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RESUMO

Este trabalho abrange objetivos relacionados ao aprimoramento de algoritmos de realização

no espaço de estados (State-Space Realization Algorithm) SSRA, baseados no tradicional al-

goritmo de realização de autosistemas (Eigensystem Realization Algorithm) ERA, que surge

de oportunidades comparando o método com outras técnicas de Identificação de Sistemas de

múltiplas entradas e múltiplas saídas (Multi-Input-Multiple-Output) MIMO. O objetivo princi-

pal deste trabalho é introduzir uma nova abordagem considerando a forma iterativa do método

SSRA com correlação de dados (State-Space Realization Algorithm with Data Correlation)

SSRA-DC. Esta perspectiva visa melhorar a eficácia de identificação do algoritmo quando o sis-

tema possui ruído de medição. O método proposto é composto por iterações do SSRA-DC por

meio da retroalimetação da matriz de parâmetros de Markov. Um fator de ganho é aplicado na

retroalimentação para atualização dos parâmetros de Markov a cada iteração. Ao longo do tra-

balho, sinais de sequência binária pseudo aleatória (Pseudo Random Binary Sequence) PRBS,

sinais de varredura senoidal (Sine Sweep signal) CHIRP, e sinais de ruído branco gaussiano

(Gaussian White-Noise) GWN são empregados como excitação de entrada nas simulações de

modelos massa-mola-amortecedor com 5, 50 e 100 graus de liberdade, para verificar o desem-

penho dos algoritmos. Adicionalmente a esses sistemas lineares, um sistema não-linear com

Pêndulo sobre estrutura móvel (Cart-Pendulum) C-PEN é também submetido às simulações

dos algoritmos. Vários resultados foram concebidos com base em uma análise estatística de

100 simulações para cada configuração dos algoritmos. Por fim, uma análise comparativa entre

o método iterativo SSRA-DC-iCL com as técnicas mais conhecidas do "SI toolbox" do Matlab

evidencia a eficácia do novo método. Para os sistemas lineares massa-mola-amortecedor com 50

e 100 graus de liberdade, a precisão de identificação foi um pouco melhor no algoritmo N4SID

do que no SSRA-DC-iCL, embora o tempo de processamento computacional (CPT) tenha sido

muito menor com o novo método. Para o sistema não linear C-PEN de 2 graus de liberdade,

os resultados se inverteram ao comparar os métodos SSRA-DC-iCL e N4SID, no entanto, para

este sistema o método ARMAX foi o que apresentou melhor eficácia na identificação.

Palavras-chave: Identificação de sistemas, Algoritmo de realização no espaço de estados, Sis-

temas de múltiplas entradas e saídas, Correlação de dados, Sequência binária pseudo-aleatória

(PRBS), Ruído branco gausseano (GWN), Ruído de medição, Parâmetros de Markov.



ABSTRACT

This work encompasses objectives related to improvements of State-Space Realization Algo-

rithms (SSRA) based on the traditional Eigensystem Realization Algorithm (ERA), which arise

from opportunities comparing the method with other identification techniques of MIMO sys-

tems. The main objective of this work is to introduce a new approach considering the iterative

form of SSRA with Data Correlation (SSRA-DC) method. This perspective wants to improve

the identification algorithm effectiveness when the plant has measurement noise. The proposed

method is composed of SSRA-DC iterations with the feedback of the Markov parameters ma-

trix. A gain factor is applied in the feedback for updating the Markov parameters at each

iteration. Throughout the work, Pseudo Random Binary Sequence (PRBS) signals, CHIRP

signals, and Gaussian White-Noise (GWN) signals are employed as input excitation in the sim-

ulations of mass-spring-damper models with 5, 50, and 100 degrees of freedom to verify the

performance of the algorithms. Additionally to these linear systems, a nonlinear Cart-Pendulum

system is also submitted to the algorithms simulations. Several results were performed based

on a statistical analysis of 100 simulations for each configuration of the algorithms. Finally, a

comparative analysis between the iterative method SSRA-DC-iCL with the most well-known

techniques from the "SI Toolbox" of Matlab evinces the novel method’s effectiveness. For

the linear mass-spring-damper systems with 50 and 100 degrees of freedom, the identification

accuracy was a tiny better in the N4SID algorithm than the SSRA-DC-iCL, even though the

computational processing time (CPT) was much smaller with the new method. For the nonlin-

ear Cart-Pendulum system of 2 degrees of freedom, the results were inverted when comparing

the SSRA-DC-iCL and N4SID methods; however, for this system, the ARMAX method showed

the best identification effectiveness.

Keywords: System Identification, State-Space Realization Algorithm, MIMO systems, Data

correlation, Pseudo Random Binary Sequence (PRBS), Gaussian White-Noise (GWN), Mea-

surement noise, Markov parameters.
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1 INTRODUCTION

1.1 A view of System Identification

Representing a system and physical phenomena through mathematical models has

always been a significant challenge in many knowledge areas. Since ancient times, men have

been searching for ways to mathematically express what is observed and experimented with

within their continuous creative process. Despite the development of new modeling techniques,

the old challenge of reproducing a physical system with a mathematical analog remains the

same. The growing necessity to construct models from observed data rather than mathematical

equations, considering the increase of system complexity, and the technological advancements

with the rise of computational processing capacity, made it appear the procedure known as

empirical modeling, or better known nowadays System Identification (SI) (Aguirre, 2015).

System identification is the science field that applies the technology of building

mathematical models of a dynamical system from observed input-output data. Or as defined

by Juang in (Juang, 1994): “Identification is the process of developing or improving a mathe-

matical model of a physical system using experimental data to describe the input, output and

noise relationship.” SI techniques search for having a better-identified system in terms of more

straightforward to use and more accurate (Ljung, 2010a). System identification is a recognized

sub-area of Automatic Control with over 60 years of history of methods and algorithms devel-

opment, comprehending industrial applications and software packages as the Matlab System

Identification Toolbox (Ljung, Lennart, 2014). For the standard Automatic Control view, SI can

be considered an inverse problem, given that usually, the output is the result of a convolution

between the input and the system’s response. Thus, SI is a deconvolution problem (Pillonetto

et al., 2014).

The fundamental concept of system identification is summarized through the dia-

grams presented in Figure 1.1. Figure 1.1(a) represents the unknown system to be identified

once consisting of measured outputs Y attained accordingly the inputsU that excite the system

subject to unmeasurable perturbations Vx. Figure 1.1(b) shows the identified system obtained

that can be represented by a parametric model providing the state-space matricesA,B, C,D.

The system output Ŷ becomes an estimated output as stated by the obtained model. Figure

1.1(c) synthesizes the SI process where a set of inputs U and outputs Y are employed as in-
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puts to an identification method that is executed to generate a state-space model, for instance

(Aguirre, 2007).

Inputs U

Pertubation Vx

Outputs Y

States X

System

(?)

(a)

Parametric Model

A,B,C,D

Model Outputs ŶInputs U

(b)

Identification
Method

Model {Â,B̂,Ĉ,D̂}
Outputs Y

Inputs U

(c)

Figure 1.1 – SI Fundamental concept: an unknown system to attain a parametric model through
an identification method.

SI modeling techniques count on three classification forms: white-box modeling,

black-box modeling, and gray-box modeling. The white-box modeling requires a good knowl-

edge of the system under study to provide the physical laws needed for describing the system

thoroughly. For this reason, this modeling is also called modeling by physics or conceptual

modeling. SI is the area that explores alternatives solutions to the white-box modeling when

there is no need for previous knowledge of the process, or no information can be taken. The

methods related to this environment are encompassed by the black-box modeling (Giordano;

Sjöberg, 2018), which is the subject of the present work. The gray-box modeling technique

is of considerable challenge in SI. According to the system’s initial conditions, in this case,

additional information can be added to modeling a process that would be considered a typical

black-box (Aguirre, 2015).

Some concepts about System Identification subjects shall be introduced here as the

basis of the knowledge applied all over the work. As is usual in SI, a discrete-time represen-

tation of equations will be used in the context rather than continuous-time characterization.
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Experimental data from measurement devices are recorded in digital format of numbers as a

basis of system identification, being discrete by nature (Juang, 1994). Model parametrization

based on the physical characterization of the process is inherently more appropriate to employ

continuous-time models in SI once the physical laws are mathematically determined with dif-

ferential equations (Soderstrom; Stoica, 1989). In this case, the identification comes closer to a

white-box modeling.

In this work, the identified systems will be considered and conceptually built as lin-

ear time-invariant (LTI). Most of the application models here are assumed from a linear struc-

tural system with the input-output experimental data coming from simulations. Accordingly to

Chen in (Chen, 1984), a system is called a linear system if, for every initial time t0 and any two

state-input-output pairs

xi(t0)

ui(t), t ≥ t0

}
→ yi(t), t ≥ t0, (1.1)

where, for i = 1, 2, following the superposition property, yields:

α1x1(t0) + α2x2(t0)

α1u1(t) + α2u2(t), t ≥ t0

}
→ α1y1(t) + α2y2(t), t ≥ t0, (1.2)

for any real constant αi, where yi,ui, and xi are outputs, inputs and states of the system,

respectively.

The respective linear system is also stated as time-invariant if, for every state-input-

output pair as in Equation (1.1), and any period T , the following is worthy:

x(t0 + T )

u(t− T ), t ≥ t0 + T

}
→ y(t− T ), t ≥ t0 + T. (1.3)

Accordingly to Chen, Equation (1.3) shows that “if the initial state t0 is shifted to time t0+T and

the same input waveform is applied from t0 + T instead of from t0, then the output waveform

will be the same except that it starts to appear from time t0 + T ”. For a LTI system, it can

be assumed, without loss of generality that t0 = 0. From Equation (1.3), it is realized that if

the initial state and input do not change each other over time, no matter at what time they are

applied, the output values will always not change either (Chen, 1984). The time-shifting aspect

takes part in the time-invariant characteristic of a system. However, it can not be misunderstood

with the dynamics of a system that does not change itself in the period in which the system is

considered. A LTI system with a scalar output signal y(t) and a scalar input signal u(t) was
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synthetically defined by Ljung in (Ljung, 1999): “The system is said to be time invariant if its

response to a certain input signal does not depend on absolute time. It is said to be linear if its

output response to a linear combination of inputs is the same linear combination of the output

responses of the individual inputs”.

Additionally to the application models coming from simulations of typical linear

systems, as previously conceptualized, this research extends the foreseen scope to also compose

the input-output data as from simulations of a nonlinear dynamical system. This nonlinear

system will be presented in full in Chapter 5, together with the definitions and characteristics of

the linear systems.

Throughout the work, mostly in Chapter 5, the steps and procedures for providing

the way how the System Identification process should attain the results are presented and dis-

cussed in more detail. For now, the objective here is to describe a synthesis of the overall stages

involved in the SI process, as following (Ljung, 1999; Aguirre, 2015):

1. Dynamical tests and data record: the input-output data are determined during an identifi-

cation experiment that can be obtained on-line while the SI algorithm is working (recur-

sive algorithms) or off-line, which is more usual, where the data are stored previously to

the posterior algorithm processing. This step is crucial to the algorithm’s effectiveness,

where fundamental concerns such as excitation signals choosing and eventual constraints

should be well planned in the experiment.

2. Select the model structure and/or the SI method: choose a set of candidate models first.

A priori knowledge of the system characteristics and engineering intuition can help to

define a specific model to be tested. This SI stage is considered one of the most difficult

choices with a significant impact on the identification performance.

3. The setting of the algorithm parameters: this step refers to the adjustments of the param-

eters required to the method’s functioning. This task can be straightforward and brief

depending on the SI algorithm chosen. On the other hand, even when only a few param-

eters are necessary, such as the systems’ order, this can be challenging if the method’s

characteristics and application knowledge is poor. In this step, the parameter setting can

also require systems’ information.

4. Model estimation: this refers to the own SI algorithm processing, where the estimated

parameters of the identified system are obtained. In some methods and software tools,
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the model estimation provides the functionality of determining the best model based on

how the models perform when they try to reproduce the data. Assessing this result is

essential to avoid inconsistencies as the loss of identified system poles. This functionality

is performed before processing the SI algorithm.

5. Model validation: after achieving a particular identified system composed of the complete

model with its estimated parameters, it is time to evaluate if that system is good enough

to incorporate the characteristics of interest from the original system. For this appraisal

task, applying an index to measure the adherence of the identified system related to the

original system is desired. In this work, a Fit Rate indicator will be used to support this

test of identified system confidence.

The previous steps describe a natural and logical flow in the SI process. However,

it may be necessary to go back and revise some of the steps accomplished if the result is not the

expected, indicating that the model used for the identified system attained can be deficient for

that identification purpose.

Lastly, it should be pointed out that the terms model and method can be applied

to the same representation. Both terms will then refer to a straight mathematical representation

or an algorithm structure all along with this work, mainly for the autoregressive models, which

will be discussed in Chapter 3.

1.2 Thesis Subjects and Research Scope

This thesis aims to study and propose alternatives to tackle some drawbacks of the

traditional State-Space Realization Algorithm (SSRA) method regarding the identification ef-

fectiveness of large MIMO (Multiple-Input-Multiple-Output) systems under measurement noise

conditions. For that, developing a new SI method based on the SSRA arises as a challenge, im-

proving the correlated methods by introducing features related to the iterative algorithms. The

typical scenario of this contribution considers the algorithm applied to MIMO systems with

additive measurement noise and a reduced number of samples acquired from the process.

A remark of this developed research regarding MIMO systems should be mentioned

when compared to multivariable systems submitted to identification methods that work with

SISO (Single-Input-Single-Output) systems. In this concept, an identification method config-

ured to work with only SISO systems needs to generate r × s state-space models to depict the
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dynamic of a multivariable system of r outputs and s inputs. The SI methods approached in this

work provide an identification solution with a single state-space model that sufficiently depicts

the dynamic of the multivariable system in an integrated way.

The new approach represents an evolution taken from the SSRA with data correla-

tion (SSRA-DC), especially under noisy systems conditions. The methods here called SSRA

and SSRA-DC stem from the traditional Eigensystem Realization Algorithm (ERA) (Juang;

Pappa, 1985), and ERA with Data Correlation (ERA-DC) (Juang et al., 1988), respectively.

These methods add some functionalities such as the attainment of eigenvectors, eigenvalues,

natural frequencies, and modal damping, which are not considered in the SSRA and SSRA-DC

algorithms, the basis of this work. SSRA and SSRA-DC are developed starting from the input

and output data set until the identified system is obtained through the state-space realization.

The novel method developed in this research stems from the SSRA-DC by applying the iter-

ative concept to the input-output data set that has its representation in charge of the Markov

parameters matrix. The data correlation treatment as an even resource in the SSRA-DC to min-

imize the noise effects starts to receive the features from an iterative algorithm to add more

effectiveness to the identification method.

Another purpose of the present work is to introduce a State-Space Realization Algo-

rithm for generalized multi-input signals, similar to the General Realization Algorithm imple-

mentation (De Callafon et al., 2008). However, analyzing here the algorithm settings in terms of

the influence of input excitation and parameter adjustments in the results of the simulation tests.

Rather than an impulsive signal employed in the traditional ERA, the excitation comes from an

arbitrary Pseudo Random Binary Sequence (PRBS) signal in the first phase of the work.

The research scope considered applying the methods employing only simulated ex-

periments to compose the input-output data set. The concern of the systems’ excitation to the

SI performance contributed to the research applying Pseudo Random Binary Sequence (PRBS)

as a novelty in terms of excitation signal to the SSRA. The PRBS signal was also submitted to a

comparative outlook with CHIRP signals and Gaussian White-Noise (GWN) signals. Neverthe-

less, the research steps encompassing the novel method had only the GWN as input excitation

following the traditional application of the White-Noise in the structural identification.

An index was thought to be a quality tool aiming to measure the identified system’s

effectiveness for the SI developments. Applying a well-known and established indicator in

the identification area was crucial, making it feasible to use one of the main indexes applied
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at Matlab’s SI Toolbox (Ljung, Lennart, 2014). The Fit Rate index (FR) employment as an

indicator for the SSRA and its derived algorithms served as a standard evaluation criterion for

comparison purposes all over the work.

1.3 Objectives and Original Contributions of the Thesis

The initial work planning relied on developing a broad study and looking over Sys-

tem Identification methods with application analysis for some conditions that could distinguish

the systems to be identified by their complexity. The complex systems would be characterized

as of considerable size in the length of the system matrix (system’s order), with MIMO vari-

ables, and working in the noise presence. The diversification of these conditions for several

types of methods would support research focusing on the contribution in terms of a broad data

survey of SI performance. Therefore, this would be considered some original contributions of

the thesis.

Considering some difficulties in the SSRA configuration settings, the research project

had a starting objective of studying algorithm parameters influencing the method performance

entrusted to the results measured by the Fit Rate index (FR). This study led to the assessment

of the relationship between algorithm parameters influencing the SI results.

In the sequel, considering the takeaways from the initial developments, the main

objective of this work relies on minimizing effectiveness problems that occur with the increase

of MIMO system size and is motivated by the searching for SSRA improvements. The algo-

rithm enhancement provided a novelty contribution of the SSRA to tackle the possible measure-

ment noise in the systems. The implemented concept of an iterative algorithm in a closed-loop

with Markov parameters’ in the feedback condition supported the technique’s application to the

SSRA Data Correlation (SSRA-DC) method. This method further improved its situation in the

face of exposure to the noisy system condition since the SSRA-DC was already designed to

become better than the traditional SSRA in those circumstances of noise.

Some specific objectives complementary to the previously described primary pur-

pose shall be mentioned here. A comparative analysis between the most well-known SI methods

is performed, incorporating the new iterative SSRA-DC-iCL algorithm, thus, leading to an even

more significant contribution to this work. Also, the new iterative method was submitted to

simulations of a nonlinear system to compose the input-output data set. In this condition, a

Single-Input-Multiple-Output (SIMO) system with only two outputs but with nonlinear dynam-
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ical characteristics was tested similarly to the linear systems to evaluate the novel method’s

effectiveness under nonlinearities conditions straightly coming from the original dynamics of

the system.

A brief view of the thesis parts (chapter or section), where each contribution phase

of the research takes part as the main subject, is presented in Table 1.1.

Table 1.1 – Main contributions summary

Contribution Chapter(C) or Section(S)
Phase 1: Influence of SSRA settings in SI effectiveness S:4.2; C:6

Phase 2: New iterative SSRA-DC-iCL method S:4.3; S:4.4; S:7.4; S:7.5
Phase 3: Comparison between iterative SSRA-DC-iCL and

reference methods
C:3; S:4.4; S:7.8

Phase 4: Evaluation of the methods for a nonlinear system
simulated

S:5.5; S:7.9

1.4 Thesis structure

In this section it is presented a summary of the research topics and the main subjects

discussed throughout the chapters and sections, depicting how the text was organized:

• Chapter 2 - Literature overview: Relevant publications available in the literature related

to the research subjects are described, composing a historical view of the researches in

the thesis correlated area, and more recent challenges.

• Chapter 3 - Identification methods for comparative analysis: The most well-known

SI methods designed for linear systems are presented, introducing a summed up review

of its main characteristics and features.

• Chapter 4 - The novel SSRA-DC-iCL method and its background: A complete back-

ground with mathematical formulations of the traditional State-space Realization Algo-

rithm is presented as well as the theory to support the following approach. The SSRA

Data Correlation (SSRA-DC) is also described as an algorithm version derived from

SSRA to attend systems under noise conditions and as the fundamental basis to the

new method. The research’s main contribution is reported, presenting the SSRA-DC-

iCL characteristics for systems with measurement noise. A block diagram is introduced

to represent the iterative method implemented. The new algorithm is shown in detail.
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• Chapter 5 - Systems and Models configuration: Presents supporting conditions es-

tablished in the research to provide the input data through simulations, describing the

configuration and characteristics of input excitation signals, the simulations procedure,

the mass-spring-damper models, the nonlinear Cart-Pendulum model, the systems dis-

cretization, and the measurement noise applied.

• Chapter 6 - Analysis of the settings influence on SSRA: The traditional state-space

realization algorithm based on the ERA method is tested with several algorithm settings

showing the relation between the parameters configurations and the correspondent results,

taking the Fit Rate index as a guide for better algorithm configuration searching.

• Chapter 7 - Results and discussion of the SSRA-DC-iCL method: The results from

numerical experiments carried out through several data set simulations are presented and

discussed. Firstly, it contemplates the results regarding the second phase of the research

accomplished with the SSRA-DC-iCL algorithm for some systems’ configurations. For

the third research phase, the chapter introduces a broad comparison between the SI meth-

ods approached in Chapter 3 and the iterative SSRA-DC-iCL method (Section 4.4). In

the fourth phase, the nonlinear system presented in Section 5.5 has its results detailed in

Section 7.9. The comparative analysis also considers the computational processing time

(CPT). Hence, the overall performance of the methods is taken in this analysis.

• Chapter 8 - Highlights and concluding remarks: The conclusions and central topics

of the research are presented, pointing out the more relevant discussion items and gaps to

motivate future works.

• Appendix A - Mathematical development of the SSRA with Data Correlation: Presents

the mathematical steps with the corresponding equations of the method SSRA-DC until

the attainment of the identified system in the state-space representation.
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2 LITERATURE OVERVIEW

2.1 Overview of first researches1

The term Identification attributed to determining input-output relationships in a

black-box system was pioneered introduced by Zadeh in (Zadeh, 1956). More than four decades

before that, Fisher already proposed the Maximum Likelihood estimate method (Fisher, 1912),

which has turned into one of the most important developments in statistics in the last century.

This method of probability estimate maximizes the likelihood of the input data. Fischer’s theory

led to a huge impact, influencing the development and evolution of System Identification since

that time. More than a century before the Maximum Likelihood method, in 1809, Gauss intro-

duced the basic principles of least-squares (Stigler, 1981), which determined the most modern

SI methods’ theories.

The work of Eykhoff in 1968 (Eykhoff, 1968), stated that “The Markov and least-

squares estimate had been derived from the Maximum Likelihood estimate under the assump-

tion of Gaussian noise.” Eykhoff comparatively clarified the different estimates methods ex-

isting until that time: Maximum likelihood, least-squares, Markov, and Bayes. Concomitantly,

Balakrishnan and Peterka have written about estimation methods applied to linear, nonlinear,

dynamical, and noise systems, concluding that despite significant progress in system identifica-

tion had been accomplished, many problems remain (Balakrishnan; Peterka, 1969).

Based on estimation theory like the well-known least-squares and Maximum Likeli-

hood, the basic SI methods were developed in 1960 and 1970 when computers became available

to process the respective calculations stem from the algorithms. A record number of researches

regarding these developments were written in these decades, including releasing many books.

In 1971, Åström and Eykhoff made a relevant contribution with a broad survey paper that given

an overview and prospect of System Identification (Åström; Eykhoff, 1971). The classification

of SI methods is a challenging task considering the many aspects characterizing the methods.

The works of Eykhoff (Eykhoff, 1968), and Balakrishnan and Peterka (Balakrishnan; Peterka,

1969) had already introduced this subject, but Åström and Eykhoff (Åström; Eykhoff, 1971)

consolidated this concept summarized as follows:

1 Some parts presented in this chapter were published in the papers (Soares Jr; Serpa, 2021; Soares Jr; Serpa,
2022).
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• The class of models: parametric or nonparametric models. In this thesis, all the ap-

proached models are parametric, as it is used nowadays for modern system identification

methods. The nonparametric models relate to models represented by transfer functions,

impulse response, spectral densities, and other forms different from mathematical equa-

tions containing parameters. The parametric models are related to the models established

by parameters, which are numbers, coefficients, characterizing them. In other words,

when there is information a priori about the system as the ones from physical laws to

describe the system, it can be represented by a parametric model (Aguirre, 2015).

• The class of input signals: determined by the type of input signals (impulse functions,

step functions, colored or white-noise, sinusoidal, PRBS, etc). This work employed the

PRBS, the CHIRP, and the GWN signals in the simulations. Considering these signals

are similar in characteristics regarding being persistently exciting, which is sufficient to

provide consistent estimates of least-squares and maximum likelihood (Åström; Eykhoff,

1971), this classification item do not differentiate the signals applied in the present re-

search.

• The error criterion: refers on how the model handles error concepts. The options are

output error, input error or generalized error. The first one is the type adopted in this

work, which occurs when the white-noise errors in the output measurement is the only

disturbance acting.

• Computational aspects: type of the iterative minimization in the optimization problem to

find the parameters that lead to lower errors. The possible techniques are the gradient

method, the steepest descent method, Newton’s method, the conjugate gradient method,

etc. For the developed iterative method based on SSRA, the previously mentioned min-

imization techniques are not applicable. This classification criterion is not suitable for

the iterative methods presented in Chapter 3, as the respective methods employed from

Matlab’s SI Toolbox provide an automatic mode to choose the best minimization method.

Considering several characteristics in common between the models that make it

difficult to separate through classification, it will be following applied some SI research subjects

to discriminate the most relevant literature references, which are straightforwardly engaged with

this work’s contents.
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2.2 Identification of linear systems

As seen in the section before, the firsts theoretical basis of System Identification

came up from more than a century. Issues related to the state-space realization and minimal

realization of linear systems appeared in a pioneering investigation as in the works of Tether in

1970 (Tether, 1970), and Silverman in 1971 (Silverman, 1971). Some years earlier, in 1968,

Åström introduced the simple equation error model which later came to be known as ARX

(Autoregressive with Exogenous input) model (Åström, 1968), as follows:

y(k) + a1y(k − 1) + . . .+ any(k − n) = b1u(k − 1) + . . .+ bnu(k − n) + e(k) , (2.1)

in a discrete-time SISO system where k is the discrete-time sample indicator.

A state-space representation of a linear system in continuous-time, can be written

as (Silverman, 1971):

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(2.2)

where y(t) ∈ R
r, u(t) ∈ R

s, and x(t) ∈ R
n are the output, input and state vectors, respec-

tively. The system is assumed to be represented by the triple (A,B,C), where these matrices

have sizes compatible with the respective vectors in the continuous-time system. The output

equation can consider a more general case when a direct transmission matrix is present, i.e.,

y(t) = Cx(t) +Du(t).

The SI representations depicted by Equations (2.1) and (2.2), related to autoregres-

sive and in state-space forms, respectively, are primary representation types that will be seen all

over this work. However, they will be presented in the discrete-time form, as was mentioned in

Section 1.1.

The work of Gopinath in 1969 should be held as the first method known for Sys-

tem Identification of linear time-invariant systems from MIMO data (Gopinath, 1969). In

1980, Kailath presented detailed algebraic aspects of multivariable linear systems, introduc-

ing some properties related to polynomial matrices (Kailath, 1980). A pioneering publication

about linear-regression models in a general framework with Single-Input-Single-Output (SISO)

systems was released by Ljung and Soderstrom in 1983 (Ljung and Soderstrom, 1983).

The Prediction Error Method (PEM), which will be conceptualized in the Chapter

3, was introduced by Ljung in 1976 (Ljung, 1976). PEM is one of the most well-known SI

methods that works iteratively supported by the least-squares method. The method is employed
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by many of the autoregressive/polynomials models and even basic state-space models. PEM is

available integrated to the models of the SI Toolbox from Matlab.

Research works interested in estimating transfer functions of linear systems have

arisen as relevant contributions for SI evolution. For instance, these models’ frameworks are

mainly linear-regression forms like a Finite Impulse Response model (FIR). The present work

focuses on methods based on the state-space realization model, which is part of a classical SI ap-

proach. Whatever the theory and model type involved, in the SI black box concept, input-output

data characteristics are the core of the overall process. Commonly, in the first SI researches, the

data were used to be attained from impulse response, as originally happened with the traditional

Eigensystem Realization Algorithm.

A SISO linear system structure in the discrete-time can be defined by the following

expressions for an FIR (Finite Impulse Response) model (Figure 2.1):

Y (z) = G(z)U(z) + V (z), (2.3)

G(z) =

q∑
m=1

gmz
−m,

where Y (z), U(z), and V (z) are the z-transform of y(k), u(k), and v(k), respectively, and

k = 1, 2, . . . , q is the sampling index, z is the shift operator, i.e., zu(k) = u(k + 1), v(k) is

the measurement noise independent of the input u(k), y(k) is the system output and G(z) is

the transfer function of the linear system with the coefficients gm, m = 1, 2, . . . , q (Chen et al.,

2012a; Chen et al., 2012b; Ljung, 1999).

u(k) y(k)
G(z)

v(k)

Figure 2.1 – Linear system G(z), excited by input u(k) with output y(k) and additive measure-
ment noise v(k). G(z) is an abuse of notation where it intends only to work as shift
operators for the discrete-time regressive terms.

Figure 2.1 and Equation (2.3) are typical representations of linear-regression mod-

els. Analogously to the transfer function G(z) in the regression model, the SSRA, that provides

a state-space realization like the one shown with Equation (2.2), is based on the Markov pa-

rameters working as a numerical transfer function. The Markov parameters matrix is originated

from the input-output data attained at the onset of a black box SI process.
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2.3 State-Space Realization Algorithm

The ERA was introduced by Juang and Pappa in 1985 (Juang; Pappa, 1985) as

a method for modal parameter realization and model reduction in identification of dynamical

structures. The results from the algorithm yield a model with the smallest state-space dimen-

sion among systems that should have the same transfer function within a specified degree of

accuracy. It should be mentioned the relevant contribution in 1978 from Kung (Kung, 1978),

where a similar approach based on the singular value decomposition technique and equivalent

state-space identification concepts were developed. Juang and Pappa in (Juang; Pappa, 1986)

developed some emerging tools to minimize the noise effects, such as the singular values of the

data matrix and modal amplitude coherence. Since these tools provide quantitative indicators to

discriminate the noise effect in the identified system, the noisy system can have its order closer

to the order of the true system, which will depict a system less corrupted by the noise effect.

Later, the researches regarding the ERA were refined to handle the effects of noise

and nonlinearities. The improvement of state-space identification from the ERA with jointed

techniques to tackle the effect of measurement noise in the SI process is the main objective

of this work. Juang et al. developed some additional methods based on ERA to reduce the

effect of system noise on algorithm effectiveness (Juang et al., 1988). In this cited work, a new

method (ERA-DC) was presented concerning data correlation in the Markov parameters matrix

and hence in the Hankel matrix to reduce bias errors due to noise effect without the need for the

model overestimation. Afterwards, Juang et al. (Juang et al., 1993) yielded a method, known

as the Observer/Kalman filter identification (OKID) method, to characterize and handle system

uncertainties, from plant disturbance or measurement noise, using the Kalman filter equation

to implement the Markov parameters. A new version of OKID was developed by Vicario et

al. in 2016 (Vicario et al., 2017), where the approach transforms a stochastic identification

problem into a deterministic subspace identification. In 2018, Alenany et al. (Alenany et al.,

2019) proposed another OKID method improvement using the least-squares method twice to

minimize residuals from the Kalman filter and Markov parameters where a comparative of the

formulation and results between the three OKID methods is performed.

Although most of these prior mentioned methods are powerful in system identifica-

tion of dynamical models, they are based only on impulse response. To cope with this restriction

in the Eigensystem Realization Algorithm, in 2008, Callafon et al. (De Callafon et al., 2008)

developed the General Realization Algorithm, a new version of the ERA, working with arbitrary
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input signal instead of using the impulsive signal, as it happens in many practical situations in

a dynamical structure.

More recently, Kramer and Gugercin (Kramer; Gugercin, 2016) proposed a new

ERA method, called Tangential interpolation-based ERA (TERA), which uses a tangential in-

terpolation tool to minimize the computational effort mainly when the number of inputs and

outputs is high, thus handling with a large scale dense Hankel matrix computing. In 2018, with

a similar objective, Kramer and Gorodetsky (Kramer; Gorodetsky, 2018) developed an algo-

rithm looking for computational efficiency, based on the reduction of Hankel matrix size using

the CUR decomposition rather than the traditional Singular Value Decomposition (SVD). In

2019, Moaveni and Masoumi (Moaveni; Masoumi, 2019) presented operational improvements

to the ERA concerning selecting a more appropriate sampling frequency and defining a more

proper fitting order of the system to be identified. These algorithms were called the modified

ERA (mERA) and the modified fast ERA (mfERA).

A recursive algorithm works by processing input data piecewise while this data is

measured and made available sequentially. A recursive ERA was developed by Longman and

Juang (Longman; Juang, 1989) in 1989 with the resource to determine the appropriate realiza-

tion order gradually, starting with a lower Hankel matrix to optimize storage and computational

time, but not expecting the same advantage regarding accuracy. In this thesis, the algorithms

will operate in batch mode, when all the input data are previously collected and jointly used

once in the algorithm processing. Eigensystem Realization Algorithm involving systems work-

ing in closed-loop, where the algorithm concepts are established for a system plant with an

existing feedback controller, are present in the works of Juang and Phan (Juang, 1994), and

Phan et al. (Phan et al., 1994).

Several modal identification methods were released for mechanical structures un-

dergoing ambient excitation. The techniques are usually known nowadays as output-only iden-

tification methods. In 1995, the ERA with Natural Excitation Technique (NExT) was devel-

oped by James et al. (James et al., 1995). Mohanty and Rixen proposed a modified ERA

in 2004 (Mohanty; Rixen, 2006), following the concept of the Operational Modal Analysis

(OMA) method, including the effects of harmonic vibrations, and considering that structural

vibration is not a purely white-noise excitation. Sometime later, the works of Caicedo et al., re-

lated to contributions of ERA-NExT, emerged (Caicedo et al., 2004; Caicedo, 2011). In 2013,

Chang et al. presented the ERA-NExT-AVG as another improvement of the ERA-NExT method
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(Chang; Pakzad, 2013). State-Space Realization Algorithms (SSRA) improvements as derived

techniques, or even relevant applications of the method, can have several works mentioned as

references (Chiang et al., 2010; Chiang; Lin, 2010; Li et al., 2011; Narazaki et al., 2018; Li et

al., 2020).

The Subspace Identification Method (SIM) stems from the classical state-space

methods, which had the first influence relied on the realization theory that has arisen in Ho

and Kalmans work in 1966 (Ho; Kalman, 1966), and indeed from the works already mentioned

of Tether and Silverman. A review article stated the minimum realizations and system model-

ing (Rossen; Lapidus, 1972), consolidating the subject also crucial for SIM. The Kung’s paper

(Kung, 1978) relevantly contributed to the state-space realization theories in the joint concept

of Markov parameters, Hankel matrix, and SVD. Even so, although several related works have

come after that time, the great advance and consolidation of SIM theories occurred with the con-

tributions of Overschee and De Moor in 1994 and 1996 (Van Overschee; De Moor, 1994; Van

Overschee; De Moor, 1996), where the Numerical Subspace State-Space System Identification

(N4SID) is the principal and most well-known Subspace identification method. From this time,

many works of Subspace Identification took a prominent place in SI area developments.

In addition to state-space identification methods and subspace methods, several

works as (Kerschen et al., 2007; McNeill; Zimmerman, 2008; Hazra, B., A. J. Roffel, S.

Narasimhan; Pandey, 2009; Yang; Nagarajaiah, 2013; Yao et al., 2018; Yi et al., 2019b; Yi

et al., 2019a) currently developed output-only identification methods, or general applications of

structural engineering based on the Blind Source Separation (BSS) technique (Amari; Cichocki,

1998). Recently, BSS has spread widely in many applications areas as biomedical engineering,

signal processing, besides structural engineering.

2.4 Input excitation signals

Systems inputs play a central role in the System identification process. The excita-

tion signal choice represents the initial and fundamental problem of SI. As pointed out by Juang

in (Juang, 1994): “The challenge of system identification is to correctly infer from the measured

data the characteristic of each of the individual, contributing modes. The accuracy with which

this inference can be performed depends on many factors, including the characteristics of the

data and the sophistication algorithm being used."

In 1965, in the paper of Åström et al. (Åström; Torsten, 1965), the definition of a
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persistently exciting signal took place, where they have already defined this signal as a virtuous

excitation for the SI process, being one of the conditions to the system be better identifiable. In

1971, Ljung (Ljung, 1971) has written a further analysis regarding persistently exciting signals.

Since at least 1955, the Pseudo-Random Binary Sequence (PRBS) theories started

to be developed. Many papers had been published since this time. In 1968, Nikiforuk and

Gupta’s work showed a bibliographic survey from this period, mentioning many different de-

nominations related to PRBS that arise from that survey, as follows: shift-register-sequences

(name adopted by the own authors), pseudo-random shift registers sequence, pseudo-random

sequence, pseudo-random signals, pseudo-random binary signals, chain codes, discrete-interval

binary noise (Nikiforuk; Gupta, 1969). These first researches about PRBS signals were in ap-

plications of areas correlated to communication, with an enormous emphasis as a noise signal

(pseudo-noise), becoming an option to the use of white-noise. However, soon, the PRBS en-

countered employment in the identification and optimization areas.

The basic PRBS concepts were encompassed to multi-variable systems application

in the work of Briggs and Godfrey (1966). The cross-correlation and autocorrelation aspects

of the PRBS inputs were discussed, with the signal sequences composed in two amplitude

levels (−1 and +1) or three levels (−1, 0, and +1) (Briggs; Godfrey, 1966). In 1976, other

relevant work detailed the numerical aspects and properties regarding several types of shift-

register sequences and the concept of the m-sequence that will be presented in Section 5.2.1 of

this work (MacWilliams; Sloane, 1976).

While the PRBS arises as a novel excitation for identification with SSRA method

and structural applications, the signal is broadly used as excitation in several engineering ap-

plication references, many of them in the identification of electrical and thermal systems areas

(To; David, 1996; Miao et al., 2005; Gabano et al., 2011; Fairweather et al., 2012; Boghani et

al., 2013). The PRBS is also found in some application references encompassing mechanical

excitation devices like piezoelectric actuators in beams (Choi; Kim, 1996; Butcher et al., 2016;

Vuojolainen et al., 2017).

As with the PRBS signal, the first theories related to the CHIRP signals started to be

developed in the decades of 60 and 70, most of them driven to attend signal processing objec-

tives and communication areas. For instance, in 1970, Bluestein’s work discussed the CHIRP’s

application as a filter in a linear filter processing, introducing that the CHIRP filtering a wave-

form functions close to a Discrete Fourier Transform (DFT) (Bluestein, 1970). The work of Roy
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and Lowenschuss, in 1974, described two methods to generate CHIRP waveforms through the

use of a small number of digital samples, which had applications to linear frequency-modulated

sweep (FM) waveforms very used in radars at that times (Roy; Lowenschuss, 1974). The con-

cepts based on time-bandwidth adjustments for CHIRP signals, presented in Roy’s work, remain

with the same principles to generate the system identification process signals. The practical ap-

plication of the CHIRP signals in mechanical systems came some time later, as in the work of

McConnell and Cappa in 2000, where the CHIRP was employed in a typical problem acting

as a vibration exciter of a beam structure. It was compared the frequency response function

(FRF) between the CHIRP, the random excitation, and the impulse excitation, with the CHIRP

showing the best overall coherence in the presented results (McConnell; Cappa, 2000).

The SSRA technique approached in this work and the overall Subspace methods are

based on arbitrary excitation signals. Many of these methods applied to structural identification

traditionally use the impulse response of a dynamical system. The white-noise excitation signal

has came to tackle the difficulty to estimate existing structures with the impulse response as

pointed out by Chang and Pakzad (Chang; Pakzad, 2013).

Some excitation signals in structural engineering always motivated the improve-

ment and searching for more appropriate identification methods since the application character-

istics are determined mainly through the environment vibration data. Therefore, since then, the

Gaussian white-noise takes place in many vibration-based modal identification methods. Usu-

ally, the estimation of modal parameters from vibration data is attained in the structure’s typical

working conditions. All the output-only system identification methods, in fact, are supposed

that its excitation is white-noise (Garrido et al., 2017; Yin et al., 2012).

2.5 Challenges and trends in System Identification

This section aims to provide a general view of the challenges encompassing the

system identification area in the last years and even the trends toward the main concerns about

this theme evolution.

In 2009, the work of Ninness (Ninness, 2009) discussed three key challenges that

could be considered as remaining in the identification area: estimation of general nonlinear

models, estimation of systems with high dimensions, and deliver accurate results even with

“short” data lengths. More recently, another work also talking over about challenges, but now

focused on the nonlinear system identification (Schoukens; Noël, 2017), specified in more de-
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tail the first topic formerly mentioned by Ninness. The issues related to Schoukens work are:

dynamical nonlinearities as hysteresis that are categorically not measurable from input or out-

put devices, absence of a more realistic representation of noise framework, and the short data

records, which was also an item pointed out in the prior research.

More recently, regarding the estimation of nonlinear models and hence the attain-

ment of accurate identification methods, some works were in charge of applying Design of

Experiments (DoE) as a crucial step in the SI process. In these works (Schrangl et al., 2020;

Karimshoushtari; Novara, 2020), the Design of an Experiment gives the maximum informa-

tion about the system dynamics of the process of interest, optimizing the input data applied to

the identification algorithm. DoE technique combined with SI is more advised to be used in

data-driven models when the data reproduces the input-output system behavior correctly with-

out trying to describe its physics accurately. Thus, in data-driven, the relationship between the

system state variables is sufficient independently of the knowledge of the system’s physics.

Several works have been applied techniques that use the data-driven concept to-

gether with System Identification models. The correlated techniques based on data-driven

objectifies the SI algorithms can “learn” from the data, which is a characteristic of Machine

Learning, Deep Learning, Reinforcement Learning, etc. The work of Fuentes et al. applies

Machine Learning for SI in nonlinear structural dynamics via Bayesian approach on sparse lin-

ear regression for combined model selection and parameter estimation (Fuentes et al., 2021).

In the work of Masti and Bemporad (Masti; Bemporad, 2021), Machine Learning techniques

based on autoencoders and neural networks were applied from input/output data in the SI of

nonlinear state-space models. Ljung et al. (Ljung et al., 2020a) approached the employment

of Deep Learning for estimating dynamical systems and highlighting the strong links of the

technique with system identification practice, concluding: “the workflow in deep learning and

system identification has many similarities; the power of deep nets also for standard system

identification has been demonstrated.” Many recent researches can be cited as examples of this

trend, some of them, for instance, employing Bayesian theory in system identification (Chen et

al., 2020; Liu et al., 2021).
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3 IDENTIFICATION METHODS FOR COMPARATIVE ANALYSIS

3.1 Introduction

This chapter aims to present an overview of well-known SI methods, broadly used

and available in the System Identification Toolbox of Matlab. These methods were used for

comparison with the new technique developed in this research. The results from this comparison

are reported in Section 7.8 and Section 7.9.3. For simplicity, especially in terms of notation,

most of the concepts and mathematical expressions presented in this chapter were developed

for SISO systems. However, the simulations were performed for the MIMO systems whose

characteristics are introduced in Chapter 5.

The SSRA methods are based on state-space systems structure. The linear-regression

or polynomials models have a specific framework for systems identification, determining the

composition of the several methods introduced in this chapter, to know: Output Error (OE),

Finite Impulse Response (FIR), AutoRegressive with External input (ARX), AutoRegressive

Moving Average with External input (ARMAX), and Box-Jenkins (BJ). It is widespread in the

identification literature to refer to these algorithms only as autoregressive models or linear pre-

diction model. The same happens with the Subspace State-Space model incorporating different

algorithms terms, just called N4SID, Multivariable Output Error State-Space (MOESP), and

Canonical Variate Analysis (CVA) models.

Most of the linear-regression methods working as iterative algorithms are based on

the Prediction Error Method (PEM). And the non-iterative methods, such as the ARX, FIR, and

even the N4SID that is part of the subspace models set, rely on the traditional Least-Squares

method (LS). In practice, the PEM can be considered the LS method for iterative algorithms,

both shown in the next.

The fundamental LS equations that briefly introduce the method concepts can be

stated by the following sequence:

y(k) = ŷ(k) + ν(k), ŷ(k) = ψT (k)θ , (3.1)

Vn(θ) =
1

n

n∑
k=1

(ν(k))2 =
1

n

n∑
k=1

(y(k)− ŷ(k))2 , (3.2)
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θ̂LSn = arg min
θ

Vn(θ) , (3.3)

where ψ, θ, and ν are the regression vector, the unknown parameters to be estimated, and

the predictor error vector, respectively. The Least-Squares concept here presented consists of

minimizing the mean square error between the actual (true) output y and the estimated output

ŷ for the attainment of the parameters θ. Vn(θ) is the cost function to be minimized.

To obtain the θ̂LSn it suffices by setting the first derivative of Vn equal to zero:

d

dθ

(
Vn(θ)

)
= 0 , (3.4)

d

dθ

( 1
n

n∑
k=1

(y(k)−ψT (k)θ)2
)
=
−2
n

n∑
k=1

ψ(k)(y(k)−ψT (k)θ) = 0 , (3.5)

( 1
n

n∑
k=1

ψ(k)ψT (k)
)
θ =

1

n

n∑
k=1

ψ(k)y(k) , (3.6)

θ̂LSn =
( 1
n

n∑
k=1

ψ(k)ψT (k)
)−1( 1

n

n∑
k=1

ψ(k)y(k)
)
, (3.7)

where Equation (3.7) (Soderstrom; Stoica, 1989) represents the LS method applied to the sys-

tem defined by Equation (3.1), and the parameters θ are the variables to be computed by the

method.

The Prediction Error Method (PEM) (Figure 3.1), also called Prediction Error Min-

imization in the Matlab SI Toolbox, is predominantly formed by an LS method (from Equation

(3.1) to Equation (3.7)) in iterative processing for several types of model structures like the AR-

MAX and the Box and Jenkins, for instance. The decision to stop the minimization of the cost

function Vn(θ), which is shown in the schematic diagram of the PEM (Figure 3.1), depends on

the performance criterion of any selected iterative descent method. However, this numerical op-

timization process can get stuck in local minima (Katayama, 2005). Additionally, a PEM filter

can be configured to damp imperfections on measured data, awaiting for the predictor error ν

to provide minor variance as possible.

For linear systems, a general model structure can be defined to attend the algorithm

methods described in this chapter as follows:

Y (z) = G(z, θ)U(z) +H(z, θ)E(z) , (3.8)
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MODEL

Figure 3.1 – Prediction Error Method (PEM)

where Y (z), U(z), and E(z) are the z-transform of y(k), u(k), and e(k) (white-noise source),

respectively, with

G(z, θ) =
∞∑
k=1

g(k)z−k , H(z, θ) = 1 +
∞∑
k=1

h(k)z−k , (3.9)

where z denotes the shift operator z−1u(k) = u(k − 1). G(z) andH(z) are commonly referred

as process transfer function and noise transfer function, respectively. The expression of H in

Equation (3.9) shows the expansion starting with a unity, i.e.,H(z) is monic.

The general model structure’s parametrization continues with G andH deployment

to be rational in the shift operator:

G(z, θ) = B(z)
F(z)

, H(z, θ) = C(z)
D(z)

, (3.10)

and when F = D ̸= 1, the polynomials in the denominators of G and H are renominated as

polynomial A.

The respective polynomials from Equation (3.10) are defined as following:

A(z) = 1 + a1z
−1 + a2z

−2 + . . .+ anaz
−na ,

B(z) = b1z
−1 + b2z

−2 + . . .+ bnbz
−nb ,

C(z) = 1 + c1z
−1 + c2z

−2 + . . .+ cncz
−nc ,

D(z) = 1 + d1z
−1 + d2z

−2 + . . .+ dndz
−nd ,

F(z) = 1 + f1z
−1 + f2z

−2 + . . .+ fnfz
−nf ,

(3.11)

where na, nb, nc, nd and nf are integers that represent the respective orders of the polynomials

A, B, C, D, and F , respectively.
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As can be seen from Equation (3.11), the polynomials are monic, except the poly-

nomial B (Ljung, 2019). Once the general model structure was outlined, the autoregressive

algorithms that employ these polynomials models should be presented next.

3.2 FIR, ARX and OE

FIR (Finite Impulse Response), ARX (Autoregressive with External input), and OE

(Output Error) are algorithm models close to each other due to their model structure similarity.

Since these methods have the polynomial C = 1, the structure does not allow to describe the

properties of the white-noise source e, which is possible when the polynomial C provides and

makes available the conditions of the disturbance term some steps before the last instant of the

output-input data.

The schematic representation of the three models that are determined following each

polynomial condition stated at Equations (3.10) and (3.11) is suitable to attain the respective

linear-regression equations easily (Table 3.1). The ARX schematic representation should be

enhanced, which was attained after handling the block 1
A since it changes position from before

to after the sum operator. Moreover, this ARX configuration clarifies the independence of the

white-noise e related to the regression samplings. Hence, the ARX model structure is less able

to consider noisy systems because the polynomialAmust account for both the system dynamics

and the noise.

The FIR model can be considered a composite structure from ARX and OE in terms

of having the dynamic transfer function equivalent to the ARX regarding the input regressors

and having the noise transfer function identical to OE, which provides partial features of both

models. On the other hand, the order n should be large to be well close to the true system,

therefore demanding more parameters for the estimation process (Ljung, 1999).

ARX FIR OE

F = D = A, C = 1 F = C = D = 1 C = D = 1

+

+
B

1

A

u(k)

e(k)

y(k) +

+
B 1

u(k)

e(k)

y(k)
+

+

B

F
1

u(k)

e(k)

y(k)

Table 3.1 – Schematic representation of ARX, FIR, and OE models, comparatively.
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Considering the models structures definition provided in Table 3.1, a linear-regression

model of the ARX method can be performed from Equation (3.1) in this respect (Ljung, 2010b):

y(k) = ψT (k)θ + ν(k) , (3.12)

with the ARX model structure composed as follows:

y(k) + a1y(k − 1) + . . .+ anay(k − na) = b1u(k − 1) + . . .+ bnbu(k − nb) + e(k) ,

(3.13)

by taking

θ̂ =
[
a1 . . . ana b1 . . . bnb

]T
,

ψ(k) =
[
−y(k − 1) . . .− y(k − na) u(k − 1) . . . u(k − nb)

]T
,

(3.14)

where the predictor error vector ν(k) is characterized here as a white-noise source e(k).

It suffices to take out the regressive elements of y(k) and the respective parame-

ter elements ana from the ARX linear-regression model for attaining the FIR linear-regression

model. For the OE linear-regression model, the following equations applies:

F(z)(y(k)− e(k)) = B(z)u(k) , (3.15)

representing a mathematical equation not in a formal agreement since the polynomials in z-

transform only intend to work as shift operators for the discrete-time regressive terms, which

yields

y(k) + f1(y(k − 1)− e(k − 1)) + . . .+ fnf (y(k − nf)− e(k − nf))

= b1u(k − 1) + . . .+ bnbu(k − nb) + e(k) ,
(3.16)

θ̂ =
[
f1 . . . fnf b1 . . . bnb f1 . . . fnf

]T
,

ψ(k) =
[
−y(k − 1) . . .− y(k − nf) u(k − 1) . . . u(k − nb) e(k − 1) . . . e(k − nf)

]T
.

(3.17)

From Equation (3.17), the OE model can infer similarity with the ARMAX model

at first glance, as will be seen in Section 3.3. However, the disturbance parameters (fnf ) from

the OE model are the same as the output parameters. The correct issue is that the OE model

is prompted to parameterize dynamics and is not able to estimate noise parameters as in the

ARMAX model, which is supported by the fact that the noise transfer function H is unitary in



49

the OE model. At that point, the OE linear-regression model should be formed according to the

estimated output ŷ(k) as follows:

ŷ(k) = ψT (k)θ, ŷ(k) = y(k)− e(k). (3.18)

Based on what was seen, any one of the models previously presented is inappro-

priate to deal with noise considering the models’ structures verified. As will be seen next, it is

proper to apply the ARMAX or the Box-Jenkins model structure, where different polynomials

model the dynamics term and the noise term.

3.3 ARMAX

The Autoregressive Moving Average with External input (ARMAX) is a SI method

working as an extension of ARX to provide more flexibility with the inclusion of noise in the

model, now consideringH ̸= 1. ARMAX adds to the ARX model the moving average function

of the polynomial C(z), maintaining the premiss F = D = A. It leads the noise to enter as

the input to the algorithm. The schematic representation of the ARMAX assumes the following

form:

+

+
B

1

A

C

u(k)

e(k)

y(k)

Figure 3.2 – Squematic representation of ARMAX

The linear-regression model of the ARMAX method can be directly determined

from the schematic representation in Figure 3.2, and from Equation (3.11) and Equation (3.12)

as follows (Ljung, 1999):

A(z)y(k) = B(z)u(k) + C(z)e(k) , (3.19)

where it is worthy the same remark made in Equation (3.15) related to not obey a formal math-

ematical representation, which yields

y(k) + a1y(k − 1) + . . .+ anay(k − na) =

= b1u(k − 1) + . . .+ bnbu(k − nb) + c1e(k − 1) + . . .+ cnce(k − nc) + e(k) ,
(3.20)
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θ̂ =
[
a1 . . . ana b1 . . . bnb c1 . . . cnc

]T
,

ψ(k) =
[
−y(k − 1) . . .− y(k − na) u(k − 1) . . . u(k − nb) e(k − 1) . . . e(k − nc)

]T
.

(3.21)

From ARMAX, other models can be derived as:

• Autoregressive (AR): B = C = 1;

• Moving Average (MA): A = B = 1;

• Autoregressive Moving Average (ARMA): B = 1.

Observing the schematic diagram in Figure 3.2, it can be realized that the system

dynamic and white-noise source have the same poles (A). It makes the model suitable when the

disturbance enters together with the input, which is the case of additive measurement noise, as

the scenario of most of the simulations in this research (Ljung, 2010b).

The simulations comparing the ARMAX method’s performance with the new iter-

ative SSRA-DC-iCL method and other methods from SI Toolbox will be presented in Section

7.8.

3.4 Box and Jenkins

The Box and Jenkins (BJ) method for SI was developed to provide independence

of the configuration related to system dynamics and noise. The rational polynomial functions

(B,F , C,D) of the model structure are different each other, and available to be set in a separate

way. BJ structure provides further resilience for noise modeling, as can be perceived from the

schematic diagram of Figure 3.3:

+

+

B

F

C

D

u(k)

e(k)

y(k)

Figure 3.3 – Squematic representation of BOX and JENKINS

For the BJ method, where the poles from the input-output transfer function and the

noise transfer function are distinct, the linear-regression model is not the better representation.
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The use of the structure of the polynomials as defined from Equation (3.11) is more appropriate

and based on Figure 3.3 it has the following expression that is employed in the SI toolbox of

Matlab:

y(k) =
B(z)
F(z)

u(k) +
C(z)
D(z)

e(k), (3.22)

following the same remark assigned to Equation (3.15) regarding the mathematical equation

that is not in a formal agreement.

Equation (3.22) shows the polynomial ratio B(z)
F(z)

corresponding to the process trans-

fer function or also called dynamical transfer function G(z), as already have been postulated in

Equation (3.10). In a MIMO system, this transfer function is composed of 2 matrices of poly-

nomials, one in the numerator and another in the denominator, which is equivalent to the system

matrixA in a state-space system realization, as defined in Equation (2.2). It is worth remarking

that the number of elements of the polynomial matrices B and F in a MIMO system deter-

mines the order of the equivalent system matrix A. In the next section, some issues related to

assigning polynomials order in a MIMO system will be approached.

3.5 Polynomials sizes and orders for MIMO systems

Each polynomial is characterized in terms of dimensions and orders as previously

seen, but here for MIMO systems, the correspondent configurations are presented in Table 3.2.

These polynomials are specified as matrices where each matrix element is a row vector. The

models composed by the polynomials are considered containing r outputs and s inputs, which

states the indexes j = 1, 2, . . . , r and m = 1, 2, . . . , s. The relation between input, output, and

noise values is portrayed through the coefficients of a polynomial (Ljung, Lennart, 2014).

Table 3.2 – Polynomial sizes and orders

Polynomial
matrix

Dimension Relation described Orders

A matrix r × r
of row vectors

Ajj containing coeficients a1, a2, . . .
of relation between outputs yj

na: r × r matrix; each element contains
the degree of the correspondent Ajj

B matrix r × s
of row vectors

Bjm containing coeficients b1, b2, . . .
of relation between output yj and input um

nb: r × s matrix; each element contains
the degree of the correspondent Bjm

F matrix r × s
of row vectors

Fjm containing coeficients f1, f2, . . .
of relation between output yj and input um

nf : r × s matrix; each element contains
the degree of the correspondent Fjm

C vector r × 1
of row vectors

Cj containing coeficients c1, c2, . . .
of relation between output yj and noise e

nc: r × 1 vector; each element contains
the degree of the correspondent Cj

D vector r × 1
of row vectors

Dj containing coeficients d1, d2, . . .
of relation between output yj and noise e

nd: r × 1 vector; each element contains
the degree of the correspondent Dj
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In this work, as it will be applied at Section 7.8 for simplicity in the adjustments,

without loss of generality, it was considered the assumption that the order of each polynomial

(Equation (3.11)), determined by the last element of the row vector, is the same for all the

polynomials inside a polynomial matrix. For instance, the polynomial matrix B with r outputs

and s inputs has a polynomial Bjm in each element of the matrix B. Then, the number of

elements of matrix B will be: r × s × nb. Each element of the matrix B corresponds to a

parameter from Bjm and can be represented as follows:

B =



[
b1 . . . bnb

]
11

[
b1 . . . bnb

]
12

. . .
[
b1 . . . bnb

]
1s[

b1 . . . bnb

]
21

[
b1 . . . bnb

]
22

. . .
[
b1 . . . bnb

]
2s...

... . . . ...[
b1 . . . bnb

]
r1

[
b1 . . . bnb

]
r2

. . .
[
b1 . . . bnb

]
rs


, (3.23)

where Bjm =
[
b1 b2 . . . bnb

]
jm

.

The polynomial matrix F follows the same concept of B shown in Equation (3.23),

but having a first additional parameter with value 1 (monic) in the polynomial Fjm. However,

the number of elements of F to compute the system matrix order is: r×s×nf . The state-space

system matrixA ∈ Rn×n loads the system dynamic, which, in equivalence with the composition

of the transfer function G(z) = B(z)
F(z)

, will have its matrix order n determined as follows:

• if nf ≥ nb =⇒ n = r × s× nf ;

• if nf < nb =⇒ n = r × s× (nb− 1).

For the ARX and ARMAX models, when the polynomial A
(
G(z) = B(z)

A(z)

)
is used

rather than the polynomial F , the order n of the matrix A from the equivalent state-space

system is determined as follows:

• if na ≥ nb =⇒ n = r × na;

• if na < nb =⇒ n = r × (nb− 1).

A note is worthy here of calling attention to the subtle notation difference between the poly-

nomial A from the structure of linear-regression models and the matrix A from a state-space

system.
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3.6 N4SID

The Numerical Subspace State-Space System Identification is the main Subspace

Identification Method (SIM) that has fundamental support on the theory of state-space realiza-

tion algorithm from Ho and Kalman (Ho; Kalman, 1966; Viberg, 1994). N4SID also takes part

in the SI Toolbox of Matlab. The method is not subject to the main drawback of the polyno-

mials models previously introduced in this chapter. This problem is related to the numerical

ill-conditioning from polynomial computing, especially for MIMO systems.

The establishment of parameter values in the methods calls for additional care in the

identification algorithm performance. This condition happens with SSRA methods demanding

a previous parametrization of the system order and the observability matrix order. These ad-

justments are in charge by the parameters n and p, as seen in Section 4.2. In the N4SID, the

method only requires the system order as an input parameter, which can be determined by in-

specting singular values after SVD decomposition, as can be verified in the SSRA methods (Van

Overschee; De Moor, 1994).

The presentation of fundamental differences of algorithm steps between Subspace

and Classical methods is appropriate to occur in this initial approach (Figure 3.4). The methods

based on the SSRA and the linear-regression methods prior presented, which are supported by

the Least-Squares method, can be considered Classical methods. Every possible step in both

methods types, depending on the features wished to apply, is displayed in Figure 3.4. For

instance, the classical SSRA method ends in the reduced state-space model as the last step,

and the transfer matrix in the SSRA concerns the Markov parameters matrix. However, more

complex and extensive matrix algebra calculations are required from the input-output data at

the initial stage to the state estimates of the Subspace Methods. Next, a state-space model

is obtained by computing a least-squares problem. In the last step of Subspace Methods, the

transfer matrix can be easily calculated once the previously obtained state-space model.

The initial stage of subspace methods provides algorithm functions that use a geo-

metric framework with orthogonal and oblique projections and linear algebra features like QR

and SVD decomposition to obtain Kalman filter states vectors. This first step of the subspace

method has the fundamental task of getting the system states, which is a significant difference

from the classical techniques that do not require the finding of system states to achieve the

state-space model. Once the states are known in the Subspace Identification Method (SIM),

the attainment of the unknown state-space model depends only on solving a linear least-squares
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Subspace Methods Classical MethodsInput-output data

Transfer matrix

Transfer matrix

Reduced StateReduced State

Reduced State

space modelspace model

Kalman states
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Projection/SVD
PEM/Least-Squares

Least-Squares
Model Reduction/

Realization

Kalman Filter

Kalman Filter

Figure 3.4 – Subspace and Classical Methods of SI

problem (Katayama, 2005).

The SIM has peculiar characteristics which were synthesized by Overschee et al.

(Van Overschee; De Moor, 1996) as following: "subspace identification algorithms condition-

ally linearize the problem, which, when written in the classical form of prediction error methods,

is a highly nonlinear optimization problem. Yet another point of view is that subspace identi-

fication algorithms do not identify input-output models, but they identify input-state-output

models".

The N4SID theory is supported by the concepts of deterministic and stochastic pro-

cess, that can be briefly described next:

• Deterministic: The variables and parameters are not random. A deterministic process

will always yield the same output from a given input.

• Stochastic: The output of a stochastic process is random variables, characterized by un-

certainties sources in any real situation. Stochastic process is a collection of random

variables as the disturbances in a process. In practice, for a stochastic process, in counter-

part to the deterministic approach, the output at instant t cannot be precisely determined

from data related to the past (Aguirre, 2015).
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The classical SSRA method, for instance, is typically a deterministic model once it

does not concerns with disturbances in the state-space representation. Despite being a method

stated by the same conceptual base of the ERA, the novel iterative method SSRA-DC-iCL can

be considered a technique that incorporates stochastic features as it provides ways to control and

minimize the disturbance from measurement noise. The N4SID method can give the solution

to the combined deterministic-stochastic identification problem. The state-space representation

can be defined as follows to attend both deterministic and stochastic demands (Van Overschee;

De Moor, 1996):

x(k + 1) = Ax(k) +Bu(k) +w(k), (3.24)

y(k) = Cx(k) +Du(k) + v(k),

for a n order system, withA ∈ Rn×n,B ∈ Rn×s,C ∈ Rr×n,D ∈ Rr×s, r outputs and s inputs,

where w(k) ∈ Rn×1 and v(k) ∈ Rr×1 are usually unmeasurable signals vectors, which can be

considered, generally, as noise sequences. The covariance matrices involving the process noise

w and the measurement noise v are given by:

E

  w(k)

v(k)

 [
wT (k) vT (k)

]  =

 Q S

ST R

 , (3.25)

with Q ∈ Rn×n is the auto-covariance of w, S ∈ Rn×r is the cross-covariance between w and

v, andR ∈ Rr×r is the auto-covariance of v. In subspace identification, it is typically assumed

that the process noise w and the measurement noise v are: zero mean, stationary white noise

vector sequences and uncorrelated with the inputs u, and that the data are ergodic, i.e., the

expected value E is replaced by the average.

Supposing the availability of a sequence of state vectors from the state-space system

shown in Equation (3.24), the following form can be introduced: x̂(k + 1)

y(k)

 =

 A B

C D

 x̂(k)
u(k)

+

 w(k)

v(k)

 , (3.26)

where x̂ is the estimate of the state vector x. If the variables in Equation (3.26) are known, this

equation is a regression model with the parameter matrix given by:

θ =

 A B

C D

 , where θ ∈ R(n+r)×(n+s). (3.27)
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Employing the least-squares to figure out θ value in Equation (3.26), it gives:

θ =

 q∑
k=1

 x̂(k + 1)

y(k)

[ x̂T (k) uT (k)
] q∑

k=1

 x̂(k)
u(k)

[ x̂T (k) uT (k)
]−1

.

(3.28)

Based on computing the state-space’s matrices and counting on with the estimated state vector,

this procedure is called the Direct 4SID method (Katayama, 2005; Viberg, 1995).

As the basis of the N4SID theory, the state-space system defined in Equation (3.24)

is split up into deterministic and stochastic subsystems. Many other concepts come from this

algorithm definition. The related equations are presented as follows (Van Overschee; De Moor,

1994):

x(k) = xd(k) + xs(k), (3.29)

y(k) = yd(k) + ys(k),

where xd and yd are the state and output from deterministic subsystem, and xs and ys are the

state and output from stochastic subsystem, according to

• Deterministic influence:

xd(k + 1) = Axd(k) +Bu(k), (3.30)

yd(k) = Cxd(k) +Du(k).

• Stochastic influence:

xs(k + 1) = Axs(k) +w(k), (3.31)

ys(k) = Cxs(k) + v(k).

Since the complete mathematical development of N4SID is extensive, and its de-

tailing does not take part as an objective of this research, the following sequence of equations is

only motivated to provide a general view of the method restricted to the deterministic approach.

Based on the state-space equations, accordingly to Equation (3.30), fundamental in subspace

identification to compute the state x(k), is introduced here as follows, taking out the super-

script d and represented in matrix form to simplify the notation (Katayama, 2005; Qin et al.,

2005):

Yp = OkX0 + TUp, (3.32)

Yf = OkXk + TUf ,
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where the subscript p and f denote past and future, respectively,Ok is the extended observabil-

ity matrix, T is the Toeplitz matrix, and Y and U are output and input block Hankel matrices,

also called the past or future outputs and inputs, respectively. The matrices Yp and Yf are

following presented:

Yp = Y0|k−1 =


y(0) y(1) . . . y(q − 1)

y(1) y(2) . . . y(q)

. . . . . .
. . . . . .

y(k − 1) y(k) . . . y(k + q − 2)

 , (3.33)

Yf = Yk|2k−1 =


y(k) y(k + 1) . . . y(k + q − 1)

y(k + 1) y(k + 2) . . . y(k + q)

. . . . . .
. . . . . .

y(2k − 1) y(2k) . . . y(2k + q − 2)

 , (3.34)

with Yp,Yf ∈ Rkr×q, and a similar form is valid for the matrices Up, Uf ∈ Rks×q. The notation

Y0|k−1 relates to the upper-left (0) and lower-left (k − 1) elements of Y . The state-space system

keeps its characteristics with r outputs and s inputs, where n is the system (state) order, and q

is a sufficiently large number of samples.

The statesX0 andXk are defined as:

X0 =
[
x(0) x(1) x(2) . . . x(q − 1)

]
, (3.35)

Xk =
[
x(k) x(k + 1) x(k + 2) . . . x(k + q − 1)

]
, (3.36)

with X0,Xk ∈ Rn×q. The extended observability Ok and the Toeplitz matrix T are expressed

as:

Ok =



C

CA

CA2

...

CAk−1


, T =



D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0
...

...
... . . . ...

CAk−2B CAk−3B CAk−4B . . . D


, (3.37)

with Ok ∈ R
kr×n and T ∈ R

kr×ks. The Toeplitz matrix T and the extended observability

matrix Ok are equivalent to Equation (4.6) and Equation (4.22), respectively, which are part of

the concepts that compose the SSRA theory.

The N4SID theories regarding projections, SVD decomposition, Kalman filter, etc.,

are supported by the basic Subspace Identification concepts previously described, which contain
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fundamental issues in common with the SSRA method related to the system realization aspects

will be seen in the next chapter.

3.7 Some considerations

This chapter introduced some of the most well-known System Identification meth-

ods, which follow two distinct mathematical representations for linear systems. The polynomial

autoregressive algorithms (ARX, ARMAX, FIR, OE, BJ) integrate the first group of this rep-

resentation that is based on the polynomial forms of the process transfer function G(z) and

noise transfer function H(z). These polynomials have autoregressive representation since they

can depict the conditions between each other variable (output, input, state, noise) all over the

discrete-time in the past. Estimated parameters compose these representations as the variables

to be attained in the system identification process. The other group uses the state-space as

the mathematical representation of a linear dynamical system. The Subspace methods, as the

N4SID algorithm, employ the basic concepts of the state-space realization algorithms, which

will be detailed in the next chapter, but in this case, with the focus on the Classical Methods

as was shown in Figure 3.4. Despite the differences in mathematical representation between

the autoregressive and state-space models, it should be emphasized that the transfer function

emerges to express the dynamical of the system to be identified in both method types. Hence,

the transfer functions work as a core to the solution for the system identification method devel-

oped in both referred algorithm types.
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4 THE NOVEL SSRA-DC-ICL METHOD AND ITS BACKGROUND

4.1 Introduction2

The State-Space Realization Algorithm (SSRA) can be considered one of the most

robust and accurate systems identification methods since it has been successfully applied to sev-

eral structural engineering problems under operational conditions. Since the first and classical

version of Juang’s algorithm in 1985 (Juang; Pappa, 1985), the algorithm incorporated some

functionalities triggering other arrangements. These algorithm versions are based on the same

concept from an input-output data set forming the Markov parameters matrix and composing the

Hankel matrix that will be decomposed by the Singular Value Decomposition (SVD) technique.

One difficulty of the SSRA is related to the order of the identified model that has to

be estimated. Most of the time, this order is overestimated to find all vibration modes in the case

of mechanical structures (Zhang et al., 2014). This algorithm weakness gets higher due to the

presence of noise in the system. Some tools, such as the Modal Amplitude Coherence (MAC)

and the Mode Singular Value (MSV), address this matter of searching for the proper order of the

identified system. Most of the methods stem from the SSRA, like the SSRA-DC, were proposed

to tackle the noise as a considerable drawback to the system identification process.

The traditional ERA was proposed to identify linear dynamical systems excited

strictly by the impulsive signal. However, the SSRA here was implemented with an arbitrary

input signal instead of using the impulsive signal. Despite the algorithm’s mathematical formu-

lation considering arbitrary input signal employment, when the change to an impulsive signal is

desired, this demands to have the Markov parameters matrix determined by the outputs matrix

(H = Y ), which would simplify some computational steps of the SSRA.

The State-Space Realization Algorithm with Data Correlations (SSRA-DC) is com-

plementary to the SSRA from the perspective of being more appropriate than the classical SSRA

when the noise is present in the system. About the principal contribution of the research, the

algorithm will also be applied in conjunction with the iterative concept to verify its behavior

when an additive measurement noise exists in the system. The iterative purpose applied to the

SSRA-DC is what will be seen in detail in Section 4.4 and the overall aspects of simulation

2 Some parts presented in this chapter were published in the papers (Soares Jr; Serpa, 2021; Soares Jr; Serpa,
2022).
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results will be shown comparatively in Chapter 7.

The following section describes the State-Space Realization Algorithm, detailing

the mathematical development of the method and the subjects from the input-output data set

until achieving the state-space of the identified system. Next, based on the classical SSRA

concepts, the basic formulation of the SSRA-DC is presented to the attainment of the state-

space equations of the identified system. Both sections mentioned are the background content

to the presentation and understanding of the novel method SSRA-DC-iCL, as the main objective

of this research, introduced in the last section of this chapter.

4.2 SSRA concepts and formulation

Consider the state-space representation of a discrete-time system given by

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k) +Du(k),
(4.1)

where k = 0, 1, 2, . . . , (q−1), t = kdt , dt is the sampling time, and q is the number of samples.

The system matrices are: A ∈ Rn×n, B ∈ Rn×s, C ∈ Rr×n, D ∈ Rr×s, for a linear dynamical

MIMO system of order n, with r outputs and s inputs, y(k) ∈ Rr×q, and u(k) ∈ Rs×q.

The formulation of the Eigensystem Realization Algorithm, initially developed by

Juang and Pappa in 1985 (Juang; Pappa, 1985), considered system excitation as an impulsive

input signal. Many of the aspects treated in their paper are briefly described here together with

some concepts approached in 2008 by Callafon and Moaveni (De Callafon et al., 2008), mainly

those regarding the system input excitation as an arbitrary signal. This issue changes the way

the Hankel matrix is reached in the algorithm. Anyway, a technical memorandum previously

written by Phan and Juang in 1991 (Phan et al., 1991) provided some considerations about

general input-output data set and the Markov parameters construction.

4.2.1 SSRA for Single-Input-Single-Output (SISO) systems

Firstly, the SSRA basic theory for systems with one output (r = 1) and one input

(s = 1) is introduced. For this setup, the auxiliary variables ys(k) = yT (k) and us(k) = u
T (k)

are used, where ys(k) ∈ Rq×1 and us(k) ∈ Rq×1, both in vector forms.

Considering the system described by Equation (4.1), and assuming the initial con-

dition x(0) = 0, the following sequence can be obtained:
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y(0) =Du(0),

y(1) = CBu(0) +Du(1),

y(2) = CABu(0) +CBu(1) +Du(2),

y(3) = CA2Bu(0) +CABu(1) +CBu(2) +Du(3),

...

y(k) = CAk−1Bu(0) +CAk−2Bu(1) + . . .+CABu(k − 2) +CBu(k − 1) +Du(k).

(4.2)

According to the last equation of Equation (4.2), the output y(k) due to the arbitrary

input signal u(k) can be written explicitly as

y(k) =Du(k) +
k∑

i=1

h(i)u(k − i),

h(i) = CAi−1B, i ≥ 1,

(4.3)

where h(i) denotes the Markov parameters, with h(0) = D. Based on the discrete output

y(k) and the input u(k), the objective is to determine the appropriate size n (model order) of

the state vector x(k) in Equation (4.1), and to estimate a discrete-time state-space realization

(Â, B̂, Ĉ, D̂) of the dynamical system considered (De Callafon et al., 2008). Thus, it can be

seen that D̂ is equal to the Markov parameters matrix in the initial condition (h(0)). Depending

on the system configuration, it can be introduced in advance what will be approached ahead in

the end of Section 4.2.2 and in Chapter 5 (Figure 5.8), that D̂ is not null if accelerations take

part as system’s output; otherwise D̂ = 0, which will happen in most of the simulations of this

research.

Another representation of Equation (4.3) can be done through

ys(k) = Tus(k), (4.4)

where

ys(k) =



y(0)

y(1)

y(2)
...

y(q − 1)


, us(k) =



u(0)

u(1)

u(2)
...

u(q − 1)


, and (4.5)
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T =



D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0
...

...
... . . . ...

CAq−2B CAq−3B CAq−4B . . . D


. (4.6)

The matrix T , known as a lower block triangular Toeplitz matrix, is often associated with the

Markov parameters, and can be depicted as follows (Phan et al., 1991):

T =



h(0) 0 0 . . . 0

h(1) h(0) 0 . . . 0

h(2) h(1) h(0) . . . 0
...

...
... . . . ...

h(q − 1) h(q − 2) h(q − 3) . . . h(0)


. (4.7)

The first column of T in Equation (4.7) contains the complete Markov parameters assigned in

Equation (4.3). This transposed column is denoted as the Markov matrix H in the following

form:

H =
[
D CB CAB CA2B . . . CAq−2B

]
. (4.8)

Transposing Equation (4.4), and with the suppression of the sample indicator k for notation

simplicity, one has

yT
s = uT

s T
T , (4.9)

and from Equation (4.9), the following relations can be realized

yT
s = Ys,

Ys =HUs,
(4.10)

where H is the Markov matrix (Equation (4.8)), Ys and Us represent matrices with one output

and one input, respectively, in the form

Ys =
[
y(0) y(1) y(2) y(3) . . . y(q − 1)

]
, (4.11)

Us =



u(0) u(1) u(2) u(3) . . . u(q − 1)

0 u(0) u(1) u(2) . . . u(q − 2)

0 0 u(0) u(1) . . . u(q − 3)

0 0 0 u(0) . . . u(q − 4)
...

...
...

... . . . ...

0 0 0 0 . . . u(0)


. (4.12)
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Therefore, the Markov matrix H takes an initial role in the steps to provide the

system realization as can be seen from Equation (4.10), despite in the classical ERA from

(Juang; Pappa, 1985), the Hankel matrix Hh is reached directly from the measurements of the

outputs with the system being excited by an impulsive signal, i.e., Us = I (identity matrix) and

H = Ys. In the present work, the Hankel matrix is originated from the Markov matrix that

should be calculated according to

H = YsU
†
s ,

U †
s = UT

s (UsU
T
s )

−1,
(4.13)

where U †
s is called Moore-Penrose pseudoinverse (Ben-Israel, Adi and Greville, 2003; Taylor

et al., 1988) of Us.

The Hankel matrix Hh in SISO systems is built by the Markov parameters (Equa-

tion (4.3)) according to

Hh =



h(1) h(2) h(3) . . . h(p
2
)

h(2) h(3) h(4) . . . h(p
2
+ 1)

h(3) h(4) h(5) . . . h(p
2
+ 2)

...
...

... . . . ...

h(p
2
) h(p

2
+ 1) h(p

2
+ 2) . . . h(p− 1)


, (4.14)

where p is a parameter of the algorithm that determines the length of the Hankel matrix and

hence the order of the observability and controllability matrices, as will be seen ahead.

4.2.2 SSRA for Multiple-Input-Multiple-Output (MIMO) systems

This section intends to present how the formulation adapts to the MIMO system.

Then, rather than using the matrices Ys (Equation (4.11)) and Us (Equation (4.12)), for MIMO

system it will be used Y and U matrices to store the output and input data set with r outputs

and s inputs, respectively. Equation (4.13) for the MIMO system becomes

H = Y U †,

U † = UT (UUT )−1.
(4.15)
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The matrix U and the matrix Y have the dimensions sp × q and r × q, respectively. These

matrices assume the following form

U =



u1(0) u1(1) u1(2) u1(3) . . . u1(q − 1)

u2(0) u2(1) u2(2) u2(3) . . . u2(q − 1)

u3(0) u3(1) u3(2) u3(3) . . . u3(q − 1)
...

...
...

... . . . ...

us(0) us(1) us(2) us(3) . . . us(q − 1)

0 u1(0) u1(1) u1(2) . . . u1(q − 2)

0 u2(0) u2(1) u2(2) . . . u2(q − 2)

0 u3(0) u3(1) u3(2) . . . u3(q − 2)
...

...
...

... . . . ...

0 us(0) us(1) us(2) . . . us(q − 2)

...
...

...
...

...
...

0 0 0 0 . . . u1(q − p)

0 0 0 0 . . . u2(q − p)

0 0 0 0 . . . u3(q − p)
...

...
...

... . . . ...

0 0 0 0 . . . us(q − p)



, (4.16)

Y =



y1(0) y1(1) y1(2) y1(3) . . . y1(q − 1)

y2(0) y2(1) y2(2) y2(3) . . . y2(q − 1)

y3(0) y3(1) y3(2) y3(3) . . . y3(q − 1)

y4(0) y4(1) y4(2) y4(3) . . . y4(q − 1)
...

...
...

... . . . ...

yr(0) yr(1) yr(2) yr(3) . . . yr(q − 1)


, (4.17)

where um is the value from mth input and yj is the value from jth output of the system, with

m = 1, . . . , s ; j = 1, . . . , r. The parameter p of the algorithm is an even number and limited

to p ≤ q, as can be realized directly by matrix U in Equation (4.16).

The basis for the algorithm is the Hankel matrix Hh and the shifted Hankel matrix

Hsh. The next equations show how they are constructed in MIMO systems. For generalized
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inputs in a MIMO system, the Markov matrixH , the Hankel matrixHh and the shifted Hankel

matrixHsh are set up as follows:

H =
[
Hv(0) Hv(1) Hv(2) Hv(3) . . . Hv(i) . . . Hv(p− 1)

]
, (4.18)

Hh =


Hv(1) Hv(2) . . . Hv(

p
2
− 1)

Hv(2) Hv(3) . . . Hv(
p
2
)

...
... . . . ...

Hv(
p
2
− 1) Hv(

p
2
) . . . Hv(p− 3)

 , (4.19)

Hsh =


Hv(2) Hv(3) . . . Hv(

p
2
)

Hv(3) Hv(4) . . . Hv(
p
2
+ 1)

...
... . . . ...

Hv(
p
2
) Hv(

p
2
+ 1) . . . Hv(p− 2)

 , (4.20)

where Hv(i) are block matrices with the dimension (r × s). Thereby, the Hankel matrices Hh

andHsh have the dimension (r(p
2
− 1))× (s(p

2
− 1)).

From now on, this section presents the steps of the traditional ERA, detailed accord-

ingly (Juang; Pappa, 1985), and taking some concepts up to now, mainly from Hankel matrix

Hh that can be expressed as

Hh = OW , (4.21)

where O and W are the observability and controllability matrices of the system, respectively,

given by:

O =



C

CA

CA2

...

CA
p
2
−2


(r ( p

2
−1))×n

,

W =
[
B AB A2B . . . A

p
2
−2B

]
n×(s( p

2
−1))

.

(4.22)

From the definitions of Equation (4.22), the shifted Hankel matrixHsh can be written as:

Hsh = OAW . (4.23)

For a discrete-time state-space model of order n, showed in Equation (4.1), the

Cayley-Hamilton theorem hold the concept that O has full column rank n and W has full row

rank n. Consequently, the Hankel matrixHh has rank n (De Callafon et al., 2008).
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Based on O and W matrices’ characteristics, there is a left pseudoinverse O† such

that O†O = In×n and a right pseudoinverse W † such that WW † = In×n. Hence, from

Equation (4.23), it is clear that

A = O†HshW
†, (4.24)

where the previous left and right pseudoinverse are established as

O† = [OTO]−1OT ,

W † =W T [WW T ]−1.
(4.25)

The Hankel (Equation (4.19)) and shifted Hankel (Equation (4.20)) matrices are

completely known through the respective equations. In Equation (4.21), the decomposition

of the Hankel matrix Hh into the matrices O and W can be performed through a singular

value decomposition (SVD), or even other decomposition, for example, Cholesky, LU, or QR

decompositions. Using SVD, the decomposition carry out

Hh = UΣiVT , (4.26)

where both U and V are orthonormal matrices and Σi is a diagonal matrix with the singular

values ordered in decreasing magnitude and non-negative:

Σi = diag
[
σ1, σ2, . . . , σn, σn+1, . . . , σ p

2
−1

]
(4.27)

with

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ σn+1 ≥ . . . ≥ σ p
2
−1. (4.28)

Considering the singular values σi

(
i = n+ 1, . . . , p

2
− 1
)

are zero, the matrix Hh

certainly has rank equal or less than n. In case the singular values σi

(
i = n+ 1, . . . , p

2
− 1
)

are not exactly zero but are too small, there is no doubt that the matrixHh has rank not outlying

from n. For instance, in a system with noise in the measurements, it would be expected real

difficulties to realize a gap between the computed last non-zero singular value and what actually

should be considered zero. In this case, possibly the rank n would be greater than expected.

Computer round-off, and measured signal can be considered possible sources of noise in this

case.

With the choice of n, the Hankel matrix Hh (Equation (4.26)) can be computed to

a reduced rank n matrixHhn following the same dimension of

Hhn = UnΣnVT
n . (4.29)
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Comparing the terms of Equation (4.21) and Equation (4.29), the matrices O and

W can be computed as

O = UnΣ
1/2
n ,

W = Σ1/2
n VT

n .
(4.30)

Substituting Equation (4.30) in Equation (4.25), it is obtained

O† = Σ−1/2
n UT

n ,

W † = VnΣ
−1/2
n .

(4.31)

From the results of Equation (4.24) and Equation (4.31), the estimated state-space

system matrix Â can be determined as

Â = Σ−1/2
n UT

nHshVnΣ
−1/2
n . (4.32)

The estimated state-space input matrix B̂ and the estimated state-space output ma-

trix Ĉ can be obtained with the first s columns of the matrixW and with the first r rows of the

matrixO, respectively, as follows:

B̂ =WEs = Σ1/2
n VT

nEs ,

Ĉ = ET
r O = ET

r UnΣ
1/2
n ,

(4.33)

where
Es = [Is 0 . . . 0]T ,

Er = [Ir 0 . . . 0]T ,
(4.34)

and Is and Ir are the identity matrices of orders s and r, respectively.

The system can be considered initially at rest when k = 0. For the case of a system

that does not involve accelerations as outputs, it is appropriate to mention thatD =Hv(0) = 0.

Consequently, without loss of generality, the realization of the MIMO system to be identified is

composed of the triplet (A,B,C). If the system to be identified has accelerations as outputs,

the matrixD would be considered as the Markov parameters in the first sampling instant (k = 0

in the algorithm).

The main steps of the classical State-Space Realization Algorithm for MIMO sys-

tems are summarized in the following Figure 4.1.

The simulation procedures and the results of the simulations introduced ahead in

this work encompass the adjustment parameters. The variables dt, q, p and n previously men-

tioned in this section are considered the adjustable parameters in the simulations of the SSRA.
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Compose the input-output data matrices U and Y from measurements

Compute the Markov parameters matrix H

Compose the Hankel matrix Hh and the time-shifted Hankel matrix Hsh

Factorize the Hankel matrix employing the Singular Values Decomposition (SVD)

Determine the order of the system by examining the singular values

Construct the state-space realization, calculating the estimated �A,
�B, and �C matrices

Eq. (4.16), Eq. (4.17)

Eq. (4.15)

Eq. (4.19), Eq. (4.20)

Eq. (4.26)

Eq. (4.27), Eq. (4.28)

Eq. (4.32), Eq. (4.33), Eq. (4.34)

Figure 4.1 – Main steps of the classical State-space Realization Algorithm.

Even in a real-time dynamical system, the parameters p and n require to be adjusted. The

other two parameters should be defined indirectly when the measurement devices are set up to

establish the sampling frequency and the total time of measurement or the number of samples.

4.2.3 The Least-Squares in Markov matrix computing

This topic has no direct influence on the SSRA method formulations presented up

to this point. The following subject attests to how the Markov parameters matrix inherently

contains the Least-Squares concepts in its computing.

For a MIMO system, the basic relation holds

Y =HU , (4.35)

where the Markov matrixH can be considered a numerical transfer function of the system, with

the outputs matrix Y excited by the inputs matrixU . A prediction error with noise characteris-

tics should arise when the transfer functionH is computed. The traditional Least-Squares (LS)

optimization method takes place to minimize this error when the calculation of the Markov ma-

trix is accomplished. This LS problem can be stated by rewriting Equation (4.35) in the concept

of an FIR model, as seen in Chapter 3, which includes the addition of a prediction error vector

ν as

y(k) = ψT (k)θ + ν(k) , (4.36)

where

ψ(k) = [u(k − 1) u(k − 2) . . . u(k − n)].
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Representing Equation (4.36) in the matrix form, it results

Yn = ΨT
nθ +Λn , (4.37)

where
Yn = [y(1) y(2) . . . y(n)]T ,

Ψn = [ψ(1) ψ(2) . . . ψ(n)]T ,

θ = [HT
v (1) HT

v (2) . . . HT
v (n)]

T ,

Λn = [ν(1) ν(2) . . . ν(n)]T ,

with Yn ∈ Rn×r, Λn ∈ Rn×r, Ψn ∈ Rsn×n, θ ∈ Rsn×r, for r outputs and s inputs (Hv ∈ Rr×s

is the block Hankel matrix), where y(i) is a row vector with r output elements and u(i) is a

column vector with s input elements.

The Least-Squares solution of the system portrayed by Equation (4.37) is well

known (Chen et al., 2012a):

θ̂LSn = arg min
θ
νn(θ),

νn(θ) = ∥ Yn −ΨT
nθ ∥2 =

n∑
k=1

(y(k)−ψT (k)θ)2,

θ̂LSn = [Ψn ΨT
n ]

−1ΨnYn.

(4.38)

Comparing Equation (4.15) with the last equation in Equation (4.38), it can be re-

alized the equivalence between the Markov matrix H and the estimator θ. It is possible to see

that in the Markov matrix’s computing, the error minimization related to the attainment of the

system transfer function, rendered by the Markov matrix itself, occurs.

4.3 SSRA-DC concepts and formulation

4.3.1 Fundamentals concepts

An LTI State-Space discrete-time system, shown in Equation (3.24) and the follow-

ing reintroduced in Equation (4.39), commonly models a System Identification method of a

characteristically stochastic process.

x̂(k + 1) = Ax̂(k) +Bu(k) +w(k),

ŷ(k) = Cx̂(k) +Du(k) + v(k).
(4.39)

with its variables defined as the correspondent ones from the deterministic state-space represen-

tation (Equation (4.1)), where w(k) ∈ R
n×1 and v(k) ∈ R

r×1 are the stochastic disturbances
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related to input noise and measurement noise, respectively. u(k) is the input excitation, x̂(k) is

the estimated state of the system, and ŷ(k) is the estimated output.

For the purposes and characteristics of the SSRA-DC method, as the basis of the

method focus of this work, the measurement noise v(k) will be considered by handling the

output data by adding a typical random white noise signal, and due to the present scope of

this research, no input noise is considered (w(k) = 0). The lack of these disturbances in the

state-space modeling would probably lead to bias terms affecting the conventional State-Space

Realization Algorithm, presented in Section 4.2. According to the data correlation features of

the method, the mathematical modeling presented in Section 4.3.2 is based on the deterministic

State-Space system given by Equation (4.1) (Hou; Hsu, 1991).

The system defined by Equation (4.1) typically operates in an open-loop condition,

which is inherent to the conventional SSRA-DC method, the basis of this research. Hence,

a possible bias is avoided due to the non-correlation between the input and the measurement

noise. The input excitation is assumed as a signal of rich spectral excitation and zero-mean

with unit-variance. So, and considering that the measurement noise and the input excitation are

uncorrelated in this work, the data correlation treatment of the input-output data set allows for

reducing the influence of the measurement noise v(k) in the system identification process. For

simplicity, a Single-Input-Single-Output system is applied to support this concept, employing

the input u(k) and the output y(k) in the following formulation. Some concepts applied to data

series and stochastic systems are introduced as the basis for this issue.

The cross-correlation function ruy of u(k) and y(k), and autocorrelation function

ru of u(k) can be defined and estimated as (Soderstrom; Stoica, 1989; Aguirre, 2015):

ruy(k, i) = E [u(k)y(k + i)] , r̂uy(k) =
1

q

q−k∑
i=0

u(i)y(i+ k), (4.40)

ru(k, i) = E [u(k)u(k + i)] , r̂u(k) =
1

q

q−k∑
i=0

u(i)u(i+ k), (4.41)

where i is an integer and the operator E(·) is the statistical expected value.

The equation of Wiener-Hopf depicts the relation between ruy(k) and ru(k) as fol-

lows (Soderstrom; Stoica, 1989; Aguirre, 2015):

ruy(k) =
∞∑
i=0

h(i)ru(k − i), (4.42)
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which in a matrix form can be expressed as
ruy(0)

ruy(1)

ruy(2)
...

 =


ru(0) ru(−1) ru(−2) . . .

ru(1) ru(0) ru(−1) . . .

ru(2) ru(1) ru(0) . . .
...

...
...

...




h(0)

h(1)

h(2)
...

 , (4.43)

ruy = Ruh, (4.44)

considering here that the autocorrelation matrix Ru is truncated in a finite number of samples,

where h(i) is the impulse response of the system at instant i.

From Equation (4.44), it can be stated:

h = R−1
u ruy, (4.45)

withRu a non-singular matrix.

Considering a general solution for the proposed problem that comes from Equa-

tion (4.45), and with the objective to simplify the current analysis, the input u(k) is chosen to

perform a null autocorrelation (ru(k) = 0) when k ̸= 0, which is ensured in this work as the

input excitations are Gaussian White Noise signals. Then, Ru becomes a diagonal matrix with

all elements equals to ru(0), and Equation (4.44) can be stated as (Soderstrom; Stoica, 1989;

Aguirre, 2015):

ruy = ru(0)Ih ⇒ h =
1

σ2
u

ruy, (4.46)

where I is the identity matrix and σ2
u = ru(0) is the variance of u(k).

Since the measured output y(k) is corrupted by the noise v(k), then y(k) = yc(k)+

v(k), where yc(k) represents the output part ideally without noise. Composing Equation (4.40)

with the measured output that contains noise, it is possible to write (Soderstrom; Stoica, 1989;

Aguirre, 2015):

ruy(k) =
1

q

q−k∑
i=0

u(i) [yc(i+ k) + v(i+ k)] ,

ruy(k) =
1

q

q−k∑
i=0

u(i)yc(i+ k) +
1

q

q−k∑
i=0

u(i)v(i+ k),

ruy(k) = rcuy(k) + ruv(k).

(4.47)

Substituting the last equation from Equation (4.47) into Equation (4.46) yields

(Soderstrom; Stoica, 1989; Aguirre, 2015):

rcuy + ruv = ru(0)Ih ⇒ h =
1

σ2
u

(
rcuy + ruv

)
. (4.48)
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Firstly, as can be seen by the cross-correlation in Equation (4.40), rcuy is relatively

robust against noises due to the averaging effect present, which depends on the k value, clearly

better if q → ∞. Equation (4.48) shows that a way to eliminate the parcel coming from the

noise effect is making ruv(k) = 0, being this attribute feasible in the present work according to

the characteristics of both excitation signal u(k) and measurement noise v(k) applied. Thus, the

data correlation treatment imposed on the input data set of the algorithm can ensure a reduction

of the influence of measurement noise v(k), providing an even more unbiased identification

result.

The Wiener-Hopf equation (Equation (4.42)) can be applied to MIMO systems

(Song; Ritcey, 1997; Benesty et al., 2008). In the case of this work, the SISO formulation

was presented to simplify the formulation since it allows an extension to MIMO systems. The

basic proposition keeps valid, relying on the similarity with the data correlation method, for

instance, between Equation (4.45) and Equation (4.15), once the Markov parameters matrixH

is submitted to the data correlation properties.

4.3.2 SSRA-DC basic formulation

The SSRA-DC (Juang et al., 1988) is supported by transforming the Markov pa-

rameters block matrices with different sizes and shifts into block correlation matrices. From

Equation (4.18) and Equation (4.19), the generalized Hankel matrix is composed as following:

Hk =


Hv(k + 1) Hv(k + 2) . . . Hv(k + β)

Hv(k + 2) Hv(k + 3) . . . Hv(k + β + 1)
...

... . . . ...

Hv(k + α) Hv(k + α + 1) . . . Hv(k + α + β − 1)

 , (4.49)

where Hv(k + i) is a block matrix of r rows (number of outputs) and s columns (number of

inputs), and (k + i) represents the lag time values with i = 1, 2, . . . , (α + β − 1). α and β are

integers that determine the number of block rows and columns from the matrixHk.

SSRA-DC has the data correlation matrix Rh as basis of the method, following

defined:

Rhk =HkH
T
0 , (4.50)
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with Rh0 =H0H
T
0 and

H0 =


Hv(1) Hv(2) . . . Hv(β)

Hv(2) Hv(3) . . . Hv(β + 1)
...

... . . . ...

Hv(α) Hv(α + 1) . . . Hv(α + β − 1)

 . (4.51)

Similar to the SSRA method, a block correlation Hankel matrix Hk can be formed

as the primary data to be used in the state-space matrices expressions. The matrix Hk works to

compose the SSRA-DC method, aiming for the attainment of the state-space equations of the

identified system. This matrix is defined as follows:

Hk =


Rh(k) Rh(k + τ) . . . Rh(k + γτ)

Rh(k + τ) Rh(k + 2τ) . . . Rh(k + (γ + 1)τ)
...

... . . . ...

Rh(k + ξτ) Rh(k + (ξ + 1)τ) . . . Rh(k + (ξ + γ)τ)

 , (4.52)

where Rh(k) = Rhk; this matrix notation is used with the intent of working as a block matrix

element of the matrix Hk. The variables τ , ξ, and γ are integers that determine the size of the

blocks Rh and the matrix Hk.

For the purposes of this work and its correspondent simulations, the variables α,

β, τ , ξ and γ, from Equation (4.49) and Equation (4.52), will be treated with the following

assumptions without loss of generality:

a) α = β, then β can be disregarded in the algorithm;

b) τ = α, considering the condition of τ ≥ α to avoid overlap of adjacent correla-

tion terms in the block correlation matrix (Juang, 1994);

c) Based on the assumptions a) and b), and considering that Rh((ξ + γ)α + 1)

is the last element of the matrix H1 (Equation (4.52)) for k = 1, this element

is calculated as defined in Equation (4.50). Substituting ((ξ + γ)α + 1) as the

variable k in Equation (4.49), its last element corresponds to the last element of

the matrix of parameters of Markov (Equation (4.18)). With that, the parameter

p can be taken to determine the value of the parameter α, as follows:

p− 1 = k + α + β − 1 = (ξ + γ)α + 1 + α + α− 1,

p− 1 = ξα + γα + 2α = (ξ + γ + 2)α,

α =
p− 1

ξ + γ + 2
,

(4.53)
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where α ∈ N1 is rounded for lower.

d) ξ and γ are configurable parameters of the algorithm and will be adjusted to-

gether to the other required settings of the classical SSRA.

The SSRA algorithm (Section 4.2.2) was assembled to have an even number as-

signed to the parameter p, whereas here in the SSRA-DC, this condition is not required, but

both algorithms demand p ≤ q.

In the sequel, it is presented the formulas based on H(0) = H0 and H(1) =

H1 computed from Equation (4.52), where H(1) is the time-shifted block correlation Hankel

matrix. Firstly the factorization of the block correlation Hankel matrix is undertaken with the

application of singular value decomposition:

H(0) = UΣiVT , (4.54)

where Σi = diag
[
σ1, σ2, . . . , σn, σn+1, . . . , σ p

2

]
.

Similar to the traditional SSRA, a reduced rank n matrix taken from Equation (4.54)

can be given as follows:

Hn(0) = UnΣnVT
n , (4.55)

where it is considered the first n singular values σi that are non-negative and decreasingly

ordered, then,

Σn = diag[σ1, σ2, . . . , σi, σi+1, . . . , σn]. (4.56)

Defining the following matrices:

ET
r = [Ir 0r . . . 0r],

ET
s = [Is 0s . . . 0s],

ET
α = [Iα 0α . . . 0α],

(4.57)

where Ii and 0i are identity matrix and null matrix of order i, respectively.

Thus, the estimated state-space realization system [Â, B̂, Ĉ, D̂] can be attained

with the following expressions:

Â = Σ
− 1

2
n UT

nH(1)VnΣ
− 1

2
n ,

B̂ = [ET
αUnΣ

1
2
n ]

†H0Es,

Ĉ = ET
r UnΣ

1
2
n ,

D̂ =Hv(0),

(4.58)
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being proper the same considerations assigned for SSRA (Section 4.2.2) related to the condi-

tions when D̂ =Hv(0) = 0.

The main steps of the mathematical formulation detailing the development to obtain

Equations (4.58) are described in Appendix A.

Estimation bias inherent in working of Singular Value Decomposition of a Hankel

data matrix with added noise can be significantly reduced by incorporating data correlation in

the identification algorithm. For the SSRA-DC, the bias terms can be omitted by adequately

choosing the integer k, considering that the measurement noise V added to the output matrix

Y is typically a random-normally distributed signal, as will be presented at Section 5.3. As the

basis of the method and as established in Section 4.3.1, the correlation function employed in

the Hankel matrices allows having an unbiased algorithm for system identification (Hou; Hsu,

1991; Juang, 1994).

4.4 The novel method SSRA-DC-iCL

This section introduces the proposed method coming from the SSRA-DC presented

in Section 4.3.2. Besides the main characteristics that determine the combined technique’s

steps, a concept to update the Markov parameters matrix as the core to the method’s effective-

ness will be established. The method’s proposition is to be a complementary technique to the

classical methods based on state-space realization, improving the SI process in the presence of

measurement noise under a reduced number of samples acquired from the process in a linear

system.

The main contribution of the present research is the concept of feedbacking the

Markov parameters in the identification algorithm, which is distinct from the works (Juang,

1994; Phan et al., 1994) where the closed-loop is in the system plant, thus known as a closed-

loop identification. In this work, the state-space realization algorithm for identifying dynamical

systems was modified to include the Markov parameters’ feedback in an iterative model. This

feedback was performed using the Markov matrix residue structured for each output to obtain a

dynamic gain computed at each iteration and reconfigured accordingly to the residue’s covari-

ance. Thus, the noise effect is reduced at each algorithm iteration with the proposed algorithm

feedback technique that continuously updates the Markov parameters.

Before presenting the proposed iterative method, the following section provides the

essential condition that led the iterative algorithm application to be justified as better than the
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classical state-space realization methods. After, a block diagram of the integrated algorithm is

introduced, highlighting the algorithm modules that compose the whole iterative method. To

better understand the block diagram, a detailed description of each step of the general method is

presented. The closed-loop control strategy adopted for the feedback of the Markov parameters

is approached at this point. The last section of this chapter shows the complete algorithm of the

novel iterative method.

4.4.1 Condition of small samples set available

The iterative algorithm developed in this research aims to tackle the limitation of not

having a sufficiently large number of samples acquired from the process, avoiding degradation

of the identification accuracy. This restriction sounds even more eminent for performance in

high-order systems and with many input-output variables.

Considering that system dynamics are depicted in the data, the increase of the

model’s effectiveness has a straightforward relationship with the size of the data set. In the

system identification process characterized by a relatively small data size, uncertainties that

lead to significant drawbacks in the identification accuracy motivated some works, as in Gu and

Wei (Gu; Wei, 2018). This concern is suitably synthesized by Gu and Wei (Gu; Wei, 2018):

“For small data modeling problems, the difficulty of finding reliable models is often exacerbated

due to the small sample size of data. Reliable model identification from small sample data is a

challenging problem frequently encountered in practical system identification.”

The SSRA-DC-iCL method should be applied to have its algorithm settings com-

plying with a number of samples sufficiently small to achieve identification effectiveness better

than for the conventional SSRA-DC algorithm. For this work’s objective with linear systems,

the parameter q for the SSRA-DC-iCL was adjusted with half of the value that the SSRA-DC

algorithm would need to achieve almost full effectiveness under noiseless conditions. This

assumed condition will be reported and analytically endured at Section 7.3.

4.4.2 The proposed method

The block diagram of the developed method (Figure 4.2) represents a combination

of the technique related to updating the Markov parameters iteratively in a closed-loop with the

state-space identification method based on data correlation. The figure highlights three areas

integrated into the algorithm’s purposes. The lower area corresponds to the new concept of pro-
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viding Markov parameters feedback iteratively. The outputs Ŷ(i) have resulted from an updated

state-space identified system attained at each iteration i. The other two bounded areas represent

the data set generation and the validation of the system identified, assigning an evaluation index

related to the model accuracy.

+-

UV

U

YV

Y

Ŷ

Ŷ(i)

H(i)

Original

System

System

System

(iteration i)

Identified

Identified

Kp(i)

Hankel matrices

Hankel matrices

matrices
Data Correlation

Block Correlation

Generalized

Reference and Validation Data Evaluation with
Validation Data

SVD

Iterative closed-loop control to update the Markov parameters matrix

BFR achieved

FRj(i)(%)

VFRj(%)

i = i+ 1

H(i+1) = H(i) +Kp(i) εh(i)
ε(i) = Y − Ŷ(i)

εh(i)

εh(i) = ε(i) U
†

Figure 4.2 – Block diagram of SSRA-DC-iCL

The state-space representation of a mass-spring-damper model or the differential

equations of a cart-pendulum model, like those approached in Section 5.4 and Section 5.5, is

used to generate the output data from simulations considering the input excitation. Each of

these dynamical systems is called the original system (OS) to distinguish it from the identified

system (IS). The computational steps of SSRA-DC-iCL are based on the input data set obtained

from simulations, in which the steps are presented in Figure 5.11. In a real process, this data set

would come from experimental measurements. Two sets of data are considered in the algorithm,
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one for the attainment of the state-space realization (inputs U and outputs Y ), which work as

reference data to the closed-loop iterative algorithm, and the other is the validation data for the

evaluation of the identified system (inputs UV and outputs YV ).

The Fit Rate (FRj and VFRj) shown in Figure 4.2 represents a quantitative evalu-

ation index to measure the adherence of the IS compared to the OS. The index is calculated

individually for each output j. For each identification cycle, an average FR from all outputs is

used to represent the SI process’s effectiveness. The FRj for each output, and FR are calculated

as following

FRj =

1−

√√√√(∑(q−1)
k=0 (yj(k)− ŷ(k))2∑(q−1)
k=0 (yj(k)− ȳ)2

)× 100%, (4.59)

FR =
1

r

r∑
j=1

FRj, (4.60)

with

ȳ =
1

q

(q−1)∑
k=0

yj(k) ,

where ŷ (vector element ŷ(k)) is the estimated value of one output from the identified system,

yj (vector element yj(k)) represents the output vector from the original (true) system, which

comes from matrix Y for FRj computing (Roll et al., 2005; Piga et al., 2015). The index FRj

is called Validated Fit Rate (VFRj) when it is computed at the validation stage using the output

YV to compose yj(k) elements. Similarly, the average of VFRj is called VFR.

The percentage value calculated at each iteration composes a series of values that

increase when better identification is obtained, reaching FR = 100% when the identified re-

sponse is precisely the same as the original system. Since the objective of the SSRA-DC-iCL

is to attain the state-space realization of the identified system with BFR (Best Fit Rate), the

algorithm SSRA-DC-iCL is set to stop when the FR of one iteration reaches the BFR set-point

(SFR in the Algorithm 1) or when the desired number of iterations is achieved. In the present

research, the algorithm was set to stop only by the number of iterations, allowing to study of

the FR behavior throughout the iterations. The BFR is a Fit Rate value obtained at the iteration

stage of the algorithm, whereas the VFR comes from the validation stage, both computed for

the same identified system at any simulation. The IS is stored when the highest BFR value is

achieved in the iteration stage, where that IS also yields a VFR value for the correspondent

simulation.
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The basic computational steps of the iterative closed-loop SSRA-DC-iCL algorithm

are:

I i = 0; where (i) represents the ith algorithm iteration.

II Compute the Markov parameters matrix’s initial condition H(0) (Equation (4.15)) from

U and Y .

III Compose the Generalized Hankel matricesHk (Equation (4.49)).

IV Compose the Data Correlation matrices Rhk (Equation (4.50)).

V Compose the Block Correlation Hankel matrices Hk (Equation (4.52)).

VI Obtain the matrices of the state-space identified system (IS) from Singular Value De-

composition of the Block Correlation Hankel matrix H0 (using equations from (4.54) to

(4.58)).

VII By simulating the iterative IS with inputs U (lsim function in the algorithm), generate

the estimated data output Ŷ(i).

VIII Calculate the Fit Rate indicator FRj (%) for each output j using Y and Ŷ(i), and calculate

the FR.

IX Compute the residual output matrix: ε(i) = Y − Ŷ(i).

X Compute the Markov parameters residual matrix:

εh(i) = ε(i) U
†, (4.61)

where U † is the pseudoinverse of U .

XI Obtain the updated Markov parameters matrix to be used in the computation process:

H(i+1) =H(i) +Kp(i) εh(i) , (4.62)

being Kp a gain matrix or simply a scalar Kp, that will be discussed ahead in the next

section.

XII i = i+ 1, return to step III and repeat the loop for the next iteration.

The iterative loop process performed from step III to step XII is determined by the

set-point of the number of iterations or by the set-point of the Fit Rate FR. In the simulations

accomplished in this research, the purpose was to work with the setting of a number of iterations
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at each configuration tested to perceive the algorithm behavior in terms of expected results. The

adjustment of several iterations numbers for different settings of the algorithm parameters was

needed in this investigative aspect of the method. Besides these conditions to end the algorithm

iterations, a stop condition was defined from the iterative loop when the Fit Rate FR of any

iteration takes a negative value. This situation characterizes a great drop of the Fit Rate values,

called all over this work as a convergence loss, which will be better discussed in Chapter 7.

4.4.3 Markov matrix updating

The Markov parameters matrix, updated at each iteration, considering the residue

computed in the previous iteration, allows a newly identified system to be recalculated.

Accordingly to Equations (4.15), (4.16) and (4.17), the Markov matrix H has each

row originated from an output located in each correspondent row of the matrix Y . The matrix

Kp is defined as a diagonal matrix, with each diagonal element being a gain related to the

correspondent row of the Markov matrix. Then,Kp is represented as follows

Kp = diag[Kp1 , Kp2 , . . . , Kpj , . . . , Kpr ], (4.63)

withKp ∈ Rr×r and Kpj > 0, j = 1, 2, . . . , r.

It is proposed here an approach forKp to be dynamically updated at each algorithm

iteration. Taking into account that the Markov matrix H reflects the system input-output data,

which interferes in the residue εh, the covariance Φj of the matrix row εhj is applied to establish

the value of the gain Kpj . This gain value behaves as a counterpart to minimize the variability of

the residues values. Concisely, Kpj is established to be inversely proportional to the respective

covariance Φj of the row vector εhj from the residue matrix εh, which can be better clarified

next.

The Markov parameters residual matrix is composed as follows:

εh =



εh1

εh2

...

εhj

...

εhr


=



εh1(0) εh1(1) . . . εh1(k) . . . εh1(sp− 1)

εh2(0) εh2(1) . . . εh2(k) . . . εh2(sp− 1)
...

... . . . ... . . . ...

εhj
(0) εhj

(1) . . . εhj
(k) . . . εhj

(sp− 1)
...

... . . . ... . . . ...

εhr(0) εhr(1) . . . εhr(k) . . . εhr(sp− 1)


, (4.64)

where

εhj
= (yj − ŷ)U †, (4.65)
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with ŷ containing the estimated values of the output j from the identified system and yj repre-

sents the same correspondent j output vector from Y (original system).

The row vector εhj
represents the Markov parameters residues related to one of the

r outputs. The elements of this vector (εhj
(k)) can have magnitudes of relevant differences,

which lead to distinct variability between the vectors εhj
. The solution adopted to iteratively

update H was in the way of assigning a specific gain value to each row vector εhj
. As this

updating gain works in the feedback of the closed-loop concept, it was established for actuating

inversely proportional to the variability of the εhj
(k) elements in a row vector εhj

. Thus, when

the variability of the εhj
elements gets higher, the gain should act to decrease the values of the

correspondent row of the Markov parameters residues matrix εh that is added to the Markov

parameters H last computed. The calculation of the εhj
covariance was dynamically applied

at each iteration to represent the amount of the εhj
(k) elements variability. In this case, the

covariance calculation of a vector with itself has been obtained in the same way as its variance

computing.

The covariance Φj of the Markov parameters residues εhj
related to an output j is:

Φj = E((εhj − E(εhj))(εhj − E(εhj))
T ) = E((εhj − εhj)(εhj − εhj)

T ),

Φj =
1

sp− 1

sp−1∑
k=0

(εhj(k)− εhj)(εhj(k)− εhj)
T , εhj =

1

sp

sp−1∑
k=0

εhj(k),
(4.66)

Φ = [Φ1 Φ2 . . . Φj . . . Φr]
T , (4.67)

where the operator E(·) is the statistical expected value.

The gain Kpj , as an element of Equation (4.63), is computed as follows:

Kpj = ℓ

(
max(Φ)−min(Φ)

Φj

)
, (4.68)

where max(Φ) and min(Φ) are the maximum and minimum values from the vector Φ, respec-

tively. The variable ℓ is an adjustable parameter of the algorithm, working as a weighting factor

in Kpj computing. The difference between the maximum and minimum covariances of any

residue εhj at the ratio’s numerator of Equation (4.68) refers to a normalization of values in

the range of the Φj variability to result in a Kpj value coherent with the expected correction

to be performed for the Markov parameters matrix at each iteration. The ratio max(Φ)−min(Φ)
Φj

provides a value lower than unity if the variability of the residues from any output j is higher

than the range of variability from all outputs’ residues and vice-versa. In Section 7.4, graphs
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showing Kpj values over the iterations are paired with the FRj values to portray the behavior of

the dynamical gain in some undertaken simulations.

As a remarking, for systems that have only one output, Multiple-Input-Single-

Output (MISO) or Single-Input-Single-Output (SISO), the normalization that appears in Equa-

tion (4.68) becomes undue given that the numerator of the ratio gets null. To overcome this

aspect, the numerator can be alternatively selected as a unit value, and the factor ℓ should be

appropriately adjusted with a weight in the same magnitude order of Φj . With that, it provides

an initial Kpj with a reference value around the unity, allowing the corrections at each iteration

according to Φj dynamics.

It should be highlighted that ℓ acts as a multiplicative factor to the dynamical update

part in the computing of the Markov parameters matrix H . As ℓ is the only adjustable variable

in the iterative computing ofH , it was designed as a parameter of the algorithm to enable higher

or less increment of the updating part, which is in charge by the Markov parameters residues

εhj
.

In addition to the Kp definition previously presented regarding the concept of hav-

ing a variable gain value at each iteration, this function can also be performed by a fixed gain

value throughout the iterations. So that, instead of using a Kp matrix, a scalar Kp with a fixed

value for all the iterations is employed. In this case, the Kp value is the only multiplicative gain

acting on all rows εhj
of the Markov parameters residual. As can be taken from Equation (4.68),

when considering the ratio max(Φ)−min(Φ)
Φj

= 1, the natural reference to the fixed Kp value is to

assume the ℓ value, what was considered in some of the simulations approached in Chapter 7,

when applicable.

Concluding, updating the Markov parameters matrix is accomplished at each iter-

ation (i) in a way typical of iterative algorithms to solve a minimization problem. They are

characterized by a current value attained in the prior iteration being updated with a corrective

part related to some error or residual computed. In Equation (4.62), the Kp gain works simi-

larly to the step size in the steepest descent minimization algorithm. Anyway, the gain depicts a

factor with a centesimal magnitude value to gradually add the residual amount needed to update

H . At first glance, the iterative concept would theoretically refer to the complete application of

the residual amount. Although, the enhancement of this iterative control showed the necessity

to assign the gain factorKp to dose the possible correction in charge by the εh(i) without losing

the algorithm convergence, which still occurred a few times, as seen in Chapter 7.
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4.4.4 The algorithm of SSRA-DC-iCL

The Algorithm 1 contains the SSRA-DC-iCL method.

Algorithm 1 SSRA-DC-iCL
Input: Excitations: U , UV

Outputs: Y , YV

Settings: dt, q, p, n, ξ, γ, ℓ or Kp

Fit Rate set-point: SFR
Number of iterations set-point: ite

Output: Best Fit Rate: BFR
Validated Fit Rate: VFRj , VFR
State-space realization Â, B̂, Ĉ, D̂ of the Identified system (IS) with BFR: BIS

1: Compose t = [0, dt, 2dt, 3dt, . . . , (q − 1)dt]
2: Compute Markov parameters matrixH(0) at the initial condition ▷ as in (4.15)
3: i← 0 ▷ To count the number of iterations
4: FR(i)← 0
5: BFR← 0
6: while (FR(i) < SFR) and (i < ite) do
7: Assemble Generalized Hankel matrixHk ▷ as in (4.49)
8: Assemble Data Correlation matrices Rhk ▷ as in (4.50)
9: Assemble Block Correlation Hankel matrix H(0) and Block correlation time-shifted Hankel matrix H(1)

▷ as in (4.52)
10: Compute SVD: H(0) = UΣVT ▷ as in (4.54) and (4.55)
11: Compute estimated state-space realization IS: (Â, B̂, Ĉ, D̂) ▷ as in (4.57) and (4.58)
12: Compute Ŷ(i) = lsim(IS,U , t) ▷ lsim: simulate the response of the identified system to U excitation

in the iterative stage
13: Compute ε(i) = Y − Ŷ(i)

14: Compute εh(i) = ε(i) U
† ▷ as in (4.61)

15: Compute Covariance Φ(i) of Markov matrix residue (only when theKp matrix is applied) ▷ from (4.64)
to (4.67)

16: ComputeKp(i) (or employ Kp for a fix gain value) ▷ as in (4.63) and (4.68)

17: Compute FRj ▷ as in (4.59) using Y and Ŷ(i) for each output j in the iteration stage
18: Compute FR ▷ as in (4.60)
19: FR(i)← FR
20: if FR(i) < 0 then ▷ triggered condition to escape from "while" function and stop with the iterations
21: FR(i)← 0
22: i← ite
23: else
24: Compute Markov parameters matrix updated: H(i+1) =H(i) +Kp(i) εh(i) ▷ as in (4.62)
25: end if
26: if FR(i) ≥ BFR then
27: BFR← FR(i)
28: BIS ← IS
29: end if
30: i← i+ 1
31: end while
32: Compute Ŷ = lsim(BIS,UV , t) ▷ lsim: simulate the response of the best IS to UV excitation in the

validation stage
33: Compute VFRj ▷ like FRj in (4.59) but using YV and Ŷ(i) for each output j in the validation stage
34: Compute VFR ▷ as in (4.60) using VFRj rather than FRj

35: Plot Fit Rate evolution: plot(FR) ▷ FR is a vector with i FR elements
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5 SYSTEMS AND MODELS CONFIGURATION

5.1 Introduction3

The present chapter describes the characteristics and features required to consti-

tute the systems and simulations for testing the algorithms involved in the present research.

Firstly, PRBS, CHIRP, and GWN signals applied as excitation along the work are introduced.

In the sequel, the concepts of measurement noise added in most simulation cases are presented.

After that, the systems simulated, their respective configurations, and the procedure used in

simulations are detailed. Lastly, the discretization task that allows the systems simulation, and

establishes the constraints and assumptions for the system’s configuration, are specified.

This research, which focused mainly on MIMO systems with models of 5, 50, and

100 degrees of freedom, was developed in two parts that determine the topics presented in this

chapter. In the first part, a linear model of 5 degrees of freedom is simulated with the classical

SSRA to introduce some concepts about algorithm settings and their influence on the results. In

the second part, linear models with 50 and 100 degrees of freedom and additive measurement

noise are simulated to assess the new proposed iterative SSRA-DC-iCL method, including ad-

ditional evaluations and comparisons with some reference methods. The same approach of

simulations is performed for a nonlinear model with 2 degrees of freedom. This chapter de-

scribes and discusses the information supporting these elements related to the definitions of

systems, models, and simulations.

5.2 Excitation signals

The input signals play an important role in SI since only with them it is possible

to realize the behavior of the process, generate and collect the desired output data. The input

signal should provide enough knowledge about the system and affect equally all the operating

frequencies (Rehman; Verma, 2014).

A typical persistently exciting signal has an important feature to a trustworthy iden-

tification of a system if its inputs hold this characteristic. In a frequency domain, a signal can

be interpreted as persistently exciting of order m when the frequency spectrum is not zero at

3 Some parts presented in this chapter were published in the papers (Soares Jr; Serpa, 2021; Soares Jr; Serpa,
2022).
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least in m frequencies at the [−π, π] interval. A simple signal u (vector element u(k)) of order

m is considered persistently exciting if the following limits exist and if the matrix Rm
u is not

singular, i.e., it is a full rank matrix:

ū = lim
N→∞

1

N

N∑
k=1

u(k) ,

ru(k) = lim
N→∞

1

N

N∑
i=1

(u(i)− ū)(u(i+ k)− ū) ,

Rm
u = [ru(i− j)]ij ; i = 1, . . . ,m ; j = 1, . . . ,m.

(5.1)

Considering u(k) ergodic, i.e., the expected value E is substituted by the average,

the matrix Rm
u represents the autocorrelation function of u(k) signal (Åström; Torsten, 1965;

Aguirre, 2015). Roughly speaking, a persistently exciting signal carries sufficiently many dif-

ferent frequencies, which means having enough large number of harmonics in its spectrum.

(Ljung, 1971).

The choice related to the type of excitation signal comes to be a fundamental con-

cern that determines the SI effectiveness. All the three signals employed in the present research

(PRBS, CHIRP, and GWN) comply with being persistently exciting.

5.2.1 Pseudo Random Binary Sequence (PRBS)

Pseudo Random Binary Sequence (PRBS) signals were applied as excitation forces

mainly to the system’s inputs with 5 degrees of freedom. The PRBS provides characteristics

for an excitation signal as persistently exciting, which is a desired condition for consistently

estimating a linear system (Soderstrom; Stoica, 1989). These signals, commonly used in elec-

trical and electronic application fields, have a sequence of pulses randomly generated that can

be repeated in a periodic shape, or the signal period can be unique, which would mean the

complete signal is uncorrelated with itself. Another attractive attribute of the PRBS signal is

the cross-correlation with noise signals that can be considered low. The same happens for the

signal autocorrelation that is very low for all delays except zero (Lee et al., 2007; Nguyen et

al., 2018).

As pointed out by Ljung (Ljung, 1999): “A Pseudo Random Binary Sequence

(PRBS) is a periodic, deterministic signal with white-noisy-like properties.” The most common

PRBS signal type uses a shift register of order m that works executing an OR-EXCLUSIVE

logical operation between some displacement registry bits, as can be seen in Figure 5.1. When
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the clock pulse is applied, each bit’s value is transferred to each XOR logical command, shifting

the value to the next bit. Then, one PRBS bit is generated, and the process continues cyclically

at each clock pulse.

C L O C K

bit

PRBS

0

1

1 2 m

XORXORXOR

.

.

.

Figure 5.1 – Circuit of m bits shift register to generate the PRBS

Ljung (Ljung, 1999) introduced an implementation method to generate a PRBS

signal based in the three following steps:

• Generate a white zero mean Gaussian noise signal;

• Apply to the signal a 5th order Butterworth filter with the pass band 1 ≤ ω ≤ 2 (rad/s)

for instance;

• Take the sign of the filtered signal where the positive values become 1 and the negative

values become 0 or −1.

The generated PRBS excitation signal for most of the simulations of this work as-

sumes the values 0 or 1, following as the procedure previously described. The basic three steps,

prior introduced, are represented by Figure (5.2) to develop a 500 samples signal. Possible

changes in the pass band value of ω permit varying the switching rate of the PRBS, i.e., the

clock frequency (CF ) which the PRBS is generated. Regarding the adherence between the sim-

ulation and a real process, the CF should be appropriately chosen to have compatibility with the

input signal features from the process.

In Section 6.2, the influence of the PRBS switching rate in the SI performance will

be analyzed. Two PRBS signals of 500 samples being one with approximately ten times the

clock frequency (CF ) of the other are exhibited in Figure 5.3.

The feature of exciting equally all frequencies supports PRBS signal application,

widely used for linear SI, following the White-Noise as a reference in the deterministic signal
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Figure 5.2 – PRBS generation steps yielding 500 samples; from top to bottom, the steps of the
signal: white zero mean Gaussian noise, 5th order Butterworth filter in the pass
band 1 ≤ ω ≤ 2 (rad/s), PRBS generated signal.
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Figure 5.3 – PRBS signal for 500 samples in the range [0,1] with 0.1 s sampling time, and with
CF = 14.88 rad/s (left) and CF = 1.52 rad/s (right).

(Nelles, 2001). Analysis of systems in the frequency domain demands a convenient excitation

signal. The excitation signals decision is often driven by the type of system to be identified

and the desired signal processing method when the goal is to be close to white-noise. However,

the white-noise signal’s practical use for system identification does not have the same features

as the PRBS. The White-Noise possesses a high crest factor, unlike the PRBS that shows the

lowest crest factor among input excitation signals (Tangirala, Arun K, 2017). As described by

Ljung (Ljung, 1999): “A good signal waveform is consequently one that has a small crest factor
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Cr, which for a zero mean signal is defined as

Cr =

√
maxk (u(k))2

limN→∞
1
N

∑N
k=1 (u(k))

2

”

, (5.2)

where u(k) is the input signal in a discrete-time system. Binary and symmetric signals, that

achieves the lower bound of Cr = 1, can be considered to have this advantage.

The Pseudo Random Binary Sequence (PRBS) can be applied to identify linear

systems, where the state-space realization systems are resultant from the algorithms focus of

the present work. However, the PRBS should present some limitations for nonlinear systems

because the signal typically provides only two amplitude levels, which can not be a sufficient

information to identify nonlinear behavior, since more input levels in the signal amplitude can

be suitable to deal with nonlinearities. Therefore, the Gaussian White-Noise signal can be an

alternative in such situations (Shariff et al., 2013; Sarvat Mushtaq Ahmad, 2001).

In the reference (Fairweather et al., 2011), the relevance of the PRBS signal was

highlighted when the authors mentioned: “the PRBS finds applications over many disciplines

for parameter identification since the frequency spectrum of the PRBS is known to approximate

to band-limited white-noise, and thus they form a useful stimulus for frequency response anal-

ysis.” The stimulus signal can be injected in a separate way, as it was applied in this work, or in

addition to another kind of input/control signal.

5.2.2 Sine Sweep (CHIRP)

The CHIRP is also a persistently exciting signal composed of a sinusoidal signal

that continuously changes its frequency over a range from a minimum value to a maximum one.

As the signal vary the frequency sweeping up or sweeping down in one period, the CHIRP is

also called the swept signal. The CHIRP signal, as adopted in this work, is mathematically

defined as follows:

u(t) = Am sin

(
2πfmint+

π(fmax − fmin)t
2

T

)
, (5.3)

where Am is the signal amplitude, T is the period (0 ≤ t ≤ T ), fmin and fmax are the minimum

and maximum frequencies, respectively. The sweep rate, that is, the rate that the frequency

changes in the CHIRP signal, is fmax−fmin

T
. The Crest factor of CHIRP, that depicts the ratio

of peak values to the effective value (root mean square) is considered low, being the same as a

sinusoidal signal, i.e., Cr =
√
2 (Ljung, 1999).
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The frequency range of the CHIRP, formed by the frequencies fmin and fmax, has

to be chosen to encompass the range of interest frequencies from the process. In contrast, even

if the frequencies would be appropriated selected to the process, other frequencies will also

excite the system and not only relevant ones. However, this signal behavior does not impact

linear systems, which represent the research’s overall cases. Thus, some care should be taken

to avoid disturbing the systems with nonlinearities conditions for other spectral lines of excited

frequencies than those of interest (Vuojolainen et al., 2017; Pintelon; Schoukens, 2012).

Two CHIRP signals are displayed in Figure 5.4 with amplitude Am = 1, T =

10 s, and fmin = 0.2 Hz, being the left graph with fmax = 7 Hz, and the right graph with

fmax = 14 Hz. It is easy to realize that, as the minimum and maximum frequencies get close,

the signal becomes a sinusoidal curve, which effectively happens when fmin = fmax in Equa-

tion (5.3).
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Figure 5.4 – CHIRP signals with fmin = 0.2 Hz, and fmax = 7 Hz (on the left graph) and
fmax = 14 Hz (on the right graph).

As pointed out by Uyanlk et al. (Uyanlk et al., 2015): “The correct choice of input

signals plays a crucial role in the system identification process. Input signals must be designed

to expose as much dynamical behavior in the system as possible. The accuracy of the identi-

fication critically depends on particular aspects of these CHIRP inputs, such as their duration,

frequency range, and sweep rate”. Simulations excited by CHIRP signal were configured to

have the frequency fmax randomly generated at some specific range, objectifying to have dif-

ferent inputs signals and different input data sets from each other, as a practice implemented

for the CHIRP excitations throughout this work. Table 6.5 presents different fmax frequencies

generated and used in the simulations analysis with CHIRP excitations at Section 6.5. In the
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simulations excited by CHIRP at this work, the signal was adjusted to have only one cycle over

the period T .

The CHIRP signal application has many examples in engineering research as an

excitation input for system identification and process simulations. In the work of Chen et al.

(Chen et al., 2020), a CHIRP signal is exploited as a sweeping force to excite a bridge in

a typical structural system identification problem. On another example, the CHIRP and the

PRBS are the excitation signals in SI of an Active Magnetic Bearing. Here, they are analyzed

and compared for their impact on the identification results (Vuojolainen et al., 2017).

An interesting approach comparing CHIRP and PRBS signals was provided by

Montonen et al. (Montonen et al., 2018), where an identification experimental research of a

mechanical driveline of a hybrid bus is presented. This mentioned work presents a concern

regarding the differential gear backlash when the excitation signals are a pure PRBS, causing

nonlinearities in the mechanical driveline. For that nuisance, PRBS being superimposed by an

offset signal mitigated the trouble. Even though CHIRP and PRBS signals are rich enough in

frequency content, the CHIRP signal showed practical limitations in some experiment steps.

Then, taking care of gear backlash through some rearrangement in the PRBS construction, this

excitation signal performed better than the CHIRP signal for this identification experience.

5.2.3 Gaussian White-Noise (GWN)

Gaussian White-Noise (GWN) is an excitation signal vastly applied all over the

control area, signals processing, and correlated fields of application. White-Noise is a sequence

of independent and identically distributed random variables with a certain variance, having

equal intensity at different frequencies, giving it a constant power spectral density (Soderstrom;

Stoica, 1989; Carter; Mancini, 2003). When each sample has a normal distribution with zero

mean, the signal is said to be Gaussian White-Noise. Then, this signal is typically an arbitrary

zero-mean White-Noise, and was set with unit-variance in this work, similarly to what was

applied in the paper of Chen et al. (Chen et al., 2012a). For systems identification, the GWN

is broadly employed in structural applications. A fundamental property of the GWN signal

relates to containing all frequencies uniformly. A White-Noise signal was precisely and briefly

characterized by Nelles (Nelles, 2001): “... measuring a white-noise source at one instant

reveals no information about the next. White-Noise contains no systematical part; it is totally

unpredictable.” A GWN signal configured as the ones used in this work is shown in Figure 5.5.
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Figure 5.5 – GWN signal with unit-variance

5.3 Measurement noise

The additive noise in the output measurement variables of the systems is one pre-

miss of this work handled on the procedure that generates the data set to the simulations. For

numerical simulations, the measurement noise V comes from a characteristic random signal

formed by the actual amplitude of the corresponding output signal where the noise is added

(Juang; Pappa, 1986). The input set-point value of the noise, represented by the variable SN (%)

on the algorithm, determines the percentage value applied to the amplitude of the output signal.

Firstly, it should be defined the structure of the output and the noise that will be added:

Y =


Y1

Y2

...

Yj

 ,V x =


Vx1

Vx2

...

Vxj
,

 ,V x =


V x1

V x2

...

V xj

 , (5.4)

with Yj ∈ R1×q, Vxj
∈ R1×q, V x ∈ Rj×q, and V x ∈ Rj×1.

Considering SN as the desired percentage value of the measurement noise added to

the outputs Y , it is possible to write:

Vxj
= SN(Yjmax − Yjmin

)R, (5.5)
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where R ∈ R1×q is a row vector of independent values randomly generated in the range [0,1],

and Yjmax and Yjmin
are the maximum and minimum values from Yj , respectively, and

V xj
=

1

q

q∑
k=1

Vxj
(k). (5.6)

Defining the matrix V ∈ Rj×q with j = {1, 2, . . . , r}:

V = V x1, where 1 = [1 1 . . . 1]1×q . (5.7)

Finally, the measurement noise V ∈ Rj×q can be defined for the simulations as:

V = Vx − V . (5.8)

5.4 Mass-Spring-Damper models

The mass-spring-damper models applied all over this research work are linear dy-

namical systems of finite-dimensional composed by the following equations, beginning with

the second order differential equation (Gawronski, 2005; Juang, 1994):

Mÿ +Dẏ +Ky = B0u, (5.9)

with M, D, and K representing the mass matrix, damper matrix and stiffness matrix, respec-

tively. B0 is an input influence matrix, characterizing the locations and type of inputs.

Equation (5.9) can be rewritten as follows:

ÿ +M−1Dẏ +M−1Ky = M−1B0u. (5.10)

The state vector x is a combination of the structural displacements y, and velocities

ẏ, i.e.,

x =

 x1

x2

 =

 y
ẏ

 . (5.11)

Substituting the states of Equation (5.11) into Equation (5.10), it is obtained:

ẋ2 +M−1Dx2 +M−1Kx1 = M−1B0u, (5.12)

From Equation (5.11) and Equation (5.12), the first-order differential equations of

the states can be expressed as:

ẋ1 = x2, ẋ2 = −M−1Kx1 −M−1Dx2 +M−1B0u, (5.13)
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which yields

ẋ =

 ẋ1

ẋ2

 =

 0 I

−M−1K −M−1D


︸ ︷︷ ︸

A

 x1

x2

+

 0

M−1B0


︸ ︷︷ ︸

B

u (5.14)

From Equation (5.11), the outputs regarding specific displacements and velocities

can be established as follows:

y =
[
Cd 0

] x1

x2

+
[
0
]
u , (5.15)

ẏ =
[
0 Cv

] x1

x2

+
[
0
]
u , (5.16)

where Cd and Cv are in charge to make the outputs selection for displacement and velocity,

respectively.

For the outputs ÿ referred to accelerations, substituting the states from Equation

(5.11) into Equation (5.10) yields:

ÿ = −M−1Kx1 −M−1Dx2 +M−1B0u, (5.17)

which should have each term multiplied by the matrix Ca to make the outputs selection in the

state-space form, as following:

ÿ = Ca

[
−M−1K −M−1D

] x1

x2

+
[
CaM−1B0

]
u. (5.18)

A mass-spring-damper system to model the three types of outputs (displacement,

velocity, acceleration) simultaneously should consider Equation (5.15), Equation (5.16), and

Equation (5.18) together to compose the matrices C and D according to the following state-

space equation:
y

ẏ

ÿ

 =


Cd 0

0 Cv

−CaM−1K −CaM−1D


︸ ︷︷ ︸

C

 x1

x2

+


0

0

CaM−1B0


︸ ︷︷ ︸

D

u (5.19)

The mass-spring-damper system, used in simulations with the classical SSRA for

the first phase of this work is a typical MIMO system with 5 degrees of freedom called here
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Figure 5.6 – Schematic 5 degree of freedom model (M5DOF), where mi:masses, ki:stiffnesses
and di:dampings. Friction not considered.

M5DOF model. Excitation forces were applied in the fourth and fifth masses (u4 and u5), and

the displacements were measured in the first and second masses (y1 and y2), as can be seen in

Figure 5.6 related to the schematic representation of this model.

The values to generate the mass matrix M, the stiffness matrix K, and the damping

matrix D of the M5DOF model are presented next and were chosen similar to the reference (Yu

et al., 2014):

M =



1 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 3


, K =



800 −800 0 0 0

−800 2400 −1600 0 0

0 −1600 4000 −2400 0

0 0 −2400 6400 −4000

0 0 0 −4000 7200


,

D = 0.5M+ 0.0004K. (5.20)

For most of the simulations, the mass-spring-damper models are typical MIMO

systems with 50 degrees of freedom (M50DOF) and 100 degrees of freedom (M100DOF) mod-

els. The elements where the displacements were measured and where the excitation forces

were applied are presented in Table 5.1. The respective positions of the inputs forces and the

outputs sensors were chosen considering a more homogeneous distribution along with the ele-

ments, in a way not to have forces or sensors more concentrated in a part of the model with the

rest more empty. The schematic representation for the M100DOF model, being the M50DOF

model analogous to that, is displayed in Figure 5.7. The elements values of the mass matrix

M = diag[m1,m2, . . . ,mi], the stiffness matrix K and the damping matrix D from the mod-

els were selected based on the reference (Yu et al., 2014) and adapting the respective values

to the attainment of higher natural frequencies of the systems in relation to the respective fre-

quency values employed in the mentioned reference. The damping matrix D and the stiffness

matrices K are composed as in Equation (5.20) and Equation (5.21), respectively, and the cor-



95

respondent mass and stiffness values of the elements are shown in Table 5.2.

K =



k1 + k2 −k2 0 . . . 0

−k2 k2 + k3 −k3 . . . 0

0 −k3 k3 + k4 . . . 0
...

...
... . . . ...

0 0 0 . . . ki + ki+1


, (5.21)

with i = 50 for the M50DOF and i = 100 for the M100DOF.

Table 5.1 – Displacements measured and excitation forces in the M50DOF and M100DOF
models

Model Displacements measured (outputs) Excitation forces (inputs)
M50DOF y5, y17, y26, y33, y48 u18, u36

M100DOF y10, y34, y52, y66, y96 u18, u36, u49, u67, u89

Table 5.2 – Mass and stiffness values from the elements of the M50DOF and M100DOF models

Masses mn Stiffness ki (×1000) (1)

m1 = 1 m2 = 2 m3 = 2 m4 = 2 m5 = 3 k1 = 0.4 k2 = 0.8 k3 = 1.6 k4 = 2.4 k5 = 4
m6 = 2 m7 = 1 m8 = 1 m9 = 2 m10 = 2 k6 = 3.2 k7 = 1 k8 = 4.1 k9 = 1.4 k10 = 2.2
m11 = 1 m12 = 3 m13 = 1 m14 = 1 m15 = 3 k11 = 1.1 k12 = 1.3 k13 = 2.7 k14 = 2.3 k15 = 3.3
m16 = 2 m17 = 1 m18 = 2 m19 = 3 m20 = 2 k16 = 1.5 k17 = 1.1 k18 = 2.4 k19 = 2 k20 = 1.8
m21 = 3 m22 = 3 m23 = 3 m24 = 2 m25 = 2 k21 = 3.4 k22 = 0.8 k23 = 1.4 k24 = 4.2 k25 = 1.1
m26 = 1 m27 = 1 m28 = 3 m29 = 2 m30 = 3 k26 = 2.3 k27 = 1.5 k28 = 3 k29 = 1.5 k30 = 1.7
m31 = 1 m32 = 2 m33 = 2 m34 = 3 m35 = 2 k31 = 0.9 k32 = 2.4 k33 = 1.1 k34 = 4.3 k35 = 0.7
m36 = 1 m37 = 2 m38 = 1 m39 = 3 m40 = 2 k36 = 3.4 k37 = 0.6 k38 = 2.2 k39 = 3.4 k40 = 1.8
m41 = 1 m42 = 1 m43 = 2 m44 = 2 m45 = 1 k41 = 2.5 k42 = 1.1 k43 = 2.6 k44 = 2.2 k45 = 2.8
m46 = 3 m47 = 2 m48 = 1 m49 = 1 m50 = 3 k46 = 2.4 k47 = 1.3 k48 = 0.8 k49 = 1.7 k50 = 0.5
m51 = 2 m52 = 1 m53 = 2 m54 = 3 m55 = 1 k51 = 1.3 k52 = 0.8 k53 = 2.1 k54 = 1.3 k55 = 2
m56 = 3 m57 = 3 m58 = 1 m59 = 1 m60 = 3 k56 = 4.2 k57 = 1.5 k58 = 1.1 k59 = 3.2 k60 = 2.3
m61 = 3 m62 = 1 m63 = 2 m64 = 1 m65 = 2 k61 = 3.9 k62 = 1 k63 = 1.8 k64 = 4.2 k65 = 1.7
m66 = 3 m67 = 2 m68 = 1 m69 = 1 m70 = 3 k66 = 1.5 k67 = 3.3 k68 = 4.3 k69 = 2.1 k70 = 1.8
m71 = 2 m72 = 1 m73 = 2 m74 = 1 m75 = 1 k71 = 2.2 k72 = 2.3 k73 = 3.5 k74 = 3.7 k75 = 1.1
m76 = 3 m77 = 3 m78 = 2 m79 = 1 m80 = 2 k76 = 3.3 k77 = 3.1 k78 = 2 k79 = 1.5 k80 = 1.2
m81 = 3 m82 = 1 m83 = 1 m84 = 1 m85 = 3 k81 = 0.9 k82 = 2.8 k83 = 0.7 k84 = 3.4 k85 = 1.1
m86 = 2 m87 = 3 m88 = 2 m89 = 1 m90 = 3 k86 = 4.3 k87 = 1.2 k88 = 3.3 k89 = 1.3 k90 = 1.8
m91 = 2 m92 = 2 m93 = 3 m94 = 3 m95 = 2 k91 = 1.6 k92 = 1.1 k93 = 3.9 k94 = 2.2 k95 = 1.7
m96 = 1 m97 = 3 m98 = 2 m99 = 2 m100 = 3 k96 = 2.4 k97 = 1 k98 = 0.8 k99 = 3.1 k100 = 0.5

k101 = 2.2

1 Stiffness values presented in the table should be multiplied by 1000

k1 k2 k3 k99 k100 k101

d1 d2 d3 d99 d100 d101

m1 m2 mi m99 m100

ui

yi

Figure 5.7 – Schematic 100 degree of freedom model (M100DOF), where mi:masses,
ki:stiffnesses and di:dampings. Friction not considered.
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An M50DOF system was reconfigured, as presented in Figure 5.8, to have a system

with the matrixD of the state-space representation (Equation (4.1)) not null. The displacements

measurements were changed to accelerometers (yi) located at the same masses of the M50DOF

(Table 5.1), except y17 and y33 that were changed to y18 and y36 where the excitation forces

(ui) are applied, i.e.: m5,m18,m26,m36,m48. The excitation forces were applied accordingly

to Table 5.1. The location of accelerometers (output) together with excitation forces (input) in

the same body took into consideration Equation (5.19) to obtain the feed-through matrixD.

Since the matrix M is diagonal, the matrices Ca and B0 cannot be orthogonal to

avoid a null matrix D. It was established the accelerometers positioned in the same masses

of the excitation forces, therefore providing a non-null feed-through matrix D (Gawronski,

2005), that depicts the system dynamic from accelerometers. To differentiate how the system

is called, this one configuration using accelerometers rather than displacement measurements

will be nominated M50DOF-a and has the same matrices compositions of the M50DOF system

prior described.

k1 k2 k3 k49 k50 k51

d1 d2 d3 d49 d50 d51

m1 m2 mi m49 m50

ui

yi

Figure 5.8 – Schematic 50 degree of freedom model with accelerometers in yi (M50DOF-a),
where mi:masses, ki:stiffnesses and di:dampings. Friction not considered.

It shall be highlighted that all the models (M5DOF, M50DOF, M50DOF-a, and

M100DOF) previously presented were chosen as stable systems (damped). Then, for an impulse

response excitation, it is considered the same assumption as in the work of Kung (Kung, 1978),

where the matrix block of Markov parameters, defined in Equation (4.18), obeys the following

premiss:

Hv(p− 1)→ 0 as p→∞ , (5.22)

thus, Equation (5.22) assumes that the Markov parameters decay with time, when submitted to

an impulsive excitation (Kramer; Gorodetsky, 2018).

5.5 Cart-Pendulum model

The Cart-Pendulum is a classic mechanical model commonly applied to control

area studies. Since this dynamical model can provide nonlinear characteristics of a system, the
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model was simulated in the present research to verify and analyze its identification result when

submitted to the SSRA-DC-iCL method. A schematic representation of the Cart-Pendulum

model (C-PEN) is displayed in Figure 5.9, where CG and I are the Center of Gravity and the

Moment of Inertia, respectively, from the pendulum rod.

u

yx

yy

k1

I,m2

m1

yθ

CG
L

d1

Figure 5.9 – Schematic representation of the C-PEN. Friction not considered on the rolls.

From Figure 5.10, the dynamical equations of the system are developed, represent-

ing the free body diagrams of Cart and Pendulum rod.

u

k1yx

N1 N2
m1g

d2ẏθ

d1ẏx

FV

FH

m2g

d2ẏθ

y
θ

FV

FH

Figure 5.10 – Free body diagrams of cart (left) and pendulum rod (right).

The following sequence of equations was built up to the attainment of the second-

order differential equations of the cart displacement yx and the pendulum rod angle yθ that
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are considered outputs from the system, which is excited by the input force u. The referred

differential equations were integrated by the Runge Kutta 4th order numerical method (RK4),

using the ‘ode45’ function from Matlab, to calculate the outputs values yx and yθ accordingly

to the input values u. The input force is composed of a series of values based on a GWN signal

with unit-variance as defined in Section 5.2.3.

From Figure 5.9 and 5.10, the following equations are taken and should be consid-

ered for mathematical development of the dynamical model:

m1ÿx = −k1yx − d1ẏx + FH + u, (5.23)

m2
d2

dt2
(yx − L sinyθ) = −FH , (5.24)

m2
d2

dt2
(L cosyθ) = m2g + FV , (5.25)

Iÿθ = FVL sinyθ − FHL cosyθ − d2ẏθ. (5.26)

Substituting FH from Equation (5.24) into Equation (5.23), it holds:

m1ÿx = −k1yx − d1ẏx −m2
d2

dt2
(yx − L sinyθ) + u, (5.27)

m1ÿx = −k1yx − d1ẏx −m2ÿx +m2L
(
ÿθ cosyθ − ẏ2

θ sinyθ
)
+ u, (5.28)

(m1 +m2)ÿx + d1ẏx + k1yx − u−m2Lÿθ cosyθ +m2Lẏ
2
θ sinyθ = 0. (5.29)

Substituting FH and FV from Equation (5.24) and Equation (5.25), respectively,

into Equation (5.26), it holds:

Iÿθ =

(
m2

d2

dt2
(L cosyθ)−m2g

)
L sinyθ +

(
m2

d2

dt2
(yx − L sinyθ)

)
L cosyθ − d2ẏθ,

(5.30)

Iÿθ + d2ẏθ =

(
L
d

dt
(−ẏθ sinyθ)− g

)
m2L sinyθ +

(
ÿx − L

d

dt
(ẏθ cosyθ)

)
m2L cosyθ,

(5.31)
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Iÿθ + d2ẏθ =
(
−Lÿθ sinyθ − Lẏ2

θ cosyθ − g
)
m2L sinyθ+

+
(
ÿx − Lÿθ cosyθ + Lẏ2

θ sinyθ
)
m2L cosyθ,

(5.32)

ÿθ
(
I +m2L

2
)
+ d2ẏθ +m2Lg sinyθ −m2Lÿx cosyθ = 0, (5.33)

From Equation (5.29) and Equation (5.33), the second order derivative terms ÿx and

ÿθ can be taken isolated as follows:

ÿx =
u (m2L

2 + I)− d2m2Lẏθ cosyθ −m2L (m2L
2 + I) ẏ2

θ sinyθ − d1yx (m2L
2 + I)

I (m1 +m2) +m2
2L

2 + L2m1m2 −m2
2L

2(cosyθ)2
+

+
−k1yx (m2L

2 + I)−m2
2L

2g cosyθ sinyθ
I (m1 +m2) +m2

2L
2 + L2m1m2 −m2

2L
2(cosyθ)2

,

(5.34)

ÿθ =
m2Lu cosyθ − d2 (m1 +m2) ẏθ −m2

2L
2ẏ2

θ cosyθ sinyθ − g (m1 +m2)m2L sinyθ
I (m1 +m2) +m2

2L
2 + L2m1m2 −m2

2L
2(cosyθ)2

+

+
(−d1ẏx − k1yx)m2L cosyθ

I (m1 +m2) +m2
2L

2 + L2m1m2 −m2
2L

2(cosyθ)2
.

(5.35)

The integration of Equation (5.34) and Equation (5.35) employing the RK4 method

calculates the respective outputs yx and yθ, which are determined by the input u. This task rep-

resents how to compose the data set from the dynamical model of the nonlinear Cart-Pendulum

system required to simulate the identification methods presented in Chapters 3 and 4.

A linearization of the C-PEN can be performed considering the following condi-

tions:

cosyθ ≃ 1; sinyθ ≃ yθ; yθẏ
2
θ ≃ 0. (5.36)

Applying the linearization, Equation (5.29) and Equation (5.33) assumes the fol-

lowing representation:

(m1 +m2)ÿx −m2Lÿθ + d1ẏx + k1yx = u, (5.37)

ÿθ
(
I +m2L

2
)
−m2Lÿx + d2ẏθ +m2gLyθ = 0. (5.38)
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Considering x1 = yx, x2 = yθ, x3 = ẏx, x4 = ẏθ, the state-space equations of

the linearized C-PEN can be developed from Equation (5.37) and Equation (5.38) as follows:
1 0 0 0

0 1 0 0

0 0 (m1 +m2) −m2L

0 0 −m2L I +m2L
2


︸ ︷︷ ︸

E


ẋ1

ẋ2

ẋ3

ẋ4

+


0 0 −1 0

0 0 0 −1

k1 0 d1 0

0 m2gL 0 d2


︸ ︷︷ ︸

F


x1

x2

x3

x4

 =


0

0

1

0


︸ ︷︷ ︸
H

u

(5.39)

Hence, the state-space equations are attained:

ẋ = −E−1F︸ ︷︷ ︸
A

x+E−1H︸ ︷︷ ︸
B

u, (5.40)

 yx
yθ


︸ ︷︷ ︸
y

=

 1 0 0 0

0 1 0 0


︸ ︷︷ ︸

C


x1

x2

x3

x4


︸ ︷︷ ︸
x

, (5.41)

andD = 0.

The constant values used in the present research related to the variables from the

C-PEN, as shown in Figure 5.9 and Figure 5.10, were obtained from a set of user manuals of

the components of the C-PEN (Inc., 2012). The respective values assumed from this reference

are:

• m1 = 0.75 kg;

• m2 = 0.364 kg;

• k1 = 142 N/m;

• d1 = 4.3 N -m-s/rad;

• d2 = 0.0024 N -m-s/rad;

• L = 0.26825 m;

• I = 0.00788 kg-m2;

• g = 9.81 m/s2.
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5.6 Procedure of data supply to the algorithms

Different data sets of input excitation signals yield hereafter the basis for the algo-

rithms’ processing. A data set of input excitation signals aims to create data for the execution

of the algorithm to obtain the identified system. Other data sets of signals excite the applied

system for generating the output variables to be used as validation data to evaluate the identified

system. The data set comes from inputs and outputs measurement devices in experimental tasks

undertaken in an actual process. Similarly to that, the computational steps to generate the input

data set of algorithms required in a simulation environment are summarized in Figure 5.11. For

the linear mass-spring-damper system, the Original System OS is represented by a state-space

model, whereas for the nonlinear C-PEN, the data set of the OS is obtained from the dynamical

model described by differential equations and submitted to the RK4 numerical method.

Compose the dynamical model called here
the Original System OS

Generate excitation signals to be used as data inputs

U in the Markov matrix computing

Generate excitation signals to be

the validation data inputs UV

Simulate the OS with U to generate the data outputs

Y that will be used in the Markov matrix computing

Simulate the OS with UV to generate

the validation data outputs YV

Add measurement noise V (Equation (5.8)) to Y Add measurement noise VV (Equation (5.8)) to YV

Store the input-output data set (U ,Y ,UV ,YV )

and makes available to the algorithm

Figure 5.11 – Computational steps of systems simulations to make available the algorithm data
set.

5.7 Systems discretization

This work is based on simulations that demand a hypothetical continuous-time sys-

tem, directly coming from a dynamical model, to be represented as a discrete-time system. The
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discretization method applied was defined accordingly to one of the application’s processes

simulated in this research, as will be introduced at the current topic.

5.7.1 For the Mass-Spring-Damper system

The continuous-time system, defined here by the matrices M, K and D, were dis-

cretized using the zero-order hold (ZOH) method for the time response analysis. The bilinear

method (Tustin) was chosen to discretization in the frequency response analysis for SSRA sim-

ulations of the M5DOF model. This discretization method was selected considering the better

results of VFRj attained in the case of frequency response analysis, which will be reported

ahead in Section 6.3, and was also supported to keep the system’s expected natural frequencies.

The determination of the system sampling time dt shall regard the appropriate se-

lection of the sampling frequency ωs to attend the Nyquist Sampling Theorem, as follows

ωs ≥ 2 ωmax, and ωs =
2π

dt
, (5.42)

where ωmax is the maximum frequency of the discretized system (Han, 2010), with the frequen-

cies defined in rad/s.

Besides the previous basic concerns for the determination of the minimum sampling

frequency suitable to the current SSRA applications, the work of Moaveni et al. (Moaveni; Ma-

soumi, 2019) also considers the maximum sampling frequency. In the ERA method, a high

sampling frequency related to structural systems with low bandwidth can lead to very small

values the difference between two consecutive input-output measurements. This condition

forms Hankel matrices (Equation (4.19) and Equation (4.20)) close to being singular, taking

the ERA computing to fail in the identification results. Then, accordingly to this reference

work (Moaveni; Masoumi, 2019), the definition of sampling frequencies limits is based on the

following expressions:

2 ωdmax < ωs < 4π ωdmax, and ωdmax = max
{
ωdi

= ωni

√
1− ζi

2
}

with i = 1, 2, . . . , n/2,

(5.43)

where ωni
and ζi are the ith natural frequency in rad/s and the corresponding damping ratio,

respectively. As mentioned in the work of Moaveni et al., for data sets coming from experi-

ments, the maximum damping frequency ωdmax can be determined using the power spectral of

the output measurable variables.
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The sampling time computed and established for each specific mass-spring-damper

system involved in the algorithms simulations is presented in Section 6.3 and Section 7.2.

5.7.2 For the Cart-Pendulum system

The dynamical model of the C-PEN portrayed by Equation (5.34) and Equation

(5.35), when submitted to the RK4 method, requires establishing a sampling time to perform the

technique. This sampling time determines the frequency of the outputs data set generation. The

outputs yx and yθ of the C-PEN were generated with a sampling frequency of the RK4 method

equal to the sampling frequency applied in the identification algorithm. This setting assured that

the frequencies of the identified system coincide with the frequencies of the linearized system,

which were represented in state-space and were obtained from Equations (5.39), (5.40), and

(5.41).

The determination of the sampling time dt for the system identification process,

employing the methods studied in the present research, should consider the Nyquist Sampling

Theorem as defined in Equation (5.42). For that, the maximum frequency ωmax taken from the

linearized system was made as a reference in the application of the Nyquist sampling Theorem.

The sampling frequency value employed for the RK4 method and the identification methods is

presented in Section 7.9.1, which introduces the conditions of the simulations performed.
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6 ANALYSIS OF THE SETTINGS INFLUENCE ON SSRA

This chapter presents numerical results and graphs related to the classical SSRA

simulating the M5DOF system to provide an introductory concept of the algorithm settings and

its influence on the results. In Section 6.5, the M100DOF system is also simulated in the SSRA

method to grant comparative results between the three excitation signals introduced at Section

5.2.4

6.1 Specific settings and system configurations for the SSRA simulations

The input data set to the SSRA are available from the simulation steps described in

Figure 5.11 of Section 5.6. In the sequel, going along with what is presented in Figure 4.1, the

following computational steps are performed to the attainment of the SSRA identified system

and its effectiveness evaluation:

a) Compose the input-output data set matrices UV , YV , U , Y .

b) Compute the Markov parameters matrixH .

c) Compose the Hankel matrixHh and the time-shifted Hankel matrixHsh.

d) Factorize the Hankel matrixHh employing the Singular Values Decomposition

(SVD).

e) Determine the order of the system by examining the singular values (Σi =

diag[σ1, σ2, . . . , σn, σn+1, . . . , σ p
2
−1]) (Equation 4.27).

f) Construct the state-space realization of the identified system IS, calculating the

estimated Â, B̂, Ĉ, and D̂ matrices.

g) Proceed with the validation step, simulating the IS with inputs UV to generate

estimated data outputs Ŷ .

h) Evaluate the identified system IS, comparing Ŷ and YV through the calculation

of the Fit Rate indicator VFRj(%) (Equation 4.59), where yj(k) comes from the

output YV , and ŷ(k) comes from the estimated output Ŷ .

4 Except for Section 6.5 of the present thesis, the content of this chapter is part of the paper published on the
reference (Soares Jr; Serpa, 2021).
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Referring to the classical State-Space Realization Algorithm, its configuration re-

quires to be appropriately adjusted for the achievement of a better result of VFRj in the SI

process. Aiming to show and discriminate the settings done in each result that will be reported

ahead, the respective algorithm parameters are described, where the matrices or mathematical

expressions related to them were presented in Chapter 4:

• dt: sampling time of the system in the simulation;

• q: number of samples;

• p: determines the Hankel matrix size;

• n: state-space order of the realization (identified system order).

Generally, after q is defined, per simulations’ experience, the parameter p can start

with at about 10% to 20% of q as an early reference. It can be increased gradually after the initial

adjustment of parameter n has been done. In a real system, the starting value of the parameter n

should be estimated, considering the knowledge about the system characteristics. This approach

to the determination of parameter n for real systems was used in the classical SSRA (Juang;

Pappa, 1985), and even in the General Realization Algorithm (GRA) (De Callafon et al., 2008).

The initial attainment of the coherent rank of the Hankel matrix takes into account what should

be the singular value close to zero.

In a simulation environment, the order of the original system works as a reference

for the identified system order definition, hence it determines the effective rank of the Hankel

matrix Hh. In the M5DOF model, the state-space system of order 10 (order of the matrix A)

can be, as a reference, the system’s initial order to be identified. After all other parameters

adjusted, it is suitable to come back to the system order in the attempt of providing a low order

than the previous one setting, if this can be done without loss of the VFR value. Although

simulations analysis is the focus of this work, one of the possible noise sources is related to

computer round-off. However, rather than defining n = 10 at this time, this work will exercise

here the setting of this parameter, considering that the system was not previously established.

The use of VFR value represents a good driver for the parameters adjustment to

better system identification results. Thereby, to get the first information of the algorithm re-

sponse to system characteristics, as pointed from Equation (4.27), it is worthwhile to plot the

singular values to get some reference of the system order (n), with attention to the interference
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of computational rounding. The singular values for 0% of noise presented in Figure 6.1 show

that the parameter n can start with the value 13 since all of them are closer to zero from the 14th

singular value. This choice of the order (n) considered only visual inspection of the singular

values on the graph of Figure 6.1. As will be shown ahead, this aspect of the order choice works

as a reference without an accuracy commitment once the Fit Rate indicator drives the parameter

selection.
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Figure 6.1 – Singular values from Hankel matrix for: M5DOF, dt = 0.5 s, q = 100, p = 20,
noises of 0% and 1%.

The singular values graph for 1% of measurement noise added to the system is also

shown in Figure 6.1 in comparison to the condition without noise. Both graphs were plotted

with the same algorithm settings. Comparing the graphs, since it is not easy to determine from

which order the singular value is closer to zero, the system with noise confirms the difficulty

of using the singular values information as an initial reference to determine the system order.

In addition to that, the searching for a more appropriate system order, in this context, has the

purpose of being a complementary tool. For instance, the well-known methods Modal Ampli-

tude Coherence and Mode Singular Value introduced by (Juang; Pappa, 1985; Juang; Pappa,

1986) from the traditional ERA are the main tools to take the system order parameter. How-

ever, according to the results for the noisy system presented in Section 6.4, the searching for the

true system order can consider the Fit Rate index as a guide and recalibration tool to attain the

system order closer to the true one.

For the M5DOF model, the system discretization analysis and the corresponding

more appropriate sampling time values for each simulation will be shown in Section 6.3 after
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presenting the results of the time response analysis.

6.2 Time response analysis to the M5DOF system

Applying the VFRj indicator (Equation (4.59)), the results of the system identifi-

cation, using the SSRA excited by PRBS signals in the M5DOF system, are portrayed in the

figures and tables that are shown in this section. PRBS signals, switching between 0 and 1

(Figure 5.3), yield the excitation forces with amplitudes multiplied in u4 and u5 by proposed

factors 2.5 and 3.33, respectively. These employed factors were chosen to provide more suitable

amplitudes levels for the results assessment. The figures show the curve of one of the outputs

y generated by the original system (red color) compared to the curve of the correspondent esti-

mated output ŷ generated by the identified system (blue color). The time response analysis was

performed for three sampling times (dt): 0.5, 0.1, and 0.02 seconds. The graphs show the time

at the horizontal axis in seconds (s) and the displacement at the vertical axis in meters (m).

A data set summarizing the time response results is reported in Table 6.1. From Fig-

ure 6.2 to Figure 6.9, it is shown the worst and the best results for all sampling times simulated

in terms of the value of VFRj . The figures regarding other adjustments will not be shown here,

although they were simulated, and its VFR (Equation (4.60)) values are presented in Table 6.1.

From the same sampling time, the sequence of results presentation shows an in-

crease in the number of samplings (q), which interferes in the size of system inputs and outputs

matrices, determining the Markov matrix composition (H). The sequence of parameter values

was set to realize the influence of each one in the Fit Rate result. Firstly, q is doubled up and p is

fixed; next, q is fixed and p is doubled up. This sequence is applied for the three sampling times.

It can be seen from the variable CF in Table 6.1 that the PRBS excitation is maintained fixed for

the same q value with the purpose to perceive the effect simply from the changes of the other

parameters (p and n). And when the best result of VFR value is achieved, the system order (n)

is reduced from the initial value (n = 13) to analyze its effect in the system identification result.

The improvement in the results according to the sequence of parameters configura-

tion applied is portrayed in Table 6.1. The increment in p always results in VFR increment, and

the increase of q results in the VFR increment either. Generally, this means that the VFR value

goes up following the parameters q and p that had increased either. For the maximum value of

p, when p = q (Equation (4.16)), it can be seen a significant decay of VFR value, mainly for

dt = 0.02 s, denoting the importance of searching for the best SSRA settings for fewer compu-
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tational efforts, which do not follow an automatic guideline. Additionally, it is possible to see

in Table 6.1 that the maximum VFR value is kept up to the adjustment of p = q/2. For p > q/2,

the VFR value starts to decrease, and from this baseline, the deterioration on the system identi-

fication increase as p gets up.

Table 6.1 – Time response results

dt q p n CF (1) VFR (2) Figures

0.5 100 20 13 2.97 76.10 6.2
0.5 200 20 13 3.10 87.83 –
0.5 200 40 13 3.10 99.37 –
0.5 400 40 13 2.99 99.52 –
0.5 400 80 13 2.99 99.73 –
0.5 400 80 10 2.99 100.00 6.3
0.5 400 80 8 2.99 99.98 –
0.5 400 200 10 2.99 100.00 –
0.5 400 202 10 2.99 99.85 –
0.5 400 400 10 2.99 86.62 –
0.1 500 100 13 15.36 97.17 6.4
0.1 1000 100 13 15.64 97.82 –
0.1 1000 200 13 15.64 99.69 –
0.1 2000 200 13 15.05 99.77 –
0.1 2000 400 13 15.05 100.00 –
0.1 2000 400 10 15.05 100.00 6.5
0.1 2000 400 8 15.05 99.88 6.6
0.1 2000 400 10 1.43(3) 100.00 –
0.1 2000 400 8 1.43(3) 99.65 6.7
0.1 2000 1000 10 15.05 100.00 –
0.1 2000 1002 10 15.05 99.88 –
0.1 2000 2000 10 15.05 87.44 –
0.02 2500 500 13 74.99 92.31 6.8
0.02 5000 500 13 75.04 97.05 –
0.02 5000 1000 13 75.04 99.11 –
0.02 10000 1000 13 75.08 99.89 –
0.02 10000 2000 13 75.08 100.00 –
0.02 10000 2000 10 75.08 100.00 6.9
0.02 10000 2000 8 75.08 97.80 –
0.02 10000 5000 10 75.08 100.00 –
0.02 10000 5002 10 75.08 97.74 –
0.02 10000 10000 10 75.08 79.02 –

1 PRBS Clock frequency (rad/s) - average from inputs values
2 Average from outputs values (y1 and y2) - values in %
3 Simulation with CF reduction in the PRBS signal

For dt = 0.1 s, with half than the maximum values of q and p, VFR achieves values
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of 99.69% for n = 13 (higher order than the known order in this case), leading one to think if

the increase in computational processing is worthwhile for the improvement of the results.

The analysis of the PRBS clock frequency (CF ) reduction in terms of its impact on

the performance of the system identification was accomplished for the bests adjustments of the

algorithm in the 0.1 s sampling time. As previously mentioned in Section 5.2.1, sometimes

the real process is not compatible with an excitation input in the same frequency the sensors

measure the response, which determines the system’s time response. A reduction of 10-fold in

CF of PRBS was performed to handle this analysis condition through a PRBS clock frequency

reduction (Figure 6.7 in comparison with Figure 6.6), both situations for system order of n = 8.

Despite there were no decreases in the VFRj value for n = 10 with PRBS reduction, as shown

in Table 6.1, when the system order was reduced to 8, the reduction of 10-fold in the PRBS

clock frequency led to a slightly worse system identification result. The qualitative analysis

comparing the correspondent figures early mentioned, clearly shows the difference of curves,

where the curves with PRBS CF reduction are visually different with more slits.

Regarding the influence of changes in the system order (parameter n), the results

point out that the VFR value can be a useful drive to the determination of the actual system

order. A minimum realization with a model reduction takes part as one of the objectives of the

traditional Eigensystem Realization Algorithm described by Juang and Pappa in 1985 (Juang;

Pappa, 1985). Then, after achieving the possible best result of the presumed system order from

the singular values graph (Figure 6.1), it is feasible to check for the reduction of that order. As

demonstrated in the results, the system order reduction from 13 to 10 kept the VFRj value or

even increased this value, suggesting that this could be a valid system order. However, a next

trial to reduce the parameter n from 10 to 8 provided a worse result, mainly when dt = 0.02 s,

indicating that the actual system order is not 8.

Nevertheless, the decision to increase or decrease the system order should be well

evaluated, depending on whether the gains or losses in the system identification results match

any of the objectives. The system identification process should be carefully analyzed concerning

reducing the identified system order beyond the original system order. This concern happens

due to the decrease in the number of system poles, representing a loss of physical system effects.
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Figure 6.2 – Original (red) and identified (blue) systems: outputs y1 (left) and y2 (right) for
dt = 0.5 s, q = 100, p = 20, n = 13.
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Figure 6.3 – Original (red) and identified (blue) systems: outputs y1 (left) and y2 (right) for
dt = 0.5 s, q = 400, p = 80, n = 10.

0 5 10 15 20 25 30 35 40 45 50

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05
97.31%VFRj =

d
is
p
la
ce
m
en
t
(m

)
-
y
1

time (s)
0 5 10 15 20 25 30 35 40 45 50

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04
97.03%VFRj =

d
is
p
la
ce
m
en
t
(m

)
-
y
2

time (s)

Figure 6.4 – Original (red) and identified (blue) systems: outputs y1 (left) and y2 (right) for
dt = 0.1 s, q = 500, p = 100, n = 13.
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Figure 6.5 – Original (red) and identified (blue) systems: outputs y1 (left) and y2 (right) for
dt = 0.1 s, q = 2000, p = 400, n = 10.
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Figure 6.6 – Original (red) and identified (blue) systems: outputs y1 (left) and y2 (right) for
dt = 0.1 s, q = 2000, p = 400, n = 8.
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Figure 6.7 – Original (red) and identified (blue) systems: outputs y1 (left) and y2 (right) for
dt = 0.1 s, q = 2000, p = 400, n = 8, CF = 1.47 rad/s.
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Figure 6.8 – Original (red) and identified (blue) systems: outputs y1 (left) and y2 (right) for
dt = 0.02 s, q = 2500, p = 500, n = 13.
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Figure 6.9 – Original (red) and identified (blue) systems: outputs y1 (left) and y2 (right) for
dt = 0.02 s, q = 10000, p = 2000, n = 10.

6.3 Frequency response analysis to the M5DOF system

For frequency response analysis, to measure the adherence of the identified system

related to the original one, the VFRj value was computed analogously as in Equation (4.59).

The frequencies presented at Figure 6.10, Figure 6.11, and Figure 6.12 depict the discretization

frequency employed in the simulations for the respective sampling times. The discretization

frequencies are obtained by the ratio (ωmax−ωmin)
q

, where (ωmax − ωmin) is the frequency range

in rad/s displayed at each figure, and q is the number of samples employed. These discretization

frequencies assume the following values:

• dt = 0.5 s⇒ (6.2−4.8)
400

= 0.0035 rad/s,

• dt = 0.1 s⇒ (30−9)
2000

= 0.0105 rad/s,
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• dt = 0.02 s⇒ (70−10)
10000

= 0.006 rad/s.

The definition of discretization frequency value took into account the premise to

maintain the same number of samples (parameter q) used in each sampling time of the time

response analysis. Still, the analysis should be done in a frequency range, comprehending and

encompassing the system’s natural frequencies. The natural frequencies ωni
of the continuous-

time are shown in Table 6.2. The frequencies of the discretized system obtained by the Tustin

discretization method are also presented there. It can be seen the significant shifting in natural

frequencies for dt = 0.5 s regarding the continuous-time system. For dt = 0.02 s, the shifting

is much lower.

Table 6.2 – Natural frequencies [rad/s] of the continuous-time and discretized system

ωni
continuous-time (1) dt = 0.5 s dt = 0.1 s dt = 0.02 s

ωn1
11.6708 4.9628 10.5654 11.6183

ωn2
26.4333 5.6825 18.4623 25.8425

ωn3
37.6496 5.8598 21.6506 36.0087

ωn4
50.1105 5.9646 23.8218 46.4543

ωn5
69.5450 6.0534 25.8162 60.7696

1 Natural frequencies of the hypothetical continuous-time system

Instead of a Bode diagram that uses only one output/input pair at a time to measure

the adherence of the identified system, it was used the singular values of the MIMO system

transfer matrix. The objective of this approach is to have an analysis of the MIMO system be-

havior as a whole. The singular value response of a SISO system, composed by an output/input

pair, is the same of its Bode magnitude response. A singular value plot of a transfer matrix

portrays the function of maximum and minimum singular values of a plant for frequency re-

sponse. These singular values work as a robust tool for characterizing the MIMO system when

the maximum singular value comes to represent the greatest gains of the plant (Albertos et al.,

2005; Brecher et al., 2018).

The Maximum Singular Values (MSV) diagrams for dt = 0.5 s (Figure 6.10), dt =

0.1 s (Figure 6.11), and dt = 0.02 s (Figure 6.12), were generated for the adjustments that

meet the best results of the Fit Rate attained in the time response analysis in the prior section.

Besides the same adjustments accomplished in the time response analysis, the respective PRBS

excitation signals were also kept the same for comparison purposes. The VFR value for MSV

is calculated at the same frequency values for the original and identified system curves. The

VFR value calculated uses the respective magnitude values expressed in decimals, whereas

the plotted values of magnitude are expressed in decibels (dB). This difference explains, why
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visually, the singular values magnitude graph (in dB) seems to be with a VFR value lower than

the respective value placed in the figures.

For the sampling time of 0.5 s, the low VFR value achieved portrays the inefficiency

of the system identification from the perspective of frequency response analysis for this sam-

pling frequency. For 0.1 s of sampling time, it can be realized only some discrepancy between

the identified and original system, which are expressed by the lower values of VFR in com-

parison with the values achieved (100%) from time response analysis. For the higher sampling

frequency with dt = 0.02 s, the results improved considerably, where the VFR values shows the

complete adherence of the identified system. As expected, in comparison with 0.5 s sampling

time, this best outcome shows an absolute overlapping of the curves. Thus, the increase in the

Fit Rate for the frequency response analysis is evident as the sampling frequency increases,

which was not too clear for time response analysis.

The expected five peaks in the identified system curves are well portrayed for 0.1 s

and 0.02 s sampling time, which does not happen with dt = 0.5 s, where two peaks are not

present. This situation supports what is mentioned by Juang (Juang, 1994): “if one wishes to

interpret the natural frequencies of the physical system, either the sample time interval ∆t must

be sufficiently short or a filter must be added to prevent the frequencies beyond the Nyquist

frequency from being folded into a lower frequency in the realization".
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Figure 6.10 – Original (red) and identified (blue) systems: MSV diagram for dt = 0.5 s,
q = 400, p = 80, n = 10.

Despite the number of peaks compatibility in most of the MSV curves, but accord-

ingly with what is presented in Table 6.2, there are significant shifting of the natural frequencies
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Figure 6.11 – Original (red) and identified (blue) systems: MSV diagram for dt = 0.1 s,
q = 2000, p = 400, n = 10.
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Figure 6.12 – Original (red) and identified (blue) systems: MSV diagram for dt = 0.02 s,
q = 10000, p = 2000, n = 10.

of discretized systems concerning the continuous-time system frequencies, where the shifting

increases as the sampling frequency decreases. This remark leads to weighing up if the sampling

frequencies applied are appropriated to the discretized systems.

The definition of sampling frequency application limits to the SSRA should be

assessed based on the Nyquist Sampling Theorem, and from Equation (5.43) established in

the work of Moaveni and Masoumi (Moaveni; Masoumi, 2019). The sampling frequency fs

states the minimum and maximum frequency limits to attend the system characteristics. Us-

ing ωni
from the continuous-time system indicated in Table 6.2, where ωdmax = 69.5344 rad/s

(ζi = 0.0175), the sampling frequency limits takes the following values, straightly attained from
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Equation (5.43): ωsmin
= 139.069 rad/s and ωsmax = 873.795 rad/s, determining the sampling

time range of dt =[0.0072 0.0452] s. Hence, only the simulated sampling time of 0.02 s should

be used in system identification with SSRA for the M5DOF system proposed in this work,

corroborating with what is realized from Figure 6.10 to Figure 6.12.

6.4 Analysis for white-noise excitation and measurement noise in the M5DOF

For comparative purposes, the simulations were extended to incorporate two dif-

ferent scenarios under the conditions of the system excited by Gaussian White-Noise (GWN)

signal and with the introduction of measurement noise to the outputs. The results from these

scenarios were tested with the same algorithm settings employed in the simulations accom-

plished in Section 6.2, where the system was excited by PRBS. The GWN signals employed as

excitation in the simulations were set with unit-variance. Also, the zero-mean typical charac-

teristic was shifted to have only positive values, i.e., to be a biased signal the same way as the

PRBS excitation, for comparison purposes.

The time response results for some simulations using the GWN signal are presented

in Table 6.3 with the same settings employed in Table 6.1. Considering the frequency response

results, for these simulations, only the discrete-time dt = 0.02 s was performed. The difference

between the VFR values achieved when the system was excited by GWN compared to the

values presented in Table 6.1, when the PRBS excitation was applied, can be considered small.

A remark should be carried out for n = 8 when the GWN excitation lead to 1% more accurate

Fit Rate index. It can be realized that for both PRBS and GWN excitations the results of

identification effectiveness were practically the same.

Table 6.3 – Comparison of Fit Rate index for PRBS and GWN excitations

q(1) p n VFR for PRBS VFR for GWN Gap(2)

2500 500 13 92.31% 93.23% 0.92%
5000 500 13 97.05% 96.17% -0.88%
5000 1000 13 99.11% 99.36% 0.25%
10000 1000 13 99.89% 99.84% -0.05%
10000 2000 13 100.00% 100.00% 0.00%
10000 2000 10 100.00% 100.00% 0.00%
10000 2000 8 97.80% 98.80% 1.00%

1 Sampling time: dt = 0.02 s
2 Difference between VFR achieved with GWN and PRBS excitations

Simulations with 1% of additive measurement noise were also performed to ver-
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ify the choice of the algorithm settings under the situation of measurement noise. For this

approach, both PRBS and GWN were used to provide a comparative analysis. The measure-

ment noise is composed of a typical signal as defined in Section 5.3 with SN = 1%. For this

condition of measurement noise introduced in the simulated system, the GWN signal was kept

with unit-variance. The same data sets of the excitation signals U and UV , used at simulations

without noise (Table 6.3), were applied to allow an analysis of the specific influence of additive

measurement noise in the results.

The VFR values attained for each excitation following the same sequence of pa-

rameters configurations of Table 6.1 and Table 6.3 are presented in Table 6.4. Firstly, for both

excitations, the results confirm that the algorithm settings, accomplished step by step, follow the

learning sequence that provides better VFR to the identified system. For the PRBS excitation,

the best VFR of 98.09% is achieved with q = 5000 and p = 1000, and for the GWN excitation

when q = 10000 and p = 1000 a smaller VFR of 97.93% is obtained. Increasing p to 2000 for

this GWN case, the VFR takes a slightly lower value of 97.88%, and the system order n of 10

or 13 leads to the same VFR results. When n = 8 is tried, it should be highlighted the relevant

decrease of FR, which ratifies the benefit of this procedure as a complementary tool to indicate

the system order, even in a situation with measurement noise.

Comparing the influence of the excitation in the results from Table 6.4, for the best

VFR achieved to each excitation, the difference of 0.16% can be considered small. For n = 8,

a more significant VFR decrease for PRBS excitation evidence that this system order assigned

is not the best choice. The PRBS excitation led to the best identified system with 5000 samples,

and the GWN required a higher number of samples. Hence, the smaller data size along the

algorithm processing can be considered another advantage for the PRBS excitation in this case.

The graphs related to the outputs from the best results for the PRBS excitation

(Figure 6.13) and GWN excitation (Figure 6.14) have their mean shifted positively due to the

amplitudes of both excitations being positive either. Moreover, in the case of the data set coming

from measurement devices of an actual plant that inherently carries nonlinear characteristics,

attention should be considered related to biased excitations.

The assessments supported by the Fit Rate index to evaluate the algorithm settings

choice allow generating a comprehensive guide in the task of SSRA parameters configuration,

contributing to making more accessible the searching of the appropriate settings.
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Table 6.4 – Time response results with 1% of measurement noise added into the system

q(1) p n VFR for PRBS VFR for GWN Gap(2)

2500 500 13 91.48% 90.79% -0.69%
5000 500 13 95.78% 94.71% -1.07%
5000 1000 13 98.09% 97.79% -0.30%
5000 1000 10 98.09% 97.79% -0.30%
5000 1000 8 97.08% 97.40% 0.32%
10000 1000 13 98.01% 97.93% -0.08%
10000 1000 10 98.01% 97.93% -0.08%
10000 1000 8 96.78% 97.37% 0.59%
10000 2000 13 98.01% 97.88% -0.13%
10000 2000 10 98.00% 97.88% -0.12%
10000 2000 8 96.78% 97.37% 0.59%

1 Sampling time: dt = 0.02 s
2 Difference between VFR achieved with GWN and PRBS excitations

0 10 20 30 40 50 60 70 80 90 100

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025
97.99%VFRj =

d
is
p
la
ce
m
en
t
(m

)
-
y
1

time (s)
0 10 20 30 40 50 60 70 80 90 100

-0.01

-0.005

0

0.005

0.01

0.015
98.18%VFRj =

d
is
p
la
ce
m
en
t
(m

)
-
y
2

time (s)

Figure 6.13 – Original (red) and identified (blue) systems: dt = 0.02 s, q = 5000,
p = 1000, n = 10, PRBS excitation, and 1% of additive measurement noise.
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Figure 6.14 – Original (red) and identified (blue) systems: dt = 0.02 s, q = 10000,
p = 1000, n = 10, GWN excitation, and 1% of additive measurement noise.
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6.5 SSRA performance comparison for the 3 excitation signals in the M100DOF

The current topic was developed using the State-Space Realization Algorithm in-

troduced in Section 4.2.2 for each type of excitation described in Section 5.2, considering some

systems and simulation conditions defined in Chapter 5. Two hundred simulations were per-

formed for each set of excitation signal types and two measurement noise levels. Each of the

three excitation signals was configured to yield a range of values with zero-mean, i.e., typically

unbiased excitations, contrary to the simulations performed in the previous section when the

M5DOF system was excited by biased signals. Then, six sets of simulations were performed to

construct boxplot graphs that grant statistical analysis of the results.

The simulation results shown in this section were accomplished by setting q = 9000

as the number of samplings for the system with one hundred degrees of freedom (M100DOF),

with the sampling time dt = 0.03 s. The reason for establishing this sampling time will be

reported in Section 7.2 when some simulation characteristics of the M100DOF system are pre-

sented. The variable in charge of setting the Hankel matrix size was adjusted with p = 900. The

simulations were fulfilled adding two levels of measurement noise discriminated in the results:

1% and 3%. Each result presented at the set of 200 simulations for the same type of excitation

signal and measurement noise level had different input data set and also distinct additive noise

signals, but in both cases keeping the same statistical characteristics between the signals.

From Figure 6.15 to Figure 6.17, the boxplot graphs for simulations with 1% of

measurement noise are shown. From Figure 6.18 to Figure 6.20, the graphs refer to 3% of

measurement noise. A graph displaying the full positive range of VFRj and its outliers is

presented, on the left, for each simulation set. The picture on the right side employs zoom to

allow a detailed view of the boxes, whiskers, and the values dispersion. The maximum and

median values of VFRj bear the numerical statistical analysis for each simulation set with the

three excitations (Table 6.6).

A more significant number of outliers in the PRBS excitation signal is evident than

the other two excitation signals. Although, the CHIRP signals confer higher variability than

the PRBS, which is even more dispersed than GWN excitation. The CHIRP signal presents

several outliers but more concentrated close to the boxes. The number of outliers for the GWN

excitation is lower, mainly for 1% of measurement noise condition, where a small dispersion of

the values is portrayed in the graph. This perspective led to the correspondent GWN graph with

the zoom at boxes (Figure 6.17 on the right) practically having the same graph view that shows
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Figure 6.15 – Boxplot of 200 simulations of M100DOF system, PRBS excitation:
dt = 0.03 s, q = 9000, SN = 1%.
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Figure 6.16 – Boxplot of 200 simulations of M100DOF system, CHIRP excitation:
dt = 0.03 s, q = 9000, SN = 1%.
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Figure 6.17 – Boxplot of 200 simulations of M100DOF system, GWN excitation:
dt = 0.03 s, q = 9000, SN = 1%.
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Figure 6.18 – Boxplot of 200 simulations of M100DOF system, PRBS excitation:
dt = 0.03 s, q = 9000, SN = 3%.
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Figure 6.19 – Boxplot of 200 simulations of M100DOF system, CHIRP excitation:
dt = 0.03 s, q = 9000, SN = 3%.

20

30

40

50

60

70

80

90

Fit Rate of the Outputs

GWN with 3% of measurement noise

(%
)

VFRy10
VFRy34

VFRy52
VFRy66

VFRy96 VFR
92

92.5

93

93.5

94

94.5

95

Fit Rate of the Outputs

GWN with 3% of measurement noise (zoom at boxes)

(%
)

VFRy10
VFRy34

VFRy52
VFRy66

VFRy96 VFR
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all outliers (Figure 6.17 on the left).

It should be mentioned that the results presented for the CHIRP signal occurred

with a fmax adjusted from 3 to 10 times the sampling frequency fs = 1/dt. When the CHIRP

signal was adjusted with a fmax up to 5 times the fs value, the number of unstable identified

systems (loss of convergence, which will be better discussed in Section 7.5) achieved levels

of 10% of the simulations performed. The frequency band increment of the CHIRP excitation

signal was beneficially applied in this case and at many works as in the paper of Nevaranta et

al. (Nevaranta et al., 2016). The maximum frequencies fmax employed for the inputs excited

by CHIRP are presented in Table 6.5 for the simulations in which the maximum value of VFR

was achieved. The minimum frequency was set with a constant value of fmin = 1.26 rad/s for

all input excitations.

Table 6.5 – Maximum Frequency (fmax) of the simulated CHIRP signals.

SN
Inputs set

(u18, u36, u49, u67, u89)
CHIRP fmax (in rad/s)

1%
U 2079, 2085, 1862, 1573, 1266
UV 2003, 1783, 1877, 1370, 1367

3%
U 733, 2083, 1682, 631, 1558
UV 1474, 1145, 1765, 1451, 1999

The VFRj medians state a better response of the GWN, which is considerably close

to the PRBS values. Both GWN and PRBS results are considerably better than CHIRP results.

The results for maximum VFRj values follow the behavior of median VFRj results.

The increase of measurement noise from 1% to 3%, besides causing an expected

more significant effect with a higher decrease of VFRj , also led to amplifying the data disper-

sion and the discrepancies between the performance of excitation signals in the system identifi-

cation effectiveness.

This section analysed three types of excitation signals commonly employed in dif-

ferent system identification approaches with the focus on state-space identification algorithm

based on the traditional ERA. Considering the suitability of using this algorithm for structural

identification, the Gaussian White-Noise (GWN) can be considered the most appropriate signal

in this scenario of engineering application. However, the VFRj values for the PRBS signal are

considerably close to the GWN values, making the PRBS signal a feasible excitation alternative

in this case.
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Table 6.6 – Comparative results of the excitation signals for the M100DOF system with:
dt = 0.03 s, q = 9000, and p = 900.

SN Output Statistical group PRBS CHIRP GWN

1%

y10
Maximum VFRj 98.04% 97.33% 98.11%

Median VFRj 97.51% 96.54% 97.91%

y34
Maximum VFRj 97.96% 97.02% 98.14%

Median VFRj 97.61% 96.16% 97.89%

y52
Maximum VFRj 97.82% 96.95% 98.08%

Median VFRj 97.53% 96.38% 97.78%

y66
Maximum VFRj 97.88% 97.24% 97.94%

Median VFRj 97.61% 96.69% 97.68%

y96
Maximum VFRj 97.83% 97.03% 98.09%

Median VFRj 97.57% 96.53% 97.75%

VFR
Maximum VFRj 97.78% 96.93% 97.98%

Median VFRj 97.56% 96.42% 97.80%

3%

y10
Maximum VFRj 94.21% 91.24% 94.56%

Median VFRj 93.17% 89.73% 93.83%

y34
Maximum VFRj 94.44% 90.21% 94.76%

Median VFRj 93.52% 88.52% 93.80%

y52
Maximum VFRj 93.09% 91.58% 93.96%

Median VFRj 92.32% 90.06% 93.25%

y66
Maximum VFRj 93.87% 91.77% 93.88%

Median VFRj 93.08% 89.69% 93.15%

y96
Maximum VFRj 93.92% 90.62% 94.17%

Median VFRj 93.20% 89.08% 93.21%

VFR
Maximum VFRj 93.57% 90.49% 93.81%

Median VFRj 93.05% 89.35% 93.44%

The CHIRP signals are widely applied to excite structures using devices as an ec-

centric mass vibrator or linear actuator, whereas a transient force is typically produced by snap-

back test or hammer test, this one better for exciting high-frequency modes (Ghee Koh et al.,

1995). The PRBS signal can be found applied by piezoelectric actuators in beams at several

references (Choi; Kim, 1996; Butcher et al., 2016). However, the present work opens a further

analysis regarding the applicability of the PRBS signal as excitation to large MIMO systems

once the signal showed up competitive for systems identification in the results of the simulated

cases.
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7 RESULTS AND DISCUSSION OF THE SSRA-DC-ICL METHOD

7.1 Introduction5

This chapter presents the results and the assessment of the developed algorithm

SSRA-DC-iCL, excited by GWN signals as characterized and described in Section 5.2. The

method was first applied to the mass-spring-damper models of 50 and 100 degrees of freedom

introduced in Section 5.4. In the last section of this chapter, the algorithm was submitted to

simulations of the nonlinear Cart-Pendulum system presented in Section 5.5. For the mass-

spring-damper systems covered throughout the chapter, firstly, it is described the systems and

algorithm characteristics related to the undertaken simulations. Next, establishing the reduced

number of samples as a requirement and at the same time as a reason for the method utilization,

this issue is approached through simulations of some SSRA-DC settings. Simulation results of

the SSRA-DC-iCL algorithm are presented to highlight the method performance. A compar-

ative statistical analysis between the SSRA-DC and SSRA-DC-iCL is provided based on 100

simulations for each algorithm settings and conditions tested. Following, the algorithm sim-

ulation results are shown for the M50DOF-a (Figure 5.8 at Section 5.4), reconfigured to have

accelerometers located at the same masses where the excitation forces were applied. Also, a

brief section is created through statistical analysis to show the relation of noise influence on the

results. The following two sections of this chapter underscore the validation and frequency re-

sponse analysis results by comparing the identified systems attained in the previous simulations

performed.

7.2 Specific settings and system configurations for the SSRA-DC-iCL simulations

The parameters configuration of the classical SSRA-DC should be appropriately

adjusted to achieve better results of the Fit Rate (Equation (4.59)) in the SI process. The re-

spective algorithm parameters selection are following described, where the related matrices and

mathematical expressions were presented in Chapter 4:

• dt: sampling time of the system in the simulation;

• q: number of samples;

5 Some parts presented in this chapter were published in the paper (Soares Jr; Serpa, 2022).
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• p: determines the matrices sizes stem from generalized Hankel matrix;

• ξ: determines the number of block rows of the block correlation matrices;

• γ: determines the number of block columns of the block correlation matrices;

• n: state-space order of the realization (identified system order).

For the purposes of this work regarding simulations with M50DOF and M100DOF

models, from now on, the parameter n will be fixed in 100 or 200, considering the orders of

the M50DOF and M100DOF systems to be identified are already known. The task of achieving

the most appropriated order of the identified system (McMillan degree) is supported by many

methods as in the traditional ERA, when Juang and Pappa (Juang; Pappa, 1985; Juang; Pappa,

1986) proposed the Modal Amplitude Coherence and the Mode Singular Value. These methods

distinguish the system from noise and use the number of retained singular values to determine

the system realization order. Additional techniques were developed for system order determina-

tion, using the power spectral density of the variables as in the work of Moaveni et al. (Moaveni;

Masoumi, 2019).

The choice of the system sampling time dt shall regard the appropriate selection

of the sampling frequency ωs to attend the Nyquist Sampling Theorem, following Equation

(5.42). It was considered the sampling time of dt = 0.02 s (ωs = 314.16 rad/s for M50DOF)

and dt = 0.03 s (ωs = 209.44 rad/s for M100DOF), due to the natural frequencies being in the

range of [1.57 97.52] rad/s for M50DOF and [1.46 97.52] rad/s for M100DOF, assuring that

the sampling frequency ωs exceeds the maximum frequency ωmax = 97.52 rad/s in at least two

times.

Since the present work is based on a simulated system, where ωni
and ζi are known,

the sampling frequencies limits (ωsmin
, ωsmax) and the sampling time limits (dtmin

, dtmax) are

computed accordingly by Equation (5.43), and the results are indicated in Table 7.1. It follows

that sampling times of dt = 0.02 s and dt = 0.03 s, which are inside of limits presented in this

table, can be considered satisfactory to be used in both M50DOF and M100DOF systems.

Table 7.1 – Limits of sampling frequency (ωs) and sampling time (dt) for the discretized sys-
tems

System ωdmax
(1) ωsmin

ωsmax dtmin
dtmax

M50DOF 97.52 rad/s 195.04 rad/s 1225.47 rad/s 0.0051 s 0.0322 s
M100DOF 97.52 rad/s 195.04 rad/s 1225.47 rad/s 0.0051 s 0.0322 s

1 ωdmax: maximum damping frequency of the continuous-time system, considering that ζi has a negligible value.
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The Maximum Singular Values diagrams shown in Figure 7.1 confirm the choices of

dt = 0.02 s and dt = 0.03 s, depicting that the systems after discretization and the continuous-

time system coincide as the peaks of natural frequencies that nearly overlap each other. A

possible choice for lower sampling time values to the limit of 5 milliseconds, even though

attending the limits shown in Table 7.1, would provide better compatibility than the condition

represented by Figure 7.1. However, it would grow the Markov and Hankel matrix sizes, thus

increasing the computational processing time (CPT).
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Figure 7.1 – Maximum Singular Values of continuous-time system (red) and discrete-time sys-
tem (blue) for M50DOF (left) and M100DOF (right).

7.3 Analysis of the number of samples reduction in the SSRA-DC simulations

The objective of this section is to contextualize the issues and definitions presented

in Section 4.4.1 that supported the choice of half the number of samples, where the total amount

of samples would be sufficient to obtain full SI effectiveness in the SSRA-DC simulations.

For the M50DOF system, the State-Space Realization Algorithm with Data Corre-

lation was submitted to simulations where the number of samples was decreased starting from

q = 3000 for settings of the algorithm parameters that outcome an identified system with the

Validated Fit Rate VFR = 99.89% in a noiseless condition. This parameters configuration ap-

plied at 100 simulations statistically synthesized and portrayed in Figure 7.2 had measurement

noise SN = 0.3% and the parameter p starting from p = 1200 when q = 3000. The parameter

p was adjusted for decreasing at the same ratio of q. The algorithm parameters related to data

correlation were set with: ξ = 2 and γ = 2. The maximum VFR and median VFR were the

statistical parameters applied over the 100 simulations performed for each algorithm settings.
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Figure 7.2 – Maximum and Median VFR throughout the reductions of q in the SSRA-DC sim-
ulations for M50DOF.

A small VFR drop for the firsts q reductions is shown in Figure 7.2. When q = 1500,

achieving half of its initial value, the relevant decrement in the VFR result seems to be an appro-

priate choice, which is confirmed due to the significant drop that happened at the next reduction

point with q = 1200. The median VFR bar graph follows the behaviour of the maximum VFR

bar graph, in this case with even more significant drops, except from q = 1800 to q = 1500.

This could lead one to choose q = 1800, but in this case, not following the premise of searching

for lower data size and, hence, often contributing to a smaller computational processing time

(CPT).

Related to the equivalent bar graphs for the M100DOF system (Figure 7.3), the

number of samples starts with q = 6000 and p = 1000, attaining a Validated Fit Rate VFR =

99.95% in a noiseless condition for this case. Other algorithm parameters were adjusted with

the following values: SN = 0.3%, ξ = 2, and γ = 1. The maximum VFR graph shows an

equivalent result as the graph from the M50DOF system. For the median VFR graph, however,

the point q = 2400 was not displayed, because it got null value, ratifying that this number of

samples would be too low and not suitable to the algorithm performance. Thus, from Figure

7.3, half number of samples is also appropriated to the M100DOF system complying with the

condition defined in Section 4.4.1.

Concluding this topic, the number of samples q = 1500 and q = 3000 for the

M50DOF and M100DOF systems, respectively, were accounted as proper to simulations objec-

tives of making the comparison between the SSRA-DC and the SSRA-DC-iCL to present the

SI improvement from the novel method, what will be approached in the following sections.
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Figure 7.3 – Maximum and Median VFR throughout the reductions of q in the SSRA-DC sim-
ulations for M100DOF.

7.4 SSRA-DC-iCL algorithm performance

This section aims to report results for some settings of the method SSRA-DC-iCL

that were introduced in Section 4.4. For this, the Algorithm 1 (section 4.4.4) was executed

with a certain number of iterations. In a scenario of a statistical analysis (Section 7.5) based

on several simulations performed, after undertaking the last simulation, the stored IS, for the

simulation with the highest VFR, has its evolution curve of FR plotted to show the algorithm

performance for this attained identified system. Then, the FR evolution curve represents the

identification results over the iterations, yielding the identified system with the highest Fit Rate

FR. Thus, the State-Space Realization of the identified system is stored for the highest point in

the FR evolution curve, which represents the BFR value. Both BFR and VFR are displayed at

the top of the referred graph.

The parameters for the algorithm settings established for the results in this section

were presented in Section 7.2. Besides those parameters, the variable ℓ, related to the weighting

factor of the gain Kpj (Equation (4.68)), should be treated as a setting parameter for the SSRA-

DC-iCL algorithm simulating M50DOF and M100DOF systems, considering that this type of

gain was applied in that systems. Since ℓ was kept fixed with a 0.01 value throughout the

M50DOF and M100DOF systems simulations, both Kpj and ℓ will not be mentioned in the

results referred. Despite the employment of a variableKp gain defined through Equation (4.63)

and Equation (4.68), the application of a fixed Kp gain was verified as viable, providing the

same level of results performed by the variable Kp gain. This condition of a fixed Kp gain

employed is fully shown in the simulations presented in the paper (Soares Jr; Serpa, 2022). In
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this case, Kp becomes the gain parameter to be used, usually taking the same values that would

be suitable for the parameter ℓ.

The results of two conditions employed in the simulations of the iterative algorithm

for the M50DOF systems are illustrated by the graphs in Figure 7.4. The curves present the Fit

Rate evolution (FR) for the following parameters: dt = 0.02 s, q = 1500, p = 600, SN = 0.3%

for the graph on the left at Figure 7.4, and SN = 1% for the graph on the right. The Validated Fit

Rate (VFR) value, also displayed at the top of the graph, comes from the FR of the validation

stage of identification. The curves regarding the evolution of FR reflect the improvement after

some iterations, where the curves tend to go upward as iterations increase. The benefit of the

algorithm feedback, updating the Markov parameters at each iteration, is witnessed by the FR

increasing values.

0 50 100 150 200 250
95.5

96

96.5

97

97.5

98

98.5

99
98.98% 98.95%BFR= VFR=

F
R
(%

)

Number of iterations

0 20 40 60 80 100 120 140 160 180 200
93

93.5

94

94.5

95

95.5

96

96.5

97

97.5
97.04% 97.45%BFR= VFR=

F
R
(%

)

Number of iterations

Figure 7.4 – FR(%) evolution of SSRA-DC-iCL for M50DOF with dt = 0.02 s, q = 1500,
p = 600, and SN = 0.3% (left), SN = 1% (right).

The Kpj gains applied to each output and the correspondent FRj related to the same

simulation that is depicted in Figure 7.4 (on the left) are presented in Figure 7.5. The graphs’

objective is to show how the gain (Figure 7.5, on the left) behaves over the iterations in simu-

lations with the results effectiveness as in Figure 7.5, on the right. In this condition, the gain

rate increment leads to the increase of the FRj . It can be observed that the opposite action

also occurs, as expected by the iterative concept adopted in the algorithm SSRA-DC-iCL. It

is remarked that the outputs y17 and y26 that take lower gains values provide a more smooth

FRj curve without any drops or oscillation points. Nevertheless, an unfavorable identification

simulation for the same algorithm settings is presented in Figure 7.6, wherein, in this case, the

BFR achieved was considerably worse. In this simulation, the Kpj gains starting from about
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100 iterations take a significant variability that triggers FRj evolution curves that do not obey

what would be a predicted result. Accordingly to the Kpj definition (Equation (4.68)), con-

sidering that ℓ = 0.01 in these algorithm settings, the mentioned Kpj variabilities are due to

the large discrepancy of the covariance of the Markov parameters residues (Φj) computed from

each output.
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Figure 7.5 – Kpj gain (left) and the FRj (right) from SSRA-DC-iCL for M50DOF with dt =
0.02 s, q = 1500, p = 600, and SN = 0.3%, in the simulation of BFR=98.98%.
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Figure 7.6 – Kpj gain (left) and the FRj (right) from SSRA-DC-iCL for M50DOF with dt =
0.02 s, q = 1500, p = 600, and SN = 0.3%, in the simulation of BFR=96.81%.

The SSRA-DC-iCL algorithm results applied for the M100DOF system (Figure

7.7) counted on with the following main parameters in its configuration: dt = 0.03 s, q = 3000,

p = 500. The graph on the left shows the results for SN = 0.3% and on the right for SN = 1%.

Both curves confirm the Fit Rate improvement with only a few minor drops of FR over the
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iterations. For this simulation with SN = 1%, 100 iterations would be sufficient to attain the

same results, according to the graph on the right at Figure 7.7.
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Figure 7.7 – FR(%) evolution of SSRA-DC-iCL for M100DOF with dt = 0.03 s, q = 3000,
p = 500, and SN = 0.3% (left), SN = 1% (right).

7.5 Statistical analysis of the SSRA-DC and SSRA-DC-iCL methods

This section simulates the M50DOF and M100DOF systems with the same algo-

rithm settings settled in the previous section for both SSRA-DC and SSRA-DC-iCL methods

comparatively. One hundred simulations with distinct inputs data sets were applied to provide

a statistical analysis of the results. The objective is to realize the variability of the overall re-

sults and verify the maximum VFRj and VFR values that really matter to the attainment of the

identified system with better effectiveness all over the 100 simulations.

As introduced in sections 4.4.1 and 7.3, the experiments were set with half of the

number of samples related to the condition when the conventional SSRA-DC achieves Fit Rate

results close to 100%. Accordingly to what was presented in Section 7.3, when the number

of samples is reduced in the identification algorithm, the identification performance worsens

considerably. This degradation is verified not only with the decrease of the maximum FRj . It is

also confirmed by more variability of the overall results, mainly in some simulations when FRj

values drop unbounded, meaning loss of convergence. In this scenario, the proposed iterative

SSRA-DC-iCL method is compared with the conventional SSRA-DC. A fundamental statistical

assessment was carried out based on 100 simulation experiments executed for each algorithm

configuration.
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Besides the parameters settings, additive measurement noises of 0.3% and 1% were

employed to analyze the simulation response of the SSRA-DC-iCL algorithm. For comparison,

the SSRA-DC-iCL algorithm response for each level of noise was submitted to the same set of

parameters that led the SSRA-DC algorithm to achieve the highest VFR.

The numerical results are summarized in Table 7.2 and Table 7.3, where some fun-

damental statistical parameters are shown numerically to portray the boxplot graphs of the sim-

ulations. These statistical graphs reveal the VFR and VFRj behavior throughout the simulated

experiments, representing the following statistical groups presented in the tables: maximum

value, median value, interquartile range, and the unstable IS (Identified System). Unstable IS

at boxplot graphs means simulations where the values dropped unbounded, achieving negative

values, but are represented as nulls in the graphs.

7.5.1 Simulations analysis of the M50DOF system

Boxplot graphs with and without outliers are presented in Figure 7.8 and Figure

7.9, respectively, for 100 simulations of the M50DOF system with dt = 0.02 s, q = 1500,

p = 600, ξ = 2, γ = 2, and SN = 1%. Comparing the left and right graphs in Figure 7.8, the

view of the outliers and the variability stayed close, as can be seen with practically the same

values of interquartile range, which are confirmed with numeric values presented in Table 7.2.

On the other hand, the graphs without outliers in Figure 7.9 have the boxes and whiskers at a

higher level for the graph of the iterative algorithm SSRA-DC-iCL, standing out the difference

in median values attained.

The outliers with null values in Figure 7.8 mean that there were some simulations

where the input data set led the identified system to be unstable, and hence the FRj values had

dropped unbounded. The statistical values maximum and median of VFRj and VFR introduced

in Table 7.2 confirm the improvement of the identified system with the application of the SSRA-

DC-iCL.

The algorithm performance for each configuration of parameters determined a dif-

ferent number of iterations employed. Sometimes, a fixed number of iterations can use more

computational processing time (CPT) because the BFR could already have been achieved with

fewer iterations. Thus, in this case, an SFR adjusted with the same value of the BFR attained

would lead the algorithm to require less CPT. On the other hand, when the iterations end and

the FR curve continues to show a growth trend, probably, the simulation could attain a higher
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Table 7.2 – SSRA-DC-iCL and SSRA-DC comparative results for M50DOF system:
dt = 0.02 s, q = 1500, p = 600, ξ = 2, γ = 2.

i(1) noise (SN ) Statistical group Algorithm VFRy5 VFRy17 VFRy26 VFRy33 VFRy48 VFR ∆VFR(2)

250 0.3%

Maximum
SSRA-DC 96.40% 97.24% 98.44% 97.01% 95.56% 96.43% –

SSRA-DC-iCL 98.94% 99.14% 99.25% 99.20% 98.46% 98.95% 2.52%

Median
SSRA-DC 93.21% 95.29% 94.94% 94.50% 92.05% 93.82% –

SSRA-DC-iCL 95.45% 98.15% 97.53% 97.50% 94.94% 96.67% 2.85%
Interquartile

range
SSRA-DC 5.34% 3.79% 4.90% 4.39% 7.21% 4.80% –

SSRA-DC-iCL 6.11% 3.40% 4.39% 4.63% 5.64% 4.78% 0.02%

Unstable IS(3) SSRA-DC 6% 6% 7% 7% 7% 6% –
SSRA-DC-iCL 6% 6% 6% 6% 6% 6% 0%

200 1%

Maximum
SSRA-DC 95.27% 97.06% 96.87% 96.63% 94.61% 95.87% –

SSRA-DC-iCL 97.36% 97.76% 97.82% 97.67% 96.88% 97.45% 1.58%

Median
SSRA-DC 91.03% 93.63% 93.31% 92.84% 89.77% 91.79% –

SSRA-DC-iCL 94.02% 96.29% 95.85% 96.29% 92.73% 95.05% 3.26%
Interquartile

range
SSRA-DC 5.93% 3.56% 3.97% 4.26% 5.95% 4.44% –

SSRA-DC-iCL 5.82% 2.89% 3.80% 3.97% 6.18% 4.67% -0.23%

Unstable IS(3) SSRA-DC 3% 3% 3% 3% 3% 3% –
SSRA-DC-iCL 6% 6% 6% 6% 6% 6% -3%

1 i: number of iterations set-point for each one of 100 simulations;
2 Improvement gain of SSRA-DC-iCL algorithm over SSRA-DC algorithm for the VFR;
3 Percentual of unstable IS (Identified System) over the 100 simulations when VFRj = 0 or VFR = 0.
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Figure 7.8 – Boxplot with outliers of 100 simulations at the M50DOF system applying SSRA-
DC (left) and SSRA-DC-iCL (right) algorithms.
Parameters: dt = 0.02 s, q = 1500, p = 600, ξ = 2, γ = 2, and SN = 1%.

BFR with the iterations, which occurred in the simulation depicted in the graph on the left in

Figure 7.4.

Besides the number of simulations and iterations applied, the Kp gain adjustment

could be analyzed regarding its influence on algorithm performance. When previously adjusted,

this gain can be a practical choice to achieve a higher Best Fit Rate (BFR) with fewer iterations.

For instance, in a simulation test, when the weighting factor ℓ of theKp gain (Equation (4.68))

was increased from 0.01 to 0.02 and the number of iterations reduced from 200 to 100 in the

same configuration of Table 7.2 for SN = 1%, then the maximum Validated Fit Rate VFR
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Figure 7.9 – Boxplot without outliers of 100 simulations at the M50DOF system applying
SSRA-DC (left) and SSRA-DC-iCL (right) algorithms.
Parameters: dt = 0.02 s, q = 1500, p = 600, ξ = 2, γ = 2, and SN = 1%.

increased from 97.45% to 98.02%.

7.5.2 Simulations analysis of the M100DOF system

Boxplot graphs with and without outliers are presented in Figure 7.10 and Figure

7.11, respectively, for 100 simulations of the M100DOF system with dt = 0.03 s, q = 3000,

p = 500, ξ = 2, γ = 0, and SN = 1%. It can be verified a significant reduction of results

variability with the employment of SSRA-DC-iCL algorithm through the graphs on Figure 7.10.

In contrast, the graphs on Figure 7.11 aims to highlight the improvement of the maximum and

median VFRj and VFR values.
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Figure 7.10 – Boxplot with outliers of 100 simulations at the M100DOF system applying
SSRA-DC (left) and SSRA-DC-iCL (right) algorithms.
Parameters: dt = 0.03 s, q = 3000, p = 500, ξ = 2, γ = 0, and SN = 1%.
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Table 7.3 – SSRA-DC-iCL and SSRA-DC comparative results for M100DOF system:
dt = 0.03 s, q = 3000, p = 500, ξ = 2.

γ i(1) noise (SN ) Statistical group Algorithm VFRy10 VFRy34 VFRy52 VFRy66 VFRy96 VFR ∆VFR(2)

1 200 0.3%

Maximum
SSRA-DC 97.65% 97.34% 97.86% 97.88% 97.09% 97.27%

SSRA-DC-iCL 99.19% 99.12% 99.03% 99.01% 98.96% 99.04% 1.77%

Median
SSRA-DC 70.25% 64.66% 75.95% 72.76% 69.22% 70.37%

SSRA-DC-iCL 94.13% 92.80% 95.90% 95.47% 94.30% 93.78% 23.41%
Interquartile

range
SSRA-DC 95.62% 95.28% 96.64% 96.08% 95.21% 95.81%

SSRA-DC-iCL 97.96% 97.82% 98.50% 98.49% 98.33% 98.11% -2.30%

Unstable IS(3) SSRA-DC 43% 44% 42% 43% 46% 39%
SSRA-DC-iCL 39% 40% 39% 37% 37% 36% 3%

0 150 1%

Maximum
SSRA-DC 96.69% 96.74% 96.80% 96.78% 96.20% 96.52%

SSRA-DC-iCL 97.59% 97.69% 97.32% 97.22% 97.29% 97.36% 0.84%

Median
SSRA-DC 94.76% 94.13% 95.68% 95.44% 94.58% 94.48%

SSRA-DC-iCL 96.63% 96.59% 96.36% 96.36% 96.32% 96.41% 1.93%
Interquartile

range
SSRA-DC 14.46% 14.17% 10.28% 6.78% 8.84% 14.51%

SSRA-DC-iCL 1.71% 1.62% 1.78% 1.86% 2.67% 2.34% 12.17%

Unstable IS(3) SSRA-DC 14% 13% 10% 11% 12% 8%
SSRA-DC-iCL 6% 5% 3% 4% 5% 3% 5%

1 i: number of iterations set-point for each one of 100 simulations;
2 Improvement gain of SSRA-DC-iCL algorithm over SSRA-DC algorithm for the VFR;
3 Percentual of unstable IS (Identified System) over the 100 simulations when VFRj = 0 or VFR = 0.
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Figure 7.11 – Boxplot without outliers of 100 simulations at the M100DOF system applying
SSRA-DC (left) and SSRA-DC-iCL (right) algorithms.
Parameters: dt = 0.03 s, q = 3000, p = 500, ξ = 2, γ = 0, and SN = 1%.

In addition to the simulation results of the configuration presented in the boxplot

graphs of Figure 7.10 and Figure 7.11, numerical results for 0.3% of measurement noise are

shown in Table 7.3. This result attests to the improvement carried out by the SSRA-DC-iCL

algorithm despite the meaningful increase of the interquartile range compared to the other sim-

ulations of the SSRA-DC-iCL. The high values of the interquartile range for SN = 0.3% in

Table 7.3 mean the large variability was distributed all over the VFRj and VFR range (0 to

100%), which is reflected in the considerable amount of 39% and 36% of unstable IS achieved

for SSRA-DC and SSRA-DC-iCL, respectively.
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A considerable number of cases with convergence loss in both algorithms come

from the conditions of systems with a reduced number of samples in conjunction with the sys-

tem working at some level of measurement noise. The same configuration shown in Table 7.3,

but for 1% of measurement noise, had 8% and 3% of the simulations attaining value zero in the

VFR of SSRA-DC and SSRA-DC-iCL, respectively. For the intrinsic algorithm condition of

working with a reduced number of samples, when the measurement noise level reduced from

1% to 0.3%, it substantially increased unstable identified systems. On the other hand, SSRA-

DC simulations have shown that by maintaining 0.3% of noise but increasing samples from

3000 to 4200, the null values in VFR were reduced from 39% to only 2%. In fact, when the

system presented a convergence loss, as previously mentioned, the attained identified system

was unstable for that input data set.

The gain reduction of the maximum statistical parameter when the measurement

noise goes from 0.3% to 1% is evident in Table 7.3, indicating that the SSRA-DC-iCL effec-

tiveness worsens as the noise level increase. A substantial median value improvement verified

in Table 7.3, mainly for SN = 0.3%, ratifies the results enhancement for this configuration.

The significant increment of the median for all the simulated cases can be considered a relevant

benefit assigned to the iterative SSRA-DC-iCL method.

7.5.3 Simulations analysis of the M50DOF-a system (with accelerometers)

As mentioned in Section 5.4, the objective of utilizing acceleration measurement is

to verify the SSRA-DC-iCL performance when the matrix D of the state-space system realiza-

tion is not null. The simulation results presented for the M50DOF-a system considered some of

the same configurations used before for the M50DOF system shown in Table 7.2. Despite some

of the main algorithm settings used are the same (dt = 0.02 s, q = 1500, p = 600), the input

excitation signals and noise signals generated for simulations are distinct.

The M50DOF and M50DOF-a systems have a distinct type of output measurement,

which leads the iterative identification process not to have the same way of acting through-

out the simulations. Besides that, the output measurement devices were positioned at different

bodies in the mechanical system. Then, the parameters ξ = 1 and γ = 1, related to the data

correlation configuration, and the weighting factor ℓ from the Kpj statement (Equation (4.68))

had different adjustment values for working with the M50DOF-a system. The significant differ-

ence required and employed to ensure the SSRA-DC-iCL effectiveness was the large reduction
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of the value ℓ to tackle the different dynamical responses from accelerometers in contrast to

displacement sensors. The parameter ℓ, that was kept with 0.01 for systems with displacement

sensors, had to be reduced 20 times to ℓ = 0.0005 in the systems with accelerometers. Even

though several simulation tests with many different settings have been performed, unlike simu-

lations previously presented for M50DOF and M100DOF systems, the employment of a fixed

Kp value in M50DOF-a did not work as expected in benefiting the method SSRA-DC-iCL upon

the conventional SSRA-DC.

The numerical values regarding comparative results between the SSRA-DC and

SSRA-DC-iCL (Table 7.4) objectify attesting the effectiveness of the SSRA-DC-iCL method

when the accelerometers are the measurement sensors applied. For the M50DOF-a system

simulated, it should be pointed out that a lower improvement gain was achieved for 0.3% of

measurement noise compared to the M50DOF system (Table 7.2), but attaining a higher VFR

value. On the other hand, for 1% of measurement noise, a more significant improvement gap

took place, although with a lower VFR value achieved.

Table 7.4 – SSRA-DC-iCL and SSRA-DC comparative results for M50DOF-a system:
dt = 0.02 s, q = 1500, p = 600, ξ = 1, γ = 1, ℓ = 0.0005.

i(1) noise (SN ) Statistical group Algorithm VFRy5 VFRy18 VFRy26 VFRy36 VFRy48 VFR ∆VFR(2)

300 0.3%

Maximum
SSRA-DC 97.31% 99.33% 98.50% 99.37% 96.23% 98.00% –

SSRA-DC-iCL 99.17% 99.37% 99.06% 99.37% 99.06% 99.12% 1.12%

Median
SSRA-DC 95.88% 99.16% 97.73% 99.21% 94.87% 97.36% –

SSRA-DC-iCL 97.98% 99.22% 98.71% 99.21% 98.25% 98.66% 1.30%
Interquartile

range
SSRA-DC 0.74% 0.14% 0.46% 0.15% 1.07% 0.38% –

SSRA-DC-iCL 1.10% 0.21% 0.50% 0.24% 1.83% 0.65% -0.27%

Unstable IS(3) SSRA-DC 0% 0% 0% 0% 0% 0% –
SSRA-DC-iCL 0% 0% 0% 0% 0% 0% 0%

250 1%

Maximum
SSRA-DC 93.48% 97.81% 96.32% 97.89% 90.48% 94.64% –

SSRA-DC-iCL 96.32% 98.00% 97.32% 97.94% 96.73% 96.94% 2.30%

Median
SSRA-DC 89.56% 97.19% 94.65% 96.98% 81.77% 91.90% –

SSRA-DC-iCL 93.64% 97.39% 96.17% 97.41% 93.07% 95.45% 3.55%
Interquartile

range
SSRA-DC 3.79% 1.17% 1.53% 1.88% 5.01% 2.33% –

SSRA-DC-iCL 2.79% 0.54% 1.29% 0.75% 3.64% 1.93% 0.40%

Unstable IS(3) SSRA-DC 1% 0% 0% 0% 0% 0% –
SSRA-DC-iCL 1% 0% 0% 0% 3% 0% 0%

1 i: number of iterations set-point for each one of 100 simulations;
2 Improvement gain of SSRA-DC-iCL algorithm over SSRA-DC algorithm for the VFR;
3 Percentual of unstable IS (Identified System) over the 100 simulations when VFRj = 0 or VFR = 0.

The Fit Rate evolution (FR) is pictured in Figure 7.12 for the following parameters:

dt = 0.02 s, q = 1500, p = 600, SN = 0.3% for the graph on the left and SN = 1% for the

graph on the right. These graphs portray the evolution of iterations of the identified system that

attained BFR, which VFR results are displayed in Table 7.4. Comparing the profile of the curves

from both graphs with the correspondent one in Figure 7.4, which represents the M50DOF

system with displacement sensors, the curves from the system containing accelerometers reflect
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less smoothness and more variability in several segments, mainly for the graph with SN = 1%.
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Figure 7.12 – FR(%) evolution of SSRA-DC-iCL for M50DOF-a with dt = 0.02 s, q = 1500,
p = 600, and SN = 0.3% (left), SN = 1% (right).

Boxplot graphs for the simulations with 1% of measurement noise are shown in

Figure 7.13 and Figure 7.14, graphically portraying the numerical results displayed at Table

7.4. Figure 7.13 is related to the graphs of SSRA-DC (left) and SSRA-DC-iCL (right), showing

its outliers. And the graphs without outliers are depicted in Figure 7.14, which provide a better

view of the respective gaps of improvement.
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Figure 7.13 – Boxplot with outliers of 100 simulations at the M50DOF-a system applying
SSRA-DC (left) and SSRA-DC-iCL (right) algorithms. Parameters: dt = 0.02 s,
q = 1500, p = 600, ξ = 1, γ = 1, ℓ = 0.0005, and SN = 1%.

7.5.4 Influence of the noise levels on the results

Statistical analysis related to the influence of the noise level SN in the result por-

trayed through the maximum VFR indicator is presented in Figure 7.15, supported by 100
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Figure 7.14 – Boxplot without outliers of 100 simulations at the M50DOF-a system applying
SSRA-DC (left) and SSRA-DC-iCL (right) algorithms. Parameters: dt = 0.02 s,
q = 1500, p = 600, ξ = 1, γ = 1, ℓ = 0.0005, and SN = 1%.

simulations for each one with a specific input data set. In this case, objectifying to have at least

five points to depict the trend curves of the graphs, besides 0.3% and 1% of noise (SN ), three

more values of noise SN were included for simulations: 0.6%, 1.5%, and 2% for M50DOF

and M100DOF systems. The graphs show straight line relations for both systems, depicting

an overlapping between the tendency trace of the actual points and the theoretical linear curve.

Each correspondent polynomial equation is displayed jointly to the respective theoretical curve.

The variable er in the graphs means the absolute value of the difference between actual and the-

oretical values of VFR. AVG(er) and VAR(er) represent the average and variance computing

from er, respectively.
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VFR for M50DOF and M100DOF
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7.6 Validation aspects to ratify the results

This section analyzes how the fit rate results of the identification process, coming

from several methods, are a reliable representation of the identified system’s effectiveness for

comparative purposes. For that, considering some of the identified systems obtained at the

results previously presented, it will be applied a repetition of one thousand simulations of the

validation stage, employing the same characteristics as the ones when the system was identified

by the SSRA-DC or SSRA-DC-iCL algorithm. These characteristics include the number of

samples q, the sampling time dt, and the measurement noise level SN . The procedure reported

in Figure 5.11 generates an input-output data set. The data will be available to run the validation

task repetitively, at the same number of times that the amount of data set was generated.

A statistical analysis of the simulations and also considering boxplot graphs was

accomplished to synthesize the individual results. The boxplot graphs from the results presented

in Table 7.5, regarding the comparison of two identified systems achieved in the simulations

stated in Section 7.5.2, are presented in Figure 7.16. These identified systems were chosen

based on different levels of VFR achieved, aiming to analyze the variability of 1000 validation

tasks performed under these conditions.

Table 7.5 – Validation of 1000 simulations for identified systems from the original M100DOF
at dt = 0.03 s and q = 3000.

VFR IS(1) Statistical group VFRy10 VFRy34 VFRy52 VFRy66 VFRy96 VFR

99.04%

Maximum 99.14% 99.07% 98.94% 98.99% 98.98% 98.99%
Median 99.01% 98.91% 98.79% 98.84% 98.82% 98.87%

Interquartile range 0.07% 0.08% 0.08% 0.07% 0.07% 0.04%
Outliers(2) 10% 6% 6% 10% 13% 5%

96.52%

Maximum 96.82% 96.85% 96.50% 96.44% 95.99% 96.22%
Median 96.24% 96.24% 95.81% 95.97% 95.32% 95.91%

Interquartile range 0.30% 0.29% 0.25% 0.23% 0.29% 0.16%
Outliers(2) 8% 9% 12% 12% 9% 6%

1 VFR of the IS (Identified system) used to the validations tasks;
2 Percentage of outliers over the 1000 simulations.

The difference between the two graphs is depicted in Figure 7.16. The boxplot

graph on the right (lower fit rate values) had four times more dispersed values than the box-

plot graph on the left (higher fit rate values), which is evident when comparing the interquartile

range values 0.04% and 0.16% in Table 7.5. This situation is underscored by the gap between

the maximum and minimum VFR that increased from 0.22% to 0.75% when the VFR of the

identified system dropped from 99.04% to 96.52%. Thus, this analysis reveals that as the iden-
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Figure 7.16 – Boxplot of 1000 simulations of validation at identified systems from the original
M100DOF system. Parameters: dt = 0.03 s, q = 3000, SN = 0.3% (left),
SN = 1% (right).

tified system achieves higher VFR levels, the system becomes less susceptible to performance

variability due to different input data sets. On the other hand, for lower values of VFR achieved,

the correspondent identified system presents a broader range of fit rate values when submitted

to several different input data sets.

7.7 Frequency response analysis to attest the previous results

The comparison of Maximum Singular Values (MSV) from the two identified sys-

tems used in the last section portrays in Figure 7.17 the effectiveness difference between these

systems qualitatively.
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Figure 7.17 – MSV of original system (red) and identified system (blue) from M100DOF model
with VFR = 99.04% (left) and VFR = 96.52% (right).
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The objective of confronting the discrepancy between each identified system and the

original M100DOF system is fulfilled visually through Figure 7.17. The graph on the left shows

only a slight difference between the curves (original system and the identified system with

VFR = 99.04%) starting at about 55 rad/s and increasing significantly for higher frequencies,

greater than 75 rad/s, where the identified system curve (blue) can not keep up anymore the

original system (red).

The graph on the right, related to the identified system with VFR = 96.52%, dis-

plays some slight discrepancy even at lower frequencies, starting at about 26 rad/s, with the

difference increasing gradually and showing an excessive oscillation of the identified system

curve for higher frequencies. The MSV graphs presented allow one to realize what represents

the difference between the identified systems for the VFR levels here proposed.

7.8 Comparative statistical analysis with reference identification methods

This section aims to compare the traditional SSRA-DC and the novel method SSRA-

DC-iCL with the SI methods presented in Chapter 3. Following the characteristics of the sim-

ulations undertaken in Section 7.2, the comparative analysis of this section was accomplished

for both M50DOF and M100DOF systems applying 100 simulations for most of each algorithm

settings, in the way to allow a fundamental statistical analysis supported by the maximum and

median values attained from simulations. Besides the Validated Fit Rate index, the analysis

counted on the computational processing time of the algorithm as another comparative param-

eter.

The fulfilled simulations employed Gaussian White-Noise (GWN) as the excitation

signal and added 0.3% or 1% of measurement noise. For the N4SID method, due to the algo-

rithm expending considerable more time on the simulations, in this case, ten simulations were

executed for the M50DOF system and only one simulation for the M100DOF system, which

will be presented ahead at numerical results in the respective tables.

The results considered the computational processing time in seconds of each set of

the algorithms’ simulations and the Validated Fit Rate (VFR) index obtained. The simulations

were accomplished in the same computational system and software, with the employment of

Matlab’s SI Toolbox methods, as described in Chapter 3. Despite using the Matlab SI Tool-

box methods, the toolbox software environment was not used for comparison purposes. The

methods presented in Chapter 3 were applied through the command of its respective Matlab’s
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function in the same basic script code of SSRA-DC and SSRA-DC-iCL, which encompass the

calculation of VFR and the parts to measure the processing time. It should be pointed out that

the function "COMPARE" from Matlab returned the exact value of VFR performed in the script

code used.

The characteristics of the computational system where the algorithms were simu-

lated are:

• Processor: Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz (8 CPUs), ∼ 2.3GHz;

• Memory: 16384MB RAM.

• Matlab version: R2018b

From the methods presented in Chapter 3, it should be mentioned that the FIR

method is a particular arrangement from the OE method. Since the FIR presented results sig-

nificantly worse than the OE, its simulations will not be shown in this comparative approach.

OE, ARMAX, and BJ are methods that work estimating the identified system iteratively using

the Prediction Error Minimization (PEM) method or just called the Prediction-error method.

An equal number of iterations i used in the SSRA-DC-iCL method was set to those iterative

autoregressive algorithms as a reference for providing a more fair comparison of VFR and CPT

indicators.

The ARX is a non-iterative model that uses the least-squares method to estimate lin-

ear systems. ARX can be a choice to the starting polynomial model since it has a straightforward

estimate structure. The N4SID is also a non-iterative algorithm composed through a subspace

state-space concept described in Section 3.6, which leads to an even more complex algorithm

and hence slower in the SI process. The N4SID, as a non-iterative method, allows the choice of

one of the following weighting scheme used for singular value decomposition: MOESP, CVA,

and SSARX. These options can be configured, or one can lead the N4SID estimating function

in Matlab to automatically choose the better method like was set in this work.

The four polynomials (B(z),F(z), C(z),D(z)) orders and the equivalent state-space

system order of the Box and Jenkins (BJ) algorithm were configured to provide the same order

applied at the SSRA-DC and SSRA-DC-iCL. That is, a system matrixA of size (100×100) for

M50DOF system or with size (200×200) for M100DOF system. As there are several combina-

tions of order values to the polynomials B(z) and F(z) to provide the same order of the matrix

A, the configuration applied was the one that yielded the best numerical result presented for
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each setting. When appropriate, the polynomials C(z) and D(z) were set with the order value

equal to 1 to afford lower computational processing time without compromising results.

The weighting factor ℓ from the Kpj gain (Equation (4.68)) was set all over this sec-

tion with values 0.01, 0.02 and 0.04, instead of the configurations made in sections 7.4 and 7.5,

where the ℓ was kept fixed in 0.01. This proposition intends to yield a higher maximum VFR

even if it increases its variability, considering that the attainment of an identified system with a

higher VFR value results in the best method due to providing better identification performance.

7.8.1 Comparison for the M50DOF system

Comparative results for the M50DOF system, dt = 0.02 s, 1500 samples (q), and

submitted to 0.3% and 1% of measurement noise, are presented in Table 7.6 and Table 7.7, re-

spectively. Besides the comparative methods in the first column and the maximum and median

VFRj and VFR values computed from the simulations provided, the computational processing

time is introduced at the last column. The tables also show the values assigned to each param-

eter configuration, which are the same between some methods but are specific for most of the

algorithms simulated.

The parameter ℓ configuration, released to increase the dynamic gainKp, provided

the achievement of higher VFR values for the SSRA-DC-iCL. However, this increment led to

fit rate variability growth, as can be seen, comparing the difference between the maximum and

median values of the SSRA-DC-iCL from Table 7.6 and Table 7.7 with the values displayed in

Table 7.2.

For both SN = 0.3% and SN = 1%, ARMAX is by far the autoregressive algorithm

that achieves the best result, but simultaneously with a higher computational processing time.

The traditional method SSRA-DC is much better than ARMAX, with fit rate values significantly

higher and a processing time more than ten times faster. Confirming what had already been

shown in Section 7.5.1, the novel method SSRA-DC-iCL yields a gain of at least 1% related to

the SSRA-DC. From this scenario clearly depicted by the tables, the algorithm SSRA-DC-iCL

presents fit rate values closer to the subspace state-space method N4SID, with a maximum VFR

difference of only 0.2% on average.

Regarding the computational processing time, the SSRA-DC-iCL takes approxi-

mately 30% less time than the ARMAX for the same 100 simulations accomplished. Compared

with N4SID that provided only 10 simulations, the iterative SSRA-DC-iCL was on average 13
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Table 7.6 – Comparative results for: M50DOF, dt = 0.02 s, q = 1500, SN = 0.3%

Method Configuration(1)(2) Stat(3) VFRy5 VFRy17 VFRy26 VFRy33 VFRy48 VFR CPT (s)(4)

SSRA-DC
p = 600, ξ = 2, γ = 1,

n = 100, i = 100, ℓ = 0.04(5)

Max 97.23% 97.81% 98.28% 97.75% 96.44% 97.45%
304

Mdn 91.31% 92.99% 92.49% 91.60% 88.69% 91.74%

SSRA-DC-iCL
Max 99.31% 99.38% 99.48% 99.36% 99.11% 99.30%

3099
Mdn 94.34% 95.79% 94.96% 95.42% 93.07% 94.62%

ARX na = nb = 20
Max 79.24% 84.84% 88.72% 83.33% 70.00% 80.86%

260
Mdn 68.67% 75.21% 78.70% 73.80% 59.80% 71.15%

ARMAX na = nb = nc = 20, i = 100
Max 96.61% 96.95% 97.51% 96.72% 91.63% 94.79%

4995
Mdn 84.86% 88.40% 90.56% 88.62% 73.31% 85.00%

OE
(6)

nb = nf = 10,
nc = nd = 1, i = 100

Max 62.38% 74.88% 88.23% 73.72% 50.82% 61.54%
1112

Mdn 31.61% 58.14% 72.63% 49.87% 17.98% 40.77%

BJ
(6) Max 54.42% 69.77% 84.68% 69.12% 35.15% 44.53%

1193
Mdn 16.66% 34.03% 34.19% 29.26% 8.28% 22.22%

N4SID
(7)

n = 100
Max 99.53% 99.55% 99.60% 99.55% 99.49% 99.53%

44560
Mdn 99.44% 99.47% 99.53% 99.48% 99.38% 99.46%

1 n: state-space system order;
2 na, nb, nc, nd, nf : related to the polynomials order accordingly to Equation (3.11);
3 Statistical parameters coming from the total of simulations: Maximum (Max) and Median (Mdn);
4 Computational processing time in seconds (s);
5 The number of iterations i and the weighting factor ℓ are applied in the SSRA-DC-iCL;
6 OE and BJ settings were conceived with the same parameters values;
7 N4SID had 10 simulations performed, whereas the other methods had 100 simulations.

Table 7.7 – Comparative results for: M50DOF, dt = 0.02 s, q = 1500, SN = 1%

Method Configuration(1)(2) Stat(3) VFRy5 VFRy17 VFRy26 VFRy33 VFRy48 VFR CPT (s)(4)

SSRA-DC
p = 600, ξ = 1, γ = 1,

n = 100, i = 100, ℓ = 0.02(5)

Max 97.12% 97.13% 97.27% 97.05% 96.72% 97.06%
287

Mdn 92.07% 92.49% 92.18% 91.66% 91.32% 91.85%

SSRA-DC-iCL
Max 98.28% 98.25% 98.25% 98.21% 97.81% 98.15%

3412
Mdn 95.01% 95.58% 95.53% 95.41% 94.90% 95.26%

ARX na = nb = 20
Max 78.41% 85.36% 87.30% 83.37% 69.95% 80.24%

310
Mdn 69.17% 76.63% 79.04% 73.99% 59.72% 71.61%

ARMAX na = nb = nc = 20, i = 100
Max 92.48% 95.20% 95.92% 95.46% 89.81% 93.77%

5274
Mdn 84.32% 87.46% 90.54% 88.89% 73.28% 84.69%

OE
(6)

nb = nf = 10,
nc = nd = 1, i = 100

Max 69.49% 74.82% 88.19% 73.22% 63.09% 61.14%
1167

Mdn 34.11% 53.10% 74.43% 52.01% 21.25% 42.31%

BJ
(6) Max 40.54% 66.31% 83.46% 62.92% 40.13% 44.52%

1248
Mdn 16.00% 28.68% 41.62% 13.25% 10.22% 21.07%

N4SID
(7)

n = 100
Max 98.31% 98.43% 98.57% 98.59% 98.08% 98.33%

41613
Mdn 98.17% 98.25% 98.37% 98.27% 97.90% 98.19%

1 n: state-space system order;
2 na, nb, nc, nd, nf : related to the polynomials order accordingly to Equation (3.11);
3 Statistical parameters coming from the total of simulations: Maximum (Max) and Median (Mdn);
4 Computational processing time in seconds (s);
5 The number of iterations i and the weighting factor ℓ are applied in the SSRA-DC-iCL;
6 OE and BJ settings were conceived with the same parameters values;
7 N4SID had 10 simulations performed, whereas the other methods had 100 simulations.

times faster in these cases. As the median and maximum values of the fit rate are very close

at the N4SID, portraying a minimal variability, even if considering only one simulation as re-

quired for the algorithm, this method would already be slower than the SSRA-DC-iCL in the

computational processing time.

Since the median value of VFR in the SSRA-DC-iCL is substantially lower than

the maximum value, the amount of 100 simulations performed can be considered suitable in
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this case. It happens due to the significant variability of results and taking into account that

the main objective of a SI algorithm is the achievement of the highest maximum VFR value,

notably considering what was presented in Section 7.6. Decreasing or increasing the number

of simulations in the SSRA-DC-iCL and trying other algorithm settings can lead to a fit rate

performance close to the N4SID, or even a little smaller. Still, with a significant time reduction,

the SSRA-DC-iCL can be more attractive for the user of systems identification.

7.8.2 Comparison for the M100DOF system

The comparative results when simulating the M100DOF system with 3000 samples

are depicted in Table 7.8 and Table 7.9, for 0.3% and 1% of additive measurement noise, respec-

tively. These tables were built in the same format used at Table 7.6 and Table 7.7 for M50DOF

system, but here the results of SSRA-DC-iCL were presented for ℓ set with 0.01 and 0.02,

which reproduced the best results attained. These simulations were also performed maintaining

the number of iterations i = 100.

Table 7.8 – Comparative results for: M100DOF, dt = 0.03 s, q = 3000, SN = 0.3%

Method Configuration(1)(2) Stat(3) VFRy10 VFRy34 VFRy52 VFRy66 VFRy96 VFR CPT (s)(4)

SSRA-DC
p = 500, ξ = 2, γ = 1,

n = 200, i = 100, ℓ = 0.02(5)

Max 97.65% 97.34% 97.86% 97.88% 97.09% 97.27%
2675

Mdn 70.25% 64.66% 75.95% 72.76% 69.22% 70.37%

SSRA-DC-iCL
Max 99.26% 99.18% 99.03% 98.97% 99.03% 99.09%

2900
Mdn 87.56% 87.55% 91.78% 92.00% 91.63% 87.94%

ARX na = nb = 40
Max 97.09% 96.15% 93.00% 80.27% 83.20% 89.37%

4619
Mdn 96.21% 94.93% 91.02% 76.86% 79.33% 87.61%

ARMAX na = nb = nc = 40, i = 100
Max 99.09% 98.69% 98.30% 88.83% 91.12% 94.63%

45787
Mdn 98.40% 98.21% 96.14% 83.63% 84.39% 92.04%

OE
(6)

nb = nf = 8,
nc = nd = 1, i = 100

Max 70.83% 64.58% 55.54% 44.49% 47.87% 43.30%
3145

Mdn 20.38% 36.78% 43.52% 23.89% 14.57% 12.23%

BJ
(6) Max 39.17% 49.08% 54.65% 41.89% 36.84% 35.31%

3330
Mdn 13.85% 11.10% 4.49% 27.52% 13.01% 1.70%

N4SID(7) n = 100 – 99.43% 99.43% 99.39% 99.35% 99.45% 99.41% 485264
1 n: state-space system order;
2 na, nb, nc, nd, nf : related to the polynomials order accordingly to Equation (3.11);
3 Statistical parameters coming from the total of simulations: Maximum (Max) and Median (Mdn);
4 Computational processing time in seconds (s);
5 The number of iterations i and the weighting factor ℓ are applied in the SSRA-DC-iCL;
6 OE and BJ settings were conceived with the same parameters values;
7 N4SID had only 1 simulation performed, whereas the other methods had 100 simulations.

The comparative results analysis between the methods for the M100DOF system

was similar to the M50DOF system regarding the VFRj and VFR attained. All the methods had

a significant increment of computational processing time, except the SSRA-DC-iCL, which

kept the same order of magnitude. This drawback related to the processing time spent was
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Table 7.9 – Comparative results for: M100DOF, dt = 0.03 s, q = 3000, SN = 1%

Method Configuration(1)(2) Stat(3) VFRy10 VFRy34 VFRy52 VFRy66 VFRy96 VFR CPT (s)(4)

SSRA-DC
p = 500, ξ = 1, γ = 1,

n = 200, i = 100, ℓ = 0.01(5)

Max 96.97% 96.90% 96.81% 96.79% 96.51% 96.60%
1573

Mdn 95.73% 95.37% 96.06% 95.84% 95.38% 95.70%

SSRA-DC-iCL
Max 97.86% 97.84% 97.27% 97.31% 97.33% 97.46%

5974
Mdn 96.88% 96.82% 96.74% 96.67% 96.78% 96.82%

ARX na = nb = 40
Max 94.17% 92.37% 90.14% 79.52% 83.34% 86.55%

4599
Mdn 92.39% 90.06% 86.46% 75.90% 78.77% 84.71%

ARMAX na = nb = nc = 40, i = 100
Max 97.67% 97.73% 96.70% 87.82% 91.85% 93.35%

54152
Mdn 97.20% 97.06% 93.89% 83.97% 86.71% 91.67%

OE
(6)

nb = nf = 8,
nc = nd = 1, i = 100

Max 56.28% 54.84% 55.73% 46.37% 42.02% 40.11%
3471

Mdn 15.12% 36.86% 44.02% 26.44% 13.90% 19.05%

BJ
(6) Max 58.23% 47.96% 55.45% 40.06% 34.48% 31.27%

3976
Mdn 13.60% 12.71% 38.53% 27.43% 11.34% 13.21%

N4SID(7) n = 100 – 98.02% 98.17% 98.02% 97.89% 98.07% 98.03% 474972
1 n: state-space system order;
2 na, nb, nc, nd, nf : related to the polynomials order accordingly to Equation 3.11;
3 Statistical parameters coming from the total of simulations: Maximum (Max) and Median (Mdn);
4 Computational processing time in seconds (s);
5 The number of iterations i and the weighting factor ℓ are applied in the SSRA-DC-iCL;
6 OE and BJ settings were conceived with the same parameters values;
7 N4SID had only 1 simulation performed, whereas the other methods had 100 simulations.

much smaller for the iterative SSRA-DC-iCL method. Despite being expected to increase the

CPT when the system’s size doubled, the time increased by about 10-fold for most algorithms.

On the other hand, it can be realized a significant difference in processing time in

the SSRA-DC and SSRA-DC-iCL from SN = 0.3% (Table 7.8) to SN = 1% (Table 7.9), which

is not expected and did not happen with other methods. The processing time of SSRA-DC-

iCL was approximately half for SN = 0.3% compared with SN = 1%, due to the occurrence

of several unstable identified systems with convergence loss, as explained in Section 7.5.2.

At this condition, the SSRA-DC-iCL algorithm goes away from the iterations loop before the

respective set-point is achieved, complying with the requirements established in lines 20 to 22

of the Algorithm 1. In several simulations, the expected time spent with 100 iterations was

reduced with fewer iterations performed. For the SSRA-DC algorithm, the convergence loss

can occur, but this does not lead to a significant processing time reduction in the non-iterative

algorithm. Here, the time was affected by the matrices’ sizes, as ξ = 2 at Table 7.8 and ξ = 1

at Table 7.9.

It should be emphasized the computational processing time spent by the N4SID

algorithm in this case. The increase in the MIMO system order and the number of input-

output variables led to an expressive increment in the computational processing for the N4SID

method. For only one simulation of the method N4SID, it spent more than five days running the

algorithm, which means the processing time increased more than 100 times when the system
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size doubled from 50 to 100 degrees of freedom.

Following the M50DOF simulations, the N4SID continued presenting better fit rate

values than the SSRA-DC-iCL for the M100DOF system, here with an increment in the VFR

from 0.2% to 0.45% on average. It should be considered the more significant difference is

coming from the increase of the system size, which mainly happened for Sn = 1%, owing to

the smaller fit rate values attained by the SSRA-DC-iCL algorithm. So, the SI effectiveness

improvement with the N4SID employment compared to the SSRA-DC-iCL method should be

well analyzed regarding the computational processing time spent, even considering that the time

required for the novel method’s configuration demands some trials to get the better settings.

7.8.3 Overview of the comparative analysis

Bars graph (Figure 7.18) provided a summarization of the maximum Validated Fit

Rate (VFR) results over the several simulations presented from Table 7.6 to Table 7.9 for the

methods that had results with max(VFR) ≥ 90%, thereby excluding the polynomial regression

methods, except the ARMAX. However, it can be seen that this autoregressive method is not

competitive with the state-space identification methods for systems and conditions established

until now in this chapter. The graph highlights that the SSRA-DC-iCL and N4SID methods

attain close VFR results, mostly for the M50DOF system simulated. The non-iterative method

SSRA-DC brings forward a more remarkable performance difference than the N4SID, which

could be minimized with the release of the iterative technique employing the novel SSRA-DC-

iCL method.

The bar graph equivalent to the one shown in Figure 7.18 is displayed in Figure 7.19

for the CPT. In this case, as the higher bars in Figure 7.19 represent a drawback for the method

performance, and considering that the magnitude in vertical axis is on a logarithmic scale, it

can be perceived a significantly worse performance of N4SID than the other methods, notably

in comparison to the new iterative method with the M100DOF system. The method SSRA-

DC-iCL provides a CPT considerably better than the ARMAX, mainly for the M100DOF sys-

tem. As expected, the novel iterative method only has worse CPT results than the non-iterative

method SSRA-DC, presenting a significant improvement of the maximum Validated Fit Rate

VFR as shown previously in Section 7.5. At the M100DOF system with SN = 0.3%, it should

be highlighted a remarkably close CPT level between the SSRA-DC and SSRA-DC-iCL. This

situation occurred due to many simulations when the SSRA-DC-iCL lost the convergence, lead-
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ing the algorithm not to perform the complete number of iterations at each simulation, as ex-

plained in the last section.
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Here, the analysis considers the comparative parameters VFR and CPT separately.

Firstly, the significant difference in magnitude of values encompassing the respective parame-

ters would require employing some weighting factor that could be unfair and inappropriate in

this proposition. Also, the choice between the computational processing speed and the methods’

accuracy should be an issue of loss and gains assessment in charge by the user interests.

7.9 Cart-Pendulum system simulations results

This section introduces the results and analysis from the simulations of the iterative

method SSRA-DC-iCL applied for the C-PEN, as well as providing a comparison with the main

other methods being discussed in the present research. The complete system characteristics that

determine the model dynamics are described in Section 5.5. The data set for this SIMO (Single

Input Multiple Output) system identification is composed by the input force u, and the outputs

cart displacement yx and pendulum rod angle yθ. The procedure to obtain the data set required

for the identification is depicted in Figure 5.11.

7.9.1 Specific settings for simulations with the C-PEN system

The C-PEN system has the system order directly set with a fixed value, which in this

case is n = 4. The other parameters of the SSRA-DC-iCL algorithm follow the same aspects

as described in Section 7.2.

As introduced in Section 5.7.2, the definition of the sampling time for the system

identification, that is the same to generate the data set employing the RK4 method, relies on the

value of the system maximum frequency to be calculated using the Nyquist Sampling Theorem.

For that, the linearized system was considered as the reference in its continuous-time state-

space representation. From Equation (5.39) and Equation (5.40), and the respective values of

its variables introduced in Section 5.5, the state-space matrices of the linearized system are

determined as follows:

A =


0 0 1 0

0 0 0 1

−170.23 −3.29 −5.15 −0.0082

−487.82 −37.54 −14.77 −0.0941

 , B =


0

0

1.1988

3.4354

 , C =

 1 0 0 0

0 1 0 0

 .

(7.1)
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From the state-space matrices with the values shown in Equation (7.1), the lin-

earized Cart-Pendulum system has the natural frequencies: 5.14 rad/s and 13.5 rad/s. The

determination of the minimum sampling frequency ωs accordingly to the Nyquist Sampling

Theorem (Equation (5.42)) leads to the condition of ωs ≥ 2ωmax = 27 rad/s. If the sampling

frequency should be higher than 27 rad/s (4.297 Hz), the sampling time applied to the C-PEN

should comply with dt ≤ 0.233 s. Since the sampling time of the identification and the RK4

methods are the same, the values 0.01 s and 0.02 s were adopted for the two configurations used

in the simulations, as presented in the next section.

7.9.2 SSRA-DC-iCL simulation results and analysis

Similar to Section 7.4 where the results for the mass-springer-damper systems are

presented, the proposal here is also to analyze the algorithm SSRA-DC-iCL. But now, the focus

of this section is showing how the method behaves in the iterative evolution when the system to

be identified has nonlinear characteristics as in the C-PEN. The graphs report the algorithm per-

formance for the best simulations results of each configuration that performed 100 simulations,

which the statistical analysis is the subject of the next section.

The graphs on Figure 7.20 state a comparative analysis between the two configu-

ration options of the gain in charge for updating the Markov parameters at each iteration. The

left graph refers to the gainKp variable at each iteration, and the graph on the right depicts the

algorithm function when the gain Kp is fixed. The curves represent the Fit Rate evolution (FR)

for the following parameters setting: dt = 0.01 s, q = 1600, p = 800, SN = 0.3%. In all the

simulations with the C-PEN system, the algorithm parameters ξ = 2 and γ = 2 were adjusted

with these values due to generally providing better results. When Kp is used, it worthy the

adjustment ℓ = 0.02, while for Kp fixed, the gain was set with the value Kp = 0.05.

The graphs on Figure 7.21 are equivalent to those on Figure 7.20 but for SN = 1%,

also objectifying to present more significant oscillations of FR(%), mainly in the beginning

of the iterations, for the functioning when the algorithm works with the variable gain that is

updated accordingly to the Markov residues covariance. In both figures, the graphs on the right,

despite the employment of a fixed Kp gain with value more than double ℓ value, confirm this

gain configuration of the SSRA-DC-iCL as smoother and more proper for this kind of system

application. It should be noted that almost the same level of FR(%) was attained with the double

number of iterations for the lower gain condition, as expected. Anyway, these evolution curves
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of FR(%) along with the iterations, ratify the effectiveness of the iterative algorithm SSRA-

DC-iCL for the C-PEN nonlinear system under the characteristics once established in Section

5.5.
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Figure 7.20 – FR(%) evolution of SSRA-DC-iCL for C-PEN with dt = 0.01 s, q = 1600,
p = 800, SN = 0.3%, and ℓ = 0.02 (left), Kp = 0.05 (right).
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Figure 7.21 – FR(%) evolution of SSRA-DC-iCL for C-PEN with dt = 0.01 s, q = 1600,
p = 800, SN = 1%, and ℓ = 0.02 (left), Kp = 0.05 (right).

Another algorithm configuration was simulated with its graphs shown on Figure

7.22 regarding the following parameters settings: dt = 0.02 s, q = 2000, p = 500, Kp = 0.05,

SN = 0.3% on the left graph, and SN = 1% on the right graph. These simulations with dt =

0.02 s were realized only at the fixed Kp condition. The curves also portray a smooth upward

profile with a significant FR(%) increment from the first to the last iteration. However, the VFR

values are considerably lower compared to the simulations prior presented for dt = 0.01 s. For

C-PEN simulations, a degradation of the results as the sampling time increases was realized. In



153

this system case, unlike in the mass-spring-damper systems, the number of samples q decrement

was not considered a preponderant condition to justify the Fit Rate improvement when applying

the SSRA-DC-iCL rather than SSRA-DC. For instance, at dt = 0.02 s and SN = 0.3%, with a

q reduction from 4000 to 2000, despite the SSRA-DC simulations presenting a slight drop from

94.6% to 93.22% in the VFR, the SSRA-DC-iCL simulations kept the same level shown in Fig.

7.22 on the left.

In the SSRA-DC-iCL simulations of the C-PEN system, the reduction of the sam-

pling time showed to be a more determining way to improve the SI results. Still, as the sampling

time applied for the RK4 is the same as the identification, it should be recalled that as higher the

RK4 sampling frequency is closer to a continuous-time system, the integrated variable values

by RK4 will be more effective in depicting the dynamical of the system.
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Figure 7.22 – FR(%) evolution of SSRA-DC-iCL for C-PEN with dt = 0.02 s, q = 2000,
p = 500, Kp = 0.05, and SN = 0.3% (left), SN = 1% (right).

The magnitudes and characteristics of the outputs signals yx and yθ are depicted in

Figure 7.23. The outputs curves comes from the response of the IS to the input excitation force

u from the same simulation that achieved the BFR shown in the graph on the left of Figure 7.22.

From the graphs, it can be seen that the output yx presents a considerable lower VFR value than

the output yθ, which will be verified as a common aspect in the statistical assessment introduced

in the next section.

7.9.3 Comparative statistical analysis with reference identification methods

The present section performs the statistical analysis in the same way as presented

for the mass-spring-damper system in Section 7.5. Besides showing the improvement provided
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Figure 7.23 – Outputs yx (left) and yθ (right) from OS (red) and IS (blue) for: dt = 0.02 s,
q = 2000, p = 500, Kp = 0.05, and SN = 0.3%.

by the new iterative SSRA-DC-iCL method from the comparative values with the non-iterative

SSRA-DC, this section also included the N4SID and the ARMAX in the comparison as meth-

ods that acquired the bests VFR results in the mass-spring-damper system simulations. All the

100 simulations accomplished for both 0.01 s and 0.02 s of sampling time had 100 iterations

(parameter i) with a fixed gain of Kp = 0.05. Moreover, the data correlation algorithm pa-

rameters ξ and γ were set with fixed value 2. Hence, considering that all these parameters are

constant values in the simulations, they do not need to be presented in the following tables that

portray the results from this section.

Table 7.10 contains the statistical results for the following configuration: dt =

0.01 s, q = 1600, p = 800. And Table 7.11 is the analogue one for the following configuration:

dt = 0.02 s, q = 2000, p = 500. The results data for VFR from the specific comparison be-

tween SSRA-DC and SSRA-DC-iCL, which are presented in the mentioned tables, are summed

up by the boxplot graph in Figure 7.24.

In Table 7.10, it can be seen the iterative SSRA-DC-iCL with a significantly better

result than the non-iterative method SSRA-DC to both noise conditions (0.3% and 1%). The

improvement gain depicted by ∆VFR shows greater values considerably higher than in the

simulations of mass-spring-damper systems, which happens for both the maximum and median

statistical parameters. The ∆VFR of the interquartile range with 8.55% and 14.42% higher in

the SSRA-DC for 0.3% and 1% of noise, respectively, is viewed in the boxplot graph with a

larger box, which also happens for the simulations when dt = 0.02 s. That means that here,

in the C-PEN system simulations, the iterative method significantly reduces the variability of

the result, which had not been verified in the mass-spring-damper (MDOF) systems. Despite
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Table 7.10 – Comparative results for C-PEN system: dt = 0.01 s, q = 1600, p = 800.

noise (SN ) Statistical group Algorithm(1) VFRyx VFRyθ VFR ∆VFR(2) CPT (s)(3)

0.3%

Maximum

SSRA-DC-iCL 98.06% 99.32% 98.62% – 1451
SSRA-DC 97.37% 92.65% 94.79% 3.83% 258

N4SID 97.43% 98.51% 97.89% 0.73% 396
ARMAX 99.60% 99.72% 99.66% -1.04% 458

Median

SSRA-DC-iCL 97.67% 98.63% 98.15% – –
SSRA-DC 91.76% 63.80% 78.72% 19.43% –

N4SID 97.01% 97.01% 97.05% 1.10% –
ARMAX 99.53% 99.58% 99.54% -1.39% –

Interquartile
range

SSRA-DC-iCL 3.72% 16.63% 11.73% – –
SSRA-DC 7.20% 37.71% 20.28% 8.55% –

N4SID 0.27% 1.79% 0.93% -10.80% –
ARMAX 0.05% 0.10% 0.05% -11.68% –

Unstable IS(4)

SSRA-DC-iCL 1% 8% 1% – –
SSRA-DC 1% 12% 1% 0% –

N4SID 0% 0% 0% -1% –
ARMAX 0% 0% 0% -1% –

1%

Maximum

SSRA-DC-iCL 97.68% 98.63% 97.99% – 1568
SSRA-DC 97.27% 91.19% 93.34% 4.65% 238

N4SID 97.02% 97.65% 97.22% 0.77% 418
ARMAX 98.64% 98.71% 98.58% -0.59% 412

Median

SSRA-DC-iCL 97.15% 97.99% 97.61% – –
SSRA-DC 92.19% 62.89% 77.15% 20.46% –

N4SID 96.41% 93.98% 95.25% 2.36% –
ARMAX 98.36% 98.37% 98.36% -0.75% –

Interquartile
range

SSRA-DC-iCL 0.70% 8.39% 4.61% – –
SSRA-DC 6.07% 31.83% 19.03% 14.42% –

N4SID 0.37% 4.36% 2.33% -2.28% –
ARMAX 0.18% 0.25% 0.16% -4.45% –

Unstable IS(4)

SSRA-DC-iCL 0% 2% 0% – –
SSRA-DC 0% 6% 0% 0% –

N4SID 0% 0% 0% 0% –
ARMAX 0% 0% 0% 0% –

1 Polynomials orders of the ARMAX: na = nb = nc = 2, to agree with the same order n = 4 of the state-space methods;
2 Improvement gain (VFR) of the SSRA-DC-iCL algorithm over the other algorithms;
3 Computational Processing Time in seconds (independent from the parameters of the statistical group);
4 Percentual of unstable IS (Identified System) over the 100 simulations when VFRj = 0 or VFR = 0.

the more significant improvement gain with the C-PEN system than with the MDOF systems,

the maximum and median magnitude values attained with the SSRA-DC-iCL algorithm were

considerably lower in the C-PEN system simulations.

Comparing the statistical results of the iterative method with the N4SID, contrary

to what was seen in the results with the MDOF systems, for the C-PEN systems, the SSRA-

DC-iCL achieved better results than N4SID, being the ∆VFR even higher than when MDOF

systems were simulated. Whereas here, the ∆VFR values of the maximum statistical parameter

go from 0.70% to 0.98%, for the MDOF systems, the equivalent results achieved values from

0.18% to 0.57%. On the other hand, the variability of the SSRA-DC-iCL results, represented

by the interquartile range parameter, was significantly higher than in the N4SID. The unstable

IS parameter followed this difference presented in the interquartile range statistical parameter.
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Table 7.11 – Comparative results for C-PEN system: dt = 0.02 s, q = 2000, p = 500.

noise (SN ) Statistical group Algorithm(1) VFRyx VFRyθ VFR ∆VFR(2) CPT (s)(3)

0.3%

Maximum

SSRA-DC-iCL 94.99% 98.39% 96.69% – 789
SSRA-DC 94.17% 92.72% 93.22% 3.46% 340

N4SID 94.19% 97.73% 95.71% 0.98% 289
ARMAX 99.54% 99.48% 99.48% -2.79% 449

Median

SSRA-DC-iCL 94.05% 97.19% 95.55% – –
SSRA-DC 91.57% 67.22% 79.41% 16.14% –

N4SID 93.55% 94.44% 94.06% 1.49% –
ARMAX 99.43% 99.18% 99.30% -3.75% –

Interquartile
range

SSRA-DC-iCL 0.49% 5.18% 2.77% – –
SSRA-DC 3.48% 26.86% 15.66% 12.89% –

N4SID 0.37% 3.24% 1.59% -1.18% –
ARMAX 0.07% 0.30% 0.16% -2.61% –

Unstable IS(4)

SSRA-DC-iCL 1% 6% 1% – –
SSRA-DC 1% 8% 1% 0% –

N4SID 0% 0% 0% -1% –
ARMAX 0% 0% 0% -1% –

1%

Maximum

SSRA-DC-iCL 94.49% 97.79% 95.84% – 445
SSRA-DC 94.04% 90.24% 92.05% 3.79% 382

N4SID 94.08% 96.75% 95.14% 0.70% 303
ARMAX 98.52% 98.56% 98.48% -2.64% 444

Median

SSRA-DC-iCL 93.69% 96.56% 95.16% – –
SSRA-DC 90.94% 65.63% 77.97% 17.19% –

N4SID 93.33% 94.06% 93.68% 1.48% –
ARMAX 98.21% 98.17% 98.19% -3.03% –

Interquartile
range

SSRA-DC-iCL 0.62% 8.59% 4.59% – –
SSRA-DC 4.73% 25.00% 14.38% 9.79% –

N4SID 0.43% 3.51% 1.89% -2.70% –
ARMAX 0.20% 0.29% 0.21% -4.38% –

Unstable IS(4)

SSRA-DC-iCL 2% 8% 2% – –
SSRA-DC 2% 10% 2% 0% –

N4SID 0% 0% 0% -2% –
ARMAX 0% 0% 0% -2% –

1 Polynomials orders of the ARMAX: na = nb = nc = 2, to agree with the same order n = 4 of the state-space methods;
2 Improvement gain (VFR) of the SSRA-DC-iCL algorithm over the other algorithms;
3 Computational Processing Time in seconds (independent from the parameters of the statistical group);
4 Percentual of unstable IS (Identified System) over the 100 simulations when VFRj = 0 or VFR = 0.

Differently from what has been verified in the MDOF systems, the ARMAX pre-

sented unexpected results once the algorithm had significantly higher values of maximum and

median ∆VFR compared to the new iterative method SSRA-DC-iCL. Also, the ARMAX had

lower results variability, even better than the N4SID. The other Matlab SI Toolbox techniques

were not presented here because they obtained worse results, as occurred in the tests for the

MDOF systems.

From Table 7.10 and Table 7.11, for most of the simulations and mainly for the

SSRA-DC-iCL, it can be realized higher values of maximum and median VFRyθ than VFRyx .

Also, a higher variability indicated by the interquartile range and unstable IS was seen. Com-

paring the tables, it is well evident the significant difference at about 2% between the ∆VFR in

the sampling time conditions dt = 0.01 s and dt = 0.02 s. That degradation of FR results, when
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Figure 7.24 – Boxplot with outliers of C-PEN system simulations.

the sampling time increases in the C-PEN, was already approached in Section 7.9.2.

Considering all simulation results presented in the tables, the Computational Pro-

cessing Time spent by the iterative method was almost three times higher, on average, than

the N4SID, which did not happen in MDOF systems, where the CPT for the N4SID was more

than 100 times higher than the SSRA-DC-iCL. For the C-PEN system, N4SID, ARMAX, and

the conventional SSRA-DC had similar CPT values in general. The higher values of CPT for

SSRA-DC-iCL when dt = 0.01 s concerning simulations with dt = 0.02 s can be arguable

at first glance; however, this situation is justified by the difference of 8/5 in the parameter p,

which loads the computational processing significantly as from the singular value decomposi-

tion. Also, the increment of interquartile range and unstable IS in the SSRA-DC-iCL from

SN = 0.3% to SN = 1% when dt = 0.02 s justify the great decrement on CPT. These statistical

parameters with higher values indicate more simulations that the algorithms may have had to

stop before achieving the number of iterations set-point.

Two bar graphs summarizing the results, comparatively among the methods, are

displayed in Figure 7.25 and Figure 7.26 for the maximum VFR and CPT, respectively. Com-

paring Figure 7.25 from the C-PEN system with Figure 7.18 from MDOF systems simulated, it

is evident that a performance change between the methods takes place for the nonlinear C-PEN

system. The significant improvement of the iterative method SSRA-DC-iCL over the N4SID

is covered up. It seems not to be so relevant in the face of the startling result of the ARMAX,
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considering that it was the worst result for MDOF systems, but here presenting by far the best

VFR values.
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Figure 7.25 – Comparative view (VFR) of methods for C-PEN system.

10
2

10
3

Comparative view of methods for C-PEN system: CPT

SSRA-DC-iCL

N4SID

SSRA-DC

ARMAX

dt = 0.01;SN = 0.3% dt = 0.01;SN = 1% dt = 0.02;SN = 0.3% dt = 0.02;SN = 1%

C
P
T

(s
)

Sampling time and Noise level

Figure 7.26 – Comparative view (CPT) of methods for C-PEN system.

Some care should be taken when comparing Figure 7.26 and Figure 7.19 since the

bars size difference can lead to a close difference in CPT between the systems simulations.
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However, as the scale of the y-axis is logarithmic, the time differences between the SSRA-DC-

iCL and the other methods are significantly lower in the C-PEN systems simulations. Here, the

steady level of CPT attained by the ARMAX throughout the simulations should be highlighted.

The algorithm required, on average, a considerably lower time than the SSRA-DC-iCL and

approximately the same level as the N4SID, primarily for simulations with dt = 0.01 s.

7.9.4 Comparative analysis between nonlinear and linearized C-PEN systems

To conclude the simulation analysis for the C-PEN system, the verification of the

identified systems from the simulations in terms of similarity with the linearized system intro-

duced in Section 7.9.1 (state-space system defined by Equation (7.1)) is performed through the

quality assessment of Maximum Singular Values (MSV) graphs and step responses graphs. For

that, the analysis considered two identified systems from SSRA-DC-iCL with the best and worst

maximum VFR values obtained in the simulations accomplished in this section. The Identified

System (IS) are compared in each graph with the linearized system called here as Original

System (OS).

Maximum Singular Values (MSV) graphs are displayed in Figure 7.27 to qualita-

tively compare the adherence of the IS related to the OS for the IS attained with the best (graph

on the left) and worst (graph on the right) values of VFR among the configurations simulated

in the present section. The natural frequencies of 5.14 rad/s and 13.5 rad/s from the C-PEN

system are indicated on the graphs. It can be seen only a small difference between the OS and

IS when VFR = 95.84%, whereas for the best IS when VFR = 98.62% there is an overlap

of the curves. As for the evaluation through the step response curves presented in Figure 7.28

and Figure 7.29 for the best and worst IS, respectively, the graphs can be better realized for

comparative purposes, mainly for the output yx. They are pointing out the situation where the

IS with higher VFR becomes closer in equivalence to the OS.

From the C-PEN linearized in its state-space continuous-time representation (Equa-

tion (7.1)), the equivalent discrete-time representation can be obtained for the C-PEN dis-

cretized employing the ZOH method, as follows:
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Figure 7.27 – MSV of the OS (red) and the IS (blue), comparing the best (left) and worst (right)
results of VFR.
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both outputs of the C-PEN system (dt = 0.01 s).
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Figure 7.29 – Step Response graphs from the OS (red) and IS (blue) when VFR = 95.84% for
both outputs of the C-PEN system (dt = 0.02 s).

1. dt = 0.01 s

A =


0.9916 −1.61× 10−4 0.0097 −9.45× 10−7

−0.0239 0.9981 −8.05× 10−4 0.01

−1.6540 −0.0319 0.9416 −2.41× 10−4

−4.7359 −0.3724 −0.1673 0.9972

 ,B =


5.88× 10−5

1.69× 10−4

0.0116

0.0334

 ,

(7.2)

2. dt = 0.02 s

A =


0.9673 −6.31× 10−4 0.0188 −5.84× 10−6

−0.0936 0.9926 −0.0035 0.0199

−3.1956 −0.0616 0.8705 −7.86× 10−4

−9.1333 −0.7369 −0.3702 0.9907

 , B =


2.30× 10−4

6.59× 10−4

0.0225

0.0643

 .

(7.3)

The state-space matrices from the best IS (VFR = 98.62%) have the following

composition:

A =


1.0030 0.0553 0.0081 3.55× 10−4

−0.0583 0.9891 −0.0094 −0.0146

−0.0189 −0.0203 0.9749 −0.1052

0.0041 0.0478 0.1445 0.9615

 ,B =


−0.0393

−0.1207

−0.1438

0.2535

 , (7.4)
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C =

 −9.28× 10−4 −0.0010 −0.0024 −0.0014

0.0037 −0.0105 −0.0061 −0.0059

 .

And the state-space matrices from the worst IS (VFR = 95.84%) have the follow-

ing composition:

A =


0.9895 0.1006 0.0122 0.0030

−0.1153 0.9916 −0.0189 −0.0162

−0.0271 −0.0519 0.9161 −0.2113

0.0108 0.0639 0.2818 0.9245

 , B =


−0.0634

−0.1557

−0.2413

0.3359

 , (7.5)

C =

 −9.63× 10−4 −0.0012 −0.0039 −0.0016

0.0098 −0.0145 −0.0108 −0.0071

 .

The transfer functions of the discrete-time systems with the state-space representa-

tion given by Equation (7.2) and Equation (7.4), for comparisons are:

• OS discretized with dt = 0.01 s:

1. :

5.883× 10−5z3 − 5.963× 10−5z2 − 5.665× 10−5z + 5.778× 10−5

z4 − 3.929z3 + 5.806z2 − 3.826z + 0.9489
(7.6)

2. :

1.685× 10−4z3 − 1.714× 10−4z2 − 1.627× 10−4z + 1.656× 10−4

z4 − 3.929z3 + 5.806z2 − 3.826z + 0.9489
(7.7)

• IS with VFR = 98.62%:

1. :

1.715× 10−4z3 − 3.984× 10−4z2 − 2.831× 10−4z − 5.589× 10−5

z4 − 3.929z3 + 5.806z2 − 3.826z + 0.9489
(7.8)

2. :

4.898× 10−4z3 − 1.139× 10−3z2 − 8.088× 10−4z − 1.594× 10−4

z4 − 3.929z3 + 5.806z2 − 3.826z + 0.9489
(7.9)

The transfer functions of the OS and the best IS presented from Equation (7.6) to Equation

(7.9) have precisely the same polynomial in the denominator, hence, showing that the respective

systems have the same poles.
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The transfer functions of the discrete-time systems with the state-space representa-

tion given by Equation (7.3) and Equation (7.5), for comparisons are:

• OS discretized with dt = 0.02 s:

1. :

2.303× 10−4z3 − 2.352× 10−4z2 − 1.122× 10−4z + 2.222× 10−4

z4 − 3.821z3 + 5.545z2 − 3.623z + 0.900
(7.10)

2. :

6.591× 10−4z3 − 6.818× 10−4z2 − 6.137× 10−4z + 6.364× 10−4

z4 − 3.821z3 + 5.545z2 − 3.623z + 0.900
(7.11)

• IS with VFR = 95.84%:

1. :

6.481× 10−4z3 − 1.5× 10−3z2 − 1.069× 10−3z + 2.121× 10−4

z4 − 3.822z3 + 5.546z2 − 3.624z + 0.901
(7.12)

2. :

1.851× 10−3z3 − 4.32× 10−3z2 − 3.086× 10−3z + 6.171× 10−4

z4 − 3.822z3 + 5.546z2 − 3.624z + 0.901
(7.13)

The transfer functions of the OS and the worst IS presented from Equation (7.10) to Equation

(7.13) offer a difference only at the third decimal place of each term from the polynomial in the

denominator, hence, showing a small discrepancy between the system’s poles.

A comparative analysis for the condition when the OS is implemented as the non-

linear C-PEN system from the simulations previously presented in this section, and the situation

with an OS implemented as the linearized C-PEN (state-space Equation (5.40)), is performed

based on the results shown in Table 7.12. For the nonlinear OS was used the same simulations

data prior presented in Table 7.10 and Table 7.11, and for the linearized OS the simulations

were performed with the same data set of excitations and noises employed for the nonlinear

OS. In the comparison of the results, it is evident, as expected, a great increase of ∆VFR for

the maximum and median statistical parameters when the OS is turned to be linearized. This

difference is considerably higher when the sampling time increase from 0.01 s to 0.02 s. It

should be pointed out that the gap between the nonlinear OS and the IS with the output yx in

the step response for dt = 0.02 s (Figure 7.29) does not happen to the linearized OS. In this
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case, the curve from IS follows the OS curve without any deviation as the curves become more

stable.

Table 7.12 – Comparative results of C-PEN system under nonlinear OS and linearized OS.

Configuration(1) Statistical group SSRA-DC-iCL VFRyx VFRyθ VFR ∆VFR(2)

dt = 0.01,
q = 1600,
p = 800,

SN = 0.3%.

Maximum
nonlinear OS 98.06% 99.32% 98.62% –
linearized OS 99.60% 99.75% 99.68% 1.06%

Median
nonlinear OS 97.67% 98.63% 98.15% –
linearized OS 99.47% 99.35% 99.42% 1.27%

Interquartile
range

nonlinear OS 3.72% 16.63% 11.73% –
linearized OS 5.27% 20.31% 14.07% -2.34%

Unstable IS(3) nonlinear OS 1% 8% 1% –
linearized OS 1% 8% 1% 0%

dt = 0.01,
q = 1600,
p = 800,
SN = 1%.

Maximum
nonlinear OS 97.68% 98.63% 97.99% –
linearized OS 98.57% 98.78% 98.63% 0.64%

Median
nonlinear OS 97.15% 97.99% 97.61% –
linearized OS 98.22% 98.31% 98.30% 0.69%

Interquartile
range

nonlinear OS 0.70% 8.39% 4.61% –
linearized OS 1.13% 5.17% 3.29% 1.32%

Unstable IS(3) nonlinear OS 0% 2% 0% –
linearized OS 0% 2% 0% 0%

dt = 0.02,
q = 2000,
p = 500,

SN = 0.3%.

Maximum
nonlinear OS 94.99% 98.39% 96.69% –
linearized OS 99.53% 99.56% 99.53% 2.84%

Median
nonlinear OS 94.05% 97.19% 95.55% –
linearized OS 99.37% 99.00% 99.21% 3.66%

Interquartile
range

nonlinear OS 0.49% 5.18% 2.77% –
linearized OS 0.82% 6.96% 3.83% -1.06%

Unstable IS(3) nonlinear OS 1% 6% 1% –
linearized OS 1% 6% 1% 0%

dt = 0.02,
q = 2000,
p = 500,
SN = 1%.

Maximum
nonlinear OS 94.49% 97.79% 95.84% –
linearized OS 98.48% 98.63% 98.54% 2.70%

Median
nonlinear OS 93.69% 96.56% 95.16% –
linearized OS 98.11% 97.89% 98.01% 2.85%

Interquartile
range

nonlinear OS 0.62% 8.59% 4.59% –
linearized OS 0.84% 7.47% 4.09% 0.50%

Unstable IS(3) nonlinear OS 2% 8% 2% –
linearized OS 2% 7% 2% 0%

1 Parameters adjusted with the same values for all simulations: ξ = 2, γ = 2, i = 100,Kp = 0.05.
2 Improvement gain of linearized OS algorithm over nonlinear OS for the VFR;
3 Percentual of unstable IS (Identified System) over the 100 simulations when VFRj = 0 or VFR = 0.
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8 HIGHLIGHTS AND CONCLUDING REMARKS

8.1 Overview of the thesis6

In this work, we reviewed the Eigensystem Realization Algorithm’s characteristics

and features applied for MIMO systems (Chapter 4) when excited by a Pseudo Random Binary

Sequence (PRBS) signal (Chapter 5) as a novelty in terms of input excitation to the ERA.

Related to this first phase of the research, the simulations for a model with 5 degrees of freedom

(M5DOF) aimed to show the influences of each parameter from the algorithm settings in the SI

process’s effectiveness. The Fit Rate index was employed as a quantitative tool to evaluate the SI

performance to the overall research, substantially introduced in this phase, to work as a drive to

achieve the best algorithm settings. Besides the PRBS signal in this phase, the Gaussian White-

Noise signal (GWN) and the CHIRP signal were also employed as input excitation to compare

the influence of each one in the identification process. The comparative analysis was introduced

through two hundred simulations of the M100DOF system provided for each algorithm settings.

Some parts presented throughout this chapter was published in the paper (Soares Jr; Serpa,

2021).

In the second phase of this work, regarding the more significant contribution, a

new method stem from the State-Space Realization Algorithm with Data Correlation (SSRA-

DC) was developed. The novel method aimed to improve an identification process of a system

submitted to additive measurement noise with a reduced number of samples available for identi-

fication in the case of linear systems. For the nonlinear system C-PEN, this supposed condition

of having a reduced number of samples was not evidenced as a requirement in the simulations,

which was discussed in Section 7.9.2. The proposed method SSRA-DC-iCL (Section 4.4) sup-

ported by an iterative algorithm with the feedback of the Markov parameters matrix provided

a relevant improvement of the Fit Rate index to MIMO systems originated from 50 and 100

degrees of freedom models compared to the SSRA-DC algorithm. The comparison showing

the improvement was verified by statistical analysis from 100 simulations of each algorithm’s

settings. Beyond considering the output devices to measure the displacements in most of the

systems considered in this research, a system with accelerometers as outputs was also used in

6 Some parts presented in this chapter were published in the papers (Soares Jr; Serpa, 2021; Soares Jr; Serpa,
2022).
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the identification process.

The third phase of the research counted on a comparative analysis (Section 7.8) of

the new iterative SSRA-DC-iCL method and the classical SSRA-DC compared with the well-

known methods available in the SI Toolbox of the Matlab. In this task, the Matlab methods were

used under the same number of samples applied to simulations with the State-Space identifi-

cation methods. The algorithm settings determining the size of the identified system was also

considered to assure the same systems size for all the methods. The comparison considered the

computational processing time (CPT) of each algorithm as one of the indicators, besides the

maximum and median Validated Fit Rate (VFR) index for portraying the SI performance along

100 simulations accomplished.

The fourth phase, regarding the simulations of a nonlinear Cart-Pendulum system

of one excitation input (force) and two outputs (cart displacement and pendulum rod angle),

followed a similar analysis performed in the third phase, although here, comparing the novel

method only with the N4SID and ARMAX algorithms from the SI Toolbox of the Matlab.

8.2 Highlights from the results

The time response analysis of the SSRA for the M5DOF model summarized in

Table 6.1 and Table 6.3 depicts the influence and how each algorithm parameter determines

the VFR result. It could be seen that increasing the number of samples q helps to improve the

results. Still, the parameter p should increase either, preferably following the specific ration

q/p if this has been previously adjusted properly. The time response analysis to the SSRA also

shows what is expected when the system order is closer to the true system order, leading the

SI result to a better VFR. In several of the algorithm settings, VFR = 100% was achieved,

indicating that an adjustment with lower parameter values should be considered in the way to

minimize computational processing.

The reduction of the PRBS clock frequency (CF ) at the SSRA parameters analysis,

revealed in Table 6.1, showed no impact on the Fit Rate results, evidencing that the persistently

exciting characteristics of the excitation signal remain suitable for the identification process. In

this situation, the displacement curves depicted a different delineation from the original one,

which can be beneficial and more appropriate for some system characteristics that do not allow

a high switching of a PRBS signal. Comparing the PRBS and GWN results for the M5DOF

system simulated here (Table 6.4), the PRBS signal can be considered a feasible alternative in
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system identification for structures like that used in this work. Thus, the PRBS signal arises as a

non-usual excitation type to the SSRA, notably due to the signals properties, opening possibili-

ties to the algorithm application in several areas of engineering beyond structural mechanics.

For the time response analysis, the three distinct sampling time values in the simula-

tions of the M5DOF model did not make any substantial difference in the results at first glance,

except for the need to increase the respective parameter values to obtain approximately the

same VFR levels. For frequency response analysis, employing the Maximum Singular Values

(MSV) diagrams, together with assessing the sampling frequencies appropriated to the system

discretization, supported by the Nyquist Sampling theorem, the sampling time of dt = 0.02 s

was the only one suitable to be used for the SI process of the M5DOF system simulated.

The SSRA-DC-iCL method, which is supported by an iterative algorithm working

with Markov parameters’ feedback in a closed-loop, represents the main contribution of this

research. The results described along the Chapter 7 show the benefits of the proposed SSRA-

DC-iCL method when applied for MIMO systems in the presence of measurement noise. Ana-

lyzing the steps of SSRA-DC-iCL pictured in Figure 4.2 and detailed in the Algorithm 1, it can

be realized the specific concepts of the algorithm that led to contributions concerning the tra-

ditional SSRA-DC algorithm. The boxplot graphs precisely portray the comparative statistical

results between the novel and traditional method when submitted to 100 simulations for several

algorithms settings and systems conditions.

In the comparative analysis phase for the M50DOF and M100DOF systems, both

the iterative and non-iterative SSRA-DC method, mainly the new SSRA-DC-iCL, presented

much better results for the MIMO systems tested than the well-known autoregressive methods

from Matlabs SI toolbox. Despite having being close but not achieved the same VFR level of

the N4SID method, the SSRA-DC-iCL was on average 13 times faster for the M50DOF system

and more than 100 times faster for the M100DOF, which represents a relevant saving of CPT.

In the simulations of the mass-spring-damper systems, the SSRA-DC-iCL was con-

figured with the gain Kp set as a variable value over the iterations; however, these M-DOF

systems, except the M50DOF-a, could use the fixed Kp gain with equivalent performance. Con-

trarily, for the nonlinear C-PEN system, the application of a fixed Kp showed more smooth FR

curves, achieving the expected improvement provided by the novel algorithm. When SSRA-

DC-iCL was compared with N4SID for the simulations with C-PEN, an opposite result oc-

curred due to a higher VFR now achieved by the iterative method, although the N4SID reached
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a lower CPT value. In this case, the more pronounced CPT difference was less than four times,

significantly less than the gap seen with the M100DOF system result. Despite the SSRA-DC-

iCL having achieved better VFR results than the N4SID, both methods were overcome by the

ARMAX with consistent results.

8.3 Concluding remarks

The first phase of this work proposed an approach to analyse the behavior and per-

formance of the Eigensystem Realization Algorithm method for identifying a MIMO system of

5 degrees of freedom under different algorithm configurations. The Validated Fit Rate (VFR)

indicator applied to measure the adherence of the identified system reveals how the parameters

of the algorithm influence the results and play an important role as a guide to indicate the best

settings for the SSRA. The analysis of the simulation steps indicates that a more appropriate

order of the identified system can be attained, working as a complementary tool to the already

well-known methods to determine the system order.

The PRBS signal arises as a novelty for SSRA excitation, notably due to the prop-

erties of the signal, opening possibilities to the algorithm application in several areas of engi-

neering beyond structural mechanics. Moreover, based on the PRBS specific characteristics,

which are welcome as an useful and interesting excitation signal to the system identification

process, it was proper to compare its application and the individual results to the SSRA with

the other types of excitation signals. This task was performed with GWN and CHIRP signals’

employment at some of the simulations presented in Section 6.5.

Even though it was not so evident for time response analysis, the results of the

M5DOF system also indicated the expected effect of increasing the sampling frequency to im-

prove the system identification in the frequency response analysis. Furthermore, it would avoid

sampling frequencies that can cause the identified system to lose some of its natural frequencies.

This aspect was verified using the Fit Rate indicator applied to the Maximum Singular Values,

instead of having the FR calculated for the system outputs, which allowed a different and more

suitable analysis perspective of MIMO systems identified by the SSRA. However, to get better

FR results in the frequency response analysis, the sampling frequency increment commonly

leads to an increase in the length of the Hankel matrix, which in turn induces the amplification

of computational processing, especially for large MIMO systems.

The SSRA-DC-iCL method is the meaningful contribution of this work as an ap-
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propriate algorithm for working with MIMO systems and in the presence of measurement noise

from the process. The choice of more appropriated weighting factor (parameter ℓ) or directly

the gain Kp can take a crucial role in the algorithm settings, influencing the effectiveness of

the results in terms of both the VFR achieved and the number of iterations required. For in-

stance, while the employment of a higher gain can be interesting to obtain a better fit rate with

fewer iterations, depending on the system’s characteristics and input-output data set, the gain

augmented can promote significant oscillations. This trouble can lead the fit rate values to drop

abruptly, which underscores this iterative algorithm’s core objective: to achieve the highest fit

rate independently of its broad variability. Also, severe drops of VFR can occur, or even some

iterations lost when VFR = 0, which means the algorithm lost the convergence. An example is

the good VFR = 99.04% attained for the M100DOF system simulated with SN = 0.3% (Table

7.3) despite the substantial number of 36% unstable IS. On the other hand, the employment of

lower Kp values can lead to a smoother fit rate evolution curve, however with longer time to

the attainment of better VFR results, which sometimes can not be possible or even feasible.

It could be realized, as stated at Section 7.5.2 (Table 7.3), that a combination of

small number of samples with lower level of measurement noise (SN = 0.3% in that case) can

lead the algorithm to lose the convergence through the unbounded drop of the FR. Given these

conditions, in the respective simulations, it was seen that the increase of measurement noise

minimized or even ceased the convergence loss in the iterative identification process, where the

value dropped from 36% to only 3% in the VFR indicator. Another alternative would be the

growth of the number of samples. Still, in this case, depending on the increased amount, it will

go against the SSRA-DC-iCL algorithm assumptions for the systems simulated.

Notwithstanding the close performance of the iterative SSRA-DC-iCL algorithm

concerning the N4SID for large linear MIMO systems in a noisy plant, demanding much less

computational processing time, one drawback of the SSRA-DC-iCL is the number of algo-

rithm’s parameters required to be configured. The SSRA-DC-iCL algorithm needs to set the

parameter p stem from the classical SSRA and define the gain through the adjustment of ℓ or

Kp. Still, for the data correlation issue, it should also be considered the configuration of the pa-

rameters ξ and γ (Equation (4.52)). N4SID requires definition and adjustment of only dt, q, and

n, which is either part of the classical SSRA configuration and therefore they are also required

for SSRA-DC-iCL. Except for the order n that can count on specific techniques to be met as

mentioned in this work, the other two parameters are part of input-output data set definitions. It
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should be pointed out that an appropriate knowledge about the iterative SSRA-DC-iCL method

proposed in this research can lead the algorithm settings to be a more straightforward and brief

task. With a proper understanding of the algorithm, one can make more assertive parameters

choices with fewer trials of algorithm execution, making these methods an attractive algorithm

for the SI process of large MIMO systems in a noisy plant.

The simulation results with the nonlinear C-PEN provided an additional assessment

to the simulations performed with the linear M50DOF and M100DOF. Besides the inherent

nonlinearities of the C-PEN model, another difference relates to the smaller size of the SIMO

system C-PEN, which should be considered in the analysis of the results. The VFR values at-

tained in the nonlinear SIMO system with a lower magnitude compared to the linear MIMO

systems reflect the condition of a nonlinear system being identified by methods that generate

the representation in state-space of linear systems. This statement can be supported when com-

paring, in Table 7.12, the nonlinear system results with the values attained in the simulations

of the linearized C-PEN for the same configurations of algorithms and systems. Even so, the

iterative SSRA-DC-iCL showed up identification effectiveness, measured by the VFR, much

better than the conventional SSRA-DC and a little better than the N4SID. Although, for this

kind of MIMO system with a considerably smaller size, despite being a nonlinear system, the

autoregressive method ARMAX presented VFR results significantly better than the state-space

methods. Moreover, for complying with a suitable CPT value and not overdone in the SSRA-

DC-iCL running when simulating the nonlinear C-PEN, the novel method strengthens its range

of applications, covering linear and possibly nonlinear MIMO systems for wider sizes.

8.4 Possible future works

The Kp gain setting, determined by the variable ℓ, directly influences the perspec-

tive of enhancing the Markov matrix updating control. Another option of this updating comes

from a fixed Kp value. When considered for improvement opportunities, both options can yield

identified systems with higher fit rate values and reduce the possibilities of convergence loss

along the iterative process, as well as reduce the number of iterations to the achievement of

higher VFR levels awaited. A broad study about input-output data set (Markov parameters)

updating control for the iterative SSRA-DC-iCL can be considered feasible and suitable for this

objective.

The losing of convergence of the SSRA-DC-iCL algorithm, characterized by the
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unbounded drop of the fit rate, which depends on the algorithm’s input data set, can be better

studied about its causes in detail. These occurrences showed that a combination of a small

number of samples with a low level of measurement noise triggers the process of convergence

loss of the algorithm. The conditions related to these causes point out that the trace of the

diagonal matrix Σn (Equation (4.29)), coming from the SVD of the Hankel matrix, gets lower

than a minimum value expected to avoid ill-conditioned of the matrices involved on the state-

space realization. The Regularisation technique, as recently approached in the work of Ljung

et al. (Ljung et al., 2020b), could be suggested in this case to improve the conditioning of the

respective matrices.

It is noteworthy that the SSRA-DC-iCL algorithm was not concerned with program-

ming techniques that would lead to greater efficiency in terms of less computational processing

time. The algorithm evolution for the advancement and optimization of computational process-

ing can be an interesting development encompassing other improvement proposals mentioned

in this section.

Based on research for the developments described, expanding the overall scope of

the cases in applying the iterative method to larger MIMO systems and higher levels or differ-

ent characteristics of additive noise would be an even more challenge, raising the algorithm’s

application outlook. Additionally, the methods’ application in a real plant could complement

this work evolution. This scenario would lead to takeaways and ascertain the algorithm’s ef-

fectiveness under nonlinear conditions inherently to the process, which occurs and comes from

instrumentation noises to some degree in mechanical structural systems (Juang, 1994). The

simulations with a typical nonlinear system in its dynamical characteristics also came as an op-

portunity to expand the study of applications of the novel method for nonlinear MIMO systems

with larger sizes and broader features.
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APPENDIX A – MATHEMATICAL DEVELOPMENT OF THE SSRA

WITH DATA CORRELATION

The concepts presented in this topic was supported by the reference (Juang, 1994).

Firstly, repeating the Hankel matrix in the format as represented in Equation (4.51), it follows:

H0 =


Hv(1) Hv(2) . . . Hv(β)

Hv(2) Hv(3) . . . Hv(β + 1)
...

... . . . ...

Hv(α) Hv(α + 1) . . . Hv(α + β − 1)

 . (A.1)

It can be noted that Equation (A.1) represents the Hankel matrix from the classical

SSRA, then, analogously, the following equation can be introduced:

Hk−1 = OαA
k−1Wα, (A.2)

with

Oα =



C

CA

CA2

...

CAα−1


, and Wα =

[
B AB A2B . . . Aα−1B

]
,

whereHk−1 is a generalized Hankel matrix, thus the Hankel matrix is taken with k = 1 and the

shift Hankel matrix when k = 2.

Substituting Equation (A.2) into Equation (4.50) yields

Rhk =HkH
T
0 = OαA

kWαW
T
α O

T
α = OαA

kWc, (A.3)

whereWc =WαW
T
α O

T
α .

From Equation (4.3), the Markov parameters are defined as follows:

Hv(k) = CA
k−1B, (A.4)

and comparing this Markov parameters (Equation (A.4)) with Equation (A.3), which is related

to the correlation matrix Rhk, the block correlation Hankel matrix (Equation (4.52)) can be
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decomposed as

Hk =


Rh(k) Rh(k + τ) . . . Rh(k + γτ)

Rh(k + τ) Rh(k + 2τ) . . . Rh(k + (γ + 1)τ)
...

... . . . ...

Rh(k + ξτ) Rh(k + (ξ + 1)τ) . . . Rh(k + (ξ + γ)τ)

 , (A.5)

Hk =


Oα

OαA
τ

...

OαA
ξτ

A
k
[
Wc AτWc . . . AγτWc

]
= OξA

kWγ, (A.6)

where the matricesOξ andWγ can be called block correlation observability and controllability

matrices, respectively.

Following the same way as the ERA, state-space matrices A,B,C are obtained

based on the Hankel matrices H0 and H1, and the block correlation matrices H0 and H1 can

be employed to solve for A,Wc,Oα. Then, making k = 0 in Equation (A.5) and (A.6), it

yields:

H0 =


Rh(0) Rh(τ) . . . Rh(γτ)

Rh(τ) Rh(2τ) . . . Rh((γ + 1)τ)
...

... . . . ...

Rh(ξτ) Rh((ξ + 1)τ) . . . Rh((ξ + γ)τ)

 = OξWγ. (A.7)

Repeating Equation (4.55), the Singular Value Decomposition for the first n singular

values holds as follows:

Hn0 = Hn(0) = UnΣnVT
n , (A.8)

where Un and Vn are orthonormal matrices, which means UT
nUn = VT

nVn = In.

Relying on the direct relation Hn0H†
n0Hn0 = Hn0, and from Equation (A.8), the

following expression holds

H†
n0 = VnΣ

−1
n UT

n . (A.9)

From Equation (A.7), the pseudoinverse of the matrix Hn0 can also be written as

H†
n0 = [OξWγ]

† =W †
γO

†
ξ, (A.10)

thus, the following expression clearly holds:

WγH†
n0Oξ = In, (A.11)
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considering that bothWγ andOξ are of rank n.

Introducing 0γ and Iγ as a null and an identity matrices of order γ, then it can be

defined the matrix

ET
γ = [Iγ 0γ . . . 0γ]. (A.12)

From Equation (A.12) and also using Equation (A.5), the following sequence can

be described:
Rh(k) = ET

γ HkEγ,

= ET
γOξ[WγH†

0Oξ]A
k[WγH†

0Oξ]WγEγ,

= ET
γ [OξWγ]H†

0[OξA
kWγ]H†

0[OξWγ]Eγ,

(A.13)

applying the relation from Equation (A.7), yields

Rh(k) = ET
γ H0H†

0[OξA
kWγ]H†

0H0Eγ, (A.14)

employing Equations (A.8) and (A.9):

Rh(k) = ET
γ [UnΣnVT

n ]VnΣ
−1
n UT

n [OξA
kWγ]VnΣ

−1
n UT

n [UnΣnVT
n ]Eγ, (A.15)

considering that the matrices Un and Vn are orthonormal, then

Rh(k) = ET
γ UnΣ

1
2
n [Σ

− 1
2

n UT
n [OξA

kWγ]VnΣ
− 1

2
n ]Σ

1
2
nVT

nEγ,

= ET
γ UnΣ

1
2
n [Σ

− 1
2

n UT
nH1VnΣ

− 1
2

n ]kΣ
1
2
nVT

nEγ.
(A.16)

Comparing the last expression of Equation (A.16) with Equation (A.3), it can be

achieved the triplet as follows:

A = Σ
− 1

2
n UT

nH1VnΣ
− 1

2
n ,

Wc = Σ
1
2
nVT

nEγ,

Oα = ET
γ UnΣ

1
2
n .

(A.17)

From Equation (A.2), making k = 1,H0 can be attainment as follows:

H0 = OαWα =



C

CA

CA2

...

CAα−1


[
B AB A2B . . . Aα−1B

]
, (A.18)

whereWα can be found as

Wα = O†
αH0 = [ET

γ UnΣ
1
2
n ]

†H0. (A.19)
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From Equation (A.18), the input matrix B and the output matrix C can be deter-

mined from the first s columns of Wα and first r rows of Oα, respectively. Consequently,

consistently with Equation (4.58), the realization [Â, B̂, Ĉ, D̂] is determined as follows:

Â = Σ
− 1

2
n UT

nH(1)VnΣ
− 1

2
n ,

B̂ = [ET
γ UnΣ

1
2
n ]

†H0Es ,

Ĉ = ET
r UnΣ

1
2
n ,

D̂ =Hv(0),

(A.20)

where the auxiliaries matrices Es and Er are composed as

ET
s = [Is 0s . . . 0s],

ET
r = [Ir 0r . . . 0r].

(A.21)

The expression regarding the matrix D̂ was taken for the condition when a mass-spring-damper

system is configured with accelerations as outputs. In this case, the matrix D̂ was represented

by the Markov parameters in the first sampling instant (k = 0 in the algorithm). If the system’s

outputs come from displacement sensors, it should be consideredD =Hv(0) = 0.
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