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• Profa. Dra. Simone Dantas de Souza
Universidade Federal Fluminense
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Resumo

Seja D um digrafo. Um subconjunto S de V (D) é um conjunto estável se todo par de
vértices em S é não adjacente em D. Uma coleção de caminhos disjuntos P de D é uma
partição em caminhos de D, se todo vértice em V (D) pertence a exatamente um caminho
de P . Dizemos que um conjunto estável S e uma partição em caminhos P são ortogo-
nais se todo caminho de P contém exatamente um vértice de S. Um digrafo D satisfaz
a α-propriedade se para todo conjunto estável máximo S de D existe uma partição em
caminhos P tal que S e P são ortogonais. Um digrafo D é α-diperfeito se todo subdi-
grafo induzido de D satisfaz a α-propriedade. Em 1982, Berge propôs uma caracterização
para digrafos α-diperfeitos em termos da proibição de circuitos ı́mpares anti-orientados
induzidos. Em 2018, Sambinelli, Silva e Lee propuseram uma conjectura semelhante. Um
digrafo D satisfaz a Begin-End-propriedade, ou BE-propriedade, se para todo conjunto
estável máximo S de D, existe uma partição em caminhos P tal que (i) S e P são orto-
gonais e (ii) para todo caminho P ∈ P , o ińıcio ou o fim de P pertence a S. Um digrafo
D é BE-diperfeito se todo subdigrafo induzido de D satisfaz a BE-propriedade. Sambi-
nelli, Silva e Lee propuseram uma caracterização para digrafos BE-diperfeitos em termos
da proibição de circuitos ı́mpares bloqueantes induzidos. Nesta tese, verificamos ambas as
conjecturas para digrafos arco-local in-semicompletos, arco-local out-semicompletos, arco-
local semicompletos, 3-anti-circulantes, 3-anti-digon-circulantes e quase-transitivos. Além
disso, provamos alguns resultados parciais para digrafos 3-quase-transitivos, 4-transitivos,
k-semi-simétricos e digrafos com número de estabilidade igual a dois. Também demonstra-
mos alguns resultados estruturais para digrafos α-diperfeitos e BE-diperfeitos. Além disso,
fornecemos uma decomposição para digrafos arbitrários arco-local (out) in-semicompletos
e arco-local semicompletos. Mostramos que a estrutura desses digrafos é semelhante à
dos digrafos diperfeitos. Ademais, fornecemos alguns resultados estruturais para digrafos
3-anti-digon-circulantes. Demonstramos que a estrutura desses digrafos é semelhante à
dos digrafos completos e bipartidos completos.



Abstract

Let D be a digraph. A subset S of V (D) is a stable set if every pair of vertices in S is
non-adjacent in D. A collection of disjoint paths P of D is a path partition of D, if every
vertex in V (D) belongs to exactly one path of P . We say that a stable set S and a path
partition P are orthogonal if every path of P contains exactly one vertex of S. A digraph
D satisfies the α-property if for every maximum stable set S of D, there exists a path
partition P such that S and P are orthogonal. A digraph D is α-diperfect if every induced
subdigraph of D satisfies the α-property. In 1982, Berge proposed a characterization for
α-diperfect digraphs in terms of forbidden anti-directed odd cycles. In 2018, Sambinelli,
Silva and Lee proposed a similar conjecture concerning BE-diperfect digraphs. A digraph
D satisfies the Begin-End-property, or BE-property, if for every maximum stable set S
of D, there exists a path partition P such that (i) S and P are orthogonal and (ii) for
every path P ∈ P , either the initial vertex or the terminal vertex of P lies in S. A
digraph D is BE-diperfect if every induced subdigraph of D satisfies the BE-property.
Sambinelli, Silva and Lee proposed a characterization for BE-diperfect digraphs in terms
of forbidden blocking odd cycles. In this text, we verify both conjectures for arc-locally in-
semicomplete digraphs, arc-locally out-semicomplete digraphs, arc-locally semicomplete
digraphs, 3-anti-circulant digraphs, 3-anti-digon-circulant digraphs and quasi-transitive
digraphs. Also, we show some partial results for 3-quasi-transitive digraphs, 4-transitive
digraphs, k-semi-symmetric digraphs and digraphs with stability number two. We also
prove some structural results for α-diperfect and BE-diperfect digraphs. Furthermore, we
provide a decomposition for arbitrary arc-locally (out) in-semicomplete digraphs and for
arbitrary arc-locally semicomplete digraphs. We show that the structure of these digraphs
is very similar to that of diperfect digraphs. Moreover, we provide some structural results
for 3-anti-digon-circulant digraphs. We show that the structure of these digraphs is similar
to that of complete and complete bipartite digraphs.
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Chapter 1

Introduction

In this chapter we present the two conjectures that we study in this thesis and the

results we have obtained for both problems. In order to make the reading of this intro-

duction more fluid, we postpone the definition of some standard terms of graph theory to

Chapter 2.

Some important results in graph theory characterize a certain class of graphs (or

digraphs) in terms of forbidden induced subgraphs (subdigraphs). The most famous one

is probably the Strong Perfect Graph Conjecture proposed by Berge [6] in 1961. A clique

in a (di)graph is a subset of pairwise adjacent vertices. A graph G is perfect if the size of

maximum clique of G equals to the minimum number of colors need to (properly) color

the vertices of G, and this also holds for every induced subgraph of G. Berge showed that

neither an odd cycle of length at least five nor its complement is perfect. So clearly no

perfect graph can contain an odd cycle of length at least five or its complement as an

induced subgraph. Berge conjectured that a graph G is perfect if and only if it contains

neither an odd cycle of length at least five nor its complement as an induced subgraph.

This problem was studied by many researchers throughout the years resulting in a vast

literature on the subject. The problem was finally settled in 2006, when Chudnovsky,

Robertson, Seymour and Thomas [10] proved Berge’s conjecture, which became known as

the Strong Perfect Graph Theorem.

Theorem 1.1 (Chudnovsky, Robertson, Seymour and Thomas, 2006). A graph G is perfect

if and only if G contains neither an odd cycle of length at least five nor its complement

as an induced subgraph.

In this text we are concerned with two conjectures on digraphs which are somehow

similar to Berge’s conjecture on perfect graphs. These conjectures relate path partitions

and stable sets. We need a few definitions in order to present both conjectures.

Let D = (V (D), A(D)) be a digraph. A subset S of V (D) is a stable set if every pair of

vertices in S is non-adjacent in D. The cardinality of a maximum stable set in D is called

the stability number and is denoted by α(D). A collection of disjoint (directed) paths P
of D is a path partition of D if every vertex in V (D) belongs to exactly one path of P .
The cardinality of a minimum path partition of D is denoted by π(D). We say that a

stable set S and a path partition P are orthogonal if |V (P )∩S| = 1 for every P ∈ P . We
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say that D is transitive if for every triple of pairwise distinct vertices v1, v2, v3 ∈ V (D),

it follows that if v1v2, v2v3 ∈ A(D), then v1v3 ∈ A(D); we say that D is symmetric if

for every arc uv ∈ A(D), we have vu ∈ A(D); we say that D is acyclic if D contains no

directed cycle. Moreover, we say that D is diperfect if its underlying graph is perfect.

In 1950, Dilworth [12] proved one of the first known results relating maximum stable

sets and minimum path partitions in digraphs which we describe next.

Theorem 1.2 (Dilworth, 1950). Let D be a transitive acyclic digraph. Then, π(D) = α(D).

Since the vertex set of a path in a transitive acyclic digraph is also a clique (see

Figure 1.1), a maximum stable set may intersect at most one vertex of each path of a

path partition of D. So the inequality π(D) ≥ α(D) easily follows for transitive acyclic

digraphs. Note that without the transitivity hypothesis the inequality is false, since if

D is a path with three vertices, then π(D) = 1 and α(D) = 2. On the other hand, the

inequality π(D) ≤ α(D) is not so obvious for a transitive digraph and it is the most

interesting part of Theorem 1.2.

Figure 1.1: Example of subdigraph induced by the vertex set of a path in a transitive
acyclic digraph.

In 1960, Gallai and Milgram [21] extended Dilworth’s result and proved that the

inequality π(D) ≤ α(D) holds for arbitrary digraphs.

Theorem 1.3 (Gallai and Milgram, 1960). Let D be a digraph. Then, π(D) ≤ α(D).

In order to prove Theorem 1.3, Gallai and Milgram proved a stronger theorem which

we present next.

Theorem 1.4 (Gallai and Milgram, 1960). Let D be a digraph. If P is a minimum path

partition of D, then there exists a stable set S orthogonal to P.

Note that if P and S are orthogonal, then π(D) = |P| = |S| ≤ α(D) and Theorem 1.3

holds. Furthermore, Theorem 1.4 raises an interesting question:

Question 1. Let D be a digraph. If S is a maximum stable set S of D, then is there a

path partition P orthogonal to S?

In general, the answer to Question 1 is no. For a counterexample, consider the maxi-

mum stable set S = {v1, v4} in Figure 1.2. If a path partition contains v1v5 or v1v2, then

the other vertices do not form a path, and hence, there exists no path partition orthogonal

to S. However, the answer to Question 1 is true for some digraphs and this led Berge [7]

to propose an interesting class of digraphs, called α-diperfect, which we define next.

Let D be a digraph and let S be a stable set of D. An S-path partition of D is a path

partition P such that S and P are orthogonal (see Figure 1.3). We say that D satisfies
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v4

v2

v3v5

v1

Figure 1.2: Counterexample for Question 1 with maximum stable set S = {v1, v4}.

v4

v2

v3v5

v1

v6 v7

Figure 1.3: Example of a digraph with stable set S = {v1, v3} and S-path partition
P = {v2v1v6v5v4, v7v3}.

the α-property if for every maximum stable set S of D there exists an S-path partition

of D, and we say that D is α-diperfect if every induced subdigraph of D satisfies the

α-property. In Figure 1.4 we illustrate the α-property.

In [7], Berge proved that symmetric digraphs and diperfect digraphs are α-diperfect.

For ease of reference, we state the following result.

Lemma 1.1 (Berge, 1982). Let D be a diperfect digraph. Then, D is α-diperfect.

Berge also presented an important class of digraphs. A digraph C is an anti-directed

odd cycle if (i) C = x1x2 . . . x2k+1x1 is a non-oriented odd cycle, where k ≥ 2, and (ii) each

of the vertices x1, x2, x3, x4, x6, x8, . . . , x2k is either a source or a sink (see Figure 1.5).

Berge [7] showed that anti-directed odd cycles do not satisfy the α-property, which led

him to conjecture the following characterization of α-diperfect digraphs.

Conjecture 1.1 (Berge, 1982). A digraph D is α-diperfect if and only if D contains no

anti-directed odd cycle as an induced subdigraph.

Denote by B the set of all digraphs which do not contain an induced anti-directed odd

cycle. So Berge’s conjecture can be stated as: D is α-diperfect if and only if D belongs

to B.
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S

Figure 1.4: Illustration of the α-property.

v4

v2

v3v5

v1

(a)

v1 v2

v3

v4

v5

v6

v7

(b)

Figure 1.5: Examples of anti-directed odd cycles with length five and seven, respectively.

In the next three decades after Berge’s paper, no results regarding this problem were

published. In 2018, Sambinelli, Silva and Lee [28, 29] verified Conjecture 1.1 for locally

in-semicomplete digraphs and digraphs whose underlying graph is series-parallel. In this

thesis, we verified Conjecture 1.1 for several other classes of digraphs, which gave further

support to the conjecture. Somewhat surprisingly, at the end of this project (beginning

of 2022) we recently learned that Silva, Silva and Lee [31] found a counterexample to

Conjecture 1.1. In fact, they showed that for every k ≥ 3 there is exactly one non-α-

diperfect digraph whose underlying graph is the complement of the odd cycle of length

2k + 1. Let us refer to this family of digraphs as T .
We note that every digraph in the classes for which we proved Conjecture 1.1 contains

neither an anti-directed odd cycle nor a subdigraph whose underlying graph is the comple-

ment of an odd cycle of length at least five as an induced subdigraph. The proofs of these

results are not trivial, but they do not seem to provide any insight on the role of the di-

graphs in T in a possible characterization of α-diperfect digraphs. An interesting problem

would be to try to verify Conjecture 1.1 for some class of digraphs that may contain an

induced subdigraph whose underlying graph is the complement of an odd cycle of length

at least seven. This could lead us to a better understanding or a negative answer for the

following question: if D is a digraph in B that does not contain an induced subdigraph in

T , then is D an α-diperfect digraph? Note that a positive answer to this question would
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imply a characterization of α-diperfect digraphs in terms of forbidden subdigraphs, one

of the main objectives of Berge in his seminal paper.

Now, let us present a similar conjecture to the one proposed by Berge. In an attempt

to understand the structure of the α-diperfect digraphs, Sambinelli, Silva and Lee [28, 29]

introduced the class of Begin-End-diperfect digraphs, or simply BE-diperfect digraphs,

which we define next.

Let S be a maximum stable set of a digraph D. A path partition P is an SBE-path

partition of D if (i) P and S are orthogonal and (ii) every path of P starts or ends at

some vertex in S (see Figure 1.6). We say that D satisfies the BE-property if for every

maximum stable set S of D there exists an SBE-path partition, and we say that D is

BE-diperfect if every induced subdigraph of D satisfies the BE-property. In Figure 1.7 we

illustrate the BE-property. Note that if D is BE-diperfect, then it is also α-diperfect, since

every SBE-path partition is also an S-path partition. So if D satisfies the BE-property,

then D also satisfies the α-property. Since the BE-property is more restrictive than the α-

property with respect to the type of orthogonal path partition we require, unsurprisingly

the converse is not true. The smallest digraph which satisfies the α-property but not

the BE-property is shown in Figure 1.8b (transitive triangle – see the next paragraph).

In general any α-diperfect digraph which contains an induced transitive triangle is not

BE-diperfect. It is also not hard to find α-diperfect digraphs which are not BE-diperfect

but contains no induced transitive triangle (see the next paragraph).

Similarly to Berge’s approach, Sambinelli, Silva and Lee presented an important class

of digraphs. A digraph C is a blocking odd cycle if (i) C = x1x2 . . . x2k+1x1 is a non-

oriented odd cycle, where k ≥ 1, and (ii) x1 is a source and x2 is a sink (see Figure 1.8).

In this case, we say that (x1, x2) is a blocking pair of C. Note that every anti-directed odd

cycle is also a blocking odd cycle. For example, there could be a digon joining some pair

xi, xi+1 for some i : 3 ≤ i < 2k. In the special case k = 1, we say that C is a transitive

triangle (see Figure 1.8b). As the reader will see in the forthcoming chapters, forbidding

transitive triangles impose some strong structure in the study of BE-diperfect digraphs.

Sambinelli, Silva and Lee [28, 29] proved that blocking odd cycles do not satisfy the

BE-property, which led them to conjecture the following characterization of BE-diperfect

digraphs.

v4

v2

v3v5

v1

v6 v7

Figure 1.6: Example of an SBE-path partition P of a digraph where S = {v1, v3} and
P = {v1v6v5v4v7, v3v2}.
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S

Figure 1.7: Illustration of the BE-property.

v4

v2

v3v5

v1

(a)

v2

v3

v1

(b)

Figure 1.8: Examples of blocking odd cycles with length five and three, respectively. We
also say that the digraph in (b) is a transitive triangle.

Conjecture 1.2 (Sambinelli, Silva and Lee, 2018). A digraph D is BE-diperfect if and only

if D contains no blocking odd cycle as an induced subdigraph.

Denote by D the set of all digraphs which do not contain an induced blocking odd

cycle. So Conjecture 1.2 can be stated as: D is BE-diperfect if and only if D belongs

to D. Sambinelli, Silva and Lee [28, 29] verified Conjecture 1.2 for symmetric digraphs,

locally in-semicomplete digraphs, diperfect digraphs and digraphs whose underlying graph

are series-parallel. As we pointed out before, Silva, Silva and Lee [31] found the infinite

family T of counterexamples to Conjecture 1.1. However, it is not hard to prove that

every digraph in D (specifically in this case, containing no induced transitive triangle)

whose underlying graph is the complement of an odd cycle of length at least seven is

BE-diperfect (see Chapter 6, Section 6.6). So Conjecture 1.2 remains open. We note that

a diperfect digraph belongs to D if it contains no induced transitive triangle. For ease of

reference, we state the following result.

Lemma 1.2 (Sambinelli, Silva and Lee, 2018). Let D be a diperfect digraph. If D ∈ D,

then D is BE-diperfect.
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Sambinelli, Silva and Lee [28, 29] also proved the following useful lemmas.

Lemma 1.3 (Sambinelli, Silva and Lee, 2018). Let D be a digraph. If V (D) can be parti-

tioned into k ≥ 2 subsets V1, V2, . . . , Vk such that D[Vi] satisfies the BE-property (resp., α-

property) and α(D) =
∑k

i=1 α(D[Vi]), then D satisfies the BE-property (resp., α-property).

Lemma 1.4 (Sambinelli, Silva and Lee, 2018). Let D be a digraph. If D has a clique cut,

then V (D) can be partitioned into two subsets V1 and V2 such that α(D) = α(D[V1]) +

α(D[V2]).

Thus it follows from Lemmas 1.3 and 1.4 that if a digraph D is a minimal coun-

terexample for Conjecture 1.1 or Conjecture 1.2, then D is connected and D does not

contain a clique which is a vertex cut (of the underlying graph). Moreover, it follows from

Lemmas 1.1 and 1.2 that D is also a non-diperfect digraph.

The rest of this text is organized as follows. In Chapter 2, we introduce the definitions

and notation used. In Chapter 3, we present some structural results for BE-diperfect

and α-diperfect digraphs. In Chapter 4, we characterize the structure of arbitrary arc-

locally (out) in-semicomplete digraphs and arbitrary arc-locally semicomplete digraphs.

We also verify both Conjecture 1.1 and Conjecture 1.2 for these classes of digraphs. In

Chapter 5, we verify both Conjecture 1.1 and Conjecture 1.2 for 3-anti-circulant digraphs.

We also present some structural results for 3-anti-digon-circulant digraphs. In Section 6,

we present some partial results for several classes of digraphs. Finally, in Chapter 7, we

present some final considerations.
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Chapter 2

Definitions

In this chapter, we present the concepts of graph theory used in this text. The termi-

nology used is standard, and for missing definitions we refer the reader to Bang-Jensen

and Gutin’s book [4] or to Bondy and Murty’s book [8].

A graph G is an ordered triple (V (G), E(G), ψ) where V (G) is a finite set of elements

called vertices, E(G) is a finite set of elements, disjoint from V (G), called edges and ψ

is an incidence function that associates with each edge e ∈ E(G) an unordered pair of

(not necessarily distinct) vertices u and v of V (G). We say that two vertices u and v

are adjacent if there exists e ∈ E(G) such that ψ(e) = {u, v}; otherwise, we say that u

and v are non-adjacent. We also say that u and v are the endvertices of e and they are

incident with e. Two edges are adjacent if they have at least one endvertex in common;

otherwise, we say that they are non-adjacent. An edge e is a loop if ψ(e) = {v, v} for

some v ∈ V (G). Two edges e and f are multiple if they have the same endvertices, that

is, ψ(e) = {u, v} and ψ(f) = {u, v}. We say that G is simple if G contains neither a loop

nor multiple edges. In this text, we consider only simple graphs. Thus we generally leave

the incidence function implicit, since a pair of distinct vertices uniquely define an edge in

a simple graph. Henceforth, we denote a graph by G = (V (G), E(G)) and we use e = uv,

or simply uv, instead of ψ(e) = {u, v}. In general, we write a graph meaning a simple

graph, special cases being explained to the reader.

Let G be a graph and let X be a subset of V (G). We define the neighborhood of X in

G, denoted by N(X), as the set of vertices in V (G)−X that are adjacent to some vertex

of X; when X = {v}, we simply write N(v). Let v be a vertex of G. The degree of v in

G, denoted by d(v), is the cardinality of N(v).

A graph H is a subgraph of G, denoted by H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G).

Moreover, if every edge of E(G) with both endvertices in V (H) is in E(H), then we say

thatH is induced byX = V (H), and we writeH = G[X]. We also denote G[V (G)−X] by

G−X; whenX = {v}, we simply write G−v. We say that a subgraphH of G is proper, de-

noted byH ⊂ G, if V (H) ⊂ V (G) or E(H) ⊂ E(G). The complement of G, denoted by G,

is the graph whose vertex set is V (G) and E(G) = {uv : u and v are non-adjacent in G}.
A path P in a graph G is a sequence of distinct vertices P = v1v2 . . . vk such that

for all vi in P , vivi+1 ∈ E(G) for 1 ≤ i ≤ k − 1. Whenever it is appropriate, we

treat P as being the subgraph of G with vertex set V (P ) = {v1, v2, . . . , vk} and edge set
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E(P ) = {vivi+1 : 1 ≤ i ≤ k − 1}. We say that P starts at v1 and ends at vk. We also

say that v1, vk are endvertices of P , v1 is the initial vertex and vk is the terminal vertex

of P ; to emphasize this fact we may write P as v1Pvk. We denote by viPvj a subpath of

P where 1 ≤ i ≤ j ≤ k. We define the length of P as k − 1. If V (P ) = V (G), then we

say that P is a hamiltonian path and G is traceable. Let P and Q be two paths in G. If

P ends at some vertex v and Q starts at some vertex u such that u and v are adjacent,

then we denote by PQ the concatenation of P and Q. We use this notation only if PQ is

a path.

A cycle C in graph G is a sequence of vertices C = v1v2 . . . vkv1 such that v1v2 . . . vk
is a path, vkv1 ∈ E(G) and k ≥ 3. Sometimes, when convenient, we also treat C as being

the subgraph of G with vertex set V (C) = {v1, v2, . . . , vk} and edge set E(C) = {vivi+1 :

1 ≤ i ≤ k} where subscripts are taken modulo k. We define the length of C as k. If k is

odd, then we say that C is an odd cycle. We denote by Ck the class of isomorphism of

a cycle of length k. If V (C) = V (G), then we say that C is a hamiltonian cycle and G

is hamiltonian. If G contains at least one cycle, then the length of a longest cycle in G

is called its circumference. Moreover, a chord of C is an edge in E(G)− E(C) such that

both endvertices lie on C.

A set of vertices S of a graph G is a stable set if every pair of vertices in S is non-

adjacent in G. We say that S is maximum if |S| ≥ |Z| for every stable set Z in G. The

cardinality of a maximum stable set in G is called the stability number and is denoted by

α(G). If V (G) admits a bipartition into two stable sets, say X and Y , then we say that

G is bipartite, denoted by G[X, Y ]. Moreover, if every vertex in X is adjacent to every

vertex in Y , then G is called a complete bipartite graph.

A clique in a graph G is a set of pairwise adjacent vertices of G. We say that a clique

B is maximum if |B| ≥ |W | for every clique W in G. The clique number of G, denoted

by ω(G), is the size of maximum clique of G. If V (G) is a clique, then we say that G is

complete. A (proper) coloring of G is a partition of V (G) into stable sets {S1, . . . , Sk}.
A coloring C is minimum if |C| ≤ |L| for every coloring L of G. The chromatic number

of G, denoted by χ(G), is the cardinality of a minimum coloring of G. We say that G is

perfect if for every induced subgraph H of G, the equality ω(H) = χ(H) holds.

Let G be a graph. We say that G is connected if for all pair of distinct vertices u

and v, there exists a path in G with endvertices u and v; otherwise, we say that G is

disconnected. If G is disconnected, then a component of G is a maximal induced subgraph

of G which is connected. We denote by c(G) the number of component of G. We say that

a set of vertices B ⊂ V (G) is a vertex cut if c(G−B) > c(G). Moreover, if B is a clique,

then we say that B is a clique cut of G.

A matching M in a graph G is a set of pairwise non-adjacent edges of G. We denote by

V (M) the set of vertices incident with the edges of M . We say that a vertex v is covered

by M if v ∈ V (M). We also say that a matching M covers X ⊆ V (G) if X ⊆ V (M). An

M-alternating path P in G is a path whose edges are alternately in M and E(G) −M .

If no endvertex of P is covered by M , then P is called an M-augmenting path. We say

that M is maximum if |M | ≥ |N | for all matching N in G; and say that M is perfect if

it covers V (G).

In Figure 2.1, we show the representation we use to describe or draw certain structures
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in a graph.

v

(a) a full circle illustrates a
vertex v in a graph.

u v

(b) A solid straight line join-
ing two vertices u and v illus-
trates an edge uv in a graph.

X

(c) A larger circle X illus-
trates a set of vertices or a
subgraph in a graph.

X2X1

(d) A solid straight line join-
ing two large circles (or full
circles)X1 andX2 illustrates
that some vertex in X1 and
some vertex in X2 are adja-
cent in a graph.

Figure 2.1: Notation used to describe the structure of a graph.

2.1 Directed graph

A directed graph or simply a digraph D is an ordered triple (V (D), A(D), ψ) where

V (D) is a finite set of elements called vertices, A(D) is a finite set of elements, disjoint

from V (D), called arcs and ψ is an incidence function that associates with each arc

a ∈ A(D) an ordered pair of (not necessarily distinct) vertices u and v of V (D). Given

two vertices u and v of V (D), we say that u dominates v and that v is dominated by u,

denoted by u → v, if ψ(a) = (u, v) for some a ∈ A(D). We also say that u and v are

the endvertices of a and they are incident with a. We say that u and v are adjacent if

u → v or v → u; otherwise, we say that u and v are non-adjacent. If u → v and v → u,

then we denote this by u ↔ v; we also say that {u, v} is a digon. An arc a is a loop if

ψ(a) = (v, v) for some v ∈ V (D). Two arcs a1 and a2 are multiple if they have the same

endvertices in the same order, that is, ψ(a1) = (u, v) and ψ(a2) = (u, v). We say that D

is simple if D contains neither a loop nor multiple arcs, but digons are allowed. In this

text, we consider only simple digraphs. Thus we generally leave the incidence function

implicit, since a pair of distinct vertices uniquely define an arc in a simple digraph. So

we denote a digraph by D = (V (D), A(D)) and we use a = uv, or simply uv, instead of

ψ(a) = (u, v). Henceforth, we write a digraph meaning a simple digraph.

Let D be a digraph. We say that a vertex u is an in-neighbor (resp., out-neighbor) of a

vertex v if u→ v (resp., v → u). Let X be a subset of V (D). We denote by N−(X) (resp.,

N+(X)) the set of vertices in V (D) − X that are in-neighbors (resp., out-neighbors) of

some vertex of X. We define the neighborhood of X as N(X) = N−(X) ∪N+(X); when

X = {v}, we write N−(v), N+(v) and N(v). The in-degree (resp., out-degree) of X in
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D, denoted by d−(X) (resp., d+(X)), is the cardinality of N−(X) (resp., N+(X)). The

degree of X in D, denoted by d(X), is the cardinality of N(X); when X = {v}, we write

d−(v), d+(v) and d(v). We say that v is a source if N−(v) = ∅ and a sink if N+(v) = ∅.
We say that a digraph H is inverse of a digraph D if V (H) = V (D) and A(H) =

{uv : vu ∈ A(D)}. The underlying graph of D, denoted by U(D), is the graph defined

by V (U(D)) = V (D) and E(U(D)) = {uv : u and v are adjacent in D}. Whenever it is

appropriate, we may borrow terminology from graphs to digraphs. For instance, we say

that a subset of arcs of a digraph D is a matching if its corresponding set of edges in U(D)

is a matching; we also say that D is bipartite if U(D) is a bipartite graph. Moreover, we

say that D is diperfect if U(D) is perfect.

A path P in a digraph D is a sequence of distinct vertices P = v1v2 . . . vk such that

for all vi in P , vivi+1 ∈ A(D) for 1 ≤ i ≤ k − 1. Whenever it is appropriate, we treat

P as being the subdigraph of D with vertex set V (P ) = {v1, v2, . . . , vk} and arc set

A(P ) = {vivi+1 : 1 ≤ i ≤ k − 1}. We say that P starts at v1 and ends at vk. We also say

that v1, vk are endvertices of P , v1 is the initial vertex and vk is the terminal vertex of P ;

to emphasize this fact we may write P as v1Pvk. Also, whenever it is convenient, we may

omit the initial vertex or the terminal vertex of P as v1P or Pvk. We denote by viPvj a

subpath of P where 1 ≤ i ≤ j ≤ k. We define the length of P as k − 1. We denote by
−→
Pk

the class of isomorphism of a path of length k − 1. If V (P ) = V (D), then we say that P

is a hamiltonian path, and in this case, we say D is traceable. Let P and Q be two paths

in D. If P ends at some vertex v and Q starts at some vertex u such that v → u, then we

denote by PQ the concatenation of P and Q. We use this notation only if PQ is a path.

Let D be a digraph. For disjoint subsets (or subdigraphs) X and Y of V (D), we say

that X reaches Y if there are u ∈ X and v ∈ Y such that there exists a path that starts

at u and ends at v. The distance between u ∈ V (D) and v ∈ V (D), denoted by dist(u, v),

is the length of the shortest path which starts at u and ends at v. The distance between

X and Y is defined by dist(X, Y ) = min{dist(u, v) : u ∈ X and v ∈ Y }.
A cycle C in digraphD is a sequence of vertices C = v1v2 . . . vkv1 such that v1v2 . . . vk is

a path, vkv1 ∈ A(D) and k ≥ 2. When convenient, we also treat C as being the subdigraph

of D with vertex set V (C) = {v1, v2, . . . , vk} and arc set A(C) = {vivi+1 : 1 ≤ i ≤ k}
where subscripts are taken modulo k. We define the length of C as k. If k is odd, then

we say that C is an odd cycle. We denote by
−→
Ck the class of isomorphism of a cycle of

length k. If V (C) = V (D), then we say that C is a hamiltonian cycle, and in this case, we

say that D is hamiltonian. We say that D is an acyclic digraph if D contains no cycles.

We also say that C is a non-oriented cycle if C is not a cycle in D, but U(C) is a cycle

in U(D). Moreover, a chord of C is an arc in A(D)− A(C) such that the corresponding

edge in U(D) is a chord in U(C). Note that by our definition, if {vi, vi+1} is a digon, then

vi+1vi is not a chord in D.

Let D be a digraph. We say that D is strong if for each pair of vertices u, v ∈ V (D),

then there exists a path that starts at u and ends at v. A strong component of D is

a maximal induced subdigraph of D which is strong. Let Q be a strong component of

D. We denote by K−(Q) (resp., K+(Q)) the set of strong components that reach (resp.,

are reached by) Q. We say that Q is an initial strong component (resp., final strong

component) if there exists no vertex in D−V (Q) that dominates (resp., is dominated by)
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some vertex of Q. For disjoint subsets (or subdigraphs) X and Y of V (D), we say that X

and Y are adjacent if some vertex of X and some vertex of Y are adjacent in D; X ≡ Y

means that every vertex in X is adjacent to every vertex in Y ; X → Y means that every

vertex in X dominates every vertex in Y ; X ⇒ Y means that there exists no arc from

Y to X; and X 7→ Y means that both X → Y and X ⇒ Y hold. When X = {x} or

Y = {y}, we simply write the element, as in x 7→ Y and X ⇒ y.

A digraph D is a tournament if for every pair of vertices u, v ∈ V (D), it follows that

either u 7→ v or v 7→ u. We say that D is semicomplete if every pair of vertices of D

are adjacent, and we say that D is complete if for every pair u, v ∈ V (D), it follows that

u ↔ v. A digraph D is symmetric if for every pair of adjacent vertices u, v ∈ V (D), we

have u↔ v.

Let D be a digraph. We say that a collection of disjoint paths P of D is a path

partition of D, if every vertex in V (D) belongs to exactly one path of P . We say that P
is minimum if |P ′| ≥ |P| for all path partition P ′ of D. The cardinality of a minimum

path partition of D is denoted by π(D). Let S be a stable set and P be a path partition

of D, we say that S and P are orthogonal if |V (P ) ∩ S| = 1 for every P ∈ P .
In Figure 2.2, we show the representation we use to describe or draw certain structures

in a digraph. Similarly to graph, full circles and large circles illustrate vertices and a set

of vertices (or a subdigraph), respectively.

u v

(a) A solid straight line with
one arrow joining two ver-
tices u and v illustrates an
arc uv in a digraph.

u v

(b) A solid straight line join-
ing two vertices u and v illus-
trates that u and v are adja-
cent in a digraph.

v

X

≡

(c) A line with three solid
straight lines joining large
circles (or full circles)X1 and
X2 illustrates that X1 ≡ X2

(or X1 ≡ v).

u v

(d) A solid straight line with
two arrows in opposite di-
rections joining two vertices
u and v illustrates a digon
u↔ v.

X2X1

(e) A line with two arrows
in the same direction joining
large circles (or full circles)
X1 and X2 illustrates that
X1 ⇒ X2.

v

X

(f) A line with one slash and
one arrow in the same di-
rection between large circles
(or full circles) X1 and X2 il-
lustrates that X1 7→ X2 (or
X1 7→ v).

Figure 2.2: Notation used to describe the structure of a digraph.
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Chapter 3

Structural results

In this chapter, we compile some results presented in Freitas and Lee [15, 16]. This

chapter contains a set of auxiliary results that are used in the forthcoming chapters. We

acknowledge that this makes the reading of this chapter rather dry because the results

are out of the context where they will be applied. In spite of these, we choose to group

them in a single chapter for the following reasons: some results are used in more than one

chapter and, it makes easier for a potential reader to find several general tools that can

be applied to α-diperfect digraphs and BE-diperfect digraphs in other contexts. Besides,

we note that the results presented here are extremely technical and it is relatively difficult

to predict which ones will be most useful in the future. We have tried to group them

thematically in each section to facilitate future reference.

This chapter is organized as follows. In Section 3.1, we present some structural results

for arbitrary α-diperfect digraphs and arbitrary BE-diperfect digraphs. In Section 3.2,

we show some auxiliary results for arbitrary digraphs. In Section 3.3, we prove structural

results for BE-diperfect digraphs and α-diperfect digraphs related to matching theory. Fi-

nally, in Section 3.4, we show structural results for BE-diperfect and α-diperfect digraphs

when they contain induced bipartite subdigraphs with some specific properties.

3.1 Structural results for arbitrary BE-diperfect and α-

diperfect digraphs

In this section, we show some structural results for arbitrary α-diperfect digraphs and

arbitrary BE-diperfect digraphs.

Let D be a digraph and let S be a maximum stable set of D. Recall that since

every SBE-path partition is also an S-path partition, it follows that if D satisfies the

BE-property, then D also satisfies the α-property. Moreover, the principle of directional

duality states that every structural result in a digraph has a companion structural result

in its inverse digraph. Note that a digraph D is BE-diperfect (resp., α-diperfect) if and

only if its inverse digraph is BE-diperfect (resp., α-diperfect). So we can use the principle

of directional duality whenever it is convenient. This principle is very useful to fix an

orientation for a given path or arc in a proof. In particular, some results of this section

follows from principle of directional duality, and although it seems unnecessary, we choose
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to state them to facilitate the reading of the proofs of the following chapters.

Let us start with some nice structural lemmas.

Lemma 3.1. Let D be a digraph such that every proper induced subdigraph of D satisfies the

BE-property (resp., α-property). Let S be a maximum stable set in D. Let P = v1v2 . . . vk
be a path of D such that V (P ) ∩ S = ∅. If there exists a vertex u in D − V (P ) such

that u /∈ S, N+(u) ̸= ∅ and N+(u) ⊆ V (P ), then D admits an SBE-path partition (resp.,

S-path partition).

Proof. Let vi be a vertex such that u → vi and i is minimum within {1, 2, . . . , k}. Let

P ′ = viPvk. Note that N
+(u) ⊆ V (P ′). Let D′ = D−V (P ′). Note that u is a sink in D′.

Since V (P ′)∩S = ∅, S is a maximum stable set in D′. By hypothesis, D′ is BE-diperfect.

Let P ′ be an SBE-path partition of D′. Let R be a path of P ′ such that u ∈ V (R). Since

u is a sink in D′, it follows that R ends at u. Since u→ vi, the collection (P ′ −R)∪RP ′

is an SBE-path partition of D.

By the principle of directional duality, we have the following result.

Lemma 3.2. Let D be a digraph such that every proper induced subdigraph of D satisfies the

BE-property (resp., α-property). Let S be a maximum stable set in D. Let P = v1v2 . . . vk
be a path of D such that V (P ) ∩ S = ∅. If there exists a vertex u in D − V (P ) such

that u /∈ S, N−(u) ̸= ∅ and N−(u) ⊆ V (P ), then D admits an SBE-path partition (resp.,

S-path partition).

The next lemma is similar to Lemma 3.1, but here we have an arc u1u2 (instead of a

vertex u) and a path P satisfying some technical conditions.

Lemma 3.3. Let D be a digraph such that every proper induced subdigraph of D satisfies the

BE-property (resp., α-property). Let S be a maximum stable set in D. Let P = v1v2 . . . vk
be a path of D such that V (P ) ∩ S = ∅. If there exists an arc u1u2 in A(D) such that

u1 /∈ S, {u1, u2} ∩ V (P ) = ∅, vk → u2 and N+(u1) ⊆ V (P ) ∪ u2, then D admits an

SBE-path partition (resp., S-path partition).

Proof. Let vi be a vertex such that u1 → vi and i is minimum within {1, 2, . . . , k}. Let

P ′ = viPvk. Note that N
+(u1) ⊆ V (P ′)∪u2. Let D′ = D−V (P ′). Since V (P ′)∩S = ∅, S

is a maximum stable set in D′. By hypothesis, D′ is BE-diperfect. Let P ′ be an SBE-path

partition of D′. Let R be a path of P ′ such that u1 ∈ V (R). If R ends at u1, then since

u1 → vi, it follows that the collection (P ′ − R) ∪ RP ′ is an SBE-path partition of D. So

we may assume that R does not end at u1. Since N+(u1) ⊆ V (P ′) ∪ u2, it follows that

u1u2 is an arc in R. Let w1 and wp be the endvertices of R. Let R1 = w1Ru1 and let

R2 = u2Rwp. Since u1 → vi and vk → u2, the collection (P ′−R)∪R1P
′R2 is an SBE-path

partition of D.

By the principle of directional duality, we have the following result.

Lemma 3.4. Let D be a digraph such that every proper induced subdigraph of D satisfies the

BE-property (resp., α-property). Let S be a maximum stable set in D. Let P = v1v2 . . . vk
be a path of D such that V (P ) ∩ S = ∅. If there exists an arc u1u2 in A(D) such that

u2 /∈ S, {u1, u2} ∩ V (P ) = ∅, u1 → v1 and N−(u2) ⊆ V (P ) ∪ u1, then D admits an

SBE-path partition (resp., S-path partition).
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Next, we show that if D contains a special partition of its vertex set, then it admits

an SBE-path partition (resp., S-path partition).

Lemma 3.5. Let D be a digraph such that every proper induced subdigraph of D satisfies

the BE-property (resp.,α-property). Let S be a maximum stable set of D. If V (D) admits

a partition (V1, V2, V3) such that V1 7→ V2 7→ V3, D[V2] is hamiltonian, |V2| ≥ 2 and

|V2 ∩ S| ≤ 1, then D admits an SBE-path partition (resp., S-path partition).

Proof. Let k = |V2|. Let C = v1v2 . . . vk be a hamiltonian cycle inD[V2]. Let B be a subset

of V2 − S with cardinality k − 1 (note that B exists because |V2| ≥ 2 and |V2 ∩ S| ≤ 1).

Without loss of generality, we may assume that vk is the vertex in V2−B. Let D′ = D−B.

Since B ∩ S = ∅, S is maximum in D′. By hypothesis, D′ is BE-diperfect. Let P ′ be an

SBE-path partition of D′. Let P be a path of P ′ such that vk ∈ V (P ). First, suppose

that P does not start at vk. Let w be the vertex in P that immediately precedes vk. Let

P1 = Pw and let P2 = vkP . Since V1 7→ V2 7→ V3 and V (D′)∩V2 = vk, it follows that w is

in V1. Let R = v1v2 . . . vk−1. Since V1 7→ V2, it follows that w → v1. Since vk−1 → vk, we

conclude that the collection (P ′ − P )∪ P1RP2 is an SBE-path partition of D. So we may

assume that P starts at vk. Let w be the vertex in P that immediately follows vk. Let

P1 = vk and let P2 = wP . Let R = v1v2 . . . vk−1. Since V2 7→ V3, it follows that vk−1 → w.

Since vk → v1, we conclude that the collection (P ′−P )∪P1RP2 is an SBE-path partition

of D.

Since the above lemmas consider BE-diperfect digraphs in the hypothesis, they hold for

α-diperfect digraphs as well. The following lemmas are specific for α-diperfect digraphs.

Lemma 3.6. Let D be a digraph such that every proper induced subdigraph of D satisfies

the α-property. Let S be a maximum stable set of D. Let v1v2 be an arc of A(D). Then,

(i) if v1 /∈ S and N−(v2) = {v1}, then D admits an S-path partition,

(ii) if v2 /∈ S and N+(v1) = {v2}, then D admits an S-path partition.

Proof. By the principle of directional duality, it suffices to prove (i). Let D′ = D − v1.
Since v1 /∈ S, S is a maximum stable set in D′. By hypothesis, D′ is α-diperfect. Let

P ′ be an S-path partition of D′. Let P be a path of P ′ such that v2 ∈ V (P ). Since

N−(v2) = {v1}, it follows that P starts at v2. Since v1 → v2, the collection (P ′−P )∪v1P
is an S-path partition of D.

Lemma 3.7. Let D be a digraph such that every proper induced subdigraph of D satisfies

the α-property. Let S be a maximum stable set in D. Let P = v1v2 . . . vk, k > 1, be a

path of D such that (V (P )− v1)∩S = ∅. If there exists a vertex u in D−V (P ) such that

vk → u and N−(u) ⊆ V (P ), then D admits an S-path partition.

Proof. Let P ′ = v2Pvk be a subpath of P . Let D′ = D − V (P ′). Since V (P ′) ∩ S = ∅,
S is a maximum stable set in D′. By hypothesis, D′ is α-diperfect. Let P ′ be an S-path

partition of D′. Let R be a path of P ′ such that u ∈ V (R). Since N−(u) ⊆ V (P ), it

follows that R starts at u or v1u is an arc of R. If P starts at u, then since vk → u, it

follows that the collection (P ′−R)∪P ′R is an S-path partition of D. So suppose that v1u
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is an arc of P . Let w1 and wp be the endvertices of R. Let R1 = w1Rv1 and R2 = uRwp

be the subpaths of R. Thus the collection (P ′ − R) ∪ R1P
′R2 is an S-path partition of

D.

By the principle of directional duality, we have the following result.

Lemma 3.8. Let D be a digraph such that every proper induced subdigraph of D satisfies

the α-property. Let S be a maximum stable set in D. Let P = v1v2 . . . vk be a path of D

such that (V (P )− vk) ∩ S = ∅. If there exists a vertex u in D − V (P ) such that u→ v1
and N+(u) ⊆ V (P ), then D admits an S-path partition.

3.2 Structural results for arbitrary digraphs

In this section, we prove some auxiliary results for arbitrary digraphs. These results

are essential in the next sections. In order to do this, we need the celebrated Hall’s

Theorem [24] and Berge’s Theorem [5] about matching in graphs.

Theorem 3.1 (Hall, 1935). A bipartite graph G := G[X, Y ] has a matching covering X if

and only if |N(W )| ≥ |W | for all W ⊆ X.

Theorem 3.2 (Berge, 1957). A matching M in a graph G is maximum if and only if G

has no M-augmenting path.

Next, we prove a useful tool. Note that the following lemmas are about matchings

in a graph, but by our definition, a subset of arcs M of a digraph D is a matching if its

corresponding set of edges in U(D) is a matching. So we can apply Lemmas 3.9, 3.10 and

3.11 in D considering U(D).

Lemma 3.9. Let G := G[X, Y ] be a connected bipartite graph such that |X| ≥ 1 and

|Y | ≥ 1. If G has no matching covering X, then there exists a non-empty subset X ′ ⊆ X

such that G[X ′ ∪N(X ′)] has a matching covering N(X ′).

Proof. Assume that there exists no matching covering X in G. By Theorem 3.1, there

exists a subset W of X such that |N(W )| < |W |; choose such W as small as possible.

Since G is connected, it follows that N(W ) ̸= ∅. By the choice of W , for every X ′ ⊂ W

(and hence, for X ′ ⊂ X), it follows that |N(X ′)| ≥ |X ′|. Let X ′ be a subset of W with

the same size as |N(W )|. Since for every X∗ ⊆ X ′, it follows that |N(X∗)| ≥ |X∗|, we
conclude by Theorem 3.1 that the graph G[X ′ ∪N(X ′)] has a matching covering X ′ (and

hence, N(W )).

In the proof of the next lemma we use the symbol ⊕ to denote the symmetric difference

of two sets. So X ⊕ Y = (X − Y ) ∪ (Y −X).

Lemma 3.10. Let G := G[X, Y ] be a bipartite graph which has a matching covering X.

For every Y ′ ⊂ Y , there exists a matching M covering X such that the restriction of M

to G[X ′ ∪ Y ′], where X ′ = N(Y ′), is a maximum matching of G[X ′ ∪ Y ′].
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Proof. Let Y ′ ⊂ Y . Let H := H[X ′, Y ′] be a bipartite subgraph corresponding to G[X ′ ∪
Y ′], where X ′ = N(Y ′). Let M be a matching covering X such that |M ∩ E(H)| as
maximum as possible. Let M ′ = M ∩ E(H). Towards a contradiction, suppose that M ′

is not maximum in H. By Theorem 3.2, there exists an M ′-augmenting path uPv in

H. Since P is odd, we may assume that u ∈ Y ′ and v ∈ X ′. Since M covers X, there

exists w ∈ Y − Y ′ such that wv ∈ M . Since X ′ = N(Y ′), u is not covered by an edge

of M . Thus M∗ = (M ⊕ E(P )) − wv is a maximum matching covering X such that

|M∗ ∩ E(H)| > |M ∩ E(H)|, a contradiction.

Now, we prove a simple and useful lemma.

Lemma 3.11. Let S be a maximum stable set in a graph G. Let X be a stable set disjoint

from S and let Y = N(X)∩ S. Then, there exists a matching between X and Y covering

X.

Proof. Let H be the bipartite subgraph of G such that V (H) = X ∪ Y and E(H) =

{uv : u ∈ X, v ∈ Y and u and v are adjacent in G}. Note that for every W ⊆ X,

NH(W ) = N(W ). Towards a contradiction, assume that there exists no matching between

X and Y covering X. By Theorem 3.1 applied to H, there exists a subset W of X such

that |N(W )| < |W |. Since X ∩ S = ∅, it follows that (S − N(W )) ∪W is a stable set

larger than S in G, a contradiction.

3.3 Matching in BE-diperfect and α-diperfect digraphs

In this section and in the next one, we show some structural results for digraphs such

that every proper subdigraph is BE-diperfect digraphs (resp., α-diperfect). We state each

lemma for both cases, but we only prove the corresponding statement for BE-diperfect

digraphs; the proof is nearly identical for the corresponding statement for α-diperfect

digraphs.

Initially, we prove that if there exists no matching covering S in a digraph D between

a maximum stable set S and V (D)− S, then D admits an SBE-path partition.

Lemma 3.12. Let D be a connected digraph such that every proper induced subdigraph of

D satisfies the BE-property (resp., α-property). Let S be a maximum stable set of D. If

there exists no matching between S and N(S) covering S, then D admits an SBE-path

partition (resp., S-path partition).

Proof. Note that we may assume that |S| ≥ 1 and |N(S)| ≥ 1. Let B be the digraph

obtained from D by removing all edges with both endvertices in N(S). Note that B is a

bipartite digraph with bipartition (S,N(S)). Let H := H[X, Y ] be a maximal connected

subdigraph of B with X ⊆ S and Y ⊆ N(S). Note that |X| ≥ 1 and |Y | ≥ 1, because

every vertex in X is adjacent to some vertex in N(S) (D is connected and X ⊆ S is

stable). By Lemma 3.9 applied to H, there exists a non-empty subset X ′ ⊂ X such

that H[X ′ ∪ N(X ′)] has a matching M covering N(X ′). Let D′ = D − N(X ′). Since

N(X ′) ∩ S = ∅, S is a maximum stable set in D′. By hypothesis, D′ is BE-diperfect.

Let P ′ be a SBE-path partition of D′. Since V (D′) ∩N(X ′) = ∅, every vertex in X ′ is a
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path of P ′. Let PM be the set of paths in D corresponding to the edges in M . Thus the

collection (P ′ − (X ′ ∩ V (M))) ∪ PM is an SBE-path partition of D.

Next we prove a more specific lemma.

Lemma 3.13. Let D be a connected digraph such that every proper induced subdigraph of

D satisfies the BE-property (resp., α-property). Let S be a maximum stable set of D. Let

H := H[X, Y ] be an induced bipartite subdigraph of D such that N−(X) = Y , Y ⇒ X,

Y ∩ S = ∅ and N+(X ∩ S) = ∅. If there exists no matching between X and Y covering

X, then D admits an SBE-path partition (resp., S-path partition).

Proof. Let H ′ := H[X ′, Y ′] be a maximal induced connected bipartite subdigraph of H

such that X ′ ⊆ X, Y ′ ⊆ Y and there exists no matching between X ′ and Y ′ covering

X ′. Note that |X ′| ≥ 1 and |Y ′| ≥ 1, because there exists no matching between X and Y

covering X in H. By Lemma 3.9 applied to H ′, there exists a non-empty subset X∗ ⊆ X ′

such that D[X∗ ∪N−(X∗)] has a matching M covering N−(X∗). Let Y ∗ = N−(X∗) and

let D′ = D−Y ∗. Since Y ∗ ⊆ Y and Y ∩S = ∅, it follows that S is a maximum stable set

in D′. By hypothesis, D′ is BE-diperfect. Let P ′ be an SBE-path partition of D. Since

N−(X∗) = Y ∗ and N+(X∗ ∩ S) = ∅, it follows that every vertex v in X∗ is the initial

vertex of a path of P ′ (if v /∈ S) or v is itself a path of P ′ (if v ∈ S). Since Y ∗ ⇒ X∗, it

is easy to see that using the edges in M we can add the vertices of Y ∗ to paths of P ′ that

starts at some vertex in V (M) ∩X∗, obtaining an SBE-path partition of D.

The next lemma is important and will be used extensively throughout this text. For

instance, it is essential in the proof of both conjectures for 3-anti-circulant digraphs (see

Chapter 5).

Lemma 3.14. Let D be a connected digraph such that every proper induced subdigraph

of D satisfies the BE-property (resp., α-property). If D has a stable set Z such that

|N(Z)| ≤ |Z|, then D satisfies the BE-property (resp., α-property).

Proof. Let S be a maximum stable set of D. First, we prove that there exists a perfect

matching between Z and N(Z). Let Y = N(Z). Then, |Z − S| ≤ |Y ∩ S|, otherwise
(S − (Y ∩ S)) ∪ (Z − S) would be a stable set larger than S in D. Since |Z| ≥ |Y |,
this implies that |Z ∩ S| ≥ |Y − S|. By Lemma 3.12, we may assume that there exists a

matching between S and N(S) covering S, and hence, there exists a matchingM1 between

Z ∩ S and Y − S covering Z ∩ S. This implies that |Z ∩ S| = |Y − S|. Since |Z| ≥ |Y |
and |Z − S| ≤ |Y ∩ S|, it follows that |Z − S| = |Y ∩ S|. By Lemma 3.11, there exists a

matchingM2 between Z−S and Y ∩S covering Z−S. Thus, the matchingM =M1∪M2

is a perfect matching between Z and Y . Let PM be the set of paths in D corresponding

to the arcs of M . Note that PM and S are orthogonal. Let S ′ = S − V (M) and let

D′ = D − V (M). Let k = |S ∩ V (M)| = |Z| and note that |S ′| = |S| − k. Towards a

contradiction, suppose that S ′ is not a maximum stable set of D′. Let S∗ be a maximum

stable set of D′. Since |S∗| > |S| − k and Z has no neighbor in D′, it follows that S∗ ∪ Z
is a stable set larger than S in D, a contradiction. So S ′ is a maximum stable set in

D′. By hypothesis, D′ is BE-diperfect. Let P ′ be an S ′
BE-path partition of D′. Thus the

collection P ′ ∪ PM is an SBE-path partition of D.
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The next theorem shows that a minimal counterexample to both Conjecture 1.1 and

Conjecture 1.2 cannot have large stability number.

Theorem 3.3. Let D be a connected digraph such that every proper induced subdigraph of

D satisfies the BE-property (resp., α-property). If α(D) ≥ |V (D)|
2

, then D satisfies the

BE-property (resp., α-property).

Proof. Let S a maximum stable set of D. Let S = V (D) − S. By hypothesis, it follows

that |S| ≥ |S|, and hence, the result follows from Lemma 3.14.

3.4 Induced bipartite subdigraphs in BE-diperfect and α-

diperfect digraphs

In this section, we show some structural results for BE-diperfect digraphs and α-

diperfect digraphs when they contain bipartite subdigraphs with some specific properties.

These results are used to verify Conjecture 1.1 and Conjecture 1.2 for arc-locally (out)

in-semicomplete digraphs (see Chapter 4).

The first lemma states that if V (D) contains three disjoint nonempty subsets U,X and

Y satisfying certain conditions, then D satisfies the BE-property. In an attempt to make

the lemma more clear, we illustrate the structure of these subsets in Figure 3.2. Recall

that X1 ≡ X2 means that every vertex in X1 is adjacent to every vertex in X2.

U X Y

V (D)− (U ∪X ∪ Y )

≡

Figure 3.1: Illustration for Lemma 3.15. The subsets X and Y are stable, N(Y ) ⊆ X,
N(X) ⊆ U ∪ Y and every vertex in U is adjacent to every vertex in X.

Lemma 3.15. Let D be a connected digraph such that every proper induced subdigraph of

D satisfies the BE-property (resp., α-property). If V (D) contains three disjoint nonempty

subsets U,X, Y such that X and Y are stable, N(Y ) ⊆ X, N(X) ⊆ U ∪ Y and every

vertex in U is adjacent to every vertex in X, then D satisfies the BE-property (resp.,

α-property).

Proof. Let S be a maximum stable set of D. Note that N(Y ∩ S) ⊆ X − S and N(X ∩
S) ∩ Y ⊆ Y − S. It follows from Lemma 3.11 that there exists a matching M1 between

Y − S and X ∩ S covering Y − S. By Lemma 3.12, we may assume that there exists a

matching between S and N(S) covering S, and hence, there exists a matchingM2 between

Y ∩ S and X − S covering Y ∩ S. Let M = M1 ∪M2, and note that M covers Y . Let
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D′ = D − V (M) and let S ′ = S − V (M). Let k = |S ∩ V (M)| = |Y | = |V (M) ∩ X|.
Towards a contradiction, suppose that S ′ is not a maximum stable in D′. Let Z be a

maximum stable set of D′. Thus, |Z| > |S ′| = |S| − k. If U ∩ Z ̸= ∅, then since every

vertex in U is adjacent a every vertex in X, it follows that X∩Z = ∅. Since N(Y )∩U = ∅
and Y is stable, the set Z∪Y is stable and larger than S in D, a contradiction. So we may

assume that U ∩Z = ∅. Since Y ∩Z = ∅, N(X) ⊆ U ∪ Y and X is stable, it follows that

Z ∪ (V (M) ∩X) is a stable set larger than S in D, a contradiction. So S ′ is a maximum

stable in D′. By hypothesis, D′ is BE-diperfect. Let P ′ be an S ′
BE-path partition of D′.

Let PM be the set of paths in D corresponding to the arcs of M . Note that PM and S

are orthogonal. Thus the collection P ′ ∪ PM is an SBE-path partition of D.

Similarly to the previous lemma, we illustrate the structure of specific induced bipartite

subdigraph of Lemma 3.16 in Figure 3.2.

S

N(X)− Y

N(Y )−XY

X

≡

≡

Figure 3.2: Illustration for Lemma 3.16. There exists no arc between X and N(Y )−X,
and between Y and N(X)− Y ; or equivalently, N(X) ∩N(Y ) = ∅.

Lemma 3.16. Let D be a connected digraph such that every proper induced subdigraph of

D satisfies the BE-property (resp., α-property). Let S be a maximum stable set of D.

If D contains a connected induced bipartite subdigraph H := H[X, Y ] such that Y ⊆ S,

N(X)∩S = Y , N(X)∩N(Y ) = ∅ and (N(Y )−X) ≡ N(X), then D admits an SBE-path

partition (resp., S-path partition).

Proof. Note that X ∩ S = ∅ because H is connected and Y ⊆ S. Since S is a maximum

stable set and N(X) ∩ S = Y , it follows from Lemma 3.11 that there exists a matching

M between X and Y covering X. Let D′ = D − V (M) and let S ′ = S − V (M). Note

that V (D′) ∩X = ∅. Towards a contradiction, suppose that S ′ is not a maximum stable

set in D′ and let Z be a maximum stable set in D′. Note that |Z| > |S| − |V (M) ∩ Y |
and |V (M) ∩ Y | = |X|. If Z ∩ (N(Y ) − X) = ∅, then since V (D′) ∩ X = ∅, it follows

that Z ∪ (V (M) ∩ Y ) is a stable set in D larger than S, a contradiction. So we may

assume that Z ∩ (N(Y )−X) ̸= ∅. Since every vertex in N(Y )−X is adjacent to every

vertex in N(X) and N(X) ∩N(Y ) = ∅, it follows that N(X) ∩ Z = ∅. Thus Z ∪X is a

stable set in D larger than S in D, a contradiction. So S ′ is a maximum stable set in D′.

Let PM be the collection of paths corresponding to the arcs of M . By hypothesis, D′ is

BE-diperfect. Let P ′ be an S ′
BE-path partition of D′. Thus the collection P ′ ∪ PM is an

SBE-path partition of D.
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Once again, we illustrate the structure of a digraph satisfying the properties stated

in Lemma 3.17 in Figure 3.3. Recall that X1 ⇒ X2 means that there is no arc from X2

to X1 and X1 7→ X2 means that every vertex in X1 dominates every vertex in X2 and

X1 ⇒ X2.

V (D)− (X ∪ Y ∪N−(Y ))

S

N−(Y )X = N+(Y )

Y = N−(X)

Figure 3.3: Illustration for Lemma 3.17.

Lemma 3.17. Let D be a connected digraph such that every proper induced subdigraph

of D satisfies the BE-property (resp., α-property). Let S be a maximum stable set of

D. Let H := H[X, Y ] be an induced bipartite subdigraph of D such that N−(X) = Y ,

N+(Y ) = X, Y ⇒ X, Y ∩ S = ∅, N+(X ∩ S) = ∅, N−(Y ) ⊆ S and N−(Y ) 7→ Y . Then,

D admits an SBE-path partition (resp., S-path partition).

Proof. Since N−(X) = Y , Y ⇒ X, Y ∩ S = ∅ and N+(X ∩ S) = ∅, we may assume

by Lemma 3.13 that there exists a matching M between X and Y covering X. Suppose

that X ⊆ S. Since N+(X ∩ S) = ∅ and N−(X) = Y , it follows that N(X) = Y . Since

N+(Y ) = X, N(Y ) = N−(Y ) ∪ X. Since N−(Y ) 7→ Y , it follows from Lemma 3.15

applied to N−(Y ), Y and X (in the roOnce again, we illustrate the structure of the next

lemma in Figure 3.3. Recall that X1 ⇒ X2 means that there is no arc from X2 to X1 and

X1 7→ X2 means that every vertex in X1 dominates every vertex in X2 and X1 ⇒ X2.les

of U,X and Y , resp.) that D satisfies the BE-property. So we may assume that X ̸⊆ S.

Let D′ = D − (X − S). Since (X − S) ∩ S = ∅, it follows that S is maximum in D′.

By hypothesis, D′ is BE-diperfect. Let P ′ be an SBE-path partition of D′. Let PM be

the set of paths corresponding to the arcs of M ∩ E(D′). First, suppose that PM = ∅.
Since PM = ∅, it follows that X ∩ S = ∅. Since Y ∩ S = ∅ and N+(Y ) = X, it follows

that every vertex in V (M)∩ Y is the terminal vertex in some path of P ′. Since M covers

X, it is easy to see that using the arcs of M , we can add the vertices of X to paths of

P ′ that ends at some vertex in V (M) ∩ Y , obtaining an SBE-path partition of D. So we

may assume that PM ̸= ∅.
Let PY be the set of paths of P ′ that intersect Y . SinceN−(Y ) ⊆ S,X∩V (D′) ⊆ S and

Y is a stable set, it follows that every path in PY has length one. Moreover, every P ∈ PY

starts at some vertex of N−(Y ) or ends at some vertex of X∩S. Let P∗ = (P ′−PY )∪PM .
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Note that every vertex of X ∩ S is the terminal vertex in some path in P∗. Also, note

that there might be some vertex of Y which does not belong to any path in P∗. Since P ′

is an SBE-path partition of D′, every vertex in Y belongs to some path of P ′ and since

every vertex in X ∩ S belongs to some path in P∗, there are at least |Y − V (M)| vertices
in N−(Y ) that do not belong to any path in P∗. Since N−(Y ) 7→ Y , we can add to P∗

the path u→ v where v ∈ Y −V (M) and u is a vertex in N−(Y ) that does not belong to

any path of P . Since M covers X, it easy to see that using the arcs of M − (M ∩E(D′)),

we can add the vertices of X − S to paths in P∗ that ends at some vertex in V (M) ∩ Y
that do not belong to any path in P∗, obtaining an SBE-path partition of D. This finishes

the proof.

Every lemma presented in this chapter is used in forthcoming chapters to verify Con-

jecture 1.1 and Conjecture 1.2 for some classes of digraphs. Also, Theorem 3.3 states that

if a digraph D is a minimal counterexample to both conjectures, then α(D) < |V (D)|
2

. This

result suggests that dealing with digraphs with small stability number may be the most

difficult part of both conjectures. Furthermore, we believe that these results could help

in proving both conjectures for other classes of digraphs.
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Chapter 4

Arc-locally in-semicomplete digraphs

In this chapter, we compile the results presented in Freitas and Lee [14, 16]. We

present a decomposition of the structure of arc-locally (out) in-semicomplete digraphs

and arc-locally semicomplete digraphs. We show that the structure of these digraphs is

very similar to diperfect digraphs. We also verify both Conjecture 1.1 and Conjecture 1.2

for these classes of digraphs.

In [2], Bang-Jensen introduced arc-locally (out) in-semicomplete and arc-locally semi-

complete digraphs as a common generalization of both semicomplete and bipartite semi-

complete digraphs. Let D be a digraph. We say that D is arc-locally in-semicomplete

(resp., arc-locally out-semicomplete) if for every pair of adjacent vertices u and v, every

in-neighbor (resp., out-neighbor) of u and every in-neighbor (resp., out-neighbor) of v

either are adjacent or are the same vertex (see Figure 4.1). We say that D is arc-locally

semicomplete if D is both arc-locally in-semicomplete and arc-locally out-semicomplete.

vu

(a)

vu

(b)

Figure 4.1: Examples of arc-locally in-semicomplete digraphs.

There are many results concerning these classes of digraphs [1, 3, 19, 34, 35]. In

particular, Bang-Jensen [3] provided a characterization for strong arc-locally semicomplete

digraphs, but Galeana-Sánchez and Goldfeder [19] and Wang and Wang [3] independently

pointed out that one family of strong arc-locally semicomplete digraphs was missing.

In [34], Wang and Wang provided a decomposition for strong arc-locally in-semicomplete

digraphs. In [20], Galeana-Sánchez and Goldfeder extended the Bang-Jensen’s results and

characterized arbitrary arc-locally semicomplete digraphs. To the best of our knowledge,

there is no characterization for arbitrary arc-locally (out) in-semicomplete digraphs. In
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this text, we extend the results of Wang and Wang [34] by presenting a decomposition for

arbitrary arc-locally (out) in-semicomplete digraphs.

This chapter is organized as follows. In Section 4.1, we provide a decomposition

for arbitrary arc-locally (out) in-semicomplete digraphs. In Section 4.2, we present a

decomposition for arbitrary arc-locally semicomplete digraphs. In Section 4.3, we verify

Conjecture 1.2 for arc-locally (out) in-semicomplete digraphs. Finally, in Section 4.4, we

verify Conjecture 1.1 for arc-locally (out) in-semicomplete digraphs.

4.1 Decomposition for arbitrary arc-locally (out) in-

semicomplete digraphs

In this section, we present some structural results for arbitrary arc-locally (out) in-

semicomplete. In particular, we show that if D is a connected arc-locally (out) in-

semicomplete digraph, then D is diperfect, or D admits a special partition of its vertices,

or D has a clique cut. Since the inverse of an arc-locally in-semicomplete digraph is an

arc-locally out-semicomplete digraph, for every statement regarding the former one, there

is an equivalent one for the latter. So in this section we restrict ourselves to arc-locally

in-semicomplete digraphs.

Let us start with a class of digraphs which is related to arc-locally in-semicomplete

digraphs. Let C be a cycle of length k ≥ 2 and let X1, X2, . . . , Xk be disjoint stable sets.

The extended cycle C := C[X1, X2, . . . , Xk] is the digraph with vertex setX1∪X2∪· · ·∪Xk

and arc set {xixi+1 : xi ∈ Xi, xi+1 ∈ Xi+1, i ∈ {1, 2, . . . , k}}, where subscripts are taken

modulo k. Thus X1 7→ X2 7→ · · · 7→ Xk 7→ X1. Moreover, we say that the length of the

extended cycle C is k (see Figure 4.2).

X4

X2

X3X5

X1

Figure 4.2: Illustration of an extended cycle.

For ease of reference, we state the following result presented in [34]. We have omitted

the definition of a T -digraph, because it is a family of digraphs that does not play an

important role in this context.
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Theorem 4.1 (Wang and Wang, 2009). Let D be a strong arc-locally in-semicomplete

digraph, then D is either a semicomplete digraph, a semicomplete bipartite digraph, an

extended cycle or a T -digraph.

Next, we prove a simple and useful lemma.

Lemma 4.1. If D is an arc-locally in-semicomplete digraph, then D does not contain any

induced non-oriented odd cycle of length at least five.

Proof. Towards a contradiction, suppose that D contains an induced non-oriented odd

cycle of length at least five. Let P = u1u2 . . . uk be a maximum path in C. Since C is

odd and has at least five vertices, then P has at least three vertices. Let w be the vertex

of C distinct from uk−1 that dominates uk. Since uk−2 → uk−1, uk−1 → uk, w → uk
and D is arc-locally in-semicomplete, we conclude that w and uk−2 must be adjacent, a

contradiction.

The next lemma states that not containing an induced odd cycle of length at least

five is a necessary and sufficient condition for an arc-locally in-semicomplete digraph to

be diperfect. Note that if a digraph D contains no induced odd cycle of length at least

five, then D also contains no induced odd extended cycle of the same length.

Lemma 4.2. Let D be an arc-locally in-semicomplete digraph. Then, D is diperfect if and

only if D contains no induced odd cycle of length at least five.

Proof. By Lemma 4.1, D does not contain any induced non-oriented odd cycle of length

at least five. Thus it follows that every induced odd cycle of length at least five in U(D)

is also an induced odd cycle in D.

First, if D is diperfect, then the result follows from Theorem 1.1. To prove sufficiency,

suppose that D is not diperfect. Since D contains no induced odd cycle of length at least

five, it follows from Theorem 1.1 that U(D) contains an induced complement of an odd

cycle U(C) of length at least five, denoted by U(C). Suppose that the vertices of C (and

of U(C)) are labelled as v1, v2, . . . , v2k+1 so that the cycle in U(C) is (v1, v2, . . . , v2k+1, v1).

Thus the non-adjacent vertices to vi in U(C) are vi−1 and vi+1, where the indexes are

taken modulo k. Since the complement of a C5 is also a C5, we may assume that C

contains at least seven vertices. So consider the vertices v1, v2, v3, v4, v5, v6, v7 of U(C)

(and hence, of U(C)). Recall that since D is arc-locally in-semicomplete, if x, y, u and v

are distinct vertices such that u and v are adjacent, x→ u and y → v, then x and y must

be adjacent in D or the same vertex.

The rest of the proof is divided into two cases, depending on whether v2 → v4 or

v4 → v2.

Case 1. Assume that v2 → v4. If v1 → v6, then since v4 and v6 are adjacent, it follows

that v1 and v2 are adjacent, a contradiction. So we may assume that v6 → v1. If v3 → v7,

then since v2 → v4 and, v4 and v7 are adjacent, it follows that v2 and v3 are adjacent in

D, a contradiction. Thus v7 → v3. Finally, since v7 → v3, v6 → v1 and v1 and v3 are

adjacent, it follows that v6 and v7 are adjacent in D, a contradiction.
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Case 2. Assume that v4 → v2. If v3 → v6, then since v2 and v6 are adjacent, it follows

that v3 and v4 are adjacent, a contradiction. So we may assume that v6 → v3. If v7 → v5,

since v6 → v3 and, v5 and v3 are adjacent, it follows that v7 and v6 are adjacent in D, a

contradiction. So v5 → v7. Finally, since v5 → v7, v4 → v2 and v2 and v7 are adjacent, it

follows that v5 and v4 are adjacent in D, a contradiction. This ends the proof.

By Lemma 4.2, if D does not contain any induced odd cycle of length at least five,

then it is easy to show that both the α-property and the BE-property are satisfied (see

Chapter 1 or Section 4.5). Thus we prove next some properties of an arc-locally in-

semicomplete digraph D when D has a strong component that induces an odd extended

cycle of length at least five. To do this, we use the following auxiliary results.

Lemma 4.3 (Wang and Wang, 2011). Let D be an arc-locally in-semicomplete digraph and

let H be a non-trivial strong subdigraph of D. For every v ∈ V (D)−V (H), if there exists

a path from v to H, then v and H are adjacent. In particular, if H is a strong component,

then v dominates some vertex of H.

Lemma 4.4 (Wang and Wang, 2011). Let D be an arc-locally in-semicomplete digraph and

let K1 and K2 be two distinct non-trivial strong components of D with at least one arc

from K1 to K2. Then either K1 7→ K2 or D[V (K1) ∪ V (K2)] is a bipartite digraph.

Lemma 4.5 (Wang and Wang, 2011). Let D be an arc-locally in-semicomplete digraph and

let Q be a non-trivial strong component of D. Let v be a vertex of V (D) − V (Q) that

dominates some vertex of Q. If D[V (Q)] is non-bipartite, then v 7→ Q.

Recall that if Q is a strong component of a digraph D, then K−(Q) (resp., K+(Q)) is

the set of strong components that reach (resp., are reached by) Q in D.

Lemma 4.6. Let D be a non-strong arc-locally in-semicomplete digraph. Let Q be a non-

initial strong component of D that induces an odd extended cycle of length at least five.

Let W = ∪K∈K−(Q)V (K). Then, each of the following holds:

(i) every strong component in K+(Q) is trivial,

(ii) W 7→ Q,

(iii) D[W ] is a semicomplete digraph,

(iv) there exists a unique initial strong component that reaches Q in D.

Proof. Let Q := Q[X1, X2, ..., X2k+1] be a non-initial strong component that induces an

odd extended cycle of length at least five of D.

(i) Towards a contradiction, suppose that there exists a non-trivial strong component

K in K+(Q). By definition of K+(Q), there exists a path from some vertex of Q to some

vertex of K. By Lemma 4.3, there must be some arc from Q to K. Note that D[V (Q)] is

a non-bipartite digraph. So it follows from Lemma 4.4 that Q 7→ K. Let uv be an arc of

K. Let x1 ∈ X1 and x3 ∈ X3 be vertices of Q. Since x1 → u, x3 → v and D is arc-locally
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in-semicomplete, then x1 and x3 are adjacent, a contradiction to the fact that Q induces

an extended cycle. Thus every strong component in K+(Q) is trivial.

(ii) Let v be a vertex of W . By definition of K−(Q) and W , there exists a path from

v to Q. By Lemma 4.3, the vertex v dominates some vertex of Q. Since D[V (Q)] is a

non-bipartite digraph, it follows from Lemma 4.5 that v 7→ Q.

(iii) Let u and v be two vertices in W . By (ii), {u, v} 7→ Q. Let xy be an arc of Q.

Since D is arc-locally in-semicomplete, u → x and v → y, it follows that u and v are

adjacent. Thus all vertices inW are adjacent, and hence, D[W ] is a semicomplete digraph.

(iv) Towards a contradiction, suppose that D contains two initial strong components

that reach Q, say K1 and K2. By (iii), D[W ] is a semicomplete digraph. Since V (K1) ∪
V (K2) ⊆ W , it follows that K1 and K2 are adjacent which is a contradiction.

For the next lemma we need the following auxiliary result.

Lemma 4.7 (Wang and Wang, 2011). Let D be a connected non-strong arc-locally in-

semicomplete digraph. If there is more than one initial strong component, then all initial

strong components are trivial.

Lemma 4.8. Let D be an arc-locally in-semicomplete digraph. Let Q be a strong component

that induces an odd extended cycle of length at least five of D. If Q is an initial strong

component of D, then V (D) admits a partition (V1, V2) such that V1 ⇒ V2, V1 = V (Q)

and D[V2] is a bipartite digraph (V2 could be empty).

Proof. Let Q := Q[X1, X2, ..., X2k+1]. Recall that X1 7→ X2 7→ · · · 7→ X2k+1 7→ X1. If

V (D) = V (Q), then the result follows by taking the partition (V (Q), ∅). So we may

assume that D − V (Q) is nonempty. In particular, D is non-strong. By Lemma 4.7,

Q is the only initial strong component of D. Let V2 = V (D) − V (Q). Note that

V (Q) ⇒ V2. Now, we show that D[V2] is a bipartite digraph. By Lemma 4.6(i), ev-

ery vertex of V2 induces a trivial strong component, and hence, D[V2] is an acyclic digraph.

Claim 1. If a vertex u dominates a vertex v1 of a transitive triangle T , then u is adjacent

to a vertex v2 distinct of v1 in V (T ) such that D[{u, v1, v2}] is a transitive triangle. In

particular, if u ∈ V (Q), then u dominates both v1 and v2.

Let V (T ) = {v1, v2, v3}. Assume that u → v1. If v2 → v3 (resp., v3 → v2), then u

and v2 (resp., u and v3) are adjacent. Since D[V2] is an acyclic digraph, Q induces an

odd extended cycle of length at least five, V (Q)⇒ V2 and V (D) = V (Q) ∪ V2, it follows
that D contains no

−→
C3 as a subdigraph. Thus D[{u, v1, v2}] (resp., D[{u, v1, v3}]) is a

transitive triangle. Moreover, note that if u ∈ V (Q), then u dominates both v1 and v2.

This ends the proof of Claim 1.

Claim 2. There is no index i ∈ {1, 2, . . . , 2k+1}, such that there are vertices xi−1 ∈ Xi−1,

xi ∈ Xi and v ∈ V2 for which D[{xi−1, xi, v}] is a transitive triangle.
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Since V (Q)⇒ V2, it follows that xi−1 7→ {xi, v}. Let xi−2 ∈ Xi−2. Since xi−2 → xi−1,

xi → v and xi−1 → v, we conclude that xi−2 and xi are adjacent, a contradiction be-

causeQ induces an extended cycle of length at least five. This finishes the proof of Claim 2.

By Lemma 4.1, it follows that D (and hence, D[V2]) contains no induced non-oriented

odd cycle of length at least five. Since D[V2] is acyclic, to prove that D[V2] is a bipartite

digraph, it suffices to show that D[V2] contains no transitive triangle as a subdigraph.

Towards a contradiction, suppose that D[V2] contains a transitive triangle. Let T be a

transitive triangle of D[V2] such that dist(Q, T ) is minimum. Let V (T ) = {v1, v2, v3}. Let
P = w1w2wl...wl+1 be a minimum path from Q to T . Without loss of generality, assume

that wl+1 = v1. First, suppose that l > 1. By Claim 1, D[{wl, v1, vj}] for some j ∈ {2, 3}
is a transitive triangle which contradicts the choice of T . Thus it follows that l = 1, that

is, there exists an arc from Q to T . Let xi ∈ Xi be a vertex of Q that dominates v1
in V (T ). By Claim 1, D[{xi, v1, vj}] is a transitive triangle with xi → {v1, vj} for some

j ∈ {2, 3}. Let xi−1 ∈ Xi−1. By definition of extended cycle, xi−1 → xi. If v1 → vj
(resp., vj → v1), then since xi → {v1, vj} and xi−1 → xi, it follows that xi−1 → v1 (resp.,

xi−1 → vj), a contradiction to Claim 2. Thus D[V2] is a bipartite digraph.

Since Q is the only initial strong component of D and V (D) = V (Q) ∪ V2, it follows
that (V (Q), V2) is a partition of V (D) such that V (Q) ⇒ V2 and D[V2] is a bipartite

digraph. This ends the proof.

The next lemma is an analogue to Lemma 4.8 for the case in which D has a strong

component Q that induces an odd extended cycle of length at least five but is not an

initial strong component.

Lemma 4.9. Let D be a connected non-strong arc-locally in-semicomplete digraph and let

Q be a non-initial strong component of D that induces an odd extended cycle of length

at least five. Then, D has a clique cut or V (D) admits a partition (V1, V (Q), V3), such

that D[V1] is a semicomplete digraph, V1 7→ V (Q), V1 ⇒ V3, V (Q) ⇒ V3 and D[V3] is a

bipartite digraph (V3 could be empty).

Proof. Let V1 = ∪K∈K−(Q)V (K) and let V3 = ∪K∈K+(Q)V (K). Since Q is a non-initial

strong component, it follows that V1 is non-empty. By Lemma 4.6(iii), the digraph

D[V1] is a semicomplete digraph. By Lemma 4.6(iv), there exists only one initial strong

component K that dominates Q in D. Note that V (K) ⊆ V1. Let B = {V1 ∪ V (Q)∪ V3}.
The rest of the proof is divided into two cases depending on whether V (D) = B or

V (D) ̸= B.

Case 1. Assume that V (D) = B. Let H = D − V1. Note that V (H) = V (Q) ∪ V3.
By Lemma 4.7, Q is the unique initial strong component of H. By Lemma 4.8 applied

to H, it follows that V (Q) ⇒ V3 and D[V3] is a bipartite digraph. In D, it follows from

Lemma 4.6(ii) that V1 7→ V (Q). By definition of K−(Q) and K+(Q), we conclude that

V1 ⇒ V3. Thus (V1, V (Q), V3) is a partition of V (D) as described in the statement.

Case 2. Assume that V (D) ̸= B. We show next that V1 is a clique cut of D. First,

we show that there exists no vertex v in V (D)− B adjacent to V (Q) ∪ V3. Since v /∈ B,
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V1 7→ V (Q), V1 ⇒ V3 and V (Q) ⇒ V3, it follows that v does not dominate and nor is

dominated by any vertex in V (Q), neither is dominated by any vertex in V3. Thus it

suffices to show that v does not dominate any vertex of V3. Towards a contradiction,

suppose that there exists u ∈ V3 such that v dominates u. Choose u such that dist(Q, u)

is minimum. Let P = w1w2wl . . . u be a minimum path from Q to u. Suppose that l > 1.

Let w1 ∈ V (Q), and hence, {w2, ..., wl, u} ⊆ V3. Since v → u, wl → u, wl−1 → wl and D

is arc-locally in-semicomplete, it follows that v → wl−1 which contradicts the choice of u

or contradicts the fact that v /∈ B if wl−1 ∈ V (Q). Thus we may assume that w1 → u

and v → u. Since Q is a non-trivial strong component, let z be a vertex of V (Q) that

dominates w1. Since z → w1, v → u and w1 → u, it follows that z and v are adjacent, a

contradiction to the fact that v /∈ B.

Since D is connected, B is a proper subset of D, D[V1] is a semicomplete digraph and

there exists no vertex in V (D)−B adjacent to V (Q)∪V3, we conclude that V1 is a clique

cut of D. This finishes the proof.

For the main result of this section, we need the following auxiliary result.

Lemma 4.10 (Wang and Wang, 2009). Let D be a strong arc-locally in-semicomplete

digraph. If D contains an induced cycle of length at least five, then D is an extended

cycle.

Theorem 4.2. Let D be a connected arc-locally in-semicomplete digraph. Then,

(i) D is a diperfect digraph, or

(ii) V (D) admits a partition (V1, V2, V3) such that D[V1] is a semicomplete digraph,

V1 7→ V2, V1 ⇒ V3, D[V2] is an odd extended cycle of length at least five, V2 ⇒ V3
and D[V3] is a bipartite digraph (V1 or V3 could be empty), or

(iii) D has a clique cut.

Proof. If D contains no induced odd cycle of length at least five, then it follows from

Lemma 4.2 that D is diperfect. So let C be an induced odd cycle of length at least five of

D. Let Q be the strong component that contains C. By Lemma 4.10, Q induces an odd

extended cycle of length at least five. First, suppose that Q is an initial strong component

of D. Then, it follows from Lemma 4.8 that V (D) admits a partition (V1, V (Q), V3) such

that V1 is empty, V (Q) ⇒ V3 and D[V3] is a bipartite digraph. So we may assume that

Q is not an initial strong component of D. By Lemma 4.9, we conclude that D has a

clique cut or V (D) admits a partition (V1, V (Q), V3) such that D[V1] is a semicomplete

digraph, V1 7→ V (Q), V1 ⇒ V3, V (Q) ⇒ V3 and D[V3] is a bipartite digraph. This ends

the proof.

Since the inverse of an arc-locally in-semicomplete digraph is an arc-locally out-

semicomplete digraph, we have the following result.

Theorem 4.3. Let D be a connected arc-locally out-semicomplete digraph. Then,

(i) D is a diperfect digraph, or



41

(ii) V (D) can be partitioned into (V1, V2, V3) such that D[V1] is a semicomplete di-

graph, V2 7→ V1, V3 ⇒ V1, D[V2] is an odd extended cycle of length at least five,

V3 ⇒ V2 and D[V3] is a bipartite digraph (V1 or V3 could be empty), or

(iii) D has a clique cut.

Next, we provide more structural properties of an arc-locally in-semicomplete digraph

D for which V (D) can be partitioned as described in Theorem 4.2(ii).

Lemma 4.11. Let D be a connected arc-locally in-semicomplete digraph. Let (V1, V2, V3)

be a partition of V (D) as described in Theorem 4.2(ii). Then, the graph U(D[V2 ∪ V3])
contains no cycle of length three.

Proof. Let Q := Q[X1, X2, ..., Xk] be the odd extended cycle of length at least five

corresponding to D[V2]. Since U(D[V3]) is bipartite and U(D[V (Q)]) is an extended

cycle of length at least five, it follows that both U(D[V3]) and U(D[V (Q)]) do not

contain a cycle of length three. Thus suppose that U(D[V (Q) ∪ V3]) contains a

cycle T of length three. Note that V (T ) ∩ V (Q) ̸= ∅ and V (T ) ∩ V3 ̸= ∅. Since

V (Q) ⇒ V3, it follows that T is a transitive triangle in D. Let V (T ) = {x1, x2, x3}.
The rest of the proof is divided into two cases depending on the cardinality of V (T )∩V (Q).

Case 1. |V (T ) ∩ V (Q)| = 2. Let x1, x2 ∈ V (Q) and let x3 ∈ V3. Without loss

of generality, suppose that x1x2 ∈ A(D), x1 ∈ X1 and x2 ∈ X2. Let xk ∈ Xk such

that xk → x1. Since x2 → x3, x1 and x3 are adjacent, xk → x1 and D is arc-locally

in-semicomplete, it follows that xk and x2 are adjacent, a contradiction to the fact that

D[V (Q)] is an odd extended cycle of length at least five.

Case 2. |V (T )∩V (Q)| = 1. Let x1 ∈ V2 and let x2, x3 ∈ V3. Without loss of generality,

suppose that x1 ∈ X1 and x2x3 ∈ A(D). Let xk ∈ Xk such that xk → x1. Since x2 → x3,

x1 → x3, xk → x1 and V2 ⇒ V3, it follows that xk → x2. Thus D[{xk, x1, x2}] is a

transitive triangle with {x1, xk} ⊂ V (Q), and hence, the result follows from the previous

case.

Lemma 4.12. Let D be an arc-locally in-semicomplete digraph. Let H := H[X, Y ] be an

induced connected bipartite subdigraph of D such that |X| ≥ 1, |Y | ≥ 1 and X ⇒ Y . Let

v be a vertex of D − V (H) that dominates some vertex of X. If v ⇒ X, then v 7→ X.

Proof. Let u be a vertex in X such that v → u. Note that we may assume that

|X| > 1. Let w be a vertex in X − u. Since H is connected, U(H) has a path

P = x1y1x2y2 . . . xk−1yk−1xk where x1 = u and xk = w. Note that xi ∈ X and yi ∈ Y .

We prove by induction that v dominates every vertex xi in P . The base case is trivial

since v dominates x1 = u. Suppose that v dominates xi−1. Since X ⇒ Y , it follows that

xi−1 → yi−1 and xi → yi−1. Since D is arc-locally in-semicomplete, v and xi are adjacent;

but v ⇒ X, and hence, v → xi. So we conclude that v dominates w and thus v 7→ X.

For the next lemma, we need to define some sets. Let D be an arc-locally in-

semicomplete digraph. Let (V1, V2, V3) be a partition of V (D) as described in Theo-

rem 4.2(ii). Recall that V1 7→ V2, (V1 ∪ V2) ⇒ V3 and D[V2] is an odd extended cycle of
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length at least five. Let Q := Q[X1, X2, . . . , Xk] be the odd extended cycle corresponding

to D[V2]. Let N0 = V2 and for d ≥ 1 denote by Nd the set of vertices that are at distance

d from V2. Note that Nd ⊆ V3 for d ≥ 1 because V1 7→ V2. For all i ∈ {1, 2, . . . , k}, denote
by Ri (resp., Li) the subset of N+(Xi) ∩ N1 consisting of those vertices that dominate

(resp., are dominated by) some vertex in N+(Xi+1) ∩N1 (resp., N+(Xi−1) ∩N1). More-

over, let Ii = (N+(Xi) ∩N1)− (Li ∪ Ri) and let Wi = N+(Li ∪ Ii ∪ Ri) ∩N2. Note that

N+(Xi) ∩N1 = Li ∪ Ii ∪Ri (see Figure 4.3).

X1 X2 X3

L1 I1 R1

W1

L2 I2 R2

W2

L3 I3 R3

W3 N2

N1

Figure 4.3: Illustration of sets Li, Ii, Ri e Wi.

Lemma 4.13. Let D be a connected arc-locally in-semicomplete digraph. Let (V1, V2, V3)

be a partition of V (D) as described in Theorem 4.2(ii). Let Q := Q[X1, X2, . . . , Xk] be

the odd extended cycle of length at least five corresponding to D[V2]. Then, each one of

the following holds:

(i) Nd is stable for all d ≥ 2,

(ii) there are no vertices xi ∈ Xi, xj ∈ Xj and y ∈ V3 such that i, j ∈ {1, 2, . . . , k},
i ̸= j and {xi, xj} → y,

(iii) there are no vertices u ∈ N+(Xi) ∩ N1, v ∈ N+(Xj) ∩ N1 such that i, j ∈
{1, 2, . . . , k}, i ̸= j, Xi and Xj are non-adjacent and u→ v,

(iv) N+(Xi) ∩N1 ⇒ N+(Xi+1) ∩N1 for all i ∈ {1, 2, . . . , k},

(v) N−(Nd) ⊆ Nd−1 ∪ V1 for all d ≥ 1,

(vi) the digraph D[N1] contains no path of length two,

(vii) N+(Xi) ∩N1 is stable for all i ∈ {1, 2, . . . , k},

(viii) the sets Li, Ii and Ri are pairwise disjoint, N
−(Li) ⊆ Ri−1∪Xi∪V1, N−(Ii∪Ri) ⊆

Xi∪V1, N+(Ri) ⊆ Wi∪Li+1, N
+(Li∪ Ii) ⊆ Wi and Xi 7→ Ri for all i ∈ {1, . . . , k},

(ix) N−(Wi) ⊆ Li ∪ Ii ∪Ri ∪ V1 for all i ∈ {1, 2, . . . , k}.
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Proof. (i) First, we show that N2 is stable. Towards a contradiction, suppose that

there exists an arc uv with {u, v} ⊆ N2. Let x ∈ Q and y ∈ N1 such that x → y and

y → v. Since D is arc-locally in-semicomplete, it follows that u and x are adjacent.

Since V2 ⇒ V3, it follows that x → u, a contradiction because u ∈ N2. Thus N2 is

a stable set. Now, towards a contradiction, suppose that there exists d with d > 2

which Nd is not stable. Choose such d as small as possible. Let u, v ∈ Nd such that

u → v. Let x, y be the vertices of Nd−1 that such x → u and y → v. Since D[V3]

is bipartite, it follows that x ̸= y. Since D is arc-locally in-semicomplete, it follows

that x and y are adjacent, a contradiction to the choice of d. ThusNd is stable for all d ≥ 2.

(ii) Towards a contradiction, suppose that there are vertices xi ∈ Xi, xj ∈ Xj and

y ∈ V3 such that i, j ∈ {1, 2, . . . , k}, i ̸= j and {xi, xj} → y. Without loss of generality,

assume that i < j. By Lemma 4.11, xi and xj are non-adjacent. So Xi−1 ̸= Xj and

Xj−1 ̸= Xi where indices are taken modulo k. Let xi−1 ∈ Xi−1 and let xj−1 ∈ Xj−1.

Since xj−1 → xj, xi → y, xj → y and D is arc-locally in-semicomplete, it follows that

xi → xj−1, and hence, i = j − 2. Using the same argument but with the roles of Xi and

Xj exchanged, we conclude that xj → xi−1, a contradiction because V (Q) induces an

extended cycle of length at least five.

(iii) Towards a contradiction, suppose that there are vertices u ∈ N+(Xi) ∩ N1,

v ∈ N+(Xj) ∩ N1 such that i, j ∈ {1, 2, . . . , k}, i ̸= j, Xi and Xj are non-adjacent and

u → v. Let xi be a vertex in Xi that dominates u and let xj be a vertex in Xj that

dominates v. Since uv ∈ A(D), xi → u, xj → v and D is arc-locally in-semicomplete,

it follows that xi and xj are adjacent, a contradiction because Xi and Xj are non-adjacent.

(iv) Towards a contradiction, suppose, without loss of generality, that there exists an

arc uv ∈ A(D) such that u ∈ N+(X3) ∩N1 and v ∈ N+(X2) ∩N1. Let x3 be a vertex of

X3 that dominates u and let x2 be a vertex of X2 that dominates v. Let x1 ∈ X1. Since

x2v ∈ A(D), u → v, x1 → x2, u ∈ V3, V (Q) ⇒ V3 and D is arc-locally in-semicomplete,

it follows that x1 → u which contradicts (ii).

(v) Towards a contradiction, suppose that there exists a d ≥ 1 such that

N−(Nd) ̸⊆ Nd−1 ∪ V1. Choose such d as small as possible. Let uv be an arc in

A(D) such that v ∈ Nd, u ∈ Nj and j ̸= d− 1. By definition of Nd, it follows that j > d;

otherwise, v /∈ Nd. Let y be a vertex in Nd−1 that dominates v and let x be a vertex

of Nd−2 that dominates y (if d = 1, then let {x, y} ⊆ N0 = V2). Since u → v, y → v,

x → y and D is arc-locally in-semicomplete, it follows that x and u are adjacent. By

definition of Nj, u → x. Since u ∈ V3 and V2 ⇒ V3, it follows that x /∈ N0 = V2. So

x ∈ Nd−2 has an in-neighbor u ∈ Nj with j ̸= d − 3, a contradiction to the choice of d.

Thus N−(Nd) ⊆ Nd−1 ∪ V1 for all d ≥ 1.

(vi) Towards a contradiction, suppose that there exists a path P = u1u2u3 in D[N1].

Let xi ∈ Xi be a vertex of Q that dominates u3. Since u1 → u2, u2u3 ∈ A(D), xi → u3,

D is arc-locally in-semicomplete and V2 ⇒ V3, it follows that xi → u1. Let xi−1 ∈ Xi−1,
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xi−2 ∈ Xi−2 and xi−3 ∈ Xi−3 be vertices of Q where indices are taken modulo k. So

xi−3 → xi−2, xi−2 → xi−1 and xi−1 → xi. Since xi−1 → xi, xiu3 ∈ A(D), u2 → u3 and

V2 ⇒ V3, it follows that xi−1 → u2. Analogously for xi−2, u1 and the arc xi−1u2, we

conclude that xi−2 → u1. Since xi → u1, we have a contradiction by (ii).

(vii) Towards a contradiction, suppose that there exists an arc u1u2 in A(D) such

that {u1, u2} ⊆ N+(Xi) ∩ N1 for some i in {1, 2, . . . , k}. Let v1 and v2 be vertices of

Xi such that v1 → u1 and v2 → u2. By definition of extended cycle, Xi is stable. By

Lemma 4.11, v1 ̸= v2. Since v1 → u1, v2 → u2 and u1u2 ∈ A(D), it follows that v1 and v2
are adjacent, a contradiction to the fact that Xi is a stable set.

(viii) By definition of Ii, it follows that Ii is disjoint from both Li and Ri; also by (vi)

it follows Li ∩ Ri = ∅ for all i ∈ {1, 2, . . . , k}. Thus the sets Li, Ii and Ri are pairwise

disjoint.

Towards a contradiction, suppose that N−(Li ∪ Ii ∪ Ri) ̸⊆ Ri−1 ∪ Xi ∪ V1 for some

i ∈ {1, 2, . . . , k}. Let v be a vertex in V (D) − (Ri−1 ∪Xi ∪ V1) that dominates a vertex

u in Li ∪ Ii ∪ Ri. By (vii), v ̸∈ Li ∪ Ii ∪ Ri. By (ii), v ̸∈ V (Q). By (v), it follows that

v ̸∈ Nd for all d ≥ 2. Thus v ∈ N+(Xj) ∩N1 for some j ̸= i. By (iv), j ̸= i + 1 but this

contradicts (iii). So N−(Li∪Ii∪Ri) ⊆ Ri−1∪Xi∪V1. By (vii), Li∪Ii∪Ri is stable for all

i ∈ {1, 2, . . . , k}. So it follows from definition of Li, Ii and Ri that N
−(Li) ⊆ Ri−1∪Xi∪V1

and N−(Ii ∪Ri) ⊆ Xi ∪ V1.
By (iii), there exists no vertex in Li∪Ii∪Ri that dominates a vertex in N+(Xj)∩N1 for

j ̸∈ {i−1, i+1}. By (iv) and V2 ⇒ V3, it follows that there exists no vertex in Li∪ Ii∪Ri

that dominates a vertex in N+(Xi−1) ∪ V (Q). Since V1 ⇒ V3 and N+(Xi) ∩N1 is stable

for all i ∈ {1, 2, . . . , k}, we conclude we conclude that N+(Li ∪ Ii ∪ Ri) ⊆ Wi ∪ Li+1. By

definition of Li, Ii and Ri, it follows that N
+(Ri) ⊆ Wi ∪ Li+1 and N+(Li ∪ Ii) ⊆ Wi.

Finally, let xi ∈ Xi and let v ∈ Ri; we want to show that xi → v. Let w ∈ Li+1 such

that v → w. Let xi+1 ∈ Xi+1 such that xi+1 → w. Since xi → xi+1, v → w, xi+1 → w

and V2 ⇒ V3, it follows that xi → v. Thus Xi 7→ Ri for all i ∈ {1, 2, . . . , k}.

(ix) Towards a contradiction, suppose that there exists i ∈ {1, 2, . . . , k} such that

N−(Wi) ̸⊆ Li ∪ Ii ∪Ri ∪V1. Recall that, Wi ⊆ N2. Let v be a vertex in V (D)− (Li ∪ Ii ∪
Ri ∪ V1) such that v dominates a vertex w in Wi. By (i), it follows that N2 is stable, and

hence, v /∈ N2. By definition of N2, v /∈ V (Q). So it follows from (v) that v ∈ N+(Xj)∩N1

for some j ̸= i. Let xj be a vertex in Xj such xj → v and let u be a vertex in Li ∪ Ii ∪Ri

such that u→ w. Since xj → v, v → w, u→ w and V (Q)⇒ V3, it follows that xj → u.

Let xi be a vertex in Xi such that xi → u. So {xi, xj} → u which contradicts (ii). Thus

N−(Wi) ⊆ Li ∪ Ii ∪Ri ∪ V1 for all i ∈ {1, 2, . . . , k}.
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4.2 Decomposition for arbitrary arc-locally semicomplete

digraphs

In this section, we show that ifD is a connected arc-locally semicomplete digraph, then

D is either a diperfect digraph or an odd extended cycle of length at least five. Recall

that a digraph D is arc-locally semicomplete if D is both arc-locally in-semicomplete and

arc-locally out-semicomplete.

In [20], Galeana-Sánchez and Goldfeder presented a characterization of arbitrary con-

nected arc-locally semicomplete digraphs. Since this result will not be used throughout

the text and requires more technical definitions, we omit its statement. Here, we present

another structural result for this class.

Let D be an arc-locally semicomplete digraph. Note that the inverse of D is also

an arc-locally semicomplete digraph. So we can use the principle of directional duality

whenever it is convenient. Moreover, every result valid for arc-locally in-semicomplete

digraphs, also holds for arc-locally semicomplete digraphs, because they form a subclass

of the former one.

The next lemma states that if a connected arc-locally semicomplete digraphD contains

an induced odd extended cycle Q of length at least five, then V (D) = V (Q).

Lemma 4.14. Let D be a connected arc-locally semicomplete digraph. If D contains a

strong component Q that induces an odd extended cycle of length at least five, then V (D) =

V (Q).

Proof. Let Q := Q[X1, X2, . . . , X2k+1]. We show that V (D) = V (Q). Suppose that there

exists a vertex u ∈ V (D) − V (Q) such that u is adjacent to Q. By the principle of

directional duality, we may assume that u dominates some vertex in Q. Since D[V (Q)]

is a non-bipartite digraph, it follows from Lemma 4.5 that u 7→ Q. Let x1 ∈ X1, x2 ∈ X2

and x3 ∈ X3. Since u and x2 are adjacent, u → x1, x2 → x3 and D is arc-locally out-

semicomplete, it follows that x1 and x3 are adjacent, a contradiction to the fact that V (Q)

induces an extended cycle of length at least five. Since D is connected, this implies that

V (D) = V (Q). This ends the proof.

Now, we are ready for the main result of this section.

Theorem 4.4. Let D be a connected arc-locally semicomplete digraph. Then, D is either

a diperfect digraph or an odd extended cycle of length at least five.

Proof. If D contains no induced odd cycle of length at least five, then it follows from

Lemma 4.2 that D is diperfect. Thus let C be an induced odd cycle of length at least

five. Let Q be the strong component that contains C. By Lemma 4.10, Q induces

an odd extended cycle of length at least five. Then, by Lemma 4.14 we conclude that

V (D) = V (Q), and hence, D is an odd extended cycle of length at least five. This finishes

the proof.
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4.3 Begin-End conjecture

In this section, we prove that Conjecture 1.2 holds for arc-locally (out) in-semicomplete

digraphs. Recall that D denotes the set of all digraphs containing no induced blocking

odd cycle.

Initially, we present an outline of the main proof. Let D be a connected arc-locally

in-semicomplete digraph. Note that every induced subdigraph of D is also an arc-locally

in-semicomplete digraph. Thus it suffices to show that D satisfies the BE-property. Recall

that we may assume that D is non-diperfect and has no clique cut (see Lemmas 1.2, 1.3

and 1.4). So by Theorem 4.2(ii), V (D) admits a partition (V1, V2, V3) as described in the

statement. First, we show that if D ∈ D, then V1 = ∅. Next, we show that an extended

cycle satisfies the BE-property. Finally, we show that if V3 ̸= ∅, then D satisfies the BE-

property. This last case is divided into two subcases depending on whether there exists a

vertex v in V3 such that dist(V2, v) ≥ 3 or not.

Let us start with a simple lemma.

Lemma 4.15. Let D be an arc-locally in-semicomplete digraph. Let (V1, V2, V3) be a parti-

tion of V (D) as described in Theorem 4.2(ii). If D ∈ D, then V1 = ∅.

Proof. Towards a contradiction, suppose that there exists v in V1. Let xy be an arc of

D[V2]. Since V1 7→ V2 and D[V2] is an extended cycle, it follows that D[{v, x, y}] is a

transitive triangle, a contradiction to the fact that D ∈ D.

The next lemma states that any extended cycle, even or odd, satisfies the BE-property.

Lemma 4.16. Let D be an extended cycle. Then, D satisfies the BE-property.

Proof. Let D := D[X1, X2, . . . , Xk]. Let S be a maximum stable set of D. If k is even,

then D is a bipartite digraph. Since a bipartite digraph is diperfect, the result follows

from Lemma 1.2. So we may assume that k is odd. Note that for every Xi, it follows

that Xi ∩ S = ∅ or Xi ⊆ S because Xi 7→ Xi+1 for all i ∈ {1, 2, . . . , k}. Also, if

Xi ∩ S = Xi, then Xi+1 ∩ S = Xi−1 ∩ S = ∅. Since k is odd, there exists some i such that

Xi ∩ S = Xi+1 ∩ S = ∅.
Without loss of generality, suppose that X1 ⊆ S and X2 ∩ S = X3 ∩ S = ∅. First,

suppose that |X2| ≤ |X3|. Let D′ = D − X2. Since X2 ∩ S = ∅, it follows that S is

maximum in D′. By hypothesis, D′ is BE-diperfect. Let P ′ be an SBE-path partition of

D. By definition of extended cycle, every vertex v of X3 is a source in D′, and hence,

v is the initial vertex in some path of P ′. Since X2 7→ X3 and |X2| ≤ |X3|, it is easy

to see that we can add the vertices of X2 to paths of P ′ that starts at some vertex in

X3, obtaining an SBE-path partition of D. Note that if |X2| > |X3|, the proof proceeds

similarly, but we use D′ = D−X3 instead of D′ = D−X2 and we add the vertices of X3

to paths of P ′ that ends at some vertex in X2.

Now, we are ready to prove Conjecture 1.2 for arc-locally semicomplete digraphs.

Theorem 4.5. Let D be an arc-locally semicomplete digraph. If D ∈ D, then D is BE-

diperfect.
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Proof. Since every induced subdigraph of D is also an arc-locally semicomplete, it suffices

to show that D satisfies the BE-property. Towards a contradiction, suppose the opposite

and let D be a counterexample with the smallest number of vertices. Note that if D′ is

a proper induced subdigraph of D, then D′ is an arc-locally semicomplete digraph, and

hence, by the minimality of D, it follows that D′ satisfies the BE-property. Thus D does

not satisfy the BE-property. Moreover, note that by the minimality of D, we may assume

that D is connected. Thus if follows from Theorem 4.4 that D is either a diperfect digraph

or an odd extended cycle of length at least five. If D is diperfect, then it follows from

Lemmas 1.2 that D satisfies the BE-property, a contradiction. Otherwise, we conclude by

Lemma 4.16 that D satisfies the BE-property, a contradiction. This finishes the proof.

Let D be an arc-locally in-semicomplete digraph. Let (V1, V2, V3) be a partition of

V (D) as described in Theorem 4.2(ii). Let Q := Q[X1, X2, . . . , Xk] be the odd extended

cycle of length at least five corresponding to D[V2]. Recall that N0 = V2 and Nd is

the set of vertices that are at distance d from Q, Ri (resp., Li) the subset of N+(Xi) ∩
N1 consisting of those vertices that dominate (resp., are dominated by) some vertex in

N+(Xi+1) ∩ N1 (resp., N+(Xi−1) ∩ N1). Moreover, Ii = (N+(Xi) ∩ N1) − (Li ∪ Ri) and

Wi = N+(Li ∪ Ii ∪Ri) ∩N2.

Lemma 4.17. Let D be a connected arc-locally in-semicomplete digraph such that every

proper induced subdigraph of D satisfies the BE-property. Let (V1, V2, V3) be a partition

of V (D) as described in Theorem 4.2(ii). If Nd = ∅ for all d ≥ 3 and V1 = ∅, then D

satisfies the BE-property.

Proof. Let Q := Q[X1, X2, . . . , Xk] be the odd extended cycle of length at least five

corresponding to D[V2]. Let S be a maximum stable set of D. By hypothesis, N+(N2) = ∅
and V1 = ∅. By Lemma 4.13(i) and (vii), it follows that Wi and Li ∪ Ii ∪ Ri are stable.

Next, we prove some claims.

Claim 1. We may assume that N+(Li) = ∅ for all i ∈ {1, . . . , k}.

Suppose that there exists some i ∈ {1, 2, . . . , k} such that N+(Li) ̸= ∅. It follows from
Lemma 4.13(viii) that N+(Li) ⊆ Wi. By Lemma 4.13(ix), N−(Wi) ⊆ Li ∪ Ii ∪ Ri. Let

H := H[X, Y ] be a maximal induced connected bipartite subdigraph with arcs between

Li and N
+(Li). Let X ⊆ Li and let Y ⊆ N+(Li) ⊆ Wi. Since Y ⊆ Wi, it follows from

Lemma 4.13(v) that X ⇒ Y . By Lemma 4.13(viii), the sets Li, Ii and Ri are disjoint.

Towards a contradiction, suppose that there exists a vertex v ∈ Ii ∪ Ri such that v

dominates a vertex u in Y . Let x ∈ X and y ∈ Ri−1 be vertices such that x → u and

y → x. Since v → u, y → x, x → u and D is arc-locally in-semicomplete, it follows that

y and v are adjacent. So it follows from Lemma 4.13(iv) that y → v, a contradiction to

fact that v /∈ Li. Since H is maximal connected, Y ⊆ Wi and N
−(Wi) ⊆ Li ∪ Ii ∪ Ri, it

follows that N−(Y ) = X ⊆ Li. Let U = N−(X). By Lemma 4.13(viii), U ⊆ Ri−1 ∪Xi.

By Lemma 4.13(iv) and V2 ⇒ V3, it follows that U ⇒ X. By Lemma 4.12 applied to U

and H, it follows that U 7→ X. Since N+(Y ) = ∅, N(Y ) = X. Since X and Y are stable,

N(Y ) = X, N(X) = U ∪ Y and every vertex in U is adjacent to every vertex in X, it

follows from Lemma 3.15 applied to U , X and Y that D admits an SBE-path partition.
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So we may assume that N+(Li) = ∅ for all i ∈ {1, 2, . . . , k}. This ends the proof of Claim
1.

From now on, let I+i = N−(Wi) ∩ Ii for all i ∈ {1, 2, . . . , k}. So it follows from

Lemma 4.13(viii) that N+(Ii − I+i ) = ∅. The Figure 4.4 illustrates the structure of D

applying Claim 1 and Lemma 4.13(i)-(ix).

X1 X2 X3

L1 I1 R1

W1

L2 I2 R2

W2

L3 I3 R3

W3

Figure 4.4: By Claim 1 and Lemma 4.13(i)-(ix) D has this structure: the sets Li, Ii, Ri,
Wi and Xi are stable, Li ∩ Ii = ∅, Ii ∩Ri = ∅, Li ∩Ri = ∅, N−(Wi) ⊆ I+i ∪Ri,

N−(Li) ⊆ Ri−1 ∪Xi, N
−(Ii ∪Ri) = X2, N

+(Li) = ∅, N+(I+i ) ⊆ Wi, N
+(Ii − I+i ) = ∅

and N+(Ri) ⊆ Wi ∪ Li+1.

Claim 2. We may assume that Xi 7→ I+i ∪Ri ∪Xi+1 for all i ∈ {1, 2, . . . , k}.

Let i in {1, 2, . . . , k}. Since V (Q) ⇒ V3 and Q is an extended cycle, it follows that

Xi ⇒ I+i ∪ Ri and Xi 7→ Xi+1. By Lemma 4.13(viii), Xi 7→ Ri. So it remains to

show that Xi 7→ I+i . Since V1 = ∅, it follows from Lemma 4.13(ix) and by Claim 1

that N−(Wi) ⊆ Ii ∪ Ri. Let H := H[X, Y ] be a maximal induced connected bipartite

subdigraph with arcs between I+i ∪ Ri and Wi. Let X ⊆ I+i ∪ Ri and let Y ⊆ Wi.

Let U = N−(X). By Lemma 4.13(viii), U ⊆ Xi. Since Y ⊆ Wi, it follows from

Lemma 4.13(v) that X ⇒ Y . Since V (Q)⇒ V3 and X ⇒ Y , it follows from Lemma 4.12

applied to U and H that U 7→ X. Since N+(Y ) = ∅ and H is maximal connected,

we conclude that N(Y ) = X. Now, suppose that X ⊆ I+i . Since N(X) = U ∪ Y and

N(Y ) = X, it follows from Lemma 3.15 applied to U , X and Y that D admits an

SBE-path partition. So we may assume that X ⊆ I+i ∪Ri and X ̸⊂ I+i . Since Xi 7→ Ri, it

follows that U = Xi, and hence, Xi 7→ X. Since H is arbitrary, it follows that Xi 7→ I+i .

So we may assume that Xi 7→ I+i ∪Ri ∪Xi+1 for all i ∈ {1, 2, . . . , k}. This ends the proof
of Claim 2.

Claim 3. We may assume that if S ∩Xi ̸= ∅, then Xi ⊆ S for all i ∈ {1, 2, . . . , k}.

Suppose that there exists i ∈ {1, 2, . . . , k} such that Xi ∩S ̸= ∅ and Xi ̸⊆ S. Without

loss of generality, assume that i = 2. By Claim 2, X2 7→ I+2 ∪ R2 ∪X3. Since X1 7→ X2,

it follows that (X1 ∪ I+2 ∪ R2 ∪ X3) ∩ S = ∅. Let S1 = S ∩ (L2 ∪ (I2 − I+2 )) and let

S2 = S ∩W1. Since X2 − S ̸= ∅ and S is a maximum stable set, S1 must be non-empty.
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By Claim 1, N+(L1) = N+(L2) = ∅. By hypothesis, it follows that N+(W1∪W2) = ∅ and
V1 = ∅, and hence, we conclude by Lemma 4.13(ix) that N(W1) ⊆ I1 ∪R1. By definition

of I+2 and by Lemma 4.13(viii), it follows that N(I2 − I+2 ) ⊆ X2 and N(L2) ⊆ R1 ∪X2.

So N(S1 ∪ S2) ⊆ I1 ∪R1 ∪X2. Since S is maximum and (X1 ∪X3 ∪ I+2 ∪R2)∩ S = ∅, we
have that |S1 ∪ S2| ≥ |N(S1 ∪ S2)|. Thus it follows from Lemma 3.14 applied to S1 ∪ S2

that D satisfies the BE-property. So we may assume that if S ∩Xi ̸= ∅, then Xi ⊆ S for

all i ∈ {1, 2, . . . , k}. This ends the proof of Claim 3.

Claim 4. We may assume that there exists no i ∈ {1, 2, . . . , k} such that (Xi ∪ Xi+1 ∪
Xi+2) ∩ S = ∅, where subscripts are taken modulo k.

Without loss of generality, assume that i = 1. Since S is maximum,

(L2 ∪ I2 ∪ R2) ∩ S ̸= ∅. Let S1 = S ∩ (L2 ∪ I2 ∪ R2) and let S2 = S ∩ W1. By

Claim 1, N+(L1) = N+(L2) = N+(L3) = ∅. By hypothesis, N+(W1 ∪ W2) = ∅ and

V1 = ∅. So it follows from Lemma 4.13(ix) that N(W1) ⊆ I1 ∪ R1 and N(W2) ⊆ I2 ∪ R2.

Also, we have by Lemma 4.13(viii) that N(L2 ∪ I2 ∪ R2) ⊆ R1 ∪ X2 ∪ W2 ∪ L3 and

N(I1 ∪ R1) ⊆ X1 ∪W1 ∪ L2. Thus N(S1 ∪ S2) ⊆ I1 ∪ R1 ∪ X2 ∪W2 ∪ L3. Since S is

maximum and (X1 ∪X2 ∪X3) ∩ S = ∅, we conclude that |S1 ∪ S2| ≥ |N(S1 ∪ S2)|, and
hence, by Lemma 3.14 applied to S1 ∪ S2 it follows that D satisfies the BE-property. So

we may assume that there exists no i ∈ {1, 2, . . . , k} such that (Xi∪Xi+1∪Xi+2)∩S = ∅.
This ends the proof of Claim 4.

Since Q is an odd extended cycle, there exists a i ∈ {1, . . . , k} such that

(Xi ∪ Xi+1) ∩ S = ∅. Without loss of generality, assume that (X2 ∪ X3) ∩ S = ∅.
By Claim 3 and 4, it follows that X1 ∪X4 ⊆ S. By Claim 1, N+(L2) = ∅. Since X1 ⊆ S

and (X2 ∪X3) ∩ S = ∅, we conclude that (L1 ∪ I1 ∪ R1) ∩ S = ∅ and W1 ∪ L2 ⊆ S. The

rest of the proof is divided into two cases depending on whether R2 ̸= ∅ or R2 = ∅.

Case 1. R2 ̸= ∅. First, suppose that (I+2 ∪R2)∩S ̸= ∅. LetH := H[X, Y ] be a maximal

induced connected bipartite subdigraph with arcs between (I+2 ∪R2)∩S andW2∪L3. Let

Y ⊆ (I+2 ∪R2)∩S and let X ⊆ W2∪L3. By hypothesis and by Claim 1, N+(W2∪L3) = ∅.
By Lemma 4.13(viii) and (ix), N(X) ⊆ I+2 ∪ R2 ∪ X3 and N(Y ) ⊆ X ∪ X2. Note that

N(X) ∩ N(Y ) = ∅. Since X3 ∩ S = ∅ and H is maximal connected, it follows that

N(X)∩S = Y . By Claim 2, X2 7→ (I+2 ∪R2∪X3), and hence, it follows that every vertex in

N(Y )−X is adjacent to every vertex in N(X). Thus we conclude by Lemma 3.16 applied

to H that D admits an SBE-path partition. So we may assume that (I+2 ∪ R2) ∩ S = ∅.
Since (X2 ∪X3) ∩ S = ∅, it follows that W2 ∪ L3 ⊆ S, I2 − I+2 ⊆ S and I3 − I+3 ⊆ S.

Now, let H := H[X, Y ] be a maximal induced connected bipartite subdigraph with

arcs between W2 ∪ L3 ∪ (I3 − I+3 ) and I+2 ∪ R2 ∪X3. Let X ⊆ W2 ∪ L3 ∪ (I3 − I+3 ) and
let Y ⊆ I+2 ∪ R2 ∪X3. By Lemma 4.13(viii) and (ix) and since H is maximal connected,

we conclude that Y = N(X). Note that X ⊆ S, and hence, Y ∩ S = ∅. We may

assume by Lemma 3.12 that there exists a matching between S and N(S) covering S.

Since X ⊆ S and Y = N(X), this implies that there exists a matching between X and

Y covering X. We show next that exists a matching between X and Y covering X and
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Y ∩ (I+2 ∪ R2). Let Y ′ = Y ∩ (I+2 ∪ R2) and let X ′ = N+(Y ′). Note that X ′ ⊆ X ⊆ S.

Thus by Lemma 3.10 applied to U(H) there exists a matching M between X and Y

covering X such that the restriction of M on Y ′ and X ′ is a maximum matching. Since

(X2 ∪ I+2 ∪ R2) ∩ S = ∅, we conclude that N(Y ′) ∩ S = X ′. Thus by Lemma 3.11 there

exists a matching between Y ′ and X ′ covering Y ′, and this implies that M covers Y ′. So

let M be a matching between X and Y covering X ∪ Y ′. Since H is maximal connected,

it follows that N(X) ∩ (I+2 ∪R2) = Y ′.

Let D′ = D−V (M) and S ′ = S−X. SinceM covers X and Y ′, V (D′)∩(X∪Y ′) = ∅.
Towards a contradiction, suppose that S ′ is not a maximum stable set in D′, and let Z

be a maximum stable set in D′. So |Z| > |S ′| = |S| − |X| = |S| − |V (M)∩ Y |. By Claim

2, X3 7→ I+3 ∪R3 ∪X4. Since X2 7→ X3, if Z ∩ (X2 ∪ I+3 ∪R3 ∪X4) ̸= ∅, then X3 ∩Z = ∅.
Since Y ′ ∩ V (D′) = ∅ and N(X)∩ (I+2 ∪R2) = Y ′, we conclude that Z ∪X is a stable set

larger than S in D, a contradiction. So we may assume that Z ∩ (X2∪ I+3 ∪R3∪X4) = ∅.
Since V (D′) ∩ X = ∅, it follows that Z ∪ (V (M) ∩ Y ) is a stable set larger than S

in D, a contradiction. So S ′ is a maximum stable set in D′. Let PM be the set of

paths in D corresponding to the arcs of M . By hypothesis, D′ is DE-diperfect. Let P ′

be an S ′
BE-path partition ofD′. Thus the collection P ′∪PM is an SBE-path partition ofD.

Case 2. R2 = ∅. First, we prove that W2 = ∅. By Claim 2, X2 7→ I+2 ∪ X3. By

Claim 1, N+(L2) = ∅. Suppose that W2 ̸= ∅. Let H := H[X, Y ] be a maximal connected

induced bipartite subdigraph with arcs between I+2 andW2. Let X ⊆ I+2 and let Y ⊆ W2.

Since N+(W2) = ∅, R2 = ∅ and H is maximal connected, we conclude that N(Y ) = X

and N(X) = X2 ∪ Y . Since X2 7→ X, it follows from Lemma 3.15 applied to X2, X and

Y that D admits an SBE-path partition. So we may assume that W2 = ∅. Since X1 ⊆ S

and (X2 ∪X3)∩ S = ∅, it follows that X1 ∪W1 ∪L2 ∪ I2 ⊆ S and (L1 ∪ I1 ∪R1)∩ S = ∅.
Let X := W1∪L2∪I2∪X3 and let Y = N−(X). Note that X ̸= ∅ because X3 ̸= ∅. By

Lemma 4.13(viii) and (ix), it follows that Y = I+1 ∪R1∪X2 and Y ⇒ X. LetH = D[X∪Y ]

be an induced bipartite subdigraph of D. Note that X, Y is a bipartition of H and

N+(Y ) = X. By Lemma 4.13(viii), N−(Y ) = X1. So N−(Y ) ⊂ S. Since N+(W1) = ∅
andW2 = ∅, we conclude that N+(X∩S) = ∅. By Claim 2, X1 7→ I+1 ∪R1∪X2, and hence,

N−(Y ) 7→ Y . Since X1 ⊆ S, Y ∩ S = ∅. Thus since N−(X) = Y , N+(Y ) = X, Y ⇒ X,

Y ∩ S = ∅, N+(X ∩ S) = ∅, N−(Y ) ⊂ S and N−(Y ) 7→ Y , it follows from Lemma 3.17

applied to H that D admits an SBE-path partition. This finishes the proof.

Lemma 4.18. Let D be a connected arc-locally in-semicomplete digraph such that every

proper induced subdigraph of D satisfies the BE-property. Let (V1, V2, V3) be a partition

of V (D) as described in Theorem 4.2(ii). If Nd ̸= ∅ for some d ≥ 3 and V1 = ∅, then D
satisfies the BE-property.

Proof. Let Nd ̸= ∅ such that d is maximum. By assumption d ≥ 3. By Lemma 4.13(i), the

sets Nd and Nd−1 are stable. Since V1 = ∅, it follows from Lemma 4.13(v) that N−(Nd) ⊆
Nd−1, N

−(Nd−1) ⊆ Nd−2 and N−(Nd−2) ⊆ Nd−3, this implies that Nd−2 ⇒ Nd−1 and

Nd−1 ⇒ Nd. Also, by definition of Nd and since V2 ⇒ V3, we have that N+(Nd−1) = Nd.

Let H := H[X, Y ] be a maximal connected bipartite subdigraph with arcs between Nd−1

and Nd. Let X ⊆ Nd−1 and let Y ⊆ Nd. Let U = N−(X). Since U ⇒ X and X ⇒ Y ,
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it follows from Lemma 4.12 applied to U and H that U 7→ X. By the choice of Nd,

N+(Y ) = ∅. Since H is maximal and connected, we conclude that N(Y ) = X and

N(X) = U ∪ Y . Since U 7→ X, it follows from Lemma 3.15 applied to U , X and Y that

D admits an SBE-path partition.

Now, we are ready for the main result of this section.

Theorem 4.6. Let D be a connected arc-locally in-semicomplete digraph. If D ∈ D, then

D is BE-diperfect.

Proof. Since every induced subdigraph ofD is also an arc-locally in-semicomplete digraph,

it suffices to show that D satisfies the BE-property. If D is diperfect or D has a clique

cut, then the result follows from Lemmas 1.2, 1.3 and 1.4. So we may assume that V (D)

can be partitioned into (V1, V2, V3) as described in Theorem 4.2(ii). From Lemma 4.15,

we get that V1 = ∅. If V3 = ∅, then the result follows from Lemma 4.16. Thus V3 ̸= ∅,
and hence, we conclude by Lemmas 4.17 and 4.18 that D satisfies the BE-property. This

finishes the proof.

Let D be a connected arc-locally in-semicomplete digraph and let H be the inverse of

D. Since D satisfies the BE-property if and only if H satisfies the BE-property, we have

the following result.

Theorem 4.7. Let D be a connected arc-locally out-semicomplete digraph. If D ∈ D, then

D is BE-diperfect.

4.4 Berge’s conjecture

In this section, we prove that Conjecture 1.1 holds for arc-locally (out) in-semicomplete

digraphs. Recall that we denote by B the set of all digraphs containing no induced anti-

directed odd cycle.

First, we present an outline of the main proof. Let D be a connected arc-locally

in-semicomplete digraph. Since every induced subdigraph of D is also an arc-locally in-

semicomplete digraph, it suffices to show that D satisfies the α-property. Recall that we

may assume that D is non-diperfect and has no clique cut (see Lemmas 1.1, 1.3 and 1.4).

So by Theorem 4.2(ii), V (D) admits a partition (V1, V2, V3) as described in the statement.

So we show that if V1 = ∅, thenD satisfies the α-property. Next, we show that an extended

cycle satisfies the α-property (it is analogous to the proof of Lemma 4.16). Finally, we

show that if V1 ̸= ∅, then D satisfies the α-property.

Initially, we show that if V1 = ∅, then D satisfies the α-property.

Lemma 4.19. Let D be a connected arc-locally in-semicomplete digraph such that every

proper induced subdigraph of D satisfies the α-property. Let (V1, V2, V3) be a partition of

V (D) as described in Theorem 4.2(ii). If V1 = ∅, then D satisfies the α-property.
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Proof. Since V1 = ∅, it follows from Lemma 4.11 that U(D) contains no cycle of length

three. So D contains no induced transitive triangle. Moreover, since every blocking odd

cycle is also a non-oriented odd cycle, it follows from Lemma 4.1 that D contains no

blocking odd cycle of length at least five as an induced subdigraph, and this implies that

D ∈ D. Thus we conclude by Theorem 4.6 that D satisfies the BE-property, and hence,

the α-property.

The next lemma states that if a digraph D is an extended cycle, then D satisfies the

α-property. We omit its proof since it is analogous to the proof of Lemma 4.16, but we

use Lemma 1.1 instead of Lemma 1.2.

Lemma 4.20. Let D be an extended cycle. If D ∈ B, then D satisfies the α-property.

Now, we are ready to prove Conjecture 1.1 for arc-locally semicomplete digraphs. We

also omit its proof since it is analogous to the proof of Theorem 4.5, but we use Lemmas 1.1

and 4.20 instead of Lemmas 1.2 and 4.16, respectively.

Theorem 4.8. Let D be a connected arc-locally semicomplete digraph. If D ∈ B, then D

is α-diperfect.

Next, we prove that if (V1, V2, V3) is a partition of V (D) as described in Theorem 4.2(ii)

and V1 ̸= ∅, then D satisfies the α-property.

Lemma 4.21. Let D be a connected arc-locally in-semicomplete digraph such that every

proper induced subdigraph of D satisfies the α-property. Let (V1, V2, V3) be a partition of

V (D) as described in Theorem 4.2(ii). If V1 ̸= ∅, then D satisfies the α-property.

Proof. Let S be a maximum stable set of D. The proof is divided into two cases

depending on whether S ∩ V1 = ∅ or S ∩ V1 ̸= ∅.

Case 1. S ∩V1 = ∅. Let D′ = D−V1. Note that S is maximum in D′. By hypothesis,

D′ is α-diperfect. Let P ′ be an S-path partition of D′. Since V2 ⇒ V3, there exists a path

xPy of P ′ such that x is in V2. Since D[V1] is a semicomplete digraph, it follows that

D[V1] is diperfect. By Lemma 1.1, D[V1] satisfies the α-property; since α(D[V1]) = 1,

this implies that there exists a hamiltonian path uP ′v in D[V1]. Since V1 7→ V2, we have

v → x. Thus the collection (P ′ − P ) ∪ P ′P is an S-path partition of D.

Case 2. S ∩ V1 ̸= ∅. Since V1 7→ V2, S ∩ V2 = ∅. Let Q := Q[X1, X2, . . . , Xk] be the

odd extended cycle of length at least five corresponding to D[V2]. Let xi ∈ Xi for all

i ∈ {1, 2, . . . , k} and let C = x1x2 . . . xkx1 be a cycle of D. Let D′ = D − V (C). Since

V (C) ∩ S = ∅, S is maximum in D′. By hypothesis, D′ is α-diperfect. Let P ′ be an

S-path partition of D′. The rest of the proof is divided into two subcases depending on

whether V (Q) ̸= V (C) or V (Q) = V (C).
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Case 2.1. V (Q) ̸= V (C). First, suppose that there exists a vertex vi ∈ Xi − xi
such that vi is the initial (resp., terminal) vertex in some path P of P ′ for some

i ∈ {1, 2, . . . , k}. Let xiP
′xi−1 (resp., xi+1P

′xi) be a path in C containing V (C).

By definition of extended cycle, xi−1 → vi (resp., vi → xi+1). Thus the collection

(P ′ − P ) ∪ P ′P (resp., (P ′ − P ) ∪ PP ′ ) is an S-path partition of D. So we may assume

that there exists no vertex v in V (Q) − V (C) such that v is the initial vertex or the

terminal vertex in some path of P ′. Thus there exists a vertex vi ∈ Xi − xi such that

vi is an intermediate vertex in a path xPy of P ′ for some i ∈ {1, 2, . . . , k}. Let w be

the vertex of P that dominates vi. Let P1 = xPw and P2 = viPy be the subpaths of P .

Since xi and vi belong to the same Xi of Q and V2 ⇒ V3, it follows that w ∈ V1 ∪Xi−1.

Since V1 ∪ Xi−1 7→ Xi, w → xi. By definition of extended cycle, xi−1 → vi. Let

xiP
′xi−1 be a path in C containing V (C). Let R = P1P

′P2 be the path formed by in-

serting P ′ between P1 and P2. Thus the collection (P ′−P )∪R is an S-path partition of D.

Case 2.2. V (Q) = V (C). Since D′ = D − V (C), V (D′) = V1 ∪ V3. Since D[V1] is

a semicomplete digraph, α(D[V1]) = 1. Since α(D[V (Q)]) > 1, S ∩ V1 ̸= ∅ and S is a

maximum stable set in D, it follows that V3 ̸= ∅. Recall that N0 = V2, Nd is the set of

vertices that are at distance d from Q and Nd ⊆ V3 for all d ≥ 1. By Lemma 4.13(v),

N−(N1) ⊆ V (Q)∪V1. Suppose there exists a vertex v in N1 such that v is the initial vertex

in some path P of P ′. Without loss of generality, assume that x1 ∈ V (C) dominates v in

D. Let x2P
′x1 be a path in C containing V (C). Thus the collection (P ′−P )∪P ′P is an

S-path partition of D. So we may assume that there exists no vertex v in N1 such that v

is the initial vertex in some path of P ′. Since N−(N1) ⊆ V (Q) ∪ V1 and V1 ⇒ V3, there

exists a path P of P ′ such that P contains vertices w ∈ V1 and v ∈ N1 where w → v.

Let P1 = Pw and P2 = vP be the subpaths of P . Without loss of generality, assume that

x1 ∈ V (C) dominates v in D. Let x2P
′x1 be a path in C containing V (C). Since V1 7→ V2,

w → x2. Let R = P1P
′P2 be the path formed by inserting P ′ between P1 and P2. Thus

the collection (P ′ − P ) ∪R is an S-path partition of D. This finishes the proof.

Now, we are ready for the main result of this section.

Theorem 4.9. Let D be a connected arc-locally in-semicomplete digraph. If D ∈ B, then

D is α-diperfect.

Proof. Since every induced subdigraph ofD is also an arc-locally in-semicomplete digraph,

it suffices to show that D satisfies the α-property. If D is diperfect or D has a clique cut,

then the result follows from Lemmas 1.1, 1.3 and 1.4. So we may assume that V (D) can

be partitioned into (V1, V2, V3) as described in Theorem 4.2(ii). If V1 = V3 = ∅, then we

conclude by Lemma 4.20 that D satisfies the α-property. So V1 ∪ V3 ̸= ∅. If V1 = ∅,
then the result follows from Lemma 4.19; and if V1 ̸= ∅, then the result follows from

Lemma 4.21. This ends the proof.

Similarly to Theorem 4.7, we have the following result.

Theorem 4.10. Let D be a connected arc-locally out-semicomplete digraph. If D ∈ B,

then D is α-diperfect.
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The study of this class of arc-locally in-semicomplete digraphs shows the difficulty in

proving both Conjectures 1.1 and 1.2. Note that with the results presented in Section 4.1,

the structure of an arc-locally in-semicomplete digraph is well-defined and relatively sim-

ple, and even so, the proof for this class was quite challenging.

Moreover, it is reasonable to expect the Theorem 4.2 has future applications in other

problems involving arc-locally in-semicomplete digraphs. In particular, we would like

to point out that Theorem 4.2 was used by Silva, Silva and Lee [30] in the context of

χ-diperfect digraphs (a class of digraphs introduced by Berge [7]). More specifically,

they proved that every arc-locally in-semicomplete digraph is χ-diperfect (we omit the

definition here).
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Chapter 5

3-anti-circulant digraphs

In this chapter, we compile the results presented in Freitas and Lee [15], and it is

organized as follows. In Section 5.1, we verify both Conjecture 1.1 and Conjecture 1.2 for

3-anti-circulant digraphs. In Section 5.2, we present some structural results for 3-anti-

digon-circulant digraphs.

Let D be a digraph. We say that a set {v1, v2, v3, v4} ⊆ V (D) is an anti-P4 if v1 → v2,

v3 → v2 and v3 → v4. Whenever it is convenient, we may write an anti-P4 as v1 → v2 ←
v3 → v4. Since every anti-directed odd cycle and every blocking odd cycle of length at

least five contains an induced anti-P4, it seems interesting to study digraphs that do not

contain anti-P4 as an induced subdigraph. Motivated by this observation, initially we

decided to study the class of 3-anti-circulant digraphs which satisfy this property.

In [32], Wang characterized the structure of a strong 3-anti-circulant digraph admit-

ting a partition into vertex-disjoint cycles and showed that the structure is very close to

semicomplete and semicomplete bipartite digraphs. However, this characterization did

not help in proving either conjecture. In order to obtain a better understanding of this

class, we began to study a subclass of 3-anti-circulant digraphs that we called 3-anti-

digon-circulant digraphs. We tried to obtain a characterization of this class; although

we did not succeed in this task, we obtained nice structural results which were strong

enough to settle both conjectures for this class. However, we realized that actually those

results could be extended to settle both conjectures for 3-anti-circulant digraphs. Since

we already had some interesting results for 3-anti-digon-circulant digraphs, we decided to

include them in this chapter.

5.1 3-anti-circulant digraphs

In this section, we verify both Conjecture 1.1 and Conjecture 1.2 for 3-anti-circulant

digraphs that were defined by Wang in [32]. Let D be a digraph. We say that D is

3-anti-circulant if for every anti-P4 v1 → v2 ← v3 → v4, it follows that v4 → v1 (see

Figure 5.1a). Note that the inverse of D is also a 3-anti-circulant digraph. So we can use

the principle of directional duality whenever it is convenient. Moreover, note that every

3-anti-circulant digraph belongs to B, and the only possible induced blocking odd cycle

in a 3-anti-circulant digraph is a transitive triangle (see Figure 5.1b).



56

v3

v4v1

v2

(a)

v2

v3

v1

(b)

Figure 5.1: Examples of 3-anti-circulant digraphs.

Moreover, Wang also characterized the structure of a strong 3-anti-circulant digraph

admitting a partition into vertex-disjoint cycles. However, this characterization does not

help in proving either conjecture. Thus we use a different approach. First, we need the

following definitions.

Let S be a maximum stable set of a digraph D. Denote by B+ (resp., B−) the subset

of V (D)−S such that B ⇒ S (resp., S ⇒ B). Moreover, let B± = V (D)−(B+∪B−∪S),
that is, B± is a set of those vertices that both dominate and are dominated by some vertex

in S (see Figure 5.2). Note that B+, B− and B± are pairwise disjoint and since S is a

maximum stable set in D, it follows that V (D) = S ∪B+ ∪B− ∪B±.

B+ B± B−

S

Figure 5.2: Illustration of B+, B± and B−.

Let us start with a simple and useful structural lemma.

Lemma 5.1. Let D be a 3-anti-circulant digraph. Let S be a maximum stable set in D.

Then, for every v in B+ and for every u in B−, it follows that |N−(v) ∩ B+| ≤ 1 and

|N+(u) ∩B−| ≤ 1.

Proof. Note that by the principle of directional duality, it suffices to show that |N−(v) ∩
B+| ≤ 1. Towards a contradiction, suppose that |N−(v)∩B+| > 1. So let v1, v2 be vertices

in N−(v)∩B+. By definition of B+, there exists a vertex y in S such that v1 → y. Since
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v2 → v ← v1 → y and D is 3-anti-circulant, it follows that y → v2, a contradiction

because v2 ∈ B+. Thus |N−(v) ∩B+| ≤ 1 and |N+(u) ∩B−| ≤ 1.

5.1.1 Begin-End conjecture

In this subsection, we prove Conjecture 1.2 for 3-anti-circulant digraphs. Initially,

we present an outline of the main proof. Let D be a 3-anti-circulant digraph and let

S be a maximum stable set in D. Note that every induced subdigraph of D is also a

3-anti-circulant digraph. Thus it suffices to show that D satisfies the BE-property. First,

we show that if D ∈ D, then there exists no arc connecting vertices of distinct sets in

B+, B− and B±. Next, we show that B+, B− and B± are stable. This implies that

|S| ≥ |B+ ∪ B− ∪ B±|, and hence, it follows from Lemma 3.14 that D satisfies the BE-

property.

In the next three lemmas we show that if U(D) contains a cycle C of length three such

that C contains a digon and V (C) ∩ S ̸= ∅, then D admits an SBE-path partition.

Lemma 5.2. Let D be a 3-anti-circulant digraph such that every proper induced subdigraph

of D satisfies the BE-property. Let S be a maximum stable set in D. Let {v1, v2} be a

digon in D − S. If there exists a vertex v3 in V (D) − {v1, v2} such that v3 ∈ S and

D[{v1, v2, v3}] contains a
−→
C3, then D admits an SBE-path partition.

Proof. With lost of generality, assume that v2 → v3 and v3 → v1. Let D
′ = D − {v1, v2}.

Since {v1, v2}∩S = ∅, S is a maximum stable set in D′. By hypothesis, D′ is BE-diperfect.

Let P ′ be an SBE-path partition of D′. Let P be a path of P ′ such that v3 ∈ V (P ). If

V (P ) = {v3}, then the collection (P ′ − v3)∪ v1v2v3 is an SBE-path partition of D. So we

may assume that |V (P )| > 1. By the principle of directional duality, we may assume that

P starts at v3. Let P = v3w1w2 . . . wk. Next, we show by induction on k that wk → v1
or wk → v2 holds. First, suppose that k = 1. Since v2 → v1 ← v3 → w1 and D is 3-anti-

circulant, it follows that w1 → v2. Now, assume that k > 1. By induction hypothesis,

wi−1 → v1 or wi−1 → v2 for some i ∈ {2, . . . , k}. Since v1 ↔ v2 and wi−1 → wi, it follows

that wi → v1 or wi → v1. Thus wk → v1 or wk → v2. Since v1 ↔ v2, the collection

(P ′ − P ) ∪ Pv1v2 or (P ′ − P ) ∪ Pv2v1 is an SBE-path partition of D.

From now on, we prove some results for 3-anti-circulant digraphs that belong to D.

Lemma 5.3. Let D be a 3-anti-circulant digraph such that every proper induced subdigraph

of D satisfies the BE-property. Let S be a maximum stable set in D. Let {v1, v2} be a digon

in D. If D ∈ D and there exists a vertex v3 in V (D) − {v1, v2} such that {v1, v2} → v3
and {v1, v2, v3} ∩ S ̸= ∅, then D admits an SBE-path partition.

Proof. The proof is divided into two cases depending on whether v3 ∈ S or v3 /∈ S. First,
we prove the following claim.

Claim 1. If there exists a vertex v4 ∈ V (D)−{v1, v2, v3} such v4 → v3, then D[{v1, v2, v3}]
is a complete digraph.
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Since {v1, v2} → v3, v1 ↔ v2 and D is 3-anti-circulant, it follows that {v1, v2} → v4.

Since v2 → v4 ← v1 → v3, we conclude that v3 → v2, and hence, v2 ↔ v3. Since

v1 → v4 ← v2 → v3, it follows that v3 → v1, and hence, v1 ↔ v3. Thus D[{v1, v2, v3}] is a
complete digraph. This ends the proof of Claim 1.

Case 1. v3 /∈ S. If N−(v3) ̸= {v1, v2}, then it follows from Claim 1 that D[{v1, v2, v3}]
is complete, and hence, the result follows from Lemma 5.2. So N−(v3) = {v1, v2}. If

v2 ∈ S (resp., v1 ∈ S), then since N−(v3) = {v1, v2} and v3 /∈ S, the result follows from

Lemma 3.4 with u1 = v1 (resp., u1 = v2), u2 = v3 and P = v2 (resp., P = v1).

Case 2. v3 ∈ S. Since {v1, v2} → v3, {v1, v2} ∩ S = ∅. We may assume by Lemma 5.2

that v1 7→ v3 and v2 7→ v3. Thus it follows from Claim 1 that N−(v3) = {v1, v2}. First,

suppose that there exists a vertex v4 in N+(v2) − {v1, v3}. Since v1 → v3 ← v2 → v4,

it follows that v4 → v1. Since v4 → v1 ← v2 → v3, we conclude that v3 → v4. Since

D ∈ D, there exists at least one digon in D[{v2, v3, v4}]; otherwise, D[{v2, v3, v4}] is an

induced transitive triangle. Since v2 7→ v3 and N
−(v3) = {v1, v2}, it follows that v2 ↔ v4.

Thus the result follows from Lemma 5.2 applied to D[{v2, v3, v4}]. So we may assume

that N+(v2) = {v1, v3}. Let P = v1. Since v2 /∈ S, {v2, v3} ∩ V (P ) = ∅, v2 → v1, v1 → v3
and N+(v2) ⊆ V (P )∪ {v3}, the result follows from Lemma 3.3 with u1 = v2 and u2 = v3.

This finishes the proof.

By the principle of directional duality, we have the following result.

Lemma 5.4. Let D be a 3-anti-circulant digraph such that every proper induced subdigraph

of D satisfies the BE-property. Let S be a maximum stable set in D. Let {v1, v2} be a digon

in D. If D ∈ D and there exists a vertex v3 in V (D) − {v1, v2} such that v3 → {v1, v2}
and {v1, v2, v3} ∩ S ̸= ∅, then D admits an SBE-path partition.

The following lemma states that we may assume that for every transitive triangle T

in D ∈ D, V (T ) ∩ S = ∅.

Lemma 5.5. Let D be a 3-anti-circulant digraph such that every proper induced subdigraph

of D satisfies the BE-property. Let S be a maximum stable set in D. If D ∈ D and D

contains a transitive triangle T such that V (T ) ∩ S ̸= ∅, then D admits an SBE-path

partition.

Proof. Let V (T ) = {v1, v2, v3}. Without loss of generality, assume that v1 → v2 and

{v1, v2} → v3. Since D ∈ D, there exists at least one digon in T ; otherwise, T is an

induced transitive triangle. If v1 ↔ v2 (resp., v2 ↔ v3), then the result follows from

Lemma 5.3 (resp., Lemma 5.4). Thus v1 ↔ v3. If v2 ∈ S, then the result follows from

Lemma 5.2. So {v1, v3}∩S ̸= ∅. Without loss of generality, assume that v3 ∈ S. We show

next that N+(v1) = {v2, v3}. Suppose that there exists a vertex v4 in N+(v1)− {v2, v3}.
Since v2 → v3 ← v1 → v4 and D is 3-anti-circulant, we conclude that v4 → v2. Also, since

v4 → v2 ← v1 → v3, it follows that v3 → v4. Thus the result follows from Lemma 5.3

applied to D[{v1, v3, v4}]. So we may assume that N+(v1) = {v2, v3}. Let P = v2. Since

v1 /∈ S, {v1, v3} ∩ V (P ) = ∅, v1 → v2, v2 → v3 and N+(v1) ⊆ V (P ) ∪ {v3}, the result

follows from Lemma 3.3 with u1 = v1 and u2 = v3. This finishes the proof.
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The next lemma states that we may assume that B− ∪B± ⇒ B+.

Lemma 5.6. Let D be a 3-anti-circulant digraph such that every proper induced subdigraph

of D satisfies the BE-property. Let S be a maximum stable set in D. If D ∈ D and there

are vertices v1 ∈ B+ and v2 ∈ B− ∪ B± such that v1 → v2, then D admits an SBE-path

partition.

Proof. By definition of B+, there exists a vertex y1 in S such that v1 → y1. By definition

of B± and B−, there exists a vertex y2 in S such that y2 → v2. Towards a contradiction,

suppose that y1 ̸= y2. Since y2 → v2 ← v1 → y1 and D is 3-anti-circulant, it follows that

y2 → y1, a contradiction because S is stable. So y1 = y2, and hence, the result follows

from Lemma 5.5 applied to D[{v1, v2, y1}].

By the principle of directional duality, we have the following result.

Lemma 5.7. Let D be a 3-anti-circulant digraph such that every proper induced subdigraph

of D satisfies the BE-property. Let S be a maximum stable set in D. If D ∈ D and there

are v1 ∈ B+ ∪B± and v2 ∈ B− such that v1 → v2, then D admits an SBE-path partition.

We show next that if D ∈ D, then we may assume that B± is a stable set.

Lemma 5.8. Let D be a 3-anti-circulant digraph such that every proper induced subdigraph

of D satisfies the BE-property. Let S be a maximum stable set in D. If D ∈ D and B±

is not stable, then D admits an SBE-path partition.

Proof. Let v1, v2 be adjacent vertices in B±. Without loss of generality, assume that

v1 → v2. By definition of B±, there are vertices y1, y2 in S such that v1 → y1 and y2 → v2.

Since S is stable and D is 3-anti-circulant, it follows that y1 = y2, and hence, the result

follows from Lemma 5.5 applied to D[{v1, v2, y1}].

The next lemma states that if D contains an anti-P4 disjoint from S, then D admits

an SBE-path partition.

Lemma 5.9. Let D be a 3-anti-circulant digraph such that every proper induced subdigraph

of D satisfies the BE-property. Let S be a maximum stable set in D. If D ∈ D and D

contains an anti-P4 disjoint from S, then D admits an SBE-path partition.

Proof. Let {v1, v2, v3, v4} ⊆ V (D) be an anti-P4 in D such that v1 → v2 ← v3 → v4.

Since D is 3-anti-circulant, we conclude that v4 → v1. We show next that v2 ∈ B+ and

v3 ∈ B−. Note that by the principle of directional duality, it suffices to show that v3 ∈ B−.

Moreover, we may assume by Lemma 5.6 that B− ∪B± ⇒ B+. Towards a contradiction,

suppose that v3 /∈ B−. Since v3 /∈ S, it follows that v3 ∈ B+ ∪B±. If v3 ∈ B+, then since

v3 → {v2, v4} and B− ∪ B± ⇒ B+, we conclude that {v2, v4} ⊂ B+. Since v4 ∈ B+, it

follows that v1 ∈ B+, and hence, |N−(v2) ∩ B+| > 1, a contradiction by Lemma 5.1. If

v3 ∈ B±, then since v3 → v4, it follows from Lemma 5.8 that v4 /∈ B±. By Lemma 5.7,

v4 /∈ B−. So v4 ∈ B+. Since v4 ∈ B+ and B− ∪ B± ⇒ B+, it follows that v1 ∈ B+. By

definition of B±, there exists a vertex y in S such that v3 → y. Since v1 → v2 ← v3 → y,

we conclude that y → v1, a contradiction because v1 ∈ B+. Thus v3 ∈ B− and v2 ∈ B+.
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Now, let P1 = v4v1v2 and let P2 = v3v4v1. Towards a contradiction, suppose that

N+(v3) ̸⊆ V (P1) and N
−(v2) ̸⊆ V (P2). So let w1, w2 vertices such that w1 in N−(v2) −

V (P2) and w2 in N
+(v3)−V (P1). First, suppose that w1 = w2. Since D ∈ D, there exists

at least one digon in D[{v2, v3, w1}]; otherwise, D[{v2, v3, w1}] is an induced transitive

triangle. Since v2 ∈ B+ and B− ∪ B± ⇒ B+, we conclude that w1 ↔ v3, and since

v3 ∈ B−, the result follows from Lemma 5.7. So we may assume that w1 ̸= w2 (see

Figure 5.3a).

v3

v4v1

v2

w1 w2

(a)

v3

v4v1

v2

w1 w2

(b)

Figure 5.3: Illustration for the proof of Lemma 5.9.

Since w1 → v2 ← v3 → {w2, v4}, we conclude that {w2, v4} → w1. Since v1 → v2 ←
v3 → w2, w2 → v1. Also, since v4 → w1 ← w2 → v1, we conclude that v1 → v4, and

hence, v1 ↔ v4 (see Figure 5.3b). Since v3 → v4 ← v1 → v2, it follows that v2 → v3, a

contradiction because v2 ∈ B+, v3 ∈ B− and B− ∪ B± ⇒ B+. Thus N+(v3) ⊆ V (P1) or

N−(v2) ⊆ V (P2). Since {v1, v2, v3, v4} ∩ S = ∅, the result follows from Lemma 3.1 with

u = v3 or by Lemma 3.2 with u = v2.

In the next lemmas, we show that if D ∈ D, then B+ and B− are stable. To do this,

we show that there exists no arc v1v2 in D such that v1 ∈ B+ ∪B− and v2 ∈ B±.

Lemma 5.10. Let D be a 3-anti-circulant digraph such that every proper induced subdigraph

of D satisfies the BE-property. Let S be a maximum stable set in D. If D ∈ D and there

are adjacent vertices v1, v2 in V (D) such that v1 ∈ B+ ∪B− and v2 ∈ B±, then D admits

an SBE-path partition.

Proof. By the principle of directional duality, we may assume that v1 ∈ B+. Also, we

may assume by Lemma 5.6 that B− ∪B± ⇒ B+. So v2 7→ v1. By definition of B+, there

exists a vertex y1 in S such that v1 7→ y1. By definition of B±, there exists a vertex y2 in

S such that v2 → y2.

Claim 1. N−(v1) ∩B+ = ∅.

Towards a contradiction, suppose that there exists v3 ∈ B+ such that v3 → v1. Since

v3 → v1 ← v2 → y2 and D is 3-anti-circulant, it follows that y2 → v3, a contradiction by

definition of B+. Thus N−(v1) ∩B+ = ∅. This finishes the proof of Claim 1.
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If N−(v1) = {v2}, then since {v1, v2} ∩ S = ∅, the result follows from Lemma 3.2 with

P = v2 and u = v1. So there exists a vertex v3 in N−(v1) − v2. By definition of B+,

v3 /∈ S. By Claim 1, v3 ∈ B± ∪B−. The rest of proof is divided into two cases depending

on whether v3 ∈ B± or v3 ∈ B− .

Case 1. v3 ∈ B±. Recall that v2 → y2 with y2 ∈ S. Since v2 ∈ B±, we may assume

by Lemma 5.8 that v2 and v3 are non-adjacent. By definition of B±, there exists a

vertex y3 in S such that v3 → y3. Towards a contradiction, suppose that y3 = y2. Since

v3 → y2 ← v2 → v1, we conclude that v1 → v3, a contradiction because B− ∪ B± ⇒ B+.

So y3 ̸= y2. Since v3 → v1 ← v2 → y2, y2 → v3. Also, since v2 → v1 ← v3 → y3, y3 → v2
(see Figure 5.4).

v1

B+ B±

S

v3

v2

y2 y3

Figure 5.4: Illustration for the proof of Lemma 5.10.

Claim 2. N−({y2, y3}) ∩ (B− ∪B±) = {v2, v3}.

By definition of B−, N−({y2, y3}) ∩ B− = ∅. Towards a contradiction, suppose that

there exists a vertex v4 ∈ B± − {v2, v3} such that v4 → yi for some i ∈ {2, 3}. Since

v4 → yi ← vi → v1, we conclude that v1 → v4, a contradiction because B− ∪ B± ⇒ B+.

So N−({y2, y3}) ∩ (B− ∪B±) = {v2, v3}. This ends the proof of Claim 2.

Claim 3. N+({v2, v3})− S = {v1}.

Towards a contradiction, suppose that there exists v4 ∈ V (D)− (S ∪ {v1}) such that

vi → v4 for some i ∈ {2, 3}. Then, {v1, v2, v3, v4} is an anti-P4 disjoint from S, and hence,

the result follows from Lemma 5.9. So we may assume that N+({v2, v3}) − S = {v1}.
This finishes the proof of Claim 3.

Claim 4. If there exists a vertex v4 in V (D)− (S∪{v1, v2, v3}) such that v4 → vi for some

i ∈ {2, 3}, then v4 ∈ B− and N+(v4) = {v2, v3}. Moreover, N−({v2, v3})− S = {v4}.

Without loss of generality, assume that v4 → v3. Since B− ∪ B± ⇒ B+, v4 /∈ B+.

Since {v2, v3} ⊆ B±, it follows from Lemma 5.8 that v4 ∈ B− (see Figure 5.5).



62

v1

B+ B± B−

S

v3

v2

y2 y3

v4

Figure 5.5: Illustration for the proof of Lemma 5.10.

By definition of B−, N+(v4) ∩ S = ∅. Now, we show that N+(v4) ⊆ {v2, v3}. First,

suppose that v4 → v1. Since D ∈ D, there exists at least in digon in D[{v1, v3, v4}];
otherwise, D[{v1, v3, v4}] is an induced transitive triangle. Since B− ∪ B± ⇒ B+,

v3 ↔ v4 which contradicts Claim 3. So v1 /∈ N+(v4). Now, let v5 be a vertex in

N+(v4) − {v2, v3}. By definition of B− and since v4 ∈ B−, it follows that v5 /∈ S. Since

y2 → v3 ← v4 → v5, we conclude that v5 → y2. Since v5 → y2 ← v2 → v1, we conclude

that v1 → v5. Thus since {v1, v3, v4, v5} ∩ S = ∅ and v1 → v5 ← v4 → v3, the result

follows from Lemma 5.9. So N+(v4) ⊆ {v2, v3}. If N+(v4) = {vi} for some i ∈ {2, 3},
then it follows from Lemma 3.1 with P = vi and u = v4 that D admits an SBE-path

partition. Thus N+(v4) = {v2, v3}. Moreover, if N−({v2, v3}) − S ⊃ {v4}, then D

contains an anti-P4 disjoint from S, and hence, the result follows from Lemma 5.9. Thus

N−({v2, v3})− S = {v4}. This ends the proof of Claim 4.

Claim 5. If N−({v2, v3})− S ̸= ∅, then N−(v1) = {v2, v3}.

Let v4 be a vertex in N−({v2, v3})−S. it follows from Claim 4 that N+(v4) = {v2, v3}
and N−({v2, v3})− S = {v4}. Suppose that there exists a vertex v5 in N−(v1)− {v2, v3}.
By definition of B+, v5 /∈ S. Since v5 → v1 ← v2 → y2, y2 → v5. Also, since

v4 → v3 ← y2 → v5, v5 → v4. Since {v1, v3, v4, v5} ∩ S = ∅ and v3 → v1 ← v5 → v4, it

follows from Lemma 5.9 that D admits an SBE-path partition. So we may assume that

N−(v1) = {v2, v3}. This ends the proof of Claim 5.

The rest of proof is divided into two subcases depending on whether

N−({v2, v3})− S ̸= ∅ or N−({v2, v3})− S = ∅.

Subcase 1. N−({v2, v3}) − S ̸= ∅. Let v4 be a vertex in N−({v2, v3}) − S. it

follows from Claim 4 that N+(v4) = {v2, v3} and N−({v2, v3}) − S = {v4}. By Claim 5,

N−(v1) = {v2, v3}. Let D′ = D−{v2, v3}. Note that v1 is a source and v4 is a sink in D′.

Since {v2, v3}∩S = ∅, S is a maximum stable set in D′. By hypothesis, D′ is BE-perfect.

Let P ′ be an SBE-path partition of D′. Let P1, P2 be distinct paths of P ′ such that P1

starts at v1 and P2 ends at v4. Thus the collection (P ′ − {P1, P2}) ∪ {v2P1, P2v3} is an

SBE-path partition of D.
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Subcase 2. N−({v2, v3}) − S = ∅. By Claim 3, N({v2, v3}) − S = {v1}. Let

D′ = D − v1. Since v1 /∈ S, S is a maximum stable set in D′. Let P ′ be an SBE-path

partition of D′. Let P1 be a path of P ′ such that v2 ∈ V (P1) and let P2 be a path of

P ′ such that v3 ∈ V (P2). In D′, N({v2, v3}) ⊂ S. So it follows that both P1 and P2

have length one. If P1 ends at v2 or P2 ends at v3, then since v2 → v1 and v3 → v1,

the collection (P ′ − P1) ∪ P1v1 or (P ′ − P2) ∪ P2v1 is an SBE-path partition of D. Thus

P1 = v2w1 and P2 = v3w2 with w1, w2 ∈ S. Since {v2, v3} → v1, v2 → w1 and v3 → w2, we

conclude that w1 → v3 and w2 → v2. Thus the collection (P ′−{P1, P2})∪{w2v2v1, w1v2}
is an SBE-path partition of D.

Case 2. v3 ∈ B−. By definition of B−, N+(v3) ∩ S = ∅. If there exists a vertex v4 in

N+(v3) − {v1, v2}, then since {v1, v2, v3, v4} ∩ S = ∅ and v2 → v1 ← v3 → v4, the result

follows from Lemma 5.9. Thus N+(v3) ⊆ {v1, v2}, and hence, since {v1, v2, v3} ∩ S = ∅,
the result follows from Lemma 3.1 with P = v2v1 and u = v3. This ends the proof.

Now, we show that if D ∈ D, then we may assume that there exists no arc v1v2 in D

such that v1 ∈ B+ and v2 ∈ B−.

Lemma 5.11. Let D be a 3-anti-circulant digraph such that every proper induced subdigraph

of D satisfies the BE-property. Let S be a maximum stable set of D. If D ∈ D and there

are adjacent vertices v1, v2 in V (D) such that v1 ∈ B+ and v2 ∈ B−, then D admits an

SBE-path partition.

Proof. We may assume by Lemma 5.6 that B− ∪ B± ⇒ B+. So v2 7→ v1. If N−(v1) =

{v2}, then since {v1, v2} ∩ S = ∅, the result follows from Lemma 3.2 with P = v2 and

u = v1. So there exists a vertex v3 in N−(v1) − v2. Since v1 ∈ B+, v3 /∈ S. Since

v2 ∈ B−, N+(v2) ∩ S = ∅. If there exists a vertex v4 in N+(v2) − {v1, v3}, then since

{v1, v2, v3, v4} ∩ S = ∅ and v3 → v1 ← v2 → v4, the result follows from Lemma 5.9.

So we may assume that N+(v2) ⊆ {v1, v3}. Since {v1, v2, v3} ∩ S = ∅, it follows from

Lemma 3.1 with P = v3v1 and u = v2 that D admits an SBE-path partition. This finishes

the proof.

We show next that we may assume that B+ ∪B− is a stable set.

Lemma 5.12. Let D be a 3-anti-circulant digraph such that every proper induced subdigraph

of D satisfies the BE-property. Let S be a maximum stable set of D. If D ∈ D and B+∪B−

is not a stable set, then D admits an SBE-path partition.

Proof. If there are adjacent vertices v1, v2 in V (D) such that v1 ∈ B+ and v2 ∈ B−, then

the result follows from Lemma 5.11. Let v1v2 be an arc in D[B+∪B−]. By the principle of

directional duality, we may assume that {v1, v2} ⊆ B+. Towards a contradiction, suppose

that N−(v2) ⊃ {v1}. Let v3 be a vertex in N−(v2) − v1. By definition of B+, v3 /∈ S.

Moreover, we may assume by Lemmas 5.11 and 5.10 that v3 ∈ B+. By definition of B+, let

y be a vertex in S such that v1 → y. Since v3 → v2 ← v1 → y, we conclude that y → v3, a

contradiction by definition of B+. Thus N−(v2) = {v1}. Since {v1, v2} ∩ S = ∅, it follows
from Lemma 3.2 with P = v1 and u = v2 that D admits an SBE-path partition.
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Finally, we are ready for the main result of this subsection.

Theorem 5.1. Let D be a 3-anti-circulant digraph. If D ∈ D, then D is BE-diperfect.

Proof. Let S be a maximum stable set of D. Since every induced subdigraph of D is also

a 3-anti-circulant digraph, it suffices to show that D satisfies the BE-property. Towards

a contradiction, suppose the opposite and let D be a counterexample with the smallest

number of vertices. Note that if D′ is a proper induced subdigraph of D, then D′ is a

3-anti-circulant digraph, and hence, by the minimality of D, it follows that D′ satisfies the

BE-property. Thus D does not satisfy the BE-property. it follows from Lemmas 5.8 and

5.12 that both B± and B+ ∪ B− are stable. Thus it follows from Lemmas 5.10 and 5.11

that B+∪B−∪B± is stable. Since S is a maximum stable set of D, |S| ≥ |B+∪B−∪B±|.
Thus we conclude by Lemma 3.14 that D satisfies the BE-property, a contradiction. This

ends the proof.

5.1.2 Berge’s conjecture

In this subsection, we verify Conjecture 1.1 for 3-anti-circulant digraphs. Recall that

every 3-anti-circulant digraph D belongs to B. This proof is divided into two cases

depending on whether D contains an induced transitive triangle or not.

Initially, we prove that if D contains an induced transitive triangle, then D satisfies

the α-property.

Lemma 5.13. Let D be a 3-anti-circulant digraph such that every proper induced subdigraph

of D satisfies the α-property. If D contains an induced transitive triangle T , then D

satisfies the α-property.

Proof. Let S be a maximum stable set in D. Let V (T ) = {v1, v2, v3}. Without loss of

generality, assume that {v1, v2} 7→ v3 and v1 7→ v2. First, we prove some claims.

Claim 1. |N−(v3)| ≤ 3. Moreover, if there exists v4 ∈ N−(v3) − {v1, v2}, then v4 → v1
and v2 → v4.

Towards a contradiction, suppose that there are distinct vertices v4, v5 in

N−(v3) − {v1, v2}. Since {v4, v5} → v3 ← v1 → v2 and D is 3-anti-circulant, it

follows that v2 → {v4, v5}. Since v1 → v3 ← v2 → {v4, v5}, we conclude that

{v4, v5} → v1. Also, since v5 → v3 ← v2 → v4, it follows that v4 → v5. Now, since

v2 → v5 ← v4 → v3, it follows that v3 → v2, and hence, v2 ↔ v3, a contradiction because

v2 7→ v3. Thus |N−(v3)| ≤ 3. Moreover, note that if there exists v4 ∈ N−(v3) − {v1, v2},
then v4 → v1 and v2 → v4. This ends the proof of Claim 1.

Claim 2. {v1, v2} ∩ S ̸= ∅.

Suppose that {v1, v2} ∩ S = ∅. First, suppose that there exists a vertex v4 in

N−(v3) − {v1, v2}. By Claim 1, it follows that N−(v3) = {v1, v2, v4}, v4 → v1 and

v2 → v4. Let D′ = D − {v1, v2}. Since {v1, v2} ∩ S = ∅, S is a maximum stable set in
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D′. By hypothesis, D′ is α-diperfect. Let P ′ be an S-path partition of D′. Let P be

a path of P ′ such that v3 ∈ V (P ). Since N−(v3) = {v1, v2, v4}, it follows that P starts

at v3 or v4v3 is an arc of P . If P starts at v3, then since v1 → v2 and v2 → v3, the

collection (P ′ − P ) ∪ v1v2P is an S-path partition of D (note that if N−(v3) = {v1, v2},
then the result follows from previous argument). Thus v4v3 is an arc of P . Let w1 and

wp be the endvertices of P . Let P1 = w1Pv4 and P2 = v3Pwp be the subpaths of P .

Since v4 → v1, v1 → v2 and v2 → v3, the collection (P ′ − P ) ∪ P1v1v2P2 is an S-path

partition of D. So we may assume that {v1, v2}∩S ̸= ∅. This finishes the proof of Claim 2.

Claim 3. {v2, v3} ∩ S ̸= ∅.

By the principle of directional duality, the result follows from Claim 2. This ends the

proof of Claim 3.

By Claim 2 and 3, v2 ∈ S. First, suppose that there exists a vertex v4 in N−(v3) −
{v1, v2}. By Claim 1, it follows that N−(v3) = {v1, v2, v4}, v4 → v1 and v2 → v4. Let

P = v2v4v1 and u = v3. Since (V (P ) − v2) ∩ S = ∅, v1 → u and N−(u) ⊆ V (P ), it

follows from Lemma 3.7 that D admits an S-path partition. So we may assume that

N−(v3) = {v1, v2}.
Now, suppose thatN+(v2) = {v3}. Since v3 /∈ S, the result follows from Lemma 3.6(ii).

So we may assume that there exists a vertex w in N+(v2)−{v1, v3}. Since v1 → v3 ← v2 →
w, we conclude that w → v1. Let P = v2wv1 and let u = v3. Since (V (P ) − v2) ∩ S =

∅, v1 → u and N−(u) ⊂ V (P ), the result follows from Lemma 3.7. This finishes the

proof.

We show next that if D contains no induced transitive triangle, then D satisfies the

α-property.

Lemma 5.14. Let D be a 3-anti-circulant digraph such that every proper induced subdigraph

of D satisfies the α-property. If D contains no induced transitive triangle, then D satisfies

the α-property.

Proof. Since every blocking odd cycle of length at least five contains an induced anti-P4

andD is 3-anti-circulant, it follows thatD contains no blocking odd cycle of length at least

five. Moreover, D contains no induced transitive triangle, and this implies that D belongs

to D. So by Theorem 5.1 D satisfies the BE-property, and hence, the α-property.

Now, we prove the main result of this subsection.

Theorem 5.2. Let D be a 3-anti-circulant digraph. Then, D is α-diperfect.

Proof. Since every induced subdigraph of D is also a 3-anti-circulant digraph, it suffices

to show that D satisfies the α-property. If D contains an induced transitive triangle, then

the result follows from Lemma 5.13. Thus D contains no induced transitive triangle, and

hence, the result follows from Lemma 5.14. This ends the proof.
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5.2 3-anti-digon-circulant digraphs

In this section we present some structural results for 3-anti-digon-circulant digraphs

that we obtained in our research. Let D be a digraph. We say that D is 3-anti-digon-

circulant if for every anti-P4 v1 → v2 ← v3 → v4, we have v1 ↔ v4 (see Figure 5.6). We

show that the structure of these digraphs is very close to complete and complete bipartite

digraphs. Moreover, note that the inverse of a 3-anti-digon-circulant digraph is also a 3-

anti-digon-circulant digraph. So we can use the principle of directional duality whenever

it is convenient.

v3

v4v1

v2

(a)

v2

v3

v1

(b)

Figure 5.6: Examples of 3-anti-digon-circulant digraphs.

Let us start with a nice structural result.

Lemma 5.15. Let D be a connected 3-anti-digon-circulant digraph and H be a strong

subdigraph of D. If for every u ∈ V (H), d−H(u) ≥ 2 and d+H(u) ≥ 2, then for every

v ∈ V (D)− V (H) there exists a vertex w in H such that w ↔ v.

Proof. Let v be a vertex of V (D) − V (H). Since D is connected, there exists a path

between v and some vertex of H in U(D). Let P = u1u2 . . . ukv be a shortest path

between a vertex u1 in V (H) and v in U(D). Towards a contradiction, suppose that

k > 1. By the principle of directional duality, we may assume that P starts at u1 and

ends at v in D. Since d+H(u1) ≥ 2, there exists x in H such u1 → x. Since d−H(x) ≥ 2,

there exists a vertex w in H − u1 such w → x. Since w → x← u1 → u2 and D is 3-anti-

digon-circulant, it follows that w ↔ u2. Note that if u2 = v, then we have a contradiction

by minimality of P . So k > 2. Since d−H(x) ≥ 2, there exists a vertex w1 in H such that

w1 → w. Since w1 → w ← u2 → u3, it follows that w1 ↔ u3, which contradicts the

minimality of P . Thus k = 1, and hence, v is adjacent to H. Using the same argument

with v in the role of u2, we conclude that w ↔ v for some w ∈ V (H).

In the next lemmas, we show that the structure of D is very close to complete and

complete bipartite digraph.

Lemma 5.16. Let D be a connected 3-anti-digon-circulant digraph. If D contains an anti-

P4, then D is a complete digraph or a complete bipartite digraph.
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Proof. Let {v1, v2, v3, v4} ⊆ V (D) be an anti-P4 in D such that v1 → v2 ← v3 → v4.

Since D is 3-anti-digon-circulant digraph, v1 ↔ v4. Since v1 → v4 ← v3 → v2 , v1 ↔ v2.

Similarly to v2, v3 and v3, v4, we have v2 ↔ v3 and v3 ↔ v4. Thus vi ↔ vi+1 for

every i ∈ {1, 2, 3, 4} where subscripts are taken modulo 4. Let H = D[{v1, v2, v3, v4}].
Moreover, from now on, let i ∈ {1, 2, 3, 4} where subscripts are taken modulo 4.

Claim 1. For every u ∈ V (D)− V (H), if u is adjacent to vi, then u↔ vi and u↔ vi+2.

By the principle of directional duality, we may assume that u → vi. Since

u → vi ← vi+1 → vi+2, it follows that u ↔ vi+2. Moreover, since u → vi+2 ← vi+1 → vi,

we conclude that u↔ vi. This ends the proof of Claim 1.

Claim 2. If there exists a vertex u in V (D)−V (H) such that u is adjacent to both vi and

vi+1, then D is a complete digraph.

Without loss of generality, assume that i = 1. Since u is adjacent to both v1 and v2, it

follows from Claim 1 that u↔ v1, u↔ v2, u↔ v3 and u↔ v4. Since v4 → v1 ← u→ v2,

it follows that v2 ↔ v4. Since v3 → v4 ← u → v1, v1 ↔ v3. So H is a complete digraph.

If V (D) = V (H), then the result follows. So V (H) ⊂ V (D). Let x be a vertex in

V (D)− V (H). Note that d−H(v) ≥ 2 and d+H(v) ≥ 2 for every v in H. So it follows from

Lemma 5.15 that x is adjacent to some vertex in H. By Claim 1, there are two vertices

in H, say v1 and v3, such that x↔ v1 and x↔ v3. Since x→ v1 ← v4 → v2, we conclude

that x ↔ v2. By Claim 1, x ↔ v4. Since x is arbitrary, it follows that for every vertex

x ∈ V (D)− V (H), we have x↔ v1, x↔ v2, x↔ v3, x↔ v4. Now, let x1, x2 be distinct

vertices in V (D)− V (H). Since x1 → v1 ← v2 → x2, we conclude that x1 ↔ x2. Thus it

follows that D is a complete digraph. This finishes the proof of Claim 2.

Claim 3. If there are vertices vi, vi+2 in H such that vi and vi+2 are adjacent, then D is a

complete digraph.

Without loss of generality, assume that v1 → v3. Since v2 → v3 ← v1 → v4, it follows

that v2 ↔ v4. Also, since v1 → v4 ← v2 → v3, we conclude that v1 ↔ v3. So H is a

complete digraph. If V (D) = V (H), then the result follows. So let x be a vertex in

V (D) − V (H). By Lemma 5.15, x is adjacent to H. By Claim 1, there are distinct

vertices in H, say v1 and v3, such that x↔ v1 and x↔ v3. Since x→ v1 ← v4 → v2, we

conclude that x↔ v2. Thus it follows from Claim 2 that D is complete. This finishes the

proof of Claim 3.

If there are adjacent vertices vi and vi+2 in H, then it follows from Claim 3 that D is

a complete digraph. So we may assume that v1 and v3 (resp., v2 and v4) are non-adjacent

in D. Let X be the subset of vertices in V (D) − V (H) which are adjacent to {v1, v3}
and let Y be the subset of vertices in V (D) − V (H) which are adjacent to {v2, v4}. By

Lemma 5.15, X ∪ Y = V (D) − V (H). We show next that (X ∪ {v2, v4}, Y ∪ {v1, v3})
is a bipartition of D. By Claim 1, it follows that x ↔ v1, x ↔ v3, y ↔ v2 and y ↔ v4
for every x ∈ X and for every y ∈ Y . If X ∩ Y ̸= ∅, then D is complete by Claim 2, a
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contradiction because because v1 and v3 are non-adjacent in D. So X ∩ Y = ∅. Now, we
show that X is stable. Towards a contradiction, suppose that there are vertices x1, x2 in

X such that x1 → x2. Since v3 → x2 ← x1 → v1, it follows that v1 ↔ v3, a contradiction.

So X is stable, and analogously, Y is stable. Finally, we show next that for every x ∈ X
and for every y ∈ Y , x ↔ y. Let x be a vertex of X and let y be a vertex of Y . Since

x → v1 ← v2 → y, it follows that x ↔ y. Thus D is a complete bipartite digraph with

bipartition (X ∪ {v2, v4}, Y ∪ {v1, v3}). This ends the proof.

For the next lemmas, we need the following definitions. Let D be a digraph. First,

suppose that D has order three. Let V (D) = {v1, v2, v3}. We say that D is a TT ∗ digraph

if v2 7→ v1, v3 7→ v1 and v2 ↔ v3 or if v1 7→ v2, v1 7→ v3 and v2 ↔ v3 (see Figure 5.7a

and 5.7b). We say that D is a C∗
3 digraph if v1 → v2, v2 → v3, v3 → v1 and there exists

at least one digon in D (see Figure 5.7c). Now, suppose that D has order four. Let

V (D) = {v1, v2, v3, v4}. We say that D is a F4 digraph if v1 → v2, v2 → v3, v3 → v4,

v4 → v1 and v1 ↔ v4 (see Figure 5.7d).

v2

v3

v1

(a) TT ∗

v2

v3

v1

(b) TT ∗

v2

v3

v1

(c) C∗
3

v4

v3v2

v1

(d) F4

Figure 5.7: illustrations of TT ∗, C∗
3 and F4 digraphs.

Lemma 5.17. Let D be a connected 3-anti-digon-circulant digraph. If D contains a TT ∗,

then one of the following holds:

(i) D is a complete digraph,

(ii) D is a complete bipartite digraph,

(iii) D is a
−→
C 3 with at least two digons,
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(iv) D is a TT ∗, or

(v) D[{v1, v2}] is an initial or a final strong component of D where {v1, v2} is a digon

in TT ∗.

Proof. Let H be a TT ∗ in D. Let V (H) = {v1, v2, v3}. Without loss of generality,

suppose that {v1, v2} → v3 and v1 ↔ v2. If V (D) = V (H), then D is a TT ∗ or a
−→
C 3 with

at least two digons. So we may assume that V (H) ⊂ V (D). Since D is connected, there

exists a vertex u in V (D)− V (H) such that u is adjacent to some vertex in H. The rest

of proof is divided into two cases depending on whether u dominates some vertex in H

or some vertex in H dominates u.

Case 1. Suppose that u dominates a vertex vi in H for some i ∈ {1, 2, 3}. If u → v1
(resp., u→ v3), then since u→ v1 ← v2 → v3 (resp., u→ v1 ← v2 → v3), it follows that

D contains an anti-P4. Moreover, if u → v2, then since u → v2 ← v1 → v3, we conclude

that D contains also an anti-P4. Thus it follows from Lemma 5.16 that D is a complete

digraph or a complete bipartite digraph.

Case 2. Suppose that a vertex vi in H dominates u for some i ∈ {1, 2, 3}. First,

suppose that N−({v1, v2}) ̸= ∅. So let w be a vertex in N−({v1, v2}). Suppose that

w ̸= v3. Since v1 ↔ v2 and {v1, v2} → v3, it follows that D contains an anti-P4, and

hence, it follows from Lemma 5.16 that D is a complete digraph or a complete bipartite

digraph. So we may assume that w = v3. Since vi in H dominates u for some i ∈ {1, 2, 3}
and there are two digons in H, it easy to see that D contains an anti-P4, and hence, the

result follows from Lemma 5.16. Thus N−({v1, v2}) = ∅, and this implies that D[{v1, v2}]
is an initial strong component of D.

Now, we prove the main result of this section.

Lemma 5.18. Let D be a connected 3-anti-digon-circulant digraph. If D contains a digon

{v1, v2}, then one of the following holds:

(i) D is a complete digraph,

(ii) D is a complete bipartite digraph,

(iii) D is an F4,

(iv) D is a C∗
3 ,

(v) D is a TT ∗,

(vi) D[{v1, v2}] is an initial or a final strong component of D, or

(vii) D has a clique cut.
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Proof. If V (D) = {v1, v2}, then D is complete, and the result follows. So we may assume

that |V (D)| ≥ 3. If N(v1) = {v2} (resp., N(v2) = {v1}), then v1 (resp. v2) is a clique

cut. Thus |N(v1)| ≥ 2 and |N(v2)| ≥ 2. If D contains an anti-P4 as a subdigraph, then

it follows from Lemma 5.16 that D is complete or complete bipartite. So we may assume

D contains no anti-P4 as a subdigraph.

Claim 1. If there exists a vertex v3 in V (D)−{v1, v2} such that v1 ↔ v3 or v2 ↔ v3, then

D is complete, complete bipartite, a C∗
3 or D has a clique cut.

With loss of generality, assume that v1 ↔ v3. Since |N(v2)| ≥ 2, there exists a vertex

w in N(v2) − {v1}. Towards a contradiction, suppose that v3 ̸= w. Since v3 ↔ v1 and

v1 ↔ v2, it easy to see that D contains an anti-P4, a contradiction. Thus v3 = w. If

V (D) = {v1, v2, v3}, then D is a C∗
3 and the result follows. So |V (D)| ≥ 4. Towards a

contradiction, suppose that there exists a vertex w in V (D) − {v1, v2, v3} such that w

and v2 are adjacent. Since v1 ↔ v2 and v1 ↔ v3, it follows that D contains an anti-P4,

a contradiction. So N(v2) ⊆ {v1, v3}. Since |V (D)| ≥ 4 and N(v2) ⊆ {v1, v3}, it follows
that {v1, v3} is a clique cut. This ends the proof of Claim 1.

Claim 2. If there are distinct vertices w1, w2 such that w1 → v and v → w2, then D is

complete, complete bipartite, a C∗
3 , F4 or D has a clique cut.

If w1 ↔ v or v ↔ w2, then it follows from Claim 1 that D is complete, complete

bipartite, a C∗
3 or D has a clique cut. So we may assume that w1 7→ v and v 7→ w2. Since

|N(u)| ≥ 2, there exists a vertex x in V (D)−v such that x is adjacent to u. If x /∈ {w1, w2},
then D has an anti-P4 because w1 → v, v → w2 and u ↔ v, a contradiction. So we may

assume that N(u) ⊆ {v, w1, w2}. Note that this implies that N(v) = {w1, u, w2}.
First, suppose that N(u) = {w1, v, w2}. If u→ w2, then since w1 → v and u→ v, we

have that D has an anti-P4, a contradiction. So w2 → u. Similarly to u and w1, we have

u→ w1. Towards a contradiction, assume that w1 and w2 are adjacent. If w2 → w1, then

since w2 → u and v → u, it follows that D has an anti-P4, a contradiction. If w1 → w2,

then since v → w1 and v → u, it follows that D has an anti-P4, a contradiction. So we

may assume that w1 and w2 are non-adjacent. Let H = D[{w1, v, w2, u}]. Note that H

is a F4. Towards a contradiction, assume that V (H) ⊂ V (D). Since D is connected, let

x be a vertex in V (D) − V (H) such that x is adjacent to H. Since N(u) = {w1, v, w2}
and N(v) = {w1, u, w2}, it follows that x is adjacent to {w1, w2}. Since u ↔ v, w1 → v

and v → w2, it easy to see that D has an anti-P4, a contradiction. So V (D) = V (H), and

hence, D is a F4.

Now, suppose that N(u) ⊂ {w1, v, w2}. Since |N(u)| ≥ 2, there exists a vertex x in

V (D) − v such x and u are adjacent. If x /∈ {w1, w2}, then D has an anti-P4 because

w1 → v, u ↔ v and v → w2. So x ∈ {w1, w2}. If u is adjacent to w1, then {v, w2} is a

clique cut; otherwise, if u is adjacent to w2, then {w1, v} is a clique cut. This ends the

proof of Claim 2.
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Claim 3. If there exists a vertex w in V (D) − {u, v} such that u → w and w → v, then

D is complete, complete bipartite, a C∗
3 or D has a clique cut.

Towards a contradiction, assume that there exists a vertex x in V (D) − {u, v} such

that x and w are adjacent. By the principle of directional duality, we may assume that

x → w. Since u → w and u → v, we have that D has an anti-P4, a contradiction. So

N(w) = {u, v}. If V (D) ̸= {u, v, w}, then {u, v} is a clique cut. Thus V (D) = {u, v, w},
and hence, D is a C∗

3 . This finishes the proof of Claim 3.

By Claim 1, we may assume that there exists no vertex w in V (D)− {u, v} such that

w1 ↔ v or w1 ↔ u. Since |N(u)| ≥ 2, by the principle of directional duality, assume

that there exists w in N+(u) − v. By Claim 2, we may assume that N−(u) = {v}. If

v → w, then D[{u, v, w}] is a TT ∗, and hence, it follows from Lemma 5.17 that D is a

complete digraph, a complete bipartite digraph or a TT ∗. If w → v, then it follows from

Claim 3 that D is complete, complete bipartite, a C∗
3 or D has a clique cut. So w and

v are non-adjacent. Since |N(v)| ≥ 2, let x be a vertex in N(v) − u. If x → v, then D

has an anti-P4 because u → v and u → w. So v → x. By Claim 2, we may assume that

N−(v) = {u}. Thus N−({u, v}) = ∅, and hence, D[{u, v}] is an initial strong component

of D. This finishes the proof.

Note that with the results presented in this section, in order to obtain a complete

characterization of a 3-anti-digon-circulant digraph D, it suffices to analyze the case where

D contains no digon nor anti-P4 as a subdigraph. We leave this as an open problem.

Furthermore, an interesting and natural followup would be analyzing digraphs which

for every anti-P4 v1 → v2 ← v3 → v4, it follows that v1 and v4 are adjacent. We believe

this could be a challenging problem.

Finally, in context of this chapter, the most interesting problem would be character-

izing digraphs which do not contain an anti-P4 as an induced subdigraph. Such result

would potentially give us some insight on how to deal with arbitrary digraphs in D.

However, this problem is probably very difficult, since we do not even know a complete

characterization of 3-anti-circulant digraphs, a special subclass of those digraphs.
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Chapter 6

Other results

In this chapter we present some results for both Conjecture 1.1 and Conjecture 1.2 for

several classes of digraphs. These results were obtained during our research but they do

not fit into any of the other chapters. Let D be a digraph. We say that D is k-quasi-

transitive (resp., k-transitive) if for every path uPv of length k, u and v are adjacent

(resp., u dominates v) in D.

This chapter is organized as follows. In Section 6.1, we verify both conjectures for

quasi-transitive digraphs. In Section 6.2, we present some results for 3-quasi-transitive

digraphs. In Section 6.3, we verify both conjectures for strong 4-transitive digraphs and

we provide some results for non-strong 4-transitive digraphs. In Section 6.4, we show that

if a digraph D is a counterexample for Conjecture 1.1 that minimizes |V (D)| + |A(D)|,
then D is not a 4-semi-symmetric digraph. We also show that if D is a counterexample for

Conjecture 1.2 that minimizes |V (D)|+|A(D)|, then D is not a 3-semi-symmetric digraph.

In Section 6.5, we provide some results for digraphs with stability number two. Finally,

in Section 6.6, we show that if a digraph D belongs to D and U(D) is a complement of

an odd cycle with length at least seven, then D is BE-diperfect.

6.1 Quasi-transitive digraphs

In this section, we prove that both Conjectures 1.1 and 1.2 are true for quasi-transitive

digraphs. We say that a digraph D is quasi-transitive if D is 2-quasi-transitive. We also

say that D is transitive if D is 2-transitive. In order to verify both conjectures for this

class, we show that a quasi-transitive digraph D is diperfect, and hence, it follows from

Lemmas 1.1 and 1.2 that D is α-diperfect and BE-diperfect, respectively.

It is well-known that transitive digraphs are diperfect. Moreover, Ghouila-Houri [23]

proved the following theorem.

Theorem 6.1 (Ghouila-Houri, 1962). A graph G has a quasi-transitive orientation if and

only if G has a transitive orientation.

Thus it follows from Theorem 6.1 that every quasi-transitive digraph is also diperfect.

Here, we present an alternative proof of this fact that relies on Strong Perfect Graph

Theorem (Theorem 1.1). In order to do this, we need the next auxiliary result.
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Lemma 6.1. If D is a quasi-transitive digraph, then U(D) contains no induced odd cycle

of length at least five.

Proof. Towards a contradiction, suppose that U(D) contains an induced odd cycle C of

length at least five. In D, let P = u1u2 . . . uk be a maximum path in C. Note that P

has at least three vertices because C is odd and has at least five vertices. Since D is

quasi-transitive, it follows that u1 and u3 must be adjacent in D, a contradiction.

Theorem 6.2. Let D be a digraph. If D is quasi-transitive, then D is diperfect.

Proof. Towards a contradiction, suppose that D is not diperfect. By Lemma 6.2, U(D)

contains no induced odd cycle of length at least five. Thus it follows from Theorem 1.1

that U(D) contains an induced complement, denoted by U(C), of an odd cycle U(C) of

length at least five. By definition of complement, two vertices are adjacent in U(C) (and

in D) if and only if they are not consecutive in U(C). Since the complement of a C5 is also

a C5, we may assume that C contains at least seven vertices. In D, let C = v1v2 . . . v2k+1v1
where k > 2. By the principle of directional duality, we may assume that v1 → v6.

Now, towards a contradiction, suppose that v6 → v2. Since D is quasi-transitive, it

follows that v1 and v2 are adjacent in D, a contradiction because U(C) is induced. So

v2 → v6. Similarly, we have v3 → v6 and v4 → v6. Again, towards a contradiction,

suppose that v5 → v1. Since v1 → v6 and D is quasi-transitive, we conclude that v5
and v6 are adjacent in D, a contradiction. Thus v1 → v5. Similarly, v1 → v4. Now, if

v7 → v4, then since v4 → v6, it follows that v7 and v6 are adjacent, a contradiction. So

v4 → v7. Similarly, v4 → {v8, v9, ..., v2k+1}. Therefore, since v1 → v4, v4 → v2k+1 and D is

quasi-transitive, we conclude that v1 and v2k+1 are adjacent in D, a contradiction. This

finishes the proof.

With the results obtained for this class, we decided to study a natural generalization

(3-quasi-transitive digraphs), which we present in the next section.

6.2 3-quasi-transitive digraphs

In this section, we present some results for 3-quasi-transitive digraphs. In [3], Bang-

Jensen introduced the class of 3-quasi-transitive digraphs. Let D be a digraph. We

say that D is 3-quasi-transitive if for every path of length three P = v1v2v3v4 in D, its

endvertices v1 and v4 are adjacent. Here, we show that every strong 3-quasi-transitive

digraph satisfies the BE-property (resp., α-property). We also present some results for

non-strong 3-quasi-transitive digraphs. In particular, we show that if a non-strong 3-quasi-

transitive digraph D contains a strong component Q such that D[V (Q)] is non-bipartite,

then D satisfies the BE-property (resp., α-property).

Since it was introduced by Bang-Jensen, several results for this class of digraphs have

been presented in the literature [1, 13, 17, 18, 27, 35, 36]. In [17], Galeana-Sánchez,

Goldfeder and Urrutia provided a characterization for strong 3-quasi-transitive digraphs.

In [35], Wang and Wang proved the conjecture of Laborde, Payan and Xuong for arbitrary

3-quasi-transitive digraphs. This conjecture states that every digraph has a stable set
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intersecting every non-augmentable path (we do not define this concept here because we

will not need it). In [1], Arroyo and Galeana-Sánchez proved the path partition conjecture

for strong 3-quasi-transitive digraphs. This conjecture states that for every digraph D,

and every choice of positive integers λ1, λ2 such that λ1 + λ2 is equals to the order of a

longest path in D, there exists a partition of D in two vertex-disjoint subdigraphs D1, D2

such that the order of the longest path in Di is at most λi for i ∈ {1, 2}.
First, let us define a class of digraphs which is related to 3-quasi-transitive digraphs.

Let n ≥ 4 be an integer. Let Hn be a digraph such that V (Hn) = {x1, x2, x3 . . . , xn} and
A(Hn) = {x1x2, x2x3, x3x1} ∪ {x1xi, xix2 : for all i ∈ {4, . . . , n}} (see Figure 6.1).

x2

x1

x3

x4 x5 x6 x7 x8

Figure 6.1: Illustration of a Hn with n = 8.

For ease of reference, we state the following result.

Theorem 6.3 (Galeana-Sánchez, Goldfeder and Urrutia, 2010). Let D be a strong 3-quasi-

transitive digraph. Then D is either a semicomplete digraph, a semicomplete bipartite

digraph or a Hn for some n ≥ 4.

Next we show that if a 3-quasi-transitive digraph D is strong, then D satisfies the

BE-property (resp., α-property). Recall that we may assume that D is connected and D

has no clique cut (see Lemmas 1.3 and 1.4).

Lemma 6.2. Let D be a 3-quasi-transitive digraph. If D is strong and D ∈ D (resp.,

D ∈ B), then D satisfies the BE-property (resp., α-property).

Proof. By Theorem 6.3, D is either a semicomplete digraph, a semicomplete bipartite

digraph or a Hn for some n ≥ 4. If D is semicomplete or semicomplete bipartite, then D

is diperfect, and hence, it follows from Lemma 1.2 (resp., Lemma 1.1) that D satisfies the

BE-property (resp., α-property). So we may assume that D is a Hn for some n ≥ 4. Let

x1, x2, x3 be vertices in D such that x1x2, x2x3, x3x1 are arcs in D. Since n > 3, it follows

from definition of Hn that {x1, x2} is a clique cut, a contradiction.

Next we prove some results for both conjectures for a non-strong 3-quasi-transitive

digraph D. In order to do this, we need the following two auxiliary results [9, 35].

Lemma 6.3 (Wang and Wang, 2011). Let D be a non-strong 3-quasi-transitive digraph.

Let Q be a non-trivial strong component of D. Let v ∈ V (D)− V (Q). Then,
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(i) if D[V (Q)] is bipartite with bipartition (X, Y ) and v dominates (resp., is domi-

nated by) some vertex in X, then v 7→ X (resp., X 7→ v),

(ii) if D[V (Q)] is non-bipartite and v dominates (resp., is dominated by) some vertex

in Q, then v 7→ Q (resp., Q 7→ v).

Lemma 6.4 (Camion, 1959). Let D be a semicomplete digraph. If D is strong, then D is

hamiltonian.

The next two lemmas state that ifD contains a strong componentQ such thatD[V (Q)]

is non-bipartite, then D satisfies the BE-property and α-property.

Lemma 6.5. Let D be a non-strong 3-quasi-transitive digraph such that every proper in-

duced subdigraph of D satisfies the BE-property. If D ∈ D and D contains a strong

component Q such that D[V (Q)] is non-bipartite, then D satisfies the BE-property.

Proof. Let V1 (resp., V2) be a subset of V (D) − V (Q) consisting of those vertices that

dominate (resp., are dominated by) some vertex in Q. Since Q is a strong component ofD,

it follows that V1 ∩ V2 = ∅. Since D[V (Q)] is non-bipartite, it follows from Lemma 6.3(ii)

that V1 7→ Q and Q 7→ V2. Let S be a maximum stable set of D. By Theorem 6.2,

D[V (Q)] is either a semicomplete digraph or Hn for some n ≥ 4. By definition of Hn,

every Hn contains at least one transitive triangle. Since D ∈ D, it follows that D[V (Q)]

is a semicomplete digraph. By Lemma 6.4, D[V (Q)] is hamiltonian. Since D[V (Q)]

is semicomplete, |S ∩ V (Q)| ≤ 1. Since V1 7→ Q 7→ V2, D[V (Q)] is hamiltonian and

|S ∩ V (Q)| ≤ 1, it follows from Lemma 3.5 that D admits an SBE-path partition.

Next, we show a version of Lemma 6.5 for α-diperfect digraphs.

Lemma 6.6. Let D be a non-strong 3-quasi-transitive digraph such that every proper in-

duced subdigraph of D satisfies the α-property. If D ∈ B and D contains a strong com-

ponent Q such that D[V (Q)] is non-bipartite, then D satisfies the α-property.

Proof. Similarly to Lemma 6.5, let V1 (resp., V2) be a subset of V (D)− V (Q) consisting

of those vertices that dominate (resp., are dominated by) some vertex in Q. Since Q is

a strong component of D, it follows that V1 ∩ V2 = ∅. Since D[V (Q)] is non-bipartite,

it follows from Lemma 6.3(ii) that V1 7→ Q and Q 7→ V2. Let S be a maximum stable

set of D. By Theorem 6.2, D[V (Q)] is either a semicomplete digraph or Hn for some

n ≥ 4. We omit the proof if D[V (Q)] is a semicomplete digraph because it is analogous

to the proof of Lemma 6.5. So we may assume that D[V (Q)] is a Hn for some n ≥ 4. Let

V (Hn) = {x1, x2, x3 . . . , xn} and let E(Hn) = {x1x2, x2x3, x3x1} ∪ {x1xi, xix2 : for all i ∈
{4, . . . , n}}. Let C = x1x2x3x1 be a cycle. Note that at least two vertices in C do not

belong to S. So let xi, xj be vertices in C such that {xi, xj}∩S = ∅ for some i, j ∈ {1, 2, 3}.
Without loss of generality, assume that xi → xj.

Let D′ = D−{xi, xj}. Since {xi, xj}∩S = ∅, S is maximum in D′. By hypothesis, D′

is α-diperfect. Let P ′ be an S-path partition of D′. Let xl be the vertex in V (C)−{xi, xj}.
Since xi → xj, it follows that xl → xi and xj → xl. Let P be a path of P ′ such that

xl ∈ V (P ). First, suppose that P starts at xl. Since {xi, xj} ∩ S = ∅, xi → xj and
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xj → xl, it follows that the collection (P ′ − P ) ∪ xixjP is an S-path partition of D. So

we may assume that P does not start at xl. Let w be the vertex in P such that w → xl.

Let P1 = Pw and P2 = xlP be the subpaths of P . Since Q 7→ V2 and xl ∈ V (Q), it

follows that w ∈ V1 ∪ V (Q). Suppose that w ∈ V1. So w 7→ Q. Since w → xi, xi → xj
and xj → xl, the collection (P ′ − P ) ∪ P1xixjP2 is an S-path partition of D. So we may

assume that w ∈ Q. If P ends at xl, then the collection (P ′ − P ) ∪ Pxixj is an S-path

partition of D. So let w2 be the vertex in P such that xl → w2. Since V1 7→ Q and w ∈ Q,
it follows from definition of Hn that w2 ∈ V2. Since Q 7→ V2, xj → w2. So the collection

(P ′ − P ) ∪ P1xlxixjP2 − xl is an S-path partition of D.

By Lemmas 6.5 and 6.6, if a 3-quasi-transitive digraph is a minimal counterexample

for both conjectures, then D contains no strong component that induces a non-bipartite

digraph. So we may assume that every strong component inD induces a bipartite digraph.

We were not able to prove the conjectures under this scenario, but we obtained some

interesting results which we describe in what follows. In order to do this, first we show

some nice structural lemmas.

Lemma 6.7. Let D be a non-strong 3-quasi-transitive digraph and let S be a maximum

stable set of D. Let Q be a non-trivial strong component that induces a bipartite digraph

with bipartition (X1, X2). If S ∩X1 ̸= ∅, then X1 ⊆ S and X2 ∩ S = ∅.

Proof. By Theorem 6.3, D[V (Q)] is a semicomplete bipartite digraph. Since S ∩X1 ̸= ∅,
it follows that X2∩S = ∅. We show next that X1 ⊆ S. Towards a contradiction, suppose

that there exists a vertex v ∈ X1 such that v /∈ S. It follows from Lemma 6.3(i) that

(N−(X1) − X2) 7→ X1 and X1 7→ (N+(X1) − X2). Since X1 ∩ S ̸= ∅ and X2 ∩ S = ∅
we conclude that N(X1) ∩ S = ∅. Thus S ∪ v is a stable set larger than S in D, a

contradiction.

We show next a nice structural result for a 3-quasi-transitive digraph in D.

Lemma 6.8. Let D be a 3-quasi-transitive digraph. Let U(C) be an odd cycle of length at

least five in U(D). If D ∈ D, then C contains a chord or a digon in D.

Proof. If C is a cycle in D, then C contains a
−→
P4 because it has at least five vertices.

Since D is 3-quasi-transitive, it follows that C contains a chord. So we may assume that

C is a non-oriented odd cycle in D and C contains no
−→
P4. Since C is odd and C has

length at least five, let P = u1u2u3 be a maximum path in C. Since C has length at least

five, let v1, v2 be two vertices in V (C) − {u1, u2, u3} such that v1 is adjacent to u1 and

v2 is adjacent to u3. Since P is maximum in C, it follows that u1 → v1 and v2 → u3.

Now, suppose that v1 and v2 are adjacent. If v2 → v1, then C contains a chord or a

digon; otherwise, C is a blocking odd cycle with (v1, u1) a blocking pair, a contradiction

because D ∈ D. If v1 → v2, then P
′ = u1v1v2u3 is a

−→
P4, a contradiction. So v1 and v2 are

non-adjacent in D. Since C is odd, let v3, v4 be two vertices in V (C)− {u1, u2, u3, v1, v2}
such that v3 is adjacent to v1 and v4 is adjacent to v2. If v3 → v1, then C contains a

chord or a digon; otherwise, C is a blocking odd cycle with (v1, u1) a blocking pair, a

contradiction. So v1 → v3. Similarly, we have v4 → v2; otherwise, (u3, v2) is a blocking

pair. Again, if v3 → v4, then P
′ = v1v3v4v2 is a

−→
P4, a contradiction; and if v4 → v3, then
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C contains a chord or a digon. Thus v3 and v4 are non-adjacent. Since C is odd, let v5, v6
be two vertices in V (C) − {u1, u2, u3, v1, v2, v3, v4} such that v5 is adjacent to v3 and v6
is adjacent to v4. Using analogous arguments to the previous ones, we have that v5 → v3
and v4 → v6. Note that v5 and v6 are non-adjacent. Moreover, note that if vi → vi+2

where i is odd, then vi+3 → vi+1. Let V (C) = {u1, u2, u3, v1, v2, . . . , vk}. Since C is odd,

we conclude that k is even. Let vk−1 and vk. Since vk−1 and vk are adjacent and D ∈ D,

it follows that C contains a chord or a digon.

Unfortunately, the the proof presented for Lemma 6.8 does not work for a digraph in

B. The Lemma 6.8 helps to exemplify the difference between a blocking odd cycle and

an anti-directed odd cycle. Note that in proof of lemma, the fact that C has no blocking

pair was essential. However, anti-directed odd cycles may have a blocking pair which

invalidates the argument. It is possible for C to have a blocking pair, to be induced, and

still not to be an anti-directed odd cycle (see Figure 6.2).

v4

v2

v3v5

v1

Figure 6.2: Example of an induced odd cycle that has a blocking pair but is not an anti-
directed odd cycle.

Next, we show that if every strong component of a non-strong 3-quasi-transitive di-

graph D is trivial (equivalently, D is acyclic), then D is BE-diperfect.

Lemma 6.9. Let D be a non-strong 3-quasi-transitive digraph such that every strong com-

ponent of D induces a bipartite digraph. If D ∈ D and D contains no digon, then D is

BE-diperfect.

Proof. Since D contains no digon, it follows from Lemma 6.8 that U(D) contains no

induced odd cycle of length at least five. We show next that D is a bipartite digraph.

Towards a contradiction, suppose that D is bipartite and let C be an induced odd cycle

of U(D). Since every strong component of D induces a bipartite digraph, we conclude

that C is non-oriented in D. By Lemma 6.8, C has length three. Since D contains no

digon, it follows that C is an induced transitive triangle, a contradiction because D ∈ D.

Thus D is bipartite, and hence, the result follows from Lemma 1.2.

Now, we prove a simple, but useful lemma.

Lemma 6.10. Let D be a non-strong 3-quasi-transitive digraph that every proper induced

subdigraph of D satisfies the BE-property (resp., α-property). Let S be a maximum stable
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set in D. Let Q be a non-trivial strong component of D such that D[V (Q)] is a complete

bipartite digraph. If Q is initial and V (Q)∩ S = ∅, then D admits an SBE-path partition

(resp., α-property).

Proof. Let (X, Y ) be the bipartition of D[V (Q)]. Without loss of generality, suppose that

|X| ≤ |Y |. Let D′ = D −X. Since V (Q) ∩ S = ∅, S is maximum in D′. By hypothesis,

D′ is BE-diperfect. Let P be an SBE-path partition of D. Since Q is an initial strong

component of D, it follows that every vertex in Y is the initial vertex in some path of P .
Since |X| ≤ |Y | and D[V (Q)] is a complete bipartite digraph, it is easy to see that using

the arcs in Q, we can add the vertices of X to paths of P that start at some vertex in Y ,

obtaining an SBE-path partition of D.

By the principle of directional duality, we have the following result.

Lemma 6.11. Let D be a non-strong 3-quasi-transitive digraph that every proper induced

subdigraph of D satisfies the BE-property (resp., α-property). Let S be a maximum stable

set in D. Let Q be a non-trivial strong component of D such that D[V (Q)] is a complete

bipartite digraph. If Q is final and V (Q) ∩ S = ∅, then D admits an SBE-path partition

(resp., α-property).

The next lemma states that if a non-strong 3-quasi-transitive digraph D contains two

non-trivial strong components Q1, Q2 such that Q1 7→ Q2 and D[V (Qi)] is bipartite for

i ∈ {1, 2}, then D satisfies the BE-property.

Lemma 6.12. Let D be a non-strong 3-quasi-transitive digraph that every proper induced

subdigraph of D satisfies the BE-property. Let Q1, Q2 be two non-trivial strong components

of D such that D[V (Qi)] is bipartite, for all i ∈ {1, 2}. If Q1 7→ Q2 and D ∈ D, then D

satisfies the BE-property.

Proof. Let (X1, Y1) and (X2, Y2) be the bipartition of D[V (Q1)] and D[V (Q2)], re-

spectively. By Theorem 6.3, it follows that D[V (Q1)] and D[V (Q2)] are semicomplete

bipartite digraphs. Since Q1 7→ Q2 and D ∈ D, we conclude that D[V (Q1)] and D[V (Q2)]

are complete bipartite digraphs; otherwise, it easy to see that D contains an induced

transitive triangle.

Claim 1. The strong component Q1 is initial and Q2 is final in D.

By the principle of directional duality, it suffices to show that Q1 is initial. Towards

a contradiction, suppose that Q1 is non-initial. Let v be vertex in V (D) − V (Q1) such

that v dominates a vertex x1 in Q1. Without loss of generality, suppose that x1 ∈ X1.

Let x2 be a vertex in X2. Since D[V (Q1)] is complete and Q1 7→ Q2, there exists a
−→
P4

that starts at v and ends at x2. Since D is 3-quasi-transitive and Q1 and Q2 are strong

components of D, it follows that v1 → x2. Thus D[{v, x1, x2}] is an induced transitive

triangle, a contradiction because D ∈ D. So Q1 is initial and Q2 is final in D. This

finishes the proof of Claim 1.
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Let S be a maximum stable set in D. Now, suppose that V (Q) ∩ S ̸= ∅. Since

Q1 7→ Q2, V (Q2) ∩ S = ∅. By Claim 1, Q2 is final in D. Since D[V (Q2)] is complete, it

follows from Lemma 6.11 that D admits an SBE. So we may assume that V (Q) ∩ S = ∅,
and hence, the result follows from Lemma 6.10.

Similarly to Lemma 6.8, the proof presented for Lemma 6.12 does not work for a

non-strong 3-quasi-transitive digraph D in B. In this case, the fact that D contains no

induced transitive triangle is essential, and we need this fact to prove that each strong

component of D induces a complete bipartite digraph. Without this argument, we cannot

complete the proof for the version of D in B.

However, with the results presented in this section, the structure of the digraph that

remains to verify both conjectures in this class is well-defined and relatively simple: every

strong component of D induces a semicomplete bipartite digraph; if a strong component

Q intersects a maximum stable set S, then the part of bipartition in Q that intersects S

is entirely contained in S. Also, we may assume that there exists at least one digon in D,

this implies that there exists at least one non-trivial strong component in D. Howsoever,

it should be noted that even with a well-defined structure, verifying both conjectures for

this class could be a challenging problem.

6.3 4-transitive digraphs

In this section, we present some results for 4-transitive digraphs. Recall that a digraph

D is 4-transitive if for every path of length four P = v1v2v3v4v5 in D, v1 dominates v5.

Here, we show that a strong 4-transitive digraph satisfies the BE-property (resp., α-

property). We also present some results for non-strong 4-transitive digraphs.

In [26], Hernández-Cruz and Galeana-Sánchez introduced 4-transitive digraphs. Since

their introduction, several results have been presented in the literature for this class of

digraphs [11, 22, 25, 33]. In [22], Garciá-Vázquez and Hernández-Cruz characterize 4-

transitive digraphs having a 3-kernel and also 4-transitive digraphs having a 2-kernel

(we omit this definition). Using the last one result, they verified the Laborde-Payan-

Xuong conjecture (defined in Section 6.2) for 4-transitive digraphs. They also show that

Seymour’s Second Neighborhood Conjecture is true for 4-transitive digraphs. Seymour’s

Second Neighborhood conjecture states that every digraph has a vertex whose second

out-neighborhood is at least as large as its first out-neighborhood.

Before we present the results of this section, we need to define some concepts. Let

D be a digraph. We say that D is a star if U(D) is a complete bipartite digraph with

bipartition (X, Y ) such that |X| = 1. We also say that the vertex in X is the internal

vertex and the vertices in Y are leaves (see Figure 6.3a).

We say that D is a double star if U(D) is obtained by joining the internal vertex of

two vertex-disjoint stars (see Figure 6.3b). Recall that D is symmetric if for every pair of

adjacent vertices u, v ∈ V (D), we have u↔ v.

In [25], Hernández-Cruz provided a characterization for strong 4-transitive digraphs.
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(a) a symmetric star with four
leaves

(b) a symmetric double star with six
leaves

Figure 6.3: Example of a symmetric star and a symmetric double star.

Theorem 6.4 (Hernández-Cruz, 2013). Let D be a strong 4-transitive digraph. Then ex-

actly one of the following possibilities holds:

(i) D is a complete digraph,

(ii) D is an extended cycle of length 3,

(iii) D has circumference 3, an extended cycle of length 3 as a spanning subdigraph

with cyclical partition {V0, V1, V2}, at least one digon exists in D and for every digon

{vi, vi+1} in D, with vj ∈ Vj for j ∈ {i, i+ 1}(mod 3), |Vi| = 1 or |Vi+1| = 1,

(iv) D has circumference 3, U(D) is not 2-edge-connected and {S1, S2, . . . , Sn} are the
vertex sets of the maximal 2-edge-connected subgraphs of U(D), with Si = {ui} for
every 2 ≤ i ≤ n and such that D[S1] has an extended cycle of length 3 with cyclical

partition {V0, V1, V2} as a spanning subdigraph. A vertex v0 ∈ V0 (without loss of

generality) exists such that v0uj, ujv0 ∈ A(D) for every 2 ≤ j ≤ n. Also, |V0| = 1

and D[S1] has the structure described in (i) or (ii), depending on the existence of

digons,

(v) D is a symmetric digraph such that U(D) is a C5,

(vi) D is a symmetric star with at least 3 vertices,

(vii) D is a symmetric double star, or

(viii) D is a strong digraph with at most 4 vertices not included in the previous families.

In order to show that a strong 4-transitive digraph satisfies the BE-property, we need

the following auxiliary result.

Lemma 6.13. Let D be a digraph. If U(D) has circumference 3, then D is diperfect.

Proof. Towards a contradiction, suppose that D is non-diperfect. Since U(D) has cir-

cumference 3, it follows from Strong Perfect Graph Theorem (Theorem 1.1) that U(D)

contains an induced complement, denoted by U(C), of an odd cycle U(C) of length at

least five. Since the complement of a C5 is also a C5, we have that U(D) has circumference

at least five, a contradiction. So D is diperfect.
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The next lemma states that a strong 4-transitive digraph satisfies the BE-property.

Lemma 6.14. Let D be a strong 4-transitive digraph. If D ∈ D, then D is BE-diperfect.

Proof. By Theorem 6.4, if D is a symmetric complete star or a symmetric complete

double star, then D is bipartite, and hence, D is diperfect. Thus the result follows from

Lemma 1.2. Also, if D is a complete digraph, an extended cycle of length 3 or a strong

digraph of order less than or equal to 4, then D is diperfect, and the result follows.

Moreover, if D has circumference 3, then it follows from Lemma 6.13 that D is diperfect,

and the result follows. So we may assume that D is a symmetric digraph such that U(D)

is a C5. Thus D is hamiltonian and the result follows easily.

The next lemma is a version of Lemma 6.14 for α-diperfect digraphs, we omit its proof

because it is analogous, but we use Lemma 1.1 instead of Lemma 1.2.

Lemma 6.15. Let D be a strong 4-transitive digraph. If D ∈ B, then D is α-diperfect.

Now, we prove some results for a non-strong 4-transitive digraph. In order to do this,

we need the following structural lemma. Recall that if Q is a strong component of a

digraph D, then K−(Q) (resp., K+(Q)) is the set of strong components that reach (resp.,

are reached by) Q in D.

Lemma 6.16. Let D be a non-strong 4-transitive digraph. Let Q be a strong component Q

with at least four vertices. If D[V (Q)] is hamiltonian, then for every strong component

K in K−(Q), we have K 7→ Q.

Proof. Let u be a vertex in K ∈ K−(Q). Note that there exists a path from u to Q in D.

Let P = uw1w2 . . . wk be a minimum path from u to wk such wk in Q. We show next that

k = 1. Towards a contradiction, suppose that k > 1. Since Q is a hamiltonian, let P ′ be

a path in Q such that P ′ has length two, P ′ starts at wk and ends at v. So wk−2wk−1P
′

has length four (if k = 2, then uwk−1P
′). Since D is 4-transitive, it follows that wk−2 → v

(if k = 2, then u → v). Thus the path uw1 . . . wk−2v contradicts the minimality of P .

So we may assume that u dominates some vertex in Q. Now, we show that u 7→ Q. Let

C = w1w2 . . . wk be a hamiltonian cycle in Q where k ≥ 4. Without loss of generality,

suppose that u→ w1. Since k ≥ 4, let P = uw1w2w3w4 be a path of length four. Since D

is 4-transitive, u→ w4. Also, there exists a path uw4Pwi of length four in C, and hence,

u→ wi. Since C is a hamiltonian cycle, it easy to see that u→ {w1, w2, . . . , wk}. Since Q
is a strong component, we conclude that u 7→ Q. Moreover, since u and K are arbitrary,

the result follows.

By the principle of directional duality, we have the following result.

Lemma 6.17. Let D be a non-strong 4-transitive digraph. Let Q be a strong component Q

with at least four vertices. If D[V (Q)] is hamiltonian, then for every strong component

K in K+(Q), we have Q 7→ K.



82

The next lemma states that if a non-strong 4-transitive digraph D contains a strong

component Q such that D[V (Q)] is symmetric such that U(D) is a C5, then D satisfies

the BE-property (resp., α-property).

Lemma 6.18. Let D be a non-strong 4-transitive digraph such that every proper induced

subdigraph of D satisfies the BE-property (resp., α-property). If D contains a strong

component Q such that D[V (Q)] is symmetric and U(D[V (Q)]) is a C5, then D satisfies

the BE-property (resp., α-property).

Proof. Let S be a maximum stable set in D. Let V (Q) = {v1, v2, v3, v4, v5}. Since Q

induces a symmetric digraph and U(D[V (Q)]) is a C5, it follows that there exists at least

one digon disjoint from S in Q. Without loss generality, suppose that {v1, v2} ∩ S = ∅.
Now, letD′ = D−v2. Since v2 /∈ S, it follows that S is maximum inD′. By hypothesis,

D′ is BE-diperfect. Let P ′ be an SBE-path partition. Let P be a path of P ′ such that

v1 ∈ V (P ). If P starts (resp., ends) at v1, then since v1 ↔ v2, it follows that the collection

(P ′−P )∪ v2P (resp., (P ′−P )∪Pv2 ) is an SBE-path partition of D. So we may assume

that P neither starts nor ends at v1. Let w1, w2 be vertices in P such that w1 → v1 and

v1 → w2. Since Q induces a symmetric digraph, U(D[V (Q)]) is a C5 and v2 /∈ V (D′),

it follows that {w1, w2} ̸⊆ V (Q). By the principle of directional duality, we may assume

that w2 /∈ V (Q). Since D[V (Q)] is hamiltonian, it follows from Lemma 6.17 that Q 7→ w2.

So v2 → w2. Let P1 = Pv1 and P2 = w2P be the subpaths of P . Since v1 ↔ v2 and

v2 → w2, the collection (P ′ − P ) ∪ P1v2P2 is an SBE-path partition of D. This ends the

proof.

Next, we show that if a non-strong 4-transitive digraph D contains an initial strong

component Q such that D[V (Q)] is a complete digraph with at least three vertices, then

D satisfies the BE-property (resp., α-property).

Lemma 6.19. Let D be a non-strong 4-transitive digraph such that every proper induced

subdigraph of D satisfies the BE-property (resp., α-property). Let Q be an initial strong

component of D containing at least three vertices. If D[V (Q)] is a complete digraph, then

D satisfies the BE-property (resp., α-property).

Proof. Let S be a maximum stable set in D. Since D[V (Q)] is a complete digraph

containing at least three vertices, there exists at least one digon in Q disjoint from S.

So let {v1, v2} be a digon in Q such that {v1, v2} ∩ S = ∅.
Let D′ = D − v2. Since v2 /∈ S, it follows that S is maximum in D′. By hypothesis,

D′ is BE-diperfect. Let P ′ be an SBE-path partition. Let P be a path of P ′ such that

v1 ∈ V (P ). If P starts at v1, then since v1 ↔ v2, it follows that the collection (P ′−P )∪v2P
is an SBE-path partition of D. So we may assume that P does not start at v1. Let w be

the vertex in P such that w → v1. Since Q is initial, we conclude that w ∈ V (Q). Since

D[V (Q)] is a complete digraph, w ↔ v2. Let P1 = Pw and P2 = v1P be the subpaths of

P . Thus the collection (P ′ − P ) ∪ P1v2P2 is an SBE-path partition of D.

By the principle of directional duality, we have the following result.
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Lemma 6.20. Let D be a non-strong 4-transitive digraph such that every proper induced

subdigraph of D satisfies the BE-property (resp., α-property). Let Q be a final strong

component of D containing at least three vertices. If D[V (Q)] is a complete digraph, then

D satisfies the BE-property (resp., α-property).

The next lemma states that if a non-strong 4-transitive digraph D contains a strong

component Q such that D[V (Q)] is a complete digraph with at least four vertices, then

D satisfies the BE-property (resp., α-property).

Lemma 6.21. Let D be a non-strong 4-transitive digraph such that every proper induced

subdigraph of D satisfies the BE-property (resp., α-property). If D contains a strong

component Q such that D[V (Q)] is a complete digraph with at least four vertices, then D

satisfies the BE-property (resp., α-property).

Proof. Let S be a maximum stable set in D. Since Q induces a complete digraph, it

follows that |V (Q) ∩ S| ≤ 1. Since Q contains at least four vertices, there exists a digon

disjoint from S in Q. So let {v1, v2} be a digon in Q such that {v1, v2} ∩ S = ∅.
Let D′ = D − v2. Since v2 /∈ S, it follows that S is maximum in D′. By hypothesis,

D′ is BE-diperfect. Let P ′ be an SBE-path partition. Let P be a path of P ′ such that

v1 ∈ V (P ). If P starts (resp., ends) at v1, then since v1 ↔ v2, it follows that the collection

(P ′−P )∪ v2P (resp., (P ′−P )∪Pv2 ) is an SBE-path partition of D. So we may assume

that P neither starts nor ends at v1. Let w1, w2 be vertices in P such that w1 → v1 and

v1 → w2. We show next that w1 → v2. If w1 ∈ V (Q), then since D[V (Q)] is a complete

digraph, we have that w1 ↔ v2. So we may assume that w1 /∈ V (Q). Since D[V (Q)] is

complete, it follows from Lemma 6.4 that D[V (Q)] is hamiltonian. Since w1 → v1, we

conclude by Lemma 6.16 that w1 7→ Q. So w1 → v2. Now, let P1 = Pw1 and P2 = v1P

be the subpaths of P . Since w1 → v2 and v2 ↔ v1, the collection (P ′ − P ) ∪ P1v2P2 is an

SBE-path partition of D.

Unlike the previous lemmas, note that in Lemma 6.21 we need not suppose that the

strong component Q is an initial (or final) strong component of D. This happens because

we can use Lemma 6.16.

We believe it would be difficult to finish the proof of both conjectures for this class

using Theorem 6.4. Perhaps a more promising approach would be to try a proof similar

to the one we did for 3-anti-circulant digraphs (see Chapter 5, Section 5.1).

6.4 k-semi-symmetric digraphs

In [7], Berge showed that symmetric digraphs are α-diperfect. In [28], Sambinelli

proved that 2-semi-symmetric digraphs and a certain 3-semi-symmetric digraph are BE-

diperfect, which confirms both Conjecture 1.2 and Conjecture 1.1 for these classes of

digraphs. In this section, we show that if a digraph D is a counterexample for Conjec-

ture 1.1 that minimizes |V (D)|+ |A(D)|, then D is not a 4-semi-symmetric digraph. We

also show that ifD is a counterexample for Conjecture 1.2 that minimizes |V (D)|+|A(D)|,
then D is not a 3-semi-symmetric digraph.
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First, we need the following definitions. Let D be a digraph. In order to make this text

more fluid, we say that D is a (V +A)-minimal counterexample for both conjectures if D

minimizes |V (D)|+|A(D)|. We say that an arc uv in A(D) is lonely if u 7→ v. We say that

D is k-semi-symmetric if D contains at most k lonely arcs. In especial, the digraph D is

symmetric if D is 0-semi-symmetric. We also say that a digon {u, v} is an α-good digon

(resp., BE-good digon) if both D − uv and D − vu do not contain an anti-directed odd

cycle (resp., blocking odd cycle) as an induced subdigraph. Thus we have the following

result.

Lemma 6.22. Let D be a digraph such that D contains a BE-good digon {u, v}. If D−uv
satisfies the BE-property, then D satisfies the BE-property.

Proof. Let S be a maximum stable set of D and let D′ = D − uv. Since u ↔ v, it

follows that S is a maximum stable set in D′. Since u↔ v is a BE-good digon, D′ ∈ D.

By hypothesis, D′ admits an SBE-path partition P , and hence, it follows P is also an

SBE-path partition of D.

We omit the proof of next lemma, since it is analogous to the proof of Lemma 6.22.

Lemma 6.23. Let D be a digraph such that D contains an α-good digon {u, v}. If D− uv
satisfies the α-property, then D satisfies the α-property.

We show next that if a digraph D is a (V + A)-minimal counterexample for Conjec-

ture 1.1, then D is not a 4-semi-symmetric digraph.

Lemma 6.24. Let D be a (V + A)-minimal counterexample for Conjecture 1.1. Then, D

is not a 4-semi-symmetric digraph.

Proof. Towards a contradiction, suppose that D is a 4-semi-symmetric digraph. Note

that we may assume that D is connected. If D contains an α-good digon, then it follows

from Lemma 6.23 that D satisfies the α-property, a contradiction because D is a (V +A)-

minimal counterexample. So we may assume that D contains no α-good digon. If D

contains no digon, then since D is 4-semi-symmetric, we conclude that |A(D)| = 4. So

it follows from Theorem 1.1 that D is diperfect, and hence, we conclude by Lemma 1.1

that D satisfies the α-property, a contradiction. Thus let {u, v} be a digon in D. Let

D′ = D − uv. Note that α(D) = α(D′). Since D contains no α-good digon, there exists

at least one induced anti-directed odd cycle in D′. So let C be an induced anti-directed

odd cycle of D′. By definition of an anti-directed odd cycle, it follows that C contains no

digon, and this implies that C contains length five and C contains all four lonely arcs of

D. Towards a contradiction, suppose that V (D) ̸= V (C). Since D is connected, there

exists a vertex w in V (D) − V (C) such that w ↔ x for some x ∈ V (C). Since all four

lonely arcs are in C, it follows that {w, x} is an α-good digon, a contradiction. So we may

assume that V (C) = V (D), and hence, D is isomorphic to the digraph in Figure 6.4.

Thus it easy to see that D satisfies the α-property, a contradiction.

For the next lemma, we need the following auxiliary result.
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Figure 6.4: Illustration for the proof of Lemma 6.24.

Lemma 6.25 (Sambinelli, 2018). Let D be a 3-semi-symmetric digraph. If no pair of lonely

arcs has a common endvertex, then D is BE-diperfect.

The next lemma states that if a digraph D is a (V + A)-minimal counterexample for

Conjecture 1.2, then D is not a 3-semi-symmetric digraph.

Lemma 6.26. Let D be a (V +A)-minimal counterexample for Conjecture 1.2. If D ∈ D,

then D is not a 3-semi-symmetric digraph.

Proof. Towards a contradiction, suppose that D is a 3-semi-symmetric digraph. Since

D ∈ D, it follows that D contains no blocking odd cycle as an induced subdigraph.

Recall that we may assume that D is connected, non-diperfect and D has no clique cut.

If |V (D)| ≤ 4, then it follows from Theorem 1.1 that D is diperfect, a contradiction.

So |V (D)| ≥ 5. If D contains a BE-good digon, then it follows from Lemma 6.22

that D satisfies the BE-property, a contradiction because D is a (V + A)-minimal

counterexample. So we may assume that D contains no BE-good digon. Also, it follows

from Lemma 6.25 that there exists a pair of lonely arcs with a common endvertex.

Let v1, v2, v3 be endvertices of two lonely arcs with a common endvertex. Without loss

generality, suppose that v2 is a common endvertex. Since |V (D)| ≥ 5 and D has no

clique cut, it follows that there exists a vertex w1 in V (D) − {v1, v2} such that w1 and

v3 are adjacent; otherwise, {v1, v2} is a clique cut in D. Also, since |V (D)| ≥ 5 and D is

connected, let w2 be a vertex in V (D)− {v1, v2, v3, w1} such that w2 is adjacent to some

vertex in {v1, v2, v3, w1}. Thus we have two cases to deal with depending on whether

{w1, v3} is a digon or not.

Case 1. Assume that {v1, w1} is a digon in D. If w1 and v2 are non-adjacent, then

since every blocking odd cycle contains a blocking pair and two lonely arcs contains its

endvertices in {v1, v2, v3}, it follows that {w1, v3} is a BE-good digon because we can

form a
−→
P3 with the vertices {v2, v3, w1}, and hence, D cannot contain a blocking odd

cycle. So we conclude that the third lonely arcs has its endvertices in {v2, w1}. Since D

is 3-semi-symmetric and all lonely arc have its endvertices in {v1, v2, v3, w1}, it follows

that w2 and some vertex in {v1, v2, v3, w1} is a BE-good digon, a contradiction.

Case 2. Assume that every lonely arc contains its endvertices in {v1, v2, v3, w1}. Since
D ∈ D, there exists no induced blocking odd cycle containing the vertices {v1, v2, v3, w1}.
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Also, since D is 3-semi-symmetric, we conclude that w2 and some vertex in {v1, v2, v3, w1}
is a digon. So we can form a

−→
P3 with w2 and two vertices in {v1, v2, v3, w1}, and hence,

we have a BE-good digon, a contradiction.

We assume in Lemma 6.26 that D is not 3-semi-symmetric, and in Lemma 6.24 we

assume that D is not 4-semi-symmetric. This helps, again, to exemplify the difference

between a blocking odd cycle and an anti-directed odd cycle. Note that the fact that

having a digon is suffices for a cycle to not be an anti-directed odd cycle is essential to

proving Lemma 6.24. This does not happen with a blocking odd cycle because digons

are allowed and possible in them. Also, it is essential to assume that D ∈ D, because a

transitive triangle, for example, is 3-semi-symmetric. So we need to avoid these cases.

Moreover, we believe it is possible to use the same approach here to show that D is

not 4-semi-symmetric, but the amount of cases to consider starts to increase considerably.

This is understandable, since as the value of k increases, the problems become more like

the general cases. Note that verifying both conjectures for an arbitrary k is exactly the

same as proving the general case.

6.5 Digraphs with stability number two

In [28], Sambinelli proved some partial results for Conjecture 1.2 for digraphs with

stability number two. In particular, Sambinelli showed that digraphs with stability num-

ber two contain at most five strong components. Also, Sambinelli proved that if a digraph

D contains four or five strong components, then D satisfies the BE-property. Thus if we

could verify the BE-property when D contains at most three strong components, then

this would imply that Conjecture 1.2 holds for every digraph with stability number two.

In this section, we prove some results for this class of digraphs. In particular, we show

that if D has no digon, then D satisfies the BE-property. Let us start with the following

structural lemma.

Lemma 6.27. Let D be a digraph such that α(D) = 2. Let u, v be two vertices in D. If u

and v are non-adjacent, then both D[u ∪ (N(u) − N(v))] and D[v ∪ (N(v) − N(u))] are

semicomplete digraphs.

Proof. Let Nu = N(u) − N(v) and let Nv = N(v) − N(u). Note that it suffices to

show that D[v ∪ Nv] is a semicomplete digraph. Towards a contradiction, suppose that

D[v∪Nv] is not a semicomplete digraph. Let w1, w2 be non-adjacent vertices in D[v∪Nv].

By definition of Nv, it follows that {w1, w2, u} is a stable set, which contradicts the fact

that D has stability number two. So we conclude that both D[v ∪Nv] and D[u∪Nu] are

semicomplete digraphs.

The next lemma states that if there are two non-adjacent vertices u, v in D such that

there exists no vertex adjacent to both u and v, then D satisfies the BE-property.

Lemma 6.28. Let D be a digraph such that α(D) = 2. If D ∈ D and there are two non-

adjacent vertices u, v in D such that N(u) ∩N(v) = ∅, then D satisfies the BE-property.
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Proof. Since N(u) ∩ N(v) = ∅, it follows from Lemma 6.27 that both D[u ∪ N(u)] and

D[v∪N(v)] are semicomplete. Since α(D) = 2, we conclude that V (D) = {u, v}∪Nu∪Nv.

Thus α(D) = α(D[u ∪ N(u)]) + α(D[v ∪ N(v)]), and hence, the result follows from

Lemma 1.3.

The next lemma is a version of Lemma 6.28 for α-property. We omit its proof because

it is analogous.

Lemma 6.29. Let D be a digraph such that α(D) = 2. If D ∈ B and there are two non-

adjacent vertices u, v in D such that N(u)∩N(v) = ∅, then D satisfies the α-property.

Next, we prove that if D has no digon, then D satisfies the BE-property. Recall that

we may assume that D has no clique cut and D is non-diperfect. Moreover, recall that

X ≡ Y means that every vertex in X is adjacent to every vertex in Y .

Lemma 6.30. Let D be a digraph such that α(D) = 2. If D ∈ D and D has no digon,

then D satisfies the BE-property.

Proof. Let S = {u, v} be a maximum stable set in D. Let Nu = N(u) − N(v), let

Nv = N(v) − N(u) and let Nuv = N(v) ∩ N(u). Note that the sets Nu, Nv and Nuv are

pairwise disjoint. Since S is maximum, V (D) = {u, v} ∪Nu ∪Nv ∪Nuv. By Lemma 6.28,

we may assume that Nuv ̸= ∅.

Claim 1. The digraph D[Nuv] has no
−→
P3 as a subdigraph.

Towards a contradiction, suppose that D[Nuv] contains a path P = x1x2x3 as a

subdigraph. Since both x1 and x2 are adjacent to u and D has no digon, it follows

that D[{u, x1, x2}] is a
−→
C3; otherwise, D[{u, x1, x2}] is an induced transitive triangle,

a contradiction because D ∈ D. Since x1 → x2, it follows that u → x1 → x2 → u.

By definition of Nuv, u and x3 are adjacent. Since x2 → {u, x3} and D has no

digon, it follows that D[{u, x2, x3}] is an induced transitive triangle, a contradiction. So

we may assume that D[Nuv] has no
−→
P3 as a subdigraph. This finishes the proof of Claim 1.

Claim 2. The digraph D[Nuv] is bipartite. Moreover, if (X, Y ) is a bipartition of D[Nuv],

then |X| ≤ 2 and |Y | ≤ 2.

Towards a contradiction, suppose that D[Nuv] is not a bipartite digraph. Let C be

an odd cycle in U(D). Since C is odd, we conclude that C contains a
−→
P3 as subdigraph,

a contradiction by Claim 1. Moreover, let (X, Y ) be a bipartition of D[Nuv]. Since

α(D) = 2, it follows |X| ≤ 2 and |Y | ≤ 2. This ends the proof of Claim 2.

Claim 3. We may assume that |Nu| ≤ 2 and |Nv| ≤ 2.

Note that it suffices to show that |Nu| ≤ 2. Towards a contradiction, suppose that

|Nu| ≥ 3. Let w1, w2, w3 be vertices in Nu. By Lemma 6.27, D[u ∪Nu] is a semicomplete

digraph. Since D ∈ D and D has no digon, it follows that D[{w1, w2, w3}] is a
−→
C3; other-

wise, D[{w1, w2, w3}] is an induced transitive triangle, a contradiction. Without loss of
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generality, assume that w1 → w2 → w3 → w1. Since w1 → w2 and u is adjacent to both w1

and w2, we conclude that u→ w1 → w2 → u. Since D has no digon, w2 → {u,w3} and w3

and u are adjacent, it follows that D[{u,w2, w3}] is an induced transitive triangle, a con-

tradiction. So we may assume that |Nu| ≤ 2 and |Nv| ≤ 2. This ends the proof of Claim 3.

By Claim 2, D[Nuv] is a bipartite digraph with bipartition (X, Y ) such that |X| ≤ 2

and |Y | ≤ 2. The rest of proof is divided into two cases depending on whether if there

exists an arc in D[Nuv].

Case 1. There exists an arc x1y1 in D[Nuv]. Without loss of generality, assume that

x1 ∈ X and y1 ∈ Y . By definition of Nuv, {x1, y1} ≡ {u, v}. Since x1 → y1, D ∈ D and

D has no digon, we conclude that {u, v} 7→ x1 and y1 7→ {u, v}.
Case 1.1 Suppose that there are vertices w1 ∈ Nu and w2 ∈ Nv such that w1 → u and

v → w2 (see Figure 6.5).

u

w1 y1

x1

w2

v

Figure 6.5: Illustration for the proof of Lemma 6.30.

We show next that V (D) = {u, x1, w1, v, y1, w2}. Since D ∈ D and D has no digon,

we conclude that w1 and y1 (resp., w2 and x1) are non-adjacent; otherwise, D contains

an induced transitive triangle. Towards a contradiction, suppose that w1 and x1 are non-

adjacent. Since α(D) = 2, it follows that w1 and w2 are adjacent. So D[{w1, u, x1, v, w2}]
is an induced blocking odd cycle with blocking pair {x1, v}, a contradiction. So w1 and

x1 are adjacent. Since w1 → u → x1, D has no digon and D ∈ D, we conclude that

x1 → w1. Similarly, we have w2 → y1 (consider D[{w1, u, y1, v, w2}]). Now, suppose

that there exists a vertex w3 in Nu − w1. By Lemma 6.27, it follows that D[u ∪ Nu]

is a semicomplete digraph. Since D contains no induced transitive triangle, we have

u → w3 → w1 → u. Thus w3 and x1 are non-adjacent; otherwise, D[{w3, u, x1}] is an

induced transitive triangle. Since α(D) = 2 and w2 and x1 are non-adjacent, it follows

that w3 and w2 are adjacent. So D[{w3, u, x1, v, w2}] is an induced blocking odd cycle

with blocking pair {u, x1}, a contradiction. So Nu = {w1}, and similarly Nv = {w2}.
We show next that |X| = |Y | = 1. Note that it suffices to show that |X| = 1. So

suppose that there exists a vertex x2 in X − x1. Since α(D) = 2, w2 and x1 are non-

adjacent and {x1, x2} is stable, we conclude that w2 and x2 are adjacent. Since D contains

no induced transitive triangle and v → w2, it follows that w2 → x2 → v.

First, suppose that x2 and y1 are non-adjacent. Since w1 and y1 are non-adjacent and

{y1, x2} is stable, we conclude that w1 and x2 are adjacent. Since D contains no induced

transitive triangle and w1 → v, it follows that w1 → u → x2 → w1. If there exists a
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vertex y2 in Y −y1, then since w1 and y1 are non-adjacent and {y1, y2} is stable, it follows
that w1 and y2 are adjacent. Since w1 → u and D contains no induced transitive triangle,

we conclude that y2 → w1 → u → y2. Since u → {x1, x2}, α(D) = 2, D has no digon

and D ∈ D, we conclude that D[{u, x1, x2, y2}] contains an induced transitive triangle,

a contradiction. So we may assume that Y = {y1}. If w1 and w2 are non-adjacent,

then D[{w1, x1, y1, w2, x2}] is an induced blocking odd cycle with blocking pair {x1, y1},
a contradiction. So w1 and w2 are adjacent, and since w2 → x2 → w1, we conclude that

w1 → w2. Thus the collection {w1w2y1v, ux1} is an SBE-path partition of D.

So we may assume that x2 and y1 are adjacent. By Claim 1, we have x2 → y1.

Since y1 → v and D contains no induced transitive triangle, we conclude v → x2. Since

α(D) = 2, w2 must be adjacent to {x1, x2}, and hence, D[{w2, x1, x2, v}] contains an

induced transitive triangle, a contradiction. Thus |X| = |Y | = 1. Since Nu = {w1} and
Nv = {w2}, we have V (D) = {u, x1, w1, v, y1, w2}. Since α({u, x1, w1}) = α({v, y1, w2}) =
1, it follows that α(D) = α({u, x1, w1}) + α({v, y1, w2}). Thus the result follows from

Lemma 1.3.

Case 1.2 For every vertex w1 ∈ Nu and every vertex w2 ∈ Nv we have w1 → u and

v → w2, or u → w1 and w2 → v. First, suppose that at least one between Nu and Nv is

empty. Without loss of generality, suppose that Nv = ∅. Since D[u∪Nu] is semicomplete,

|Nu| ≤ 2, |X| ≤ 2, |Y | ≤ 2, u∪Nu and v are non-adjacent and {u, v} ≡ X ∪ Y , it follows

from Theorem 1.1 that D is diperfect, and the result follows.

So we may assume that both Nu and Nv are non-empty. Without loss of generality, we

may assume that w1 → u and w2 → v. Since D contains no induced transitive triangle, D

has no digon and D[u ∪Nu] and D[v ∪Nv] are semicomplete digraphs, we conclude that

|Nu| ≤ 1 and |Nv| ≤ 1 (see Figure 6.6). Since D contains no induced transitive triangle

and D has no digon, it follows that w1 and y1 (resp., w2 and y1) are non-adjacent. Since

α(D) = 2, we conclude that w1 and w2 are adjacent. So D[{w1, u, y1, v, w2}] is an induced

blocking odd cycle, a contradiction. This ends the proof of this case.

u

w1 y1

x1

w2

v

Figure 6.6: Illustration for the proof of Lemma 6.30.

Case 2. Suppose that Nuv is stable. Since α(D) = 2, |Nuv| ≤ 2. It follows from

Lemma 6.27 that D[u ∪ Nu] and D[v ∪ Nv] are semicomplete digraphs. By Claim 3, we

have that |Nu| ≤ 2 and |Nv| ≤ 2. If |Nu| ≤ 1 and |Nv| ≤ 1, then it is easy to check that D

satisfies the BE-property. Without loss of generality, let w1, w2 be vertices in Nu such that

w1 → w2. Since D[u ∪ Nu] is semicomplete, D ∈ D and D has no digon, it follows that

w1 → w2 → u→ w1. We show next that |Nuv| = 1. Towards a contradiction, suppose that
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|Nuv| = 2. Let Nuv = {x1, x2} (see Figure 6.7). Since D contains no induced transitive

triangle andD has no digon, if u→ {x1, x2} (resp., {x1, x2} → u), then {w1, x1, x2} (resp.,
{w2, x1, x2}) is a stable set larger than S in D, a contradiction. Therefore, without loss

of generality, assume that u → x1 and x2 → u. Since D contains no induced transitive

triangle, it follows that w2 and x2 (resp., w1 and x1) are non-adjacent. Thus we conclude

that x1 → w2 and w1 → x2, and hence, D[{w1, w2, x1, x2, v}] is an induced blocking odd

cycle, a contradiction.

u

w1
w2 x2

x1 v

≡

Figure 6.7: Illustration for the proof of Lemma 6.30.

So we may assume that |Nuv| = 1. Let Nuv = {x}. If Nv = ∅, then x is a clique cut,

a contradiction. So let w3 be a vertex in Nv. By principle of directional duality, suppose

that u → x. If Nv and Nu are non-adjacent, then x is a clique cut, a contradiction. So

Nu and Nv are adjacent. Since D contains no induced transitive triangle and u → x,

it follows that w1 and x are non-adjacent. We show next that Nv = {w3}. Towards a

contradiction, suppose that that Nv = {w3, w4}. Since D[v ∪ Nv] is semicomplete, D

contains no induced transitive triangle and D has no digon, it follows that D[{v, w3, w4}]
is a
−→
C3. Without loss of generality, assume that w3 → w4 → v → w3. If v → x, then x and

w3 are non-adjacent. Since α(D) = 2 and w1 and x are non-adjacent, we conclude that

w1 and w3 are adjacent, and hence, D[{w1, u, x, v, w3}] is an induced blocking odd cycle,

a contradiction. Thus x → v. Since D contains no induced transitive triangle, it follows

that x and w4 are non-adjacent. Similarly, it follows that w1 and w4 are adjacent, and

this implies that D[{w1, u, x, v, w4}] is an induced blocking odd cycle, a contradiction. So

we may assume that Nv = {w3}. Next, we show that x and w3 are adjacent. Towards a

contradiction, suppose that x and w3 are non-adjacent. Since α(D) = 2 and w1 and x are

non-adjacent, it follows that w1 and w3 are adjacent. If w3 → w1, then D[{w1, u, x, v, w3}]
is an induced transitive triangle, a contradiction. So w1 → w3. Since D contains no

induced transitive triangle, we conclude that w2 and w3 are non-adjacent. Since α(D) = 2

and w3 and x are non-adjacent, we conclude that x→ w2, and hence, D[{w1, w2, x, v, w3}]
is an induced blocking odd cycle, a contradiction. Thus x and w3 are adjacent, and this

implies that V (D) can be partitioned into ({u,w1, w2}, {v, x, w3}) such that α(D) =

α({u,w1, w2}) + α({v, x, w3}), and hence, the result follows from Lemma 1.3. This ends

the proof.

In Chapter 3, we showed some structural results for α-diperfect digraphs and BE-

diperfect digraphs. In particular, the Theorem 3.3 suggests that dealing with digraph with

small stability number may be the most difficult part of both conjectures. Therefore, it is
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not surprising that verifying them for this class of digraphs is a challenging problem; as

Sambinelli [28] has pointed out, maybe the key to conclude the proof of both conjectures

for this digraphs is to understand the case in which the digraph is strong.

6.6 Digraphs whose complement of the underlying graphs

are odd cycles

In this section, we show that if a digraph D belongs to D and U(D) is a complement

of an odd cycle of length at least five, then D is BE-diperfect.

Let D be a digraph. First, note that if U(D) is a C5, then its complement is also a

C5. So one may verify that if D ∈ D, then D is BE-diperfect. Thus we may assume that

D contains at least seven vertices. Moreover, recall that we denote the complement of a

graph G by G.

Theorem 6.5. Let D be a digraph such that U(D) is a complement of an odd cycle of

length at least seven. If D ∈ D, then D is BE-diperfect.

Proof. Note that it suffices to show that D satisfies the BE-property. Let U(D) be an odd

cycle of length at least seven. Suppose that the vertices of D (and of U(D)) are labelled as

v1, v2, . . . , v2k+1 so that the cycle in U(D) is (v1, v2, . . . , v2k+1, v1). Thus the non-adjacent

vertices to vi in U(D) are vi−1 and vi+1, where the indexes are taken modulo k. Let S be

a maximum stable set in D. Without loss of generality, suppose that S = {v1, v2k+1}. We

show next that D admits an SBE-path partition.

Let B1 = {v2, v4, . . . , v2k} and let B2 = {v3, v5, . . . , v2k−1}. Note that

V (D) = {v1, v2k+1} ∪ B1 ∪ B2. Since D contains at least seven vertices, we have

that |B1| ≥ 3.

Claim 1. If there exists a hamiltonian path w1Pw2 in D[B1] such that v2 /∈ {w1, w2}, then
D admits an SBE-path partition.

By definition of complement, we conclude that D[v2k+1 ∪ B2] is semicomplete,

and hence, D[v2k+1 ∪ B2] is diperfect. Since D ∈ D, it follows from Lemma 1.2

that D[v2k+1 ∪ B2] satisfies the BE-property, and this implies that there exists a

hamiltonian path P ′ in D[v2k+1 ∪ B2] which v2k+1 is the initial (or the terminal)

vertex of P ′. On the other hand, since v2 /∈ {w1, w2}, it follows from definition of

complement that v1 is adjacent to both w1 and w2. If v1 → w1 (resp., w2 → v1),

then v1P (resp., Pv1) is a hamiltonian path in D[v1 ∪ B1], and hence, {P ′, v1P} (resp.,
{P ′, Pv1}) is an SBE-path partition of D. So we may assume that w1 7→ v1 and

v1 7→ w1. Since w1 and w2 are adjacent and D contains no induced transitive triangle,

it follows that w2 → w1. Since |B1| ≥ 3, let u be the vertex in P that immediately

succeeds w1. Since w2 → w1 and w1 → v1, let R = uPw2w1v1 be a hamiltonian path

in D[v1∪B1]. Thus {P ′, R} is an SBE-path partition of D. This ends the proof of Claim 1.
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Claim 2. If there exists a hamiltonian path w1Pw2 in D[B1] such that v2k /∈ {w1, w2},
then D admits an SBE-path partition.

The proof of this claim is analogous to proof of Claim 1, but with the roles of v1 and

v2k+1 exchanged.

Since D[B1] is semicomplete and satisfies the BE-property, we conclude that for every

vertex v in D[B1], there exists a hamiltonian path in D[B1] that starts (or ends) at v.

Thus since |B1| ≥ 3, the result follows from Claim 1 or by Claim 2. This finishes the

proof.
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Chapter 7

Concluding remarks

In this text, we presented some results for two conjectures related to maximum stable

set and path partition of digraphs (Conjecture 1.1 and Conjecture 1.2).

In Chapter 3, we showed some structural results for α-diperfect digraphs and BE-

diperfect digraphs. In Section 3.3, we proved structural results when a digraph D con-

tains some special matchings. We also saw that minimal counterexamples to both Conjec-

ture 1.1 and Conjecture 1.2 cannot have large stability number. In Section 3.4, we showed

some structural results for BE-diperfect digraphs and α-diperfect digraphs when they con-

tain some specific bipartite subdigraphs. The results presented in this chapter were of

great help in obtaining results for the classes of digraphs that we studied. Furthermore,

we believe that these results could help to obtain a proof for both Conjecture 1.1 and

Conjecture 1.2 for several classes of digraphs, because they provide a different technique

than the usual one, which consists of removing a certain structure of the digraph and

somehow apply induction on the rest of the digraph.

In Chapter 4, we provided a decomposition for arbitrary arc-locally in-semicomplete

digraphs, arbitrary arc-locally out-semicomplete digraphs and arbitrary arc-locally semi-

complete digraphs. We also verified both Conjectures 1.1 and 1.2 for these classes of

digraphs. In Section 4.1, we showed that if a digraph D is a connected arc-locally (out)

in-semicomplete, then D is diperfect, or D admits a special partition of its vertices, or D

has a clique cut. We also showed some structural results for arbitrary arc-locally (out)

in-semicomplete. In particular, we proved that if (V1, V2, V3) is a partition of V (D) as

described in Theorem 4.2(ii), then U(D[V2 ∪ V3]) contains no cycle of length three. In

Section 4.2, we provided another characterization for arbitrary arc-locally semicomplete

digraphs. We showed that if a digraph D is a connected arc-locally semicomplete, then D

is either a diperfect digraph or an odd extended cycle of length at least five. In our con-

text, this decomposition was more useful and easier to use than one proved by Galeana-

Sánchez and Goldfeder [20]. In Section 4.3, we verified Conjecture 1.2 for arc-locally

(out) in-semicomplete digraphs and for arbitrary arc-locally semicomplete digraphs. In

Section 4.4, we verified Conjecture 1.2 for the same classes of digraphs.

In Chapter 5, we studied 3-anti-circulant digraphs and 3-anti-digon-circulant digraphs.

In Section 5.1, we verified both Conjectures 1.1 and 1.2 for 3-anti-circulant digraphs. In

Section 5.2, we showed some structural results for 3-anti-digon-circulant digraphs. These

digraphs do not contain anti-P4 as an induced subdigraph, and hence, we believe that
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studying the structure of these digraphs should help towards obtaining a proof of both

conjectures in the general case. Furthermore, the most interesting problem would be

characterizing digraphs which do not contain an anti-P4 as an induced subdigraph. Such

result would potentially give us some insight on how to deal with arbitrary digraphs in D.

However, this problem is probably very difficult, since we do not even know a complete

characterization of 3-anti-circulant digraphs, a special subclass of those digraphs.

In Chapter 6, we showed some results for both conjectures for several classes of di-

graphs. In Section 6.1, we verified both conjectures for quasi-transitive digraphs. In order

to do it, we showed an alternative proof for the fact that every quasi-transitive digraph is

diperfect that relies on the Strong Perfect Graph Theorem (Theorem 1.1). In Section 6.2,

we studied 3-quasi-transitive digraphs. We proved that every strong 3-quasi-transitive

digraph satisfies the BE-property (resp., α-property). We also provided some results

for non-strong 3-quasi-transitive digraphs. In particular, we show that if a non-strong

3-quasi-transitive digraph D contains a strong component Q such that D[V (Q)] is non-

bipartite, then D satisfies the BE-property (resp., α-property). In Section 6.3, we proved

that every strong 4-transitive digraph satisfies the BE-property (resp., α-property). Also,

we showed some results for non-strong 4-transitive digraphs. In particular, we proved that

if a non-strong 4-transitive digraph D contains a strong component Q such that D[V (Q)]

is a symmetric C5 or a complete digraph with at least four vertices, then D satisfies the

BE-property (resp., α-property). These results could be useful towards obtaining a proof

of these digraphs. Besides, we believe that an approach similar to that one used for 3-

anti-circulant digraphs in Chapter 5 could be promissing. In Section 6.4, we showed that

if a digraph D is a counterexample for Conjecture 1.1 that minimizes |V (D)| + |A(D)|,
then D is not a 4-semi-symmetric digraph. We also proved that if D is a counterexample

for Conjecture 1.2 that minimizes |V (D)| + |A(D)|, then D is not a 3-semi-symmetric

digraph. We believe it is possible to use the same approach to show other values of k,

however the amount of cases to consider starts to increase considerably. This seems nat-

ural, since as the value of k increases, the problems become more like the general cases.

Note that verifying both conjectures for an arbitrary k is exactly the same as proving

them in the general case. In Section 6.5, we proved that if a digraph D with stability

number two has no digon, then D satisfies the BE-property. As Theorem 3.3 suggests

and considering the hard-working proofs obtained by Sambinelli [28] for these digraphs, it

could be difficult to verify both conjectures for these digraphs. However, we still consider

it an interesting line to study in the near future. Finally, in Section 6.6, we proved that

if a digraph D belongs to D and U(D) is a complement of an odd cycle of length at least

five, then D is BE-diperfect.

We would like to remark that the results showed in Chapters 3, 4 and 5 were presented

in [14], [16] and [15]. The paper [14] was submitted to the Journal of Combinatorics and it

is under review. The paper [16] was submitted to the Journal Graphs and Combinatorics

and it has now been accepted for publication. The paper [15] was submitted to the Open

Journal of Discrete Mathematics and it also has now been accepted for publication.

Moreover, we compile the structural results in Table 7.1, the results obtained for

Conjecture 1.1 in Table 7.2 and the results obtained for Conjecture 1.2 in Table 7.3. In

Tables 7.2 and 7.3, complete results are marked by a green check symbol and partial
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results are marked by a slashed gray check symbol.

Table 7.1: Structural results.

Class of digraphs Structural results

Arc-locally in-semicomplete digraphs Theorem 4.2
Arc-locally out-semicomplete digraphs Theorem 4.3
Arc-locally semicomplete digraphs Theorem 4.4
3-anti-digon-circulant digraphs Lemma 5.16, Lemma 5.17 and Theo-

rem 5.18
3-quasi-transitive digraphs Lemma 6.7 and Lemma 6.8
BE-diperfect digraphs Lemma 3.1, Lemma 3.2, Lemma 3.3,

Lemma 3.4, Lemma 3.5, Lemma 3.12,
Lemma 3.13, Lemma 3.14, Theorem 3.3,
Lemma 3.15, Lemma 3.16 and Lemma 3.17

α-diperfect digraphs Lemma 3.1, Lemma 3.2, Lemma 3.3,
Lemma 3.4,Lemma 3.5, Lemma 3.6,
Lemma 3.7, Lemma 3.8, Lemma 3.12,
Lemma 3.13, Lemma 3.14, Theorem 3.3,
Lemma 3.15, Lemma 3.16 and Lemma 3.17
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Table 7.2: Results obtained for Conjecture 1.1. Complete results are marked by a green
check symbol and partial results are denoted by a slashed gray check symbol.

Class of digraphs Status Results

Arc-locally in-semicomplete digraphs Theorem 4.9
Arc-locally out-semicomplete digraphs Theorem 4.10
Arc-locally semicomplete digraphs Theorem 4.8
3-anti-circulant digraphs Theorem 5.2
3-digon-anti-circulant digraphs Theorem 5.2
Quasi-transitive digraphs* Theorem 6.2
Strong 3-quasi-transitive digraphs Lemma 6.2
Strong 4-transitive digraphs Lemma 6.15
Arbitrary 3-quasi-transitive digraphs Lemma 6.6, Lemma 6.10 and

Lemma 6.11
Arbitrary 4-transitive digraphs Lemma 6.18, Lemma 6.19,

Lemma 6.20 and Lemma 6.21
4-semi-symmetric digraphs Lemma 6.24
With stability number two Lemma 6.29

*An alternative proof of result in [23].

Table 7.3: Results obtained for Conjecture 1.2. Complete results are marked by a green
check symbol and partial results are denoted by a slashed gray check symbol.

Class of digraphs Status Results

Arc-locally in-semicomplete digraphs Theorem 4.6
Arc-locally out-semicomplete digraphs Theorem 4.7
Arc-locally semicomplete digraphs Theorem 4.5
3-anti-circulant digraphs Theorem 5.1
3-digon-anti-circulant digraphs Theorem 5.1
Quasi-transitive digraphs* Theorem 6.2
Strong 3-quasi-transitive digraphs Lemma 6.2
Strong 4-transitive digraphs Lemma 6.14
Complement of odd cycles Theorem 6.5
Arbitrary 3-quasi-transitive digraphs Lemma 6.5, Lemma 6.9,

Lemma 6.10, Lemma 6.11 and
Lemma 6.12

Arbitrary 4-transitive digraphs Lemma 6.18, Lemma 6.19,
Lemma 6.20 and Lemma 6.21

3-semi-symmetric digraphs Lemma 6.26
With stability number two Lemma 6.28 and Lemma 6.30

*An alternative proof of result in [23].
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retischen satzes von rédei. Acta Sci. Math. (Szeged), pages 21:181–186, 1960.
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