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RESUMO

O presente trabalho estudou características do escoamento bifásico ar-água no in-
terior do rotor de uma bomba centrifuga submersa (BCS). Esse equipamento destina-se
ao bombeio de líquidos e é instalado no interior de poços de petróleo, porém dificilmente
o escoamento na sucção da bomba é monofásico de líquido. Com capacidade de pro-
duzir elevadas vazões, esse dispositivo pode apresentar instabilidades operacionais dev-
ido à presença de gás livre. Isso faz com que a BCS sofra uma degradação em termos de
pressão e eficiência. Para o desenvolvimento do trabalho e melhor entendimento dessa
fronteira instável, conhecida como “surging”, o protótipo de visualização projetado por
Monte Verde (2017) foi usado nos experimentos com algumas melhorias quanto à ilu-
minação e tratamento das imagens para capturar maiores detalhes do escoamento dentro
do rotor. A iluminação foi melhorada com o objetivo de reduzir as sombras, uma vez
que o ar e a água possuem uma aparência similar, o que dificulta sua visualização. Os
experimentos foram realizados com vazão mássica de ar constante, variando a vazão
de água. As imagens foram processadas em um código computacional desenvolvido
pelo autor para capturar as principais características das bolhas de ar, como diâmetro e
velocidade. As simulações numéricas dos escoamentos monofásico de água e bifásico
ar-água no interior do rotor foram realizadas usando o software da ANSYS® . Elas
foram comparadas com dados experimentais de diâmetros das bolhas e o valor do difer-
encial de pressão também foi correlacionado. Um modelo de fluxo de deslizamento bi-
dimensional foi desenvolvido para o escoamento gás-líquido no rotor, analisando entre
outros termos o fator de atrito da mistura gás-líquido e sua variação com o escoamento.
Além disso, foram analisadas as forças interfaciais. Com isso foi possível calcular o
coeficiente de arrasto da partícula com resultados comparáveis aos apresentados na lit-
eratura. Os dados experimentais foram utilizados para fechamento do modelo de fluxo
de deslizamento proposto. A partir da modelagem e do balanço de forças nas bolhas foi
possível criar um critério quantitativo para o início das condições de “surging” e “gas
locking”.

Palavras-chave: Bombeio centrifugo submerso (BCS); Escoamento gás-líquido; CFD;
Modelo de fluxo de deslizamento; critério de transição; surging; gas locking.



ABSTRACT

The present work studied air-water two-phase flow characteristics inside an elec-
trical submersible pump impeller (ESP). This equipment is intended for the pumping
of liquids and is installed inside oil wells. However the flow in the suction of the pump
rarely is single-phase liquid. Having the capacity to produce high flow rates, this device
can present operational instabilities due to the presence of free gas. This causes the ESP
to suffer degradation in terms of pressure and efficiency. For the development of the
work and a better understanding of this unstable phenomenon, known as “surging”, the
visualization prototype designed by Monte Verde (2017) was used in the experiments
with some improvements on the lighting and treatment of the images to capture greater
details of the flow inside the impeller. The lighting was improved in order to reduce
shadows, since the water / air interface has a very close coloring, which is difficult to
detect. The experiments were carried out with constant air mass flow, varying the water
flow. The images were processed by a computational code developed by the author to
capture the main characteristics of air bubbles, such as diameter and velocity. The nu-
merical simulations of the single and two-phase air-water flows inside the impeller were
performed using the ANSYS® software. The numerical results were compared with
experimental data on bubble diameters and the value of the experimental pressure drop
was correlated. A two-dimensional drift-flux model was developed for the air-water
flow in the impeller, analyzing, among other terms, the friction factor of the gas-liquid
mixture and its variation with the flow. In addition, the interfacial forces as well. With
this it was possible to calculate the particle drag coefficient with results comparable to
those presented in the literature. The experimental data were used to give closure to the
proposed drift-flux model. From the modeling and the balance of forces in the bubbles,
it was possible to create a quantitative criterion for the starting point of the conditions
of "surging" and "gas locking".

Keywords: Electric Submersible pump (ESP); Gas-liquid flow; CFD; Drift-Flux model;
transition criterion; surging; gas locking.
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1 INTRODUCTION

Artificial lift systems are required by the oil industry when the bottom-hole pres-
sure is not sufficient to bring the fluids to the surface. One reliable artificial lift method
used in many cases is the Electric Submersible Pumps (ESP), which is capable of pro-
ducing higher flow rates comparing to other artificial lift options. The ESPs adds energy
to the fluid in the wellbores so it can be brought to the surface. The performance of ESPs
gives good efficiency as it works pumping higher flow rates, preferentially in wellbores
that has low gas/oil ratio. Besides, these pumps are capable of working with heavy vis-
cosity fluids (higher API - American Petroleum Institute).

Centrifugal pumps have two main components which are: the impeller and the
diffuser. The impellers are rotating components where the fluids join in the central part
flowing towards the periphery. In this process, it undergoes an increase in kinetic energy.
The flow reaches the diffuser with an increased initial velocity, which is converted into
pressure energy. ESPs have multiple stages, thus many sequences of impellers/diffusers
are presented. The two main components are shown in Figure 1.1.

Flow

Impeller

Diffuser
One

Stage

Impeller

Diffuser

Figure 1.1: Two main components of centrifugal pumps: impeller and diffuser (adapted
from GÜLICH, 2008).

A view of an impeller is shown in Fig. 1.2. This figure shows the impeller chan-
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nels, impeller blades, blade pressure side, and blade suction side.

Blade Suction
Side

Blade Pressure
Side

ω

Impeller BladeImpeller Channel

Figure 1.2: Impeller view. (adapted from VERDE et al., 2017)

Figure 1.3 shows an overview of an ESP installed in an onshore oil well. The ESP
is driven by an electric motor, installed in the well served by power cables. The rotational
speed is controlled by a variable frequency driver (VFD). The motor is connected to the
protective seal. For cooling reasons, the engine works immersed in the produced fluid.

The performance of an ESP operating with a single-phase liquid depends, among
other factors, on the geometry and surface roughness of its internal walls, fluid proper-
ties (density and viscosity) and operating conditions (rotation and flow rate). However,
in an actual oil production scenario these pumps rarely work with single-phase flow
only. If the pressure at any point of the flow is less than the bubble point of the fluid,
free gas is present. In oil well production, for instance, the pressure decreases continu-
ously as the fluid flows upwards along the wellbore. At some point, the pressure reaches
the bubble point pressure. So, it is common that free gas is pumped with liquid in this
kind of operation.

Under two-phase flow conditions, the pump loses its capacity to generate the same
amount of head increment, as occurs for single-phase flow, losing performance. Thus it
is known as head degradation. The multiphase flow not only causes problems in pump-
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Figure 1.3: Onshore ESP installation: power cables, motor, seal protector and the ESP.
(BARRIOS, 2007)

ing applications in the oil production scenario, but also in nuclear reactors, chemical
industry applications, among others. The pump performance curves show a change in
the sign of the derivative of the head with respect to the flow rate, reducing at a certain
point of operation. This change is an unstable behavior of the system, and it is referred
to as a surging condition. As more gas accumulates in the system, particularly inside the
pump, it tends to result in the gas locking process, a condition in which the pump loses
all its head capacity.

The first attempts to design an ESP to operate with gas-liquid flow relied on the
assumption that the pump curves can be determined from the single-phase liquid perfor-
mance, only replacing the liquid flow rate and liquid density by the multiphase mixture
flow rate and mixture density, respectively. This kind of approach is the homogeneous
model. This model did not account for head degradation, and only small gas fractions
and high liquid flow rates (GAMBOA, 2009).

Therefore, there is a requirement for the development of adequate tools capable
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of correctly predicting the two-phase flow performance of ESPs, and also the surging
and the gas locking events.

1.1 Motivation

Centrifugal pumps are equipment used in wastewater treatment, food production,
agriculture, heating installations in the oil industry, among others. This kind of pump has
important advantages, such as high operational efficiency and reliability. They are com-
monly designed for single-phase flow only. However, in some situations, gas is pumped
together with the liquid, thus decreasing its efficiency. Moreover, this mixture might
damage the pump. The varying mixture density may cause vibrations that lead fatigue
in bearings or other components. Thus, it is important for engineers to understand the
mechanisms that induce damage.

For multiphase fluids in pipelines or in centrifugal pumps, different flow patterns
were established (ESTEVAM, 2002, GAMBOA, 2009, VERDE et al., 2017). Several re-
searchers claim that the surging point and discontinuities in the performance curves of
the pumps are associated with changes in the flow pattern and the accumulation of gas in
the impeller channels. At liquid flow rates near surging conditions there are fluctuations
in the pressure signals, followed by fluctuations on the shaft torque, and the electric mo-
tor current. These instabilities reduce the average time until equipment failure, which
causes production losses and increases costs as interventions need to be made.

The techniques used experimentally to investigate this phenomenon usually need
investment, which is realized under pump operations conditions, so this can be costly.
It happens because this equipment operates under high pressure, and gaining access
to understand the flow inside an impeller is not an easy task. Thus can be the reason
to explain that only a small amount of experimental data exists so far to describe the
phenomenon. However, Computational Fluid Dynamics (CFD) techniques can be used
to reproduce the pump operation. For single-phase flow this process is easier than for
two-phase flow. Two-phase flow simulations are still difficult due to the complexity of
the flow (BARRIOS, 2007, FENG et al., 2010, STEL et al., 2015), and again, the lack of
suitable validated data and benchmark experiments.

The data obtained by experimental and numerical analysis should be enough to
improve the current models in the literature. Mechanistic modeling considers that each
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flow regime corresponds to a set of specific governing equations for flow characteris-
tics, such as bubble size (𝑟𝑏), in-situ gas void fraction (𝛼), and slippage velocity (𝑣𝑠)
between gas and liquid phases. Considering the flow pattern prevailing inside the im-
peller channel, the governing equations based on mass and momentum conservations
can be simplified, although empirical correlations are much easier to implement com-
pared to mechanistic models.

The correct understanding of flow phenomena inside an impeller is very important
and can lead to increased production, improved efficiency, and greater safety. Nowadays,
many studies have dealt with the idea of increasing the efficiency of this equipment, and
also, many works are devoted to understanding surging and gas lock events.

This work is meant to analyze the air-water two-phase flow inside the impeller of
an ESP through visualization experiments and numerical CFD simulations. Then, the
drift-flux model and an analysis on the force balances in bubbles will be used to predict
surging and gas locking points.

1.2 Objectives

The main objective of this work is the development of a drift-flux model for the
air-water two-phase flow inside the impeller of an ESP. The basic concept of the drift-
flux model is to consider the mixture as a whole, rather than as two phases separately.
The drift-flux model considers the slippage between phases, and its formulation is sim-
pler than the two-fluid model, which can make it very useful in many engineering appli-
cations, such as ESP. However, some closure relations, as bubble velocities and pressure
fields, are necessary for the model.

The objective of a predictive method is to determine, for a specific set of oper-
ational conditions, how the pump would work under a two-phase flow condition. To
achieve the objective, a set of tools will be used, such as image treatment and computa-
tional fluid dynamics (CFD).

The numerical approach begins with single-phase data from Verde et al. (2017).
After that, tests with gas-liquid flow were performed in order to get more details on the
fluids behavior inside the ESP’s impeller, especially when the gas flow rate increase
which may provoke instabilities in the pump operation, such as surging and gas locking.
In summary, the specific objectives of this work are:
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∘ Experimentally determine the bubble velocity inside the impeller under different
operational conditions;

∘ replicate the experimental data from Verde et al. (2017) using CFD and also repli-
cate data collected for two-phase flow;

∘ develop a drift-flux model for a log spiral radial impeller channel;
∘ develop a transition criterion for the two-phase flow inside the impeller which

might be used for the ESP operation analysis.

1.3 Thesis’ Outline

This work comprehends the following chapters:

∘ Chapter 2 presents the a literature review on the basic concepts of the pumps, the
modeling studies for two-phase flow, visualization studies in centrifugal pumps,
followed by CFD studies, and then is concluded with works related to the forces
acting on bubbles.

∘ Chapter 3 presents a description of the experimental facility, the prototype used
to visualize the flow as well as the test matrix. After that, the post-processing of
the images is done, and the experimental results are shown.

∘ Chapter 4 presents the modeling, the blade coordinate system, the slip velocity,
interfacial moments, and discussion of bubble dynamics. Dimensionless coeffi-
cients and the drift flux model are presented in this chapter.

∘ Chapter 5 presents the results of the image post-processing in the chapter 3 and
a discussion about the drift-flux model. Moreover the variables acquired by the
model were discussed comparing with the literature, such as the distribution pa-
rameter.

∘ Chapter 6 presents the conclusion and recommendations for future works.
∘ Reference list.
∘ The appendices have a detailed description of numerical simulations. The com-

putational procedure, the creation of the mesh, domains, boundary conditions,
single and two-phase simulations are topics discussed in appendix. Besides, di-
mensionless groups, and details about friction factors are also presented. Also, the
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spreading of efficient illumination is explained and, finally, a brief description of
the OpenFOAM simulations is given.
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2 LITERATURE REVIEW

This literature review is separated into five sections. The first part describes the
basic concepts of pumps. The next three sections review experiments, numerical and
modeling aspects of two-phase flow in pumps. Finally, there is a section for force bal-
ance on bubbles. Some works presented here have both approaches, experimental and
numerical, but they were separated by a subjective criterion made by the author.

2.1 Basic concepts of pumps

The centrifugal pump’s energy efficiency can be calculated from the brake horse-
power required to drive the pump and the hydraulic power spent on liquid transfer, by
dividing the useful (hydraulic) power by the brake horsepower. Plotting in function of
the liquid rate, the pump efficiency curve follows the shape of the hydraulic power, as
shown in Fig. 2.1.

Figure 2.1: Schematic pump performance curves - Takacs (2009)
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The ESPs are tested by running them with water at constant rotational speed while
varying the pumping rate by throttling the flow at the pump discharge. The following
parameters are measured during the tests: flow rate, suction and discharge pressures
and, the brake horsepower required to drive the pump. Usually, the pump performance
curves are supplied by manufacturers of submersible equipment. They provide the
curves following the recommendation of RP 11S2 of the American Petroleum Institute
(API, 1997). The catalog curves show the following notable points of operation:

∘ Shut-in: The flow rate is zero and the pressure increment is maximum.
∘ Best Efficiency Point (BEP): This is the point of best efficiency of the pump, as

implied in the name.
∘ Open-flow: The pump head is zero. If the flow rate is higher than the point

"open-flow" it means that hydraulic energy is lost.

Flow rates excessively below or above the pump’s operational limits, which was
indicated by the region in blue in Fig. 2.1, may cause cases of down-thrust or up-thrust.
These conditions are associated with unstable axial forces at the impellers and might
cause exaggerated friction between moving and stationary parts of the pump.

2.1.1 Euler Equation for ESP

In order to describe the movement of the fluids inside the impeller channels a
velocity triangle is used. It can be used at any point of the flow passing through the
impeller. However in the present work, the focus are on the triangles at the inlet and
outlet of the channel (STEPANOFF, 1957).

Figure 2.2 shows the velocity triangles for turbomachinery. The triangles at the
impeller inlet and outlet are the bases to formulate a relation known as "Euler equa-
tions" which calculates the head and flow rates of the pump. These equations do not
consider losses during the energy transfer between the impeller and flow. The expres-
sions correspond to Navier-Stokes equations when the dissipative terms are neglected
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Figure 2.2: Velocity Triangle - White (2003)

and the convective terms remains.

𝑊𝐸𝑢𝑙𝑒𝑟 = 𝜔𝑇 = 𝜌𝑄(𝑢2𝑉𝑡2 − 𝑢1𝑉𝑡1) (2.1)

𝐻 =
𝑃

𝜌𝑔𝑄
=

1

𝑔
(𝑢2𝑉𝑡2 − 𝑢1𝑉𝑡1) (2.2)

The Euler turbomachine equations (Eqs. 2.1 and 2.2) neglect the viscous effects,
showing that torque, 𝑇 , power delivered to the fluid, 𝑊𝐸𝑢𝑙𝑒𝑟, and ideal head, H, are
only functions of the tangential velocities 𝑢1 and 𝑢2. Where in the Fig. 2.2, 𝑤 omega
is the rotational speed, and 𝑉 is the absolute velocity, where the subscript t represents
the tangential component of this vector and the subscript n is the normal component, as
represented in Fig 2.2. The variable 𝑃 indicates the static pressure in Equation 2.2.

Supposing steady state, following a streamline, without heat transfer and consid-
ering frictionless and incompressible flow, Bernoulli equations were obtained for turbo-
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machinery (White (2003), Fox et al. (1998)).

𝑃

𝜌 𝑔
+ 𝑧 +

𝑤2

2𝑔
− 𝑟2𝜔2

2𝑔
= const (2.3)

For a centrifugal pump, the power delivered to the fluid can be related to the radial
velocity 𝑉𝑛 = 𝑉𝑡 𝑡𝑎𝑛𝛼, so:

𝑊𝐸𝑢𝑙𝑒𝑟 = 𝜌𝑄 (𝑢2𝑉𝑛2 𝑐𝑜𝑡 𝛼2 − 𝑢1𝑉𝑛1 𝑐𝑜𝑡 𝛼1) (2.4)

𝑉𝑛2 and 𝑉𝑛1 are given by:

𝑉𝑛2 =
𝑄

2𝜋𝑟2𝑏2
𝑉𝑛1 =

𝑄

2𝜋𝑟1𝑏1
(2.5)

where 𝑏1 and 𝑏2 represent the blade width at the inlet and outlet, respectively. The flow
rate 𝑄 is estimated assuming that it enters in the normal direction of the impeller en-
trance surface, which means:

𝛼1 = 90∘ 𝑉𝑛1 = 𝑉1 (2.6)

Figure 2.3 relates to the direction of the velocity vector at the impeller entrance
surface. The best condition for the flow direction arriving at the impeller entrance is
without pre-whirl, pointing to the middle of the impeller channel, so minimizing the
shock losses.
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2.1.2 Dimensionless analysis for single phase flow

The independent variables that represents the centrifugal pumping, for a sin-
gle phase flow of a newtonian fluid with constant properties are: 𝐻 , the pump head,
𝑊𝑠ℎ𝑎𝑓𝑡, the brake horsepower, 𝑄, the flow rate, 𝐷, the pump diameter, 𝜇, the fluid vis-
cosity, 𝜔, the pump rotation, 𝜌, the density of the fluid and 𝜖, the surface roughness
(WHITE, 2003). There is a certain freedom to choose the independent variables, for ex-
ample, to represent the effective gain of the pump one can choose the pressure increment
∆𝑃 instead of 𝐻 . Applying the Buckingham 𝜋 theorem for centrifugal pumping with
single phase flow, using 𝐷, 𝜔 and 𝜌 as the primary variables, the following dimension-
less groups were obtained and are presented in Table 2.1 (Eq. 2.7 to 2.11):

Table 2.1: Dimensionless variables determined by the Buckingham 𝜋 theorem for single
phase flow, newtonian fluid with constant properties

Dimensionless Equation

Head Coefficient, 𝐶𝐻 Π1 = 𝐶𝐻 =
𝑔 𝐻

𝜔2𝐷2
(2.7)

Flow Coefficient, 𝐶𝑄 Π2 = 𝐶𝑄 =
𝑄

𝜔𝐷3

(︂
3600

𝜔

)︂
(2.8)

Viscosity Coefficient,𝜒 Π3 = 𝜒 =
𝜇

𝜌𝜔𝐷2
(2.9)

Relative roughness Π4 =
𝜖

𝐷
(2.10)

Power Coefficient, 𝐶𝑃 Π5 = 𝐶𝑃 =
𝑊𝑠ℎ𝑎𝑓𝑡

𝜌𝜔3𝐷5
(2.11)

The dimensionless coefficients are the base of similarity analysis in centrifugal
pumping. Considering applications where viscous effects are negligible, the flow coef-
ficient is treated like an independent parameter. On the other hand, the pump and power
coefficients are like dependent parameters (BIAZUSSI, 2014). So 𝐶𝐻 = 𝑓(𝐶𝑄) and
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𝐶𝑃 = 𝑓(𝐶𝑄). Under this hypothesis, the following equalities can be obtained:

𝐶𝑄1 = 𝐶𝑄2 →
(︂

𝑄

𝜔𝐷3

)︂
1

=

(︂
𝑄

𝜔𝐷3

)︂
2

(2.12)

𝐶𝐻1 = 𝐶𝐻2 →
(︂

𝑔 𝐻

𝜔2𝐷2

)︂
1

=

(︂
𝑔 𝐻

𝜔2𝐷2

)︂
2

(2.13)

𝐶𝑃1 = 𝐶𝑃2 →
(︂
𝑊𝑠ℎ𝑎𝑓𝑡

𝜌𝜔3𝐷5

)︂
1

=

(︂
𝑊𝑠ℎ𝑎𝑓𝑡

𝜌𝜔3𝐷5

)︂
2

(2.14)

Eqs. 2.12 to 2.14 are useful to test a project with models and then transpose the re-
sults to another scale. Generally, the Reynolds number express the rate between inertial
and viscous forces. The inverse dimensionless number represented by 𝜒 is the viscosity
coefficient which corresponds to the inverse of the centrifugal Reynolds number (Eq.
2.9). The hydraulic efficiency is defined as:

𝜂 =
𝑊ℎ𝑦𝑑𝑟

𝑊𝑠ℎ𝑎𝑓𝑡

=
𝜌𝑄𝑔𝐻

𝑊𝑠ℎ𝑎𝑓𝑡

=
𝜌 (𝐶𝑄 𝜔𝐷3)(𝐶𝐻 𝜔2𝐷2)

𝜌𝐶𝑃 𝜔3𝐷5
=

𝐶𝑄𝐶𝐻

𝐶𝑃

(2.15)

The classification of pumps follows that developed by Stepanoff (1957), that uses
the specific speed, a non dimensional parameter which classifies taking into account
pump type and size. The specific speed, 𝜂𝑠, is calculated at the best efficiency point, as:

𝜂𝑠 =
𝑄0.5

𝐵𝐸𝑃 𝜔

𝐻0.75
𝐵𝐸𝑃 𝑔0.75

(2.16)

where 𝜔 is the rotational speed (in rad/s), 𝑄𝐵𝐸𝑃 is the pump capacity at the best effi-
ciency pump in 𝑚3/𝑠, 𝑔 is the acceleration of the the gravity in 𝑚2/𝑠 and 𝐻𝐵𝐸𝑃 is the
pump head at the best efficiency point in 𝑚. However, another simplified equation for
the specific speed, 𝑁𝑠, is also used by ESP manufacturers, even it not been dimension-
less, which was defined as:

𝑁𝑠 =
𝜔𝑄0.5

𝐵𝐸𝑃

𝐻0.75
𝐵𝐸𝑃

(2.17)

where the rotational speed 𝜔 is in rpm, the pump capacity at the best efficiency point,
𝑞𝐵𝐸𝑃 , is in 𝑔𝑝𝑚, and the pump head at the best efficiency point, 𝐻𝐵𝐸𝑃 , is expressed in
𝑓𝑡. The specific speed ins a parameter characteristic of the impeller geometry. Relating



37

these coefficients in Eq. 2.17, the specific velocity becomes:

𝑁𝑠 =
𝐶0.5

𝑄

𝐶0.75
𝐻

=
𝜔𝑄0.5

𝐵𝐸𝑃

(𝑔 𝐻𝐵𝐸𝑃 )0.75
(2.18)

The specific velocity is an important parameter in the study of centrifugal pumps.
This variable is defined at the point of best efficiency (BEP) and it is useful in the selec-
tion and use of the equipment. Radial impellers have lesser values than axial impellers
and, intermediate impellers present values between these two conditions.

Further, the selection is aided using another dimensionless variable, which is re-
lated to the pump rotation, flow rate and head, but not the diameter. This is achieved
by eliminating the diameter of the ratio between head and flow rate, as showed by Eq.
2.18. Physically, the specific velocity is interpreted as the necessary rotation to produce
a certain pump head at a certain flow rate at the BEP.

2.1.3 Two-phase Flow

In two-phase flow, the mixture of fluids can be distributed in several spatial con-
figurations called flow patterns. In this work, the focus will be the bubbly flow in an
ESP impeller channel. Figure 2.4 shows the bubbly flow patterns present in vertical and
horizontal pipes (SHOHAM, 2005). Typical characteristics of this gas-liquid flow are
deformable interfaces of bubbles and complex interactions between the interfaces.

The flow patterns in an ESP will be discussed in section 2.3. The terminology
used for two-phase flow was proposed by Shoham (2005) and is presented next.

a. Mixture Mass Flow Rate (�̇�𝑚): is defined as the sum of mass flow rate of the phases,
expressed as:

�̇�𝑚 = �̇�𝑙 + �̇�𝑔 (2.19)

where �̇�𝑙 and �̇�𝑔 are the mass flow rates of liquid and gas, respectively. Volumetric
flow rates can be related to the mass flow rates using the density of each phase using
the expressions:

𝑞𝑙 =
�̇�𝑙

𝜌𝑙
and 𝑞𝑔 =

�̇�𝑔

𝜌𝑔
(2.20)
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Figure 2.4: Flow patterns (Adapted from SHOHAM, 2005).

where 𝑞𝑙 and 𝑞𝑔 are the volumetric flow rate for liquid and gas, respectively, and 𝜌𝑙

and 𝜌𝑔 are the specific mass for liquid and gas. The subscripts 𝑙 and 𝑔 can also be
represented by numbers: 1 for liquid and 2 for gas.

b. Superficial Velocities (𝑗𝑙 and 𝑗𝑔): They are defined as the volumetric flux of the phase,
representing the volumetric flow rate divided by the cross-sectional area, 𝐴𝑃 . These
are the velocities of the phases if a phase flows alone in the pipe/channel.

𝑗𝑙 =
𝑞𝑙
𝐴𝑃

and 𝑗𝑔 =
𝑞𝑔
𝐴𝑃

(2.21)

c. Mixture Velocity (𝑗𝑚): It is the sum of the superficial velocities of both phases di-
vided by the cross-sectional area, and it is given by:

𝑗𝑚 =
𝑞𝑙 + 𝑞𝑔
𝐴𝑃

= 𝑗𝑙 + 𝑗𝑔 (2.22)

d. Gas Void Fraction (𝛼): It is a local quantity of the gas volume fraction, i.e., it is
the fraction of the volume element occupied by the gas-phase. This variable is a
statistical property of the flow and continuously changes with time. The gas void
fraction is a local quantity determined from the local velocity of the phase.

𝛼 = 𝛼𝑔 =
𝐴𝑔

𝐴𝑃

(2.23)
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where 𝐴𝑔 is the area occupied by the gas. Similarly, for the liquid it becomes:

𝛼𝑙 =
𝐴𝑙

𝐴𝑃

(2.24)

Considering a two-phase flow of liquid and gas, the sum of both void fractions must
be equal to 1.

1 = 𝛼𝑙 + 𝛼𝑔 → 𝛼𝑔 = 1 − 𝛼𝑙 (2.25)

The velocities can be written as a function of the gas void fraction:

𝑣𝑙 =
𝑗𝑙
𝛼𝑙

and 𝑣𝑔 =
𝑗𝑔
𝛼𝑔

(2.26)

These velocities 𝑣𝑘 are higher than the superficial velocities 𝑗𝑘 of the phases.
e. Liquid Holdup (𝐻𝐿): Similarly to the gas void fraction, the liquid holdup is the

fraction of a volume element in a two-phase flow field occupied by the liquid-phase.

f. Phase Slip (𝑣𝑠) or relative velocity: This is the difference between local phases ve-
locities.

𝑣𝑠 = 𝑣𝑔 − 𝑣𝑙 (2.27)

where 𝑣𝑔 and 𝑣𝑙 are the local velocities of the gas and of the water, respectively. A
schematic description of the slippage is shown in Fig. 2.5 (for illustration purposes
only). The concept of the liquid holdup is introduced here, where it represents the
slippage as being equal to zero, meaning that the gas phase travels at the same veloc-
ity as the liquid phase (𝑣𝑔 = 𝑣𝑙). However, in real situations, the gas and the liquid
phases do not travel at the same velocity. Under this condition, Fig. 2.5 shows that
the gas phase moves faster than the liquid phase due to buoyancy and lower fric-
tional forces. Considering continuity, Fig. 2.5 (b) shows that the gas phase is faster
than the liquid phase and the cross-sectional area of the gas phase reduces while the
cross-sectional area of the liquid phase increases.
The result is an accumulation of liquid in the pipe and the in-situ liquid holdup
becoming larger than the no-slip liquid holdup. This phenomenon does not hap-
pen in the entry region, contrary to what might have been implied from Fig.
2.5(b). Another example of this condition is the flow in vertical pipes. Under this
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Figure 2.5: Slippage and liquid holdup - Adapted from Shoham (2005).

situation, because of buoyancy, the gas phase moves faster than the liquid phase,
resulting again in a higher liquid holdup than no-slip liquid holdup (SHOHAM, 2005).

g. Volumetric Gas Fraction (𝜆): This is the ratio between the gas flow rate and the
total flow rate. This variable is associated with the no-slip gas void fraction, which
considers that 𝑣𝑠 equals to zero.

𝜆 =
𝑞𝑔

𝑞𝑔 + 𝑞𝑙
(2.28)

2.2 Modeling studies of two-phase flow

The first modeling studies developed for two-phase flow in centrifugal pumps
were developed by Murakami and Minemura (1974a) and Murakami and Mine-
mura (1974b). They investigated the equipment performance operating with gas. Af-
ter this, the first dimensional models were proposed, assuming dispersed bubbly flow
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through all the impeller channel, that did not explain the surging phenomenon satisfac-
torily.

Some analytical models are available in the literature for the prediction of head
degradation from low to high void fractions for the nuclear industry, such as Mikielewicz
et al. (1978) and Wilson et al. (1979). These models used a semi-empirical approach,
obtaining correlations from single-phase and two-phase flows from experimental data.

Mikielewicz et al. (1978) used the simple theory of idealized pump operation
and incorporated experimental data from single-phase and two-phase flow. In order to
express the change of work done by the fluid, Mikielewicz et al. (1978) used Euler
Equations, which combines Newton’s second law and the first law of thermodynamics,
thus obtaining an equation where the ratio of the two phase flow losses to those in
single phase flow is a function of: void fraction (𝛼), liquid flow rates at the BEP (𝑞𝐵𝐸𝑃 ),
mixture flow rate (𝑞𝑀 ) and the pump geometry. Wilson et al. (1979) used the same
principles developed by Mikielewicz et al. (1978), which means that the simple theory
of idealized pump operation was used and incorporates experimental data for single and
two-phase flow in order to obtain correlations.

The literature has other models based on the streamline approach, basically one-
dimensional two-phase flow models, such as Furuya (1985), Zhou and Sachdeva (2010),
Minemura et al. (1998), and Sun and Prado (2003). From these authors, only the
Sachdeva and Sun were models directly applicable to the pumps used by the petroleum
industry.

Barrios (2007) developed a model based on bubble diameter in order to deter-
mine surging conditions. Two approaches were proposed, one of them was based on a
mechanistic model, one-dimensional, based on the balance of the forces acting on bub-
bles, which are: centrifugal, drag and pressure. This model depends on two important
variables. Firstly the bubble diameter which may causes its own stagnation in the im-
peller channels and the second is the drag coefficient. The model assumes that for a
bubble diameter smaller than a critical value, drag forces pushes them into the diffuser.
Larger bubbles stayed stationary at admission and coalesced with other bubbles having
the same or larger diameters, accumulating, thus causing surging. In some cases, this
model showed good agreement with experimental data.

Fluid viscosity has received attention in centrifugal pump performance. The
variation of pump performance curves with liquid viscosity is a fact well-known
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(STEPANOFF, 1957). If the flow was frictionless when pumped, performance curves
would be straight lines. Manufacturers usually conduct viscosity tests at the best effi-
ciency point and at one rotational speed. The losses where affected by a host of design
and manufacturing parameters, such as gap width, blade angle, etc. It is a difficult task
determining pump performance by theoretical methods. Therefore, performance curves
of commercial centrifugal pumps are always established using water as a conventional
test liquid. Since pump performance curves are based on water tests, adjustment to work
with viscous fluids is required. The adjustments are obtained from tests, which allow the
determination of viscosity correction factors valid for the tested rotational speed. Cor-
rection factors for flow rate are denoted by 𝐶𝑄 and for head were denoted by 𝐶𝐻 .

A visualization prototype was built by Trevisan (2009) with two-phase flow. Two
types of combinations were used: water/air and oil/air. Five flow patterns were identi-
fied in the study and they were compared with the increment pressure measured in the
ESP. The air injection was controlled which allowed a reduction in the bubble diameter,
improving pump performance. Besides this, a model was proposed in order to predict
the bubble diameter at the impeller’s outlet.

In this context, Solano (2009) realized experiments allowing the determination
of viscosity correction factors. The procedure established involves the use of Affinity
Laws. The "Affinity Laws" are similitude relations for inviscid flow. They state that
for low viscosity, a fluids pump capacity is directly proportional to rotational speed
and the head performance is directly proportional to the square of the rotational speed.
Dimensionless numbers usually chosen are the specific head Ψ and the specific capacity
Φ. Table 2.2 shows the dimensionless variables, where 𝐻𝑠ℎ𝑢𝑡−𝑖𝑛

𝑤,60𝐻𝑧 and 𝑄𝑠ℎ𝑢𝑡−𝑖𝑛
𝑤,60𝐻𝑧 are the

shut-in pump head and the open flow capacity for water at 60 Hz, respectively. The
difference for this new case presented by Solano, which means the difference between
Table 2.1 and 2.2, refers to geometric terms not neglected and normalized.

According to Solano (2009), only two dimensionless parameters, which are
Reynolds number 𝑅𝑒 and the specific speed 𝑁𝑠, are necessary and sufficient for the
determination of the dimensionless performance curve for the pump. Consequently, if
a graph like that presented in Fig. 2.6 is available for any single pump, it is possible to
obtain the typical non-dimensionless performance curves knowing two dimensionless
numbers. The average error of this process is 3% and 10% for the total pump head and
single stage head, respectively.
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Table 2.2: Dimensionless variables. (SOLANO, 2009)

Dimensionless Equation

Specific head Ψ =
𝐻

𝐻𝑠ℎ𝑢𝑡−𝑖𝑛
𝑤,60𝐻𝑧

(︂
3600

𝜔

)︂2

(2.29)

Specific capacity Φ =
𝑄

𝑄𝑠ℎ𝑢𝑡−𝑖𝑛
𝑤,60𝐻𝑧

(︂
3600

𝜔

)︂
(2.30)

Specific viscosity 𝜒 =
𝜇1

𝜌1

(︂
3600

𝜔

)︂
(2.31)

Specific speed 𝑁𝑠 = 0.1707825
𝑄0.5 𝜔

𝐻3/4
(2.32)

Figure 2.6: Dimensionless graph (SOLANO, 2009).

The applicability of what was proposed by Solano (2009) was tested by Paternost
et al. (2015), showing that the dimensionless groups were capable of reproducing the
effect of rotation and viscosity, besides showing that the Stepanoff (1957) correlation
is valid beyond the best efficiency point. Paternost et al. used an experimental bench
capable of visualizing the flow at the entrance. They showed that the presence of laminar
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flow at the pump inlet leads to the coalescence of bubbles in the center of the pipe,
increasing the bubble diameter. So, this causes severe degradation in pump performance
and may cease the operation, i.e., the gas locking condition.

Considering the viscosity and the same void fraction, Paternost et al. concluded
that higher viscosity of the liquid phase results in less turbulence in the flow, decreasing
the bubble breakage with consequently higher bubble diameter, impacting the pump
head negatively. Besides, with the data acquired was possible to calculate the maximum
viscosity in function of the void fraction that results in the pump head equals to zero.

Biazussi (2014) realized an experimental study in order to analyze the influence
of three main characteristics related to pump performance: the rotational effects, the gas
mass flow and the suction pressure. Three pumps model were tested, all of them having
three stages.

The rotational effect varied between 1800 to 3500 rpm. These changes have effects
on the pump performance and in transition patterns. Increasing the angular velocity of
the impeller also increases the centripetal force acting on the bubble. The flow rate
rises together with this. So, two forces are rising together in this situation, the buoyancy
force proportioned by the increase of the flow rate and the centripetal force rising due
to changes in angular velocity. The rise in the flow rate can not overcome growth in
the centripetal field, which makes the bubble velocity fall in comparison to the previous
situation.

The tests realized with constant gas mass flow rate and varying the liquid flow rate
are shown in Fig. 2.7. The results performed in terms of 𝐶𝐻 , which is dimensionless for
head performance denoted by 𝐶𝐻 = 𝑔 𝐻/(𝜔2𝐷2), where 𝜔 is the rotational speed and
𝐷 is the impeller diameter. It is possible to notice performance degradation increasing
when gas increases, as a result of decreasing the liquid flow.

The suction pressure tests vary between 100 to 500 kPa. For higher pressure, the
pump operation has better performance due to a reduction in the bubble size and an
increase of its population at a given gas void fraction. Besides, the changes in the suction
pressure provoke shifts the flow pattern transition to the right, considering a chart ∆𝑃 x
𝑄.

Longhi (2016) studied the performance of a Helico axial gas handler (HGH) and
an ESP performing different types of tests: each equipment operating isotely and the two
operating together. The experiments were done with single and two-phase flow, using
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Figure 2.7: Two-phase flow with constant gas flow rate (BIAZUSSI, 2014)

water and air. Also, a model was developed for both types of flow for pressure increment
and torque, adjusting the coefficients for the ESP and the HGH. The two-phase model
can calculate the pressure increment for each equipment separately and also working
together. The two-phase model predicts the existence of the points known as open-flow,
BEP and surging for the performance tests. In addition to this, a reduction in two-phase
efficiency and mixture flow rate occurs when the volumetric gas fraction 𝜆 increases.

The two-phase flow model originally proposed by Biazussi (2014) assumes that
the only effect of the gas phase in centrifugal pumping consists of changes in its mixture
density. It is explained by changes in the proportion of gas in the mixture, consequently
changing the density of local fluid. The distortions in the velocity fields or even the
losses provoked by the increase in pressure increment were not considered, nor the brake
horsepower. Mathematically, this approximation does not allow that model to represent
a reduction of the mixture flow rate at open-flow nor the two-phase efficiency degra-
dation associated with the increase of volumetric gas fraction 𝜆. The phenomena was
able to be represented by allowing the coefficients of the two-phase model (increment
pressure and brake horsepower) varying with parameters 𝜆, 𝜌2/𝜌1 and 𝜔, improving the
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adjustment of the model proposed by Longhi (2016).
However, better adjustment should be made in order to improve the interactions

between both fluids. The models do not consider losses due to slippage between phases,
and they assume that these losses could be contemplated in single phase model, by
just being corrected on losses coefficients of the single phase model. Eventually, the
conceptual inconsistencies of the single phase model propagated the two-phase model.

2.3 Visualization studies

The first works using visualization to improve the knowledge of two-phase flow
phenomenon were applied to the nuclear industry. However, the first study investigating
the influence of gas bubbles in a centrifugal pump was performed by Murakami and
Minemura (1974a). In order to allow visualization of the flow, a transparent shell was
built, allowing the visualization of the flow patterns, bubble displacement and diam-
eters in the impeller channel. They reported that the pressure increment changes as a
consequence on many hydraulic factors, such as pump geometry, fluid properties and
multi-phase flow conditions.

Considering two-phase flow, the increment of the gas fraction results in an
oscillation in the pump pressure. It was verified that the gas fills part of the impeller
channel, as the ratio of gas increases, it begins to accumulate. When the concentration
of gas bubbles increases in the impeller channels, the consequence is the reduction of
the liquid passage area, increasing the liquid velocity and reducing pump performance.
As the gas fraction keeps rising, the gas accumulation extends from the entire impeller
channel, while in this process, the pump gradually loses its capacity. However, this
decline in the pressure increment reduces the gas void fraction, which makes the
pump returns to its normal operation. This cycle is continuous (MURAKAMI AND

MINEMURA, 1974b). From this instability to the normal operation, a new increase in
gas flow rate results in a fast growth of the void fraction, which provokes gas locking
making the pump stops its functionality. Besides the behavior described, the following
details were observed:

∘ The gas quantity increases with the rotation of the pump. Associated with this
fact is the bubble break up due to the high velocity of the impeller.
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∘ The bubble diameter at the entrance of the impeller is directly proportional to the
gas injected.

The work of Estevam (2002) is directly applicable to the petroleum industry using
visualization techniques. The impeller and diffuser were produced in transparent acrylic,
enabling the visualization of the flow inside the pump. The tests were performed with
water and air, varying the flow rate of both fluids and the rotation of the pump. The
author observed that when the void fraction is high enough, bubbles begins to form
clusters at the entrance of the impeller. These begin to cluster and coalesce and the
pump increment pressure decreases inversely with the increase in size of the bubble.
Fig. 2.8(a) shows the image captured in the experiment of Estevam (2002), at 1000 rpm.
It is possible to note the bubble being agglomerated at the impeller inlet.

Figure 2.8: (a) Bubbles in impeller, 1000 rpm (b) Side view (ESTEVAM, 2002)

Figure 2.8(b) is a side view and indicates schematically what appears in the Fig.
2.8(a). The process where the bubbles stays stationary in the channel is called surging,
which means that only a part of the channel is active, in terms of the energy transfer
to the fluid. Gas locking occurs when the gas void fraction continues growing until the
process of pumping ceases.

One of the objectives of Barrios (2007) was to determine surging conditions. First,
the flow patterns were acquired and then the behavior of bubbles was studied as the in-
stabilities happened in the pump operation. An experimental program was conducted
by Barrios and techniques of visualization were used to study the dynamics of the flow
and measure the bubble diameter. The second approach proposed the use of CFD, as
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an extension of the visualization study. For single phase flow the vortices were ana-
lyzed and their influence on the gas bubbles was compared experimentally. Two-phase
simulations were made for a similar purpose, the correlation for drag coefficient found
experimentally being compared with ones found numerically. The CFD results showed
that no recirculation was observed at the impeller outlet and, a good agreement with ex-
perimental data was not reached. However, comparison between the predicted pressure
increment from the CFD simulation and experimental data correlated fairly well.

Gamboa (2009) investigated the two-phase flow in ESP experimentally. The
impeller was adapted to visualize the flow inside. The shroud was removed and replaced
by transparent acrylic, exposing the blades and the channels, allowing the visualization
of the fluid behavior into the impeller channels. His tests were performed with rotation
varying between 600 and 1000 rpm, suction pressure of 2 psig and gas void fraction
of 10%. Fig. 2.9 shows the flow patterns observed in these conditions. In the tests,
the gas flow rate is gradually increased, keeping the liquid flow rate constant. Four
patterns where observed: (a) Isolated Bubbles, (b) Bubble Flow, (c) Gas Pocket and (d)
Segregated Gas, which are described below.

Figure 2.9: Impeller patterns at 600 rpm: (a) Isolated Bubbles (b) Bubble Flow (c) Gas
Pocket (d) Segregated Gas. (GAMBOA, 2009)

(a) Isolated Bubbles: the pump presents the same pressure increment as working with
one phase. The term "isolated" refers to the distance between bubbles which is
sufficient to not allow interaction between them.

(b) Bubble Flow: as the gas void fraction is increased, this pattern is reached. Due
to the increased population of bubbles, the interaction between them grows, with
bubble clusters appearing. The small bubbles continue to be carried by the liquid
flow with the larger bubbles recirculating in the impeller channels.
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(c) Gas Pocket: in this pattern, the gas begins to form a continuous phase, forming
a bubble that is larger enough to extend from the entrance to the middle of the
channel. The energy transfer to the liquid is severely impaired when this pattern is
observed.

(d) Segregated Gas: as the void gas fraction is still increased, the stationary bubble
grows until it extends to the entire channel. The bubble pattern can be verified at
the entrance of the impeller.

Sabino (2015) performed experiments to identify the most important parameters
for bubble behavior. According to Sabino these parameters include the rotation speed
of the pump and the bubble diameter. He observed that the bubble flows mainly on the
blade suction side. However, in most cases analyzed, the bubble flows along the impeller
channel. It gradually moves away from the blade suction side, in some cases, reaching
the blade pressure side. In the cases where the bubbles tended to move to the pressure
side, their velocities decreased until they ceased. This is the moment that bubbles tended
to return to the inlet of the impeller channel, so the author concluded that the pressure
gradient is the dominant force. Besides, the suction side showed higher velocity but
smaller pressure when compared to the pressure side.

Monte Verde (2016) designed an experimental bench for an electric submersible
pump with a single stage. In their experiments, a high-speed camera was used. His test
matrix contemplated two kinds of liquid fluids: viscous and non-viscous. For the viscous
fluids, oil was used, varying viscosity between 1 to 161 cP. Water was used as a non-
viscous. Both combinations used air as the other phase. Four patterns were identified
in both combinations, water-air and oil-air, and are shown in Fig. 2.10, which are: (a)
Bubble Flow, (b) Agglomerated Bubble Flow, (c) Gas Pocket Flow and (d) Segregated
Flow.

As expected, the combined effects of viscosity and two-phase flow promoted a
severe degradation on pump performance. The effects of both are added. The presence
of gas promoted degradation by itself and the increase in viscosity as well. The viscosity
of the fluid acts directly in the drag of the bubbles, increasing the drag force which is
responsible for carrying the bubbles through the impeller, as observed by Monte Verde.
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Figure 2.10: Impeller patterns: (a) Bubble Flow (b) Agglomerated Bubble Flow (c) Gas
Pocket Flow (d) Segregated Flow. (MONTE VERDE, 2016)

However, the increase in drag force was not enough to overcome the degradation caused
by viscosity dissipation. The increase in viscosity of the fluid also increases the diameter
of bubbles, promoting coalescence.

Monte Verde observed that the reduction of surface tension shifts the surging point
to the left in the performance curve (pressure increment x liquid flow rate), indicating
that the maximum pressure increment point occurs for a higher gas fraction. For opera-
tional conditions through the right of the surging point, the study not found any signif-
icant result that indicates changes in the pump performance considering the reduction
in surface tension. This reduction difficult the coalescence, delaying the flow pattern
transition.

A study of the inlet flow conditions has been performed by Schäfer et al. (2015).
In his work, the high-resolution gamma-ray computed tomography scanner (HireCT)
was used. In Fig. 2.11(a) it is possible to see a discontinuity in certain rotation and gas
void fraction. Also indicated in Fig. 2.11(b) is a critical gas void fraction.

This physical phenomenon is not fully understood. The author reported that it
occurs above a threshold value of the void fraction (corresponding to 3% in his work),
which corresponds to a change in flow pattern followed by a change in axial thrust. This
interrupts the gas recirculation at the inlet of the channel. Besides, the pump geometry
contribution, deeper studies in this area are recommended.

Cubas et al. (2017) realized a study with the gas-liquid mixture in a radial im-
peller using a high-speed camera. The images obtained were associated with the in-
stabilities observed in the performance degradation in two-phase flow operation under
surging conditions. Four flow pattern were observed, as suggested by Gamboa (2009)
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Figure 2.11: Pump flow rate as a function of rotation speed in (a) and as a function of
inlet gas volume fraction in (b) (SCHÄFER et al., 2015)

and Monte Verde (2016). The gas void fraction was measured using a wire mesh sensor
installed at the intake of the pump. The results of the void fraction shown discrepancy
when comparing to the homogeneous model. Cubas et al. concluded that this difference
occurs because the homogeneous model does not consider the slip velocity. In cases
where the gas void fraction was higher than BEP, the bubbles have a tendency to flow
at the suction blade side. However, considering the majority of the cases, in the middle
of their way or near the impeller outlet the bubbles change their direction going directly
through the pressure suction side.

Visualization experiments can help reveal gas-liquid flow behaviors. However, the
experimental facility needs special designs associated with necessary modifications of
pump geometries, such as the removal of the impeller hub in order to be replaced by a
material able to support the pressure and allowing visualization.

2.4 CFD studies

The acquisition of flow characteristics inside the pump is not an easy job due to
the high pressures that this equipment is submitted to. However improvements in pump
operation can bring considerable benefits to the industry, as the extraction of petroleum
offers profitability. Computational fluid dynamics, known as CFD, is a generalized nu-
meric simulation of all physical and/or chemical processes and can offer a representation
of what is happening inside the pump. Nowadays, some technologies such as the tech-
nique of PIV (Particle Image Velocity), are very expensive. Facing this market, compu-
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tational tools are an option to study flow behavior in some equipment, in our case, the
ESP (Amaral (2007), Estevam (2002)).

The numerical tools may provide a wide range of variables to understand the
physics inside the ESP better. Some variables are challenging to acquire in an exper-
imental facility, such as the friction factor, turbulent energy, among others. The single-
phase simulation is an initial step to understand the process as a whole. For example,
viscosity is an essential variable in the performance and it can be studied separately from
the two-phase flow. Some models were proposed in the literature to predict the pump
performance relating to viscous flow, such as Gamboa (2009) and Biazussi (2014). Con-
sidering more than one phase, complexity increases. The interactions between phases
should be considered and it is more difficult in a rotating structure. Besides, the void
gas fraction is present now and it is an important variable to understand the velocity
field (FENG et al., 2009a, BARRIOS, 2007).

In this context, Segala (2010) used the software Ansys CFX for simulations. The
flow considered was in transient regime, Newtonian fluid, single phase, incompressible
and with constant properties. The geometry of the first stage was constructed in Solid-
Works and the results of the pump head, power and efficiency were acquired and com-
pared with the experimental data realized in LabPetro/Unicamp by Amaral (2007). The
transient model present in the software considered the interaction between the blades of
the impeller and the vanes of the diffuser. The others were denominated as Stage and
Frozen-Rotor. These models are steady state models, where the impeller assumes a fixed
position in relation to the diffuser. Figure 2.12 shows the results obtained experimen-
tally and numerically, where E.D. means experimental data and N.D. numerical data.

Many studies related to losses in the pump, such as Stepanoff (1957), Nelik (1999)
and S.Vieira (2014). The actual head developed by the pump is always less than the
theoretical one. Takacs (2009) divided the pump losses into three types:

∘ Hydraulic losses occurring due to fluid friction in the impeller as well as diffusion
losses. These increase progressively with liquid flow rate.

∘ Shock losses are negligible at the best efficient point (BEP). Beyond that point
they increase. This type of loss occurs at the entrance and the exit of the impeller,
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Figure 2.12: Experimental data (ED) and numeric data (ND) from Amaral (2007) and
Segala (2010).

caused by sudden changes in the direction of flow.

∘ Leakage losses are a kind of loss that reduces the produced head at any liquid
rate. It represents the loss of liquid rate through the clearances between the
rotating and stationary parts of the pump stage. Leakage losses diminish with
increased liquid rates, as shown in Fig. 2.13.

After considering all of the head losses described above, the performance of real
centrifugal pump stages are represented by the H–Q curve schematically presented in
Fig. 2.13. The head pump curve suffers the influence of the pressure losses that occur
in an impeller. Due to shocks, flow turbulence increases and, the slippage between the
phases and the friction provoke a non-uniformity in their velocities, which affects the
pump curve. Many authors claim that the most significant losses occur mainly to shocks
and turbulence at lower and higher flow rates. In higher flow rates, friction losses are cru-
cial, even though this effect coexist at lower flows. Information on losses may indicate
how to reduce them, so many studies have been devoted to this, like Sun et al. (2006),
Amaral (2007), among others.
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Figure 2.13: Pump H-Q curve and its derivations according to Takacs (2009)

Sirino (2013) used the experimental data of Amaral (2007) with the objective
of analyzing performance degradation of the ESP as a function of fluid viscosity, pump
rotational speed and the range of flow rate operation. Some discrepancies were observed
when the pump worked with water, their results suggesting that working with water,
the pump was more susceptible to numerical errors. Besides, the vortex and turbulence
levels generated with water as the working fluid showed more intensity comparing with
viscous flow. Numeric simulations using water fluid add more complexity than viscous
flows due to instabilities that provokes more discrepancy compared with experimental
data.

S.Vieira (2014) performed a simulation in order to study the pump losses. The
velocity fields showed the presence of vortices in the channels of the impeller at partial
flow rates, with more intensity in the case of less viscous fluids. Around the BEP, the
vortices were negligible or absent. The largest discrepancies in the numeric modeling
were observed at flow rates distancing from BEP and at the lowest flow rates, partic-
ularly with pumps working with water. Another discrepancy concluded by the works
refers to the friction factor. Comparing this variable for water, their values were a little
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bit higher than those that were calculated numerically, especially for high flow rates.
However, for viscous fluids, the friction factor was the opposite, their values being less
as those calculated numerically. This fluctuation in numeric values and experimental
values impacts on the results, as showed by Fig. 2.12.

The data acquired from Amaral (2007) was used in a numerical study by
Stel et al. (2015). The numerical modeling was described using the software
Ansys® CFX®. Single-phase, isothermal and incompressible flow of water was as-
sumed and mass and momentum equations were commonly referred to as Unsteady
Reynolds-Averaged Navier-Stokes (U-RANS), which can be represented in a general
form as (ANSYS, 2017):

𝜌

[︂
𝜕𝜑

𝜕𝑡
+ ∇ · (�⃗� 𝜑)

]︂
= ∇ · (Γ∇𝜑) + 𝑆 (2.33)

where 𝜌 is the fluid density and �⃗� represents the Reynolds-Average velocity vector
relative to the frame of reference being considered. The continuity equation assumes
𝜑 = 1 and Γ = 𝑆 = 0. For the momentum equations, 𝜑 = �⃗� , Γ = 𝜇 + 𝜇𝑡 and 𝑆 =

−∇𝑃 + 𝑆𝐶𝑜𝑟 + 𝑆𝑐𝑓𝑔, where 𝜇 is the fluid dynamic viscosity, 𝜇𝑡 is the turbulent or eddy
viscosity resulted from Reynolds-averaging together with the Boussinesq hypothesis,
and ∇𝑃 is the pressure gradient. The terms 𝑆𝐶𝑜𝑟 and 𝑆𝑐𝑓𝑔 represent the Coriolis and
centrifugal effects. If the frame of reference is considered static, 𝑆𝐶𝑜𝑟 = 𝑆𝑐𝑓𝑔 = 0.

Some turbulence models were tested, such as 𝑘− 𝜖 (WILCOX et al., 1998), 𝑘− 𝜔

(MENTER, 1994) and SST (Shear Stress Transport). The models chosen were based on
the models available in the commercial CFD software. Differences were too small to be
conclusive in favor of any model, and any of those models tested gave a fair estimation
of performance values. However, 𝑘− 𝜖 based models may not represent flow separation
which occur at part-load operation. Stel et al. (2015) evaluate the performance param-
eters for simulations testing different turbulent models in a single stage of the ESP and
found no significant differences in favor of any of them.

Hou et al. (2016) studied liquefied natural gas (LNG) cryogenic submerged pumps
using a numerical approach. This equipment is considered as one type of low specific
speed centrifugal pump with low efficiency and bad cavitation performance. The main
components of this pump are shown in Fig. 2.14.

Their objective was to improve performance and, decrease the losses. The irre-
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Figure 2.14: Schematic of LNG cryogenic submerged pump(HOU et al., 2016)

versible energy loss based on entropy production theory was investigated. Turbulent
dissipation and wall friction were considered as primary sources, where turbulent en-
tropy corresponds to a generation of 75% losses, and wall friction to ∼ 23%. The
overall losses increase at the second stage of the pump. The entropy production theory
can help to quantify irreversible energy loss in order to optimize pump performance.

Ofuchi et al. (2017) studied the effects of pump performance degradation due to
oil viscosity in ESPs using numerical tools. The author conducted a wide range of fluid
viscosity, flow rates, and rotational speeds. The performance deteriorated continuously
with viscosity as a consequence of the increase in friction losses in the hydraulic chan-
nel. Besides this best efficiency point shifted to lower flow rates when the viscosity
increases, as shown in Fig. 2.15.

The pump simulated had three stages, and the interaction between the diffuser and
the impeller was evaluated. It shows that the recirculation from the diffuser can influ-
ence downstream into the following impeller, as well as turbulence generated inside the
impeller can be spread downstream to the diffuser. This fact contributes to a significant
difference in the performance of the pump.

The flow inside a multistage ESP model is highly influenced by stage-to-stage
transition, impeller-diffuser interaction and part-load operation. Several other factors,
such as turbulence, highly-viscous liquid pumping and two-phase flow inside an ESP
deserve detailed studies on their own, since all of them are responsible for key influences
on the pump performance.

Cheng et al. (2019) conducted an unsteady flow field simulation inside the pump
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Figure 2.15: Different fluid viscosities at 3500 rpm showing pressure head versus nor-
malized flow rates (OFUCHI et al., 2017)

for molten salt conveying mediums with different viscosities. Water was selected to
model the molten salt, as it is difficult to test because the temperature of the molten salt
needs to be high. The model established a similarity theory by analyzing dimensionless
characteristics of the pump. He found that interaction between the blades and the vanes
affects the velocity distribution in the volute significantly.

Besides, when the molten salt pump delivers a low-viscosity medium (∼
0.003𝑃𝑎.𝑠), the maximum value in H-Q curve appeared easily to form a hump curve.
This is opposite when a high-viscosity medium was delivered. The impact of losses un-
der small flow rate conditions was smaller than with a low-viscosity medium, and the
H-Q performance curve was not prone to humps. This is represented in Fig. 2.16. The
viscosities above 0.08 Pa.s clearly not shown the tendency in H-Q curve to form a hump.

2.5 Force balance on bubble

Murakami and Minemura (1974a) studied the bubble size in centrifugal pumps.
They took photographs with the aid of stroboscopic light, measuring the diameter of
the bubbles at the inlet region of the impeller in different rotation conditions. When
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Figure 2.16: H-Q curve for different viscosities (CHENG et al., 2019).

the volumetric gas fraction increased, the Sauter Mean Diameter (SMD) increased too.
Equation 2.34 for the bubble size is given by:

𝑑32
𝑑𝜆=0,1

= 2.3𝜆 + 0.75 (2.34)

where 𝑑𝜆=0.1 is the bubble diameter at a volumetric gas fraction of 0.1 which needs to
be directly determined by experimental data. The rotation speed is implicit in 𝑑𝜆=0.1.
The authors mentioned that bubbles at the intake of the impeller were broken into finer
bubbles in that region. The equation provided to calculate the bubble diameter may not
have had the rotational speed equal to zero; this may have caused an inconsistency in
the model. Besides, the correlation of Murakami and Minemura (1974a) only works for
a specific type of pump, and its universality is questionable. The bubble size diameter in
centrifugal pumps can be predicted using Hinze’s maximum bubble diameter equation,
which is given by:

𝑑𝑚𝑎𝑥 = 1.17

(︂
𝜏

𝜌1

)︂0.6(︂
2𝑓𝛽,𝜔
𝐷ℎ

𝑣3𝑀

)︂
(2.35)

According to this equation, the maximum stable bubble diameter size, 𝑑𝑚𝑎𝑥, is a
function of fluid properties, mixture velocity (𝑣𝑀 ), hydraulic diameter (𝐷ℎ), and modi-
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fied friction factor (𝑓𝛽,𝜔), where it is a function of rotational speed and pump geometry
(ESTEVAM, 2002). This equation showed that bubble diameter is not a function of pres-
sure and gas density since their effects were not represented in Eq. 2.35. Barrios (2007)
also assumed that Hinze’s (HINZE, 1955) equation for the maximum stable bubble size
was valid for the centrifugal pump case.

Furthermore, Estevam (2002) found that the drag coefficient calculated through
the correlations for an infinite medium were not applicable for a bubble inside the ESP
impeller. Using the conventional drag correlations, he demonstrated that the drag co-
efficient was over-predicted. It constitutes the first evidence that the drag coefficient in
pumps is different from that obtained for pipes. This was found by Barrios (2007) who
proposed a new drag coefficient based on Ihme et al. (1972) correlation, given by:

𝐶𝐷 =
24

𝑅𝑒𝑝 𝑌

(︀
1 + 𝑓(𝑅𝑒𝑝,𝑌 )

)︀
(2.36)

where 𝐶𝐷 is the drag coefficient, 𝑅𝑒𝑝 is the particle Reynolds number and f(𝑅𝑒𝑝,Y) is
given by Eq. 2.37:

𝑓(𝑅𝑒𝑝,𝑌 ) =
5.48

24

(︀
𝑅𝑒𝑝,𝑌

)︀0.427
+

0.36

24

(︀
𝑅𝑒𝑝,𝑌

)︀
(2.37)

and Y is expressed by:

𝑌 = 0.00983 + 389.9
𝑅𝑒𝑝
𝜔2

(2.38)

The Ihme et al. (1972) equation does not give a drag coefficient for rotation con-
dition, indicating that rotational speed reduces the drag for a certain range of particle
Reynolds numbers (BARRIOS, 2007). Van Nierop et al. (2007) showed that the drag
coefficient could be predicted as proposed by Legendre and Magnaudet (1998) using
Strouhal number.

𝐶𝐷,𝑆𝑟 = 𝐶𝐷,0(1 + 0.55𝑆𝑟2) (2.39)

𝑆𝑟 =
𝑑𝑏 𝜔

𝑣2 − 𝑣1
(2.40)

where 𝑆𝑟 is the Strouhal number, 𝑑𝑏 is the bubble size, 𝑣2 is the particle velocity, 𝑣1
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is the fluid velocity and 𝜔 is the angular velocity. His experimental results strongly
support the hypothesis proposed by Estevam (2002) and Barrios (2007) that a specific
drag coefficient is required for the flow inside pumps.

Another force present on the bubbles is the Lift force. This type of force is of a
lesser order of magnitude than the drag force. Thus, in many studies of the centrifugal
pump, this force is neglected.

Virtual mass and the Basset force are common in studies regarding two-phase flow
in centrifugal pumps. If the bubble is displacing underwater, the virtual mass force is
related to the inertia of water being accelerating or decelerating due to the passage of
the bubble through the water. Basset force may be described as the force which has the
historical effect of the flow pattern around the bubble. Thus, it may become important
as the volumetric gas fraction is increased (ZUBER, 1964).

Fbuoyancy

Flift

Fdrag

ωbolha

ω

Figure 2.17: Bubble forces (BIAZUSSI, 2014)

Figure 2.17 shows an hypothetical model of the forces acting on the bubble. The
drag generated by the flow passing through the bubble pushes it to the exit of the im-
peller. The bubble was hit by a distorted velocity field, which generates a lateral lift
force, as represented in the Figure. In contrast to the drag force, a force generated by
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the centripetal field was called buoyancy, oriented to the center of the impeller. The slip
between the phases occurs by the difference of drag and buoyancy forces. The growth
of rotation increases the flow rate and the centripetal field.

In a pump with a low flow rate, as the pump P23 tested, the drag force promoted
by the increase of flow rate can be insufficient to compensate for the buoyancy force
promoted by the growth of the centripetal field. When this occurs, the growth of rota-
tion decreases the pump performance. However, in larger pumps, as P47 and P100, the
growth of rotation generates the inverse process, i.e. the buoyancy force is much less
than the drag force. Consequently, the pump performance is better (BIAZUSSI, 2014).

Stel et al. (2019) studied the gas-phase behavior numerically and experimentally.
The main components were replaced by transparent components that allow the use of
the high-speed camera. The numerical capability was explored to evaluate the bubble
trajectory, comparing how it is affected by some variables, such as bubble diameter and
liquid flow rate. A Lagrangian solution was used to calculate the motion of individual
bubbles inside the pump, considering drag, virtual mass, pressure gradient and rotational
forces. In his tests, the lift force showed a negligible effect in comparison to other forces,
so it was not considered. In conclusion, bubble trajectories were sensitive to the bubble
diameter. Besides, the virtual mass can be reasonably high in regions of high-velocity
gradients.

The phenomenon of gas-liquid flow in pumps needs deeper studies in order to
design better pumping systems. For example, the mechanisms of coalescence need to be
better understood, which may lead to a reduction of losses inside the pump. The motion
of bubbles can be the key to more efficient pumps for gas-liquid flow applications.
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3 EXPERIMENTAL DEVELOPMENT

This chapter presents the experimental procedure to obtain data for single and two-
phase flow characteristics inside the ESP impeller channel. This chapter is divided into
three sections. The first section details the pump prototype used, the instrumentation, the
experimental procedure and the test matrix. The second explains the scripts developed
for image analysis and data analysis. The results of the scripts are shown in chapter 5.

3.1 ESP Prototype

In order to get access to the flow inside the pump, a prototype of an electric sub-
mersible pump (ESP) was used. It allows the visualization of the flow in the impeller
channel. The prototype construction was based on a pump P23 model, manufactured
by Centrilift, used in oil production and described in details by Biazussi (2014). This
model was chosen because it was already constructed in the facilities of CEPETRO.
Besides, the impeller geometry was radial and channel depth (h) was constant. Operat-
ing at its designed point (BEP) at 3500 𝑟𝑝𝑚, the pump flow rate was 15.2𝑚3/ℎ and the
head equal to 17𝑚. Geometrical specifications of the impeller are shown in Fig. 3.1 and
summarized in Table 3.1.

Table 3.1: Geometrical specifications of ESP

Parameter Values
Inner radius, R1 22.05 mm
Outer radius, R2 55.69 mm
Blade number 7
Blade thickness (inner / outer) 3,1 / 2.2 mm
Channel depth, h 6 mm

The impeller of the BCS P23 is of a closed type, therefore, to visualize the flow
inside it was necessary remove the steel shroud and replace it with one produced with
acrylic, keeping the channels sealed. Also, the diffuser was modified for a kind of vo-
lute, allowing the impeller channel to be exposed. Before the entrance of the impeller
channel, the intake remains the same, without modifications that could change the char-
acteristics of the flow. Figure 3.2 shows the prototype, and a detailed description of it
can be seen in Monte Verde (2016).
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Figure 3.1: (a) Frame and ROI - (b) Cropped image.

The experimental apparatus is presented in Fig. 3.3. It consisted of two tanks,
a booster pump, a heat exchanger, a heat pump, the necessary instrumentation, piping
and camera. As presented in Fig. 3.2 the booster pump displaced the water from the
tank to the test line (green lines), overcoming losses along pipes and accessories. It had
an important function of controlling the inlet pressure in the prototype pump through
rotational speed control via a variable speed drive (VSD) installed in the booster pump
motor. Then, the pumped water flowed through a shell-and-tube heat exchanger. It could
work by heating or cooling the fluid temperature between 5 and 56∘C. Before the fluid
reached the prototype inlet, its mass flow rate was measured through a Coriolis type flow
meter. Compressed air was provided through a compressor and its flow rate measured
through laminar flux flow meters. After the flow meter air was injected into the prototype
(blue lines).

Finally, closing the loop, the water-air mixture was pumped by the ESP prototype
returning to the tank where the phases were separated by gravity. The mixture flow rate
was controlled by a globe valve, installed on the discharge, while the air mass flow rate
was controlled through a precision manual needle valve. The mixture of phases was
made in the suction tube before the prototype. The compressed air was injected into
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Figure 3.2: Visualization Prototype - Adapted from Monte Verde (2016)

the liquid stream through holes of 0.5𝑚𝑚 diameter. The mixture was fed directly to the
entrance to avoid phase development and segregation. In this way, the gas was suctioned
into the pump as bubbles.

The ESP prototype was driven by a three-phase induction motor, 380𝑉 , 5 HP,
controlled by VSD from which the pump prototype rotation could be varied. In addition,
two angular contact bearings were installed between the motor and the ESP prototype.
They were responsible for supporting axial forces generated by the pump prototype. A
tachometer was used to measure rotation. Table 3.2 shows the main equipment in the
experimental apparatus.
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Figure 3.3: Experimental Apparatus Scheme

3.1.1 Instrumentation

The pressure gain of the fluid was measured through gauge pressure transducers,
installed at the ESP prototype entrance and exit. At the entrance, the pressure transducer
was fixed in the suction pipe, after the gas injection. In the exit, the pressure was mea-
sured using a piezometric ring, connecting radially and equalizing the six exit points on
the diffuser. At the entrance of the ESP prototype, temperature was measured using a
PT100 sensor. The rotation was measured using a tachometer directly on the drive shaft
of the prototype.

The liquid mass flow rate was measured using a Coriolis-type flow meter, installed
in the suction line, before the injection point. The gas volumetric flow rate was measured
using the laminar flux, installed after the tank, as represented in Fig. 3.3. This device
provided the flow rate indirectly, measuring the pressure, temperature and pressure dif-
ference generated by the flow while it passed through the equipment. The gas volumetric
flow rate measured by the laminar flux is given by Eq. 3.1.
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Table 3.2: Equipment used in the experimental apparatus

Equipment Manufacturer/Model Specifications

Electric motor of
ESP prototype

WEG Three-phase 220/380 V, 13/7.53 A,
60 Hz, 3.7 HP , 3485 rpm

Electric motor of
booster pump

WEG Three-phase 220/380/440V, 13.8/7,
99/6.90 A, 60 Hz, 3.7 HP, 1730 rpm

Booster pump KSB Meganorm Bloc,
40-250F

Single stage, rotor de 238 mm, flow
rate 25 𝑚3/ℎ and head 24 m, on
BEP

Variable speed
driver (VSD)

WEG GFW-08 Three-phase 200-240V 3-19A, 60
Hz, micro processed with digital
display

Termochiller Carrier AQUASNAP
30RH20

Cooler capacity 61.4 kW, heating
62.5kW, working fluid temperature
between 5 to 56∘C

Tank - Tank made with polypropylene, 0.5
𝑚3 of capacity

Heat exchanger Shell-and-tube Own manufacture

Tachometer MDT 2238A Measure range: 2.4 to 99999 rpm

Globe valve - Manual liquid flow control

Micrometric valve Festo GRP-10-PK-3 Gas flow control

𝑞𝐺,𝐿𝐹𝐸 = 1.4296311.10−2∆𝑃𝐿𝐹𝐸 − 4.5950282.10−5∆𝑃 2
𝐿𝐹𝐸 (3.1)

where 𝑞𝐺,𝐿𝐹𝐸 is the gas volumetric flow rate in CFM and ∆𝑃 2
𝐿𝐹𝐸 is the pressure dif-

ference in 𝐻2𝑂. The mass flow rate of the gas phase can be obtained trough volumetric
flow rate, absolut pressure and temperature:

�̇�𝐺,𝐿𝐹𝐸 = 𝜌𝐿𝐹𝐸 𝑞𝐺,𝐿𝐹𝐸 = 1.699011
𝑃𝐿𝐹𝐸

𝑅𝐺 𝑇𝐿𝐹𝐸

𝑞𝐺,𝐿𝐹𝐸 (3.2)

where �̇�𝐺,𝐿𝐹𝐸 is the mass flow rate in 𝑘𝑔/ℎ, 𝑃𝐿𝐹𝐸 is the absolute pressure in the laminar
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flux in 𝑘𝑃𝑎, 𝑇𝐿𝐹𝐸 is the absolute temperature of the gas in Kelvin and 𝑅𝐺 is the gas
constant in 𝑘𝐽/𝑘𝑔𝐾. Table 3.3 shows all the variables measured in the experiments
while Table 3.4 shows a description of the instruments.

Table 3.3: Measured variables

Variable Definition Unit

𝑃1 Suction pressure 𝑘𝑃𝑎
𝑃2 Discharge pressure 𝑘𝑃𝑎

𝑃𝐿𝐹𝐸 Pressure in the element of
laminar flux

𝑘𝑃𝑎

∆𝑃𝐿𝐹𝐸 Pressure difference in the ele-
ment of laminar flux

𝑖𝑛𝐻2𝑂

𝑇𝐿𝐹𝐸 Discharge temperature ∘𝐶
�̇�𝐿 Liquid mass flow rate 𝑘𝑔/ℎ
𝜔 Rotation speed rpm

The data acquisition system was composed of a computer, signal acquisition mod-
ules and a program to process the signals. Two data acquisition modules were used ac-
cording to the exit signals of the instrument, which were electrical current (4 - 20 mA)
or voltage ( ±10 volts). In the modules, analog signals were received and digitized.
Through the LabVIEW® based software, the data acquired were monitored and dis-
played in a graphical interface. The signals coming from the instruments were showed
in a real time scheme during the tests, and they were also processed and showed to the
user as a mean or in charts, and then they were saved as text files for post-processing.
The graphical interface of the software is shown in Fig. 3.4.

3.1.2 Visualization Equipment

High-speed cameras have been widely used in multiphase flow experiments, such
as liquid-liquid, gas-liquid, liquid-solid, among others (Ofuchi (2011), Penteado and
Franklin (2016)). This method is precise and non-intrusive. However, its limitation is
related to the fact that an optical access to the phenomena is necessary and this rarely
happens in turbo-machinery, because the fluids are, frequently, under high pressure. A
high-speed camera, model Phantom VEO 640S, capable of 4 megapixel with a reso-
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Table 3.4: Instrumentation

Instrument Variable Manufacturer /
Model Characteristics

Pressure
transducers

𝑃1, 𝑃2
Emerson

Rosemount 2088
Gauge pressure instrument, exit 4-
20 mA, calibration 0-20 bar.

Mass flow
rate for
liquid

�̇�𝐿
Emerson Micro
Motion F100

Coriolis measurement, exit 4-20
mA, operating between 0-32650
𝑘𝑔/ℎ.

Tachometer 𝜔
Minipa MDT

2238A
Digital, remote control or contact,
operating between 2.5 - 99999 rpm

Temperature transducer ECIL APAQ LR Thermoresistance, exit 4-20 mA.

Data acquisition module
National

Instruments NI
9203

08 analog input channels between
4-20 mA.

Chassis acquisition module
National

Instruments NI
cDAQ 9178

Chassis with 08 slots for acquisition
modules, with USB connection

lution of 2560 𝑝𝑥 × 1600 𝑝𝑥 at 1.400 frames per second (fps) is used on the tests. A
resolution of 512 𝑝𝑥× 512 𝑝𝑥 can be used to acquire 14.000 fps. The camera has 72GB
RAM and can record 8.5 seconds at maximum resolution. A computer is used to control
the frequencies and exposure times of the high-speed camera and to store the acquired
images in .cine format, and then convert to .avi in proprietary camera software for post-
processing.

Due to high acquisition frequencies high-speed cameras demand an efficient illu-
mination. This means that the object should not have shadows when being captured. In
the experiments, the illumination was constant and provided by three sources containing
24 LED (Light-Emitting Diode) lamps each. They were of 84 Watts, delivering 7.700
lumens of brightness each. For the tests, the number of acquired images was around
7.400 and 15.000 frames, depending on the prototype rotational speed, with resolution
of 1536 𝑝𝑥× 1536 𝑝𝑥, and a Canon®lens f/1.4 of 50𝑚𝑚 focal length was used.

For the tests, the image acquisition frequency was of 1000 Hz (or 1000 fps) for 600
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Figure 3.4: Graphical Interface of the Data Acquisition and Control Software

rpm of the pump and 1500 Hz for 900 rpm. In other words, in both rotations the impeller
moves 3.6∘ degrees from one picture being captured to another. Figure 3.5 shows the
light source, the camera and their positions in the experimental apparatus.

3.1.3 Experimental Setup Validation

The author performed experiments with water single-phase flow in the same ex-
perimental setup as Perissinotto et al. (2017) and Monte Verde (2016). The experiments
gave the same performance curves as the ones presented by Monte Verde (2016). So,
the experimental setup was considered validated for this study as well. The single-phase
flow experimental data was used for comparison with numerical simulation. Details
of validation and experimental data can be found in Perissinotto et al. (2017) and
Monte Verde (2016).

3.1.4 Experimental Procedure - Two-Phase Flow

The following experimental procedure refers to the prototype operating with
two-phase air-water flows, where the gas mass flow rate was kept constant during the
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Figure 3.5: Experimental Apparatus during experiments: (a) Light + Camera - (b) Light
source - (c) Camera

tests. The experimental procedure consisted of the following steps:

1. The illumination system is turned on, aligning the three light sources in order to
get the fewest shadows as possible in the visualization window.

2. The camera is positioned on a tripod and then the desired lens inserted. The soft-
ware of the camera is executed and set to real time exhibition. The images are
inspected through the monitor, adjustments are made in camera position and fo-
cus if demanded. If necessary, changes are made to the alignment of the light
sources.

3. Instruments are turned on for the experiment. Verification of the connection be-
tween them and the computer is made. The camera software to monitor the data
acquisition is then executed.

4. The booster pump is turned on and then the ESP prototype, certifying that valves
are open. The rotation of the pump is adjusted using the VSD and the tachometer.
Rotation stays constant during the experiments.
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5. The heat pump is turned on. The liquid temperature is kept constant during the
tests, at around 25 ∘ C.

6. Adjustments are made to both the rotation of the booster pump using its VSP and
the globe valve in the discharge of the prototype in order to obtain the desired
liquid flow rate, and keep the suction pressure constant.

7. Gas injection is initiated until the desired mass flow rate is reached, which is
constant during the tests.

8. A delay of three minutes is needed until the operational condition stabilizes.
9. The data are acquired and saved on the computer. The images are also saved.

10. The next operational condition is established, changing the rotation in booster
pump and opening/closing the globe valve at the discharge line.

The procedures 8, 9 and 10 were repeated until the lowest liquid flow rate in which
the variables of interest could still be controlled.

3.1.5 Test Matrix - Two Phase Flow

The tests with water and air were performed with constant air mass flow rate. They
were performed using the rotation of 600 rpm and 900 rpm. Above 900 rpm, such as
1200 and 1500 rpm, the bubbles appeared as a cloud of bubbles. In order to capture the
displacement of bubbles at such speed, the illumination and some other aspects should
be improved, and they will be discussed in suggestions for future works. The suction
pressure was kept at 150 kPa and mass gas flow rate at 0.0250 and 0.0125 𝑘𝑔/ℎ.

3.2 Image Processing Software

The next section describe the code made in Matlab® by the author. The code aims
to capture the displacements and size of the bubbles.
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3.2.1 Code development

A numerical code was developed in order to determine the displacements and
velocities of air bubbles in an Eulerian framework from the high-speed movies.. The
post-processing of the images comprised two main steps. First, the code identified the
regions where bubbles were moving. In the second stage of the code, the displacements
of the bubbles identified by the code were acquired. The steps of the first part of the
code are:

1. Image rotation.
2. Definition of the ROI.
3. Adaptive histogram.
4. Strel filter.
5. Image subtraction.
6. Wiener filter.

7. Laplacian filter.
8. Binarization.
9. Median filter.

10. Eccentricity filter.
11. Pairing
12. Cell formation.

The scripts created needed to rotate the image in order to capture only the dis-
placement of the bubble meaning that the camera remains frozen when capturing the
images. The frequency represents how much the impeller rotates from one frame to
another. In possession of this information, the image needs to be rotated by:

𝐼 =
𝜔

60

360

𝑓𝑟
(3.3)

where 𝜔 is the rotation of the impeller in 𝑟𝑝𝑚 and 𝑓𝑟 is the acquisition frequency of the
camera in 𝐻𝑧. The result of 𝐼 in Eq. 3.3 corresponds to 3.6∘ degrees of rotation from the
first image captured to the following one. For all the tests the acquisition frequency is
adjusted in order for the camera to take a shot every 0.24 seconds. This is the sampling
interval. The next step was the creation of a Region of Interest (ROI).

Figure 3.6(a) represents the image acquired from the tests, and the border in blue
separates the unnecessary pixels. In image post-processing this represents the mask
(OPPENHEIM AND SCHAFER, 2014). With the mask representing the region of inter-
est (ROI) the pixels outside it are replaced by the value 0, which means that it appears
as black. The cropped image is shown in Figure 3.6(b).

The creation of the ROI is an essential process because the scripts applied in
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Figure 3.6: Example of a captured image of the impeller: (a) ROI - (b) Cropped image.

the sequence have the guarantee that displacements of bubbles receive the next filters
without the noise of unnecessary pixels.

The next scripts counts with techniques used in spatial processing. The intensities
of a pixel can be changed according to the neighboring pixels’ intensities through a
technique called spatial filtering. An image is a two-dimensional function, 𝑓(𝑥, 𝑦) where
𝑥 and 𝑦 are spatial coordinates and the amplitude of 𝑓 at any pair of coordinates (𝑥,𝑦) is
called the intensity of the image at that point. In our case, the output (processed) image
is 𝑔(𝑥, 𝑦), and T is an operator on 𝑓 defined over a specified neighborhood of point
(𝑥,𝑦). The spatial domain processes are denoted by Eq. 3.4:

𝑔(𝑥,𝑦) = 𝑇 [𝑓(𝑥,𝑦)] (3.4)

The original image 𝑓(𝑥,𝑦) receives the treatment of an operator, 𝑇 [·], such as
the median filter. After that, the new image is 𝑔(𝑥,𝑦). The operator is described by the
scripts created. The intensity values acquired in gray-scale corresponds to values be-
tween 0 (black) or 255 (white). In signal processing, noise is characterized as any infor-
mation that blurs the object, an undesirable aspect such as small changes in illumination
that may occur in our case. The script uses adaptive histogram equalization (AHE) to
improve the contrast in images (GONZALEZ AND WOODS, 2008). Its function redis-
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tributes the lightness values of the image. Therefore it improves edge definitions in each
region of an image.

Seven channels are noted in Fig. 3.6(b). The external observation, which can be
done by the operator who is making the code, have more quality in the analysis if the
image window is amplified. This means that reduced windows improve the details of im-
ages, working as a zoom or amplification lens. Figure 3.7 explains better to the reader
what this means. Figure 3.7(a) shows the image after cropping and its respective his-
togram on the right side. The adaptive histogram redistributes the pixel intensity on the
images (GONZALEZ AND WOODS, 2008). The result of this process is shown in 3.7(b)
and its respective histogram.

Figure 3.7: Image with: (a) No equalization - (b) Equalization

Morphological operations as dilation and erosion were executed in Matlab. The
strel filter is a morphological operation that uses a disk-shaped structuring element in
the present work. Typically, the structured element selected should be the most similar
to bubble shape and have the nearest size to improve the effectiveness of this operation.
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The next operation was the image subtraction, a similar process to that made by
Penteado and Franklin (2016). Two consecutive images were necessary to execute this
script, which indicated the possible displacements that occurred. This script goes a little
further in the code steps, so it executes the Wiener, Laplacian and binarization process to
then return the values acquired. After these processes, the centroids were captured and
they are shown in Fig. 3.8. The red circle indicates the current frame, the blue square,
the next frame, and the green marking indicates the location of possible displacement
as a result of the script.

Thus Fig. 3.8(a) shows the process without the use of image subtraction. The cen-
troids had already been calculated in two consecutive images and plotted. Fig. 3.8(b)
shows the filter acting and removing some centroids where no displacement occurring.
For example, consider a green mark in the Figure. The code searches possible displace-
ments in a radius of 5 mm in the current and next frame. If some point is not founded,
it is considered that no movement occurs in that region, so it is removed. The centroids
removed are shown by a blue arrow in Fig. 3.8(a).
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Figure 3.8: Morphological operations: (a) Centroids of the image - (b) Subtraction ap-
plied

The pump’s axis makes some shadow in the impeller channel, and even with the
best effort made to try better positioning for illumination, a small portion of this still
appeared. The Wiener deconvolution is a process to deblur the images, it reduces a
portion of the noise. This is one of the filters used to decrease the shadows, and improve
the results of the code.

The Laplacian filter was employed after the Wiener deconvolution. It is a linear



77

spatial filter used to emphasize image contrast. It allows the enhancement of bubble
contours. Considering this situation, two types of spatial masks to enhance edges were
tested. They are shown in Eq. 3.5 and are named as 𝑙𝑝4 and 𝑙𝑝8. Both enhanced the
contour, and are shown in Fig. 3.9. The spatial mask used is 𝑙𝑝8, which has contours
more prominent than 𝑙𝑝4.

𝑙𝑝4 =

⎡⎢⎣0 1 0

1 −4 1

0 1 0

⎤⎥⎦ 𝑙𝑝8 =

⎡⎢⎣1 1 1

1 −8 1

1 1 1

⎤⎥⎦ (3.5)

As already mentioned in Fig. 3.6(b), seven channels were treated. Fig. 3.9 shows
a channel that is chosen in order to present an enhanced visualization to the reader. Fig.
3.9(a) represents the original image, Fig. 3.9(b) 3.9(c) represent the image treated using
𝑙𝑝4 and 𝑙𝑝8, respectively.

Figure 3.9: (a) Original Image - (b) Laplacian 𝑙𝑝4 - (c) Laplacian 𝑙𝑝8.

Equation 3.6 defines the Laplacian operation, where the input image is given by
𝑓(𝑥,𝑦) and the Laplacian is denoted as ∇2𝑓(𝑥,𝑦). This expression was implemented
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at all points in the image, convolving using the spatial mask that takes into account
diagonal elements.

𝑔(𝑥,𝑦) = 𝑓(𝑥,𝑦) + 𝑐
[︀
∇2𝑓(𝑥,𝑦)

]︀
(3.6)

The enhanced image is given by 𝑔(𝑥,𝑦), and 𝑐 is 1 if the center coefficient of the
mass is positive, or −1 if it is negative (GONZALEZ AND WOODS, 2008). Figure 3.10(a)
and (b) show the comparison between an original image and the enhanced one. In order
to apply this filter, the image class was changed, allowing intensity numbers in the range
of 0 to 1, which corresponds to 255. Values near 0 were considered black.

Figure 3.10: Constrast Improvement: (a) Original Image - (b) Laplacian filter applied.

The borders of bubbles in Figure 3.10 were prominent in the comparison, thus
increasing the efficiency when binarizing the frames. The binarization process has a
threshold value between 0 and 255, changing the color of divided pixels into black, 0

or white, 1 (SONKA et al., 2014). The threshold value is chosen and checked visually.
After that, a median filter was applied, reducing noise. Each output pixel contains the
median value in a 3-by-3 neighborhood around the corresponding pixel in the input
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image, symmetrically extending the image at the boundaries.
The resulting matrix contains values of pixel intensities of 0 and 1. The black

values inside the mask indicate the bubbles, where the values corresponding to 1 are
white. This matrix is submitted to a filter called "area filter", inside the same script. It
consists of removing regions with an area smaller than a threshold value (5 𝑝𝑥2 in our
experiments), i.e., values smaller than this were changed from 0 to 1 inside the binarized
matrix. This value is chosen because comparing visually to real images it was shown
not to be a bubble.

Figure 3.11: Binarized image with values 0 (black) and 1 (white).

Some parameters may be acquired from the bubbles, such as area, perimeter, hy-
draulic diameter, eccentricity, and some others. For the eccentricity information, a filter
called "eccentricity filter" was used in order to remove some elements with higher ec-
centricity. This parameter is useful to compare with the bubble’s circumferential shape.
High values were not expected, so they were excluded from the analysis. The threshold
of .95 was arbitrarily chosen after a comparison with real images, so values above this
one were removed.

Finally, the information acquired from the first part of the code was saved in a
cell array inside Matlab. Each cell may contain any kind of data, such as text, numbers,
among others. In our case, four variables were saved: diameters, bubble position, size
of the matrix and the sum of the bubble’s areas in the impeller channel.
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3.2.2 Bubble Velocity, Displacement and Diameter Analysis

The second part of the code starts opening the data matrices acquired in the first
part. The cell array is opened, and the raw data needs to be placed in a manner that every
bubble position should be certified to be placed in the same address of the next, and the
next one, and so on successively in the matrices. This is achieved by writing a script
that enables the code to follow a bubble as it passes through the impeller channel. If this
is not adequately applied, the bubble’s velocity is not computed correctly. The matrices
changed their size because that bubble being followed leaves the impeller channel or a
new bubble enters, or even both situations.



81

(a)

(b)

Figure 3.12: Bubble analysis: (a) Bubbles centroids (b) Bubbles’ velocity vectors.

The pairing process demands a comparison between sequential matrices. The pos-
sible pairs were only accepted after passing through a filter, which is related to the posi-
tion expected from that bubble. In a pair of frames, the bubble position denoted by 𝑆𝑏2

should be near the position of the same bubble in the first frame analyzed, denoted by
𝑆𝑏1.

The filter is based on the Kalman filters found in the literature (WELCH
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et al., 1995), which is a well-known technique in space and military industries. The
principle of this filter is prediction, and this is used here. The script follows the dis-
placements of the same bubble in time, computing those that are nearest the first one. In
some cases, more than one result may be found, so the diameter is used as a tiebreaker.
However, if the diameter criterion is insufficient, the proximity criterion is used. So, the
one that is nearest the first bubble is chosen.

After passing through this filter, the pair is accepted. This is done repeatedly for all
pairs of frames. The difference between the matrices is obtained, and the displacements
are acquired. Figure 3.12(a) shows the centroids of bubbles, red circles in the first frame
(𝑡1) and blue squares in the second frame (𝑡2).

Finally, by multiplying the displacements by the frequency acquired, the velocities
were obtained. Figure 3.12(b) shows the velocity vectors of air bubbles. The code also
computes bubbles’ areas in the impeller, allowing the possibility to calculate both the
diameter and an approximation for the gas void fraction. The results of the code are
shown in chapter 5.
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4 MODELING

This chapter presents the two-dimensional drift-flux model for the gas-liquid flow
within the ESP impeller. Initially, the geometric notation used is discussed and the blade
coordinate system is presented here with the non-inertial frame of reference. Besides,
the Navier-Stokes equations are shown and also the closure relationship, such as the
interfacial terms used.

4.1 Geometric Notation

The geometry of a rotodynamic machines consists of a set of rotor blades attached
to a hub and operating within a static casing. In the case studied the gap between the case
and the blade is neglected which means that looking at a cross-section view through the
axis of the pump impeller, the blade perfectly match the space between hub and shroud.
The angle 𝛽(𝑟) is related to the blade angle in relation of 𝜃-direction showed in Fig.
4.1. The velocity represented by the letter v is the velocity of a flow particle P in non-
inertial frame of reference. A detailed description of the kinematics of the movement
is in section 4.1.2. The angle 𝜙 is the angle of velocity �⃗� in relation of 𝜃-direction.
The inner/entrance and outer/exit radius are defined as 𝑟𝑖 and 𝑟𝑜, respectively, and the
subscript 𝑏 refers to the blade.
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Figure 4.1: Impeller domain



84

The geometry of the pump in radial cascade is sketched in Fig. 4.1. Cascade is a
concept that exists for axial and radial pumps. Considering a purely axial flow machine,
the development of a cylindrical surface within the machine produces a linear cascade.
In a centrifugal machine which the flow is purely radial, a cross-section of the flow is
shown by Fig. 4.1 which means an array known as radial cascade (BRENNEN, 1994).
Radial pumps can be approximated as a channel that have a variable cross-section,
which means that the cross-sectional area at entrance is different from the exit. Be-
sides, the channel has a curvature and its structure is axisymmetric, allowing periodic
condition in the simulations. To represent that, the cross-section area is a function of
radius and subscripts 𝑖 and 𝑜 are used to denote the areas for entrance and exit, respec-
tively. The transversal area varies between the entrance radius 𝑟𝑖 and the exit radius 𝑟𝑜,
and it is represented by Eq. 4.1 as a function of the radius.

𝐴(𝑟) =
2 𝜋 ℎ

𝑍𝑏

𝑟 (4.1)

where ℎ is related to the channel height and 𝑍𝑏 is the number of blades.
The analysis of the hydrofoil and the impeller channels begins in a two-

dimensional perspective. The terminology used to define foil section geometry is de-
scribed in Fig. 4.2, where:

∘ 1: Leading edge;
∘ 2: Maximum thickness;
∘ 3: Camber;
∘ 4: Pressure side;

∘ 5: Trailing edge;
∘ 6: Camber mean-line;
∘ 7: Suction side.

The cord length was represented by letter c. The camber mean-line of the hydrofoil
is a parametric curve in polar coordinates which can be represented by logarithmic spiral
described by Eqs. 4.2. The angle 𝜃 can be related as a function of radius, 𝜃 = 𝑓(𝑟) and
with this, the blade profile is described in polar coordinates. The blade parametric curve
which describes the camber mean-line is given by:

𝑟𝑏 = 𝑎𝑒𝑏𝜃𝑏 or 𝜃𝑏 =
ln 𝑟𝑏/𝑎

𝑏
(4.2)

where 𝑟 is the distance from the origin, 𝜃 is the angle from the x-axis, and 𝑎 and 𝑏
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Figure 4.2: Profile geometry - 1: Leading edge; 2: Max. thickness; 3: Camber; 4: Pres-
sure side; 5: Trailing edge; 6: Camber mean-line; 7: Suction side.

are arbitrary constants. The logarithmic spiral is also known as the growth spiral or
equiangular spiral. The system coordinates are related in Eq. 4.3:

𝑥 = 𝑟𝑐𝑜𝑠(𝜃) = 𝑎 𝑒𝑏𝜃 𝑐𝑜𝑠(𝜃)

𝑦 = 𝑟𝑠𝑖𝑛(𝜃) = 𝑎 𝑒𝑏𝜃 𝑠𝑖𝑛(𝜃) (4.3)

The camber mean-line profile can be characterized using the coordinates of trail-
ing and leading edge, as indicated in Fig. 4.3. The coordinates of 𝑟𝑏𝐿 and 𝑟𝑏𝑇 are given
by Eq. 4.4.

BLADE

Ref

q
T

q
L

r
bo

r
bi

q
r

Figure 4.3: Blade characterization using trailing and leading edge
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𝑟𝑏𝐿 = {𝑟𝑏𝑖,𝜃𝐿} → 𝑟𝑖 = 𝑎𝑒𝑏𝜃𝐿

𝑟𝑏𝑇 = {𝑟𝑏𝑜,𝜃𝑇} → 𝑟𝑜 = 𝑎𝑒𝑏𝜃𝑇 (4.4)

The constants 𝑎 and 𝑏 can be calculated using Eq. 4.2 for two points {𝑟𝑖,𝜃𝐿} and
{𝑟𝑜,𝜃𝑇}, so 𝑏 becomes:

𝑟𝑖
𝑟𝑜

=
𝑎 𝑒𝑏𝜃𝐿

𝑎 𝑒𝑏𝜃𝑇
= 𝑒𝑏(𝜃𝐿−𝜃𝑇 )

𝑏 = ln

(︂
𝑟𝑖
𝑟𝑜

)︂⧸︂
(𝜃𝐿 − 𝜃𝑇 ) (4.5)

The constant 𝑎 is:

𝑎 =
𝑟𝑖

(𝑒𝑏)𝜃𝐿
=

𝑟𝑖
[𝑒ln(𝑟𝑖/𝑟𝑜)]𝜃𝐿/(𝜃𝐿−𝜃𝑇 )

=
𝑟𝑖

(𝑟𝑖/𝑟𝑜)
𝜃𝐿/(𝜃𝐿−𝜃𝑇 )

𝑎 =
𝑟
𝜃𝐿/(𝜃𝐿−𝜃𝑇 )
𝑜

𝑟
𝜃𝑇 /(𝜃𝐿−𝜃𝑇 )
𝑖

(4.6)

The radius and the azimuth of trailing and leading edge with Eqs. 4.5 and 4.6
were used to acquire the constants 𝑎 and 𝑏, which represents the camber mean-line of
the hydrofoil used experimentally. The constant parameters 𝑎 and 𝑏 were estimated using
the points in the blade profile. Those constants were acquired using a code in the Matlab
platform, so they are 105.61 and -0.550, respectively. Thus, those constants defines the
logarithmic spiral.

In posses of those constants the log-polar coordinates were used followed by a
transformation in order to acquire dimensionless form of radius and theta:

𝑟 = 𝑎𝑒𝑏𝜃 → 𝜌 = ln 𝑟 = 𝑏𝜃 + ln 𝑎 → 𝜃 =
𝜌− ln 𝑎

𝑏

𝜌 =
𝜌− 𝜌𝑖
𝜌𝑜 − 𝜌𝑖

=
ln 𝑟 − ln 𝑟𝑖
ln 𝑟𝑜 − ln 𝑟𝑖

=
ln (𝑟/𝑟𝑖)

ln (𝑟𝑜/𝑟𝑖)
→ 𝜌 ∈ [0,1] (4.7)

𝜃 =
𝜃 − (𝜌− ln 𝑎)/𝑏

𝜃𝑐
=

𝑏𝜃 − 𝜌− ln 𝑎

𝑏𝜃𝑐
where 𝜃𝑐 = 2𝜋/𝑍𝑏 → 𝜃 ∈ [0,1] (4.8)
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Using Eqs. 4.7 and 4.8 it is possible to transform the volume control presented in
Fig. 4.4(a) in a dimensionless form, as showed in Fig. 4.4(b).

ri

ro

Blade 1

Blade 2
q = cte

Blade 1(PS) Blade 2 (SS)

q

1

10

(a) (b)

r

Figure 4.4: Impeller channel: (a) control volume - (b) dimensionless form

Figure 4.5 shows the camber mean-line and the vector �⃗�(𝜃) that links the center of
the impeller to the blade. Vector �⃗� is a parametric curve in function of azimuth 𝜃 which
describes the blade geometry and it is aligned with 𝑟. According with logarithmic spiral:
�⃗�(𝜃) = 𝑎𝑒𝑏𝜃𝑟. The tangent vector 𝑑𝑏/𝑑𝜃 is given by:

r

"

n

s

Logarithmic
Spiral

b( )θ

β
β

Figure 4.5: Blade coordinates
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𝑑𝑠𝑏 =
𝑑𝑏

𝑑𝜃
=

𝑑

𝑑𝜃
(𝑎𝑒𝑏𝜃)𝑟 + 𝑎𝑒𝑏𝜃

𝑑𝑟

𝑑𝜃

𝑑𝑠𝑏 = 𝑎𝑏 𝑒𝑏𝜃𝑟 + 𝑎𝑒𝑏𝜃𝑟𝜃 = 𝑏𝑟𝑟 + 𝑟𝜃

||𝑑𝑠𝑏|| = 𝑟
√
𝑏2 + 1 (4.9)

So, versor 𝑠 is a vector tangent and normalized which follows the blade profile so
it can be used as a base for curvilinear coordinate system.

𝑠 =
𝑑𝑠𝑏

‖ 𝑑𝑠𝑏 ‖
=

𝑏√
𝑏2 + 1

𝑟 +
1√

𝑏2 + 1
𝜃

𝑠 =

{︂
𝑏√

𝑏2 + 1
,

1√
𝑏2 + 1

}︂
(4.10)

Normal versor denoted as �̂� should be normal in relation to the blades, for this it
needs to respect inner product for normal vectors, so:

𝑠 · �̂� = 0 → (𝑠𝑟,𝑠𝜃) · (𝑛𝑟,𝑛𝜃) = 0 → 𝑠𝑟 𝑛𝑟 = −𝑠𝜃 𝑛𝜃 (4.11)

Equation 4.11 can be solved doing 𝑛𝑟 = −𝑠𝜃 and 𝑛𝜃 = 𝑠𝑟. So, �̂� becomes:

�̂� = −𝑠𝜃𝑟 + 𝑠𝑟𝜃 = {−𝑠𝜃,𝑠𝑟} (4.12)

Equation 4.12 showed a relation between the components of 𝑠 and �̂�. The differ-
ence here is the negative component 𝑠𝜃.

𝑠× �̂� =

⎡⎢⎣ 𝑟 𝜃 𝑧

𝑠𝑟 𝑠𝜃 0

−𝑠𝜃 𝑠𝑟 0

⎤⎥⎦ = (𝑠2𝑟 + 𝑠2𝜃) · 𝑧 = 𝑧 (4.13)

In the same way, the cross product 𝑠× �̂� is equal to 𝑧 and also equals to 𝑟 × 𝜃, common
for both coordinate system. This was satisfied by Eq. 4.13, where (𝑠2𝑟 +𝑠2𝜃) = ||𝑠||2 = 1,
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as it ia a versor. The angle between 𝑠 and 𝑟 indicated in Fig. 4.5 as 𝛽 is:

𝜋

2
− 𝛽 = 𝑎𝑟𝑐 cos

(︂
�⃗�

‖ �⃗� ‖
· �⃗�

‖ �⃗� ‖

)︂
→ where

⎧⎨⎩||�⃗�|| = 1

||�⃗�|| = 1

𝛽 =
𝜋

2
− 𝑎𝑟𝑐 cos

[︂{︂
𝑏√

𝑏2 + 1
,

1√
𝑏2 + 1

}︂
· {1,0}

]︂
𝛽 =

𝜋

2
− 𝑎𝑟𝑐 cos

(︂
𝑏√

𝑏2 + 1

)︂
=

𝜋

2
− 𝑎𝑟𝑐 tan

(︂
1

𝑏

)︂
=

𝜋

2
− cot−1(𝑏) (4.14)

The trigonometric passage that occurs in Eq. 4.14 is explained using Pythagorean
theorem, where

√
𝑏2 + 1 is the length of the hypotenuse and 𝑏 and 1 are the other two

sides. So, 𝑎𝑟𝑐 cos
(︀
𝑏/(

√
𝑏2 + 1)

)︀
is equal to 𝑎𝑟𝑐 tan (1/𝑏). In this case, 𝑏 is one of the

constants used in logarithmic spiral, 𝛽 is also a constant. It is important to note that con-
sidering the camber mean-line the blade profile was not considered. This assumption
leads the hypothesis of flow parallel to the blade, which is not real. The blade coordi-
nate system represents a rotation in rigid body of polar coordinate system and may be
represented by the follow equations:

𝑠 = sin 𝛽 𝑟 − cos 𝛽 𝜃

�̂� = cos 𝛽 𝑟 + sin 𝛽 𝜃[︃
𝑠

�̂�

]︃
=

[︃
sin 𝛽 − cos 𝛽

cos 𝛽 sin 𝛽

]︃[︃
𝑟

𝜃

]︃
(4.15)

The matrix in Eq. 4.15 rotates points in 𝑟𝜃-plane counterclockwise through an
angle (𝜋/2 − 𝛽) about the origin of the polar coordinate system. This rotation matrix is
called R matrix which is orthogonal and its determinant is equal to 1. This matrix has a
property of its inverse matrix is equals to its transpose matrix, in other words R𝑇 = R−1.
So: [︃

𝑟

𝜃

]︃
=

[︃
sin 𝛽 cos 𝛽

− cos 𝛽 sin 𝛽

]︃[︃
𝑠

�̂�

]︃
(4.16)



90

4.1.1 Non-Inertial and Inertial Frames of Reference

A discussion on the equations of motion in fluid mechanics of rotating machin-
ery are often best analyzed in a rotating frame of reference. In this case the continuity
equation is unchanged but the momentum equation must be modified. Considering a
non-inertial frame of reference 𝑥𝑦𝑧 in Fig. 4.6 and a inertial frame of reference 𝑋𝑌 𝑍.

y
x

X

Y

y P

x P

P

rA

rP

rP/A

A A

Z

z
Ω

O

Figure 4.6: Non-inertial (𝑥,𝑦,𝑧) and inertial (𝑋,𝑌,𝑍) reference frame

Rotational forces must be considered in centrifugal pump, particularly two ficti-
tious forces must be considered: the Coriolis force and the centrifugal force. They will
be discussed later. The position of particle P can be described in relation to non-inertial
reference frame, denoted as �⃗�𝑃/𝐴 or it can be described in relation to the inertial refer-
ence frame, denoted as �⃗�𝑃 . This is showed in Fig. 4.6. These distances are simply related
by the position vector of a flow particle P as:

�⃗�𝑃 = �⃗�𝐴 + �⃗�𝑃/𝐴 → where

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�⃗�𝑃 = P position in {X,Y,Z}

�⃗�𝐴 = A position in {X,Y,Z}

�⃗�𝑃/𝐴 = P position in {x,y,z}

(4.17)

The derivative of a vector in a non-inertial reference frame should be used now.
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Generally, the representation of a vector in a non-inertial frame neglect its movements,
so when the derivative is calculated the translation of system origin must be taken into
account besides the impeller rotation. The derivative of a vector is given by:

𝑑( ){𝑋,𝑌,𝑍}

𝑑𝑡
=

𝑑�⃗�

𝑑𝑡
+ Ω⃗ × ( ){𝑥,𝑦,𝑧} +

𝑑( ){𝑥,𝑦,𝑧}
𝑑𝑡

(4.18)

So the time derivative of Eq. 4.17 becomes:

𝑑�⃗�𝑃
𝑑𝑡

=
𝑑�⃗�𝐴
𝑑𝑡

+ Ω⃗ × �⃗�𝑃/𝐴 +
𝑑�⃗�𝑃/𝐴

𝑑𝑡

�⃗�𝑃 = �⃗�𝐴 + Ω⃗ × �⃗�𝑃/𝐴 + �⃗�𝑃 (4.19)

where Ω represents the rotation pseudo-vector, 𝑉 in uppercase letter represents the ve-
locity measured from {X, Y, Z} reference and 𝑣 in lower case is the velocity measured
from {x, y, z}.

Using the same procedure indicated by Eq. 4.18 the velocity expression was de-
rived so the acceleration of P, observed from the {X, Y, Z} coordinate system, may
be expressed in terms of its motion measured with respect to the rotating system of
coordinates by taking the time derivative of Eq. 4.19 (HIBBELER, 2010). The result is:

�⃗�𝑃

𝑑𝑡
=

𝑑�⃗�𝐴

𝑑𝑡
+

𝑑

𝑑𝑡
(Ω⃗ × �⃗�𝑃/𝐴) +

𝑑�⃗�𝑃
𝑑𝑡

+ Ω⃗ × �⃗�𝑃

or:
�⃗�𝑃 = �⃗�𝐴 +

𝑑

𝑑𝑡
(Ω⃗ × �⃗�𝑃/𝐴) + Ω⃗ × 𝑑�⃗�𝐴

𝑑𝑡
+ �⃗�𝑃 + Ω⃗ × �⃗�𝑃 (4.20)

where 𝑑Ω/𝑑𝑡 is the acceleration of coordinate system. Substituting 𝑑(�⃗�𝑃/𝐴)/𝑑𝑡, previ-
ously calculated, Eq. 4.20 becomes:

�⃗�𝑃 = �⃗�𝐴 +
˙⃗
Ω × �⃗�𝑃/𝐴 + Ω⃗ ×

(︁
Ω⃗ × �⃗�𝑃/𝐴 + �⃗�𝑃

)︁
+ �⃗�𝑃 + Ω⃗ × �⃗�𝑃 (4.21)

This expression can be simplified substituting some terms by �⃗�𝑓 , fictitious accel-
erations:

�⃗�𝑓 = �⃗�𝐴 +
˙⃗
Ω × �⃗�𝑃/𝐴 + 2Ω⃗ × �⃗�𝑃 + Ω⃗ × Ω⃗ × �⃗�𝑃/𝐴 (4.22)
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where

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙⃗
Ω × �⃗�𝑃/𝐴 = Euler acceleration

2Ω⃗ × �⃗�𝑃 = Coriolis acceleration

Ω⃗ × Ω⃗ × �⃗�𝑃/𝐴 = Centripetal acceleration

These three accelerations appear when the vector was derived in a non-inertial
reference frame. Those three accelerations does not exists at all, they were derived as
a result of a position description of a particle without being connected, in fact, with a
force. Moreover, the impeller and the center of reference system coincide, which means
that no translation was present and the rotation velocity Ω is constant. So, the fictitious
accelerations becomes:

�⃗�𝑓 = 2Ω⃗ × �⃗�𝑃 + Ω⃗ × Ω⃗ × �⃗�𝑃/𝐴 (4.23)

Figure 4.7 shows the rotation Ω⃗ and a particle along the impeller’s channels. The
reference system of this particle was already described in Fig. 4.6. The rotation of the
particle is represented by vector Ω which is equal to {0 , 0 ,𝜔}, �⃗�𝑃/𝐴 = {𝑟 , 0 , 0} and
�⃗�𝑃 = {𝑣𝑟 , 𝑣𝜃 , 0} which represents the distance of particle and its velocity, respectively.

Z

r

r
P/A

Particle P

Ω

q

Figure 4.7: Particle P along the impeller

The two terms knowing by Coriolis 𝐴𝑐𝑜𝑟 and centripetal 𝐴𝑐𝑡𝑝 accelerations in polar
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coordinates are showed in Eq. 4.24 and 4.26, respectively.

𝐴𝑐𝑜𝑟 = 2Ω⃗ × (�⃗�𝑃/𝐴)𝑥𝑦𝑧 = 2

⎡⎢⎣ 𝑟 𝜃 𝑧

0 0 𝜔

𝑣𝑟 𝑣𝜃 0

⎤⎥⎦

�⃗�𝑐𝑜𝑟 = −2𝜔 𝑣𝜃𝑟 + 2𝜔 𝑣𝑟𝜃 (4.24)

Ω⃗ × �⃗�𝑃/𝐴 = Ω⃗ ×

⎡⎢⎣𝑟 𝜃 𝑧

0 0 𝜔

𝑟 0 0

⎤⎥⎦ = 𝜔𝑟 𝜃 (4.25)

𝐴𝑐𝑡𝑝 = Ω⃗ × Ω⃗ × �⃗�𝑃/𝐴 =

⎡⎢⎣𝑟 𝜃 𝑧

0 0 𝜔

0 𝜔𝑟 0

⎤⎥⎦
�⃗�𝑐𝑡𝑝 = −𝜔2 𝑟 𝑟 (4.26)

4.1.2 Kinematics for Rotor Dynamics

In the previous section the velocity of a point P was described, relating it between
an inertial {X, Y, Z} and non-inertial {x, y, z} reference frame.

�⃗�𝑃 = �⃗�𝑃 + Ω⃗ × �⃗�𝑃/𝐴 where it was assumed that: �⃗�𝐴 = 0 (4.27)

The term Ω⃗ × �⃗�𝑃/𝐴 in this case corresponds to tangential velocity, which is equal
to 𝜔 𝑟 𝜃 (Eq. 4.25). So:

�⃗�𝑃 = �⃗�𝑃 + 𝜔𝑟𝜃 (4.28)

Equation 4.28 is represented in a velocity triangle indicated in Fig. 4.8. The Greek
letter 𝜙 represents the inclination between velocity �⃗�𝑃 and versor 𝜃. In a complex ve-
locity field, as it is in a pump impeller, 𝜙 would be a function of r and 𝜃. However, it is
common to simplify it for an axisymmetric flow as 𝜙(𝑟).

The incidence 𝛾 and deviation 𝛿 angles are defined in relation to the blade angle.
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Figure 4.8: Velocity vectors at the discharge

So, they are respectively(BRENNEN, 1994):

𝛾 = 𝜙(𝑟𝑖) − 𝛽(𝑟𝑖) 𝛿 = 𝜙(𝑟𝑜) − 𝛽(𝑟𝑜) (4.29)

However, for the hypothesis of parallel flow through the blade, both are equal
to zero, because 𝜙(𝑟) = 𝛽(𝑟) (BRENNEN, 1994). Considering for a logarithmic spiral
𝛽(𝑟) = 𝛽, the velocity triangle is rewritten and presented in Fig. 4.9 .

ω θr

VP

Vpr

Vpθ

b

U(r) =

vP

Figure 4.9: Velocity vectors at the discharge

From now, the letter P will be suppressed for simplicity. The velocities are written
in function of 𝑣𝑟 or 𝑉𝑟, which are equal. This is made because its velocity is related to
mass flow rate.

𝑣𝑟 = 𝑉𝑟 = 𝑣 sin 𝛽 → 𝑣 =
𝑣𝑟

sin 𝛽
(4.30)

𝑣𝜃 = −𝑣 cos 𝛽 = −𝑣𝑟
cos 𝛽

sin 𝛽
→ 𝑣𝜃 = −𝑣𝑟 cot 𝛽 (4.31)

𝑉𝜃 = 𝜔𝑟 + 𝑣𝜃 = 𝜔𝑟 − 𝑣𝑟 cot 𝛽 → 𝑉𝜃 = 𝜔𝑟 − 𝑣𝑟 cot 𝛽 (4.32)
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The angle 𝛽 is equal to 𝜋/2 − cot−1(𝑏), so:

cot 𝛽 = cot
[︁𝜋

2
− cot−1(𝑏)

]︁
(4.33)

For simplicity, − cot−1(𝑏) = 𝐵, so Eq. 4.33 becomes:

cot

(︂
𝜋

2
+ 𝐵

)︂
=

cos(𝜋/2) cos𝐵 − sin(𝜋/2) sin𝐵

sin(𝜋/2) cos𝐵 + sin𝐵 cos(𝜋/2)
= − sin𝐵

cos𝐵
= − tan𝐵 (4.34)

The angle B has its tangent calculated here:

𝐵 = − cot−1(𝑏) = −𝑎𝑟𝑐 tan

(︂
1

𝑏

)︂
(4.35)

cot 𝛽 = − tan
[︁
− 𝑎𝑟𝑐 tan

(︂
1

𝑏

)︂]︁
= tan

[︁
𝑎𝑟𝑐 tan

(︂
1

𝑏

)︂]︁
=

1

𝑏

cot 𝛽 =
1

𝑏
(4.36)

The velocity field in non-inertial and inertial reference frame is defined as:

𝑣𝑟 = 𝑉𝑟 (4.37)

𝑣𝜃 = −𝑣𝑟 cot 𝛽 = −𝑣𝑟
𝑏

→ 𝑣𝜃 = −𝑣𝑟
𝑏

(4.38)

𝑉𝜃 = 𝜔𝑟 + 𝑣𝜃 = 𝜔𝑟 − 𝑣𝑟 cot 𝛽 = 𝜔𝑟 − 𝑣𝑟
𝑏

→ 𝑉𝜃 = 𝜔𝑟 − 𝑣𝑟
𝑏

(4.39)

4.2 Modeling Gas-Liquid Flow - Drift-Flux Model

The development of drift-flux model formulation in this study uses the mass and
momentum equations. They are developed considering a specific set of operations of
an electric submersible pump (ESP). Considering a two-phase gas-liquid flow where
subscript 1 and 2 were used for the gas and water phases, respectively. The letter 𝑘 was
used to represent the phases in the equations. To begin the calculations some hypothesis
were assumed:
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∘ Incompressible fluids;
∘ No mass transfer between the phases;
∘ Constant local properties (thermal conductivity, specific heat, no fluid thermal

expansion);
∘ Viscosity is function of the temperature only;
∘ Steady state;
∘ Neglecting superficial and interfacial tension;
∘ Assuming no variation in z-direction;
∘ Neglecting hydrofoil thickness.

OUTLET

INLET
θ

2 θ
1

r
i

r
o

Figure 4.10: Impeller domain

The impeller was modeled using the concept of a radial cascade
(BRENNEN, 1994) where the blade profile follow a logarithmic spiral (section
5.1). The real structure have blades whose set form an hydrofoil distorted whose
camber mean line follow a logarithmic spiral. Besides, the domain presented in Fig.
4.10 is axisymmetric and periodic, so the description can be done by just one channel.

The channel is a tube of quadratic section, curved where its area varies in a non-
inertial frame of reference. So, beginning with the two-fluid model considering the hy-
pothesis already exposed, the differential equations were written in polar coordinates.
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4.2.1 Continuity Equation:

1

𝑟

𝜕

𝜕𝑟
(𝛼𝑘𝜌𝑘𝑟𝑣𝑘𝑟) +

1

𝑟

𝜕

𝜕𝜃
(𝛼𝑘𝜌𝑘𝑣𝑘𝜃) = 0

𝜕

𝜕𝑟
(𝛼𝑘𝜌𝑘𝑟𝑣𝑘𝑟) +

𝜕

𝜕𝜃
(𝛼𝑘𝜌𝑘𝑣𝑘𝜃) = 0 (4.40)

The volumetric flux of each phase in mixture, 𝑗𝑘, is given by (ISHII AND HI-
BIKI, 2010):

𝑗𝑘 = 𝛼𝑘 𝑣𝑘 (4.41)

Equation 4.40 becomes:

𝜕

𝜕𝑟
(𝜌𝑘𝑟𝑗𝑘𝑟) +

𝜕

𝜕𝜃
(𝜌𝑘𝑗𝑘𝜃) = 0 (4.42)

Using the hypothesis of incompressible flow (Mach ≪ 1):

𝜌𝑘
𝜕

𝜕𝑟
(𝑟𝑗𝑘𝑟) = −𝜌𝑘

𝜕

𝜕𝜃
(𝑗𝑘𝜃) (4.43)

As we are interesting in variation of velocity through the impeller in 𝑟 direction
Eq. 4.43 is wrote in its weak form for azimuth direction. It is integrated in 𝜃 and no-slip
condition in the walls is used.

𝜕

𝜕𝑟
(𝑟𝑗𝑘𝑟) = − 𝜕

𝜕𝜃
(𝑗𝑘𝜃)

∫︁ 𝜃2(𝑟)

𝜃1(𝑟)

𝜕

𝜕𝑟
(𝑟𝑗𝑘𝑟)𝑑𝜃 = −

∫︁ 𝜃2(𝑟)

𝜃1(𝑟)

𝜕

𝜕𝜃
(𝑗𝑘𝜃)𝑑𝜃

∫︁ 𝜃2(𝑟)

𝜃1(𝑟)

𝜕

𝜕𝑟
(𝑟𝑗𝑘𝑟)𝑑𝜃 = −𝑗𝑘𝜃

⃒⃒⃒𝜃2(𝑟)
𝜃1(𝑟)

= 0 (4.44)

The term 𝑗𝑘𝜃(𝜃1(𝑟)) and 𝑗𝑘𝜃(𝜃2(𝑟)) where null because the no-slip condition.

∫︁ 𝜃2(𝑟)

𝜃1(𝑟)

𝜕

𝜕𝑟
(𝑟𝑗𝑘𝑟)𝑑𝜃 = 0 (4.45)

The impeller channel is modeled as a curved duct with variable cross section area.
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The interest of the present study is to model the terms in 𝜃 as a mean letting the variables
in function of radius. The mean in 𝜃 is calculated using the Leibniz’s rule.∫︁ 𝜃2(𝑟)

𝜃1(𝑟)

𝜕

𝜕𝑟
[𝑟 𝛼𝑘(𝑟,𝜃) 𝑣𝑘𝑟(𝑟,𝜃)]𝑑𝜃 =

𝑑

𝑑𝑟

∫︁ 𝜃2(𝑟)

𝜃1(𝑟)

[𝑟 𝛼𝑘(𝑟,𝜃) 𝑣𝑘𝑟(𝑟,𝜃)]𝑑𝜃

−𝑟 𝛼𝑘(𝑟,𝜃2) 𝑣𝑘𝑟(𝑟,𝜃2(𝑟))
𝜕

𝜕𝑟
𝜃2(𝑟) + 𝑟 𝛼𝑘(𝑟,𝜃1) 𝑣𝑘𝑟(𝑟,𝜃1(𝑟))

𝜕

𝜕𝑟
𝜃1(𝑟)

(4.46)

The two final terms on right hand side, expressed in Eq. 4.47 are equal to zero
because of no-slip boundary condition. If this condition was not applied, this will be
dependent of parametric curved formed by the logarithm spiral.

𝑟 𝛼𝑘(𝑟,𝜃2) 𝑣𝑘𝑟(𝑟,𝜃2(𝑟))
𝜕

𝜕𝑟
𝜃2(𝑟) = 0

𝑟 𝛼𝑘(𝑟,𝜃1) 𝑣𝑘𝑟(𝑟,𝜃1(𝑟))
𝜕

𝜕𝑟
𝜃1(𝑟) = 0 (4.47)

Equation 4.46 becomes:

∫︁ 𝜃2(𝑟)

𝜃1(𝑟)

𝜕

𝜕𝑟
[𝑟 𝛼𝑘(𝑟,𝜃) 𝑣𝑘𝑟(𝑟,𝜃)]𝑑𝜃 =

𝑑

𝑑𝑟

∫︁ 𝜃2(𝑟)

𝜃1(𝑟)

𝛼𝑘(𝑟,𝜃) 𝑣𝑘𝑟(𝑟,𝜃) 𝑟 𝑑𝜃 (4.48)

The derivative and the integral operator are commutative because of no-slip con-
ditions used for blades (𝜃1 and 𝜃2). So, multiplying Eq. 4.48 for 1/∆𝜃, in order to obtain
the average operator, where ∆𝜃 = 2𝜋/𝑍𝑏 = 𝜃2(𝑟) − 𝜃1(𝑟):

1

∆𝜃

∫︁ 𝜃2(𝑟)

𝜃1(𝑟)

𝛼𝑘(𝑟,𝜃) 𝑣𝑘𝑟(𝑟,𝜃)𝑟𝑑𝜃 = 𝐶 (4.49)

The integral above is the volumetric flow rate in the surface of versor 𝑟 between
𝜃1 and 𝜃2 for phase k. Defining (1 − 𝜆) = 𝑄1/𝑄𝑚, and 𝜆 = 𝑄2/𝑄𝑚 and the mixture
flow rate as 𝑄𝑚 + 𝑄1 + 𝑄2 (ISHII AND HIBIKI, 2010), so:

1

∆𝜃

∫︁ 𝜃2(𝑟)

𝜃1(𝑟)

𝛼𝑘(𝑟,𝜃) 𝑣𝑘𝑟(𝑟,𝜃)𝑟𝑑𝜃 = 𝐶 =

(︂
𝜆𝑘 𝑄𝑚

𝑍𝑏 ℎ

)︂(︂
𝑍𝑏

2 𝜋

)︂

1

∆𝜃

∫︁ 𝜃2(𝑟)

𝜃1(𝑟)

𝛼𝑘(𝑟,𝜃) 𝑣𝑘𝑟(𝑟,𝜃)𝑟𝑑𝜃 =
𝜆𝑘 𝑄𝑚

2 𝜋 ℎ
(4.50)
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As the integral is in 𝜃, Eq. 4.50 becomes:

1

∆𝜃

∫︁ 𝜃2(𝑟)

𝜃1(𝑟)

𝛼𝑘(𝑟,𝜃) 𝑣𝑘𝑟(𝑟,𝜃)𝑑𝜃 =
𝜆𝑘 𝑄𝑚

2𝜋 𝑟 ℎ
(4.51)

Defining the mean operator as:

1

∆𝜃

∫︁ 𝜃2(𝑟)

𝜃1(𝑟)

() 𝑑𝜃 = ⟨()⟩𝜃 (4.52)

⟨𝛼𝑘(𝑟,𝜃)⟩𝜃 = 𝛼𝑘(𝑟) =
1

∆𝜃

∫︁ 𝜃2(𝑟)

𝜃1(𝑟)

𝛼𝑘(𝑟,𝜃) 𝑑𝜃 (4.53)

⟨𝑣𝑘𝑟(𝑟,𝜃)⟩𝜃 = 𝑣𝑘𝑟(𝑟) =
1

∆𝜃

∫︁ 𝜃2(𝑟)

𝜃1(𝑟)

𝑣𝑘𝑟(𝑟,𝜃) 𝑑𝜃 (4.54)

The profile shape factor K is the normalized cross correlation, explained in more
details below and is defined as:

𝐾(𝑟) =
⟨𝛼𝑘(𝑟,𝜃) 𝑣𝑘𝑟(𝑟,𝜃)⟩𝜃

⟨𝛼𝑘(𝑟,𝜃)⟩𝜃 ⟨𝑣𝑘𝑟(𝑟,𝜃)⟩𝜃
(4.55)

The volumetric flux or superficial velocity is:

𝑗𝑘𝑟(𝑟) =
𝜆𝑘 𝑄𝑚

2 𝜋 ℎ 𝑟
=

𝑄𝑘

𝐴(𝑟)
(4.56)

So, Eq. 4.51 becomes:

1

∆𝜃

∫︁ 𝜃2(𝑟)

𝜃1(𝑟)

𝛼𝑘(𝑟,𝜃) 𝑣𝑘𝑟(𝑟,𝜃) 𝑑𝜃 =
𝜆𝑘 𝑄𝑚

2𝜋 ℎ 𝑟
= 𝑗𝑘𝑟(𝑟)

⟨𝛼𝑘(𝑟,𝜃) 𝑣𝑘𝑟(𝑟,𝜃)⟩𝜃 =
𝜆𝑘 𝑄𝑚

2 𝜋 ℎ 𝑟
= 𝑗𝑘𝑟(𝑟)(︂

⟨𝛼𝑘(𝑟,𝜃) 𝑣𝑘𝑟(𝑟,𝜃)⟩𝜃
⟨𝛼𝑘(𝑟,𝜃)⟩𝜃 ⟨𝑣𝑘𝑟(𝑟,𝜃)⟩𝜃

)︂
⟨𝛼𝑘(𝑟,𝜃)⟩𝜃 ⟨𝑣𝑘𝑟(𝑟,𝜃)⟩𝜃 =

𝜆𝑘 𝑄𝑚

2𝜋 ℎ 𝑟
= 𝑗𝑘𝑟(𝑟)

𝐾(𝑟)𝛼𝑘(𝑟) 𝑣𝑘𝑟(𝑟) =
𝜆𝑘 𝑄𝑚

2 𝜋 ℎ 𝑟
= 𝑗𝑘𝑟(𝑟) (4.57)

In pipeline applications, generally for turbulent flows, the velocity profile across
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de duct tends to have a symmetry when their averages were made. The major use of
velocity and concentration profiles were applied into a normalized cross correlation,
denoted as K (profile shape factor). In order to increase the model accuracy, this factor
should be different than unity, as the flow across the impeller is clearly different from
ducts. This factor represents the deviance from 𝑣 and 𝛼 across the impeller channel, so:

∘ 𝐾(𝑟) = 1 : Regular profile, the velocities not depends on 𝜃 direction.

∘ 𝐾(𝑟) ̸= 1 : The profile across 𝜃 is considered.

The mixture volumetric flux is defined as:

𝑗𝑚(𝑟) = 𝑄𝑚/(2𝜋 𝑟 ℎ) (4.58)

Using this in Eq. 4.57:

𝑗𝑘𝑟(𝑟) = 𝐾(𝑟)𝛼𝑘(𝑟) 𝑣𝑘𝑟(𝑟) =
𝜆𝑘 𝑄𝑚

2𝜋 ℎ 𝑟
= 𝜆𝑘 𝑗𝑚(𝑟) (4.59)

For simplicity, 𝐾(𝑟) is adopted as = 1 and the bar above 𝛼 and 𝑣 will be omitted,
so:

𝑗𝑘𝑟(𝑟) = 𝛼𝑘(𝑟) 𝑣𝑘𝑟(𝑟)

𝑗𝑘𝜃(𝑟) = 𝛼𝑘(𝑟) 𝑣𝑘𝜃(𝑟) = −𝛼𝑘(𝑟) 𝑣𝑘𝑟 cot 𝛽 = −𝑗𝑘𝑟(𝑟) cot 𝛽 (4.60)

Using the velocity triangle in Eq. 4.60, where 𝑣𝑘𝜃(𝑟) = −𝑣𝑘𝑟 cot 𝛽. The radial and
azimuth slip are given by, respectively (ISHII AND HIBIKI, 2010):

𝑣𝑠𝑟(𝑟) = 𝑣2𝑟(𝑟) − 𝑣1𝑟(𝑟) =
𝑗2𝑟
𝛼2

− 𝑗1𝑟
𝛼1

= 𝑗𝑚(𝑟)

[︂
𝜆2

𝛼2(𝑟)
− 𝜆1

𝛼1(𝑟)

]︂
(4.61)

𝑣𝑠𝜃(𝑟) = 𝑣2𝜃(𝑟) − 𝑣1𝜃(𝑟) =
𝑗2𝜃
𝛼2

− 𝑗1𝜃
𝛼1

= −𝑗𝑚(𝑟)

[︂
𝜆2

𝛼2(𝑟)
− 𝜆1

𝛼1(𝑟)

]︂
cot 𝛽 (4.62)

Using Eqs. 4.61 and 4.62 a relation between 𝑣𝑠𝜃 and 𝑣𝑠𝑟 is:

𝑣𝑠𝑟(𝑟) = 𝑗𝑚(𝑟)

[︂
𝜆2

𝛼2(𝑟)
− 𝜆1

𝛼1(𝑟)

]︂
(4.63)
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𝑣𝑠𝜃(𝑟) = −𝑣𝑠𝑟(𝑟) cot 𝛽 (4.64)

From Eqs. 4.63 and 4.64 a triangle of velocity indicating the slip can be drawn, as
indicated in Fig. 4.11. The term 𝑣𝑠𝜃 is in counterclockwise of the versor 𝜃 which means
that it is negative. These components indicated that the slip is aligned with blade, as
expected.

b

vs,s(r) vs,r(r)

vs,q(r)
q direction

q direction
˄

˄

Figure 4.11: Impeller domain

Thus, considering the velocity field premises stated, the slip on normal direction
to 𝑠, represented by �̂� is null. The velocity field was simplified with this hypothesis. So:

𝑣𝑠,𝑠(𝑟) = 𝑣𝑠𝑟(𝑟)
⧸︁

sin 𝛽 or 𝑣𝑠𝑟(𝑟) = 𝑣𝑠,𝑠 sin 𝛽 (4.65)

Hence, estimating 𝑣𝑠𝑟 is possible to find 𝑣𝑠,𝑠 which is desired. As the channel was
treated as a curved duct with variable cross-section area, the interest of calculus is in 𝑠

direction.
The coordinate system change can be done using Eq. 4.15, so the velocities in 𝑠

and �̂� become:

�⃗� = {𝑣𝑟, 𝑣𝜃} ·
{︂

sin 𝛽 𝑠 cos 𝛽 �̂�

− cos 𝛽 𝑠 sin 𝛽 �̂�

}︂
�⃗� =

(︁
𝑣𝑟 sin 𝛽 − 𝑣𝜃 cos 𝛽

)︁
𝑠 +

(︁
𝑣𝑟 cos 𝛽 + 𝑣𝜃 sin 𝛽

)︁
�̂� (4.66)

The velocity vector is: �⃗� = 𝑣𝑠𝑠 + 𝑣𝑛�̂�. So:

𝑣𝑠 = 𝑣𝑟 sin 𝛽 − 𝑣𝜃 cos 𝛽 (4.67)
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𝑣𝑛 = 𝑣𝑟 cos 𝛽 + 𝑣𝜃 sin 𝛽 (4.68)

A similar procedure is done for the slip as the treatment uses the same linear
transformation.

�⃗� 𝑠 �̂�
𝑠 = 𝑅

{︂
𝑣2𝑟

𝑣2𝜃

}︂
−𝑅

{︂
𝑣1𝑟

𝑣1𝜃

}︂
= 𝑅 �⃗� 𝑟 𝜃

𝑠

𝑣𝑠,𝑠 = 𝑣𝑠𝑟 sin 𝛽 − 𝑣𝑠𝜃 cos 𝛽 (4.69)

𝑣𝑠,𝑛 = 𝑣𝑠𝑟 cos 𝛽 + 𝑣𝑠𝜃 sin 𝛽 (4.70)

Substituting Eq. 4.38 in 4.67 for 𝑣𝑠,𝑠:

𝑣𝑠 = 𝑣𝑟 sin 𝛽 − 𝑣𝜃 cos 𝛽 = 𝑣𝑟 sin 𝛽 − (−𝑣𝑟 cot 𝛽) cos 𝛽

𝑣𝑠 = 𝑣𝑟

(︂
sin2 𝛽 + cos2 𝛽

sin 𝛽

)︂
=

𝑣𝑟
sin 𝛽

→ 𝑣𝑠 =
𝑣𝑟

sin 𝛽
(4.71)

Substituting Eq. 4.38 in 4.68 for 𝑣𝑠,𝑛:

𝑣𝑛 = 𝑣𝑟 cos 𝛽 + 𝑣𝜃 sin 𝛽 = 𝑣𝑟 cos 𝛽 + (−𝑣𝑟 cot 𝛽) sin 𝛽

𝑣𝑛 = 𝑣𝑟 cos 𝛽 − 𝑣𝑟
cos 𝛽

sin 𝛽
sin 𝛽 = 𝑣𝑟(cos 𝛽 − cos 𝛽) → 𝑣𝑛 = 0 (4.72)

Therefore, as the slip had the same projections and the same components, the
result of Eq. 4.71 and 4.72 must be equal for slip, i.e.:

𝑣𝑠,𝑠 = 𝑣𝑠𝑟

⧸︁
sin 𝛽 (4.73)

𝑣𝑠,𝑛 = 0 (4.74)

These results are important in the development of this model because with the
simplifications already made, these results show that there is only slip in the main di-
rection of the flow, which is in 𝑠. Besides, the slip in �̂� clearly is equal to zero.

The volumetric flux is 𝑗𝑘 = 𝛼 �⃗�𝑘 (Eq. 4.41) and the same projections of �⃗� are
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applied to �⃗�, so:

𝑣𝑠,𝑠 = 𝑣2𝑠 − 𝑣1𝑠 =
𝑗2𝑠
𝛼2

− 𝑗1𝑠
𝛼1

=
(1 − 𝛼) 𝑗2𝑠 − 𝛼 𝑗1𝑠

𝛼 (1 − 𝛼)

(1 − 𝛼)𝑗2𝑠 = 𝛼 𝑗1𝑠 + 𝛼 (1 − 𝛼)𝑣𝑠,𝑠

𝑗2𝑠 − 𝛼 𝑗2𝑠 = 𝛼 𝑗1𝑠 + 𝛼 (1 − 𝛼)𝑣𝑠,𝑠

𝑗2𝑠 = 𝛼 (𝑗1𝑠 + 𝑗2𝑠) + 𝛼 (1 − 𝛼) 𝑣𝑠,𝑠

𝑣2𝑠 = 𝑗𝑚,𝑠 + (1 − 𝛼)𝑣𝑠,𝑠 or 𝑣2𝑠 = 𝑗𝑚,𝑠 + 𝑣2𝑗 (4.75)

where 𝑣𝑠 is the relative velocity or slip velocity and 𝑣2𝑗 is the Drift-flux.
In the literature, based on experimental data a distribution coefficient is required

for a better adjust. The explanation of mean operator in Eq. 4.75:

𝑗2𝑠 = 𝛼 𝑗𝑚𝑠 + 𝛼 (1 − 𝛼) 𝑣𝑠,𝑠

⟨𝑗2𝑠⟩ = ⟨𝛼 𝑗𝑚𝑠⟩ + ⟨𝛼 (1 − 𝛼) 𝑣𝑠,𝑠⟩

where 𝐶0 is the distribution parameter given by:

𝐶0 =
⟨𝛼 𝑗𝑚𝑠⟩
⟨𝛼⟩⟨𝑗𝑚𝑠⟩

⟨𝑗2𝑠⟩ = 𝐶0 ⟨𝛼⟩⟨𝑗𝑚𝑠⟩ + ⟨𝛼 (1 − 𝛼) 𝑣𝑠,𝑠⟩ (4.76)

where 𝑣2𝑠 is the bubble velocity measured with the image treatment and 𝑗𝑚𝑠 is acquired
from experimental data.

4.2.2 Momentum Equation:

Considering the same hypothesis as the continuity equations, the momentum
equation can be written:
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∙ Radial direction (polar) 𝑟:

𝛼𝑘𝜌𝑘

(︂
𝑣𝑘𝑟

𝜕

𝜕𝑟
𝑣𝑘𝑟 +

𝑣𝑘𝜃
𝑟

𝜕

𝜕𝜃
𝑣𝑘𝑟−

𝑣2𝑘𝜃
𝑟

)︂
= −𝛼𝑘

𝜕

𝜕𝑟
𝑝𝑘 +𝛼𝑘𝜌𝑘𝑔𝑟−𝑀𝑘𝑟 +𝑆𝑘𝑟 +∇·⃗⃗𝜏 (4.77)

∙ Azimuth direction (polar) 𝜃:

𝛼𝑘𝜌𝑘

(︂
𝑣𝑘𝑟

𝜕

𝜕𝑟
𝑣𝑘𝜃 +

𝑣𝑘𝜃
𝑟

𝜕

𝜕𝜃
𝑣𝑘𝜃 +

𝑣𝑘𝑟 𝑣𝑘𝜃
𝑟

)︂
= −𝛼𝑘

1

𝑟

𝜕

𝜕𝜃
𝑝𝑘 + 𝛼𝑘𝜌𝑘𝑔𝜃 −𝑀𝑘𝜃 + 𝑆𝑘𝜃 +∇ · ⃗⃗𝜏

(4.78)
where ∇ · ⃗⃗𝜏 indicates the viscous stress tensor.

Simplifying comments and premises:

∘ The velocity field has its dependence only to radius, so any 𝜕/𝜕𝜃 of any velocity
is null.

∘ The gravity acceleration for this case is neglected (�⃗� = 𝑔𝑧).

∘ The momentum received by one phase is equal to the one given by the other, but
they have opposite directions, i. e. �⃗�2 = −�⃗�1.

∘ Fictitious forces are given through fictitious accelerations which already have
been calculated. The subscript 𝑘 is present indicating that they are applied for
both phases.
𝑆𝑘 = −𝛼𝑘 𝜌𝑘 �⃗�𝑘𝑓 where �⃗�𝑘𝑓 = 𝐴𝑘𝑓𝑟 + 𝐴𝑘𝑓𝜃 =

(︁
2Ω⃗ × �⃗�𝑃 + Ω⃗ × Ω⃗ × �⃗�𝑃/𝐴

)︁
.

∘ They have the same pressure: 𝑝1 = 𝑝2.

So Eq. 4.77 and 4.78 in 𝑟 and 𝜃 are, respectively:

𝛼𝑘𝜌𝑘

(︂
𝑣𝑘𝑟

𝜕

𝜕𝑟
𝑣𝑘𝑟 −

𝑣2𝑘𝜃
𝑟

)︂
= −𝛼𝑘

𝜕𝑝𝑘
𝜕𝑟

−𝑀𝑘𝑟 − 𝛼𝑘 𝜌𝑘 �⃗�𝑘𝑟 + ∇ · ⃗⃗𝜏 (4.79)

𝛼𝑘𝜌𝑘

(︂
𝑣𝑘𝑟

𝜕

𝜕𝑟
𝑣𝑘𝜃 +

𝑣𝑘𝑟 𝑣𝑘𝜃
𝑟

)︂
= −𝛼𝑘

1

𝑟

𝜕𝑝𝑘
𝜕𝜃

−𝑀𝑘𝜃 − 𝛼𝑘 𝜌𝑘 �⃗�𝑘𝜃 + ∇ · ⃗⃗𝜏 (4.80)
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The pressure gradient and the momentum transfer between the phases need to
be estimated using the simplified velocity field assumed. The field pressure ∆𝑃 can be
obtained integrating in 𝑟 direction. As already showed the slip occurs only in 𝑠-direction
which can be estimated with momentum transfer rate in 𝑟 direction. So, the momentum
equation is analyzed in 𝑟 direction.

Radial pressure gradient: Calculating the radial pressure gradient 𝑑𝑝/𝑑𝑟 and
integrating in 𝑟𝑖 and 𝑟𝑜. The momentum equation for phases 1 and 2, described by
Eq. 4.79, are added respectively for each phase. As a result, the interfacial momentum
transfer are canceled because both have the same module but different directions: 𝑀1𝑟 =

−𝑀2𝑟.

𝛼1 𝜌1

(︂
𝑣1𝑟

𝜕

𝜕𝑟
𝑣1𝑟 −

𝑣21𝜃
𝑟

)︂
+ 𝛼2 𝜌2

(︂
𝑣2𝑟

𝜕

𝜕𝑟
𝑣2𝑟 −

𝑣22𝜃
𝑟

)︂
=

−(𝛼1 + 𝛼2)
𝜕𝑝

𝜕𝑟
− (𝛼1 𝜌1 + 𝛼2 𝜌2)𝐴𝑘𝑓𝑟 + ∇ · ⃗⃗𝜏

(4.81)

The development of Eq. 4.81 is shown in section C.1. The result is Eq. 4.82:

−𝜕𝑝

𝜕𝑟
= 𝜌𝑚

[︂
(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚

(︂
−1

𝑟3

)︂
+ 𝜌𝑚

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚

(︂
1

𝑟

)︂
− 𝜌𝑚 𝜔2 𝑟 −∇ · ⃗⃗𝜏

(4.82)

4.2.3 Viscous Stress Tensor Modeling

The term ∇ · ⃗⃗𝜏 is related to surface forces due to the stresses on the sides of
the control surface. In polar coordinates considering radial and azimuthal direction, the
stress tensor is: (︂

𝑑F
𝑑V

)︂
𝑣𝑖𝑠𝑐𝑜𝑢𝑠

= ∇ · ⃗⃗𝜏

Applying the Gauss theorem in limited form:∫︁
𝐴𝑘(𝑧,𝑡)

∇ · ⃗⃗𝜏 𝑑𝐴 =
𝜕

𝜕𝑟

∫︁
𝐴𝑘(𝑟,𝑡)

⃗⃗𝜏 · �⃗�𝑟 𝑑𝐴 +

∮︁
𝜉(𝑟,𝑡)+𝜉𝑘(𝑟,𝑡)

�⃗�𝑘 · ⃗⃗𝜏
𝑑𝜉

�⃗�𝑘 · �⃗�𝑘𝜉

(4.83)

where vector �⃗�𝑘 is normal to interface pointed outside of face 𝑘. Unitary vector �⃗�𝑘𝜉 is
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normal to 𝜉 in the plane 𝐴𝑘. The term 𝜉𝑘 is the contact of the interface to the wall. 𝜉 is
the interface of the fluids. Those variables are represented in Fig. 4.12.

A (s,t)k

section
considered

s

A (s,t)k

sξk

nkξ

nk

ξk(s,t)

Figure 4.12: Impeller channel approximation

For simplification, the channel of the impeller was considered as a duct and the
cross-section area is represented by the hydraulic diameter. The mixture flow is con-
sidered homogeneous and the density and viscosity are used for two-phase flow. Figure
4.12 indicates an approximation of the impeller channel as a rectangular duct which has
constant cross-section 𝐴𝑘.

where

⎧⎨⎩the wet perimeter : 𝑆𝐷 = 2 (2𝜋𝑟/𝑍𝑏 + ℎ)

area : 𝐴 = 2𝜋𝑟ℎ/𝑍𝑏

Eq. 4.83 is developed in section C.2. The resulting terms in radial direction are
used in Eq. 4.82 integrated in r.
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Substituting Eqs. C.26 and C.39 into Eq. C.13 and integrating in r.

−∆𝑃𝑟 =

∫︁ 𝑟𝑜

𝑟𝑖

−𝜕𝑝

𝜕𝑟
𝑑𝑟 = 𝜌𝑚

[︂
(1 + cot2 𝛽)

4 𝜋2 ℎ2

]︂
𝑄2

𝑚

∫︁ 𝑟𝑜

𝑟𝑖

(︂
−1

𝑟3

)︂
𝑑𝑟 + 𝜌𝑚

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚

∫︁ 𝑟𝑜

𝑟𝑖

(︂
1

𝑟

)︂
𝑑𝑟 − 𝜌𝑚 𝜔2

∫︁ 𝑟𝑜

𝑟𝑖

𝑟dr − 𝑓

4

𝜌𝑚
sin 𝛽

(︂
𝑄𝑚

2 𝜋 ℎ

)︂2 ∫︁ 𝑟𝑜

𝑟𝑖

(︂
1

ℎ 𝑟2
+

𝑍𝑏

2𝜋 𝑟3

)︂
𝑑𝑟

−4𝜇
𝜆𝑘

𝛼𝑘

𝑄𝑚

2 𝜋 ℎ

∫︁ 𝑟𝑜

𝑟𝑖

(︂
1

𝑟3

)︂
𝑑𝑟

(4.84)

Eq. 4.84 is developed in appendix C, section C.3. Some terms can be grouped in
𝐺1, 𝐺2, 𝐺3 and 𝐺4. They are all geometric constants, exception to the friction factor, 𝑓 .
So, summarizing:

∙ Dimensionless group for head two-phase: 𝐶𝐻 = ∆𝑃/(𝜌𝑚 𝜔2 𝑟2𝑜)

∙ Dimensionless group for flow rate two-phase: 𝐶𝑄 = 𝑄𝑚/(𝜔 𝑟3𝑜)

∙ Specific mass for mixture:

∘ "Dukler":𝜌𝑚 = 𝜌1 𝜆1 + 𝜌2 𝜆2

∘ Conventional: = 𝜌𝑚 = 𝜌1 𝛼1 + 𝜌2 𝛼2

∘ 𝜌𝑚 = 𝜌1 𝜆1
𝜆1

𝛼1

+ 𝜌2 𝜆2
𝜆2

𝛼2
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∙ Geometric coefficients:

∘ Factor 1: 𝑟𝑜/𝑟𝑖 = 𝑓1 → > 1

∘ Factor 2: 𝑟𝑜/ℎ = 𝑓2 → > 1

∘ Factor 3:
[︂

1

ℎ

(︂
1

𝑟𝑖
− 1

𝑟𝑜

)︂
+

𝑍𝑏

4𝜋

(︂
1

𝑟2𝑖
− 1

𝑟2𝑜

)︂]︂
= 𝑓3 → > 0 (4.85)

∘ Geometric constant 1:𝐺1 =

[︂
(1 + cot2 𝛽)

8 𝜋2

]︂
𝑓 2
2 (𝑓 2

1 − 1) → > 0

∘ Geometric constant 2:𝐺2 =

[︂(︂
cot 𝛽

𝜋

)︂
𝑓2 ln 𝑓1

]︂
(4.86)

+
𝜇

𝜌𝑚

𝜆𝑘

𝛼𝑘

1

𝜔 𝜋 ℎ 𝑟𝑜

[︂(︂
𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂
→ > 0

∘ Geometric constant 3:𝐺3 =
1

2

[︂
1 −

(︂
1

𝑓1

)︂2 ]︂
→ > 0

∘ Geometric constant 4:𝐺4 =
𝑟4𝑜

4 𝜋2 ℎ2

1

sin 𝛽
𝑓3 → > 0

Thus the radial pressure term (Eq. C.46) result in:

𝐶𝐻 =
1

2

(︂
𝜌𝑚
𝜌𝑚

)︂
𝐺3 −𝐺2𝐶𝑄 +

(︂
𝜌𝑚
𝜌𝑚

𝐺1 −
𝜌𝑚
𝜌𝑚

𝑓

4
𝐺4

)︂
𝐶2

𝑄 (4.87)

The drift model is necessary to close the mixture density equations. In order to
understand quite better the behavior of density, those terms can be simplified for air and
water (or gas/liquid).

∘ 𝜌𝑚
𝜌𝑚

=
𝜌1 𝛼1 + 𝜌2 𝛼2

𝜌1 𝜆1 + 𝜌2 𝜆2

=
𝜌1
𝜌1

𝛼1 + (𝜌2/𝜌1)𝛼2

𝜆1 + (𝜌2/𝜌1)𝜆2

≈ 𝛼1

𝜆1

if 𝜌2/𝜌1 ≪ 1

∘ 𝜌𝑚
𝜌𝑚

=
𝜌1 𝜆1 (𝜆1/𝛼1) + 𝜌2 𝜆2 (𝜆2/𝛼2)

𝜌1 𝜆1 + 𝜌2 𝜆2

=
𝜌1
𝜌1

𝜆1 (𝜆1/𝛼1) + 𝜌2/𝜌1 𝜆2 (𝜆2/𝛼2)

𝜆1 + (𝜌2/𝜌1)𝜆2

≈ 𝜆1

𝛼1

if 𝜌2/𝜌1 ≪ 1 (4.88)

So for the gas/liquid case:

𝜌𝑚
𝜌𝑚

≈ 𝛼1

𝜆1

and
𝜌𝑚
𝜌𝑚

≈ 𝜆1

𝛼1

(4.89)
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Substituting in Eq. 4.87:

𝐶𝐻 =
1

2

(︂
𝛼1

𝜆1

)︂
𝐺3 −𝐺2𝐶𝑄 +

(︂
𝜆1

𝛼1

𝐺1 −
𝛼1

𝜆1

𝑓

4
𝐺4

)︂
𝐶2

𝑄 (4.90)

Eq. 4.90 becomes:

𝐶𝐻 = 𝐵3𝐺3 −𝐵2𝐶𝑄 + 𝐵1𝐶
2
𝑄 (4.91)

where:

∘ 𝐵1 =

(︂
𝜆1

𝛼1

𝐺1 −
𝛼1

𝜆1

𝐺4
𝑓

4

)︂
∘ 𝐵2 =𝐺2

∘ 𝐵3 =
1

2

(︂
𝛼1

𝜆1

)︂
Figure 4.13 shown the plot for experimental data of 𝐶𝐻 x 𝐶𝑄. The drift model is

necessary in order to calculate the void fraction 𝛼𝑘. The R-squared is equal to 0.95.
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Figure 4.13: 𝐶𝐻 x 𝐶𝑄
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The friction factor can be calculated using the data fit present in Fig 4.13. The
coefficients are:

𝐵1 = −214.48 𝐵2 = 22.41 𝐵3 = −0.27

The friction factor calculated by the model 𝑓𝑚𝑜𝑑𝑒𝑙 is compared to the friction factor
calculated by the correlations proposed by S.Vieira (2014). The expressions used are
showed in appendix E. The coefficients in Eq. E.17 are:

𝑓𝑟𝛽𝜔 = 1.2420 · 1.1614 · 1.4619 · 0.0986 → 𝑓𝑟𝛽𝜔 = 0.2079 (4.92)

where 𝐹𝑟 = 1.2420, 𝐹𝛽 = 1.1614, 𝐹𝜔 = 1.4619 and 𝑓 = 0.0986.
The mean value of 𝑓 corresponds to the value a little higher than the expected

value using the Moody diagram shown in Fig. 4.14. For the present problem the average
flow Reynolds number calculated shown that the friction factor should be in a range
between 0.025 to 0.080. More details are presented in the section about the Reynolds
number calculation.

Figure 4.14: Moody diagram.

Considering the corrections made for the centrifugal pump (S.VIEIRA, 2014), the
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value of friction factor is 𝑓𝑟𝛽𝜔 = 0.2079 which represent 210% higher. The friction fac-
tor calculated using the model 𝑓𝑚𝑜𝑑𝑒𝑙 is compared with S.Vieira (2014), and it is shown
in Fig. 4.15. It is observed that there is no variation of the friction factor calculated by
S.VIEIRA, 2014 even with the increase of the flow rate (CQ). However for values near
the BEP the friction factors are of the same magnitude.

0.02 0.04 0.06 0.08 0.1

C
Q

0.00
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1.50
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2.50
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Figure 4.15: Friction factor: model x S.Vieira (2014)

The friction factor calculated using the model tends to reduce as the flow rate 𝐶𝑄

approximates to the BEP, which is in agreement with the literature because the losses
reduce. However, the value of 𝑓𝑚𝑜𝑑𝑒𝑙 moving away from the BEP increase so much that
reaches values not expected from friction factor, such as 2.44 at 𝐶𝑄 = 0.089. This value
is overrated because all losses showed in Fig. 2.13 are included in the 𝑓𝑚𝑜𝑑𝑒𝑙. A deep
study of the characteristics of the friction factor in such phenomena is necessary and is
left as a recommendation for future work.
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4.2.4 Momentum Transfer Between Phases:

When the simplified velocity profile was obtained the slip was estimated. As a
result the slip occurs only in 𝑠 direction being null in �̂� direction. The versor 𝑠 and �̂�

indicates the direction in the blade coordinate system using the log spiral cascade. Be-
sides, it was demonstrated that only the radial slip can be estimated to obtain component
𝑠, which is tangential to the blade. The consequence of the hypothesis that the flow is
aligned with the blade results in 𝑣𝑠,𝑛 = 0.

Thus the objective in this section is estimate the rate of momentum transfer per
unit volume of liquid phase to the gas phase in radial direction. It will be used to get the
radial slip which will be projected in tangential direction of blades. So, different from
what was done in the former section, where the pressure gradient was calculated the
goal, the next step wants to eliminate this term. In order to achieve this, the equations of
momentum for both phases will be subtracted in radial direction and the term 𝑀2𝑟 will
be estimated. The equations in radial direction for phases 1 and 2 are discussed then.

∙ Radial direction (polar) 𝑟:

𝛼𝑘𝜌𝑘

(︂
𝑣𝑘𝑟

𝜕

𝜕𝑟
𝑣𝑘𝑟+

𝑣𝑘𝜃
𝑟

𝜕

𝜕𝜃
𝑣𝑘𝑟−

𝑣2𝑘𝜃
𝑟

)︂
= −𝛼𝑘

𝜕

𝜕𝑟
𝑝𝑘+𝛼𝑘𝜌𝑘𝑔𝑟−𝑀𝑘𝑟+𝑆𝑘𝑟+∇·⃗⃗𝜏 (4.93)

The pressure are considered equal for both phases (𝑝1 = 𝑝2), the gravity was
neglected by hypothesis and the velocity field was simplified, it only depends of the
variation on radius, which means that 𝜕 /𝜕𝜃 = 0. Considering those simplifications and
writing the momentum equation for each phase, dividing by 𝛼𝑘:

𝜌1

(︂
𝑣1𝑟

𝜕𝑣1𝑟
𝜕𝑟

− 𝑣21𝜃
𝑟

)︂
= −𝜕𝑝

𝜕𝑟
+

𝑆1𝑟

𝛼1

− 𝑀1𝑟

𝛼1

+ ∇ · ⃗⃗𝜏 (4.94)

𝜌2

(︂
𝑣2𝑟

𝜕𝑣2𝑟
𝜕𝑟

− 𝑣22𝜃
𝑟

)︂
= −𝜕𝑝

𝜕𝑟
+

𝑆2𝑟

𝛼2

− 𝑀2𝑟

𝛼2

+ ∇ · ⃗⃗𝜏 (4.95)

The momentum transferred by one phase is received by the other, this means that 𝑀1𝑟 =

−𝑀2𝑟. The development of the subtraction between Eq. 4.95 and 4.94 is in section C.4.
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The resultant equation is:

𝑀2𝑟

𝛼1𝛼2

= ̃︁∆𝜌

[︂
(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚

(︂
−1

𝑟3

)︂
+ ∆𝜌

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚

(︂
1

𝑟

)︂
− ∆𝜌𝜔2 𝑟 − ⟨∇ · ⃗⃗𝜏 ⟩

(4.96)

The interfacial term is defined using the Zuber model (ZUBER, 1964, ISHII AND

HIBIKI, 2010). Thus 𝑀2𝑟 is given by:

𝑀2𝑟 = −𝛼2

𝐵𝑏

(︁∑︁
𝐹𝑅 𝑏𝑢𝑏𝑏𝑙𝑒𝑠

)︁
(4.97)

where 𝛼2 is the gas void fraction, 𝐵𝑏 is the mean volume of a bubble and
∑︀

𝐹𝑅 𝑏𝑢𝑏𝑏𝑙𝑒𝑠

is the mean resultant force in one bubble. The mean volume of bubble is given by:
𝐵𝑏 = 4𝜋𝑟3𝑏/3 where 𝑟𝑏 is the bubble radius.

In the classic models, generally the drag is considered because the relative velocity
appears from this term. This force is predominant in stationary and developed flows,
such as ducts in steady state without convective terms. This is not the case in this study
where the impeller has a strong convective acceleration further the pseudo forces are
important and they should all be considered, including Basset and virtual mass force.

∑︁
𝐹𝑅 𝑏𝑢𝑏𝑏𝑙𝑒𝑠 = 𝐹𝐷 + 𝐹𝑉 + 𝐹𝐵 (4.98)

The drag force is represented by 𝐹𝐷, the virtual mass force is 𝐹𝑉 and Basset force
is 𝐹𝐵. The forces for a mean bubble diameter in the flow with radius 𝑟𝑏 are discussed in
section C.4. Grouping the results until now using Eq. 4.97.

𝑀2𝑟 = 𝑀𝐷
2𝑟 + 𝑀𝑉

2𝑟 + 𝑀𝐵
2𝑟 (4.99)

𝑀2𝑟 = 𝛼 𝜌1𝐶𝐴 sin 𝛽 𝑣𝑠,𝑠 ||�⃗�𝑠||−𝛼 𝜌1 (𝐶𝐵+𝐶𝑉 )

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂
(1+cot2 𝛽)

(︂
𝑗2𝑚(𝑟)

𝑟

)︂

𝑀2𝑟 = 𝛼 𝜌1𝐶𝐴 sin 𝛽 𝑣𝑠,𝑠 ||�⃗�𝑠|| + 𝛼 𝜌1 (𝐶𝐵 + 𝐶𝑉 )

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂
[︂

(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚

(︂
−1

𝑟3

)︂ (4.100)
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where:

𝐶𝐴 =
3𝐶𝐷

8 𝑟𝑏
𝐶𝑉 =

1

2
𝐶𝐵 =

9

𝑟𝑏

√︂
𝜇𝑚 𝑡

𝜋 𝜌1

Finally, putting the equations together of 𝑀2𝑟, Eq. 4.100 and 4.96:

𝑀2𝑟

𝛼
= 𝜌1𝐶𝐴 sin 𝛽 𝑣𝑠,𝑠 ||�⃗�𝑠|| + 𝜌1 (𝐶𝐵 + 𝐶𝑉 )

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂
[︂

(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚

(︂
−1

𝑟3

)︂
𝑀2𝑟

𝛼
= 𝛼1

̃︁∆𝜌

[︂
(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚

(︂
−1

𝑟3

)︂
+ 𝛼1 ∆𝜌

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚

(︂
1

𝑟

)︂
−𝛼1 ∆𝜌𝜔2 𝑟 + 𝛼1

𝑓

4
𝜌𝑚

(︂
𝑄𝑚

2 𝜋 ℎ

)︂2
1

sin 𝛽

(︂
1

ℎ 𝑟2
+

𝑍𝑏

2𝜋 𝑟3

)︂
+ 4𝜇𝛼1

𝜆𝑘

𝛼𝑘

𝑄𝑚

2 𝜋 ℎ

1

𝑟3

Matching those equations and developing it in section C.4.1. It results in:

−𝑣𝑠,𝑠
2 = −

{︂
1

𝐶∞
𝐴

̃︁∆𝜌

𝜌1
− ∆𝐶∞

𝐶∞
𝐴

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂}︂[︂
(1 + cot2 𝛽)

4 𝜋2 ℎ2

]︂
1

sin 𝛽

𝑟

𝑟2𝑜 𝑟
2
𝑖

𝑄2
𝑚 +

1

𝐶∞
𝐴

∆𝜌

𝜌1

(︂
cot 𝛽

𝜋 ℎ

)︂
1

sin 𝛽

ln(𝑟𝑜/𝑟𝑖)

∆𝑟
𝜔 𝑄𝑚 − 1

sin 𝛽

1

𝐶∞
𝐴

∆𝜌

𝜌1
𝜔2 𝑟

− 1

sin 𝛽

1

𝐶∞
𝐴

∆𝜌

𝜌1
𝜔2 (𝑟𝑜 + 𝑟𝑖)

2
+

1

𝜌1

1

𝐶∞
𝐴

𝑓

4
𝜌𝑚

(︂
1

4 𝜋2 ℎ2

)︂
1

sin2 𝛽

𝑓3
∆𝑟

𝑄2
𝑚

+2
𝜇

𝜌1

1

𝐶∞
𝐴

1

𝜋 ℎ sin 𝛽

𝜆𝑘

𝛼𝑘

(︂
𝑟

𝑟2𝑜 𝑟
2
𝑖

)︂
𝑄𝑚

(4.101)

So, the drift flux model becomes:

𝑣2𝑠 =

(︂
𝜆2

𝛼2

)︂[︂(︂
𝑄𝑚

2 𝜋 ℎ

)︂
ln (𝑟𝑜/𝑟𝑖)

(𝑟𝑜 − 𝑟𝑖)

1

sin 𝛽

]︂
= 𝐶0

(︂
𝑄𝑚

2 𝜋 ℎ

)︂
ln (𝑟𝑜/𝑟𝑖)

(𝑟𝑜 − 𝑟𝑖)

1

sin 𝛽

+(1 − 𝛼)𝑣𝑠,𝑠

(4.102)

The format of the model can be now rewritten from Eq. 4.101:

− 𝑣𝑠,𝑠
2 = −𝐴1𝑄

2
𝑚 + 𝐴2 𝜔𝑄𝑚 − 𝐴3 𝜔

2 (4.103)
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where 𝐴𝑘,𝑘={1,2,3} = 𝑓(𝜆,𝐶∞
𝐴 ,∆𝐶∞)

∘ 𝐴1 =

{︂ ̃︁∆𝜌

𝜌1
− ∆𝐶∞

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂}︂[︂(︂
csc2 𝛽

sin 𝛽

)︂
𝑟

4𝐶∞
𝐴 𝜋2 𝑟2𝑖 𝑟

2
𝑜 ℎ

2

]︂
− 𝜌𝑚

𝜌1

𝑓

4

[︂(︂
1

sin2 𝛽

)︂
𝑓3

4𝐶∞
𝐴 𝜋2 ℎ2 ∆𝑟

]︂
∘ 𝐴2 =

∆𝜌

𝜌1

(︂
cot 𝛽

sin 𝛽

)︂
ln(𝑟𝑜/𝑟𝑖)

𝐶∞
𝐴 𝜋 ℎ∆𝑟

+ 2
𝜇

𝜌1

1

𝐶∞
𝐴

1

𝜋 ℎ sin 𝛽

𝜆𝑘

𝛼𝑘

(︂
𝑟

𝑟2𝑜 𝑟
2
𝑖

)︂
1

𝜔

∘ 𝐴3 =
1

𝐶∞
𝐴 sin 𝛽

(︂
∆𝜌

𝜌1

)︂
𝑟

∘ 𝐶∞
𝐴 =

(︂
3𝐶𝐷

8𝑟𝑏

)︂
1

1 − 𝛼

∘∆𝐶∞ =𝐶∞
𝐵 + 𝐶∞

𝑉 =

(︂
9

𝑟𝑏

√︂
𝜇𝑚 𝑡

𝜋 𝜌1
+

1

2

)︂
1

1 − 𝛼
(4.104)

The term 𝐴1 can be simplified:

𝐴1 =

{︂ ̃︁∆𝜌

𝜌1
− ∆𝐶∞

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂}︂[︂(︂
csc2 𝛽

sin 𝛽

)︂
𝑟

4𝐶∞
𝐴 𝜋2 𝑟2𝑖 𝑟

2
𝑜 ℎ

2

]︂
−𝜌𝑚

𝜌1

𝑓

4

[︂(︂
1

sin2 𝛽

)︂
𝑓3

4𝐶∞
𝐴 𝜋2 ℎ2 ∆𝑟

]︂
Denoting:

𝐿𝑎𝑚𝑏𝑑𝑎𝑠 =

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂
So:

𝐴1 =
1

4𝐶∞
𝐴 𝜋2 ℎ2

{︂[︂ ̃︁∆𝜌

𝜌1
− ∆𝐶∞ 𝐿𝑎𝑚𝑏𝑑𝑎𝑠

]︂(︂
csc2 𝛽

sin 𝛽

)︂
1

𝑟2𝑖 𝑟
2
𝑜

−𝜌𝑚
𝜌1

𝑓

4

[︂(︂
1

sin2 𝛽

)︂
𝑓3
∆𝑟

]︂}︂ (4.105)

The coefficients depend on 𝜆, 𝛼, ∆𝐶∞ and 𝐶∞
𝐴 . In the bubble flow pattern there

is a chance that the terms ∆𝐶∞ and 𝐶∞
𝐴 can be practically constant and 𝜆/𝛼 ∼ 1. This

means that those coefficients do not depend mostly on 𝜆/𝛼 ∼ 1 so do not change so
much compared to the others.
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The gas locking occurs when the mixture flow rate 𝑄𝑚 decreases. The forces
acting on bubbles stabilizes which renders the air unable to move. Thus it promotes the
gas locking in the pump.

∙ Dimensionless:
Dividing Eq. 4.101 by (∆𝜌/𝜌1)𝜔

2 𝑟2𝑜:

−𝑣𝑠,𝑠
2

(∆𝜌/𝜌1)𝜔2 𝑟2𝑜
= − 1

𝐶∞
𝐴

{︂[︂ ̃︁∆𝜌

𝜌1
− ∆𝐶∞ 𝐿𝑎𝑚𝑏𝑑𝑎𝑠

]︂(︂
csc2 𝛽

sin 𝛽

)︂
1

𝑟2𝑖 𝑟
2
𝑜

−𝜌𝑚
𝜌1

𝑓

4

[︂(︂
𝑟2𝑜

sin2 𝛽

)︂
𝑓3
∆𝑟

]︂}︂[︂(︂
𝜌1

∆𝜌𝜔2 𝑟2𝑜

)︂(︂
𝑄𝑚

2𝜋 𝑟𝑜 ℎ

)︂2]︂
+

1

𝐶∞
𝐴

∆𝜌

∆𝜌

(︂
cot 𝛽

𝜋 ℎ

)︂
1

sin 𝛽

ln(𝑟𝑜/𝑟𝑖)

(𝑟𝑜 − 𝑟𝑖)

𝑄𝑚

𝜔 𝑟2𝑜
− 1

sin 𝛽

1

𝐶∞
𝐴

𝑟

𝑟2𝑜

(4.106)

Rearranging the terms in Eq. 4.106:

− 𝜌1 𝑣𝑠,𝑠
2

∆𝜌𝜔2 𝑟2𝑜
= − 1

𝐶∞
𝐴

{︂[︂ ̃︁∆𝜌

𝜌1
− ∆𝐶∞ 𝐿𝑎𝑚𝑏𝑑𝑎𝑠

]︂(︂
csc2 𝛽

sin 𝛽

)︂
1

𝑟2𝑖 𝑟
2
𝑜

−𝜌𝑚
𝜌1

𝑓

4

[︂(︂
𝑟2𝑜

sin2 𝛽

)︂
𝑓3
∆𝑟

]︂}︂[︂(︂
𝜌1

∆𝜌𝜔2 𝑟2𝑜

)︂(︂
𝑄𝑚

2𝜋 𝑟𝑜 ℎ

)︂2]︂
+ 2

(︂
∆𝜌√
∆𝜌 𝜌1

)︂(︂
cot 𝛽

sin 𝛽

)︂
ln(𝑟𝑜/𝑟𝑖)

𝐶∞
𝐴 (𝑟𝑜 − 𝑟𝑖)

[︂√︂
𝜌1
∆𝜌

1

𝜔 𝑟𝑜

(︂
𝑄𝑚

2 𝜋 𝑟𝑜 ℎ

)︂]︂
− 𝑟

𝑟2𝑜 𝐶
∞
𝐴 sin 𝛽

(4.107)

The Froude number for two-phase flow 𝐹𝑟𝑇𝑃,𝑠 for the slip under a centrifugal
field and the mixture Froude number 𝐹𝑟𝑚 are given by:

𝐹𝑟2𝑇𝑃,𝑠 =
𝜌1 𝑣𝑠,𝑠

2

∆𝜌𝜔2 𝑟2𝑜
𝐹𝑟𝑚 =

√︂
𝜌1
∆𝜌

(︂
𝑄𝑚

2𝜋 𝑟𝑜 ℎ

)︂⧸︁
𝜔𝑟𝑜
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Substituting the Froude number in Eq. 4.107:

−𝐹𝑟2𝑇𝑃,𝑠 = − 1

𝐶∞
𝐴

{︂[︂ ̃︁∆𝜌

𝜌1
− ∆𝐶∞ 𝐿𝑎𝑚𝑏𝑑𝑎𝑠

]︂(︂
csc2 𝛽

sin 𝛽

)︂
1

𝑟2𝑖 𝑟
2
𝑜

+
𝜌𝑚
𝜌1

𝑓

4

[︂(︂
𝑟2𝑜

sin2 𝛽

)︂
𝑓3
∆𝑟

]︂}︂
𝐹𝑟2𝑚 + 2

(︂
∆𝜌√
∆𝜌 𝜌1

)︂(︂
cot 𝛽

sin 𝛽

)︂
ln(𝑟𝑜/𝑟𝑖)

𝐶∞
𝐴 (𝑟𝑜 − 𝑟𝑖)

𝐹𝑟𝑚 − 𝑟

𝑟2𝑜 𝐶
∞
𝐴 sin 𝛽

(4.108)

The dimensionless model format can be now rewritten as in Eq. 4.108:

𝐹𝑟2𝑇𝑃,𝑠 = 𝐴
′

1 𝐹𝑟2𝑚 − 𝐴
′

2𝐹𝑟𝑚 + 𝐴
′

3 (4.109)

where 𝐴
′

𝑘,𝑘={1,2,3} = 𝑓(𝜆,𝐶∞
𝐴 ,∆𝐶∞)

∘ 𝐴
′

1 =
1

𝐶∞
𝐴

{︂[︂ ̃︁∆𝜌

𝜌1
− ∆𝐶∞ 𝐿𝑎𝑚𝑏𝑑𝑎𝑠

]︂(︂
csc2 𝛽

sin 𝛽

)︂
1

𝑟2𝑖 𝑟
2
𝑜

(4.110)

− 𝜌𝑚
𝜌1

𝑓

4

[︂(︂
𝑟2𝑜

sin2 𝛽

)︂
𝑓3
∆𝑟

]︂}︂
∘ 𝐴

′

2 = 2

(︂
∆𝜌√
∆𝜌 𝜌1

)︂(︂
cot 𝛽

sin 𝛽

)︂
ln(𝑟𝑜/𝑟𝑖)

𝐶∞
𝐴 (𝑟𝑜 − 𝑟𝑖)

∘ 𝐴
′

3 =
𝑟

𝑟2𝑜 𝐶
∞
𝐴 sin 𝛽

(4.111)

Figure 4.16 shows the result of Eq. 4.109. As expected, the data 𝐹𝑟𝑇𝑃,𝑠 tends to
decrease as the mixture Froude number increases. When the mixture flow rate 𝑄𝑚 in-
creases it tends to the homogeneous model as 𝑣𝑠 → 0. The coefficients were calculated
using the method of non linear least square which provides 𝑅2 equals to 0.99. So, they
are:

𝐴
′

1 = 6.971 𝐴
′

2 = 0.501 𝐴
′

3 = 0.114

Multiplying Eq. 4.75 by the term
√︀

𝜌1/∆𝜌 · 1/𝜔 𝑟𝑜:√︂
𝜌1
∆𝜌

· 𝑣2𝑠
𝜔 𝑟𝑜

=

√︂
𝜌1
∆𝜌

𝑗𝑚,𝑠

𝜔 𝑟𝑜
+

√︂
𝜌1
∆𝜌

(1 − 𝛼) 𝑣𝑠,𝑠
𝜔 𝑟𝑜

(4.112)
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Figure 4.16: 𝐹𝑟𝑇𝑃,𝑠 x 𝐹𝑟𝑚

Using Eq. C.75:√︂
𝜌1
∆𝜌

· 𝑣2𝑠
𝜔 𝑟𝑜

= 𝐶0

[︂
𝑟𝑜 ln(𝑟𝑜/𝑟𝑖)

sin 𝛽 (𝑟𝑜 − 𝑟𝑖)

]︂(︂√︂
𝜌1
∆𝜌

1

𝜔 𝑟𝑜

)︂(︂
𝑄𝑚

2𝜋 𝑟𝑜 ℎ

)︂
+(1−𝛼)

(︂√︂
𝜌1
∆𝜌

𝑣𝑠,𝑠
𝜔 𝑟𝑜

)︂
(4.113)

where:

𝐹𝑟2,𝑠 =

√︂
𝜌1
∆𝜌

· 𝑣2𝑠
𝜔 𝑟𝑜

𝐶
′

0 = 𝐶0

[︂
𝑟𝑜 ln(𝑟𝑜/𝑟𝑖)

sin 𝛽 (𝑟𝑜 − 𝑟𝑖)

]︂
Substituting the terms 𝐹𝑟2,𝑠, 𝐶

′
0, 𝐹𝑟𝑇𝑃,𝑠 and 𝐹𝑟𝑚 in Eq. 4.113

𝐹𝑟2,𝑠 = 𝐶
′

0𝐹𝑟𝑚 + (1 − 𝛼)𝐹𝑟𝑇𝑃,𝑠 (4.114)

Substituting these terms in Eq. 4.113, using 𝑣𝑠,𝑠 calculated in Eq. 4.103 and con-
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sidering liquid phase faster than gas phase (𝑣1 > 𝑣2), Eq. 4.113 becomes:

𝐹𝑟2,𝑠 = 𝐶
′

0𝐹𝑟𝑚 − (1 − 𝛼)
√︁

𝐴
′
1 𝐹𝑟2𝑚 − 𝐴

′
2 𝐹𝑟𝑚 + 𝐴

′
3 (4.115)

Figure 4.17: 𝐹𝑟𝑇𝑃,𝑠 x 𝐹𝑟𝑚 x 𝛼

The coefficients presented in Eq. 4.115 were calculated using the method of non
linear least square, which provides 𝑅2 equals to 0.86. The difference from Eq. 4.109
are the distribution coefficient and the terms 𝐴′

𝑘. Those terms were under a square root,
which means that this expression suffers about the lost of information of signal. By this
reason, Eq. 4.115 was modified and the distribution coefficient is equal to 1.23.

Eq. 4.115 was fitted in order to produce the best 𝑅2. However this equation has a
square root, which compared to Eq. 4.109, this is one of the factors that have influence
on the value of 𝑅2, which tends to be lesser. The results will be discussed in chapter 5,
section 5.3.
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5 RESULTS

This chapter presents the experimental data acquired and their comparison with
analytic expression formulated in the chapter 4. The modeling results are discussed and
after this, the transition criterion is proposed, and the forces on the bubbles are shown
and discussed.

5.1 Experimental Results

The results of the code are shown here and are divided into two sections. First, the
probability distribution functions are calculated for the diameters and then, the bubble
displacements are shown.

5.1.1 Flow visualization

The experimental data are shown in Fig. 5.1. The points IMs are related to ex-
periments shown in Fig. 5.2. Table 5.1 indicates the flow rate of the points defined as
IMs.

Table 5.1: Experimental data flow rate of gas 𝑄𝑔 and water 𝑄𝑙.

IM 𝑄/𝑄𝐵𝐸𝑃 𝑄𝑙 [𝑚3/ℎ] 𝑄𝑔 10−6[𝑚3/ℎ] Reference

1 1.65 5.2843 6.94 5.1(a)

3 1.41 4.5118 6.94 5.1(b)

5 1.18 3.7812 6.94 5.1(c)

7 0.96 3.0814 6.94 5.1(d)

9 0.71 2.2787 6.94 5.1(e)

11 0.26 0.8354 6.94 5.1(f)

As already observed by Monte Verde (2016) from Image IM1 (Fig. 5.1a) to IM
11 (Fig. 5.1e) it is possible to observe the change in flow pattern by changing the liquid
flow rate for the same rotational speed (900 𝑟𝑝𝑚 in this case) and the same gas mass
flow rate. The highest liquid flow rate is observed in IM1 (Fig. 5.1a), so, the bubbles
are the smallest and the flow pattern is classified as bubbles by Monte Verde (2016). In
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the description the authors suggest that in this case the interaction between phases is
small and no bubbles agglomeration is observed. The same flow pattern and physics is
observed in IM3 condition (Fig. 5.1b). However, due to the decrease in the liquid flow
rate the bubbles start to increase. In both cases the void fraction is small.

Next, IM5 (Fig. 5.1c) presents the increase in bubbles population and the start
of agglomeration with bubbles of bigger size. This flow pattern was described by
Monte Verde (2016) as Agglomerated Bubble flow pattern. IM7 and IM9 can be re-
lated to the Gas Pocket flow pattern (MONTE VERDE, 2016). In this case a big bubble
is created by the coalescence of small ones, and this bubble occupies a large part of the
impeller channel. Due to the characteristics of this flow pattern this is the beginning of
unstable pump operation and performance degradation.

Decreasing the flow rate even more, the segregated flow pattern is observed,
where a large stationary bubble occupies all the extension of the impeller. As stated
by Monte Verde (2016) in this case, due to the small area for liquid flow the pump per-
formance is lost and almost null head is produced. This phenomenon is linked to the
gas-locking effect.
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Figure 5.1: Experiment images: (a) IM1 - (b) IM3 - (c) IM5 - (d) IM7 - (e) IM9 - (f)
IM11.



124

Clearly, there is a change of physics due to flow pattern changes by the decrease
of liquid flow rate. In some cases it is expected that the homogeneous model would be
suitable to characterize the flow inside the impeller. However, due to the change in gas
fraction the slip between phases might be important and so a model like drift-flux would
be more suitable and will be discussed in chapter 4.

5.1.2 Bubbles Diameter

The code captures the velocities and diameter of the air bubbles. Probability den-
sity functions (PDF) of the diameter of the bubbles were made for each condition tested,
and are presented in Fig. 5.2. The distribution that fitted the data was a nonparametric
representation, and a kernel density estimator was used (for more details about how
these PDFs work, please see Hinkelmann and Kempthorne (2005)). Further, Fig. 5.2
presented a chart that shows the pressure increment by the water flow rate, indicating
where are the points IM’s for reference.
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Figure 5.2: Histograms of the experiments - 900 rpm and 0.025 kg/h gas mass flow rate.

Other distributions were tested, such as "Burr" and "Generalized extreme value",
which also offers a similar result to fit data, but not better. Besides, the mean diameter
and the standard deviation were calculated and are presented in the Figure 5.2.

5.1.3 Bubbles’ Trajectories and Velocities

The code needs to be validated, and this is done by following the bubbles man-
ually. The results are shown in Fig. 5.3. The red dots indicated the trajectories of the
bubbles while they are crossing the impeller channels. Image by image is analyzed, and
the bubble position is recorded. After this, the velocity is acquired. Fig. 5.3 shows the
trajectories in the seven channels of the impeller, which are represented by the mask in
blue. The axis of the figures is plotted using the pixel scale.

The experiments were calibrated in order to convert the pixel to millimeters. Mil-
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Figure 5.3: Bubble trajectories in the impeller channel.

limeter paper is used, and one millimeter is equivalent to 11.8 pixels, rounded to 12. One
pixel may represent a great uncertainty in the velocity calculation. For example, consid-
ering a bubble moving with 1.00 𝑚/𝑠 or 12 𝑝𝑖𝑥𝑒𝑙𝑠/𝑠 between two frames acquired at
1500 fps. With the acquisition of the centroid position, if it changes one pixel, this is
enough to change the velocity to 13 𝑝𝑖𝑥𝑒𝑙𝑠/𝑠, consequently to 1.08 𝑚/𝑠. One pixel may
represent a difference of 8% in the measurements. This value represents the uncertainty
in the velocity measurements.

So the velocity measurement suffers a considerable influence of small changes
in the pixel position. In order to reduce this effect a moving average was applied as
shown in Fig. 5.4 (PERISSINOTTO et al., 2017). The bubble tracked by the code in the
channels of the impeller has oscillations, and both directions suggested this influence.
The moving average method (MAM) smooth the curves, using the Eq. 5.1:

𝑣𝑀𝐴𝑀 =
𝑣𝑖−1 + 𝑣𝑖 + 𝑣𝑖+1

3
(5.1)

where the subscript MAM means the moving average method. The fluctuations observed
in the velocities curves would be errors acquired in the tracking process. A single pixel
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Figure 5.4: Following one bubble with 0.5 mm diameter through the impeller.

error following the bubble from the post-processing can propagate and become larger
errors when calculating the velocities and accelerations. Figure 5.3 shows the velocities
and the MAM applied in the process. Notably, using the MAM, the velocities were
attenuated.

5.1.4 Gas Void Fraction

The post-processing of the images allows the acquisition of the bubbles’ diame-
ter, which sometimes do not correspond to the diameter of a circle, thus the hydraulic
diameter is used. The value of void fraction, 𝛼, was calculated by dividing the sum of
the bubbles’ volume by the impeller volume. The bubbles’ volume were approximated
to a sphere, which is 𝑉 = 4/3𝜋 𝑟3. Figure 5.5 indicates the values of void fraction in
the channel by their respective timestep. The mean value of 𝛼 is equal to 0.0046 for
the point IM3 rotating with 900 𝑟𝑝𝑚 and 0.025 𝑘𝑔/ℎ. It is necessary to perform a time
average as during the image acquisition bubbles enter and leave the impeller.

Table 5.2 shows the values and standard deviation of radial and circumferential
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Figure 5.5: Evolution of the measured gas void fraction 𝛼 in the impeller channel with
time.

velocities for each test run. The table presents the rotational velocity 𝜔, mass gas flow
rate �̇�, bubbles’ average diameter 𝑑, pressure increment ∆𝑃 , bubbles’ average radial
velocity 𝑣𝑟, bubbles’ average circumferential velocity 𝑣𝜃, standard deviation of radial
velocity 𝛿𝑣𝑟, standard deviation of 𝛿𝑣𝜃 and gas void fraction 𝛼.

The data acquired are in accordance with the literature (Monte Verde (2016) and
Perissinotto et al. (2017)). One can observe a decrease in the bubble diameter by increas-
ing the pump rotational speed. Also, the same is observed for the bubble velocities.

The experimental data are used in the next chapters. In appendix A, they are used
to compare the velocities acquired by both methods. In chapter 4, the data are used in
the two-dimensional drift flux model, in order to validate it.
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Table 5.2: Impeller rotation 𝜔, mass gas flow rate �̇�, diameter 𝑑, pressure increment
∆𝑃 , radial velocity 𝑣𝑟, circumferential velocity 𝑣𝜃, standard deviation of radial velocity
𝛿𝑣𝑟, standard deviation of 𝛿𝑣𝜃 and gas void fraction 𝛼

𝜔 �̇� 𝑑 ∆𝑃 𝑣𝑟 𝑣𝜃 𝛿𝑣𝑟 𝛿𝑣𝜃 𝛼𝑒𝑥𝑝

[𝑟𝑝𝑚] [𝑘𝑔/ℎ] [𝑚𝑚] [𝑃𝑎] [𝑚𝑚/𝑠] [𝑚𝑚/𝑠] [𝑚𝑚/𝑠] [𝑚𝑚/𝑠] 10−3[-]

1

600 0.025

1.4 1007 759 876 217 223 4
2 1.4 2280 682 857 242 261 6
3 1.6 3006 606 864 211 240 6
4 1.6 3886 534 821 238 269 7

5

900 0.025

0.6 541 1021 1425 245 298 4
6 0.6 4579 969 1346 257 276 5
7 0.7 7260 868 1283 303 324 5
8 0.8 9318 825 1172 332 350 7

9

900 0.012

0.6 419 980 1447 292 336 2
10 0.6 4168 1028 1342 286 301 2
11 0.7 8078 862 1296 312 388 3
12 0.9 9025 769 1211 271 315 4

13

1200 0.025

0.4 262 1527 1806 318 346 2
14 0.4 5246 1497 1759 341 355 2
15 0.5 11341 1395 1668 319 329 2
16 0.6 16589 1291 1425 295 329 3

5.2 Experimental and Modeling Comparison

In this section, the experimental values calculated using the post-processing of
images were showed in Table 5.3. Before that, a summary of what was know is shown.
So, summarizing:

∘ 𝑟𝑖, 𝑟𝑜, 𝛽 and ℎ are geometric constants measured from the impeller.

∘ 𝑄𝑚, 𝜆 and ∆𝑝 are known from the experiments.

∘ 𝑃 and 𝑇 are the mean pressure and mean temperature, respectively. With them it
is possible to calculate 𝜌1, 𝜌2, 𝜇1 and 𝜇2.
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∘ 𝑣2,𝑠 is measured from the image processing. The in situ velocities of bubbles are
a mean on the impeller’s space in 𝑠 direction.

The experimental data can be compared with the model following the next steps:

1. As demonstrated before, 𝑗𝑚𝑠 is calculated using Eq. C.75.

2. 𝛼 is estimated once 𝑣2,𝑠 was measured from experimental data (𝛼 = 𝜆 𝑗𝑚𝑠/𝑣2,𝑠).

3. With 𝛼 acquired, it is possible to calculate: {𝜌𝑚, 𝜌𝑚, 𝜌𝑚 ∆𝜌,∆𝜌, ∆̃𝜌}.

Table 5.3 shows the mean values for bubbles characteristics in each experiment.
Besides, the table presents the rotational velocity 𝜔, mass gas flow rate �̇�, pressure
increment ∆𝑃 , mixture volumetric flux in 𝑠 direction 𝑗𝑚𝑠, bubble velocity 𝑣2 and gas
void fraction 𝛼.
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Table 5.3: Impeller rotation 𝜔, mass gas flow rate �̇�, pressure increment ∆𝑃 , mixture
volumetric flux in 𝑠 direction 𝑗𝑚𝑠, bubble velocity 𝑣2 and gas void fraction 𝛼

𝜔 �̇� ∆𝑃 𝑗𝑚𝑠 𝑣2 𝛼 𝛼𝑒𝑥𝑝

[𝑟𝑝𝑚] [𝑘𝑔/ℎ] [𝑃𝑎] [𝑚𝑚/𝑠] [𝑚𝑚/𝑠] 10−3[-] 10−3[-]

1 600 0.025 1007 922 1159 4 4
2 600 0.025 2280 808 1095 5 6
3 600 0.025 3006 715 1056 5 6
4 600 0.025 3886 603 979 6 7
5 900 0.025 541 1469 1736 3 4
6 900 0.025 4579 1255 1659 4 5
7 900 0.025 7260 1052 1549 4 5
8 900 0.025 9318 857 1433 4 7
9 900 0.012 419 1460 1748 2 2

10 900 0.012 4168 1266 1691 2 2
11 900 0.012 8078 1027 1557 2 3
12 900 0.012 9025 863 1434 2 4
13 1200 0.025 262 1990 2365 2 2
14 1200 0.025 5246 1807 2310 2 2
15 1200 0.025 11341 1534 2174 2 2
16 1200 0.025 16589 1181 1923 3 3

The calculated values of void fraction were compared with the ones given by
image processing technique, showing close values. However, as the amount of bub-
ble increases, the difference between them also increases. The highest condition of the
amount of gas inside the impeller happens in the point IM11, for segregated flow. Fig-
ure 5.6 shows the point IM11. The channel height is very important to predict exactly
how much gas the impeller contains. Supposing that in Fig. 5.6 the gas occupied the
entire view of the impeller channel. However, the exact height of the gas and water is
unknown. Thus, suppose that half of the channel is occupied by the water, so the gas
void fraction is 50 %. If the height of the water is three quarters, the gas void fraction is
25 %. In fact, the experiments uncertainty grows with the amount of bubbles.
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Figure 5.6: Experimental point IM11.

5.3 Modeling Results

The results of the distribution parameter 𝐶0, the coefficients of Basset and Added
Mass and, the bubble shape are discussed in the next sections.

5.3.1 Distribution Parameter - 𝐶0

Wallis (1969) pointed out that for vertical dispersed flow, the distribution param-
eter lies between 1.0 to 1.5 being more likely 1.2. However, for horizontal and near-
horizontal flow, as the bubbles tend to accumulate at the top of the pipe, it is commonly
assumed that they move at the average mixture velocity, hence the flow distribution
parameter is equal to one.
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Clark and Flemmer (1985) performed an experimental work to understand better
the upward/downward vertical flows. Their average values for 𝐶0 in upward flow was
1.07 and in downward flow 1.17. The authors proposed a correlation to obtain the dis-
tribution parameter as function of void fraction for each direction of the flow, which
are:

𝐶0 = 0.934 (1 + 1.42𝛼) → Upward vertical flow

𝐶0 = 1.521 (1 − 3.67𝛼) → Downward vertical flow (5.2)

Hibiki and Ishii (2002) proposed one relation using the density of the phases tak-
ing into account the effect of the bubble size on the phase distribution, since the presence
of the bubbles govern the distribution of the void fraction. Indirectly, the authors relates
the Sauter mean diameter, 𝑑𝑆𝑚, with the void fraction. Besides, Eq. 5.3 have its coeffi-
cient −22 approximated by the least-square method.

𝐶0 =
(︀

1.2 − 0.2
√︀

𝜌2/𝜌1
)︀[︀

1 − 𝑒𝑥𝑝(−22⟨𝑑𝑆𝑚⟩/𝑑)
]︀

(5.3)

The distribution parameter suggests that the dominant factor to determine itself
would be the void fraction. For extreme cases such as concentrated void profile and
sharp liquid velocity profiles around the tube center, the distribution parameter may
exceed 1.2 as reported by Goda et al. (2003).

Biazussi (2014) in his drift model uses different assumptions comparing to the
present one. First difference refers to the velocities, which were calculated with the use
of correlations proposed by Shoham (2005) instead of measuring them. Besides, the
terms related to the acceleration of gravity were substituted by centripetal acceleration.

The present study relates a drift flux using blade coordinate system, taking into
account the velocities in 𝑟 and 𝜃 direction. On the other hand, Biazussi (2014) used just
one direction, so characterizing it as one-dimensional drift-flux model. Another differ-
ence relates to the starting point of the formulation for the drift-flux model. The present
study used the Navier-Stokes equation which is different from him. The assumptions
made by the present work and Biazussi (2014) explains the difference of value found by
both authors without implying that one or other model were wrong.

Secondary flows and vortices occur in the impeller and they can be upward or
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downward. The phases may behave as co-current or counter-current flow, as presented
in the numerical analyses. The operational parameters may influence the flow direction
at the impeller inlet which may lead to increase shock losses. These are things that
influence the distribution parameter. Therefore the value of 𝐶0 found by Eq. 4.115 is
reasonable with the observed ones in turbulent flow in tubes.

5.3.2 Analysis of forces acting on bubbles

The motion of bubbles in laminar or turbulent flows is much more complex than
that of rigid solid particles. The interface between bubbles and liquid is not rigid due to
the internal flow developing inside the bubbles. This condition implies a relative velocity
at the surface. So the drag coefficient is reduced if it was compared with solid particles.
The drag coefficient 𝐶𝐷 is given as a function of the particle Reynolds number (ISHII

AND HIBIKI, 2010):

𝑅𝑒𝑃 =
𝜌1 𝑑𝑏 |𝑣1 − 𝑣2|

𝜇1

=
𝜌1 𝑑𝑏 |𝑣𝑠|

𝜇1

(5.4)

The drag coefficient may be altered by numerous physical effects, such as tur-
bulence of the surrounding flow, surface roughness of the particle, particle shape, wall
effects, compressibility of the fluids, rarefaction effects and particle concentration ef-
fects. All these effects can, in general, only be accounted for by empirical correction
factors derived from detailed experiments.

Figure 5.7 shows the drag coefficient as a function of Reynolds number. The chart
presented is adapted from Brennen (1994) and the results of the experiments were plot-
ted in red. The drag coefficient is approximately 0.37 for the cases analyzed here.

A generalized graphical correlation in terms of the Eötvos number, 𝐸𝑜, Morton
number, 𝑀 and Reynolds number, 𝑅𝑒, was used to compare the shape of bubbles. Figure
5.8 shows those numbers calculated, and the region of wobbling is predominant in the
experiments. This shape tends to vary the drag coefficient because for bubbles, it lies
below the rigid sphere curve when internal circulation is presented, as reported by Clift
et al. (2005).

The coefficient ∆𝐶∞ was calculated with the term 𝐴
′
1. This coefficient is studied

apart, but it relates Basset and added mass, so the conclusions presented here consider
both terms together.
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Figure 5.7: Drag Coefficient, 𝐶𝐷 x Reynolds Number, 𝑅𝑒 - Adapted from Haberman
and Morton (1953).

It is expected that the added mass coefficient for an individual particle would
depend on the void fraction of the surrounding medium. Zuber (1964) first addressed
this issue using a cell method and found that the added mass for spherical bubbles
increased with volume fraction, 𝛼.

Odar and Hamilton (1964) proposed the calculus of coefficients for Basset and
added mass as function of acceleration number.

𝐶𝑉 = 2.1 − 0.132

𝐴2
𝑐 + 0.12

𝐶𝐵 = 0.48 +
0.52

(𝐴𝑐 + 1)3
(5.5)

where: 𝐴𝑐 =
| �⃗�1 − �⃗�2 |2

𝑑𝐵|𝑑 | �⃗�1 − �⃗�2 |/𝑑 𝑡|

For small values of 𝐴𝑐, 𝐶𝑉 was found to tend towards the value of 1.05 while
the value of 0.5 was recovered for large 𝐴𝑐. However, this value is not so easy to be
achieved once other forces are present on bubbles, such as drag, which can influence the
calculus if they are not well modeled.
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Figure 5.8: Shape regimes for bubbles using: Eötvos Number 𝐸𝑜, Reynolds Number, 𝑅𝑒
and Morton number 𝑀 (CLIFT et al., 2005)

Studies of Michaelides and Roig (2011) showed that the added mass coefficient
should be constant, equal to 1 and the Basset coefficient should be expressed in depen-
dence of the Strouhal number. The analysis showed that the function of the history term
is better correlated with the Reynolds and Strouhal numbers, rather than the acceleration
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number which was used originally by Odar and Hamilton (1964).

𝐶𝐵 = 2.0 − 1.0533
[︀
1 − 𝑒𝑥𝑝

(︀
− 0.14𝑅𝑒𝑃 𝑆𝑟0.82

)︀2.5]︀ (5.6)

The Strouhal number describes the behavior of oscillatory flows. In this context
the fluid time scale is the reciprocal value of the characteristic fluid oscillations.

The general expression of Basset force depends on the diffusion process of the
vorticity. The well known Basset’s expression is found in the limit of unsteady Stokes
flow for a rigid sphere. In the case of a bubble, while vorticity comes from no-slip
condition at a rigid surface, the bubble tends to vanish the shear stress in its curved
surface and vorticity tends to be non-zero. It means that when a particle experiences a
sudden change of velocity, a sheet of infinite vorticity is generated at its surface. This
effect is even more complicated for bubbles (MAGNAUDET, 1997).

The term ∆𝐶 was calculated with the model, taking into account void fraction,
which is equal to 1.24. This value calculated using the expression from literature is equal
to 1.19, which presents a difference of 4%. Again, this term is related to both forces:
added mass and Basset and it is in good agreement with values from literature, once the
sum of their results is near 1. The drift-flux model and the slip model developed by Eqs.
4.115 and 4.109 respectively are in good agreement with literature values as they are
compared with experiments made in tubes.

The next section will show a proposition of the transition criteria to prevent the
surging and gas locking conditions.

5.4 Transition Criteria for Surging and Gas Locking

This section relates the forces on the bubble and they are discussed in in appendix
C, in section C.5. Summarizing the forces:

∘ Drag force:

𝐹𝐷
2𝑠 =

1

2
𝐴𝑝𝐶𝐷 𝜌1 𝑣𝑠,𝑠

2

∘ Basset and Added Mass force:

𝐹 𝑉 𝐵
2𝑟 = −𝜌1𝐵𝑏 ∆𝐶 𝐿𝑎𝑚𝑏𝑑𝑎𝑠 csc2 𝛽

[︂
−𝑟

𝑟2𝑖 𝑟
2
𝑜

]︂(︂
𝑄𝑚

2𝜋 ℎ

)︂2
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∘ Centripetal and Coriolis force:

𝐴𝑓𝑟 = 2𝜔
𝜆2

𝛼2

cot 𝛽

(︂
𝑄𝑚

2𝜋 ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

∆𝑟
− 𝜔2 (𝑟2𝑜 − 𝑟2𝑖 )

2∆𝑟

𝐴𝑓𝜃 = 2𝜔
𝜆2

𝛼2

(︂
𝑄𝑚

2 𝜋 ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

∆𝑟

∘ Buoyancy force:

𝐹𝐸
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The subscripts 𝑟 and 𝜃 indicates the forces in polar coordinates. In possess of these

forces, the criteria conditions are established in the next sections.

5.4.1 Criteria Conditions

The criteria used here is an extension of those proposed for ducts and applied
for centrifugal pumps by some authors (MURAKAMI AND MINEMURA, 1974a, ES-
TEVAM, 2002, BARRIOS, 2007, among others). Visually the surging occurs when the
bubbles start to coalesce. Fig. 5.9 describes the bubble in the impeller channel and its
respective blade coordinate system, indicated by 𝑠 and �̂�.

From the Transition Criteria it is expected that the bubble can goes to the suction
side when the sum of the forces in �̂� direction is positive or, it can goes to the pressure
side when the opposite happens. This might happen when the resulting force in normal
�̂� direction begins to be higher than the resulting force in longitudinal direction which
is 𝑠.

It expected that the criterion indicates the region where the surging and gas lock-
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Figure 5.9: Force balance on a bubble inside the impeller channel.

ing begins. These points are showed in Fig. 5.10. As the flow rate of water begins to
decrease, the ratio of gas increase, so the bubble swarms appear in the impeller channel,
characterizing the pattern of gas pockets. Once the ratio of gas still increase and reach
segregated gas, the gas locking will be established, ceasing the pump operation.

∑︁
|𝐹𝑅 𝑏𝑢𝑏𝑏𝑙𝑒𝑠,𝑠| =

∑︁
|𝐹𝑅 𝑏𝑢𝑏𝑏𝑙𝑒𝑠,𝑛| (5.7)

Next, Eq. 5.7 will be developed for Condition 1 and 2.

Condition 1

The first condition tested is the point where the longitudinal force in 𝑠 is equal to
the transversal force in �̂�. This corresponds to the threshold condition, as the forces are
equal in modulus. This condition considers 𝐹𝑠 = 𝐹𝑛. So, from Eq. 5.7:

𝐹𝐷
2𝑠 + 𝐹 𝑉 𝐵

2𝑠 + 𝐹𝐸
2𝑠 + 𝐹 𝐹

2𝑠 + 𝐹 𝑉 𝐵
2𝑛 + 𝐹𝐸

2𝑛 + 𝐹 𝐹
2𝑛 = 0 (5.8)

The development of Eq. 5.8 is presented in section C.6. The result is Eq. 5.9.
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𝐶𝐻 = 𝐷1𝐶
2
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(5.10)
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Condition 2

The second condition is almost the same as the first. However, as the forces are
equal in modulus, here is the point where longitudinal force in 𝑠 is equal to the transver-
sal force in �̂� by the other way. This means that 𝐹𝑠 = −𝐹𝑛. So, from Eq. 5.7:

𝐹𝐷
2𝑠 + 𝐹 𝑉 𝐵

2𝑠 + 𝐹𝐸
2𝑠 + 𝐹 𝐹

2𝑠 − 𝐹 𝑉 𝐵
2𝑛 − 𝐹𝐸

2𝑛 − 𝐹 𝐹
2𝑛 = 0 (5.11)

The development of Eq. 5.11 is presented in section C.6. The result is Eq. 5.12.

𝐶𝐻 = 𝐸1𝐶
2
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(5.12)
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Figure 5.11 shows the chart with both conditions plotted. The red curve indicates
the condition 1 and the blue curve, condition 2. When the blue curve encounter the
experimental curve (the chart only indicates the points) this region is where the surging
begins.

The coalescence raises changing the balance on bubble forces resulting in the
phenomenon knowing as surging. This is what happens in condition two. As the ratio of
gas keep increasing in the impeller channels, the coalescence increases and the bubbles
stops its movement, leading into gas-locking condition. This region is shows by the
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Figure 5.11: Transition criteria - Condition 1 (red line) and Condition 2 (blue line)

encounter of both curves. In this point the resultant of forces are equal to zero.
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6 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
WORK

In this chapter, the first section presents the conclusions about the experimental,
numerical and modeling work of gas-liquid flow inside an ESP impeller performed in
this work. In the second section, the recommendations for future work on the points still
open in this work are covered.

6.1 Conclusions

This work presented an experimental investigation of the two-phase flow, of water
and air, inside an electric submersible pump (ESP) impeller. The air was added at the
intake of the pump tube entrance. The visualization prototype was designed by Verde
et al. (2017), and the same experimental apparatus was used. The flow was filmed in
several different conditions with a high-speed camera, and the air bubbles were analyzed
as they crossed the pump’s impeller. The velocities and the diameters were computed
from images acquired with numerical scripts written in the course of this work.

The instantaneous fields of gas bubbles velocities were obtained by a sequence of
scripts, which for example, have the capability to enhance the edge of the bubbles. The
post-processing was able to capture the bubble’s centroids in the first part of the code.
In the second part, the bubble’s velocities were calculated. As the impeller rotated, two
kinds of velocities were possible to calculate, the radial and circumferential. The ve-
locities were calculated for 600 𝑟𝑝𝑚, 900 𝑟𝑝𝑚 and 1200 𝑟𝑝𝑚. When the tests were
performed at 1500 𝑟𝑝𝑚, the bubbles were very small, which made their treatment im-
possible. However, the dimensionless analysis and similarity laws were useful to expand
the knowledge obtained by the experimental data collected.

The code developed was verified manually to ensure its functional operation. Its
capability to measure a high amount of experimental data allowed the use of statistics
for bubble’s behavior. The threshold number is an important parameter inside the code
that is arbitrarily set by the user.

Also, the code written in the Matlab platform calculates the diameter of the bub-
bles, which allows the possibility of estimating the gas void (or volume) fraction inside
the impeller. Unfortunately, this process is not accurate as the image captured has two
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dimensions, so the volume of the bubbles acquired by the code is not reliable. However,
considering higher liquid flow rates (𝑄 > 𝑄𝐵𝐸𝑃 ), the volume estimated by the code
are near the void fraction predicted by the model, as shown in Table 5.3. The diameters
were calculated in the post-processing of the images and mean value of each test were
represented in histograms.

The numerical simulation realized for single-phase flow using 600, 900, 1200 and
1500 𝑟𝑝𝑚 were simulated. The pressure increment of the numerical simulations were
compared to experimental data and showed an average value of 4%. The two-phase
flow experiments for 900 𝑟𝑝𝑚 with two different gas mass flow rates were represented
in numerical simulations. The water flow varied in a certain range, and the gas mass flow
was kept constant at 0.012 𝑘𝑔/ℎ and 0.025 𝑘𝑔/ℎ. From the numerical results, the total
pump pressure was calculated in order to compare with experimental data. The pressure
increment showed an average deviation of 9% comparing with experimental data.

The flow streamline in single-phase flow was analyzed and discussed when the
ratio 𝑄/𝑄𝐵𝐸𝑃 was higher or less than the value of one. The results show the losses pre-
sented in the flow inside the impeller’s channels, such as shock losses and flow recircu-
lation. These results are in agreement with Feng et al. (2010). The results of two-phase
flow simulations, such as velocity and bubble diameter were compared with the exper-
iments. The velocities and bubble diameter values are near as indicated by Table A.19
and A.20. However, the gas void (or volume) fraction calculated numerically was far
from the experimental and modeled values. These values are presented in Tables A.18
and 5.3. The gas void fraction analyzed had very low values. The increment pressure of
the pump too. Even lower values of gas can lead to operational instabilities in the ESP.

In Chapter 5, a drift-flux model for the two-phase gas-liquid flow inside the im-
peller was developed. The model was based on blade coordinate system, 𝑠 and �̂� corre-
lated with azimuth and radius coordinates, 𝜃 and 𝑟. The concept of radial cascade was
used by Brennen (1994). The equations of Mass and Momentum were developed and
experimental data provided by the post-processing of images was used to validate the
model. The viscous stress tensor was modeled through an analogy with the flow inside
a rectangular duct. A closure relationship for the momentum transfer was also used.

The proposed friction factor encompasses all losses expected to happen inside the
impeller. The closure of the model showed that the proposed friction factor increases
with increasing the pump flow rate as expected, as it goes far from the Best Efficiency
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Point. However, for flow rate points near the 𝑄𝐵𝐸𝑃 , the friction factor is comparable to
the one proposed by S.Vieira (2014).

From the drift-flux model, parameters such as 𝐶0 were discussed in section 5.3.1.
Besides, the interphase momentum transfer was analyzed and the forces acting in a bub-
ble were described. The parameters such as drag coefficient, virtual mass and Basset
coefficient values showed good agreement with the ones observed in the literature. With
these parameters, it was possible to analyze the forces acting on the bubble and pro-
pose, based on the literature, transition criteria for surging and gas locking phenomena
showing good agreement with the experimental data.

The further improvement of the modeling may lead to better design of geometries
for impellers and under gas-liquid flows conditions, for example.

6.2 Recommendations for Future Work

1. The experiments have a gap when the surging condition initiates. The image pro-
cessing is not able to perform a correct void fraction measure of the impeller
channel because the height of it is not considered, as the image has two dimen-
sions the void (or volume) fraction measured is not reliable.

2. The present work studies the impeller in a radial cascade concept
(BRENNEN, 1994). In order to improve the knowledge of the flow inside the
pump, the idea of composite cascade may be developed so other impellers might
be analyzed. Besides, the impeller and diffuser geometries may be improved to
deal with multiphase flows.

3. The bubble’s recirculation, which generally occurs on the pressure blade side,
needs further studies in order to control this phenomenon. The blade profile could
be changed to avoid this situation.

4. In aircraft technology there is an idea of active smart blades. Extendable leading
edge slats and trailing edges have been regulating the flow conditions on aircraft
wings for decades. Integrated leading edge slats were employed experimentally
in wind tunnel tests. Measuring instruments recorded the reaction dynamics with
respect to the forces acting on the wind tunnel model. This kind of technology
could be adapted for uses in centrifugal pumps in order to improve its efficiency.

5. The experiments have two kinds of methodologies, which may deepen the study
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in the physics phenomenon that occurs with two-phase flows inside the ESP im-
pellers: Gas variation and constant gas flow rates. Unfortunately, only one was
performed in the present study, the constant gas flow rate. The other methodology
should be tested.

6. Regarding the CFD simulation, breakup and coalescence models should be further
investigated. This could have been realized with the image treatment but was not
performed in the course of the present work. This was not an objective but could
be done in future works. In order to perform this, the code should be amplified. A
first idea to capture this is to set boundaries for the radius because this will occurs
when 𝑟 > 𝑟𝑖 and 𝑟 < 𝑟𝑜. Further investigations should be done, experiments, and
so on. As it is able to be manually followed, the code can be adapted for this.

7. The viscous term was studied, making an analogy with ducts, which is not real.
This approximation does not correspond to the impeller channels so that further
improvements can be performed for this part.

8. The lift force is not considered in the present analysis because the height is not
considered. So, the influence of lift, even giving a small height of the present
impeller and the literature and premises indicating that this is not significant, the
measurement may be performed to precisely inform that.

9. The commercial code has improvements that should be tested. For example, when
the simulations started in April/2018, the breakup model used was the Luo and
Svendsen. Now, the ANSYS has other options that may be tested, or even a sub-
routine may be created for this. For example, the Schmehl Breakup Model and
the Taylor Analogy Breakup (TAB) Model (ANSYS, 2017). It was observed that
this kind of model could impact the simulation results.

10. Regarding the drift-flux model, a deep analysis on 𝐶0 and 𝑣2𝑗 parameters for the
case of gas-liquid flow inside ESP impeller should be done with an extension
of the experimental campaign. Also, further analysis of the proposed transition
criteria for other pumps impellers is necessary to discuss its scope under other
conditions.

11. It is important to measure the flow velocity field of the continuous phase, with
the PIV system, for example, and then analyze the point-to-point velocity of con-
tinuous and dispersed phase. In this way a detailed analysis of the 𝐶0 might be
performed. Also, the swarm effect of bubbles concentrated in one of the blades
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should be carefully analyzed.
12. Studies about breakup and coalescence are needed to close the proposed models.

The first guess for the breakup model would be based on Hinze (1955) for the
impeller.

13. Some simplifications were performed in the model due to the gas-liquid two-phase
flow analysis, however, in its full form it is applicable for other two-phase flows
such as liquid-liquid ones. So, a recommendation, as there is data in the literature,
is to rewrite the model for liquid-liquid flows and compare with experimental
data.

14. The equations developed for the impeller may be used for the diffuser. In this
case, the rotation 𝜔 is equal to zero.
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APPENDIX A – NUMERICAL SIMULATION

This appendix presents the numerical simulation of single and two-phase flow in-
side the impeller of an ESP. The commercial software Ansys® was used, specifically
CFX® and ICEM CFD™ . They were used to process the single and two-phase flow
in impellers and to construct the appropriate meshes, respectively. The details of the
simulation are presented in this chapter. Also, simulations were performed using the
open source code OpemFOAM, however some problems of using the code for this ap-
plications were discovered and the results were not interesting. A description of the
simulations with OpenFOAM is described in APPENDIX G.
A.1 Computational Procedure

The simulations were performed in two computers, which had two Intel® proces-
sors Core i7-4790 CPU 3.60GHz, one with 16GB of memory RAM DDR3 and the other
with 8GB. After April/18, the simulations were ran on a workstation with two Intel®
processors, Xeon 4116 Silver with 2.1 GHz 33MB, and total memory of 64GB DDR4
2400 ECC RDIMM.

Figure A.1 (a) shows the prototype pump design in CAD, representing the solid
part. Figure A.1 (b) represents the fluid domain. The fluid domain was acquired us-
ing boolean operations, which consisted of filling the pump with virtual material and
then, subtracting the solid components. These operations were performed by the Solid-
Works® platform.

The numerical model was composed of 4 different domains, each of them with its
own mesh. The components can be identified in Fig. A.1 (b). The first domain is com-
posed of the entrance tube, the second the diffuser entrance, the impeller being the third
and, lastly, the diffuser exit. When in possession of these domains, they were meshed
using Ansys® ICEM CFD™ . The impeller and the diffuser were meshed using An-
sys® TurboGrid™ . All the meshes were composed of an unstructured grid, employing
tetrahedrons. Table A.1 shows the main dimensions of the impeller and diffusers.
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Figure A.1: Prototype Components: (a) Solid components (CAD) (b) Simulation Do-
mains.

A.1.1 Test Matrix - Single-Phase Water Flow

The operational limitations of this prototype were investigated by
Monte Verde (2016), who conducted some preliminary tests to define the limits
of the experimental setup. The suction pressure and the discharge were limited by the
maximum pressure supported by the acrylic window. The pressure limit was 150 kPa.
However, the pump rotation was restricted by the seal of the visualization window and
unable to operate properly at high rotations, which means above 1500 rpm.

The numerical simulations were performed for the single-phase flow at four dif-
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Table A.1: Dimensions of Prototype’s Impeller and Diffusers

Variable Diffuser entrance Impeller Diffuser exit

Blade/Vane number 6 7 8

Inner diameter [𝑚𝑚] 𝐷𝑖1 = 26.9 𝐷𝑖2 = 44.2 𝐷𝑖3 = 125

Outer diameter [𝑚𝑚] 𝐷𝑒1 = 58.1 𝐷𝑒2 = 111.4 𝐷𝑒3 = 200

Channel height [𝑚𝑚] 7.64 6 6

Entrance blade angle 22.8 19.8 21.8

Exit blade angle [∘] 63.0 46.8 30.2

ferent rotational speeds, namely 600, 900, 1200 and 1500 𝑟𝑝𝑚. The liquid flow rate was
set to the best efficiency point (BEP), 0.8 and 1.2 of the BEP. For the highest rotational
speed (1500 rpm) only the BEP flow rate was simulated. Table A.2 shows the cases
simulated for single-phase flow.

Table A.2: Numerical Simulation test matrix for single-phase water flow.

Rotation Flow rate [𝑚3/ℎ]

[𝑟𝑝𝑚] 0.8𝑄𝐵𝐸𝑃 𝑄𝐵𝐸𝑃 1.2𝑄𝐵𝐸𝑃

600 1.70 2.13 2.56

900 2.56 3.20 3.84

1200 3.41 4.26 5.11

1500 - 5.33 -

The experimental data of maximum efficiency presented in Table A.2 were ex-
tracted from Monte Verde (2016) who studied the performance curves of the prototype
pump analyzed. The data acquired were used to validate the numerical simulations.

A.1.2 Test Matrix - Two-Phase Air-Water Flow

The two-phase flow simulations were performed with a constant gas flow rate, as
described in the experiments in Chapter 3. The tests were performed under two circum-
stances: 0.025 and 0.012 𝑘𝑔/ℎ gas flow rate at 900 rmp. For each operational condition,
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ten points were simulated. Just one was not simulated because the simulations did not
reach convergence due to a higher presence of the gas. Figure A.2 shows the single-
phase flow results (blue triangles), which are represented for the reader reference. The
results of two-phase experiments are indicated by the red crosses for 0.025 𝑘𝑔/ℎ, and
yellow squares for 0.012 𝑘𝑔/ℎ of constant gas mass flow rate. The pump performance
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Figure A.2: Two-phase flow experimental data, which will be used to validate numerical
simulations.

curve is a reference for ESP, and these are the experimental points (pressure increment)
that will be reproduced by numerical simulation. The liquid volumetric flow rates are
indicated in Table A.3.

A.2 CFD Simulations

The single-phase and two-phase flow CFD simulations followed the same routine:

1. Generation of the geometry and elaboration of fluid domains.
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Table A.3: Numerical simulation test matrix for two-phase air-water flow.

𝑚𝑔 Liquid flow rate 𝑄 [𝑚3/ℎ]

[𝑘𝑔/ℎ] IM1 IM2 IM3 IM4 IM5 IM6 IM7 IM8 IM9 IM10

0.025 5.260 4.828 4.526 4.201 3.786 3.428 3.088 2.786 2.332 1.637

0.012 5.246 4.923 4.567 4.154 3.649 3.364 3.110 2.702 2.392 1.817

2. Mesh creation.
3. Definition of governing equations adopted.
4. Boundary and initial conditions definition.
5. Simulating the transient and steady state regimes.
6. Comparing the results with the experimental data (pressure).
7. For two-phase flow results, the bubbles’ velocities are compared with the image

treatment.

Next in this section, details regarding each part of the simulation pre-processing are
described.

A.2.1 Creating the mesh

When in possession of the domains, it is possible to generate the mesh which
will be used for simulation. The mesh generation of impeller and diffusers were made
in the Turbogrid™ and ICEM-CFD™ . The remaining components were made in
ICEM-CFD™ . Basically, the steps for mesh generation are:

1. Define the geometry of the region of interest.
2. Create regions of fluid flow, solid regions and surface boundary names.
3. Set properties for the mesh.

The Ansys Turbogrid™ is a program specialized in the generation of turbomachinery
mesh, using geometry to automatically make structured mesh with respect to initial
parameters delimited by the user, such as the wall refinement. The first step to create
the mesh is the acquisition of the points (between 150 to 300) of the solid regions using
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Solidworks™ . They are responsible to form the blade profile, hub and shroud. Then,
the profile is loaded into Ansys Turbogrid™ and blocks are formed. These blocks are
responsible to creating better adjustments of elements which are filled into the geometry.

The geometry is loaded into ICEM-CFD™ , in order to use tetrahedral elements
to fill the geometry. The user can specify mesh parameters, such as mesh size, type
and method. The parameters can be selected to work globally or individually in parts,
surfaces, curves or regions. Due to the turbulence model used (described in section
A.3.2) the elements near the wall were refined.

The quantity of the elements generated was tested. This process is a mesh sensi-
tivity test and is described in section A.3.3. First, the governing equations and boundary
conditions should be discussed. Then, the time step is introduced.

A.2.2 Numerical Discretization

The solutions for real flows, described by the Navier-Stokes equations, should
use a numerical approach in order to solve the equations. The numerical approach uses
algebraic approximations which are solved using numerical methods, once the analytic
solution for N-S equations exists only for very simple flows under ideal conditions in
most cases.

The software ANSYS CFX™ uses an element-based finite volume method. This
method consists of dividing the region of interest into small sub-regions, called control
volumes. The equations are then discretized and solved iteratively for each control vol-
ume. The spatial domain discretized by the generated mesh is used to conserve relevant
quantities such as mass, momentum, and energy. The values of each variable can be
acquired at any specific point of the domain.

For simplicity, a tetrahedral mesh element is illustrated in two dimensions in Fig.
A.3, but the mesh is three dimensional. Grouping the elements a full picture of the flow
behavior can be determined. All solution variables and fluid properties are stored at the
nodes (mesh vertices). A control volume (the shaded area) is constructed around each
mesh node using the median-dual scheme (defined by lines joining the centers of the
edges and element centers surrounding the node).

The finite volume methodology will not be explained here, but can be found in
many books, such as Patankar (1980).
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Figure A.3: Control-volume definition. (ANSYS, 2017)

A.2.3 Domains and Interfaces

Basically, the pump was divided in four domains, as described in Fig. A.1: en-
trance tube, diffuser entrance, impeller and diffuser exit.

∙ Entrance tube: At the entrance of the tube the inlet condition was specified,
which is a reference pressure of 0 Pa (gauge). The exit of the entrance tube is a region
of other domain which is the beginning of the diffuser entrance.

∙ Diffuser entrance: The diffuser entrance is shown in Fig. A.4. The CAD of the
piece is represented with letter (a) while the mesh with (b). This domain is divided in
six, as the other channels are the same. So, a cyclic boundary condition was adopted in
order to reduce computational efforts.

∙ Impeller: For this region, there are two options of coordinate system: the frozen
rotor technique and the transient rotor-stator. The first is a model where the reference
coordinate system rotates while the mesh is kept stationary. This method needs appro-
priate transformations to apply in the governing equations and the computational efforts
are lower than the second method. However, this technique does not considers interac-
tions between the impeller blade and diffuser vane leading to no pressure fluctuations.
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Figure A.4: Diffuser: (a) Diffuser entrance; (b) Diffuser entrance mesh.

This condition was used as an initial condition for the transient simulations.
The transient rotor-stator considers all the interactions between the stationary and

rotational domains. The impeller mesh is rotated and the relative movement between
the regions needs an important connection between the interfaces, as they do not match.
This was performed through the General Grid Interface (GGI) connection algorithm
(ANSYS, 2017). Consequently, modeling the interaction between rotor-stator demands
higher computational efforts although this approach is closest to the real situation. The
impeller has seven channels, so as already done for the diffuser entrance, just a part of
the domain was simulated.

∙ Diffuser exit: The rotor-stator transient condition is set at the entrance of this
region, which is an interface with the impeller. The diffuser has eight vanes, so just
one channel was simulated. The passages between diffuser entrance to impeller and im-
peller to diffuser exit have a change in their area. It means that without an appropriate
algorithm the area changes could not be modeled. The turbo-machine reduced model
is accomplished with the use of pitch-change methods, such as Profile Transformation,
Time Transformation or Fourier Transformation. For the present study, the pitch ratio
is 1.16 and 1.14, respectively for the diffuser entrance to impeller and impeller to dif-
fuser exit, both of which are considered small. The model errors grow proportionally
with the increase of the pitch ratio value between components. The maximum value
recommended of pitch ratio is 1.30 (ANSYS, 2017).
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A.2.4 Boundary Conditions

The inlet of the tube entrance domain has a boundary specified as the "opening"
which means that flow may enter or leave the boundary. A constant total pressure in the
stationary frame and direction are imposed at the inlet. At the outlet, in the diffuser exit
domain, the mass flow rate is specified. Cyclic boundary conditions are specified in all
domains, obtaining a periodic flow passage. This kind of boundary condition reduces
the time of simulation. So, the domains were divided radially and proportionally in 1/6,
1/7 and 1/8 to reduce computational efforts. The interface of these parts should be
connected by the GGI algorithm which works with parts that had been overlapped by
other interfaces. Interfaces can connect static or rotational meshes, such as the impeller
and diffuser. Every surface of the domain related to wall was characterized with no-slip
condition and smooth walls were assumed.

The treatment of the interface fluxes is fully implicit and fully conservative in
mass, momentum, energy, scalars, and so on. The simulation used water and its proper-
ties are density of 𝜌 = 998 𝑘𝑔/𝑚3 and dynamic viscosity of 𝜇 = 1.003 · 10−3 𝑃𝑎.𝑠 at
20∘ C.

A.3 Single-phase Water Flow CFD Simulation

This section presents the governing equations, turbulent model, mesh sensitivity
test, timestep study and the simulation results for single-phase water flow compared
with the experimental data of Monte Verde (2016).

A.3.1 Governing Equations

The governing equations for single-phase flows in ESPs are shown in this section.
This work uses unsteady Reynolds Averaged Navier-Stokes (U-RANS). In the U-RANS
approach, the fluctuations of the velocity are decomposed into resolved and unresolved
parts. In the experiments both fluctuations were considered, so for comparison, the nu-
merical simulation should be transient.

Transient simulations are closest to real cases, but they are computational costly.
In order to reduce this, it is common to work with sections of the model. The meshes
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were separated through determined planes and new boundary conditions were added,
like symmetry. In this study, the model had three sections divided to make the simula-
tions more efficient, which are 1/8, 1/7 and 1/6 as described in the former section. The
equations solved by CFD are in their conservative form:

Conservation of mass

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌 �⃗�) = 0 (A.1)

where �⃗� is the velocity vector and 𝜌 is the density.

Conservation of momentum

𝜕𝜌�⃗�

𝜕𝑡
+ ∇ · (𝜌 �⃗� × �⃗�) = −∇𝑃 + ∇ · 𝜏 + 𝑆𝑀 (A.2)

where the stress tensor, 𝜏 , is related to the strain rate by:

𝜏 = 𝜇

(︂
∇�⃗� + (∇�⃗�)𝑇 − 2

3
∇ · �⃗�

)︂
(A.3)

where 𝜇 is the viscosity and superscript T stands for the transpose and 𝑆𝑀 corresponds
to source terms.

Source terms

The source terms corresponds to terms added for flows in a rotating frame of
reference with constant angular velocity 𝜔. The pseudo forces are Coriolis force 𝑆𝐶𝑜𝑟

and the centrifugal force 𝑆𝑐𝑓𝑔, represented in Eq. A.4.

𝑆𝑀,𝑟𝑜𝑡 = 𝑆𝐶𝑜𝑟 + 𝑆𝑐𝑓𝑔 = −2𝜌 �⃗� × �⃗� − 𝜌 �⃗� × (�⃗� × �⃗�) (A.4)

where �⃗� is the relative frame velocity and �⃗� is the position vector.
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A.3.2 Turbulence Model

Concerning turbulence in single-phase flows, a two equation SST-model
(MENTER, 1994) was adopted, since it combines advantages of the k-𝜔 model near
the walls and the k-𝜖 model in the bulk of the flow. The SST model requires near-wall
refined treatment to assure the correct use of k-𝜔 model, which suggests that 𝑦+(1)

should be near 1 if the user does not want to use wall functions. Where 𝑦+(1) is the
distance of the first off-wall node in viscous length-scales.

Mathematical and experimental analysis has shown that the near-wall region can
be subdivided into two layers. In the innermost layer, the so-called viscous sublayer, the
flow is almost laminar, and the (molecular) viscosity plays a dominant role in momen-
tum and heat transfer. Further away from the wall, in the logarithmic layer, turbulence
dominates the mixing process. Finally, there is a region between the viscous sublayer
and the logarithmic layer called the buffer layer, where the effects of molecular viscosity
and turbulence are of equal importance. Fig A.5 below illustrates these subdivisions of
the near-wall region (ANSYS, 2017).

y

v

Δy

vt

Viscous sublayer

Logarithmic layer

Figure A.5: Subdivisions of the near-wall region (ANSYS, 2017).

Assuming that the logarithmic profile reasonably approximates the velocity dis-
tribution near the wall, it provides a means to numerically compute the fluid shear stress
as a function of the velocity at a given distance from the wall. This is known as a "wall
function" and the logarithmic nature gives rise to the well known "log law of the wall"
(WHITE, 2003).

The Low-Reynolds-Number method resolves the details of the boundary layer
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profile by using very small mesh length scales in the direction normal to the wall (very
thin inflation layers). Turbulence models based on the 𝜔-equation, such as the SST or
SMC-𝜔 models, are suitable for a low-Re method. Note that the low-Re method does
not refer to the device Reynolds number, but to the turbulent Reynolds number, which is
low in the viscous sublayer. This method can therefore be used even in simulations with
very high device Reynolds numbers, as long as the viscous sublayer has been resolved.

The low-Re approach requires a very thin mesh in the near-wall zone and cor-
respondingly large number of nodes. Computer-storage and run-time requirements are
higher than those of the wall-function approach and care must be taken to ensure good
numerical resolution in the near-wall region to capture the rapid variation in variables.
To reduce the resolution requirements, CFX uses wall functions. In order to guaran-
tee their functionally, which enables flow solutions independent of the location of the
first grid node above the wall, at least ten nodes should be present until outer layer
(GROTJANS AND MENTER, 1998 and ANSYS, 2017).

CFX develops an automatic wall treatment in order to reduce the resolution re-
quirements. This allows a gradual switch between wall functions and low-Reynolds
number grids, without a loss in accuracy. For 𝑘 − 𝜔 based models (including the SST
model) this method is applied.

A.3.3 Mesh Sensitivity Test

A mesh sensitivity test was performed considering five levels of mesh refinement,
which are presented in Table A.4. The table indicates the pressure increment consider-
ing all components, which is indicated by the column "ESP". Impeller nodes and exit
diffuser were indicated in the two other columns. The mesh chosen is number three, as it
has 1.2% of deviation with experimental data and has one million fewer cells than mesh
number two. So approximately three million cells were simulated in the entire pump.

The study of the mesh size was also done for the entrance tube and the diffuser
entrance. The pressure increment in both dominions was numerically measured and
compared with the reference mesh, presented in the first line of Table A.5.

Considering the data showed in Table A.5, the mesh numbers 3 and 4 for the
entrance tube have the same size, it is intentionally tested in order to know how much
is the influence of the diffuser entrance mesh. This equipment has helical channels,
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Table A.4: Mesh, Number of elements (𝑄𝐵𝐸𝑃 = 3.2112𝑚3/ℎ)

Mesh
Impeller Exit Diffuser ESP

∆𝑃 [Pa] Deviation [%]
nodes 𝑦+ nodes 𝑦+ nodes

1 1.190.861 9.1 3.164.352 5.3 6.662.277 7979 [-]

2 788.852 15.5 1.999.387 7.0 4.017.140 8064 1.0

3 788.852 15.5 864.024 10.1 2.970.212 8078 1.2

4 340.865 15.8 864.024 10.5 1.980.816 8220 3.0

5 225.654 19.8 632.606 12.2 1.309.905 8304 4.1

which adds more difficulty in the mesh building. So, more elements are presented in the
DE. The difference in % is a little higher because the pressure difference in Pascal is
minimal.

Therefore, the mesh of the entrance tube chosen has ∼ 300,000 elements having a
difference of ∼ 15 Pa. The diffuser’s mesh has ∼ 550,000 elements having a difference
of 110 Pascal. The computational cost to decrease those differences may increase ∼
650,000 elements in simulation, if mesh number 2 is chosen. This increase in mesh size
was not considered to be reliable in simulations, so mesh number 4 is chosen.

Table A.5: Mesh sensitivity for ET and DE.

Mesh Entrance tube (ET) Diffuser entrance (DE)

nodes ∆𝑃 [Pa] Dev. [%] nodes ∆𝑃 [Pa] Dev. [%]

1 696.542 -213 [-] 1.610.822 -4363 [-]

2 461.595 -220 3.29 998.317 -4365 0.05

3 326.023 -225 5.63 767.306 -4251 2.56

4 326.023 -229 7.51 555.232 -4223 3.20

5 195.684 -296 38.97 255.961 -4179 4.22
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A.3.4 Time step study

Tests setting steps per blade passage were conducted in order to capture the in-
fluence in performance pump values. Table A.6 shows the tests from 15 timesteps per
blade until 3 timesteps. The average values from static pressure were compared with the
solution for the most refined test, which was three degrees per timestep.

Table A.6: Timestep per blade passage

Timestep per blade passage Degrees per timestep [∘] ∆𝑃 [Pa] Deviation [%]

3 15 9803 4.33

6 7.5 10084 1.59

9 5 10166 0.79

12 3.75 10207 0.39

15 3 10247 [-]

The deviation of 1.59% was considered acceptable for the purposes of this work
and it was considered for all cases. So 6 timesteps per blade passage were selected, as it
is acceptable and without high computational costly.

A.3.5 Simulation Results for Single-Phase Flow

Figure A.6 shows the curves related to pump performance. It indicates the pres-
sure increment ∆𝑃 of 600 rpm, 900 rpm, 1200 rpm and 1500 rpm, where the circles
and Xs correspond to experimental and numerical values, respectively. The data of the
chart is on Tables A.8 to A.11 showed in the section A.3.6. The difference between the
experimental and numerical results correspond to 4%. As the rotation speed increases
the difference also increases. The best efficiency points of the rotations are represented
with a black dashed line.

The pump head is defined by 𝐻 = ∆𝑃/𝜌𝑙 𝑔, where 𝑔 is the gravitational accel-
eration and 𝜌𝑙 is the density of water. The increment pressure ∆𝑃 is measured at the
same place as the experiments. Stepanoff (1957) described some of the most common
dimensionless numbers, such as specific head, 𝐻* = 𝑔𝐻/𝜔2𝑑2𝑝𝑢𝑚𝑝, and specific capac-
ity, 𝑄* = 𝑞/𝜔𝑑3𝑝𝑢𝑚𝑝. Figure A.7 shows the dimensionless variable Head 𝐻* versus flow
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Figure A.6: Comparison between numerical and experimental (MONTE VERDE, 2016)
using 600 to 1500 rpm - Pressure increment.

rate 𝑄*.

Table A.7: Numerical Simulation Results for Single-Phase Water Flow.

Rotation [𝑟𝑝𝑛] 𝑄1/𝑄𝐵𝐸𝑃 𝑄1 [𝑚3/ℎ] Mean velocity [𝑚/𝑠] Reference

600
0.16 0.339 0.680 Fig. A.8(a)

1.62 3.452 1.545 Fig. A.8(b)

900
0.13 0.424 1.120 Fig. A.8(c)

1.66 5.303 2.377 Fig. A.8(d)

1200
0.18 0.767 1.439 Fig. A.8(e)

1.68 7.155 3.207 Fig. A.8(f)

1500
0.70 3.747 2.453 Fig. A.8(g)

1.26 6.724 3.960 Fig. A.8(h)

The velocity vector for the single-phase flow at 600 to 1500 rpm are shown in
Fig. A.8. Table A.7 indicates the liquid flow rate and their respective references in the
column "Reference". Besides this, the same table shows the mean velocity of the water
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Figure A.7: Comparison between numerical and experimental (MONTE VERDE, 2016)
using 600 to 1500 rpm - Head 𝐻* versus flow rate 𝑄*.

flow in the impeller channels.
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(a) (b)

(c) (d)

(e) (f)

(g) (g)

Figure A.8: Part-load condition single-phase simulations: velocity vector
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The mean velocity increases with rotational speed, as expected. When the ratio
𝑄1/𝑄𝐵𝐸𝑃 is higher than one, the flow direction tends to shock with the suction blade
side, as presented in the Fig. A.8 on the right. On the other hand, in the left, when the
ratio 𝑄1/𝑄𝐵𝐸𝑃 is lower than one, the flow direction tends to shock with the pressure
blade side.

In addition to the shock losses, recirculation losses were observed. For
𝑄1/𝑄𝐵𝐸𝑃 > 1, vortices are present in the pressure blade side, in the counter-clockwise
direction. The flow separation starts right on the leading edge, due to the positive in-
cidence angle, hardly influenced by the entrance condition. The opposite occurs for
𝑄1/𝑄𝐵𝐸𝑃 < 1, on the left side of Fig. A.8. The vortices are present on the suction
blade side and are much bigger and rotating in a clockwise direction. In this case, the
flow separation occurs after the middle of the blade. These observations are in agree-
ment with the ones of Feng et al. (2009b).

The next section presents tables of the single-phase numerical simulations data
compared with the experimental ones. The data compared is the pressure increment.

A.3.6 Mean results for single-phase flow

This section shows the results of the single-phase water flow simulations. Table
A.8, A.9, A.10 and A.11 are related to the single-phase simulations for 600, 900, 1200
and 1500 𝑟𝑝𝑚, respectively. The highest value of 𝑄/𝑄𝐵𝐸𝑃 corresponds to simulations
in the open-flow condition. The simulations were compared with the experimental data
of Monte Verde (2016). The difference between the experimental data and the simula-
tions are high in the first columns of 𝑄/𝑄𝐵𝐸𝑃 due to the low pressure increment. So,
for example, as indicated in Table A.8 the difference of 40 Pa is enough to provide a
difference of 34.2 %. Considering only the other cases the difference is about 5% in
average, considered low for the cases analyzed.

A.4 Two-Phase Flow CFD Simulation

The simulation here used the Euler-Euler method (or two-fluid method). In this ap-
proach, both phases are present at the same time and the same place. A key-quantitative
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Table A.8: Pressure increment for single phase flow - 600 rpm.

𝑄/𝑄𝐵𝐸𝑃 ∆𝑃 Exp.[𝑃𝑎] ∆𝑃 Num.[𝑃𝑎] Difference [𝑃𝑎] Difference [%]

1.62 118 158 40 34.2

1.44 1553 1467 86 5.5

1.22 2952 2950 2 0.1

0.95 4235 4278 43 1.0

0.76 4946 5172 226 4.6

0.58 5402 5608 206 3.8

0.39 5694 5899 205 3.6

0.16 5882 6093 211 3.6

0.03 58817 6127 310 5.3

Table A.9: Pressure increment for single phase flow - 900 rpm.

𝑄/𝑄𝐵𝐸𝑃 ∆𝑃 Exp.[𝑃𝑎] ∆𝑃 Num.[𝑃𝑎] Difference [𝑃𝑎] Difference [%]

1.66 250 439 189 75.8

1.52 2894 2191 703 24.3

1.31 5976 5592 384 6.4

1.14 8017 8478 461 5.7

1.00 9330 9741 411 4.4

0.87 10585 10998 413 3.9

0.69 12021 12354 333 2.8

0.44 12787 13086 299 2.3

0.13 13403 13819 416 3.1

0.03 13540 14366 826 6.1

is the volume fraction (or void fraction), which determines what the relative amount of
a phase is at a given place at a given time. By their very nature, Euler-Euler models pro-
vide an averaged description of the multiphase system. An advantage of the formulation
is that the interfacial forces are inherently present in the modeling. Besides, the model
results in a double set of conservation equations: one set for each phase.

The disadvantage of the two-fluid model is loss of details due to averaging. This
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Table A.10: Pressure increment for single phase flow - 1200 rpm.

𝑄/𝑄𝐵𝐸𝑃 ∆𝑃 Exp.[𝑃𝑎] ∆𝑃 Num.[𝑃𝑎] Difference [𝑃𝑎] Difference [%]

1.66 262 94 168 64.2

1.53 5246 5302 56 1.1

1.41 8498 8329 169 2.0

1.29 11341 12324 983 8.7

1.11 14591 15397 806 5.5

0.95 17413 18225 812 4.7

0.76 20280 21261 981 4.8

0.59 22144 23143 998 4.5

0.40 23172 24544 1372 5.9

0.29 23547 24528 981 4.2

0.18 23837 24565 727 3.1

0.03 24264 24423 159 0.7

creates closure problems, similar to those in single phase RANS modeling. For the two-
fluid model, not only the turbulence needs to be modelled, but also the averaged form of
all types of interactions. Because of the averaging procedure required to derive the two-
fluid equations, a DNS (Direct Numerical Simulation) of a laminar flow is not possible.
The small-scale fluctuations attached to the velocity difference between the two phases
are modeled in an averaged sense: they cannot be resolved, no matter how fine the grid
is made.

The two fluid equations, for a system without chemical reactions and phase
changes, read in its general form are presented below.

A.4.1 Governing equations - Two-phase air-water flow

The equations presented in this section are similar to the ones showed for single
phase flow, except for the interfacial forces between two-phases and the volume fraction
𝛼.
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Table A.11: Pressure increment for single phase flow - 1500 rpm.

𝑄/𝑄𝐵𝐸𝑃 ∆𝑃 Exp.[𝑃𝑎] ∆𝑃 Num.[𝑃𝑎] Difference [𝑃𝑎] Difference [%]

1.69 114 346 232 203.5

1.55 6873 6742 131 1.9

1.42 13079 13322 243 1.9

1.26 19168 19881 713 3.7

1.12 22725 23255 530 2.3

0.99 26140 27840 1700 6.5

0.85 29675 31621 1946 6.6

0.70 32755 34616 1861 5.7

0.57 34976 36483 1507 4.3

0.42 36030 38121 2091 5.8

0.28 36730 38999 2269 6.2

0.15 37219 38548 1329 3.6

0.03 37649 37920 271 0.7

Conservation of mass

𝜕

𝜕𝑡
𝛼𝑘 𝜌𝑘 + ∇𝛼𝑘 𝜌𝑘 �⃗�𝑘 = 0 (A.5)

where 𝑘 represents the phase.

Conservation of momentum

𝜕

𝜕𝑡
𝛼𝑘 𝜌𝑘 𝑣𝑘 + ∇𝛼𝑘 𝜌𝑘 𝑣𝑘 𝑣𝑘 = −𝛼𝑘 ∇𝑃 −∇𝛼𝑘𝜏𝑘 + 𝑆𝑀 + 𝑀𝑘 + 𝛼𝑘 𝜌𝑘 𝑔 (A.6)

where the Interphase momentum transfer is represented by 𝑀 , and 𝜏𝑘 indicates the stress
tensor. The source terms 𝑆𝑀 are the same presented in the section for single-phase flow.
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Interphase momentum terms

Interphase momentum transfer, 𝑀21, occurs due to interfacial forces acting on
phase 2, due to interaction with another phase 1, and vice-versa. The total force on
phase 2 due to interaction with other phases is denoted by 𝑀2. The interfacial surface
forces present on bubbles can be modeled formulating a linear combination of various
known interfacial forces (ISHII AND HIBIKI, 2010):

𝑀2 =
𝛼

𝐵𝑝

(︀
𝐹𝐷
2 + 𝐹 𝑉

2 + 𝐹𝐿
2 + 𝐹𝑊

2 + 𝐹 𝑇
2

)︀
(A.7)

where 𝐵𝑝, 𝐹
𝐷, 𝐹 𝑉 , 𝐹𝐿, 𝐹𝑊 and 𝐹 𝑇 are: the volume of an example of particle, the stan-

dard drag force, the virtual mass force, the lift force, the wall lubrication force and
turbulent dispersion force for a single particle, respectively. Note that interfacial forces
between two phases are equal and opposite, so the net interfacial forces sum is zero:
𝑀2 = −𝑀1. The bubble volume is 𝐵𝑝 = 𝜋𝑑3𝑝/6. The interfacial forces explanation is
given next.

The significance of the various terms in Eq. A.7 follows. The first term in the
right-hand side is the drag force. The second term, virtual mass, is the force required to
accelerate the mass surrounding phase when relative velocity changes. The third term is
the lift force normal to the velocity distribution change around particles near the wall.
The fourth term is the wall lubrication force due to the velocity distribution change
around particles near the wall. The fifth term is the turbulent dispersion force due to the
concentration gradient. Those forces were modeled using correlations present in Table
A.12.

Table A.12: Summary of bubble force correlations

Force Reference

Interphase Drag Clift et al. (2005)

Virtual mass Constant coefficient 𝐶𝑉 = 1/2

Lift Tomiyama (1998)

Wall lubrification Antal et al. (1991)

Interphase turbulent dispersion Burns et al. (2004)
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More details of the forces and the correlations are presented in the Appendix B.

Boundary conditions

The boundary conditions were almost the same as those used for single-phase
flow, the exception is that air was specified and bubble diameters needed to have a range
of probability, i.e., groups of bubbles diameters were made in order to predict their di-
ameters. The numerical simulations made in ANSYS CFX requires the creation of a
group with possible bubble diameters. The bubbles change their size along the impeller
channel because they are under coalescence and breakup effects. Thus, adopting a con-
stant diameter in the model can be compromised the results significantly.

These groups of bubbles are modeled by Multiple Size Group (MUSIG), which
was developed to handle polydispersed multiphase flows. The dispersed phase has a
large variation in size, so polydispersed. The attributes of this method consist of the
interaction of different sizes of dispersed phases interacting with each other through
the mechanisms of breakup and coalescence. Population balance is a well-established
method for calculating the size distribution of a polydispersed phase, including breakup
and coalescence effects. MUSIG provides a framework in which the population balance
method can be incorporated into three-dimensional CFD calculations. Table A.13 shows
the groups of diameters used for simulations.(ANSYS, 2017).

Table A.13: Groups of Diameters used in MUSIG.

Group 1 2 3 4 5 6 7 8 9

Bubble diameter [𝑚𝑚] 0.2 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

The properties of water remained the same of those used in single phase-flow.
The properties of air are density of 𝜌 = 1.2047 𝑘𝑔/𝑚3 and dynamic viscosity of 𝜇 =

1.8205 · 10−5 𝑃𝑎.𝑠 at 20∘ C. The boundary conditions and interface assumed to link the
rotor and stator domains are described below:

Entrance tube: The pressure is specified to 0𝑃𝑎 at the inlet of the pipe (gauge).
The outlet of the pipe is an interface region with another domain. The rotor is a rotative
domain so an interface is used in order to exchange fluxes information which must con-
sider the relative movement. The same interface conditions of Frozen Rotor or Transient
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Rotor-Stator, described at single-phase flow section, can be used here.
The Transient Rotor-Stator interface conditions were used to generate the two-

phase flow results. Also, the same turbulence models used for single-phase flow were
used for both phases in the two-phase flow simulations.

A.4.2 Time step study

Two-phase flow conditions required the time step test per blade passage. The same
criterion adopted for single-phase flow is adopted here. Table A.6 shows the tests from
15 timesteps per blade until three timesteps. The average values from static pressure
were compared with the experimental data. The point tested is 𝑚2 = 3.088𝑚3/ℎ, which
is defined as IM7. It has experimentally ∆𝑃 = 9318𝑃𝑎.

Table A.14: Timestep per blade passage: part-load condition, IM7 - 𝑚2 = 3.088𝑚3/ℎ.

Timestep per blade passage Degrees per timestep [∘] ∆𝑃 [Pa] Deviation [%]

3 15 11075 18.8

6 7.5 10770 15.5

9 5 10259 10.1

15 3 9676 3.8

45 1 9492 1.8

The deviation is measured in relation to the experimental data, which has ∆𝑃 =

9318𝑃𝑎. The deviation of 3.8% was considered acceptable for the purposes of this work,
and it was considered for all cases of two-phase flow. If the option chosen is the devia-
tion of 1.8% , which corresponds to one degree of the impeller rotation, the simulation
time will increase at least three times more. So 3 timesteps per blade passage were
selected.

A.4.3 Simulation Results for Two-Phase Flow

The simulations results are presented in general comparison with experimental
data, then details of velocity and pressure field given by the simulations are presented
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and finally a comparison of bubbles displacement and velocity is presented. Figure A.9
shows the curves related to experimental and simulated pump performance. The blue
triangles corresponds to water single-phase experimental data. The red Xs and yellow
circles are, respectively, the experimental and numerical two-phase flow pump perfor-
mance. The numerical results for two-phase point in the extreme left in the chart did not
converge, so it was not shown in the figure.

Figure A.9: Comparison of Experimental and simulated Pressure increment for two-
phase air-water flow (900 rpm and 𝑚𝐺 = 0.012 𝑘𝑔/ℎ).

Table A.15 shows the numerical results from the two-phase flow simulations. The
first column indicates only the number of the test. The second column indicates the
mass gas flow rate in 𝑘𝑔/ℎ. The third and fourth columns present the experimental and
numerical pressure increment, respectively. The fifth column is the pressure difference
relative error, which is: |∆𝑃𝑒𝑥𝑝 − ∆𝑃𝑛𝑢𝑚|/∆𝑃𝑒𝑥𝑝. The next two columns correspond to
circumferential and radial velocities, respectively. Finally, the last column is the ratio
between the flow rate and the flow rate at the best efficiency point (BEP).

Figure A.10 shows the pressure and the velocity numerically calculated. The pres-
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Table A.15: mass gas flow rate �̇�, experimental pressure increment ∆𝑃𝑒𝑥𝑝, numerical
pressure increment ∆𝑃𝑛𝑢𝑚, Difference between pressure increment, radial velocity 𝑣𝑟,
circumferential velocity 𝑣𝜃, flow rate ratio 𝑄/𝑄𝐵𝐸𝑃

�̇� ∆𝑃𝑒𝑥𝑝 ∆𝑃𝑛𝑢𝑚 Difference 𝑣𝑟 𝑣𝜃 𝑄/𝑄𝐵𝐸𝑃

[𝑘𝑔/ℎ] [𝑃𝑎] [𝑃𝑎] [-] [𝑚𝑚/𝑠] [𝑚𝑚/𝑠] [-]
1 0.025 541 651 20.3% 943 1739 1.65
2 0.025 3073 3351 9.0% 812 1600 1.51
3 0.025 4579 4802 4.9% 729 1483 1.41
4 0.025 5908 6827 15.6% 665 1396 1.31
5 0.025 7260 6562 9.6% 388 1113 1.18
6 0.025 8394 7141 14.9% 344 1101 1.07
7 0.025 9318 9306 0.1% 260 1064 0.96
8 0.025 9403 8743 7.0% 267 1030 0.87
9 0.025 9196 8955 2.6% 90 943 0.71

10 0.025 5425 5639 3.9% 110 762 0.51
11 0.012 419 641 53.0% 957 1746 1.64
12 0.012 2768 3167 14.4% 807 1589 1.53
13 0.012 4168 4589 10.1% 766 1514 1.42
14 0.012 5804 6318 8.9% 659 1369 1.30
15 0.012 8078 8854 9.6% 572 1265 1.15
16 0.012 8110 7962 1.8% 320 1117 1.06
17 0.012 9025 9091 0.7% 311 1108 0.97
18 0.012 8348 7992 4.3% 277 1040 0.85
19 0.012 7284 7415 1.8% 188 1026 0.74
20 0.012 4481 5298 18.2% 54 813 0.60

sure is shown on the left side of the figure. It can be observed in the impeller’s inlet
that pressure is approximately −6500𝑃𝑎 (relative pressure), and at the outlet, it is near
3000𝑃𝑎. The difference of 9500𝑃𝑎 between inlet and outlet corresponds to the pres-
sure increment of the impeller. The image on the right side corresponds to the velocity
of the water flow. Note that the flow direction tends to be orientated to the middle of
the channel, which is without pre-rotation (BIAZUSSI, 2014). Pumps are designed to
achieve a no pre-rotation condition close to the best efficiency point since this condition
minimizes shock-losses.

The absolute velocity indicated in Fig. A.10 on the right side corresponds to data
number six on Table A.15. The column indicated by 𝑄/𝑄𝐵𝐸𝑃 indicated the tendency
of the velocity vector. If this number is greater than 1, the flow direction points to the
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Pressure Velocity

Figure A.10: Pressure and water velocity fields (900 rpm, IM6, 𝑚𝐿 = 3.428𝑚3/ℎ e
𝑚𝐺 = 0.025 𝑘𝑔/ℎ).

pressure side, while reducing this number to less than 1, i.e., the water flow increases,
and the flow direction tends to point to the suction side. These configurations are positive
and negative pre-rotation, respectively. The flow orientation causes recirculation in the
channels, which is characterized as losses.

Diameter

!
i
*=0

!
o
*=1

Figure A.11: Bubble size and profile velocity (900 rpm, IM6, 𝑚𝐿 = 3.428𝑚3/ℎ e
𝑚𝐺 = 0.025 𝑘𝑔/ℎ).

The simulation shows gas accumulation in certain regions of the impeller. It can
be seen from Figure A.11 that the gas is concentrated in the middle of the pressure
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side, which is in agreement with the results of Caridad and Kenyery (2004). The largest
bubble’s diameters are concentrated in the same place, as reported in Fig. A.11 on the
right. The velocity profiles in the azimuth direction are shown in Fig. 4.12. The velocity
profiles going from the pressure side are represented by 𝜃*𝑖 to 𝜃*𝑜 on the suction side.
The values of 𝜃 where dimensionless in order to represent one at the suction side and
zero at the pressure side. The velocity profile is shown in the middle of the impeller,
considering the radius.
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Figure A.12: Numerically data of 900 rpm, indicating circumferential and radial velocity
from: (a) Water (b) Air(900 rpm, IM6, 𝑚𝐿 = 3.428𝑚3/ℎ e 𝑚𝐺 = 0.025 𝑘𝑔/ℎ).

The velocities appear contrary to the main flow direction in this region, indicating
recirculation, as represented in the chart of Fig. A.12. The profile shown in red is the
circumferential velocity, and in blue is the radial velocity. Besides, the rapid increase in
velocities near the wall indicates the turbulent flow.

The next section presents tables of the two-phase numerical simulations data com-
pared with the experimental ones.

A.4.4 Mean results for two-phase gas-liquid flow

Table A.16 and A.17 are related to the results of numerical simulations using
water and gas with 900 rpm. They shown the values of 𝑚𝑔 = 0.025 𝑘𝑔/ℎ and 𝑚𝑔 =

0.012 𝑘𝑔/ℎ, respectively. The numerical data is compared with the experimental data
acquired by Monte Verde (2016). The highest differences in the results were observed
for the lowest pressure increments, as can be observed in 𝑄/𝑄𝐵𝐸𝑃 = 1.62, which is
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34.2%, representing 40 Pascal. For the other data, the difference is of 6% on average,
again considered low for the numerical analysis performed.

Table A.16: Pressure increment for two phase flow - 𝑚𝑔 = 0.025 𝑘𝑔/ℎ.

𝑄/𝑄𝐵𝐸𝑃 ∆𝑃 Exp.[𝑃𝑎] ∆𝑃 Num.[𝑃𝑎] Difference [𝑃𝑎] Difference [%]

1.65 541 651 110 20.3

1.51 3073 3351 278 9.0

1.41 4579 4802 223 4.9

1.31 5908 6427 519 8.8

1.18 7260 6562 698 9.6

1.07 8394 7841 553 6.6

0.97 9318 9306 12 0.1

0.87 9403 8743 660 7.0

0.73 9196 8955 241 2.6

0.51 5425 5639 214 3.9

0.27 977 - - -

Table A.17: Pressure increment for two phase flow - 𝑚𝑔 = 0.0125 𝑘𝑔/ℎ.

𝑄/𝑄𝐵𝐸𝑃 ∆𝑃 Exp.[𝑃𝑎] ∆𝑃 Num.[𝑃𝑎] Difference [𝑃𝑎] Difference [%]

1.64 419 641 222 53.0

1.53 2768 3067 299 10.8

1.42 4168 4589 145 3.2

1.30 5804 6318 421 10.1

1.15 8078 8854 776 9.6

1.06 8110 7962 148 1.8

0.97 9025 9091 66 0.7

0.85 8348 7992 356 4.3

0.74 7284 7415 131 1.8

0.60 4481 5298 817 18.2

0.38 949 - - -
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A.4.5 Gas void fraction results

The results of the gas void fraction measured numerically 𝛼𝑛𝑢𝑚 are shown in
Table A.18. Each phase is assumed to be present in each control volume, and assigned a
volume fraction equal to the fraction of the control volume occupied by that phase. So,
the gas void fraction is the sum of all these control volumes. The variable 𝛼 is the gas
void fraction measured using the model and it is: 𝛼 = 𝜆 𝑗𝑚𝑠/𝑣2,𝑠. This is presented in
Chapter 4.

The point IM1 has a higher value of water flow rate, and it decreases until almost
zero at point IM11. Considering the values of 𝛼𝑛𝑢𝑚, the point IM11 has the greatest
value of the gas void fraction. The 𝛼𝑛𝑢𝑚 does not have a linear progression, which it
is expected to have. The first numerical data, IM1 to IM3, has small void fractions.
However, at point IM4 it abruptly decreases to 0.1%, and rapidly increases to 12.8% in
IM5. This does not correspond to what happens in a real situation and should be matter
for further studies.

Figure A.13: Experimental and numerical data for IM1 in (a) and (b), and for IM3 in (c)
and (d).

The values are compared with the real images in Fig. A.13 and A.14. The real
images are shown in the left side, while the numerical images are shown in the right
side. Figures A.13(a) and (b) show the data of the point IM1, and Figs. A.13(c) and (d)



189

Table A.18: Gas void fraction.

IM 𝑄/𝑄𝐵𝐸𝑃 𝑄𝑙 𝑄𝑔 𝛼𝑛𝑢𝑚 𝛼

- - [𝑚3/ℎ] .10−6 [𝑚3/ℎ] .10−2 .10−2

1 1.65 5.2843 6.94 0.2 0.32

2 1.51 4.8284 6.94 0.9 0.33

3 1.41 4.5118 6.94 1.7 0.34

4 1.31 4.2010 6.94 0.1 0.35

5 1.18 3.7812 6.94 12.8 0.36

6 1.07 3.4285 6.94 18.2 0.37

7 0.96 3.0814 6.94 11.7 0.39

8 0.87 2.7865 6.94 18.4 -

9 0.71 2.2787 6.94 27.9 -

10 0.51 1.6378 6.94 39.2 -

11 0.26 0.8354 6.94 - -

1 1.64 5.2514 3.47 1.6 0.16

2 1.53 4.8920 3.47 0.9 0.16

3 1.42 4.5536 3.47 3.2 0.16

4 1.30 4.1702 3.47 1.0 0.17

5 1.15 3.6947 3.47 0.1 0.18

6 1.06 3.3855 3.47 14.6 0.19

7 0.97 3.1029 3.47 13.3 0.20

8 0.85 2.7304 3.47 25.0 -

9 0.74 2.3723 3.47 29.7 -

10 0.64 1.9244 3.47 47.0 -

11 0.38 1.2036 3.47 - -

show the data of the point IM3.
Figure A.14(a) and (b) show the data of the point IM5, and Fig. A.14(c) and (d)

show the data of the point IM7. If the real figure is compared to the numerical, the
results of the void fraction do not match, although the results of pressure increment are
almost the same. So, further work on the analysis of void fraction in ESP impellers is
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Figure A.14: Experimental and numerical data for IM5 in (a) and (b), and for IM7 in (c)
and (d).

needed and will be left as a suggestion for future work.
The experimental and numerical velocities are shown in Table A.19. The average

value of ∆𝑣𝑟 and ∆𝑣𝜃 are equal to 34.7% and 12.4%, respectively. Consider the experi-
mental standard deviation the values are closer. These values are near for the experimen-
tal measurements using the post-processing of images, which may infer that the velocity
presented in Fig. A.8 are correct. If so, it is possible to identify the regions where the
flow are faster than others, such as in the suction blade side. However, it is necessary
further investigations as the gas void fractions did not match with experimental data.

The radial and circumferential velocities are plotted in Fig. A.15. The velocity,
and its standard deviation are plotted in blue circle and line. The numerical velocity
is plotted with red triangles. The two first points calculated numerically of the radial
velocity does not match with experimental data. However, the other numerical points
are all inside the standard deviation of velocity calculated by the post-processing of
images.

The comparison of the diameter measured experimentally and numerically are
shown in Table A.20. The average deviation, which is calculated in the column "Differ-

ence" and "Difference in %" is equal to 0.17 𝑚𝑚 and 25.9%, respectively. The value of
0.17 𝑚𝑚 are very small considering the size of the impeller channel.
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Table A.19: mass gas flow rate �̇�, experimental radial velocity 𝑣𝑟,𝑒𝑥𝑝, experimental cir-
cumferential velocity 𝑣𝜃,𝑒𝑥𝑝, standard deviation of radial velocity 𝛿𝑣𝑟, standard deviation
of 𝛿𝑣𝜃, numerical radial velocity 𝑣𝑟,𝑛𝑢𝑚, numerical circumferential velocity 𝑣𝜃,𝑛𝑢𝑚 De-
viation 𝑣𝑟, Deviation ∆𝑣𝜃

�̇� 𝑣𝑟,𝑒𝑥𝑝 𝑣𝜃,𝑒𝑥𝑝 𝛿𝑣𝑟 𝛿𝑣𝜃 𝑣𝑟,𝑛𝑢𝑚 𝑣𝜃,𝑛𝑢𝑚 ∆𝑣𝑟 ∆𝑣𝜃 𝑄/𝑄𝐵𝐸𝑃

[𝑘𝑔/ℎ] [𝑚𝑚/𝑠] [𝑚𝑚/𝑠] [𝑚𝑚/𝑠] [𝑚𝑚/𝑠] [𝑚𝑚/𝑠] [𝑚𝑚/𝑠] [%] [%] [-]
IM1 0.025 1021 1425 245 298 943 1739 7.6 22.0 1.65
IM3 0.025 969 1346 257 276 729 1483 24.8 10.2 1.41
IM5 0.025 868 1283 303 324 388 1113 55.3 13.3 1.18
IM7 0.025 825 1172 332 350 260 1064 68.5 9.2 0.96
IM1 0.012 980 1447 292 336 957 1746 2.3 20.7 1.64
IM3 0.012 1028 1342 286 301 766 1514 25.5 12.8 1.42
IM5 0.012 862 1296 312 388 572 1265 33.6 2.4 1.15
IM7 0.012 769 1211 271 315 311 1108 59.6 8.5 0.97
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Figure A.15: Numerical x Experimental velocity - (a) Radial (b) Circumferential

Table A.20: Impeller rotation 𝜔, mass gas flow rate �̇�, experimental diameter 𝑑𝑒𝑥𝑝,
numerical diameter 𝑑𝑛𝑢𝑚, experimental and numerical difference in value and in %,
flow rate ratio 𝑄/𝑄𝐵𝐸𝑃

𝜔 �̇� 𝑑𝑒𝑥𝑝 𝑑𝑛𝑢𝑚 Difference Difference in % 𝑄/𝑄𝐵𝐸𝑃

[𝑟𝑝𝑚] [𝑘𝑔/ℎ] [𝑚𝑚] [𝑚𝑚] [𝑚𝑚] [%] [-]
IM1 900 0.025 0.6 0.45 0.15 25.0 1.65
IM3 900 0.025 0.6 0.59 0.01 1.7 1.41
IM5 900 0.025 0.7 1.08 0.38 54.3 1.18
IM7 900 0.025 0.8 1.25 0.45 56.3 0.96
IM1 900 0.012 0.6 0.39 0.21 35.0 1.64
IM3 900 0.012 0.6 0.51 0.09 15.0 1.42
IM5 900 0.012 0.7 0.83 0.13 18.6 1.15
IM7 900 0.012 0.9 0.89 0.01 1.1 0.97



192

APPENDIX B – Bubble force correlations

B.1 Interphase Drag

The total drag force is conveniently expressed in terms of the drag coefficient,
which is given by (ANSYS (2017)):

𝐶𝐷 =
1

2

𝐹𝐷

𝜌1(𝑣1 − 𝑣2)2𝐴
(B.1)

where 𝜌1 is the water specific mass, 𝐹𝐷 is the magnitude of the drag force, 𝑣1− 𝑣2 is the
relative speed and 𝐴 is the projected area of the body in the flow direction.

The area of a single particle projected can be approach by an area of a circle,
which is: 𝐴 = 𝜋𝑑2𝑝/4. The bubble mean diameter is represented by 𝑑𝑝. The volume of a
single particle is 𝑉𝑝 = 𝜋𝑑3𝑝/6. The number of particles per unit volume, 𝑛𝑝 is given by:

𝑛𝑝 =
𝑟𝑏
𝑉𝑝

=
6 𝑟𝑏
𝜋 𝑑3𝑝

(B.2)

The total drag exerted pert unit volume on the continuous phase is:

𝐹𝐷 = 𝑛𝑝
1

2
𝐶𝐷 𝜌1𝐴𝑝|𝑣2 − 𝑣1|(𝑣2 − 𝑣1) (B.3)

The correlation adopted is related to Grace drag model (ANSYS (2017)), formu-
lated for a single bubble. In the distorted particle regime it is given by:

𝐶𝐷(𝑒𝑙𝑙𝑖𝑝𝑠𝑒) =
4

3

𝑔 𝑑

𝑣2𝑇

∆𝜌

𝜌1
(B.4)

where 𝑣𝑇 is the terminal velocity and is given by:

𝑣𝑇 =
𝜇1

𝜌1𝑑𝑝
𝑀−0.149(𝐽 − 0.857) (B.5)

where 𝑀 is the Morton number given by:

𝑀 =
𝜇4
1𝑔∆𝜌

𝜌2𝜏 3
(B.6)
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where 𝜇1 is the viscosity of the continuous phase, which is water in the present case,
and:

𝐽=

⎧⎨⎩0.94𝐻0.757 2 < 𝐻 ≤ 59.3

3.42𝐻0.441𝐻 > 59.3
(B.7)

𝐻 =
4

3
𝐸𝑜𝑀−0.149

(︂
𝜇1

𝜇𝑟𝑒𝑓

)︂−0.14

(B.8)

where 𝐸𝑜 is the Eotvos number. 𝜇1𝑟𝑒𝑓 = 0.0009 𝑘𝑔 𝑚−1 𝑠−1 is the molecular viscosity
of water at 25∘C and 1 bar. CFX automatically takes into account the spherical particle
and spherical cap limits by setting:

𝐶𝐷(𝑑𝑖𝑠𝑡) = 𝑚𝑖𝑛
(︁
𝐶𝐷(𝑒𝑙𝑙𝑖𝑝𝑠𝑒),𝐶𝐷(𝑐𝑎𝑝)

)︁
(B.9)

𝐶𝐷 = 𝑚𝑎𝑥
(︁
𝐶𝐷(𝑠𝑝ℎ𝑒𝑟𝑒),𝐶𝐷(𝑑𝑖𝑠𝑡)

)︁

B.2 Virtual Mass Force

The virtual mass force is proportional to relative phasic accelerations as follows:

𝐹 𝑉
1 = 𝐹 𝑉

2 = 𝑟2 𝜌1𝐶𝑉

(︂
𝐷2 𝑣2
𝐷𝑡

− 𝐷1 𝑣1
𝐷𝑡

)︂
(B.10)

where the subscript 1 corresponds to the continuous phase and the subscript 2 for the
dispersed phase. In a rotating frame of reference with rotation vector Ω, the virtual mass
force in terms of 𝑣* is modified by Coriolis theorem, and is given by:

𝐹 𝑉
1 = −𝐹 𝑉

2 = 𝑟2 𝜌1𝐶𝑉

(︂
𝐷2 𝑣

*
2

𝐷𝑡
− 𝐷1 𝑣

*
1

𝐷𝑡
+ 2Ω × (𝑣*2 − 𝑣*1)

)︂
(B.11)

The non-dimensional virtual mass coefficient 𝐶𝑉 = 0.5 for inviscid flow around
an isolated sphere. In general, 𝐶𝑉 = 0.5 depends on shape and particle concentration
and a constant value of 0.5 was adopted here.
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B.3 Lift Force

The non-dimensional lift coefficient 𝐶𝐿 can be set as a constant, or an expression.
It should be set to 0.5 for inviscid flow around a sphere. For viscous flow, the coefficient
varies from 0.01 to 0.5 in a way that is only partially understood. The lift force acts
perpendicular to the direction of relative motion of the two phases.

The Tomiyama model used at the simulations is applicable to the lift force on
larger-scale deformable bubbles in the ellipsoidal and spherical cap regimes. It depends
on Eotvos number, in the same way of Grace model for drag force. Hence, it requires
specification of the surface tension between the dispersed and continuous phases. Its
main important feature is prediction of the cross-over point in bubble size at which
particle distortion causes a reversal of the sign of the lift force to take place. The lift
coefficient is given by (TOMIYAMA, 1998):

𝐶𝐿=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚𝑖𝑛

[︁
0.288 tanh(0.121𝑅𝑒𝑝, 𝑓(𝐸𝑜′))

]︁
𝐸𝑜′ ≤ 4

𝑓(𝐸𝑜′) 4 < 𝐸𝑜′ ≤ 10

−0.27 10 > 𝐸𝑜′

(B.12)

where 𝑓(𝐸𝑜′) = 0.00105𝐸𝑜′3 − 0.0159𝐸𝑜′2 − 0.0204𝐸𝑜′ + 0.474. 𝐸𝑜′ is a modified
Eotvos number, based on the long axis 𝑑𝐻 , of deformable bubble:

𝐸𝑜′ =
𝑔(𝜌1 − 𝜌2)𝑑

2
𝐻

𝜎
(B.13)

𝑑𝐻 = 𝑑𝑝(1 + 0.163𝐸𝑜0.757)1/3

𝐸𝑜 =
𝑔(𝜌1 − 𝜌2)𝑑

2
𝑝

𝜎

The correlation has been slightly modified from Tomiyama’s original form, fol-
lowing Wellek et al. (1966), whereby the value of 𝐶𝐿 for 𝐸𝑜′ > 10 has been changed
to −0.27 to ensure a continuous dependence on modified Eotvos number.
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B.4 Wall lubrification Force

The dispersed phase (bubbles) in upflow considering a vertical pipe tends to con-
centrate in a region close to the wall, but not immediately adjacent to the wall. This
effect may be modeled by the wall lubrication force, which tends to push the dispersed
phase away from the wall. The model adopted was proposed by Antal et al. (1991)
which computes the wall lubrification force as:

𝐹𝑊 = −𝐶𝑊 𝛼2 𝜌1 |𝑣1 − 𝑣2|2 𝑛𝑊 (B.14)

where 𝐶𝑊 = 𝑚𝑎𝑥{0,𝐶𝑊1/𝑑𝑏, 𝐶𝑊2/𝑦𝑊}. The non-dimensional coefficients 𝐶𝑊1 =

−0.01 and 𝐶𝑊2 = 0.05 can be changed. 𝛼2 is the gas volume fraction. 𝜌1 is the liquid
density. 𝑛𝑊 is the unit normal pointing away from the wall. 𝑣1−𝑣2 is the relative velocity
between phases, orthogonal to 𝑛𝑊 . 𝑑𝑏 is the bubble mean diameter. 𝑦𝑊 is the distance
to the nearest wall.

This force is only active in a thin layer adjacent to the wall, i.e. only active up to
a cut-off distance of:

𝑦𝑊 ≤ −(𝐶𝑊2/𝐶𝑊1)𝑑𝑏 (B.15)

where 𝑦𝑊 = 5𝑑𝑏 considering the values presented for 𝐶𝑊1 and 𝐶𝑊2.

B.5 Turbulent Dispersion Force

CFX implements a model for turbulent dispersion force, based on the Favre aver-
age of the interphase drag force (BURNS et al., 2004):

𝐹 𝑇
1 = −𝐹 𝑇

2 = 𝐶𝑇 𝐶𝐷
𝜈𝑡𝑐
𝜏𝑡𝑐

(︂
∇𝑟2
𝑟2

− ∇𝑟1
𝑟1

)︂
(B.16)

Here, 𝐶𝐷 is the momentum transfer coefficient for the interphase drag force.
Hence, the model clearly depends on the details of the drag correlation used 𝜏𝑡𝑐 is the
turbulent Schmidt number for continuous phase volume fraction, currently taken to be
0.9.

𝐶𝑇 is a value given by the user, by default it is equal to unity. This value is quite
good because the simulations were dealing with air bubbles, which specific mass is



196

much less than the continuous phase (ANSYS, 2017).
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APPENDIX C – Math extension

This Appendix presents the extension of math showed in chapter 4.
C.1 Radial Pressure Gradient

In this section the development of radial pressure gradient is shown here:

𝛼1 𝜌1

(︂
𝑣1𝑟

𝜕

𝜕𝑟
𝑣1𝑟 −

𝑣21𝜃
𝑟

)︂
+ 𝛼2 𝜌2

(︂
𝑣2𝑟

𝜕

𝜕𝑟
𝑣2𝑟 −

𝑣22𝜃
𝑟

)︂
=

−(𝛼1 + 𝛼2)
𝜕𝑝

𝜕𝑟
− (𝛼1 𝜌1 + 𝛼2 𝜌2)𝐴𝑘𝑓𝑟 + ∇ · ⃗⃗𝜏

(C.1)

where 𝛼1 + 𝛼2 = 1 and the mixture density 𝜌𝑚 is equal to 𝛼1 𝜌1 + 𝛼2 𝜌2. So Eq. C.1
becomes:

𝛼1 𝜌1

(︂
𝜕𝑣21𝑟/2

𝜕𝑟
− 𝑣21𝜃

𝑟

)︂
+ 𝛼2 𝜌2

(︂
𝜕𝑣22𝑟/2

𝜕𝑟
− 𝑣22𝜃

𝑟

)︂
= −𝜕𝑝

𝜕𝑟
− 𝜌𝑚 𝐴𝑘𝑓𝑟 + ∇ · ⃗⃗𝜏

−𝜕𝑝

𝜕𝑟
= 𝛼1 𝜌1

(︂
𝜕𝑣21𝑟/2

𝜕𝑟
− 𝑣21𝜃

𝑟

)︂
+ 𝛼2 𝜌2

(︂
𝜕𝑣22𝑟/2

𝜕𝑟
− 𝑣22𝜃

𝑟

)︂
+ 𝜌𝑚 𝐴𝑘𝑓𝑟 −∇ · ⃗⃗𝜏 (C.2)

The pressure increment ∆𝑃 and the pump head 𝐻 are:

−∆𝑃 =

∫︁ 𝑟𝑜

𝑟𝑖

−𝜕𝑝

𝜕𝑟
dr 𝐻 =

∆𝑃

𝜌𝑚 𝑔
(C.3)

Two dimensionless numbers are shown here, the dimensionless flow rate
𝐶𝑄 and the dimensionless Head 𝐶𝐻 (PATERNOST, 2013, BIAZUSSI, 2014,
MONTE VERDE, 2016). More details are presented in Appendix D.

𝐶𝑄 =
𝑄𝑚

𝜔 𝑟3
𝐶𝐻 =

∆𝑃

𝜌𝑚 𝜔2 𝑟2
(C.4)

The velocities in Eq. C.2 can be substituted. For simplicity, 𝛼(𝑟) is considered as
𝛼.

𝑣𝑘𝑟(𝑟) =
𝑗𝑘𝑟(𝑟)

𝛼𝑘

where 𝑗𝑘𝑟(𝑟) = 𝜆𝑘

[︂(︂
𝑄𝑚

2𝜋 ℎ

)︂
1

𝑟

]︂
= 𝜆𝑘 𝑗𝑚(𝑟)
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𝑣𝑘𝑟(𝑟) =

(︂
𝜆𝑘

𝛼𝑘

)︂
𝑗𝑚(𝑟) (C.5)

𝑣𝑘𝜃(𝑟) =
𝑗𝑘𝜃(𝑟)

𝛼𝑘

where 𝑗𝑘𝜃(𝑟) = −𝑗𝑘𝑟 cot 𝛽 = −𝜆𝑘𝑗𝑚(𝑟) cot 𝛽

𝑣𝑘𝜃(𝑟) = −
(︂
𝜆𝑘

𝛼𝑘

)︂
𝑗𝑚(𝑟) cot 𝛽 (C.6)

The volumetric flux in 𝑟 is:

𝜕𝑗𝑚
𝜕𝑟

=
𝜕

𝜕𝑟

[︂(︂
𝑄𝑚

2 𝜋 ℎ

)︂
1

𝑟

]︂
=

(︂
𝑄𝑚

2𝜋 ℎ

)︂(︂
−1

𝑟2

)︂
= −𝑗𝑚(𝑟)

𝑟
(C.7)

Substituting the velocities in Eq. C.2:

−𝜕𝑝

𝜕𝑟
= 𝛼1 𝜌1

[︂(︂
𝜆1

𝛼1

)︂2
𝜕

𝜕𝑟

𝑗2𝑚(𝑟)

2
−
(︂
𝜆1

𝛼1

)︂2

cot2 𝛽
𝑗2𝑚(𝑟)

𝑟

]︂
+𝛼2 𝜌2

[︂(︂
𝜆2

𝛼2

)︂2
𝜕

𝜕𝑟

𝑗2𝑚(𝑟)

2
−

(︂
𝜆2

𝛼2

)︂2

cot2 𝛽
𝑗2𝑚(𝑟)

𝑟

]︂
+ 𝜌𝑚𝐴𝑘𝑓𝑟 − ℎ𝑓𝑟

− 𝜕𝑝

𝜕𝑟
=

[︂
𝛼1 𝜌1

(︂
𝜆1

𝛼1

)︂2

+ 𝛼2 𝜌2

(︂
𝜆2

𝛼2

)︂2]︂(︂
𝜕

𝜕𝑟

𝑗2𝑚(𝑟)

2
− cot2 𝛽

𝑗2𝑚(𝑟)

𝑟

)︂
+ 𝜌𝑚𝐴𝑘𝑓𝑟 − ℎ𝑓𝑟

− 𝜕𝑝

𝜕𝑟
=

[︂
𝜌1 𝜆1

𝜆1

𝛼1

+ 𝜌2 𝜆2
𝜆2

𝛼2

]︂(︂
�2 𝑗𝑚(𝑟)

�2

𝜕𝑗𝑚(𝑟)

𝜕𝑟
− cot2 𝛽

𝑗2𝑚(𝑟)

𝑟

)︂
+ 𝜌𝑚𝐴𝑘𝑓𝑟 − ℎ𝑓𝑟

− 𝜕𝑝

𝜕𝑟
=

[︂
𝜌1 𝜆1

𝜆1

𝛼1

+ 𝜌2 𝜆2
𝜆2

𝛼2

]︂[︂
𝑗𝑚(𝑟)

(︂
− 𝑗𝑚(𝑟)

𝑟

)︂
− cot2 𝛽

𝑗2𝑚(𝑟)

𝑟

]︂
+ 𝜌𝑚𝐴𝑘𝑓𝑟 − ℎ𝑓𝑟

− 𝜕𝑝

𝜕𝑟
=

[︂
𝜌1 𝜆1

𝜆1

𝛼1

+ 𝜌2 𝜆2
𝜆2

𝛼2

]︂[︂
(1 + cot2 𝛽)

(︂
− 𝑗2𝑚(𝑟)

𝑟

)︂]︂
+ 𝜌𝑚𝐴𝑘𝑓𝑟 − ℎ𝑓𝑟 (C.8)

Substituting 𝑗𝑚(𝑟), showed in Eq. 4.58, in Eq. C.8 it becomes:

− 𝜕𝑝

𝜕𝑟
=

[︂
𝜌1 𝜆1

𝜆1

𝛼1

+𝜌2 𝜆2
𝜆2

𝛼2

]︂[︂
(1+cot2 𝛽)

(︂
𝑄𝑚

2𝜋 ℎ

)︂2(︂−1

𝑟3

)︂]︂
+𝜌𝑚𝐴𝑘𝑓𝑟−∇·⃗⃗𝜏 (C.9)
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Using Eqs. 4.24 and 4.26 in order to get the term 𝜌𝑚𝐴𝑘𝑓𝑟 on the right hand side:

𝜌𝑚𝐴𝑘𝑓𝑟 = 𝛼1 𝜌1𝐴1𝑓𝑟 + 𝛼2 𝜌2𝐴2𝑓𝑟 = 𝑆1𝑟 + 𝑆2𝑟

= 𝛼1 𝜌1

[︁
− (2𝜔 𝑣1𝜃 + 𝜔2 𝑟)

]︁
+ 𝛼2 𝜌2

[︁
− (2𝜔 𝑣2𝜃 + 𝜔2 𝑟)

]︁
= −𝛼1 𝜌1

[︂
2𝜔

(︁
− (

𝜆1

𝛼1

) 𝑗𝑚(𝑟) cot 𝛽
)︁

+ 𝜔2𝑟

]︂
− 𝛼2 𝜌2

[︂
2𝜔

(︁
− (

𝜆2

𝛼2

) 𝑗𝑚(𝑟) cot 𝛽
)︁

+ 𝜔2𝑟

]︂
= −𝜌𝑚 𝜔2𝑟 + (𝜌1 𝜆1 + 𝜌2𝜆2) cot 𝛽 2𝜔 𝑗𝑚(𝑟)

𝜌𝑚𝐴𝑘𝑓𝑟 = −𝜌𝑚 𝜔2𝑟 + 𝜌𝑚 cot 𝛽 2𝜔 𝑗𝑚(𝑟) (C.10)

where 𝜌𝑚 is the mixture density proposed by Dukler et al. (1964). Substituting Eq. C.10
in the pressure gradient and summarizing:

− 𝜕𝑝

𝜕𝑟
= 𝜌𝑚(1 + cot2 𝛽)

(︂
−𝑗2𝑚(𝑟)

𝑟

)︂
+ 𝜌𝑚 cot 𝛽 2𝜔 𝑗𝑚(𝑟) − 𝜌𝑚 𝜔2 𝑟 −∇ · ⃗⃗𝜏 (C.11)

where:

∘ 𝜌𝑚 = 𝜌1𝜆1

(︂
𝜆1

𝛼1

)︂
+ 𝜌2𝜆2

(︂
𝜆2

𝛼2

)︂
∘ 𝜌𝑚 = 𝜌1 𝛼1 + 𝜌2 𝛼2 (C.12)

∘ 𝜌𝑚 = 𝜌1 𝜆1 + 𝜌2 𝜆2

Substituting the volumetric flux of mixture (Eq. 4.58) in Eq. C.11:

− 𝜕𝑝

𝜕𝑟
= 𝜌𝑚(1+cot2 𝛽)

[︂
−
(︂

𝑄𝑚

2𝜋 ℎ

1

𝑟

)︂2
1

𝑟

]︂
+𝜌𝑚 cot 𝛽 2𝜔

(︂
𝑄𝑚

2𝜋 ℎ

1

𝑟

)︂
−𝜌𝑚 𝜔2 𝑟−∇· ⃗⃗𝜏

−𝜕𝑝

𝜕𝑟
= 𝜌𝑚

[︂
(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚

(︂
−1

𝑟3

)︂
+ 𝜌𝑚

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚

(︂
1

𝑟

)︂
− 𝜌𝑚 𝜔2 𝑟 −∇ · ⃗⃗𝜏

(C.13)
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C.2 Viscous Stress Tensor Modeling

The term ∇ · ⃗⃗𝜏 is related to surface forces due to the stresses on the sides of
the control surface. In polar coordinates considering radial and azimuthal direction, the
stress tensor is: (︂

𝑑F
𝑑V

)︂
𝑣𝑖𝑠𝑐𝑜𝑢𝑠

= ∇ · ⃗⃗𝜏

Applying the Gauss theorem in limited form:∫︁
𝐴𝑘(𝑧,𝑡)

∇ · ⃗⃗𝜏 𝑑𝐴 =
𝜕

𝜕𝑟

∫︁
𝐴𝑘(𝑟,𝑡)

⃗⃗𝜏 · �⃗�𝑟 𝑑𝐴 +

∮︁
𝜉(𝑟,𝑡)+𝜉𝑘(𝑟,𝑡)

�⃗�𝑘 · ⃗⃗𝜏
𝑑𝜉

�⃗�𝑘 · �⃗�𝑘𝜉

(C.14)

where vector �⃗�𝑘 is normal to interface pointed outside of face 𝑘. Unitary vector �⃗�𝑘𝜉 is
normal to 𝜉 in the plane 𝐴𝑘. The term 𝜉𝑘 is the contact of the interface to the wall. 𝜉 is
the interface of the fluids.

The first term on the right hand side in Eq. C.14 is:

𝜕

𝜕𝑟

∫︁
𝐴𝑘(𝑟,𝑡)

⃗⃗𝜏 · �⃗�𝑟 𝑑𝐴 =

∫︁
𝐴𝑘(𝑟,𝑡)

𝜕

𝜕𝑟

(︁
⃗⃗𝜏 · �⃗�𝑟

)︁
𝑑𝐴 (C.15)

The area is not constant along 𝑛𝑟. The term inside the integration is:

⃗⃗𝜏 · �⃗�𝑟 =

[︃
𝜏𝑟𝑟 𝜏𝑟𝜃

𝜏𝜃𝑟 𝜏𝜃𝜃

]︃
·

[︃
1

0

]︃
=

[︃
𝜏𝑟𝑟

𝜏𝜃𝑟

]︃
(C.16)

The stress components are (WHITE, 2003):

∘ 𝜏𝑟𝑟 = 2𝜇
𝜕𝑣𝑘𝑟
𝜕𝑟

= 2𝜇
𝜆𝑘

𝛼𝑘

𝜕

𝜕𝑟
𝑗𝑚(𝑟) = −2𝜇

𝜆𝑘

𝛼𝑘

𝑗𝑚(𝑟)

𝑟

∘ 𝜏𝜃𝜃 = 2𝜇
𝑣𝑘𝑟
𝑟

= 2𝜇
𝜆𝑘

𝛼𝑘

𝑗𝑚(𝑟)

𝑟
= −𝜏𝑟𝑟

∘ 𝜏𝑟𝜃 = 𝜏𝑟𝜃 = 𝜇 𝑟
𝜕𝑣𝑘𝜃
𝜕𝑟

= 𝜇 𝑟
𝜕

𝜕𝑟

(︂
1

𝑟

)︂
𝑣𝑘𝜃 + 𝜇

𝑟

𝑟

𝜕𝑣𝑘𝜃
𝜕𝑟

= 𝜇 𝑟

(︂
−1

𝑟2

)︂
𝑣𝑘𝜃 + 𝜇

𝜕𝑣𝑘𝜃
𝜕𝑟

= − 𝜇

𝑟
𝑣𝑘𝜃 + 𝜇

𝜕𝑣𝑘𝜃
𝜕𝑟

=
−𝜇

𝑟

(︂
− 𝜆𝑘

𝛼𝑘

cot 𝛽 𝑗𝑚(𝑟)

)︂
+ 𝜇

(︂
− 𝜆𝑘

𝛼𝑘

cot 𝛽

)︂
𝜕𝑗𝑚(𝑟)

𝜕𝑟

= 𝜇
𝜆𝑘

𝛼𝑘

cot 𝛽
𝑗𝑚(𝑟)

𝑟
− 𝜇

𝜆𝑘

𝛼𝑘

cot 𝛽

(︂
− 𝑗𝑚(𝑟)

𝑟

)︂
= 2𝜇

𝜆𝑘

𝛼𝑘

cot 𝛽
𝑗𝑚(𝑟)

𝑟
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Substituting the stress components in Eq. C.16:

⃗⃗𝜏 · �⃗�𝑟 =

[︃
−2𝜇𝜆𝑘

𝛼𝑘

𝑗𝑚(𝑟)
𝑟

2𝜇𝜆𝑘

𝛼𝑘
cot 𝛽 𝑗𝑚(𝑟)

𝑟

]︃
= 2𝜇

𝜆𝑘

𝛼𝑘

𝑗𝑚(𝑟)

𝑟

[︃
−1

cot 𝛽

]︃
(C.17)

The derivative of the terms 𝜏𝑟𝑟 and 𝜏𝑟𝜃 are:

𝜕

𝜕𝑟
𝜏𝑟𝑟 =

𝜕

𝜕𝑟

(︂
− 2𝜇

𝜆𝑘

𝛼𝑘

𝑗𝑚(𝑟)

𝑟

)︂
= −2𝜇

𝜆𝑘

𝛼𝑘

[︂
1

𝑟

𝜕𝑗𝑚(𝑟)

𝜕𝑟
+ 𝑗𝑚(𝑟)

𝜕(1/𝑟)

𝜕𝑟

]︂
= − 2𝜇

𝜆𝑘

𝛼𝑘

[︂
1

𝑟

(−𝑗𝑚(𝑟))

𝑟
+ 𝑗𝑚(𝑟)

−1

𝑟2

]︂
= 4𝜇

𝜆𝑘

𝛼𝑘

𝑗𝑚(𝑟)

𝑟2
(C.18)

𝜕

𝜕𝑟
𝜏𝑟𝜃 =

𝜕

𝜕𝑟

(︂
− 2𝜇

𝜆𝑘

𝛼𝑘

cot 𝛽
𝑗𝑚(𝑟)

𝑟

)︂
= −4𝜇

𝜆𝑘

𝛼𝑘

cot 𝛽
𝑗𝑚(𝑟)

𝑟2
(C.19)

So, the derivative of ⃗⃗𝜏 · �⃗�𝑟 is:

𝜕

𝜕𝑟

(︁
⃗⃗𝜏 · �⃗�𝑟

)︁
=

[︃
4𝜇𝜆𝑘

𝛼𝑘

𝑗𝑚(𝑟)
𝑟2

−4𝜇𝜆𝑘

𝛼𝑘

𝑗𝑚(𝑟)
𝑟2

cot 𝛽

]︃
= 4𝜇

𝜆𝑘

𝛼𝑘

𝑗𝑚(𝑟)

𝑟2

[︃
1

− cot 𝛽

]︃
(C.20)

Using Eq. C.20 in C.15:∫︁
𝐴𝑘(𝑟,𝑡)

𝜕

𝜕𝑟

(︁
⃗⃗𝜏 · �⃗�𝑟

)︁
𝑑𝐴 =

∫︁ ℎ

0

∫︁ 𝜃𝑜

𝜃𝑖

𝜕

𝜕𝑟

(︁
⃗⃗𝜏 · �⃗�𝑟

)︁
𝑟 𝑑𝑧 𝑑𝜃

=
𝜕

𝜕𝑟

(︁
⃗⃗𝜏 · �⃗�𝑟

)︁2𝜋 𝑟

𝑍𝑏

ℎ (C.21)

The terms 𝜃𝑖 and 𝜃𝑜 indicates the angle involving the channel and, ℎ is its height.
Substituting Eq. C.20 in C.21 and separating in radial and azimuthal direction respec-
tively.∫︁

𝐴𝑘(𝑟,𝑡)

𝜕

𝜕𝑟

(︁
⃗⃗𝜏 · �⃗�𝑟

)︁
𝑑𝐴

⃒⃒⃒⃒
𝑟

= 4𝜇
𝜆𝑘

𝛼𝑘

𝑗𝑚(𝑟)

𝑟2
2𝜋 𝑟

𝑍𝑏

ℎ = 4𝜇
𝜆𝑘

𝛼𝑘

𝑗𝑚(𝑟)

𝑟

2 𝜋 ℎ

𝑍𝑏

(C.22)

∫︁
𝐴𝑘(𝑟,𝑡)

𝜕

𝜕𝑟

(︁
⃗⃗𝜏 ·�⃗�𝑟

)︁
𝑑𝐴

⃒⃒⃒⃒
𝜃

= −4𝜇
𝜆𝑘

𝛼𝑘

𝑗𝑚(𝑟)

𝑟2
cot 𝛽

(︂
2 𝜋 𝑟

𝑍𝑏

ℎ

)︂
= −4𝜇

𝜆𝑘

𝛼𝑘

𝑗𝑚(𝑟)

𝑟
cot 𝛽

2𝜋 ℎ

𝑍𝑏

(C.23)
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Dividing Eqs. C.22 and C.23 by the area of the channel.∫︁
𝐴𝑘(𝑟,𝑡)

𝜕

𝜕𝑟

(︁
⃗⃗𝜏 · �⃗�𝑟

)︁
𝑑𝐴

⃒⃒⃒⃒
𝑟

= 4𝜇
𝜆𝑘

𝛼𝑘

𝑗𝑚(𝑟)

𝑟

2𝜋 ℎ

𝑍𝑏

𝑍𝑏

2 𝜋 𝑟 ℎ
= 4𝜇

𝜆𝑘

𝛼𝑘

𝑗𝑚(𝑟)

𝑟2
(C.24)

∫︁
𝐴𝑘(𝑟,𝑡)

𝜕

𝜕𝑟

(︁
⃗⃗𝜏 · �⃗�𝑟

)︁
𝑑𝐴

⃒⃒⃒⃒
𝜃

= −4𝜇
𝜆𝑘

𝛼𝑘

𝑗𝑚(𝑟)

𝑟
cot 𝛽

2𝜋 ℎ

𝑍𝑏

𝑍𝑏

2𝜋 𝑟 ℎ
= −4𝜇

𝜆𝑘

𝛼𝑘

𝑗𝑚(𝑟)

𝑟2
cot 𝛽

(C.25)
Substituting 𝑗𝑚(𝑟).∫︁

𝐴𝑘(𝑟,𝑡)

𝜕

𝜕𝑟

(︁
⃗⃗𝜏 · �⃗�𝑟

)︁
𝑑𝐴

⃒⃒⃒⃒
𝑟

= 4𝜇
𝜆𝑘

𝛼𝑘

𝑄𝑚

2 𝜋 ℎ

1

𝑟3
(C.26)

∫︁
𝐴𝑘(𝑟,𝑡)

𝜕

𝜕𝑟

(︁
⃗⃗𝜏 · �⃗�𝑟

)︁
𝑑𝐴

⃒⃒⃒⃒
𝜃

= −4𝜇
𝜆𝑘

𝛼𝑘

𝑄𝑚

2𝜋 ℎ

1

𝑟3
cot 𝛽 (C.27)

Integrating Eq. C.26 and C.27.

𝑟 := 4𝜇
𝜆𝑘

𝛼𝑘

𝑄𝑚

2 𝜋 ℎ

∫︁ 𝑟𝑜

𝑟𝑖

1

𝑟3
𝑑𝑟 = 4𝜇

𝜆𝑘

𝛼𝑘

𝑄𝑚

2𝜋 ℎ

[︂
−1

2

(︂
1

𝑟2𝑜
− 1

𝑟2𝑖

)︂]︂
= −2𝜇

𝜆𝑘

𝛼𝑘

(︂
𝑄𝑚

2 𝜋 ℎ

)︂(︂
𝑟2𝑖 − 𝑟2𝑜
𝑟2𝑖 𝑟

2
𝑜

)︂ (C.28)

𝜃 := −4𝜇
𝜆𝑘

𝛼𝑘

𝑄𝑚

2𝜋 ℎ

∫︁ 𝑟𝑜

𝑟𝑖

1

𝑟3
𝑑𝑟 = 2𝜇

𝜆𝑘

𝛼𝑘

(︂
𝑄𝑚

2 𝜋 ℎ

)︂(︂
𝑟2𝑖 − 𝑟2𝑜
𝑟2𝑖 𝑟

2
𝑜

)︂
cot 𝛽 (C.29)

So dividing by the term 𝜌𝑚 𝜔2 𝑟2𝑜 .

𝑟 := −2𝜇
𝜆𝑘

𝛼𝑘

(︂
𝑄𝑚

2 𝜋 ℎ

)︂(︂
𝑟2𝑖 − 𝑟2𝑜
𝑟2𝑖 𝑟

2
𝑜

)︂
1

𝜌𝑚 𝜔2 𝑟2𝑜
= − 𝜇

𝜌𝑚

𝜆𝑘

𝛼𝑘

(︂
𝑄𝑚

𝜔 𝑟3𝑜

)︂
1

𝜋 ℎ

1

𝜔

1

𝑟𝑜(︂
𝑟2𝑖 − 𝑟2𝑜

𝑟2𝑖

)︂
= − 𝜇

𝜌𝑚

𝜆𝑘

𝛼𝑘

1

𝜋 ℎ𝜔 𝑟𝑜

[︂
1 −

(︂
𝑟𝑜
𝑟𝑖

)︂2]︂
𝐶𝑄

(C.30)

𝜃 := 2𝜇
𝜆𝑘

𝛼𝑘

(︂
𝑄𝑚

2 𝜋 ℎ

)︂(︂
𝑟2𝑖 − 𝑟2𝑜
𝑟2𝑖 𝑟

2
𝑜

)︂
cot 𝛽

1

𝜌𝑚 𝜔2 𝑟2𝑜
=

𝜇

𝜌𝑚

𝜆𝑘

𝛼𝑘

cot 𝛽

𝜋 ℎ𝜔 𝑟𝑜

[︂
1 −

(︂
𝑟𝑜
𝑟𝑖

)︂2]︂
𝐶𝑄

(C.31)
The second term on the right hand side in Eq. C.14 relate to term integrated in
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𝜉(𝑟,𝑡) is equal to zero as it denotes the interface between fluids (Homogeneous model).∮︁
𝜉(𝑟,𝑡)

�⃗�𝑘 · ⃗⃗𝜏
𝑑𝜉

�⃗�𝑘 · �⃗�𝑘𝜉

= 0

The third term on the right-hand side in Eq. C.14 is:∮︁
𝜉𝑘(𝑟,𝑡)

�⃗�𝑘 · ⃗⃗𝜏
𝑑𝜉

�⃗�𝑘 · �⃗�𝑘𝜉

= −𝜏𝑤 𝑆𝐷 (C.32)

Separating in 𝑟 and 𝜃 direction:

𝑟 : = 𝜏𝑤𝑠 sin 𝛽

𝜃 : = − 𝜏𝑤𝑠 cos 𝛽 (C.33)

where:
𝜏𝑤𝑠 =

𝑓

8
𝜌𝑚 𝑗𝑚𝑠

2 =
𝑓

8
𝜌𝑚

𝑗𝑚(𝑟)2

sin2 𝛽
(C.34)

wher 𝑓 is the friction factor.
Using Eq. C.34 in Eq. C.33:

𝑟 : =
𝑓

8
𝜌𝑚

𝑗𝑚(𝑟)2

sin 𝛽

𝜃 : = − 𝑓

8
𝜌𝑚

𝑗𝑚(𝑟)2

sin 𝛽
cot 𝛽 (C.35)

Defining the wet perimeter as 𝑆𝐷 = 2 (2𝜋𝑟/𝑍𝑏 + ℎ):

𝑟 : 𝜏𝑤𝑟 𝑆𝐷 =
𝑓

8
𝜌𝑚

𝑗𝑚(𝑟)2

sin 𝛽
2

(︂
2𝜋 𝑟

𝑍𝑏

+ ℎ

)︂
𝜃 : 𝜏𝑤𝜃 𝑆𝐷 = − 𝑓

8
𝜌𝑚

𝑗𝑚(𝑟)2

sin 𝛽
cot 𝛽

[︂
2

(︂
2𝜋 𝑟

𝑍𝑏

+ ℎ

)︂]︂
(C.36)
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Dividing by the channel area Eq. C.36.

𝑟 : =
𝑓

8
𝜌𝑚

𝑗𝑚(𝑟)2

sin 𝛽
2

(︂
2𝜋 𝑟

𝑍𝑏

+ ℎ

)︂
𝑍𝑏

2𝜋 𝑟 ℎ
=

𝑓

8
𝜌𝑚

𝑗𝑚(𝑟)2

sin 𝛽
2

(︂
1

ℎ
+

𝑍𝑏

2 𝜋 𝑟

)︂
𝜃 : = − 𝑓

8
𝜌𝑚

𝑗𝑚(𝑟)2

sin 𝛽
cot 𝛽

[︂
2

(︂
2 𝜋 𝑟

𝑍𝑏

+ ℎ

)︂]︂
𝑍𝑏

2 𝜋 𝑟 ℎ
= −𝑓

4
𝜌𝑚

𝑗𝑚(𝑟)2

sin 𝛽
cot 𝛽

(︂
1

ℎ
+

𝑍𝑏

2 𝜋 𝑟

)︂
(C.37)

So:

𝜏𝑤
𝑆

𝐴
=

[︃
𝜏𝑤𝑟 𝑆/𝐴

𝜏𝑤𝜃 𝑆/𝐴

]︃
=

𝑓

4
𝜌𝑚

𝑗𝑚(𝑟)2

sin 𝛽

(︂
1

ℎ
+

𝑍𝑏

2 𝜋 𝑟

)︂[︃
1

− cot 𝛽

]︃
(C.38)

Substituting 𝑗𝑚(𝑟).

𝜏𝑤
𝑆

𝐴
=

𝑓

4
𝜌𝑚

(︂
𝑄𝑚

2 𝜋 ℎ

)︂2
1

sin 𝛽

(︂
1

ℎ 𝑟2
+

𝑍𝑏

2𝜋 𝑟3

)︂[︃
1

− cot 𝛽

]︃
(C.39)

Integrating Eq. C.39 in r.

𝜏𝑤
𝑆

𝐴
=

𝑓

4
𝜌𝑚

(︂
𝑄𝑚

2𝜋 ℎ

)︂2
1

sin 𝛽

[︃
1

− cot 𝛽

]︃∫︁ 𝑟𝑜

𝑟𝑖

(︂
1

ℎ 𝑟2
+

𝑍𝑏

2 𝜋 𝑟3

)︂
𝑑𝑟 (C.40)

Solving the integration.∫︁ 𝑟𝑜

𝑟𝑖

(︂
1

ℎ 𝑟2
+

𝑍𝑏

2𝜋 𝑟3

)︂
𝑑𝑟 =

∫︁ 𝑟𝑜

𝑟𝑖

1

ℎ 𝑟2
𝑑𝑟 +

∫︁ 𝑟𝑜

𝑟𝑖

𝑍𝑏

2𝜋 𝑟3
𝑑𝑟 =

1

ℎ

∫︁ 𝑟𝑜

𝑟𝑖

1

𝑟2
𝑑𝑟

+
𝑍𝑏

2 𝜋

∫︁ 𝑟𝑜

𝑟𝑖

1

𝑟3
𝑑𝑟 =

1

ℎ

(︂
1

𝑟𝑖
− 1

𝑟𝑜

)︂
+

𝑍𝑏

4𝜋

(︂
1

𝑟2𝑖
− 1

𝑟2𝑜

)︂ (C.41)

Using Eqs. C.41 in C.40 and splitting them in radial and azimuth direction.

𝑟 : =
𝑓

4
𝜌𝑚

(︂
𝑄𝑚

2 𝜋 ℎ

)︂2
1

sin 𝛽

[︂
1

ℎ

(︂
1

𝑟𝑖
− 1

𝑟𝑜

)︂
+

𝑍𝑏

4𝜋

(︂
1

𝑟2𝑖
− 1

𝑟2𝑜

)︂]︂
𝜃 := − 𝑓

4
𝜌𝑚

(︂
𝑄𝑚

2 𝜋 ℎ

)︂2
cot 𝛽

sin 𝛽

[︂
1

ℎ

(︂
1

𝑟𝑖
− 1

𝑟𝑜

)︂
+

𝑍𝑏

4𝜋

(︂
1

𝑟2𝑖
− 1

𝑟2𝑜

)︂]︂
(C.42)
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So dividing each equation by the term 𝜌𝑚 𝜔2 𝑟2𝑜 .

𝑟 : =
𝑓

4

𝜌𝑚
𝜌𝑚

(︂
𝑄2

𝑚

𝜔2 𝑟6𝑜

)︂
𝑟4𝑜

4𝜋2 ℎ2

1

sin 𝛽

[︂
1

ℎ

(︂
1

𝑟𝑖
− 1

𝑟𝑜

)︂
+

𝑍𝑏

4𝜋

(︂
1

𝑟2𝑖
− 1

𝑟2𝑜

)︂]︂
=

𝑓

4

𝜌𝑚
𝜌𝑚

𝑟4𝑜
4𝜋2 ℎ2

1

sin 𝛽

[︂
1

ℎ

(︂
1

𝑟𝑖
− 1

𝑟𝑜

)︂
+

𝑍𝑏

4𝜋

(︂
1

𝑟2𝑖
− 1

𝑟2𝑜

)︂]︂
𝐶𝑄

𝜃 := −𝑓

4

𝜌𝑚
𝜌𝑚

𝑟4𝑜
4 𝜋2ℎ2

cot 𝛽

sin 𝛽

[︂
1

ℎ

(︂
1

𝑟𝑖
− 1

𝑟𝑜

)︂
+

𝑍𝑏

4𝜋

(︂
1

𝑟2𝑖
− 1

𝑟2𝑜

)︂]︂
𝐶𝑄

C.3 Radial and viscous term

−∆𝑃𝑟 =

∫︁ 𝑟𝑜

𝑟𝑖

−𝜕𝑝

𝜕𝑟
𝑑𝑟 = 𝜌𝑚

[︂
(1 + cot2 𝛽)

4 𝜋2 ℎ2

]︂
𝑄2

𝑚

∫︁ 𝑟𝑜

𝑟𝑖

(︂
−1

𝑟3

)︂
𝑑𝑟 + 𝜌𝑚

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚

∫︁ 𝑟𝑜

𝑟𝑖

(︂
1

𝑟

)︂
𝑑𝑟 − 𝜌𝑚 𝜔2

∫︁ 𝑟𝑜

𝑟𝑖

𝑟dr − 𝑓

4

𝜌𝑚
sin 𝛽

(︂
𝑄𝑚

2 𝜋 ℎ

)︂2 ∫︁ 𝑟𝑜

𝑟𝑖

(︂
1

ℎ 𝑟2
+

𝑍𝑏

2𝜋 𝑟3

)︂
𝑑𝑟

−4𝜇
𝜆𝑘

𝛼𝑘

𝑄𝑚

2 𝜋 ℎ

∫︁ 𝑟𝑜

𝑟𝑖

(︂
1

𝑟3

)︂
𝑑𝑟

−∆𝑃𝑟 = 𝜌𝑚

[︂
(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚

(︂
1

2

1

𝑟2

)︂⃒⃒⃒⃒
⃒
𝑟𝑜

𝑟𝑖

+ 𝜌𝑚

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚 ln 𝑟

⃒⃒⃒⃒
⃒
𝑟𝑜

𝑟𝑖

− 𝜌𝑚 𝜔2 𝑟
2

2

⃒⃒⃒⃒
⃒
𝑟𝑜

𝑟𝑖

−𝑓

4

𝜌𝑚
sin 𝛽

(︂
𝑄𝑚

2𝜋 ℎ

)︂2 [︂(︂
1

ℎ

−1

𝑟

)︂⃒⃒⃒⃒
⃒
𝑟𝑜

𝑟𝑖

+
𝑍𝑏

2𝜋

(︂
−1

2 𝑟2

)︂⃒⃒⃒⃒
⃒
𝑟𝑜

𝑟𝑖

]︂
− 4𝜇

𝜆𝑘

𝛼𝑘

𝑄𝑚

2 𝜋 ℎ

(︂
1

2

−1

𝑟2

)︂⃒⃒⃒⃒
⃒
𝑟𝑜

𝑟𝑖



206

−∆𝑃𝑟 = 𝜌𝑚

[︂
(1 + cot2 𝛽)

4 𝜋2 ℎ2

]︂
𝑄2

𝑚

2

(︂
1

𝑟2𝑜
− 1

𝑟2𝑖

)︂
+ 𝜌𝑚

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚 (ln 𝑟𝑜 − ln 𝑟𝑖)

−𝜌𝑚 𝜔2 𝑟
2
𝑜 − 𝑟2𝑖

2
− 𝑓

4

𝜌𝑚
sin 𝛽

(︂
𝑄𝑚

2𝜋 ℎ

)︂2 [︂
1

ℎ

(︂
1

𝑟𝑖
− 1

𝑟𝑜

)︂
+

𝑍𝑏

4𝜋

(︂
1

𝑟2𝑖
− 1

𝑟2𝑜

)︂]︂
−4𝜇

𝜆𝑘

𝛼𝑘

𝑄𝑚

2 𝜋 ℎ

1

2

(︂
1

𝑟2𝑖
− 1

𝑟2𝑜

)︂

−∆𝑃𝑟 = 𝜌𝑚

[︂
(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚

2

(︂
−(𝑟2𝑜 − 𝑟2𝑖 )

𝑟2𝑖 𝑟
2
𝑜

)︂
+ 𝜌𝑚

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚 ln

𝑟𝑜
𝑟𝑖

− 𝜌𝑚

𝜔2

(︂
𝑟2𝑜 − 𝑟2𝑖

2

)︂
− 𝑓

4

𝜌𝑚
sin 𝛽

(︂
𝑄𝑚

2 𝜋 ℎ

)︂2 [︂
1

ℎ

(︂
1

𝑟𝑖
− 1

𝑟𝑜

)︂
+

𝑍𝑏

4𝜋

(︂
1

𝑟2𝑖
− 1

𝑟2𝑜

)︂]︂
−𝜇

𝜆𝑘

𝛼𝑘

𝑄𝑚

𝜋 ℎ

(︂
𝑟2𝑜 − 𝑟2𝑖
𝑟2𝑖 𝑟

2
𝑜

)︂
(C.43)

The outer radius 𝑟𝑜 will be used as characteristic length and 𝜌𝑚 is adopted as a
reference density. So dividing by the term 𝜌𝑚 𝜔2 𝑟2𝑜 Eq. C.43 becomes:

− ∆𝑃𝑟

𝜌𝑚 𝜔2 𝑟2𝑜
= −1

2

(︂
𝜌𝑚
𝜌𝑚

)︂(︂
𝑟2𝑜 − 𝑟2𝑖

𝑟2𝑜

)︂
+

(︂
cot 𝛽

𝜋 ℎ

)︂(︂
𝑄𝑚

𝜔 𝑟2𝑜

)︂
ln

𝑟𝑜
𝑟𝑖

−
(︂
𝜌𝑚
𝜌𝑚

)︂[︂
(1 + cot2 𝛽)

4 𝜋2 ℎ2

]︂
𝑄2

𝑚

2𝜔2 𝑟2𝑜

(︂
𝑟2𝑜 − 𝑟2𝑖
𝑟2𝑖 𝑟

2
𝑜

)︂
− 𝑓

4

𝜌𝑚
𝜌𝑚

(︂
𝑄2

𝑚

𝜔2 𝑟6𝑜

)︂
𝑟4𝑜

4 𝜋2 ℎ2

1

sin 𝛽[︂
1

ℎ

(︂
1

𝑟𝑖
− 1

𝑟𝑜

)︂
+

𝑍𝑏

4𝜋

(︂
1

𝑟2𝑖
− 1

𝑟2𝑜

)︂]︂
− 𝜇

𝜌𝑚

𝜆𝑘

𝛼𝑘

(︂
𝑄𝑚

𝜔2 𝑟2𝑜

)︂
1

𝜋 ℎ

(︂
𝑟2𝑜 − 𝑟2𝑖
𝑟2𝑖 𝑟

2
𝑜

)︂ (C.44)

Manipulating the previous expression:

∆𝑃𝑟

𝜌𝑚 𝜔2 𝑟2𝑜
=

1

2

(︂
𝜌𝑚
𝜌𝑚

)︂[︂
1 −

(︂
𝑟𝑖
𝑟𝑜

)︂2 ]︂
−
[︂(︂

cot 𝛽

𝜋

)︂(︁𝑟𝑜
ℎ

)︁]︂(︂
𝑄𝑚

𝜔 𝑟3𝑜

)︂
ln(𝑟𝑜/𝑟𝑖)

+

(︂
𝜌𝑚
𝜌𝑚

)︂[︂
(1 + cot2 𝛽)

8𝜋2

]︂(︁𝑟𝑜
ℎ

)︁2 𝑄2
𝑚

𝜔2 𝑟6𝑜

[︂(︂
𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂
+

𝑓

4

𝜌𝑚
𝜌𝑚

(︂
𝑄2

𝑚

𝜔2 𝑟6𝑜

)︂
𝑟4𝑜

4𝜋2 ℎ2

1

sin 𝛽

[︂
1

ℎ

(︂
1

𝑟𝑖
− 1

𝑟𝑜

)︂
+

𝑍𝑏

4𝜋

(︂
1

𝑟2𝑖
− 1

𝑟2𝑜

)︂]︂
+

𝜇

𝜌𝑚

𝜆𝑘

𝛼𝑘

(︂
𝑄𝑚

𝜔 𝑟3𝑜

)︂
1

𝜔 𝜋 ℎ 𝑟𝑜

[︂(︂
𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂
(C.45)
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Using the dimensionless groups showed in Eq. C.4:

𝐶𝐻 =
1

2

(︂
𝜌𝑚
𝜌𝑚

)︂[︂
1 −

(︂
𝑟𝑖
𝑟𝑜

)︂2 ]︂
−
[︂(︂

cot 𝛽

𝜋

)︂(︁𝑟𝑜
ℎ

)︁
ln

𝑟𝑜
𝑟𝑖

]︂
𝐶𝑄 +

(︂
𝜌𝑚
𝜌𝑚

)︂
[︂

(1 + cot2 𝛽)

8 𝜋2

]︂(︁𝑟𝑜
ℎ

)︁2
[︂(︂

𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂
𝐶2

𝑄 − 𝑓

4

𝜌𝑚
𝜌𝑚

𝑟4𝑜
4𝜋2 ℎ2

1

sin 𝛽[︂
1

ℎ

(︂
1

𝑟𝑖
− 1

𝑟𝑜

)︂
+

𝑍𝑏

4𝜋

(︂
1

𝑟2𝑖
− 1

𝑟2𝑜

)︂]︂
𝐶2

𝑄 +
𝜇

𝜌𝑚

𝜆𝑘

𝛼𝑘

1

𝜔 𝜋 ℎ 𝑟𝑜

[︂(︂
𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂
𝐶𝑄

(C.46)

C.4 Momentum Transfer Between Phases

The development of the subtraction between Eq. 4.95 and 4.94 is shown in the
present section. So:

𝜌1

(︂
𝜕

𝜕𝑟

(︂
𝑣21𝑟
2

)︂
− 𝑣1𝜃

𝑟

)︂
− 𝜌2

(︂
𝜕

𝜕𝑟

(︂
𝑣22𝑟
2

)︂
− 𝑣2𝜃

𝑟

)︂
= −𝜌1𝐴1𝑓𝑟 + 𝜌2𝐴2𝑓𝑟

+
𝑀2𝑟

𝛼1

+
𝑀2𝑟

𝛼2

+ ∇ · ⃗⃗𝜏
(C.47)

Using Eqs. C.5, C.6, 4.58 and 4.23:

𝜌1

[︂(︂
𝜆1

𝛼1

)︂2
𝜕

𝜕𝑟

(︂
𝑗2𝑚(𝑟)

2

)︂
−

(︂
𝜆1

𝛼1

)︂2

cot2 𝛽

(︂
𝑗2𝑚(𝑟)

𝑟

)︂]︂
− 𝜌2

[︂(︂
𝜆2

𝛼2

)︂2

𝜕

𝜕𝑟

(︂
𝑗2𝑚(𝑟)

2

)︂
−

(︂
𝜆2

𝛼2

)︂2

cot2 𝛽

(︂
𝑗2𝑚(𝑟)

𝑟

)︂]︂
= +𝜌1 2𝜔 𝑣1𝜃 − 𝜌2 2𝜔 𝑣2𝜃

+(𝜌1 − 𝜌2)𝜔
2 𝑟 + 𝑀2𝑟

(𝛼1 + 𝛼2)

𝛼1 𝛼2

+ ∇ · ⃗⃗𝜏

𝜌1

(︂
𝜆1

𝛼1

)︂2 [︂
𝜕

𝜕𝑟

(︂
𝑗2𝑚(𝑟)

2

)︂
− cot2 𝛽

(︂
𝑗2𝑚(𝑟)

𝑟

)︂]︂
− 𝜌2

(︂
𝜆2

𝛼2

)︂2 [︂
𝜕

𝜕𝑟(︂
𝑗2𝑚(𝑟)

2

)︂
− cot2 𝛽

(︂
𝑗2𝑚(𝑟)

𝑟

)︂]︂
= +2𝜔 𝜌1

[︂
−
(︂
𝜆1

𝛼1

)︂
cot 𝛽 𝑗𝑚(𝑟)

]︂
−2𝜔 𝜌2

[︂
−

(︂
𝜆2

𝛼2

)︂
cot 𝛽 𝑗𝑚(𝑟)

]︂
+ (𝜌1 − 𝜌2)𝜔

2 𝑟 +
𝑀2𝑟

𝛼1 𝛼2

+ ∇ · ⃗⃗𝜏
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[︂
𝜌1

(︂
𝜆1

𝛼1

)︂2

− 𝜌2

(︂
𝜆2

𝛼2

)︂2 ]︂[︂
𝜕

𝜕𝑟

(︂
𝑗2𝑚(𝑟)

2

)︂
− cot2 𝛽

(︂
𝑗2𝑚(𝑟)

𝑟

)︂]︂
=

[︂
− 𝜌1(︂

𝜆1

𝛼1

)︂
+ 𝜌2

(︂
𝜆2

𝛼2

)︂]︂
2𝜔 cot 𝛽 𝑗𝑚(𝑟) + (𝜌1 − 𝜌2)𝜔

2 𝑟 +
𝑀2𝑟

𝛼1 𝛼2

+ ∇ · ⃗⃗𝜏
(C.48)

Integrating the term inside Eq. C.48:

𝜕

𝜕𝑟
𝑗2𝑚(𝑟) = 2𝑗𝑚(𝑟)

𝜕

𝜕𝑟
𝑗𝑚(𝑟)

Using Eq. C.7:
𝜕

𝜕𝑟
𝑗2𝑚(𝑟) = 2𝑗𝑚(𝑟)

(︂
− 𝑗𝑚(𝑟)

𝑟

)︂
= −2

𝑗2𝑚(𝑟)

𝑟
(C.49)

Substituting Eq. C.49 in C.48 and using Eq. C.24:

𝑀2𝑟

𝛼1𝛼2

=

[︂
𝜌1

(︂
𝜆1

𝛼1

)︂2

− 𝜌2

(︂
𝜆2

𝛼2

)︂2 ]︂
(1 + cot2 𝛽)

(︂
− 𝑗2𝑚(𝑟)

𝑟

)︂
+

[︂
𝜌1

(︂
𝜆1

𝛼1

)︂
−𝜌2

(︂
𝜆2

𝛼2

)︂]︂
2𝜔 cot 𝛽 𝑗𝑚(𝑟) − (𝜌1 − 𝜌2)𝜔

2 𝑟 − ⟨∇ · ⃗⃗𝜏 ⟩

𝑀2𝑟

𝛼1𝛼2

=

[︂
𝜌1

(︂
𝜆1

𝛼1

)︂2

− 𝜌2

(︂
𝜆2

𝛼2

)︂2 ]︂
(1 + cot2 𝛽)

(︂
𝑄𝑚

2 𝜋 ℎ

)︂2(︂−1

𝑟3

)︂
+

[︂
𝜌1

(︂
𝜆1

𝛼1

)︂
−𝜌2

(︂
𝜆2

𝛼2

)︂]︂
cot 𝛽 2𝜔

(︂
𝑄𝑚

2 𝜋 ℎ

)︂
1

𝑟
− (𝜌1 − 𝜌2)𝜔

2 𝑟 − ⟨∇ · ⃗⃗𝜏 ⟩

𝑀2𝑟

𝛼1𝛼2

=

[︂
𝜌1

(︂
𝜆1

𝛼1

)︂2

− 𝜌2

(︂
𝜆2

𝛼2

)︂2 ]︂[︂
(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚

(︂
−1

𝑟3

)︂
+

[︂
𝜌1

(︂
𝜆1

𝛼1

)︂
−𝜌2

(︂
𝜆2

𝛼2

)︂]︂(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚

(︂
1

𝑟

)︂
− (𝜌1 − 𝜌2)𝜔

2 𝑟 − ⟨∇ · ⃗⃗𝜏 ⟩
(C.50)

The first term on the right-hand side is the convective buoyancy, the second term
is the Coriolis buoyancy, the third one is the centrifugal buoyancy and the last is the
viscous term. The net rate of momentum transfer by liquid phase to the gas phase is a
result of buoyancy generated by convective acceleration, Coriolis and centrifugal. The
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terms involved with density will be simplified:

∘ ∆𝜌 =𝜌1 − 𝜌2

∘ ∆𝜌 =𝜌1

(︂
𝜆1

𝛼1

)︂
− 𝜌2

(︂
𝜆2

𝛼2

)︂
∘ ̃︁∆𝜌 =𝜌1

(︂
𝜆1

𝛼1

)︂2

− 𝜌2

(︂
𝜆2

𝛼2

)︂2

So Eq. C.50 becomes:

𝑀2𝑟

𝛼1𝛼2

= ̃︁∆𝜌

[︂
(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚

(︂
−1

𝑟3

)︂
+ ∆𝜌

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚

(︂
1

𝑟

)︂
− ∆𝜌𝜔2 𝑟 − ⟨∇ · ⃗⃗𝜏 ⟩

(C.51)

where:

(1 + cot2 𝛽) = 1 +
cos2 𝛽

sin2 𝛽
=

sin2 𝛽 + cos2 𝛽

sin2 𝛽
= csc2 𝛽 (C.52)

The interfacial terms are discussed in the next items.
∙ Drag force:

The drag force acting on the particle can be given in terms of the drag coefficient
𝐶𝐷 based on the relative velocity as (ISHII AND HIBIKI, 2010):

�⃗�𝐷
2 =

−𝛼

𝐵𝑏

𝐹𝐷 (C.53)

𝐹𝐷
2 = −1

2
𝐴𝑝𝐶𝐷𝜌1 �⃗�𝑠 ||�⃗�𝑠|| (C.54)

where 𝐴𝑝 is the projected area of typical particle and 𝑣𝑠 is the relative velocity given by
�⃗�𝑠 = �⃗�2 − �⃗�1. Then substituting the term 𝐹𝐷 in Eq. C.53 and replacing 𝐴𝑝 = 𝜋𝑟2𝑝/4 and
𝐵𝑝 = 4𝜋𝑟3𝑝/3:

�⃗�𝐷
2 =

−𝛼

4 𝜋𝑟3𝑏/3

(︂
− 1

2
𝜋 𝑟2𝑏 𝐶𝐷 𝜌1 �⃗�𝑠||�⃗�𝑠||

)︂
=𝛼 𝜌1

(︂
3𝐶𝐷

8 𝑟𝑏

)︂
�⃗�𝑠 ||�⃗�𝑠|| = 𝛼 𝜌1𝐶𝐴 �⃗�𝑠 ||�⃗�𝑠|| (C.55)

where 𝐶𝐴 = 3𝐶𝐷/(8𝑟𝑏) and 𝐶𝐷 indicates the drag coefficient. The density considered
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inside the drag force relates to the continuous phase (ISHII AND HIBIKI, 2010).
Considering this equation in radial direction. It becomes:

�⃗�𝐷
2𝑟 = 𝛼 𝜌1𝐶𝐴 �⃗�𝑠𝑟 ||�⃗�𝑠|| where 𝐶𝐴 =

3𝐶𝐷

8 𝑟𝑏
(C.56)

When the velocity field was estimated in a simplified manner considering the
hypothesis adopted, such as the flow aligned with the blade. It has been shown that:

||�⃗�𝑠|| = 𝑣𝑠,𝑠 and 𝑣𝑠𝑟 = 𝑣𝑠,𝑠 sin 𝛽

Substituting in Eq. C.56:

�⃗�𝐷
2 = 𝛼 𝜌1𝐶𝐴 sin 𝛽 𝑣𝑠,𝑠 ||�⃗�𝑠|| (C.57)

The drag coefficient 𝐶𝐷 can be calculated in many ways. It is related to flow
pattern as suggested by Ishii and Hibiki (2010).

∙ Virtual or added mass force:
This force is caused by the fact that the particle has to accelerate some of the

surrounding fluid, leading to an additional drag. Zuber (1964) studied the effect of the
concentration on the virtual mass force 𝐹𝑉 which is (ISHII AND HIBIKI, 2010):

𝐹𝑉 = −𝜌1
𝐵𝑏

2

𝐷 (�⃗�𝑠)

𝐷𝑡
(C.58)

Substituting the virtual mass force in the interfacial term:

�⃗�𝑉
2 =

−𝛼

𝐵𝑏

𝐹𝑉 =
−𝛼

𝐵𝑏

[︂
− 𝜌1

𝐵𝑏

2

𝐷 (�⃗�𝑠)

𝐷𝑡

]︂

�⃗�𝑉
2 = 𝛼 𝜌1

1

2

𝐷 (�⃗�𝑠)

𝐷𝑡
or �⃗�𝑉

2 = 𝛼 𝜌1𝐶𝑉
𝐷 (�⃗�𝑠)

𝐷𝑡
(C.59)

where 𝐶𝑉 is the virtual mass coefficient and it is approximate to 1/2. Considering steady
state, the derivatives relative with time are equal to zero.
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�⃗�𝑉
2 = 𝛼 𝜌1𝐶𝑉

(︂
𝐷𝑣2
𝐷𝑡

− 𝐷𝑣1
𝐷𝑡

)︂

�⃗�𝑉
2 = 𝛼 𝜌1𝐶𝑉

⎛⎜⎝
�
�
��7

= 0
𝜕 𝑣2
𝜕𝑡

+ 𝑣2 · ∇𝑣2 −
�
�
��7

= 0
𝜕 𝑣1
𝜕𝑡

− 𝑣1 · ∇𝑣1

⎞⎟⎠
𝑀𝑉

2 = 𝛼 𝜌1𝐶𝑉 (𝑣2 · ∇𝑣2 − 𝑣1 · ∇𝑣1) (C.60)

∙ Basset force:
The Basset force term describes the force due to the lagging boundary layer de-

velopment with changing relative velocity (acceleration) of bodies moving through a
fluid. The Basset term accounts for viscous effects and addresses the temporal delay in
boundary layer development as the relative velocity changes with time. It is also known
as the "history" term. The Basset force is given by (ISHII AND HIBIKI, 2010):

𝐹𝐵
2 = −6𝑟2𝑏

√
𝜋𝜌1𝜇𝑚

∫︁
𝑡

𝐷

𝐷𝜉
(𝑣2 − 𝑣1)

𝑑𝜉√
𝑡− 𝜉

where 𝜇𝑚 is the mixture viscosity and 𝜉 is an integration variable related with time. So,
expanding the time derivative:

𝐹𝐵
2 = −6𝑟2𝑏

√
𝜋𝜌1𝜇𝑚

∫︁ 𝑡

0

(︂
𝐷 𝑣2
𝐷𝜉

− 𝐷 𝑣1
𝐷𝜉

)︂
𝑑𝜉√
𝑡− 𝜉

𝐹𝐵
2 = −6𝑟2𝑏

√
𝜋𝜌1𝜇𝑚

∫︁ 𝑡

0

⎛⎜⎝
�
�
��7

= 0
𝜕 𝑣2
𝜕𝜉

+ 𝑣2 · ∇𝑣2 −
�
�
��7

= 0
𝜕 𝑣1
𝜕𝜉

− 𝑣1 · ∇𝑣1

⎞⎟⎠ 𝑑𝜉√
𝑡− 𝜉

(C.61)

Considering steady state, the derivatives relative with time are equal to zero. Con-
vective terms do not depend on time, so they can be placed out of integration.

𝐹𝐵
2 = −6𝑟2𝑏

√
𝜋𝜌1𝜇𝑚 (�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1)

∫︁ 𝑡

0

𝑑𝜉√
𝑡− 𝜉

𝐹𝐵
2 = −6𝑟2𝑏

√
𝜋𝜌1𝜇𝑚 (�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1) (−2

√︀
𝑡− 𝜉

⃒⃒⃒𝑡
0
)

𝐹𝐵
2 = −12𝑟2𝑏

√
𝜋𝜌1𝜇𝑚 (�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1)

√
𝑡 (C.62)
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So from the Zuber (1964) model:

�⃗�𝐵
2 =

−𝛼

𝐵𝑏

𝐹𝐵 =
−𝛼

𝐵𝑏

[︂
− 12𝑟2𝑏

√
𝜋𝜌1𝜇𝑚 (�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1)

√
𝑡

]︂

�⃗�𝐵
2 =

9𝛼

𝜋 𝑟𝑏

√
𝜋𝜌1𝜇𝑚 𝑡 (�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1)

�⃗�𝐵
2 = 𝛼 𝜌1

9

𝑟𝑏

√︂
𝜇𝑚 𝑡

𝜋 𝜌1
(�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1)

�⃗�𝐵
2 = 𝛼 𝜌1𝐶𝐵 (�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1) and 𝐶𝐵 =

9

𝑟𝑏

√︂
𝜇𝑚 𝑡

𝜋 𝜌1
(C.63)

where 𝑡 is the time scale of the Basset force, which may be estimated from the momen-
tum penetration depth as (ISHII AND HIBIKI, 2010):

√
𝜋𝜈𝑡 ≃ 𝑟𝑝 →

√
𝑡 =

𝑟𝑝√
𝜋𝜈

(C.64)

where 𝜈 = 𝜇/𝜌.
The Basset and Added mass can be combined as:

�⃗�𝐵+𝑉
2 = 𝛼 𝜌1(𝐶𝐵 + 𝐶𝑉 ) (�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1) (C.65)

Considering the radial direction for those forces, the convective acceleration be-
comes: (︁

�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1

)︁
𝑟

= 𝑣2𝑟
𝜕𝑣2𝑟
𝜕𝑟

− 𝑣22𝜃
𝑟

− 𝑣1𝑟
𝜕𝑣1𝑟
𝜕𝑟

− 𝑣21𝜃
𝑟

=
𝜕

𝜕𝑟

(︂
𝑣22𝑟
2

)︂
− 𝜕

𝜕𝑟

(︂
𝑣21𝑟
2

)︂
−
(︂
𝑣22𝜃 − 𝑣21𝜃

𝑟

)︂
(︁
�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1

)︁
𝑟

=
𝜕

𝜕𝑟

(︂
𝑣22𝑟 − 𝑣21𝑟

2

)︂
−
(︂
𝑣22𝜃 − 𝑣21𝜃

𝑟

)︂
(C.66)
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Substituting Eq. C.5, C.6 and 4.58:

(︁
�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1

)︁
𝑟

=

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂
𝜕

𝜕𝑟

(︂
𝑗2𝑚(𝑟)

2

)︂
−

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂
cot2 𝛽

𝑗2𝑚(𝑟)

𝑟

(︁
�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1

)︁
𝑟

=

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂
1

2

(︂
−2 𝑗2𝑚(𝑟)

𝑟

)︂
−
[︂(︂

𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂
cot2 𝛽

𝑗2𝑚(𝑟)

𝑟(︁
�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1

)︁
𝑟

= −
[︂(︂

𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂
𝑗2𝑚(𝑟)

𝑟
−
[︂(︂

𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂
cot2 𝛽

𝑗2𝑚(𝑟)

𝑟(︁
�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1

)︁
𝑟

= −
[︂(︂

𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂
(1 + cot2 𝛽)

(︂
𝑗2𝑚(𝑟)

𝑟

)︂
(C.67)

So Eq. C.65 becomes:

�⃗�𝐵+𝑉
2𝑟 = −𝛼 𝜌1 (𝐶𝐵 + 𝐶𝑉 )

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂
(1 + cot2 𝛽)

(︂
𝑗2𝑚(𝑟)

𝑟

)︂
(C.68)

C.4.1 Development of Interfacial Terms

The development of term 𝑀2𝑟 is shown in the next steps.

𝑀2𝑟

𝛼
= 𝜌1𝐶𝐴 sin 𝛽 𝑣𝑠,𝑠 ||�⃗�𝑠|| + 𝜌1 (𝐶𝐵 + 𝐶𝑉 )

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂
[︂

(1 + cot2 𝛽)

4 𝜋2 ℎ2

]︂
𝑄2

𝑚

(︂
−1

𝑟3

)︂
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𝑀2𝑟

𝛼
= 𝛼1

̃︁∆𝜌

[︂
(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚

(︂
−1

𝑟3

)︂
+ 𝛼1 ∆𝜌

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚

(︂
1

𝑟

)︂
−𝛼1 ∆𝜌𝜔2 𝑟 + 𝛼1

𝑓

4
𝜌𝑚

(︂
𝑄𝑚

2 𝜋 ℎ

)︂2
1

sin 𝛽

(︂
1

ℎ 𝑟2
+

𝑍𝑏

2𝜋 𝑟3

)︂
+ 4𝜇𝛼1

𝜆𝑘

𝛼𝑘

𝑄𝑚

2 𝜋 ℎ

1

𝑟3

Matching those equations.

𝜌1𝐶𝐴 sin 𝛽 𝑣𝑠,𝑠 ||�⃗�𝑠|| + 𝜌1 (𝐶𝐵 + 𝐶𝑉 )

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂[︂
(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚(︂
−1

𝑟3

)︂
= 𝛼1

̃︁∆𝜌

[︂
(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚

(︂
−1

𝑟3

)︂
+ 𝛼1 ∆𝜌

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚

(︂
1

𝑟

)︂
−𝛼1 ∆𝜌𝜔2 𝑟 + 𝛼1

𝑓

4
𝜌𝑚

(︂
𝑄𝑚

2𝜋 ℎ

)︂2
1

sin 𝛽

(︂
1

ℎ 𝑟2
+

𝑍𝑏

2 𝜋 𝑟3

)︂
+ 4𝜇𝛼1

𝜆𝑘

𝛼𝑘

𝑄𝑚

2𝜋 ℎ

1

𝑟3

𝜌1𝐶𝐴 sin 𝛽 𝑣𝑠,𝑠 ||�⃗�𝑠|| =

{︂
𝛼1

̃︁∆𝜌− 𝜌1 (𝐶𝐵 + 𝐶𝑉 )

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂}︂
[︂

(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚

(︂
−1

𝑟3

)︂
+ 𝛼1 ∆𝜌

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚

(︂
1

𝑟

)︂
− 𝛼1 ∆𝜌𝜔2 𝑟

+𝛼1
𝑓

4
𝜌𝑚

(︂
𝑄𝑚

2𝜋 ℎ

)︂2
1

sin 𝛽

(︂
1

ℎ 𝑟2
+

𝑍𝑏

2 𝜋 𝑟3

)︂
+ 4𝜇𝛼1

𝜆𝑘

𝛼𝑘

𝑄𝑚

2𝜋 ℎ

1

𝑟3

Adopting ||�⃗�𝑠|| = 𝑣𝑠,𝑠:

−𝑣2𝑠,𝑠 =
1

sin 𝛽

{︂
𝛼1

̃︁∆𝜌

𝜌1𝐶𝐴

− (𝐶𝐵 + 𝐶𝑉 )

𝐶𝐴

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂}︂[︂
(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚

(︂
−1

𝑟3

)︂
+

𝛼1 ∆𝜌

𝜌1𝐶𝐴

1

sin 𝛽

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚

(︂
1

𝑟

)︂
− 1

sin 𝛽

𝛼1 ∆𝜌

𝜌1𝐶𝐴

𝜔2 𝑟

+
𝛼1

𝜌1

1

𝐶𝐴

𝑓

4
𝜌𝑚

(︂
𝑄𝑚

2𝜋 ℎ

)︂2
1

sin2 𝛽

(︂
1

ℎ 𝑟2
+

𝑍𝑏

2 𝜋 𝑟3

)︂
+ 4

𝛼1

𝜌1

1

𝐶𝐴

𝜇

sin 𝛽

𝜆𝑘

𝛼𝑘

𝑄𝑚

2 𝜋 ℎ

(︂
1

𝑟3

)︂
(C.69)

The square term 𝑣𝑠,𝑠 in Eq. C.69 lost the information of signal but using physic
interpretation it is knowing that this term is negative. Generally in pump the liquid flow
accelerates more than gas as a result of the centrifugal field (𝜌1 ≫ 𝜌2). If the liquid
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phase is faster than the gas phase, clearly the slip velocity is negative (𝑣1 > 𝑣2 →
𝑣2 − 𝑣1 < 0 → 𝑣𝑠,𝑠 < 0). So: 𝑣𝑠,𝑠 = −

√︀
𝑣2𝑠,𝑠.

The coefficients for an isolate bubble:

𝐶∞
𝐴 =

𝐶𝐴

1 − 𝛼
∆𝐶∞ =

𝐶𝐵 + 𝐶𝑉

1 − 𝛼
(C.70)

where:

𝐶∞
𝐵 =

𝐶𝐵

1 − 𝛼
𝐶∞

𝑉 =
𝐶𝑉

1 − 𝛼
∆𝐶∞ = 𝐶∞

𝐵 + 𝐶∞
𝑉

Substituting the terms presented in Eqs. C.70 and C.69 and applying the mean
operator for the slip, which is:

− 𝑣𝑠,𝑠
2 =

1

(𝑟𝑜 − 𝑟𝑖)

∫︁ 𝑟𝑜

𝑟𝑖

−𝑣2𝑠,𝑠 dr (C.71)

So:

−𝑣𝑠,𝑠
2 =

1

(𝑟𝑜 − 𝑟𝑖)

∫︁ 𝑟𝑜

𝑟𝑖

𝑣2𝑠,𝑠 dr =
1

sin 𝛽

{︂
1

𝐶∞
𝐴

̃︁∆𝜌

𝜌1
− ∆𝐶∞

𝐶∞
𝐴

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂}︂
[︂

(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚

1

(𝑟𝑜 − 𝑟𝑖)

∫︁ 𝑟𝑜

𝑟𝑖

(︂
−1

𝑟3

)︂
dr +

1

𝐶∞
𝐴

∆𝜌

𝜌1

1

sin 𝛽

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚

1

(𝑟𝑜 − 𝑟𝑖)

∫︁ 𝑟𝑜

𝑟𝑖

(︂
1

𝑟

)︂
dr − 1

sin 𝛽

1

𝐶∞
𝐴

∆𝜌

𝜌1
𝜔2 1

(𝑟𝑜 − 𝑟𝑖)

∫︁ 𝑟𝑜

𝑟𝑖

𝑟 dr +
1

𝜌1

1

𝐶∞
𝐴

𝑓

4

𝜌𝑚

(︂
𝑄𝑚

2 𝜋 ℎ

)︂2
1

sin2 𝛽

1

(𝑟𝑜 − 𝑟𝑖)

∫︁ 𝑟𝑜

𝑟𝑖

(︂
1

ℎ 𝑟2
+

𝑍𝑏

2𝜋 𝑟3

)︂
𝑑𝑟 + 4

1

𝜌1

1

𝐶∞
𝐴

𝜇

sin 𝛽

𝜆𝑘

𝛼𝑘

𝑄𝑚

2𝜋 ℎ

1

(𝑟𝑜 − 𝑟𝑖)

∫︁ 𝑟𝑜

𝑟𝑖

(︂
1

𝑟3

)︂
𝑑𝑟
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−𝑣𝑠,𝑠
2 =

1

sin 𝛽

{︂
1

𝐶∞
𝐴

̃︁∆𝜌

𝜌1
− ∆𝐶∞

𝐶∞
𝐴

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂}︂[︂
(1 + cot2 𝛽)

4 𝜋2 ℎ2

]︂
𝑄2

𝑚

(𝑟𝑜 − 𝑟𝑖)(︂
1

2

1

𝑟2

)︂ ⃒⃒⃒⃒𝑟𝑜
𝑟𝑖

+
1

𝐶∞
𝐴

∆𝜌

𝜌1

1

sin 𝛽

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔

𝑄𝑚

(𝑟𝑜 − 𝑟𝑖)
ln(𝑟)

⃒⃒⃒⃒𝑟𝑜
𝑟𝑖

− 1

sin 𝛽

1

𝐶∞
𝐴

∆𝜌

𝜌1
𝜔2 1

(𝑟𝑜 − 𝑟𝑖)

𝑟2

2

⃒⃒⃒⃒𝑟𝑜
𝑟𝑖

+
1

𝜌1

1

𝐶∞
𝐴

𝑓

4
𝜌𝑚

(︂
𝑄𝑚

2𝜋 ℎ

)︂2
1

sin2 𝛽

1

(𝑟𝑜 − 𝑟𝑖)

[︂(︂
1

ℎ

−1

𝑟

)︂⃒⃒⃒⃒
⃒
𝑟𝑜

𝑟𝑖

+
𝑍𝑏

2𝜋

(︂
−1

2 𝑟2

)︂⃒⃒⃒⃒
⃒
𝑟𝑜

𝑟𝑖

]︂

+4
1

𝜌1

1

𝐶∞
𝐴

𝜇

sin 𝛽

𝜆𝑘

𝛼𝑘

𝑄𝑚

2𝜋 ℎ

1

(𝑟𝑜 − 𝑟𝑖)

(︂
−1

2

1

𝑟2

)︂⃒⃒⃒⃒
⃒
𝑟𝑜

𝑟𝑖

Using Eq. 4.85:

−𝑣𝑠,𝑠
2 =

1

sin 𝛽

{︂
1

𝐶∞
𝐴

̃︁∆𝜌

𝜌1
− ∆𝐶∞

𝐶∞
𝐴

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂}︂[︂
(1 + cot2 𝛽)

4 𝜋2 ℎ2

]︂
𝑄2

𝑚

2 (𝑟𝑜 − 𝑟𝑖)(︂
1

𝑟2𝑜
− 1

𝑟2𝑖

)︂
+

1

𝐶∞
𝐴

∆𝜌

𝜌1

1

sin 𝛽

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔

𝑄𝑚

(𝑟𝑜 − 𝑟𝑖)

(︁
ln(𝑟𝑜) − ln(𝑟𝑖)

)︁
− 1

sin 𝛽

1

𝐶∞
𝐴

∆𝜌

𝜌1
𝜔2 1

(𝑟𝑜 − 𝑟𝑖)

(𝑟2𝑜 − 𝑟2𝑖 )

2
+

1

𝜌1

1

𝐶∞
𝐴

𝑓

4
𝜌𝑚

(︂
𝑄𝑚

2𝜋 ℎ

)︂2
1

sin2 𝛽

𝑓3
(𝑟𝑜 − 𝑟𝑖)

−4
1

𝜌1

1

𝐶∞
𝐴

𝜇

sin 𝛽

𝜆𝑘

𝛼𝑘

𝑄𝑚

2𝜋 ℎ

1

(𝑟𝑜 − 𝑟𝑖)

1

2

(︂
1

𝑟2𝑜
− 1

𝑟2𝑖

)︂
(C.72)

Simplifying the terms:

∙ 𝑟 =
𝑟𝑖 + 𝑟𝑜

2

∙ ∆𝑟 = 𝑟𝑜 − 𝑟𝑖

∙ 1

𝑟𝑜 − 𝑟𝑖

(︀
𝑟2𝑜 − 𝑟2𝑖

)︀
= (𝑟𝑜 + 𝑟𝑖) = 2𝑟

∙ 1

𝑟𝑜 − 𝑟𝑖

(︂
1

𝑟2𝑜
− 1

𝑟2𝑖

)︂
=

1

𝑟𝑜 − 𝑟𝑖

𝑟2𝑖 − 𝑟2𝑜
𝑟2𝑜 𝑟

2
𝑖

=
−(𝑟2𝑜 − 𝑟2𝑖 )

∆𝑟

1

𝑟2𝑜 𝑟
2
𝑖

=
−2𝑟

𝑟2𝑜 𝑟
2
𝑖

∙ ln(𝑟𝑜) − ln(𝑟𝑖)

∆𝑟
=

1

∆𝑟
ln

(︂
𝑟𝑜
𝑟𝑖

)︂
= ln

(︂
𝑟𝑜
𝑟𝑖

)︂1/Δ𝑟

(C.73)
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Using Eq. C.73 in Eq. C.72:

−𝑣𝑠,𝑠
2 =

1

sin 𝛽

{︂
1

𝐶∞
𝐴

̃︁∆𝜌

𝜌1
− ∆𝐶∞

𝐶∞
𝐴

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂}︂[︂
(1 + cot2 𝛽)

4 𝜋2 ℎ2

]︂
𝑄2

𝑚

(︂
− (𝑟𝑜 + 𝑟𝑖)

2

)︂
1

𝑟2𝑜 𝑟
2
𝑖

+
1

𝐶∞
𝐴

∆𝜌

𝜌1

1

sin 𝛽

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚

[︂
ln

(︂
𝑟𝑜
𝑟𝑖

)︂
1

(𝑟𝑜 − 𝑟𝑖)

]︂
− 1

sin 𝛽

1

𝐶∞
𝐴

∆𝜌

𝜌1
𝜔2 (𝑟𝑜 + 𝑟𝑖)

2
+

1

𝜌1

1

𝐶∞
𝐴

𝑓

4
𝜌𝑚

(︂
𝑄𝑚

2 𝜋 ℎ

)︂2
1

sin2 𝛽

𝑓3
∆𝑟

+4
1

𝜌1

1

𝐶∞
𝐴

𝜇

sin 𝛽

𝜆𝑘

𝛼𝑘

𝑄𝑚

2 𝜋 ℎ

(︂
𝑟

𝑟2𝑜 𝑟
2
𝑖

)︂

−𝑣𝑠,𝑠
2 = −

{︂
1

𝐶∞
𝐴

̃︁∆𝜌

𝜌1
− ∆𝐶∞

𝐶∞
𝐴

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2 ]︂}︂[︂
(1 + cot2 𝛽)

4 𝜋2 ℎ2

]︂
1

sin 𝛽

𝑟

𝑟2𝑜 𝑟
2
𝑖

𝑄2
𝑚 +

1

𝐶∞
𝐴

∆𝜌

𝜌1

(︂
cot 𝛽

𝜋 ℎ

)︂
1

sin 𝛽

ln(𝑟𝑜/𝑟𝑖)

∆𝑟
𝜔 𝑄𝑚 − 1

sin 𝛽

1

𝐶∞
𝐴

∆𝜌

𝜌1
𝜔2 𝑟

− 1

sin 𝛽

1

𝐶∞
𝐴

∆𝜌

𝜌1
𝜔2 (𝑟𝑜 + 𝑟𝑖)

2
+

1

𝜌1

1

𝐶∞
𝐴

𝑓

4
𝜌𝑚

(︂
1

4 𝜋2 ℎ2

)︂
1

sin2 𝛽

𝑓3
∆𝑟

𝑄2
𝑚

+2
𝜇

𝜌1

1

𝐶∞
𝐴

1

𝜋 ℎ sin 𝛽

𝜆𝑘

𝛼𝑘

(︂
𝑟

𝑟2𝑜 𝑟
2
𝑖

)︂
𝑄𝑚

(C.74)

Some terms were obtained before, which are:

∙ 𝑣2𝑠 = 𝐶0 𝑗𝑚𝑠 + 𝑣2𝑗

∙ 𝑣2𝑗 = (1 − 𝛼)𝑣𝑠

∙ 𝑗𝑚𝑠 = 𝑗𝑚𝑟/ sin 𝛽

∙ 𝑣2𝑠 = 𝑗2𝑠/𝛼

∙ 𝑗𝑚𝑟 =
𝑄𝑚

2 𝜋 ℎ

1

𝑟

The flow is not developed (it has convective acceleration) and those terms vary
with radius. However, this study is interested in the mean effect of the variables on the
impeller. So applying the average operator in the drift-flux model:

𝑣2𝑠 = 𝐶0 𝑗𝑚,𝑠 + (1 − 𝛼)𝑣𝑠,𝑠 → 𝑣2𝑠 = 𝐶0 𝑗𝑚,𝑠 + (1 − 𝛼)𝑣𝑠,𝑠
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𝑗𝑚𝑟 =
1

(𝑟𝑜 − 𝑟𝑖)

∫︁ 𝑟𝑜

𝑟𝑖

𝑗𝑚𝑟 dr =
1

(𝑟𝑜 − 𝑟𝑖)

∫︁ 𝑟𝑜

𝑟𝑖

[︂(︂
𝑄𝑚

2 𝜋 ℎ

)︂(︂
1

𝑟

)︂]︂
dr

=

(︂
𝑄𝑚

2 𝜋 ℎ

)︂
1

(𝑟𝑜 − 𝑟𝑖)

∫︁ 𝑟𝑜

𝑟𝑖

(︂
1

𝑟

)︂
dr =

(︂
𝑄𝑚

2 𝜋 ℎ

)︂
1

(𝑟𝑜 − 𝑟𝑖)
ln(𝑟)

⃒⃒⃒𝑟𝑜
𝑟𝑖

𝑗𝑚𝑟 =

(︂
𝑄𝑚

2 𝜋 ℎ

)︂
ln (𝑟𝑜/𝑟𝑖)

(𝑟𝑜 − 𝑟𝑖)
→ 𝑗𝑚𝑠 = 𝑗𝑚𝑟

1

sin 𝛽
(C.75)

So:

𝑣2𝑠 =
𝑗2𝑠
𝛼

= 𝐶0

(︂
𝑄𝑚

2 𝜋 ℎ

)︂
ln (𝑟𝑜/𝑟𝑖)

(𝑟𝑜 − 𝑟𝑖)

1

sin 𝛽
+ (1 − 𝛼)𝑣𝑠,𝑠 (C.76)

Using Eq. 4.58, 4.71 and applying the average operator for the slip (Eq. C.71), Eq.
C.76 becomes:

𝑣2𝑠 =

(︂
𝜆2

𝛼2

)︂[︂(︂
𝑄𝑚

2𝜋 ℎ

)︂
ln (𝑟𝑜/𝑟𝑖)

(𝑟𝑜 − 𝑟𝑖)

1

sin 𝛽

]︂
= 𝐶0

(︂
𝑄𝑚

2𝜋 ℎ

)︂
ln (𝑟𝑜/𝑟𝑖)

(𝑟𝑜 − 𝑟𝑖)

1

sin 𝛽

+(1 − 𝛼)𝑣𝑠,𝑠

(C.77)

C.5 Development of Bubble Forces

The next sections treat the forces on the bubble, which are: Drag, Basset, Virtual
Mass, Pseudo forces and Buoyancy. These forces were used in the development of the
Transition Criteria in section 5.4.

C.5.1 Drag force

Equation C.54 refers to the drag force (SHOHAM, 2005). Describing it in 𝑟 and 𝜃

direction:
So the drag force in 𝑠 and �̂� are:

𝐹𝐷
2𝑟 = −1

2
𝐴𝑝𝐶𝐷 𝜌1 𝑣𝑠,𝑠 |𝑣𝑠,𝑠| sin 𝛽

𝐹𝐷
2𝜃 = −1

2
𝐴𝑝𝐶𝐷 𝜌1 𝑣𝑠,𝑠 |𝑣𝑠,𝑠| cos 𝛽 (C.78)

The term 𝐴𝑝 corresponds to the area of the circle which is an approximation for a
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bubble. Figure 5.8 indicates that this assumption does not corresponds to what is hap-
pening in the impeller because the bubble is in the wobbling region. As explained be-
fore, the component 𝑣𝑠,𝑛 is equal to zero in �̂� direction (Eq. 4.74). So the drag force in 𝑠

direction is:
𝐹𝐷
2𝑠 = −1

2
𝐴𝑝𝐶𝐷 𝜌1 𝑣𝑠,𝑠 |𝑣𝑠,𝑠| (C.79)

As explained before, adopting 𝑣𝑠,𝑠 |𝑣𝑠,𝑠| = −𝑣2𝑠,𝑠:

𝐹𝐷
2𝑠 =

1

2
𝐴𝑝 𝐶𝐷 𝜌1 𝑣

2
𝑠,𝑠 (C.80)

Applying the mean operator (Eq. C.71):

𝐹𝐷
2𝑠 =

1

2
𝐴𝑝 𝐶𝐷 𝜌1 𝑣𝑠,𝑠

2 (C.81)

C.5.2 Basset and Virtual/Added Mass Force

The virtual mass force from Eq. C.58 is:

𝐹 𝑉
2 = −𝜌1

𝐵𝑏

2

𝐷 (�⃗�𝑠)

𝐷𝑡
= −𝜌1

𝐵𝑏

2

(︂
𝐷�⃗�2
𝐷𝑡

− 𝐷�⃗�1
𝐷𝑡

)︂

𝐹 𝑉
2 = −𝜌1

𝐵𝑏

2
(�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1) = −𝜌1𝐶𝑉 𝐵𝑏 (�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1)

The Basset force from Eq. C.62 is:

𝐹𝐵
2 = −12𝑟2𝑏

√
𝜋 𝜌1 𝜇𝑚 (�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1)

√
𝑡

𝐹𝐵
2 = −4

3
𝑟3𝑏𝜌1𝜋

(︂
9

𝑟𝑏

√︂
𝜇𝑚 𝑡

𝜌1 𝜋

)︂
(�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1)

𝐹𝐵
2 = −4

3
𝑟3𝑏 𝜌1 𝜋 𝐶𝐵 (�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1)

Adding the virtual mass force and Basset force:

𝐹 𝑉
2 + 𝐹𝐵

2 = −𝜌1𝐶𝑉 𝐵𝑏 (�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1) −
(︂

4

3
𝑟3𝑏 𝜋

)︂
𝜌1𝐶𝐵 (�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1)
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𝐹 𝑉 𝐵
2 = −𝜌1 (𝐶𝑉 + 𝐶𝐵)𝐵𝑏 (�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1)

𝐹 𝑉 𝐵
2 = −𝜌1 ∆𝐶 𝐵𝑏 (�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1) (C.82)

The convective term in radial direction was showed in Eq. C.67. In 𝜃 direction it
becomes: (︁

�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1

)︁
𝜃

= 𝑣2𝑟
𝜕𝑣2𝜃
𝜕𝑟

+
𝑣2𝜃 𝑣2𝑟

𝑟
− 𝑣1𝑟

𝜕𝑣1𝜃
𝜕𝑟

− 𝑣1𝜃 𝑣1𝑟
𝑟

Substituting Eq. C.5, C.6:

(︁
�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1

)︁
𝜃

=
𝜆2

𝛼2

𝑗𝑚(𝑟)
𝜕

𝜕𝑟

(︂
− 𝜆2

𝛼2

𝑗𝑚(𝑟) cot 𝛽

)︂
+

(︂
− 𝜆2

𝛼2

𝑗𝑚(𝑟)

cot 𝛽
𝜆2

𝛼2

𝑗𝑚(𝑟)

)︂⧸︂
𝑟 − 𝜆1

𝛼1

𝑗𝑚(𝑟)
𝜕

𝜕𝑟

(︂
− 𝜆1

𝛼1

𝑗𝑚(𝑟) cot 𝛽

)︂
−
(︂
− 𝜆1

𝛼1

𝑗𝑚(𝑟)

cot 𝛽
𝜆1

𝛼1

𝑗𝑚(𝑟)

)︂⧸︂
𝑟

= −
(︂
𝜆2

𝛼2

)︂2

cot 𝛽 𝑗𝑚(𝑟)
𝜕

𝜕𝑟
𝑗𝑚(𝑟) −

(︂
𝜆2

𝛼2

)︂2

cot 𝛽
𝑗2𝑚(𝑟)

𝑟

+

(︂
𝜆1

𝛼1

)︂2

cot 𝛽 𝑗𝑚(𝑟)
𝜕

𝜕𝑟
𝑗𝑚(𝑟) +

(︂
𝜆1

𝛼1

)︂2

cot 𝛽
𝑗2𝑚(𝑟)

𝑟

=

[︂(︂
𝜆1

𝛼1

)︂2

−
(︂
𝜆2

𝛼2

)︂2]︂
cot 𝛽 𝑗𝑚(𝑟)

𝜕𝑗𝑚(𝑟)

𝜕𝑟
+

[︂(︂
𝜆1

𝛼1

)︂2

−
(︂
𝜆2

𝛼2

)︂2]︂
cot 𝛽

𝑗2𝑚(𝑟)

𝑟

=

[︂(︂
𝜆1

𝛼1

)︂2

−
(︂
𝜆2

𝛼2

)︂2]︂
cot 𝛽

(︂
𝑗𝑚(𝑟)

𝜕𝑗𝑚(𝑟)

𝜕𝑟
+

𝑗2𝑚(𝑟)

𝑟

)︂

=

[︂(︂
𝜆1

𝛼1

)︂2

−
(︂
𝜆2

𝛼2

)︂2]︂
cot 𝛽

[︂
𝑗𝑚(𝑟)

(︂
− 𝑗𝑚(𝑟)

𝑟

)︂
+

𝑗2𝑚(𝑟)

𝑟

]︂
So: (︁

�⃗�2 · ∇�⃗�2 − �⃗�1 · ∇�⃗�1

)︁
𝜃

= 0 (C.83)

The convective term in 𝜃 direction is equal to zero. On the other hand, the convec-
tive term in 𝑟 is already know by Eq. C.67. Thus Basset and added mass does not have
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component in 𝜃 direction, so in 𝑟 direction:

𝐹 𝑉 𝐵
2𝑟 = −𝜌1𝐵𝑏 ∆𝐶

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2]︂
csc2 𝛽

(︂
𝑄𝑚

2𝜋 ℎ

)︂2(︂−1

𝑟3

)︂
(C.84)

Applying the mean operator in 𝐹 𝑉 𝐵
2𝑟 :

1

∆𝑟

∫︁ 𝑟𝑜

𝑟𝑖

𝐹 𝑉 𝐵
2𝑟 𝑑𝑟 = −𝜌1𝐵𝑏 ∆𝐶

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2]︂
csc2 𝛽

(︂
𝑄𝑚

2𝜋 ℎ

)︂2
1

∆𝑟

∫︁ 𝑟𝑜

𝑟𝑖

(︂
−1

𝑟3

)︂
𝑑𝑟

𝐹 𝑉 𝐵
2𝑟 = −𝜌1𝐵𝑏 ∆𝐶

[︂(︂
𝜆2

𝛼2

)︂2

−
(︂
𝜆1

𝛼1

)︂2]︂
csc2 𝛽

(︂
𝑄𝑚

2𝜋 ℎ

)︂2
1

∆𝑟

[︂
1

2

(︂
𝑟2𝑖 − 𝑟2𝑜
𝑟2𝑖 𝑟

2
𝑜

)︂]︂

𝐹 𝑉 𝐵
2𝑟 = −𝜌1𝐵𝑏 ∆𝐶 𝐿𝑎𝑚𝑏𝑑𝑎𝑠 csc2 𝛽

[︂
−(𝑟𝑜 + 𝑟𝑖)/2

𝑟2𝑖 𝑟
2
𝑜

]︂(︂
𝑄𝑚

2𝜋 ℎ

)︂2

𝐹 𝑉 𝐵
2𝑟 = −𝜌1𝐵𝑏 ∆𝐶 𝐿𝑎𝑚𝑏𝑑𝑎𝑠 csc2 𝛽

[︂
−𝑟

𝑟2𝑖 𝑟
2
𝑜

]︂(︂
𝑄𝑚

2𝜋 ℎ

)︂2

Projecting 𝐹 𝑉 𝐵
2𝑟 in 𝑠 and in �̂� direction:

𝐹 𝑉 𝐵
2𝑠 = 𝐹 𝑉 𝐵

2𝑟 sin 𝛽 −��
�>

= 0
𝐹 𝑉 𝐵
2𝜃 cos 𝛽

𝐹 𝑉 𝐵
2𝑛 = 𝐹 𝑉 𝐵

2𝑟 cos 𝛽 +�
�
�>

= 0
𝐹 𝑉 𝐵
2𝜃 sin 𝛽 (C.85)

C.5.3 Centripetal and Coriolis Forces

From Eq. 4.24 and 4.26

𝐴𝑓 = 𝐴𝑐𝑜𝑟 + 𝐴𝑐𝑡𝑝 =
(︁
− 2𝜔𝑣𝑘𝜃 − 𝜔2 𝑟

)︁
𝑟 +

(︁
2𝜔𝑣𝑘𝑟

)︁
𝑟

The fictitious forces are:

𝐹 𝐹
2 = −𝑚𝐴𝑓 = −𝜌2𝐵𝑏𝐴𝑓 (C.86)
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In 𝑟 direction:

𝐴𝑓𝑟 = −2𝜔 𝑣𝑘𝜃 − 𝜔2 𝑟 = −2𝜔

(︂
− 𝜆2

𝛼2

)︂
𝑗𝑚(𝑟) cot 𝛽 − 𝜔2 𝑟

𝐴𝑓𝑟 = 2𝜔
𝜆2

𝛼2

(︂
𝑄𝑚

2𝜋 ℎ

)︂
1

𝑟
cot 𝛽 − 𝜔2 𝑟 (C.87)

Applying the mean operator:

𝐴𝑓𝑟 =
1

∆𝑟

∫︁ 𝑟𝑜

𝑟𝑖

𝐴𝑓𝑟 𝑑𝑟 = 2𝜔
𝜆2

𝛼2

(︂
𝑄𝑚

2𝜋 ℎ

)︂
cot 𝛽

1

∆𝑟

∫︁ 𝑟𝑜

𝑟𝑖

1

𝑟
𝑑𝑟 − 𝜔2 1

∆𝑟

∫︁ 𝑟𝑜

𝑟𝑖

𝑟 𝑑𝑟

𝐴𝑓𝑟 = 2𝜔
𝜆2

𝛼2

cot 𝛽

(︂
𝑄𝑚

2𝜋 ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

∆𝑟
− 𝜔2 (𝑟2𝑜 − 𝑟2𝑖 )

2∆𝑟
(C.88)

In 𝜃 direction:
𝐴𝑓𝜃 = 2𝜔 𝑣𝑘𝑟 = 2𝜔

𝜆2

𝛼2

𝑗𝑚(𝑟)

𝐴𝑓𝜃 = 2𝜔
𝜆2

𝛼2

(︂
𝑄𝑚

2𝜋 ℎ

)︂
1

𝑟
(C.89)

Applying the mean operator:

𝐴𝑓𝜃 =
1

∆𝑟

∫︁ 𝑟𝑜

𝑟𝑖

𝐴𝑓𝜃 𝑑𝑟 = 2𝜔
𝜆2

𝛼2

(︂
𝑄𝑚

2𝜋 ℎ

)︂
1

∆𝑟

∫︁ 𝑟𝑜

𝑟𝑖

1

𝑟
𝑑𝑟

𝐴𝑓𝜃 = 2𝜔
𝜆2

𝛼2

(︂
𝑄𝑚

2 𝜋 ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

∆𝑟
(C.90)

Projecting in 𝑠 and in �̂� direction:

𝐹 𝐹
2𝑠 = 𝐹 𝐹

2𝑟 sin 𝛽 − 𝐹 𝐹
2𝜃 cos 𝛽

𝐹 𝐹
2𝑛 = 𝐹 𝐹

2𝑟 cos 𝛽 + 𝐹 𝐹
2𝜃 sin 𝛽 (C.91)
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C.5.4 Buoyancy Force

The buoyancy term was already considered in momentum equations. However, in
order to use this term for a single bubble the buoyancy in 𝑟 and 𝜃 are:

𝐹𝐸
𝑟 = −𝐵𝑏

𝜕𝑃

𝜕𝑟

𝐹𝐸
𝜃 = −𝐵𝑏

1

𝑟

𝜕𝑃

𝜕𝜃
(C.92)

Applying the mean operator:

𝐹𝐸
𝑟 = −𝐵𝑏

1

∆𝑟

∫︁ 𝑟𝑜

𝑟𝑖

𝜕𝑃

𝜕𝑟
𝑑𝑟 = −𝐵𝑏

∆𝑃𝑟

∆𝑟

𝐹𝐸
𝜃 = −𝐵𝑏

1

∆𝑟

∫︁ 𝑟𝑜

𝑟𝑖

1

𝑟

𝜕𝑃

𝜕𝜃
𝑑𝑟 = −𝐵𝑏

ln(𝑟𝑜/𝑟𝑖)

∆𝑟
∆𝑃𝜃 (C.93)

The pressure gradient is given by Eq. C.13:

−𝜕𝑝

𝜕𝑟
= 𝜌𝑚

[︂
(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚

(︂
−1

𝑟3

)︂
+ 𝜌𝑚

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚

(︂
1

𝑟

)︂
− 𝜌𝑚 𝜔2 𝑟

−4𝜇
𝜆𝑘

𝛼𝑘

𝑄𝑚

2𝜋 ℎ

1

𝑟3
− 𝑓

4
𝜌𝑚

(︂
𝑄𝑚

2 𝜋 ℎ

)︂2
1

sin 𝛽

(︂
1

ℎ 𝑟2
+

𝑍𝑏

2𝜋 𝑟3

)︂
Applying the mean operator:

1

∆𝑟

∫︁ 𝑟𝑜

𝑟𝑖

−𝜕𝑝

𝜕𝑟
𝑑𝑟 = 𝜌𝑚

[︂
(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚

1

∆𝑟

∫︁ 𝑟𝑜

𝑟𝑖

(︂
−1

𝑟3

)︂
𝑑𝑟 + 𝜌𝑚

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚

1

∆𝑟

∫︁ 𝑟𝑜

𝑟𝑖

(︂
1

𝑟

)︂
𝑑𝑟 − 𝜌𝑚 𝜔2 1

∆𝑟

∫︁ 𝑟𝑜

𝑟𝑖

𝑟 𝑑𝑟 − 4𝜇
𝜆𝑘

𝛼𝑘

𝑄𝑚

2 𝜋 ℎ

1

∆𝑟

∫︁ 𝑟𝑜

𝑟𝑖

1

𝑟3
𝑑𝑟

−𝑓

4
𝜌𝑚

(︂
𝑄𝑚

2𝜋 ℎ

)︂2
1

sin 𝛽

1

∆𝑟

∫︁ 𝑟𝑜

𝑟𝑖

(︂
1

ℎ 𝑟2
+

𝑍𝑏

2 𝜋 𝑟3

)︂
𝑑𝑟
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−∆𝑃

∆𝑟
= 𝜌𝑚

[︂
(1 + cot2 𝛽)

4 𝜋2 ℎ2

]︂
𝑄2

𝑚

1

∆𝑟

[︂
1

2

(𝑟2𝑖 − 𝑟2𝑜)

𝑟2𝑖 𝑟
2
𝑜

]︂
+ 𝜌𝑚

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚

ln(𝑟𝑜/𝑟𝑖)

∆𝑟

−𝜌𝑚 𝜔2 (𝑟2𝑜 − 𝑟2𝑖 )

2 ∆𝑟
− 4𝜇

𝜆𝑘

𝛼𝑘

𝑄𝑚

2 𝜋 ℎ

1

∆𝑟

(︂
1

2

−1

𝑟2

)︂⃒⃒⃒⃒
⃒
𝑟𝑜

𝑟𝑖

− 𝑓

4

𝜌𝑚
sin 𝛽

(︂
𝑄𝑚

2 𝜋 ℎ

)︂2
1

∆𝑟[︂(︂
1

ℎ

−1

𝑟

)︂⃒⃒⃒⃒
⃒
𝑟𝑜

𝑟𝑖

+
𝑍𝑏

2𝜋

(︂
−1

2 𝑟2

)︂⃒⃒⃒⃒
⃒
𝑟𝑜

𝑟𝑖

]︂

−∆𝑃

∆𝑟
= 𝜌𝑚

[︂
(1 + cot2 𝛽)

4 𝜋2 ℎ2

]︂
𝑄2

𝑚

1

∆𝑟

[︂
1

2

(𝑟2𝑖 − 𝑟2𝑜)

𝑟2𝑖 𝑟
2
𝑜

]︂
+ 𝜌𝑚

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔𝑄𝑚

ln(𝑟𝑜/𝑟𝑖)

∆𝑟

−𝜌𝑚 𝜔2 (𝑟2𝑜 − 𝑟2𝑖 )

2 ∆𝑟
− 4𝜇

𝜆𝑘

𝛼𝑘

𝑄𝑚

2 𝜋 ℎ

1

2

1

∆𝑟

(︂
1

𝑟2𝑖
− 1

𝑟2𝑜

)︂
− 𝑓

4

𝜌𝑚
sin 𝛽

(︂
𝑄𝑚

2 𝜋 ℎ

)︂2
1

∆𝑟[︂
1

ℎ

(︂
1

𝑟𝑖
− 1

𝑟𝑜

)︂
+

𝑍𝑏

4𝜋

(︂
1

𝑟2𝑖
− 1

𝑟2𝑜

)︂]︂
(C.94)

Substituting Eq. C.94 in the buoyancy force in 𝑟 direction and using Eq. 4.85:

𝐹𝐸
𝑟 = −𝐵𝑏

{︂
𝜌𝑚

[︂
(1 + cot2 𝛽)

4 𝜋2 ℎ2

]︂
𝑄2

𝑚

1

∆𝑟

[︂
1

2

(𝑟2𝑖 − 𝑟2𝑜)

𝑟2𝑖 𝑟
2
𝑜

]︂
+ 𝜌𝑚

(︂
cot 𝛽

𝜋 ℎ

)︂
𝜔
𝑄𝑚

∆𝑟
ln

𝑟𝑜
𝑟𝑖

−𝜌𝑚 𝜔2 (𝑟2𝑜 − 𝑟2𝑖 )

2 ∆𝑟
− 𝜇

𝜆𝑘

𝛼𝑘

𝑄𝑚

𝜋 ℎ

1

∆𝑟

(︂
𝑟2𝑜 − 𝑟2𝑖
𝑟2𝑖 𝑟

2
𝑜

)︂
− 𝑓

4

𝜌𝑚
sin 𝛽

(︂
𝑄𝑚

2𝜋 ℎ

)︂2
𝑓3
∆𝑟

}︂
(C.95)

For 𝜃 direction, the momentum equations in Eq. 4.80 for phases 1 and 2 are:

𝛼1𝜌1

(︂
𝑣1𝑟

𝜕

𝜕𝑟
𝑣1𝜃 −

𝑣1𝑟 𝑣1𝜃
𝑟

)︂
= −𝛼1

1

𝑟

𝜕𝑝1
𝜕𝜃

−𝑀1𝜃 − 𝛼1 𝜌1 �⃗�1𝜃 + ∇ · ⃗⃗𝜏

𝛼2𝜌2

(︂
𝑣2𝑟

𝜕

𝜕𝑟
𝑣2𝜃 −

𝑣2𝑟 𝑣2𝜃
𝑟

)︂
= −𝛼2

1

𝑟

𝜕𝑝2
𝜕𝜃

−𝑀2𝜃 − 𝛼2 𝜌2 �⃗�2𝜃 + ∇ · ⃗⃗𝜏

The pressure gradient need to be estimated in 𝜃 direction. So the momentum equa-
tion are summed in order to get the pressure term, once the momentum have the same
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value but opposite direction, which means 𝑀1𝜃 = −𝑀2𝜃.

𝛼1𝜌1

(︂
𝑣1𝑟

𝜕

𝜕𝑟
𝑣1𝜃 −

𝑣1𝑟 𝑣1𝜃
𝑟

)︂
+ 𝛼2𝜌2

(︂
𝑣2𝑟

𝜕

𝜕𝑟
𝑣2𝜃 −

𝑣2𝑟 𝑣2𝜃
𝑟

)︂
= −(𝛼1 + 𝛼2)

1

𝑟

𝜕𝑝

𝜕𝜃

−
(︁
𝛼1 𝜌1 + 𝛼2 𝜌2

)︁
�⃗�𝑘𝑓𝜃 + ∇ · ⃗⃗𝜏

− 1

𝑟

𝜕𝑝

𝜕𝜃
= 𝛼1𝜌1

(︂
𝑣1𝑟

𝜕

𝜕𝑟
𝑣1𝜃 −

𝑣1𝑟 𝑣1𝜃
𝑟

)︂
+𝛼2𝜌2

(︂
𝑣2𝑟

𝜕

𝜕𝑟
𝑣2𝜃 −

𝑣2𝑟 𝑣2𝜃
𝑟

)︂
+ 𝜌𝑚 �⃗�𝑘𝑓𝜃 −∇ · ⃗⃗𝜏

(C.96)
Substituting Eq. C.5 and C.6 in C.96:

−1

𝑟

𝜕𝑝

𝜕𝜃
= 𝛼1𝜌1

[︂
−

(︂
𝜆1

𝛼1

)︂2

cot 𝛽

(︂
𝜕𝑗𝑚(𝑟)2/2

𝜕𝑟

)︂
+

(︂
𝜆1

𝛼1

)︂2

cot 𝛽

(︂
𝑗𝑚(𝑟)2

𝑟

)︂]︂
+ 𝛼2𝜌2[︂

−
(︂
𝜆2

𝛼2

)︂2

cot 𝛽

(︂
𝜕𝑗𝑚(𝑟)2/2

𝜕𝑟

)︂
+

(︂
𝜆2

𝛼2

)︂2

cot 𝛽

(︂
𝑗𝑚(𝑟)2

𝑟

)︂]︂
+ 𝜌𝑚 �⃗�𝑘𝑓𝜃 − ⟨∇ · ⃗⃗𝜏 ⟩𝜃

−1

𝑟

𝜕𝑝

𝜕𝜃
=

[︂
𝛼1𝜌1

(︂
𝜆1

𝛼1

)︂2

cot 𝛽 + 𝛼2𝜌2

(︂
𝜆2

𝛼2

)︂2

cot 𝛽

]︂(︂
𝑗𝑚(𝑟)2

𝑟
− 𝜕𝑗𝑚(𝑟)2/2

𝜕𝑟

)︂
+𝜌𝑚 �⃗�𝑘𝑓𝜃 − ⟨∇ · ⃗⃗𝜏 ⟩𝜃

−1

𝑟

𝜕𝑝

𝜕𝜃
=

[︂
𝜌1 𝜆1

(︂
𝜆1

𝛼1

)︂
cot 𝛽 + 𝜌2 𝜆2

(︂
𝜆2

𝛼2

)︂
cot 𝛽

]︂(︂
𝑗𝑚(𝑟)2

𝑟
− 2𝑗𝑚(𝑟)

2

𝜕𝑗𝑚(𝑟)

𝜕𝑟

)︂
+𝜌𝑚 �⃗�𝑘𝑓𝜃 − ⟨∇ · ⃗⃗𝜏 ⟩𝜃

(C.97)

Substituting Eq. C.7:

− 1

𝑟

𝜕𝑝

𝜕𝜃
=

[︂
𝜌1 𝜆1

(︂
𝜆1

𝛼1

)︂
cot 𝛽 + 𝜌2 𝜆2

(︂
𝜆2

𝛼2

)︂
cot 𝛽

]︂(︂
2 𝑗𝑚(𝑟)2

𝑟

)︂
+ 𝜌𝑚 �⃗�𝑘𝑓𝜃 − ⟨∇ · ⃗⃗𝜏 ⟩𝜃

− 1

𝑟

𝜕𝑝

𝜕𝜃
=

[︂
𝜌1

𝜆2
1

𝛼1

cot 𝛽 + 𝜌2
𝜆2
2

𝛼2

cot 𝛽

]︂
2

(︂
𝑄𝑚

2𝜋ℎ

)︂2
1

𝑟3
+ 𝜌𝑚 �⃗�𝑘𝑓𝜃 − ⟨∇ · ⃗⃗𝜏 ⟩𝜃 (C.98)
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The term �⃗�𝑘𝑓𝜃 is:

𝜌𝑚 �⃗�𝑘𝑓𝜃 =𝛼1 𝜌1𝐴1𝑓𝜃 + 𝛼2 𝜌2𝐴2𝑓𝜃 =
(︁
𝑆1𝜃 + 𝑆2𝜃

)︁
= 2𝛼1 𝜌1 𝜔 𝑣1𝑟 + 2𝛼2 𝜌2 𝜔 𝑣2𝑟

= 2𝛼1 𝜌1 𝜔
𝜆1

𝛼1

𝑗𝑚(𝑟) + 2𝛼2 𝜌2 𝜔
𝜆2

𝛼2

𝑗𝑚(𝑟)

= 2 𝜌1 𝜔 𝜆1 𝑗𝑚(𝑟) + 2 𝜌2 𝜔 𝜆2 𝑗𝑚(𝑟) = 2𝜔𝑗𝑚(𝑟)(𝜌1 𝜆1 + 𝜌2 𝜆2)

= 2𝜔𝑗𝑚(𝑟) 𝜌𝑚

𝜌𝑚 �⃗�𝑘𝑓𝜃 = 2𝜔𝑗𝑚(𝑟) 𝜌𝑚 (C.99)

Substituting Eq. C.99 in the pressure gradient:

− 1

𝑟

𝜕𝑝

𝜕𝜃
=

[︂
𝜌1

𝜆2
1

𝛼1

cot 𝛽+𝜌2
𝜆2
2

𝛼2

cot 𝛽

]︂
2

(︂
𝑄𝑚

2𝜋ℎ

)︂2
1

𝑟3
+2 𝜌𝑚 𝜔𝑗𝑚(𝑟)−⟨∇·⃗⃗𝜏 ⟩𝜃 (C.100)

Substituting the volumetric flux of mixture in Eq. C.100:

− 1

𝑟

𝜕𝑝

𝜕𝜃
= 𝜌𝑚 2 cot 𝛽

(︂
𝑄𝑚

2𝜋ℎ

)︂2(︂
1

𝑟3

)︂
+ 2 𝜌𝑚 𝜔

(︂
𝑄𝑚

2 𝜋 ℎ

)︂(︂
1

𝑟

)︂
− ⟨∇ · ⃗⃗𝜏 ⟩𝜃 (C.101)

Using Eq. C.27 and C.39 in order to substitute the term ⟨∇ · ⃗⃗𝜏 ⟩𝜃 :

−1

𝑟

𝜕𝑝

𝜕𝜃
= 𝜌𝑚 2 cot 𝛽

(︂
𝑄𝑚

2𝜋ℎ

)︂2(︂
1

𝑟3

)︂
+ 2 𝜌𝑚 𝜔

(︂
𝑄𝑚

2 𝜋 ℎ

)︂(︂
1

𝑟

)︂
− 4𝜇

𝜆𝑘

𝛼𝑘

𝑄𝑚

2𝜋 ℎ

1

𝑟3
cot 𝛽

−𝑓

4
𝜌𝑚

(︂
𝑄𝑚

2𝜋 ℎ

)︂2
1

sin 𝛽

(︂
1

ℎ 𝑟2
+

𝑍𝑏

2 𝜋 𝑟3

)︂
(− cot 𝛽)
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Applying the mean operator:

1

∆𝑟

∫︁ 𝑟𝑜

𝑟𝑖

−1

𝑟

𝜕𝑝

𝜕𝜃
𝑑𝑟 = 𝜌𝑚 2 cot 𝛽

(︂
𝑄𝑚

2𝜋ℎ

)︂2
1

∆𝑟

∫︁ 𝑟𝑜

𝑟𝑖

(︂
1

𝑟3

)︂
𝑑𝑟 − 2 𝜌𝑚 𝜔

(︂
𝑄𝑚

2𝜋 ℎ

)︂
1

∆𝑟∫︁ 𝑟𝑜

𝑟𝑖

(︂
1

𝑟

)︂
𝑑𝑟 − 4𝜇

𝜆𝑘

𝛼𝑘

𝑄𝑚

2 𝜋 ℎ

cot 𝛽

∆𝑟

∫︁ 𝑟𝑜

𝑟𝑖

1

𝑟3
𝑑𝑟 − 𝑓

4
𝜌𝑚

(︂
𝑄𝑚

2 𝜋 ℎ

)︂2
1

sin 𝛽

(− cot 𝛽)

∆𝑟∫︁ 𝑟𝑜

𝑟𝑖

(︂
1

ℎ 𝑟2
+

𝑍𝑏

2𝜋 𝑟3

)︂
𝑑𝑟

ln(𝑟𝑜/𝑟𝑖)

∆𝑟
∆𝑃𝜃 = 𝜌𝑚 2 cot 𝛽

(︂
𝑄𝑚

2𝜋ℎ

)︂2
1

∆𝑟

[︂
−1

2

(︂
𝑟2𝑖 − 𝑟2𝑜
𝑟2𝑖 𝑟

2
𝑜

)︂]︂
+ 2 𝜌𝑚 𝜔

(︂
𝑄𝑚

2𝜋 ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

∆𝑟

−𝜇
𝜆𝑘

𝛼𝑘

𝑄𝑚

𝜋 ℎ

cot 𝛽

∆𝑟

(︂
𝑟2𝑜 − 𝑟2𝑖
𝑟2𝑖 𝑟

2
𝑜

)︂
+

𝑓

4
𝜌𝑚

cot 𝛽

sin 𝛽

(︂
𝑄𝑚

2𝜋 ℎ

)︂2
𝑓3
∆𝑟

(C.102)

Substituting Eq. C.102 in C.93:

𝐹𝐸
𝜃 = −𝐵𝑏

{︂̃︁𝜌𝑚 2 cot 𝛽

(︂
𝑄𝑚

2𝜋ℎ

)︂2[︂(︂
𝑟

𝑟2𝑖 𝑟
2
𝑜

)︂]︂
+ 2 𝜌𝑚 𝜔

(︂
𝑄𝑚

2 𝜋 ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

∆𝑟

−2𝜇
𝜆𝑘

𝛼𝑘

𝑄𝑚

𝜋 ℎ
cot 𝛽

(︂
𝑟

𝑟2𝑖 𝑟
2
𝑜

)︂
+

𝑓

4
𝜌𝑚

cot 𝛽

sin 𝛽

(︂
𝑄𝑚

2𝜋 ℎ

)︂2
𝑓3
∆𝑟

}︂ (C.103)

Projecting buoyancy forces in blade coordinate system:

𝐹𝐸
2𝑠 = 𝐹𝐸

2𝑟 sin 𝛽 − 𝐹𝐸
2𝜃 cos 𝛽

𝐹𝐸
2𝑛 = 𝐹𝐸

2𝑟 cos 𝛽 + 𝐹𝐸
2𝜃 sin 𝛽 (C.104)

C.6 Development of Transition Criteria

The next sections describes the two conditions of the Transition Criteria. These
conditions were explained in chapter 4, section 5.4.1.
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C.6.1 Condition 1

𝐹𝐷
2𝑠 + 𝐹 𝑉 𝐵

2𝑠 + 𝐹𝐸
2𝑠 + 𝐹 𝐹

2𝑠 + 𝐹 𝑉 𝐵
2𝑛 + 𝐹𝐸

2𝑛 + 𝐹 𝐹
2𝑛 = 0

𝐹𝐷
2𝑠 + 𝐹 𝑉 𝐵

2𝑟 sin 𝛽 +
[︁
𝐹𝐸
2𝑟 sin 𝛽 − 𝐹𝐸

2𝜃 cos 𝛽
]︁

+
[︁
𝐹 𝐹
2𝑟 sin 𝛽 − 𝐹 𝐹

2𝜃 cos 𝛽
]︁

+ 𝐹 𝑉 𝐵
2𝑟 cos 𝛽

+
[︁
𝐹𝐸
2𝑟 cos 𝛽 + 𝐹𝐸

2𝜃 sin 𝛽
]︁

+
[︁
𝐹 𝐹
2𝑟 cos 𝛽 + 𝐹 𝐹

2𝜃 sin 𝛽
]︁

= 0

𝐹𝐷
2𝑠 + 𝐹 𝑉 𝐵

2𝑟

(︁
sin 𝛽 + cos 𝛽

)︁
+ 𝐹 𝐹

2𝑟

(︁
sin 𝛽 + cos 𝛽

)︁
− 𝐹 𝐹

2𝜃

(︁
cos 𝛽 − sin 𝛽

)︁
−𝐹𝐸

2𝜃

(︁
cos 𝛽 − sin 𝛽

)︁
= −𝐹𝐸

2𝑟

(︁
sin 𝛽 + cos 𝛽

)︁
−𝐹𝐸

2𝑟 =
𝐹𝐷
2𝑠

sin 𝛽 + cos 𝛽
+𝐹 𝑉 𝐵

2𝑟 +𝐹 𝐹
2𝑟 −𝐹 𝐹

2𝜃

cos 𝛽 − sin 𝛽

sin 𝛽 + cos 𝛽
−𝐹𝐸

2𝜃

cos 𝛽 − sin 𝛽

sin 𝛽 + cos 𝛽
(C.105)

Where:
𝐺5 =

cos 𝛽 − sin 𝛽

sin 𝛽 + cos 𝛽
(C.106)

Substituting Eq. C.106 in C.105:

−𝐹𝐸
2𝑟 =

𝐹𝐷
2𝑠

sin 𝛽 + cos 𝛽
+ 𝐹 𝑉 𝐵

2𝑟 + 𝐹 𝐹
2𝑟 − 𝐹 𝐹

2𝜃 𝐺5 − 𝐹𝐸
2𝜃 𝐺5

(C.107)

Substituting the forces:

𝐵𝑏
∆𝑃𝑟

∆𝑟
=

1

2

𝐴𝑝𝐶𝐷 𝜌1𝑣𝑠,𝑠
2

(sin 𝛽 + cos 𝛽)
− 𝜌1𝐵𝑏 ∆𝐶 𝐿𝑎𝑚𝑏𝑑𝑎𝑠 csc2 𝛽

(︂
𝑄𝑚

2 𝜋 ℎ

)︂2(︂ −𝑟

𝑟2𝑖 𝑟
2
𝑜

)︂
−𝜌2𝐵𝑏

[︂
2𝜔

𝜆2

𝛼2

cot 𝛽

(︂
𝑄𝑚

2𝜋 ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

∆𝑟
− 𝜔2 𝑟

]︂
+ 𝜌2𝐵𝑏

[︂
2𝜔

𝜆2

𝛼2

(︂
𝑄𝑚

2𝜋 ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

∆𝑟

]︂
𝐺5

−𝐵𝑏

[︂̃︁𝜌𝑚 cot 𝛽 2

(︂
𝑄𝑚

2 𝜋 ℎ

)︂2(︂
𝑟

𝑟2𝑖 𝑟
2
𝑜

)︂
+ 𝜌𝑚 2𝜔

(︂
𝑄𝑚

2𝜋 ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

∆𝑟
− 2𝜇

𝜆𝑘

𝛼𝑘

𝑄𝑚

𝜋 ℎ

cot 𝛽

(︂
𝑟

𝑟2𝑖 𝑟
2
𝑜

)︂
+

𝑓

4
𝜌𝑚

cot 𝛽

sin 𝛽

(︂
𝑄𝑚

2𝜋 ℎ

)︂2
𝑓3
∆𝑟

]︂
𝐺5
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∆𝑃𝑟 =
1

2

𝐴𝑝

𝐵𝑏

𝐶𝐷 𝜌1𝑣𝑠,𝑠
2 ∆𝑟

(sin 𝛽 + cos 𝛽)
− 𝜌1 ∆𝐶 𝐿𝑎𝑚𝑏𝑑𝑎𝑠 csc2 𝛽

(︂
𝑄𝑚

2𝜋 ℎ

)︂2(︂−𝑟 ∆𝑟

𝑟2𝑖 𝑟
2
𝑜

)︂
−2𝜔 𝜌2

𝜆2

𝛼2

cot 𝛽

(︂
𝑄𝑚

2𝜋 ℎ

)︂
ln(𝑟𝑜/𝑟𝑖) + 𝜔2 𝑟 ∆𝑟 𝜌2 + 2𝜔 𝜌2

𝜆2

𝛼2

(︂
𝑄𝑚

2𝜋 ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)𝐺5

−̃︁𝜌𝑚 cot 𝛽 2

(︂
𝑄𝑚

2 𝜋 ℎ

)︂2

𝐺5

(︂
𝑟 ∆𝑟

𝑟2𝑖 𝑟
2
𝑜

)︂
− 𝜌𝑚 2𝜔

(︂
𝑄𝑚

2𝜋 ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)𝐺5

−2𝜇
𝜆𝑘

𝛼𝑘

𝑄𝑚

𝜋 ℎ
cot 𝛽

(︂
𝑟 ∆𝑟

𝑟2𝑖 𝑟
2
𝑜

)︂
𝐺5 +

𝑓

4
𝜌𝑚

cot 𝛽

sin 𝛽
𝐺5

(︂
𝑄𝑚

2𝜋 ℎ

)︂2

𝑓3

(C.108)

Where:

∘ 𝑟 ∆𝑟

𝑟2𝑖 𝑟
2
𝑜

=
−(𝑟𝑜 + 𝑟𝑖)(𝑟𝑜 − 𝑟𝑖)/2

𝑟2𝑖 𝑟
2
𝑜

=
(−𝑟2𝑜 − 𝑟2𝑖 )/2

𝑟2𝑖 𝑟
2
𝑜

= −1

2

1

𝑟2𝑜

[︂(︂
𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂
Dividing Eq. C.108 by 𝜌𝑚 𝜔2 𝑟2𝑜:

∆𝑃𝑟

𝜌𝑚 𝜔2 𝑟2𝑜
=

1

2

𝐴𝑝

𝐵𝑏

𝐶𝐷 ∆𝑟

(sin 𝛽 + cos 𝛽)

[︂
𝜌1𝑣𝑠,𝑠

2

∆𝜌𝜔2 𝑟2𝑜

]︂
∆𝜌

𝜌𝑚
− 𝜌1

𝜌𝑚
∆𝐶 𝐿𝑎𝑚𝑏𝑑𝑎𝑠

csc2 𝛽

4𝜋2(︂
𝑄2

𝑚

𝜔2 𝑟6𝑜

)︂(︂
𝑟𝑜
ℎ

)︂2{︂
1

2

[︂(︂
𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂}︂
− 𝜌2

𝜌𝑚

𝜆2

𝛼2

cot 𝛽

𝜋

(︂
𝑄𝑚

𝜔 𝑟3𝑜

)︂(︂
𝑟𝑜
ℎ

)︂
ln(𝑟𝑜/𝑟𝑖) +

𝜌2
𝜌𝑚

𝑟 ∆𝑟

𝑟2𝑜
+

𝜌2
𝜌𝑚

𝜆2

𝛼2

(︂
𝑄𝑚

𝜔 𝑟3𝑜

)︂(︂
𝑟𝑜
ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

𝜋
𝐺5 −

̃︁𝜌𝑚
𝜌𝑚

cot 𝛽

4𝜋2
2

(︂
𝑄2

𝑚

𝜔2 𝑟6𝑜

)︂2(︂
𝑟𝑜
ℎ

)︂2

𝐺5{︂
− 1

2

[︂(︂
𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂}︂
− 𝑟𝑜

ℎ

(︂
𝑄𝑚

𝜔 𝑟3𝑜

)︂
ln(𝑟𝑜/𝑟𝑖)

𝜋
𝐺5 − 2

𝜇

𝜌𝑚

𝜆𝑘

𝛼𝑘

(︂
𝑄𝑚

𝜔 𝑟3𝑜

)︂
cot 𝛽

(𝜔 𝜋 ℎ){︂
− 1

2

1

𝑟𝑜

[︂(︂
𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂}︂
𝐺5 +

𝑓

4

𝜌𝑚
𝜌𝑚

cot 𝛽

sin 𝛽
𝐺5

(︂
𝑄2

𝑚

𝜔2 𝑟6𝑜

)︂
𝑟4𝑜

4𝜋2 ℎ2
𝑓3
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𝐶𝐻 =
1

2

𝐴𝑝

𝐵𝑏

𝐶𝐷 ∆𝑟

(sin 𝛽 + cos 𝛽)

∆𝜌

𝜌𝑚
𝐹𝑟2𝑇𝑃,𝑠 +

𝜌1
𝜌𝑚

∆𝐶 𝐿𝑎𝑚𝑏𝑑𝑎𝑠𝐺1𝐶
2
𝑄 − 𝜌2

𝜌𝑚

𝜆2

𝛼2

cot 𝛽(︂
𝑟𝑜
ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

𝜋
𝐶𝑄 +

𝜌2
𝜌𝑚

(︂
𝑟2𝑜 − 𝑟2𝑖

2 𝑟2𝑜

)︂
+

𝜌2
𝜌𝑚

𝜆2

𝛼2

(︂
𝑟𝑜
ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

𝜋
𝐺5𝐶𝑄 +

̃︁𝜌𝑚
𝜌𝑚

cot 𝛽

4𝜋2(︂
𝑟𝑜
ℎ

)︂2 [︂(︂
𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂
𝐺5𝐶

2
𝑄 −

(︂
𝑟𝑜
ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

𝜋
𝐺5𝐶𝑄 +

𝜇

𝜌𝑚

𝜆𝑘

𝛼𝑘

cot 𝛽

(𝜔 𝜋 ℎ)

1

𝑟𝑜

[︂(︂
𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂
𝐺5𝐶𝑄 +

𝑓

4

𝜌𝑚
𝜌𝑚

cot 𝛽

sin 𝛽
𝐺5

(︂
𝑟4𝑜

4𝜋2 ℎ2

)︂
𝑓3𝐶

2
𝑄

(C.109)

Coupling the terms:

𝐶𝐻 =

{︂
𝜌1
𝜌𝑚

∆𝐶 𝐿𝑎𝑚𝑏𝑑𝑎𝑠𝐺1 +
̃︁𝜌𝑚
𝜌𝑚

cot 𝛽

4𝜋2

(︂
𝑟𝑜
ℎ

)︂2 [︂(︂
𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂
𝐺5 +

𝑓

4

𝜌𝑚
𝜌𝑚

cot 𝛽

sin 𝛽
𝐺5(︂

𝑟4𝑜
4𝜋2 ℎ2

)︂
𝑓3

}︂
𝐶2

𝑄 +

{︂
𝜌2
𝜌𝑚

𝜆2

𝛼2

(︂
𝑟𝑜
ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

𝜋
𝐺5 −

𝜌2
𝜌𝑚

𝜆2

𝛼2

cot 𝛽

(︂
𝑟𝑜
ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

𝜋

−
(︂
𝑟𝑜
ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

𝜋
𝐺5 +

𝜇

𝜌𝑚

𝜆𝑘

𝛼𝑘

cot 𝛽

(𝜔 𝜋 ℎ)

1

𝑟𝑜

[︂(︂
𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂
𝐺5

}︂
𝐶𝑄 +

1

2

(︂
𝐴𝑝

𝐵𝑏

)︂
𝐶𝐷 ∆𝑟

(sin 𝛽 + cos 𝛽)

∆𝜌

𝜌𝑚
𝐹𝑟2𝑇𝑃,𝑠 +

𝜌2
𝜌𝑚

1

2

[︂
1 −

(︂
𝑟𝑖
𝑟𝑜

)︂2]︂
(C.110)

𝐶𝐻 = 𝐷1𝐶
2
𝑄 + 𝐷2𝐶𝑄 +

(︁
𝐷3𝐹𝑟2𝑇𝑃,𝑠 + 𝐷4

)︁
(C.111)
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where 𝐷
′

𝑘,𝑘={1,2,3,4} = 𝑓(𝜆,𝐶𝐷,∆𝐶)

∘ 𝐷1 =
𝜌1
𝜌𝑚

∆𝐶 𝐿𝑎𝑚𝑏𝑑𝑎𝑠𝐺1 +
̃︁𝜌𝑚
𝜌𝑚

cot 𝛽

4𝜋2

(︂
𝑟𝑜
ℎ

)︂2 [︂(︂
𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂
𝐺5

+
𝑓

4

𝜌𝑚
𝜌𝑚

cot 𝛽

sin 𝛽
𝐺5

(︂
𝑟4𝑜

4 𝜋2 ℎ2

)︂
𝑓3

∘ 𝐷2 =
𝜌2
𝜌𝑚

𝜆2

𝛼2

(︂
𝑟𝑜
ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

𝜋
𝐺5 −

𝜌2
𝜌𝑚

𝜆2

𝛼2

cot 𝛽

(︂
𝑟𝑜
ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

𝜋

−
(︂
𝑟𝑜
ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

𝜋
𝐺5 +

𝜇

𝜌𝑚

𝜆𝑘

𝛼𝑘

cot 𝛽

(𝜔 𝜋 ℎ)

1

𝑟𝑜

[︂(︂
𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂
𝐺5

∘ 𝐷3 =
1

2

(︂
𝐴𝑝

𝐵𝑏

)︂
𝐶𝐷 ∆𝑟

(sin 𝛽 + cos 𝛽)

∆𝜌

𝜌𝑚

∘ 𝐷4 =
𝜌2
𝜌𝑚

1

2

[︂
1 −

(︂
𝑟𝑖
𝑟𝑜

)︂2]︂
(C.112)

C.6.2 Condition 2

𝐹𝐷
2𝑠 + 𝐹 𝑉 𝐵

2𝑠 + 𝐹𝐸
2𝑠 + 𝐹 𝐹

2𝑠 − 𝐹 𝑉 𝐵
2𝑛 − 𝐹𝐸

2𝑛 − 𝐹 𝐹
2𝑛 = 0

𝐹𝐷
2𝑠 + 𝐹 𝑉 𝐵

2𝑟 sin 𝛽 +
[︁
𝐹𝐸
2𝑟 sin 𝛽 − 𝐹𝐸

2𝜃 cos 𝛽
]︁

+
[︁
𝐹 𝐹
2𝑟 sin 𝛽 − 𝐹 𝐹

2𝜃 cos 𝛽
]︁
− 𝐹 𝑉 𝐵

2𝑟 cos 𝛽

−
[︁
𝐹𝐸
2𝑟 cos 𝛽 + 𝐹𝐸

2𝜃 sin 𝛽
]︁
−
[︁
𝐹 𝐹
2𝑟 cos 𝛽 + 𝐹 𝐹

2𝜃 sin 𝛽
]︁

= 0

𝐹𝐷
2𝑠 + 𝐹 𝑉 𝐵

2𝑟

(︁
sin 𝛽 − cos 𝛽

)︁
+ 𝐹 𝐹

2𝑟

(︁
sin 𝛽 − cos 𝛽

)︁
− 𝐹 𝐹

2𝜃

(︁
cos 𝛽 + sin 𝛽

)︁
−𝐹𝐸

2𝜃

(︁
cos 𝛽 + sin 𝛽

)︁
= −𝐹𝐸

2𝑟

(︁
sin 𝛽 − cos 𝛽

)︁
−𝐹𝐸

2𝑟 =
𝐹𝐷
2𝑠

sin 𝛽 − cos 𝛽
+𝐹 𝑉 𝐵

2𝑟 +𝐹 𝐹
2𝑟 −𝐹 𝐹

2𝜃

cos 𝛽 + sin 𝛽

sin 𝛽 − cos 𝛽
−𝐹𝐸

2𝜃

cos 𝛽 + sin 𝛽

sin 𝛽 − cos 𝛽
(C.113)

Where:
𝐺6 =

cos 𝛽 + sin 𝛽

sin 𝛽 − cos 𝛽
(C.114)
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Substituting Eq. C.113 in C.114:

−𝐹𝐸
2𝑟 =

𝐹𝐷
2𝑠

sin 𝛽 − cos 𝛽
+ 𝐹 𝑉 𝐵

2𝑟 + 𝐹 𝐹
2𝑟 − 𝐹 𝐹

2𝜃 𝐺6 − 𝐹𝐸
2𝜃 𝐺6

(C.115)

Eq. C.107 and C.115 are almost the same with exception of the terms 𝐺5, 𝐺6 and
the drag force which has his dividend been (sin 𝛽 − cos 𝛽). So, the final expression is:

𝐶𝐻 =

{︂
𝜌1
𝜌𝑚

∆𝐶 𝐿𝑎𝑚𝑏𝑑𝑎𝑠𝐺1 +
̃︁𝜌𝑚
𝜌𝑚

cot 𝛽

4𝜋2

(︂
𝑟𝑜
ℎ

)︂2 [︂(︂
𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂
𝐺6 +

𝑓

4

𝜌𝑚
𝜌𝑚

cot 𝛽

sin 𝛽
𝐺6(︂

𝑟4𝑜
4𝜋2 ℎ2

)︂
𝑓3

}︂
𝐶2

𝑄 +

{︂
𝜌2
𝜌𝑚

𝜆2

𝛼2

(︂
𝑟𝑜
ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

𝜋
𝐺6 −

𝜌2
𝜌𝑚

𝜆2

𝛼2

cot 𝛽

(︂
𝑟𝑜
ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

𝜋

−
(︂
𝑟𝑜
ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

𝜋
𝐺6 +

𝜇

𝜌𝑚

𝜆𝑘

𝛼𝑘

cot 𝛽

(𝜔 𝜋 ℎ)

1

𝑟𝑜

[︂(︂
𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂
𝐺6

}︂
𝐶𝑄 +

1

2

(︂
𝐴𝑝

𝐵𝑏

)︂
𝐶𝐷 ∆𝑟

(sin 𝛽 + cos 𝛽)

∆𝜌

𝜌𝑚
𝐹𝑟2𝑇𝑃,𝑠 +

𝜌2
𝜌𝑚

1

2

[︂
1 −

(︂
𝑟𝑖
𝑟𝑜

)︂2]︂
(C.116)

𝐶𝐻 = 𝐸1𝐶
2
𝑄 + 𝐸2𝐶𝑄 +

(︁
𝐸3𝐹𝑟2𝑇𝑃,𝑠 + 𝐷4

)︁
(C.117)

where 𝐸
′

𝑘,𝑘={1,2,3} = 𝑓(𝜆,𝐶𝐷,∆𝐶)

∘ 𝐸1 =
𝜌1
𝜌𝑚

∆𝐶 𝐿𝑎𝑚𝑏𝑑𝑎𝑠𝐺1 +
̃︁𝜌𝑚
𝜌𝑚

cot 𝛽

4𝜋2

(︂
𝑟𝑜
ℎ

)︂2 [︂(︂
𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂
𝐺6

+
𝑓

4

𝜌𝑚
𝜌𝑚

cot 𝛽

sin 𝛽
𝐺6

(︂
𝑟4𝑜

4 𝜋2 ℎ2

)︂
𝑓3

∘ 𝐸2 =
𝜌2
𝜌𝑚

𝜆2

𝛼2

(︂
𝑟𝑜
ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

𝜋
𝐺6 −

𝜌2
𝜌𝑚

𝜆2

𝛼2

cot 𝛽

(︂
𝑟𝑜
ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

𝜋

−
(︂
𝑟𝑜
ℎ

)︂
ln(𝑟𝑜/𝑟𝑖)

𝜋
𝐺6 +

𝜇

𝜌𝑚

𝜆𝑘

𝛼𝑘

cot 𝛽

(𝜔 𝜋 ℎ)

1

𝑟𝑜

[︂(︂
𝑟𝑜
𝑟𝑖

)︂2

− 1

]︂
𝐺6

∘ 𝐸3 =
1

2

(︂
𝐴𝑝

𝐵𝑏

)︂
𝐶𝐷 ∆𝑟

(sin 𝛽 − cos 𝛽)

∆𝜌

𝜌𝑚
(C.118)
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∙ Geometric coefficients:

∘ Geometric constant 5:
cos 𝛽 − sin 𝛽

sin 𝛽 + cos 𝛽
→ = −0.031

∘ Geometric constant 6:
cos 𝛽 + sin 𝛽

sin 𝛽 − cos 𝛽
→ = 31.82
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APPENDIX D – Dimensionless Groups and Diffuser
Pressure Gradient Analysis

D.1 Dimensionless Groups

In this section the most used dimensionless variables during the development of
this work are explained.

∙ Eötvos number: It measures the relation between gravitational forces and sur-
face tension forces. It is correlated to bubbles and fluids interface shape.

𝐸𝑜 =
𝑔(𝜌1 − 𝜌2)𝐷

2
𝑏

𝜎21

(D.1)

where 𝜎 is the interfacial or surface tension.
∙ Morton number: It is used together with the Eötvos number to characterized

the shape of bubbles. However, it does not use bubble diameter as one of the variables.

𝑀 = 𝑔 𝜇4
1 ∆𝜌/𝜌21 𝜎

3
21 (D.2)

∙ Strouhal number: It describes oscillating flow mechanisms.

𝑆𝑟 =
1

2𝜋 𝑓 𝜏𝑑𝑖𝑓𝑓,𝐵
=

𝜌2
8 𝜋 𝜌1

1

𝑆𝑡
where: 𝜏𝑑𝑖𝑓𝑓,𝐵 =

𝜌1 𝑑
2
𝐵

18𝜇1

(D.3)

∙ Reynolds number: This number is defined as the ratio between inertia and
viscous forces. This number is used to measure the turbulence of the flow.

𝑅𝑒𝜔 =
𝜌𝑓 𝐿

2
∞

𝑡∞ 𝜇∞
(D.4)

∙ Froude number: It is defined as the ratio between inertial and field forces
(such as gravitational and/or rotational), being important in segregated flow.

𝐹𝑟 =
𝐿∞

𝑡2∞ |𝑔|
(D.5)
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D.1.1 Scaling

The choice of reference variables is arbitrary. For this problem, the length scale
chose is the radius of the particle in the cases where the flow of the particle is important.
In the case of the Reynolds number associated with the flow rate the variable for length
scale chosen is the hydraulic diameter or the pump diameter/radius. Also, the time scale
might be the rotational speed or th time itself.

𝐿∞ = 𝑟𝑝 ;𝑜𝑟 𝑡∞ = 𝜔−1𝑜𝑟𝑡∞ (D.6)

The dimensionless groups become:

∙ Reynolds number:

𝑅𝑒𝜔 =
𝜌𝑓 𝜔 𝑟2𝑝
𝜇𝑓

(D.7)

This Reynolds number 𝑅𝑒𝜔 is related to the rotation of the pump and it is usually
used for single-phase flow. The Reynolds number can be related to the mixture which is
known as two-phase mixture Reynolds:

𝑅𝑒 =
𝜌𝑘 𝑣𝑘 𝐿∞

𝜇𝑘

→ 𝑅𝑒 =
𝜌𝑚 𝑗𝑚𝑠 𝐷𝐻

𝜇𝑚

(D.8)

The subscript 𝑘 is related to the phase. In this work, the hydraulic diameter 𝐷𝐻

is used as characteristic length. The literature indicates that the Reynolds number writ-
ten from mixture properties is more representative, for example, the calculus of pres-
sure gradient might be a function of the friction factor, which is a function of mixture
Reynolds number (SHOHAM, 2005 , WALLIS, 1969). The particle Reynolds number is
given in function of relative velocity:

𝑅𝑒𝑃 =
𝜌1 𝑑𝑏 |𝑣𝑠|

𝜇1

(D.9)

Table D.1 shows the three Reynolds number calculated for the two-phase flow
experiments.
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Table D.1: Impeller rotation 𝜔, mass gas flow rate �̇�, rotational Reynolds 𝑅𝑒𝜔, two-
phase mixture Reynolds 𝑅𝑒, particle Reynolds 𝑅𝑒𝑃

𝜔 �̇� 𝑅𝑒𝜔 𝑅𝑒 𝑅𝑒𝑃

[𝑟𝑝𝑚] [𝑘𝑔/ℎ] [-]108 [-]104 [-]103

1 600 0.025 1.191 0.984 0.652
2 600 0.025 1.352 0.862 0.840
3 600 0.025 1.642 0.763 1.099
4 600 0.025 1.766 0.643 1.261
5 900 0.025 0.337 1.568 0.339
6 900 0.025 0.460 1.338 0.563
7 900 0.025 0.938 1.122 0.992
8 900 0.025 1.351 0.914 1.378
9 900 0.012 0.337 1.558 0.343

10 900 0.012 0.460 1.351 0.592
11 900 0.012 0.938 1.096 1.055
12 900 0.012 1.351 0.920 1.367
13 1200 0.025 0.210 2.123 0.306
14 1200 0.025 0.253 1.928 0.450
15 1200 0.025 0.406 1.636 0.727
16 1200 0.025 0.562 1.260 0.990

The table shows that a turbulent behavior is expected in every case analyzed.
∙ Froude number: As done with Reynolds numbers, the hydraulic diameter and

mixture properties are used. This number was written for the mixture and was used
as a coordinate in the flow pattern map of Beggs and Brill’s model (SHOHAM, 2005 ;
WALLIS, 1969).

𝐹𝑟 =
𝑣2𝑘

|𝑔|𝐿∞
(D.10)

The Reynolds and Froude numbers are the most important to describe properly
the flow because they are connected to the turbulence and fluid segregation. The Froude
number can be related to the mixture velocity in the context of the Boussinesq approxi-
mation. In the present work, the two-phase Froude number 𝐹𝑟𝑇𝑃,𝑠 and mixture Froude
number 𝐹𝑟𝑚 are used, which are:
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𝐹𝑟2𝑇𝑃,𝑠 =
𝜌1 𝑣𝑠,𝑠

2

∆𝜌𝜔2 𝑟2𝑜

𝐹𝑟𝑚 =

√︂
𝜌1
∆𝜌

(︂
𝑄𝑚

2𝜋 𝑟𝑜 ℎ

)︂⧸︁
𝜔𝑟𝑜

The two-phase Froude number 𝐹𝑟𝑇𝑃,𝑠 is related with slip velocity 𝑣𝑠,𝑠 and the
mixture Froude number 𝐹𝑟𝑚 with the mixture velocity 𝑗𝑚(𝑟).

D.2 Diffuser Pressure Gradient

When the rotational speed is equal to zero, the pressure term in Eq. C.13 can be
used for the diffuser which is:

−𝜕𝑝

𝜕𝑟
= 𝜌𝑚

[︂
(1 + cot2 𝛽)

4𝜋2 ℎ2

]︂
𝑄2

𝑚

(︂
−1

𝑟3

)︂
+ ∇ · ⃗⃗𝜏 (D.11)

Table D.2 shows the increment of pressure for pump, diffuser, and impeller. Com-
paring the values, it can be observed that the increment pressure in the diffuser is much
smaller than the ones in the impeller. This fact is in agreement of the findings explained
by Amaral (2007) found in his experiments.

The equation of Navier-Stokes was applied directly in the impeller, so it was nec-
essary to do the pressure correction.
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Table D.2: Pressure increment

𝐼𝑀 𝜔 �̇� ∆𝑃𝑝𝑢𝑚𝑝 ∆𝑃𝑑𝑖𝑓 ∆𝑃𝑖𝑚𝑝

1 600 0.025 1007 86 921

2 600 0.025 2280 66 2215

3 600 0.025 3006 52 2954

4 600 0.025 3886 36 3850

5 900 0.025 541 221 320

6 900 0.025 4579 160 4419

7 900 0.025 7260 112 7148

8 900 0.025 9318 74 9244

9 900 0.012 418 217 201

10 900 0.012 4168 163 4005

11 900 0.012 8078 107 7971

12 900 0.012 9025 75 8950

13 1200 0.025 262 405 -143

14 1200 0.025 5246 334 4912

15 1200 0.025 11341 240 11101

16 1200 0.025 16589 142 16447



239

APPENDIX E – Friction Factor Comparison

This appendix shows the procedure to calculate the friction factor in a centrifugal
pump realized by S.Vieira (2014), which adopted procedures from the literature. The
flow through an impeller happens basically in a duct of rectangular section, curvilinear
and under rotation. Thus, it is necessary to apply corrections for the impeller friction
factor. The hydraulic diameter needs to be defined referring to the cross-section of the
impeller channel, which is approximately the shape of a rectangle with an average width
of 𝑎 and an average height of 𝑏. Figure E.1 shows the shape of the rectangle in the
impeller channel.

Blade Blade

Shroud

Hub

v

v
r

Figure E.1: Rectangle shape of the impeller channel.

Equation E.1 shows the relationship that defines the average width of the impeller
channel:

𝑎 =
2𝜋 𝑟

𝑁𝑎

sin 𝛽 (E.1)

where 𝑟 is the average radius, 𝑁𝑎 is the number of blades and 𝛽 is the angle between the
relative velocity and the tangential direction, measured in the opposite direction to the
impeller rotation. The hydraulic diameter is given by Eq.E.2 :

𝐷𝐻 =
2 𝑎 𝑏

𝑎 + 𝑏
(E.2)
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E.1 Reynolds number

The friction factor is related to the type of flow regime that is occurring in the im-
peller channel, if it is laminar or turbulent. This determination depends on the Reynolds
number 𝑅𝑒, which is related to the relative velocity 𝑣 along the impeller channel.

𝑅𝑒 =
𝜌 𝑣 𝐷𝐻

𝜇
(E.3)

where 𝑟ℎ𝑜 is the density, 𝑚𝑖 is the viscosity and 𝐷𝐻 is the hydraulic diameter.

E.2 Friction factor for circular, straight and stationary tubes

The friction factor correlation used in this study was given by CHURCHILL, 1977,
for turbulent flow:

𝑓 = 8

{︂
2.457 ln

[︂
1

⧸︂(︁ 7

𝑅𝑒

)︁0.9

+ 0.27
(︁ 𝜖

𝐷𝐻

)︁]︂}︂−2

(E.4)

where 𝜖 is the absolute surface roughness of the impeller channel, which for our case
this value is approximated to 0.09 from Moody diagram in Fig. 4.14.

E.3 Effects in friction factor

The friction factor showed before can not be applied directly in the ESP impeller
channel, whose the cross-section is rectangular, the channel is curved and rotates at
angular velocity 𝜔. These problems were studied independently from each other by
many authors. Next, these factors are showed separately.

E.3.1 Friction factor due to rectangular cross-section

The effect of rectangular cross-section on the friction factor in a duct was studied
by Shah (1978), which uses the concept of laminar hydraulic diameter 𝐷𝑒𝑞, defined by:

𝐷𝑒𝑞 =

(︂
2

3
+

11

24
𝑙(2 − 𝑙)

)︂
𝐷𝐻 (E.5)
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where 𝑙 is the aspect ratio of the rectangular cross-section for the liquid, defined as:

𝑙 =
𝑚𝑖𝑛(𝑎,𝑏)

𝑚𝑎𝑥(𝑎,𝑏)
(E.6)

The equivalent Reynolds number 𝑅𝑒𝑒𝑞 is:

𝑅𝑒𝑒𝑞 =
𝜌 𝑣 𝐷𝑒𝑞

𝜇
(E.7)

The friction factor corrector 𝐹𝑟 for turbulent flow is:

𝐹𝑟 =
𝑓𝑟
𝑓

= 1

⧸︂[︂
2

3
+

11

24
𝑙 (2 − 𝑙)

]︂0.25
(E.8)

E.3.2 Friction factor due to channel curvature

The ratio between 𝑅𝑐 and 𝑟𝐻 is measured in this section, where 𝑅𝑐 is the channel
curvature and 𝑟𝐻 is the hydraulic radius. Two conditions exist for the calculus of a critic
Reynolds, which is this ratio be higher than 860 or lesser. In our experiments, 𝑅𝑐/𝑟𝐻 is
lesser, so:

𝑅𝑐

𝑟𝐻
< 880 so: 𝑅𝑒𝑐𝑟𝑖𝑡𝛽 = 2.104

(︂
𝑟𝐻
𝑅𝑐

)︂0.32

(E.9)

The friction factor due to curvature is (S.VIEIRA, 2014):

𝑓𝛽 = 1.5

[︂
𝑅𝑒

(︂
𝑟𝐻
𝑅𝑐

)︂0.5⧸︂
53

]︂−0.611

(E.10)

The friction factor for the turbulent flow depends on the Reynolds number 𝑅𝑒 and
the ratio between the radius curvature 𝑅𝑐 and the hydraulic radius of the channel 𝑟𝐻
where:

If: 300 > 𝑅𝑒

(︂
𝑟𝐻
𝑅𝑐

)︂2

> 0.034 so: 𝐹𝛽 =
𝑓𝛽
𝑓

= 0.092

[︂
𝑅𝑒

(︂
𝑟𝐻
𝑅𝑐

)︂2]︂0.25
+ 0.962

(E.11)
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where 𝑅𝑐 and 𝑟𝐻 are:

𝑅𝑐 =
1

2

𝑟2𝑜 − 𝑟2𝑖
𝑟𝑜 cos 𝛽𝑜 − 𝑟𝑖 cos 𝛽𝑖

; 𝑟𝐻 =
𝐷𝐻

4
(E.12)

E.3.3 Friction factor due to pump rotation

The rotational Reynolds number is important here, defined as:

𝑅𝑒𝜔 =
𝜌𝜔𝐷2

𝐻

𝜇
(E.13)

This number needs to be higher than 28 (S.VIEIRA, 2014) in order to consider
rotational parameters. So:

If: 𝑅𝑒𝜔 ≥ 28 so: 𝑅𝑒𝑐𝑟𝑖𝑡𝜔 = 1070𝑅𝑒0.23𝜔 (E.14)

The dimensionless parameter 𝐾𝑡𝑢𝑟𝑏 is defined as:

𝐾𝑡𝑢𝑟𝑏 =
𝑅𝑒2𝜔
𝑅𝑒

(E.15)

So:
If: 𝐾𝑡𝑢𝑟𝑏 > 15 so: 𝐹𝜔 =

𝑓𝜔
𝑓

= 0.942𝐾0.05
𝑡𝑢𝑟𝑏 (E.16)

E.4 Friction factor for the ESP impeller channel

The friction factors’ overlap was adopted by Estevam (2002), Sun et al. (2006),
Amaral (2007), S.Vieira (2014) and also in the present work. It is assumed that the
individual effects of each correction factor 𝐹𝑟, 𝐹𝛽 and 𝐹𝜔 multiply the friction factor
flor roudn pipe in the same condition, so, the one for ESP is found, which is 𝑓𝑟𝛽𝜔.

𝑓𝑟𝛽𝜔 = 𝐹𝑟 𝐹𝛽 𝐹𝜔 𝑓 (E.17)
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APPENDIX F – Spreading Illumination Efficiently

Exist an efficient way to distribute point over a disc/plate, in our case it helps to
distribute light source points to prevent the formation of small portions of shadows over
a surface. One way to formulate a solution is to rely on a particle system. Each point is
a particle, particles are repulsing each other with a 1/𝑟2 force. A way to find this best
efficient distribution is to put the particles on the disc, at random location, then shake
vigorously, add some small drag force, let the particles reach a steady stare, shake again,
rinse, repeat. It is not as easy as sounds. The setup of the forces, the distribution over
the disk, the integrator to use to compute the particle’s motion are topics that until now
are discussed. For more than a few hundred particles, this process will be terribly slow.
A way to distribute the points is presented in Fig. F.1, given by Vogel’s method which
will be discussed in the next paragraphs.

Figure F.1: 256 points with Vogel’s method.

There are much simpler and leaner algorithms to evenly distribute N points over
a disc. A good approximation is the spiral. Imagine a spiral of dots starting from the
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center of the disc. In polar coordinates, the N points are produced by the sequence:

𝜌𝑖 = 𝜃𝑖

𝜏𝑖 =

√︂
𝑖

𝑁

(F.1)

where 𝜌𝑖 and 𝜏𝑖 are respectively the angle in radian and the radius of the i-th point. Why
𝜏𝑖 =

√︀
𝑖/𝑁 ? Suppose that a unit disc was cut in one disc and one ring of equal areas,

thus 𝜋𝑟21 = 𝜋𝑟22. Thus 𝑟1 =
√︀

1/2. Next, a unit disc, as before, was cut in one disc and
two concentric rings, all of equal areas. A slightly more complex calculation would tell
us that the disc should be cut at radius 𝑟1 =

√︀
1/3 and 𝑟2 =

√︀
2/3. The calculation

is a bit more complex when cutting the unit disc in N equal areas rings, but as did for
one and two cut, it becomes: 𝑟1 =

√︀
1/𝑁 , 𝑟2 =

√︀
2/𝑁 , · · · , 𝑟𝑖 =

√︀
𝑖/𝑁 . Figure

F.2 presents discs cut in equal thickness and equal area concentric rings, showing the
difference between them.

Figure F.2: Equal thickness versus equal areas concentric rings.

The ideal angle 𝜃 should be the golden angle, which is: 𝜋(3 −
√

5). It is roughly
equal to 137.508∘, or about 2.39996 radians; The golden angle is the "most irrational"
angle, defined as 2 𝜋(1 − 1/𝜃) with 𝜃 being the golden ratio. If 𝜃 is a rational number,
we would obtain clusters of points aligned with the center of the disk. Thus 𝜃 have to
be irrational. As is turns out, the golden angle ratio is the irrational number the hardest
approximate with a continued fraction. Written as a continued fraction, the golden ratio
is the irrational number with the slowest convergence of all the irrational numbers. The
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golden angle gives the best possible spread for the 𝜌𝑖 angles. This method to spread
points over a disc is called Vogel’s method, and it is shown in Fig. F.1.

Figure F.3: Effect of the angle step parameter, on 256 points.

Figure F.3 shows the effect of the angle step parameter. The two leftmost points
layouts are for rational values of the angle step. The top center one is for square root of
2, the 3 others are for others irrational values. This method was implemented in Matlab
with results presented in Fig. F.4. The circle in red is where the camera was positioned,
while the marks in blue are for the lamps.

The lamps used are LEDs (Light Emitting Diode) of 10 Watts capable of deliver-
ing 1000 lumens. Three Atx computer’s source provides a continuous current of 9000
𝑚𝐴 and the source voltage of 12 𝑉 . Each Atx source provided electricity to ten LEDs
in parallel, a total of 30 LEDs. Figure F.5 shows the equipment constructed, frontal and
rear view. Each LED works with a resistor of 1.2 ohms, so delivering 800 lumens each,
so the total 24.000 lumens.

This illumination was tested with the high-speed camera model I-Speed 3, manu-
factured by Olympus. However, during the work, a new camera was purchased PHAN-
TON VEO 630, which was able to capture more details without the necessity of the
illumination described in this Appendix.

The objective of this equipment is the reduction of shadows generated by the
old setup. As the new setup reduce the shadows, the illumination constructed was not
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Figure F.4: Matlab code projection for LED’s

(b)(a)

Figure F.5: (a) Front view - (b) Rear view

necessary, so it was not used. This appendix was written because the light source is
much cheaper, costing no more than R$30.00, and the distribution of the light can be
used in other applications.
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APPENDIX G – OpenFOAM Numerical Simulations

At the beginning of this work, only the impeller was simulated. It means that
the entrance of the flow in the impeller channels was set up as a boundary condition.
The other components were not simulated. The flow was assumed to enters normal
to the entrance of the impeller in the simulations. This condition reduces losses that
naturally occur in the ESP. First, the mesh was built in the BlockMesh utility, supplied
with OpenFOAM. Figure G.1 shows the mesh generated.

Inlet

Outlet

Wall

Wall

Figure G.1: Impeller mesh.

Figure G.2 shows the results of the simulations performed. However, the simula-
tions at points far from the BEP do not show good results. This stems from the fact that
they are not well computed, since, for example, shocks are minimized when the direction
of the flow was adopted normally entering at the entrance surface. Figure G.2 shows the
results of the simulation in comparison with the experimental data (Monte Verde (2016))
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for single-phase flow. The green line corresponds to the maximum pressure increment
the pump can add to the fluid, where no losses are considered, it is Euler’s correlation
(WHITE, 2003). The blue line corresponds to the experiments, and the red line is the
simulations. The triangle in black is where the best efficiency point is located.
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Figure G.2: Pressure increment x flow rate.

This simulations were not carried out. After the diffuser entrance was measured,
it was possible to simulate the pump with entire components. However, a different kind
of interface algorithm is now required, which is the GGI (General Grid Interface). This
is an intersection algorithm that is a class of grid connections where the grid on either
side of the two connected surfaces does not match. In general, GGI connections allow
non-matching of node location, element type, surface extent, surface shape and even
non-matching of the flow physics across the connection (ANSYS, 2017).

The fluid domain, as explained in Fig. A.1 and complemented in section A.2.4
were simulated considering cyclic conditions. This condition is shown in Fig. G.3,
where in (a) it is possible to visually observe the domain and in (b) the file to con-
figure each cyclic condition. Besides this configuration, the overlap regions needs to be
configured.

This is the moment where the package present in any OpenFOAM version, until
the moment, does not be able to connect our case. GGI is an exception to have in some
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Cyclic
condition

(a) (b)

Figure G.3: (a) Domain view - (b) Configuration of cyclic boundary condition with GGI.

versions, but a GGI capable of connecting different size of areas is not present at now.
Figure G.4 shows an example of the region where the overlapGgi was implemented.
However, the difference in the number of blades and vanes, leads to a difference in
areas between the impeller and the diffuser domain, resulting in a problem. A face on
one side should get more than one flux at the same time. It would be necessary to add
some Fourier decomposition and time lagging to make it work.

The objective of the present work does not evolve the resolution of this problem.
The software Ansys already has this implemented, so the platform OpenFOAM was not
used after the upgrade done in the fluid domain.
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Diffuser domain
1/8

Impeller Domain
(rotative)

1/7
cyclicGgi

cyclicGgi

overlapGgi

cyclicGgi

cyclicGgi

Boundary condition

inlet

Problem

Figure G.4: GGI conection problem.
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