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Resumo
Um dos principais problemas na PI-teoria é provar a propriedade de Specht para uma
determinada álgebra e provar a racionalidade da série de Hilbert da álgebra relativamente
livre. Nesta tese de doutorado consideramos um corpo F de característica 0 e provamos a
propriedade de Specht para a variedade de superalgebras com superinvolução finitamente
gerada sobre F e para a variedade de álgebras Hm-módulo geradas pela álgebra UT2pF q

de matrizes triangulares superiores 2ˆ 2 onde Hm é uma álgebra de Taft de dimensão m2.
Alem disso, provamos a racionalidade da série de Hilbert da PI-álgebra A sobre F tanto
no caso A sendo uma superalgebra com superinvolução como no caso de uma álgebra de
Hopf semisimples de dimensão finita agindo sobre A.

Palavras-chave: Identidades polinomiais, álgebras de Hopf, propriedade de Specht, série
de Hilbert, álgebras H-módulo, superinvoluções, cocaracteres.



Abstract
One of the main problems in PI-theory is to prove the Specht property for a given algebra
and the rationality of the Hilbert series of its relatively free algebra. In this doctoral thesis
we consider a field F of characteristic 0 and we prove the Specht property for the variety
of finitely generated superalgebras with superinvolution over F and for the variety of
Hm-module algebras generated by the algebra UT2pF q of 2ˆ 2 upper triangular matrices,
where Hm is a Taft’s Hopf algebra of dimension m2. Moreover, we prove the rationality of
the Hilbert series of the PI-algebra A over F both in the case A is a superalgebra with
superinvolution and when a finite dimensional semisimple Hopf algebra acts on A.

Keywords: Polynomial identities, Hopf algebras, Specht property, Hilbert series, H-
module algebras, superinvolutions, cocharacters.
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Introduction

The theory of polynomial identities (PI-theory) plays an important role in ring
theory and has been the subject of study of many algebraists for the past 70 years. In the
early papers [17] and [62] the authors studied non commutative polynomials vanishing on
an algebra, but the systematic study of algebras with polynomial identities only started in
1948 with Kaplansky’s work [37]. In that paper it was proved that any primitive algebra
satisfying a polynomial identity is a finite dimensional simple algebra over its center,
suggesting an important finiteness condition for an algebra. A polynomial identity of an
algebra A is a polynomial in non-commuting indeterminates vanishing under all evaluations
in A and the algebras having at least one nontrivial polynomial identity (i.e., a nonzero
polynomial) are called PI-algebras.

One of the main problems concerning the qualitative approach in PI-theory is
determining the polynomial identities of specific algebras and studying the properties of the
varieties they define. Although the most classic results in this area deal with polynomial
identities for associative algebras over fields of characteristic 0, in the recent decades
different classes of algebras with additional structure, such as group graded algebras or
algebras with involution, have been studied in the context of PI-theory.

In this work we focus our attention on H-module algebras, where H is a finite
dimensional Hopf algebra and on the setting of superalgebras with superinvolution. In
particular, we study the so-called Hilbert series and the Specht property for these class of
PI-algebras.

We outline briefly what the Specht problem is: given a variety of algebras
(associative, Lie, Jordan, graded, etc.) one can ask whether or not any of its subvarieties is
finitely generated ([57]). In the language of T -ideals (the ideals of polynomial identities of
a given algebra), the Specht problem can be formulated as follows: given any algebra A, is
it true that any T -ideal containing the T -ideal of A is finitely generated (or based) as a
T -ideal? If we restrict our attention to the associative environment, the Specht problem
was solved positively in [39] and [40] by Kemer provided the ground field of the algebras
therein is of characteristic 0. His proof is based on deep structure theory of the T -ideals
which has given a new impetus to the subject. Further generalizations of Kemer’s result
are due to Sviridova [59] (PI-algebras graded by a finite abelian group), Aljadeff and
Kanel-Belov [2] (PI-algebras graded by a finite group), and Karasik [38] (PI-algebras that
are module algebras under the action of a finite dimensional semisimple Hopf algebra).

On the other hand, Hilbert polynomials, Hilbert series or Hilbert-Poincaré series
of graded (in a classical meaning) algebras are strongly related notions which attracted
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several mathematicians in the last century. The Hilbert series of an algebra represents a
crucial algebraic tool in computational algebraic geometry, as it is the easiest known way
for computing the dimension and the degree of an algebraic variety defined by explicit
polynomial equations. We recall that the question of whether the Hilbert series of an
algebra is the Taylor expansion of a rational function is fundamental in the commutative
setting because of its relations with other invariants related to the growth of an algebra
such as the Gelfand-Kirillov dimension or the Krull dimension of algebras.

Let F be a field and consider a graded (in a classical meaning) F -algebra A
with finite generating set X. If we denote by Apnq the F -vector space generated by the
monomials of degree n in the elements from X, then the Hilbert series of A is

HilbpA, tq “
8
ÿ

n“0
dimApnqtn.

IfA is a finitely generated (affine) commutative algebra, then theHilbert-Serre Theorem
says that the Hilbert series of A is rational ([6]). Nevertheless, such a theorem is not true
in the case the algebra is non-commutative and, in this context, we cite the work [5] by
Anick where the author showed a famous counterexample. Anyway, there is a big class of
non-commutative affine algebras whose Hilbert series is rational. In case of relatively free
algebras, that is, algebras isomorphic to the quotient of a finitely generated free algebra
by a T -ideal, it is known that their Hilbert series is a rational function ([9]).

The analog of Hilbert-Serre Theorem for relatively free algebras carried a lot
of results in PI-theory and we would like to cite among them the paper [12] by Berele and
Regev in which the authors showed the exact asymptotic behaviour of the codimension
sequence of a PI-algebra satisfying the Capelli identity. The analog of Hilbert-Serre
Theorem also holds for classes of relatively free algebras with additional structure, such
as the class of finitely generated G-graded relatively free algebras, where G is a finite
group and the underlying graded T -ideal is the ideal of G-graded polynomial identities
of a G-graded algebra satisfying an ordinary polynomial identity (Aljadeff and Kanel-
Belov in [3]). We emphasize however that the rationality of the Hilbert series is not a
corollary of representability since there are examples of representable algebras which have
a transcendental (so non-rational) Hilbert series (see for instance, [36, Example 11.3.8]).

In this work, we present a proof of the Hilbert-Serre Theorem in the case of
relatively free algebras of H-module algebras where H is a finite dimensional semisimple
Hopf algebra (Theorem 3.2.6) and in the case of relatively free algebras of superalgebras
with superinvolution (Theorem 2.5.15). In both cases we have to assume that the algebra
satisfies an ordinary polynomial identity.

Superalgebras with superinvolution are a natural generalization of algebras
with involution and they play a prominent role in the setting of Lie and Jordan algebras
(see, for instance, [35, 51]). In recent years, such a kind of algebras has been extensively
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studied by several mathematicians. In particular the importance of such algebras has
been highlighted in 2017 by Aljadeff, Giambruno and Karasik. In [1], they showed that
any algebra with involution has the same identities of the Grassmann envelope of a finite
dimensional superalgebras with superinvolution. The last result is a generalization of a
classical result in PI-theory due to Kemer, known as the Representability Theorem.

We would like to point out that the structure of H-module algebra general-
izes several notions such as gradings by finite abelian groups and involutions whereas
superalgebras with superinvolution cannot be seen as H-module algebras.

In this work we also present a positive solution to the Specht problem in the case
of finitely generated superalgebras with superinvolutions satifying an ordinary polynomial
(Theorem 2.4.5) and in the case of H-module algebras generated by the algebra UT2pF q

of 2ˆ 2 upper triangular matrices over a field of characteristic 0 containing a primitive
m-th root of unit and where H “ Hm is a Taft’s Hopf algebra of dimension m2 (Theorem
4.3.8). As far as we know this is the first result in the literature toward Specht property of
varieties of algebras under the action of a Taft’s Hopf algebra.

This Ph.D. thesis is divided in four chapters. Chapter 1 is a review of the
background on PI-theory. We introduce the basic definitions and we give an account of
the main results of the structure theory of PI-algebras. The content is focused on showing
the concepts necessary to understand the theoretical framework of the next chapters.

In Chapter 2 we deal with superalgebras with superinvolutions. We show an
explicit form of the so-called Kemer polynomials which are crucial in the proof of the
rationality of the Hilbert series of any relatively free algebra. We introduce the Kemer
index for these algebras and finally we give a positive solution to the Specht problem and
the rationality of the Hilbert series in this setting.

Chapter 3 is devoted to the proof of the Hilbert-Serre Theorem in the context
of H-module algebras, where H is a finite dimensional semisimple Hopf algebra. If we
specialize H with the dual algebra of the group algebra FG, where G is a finite abelian
group, we get the notion of G-graded algebra and we would have a result analogous to
that obtained by Aljadeff and Kanel-Belov in [3] for abelian groups.

Finally, in Chapter 4, we deal with the algebra UT2pF q of 2ˆ2 upper triangular
matrices with an action of a Taft’s algebra Hm. We give a complete description of the
space of its multilinear Hm-identities in the language of Young diagrams through the
representation theory of the hyperoctahedral group. We finally prove that the variety of
Hm-module algebras generated by UT2pF q has the Specht property.

Part of this work has been published in [13] and [14].
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1 Preliminaries

In this chapter we will give the tools we are going to use to understand the
Kemer’s theory for superalgebras with superinvolution and for algebras with an Hopf action,
and the Hilbert series of their relatively free algebra. As we only work with associative
algebras with unity in this work, whenever we talk about algebra, we will be considering
them associative with unity.

1.1 Algebras with polynomial identities

1.1.1 Basic properties of algebras

Let F be a field of any characteristic. We start with the basic definition of
algebra.

Definition 1.1.1. A vector space A is called an associative F -algebra if A is equipped
with a function pa, bq ÞÑ ab from AˆA to A, calledmultiplication, satisfying the following
axioms:

A1) apbcq “ pabqc for all a, b, c P A.

A2) apb` cq “ ab` ac for all a, b, c P A.

A3) pa` bqc “ ac` bc for all a, b, c P A.

A4) αpabq “ pαaqb “ apαbq for all a, b, c P A, α P F .

An associative F -algebra A is called unitary if there exists an element 1 P A
such that 1a “ a1 “ a for all a P A.

Example 1.1.2. Some examples of (associative unitary) F -algebras:

1. Any field F is an algebra over F .

2. MnpF q the set of all nˆn matrices with entries from F with the usual multiplication
of matrices. Here 1 is the identity matrix In.

3. If V is any vector space over F , then HomF pV, V q becomes an associative algebra
over F when we define the product of two linear transformations T1 and T2 to be their
composite T1˝T2. Here 1 is the identity map Id : V Ñ V . Linear transformations from
V to V are called endomorphisms of V . The algebra EndF pV q “ HomF pV, V q is
called the algebra of endomorphisms of V .
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4. Let x be a variable, then F rxs, the vector space of polynomials in one variable is an
algebra with the usual product of polynomials.

Definition 1.1.3. A subspace S of an algebra A is called subalgebra if s1, s2 P S implies
s1s2 P S. The subalgebra I is called left ideal if AI Ď I. Similarly, I is called right
ideal if IA Ď I . The subalgebra I is called two-sided ideal (or simply ideal) if I is
both left and right ideal. An ideal I of A is called proper if I ‰ A.

An ideal I of an algebra A is said to be a nilpotent ideal if there exists a
natural number k such that Ik “ 0.

Definition 1.1.4. Let A and B be F -algebras. The F -linear map ϕ : A Ñ B is called
homomorphism of algebras if ϕpabq “ ϕpaqϕpbq for all a, b P A.

Remark 1.1.5. Let A be an algebra, I a ideal of A and p : A Ñ A{I the canonical
projection of F -vector spaces. Then there exists a unique algebra structure on A{I (called
the factor algebra) such that p is a homomorphism of algebras.

Remark 1.1.6. Let A be a non-unitary associative F -algebra and let the direct sum of
vector spaces A1 “ F ‘ A be equipped with multiplication

pα1 ` a1qpα2 ` a2q “ α1α2 ` pα1a2 ` α2a1 ` a1a2q,

with α1, α2 P F , a1, a2 P A. Then A1 is a unitary algebra. (we say that A1 is obtained from
A by formal adjoint of unity).

Definition 1.1.7. Let V and W be vector spaces over F with bases tvi | i P Iu and
twj | j P Ju, respectively. The tensor product V bW of V and W is the vector space
over F with basis tvi b vj | i P I, j P Ju.

The tensor product V bW induces a bilinear map ϕ : V ˆW Ñ V bW such
that pv, wq ÞÑ vb x is characterized by the following universal property: if φ : V ˆW Ñ Z

is any bilinear map from the cartesian product V ˆW to any vector space Z, then there
exists a unique linear map T : V bW Ñ Z such that the following diagram commutes:

V ˆ V
ϕ //

φ

##

V bW

T

��
Z

If V and W are algebras, then V bW is also an algebra with multiplication
given by

pv1 b w1qpv2 b w2q “ v1v2 b w1w2, for all v1, v2 P V,w1, w2 P W.
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Our main interest arises in the following important class of algebras:

Definition 1.1.8. An algebra A is affine or finitely generated over a commutative
ring C (or a field) if there exists a finite set of elements a1, . . . , al of A such that every
element of A can be expressed as a C-linear combination of products in a1, . . . , al. In this
case we write A “ Cxa1, . . . , aly.

In most cases, we shall be considering affine algebras over a field F , so unless
specified otherwise, “affine” will mean “affine over a field”.

Definition 1.1.9. Let A be an algebra. An element e P A is idempotent if e2
“ 2.

The trivial idempotents are 0 and 1. Two idempotents e1, e2 P A are orthogonal if
e1e2 “ e2e1 “ 0

Given a nontrivial idempotent e P A. The Peirce decomposition of A is

A “ eAe‘ eAp1´ eq ‘ p1´ eqAe‘ p1´ eqAp1´ eq.

More generally, if e1, . . . , en are mutually orthogonal idempotents with sum 1, then A can
be decomposed as:

A “
à

eiAej for 1 ď i, j ď n.

For algebras without 1, the Peirce decomposition is as follows: given any
idempotent element e of A, define formally e1a as a´ ea, ae1 as a´ ae, and e1ae1 as pe1aqe1

for all a P A. Now
A “ eAe‘ eAe1 ‘ e1Ae‘ e1Ae1.

More generally, if e1, . . . , en are mutually orthogonal idempotents, take e “
t
ÿ

i“1
ei, and

thus, A can be decomposed as:

A “ eAe‘ eAe1 ‘ e1Ae‘ e1Ae1.

1.1.2 The Wedderburn-Malcev Theorem

Essential in this work will be the notion of simple subalgebras, semisimple
subalgebras, and Jacobson radical of an algebra. In this section we introduce these concepts
from the notion of modules over a ring R or, in short, an R-module and we will finish with
the Wedderburn-Malcev Theorem which states that an algebra can be decomposed into
its radical part and its semisimple part.

Definition 1.1.10. The additive abelian group M is said to be an (left) R-module if
there is a mapping R ˆM ÑM sending pr,mq to rm such that:

• pr ` qqm “ rm` qm,
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• rpm` nq “ rm` rn,

• prqqm “ rpqmq,

for all r, q P R and m,n PM .

If R has unit element 1, and if 1m “ m for all m PM , we then describe M to
be a unitary R-module.

Let A be an F -algebra. We can consider the notion of module over the F -algebra
A simply taking R “ A in the definition above. In this case, we say that M is an (left)
A-module.

Definition 1.1.11. Let A be an F -algebra, and let M be an A-module. The annihilator
of M , denoted AnnpMq is the set of all elements a P A such that, for all m PM , am “ 0.
In set notation,

AnnpMq “ ta P A | am “ 0 @m PMu.

Lemma 1.1.12. AnnpMq is a two-sided ideal of A.

Proof. Let a P A and b P AnnpMq. For any m P M we have pbaqm “ bpamq, since
am PM then bpamq “ 0, which implies AnnpMq is a right ideal of A. On the other hand,
pabqm “ apbmq “ ap0q “ 0 implies AnnpMq is a left ideal of A

An A-module M is called irreducible if AM ‰ 0 and if the only submodules
of M are t0u and M . The A-module M is called completely reducible if it is isomorphic
to a direct sum of irreducible modules.

Definition 1.1.13. Let A be an algebra. The Jacobson radical JpAq of A, is the set
of all elements of A which annihilate all the irreducible A-modules. A finite-dimensional
algebra A is said to be semisimple if JpAq “ t0u.

Note that JpAq “
č

AnnpMq, where this intersection runs over all irreducible
A-modulesM . Since the AnnpMq are two-sided ideals of A, we see that JpAq is a two-sided
ideal of A. Moreover, JpAq contains all nilpotent ideals, and if A is finite-dimensional,
JpAq itself is a nilpotent ideal.

Definition 1.1.14. An algebra A is called simple if it has no proper ideals and A2
“

tab | a, b P Au ‰ t0u.

The following proposition characterizes semisimple algebras.

Proposition 1.1.15. A finite dimensional algebra is semisimple if and only if it can be
written as a direct sum of simple algebras.
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Finally, we recall a famous classical result by Wedderburn and Malcev:

Theorem 1.1.16 (Wedderburn-Malcev). For any finite dimensional algebra A over an
algebraically closed field, there is a vector space isomorphism

A – Ā‘ J

where J “ JpAq is nilpotent and Ā is a semisimple subalgebra of A isomorphic to A{J .
Furthermore, if there is another decomposition A “ B ‘ J , then there is an invertible
a P A such that B “ aĀa´1.

Proof. See, for instance, [30, Theorem 3.4.3].

Remark 1.1.17. Suppose A is a finite dimensional algebra without 1. Consider the
Wedderburn-Malcev decomposition A “ Ā‘ JpAq. The semisimplicity of Ā implies Ā has
a unit element e which is idempotent in A. Adjoint a unit element 1 to A as in Remark
1.1.6, and note that 1̂ “ p1, 0q is the multiplicative unit of A1 “ F ‘ A. Define e1 “ 1̂´ e.
Now we embed our Pierce decomposition of A into

A1 “ eA1e‘ eA1e
1
‘ e1A1e‘ e

1A1e
1.

More generally, if e1, . . . , en are mutually orthogonal idempotents of A, take

e “
t
ÿ

i“1
ei. Again, define e0 “ 1̂´ e P A1 and

A1 “ pe` e0qA1pe` e0q “
n
à

i,j“0
eiA1ej.

1.1.3 Free algebras and polynomial identities

Let F be a field and X “ tx1, x2, . . . u a countable set of variables. The algebra
F xXy whose basis consists of all the words in the alphabet X (including the empty word
1) and multiplication defined by juxtaposition of words, is the associative unitary free
algebra (or simply, free algebra) generated by X over F . Each word is called monomial
and the elements of F xXy are called polynomials in the non-commuting variables X. If
f P F xXy we will write f “ fpx1, . . . , xmq to indicate that x1, . . . , xm P X are the only
indeterminates appearing in f . The cardinality of X is called the rank of F xXy.

The algebra F xXy is defined by the following universal property: if g : X Ñ A

is a map from X to an unitary F -algebra A, then there exists a unique homomorphism of
algebras α : F xXy Ñ A such that the following diagram commutes:

X
i //

g

!!

F xXy

α

��
A
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here, i : X Ñ F xXy is the inclusion map.

Definition 1.1.18. Let A be an F -algebra and f “ fpx1, . . . , xmq P F xXy a polynomial,
then we say that f is a polynomial identity for A if fpa1, . . . amq “ 0 for all a1, . . . , am P

A, and we write f ” 0.

Consequently, f P F xXy is a polynomial identity for A if and only if f is in
the kernel of all homomorphisms F xXy Ñ A.

Definition 1.1.19. If an algebra A satisfies a nontrivial polynomial identity f ” 0 (i.e.,
f is a nonzero element of F xXy), we say that A is a PI-algebra.

Example 1.1.20. If A is a commutative algebra, then A is a PI-algebra, since it satisfies
the identity rx1, x2s ” 0 where rx1, x2s “ x1x2 ´ x2x1 is called the Lie commutator of
x1 and x2.

Example 1.1.21. An associative algebra without unit A is said to be a nilpotent algebra
if there exists some integer n ě 0 such that a1a2 ¨ ¨ ¨ an “ 0 for all a1, a2, . . . , an P A. Clearly
A is a PI-algebra, because it satisfies the polynomial identity x1 ¨ ¨ ¨ xn ” 0.

Example 1.1.22. Let UTnpF q be the algebra of nˆ n upper triangular matrices over F .
Then UTnpF q is a PI-algebra since it safisfies the identity

rx1, x2srx3, x4s ¨ ¨ ¨ rx2n´1, x2ns ” 0.

Example 1.1.23. Let A be a finite dimensional associative algebra and let n ą dimA.
Then A satisfies the standard polynomial of degree n

snpx1. . . . , xnq “
ÿ

σPSn

psgn σqxσp1q ¨ ¨ ¨ xσpnq,

where Sn is the symmetric group of order n.

1.1.4 T-ideals and varieties

We now turn to a general description of the set of identities of an algebra and
its varieties.

Definition 1.1.24. An ideal I of F xXy is called T-ideal if ϕpIq Ď I for all endomorphism
ϕ of F xXy.

Let A be an F -algebra, we define

IdpAq “ tf P F xXy | f ” 0 on Au,

the set of all the polynomial identities of A. Then IdpAq is a T -ideal. Indeed, since each
endomorphism φ of F xXy is defined by the image of X, i.e., by φpxiq “ gi P F xXy, then
fpg1, . . . , gnq P IdpAq for all f P IdpAq.
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Remark 1.1.25. Each T -ideal of F xXy is the set of polynomial identities of some algebra.
In fact, if I is a T -ideal, then I “ IdpF xXy{Iq. Indeed, for all g1, . . . , gn P F xXy,

f P IdpF xXy{Iq ô fpg1 ` I, . . . , gn ` Iq “ I

ô fpg1, . . . , gnq ` I “ I

ô fpg1, . . . , gnq P I

ô f P I.

Let S be a set of polynomials in F xXy. The T -ideal generated by S in F xXy
is the smallest T -ideal of F xXy containing S, and it is denoted by xSyT . The following
proposition characterizes xSyT .

Proposition 1.1.26. Let S “ tfi | i P Iu be a set of polynomials. Then the T-ideal
generated by S is the set

xSyT “

#

ÿ

iPJĂI

αiuifipgi1, . . . , giniqvi | αi P F, ui, gij, vi P F xXy, fi P S, J finite
+

.

Proof. Clearly, the right side of the previous expression is a T -ideal containing S. To see
that it is the smallest T -ideal containing S, suppose K is a T -ideal of F xXy containing S,
then uifipgi1, . . . , giniqvi P K for each i because fi belong to S Ă K, K is an ideal and K
is invariant under all endomorphism and the proof is complete.

Definition 1.1.27. Let S be a set of polynomials in F xXy and f P F xXy. We say that f
is a consequence of the polynomials in S if f P xSyT , the T -ideal generated by the set S.

Definition 1.1.28. Two sets of polynomials are said to be equivalent if they generate
the same T -ideal.

Definition 1.1.29. Two algebras A1, A2 are called PI-equivalent if IdpA1q “ IdpA2q;
in this case we write A1 „PI A2.

Definition 1.1.30. Given a non-empty set S Ď F xXy, the class of all associative algebras
A such that f ” 0 on A for all f P S is called the variety V “ varpSq determined by
S. A variety V “ varpSq is non-trivial if S ‰ t0u.

For example, the class of commutative algebras forms a variety of algebras,
because each commutative algebra satisfies the polynomial identity rx1, x2s “ x1x2 ´ x2x1.

Definition 1.1.31. Let V be a variety, A P V an algebra and Y Ď A a subset of A. We
say that A is relatively free on Y (with respect to V ) if for any function g : Y Ñ B
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from Y to B P V, there exists a unique homomorphism of algebras β : AÑ B such that
the following diagram commutes, where i is the inclusion map i : Y Ñ A.

Y i //

g

��

A

β

��
B

There is a one-to-one correspondence between T -ideals of F xXy and varieties of
algebras. Let V be a variety with corresponding ideal IdpVq Ď F xXy. Then F xXy{ IdpVq is
a relatively free algebra on the set X̄ “ tx` IdpVq | x P Xu. Moreover, any two relatively
free algebras with respect to V of the same rank are isomorphic ([22, Proposition 2.2.5]).

We close this section with a theorem of Birkhoff, which gives the properties
characterizing the varieties.

Theorem 1.1.32 (Birkhoff). A non-empty class of algebras V is a variety if and only if
V is closed under taking Cartesian sums, subalgebras and factor algebras.

Proof. See for instance [22, Theorem 2.3.2].

1.1.5 The Specht problem

One of the most interesting questions about T -ideals is whether the generating
set S of a T -ideal can be reduced to a finite set, which generates the same T -ideal. We
can see this question as the analogue in non-commutative algebra of the Hilbert’s Basis
Theorem for commutative algebras which states that every algebraic variety can be defined
by a finite set of commutative polynomials. In order to formally establish the problem, we
begin with the following definition.

Definition 1.1.33. A variety of algebras V is called finitely based if V can be deter-
minded by a finite set of polynomial identities (from F xXy). If V cannot be determined by
a finite set of identities, it is called infinitely based. If all subvarieties of V, including V
itself, are finitely based, V satisfies the Specht property.

The following problem was posed by Specht in 1950 for associative algebras
over a field of characteristic 0. Now it is known as the Specht problem ([57]).

Problem 1.1.34. Is every variety of associative algebras finitely based?

In 1987 Kemer gave a positive solution for the Specht problem for associative
algebras over a field of characteristic 0.
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Theorem 1.1.35. [40, Theorem 1] Every variety of associative algebras over a field of
characteristic 0 is finitely based.

To achieve this, Kemer developed a powerful technique which is known as
Kemer’s Theory. This technique is contained mostly in his monograph ([41]). The key step
in Kemer’s Theory is the Representability Theorem for affine PI-algebras. In the paper [4]
the authors provide a much more detailed proof of this theorem.

Definition 1.1.36. An algebra W is PI-representable if W „PI A for some algebra A
which is finite dimensional over some field.

Theorem 1.1.37 (Kemer’s Representability Theorem). Let W be an affine PI-algebra
over a field F of characteristic zero. Then W is PI-representable.

Kemer’s theory, besides being quite technical and sophisticated, contains a
remarkable number of new ideas opening new avenues of research in the study of varieties
of algebras. We outline the main steps of the proof of Kemer’s theorem.

Step 1. Show that there exists a finite dimensional algebra A with IdpAq Ď Γ “
IdpW q.

Step 2. Definition of IndpΓq “ pα, sq, the Kemer index of any T -ideal Γ which
contains the T -ideal of a finite dimensional algebra A.

Step 3. Definition of Kemer polynomials of a T -ideal Γ. These are extremal polyno-
mials which are not in Γ whose alternation realize the Kemer index IndpΓq.

Step 4. Construction of basic algebras, in which the parameters α and s of IndpΓq
coincide respectively with the integers dim Ā and nA ´ 1, where Ā is the semisimple
part of A and nA is the nilpotency index of the Jacobson radical of A.

Step 5. From the connection between the parameters of the Kemer index of any
basic algebra A and its geometrical properties (namely IndpΓq “ pdim Ā, nA ´ 1q),
we obtain the Phoenix property of Kemer polynomials of A.

Step 6. Find a finite dimensional algebra B with IdpAq Ď IdpBq Ď Γ such that
IdpBq and Γ have the same Kemer index and have the same Kemer polynomials.

Step 7. Construction of the representable algebra Bpα,sq over F with IdpBα,sqq Ě Γ
and such that all Kemer polynomials of Γ are non-identities of Bpα,sq.

Step 8. Consider Γ1 “ Γ ` S where S is the T -ideal generated by all Kemer
polynomials of Γ.
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Step 9. Show that all polynomials of S are non-identities of Bpα,sq. From that one
concludes that Γ “ IdpA1 ` Bpα,sqq where A1 is over a field extension L of F with
Γ1 “ IdpA1q.

Most of these steps will be emulated in Chapter 2 to develop Kemer’s Theory
for superalgebras with superinvolutions.

1.2 Graded algebras
In this section we study algebras which are graded by a finite group. We consider

the reduction of arbitrary polynomial identities to polynomial identities of special form:
homogeneous, multilinear and symmetric. We introduce the notion of free graded algebras
and the tensor algebra and define the involution map in graded algebras, in particular,
the so called superinvolution for algebras graded by the group Z2 “ Z{2Z.

1.2.1 Graded vector spaces

We will start with the classical notion of graded vector spaces.

Definition 1.2.1. Let V be a F -vector space. We say that V is graded if it is a direct
sum of its subspaces V pnq, n ě 0, i.e.

V “
à

ně0
V pnq.

The subspaces V pnq are called the homogeneous components of degree n of
V . The subspace W of the graded vector space V “ ‘ně0V

pnq is a graded subspace if
W “ ‘ně0pW X V pnqq. In this case, the factor space V {W can also be naturally graded.

Example 1.2.2. The polynomial algebra F rx1, . . . , xms is graded assuming that the ho-
mogeneous polynomials of degree n (in the usual sense) are the homogeneous elements of
degree n.

Remark 1.2.3. If A,B are graded vector spaces, then AbB can be graded via

pAbBqpnq “
à

j`k“n

Apjq bBpkq.

Analogously we can define the notion of grading for algebras: Let A be an
F -algebra. We say that A is graded algebra if it is a direct sum of its subalgebras Apnq,
n ě 0, i.e.

A “
à

ně0
Apnq.
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and if ApnqApmq Ď Apn`mq for each n,m ě 0.

We present an example of graded algebra: the tensor algebra. We show first
the categorical definition.

Definition 1.2.4. Let V be a F -vector space. A tensor algebra of V is a pair pX, iq,
where X is an F -algebra and i : V Ñ X is a F -linear map, such that the following universal
property is satisfied: for any F -algebra A, and any F -linear map f : V Ñ A, there exists
a unique homomorphism of algebras φ : X Ñ A such that φi “ f , that is, the following
diagram is commutative:

V i //

f

��

X

φ

��
A

We present its construction. Denote by T 0
pV q “ F , T 1

pV q “ V , and for n ě 2
by T npV q “ V b V b ¨ ¨ ¨ b V , the tensor product of n copies of the vector space V . Define

T pV q “
à

ně0
T npV q,

and i : V Ñ T pV q by ipvq “ v P T 1
pV q for any v P V . On T pV q we define the multiplication

as follows: if x “ v1 b ¨ ¨ ¨ b vn P T
n
pV q and y “ w1 b ¨ ¨ ¨ b wm P T

m
pV q, then define the

product
x ¨ y “ v1 b ¨ ¨ ¨ b vn b w1 b ¨ ¨ ¨ b wm P T

n`m
pV q.

The multiplication of two arbitrary elements from T pV q is obtained by extending
the above formula by linearity. In this way T pV q becomes an associative unitary F -algebra
with identity element 1 P T 0

pV q, and the pair pT pV q, iq is a tensor algebra of V .

The tensor algebra A “ T pV q has a natural grading by setting A “ ‘ně0A
pnq

where Apnq “ T npV q for all n ě 0.

Remark 1.2.5. Let V be a F -vector space with a countable basis tv1, v2, . . . u. The tensor
algebra T pV q is just the free associative algebra (defined in page 24) generated by tv1, v2, . . . u

over F .

Now, we present the notion of Hilbert series for vector spaces. We denote by
dimpW q the dimension of an arbitrary F -vector space W .

Definition 1.2.6. Let V “ ‘ně0V
pnq be a graded vector space and let dim V pnq ă 8 for

all n ě 0. The formal power series

HilbpV, tq “
ÿ

ně0
dim V pnqtn,

is called the Hilbert series of V .
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For a function fptq, we make the usual convention that HilbpV, tq “ fptq if the
series HilbpV, tq converges in some neighbourhood of 0 and the function HilbpV, tq and
fptq are equal here.

Example 1.2.7. Let V “ F rxs be the polynomial algebra in one indeterminate x. Then
V pnq “ Fxn, so each dim V pnq “ 1. Thus,

HilbpF rxs, tq “
ÿ

ně0
tn “

1
1´ t .

Example 1.2.8. Let V “ F xx1, . . . , xmy be the free algebra. There are mn words of length
n, so dim V pnq “ mn. Thus,

HilbpF xx1, . . . , xmy, tq “ 1`mt`m2t2 ` ¨ ¨ ¨ “
1

1´mt.

Proposition 1.2.9. Let A,B be graded vector spaces. Then

1. HilbpA‘B, tq “ HilbpA, tq ` HilbpB, tq;

2. HilbpAbB, tq “ HilbpA, tqHilbpB, tq;

3. HilbpA, tq “ HilbpA{B, tq ` HilbpB, tq, if B is a subspace of A.

Proof. (1) Since dimpA‘Bq “ dimA` dimB, we have

HilbpA‘B, tq “
ÿ

ně0
dimppA‘Bqpnqqtn

“
ÿ

ně0
dimpApnq ‘Bpnqqtn

“
ÿ

ně0
dimApnqtn ` dimBpnqtn

“ HilbpA, tq ` HilbpB, tq.

(2) Since dimpAbBq “ dimA dimB, and by Remark 1.2.3 we have

HilbpAbB, tq “
ÿ

ně0
dimppAbBqpnqqtn

“
ÿ

ně0
dimp

à

j`k“n

Apjq bBpkqqtn

“
ÿ

ně0

ÿ

j`k“n

dimApjq dimBpkqtn

“
ÿ

jě0
dimApjqtj

ÿ

kě0
dimBpkqtk

“ HilbpA, tqHilbpB, tq.

(3) Since dimB ` dimpA{Bq “ dimA, the result follows.

Example 1.2.10. V “ F rx1, . . . , xms “ b
m
i“1F rxis. Then by the previous proposition and

Example 1.2.7,

HilbpV, tq “ Hilbpbmi“1F rxis, tq “ HilbpF rx1s, tq ¨ ¨ ¨HilbpF rxms, tq “
1

p1´ tqm .
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1.2.2 Group-graded algebras

In this section we study the algebras graded by a group G.

Definition 1.2.11. Let A be an algebra over a field F and let G be a group, we say that
A is G-graded algebra if A can be written as the direct sum of subspaces A “

à

gPG

Apgq

such that for all g, h P G, ApgqAphq Ď Apghq.

The subspaces Apgq are called homogeneous components of A. Consequently,
an element a P A is homogeneous of degree g if a P Apgq.

Given a P A, we can write a “
ÿ

gPG

ag (uniquely) where ag P Apgq, so any element

can be written uniquely as a sum of homogeneous elements. In particular, pa`bqg “ ag`bg

for all a, b P A and all g P G. Write e for the identity element of G. Then Apeq is always a
subalgebra of A.

Example 1.2.12. Any algebra A can be graded by a group G by setting A “ Apeq and
Apgq “ 0 for any g ‰ e. This grading is called trivial.

Example 1.2.13. Let A “ M2pF q and G “ Z2. If we set Ap0q “ t
`

a 0
0 d

˘

| a, d P F u and
Ap1q “ t

`

0 b
c 0

˘

| b, c P F u, then A is Z2-graded algebra.

Example 1.2.14. If A “ MnpF q (the algebra of n ˆ n matrices with entries of F ) and
G is a group, let pg1, . . . , gnq be a n-tuple of elements of G, then A is G-graded by an
elementary grading if we set Apgq “ SpanF tepq | }epq} “ gu, where epq are the matrix
units (i.e, matrices whose entries are all 0 except in the cell pp, qq whose value is 1),
}epq} “ gqg

´1
p and A “ ‘gPGApgq. The previous example is a particular case, taking the

couple p0, 1q of G “ Z2.

Definition 1.2.15. Let A and B be G-graded algebras. A function g : A Ñ B is called
G-graded homomorphism if g is a homomorphism of algebras and gpApgqq Ď Bpgq for
all g P G.

Definition 1.2.16. An ideal I of A is a graded ideal if I is graded as a subalgebra of A.

Thus, I is a graded ideal of A if and only if I “
ÿ

gPG

Ipgq where Ipgq “ I X Apgq,

i.e., each element of I is a sum of homogeneous elements of I. It is easy to see that an
ideal is graded if and only if it is generated by homogeneous elements.

Remark 1.2.17. If I is a graded ideal of A, then A{I “
à

gPG

Apgq{Ipgq is G-graded as an

algebra, where pa` Iqg “ ag ` I
pgq.
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1.2.3 Homogeneous and multilinear polynomials

Let Fn “ F xx1, . . . , xny be the free algebra of rank n ě 1 over F . We can write

Fn “ F p0qn ‘ F p1qn ‘ F p2qn ‘ ¨ ¨ ¨

where F pkqn is the subspace spanned by all monomials of total degree k, for k ě 0. Since
F piqn F pjqn Ď F pi`jqn , for all i, j ě 0, then Fn is graded by the degree or that it has a structure
of graded algebra. Then the F piqn ’s are the homogeneous components of Fn.

Definition 1.2.18. A polynomial f is linear in the variable xi if xi occurs with degree
1 in every monomial of f . A polynomial which is linear in each of its variables is called
multilinear.

For a multilinear polynomial, we can write

fpx1, . . . , xnq “
ÿ

σPSn

ασxσp1q ¨ ¨ ¨ xσpnq,

where ασ P F and Sn is the symmetric group on t1, . . . , nu. Moreover, if fpx1, . . . , xnq is a
linear polynomial in one variable, say x1, then

fp
ÿ

αiyi, x2, . . . , xnq “
ÿ

αifpyi, x2, . . . , xnq,

for every αi P F, yi P F xXy.

Proposition 1.2.19. Let A be an algebra and

fpx1, . . . , xmq “
n
ÿ

i“0
fi P F xXy,

where fi is the homogeneous component of f of degree i in x1. If the base field F contains
more than n elements (e.g. F is infinite), then if f ” 0 is a polynomial identity for the
algebra A, then every homogeneous component fi, i “ 0, 1, . . . , n is still a polynomial
identity for A.

Proof. Choose n ` 1 different elements α0, α1, . . . , αn of F . Since IdpAq is a T -ideal, for
every j “ 0, . . . , n,

fpαjx1, . . . , xmq P IdpAq

and therefore, for each j “ 0, . . . , n,

fpαjx1, x2, . . . , xmq “
n
ÿ

i“0
fipαjx1, x2, . . . , xmq “

n
ÿ

i“0
αijfipx1, x2, . . . , xmq P IdpAq. (1.1)
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Consider the Vandermonde matrix

∆ “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 α0 α2
0 ¨ ¨ ¨ αn0

1 α1 α2
1 ¨ ¨ ¨ αn1

1 α2 α2
2 ¨ ¨ ¨ αn2

... ... ... . . . ...
1 αn α2

n ¨ ¨ ¨ αnn

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

If for every a1, . . . , am P A we write f̄i :“ fipa1, . . . , amq for i “ 0, . . . , n, then Equation
(1.1) says that

∆

¨

˚

˚

˝

f̄0
...
f̄n

˛

‹

‹

‚

“ 0. (1.2)

It is known that the determinant of the Vandermonde matrix is detp∆q “
ź

iăj

pαj ´ αiq,

and it is different from 0, then the homogeneous system (1.2) only has the trivial solution
f̄0 “ 0, . . . , f̄n “ 0. Thus f0 ” 0, . . . , fn ” 0 are identities of A, i.e. the polynomial
identities fi ” 0 are consequences of f ” 0.

In the proof of the next theorem we shall use the so-called process of multi-
linearization and can be described briefly as follows:

Suppose the polynomial fpx1, . . . , xmq has degree n ą 1 in the variable x1.
Define the partial linearization

hpy1, y2, x2, . . . , xmq :“ fpy1 ` y2, x2, . . . , xmq ´ fpy1, x2, . . . , xmq ´ fpy2, x2, . . . , xmq.

Notice that h is still a polynomial identity for A when f P IdpAq.

In the situation in which x1 does not appear in each monomial of f , we can
define g = fp0, x2, . . . , xmq. If f P IdpAq, then g P IdpAq. Thus f ´ g P IdpAq, so we can
replace f by f ´ g and thereby assume that any indeterminate appearing in f appears in
each monomial of f as desired.

Let n ą 1 the degree of x1 in f . Iterating the partial linearization procedure
n´ 1 times (each time introducing a new intederminate yi) yields an n-linear polynomial
f̄py1, . . . , yn, x2, . . . , xmq. For each monomial in f we now have n! monomials in f̄ . Thus.
when f is homogeneous in x1, we have

f̄px1, ¨ ¨ ¨ , x1, x2, . . . , xmq “ n!f.

We call f̄ the linearization of f in x1. In characteristic 0 we can recover f from f̄ .

Repeating the linearization process for each indeterminate appearing in f yields
a multilinear polynomial, called the complete linearization of f .
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Example 1.2.20. The multilinearization of the polynomial xn is called the symmetric
polynomial

s̃n “
ÿ

σPSn

xσp1q ¨ ¨ ¨ xσpnq.

Theorem 1.2.21. If the characteristic of the base field F is zero, then every non-zero
polynomial f P F xXy is equivalent to a finite set of multilinear polynomials.

Proof. By Proposition 1.2.19 we may assume that fpx1, . . . , xmq is homogeneous in each
of its variables. Let degx1f “ d. We write

fpy1 ` y2, x2, . . . , xmq “
d
ÿ

i“0
fipy1, y2, x2, . . . , xmq,

where fi is the homogeneous component of degree i in y1. Hence fi P V , for each i P

t0, 1, . . . , du. Since degyj ă d, i “ 0, 1, . . . , d´ 1, j “ 1, 2, we apply inductive arguments
and obtain a set of multilinear consequences of f “ 0. Also, since the characteristic of F
is zero, the binomial coefficient

ˆ

d

i

˙

is different from 0, then

fipy1, y1, x2, . . . , xmq “

ˆ

d

i

˙

fpy1, x2, . . . , xmq,

and this implies that the multilinear identities are equivalent to f “ 0.

Corollary 1.2.22. If the characteristic of the base field F is zero, each T -ideal is generated,
as a T -ideal, by the multilinear polynomials it contains.

Actually, we conclude that in order to study the polynomial identities of a
algebra over a field F of characteristic zero, we just need to find the multilinear polynomial
identities.

1.2.4 Free graded algebras

Let F xXy be the free algebra over F on a countable set X and let G be a finite
group. We write X in the form

X “
ď

gPG

Xpgq,

where Xpgq
“ tx

pgq
1 , x

pgq
2 , . . . u are disjoint sets. The indeterminates from Xpgq are said to

be of homogeneous degree g. The homogeneous degree (or G-degree) of a monomial
x
pg1q
i1 ¨ ¨ ¨ x

pgtq
it P F xXy is defined to be g1g2 ¨ ¨ ¨ gt, as opposed to its total degree, which is

defined to be t. Denote by F xXypgq the subspace of the algebra F xXy generated by all
the monomials having homogeneous degree g. Notice that F xXypgqF xXyphq Ď F xXypghq for
every g, h P G. It follows that

F xXy “
à

gPG

F xXypgq
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is a G-grading on F xXy. We denote by FG
xXy the algebra F xXy endowed with this

grading.

Definition 1.2.23. FG
xXy is called the free G-graded algebra of countable rank over

F .

The algebra FG
xXy has the following universal property: if f : X Ñ A is any

map from X to any G-graded algebra A such that fpXpgq
q Ď Apgq for each g P G, then

there exists a unique homomorphism of G-graded algebras α : FG
xXy Ñ A such that the

following diagram commutes
X

i //

f

""

FGxXy

α

��
A

where i : X Ñ FG
xXy is the inclusion map.

Given A a G-graded algebra and f “ fpx
pg1q
1 , . . . , xpgmqm q P FG

xXy a graded
polynomial, we say that f is a graded identity for A if fpapg1q

1 , . . . apgmqm q “ 0 for all
a
pg1q
1 P Apg1q, . . . , apgmqm P Apgmq, and we write f ” 0.

Consequently, f P FG
xXy is a graded identity for A if and only if f is in the

kernel of all graded homomorphisms FG
xXy Ñ A.

Definition 1.2.24. IdGpAq “ tf P FG
xXy | f ” 0 on Au is called the ideal of graded

identities of A.

IdGpAq is a two-side ideal of the free G-graded algebra FG
xXy. Moreover,

IdGpAq is a T -ideal of G-graded identities of A. As in the classical case, the T -ideals of
G-graded identities are generated by multilinear polynomials.

In [2], the authors proved the G-grading version of the Representability Theorem
(Theorem 1.1.37) and the Specht problem (Theorem 1.1.35). We present below the affine
case.

Let W be a finitely generated associative PI-algebra over a field F of charac-
teristic zero. Assume W “

ÿ

gPG

W pgq is G-graded where G is a finite group.

Theorem 1.2.25. [2, Theorem 1.1] There exists a field extension K of F and a finite
dimensional G-graded algebra A over K such that IdGpW q “ IdGpAq in FG

xXy.

Theorem 1.2.26. [2, Theorem 1.2] IdGpW q is finitely generated as a T -ideal in FG
xXy.
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1.2.5 Superalgebras and superinvolutions

We shall call superalgebra any Z2-graded (associative) algebra. In this case
A “ Ap0q ‘ Ap1q and the subspaces Ap0q and Ap1q are called the even and the odd
component of A respectively and their elements are called homogeneous of degree zero
(even elements) and of degree one (odd elements), respectively. If a is a homogeneous
element we shall write degpaq or |a| to indicate its homogeneous degree.

In what follows, the field F is supposed to be of characteristic zero.

Notation 1.2.27. From now on, for simplicity, we denote the subspaces Ap0q and Ap1q by
A0 and A1 respectively.

Recall from Definition 1.2.15, if A “ A0 ‘ A1 and B “ B0 ‘ B1 are two
superalgebras, then ϕ : AÑ B is a graded homomorphism if ϕpAiq Ď Bi, i “ 0, 1.

Definition 1.2.28. A superinvolution on a superalgebra A “ A0 ‘A1 is a graded map
˚ : AÑ A such that:

1. pa˚q˚ “ a, for all a P A,

2. pabq˚ “ p´1q|a||b|b˚a˚, for any homogeneous elements a, b P A0 Y A1.

Since the characteristic of F is zero, we can write

A “ A`0 ‘ A
´
0 ‘ A

`
1 ‘ A

´
1 ,

where for i “ 0, 1, A`i “ ta P Ai | a˚ “ au and A´i “ ta P Ai | a˚ “ ´au denote the sets of
symmetric and skew elements of Ai, respectively.

We shall refer to a superalgebra with superinvolution simply as a ˚-algebra.

The free algebra with superinvolution (called the free ˚-algebra), denoted by
F xY Y Z, ˚y, is generated by symmetric and skew elements of even and odd degree. We
write

F xY Y Z, ˚y “ F xy`1 , y
´
1 , z

`
1 , z

´
1 , y

`
2 , y

´
2 , z

`
2 , z

´
2 , . . .y,

where y`i stands for a symmetric variable of even degree, y´i for a skew variable of even
degree, z`i for a symmetric variable of odd degree and z´i for a skew variable of odd
degree. In order to simplify the notation, sometimes we denote by y any even variable, by
z any odd variable and by x an arbitrary variable. The elements of F xY Y Z, ˚y are called
˚-polynomials.

Definition 1.2.29. A ˚-polynomial fpy`1 , . . . , y`n , y´1 , . . . , y´m, z`1 , . . . , z`t , z´1 , . . . , z´s q in
F xY YZ, ˚y is a ˚-identity of the ˚-algebra A “ A`0 ‘A

´
0 ‘A

`
1 ‘A

´
1 , and we write f ” 0,
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if, for all u`1 , . . . , u`n P A`0 , u´1 , . . . , u´m P A´0 , v`1 , . . . , v`t P A`1 and v´1 , . . . , v´s P A´1 , we
have

fpu`1 , . . . , u
`
n , u

´
1 , . . . , u

´
m, v

`
1 , . . . , v

`
t , v

´
1 , . . . , v

´
s q “ 0.

We denote by Id˚pAq “ tf P F xY Y Z, ˚y : f ” 0 on Au the T˚2-ideal of
˚-identities of A, i.e. Id˚pAq is an ideal of F xY Y Z, ˚y invariant under all Z2-graded
endomorphisms of the free superalgebra F xY Y Zy commuting with the superinvolution ˚.

Given two ˚-algebras A and B, we say that A is T˚2-equivalent to B, and
we write A „T˚2 B, in case Id˚pAq “ Id˚pBq. Moreover, we denote by xf1, . . . , fnyT˚2 the
T ˚2 -ideal generated by the ˚-polynomials f1, . . . , fn P F xY Y Z, ˚y.

Because we are in characteristic 0, as in the ordinary and the graded case, it is
easily seen that every ˚-identity is equivalent to a system of multilinear ˚-identities. Hence
if we denote by

P ˚n “ spanF
!

wσp1q ¨ ¨ ¨wσpnq | σ P Sn, wi P
 

y`i , y
´
i , z

`
i , z

´
i

(

, i “ 1, . . . , n
)

the space of multilinear ˚-polynomials of degree n in y`1 , y
´
1 , z

`
1 , z

´
1 , . . . , y

`
n , y

´
n , z

`
n , z

´
n

(i.e., y`i or y´i or z`i or z´i appears in each monomial with degree 1) the study of Id˚pAq is
equivalent to the study of P ˚n X Id˚pAq, for all n ě 1.

Definition 1.2.30. An ideal I of a ˚-algebra A is a ˚-ideal of A if it is a graded ideal
and I˚ “ I. The ˚-algebra A is a simple ˚-algebra if A2

‰ 0 and A has no non-trivial
˚-ideals.

The Wedderburn-Malcev analog for ˚-algebras was proved in [23, Theorem 4.1].

Theorem 1.2.31. Let A be a finite dimensional ˚-algebra over a field F of characteristic
0. Then there exists a semisimple ˚-subalgebra B such that

A “ B ‘ JpAq

as vector spaces and JpAq is a ˚-ideal of A. Moreover B – A1ˆ¨ ¨ ¨ˆAq, where A1, . . . , Aq

are simple ˚-algebras.

Of course, if A “ B ‘ JpAq with B semisimple ˚-subalgebra, the Wedderburn-
Malcev decomposition enables us to consider semisimple and radical (or nilpotent)
substitutions. More precisely, since in order to check whether a given multilinear ˚-poly-
nomial is an identity of A it is sufficient to evaluate the variables in any spanning
set of even/skew homogeneous elements, we may take a basis consisting of even/skew
homogeneous elements of B or of JpAq. We refer to such evaluations as semisimple or
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radical evaluations, respectively. Moreover, the semisimple substitutions may be taken
from ˚-simple components. This kind of evaluations, i.e., the ones from the set

q
ď

i“1
Ai Y JpAq,

are called elementary . In what follows, whenever we evaluate a polynomial on a finite
dimensional ˚-algebra, we shall only consider elementary evaluations.

1.2.6 Finite dimensional simple ˚-algebras

We shall present the classification of the finite dimensional simple ˚-algebras
over an algebraically closed field F of characteristic zero.

Definition 1.2.32. Let A and B be two superalgebras endowed with superinvolutions ˚
and ‹, respectively, then pA, ˚q and pB, ‹q are isomorphic, as ˚-algebras, if there exists an
isomorphism of superalgebras ψ : AÑ B such that ψpx˚q “ ψpxq‹, for all x P A.

If n “ k ` h, the matrix algebra MnpF q becomes a superalgebra, denoted by
Mk,hpF q, endowed with the grading

pMk,hpF qq0 “

#˜

X 0
0 T

¸

| X PMkpF q, T PMhpF q

+

,

pMk,hpF qq1 “

#˜

0 Y

Z 0

¸

| Y PMkˆhpF q, Z PMhˆkpF q

+

.

In [50], Racine proved that, up to isomorphism and if the field F is algebraically
closed and of characteristic different from 2, it is possible to define on Mk,hpF q only the
following superinvolutions.

1. The transpose superinvolution, denoted by trp and defined for h “ k by
˜

X Y

Z T

¸trp

“

˜

T t ´Y t

Zt X t

¸

,

where t is the usual transpose.

2. The orthosymplectic superinvolution osp defined when h “ 2l is even by
˜

X Y

Z T

¸osp

“

˜

Ik 0
0 Q

¸´1 ˜
X ´Y

Z T

¸t˜

Ik 0
0 Q

¸

“

˜

X t ZtQ

QY t
´QT tQ

¸

,

where Q “
˜

0 Il

´Il 0

¸

and Ik, Il are the k ˆ k, l ˆ l identity matrices, respectively.
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Furthermore, if A is a superalgebra, the opposite superalgebra Asop is the
superalgebra with the same graded vector space structure of A and product given on
homogeneous elements a, b P Asop by

a ˝ b “ p´1q|a||b|ba.

The direct sum R “ A‘ Asop is a superalgebra with R0 “ A0 ‘ A
sop
0 and R1 “ A1 ‘ A

sop
1 .

Given x, y P R, x “ pa, bq “ pa0 ` a1, b0 ` b1q, y “ pa1, b1q “ pa10 ` a11, b
1
0 ` b11q, where

a0, a
1
0 P A0, a1, a

1
1 P A1, b0, b

1
0 P A

sop
0 and b1, b

1
1 P A

sop
1 , the product in R is given by

pa0`a1, b0`b1q¨pa
1
0`a

1
1, b

1
0`b

1
1q “ pa0a

1
0`a1a

1
1`a0a

1
1`a1a

1
0, b

1
0b0´b

1
1b1`b

1
0b1`b

1
1b0q. (1.3)

MoreoverR is a ˚-algebra since it is endowed with the exchange superinvolution
ex defined by:

pa, bqex “ pb, aq .

For example, if we consider the superalgebra Qpnq “MnpF ‘ cF q “ Qpnq0 ‘

Qpnq1, where Qpnq0 “MnpF q and Qpnq1 “ cMnpF q, with c2
“ 1, then Qpnq ‘Qpnqsop is

a ˚-algebra with exchange superinvolution.

The following result gives the classification of the finite dimensional simple
˚-algebras (see [7, 31, 50]).

Theorem 1.2.33. Let A be a finite dimensional simple ˚-algebra over an algebraically
closed field F of characteristic different from 2. Then A is isomorphic (as a ˚-algebra) to
one of the following:

1. Mk,hpF q with the orthosymplectic or the transpose superinvolution,

2. Mk,hpF q ‘Mk,hpF q
sop with the exchange superinvolution,

3. Qpnq ‘Qpnqsop with the exchange superinvolution.

Remark 1.2.34. In Theorem 1.2.33, the ˚-algebra A has always an identity element that
is symmetric of homogeneous degree 0.

Proof. Let I be the identity matrix of MnpF q. If A – Mk,hpF q, n “ k ` h, then I is the
identity of A. Suppose that A –Mk,hpF q ‘Mk,hpF q

sop or A – Qpnq ‘Qpnqsop, then the
pair pI, Iq is the identity of A. Finally it is not difficult to see that the identity of A is a
symmetric even element.

We conclude this section with the following result announced in [1, Theorem 1].

Theorem 1.2.35. Let F be an algebraically closed field of characteristic zero. Let V be
a variety generated by a finitely generated ˚-algebra A over F , satisfying an ordinary
non-trivial identity. Then V “ var˚pBq, for some finite dimensional ˚-algebra B over F.
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1.3 Hopf algebras
In this section we will introduce the Hopf Algebra environment and explore

basic ideas of bialgebras and modules, taking as reference [47] and [49]. We remand to the
books [49, 47, 52, 60] for further information about Hopf algebras.

1.3.1 Algebras and coalgebras

Definition 1.1.1 of F -algebra is equivalent to say that an (associative unitary) F -
algebra is a vector space A over F with two F -linear maps, the multiplicationm : AbAÑ
A and the unit u : F Ñ A, so the following diagrams are commutative:

a) associativity b) unit
Ab Ab A

mbid //

idbm

��

Ab A

m

��
Ab A

m // A

Ab A

m

��

F b A

ubid
99

%%

Ab F

idbu
ee

yy
A

We now “dualize” the notion of algebra.

Definition 1.3.1. An F -coalgebra (with unit) is a vector space C over F with two
F -linear maps, the comultiplication ∆: C Ñ C b C and the counit ε : C Ñ F , such
that the following diagrams are commutative:

a) coassociativity b) counit
C

∆ //

∆

��

C b C

∆bid

��
C b C

idb∆ // C b C b C

C
1b

yy

b1

%%
∆

��

F b C C b F

C b C
εbid

ee

idbε

99

The two upper maps in Definition 1.3.1(b) are given by c ÞÑ 1b c and c ÞÑ cb 1
for any c P C. We say C is cocommutative if τ ˝∆ “ ∆, where τ : C b C Ñ C b C is
the twist map, defined by τpc1 b c2q “ c2 b c1 for all c1, c2 P C.

Example 1.3.2. Let S be a nonempty set. Denote by FS the F -vector space with basis S.
Then FS is a coalgebra with comultiplication ∆ and counit ε defined by ∆psq “ sb s and
εpsq “ 1 for any s P S, indeed,

pIdb∆q∆psq “ pIdb∆qpsb sq “ sb sb s “ p∆b Idqpsb sq “ p∆b Idq∆psq,

pεb Idq∆psq “ pεb Idqpsb sq “ 1b s,

pIdbεq∆psq “ pIdbεqpsb sq “ sb 1.
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Note that this coalgebra is cocommutative. This example shows that any vector space can
be endowed with a F -coalgebra structure.

Example 1.3.3. Let C be an F -vector space with basis ts, cu. Then C is a coalgebra with
comultiplication ∆ and counit ε defined by

∆psq “ sb c` cb s,

∆pcq “ cb c´ sb s,

εpsq “ 0,
εpcq “ 1.

Indeed, we have

pIdb∆q∆psq “ sb cb c` cb sb c` cb cb s´ sb sb s “ p∆b Idq∆psq,

pIdb∆q∆pcq “ cb cb c´ sb sb c´ sb cb s´ cb sb s “ p∆b Idq∆pcq,

pεb Idq∆psq “ pεb Idqpsb c` cb sq “ 0b c` 1b s “ 1b s,

pIdbεq∆psq “ pIdbεqpsb c` cb sq “ sb 1` cb 0 “ sb 1,

pεb Idq∆pcq “ pεb Idqpcb c´ sb sq “ 1b c´ 0b s “ 1b c,

pIdbεq∆pcq “ pIdbεqpcb c´ sb sq “ cb 1´ sb 0 “ cb 1.

Note that this coalgebra is cocommutative.

Notation 1.3.4. The sigma notation for ∆ is given as follows: for any c P C, we write

∆c “
ÿ

c1 b c2.

With the usual summation conventions we should have written

∆c “
ÿ

i“1,n
ci1 b ci2.

The sigma notation supresses the index “i”. The subscripts “1” and “2” are symbolic, and
do not indicate particular elements of C.

Using the sigma notation, the counit diagram in Definition 1.3.1.b) can be
expressed as

c “
ÿ

εpc1qc2 “
ÿ

c1εpc2q. (1.4)

Definition 1.3.5. Let C and D be coalgebras with comultiplications ∆C and ∆D, and
counits εC and εD, respectively.

1. A map f : C Ñ D is a homomorphism of coalgebras if ∆D ˝ f “ pf b fq∆C

and if εC “ εD ˝ f .
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2. A subspace I Ď C is a coideal if ∆CI Ď I b C ` C b I and if εCpIq “ 0.

Remark 1.3.6. Let C be a coalgebra, I a coideal of C and p : C Ñ C{I the canonical
projection of F -vector spaces. Then:

1. There exists a unique coalgebra structure on C{I (called the factor coalgebra)
such that p is a homomorphism of coalgebras.

2. If f : C Ñ D is a homomorphism of coalgebras with I Ď Kerpfq, then there exists a
unique homomorphism of coalgebras f̄ : C{I Ñ D such that f̄p “ f . So, there exists
a canonical isomorphism of coalgebras between C{Kerpfq and Impfq.

1.3.2 Bialgebras

Let H be a F -vector space which is simultaneously endowed with an algebra
structure pH,m, uq and a coalgebra structure pH,∆, εq. The following definition establishes
the situation in which the two structures are compatible.

Definition 1.3.7. A 5-tuple pH,m, u,∆, εq is called bialgebra if pH,m, uq is an algebra,
pH,∆, εq is a coalgebra and m and u are homomorphism of coalgebras (or, equivalently, ∆
and ε are homomorphism of algebras).

Remark 1.3.8. The compatibility relations between the operations of a bialgebra H give
us the following conditions for all h, g P H:

∆phgq “
ÿ

h1g1 b h2g2,

εphgq “ εphqεpgq,

∆p1q “ 1b 1,
εp1q “ 1.

We say that a bialgebra morphism is an F -linear map f : H Ñ H 1 that is
both a homomorphism of algebras and a homomorphism of coalgebras. A subspace I Ď H

is a biideal if it is both an ideal (in the underlying algebra of H) and a coideal (in the
underlying coalgebra of H). Then the structures of factor algebra and the factor coalgebra
define the bialgebra H{I.

Example 1.3.9. Let G be a (multiplicative) group and let H “ FG be its group algebra.
We recall that FG is an F -vector space with basis tg | g P Gu and its elements are of
the form

ÿ

gPG

αgg with pαgqgPG a family of elements from F having only a finite number

of nonzero elements . The multiplication and unit are defined by mph b gq “ hg and
up1q “ 1H “ e and extended by linearity, where e is the identity element of G.
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On the group algebra H we also have a coalgebra structure (as in Example
1.3.2), in which ∆pgq “ g b g and εpgq “ 1, for all g P G. Note that

∆phgq “ hg b hg “ phb hqpg b gq “ ∆phq∆pgq

and
εphgq “ 1 “ εphqεpgq.

This shows that ∆ and ε are homomorphism of algebras and H is a bialgebra.

Example 1.3.10. Let g be a Lie algebra over F and let Upgq be its universal enveloping
algebra. Then Upgq is a bialgebra with ∆pxq “ xb 1` 1b 1, and εpxq “ 0, for all x P g.

Example 1.3.11. Take 0 ‰ q P F and let H “ OpF 2
q “ F xx, y | xy “ qyxy, which is

called the quantum plane. H has a bialgebra structure given by setting ∆pxq “ x b x,
∆pyq “ y b 1` xb y, εpxq “ 1 and εpyq “ 0.

Example 1.3.12. Assume that the characteristic of F is different from 2. Let H be the
algebra given by generators and relations as follows: H is generated as an F -algebra by c
and x satisfying the relations

c2
“ 1, x2

“ 0, xc “ ´cx.

Then H has dimension 4 as F -vector space with basis t1, c, x, cxu. The coalgebra structure
is induced by

∆pcq “ cb c, ∆pxq “ cb x` xb 1,

εpcq “ 1, εpxq “ 0.

In this way, H becomes a bialgebra. Note that H is neither commutative nor cocommutative.

1.3.3 Hopf algebras

Definition 1.3.13. A bialgebra pH,m, u,∆, εq is called Hopf algebra if there exists a
F -linear map S : H Ñ H (called antipode) such that the following diagram commutes:

H bH
SbId // H bH

m

��
H

∆

CC

ε //

∆

��

F u // H

H bH IdbS
// H bH

m

CC



Chapter 1. Preliminaries 45

This property can also be expressed as
ÿ

pSh1qh2 “ εphq1H “
ÿ

h1pSh2q for all h P H, (1.5)

where 1H is the identity element of H.

Definition 1.3.14. Let C be a coalgebra and A an algebra. Then HomF pC,Aq becomes
an algebra under the convolution product

pf ˚ gqpcq “
ÿ

fpc1qgpc2q,

for all f, g P HomF pC,Aq, c P C.

Notice that the unit element of HomF pC,Aq is uε, since

pf ˚ uεqpcq “
ÿ

fpc1quεpc2q “
ÿ

fpc1qεpc2q1 “ fpcq.

Similarly, puεq ˚ f “ f .

Let H be an Hopf algebra with antipode S : H Ñ H. Then S is the inverse of
the identity map I : H Ñ H with respect to the convolution product in HomF pH,Hq.

We can define morphisms of Hopf algebras which are simply bialgebra
morphisms, since the bialgebra morphisms preserve antipodes, that is, if f : H Ñ B is
a bialgebra morphism between two Hopf algebras H and B with antipodes SH and SB
respectively, then SBf “ fSH [49, Proposition 4.2.5].

Let H be a Hopf algebra, and I a Hopf ideal of H, i.e. I is an ideal of the
algebra H, a coideal of the coalgebra H, and SpIq Ď I, where S is the antipode of H.
Then on the factor space H{I we can attach a natural structure of Hopf algebra. When
this structure is settled up, the canonical projection p : H Ñ H{I is a morphism of Hopf
algebras.

Proposition 1.3.15. Let H be a Hopf algebra with antipode S. Then:

iq Sphgq “ SpgqSphq for any g, h P H.

iiq Sp1q “ 1.

iiiq ∆pSphqq “
ÿ

Sph2q b Sph1q.

ivq εpSphqq “ εphq.

Proof. See [49, Proposition 4.2.6].
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Example 1.3.16. Let G be a group and H “ FG the bialgebra defined in Example 1.3.9.
Then H has a Hopf algebra structure with antipode S defined by Spgq “ g´1 for all g P G.
Indeed,

ÿ

pSg1qg2 “ Spgqg “ g´1g “ 1H “ εpgq1H
and

ÿ

g1pSg2q “ gSpgq “ gg´1
“ 1H “ εpgq1H .

Example 1.3.17. The universal enveloping algebra H “ Upgq is a Hopf algebra with
antipode S defined by Spxq “ ´x for each x P g. Indeed,

ÿ

pSx1qx2 “ spxq1` sp1qx “ ´x` x “ 0 “ εpxq1H

and
ÿ

x1pSx2q “ xSp1q ` 1Spxq “ x´ x “ 0 “ εpxq1H

Example 1.3.18. Let Opf 2
q be the quantum plane defined in Example 1.3.11. Consider

the bialgebra H “ Opf 2
qrx´1

s where ∆px´1
q “ x´1

b x´1 and εpx´1
q “ x´1. Then H

has a Hopf algebra structure with antipode S defined by Spxq “ x´1, Spx´1
q “ x and

Spyq “ ´x´1y.

Example 1.3.19. Consider the bialgebra H4 “ F x1, c, x, cx | c2
“ 1, x2

“ 0, xc “ ´cxy
defined in Example 1.3.12. Then H4 becomes a Hopf algebra with antipode S define by
Spcq “ c´1

“ c and Spxq “ ´cx, indeed,
ÿ

pSc1qc2 “ spcqc “ c2
“ 1 “ εpcq1 “ cSpcq “

ÿ

c1pSc2q

and
ÿ

pSx1qx2 “ spcqx` spxq1 “ cx´ cx “ 0 “ εpxq1

“ ´c2x` x “ cSpxq ` xSp1q “
ÿ

x1pSx2q.

This Hopf algebra is known as Sweedler’s 4-dimensional Hopf algebra.

The next example is a generalization of the Sweedler’s Hopf algebras.

Example 1.3.20. Let F be a field containing a m-th root of the unit ξ for some positive
integer m. Let Hm2pξq be the bialgebra defined by generators c and x with relations

cm “ 1, xm “ 0, xc “ ξcx.

The coalgebra structure is given by

∆pcq “ cb c, ∆pxq “ cb x` xb 1,

εpcq “ 1, εpxq “ 0.

As a F -vector space, Hm2pξq has dimension m2 with basis tcixj | 0 ď i, j,ď m´ 1u. The
bialgebra Hm2pξq becomes a Hopf algebra if we define the antipode as Spcq “ c´1 and
Spxq “ ´c´1x. This Hopf algebra is known as the Taft’s Hopf algebra of dimension
m2.
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1.3.4 Modules and comodules

We begin this section by defining modules over an algebra using only morphism
and diagrams. Then by dualization we obtain the notion of a comodule over a coalgebra.

Definition 1.3.21. Let A be an F -algebra, a (left) A-module is F -vector space X with
a F -linear map γ : X b AÑ X such that the following diagrams commute:

X b Ab A
Idbm //

γbId

��

X b A

γ

��
X b A γ

// X

X b F
Idbu //

scalar mult.

##

X b A

γ

��
X

Definition 1.3.22. Let C be a F -coalgebra, a (right) C-comodule is a F -vector space
M with a F -linear map ρ : M ÑM b C such that the following diagrams commute:

M
ρ //

ρ

��

M b C

Idb∆

��
M b C

ρbId
//M b C b C

M
ρ //

b1

""

M b C

Idbε

��
M b F

Notation 1.3.23. For any element m PM , we write ρpmq “
ÿ

mp0qbmp1q where m0 PM

and m1 P C.

Example 1.3.24. Let pC,∆, εq be a coalgebra. Take M “ C with ρ “ ∆. Then, pM,ρq is
a right C-comodule.

Example 1.3.25. Let pC,∆, εq be a coalgebra and let V be a F -vector space. Then
M “ V b C is a right C-comodule with ρ “ I b∆. Thus ρpv b cq “

ÿ

v b c1 b c2.

Example 1.3.26. Let C “ FG with coalgebra structure of the Example 1.3.9. Let M be
a G-graded module, i.e. M “

à

gPG

Mg where pMgqgPG is a family of F -vector spaces. Then

M is a right C-comodule with ρpmgq “ mg b g for any g P G and mg PMg.

We define the morphisms of comodules dualizing the corresponding definition
of morphisms of modules. We use commutative diagrams for this purpose.

Definition 1.3.27. Let A be an F -algebra, and let pX, γq, pY, νq be two left A-modules.
The F -linear map f : X Ñ Y is a morphism of A-modules if the following diagram



Chapter 1. Preliminaries 48

commutes:
AbX

Idbf //

γ

��

Ab Y

ν

��
X

f
// Y

Definition 1.3.28. Let C be a F -coalgebra, and let pM,ρq, pN, φq be two right C-
comodules. The F -linear map g : M Ñ N is a morphism of C-comodules if the
following diagram commutes:

M
g //

ρ

��

N

φ

��
M b C

gbid
// N b C

1.3.5 Semisimple Hopf algebras

In this section, consider H to be a finite dimensional Hopf algebra. We will study
the relationship between integrals, semisimplicity and finite dimensional Hopf algebras.

Definition 1.3.29. A left integral in H is an element t P H such that ht “ εphqt, for
all h P H. Similarly, a right integral in H is an element t1 P H such that t1h “ εphqt1,
for all h P H.

Denote by
ż l

H

the F -space of left integrals in H, and by
ż r

H

the F -space of
right integrals in H.

Example 1.3.30. Let H “ FG. The element t “
ÿ

gPG

g is a left and right integral in H.

Indeed, if h P G,

ht “ h

˜

ÿ

gPG

g

¸

“
ÿ

gPG

g “ t “ εpgqt.

If h “
ÿ

g1PN

αg1g
1 where N is a subgroup of G and αg1 P F for all g1 P N ,

ht “

˜

ÿ

g1PN

αg1g
1

¸

t “
ÿ

g1PN

αg1t “ εphqt.

This implies that t is a left integral in H. Similarly, t is a right integral in H.

Example 1.3.31. Let H “ H2 be the Sweedler’s Hopf algebra. Note that

cpx` cxq “ cx` x “ εpcqpx` cxq,
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xpx` cxq “ xcx “ 0 “ εpxqpx` cxq.

Then x` cx is a left integral in H. On the other hand, note that

px´ cxqc “ xc´ cxc “ x´ xc “ εpcqpx´ cxq,

px´ cxqx “ 0 “ εpxqpx´ cxq.

Then x´ cx is a right integral in H. Moreover
ż l

H

“ F px` cxq and
ż r

H

“ F px´ cxq.

Definition 1.3.32. An Hopf algebra H is called semisimple if every (left) H-module is
completely reducible.

A necessary and sufficient condition to determine whether a Hopf algebra is
semisimple is given by the following version of the Maschke’s theorem for Hopf algebras
due to Larson and Sweedler.

Theorem 1.3.33. [47, Theorem 2.2.1]. Let H be any finite dimensional Hopf algebra.
Then the following conditions are equivalent:

• H is semisimple;

• ε

ˆ
ż l

H

˙

‰ 0;

• ε

ˆ
ż r

H

˙

‰ 0.

Example 1.3.34. Let H4 the Sweedler’s Hopf algebra. By Example 1.3.31, we have

ε

ˆ
ż l

H

˙

“ εpF px` cxqq “ 0, and ε
ˆ
ż r

H

˙

“ εpF px´ cxqq “ 0. So H4 is not semisimple.

In general, the Taft algebra Hm2pξq is not semisimple.

1.3.6 H-module algebras

In this section we study actions of a Hopf algebra H on an F -algebra A.

Definition 1.3.35. An F -algebra A is a (left) H-module algebra if the following con-
ditions hold:

MA1) A is a left H-module (with action of h P H on a P A denoted by h ¨ a.

MA2) h ¨ pabq “
ÿ

ph1 ¨ aqph2 ¨ bq, for all h P H and a, b P A.

MA3) h ¨ 1A “ εphq1A for all h P H.
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Remark 1.3.36. Some authors omit (MA3) in the definition of H-module algebra since
(MA3) can be obtained from (MA2), indeed,

h ¨ 1A “ ph ¨ 1Aq1A
“ pp

ÿ

h1εph2qq ¨ 1Aq1A By equation 1.4

“
ÿ

ph1 ¨ 1Aqpεph2q ¨ 1Aq

“
ÿ

ph1 ¨ 1Aqpph2Sph3qq ¨ 1Aq By equation 1.5

“
ÿ

ph1 ¨ 1Aqph2 ¨ pSph3q ¨ 1Aqq By associativity of scalars from H

“
ÿ

h1 ¨ p1ApSph2q ¨ 1Aqq By (MA2)

“
ÿ

h1 ¨ pSph2q ¨ 1Aq

“ p
ÿ

h1Sph2qq ¨ 1A By associativity of scalars from H

“ εphq1A. By equation 1.5

Example 1.3.37. For any Hopf algebra H and any F -algebra A, we have a structure of
H-module algebra given by the trivial action h ¨ a “ εphqa for all h P H and a P A.

Example 1.3.38. Let A be an H-module algebra with H “ FG where G is a group. Since
∆pgq “ gb g for every g P G then g ¨ pabq “ pg ¨ aqpg ¨ bq for every a, b P A, and thus g acts
as an endomorphism of A. Moreover, g acts as an automorphism since g´1g “ 1. Thus,
we have a homomorphism of groups GÑ AutF pAq. Conversely if G is a group acting as
automorphism on any F -algebra A, then A is a FG-module algebra.

Example 1.3.39. Any Hopf algebra H acts on itself by the adjoint action, defined by

h ¨ l “ padhql “
ÿ

h1lSph2q, for all h, l P H.

To see this, it is sufficient to prove (MA2). For any h, l,m P H, we have

h ¨ pmlq “
ÿ

h1lmSph2q

“
ÿ

h1εph2qlmSph2q By equation 1.4

“
ÿ

h1lεph2qmSph2q

“
ÿ

h1lSph2qh3mSph4q By equation 1.5

“
ÿ

ppadh1qlqppadh2qmq

“
ÿ

ph1 ¨ lqph2 ¨mq.

As a particular case, if H “ FG then padxqy “ xyx´1, x, y P G, and if H “ Upgq, then
padxqh “ xh´ hx, x P g, h P H.
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Example 1.3.40. Let H4 the Sweedler’s Hopf algebra (Example 1.3.19). Consider the
algebra M2pF q of matrices 2ˆ 2 over F and the H4-action on M2pF q induced by

c ¨

˜

a1 a2

a3 a4

¸

“

˜

a1 ´a2

´a3 a4

¸

and x ¨

˜

a1 a2

a3 a4

¸

“

˜

´a3 a1 ´ a4

0 ´a3

¸

.

To see that M2pF q is an H4-module algebra we will prove (MA2): Let A “
`

a1 a2
a3 a4

˘

and
B “

`

b1 b2
b3 b4

˘

be elements of M2pF q. Then,

c ¨ pABq “ c ¨

«˜

a1 a2

a3 a4

¸˜

b1 b2

b3 b4

¸ff

“ c ¨

˜

a1b1 ` a2b3 a1b2 ` a2b4

a3b1 ` a4b3 a3b2 ` a4b4

¸

“

˜

a1b1 ` a2b3 ´a1b2 ´ a2b4

´a3b1 ´ a4b3 a3b2 ` a4b4

¸

“

˜

a1 ´a2

´a3 a4

¸˜

b1 ´b2

´b3 b4

¸

“ pc ¨ Aqpc ¨Bq.

and

x ¨ pABq “ x ¨

«˜

a1 a2

a3 a4

¸˜

b1 b2

b3 b4

¸ff

“ x ¨

˜

a1b1 ` a2b3 a1b2 ` a2b4

a3b1 ` a4b3 a3b2 ` a4b4

¸

“

˜

´a3b1 ´ a4b3 a1b1 ` a2b3 ´ a3b2 ´ a4b4

0 ´a3b1 ´ a4b3

¸

“

˜

´a1b3 a1b1 ´ a1b4 ` a2b3

a3b3 ´a3b1 ` a3b4 ´ a4b3

¸

`

˜

´a3b1 ` a1b3 ´ a4b3 ´a3b2 ` a1b4 ´ a4b4

´a3b3 ´a3b4

¸

“

˜

a1 ´a2

´a3 a4

¸˜

´b3 b1 ´ b4

0 ´b3

¸

`

˜

´a3 a1 ´ a4

0 ´a3

¸˜

b1 b2

b3 b4

¸

“ pc ¨ Aqpx ¨Bq ` px ¨ Aqp1 ¨Bq.

Definition 1.3.41. Let H be an Hopf algebra and let A and B be two H-module algebras.
We say that a homomorphism of algebras φ : AÑ B is a homomorphism of H-module
algebras or, simply, an H-homomorphism if φ is a morphism of H-modules, i.e.
φph ¨ aq “ h ¨ φpaq for every h P H and a P A.

1.3.7 Free H-module algebra

Given H an m-dimensional Hopf algebra over a field F , let X “ tx1, x2, . . . u be
a set of non-commutative variables and consider the vector space V “ SpanF tx1, x2, . . . ubF

H. The free H-module algebra generated by X, denoted by FH
xXy is the tensor algebra

over V , that is,

FH
xXy “ T pV q “

à

ně0
T npV q “

à

ně0
T npSpanF tx1, x2, . . . u bF Hq.
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An element of FH
xXy is called H-polynomial. We prefer the notation

xh1
i1 x

h2
i2 ¨ ¨ ¨ x

hn
in

:“ pxi1 b h1q b pxi2 b h2q b ¨ ¨ ¨ b pxin b hnq.

Suppose tb1, . . . , bmu is a basis for H (basis as vector space), then FH
xXy is

isomorphic to the free algebra over F with free formal (non-commutative) generators xbj ,
where j P t1, . . . ,mu and x P X. Define in FH

xXy the structure of a left H-module algebra
by

hpxh1
i1 x

h2
i2 ¨ ¨ ¨ x

hn
in q “ x

hp1qh1
i1 x

hp2qh2
i2 ¨ ¨ ¨ x

hpnqhn
in

where hp1q b hp2q b ¨ ¨ ¨ b hpnq is the image of h P H under the comultiplication ∆ of H
applied pn´ 1q times.

The H-module algebra FH
xXy has the following universal property: if α : X Ñ

W is any map from X to any H-module algebra W , then there exists a unique H-
homomorphism β : FH

xXy Ñ W such that the following diagram commutes

X
i //

α

""

FHxXy

β

��
W

where i : X Ñ FH
xXy is the function ipxq “ x1H P FH

xXy for all x P X.

Given any H-module algebra W , we say that f P FH
xXy is an H-identity

of W if for every H-homomorphism φ : FH
xXy Ñ W the polynomial f is in the kernel

of φ. In other words, fpx1, x2, . . . , xnq P FH
xXy is a H-identity of W if and only if

fpw1, w2, . . . , wnq “ 0 for all w1, w2, . . . , wn P W . The set IdHpW q of all H-identities of W
is a ideal of FH

xXy and is invariant under all H-endomorphisms of FH
xXy. The ideals with

this property are called TH-ideals. If I is an TH-ideal of FH
xXy then IdHpFH

xXy{Iq “ I.
Two H-module algebras W1 and W2 are said to be TH-equivalent, and we write W1 „TH

W2), if IdHpW1q “ IdHpW2q.

Given a non-empty set S Ď FH
xXy, the class varHpSq of all H-module algebras

W such that f is an H-identity for W for all f P S is called the variety determined
or generated by S. Similarly, given an H-module algebra W , the variety of H-module
algebras generated by W , denoted by varHpW q, is the class of all H-module algebras
satisfying the H-identities of W . Hence we say that A P varHpW q if and only if IdHpW q Ď
IdHpAq.

1.4 Representation Theory
In this section we deal with the method of representation theory of groups in

the study of PI-algebras. We will gather basic results on finite-dimensional representations
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and representations of the symmetric group. Finally, we will exploit the permutation action
of the symmetric group Sn on the space of multilinear polynomials in n variables. For
more detailed background see for example the books by Steinberg [58], James and Kerber
[34], and Sagan [54].

Even if most of the results in this section hold over a field of arbitrary charac-
teristic, we shall assume, throughout the section, that F is an algebraically closed field of
characteristic 0.

1.4.1 Representation of finite groups

Let V be a vector space. The general linear group GLpV q of V is the group

GLpV q :“ tA P EndpV q | A is invertibleu.

If dim V “ m ă 8, fixing a basis of V , we identify the group GLpV q with the group
GLmpF q of invertible mˆm matrices with entries from F .

Definition 1.4.1. A representation of a group G is a homomorphism φ : GÑ GLpV q for
some finite-dimensional vector space V . The dimension of V is called the degree of φ.
We usually write φg for φpgq and φgpvq, or simply φgv, for the action of φg on v P V .

Example 1.4.2. The trivial representation of a group G is the homomorphism φ : GÑ
F zt0u given by φpgq “ 1 for all g P G.

Example 1.4.3. φ : Z{nZÑ Czt0u defined by φprmsq “ e2πim{n is a representation.

Example 1.4.4. Let Sn be the symmetric group of order n. Define φ : Sn Ñ GLnpF q on
the standard basis by φσpeiq “ eσpiq. So, for instance, when n “ 3 we have

φp1 2q “

»

—

–

0 1 0
1 0 0
0 0 1

fi

ffi

fl

, φp1 2 3q “

»

—

–

0 0 1
1 0 0
0 1 0

fi

ffi

fl

.

Definition 1.4.5. Two representations φ : GÑ GLpV q and ϕ : GÑ GLpW q are said to
be equivalent if there exists an isomorphism T : V Ñ W such that ϕg “ TφgT´1 for all
g P G, i.e., ϕgT “ Tφg for all g P G. In this case, we write φ „ ϕ. In pictures, we have
that the following diagram commutes.

V
φg //

T

��

V

T

��
W

ϕg //W
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Definition 1.4.6. Suppose that representations φp1q : GÑ GLpV1q and φp2q : GÑ GLpV2q

are given. Then their direct sum φ “ φp1q ‘ φp2q : GÑ GLpV1 ‘ V2q is given by

φgpv1, v2q “ pφ
p1q
g pv1q, φ

p2q
g pv2qq.

Their tensor product φ “ φp1q b φp2q : GÑ GLpV1 b V2q is given by

φgpv1 b v2q “ φp1qg pv1q b φ
p2q
g pv2q.

Example 1.4.7. If n ą 1, then the representation φ : GÑ GLnpKq given by φg “ I all
g P G is not equivalent to the trivial representation; rather, it is equivalent to the direct
sum of n copies of the trivial representation.

Definition 1.4.8. Let φ : GÑ GLpV q be a representation. If W is a G-invariant subspace
of V , i.e., φgpW q “ W , then the representation ϕ : GÑ GLpW q defined by ϕgpwq “ φgpwq

for all g P G and w P W Ď V is called a subrepresentation of the representation
φ : GÑ GLpV q. The subrepresentation ϕ is proper if W ‰ t0u and W ‰ V .

Example 1.4.9. Let φ : Sn Ñ GLnpF q be the representation given in example 1.4.4. Notice
that W “ F pe1 ` ¨ ¨ ¨ ` enq is a Sn-invariant subspace of V “ F n, in fact, since σ is a
permutation and addition is commutative, we have that φσpe1`¨ ¨ ¨`enq “ eσp1q`¨ ¨ ¨`eσpnq “

e1 ` ¨ ¨ ¨ ` en. Moreover, if n ą 1, the subrepresentation ϕ : G Ñ GLpW q, given by
ϕgpwq “ φgpwq is proper.

Definition 1.4.10. A representation φ : GÑ GLpV q is said to be irreducible if it has
no proper subrepresentations. φ is said to be completely reducible if it is a direct sum
of finitely many irreducible representations.

If FG is the group algebra of G over F and φ is a representation of G on V ,
this representation induces a homomorphis of algebras φ1 : FGÑ EndF pV q given by

φ1p
ÿ

gPG

αggq “
ÿ

gPG

αgφpgq,

such that φ1p1Gq “ 1.

Theorem 1.4.11 (Maschke). Every finite dimensional representation of a finite group
G is completely reducible. Then the group algebra FG is isomorphic to a direct sum of
matrix algebras,

FG –Md1pF q ‘ ¨ ¨ ¨ ‘MdrpF q.

A representation of a group G uniquely determines a finite dimensional G-
module in the following way: if φ : G Ñ GLpV q is a representation, V becomes a (left)
G-module by defining gv “ φgpvq for all g P G, v P V . On the other hand, if M is a
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G-module which is finite dimensional as a vector space over F , then φ : GÑ GLpMq, such
that φgpmq “ gm, for g P G, m PM , defines a representation of G on M .

Let us introduce some notation. If V is a vector space, φ a representation and
m ą 0, then we set

mV “ V ‘ ¨ ¨ ¨ ‘ V
loooooomoooooon

n times

and mφ “ φ‘ ¨ ¨ ¨ ‘ φ
looooomooooon

n times

.

Let φp1q, . . . , φpsq be a complete list of irreducible representations of G, up to
equivalence (by Maschke Theorem). Let ρ a representation of G. If ρ „ m1φ

p1q
‘¨ ¨ ¨‘msφ

psq,
then mi is called the multiplicity of φpiq in ρ.

The regular representation of G is the homomorphism L : G Ñ GLpFGq

defined by
Lgp

ÿ

hPG

αhhq “
ÿ

hPG

αhgh.

Considering FG as a left G-module, we always assume that G acts on FG in this way, as
a group of left translations. The subrepresentations of L correspond to left ideals of the
group algebra FG and the irreducible representations correspond to minimal left ideals of
FG.

By Maschke Theorem 1.4.11 the regular representation has the following de-
composition

FG – n1V1 ‘ ¨ ¨ ¨ ‘ nkVk,

where niVi “ Vi ‘ ¨ ¨ ¨ ‘ Vi (ni times), ni is the multiplicity of Vi in FG, and Vi –
ni
ÿ

l“1
Feli

is a minimal left ideal of MnipF q. Notice that ni is the degree of the representation Vi.

Proposition 1.4.12. [58, Theorem 4.4.4] Every irreducible representation of G (up to
equivalence) appears in the regular representation of G with multiplicity equal to its degree.

Recall from Definition 1.1.9 that an element e in an algebra A is called idempo-
tent if e2

“ e. A nonzero left (resp. right) ideal I of an algebra A is called minimal ideal
if it contains no other nonzero left (resp. right) ideal. An element in A is called minimal
if it generates a minimal one-side ideal of A.

Proposition 1.4.13. If M is an irreducible representation of G, then M – Vi, a minimal
left ideal of MnipF q, for some i P t1, . . . , ku. Hence there exists a minimal idempotent
e P FG such that M – FGe.

Now, we will define the characters of the representations of a group G, which
describe the multiplicities of irreducible representations for FG. Let tr : EndpV q Ñ F be
the trace function on EndpV q.
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Definition 1.4.14. Let φ : GÑ GLpV q be a representation of G. Then the map χφ : GÑ
F such that χφpgq “ trpφgq is called the character of φ. The character of an irreducible
representation is called an irreducible character.

Let CpGq be the vector space of class functions on G, (that is, all the functions
f : GÑ F such that fpgq “ fphgh´1

q for all g, h P G). It is easy to show that the character
belongs to CpGq. One can define an inner product x , y on CpGq by setting

xχ, ψy “
1
|G|

ÿ

gPG

χpgqψpg´1
q, χ, ψ P CpGq.

Proposition 1.4.15. [29, Proposition 2.1.10] Let φp1q, . . . , φpsq be a complete list (up to
equivalence) of irreducible representations of G, with characters χ1, . . . , χs, respectively.
Let ρ be a representation of G and write ρ „ m1φ

p1q
‘ ¨ ¨ ¨ ‘msφ

psq. Then:

1. χρ “
k
ÿ

i“1
miχi.

2. xχρ, χiy “ mi, for all i.

3. xχρ, χρy “
k
ÿ

i“1
m2
i .

4. xχρ, χρy “ 1 if and only if ρ is irreducible.

5. χρ “ χρ1 if and only if ρ „ ρ1, where ρ1 is another representation of G.

Thus, the group algebra FG descomposes as FG “ ‘ki“1eiFG, with eiFG –
MnipF q and

ei “
χip1q
|G|

ÿ

gPG

χipg
´1
qg

is a minimal central idempotent of FG.

1.4.2 Representations of the symmetric group

Definition 1.4.16. Let n ě 1 be an integer. A partition λ of n is a finite sequence of

integers λ “ pλ1, . . . , λrq in decreasing order (i.e. λ1 ě ¨ ¨ ¨ ě λr ě 0) such that
r
ÿ

i“1
λi “ n.

In this case we write λ $ n or |λ| “ n.

Definition 1.4.17. The Young diagram Dλ of a partition λ “ pλ1, . . . , λrq $ n can be
formally defined as the set of points pi, jq P Z2 such that 1 ď j ď λi, i “ 1, . . . , r.

Graphically, we draw the diagrams replacing the points by square boxes such
that the first coordinate i (the row index) increases from top to the bottom and the second
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coordinate j (the column index) increases from left to right. For instance, for λ “ p4, 3, 1q,
the corresponding Young diagram is given by

For a partition λ $ n we shall denote by λ1 “ pλ11, . . . , λ
1
sq the conjugate

partition of λ, where λ1j is the length of the j-th column of Dλ.

Definition 1.4.18. Let λ $ n. A Young tableau Tλ of the Young diagram Dλ is a
filling of the boxes of Dλ with the integers 1, 2, . . . , n. The tableau Tλ is standard if the
integers in each row and in each column of Tλ increase from left to right and from top to
bottom, respectively.

Example 1.4.19. Let n “ 3. For λ “ p2, 1q, the standard tableaux for λ are:

1 2
3

1 3
2

Proposition 1.4.20. [29, Proposition 2.2.2] Let n ě 1. There is a one-to-one correspon-
dence between irreducible Sn-characters and partitions of n. Let tχλ | λ $ nu be a complete
set of irreducible characters of Sn and dλ “ χλp1q be the degree of χλ, λ $ n. Then

FSn –
à

λ$n

Iλ –
à

λ$n

MdλpF q,

where Iλ “ eλFSn – MdλpF q is the minimal two-sided ideal of FSn corresponding to
λ $ n, and eλ “

ÿ

σPSn

χλpσqσ is the essential central idempotent, which is up to a scalar,

the unit element of Iλ.

We denote by Mpλq the irreducible Sn-module related with the partition λ $ n.
The degrees of the irreducible representations of Sn can be obtained in two ways.

Theorem 1.4.21. [22, Theorem 12.2.12] Let λ $ n.

1. The dimension dλ of the irreducible Sn-module Mpλq is equal to the number of
standard Young tableaux Tλ.



Chapter 1. Preliminaries 58

2. (The Hook Formula)

dλ “
n!

ś

pi,jqPDλ

pλi ` λ1j ´ i´ j ` 1q .

Example 1.4.22. Let n “ 5. For λ “ p3, 2q, the dimension dp3,2q of the irreducible
S5-module Mp3, 2q is:

dp3,2q “
5!

4 ¨ 3 ¨ 1 ¨ 2 ¨ 1 “ 5.

The five standard tableaux for λ “ p3, 2q are:

1 2 3
4 5

1 2 4
3 5

1 2 5
3 4

1 3 4
2 5

1 3 5
2 4

Now we describe a complete set of minimal left ideals of FSn. Let λ $ n be a
partition and Tλ be a Young tableau. The row stabilizer RTλ of Tλ is the subgroup of
Sn which maps every element of t1, . . . , nu into an element standing in the same row in
Tλ. The column stabilizer CTλ of Tλ is the subgroup of Sn which maps every element of
t1, . . . , nu into an element standing in the same column in Tλ. Clearly RTλ X CTλ “ t1u.

The following theorem describes the irreducible representations of the symmetric
group.

Theorem 1.4.23. [22, Theorem 12.2.7] Let λ $ n be a partition and Tλ be a Young
tableau. Consider the element of the group algebra FSn

eTλ “
ÿ

σPRTλ
τPCTλ

psgn τqστ.

1. e2
Tλ
“ aeTλ, where a “

n!
dλ

, i.e., eTλ is an essential minimal idempotent of FSn and
generates a minimal left ideal of FSn (i.e. an irreducible Sn-module).

2. If Tλ and T ‹λ are Young tableaux of the same partition λ $ n, then FSneTλ – FSneT ‹
λ

as Sn-modules; moreover σeTλσ´1
“ eT ‹

λ
for some σ P Sn.

3. If µ is another partition of n, then FSneTµ fl FSneTλ.

4. Every irreducible Sn-module is isomorphic to FSneTλ for some partition λ $ n.

Example 1.4.24. Let n “ 3. Given the Young tableau Tλ “
1 2
3

of the partition

λ “ p2, 1q. Then

eTp2,1q “ p1` p1 2qqp1´ p1 3qq “ 1` p1 2q ´ p1 3q ´ p1 3 2q

is an essential idempotent of FS3 which generates a two dimensional irreducible S3-module.
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1.4.3 Sn-actions on multilinear polynomials

In this section we introduce an action of the symmetric group Sn on the space
of multilinear polynomials in n fixed variables.

Let A be a PI-algebra over a field of characteristic 0. By Corollary 1.2.22
IdpAq is determined by multilinear polynomials. We denote by Pn the vector space of all
polynomials in F xXy which are multilinear of degree n. Clearly, Pn is of dimension n! and
we can write

Pn “ Spantxσp1q ¨ ¨ ¨ xσpnq | σ P Snu.

Consider the map
ψ : FSn Ñ Pn,

ÿ

σPSn

ασσ ÞÑ
ÿ

σPSn

ασxσp1q ¨ ¨ ¨ xσpnq,

it is clear that ψ is a linear isomorphism. This isomorphism turns Pn into a left Sn-module
with the action

σp
ÿ

αixi1 ¨ ¨ ¨ xinq “
ÿ

αixσpi1q ¨ ¨ ¨ xσpinq, σ P Sn, αi P F, xi1 ¨ ¨ ¨ xin P Pn.

The meaning of the left Sn-action on a polynomial fpx1, . . . , xnq P Pn, for
σ P Sn is

σfpx1, . . . , xnq “ fpxσp1q, . . . , xσpnqq,

that is, of permuting the variables according to σ.

Since T -ideals are invariant under all endomorphisms, in particular, under
substitution of variables, we obtain that T -ideals are invariant under all permutations of
the variables. Thus, Pn X IdpAq is a left Sn-submodule of Pn. Hence

PnpAq :“ Pn
Pn X IdpAq

has an induced structure of left Sn-module. PnpAq is the subspace of the relatively free
algebra F xXy{ IdpAq constituted by multilinear polynomials in the first n variables.

Definition 1.4.25. Let A be a PI-algebra and let PnpAq “
Pn

Pn X IdpAq , n “ 0, 1, 2, . . . .
The Sn-character

χnpAq “
ÿ

λ$n

mλpAqχλ (1.6)

is called the n-cocharacter of the polynomial identities of the algebra A. The sequence

χnpAq, n “ 0, 1, 2, . . . ,

is called the cocharacter sequence of A. The non-negative integer

cnpAq “ dim Pn
Pn X IdpAq
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is called the n-th codimension of A. The non-negative integer

lnpAq “
ÿ

λ$n

mλpAq

is called the n-th colength of A. Finally, the PI-exponent of A is defined by

exppAq “ lim
nÑ8

n
a

cnpAq.

Since the n-th codimension cnpAq of the PI-algebra A is equal to the dimension
of the Sn-module PnpAq, we obtain inmediately that cnpAq is equal to evaluation of χnpAq
on the identity permutation, i.e., cnpAq “ χnpAqp1q. Moreover, lnpAq counts the number
of irreducible Sn modules appearing in the decomposition of PnpAq.

Example 1.4.26. Let A be a commutative non-nilpotent algebra. Since the T -ideal of
A coincides with the commutator ideal of F xXy, the relatively free algebra F xXy{ IdpAq
is isomorphic to the polynomial algebra F rXs in infinitely many commuting variables.
Hence PnpAq “ Spantx1 ¨ ¨ ¨ xnu and σpx1 ¨ ¨ ¨ xnq “ x1 ¨ ¨ ¨ xn for all σ P Sn, that is, PnpAq
is the trivial module of Sn. Therefore for all n, χnpAq “ χn, cnpAq “ 1, lnpAq “ 1 and
exppAq “ 1.

An useful tool in computing the n-th cocharacter is the following.

Theorem 1.4.27. [29, Theorem 2.1] Let A be a PI-algebra with n-th cocharacter χnpAq “
ÿ

λ$n

mλpAqχλ. For a fixed partition λ $ n, we have that mλ “ 0 if and only if for any

Young tableau Tλ and for any polynomial f P Pn, the algebra satisfies the identity eTλf ” 0.

1.4.4 Representations of general linear groups

In this section we will deal with the polynomial representations of general
linear groups. The main application of representation theory of GLmpF q in the context of
PI-algebras is the theorem of Drensky and Berele, which gives that any result on multilinear
polynomial identities obtained in the language of representation of symmetric group is
equivalent to a corresponding result on homogeneous polynomial identities obtained in
the language of representation of the general linear group.

Denote by Vm the m-dimensional vector space with basis tx1, . . . , xmu over a
field F and denote by F xVmy the free associative algebra freely generated by x1, . . . , xm,
that is, F xVmy “ F xx1, . . . , xmy.

The canonical representation ϕ : GLmpF q Ñ GLpVmq of the general linear
group GLmpF q on Vm is given by

ϕgpxiq “
m
ÿ

p“1
αpixp, i “ 1, . . . ,m,
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where g “ pαpqq P GLmpF q.

We shall build a representation φ : GLmpF q Ñ GLpF xVmyq by extending the
representation ϕ diagonally on F xVmy by

φgpxi1 ¨ ¨ ¨ xinq “ ϕgpxi1q ¨ ¨ ¨ϕgpxinq, g P GLmpF q, xi1 , . . . , xin P F xVmy.

This turns F xVmy in a left GLmpF q-module which is a direct sum of its submodules
pF xVmyq

pnq, n “ 0, 1, 2, . . . , where pF xVmyqpnq is the homogeneous component of degree n
of F xVmy. Moreover, if fpx1, . . . , xmq belongs to the T -ideal U of F xXy, and g P GLmpF q,
then

φgpfpx1, . . . , xmqq “ fpφgpx1q, . . . , φgpxmqq P U,

and UXF xVmy is GLmpF q-invariant. Then the vector spaces UXF xVmy and UXpF xVmyqpnq

are submodules of F xVmy.

Definition 1.4.28. Let φ : GLmpF q Ñ GLspF q be a finite dimensional representation
of the general linear group GLmpF q. The representation φ is polynomial if the entries
pφgqpq of the s ˆ s matrix φg are polynomials of the entries akl of g for g P GLmpF q,
k, l “ 1, . . . ,m, p, q “ 1, . . . , s. The polynomial representation φ is homogeneous of
degree d if the polynomials pφgqpq are homogeneous of degree d.

The polynomials representations of GLmpF q have many properties similar to
those of the representations of finite groups.

Theorem 1.4.29. Every polynomial representation of GLmpF q is a direct sum of irre-
ducible homogeneous polynomial subrepresentations. Moreover, every irreducible homoge-
neous polynomial representation of GLmpF q of degree n ě 0 is isomorphic to a submodule
of pF xVmyqpnq.

The irreducible homogeneous polynomial representations of degree n of GLmpF q
are described by partitions of n in not more than m parts and Young diagrams.

Theorem 1.4.30. [22, Theorem 12.4.4]

1. The pairwise nonisomorphic irreducible homogeneous polynomial GLmpF q-represen-
tations of degree n ě 0 are in 1-1 correspondence with the partitions λ “ pλ1, . . . , λmq

of n. We denote by Wmpλq the irreducible GLmpF q-module related to λ.

2. Let λ “ pλ1, . . . , λmq $ n. The GLmpF q-module Wmpλq is isomorphic to a submodule
of pF xVmyqpnq. Moreover, pF xVmyqpnq has the decomposition

pF xVmyq
pnq
–
ÿ

dλWmpλq,

where dλ is the dimension of the irredubible Sn-module Mpλq and the summations
runs on all partitions λ $ n in not more than m parts.
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Now we introduce a right action of Sn on pF xVmyqpnq by

pxi1 ¨ ¨ ¨ xinqτ
´1
“ xiτp1q ¨ ¨ ¨ xiτpnq , xi1 ¨ ¨ ¨ xin P pF xVmyq

pnq, τ P Sn.

Pay attention that the left action Sn on Pn defined in the previous section is
an action on the variables and now Sn acts on the position of the variables.

Example 1.4.31. Let n “ 3 and fpx1, x2, x3q “ x3x1x2.. Then τ “ p12q acts from the
left as follows:

τpx3x1x2q “ τpfpx1, x2, x3qq “ fpxτp1q, xτp2q, xτp3qq “ fpx2, x1, x3q “ x3x2x1.

On the other hand, we have that fpx1, x2, x3q “ x3x1x2 “ xi1xi2xi3 with i1 “ 3, i2 “ 1, i3 “
2. Then τ “ p12q acts from the right as follows:

px3x1x2qτ “ xiτp1qxiτp2qxiτp3q “ xi2xi1xi3 “ x1x3x2.

Let λ “ pλ1, . . . , λmq be a partition of n in not more than m parts and let
q1, . . . , qk be the lengths of the columns of the Young diagram Dλ (that is, qj “ λ1j and
k “ λ1). Fix q “ q1 and let sλ “ sλpx1, . . . , xqq be the polynomial of F xVmy defined as
follows:

sλpx1, . . . , xqq “
k
ź

j“1
sqjpx1, . . . , xqjq,

where sppx1, . . . , xpq is the standard polynomial (see Example 1.1.23).

Example 1.4.32. 1. If λ “ pnq, then sλ “ spnqpx1q “

n
ź

j“1
s1px1q “ xn1 .

2. If λ “ p1nq, then sλ “ sp1nqpx1, . . . , xnq “ snpx1, . . . , xnq “
ÿ

σPSn

psgn σqxσp1q ¨ ¨ ¨ xσpnq.

The following theorem is the analog of Theorem 1.4.23 for representations of
GLmpF q.

Theorem 1.4.33. [22, Theorem 12.4.12] Let λ “ pλ1, . . . , λmq be a partition of n in
not more than m parts and let pF xVmyqpnq be the homogeneous component of degree n in
F xVmy.

1. The element sλpx1, . . . , xqq, defined above, generates an irreducible GLmpF q-submo-
dule of pF xVmyqpnq isomorphic to Wmpλq.

2. Every Wmpλq Ď pF xVmyq
pnq is generated by a nonzero element

wλpx1, . . . , xqq “ sλpx1, . . . , xqq
ÿ

σPSn

ασσ, ασ P F.

The element wλpx1, . . . , xqq is unique up to a multiplicative constant and it is called
the highest weight vector of Wmpλq.
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Lemma 1.4.34. If f and g are homogeneous polynomials of degree n in F xVmy, then
the polynomial identity g ” 0 is a consequence of f ” 0 if and only if g belongs to the
GLmpF q-module generated by f .

Proof. See Exercise 12.4.17 in [22].

There is a close relationship between the irreducible polynomial representations
of GLmpF q and the irreducible representations of the symmetric group Sn.

Proposition 1.4.35. Let m ě n, λ $ n and let Wmpλq Ď F xVmy. The set M “ WmpλqX

Pn of all multilinear elements in Wmpλq is an Sn-submodule of Pn isomorphic to Mpλq.
Every submodule Mpλq can be obtained in this way.

Proof. See, for instance, Proposition 12.4.18 in [22].

The following theorem, due to Drensky [19] and Berele [11], establishes that
any result on multilinear polynomial identities obtained in the language of representations
of the symmetric group is equivalent to a corresponding result on homogeneous polynomial
identities obtained in the language of representations of the general linear group.

Theorem 1.4.36. Let A be a PI-algebra and let

χnpAq “
ÿ

λ$n

mλpAqχλ, n “ 0, 1, 2, . . . ,

be the cocharacter sequence of the T -ideal of A. Then, for any m, the relatively free algebra
F xVmy{ IdpAq is isomorphic as a GLmpF q-module to the direct sum

ÿ

ně0

ÿ

λ$n

mλpAqWmpλq,

with the same multiplicities mλpAq as in the cocharacter sequence (Equation 1.6) and
Wmpλq “ 0 if λ is a partition in more than m parts. On the other hand, if m ě n and

F xVmy{ IdpAq –
ÿ

λ$n

nλpAqWmpλq,

for some nλpAq, then
χnpAq “

ÿ

λ$n

nλpAqχλ.
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2 Superalgebras with superinvolution

The purpose of this chapter is to give a positive answer to the Specht’s problem
in the setting of finitely generated superalgebras with superinvolution (˚-algebras). More
precisely, if W is a finitely generated ˚-algebra over a field F of characteristic 0 satisfying
an ordinary identity, we shall find a finite generating set for the T ˚2 -ideal of identities
Id˚pW q. We recall that this result was announced in [1]. Here we shall give an explicit
construction of Kemer’s polynomials that are the key ingredient in solving the Specht’s
problem (Theorem 2.4.5). Finally, we present a proof of the Hilbert-Serre Theorem in the
case of relatively free algebras of superalgebras with superinvolution (Theorem 2.5.15).

2.1 Kemer points and Kemer polynomials
Let Γ be a T ˚2 -ideal. Recall that, since F is a field of characteristic zero, Γ is

generated by multilinear ˚-polynomials. Let X be a set of variables. We can write

X “ X`
0 YX

´
0 YX

`
1 YX

´
1 ,

where X`
0 is the subset of symmetric even variables (the y`i ’s), X´

0 is the subset of skew
even variables (the y´i ’s), X`

1 is the subset of symmetric odd variables (the z`i ’s) and X´
1 is

the subset of skew odd variables (the z´i ’s). Let S0 and S1 be subsets of Y “ X`
0 YX

´
0 and

Z “ X`
1 YX

´
1 respectively, and let R0 “ Y zS0, R1 “ ZzS1. Of course, if Si “ tx1, . . . , xmu,

then the variables xj’s are of homogeneous degree i and symmetric or skew.

Definition 2.1.1. Let f “ fpXq be a multilinear ˚-polynomial. We say that f is al-
ternating in Si “ tx1, . . . , xmu, i P t0, 1u, if there exists a multilinear ˚-polynomial
hpSi, Riq :“ hpx1, . . . , xm, Riq such that

fpXq “
ÿ

σPSm

p´1qσhpxσp1q, . . . , xσpmq, Riq.

If S1, . . . , Sp, are p disjoint sets of variables of X (belonging to Y or Z), we say
that fpXq is alternating in Si1 , . . . , Sip , if it is alternating in each of them.

Now we will consider polynomials which alternate in 2ν disjoint sets of the
form Si, i “ 0, 1.

Definition 2.1.2. Let f “ fpXq be a multilinear ˚-polynomial alternating in Si1 , . . . , Si2ν .
If all the sets Si1 , . . . , Si2ν belonging to the same set pY or Zq have the same cardinality
psay di, i P t0, 1uq, then we will say that

fpXq is ν-fold pd0, d1q-alternating.



Chapter 2. Superalgebras with superinvolution 65

In order to define the ˚-index of a T ˚2 -ideal Γ we need the notion of i-th Capelli
polynomial, i P t0, 1u. Let Xn,i “ tx1, . . . , xnu be a set of n variables of homogeneous
degree i P t0, 1u and let W “ tw1, . . . , wn`1u be a set of n ` 1 ungraded variables. The
i-th Capelli polynomial cn,i of degree 2n` 1 is the polynomial obtained by alternating the
set of variables x1, . . . , xn in the monomial w1x1w2 ¨ ¨ ¨ xnwn`1. Hence

cn,i “
ÿ

σPSn

p´1qσw1xσp1qw2 ¨ ¨ ¨ xσpnqwn`1.

Clearly cn,i, i P t0, 1u is a multilinear ˚-polynomial alternating in tx1 . . . , xnu.

Lemma 2.1.3. For any i P t0, 1u there exists an integer ni such that the T ˚2 -ideal Γ
contains cni,i.

Proof. Let A be a finite dimensional ˚-algebra such that Id˚pAq Ď Γ (such algebra exists by
Theorem 1.2.35). We consider the decomposition A “ A0‘A1 and we take ni “ dimAi`1,
i P t0, 1u. It is clear that cni,i P Id˚pAq and the proof is complete.

As a consequence, we get the following result.

Corollary 2.1.4. If f “ fpXq is a multilinear ˚-polynomial alternating on a set Si of
cardinality ni, then f P Γ. Consequently, there exists an integer Mi which bounds (from
above) the cardinality of the alternating homogeneous sets in any ˚-polynomial h which is
not in Γ.

Let Γ denote the T ˚2 -ideal of a finitely generated ˚-algebra. Now we are in a
position to define the ˚-index Ind˚pΓq of Γ. Here we want to highligh that in [2] Aljadeff
and Belov introduced the analogous object in the setting of G-graded algebras, where G is
a finite group.

Ind˚pΓq will consist of a finite set of points pα, sq in the lattice L “ N2
ˆpNY8q.

Given α “ pα0, α1q, β “ pβ0, β1q P N2, we put α ĺ β if and only if αi ď βi, for i “ 0, 1.
This gives a partial order in N2. As a consequence, we obtain a partial order on L. Given
pα, sq, pβ, s1q P L, we write pα, sq ĺ pβ, s1q if and only if either

1) α ă β, or

2) α “ β and s ď s1 (notice that s ă 8 for every s P N).

We first determine the set Ind˚pΓq0, namely the projection of Ind˚pΓq into N2.

Definition 2.1.5. A point α “ pα0, α1q is in Ind˚pΓq0 if for any integer ν there exists a
multilinear ˚-polynomial outside Γ with ν alternating homogeneous sets (of degree i) of
cardinality αi for every i “ 0, 1.
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Lemma 2.1.6. The following facts hold:

1. The set Ind˚pΓq0 is bounded (finite).

2. If α P Ind˚pΓq0, then α1 ĺ α is also in Ind˚pΓq0.

Proof. The first statement follows since Γ Ě Id˚pAq, for some finite dimensional ˚-alge-
bra A at light of Theorem 1.2.35. The second one is a consequence of the definition of
Ind˚pΓq0.

Definition 2.1.7. A point α P Ind˚pΓq0 is extremal if for any β P Ind˚pΓq0, β ľ α

implies β “ α.

We denote by E0pΓq the set of all extremal points in Ind˚pΓq0.

For any point α “ pα0, α1q P E0pΓq and every integer ν, consider the set Ωα,ν

of all ν-fold alternating polynomials in homogeneous sets of cardinality αi, where i “ 0, 1,
that are not in Γ. Given f P Ωα,ν , we consider the number sΓpα, ν, fq of alternating
homogeneous sets of disjoint variables, of cardinality αi ` 1, i “ 0, 1. The set of integers
tsΓpα, ν, fqufPΩα,ν is bounded. We define sΓpα, νq “ maxtsΓpα, ν, fqufPΩα,ν . The sequence
sΓpα, νq is monotonically decreasing as a function of ν. As a consequence, there exists
an integer µ “ µpΓ, αq for which the sequence stabilizes, that is for ν ě µ, the sequence
sΓpα, νq is constant. We let spαq “ lim

νÑ8
sΓpα, νq “ sΓpα, µq. At this point the integer µ

depends on α. However, since the set E0pΓq is finite by Lemma 2.1.6, we take µ to be the
maximum of all µ’s considered above. Keeping in mind the definition of µ, we have the
following definitions.

Definition 2.1.8. The ˚-index Ind˚pΓq of Γ is the set of points pα, sq P L such that
α P Ind˚pΓq0 and s “ sΓpαq if α P E0pΓq or s “ 8 otherwise.

Definition 2.1.9. Given a T ˚2 -ideal Γ containing the ˚-identities of a finite dimensional
˚-algebra A, we let the Kemer set of Γ, denoted KpΓq, be the set of points pα, sq in
Ind˚pΓq, where α is extremal. We refer to the elements of KpΓq as the Kemer points of
Γ.

The next remark follows immediately.

Remark 2.1.10. Let Γ1 Ě Γ2 be two T ˚2 -ideals containing Id˚pAq, where A is a finite
dimensional ˚-algebra. Then:

1. Ind˚pΓ1q Ď Ind˚pΓ2q.

2. For every pα, sq P KpΓ1q there is a Kemer point pβ, s1q P KpΓ2q such that pα, sq ĺ

pβ, s1q.
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We are now ready to define Kemer polynomials for a T ˚2 -ideal Γ.

Definition 2.1.11. Let pα, sq be a Kemer point of Γ. A ˚-polynomial f is said to be
a Kemer ˚-polynomial for the point pα, sq if f R Γ and it has at least ν-folds of
alternating homogeneous sets (of degree i) of cardinality αi (small sets), where i “ 0, 1,
and s homogeneous sets of disjoint variables µ (of some homogeneous degree) of cardinality
αi ` 1 (big sets). A ˚-polynomial f is Kemer for Γ if it is Kemer for a Kemer point of Γ.

If we choose a Kemer point pα, sq, then α is extremal. Because of this, we get
the next result.

Remark 2.1.12. A ˚-polynomial f cannot be Kemer simultaneously for different Kemer
points of Γ.

2.2 Decomposition in basic ˚-algebras
In this section we shall introduce the so-called basic ˚-algebras and we shall

prove that every finitely generated ˚-algebra satisfying an ordinary non-trivial identity is
T ˚2 -equivalent to the direct product of finitely many basic ˚-algebras.

First, let A be a finite dimensional ˚-algebra and consider its Wedderburn-
Malcev decomposition:

A “ B ` JpAq.

The semisimple part B is a ˚-algebra too and so we can consider its decomposition in
symmetric and skew spaces of homogeneous degree 0 and 1, respectively:

B “ B0 ‘B1 “ B`0 ‘B
´
0 ‘B

`
1 ‘B

´
1 .

We use the following notation:

• dpBiq “ dimF Bi, i P t0, 1u,

• npAq is the nilpotency index of JpAq.

We write Par˚pAq to indicate the 3-tuple pdpB0q, dpB1q, npAq ´ 1q P N2
ˆ N.

Proposition 2.2.1. If pα, sq “ pα0, α1, sq is a Kemer point of A, then pα, sq ĺ Par˚pAq.

Proof. Suppose, by contradiction, that this does not happen. Hence, αi ą dpBiq for some
i “ 0, 1, or αi “ dpBiq in any case and s ą npAq ´ 1. We shall see that both these
possibilities cannot occur. First recall that, since pα, sq is a Kemer point of A, then
there exist multilinear ˚-polynomials f which are non-identities of A with arbitrary many
alternating homogeneous sets of cardinality αi, i “ 0, 1.
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1. Suppose αi ą dpBiq, for some i “ 0, 1.
We have that in each such alternating set there must be at least one radical substitu-
tion in any non-zero evaluation of a polynomial f . This implies that we cannot have
more than npAq ´ 1 alternating homogeneous sets of cardinality αj, contradicting
our previous statement.

2. Suppose αi “ dpBiq in any case and s ą npAq ´ 1.
This means that we have s alternating sets (of a certain homogeneous degree) of
cardinality αi` 1 “ dpBiq ` 1, for some i “ 0, 1. Again this means that f will vanish
if we evaluate any of these sets by semisimple elements. It follows that in each one
of these s sets at least one of the evaluations is radical. Since s ą npAq ´ 1, the
polynomial f vanishes on such evaluations as well and hence it is a ˚-identity of A.
We reach a contradiction in this case too, and this complete the proof.

In order to establish a precise relation between Kemer points of a finite di-
mensional ˚-algebra A and its structure we need to find appropriate finite dimensional
algebras which will serve as minimal models for a given Kemer point. We start with the
decomposition of a finite dimensional ˚-algebra into the product of subdirectly irreducible
components.

Definition 2.2.2. A finite-dimensional ˚-algebra A is said to be subdirectly irreducible
if there are no non-trivial ˚-ideals I and J of A such that I X J “ p0q.

Lemma 2.2.3. Let A be a finite dimensional ˚-algebra over F . Then A is T ˚2 -equivalent
to a direct product C1 ˆ ¨ ¨ ¨ ˆ Cn of finite dimensional subdirectly irreducible ˚-algebras.
Furthermore for every i “ 1, . . . , n, dimF pCiq ď dimF pAq and the number of ˚-simple
components in Ci is bounded by the number of such components in A.

Proof. If A is subdirectly irreducible there is nothing to prove. If A is not subdirectly
irreducible, then there exist non-trivial ˚-ideals I and J of A such that IXJ “ p0q. It is clear
that A{I (and at the same way A{J) is a ˚-algebra with superinvolution ¯̊ : A{I Ñ A{I

induced from the superinvolution ˚ of A by ¯̊pa` Iq “ a˚ ` I, for any a P A. Moreover, it
is easy to prove that A is T ˚2 -equivalent to A{I ˆA{J . This completes the first part of the
proof.

The second one follows by induction by taking into account the fact that
dimF pA{Iq and dimF pA{Jq are strictly smaller than dimF A.

By Theorem 1.2.31, a ˚-algebra A can be decomposed as

A “ B ` J – A1 ˆ ¨ ¨ ¨ ˆ Aq ` J,
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where J is the Jacobson radical of the algebra (a ˚-ideal) and A1, . . . , Aq are simple
˚-algebras.

Definition 2.2.4. Let A be a finite-dimensional ˚-algebra and let f “ fpx1, . . . , xmq be
a multilinear ˚-polynomial. We say that A is full with respect to f , if there exists a
non-vanishing evaluation of f such that every ˚-simple component is represented (among
the semisimple substitutions) in any substitution. In other words, if fpx̄1, . . . , x̄mq ‰ 0 for
suitable substitutions x̄i such that

Ak X tx̄1, . . . , x̄mu ‰, for all 1 ď k ď q.

A finite dimensional ˚-algebra A is full if it is full with respect to some
multilinear ˚-polynomial f .

Lemma 2.2.5. A finite dimensional ˚-algebra A is full if and only if we have a permutation
π of t1, . . . , qu such that

Aπp1qJAπp2qJ ¨ ¨ ¨ JAπpqq ‰ 0.

Proof. If Aπp1qJAπp2q ¨ ¨ ¨ JAπpqq ‰ 0, then A is full with respect to the monomial x1 ¨ ¨ ¨ x2q´1.
On the other hand, suppose A is full with respect to a monomial f . Since the substitutions
pass through each component and f is non-vanishing in A, these substitutions should be
connected by radical substitutions and the proof is complete.

For i “ 1, . . . , q, let ei denote the identity element of Ai and consider the
decomposition

A –
q
à

i,j“1
eiAej.

By the previous Lemma, whenever i1, . . . , iq are distinct, it follows that if A is not full,

ei1Aei2 ¨ ¨ ¨ eiq´1Aeiq “ ei1Jei2 ¨ ¨ ¨ eiq´1Jeiq “ 0. (2.1)

Remark 2.2.6. Let A be a ˚-algebra over a field F of characteristic zero and let F̄
be the algebraic closure of F . Then Ā “ A bF F̄ is a ˚-algebra with superinvolution
pab αq¯̊ “ a˚ b α. We have that

• dimF A “ dimF̄ Ā,

• Id˚pAq “ Id˚pĀq, viewed as ˚-algebras over F ,

We wish to show that any finite dimensional algebra may be decomposed (up
to T ˚2 -equivalence) into the direct product of full algebras. Algebras without an identity
element are treated separately.
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Lemma 2.2.7. Let A be a ˚-algebra subdirectly irreducible and not full.

1. If A has an identity element then it is T ˚2 -equivalent to a direct product of finite-
dimensional ˚-algebras, each having fewer ˚-simple components.

2. If A has no identity element then it is T ˚2 -equivalent to a direct product of finite-
dimensional ˚-algebras, each having either fewer ˚-simple components than A or else
it has an identity element and the same number of ˚-simple components as A.

Proof. Suppose first that A has unit. By Equation (2.1)

ei1Aei2 ¨ ¨ ¨ eiq´1Aeiq “ ei1Jei2 ¨ ¨ ¨ eiq´1Jeiq “ 0.

Let us consider the commutative algebra R “ F rλ1, . . . , λqs{I, where I is the
ideal generated by λ2

i ´ λi and λ1 ¨ ¨ ¨λq. We denote by ẽi the image of λi in R. It is clear
that ẽ2

i “ ẽi and ẽ1 ¨ ¨ ¨ ẽq “ 0. The algebra A bF R is a ˚-algebra with superinvolution
¯̊ induced via the superinvolution ˚ of A as in Remark 2.2.6. Let Ã be the ˚-subalgebra
generated by all eiAej b ẽiẽj, for every 1 ď i, j ď q. We claim that A „T˚2

Ã. Clearly
Id˚pAq Ď Id˚pAbF Rq Ď Id˚pÃq. Hence it suffices to prove that any non ˚-identity f of A
is also a non-identity of Ã. Clearly, we may assume that f is multilinear. Evaluating f
on A it suffices to consider maps of the form x˘l ÞÑ vil,˘l , where x P ty, zu and il P t0, 1u
(symmetric or skew elements of homogeneous degree 0 or 1) and vil,˘l P ejkAejk`1 , for some
k. In order to have vi1,˘1 ¨ ¨ ¨ vin,˘n ‰ 0, the set of indices tjku must contain at most q ´ 1
distinct elements, so ej1 ¨ ¨ ¨ ejn ‰ 0. Then

fpvi1,˘1 b ẽi1 , . . . , v
in,˘
n b ẽinq “ fpvi1,˘1 , . . . , vin,˘n q b ẽi1 ¨ ¨ ¨ ẽin ‰ 0.

Hence f is not in Id˚pÃq and this proves the claim.

In order to complete the proof we need to show that Ã can be decomposed
into a direct product of ˚-algebras, each having fewer ˚-simple components. Let Ij “
xej b ẽj, e

˚
j b ẽjy be a ˚-ideal of Ã. Hence

q
č

j“1
Ij “ p1b ẽ1 ¨ ¨ ¨ 1b ẽqq

˜

q
č

j“1
Ij

¸

“ p1b ẽ1 ¨ ¨ ¨ ẽqq

˜

q
č

j“1
Ij

¸

“ p0q.

It follows that Ã is subdirectly reducible to the direct product of Ã{Ij . Furthermore, each
component Ã{Ij has less than q ˚-simple components since we eliminated the idempotent
corresponding to the j-th ˚-simple component. This completes the proof of the first part
of the lemma.

Consider now the case in which the algebra A has no identity element. In the
notation of Remark 1.1.17, let e0 “ 1̂´ pe1 ` ¨ ¨ ¨ ` eqq; we consider the decomposition

A –
q
à

i,j“0
eiAej
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and we carry on as in the first case but with q ` 1 idempotents, variables, and so on. As
above, A{Ij will have less than q ˚-simple components if 1 ď j ď q whereas A{I0 will have
an identity element and exactly q ˚-simple components. The proof now is complete.

By putting together Lemmas 2.2.3 and 2.2.7 we get the following result.

Corollary 2.2.8. Every finite dimensional ˚-algebra A is T ˚2 -equivalent to a direct product
of full, subdirectly irreducible finite dimensional ˚-algebras.

Remark 2.2.9. In the decomposition above, the nilpotency index of the components in
the direct product is bounded by the nilpotency index of A.

In the following definition we introduce the so-called minimal algebras.

Definition 2.2.10. We say that a finite dimensional ˚-algebra A is minimal if Par˚pAq
is minimal (with respect to the partial order defined before) among all finite dimensional
˚-algebras which are T ˚2 -equivalent to A.

Definition 2.2.11. A finite dimensional ˚-algebra A is said to be basic if it is minimal,
full and subdirectly irreducible.

As a consequence of the results and definitions of this section we obtain the
following theorem.

Theorem 2.2.12. Every finite dimensional ˚-algebra A is T ˚2 -equivalent to the direct
product of finitely many basic ˚-algebras.

Combining this result with Theorem 1.2.35 we obtain the following corollary.

Corollary 2.2.13. Every finitely generated ˚-algebra W satisfying an ordinary non-trivial
identity is T ˚2 -equivalent to the direct product of finitely many basic ˚-algebras.

2.3 Kemer’s lemmas
The task in this section is to show that any basic ˚-algebra A has a Kemer

set which consists of a unique point pα, sq “ Par˚pAq. To achieve this, throughout the
section we show a constructive way to obtain the appropriate Kemer ˚-polynomials that
will comprise the backbone for the rest of the work on superalgebras with superinvolution.
We start with some preliminaries in the framework of finite dimensional simple ˚-algebras.

Let A “ paijq be an nˆ n matrix. For j “ 2, . . . , n, the j-th hook of A is the
set of elements:

ta1j, a2j, . . . , ajj, aj1, aj2, . . . , ajj´1u.
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Remark 2.3.1. There exists a product of the matrix units eij, i, j P t1, . . . , nu, with value
e11.

Proof. Let us consider the matrix E “ peijq PMnpF q and let

e1j, e2j, . . . , ejj, ej1, ej2, . . . , ejj´1

be the elements in the j-th hook of E. We have

e1jej2e2jej3e3j ¨ ¨ ¨ ejj´1ej´1jejjej1 “ e11.

For any j “ 2, . . . , n, we denote by Hj the previous product of matrix units. The proof
now works because

e11H2H3 ¨ ¨ ¨Hn “ e11.

Now let us consider the ˚-algebra Mk,kpF q with the transpose superinvolution
trp. Notice that:

pMk,kpF q, trpq
`

0 “

#˜

X 0
0 X t

¸

|X PMkpF q

+

,

pMk,kpF q, trpq
´

0 “

#˜

X 0
0 ´X t

¸

|X PMkpF q

+

,

pMk,kpF q, trpq
`

1 “

#˜

0 Y

Z 0

¸

|Y “ ´Y t, Z “ Zt, Y, Z PMkpF q

+

,

pMk,kpF q, trpq
´

1 “

#˜

0 Y

Z 0

¸

|Y “ Y t, Z “ ´Zt, Y, Z PMkpF q

+

.

The following elements form a ˚-basis (i.e., basis as a vector space with
homogeneous symmetric or skew elements) of pMk,kpF q, trpq:

• tei,j ` ek`j,k`iu, i, j “ 1, . . . , k.

• tei,j ´ ek`j,k`iu, i, j “ 1, . . . , k.

• tei,k`j ´ ej,k`i, ek`i,j ` ek`j,i, ek`l,lu, 1 ď i ă j ď k and l “ 1, . . . , k.

• tei,k`j ` ej,k`i, ek`i,j ´ ek`j,i, el,k`lu, 1 ď i ă j ď k and l “ 1, . . . , k.

Lemma 2.3.2. There exists a product of the above ˚-basis elements with value e11.

Proof. Let us consider the matrix units epq, p, q “ 1, . . . , 2k. It is easy to see that in
the above ˚-basis there is at least one element in which epq appears with a plus, for
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any p, q P t1, . . . , 2ku. When there are two elements of this kind, we make the following
choice: we fix the element of the ˚-basis corresponding to epq to be that one in which
in the second part of the element appears a minus. We shall denote by ēpq the element
of the ˚-basis corresponding to epq. For instance, e1,1 appears in the ˚-basis both in
e1,1` ek`1,k`1 and e1,1´ ek`1,k`1. Hence ē1,1 “ e1,1´ ek`1,k`1. In this way we are sure that
ēk`1,k`1 “ e1,1 ` ek`1,k`1 (notice that ek`1,k`1 appears with a plus, as desired).

Now we construct the following 2k ˆ 2k matrix E: in the entry pp, qq we put
the element of the ˚-basis ēpq. As in Remark 2.3.1, we denote by Hj the product of the
elements in the j-th hook of the matrix E, j “ 2, . . . , 2k. Moreover, in any element of the
˚-basis of the form eab ˘ ecd, we have a ‰ c. Hence, as desired, we get

ē11H2 ¨ ¨ ¨H2k “ e11. (2.2)

Let us consider the monomial M “ w1 ¨ ¨ ¨w4k2 , where each variable wi has a
certain homogeneous degree and it is symmetric or skew according to the corresponding
element in the product in (2.2).

If we border each matrix ēi,j in the product (2.2) with idempotents ei,i and ej,j,
then we can consider the monomial obtained by M by surrounding each variable with a
variable of homogeneous degree 0:

M 1
“ y1w1y2w2 ¨ ¨ ¨ y4k2w4k2y4k2`1.

Clearly, the monomial M 1 has the property that there exists an evaluation ϕ
such that ϕpM 1

q “ e11. Moreover, we have

ej,j “

$

’

’

&

’

’

%

pei,i ` ek`i,k`iq ` pei,i ´ ek`i,k`iq

2 , if 1 ď i “ j ď k,

pei,i ` ek`i,k`iq ´ pei,i ´ ek`i,k`iq

2 , if j “ k ` i, 1 ď i ď k.

(2.3)

Thus we can write each bordering element ei,i in terms of the ˚-basis elements.
In this way, we can replace each variable yi in the monomial M 1 by py`i ` y´i q{2 or
py`i ´ y

´
i q{2 according to (2.3), where y`i is a symmetric variable of zero degree and y´i is

a skew variable of degree 0. Denote by P this ˚-polynomial. Then we have the next result
that is a consequence of Lemma 2.3.2.

Lemma 2.3.3. Consider the ˚-polynomial

P “
y`1 ˘ y

´
1

2 w1
y`2 ˘ y

´
2

2 w2 ¨ ¨ ¨
y`4k2 ˘ y

´

4k2

2 w4k2
y`4k2`1 ˘ y

´

4k2`1
2

defined above. Then there exists an evaluation ϕ of P such that ϕpP q “ e11.
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Now let us consider A “ pMk,2lpF q, ospq be the ˚-algebra of pk` 2lq ˆ pk` 2lq
matrices endowed with the orthosymplectic superinvolution. Recall we have the following:

A`0 “

#˜

X 0
0 T

¸

| X “ X t, T “ ´QT tQ, X PMkpF q, T PM2lpF q

+

,

A´0 “

#˜

X 0
0 T

¸

|X “ ´X t, T “ QT tQ, X PMkpF q, T PM2lpF q

+

,

A`1 “

#˜

0 ZtQ

Z 0

¸

|Z is a 2l ˆ k matrix
+

,

A´1 “

#˜

0 ´ZtQ

Z 0

¸

|Z is a 2l ˆ k matrix
+

.

It is easy to see that the following sets B`0 ,B´0 ,B`1 ,B´1 form a ˚-basis of
A`0 , A

´
0 , A

`
1 , A

´
1 respectively:

B`0 “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ei.i 1 ď i ď k,

ei,j ` ej,i 1 ď i ă j ď k,

ek`i,k`j ` ek`l`j,k`l`i 1 ď i, j ď l,

ek`i,k`l`j ´ ek`j,k`l`i 1 ď i ă j ď l,

ek`l`i,k`j ´ ek`l`j,k`i 1 ď i ă j ď l

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

B´0 “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

ei,j ´ ej,i 1 ď i ă j ď k,

ek`i,k`j ´ ek`l`j,k`l`i 1 ď i, j ď l,

ek`i,k`l`j ` ek`j,k`l`i 1 ď i ă j ď l,

ek`l`i,k`j ` ek`l`j,k`i 1 ď i ă j ď l,

ek`i,k`l`i 1 ď i ď l,

ek`l`i,k`i 1 ď i ď l

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

B`1 “

#

ei,k`j ´ ek`l`j,i 1 ď i ď k, 1 ď j ď l,

ei,k`l`j ` ek`j,i 1 ď i ď k, 1 ď j ď l

+

B´1 “

#

ei,k`j ` ek`l`j,i 1 ď i ď k, 1 ď j ď l,

ei,k`l`j ´ ek`j,i 1 ď i ď k, 1 ď j ď l

+

.

With a similar construction to that of Lemma 2.3.2, it is not difficult to show
that there exists a product of the above ˚-basis elements with value e11. In this way, we
get an analog of Lemma 2.3.3.

Lemma 2.3.4. Let pMk,2l, ospq be the ˚-algebra of pk`2lqˆpk`2lq matrices endowed with
the orthosymplectic superinvolution. Then there exists an evaluation ϕ of the ˚-polynomial

P “
y`1 ˘ y

´
1

2 w1
y`2 ˘ y

´
2

2 w2 ¨ ¨ ¨
y`
pk`2lq2 ˘ y

´

pk`2lq2

2 wpk`2lq2
y`
pk`2lq2`1 ˘ y

´

pk`2lq2`1

2
in a ˚-basis of pMk2l, ospq such that ϕpP q “ e11.
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Now let us focus our attention on the ˚-algebra Mk,hpF q ‘Mk,hpF q
sop endowed

with the exchange superinvolution. A ˚-basis of such an algebra is the following:

B “ tpeij, eijq, peij,´eijqui,j“1,...,k`h.

We construct the following two matrices: A` is the matrix having in the entry
pi, jq the element peij, eijq whereas A´ is the matrix having in the entry pi, jq the element
peij,´eijq. Now let H`

j (H´
j , resp.) be the product of the elements in the j-th hook of the

matrix A` (A´, resp.). By taking into account the multiplication rule in equation (1.3),
we get

Q “ pe11, e11qH
`
2 ¨ ¨ ¨H

`
k`h “ pe11, 0q and Q1 “ pe11,´e11qH

´
2 ¨ ¨ ¨H

´
k`h “ pe11, 0q.

If we consider the same product Q1 but in the opposite direction, i.e. we start
with the last element and we finish with the first one of Q1 (we denote such a new product
by Q˚), we get

Q˚ “

$

&

%

p0, e11q if k ` h` kh is even,

p0,´e11q if k ` h` kh is odd.

Lemma 2.3.5. Let us consider the monomialsM “ w1 ¨ ¨ ¨wpk`hq2 andM˚
“ u1 ¨ ¨ ¨upk`hq2,

where each variable wi and ui has a certain homogeneous degree and it is symmetric or
skew according to the corresponding element in the products Q and Q˚ above, respectively.
Then we can consider the monomials obtained by M and M˚, respectively, by surrounding
each variable with a symmetric even variable:

M 1
“ y`1 w1y

`
2 w2 ¨ ¨ ¨ y

`

pk`hq2wpk`hq2y
`

pk`hq2`1

pM˚
q
1
“ y`1 u1y

`
2 u2 ¨ ¨ ¨ y

`

pk`hq2upk`hq2y
`

pk`hq2`1.

Consider the evaluation ϕ of the ˚-polynomial f “M 1
˘ pM˚

q
1
p` if k ` h` kh is even,

´ otherwiseq :

1. each variable wi pui, resp.q is evaluated in the corresponding element of Q pQ˚,
resp.q,

2. each variable y`j , y`j is evaluated in the suitable idempotent element pelj lj , elj ljq P
Mk,hpF q ‘Mk,hpF q

sop.

We get that
ϕpfq “ pe11, e11q.

Finally, let us focus our attention to the ˚-algebra Qpnq ‘ Qpnqsop endowed
with the exchange superinvolution. A ˚-basis of such an algebra is the following:

B “ tpeij, eijq, peij,´eijq, pceij, ceijq, pceij,´ceijqui,j“1,...,n.
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We construct the following four matrices: A`0 is the matrix having in the entry
pi, jq the element peij, eijq, A´0 is the matrix having in the entry pi, jq the element peij,´eijq,
A`c is the matrix having in the entry pi, jq the element pceij, ceijq, A´c is the matrix having
in the entry pi, jq the element pceij,´ceijq. Now, let H0,`

j , H0,´
j , Hc,`

j , Hc,´
j be the product

of the elements in the j-th hook of the matrices A`0 , A´0 , A`c and A´c , respectively. Consider
the following products:

Q “ pe11, e11qH
0,`
2 ¨ ¨ ¨H0,`

n pce11, ce11qH
c,`
2 ¨ ¨ ¨Hc,`

n ,

Q1 “ pe11,´e11qH
0,´
2 ¨ ¨ ¨H0,´

n pce11,´ce11qH
c,´
2 ¨ ¨ ¨Hc,´

n .

Hence we have

Q “ Q1 “

$

&

%

pe11, 0q if n is even,

pce11, 0q if n is odd.

If we consider the same product Q1 but in the opposite direction, i.e., we start
with the last element and we finish with the first one of Q1 (we denote such a new product
by Q˚), we get

Q˚ “

$

&

%

p0, e11q if n is even,

p0,´ce11q if n is odd.

Lemma 2.3.6. Let us consider the monomials M “ w1 ¨ ¨ ¨w2n2 and M˚
“ u1 ¨ ¨ ¨u2n2,

where each variable wi and ui has a certain homogeneous degree and it is symmetric or
skew according to the corresponding element in the products Q and Q˚ above, respectively.
Then we can consider the monomials obtained by M and M˚, respectively, by surrounding
each variable with a symmetric even variable:

M 1
“ y`1 w1y

`
2 w2 ¨ ¨ ¨ y

`

2n2w2n2y`2n2`1, and pM˚
q
1
“ y`1 u1y

`
2 u2 ¨ ¨ ¨ y

`

2n2u2n2y`2n2`1.

Finally we construct the following ˚-polynomial f :

f “

$

&

%

M 1
` pM˚

q
1 if n is even,

M 1z` ´ pM˚
q
1z` if n is odd.

We consider the following evaluation ϕ:

1. each variable wi pui, resp.q is evaluated in the corresponding element of Q pQ˚,
resp.q,

2. each variable y`j is evaluated in the suitable idempotent element pelj lj , elj ljq P Qpnq ‘
Qpnqsop,

3. the variable z` is evaluated in the element pce11, ce11q.
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We get that
ϕpfq “ pe11, e11q.

Remark 2.3.7. In all the results above we have considered monomial or polynomial with
value e11 or pe11, e11q. Of course it is possible to obtain the same result for any eii or
peii, eiiq.

The following result is the ˚-algebra version of Kemer’s First Lemma.

Lemma 2.3.8. Let A “ B ` J be a finite dimensional ˚-algebra, subdirectly irreducible
and full with respect to a polynomial f . Then for any integer ν there exists a non-identity
f 1 of A in the T ˚2 -ideal generated by f with ν-folds pd0, d1q-alternating, where di “ dimBi

for i P t0, 1u.

Proof. Consider the Wedderburn-Malcev decomposition A “ B ` J “ A1 ˆ ¨ ¨ ¨ ˆ Aq ` J ,
where the Ai’s are ˚-simple algebras (Theorem 1.2.31). Since A is full, there is a multilinear
˚-polynomial fpx˘1 , . . . , x˘q , w1, . . . , wpq (where x P ty, zu and w1, . . . , wp are variables
disjoint from tx˘1 , . . . , x

˘
q u) which does not vanish under an elementary evaluation of the

form x˘j “ v
ij ,˘
j P Aj , j “ 1, . . . , q, ij P t0, 1u, and the variables wj ’s get elementary values

in A.

Now we consider the polynomial obtained from f by multiplying on the left
each one of the variables tx˘1 , . . . , x˘q u by symmetric variables of even degree y`1 , . . . , y`q
respectively. Clearly such a polynomial is a non-identity since the variables y`j ’s may be
evaluated on the identity elements 1Aj of Aj . By Remark 1.2.34, we may write the identity
element of Aj as 1Aj “ e1,1`¨ ¨ ¨`enj ,nj or 1Aj “ pe1,1, e1,1q` ¨ ¨ ¨`penj ,nj , enj ,njq. Applying
linearity there exists a non-zero evaluation where the variables y`1 , . . . , y`q take values of
the form eij ,ij or peij ,ij , eij ,ijq, with 1 ď ij ď nj, j “ 1, . . . , q.

Now we replace each variable y`1 , . . . , y`q by ˚-polynomials Y1 . . . , Yq such that:

• Yj is ν-folds pdimF pAjq0, dimF pAjq1)-alternating, j “ 1, . . . , q,

• Yj takes the value eij ,ij or peij ,ij , eij ,ijq, j “ 1, . . . , q.

In the construction of the ˚-polynomials Yj we have to consider 4 distinct cases.

Case 1.1: Aj –Mk,kpF q with the transpose superinvolution trp.

Fix 1 ď ij ď k ` h and consider the ˚-polynomial P constructed in Lemma
2.3.3:

P “
y`1 ˘ y

´
1

2 w1
y`2 ˘ y

´
2

2 w2 ¨ ¨ ¨
y`4k2 ˘ y

´

4k2

2 w4k2
y`4k2`1 ˘ y

´

4k2`1
2 .

We refer to the variables wi’s as designated variables . Next we consider the product of
ν ˚-polynomials P (with distinct variables). We denote the long ˚-polynomial obtained
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in this way by Pν . Finally, we construct the ˚-polynomial Yj by alternating separately
the variables of even/odd degree in each set of designated variables wi of Pν . Clearly the
˚-polynomial Yj is ν-folds pdimF pAjq0, dimF pAjq1)-alternating. We only need to show that
Yν takes the value eij ,ij , so that it will be a non-identity of Aj.

By Lemma 2.3.3 and Remark 2.3.7 there exists a suitable evaluation ϕ of P
such that ϕpP q “ eij ,ij . We consider the following evaluation for Yj : for each polynomial P
(with distinct variables) we consider the corresponding evaluation ϕ giving out the value
eij ,ij .

Notice that the monomials of Yj assuming a non-zero value under this evaluation
are those corresponding to permutations that only transpose the variables corresponding
to elements of type ei1,j1 ` ei2,j2 and ei1,j1 ´ ei2,j2 . Moreover, it is not difficult to see that
each of these monomials takes the value eij ,ij (considering it with the sign). In conclusion,
the evaluation of Yj is a scalar multiple of eij ,ij and since charF “ 0 we are done.

Case 1.2: Aj –Mk,hpF q with the orthosymplectic superinvolution.

This case can be treated as the previous one. We just need to consider the
˚-polynomial

P “
y`1 ˘ y

´
1

2 w1
y`2 ˘ y

´
2

2 w2 ¨ ¨ ¨
y`
pk`2lq2 ˘ y

´

pk`2lq2

2 wpk`2lq2
y`
pk`2lq2`1 ˘ y

´

pk`2lq2`1

2

constructed in Lemma 2.3.4 and then define the ˚-polynomial Yj as before. Such a
polynomial is ν-folds pdimF pAjq0, dimF pAjq1)-alternating and assume the value eij ,ij as
desired.

Case 2: Aj –Mk,hpF q ‘Mk,hpF q
sop.

Fix 1 ď ij ď k`h and consider the ˚-polynomial f (remark it is not multilinear)
constructed in Lemma 2.3.5:

f “M 1
˘M 1˚

“ y`1 w1y
`
2 w2 ¨ ¨ ¨ y

`

pk`hq2wpk`hq2y
`

pk`hq2`1 ˘ y`1 u1y
`
2 u2 ¨ ¨ ¨ y

`

pk`hq2upk`hq2y
`

pk`hq2`1.

We consider the product of ν ˚-polynomials f (with distinct variables) and
we denote the long ˚-polynomial obtained in this way by Pν . Finally, we construct the
˚-polynomial Yj by alternating separately the variables of even/odd degree in each set of des-
ignated variables wi of Pν . Clearly the ˚-polynomial Yj is ν-folds pdimF pAjq0, dimF pAjq1)-
alternating. We need to show that Yν is a non-identity of Aj.

By Lemma 2.3.5 and Remark 2.3.7 there exists a suitable evaluation ϕ of
f such that ϕpfq “ peij ,ij , eij ,ijq. Notice that the permutation that only transposes the
variables corresponding to elements of the type pei1,j1 , ei2,j2q and pei1,j1 ,´ei2,j2q does not
vanish in the evaluation ϕ: in fact, the evaluations in this kind of permutations are equal



Chapter 2. Superalgebras with superinvolution 79

to peij ,ij ,´eij ,ijq. Transpositions of other types vanish (in the above evaluation) because
the bordering elements are different. Therefore, the evaluation of a permutation obtained
from an even number of transpositions is equal to peij ,ij , eij ,ijq and the evaluation of a
permutation obtained from an odd number of transpositions is equal to peij ,ij ,´eij ,ijq. In
conclusion the evaluation ϕ of Yj is a scalar multiple of peij ,ij , eij ,ijq ´ peij ,ij ,´eij ,ijq.

Case 3: Aj – Qpnq ‘Qpnqsop.

Fix 1 ď ij ď n and consider the ˚-polynomial f defined in Lemma 2.3.6. Notice
that the polynomial f is not multilinear. We consider the product of ν ˚-polynomials f
(with distinct variables) and we denote the long ˚-polynomial obtained in this way by Pν .
Then we construct the ˚-polynomial Yj by alternating separately the variables of even/odd
degree in each set of designated variables wi of Pν . Clearly the ˚-polynomial Yj is ν-folds
pdimF pAjq0, dimF pAjq1)-alternating. We need to show Yν is a non-identity of Aj.

By Lemma 2.3.6, there exists a suitable evaluation ϕ of f such that ϕpfq “
peij ,ij , eij ,ijq. Notice that the permutation that only transposes the variables corresponding
to elements of the type pei1,j1 , ei2,j2q and pei1,j1 ,´ei2,j2q or of the type pcei1,j1 , cei2,j2q and
pcei1,j1 ,´cei2,j2q does not vanish in the evaluation ϕ: in fact, the evaluations in this kind
of permutations are equal to peij ,ij ,´eij ,ijq. Moreover, transpositions of other types vanish
(in the above evaluation) because the bordering elements are different. Therefore the
evaluation of a permutation obtained from an even number of transpositions is equal
to peij ,ij , eij ,ijq and the evaluation of a permutation obtained from an odd number of
transpositions is equal to peij ,ij ,´eij ,ijq. In this way the evaluation ϕ of Yj is a scalar
multiple of peij ,ij , eij ,ijq ´ peij ,ij ,´eij ,ijq.

In order to complete the proof we construct a ˚-polynomial f 1 by alternating
the (symmetric/skew of a certain homogeneous degree) sets which come from different
Yj’s. Clearly f 1 R Id˚pAq and f 1 has ν-folds pd0, d1q-alternating as desired and the proof
follows.

Proposition 2.3.9. Let A be a finite dimensional ˚-algebra, full and subdirectly irreducible.
Then there is an extremal point α in E0pAq with α “ pdpAq0q, dpAq1). In particular, this
extremal point is unique.

Proof. The existence follows immediately by Lemma 2.3.8. The uniqueness is a consequence
of Proposition 2.2.1.

The last goal of this section is to give the analog of Kemer’s Lemma 2 in the
setting of ˚-algebras. In order to reach this goal we need some definitions and preliminary
results. Recall that, ifA is a ˚-algebra, then by using the Wedderburn-Malcev decomposition,
we can write A “ B ` J , where B is the semisimple part and J is the Jacobson radical of
A, which is a nilpotent ˚-ideal (npAq is its nilpotency index).
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Lemma 2.3.10. If pα, sq is a Kemer point of a finite dimensional ˚-algebra A, then
s ď npAq ´ 1.

Proof. By the definition of the parameter s we know that for arbitrary large ν there exist
multilinear ˚-polynomials, not in Id˚pAq, being ν-folds alternating on homogeneous (small)
sets of cardinality dpAqi and s (big) sets of cardinality dpAqi ` 1, for each i P t0, 1u. It
follows that an alternating homogeneous set of cardinality dpAqi ` 1 in a non-identity
polynomial must have at least one radical evaluation. Consequently we cannot have more
than npAq ´ 1 of such alternating sets and we are done.

The next construction (see [36, Remark 6.10.1]) will enable us to take some
“control” on the nilpotency index of the radical of a finite dimensional ˚-algebra.

Let B “ B̄ ` J be any finite-dimensional ˚-algebra and let B1 “ B̄ ¨F xX, ˚y be
the ˚-algebra of ˚-polynomials in the variables X “ tx:1

i1 , . . . , x
:m
im u with coefficients in B̄,

the semisimple component of B, where ij P t0, 1u and :j P t`,´u, for j “ 1, . . . ,m. The
number of homogeneous symmetric (skew) variables that we take is at least the dimension
of the homogeneous symmetric (skew) component of JpBq. The superinvolution in B1 is
induced by

pb ¨ xq˚ “ p´1q|b||x|x˚b˚,

where b P B̄ and x is a variable in X. Observe that any element of B1 is represented by a
sum of elements of the form b1f1b2f2 ¨ ¨ ¨ bkfkbk`1, where b1, . . . , bk`1 P B̄ and f1, . . . , fk P

F xX, ˚y.

Let I1 be the ˚-ideal of B1 generated by all the evaluations of the ˚-polynomials
of Id˚pBq on B1 and let I2 be the ˚-ideal of B1 generated by the variables tx:jij u

m
j“1. For

any u ą 1, define B̂u “ B1{pI1 ` I
u
2 q.

Proposition 2.3.11. The following statements hold:

1. Id˚pB̂uq “ Id˚pBq, whenever u ě npBq (the nilpotency index of B). In particular B̂u

and B have the same Kemer points.

2. B̂u is finite dimensional.

3. The nilpotency index of B̂u is u.

Proof. (1) By definition of B̂u, Id˚pB̂uq Ě Id˚pBq. On the other hand, by the fact that
the number of symmetric (skew) homogeneous variables that we take is at least the
dimension of the symmetric (skew) homogeneous component of JpBq, we can construct
a surjective map φ : B1 Ñ B such that the variables tx:jij u are mapped onto a spanning
set of JpBq and B̄ is mapped isomorphically. Indeed, φpb ¨ 1Xq “ b, where 1X represents
the empty word in F xX, ˚y and b P B̄. This map is a homomorphism of superalgebras
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with superinvolution. The ˚-ideal I1 consists of all evaluations of Id˚pBq on B1 and hence
is contained in kerpφq. Also the ˚-ideal Iu2 is contained in Kerpφq since u ě npBq and
φpx

:j
ij q P JpBq. By the universal property, there exists a surjective homomorphism of

superalgebras with superinvolution B̂u Ñ B. Hence, Id˚pB̂uq Ď Id˚pBq and we are done.

(2) Notice that any element in B̂u is represented by a sum of elements of the
form b1w1b2w2 ¨ ¨ ¨ blwlbl`1, where l ă u, bk P B̄ and wk P tx:jij u for k “ 1, . . . , l. Then B̂u is
of course finite dimensional.

(3) Notice that I2 generates a radical ideal in B̂u and since B1{I2 – B̄ we have
that

B̂u{I2 – B1{pI1 ` I
u
2 ` I2q “ B1{pI1 ` I2q – pB

1
{I2q{I1 – B̄{I1 “ B̄.

We see that I2 generates the radical of B̂u and therefore its nilpotency index is bounded
by u.

Definition 2.3.12. Let f be a multilinear ˚-polynomial which is not in Id˚pAq. We say
that f has the property K if f vanishes on every evaluation with less than npAq ´ 1
radical substitutions. We say that a finite-dimensional ˚-algebra A has the property K if it
satisfies the property with respect to some multilinear ˚-polynomial which is a non-identity
of A.

Proposition 2.3.13. Let A be a finite dimensional ˚-algebra which is minimal (in the
sense of Definition 2.2.10). Then A has the property K.

Proof. Assume A has not the property K. This means that any multilinear ˚-polynomial
which vanishes on less than npAq ´ 1 radical evaluations is in Id˚pAq. Consider the algebra
Âu (from the proposition above). We claim that, for u “ npAq ´ 1, Âu is T ˚2 -equivalent to
A. Once this is accomplished, we would have that the nilpotency index of Âu is npAq ´ 1,
a contradiction to the minimality of A.

By construction we have Id˚pAq Ď Id˚pÂuq. For the converse take a ˚-polynomial
f which is not in Id˚pAq. Then by assumption, there is a non-zero evaluation f̃ of f on A
with less than npAq ´ 1 radical substitutions (say k). Following this evaluation we refer to
the variables of f that get semisimple (radical) values as semisimple (radical) variables,
respectively. Let X “ txi1 , . . . , ximu be a set of variables. Consider the evaluation f̂ of f
on A1 “ Ā ¨ F xX, ˚y, where semisimple variables are evaluated as in f̃ whereas the radical
variables are evaluated on txiju, respecting the surjective map φ : A1 Ñ A. Our aim is
to show that f̃ R I1 ` Iu2 because, in this case, we would have f R Id˚pÂuq and this will
complete the proof.

To show f̃ R I1 ` Iu2 , notice that f is not in I1 by definition. Moreover, an
element of A1 is in I1 if and only if each one of its multihomogeneous components in the
variables txiju is in I1. But by construction f̃ is multihomogeneous of degree k ă npAq ´ 1
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in the variables txiju whereas any element of Iu2 Ď A1 is the sum of multihomogeneous
elements of degree ě npAq ´ 1. We therefore have that f̃ P I1 ` Iu2 if and only if f̃ P I1

and we are done.

Let A be a basic ˚-algebra. By Proposition 2.3.13 we have A satisfies the
property K with respect to a non-identity f . Moreover, we have A is full with respect to a
non-identity h. Our goal now is showing A is full and has property K with respect to the
same ˚-polynomial.

Now we give the definition of Phoenix property.

Definition 2.3.14. Let Γ be a T ˚2 -ideal. Let P be any property which may be satisfied by
˚-polynomials (e.g. being Kemer). We say that P is Γ-Phoenix (or in short Phoenix) if
given a polynomial f having P which is not in Γ and any f 1 P xfyT˚2 , the T

˚
2 -ideal generated

by f , which is not in Γ as well, there exists a polynomial f2 P xf 1yT˚2 which is not in Γ
and satisfies P . We say that P is strictly Phoenix if f 1 itself satisfies P .

The next lemma shows that property K and the property of being full are
“preserved” in a T ˚2 -ideal.

Lemma 2.3.15. Let A be a finite dimensional ˚-algebra over F .

1. The property of a non-identity of A of being ν-folds alternating on homogeneous sets
of cardinality dpAqi, i “ 0, 1, is Phoenix.

2. Property K is strictly Phoenix.

Proof. (1) Let f be a non-identity which is ν-fold alternating on homogeneous sets of
cardinality dpAqi, i P t0, 1u (in particular A is full with respect to f). We want to show that
if f 1 P xfy is a non-identity in the T ˚2 -ideal generated by f , then there exists a non-identity
f2 P xf 1y which is ν-fold alternating on homogeneous sets of cardinality dpAqi. In view of
Lemma 2.3.8, it is sufficient to show that A is full with respect to f 1. Remark that, for each
i P t0, 1u, in at least one alternating set Si, the evaluations of the corresponding variables
must consist of semisimple elements of A in any non-zero evaluation of the ˚-polynomial.
This is clear if f 1 is in the ideal (rather than in the T ˚2 -ideal) generated by f . Therefore, we
assume that f 1 is obtained from f by substituting variables xi’s by monomials Zi’s. Clearly,
if one of the evaluations in any of the variables of Zi is radical, then the value of Zi is
radical. Hence in any non-zero evaluation of f 1 there is an alternating set ∆i of cardinality
dpAqi in f such that the variables in monomials of f 1 (corresponding to the variables
in ∆i) assume only semisimple values. Furthermore, each ˚-simple component must be
represented in these evaluations: in fact, otherwise we would have a ˚-simple component
not represented in the evaluations of the ∆i’s and this is impossible. In conclusion we get
that A is full with respect to f 1.
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(2) If f 1 P xfy is a non-identity and has less than npAq ´ 1 radical evaluations,
then the same is true for f and hence f 1 vanishes.

Finally, the following lemma can be proved following word by word the proof
of [2, Proposition 6.6].

Lemma 2.3.16. Let A be a finite-dimensional ˚-algebra, which is full, subdirectly irre-
ducible and satisfying the property K. Let f be a non-identity which is ν-folds alternating
on homogeneous sets of cardinality dpAqi, i P t0, 1u and let h be a ˚-polynomial with respect
to which A has the property K. Then there is a non-identity in xfy X xhy. Consequently
there exists a non-identity f̂ which is ν-folds alternating on homogeneous sets of cardinality
dpAqi, i “ 0, 1, and with respect to which A has the property K.

We are in a position to prove the ˚-algebra version of Kemer’s Lemma 2.

Lemma 2.3.17. Let A “ B`J be a finite dimensional basic ˚-algebra. Then for any integer
ν there exists a multilinear non-identity f which is ν-folds alternating on homogeneous
sets of cardinality dpBiq “ dimF pBiq, i “ 0, 1, and npAq ´ 1 sets of homogeneous variables
of cardinality dpBiq ` 1, i “ 0, 1.

Proof. By Lemma 2.3.16, there exists a multilinear non-identity f with respect to which
A is full and has property K. Let us fix a non-zero evaluation xi ÞÑ x̂i realizing the
“full” property. Notice that by Lemma 2.3.10, f cannot have more than npAq ´ 1 radical
evaluations, and by property K, f cannot have less than npAq´1 radical evaluation. Thus,
f has precisely npAq ´ 1 radical substitutions whereas the remaining variables only take
semisimple values. Let us denote by w1, . . . , wnpAq´1 the variables taking radical values (in
the evaluation above) and by ŵ1, . . . , ŵnpAq´1 their corresponding values.

Suppose further B – A1ˆ ¨ ¨ ¨ ˆAq (Ai are ˚-simple algebras). We will consider
four distinct cases corresponding to whether q “ 1 or q ą 1 and whether A has or does
not have an identity element.

Case 1: A has an identity element and q ą 1.

Choose a monomial M in f which does not vanish upon the evaluation above.
By multilinearity of f , the monomial M is full (i.e. visits every ˚-simple component
of A). Notice that the variables of M which get semisimple evaluations from different
˚-simple components must be separated by radical variables. Next, we may assume that
the evaluation of any radical variable wi is of the form 1Ajpiqŵi1Aj̃piq , i “ 1, . . . , npAq ´ 1,
where 1Aj is the identity element of the ˚-simple component Aj . Notice that the evaluation
remains full.

Consider the radical evaluations which are bordered by pairs of elements
p1Ajpiq , 1Aj̃piqq, where jpiq ‰ j̃piq (i.e. they belong to different ˚-simple components). Then,
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since M is full, every ˚-simple component is represented by one of the elements in those
pairs.

For t “ 1, . . . , q, we fix a variable wrt whose radical value is 1Ajprtqŵrt1Aj̃prtq ,
where

1. jprtq ‰ j̃prtq (i.e. different ˚-simple components),

2. one of the elements 1Ajprtq , 1Aj̃prtq is the identity element of At.

We replace now the variables wrt , t “ 1, . . . , q, by the product yrtwrt or wrt ỹrt
(according to the position of the bordering), where the variables yrt ’s and ỹrt ’s are symmetric
variables of even degree. Clearly, by evaluating the variable yrt by 1Ajprtq (or the variable
ỹrt by 1Aj̃prtq) the value of the ˚-polynomial remains the same and we obtain a non-identity.

Remember that by Remark 1.2.34, we may write the identity element of Aj as
1Aj “ ej1,1` ¨ ¨ ¨ ` e

j
nj ,nj

or 1Aj “ pe1,1, e1,1q
j
` ¨ ¨ ¨ ` penj ,nj , enj ,njq

j . Thus applying linearity,
each ŵi may be bordered by elements of the form e

jpiq
kjpiq,kjpiq

or pekjpiq,kjpiq , ekjpiq,kjpiqqjpiq with
1 ď kjpiq ď njpiq. As in the proof of Lemma 2.3.8 we can insert in the yrt ’s suitable
˚-polynomials and obtain a ˚-polynomial which is ν-folds alternating on homogeneous sets
of cardinality dimF pBiq, i P t0, 1u.

Consider the variables with radical evaluations which are bordered by variables
with evaluations from different ˚-simple components (these include the variables which are
bordered by the yrt). Let χi be such a variable of a certain homogeneous degree (according
to i P t0, 1u). We attach it to a (small) alternating homogeneous set Si (according with i).
We claim that if we alternate this set (of cardinality dpAqi ` 1q we obtain a non-identity.
Indeed, any non-trivial permutation of χi with one of the variables of Si, keeping the
evaluation above, will yield a zero value since the idempotents values in the framed
variables of each variable of Si belong to the same ˚-simple component whereas the pair of
idempotents 1Ajpχqχ̂i1Aj̃pχq belong to different ˚-simple components. At this point we have
constructed the desired number of small sets and some of the big sets.

Now, we need to attach the radical variables wi whose evaluation is 1Ajpiqŵi1Aj̃piq
where jpiq “ j̃piq (i.e. the same ˚-simple component) to some small set Si. We claim that
if we alternate this set (of cardinality dpAiq ` 1) we obtain a non-identity. Indeed, any
non-trivial permutation represents an evaluation with fewer radical evaluations in the
original polynomial which must vanish by property K. This completes the proof in this
case.

Case 2: A has an identity element and q “ 1.

We start with a non-identity f which satisfies property K. Clearly we may
multiply f by a symmetric homogeneous variable x`0 of even degree and get a non-identity
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(since x`0 may be evaluated by 1). Again by Lemma 2.3.8 we may replace x`0 by a polynomial
h which is ν-folds alternating on homogeneous sets of cardinality dpAiq. Consider the
polynomial hf . We attach the radical variables of f to some of the small sets in h. Any
non-trivial permutation vanishes because f satisfies property K. This completes the proof
in this case.

Case 3: A has no identity element and q ą 1.

In the notation of Remark 1.1.17, let e0 “ 1̂´ 1A1 ´ 1A2 ´ ¨ ¨ ¨ ´ 1Aq and include
e0 to the set of elements which border the radical values ŵj . A similar argument shows that
also here every ˚-simple component (A1, . . . , Aq) is represented in one of the bordering
pairs p1Ajpiq , 1Aj̃piqq where the pairs are different (the point is that one of these pairs may
be e0). Now we complete the proof exactly as in Case 1.

Case 4: A has no identity element and q “ 1.

For simplicity we write e1 “ 1A1 and e0 “ 1̂ ´ e1. Let fpxi1 , . . . , xinq be a
non-identity of A satisfying property K and let fpx̂i1 , . . . , x̂inq be a non-zero evaluation
for which A is full. If e1fpx̂i1 , . . . , x̂inq ‰ 0 or fpx̂i1 , . . . , x̂inqe1 ‰ 0, we proceed as in Case
2. To treat the remaining case we may assume that

e0fpx̂i1 , . . . , x̂inqe0 ‰ 0.

By linearity, each one of the radical values ŵ may be bordered by one of the
pairs tpe0, e0q, pe0, e1q, pe1, e0q, pe1, e1qu. Hence, if we replace the evaluation ŵ of w by the
corresponding element eiŵej, i, j “ 0, 1, we get a non-zero value.

Now, if one of the radical values (say ŵ0) in fpx̂i1 , . . . , x̂inq allows a surrounding
by the pair pe0, e1q (and remains non-zero), then replacing w0 by w0y yields a non-identity
(since we may evaluate y by e1). Invoking Lemma 2.3.8, we may replace the variable y by a
polynomial h with ν-folds alternating (small) homogeneous sets of variables of cardinality
dimF pBqi “ dimF pA1qi for every i P t0, 1u. Then we attach the radical variable w0 to
a suitable small set. Clearly, the value of any non-trivial permutation of w0 with any
element of the small set is zero since the borderings are different. Similarly, attaching
radical variables w whose radical value is eiŵej where i ‰ j, to small sets yields zero
for any non-trivial permutation and hence the value of the polynomial remains non-zero.
The remaining possible values of radical variables are either e0ŵe0 or e1ŵe1. Notice that
since semisimple values can be bordered only by the pair pe1, e1q, any alternation of the
radical variables whose radical value is e0ŵe0 with elements of a small set vanishes and
again the value of the polynomial remains unchanged. Finally (in order to complete this
case, namely where the radical variable w0 is bordered by the pair pe0, e1q) we attach the
remaining radical variables (whose values are bordered by pe1, e1q) to suitable small sets
in h. Here, the value of any non-trivial permutation of w0 with elements of the small set
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is zero because of property K (as in Case 1). This settles this case. Obviously, the same
holds if the bordering pair of ŵ0 above is pe1, e0q.

The outcome is that we may assume that all radical values may be bordered by
either pe0, e0q or pe1, e1q. Under this assumption, notice that all pairs that border radical
values are equal, that is are all pe0, e0q or all pe1, e1q. Indeed, if we have of both kinds, we
must have a radical value which is bordered by a mixed pair since the semisimple variables
can be bordered only by the pair pe1, e1q (and in particular they cannot be bordered by
mixed pairs). This of course contradicts our assumption.

A similar argument shows that we cannot have radical variables w with values
e0ŵe0 since semisimple values can be bordered only by pe1, e1q and this will force the
existence of a radical value bordered by mixed idempotents.

The remaining case is the case where all values (radical and semisimple) are
bordered by the pair pe1, e1q and this contradicts the assumption e0fpx̂i1 , . . . , x̂inqe0 ‰ 0.
This completes the proof of the lemma.

Remark 2.3.18. Any non-zero evaluation of such f must consist only of semisimple
evaluations in the ν-folds and each one of the big sets must have exactly one radical
evaluation.

Corollary 2.3.19. If A is a finite dimensional basic ˚-algebra, then its Kemer set consists
of precisely one point pα, sq “ Par˚pAq.

2.4 Specht’s problem for finitely generated ˚-algebras
LetW be a finitely generated ˚-algebra over F satisfying an ordinary non-trivial

identity. The goal of this section is to find a finite generating set for the T ˚2 -ideal Id˚pW q.
By Theorem 1.2.35 (and by Remark 2.2.6), there exists a field extension F̄ of F and a
finite dimensional ˚-algebra A such that

Id˚pW q “ Id˚pAq.

Let m “ dimF̄ A. Then clearly W satisfies the (ordinary) Capelli identity cm`1

on 2pm` 1q variables, or equivalently, the finite set of ˚-identities cm`1,i which follow from
cm`1 by setting its variables to be of homogeneous degree 0 or 1.

Now, observe that any T ˚2 -ideal of ˚-identities is generated by at most a
countable number of ˚-identities (indeed, for each n the space of multilinear ˚-identities of
degree n is finite dimensional). Hence we may take a sequence of ˚-identities f1, . . . , fn, . . .,
which generate Id˚pW q.

Let Γ1 be the T ˚2 -ideal generated by the polynomials cm`1,i Y tf1u, . . ., Γn be
the T ˚2 -ideal generated by the polynomials cm`1,i Y tf1, . . . , fnu, and so on. Clearly, since
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the set cm`1,i is finite, in order to prove the finite generation of Id˚pW q, it is sufficient to
show that the ascending chain of graded T ˚2 -ideals Γ1 Ď ¨ ¨ ¨ Ď Γn Ď ¨ ¨ ¨ stabilizes.

Now, for each n, the T ˚2 -ideal Γn corresponds to a finitely generated ˚-algebra
(see [24, Theorem 5.2]). Hence, invoking Theorem 1.2.35, we may replace each Γn by
Id˚pAnq, where An is a finite dimensional ˚-algebra over a suitable field extension Kn of
F . Clearly, extending the coefficients to a sufficiently large field K, we may assume that
all algebras An are finite dimensional over an algebraically closed field K.

Our goal is to show that the sequence Id˚pA1q Ď ¨ ¨ ¨ Ď Id˚pAnq Ď ¨ ¨ ¨ stabilizes
in F xY Y Z, ˚y or equivalently in KxY Y Z, ˚y.

Consider the Kemer sets of the algebras An, n ě 1. Since the sequence of ideals
is increasing, the corresponding Kemer sets are monotonically decreasing (recall that this
means that for any Kemer point pα, sq of Ai`1 there is a Kemer point pα1, s1q of Ai with
pα, sq ĺ pα1, s1q). Furthermore, since these sets are finite, there is a subsequence

 

Aij
(

whose Kemer points (denoted by E) coincide. Clearly it is sufficient to show that the
subsequence

 

Id˚pAijq
(

stabilizes and so, in order to simplify notation, we replace our
original sequence tId˚pAiqu by the subsequence.

Choose a Kemer point pα, sq in E. By Theorem 2.2.12, for any i, we may replace
the algebra Ai by a direct product of basic algebras

A1i,1 ˆ ¨ ¨ ¨ ˆ A
1
i,ui
ˆyAi,1 ˆ ¨ ¨ ¨ ˆ yAi,ri ,

where the A1i,j’s correspond to the Kemer point pα, sq and the xAi,l’s have Kemer index
‰ pα, sq (notice that their index may or may not be in E).

Let A be a basic ˚-algebra corresponding to the Kemer point pα, sq. Let
A “ B ` JpAq be the Wedderburn-Malcev decomposition of A into the semisimple and
radical components. As shown in Section 2.3, we have that αi “ dimpBiq, for every i “ 0, 1.
Hence, in particular, the dimension of B is determined by α.

By considering the ˚-algebras presented in Theorem 1.2.33, the following result
is obvious.

Proposition 2.4.1. The number of isomorphism classes of semisimple ˚-algebras of a
given dimension is finite.

Immediately, we get the following corollary.

Corollary 2.4.2. The number of structures on the semisimple components of all basic
˚-algebras which correspond to the Kemer point pα, sq is finite.

It follows that by passing to a subsequence tisu we may assume that all basic
algebras that appear in the decompositions above and correspond to the Kemer point
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pα, sq have ˚-isomorphic semisimple components (which we denote by C) and have the
same nilpotency index s.

Let us now consider the ˚-algebras

pCi “
C ¨KxX̄y

Ii ` J
,

where

• X̄ is a set of ˚-variables of cardinality 4ps´ 1q,

• C ¨KxX̄y is the algebra of ˚-polynomials in the variables of X̄ and coefficients in C,

• Ii is the ideal generated by all evaluations of Id˚pAiq on C ¨KxX̄y,

• J is the ideal generated by all words in C ¨KxX̄y with s variables from X̄.

Proposition 2.4.3. The following facts hold:

1. The ideal generated by variables from X̄ is nilpotent.

2. For any i, the algebra pCi is finite dimensional.

3. For any i, Id˚pAiq “ Id˚p pCi ˆyAi,1 ˆ ¨ ¨ ¨ ˆ yAi,riq.

Proof. (1) By definition of J , the number of variables appearing in a non-zero monomial
of the ˚-algebra pCi is bounded by s´ 1, then such an ideal is nilpotent.

(2) Consider a typical non-zero monomial of the ˚-algebra pCi. It has the form

at1xt1at2xt2 ¨ ¨ ¨ atrxtratr`a .

Since the set of variables X̄ is finite and the index r is bounded by s´ 1, we have that the
number of different configurations of these monomials is finite. Between these variables
we have the elements atj , j “ 1, . . . , r ` 1, which are taken from the finite-dimensional
˚-algebra C. Therefore the ˚-algebra pCi is finite-dimensional.

(3) Since Id˚pA1i,1 ˆ ¨ ¨ ¨ ˆA1i,ui ˆyAi,1 ˆ ¨ ¨ ¨ ˆ yAi,riq “ Id˚pAiq, then Id˚pyAi,jq Ě
Id˚pAiq for j “ 1, . . . , ri. Also, from the definition of Ii we have that Id˚p pCiq Ě Id˚pAiq
and so Id˚p pCi ˆyAi,1 ˆ ¨ ¨ ¨ ˆ yAi,riq Ě Id˚pAiq. On the other hand, first let us show that
Id˚p pCiq Ď Id˚pA1i,jq for every j “ 1, . . . , ui. This implies that Id˚p pCiq Ď Id˚pA1i,1ˆ¨ ¨ ¨ˆA1i,uiq
and therefore Id˚p pCiˆyAi,1ˆ¨ ¨ ¨ˆyAi,riq Ď Id˚pA1i,1ˆ¨ ¨ ¨ˆA1i,uiˆyAi,1ˆ¨ ¨ ¨ˆyAi,riq “ Id˚pAiq.

To see Id˚p pCiq Ď Id˚pA1i,jq let us take f “ fpxi1 , . . . , xitq a multilinear ˚-poly-
nomial which is a non-identity of A1i,j and show that f is in fact a non-identity of pCi (the
variables xij are homogeneous of degree zero or one). Fix a non-vanishing evaluation of f
in A1i,j where xj1 “ d1, . . . , xjk “ dk pk ď s´ 1q are the variables with the corresponding
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radical evaluations and xq1 “ c1, . . . , xql “ cl are the other variables with their semisimple
evaluations. Consider the following homomorphism of ˚-algebras

φ : C ¨KxX̄y Ñ A1i,j

where C is mapped isomorphically and a subset of k variables tx̄1, . . . , x̄ku of X̄ (with
appropriate Z2-grading) are mapped onto the set td1, . . . , dku. The other variables from X̄

are mapped to zero.

Notice that pIi ` Jq Ď Kerpφq and hence we obtain a homomorphism of ˚-al-
gebras φ̄ : pCi Ñ A1i,j. By construction, the evaluation of the ˚-polynomial fpxi1 , . . . , xitq
on pCi, where xq1 “ c1, . . . , xql “ cl and xj1 “ x̄1, . . . , xjk “ x̄k, is non-zero and the result
follows.

The following lemma shows how to replace (for a subsequence of indices ik) the
direct product of the basic algebras corresponding to the Kemer point pα, sq, A1i,1ˆ¨ ¨ ¨A1i,ui ,
by a certain ˚-algebra U such that, for all i:

Id˚pAiq “ Id˚pU ˆyAi,1 ˆ ¨ ¨ ¨ ˆ yAi,riq.

Lemma 2.4.4. We may replace the algebra A1i,1 ˆ ¨ ¨ ¨A1i,ui by a certain ˚-algebra U as
above.

Proof. At light of the Proposition 2.4.3 we are in the following situation. We have a
sequence of T ˚2 -ideals

Id˚p pC1 ˆ yA1,1 ˆ ¨ ¨ ¨ ˆzA1,r1q Ď ¨ ¨ ¨ Ď Id˚p pCi ˆyAi,1 ˆ ¨ ¨ ¨ ˆ yAi,riq

Ď Id˚p pCi`1 ˆ{Ai`1,1 ˆ ¨ ¨ ¨ ˆ {Ai`1,ri`1q Ď ¨ ¨ ¨ .

In order to complete the construction of the algebra U we will show that in
fact that, by passing to a subsequence, all pCi are ˚-isomorphic. Indeed, since Id˚pAiq Ď
Id˚pAi`1q, we have a surjective map ϕ from pCi to pCi`1. Since the ˚-algebras pCi’s are finite
dimensional the result follows.

At light of Lemma 2.4.4, we can continue as follows. Replace the sequence of
indices tiu by the subsequence tiku. Clearly, it is sufficient to show that the subsequence
of T ˚2 -ideals tId˚pAikqu stabilizes.

Let I be the T ˚2 -ideal generated by Kemer polynomials of U which correspond
to the Kemer point pα, sq. Notice that the polynomials in I are identities of the basic
algebras xAi,l’s. It follows that the Kemer sets of the T ˚2 -ideals tpId˚pAiq ` Iqu do not
contain the point pα, sq and so they are strictly smaller. By induction we obtain that the
following sequence of T ˚2 -ideals stabilizes:

pId˚pA1q ` Iq Ď pId˚pA2q ` Iq Ď ¨ ¨ ¨ .
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For any i, we have that:

1. Id˚pAiq “ Id˚pU ˆyAi,1 ˆ ¨ ¨ ¨ ˆ yAi,riq.

2. I Ď Id˚pyAi,1 ˆ ¨ ¨ ¨ ˆ yAi,riq.

It follows that, for any i, j,

I X Id˚pAiq “ I X Id˚pAjq.

Combining the last statements we get the Specht property for ˚-algebras:

Theorem 2.4.5. LetW be a finitely generated ˚-algebra. Then Id˚pW q is finitely generated,
as a T ˚2 -ideal.

2.5 Rationality of the Hilbert series of relatively free ˚-algebras
Let F xY YZ, ˚y be the free ˚-algebra on the set of countable variables y`1 , y´1 , z`1 ,

z´1 , y
`
2 , y

´
2 , z

`
2 , z´2 , . . .. In what follows we shall denote by F̄ xY YZ, ˚y the free ˚-algebra on

the set of finite variables Y “ ty`1 , . . . , y`p , y´1 , . . . , y´q u and Z “ tz`1 , . . . , z`r , z´1 , . . . , z´s u.
Consider a T ˚2 -ideal I in F̄ xY Y Z, ˚y containing at least an ordinary non-trivial identity
and let F̄ xY Y Z, ˚y{I be the corresponding relatively free ˚-algebra.

Remark 2.5.1. Since Id˚pF̄ xY YZ, ˚y{Iq “ I, the relatively free ˚-algebra F̄ xY YZ, ˚y{I
is PI, i.e. it contains an ordinary non-trivial identity.

Let Ωn be the (finite) set of monomials of degree n in the variables of Y Y Z
and let cn be the dimension of the F -subspace of F̄ xY YZ, ˚y{I spanned by the monomials
of Ωn.

Definition 2.5.2. The Hilbert series of F̄ xY Y Z, ˚y{I is given by

HilbpF̄ xY Y Z, ˚y{I, tq “
ÿ

n

cnt
n. (2.4)

The purpose of this section is to prove that the Hilbert series of F̄ xY Y
Z, ˚y{I is a rational function. We wish to point out that giving a positive solution to the
problem of the rationality of the Hilbert series for the relatively free algebra of a given
algebra A has important applications to other growth invariants of A (see for instance
[3, 5, 8, 9, 20, 21, 42, 43, 55]).

For the reader’s convenience, we start by recalling some well-known facts of
classical PI-theory (see [36, Chapther 2] and [10]).
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Definition 2.5.3. Let W be an finitely generated PI-algebra over F and let a1, . . . as be
a set of generators of W . For a fixed positive integer m, consider B to be the (finite) set
of all words in a1, . . . as of length ď m. We say that W has a Shirshov base of length
m and of height h if W is spanned (over F ) by elements of the form bk1

1 ¨ ¨ ¨ b
kl
l , where

bi P B and l ď h.

Moreover, we say that the set B is an essential Shirshov base of W (of
length m and of height h) if there exists a finite set D such that the elements of the form
di1b

k1
i1 di2 ¨ ¨ ¨ dilb

kl
il
dil`1 span W , where dij P D, bij P B and l ď h.

Theorem 2.5.4. Let W be a finitely generated PI-algebra over F satisfying a multilinear
identity of degree m. Then W has a Shirshov base of length m and of height h, where h
depends only on m and on the number of generators of W .

Let us recall the following definitions.

Definition 2.5.5. Let A be a commutative ring and C a subring of A. An element b P A
is integral over C if there is a monic polynomial fpxq P Crxs such that fpbq “ 0.

Definition 2.5.6. Let C be a ring and A be a left C-module. We say that A is a finite
module over C if there exists a1, . . . , as P A such that for any x P A, there exists
c1, . . . , cs P C with x “ c1a1 ` ¨ ¨ ¨ ` csas.

The following result was proved in [2, Theorem 7.9].

Theorem 2.5.7. Let C be a commutative algebra over F and let A “ Cxa1, . . . asy be
an affine algebra over C (see Definition 1.1.8). If A has an essential Shirshov base (in
particular, if A has a Shirshov base) whose elements are integral over C, then A is a finite
module over C.

The following proposition is a classical result.

Proposition 2.5.8. Any finite module M over a commutative affine algebra A has a
rational Hilbert series.

Finally we recall the following result given in [36, Theorem I, page 42].

Theorem 2.5.9. Let A ĎMnpF q be an algebra and let V be a d-dimensional subalgebra
of MnpF q with an F -basis a1, . . . , ad of elements of A. Given an F -linear transformation

T : V Ñ V , let λd`
d
ÿ

i“1
p´1qiγiλd´i be the characteristic polynomial of T . For any polynomial
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fpx1, . . . , xd, Y q which is alternating in the variables x1, . . . , xd, and where Y is a set of
variables disjoint from tx1, . . . , xdu, the following equation holds:

γifpa1, . . . , ad, Ŷ q “
ÿ

k1`¨¨¨`kd“i
kiPt0,1u

fpT k1pa1q, . . . , T
kdpadq, Ŷ q (2.5)

where Ŷ is any evaluation of the variables in Y .

Now we focus our attention to ˚-algebras.

Proposition 2.5.10. Let A “ A0 ‘ A1 be an affine ˚-algebra satisfying an ordinary
non-trivial identity. Then A has an essential Shirshov base of elements of A0.

Proof. Since A is a Z2-graded affine algebra, the result follows from [2, Proposition
7.10].

Our next goal is to prove the following lemma.

Lemma 2.5.11. Let S be a set of multilinear ˚-polynomials in F xY Y Z, ˚y and let I be
the T ˚2 -ideal generated by S. Given a ˚-algebra W , we consider S, I to be the sets of all
evaluations on W of the polynomials of S and I, respectively. Then I “ xSy (the ˚-ideal
generated by S).

Proof. In order to prove the lemma, we start by showing that I is a ˚-ideal ofW . Let a, b P I
and consider the ˚-polynomials pa and pb in I with evaluations a and b, respectively. Since I
is invariant under all the endomorphism of F xY YZ, ˚y commuting with the superinvolution
˚, we may change variables and assume that pa and pb have disjoint sets of variables. Then
we get a` b as an evaluation of the ˚-polynomial pa ` pb and so it follows that a` b P I.
Now let c P W . We may take a variable x disjoint from the variables of pa and so we get
ca and ac as evaluations of xpa and pax, respectively. Hence ca and ac belong to I. So far
we have proved that I is an ideal. In order to prove that I is a graded ideal, we have to
show that I “ pI XW0q ‘ pI XW1q, where W0 and W1 are the homogeneous components
of W . Now let a “ w0 ` w1 P I, a0 P W0 and a1 P W1. Hence there exists a ˚-polynomial
pa P I with evaluation a. Since I is a graded ideal, we have that pa “ ppaq0 ` ppaq1,
with ppaq0 P F xY Y Z, ˚y0 and ppaq1 P F xY Y Z, ˚y1 (the homogeneous components of
F xY Y Z, ˚y). Clearly ppaqi takes value wi, i “ 0, 1. In conclusion wi P I, i “ 0, 1 and we
are done. Finally, let a P I and consider the ˚-polynomial pa P I with evaluation a. Since
I is ˚-invariant, we have that p˚a P I (and also ´p˚a P I). It is not difficult to see that one
of these polynomials takes value a˚. Therefore a˚ P I and this implies that I is a ˚-ideal
of W .

In order to complete the proof, it remains to show that I “ xSy. Since S Ď I,
then S Ď I and so xSy Ď I. On the other hand, consider the ˚-algebra W̄ “ W { xSy. Since
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the ˚-polynomials of S are identities of W̄ , then I Ď IdpW̄ q. Therefore, all evaluations of
I on W are contained in xSy, that is, I Ď xSy.

Remark 2.5.12. Let K be a T ˚2 -ideal of F xY Y Z, ˚y and let f P F xY Y Z, ˚y be a ˚-
polynomial such that f R K. Let J the T ˚2 -ideal generated by f and K. Taking S “ KYtfu

and W “ F xY Y Z, ˚y{K in the previous lemma, we have that J{K is the ˚-ideal of
F xY Y Z, ˚y{K generated by all the evaluations on F xY Y Z, ˚y{K of the polynomial f .

In order to prove the main result of this section we need the following technical
results.

Lemma 2.5.13. Let K and J be T ˚2 -ideals of F̄ xY Y Z, ˚y such that K Ď J . Then the
following holds:

HilbpF̄ xY Y Z, ˚y{K, tq “ HilbpF̄ xY Y Z, ˚y{J, tq ` HilbpJ{K, tq.

Proof. Let I be an ideal of an ordinary algebra A. It is well-known that A may be
decomposed into the direct sum pA{Iq ‘ I (decomposition as vector spaces). Moreover,
the ordinary Hilbert series of algebras satisfies the following relation (Proposition 1.2.9):

HilbpA, tq “ HilbpA{I, tq ` HilbpI, tq.

Since K is a ˚-ideal of F̄ xY YZ, ˚y, then K is ˚-ideal of J (here J becomes a ˚-algebra with
the operation of F̄ xY YZ, ˚y restricted to J). Moreover, since J is a ˚-ideal of F̄ xY YZ, ˚y,
we have that J{K is a ˚-ideal of the ˚-algebra F̄ xY Y Z, ˚y{K. Both F̄ xY Y Z, ˚y{J and
J{K are ˚-algebras. Taking A “ F̄ xY Y Z, ˚y{K and I “ J{K we get the decomposition

F̄ xY Y Z, ˚y{K

J{K
‘
J

K
–
F̄ xY Y Z, ˚y

J
‘
J

K
.

Now the proof is complete since we have:

HilbpF̄ xY Y Z, ˚y{K, tq “ HilbpF̄ xY Y Z, ˚y{J, tq ` HilbpJ{K, tq.

Lemma 2.5.14. Let I 1 and I2 be T ˚2 -ideals of F̄ xY Y Z, ˚y. Then the following holds:

Hilb
ˆ

F̄ xY Y Z, ˚y

I 1 X I2
, t

˙

“Hilb
ˆ

F̄ xY Y Z, ˚y

I 1
, t

˙

` Hilb
ˆ

F̄ xY Y Z, ˚y

I2
, t

˙

´ Hilb
ˆ

F̄ xY Y Z, ˚y

I 1 ` I2
, t

˙

.

Proof. Taking J “ I 1 ` I2 and K “ I2 in the previous lemma, we have:

HilbpF̄ xY Y Z, ˚y{I2, tq “ HilbpF̄ xY Y Z, ˚y{pI 1 ` I2q, tq ` HilbpI 1 ` I2{I2, tq
“ HilbpF̄ xY Y Z, ˚y{pI 1 ` I2q, tq ` HilbpI 1{pI 1 X I2q, tq.
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Now we complete the proof by using again the previous lemma with J “ I 1 and K “ I 1XI2:

Hilb
ˆ

F̄ xY Y Z, ˚y

I 1 X I2
, t

˙

“Hilb
ˆ

F̄ xY Y Z, ˚y

I 1
, t

˙

` Hilb
ˆ

I 1

I 1 X I2
, t

˙

“Hilb
ˆ

F̄ xY Y Z, ˚y

I 1
, t

˙

` Hilb
ˆ

F̄ xY Y Z, ˚y

I2
, t

˙

´ Hilb
ˆ

F̄ xY Y Z, ˚y

I 1 ` I2
, t

˙

.

We have the key ingredients to prove the main result of this section, namely,
the Hilbert-Serre Theorem for ˚-algebras.

Theorem 2.5.15. Let F̄ xY Y Z, ˚y be the free ˚-algebra on the set of finite variables Y “
ty`1 , . . . , y

`
p , y´1 , . . . , y´q u and Z “ tz`1 , . . . , z

`
r , z

´
1 , . . . , z

´
s u, where F is an algebraically

closed field of characteristic zero. If I is a T ˚2 -ideal of F̄ xY Y Z, ˚y containing at least
one ordinary non-trivial identity, then the Hilbert series of the relatively free ˚-algebra
F̄ xY Y Z, ˚y{I is rational.

Proof. Suppose that the Hilbert series of F̄ xY Y Z, ˚y{I is non-rational. By the Specht’s
property for ˚-algebras (Theorem 2.4.5) there exists a T ˚2 -ideal K of F̄ xY YZ, ˚y containing
an ordinary non-trivial identity and that it is maximal among T ˚2 -ideals containing ordinary
non-trivial identities and having non-rational Hilbert series of this relatively free ˚-algebra
(i.e., of F̄ xY Y Z, ˚y{K). Indeed, if there is no such an ideal, then we get an infinite
ascending chain of T ˚2 -ideals containing an ordinary non-trivial identity that does not
stabilize and this contradicts the fact that the union of the T ˚2 -ideals is finitely generated.

The maximality of K implies that the relatively free ˚-algebra F̄ xY Y Z, ˚y{K
is T ˚2 -equivalent to a single basic ˚-algebra A. Indeed, assuming the converse, by Corollary
2.2.13, we get that

F̄ xY Y Z, ˚y{K „T˚2
A1 ‘ ¨ ¨ ¨ ‘ Am,

where A1, . . . , Am are basic ˚-algebras, m ě 2 and Id˚pAiq Ę Id˚pAjq, 1 ď i, j ď m with
i ‰ j. Thus

Id˚pF̄ xY Y Z, ˚y{Kq “ Id˚pA1 ‘ ¨ ¨ ¨ ‘ Amq “
m
č

i“1
Id˚pAiq.

For every i P t1, . . . ,mu, clearly Id˚pF̄ xY Y Z, ˚y{Kq Ĺ Id˚pAiq. Let Ii be the evaluation
on F̄ xY YZ, ˚y of the T ˚2 -ideal Id˚pAiq, 1 ď i ď m. Then Ii properly contains K and their
intersection is K. By the maximality of K, the Hilbert series of F̄ xY Y Z, ˚y{Ii is rational
for every i and by Lemma 2.5.14 we obtain that the Hilbert series of F̄ xY Y Z, ˚y{K is
rational, a contradiction. Hence, m “ 1 and so F̄ xY Y Z, ˚y{K is T ˚2 -equivalent to a single
basic ˚-algebra A.
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Let f be a Kemer ˚-polynomial of the basic ˚-algebra A (see Theorem 2.3.17)
and let J be the T ˚2 -ideal generated by f and K. Since f is not a ˚-identity of A, then it
is not a ˚-identity of F̄ xY Y Z, ˚y{K and so K Ĺ J . By the maximality of K, the Hilbert
series of F̄ xY Y Z, ˚y{J is rational.

Our next goal is to show that the Hilbert series of J{K is a rational function.

Consider the decomposition A “ A`0 ‘ A´0 ‘ A`1 ‘ A´1 and let tα`1 , . . . , α`k u,
tα´1 , . . . , α

´
l u, tβ`1 , . . . , β`mu, tβ´1 , . . . , β´n u be F -bases of A`0 , A´0 , A`1 , A´1 , respectively. Let

Λ “ tλ`iju1ďiďp
1ďjďk

Y tλ´iju1ďiďq
1ďjďl

Y tµ`iju 1ďiďr
1ďjďm

Y tµ´iju1ďiďs
1ďiďn

be a set of commuting indeterminates which centralize with the elements of A. Now we
consider the F -algebra FΛ. It is not difficult to see that the F -algebra A bF FΛ is a
˚-algebra. The Z2-grading in A induces a Z2-grading in AbF FΛ:

AbF FΛ “ pA0 bF FΛq ‘ pA1 bF FΛq .

The superinvolution ¯̊ in A bF FΛ is given by pa b P q¯̊ “ a˚ b P , with a P A, P P FΛ
and ˚ the superinvolution defined on A. Indeed, ppa b P q˚q˚ “ pa˚q˚ b P “ a b P

and ppa b P qpa1 b P 1qq˚ “ paa1 b PP 1q˚ “ paa1q˚ b PP 1 “ p´1q|a||a1|pa1q˚a˚ b PP 1 “

p´1q|a||a1|pa1q˚a˚bP 1P “ p´1q|a||a1|ppa1q˚bP 1qpa˚bP q “ p´1q|abP ||a1bP 1|pa1bP 1q˚pabP q˚

for any a1 P A and P 1 P FΛ.

Consider the map ϕ : F̄ xY Y Z, ˚y{K Ñ AbF FΛ, induced by

y`i ÞÝÑ
k
ÿ

j“1
α`j bλ

`
ij, y´i ÞÝÑ

l
ÿ

j“1
α´j bλ

´
ij, z`i ÞÝÑ

m
ÿ

j“1
β`j bµ

`
ij, z´i ÞÝÑ

n
ÿ

j“1
β´j bµ

´
ij.

Clearly ϕ is a well-defined homomorphism of ˚-algebras. Indeed, given a ˚-polynomial

gpy`1 , . . . , y
`
p , y

´
1 , . . . , y

´
q , z

`
1 , . . . , z

`
r , z

´
1 , . . . , z

´
s q P K,

then g P IdHpAq. Hence, g vanishes on all evaluations of the basis of A. Thus,

ϕpgpy`1 , . . . , y
`
p , y

´
1 , . . . , y

´
q , z

`
1 , . . . , z

`
r , z

´
1 , . . . , z

´
s qq

“ gpϕpy`1 q, . . . , ϕpy
`
p q, ϕpy

´
1 q, . . . , ϕpy

´
q q, ϕpz

`
1 q, . . . , ϕpz

`
r q, ϕpz

´
1 q, . . . , ϕpz

´
s qq

“ gp
k
ÿ

j“1
α`j b λ

`
1j, . . . ,

k
ÿ

j“1
α`j b λ

`
pj,

l
ÿ

j“1
α´j b λ

´
1j, . . . ,

l
ÿ

j“1
α´j b λ

´
qj,

m
ÿ

j“1
β`j b µ

`
1j, . . . ,

m
ÿ

j“1
β`j b λ

`
rj,

n
ÿ

j“1
β´j b µ

´
1j, . . . ,

n
ÿ

j“1
β´j b λ

´
sjq

“
ÿ

∆
gpα`i1 , . . . , α

`
ip , α

´
j1 , . . . , α

´
jq , β

`
k1 , . . . , β

`
kr , β

´
l1 , . . . , β

s
lsq bQ “ 0

with ∆ “ p̄i, j̄, k̄, l̄q where ī “ pi1, . . . , ipq P t1, . . . , kup, j̄ “ pj1, . . . , jqq P t1, . . . , luq, k̄ “
pk1, . . . , krq P t1, . . . ,mur, l̄ “ pl1, . . . , lsq P t1, . . . , nus and Q is some polynomial in FΛ.
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This shows that ϕ is well defined. By definition ϕ is Z2-graded homomorphism. It is
easy to check that ϕpx˚q “ ϕpxq˚ for any variable x in Y Y Z. This prove that ϕ is
˚-homomorphism.

By definition, we have that ϕ is also injective. Hence A :“ Impϕq is isomorphic
(as ˚-algebras) to F̄ xY Y Z, ˚y{K. Thus, we can see F̄ xY Y Z, ˚y{K as a ˚-subalgebra of
AbF FΛ.

Consider the following decompositions as Z2-graded algebras: A “ A0‘A1 and
A “ A0‘A1. Moreover, let Ā0 and Ā0 be the semisimple parts of A0 and A0, respectively.
We can embed (embedding of Z2-graded algebras) Ā0 into EndFΛpĀ0 bF FΛq –MdpFΛq,
where d “ dimpĀ0q, via the regular left Ā0-action on Ā0bFFΛ. Notice that each semisimple
element ā P Ā0 satisfies a Cayley-Hamilton identity (characteristic polynomial of ā) of
degree d.

By Remark 2.5.1 we get F̄ xY YZ, ˚y{K is a PI-algebra. Hence Proposition 2.5.10
applies and we get that F̄ xY Y Z, ˚y{K has an essential Shirshov base. As a consequence,
A has an essential Shirshov base of elements of A0. Moreover, we may choose generators
of A0 such that the corresponding essential Shirshov base is B “ B̄ Y BJ (disjoint union),
where B̄ Ď Ā0 and BJ Ď JpA0q (the radical part of A0). Since JpAq bF FΛ is nilpotent,
the elements of BJ Ď JpA0q Ď JpAq bF FΛ are integrals over F .

In view of the embedding Ā0 ãÑ EndFΛpĀ0bF FΛq, each element of B̄ satisfies
a characteristic polynomial of degree d with coefficients in FΛ. Let C be the F -subalgebra
of FΛ generated by these coefficients. Since A has unit, we may consider B having unit and
therefore C has it too. Since the essential Shirshov base is finite, C is an affine commutative
F -algebra and therefore a Noetherian F -algebra.

Consider the ˚-algebra AC :“ CrAs. Notice that the elements of the essential
Shirshov base of A are integral over C because the elements of BJ are integral over F and
we may see F as the F -subspace spanned by the unit 1C of C. On the other hand, given an
element of B̄, by the Cayley-Hamilton Theorem, this satisfies its characteristic polynomial
with coefficients in FΛ. But, by construction, these coefficients belong to C and so the
elements of B̄ are integral over C. Thus, by Theorem 2.5.7, AC is a finite module over C.
By Proposition 2.5.8 we obtain that AC has a rational Hilbert series.

We come back now to the study of the ˚-ideal J{K of the relatively free ˚-alge-
bra F̄ xY Y Z, ˚y{K. We denote by J the image through ϕ of J{K. By Lemma 2.5.11 and
Remark 2.5.12, J is the ˚-ideal of A generated by all the evaluations on A of the Kemer
˚-polynomial f .

Now, we want to show that J is a C-submodule of AC , that is J is closed
under the multiplication of the coefficients of the characteristic polynomials of the elements
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in B. Given an element b0 P B̄ and its characteristic polynomial λd `
d
ÿ

i“1
p´1qiγiλd´i, it is

sufficient to show that for the Kemer ˚-polynomial fpXd, Y q, where Xd and Y are disjoint
sets of variables and Xd has exactly d variables of degree zero, we have γifpX̂d, Ŷ q P J ,
for every i P t1, . . . , du, where X̂d “ tx̂1, . . . , x̂du and Ŷ denote any evaluation by elements
of A. Since d “ dimF pĀ0q “ dimFΛpĀ0 bF FΛq and JpAq bF FΛ has the same nilpotency
index of JpAq, we have that AbF FΛ has the same Kemer index of A. Hence Remark 2.3.18
implies that the x̂i’s can only assume semisimple values in Ā0 Ď Ā0 bF FΛ, for 1 ď i ď d.
Denote these values by a1, . . . , ad. Since f is alternating in the set of variables Xd, the
value fpa1, . . . , ad, Ŷ q is zero unless the elements a1, . . . , ad are linearly independent over
FΛ. In this case, since d “ dimF pĀ0q “ dimFΛpĀ0 bF FΛq, the set ta1, . . . , adu would be
a linear basis of Ā0 bF FΛ over FΛ. Finally, since we may see b0 P B̄ as an element of
EndFΛpĀ0 bF FΛq –MdpFΛq, we use Lemma 2.5.9 and conclude that

γifpX̂, Ŷ q “ γifpa1, . . . , ad, Ŷ q “
ÿ

k1`¨¨¨`kd“i
kiPt0,1u

fppb0q
k1pa1q, . . . , pb0q

kdpadq, Ŷ q P J .

Since C is Noetherian, J is a finitely generated C-module and so, by Proposition
2.5.8, J has a rational Hilbert series. Since A “ 1C ¨A Ď AC , we have that J is a common
ideal of A and AC . We conclude that J{K has a rational Hilbert series.

So far we have proved that F̄ xY Y Z, ˚y{J and J{K have rational Hilbert
series. Now, by applying Lemma 2.5.13, we get that the Hilbert series of F̄ xY Y Z, ˚y{K
is rational, which is a contradiction. The contradiction arised from the assumption the
Hilbert series of the relatively free ˚-algebra F̄ xY Y Z, ˚y{I is not a rational function. The
proof is complete.
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3 H-module algebras

The purpose of this chapter is to give a proof of the Hilbert-Serre Theorem in
the case of relatively free algebras of H-module algebras satisfying an ordinary polynomial
identity, where H is a finite dimensional semisimple Hopf algebra over a field F of
characteristic zero (Theorem 3.2.6).

Throughout this chapter H will denote a finite dimensional semisimple Hopf
algebra over a field F of characteristic zero. We refer to the Section 1.3 for basic definitions,
examples of Hopf algebras and H-module algebras.

3.1 Specht’s problem for H-module algebras
In this section we shall introduce some definitions and present several results

concerning the theory of Specht in the setting of H-module algebras. We refer the reader
to the paper [38] by Karasik for more details.

Let W be a H-module algebra. Recall that IdpW q is the T -ideal of F xXy
consisting of all ordinary identities of W and IdHpW q is the TH-ideal of FH

xXy consisting
of all H-identities of W . Notice that the ordinary identities of W are H-identities of W
taking the identification F xXy – F xXy bF 1H Ď FH

xXy. Thus IdpW q Ď IdHpW q. On the
other hand, W does not necessarily have ordinary identities, even if it has H-identities.
This is the case, for example, of the free non-commutative algebra W with H-action given
by 1Hw “ w and hw “ 0, for all w P W and h P H, h ‰ 1H .

Since the field F is of characteristic zero, every TH-ideal is generated by
multilinear H-polynomials, i.e. H-polynomials fpx1, . . . , xnq P F

H
xXy such that

fpx1, . . . , xi´1, αxi ` y, xi`1, . . . , xnq “ αfpx1, . . . , xnq ` fpx1, . . . , xi´1, y, xi`1, . . . , xnq,

for every i P t1, . . . , nu and α P F .

Now we recall the following results whose proofs can be found in [38, Theorem
4.1].

Theorem 3.1.1. Let W be an affine (i.e., finitely generated) H-module algebra satisfying
an ordinary non-trivial identity. Then there exists a finite dimensional H-module algebra
A such that IdHpAq Ď IdHpW q.

Remark 3.1.2. Let I be a TH-ideal of FH
xXy containing an ordinary non-trivial identity.

Since IdHpFH
xXy{Iq “ I, the relatively free H-module algebra FH

xXy{I contains an
ordinary non-trivial identity.
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The following result is the Representability Theorem for H-module algebras
due to Karasik in [38].

Theorem 3.1.3. Let W be a finitely generated H-module F -algebra, where F is a field
containing C, satisfying an ordinary non-trivial identity. Then there exists a field extension
K of F and a finite dimensional H-module algebra A over K such that W „TH A (notation
as on pag. 52).

Definition 3.1.4. Let fpx1, . . . , xn, Y q P F
H
xXy be a multilinear H-polynomial, where Y

is a set of variables disjoint from x1, . . . , xn. We say f is alternating in tx1, . . . , xnu if
there exists a multilinear H-polynomial hpx1, . . . , xn, Y q such that

fpXq “
ÿ

σPSn

p´1qσhpxσp1q, . . . , xσpnq, Y q.

Given an H-module algebra W , we say that W satisfies a Capelli identity of
rank m if every H-polynomial fpx1, . . . , xn, Y q alternating on x1, . . . , xn is in IdHpW q. By
Theorem 3.1.1, an affine H-module algebra satisfying an ordinary non-trivial identity
satisfies a Capelli identity.

Definition 3.1.5. Let W be an H-module algebra satisfying an ordinary non-trivial
identity. The H-Kemer index of W is the ordered pair pβpW q, γpW qq P Nˆ N, where

• βpW q is the maximal integer such that, for every µ, there exists a multilinear H-
polynomial f “ fpX1, . . . , Xµ, Y q R IdHpW q which is alternating with respect to the
sets X1, . . . , Xµ, which are all of cardinality βpW q,

• γpW q is the maximal integer such that, for every µ, there exists a multilinear H-
polynomial g “ gpX1, . . . , Xµ, X

1
1, . . . , X

1
γpW q, Y q R IdHpW q which is alternating with

respect to the sets X1, . . . , Xµ, X 1
1, . . . , X

1
γpW q, where X1, . . . , Xµ are of cardinality

βpW q and X 1
1, . . . , X

1
γpW q are of cardinality βpW q ` 1.

The polynomials g are called H-Kemer polynomials of rank µ.

Let W be a finite dimensional H-module algebra and let J “ JpW q be the
Jacobson radical of W . In [44] it was proved that J is H-invariant and so W {J is
semisimple. By the Wedderburn-Malcev Theorem, W may be decomposed as W “ W̄ ` J

(decomposition as vector spaces), where W̄ is a semisimple H-module subalgebra of W
which is H-isomorphic toW {J . Let dW be the dimension of W̄ and let nW be the nilpotency
index of J . Denote by ParpW q “ pdW , nW ´ 1q the parameter of W .

A finite dimensional H-module algebra A is called H-basic if there are no finite
dimensional H-module algebras B1, . . . , Bs such that ParpBiq ă ParpAq, i P t1, . . . , su,
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and A „TH B1 ˆ ¨ ¨ ¨ ˆBs. By induction on ParpW q, every finite dimensional H-module
algebra W is TH equivalent to a finite product of H-basic algebras (see Remark 5.8 of
[38]).

Kemer’s Lemmas 1 and 2 for H-module algebras are given in [38, Lemmas
5.12 and 6.6]. They imply that, if A is H-basic, then pdA, nA ´ 1q “ pβpAq, γpAqq ([38,
Corollary 6.9]). It follows that A has an H-Kemer polynomial f having, say at least, nA
alternating sets of variables of cardinality dA and a total of nA ´ 1 alternating sets of
variables of cardinality dA ` 1.

In particular, Kemer’s Lemma 2 implies the following remark (see [38, Remark
6.8]).

Remark 3.1.6. Any non-zero evaluation of f must consist only of semisimple evaluations
in the sets of variables of cardinality dA.

Let W be an affine H-module algebra over a field F cointaining C, satisfying
an ordinary non-trivial identity. As a consequence of the Representability Theorem for
H-modules algebras (Theorem 3.1.3), W is TH-equivalent to a finite product of H-basic
algebras A1, . . . , Am over a field extension K of F . Notice that, since IdHpA1‘¨ ¨ ¨‘Amq “

X
m
i“1 IdHpAiq, we may assume that IdHpAiq Ę IdHpAjq, for every 1 ď i, j ď m with i ‰ j.

By passing to the algebraic closure of K, we may assume that the H-basic algebras Ai are
finite dimensional over the same field F .

The following theorem is the Specht property for H-module algebras (see[38,
Theorem 1.4]).

Theorem 3.1.7. Let W be an affine H-module algebra satisfying an ordinary non-trivial
identity. If I1 Ď I2 Ď ¨ ¨ ¨ is an ascending chain of TH-ideals of W containing an ordinary
non-trivial identity, then the chain stabilizes.

3.2 Rationality of the Hilbert series of relatively free H-module
algebras

Let H be a Hopf algebra over F with basis tb1, . . . , bmu. We denote by FH
xXry

the free H-module algebra on the set of finite variables Xr “ tx1, . . . , xru. Given a TH-ideal
I in FH

xXry, then FH
xXry{I is the corresponding relatively free H-module algebra. Write

Ωn to denote the (finite) set of monomials of degree n on the variables xbji , j P t1, . . . ,mu,
i P t1, . . . , ru. If cn is the dimension of the F -subspace of FH

xXry{I spanned by the
monomials of Ωn, then the Hilbert series of FH

xXry{I with respect to the generators
tx

bj
i uij is defined by

HilbpFH
xXry{I, tq “

ÿ

n

cnt
n.
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Given any TH-ideal I in FH
xXry, it is convenient to view I as the evaluation on

FH
xXry of a TH-ideal I of the free H-module algebra FH

xXy. As already mentioned in the
previous section, every TH-ideal is generated by multilinear H-polynomials. Unfortunately,
passing from I to I (by evaluation) the multilinearity condition could no longer be true.

The main goal of this section is to show that, in case H is a semisimple Hopf
F -algebra, then the Hilbert series of FH

xXry{I is a rational function. Let W be an H-
module algebra and consider the TH-ideal of the identities IdHpW q satisfied by W . Since
charF “ 0, we have IdHpW q “ IdHpW bF F̄ q, where F̄ is the algebraic closure of F . This
means that the ideal of identities of WF̄ over F̄ is the span (over F̄ ) of the TH-ideal of
identities of W over F . Therefore the Hilbert series remains the same when passing to the
algebraic closure of F . From now on, we assume that F “ F̄ .

We start by proving the following technical result.

Lemma 3.2.1. Let A Ď MnpF q be an algebra which is a H-module and let V be a d-
dimensional subalgebra of MnpF q with an F -basis a1, . . . , ad of elements of A. Given an

F -linear transformation T : V Ñ V , let λd`
d
ÿ

i“1
p´1qiγiλd´i be its characteristic polynomial.

Then for any multilinear H-polynomial fpx1, . . . , xdq which is alternating in the variables
x1, . . . , xd, the following equation holds:

γifpa1, . . . , adq “
ÿ

k1`¨¨¨`kd“i
kiPt0,1u

fpT k1pa1q, . . . , T
kdpadqq.

Proof. We first show that the following equation holds:

detpT qfpa1, . . . , adq “ fpT pa1q, . . . , T padqq.

Suppose that T pajq “
d
ÿ

i“1
cijai, with cij P F , 1 ď i, j ď d. Since the H-action is linear, then

h ¨ pT pajqq “
d
ÿ

i“1
cijhai, with h P H. Also, since fpx1, . . . , xdq is an alternating multilinear

H-polynomial and T is an F -linear transformation, we get that

fpT pa1q, . . . , T padqq “ f

˜

d
ÿ

i“1
ci1ai, . . . ,

d
ÿ

i“1
cidai

¸

“
ÿ

σPSd

cσp1q,1 ¨ ¨ ¨ cσpdq,dfpaσp1q, . . . , aσpdqq

“
ÿ

σPSd

p´1qσcσp1q,1 ¨ ¨ ¨ cσpdq,dfpa1, . . . , adq

“ detpT qfpa1, . . . , adq.

Here Sd is the symmetric group of order d.
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Using the F -linear transformation λId ´ T in place of T , we get:

detpλId ´ T qfpa1, . . . , adq “ fppλId ´ T qpa1q, . . . , pλId ´ T qpadqq.

Now we remark that
fppλId ´ T qpa1q, . . . , pλId ´ T qpadqq

“fpλa1 ´ T pa1q, . . . , λad ´ T padqq

“λdfpa1, . . . , adq ´ λ
d´1

ÿ

k1`¨¨¨`kd“1
fpT k1pa1q, . . . , T

kdpadqq

` λd´2
ÿ

k1`¨¨¨`kd“2
fpT k1pa1q, . . . , T

kdpadqq ´ ¨ ¨ ¨

` p´1qdλ0fpT pa1q, . . . , T padqq,

with ki P t0, 1u for all i P t1, . . . , du. On the other hand,

detpλId ´ T q “ λd `
d
ÿ

i“1
p´1qiγiλd´i,

the characteristic polynomial of T with coefficients γi P F , 1 ď i ď d. In conclusion we get

γifpa1, . . . , adq “
ÿ

k1`¨¨¨`kd“i
kiPt0,1u

fpT k1pa1q, . . . , T
kdpadqq.

Lemma 3.2.2. Let S be a set of H-polynomials in FH
xXy and let I be the TH-ideal

generated by S. Given an H-module algebraW , consider S, I to be the sets of all evaluations
on W of the polynomials of S and I, respectively. Then I “ xSy (the ideal generated by
S).

Proof. Given a, b P I and given polynomials pa and pb in I with evaluations a and b

respectively, then by the TH-property of I (i.e. I is invariant under all H-endomorphism
of FH

xXy), we may change variables and assume that pa and pb have disjoint sets of
variables. Then we may get a` b as an evaluation of the polynomial pa ` pb, so a` b P I.
If c P W , we may take a variable x which is not in pa and get ca and ac as evaluations of
xpa and pax respectively, so ca and ac belong to I. If h P H, then hpa P I which implies
ha P I. Thus, I is ideal of W .
Now, we show I “ xSy. Since S Ď I, then S Ď I and xSy Ď I. On the other hand,
consider the H-module algebra W̄ “ W { xSy. Since the polynomials of S are identities
of W̄ then I Ď IdpW̄ q. Therefore, all evaluations of I on W are contained in xSy, that is,
I Ď xSy.

Remark 3.2.3. Let K be a TH-ideal of FH
xXy and let f P FH

xXy be an H-polynomial
such that f R K. Let J be the TH-ideal generated by f and K. Taking S “ K Y tfu and
W “ FH

xXy{K in the previous lemma, we have J{K is the ideal of FH
xXy{K generated

by all evaluations on FH
xXy{K of the polynomial f .
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Let J be a TH-ideal of FH
xXry. In particular, J is an ideal of FH

xXry (as F -
algebra). Then J becomes an H-module algebra with the operations of FH

xXry restricted
to J .

The following lemmas can be proved by using the same arguments employed in
the corresponding results of Section 2.5 (Lemmas 2.5.13 and 2.5.14).

Lemma 3.2.4. Let K and J be TH-ideals of FH
xXry such that K Ď J . Then the following

holds:
HilbpFH

xXry{K, tq “ HilbpFH
xXry{J, tq ` HilbpJ{K, tq.

Lemma 3.2.5. Let I 1 and I2 be TH-ideals of FH
xXry. Then the following holds:

HilbpFH
xXry{pI

1
X I2q, tq

“ HilbpFH
xXry{I

1, tq ` HilbpFH
xXry{I

2, tq ´ HilbpFH
xXry{pI

1
` I2q, tq.

Finally we are in a position to prove the main theorem of this chapther, namely,
the Hilbert-Serre Theorem for H-module algebras.

Theorem 3.2.6. Let FH
xXry be the free H-module algebra on the set of variables Xr “

tx1, ¨ ¨ ¨ , xru, where H is a finite dimensional semisimple Hopf algebra and F is a field of
characteristic zero. If I is a TH-ideal of FH

xXry containing at least one ordinary non-
trivial identity, then the Hilbert series of the relatively free H-module algebra FH

xXry{I is
rational.

Proof. The proof is very similar to the one given for the analogous result in the setting of
˚-algebras (Theorem 2.5.15). For this reason we will give here just a sketch of it.

Suppose that the Hilbert series of FH
xXry{I is non-rational. By the Specht’s

property for H-module algebras (Theorem 3.1.7) there exists a TH-ideal K of FH
xXry

containing an ordinary non-trivial identity and that it is maximal among TH-ideals
containing ordinary non-trivial identities and having non-rational Hilbert series of their
relatively free H-module algebra.

The maximality of K implies that FH
xXry{K is TH-equivalent to a single

H-basic H-module algebra A. To this end we just need to use Theorem 3.1.3 and Lemma
3.2.5.

Now let f be a H-Kemer polynomial of the H-basic H-module algebra A and
let J be the TH-ideal generated by f and K. Since f is not an H-identity of A, then f is
not an H-identity of FH

xXry{K, and hence, K Ĺ J . By the maximality of K, the Hilbert
series of FH

xXry{J is rational.

In order to complete the proof we need to show that the Hilbert series of J{K
is a rational function. In fact, once this is accomplished, we will have that FH

xXry{J and
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J{K have rational Hilbert series. Then by Lemma 3.2.4, the Hilbert series of FH
xXry{K is

rational, which is a contradiction. The contradiction arises from having assumed that the
Hilbert series of the relatively free H-module algebra FH

xXry{I is not a rational function.

From now on, our only goal is to prove that the Hilbert series of J{K is a
rational function.

Suppose that tα1, . . . , αlu is an F -basis of A and let Λ “ tλij : 1 ď i ď r, 1 ď
j ď lu be a set of commuting indeterminates centralizing with the elements of A. Consider
the F -algebra FΛ endowed with a formal H-action. We prefer the notation λhij :“ h ¨λij to
denote the formal action of some h P H in each λij. The H-module structure is given by

h ¨ pλh1
i1j1λ

h2
i2j2 ¨ ¨ ¨λ

hn
injnq “ λ

hp1qh1
i1j1 λ

hp2qh2
i2j2 ¨ ¨ ¨λ

hpnqhn
injn and h ¨ 1Λ “ 1Λ,

where 1Λ is the unit element of FΛ.

Consider the algebra AbF FΛ and define the action of H in AbF FΛ for F -basic
elements: if H0 is an F -basis of H and Λ0 is an F -basis of FΛ then hpα b P q “ hα b hP ,
where h P H0, P P Λ0 and α P tα1, . . . , αlu. If we extend the H-action linearly in H and
AbF FΛ we obtain a structure of H-module. Notice that, for any a1, a2 P A, P1, P2 P FΛ
and h P H, we have that:

hppa1 b P1qpa2 b P2qq “ hpa1a2 b P1P2q “ hpa1a2q b hpP1P2q

“ hp1qa1hp2qa2 b hp1qP1hp2qP2

“ hp1qpa1 b P1qhp2qpa2 b P2q,

hp1A b 1Λq “ hp1Aq b hp1Λq “ εphq1A b 1Λ “ εphqp1A b 1Λq.

This shows that AbF FΛ is an H-module algebra. Now, consider the H-homomorphism
ϕ : FH

xXry{K Ñ AbF FΛ, induced, for any h P H, by

xhi ÞÝÑ
l
ÿ

j“1
hpαjq b λ

h
ij.

Given a multilinear H-polynomial gpx1, . . . , xrq P K, then g P IdHpAq. Hence, g vanishes
on all evaluations of the basis tα1, . . . , αlu of A. Thus,

ϕpgpx1, . . . , xrqq “ gpϕpx1q, . . . ϕpxrqq “ gp
l
ÿ

j“1
αj b λ1j, . . . ,

l
ÿ

j“1
αj b λrjq

“
ÿ

ī

gpαi1 , . . . , αirq bQ “ 0

with ī “ pi1, . . . , irq P t1, . . . , lur and Q is some polynomial in FΛ. This shows that ϕ is
well defined H-homomorphism. It is not difficult to see that ϕ is injective. Hence we get
that A :“ Impϕq is H-isomorphic (isomorphic as H-module algebras) to FH

xXry{K. Thus,
we can see FH

xXry{K as a subalgebra of AbF FΛ.
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Let Ā be the H-invariant semisimple part of A. We can embed (embedding of
F -algebras) Ā into EndF pĀq –MdpF q, where d “ dimpĀq, via the regular left Ā-action on
Ā. This induce an embedding ĀbF FΛ into EndFΛpĀbF FΛq via the regular action. Notice
that each semisimple element ā P Ā satisfies a Cayley-Hamilton identity (characteristic
polynomial of ā) of degree d.

Since A may be decomposed into the direct sum Ā ‘ JpAq where JpAq is
the Jacobson radical of A, we may decompose A into the direct sum Ā ‘ AJ where
Ā Ď Ā bF FΛ ãÑ EndFΛpĀ bF FΛq and AJ Ď JpAq bF FΛ. We shall call Ā the
semisimple part of A and AJ the radical part of A.

Remark 3.1.2 implies that FH
xXry{K is a PI-algebra. By Theorem 2.5.4,

FH
xXry{K has a Shirshov base, then A has a Shirshov base. Moreover, we may choose

generators of A such that the corresponding Shirshov base is B “ B̄ Y BJ (disjoint union),
where B̄ Ď Ā and BJ Ď AJ . In fact, if we choose generators b1, . . . , bs of A either from Ā
or AJ , a basic element bi1bi2 ¨ ¨ ¨ bit belongs to B̄ if and only if bij P Ā for all j P t1, . . . , tu.
Since JpAq bF FΛ is nilpotent, the elements of BJ are integrals over F .

In view of the embedding Ā ãÑ EndFΛpĀbF FΛq, each element of B̄ satisfies
a characteristic polynomial of degree d with coefficients in FΛ. Let C the F -subalgebra
of FΛ generated by these coefficients. Since A has unit, we may consider B having unit,
and therefore C has unit. Since the Shirshov base is finite, C is an affine commutative
F -algebra and therefore a Noetherian F -algebra.

Consider the H-module C-algebra AC :“ CrAs. Notice that the elements of
the Shirshov base of A are integrals over C because the elements of BJ are integrals over
F and we may see F as the F -subspace spanned by the unit 1C of C. On the other hand,
given an element of B̄, by the Cayley-Hamilton Theorem this satisfies its characteristic
polynomial with coefficients in FΛ. But, by construction, these coefficients belongs to C,
then the elements of B̄ are integral over C. Thus, by Theorem 2.5.7 AC is a finite module
over C. Then AC has a rational Hilbert series by Proposition 2.5.8.

We come back now to the study of the ideal J{K of the relatively free H-module
algebra FH

xXry{K. We denote by J the image by ϕ of J{K. By Lemma 3.2.2 and Remark
3.2.3, J is the ideal of A generated by all the evaluations on A of the H-Kemer polynomial
f . We will show that J is a C-submodule of AC , that is, we show that J is closed under
the multiplication of the coefficients of the characteristic polynomials of the elements in

B. So, given an element b0 P B̄ and λd `
d
ÿ

i“1
p´1qiγiλd´i its characteristic polynomial, it is

sufficient to show that for the H-Kemer polynomial fpXd, Y q, where Xd and Y are sets of
disjoint variables and Xd has d elements, we have γifpX̂d, Ŷ q P J , where X̂d “ tx̂1, . . . , x̂du

and Ȳ denote an evaluation of elements of A.

In view of the embedding A Ď A bF FΛ Ď pĀ bF FΛq ‘ pJpAq bF FΛq, an
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element v P X̂dY Ŷ can be written as v “ v̄`vJ where v̄ P ĀbF FΛ and vJ P JpAqbF FΛ.
Since d “ dimF pĀq “ dimFΛpĀbF FΛq and JpAq bF FΛ has the same nilpotency index
as JpAq, then A bF FΛ has the same H-Kemer index as A. If we denote by ai the
semisimple part of x̂i and by ci the radical part of x̂i for 1 ď i ď d, Remark 3.1.6 implies
fpX̂d, Ŷ q “ fpa1, . . . , ad, Ŷ q. Since f is alternating in the set of variables Xd, the value
fpa1, . . . , ad, Ŷ q is zero unless the elements a1, . . . , ad are linearly independent over FΛ and
since d “ dimF pĀq “ dimFΛpĀbF FΛq, the set ta1, . . . , adu is a linear basis of ĀbF FΛ
over FΛ.

Since we may see b0 P B̄ as an element of EndFΛpĀbF FΛq, by Lemma 3.2.1
we get that

γifpX̂, Ŷ q “ γifpa1, . . . , ad, Ŷ q “
ÿ

k1`¨¨¨`kd“i
kiPt0,1u

fppb0q
k1pa1q, . . . , pb0q

kdpadq, Ŷ q P J .

Since C is Noetherian, J is a finitely generated C-module as well and again by
Proposition 2.5.8, J has a rational Hilbert series. Since A “ 1C ¨A Ď AC , we have that J
is a common ideal of A and AC . We conclude that J{K has a rational Hilbert series.
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4 Hm-module algebra UT2

In this chapter we study the Specht property for the variety of Hm-module
algebras generated by the algebra UT2 of 2ˆ 2 upper triangular matrices over a field of
characteristic 0 containing a primitive m-th root of unit and where Hm denotes a Taft’s
Hopf algebra of dimension m2. We would like to point out that we cannot use Karasik’s
result (Theorem 3.1.7) in order to establish whether or not our variety satisfies the Specht
property because although the Hopf algebra Hm is finite dimensional, it is not semisimple
(see Example 1.3.34).

Hereby we would like to highlight the role of UT2 in the theory of PI-algebras. In
[53] Regev proved the codimension sequence of any associative PI-algebra is exponentially
bounded. Later Kemer in [41] showed such codimensions are either polynomially bounded
or grow exponentially. Moreover, Giambruno and Zaicev in a famous couple of paper (see
[27] and [28]) computed the exponential rate of growth of a PI-algebra and proved that
it is a non-negative integer. By a well known Kemer’s result [39] we get the variety of
algebras generated by UT2 is a variety of almost polynomial growth, i.e., it has exponential
growth but every proper subvariety has polynomial growth. An analogous result was found
by Valenti in [61] for varieties of algebras graded by a finite group and by Mishchenko
and Valenti in [46] for varieties of algebras with involution. We would also like to cite the
paper [25] by Giambruno and Rizzo toward differential identities: there the authors prove
that UT2 under the action of its algebra of derivation does not generate a variety of almost
polynomial growth and they construct a subvariety of almost polynomial growth. Notice
that the variety of Hm-module algebras generated by UT2 is not of almost polynomial
growth too as showed by Centrone and Yasumura in [16].

4.1 The action of Hm on the algebra UT2

Let UT2 be the algebra of 2ˆ 2 upper triangular matrices over the field F and
let G be group. A detailed description of the G-graded identities satisfied by the algebra
UT2 when the characteristic of F is 0 is given in [61]. In particular, in [61, Theorem 1]
the author shows that, up to isomorphism, there is only one non-trivial grading. So any
G-grading on UT2 is actually a Z2-grading.

Definition 4.1.1. Given an algebra A over a field F , a α-derivation is an F -linear
map δ : AÑ A such that for every a, b P A we have δpabq “ δpaqb`αpaqδpbq, where α is a
suitable endomorphism of A. The α-derivation δ is called inner if there exists an element
y P A so that δpaq “ ya´ αpaqy and we write adαpyq instead of δ.
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Taft’s algebras were introduced in Example 1.3.20. From now on, F is a field
of characteristic zero containing a primitive m-th root of the unit. We shall denote by Hm

the m-th Taft’s Hopf algebra over F .

Consider a Hm-action on UT2.

Theorem 4.1.2. [16, Theorem 11] The Hm-action on UT2 is completely determined by a
choice of an automorphism α of UT2 or order m, and an inner α-derivation by an element
y P UT2 such that αpyq “ γ´1y, and adαpyqm “ 0.

Equivalently, the Hm-action on UT2 is completely determined by a choice of a
Zm grading on UT2 and a homogeneous element d P UT2 of homogeneous degree γ´1 such
that adαpyqm “ 0.

Then there exist three “structures” of Hm-module algebra on UT2 (see [16,
page 738]):

iq The trivial grading (so d acts trivially): in this case, IdHmpUT2q is merely the ideal
of ordinary polynomial identities of UT2, which was calculated by Malcev in [45].

iiq The canonical Z2-grading and d acts trivially: in this case, IdHmpUT2q coincides with
the ideal of Z2-graded polynomial identities of UT2 which was originally calculated
by Valenti in [61] and generalized by Di Vincenzo, Koshlukov and Valenti in [18].

iiiq The canonical Z2-grading and d acts non-trivially. In this case, perforce d “adαpae12q,

for some 0 ‰ a P F , that is, if A “
˜

x11 x12

0 x22

¸

P UT2, then

Ad “ adαpae12q

˜˜

x11 x12

0 x22

¸¸

“

˜

0 apx22 ´ x11q

0 0

¸

. (4.1)

The Specht property for (i) and (ii) are particular cases of the Specht property
for ordinary PI-algebras [40] and G-graded PI-algebras [2], respectively. Therefore, we
will study the case (iii). Thus, from now on, an Hm-action on UT2 means the canonical
Z2-grading on UT2 with a non-trivial action of d on UT2. This forces us to see an action of
Hm on the algebra UT2 as an action of H2 on UT2. It is worth recalling in [32] the author
gives an explicit description of the simple algebras that are module algebra under the
action of a Sweedler’s algebra that is a Taft’s algebra of dimension 4.

Let F xXy be the free associative algebra over the countable setX “ tx1, x2, . . . u.
If we write X “ Y Y Z where Y “ ty1, y2, . . . u is the countable set of variables of degree
zero and Z “ tz1, z2, . . . u is the countable set of variables of degree one, and Y X Z “ H,
then F xY Y Zy has a natural structure of free superalgebra on Y Y Z.
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We recall from Section 1.2.4 that a graded polynomial fpy1, . . . , yt, z1, . . . , zsq P

F xY Y Zy is a graded identity of a superalgebra A “ A0 ‘ A1, and we write f ” 0, if,
for all a1, . . . , at P A0, b1, . . . , bs P A1,, we have fpa1, . . . , at, b1, . . . , bsq “ 0. IdgrpAq denote
the ideal of graded identities of A. Notice that IdgrpAq is a T2-ideal of F xY Y Zy, i.e.,
an ideal that is invariant under all Z2-graded endomorphisms of the free superalgebra
F xY YZy. Since the characteristic of F is zero, it is well known that IdgrpAq is completely
determined by its multilinear graded polynomials.

Now, we construct F xY Y Z | D2y the free superalgebra on X “ Y Y Z with
action of D2 “ F xd | d2

“ 0y as follows. The algebra F xY Y Z | D2y is the algebra
freely generated by the set txd1 “ d1pxq | x P Y or x P Z, d1 P D2u. We let D2 act
on F xY Y Z | D2y by requiring that if d1, d2 P D2, then pxd1q

d2 “ xd1d2 , and then by
extending this action on all of F xY Y Z | D2y as follows: if v, w are monomials, then
define pvwqd “ vdw ` p´1qdegpvqvwd and then extend this action by linearity to all of
F xY Y Z | D2y. The elements of F xY Y Z | D2y are called Z2-D2-polynomials.

The algebra F xY Y Z | D2y has the following universal property: Given any
superalgebra A “ A0 ‘ A1 with D2-action, any set theorical map ϕ : Y Y Z Ñ A such
that ϕpY q Ď A0 and ϕpZq Ď A1, extends uniquely to a homomorphism of superalgebras
ϕ̄ : F xY Y Z | D2y Ñ A such that ϕ̄pfd1 q “ ϕ̄pfqd1, for any f P F xY Y Z | D2y, d1 P D2.

If we let Φ be the set of all such homomorphisms, then IdZ2,D2pAq “ Xφ̄PΦ ker φ̄
is the ideal of Z2-D2-polynomials identities of A. This means that a Z2-D2-polynomial
fpy1, . . . , ys, z1, . . . , ztq P F xY Y Z | D2y is a Z2-D2-identity for A if for all a1, . . . , as P A0

and b1, . . . , bt P A1, fpa1, . . . , as, b1, . . . , btq “ 0. We write f ” 0 on A, in this case.

Definition 4.1.3. IdZ2,D2pAq “ tf P F xY Y Z | D2y | f ” 0 on A} is the ideal of
Z2-D2-polynomial identities of A.

Proposition 4.1.4 ([16] Proposition 14).

IdH2pAq “ IdZ2,D2pAq,

and
FH2xXy – F xY Y Z | D2y.

Theorem 4.1.5 (Theorem 17, [16]). For each j “ 0, 1, . . . ,m ´ 1, let βj “
m´1
ÿ

l“0
γjlcl,

yi “ xβ0
i and zi “ xβ1

i . Then the THm-ideal of UT2 is generated by the following polynomials

ry1, y2s, z1x
hz2, z

d, xd
2
, yd1x

hyd2 , x
βj ,

where h P Hm and j “ 2, . . . ,m´ 1.
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Let P Z2,D2
n be the subspace of F xY Y Z | D2y consisting of multilinear Z2-D2-

polynomials of degree n in x1, . . . , xn, i.e.,

P Z2,D2
n “ spanF txd1

σp1q ¨ ¨ ¨ x
dn
σpnq | σ P Sn, di P D2, xi “ yi or xi “ zi, i “ 1, . . . , nu.

Recall that the wreath product of Z2 and Sn (called the hyperoctahedral
group) is the group defined by

Z2 o Sn “ tpg1, . . . , gn;σq | g1, . . . , gn P Z2, σ P Snu

with multiplication given by

pg1, . . . , gn;σqph1, . . . , hn; τq “ pg1hσ´1p1q, . . . , gnhσ´1pnq;στq.

Let Z2 “ t1, cu. Then the space P Z2,D2
n has a structure of left Z2 o Sn-module

induced by defining for pg1, . . . , gn;σq P Z2 oSn and fpx1, . . . , xnq P P
Z2,D2
n (see [30, Lemma

10.1.5]),
pg1, . . . , gn;σqfpx1, . . . , xnq “ fpx

g´1
σp1q
σp1q , . . . , x

g´1
σpnq

σpnq q,

where ycσpiq “ yσpiq and zcσpiq “ ´zσpiq.

Notice that the vector space P Z2,D2
n X IdZ2,D2pAq is invariant under this action,

hence P Z2,D2
n pAq :“ P Z2,D2

n {pP Z2,D2
n X IdZ2,D2pAqq is a left Z2 oSn-module. Let χZ2,D2

n pAq be
its character. It is known (see for instance Section 10.4 of [30]) that there is a one-to-one
correspondence between irreducible Z2 o Sn-character and pairs of partitions pλ, µq, where
λ $ r, µ $ n ´ r, for all r “ 0, 1, . . . , n. If χλ,µ denotes the irreducible Z2 o Sn-character
corresponding to pλ, µq then we can write

χZ2,D2
n pAq “

n
ÿ

r“0

ÿ

λ$r
µ$n´r

mλ,µχλ,µ,

where mλ,µ ě 0 are the corresponding multiplicities.

For fixed r P t0, . . . , nu, let

Pr,n´r “ spanF txd1
σp1q ¨ ¨ ¨ x

dn
σpnq | σ P Sn, di P D2, xi “ yi for i “ 1, . . . , r,

and xi “ zi for i “ r ` 1, . . . , nu

be the subspace of multilinear Z2-D2-polynomials in the variables y1, . . . , yr,
zr`1, . . . , zn. In order to study P Z2,D2

n pAq it is enough to study

Pr,n´rpAq “
Pr,n´r

Pr,n´r X IdZ2,D2pAq

for all r “ 0, . . . , n. If we let Sr acting on the variables y1, . . . , yr and Sn´r acting on the
variables zr`1, . . . , zn, we obtain an action of Sr ˆSn´r on Pr,n´r and Pr,n´rpAq becomes a
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left Sr ˆ Sn´r-module. Let χr,n´rpAq be its character. It is well known that the irreducible
Sr ˆ Sn´r-characters are obtained by taking the outer tensor product of Sr and Sn´r

irreducible characters, respectively. Then, we can write

χr,n´rpAq “
ÿ

λ$r
µ$n´r

mλ,µpχλ b χµq,

where χλ (respectively, χµ) denotes the irreducible Sr-character (respectively Sn´r-cha-
racter) and mλ,µ ě 0 are the corresponding multiplicities.

The relation between the character χHn pAq and the character χr,n´rpAq for any
Hm-module algebra A is given by

χZ2,D2
n pAq “

n
ÿ

r“0

ÿ

λ$r
µ$n´r

mλ,µχλ,µ and χr,n´rpAq “
ÿ

λ$r
µ$n´r

mλ,µpχλ b χµq

for all r ď n. Moreover,

cHn pAq “
n
ÿ

r“0

ˆ

n

r

˙

dimF Pr,n´rpAq.

Remark that since ry1, y2s
d is an Hm-identity of UT2, then we have the following

equality modulo IdHmpUT2q

yd1y2 ´ y
d
2y1 “ y2y

d
1 ´ y1y

d
2 . (4.2)

Moreover, for every n ě 0, a linear basis for the space Pn,0pUT2q is given by
the following set of polynomials:

‚ y1 ¨ ¨ ¨ yn,

‚ wS :“ yi1 ¨ ¨ ¨ yik´1y
d
ik
yik`1 ¨ ¨ ¨ yin ,

where S denotes the ordered k-tuple pi1, . . . , ikq, ij P t1, . . . , nu and all the other indexes

are ordered. This implies that the space Pn,0pUT2q has dimension
n
ÿ

k“0

ˆ

n

k

˙

“ 2n.

A linear basis for the space Pn´1,1pUT2q is given by the following set of polyno-
mials:

‚ uS :“ yi1 ¨ ¨ ¨ yik´1zyik`1 ¨ ¨ ¨ yin ,

where S denotes the ordered k-tuple pi1, . . . , ikq, ij P t1, . . . , nu and all the other indexes

are ordered. Since the number of polynomials uS is given by
n´1
ÿ

k“0

ˆ

n´ 1
k

˙

, then the space

Pn´1,1pUT2q has dimension 2n´1. The spaces Pr,n´rpUT2q vanishes for r “ 0, 1, . . . , n´ 2.
Therefore we obtain the following.
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Proposition 4.1.6. The n-th Hm-codimension of UT2 is

cHmn pUT2q “

n
ÿ

r“0

ˆ

n

r

˙

dimF Pr,n´rpUT2q “ n2n´1
` 2n “ pn` 2q2n´1,

and the Hm PI-exponent of UT2 is

expHmpUT2q “ lim sup
nÑ8

n
a

cHmn pUT2q “ 2.

Example 4.1.7. Let us calculate the space of multilinear polynomials for n “ 2, 3.

‚ For n “ 2:

P2,0pUT2q “ SpanF ty1y2, y
d
1y2, y

d
2y1, y1y

d
2u,

P1,1pUT2q “ SpanF tzy, yzu.

Therefore,

PHm
n pUT2q “ SpanF ty1y2, y

d
1y2, y

d
2y1, y1y

d
2 , y2z1, y1z2, z1y2, z2y1u.

‚ For n “ 3:

P3,0pUT2q “ SpanF ty1y2y3, y
d
1y2y3, y

d
2y1y3, y

d
3y1y2, y1y

d
2y3, y1y

d
3y2, y2y

d
3y1, y1y2y

d
3u,

P1,1pUT2q “ SpanF tzy1y2, y1zy2, y2zy1, y1y2zu.

Therefore,

PHm
n pUT2q “ SpanF ty1y2y3, y

d
1y2y3, y

d
2y1y3, y

d
3y1y2, y1y

d
2y3, y1y

d
3y2, y2y

d
3y1, y1y2y

d
3 ,

z3y1y2, z2y1y3, z1y2y3, y1z3y2, y1z2y3, y2z1y3, y2z3y1, y3z2y1, y3z1y2, y1y2z3, y1y3z2,

y2y3z1u.

4.2 Hm-Cocharacters of UT2

The goal of this section is giving a complete description of the Hm-cocharacter
sequence of UT2, where Hm is an m-th Taft’s Hopf algebra.

The following lemma is well known (see, for instance, [30, Theorem 10.4.2]).

Lemma 4.2.1. Let λ $ r, µ $ n´ r and let Wλ,µ be a left irreducible Sr ˆ Sn´r-module.
If Tλ is a tableau of λ and Tµ is a tableau of µ, then

Wλ,µ – F pSr ˆ Sn´rqeTλeTµ .

For a partition λ $ n we denote by hpλq the height of the diagram associated
to λ, that is, if λ “ pλ1, . . . , λkq, then hpλq “ k.

We can now write the explicit decomposition of the n-th Hm-cocharacter of
UT2 into irreducibles.
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Remark 4.2.2. In the proof of the following theorem, the notation yi1 ¨ ¨ ¨ yij´1yijdyij`1 ¨ ¨ ¨ yim

means yi1 ¨ ¨ ¨ yij´1pyijq
dyij`1 ¨ ¨ ¨ yim.

Theorem 4.2.3. Let
χZ2,D2
n pUT2q “

n
ÿ

r“0

ÿ

λ$r
µ$n´r

mλ,µχλ,µ

be the n-th Hm-cocharacter of the H-module algebra UT2. Then

i) mλ,H “ l ` 1 if λ “ pk ` l, kq;

ii) mλ,µ “ q ` 1 if λ “ pp` q, pq, µ “ p1q;

iii) mλ,µ “ 0 in all other cases.

Proof. Let A “ UT2 and consider the canonical grading A “ A0 ‘ A1, where A0 “

spante11, e22u and A1 “ spante12u. Since dimA0 “ 2 and dimA1 “ 1, any Hm-polynomial
alternating on three even variables or in two odd variables vanishes on A; it follows that
mλ,µ “ 0 if either hpλq ě 3 or hpµq ě 2. By Proposition 4.1.5, z1xz2 P IdHmpAq, then
mλ,µ “ 0 whenever |µ| ě 2. So we have two cases left to study, namely µ “ H or µ “ p1q,
and (iii) is already proven.

First we consider the case µ “ H. Let λ “ pk ` l, kq, with k ě 0, l ě 0 and
2k ` l “ n. For each i “ 0, . . . , l let us consider the following tableau:

T
piq
λ “

i` 1 i` 2 ¨ ¨ ¨ i` k 1 2 ¨ ¨ ¨ i i` 2k ` 2 ¨ ¨ ¨ n

i` k ` 2 i` k ` 3 . . . i` 2k ` 1
.

We associate to T piqλ the Hm-polynomial

b
piq
k,lpy1, y2q “

ÿ

σ1,...,σkPS2

p´1qσ1 ¨ ¨ ¨ p´1qσkyi1yσ1p1q ¨ ¨ ¨ yσkp1qdyσ1p2q ¨ ¨ ¨ yσkp2qy
l´i
1 .

We shall prove the l ` 1 Hm-polynomials bpiqk,lpy1, y2q, i “ 0, . . . , l, are linearly independent
over F modulo IdHmpAq. For the sake of convenience, let us rewrite each polynomial
b
piq
k,lpy1, y2q, i “ 0, . . . , l, as

b
piq
k,lpy1, y2q “ yi1 y1 ¨ ¨ ¨ py1 ry1d

looooomooooon

k

y2 ¨ ¨ ¨ py2 ry2
loooomoooon

k

yl´i1 ,

where ´,^ ,∼ mean alternation on the corresponding elements. Suppose by absurd
l
ÿ

i“0
βib

piq
k,lpy1, y2q “ 0 (mod IdHmpAq) and let t “ maxti | βi ‰ 0u. Then βtb

ptq
k,lpy1, y2q `
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ÿ

iăt

βib
piq
k,lpy1, y2q “ 0 (mod IdHmpAq). If we consider the substitution y1 “ y1 ` y3, we get

βtpy1 ` y3q
t
py1 ` y3q ¨ ¨ ¨

{py1 ` y3q
Čpy1 ` y3qdȳ2 ¨ ¨ ¨ py2 ry2py1 ` y3q

l´t

`
ÿ

iăt

βipy1 ` y3q
i
py1 ` y3q ¨ ¨ ¨

{py1 ` y3q
Čpy1 ` y3qdȳ2 ¨ ¨ ¨ py2 ry2py1 ` y3q

l´i

“ 0pmod IdHmpAqq. (4.3)

Let us consider the homogeneous component of degree t` k in y1 and of degree l´ t in y3.
Considering the substitution y1 “ e11 and y2 “ y3 “ e22, then, by Equation (4.1) we get
yd1 “ ´ae12 and we obtain p´βtaqe12 “ 0, which implies βt “ 0, a contradiction. Hence
the Hm-polynomials bpiqk,lpy1, y2q, i “ 0, . . . , l, are linearly independent (mod IdHmpAq).

Notice that, for all i, e
T
piq
λ

py1, . . . , ynq is the complete linearization of the Hm-
polynomial bpiqk,lpy1, y2q. It follows that the Hm-polynomials e

T
piq
λ

, i “ 0, . . . , l, are linearly
independent (mod IdHmpAq) and this implies that mλ,µ ě l ` 1.

We want to prove the multiplicities are exactly l` 1. For, let Tλ be any tableau
and eTλpy1, . . . , ynq the corresponding Hm-polynomial. If eTλ R IdHmpAq, then any two
alternating variables in eTλ must lie on different sides of the elements of type ydi . Since eTλ
is a linear combination (mod IdHmpAq) of Hm-polynomials, each alternating on k pairs of
yi’s, we get eTλ is a linear combination of the Hm-polynomials e

T
piq
λ

, i “ 0, . . . , l. Hence
mλ,µ “ l ` 1 and this proves item piq of the sentence.

We only need to study the case µ “ p1q. Let λ “ pp` q, pq, with p ě 0, q ě 0
and 2p` q “ n´ 1. This case can be proved following word by word the last part of the
proof of Theorem 3 of [61], where the Hm-polynomials

apiqp,qpy1, y2, zq “
ÿ

σ1,...,σpPS2

p´1qσ1 ¨ ¨ ¨ p´1qσpyi1yσ1p1q ¨ ¨ ¨ yσpp1qzyσ1p2q ¨ ¨ ¨ yσpp2qy
q´i
1 ,

with i “ 0, 1, . . . , q, are the highest weight vectors corresponding to λ. As
above,

apiqp,qpy1, y2, zq “ yi1 y1 ¨ ¨ ¨ ry1
loomoon

p

z y2 ¨ ¨ ¨ ry2
loomoon

p

yq´i1 .

This proves piiq and the proof is complete.

Recall that in characteristic zero, any result on multilinear polynomial identities
obtained in the language of representations of the symmetric group is equivalent to a
corresponding result on homogeneous polynomial identities obtained in the language of
representations of the general linear group (Theorem 1.4.36).

Notice that the Hm-polynomial bpiqk,l is obtained from the essential idempotent
corresponding to the tableau T piqλ by identifying all the elements in each row of λ. Therefore,
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the Hm-polynomial bpiqk,l is a highest weight vector, according to the representation theory
of GLn (see Section 1.4.4). We recall that the complete linearization of a highest weight
vector associated to an irreducible GLn-module generates an irreducible Sn-module.

Corollary 4.2.4. The highest weight vectors whose characters appear with non-zero
multiplicity in the decomposition of χZ2,D2

n pUT2q are linear combinations of Hm-polynomials
of the form:

1.
b
piq
k,lpy1, y2q “ yi1 y1 ¨ ¨ ¨ py1 ry1

d
looooomooooon

k

y2 ¨ ¨ ¨ py2 ry2
loooomoooon

k

yl´i1 , i “ 0, 1, . . . , l,

where 2k ` l “ n; and

2.
apiqp,qpy1, y2, zq “ yi1 y1 ¨ ¨ ¨ ry1

loomoon

p

z y2 . . . ry2
loomoon

p

yq´i1 , i “ 0, 1, . . . , q,

where 2p` q ` 1 “ n.

If χZ2,D2
n pAq “

n
ÿ

r“0

ÿ

λ$r
µ$n´r

mλ,µχλ,µ is the decomposition of the Z2 o Sn-character

of A, then one defines the n-th Z2 o Sn-colength of A as

lZ2,D2
n pAq “

n
ÿ

r“0

ÿ

λ$r
µ$n´r

mλ,µ.

By Theorem 4.2.3 we immediately get the following.

Corollary 4.2.5. For all n ě 1,

lZ2,D2
n pUT2q “

n
ÿ

r“0

ÿ

λ$r
µ$n´r

mλ,µ “
n2 ` 3n` 2

2 .

4.3 Specht property for the Hm-module algebra UT2

In this section we prove that the variety of Hm-module algebras generated by
the Hm-module algebra UT2 has the Specht property. We recall the definition of Specht
property in the language of TH-ideals of H-module algebras (compare with Definition
1.1.33).

Definition 4.3.1. Let W be an H-module algebra. We say that IdHpW q has the Specht
property if any TH-ideal I such that I Ě IdHpW q, has a finite basis, that is, I is
finitely generated as a TH-ideal. We say that the variety V has the Specht property if the
corresponding TH-ideal has the Specht property.
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We recall that a binary relation ď on a set A is a quasi-order if ď is reflexive
and transitive, i.e., (i) a ď a for all a P A, and (ii) a ď b and b ď c imply a ď c, with
a, b, c P A. If B is a subset of a quasi-ordered set A, the closure of B, written B, is defined
as

B “ ta P A | exists b P B such that b ď au.

We say that the quasi-ordered set A has the finite basis property (f.b.p.) if
for any subset B of A, there exists a finite subset B0 of A such that B0 Ď B Ď B0. Every
well-ordered set has f.b.p. (because every non-empty subset is the closure of a single
element). In particular, the set N of natural numbers with standard ordering has f.b.p..
However, Z the set of integers has not f.b.p.. The following theorem gives a equivalent
definition for f.b.p..

Theorem 4.3.2. [33, theorem 2.1] The following conditions on a quasi-ordered set A are
equivalent.

1. If B is any subset of A, there is a finite set B0 such that B0 Ď B Ď B0;

2. There exists neither an infinite strictly descending sequence in A nor an infinite one
of mutually incomparable elements of A.

Let A1, A2, . . . , An be quasi-ordered sets. The cartesian product A1ˆA2ˆ¨ ¨ ¨ˆ

An ordened by pa1, a2, . . . , anq ď pb1, b2, . . . , bnq if and only if ai ď bi for all i P t1, 2, . . . , nu
is a quasi-ordered set.

The following theorems will be useful in the sequel.

Theorem 4.3.3. [33, Theorem 2.3] Let A1, A2, . . . , An be quasi-ordered sets satisfying
f.b.p., so their cartesian product satisfies f.b.p..

Theorem 4.3.4. Let A1, A2, . . . , An be quasi-ordered sets satisfying f.b.p., so the disjoint
union A1 \ A2 \ ¨ ¨ ¨ \ An endowed with the quasi-order a ď b if and only if a, b P Ai and
a ďAi b for some i P t1, . . . , nu satisfies f.b.p..

The free H-module algebra FH
xXy is a quasi-ordered set if we define for

f, g P FH
xXy,

f ď g if and only if g P xfyTH ,

where xfyTH denotes the TH-ideal generated by f .

If I is a TH-ideal of FH
xXy, the quasi-order on FH

xXy is inherited by F
HxXy

I
.

Remark 4.3.5. Let M be a subset of FH
xXy. Then M Ď xMyTH by definition. On the

other hand, since M ĎM we have that xMyTH “ xMyTH
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Let A be anH-module algebra such that IdHpAq is finitely generated. A strategy
to give a positive solution to the Specht problem for IdHpAq is:

S1) Find a set of polynomials M Ď FH
xXy{ IdHpAq, not necessarily finite, such that for

every TH-ideal I of FH
xXy{ IdHpAq,

I “ xM 1
yTH for some M 1

ĎM.

S2) Show that pM,ďq satisfies f.b.p. where ď is the quasi-order f ď g if and only if g
is a consequence of f in FH

xXy{ IdHpAq.

Then, in the light of Lemma 1.4.34, a natural set M satisties step (S1) is the
set of highest weight vectors generating irreducible modules whose characters appear with
non-zero multiplicity in the decomposition of the cocharacter of the H-module algebra A.
The step (S2) is to show that these highest weight vectors satisfy f.b.p. with the quasi-
order inherited by FH

xXy{ IdHpAq. In this way the Specht property is proved because if I
is a TH-ideal of FH

xXy{ IdHpAq, then by (S1) there exists M 1
ĎM such that I “ xM 1

yTH

and by (S2) there exists a finite set M0 ĂM 1 such that M0 ĂM 1
Ă M̄0. Thus by Remark

4.3.5,
I “ xM 1

yTHm “ xM0yTHm “ xM0yTHm .

This strategy has been used to prove the Specht property in different algebras
environments (see for instance [26, 48, 56]). Problems arise in the strategy when the
multiplicities of the irreducible characters are greater than 1, and according to the Theorem
4.2.3, the Hm-module algebra UT2 has multiplicities greater than 1. So we will approach
it in a different way.

We shall consider FHmxXy

IdHmpUT2q
as a quasi-ordered set. Hence, if f, g P FHmxXy,

we define
f ď g if and only if g P xtfu Y IdHmpUT2qyTHm .

In this case we say that g is a consequence of f modulo IdHmpUT2q or simply that g is a
consequence of f .

LetM be the set of all the highest weight vectors corresponding to the cocharac-
ters appearing with non-zero multiplicities in χZ2,D2

n pUT2q. By Corollary 4.2.4, the highest
weight vectors lying in M are a linear combination of Hm-polynomials of the form:

(1) yi1 y1 ¨ ¨ ¨ ry1
loomoon

p

z y2 . . . ry2
loomoon

p

yq´i1 ,

(2) yi1 y1 ¨ ¨ ¨ py1 ry1
d

looooomooooon

k

y2 ¨ ¨ ¨ py2 ry2
loooomoooon

k

yl´i1 .
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Let us denote by B1 the set of Hm-polynomials of the form (1) and B2 the set
of Hm-polynomials of the form (2). For i “ 1, 2, we define the quasi-order ď in Bi by
f ď g if and only if g is a consequence of f , where f, g P Bi. We consider the following
sets which are in one-to-one correspondence with the highest weight vectors of B1 and B2

respectively:

B1 “ tpi, q ´ i, pq | 0 ď i ď qu

“ tpi, j, pqu “ N3;
B2 “ tpi, l ´ i, kq | 0 ď i ď lu

“ tpi, j, kqu “ N3.

By Theorem 4.3.3, B1 and B2 have f.b.p. with the natural quasi-order of N3. We shall show
that the quasi-order ď in B1 and B2 induces the quasi-order ď in B1 and B2 respectively.

Lemma 4.3.6. We have

1. yi1 y1 ¨ ¨ ¨ ry1
loomoon

p

z y2 . . . ry2
loomoon

p

yj1 ď yi
1

1 y1 ¨ ¨ ¨ ry1
loomoon

p1

z y2 . . . ry2
loomoon

p1

yj
1

1 where pi, j, pq ď pi1, j1, p1q;

2. yi1 y1 ¨ ¨ ¨ py1 ry1
d

looooomooooon

k

y2 ¨ ¨ ¨ py2 ry2
loooomoooon

k

yj1 ď yi
1

1 y1 ¨ ¨ ¨ py1 ry1
d

looooomooooon

k1

y2 ¨ ¨ ¨ py2 ry2
loooomoooon

k1

yj
1

1 where pi, j, kq ď pi1, j1, k1q.

Proof. By transitivity of the quasi-order, in order to prove (1) we prove that

(i) pi, j, pq ď pi1, j, pq implies ai,j,p ď ai1,j,p;

(ii) pi, j, pq ď pi, j1, pq implies ai,j,p ď ai,j1,p;

(iii) pi, j, pq ď pi, j, p1q implies ai,j,p ď ai,j,p1 ,

where i, i1, j, j1, p, p1 are integers and

ai,j,p “ ai,j,ppy1, y2, zq “ yi1 y1 ¨ ¨ ¨ ry1
loomoon

p

z y2 . . . ry2
loomoon

p

yj1. (4.4)

The statements (i) and (ii) follow from the fact that ai,j,k ” yi
1´i

1 ai,j,k mod pIdHpUT2qq

and ai,j,k ” ai,j,ky
j1´j
1 mod pIdHpUT2qq respectively. In order to prove the statement (iii),

without loss of generality, we may suppose p1 “ p` 1. The general statement will follows
by a standard induction argument.

Notice that ai,j,p is a linear combination (mod pIdHpUT2qq) of the polynomials:

yi`t1 yp´t2 zyp´t1 yt2y
j
1, t “ 0, 1, . . . , p.



Chapter 4. Hm-module algebra UT2 119

Thus, if we multiply by appropriate variables y’s to the right or to the left of these
polynomials, we obtain that for all t “ 0, 1, . . . , p,

yi`t1 yp´t2 zyp´t1 yt2y
j
1 ď yi`t1 y

pp`1q´t
2 zy

pp`1q´t
1 yt2y

j
1,

and therefore ai,j,p ď ai,j,p1 .

The proof of p2q is analogous.

Lemma 4.3.7. The sets B1 and B2 with the quasi-order given above satisfy the f.b.p..

Proof. Let B11 be a subset of B1 and B11 a subset of B1 “ tpi, q ´ i, pq | apiqp,q P B1u

corresponding to B11, i.e., B11 “ tpi, q ´ i, pq | apiqp,q P B11u. Since B11 Ď B1 Ď N3, and, by
Theorem 4.3.3, N3 has f.b.p., we have there is a finite set B0

1 Ď B11 such that B0
1 Ď B11 Ď B0

1 .
Consider B0

1 “ tapiqp,q | pi, q ´ i, pq P B0
1u Ď B11 and apiqp,q P B11. This implies pi, q ´ i, pq P

B11 Ď B0
1 ; therefore there is pi0, q0 ´ i0, p0q P B

0
1 , where pi0, q0 ´ i0, p0q ď pi, q ´ i, pq. By

the previous lemma, api0qp0,q0 ď apiqp,q, where api0qp0,q0 P B0
1. Thus apiqp,q P B0

1 and consequently
B0

1 Ď B11 Ď B0
1, where B0

1 is a finite set. This shows pB1,ďq satisfies f.b.p..

The proof for the set pB2,ďq is analogous and we are done.

We already have the key ingredients to prove the main result of this chapter.
We want to highlight we are going to use the algorithm described in full details in the
paper [15].

Theorem 4.3.8. varHmpUT2q has the Specht property.

Proof. If I “ IdHmpUT2q, then Theorem 4.1.5 ensures us that I is finitely generated. So let
us suppose I Ľ IdHmpUT2q. Let M be the set of highest weight vectors corresponding to
cocharacters appearing with non-zero multiplicities in χZ2,D2

n pUT2q, n ě 0; hence, FHmxXy

is generated by M modulo IdHmpUT2q. Since FHmxXy Ě I Ľ IdHmpUT2q, there exists
M 1

Ď M such that I is generated by M 1 modulo IdHmpUT2q. We will show that pM,ďq

satisfies f.b.p., where ď is the quasi-order given by the consequence, i.e., f ď g if and
only if g is a consequence of f in FHmxXy{ IdHmpUT2q.

A highest weight vector of degree n in M is a linear combination of Hm-
polynomials of the form apiqp,q, i “ 0, . . . , q and p, q fixed such that 2p ` q ` 1 “ n, or
Hm-polynomials of the form b

piq
k,l, i “ 0, . . . , l and k, l fixed such that 2k ` l “ n because

they correspond to different modules. Thus M “ S1 \ S2, where S1 is the set of highest
weight vectors associated to B1 and S2 is the set of highest weight vectors associated to
B2. Then, by Theorem 4.3.4, it suffices to show that the sets Si satisfy f.b.p., where f ď g

if and only if g is a consequence of f , where f, g P Si for i “ 1, 2.

Consider the set S1. A highest weight vector of degree n in S1 is of the form
q
ÿ

i“0
αia

piq
p,q. Define the leading term of this highest weight vector as the element api0qp,q , where
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i0 “ minti | αi ‰ 0u. Notice that B1 can be seen as the set of all the leading terms of the
set S and, by Lemma 4.3.7, pB1,ďq satisfies f.b.p.. Hence, B1 has a finite subset B0

1 such
that every element in B1 is bigger than some element of B0

1. Let S0
1 Ď S1 be the finite

subset with leading terms in B0
1.

Let

h1 “

q
ÿ

i“0
αia

piq
p,q P S0

1 and h2 “

q1
ÿ

j“0
βja

pjq
p1,q1 P S1

be two highest weight vectors with leading terms api0qp,q , a
pj0q
p1,q1 respectively, and such that

api0qp,q ď a
pj0q
p1,q1 . Then,

a
pj0q
p1,q1 ” yj0´i01 y1 ¨ ¨ ¨ ry1

loomoon

p1´p

api0qp,q y2 ¨ ¨ ¨ ry2
loomoon

p1´p

yq
1´j0´q`i0

1 pmod IdHmpUT2qq.

where ´,∼ mean alternation on the corresponding elements. At light of this, we consider
the highest weight vector

h :“
q
ÿ

i“0
αiy

j0´i0
1 y1 ¨ ¨ ¨ ry1

loomoon

p1´p

apiqp,q y2 ¨ ¨ ¨ ry2
loomoon

p1´p

yq
1´j0´q`i0

1 ,

which is a consequence of h1 and its leading term is exactly apj0qp1,q1 . Therefore the leading
term of

h2 ´
βj0
αi0

h,

is smaller than the leading term of h2 and by inductive arguments is a consequence of S0
1 .

This shows that S1 satisfies f.b.p..

Similarly, S2 satisfies f.b.p. too.

Finally, since I is generated by M 1 modulo IdHmpUT2q and pM,ďq satisfies
f.b.p., then there exists a finite set M0 ĎM 1

ĎM such that M0 ĎM 1
ĎM0. By Remark

4.3.5,
I “ xM 1

yTHm “ xM0yTHm “ xM0yTHm ,

that is, I is finitely generated as a THm-ideal.
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Free H-module algebra, 51
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algebras, 99
Representable, 28
Representation, 53
Right ideal, 21
Row stabilizer, 58
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Subrepresentation, 54
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T2-ideal, 109
T˚2-equivalence, 38



Index 124

T˚2-ideal, 38
T-ideal, 25
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Tensor product, 21
Tensor product of representations, 54
Total degree, 35
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Trivial representation, 53
Twist map, 41
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Unit, 41
Unitary algebra, 20
Universal property of free algebras, 24
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Variety, 26
Variety of H-module algebras, 52

Wedderburn-Malcev Theorem, 24
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