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Resumo

Um dos principais problemas na Pl-teoria é provar a propriedade de Specht para uma
determinada algebra e provar a racionalidade da série de Hilbert da algebra relativamente
livre. Nesta tese de doutorado consideramos um corpo F' de caracteristica 0 e provamos a
propriedade de Specht para a variedade de superalgebras com superinvolugao finitamente
gerada sobre F' e para a variedade de algebras H,,-moédulo geradas pela algebra UT,(F')
de matrizes triangulares superiores 2 x 2 onde H,, é uma &lgebra de Taft de dimensao m?.
Alem disso, provamos a racionalidade da série de Hilbert da PI-4dlgebra A sobre F' tanto
no caso A sendo uma superalgebra com superinvolu¢ao como no caso de uma algebra de

Hopf semisimples de dimensao finita agindo sobre A.

Palavras-chave: Identidades polinomiais, algebras de Hopf, propriedade de Specht, série

de Hilbert, algebras H-mddulo, superinvolugoes, cocaracteres.



Abstract

One of the main problems in PI-theory is to prove the Specht property for a given algebra
and the rationality of the Hilbert series of its relatively free algebra. In this doctoral thesis
we consider a field F' of characteristic 0 and we prove the Specht property for the variety
of finitely generated superalgebras with superinvolution over F' and for the variety of
H,,-module algebras generated by the algebra UT,(F") of 2 x 2 upper triangular matrices,
where H,, is a Taft’s Hopf algebra of dimension m?. Moreover, we prove the rationality of
the Hilbert series of the Pl-algebra A over F' both in the case A is a superalgebra with

superinvolution and when a finite dimensional semisimple Hopf algebra acts on A.

Keywords: Polynomial identities, Hopf algebras, Specht property, Hilbert series, H-

module algebras, superinvolutions, cocharacters.
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Introduction

The theory of polynomial identities (PI-theory) plays an important role in ring
theory and has been the subject of study of many algebraists for the past 70 years. In the
early papers [17] and [62] the authors studied non commutative polynomials vanishing on
an algebra, but the systematic study of algebras with polynomial identities only started in
1948 with Kaplansky’s work [37]. In that paper it was proved that any primitive algebra
satisfying a polynomial identity is a finite dimensional simple algebra over its center,
suggesting an important finiteness condition for an algebra. A polynomial identity of an
algebra A is a polynomial in non-commuting indeterminates vanishing under all evaluations
in A and the algebras having at least one nontrivial polynomial identity (i.e., a nonzero

polynomial) are called Pl-algebras.

One of the main problems concerning the qualitative approach in PI-theory is
determining the polynomial identities of specific algebras and studying the properties of the
varieties they define. Although the most classic results in this area deal with polynomial
identities for associative algebras over fields of characteristic 0, in the recent decades
different classes of algebras with additional structure, such as group graded algebras or

algebras with involution, have been studied in the context of PI-theory.

In this work we focus our attention on H-module algebras, where H is a finite
dimensional Hopf algebra and on the setting of superalgebras with superinvolution. In
particular, we study the so-called Hilbert series and the Specht property for these class of
Pl-algebras.

We outline briefly what the Specht problem is: given a variety of algebras
(associative, Lie, Jordan, graded, etc.) one can ask whether or not any of its subvarieties is
finitely generated ([57]). In the language of T-ideals (the ideals of polynomial identities of
a given algebra), the Specht problem can be formulated as follows: given any algebra A, is
it true that any T-ideal containing the T-ideal of A is finitely generated (or based) as a
T-ideal? If we restrict our attention to the associative environment, the Specht problem
was solved positively in [39] and [40] by Kemer provided the ground field of the algebras
therein is of characteristic 0. His proof is based on deep structure theory of the T-ideals
which has given a new impetus to the subject. Further generalizations of Kemer’s result
are due to Sviridova [59] (PI-algebras graded by a finite abelian group), Aljadeff and
Kanel-Belov [2] (Pl-algebras graded by a finite group), and Karasik [38] (PI-algebras that

are module algebras under the action of a finite dimensional semisimple Hopf algebra).

On the other hand, Hilbert polynomials, Hilbert series or Hilbert-Poincaré series

of graded (in a classical meaning) algebras are strongly related notions which attracted
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several mathematicians in the last century. The Hilbert series of an algebra represents a
crucial algebraic tool in computational algebraic geometry, as it is the easiest known way
for computing the dimension and the degree of an algebraic variety defined by explicit
polynomial equations. We recall that the question of whether the Hilbert series of an
algebra is the Taylor expansion of a rational function is fundamental in the commutative
setting because of its relations with other invariants related to the growth of an algebra

such as the Gelfand-Kirillov dimension or the Krull dimension of algebras.

Let F be a field and consider a graded (in a classical meaning) F-algebra A
with finite generating set X. If we denote by A™ the F-vector space generated by the

monomials of degree n in the elements from X, then the Hilbert series of A is
[ee}
Hilb(A, 1) = ) dim A™¢",
n=0

If A is a finitely generated (affine) commutative algebra, then the Hilbert-Serre Theorem
says that the Hilbert series of A is rational ([6]). Nevertheless, such a theorem is not true
in the case the algebra is non-commutative and, in this context, we cite the work [5] by
Anick where the author showed a famous counterexample. Anyway, there is a big class of
non-commutative affine algebras whose Hilbert series is rational. In case of relatively free
algebras, that is, algebras isomorphic to the quotient of a finitely generated free algebra

by a T-ideal, it is known that their Hilbert series is a rational function ([9]).

The analog of Hilbert-Serre Theorem for relatively free algebras carried a lot
of results in PI-theory and we would like to cite among them the paper [12] by Berele and
Regev in which the authors showed the exact asymptotic behaviour of the codimension
sequence of a Pl-algebra satisfying the Capelli identity. The analog of Hilbert-Serre
Theorem also holds for classes of relatively free algebras with additional structure, such
as the class of finitely generated G-graded relatively free algebras, where G is a finite
group and the underlying graded T-ideal is the ideal of G-graded polynomial identities
of a G-graded algebra satisfying an ordinary polynomial identity (Aljadeff and Kanel-
Belov in [3]). We emphasize however that the rationality of the Hilbert series is not a
corollary of representability since there are examples of representable algebras which have

a transcendental (so non-rational) Hilbert series (see for instance, [36, Example 11.3.8]).

In this work, we present a proof of the Hilbert-Serre Theorem in the case of
relatively free algebras of H-module algebras where H is a finite dimensional semisimple
Hopf algebra (Theorem 3.2.6) and in the case of relatively free algebras of superalgebras
with superinvolution (Theorem 2.5.15). In both cases we have to assume that the algebra

satisfies an ordinary polynomial identity.

Superalgebras with superinvolution are a natural generalization of algebras
with involution and they play a prominent role in the setting of Lie and Jordan algebras

(see, for instance, [35, 51]). In recent years, such a kind of algebras has been extensively
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studied by several mathematicians. In particular the importance of such algebras has
been highlighted in 2017 by Aljadeff, Giambruno and Karasik. In [1], they showed that
any algebra with involution has the same identities of the Grassmann envelope of a finite
dimensional superalgebras with superinvolution. The last result is a generalization of a

classical result in PI-theory due to Kemer, known as the Representability Theorem.

We would like to point out that the structure of H-module algebra general-
izes several notions such as gradings by finite abelian groups and involutions whereas

superalgebras with superinvolution cannot be seen as H-module algebras.

In this work we also present a positive solution to the Specht problem in the case
of finitely generated superalgebras with superinvolutions satifying an ordinary polynomial
(Theorem 2.4.5) and in the case of H-module algebras generated by the algebra UT,(F)
of 2 x 2 upper triangular matrices over a field of characteristic 0 containing a primitive
m-th root of unit and where H = H,, is a Taft’s Hopf algebra of dimension m? (Theorem
4.3.8). As far as we know this is the first result in the literature toward Specht property of

varieties of algebras under the action of a Taft’s Hopf algebra.

This Ph.D. thesis is divided in four chapters. Chapter 1 is a review of the
background on PI-theory. We introduce the basic definitions and we give an account of
the main results of the structure theory of Pl-algebras. The content is focused on showing

the concepts necessary to understand the theoretical framework of the next chapters.

In Chapter 2 we deal with superalgebras with superinvolutions. We show an
explicit form of the so-called Kemer polynomials which are crucial in the proof of the
rationality of the Hilbert series of any relatively free algebra. We introduce the Kemer
index for these algebras and finally we give a positive solution to the Specht problem and

the rationality of the Hilbert series in this setting.

Chapter 3 is devoted to the proof of the Hilbert-Serre Theorem in the context
of H-module algebras, where H is a finite dimensional semisimple Hopf algebra. If we
specialize H with the dual algebra of the group algebra F'G, where G is a finite abelian
group, we get the notion of G-graded algebra and we would have a result analogous to

that obtained by Aljadeff and Kanel-Belov in [3] for abelian groups.

Finally, in Chapter 4, we deal with the algebra UT5(F’) of 2 x 2 upper triangular
matrices with an action of a Taft’s algebra H,,. We give a complete description of the
space of its multilinear H,,-identities in the language of Young diagrams through the
representation theory of the hyperoctahedral group. We finally prove that the variety of
H,,-module algebras generated by UT(F') has the Specht property.

Part of this work has been published in [13] and [14].
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1 Preliminaries

In this chapter we will give the tools we are going to use to understand the
Kemer’s theory for superalgebras with superinvolution and for algebras with an Hopf action,
and the Hilbert series of their relatively free algebra. As we only work with associative
algebras with unity in this work, whenever we talk about algebra, we will be considering

them associative with unity.

1.1 Algebras with polynomial identities

1.1.1 Basic properties of algebras

Let F be a field of any characteristic. We start with the basic definition of
algebra.

Definition 1.1.1. A wvector space A is called an associative F'-algebra if A is equipped
with a function (a,b) — ab from Ax A to A, called multiplication, satisfying the following

arioms:

A1) a(bc) = (ab)c for all a,b,c e A.
A2) a(b+c) =ab+ ac for all a,b,ce A.
A3) (a+b)c=ac+ bc for all a,b,ce A.

A4) alab) = (aa)b = a(ad) for all a,b,ce A, a € F.

An associative F-algebra A is called unitary if there exists an element 1 € A
such that 1la = al = a for all a € A.

Example 1.1.2. Some examples of (associative unitary) F-algebras:

1. Any field F is an algebra over F.

2. M, (F) the set of all n x n matrices with entries from F' with the usual multiplication

of matrices. Here 1 is the identity matriz I,.

3. If V is any vector space over F, then Homg(V,V') becomes an associative algebra
over F when we define the product of two linear transformations Ty and Ty to be their
composite Tyo'T,. Here 1 is the identity map Id: V' — V. Linear transformations from
V toV are called endomorphisms of V.. The algebra Endp(V) = Homp(V,V) is

called the algebra of endomorphisms of V.
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4. Let x be a variable, then F[z], the vector space of polynomials in one variable is an

algebra with the usual product of polynomials.

Definition 1.1.3. A subspace S of an algebra A is called subalgebra if s, sy € S implies
$189 € S. The subalgebra I is called left ideal if AI < I. Similarly, I is called right
ideal if IA < I . The subalgebra I is called two-sided ideal (or simply ideal) if I is
both left and right ideal. An ideal I of A is called proper if I # A.

An ideal I of an algebra A is said to be a nilpotent ideal if there exists a

natural number k such that I* = 0.

Definition 1.1.4. Let A and B be F-algebras. The F-linear map ¢: A — B is called
homomorphism of algebras if p(ab) = p(a)p(b) for all a,be A.

Remark 1.1.5. Let A be an algebra, I a ideal of A and p: A — A/I the canonical
projection of F-vector spaces. Then there exists a unique algebra structure on A/l (called

the factor algebra) such that p is a homomorphism of algebras.

Remark 1.1.6. Let A be a non-unitary associative F'-algebra and let the direct sum of

vector spaces Ay = F'@® A be equipped with multiplication
(o1 + a1) (e + az) = ayas + (a1ag + anay + araz),

with o, 0 € F, ay,a9 € A. Then Ay is a unitary algebra. (we say that Ay is obtained from

A by formal adjoint of unity).

Definition 1.1.7. Let V' and W be vector spaces over F with bases {v; | i € I} and
{w; | j € J}, respectively. The tensor product V QW of V and W is the vector space
over F' with basis {v; ®v; |iel,je J}.

The tensor product V' ® W induces a bilinear map ¢: V x W — V ® W such
that (v, w) — v®x is characterized by the following universal property: if ¢: V x W — Z
is any bilinear map from the cartesian product V x W to any vector space Z, then there

exists a unique linear map 7: V ® W — Z such that the following diagram commutes:

VxV L VW

Z

If V and W are algebras, then V ® W is also an algebra with multiplication
given by

(v1 ® wy)(ve ® wsy) = V1V9 @ Wyws, for all vy, vy € V, wy,wy € W.
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Our main interest arises in the following important class of algebras:

Definition 1.1.8. An algebra A is affine or finitely generated over a commutative
ring C (or a field) if there exists a finite set of elements ay,...,a; of A such that every
element of A can be expressed as a C-linear combination of products in ay,...,a;. In this

case we write A = Clay, ..., ).

In most cases, we shall be considering affine algebras over a field F', so unless

specified otherwise, “affine” will mean “affine over a field”.

Definition 1.1.9. Let A be an algebra. An element e € A is idempotent if ¢* = 2.
The trivial idempotents are 0 and 1. Two idempotents ei,e5 € A are orthogonal if

€169 = €9€1 = 0

Given a nontrivial idempotent e € A. The Peirce decomposition of A is
A=chAe@eA(l—e)®(1—e)Ae® (1 —e)A(1 —e).

More generally, if eq, ..., e, are mutually orthogonal idempotents with sum 1, then A can
be decomposed as:
A= @eiAej for 1 <i,5 <n.

For algebras without 1, the Peirce decomposition is as follows: given any
idempotent element e of A, define formally €'a as a — ea, ae¢’ as a — ae, and ¢'ae’ as (¢'a)e’
for all a € A. Now

A=cAe@eAd Qe Ae @' A,

t

More generally, if eq,...,e, are mutually orthogonal idempotents, take e = Z e;, and
i=1
thus, A can be decomposed as:

A=cAe@ecAd D Ae e Ac'.

1.1.2 The Wedderburn-Malcev Theorem

Essential in this work will be the notion of simple subalgebras, semisimple
subalgebras, and Jacobson radical of an algebra. In this section we introduce these concepts
from the notion of modules over a ring R or, in short, an R-module and we will finish with
the Wedderburn-Malcev Theorem which states that an algebra can be decomposed into

its radical part and its semisimple part.

Definition 1.1.10. The additive abelian group M is said to be an (left) R-module if
there is a mapping R x M — M sending (r,m) to rm such that:

e (r+q)m=rm+ qm,
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e r(m+n)=rm+rn,
e (rg)m =r(gm),
forallr,qge R and m,n e M.

If R has unit element 1, and if 1m = m for all m € M, we then describe M to

be a unitary R-module.

Let A be an F-algebra. We can consider the notion of module over the F-algebra
A simply taking R = A in the definition above. In this case, we say that M is an (left)

A-module.

Definition 1.1.11. Let A be an F-algebra, and let M be an A-module. The annihilator
of M, denoted Ann(M) is the set of all elements a € A such that, for allm e M, am = 0.
In set notation,
Anmm(M) ={acA|lam =0 Vme M}.

Lemma 1.1.12. Ann(M) is a two-sided ideal of A.

Proof. Let a € A and b € Ann(M). For any m € M we have (ba)m = b(am), since
am € M then b(am) = 0, which implies Ann(M) is a right ideal of A. On the other hand,
(ab)m = a(bm) = a(0) = 0 implies Ann(M) is a left ideal of A O

An A-module M is called irreducible if AM # 0 and if the only submodules
of M are {0} and M. The A-module M is called completely reducible if it is isomorphic

to a direct sum of irreducible modules.

Definition 1.1.13. Let A be an algebra. The Jacobson radical J(A) of A, is the set
of all elements of A which annihilate all the irreducible A-modules. A finite-dimensional
algebra A is said to be semisimple if J(A) = {0}.

Note that J(A) = ﬂ Ann(M), where this intersection runs over all irreducible
A-modules M. Since the Ann(M) are two-sided ideals of A, we see that J(A) is a two-sided
ideal of A. Moreover, J(A) contains all nilpotent ideals, and if A is finite-dimensional,
J(A) itself is a nilpotent ideal.

Definition 1.1.14. An algebra A is called simple if it has no proper ideals and A* =
{ab | a,be A} # {0}.
The following proposition characterizes semisimple algebras.

Proposition 1.1.15. A finite dimensional algebra is semisimple if and only if it can be

written as a direct sum of simple algebras.
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Finally, we recall a famous classical result by Wedderburn and Malcev:

Theorem 1.1.16 (Wedderburn-Malcev). For any finite dimensional algebra A over an

algebraically closed field, there is a vector space isomorphism
A~A@J

where J = J(A) is nilpotent and A is a semisimple subalgebra of A isomorphic to A/J.
Furthermore, if there is another decomposition A = B @ J, then there is an invertible
a € A such that B = aAa™".

Proof. See, for instance, [30, Theorem 3.4.3]. ]

Remark 1.1.17. Suppose A is a finite dimensional algebra without 1. Consider the
Wedderburn-Malcev decomposition A = A® J(A). The semisimplicity of A implies A has
a unit element e which is idempotent in A. Adjoint a unit element 1 to A as in Remark
1.1.6, and note that 1 = (1,0) is the multiplicative unit of Ay = F @ A. Define ¢ =1 — e.

Now we embed our Pierce decomposition of A into

A =edie@edid DeAePe A€

More generally, if ey, ..., e, are mutually orthogonal idempotents of A, take

t
e= Z e;. Again, defineeg =1 —ee A, and
i=1
Al = (6 + 60)141(6 + 60) = @ 61'1416]‘.

i,j=0
1.1.3 Free algebras and polynomial identities

Let F' be a field and X = {z,x9,...} a countable set of variables. The algebra
F{X) whose basis consists of all the words in the alphabet X (including the empty word
1) and multiplication defined by juxtaposition of words, is the associative unitary free
algebra (or simply, free algebra) generated by X over F. Each word is called monomial
and the elements of F'(X) are called polynomials in the non-commuting variables X. If
f e F(X) we will write f = f(xy,...,2,) to indicate that x;,..., 2z, € X are the only
indeterminates appearing in f. The cardinality of X is called the rank of F{(X).

The algebra F'(X) is defined by the following universal property: if g: X — A
is a map from X to an unitary F-algebra A, then there exists a unique homomorphism of

algebras a: F(X) — A such that the following diagram commutes:
X L (X))
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here, i: X — F(X) is the inclusion map.

Definition 1.1.18. Let A be an F-algebra and f = f(x1,...,2,) € F{(X) a polynomial,
then we say that f is a polynomial identity for A if f(a1,...ay) =0 forallay, ... ay €

A, and we write f = 0.

Consequently, f € F{X) is a polynomial identity for A if and only if f is in
the kernel of all homomorphisms F(X) — A.

Definition 1.1.19. If an algebra A satisfies a nontrivial polynomial identity f =0 (i.e.,
f is a nonzero element of F{X)), we say that A is a PI-algebra.

Example 1.1.20. If A is a commutative algebra, then A is a Pl-algebra, since it satisfies
the identity [x1, 9] = 0 where [x1,x2] = 129 — 2921 1S called the Lie commutator of

1 and xo.

Example 1.1.21. An associative algebra without unit A is said to be a nilpotent algebra
if there exists some integer n = 0 such that ayas - - - a, = 0 for all ay,as, ..., a, € A. Clearly

A is a Pl-algebra, because it satisfies the polynomial identity x1 ---x, = 0.

Example 1.1.22. Let UT, (F) be the algebra of n x n upper triangular matrices over F.
Then UT,(F) is a Pl-algebra since it safisfies the identity

[1'1, Ig] [I37 $4] to [xQn—ly l‘gn] = 0.

Example 1.1.23. Let A be a finite dimensional associative algebra and let n > dim A.

Then A satisfies the standard polynomial of degree n

Sp(T1. .o my) = Z (SEN.0)T0(1) - ** To(n),

o€Sn

where S, is the symmetric group of order n.

1.1.4 T-ideals and varieties

We now turn to a general description of the set of identities of an algebra and

its varieties.
Definition 1.1.24. An ideal I of F{X) is called T-ideal if p(I) < I for all endomorphism
o of F(X).
Let A be an F-algebra, we define
1d(4) = {f € F(X) | f =0 on A},

the set of all the polynomial identities of A. Then Id(A) is a T-ideal. Indeed, since each
endomorphism ¢ of F(X) is defined by the image of X i.e., by ¢(x;) = ¢g; € F{(X), then
f(g1,---,gn) € Id(A) for all f e Id(A).
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Remark 1.1.25. Each T-ideal of F{X) is the set of polynomial identities of some algebra.
In fact, if I is a T-ideal, then I = 1d(F{X)/I). Indeed, for all g1, ..., g, € F{X),

feld(FX)/ ) < flgo+1,....gn+1) =1
< flg1, - ygn)+ 1 =1

< f(g1,-..,gn) €1
< fel.

Let S be a set of polynomials in F'{X). The T-ideal generated by S in F{(X)
is the smallest T-ideal of F'(X) containing S, and it is denoted by (S)r. The following

proposition characterizes (S)r.

Proposition 1.1.26. Let S = {f; | i € I} be a set of polynomials. Then the T-ideal
generated by S is the set

(S)r = { Z it fi(Gits - - - Ging)Vi | i € F, Uiy Gig, Vi € F(X), f; €S, J finite } .
ieJcI

Proof. Clearly, the right side of the previous expression is a T-ideal containing S. To see

that it is the smallest T-ideal containing S, suppose K is a T-ideal of F(X) containing S,

then w; fi(gi1, - - -, gin,)U; € K for each i because f; belong to S ¢ K, K is an ideal and K

is invariant under all endomorphism and the proof is complete. O

Definition 1.1.27. Let S be a set of polynomials in F{(X) and f € F{X). We say that f
is a consequence of the polynomials in S if f € (S)r, the T-ideal generated by the set S.

Definition 1.1.28. Two sets of polynomials are said to be equivalent if they generate

the same T'-ideal.

Definition 1.1.29. Two algebras Ay, Ay are called PI-equivalent if Id(A;) = Id(As);

in this case we write Ay ~pr As.

Definition 1.1.30. Given a non-empty set S < F(X), the class of all associative algebras
A such that f =0 on A for all f €S is called the variety V = var(S) determined by
S. A wvariety V = var(S) is non-trivial if S # {0}.

For example, the class of commutative algebras forms a variety of algebras,

because each commutative algebra satisfies the polynomial identity [z1,x2] = 2129 — x21.

Definition 1.1.31. Let V be a variety, A€V an algebra and Y < A a subset of A. We
say that A is relatively free on'Y (with respect toV ) if for any function g: Y — B
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fromY to B €V, there exists a unique homomorphism of algebras p: A — B such that

the following diagram commutes, where i is the inclusion map i: Y — A.

Y ¢ A

B

There is a one-to-one correspondence between T-ideals of F{X') and varieties of
algebras. Let V be a variety with corresponding ideal Id(V) <€ F{(X). Then F(X)/1d(V) is
a relatively free algebra on the set X = {z + Id(V) | € X}. Moreover, any two relatively

free algebras with respect to V of the same rank are isomorphic ([22, Proposition 2.2.5]).

We close this section with a theorem of Birkhoff, which gives the properties

characterizing the varieties.

Theorem 1.1.32 (Birkhoff). A non-empty class of algebras V is a variety if and only if

V is closed under taking Cartesian sums, subalgebras and factor algebras.

Proof. See for instance [22, Theorem 2.3.2]. O

1.1.5 The Specht problem

One of the most interesting questions about 7T-ideals is whether the generating
set S of a T-ideal can be reduced to a finite set, which generates the same T-ideal. We
can see this question as the analogue in non-commutative algebra of the Hilbert’s Basis
Theorem for commutative algebras which states that every algebraic variety can be defined
by a finite set of commutative polynomials. In order to formally establish the problem, we

begin with the following definition.

Definition 1.1.33. A wvariety of algebras V is called finitely based if V can be deter-
minded by a finite set of polynomial identities (from F{(X)). If V cannot be determined by
a finite set of identities, it is called infinitely based. If all subvarieties of V, including V
itself, are finitely based, V satisfies the Specht property.

The following problem was posed by Specht in 1950 for associative algebras
over a field of characteristic 0. Now it is known as the Specht problem ([57]).

Problem 1.1.34. Is every variety of associative algebras finitely based?

In 1987 Kemer gave a positive solution for the Specht problem for associative

algebras over a field of characteristic 0.
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Theorem 1.1.35. [0, Theorem 1] Every variety of associative algebras over a field of

characteristic 0 is finitely based.

To achieve this, Kemer developed a powerful technique which is known as
Kemer’s Theory. This technique is contained mostly in his monograph ([41]). The key step
in Kemer’s Theory is the Representability Theorem for affine PI-algebras. In the paper [4]

the authors provide a much more detailed proof of this theorem.

Definition 1.1.36. An algebra W is PI-representable if W ~ p; A for some algebra A

which is finite dimensional over some field.

Theorem 1.1.37 (Kemer’s Representability Theorem). Let W be an affine Pl-algebra

over a field F of characteristic zero. Then W is Pl-representable.

Kemer’s theory, besides being quite technical and sophisticated, contains a
remarkable number of new ideas opening new avenues of research in the study of varieties

of algebras. We outline the main steps of the proof of Kemer’s theorem.

Step 1. Show that there exists a finite dimensional algebra A with Id(A) € T" =
[d(W).

Step 2. Definition of Ind(I') = («, s), the Kemer index of any T-ideal I" which

contains the T-ideal of a finite dimensional algebra A.

Step 3. Definition of Kemer polynomials of a T-ideal I'. These are extremal polyno-

mials which are not in I' whose alternation realize the Kemer index Ind(T).

Step 4. Construction of basic algebras, in which the parameters o and s of Ind(I")
coincide respectively with the integers dim A and n4 — 1, where A is the semisimple

part of A and n4 is the nilpotency index of the Jacobson radical of A.

Step 5. From the connection between the parameters of the Kemer index of any
basic algebra A and its geometrical properties (namely Ind(I") = (dim A, ny — 1)),

we obtain the Phoenix property of Kemer polynomials of A.

Step 6. Find a finite dimensional algebra B with Id(A) < Id(B) < I' such that

Id(B) and I' have the same Kemer index and have the same Kemer polynomials.

Step 7. Construction of the representable algebra B, ) over F' with Id(B, ) 2T

and such that all Kemer polynomials of I' are non-identities of B ).

Step 8. Consider I' = T + S where S is the T-ideal generated by all Kemer

polynomials of T'.
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Step 9. Show that all polynomials of S are non-identities of B(, ). From that one
concludes that T' = Id(A’ 4+ B(,s)) where A" is over a field extension L of F' with
I’ =1Id(A").

Most of these steps will be emulated in Chapter 2 to develop Kemer’s Theory

for superalgebras with superinvolutions.

1.2 Graded algebras

In this section we study algebras which are graded by a finite group. We consider
the reduction of arbitrary polynomial identities to polynomial identities of special form:
homogeneous, multilinear and symmetric. We introduce the notion of free graded algebras
and the tensor algebra and define the involution map in graded algebras, in particular,

the so called superinvolution for algebras graded by the group Zy = Z/27Z.

1.2.1 Graded vector spaces

We will start with the classical notion of graded vector spaces.

Definition 1.2.1. Let V' be a F-vector space. We say that V is graded if it is a direct

sum of its subspaces VU, n =0, i.e.

V=PV

The subspaces V™ are called the homogeneous components of degree n of
V. The subspace W of the graded vector space V = @,=0V " is a graded subspace if
W = @nso(W A V™). In this case, the factor space V /W can also be naturally graded.

Example 1.2.2. The polynomial algebra F|zq, ..., x| is graded assuming that the ho-
mogeneous polynomials of degree n (in the usual sense) are the homogeneous elements of

degree n.

Remark 1.2.3. If A, B are graded vector spaces, then A® B can be graded via

(A@B)" = @ AV B®.

j+k=n

Analogously we can define the notion of grading for algebras: Let A be an
F-algebra. We say that A is graded algebra if it is a direct sum of its subalgebras A™,

n =0, i.e.

A=PAM.

n=0
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and if A™MAM™) < A+ for each n,m = 0.

We present an example of graded algebra: the tensor algebra. We show first

the categorical definition.

Definition 1.2.4. Let V' be a F-vector space. A tensor algebra of V is a pair (X,1),
where X is an F'-algebra andi: V — X is a F'-linear map, such that the following universal
property is satisfied: for any F-algebra A, and any F-linear map f: V — A, there exists
a unique homomorphism of algebras ¢: X — A such that ¢i = f, that is, the following
diagram is commutative:

1% ‘ X

A

We present its construction. Denote by T°(V) = F, T'(V) = V, and for n > 2
by T"(V) =V ®V ®---®V, the tensor product of n copies of the vector space V. Define
T(V)=@D1"(V),
n>0
andi: V — T(V) byi(v) =ve T V) forany v € V. On T(V) we define the multiplication
as follows: if t =1, ® -+ ®v, e T"(V) and y = w1 ® - - - ® wy,, € T™(V'), then define the

product
TyY=11Q0 - Qu,Quw; Q- @w,y, € T (V).

The multiplication of two arbitrary elements from 7'(V') is obtained by extending
the above formula by linearity. In this way 7'(V') becomes an associative unitary F-algebra
with identity element 1 € T°(V), and the pair (T(V),1) is a tensor algebra of V.

The tensor algebra A = T'(V') has a natural grading by setting A = DoA™
where A™ = T"(V) for all n > 0.

Remark 1.2.5. Let V be a F-vector space with a countable basis {vy, v, ...}. The tensor
algebra T(V') is just the free associative algebra (defined in page 24) generated by {vy, v, ...}

over F'.

Now, we present the notion of Hilbert series for vector spaces. We denote by

dim (W) the dimension of an arbitrary F-vector space W.

Definition 1.2.6. Let V = @,-0V™ be a graded vector space and let dim V™ < oo for
alln = 0. The formal power series

Hilb(V,t) = ) dim V™",

n=0

is called the Hilbert series of V.
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For a function f(¢), we make the usual convention that Hilb(V,t) = f(¢) if the
series Hilb(V,t) converges in some neighbourhood of 0 and the function Hilb(Vt) and
f(t) are equal here.

Example 1.2.7. Let V = F[z] be the polynomial algebra in one indeterminate x. Then
V™ = F2”, so each dim V™ = 1. Thus,

Hilb(F[a],£) = 3 7 = 1;

n=0
Example 1.2.8. Let V = F(xy,...,x,) be the free algebra. There are m"™ words of length
n, so dim V™ = m™. Thus,
1

- 1—mt

Hilb(F{x1,...,Tm),t) = 1 + mt + m*t* + - -

Proposition 1.2.9. Let A, B be graded vector spaces. Then

1. Hilb(A@® B, t) = Hilb(A, t) + Hilb(B, );
2. Hilb(A® B, t) = Hilb(A, t)Hilb(B, t);

3. Hilb(A,t) = Hilb(A/B,t) + Hilb(B,t), if B is a subspace of A.

Proof. (1) Since dim(A @ B) = dim A + dim B, we have
Hilb(A@® B,t) = »_ dim((A@® B)™)t"

n=0

= ). dim(A™ @ B™)"

n=0

= 2 dim A™¢" + dim B™¢®

n=0
— Hilb(A, t) + Hilb(B, t).
(2) Since dim(A ® B) = dim Adim B, and by Remark 1.2.3 we have
Hilb(A® B,t) = > dim((A® B)™)t"

n=0

= Y. dim( @ AV @ Bt

n=0 j+k=n

= Z 2 dim AY) dim B®¢"

n=0 j+k=n

- Z dim AW Z dim B®¢k

>0 k>0
— Hilb(A, #)Hilb(B, t).
(3) Since dim B + dim(A/B) = dim A, the result follows. O

Example 1.2.10. V = Flz1,...,2,] = QL F|z;]. Then by the previous proposition and
Example 1.2.7,

Hilb(V, ) = Hilb(®™ , Fl:], t) = Hilb(F[x1],¢) - - - Hilb(Flwm], t) =

(1 —=t)m
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1.2.2 Group-graded algebras

In this section we study the algebras graded by a group G.

Definition 1.2.11. Let A be an algebra over a field F and let G be a group, we say that

A is G-graded algebra if A can be written as the direct sum of subspaces A = @A(g)
geG

such that for all g,h € G, AWAM < Aldh),

The subspaces A are called homogeneous components of A. Consequently,
an element a € A is homogeneous of degree g if a € AY.
Given a € A, we can write a = Z a, (uniquely) where a4 € AY | 50 any element

geG
can be written uniquely as a sum of homogeneous elements. In particular, (a+0b), = a,+0,

for all a,be A and all g € G. Write e for the identity element of G. Then A is always a
subalgebra of A.

Example 1.2.12. Any algebra A can be graded by a group G by setting A = A® and
AW =0 for any g # e. This grading is called trivial.

Example 1.2.13. Let A = My(F) and G = Z,. If we set A” = {(¢9) | a,d € F} and
AW — {(28) | b,ce F}, then A is Zy-graded algebra.

Example 1.2.14. If A = M, (F) (the algebra of n x n matrices with entries of F') and
G is a group, let (g1,...,9,) be a n-tuple of elements of G, then A is G-graded by an
elementary grading if we set A9 = Spang{eyq | |epg| = g}, where ey, are the matrix
units (i.e, matrices whose entries are all 0 except in the cell (p,q) whose value is 1),

lepqll = gq9," and A = @AY . The previous example is a particular case, taking the
couple (0,1) of G = Z,.

Definition 1.2.15. Let A and B be G-graded algebras. A function g: A — B is called
G-graded homomorphism if g is a homomorphism of algebras and g(A9) = BY for
all g e G.

Definition 1.2.16. An ideal I of A is a graded tdeal if I is graded as a subalgebra of A.

Thus, [ is a graded ideal of A if and only if I = Z 19 where 19 = T ~ A9,
geG
i.e., each element of I is a sum of homogeneous elements of I. It is easy to see that an

ideal is graded if and only if it is generated by homogeneous elements.

Remark 1.2.17. If I is a graded ideal of A, then A/I = @A(g)/](g) is G-graded as an

geG
algebra, where (a + 1), = ay + I'9.
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1.2.3 Homogeneous and multilinear polynomials

Let F,, = F{zy,...,z,) be the free algebra of rank n > 1 over F'. We can write
F,=FYoFYoF?P®--

where F}Lk) is the subspace spanned by all monomials of total degree k, for k > 0. Since
F,Ei)F,Ej) c Fqg”j), for all 4,7 = 0, then Fj, is graded by the degree or that it has a structure

of graded algebra. Then the FT(Li)’s are the homogeneous components of F,.

Definition 1.2.18. A polynomial f is linear in the variable x; if x; occurs with degree
1 in every monomial of f. A polynomial which is linear in each of its variables is called

multilinear.

For a multilinear polynomial, we can write

f(xh cee 7xn) = Z UgTy(1) " Lo(n),

oESH

where o, € F' and S, is the symmetric group on {1,...,n}. Moreover, if f(xy,...,2,) is a

linear polynomial in one variable, say i, then

f(Z QiYiy Ty -+ oy Tp) = Zaz‘f(yi,fﬂm Ceey T),
for every a; € F,y; € F(X).

Proposition 1.2.19. Let A be an algebra and
flay,. . am) = Y fi € F(X),
i=0

where f; is the homogeneous component of f of degree i in x1. If the base field F' contains
more than n elements (e.g. F is infinite), then if f =0 is a polynomial identity for the
algebra A, then every homogeneous component f;, i = 0,1,...,n is still a polynomial
identity for A.

Proof. Choose n + 1 different elements ag, ay, ..., a, of F. Since Id(A) is a T-ideal, for
every j =0,...,n,
flojzy, ... zy) € Id(A)

and therefore, for each j =0,... n,

flojzy, zo, .., 20) = Zfi(ajxl,xg, ey Ty) = Zaéfi(xl,xg, o Ty) € Id(A). (1.1)
‘ i=0
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Consider the Vandermonde matrix

1 ay of o
1 ap o af
A=|1 ay a3 o
1 a, o2 - a"
If for every ai,...,a, € A we write f; := filay,...,ay) for i = 0,...,n, then Equation
(1.1) says that
Jo
Al =0 (1.2)
f
It is known that the determinant of the Vandermonde matrix is det(A) = n(aj — ),

1<j
and it is different from 0, then the homogeneous system (1.2) only has the trivial solution
fo=0,....,f, = 0. Thus fy = 0,..., f, = 0 are identities of A, i.e. the polynomial

identities f; = 0 are consequences of f = 0. m

In the proof of the next theorem we shall use the so-called process of multi-

linearization and can be described briefly as follows:

Suppose the polynomial f(xy,...,z,,) has degree n > 1 in the variable z;.

Define the partial linearization

h<y1’y27'x27""$m) = f(yl+y2’x27“'7xm)_f(y17x27"‘7xm)_f<y27x27"'7xm)’

Notice that h is still a polynomial identity for A when f € Id(A).

In the situation in which x; does not appear in each monomial of f, we can
define g = f(0,29,...,2y). If f€Id(A), then g € Id(A). Thus f — g € Id(A), so we can
replace f by f — g and thereby assume that any indeterminate appearing in f appears in

each monomial of f as desired.

Let n > 1 the degree of x; in f. Iterating the partial linearization procedure
n — 1 times (each time introducing a new intederminate y;) yields an n-linear polynomial

f(y1, - Yn, T2y ..., Tm). For each monomial in f we now have n! monomials in f. Thus.

when f is homogeneous in z1, we have

f(a:l’... 73;1’1’2,...,23,”) =nlf.

We call f the linearization of f in z;. In characteristic 0 we can recover f from f.

Repeating the linearization process for each indeterminate appearing in f yields

a multilinear polynomial, called the complete linearization of f.
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Example 1.2.20. The multilinearization of the polynomial x" is called the symmetric

= Z Lo(1) " Lo(n)-

geSh

polynomial

Theorem 1.2.21. If the characteristic of the base field F' is zero, then every non-zero

polynomial f € F(X) is equivalent to a finite set of multilinear polynomials.

Proof. By Proposition 1.2.19 we may assume that f(z1,...,x,,) is homogeneous in each
of its variables. Let deg,, f = d. We write

d

f(yl + Y2,T2, ... 733771) = Zfi(ylvy%x% cee 7xm)7
i=0

where f; is the homogeneous component of degree i in y;. Hence f; € V', for each i €
{0,1,...,d}. Since deg,, <d,i=0,1,...,d -1, j = 1,2, we apply inductive arguments
and obtain a set of multilinear consequences of f = 0. Also, since the characteristic of F'

d> is different from 0, then

is zero, the binomial coefficient (
i

d
filyr, g, w0, 1) = (Z.)f(yl, T,y T),
and this implies that the multilinear identities are equivalent to f = 0. O
Corollary 1.2.22. If the characteristic of the base field I is zero, each T-ideal is generated,

as a T-ideal, by the multilinear polynomials it contains.

Actually, we conclude that in order to study the polynomial identities of a
algebra over a field F' of characteristic zero, we just need to find the multilinear polynomial

identities.

1.2.4 Free graded algebras

Let F'(X) be the free algebra over F' on a countable set X and let G be a finite
group. We write X in the form

X = x(9)
where X {ml ,xQ ,...} are disjoint sets. The indeterminates from X are said to

be of homogeneous degree g. The homogeneous degree (or G-degree) of a monomial

7l .. (gt) € F'(X) is defined to be g1gs - - - g1, as opposed to its total degree, which is

defined to be t. Denote by F(X)¥ the subspace of the algebra F{(X) generated by all
the monomials having homogeneous degree g. Notice that F(X )9 F(X )" < F(X)HM) for

every g, h € G. It follows that

F(X) = @ FXOW

geG
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is a G-grading on F(X). We denote by FY(X) the algebra F(X) endowed with this
grading.

Definition 1.2.23. FY(X) is called the free G-graded algebra of countable rank over
F.

The algebra FE(X) has the following universal property: if f: X — A is any
map from X to any G-graded algebra A such that f(X¥) < A9 for each g € G, then
there exists a unique homomorphism of G-graded algebras a:: F' G<X » — A such that the
following diagram commutes

X L > FO(X)

A

where i: X — F%(X) is the inclusion map.

Given A a G-graded algebra and f = f(xggl), ., xlmy e FO(X) a graded
polynomial, we say that f is a graded identity for A if f (aggl), ..al9m)) = 0 for all

al? e AW alm) e Alm) and we write f = 0.

Consequently, f € FY(X) is a graded identity for A if and only if f is in the
kernel of all graded homomorphisms FE(X) — A.

Definition 1.2.24. Id°(A) = {f € FYX) | f =0 on A} is called the ideal of graded
identities of A.

Id9(A) is a two-side ideal of the free G-graded algebra F®(X). Moreover,
1d%(A) is a T-ideal of G-graded identities of A. As in the classical case, the T-ideals of

G-graded identities are generated by multilinear polynomials.

In [2], the authors proved the G-grading version of the Representability Theorem
(Theorem 1.1.37) and the Specht problem (Theorem 1.1.35). We present below the affine

case.

Let W be a finitely generated associative Pl-algebra over a field F' of charac-

teristic zero. Assume W = Z W is G-graded where G is a finite group.
geG

Theorem 1.2.25. [2, Theorem 1.1] There exists a field extension K of F and a finite
dimensional G-graded algebra A over K such that 1d°(W) = 1d%(A) in FE(X).

Theorem 1.2.26. [2, Theorem 1.2] 1d% (W) is finitely generated as a T-ideal in FE(X).
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1.2.5 Superalgebras and superinvolutions

We shall call superalgebra any Zs-graded (associative) algebra. In this case
A = AP @® AW and the subspaces A® and AM are called the even and the odd
component of A respectively and their elements are called homogeneous of degree zero
(even elements) and of degree one (odd elements), respectively. If a is a homogeneous

element we shall write deg(a) or |a| to indicate its homogeneous degree.

In what follows, the field F' is supposed to be of characteristic zero.

Notation 1.2.27. From now on, for simplicity, we denote the subspaces A?) and AV by
Ag and Ay respectively.

Recall from Definition 1.2.15, if A = Ay @® A; and B = By ® B; are two
superalgebras, then ¢ : A — B is a graded homomorphism if p(4;) € B;, i =0, 1.

Definition 1.2.28. A superinvolution on a superalgebra A = Aq@® Ay is a graded map
. A — A such that:

1. (a*)* =a, for alla € A,

2. (ab)* = (=1)\WPlp*a* | for any homogeneous elements a,be Ay U A;.

Since the characteristic of F' is zero, we can write
A=AT@®A; ® AT ® A7,

where for i = 0,1, A7 ={a€ A; | a* =a} and A7 = {a € A; | a* = —a} denote the sets of

symmetric and skew elements of A;, respectively.
We shall refer to a superalgebra with superinvolution simply as a *-algebra.

The free algebra with superinvolution (called the free =-algebra), denoted by
F(Y U Z, «), is generated by symmetric and skew elements of even and odd degree. We

write
F<Y U Z7 *> = F<yi‘r7y177 Zi‘FJ Z;7y;7y;72;7zg7 A ‘>7

where ;" stands for a symmetric variable of even degree, y; for a skew variable of even
degree, z;” for a symmetric variable of odd degree and z; for a skew variable of odd
degree. In order to simplify the notation, sometimes we denote by y any even variable, by
z any odd variable and by = an arbitrary variable. The elements of F'(Y U Z, %) are called

#-polynomials.

Definition 1.2.29. A «-polynomial f(y{,....y  y1, U 21, 2 20,...,2;) in

r7s

F(Y U Z,*) is a =-identity of the #-algebra A = AJ @ Ay ® AT @ A7, and we write f =0,
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if, for alluf,...;ut € Af, uy,...,u, € Ay, v, ...,v} € AY and vy,...,v; € A, we
have
fluf, . ooowt uy, . u v o o, uy) = 0.
We denote by Id*(A) = {f € FY U Z,%) : f = 0on A} the T;-ideal of
«identities of A, i.e. Id*(A) is an ideal of F(Y U Z,«) invariant under all Z,-graded

endomorphisms of the free superalgebra F(Y U Z) commuting with the superinvolution =.

Given two =-algebras A and B, we say that A is Ts-equivalent to B, and
we write A ~px B, in case I1d"(A) = Id*(B). Moreover, we denote by (fi,..., fu)ry the
T5-ideal generated by the =polynomials fi, ..., f, € FXY U Z, ).

Because we are in characteristic 0, as in the ordinary and the graded case, it is
easily seen that every =-identity is equivalent to a system of multilinear =-identities. Hence

if we denote by

P: :SpanF{wo(l)"'wa(n) ‘ UeSn; w; € {ijyfvzjaz;}v L= 17"'7”}

the space of multilinear #-polynomials of degree n in v, ,y;, 21,21,y y,, 20, 2,

(i.e., y; or y; or z or z; appears in each monomial with degree 1) the study of Id*(A) is
equivalent to the study of P¥ n Id*(A), for all n > 1.

Definition 1.2.30. An ideal I of a =-algebra A is a =-ideal of A if it is a graded ideal
and I* = I. The %-algebra A is a simple x-algebra if A*> # 0 and A has no non-trivial

x-1deals.

The Wedderburn-Malcev analog for =-algebras was proved in [23, Theorem 4.1].

Theorem 1.2.31. Let A be a finite dimensional =-algebra over a field F' of characteristic

0. Then there exists a semisimple =-subalgebra B such that
A=B®J(A)

as vector spaces and J(A) is a #-ideal of A. Moreover B = Ay x --- x A,, where Ay, ..., A

4 q

are simple *-algebras.

Of course, if A = B@® J(A) with B semisimple =-subalgebra, the Wedderburn-
Malcev decomposition enables us to consider semisimple and radical (or nilpotent)
substitutions. More precisely, since in order to check whether a given multilinear #-poly-
nomial is an identity of A it is sufficient to evaluate the variables in any spanning
set of even/skew homogeneous elements, we may take a basis consisting of even/skew

homogeneous elements of B or of J(A). We refer to such evaluations as semisimple or
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radical evaluations, respectively. Moreover, the semisimple substitutions may be taken

from =simple components. This kind of evaluations, i.e., the ones from the set

O Az ) J(A),
i=1

are called elementary . In what follows, whenever we evaluate a polynomial on a finite

dimensional =-algebra, we shall only consider elementary evaluations.

1.2.6 Finite dimensional simple =-algebras

We shall present the classification of the finite dimensional simple *-algebras

over an algebraically closed field F' of characteristic zero.

Definition 1.2.32. Let A and B be two superalgebras endowed with superinvolutions =
and *, respectively, then (A, =) and (B, x) are isomorphic, as =-algebras, if there exists an
isomorphism of superalgebras v : A — B such that (z*) = ¥ (x)*, for all x € A.

If n =k + h, the matrix algebra M, (F) becomes a superalgebra, denoted by
My, 1(F'), endowed with the grading

(Myn(F))y = {(JO( ;) | X e My(F), T e Mh(F)} :

(Myp(F)), = { (2 E) 'Y € My (F), Z e thkm} .

In [50], Racine proved that, up to isomorphism and if the field F' is algebraically
closed and of characteristic different from 2, it is possible to define on M, ,(F') only the

following superinvolutions.
1. The transpose superinvolution, denoted by trp and defined for h = k by
tr
x v\ (1 -y
Z T zt Xt )’
where t is the usual transpose.

2. The orthosymplectic superinvolution osp defined when h = 2[ is even by

x v\ (oo (x v\ ([ o\ [(x* zq
z 1) \0 Q z 1) \o @) \@v' -Qr'q)’

0 I
where () = ( I OZ) and I, I; are the k x k, [ x [ identity matrices, respectively.
—1
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Furthermore, if A is a superalgebra, the opposite superalgebra A*? is the
superalgebra with the same graded vector space structure of A and product given on

homogeneous elements a, b € A*? by
aob=(—1)llltlpg,

The direct sum R = A @ A" is a superalgebra with Ry = Ay ® A)” and Ry = A; @ A]™.
Given z,y € R, © = (a,b) = (ap + a1,bp + b1), y = (a’, V') = (ay + a},by + b}), where

ag, ag € Ag, ar,ay € Ay, by, by € AgF and by, by € AT, the product in R is given by

(ap+ar, bo+b1)-(ag+ay, by+b)) = (apag+aia) +apa’l +ayag, bybo—b1 b1 +byby +b1bg). (1.3)

Moreover R is a *-algebra since it is endowed with the exchange superinvolution
ex defined by:
(a,b)" = (b,a).

For example, if we consider the superalgebra Q(n) = M, (F @ cF) = Q(n)o ®
Q(n)1, where Q(n)y = M, (F) and Q(n), = cM,(F), with ¢* = 1, then Q(n) ® Q(n)*% is
a =-algebra with exchange superinvolution.

The following result gives the classification of the finite dimensional simple
=-algebras (see [7, 31, 50]).

Theorem 1.2.33. Let A be a finite dimensional simple =-algebra over an algebraically
closed field F' of characteristic different from 2. Then A is isomorphic (as a =-algebra) to
one of the following:

1. My p(F) with the orthosymplectic or the transpose superinvolution,
2. My p(F)@® My, (F)*P with the exchange superinvolution,

3. Q(n) ® Q(n)*? with the exchange superinvolution.

Remark 1.2.34. In Theorem 1.2.33, the =-algebra A has always an identity element that

is symmetric of homogeneous degree 0.

Proof. Let I be the identity matrix of M, (F). If A = M ,(F'), n =k + h, then I is the
identity of A. Suppose that A = M, ,(F) @ M ,(F)*? or A = Q(n) ® Q(n)*”, then the
pair (I, 1) is the identity of A. Finally it is not difficult to see that the identity of A is a

symmetric even element. O

We conclude this section with the following result announced in [1, Theorem 1].

Theorem 1.2.35. Let F' be an algebraically closed field of characteristic zero. Let V be
a variety generated by a finitely generated =-algebra A over F, satisfying an ordinary

non-trivial identity. Then V = var*(B), for some finite dimensional =-algebra B over F.
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1.3 Hopf algebras

In this section we will introduce the Hopf Algebra environment and explore
basic ideas of bialgebras and modules, taking as reference [47] and [49]. We remand to the
books [49, 47, 52, 60] for further information about Hopf algebras.

1.3.1 Algebras and coalgebras

Definition 1.1.1 of F-algebra is equivalent to say that an (associative unitary) F-
algebra is a vector space A over F' with two F-linear maps, the multiplication m: AQA —

A and the unit u: F — A, so the following diagrams are commutative:

a) associativity b) unit
AQAR A" A0 A A® A
| e
idgm m FRA m ARQF

A

We now “dualize” the notion of algebra.

Definition 1.3.1. An F-coalgebra (with unit) is a vector space C' over F with two
F-linear maps, the comultiplication A: C — C' ® C' and the counit c: C' — F, such

that the following diagrams are commutative:

a) coassociativity b) counit

C 2 C®C C

A Agid FeC A CRF
CoC—1"  cgcec ?ﬁ\\ //&j

cC®C

The two upper maps in Definition 1.3.1(b) are given by ¢ — 1®c and ¢ — c®1
for any c e C. We say C' is cocommutative if 7o A = A, where 7: C® C - C® C is
the twist map, defined by 7(c1 ® ¢3) = co ® ¢; for all ¢1, ¢ € C.

Example 1.3.2. Let S be a nonempty set. Denote by F'S the F-vector space with basis S.
Then F'S is a coalgebra with comultiplication A and counit € defined by A(s) = s® s and
e(s) =1 for any s € S, indeed,

(Id®A)A(s) = (Id®A)(s®s) =sR®s®s = (ARId)(s®s) = (A®Id)A(s),

(e®IDA(s) = (e®Id)(s®s) = 1®s,
(Id®e)A(s) = (Id®e) (s ® s) = s® 1.
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Note that this coalgebra is cocommutative. This example shows that any vector space can

be endowed with a F'-coalgebra structure.

Example 1.3.3. Let C' be an F-vector space with basis {s,c}. Then C is a coalgebra with

comultiplication A and counit € defined by

Indeed, we have
(IdR®A)A(s) =s®@c®c+cRsRc+cRc®s—s®s®s = (ARID)A(s),

Id®A)A(c) =cR®cRc—5sRs®c—sRc®s—cRs®s = (ARId)A(c),
(e®ID)A(s) = (e®@Id)(s®c+c®s) =0@c+1®s=1®s,
(Id®e)A(s) = (IdRe)(s@c+c®s) =sR1+c®0 =51,
JA(C) = (®Id)(c®c—s®s) = 1Qc—0Qs=1®c¢,

(

[dRe)(c®ec—s®s)=c®1—-—s®0=c®1.

(
) = (
(e®@Id)A(e) = (
(Id®e)A(e) = (

Note that this coalgebra is cocommutative.

Notation 1.3.4. The sigma notation for A is given as follows: for any c € C, we write
Ac = Z ¢ ® ca.
With the usual summation conventions we should have written
Ac = Z ci1 ® cio.

i=1n

2R
1

The sigma notation supresses the index “i”. The subscripts “1”7 and “2” are symbolic, and

do not indicate particular elements of C'.

Using the sigma notation, the counit diagram in Definition 1.3.1.b) can be

expressed as

c= Zs(cl)cz = che(@). (1.4)

Definition 1.3.5. Let C' and D be coalgebras with comultiplications Ac and Ap, and

counits ¢ and €p, respectively.

1. A map f: C — D is a homomorphism of coalgebras if Apo f = (f® f)Ac

and if ec = epo f.
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2. A subspace I < C is a coideal if AcI € I®C +C®I and if ec(I) = 0.

Remark 1.3.6. Let C be a coalgebra, I a coideal of C and p: C — C/I the canonical

projection of F-vector spaces. Then:

1. There exists a unique coalgebra structure on C/I (called the factor coalgebra)

such that p is a homomorphism of coalgebras.

2. If f: C'— D is a homomorphism of coalgebras with I < Ker(f), then there exists a
unique homomorphism of coalgebras f: C/I — D such that fp = f. So, there exists

a canonical isomorphism of coalgebras between C/Ker(f) and Im(f).

1.3.2 Bialgebras

Let H be a F-vector space which is simultaneously endowed with an algebra
structure (H, m,u) and a coalgebra structure (H, A, ). The following definition establishes

the situation in which the two structures are compatible.

Definition 1.3.7. A 5-tuple (H, m,u, A, ¢) is called bialgebra if (H, m,u) is an algebra,
(H,A,¢) is a coalgebra and m and u are homomorphism of coalgebras (or, equivalently, A

and € are homomorphism of algebras).

Remark 1.3.8. The compatibility relations between the operations of a bialgebra H give
us the following conditions for all h,g € H:

A(hg) = Z hig1 & haga,
e(hg) = e(h)e(g),

A(l) =1®1,

g(1) = 1.

We say that a bialgebra morphism is an F-linear map f: H — H' that is
both a homomorphism of algebras and a homomorphism of coalgebras. A subspace I < H
is a biideal if it is both an ideal (in the underlying algebra of H) and a coideal (in the
underlying coalgebra of H). Then the structures of factor algebra and the factor coalgebra
define the bialgebra H/I.

Example 1.3.9. Let G be a (multiplicative) group and let H = FG be its group algebra.
We recall that F'G is an F-vector space with basis {g | g € G} and its elements are of

the form Z agg with (0y)gec a family of elements from F having only a finite number
geG
of nonzero elements . The multiplication and unit are defined by m(h ® g) = hg and

u(1l) = 1y = e and extended by linearity, where e is the identity element of G.
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On the group algebra H we also have a coalgebra structure (as in Ezample
1.3.2), in which A(g) = ¢ ® g and £(g) = 1, for all g € G. Note that

A(hg) =hg®hg = (h®h)(g®g) = A(h)A(g)

and
e(hg) =1 =e(h)e(g).

This shows that A and € are homomorphism of algebras and H is a bialgebra.

Example 1.3.10. Let g be a Lie algebra over F and let U(g) be its universal enveloping
algebra. Then U(g) is a bialgebra with A(x) =2 ®1+1®1, and e(x) =0, for all x € g.

Example 1.3.11. Take 0 # q € F and let H = O(F?) = Flx,y | 2y = qyx), which is
called the quantum plane. H has a bialgebra structure given by setting A(x) = z ® x,
Aly) =y®1+2®vy, e(xz) =1 and e(y) = 0.

Example 1.3.12. Assume that the characteristic of F' is different from 2. Let H be the
algebra given by generators and relations as follows: H is generated as an F'-algebra by c

and x satisfying the relations

Then H has dimension 4 as F-vector space with basis {1,c,z,cx}. The coalgebra structure
s induced by

Alc) =c®c, Alz)=cQr+2r®1,
e(c) =1, e(x)=0.

In this way, H becomes a bialgebra. Note that H is neither commutative nor cocommutative.

1.3.3 Hopf algebras

Definition 1.3.13. A bialgebra (H,m,u, A, ) is called Hopf algebra if there exists a
F-linear map S: H — H (called antipode) such that the following diagram commutes:

S®Id

7N
N

Id ®S
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This property can also be expressed as
D (Shi)hy = £(h)ly = > hi(Shs) for all he H, (1.5)
where 1p is the identity element of H.

Definition 1.3.14. Let C be a coalgebra and A an algebra. Then Homp(C, A) becomes

an algebra under the convolution product

¢) =), flen)glea),

for all f,g € Homp(C,A), ce C.

Notice that the unit element of Hompg(C, A) is ue, since

(f =ue)(c ch1u502 Zfﬁ (c2)1 = f(c).

Similarly, (ue) = f = f.

Let H be an Hopf algebra with antipode S: H — H. Then S is the inverse of
the identity map /: H — H with respect to the convolution product in Homg(H, H).

We can define morphisms of Hopf algebras which are simply bialgebra
morphisms, since the bialgebra morphisms preserve antipodes, that is, if f: H — B is
a bialgebra morphism between two Hopf algebras H and B with antipodes Sy and Sp
respectively, then Sgf = fSy [49, Proposition 4.2.5].

Let H be a Hopf algebra, and I a Hopf ideal of H, i.e. I is an ideal of the
algebra H, a coideal of the coalgebra H, and S(I) < I, where S is the antipode of H.
Then on the factor space H/I we can attach a natural structure of Hopf algebra. When
this structure is settled up, the canonical projection p: H — H/I is a morphism of Hopf

algebras.

Proposition 1.3.15. Let H be a Hopf algebra with antipode S. Then:
i) S(hg) = S(g)S(h) for any g,h € H.
i) S(1) = 1.
iii) A(S(h)) = S(ha) ® S(ha).
iv) €(S(h)) = e(h).

Proof. See [49, Proposition 4.2.6]. O
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Example 1.3.16. Let G be a group and H = FG the bialgebra defined in Fxample 1.5.9.
Then H has a Hopf algebra structure with antipode S defined by S(g) = g~ for all g € G.
Indeed,

D (Sg1)g2 = S(9)g = g7 'g = 1u = e(g)1n
and

D 01(Sg2) = gS(9) = 997" = 1u = £(9)1u.

Example 1.3.17. The universal enveloping algebra H = U(g) is a Hopf algebra with
antipode S defined by S(x) = —x for each x € g. Indeed,

Z(Swl)xz =s@)l+s(l)z=—2x+2=0=c(x)ly
and

leS:cg =zS(1)+1S(x) =2z —2x=0=c¢c(x)ly
Example 1.3.18. Let O(f?) be the quantum plane defined in Example 1.3.11. Consider
the bialgebra H = O(f*)[x™] where A(z™') = 7' @27 and e(z™') = 7. Then H
has a Hopf algebra structure with antipode S defined by S(z) = 2!, S(z™') = x and
S(y) = —a7'y.
Example 1.3.19. Consider the bialgebra Hy = F{1,c,z,cx | ¢ = 1,2* = 0,2¢c = —cx)
defined in Example 1.3.12. Then Hy becomes a Hopf algebra with antipode S define by
S(c) =c ' =cand S(x) = —cx, indeed,

Z(Scl)cg =s(c)c=c*=1=¢(c)l =cS(c) = 201(502)
and
Z(Swl)xg =s(c)x+ s(x)l =cx —cx =0 =¢e(x)l
=—cx+x—cS ) +xS(1 leng

This Hopf algebra is known as Sweedler’s 4-dimensional Hopf algebra.

The next example is a generalization of the Sweedler’'s Hopf algebras.

Example 1.3.20. Let F' be a field containing a m-th root of the unit & for some positive
integer m. Let H,,2(€) be the bialgebra defined by generators ¢ and x with relations

d"=1 2" =0, zc=~&cx.
The coalgebra structure is given by
Ale) =c®c¢, Alr)=c®r+z2®1,
e(c)=1, e(xz)=0.

As a F-vector space, Hy,2(€) has dimension m* with basis {c¢'z? | 0 < i,7,<m — 1}. The

bialgebra H,,2(€) becomes a Hopf algebra if we define the antipode as S(c) = ¢ and

S(z) = —c tx. This Hopf algebra is known as the Taft’s Hopf algebra of dimension

m?.
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1.3.4 Modules and comodules

We begin this section by defining modules over an algebra using only morphism

and diagrams. Then by dualization we obtain the notion of a comodule over a coalgebra.

Definition 1.3.21. Let A be an F-algebra, a (left) A-module is F-vector space X with
a F-linear map v: X ® A — X such that the following diagrams commute:

Id®m Id®u

XRAR®A X®A XQ®F X®A
el 7 scalar mult. 7
X®A

5

Definition 1.3.22. Let C' be a F-coalgebra, a (right) C'-comodule is a F-vector space
M with a F-linear map p: M — M ® C' such that the following diagrams commute:

M P M®C M L - M®C

p Id®A o1 Id®e

MRRIC——mMRICRC M®F
pQLd

Notation 1.3.23. For any element m € M, we write p(m) = Z my®@mqy where mg € M

and my € C.

Example 1.3.24. Let (C,A,¢€) be a coalgebra. Take M = C with p = A. Then, (M, p) is
a right C'-comodule.

Example 1.3.25. Let (C,A,e) be a coalgebra and let V' be a F-vector space. Then
M =V ®C is a right C-comodule with p =1 ® A. Thus p(v®c) = Zv@cl ® c3.

Example 1.3.26. Let C' = F'G with coalgebra structure of the Example 1.3.9. Let M be

a G-graded module, i.e. M = @Mg where (M) ec s a family of F-vector spaces. Then
geG
M is a right C-comodule with p(mg) = m, ® g for any g € G and my, € M,.

We define the morphisms of comodules dualizing the corresponding definition

of morphisms of modules. We use commutative diagrams for this purpose.

Definition 1.3.27. Let A be an F-algebra, and let (X,7), (Y,v) be two left A-modules.
The F-linear map f: X — Y is a morphism of A-modules if the following diagram
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commutes:
AX 1% _Agy
Yy v
X 7 Y

Definition 1.3.28. Let C' be a F-coalgebra, and let (M,p), (N,¢) be two right C-
comodules. The F-linear map g: M — N is a morphism of C-comodules if the

following diagram commutes:

M J N
p ¢

1.3.5 Semisimple Hopf algebras

In this section, consider H to be a finite dimensional Hopf algebra. We will study

the relationship between integrals, semisimplicity and finite dimensional Hopf algebras.

Definition 1.3.29. A left integral in H is an element t € H such that ht = e(h)t, for
all h € H. Similarly, a right integral in H is an element t' € H such that t'h = e(h)t’,
for all he H.

l T

the F-space of left integrals in H, and by J the F-space of

Denote by f
H

H
right integrals in H.

Example 1.3.30. Let H = FG. The element t = Z g is a left and right integral in H.
geG

ht=h<Zg) =Y g=t=c(g)t.

geG geG

Indeed, if h € G,

If h = Z ayg where N is a subgroup of G and ay € F for all ¢' € N,

g'eN

ht = (Z ag/g’> t= > agt=e(h)t.

g'eN g'eN

This implies that t is a left integral in H. Similarly, t is a right integral in H.
Example 1.3.31. Let H = Hy be the Sweedler’s Hopf algebra. Note that

c(x+cx)=cx+x=c(c)(r+ cx),
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z(x + cx) = xex =0 = e(x)(x + cx).

Then x + cx is a left integral in H. On the other hand, note that
(x — cx)c = xc — cxe = x — xc = e(c)(x — cx),

(x —cx)r =0 = e(x)(z — cx).
!

= F(x + cz) and JT = F(x — cx).

Then x — cx is a right integral in H. Moreover J
H

H

Definition 1.3.32. An Hopf algebra H is called semisimple if every (left) H-module is

completely reducible.

A necessary and sufficient condition to determine whether a Hopf algebra is
semisimple is given by the following version of the Maschke’s theorem for Hopf algebras

due to Larson and Sweedler.

Theorem 1.3.33. [/7, Theorem 2.2.1]. Let H be any finite dimensional Hopf algebra.

Then the following conditions are equivalent:

e H is semisimple;

()
()

Example 1.3.34. Let Hy the Sweedler’s Hopf algebra. By Example 1.3.31, we have
l T

€ (J ) =e(F(x+cx))=0, and (J ) =¢(F(z —cx)) = 0. So Hy is not semisimple.
H H

In general, the Taft algebra H,,2(§) is not semisimple.

1.3.6 H-module algebras

In this section we study actions of a Hopf algebra H on an F-algebra A.

Definition 1.3.35. An F-algebra A is a (left) H-module algebra if the following con-
ditions hold:

MA1) A is a left H-module (with action of he H on a € A denoted by h - a.
MA2) h-(ab) =) (h1-a)(hy-b), for allhe H and a,be A.

MA3) h-14 =¢c(h)ly forallhe H.
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Remark 1.3.36. Some authors omit (MAS3) in the definition of H-module algebra since
(MA3) can be obtained from (MA2), indeed,

h-la=(h-14)14
Zhlg hy)) - By equation 1.4
= > (b1 La)(e(hs )
(

)
= Z (h1-14) (h h3)) - 14) By equation 1.5
= Z hy-14)(hy-( ( 3)-14)) By associativity of scalars from H
= By - (La(S(ha) - 14)) By (MA2)
= > h - (S(hs) - 14)
= (2 h1S(h2)) - 14 By associativity of scalars from H
=¢e(h)1a. By equation 1.5

Example 1.3.37. For any Hopf algebra H and any F-algebra A, we have a structure of
H-module algebra given by the trivial action h-a = e(h)a for all h € H and a € A.

Example 1.3.38. Let A be an H-module algebra with H = FG where G is a group. Since
A(g) = g®g for every g € G then g - (ab) = (g-a)(g-b) for every a,be A, and thus g acts
as an endomorphism of A. Moreover, g acts as an automorphism since ¢ ‘g = 1. Thus,
we have a homomorphism of groups G — Autp(A). Conversely if G is a group acting as

automorphism on any F-algebra A, then A is a FG-module algebra.

Example 1.3.39. Any Hopf algebra H acts on itself by the adjoint action, defined by
hel=(adh)l = > mlS(hy), forallh,le H.

To see this, it is sufficient to prove (MA2). For any h,l,m € H, we have

= > halmS(hy)

= Z hie(ho)lmS(hso) By equation 1.4
=) hle(ha)mS (ho)
= Z hyl1S(he)hsmS (hy) By equation 1.5

= > ((ad hy)1)((ad ha)m)

= > (ha - D)(hy - m)

As a particular case, if H = FG then (adz)y = xyx™!, z,y € G, and if H = U(g), then
(adx)h = zh —hx,x € g,h e H.



Chapter 1. Preliminaries 51

Example 1.3.40. Let Hy the Sweedler’s Hopf algebra (Example 1.3.19). Consider the
algebra Msy(F) of matrices 2 x 2 over F' and the Hy-action on My(F') induced by

ay as apr —Aas ai as —asz a; — a4
c- = and T - = )
a3 ag —as Ay as Qg 0 —as

To see that Ms(F) is an Hy-module algebra we will prove (MA2): Let A = (§182) and
B = (g; 22) be elements of My(F). Then,

a; das b1 b2 albl + agbg a162 + a2b4
¢ (AB) =c- =c-
as Qaq b3 b4 agbl + &4[)3 agbg + a4b4
_ a1b1 + a2b3 —a11)2 - a2b4 _ aq —Qa9 b1 —bQ _ (C . A)(C ) B)
—a361 — a4bg agbz + a4b4 —as ay —bg b4 '

and

. (AB) _ a1 Q9 b1 b2 . a1b1 + a2b3 Cblbg + a2b4
as ay bg b4 a3b1 + CL463 agbz + CL4b4
. (—a3b1 — a4bg a1b1 + agbg - agbg — a4b4)

0 —asb; — asbs

o —(llbg a1b1 — a1b4 + (lgbg 4 —CL3b1 + a1b3 - a4b3 —ang + a1b4 - a4b4
Clgbg —a3b1 + a3b4 - a4bg —a3b3 —(13b4

< aq —CL2> (-bg bl — b4> <—a3 a1 — a4> (bl b2>

= +

—as ay 0 —bg 0 —as b3 b4
=(c-A)(z-B)+ (z-A)(1-B).

Definition 1.3.41. Let H be an Hopf algebra and let A and B be two H-module algebras.
We say that a homomorphism of algebras ¢: A — B is a homomorphism of H-module
algebras or, simply, an H-homomorphism if ¢ is a morphism of H-modules, i.e.
¢(h-a) =h-¢(a) for every he H and a € A.

1.3.7 Free H-module algebra

Given H an m-dimensional Hopf algebra over a field F', let X = {x1,xs,...} be
a set of non-commutative variables and consider the vector space V' = Spanp{zy, xs, ... }®p
H. The free H-module algebra generated by X, denoted by F(X) is the tensor algebra

over V, that is,

FIUX)y=T(V)=@T(V) =P T"(Spanp{zi, 2s,...} ®p H).

n=0 n=0
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An element of F¥(X) is called H-polynomial. We prefer the notation
x?llxgz coxtm = (2, @) @ (i, Qhy) ® - ® (5, ® hyy).

in

Suppose {b1,..., by} is a basis for H (basis as vector space), then F#(X) is
isomorphic to the free algebra over F with free formal (non-commutative) generators %,
where j € {1,...,m} and 2 € X. Define in F#(X) the structure of a left H-module algebra

hi _hs h hayh1 h(2yhe h(n)yhn
h(:l?ilxiQ e )—:E X SRR

in 11 12 in
where h) ® ho) ® - - ® h(y) is the image of h € H under the comultiplication A of H
applied (n — 1) times.

The H-module algebra F7(X) has the following universal property: if a:: X —
W is any map from X to any H-module algebra W, then there exists a unique H-

homomorphism 3: F#(X) — W such that the following diagram commutes

X L FH(X)

w
where i: X — F¥(X) is the function i(z) = z'# € F#(X) for all z € X.

Given any H-module algebra W, we say that f € F(X) is an H-identity
of W if for every H-homomorphism ¢: F#(X) — W the polynomial f is in the kernel
of ¢. In other words, f(x1,s,...,2,) € FH(X) is a H-identity of W if and only if
f(wy,wy, ..., wy) =0 for all wy, ws, ... ,w, € W. The set Id” (W) of all H-identities of W
is a ideal of F7{X) and is invariant under all H-endomorphisms of F*{X). The ideals with
this property are called T"-ideals. If I is an T"-ideal of FZ(X) then Id” (FH(X)/I) = 1.
Two H-module algebras W, and W, are said to be T#-equivalent, and we write W ~pu
Wy), if Id" (W) = 1% (Wy).

Given a non-empty set S € FH(X), the class var” (S) of all H-module algebras
W such that f is an H-identity for W for all f € S is called the variety determined
or generated by S. Similarly, given an H-module algebra W, the variety of H-module
algebras generated by W, denoted by var” (W), is the class of all H-module algebras
satisfying the H-identities of TW. Hence we say that A € var’ (W) if and only if Id” (W) <
1d7(A).

1.4 Representation Theory

In this section we deal with the method of representation theory of groups in

the study of Pl-algebras. We will gather basic results on finite-dimensional representations
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and representations of the symmetric group. Finally, we will exploit the permutation action
of the symmetric group S,, on the space of multilinear polynomials in n variables. For
more detailed background see for example the books by Steinberg [58], James and Kerber
[34], and Sagan [54].

Even if most of the results in this section hold over a field of arbitrary charac-
teristic, we shall assume, throughout the section, that F'is an algebraically closed field of

characteristic 0.

1.4.1 Representation of finite groups
Let V' be a vector space. The general linear group GL(V') of V' is the group
GL(V) :={A e End(V) | A is invertible}.

If dimV = m < oo, fixing a basis of V', we identify the group GL(V) with the group

GL,,(F) of invertible m x m matrices with entries from F.

Definition 1.4.1. A representation of a group G is a homomorphism ¢: G — GL(V) for
some finite-dimensional vector space V. The dimension of V is called the degree of ¢.

We usually write ¢4 for ¢(g) and ¢4(v), or simply ¢,v, for the action of ¢, onve V.

Example 1.4.2. The trivial representation of a group G is the homomorphism ¢: G —
F\{0} given by ¢(g) =1 for all g€ G.

Example 1.4.3. ¢: Z/nZ — C\{0} defined by ¢([m]) = *™ ™™ is a representation.

Example 1.4.4. Let S, be the symmetric group of order n. Define ¢: S,, — GL,(F) on

the standard basis by ¢, (e;) = €. So, for instance, when n = 3 we have

010 0 01
Pazy= |1 0 0],¢a23=|[1 0 0
0 01 010

Definition 1.4.5. Two representations ¢: G — GL(V') and ¢: G — GL(W) are said to
be equivalent if there exists an isomorphism T:V — W such that pg = TogT ™" for all
ge G, ie., p, T =To, for all ge G. In this case, we write ¢ ~ . In pictures, we have

that the following diagram commutes.

<

!
S




Chapter 1. Preliminaries 54

Definition 1.4.6. Suppose that representations ¢V : G — GL(V;) and ¢ : G — GL(V3)
are gien. Then their direct sum ¢ = ¢V @ ¢?: G — GL(V, @ V4) is given by

Bg(v1,02) = (851 (1), 817 (12)).

Their tensor product ¢ = ¢V @ @ : G — GL(V; ® V%) is given by

bg(1 @ v2) = ¢V (11) @ B (v2).

Example 1.4.7. If n > 1, then the representation ¢: G — GL,(K) given by ¢, = I all
g € G is not equivalent to the trivial representation; rather, it is equivalent to the direct

sum of n copies of the trivial representation.

Definition 1.4.8. Let ¢: G — GL(V) be a representation. If W is a G-invariant subspace
of V, ie., p,(W) = W, then the representation p: G — GL(W) defined by p4(w) = ¢4(w)
for all g € G and w € W < V is called a subrepresentation of the representation
¢: G — GL(V). The subrepresentation ¢ is proper if W # {0} and W # V.

Example 1.4.9. Let ¢: S,, — GL,(F) be the representation given in example 1.4.4. Notice
that W = F(ey + -+ + e,) is a Sy-invariant subspace of V.= F", in fact, since o is a
permutation and addition is commutative, we have that ¢y (e1+- - -+e,) = Eo(1)t o) =

er + -+ + e,. Moreover, if n > 1, the subrepresentation ¢: G — GL(W), given by
@q(w) = ¢g(w) is proper.

Definition 1.4.10. A representation ¢: G — GL(V') is said to be irreducible if it has
no proper subrepresentations. ¢ is said to be completely reducible if it is a direct sum

of finitely many irreducible representations.

If F'G is the group algebra of G over F' and ¢ is a representation of G on V|

this representation induces a homomorphis of algebras ¢': FG — Endg(V') given by

d)/(Z agg) = Z ayd(g),

gelG geG

such that ¢'(1g) = 1.

Theorem 1.4.11 (Maschke). Every finite dimensional representation of a finite group
G is completely reducible. Then the group algebra F'G is isomorphic to a direct sum of
matriz algebras,

FG = My, (F)® - ® My, (F).

A representation of a group G uniquely determines a finite dimensional G-
module in the following way: if ¢: G — GL(V) is a representation, V' becomes a (left)
G-module by defining gv = ¢,4(v) for all g € G, v € V. On the other hand, if M is a
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G-module which is finite dimensional as a vector space over F', then ¢: G — GL(M), such

that ¢,(m) = gm, for g € G, m € M, defines a representation of G on M.

Let us introduce some notation. If V' is a vector space, ¢ a representation and

m > 0, then we set

mV =V ---®&V and mo=¢0dD---Do.

n times n times

Let oM, ..., ¢ be a complete list of irreducible representations of G, up to
equivalence (by Maschke Theorem). Let p a representation of G. If p ~ m¢M@- - -@m, o',
then m; is called the multiplicity of ¢ in p.

The regular representation of G is the homomorphism L: G — GL(FG)

defined by
LQ(Z aph) = Z angh.
heG heG

Considering F'G as a left G-module, we always assume that G acts on F'G in this way, as
a group of left translations. The subrepresentations of L correspond to left ideals of the

group algebra F'G' and the irreducible representations correspond to minimal left ideals of

FG.

By Maschke Theorem 1.4.11 the regular representation has the following de-
composition

FG=mVi®- - @V,

where n;V; =V, ®--- @V (n; times), n; is the multiplicity of V; in F'G, and V; = Z Fey
=1

is a minimal left ideal of M, (F). Notice that n; is the degree of the representation V.

Proposition 1.4.12. [58, Theorem 4.4.4] Every irreducible representation of G (up to

equivalence) appears in the reqular representation of G with multiplicity equal to its degree.

Recall from Definition 1.1.9 that an element e in an algebra A is called idempo-
tent if > = e. A nonzero left (resp. right) ideal I of an algebra A is called minimal ideal
if it contains no other nonzero left (resp. right) ideal. An element in A is called minimal

if it generates a minimal one-side ideal of A.

Proposition 1.4.13. If M is an irreducible representation of G, then M = V;, a minimal
left ideal of M,,,(F), for some i € {1,...,k}. Hence there exists a minimal idempotent
e € FG such that M = FGe.

Now, we will define the characters of the representations of a group G, which
describe the multiplicities of irreducible representations for F'G. Let tr: End(V) — F be
the trace function on End(V).
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Definition 1.4.14. Let ¢: G — GL(V) be a representation of G. Then the map x4: G —
F such that x4(g) = tr(¢,) is called the character of ¢. The character of an irreducible

representation is called an irreducible character.

Let C(G) be the vector space of class functions on G, (that is, all the functions
f: G — Fsuchthat f(g) = f(hgh ") forall g, h € G). It is easy to show that the character
belongs to C(G). One can define an inner product ( , ) on C(G) by setting

1

dx(@vg™),  x.ved@)

geG

Proposition 1.4.15. [29, Proposition 2.1.10] Let ¢V, ... ¢'*) be a complete list (up to
equivalence) of irreducible representations of G, with characters xi,...,Xxs, respectively.

Let p be a representation of G and write p ~ midpV @ - - - ® myp® . Then:

k
1. Xp = Z miXi-
i=1
2. {Xps Xi) = My, for alli.
k
3. <Xp>Xp> = me
i=1
4. Xp» Xp) = 1 if and only if p is irreducible.

5. Xp = Xp if and only if p ~ p', where p’ is another representation of G.

Thus, the group algebra F'G descomposes as FG = @F ¢, FG, with ;G =
M,,(F) and

~ X’g) D xilg g

(2
Gl =

is a minimal central idempotent of F'G.

1.4.2 Representations of the symmetric group

Definition 1.4.16. Let n > 1 be an integer. A partition \ of n is a finite sequence of

integers A = (A1,..., \) in decreasing order (i.e. \y = --- = A\, = 0) such that 2 i = n.
i—1

In this case we write A = n or [\ = n.

Definition 1.4.17. The Young diagram D, of a partition A = (A\1,...,\.) = n can be

formally defined as the set of points (i,j) € Z* such that 1 < j < N\, i =1,...,7.

Graphically, we draw the diagrams replacing the points by square boxes such

that the first coordinate ¢ (the row index) increases from top to the bottom and the second
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coordinate j (the column index) increases from left to right. For instance, for A = (4,3, 1),

the corresponding Young diagram is given by

For a partition A — n we shall denote by X' = (\|,...,))) the conjugate
partition of A\, where )\;- is the length of the j-th column of D).

Definition 1.4.18. Let A - n. A Young tableau T\ of the Young diagram D), is a
filling of the boxes of D, with the integers 1,2,...,n. The tableau T\ is standard if the
integers in each row and in each column of Ty increase from left to right and from top to

bottom, respectively.

Example 1.4.19. Let n = 3. For A = (2,1), the standard tableaux for \ are:

Proposition 1.4.20. /29, Proposition 2.2.2] Let n = 1. There is a one-to-one correspon-
dence between irreducible S,,-characters and partitions of n. Let {x | A = n} be a complete

set of irreducible characters of S, and dy = xx(1) be the degree of xx, A = n. Then

FS, =@ =@ My (F),

AN AN

where Iy = e F'S,, = My, (F) is the minimal two-sided ideal of F'S, corresponding to

A n, and ey = Z XA(0)o is the essential central idempotent, which is up to a scalar,

o€Sy
the unit element of I,.

We denote by M () the irreducible S,,-module related with the partition A - n.

The degrees of the irreducible representations of S, can be obtained in two ways.

Theorem 1.4.21. [22, Theorem 12.2.12] Let X - n.

1. The dimension dy of the irreducible S,-module M(X) is equal to the number of

standard Young tableaux T.
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2. (The Hook Formula)
n!
[T i+ XN, —i—j+1)
(ivj)EDk
Example 1.4.22. Let n = 5. For A = (3,2), the dimension d2) of the irreducible

Ss-module M (3,2) is:

dy =

d o 5
GH 743121 7
The five standard tableauz for A = (3,2) are:
213 4 ) 4 1 )
415 3195 3 2 2

Now we describe a complete set of minimal left ideals of F'S,,. Let A\ - n be a
partition and 7T be a Young tableau. The row stabilizer Ry, of T) is the subgroup of
S, which maps every element of {1,...,n} into an element standing in the same row in
T. The column stabilizer Cp, of T) is the subgroup of S5,, which maps every element of

{1,...,n} into an element standing in the same column in 7). Clearly Ry, n Cp, = {1}.
The following theorem describes the irreducible representations of the symmetric

group.

Theorem 1.4.23. [22, Theorem 12.2.7] Let X - n be a partition and Ty be a Young

tableau. Consider the element of the group algebra F'S,,

er, = Z (sgnt)or.

O'ERTA
TECT)\

n!
2 . . . .. .
1. ey, = aer,, where a = R i.e., ep, 15 an essential minimal idempotent of F'S,, and

generates a minimal left ideal of F'S,, (i.e. an irreducible S,-module).

2. If Ty and T are Young tableaux of the same partition A & n, then F'Sper, = FSper;

as S, -modules; moreover O'GT/\O'_I = ery for some o € S,.
3. If p is another partition of n, then FSyer, # FSyer,.

4. Bvery irreducible S, -module is isomorphic to F'Syer, for some partition X\ - n.

Example 1.4.24. Let n = 3. Given the Young tableau T\ = 1]2 of the partition

A= (2,1). Then
ety = (14 (12))(1 — (13) =1+ (12) — (13) — (1 3 2)

is an essential idempotent of F'Ss which generates a two dimensional irreducible S3-module.
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1.4.3 S,-actions on multilinear polynomials

In this section we introduce an action of the symmetric group S,, on the space

of multilinear polynomials in n fixed variables.

Let A be a Pl-algebra over a field of characteristic 0. By Corollary 1.2.22
Id(A) is determined by multilinear polynomials. We denote by P, the vector space of all
polynomials in F'{X ) which are multilinear of degree n. Clearly, P, is of dimension n! and
we can write

P, = Span{w,(1) - - To(m) | 0 € Sn}.

Consider the map

v: FS, — P,
Z AsO — Z UgTo(1) " Lo(n)s
o€Sy, o€SH

it is clear that 1 is a linear isomorphism. This isomorphism turns P, into a left S,,-module

with the action
0(2 QT Ty,)) = Zaixa(il) S T in) s ce€S,, wqel, x,---x; €P,.

The meaning of the left S,-action on a polynomial f(xy,...,x,) € P,, for
o€S, is
of(x1,...,20) = (o), - s Tom)),

that is, of permuting the variables according to o.

Since T-ideals are invariant under all endomorphisms, in particular, under
substitution of variables, we obtain that T-ideals are invariant under all permutations of
the variables. Thus, P, N Id(A) is a left S,-submodule of P,. Hence

Pn
Fuld) = 5 a3

has an induced structure of left S,,-module. P,(A) is the subspace of the relatively free
algebra F'(X)/Id(A) constituted by multilinear polynomials in the first n variables.

P,

Definition 1.4.25. Let A be a Pl-algebra and let P,(A) = Pilnd(A),
n M

The S,,-character

n=0,12....

Xn(4) = > ma(A)xa (1.6)

AFn
is called the n-cocharacter of the polynomial identities of the algebra A. The sequence

Xn(A), n=20,1,2 ...,

is called the cocharacter sequence of A. The non-negative integer

P,
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is called the n-th codimension of A. The non-negative integer

L(4) = 3 ma(4)

An

is called the n-th colength of A. Finally, the PI-exponent of A is defined by

exp(A) = lim { cn(A).
Since the n-th codimension ¢, (A) of the Pl-algebra A is equal to the dimension
of the S,,-module P,(A), we obtain inmediately that ¢,(A) is equal to evaluation of x,(A)
on the identity permutation, i.e., ¢,(A) = x,(A)(1). Moreover, [,,(A) counts the number

of irreducible S,, modules appearing in the decomposition of P, (A).

Example 1.4.26. Let A be a commutative non-nilpotent algebra. Since the T-ideal of
A coincides with the commutator ideal of F(X), the relatively free algebra F{(X)/Id(A)
is isomorphic to the polynomial algebra F[X] in infinitely many commuting variables.
Hence P,(A) = Span{x; ---x,} and o(zy -+ x,) = x1 -+ -2, for all o0 € S, that is, P,(A)
is the trivial module of S,. Therefore for all n, x,(A) = xn, ca(4) =1, [,(A) =1 and
exp(A) = 1.

An useful tool in computing the n-th cocharacter is the following.

Theorem 1.4.27. [29, Theorem 2.1] Let A be a Pl-algebra with n-th cocharacter x,(A) =

Z mx(A)xx. For a fized partition X + n, we have that myx = 0 if and only if for any
AFn
Young tableau T and for any polynomial f € P,, the algebra satisfies the identity er, f = 0.

1.4.4 Representations of general linear groups

In this section we will deal with the polynomial representations of general
linear groups. The main application of representation theory of GL,,(F') in the context of
Pl-algebras is the theorem of Drensky and Berele, which gives that any result on multilinear
polynomial identities obtained in the language of representation of symmetric group is
equivalent to a corresponding result on homogeneous polynomial identities obtained in

the language of representation of the general linear group.

Denote by V,, the m-dimensional vector space with basis {z1,...,z,,} over a
field F' and denote by F{(V,,) the free associative algebra freely generated by z1, ...z,
that is, F(V,,) = Fxy,...,Tm).

The canonical representation ¢: GL,,(F) — GL(V,,) of the general linear
group GL,,(F) on V,, is given by

m
0g(z;) = Z Qpiy, ©=1,...,m,
p=1
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where g = (ayq) € GLy,(F).

We shall build a representation ¢: GL,,(F) — GL(F{V,,)) by extending the
representation ¢ diagonally on F{V,,) by

(bg(xh t xzn) = Spg(x’h) T Spg(xin>7 ge GLm<F)7xi17 cey Ty, € F<Vm>

This turns F(V,,) in a left GL,,(F)-module which is a direct sum of its submodules
(FV )™ n=0,1,2,..., where (F(V,,))™ is the homogeneous component of degree n
of F{(V,,». Moreover, if f(z1,...,x,) belongs to the T-ideal U of F(X), and g € GL,,(F),
then

By, m)) = F(Byla0)s - Bylrm) € U,

and U nF(V,,) is GL,,(F)-invariant. Then the vector spaces U~ F{V,,,> and U n (F{(V,,,»)™
are submodules of F(V,,,).

Definition 1.4.28. Let ¢: GL,,(F) — GLs(F) be a finite dimensional representation
of the general linear group GL,,(F). The representation ¢ is polynomial if the entries
(0g)pq Of the s x s matriz ¢, are polynomials of the entries ay of g for g € GL,,(F),
k,l=1,....,m, p,q = 1,...,s. The polynomial representation ¢ is homogeneous of

degree d if the polynomials (¢4)p, are homogeneous of degree d.

The polynomials representations of GL,,(F') have many properties similar to

those of the representations of finite groups.

Theorem 1.4.29. Every polynomial representation of GL,,(F) is a direct sum of irre-
ducible homogeneous polynomial subrepresentations. Moreover, every irreducible homoge-

neous polynomial representation of GL.,(F') of degree n = 0 is isomorphic to a submodule

of (F(Viu))™

The irreducible homogeneous polynomial representations of degree n of G L, (F')

are described by partitions of n in not more than m parts and Young diagrams.

Theorem 1.4.30. [22, Theorem 12.4.4]

1. The pairwise nonisomorphic irreducible homogeneous polynomial G L,,(F)-represen-
tations of degree n = 0 are in 1-1 correspondence with the partitions A = (A1,..., An)
of n. We denote by W,,(\) the irreducible G L,,(F)-module related to \.

2. Let A\ = (A1, ..., \n) = n. The GL,,(F)-module W,,(X) is isomorphic to a submodule
of (FV )™ . Moreover, (F{V,,))™ has the decomposition

(Vi)™ = Y daW,

where dy is the dimension of the irredubible S,,-module M (\) and the summations

runs on all partitions X\ = n in not more than m parts.
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Now we introduce a right action of S, on (F{V,,))™ by

(l’il s l’in)Til = I; R 75 T - X4, € (F<Vm>)(n), T E Sn

(1) T(n)’

Pay attention that the left action S,, on P, defined in the previous section is

an action on the variables and now .5, acts on the position of the variables.

Example 1.4.31. Let n = 3 and f(x1,x2,23) = x32125.. Then 7 = (12) acts from the
left as follows:

T(z37172) = T(f (21, T2, 73)) = f(xr(1)7$7(2)7377(3)) = f(@g, 21, 23) = x32921.

On the other hand, we have that f(xy1, s, T3) = X3x1Ty = X, Tiy Ty With 17 = 3,0y = 1,13 =
2. Then T = (12) acts from the right as follows:

(x3x129)T = T = X;yTjy Tiy = T1T3To.

ir1) Lir(2) Lir(a)

Let A = (A1,...,Ay) be a partition of n in not more than m parts and let
¢, - - -, qr be the lengths of the columns of the Young diagram D, (that is, ¢; = )\; and
k = X\). Fix ¢ = ¢; and let sy = s)(x1,...,2,) be the polynomial of F(V},) defined as

follows:

sa(xy, ..., quj (T1,...,2q,),

where s,(x1,...,x,) is the standard polynomlal (see Example 1.1.23).
Example 1.4.32. 1. If A = (n), then s) = s(, 1_[31
J=1
2. If X = (1"), then sy = san)(T1,...,Tn) = Sp(@1, ..., 2p) = 2 (sgno)xs(1) - - To(n)-
oSy

The following theorem is the analog of Theorem 1.4.23 for representations of
GL,,(F).

Theorem 1.4.33. [22, Theorem 12.4.12] Let A = (\1,...,\y) be a partition of n in
not more than m parts and let (F{V;,))™ be the homogeneous component of degree n in

F(V).

1. The element sy(x1,...,x,), defined above, generates an irreducible G L,,(F')-submo-
dule of (F{V,)™ isomorphic to W, ()).

2. Every W, (\) € (F(V,))™ is generated by a nonzero element

wx(x1, ..., ) = sa(z1,..., 74 Zozg oy, € F.
o€Sy
The element wy(x1, .. .,z,) is unique up to a multiplicative constant and it is called

the highest weight vector of W,,(\).
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Lemma 1.4.34. If f and g are homogeneous polynomials of degree n in F{(V,,), then
the polynomial identity g = 0 is a consequence of f = 0 if and only if g belongs to the
GL,,(F)-module generated by f.

Proof. See Exercise 12.4.17 in [22]. O

There is a close relationship between the irreducible polynomial representations

of GL,,(F) and the irreducible representations of the symmetric group S,,.

Proposition 1.4.35. Let m = n, A = n and let W,,(\) € F(V,,.). The set M = W,,,(A) n
P, of all multilinear elements in W,,,(\) is an S,-submodule of P, isomorphic to M(\).

FEvery submodule M(X) can be obtained in this way.
Proof. See, for instance, Proposition 12.4.18 in [22]. O

The following theorem, due to Drensky [19] and Berele [11], establishes that
any result on multilinear polynomial identities obtained in the language of representations
of the symmetric group is equivalent to a corresponding result on homogeneous polynomial

identities obtained in the language of representations of the general linear group.

Theorem 1.4.36. Let A be a Pl-algebra and let
Xn(A) = Z max(A)xn, n=0,1,2...,
AFn

be the cocharacter sequence of the T-ideal of A. Then, for any m, the relatively free algebra
F(V,»/1d(A) is isomorphic as a G Ly, (F)-module to the direct sum

with the same multiplicities my(A) as in the cocharacter sequence (Equation 1.6) and

Win(N) = 0 if X is a partition in more than m parts. On the other hand, if m = n and
FVoy/Td(A) = - ny(A) Wi (N),
AFn

for some ny(A), then

Xn(4) = D ma(A)xa

An
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2 Superalgebras with superinvolution

The purpose of this chapter is to give a positive answer to the Specht’s problem
in the setting of finitely generated superalgebras with superinvolution (x-algebras). More
precisely, if W is a finitely generated =-algebra over a field F' of characteristic 0 satisfying
an ordinary identity, we shall find a finite generating set for the T3 -ideal of identities
Id*(W). We recall that this result was announced in [1]. Here we shall give an explicit
construction of Kemer’s polynomials that are the key ingredient in solving the Specht’s
problem (Theorem 2.4.5). Finally, we present a proof of the Hilbert-Serre Theorem in the

case of relatively free algebras of superalgebras with superinvolution (Theorem 2.5.15).

2.1 Kemer points and Kemer polynomials

Let I" be a T5-ideal. Recall that, since F' is a field of characteristic zero, I is

generated by multilinear *-polynomials. Let X be a set of variables. We can write
X =X5uXyuXiuXT,

where X is the subset of symmetric even variables (the y;’s), X is the subset of skew
even variables (the y; ’s), X" is the subset of symmetric odd variables (the z;"’s) and X, is
the subset of skew odd variables (the z;’s). Let Sy and S; be subsets of Y = X" u X, and
Z = X U X7 respectively, and let Ry = Y\ Sy, Ry = Z\S;. Of course, if S; = {x1,...,Tm},

then the variables z;’s are of homogeneous degree 7 and symmetric or skew.

Definition 2.1.1. Let f = f(X) be a multilinear =-polynomial. We say that f is al-
ternating in S; = {x1,...,x,}, i € {0,1}, if there exists a multilinear *-polynomial

h(Si, R;) := h(z1,...,%m, R;) such that

FX) = D (1) M&or); - - Ty, Ri).

o€Sm

If S1,...,S,, are p disjoint sets of variables of X (belonging to Y or Z), we say
that f(X) is alternating in S;,,...,S;,, if it is alternating in each of them.

Now we will consider polynomials which alternate in 2v disjoint sets of the
form S;, 1 =0, 1.

Definition 2.1.2. Let f = f(X) be a multilinear =-polynomial alternating in S;,, ..., Ss,,
If all the sets S;,,...,S,

2y

(say d;,i € {0,1}), then we will say that

belonging to the same set (Y or Z) have the same cardinality

f(X) is v-fold (dy, dy)-alternating.
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In order to define the =-index of a 75 -ideal I we need the notion of i-th Capelli
polynomial, i € {0,1}. Let X,,; = {z1,...,2,} be a set of n variables of homogeneous
degree i € {0,1} and let W = {wy,...,w,11} be a set of n + 1 ungraded variables. The
i-th Capelli polynomial ¢, ; of degree 2n 4 1 is the polynomial obtained by alternating the

set of variables z1,...,x, in the monomial w,z ws - - - x,w,+1. Hence

Cnyg = Z <_1)0w1x0(1)w2 0 To(n)Wnt-
o€S,

Clearly ¢, ;, i € {0,1} is a multilinear »-polynomial alternating in {zy ..., z,}.

Lemma 2.1.3. For any i € {0,1} there exists an integer n; such that the Ty -ideal T’

contains cCy, ;.

Proof. Let A be a finite dimensional =-algebra such that Id*(A) < T" (such algebra exists by
Theorem 1.2.35). We consider the decomposition A = Ay@® A; and we take n; = dim A; + 1,
i €{0,1}. It is clear that ¢,,; € Id*(A) and the proof is complete. O

As a consequence, we get the following result.

Corollary 2.1.4. If f = f(X) is a multilinear =-polynomial alternating on a set S; of
cardinality n;, then f € I'. Consequently, there exists an integer M; which bounds (from
above) the cardinality of the alternating homogeneous sets in any =-polynomial h which is

not in T".

Let I" denote the T-ideal of a finitely generated =-algebra. Now we are in a
position to define the #-index Ind*(T") of T'. Here we want to highligh that in [2] Aljadeff
and Belov introduced the analogous object in the setting of G-graded algebras, where G is

a finite group.

Ind*(T") will consist of a finite set of points (o, s) in the lattice L = N*x (N U o0).
Given a = (ap,a1), B = (Bo, /1) € N?, we put a < 8 if and only if oy < 3;, for i = 0, 1.
This gives a partial order in N?. As a consequence, we obtain a partial order on L. Given
(e, 8),(B,8") € L, we write («, s) < (8, ') if and only if either

1) a< f, or
2) a = and s < ' (notice that s < oo for every s € N).

We first determine the set Ind*(I")g, namely the projection of Ind*(I") into N?.

Definition 2.1.5. A point o = (g, ) is in Ind*(T)g if for any integer v there exists a
multilinear «-polynomial outside T' with v alternating homogeneous sets (of degree i) of

cardinality o; for every 1 =0, 1.
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Lemma 2.1.6. The following facts hold:

1. The set Ind*(T')g is bounded (finite).

2. If a € Ind*(')g, then o/ < « is also in Ind*(T"),.

Proof. The first statement follows since I' = Id*(A), for some finite dimensional =-alge-
bra A at light of Theorem 1.2.35. The second one is a consequence of the definition of
Ind*(T)o. O

Definition 2.1.7. A point a € Ind*(T')q is extremal if for any B € Ind*(T")y, 5 > «

implies B = «.

We denote by Ey(T") the set of all extremal points in Ind*(T"),.

For any point a = (o, 1) € Ep(I") and every integer v, consider the set €2, ,
of all v-fold alternating polynomials in homogeneous sets of cardinality o, where i = 0,1,
that are not in I'. Given f € Q,,, we consider the number sr(a,v, f) of alternating
homogeneous sets of disjoint variables, of cardinality a; + 1, ¢ = 0, 1. The set of integers
{sr(a, v, f)}jeq,, 18 bounded. We define sp(a, v) = max{sr(a, v, f)}eq.., . The sequence
sr(«,v) is monotonically decreasing as a function of v. As a consequence, there exists
an integer u = p(I", ) for which the sequence stabilizes, that is for v > p, the sequence
sr(a, v) is constant. We let s(a) = lim sr(a,v) = sp(a, ). At this point the integer
depends on «. However, since the set Ey(I') is finite by Lemma 2.1.6, we take p to be the
maximum of all s considered above. Keeping in mind the definition of yx, we have the

following definitions.

Definition 2.1.8. The =-index Ind*(T") of T is the set of points («,s) € L such that

a € Ind*(T')g and s = sp(a) if a« € Eg(T) or s = 0 otherwise.

Definition 2.1.9. Given a Ty -ideal T' containing the =-identities of a finite dimensional
«-algebra A, we let the Kemer set of I', denoted K ('), be the set of points («,s) in
Ind*(T), where v is extremal. We refer to the elements of K(I') as the Kemer points of
I.

The next remark follows immediately.

Remark 2.1.10. Let T'y 2 T’y be two Ty -ideals containing I1d*(A), where A is a finite

dimensional =-algebra. Then:
1. Ind*(T"y) < Ind*(I'9).

2. For every (a,s) € K(I'1) there is a Kemer point (3,s') € K(I's) such that (a, s) <
(8,s).
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We are now ready to define Kemer polynomials for a T5-ideal T'.

Definition 2.1.11. Let (o, s) be a Kemer point of I'. A =-polynomial f is said to be
a Kemer =-polynomial for the point (a,s) if f ¢ ' and it has at least v-folds of
alternating homogeneous sets (of degree i) of cardinality o; (small sets), where i = 0,1,
and s homogeneous sets of disjoint variables o (of some homogeneous degree) of cardinality

a; + 1 (big sets). A =-polynomial f is Kemer for I' if it is Kemer for a Kemer point of T.

If we choose a Kemer point (a, s), then « is extremal. Because of this, we get

the next result.

Remark 2.1.12. A «-polynomial f cannot be Kemer simultaneously for different Kemer

points of .

2.2 Decomposition in basic *-algebras

In this section we shall introduce the so-called basic =-algebras and we shall
prove that every finitely generated =-algebra satisfying an ordinary non-trivial identity is

T5-equivalent to the direct product of finitely many basic =-algebras.

First, let A be a finite dimensional =-algebra and consider its Wedderburn-

Malcev decomposition:

A=B+J(A).

The semisimple part B is a =-algebra too and so we can consider its decomposition in

symmetric and skew spaces of homogeneous degree 0 and 1, respectively:
B=By®B, =B ®B, ®B; ®B;.
We use the following notation:
e d(B;) =dimp B;, i € {0, 1},
e n(A) is the nilpotency index of J(A).
We write Par*(A) to indicate the 3-tuple (d(By),d(B;),n(A) — 1) e N? x N,
Proposition 2.2.1. If (o, s) = (ag, a1, s) is a Kemer point of A, then («, s) < Par*(A).

Proof. Suppose, by contradiction, that this does not happen. Hence, «; > d(B;) for some
i = 0,1, or ; = d(B;) in any case and s > n(A) — 1. We shall see that both these
possibilities cannot occur. First recall that, since (a,s) is a Kemer point of A, then
there exist multilinear *-polynomials f which are non-identities of A with arbitrary many

alternating homogeneous sets of cardinality «;, ¢ = 0, 1.
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1. Suppose «; > d(B;), for some i = 0, 1.
We have that in each such alternating set there must be at least one radical substitu-
tion in any non-zero evaluation of a polynomial f. This implies that we cannot have
more than n(A) — 1 alternating homogeneous sets of cardinality «;, contradicting

our previous statement.

2. Suppose «; = d(B;) in any case and s > n(A) — 1.
This means that we have s alternating sets (of a certain homogeneous degree) of
cardinality a; + 1 = d(B;) + 1, for some i = 0, 1. Again this means that f will vanish
if we evaluate any of these sets by semisimple elements. It follows that in each one
of these s sets at least one of the evaluations is radical. Since s > n(A) — 1, the
polynomial f vanishes on such evaluations as well and hence it is a =-identity of A.

We reach a contradiction in this case too, and this complete the proof.
O

In order to establish a precise relation between Kemer points of a finite di-
mensional =-algebra A and its structure we need to find appropriate finite dimensional
algebras which will serve as minimal models for a given Kemer point. We start with the
decomposition of a finite dimensional =-algebra into the product of subdirectly irreducible

components.

Definition 2.2.2. A finite-dimensional x-algebra A is said to be subdirectly irreducible
if there are no non-trivial *-ideals I and J of A such that I nJ = (0).

Lemma 2.2.3. Let A be a finite dimensional =-algebra over F. Then A is Ty -equivalent
to a direct product Cy x --- x C, of finite dimensional subdirectly irreducible -algebras.
Furthermore for every i = 1,....n, dimp(C;) < dimp(A) and the number of =-simple

components in C; is bounded by the number of such components in A.

Proof. If A is subdirectly irreducible there is nothing to prove. If A is not subdirectly
irreducible, then there exist non-trivial =-ideals I and J of A such that In.J = (0). It is clear
that A/I (and at the same way A/J) is a =-algebra with superinvolution *: A/ — A/I
induced from the superinvolution * of A by *(a + I) = a* + I, for any a € A. Moreover, it
is easy to prove that A is Ty -equivalent to A/I x A/J. This completes the first part of the

proof.

The second one follows by induction by taking into account the fact that
dimp(A/I) and dimp(A/J) are strictly smaller than dimp A. O

By Theorem 1.2.31, a =-algebra A can be decomposed as

A=B+J=A x-x Ay + J,
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where J is the Jacobson radical of the algebra (a =-ideal) and A,,..., A, are simple

=-algebras.

Definition 2.2.4. Let A be a finite-dimensional -algebra and let [ = f(xq,...,2,) be
a multilinear =-polynomial. We say that A is full with respect to f, if there exists a
non-vanishing evaluation of f such that every =-simple component is represented (among
the semisimple substitutions) in any substitution. In other words, if f(Z1,...,Zm) # 0 for

suitable substitutions x; such that

A 0 {Zy, . T} #, foralll <k <gq.

A finite dimensional =-algebra A is full if it is full with respect to some

multilinear =-polynomial f.

Lemma 2.2.5. A finite dimensional =-algebra A is full if and only if we have a permutation
m of {1,...,q} such that
AryJAryd - JAz(g) # 0.

Proof. It Ar1yJAx@) - JAx(g) # 0, then A is full with respect to the monomial x; - - - 94_1.
On the other hand, suppose A is full with respect to a monomial f. Since the substitutions
pass through each component and f is non-vanishing in A, these substitutions should be

connected by radical substitutions and the proof is complete. O]

For i = 1,...,q, let e; denote the identity element of A; and consider the

decomposition
q
A= @ 6iA€j.
ij=1
By the previous Lemma, whenever ¢, .. .,1, are distinct, it follows that if A is not full,
6i1A€i2 te eiqilAqu = € J6i2 ce eiqflJeiq = 0. (21)

Remark 2.2.6. Let A be a =-algebra over a field F of characteristic zero and let F
be the algebraic closure of F. Then A = A®p F is a =-algebra with superinvolution
(a®a)* = a* ®a. We have that

e dimp A =dimz A,

e Id*(A) = 1d*(A), viewed as #-algebras over F,

We wish to show that any finite dimensional algebra may be decomposed (up
to Ty -equivalence) into the direct product of full algebras. Algebras without an identity

element are treated separately.
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Lemma 2.2.7. Let A be a =-algebra subdirectly irreducible and not full.

1. If A has an identity element then it is Ty -equivalent to a direct product of finite-

dimensional =-algebras, each having fewer =-simple components.

2. If A has no identity element then it is T3 -equivalent to a direct product of finite-
dimensional =-algebras, each having either fewer =-simple components than A or else

it has an identity element and the same number of =-simple components as A.

Proof. Suppose first that A has unit. By Equation (2.1)

67;11461'2 coee €iq71A€iq = € J€i2 cee eiqfljeiq = 0.

Let us consider the commutative algebra R = F[\y, ..., \;]/I, where [ is the
ideal generated by A? — \; and Ay - - Ag- We denote by ¢€; the image of \; in R. It is clear
that é? = ¢; and é;---¢, = 0. The algebra A ®p R is a *-algebra with superinvolution
* induced via the superinvolution = of A as in Remark 2.2.6. Let A be the #-subalgebra
generated by all e;Ae; ® é;¢;, for every 1 < 4,7 < g. We claim that A ~gpx A. Clearly
Id*(A) c Id*(A®F R) < Id*(A). Hence it suffices to prove that any non =identity f of A
is also a non-identity of A. Clearly, we may assume that f is multilinear. Evaluating f
on A it suffices to consider maps of the form zf — v}, where x € {y, 2} and 4, € {0, 1}
(symmetric or skew elements of homogeneous degree 0 or 1) and v;"* € ¢;, Aej, ,, for some
k. In order to have vj"® ---v* % 0, the set of indices {j,} must contain at most ¢ — 1

distinct elements, so e;, - - ¢;, # 0. Then
frE e, .. vt ®e,) = fluit, .. vt @&, - &, # 0.
Hence f is not in Id*(A) and this proves the claim.

In order to complete the proof we need to show that A can be decomposed
into a direct product of #-algebras, each having fewer #-simple components. Let [; =
(e; ®Ej, €5 ®¢&;) be a +ideal of A. Hence

q q q

ﬂ 1@ea-108) (L) =0oa-&) (L] =)

j=1 j=1 j=1
It follows that A is subdirectly reducible to the direct product of fl/ I;. Furthermore, each
component fl/ I; has less than ¢ *-simple components since we eliminated the idempotent

corresponding to the j-th =-simple component. This completes the proof of the first part

of the lemma.

Consider now the case in which the algebra A has no identity element. In the

notation of Remark 1.1.17, let ¢y = 1— (e1 + -+ + eq); we consider the decomposition

q
A~ @ €iA€j
i,j=0
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and we carry on as in the first case but with ¢ + 1 idempotents, variables, and so on. As
above, A/I; will have less than ¢ *-simple components if 1 < j < ¢ whereas A/l will have

an identity element and exactly ¢ =-simple components. The proof now is complete. [

By putting together Lemmas 2.2.3 and 2.2.7 we get the following result.

Corollary 2.2.8. Every finite dimensional *-algebra A is Ty -equivalent to a direct product

of full, subdirectly irreducible finite dimensional =-algebras.

Remark 2.2.9. In the decomposition above, the nilpotency index of the components in

the direct product is bounded by the nilpotency index of A.

In the following definition we introduce the so-called minimal algebras.

Definition 2.2.10. We say that a finite dimensional *-algebra A is minimal if Par*(A)
is minimal (with respect to the partial order defined before) among all finite dimensional

«-algebras which are Ty -equivalent to A.

Definition 2.2.11. A finite dimensional =-algebra A is said to be basic if it is minimal,

full and subdirectly irreducible.

As a consequence of the results and definitions of this section we obtain the

following theorem.

Theorem 2.2.12. FEvery finite dimensional =-algebra A is Ty -equivalent to the direct

product of finitely many basic =-algebras.

Combining this result with Theorem 1.2.35 we obtain the following corollary.

Corollary 2.2.13. FEvery finitely generated =-algebra W satisfying an ordinary non-trivial

identity is Ty -equivalent to the direct product of finitely many basic *-algebras.

2.3 Kemer's lemmas

The task in this section is to show that any basic =-algebra A has a Kemer
set which consists of a unique point (o, s) = Par*(A). To achieve this, throughout the
section we show a constructive way to obtain the appropriate Kemer #-polynomials that
will comprise the backbone for the rest of the work on superalgebras with superinvolution.

We start with some preliminaries in the framework of finite dimensional simple =-algebras.
Let A = (a;j) be an n x n matrix. For j = 2,...,n, the j-th hook of A is the
set of elements:

{alj, A5,y .+« -5 Ajj, Aj1, Aj2, - - . 7ajj_1}.
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Remark 2.3.1. There exists a product of the matriz units e;;, i,j € {1,...,n}, with value

€11-
Proof. Let us consider the matrix £ = (e;;) € M,,(F) and let
€15,€25,--.,€55,€51,€52,...,€551
be the elements in the j-th hook of E. We have
€1j€j2€2j€53€3j * * * €jj1€j_15€;j€j1 = €11.

For any j = 2,...,n, we denote by H; the previous product of matrix units. The proof

now works because

611H2H3 - H, = eq;.
]

Now let us consider the =-algebra M ,(F') with the transpose superinvolution

trp. Notice that:

(MslF), trp)] = { N ;()) Xe Mk<F>},

(MslF), trp)y = { N _2() X Mk<F>},
(me%mﬁz{‘ggyyzqdzzzﬁxzmmw%,
M@mﬂjwh:{‘2§>W:Yﬂ2:—TJQEAMﬂ}.

The following elements form a =-basis (i.e., basis as a vector space with

homogeneous symmetric or skew elements) of (M, x(F), trp):

o {eij+erjnrit, ,7=1,... k.

o {eij—erijryi}, ,5=1,... k.
o {€iktj = Cjktis Chtij T Chijir Chtii), 1<i<j<kandl=1,... k.
o {€iktj T Ciktis Chtij — Chijir Clkti), 1<i<j<kandl=1,... k.

Lemma 2.3.2. There exists a product of the above =-basis elements with value eq;.

Proof. Let us consider the matrix units e,,, p,g = 1,...,2k. It is easy to see that in

the above #-basis there is at least one element in which e,, appears with a plus, for
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any p,q € {1,...,2k}. When there are two elements of this kind, we make the following
choice: we fix the element of the #-basis corresponding to e,, to be that one in which
in the second part of the element appears a minus. We shall denote by e,, the element
of the #-basis corresponding to e,,. For instance, e;; appears in the #-basis both in
€11+ €expt1k+1 and eg 1 — exq1p11. Hence €11 = €11 — €x41,%+1. In this way we are sure that

Cht1kt+1 = €11 + k141 (nOtice that exiq k41 appears with a plus, as desired).

Now we construct the following 2k x 2k matrix E: in the entry (p, q) we put
the element of the *-basis €,,. As in Remark 2.3.1, we denote by H; the product of the
elements in the j-th hook of the matrix E, 7 = 2,...,2k. Moreover, in any element of the

#-basis of the form ey, + e.q4, we have a # c. Hence, as desired, we get
éllHQ tee Hgk = €11- (22)

]

Let us consider the monomial M = w; - - - wy2, where each variable w; has a
certain homogeneous degree and it is symmetric or skew according to the corresponding

element in the product in (2.2).

If we border each matrix e; ; in the product (2.2) with idempotents e; ; and e; ;,
then we can consider the monomial obtained by M by surrounding each variable with a

variable of homogeneous degree 0:
M' =
= Y1WnY2W2 * - - Yur2Wag2Y4k2 41-

Clearly, the monomial M’ has the property that there exists an evaluation ¢

such that ¢(M') = e;;. Moreover, we have

(€ii + €hrikti) ‘; (€i; — ek:-i—i,k-&-i), f1<izj<h

€j7]’ = (23)
(ez,z + ek-‘rz,k-i-z) 5 (ez,z 6k+z,k-‘rz)7 lfj — L+ i, 1<i< k.

Thus we can write each bordering element e;; in terms of the *basis elements.
In this way, we can replace each variable y; in the monomial M’ by (y;" + y;)/2 or
(y" — y;)/2 according to (2.3), where y;" is a symmetric variable of zero degree and y; is
a skew variable of degree 0. Denote by P this *-polynomial. Then we have the next result

that is a consequence of Lemma 2.3.2.
Lemma 2.3.3. Consider the =-polynomial

— — — + —
pP= yt Jg 91, 1 g Y2 i - Va2 ; a2, Yar241 i Yar241

defined above. Then there ezists an evaluation ¢ of P such that ¢(P) = ej;.
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Now let us consider A = (Mj (F'), osp) be the =-algebra of (k+ 21) x (k + 2[)

matrices endowed with the orthosymplectic superinvolution. Recall we have the following:

Ay

Ag

Ay

{
{
{
{

X
0

N o NS o

§>LX=XﬁT:—QWQVXEMMR,TGMMF%,

0
T

Zt
OQ) |Z is a2l x k matrix} ,

> X =-X'" T=QT'Q, Xe MF), Te MQI(F)},

—ZtQ

0 ) |Z is a 2l x kmatrix}.

It is easy to see that the following sets Bi,By,B;,B; form a #-basis of

Ad Ay, AT, AT respectively:

( €ii 1 <1<k,
€ij T €5 1§i<j<l€,
By = 1 Chtik+j T Chrlrjhaiei L <0,7 <1, ¢
Chtik+ldj — Chrjhtiei 1 <1 <j <,
Chtltihtj — Chiltjhes 1 <1 <j<I[)
( 3\
€ij — €ji l<i<j<k,
€k+ik+) — Cktl+jk+l4i 1<i,j5<I,
By = Chtiktltj T Chrjhriri 1 <i1<j<I, >
Chtltik+i T Chrlrjhri 1 <1 <] <,
Choti k+1+i 1 <<,
L Ck+1+i,k+i 1<i<l )

B — ) Cikti T Cherltgi I1<i<k1<j<l,
1<i<hl<j<lI

€ik+i+j T Ck+ji

_ Ciktj T Chyteji 1<i<k1<j<I,
I1<i<kl<j<l|

1 —
€ik+l+j — Ck+j,i

With a similar construction to that of Lemma 2.3.2, it is not difficult to show

that there exists a product of the above #-basis elements with value ey;. In this way, we

get an analog of Lemma 2.3.3.

Lemma 2.3.4. Let (Mj, o, 0sp) be the =-algebra of (k+21) x (k+2l) matrices endowed with

the orthosymplectic superinvolution. Then there exists an evaluation ¢ of the =-polynomial

P =

y oy

Yy * ?/2_w ] y(J;c+2l)2 * Y(k+21)2 y(J;c+2l)2+1 x y(_k+2l)2+1

2

wl 2 2- . 2

W(k+21)2 9

in a *-basis of (Mg, 0sp) such that o(P) = ey;.
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Now let us focus our attention on the *-algebra Mj, ,(F) @ Mj, ,(F)*? endowed

with the exchange superinvolution. A =-basis of such an algebra is the following:
B = {(eij, €ij), (€ij, —€ij) Vi j=1.. kth-

We construct the following two matrices: A" is the matrix having in the entry
(i,7) the element (e;;,e;;) whereas A~ is the matrix having in the entry (4, j) the element
(€ij> —eij). Now let Hj (H;,
matrix A" (A7, resp.). By taking into account the multiplication rule in equation (1.3),

resp.) be the product of the elements in the j-th hook of the

we get
Q= (6117611)HQJr : "Hlj-i-h = (e11,0) and Q = (€11, —eu) Hy - - Hyp = (e11,0).

If we consider the same product @’ but in the opposite direction, i.e. we start
with the last element and we finish with the first one of Q" (we denote such a new product
by Q*), we get
(0,e11) it k+ h + kh is even,

(0, —eq1) if k+ h + kh is odd.

*

Lemma 2.3.5. Let us consider the monomials M = wy - - w(1p)2 and M* =y -- “Ukth)2
where each variable w; and u; has a certain homogeneous degree and it is symmetric or
skew according to the corresponding element in the products Q and Q* above, respectively.
Then we can consider the monomials obtained by M and M™, respectively, by surrounding

each variable with a symmetric even variable:
M’ =y wyz ws - 'y@+h)2w(k+h)2y(+k+h)2+1

(M*) =nfwngus - U&Jrh)zu(mh)?U&Jrh)zH.
Consider the evaluation ¢ of the =-polynomial f = M' + (M*)" (+ if k + h + kh is even,

— otherwise) :

1. each wvariable w; (u;, resp.) is evaluated in the corresponding element of QQ (QF,
resp.),
2. each variable y;f, t);-r is evaluated in the suitable idempotent element (eljlj, eljlj) €

My (F) @ My, (F)*7.

We get that
o(f) = (ewr, en).

Finally, let us focus our attention to the =-algebra Q(n) @ Q(n)**? endowed

with the exchange superinvolution. A =-basis of such an algebra is the following:

B = {(eija 62’3'), (eij7 _eij)a (Ceija Ceij>7 (Ceija _Ceij)}i,jzl,...,n-
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We construct the following four matrices: Aj is the matrix having in the entry
(7, 7) the element (e;j, €;;), Ay is the matrix having in the entry (¢, j) the element (e;;, —e;;),
A7 is the matrix having in the entry (i, j) the element (ce;j, ce;;), A7 is the matrix having
in the entry (i, j) the element (ce;;, —ce;;). Now, let H]Q’Jr, HJ(-)’_, H{™, H{'™ be the product
of the elements in the j-th hook of the matrices Aj, Ay, A and A_, respectively. Consider

the following products:
Q = (en,en)Hy™ -+ HYF (ceqy, cen)) Hs™ -+ HOF

Q, = (611, —611)Hg’_ R Hg’_(ceu, —ceu)HQC’_ s HTCL’_.

Hence we have
(e11,0) if n is even,

(cep1,0) if n is odd.

Q-Q -

If we consider the same product Q" but in the opposite direction, i.e., we start

with the last element and we finish with the first one of Q" (we denote such a new product

by @), we get
(0,e11) if n is even,

(0, —ceqp) if nis odd.

Q" -

Lemma 2.3.6. Let us consider the monomials M = wy - wqp2 and M™ = uy -+ Usgy2,
where each variable w; and u; has a certain homogeneous degree and it is symmetric or
skew according to the corresponding element in the products QQ and Q* above, respectively.
Then we can consider the monomials obtained by M and M*, respectively, by surrounding

each variable with a symmetric even variable:
M = yfwiyiws - -y§n2w2n2y§nz+1, and (M*)" =9 urngug--- U;nzuznﬂﬁnzﬂ-
Finally we construct the following =-polynomial f:
M+ (M*) if n is even,
Mzt — (M*)'z" ifn is odd.
We consider the following evaluation p:

1. each wvariable w; (u;, resp.) is evaluated in the corresponding element of @ (QF,

resp.),

2. each variable y; is evaluated in the suitable idempotent element (ey;1,, e1,) € Q(n) ®

Q (n)sop)

3. the variable z* is evaluated in the element (ceyy,cery).
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We get that
o(f) = (ewr, en).

Remark 2.3.7. In all the results above we have considered monomial or polynomial with

value e; or (ej1,e11). Of course it is possible to obtain the same result for any e; or

(€ii, €ii).-
The following result is the =-algebra version of Kemer’s First Lemma.

Lemma 2.3.8. Let A = B+ J be a finite dimensional =-algebra, subdirectly irreducible
and full with respect to a polynomial f. Then for any integer v there exists a non-identity
f" of A in the Ty -ideal generated by f with v-folds (dy, dy)-alternating, where d; = dim B;
forie{0,1}.

Proof. Consider the Wedderburn-Malcev decomposition A = B +J = Ay x --- x A, + J,

where the A;’s are »-simple algebras (Theorem 1.2.31). Since A is full, there is a multilinear

+-polynomial f(z7,... ,xf, wy,...,wy) (where z € {y,z} and wy,...,w, are variables
disjoint from {z7,...,27}) which does not vanish under an elementary evaluation of the
form xji = v;j’i eA;,j=1,...,q,1; € {0,1}, and the variables w;’s get elementary values
in A.

Now we consider the polynomial obtained from f by multiplying on the left
each one of the variables {z7,... ,x;—r} by symmetric variables of even degree y", ... ,y;
respectively. Clearly such a polynomial is a non-identity since the variables y;.”s may be
evaluated on the identity elements 14, of A;. By Remark 1.2.34, we may write the identity

element of Aj as 14, = e11+- - +en;m; Or 1a, = (€11,€1,1) + -+ (€n;m;s €n;m;). Applying

linearity there exists a non-zero evaluation where the variables y; . .. ,y; take values of
the form e;, ;; or (ei,;,€i,,4,), with 1 <i; <ny, j=1,...,¢.
Now we replace each variable y, ...,y by *-polynomials Y; ..., Y, such that:

o Y is v-folds (dimp(A;)o, dimp(A;);)-alternating, j = 1,...,¢,
o Y; takes the value e; ;, or (e;, i, €i,4),7=1,...,q
In the construction of the *-polynomials Y; we have to consider 4 distinct cases.

Case 1.1: A; = M, ,(F') with the transpose superinvolution trp.

Fix 1 < i; < k + h and consider the *polynomial P constructed in Lemma
2.3.3:

ity Yty Yie T Yne, Yieer T Ve
w1 wog - - Wyk2 .
2 2 2 2
We refer to the variables w;’s as designated variables . Next we consider the product of

P =

v *-polynomials P (with distinct variables). We denote the long =-polynomial obtained
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in this way by P,. Finally, we construct the s-polynomial Y; by alternating separately
the variables of even/odd degree in each set of designated variables w; of P,. Clearly the
+-polynomial Y; is v-folds (dimp(A;)o, dimp(A;);)-alternating. We only need to show that

Y, takes the value ¢;, ;., so that it will be a non-identity of A;.

By Lemma 2.3.3 and Remark 2.3.7 there exists a suitable evaluation ¢ of P
such that ¢(P) = e;, ;,. We consider the following evaluation for Y;: for each polynomial P
(with distinct variables) we consider the corresponding evaluation ¢ giving out the value
€3

Notice that the monomials of Y; assuming a non-zero value under this evaluation
are those corresponding to permutations that only transpose the variables corresponding
to elements of type e;, j, + €;, 5, and €;, j, — €, j,- Moreover, it is not difficult to see that
each of these monomials takes the value e;, ;; (considering it with the sign). In conclusion,

the evaluation of Y} is a scalar multiple of e;, ;; and since charF' = 0 we are done.
Case 1.2: A; = M, ,(F) with the orthosymplectic superinvolution.

This case can be treated as the previous one. We just need to consider the

#-polynomial

yi Y s y(J;c+2l)2 * Y(k+21)2 y(J;c+2l)2+1 x y(_k+2l)2+1
9 w1 9 Wy - 9 W(k+21)2 9

P =

constructed in Lemma 2.3.4 and then define the #polynomial Y; as before. Such a
polynomial is v-folds (dimp(A;)o, dimg(A;);)-alternating and assume the value e;, ;; as

desired.
Case 2: Aj = Mk%h(F) @ Mhh(F)SOp.

Fix 1 < ¢; < k+h and consider the *-polynomial f (remark it is not multilinear)

constructed in Lemma 2.3.5:

f:M/iM/*

=yl wiys wa - 'y&%)zw(mh)w&%)zﬂ 0wz Uz Uz;g+h)2u(k+h)2n&+h)2+1‘

We consider the product of v =-polynomials f (with distinct variables) and
we denote the long #polynomial obtained in this way by P,. Finally, we construct the
+-polynomial Y; by alternating separately the variables of even/odd degree in each set of des-
ignated variables w; of P,. Clearly the #-polynomial Y; is v-folds (dimp(A;)o, dimp(A;)1)-
alternating. We need to show that Y, is a non-identity of A;.

By Lemma 2.3.5 and Remark 2.3.7 there exists a suitable evaluation ¢ of
f such that o(f) = (ei,,¢€,,). Notice that the permutation that only transposes the
variables corresponding to elements of the type (e; j,, €i,.j,) and (e;, j,, —€;,.4,) does not

vanish in the evaluation : in fact, the evaluations in this kind of permutations are equal
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to (es,,i;, —€i;,,). Transpositions of other types vanish (in the above evaluation) because
the bordering elements are different. Therefore, the evaluation of a permutation obtained
from an even number of transpositions is equal to (e;, i, €;; ;) and the evaluation of a
permutation obtained from an odd number of transpositions is equal to (e, i;, —€;; ;). In

conclusion the evaluation ¢ of Yj is a scalar multiple of (e;, i, €i;.i;) — (€i;.6,, —€i.i;)-

Case 3: A; =~ Q(n) ® Q(n)*?.

Fix 1 < 4; < n and consider the *-polynomial f defined in Lemma 2.3.6. Notice
that the polynomial f is not multilinear. We consider the product of v *-polynomials f
(with distinct variables) and we denote the long =-polynomial obtained in this way by P,.
Then we construct the =-polynomial Y; by alternating separately the variables of even/odd
degree in each set of designated variables w; of P,. Clearly the *-polynomial Y; is v-folds

(dimp(A;)o, dimp(A;);)-alternating. We need to show Y, is a non-identity of A;.

By Lemma 2.3.6, there exists a suitable evaluation ¢ of f such that ¢(f) =
(€i,.;, €i,i;)- Notice that the permutation that only transposes the variables corresponding
to elements of the type (e, j,,€i,j,) and (e;, j,, —€s,4,) or of the type (ce;, j,,ces j,) and
(cei j,» —Cei, j,) does not vanish in the evaluation ¢: in fact, the evaluations in this kind
of permutations are equal to (e, ;;, —¢;, ;). Moreover, transpositions of other types vanish
(in the above evaluation) because the bordering elements are different. Therefore the
evaluation of a permutation obtained from an even number of transpositions is equal
to (es,.,,¢€i;4;) and the evaluation of a permutation obtained from an odd number of
transpositions is equal to (eiﬁ

ij» —€i, ;). In this way the evaluation ¢ of Yj is a scalar

multlple of (eijvij, el-jﬂ-j) — (eijﬂ'j, —eijﬂ-j).

In order to complete the proof we construct a =-polynomial f’ by alternating
the (symmetric/skew of a certain homogeneous degree) sets which come from different
Y;’s. Clearly f'¢ Id*(A) and f’ has v-folds (dy, di)-alternating as desired and the proof
follows. O

Proposition 2.3.9. Let A be a finite dimensional =-algebra, full and subdirectly irreducible.
Then there is an extremal point o in Eo(A) with o = (d(A)o),d(A)1). In particular, this

extremal point is unique.

Proof. The existence follows immediately by Lemma 2.3.8. The uniqueness is a consequence
of Proposition 2.2.1. O

The last goal of this section is to give the analog of Kemer’s Lemma 2 in the
setting of =-algebras. In order to reach this goal we need some definitions and preliminary
results. Recall that, if A is a =-algebra, then by using the Wedderburn-Malcev decomposition,
we can write A = B + J, where B is the semisimple part and J is the Jacobson radical of

A, which is a nilpotent =-ideal (n(A) is its nilpotency index).
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Lemma 2.3.10. If (a,s) is a Kemer point of a finite dimensional =-algebra A, then
s<n(A)—1.

Proof. By the definition of the parameter s we know that for arbitrary large v there exist
multilinear =-polynomials, not in Id*(A), being v-folds alternating on homogeneous (small)
sets of cardinality d(A); and s (big) sets of cardinality d(A); + 1, for each ¢ € {0, 1}. It
follows that an alternating homogeneous set of cardinality d(A); + 1 in a non-identity
polynomial must have at least one radical evaluation. Consequently we cannot have more

than n(A) — 1 of such alternating sets and we are done. O

The next construction (see [36, Remark 6.10.1]) will enable us to take some

“control” on the nilpotency index of the radical of a finite dimensional =-algebra.

Let B = B+ J be any finite-dimensional #-algebra and let B’ = B - F{X, #) be
the =-algebra of *-polynomials in the variables X = {ZELI, e ,xj::} with coefficients in B,
the semisimple component of B, where i; € {0,1} and T; € {+,—}, for j = 1,...,m. The
number of homogeneous symmetric (skew) variables that we take is at least the dimension
of the homogeneous symmetric (skew) component of J(B). The superinvolution in B’ is
induced by

(b . x)* _ (_1)|b||a:\x*b*’

where b € B and z is a variable in X. Observe that any element of B’ is represented by a
sum of elements of the form by fibs fo -« - by fxbrr1, where by, ..., bgi1 € B and fi,. ., fr €
F(X, *).

Let I; be the #-ideal of B’ generated by all the evaluations of the *-polynomials
of Id*(B) on B’ and let I be the #-ideal of B’ generated by the variables {xzj Jit,. For
any u > 1, define B, = B'/(I, + I¥).

Proposition 2.3.11. The following statements hold:

1. 1d*(B,) = Id*(B), whenever u = n(B) (the nilpotency index of B). In particular B,

and B have the same Kemer points.
2. B, is finite dimensional.

3. The nilpotency index of B, is u.

Proof. (1) By definition of B,, Id*(B,) = Id*(B). On the other hand, by the fact that
the number of symmetric (skew) homogeneous variables that we take is at least the
dimension of the symmetric (skew) homogeneous component of J(B), we can construct
a surjective map ¢: B’ — B such that the variables {xjj } are mapped onto a spanning
set of J(B) and B is mapped isomorphically. Indeed, ¢(b- 1x) = b, where 1x represents
the empty word in F(X, ) and b € B. This map is a homomorphism of superalgebras
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with superinvolution. The #-ideal I; consists of all evaluations of Id*(B) on B’ and hence
is contained in ker(¢). Also the =-ideal I3 is contained in Ker(¢) since u > n(B) and
gb(acjj) € J(B). By the universal property, there exists a surjective homomorphism of

superalgebras with superinvolution B, — B. Hence, Id*(éu) c Id*(B) and we are done.

(2) Notice that any element in B, is represented by a sum of elements of the
form byw;bows - - - bywbyq, where | < u, b, € B and wy, € {xjj} for k =1,...,l. Then B, is

of course finite dimensional.

(3) Notice that I generates a radical ideal in B, and since B'/I, = B we have
that
B,/ =B/, + I{+I,) = B /(I, + ,) ~ (B'/1,)/I, ~ B/I, = B.

We see that I, generates the radical of B, and therefore its nilpotency index is bounded
by u. O

Definition 2.3.12. Let f be a multilinear =-polynomial which is not in 1d*(A). We say
that f has the property K if f vanishes on every evaluation with less than n(A) — 1
radical substitutions. We say that a finite-dimensional =-algebra A has the property K if it

satisfies the property with respect to some multilinear =-polynomial which is a non-identity

of A.

Proposition 2.3.13. Let A be a finite dimensional =-algebra which is minimal (in the
sense of Definition 2.2.10). Then A has the property K.

Proof. Assume A has not the property K. This means that any multilinear =-polynomial
which vanishes on less than n(A) — 1 radical evaluations is in Id*(A). Consider the algebra
A, (from the proposition above). We claim that, for u = n(A) — 1, A, is T -equivalent to
A. Once this is accomplished, we would have that the nilpotency index of A, is n(A) -1,

a contradiction to the minimality of A.

By construction we have Id*(A) < Id*(A,,). For the converse take a *polynomial
f which is not in Id*(A). Then by assumption, there is a non-zero evaluation fof fon A
with less than n(A) — 1 radical substitutions (say k). Following this evaluation we refer to
the variables of f that get semisimple (radical) values as semisimple (radical) variables,
respectively. Let X = {z;,...,z; } be a set of variables. Consider the evaluation foff
on A’ = A F(X, ), where semisimple variables are evaluated as in f whereas the radical
variables are evaluated on {z; }, respecting the surjective map ¢: A" — A. Our aim is
to show that f ¢ I; + I¥ because, in this case, we would have f ¢ Id*(flu) and this will

complete the proof.

To show f ¢ I + I3, notice that f is not in [; by definition. Moreover, an
element of A’ is in I; if and only if each one of its multihomogeneous components in the

variables {z; } is in ;. But by construction f is multihomogeneous of degree k < n(A) —1
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in the variables {z;,} whereas any element of Iy € A’ is the sum of multihomogeneous
elements of degree > n(A) — 1. We therefore have that fel + I3 if and only if fel

and we are done. O

Let A be a basic =-algebra. By Proposition 2.3.13 we have A satisfies the
property K with respect to a non-identity f. Moreover, we have A is full with respect to a
non-identity h. Our goal now is showing A is full and has property K with respect to the

same *-polynomial.

Now we give the definition of Phoenix property.

Definition 2.3.14. Let I" be a Ty -ideal. Let P be any property which may be satisfied by
«-polynomials (e.g. being Kemer). We say that P is I'-Phoeniz (or in short Phoeniz) if
given a polynomial f having P which is not in T’ and any f’ € <f>T;=, the Ty -ideal generated
by f, which is not in ' as well, there exists a polynomial f" € (f')rx which is not in T
and satisfies P. We say that P is strictly Phoeniz if f' itself satisfies P.

The next lemma shows that property K and the property of being full are

“preserved” in a T -ideal.

Lemma 2.3.15. Let A be a finite dimensional =-algebra over F.

1. The property of a non-identity of A of being v-folds alternating on homogeneous sets
of cardinality d(A);, i = 0,1, is Phoenizx.

2. Property K is strictly Phoenix.

Proof. (1) Let f be a non-identity which is v-fold alternating on homogeneous sets of
cardinality d(A);, i € {0, 1} (in particular A is full with respect to f). We want to show that
if f" € {f) is a non-identity in the T;-ideal generated by f, then there exists a non-identity
f" € {f"y which is v-fold alternating on homogeneous sets of cardinality d(A);. In view of
Lemma 2.3.8, it is sufficient to show that A is full with respect to f’. Remark that, for each
i € {0,1}, in at least one alternating set S;, the evaluations of the corresponding variables
must consist of semisimple elements of A in any non-zero evaluation of the =-polynomial.
This is clear if f’ is in the ideal (rather than in the T5-ideal) generated by f. Therefore, we
assume that f is obtained from f by substituting variables z;’s by monomials Z;’s. Clearly,
if one of the evaluations in any of the variables of Z; is radical, then the value of Z; is
radical. Hence in any non-zero evaluation of f’ there is an alternating set A; of cardinality
d(A); in f such that the variables in monomials of f’ (corresponding to the variables
in A;) assume only semisimple values. Furthermore, each *-simple component must be
represented in these evaluations: in fact, otherwise we would have a =-simple component
not represented in the evaluations of the A;’s and this is impossible. In conclusion we get
that A is full with respect to f’.
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(2) If f € {f) is a non-identity and has less than n(A) — 1 radical evaluations,

then the same is true for f and hence f’ vanishes. O

Finally, the following lemma can be proved following word by word the proof
of [2, Proposition 6.6].

Lemma 2.3.16. Let A be a finite-dimensional =-algebra, which is full, subdirectly irre-
ducible and satisfying the property K. Let f be a non-identity which is v-folds alternating
on homogeneous sets of cardinality d(A);, i € {0,1} and let h be a *-polynomial with respect
to which A has the property K. Then there is a non-identity in {f) n (hy. Consequently
there exists a non-identity f which is v-folds alternating on homogeneous sets of cardinality
d(A);, i = 0,1, and with respect to which A has the property K.

We are in a position to prove the =-algebra version of Kemer’s Lemma 2.

Lemma 2.3.17. Let A = B+J be a finite dimensional basic =-algebra. Then for any integer
v there exists a multilinear non-identity f which is v-folds alternating on homogeneous
sets of cardinality d(B;) = dimp(B;), i = 0,1, and n(A) — 1 sets of homogeneous variables
of cardinality d(B;) + 1, i =0, 1.

Proof. By Lemma 2.3.16, there exists a multilinear non-identity f with respect to which
A is full and has property K. Let us fix a non-zero evaluation x; — Z; realizing the
“full” property. Notice that by Lemma 2.3.10, f cannot have more than n(A) — 1 radical
evaluations, and by property K, f cannot have less than n(A) — 1 radical evaluation. Thus,
f has precisely n(A) — 1 radical substitutions whereas the remaining variables only take
semisimple values. Let us denote by w, ..., wy)—1 the variables taking radical values (in

the evaluation above) and by 11, ..., Wy(a)—1 their corresponding values.

Suppose further B =~ A; x --- x A, (A; are »-simple algebras). We will consider
four distinct cases corresponding to whether ¢ = 1 or ¢ > 1 and whether A has or does

not have an identity element.

Case 1: A has an identity element and ¢ > 1.

Choose a monomial M in f which does not vanish upon the evaluation above.
By multilinearity of f, the monomial M is full (i.e. visits every =-simple component
of A). Notice that the variables of M which get semisimple evaluations from different
x-simple components must be separated by radical variables. Next, we may assume that
the evaluation of any radical variable w; is of the form 1,4].(1.)101'1,43(2,), i=1,...,n(A) -1,
where 14, is the identity element of the -simple component A;. Notice that the evaluation

remains full.

Consider the radical evaluations which are bordered by pairs of elements

(La;0 Lag,) ), where j(z) # 4(@) (i.e. they belong to different *-simple components). Then,
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since M is full, every #-simple component is represented by one of the elements in those

pairs.

Fort = 1,...,q, we fix a variable w,, whose radical value is Laj t>zi)rt1A5( )
7 Tt

where

1. j(r;) # j(r;) (i.e. different *-simple components),

2. one of the elements 14 1 Ajryy is the identity element of A;.

J(re)?
We replace now the variables w,,, t = 1,...,¢q, by the product y,,w,, or w,, ¥,
(according to the position of the bordering), where the variables y,,’s and g,,’s are symmetric

variables of even degree. Clearly, by evaluating the variable y,, by 14, (or the variable

)
Ur, by 1 A (m) the value of the =-polynomial remains the same and we obtain a non-identity.

Remember that by Remark 1.2.34, we may write the identity element of A; as
la, =€+ + eflj’nj or la, = (er1,e10) + -+ (%mw €n;n; )’ . Thus applying l?r}earity,
each w; may be bordered by elements of the form efél()i)’kj(i) or (ekj(i)vkj(i) s €k oy ok ) @) with
1 < kju)y < nju). As in the proof of Lemma 2.3.8 we can insert in the y,,’s suitable
#-polynomials and obtain a =-polynomial which is v-folds alternating on homogeneous sets

of cardinality dimg(B;), i € {0, 1}.

Consider the variables with radical evaluations which are bordered by variables
with evaluations from different =-simple components (these include the variables which are
bordered by the y,,). Let y; be such a variable of a certain homogeneous degree (according
to i € {0,1}). We attach it to a (small) alternating homogeneous set S; (according with 7).
We claim that if we alternate this set (of cardinality d(A); + 1) we obtain a non-identity.
Indeed, any non-trivial permutation of x; with one of the variables of S;, keeping the
evaluation above, will yield a zero value since the idempotents values in the framed
variables of each variable of S; belong to the same =-simple component whereas the pair of
idempotents 14, X;l Asen belong to different #-simple components. At this point we have

constructed the desired number of small sets and some of the big sets.

Now, we need to attach the radical variables w; whose evaluation is 1 A, mu?il Asi
where j(i) = j(i) (i.e. the same *-simple component) to some small set S;. We claim that
if we alternate this set (of cardinality d(A4;) + 1) we obtain a non-identity. Indeed, any
non-trivial permutation represents an evaluation with fewer radical evaluations in the
original polynomial which must vanish by property K. This completes the proof in this

case.

Case 2: A has an identity element and ¢ = 1.

We start with a non-identity f which satisfies property K. Clearly we may

multiply f by a symmetric homogeneous variable z of even degree and get a non-identity
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(since x may be evaluated by 1). Again by Lemma 2.3.8 we may replace x4 by a polynomial
h which is v-folds alternating on homogeneous sets of cardinality d(A;). Consider the
polynomial hf. We attach the radical variables of f to some of the small sets in h. Any
non-trivial permutation vanishes because f satisfies property K. This completes the proof

in this case.

Case 3: A has no identity element and ¢ > 1.

In the notation of Remark 1.1.17, let eq = 1— 1a, =14, — -+ — 14, and include
ep to the set of elements which border the radical values ;. A similar argument shows that
also here every s-simple component (A, ..., A,) is represented in one of the bordering
pairs (1 Ajyo L A; (i)) where the pairs are different (the point is that one of these pairs may

be ep). Now we complete the proof exactly as in Case 1.

Case 4: A has no identity element and ¢ = 1.

For simplicity we write e; = 14, and ¢g = 1 — e;. Let f(z,,... ,x; ) be a
non-identity of A satisfying property K and let f(Z;,,...,#; ) be a non-zero evaluation
for which A is full. If ey f(#;,,...,&:,) # 0 or f(&;,,...,2;, )e1 # 0, we proceed as in Case

2. To treat the remaining case we may assume that

eof (Ziy, ..., 2i,)eo # 0.

By linearity, each one of the radical values @ may be bordered by one of the
pairs {(eg, €9), (€0, €1), (e1,€0), (e1,e1)}. Hence, if we replace the evaluation @ of w by the

corresponding element e;we;, i, 7 = 0,1, we get a non-zero value.

Now, if one of the radical values (say ) in f(Z;,. .., Z;,) allows a surrounding
by the pair (eg, e1) (and remains non-zero), then replacing wg by woy yields a non-identity
(since we may evaluate y by e;). Invoking Lemma 2.3.8, we may replace the variable y by a
polynomial h with v-folds alternating (small) homogeneous sets of variables of cardinality
dimp(B); = dimp(A;); for every i € {0,1}. Then we attach the radical variable wy to
a suitable small set. Clearly, the value of any non-trivial permutation of wy with any
element of the small set is zero since the borderings are different. Similarly, attaching
radical variables w whose radical value is e;we; where ¢ # j, to small sets yields zero
for any non-trivial permutation and hence the value of the polynomial remains non-zero.
The remaining possible values of radical variables are either egtweq or ejwe;. Notice that
since semisimple values can be bordered only by the pair (ej,e;), any alternation of the
radical variables whose radical value is egeg with elements of a small set vanishes and
again the value of the polynomial remains unchanged. Finally (in order to complete this
case, namely where the radical variable wy is bordered by the pair (eg, e;)) we attach the
remaining radical variables (whose values are bordered by (e, e1)) to suitable small sets

in h. Here, the value of any non-trivial permutation of wy with elements of the small set
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is zero because of property K (as in Case 1). This settles this case. Obviously, the same

holds if the bordering pair of 1, above is (e1, €g).

The outcome is that we may assume that all radical values may be bordered by
either (e, ) or (ey,e1). Under this assumption, notice that all pairs that border radical
values are equal, that is are all (eg, eg) or all (eq, e1). Indeed, if we have of both kinds, we
must have a radical value which is bordered by a mixed pair since the semisimple variables
can be bordered only by the pair (e, e;) (and in particular they cannot be bordered by

mixed pairs). This of course contradicts our assumption.

A similar argument shows that we cannot have radical variables w with values
epey since semisimple values can be bordered only by (e, e;) and this will force the

existence of a radical value bordered by mixed idempotents.

The remaining case is the case where all values (radical and semisimple) are
bordered by the pair (e, e1) and this contradicts the assumption eq f(#;,, ..., Z;, )eq # 0.

This completes the proof of the lemma. O

Remark 2.3.18. Any non-zero evaluation of such f must consist only of semisimple
evaluations in the v-folds and each one of the big sets must have exactly one radical

evaluation.

Corollary 2.3.19. If A is a finite dimensional basic =-algebra, then its Kemer set consists

of precisely one point (a, s) = Par*(A).

2.4 Specht's problem for finitely generated =-algebras

Let W be a finitely generated =-algebra over F' satisfying an ordinary non-trivial
identity. The goal of this section is to find a finite generating set for the T3 -ideal Id*(W).
By Theorem 1.2.35 (and by Remark 2.2.6), there exists a field extension F of F' and a

finite dimensional *-algebra A such that

Id* (W) = Id*(A).

Let m = dimz A. Then clearly W satisfies the (ordinary) Capelli identity ¢;,41
on 2(m + 1) variables, or equivalently, the finite set of *-identities ¢;,+1,; which follow from

Cm+1 by setting its variables to be of homogeneous degree 0 or 1.

Now, observe that any 7Ty -ideal of =-identities is generated by at most a
countable number of =-identities (indeed, for each n the space of multilinear =-identities of

degree n is finite dimensional). Hence we may take a sequence of =identities fi,..., fu,.. .,
which generate Id*(W).

Let I'; be the T3-ideal generated by the polynomials ¢, 41, U {f1}, ..., I'n be

the T5'-ideal generated by the polynomials ¢,,11,; U {f1,..., fu}, and so on. Clearly, since
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the set ¢,,41, is finite, in order to prove the finite generation of Id* (W), it is sufficient to

show that the ascending chain of graded 7Ty -ideals I'y € --- < I',, < - - - stabilizes.

Now, for each n, the T5-ideal I, corresponds to a finitely generated =-algebra
(see [24, Theorem 5.2]). Hence, invoking Theorem 1.2.35, we may replace each I';, by
Id*(A,,), where A, is a finite dimensional =-algebra over a suitable field extension K, of
F. Clearly, extending the coefficients to a sufficiently large field K, we may assume that

all algebras A,, are finite dimensional over an algebraically closed field K.

Our goal is to show that the sequence Id*(A;) < --- < Id*(A,) < - - - stabilizes
in FY U Z,*) or equivalently in K{Y U Z, *).

Consider the Kemer sets of the algebras A,,, n > 1. Since the sequence of ideals
is increasing, the corresponding Kemer sets are monotonically decreasing (recall that this
means that for any Kemer point («, s) of A, there is a Kemer point (o', s’) of A; with
(a,s) < (o, ¢)). Furthermore, since these sets are finite, there is a subsequence {4;,}
whose Kemer points (denoted by E) coincide. Clearly it is sufficient to show that the
subsequence {Id*(A,-j)} stabilizes and so, in order to simplify notation, we replace our

original sequence {Id*(A;)} by the subsequence.

Choose a Kemer point (o, s) in E. By Theorem 2.2.12, for any i, we may replace

the algebra A; by a direct product of basic algebras

Ajg XX AL XZ; X e XZZ-;,
where the Aj ;’s correspond to the Kemer point (o, s) and the f/ll\ i’s have Kemer index
# (a, s) (notice that their index may or may not be in E).

Let A be a basic =algebra corresponding to the Kemer point (a,s). Let
A = B+ J(A) be the Wedderburn-Malcev decomposition of A into the semisimple and
radical components. As shown in Section 2.3, we have that «; = dim(B;), for every i = 0, 1.

Hence, in particular, the dimension of B is determined by a.

By considering the =-algebras presented in Theorem 1.2.33, the following result

is obvious.

Proposition 2.4.1. The number of isomorphism classes of semisimple =-algebras of a

given dimension is finite.

Immediately, we get the following corollary.

Corollary 2.4.2. The number of structures on the semisimple components of all basic

«-algebras which correspond to the Kemer point («, s) is finite.

It follows that by passing to a subsequence {i;} we may assume that all basic

algebras that appear in the decompositions above and correspond to the Kemer point
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(e, s) have =-isomorphic semisimple components (which we denote by C') and have the

same nilpotency index s.

Let us now consider the =-algebras

o C - K(X)

' L+J
where
« X is a set of *-variables of cardinality 4(s — 1),
« C-K{(X) is the algebra of *-polynomials in the variables of X and coefficients in C,

I; is the ideal generated by all evaluations of Id*(4;) on C' - K{(X),

o J is the ideal generated by all words in C' - K{X) with s variables from X.

Proposition 2.4.3. The following facts hold:

1. The ideal generated by variables from X is nilpotent.

2. For any i, the algebra @ is finite dimensional.

—

3. For any i, Id*(4;) = Id*(@' X Z': X e x Ay

Proof. (1) By definition of J, the number of variables appearing in a non-zero monomial

of the =-algebra @ is bounded by s — 1, then such an ideal is nilpotent.

(2) Consider a typical non-zero monomial of the =-algebra C;. Tt has the form
A Tty Ao Ty * ° - CLtT.TtTCLtT_‘_a.

Since the set of variables X is finite and the index 7 is bounded by s — 1, we have that the
number of different configurations of these monomials is finite. Between these variables
we have the elements a;;, 7 = 1,...,7 + 1, which are taken from the finite-dimensional

x-algebra C. Therefore the *-algebra @ is finite-dimensional.

(3) Since Td* (A}, x -~ x AL, x Ay x -+ x A;,.) = 1d*(A,), then 1d*(A4,) 2
1d*(4;) for j = 1,...,r;. Also, from the definition of I; we have that 1d*(C;) = Id*(4,)
and so 1d*(C; x Z:l X - X Z;) 2 Id*(A;). On the other hand, first let us show that

I1d*(C;) < 1d*(Aj ) for every j = 1,..., u;. This implies that 1d*(C;) < Id* (A} x---x Aj )
and therefore Id*(C; x Zl\l XX an) C Id*(Af x-- - x Af . ¥ Zz\l XX ZZ\”) = Id*(4;).

A~

To see 1d*(C;) < 1d*(A; ;) let us take f = f(wzy,,...,2;,) a multilinear »poly-
nomial which is a non-identity of A;j and show that f is in fact a non-identity of CA’Z (the
variables z;, are homogeneous of degree zero or one). Fix a non-vanishing evaluation of f

in A} ; where z;, = dy,...,z; = dy (k <s— 1) are the variables with the corresponding
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radical evaluations and x4, = ¢i,...,x, = ¢ are the other variables with their semisimple

l

evaluations. Consider the following homomorphism of =-algebras
¢: C-K(X)— A;’j

where C' is mapped isomorphically and a subset of k variables {Zy,..., 7} of X (with
appropriate Zs-grading) are mapped onto the set {dy, ..., dy}. The other variables from X

are mapped to zero.

Notice that (I; + J) < Ker(¢) and hence we obtain a homomorphism of *-al-

. v / . . .
gebras ¢: C; — A} ;. By construction, the evaluation of the -polynomial f(z;,,..., ;)
on C;, where z, = ¢1,...,24 = ¢ and xj, = 1,...,xj, = Ty, is non-zero and the result

follows. L

The following lemma shows how to replace (for a subsequence of indices i) the
direct product of the basic algebras corresponding to the Kemer point (a, s), A;l x - Al

7,U; )

by a certain =-algebra U such that, for all i:
Id*(A;) = 1d*(U x Azy x -+ x A,).
Lemma 2.4.4. We may replace the algebra A}, x --- A, by a certain =-algebra U as

above.

Proof. At light of the Proposition 2.4.3 we are in the following situation. We have a

sequence of T5'-ideals

1d*(Cy x Apy X oo x Ay ) S - S 1A% (Ch x Agy x -+ x Ayy)

% —_—
cId (Oi+1 X Ai—i—l,l X e X Ai+1,ri+1) (G

In order to complete the construction of the algebra U we will show that in
fact that, by passing to a subsequence, all CA’Z are =-isomorphic. Indeed, since Id*(A4;) <
Id*(A;;1), we have a surjective map ¢ from CA’Z to CA’iH. Since the =-algebras CAZ'Z-’S are finite

dimensional the result follows. O]

At light of Lemma 2.4.4, we can continue as follows. Replace the sequence of
indices {i} by the subsequence {i;}. Clearly, it is sufficient to show that the subsequence
of Ty-ideals {Id*(A;,)} stabilizes.

Let I be the T;-ideal generated by Kemer polynomials of U which correspond
to the Kemer point («, s). Notice that the polynomials in I are identities of the basic
algebras EZ\ /’s. It follows that the Kemer sets of the Ty-ideals {(Id*(A4;) + I)} do not
contain the point («, s) and so they are strictly smaller. By induction we obtain that the

following sequence of T -ideals stabilizes:

(Id*(Ay) + 1) < Id*(As) + ) S -+ - .
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For any i, we have that:

—_

1 Id*(A;) = 1d*(U x A;q x -+ x Ay,)

— —_

2. 1c Id*(Az’l X e X Ai,r¢)~

It follows that, for any 1, 7,
I n1d*(A;) = I n1d*(4;).
Combining the last statements we get the Specht property for =-algebras:

Theorem 2.4.5. Let W be a finitely generated =-algebra. Then 1d* (W) is finitely generated,

as a Ty -ideal.

2.5 Rationality of the Hilbert series of relatively free =-algebras

Let F{Y UZ, *) be the free =-algebra on the set of countable variables y;", y1, 27,
21 Y, Ys s 29 5 Zq 5 - - .. In what follows we shall denote by F{(Y U Z, «) the free *-algebra on
the set of finite variables Y = {y",... 4y, y1,...,y, b and Z = {2, ..., 27, 21,..., 2, }.

Consider a Tj-ideal I in F{Y U Z,*) containing at least an ordinary non-trivial identity

and let F(Y U Z,+)/I be the corresponding relatively free x-algebra.

Remark 2.5.1. Since Id*(F(Y U Z,+)/I) = I, the relatively free =-algebra F{Y U Z,+)/1

is PI, i.e. it contains an ordinary non-trivial identity.

Let €2, be the (finite) set of monomials of degree n in the variables of Y U Z
and let ¢, be the dimension of the F-subspace of F{Y U Z, x)/I spanned by the monomials
of €2,,.

Definition 2.5.2. The Hilbert series of F{Y U Z,+)/I is given by

Hilb(F(Y U Z,)/1,t) = > ept™. (2.4)

The purpose of this section is to prove that the Hilbert series of F(Y U
Z, =)/ is a rational function. We wish to point out that giving a positive solution to the
problem of the rationality of the Hilbert series for the relatively free algebra of a given
algebra A has important applications to other growth invariants of A (see for instance
3, 5, 8,9, 20, 21, 42, 43, 55]).

For the reader’s convenience, we start by recalling some well-known facts of
classical PI-theory (see [36, Chapther 2] and [10]).
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Definition 2.5.3. Let W be an finitely generated PI-algebra over F' and let aq,...as be
a set of generators of W. For a fized positive integer m, consider B to be the (finite) set
of all words in ay,...as of length < m. We say that W has a Shirshov base of length
m and of height h if W is spanned (over I) by elements of the form b5 - - b;‘”, where
b;e Bandl < h.

Moreover, we say that the set B is an essential Shirshov base of W (of
length m and of height h) if there exists a finite set D such that the elements of the form
d bkldi2 e dilblﬂd span W, where d;; € D, b;; € B and | < h.

il 11 ] il+1

Theorem 2.5.4. Let W be a finitely generated Pl-algebra over F satisfying a multilinear
identity of degree m. Then W has a Shirshov base of length m and of height h, where h

depends only on m and on the number of generators of W.

Let us recall the following definitions.

Definition 2.5.5. Let A be a commutative ring and C a subring of A. An element be A
is integral over C' if there is a monic polynomial f(x) € C|x] such that f(b) = 0.

Definition 2.5.6. Let C' be a ring and A be a left C-module. We say that A is a finite
module over C if there exists ai,...,as € A such that for any x € A, there exists

C1,...,cs € C with x = cray + -+ + cqas.

The following result was proved in [2, Theorem 7.9].

Theorem 2.5.7. Let C' be a commutative algebra over F' and let A = Clay,...as) be
an affine algebra over C' (see Definition 1.1.8). If A has an essential Shirshov base (in
particular, if A has a Shirshov base) whose elements are integral over C', then A is a finite

module over C.

The following proposition is a classical result.

Proposition 2.5.8. Any finite module M over a commutative affine algebra A has a

rational Hilbert series.

Finally we recall the following result given in [36, Theorem I, page 42].

Theorem 2.5.9. Let A < M, (F) be an algebra and let V' be a d-dimensional subalgebra

of M, (F) with an F-basis ai, . ..,aq of elements of A. Given an F-linear transformation
d

T:V =V, let Ad—i—Z(—l)i%)\d’i be the characteristic polynomial of T'. For any polynomial

i=1
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f(x1,...,xq,Y) which is alternating in the variables xy,...,xq, and where'Y is a set of
variables disjoint from {x1,...,xq}, the following equation holds:
fan . an ) = S T (@), T (ag), V) (2.5)
kit tkg=i
k‘iG{O,l}

where Y is any evaluation of the variables in'Y .

Now we focus our attention to *-algebras.

Proposition 2.5.10. Let A = Ay @ A1 be an affine =-algebra satisfying an ordinary

non-trivial identity. Then A has an essential Shirshov base of elements of Ay.

Proof. Since A is a Zs-graded affine algebra, the result follows from [2, Proposition
7.10]. O

Our next goal is to prove the following lemma.

Lemma 2.5.11. Let S be a set of multilinear -polynomials in F{Y U Z,*) and let I be
the Ty -ideal generated by S. Given a =-algebra W, we consider S, T to be the sets of all
evaluations on W of the polynomials of S and I, respectively. Then T = (S) (the =-ideal
generated by S ).

Proof. In order to prove the lemma, we start by showing that Z is a =-ideal of W. Let a,b € T
and consider the =-polynomials p, and p;, in I with evaluations a and b, respectively. Since [
is invariant under all the endomorphism of F(Y U Z, ) commuting with the superinvolution
#, we may change variables and assume that p, and p, have disjoint sets of variables. Then
we get a + b as an evaluation of the *-polynomial p, + p, and so it follows that a + b e 7.
Now let c € W. We may take a variable x disjoint from the variables of p, and so we get
ca and ac as evaluations of xp, and p,z, respectively. Hence ca and ac belong to Z. So far
we have proved that Z is an ideal. In order to prove that Z is a graded ideal, we have to
show that Z = (Z n W) @ (Z n W), where W, and W; are the homogeneous components
of W. Now let a = wg + wy € Z, ag € Wy and a; € Wj. Hence there exists a *-polynomial
po € I with evaluation a. Since I is a graded ideal, we have that p, = (pa)o + (Pa)1,
with (pa)o € FY U Z, %)y and (p,)1 € F(Y U Z,*); (the homogeneous components of
F{Y v Z,%)). Clearly (p,); takes value w;, i = 0,1. In conclusion w; € Z, i = 0,1 and we
are done. Finally, let a € Z and consider the #-polynomial p, € I with evaluation a. Since
I is »-invariant, we have that p} € I (and also —p; € I). It is not difficult to see that one
of these polynomials takes value a*. Therefore a* € Z and this implies that Z is a =-ideal
of W.

In order to complete the proof, it remains to show that Z = (S). Since S < I,
then S < 7 and so (S) < Z. On the other hand, consider the -algebra W = W /{S). Since
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the #-polynomials of S are identities of W, then I < Id(W). Therefore, all evaluations of
I on W are contained in (S), that is, Z < (S). O

Remark 2.5.12. Let K be a Ty -ideal of F{Y U Z, ) and let f € FY U Z,*) be a *-
polynomial such that f ¢ K. Let J the Ty -ideal generated by f and K. Taking S = K u{f}
and W = FY v Z,+)/K in the previous lemma, we have that J/K is the *-ideal of
FY v Z,%)/K generated by all the evaluations on F{Y U Z,+)/K of the polynomial f.

In order to prove the main result of this section we need the following technical

results.

Lemma 2.5.13. Let K and J be Tj-ideals of F{Y U Z,+) such that K < J. Then the
following holds:

Hilb(F(Y U Z,+)/K,t) = Hilb(F{(Y U Z,«)/J,t) + Hilb(J/K ,t).

Proof. Let I be an ideal of an ordinary algebra A. It is well-known that A may be
decomposed into the direct sum (A/I) @ I (decomposition as vector spaces). Moreover,

the ordinary Hilbert series of algebras satisfies the following relation (Proposition 1.2.9):
Hilb(A,t) = Hilb(A/I,t) + Hilb([, t).

Since K is a #-ideal of F(Y U Z, +), then K is *-ideal of J (here J becomes a *-algebra with
the operation of F(Y U Z, ) restricted to .J). Moreover, since J is a ideal of F(Y U Z, *),
we have that J/K is a -ideal of the =-algebra F(Y U Z,*)/K. Both F(Y U Z,+)/J and
J/K are s-algebras. Taking A = F(Y U Z,+)/K and I = J/K we get the decomposition
FY vZ/K _J FYuZ J
WOZK I _FYuz T

J/K K J K

Now the proof is complete since we have:
Hilb(F(Y U Z,+)/K,t) = Hilb(F{(Y U Z,«)/J,t) + Hilb(J/K ,t).
O

Lemma 2.5.14. Let I' and I" be Ty -ideals of F{Y U Z,«). Then the following holds:

o (FY U Z %) o (FY U Z %) o (FY U Z %)
Hllb (w, t) :Hl].b (]/, t)+ Hllb #,t

L (FY U Z %)

Proof. Taking J =I' + I" and K = I" in the previous lemma, we have:

Hilb(F(Y U Z,+)/1",t) = Hilb(FY U Z,«)/(I' + 1"),t) + Hilb(I' + I"/1",t)
= Hilb(F(Y U Z,+)/(I' + I"),t) + Hilb(I'/(I' n I"),1).
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Now we complete the proof by using again the previous lemma with J = I’ and K = I'nI":

[ * A * /
mm(F@“”a>¢>=mm<F@“”i>é>+mm( ! Q

I'nl" I I'n 1"
FY U Z « FY U7«
_Hilb (<U>t) + Hilb (<U> t)
]’/ [//
o (Y U Z %)

O

We have the key ingredients to prove the main result of this section, namely,

the Hilbert-Serre Theorem for =-algebras.

Theorem 2.5.15. Let (Y U Z, ) be the free x-algebra on the set of finite variables Y =
s uy yi oy yand Z = {2f,..., 27,27, ..., 2, }, where F is an algebraically
closed field of characteristic zero. If I is a Ty -ideal of F{Y U Z,*) containing at least
one ordinary non-trivial identity, then the Hilbert series of the relatively free =-algebra

FY U Z,+)/I is rational.

Proof. Suppose that the Hilbert series of F{Y U Z,*)/I is non-rational. By the Specht’s
property for *-algebras (Theorem 2.4.5) there exists a Ti-ideal K of F(Y U Z, %) containing
an ordinary non-trivial identity and that it is maximal among 75 -ideals containing ordinary
non-trivial identities and having non-rational Hilbert series of this relatively free =-algebra
(ie., of F{(Y U Z,+)/K). Indeed, if there is no such an ideal, then we get an infinite
ascending chain of T3 -ideals containing an ordinary non-trivial identity that does not

stabilize and this contradicts the fact that the union of the T -ideals is finitely generated.
The maximality of K implies that the relatively free s-algebra F(Y U Z, +)/K

is T -equivalent to a single basic *-algebra A. Indeed, assuming the converse, by Corollary
2.2.13, we get that
FY U Z0))K ~pp A @ @ Ay,

where Ay, ..., A, are basic -algebras, m > 2 and Id*(4;) € Id*(4;), 1 <i,j < m with
1 # j. Thus

HWF@/UZAWK):kVUh®-~®Am)=ﬁﬁHWAJ

For every i € {1,...,m}, clearly Id*(F{Y U Z,+)/K) < Id*(4;). Let I; be the evaluation
on F(Y U Z, ) of the Tj-ideal Id*(A;), 1 <4 < m. Then I; properly contains K and their
intersection is K. By the maximality of K, the Hilbert series of F{Y U Z,*)/I; is rational
for every i and by Lemma 2.5.14 we obtain that the Hilbert series of F(Y U Z, +)/K is
rational, a contradiction. Hence, m = 1 and so F{Y U Z,+)/K is Ty-equivalent to a single

basic =-algebra A.
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Let f be a Kemer #-polynomial of the basic =-algebra A (see Theorem 2.3.17)
and let J be the Ty-ideal generated by f and K. Since f is not a =-identity of A, then it
is not a #-identity of F{Y U Z,*)/K and so K < J. By the maximality of K, the Hilbert
series of F(Y U Z,+)/J is rational.

Our next goal is to show that the Hilbert series of J/K is a rational function.

Consider the decomposition A = Aj ® A; ® AT @ A7 and let {af,...,af},

(o PR TN ey s 01 5., 0, ; be F-bases o , A, , Ay, respectively. Let
1 s ABY Bt 4By B, } be F-b fAG Ay, Al A ively. L

{A1J}1<Z<P Y {Az]}1<1<q v {/’I’Z]} 1<l<7” v {/’I’Z]}1<Z<S
1<j<k 1<jy<i 1<ign

be a set of commuting indeterminates which centralize with the elements of A. Now we
consider the F-algebra F'A. It is not difficult to see that the F-algebra A ®z FA is a
x-algebra. The Zy-grading in A induces a Zy-grading in A ®p F'A:

A®p FA = (Ay®r FA) @ (A; ®p FA).

The superinvolution ¥ in A ®p FA is given by (¢ ® P)* = a* ® P, witha e A, P e FA
and = the superinvolution defined on A. Indeed, ((a ® P)*)* = (a*)*® P = a® P
and ((a @ P)(d' ® P))* = (ad' ® PP")* = (ad')* ® PP = (=1)l9l(¢")*a* @ PP’ =
(~D @) a* @ P'P = (=1l ((d')* @ P)(a* @ P) = (-1)* 1“7 I(d' @ P))*(a® P)*
for any @’ € A and P’ € FA.

Consider the map ¢: FY U Z,+)/K — A®p FA, induced by

l m n
i NN i YO H e S 6 8
=1 =1

j=1 j=1

Clearly ¢ is a well-defined homomorphism of =-algebras. Indeed, given a =-polynomial

+ + - -+ + - -
g(ylv"'uypayl7"'7yq7217"-7’27“7217"'7’23)6[(7

then g € Id”(A). Hence, ¢ vanishes on all evaluations of the basis of A. Thus,

OGO s Uy YT U 2 2 2, 2)
=gyl oy, )se(yr ) - --,so(yq)smf) AN so(zf) - 0(2))

Za ®)\1J,.. Za ®)\pj,2aj_®)\1_j,.. Za ® Ay
= =1
Zlﬁj@)ufj,...,ZBJ*@A;,ZlB;@u;j,...,Zlﬁjmgj)
j= = j=
= gt a0 B B B B ©@Q =0
A

with A = (i,7,k,1) where i = (ir,...,i,) € {1,...,k}*,5 = (j1i,. .-, Jg) € {L,..., [}k =
(ki,.... k) e{l,....m}" 1 = (l,...,1,) € {1,...,n}* and Q is some polynomial in FA.
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This shows that ¢ is well defined. By definition ¢ is Zy-graded homomorphism. It is
easy to check that ¢(z*) = ¢(x)* for any variable z in Y u Z. This prove that ¢ is

x-homomorphism.

By definition, we have that ¢ is also injective. Hence A := Im(yp) is isomorphic
(as #-algebras) to F{(Y U Z,*)/K. Thus, we can see F{Y U Z,*)/K as a s-subalgebra of
A®r FA.

Consider the following decompositions as Zj-graded algebras: A = Aq®.A; and
A= Ay® A;. Moreover, let Ay and A, be the semisimple parts of A, and Ay, respectively.
We can embed (embedding of Zy-graded algebras) Ay into Endpp(Ag @ FA) = My(FA),
where d = dim(Ay), via the regular left Ag-action on Ag®z FA. Notice that each semisimple
element a € Ay satisfies a Cayley-Hamilton identity (characteristic polynomial of a) of

degree d.

By Remark 2.5.1 we get F(Y UZ, +)/K is a Pl-algebra. Hence Proposition 2.5.10
applies and we get that F{Y U Z,)/K has an essential Shirshov base. As a consequence,
A has an essential Shirshov base of elements of 4y. Moreover, we may choose generators
of Ay such that the corresponding essential Shirshov base is B = B U B (disjoint union),
where B € Ay and By < J(Ayp) (the radical part of Ay). Since J(A) ®x FA is nilpotent,
the elements of B; < J(Ay) € J(A) ®r FA are integrals over F'.

In view of the embedding Ay < Endp, ([10 ®pr F'A), each element of B satisfies
a characteristic polynomial of degree d with coefficients in FA. Let C' be the F-subalgebra
of F'A generated by these coefficients. Since A has unit, we may consider B having unit and
therefore C has it too. Since the essential Shirshov base is finite, C' is an affine commutative

F-algebra and therefore a Noetherian F-algebra.

Consider the =-algebra Ac := C[.A]. Notice that the elements of the essential
Shirshov base of A are integral over C' because the elements of B; are integral over F' and
we may see I’ as the F-subspace spanned by the unit 1 of C'. On the other hand, given an
element of B, by the Cayley-Hamilton Theorem, this satisfies its characteristic polynomial
with coefficients in FA. But, by construction, these coefficients belong to C' and so the
elements of B are integral over C. Thus, by Theorem 2.5.7, A is a finite module over C'.

By Proposition 2.5.8 we obtain that Ax has a rational Hilbert series.

We come back now to the study of the =-ideal J/K of the relatively free =-alge-
bra F(Y U Z,*)/K. We denote by J the image through ¢ of J/K. By Lemma 2.5.11 and
Remark 2.5.12, 7 is the =-ideal of A generated by all the evaluations on A of the Kemer
#-polynomial f.

Now, we want to show that J is a C-submodule of Aq, that is J is closed

under the multiplication of the coefficients of the characteristic polynomials of the elements
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d

in B. Given an element by € B and its characteristic polynomial A% + Z(—l)i%)\d_i, it is
i=1

sufficient to show that for the Kemer =-polynomial f(X,,Y), where X, and Y are disjoint

sets of variables and Xy has exactly d variables of degree zero, we have ~; f (Xd, }A/) eJ,
for every i € {1,...,d}, where X, = {#1,...,24} and Y denote any evaluation by elements
of A. Since d = dimp(flo) = dimFA(Ao ®r FA) and J(A) ®p FA has the same nilpotency
index of J(A), we have that AQp F'A has the same Kemer index of A. Hence Remark 2.3.18
implies that the Z;’s can only assume semisimple values in Ay € Ay ®p FA, for 1 <i < d.
Denote these values by aq,...,as. Since f is alternating in the set of variables X, the
value f(aq,...,aq, }A/) is zero unless the elements aq, ..., a4 are linearly independent over
FA. In this case, since d = dimp(Ay) = dimpy (A @ FA), the set {ay, ..., aq} would be
a linear basis of Ay ®p FA over FA. Finally, since we may see by € B as an element of
Endpp(Ag ®p FA) = My(FA), we use Lemma 2.5.9 and conclude that

A

’}/zf(X,}A/) = %f(al,...,ad,Y) = Z f((bo)kl(al),...,(bo)kd(ad>,}>) € j
kit kg=i
Icie{O,l}
Since C'is Noetherian, J is a finitely generated C'-module and so, by Proposition
2.5.8, J has a rational Hilbert series. Since A = 1¢-A < A¢, we have that J is a common
ideal of A and Ag. We conclude that J/K has a rational Hilbert series.

So far we have proved that F(Y u Z,+)/J and J/K have rational Hilbert
series. Now, by applying Lemma 2.5.13, we get that the Hilbert series of F{(Y U Z,*)/K
is rational, which is a contradiction. The contradiction arised from the assumption the
Hilbert series of the relatively free x-algebra F{Y U Z, +)/I is not a rational function. The

proof is complete. O
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3 H-module algebras

The purpose of this chapter is to give a proof of the Hilbert-Serre Theorem in
the case of relatively free algebras of H-module algebras satisfying an ordinary polynomial
identity, where H is a finite dimensional semisimple Hopf algebra over a field F' of

characteristic zero (Theorem 3.2.6).

Throughout this chapter H will denote a finite dimensional semisimple Hopf
algebra over a field F' of characteristic zero. We refer to the Section 1.3 for basic definitions,

examples of Hopf algebras and H-module algebras.

3.1 Specht's problem for H-module algebras

In this section we shall introduce some definitions and present several results
concerning the theory of Specht in the setting of H-module algebras. We refer the reader
to the paper [38] by Karasik for more details.

Let W be a H-module algebra. Recall that Id(W) is the T-ideal of F{(X)
consisting of all ordinary identities of W and Id” (W) is the T#-ideal of F#(X) consisting
of all H-identities of . Notice that the ordinary identities of W are H-identities of W
taking the identification F{(X) =~ F(X)®p 15 < FF(X). Thus Id(W) < Id” (W). On the
other hand, W does not necessarily have ordinary identities, even if it has H-identities.

This is the case, for example, of the free non-commutative algebra W with H-action given
by lgw = w and hw = 0, for allwe W and h € H, h # 1p.

Since the field F is of characteristic zero, every T-ideal is generated by

multilinear H-polynomials, i.e. H-polynomials f(z1,...,2,) € F#(X) such that

flz, .o iy, axy + Y, g, -y @) = af (X1, x) + (T, i1, Yy T 1y - 5 T,

for every i € {1,...,n} and a € F.

Now we recall the following results whose proofs can be found in [38, Theorem
4.1].

Theorem 3.1.1. Let W be an affine (i.e., finitely generated) H-module algebra satisfying

an ordinary non-trivial identity. Then there exists a finite dimensional H-module algebra

A such that 1d" (A) < 1d" (W).

Remark 3.1.2. Let I be a T -ideal of F¥(X) containing an ordinary non-trivial identity.
Since 1A" (FH(X)/I) = I, the relatively free H-module algebra FT(X)/I contains an

ordinary non-trivial identity.
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The following result is the Representability Theorem for H-module algebras
due to Karasik in [38].

Theorem 3.1.3. Let W be a finitely generated H-module F-algebra, where F' is a field
containing C, satisfying an ordinary non-trivial identity. Then there exists a field extension
K of F and a finite dimensional H-module algebra A over K such that W ~pu A (notation
as on pag. 52).

Definition 3.1.4. Let f(21,...,2,,Y) € FA(X) be a multilinear H-polynomial, where Y
is a set of variables disjoint from xq,...,x,. We say f is alternating in {z,,...,x,} if

there exists a multilinear H-polynomial h(x1,...,x,,Y) such that

FX) = X (D)7 h(@oqay, - s Ty, )

o€Sy

Given an H-module algebra W, we say that W satisfies a Capelli identity of
rank m if every H-polynomial f(zy,...,x,,Y) alternating on z1,...,z, is in Id” (W). By
Theorem 3.1.1, an affine H-module algebra satisfying an ordinary non-trivial identity

satisfies a Capelli identity.

Definition 3.1.5. Let W be an H-module algebra satisfying an ordinary non-trivial
identity. The H-Kemer index of W is the ordered pair (B(W),y(W)) € N x N, where

e B(W) is the maximal integer such that, for every u, there exists a multilinear H -
polynomial f = f(Xy,...,X,,Y) ¢ Id" (W) which is alternating with respect to the
sets X1, ..., X,, which are all of cardinality (W),

e (W) is the maximal integer such that, for every u, there exists a multilinear H -

polynomial g = g(X1,..., X, X1, o, Xy, Y) ¢ Id" (W) which is alternating with
respect to the sets Xi,..., X, Xi,..., X\, where X1,..., X,, are of cardinality

BW) and Xi,..., X!y are of cardinality B(W) + 1.
The polynomials g are called H-Kemer polynomials of rank L.

Let W be a finite dimensional H-module algebra and let J = J(W) be the
Jacobson radical of W. In [44] it was proved that J is H-invariant and so W/J is
semisimple. By the Wedderburn-Malcev Theorem, W may be decomposed as W = W + J
(decomposition as vector spaces), where W is a semisimple H-module subalgebra of W
which is H-isomorphic to W /.J. Let dy be the dimension of W and let ny be the nilpotency
index of J. Denote by Par(W) = (dw,nw — 1) the parameter of W.

A finite dimensional H-module algebra A is called H-basic if there are no finite
dimensional H-module algebras By, ..., By such that Par(B;) < Par(A), i € {1,...,s},
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and A ~pn By X -+ x Bs. By induction on Par(W), every finite dimensional H-module
algebra W is T equivalent to a finite product of H-basic algebras (see Remark 5.8 of
[38]).

Kemer’s Lemmas 1 and 2 for H-module algebras are given in [38, Lemmas
5.12 and 6.6]. They imply that, if A is H-basic, then (d4,na — 1) = (5(A4),~v(A)) ([38,
Corollary 6.9]). It follows that A has an H-Kemer polynomial f having, say at least, na
alternating sets of variables of cardinality ds and a total of ny — 1 alternating sets of

variables of cardinality ds + 1.

In particular, Kemer’s Lemma 2 implies the following remark (see [38, Remark

6.8]).

Remark 3.1.6. Any non-zero evaluation of f must consist only of semisimple evaluations

in the sets of variables of cardinality dy.

Let W be an affine H-module algebra over a field F' cointaining C, satisfying
an ordinary non-trivial identity. As a consequence of the Representability Theorem for
H-modules algebras (Theorem 3.1.3), W is T H_equivalent to a finite product of H-basic
algebras Ay, ..., A, over a field extension K of F. Notice that, since Id” (A, ®---@A,,) =
A Id7(A;), we may assume that Id" (4;) & 1d7 (A;), for every 1 <i,j < m with 4 # ;.
By passing to the algebraic closure of K, we may assume that the H-basic algebras A; are

finite dimensional over the same field F'.

The following theorem is the Specht property for H-module algebras (see[38,
Theorem 1.4]).

Theorem 3.1.7. Let W be an affine H-module algebra satisfying an ordinary non-trivial
identity. If I € I, < -+ is an ascending chain of T -ideals of W containing an ordinary

non-trivial identity, then the chain stabilizes.

3.2 Rationality of the Hilbert series of relatively free H-module

algebras

Let H be a Hopf algebra over F' with basis {by, ..., b, }. We denote by F*(X,)

the free H-module algebra on the set of finite variables X, = {xy,...,x,.}. Given a TH ideal
I'in FH{X,), then F#(X,)/I is the corresponding relatively free H-module algebra. Write
2, to denote the (finite) set of monomials of degree n on the variables 2% e {1,...,m},

ie{l,...,r}. If ¢, is the dimension of the F-subspace of F”(X,)/I spanned by the
monomials of €,,, then the Hilbert series of F(X,)/I with respect to the generators
{z) }ij is defined by

Hilb(F(X,)/1,t) = ) cat™.
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Given any T"-ideal I in F¥(X,), it is convenient to view I as the evaluation on
FH{X,) of a T"-ideal T of the free H-module algebra F¥{X). As already mentioned in the
previous section, every T-ideal is generated by multilinear H-polynomials. Unfortunately,

passing from Z to I (by evaluation) the multilinearity condition could no longer be true.

The main goal of this section is to show that, in case H is a semisimple Hopf
F-algebra, then the Hilbert series of F(X,)/I is a rational function. Let W be an H-
module algebra and consider the 7%-ideal of the identities Id” (W) satisfied by . Since
charF = 0, we have Id” (W) = 1d” (W ®p F), where F is the algebraic closure of F. This
means that the ideal of identities of Wy over F is the span (over F) of the T"-ideal of
identities of W over F'. Therefore the Hilbert series remains the same when passing to the

algebraic closure of F. From now on, we assume that F' = F.

We start by proving the following technical result.

Lemma 3.2.1. Let A < M,(F) be an algebra which is a H-module and let V' be a d-
dimensional subalgebra of M, (F) with an F-basis ai,...,aq of elements of A. Given an
d
F-linear transformation T: V — V., let \? +Z(—1)iyi/\d’i be its characteristic polynomial.

=1
Then for any multilinear H-polynomial f(x1,...,xq) which is alternating in the variables

x1,...,xq, the following equation holds:

vif(ar,..oa0) = >0 f(TM(ar),..., T (aq)).
ki+-tkg=i
kie{o,l}

Proof. We first show that the following equation holds:

det(T) f(a1,...,aq) = f(T(a1),...,T(aq)).

d
Suppose that T'(a;) = Z cijai, with ¢;; € F', 1 <4, j < d. Since the H-action is linear, then
i=1

d
h-(T(a;)) = Z c¢;jha;, with h e H. Also, since f(x1,...,x4) is an alternating multilinear

=1
H-polynomial and T is an F-linear transformation, we get that

f(T(ar), ..., T(ag)) = f (Z Ci1, . . . 2 cz-dai>

= D Coya - Co@af (a(t)s - -+ Qo(a)

€Sy

= Z (_1)0%(1),1 e 'Ca(d),df(al, - ,ad)

UGSd

=det(T) f(ay,...,aq).

Here S, is the symmetric group of order d.
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Using the F-linear transformation A\I; — T in place of T', we get:

det(My —T)f(ar,...,aq) = f(Mqg—T)(ar),...,(Mqg—T)(aq)).
Now we remark that
f((Mg=T)(ar), ..., (Mq = T)(aq))
=f(Aa; —T(a1),..., aq — T(aq))
=M flar,... a0) = A7 > (T (@), ..., T (aq))

kit t+hg=1

+A2 N AT (), TR (ag) — -

kit thg=2
+ (=) N f(T(ar), ..., T(aq)),
with k; € {0,1} for all i € {1,...,d}. On the other hand,

d
det(Ag —T) = X + ) (=)' ),
=1

the characteristic polynomial of T with coefficients v; € F', 1 < ¢ < d. In conclusion we get

vif(ar, .. a0) = > f(T (@), ... T (aq)).
ki+--+kg=i
k/‘iG{O,l}

]

Lemma 3.2.2. Let S be a set of H-polynomials in F*(X) and let I be the T -ideal
generated by S. Given an H-module algebra W, consider S, I to be the sets of all evaluations
on W of the polynomials of S and I, respectively. Then T = (S) (the ideal generated by
S).

Proof. Given a,b € Z and given polynomials p, and p, in I with evaluations a and b
respectively, then by the T"-property of I (i.e. I is invariant under all H-endomorphism
of F(X)), we may change variables and assume that p, and p, have disjoint sets of
variables. Then we may get a + b as an evaluation of the polynomial p, + py, so a + b e Z.
If ¢ € W, we may take a variable  which is not in p, and get ca and ac as evaluations of
rp, and p,x respectively, so ca and ac belong to Z. If h € H, then hp, € I which implies
ha € T. Thus, Z is ideal of W.

Now, we show Z = (S). Since S < I, then § € 7 and (S) < Z. On the other hand,
consider the H-module algebra W = W /{S). Since the polynomials of S are identities
of W then I < Id(W). Therefore, all evaluations of I on W are contained in (S), that is,
T < (S). O

Remark 3.2.3. Let K be a T -ideal of F*(X) and let f € F*(X) be an H-polynomial
such that f ¢ K. Let J be the T" -ideal generated by f and K. Taking S = K U {f} and
W = FH(X)/K in the previous lemma, we have J/K is the ideal of F*(X)/K generated
by all evaluations on F*(X)/K of the polynomial f.
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Let J be a T#-ideal of F#(X,). In particular, J is an ideal of F#(X,) (as F-
algebra). Then J becomes an H-module algebra with the operations of F¥(X,) restricted
to J.

The following lemmas can be proved by using the same arguments employed in

the corresponding results of Section 2.5 (Lemmas 2.5.13 and 2.5.14).

Lemma 3.2.4. Let K and J be T" -ideals of F¥(X,) such that K < J. Then the following
holds:
Hilb(FH(X,)/K,t) = Hilb(FH¥(X,)/J,t) + Hilb(J /K ,t).

Lemma 3.2.5. Let I' and 1" be T -ideals of F*(X,). Then the following holds:
Hilb(F(X,)/(I' n 1), 1)

= Hilb(F¥(X,)/I',t) + Hilb(FE(X,)/1",t) — Hilb( FE( X, /(I + 17),t).

Finally we are in a position to prove the main theorem of this chapther, namely,

the Hilbert-Serre Theorem for H-module algebras.

Theorem 3.2.6. Let F7(X,) be the free H-module algebra on the set of variables X, =
{1, - ,x.}, where H is a finite dimensional semisimple Hopf algebra and F is a field of
characteristic zero. If I is a T -ideal of F*(X,) containing at least one ordinary non-
trivial identity, then the Hilbert series of the relatively free H-module algebra FH(X,)/I is

rational.

Proof. The proof is very similar to the one given for the analogous result in the setting of

x-algebras (Theorem 2.5.15). For this reason we will give here just a sketch of it.

Suppose that the Hilbert series of F(X,)/I is non-rational. By the Specht’s
property for H-module algebras (Theorem 3.1.7) there exists a T7-ideal K of F¥(X,)
containing an ordinary non-trivial identity and that it is maximal among T*-ideals
containing ordinary non-trivial identities and having non-rational Hilbert series of their

relatively free H-module algebra.

The maximality of K implies that F7(X,)/K is T"-equivalent to a single
H-basic H-module algebra A. To this end we just need to use Theorem 3.1.3 and Lemma
3.2.5.

Now let f be a H-Kemer polynomial of the H-basic H-module algebra A and
let J be the T"-ideal generated by f and K. Since f is not an H-identity of A, then f is
not an H-identity of F(X,)/K, and hence, K < J. By the maximality of K, the Hilbert
series of F#(X,)/J is rational.

In order to complete the proof we need to show that the Hilbert series of J/K

is a rational function. In fact, once this is accomplished, we will have that F7(X,)/J and
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J/K have rational Hilbert series. Then by Lemma 3.2.4, the Hilbert series of F7(X,)/K is
rational, which is a contradiction. The contradiction arises from having assumed that the

Hilbert series of the relatively free H-module algebra F*(X,)/I is not a rational function.

From now on, our only goal is to prove that the Hilbert series of J/K is a

rational function.

Suppose that {a,..., o} is an F-basis of Aand let A = {\;;: 1 <i<r 1<
J < I} be a set of commuting indeterminates centralizing with the elements of A. Consider
the F-algebra F'A endowed with a formal H-action. We prefer the notation )\?j = h-\j to

denote the formal action of some h € H in each \;;. The H-module structure is given by

11717122 11J1 1272 inJn

B (AL A2 Ay = \RORT@R RO and BTy = 1y,

where 1, is the unit element of FA.

Consider the algebra A®p F'A and define the action of H in AQr F'A for F-basic
elements: if Hy is an F-basis of H and Ag is an F-basis of FA then h(a ® P) = ha ® hP,
where h € Hy, P € Ag and a € {ay,...,qq}. If we extend the H-action linearly in H and
A®p FA we obtain a structure of H-module. Notice that, for any ay,as € A, P;, P, € FA
and h € H, we have that:

h((CLl ® Pl)(az ® Pg)) = h(alag ® Plpg) = h(&laz) ® h(Plpg)
= hyaiheyaz @ hayPrho) P,
= hay(a1 ® P1)hg)(ae @ P),

h(1A® 1A) = h(lA) ®h<1A) = €(h)1A® 1A = €(h)(1,4® 1A)

This shows that A ®p F'A is an H-module algebra. Now, consider the H-homomorphism
¢o: FI{(X,)/K — A®p FA, induced, for any h e H, by
l
zh Z h(c;) ® /\Z
j=1
Given a multilinear H-polynomial g(x1,...,,) € K, then g € Id”(A). Hence, g vanishes

on all evaluations of the basis {aq,...,q;} of A. Thus,

p(g(xr, ... 2p)) = gle(@), ... o(z,) = 9O o @ Ay Z a; @ Arj)

Jj=1

=Zg(ail,...,a“)®Q=0

with 7 = (i1,...,4,) € {1,...,1}" and @ is some polynomial in FA. This shows that ¢ is
well defined H-homomorphism. It is not difficult to see that ¢ is injective. Hence we get
that A = Im(y) is H-isomorphic (isomorphic as H-module algebras) to F7(X,)/K. Thus,
we can see F¥(X,)/K as a subalgebra of A ®@p FA.
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Let A be the H-invariant semisimple part of A. We can embed (embedding of
F-algebras) A into Endp(A) = My(F), where d = dim(A), via the regular left A-action on
A. This induce an embedding AQr FA into Endpa (A®p FA) via the regular action. Notice
that each semisimple element a € A satisfies a Cayley-Hamilton identity (characteristic

polynomial of a) of degree d.

Since A may be decomposed into the direct sum A @ J(A) where J(A) is
the Jacobson radical of A, we may decompose A into the direct sum A @ A; where
A S A®p FA < Endp,(A®p FA) and A; < J(A) ® FA. We shall call A the
semisimple part of A and A; the radical part of A.

Remark 3.1.2 implies that F#(X,)/K is a Pl-algebra. By Theorem 2.5.4,
F"(X,)/K has a Shirshov base, then A has a Shirshov base. Moreover, we may choose
generators of A such that the corresponding Shirshov base is B = B u Bj (disjoint union),
where B < A and B; < A;. In fact, if we choose generators by, . .., bs of A either from A
or Ay, a basic element b;, by, - - - b;, belongs to B if and only if bi; € Aforall je{l,..., t}.
Since J(A) ®p FA is nilpotent, the elements of B are integrals over F.

In view of the embedding A < Endpy (A ®p FA), each element of B satisfies
a characteristic polynomial of degree d with coefficients in F'A. Let C' the F-subalgebra
of FA generated by these coefficients. Since A has unit, we may consider B having unit,
and therefore C' has unit. Since the Shirshov base is finite, C' is an affine commutative

F-algebra and therefore a Noetherian F-algebra.
Consider the H-module C-algebra A¢c = C[.A]. Notice that the elements of

the Shirshov base of A are integrals over C' because the elements of B; are integrals over
F and we may see F' as the F-subspace spanned by the unit 1o of C'. On the other hand,
given an element of B, by the Cayley-Hamilton Theorem this satisfies its characteristic
polynomial with coefficients in F'A. But, by construction, these coefficients belongs to C,
then the elements of B are integral over C. Thus, by Theorem 2.5.7 A¢ is a finite module
over C. Then A¢ has a rational Hilbert series by Proposition 2.5.8.

We come back now to the study of the ideal J/K of the relatively free H-module
algebra FH(X,)/K. We denote by J the image by ¢ of J/K. By Lemma 3.2.2 and Remark
3.2.3, J is the ideal of A generated by all the evaluations on A of the H-Kemer polynomial
f. We will show that J is a C-submodule of A, that is, we show that 7 is closed under

the multiplication of the coefficients of the characteristic polynomials of the elements in
d
BB. So, given an element by € B and A\ + Z(—l)i%)\d_i its characteristic polynomial, it is

=1
sufficient to show that for the H-Kemer polynomial f(X,,Y'), where X; and Y are sets of
disjoint variables and X, has d elements, we have %-f(f(d, }7) e J, where X, = {#1,...,24}

and Y denote an evaluation of elements of A.

In view of the embedding A € A®r FA € (A®r FA)® (J(A) ®r FA), an
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element v € X;UY can be written as v = o+ v, where o € A®p FA and vy € J(A)®p FA.
Since d = dimp(A) = dimpy (A ®p FA) and J(A) ®F FA has the same nilpotency index
as J(A), then A ®p FA has the same H-Kemer index as A. If we denote by a; the
semisimple part of Z; and by ¢; the radical part of ; for 1 < i < d, Remark 3.1.6 implies
f(Xd, SA/) = f(ay,... ,ad,f/). Since f is alternating in the set of variables X, the value
flay, ..., aq, }A/) is zero unless the elements aq, . . ., ag are linearly independent over F'A and
since d = dimp(A) = dimpp (A ®p FA), the set {a1,...,aq} is a linear basis of A®p FA

over F'A.

Since we may see by € B as an element of Endpy (A ®p FA), by Lemma 3.2.1
we get that

A

’)/zf(X,f/) = %f(al,...,ad,Y) = 2 f((bo)kl(al),...,(bo)kd(ad>,?) € j
ki+-4kqg=1
kie{O,l}
Since C'is Noetherian, J is a finitely generated C-module as well and again by
Proposition 2.5.8, J has a rational Hilbert series. Since A = 1o - A < A¢, we have that J
is a common ideal of A4 and Ac. We conclude that J/K has a rational Hilbert series. [
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4 H,,-module algebra UT5

In this chapter we study the Specht property for the variety of H,,-module
algebras generated by the algebra UT5 of 2 x 2 upper triangular matrices over a field of
characteristic 0 containing a primitive m-th root of unit and where H,,, denotes a Taft’s
Hopf algebra of dimension m?. We would like to point out that we cannot use Karasik’s
result (Theorem 3.1.7) in order to establish whether or not our variety satisfies the Specht
property because although the Hopf algebra H,, is finite dimensional, it is not semisimple
(see Example 1.3.34).

Hereby we would like to highlight the role of UT5 in the theory of Pl-algebras. In
[53] Regev proved the codimension sequence of any associative Pl-algebra is exponentially
bounded. Later Kemer in [41] showed such codimensions are either polynomially bounded
or grow exponentially. Moreover, Giambruno and Zaicev in a famous couple of paper (see
[27] and [28]) computed the exponential rate of growth of a PI-algebra and proved that
it is a non-negative integer. By a well known Kemer’s result [39] we get the variety of
algebras generated by UT, is a variety of almost polynomial growth, i.e., it has exponential
growth but every proper subvariety has polynomial growth. An analogous result was found
by Valenti in [61] for varieties of algebras graded by a finite group and by Mishchenko
and Valenti in [46] for varieties of algebras with involution. We would also like to cite the
paper [25] by Giambruno and Rizzo toward differential identities: there the authors prove
that UT5 under the action of its algebra of derivation does not generate a variety of almost
polynomial growth and they construct a subvariety of almost polynomial growth. Notice
that the variety of H,,-module algebras generated by UT5; is not of almost polynomial

growth too as showed by Centrone and Yasumura in [16].

4.1 The action of H,, on the algebra UT;

Let UT5, be the algebra of 2 x 2 upper triangular matrices over the field F' and
let G be group. A detailed description of the G-graded identities satisfied by the algebra
UT, when the characteristic of F' is 0 is given in [61]. In particular, in [61, Theorem 1]
the author shows that, up to isomorphism, there is only one non-trivial grading. So any

G-grading on U} is actually a Zs-grading.

Definition 4.1.1. Given an algebra A over a field F, a a-derivation is an F-linear
map 0: A — A such that for every a,b e A we have §(ab) = §(a)b+ a(a)d(b), where a is a
suitable endomorphism of A. The a-derivation 0 is called inner if there exists an element

y € A so that 6(a) = ya — a(a)y and we write ad,(y) instead of 9.
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Taft’s algebras were introduced in Example 1.3.20. From now on, F'is a field
of characteristic zero containing a primitive m-th root of the unit. We shall denote by H,,
the m-~th Taft’s Hopf algebra over F'.

Consider a H,,-action on UT5.

Theorem 4.1.2. [16, Theorem 11] The H,,-action on UTy is completely determined by a
choice of an automorphism o of UT, or order m, and an inner a-derivation by an element
y € UTy such that a(y) = v 'y, and ady(y)™ = 0.

Equivalently, the H,,-action on UTy is completely determined by a choice of a

1

Ly, grading on UTy and a homogeneous element d € UTy of homogeneous degree v~ such

that ad,(y)™ = 0.

Then there exist three “structures” of H,,-module algebra on UT; (see [16,
page 738]):

i) The trivial grading (so d acts trivially): in this case, Id”™ (UT}) is merely the ideal
of ordinary polynomial identities of UT5, which was calculated by Malcev in [45].

i1) The canonical Zy-grading and d acts trivially: in this case, Id"™(UT5) coincides with
the ideal of Zy-graded polynomial identities of U7, which was originally calculated
by Valenti in [61] and generalized by Di Vincenzo, Koshlukov and Valenti in [18].

i7i) The canonical Zo-grading and d acts non-trivially. In this case, perforce d =ad, (ae;s),

T12

for some 0 # a € I, that is, if A = (51551 ) e UT;, then
x

22

weaiwn (3 02)) - (0 ) w

The Specht property for (i) and (47) are particular cases of the Specht property
for ordinary Pl-algebras [40] and G-graded Pl-algebras [2], respectively. Therefore, we
will study the case (#77). Thus, from now on, an H,,-action on UT, means the canonical
Zo-grading on U'T; with a non-trivial action of d on UT5,. This forces us to see an action of
H,, on the algebra UT, as an action of Hy on UTs. It is worth recalling in [32] the author
gives an explicit description of the simple algebras that are module algebra under the

action of a Sweedler’s algebra that is a Taft’s algebra of dimension 4.

Let F{X) be the free associative algebra over the countable set X = {x1,z,... }.
If we write X =Y u Z where Y = {y1,9s, ...} is the countable set of variables of degree
zero and Z = {z1, z9, ...} is the countable set of variables of degree one, and Y n Z = 7,

then F(Y U Z) has a natural structure of free superalgebra on Y u Z.
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We recall from Section 1.2.4 that a graded polynomial f(y1,..., Yt 21,...,2s) €
F{Y u Z) is a graded identity of a superalgebra A = Ay @ A1, and we write f = 0, if,
forall a,...,a; € Ag, by,...,bs € Ay,, we have f(aq,...,a4by1,...,bs) =0.1d9(A) denote
the ideal of graded identities of A. Notice that I1d?"(A) is a Ty-ideal of F(Y U Z), i.e.,
an ideal that is invariant under all Zs-graded endomorphisms of the free superalgebra
F{Y u Z). Since the characteristic of F'is zero, it is well known that Id9"(A) is completely

determined by its multilinear graded polynomials.

Now, we construct F(Y U Z | Dy) the free superalgebra on X =Y u Z with
action of Dy = F(d | d* = 0) as follows. The algebra F{Y U Z | D) is the algebra
freely generated by the set {z™ = dy(z) | z € Y or x € Z,d; € D,}. We let Dy act
on F{Y U Z | Dy) by requiring that if di,dy € Ds, then (z™)% = z%% and then by
extending this action on all of FXY u Z | Dy) as follows: if v,w are monomials, then
define (vw)? = viw + (—1)%*8®yw? and then extend this action by linearity to all of
F{Y U Z | Dy). The elements of F{Y U Z | Ds) are called Zs-Ds-polynomials.

The algebra F(Y U Z | D,) has the following universal property: Given any
superalgebra A = Ay @ A; with Dsy-action, any set theorical map ¢: Y U Z — A such
that ¢(Y) € Ay and ¢(Z) < A;, extends uniquely to a homomorphism of superalgebras
¢: F(Y U Z | Dy) — A such that @(ff) = ¢(f){, for any f e FY U Z | Dy), dy € Ds.

If we let ® be the set of all such homomorphisms, then Id*>"2(A) = s ker &
is the ideal of Z,- Ds-polynomials identities of A. This means that a Zs-Do-polynomial
fyi, o Ys, 215 -+, 2) € FXY U Z | Do) is a Zy-Ds-identity for A if for all ay,...,as € Ay
and by,...,b € Ay, f(a1,...,as,b1,...,b) =0. We write f =0 on A, in this case.

Definition 4.1.3. 1d%22(A) = {f e F(Y U Z | Dy) | f = 0 on A} is the ideal of
Zio-Do-polynomial identities of A.

Proposition 4.1.4 ([16] Proposition 14).
Id"2(A) = 1d%P2(A),

and
FRUXY = F(Y U Z | Dy).

m—1
Theorem 4.1.5 (Theorem 17, [16]). For each j = 0,1,...,m — 1, let B; = Z At
1=0

Yi = xfo and z; = xfl. Then the TH™ -ideal of UT, is generated by the following polynomials

h d _d?> _d_h d B
[y17y2]> 21X 29, 20, T, Y1 T Yy, xﬁja

where he Hy,, and j =2,...,m—1.
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Let P%2P2 he the subspace of F(Y U Z | Dy) consisting of multilinear Zy-Dy-

polynomials of degree n in x4,...,x,, i.e.,

Z2,Dy _ d d _ o
P27z = spanF{xgl(l)--wU?n) |oce Sy, di€ Dy,xy =y, or oy =z,i=1,...,n}.

Recall that the wreath product of Zs and S, (called the hyperoctahedral
group) is the group defined by

ZolSn={(q15--+90:0) | g1y gn € Zo,0 € Sy}

with multiplication given by
(9155 gn;0)(ha,y o hs T) = (g1ho1(1)s - - - s Gnlio—1(n); OT).

Let Zy = {1,c}. Then the space P22 has a structure of left Zj? S,-module
induced by defining for (g1, ..., gn;0) € Zy1 S, and f(zy,...,1,) € PP (see [30, Lemma
10.1.5]),

9o Ion
(91, s gn;0) f(z1, .. ) = f(xa((ll)), e ,xg(;))),
where yg ;) = Yoy and 25 = —2z,(3)-

Notice that the vector space P22 A 1d%2P2( A) is invariant under this action,
hence PZ2P2(A) := PPz /(plaD2 £ 10%2:P2( A)) is a left Zy 1 S,-module. Let xZ2P2(A) be
its character. It is known (see for instance Section 10.4 of [30]) that there is a one-to-one
correspondence between irreducible Zs ! S,,-character and pairs of partitions (A, i), where
A1, p=n—r, foralr=0,1,...,n If x,, denotes the irreducible Zy 1 S,-character

corresponding to (A, ) then we can write

=3 S men

r=0 Apr
pE=n—r

where my , = 0 are the corresponding multiplicities.

For fixed r € {0,...,n}, let

P = spanF{:cfil(l) . -x?(”n) |oeS,,di€ Dy,x; =y; fori=1,...,r
and x; = z; fori =r +1,... ,n}
be the subspace of multilinear Z,-Ds-polynomials in the variables v, ..., y,,

Zpi1,- -, 2n. In order to study P?P2(A) it is enough to study

P.,._
Prnfr A) = ot
n=r(4) Py 0 1d52P2(A)
for all r = 0,...,n. If we let S, acting on the variables v, ...,y, and S,,_, acting on the

variables z,11,. .., z,, we obtain an action of S, x S,,_, on P,,_, and P,,_,(A) becomes a
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left S, x S,_,-module. Let x,.,—.(A) be its character. It is well known that the irreducible
S, x S,_,-characters are obtained by taking the outer tensor product of S, and S,,_,

irreducible characters, respectively. Then, we can write

Xr,n—r(A) = Z mA,u(X)\ ®X,u)7

A7
pEn—r

where x, (respectively, x,) denotes the irreducible S,-character (respectively S,_,-cha-

racter) and my , > 0 are the corresponding multiplicities.

The relation between the character Y2 (A) and the character x,., ,(A) for any
H,,,-module algebra A is given by

ZQ,DQ Z Z m)\#X)\“ and Xrn T(A)I Z mA7H<X)\®Xu)
Y ana i

for all » < n. Moreover,
Z( >d1mF n—r(A).

Remark that since [y, y2]? is an H,,-identity of UT5, then we have the following
equality modulo I (UT)

ylys — ydyr = vyt — yiyd. (4.2)

Moreover, for every n > 0, a linear basis for the space P, o(UT5) is given by

the following set of polynomials:

® Y1 Yn,

. d
® Ws = Yiy Yir_1Yip Yiryr * " Yins

where S denotes the ordered k-tuple (i1, ...,1), i; € {1,...,n} and all the other indexes

are ordered. This implies that the space P, o(UT5) has dimension Z (Z) — on
k=0
A linear basis for the space P,_;1(UT3) is given by the following set of polyno-

mials:

® Us =Yy Yir_12Yis1 " Yins

where S denotes the ordered k-tuple (i1, ...,1), i; € {1,...,n} and all the other indexes

n—1
-1
are ordered. Since the number of polynomials ug is given by Z (n i >, then the space
k=0

P, 11(UTy) has dimension 2"~'. The spaces P,,_,(UT3) vanishes for r = 0,1,...,n — 2.

Therefore we obtain the following.
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Proposition 4.1.6. The n-th H,,-codimension of UT, is
cIm(UTy) = Z (n) dimp Py, (UTy) = n2" ' +2" = (n +2)2" 1,
r
r=0

and the H,, Pl-exponent of UT, is

exp™(UTy) = limsup {/cin(UTy) = 2.

n—0o0

Example 4.1.7. Let us calculate the space of multilinear polynomials for n = 2, 3.

o forn =2:

Pyo(UTy) = Spanp{y12, Y12, Y51, 1195}

P, 1(UTy) = Spanp{zy,yz}.

Therefore,

Py (UTy) = Spanp{y1y2, y1y2, Y3y1, y19s, Yo21, Y122, 219, 2241}
o Forn=3:

P3o(UTy) = Span {1923, Yiyays, Yay1 Vs, YY1 Y, Y1Yays, ViYsya, YaUsy, Y1Yayal,
P, 1(UTz) = Spanp{zy1y2, Y12Y2, Y22Y1, Y1922}
Therefore,

PE(UTy) = Spanp{y1y2ys, Y Y23, Y119z, Va1 Y, Y1Yayss Y1Y5Ya, YoYayi, Y1Yaya,
23Y1Y2, 22Y1Y3, 21Y2Y3, Y123Y2, Y122Y3, Y221Y3, Y223Y1, Y322Y1, Y321Y2, Y1Y223, Y1Y322,

y2y3zl}'

4.2 H,,-Cocharacters of UT)

The goal of this section is giving a complete description of the H,,-cocharacter

sequence of UT,, where H,, is an m-th Taft’s Hopf algebra.

The following lemma is well known (see, for instance, [30, Theorem 10.4.2]).

Lemma 4.2.1. Let A\ =7, pt=n—1r and let W), be a left irreducible S, x S,,_,-module.
If T\ is a tableau of X and T,, is a tableau of u, then

W)\”u = F(ST X Sn_r)eTAeTu.

For a partition A - n we denote by h(\) the height of the diagram associated
to A, that is, if A\ = (Ay,..., \g), then h(X) = k.

We can now write the explicit decomposition of the n-th H,,-cocharacter of

U5 into irreducibles.
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Remark 4.2.2. In the proof of the following theorem, the notation y;, - - yi, \Yi, AYi; 1 =+ * Yirn

means Yi; - - y’i]'_l (yij)dyi]‘_;_l Y,

Theorem 4.2.3. Let

n

P (UTy) = Z 2 M XA

r=0 Apbr
pE=n—r

be the n-th H,,-cocharacter of the H-module algebra UT;. Then

i) mag =1+ 1if A= (k+1k);

W) ma,=q+1if A= ((p+qp), p=_(1);

iii) my, = 0 in all other cases.

Proof. Let A = UT; and consider the canonical grading A = Ag @ Ay, where Ay =
span{eq, eas} and A; = span{ejs}. Since dim Ay = 2 and dim A; = 1, any H,,-polynomial
alternating on three even variables or in two odd variables vanishes on A; it follows that
mx, = 0 if either h(\) = 3 or h(y) = 2. By Proposition 4.1.5, z;z25 € 1d”"™(A), then
my,, = 0 whenever || = 2. So we have two cases left to study, namely p = & or p = (1),

and (7i7) is already proven.

First we consider the case p = . Let A = (k + [,k), with £ > 0, 1 > 0 and

2k +1=mn. For each i = 0,...,[ let us consider the following tableau:
70 _ 1+ 1 t+2 |- 1+ k 112 ]i|e+2k+2]---|n
g i+k+2i+k+3|...|i+2k+1 '

We associate to T)Ei) the H,,-polynomial

b we) = D) (D)7 (D)) Yo 0B () Y

We shall prove the [ + 1 H,,-polynomials b,(i)l(yl, y2), 1 =0,...,[, are linearly independent
over F' modulo Id*™(A). For the sake of convenience, let us rewrite each polynomial
bx)l(yl,yg), i=0,...,1,as

ba(yr,v2) = Vi T hd e Bl vh
—_—
k k

where —,” ,~ mean alternation on the corresponding elements. Suppose by absurd

!
Zﬁib,(;)l(yl,yQ) = 0 (mod IdH’"(A)) and let t = max{i | 5; # 0}. Then @b,(g(yl,yz) +
i=0
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Zﬁibg)l(yl, y3) = 0 (mod Id¥™(A)). If we consider the substitution y; = 11 + y3, we get

1<t

Be(yr +y3) (v +y3) -+ (y1 + y3) (w1 + ys)dgo - oG (yr + y3)' ™"
+ Zﬁi(yl +ys) (1 +ys) -+ (1 + ys) (W1 + ya)di - - o (yr + y3)' ™

i<t

= 0(mod Id"™(A)). (4.3)

Let us consider the homogeneous component of degree ¢ + k in y; and of degree [ — ¢ in ys.
Considering the substitution y; = e;; and ys = y3 = eq9, then, by Equation (4.1) we get
yf = —aejp and we obtain (—f;a)e;n = 0, which implies 8, = 0, a contradiction. Hence

the H,,-polynomials b,(i)l(yl, ys), i =0,...,1, are linearly independent (mod Id*(A)).

Notice that, for all i, e, (y1,- .., ¥yn) is the complete linearization of the H,,-
. A
polynomial b,(;)l(yl, y2). It follows that the H,,-polynomials ere, 1 =0,...,1, are linearly
’ A

independent (mod Id"™(A)) and this implies that my , =1 + 1.

We want to prove the multiplicities are exactly [ 4+ 1. For, let T\ be any tableau
and er, (y1,...,yn) the corresponding H,,-polynomial. If ey, ¢ Id”"™(A), then any two
alternating variables in ep, must lie on different sides of the elements of type yd. Since er,
is a linear combination (mod Id*”™(A)) of H,,-polynomials, each alternating on k pairs of
y;'s, we get er, is a linear combination of the H,,-polynomials Er®, 1t =0,...,l. Hence

my, =l + 1 and this proves item (4) of the sentence.

We only need to study the case u = (1). Let A = (p + ¢q,p), withp>0,¢ >0
and 2p + ¢ = n — 1. This case can be proved following word by word the last part of the
proof of Theorem 3 of [61], where the H,,-polynomials

al) (y1,y2,2) = D (D)7 ()Y, (1) Yo (1)ZYer) Yo @Y
015..,0pES2
with ¢ = 0,1,...,¢, are the highest weight vectors corresponding to A. As
above,
(0 ( Y=y g2 eyl
ap o \Y1, Y2, 2 Yir-y12lY2 Y2y -
——— -
P P

This proves (i7) and the proof is complete. H

Recall that in characteristic zero, any result on multilinear polynomial identities
obtained in the language of representations of the symmetric group is equivalent to a
corresponding result on homogeneous polynomial identities obtained in the language of

representations of the general linear group (Theorem 1.4.36).

Notice that the H,,-polynomial b,(j)l is obtained from the essential idempotent

corresponding to the tableau T' fi) by identifying all the elements in each row of A. Therefore,
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the H,,-polynomial b,(;% is a highest weight vector, according to the representation theory
of GL,, (see Section 1.4.4). We recall that the complete linearization of a highest weight

vector associated to an irreducible G L,-module generates an irreducible S,,-module.

Corollary 4.2.4. The highest weight vectors whose characters appear with non-zero
multiplicity in the decomposition of x“>P2(UTy) are linear combinations of H,y,-polynomials
of the form:

7 R ~ ~d___ A~ ~ i .
bl(c)l(yla?h) =YY N ya---yzyzyi , 1=0,1,...,1,
At ~- JH _
k k

where 2k + 1 = n; and

(Z) — ii...w s e qil ) —
ap,q(y17y2az) yl@ 31123/2-~-3£Z/1 ) ? 0717"'7Q7

—_ N———
p p

where 2p+q+ 1 =n.

If XZ2’D2 (A) = 2 Z M X, 1S the decomposition of the Zj 1 S, -character

r=0 Apbr
pEn—r

of A, then one defines the n-th Zs ! S,-colength of A as

Zsz
L Z D1 M

r=0 M-r
p=n—r

By Theorem 4.2.3 we immediately get the following.

Corollary 4.2.5. For alln > 1

gZzDz (UTy) = Z Z My = M

r=0 A-r 2
p=n—r

4.3 Specht property for the H,,-module algebra U'T5

In this section we prove that the variety of H,,-module algebras generated by
the H,,-module algebra UT; has the Specht property. We recall the definition of Specht
property in the language of T#-ideals of H-module algebras (compare with Definition
1.1.33).

Definition 4.3.1. Let W be an H-module algebra. We say that 1d" (W) has the Specht
property if any T -ideal I such that I 2 Id" (W), has a finite basis, that is, I is
finitely generated as a T" -ideal. We say that the variety V has the Specht property if the
corresponding T -ideal has the Specht property.
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We recall that a binary relation < on a set A is a quasi-order if < is reflexive
and transitive, i.e., (i) a < a for all a € A, and (ii) @ < b and b < ¢ imply a < ¢, with
a,b,ce A. If B is a subset of a quasi-ordered set A, the closure of B, written B, is defined
as

B ={ae A| exists b e B such that b < a}.

We say that the quasi-ordered set A has the finite basis property (f.b.p.) if
for any subset B of A, there exists a finite subset By of A such that By € B < B,. Every
well-ordered set has f.b.p. (because every non-empty subset is the closure of a single
element). In particular, the set N of natural numbers with standard ordering has f.b.p..
However, Z the set of integers has not f.b.p.. The following theorem gives a equivalent
definition for f.b.p..

Theorem 4.3.2. [33, theorem 2.1] The following conditions on a quasi-ordered set A are

equivalent.

1. If B is any subset of A, there is a finite set By such that By € B < By;

2. There exists neither an infinite strictly descending sequence in A nor an infinite one

of mutually incomparable elements of A.

Let Ay, As, ..., A, be quasi-ordered sets. The cartesian product A; x Ay x - - - X
A,, ordened by (aq,as,...,a,) < (by,bg,...,b,) if and only if a; < b; for alli € {1,2,...,n}

is a quasi-ordered set.

The following theorems will be useful in the sequel.

Theorem 4.3.3. [33, Theorem 2.3] Let Ay, As, ..., A, be quasi-ordered sets satisfying
f.b.p., so their cartesian product satisfies f.b.p..

Theorem 4.3.4. Let Ay, A, ..., A, be quasi-ordered sets satisfying f.b.p., so the disjoint
union Ay u Ay L - U A, endowed with the quasi-order a < b if and only if a,b € A; and

a <, b for some i€ {l,...,n} satisfies £.b.p..

The free H-module algebra F7(X) is a quasi-ordered set if we define for
f,9€ F(X),
f <gifand only if g€ (f)rn,
where {f)rr denotes the TH-ideal generated by f.
N H . Hov s P
If I is a T"-ideal of F'(X), the quasi-order on F*{X) is inherited by ———=.

Remark 4.3.5. Let M be a subset of F(X). Then M < {(M)rr by definition. On the
other hand, since M = M we have that (M ypr = (M )pu
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Let A be an H-module algebra such that Id” (A) is finitely generated. A strategy
to give a positive solution to the Specht problem for IdH(A) is:

S1) Find a set of polynomials M < F#(X)/1d"(A), not necessarily finite, such that for
every TH-ideal I of FH(X)/1d"(A),

I ={(M"yru for some M' < M.

S2) Show that (M, <) satisfies f.b.p. where < is the quasi-order f < ¢ if and only if g
is a consequence of f in FH(X)/1d"(A).

Then, in the light of Lemma 1.4.34, a natural set M satisties step (S1) is the
set of highest weight vectors generating irreducible modules whose characters appear with
non-zero multiplicity in the decomposition of the cocharacter of the H-module algebra A.
The step (S2) is to show that these highest weight vectors satisfy f.b.p. with the quasi-
order inherited by F7(X)/1d”(A). In this way the Specht property is proved because if T
is a T7-ideal of F#(X)/1d"(A), then by (S1) there exists M’ < M such that I = (M)
and by (S2) there exists a finite set My < M’ such that My < M’ < M,. Thus by Remark
4.3.5,

I =M yrun = (Mo)rin = (Mo)rin.

This strategy has been used to prove the Specht property in different algebras
environments (see for instance [26, 48, 56]). Problems arise in the strategy when the
multiplicities of the irreducible characters are greater than 1, and according to the Theorem
4.2.3, the H,,-module algebra UT; has multiplicities greater than 1. So we will approach
it in a different way.

Fin(X)

We shall consider m

as a quasi-ordered set. Hence, if f,g e F7"(X),

we define
f < gif and only if g € ({f} U LA™ (UTy) )y,

In this case we say that g is a consequence of f modulo Ide(U T5) or simply that g is a

consequence of f.

Let M be the set of all the highest weight vectors corresponding to the cocharac-
ters appearing with non-zero multiplicities in x“P2(UT;). By Corollary 4.2.4, the highest

n

weight vectors lying in M are a linear combination of H,,-polynomials of the form:

L) 7G2Gyl
— — < —

-~
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Let us denote by B; the set of H,,-polynomials of the form (1) and B, the set
of H,,-polynomials of the form (2). For i = 1,2, we define the quasi-order < in B; by
f < g if and only if ¢ is a consequence of f, where f, g € B;. We consider the following
sets which are in one-to-one correspondence with the highest weight vectors of B; and B,

respectively:

By

i.j,p)} = N
By ={(i,l—i,k) |0<i<l}
g, k)Y = NP,

{(
{(
{(
{(

l
(3}

By Theorem 4.3.3, B; and B, have f.b.p. with the natural quasi-order of N*. We shall show

that the quasi-order < in B; and Bs induces the quasi-order < in B; and B, respectively.

Lemma 4.3.6. We have

Loyigi iz Gl UL TG 2T2- - Gayl where (i,5,p) < (', 5,1);
M~ M~ Y
P p p/ p/

2T G B Bl <y T 0 T Byl where (i, k) < (5, K).
k k % K

Proof. By transitivity of the quasi-order, in order to prove (1) we prove that

(i) (,4,p) < (i',j,p) implies aijp < @i jp;
(i) (4,7,p) < (4,7, p) implies a; j, < i jp;
(iii) (i,7,p) < (i,7,p") implies a; j, < @iy,

where 4,7, j, 4, p,p’ are integers and

—_ —_—
p p

The statements (i) and (i) follow from the fact that a;;x = 9% ‘a;,;, mod (Id” (UTy))
and a; ;= a;;xyl 7 mod (1A (UTy)) respectively. In order to prove the statement (ii),
without loss of generality, we may suppose p’ = p + 1. The general statement will follows

by a standard induction argument.

Notice that a;, is a linear combination (mod (Id” (UT3))) of the polynomials:

i+t

vt e Yy, t=0,1,..p.
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Thus, if we multiply by appropriate variables y’s to the right or to the left of these
polynomials, we obtain that for all t = 0,1,...,p,

i — i 1 1)—t 1
Yty T byl < iy Ty P Tyl

and therefore a; j, < a; ;.

The proof of (2) is analogous. O

Lemma 4.3.7. The sets By and By with the quasi-order given above satisfy the £.b.p..

Proof. Let B] be a subset of By and Bj a subset of By = {(i,q — i,p) | a(z) € Bi}
corresponding to By, i.e., B} = {(i,q — i,p) | a’) € Bj}. Since B} € B, < N3, and, by
Theorem 4.3.3, N® has f.b.p., we have there is a finite set B} < B} such that BY € B] BY.
Consider B) = {al(fjl | (i,q —i,p) € BY} < B} and a y € By. This implies (i,q —i,p) €
B} < BY; therefore there is (i, o — io, po) € BY, where (10, G0 — %0, P0) < (i,q —i,p). By
the previous lemma, a' < o) where () ¢ B). Thus a(Z e BY and consequently

Po,q0 p,q’ Po,q0

BY < B, < BY, where B is a finite set. This shows (B;, <) Satlsﬁes f.b.p..

The proof for the set (Bs, <) is analogous and we are done. O

We already have the key ingredients to prove the main result of this chapter.
We want to highlight we are going to use the algorithm described in full details in the
paper [15].

Theorem 4.3.8. var™(UTy) has the Specht property.

Proof. If I = 1d"™(UT}), then Theorem 4.1.5 ensures us that I is finitely generated. So let
us suppose [ 2 Ide(U T3). Let M be the set of highest weight vectors corresponding to
cocharacters appearing with non-zero multiplicities in x“>2(UT5), n = 0; hence, F#m(X)
is generated by M modulo Id"™(UTy). Since FA"(X) 2 I 2 14" (UT), there exists
M' < M such that I is generated by M’ modulo Id"”"(UT;). We will show that (M, <)
satisfies f.b.p., where < is the quasi-order given by the consequence, i.e., f < g if and
only if ¢ is a consequence of f in FHm(X)/1d"(UTy).

A highest weight vector of degree n in M is a linear combination of H,,-
polynomials of the form agz], 1 =20,...,q and p, q fixed such that 2p + ¢+ 1 = n, or
H,,-polynomials of the form bk, 1, 0 =20,...,l and k,! fixed such that 2k + [ = n because
they correspond to different modules. Thus M = &, 1 S, where Sy is the set of highest
weight vectors associated to By and S; is the set of highest weight vectors associated to
By. Then, by Theorem 4.3.4, it suffices to show that the sets S; satisfy f.b.p., where f < ¢

if and only if ¢ is a consequence of f, where f,g e S; for v =1, 2.
Consider the set S;. A highest weight vector of degree n in &7 is of the form

q
2 aiaz(f}]. Define the leading term of this highest weight vector as the element a}(f,g), where
i=0
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ip = min{i | a; # 0}. Notice that B, can be seen as the set of all the leading terms of the
set S and, by Lemma 4.3.7, (B, <) satisfies f.b.p.. Hence, B; has a finite subset B such
that every element in 3, is bigger than some element of BY. Let S < S| be the finite

subset with leading terms in 3Y.

Let

!

q q .
Z ) eS) and  hy= a8

=0
be two highest weight vectors with leading terms a](j;g), all’

(jo)
p,q
all®) < az(,],f’g,. Then,

, respectively, and such that

(Jo

) _ , Jo—io (i0) 7~ ~ q'—jo—q+io
Uy g =Y

' @~~-@am 2yl (mod Id"™(UTy)).

/ /

p=p p=p

where —, ~ mean alternation on the corresponding elements. At light of this, we consider

the highest weight vector
d . .
: P
h = Zaiy{O zo@...%aﬁ] 2...%%1 Jo=a+io.

)

which is a consequence of h; and its leading term is exactly a, (o) Therefore the leading

term of

/8.]0

)

hy —
is smaller than the leading term of hy and by inductive arguments is a consequence of S,
This shows that S; satisfies f.b.p..
Similarly, Ss satisfies f.b.p. too.

Finally, since I is generated by M’ modulo Id"™(UT}) and (M, <) satisfies
f.b.p., then there exists a finite set My < M’ < M such that My < M’ < M,. By Remark
4.3.5,
I = My = Ty, = (Mg,

that is, I is finitely generated as a T7™-ideal. O
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x-algebra, 37
#-ideal, 38
»-index, 65, 66

x-polynomials, 37

a-derivation, 107

Adjoint action, 50

Affine algebra, 22

Algebra of endomorphisms, 20
Algebra over a field, 20, 41
Alternating =-polynomial, 64
Alternating H-polynomial, 99
Annihilator, 23

Antipode, 44

Associative unitary free algebra, 24

Basic #-algebra, 71
Bialgebra, 43

Bialgebra morphism, 43
Biideal, 43

Binary relation, 116

Capelli polynomial, 65
Character, 56

Closure, 116

Coalgebra, 41
Cocharacter, 59
Cocharacter sequence, 59
Cocommutative, 41
Codimension, 60
Coideal, 43

Colength, 60

Column stabilizer, 58
Comodule, 47

Complete linearization, 34
Completely reducible, 23

Completely reducible representation, 54

Comultiplication, 41
Conjugate partition, 57
Consequence, 26
Convolution product, 45
Counit, 41

Degree of homogeneous elements, 32

Degree of representation, 53

Degree of the homogeneous component,
29

Designated variables, 77

Determined, 26

Direct sum of representations, 54

Elementary evaluations, 39
Elementary grading, 32
Endomorphism, 20
Equivalence of representations, 53
Equivalent polynomials, 26
Essential Shirshov base, 91
Even component, 37

Even element, 37

Exchange superinvolution, 40
Exponent, 60

Extremal point, 66

f.b.p, 116

Factor algebra, 21

Factor coalgebra, 43
Finite basis property, 116
Finite module, 91

Finitely based, 27

Finitely generated algebra, 22
Formal adjoint of unity, 21
Free =algebra, 37

Free G-graded algebra, 36
Free H-module algebra, 51
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Free algebra, 24
Free superalgebra, 108
Full -algebra, 69

G-graded algebra, 32
G-graded homomorphism, 32
Gelfand-Kirillov dimension, 18
General linear group, 53
Generated as T-ideal, 26
Graded algebra, 29

Graded homogeneous components, 32
Graded ideal, 32

Graded identity, 36

Graded subspace, 29

Graded vector space, 29
Group algebra, 43

H,,-action on UT5,, 108

H-basic algebra, 99

H-homomorphism, 51

H-identity, 52

H-Kemer index, 99

H-Kemer polynomials, 99

H-module algebra, 49

H-polynomial, 52

Highest weight vector, 62

Hilbert series, 18, 30

Hilbert series for =-algebras, 90

Hilbert series for H-module algeras, 100

Hilbert’s Basis Theorem, 27

Hilbert-Serre Theorem, 18

Hilbert-Serre Theorem for =-algebras, 94

Hilbert-Serre Theorem for H-module al-
gebras, 103

Homogeneous components, 29

Homogeneous polynomial representation,
61

Homomorphism of H-module algebras, 51

Homomorphism of algebras, 21

Homomorphism of coalgebras, 42

Homomorphism of G-graded algebras, 32
Hook of a matrix, 71

Hopf algebra, 44

Hopf ideal, 45

Hyperoctahedral group, 110

Ideal of #-identities, 38

Ideal of Zs-Ds-polynomials identities, 109
Ideal of graded identities, 36

Ideal of polynomial identities, 25
Idempotent element, 22, 55

Infinitely based, 27

Inner derivation, 107

Integral, 48

Integral element, 91

Irreducible module, 23

Irreducible representation, 54
Jacobson radical, 23

Kemer #-polynomial, 67

Kemer points, 66

Kemer set, 66

Kemer Theory, 28

Kemer’s Representability Theorem, 28

Krull dimension, 18

Left ideal, 21
Lie commutator, 25
Linear polynomial, 33

Linearization, 34

Maschke Theorem, 54

Maschke’s theorem for Hopf algebras, 49
Matrix units, 32

Minimal =-algebra, 71

Minimal element, 55

Minimal ideal, 55

Module over a ring, 22

Module over an algebra, 23, 47
Monomial, 24

Morphism of bialgebras, 43
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Morphism of comodules, 48
Morphism of modules, 47
Morphisms of Hopf algebras, 45
Multilinear polynomial, 33
Multilinearization process, 34
Multiplication, 20, 41
Multiplicity, 55

Nilpotent algebra, 25
Nilpotent ideal, 21

Odd component, 37

Odd element, 37
Opposite superalgebra, 40
Orthogonal elements, 22

Orthosymplectic superinvolution, 39

Partial linearization, 34

Partition, 56

Peirce decomposition, 22

Phoenix, 82

Pl-algebra, 25

Pl-equivalence, 26

Pl-equivalence between H-module alge-
bras, 52

Pl-exponent, 60

Pl-representable, 28

Polynomial, 24

Polynomial algebra, 21

Polynomial identity, 25

Polynomial representation, 61

Proper ideal, 21

Property K, 81

Quantum plane, 44
Quasi-order, 116

Radical, 23

Radical evaluations, 38
Rank, 24

Regular representation, 55

Relatively free algebra, 26

Representability Theorem, 28

Representability Theorem for H-module
algebras, 99

Representable, 28

Representation, 53

Right ideal, 21

Row stabilizer, 58

Semisimple algebra, 23

Semisimple evaluations, 38

Semisimple Hopf algebra, 49

Shirshov base, 91

Sigma notation, 42

Simple =-algebra, 38

Simple algebra, 23

Skew element, 37

Specht problem, 17, 27

Specht property, 27

Specht property for =-algebras, 90

Specht property for H-module algebras,
100, 115

Specht property for the H,,-module alge-
bra UT;, 119

Standard polynomial, 25

Standard tableau, 57

Strictly Phoenix, 82

Subalgebra, 21

Subdirectly irreducible =-algebra, 68

Subrepresentation, 54

Superalgebra, 37

Superalgebra with superinvolution, 37

Superinvolution, 37

Sweedler’s Hopf algebra, 46

Symmetric element, 37

Symmetric polynomial, 35

TH _equivalence, 52
TH ideal, 52
To-ideal, 109

T3-equivalence, 38
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T3-ideal, 38

T-ideal, 25

T-ideal generated, 26

Taft’s Hopf algebras, 46
Tensor algebra, 30

Tensor product, 21

Tensor product of representations, 54
Total degree, 35

Transpose superinvolution, 39
Trivial idempotents, 22
Trivial representation, 53
Twist map, 41

Two-sided ideal, 21

Unit, 41
Unitary algebra, 20

Universal property of free algebras, 24

Vandermonde matrix, 34
Variety, 26
Variety of H-module algebras, 52

Wedderburn-Malcev Theorem, 24

Young diagram, 56
Young tableau, 57

Zip-Do-polynomials, 109
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