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Resumo

Classificar e predizer conjuntos de dados tem sido um dos maiores desafios dos tem-

pos modernos, principalmente porque a quantidade de dados adquiridos tem aumentado

significativamente nos últimos anos. Na geologia do petróleo, o processo de analisar

um grande volume de dados de perfis de poços com o objetivo de extrair propriedades

do reservatório por abordagens manuais é uma tarefa bastante difícil e custosa. Assim,

métodos e algoritmos que se propõem a classificar e predizer esses dados tem se tornado

grandes aliados para compreender melhor a grande quantidade de dados e informações

coletadas. Entre os algoritmos usados para classificar e predizer grandes bancos de dados,

algoritmos de aprendizado supervisionado e não-supervisionado tem ganhado destaque

nos últimos anos. Algoritmos de aprendizagem supervisionada são algoritmos que inicial-

mente precisam ser ensinados por um conjunto de dados previamente rotulados, enquanto

que algoritmos de aprendizagem não supervisionada não necessitam que os dados sejam

previamente rotulados sendo esse tipo de algoritmo capaz de trabalhar com dados não

rotulados. O Support Vector Machine (SVM), Redes Neurais e K-means são exemplos

de algoritmos de aprendizagem supervisionada e não-supervisionada que foram usados

na pesquisa atual. Eles são algoritmos que através de cálculos matemáticos robustos são

responsáveis em auxiliar na classificação e predição dos banco de dados. No trabalho foi

utilizado os algoritmos Support Vector Machine (SVM), Redes Neurais e K-means para

classificar e predizer diferentes eletrofacies presentes no banco de dados da pesquisa. O

banco de dados da pesquisa foi construído com os dados de perfil de poço fornecidos pela

Agência Nacional de Petróleo (ANP). Os perfis geofísicos que foram selecionados para

alimentar nossos modelos como dados de entrada foram, Raios gama, Neutrão, Resistivi-

dade, Saturação em água, Densidade, Porosidade, Velocidade de onda P e S. Entre os

algoritmos de aprendizagem supervisionada utilizados na pesquisa (SVM e Redes Neu-

rais) fica claro de acordo com a etapa de validação estatística dos modelos (matriz de



confusão e validação cruzada K-dobras) que o modelo de Redes Neurais apresenta um

melhor desempenho em todos os cenários quando comparado ao Support Vector Machine.

A acurácia final do modelo baseado no SVM avaliada pelo métodos matriz de confusão e

validação cruzada K-dobras foram respectivamente 92.9% e 86.6%. As mesmas medidas

para o modelo baseado em Redes Neurais alcançou resultados de 96.6% e 96.9% respec-

tivamente. A performance melhor pode ser verificada por meio de outros parâmetros,

tais como, precisão, recall e pontuação F1. O único ponto no qual o Support Vector Ma-

chine têm significativas vantagens em relação as Redes Neurais é no tempo de execução.

Em quanto que o modelo baseado no SVM consegue predizer as eletrofacies em 0.096s,

o modelo baseado em Redes Neurais leva 41.45s para concluir suas predições. Ou seja,

o modelo baseado no SVM mostra-se cerca de 432 vezes mais rápido do que o modelo

baseado em Redes Neurais. Os perfis de poço preditos tiveram duas eletrofácies preditas

nos algoritmos de aprendizagem supervisionada, mostrando uma convergência entre os

modelos. Os modelos aplicados na pesquisa com algoritmos de IA mostraram-se robustos

para classificar e predizer eletrofácies, sendo promissores no processo de automatização do

processo de classificação de eletrofácies. A pesquisa mostra novas maneiras de classificar

e predizer eletrofácies e tenta abrir novas possibilidades para algoritmos de Inteligência

Artificial no mundo da Geociências.

Palavras-chave: Inteligência Artificial; Eletrofacies; Carbonatos; Pré-sal Brasileiro



Abstract

Classifying and predicting data sets has been one of the greatest challenges in mod-

ern times, mainly because the amount of data acquired has increased a lot in the last

years. In petroleum geology, analyzing a large volume of well log data to extract reservoir

properties by manual approaches is a hard task and time-consuming. Therefore, methods

and algorithms that offer to classify and predict these data sets have become great allies

to understand better the huge amount of data and information. Among the algorithms

used to classify and predict large data sets, supervised and unsupervised learning algo-

rithms have been gained highlights in the last years. Supervised learning algorithms are

algorithms that initially need to be taught by a set of labeled data, whereas the unsuper-

vised learning algorithms do not need to be taught, and are able to work with unlabeled

data. Support Vector Machine (SVM), Neural Networks, and K-means are supervised

and unsupervised learning algorithms that through robust mathematical calculations are

responsible for auxiliary in the classification and prediction of data sets. The work used

K-means, Support Vector Machine, and Neural Networks to classify and predict different

electrofacies in a data set which were provided eight input features, they are, Gamma

ray, Neutron, Resistivity, Water Saturation, Density, Porosity, P-velocity, and S-velocity.

Between the supervised learning algorithms used in the research (SVM and Neural Net-

works), it is clear that according to statistical validation of models, confusion matrix

and K-fold cross validating, the Neural Network presented a better performance at all

scenarios in relation to the Support Vector Machine. The accuracy evaluation of SVM

algorithm using, confusion matrix and K-fold cross-validating was 92.9% and 86.6% re-

spectively. While the accuracy evaluation of the Neural Networks algorithm was 96.6%

and 96,9% respectively. The better performance can be verified in the others parameters

as, precision, recall, and F1 score, all parameters responsible by evaluate the model per-

formance. The only point where the Support Vector Machine has significant advantages



over Neural Networks is at execution time. While the model based on SVM is capable of

predicting the electrofacies in 0.096s, the model based on Neural Networks takes 41.45s

to complete its predictions. In other words, the model based on SVM is about 432 times

faster than the model based on Neural Networks. The data set of the well log predicted

had two electrofacies predicted in the supervised learning algorithms, showing conver-

gence between the models. The models applied in the research with AI algorithms proved

to be robust for classifying and predicting electrofacies and a promising method capable

of automating the processing of electrofacies classification in Brazilian pre-salt, and easily

adjustable to work with high accuracy in other regions. The research shows new ways to

classify and predict electrofacies from well logs with more agility, reliability and accuracy,

and tries to open up new possibilities for Artificial Intelligence algorithms in the world of

geosciences.

Keywords: Artificial Intelligence; Electrofacies; Carbonates; Brazilian Pre-salt
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Introduction

In the last years, Artificial intelligence (AI) algorithms have been inserted in several

areas of knowledge and the oil and gas (O&G) sector has not been left behind. In recent

years the O&G has made AI algorithms more present in the industry and literature. A lot

of works trying to apply AI algorithms can be found in the recent literature ([KVLD12],

[SAKA12]), however, due to be a new field of study, there are many challenges to be

overcome. The introduction of them in petroleum industry has become necessary because

the amount of data collected nowadays has increased at high rates and, for processing these

huge amounts of data are necessary robust mathematical algorithms. Analyzing a large

volume of data is required in order to develop a comprehensive understanding of reservoir

distributions and their production performance characteristics [EDFK10]. Among the

AI algorithms there are two major groups, the supervised Learning algorithms [KZP07]

and the unsupervised Learning algorithms [Jai10]. The current research developed three

different models, two models using supervised learning algorithms and one model applying

unsupervised learning algorithm.

The unsupervised learning algorithm that was used to classify the data set it was the

k-means describe by Mac Queen in [Mac67] and Sariel and Bardia in [HPS05] . Organizing

data into sensible groupings is one of the most fundamental modes of understanding and

learning, and cluster analysis is the formal study of methods and algorithms for grouping,

objects according to measured or perceived intrinsic characteristics or similarity [Jai10].

The supervised learning algorithms that were used to classify and predict the electro-

facies in the research were, Support vector machine (SVM) [Vap13] and Neural Networks

[Spe91][GG93][AB09]. One of the most common applications of SVM and Neural Net-

works algorithms is to recognize and predict patterns in different data set and in this way,

the SVM [TB20] and Neural networks have been widely used to solve complex real-world

problems [XTJ17].
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Much progress has been made to understand and improve learning algorithms, but

the challenge of artificial intelligence (AI) remains [Ben09].

In geology of petroleum, an indirect way to identify the rock properties in the subsur-

face is through the geophysical well-logs, which are responsible for indirectly measuring

the rock properties. These geophysical well logs are able to identify the porosity, density,

resistivity, and radioactivity in the reservoir [TB20]. From these indirect measures of the

rocks in subsurface, the Geologists are capable to recognize patterns in different packs of

the rocks. For the patterns found by the expert’s Geologists from the well logs are given

the name of electrofacies [SA80], thus, the term electrofacies are numerical combinations of

petrophysical log responses that reflect specific physical and compositional characteristics

of a rock interval[Dav18]. Traditionally electrofacies have been identified manually with

the aid of graphical techniques like crossplotting from wire-line logs [KK06a]. But people

are often prone to making mistakes during analyses or, possibly, when trying to establish

relationships between multiple features. This makes it difficult for them to find solutions

to certain problems. Most recently several AI algorithms have been introduced to try

automating the task of electrofacies identification [KK06b]. Electrofacies have been used

widely in petroleum prospecting and reservoir characterization as a tried to distinguish

different beds in a petroleum field as well as in the correlation with the lithofacies [Nic09],

[Mia10].

The current research is development from carbonates reservoirs of the Brazilian pre-

salt, located in Santos basin, Gato do Mato oil field. The Brazilian pre-salt is a province

characterized by carbonate reservoirs, microbial and coquina rocks, buried at a depth

that surpasses 5.000 meters, distributed in the Santos and Campos sedimentary basins,

located at the southeast Brazilian coast [JM16]. Brazilian pre-salt carbonates reservoirs

are derived from lacustrine environments, and appears to be laterally continuous over

tens of kilometers [CWG08]. The laterally continuity of them also suggest the lateral

continuity of electrofacies, and in this case, the interpolation of electrofacies among the

well logs, in the oil field, can be done with a high level of safety.

The Santos Basin is localized in the southeast of Brazil, with an area approximate of

350.000 𝑘𝑚2 and the sediment thickness in some areas is higher than 10 km [CAC+08].

The figure 2.4 presents the Pre-salt distribution, as well as the study area. Estimates in

Santos Basin suggest that the potential volume of oil reserves is higher than 100 billion
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barrels [Sau16], which would position Brazil as having the fifth-biggest world reserves.

The stratigraphic section studied in the Santos Basin is localized under the evaporitic

unit formed during the post rift phase in the Aptian Stage. The main stratigraphic units

that compose the study area are Itapema and Piçarras Formations. The Itapema is located

immediately below the evaporitic section and was formed between the Late Barremian

to Early Aptian. Based on the paleogeographic distribution, in the distal portions, the

Itapema Formation was formed by marine incursions that were responsible to deposited

dark shales and carbonate rocks [Ara14], while the proximal portions are constituted

by conglomerates and sandstones deposited by alluvial fan [MMGM07]. The Piçarras

Formation corresponds to those alluvial fan sediments, composed of conglomerates and

lithic sandstones deposited during the Barremian Stage. Volcanic rocks of the Camboriú

Formation (Upper Necomian) constitute the basement of the basin [MMGM07].

In order to identify different electrofacies related to carbonate reservoir rocks, the

work proposes to use three different models based in the algorithms, k-means, SVM, and

Neural Networks for classifying and predicting the electrofacies of the Gato do Mato Oil

Field. The study area was chosen due to its strategic location inside the Santos basin,

and because the lack of information about the Gato do Mato Oil Field in literature.

Therefore the current research has with one of the goals to become more understandable

and accessible the geological information about the Gato do Mato Oil Field.

The current research also has been contributed to the discussion about the importance

and value of AI algorithms in electrofacies classification and prediction. Overcoming the

challenges involving this process could result in more precision and agility in electrofacies

classification. Therefore, due to the high impact to literature and Petroleum Industry

it is crucial to make more visible the theme AI algorithms in O&G. The next step to

the future is taken every day with the advance of knowledge in different areas. At the

moment, it is unquestionable that AI algorithms are the bridge to the faster development

of many areas of the knowledge. Thus, it makes clear that AI algorithms can be a great

partner in this long journey to the future.
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Chapter 1

General Considerations

The chapter will go to lead with introductory informations about the motivations,

objectives and justifications associated to the research developmented in the last two

years. The section 1.1 shows how the final thesis structure was thought and constructed.

From section 1.2 the reader will know the motivations and justifications that induced the

authors to carry out the current research. In section 1.3 are described the main goals that

the research aimed to achieve.

1.1 Thesis Structure

The thesis was wrote in the book format in order to become the organization of

information more accessible and clear to the reader. The chapters were organized and

grouped according to the subject of the topics. Topics with similar contents were grouped

in the same chapter, and topics with different subjects were separated according to the

most similar chapter. The thesis is composed of six chapters and three appendixes. The

chapter 1 contains the general considerations about the thesis. Section 1.1 contains a brief

explanation about the thesis structure. In section 1.2 a brief description of the problem

it is presented. Section 1.3 it is responsible to talk about the justifications that make the

research to happen. And in section 1.4 are presented the objectives. The chapter 2 talk

about the geology of the study area, in the section 2.1 the geological context it is presented

to the reader, here in this section is possible to understand a little more of the evolution

of the Santos basin, the Formation presents in the area, and the lithology expected to the

area. The section 2.2 shows the location of the study area. The chapter 3 is responsible
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for demonstrating the theoretical foundation of AI algorithms and geophysical well logs.

In the section 3.1 it is expose the algorithms, K-means, Support vector machine and

Neural Networks. The section 3.2 it is presents the geophysical well logs. The chapter 4

contains the part of materials and methods. The section 4.1 shows the data set utilized

in the research and how it was created. In the section 4.2 it is explained the data science

stage. The section 4.3 presents how was made the data set division in training and test

data set. In section 4.4 the working flowchart of the models applied in the research are

illustrated. Section 4.5 demonstrates the statistical validation used for evaluating the

models. And the last section 4.6 of the chapter show the vertical heterogeneity method.

The chapter 5 shows the results obtained in the research and three appendixes(A, B,

and C. The last chapter 6 talk about the final considerations, in the section 6.1 it is

discussed the results obtained and the section 6.2 are presents the main conclusions of

the research. The appendices section is composed of articles that were prepared with the

research results. The articles presented in appendix A, B and C shows the evolution of

the research that begins working with unsupervised machine learning (K-means, appendix

A), supervised machine learning (Support Vector Machine, appendix B), and ends using

in Neural Networks algorithms (appendix C). The thesis structure was thought to be a

simple and objective file. A file that, the reader, will be able to read all the content in

just one go. From this main idea, the results of the thesis were presented by articles that

derived from the current research. This thesis format is closer to author preferences than

the traditional thesis format. The results, chapter 5, were referenced to the Appendix A,

B and C.

1.2 Problem Description

The knowledge about a petroleum field it is commonly obtained of two ways, by

interpretations of seismic surveys, and geophysical well logs. The seismic data has the

characteristics of describe the macro features in a petroleum oil field, while the geophysical

well logs are capable of reveal micro aspects of rock and fluids composition. A way to

correlate the geophysical well logs with rock and fluids characteristics in subsurface is

to identify and associates the geophysical well logs behaviors with samples of rock and

fluids obtained of the well. Another way to correlate the geophysical well logs with
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rock and fluids characteristics is to verify the papers of literature that describe behaviors

of geophysical well logs for different types of rock and fluids [Tit12], [ES07], [KMP05],

[AKG04], [WDW+15]. From the process of associating characteristics of rock and fluids

with geophysical well logs it is possible to expand and find the electrofacies [KK06a],

[KVLD12].

The classification of electrofacies is a task usually realized by geologists due to their

geological and geophysical knowledge. The conventional way is to make a manual elec-

trofacies classification according to the patterns found in the geophysical well logs. These

electrofacies are in many times responsible to help the understanding of rocks in the sub-

surface and in the delimitation of the reservoir and non-reservoir zones. But, often, the

manual classification of electrofacies can become a problem. The first problem is related

to a non-standardization in the electrofacies classification. In other words, it is possible to

have different classification patterns according to each geologist. The second problem is

related to the number of geophysical well logs present in an oil field. The volume of data

is higher in oil fields with a large number of wells, consequently, the manual classification

can become expensive and time-consuming. In addition, the classification can take the

risk of not being standardized. Therefore, the research trying to solve this two problems

related with the electrofacies classification.

1.3 Justifications

Due to the strategic location and proximity to large pre-salt productive areas of

hydrocarbons, the Campo Gato do Mato Oil Field reveals to be an area with high hydro-

carbon production potential.

The Gato do Mato is an oilfield present in Brazilian Pre-salt[MMGM07]. It is com-

posed of carbonate rocks from the Pre-salt section, being an ideal oilfield to build models

of classification and prediction of electrofacies from geophysical well logs of carbonate

rocks.

The study area, Gato do Mato Oil Field, is a poorly explored region compared

to adjacent areas such as the Lula Oil Field, thus, one of the reasons for the current

research to be developed in the Gato do Mato is to make the geological knowledge of the

region more accessible. Once a time that the interpretation of the association among the
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geophysical well logs reveals some physical properties as porosity, rock matrix, and fluids,

consequently, the electrofacies classification makes more accessible the physical properties

of the carbonates rocks in the subsurface of the study area to the public.

As pioneer research about Gato do Mato Oil Field, the research brings AI algorithms

in geophysical well logs, and adds new results, reservoir zones are present in the study

area with thickness that can reach 40 meters, but due to the complexity and the high

compositional variation of carbonates rocks presents in the study area, the reservoir zones

have in general many heterogeneities, and have many non reservoir zones intercalated

between the interval of reservoir zones. And perspectives, the vertical heterogeneity found

in Pre-salt zones of the study area reveals possibles futures actions to be done in an

eventual production phase, such as, the choice between vertical, horizontal and directional

wells, in order to maximize the hydrocarbon production of the Oil field. In some reservoirs

the horizontal well may improve drainage by increasing the area of the wellbore in contact

with the reservoir[WJW90]. In reservoirs with high vertical heterogeneity, such as the

study area, many times the use of horizontal and directional wells is often advisable in

order to maximize the hydrocarbon extraction.

The work also provides new techniques, models based on AI algorithms to predict

and classify patterns of geophysical well logs, to the petroleum industry in the reservoir

characterization context. With the automation of the prediction and classification of

electrofacies, and the delimitation of the reservoir and non-reservoir zones, the work in

the oil field gains more agility, constancy, and precision. Thus, the work contributes to a

better Geological and Geophysical understanding of the Gato do Mato Oil field once that

explores geophysical well logs and provides Geological information about reservoir and

non-reservoir zones in the oil field. In addition, the research also contributes to models

based on algorithms of Support vector machine and Neural Networks to automate the

process of classification and prediction of electrofacies.

1.4 Objectives

The research was developed with the main goal of creating a model capable to classify

and predict electrofacies from geophysical well logs in an automated way. The area chosen

to create the model was the Gato do mato oilfield. From the wells presents in the Gato
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do mato oilfield were chosen two wells to create and test the model, 1-SHEL-23-RJS

and and 1-SHEL-26-RJS. It is hoped that the automated classification and prediction of

electrofacies helps to save time and auxiliary in the understanding of the distribution of

reservoir and non-reservoir zones in the study area.

To achieve the main goal, some secondary goals(targets) had to be reached before.

Targets are steps with less complexity to be reached in order to achieve the main goal.

Divide and conquer is often used in complex algorithms problems in order to divide a

complex problem into smaller pieces, easier to solve. The targets of the research were,

the creating of a data set able to represent the three characteristics of a rock formation,

classifying electrofacies able to distinguish zones reservoir and non reservoir, creating

models with different AI algorithms to compare the models performance, and obtaining

statistical tools able to evaluate models performance. The main goal and targets are listed

below:

• Creating of a model capable of classifying and predicting with high accuracy and

reliability electrofacies from geophysical well logs in an automated way.

– Creating of a data set from geophysical well logs capable to represent the

three rock formation characteristics (rock matrix, fluids, porosity) and that be

present in the all wells of the Gato do Mato;

– Classifying electrofacies able to distinguish zones reservoir non reservoir. This

is important because allows to correlate the electrofacies with zones reservoir

and non reservoir;

– Creating models with different AI algorithms to compare the performance be-

tween them;

– Obtaining statistical tools able to evaluate the performance of models with

precision and reliability.
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Chapter 2

Geology of the Study Area

This chapter presents the Regional Geology of the Santos Basin with the goal of

introducing to the reader a brief context of the study area. The chapter also presents the

location of the study area and the relation between the Santos Basin and other basins

present in the southeast margin of the Brazil. Section 2.1 introduces the regional geology

of the Santos Basin with illustrations about the Stratigraphic chart and considerations

about the Formations that compound the Basin. In section 2.2 the reader will know the

location of the study area, Gato do Mato oil field, in relation to the Brazilian Pre-salt

and other oil fields presents in the region.

2.1 Geological Context

Estimates in Santos Basin suggest that the potencial volume of oil reserves is higher

than 100 billion barrels [Sau16], would position Brazil having the fifth biggest world

reserves. The confirmation of the exploratory viability of the hydrocarbon reservoirs below

of the evaporitic sequence in the Parati Oil field, in 2005, made the Santos basin the main

receptive of investments in exploration and production by Petrobras, guaranteeing the

beginning of a new exploratory and productive cycle [SS16].

Another important aspect related to the attraction of investments for implementation

of the production units in the Santos Basin was the fact that its geographic positioning

to be adjacent to the Campos Basin, which initially allowed the reduction of the imple-

mentation costs of the necessary infrastructure to the development of the works [SCS19].

The potential volume of reserves, combined with the big accumulations of light oil



CHAPTER 2. GEOLOGY OF THE STUDY AREA 27

[Sau16], the high productivity of producers wells, many of them overcoming the production

of the big part of the producers basins of hydrocarbon in the country, allows the progressive

reduction of the production costs of the petroleum barrel, establishing a competitive

production in relation to the others producers regions of the planet [NG17]

The Santos basin presents a very complex stratigraphic framework (Figure 2.1 and

2.2), this is a result of the over position of several geological events. These events are

printed in the framework stratigraphic of the basin, but its expression is unequal, in terms

of magnitude and representativeness, in different structural sectors of the basin[CAC+08].

As observed by [SS16], "the Santos Basin has two important proprieties in relation to

the others pre-salt basin": (i) absence of emerged portion of the basin [Gar12], and (ii)

occurrence of magmatism forming the basement in the basin, represented by the Camboriú

Formation, of the Superior Neocomian [MMGM07] similar to what happens in Campos

Basin, represented by Cabiúnas Formation, also from Superior Neocomian [TFMA08].

As suggest [MMGM07], the stratigraphy of Santos Basin (Figure 2.1 and 2.2) can be

better understood , dividing the basin into three stages, rift, post-rift, and drift. Thus,

in the Santos basin:

The drift stage was deposited from the Albian until the recent, and it is characterized

by the Itamambuca Group composed of the Marambaia Formation. The Fraude Group

represented by Santos, Juréia, and Itajaí-Açu Formations. The Camburi Group, composed

by Florianópolis, Guarujá, and Itanhaém Formations. The depositional environments that

characterize this stage are coastal, platform, slope, and deep.

The Marambaia Formation is related to turbidite flows and is composed of pelitic

sediments interpolated with sandstones from Maresias Member.

The Santos Formation is derived from an alluvial fan and is represented by red

conglomeratics sediments. The Juréia Formation also derived from an alluvial fan and

is represented by red arenaceous and pelitics sediments. Both Formations represents a

regressive phase in the Santos Basin [MMGM07].

The Itanhaém Formation is formed by the turbidite and hyperpycnal flows, its lithol-

ogy is composed of pelitic sediments interpolated with sandstones from Tombo Member.

The Itanhaém Formation represents a transgressive phase [MMGM07].

The post-rift and rift stage is composed by the Guaratiba Group and corresponds to

the interval of 140-110 Ma. The depositional environments where the Guaratiba Group
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Figure 2.1: Stratigraphic chart from Santos basin part I [MMGM07].

developed were, restrict lagoons and lacustrine.

The post-rift stage was deposited between Aptiano and the beginning of Albiano, and
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Figure 2.2: Stratigraphic chart from Santos basin part II [MMGM07].

it is characterized by the Barra Velha and Ariri Formations. The Barra Velha Formation is

formed by sediments deposited in the initial stage of the thermal subsidence. Its lithology
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is composed by limestone stromatolitic and carbonate shales.

The rift stage extends from the Hauterivian to the Aptian and it is characterized by

the Camboriu, Piçarras, and Itapema Formations. The Itapema Formation is formed by

sediments from the final of the half-graben formation process. The lithology is composed

by grainstones, wackestones and packstones bioclastics, and carbonate shales. There is

a significant lateral change in the facies [MMGM07]. The Piçarras Formation is com-

posed by sediments deposited in the maximum activity of the half-graben formations. Its

lithology is formed of sandstones and dark shales, rich in organic matter.

The figures 2.1 and 2.2, shown the Chronostratigraphic chart of the Santos Basin

according to [MMGM07]. In the Chronostratigraphic chart is possible to observe the

Geochronology, Depositional environments, Lithostratigraphy, and the phases of tecton-

ism and magmatism in the Santos Basin.

The stratigraphic section studied in the Santos Basin is localized under the evaporitic

unit formed during the post rift phase in the Aptian Stage. The main stratigraphic units

that compose the study area are Itapema and Piçarras Formations. The Itapema is located

immediately bellow the evaporitic section and was formed between the Late Barremian

to Early Aptian. Based on the paleogeographic distribution, in the distal portions, the

Itapema Formation were formed by marine incursions that were responsible to deposited

dark shales and carbonate rocks [Ara14], while the proximal portions are constituted

by conglomerates and sandstones deposited by alluvial fans [MMGM07]. The Piçarras

Formation correspond to those alluvial fans sediments, composed by conglomerates and

lithic sandstones deposited during the Barremian Stage. Volcanic rocks of the Camboriú

Formation(Upper Necomian) constitute the basement of the basin [MMGM07].

2.2 Location of the Study area

The Santos Basin is localized on the southeast margin of Brazil, with an area of

approximately 350.000km2, the sediment thickness in some areas is higher than 10 km

[CAC+08]. The Santos Basin has developed from a rifting process of the Gondwana

Paleocontinent, this event has begun in the Eocretaceous, the basin is present in the

margin of the states Rio de Janeiro, São Paulo, Paraná, and Santa Catarina represents

one of the greatest depressions of the Brazilian continental margin, and contrary to the
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Campos Basin has the whole area submerse. The Santos Basin is bordered by the Campos

Basin in north and the Pelotas Basin to the south, to the west by Serra do Mar and to

the east by the São Paulo plateau [GMDS+08](figure 2.3). In the Santos Basin, the oils

generate has origin saline from rocks deposited in lacustrine environments during the

Aptian stage and it is represented by the Guaratiba Group. As illustrated in the figure

2.3, the pre-salt reservoir has the biggest portion inside the Santos basin, thus, is of

extremely importance the studies about the Basin.

Figure 2.3: Santos basin location in relation to the Campos and Pelotas Basin [RST12].

The study area, Gato do Mato oil field, is located in the southwest of the brazilian pre-

salt and in the middle of the Santos basin. The Gato do Mato location can be visualized

in the figure 2.4, according to the figure 2.4 it is possible to observe that the study area

is closer to the coastline than Lula oil field, what in many cases can facility the logistic
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of the hydrocarbon transportation. The study used information over two well-logs from

Pre-Salt reservoir, with more than 5.000 meters of depth. The interval of interest has up

to 400 meter and presents geophysics and lithologicals characteristics of the carbonate

rocks, and was used to the classification and prediction of electrofacies by AI algorithms.

Figure 2.4: Location of the study area, Gato do Mato oil field, in relation with Brazilian

pre-salt.
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Chapter 3

Theoretical Fundamentals

The chapter will present the theory behind the algorithms applied in the research to

build the models, and the theory about Geophysical well logs used to compose the data set

of the research. Section 3.1 will provide a brief theoretical fundamentals of AI algorithms

applied in the research, and show the two main groups presents that compound the AI

algorithms they are, (i) supervised learning algorithms, and (ii) unsupervised learning

algorithms. From section 3.2 the reader can find out the theory about the Geophysical

well logs.

3.1 AI Algorithms

Artificial intelligence is the term used to describe the solving of problems and make

decisions by machines similar to the human mind. In the literature ([Cop04], [HTF09],

[STS16a]), there are a huge amount of Artificial Intelligence algorithms, these algorithms

sharing in common mathematical algorithms able to recognize and solve problems with

high precision, accuracy, and agility. In general they can be subdivided in two main

groups, (i) supervised learning algorithms, and (ii) unsupervised learning algorithms.

The section 3.1.1 explains how the unsupervised learning algorithms working, while in the

section 3.1.2 is possible to find the explanation about the supervised learning algorithms.

3.1.1 Unsupervised Learning

In unsupervised learning algorithms, there is not a labeled data set, so the algorithms

need to learn for themselves. With the proliferation of massive amounts of unlabeled
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data, unsupervised learning algorithms–which can automatically discover interesting and

useful patterns in such data–have gained popularity among researchers and practition-

ers[CA16].The goal of unsupervised learning is to directly infer the properties of a data

set unlabeled without the help of a supervisor or teacher providing correct answers or

degree-of-error for each observation[HTF09]. Unsupervised classification tasks the labels

are not provided, and the task of the algorithm is to find a ”good” partition of the data

into clusters[Gha03]. Within unsupervised learning, clustering is probably the most pop-

ular technique, because it is responsible for grouping similar data with significant success.

Clustering is a method that unsupervised learning algorithms have to identify groups

of similar objects in multivariate data sets without having any prior knowledge of their

group memberships. Given a data set, a clustering algorithm will classify each data point

into a specific group. Each cluster that arises during the analysis defines a group of ob-

jects that share a certain degree of similarity but are more dissimilar to objects in other

clusters[RM17].

3.1.1.1 K-means

K-means clustering is a method commonly used to automatically partition a data

set into k groups [WCRS01].The data clustering, also known as cluster analysis, try to

discover the natural grouping(s) of a set of patterns, points, or objects [Jai10]. The aim

of cluster analysis is to classify a data set into groups that are internally homogeneous

and externally isolated on the basis of a measure of similarity or dissimilarity between

groups [KSIN15].

Several clusters algorithms have been proposed to try classify different data set, but

due to its simplicity, the K-means algorithm have been the most commonly used in the

literature. Given a set of 𝑛 data points in real 𝑑 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 space, R𝑑, and an integer

𝑘, the problem is to determine a set of 𝑘 points in R𝑑, called centers, so as to minimize

the mean squared distance from each data point to its nearest center [KMN+02].

Let 𝑋 = {𝑥𝑖}, 𝑖 = 1, ..., 𝑛 be the set of n d-dimensional points to be clustered into

a set of K clusters, 𝐶 = {𝑐𝑘, 𝐾 = 1, ..., 𝑘}. K-means algorithm finds a partition such

that the squared error between the empirical mean of a cluster and the points in the

cluster is minimized [Jai10]. The K-means works to minimize the sum of the squared

error (Eq.3.1.1). Minimizing this objective function is known to be an NP-hard problem
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(even for K = 2) [DFK+99]. K-means is better explained in the steps (I) to (V) and by

the work flowchart illustrated in the Fig.3.1

(I) Assigning the centroids;

(II) The distance between each point to the centroid is calculated. N-points and

K-centroids;

𝑁 × 𝐾 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

(III) Each point is putting in the class according to the centroid distance. The point

is embody by the nearest centroid and will belong to the class represented by centroid;

(IV) New centroids are calculated for each class and the value of centroid coordinate

are refined. For each class that has more than one point, the new centroid coordinate is

calculated using coordinate average of all points belongs to the class;

(V) The algorithm repeat the third and fourth step repeatedly until the conver-

gence. When in the loop n the centroid coordinate doesn’t change in relation to the

previous loop (n-1), then the process finish and the centroid coordinate is found.

The figure 3.1 shows the K-means work flowchart.

V
IV

I II III

Has the centroid
coordinate
changed?

YES

END NO

Figure 3.1: Work flowchart of the K-Means algorithm.

In the K-means algorithm the users need to provide the number of classes that fulfill

their wishes, but the wrong choose of the number of clusters will result in K-means

clustering algorithm with high errors and poor’s cluster results. Thus, the Elbow Method

can be an important and complementary method to help in the choose of the correct

number of clusters in a dataset.
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3.1.1.2 Elbow Method

Elbow method is a method which looks at the Sum Square error percentage of vari-

ance explained as a function of the number of clusters [BA14]. The Elbow method is

expressed by

𝑆𝑆𝐸 =
𝐾∑︁

𝐾=1

∑︁
𝑋𝑖∈𝑆𝑘

‖ 𝑋𝑖 − 𝐶𝑘 ‖2
2 (3.1.1)

Where SSE is the sum of the average Euclidean Distance of each point against the

centroid [MHW18].The letter K is the number of clusters, Xi is the data present in each

cluster, Ck is the K-th cluster and Sk is the set of points inside the Ck cluster.

The Sum Square error explained by the cluster is plotted against the number of

clusters. The first cluster will add much information, but at some point the marginal gain

will drop dramatically and gives an angle in the graph [BA14]. When the increase of the

cluster number does not varies considerably the SSE, then the best K value was found.

Most of clustering algorithms are designed only to investigate the inherited grouping

or partition of data objects according to a known number of clusters. Thus, identifying

the number of clusters is an important task for any clustering problem [KM13].

3.1.2 Supervised Learning

Supervised learning is the construction of algorithms that are able to produce general

patterns and hypotheses by using externally supplied instances to predict the fate of

future instances[STS16a]. Supervised learning is the name given for a set of algorithms

responsible for learning to categorize data from a data set labeled and, then, to apply the

knowledge learned to unlabeled data sets. In supervised tasks the training data consists

of training patterns, as well as their required labeling [Gha03]. A supervised learning

algorithm analyses the training data and produces an inferred function, which can be

used for mapping new examples, thus the main goal of the supervised learning is to

approximate new input data so well that you can predict the output variables for that

data. Learning stops when the algorithm achieves an acceptable level of performance.

We can say that supervised learning is similar to say "learning with a teacher". With

supervised learning, there is a clear measure of success or lack thereof, which can be used

to judge adequacy in particular situations and to compare the effectiveness of different

methods over various situations [HTF09].There are two ways to work with supervised
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learning problems, (a) the first way is work with the resolution of problems that involved

prediction of a specific target, while the (b) second are problems that the data set need

to be classified.

3.1.2.1 Support Vector Machine

The Support Vector Machine is an algorithm to predict and classify that was devel-

oped by Vladimir Vapnik in 1960s, and in the nineties the algorithm was highlighted to

solving pattern recognition problems through of the Vapnik’s works ([Vap95]; [Vap98]).

Recently, SVM has been considered one of the top methods in pattern classification. It

has many attractive properties such as a strong mathematical foundation, few tuning pa-

rameters, fast classification and high generalization capability [FA19]. The SVM method

maps the data into a higher dimensional input space and constructs an optimal sepa-

rating hyperplane in this space. The algorithm works with a concept of maximizing the

minimum distance from hyperplane to the nearest sample point [STS16b]. This basically

involves solving a quadratic programming problem [SV99]. The technique of SVM was

first developed for the restricted case of separating training data without errors, later was

enhanced the case of separating data with errors. Thus, there are two historic Support

Vector Machine algorithm, (i) the hard margin Support Vector Machine and (ii) the soft

margin Support Vector Machine that will allow for an analytic treatment of learning with

errors on the training set [CV95]. In both algorithms the elements, hyperplane, margin

and support vectors are essential. The hyperplane is understood as a plane that separate

the data, the margin is the distance of the hyperplane and the support vectors and the

support vectors are the closest points of the hyperplane. The optimal hyperplane is de-

fined as the linear decision function with maximal margin between the vectors of the two

classes [CV95]. According to [CV95] finding the optimal hyperplane in the hard margin

case the algorithm considers the set of labeled training patterns:

(𝑦1, 𝑥1), ..., (𝑦𝑙, 𝑥𝑙) 𝑦𝑖 ∈ −1, 1 (3.1.2)

The data set is linearly separable if there is a vector W and a scalar b such that

𝑦𝑖(𝑊 · 𝑥𝑖 + 𝑏) ≥ 1 𝑖 = 1, ..., 𝐿 (3.1.3)
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are valid for all elements of the training set. The optimal hyperplane is given by

𝑊0 · 𝑥 + 𝑏 (3.1.4)

The maximal distance between the projections of the training vectors of two different

classes under the constraints (3.1.3) will ensure an optimal hyperplane (3.1.4)

𝜙 = 𝑊 · 𝑊 (3.1.5)

for this the equation (3.1.5) has to be minimized. To do this a standard optimization

technique is used and a Lagrangian is constructed

𝐿(𝑊, 𝑏, Λ) = 1
2(𝑊 · 𝑊 ) −

𝐿∑︁
𝑖=1

𝛼𝑖[𝑦𝑖(𝑥𝑖 · 𝑊 + 𝑏) − 1] (3.1.6)

where Λ𝑇 = (𝛼1, ..., 𝛼𝑙) is the vector of non-negative Lagrange multipliers corresponding

to the constraints (3.1.3). To find the hyperplane in the soft margin case the reasoning is

similar and can be found in the article of [CV95].

The SVM algorithm deals very well with linear data sets, in cases where a straight

line is sufficient to separate a data set, but for problems with non linear data sets is not

possible to find a straight line to classify the data set, in this case the Kernel Trick [BGV]

is used. The basic idea is that if a data set is inseparable in the current dimensions, the

kernel trick will carry the input data set to a higher dimensional space and by choosing

an adequate dimension, the data set points become linearly separable or mostly linearly

separable in the high-dimensional space [AW99]. Thus, the SVM with the Kernel trick

[HSS08] currently has been ensured the solving of linear and non linear problems efficiently.

Beyond that references cited before it is recommended the articles [Bis06] and [SS04] as

good references for the theory and practicalities of SVM.

The Support Vector Machine algorithm implemented in the scikit-learn Python li-

brary, version 0.24.2, have been improved in relation with the initial implementation of

the algorithm made in the articles [Vap95], [Vap98]. Internally the library uses [CL11]

and [FCH+08] as guidelines for implementation of the Support Vector Machine algorithm.

In the model I (SVM), the Kernel parameter that better adjusted to the data set

was the "Linear", thus the Kernel was set with, Kernel = Linear, the article [CS01] shows
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how the multiclass Kernel algorithm is implemented in the Python library, version 0.24.2.

The Python version used to implement the model in the research was 3.8.3.

The hyperparameters used in the SVM implementation by Scikit-learn [PVG+11]

Python library are, 𝐶 (the penalty of the error), 𝐾𝑒𝑟𝑛𝑒𝑙𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (the Kernel functions

available in the library are, ’linear’,‘rbf’, ‘poly’ and ‘sigmoid’), 𝑑𝑒𝑔𝑟𝑒𝑒 (available to the

polynomial Kernel function. Ignored by all other kernels), 𝑔𝑎𝑚𝑚𝑎 (it is the Kernel coef-

ficient for ‘rbf’, ‘poly’ and ‘sigmoid’ Kernel functions), 𝑐𝑜𝑒𝑓0 (Independent term in kernel

function. It is only significant in ‘poly’ and ‘sigmoid’), 𝑠ℎ𝑟𝑖𝑛𝑘𝑖𝑛𝑔 (it is a parameter

that auxiliary the convergence velocity of the algorithm, decreasing the training time),

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (when enabled, probability estimates are calculated), 𝑡𝑜𝑙 (it is a stopping

criterion), 𝑐𝑎𝑐ℎ𝑒_𝑠𝑖𝑧𝑒 (the size of the kernel cache in MB), 𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 (set the pa-

rameter 𝐶 of class i. If not given, all classes are supposed to have weight one), 𝑣𝑒𝑟𝑏𝑜𝑠𝑒

(when enabled return a verbose output), 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 (number maximum of interactions),

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑠ℎ𝑎𝑝𝑒(it is the decision function present in the classifier), 𝑏𝑟𝑒𝑎𝑘_𝑡𝑖𝑒𝑠

(if true, it is responsible for breaking ties according to the confidence values of the deci-

sion function), 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 (it is responsible for controls the pseudo-random number

generation for shuffling the data for probability estimates). In the Scikit-learn [PVG+11]

Python library, version 0.24.2, there are two stopping criterion for the SVM algorithm,

the first it is the number of maximum interactions (𝑚𝑎𝑥_𝑖𝑡𝑒𝑟) that the algorithm will

made in the training data set, in this setup the algorithm will stop when the maximum

interactions number was achieved. The second stopping criterion it is the tolerance factor

(𝑡𝑜𝑙), in this case, when the loss function or the validation score is not improving by at

least a tolerance factor (𝑡𝑜𝑙) for two consecutive interactions, convergence is considered

to be reached and training stops. In the research was utilized the tolerance factor with

stopping criteria.

The model applied in the research has setup the hyperparameters as follow, 𝐶 = 100

(the penalty of the error), 𝐾𝑒𝑟𝑛𝑒𝑙𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑙𝑖𝑛𝑒𝑎𝑟 (the Kernel functions available

in the library are, ’linear’,‘rbf’, ‘poly’ and ‘sigmoid’), 𝑑𝑒𝑔𝑟𝑒𝑒 = 3 (Ignored by linear

kernel function), 𝑔𝑎𝑚𝑚𝑎 = 𝑠𝑐𝑎𝑙𝑒 (it is the Kernel coefficient for ‘rbf’, ‘poly’ and ‘sig-

moid’ Kernel functions. Ignored by linear kernel function), 𝑐𝑜𝑒𝑓0 = 0.0 (Indepen-

dent term in kernel function. Insignificant in linear kernel function), 𝑠ℎ𝑟𝑖𝑛𝑘𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒

(it is a parameter that auxiliary the convergence velocity of the algorithm, decreasing
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the training time), 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑓𝑎𝑙𝑠𝑒 (when enabled, probability estimates are cal-

culated), 𝑡𝑜𝑙 = 0.001 (it is a stopping criterion), 𝑐𝑎𝑐ℎ𝑒_𝑠𝑖𝑧𝑒 = 200 (the size of the

kernel cache in MB), 𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑛𝑜𝑛𝑒 (set the parameter 𝐶 of class i. If not given,

all classes are supposed to have weight one), 𝑣𝑒𝑟𝑏𝑜𝑠𝑒 = 𝑓𝑎𝑙𝑠𝑒 (when enabled return a

verbose output), 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = −1 (number maximum of interactions, -1 for no limit),

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑠ℎ𝑎𝑝𝑒 = 𝑜𝑣𝑟 (it is the decision function present in the classifier),

𝑏𝑟𝑒𝑎𝑘_𝑡𝑖𝑒𝑠 = 𝑡𝑟𝑢𝑒 (if true, it is responsible for breaking ties according to the confidence

values of the decision function), 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 3 (it is responsible for controls the

pseudo-random number generation for shuffling the data for probability estimates).

Support Vector Machine (SVM) has been proven to perform much better when deal-

ing with high dimensional datasets and numerical features. Although SVM works well

with default value, the performance of SVM can be improved significantly using parameter

optimization [SPBW16]. However, parameter optimization can be very time consuming

if done manually especially when the learning algorithm has many parameters ([FI05];

[RdC08]). Thus, parameter optimization is often accomplished using a Grid Search on

discrete sets of parameters to select the optimal ones with the aid of cross-validation

[FA19]. This method basically test all parameters combination and measuring the effi-

ciency according to the metric chosen by the developer. In the current research, accuracy

was chosen as the metric to measure the performance of the combination of all hyper-

parameters, thus, the hyperparameters combination that returned the highest value of

accuracy was used to set up the models. The hyperparemeters that were utilized to feed

the Grid Search were, 𝐶 (the penalty of the error), and 𝑡𝑜𝑙 (it is a stopping criterion), both

hyperparameters with input values of, 0.001 - 0.01 - 0.1 - 1.0 - 10 - 100 - 1000. The optimal

hyperparameters values returned by the Grid Search were 𝐶 = 100 and 𝑡𝑜𝑙 = 0.001.

3.1.2.2 Neural Networks

Neural networks are a field of Artificial intelligence (AI) in which mathematician

algorithms have been worked in a process that remember the brain thinking process.

Neural network models are biologically plausible and can help us understand how the

brain works [MMK03]. The elements that compounds a Neural Network are illustrated

in the figure 3.2. The figure 3.2 show us a biological neuron on the left and an artificial

neuron on the right.



CHAPTER 3. THEORETICAL FUNDAMENTALS 41

Figure 3.2: Biological and artificial neurons showing the similar compounds.

There are some points to pay attention:

(i) The first point are the input nodes, is through them that the model is feed with

the input data, in recognize problems this nodes can be understood as the object features

(ii) Each connection between the input nodes and the hidden layer nodes has a

weight associated with connection, based on the individual weight of each connection the

algorithm selects which input features will have greater or lesser impact on processing.

(iii) The weighted sum is a calculus that can be represented by the equation 3.1.7,

to calculated the weighted sum is necessary, the connection weight and the input node

value. The weighted sum is expressed by the equation below:

Weighted Sum = 𝑏 +
𝑛∑︁

𝑖=1
𝑋𝑖 * 𝑊𝑖 (3.1.7)

Where 𝑋𝑖 is the input node value, 𝑊𝑖 the weight associated to connection and 𝑏,

bias, an additional weight that allows to move the activation function to the left or right

to improve model learning.

(iv) The result obtained with the weighted sum is transfer to activation function.

The activation function is chosen according to model goal.

(v) The output node is the last compound of the default Artificial Neuron, it is

function of the all elements listed before and can be expressed as follow in equation 3.1.8:

Output node = 𝑌 = 𝑓(𝑏 +
𝑛∑︁

𝑖=1
𝑋𝑖 * 𝑊𝑖) (3.1.8)
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The process describe above can be understood as feed-forward, which is the infor-

mation flow in the neural network from input data to the output data [SKP97]. The

feed-forward doesn’t allow the update of the weights, because this is necessary the ap-

plication of the back-propagation. The discovery of “back-propagation” in the context of

neural networks by Rumelhart et al. [RHW86] drastically improves the learning efficiency

of such models enabling them to be used in practice [Ba13].The central idea of error back-

propagation is to compute the partial derivatives of the weights in a neural network by

applying the chain-rule repeatedly [Ba13].

The learning rate can be understood as the amount that is updated in each epoch

in the weights of the model. It is used to find the best combination of weights so that

the model reaches the minimum error in its predictions. The procedure of choosing a

good value for the learning rate of the stochastic optimization can increase performance

and reduce the training time in the model. This because if were chosen a value for the

learning rate bigger than expected, the model can update the weight more than necessary

and occasionally jump the minimum value of error, in this case, the model will have a

needless time consuming. On the other hand, however, if the value for the learning rate

is less than expected, the model will have to update several times until it reaches the

minimum error value, and again this process will be unnecessarily time-consuming. The

learning rate can be considered the most important hyperparameter, thus, choosing a

good value for the learning rate is fundamental in training deep learning neural networks.

The main purpose of the activation function it is to adds the nonlinear factors to

remove redundant data while preserving features, it retains"active neuron feature" and

maps out these features by nonlinear functions, which is the essential of the neural net-

work to solve the complex nonlinear problem [LS18]. The Relu (Rectified Linear Units)

activation function [NH10], [HSM+00], [BDL20]is a mathematical function whose output

0 if the input is negative, and for any positive value x, it returns that value back. In

neural networks modeling of electrofacies, predicting the probability of the electrofacies

requires computing scores for every electrofacies in the data set and to normalize them to

form a probability distribution. This is typically achieved by applying a softmax function.

The Softmax activation function [WLZ+18], [JCGJ17], is often used in the output layer of

neural network models for multi-class classification problems, where the number of output

classes is required on more than two class labels. Softmax makes this possible because
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the output is a vector with the probabilities of occurrence of each class label.

The hyperparameter, batch size, used in the model corresponds to the number of

training samples that will be executed before the weights update. The advantages of

using a batch size smaller than the samples number is are two.

(A) The first advantage is because it required less memory, when the data set is very

large this is a crucial factor.

(B) Normally, Neural Network train is faster, in addition, neural network parameters

will have more than just an update because the model will have updated neural network

parameters after each batch size. In the case that, the batch size is equal to the sample

number, the model will only have an update of the Neural Network parameters.

Several recently proposed stochastic optimization methods have been successfully

used in training deep networks such as RMSPROP, ADAM, ADADELTA, NADAM. They

are based on using gradient updates scaled by square roots of exponential moving averages

of squared past gradients [RKK19]. In the model applied in the research, the optimizer

chosen was the Adam optimizer due to its lower training cost and faster convergence

in relation to the other optimizers. The name Adam derived from adaptive moment

estimation. Adam is a method for efficient stochastic optimization that only requires first-

order gradients with little memory. The method computes individual adaptive learning

rates for different parameters from estimates of first and second moments of the gradients

[KB14]. Therefore, Adam is an optimizer that can be used as a good alternative to the

classic Stochastic gradient descent, the Adam optimizer is called when upon updating

neural network weights.

In spite of many successes, Neural Networks still suffer from a major weakness. The

presence of nonlinear hidden layers makes deep networks very expressive models which are

therefore prone to severe overfitting [Sri13]. Due to this reason, was applied the dropout

technique to the Neural Networks model used in the research. The dropout is a technique

used in neural networks to try to avoid the overfitting of the algorithm. The key idea is

to randomly drop units (along with their connections) from the neural network during

training [SHK+14]. Besides to avoid the overfitting, the technique called dropout has

shown to significantly improve the performance of deep neural networks on various tasks

[HSK+12].

For running the model developed in the research was utilized the Google Colab with
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the TensorFlow 2.0, version 2.5.0, the main library used to build the model was the Keras,

version 1.1.2.

3.2 Geophysical Well Logs

Geophysical well logging consists, for the most part, of lowering instrument pack-

ages into holes in the earth in order to measure physical parameters that characterize the

formations [Tit12]. Measurements techniques are used from three broad disciplines: elec-

trical, nuclear, and acoustic. Usually a measurement is sensitive either to the properties

of the rock or to the pore-filling fluid [ES07]. In current research, the geophysical well

logs used were, Gamma ray, Neutron, Resistivity, Water saturation, Density, Porosity, P

and S-velocity. They have contributed with the construction of the data set, and were

utilized as input features for the building of models of the research.

The geophysical well logs were chosen according to its capacity of representation of the

rock matrix, porosity and fluids. This choice was made with the goal of understanding all

elements presents in the rock interval of interest. Between the groups of geophysical well

logs, able to represent the rock matrix, porosity and fluids, were chosen the geophysical

well logs in common between the well logs worked in the research. In the section 4.1 it is

explained more clearly the reasons why were chosen the current setup of geophysical well

logs.

3.2.1 Gamma Ray Logging

Gamma Ray (GR) logs were introduced in mining research around 1930, and, ever

since, have been utilized to auxiliary the interpretation and correlation of lithologies and

formations. Gamma Ray (GR) logs measure the natural radioactivity in Formations.

In addition to prospecting for radioactive minerals, the radioactive method is extensively

applied in borehole studies of subsurface stratigraphy as might be deemed necessary when

prospecting for crude oil and natural gas [RWS+14]. Shale-free sandstones and carbonates

have low concentrations of radioactive material and give low Gamma ray readings. As

shale content increases, the Gamma ray log response increases because of the concentration

of radioactive material in shale [AKG04]. Shales usually emit more Gamma rays than

other sedimentary rocks because radioactive potassium is an abundant component in their
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clay content, furthermore, due to the cation properties of clay, uranium and thorium are

absorb in its structure.

Figure 3.3: Gamma Ray distribution in the rocks (from [Big92]

after[Rus44].

In the figure 3.3, it is possible to see the distribution of Gamma Ray in rocks. Gamma

Ray logs have mainly used to distinguish clean and dirty formations and, consequently,

potentially productive intervals to hydrocarbons. Therefore, it is a good indicator of

reservoir zones and non-reservoir zones.

Gamma ray logs has the mainly use to distinguish clean and dirty formations and,

consequently, potentially productive intervals to hydrocarbons. Therefore, it is a good

indicator of reservoir zones and non reservoir zones.

3.2.2 Neutron Logging

In Neutron logging, a neutron source is employed to excite the release of radiation

from the rock formations. The neutron source is usually a mixture of elements (of which

of beryllium and radium have been commonly used) and the method is a means for

determining the relative porosity of rock formations and to auxiliary in the detection
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of light hydrocarbons and gas [RWS+14]. The Neutron device works by bombarding

the formation with high-energy neutrons. When these high-energy neutrons collide in

formations with a large amount of hydrogen (atoms with similar size to neutrons atoms),

the neutrons can interact in two ways, the first is in the collision with hydrogen atoms,

and the second is in the absorption of neutrons by the nuclei of atoms of the formation. In

both neutrons interactions, there is the production of high-energy Gamma rays, and in the

collision, there are low energy neutrons being scattering. Due to the higher concentration

of hydrogen in the fluids present in the pores of the rock formation, the neutron logging

response indicates the concentration of hydrogen in the fluid-filled pore space. Thus, the

neutron log can be used to determine the hydrogen content of the logged interval by

counting captured gamma rays or neutrons counted at a detector [Fan10].

It is known that Water and Oil have high concentrations of hydrogen when compare

with Rock formations and Gas. Therefore, it is possible to infer that the neutron detectors

will have a large Gamma ray response in formations with high porosity fluid-filled in Oil

and Water, while formations with a small Gamma ray response will have a low porosity or

the porosity fluid-filled with Gas. The Neutron logs are widely utilized, but the main uses

are in qualitative identification of shale/sands zones, in cross plots with Density logging

to detect gas zones, light hydrocarbon zones, and to determine lithology.

3.2.3 Density Logging

Density log tools consist of a chemical radioactive source of Gamma ray, Cesium and

Cobalt, it is responsible by the Gamma ray emission of high energy. The interaction

and the number of collisions with electrons of the rock formation is proportional to the

electrons number of the rock formation, thus, the electrical density can be related with

the volumetrical density. If the measurement of Gamma rays is large, this implies a large

electron density and correspondingly large bulk density [FS16]. If more Gamma rays were

absorbed in the rock formation, the ray count transmitted to the detector will be less and,

therefore, the rock formation will be less dense. The Gamma ray that collide with the

materia can suffer three types of interaction: (i) production of positron-electron pars; (ii)

Compton scattering; (iii) and Photoelectric effect. The Compton scattering is the main

effect used to measurement the bulk density.

The electrical density is frequently calculated by the equation (3.2.1) as follow:
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𝜌𝑒 = 2𝜌𝑏
𝑍

𝐴
(3.2.1)

Where 𝜌𝑒 is the electrical density, 𝜌𝑏 is the bulk density, 𝑍 is the atomic number,

and 𝐴 is the molecular weight. The formation porosity of a interval can be calculated by

equation (3.2.2) below:

𝜑 = 𝜌𝑚𝑎 − 𝜌𝑏

𝜌𝑚𝑎 + 𝜌𝑓

(3.2.2)

Where 𝜑 is the porosity of the interval, 𝜌𝑚𝑎 is the matrix density, and 𝜌𝑓 the fluid

density.

The traditional use of Density logs is to measure the density and porosity of reservoirs

[SJ93]. Density logs are useful for determining hydrocarbon density and in detecting

hydrocarbon gas when associated with Neutron logs, a small density implies high hy-

drocarbon gas content, while a high density suggests a low hydrocarbon gas content

[FS16]. Density logs are also helpful for lithologic identification, creation of Synthetic

Seismograms when combined with Sonic logs and mensuration of Formation mechanical

properties when associated with Sonic logs. In the literature is suggested running a caliper

log to complement interpretation of the density log. Because the density is sensitive to

borehole rugosity, a correction curve should always be run [Flo13].

3.2.4 Resistivity Logging

The Resistivity logging tool was first used downhole in Alsace, France in the year

of 1927 [SI16]. The Resistivity is the ability of a material resists to the flow of electrical

current. The ability to conduct electric current depends of the rock matrix and of the fluids

contend in the pores. Usually the rock matrix presents difficulties into the flow electrical

current. The pores when non-filled working as isolating. When there are free ions in the

fluid content of the pores as occurs in a brine, then the flow electrical current is easier. The

usefulness of electrical resistivity logging rests on the fact that rocks (with a few notable

exceptions) and hydrocarbons are insulators, whereas connate waters are generally saline

and, therefore, good conductors [Tit12]. In the geological prospect of an Oil field, the

main interest lies in the fluid that the formation can produce. Therefore, it is crucial to
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know distinguishing between brine and hydrocarbons, the two main fluids that occupy

the pores space [ES07]. Resistivity differences between brine and hydrocarbons make it

possible to use resistivity logs to distinguish between brine and hydrocarbon fluids [FS16].

Thus, high values of resistivity allying with low values of Water Saturation and high values

of porosity, can indicate rich zones in hydrocarbons (reservoir zones), while low values of

resistivity allying with high values of Water Saturation and high values of porosity implies

the presence of brine, and consequently non-rich zones in hydrocarbons (non-reservoir

zones). The Water Saturation can be calculate from the Resistivity logging from the

equation (3.2.3) The term "Water Saturation" is frequently used to describe the fraction

of the rock pore space that is filled with water. The Water Saturation also can be defined

as the percentage of the porosity occupied by brine rather than hydrocarbons[ES07].

The Water Saturation (𝑆𝑤) can be calculated from Archie’s equation (3.2.3) for wet-

ting phase saturation,

𝑆𝑤 =
(︂

𝐹 · 𝑅𝑤

𝑅𝑡

)︂ 1
𝑛

(3.2.3)

where 𝐹 is the formation resistivity factor, 𝑅𝑤 is the resistivity of the ionic solution,

𝑅𝑡 is the formation resistivity, and 𝑛 is called the saturation exponent. The Water Sat-

uration when allied with the Resistivity logging becomes a powerful guideline in Oil and

Gas prospecting.

3.2.5 Sonic Logging

Sonic logs is another technique used to measure porosity, working with measures that

reflect the elastics characteristics of the rock formation, the technique is widely utilized

in literature and industry. The attribute measurement, interval transit time, is relative

to the elastic properties of the rock formation, such as, lithology (matrix composition),

texture, fluid contend and porosity. In other words, Sonic logging is a measurement of

mechanical wave slowness (the inverse of the velocity) throughout the formation, produced

by a source located inside a tool immersed in a fluid filled borehole [SBNR19]. However,

it is important to highlight that the quality of the Sonic logging is highly dependent on

borehole conditions, and requires good contact between the tool and the borehole wall

[SR11]. The main functions of the Sonic logs are, evaluating the rock formation porosity,



CHAPTER 3. THEORETICAL FUNDAMENTALS 49

lithological identification when associated with Density or Neutron logs, construction of

Synthetic Seismograms when allied with Density logs, and permeability identification.

The ratio of compressional-wave velocity (𝑉𝑝) to shear-wave velocity (𝑉𝑠), or 𝑉𝑝/𝑉𝑠

gives additional information about lithology. Well logs studies ([Pic63]; [Nat74]; [Kit77];

[MS90]) indicates a correlation between 𝑉𝑝/𝑉𝑠 values and lithology. Pickett [Pic63] estab-

lished 𝑉𝑝/𝑉𝑠 values from core measurements of 1.9 for limestone, 1.8 for dolomite, and

1.6 to 1.75 for clean to calcareous sandstones [PF97]. The acoustic logs also can help in

the distinguishing of the consolidated, unconsolidated, homogeneous and fractured for-

mations, it is important because this mechanical property will influence in the stability

of the borehole and in the permeability of the formation. From Whylle’s equation (3.2.4)

[WGG56],

𝜑𝑠 = Δ𝑡𝑙𝑜𝑔 − Δ𝑡𝑚𝑎

Δ𝑡𝑓 − Δ𝑡𝑚𝑎

(3.2.4)

where the terms are: 𝜑𝑠, the porosity of the formation; Δ𝑡𝑙𝑜𝑔, the acoustic interval

transit time in the formation of interest; Δ𝑡𝑚𝑎, the acoustic transit time of the rock matrix

and Δ𝑡𝑓 , the acoustic transit time of interstitial fluids. It is possible to note that, the

porosity calculated from Sonic logs will depend on the choice of the acoustic transit time of

the rock matrix, which varies with lithology. For unconsolidated and poorly consolidated

formations a correction factor is required in order to adjust the Whylle’s equation (3.2.4).

Thus, rewriting the Whylle’s equation (3.2.5):

𝜑𝑠 =
(︃

Δ𝑡𝑙𝑜𝑔 − Δ𝑡𝑚𝑎

Δ𝑡𝑓 − Δ𝑡𝑚𝑎

)︃
× 1

𝐶𝑝

(3.2.5)

Where 𝐶𝑝 is the compaction factor, the term added in the Whylle’s equation (3.2.4)

for unconsolidated formations.

Another equation used to calculate the porosity from Sonic logging was developed in

Raymer and Hunt works [RHG+80], the equation is known as Raymer-Hunt equation (3.2.6),

expressed as,

1
Δ𝑡𝑙𝑜𝑔

= 𝜑𝑠

Δ𝑡𝑓

+ (1 − 𝜑𝑠)2

Δ𝑡𝑚𝑎

(3.2.6)
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This provides a much superior accuracy porosity over the entire range of geologically

reasonable Δ𝑡𝑙𝑜𝑔[Glo00]. From Sonic logging is possible to note that sound waves propa-

gate faster in rock matrix than in fluid. Thus, Rock Formation’s that have long interval

transit time imply slow speed of sound propagation and large pore space. Conversely,

short transit time implies a high speed of sound propagation and small pore space [FS16].

Therefore, the Sonic logging is a useful tool to calculate porosity and for auxiliary others

logs in the identification of the Rock Formation’s physical properties in the subsurface.
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Chapter 4

Materials and Methods

The chapter will show the materials and methods used in the research. To realize the

predictions were utilized the softwares, Jupyter notebook, an open-source software with

Python version 3.8.3, and Google Colab with TensorFlow 2.0 version 2.5.0. The software

used to extract the input features and to plot the Geophysiscal well logs section was the

Petrel, version 2017. The methods applied in the research can be visualized in the next

sections. The section 4.1 talk about the data set, all the issues and solutions found by

the way, how the data set was acquired, and the process of features selection. The section

4.2 and its subsections are responsible to presents the data science stage, in this stage

the depth matching process 4.2.1, and the Statistical processing 4.2.2 are described. The

splitting stage can be visualized in the section 4.3, this section presents how the data set

was splitting into training and test data set. In the section 4.4 are described the workflow

of the research in the cases of supervised and unsupervised learning algorithms. In the

current research was proposed two different way to make the electrofacies classification,

the first (i) workflow was thought to supervised learning algorithms (section 4.4.2), while

the second (ii) was developed for unsupervised learning algorithms (section 4.4.3). In

the section 4.5 it is described all the process of statistical validation that was used in

the supervised learning algorithms to evaluate the models. The last section (4.6) of this

chapter will describe the vertical heterogeneity, an metric created in the research that

measure the purity level of reservoir zones.
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4.1 Data set

The research worked with data of Geophysical well logs presents in a Brazilian pre-

salt oil field, Gato do Mato. The two wells worked in the research were, 1-SHEL-23-RJS

and 1-SHEL-26-RJS, the data set of the both wells were utilized in the unsupervised and

supervised learning algorithms. The data set of Geophysical well logs was provided by

the Brazilian National Agency of Petroleum (ANP). After the data acquisition stage, the

next stage was the features selection. How the research is working with the prediction and

classification of electrofacies, the feature selection stage can be understood as the choosing

of the best Geophysical well logs capable to distinguish between the different electrofacies,

and at same time being able to represent the characteristics of the rock matrix, fluids

and porosity. There are several Geophysical well logs capable of measuring these three

properties (rock matrix, porosity, and fluids), but to avoid problems of Geophysical well

logs absence in the data set, the research picked out Geophysical well logs in common

between the wells worked in the current research. The Geophysical well logs used were,

about the rock matrix: Gamma-ray, and S-velocity. About the porosity: Neutron, Sphi,

and Density. About fluids: Resistivity, and Water Saturation. These are the seven input

features responsible for informing about the properties of the rock formation. Initially, the

P-velocity input feature was chosen, but as will be shown in the section 4.2.2, this input

feature was removed. Once that Geophysical well logs were selected, the data science

stage 4.2 has started. At this stage was made the depth matching process 4.2.1, and the

statistical processing 4.2.2 in the data set. Both stages are illustrated in the next sections.

4.2 Data science

As a core of the research, the data science stage was concentrated in the creation

and treatment of the data set. In the current research the term data science was used to

describe the process of creation and treatment of the data set. The building of the data

set is an essential stage and must be done with expertise because it is the guarantee of

reliable information. In the data science stage was realized the depth matching process,

and statistical processing in the data set.

To carry out the data science stage, the research used Jupyter notebook, Google

Colab, and Excel as auxiliaries tools in the building process of the data set. They were
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responsible for ensuring efficiency, agility, and precision in manager with the data set.

4.2.1 Depth matching process

The challenge in the depth matching process is to match the seven input features in-

depth. Each input feature is provided individually by the ANP, and many of these input

features (geophysical well logs) do not have records at the same depth. Thus, creating

an algorithm capable of building a data set with the seven matching records in depth it

is a crucial step for the next stages of the project. The depth-matching process of the

seven input features in relation to depth was responsible for a significant reduction in

the number of input records. The Gamma ray and Density logs demonstrates very well

this reduction, initially the number of Gamma ray collected was 7277, and the number of

Density records was 11707. After the application of the depth-matching algorithm in the

seven input features, the number of records decreased to 1624 input records. The logging

data sampling interval of the data set is 0.15 meters. Therefore, by multiplying the number

of records by the data sampling interval, it is possible to find 243 meters approximately

of rock formation in the 1-SHEL-23-RJS well. This rock formation interval was used to

work on the training and testing of the models presents in the current research.

4.2.2 Statistical processing

After the depth matching process, the data set was normalized in order to transform

all geophysical well logs in the interval between 0 and 1. This is an important process

because it prevents that the absolute values of the records have a weight higher or smaller.

In order words, the normalization process makes the model training less sensitive to the

scale of input features. Initially were chosen eight input features, these input features were

normalized and their frequency histograms were plotted as can be seen in the figure 4.1.

The procedure for the construction of frequency histograms was made due to the

outlier detection method, when the data distribution has a normal distribution behavior

it is common to use the method mean plus or minus two/three standard deviations [Mil91].

In this method the values that are outside of this range are considered outliers. When it

is used the mean plus or minus two standard deviations, 95.45% of the data are present

in the range. The method of the mean plus or minus three standard deviations is based

on the characteristics of a normal distribution for which 99.87% of the data appear within
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Figure 4.1: Frequency histogram of the Geophysical well logs. Data set normalized.

this range [HRYB98]. But, it is important to remember, these results just are valid in

the normal distribution case. Beyond of the visual aspect of the frequency histograms,

the research also calculated the Fisher-Pearson coefficient of skewness to auxiliary in the

analysis. In the figure 4.1, frequency histograms are plotted with the calculus of the

mean(𝜇), standard deviation(𝜎), and the Fisher-Pearson coefficient of skewness.

The sample skewness is computed as the Fisher-Pearson coefficient of skewness [KZ00].

The Fisher-Pearson coefficient of skewness is responsible to measure the lack of symmetry

in a distribution. Normal distribution has skewness 0. Larger values (in magnitude) indi-

cate more skewness in the distribution of observations [KZ00]. Thus, the Fisher-Pearson

coefficient of skewness it is useful to help in detection of normal distribution. The Fisher-

Pearson coefficient of skewness was applied in the eight input features, and the values can

be seen in the figure 4.1. It is possible to note from figure 4.1 that the population of the

input features have unknown distributions, and with a notable asymmetry (skewness).

Thus, the method of outliers detection based in the mean plus or minus two/three stan-

dard deviations is not valid to use in the research data set. Due to the notable asymmetry

and the unknown distributions illustrated in the figure 4.1 was necessary to find another

method capable of detecting the outliers with reliability.

One first approach would be to make the data symmetrical by the use of a non-linear

transformation, in the research case, the logarithmic transformation was used. Presum-
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ably with such an approach, outliers would also be more symmetrically away from the

central tendency, providing an equal chance of locating low and high outliers. How-

ever, there is no single technique that makes the data symmetrical when they have been

contaminated with outliers [CC10]. How can be seen in the figure 4.2, the logarithmic

transformation does not have successful in to become the distributions normal. But, in

general, the values of skewness of the frequency histograms have decreased. The excep-

tions were the Resistivity, Water Saturation, and P-Velocity distributions. These input

features had the absolute magnitude of skewness values increased.
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Figure 4.2: Frequency histogram of the Geophysical well logs. Data set normalized and

log-transformed.

Once that, the logarithmic transformation was not capable to transform the distribu-

tions as normal distributions, the method Inter-Quartile Range (IQR) method of outlier

detection was applied [Daw11], [LJK+00], [VPS18]. The method Inter-Quartile Range

(IQR) method of outlier detection is usually used when the distributions are not normal

and asymmetrical. The Inter-Quartile Range (IQR) is the difference between third and

first quartile. Quartile are responsible to divide the ordered sample observations into four

quarters having the same number of observations (m) in each quarter [JF01].

The skeletal boxplot consists of a box extending from the first quartile (𝑄1) to the

third quartile (𝑄3); a mark at the median; and whiskers extending from the first quartile to

the minimum 𝑄1−(1.5·𝐼𝑄𝑅), and from the third quartile to the maximum 𝑄3+(1.5·𝐼𝑄𝑅)
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[Daw11].

The bloxplots of the distributions were created in Jupyter notebook and Google colab

4.3. In the method Inter-Quartile Range (IQR), method of outlier detection, the samples

that are outside of the interval between the minimum (𝑄1−(1.5·𝐼𝑄𝑅)) and the maximum

(𝑄3 + (1.5 · 𝐼𝑄𝑅)) are considered outliers.

It is possible to note in the figure 4.3, that boxplots of Gamma ray and Porosity

distributions has presented outliers respectively above the maximum value, and below

the minimum value.
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Figure 4.3: Boxplot of the Geophysical well logs. Data set normalized and log-

transformed.

Once the outliers were detected, an algorithm created in the research was executed to

remove the rows from the data set that contains the outliers. Before to remove the outliers,

there were 1624 records in the data set, and after the outliers removal the numbers of

records in the data set decreased to 1617 records. Among the removed data, three were

porosity outliers, and four were gamma ray outliers. The porosity outliers were detect

below to the minimum value in the boxplot, while the gamma ray outliers were detect

above to the maximum value in the bloxplot. The final data set without the outliers can

be seen in the figure 4.4.

After detecting the outliers, there is only one more step to be made to become the

algorithm more optimized. The last step it is to verify if the input features are independent
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Figure 4.4: Boxplot of the Geophysical well logs. Data set normalized and log-transformed

and outliers removed.

between them self. This important step avoids that the model working with redundant

data (dependent variables). In this test it is calculated the Pearson correlation coefficient

[BCHC09]. If the Pearson correlation coefficient is 1, the variables are totally dependent

on each other. If the Pearson correlation coefficient is -1, the variables will have a total

inverse dependence. In the other side, if the Pearson correlation coefficient is equal 0,

the variables are independent or uncorrelated. In the research, the Pearson correlation

coefficient of all variables was calculated, then with the values found a matrix was built,

this matrix with all values plotted is known as correlation matrix. The correlation matrix

of the variables (input features or geophysical well logs) can be seen in the figure 4.5.

From the figure 4.5 it is possible to note that the correlation matrix between the

geophysical well logs presents a linear dependency between the two variables P-velocity

and S-velocity. The value of the Pearson correlation coefficient for these two variables it

is equal 1. Thus, for optimizing the algorithm one of these variables needs to be removed.

In the research case was removed the variable P-velocity. The correlation matrix after the

removal can be seen in the figure 4.6

Therefore, after the statistical processing stage (last stage in "Data science stage"),

the data set it is finalized and ready to be used in models.

One difficulty with treatments of outliers is that there is no unanimously accepted
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Figure 4.5: Matrix Correlation between the Geophysical well logs. Data set normalized

and log-transformed and outliers removed.

theoretical framework for the treatment of outliers. Various fields have developed various

approaches and rare are the approaches that can be formulated with the concepts of

another approach [CC10]. Detected outliers are candidates for aberrant data that may

otherwise adversely lead to model misspecification, biased parameter estimation, and

incorrect results. Therefore, it is important to identify them prior to modeling and analysis

[BG05], [LSJ04], [WBH+02]. In the research, the Inter-Quartile Range (IQR) method was

chosen, which showed, through boxplot analysis , a good adaptation for detecting outliers

in the data set.

It is important to remember that, the initial efforts to work with the data set at the

data science stage, are the core of researches related to the application of AI algorithms.

When the building, and treatment of the data set is well-realized, AI algorithms applica-

tion become more efficient, in some cases can increase the hit rate and consequently lead

to better results. The evolution of the research in models I and II just was possible to

achieve due to the precise development realized in the data science stage.



CHAPTER 4. MATERIALS AND METHODS 59

Ga
m

m
a

De
ns

ity

Ne
ut

ro
n

Po
ro

sit
y

Re
sis

tiv
ity Sw

S-
ve

l.

Gamma

Density

Neutron

Porosity

Resistivity

Sw

S-vel.

1.0 -0.1 0.1 0.4 -0.4 0.2 -0.5

-0.1 1.0 -0.2 0.0 0.0 0.1 0.0

0.1 -0.2 1.0 0.6 -0.2 -0.2 -0.6

0.4 0.0 0.6 1.0 -0.2 -0.2 -0.9

-0.4 0.0 -0.2 -0.2 1.0 -0.7 0.3

0.2 0.1 -0.2 -0.2 -0.7 1.0 -0.0

-0.5 0.0 -0.6 -0.9 0.3 -0.0 1.0 0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4.6: Matrix Correlation between the Geophysical well logs without P-velocity.

Data set normalized and log-transformed and outliers removed.

4.3 Training and Test data set

The main data set, the 1-SHEL-23-RJS data set, was created according to a manual

classification made by a specialist Geologist, this classification was responsible for labeling

the data set. The labeling process is necessary because it allows to evaluate the perfor-

mance of the models. The data set consists of 1617 inputs, and each input has 7 distinct

features, they are: Gamma-ray, S-velocity, Neutron, Sphi, Density, Resistivity, and Wa-

ter Saturation. All these features, Geophysical well logs, are responsible by recorded an

information about the Rock matrix, fluids and porosity of rock formations in subsurface.

With 1617 records in the final data set, and a logging data sampling interval of 0.15

meters it is possible to calculate the interval of rock formation worked in the research.

Multiplying the number of records by the data sampling interval, approximately 243

meters of rock formation are found in the 1-SHEL-23-RJS well. This rock formation

interval was used to work on the training and testing of the models presents in the current
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research.

In models developed with Supervised Learning algorithms, a way to evaluate the

model performance it is dividing the labeled data set into two groups, the training, and

test data set. In the current research, this division was made only for models built with

Supervised Learning algorithms. In models developed with Unsupervised Learning algo-

rithms, there is no meaning in dividing the data set, once that the data set is unlabeled.

In the current research, the training and test data set were divided respectively in

the proportion of 75% and 25%, in the 1-SHEL-23-RJS data set, the division was made at

random and proportional to each electrofacies labeled in the manual classification stage

(Table 4.1).

Table 4.1: Number of samples of each electrofacies selected to train models I and II.

Electrofacies Proportion of Samples

Electrofacies 0 (125/507) 0.246

Electrofacies 1 (025/087) 0.287

Electrofacies 2 (125/532) 0.235

Electrofacies 3 (087/333) 0.261

Electrofacies 4 (044/165) 0.267

The random division is necessary because it prevents that the model selects only a

part of the data set, which can generate an addiction to the model in a specific data set

interval. The training and test data set is present only in the 1-SHEL-23-RJS data set.

The training data was used to teach the models, while the test data was used to make

the statistical validation. The 1-SHEL-26-RJS data set was used to prediction of the

electrofacies learned in the 1-SHEL-23-RJS training data set.

4.4 Working Flowchart

The proposed working flowcharts were thought with the goal of becoming the elec-

trofacies classification an automated process, and then, save time in the process of elec-

trofacies classification. To achieve the main goal, the research proposed the application of

Artificial Intelligence (AI) algorithms to make the classification and prediction of electro-
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facies in carbonate rocks. This process usually gets to achieves a high hit rate and ensures

a standardized in the electrofacies classification and prediction. In the current research

was worked supervised and unsupervised learning algorithms, and among them the work-

ing flowcharts for each one is different. In the case of supervised learning algorithms the

research proposed initially a manual classification in only one well (1-SHEL-23-RJS), this

well was called in the research of well reference (Figure 4.7), it was utilized as a model

to teach the AI algorithms how to make the classification and predictions in new wells

inside of the same petroleum field.

Figure 4.7: Manual electrofacies classication for the 1-SHEL-23-RJ well. Well log refer-

ence.

For unsupervised learning algorithms, due to the nature of algorithms, the flowchart

is a little more simplified because algorithms does not need of a labeled and split data

set. Thus, the research provided to the model the data set with the input features se-

lected, depth matching, and statistical processing done. The flowchart for unsupervised

learning can be seen in the figure (Figure 4.9). It is important to note that, despite of

the unsupervised learning algorithms does not need of a data set labeled and split, the
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final interpretation process it is more complicated because it is necessary to interpret

the electrofacies created by the model. In supervised learning algorithms it is not neces-

sary to interpret the electrofacies after the prediction, because the interpretation of the

electrofacies is done previously in the manual classification stage.

The working flowchart applied in supervised learning algorithms can be seen in the

figure 4.8, while the working flowchart for unsupervised learning algorithms can be visu-

alized in the figure 4.9. In both working flowcharts, there are initial steps similar, they

are: (i) data acquisition, (ii) features selection, (v) depth matching , and (vi) statisti-

cal processing. From this point the working flowchart of supervised and unsupervised

learning algorithms are different because of the particularity of each algorithm. While

in supervised learning algorithms the data set needs to be labeled and split into training

and test data, in unsupervised learning algorithms these steps are not necessary.

4.4.1 Conventional workflow

The conventional process to classify electrofacies is made using a Geophysical well

logs set able to represent the different rock properties in the subsurface. From the response

of the Geophysical well logs, the geologist specialized begin the identification process of

the electrofacies. To make the electrofacies classification, the geologist specialized verify

the patterns present in the Geophysical well logs set and then individualize each of them.

This process is repeated to all wells present in the petroleum field. If the petroleum field

is huge and there are many wells in the field, then, the manual electrofacies classification

can become a time-consuming process.

The manual classification shows to have unless two disadvantages, they are: (i) a

time-consuming process, in the case that petroleum field has a lot of wells to be analyzed;

(ii) the classification can change according to the specialized Geologist. In the second (ii)

case the trouble is more serious because in this case, the electrofacies classification will not

have a standard and consequently leads to one subjective interpretation of electrofacies.

4.4.2 Workflow in Supervised Learning algorithms

The working flowchart applied to supervised learning algorithms, Support Vector

Machine and Neural Network can be visualized in the figure 4.8.

The steps that compound the working flowchart are: (i) data acquisition, (ii) features
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Figure 4.8: The flowchart of the proposed workflow applied in supervised learning algo-

rithms.

selection, (iii) choice of the reference well, (iv) manual classification, (v) depth matching,

(vi) statistical processing, (vii) data set splitting. After the data acquisition and features

selection, the first step was to choose a reference well (1-SHEL-23-RJS) to work with

the next steps. The choice of the reference well was made according to the number of

records, number of electrofacies present in the well, and quality of the data present in

the well. The well (1-SHEL-23-RJS) was chosen as the reference well because it had the

best relationship among the number of records, electrofacies present and data quality.

The fourth step (iv) adopted by the supervised learning flowchart (Figure 4.8) it is the

same process that it is made for the conventional workflow described in the section 4.4.1.

The manual electrofacies classification is necessary because it allows to labeled the data

set of the reference well. Both algorithms utilized in the current work, Support Vector

Machine and Neural Networks, require a labeled data set to train, learning, and making

the predictions. The depth matching and statistical processing was called of data sci-

ence stage by the research, these steps are the core of the research and were made and

re-made with great care. Splitting the data set into training and test data it is necessary

in supervised learning algorithms, because this step makes the statistical validation pos-

sible. From the labeled and processed data set, models built to predict electrofacies in

new data sets (unknowns data sets) are able to learn. This happens because, when the

reference well is labeled manually, the specialist Geologist it is teaching the algorithms
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how the electrofacies classification must be done accurately to prevent big errors and lack

of standards.

4.4.3 Workflow in Unsupervised Learning algorithms

The K-means workflow (Figure 4.9) is very similar to the workflow of the supervised

learning algorithms (Figure 4.8), the main difference among them it is that the first uses

an unlabeled data set, while the second needs a labeled data set. Furthermore, with

unsupervised learning algorithms it is not possible the evaluate the error, once the data

set is unlabeled, which makes it impossible to compare the results.

Figure 4.9: The flowchart of the proposed workflow applied in the unsupervised learning

algorithms.

4.5 Statistical Validation

Estimating the accuracy of a classifier induced by supervised learning algorithms is

important not only to predict its future prediction accuracy, but also for choosing the best

classifier from a given set of models [Koh95] [Yan07]. In the work was used the confusion

matrix [HTF01], [JWHT13], [JS11] and k-Fold Cross-Validating [BG04], [AGG+12] to

evaluate the model, [AAV+21]. The confusion matrix is constructed by plotting the

predicted and real data in the axis x and y of the table, in a multi-class confusion matrix.

The element 𝑁𝑖,𝑗 present in the confusion matrix is called true positive, situation when

the predicted data is equal to the real data, this situation is verified when the row i is

equal to the column j (𝑖 = 𝑗). There are four elements in the confusion matrix responsible

for statistical validation, they are accuracy, precision, recall, and F1 score. The accuracy
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(Eq.4.5.1) can be defined mathematically as:

Accuracy =
∑︀𝐶

𝑖=1(𝑇𝑃𝑖 + 𝑇𝑁𝑖)∑︀𝐶
𝑖=1 𝑁𝑖

(4.5.1)

where 𝑇𝑃𝑖 are the true positives, the positive data that were correctly predicted in the

class 𝐶𝑖, C is the number of classes, 𝑇𝑁𝑖 are the true negatives, and 𝑁𝑖 is the number of

samples in class 𝐶𝑖.

The precision (Eq.4.5.2) evaluates among all samples predicted as positive by the

model how many are true positive to the class predicted. The precision evaluation can

be understood as the number of true positive that were correctly predicted as positive in

the set of all data predicted as positive. The precision evaluation can be described as:

Precision(𝐶𝑖) = 𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

(4.5.2)

where 𝐶𝑖 indicates the class that measure was taken. 𝐹𝑃𝑖 represents the false positive,

the samples that were predicted to be positive, but in fact, are negative.

The recall (Eq.4.5.3) evaluates among all samples that are positive how many were

predicted as positive. The recall evaluation can be understood as the number of true

positive that were correctly predicted as positive in the set of positive data. The recall is

defined as:

Recall(𝐶𝑖) = 𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

(4.5.3)

where 𝐹𝑁𝑖 are the false negative, samples that were predicted to be false, but in fact

are positive.

The F1-score (Eq.4.5.4) is a combination between precision and recall. Mathemati-

cally the F1-score can be understood as a harmonic mean of recall and precision and, in

some cases, can be considered a measure more representative than accuracy. The F1-Score

is defined as:

F1-Score (𝐶𝑖) = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

(4.5.4)
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The other technique used to evaluate the model performance was the k-Fold Cross-

Validating, the main use of this technique is to verify the capacity of generalization of

the model and to estimate the prediction accuracy [BG04], [Fus11]. This method consists

of splitting the dataset into k subsets of equal or nearly equal sizes, where each subset

is known as a fold and is stratified: that is, each fold attempts to retain the same class

distribution. A model is then trained with k - 1 folds and tested on the remaining fold.

This process is repeated k times until all sets have been used for testing once. Thus, the

experiment returns k estimates of the model classification error [AAV+21].

4.6 Vertical Heterogeneity

From the products obtained by models I and II was created the index of heterogeneity

(Eq.4.6.1) of reservoirs zones. This parameter was created to measure the heterogeneity

level of the reservoir zone predicted by models I and II,

h = 𝑇𝑇𝑁

𝑇𝑇𝑅 + 𝑇𝑇𝑁
(4.6.1)

where, 𝑇𝑇𝑁 is the total thickness of non reservoir zone, 𝑇𝑇𝑅 is the total thickness

of reservoir zone, and ℎ is the level of heterogeneity.
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Chapter 5

Results

The chapter is built showing all results derived from the current research on articles

and preprints, thus in this chapter, the reader will be directed to the respective articles

and preprints in the appendices section. The section 5.1 presents the results obtained with

the model I - Support Vector Machine. In the section 5.2 are demonstrates the results

about the model II - Neural Networks. From section 5.3 it is possible to visualized the

results about the vertical heterogeneity in both models. The section 5.4 illustrates the first

product generate by the research using unsupervised learning algorithms. From section

5.5 the reader will know the first work developed with supervised learning algorithms,

and the section 5.6 shows the latest work done in the current research. In addition, the

chapter also discusses the main results achieved with the research.

5.1 Model I - Support Vector Machine

From the techniques illustrated in the statistical validation section 4.5, results about

the performance of the models applied in the research were obtained. In the model I

(SVM), the confusion matrix and classification report are shown in tables 5.1 and 5.2:

From the table 5.1, it is possible to analysed the performance of the model I in the

test data set. According to table 5.1, there are 406 records in the test data set, considering

that the total number of records in the data set is 1617, then the test data set corresponds

to 25.1% of the total data set. When analyzing the rows and columns of the confusion

matrix, it is possible to notice that the classification error is greater in rows 5 and 3 than

in the others. The consequence is that, rows 5 and 3 that corresponds to electrofacies 2
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Table 5.1: SVM - Confusion Matrix

Predict

R
ea

l

123 0 0 2 0

0 25 0 0 0

0 1 113 7 4

0 0 2 85 0

1 0 8 3 32

and 4 in the table 5.2 presents the first and second lowest values of F1-score, respectively.

The classification report of the model I, table 5.2, presents the metrics of each electrofacies

predicted by the model I. The best electrofacies performance it is found in eletrofacies

0 followed by electrofacies 1. The worst electrofacies performance can be visualized in

eletrofacies 4 followed by electrofacies 2. The classification report allows to visualized

that just electrofacies 4 has F1-score bellow to 90%. The model I has presented a hit rate

in the training data set of 93.7%, and a value of 92.9% in the test data set. The mean

final accuracy found by the Confusion matrix method for model I was about 93%.

Table 5.2: SVM - Classification Report

EF Precision Recall F1-score Spp

0 0.99 0.98 0.99 125

1 0.96 1.00 0.98 25

2 0.92 0.90 0.91 125

3 0.88 0.98 0.92 87

4 0.89 0.73 0.80 44

Acurracy = 0.93

where, 𝐸𝐹 = 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑓𝑎𝑐𝑖𝑒𝑠 and 𝑆𝑝𝑝 = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡, the number of samples that were used in

the evaluation.

It is important to notice the improvement of the model I during research development.

Initially, the model I was development according to a manual electrofacies classification

based on 6 electrofacies (Figure 4.7), and trained with 8 input features, these results can

be visualized in section 5.5. During the research development was noted that the model
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I was very confused on distinguish the electrofacies II (orange) and VI (pink), figure 4.7.

Thus, the electrofacies II (orange) and VI (pink) were merged due to their similar values

of input features. Beyond that, according to analysis of correlation matrix (Figures 4.6

and 4.5) the P-velocity input feature was removed in order to optimize the model. These

changes were responsible to improve the final accuracy of the model I in 7%. The results

illustrated in this section and in section 5.6 are derived from these changes. The well log

section with the electrofacies predicted by the model I can be visualized in the figure 5.1.

Figure 5.1: Electrofacies predicted by the model I (Support vector machine) for the well

1-SHEL-26-RJ.

In relation to the K-fold Cross-Validation method (Table 5.5), it is important to

notice that the model I presents a lower final accuracy than confusion matrix method. In

addition, the model I has a standard deviation of approximately 10%. This high standard

deviation value indicates that, according to the slice of data set, the performance of the

model can imply a large variation in the final accuracy.
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5.2 Model II - Neural Networks

The model II was development based on Neural Networks algorithms and demon-

strates better results than model I. From the beginning, the model II was development

according to a manual electrofacies classification based on 5 electrofacies, and trained

with 7 input features, these results can be visualized in section 5.6. From the moment

that the model I was well calibrated, then the model II was created. The main goal in

creation of the model II was to verify the convergence of the models in predicted electro-

facies. Secondarily, the performance comparison between models I and II was made. In

relation with the model I, the model II obtained 96.6% of final accuracy evaluation by

the confusion matrix method (Tables 5.3 and 5.4), and 96.9% of final accuracy evaluation

by the K-fold Cross-Validating (Table 5.5). These results of the model II when compared

with the same results of the model I were responsible to represent 3.7% of increase in the

final accuracy evaluation by the confusion matrix method, and 10% of increase in final

accuracy evaluation by the K-fold Cross-Validating method. The execution time in model

II was 41.45s, while in the model I was 0.096s. The results are illustrated in this section

and in section 5.6. The confusion matrix and classification report generate by the Neural

Network model is shown in Tables 5.3 and 5.4.

Table 5.3: Neural Network - Confusion Matrix

Predict

R
ea

l

143 0 0 1 0

0 24 0 0 0

0 0 119 1 0

1 0 5 68 0

2 0 3 0 39

In the K-fold Cross-Validation method, the model II has demonstrated a consitency

in electrofacies prediction almost 10x higher than model I. In the model II the standard

deviation it is approximately 1% and has a final accuracy evaluation in the K-fold Cross-

Validation method (96.9%) very similar to the final accuracy evaluation found in the

Confusion matrix method (96.6%). Opposite to the model I, the low standard deviation

in model II indicates a high consistency in the electrofacies predicted by the model. The



CHAPTER 5. RESULTS 71

Table 5.4: Neural Network - Classification Report

EF Precision Recall F1-score Spp

0 0.98 0.99 0.99 144

1 1.00 1.00 1.00 24

2 0.94 0.97 0.96 120

3 0.96 0.93 0.95 74

4 0.97 0.89 0.93 44

Acurracy = 0.97

electrofacies predicted by the model II can be visualized in the figure 5.2.

Figure 5.2: Electrofacies predicted by the model II (Neural Networks) for the well 1-

SHEL-26-RJ.

It is possible to observe in tables 5.2 and 5.4 an increase in the final value of all

statistical parameters in Neural Network model when compared to the SVM model. Final

accuracy, F1 score, precision, and recall are higher for all electrofacies present in the work.

These results revealed a greater robustness of Neural Networks algorithms and a better
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Table 5.5: Supervised learning Models

Accuracy evaluation

k-Fold Cross-Validating

Model I Model II

(SVM) (Neural Network)

0.8307 0.9599

0.8492 0.9692

0.9661 0.9692

0.9507 0.9846

0.7314 0.9629

Mean ± Std Mean ± Std

0.8656 ± 0.0959 0.9692 ± 0.0095

matching with the data set of the research.

When AI algorithms are working on a data set, it is important to check that the

algorithms are not in an overfitting or underfitting case. The overfitting case is verified

when the algorithm presents a great performance in the training data set, but when

submitted to the test data set performs poorly.

The model II has presented hit rate in training and test data set of 96.9% and 96.6%.

In both models, the underfitting and overfitting of models were verified and, in both

cases, the hit rate found in the training data set was very similar with the hit rate in the

test data set. This verification process indicates that the algorithms of the models are

not in an overfitting case. The case of underfitting occurs when the algorithm performs

poorly on the training and test data set. As has been shown with the statistical results,

the algorithms applied in SVM model and Neural Network model are not in the case of

underfitting.

5.3 Vertical Heterogeneity - Models I and II

An extra and valuable information that can be obtained from the electrofacies predic-

tion made by models I and II it is the evaluation of the vertical heterogeneity/homogeneity

of the reservoir zones. The research used the equation 4.6.1 to evaluate the vertical het-
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erogeneity.

The Model I presents 13 sections of non reservoir zone inside the reservoir zone. The

thirteen sections thickness of model I can be visualized in the Table 5.6. The minimum

and maximum thickness of non reservoir zone inside of reservoir zone are 0.15 m, and 7.01

m respectively. The mean thickness of the non reservoir zone inside the reservoir zone to

the Model I it is 1.20 meters. The Model II presents 14 sections of non reservoir zone

inside the reservoir zone. The fourteen sections thickness of the model II can be seen in

the Table 5.7, it is possible to note the minimum and maximum thickness 0.15 m, and

4.42 m respectively. From the Table 5.7 it is possible to calculate the mean thickness of

the non reservoir zone inside the reservoir zone to the Model II, 1.04 meters.

Table 5.6: Sections of non reservoir zones - Model I

Depth Interval (m) Section thickness (m)

5304.74 - 5304.89 0.15

5305.20 - 5307.18 1.98

5315.41 - 5322.42 7.01

5323.64 - 5324.55 0.91

5328.51 - 5328.67 0.16

5330.34 - 5330.95 0.61

5362.35 - 5364.48 2.13

5364.79 - 5365.09 0.30

5368.44 - 5369.36 0.92

5376.98 - 5377.28 0.30

5384.60 - 5385.97 1.37

5392.98 - 5393.74 0.76

5398.92 - 5399.23 0.31

Total 16.90

The table 5.8 shows the level of vertical heterogeneity in the well log section predicted
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Table 5.7: Sections of non reservoir zones - Model II

Depth Interval (m) Section thickness (m)

5305.35 - 5306.87 1.52

5315.56 - 5319.98 4.42

5320.44 - 5322.27 1.83

5323.48 - 5324.55 1.07

5326.53 - 5326.84 0.31

5328.51 - 5328.67 0.16

5330.19 - 5330.95 0.76

5353.05 - 5353.32 0.27

5362.65 - 5364.48 1.83

5364.94 - 5365.09 0.15

5368.60 - 5369.20 0.60

5376.98 - 5377.13 0.15

5384.75 - 5385.97 1.22

5392.98 - 5393.28 0.30

Total 14.59

by the Model I. And the table 5.9 shows the level of vertical heterogeneity in the well log

section predicted by the Model II.

Models I and II has similar level of vertical heterogeneity. The difference of 2%

between the vertical heterogeneity in models reinforce the convergence of the predicted

electrofacies by models I and II.
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Table 5.8: Heterogeneity level of reservoir zone in the Model I

Total Thickness of reservoir zone 96.62 m

Total Thickness of non-reservoir zone 16.90 m

Nº of sections non reservoir zone 13

Vertical heterogeneity of the reservoir zone 17.49%

Table 5.9: Heterogeneity level of reservoir zone in the Model II

Total Thickness of reservoir zone 96.91 m

Total Thickness of non-reservoir zone 14.59 m

Nº of sections non reservoir zone 14

Vertical heterogeneity of the reservoir zone 15.06%

5.4 K-means algorithm approach for automate the

electrofacies classification: An exploratory study

ap-plied in Brazilian Pre-Salt, Santos Basin A

5.5 Applying supervised machine learning model to

classify electrofacies in a Brazilian Pre-salt well-

bore B

5.6 An approach by Neural Networks and Support

Vector Machine in classification and prediction

of carbonates electrofacies C
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Chapter 6

Final Considerations

The last chapter will go to talk about the final considerations about the research,

after 2 years of work, this chapter has the main goal to finish the master’s degree chapter

and opening the P.hD. chapter. At the beginning of this chapter, the author’s feelings

are of relief and satisfaction with the work developed. Section 6.1 shows the discussion

about the results obtained in the research. While the section 6.2 the author makes the

conclusions about the research.

6.1 Discussion

The research brought to the light of the comprehension three different models to clas-

sify and predict electrofacies from well logs. The first model presented by the research was

the k-means, an unsupervised learning algorithm. The k-means showed a high potential

to cluster data set from well log. An advantage of k-means over other algorithms applied

in the research is that k-means does not need to be taught because the algorithm cluster-

ing the data set from the data set distribution. On the other hand, the k-means also has

disadvantages, the main is due to in many cases the pattern found does not have meaning

in the real world. The SVM and Neural Networks are supervised learning algorithms and

with the help of the human knowledge has been shown a good alternative to automate

the classification process of electrofacies. The results of the research has demonstrated

the better performance of Neural Networks in relation the SVM.

According to the confusion matrix (Table 5.1) and classification report (Table 5.2)

tables, it is possible to notice that the SVM algorithm has the biggest statistical errors
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associated with the prediction of the electrofacies 04 (Table 5.2), row 5 (Table 5.1). The

confusion matrix (Table 5.1) shows that out of 44 samples, the SVM algorithm failed

in 12 predictions. Among the 12 failed predictions, more than half(8) were classified as

electrofacies 02. These results have a direct impact on the classification report, causing

the statistical scores of precision, recall, and f1-score to drop significantly in relation

to the statistical scores of other electrofacies. One way to try to improve the statistics

of the algorithm is to begin with the range of values of the parameters that make up

the electrofacies. An alternative, in the case where the detail level can be decreased,

is to merge the electrofacies that the algorithm is confusing in the prediction process,

electrofacies 02 and 04. This process can increase the statistical scores, but on the other

hand, the detail level of the electrofacies description decrease. In the current research,

final values of hit rate above 90% were considered acceptable, thus was not necessary to

merge the electrofacies and consequently to lose the current level of detail.

In Neural Networks model, the confusion matrix (Table 5.3) presents a matching be-

tween the predicted and real electrofacies considerably greater than the confusion matrix

of the SVM model (Table 5.1). It is possible to verify by means of the classification report

(Table 5.4) that all statistical scores have increased in Neural Network model. This occurs

due to the better matching between the algorithm and the research data set, and also

because the Neural Network is a more robust algorithm than SVM. In the Neural Net-

works model (Table 5.3), the problem of confusion between the prediction of electrofacies

02 and 04 can be ignored, because of 44 samples labeled as electrofacies 04, only three

were predicted as electrofacies 02.

The well logs sections of SVM model and Neural Networks model (Appendix C) are

very similar, among the five electrofacies available to fill the section, the models predicted

the presence of only two, electrofacies 0 (purple) and 02 (orange). In the context of

Gato do Mato oil field, these electrofacies presents two distinct zones, reservoir zone and

non-reservoir zone. The electrofacies 0, due to the greater content of clay, verified by the

gamma rays records and high values of density and water saturation represents a section

with properties of non-reservoir zone. On the other hand, the electrofacies 02 have low

values of gamma rays and water saturation, high values of resistivity, and moderate values

of density, indicating properties of a reservoir zone.

In the well log 1-SHEL-26-RJS, the most part is composed of non-reservoir zones
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(electrofacies 0), and a small portion is filled with reservoir zone(electrofacies 02). This

behavior in the classification, illustrated by models SVM and Neural Networks (Appendix

C), can be explained by the Gamma Rays. It is possible to observe that the values of

Gamma Rays are high in most part of the well, and the input parameter, Gamma Rays, is

one of the most essential parameters used to distinguish between argilous zones and non-

argilous zones and this zones that will auxiliary in the classification of reservoir and non-

reservoir zones. Thus, the main reason why the 1-SHEL-26-RJS well is mostly classified

as a non-reservoir zone is because of the values of Gamma rays that lead the algorithms

of SVM and Neural Network to classify these portions as non-reservoir zones(electrofacies

0).

The main differences between the well log sections predicted by the SVM model and

Neural Network model are that, the well log section predicted by the SVM model is more

heterogeneous than well log section predicted by the Neural Network model. In other

words, the SVM model has an electrofacies variation higher than Neural Network model,

and in the Gato do Mato oil field context, the Neural Network model represents a behavior

closer to reality than SVM model.

There are differences between the model applied in the Rio oil & gas using the SVM

algorithm and the model applied in appendix C. The models have generated different hit-

rate and results. In the article submitted to the Rio oil & gas, the electrofacies pink and

orange are not merged, opposite to model applied in appendix C where the electrofacies

pink and orange are merged. This was made because from the confusion matrix was

possible to note that the algorithm had many difficulties in differentiating the electrofacies

pink and orange, and consequently the precision was negatively affected decreasing the

final value. This happened because the geophysical well logs of the electrofacies orange

and pink were very close.

According to results presented in models SVM and Neural Network, it is clear that

both models reaching a high-performance level. Both algorithms are capable to obtain a

hit rate greater than 90%, therefore both models can be used in electrofacies predictions.

When a performance comparison is made between the models, the Neural Network model

shows to be 3.7% better than the SVM model. In the well log section it is possible to

observe that the classification made by the models are very similar, but in the case of

the well log section produced by the Neural Network model, the electrofacies predicted



CHAPTER 6. FINAL CONSIDERATIONS 79

shows to be smoother and has smaller electrofacies variation than the SVM model. This

behavior observed in the Neural Network model is closer to the natural behavior verified

in the oil field Gato do Mato, located in the Brazilian pre-salt.

6.2 Conclusions

The research has been shown progress to understand and improve the models applied

in research, until the moment, gains in final accuracy, precision, recall and F1-score has

been made in the supervised learning models, and has shown the right way to follow. The

results obtained with the supervised learning models can be considered promising once

that the algorithms applied in models showed to be capable to predict with high precision

the data set. In other words, the supervised learning models shows a high potential to

automate the process of electrofacies classification. This automation, if well calibrated

as can be seen in model of Neural Network applied in the research can save time and

resources for petroleum companies in large oil fields with a lot of well logs information.

The k-means algorithm also has shown a high potential once that the model does

not need a human to teach the data patterns. But after the classification process, human

knowledge it is necessary to interpret the classification made by the model. In supervised

learning is different, because initially, we need to teach the model, but after the teaching

process, the data set classified does not need to be interpreted.

An advantage of models applied in the research to predict and classify the electrofacies

is that the algorithms can quickly analyze several features, and thus, to predict patterns

in regions difficult to be find by human eyes. Another advantage is that, in supervised

learning models, the input features, once associated with the corresponding electrofacies,

can be used to generalize the overall reservoir. Therefore, it becomes possible the data

set that represents a few inches of the surrounding well can be interpolated by the wells

in the oil field and, consequently, to generate a model of the entire reservoir.

The current research approached themes of high importance in the modern scenario,

the union between well logs data set and AI algorithms have showed a success combination.

Therefore, the work contribute for the Geoscience and AI literatures as a practical case

of AI algorithms automating an important process in the petroleum geology.

The models presented in the research open doors to other applications in the O&G
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sector. The own models applied in the current research can be recalibrated for predictions

of others sectors. Once is known the point where we want to arrive, the models presented

in the research can be recalibrated to reach similar or better performance. There are

researches being developed by the research group with the main goal to explore other

possibilities to apply the models developed in the current research in other areas of O&G.

The future of O&G and other technological sectors has shown that the combination of AI

algorithms and human knowledge is a long-term marriage, this seems clear at the present

moment in human development because a few years earlier, the processing of the human

brain, was in many cases, capable of working with the amount of data for processing,

learning, and teaching, but at the present moment, the amount of data has become so

huge that is impossible for the human brain to process all relationship and implications

of the collected data. Therefore, it is possible to affirm that the collaboration between AI

algorithms and humans will remain strong for long years.
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Summary

Organizing data sets in cluster has been one of the greatest
challenge in the modern time, mainly because in the last years,
the amount of data acquired has increased a lot. In petroleum
geology, analyzing a large volume of well log data in order to
extract reservoir properties by manual approaches is difficult
and time consuming. Thus, methods and algorithms that offer
to classify these clusters has become great allies to better un-
derstand the big amount of data and information. The K-means
is an unsupervised machine learning algorithm that through of
the sum of square errors proposes to divide a data set in K clus-
ters. In the petroleum reservoir characterization, the electrofa-
cies are a theme quite discussed, mainly because they reflected
the properties of the rock, fluids and pores. Thus, geological
models can be build and, consequently, they can auxiliary to
minimize the uncertainties in exploration. The work used the
K-means algorithm to classify different electrofacies in a data
set which were selected eight features. According to Elbow
Method, the ideal number of clusters for the data set was two,
thus the data set was classified in two electrofacies. The K-
means algorithm revealed to be a robust method for grouping
electrofacies and a promising method capable of automate the
processing of electrofacies classification. The research shows
new ways to classify electrofacies and try to open new possibil-
ities for machine learning algorithms in the geoscience world.

Introduction

Electrofacies have been used widely in the petroleum prospect-
ing and reservoir characterization as a tried to distinguish dif-
ferent beds in a petroleum field as well as in the correlation
with the lithofacies. The main difference between electrofa-
cies and lithofacies is that the first represent a response of a
set log records of the rock, pores and fluids, while the sec-
ond is define as a rock unit defined by distinct lithological fea-
tures, including composition, granulometry and sedimentary
structures. Therefore is important to understand that electro-
facies and lithofacies will not always mach each other. More-
over, petrophysic is another way to determine reservoir proper-
ties,but this method is not useful for sedimentary studies, sep-
aration and zoning of reservoirs,and geological properties (Ki-
aei et al., 2015). Traditionally electrofacies has been identified
manually with the aid of graphical techniques like crossplot-
ting from wire-line logs and thereby correlating their behavior
to cores. Most recently several machine learning algorithm
have been introduced to try automate the task of facies identi-
fication (Kumar and Kishore, 2006).

Organizing data into sensible groupings is one of the most
fundamental modes of understanding and learning, and clus-
ter analysis is the formal study of methods and algorithms for
grouping, objects according to measured or perceived intrinsic
characteristics or similarity (Jain, 2010). The K-means clus-

tering (MacQueen et al., 1967) is a method used to grouping
into k groups a data set, and it has a wide applicability in many
knowledge areas.

The work proposes to use the K-mean method to analyze the
electrofacies of the geophysical dataset of the Gato do Mato
Oil Field, Santos Basin, in order to identify different elec-
trofacies related to carbonate reservoir rocks. The choice to
specifically study area is due to its importance in become the
Brazilian pre salt more understandable and access. The Santos
Basin is localized in the southeast of Brazil, with an area ap-
proximate of 350.000 km2 and the sediment thickness in some
areas is higher than 10 km (Chang et al., 2008). The figure 1
presents the Pre-salt distribution, as well as the study area.

The figure 1 shows the localization of the study area.

Figure 1: Localization of the Gato do Mato field in the brazil-
ian Pre-salt polygon.

Theory and Method

The research worked with the K-means algorithm and Elbow
method together to classify and partition the data set. How is
explained forward the K-means algorithm needs that the ex-
ternal user input the cluster number(K) that the data set will
be partition. One way to find the correct cluster number is to
know very well the data set(specialist), the other way, the auto-
mate way, is applying the Elbow Method. In the present work
was used the second way to find the correct cluster number.

1. Elbow Method
Elbow method is a method which looks at the Sum
Square error percentage of variance explained as a func-
tion of the number of clusters (Bholowalia and Arvind,
2014). The Elbow method is expressed by

SSE =

K∑

K=1

∑

Xi∈Sk

‖ Xi−Ck ‖2
2 (1)

Where SSE is the sum of the average Euclidean Dis-
tance of each point against the centroid (Marutho et al.,
2018).The letter K is the number of clusters, Xi is the
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data present in each cluster, Ck is the K-th cluster and
Sk is the set of points inside the Ck cluster.
The Sum Square error explained by the cluster is plot-
ted against the number of clusters. The first cluster will
add much information, but at some point the marginal
gain will drop dramatically and gives an angle in the
graph (Bholowalia and Arvind, 2014). When the in-
crease of the cluster number does not varies consider-
ably the SSE, then the best K value was found.
Most of clustering algorithms are designed only to in-
vestigate the inherited grouping or partition of data ob-
jects according to a known number of clusters. Thus,
identifying the number of clusters is an important task
for any clustering problem (Kodinariya and Makwana,
2013).

2. K-means Algorithms
K-means clustering is a method commonly used to au-
tomatically partition a data set into k groups (Wagstaff
et al., 2001).The data clustering, also known as cluster
analysis, try to discover the natural grouping(s) of a set
of patterns, points, or objects (Jain, 2010). The aim of
cluster analysis is to classify a data set into groups that
are internally homogeneous and externally isolated on
the basis of a measure of similarity or dissimilarity be-
tween groups (Kiaei et al., 2015).
Several clusters algorithms have been proposed to try
classify different data set, but due to its simplicity, the
K-means algorithm have been the most commonly used
in the literature. Given a set of n data points in real
d−dimensional space, Rd , and an integer k, the prob-
lem is to determine a set of k points in Rd , called cen-
ters, so as to minimize the mean squared distance from
each data point to its nearest center (Kanungo et al.,
2002).
Let X = {xi}, i = 1, ...,n be the set of n d-dimensional
points to be clustered into a set of K clusters, C =
{ck, K = 1, ...,k}. K-means algorithm finds a parti-
tion such that the squared error between the empirical
mean of a cluster and the points in the cluster is min-
imized (Jain, 2010). The K-means works to minimize
the sum of the squared error (Eq.1). Minimizing this
objective function is known to be an NP-hard problem
(even for K = 2) (Drineas et al., 1999). K-means is
better explained in the steps (I) to (V) and by the work
flowchart illustrated in the Fig.2

(I) Assigning the centroids;
(II) The distance between each point to the centroid is
calculated. N-points and K-centroids;

N×K = number o f distances calculated

(III) Each point is putting in the class according to the
centroid distance. The point is embody by the near-
est centroid and will belong to the class represented by
centroid;
(IV) New centroids are calculated for each class and
the value of centroid coordinate are refined. For each

class that has more than one point, the new centroid
coordinate is calculated using coordinate average of all
points belongs to the class;
(V) The algorithm repeat the third and fourth step re-
peatedly until the convergence. When in the loop n the
centroid coordinate doesn’t change in relation to the
previous loop (n-1), then the process finish and the cen-
troid coordinate is found.
The figure 2 shows the K-means work flowchart.

V
IV

I II III

Has the centroid
coordinate
changed?

YES

END NO

Figure 2: Work flowchart of the K-Means algorithm.

In the K-means algorithm the users need to provide the number
of classes that fulfill their wishes, but the wrong choose of the
number of clusters will result in K-means clustering algorithm
with high erros and poor’s cluster results. Thus, the Elbow
Method can be an important and complementary method to
help in the choose of the correct number of clusters in a dataset.

Examples

The data set from well Shel-23 was provide by the National
Agency of Petroleum (ANP) from Brazil. In the research was
used Petrel R© software and Jupyter R© notebook to work the
data set Fig.3, the part of data science and machine learning
algorithms was implemented in python language.

The figure 3 shows the data set statistic.

Figure 3: Data set statistic from Shel-23.

The K-means algorithm was applied in eight logs profile to
classify the electrofacies using an unsupervised machine learn-
ing algorithm (K-means). Some of these logs have been used
in the main electrofacies works to classify the differents elec-
trofacies (Kumar and Kishore, 2006).

There are three main properties that the logs can measure in
the formation, they are, rock, pores and fluids, in the work was
used, Gamma ray to verify the rock composition, the Vp and
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Vs to assimilate elastic properties, the density, effective poros-
ity, SPHI and neutron to measure the porous level and the re-
sistivity and water saturation to indicate the fluids properties.
The first point that must be taken attention was to normalize or
standardize all data set features, this ensured that all features
had the same weight in the algorithm. The second caution was
to find the correct number of clusters, for auxiliary in this pro-
cess was used the Elbow Method, previously explained, but
instead to use SSE, in the current work was used the Inertia,
the idea the same, good clustering is having a small value of
Inertia, and small number of clusters. The figure 4 shows the
Elbow Method applied in the data set.

The figure 4 shows the Elbow Method.

Figure 4: The Elbow Method applied in the data set.

According to the figure 4 the ideal number K of cluster is 2.
Thus, with two clusters the K-means algorithm was running.
The figure 5 represent the eight log profiles used in the K-
means, and the last profile, the electrofacies, is the result of
the K-means algorithm with two clusters in the data set (fig 3).
The K-means algorithm together with Elbow Method shows
to be an robust combination in clustering problens. Analysing
the figure 5 the main features used by the algorithm seems be
gamma ray, Vp and Vs, the electrofacies (V) or yellow elec-
trofacies was related with lowest Vp and Vs values, and high
gamma ray values, the other features did not have a clear re-
lation. How the data set was classify in two clusters, the elec-
trofacies (VI) or pink electrofacies was associated with high
values of Vp and Vs, and lowest values of gamma ray.

Conclusions

The firsts results obtained with the K-means application can
be considered promising once time that the algorithm showed
to be capable of precisely differentiate the data set. In other
words, the K-means algorithm shows a high potential for au-
tomate the process of classify electrofacies, this automation if
well calibrated can save time and resources of petroleum com-
panies in large fields with a lot well logs informations. Another
advantage of the K-means algorithm into classify the electro-
facies is that the algorithm can to analyse several features, and
thus, to find patterns difficult to be find by human eyes, besides
that after clustering log data, the log response can be general-
ized to the overall reservoir and thus log data that represents a
few inches of the surrounding well can be interpolated by the
wells in the field and to model all reservoir.

In the current work noted that for the human eyes only a few
features could be correlated with the electrofacies, this is a
point that must to be work in the next steps for a better un-
derstanding. The current research approached themes of high
importance in the modern scenario, the union between well
logs data set and machine learning algorithm have showed a
success combination. Therefore, the work contribute for the
geoscience and machine learning literatures as a practical case
of machine learning algorithms automating an important pro-
cess in the petroleum geology.
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Figure 5: Well logs profile with the electrofacies classification by K-means algorithm.

94



K-means algorithm approach for automate the electrofacies classification

REFERENCES

Bholowalia, P., and K. Arvind, 2014, Ebk-means: A clustering technique based on elbow method and k-means in wsn: International
Journal of Computer Applications 105(9).
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1. Introduction  

In recent years Machine Learning algorithms have been becoming more and more present in 

every area of  knowledge, and in the petroleum geology is not different. A lot of works trying to apply 

Machine Learning algorithms can be found in the recent literature (Kuroda et at., 2012; Kadkhodaie 

& Ahmadi, 2012), however, due to being a new field of study, there are many challenges to be 

overcome. Machine Learning algorithms are responsible for data set treatment for the purpose of 

classification and prediction. Among the Machine Learning algorithms there are two major groups, 

the supervised Machine Learning algorithms (Kotsiantis, 2007) and the unsupervised Machine 

Learning algorithms (Jain, 2010). 

In petroleum geology an indirect way to identify the rock properties in a subsurface is through 

the well-logs, that are responsible for indirectly measuring the rock properties in the subsurface. 

These records are able to identify the, porosity, density, resistivity and radioactivity in the reservoir. 

In order to organize the well-log data set from a graphic and statistical analysis the geologists try to 

recognize patterns to distinguish different zones in a subsurface. Those zones identified by the 

Geologists based on from analysis of well-log data set are called electrofacies. But people are often 

prone to making mistakes during analyses or, possibly, when trying to establish relationships between 

multiple features. This makes it difficult for them to find solutions to certain problems. Machine 

learning can often be successfully applied to these problems (Kiaei et al., 2015), improving the 

efficiency of systems and the designs of machines (Kotsiantis, 2007). 

Estimates in Santos Basin suggest that the potencial volume of oil reserves is higher than 100 

billion  barrels (Sauer, 2016), would position Brazilas having the fifth biggest world reserves. The 

stratigraphic section studied in the Santos Basin is localized under the evaporitic unit formed during 

the pos rift phase in the Aptian Stage. The main stratigraphic units that compose the study area are 

Itapema and Piçarras Formations. The Itapema is located immediately bellow the evaporitic section 

and was formed between the Late Barremian to Early Aptian. Based on the paleogeographic 

distribution, in the distal portions, the Itapema Formation were formed by marine incursions that were 

responsible to deposited dark shales and carbonate rocks (Arai, 2014), while the proximal portions 

are constituted by conglomerates and sandstones deposited by alluvial fans (Moreira et al., 2007). 

The Piçarras Formation correspond to those alluvial fans sediments, composed by conglomerates and 

lithic sandstones deposited during the Barremian Stage. Volcanic rocks of the Camboriú 

Formation(Upper Necomian) constitute the basement of the basin (Moreira et al., 2007). 

Electrofacies is a term used since the 80’s (Serra & Abbott, 1980) to describe a set of logs that 

have some similar outputs.  Electrofacies represent a unique set of log responses, which characterize 

the physical properties of the rocks and fluids contained in the volume investigated by the logging 

tools (Euzen & Power 2014). Traditionally electrofacies have been identified manually with the aid 

of graphical techniques like crossplotting from wire-line logs (Kumar & Kishore, 2006).  

In this work is purposed the application of Machine Learning algorithms in well-logs, from 

Santos Basin, to make the classification of electrofacies from log responses. The method used to make 

the classification and prediction was the Support Vector Machine, a complex supervised algorithm 

able to provide high accuracy in problems of prediction and classification.  

  The current work contributed to the discussion about the importance and value of  Machine 

Learning algorithms in electrofacies classification and prediction, and overcoming the challenges 

involving this process could  result in more precision and agility in electrofacies classification. Thus, 

it is crucial for the results and discussion about this theme to become more visible in the petroleum 

literature. 

 

 
   

98



Andre Torres, Alessandro Batezelli 

 

________________________________________________________________________________________________ 

Rio Oil & Gas Expo And Conference, 2020. | ISSN 2525-7579       3 

2. Development  
 

Due to the large amount of data collected by the petroleum industry, the use of robust algorithms 

in data processing and analysis has become essential to guarantee efficiency, speed and accuracy. In 

this context Artificial Intelligence algorithms such as Machine Learning and Deep Learning have 

been applied by the Petroleum Industry to prediction and classification. Some specific works to the 

O&G area have been done and different application has emerged, Kumar and Kishore (2006) show a 

way to identify the lithological and depositional facies from wireline logs using an approach based 

on Feed Forward Neural Network and Clustering, Kuroda, Vidal, Leite and Drummond (2012) also 

proposing an electrofacies characterization using artificial neural network from petrophysical data, 

such as, neutron, porosity, gamma ray, density and sonic profiles. With a data set of well logs from 

Amazonia, Oliveira Júnior (2014) analyzed the performance of five machine learning algorithms to 

classify electrofacies, the results shown that SVM was the better classifier in two of three well log. 

Sfidari, Amini, Kadkhodaie and Ahmadi (2012) characterized reservoir properties with a geological 

and petrophysical integration, the properties porosity and permeability were predicted by linear 

functions while the identification and extration of electrofacies groups  were made with an 

unsupervised neural network (SOM). Lee, Khanghoria and Datta-Gupta (2002) developmented a 

methodology to classify electrofacies based on three unsupervised learning  algorithms, they are:  

principal components analysis (PCA), Cluster Analysis and Discriminat analysis. Another important 

work produced by, Kiaei, Sharghi, Ilkhchi and Naderi (2015) also shown how the application of 

Artificial intelligence algorithms can help in the petroleum industry, in a 3D electrofacies modeling 

of a reservoir , machine learning algorithms were used to classify electrofacies and save time. 

Following the same reasoning of the works cited before, the current work dealt with well-logs 

data set and applying a supervised Machine Learning algorithm proposed the classification and 

prediction of electrofacies.  

The well-logs data set was provided by the ANP, they are located in the Gato do Mato oilfield 

area. Based on the well-logs, were obtained information about rock (Gamma-Ray, P-velocity and V-

velocity), fluids (Resistivity, Water Saturation) and porous (Neutron, sphi and density). Those data 

were analysed to elaborate the classification and prediction of the electrofacies (figure 4). 

  The Santos Basin is localized on the southeast margin of Brazil, with an area is approximately 

350.000km², and the sediment thickness in some areas is higher than 10 km (Chang et al., 2008) 

(figure 1). The study area in Gato do Mato oilfield is located in the southwest of this basin. The study 

used information over two well-logs from Pre Salt reservoir, with more than 5.000 meters of depth. 

The interval of interest has up to 400 meter and presents geophysic and lithological characteristics of 

the carbonate rocks, used to the classification and prediction by the machine learnig methods. 
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Figure 1 - Location of pre salt polygon and study area. 

 
Source: Produced by the author. 

 

The classification and prediction of the electrofacies was made using the SVMs algorithm and 

achieved expressived results. To reach the results was necessary work the data set in order to become 

more reliable and in correct format to be read by the algorithm. 

 

2.1. Theoric fundamentation 

 

  The Support Vector Machine is an algorithm to predict and classify that was developed by 

Vladimir Vapnik in 1960s, and in the nineties the algorithm was highlighted to solving pattern 

recognition problems through of the Vapnik's works (Vapnik, 1995; Vapknik, 1998a; Vapnik, 1998b). 

  The SVMs method maps the data into a higher dimensional input space and constructs an 

optimal separating hyperplane in this space. The algorithm works with a concept of maximizing the 

minimum distance from hyperplane to the nearest sample point (Singh et al., 2016). This basically 

involves solving a quadratic programming problem (Suykens & Vandewalle, 1999). 

  The technique of SVMs was first developed for the restricted case of separating training data 

without errors, later was enhanced the case of separating data with erros. Thus, there are two historic 

Support Vector Machine algorithm, (i) the hard margin Support Vector Machine and (ii) the soft 

margin Support Vector Machine that will allow for an analytic treatment of learning with errors on 

the training set (Cortes & Vapnik, 1995). In both algorithms the elements, Hyperplane, Margin and 

Support vectors are essential. 

  The hyperplane is understood as a plane that separate the data, the margin is the distance of the 

hyperplane and the support vectors and the support vectors are the closest points of the hyperplane. 

The optimal hyperplane is defined as the linear decision function with maximal margin between the 

vectors of the two classes (Cortes & Vapnik, 1995). According to Cortes and Vapnik (1995) to find 

the optimal hyperplane in the hard margin case the algorithm considers the set of labeled training 

patterns: 

 

(𝑦1, 𝑥1), … , (𝑦𝑙 , 𝑥𝑙),             𝑦𝑖 ∈ {−1, 1}                    (1) 
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The dataset is linearly separable if there is a vector W and a scalar b such that 

 

𝑦𝑖(𝑊 ∙ 𝑥𝑖 + b) ≥ 1           i = 1, . . . , L.                        (2) 

 

are valid for all elements of the training set. The optimal hyperplane is given by  

 

 𝑊0 ∙ 𝑥 + 𝑏0  =  0                                                           (3) 

 

The maximal distance between the projections of the training vectors of two different classes 

under the constraints (2) will ensure an optimal hyperplane (3)  

 

𝜑 =  𝑊 ∙ 𝑊                                                                      (4) 

 

for this the equation (4) has to be minimized. To do this a standard optimization technique is 

used and a Lagrangian is constructed  

 

𝐿(𝑊, 𝑏, Λ) =
1

2
𝑊 ∙ 𝑊 − ∑ αi[𝑦𝑖(𝑥𝑖 ∙ 𝑊 + 𝑏) − 1]      (5)

𝐿

𝑖=1

 

 

where Λ𝑇 = (𝛼1, … 𝛼𝑙)  is the vector of non-negative Lagrange multipliers corresponding to the 

constraints (2). To find the hyperplane in the soft margin case the reasoning is similar and can be 

found in the article of Cortes and Vapnik (1995).  

  The SVMs algorithm deals very well with linear data sets, in cases where a straight line is 

sufficient to separate a data set, but for problems with non linear data sets isn’t possible to find a 

straight line to classify the data set, in this case the Kernel Trick (Boser, Guyon & Vapnik, 1992) is 

used. The basic idea is that if a data set is inseparable in the current dimensions, the kernel trick will 

carry the input data set to a higher dimensional space and by choosing an adequate dimension, the 

data set points become linearly separable or mostly linearly separable in the high-dimensional space 

(Amari & Wu, 1999). Thus, the SVMs with the Kernel trick currently has been ensured the solving 

of linear and non linear problems efficiently. 

 

 

2.2. Methodology  
 

  The processing of data was made in three different environments, they are Petrel software, 

Excel and Jupyter Notebook. In the first step was created the data set, selecting profiles and organizing 

well-logs data set according to the depth of the sampling. The construction and treatment of the data 

set was made with the auxiliary of some macros in Excel and the creation and application of some 

data science algorithms in the Jupyter Notebook. The work fluxogram can be seen in the figure 2. 
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Figure 2 - Methodology applied in the work. 

 

Source: Produced by the author. 

  With the data set constructed, a manual electrofacies classification of sendimentary facies 

(carbonate rocks) from a well-log was made. The classification was made according to electrical 

characteristics records from rocks in subsurface. Petrel software was used to plot logs and, thus, to 

help in a better visualization and comprehension of the patterns. A manual classification (figure 3) 

was made in the 1-SHEL-23-RJS well-log, and was used as the reference to electrofacies 

classification from others well-logs. After manual electrofacies classification, a supervised Machine 

Learning algorithm was applied in the manual classification in order to learn how to classify others 

data sets. The algorithm used was the Support Vector Machine (SVM), due to the fact that the 

algorithm works with the input data in a higher dimensional space and, thus, getting to obtain a better 

classification and prediction. The manual classification (figure 3) of the 1-SHEL-23-RJS data set was 

used to teach the SVM how to classify others data sets. For that, the 1-SHEL-23-RJS data set, 

previously labeled by the manual classification step, was divided in two groups: the training data set 

(75%) and the test data set (25%). In the training data set, the SVM has learned to classify different 

electrofacies from the manual classification, while in the test data set the SVM algorithm was used to 

predict the electrofacies according to the input features (logs). Thus, how the whole 1-SHEL-23-RJS 

data set was labeled by the manual classification (figure 3), the accuracy test was made comparing 

the predicts electrofacies by the SVM in the test data set with the labeled electrofacies created in the 

manual classification. The last step was apply the trained SVM classifier to predict the electrofacies 

of the well-log, 1-SHEL-26-RJS (figure 4).  
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Figure 3 – Well-log reference, 1-SHEL-23-RJS, with manual classification of electrofacies. 

 

Source: Produced by the author. 

 

2.3. Results 
 

  The application of the Support Vector Machine algorithm in the data set of the 1-SHEL-23-RJS 

well-log, was responsable by 85.7% of hit rate, showing to be pretty promising, but it can be 

improved. When the algorithm was applied to predict the electrofacies of the well log, 1-SHEL-26-

RJS, the results were different from the expected (Figure 4).  

  The first point was the low electrofacies variation in some depth (5300 – 5400m). Probably the 

explaining of this effect were: (i) one cause of this low generalization can be to derive of a overfitting 

of the algorithm in the data set. The overfitting is when the algorithm has a good performance in the 

training data set and a bad performance in the test data set. This happens because the algorithm 

learning too much from the training data set, the hypothesis (i) was verified and the hit rate in both 

data sets was good with the difference between them equal to 0.2%. Thus, the hypothesis (i) was 

disconsidered. The hypothesis (ii) could be due to the manual classification, where were found six 

electrofacies for, 1-SHEL-23-RJS well-log, this is a valid hypothesis because with a higher level of 

detail as shown in figure 3, the difference among the electrofacies can be confuse, in such a way that, 

the possibility of algorithm to wrong in classification is higher. The last hypothesis (iii) was that the 

algorithm has a high sensibility and, thus, small intervals in depth will be recognized by the algorithm 
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in case that occur variation in features. The second and third hypothesis seems to be the more 

reasonable and was better accept than the first. 

 
Figure 4 – Well-log 1-SHEL-26-RJS with electrofacies predicted by SVMs. 

 

Source: Produced by the author. 

  The second point that was noted in figure 4 was the huge amount of purple electrofacies 

classified. This electrofacies is characterized by high values of Gamma Ray indicating an increase in 

the clayiness of the formation. The huge amount of purple electrofacies happened because differently 

of the, 1-SHEL-23-RJS well-log, the records of Gamma Ray in the, 1-SHEL-26-RJS well-log, is high 

in the most part of the well. The figure 5 shows the boxplots with the Gamma-Ray distribution in 

both well-logs. According to figure 4 the Gamma-Ray data set of the, 1-SHEL-23-RJS, has the 

median above 40, the maximum value above 80 and a lot of points higher than the maximum value 

(outliers). In compare the Gamma-Ray data set, 1-SHEL-26-RJS, has the median equal 20, the 

maximum value below to 60 and few points above the maximum value (outliers). Thus, the high 

Gamma-Ray values found in data set of the, 1-SHEL-23-RJS well-log, explains the purple 

electrofacies classification.  
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Figure 5 - Gamma ray distribution represented by the boxplots. 

 

Source: produced by the author. 

  The three electrofacies presented in the figure 4, they are, orange, pink and purple. The orange 

electrofacies represent sections with the lowest values of Gamma-Ray, high values of resistivity, low 

values of porosity, high values of water saturation and high values of P and S- velocity. The orange 

electrofacies represent the cleanest formation in the well. The pink electrofacies has medium value 

of Gamma-Ray, high values of resistivity, low values of porosity, medium values of water saturation, 

and the high values of P and S-velocity. The purple electrofacies has the highest values of Gamma-

Ray, medium to high values of resistivity, medium values of porosity, high values of water saturation, 

and médium to high values of P and S-velocity. 

  

3. Final Considerations  
 

In order to recognize the patterns to distinguish different reservoir characteristics and 

hydrocarbons-rich zones, the present work used the Machine Learnig algorithms to propose a way to 

analysis the geological data set from well-logs of the Santos Basin. 

The main goal of the research was to classify the electrofacies using the Support Vector 

Machine (SVM) and prediction the carbonatic reservoirs characteristics, based in a complex 

supervised algorithm able to provide high accuracy. 

From a well-log reference (1-SHEL-23-RJS), was performed a manual classification of facies 

to work as a reference for the studies. After that, was applied the method of Support Vector Machine 

(SVM) to learn with the data set labeled.. 

Based on the reference classification, the algorithm learned to expand the electrofacies patterns 

to the well log (1-SHEL-26-RJS). The methodology applied in the research shows us two parameters 

that can be improved to make the classification process better. They are, (i) the manual classification 

with a lower level of detail and (ii) increasing the number of records labeled to train the model. 

The results of the research shows high level of certain, and expanding the approaches by 

Machine Learnig to classify and predict electrofacies. 

 In order to become the results more confiable and decreasing the errors in the classification and 

prediction, is suggested that the input data set labeled be bigger and more representative, to do this a 

way is work with input data set labeled of more than a well-log. 

 How much more well-logs was used, smaller will be the errors in prediction and classification. 

The Support Vector Machine (SVM) shows to be an efficient algorithm for classify and predict  
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electrofacies in differents well-logs data, specially in the current work in which the model achieved 

a hit rate of 85.7%. Considering the calibration of the parameters, the current result could be better. 

The high electrofacies variation in some depth (5300 – 5400m), probably was related to the 

detail level applied in the manual classification. With a high detail level the difference among the 

electrofacies can be confuse and consequently the possibility of the algorithm making mistakes in 

classification is higher. 

The high Gamma-Ray values found in most of the well-log profile 1-SHEL-23-RJS, was the 

responsible to the classification as purple electrofacies. 

The three electrofacies presented in the figure 4, they are, orange, pink and purple. The orange 

and pink electrofacies represent sections with the lowest values of Gamma-Ray, high values of 

resistivity, low values of porosity, high values of water saturation and high values of P and S- velocity. 

Those characteristics are indicating good quality of the reservoir. The purple electrofacies has the 

highest values of Gamma-Ray, medium to high values of resistivity, medium values of porosity, high 

values of water saturation, and medium to high values of P and S-velocity. Those are the main 

characteristics of the non-reservoir interval.  

 It is expected with the work that integration of manual classification and algorithms of 

Supervised Machine learning in well logs will improve the accuracy and increase the velocity of 

electrofacies classification. When the model can learn with manual classification, the SVM shows a 

high potential for automation of electrofacies classification process. If well calibrated, this automation 

can save time and resources of petroleum companies in large fields with a lot of well log information. 

The next steps beyond applying the considerations above, will be to make a crosscorrelation between 

the electrofacies and the samples described. 
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Abstract -

Classifying and predicting data sets has been one of the
greatest challenges in current times, mainly because the
amount of data acquired has increased a lot in the last
years. In petroleum geology, analyzing a large volume of
well log data to extract reservoir properties by manual ap-
proaches it is hard task and time-consuming. Therefore,
methods and algorithms that offer to classify and predict
these data have become great allies to better understand the
huge amount of data and information. The Support Vector
Machine and Neural Networks are algorithms that through
robust mathematical calculations are responsible for auxil-
iary in the classification and prediction of data sets. In the
petroleum reservoir characterization, the electrofacies are a
theme quite discussed, mainly because they reflect the prop-
erties of the rock, fluids, and pores. Thus, geological models
can be built and, consequently, they can auxiliary tominimize
the uncertainties in the exploration. The work used Support
Vector Machine and Neural Networks to classify and pre-
dict different electrofacies in a data set which were provided
eight Geophysical well logs as input features. According to
statistical validation of models, the Neural Network have pre-
sented a better performance at all scenarios when compared
with the SVM Model. In the Confusion matrix evaluation
method, the Neural Network Model achieved values of pre-
cision and F1-score superior than the SVM Model for all
electrofacies. Besides that, the final accuracy reached by
the Neural Network Model (97%) was 6% superior to the
final accuracy reached by the SVM Model (91%). In the
K-fold Cross Validating method, the Neural Network Model
achieved a final accuracy of, 96.9% with a standard devi-
ation of approximately 1% while the SVM Model achieved
a final acurracy of, 86.6% with a standard deviation of ap-
proximately 10%. The data set of the well log predicted had
two electrofacies predicted in both models, showing conver-
gence between the models. The Support Vector Machine and
Neural Network algorithms through the results obtained in
the research proved to be a robust method for classifying and
predicting electrofacies and a promising method capable of
automating the processing of electrofacies classification. The
research shows new ways to classify and predict electrofacies
and tries to open up new possibilities for the use of Artificial

Intelligence algorithms in the world of geosciences.

Keywords -
AI algorithms; Electrofacies; Carbonates; Brazilian Pre-

salt

1 Introduction
In the last years, Artificial Intelligence (AI) algorithms

have been inserted in several areas of knowledge and the
oil and gas (O&G) sector has not been left behind. In re-
cent years the O&G has made AI algorithms more present
in the industry and literature. The introduction of them in
O&G have become necessary because the amount of data
collected nowadays has increased at high rates and, for
processing these huge amounts of data are necessary ro-
bust mathematical algorithms. Analyzing a large volume
of data is required in order to develop a comprehensive
understanding of reservoir distributions and their produc-
tion performance characteristics [1]. The current research
used two AI algorithms to classify and predict the electro-
facies, they are, Support Vector Machine (SVM) [2] and
Neural Networks ([3] [4] [5]). One of the most common
applications of SVM and Neural Networks algorithms is
to recognize and predict patterns in different data set and
in this way, the SVM [6] and Neural Networks have been
widely used to solve complex real-world problems [7].
Much progress has been made to understand and improve
learning algorithms, but the challenge of artificial intelli-
gence (AI) remains [8].
In geology of petroleum, an indirect way to identify

the rock properties in the subsurface is through the well-
logs, which are responsible for indirectly measuring of
rock properties. These Geophysical well logs are able to
identify the porosity, density, resistivity, and radioactivity
in the reservoir. From these indirect measures of the rocks
in subsurface, the Geologists are capable to recognize pat-
terns in different packs of the rocks. For the patterns found
by the expert’s Geologists from the well logs are given
the name of electrofacies [9]. The term represents sec-
tions of rocks in the subsurface with similar geophysical
properties. Traditionally electrofacies have been identi-
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Figure 1. Localization of the Gato do Mato field in the brazilian Pre-Salt polygon.

fied manually with the aid of graphical techniques like
crossplotting from wire-line logs [10]. Electrofacies have
been used widely in petroleum prospecting and reservoir
characterization as a tried to distinguish different beds in a
petroleum field as well as in the correlation with the litho-
facies [11], [12]. Most recently several AI algorithms have
been introduced to try automating the task of electrofacies
identification [13].

The current research was developed from carbonates
reservoirs of the brazilian Pre-salt, located in Santos Basin,
Gato do Mato oil field. The Santos Basin is localized
in the southeast of Brazil, with an approximate area of
350.000 :<2 and the sediment thickness in some areas is
higher than 10 km [14]. The figure 1 presents the Pre-
salt distribution, as well as the study area. The brazilian
Pre-salt is a province characterized by carbonate reser-
voirs, microbial and coquina rocks, buried at a depth that
surpasses 5.000meters, distributed in the Santos andCam-
pos sedimentary basins, located at the southeast brazilian
coast [15]. Estimates in Santos Basin suggest that the
potential volume of oil reserves is higher than 100 bil-
lion barrels [16], which would position Brazil as having
the fifth-biggest world reserves. The stratigraphic section
studied in the Santos Basin is localized under the evap-
oritic unit formed during the pos rift phase in the Aptian
Stage. Themain stratigraphic units that compose the study
area are Itapema and Piçarras Formations. The Itapema
is located immediately below the evaporitic section and
was formed between the Late Barremian to Early Aptian.
Based on the paleogeographic distribution, in the distal
portions, the Itapema Formation were formed by marine
incursions that were responsible to deposited dark shales

and carbonate rocks [17], while the proximal portions are
constituted by conglomerates and sandstones deposited by
alluvial fan [18]. The Piçarras Formation corresponds
to those alluvial fan sediments, composed of conglomer-
ates and lithic sandstones deposited during the Barremian
Stage. Volcanic rocks of the Camboriú Formation (Upper
Necomian) constitute the basement of the basin [18]. The
carbonates reservoirs of the brazilian Pre-salt are derived
from lacustrine environments, and appear to be laterally
continuous over tens of kilometers [19]. The laterally
continuity of them also suggest the lateral continuity of
electrofacies and, in this case, the interpolation of electro-
facies among the well logs presents in the Oil Field can be
done with a high level of safety.
In order to identify different electrofacies related to car-

bonate reservoir rocks, the work proposes to use the SVM
(Model I) and Neural Networks (Model II) algorithms to
classify and predict the electrofacies of the Gato do Mato
Oil Field, Santos Basin. The main reason to the choice by
the current study area is due to the little knowledge avail-
able about the area and the carbonate rocks presents there.
Last but not least the choice by the study area has the goal
to become the Brazilian Pre-salt more understandable and
accessible.
Due to the heterogeneity associate with the carbonates

reservoirs, it is often unpredictable and hard task for as-
sociating with a pattern (carbonate electrofacies), making
it a challenge for Geologists to individualize electrofacies.
Thus, to predict and classify patterns in carbonate reser-
voirs with a high accuracy are necessary more information
than in the case of siliciclastics reservoirs. To overcome
this high level of heterogeneity in carbonates rocks, the
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research applied a greater number of input features (8) to
help the models distinguish the different electrofacies in
the well log section. The current input features, Gamma-
Ray, P-velocity, V-velocity, Resistivity, Water Saturation,
Neutron, Sphi, and Density, were chosen according to its
capacity of representation of the rock matrix, fluids, and
porosity. This choice was made with the goal of under-
standing all elements presents in the rock interval of inter-
est. Between the groups of Geophysical well logs able to
represent the rock matrix, porosity and fluids, were chosen
the Geophysical well logs in common between the well
logs worked in the research. To realize the predictions
were utilized the softwares, Jupyter notebook, an open-
source software with Python version 3.8.3, and Google
Colab with TensorFlow 2.0 version 2.5.0. The software
used to extract the input features and to plot the Geo-
physiscal well logs section was the Petrel, version 2017.
The methods utilized to evaluate the accuracy were, the
Confusion Matrix and the K-fold Cross-Validating. These
methods beyond that to evaluate the hit rate, they are also
capable of auxiliary in the underfitting and overfitting anal-
yses. Analyzing themethods ConfusionMatrix andK-fold
Cross-Validating about the accuracy is possible to note a
better performance of Neural Networks (Model II) than
the SVM (Model I). In the matrix confusion evaluation,
Neural Networks presents a performance 6% superior to
the SVMModel (Model I), and in K-fold Cross-Validating
the difference achieves 10%.

The current research has been contributed to the dis-
cussion about the importance and value of AI algorithms
in electrofacies classification and prediction. In addition,
the research has shown the challenges faced when work-
ing with carbonate rocks. Once the challenges involved in
this process, have been overcome, the results achieved can
guarantee more precision and agility in electrofacies clas-
sification. Therefore, due to the high impact to literature
and Petroleum Industry it is crucial to make more visible
the theme AI algorithms in O&G. The next step to the
future is taken every day with the advance of knowledge
in different areas. At the moment, it is unquestionable that
AI algorithms are the bridge to the faster development of
many areas of knowledge. Thus, it is clear that AI algo-
rithms can be a great partner in this long journey to the
future.

2 Development
The research worked with the SVM and Neural Net-

works algorithms with the goal of classifying and predict-
ing electrofacies of a data set created from Geophysical
well logs. The raw data set (primary data) of the research
was provided by the National Agency of Petroleum from
Brazil. The features chosen by research to compose the
data set were Gamma-Ray, P-velocity, and V-velocity to

inform about the rock properties. Resistivity and Water
Saturation to know the information about the fluids. Neu-
tron, Sphi, and Density to obtain information about the
porosity. These eight Geophysical well logs were used
as input features in the models applied in the research.
They were chosen with the goal of representing the triple
combo, rock, fluids, and porosity. Among the geophysical
well logs provided to the research, these were the features
presents in all well logs simultaneously. The other Geo-
physical well logs able to represent the triple combo(rock,
fluids, and porosity) were not present simultaneously in
all well logs. How will be explained forward, in both
algorithms, SVM and Neural Networks, are necessary a
labeled data set in which the algorithm will learn how
to make the classification, in other words, the external
user needs to inform the algorithm what will be classi-
fied and predicted. One way of teaching algorithms the
classification and prediction is labeling the data set, in the
research this step was made by experts Geologists and in-
serted to the models through the data set labeled. Labeling
the data set in the research case is equivalent to making
a manual electrofacies classification. Thus, according to
the Geophysical well logs chosen to compose the data
set, the electrofacies applied in the research represent the
measurement of the three properties of the reservoir and
non-reservoir zones, rock, fluids, and porosity. Once elec-
trofacies are defined as a merge of these three properties,
the electrofacies will represent reservoir and non-reservoir
zones rather than represent lithofacies. The main differ-
ence between electrofacies and lithofacies is that the first
represent a Geophysical well logs response of the rock,
pores and fluids, while the second is defined as a rock unit
composed of distinct lithological features, including com-
position, granulometry, and sedimentary structures [11],
[12]. Therefore, it is important to understand that electro-
facies and lithofacies will not always match each other. In
order to know more about the physics proprieties of the
rocks is necessary the auxiliary of the petrophysics, it is a
more precise way to determine the physical properties of
the rock from microscopic analyses of the rock [20].

The current research was developed from carbonates
reservoirs, thus, it is important to remember the big
difference in classification between carbonates and non-
carbonates rocks. Carbonate rocks have a set of distinct
characteristics that make them unique in geological stud-
ies. Several classifications for carbonate rocks have been
proposed [21], [22], [23]. In some classifications the main
features used to classify are the presence or absence of
matrix versus cement [21], [22]. Other classifications fo-
cused in texture, amount of lime mud and abundance of
grains [23], this classification is also able to reflect the
energy level in the environment. Due to this big difference
between carbonate and non-carbonate rocks, the research
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Figure 2. Well log section of the well log reference, 1-SHEL-23-RJS.

has a great challenge in working with the prediction and
classification of carbonate electrofacies. Mainly because
the carbonate rocks have a high variation in their compo-
sition and texture, which in many cases becomes a hard
task to note in the Geophysical well logs. In order to
solve this problem, the research proposes the use of a data
set with properties of the rock, fluids, and porosity allied
with AI algorithms to distinguish the high variation in the
composition of carbonate rocks. The first stage in the de-
velopment of the current research involves the selection of
samples corresponding to the intervals of interest. In the
current research, the interval of interest corresponds to the
Brazilian pre-salt, a region rich in oil and gas where are
located the carbonates reservoir.

In the study area (Figure 1), Gato do Mato oil field,
the carbonates reservoir are located at depths greater than
5.000 meters. The interval of interest has up to 400 meter
and presents geophysical and lithological characteristics
of the carbonate rocks. After selecting the interval of
interest, data pre-processing,and data science stage, was
plotted the Geophysical well logs (eight input features) in
a well log section. This procedure was made with the
help of the Petrel software, version 2017. With the well
log section was possible to make a manual classification

of the 1-SHEL-23-RJS data set. The manual classifica-
tion (Figure 2) was made in order to become the data set
labeled. Supervised learning algorithms are only able to
learn after the data set is labeled. With the data set labeled
was necessary to realize the validation of the model. The
validation of the model was made splitting the data set in
two data set, training data set and test. Analyzing the data
set, it is possible to verify the accuracy of the model and
whether the model is in the case of overfitting or underfit-
ting. The model was considered able to make prediction
when was verified non overfitting or underfitting, and an
accuracy above 85%. The workflow described above can
be seen in the flowchart illustred in the figure 3.

3 Conventional Workflow
The conventional process to classify electrofacies is

made using Geophysical well logs that represent differ-
ent rock properties in the subsurface. From the response
of the Geophysical well logs, the specialized Geologist be-
ginning the identification process of the electrofacies. To
make the electrofacies classification the specialized Geol-
ogist verify the patterns present in the Geophysical well
logs and then individualize each of them. This process is
repeated to all wells present in the petroleum field. If the
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petroleum field is huge and there are many well logs in
the field, then, the manual electrofacies classification can
become a time-consuming process.

The manual classification shows to have unless two dis-
advantages, (i) a time-consuming process, in the case that
petroleum field has a lot of well logs to be analyzed, (ii)
the classification can change according to the specialized
Geologist. In the second (ii) case the trouble is more se-
rious because in this case, the electrofacies classification
will not have a standard and consequently leads to one
subjective interpretation of electrofacies.

4 Proposed Workflow
The proposedworkflowwas thought with the goal of be-

coming the electrofacies classification an automated pro-
cess, and then, save time in the process of electrofacies
classification. To achieve the main goal, the research pro-
posed the application of Artificial Intelligence (AI) algo-
rithms to make the classification and prediction of electro-
facies in Geophysical well logs of carbonate rocks. This
process usually succeeds in achieves a high hit rate and en-
sures a standardized in the electrofacies classification and
prediction. Thus, the research proposed initially a manual
classification in Geophysical well logs of only one well
(1-SHEL-23-RJS). This well was called in the research of
reference well (Figure 2). The manual electrofacies classi-
fication is a necessary process because it allows to labeled
the data set of the Geophysical well logs. Both algorithms
utilized in the current work, Support Vector Machine and
Neural Networks require a data set labeled to train, learn,
and posteriorly making the predictions. From the data set
labeled, the models that were built to predict electrofacies
in a new data set (unknowns data set) are able to work
normally. This happens because, when the reference well
is manually labeled, the specialized Geologist is teaching
the algorithms applied in the models how the electrofacies
classification must be done accurately to prevent big errors
and lack of standards. The proposed workflow can be seen
in the figure 3.

5 Support Vector Machine
The Support Vector Machine is an algorithm that was

developed byVladimir Vapnik in 1960s, and in the nineties
the algorithm was highlighted to solving pattern recogni-
tion problems through of the Vapnik’s works ( [24]; [25]).
The SVMs method maps the data into a higher dimen-
sional input space and constructs an optimal separating
hyperplane in this space. The algorithm works with a
concept of maximizing the minimum distance from hy-
perplane to the nearest sample point [26]. This basically
involves solving a quadratic programming problem [27].
This techniquewas first developed for the restricted case of

separating training data without errors, later was enhanced
the case of separating data with erros. Thus, there are two
historic Support Vector Machine algorithms, (i) the hard
margin Support Vector Machine and (ii) the soft margin
Support Vector Machine that will allow for an analytic
treatment of learning with errors on the training set [28].
In both algorithms the elements, Hyperplane, Margin and
Support Vectors are essential. The hyperplane is under-
stood as a plane that separate the data, the margin is the
distance of the hyperplane, and the support vectors are the
closest points of the hyperplane. The optimal hyperplane
is defined as the linear decision function with maximal
margin between the vectors of the two classes [28]. Ac-
cording to [28] to find the optimal hyperplane in the hard
margin case the algorithm considers the set of labeled
training patterns:

(H1, G1), ..., (H; , G;) H8 ∈ −1, 1 (1)

The data set is linearly separable if there is a vector W and
a scalar b such that

H8 (, · G8 + 1) ≥ 1 8 = 1, ..., ! (2)

are valid for all elements of the training set. The optimal
hyperplane is given by

,0 · G + 1 (3)

Themaximal distance between the projections of the train-
ing vectors of two different classes under the constraints
(2) will ensure an optimal hyperplane (3)

i = , ·, (4)

for this the equation (4) has to be minimized. To do this a
standard optimization technique is used and a Lagrangian
is constructed

! (,, 1,Λ) = 1
2
(, ·,) −

!∑
8=1

U8 [H8 (G8 ·, + 1) − 1] (5)

where Λ) = (U1, ..., U;) is the vector of non-negative La-
grangemultipliers corresponding to the constraints (2). To
find the hyperplane in the soft margin case the reasoning
is similar and can be found in the article of Cortes and
Vapnik (1995)[28].
The SVM algorithm deal very well with linear data sets,

in cases where a straight line is sufficient to separate a data
set, but for problems with non linear data sets are not
possible to find a straight line to classify the data set, in
this case the Kernel Trick [29] is used. The basic idea is
that if a data set is inseparable in the current dimensions,
the kernel trick [30] will carry the input data set to a
higher dimensional space and by choosing an adequate
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Figure 3. The flowchart of the proposed workflow.

dimension, the data set points become linearly separable
or mostly linearly separable in the high-dimensional space
[31]. Thus, the SVMs with the Kernel trick currently has
been ensured the solving of linear and non linear problems
efficiently.

6 Neural Networks
Neural Networks are a field of Artificial intelligence

(AI) in whichmathematician algorithms have beenworked
in a process that remember the brain thinking process.
Neural Network models are biologically plausible and can
help to understand how the brainworks [32]. The elements
that compounds a Neural Network are illustrated in the
figure 4, its shows a biological neuron on the left and an
artificial neuron on the right. There are some points to pay
attention:

(i) The first point are the input nodes, is through them
that the Model is feed with the input data, in recognize
problems this nodes can be understood as the object fea-
tures;

(ii) Each connection between the input nodes and the
hidden layer nodes has a weight associated with connec-
tion, based on the individual weight of each connection the
algorithm selects which input features will have greater or
lesser impact on processing;

(iii) The weighted sum is a calculus that can be repre-
sented by the equation 6, to calculated the weighted sum is
necessary, the connection weight and the input node value.
The weighted sum is expressed by the equation below:

Weighted Sum = 1 +
=∑
8=1

-8 ∗,8 (6)

Where -8 is the input node value, ,8 the weight asso-
ciated to connection and 1, bias, an additional weight that

allows to move the activation function to the left or right
to improve Model learning;
(iv) The result obtained with the weighted sum is trans-

fer to activation function. The activation function is chosen
according to model goal;
(v) The output node is the last compound of the default

Artificial Neuron, it is function of the all elements listed
before and can be expressed as follow in equation 7:

Output node = . = 5 (1 +
=∑
8=1

-8 ∗,8) (7)

The process described above can be understood as feed-
forward, which is the information flow in the Neural Net-
work from input data to the output data [33]. The feed-
forward doesn’t allow the update of the weights, because
this is necessary the application of the back-propagation.
The discovery of “back-propagation” in the context of
Neural Networks by Rumelhart [34] drastically improves
the learning efficiency of such models enabling them to
be used in practice [35].The central idea of error back-
propagation is to compute the partial derivatives of the
weights in a Neural Network by applying the chain-rule
repeatedly [35].
The learning rate can be understood as the amount that

is updated in each epoch in the weights of the Model. It
is used to find the best combination of weights so that the
Model reaches the minimum error in its predictions. The
procedure of choosing a good value for the learning rate
of the stochastic optimization can increase performance
and reduce the training time in the Model. But if a value
is chosen for the learning rate bigger than expected, the
Model can update the weight more than necessary and oc-
casionally jump the minimum value of error, in this case,
the Model will have a needless time consuming. On the
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Figure 4. Biological and artificial neurons showing the similar compounds.

other hand, however, if the value for the learning rate is
less than expected, the Model will have to update sev-
eral times until it reaches the minimum error value, and
again this process will be unnecessarily time-consuming.
The learning rate can be considered the most important
hyperparameter, thus, choosing a good value for the learn-
ing rate it is fundamental in training deep learning Neural
Networks.

The main purpose of the activation function is to adds
the nonlinear factors to remove redundant data while pre-
serving features, it retains "active neuron feature" and
maps out these features by nonlinear functions, which is
the essential of the Neural Network to solve complex non-
linear problems [36]. The Relu (Rectified Linear Units)
activation function ([37], [38], [39]) is a mathematical
function whose output 0 if the input is negative, and for
any positive value x, it returns that value back. In Neural
Networks modeling of electrofacies, predicting the prob-
ability of the electrofacies requires computing scores for
every electrofacies in the data set and to normalize them to
form a probability distribution. This is typically achieved
by applying a softmax function. The Softmax activation
function ([40], [41]), is often used in the output layer
of Neural Network Models for multi-class classification
problems, where the number of output classes is required
on more than two class labels. Softmax makes this possi-
ble because the output is a vector with the probabilities of
occurrence of each class label.

The hyperparameter, batch size, used in the Model cor-
responds to the number of training samples that will be
executed before the weights update. The advantages of
using a batch size smaller than the number of samples are:

(A) Less memory is needed. When the data set is very
large this is a crucial factor;

(B) Normally, Neural Network train is faster, in addi-

tion, Neural Network parameters will have more than just
an update because the Model will have updated Neural
Network parameters after each batch size. In the case that,
the batch size is equal to the sample number, the Model
will only have an update of the Neural Network parame-
ters.

Several recently proposed stochastic optimizationmeth-
ods have been successfully used in training deep networks
such asRMSPROP,ADAM,ADADELTA,NADAM.They
are based on using gradient updates scaled by square roots
of exponential moving averages of squared past gradi-
ents [42]. In the Model applied in the research, the op-
timizer chosen was the Adam optimizer due to its lower
training cost and faster convergence in relation to the other
optimizers. The name Adam derived from adaptive mo-
ment estimation. Adam is a method for efficient stochastic
optimization that only requires first-order gradients with
little memory. The method computes individual adaptive
learning rates for different parameters from estimates of
first and second moments of the gradients [43]. Therefore,
Adam is an optimizer that can be used as a good alterna-
tive to the classic Stochastic gradient descent, the Adam
optimizer is called when upon updating Neural Network
weights.

In spite of many successes, Neural Networks still suffer
from a major weakness. The presence of nonlinear hid-
den layers makes deep networks very expressive models
which are therefore prone to severe overfitting [44]. Due
to this reason, was applied the dropout technique to the
Neural Networks Model used in the research. The dropout
is a technique used in Neural Networks to try to avoid
the overfitting of the algorithm. The key idea is to ran-
domly drop units (along with their connections) from the
Neural Network during training [45]. Besides to avoid
the overfitting, the technique called dropout has shown
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to significantly improve the performance of deep Neural
Networks on various tasks [46].

7 Materials and Methods
The research used data from well logs present in a

Brazilian Pre-salt oilfield, Gato do Mato. The data set
of the Geophysical well logs of each well was provided
by the Brazilian National Agency of Petroleum (ANP).
The algorithms applied to the models were developed in
Python programming language. The research has built
two models with accuracy level greater than 90%, Models
I and II, The environments Google Colab, Jupyter Note-
book, and the software Petrel version 2017 were used to
develop the research. The Model I (SVM) was built with
the help of the Scikit-learn Python library, version 0.24.2
in the Jupyter Notebook environment. TheModel II (Neu-
ral Networks) was built with the help of the TensorFlow
2.0 version 2.5.0 in the Google Colab environment. The
link between the electrofacies predicted by the models and
the well logs section was made with the Petrel software,
version 2017.

7.1 Data set

The building of the data set wasmade using the data pro-
vided by ANP. For the building of the data set the first step
was selecting the features that were used in the models. As
the main objective of the research is the classification and
prediction of electrofacies, the Geophysical well logs used
were based on three proprieties of the Formation, rock,
porosity, and fluids. There are several Geophysical well
logs capable of measuring these three properties (rock,
porosity, and fluids), but to avoid problems of Geophysi-
cal well logs absence in the data set were used Geophysical
well logs in common between the wells worked in the cur-
rent research. The Geophysical well logs used were, about
the rock: Gamma-ray; P-velocity; and V-velocity. About
the porosity: Neutron; Sphi; and Density. About fluids:
Resistivity and Water Saturation. These are the eight in-
put features responsible for informing about the properties
of the Formation. Initially, the P-velocity input feature
was chosen, but due to the linear dependence (Figure 9)
between P-velocity, and S-velocity, the research opted by
removed the P-velocity in order to optimize the algorithm.

7.2 Data science stage

As a core of the research, the data science stage was
concentrated in the creation and treatment of the data set.
In the current research the term data science was used to
describe the process of creation and treatment of the data
set. The building of the data set is an essential stage and
must be done with expertise because it is the guarantee of
reliable information. In the data science stage was realized

the depth matching process, and statistical processing in
the data set.
It is important to remember that, the initial efforts to

work with the data set at the data science stage, are the core
of researches related to the application of AI algorithms.
When the building, and treatment of the data set is well-
realized, AI algorithms application becomemore efficient,
in some cases can increase the hit rate and consequently
lead to better results. The evolution of the research in
models I and II just was possible to achieve due to the
precise development realized in the data science stage.

7.2.1 Depth matching process

The first challenge in the data science stage is related
to the match of the eight input features in-depth. Each
input feature is provided individually and many of these
Geophysical well logs do not have records at the same
depth, thus creating an algorithm capable of building a data
set with the eight matching records in depth is a crucial
step for the well succeeding progress of the project.
The depth-matching process of the eight input features

in relation to depth was responsible for a significant reduc-
tion in the number of input records. Initially, the number of
Gamma ray measuring collected was 7277, and the num-
ber of Density records was 11707. After the application of
the depth-matching algorithm in the eight input features,
the number of records decreased to 1624 input records.

7.2.2 Statistical processing

After the depth matching process, the data set was nor-
malized in order to transform all geophysical well logs in
the interval between 0 and 1. This is an important process
because it prevents that the absolute values of the records
have a weight higher or smaller. In order words, the nor-
malization process makes the model training less sensitive
to the scale of input features. Initially were chosen eight
input features, these input features were normalized and
their frequency histograms were plotted as can be seen in
the figure 5.
The procedure for the building of frequency histograms

was made due to the outlier detection method, when the
data distribution has a normal distribution behavior it is
common to use the method mean plus or minus two/three
standard deviations [47]. In this method the values that
are outside of this range are considered outliers. When
it is used the mean plus or minus two standard devia-
tions, 95.45% of the data are present in the range. The
method of the mean plus or minus three standard devia-
tions is based on the characteristics of a normal distribu-
tion for which 99.87% of the data appear within this range
[48]. But, it is important to remember that these results
just are valid in the normal distribution case. Beyond of
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Figure 5. Frequency histogram of the Geophysical well logs. Data set normalized.

the visual aspect of the frequency histograms, the research
also calculated the Fisher-Pearson coefficient of skewness
to auxiliary in the analysis. In the figure 5, frequency
histograms are plotted with the calculus of the mean(`),
standard deviation(f), and the Fisher-Pearson coefficient
of skewness.

The sample skewness is computed as the Fisher-Pearson
coefficient of skewness [49]. The Fisher-Pearson coeffi-
cient of skewness is responsible to measure the lack of
symmetry in a distribution. Normal distribution has skew-
ness 0. Larger values (in magnitude) indicate more skew-
ness in the distribution of observations [49]. Thus, the
Fisher-Pearson coefficient of skewness it is useful to help
in detection of normal distribution. The Fisher-Pearson
coefficient of skewness was applied in the eight input fea-
tures, and the values can be seen in the figure 5. It is pos-
sible to note from figure 5 that the population of the input
features have unknown distributions, and with a notable
asymmetry (skewness). Thus, the method of outliers de-
tection based in the mean plus or minus two/three standard
deviations is not valid to use in the research data set. Due
to the notable asymmetry and the unknown distributions
illustrated in the figure 5 was necessary to find another
method capable of detecting the outliers with reliability.

One first approach would be to make the data sym-
metrical by the use of a non-linear transformation, in the
research case, the logarithmic transformation was used.
Presumably with such an approach, outliers would also
be more symmetrically away from the central tendency,
providing an equal chance of locating low and high out-

liers. However, there is no single technique that makes the
data symmetrical when they have been contaminated with
outliers [50]. How can be seen in the figure 6, the loga-
rithmic transformation does not have successful in to be-
come the distributions normal. But, in general, the values
of skewness of the frequency histograms have decreased.
The exceptions were the Resistivity, Water Saturation, and
P-Velocity distributions. These input features had the ab-
solute magnitude of skewness values increased.
Once that, the logarithmic transformation was not capa-

ble to transform the distributions as normal distributions,
the method Inter-Quartile Range (IQR) method of out-
lier detection was applied [51], [52], [53]. The method
Inter-Quartile Range (IQR) method of outlier detection is
usually used when the distributions are not normal and
asymmetrical. The Inter-Quartile Range (IQR) is the dif-
ference between third and first quartile. Quartile are re-
sponsible to divide the ordered sample observations into
four quarters having the same number of observations (m)
in each quarter [54].
The skeletal boxplot consists of a box extending from

the first quartile (&1) to the third quartile (&3); a mark at
the median; and whiskers extending from the first quartile
to the minimum &1 − (1.5 · �&'), and from the third
quartile to the maximum &3 + (1.5 · �&') [51].
The bloxplots of the distributions were created in

Jupyter notebook and Google colab 7. In the method Inter-
Quartile Range (IQR), method of outlier detection, the
samples that are outside of the interval between the mini-
mum (&1−(1.5·�&')) and themaximum (&3+(1.5·�&'))
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Figure 6. Frequency histogram of the Geophysical well logs. Data set normalized and log-transformed.

are considered outliers.
It is possible to note in the figure 7, that boxplots of

Gamma ray and Porosity distributions has presented out-
liers respectively above the maximum value, and below
the minimum value.

Once the outliers were detected, an algorithm created
in the research was executed to remove the rows from the
data set that contains the outliers. Before to remove the
outliers, there were 1624 records in the data set, and after
the outliers removal the numbers of records in the data set
decreased to 1617 records. Among the removed data, three
were porosity outliers, and four were gamma ray outliers.
The porosity outliers were detect below to the minimum
value in the boxplot, while the gamma ray outliers were
detect above to the maximum value in the bloxplot. The
final data set without the outliers can be seen in the figure
8.

After detecting the outliers, there is only one more step
to be made to become the algorithm more optimized. The
last step it is to verify if the input features are indepen-
dent between them self. This important step avoids that
the model working with redundant data (dependent vari-
ables). In this step it is calculated the Pearson correlation
coefficient [55]. If the Pearson correlation coefficient is
1, the variables are totally dependent on each other. If
the Pearson correlation coefficient is -1, the variables will
have a total inverse dependence. In the other side, if the
Pearson correlation coefficient is equal 0, the variables are
independent or uncorrelated. In the research, the Pear-
son correlation coefficient of all variables was calculated,

then with the values found a matrix was built, this ma-
trix with all values plotted is known as correlation matrix.
The correlation matrix of the variables (input features or
geophysical well logs) can be seen in the figure 9.

From thefigure 9 it is possible to note that the correlation
matrix between the geophysical well logs presents a linear
dependency between the two variables P-velocity and S-
velocity. The value of the Pearson correlation coefficient
for these two variables it is equal 1. Thus, for optimizing
the algorithm one of these variables needs to be removed.
In the research case was removed the variable P-velocity.
The correlation matrix after the removal can be seen in the
figure 10

Therefore, after the statistical processing stage (last
stage in "Data science stage"), the data set it is finalized
and ready to be used in models.

One difficulty with treatments of outliers is that there
is no unanimously accepted theoretical framework for the
treatment of outliers. Various fields have developed var-
ious approaches and rare are the approaches that can be
formulated with the concepts of another approach [50].
Detected outliers are candidates for aberrant data that may
otherwise adversely lead tomodelmisspecification, biased
parameter estimation, and incorrect results. Therefore, it
is important to identify them prior to modeling and anal-
ysis [56], [57], [58]. In the research, the Inter-Quartile
Range (IQR) method was chosen, which showed, through
boxplot analysis , a good adaptation for detecting outliers
in the data set.
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Figure 7. Boxplot of the Geophysical well logs. Data set normalized and log-transformed.
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Figure 8. Boxplot of the Geophysical well logs. Data set normalized and log-transformed and outliers removed.

7.3 Training and Test data set

The training and test data set were divided respectively
in the proportion of 75% and 25%, in the 1-SHEL-23-RJS
data set, the division wasmade at random and proportional
to each electrofacies labeled in the manual classification
stage. The main data set, 1-SHEL-23-RJS, was created

according to a manual classification made by a specialist
Geologist. This classification was responsible for the la-
beling of the data set. The labeling process is necessary
because it allows to evaluate the performance of the mod-
els for supervised learning algorithms. The training data
set is present only in the 1-SHEL-23-RJS data set. In the
Models I and II, the training data set were used to teach
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Figure 9. Matrix Correlation between the Geo-
physical well logs. Data set normalized and log-
transformed and outliers removed.
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Figure 10.Matrix Correlation between the Geophys-
ical well logs without P-velocity. Data set normal-
ized and log-transformed and outliers removed.

the models, while the test data set present in the 1-SHEL-
23-RJS were used to make the statistical validation.

7.4 Models

The Model I was formulated using the SVM algorithm,
and was developed in Python language, version 3.8.3, with
the auxiliary of the Jupyter Notebook. It was built using
the Scikit-learn [59], a Python library, version 0.24.2. The
data set built in the first stage, data science stage, was
utilized for application of the SVM. The Model used the
following hyperparameters setup, � = 100 (the penalty of
the error),  4A=4; 5 D=2C8>= = ;8=40A (the Kernel func-
tions available in the library are, ’linear’,‘rbf’, ‘poly’ and
‘sigmoid’), 346A44 = 3 (Ignored by linear kernel func-
tion), 60<<0 = B20;4 (it is the Kernel coefficient for

Table 1. Number of samples of each electrofacies
selected to train models I and II.

Electrofacies Proportion of Samples

Electrofacies 0 (125/507) 0.246
Electrofacies 1 (025/087) 0.287
Electrofacies 2 (125/532) 0.235
Electrofacies 3 (087/333) 0.261
Electrofacies 4 (044/165) 0.267

‘rbf’, ‘poly’ and ‘sigmoid’ Kernel functions. Ignored by
linear kernel function), 2>4 5 0 = 0.0 (Independent term
in kernel function. Insignificant in linear kernel function),
BℎA8=:8=6 = CAD4 (it is a parameter that auxiliary the con-
vergence velocity of the algorithm, decreasing the training
time), ?A>1018;8CH = 5 0;B4 (when enabled, probability
estimates are calculated), C>; = 0.001 (it is a stopping cri-
terion), 202ℎ4_B8I4 = 200 (the size of the kernel cache in
MB), 2;0BB_F486ℎC = =>=4 (set the parameter � of class
i. If not given, all classes are supposed to have weight
one), E4A1>B4 = 5 0;B4 (when enabled return a verbose
output), <0G_8C4A = −1 (number maximum of interac-
tions, -1 for no limit), 3428B8>=_ 5 D=2C8>=_Bℎ0?4 = >EA
(it is the decision function present in the classifier),
1A40:_C84B = CAD4 (if true, it is responsible for break-
ing ties according to the confidence values of the decision
function), A0=3><_BC0C4 = 3 (it is responsible for con-
trols the pseudo-random number generation for shuffling
the data for probability estimates). Although SVM has
a few tuning parameters, they have to be carefully cho-
sen to obtain good results. To help in choosing the best
hyperparameters of the Model was used the Grid Search
([60]; [61]), a method of parameter optimization used on
discrete sets of hyperparameters to select the optimal ones
with the aid of cross-validation [60]. This method basi-
cally test all parameters combination and measuring the
efficiency according to the metric chosen by the devel-
oper. In the current research, accuracy was chosen as the
metric to measure the performance of all hyperparameters
combination. Thus, the hyperparameters combination that
returned the highest value of accuracy was used to set up
the models. The hyperparemeters that were utilized to
feed the Grid Search were, � (the penalty of the error),
and C>; (it is a stopping criterion), both hyperparameters
with input values of: 0.001, 0.01, 0.1, 1.0, 10, 100, 1000.
The optimal hyperparameters values returned by the Grid
Search were � = 100 and C>; = 0.001.
In the Model II was applied a Neural Network to clas-

sify and predict the Geophysical well logs. The Neural
Network applied to the Model II has eight input neurons,
two hidden layer, a dropout [45] of 0.2 between the hidden
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layers, and five output neurons. The first hidden layer has
128 neurons, and used the relu activation function. The
second hidden layer has 32 neurons, and used the soft-
max activation function. The optimizer chosen was the
ADAM [43] due to the best results obtained. The Model
II was developed in Google Colab environment using the
TensorFlow 2.0, version 2.5.0, the main library used to im-
plement the Neural Network was the Keras, version 1.1.2.
The Model II is represented by the figure 11.

Figure 11. Representation of the Model II. The Neu-
ral Network applied in the research.

7.5 Statistical Validation

Estimating the accuracy of a classifier induced by super-
vised learning algorithms is important not only to predict
its future prediction accuracy, but also for choosing the
best classifier from a given set of models [62] [63]. In
the work was used the Confusion matrix [64], [65], [66]
and K-Fold Cross-Validating [67], [68], [69] to evaluate
the Model. The Confusion matrix is built by plotting the
predicted and real data in the axis x and y of the Table, in
a multi-class Confusion matrix, the element #8, 9 present
in the Confusion matrix is called True positive when the
predicted data is equal to the real data, this situation is ver-
ified when the row i is equal to the column j (8 = 9). There
are four elements in the Confusion matrix responsible for
statistical validation, they are accuracy, precision, recall,
and F1 score. The accuracy can be definedmathematically
as:

Accuracy =
∑�
8=1 ()%)8∑�
8=1 #8

(8)

where )%8 are the true positives, the positive data that
were correctly predicted in the class �8 , C is the number
of classes, and #8 is the number of samples in class �8 .

The precision evaluates inside the number of samples
that were predicted positive for one class, howmany really
are positive to the class predicted. The precision evalua-
tion can be described as:

Precision(�8) = )%8
)%8 + �%8 (9)

where �8 indicates the class that measure was taken.
�%8 represents the false positive, the samples that were
predicted to be positive, but in fact, are negative.
The recall is the fraction of samples predicted as true

positive inside all positives in the class. The recall can be
understood as the number of samples positive that were
correctly predicted as positive by the Model. The recall is
defined as:

Recall(�8) = )%8
)%8 + �#8 (10)

where �#8 are the false negative, samples that were
predicted to be false, but in fact are positive.
The F1-score is a combination between precision and

recall. Mathematically the F1-score can be understood
as a harmonic mean of recall and precision and, in some
cases, can be considered a measure more representative
than accuracy.

F1-Score (�8) = 2 × %A428B8>=8 × '420;;8
%A428B8>=8 + '420;;8 (11)

The other technique used to evaluate the model perfor-
mance was the k-Fold Cross-Validating, the main use of
this technique is to verify the capacity of generalization
of the Model and to estimate the prediction accuracy [67],
[70]. This method consists of splitting the dataset into k
subsets of equal or nearly equal sizes, where each subset
is known as a fold and is stratified: that is, each fold at-
tempts to retain the same class distribution. A Model is
then trained with k - 1 folds and tested on the remaining
fold. This process is repeated k times until all sets have
been used for testing once. Thus, the experiment returns
k estimates of the Model classification error [69].

8 Results
The research achieved some potentials results in the pre-

diction of electrofacies of the well 1-SHEL-26-RJS. In the
prediction of electrofacies, the two algorithms used in the
research (SVM and Neural Networks) were responsible to
predict the same electrofacies, purple and orange (Figures
12 e 13) indicating a convergence of the models I and II.
The Confusion matrix and Classification report gener-

ated in the Model I are illustrated in Tables 2 and 3:
where, �� = 4;42CA> 5 0284B and (?? = BD??>AC, the
number of samples that were used in the evaluation.
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Figure 12. Well log section of the well log, 1-SHEL-26-RJS, with the electrofacies predited by the Model I.

Table 2. SVM - Confusion Matrix

Predict

Re
al

123 0 0 2 0
0 25 0 0 0
0 1 113 7 4
0 0 2 85 0
1 0 8 3 32

Table 3. SVM - Classification Report

EF Precision Recall F1-score Spp
0 0.99 0.98 0.99 125
1 0.96 1.00 0.98 25
2 0.92 0.90 0.91 125
3 0.88 0.98 0.92 87
4 0.89 0.73 0.80 44

Acurracy = 0.93

The Confusion matrix and Classification report gener-
ated in the Model II are shown in Tables 4 and 5:

It is possible to observe in Tables 3 and 5 an increase in
the final value of all statistical parameters in the Model II
when compared to the Model I. Final accuracy, F1 score,
precision, and recall are higher for all electrofacies present

Table 4. Neural Network - Confusion Matrix

Predict

Re
al

143 0 0 1 0
0 24 0 0 0
0 0 119 1 0
1 0 5 68 0
2 0 3 0 39

Table 5. Neural Network - Classification Report

EF Precision Recall F1-score Spp
0 0.98 0.99 0.99 144
1 1.00 1.00 1.00 24
2 0.94 0.97 0.96 120
3 0.96 0.93 0.95 74
4 0.97 0.89 0.93 44

Acurracy = 0.97

in the work. These results revealed a greater robustness of
Neural Networks and better matching with the data set of
the research. When AI algorithms are working on a data
set, it is important to check whether the algorithms are not
in an overfitting or underfitting case. The overfitting case is
verified when the algorithm presents a better performance
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Figure 13. Well log section of the well log, 1-SHEL-26-RJS, with the electrofacies predited by the Model II.

in the training data set than test data set. In the case of
overfitting, when the algorithm is submitted to the test data
set, its performance is poor. The model I has presented
a hit rate in the training data set of 93.7%, and a value
of 92.9% in the test data set. The model II has presented
hit rate in training and test data set of 96.9% and 96.6%.
In both models, the underfitting and overfitting of models
were verified and, in both cases, the hit rate found in the
training data set was very similar with the hit rate in the
test data set. This verification process indicates that the
algorithms of themodels are not in an overfitting case. The
case of underfitting occurs when the algorithm performs
poorly on the training and test data set. As has been shown
with the statistical results, the algorithms applied in SVM
model and Neural Network model are not in the case of
underfitting.

In the current research, beyond the Confusion matrix
method was utilized the k-Fold Cross-Validating to evalu-
ate the accuracy. Using this method with five folds, k=5,
were found an accuracy of 86.6% to the Model I, and an
accuracy of 96.9% to the Model II. The results can be
visualized in the Table 6.

According to the Tables 2, 3, 4, 5, and 6, it is possible
to observe that the Model II (Neural Networks) presents

Table 6. Models

Accuracy evaluation
k-Fold Cross-Validating

Model I Model II
(SVM) (Neural Network)
0.8307 0.9599
0.8492 0.9692
0.9661 0.9692
0.9507 0.9846
0.7314 0.9629

Mean ± Std Mean ± Std
0.8656 ± 0.0959 0.9692 ± 0.0095

a better performance at the Confusion matrix and K-Fold
Cross-Validating when compared to the Model I (SVM).
In relation to the Confusion matrix evaluation method,

the Classification report (Table 3) of the Model I reveals a
final accuracy about 93% and a worse performance in pre-
diction of the electrofacies 0, 1, 2, and 4 when compared
with the Model II. The only electrofacies that the Model I
presents similar performance it is in electrofacies 0. The
Confusion matrix of the Model II (Table 4) in general
shows better performance. Individually, it is possible to
note that theModel II does not present any error in the pre-
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diction of electrofacies 01. A notable difference in perfor-
mance of Models I and II can be visualized at electrofacies
04 (Tables 3, and 5), for the Model I the precision value
is about 89%, while in the Model II the precision is about
97%, for recall the Model I has about 73% against about
89% of the Model II, in the F1-score the Model I presents
performance about 80%, while the Model II has about
93%. Thus, according to the Confusion matrix statistical
validation method, the better performance of the Model II
(about 4% superior), about 97% against about 93%, can
be explained mainly by observing the performance of both
models in the prediction of the electrofacies 04.

From the products obtained by models I and II was
created the index of heterogeneity (Eq. 12) of reservoirs
zones. This parameter was created to measure the level of
heterogeneity of the reservoir zone predicted by models I
and II, Tables 9 and 10.

h = ))#

))' + ))# (12)

Where,))# is the total thickness of non reservoir zone,
))' is the total thickness of reservoir zone, and ℎ is the
level of heterogeneity.

The Model I presents 13 sections of non reservoir zone
inside the reservoir zone. The thirteen sections thickness
of the Model I can be visualized in the Table 7. The mini-
mum and maximum thickness of non reservoir zone inside
of reservoir zone are 0.15 m, and 7.01 m respectively. The
mean thickness of the non reservoir zone inside the reser-
voir zone to the Model I is 1.20 meters. The Model II
presents 14 sections of non reservoir zone inside the reser-
voir zone. The fourteen sections thickness of the model
II can be seen in the Table 8, it is possible to note the
minimum and maximum thickness 0.15 m, and 4.42 m
respectively. From the Table 8 it is possible to calculate
the mean thickness of the non reservoir zone inside the
reservoir zone to the Model II, 1.04 meters.

The tables 9, and 10 show the level of vertical hetero-
geneity in the well log section predicted by the models I,
and II.

9 Discussion
According to the Confusion matrix Table 2 and Clas-

sification report 3, it is possible to notice that the SVM
algorithm has the biggest statistical errors associated with
the prediction of the electrofacies 04. The Confusion ma-
trix, Table 2, shows that in the group of 44 samples, the
SVM algorithm failed in 12 predictions. Among the 12
failed predictions, more than half (8) were classified as
electrofacies 02. These results have a direct impact on
the Classification report, causing the statistical scores of
precision, recall, and f1-score to drop significantly in re-
lation to the statistical scores of other electrofacies. In the

Table 7. Sections of non reservoir zones - Model I

Depth Interval (m) Section thickness (m)

5304.74 - 5304.89 0.15
5305.20 - 5307.18 1.98
5315.41 - 5322.42 7.01
5323.64 - 5324.55 0.91
5328.51 - 5328.67 0.16
5330.34 - 5330.95 0.61
5362.35 - 5364.48 2.13
5364.79 - 5365.09 0.30
5368.44 - 5369.36 0.92
5376.98 - 5377.28 0.30
5384.60 - 5385.97 1.37
5392.98 - 5393.74 0.76
5398.92 - 5399.23 0.31

Total 16.90

Table 8. Sections of non reservoir zones - Model II

Depth Interval (m) Section thickness (m)

5305.35 - 5306.87 1.52
5315.56 - 5319.98 4.42
5320.44 - 5322.27 1.83
5323.48 - 5324.55 1.07
5326.53 - 5326.84 0.31
5328.51 - 5328.67 0.16
5330.19 - 5330.95 0.76
5353.05 - 5353.32 0.27
5362.65 - 5364.48 1.83
5364.94 - 5365.09 0.15
5368.60 - 5369.20 0.60
5376.98 - 5377.13 0.15
5384.75 - 5385.97 1.22
5392.98 - 5393.28 0.30

Total 14.59

research case, the input parameters values of the electro-
facies 04 and 02 are very close, thus is comprehensive that
the algorithm make mistakes. One way to try improving
the statistics of the algorithm is to analyze the range of
values of the parameters that make up the electrofacies.
The accuracy level achieved with the detail level applied
in electrofacies classification was better than the hoped
to the research, therefore was not changed the range of
the input parameters values for each electrofacies. But an
alternative, in the case where the detail level can be de-
creased, is to merge the electrofacies that the algorithm is
confusing in the prediction process, electrofacies 02 and
04. This process can increase the statistical scores, but
on the other hand, the detail level of the electrofacies de-
scription decrease. With the current electrofacies config-
uration, the research achieved final values of hit rate above
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Table 9. Heterogeneity level of reservoir zone in the
Model I

Total Thickness of reservoir zone 96.62 m
Total Thickness of non-reservoir zone 16.90 m
Nº of sections non reservoir zone 13

Vertical heterogeneity of the reservoir zone 17.49%

Table 10. Heterogeneity level of reservoir zone in
the Model II

Total Thickness of reservoir zone 96.91 m
Total Thickness of non-reservoir zone 14.59 m
Nº of sections non reservoir zone 14

Vertical heterogeneity of the reservoir zone 15.06%

90%. These results were considered acceptable and over-
come the expectations, thus was not necessary to merge
the electrofacies (02 and 04) and consequently to lose the
current level of detail.

In the well section of the Model I, there is a reservoir
zone predicted (electrofacies 02) in the depth interval of
5303.38 and 5400.00meters, this interval has 96,62meters
of reservoir zone with non reservoir zones intercalated.
But as can be seen in the figure 12, the interval of the
reservoir zone is not homogeneous. Inside the reservoir
zone there is 16,90meters of non-reservoir zone divided in
13 sections. The thickness of 13 sections can be visualized
in table 7. The index created to measure the level of
heterogeneity of the reservoir zone (h = total thickness of
non reservoir zone/total thickness of reservoir zone), found
a value of 17.49% of heterogeneity in the reservoir zone 9.
In the model II, the predicted reservoir zone (electrofacies
02) it is found in the depth interval of 5303.38 and 5400.29
meters, this interval has 96,91 meters of reservoir zone
with non reservoir zones intercalated, figure 13. Inside
the reservoir zone there is 14,49 meters of non-reservoir
zone divided in 14 sections. The thickness of 14 sections
can be visualized in table 8. The level of heterogeneity
calculated to the reservoir zone was of 15.06%.

The knowledge about the heterogeneity level in a reser-
voir zone is an essential information because it allows to
determine the better strategies in the well’s operation mo-
ment.

In the Model II (Neural Networks), the Confusion ma-
trix (Table 4) presents a matching between the predicted
and real electrofacies considerably greater than the Con-
fusion matrix of the Model I (Table 2). It is possible to
verify by means of the Classification report, Table 5, that

all statistical scores have increased in Model II. This oc-
curs due to the better matching between the algorithm and
the research data set, and also because the Neural Network
is a more robust algorithm than SVM. In the Model II (Ta-
ble 4), the problem of confusion between the prediction
of electrofacies 02 and 04 can be ignored, because in the
group of 44 samples labeled as electrofacies 04, only three
were predicted as electrofacies 02.
Thewell logs sections ofmodels I and II are very similar,

among the five electrofacies available to fill the section, the
models predicted the presence of only two, electrofacies 0
(purple) and 02 (orange). In the context of Gato do Mato
oil field, these electrofacies presents two distinct zones,
reservoir zone and non-reservoir zone. The electrofacies
0 has a greater content of clay that can be verified by
the high values of gamma rays, it also has high values of
density and water saturation representing a section with
properties of non-reservoir zone. On the other hand, the
electrofacies 02 have low values of gamma rays and water
saturation, high values of resistivity, and moderate values
of density, indicating properties of a reservoir zone.
In the well log section of the 1-SHEL-26-RJS, the most

part is composed of non-reservoir zones (electrofacies 0),
and a small portion is filled with reservoir zone (electro-
facies 02). This behavior it is illustrated by models I and
II in figures 12 and 13. It can be explained by the Gamma
Rays values, it is possible to observe that the values of
Gamma Rays are high in most part of the well. It is one
of the most essential parameter used to distinguish be-
tween argilous zones and non-argilous zones. In research,
this zones are responsible by auxiliary in the classifica-
tion of reservoir and non-reservoir zones. Therefore, the
main reason why well log 1-SHEL-26-RJS is mostly clas-
sified as a non-reservoir zone it is because of the values
of Gamma rays. These high values lead the algorithms of
models I and II to classify these portions as non-reservoir
zones (electrofacies 0).
The main differences between the well log sections pre-

dicted by models I and II are that the well log section
predicted by the Model I is more heterogeneous than well
log section predicted by the Model II. In other words, the
Model I has an electrofacies variation higher than Model
II.
According to the results illustrated by SVM Model and

Neural NetworkModel are clear that bothmodels reaching
a high-performance level. Both algorithms are capable to
obtain a hit rate greater than 90%. Therefore both models
can be used in electrofacies predictions with high level
of reliability. When a performance comparison is made
between the Models, the Neural Network Model shows to
be about 4% better than SVMModel. In the well logs sec-
tions it is possible to observe that the classification made
by the models is very similar, but the well log section pro-
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duced by the Neural NetworkModel shows to be smoother
and has smaller electrofacies variation than SVM Model.
This behavior observed in the Neural Network Model is
closer to the natural behavior verified in the oil field Gato
do Mato, located in the Brazilian pre-salt.

10 Conclusions
The prediction of electrofacies in distinct data sets col-

laborates allowing us to know electrofacies present in dif-
ferent data sets in a short time period. How was demon-
strated in the research, the models also are able to distin-
guish between the reservoir and non-reservoir zones. The
results obtained with the models I and II can be consid-
ered promising once that the algorithms applied in models
showed to be capable to predict with high precision the
data set. In other words, the models I and II show a high
potential to automate the process of electrofacies classi-
fication. This automation, if well calibrated as can be
seen in models I and II can save time and resources for
petroleum companies in large oil fields with a lot of well
logs information. An advantage of models I and II to pre-
dict and classify the electrofacies is that the algorithms can
quickly analyze several features, and thus, to predict pat-
terns in regions difficult to be find by human eyes. Another
advantage is that the input features, once associated with
the corresponding electrofacies, can be used to generalize
the overall reservoir. Therefore, it becomes possible the
data set that represents a few inches of the surrounding
well can be interpolated by the wells in the oil field and,
consequently, to generate a model of the entire reservoir.

The models I and II showed a convergence in their pre-
dictions. This is a good sign because reinforcement the
predictions of the models. Beyond that was possible to
associate reservoir and non reservoir zones to the electro-
facies predicted. Due to the characteristics of the Geo-
physical well logs response was possible to associate the
electrofacies 02with a reservoir zone, and the electrofacies
0 with a non reservoir zone. The models I and II has sim-
ilar level of vertical heterogeneity. The difference about
2% between the vertical heterogeneity in models reinforce
the convergence of the predicted electrofacies by models I
and II. The Model II has reveal high values of final accu-
racy in both methods of evaluation, Confusion matrix and
k-Fold Cross-Validation. In addition, the Model II showed
to be more consistent in the five predictions made by the
k-Fold Cross-Validation. But the higher robustness of the
Model II in relation to the Model I has a price. While
the Model I has an execution time of 0.096s, the Model
II presents an execution time of 41.45s. In other words,
the Model I is about 432 times more quickly than Model
II. Therefore, whether the difference of about 4% (97%
Model II - 93% Model I) it is not a problem, then Model
I is more recommended, once time that it is as good as

Model II, and about 432 times more quickly.
The current research approached themes of high impor-

tance in the modern scenario, the union between well logs
data set andmachine learning algorithm have shown a suc-
cess combination. Therefore, the work contribute for the
literature of geosciences and AI algorithms as a practical
case of AI algorithms automating an important process in
the petroleum geology.
The Models presented in the research open doors to

other applications in the O&G sector. The own models
applied in the current research can be recalibrated for pre-
dictions of others sectors. Once the point is reached the
models presented in the research can be recalibrated to
reach similar or better performance. There are researches
being developed by the research group with the main goal
to explore other possibilities to apply themodels developed
in the current research in other areas of O&G. The future
of O&G and other technological sectors has shown that
the combination of AI algorithms and human knowledge
is a long-term marriage.
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