – Images RGB based on gestures

Figure 4.2 shows an RGB image based on gesture, a Figure 4.2a and Figure 4.2b
are gestures from different users. The gestures from the same user are similar, but if we
compare the same type of gestures between other users are different.

4.2.2 Authenticating Users using GTGF-RGB

The primary purpose of generating images RGB based on gestures was to use
Convolutional Neural Networks in the authentication process. Therefore, we used the
Cifar-10 pre-trained architecture trained in Cifar dataset, as shown in Figure 4.4, as a prin-
cipal architect for this purpose. We applied the transfer learning technique(CARVALHO,
2015)(PAN; YANG, 2010), removing the last fully connected layer and replacing it with
the Support Vector Machine (SVM) classifier at the end.

Figure 4.3 – User authentication process with the architecture trained in Cifar dataset
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We analyzed the output of the first fully connected layer (Output of 128) and
the output of the second convolutional layer (Output of 6400), with an SVM at the end of
the architecture, as we can see in the Figure 4.3. We used the Cifar architecture trained in
Cifar dataset architecture as a feature extractor of images RGB, feeding with that the
SVM classifier (generating a model for user authentication). Besides, we used fine-tuning
with our images RGB based on gestures to update the weights in the architecture of Cifar
dataset to increase the accuracy.

The new model of user authentication was implemented on Android using
Torch Android 3. Besides, we incorporated two functions in our application to collect data
and generate the model for user authentication into the mobile environment data and
generate the model for user authentication into the mobile environment.

Figure 4.4 – Transfer learning scheme with Cifar-10 Architecture

4.2.3 GTGF-RGB Results

The EER is the False Positive Rate or the False Negative Rate at the point on
the Operating Curve where those numbers are equal. It can be visualized at the intersection
between the Receiver Operating Characteristic (ROC) curve and the black straight line
connecting [100%, 0%] (Figure 4.5).

(ZHAO; FENG; SHI, 2013) reports an EER between 6.33 and 15.3, which we
could not reproduce: as seen in Figure 4.5b, our best results in this approach are EER -
36.8 using cubic interpolation and EER - 35.5 using linear interpolation.

Table 4.2 shows the results with GTGF-RGB, the new technique we proposed in
Section 4.2.2, where the feature vector in Cifar-1 and Cifar-2 is 128 and 6400, respectively.
3 https://github.com/soumith/torch-android
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(a) Results of image with linear interpolation (b) Results of image with cubic interpolation

Figure 4.5 – ROC curves of metrics scores (Red-NCC, Green-L1, Blue-L2)

The term TL is referred to the use of transfer learning after applying fine-tuning. The
best results were obtained using a Cifar-2-TL with SVM-RBF classifier in the last layer in
Touchalytics and RECOD–Gesture datasets with 17.0% and 10.3 % of EER, respectively.

Table 4.2 – Gestures EER results in Deep learning

Touchalytics SVM - Linear SVM - RBF Final Feature Size
Cifar-1 17.3 15.6 128
Cifar-2 19.6 14.0 6400

Cifar-1 - TL 22.0 13.2 128
Cifar-2 - TL 17.0 13.0 6400

RECOD–Gestures
Cifar-1 14.0 13.2 128
Cifar-2 13.0 12.6 6400

Cifar-1 - TL 13.8 12.5 128
Cifar-2 - TL 10.3 10.2 6400

The system is robust to detect different types of gestures with a high level of
certainty, around EER-10 in normal conditions (Figure 4.6). However, in different scenarios,
our proposed model can not be used for all mobile applications because the user interaction
with the mobile changes a lot among the applications.
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Figure 4.6 – User Authentication based in gestures

4.3 Second Solution: Time Series and Recurrent Networks
Our second implementation forgoes the encoding of the gestures into images

and processes the time series directly using LSTMs. In order to fit the architecture in
hardware (using the Mini Mind design described in the previous chapter), we used a
relatively shallow (for today’s standards) architecture, with two LSTM layers and two
fully connected layers.

We started with a reference implementation in software, which we used as a
baseline for the hardware solution. We expected the software implementation to have
slightly better accuracy because of numerical approximation: the network in software
uses 32-bit floating-point numbers, while Mini Mind’s hardware uses 16-bit fixed-point
numbers; the network in software uses high-precision approximations for the transcendental
functions, while Mini Mind’s hardware uses very rough approximations (as explains in
Section 3.2.2). So the aim here is not for the hardware implementation to surpass the
software baseline: that would be unrealistic. The aim is for the hardware implementation
to be as close as possible to the software baseline.

4.3.1 Reference implementation in software

For the design and implementation of any system in hardware, it is necessary
to know all the values of each unit. This value (Floating point of precision) is used as a
reference as the maximum value or the ideal value to get around the implementation in
hardware. When the precision is changed (Fixed point of precision), it is usual in these
cases to have similar results with a slight variation in decimals.
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In our case, for all training processes, We used Keras4 as the framework for
making a recurrent neural network model.

Mini Mind model has two layers of LSTM, two layers of fully connected, and
one softmax layer to authenticate each user (In our case, we have a multiclass problem
with 41 users because of a dataset). After gesture normalization, it was necessary to divide
all gesture datasets into train, validation, and test datasets. For this purpose, we selected
in a random way per user 50% for training, 25% for validation, and the rest for the test.

We used root mean square propagation (RMSProp) as an optimizer and cross-
entropy as a cost function. We used a GPU Tesla k40 to train the model during 1000
epochs, in which the best epoch was in 302 with an accuracy of 72%. We selected the
layers of LSTM and fully connected them because they were the most expensive part of
the processing, which required 233.5 operations in each layer.

4.3.2 Results Software vs. Hardware

This section will use the results obtained using python/Keras, which will be
used in the hardware implementation process.

One of the essential factors in the implementation is the synchronization of
the blocks. The synchronization with the basics elements in a complex module plays an
important role. Usually, this process is significantly delayed, and it is recommended to
do that in parts. During the creation of the Mini Min’s units, we guaranteed that each
module worked correctly, but when these modules are interconnected in the intricate
design - combining units into the LSTM layer - delays should be considered, not only at
the level of basic units -logic gates- but also at the level of LSTM layer.

Figure 4.7 shows the error rate hardware and software in LSTM layer. To
achieve these results, We compare the outputs of the units input gate (2.2), forget gate
(2.3), output gate (2.4), corresponding in the graph as unit-1, unit-2 and unit-3. And also,
the hardware response, using 8-bit to represent integers and also 8 bits for the fractional
part. We can conclude that the use of precision for this type of units is not a critical
factor for its implementation in hardware. In addition, it was used a piecewise linear
approximation for nonlinear functions such as sigmoid and tanh described in section 3.2.2.

In Figure 4.8, we can see that the error rate grows progressively at each time
iteration. This is a consequence when we add another layer, where the label Python result
is the response of the system using floating-point precision, and we consider that value as a
reference. Python mod Tanh / Sig label refers that the response is not using the functions
provided by math operation in python, but it uses a piecewise approximation, which limits
his precision, and we can have it is closer to the one implemented in hardware. FPGA
4 Keras is a high-level neural networks API, written in Python https://keras.io/
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Figure 4.7 – Result of one LSTM layer Hardware vs Software

- ModelSim label refers to the result obtained in the hardware simulator (Testbench).
Moreover, FPGA - Hardware is the expected result already in hardware-implemented

As we expected, ModelSim and FPGA Hardware results are the same. However,
when we compare it with the other results, we can see that the error increases exponentially
when we add another LSTM layer.

The first idea that we had to solve this problem was to change the precision,
and we thought that the precision was not enough because of the complexity of the model.
However, this idea was discarded after analyzing the previous state in Figure 4.7, where
we can see the representation and unit’s result and conclude that it is possible to represent
that level with that type of precision.

Another idea that we were the approximation of the non-linear functions, as
we know it is not possible to use non-linear functions in an FPGA. This only supports
linear systems, so it is necessary to approximate the next value of the real function. For
our design, using piecewise linear approximation level 4 to sigmoid and 12 for the tangent
function (Calculating in section 3.2.2) does not help to improve the final result due to the
precision of 16 bits that the system has.

After exhaustively analyzing all the components, it was possible to conclude
that when we include another layer of LSTM, we also need to consider: the initial delay,
the delay through all components until it reaches the second unit (Among LSTM layers),
and finally the delay to init all blocks and basic units at the same time. This new approach
had not been considered in the original design. When we include the second layer, all the
basics units did have the initial delay value to synchronize with the first layer, and the
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Figure 4.8 – Result the second LSTM layer Hardware vs Software

Figure 4.9 – Result of two LSTM layers Hardware vs Software

error grows exponentially by a lack of synchronization among the different layers.

In Figure 4.9, we can see that this type of lack of synchronization among layers
was solved by just increasing another timer trigger into the second layer. If we need to
increase the number of layers, we also need to increase the value of time in this trigger
(Depending on the number of neurons in each layer).

In Figure 4.10,we can see final result of two layers LSTM. As we expected at
the beginning, the results in the software are the same as hardware (simulated) and in
hardware implemented with the software value.
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Figure 4.10 – Final Result of two LSTM layers Hardware vs Software

Table 4.3 – Comparison about hardware architectures

Hardware Time (s) Performance (W) Mop/s/W
Tesla K40 – GPU 0.193 55.00 22.01

Lenovo G400s – CPU 0.035 8.81 757.17
Cyclon IV – FPGA 0.014 0.50 34347.41

4.3.3 Results and discussion

The accuracies in the test split of the dataset 4.1.0.2 (with 4476 gestures) are:

• Using the baseline software implementation in Python/Keras: 71.16%;

• Using an algorithm in python (CPU) with piecewise tanh approximation - using
the same algorithm as keras but without the use of non-linear functions, just linear
approximations made in python-, we obtain 69.30% of accuracy. That means using
python

• Using the hardware implementation in Mini Mind: 69.30%.

The software’s accuracy (Tanh approximation) and hardware are the same
because 16 bits of precision in Mini Mind and the floating-point operation in CPU give
the same results. However, if we compare the result provided by Keras (Full tanh function
without approximations), we have a 1.86% of loss in the test dataset because of tanh
approximation function.

Table 4.3 shows our results for each platform when they are processing one
single gesture because a continuous authentication approach must evaluate one gesture



CHAPTER 4. EXPERIMENTS AND RESULTS 67

Table 4.4 – FPGA Hardware resource utilization for Cyclone IV

Component Utilization[/] Utilization[%]
Logic Elements Combinational 5563 4

Logic Elements Registers 3808 4
Total Memory Bits 3747840 56

Embedded Multiplier 9-bit Element 68 9

per time. Mini Mind hardware can compute one gesture 2.5 times faster than CPU and
14 times faster than GPU. In terms of power consumption, it can consume 17 times less
than CPU and 109 times less than GPU. Moreover, Table 4.4 shows our results when
we implement a Mini Mind in Cyclone IV, in which case, embedded memory is the most
component used in our design because of the use of small memories around all design.
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5 Conclusion

This work presented a novel architecture for deep learning, Mini Mind, whose
main contributions are:

• The implementation of all LSTM layers into basic units.

• Optimizing the matrix-vector multiplication using MAC, adders, and registers in a
parallel form.

• The use of small and temporal memories allows Mini Mind the possibility to deploy
in a pipeline form.

• Low Power consumption, 17 times less than a CPU and 109 times less than a GPU.

• Bus data interconnection with Nios II processor by Avalon for testing.

Mini Mind could obtain results comparable to software running in CPUs or
GPUs, obtaining a high throughput in FPGA hardware. Mini Mind contains two layers of
LSTM and fully connects with 128 units in hardware.

The MAC units’ use was already optimized for space, not for speed. In addition,
if we increase the numbers of elements (Basic units and MACs elements) in a pipeline
process, the final throughput would increase.

The focus of this work was to obtain the best result possible using a pipeline
architecture. For this reason, the use of memories for weights was not optimized. However,
we could change the precision from floating-point to fixed-point (8.8), reducing the number
of elements in hardware considerably. Finally, small and temporal memories allow the
Mini Mind to use a pipeline form, obtaining a high throughput in FPGA hardware.

One of the main challenges regarding Mini Mind design was the interconnection
of the units. Numerical or synchronization errors in this process lead to errors that grow
exponentially as the processing cycles accumulate due to the recurrent nature of LSTMs.
Thus, careful interconnection must be done among all basic units and layers. The first type
of interconnection error, among basics units, was related to a delay caused by all the units
within an LSTM layer, and it was not considered correctly because it was only considered
for each unit. The second type of interconnection error, among modules and layers, was
solved, including an additional control unit to each layer, to guarantee all synchronous
processes from beginning to end of the LSTM layer.

Moreover, the interaction with a generic processor (NIOS II) helped us to
emulate an actual situation where the MINI MIND requires incorporating the weights for
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LSTM layers and demands additional elements to implement the design, showcasing the
speed of the pipeline design.

We validated our hardware design in the application of continuous user authen-
tication using gesture recognition via three platforms:

• A software Keras we have a 71.16% of accuracy.

• An algorithms in python in a CPU with piecewise tanh approximation we obtained
69.30% of accuracy

• And finally, in Mini Mind hardware accuracy was 69.30% of accuracy

In summary, the software’s accuracy (With TanH approximation) and hardware
are the same because of the use of 16 bits of precision in hardware. However, if we compare
the result provided by Keras, we have a small (1.86%) loss in the test dataset because of
that approximation. Mini Mind hardware can process one gesture 2.5 times faster than a
CPU and 14 times faster than a GPU.

In addition to the contributions above, we have also tested an additional
software solution for gesture recognition, encoding gestures into RGB images. That method
was implemented on Android devices, using a deep convolutional network pre-trained on
CIFAR-10 as a feature extractor. The result was optimal for normal conditions where the
user interacts reasonably in a single application. Across different applications, however,
the system was not sufficiently robust to identify the users. That limitation: consistency
of behavior across tasks/applications may be the most severe hindrance for the large scale
of gesture recognition for continuous authentication. Another limitation we faced was
the available sensors, for example, a touchscreen incapable of measuring pressure values
directly.

More interestingly, our proposed method had a large memory footprint, pro-
ducing some delay problems during the authentication process and excessive consumption
of batteries, which would limit their applications in a natural environment. We believe
those limitations may stimulate the industry to incorporate dedicated accelerators like
Mini Mind for specific Machine Learning tasks that must run continuously in consumer
electronics without impacting other applications.

5.1 Next Steps
We identify four research fronts as exciting avenues for future works.

First, binary networks. One of the areas that we would most like to explore
for future work is binary networks, which use fast logical operations (like XORs) instead
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of expensive arithmetics (like multiplications). Those types of networks can guarantee
full parallelism in any FPGA platform. Their major disadvantage is a major loss in
accuracy (10% points or more). It would be an exciting research discovery for hardware
implementation if those architectures could be more accurate.

Second, quantization and pruning. Currently, those methods are most used
for hardware implementation, combining proper management of resources, which proposes
many approaches to reduce the accuracy and weights of the network, which was little
explored in this work.

Third, the use of dynamic precision. In the last year, manufacturers of
onboard devices such as Xilinx and Altera used dynamic precision to represent complex
networks, reducing precision to as low as 8 bits in complex neural networks. Those
approaches have synergy with quantization and pruning mentioned above. In combination,
both are a natural next step in future works.

And finally, the application ofcontinuous authentication. We believe that
adopting dedicated hardware accelerators will be unavoidable for deploying continuous
authentication to mobile devices. Each solution, in hardware or software, presents comple-
mentary advantages and disadvantages. Thus the combination of both could be an exciting
pursuit. For example, a simple solution in hardware could run all the time to eliminate
most of the intruders, while a more sophisticated solution in software could run from time
to time to eliminate the rest. By combining both hardware and software and considering
several factors beyond gesture recognition, we believe continuous authentication could
reach very high accuracy.
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