
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Thiago Resek Fabri dos Anjos

Inferring Geographical Location of Images

Inferência de Localização Geográfica de Imagens

CAMPINAS
2022

Thiago Resek Fabri dos Anjos

Inferring Geographical Location of Images

Inferência de Localização Geográfica de Imagens

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Anderson de Rezende Rocha

Este exemplar corresponde à versão final da
Dissertação defendida por Thiago Resek
Fabri dos Anjos e orientada pelo Prof. Dr.
Anderson de Rezende Rocha.

CAMPINAS
2022

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Resek, Thiago, 1987-
 R311i ResInferring geographical location of images / Thiago Resek Fabri dos Anjos. –

Campinas, SP : [s.n.], 2022.

 ResOrientador: Anderson de Rezende Rocha.
 ResDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Res1. Computação forense. 2. Análise forense de imagens digitais. 3.

Reconhecimento de padrões. 4. Casamento de padrões (Computação). I.
Rocha, Anderson de Rezende, 1980-. II. Universidade Estadual de Campinas.
Instituto de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Inferência de localização geográfica de imagens
Palavras-chave em inglês:
Forensic computing
Digital image forensics
Pattern recognition
Pattern matching (Computer science)
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Anderson de Rezende Rocha [Orientador]
João Paulo Papa
Sandra Eliza Fontes de Avila
Data de defesa: 14-06-2022
Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-4247-180X
- Currículo Lattes do autor: http://lattes.cnpq.br/7495527555948883

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Thiago Resek Fabri dos Anjos

Inferring Geographical Location of Images

Inferência de Localização Geográfica de Imagens

Banca Examinadora:

• Prof. Dr. Anderson de Rezende Rocha
Instituto de Computação - Unicamp

• Profa. Dra. Sandra Eliza Fontes de Avila
Instituto de Computação - Unicamp

• Prof. Dr. João Paulo Papa
Faculdade de Ciências - Unesp

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 14 de junho de 2022

Dedication

Dedicated to my parents, Mônica and Paulo.

Vivendo, se aprende; mas o que se aprende,
mais, é só a fazer outras maiores perguntas.

(João Guimarães Rosa)

Acknowledgements

First of all, I would like to thank my advisor, Prof. Anderson Rocha, for his constant
guidance and support in the development of this work, and for sharing his great passion
for Science.

I would also like to thank the Institute of Computing of the University of Campinas
(IC/UNICAMP) for providing the means to develop this work, and all the faculty, staff
and students for the support and exchange of knowledge. In particular, a special thanks
goes to all members of the Recod.ai lab for teaching me so much and for helping me
whenever I needed. I am also deeply thankful to Prof. Simone Milani and Sebastiano
Verde for the contribution on the early stages of this work.

A big thanks also goes to my co-workers at Motorola, specially Ana Florencio and
Guilherme Graciosa, for always encouraging me to pursue my academic goals. Finally, I
would like to thank my family and friends for supporting me and keeping me motivated
during the period of this work. Specially, I would like to thank: my friend Anderson, for
all the great tips, the encouraging talks and the useful comments; my partner Andressa
for helping me see things from outside my usual perspective and for being so supportive
and understanding. Lastly, I would like to thank my mother, my greatest supporter, who
unfortunately could not be here to witness the final stage of this work.

Resumo

Ser capaz de associar uma imagem com a localização geográfica onde ela foi obtida, sem
o uso de informação adicional além da própria imagem, é um problema de interesse para
várias áreas como jornalismo e ciência forense digital. Atualmente, dada a disponibili-
dade praticamente global de imagens de satélite com informações de localização, inferir
a localização geográfica de uma imagem pode ser reduzido a um problema de casamento
de imagens de diferentes pontos de vista (imagens de solo e imagens de satélite). Neste
trabalho, apresentamos e estudamos os primeiros passos para o desenvolvimento de um
algoritmo não-supervisionado para o problema de casamento de imagens de solo e de saté-
lite. Exploramos e estudamos as relações de adjacências entre pontos de referência visíveis
em ambas as imagens, e como tais relações podem se manter mesmo com a mudança de
ponto de vista. Apresentamos um algoritmo baseado em comparação de grafos que visa
localizar o ponto de vista de uma imagem a nível de solo (um panorama em 360 graus)
dentro de uma imagem aérea mais ampla da mesma região. Tal algoritmo recebe como
entrada um conjunto de pontos de referência, inicialmente extraídos de forma manual, e
funciona por meio do casamento de grafos de pontos de referência de ambos os pontos
de vista, de acordo com um modelo de probabilidade especificamente desenvolvido para
o problema. Em sequência, foi desenvolvido um processo automático para extração de
tais pontos de referência, baseado em segmentação semântica de imagens, processo que
incluiu a obtenção de um novo conjunto de dados e o treinamento de uma rede neural
específicos para o problema de segmentação de imagens de satélite. Isto permite a cria-
ção de um procedimento totalmente automatizado para a localização de imagens baseada
em casamento de grafos. Por fim, apresentamos um estudo detalhado do funcionamento
do algoritmo proposto, inclusive a adaptação de alguns parâmetros, e também possíveis
extensões como, por exemplo, o uso de aprendizagem profunda (deep learning) para pós-
processamentos nos grafos, mitigando possíveis erros gerados em etapas anteriores.

Abstract

Associating an image to its geographical location, without the use of data besides the im-
age itself, is a significant concern in journalism and digital forensics. Given the availability
of geo-tagged satellite imagery for most of the Earth’s surface, retrieving the location of
a generic picture can be addressed as a cross-view image matching between aerial and
ground views. In this work, we propose initial steps toward a fully-unsupervised algo-
rithm for ground to aerial image matching, exploiting and focusing on the view-invariant
adjacency relationships between landmarks appearing in both views. We introduce a
graph-based strategy that, given a set of (initially manually annotated) landmarks, lo-
calizes the viewpoint of a ground-level 360-degree image within a broad aerial view of
the same area, by matching the respective landmark graphs according to a specifically
designed likelihood model. We further develop a process to automatically extract land-
marks, based on semantic segmentation, including the collection of a new dataset and the
training of a convolutional neural network for aerial image semantic segmentation. We
develop a fully-automated pipeline for localization based on graph matching. We also
present an in-depth study of how this algorithm works, in terms of parameter-tuning,
and potential extensions, such as applying a Deep Learning approach to post-process the
generated graph and mitigate mistakes from previous steps, among others.

List of Figures

1.1 Examples of matching elements found in BBC’s investigation 15

2.1 Typical network architecture used in cross-view image matching 20
2.2 Using polar coordinate transformation to reduce the domain gap 21

3.1 Example of landmark graph generation . 27
3.2 Illustration of our search-refinement approach 31

4.1 The SegNet encoder-decoder architecture 32
4.2 Sample pairs from our aerial segmentation dataset 38

5.1 Example of manually extracted landmarks and generated graphs 40
5.2 Results for manual landmark extraction with increasing number of classes . 41
5.3 Parameter tuning: segmentation size threshold 48
5.4 Parameter tuning: covisibility window size 48
5.5 How covisibility window size affects answers’ positions 49
5.6 Parameter tuning: covisibility stride . 49
5.7 Parameter tuning: landmark extraction method 50
5.8 Results of our method to remove edges connecting similar landmarks . . . 52
5.9 Probability distribution for matching and non-matching pairs 53

List of Tables

2.1 A brief summary of related published works 23

5.1 Results on CVUSA dataset with manually annotated data 41
5.2 Results of AirSegNet6 on the test dataset 43
5.3 Results of AirSegNet13 on the test dataset 44
5.4 Segmentation results of AirSegNet6 on CVUSA images 45
5.5 Segmentation results of our AirSegNet13 on CVUSA images 46
5.6 Results of our search-refinement method 50

Contents

1 Introduction 14

2 Related Work 17
2.1 Directly Related Work . 17
2.2 Additional Topics . 23

3 Localization Through Graph Matching 26
3.1 View-point Localization and Landmark Graphs 26

3.1.1 Graph Generation . 27
3.1.2 Candidate Locations . 28
3.1.3 Class Adjacency Matrices . 28
3.1.4 Location Likelihood . 29
3.1.5 Hierarchical Search Refinement . 30

4 Semantic Segmentation 32
4.1 Ground Image Segmentation . 32
4.2 Aerial Image Segmentation . 33

4.2.1 Building an Aerial Segmentation Dataset 33
4.2.2 Training an Aerial Segmentation Network 36

4.3 Extracting Landmarks from Segmentation 37

5 Experiments and Results 39
5.1 Localization with Manual Landmarks . 39
5.2 Semantic Segmentation of Aerial Images 41
5.3 Localization With Automated Landmarks 45

5.3.1 Hierarchical Search Refinement . 49
5.3.2 Removing Edges Connecting Similar Landmarks 50
5.3.3 Non-matching Pairs . 51

6 Conclusion 54

Bibliography 56

A Datasheet for the Aerial Segmentation Dataset 64
A.1 Motivation . 64
A.2 Composition . 64
A.3 Collection process . 66
A.4 Preprocessing/cleaning/labeling . 67
A.5 Uses . 68

A.6 Distribution . 68
A.7 Maintenance . 69

14

Chapter 1

Introduction

In July 2018, a video depicting the brutal shooting of women and children at the hands
of a group of men in military uniforms shocked the world. Tracking down the precise
location where the event took place showed to be a daunting task. After a thorough
forensic investigation [8], BBC Africa was able to pinpoint a precise area in the Far North
Region of Cameroon. Analysts exploited the presence of few macro-scale clues – such as
a distinctive mountain range visible in the background – to narrow down the region of
interest. Figure 1.1 depicts this procedure and some of the matching elements found by
the investigators.

BBC’s investigation required a laborious process of manual search through satellite
imagery, as well as a prior knowledge of the approximate area to be inspected (reporters
received a tip that the event happened around the northern Cameroonian border). Such
event highlighted the need for automated tools aiding this process.

Retrieving the geographic location from where a picture was taken, with no GPS-like
information or metadata available, is a challenging task even for humans. It has potential
applications in areas such as forensics (as the example provided above), fake-news analysis
(it could be used to verify if a given image was taken in a different place than where it
claims), autonomous cars (to help localize a self-driving car if GPS connection is poor or
unavailable), among others. Consistent effort has been addressed to the problem during
the last decade, starting from reducing the number of potential candidate locations, by
calculating probability distributions over the Earth’s surface [28]. As seen for BBC’s case,
macro-scale features such as mountainous terrains and elevation were also investigated [4].
A more accurate localization was later achieved through ground-to-ground matching with
geo-tagged images, using standard keypoint-matching techniques [82] and higher-level
city descriptors [87]. These approaches are limited by the availability of geo-referenced
images, which are typically abundant for urban or touristic areas only. Such limitations
and the broad availability of satellite imagery caused the research focus to shift from
ground-to-ground to ground-to-aerial (or cross-view) image matching.

Ground-to-aerial scenarios are characterized by a strong perspective change, making
unfeasible to perform keypoint matching via traditional feature descriptors (e.g., SIFT
[42]). Cross-view matching was first tackled in urban scenarios, using oblique bird’s-
eye view (BEV) images to extract and match building facades [7]. The approach was
further integrated with pose estimation and 3D modeling [55] and extended to non-urban

15

areas [39] by introducing hand-crafted features [19].
More recently, the success of deep learning (DL) in computer vision has influenced

the field of cross-view matching. A widely adopted approach employs a Siamese network
architecture to learn a common representation for ground and aerial images from pixel
data [40, 78, 30, 41, 65, 69, 58, 76, 88, 59, 60]. Generative adversarial networks (GANs)
were employed to synthesize ground-level views from overhead imagery and bridge the
gap between the two domains [23, 50, 70]. In general, state-of-the-art DL solutions frame
the problem as an image-to-image matching task (i.e., verifying the correspondence be-
tween the ground image and the associated aerial one) and are designed in a supervised
formulation, requiring annotated data as training examples.

(a) A frame from the original video
showing a distinctive mountain range,
highlighted in red.

(b) A matching mountain range
in north Cameroon, found through
Google Earth.

(c) Matching elements between the ground images from the video (to the left) and
the satellite images (right).

Figure 1.1: BBC was able to pinpoint the location where the video took place by finding
a matching mountain range in Google Earth. Frames extracted from the video [8].

Differently from current data-driven efforts, here we propose an unsupervised ap-
proach that leverages the view-independent adjacency properties of visible landmarks to
create comparable graph structures. We observed how the proximity relationships be-
tween nearby objects or landmarks (e.g., the two buildings in Figure 1.1), are maintained
in both images. Our hypothesis is that, despite actual distances being disrupted by the
perspective change, the mutual adjacency relationships among nearby objects, or land-
marks, are preserved across the two views. Although the proximity of two buildings is

16

surely not sufficient to uniquely localize a ground image, our claim is that the localization
becomes progressively more accurate as the proximity graph grows richer (i.e., by includ-
ing buildings, roads, vegetation and so on). The main research question we are interested
in is if the adjacency properties of visible landmarks, modelled as graph structures, can
be compared and used to leverage information about the geographic localization of the
input images.

In this work, we outline the first steps in the direction of a comprehensive ground-
to-aerial image matching system, by investigating the viewpoint localization of a 360◦

ground image within a broader aerial view of the same area. We describe a pipeline,
containing methods designed to extract salient points from an image, to generate landmark
graphs from such salient points, to extract candidate locations from the aerial image
and to calculate a probability distribution over them, according to a specifically adopted
likelihood model.

This document is further structured as follows: in Chapter 2, we analyze some of the
related work found in the literature and the current state-of-the-art; in Chapter 3, we
describe our proposed method for localization through graph matching, including how
such graphs are generated and compared; in Chapter 4, we discuss semantic segmenta-
tion of images and how it can be employed to achieve automatic extraction of landmark
points; in Chapter 5, we present and discuss the results of several experiments performed
throughout this work; lastly, in Chapter 6 we provide the conclusions of our work.

17

Chapter 2

Related Work

2.1 Directly Related Work

The problem of estimating the geographical location of a ground query image has been
approached in the literature using many different strategies, but most of them have a com-
mon point: they try to match the input image, of unknown location, against a database
of images of known geographical location. If a match is found, the location of the query
image can then be said to be the same location of the matching image. Existing research
can generally be grouped by the type of images used for matching (ground or satellite
images) and by the type of features used to describe the images (hand-crafted features or
learnable features).

Ground-to-ground image matching was approached by Hays and Efros [28] in 2008 in
a very influential research: they employ a set of hand-crafted features to match ground
images to a large database of other ground images. Other similar works, especially in
the early 2010 decade, employ local features (such as SIFT [42], Scale Invariant Feature
Transform, in [82]) and global features (for instance, [87]). The main issue with ground-
to-ground image matching is that large databases of ground images with known GPS
locations, usually extracted from Google Street View or Flicker, are mostly restricted to
large urban or touristic areas, making this approach less likely to work well on rural areas,
for instance.

One way to overcome this limitation is to make use of satellite images, which are
available practically worldwide with tools like Google Maps. This problem is known in
the literature as cross-view image matching. Bansal et al. [7] was one of the first works
to employ this approach: bird’s eye-view images are used to extract building facades,
which are then warped and described using hand-craft features and matched against
the facades visible in ground images. This method has two serious drawbacks: it only
works in urban areas, and it requires that bird’s eye-view images are also available (since
facades are not visible in a satellite image). There are other methods in the literature that
propose solutions specific to certain terrain types: Baatz et al. [4] focus on mountainous
terrains, trying to extract mountain contours from the images and match them against
digital elevation models; Bansal et al. [6] try to extract corners and roof-line edges of
buildings in the ground view and match them to elevation maps. Lin et al. [39] try to
overcome these limitations by describing the whole ground and satellite images using

18

a set of hand-craft features such as HOG [19] (Histograms of Oriented Gradients) and
color histograms. Besides ground and aerial imagery, their method also uses land cover
attributes (an aerial view of the area classifying each pixel in land cover types such as
water, grassland, human use) as input. While cross-view matching solves the problem
of data availability, it introduces another problem: since the viewpoints are extremely
different, matching using hand-crafted features does not perform as well as it does in the
ground-to-ground scenario.

With the advance of Deep Learning and its successful application in many computer
vision problems, most of the recent work in the literature focuses on describing images
using deep, learnable features. In one of the first published works on this line, Lin et
al. [40] propose a solution that would be the inspiration for most of the subsequent work
in this area: using a Siamese network with CNNs (convolutional neural networks) in each
branch, as illustrated in Figure 2.1, to learn a common embedding to describe ground and
aerial images (in their case, they use bird’s eye-view imagery instead of satellite). This is
shown to perform better than hand-crafted features and other general-purpose networks
(such as AlexNet [35] trained on ImageNet [21]). Using a similar approach, Workman et
al. [78] show that, by training different networks for different scales of satellite images, the
matching can be performed at world-wide level. They also introduce CVUSA, a dataset
containing over 1.5 million geo-tagged image pairs, extracted randomly from locations
within the United States. Vo and Hays [74] further advance on this topic by investigating
rotation invariance, new architectures, such as a Triplet Network, and a new loss function,
the DBL (distance-based logistic), which is shown to increase performance. They also
introduce GTCrossView, which contains approximately 900,000 pairs of images collected
in 11 cities of the United States. Though widely used in early works in the area, this
dataset is not common in most recent works, mainly because the images are of lower
resolution than other datasets, as CVUSA, for example. Zhai et al. [84] study a slightly
different problem, segmentation of aerial images, but their approach can be extended to
cross-view matching: they extract features of the aerial image using a CNN and apply a
(learned) transformation to map these features onto the ground-level perspective. They
also build a new version of the CVUSA dataset, initially proposed by [78], using camera’s
extrinsic parameters to warp the ground-view panoramas, generating aligned pairs of
images (35,532 pairs for training and 8,884 for testing)1. Hu et al. [30] present CVM-Net
(Cross-View Matching Network), which provides significant improvements by adding a
NetVLAD layer [2] to the Siamese network. This converts local image features extracted
by the convolutional layers into global image descriptors and is shown to improve matching
accuracy. The idea is to obtain global representations that are independent of the locations
of their local features. Even though the results are good, it is not clear that this approach
is optimal, as the location of features could be helpful in finding patterns between ground
and satellite views. They also propose a new loss function, weighted soft-margin ranking
loss, which performs better than the more common triplet loss and also speeds up training
convergence. This loss is used in several following works. Their work is extended and

1This version of CVUSA is the most widely used in recent research [30, 41, 12, 66, 58], but the naming
might be misleading since both versions are usually referred to as simply CVUSA. In this work, we will
use the term CVUSA to refer to the new version proposed by [84], unless stated otherwise.

19

improved upon by Hu and Lee [31]. Liu and Li [41] take inspiration from the way humans
usually localize themselves using a map (by first aligning the direction of the map with the
direction they are looking at) and propose a Siamese network that encodes the orientation
of each pixel in the images. This provides a boost in performance compared to previous
methods and differs from other works because problem specific information is embedded
in the solution. They also create a widely used dataset, CVACT, which is 10 times bigger
than CVUSA, and contains higher resolution images. Cai et al. [12] propose an in-batch
re-weighting triplet loss to emphasize the effect of hard exemplars (each triplet inside a
batch is given a weight depending on the difficulty – samples that are too easy or too hard
have low weights, and thus lower importance). Sun et al. [66] extend the most common
architecture (a Siamese network with CNNs in each branch) by adding capsule layers [52]
that enhance the representation power of the features generated. The authors claim that
the capsule network is able of modelling spatial relationships of extracted features, and
thus is particularly indicated for this kind of problem. Shi et al. [58] try to explicitly
consider the geometric differences between ground and aerial views. The authors note
that applying a polar coordinate transformation on the aerial images brings them closer
to the ground images, as illustrated in Figure 2.2. Their method explicitly accounts
for geometric differences in two ways: first, by applying the polar transformation to all
aerial images; second, by adding a spatial-attention mechanism to the network so that
corresponding deep features are brought closer in the embedding space. Shi et al. [60]
explore spatial layout of local features by proposing a Cross-View Feature Transport layer
that transports features from one domain to the other, preserving the spatial layout of
local features and leading to more meaningful feature comparison. Shi et al. [59] achieve
very good results by also taking the orientation of the images into account: they apply a
polar transformation to the aerial image, extract features from both the polar-transformed
aerial and ground view and then compute the correlation between these features, which
they claim provides a more accurate measure of similarity. Zhu et al. [88] also study how
orientation can affect the result and attempt to develop a method to estimate orientation
together with the localization itself. They also point out that the comparison between
some methods in the literature may not be fair, since some assume that the ground
images and aerial images are always aligned [50, 58, 60]2, while some do not [30, 12, 74].
Wang et al. [76] claim that contextual information in neighboring areas can enrich features
descriptors and improve matching. They propose a Local Pattern Network (LPN) that
takes advantage of contextual information by extracting feature vectors from the center of
the image and from surrounding areas. Rodrigues and Tani [51] point out an important
factor: since we cannot guarantee that aerial and ground images were taken at the same
time, the landmarks can change between one view and the other (for instance, a new
building on the ground view might not be present in the aerial view). They propose a
data augmentation method that uses semantic segmentation of ground images to create
scene variations, e.g., removing a building or a road, which makes the network learn

2The images in CVUSA, the most used dataset, are always aligned, i.e., all aerial views have north as
the up direction, and all ground panoramas have the north direction in the center of the image. Hence,
unless explicitly taken into consideration, by performing random rotations, for instance, the methods will
assume that the images are aligned.

20

correspondences that are robust to such temporal variation. Yang et al. [80] achieve state
of the art results by proposing a novel model that uses Transformers [71] instead of the
typical CNNs. They claim that the self-attention properties of a Transformer can better
model global dependencies and make it easier for the network to learn the geometric
correspondences. The main drawbacks of this method are related to its performance: the
proposed network has considerably more parameters, making it more expensive in terms
of memory and data required for training, and also slower in inference time (which can
be a serious problem, particularly if real-time processing is desired).

Figure 2.1: One of the most common approaches in the literature for the cross-view image
matching problem: a Siamese network with a CNN in each branch.

We can see that some of the works mentioned in the previous paragraphs, especially
the initial ones, treat the images as “black boxes”, trying to extract information from them
without using any kind of knowledge or information specific to the problem. Moreover,
they analyze and describe the images as a whole, disregarding important information
about the local features and their relationships among different viewpoints. This works
to an extent, but more recent works such as [41], [88], [76], indicate that using addi-
tional information (such as orientation and the layout of local features, for instance) is an
effective way to tackle this problem and can improve the performance of the methods.

Following recent advances on another research topic, conditional GANs, Regmi and
Shah [50] train a GAN to synthesize aerial views given a ground image. They then train
a Siamese-like network with three branches, one for the ground view, one for the aerial
and one for the synthesized aerial view, claiming that the obtained representation is more
robust compared to using just features of the original images. Toker et al. [70] use a
similar approach, but in the other direction: their GAN synthesizes ground-level image
from a polar-warped aerial image. Several other works in the literature do not tackle the
matching problem itself, but propose GANs for cross-view image synthesis, some of which
work in both directions [68, 49, 56, 24] (i.e., can generate aerial views from a ground image
and vice-versa), while others only work in one direction [22, 57, 33, 23, 43], in most cases
aerial-to-ground.

Some other works have been published with different approaches or applications that

21

(a) Aerial image taken from
CVUSA dataset.

(b) Corresponding ground-level image.

(c) Aerial image shown in Figure 2.2(a) after polar coordinates transfor-
mation.

Figure 2.2: Applying a polar coordinate transformation to aerial images is a technique
that can reduce the domain gap between ground and aerial views. It is applied in several
works [58, 59, 70]. Notice that the alignment is obviously not perfect, but the main
components (roads, for instance) are roughly aligned.

are not the focus of our work but are still worth mentioning. Weyand et al. [77] propose
the localization problem as a classification one, instead of the usual image matching
approach: they divide the world into cells and train a CNN that outputs, for a given
query image, the likelihood that the image was taken in each cell. Their method, however,
is limited to ground-to-ground image matching. Samano et al. [54] try to match ground-
level panoramas to map tiles directly. They claim that the map representation is not
sufficiently discriminative to allow for localization of a single image, but the results can be
concatenated in a given route, using particle filtering approaches, to allow for localization
of a moving vehicle, for instance. Chen et al. [16] focus on matching drone images (instead
of ground images) to satellite images. The work by Wang et al. [76] that was mentioned
previously can also be applicable to this scenario. Zhu et al. [89] propose a more realistic
version of the problem: they claim that most of existing work assumes that there is always
a reference image centered in the exact location of the input query image, and that the
matching is always one-to-one. The authors introduce a more realistic definition of the
problem in which query images and reference images are not always perfectly aligned,

22

and there might be multiple reference images covering the same query location. A new
dataset, VIGOR, built specifically for this approach, is also presented.

Table 2.1 contains a brief summary of the main research works cited throughout this
section, listing the main characteristics and limitations of each work, and the datasets
that they employ.

Work Characteristics and limitations Datasets used
Bansal et al. [7] Uses bird’s eye-view images to extract and

match building facades with hand-craft fea-
tures. Only works in urban areas.

Not published.

Baatz et al. [4] Focuses on mountainous terrains, extracting
contours and matching against digital elevation
models. Input data has limited availability.

Not published.

Lin et al. [39] Describes ground and satellite images using a
set of hand-craft features. Also use land cover
attributes as input, which have limited avail-
ability.

Not published.

Lin et al. [40] First proposal of a Siamese network with CNNs
in each branch.

Not published.

Workman et
al. [78]

Uses different networks for different scales of
aerial images.

Introduces
CVUSA (original
version).

Vo and Hays [74] Investigates rotation invariance, new archi-
tectures and a new loss function, the DBL
(distance-based logistic).

Introduces
GTCrossView.

Zhai et al. [84] Learns a transformation to map features ex-
tracted from aerial images to ground images.

Introduces a new,
widely used ver-
sion of CVUSA.

Hu et al. [30], Hu
and Lee [31]

Introduces CVM-Net, which adds a NetVLAD
layer to the Siamese network, converting local
image features into global image descriptors.
Also proposes the weighted soft-margin ranking
loss.

GTCrossView,
CVUSA.

Liu and Li [41] Proposes a network that encodes orientation in
the images, embedding problem specific infor-
mation in the solution.

CVUSA. Intro-
duces CVACT.

Cai et al. [12] Proposes an in-batch re-weighting triplet loss to
emphasize the effect of hard exemplars.

GTCrossView,
CVUSA.

Sun et al. [66] Adds capsule layers [52] that enhance the rep-
resentation power of the features.

GTCrossView,
CVUSA.

Shi et al. [58] Explicitly considers geometric differences be-
tween views by adding a spatial-attention mech-
anism to the network.

CVUSA,
CVACT.

23

Work Characteristics and limitations Datasets used
Shi et al. [60] Proposes a layer specifically designed to trans-

port features from one domain to the other.
CVUSA,
CVACT.

Shi et al. [59] Applies a polar transformation to the aerial
image, extracts features from both the polar-
transformed aerial and ground view and then
computes the correlation between these fea-
tures, which provides a more accurate measure
of similarity.

CVUSA,
CVACT.

Zhu et al. [88] Tries to estimate orientation together with the
localization itself.

GTCrossView,
CVUSA.

Wang et al. [76] Proposes a Local Pattern Network (LPN) that
takes advantage of contextual information by
extracting feature vectors from the center of the
image and from surrounding areas.

CVUSA,
CVACT,
University-1652
(dataset for drone
localization).

Rodrigues and
Tani [51]

Proposes a network that can learn correspon-
dences that are robust to temporal variations.

CVUSA,
CVACT.

Yang et al. [80] Proposes a model that uses Transformers [71]
instead of CNNs, which can better model global
dependencies and makes it easier for the net-
work to learn the geometric correspondences.

CVUSA,
CVACT.

Regmi and Shah
[50]

Trains a GAN to synthesize aerial views given
a ground image; train a Siamese-like network
with three branches (ground, aerial and synthe-
sized aerial).

GTCrossView,
CVUSA.

Toker et al. [70] Similar approach to Regmi and Shah [50], but
their GAN synthesizes ground-level image from
a polar-warped aerial image.

CVUSA,
CVACT.

Zhu et al. [89] Assumes that query images and reference im-
ages are not always perfectly aligned, and there
might be multiple reference images covering the
same query location.

Introduces
VIGOR.

Table 2.1: A brief summary of published works that
study the cross-view image matching problem

2.2 Additional Topics

In this section, we briefly discuss works in topics that are not directly related to our
problem of interest but are employed in our solution and thus worth mentioning.

The first topic is semantic segmentation, which can be defined as the problem of
classifying every pixel of an image as belonging to a particular class with semantic meaning

24

(not to be confused with instance segmentation, where each different instance of a class
must be labelled uniquely).

Semantic segmentation of ground-level images is a widely studied topic, especially be-
cause of its application in areas such as self-driving cars. Badrinarayanan et al. [5] propose
SegNet, a deep fully convolutional neural network with an encoder-decoder architecture,
followed by a pixel-wise classification layer at the end. Chen et al. [13] claim that the se-
quence of max-pooling and downsampling layers common in other approaches, such as [5],
results in feature maps with reduced spatial resolution, and propose a network that uses
upsamling filters (atrous convolution) to achieve denser feature maps. Zhang et al. [86]
introduce a multimodal approach that takes as input several image modalities, such as
near-infrared and depth images besides RGB images. They propose an architecture to
extract and fuse information from all different modalities. Chen et al. [15] perform a de-
tailed study on how common network architectures, such as VGG [61] and ResNet[29],
affect segmentation in terms of accuracy, speed and storage size.

Semantic segmentation of aerial images is less explored in the literature. Zhai et
al. [84] try to learn a transformation to convert the segmentation of a ground view of
the same area into the aerial segmentation. Their method is particularly interesting
because it does not require annotated data for aerial images, but is limited to three
classes only (vegetation, roads and buildings). Costea et al. [18] propose an approach
based on an ensemble of CNNs to detect roads only. Li et al. [38] focus on detecting
buildings and roads with CNNs to extract a map representation from an image. Kaiser et
al. [34] employ another neural network as base of the architecture, but their work is also
limited to roads and buildings. Kuo et al. [36] focus on identifying land types and usages
only, such as urban, forest, agricultural, etc. Popescu and Ichim [48] propose a solution
based on handcrafted features that is aimed towards disaster-monitoring, detecting floods
and roads. Zhang et al. [85] propose a dual-path network, containing a spatial branch that
encodes local and global semantic information, and an edge path, that learns to detect
semantic borders and improves the performance on the boundaries between classes. Their
proposed network segments aerial images in 6 classes: roads, buildings, low vegetation,
trees, cars, and background). Marmanis et al. [44] also propose the usage of an ensemble
of CNNs to improve segmentation accuracy. It is also worth mentioning that there is
a limited availability of datasets for this problem: ISRPS [1] is limited to 6 classes and
only 71 images; Yuan et al. [81] provide data that is focused on finding borders between
semantically different objects, but the objects themselves are not classified; DeepGlobe
[20], introduced by Demir et al., focuses on building and road extraction and land cover
classification; Humans in The Loop [32] published a dataset, containing 72 images of
Dubai segmented in five classes, that could be applicable to our problem, but the images
are limited in number and in variability, since they were all collected in a single city; Chen
et al. [14] introduce VALID, a dataset with 6690 high-resolution images annotated with
segmentation data, depth information, bounding boxes, etc. This dataset is built from
synthetic data, i.e., virtually generated scenes.

Another topic of interest for our work is graph matching and the use of graphs for
visual place recognition. The general problem of exact graph matching is NP-hard [11]
and finding exact node and edge matches is a combinatorial problem that can grow very

25

quickly. To simplify this problem, inexact graph matching approaches have been proposed,
such as edit-distance, detailed by Bunke and Riesen [10], which attempts to find the
minimum cost based on edit operations (insertion, deletion, etc.) between two graphs.
Other examples are spectral methods [75] and graph kernels [73]. More recently, Zanfir
and Sminchisescu [83] proposed a novel approach based on deep learning, including the
mathematical formulation of layers specifically designed for this problem. Stumm et
al. [63, 64] introduce the concept of covisibility graphs, structures proposed for the field
of robotics, more specifically in autonomous navigation systems: maps of feature points
are used to provide a synthetic description of the scene, allowing the robot to recognize
a location that it already visited. Two feature points, or landmarks, are connected by
an edge in the graph if they appear co-visible within the field-of-view of the robot. This
structure helps retain important relation information about the landmarks. The authors
also propose an efficient method for graph comparison in this scenario. Their work is
based on SLAM (Simultaneous Localization And Mapping) techniques, which is also a
relevant field for our problem, with the possibility that other solutions could be adapted
from one field to the other. SLAM is widely studied in the literature, and surveys such
as [3] and [67] provide introductions to this topic.

26

Chapter 3

Localization Through Graph Matching

As mentioned in Chapter 2, most of the current work in geographical localization is
data-driven. We decided to propose a different, unsupervised approach that attempts to
leverage the view-independent adjacency properties of landmarks in aerial and ground
images (we define as landmarks any significant object or structure in the scene, such as
a building, a tree, a road). Our hypothesis is that, although distances and perspectives
are clearly disrupted when changing from a ground to an aerial point of view, the general
adjacency relationships among nearby objects, or landmarks, is preserved. Our proposal
is to generate graphs for both ground and aerial views, modelling the spatial distribution
of such landmarks and their relationships. If such graphs indeed maintain the adjacency
relationships of landmarks, then we can try to match them and to extract insights from
their similarity.1

3.1 View-point Localization and Landmark Graphs

To study how landmark graphs work and if they can be used in localization problems, we
investigated the view-point localization problem, that consists in localizing a 360◦ ground
image within a broader aerial view of the same area. This is a simplification of the original
problem (geographical localization), since it does not involve matching one ground image
to one among several aerial images. In this case, we start with a pair of matching ground
and aerial images and our goal is to answer the following question: what place in the
aerial image corresponds to the viewpoint of the ground image?

Our proposed approach for this problem is based on building and matching landmark
graphs, a relational graph structure that models the adjacency and spatial relationships of
key objects in the scene. To develop a mathematical model for landmark graphs, we took
inspiration from the field of robotics, mainly from the concept of covisibility graphs [63, 64]
described in Section 2.2. With some adaptations, this concept can be extended and applied
to landmark graphs, as we will show in the next sections.

Using landmark graphs to study the localization problem involves, broadly speaking,
two separate steps: extracting the landmarks and matching the graph itself. In this
chapter, we will focus on the latter, assuming that the landmarks are already known. We

1Some parts of this chapter were directly adapted from previously published work [72].

27

Figure 3.1: Landmark graph generation from a set of landmark points of three classes:
building (blue), road (orange) and tree (green). Each subset of points co-observed by the
moving window produces a connected clique in the graph.

will defer the study of how landmark points can be extracted to Chapter 4.
Our proposed method starts with a 360◦ ground image and an aerial view of the same

area, and the corresponding lists of their landmark coordinates and classes. In Sections
3.1.1 through 3.1.4 we will present in detail the steps of our proposed pipeline.

3.1.1 Graph Generation

Let (lk, wk), k = 1, . . . , K, be a list of landmark points lk on a ground or aerial image,
each associated to a class wk from a finite dictionary W (classes could be, for instance,
buildings, roads, vegetation, water, and so on). A landmark graph is an undirected graph
G = (V,E), where V = {lk}, and there exists an edge between two nodes if the related
landmarks are co-visible, i.e., visible together within a window of predefined size, called
covisibility window.

A landmark graph is obtained by making observations on the image while moving the
covisibility window with a one-pixel stride. For each i-th observation, all landmarks lk
lying within the current window are stored as a clique, Ci, represented by a K-element
binary vector. While cliques are extracted, a matrix C is continuously updated by adding
each vector Ci as a new column. Duplicate cliques are discarded. Once the observations
are concluded, the adjacency matrix A of the overall landmark graph can be calculated
from the clique matrix C as

A = H(C · C⊤), (3.1)

where H denotes the element-wise Heaviside step function.
In the example of Figure 3.1, we have three observations, producing cliques C1 =

{l1, l2, l4}, C2 = {l2, l3, l4}, C3 = {l4, l5, l6} and resulting in the following clique matrix:

C⊤ =

1 1 0 1 0 0

0 1 1 1 0 0

0 0 0 1 1 1

 .

Note that in the case of 360◦ images, a special treatment is required: landmarks are

28

marked as covisible also in the case they appear on opposite ends of the picture. In
fact, the picture must be considered as closed on itself, applied on the inner surface of a
cylinder.

3.1.2 Candidate Locations

Up to now, we have treated ground and aerial images in the exact same way. As we
are interested in localizing the viewpoint in the aerial image that corresponds to the
ground view, our next step is to divide the aerial graph into several subgraphs, each one
representing a possible location. We will then look for, among these candidate subgraphs,
the one that better matches the graph of the ground image.

First, a subset of relevant cliques is extracted from the columns of C. A clique Ci is
considered relevant if all the classes visible in the query ground image appear on it at
least once. This task can be made computationally more efficient by using an inverted
index representation, as described in [62].

Given the set of relevant cliques, these are then extended according to a covisibility
parameter p representing the ratio of landmarks that are re-observed between pairs of
neighboring cliques [63]. The rationale for this parameter is to collect within the same
location subsets of landmarks that are sufficiently close to one another and thus likely to
be seen together in the ground image. A clique Ci is extended with landmarks of Cj if
the following condition is true:

∥Ci ⊙ Cj∥0
∥Ci∥0

> p, (3.2)

where ⊙ denotes the element-wise binary multiplication and ∥·∥0 is the L0 norm, i.e., the
number of non-zero elements. The left part of (3.2) thus denotes the number of common
landmarks in Ci and Cj over the total number of landmarks in Ci.

In the example of Figure 3.1, by setting p = 0.5, C1 is extended with C2 (as they share
2/3 of their landmarks), but C3 remains separated (since the shared ratio is 1/3).

The extended cliques are collected in the set of candidate locations, Li, to be compared
to the query ground image, Z.

3.1.3 Class Adjacency Matrices

The last step before location retrieval consists in deriving a suitable feature representation
for comparing Z and Li. Since individual landmarks cannot be directly matched across
the two views, a node-wise comparison of landmark graphs is not viable. Moreover, graph
sizes and shapes are different, in general, as the number of visible landmarks may vary
even between the ground observation and the corresponding aerial location. Nevertheless,
we have yet to take into account the class information associated with each landmark. An
effective representation to harness class information for matching heterogeneous graphs is
the class adjacency matrix [64].

Given the adjacency matrix AL from the subgraph of a generic location L, the asso-
ciated class adjacency matrix WL is a |W| × |W| matrix such that WL

u,v is equal to the

29

number of edges connecting a u-class to a v-class node, normalized by the total number
of edges (as described in pseudocode in Algorithm 1). Such matrix is symmetric and the
upper/lower triangle (including the diagonal) sums to 1. The algorithm works in the fol-
lowing manner: in the main nested loop (lines 5 to 13),the lower triangle of the landmark
adjacency matrix A is swept, and if landmarks i and j are connected (i.e., if Ai,j > 0), the
value of W (initialized with all zeroes) at the corresponding position is increased. Since
the graph is undirected (i.e., A is symmetrical, Ai,j = Aj,i,∀i, j), we can sweep only the
bottom triangle of the matrix, instead of all the elements. The result will contain, in
element Wr,c the count of occurrences of edges connecting a landmark belonging to class
r to a landmark belonging to class c. Again, due to the property that A is symmetrical,
only the lower triangle of W is initially calculated. Lastly, on line 14, operations are
performed to make sure that W is also symmetrical and that the elements sum to one.

Algorithm 1 Class adjacency matrix
Require:
1: A, landmark adjacency matrix (K ×K);
2: wk, landmark classes, k = 1, . . . , K;
3: W , class-dictionary.

Ensure:
4: W , class adjacency matrix (|W| × |W|).

5: for i in range(K) do
6: for j in range(i− 1) do
7: if Ai,j > 0 then
8: r ← max(wi, wj)
9: c← min(wi, wj)

10: Wr,c ← Wr,c + 1
11: end if
12: end for
13: end for
14: W ←

(
W +W⊤ − diag(W)

)
/sum(W)

In the example of Figure 3.1, there are two edges connecting blue and green nodes out
of a total of eight edges. Therefore, Wblue,green = 2/8 = 0.25.

Class adjacency matrices are calculated for each candidate location Li and the ground
query Z.

3.1.4 Location Likelihood

The likelihood model P (Z|L) for a ground query Z given an aerial location L is repre-
sented by the normalized cross-correlation between class adjacency matrices, as in (3.3),

P (Z|L) =
∑

u,v W
Z
u,v ·WL

u,v√∑
u,v

(
WZ

u,v

)2 ·∑u,v

(
WL

u,v

)2 , (3.3)

30

where WZ
u,v and WL

u,v are the class adjacency values between classes u and v, in Z and
L, respectively.

The posterior probability of a candidate aerial location Li given the ground query Z
is given by the Bayes’ rule,

P (Li|Z) =
P (Z|Li)P (Li)

P (Z|Li)P (Li) + P (Z|¬Li)P (¬Li)
, (3.4)

whereby the prior is set to P (Li) = 1/N , being N the total number of candidate
locations.

The likelihood of the query being matched to another location is calculated as the
average likelihood over all other candidates:

P (Z|¬Li) =
∑
j ̸=i

P (Z|Lj)
N − 1

(3.5)

.
Finally, the best candidate for the current query is the one satisfying the maximum a

posteriori (MAP) criterion,
LMAP = argmax

Li

P (Li|Z) (3.6)

Note that with the choice of a uniform prior P (Li), the estimation criterion becomes a
maximum likelihood (ML), so maximizing (3.3) or (3.4) is equivalent. However, we report
the description of the complete MAP model either way, in view of a possible extension to
non-trivial prior distributions.

3.1.5 Hierarchical Search Refinement

A possible extension to the algorithm described would be to apply it in a hierarchical
way: as the size of the covisibility window directly affects the size of the searched area, it
might be plausible to start the search on a large area and then refine the search multiple
times using a smaller window in each iteration. We then modified our algorithm to work
in a recursive manner: given a window of size W , it will find the candidate locations and
return the likelihoods of each of them. The search will then be repeated inside of each
window, using a smaller window w, and so on. This procedure is illustrated in Figure
3.2, with window sizes of 400, 200 and 100 pixels. To compute the likelihood of each
final candidate locations, we must properly consider and propagate the likelihoods of the
bigger windows that came before it. This can be achieved by applying Bayes’ theorem as
follows:

P (w|W) =
P (W |w)P (w)

P (W)
, (3.7)

where P (W) and P (w) are the probabilities of the candidate locations in the bigger
window W and in the smaller window w, respectively. In this equation, P (W) is the
output of the first run of the algorithm; P (w|W) corresponds to the output of the second
run of the algorithm, with the smaller window, since we assume that the query is inside
the bigger window W ; P (W |w) = 1 by definition, since the query is obviously inside

31

the bigger window if it is inside of the smaller one; finally, P (w) is what we are trying
to find, the probability that the query image is inside the candidate location of size w.
Re-arranging the terms of Equation 3.7, we get

P (w) = P (W)P (w|W), (3.8)

which means that at each step we must multiply the probability provided by the algorithm
for window w to the probability provided by the previous iteration in window W .

(a) Initial search with window
size set to 400 pixels.

(b) Second search with a win-
dow of 200 pixels.

(c) Last search with a window
of 100 pixels.

(d) Top 5 locations selected
among the candidate locations.

Figure 3.2: Illustration of our search-refinement approach with windows of decreasing
size. The 5 most likely locations in each step are shown by colored squares in each image.

32

Chapter 4

Semantic Segmentation

The algorithm described in Chapter 3 can be divided in two phases: extracting the land-
marks and matching the generated graphs. In this chapter, we will focus on the first
phase, investigating if semantic segmentation can be used to automatically obtain land-
mark points. As we have images of two significantly different domains (ground and aerial),
we decided to investigate separate solutions for each. Sections 4.1 and 4.2 describe our
investigations for ground and aerial images, respectively.

4.1 Ground Image Segmentation

As mentioned in Section 2.2, there are several networks available for ground image seg-
mentation. For our work, we decided to use SegNet [5], because it provides reasonably
good results, is fast, contains all the segmentation classes that we consider relevant, and
also because several open source implementations are available. However, there are other
options that would have sufficed for our purposes. Though we did not investigate other
networks, this is planned as a future work, because improving the segmentation might
yield an overall improvement in our method. Some networks that could be investigated
are: the extension of DeepLabV3Plus proposed by Zhu et al. [90] and the Transformer-
based solutions proposed by Chen et al. [17] and Li et al. [37]. The network proposed by
the authors of SegNet has an encoder-decoder architecture, shown in Figure 4.1, with the
encoder network using the same architecture as VGG16 [61], except for the fully connected
layers. This has the advantage of making the network smaller, faster and easier to train.

Figure 4.1: The SegNet encoder-decoder architecture (Image adapted from [5]).

33

The network was trained using the CamVid dataset[9], which contains 11 classes:
building, tree, sky, car, sign-symbol, road, pedestrian, fence, column-pole, sidewalk and
bicyclist. Some of these classes are not applicable to our problem since they are not visible
from aerial images (for instance, the sky), but most of the expected classes are here, such
as building, road and sidewalk.

4.2 Aerial Image Segmentation

Semantic segmentation of aerial images is a problem less explored in the literature. Most
related work is of limited scope or not directly applicable to our problem. Furthermore,
none of them provide source code, therefore we could not use any of them directly. Hence,
we decided to implement an aerial segmentation method ourselves.

However, as also stated in Section 2.2, there are few datasets available for this problem.
VALID [14] is, to our best knowledge, the closest dataset related to what we need; however,
it was not available when we performed our research. Therefore, our decision was to build
a dataset ourselves.

In Section 4.2.1 we describe how this dataset was built, and in Section 4.2.2 we detail
how we trained our aerial segmentation method.

4.2.1 Building an Aerial Segmentation Dataset

To build our aerial segmentation dataset, we basically need pairs of images: the aerial
image and its corresponding expected segmentation (ground truth).

Obtaining aerial images is more straightforward as there are several services that
provide them. In our work, we choose to use Bing Maps [46], though several other sources
could be used.

Obtaining the ground truth for segmentation is a more complicated, since, as men-
tioned, there are no publicly available datasets. Our solution was to employ Open-
StreetMap (OSM) [47], a Wiki-like project that creates and distributes free geographic
data for the world, allowing users to edit and create maps in a collaborative manner. OSM
presents a conceptual model of the physical world that consists of three basic elements:

• Nodes: a single point in space, defined by its latitude and longitude.

• Ways: an ordered list of nodes, which can be used to represent an area or linear
features. Ways can be closed (i.e., the end node and the begin node are the same)
or open. Closed ways can be used to represent the area of a building, for instance,
while open ways can represent roads, among several other things.

• Relations: an ordered list of nodes, ways or other relations. They are used to
group elements and explain work they work together. For instance, a relation might
contain several open ways that represent parts of the same highway, or several closed
polygons that represent parts of the same building.

Besides these three basic elements, each element can have one or more tags associated
with it. A tag is a pair of textual values (a ‘key’ and a ‘value’) that are used to describe

34

an element. It can contain several kinds of information, for instance: the width of a road,
the maximum speed of a highway, the name of a building, among many others.

OSM also provides an API (Application Programming Interface) for downloading all
available data for a given area. This data can be used as input to build a ground truth
segmentation, since it can contain all the elements that we expect: buildings, roads,
vegetation, rivers, and so on. As expected, since the platform relies on user input, it is
prone to error, and information might not be available in all areas. However, as will be
detailed later in this section, the data seems reliable enough, particularly for urban areas,
and filtering methods can be developed to reduce the errors.

With sources for both aerial imagery and segmentation data available, we developed an
algorithm to download and process this data, generating an aerial segmentation dataset.
This algorithm works with the following steps:

1. Define points of interest: the user provides the interest areas and its central
coordinates (latitude, longitude).

2. Download aerial images: the algorithm downloads a pre-defined number of im-
ages in random locations near the points of interest from Bing Maps. Due to con-
straints in Bing Maps API, only images of 256×256 pixels can be downloaded. To
overcome this and be able to obtain higher resolution images, we download 25 im-
ages (in a 5×5 grid around the central point) and then merge them, obtaining a
final image of 1280×1280.

3. Download and process segmentation data: obtaining the segmentation is more
complicated since the data from OSM must be properly parsed and filtered to ob-
tain the information we seek. The process is the following: given an aerial image
downloaded from Bing Maps, first, we download all the available information from
OSM (all the nodes, ways and relationships, and the corresponding tags). As OSM
is a general-use platform, a lot of this data is not of interest to the segmentation.
We then discard all the unnecessary data and keep only what will be required for
the next steps. The next step is to create a visual representation of the data: using
Python and libraries such as Shapely[27], we start with a black image and then
sequentially draw all the required elements (lines for roads, polygons for buildings,
and so on). Each element will have a different color, according to the segmentation
class it belongs to, and unlabeled elements will remain black. Particular attention
must be paid to correctly convert the elements coordinates (given by latitude and
longitude) to pixel coordinates, to make sure that the drawn elements match the
aerial image. After this process, the resulting images (in the same format as the
aerial images, 1280×1280) are saved, both in binary (each pixel containing an inte-
ger number from 0 to N according to the class it belongs to) and colored versions
(each class has a specific color to represent it).

4. Filter results: we then employ some heuristics to try and eliminate results that
are bad or uninformative: for instance, images which result in only one class, images
that are mostly unlabeled, and so on.

35

5. Save results: lastly, the obtained pairs of images are organized in folders and
zipped.

For the purpose of our work, after manually looking at the available data from OSM,
we defined 13 classes of interest, which are detailed below (the description of each class
is extracted from OSM):

1. Building: man-made structure with a roof, standing more or less permanently in
one place.

2. Construction area: site which is under active development and construction of a
building or structure.

3. Industrial area: predominantly industrial land uses such as workshops, factories,
or warehouses.

4. Parking: facility used by the public, customers, or other authorized users for park-
ing motor vehicles.

5. Highway: used for identifying any kind of road, street or path, except for the more
specific sub-classes below.

6. Footway: for designated footpaths, i.e., mainly/exclusively for pedestrians or roads
used mainly/exclusively for pedestrians.

7. Dirt road: highways made of surfaces such as sand, dirt, ground, etc.

8. Beach: loose geological landform along the coast or along another body of water
consisting of sand, gravel, shingle, pebbles, cobblestones or sometimes shell frag-
ments etc.

9. Water: Any body of water, from natural such as a lake or pond to artificial like
moat or canal.

10. Park: an area of open space for recreational use, usually designed and in semi-
natural state with grassy areas, trees and bushes.

11. Tree: A single tree, sometimes lone or significant.

12. Grass: areas of mown and managed grass or other forms of low vegetation.

13. Natural: wide variety of physical geography, geological and landcover features that
do not fit in other categories above (examples: peak, wetland, cliff, conservation,
nature reserve, among others).

An extra 14th class is used to represent unlabeled parts of the image. As all the
available data is downloaded from OSM, the algorithm can be easily modified to add or
remove classes.

For the purpose of our work, we downloaded data from 17 interest areas: nine urban
areas (Berlin, Boston, Chicago, London, Manhattan, Paris, Rome, San Francisco and São

36

Paulo) and eight rural areas (located in distinct areas of the United States). A total of 30
images were downloaded from each location, amounting for a total of 510 images. After
the filtering process described, a total of 277 images remained for the final version of our
dataset.

In Figure 4.2 we show some example pairs of images for both urban and rural areas.
We can see that, as expected, the quality of the final images highly depends on the quality
of the data obtained from OSM. In general, data from central, highly populated areas, is
more reliable, whereas data from rural areas is often missing important information. Even
after our filtering, some bad quality image remains (such as the one shown in Figures 4.2(e)
and 4.2(f)), mainly because there is no segmentation data available in OSM. However,
in general, we believe that the result is acceptable and that the obtained dataset can be
useful for our next steps, and perhaps for other future work in this area.

The dataset is available upon request at https://zenodo.org/record/4927665 (DOI
10.5281/zenodo.4927665). For more information about the dataset, please refer to Ap-
pendix A, which presents the Datasheet (full description) of the dataset, according to the
instructions provided by Gebru et al. [26].

4.2.2 Training an Aerial Segmentation Network

Our next step was to train SegNet specifically for aerial segmentation, using the dataset de-
scribed above. Given that the domains of aerial and ground segmentation are so different,
we chose not to perform a fine-tuning of the network trained from ground segmentation,
but to train a completely new network instead.

Firstly, some adaptations were required in the dataset: to make the dataset possibly
applicable to other scenarios, the images were downloaded in high resolution (1280×1280
pixels), while SegNet expects lower resolution images as input (360×480 pixels). We
performed as following: for each original 1280×1280 image, we extract six non-overlapping
patches of dimensions 360×480, leading to a total of 1662 images (277 images of the
original dataset × 6 patches per image). The dataset was then randomly split in train,
validation and test (2/3 for train and validation and 1/3 for test). This division was
performed on an image basis, so all patches of a given image are either assigned to the
train or to the test set. We also built a simplified version of the dataset, reducing the
number of classes from the original 13 to 6 (building, highway, natural, water, footway
and dirt road). To do this, some classes were merged (for instance, grass, natural, tree and
park were merged into a single class “natural”) and some classes with very low frequency
were eliminated (construction, industrial and parking).

Finally, we trained two versions of the aerial segmentation network, using the same
parameters suggested by the authors of the original network [5]: one using the dataset
with 13 classes and another one with the simplified dataset. Results will be shown later
in Chapter 5.

https://zenodo.org/record/4927665

37

4.3 Extracting Landmarks from Segmentation

There are several ways in which we can obtain landmark points (and their corresponding
classes) from a segmented image. We developed and tested several of them, but they all
have one step in common: first, the segmented image is divided into connected components
(CC, i.e., regions of adjacent pixels belonging to the same class). Given all the CC, we
can proceed in ways such as:

• Centroid: the centroid of each CC (i.e., the mean of its pixels coordinates) is
considered as a landmark point. This is very simple to do but has the potential
drawback that the landmark point extracted could lie outside the component itself
(consider a U shape, for instance).

• Grid: we could extract several landmark points inside each CC, distributed over a
grid of predefined size.

• Component: lastly, we could extend the concept of landmark points to landmark
components. With this approach, each CC is considered a landmark itself, and
landmarks are considered covisible if any pixel in one component is visible to any
pixel in the other.

In practice, we might need to consider using a segmentation size threshold to avoid
noise from the segmentation algorithm (i.e., CC that are too small to be meaningful,
probably due to errors). This process can be applied for both aerial and ground images.
In Chapter 5, we present the results of our experiments with each method.

38

(a) Aerial image of San Francisco. (b) Corresponding segmentation in
our dataset.

(c) Aerial image of Manhattan. (d) Corresponding segmentation in
our dataset.

(e) Aerial image of a rural area in the
US.

(f) Corresponding segmentation in
our dataset.

(g) Color code corresponding to each class in the segmented images.

Figure 4.2: Some pairs of aerial images and their corresponding segmentation extracted
from our dataset.

39

Chapter 5

Experiments and Results

In this section, we provide and analyze results of the proposed methods and solutions.
First, in Section 5.1, we present results of our graph-matching localization algorithm de-
scribed in Chapter 3 using manual input of keypoints; then, in Section 5.2, we show the
results of the network described in Chapter 4, trained for semantic segmentation of aerial
images; lastly, in Section 5.3, we present the results of a fully automated pipeline, com-
bining the graph-matching algorithm with the landmark extraction techniques described
in Section 4.3.

Though there are several works in the literature that analyze the cross-view image
matching problem, we could not find any research that discusses our proposed simplified
problem, viewpoint localization. Hence, in this section, we will not present comparisons
of our method with the literature.

5.1 Localization with Manual Landmarks

Our first step was to test the algorithm proposed in Chapter 3 using manually automated
data. To do so, we arbitrarily selected 15 images from the CVUSA dataset [84], mixing ur-
ban and rural areas (no specific criteria was used to select these images, we just attempted
to include multiple scenes, such as heavily populated and less populated urban areas, and
rural areas with several or few landmarks). Ground images are 1232×224 360-degree
panoramas, while aerials are 750×750 satellite images. All of the images were manually
annotated with the following procedure: each visible landmark was pointed, and then,
for each image, we stored a K × 3 array, where each triplet denotes the pixel coordinates
and class of a landmark. We considered four classes: building, tree, road and pavement.
For the first two, related to objects limited in space, we selected a pixel within the object
perimeter to represent the landmark position. For road and pavement, instead, we picked
a set of points at regular intervals along their length. Figure 5.1 depicts an example of
landmarks extracted from a ground-aerial matching pair, with the respective graphs in
overlay. Since CVUSA images are centered and aligned, in our case, the expected output
of the algorithm, i.e., the viewpoint in the aerial image that corresponds to the ground
view, is always the center of the aerial image.

Landmark graphs were obtained following the method described in Section 3.1.1.

40

Building Pavement Road Tree

(a) Aerial view.

Building Pavement Road Tree

(b) 360◦ ground image.

Figure 5.1: Landmarks extracted from a pair of associated aerial and ground images from
the CVUSA dataset [84]. Four classes considered: building, pavement, road, and tree. The
landmark graphs obtained via the algorithm in Section 3.1.1 are also displayed in overlay.

Given that the density of landmarks is strongly dependent on the considered area – being
typically higher in urban regions – landmark graphs composed of multiple disconnected
components are possible if the covisibility window is not large enough. To overcome this
issue, we adopted an automated variable-size covisibility window. For each image, we first
computed the distance from each landmark to its nearest neighbor. Then, being µ and
σ the mean and standard deviation of such distances, respectively, we set the covisibility
window size to µ + 5σ. This choice helps minimizing the chance of having groups of
landmarks disconnected from the main graph.

The covisibility parameter p was fixed to 0.5 throughout all the experiments. Mei et
al. [45] present a discussion on the influence of p on another problem, with conclusions that
hold for this paper. In [63], the authors list a series of alternative methods for location
extension that may be tested in future developments to eliminate the need for a pre-tuned
parameter.

Table 5.1 shows two examples of viewpoint localization with the proposed method.
The first two columns show the aerial views (accompanied by the ground-truth viewpoint
location) and the associated 360◦ images. For each image pair, we run the algorithm with
an increasing number of landmark classes: the third column reports the results obtained
for two classes, namely building and tree; in the fourth and fifth columns, we add road and
pavement classes, respectively. Candidate locations are shown as orange squares, while
green ones denote the top-3 locations, according to the ML criterion described in Section
3.1.4.

In both cases, the addition of new classes yields improvements in terms of localization
accuracy and a better convergence of top candidate locations to a limited portion of the
aerial view. This is crucial for areas that appear self-similar when restricting the focus
to few landmark types (think of a urban area where only buildings are considered). The
effect is particularly evident in the first case, where the satellite view depicts various
self-similar locations, making the localization nontrivial even for a human observer. The
correct location is recognized only after the introduction of the road class.

Figure 5.2 reports a quantitative evaluation of the system over 15 manually annotated

41

Table 5.1: Example results on CVUSA dataset [84] with manually annotated data.
Input views Localization (top-3 results)

Aerial Ground 360◦ 2 classes 3 classes 4 classes

Figure 5.2: Average distance from the ground-truth viewpoint (in pixel) for increasing
number of landmark classes in the dictionaryW . Error bars denote the standard deviation
among top-5 locations.

image pairs. We calculate, for each pair, the average distance (in pixels) from the ground-
truth viewpoint to the top-5 locations predicted by our algorithm (if there are ties, we
select 5 locations arbitrarily among the top candidate locations). The results show a clear
descending trend for increasing numbers of classes, corroborating the assumption that
a greater diversity in the landmark graphs leads to more discriminative results. Finally,
note that the standard deviation across top-5 locations reaches its minimum when all four
classes are included in the dictionary.

5.2 Semantic Segmentation of Aerial Images

As mentioned in Section 4.2.2, we trained two versions of the aerial segmentation network,
using the two versions of our dataset (the simplified version with 6 classes and the full
version with 13). For brevity, we will refer to these networks as AirSegNet6 and AirSeg-

42

Net13 from here on. We used a publicly available TensorFlow implementation of SegNet
[5], with adaptations, and default parameters suggested by the authors. Both networks
were trained until convergence using an NVIDIA GTX 1080 Ti GPU. The network gen-
erates as output a 360×480 pixels, single channel image. Each pixel contains an integer
value from 0 to N , where N is the total number of classes, indicating to which class it
belongs (the value 0 is reserved for unlabeled pixels). To make visualization easier, we
developed methods to convert such images into colored images, substituting each pixel
value to a corresponding RGB color.

Tables 5.2 and 5.3 show some results provided by AirSegNet6 and AirSegNet13, re-
spectively, in the test dataset (1/3 of the dataset). We can see that the results are
promising and that the network indeed seems to be learning to segment aerial images.
One of the main bottlenecks seems to be the quality of the input data itself: in the third
row of both tables, we see a huge portion of unlabeled vegetation, while the network was
able to identify (through knowledge from other examples) elements in that area; on the
second row of Table 5.3, we can see a block labelled as a construction zone, which was
misclassified as building, probably because there are many more examples of buildings
than of construction areas in the dataset.

After the networks were trained, we tested them in a cross-dataset scenario, by using
aerial images from CVUSA. However, some adaptation is required, since our networks
take images with dimensions 360×480 as input, while CVUSA images are 750×750. We
experimented with two different methods:

1. Method 1 - split and join: split the original 750×750 image into patches of
360×480 pixels each, segment each of them and then join the results to form a
750×750 segmentation. Notice that the dimensions are not exactly divisible, so our
patches have some overlap. There are multiple ways to deal with this, but we chose a
simple approach: when joining the results, we simply discard the overlapping portion
of one of the patches. This approach has the disadvantage that the transition might
not be smooth near to where the patches are joined.

2. Method 2 - re-scaling: re-scale the 750×750 into a 360×480 image, adding black
strips in the corner. Segment this reduced image and then scale it back to 750×750.
Special care is required here to avoid interpolation errors when scaling up the image
(since all pixels are expected to be integers ranging from 0 to the number of classes).

In Table 5.4, we present results of our AirSegNet6 on CVUSA images: first column
shows the input image, the middle column shows the output using method 1 described
above, and last column shows the output obtained using method 2 (since this is a cross-
dataset scenario, we do not have ground truth images here). We can see that the network
performs fairly well in urban scenarios (top two rows): most of the buildings and roads
were detected, and some of the vegetation. However, there are also some possibilities of
improvement, since not all trees and vegetation were detected, and the roads do not form
continuous lines. The third row shows a more challenging scene with several elements.
While some results do make sense (the footway detected on the upper right corner and
the dirt road on the upper left by method 1), there are some issues: the water of the

43

Table 5.2: Example results of our AirSegNet6 on the test dataset.
Input Image Ground truth Output

river was mostly not detected, and some buildings were detected where there was none.
Also, the effect of joining the patches is clearly visible for method 1 (notice the unnatural
division in the center of the image). Lastly, the bottom line shows a scenario where the
network performed particularly bad, since most of the image was classified as a road. We
can notice this is a challenging scene, because the texture and colors of the vegetation
do resemble a road, especially in the bottom corner. Comparing the results obtained by
method 1 and 2, in general, the results of method 1 are visually better: for the urban
images (top two rows), the results of method 2 are not bad, but some of the detail seems
to be lost, probably due to the loss of information when we scale the original images from
750×750 to 360×480. For the images in the two bottom rows, method 2 seems to present
the same issues than the method 1, with an extra downside that there seems to be a little

44

Table 5.3: Example results of our AirSegNet13 on the test dataset.
Input Image Ground truth Output

confusion near the borders of different components (there are a lot of unlabeled pixels
in these areas). The overall best behavior for urban areas (in both methods), roads and
buildings is expected, since the data obtained from OpenStreetMap seems to be more
reliable and abundant for such classes.

Table 5.5 shows some results for AirSegNet13 with CVUSA images, organized in the
same way as Table 5.4. Much of the conclusions for AirSegNet6 seem to be valid for
AirSegNet13: the behavior is better in urban conditions, especially for roads and buildings,
which are the most common and reliably labelled classes in the dataset; there seems to
be a loss of detail and granularity in method 2 compared to method 1; the results for less
common classes are not good (for instance, the water appearing in the two bottom rows).

The results show that both networks provide acceptable results for urban scenarios,

45

Table 5.4: Some segmentation results of our AirSegNet6 on CVUSA images using methods
1 (split and join) and 2 (re-scaling).

Input Image Output of Method 1 Output of Method 2

and that the main issue is actually in the dataset, due to the lack of reliable data especially
for some less common classes. Improving and extending the dataset could greatly improve
the results of our networks. To minimize this issue, we chose to use AirSegNet6 for our
following experiments, since it focuses on the most common classes and is therefore slightly
less prone to this kind of errors than our other network, AirSegNet13.

5.3 Localization With Automated Landmarks

The last step of our work, aiming at an automated pipeline for geolocalization, was to
employ the semantic segmentation, including the results obtained in Section 5.2, for au-
tomatic extraction of keypoints. Throughout this section, unless explicitly stated, we use
our best network from Section 5.2 (AirSegNet6 with “join and split” method) for segmen-
tation of aerial images, and off-the-shelf SegNet for segmentation of ground images.

46

Table 5.5: Some segmentation results of our AirSegNet13 on CVUSA images using meth-
ods 1 (split and join) and 2 (re-scaling).

Input Image Output of Method 1 Output of Method 2

Our first set of experiments was directed at testing and understanding how each of the
parameters of the algorithm described in Chapter 3 affects the results. The implemented
algorithm has the following parameters:

• Segmentation size threshold: as mentioned in Section 4.3, connected compo-
nents (CCs) that are too small are discarded, since they are much likely an error
from the segmentation algorithm instead of a meaningful keypoint. This parameter
controls the minimum size (in pixels) that a component must have in order to be
considered.

• Covisibility window size: as explained in Section 3.1.1, there is an edge between
two nodes in the landmark graph if the landmarks are visible together inside a
square window of predefined size. This parameter controls the size of this window:
the smaller it is, the closer the components must be in order to be considered

47

connected. We also proposed a method to calculate this parameter, outlined in
Section 5.1.

• Covisibility stride: this parameter denotes the size of the stride, in pixels, be-
tween observations of the covisibility window. Using a higher value might speed
up the algorithm since less observations are required, but might miss important
connections.

• Landmark extraction method: the method used to extract landmarks from
the semantic segmentation. We propose three different approaches, as detailed in
Section 4.3: component extraction, centroid extraction and grid extraction. For the
grid extraction, there is an extra parameter, which is the size of the grid, in pixels.

All experiments were run with the same 15 images used in Section 5.1, to make com-
parisons easier, unless explicitly noted. Also, following the same approach as before, if
there are ties between candidate locations, the algorithm will select the top-k among
them arbitrarily. We used, in all experiments, a total of four classes in the dictionary
W : building, road, vegetation and pavement; these classes are the ones that appear, per-
haps with slightly different names, in both SegNet (which has 11 classes: building, tree,
sky, car, sign-symbol, road, pedestrian, fence, column-pole, side-walk and bicyclist) and
AirSegNet6 (building, highway, natural, water, footway and dirt road).

In Figure 5.3, we see the results of our algorithm over different segmentation size
thresholds: in Figure 5.3(a) we show the mean error (distance in pixels), while in Figure
5.3(b) we show the number of ties and of unanswered samples. We can see that, as we
increase the segmentation size threshold (which will make the graph contain progressively
less nodes), we increase the number of unanswered queries by our algorithm, which makes
sense since the graph becomes each time less informative. The number of ties also in-
creases, though not monotonically, because, as we decrease our graph, we increase the
possibility that the same or similar subgraph appears in several candidate locations, mak-
ing it impossible for the algorithm do distinguish between them. Overall, the results are
not very clear, a reasonable choice for this parameter seems to be 50 pixels, as it gives
the best overall results (approximately 243px of mean error) with the minimum number
of ties and no unanswered queries.

Figure 5.4 presents the results of the experiments with the covisibility window size
parameter (which represents the size of the window in which elements must be covisible
to be connected in the graph): in Figure 5.4(a) we see the mean error, while in Figure
5.4(b) we see the ties. As expected, increasing this value too much, over 400 pixels, does
not yield good results: we will start connecting practically all components, making the
subgraphs too similar for the algorithm to decide between them. Below this threshold,
there seems to be a tendency of improvement when we increase the covisiblity size, but
there is an important detail: due to the design of our algorithm, the size of the covisibility
window also defines the area of the candidate locations; if this value gets bigger, candidate
locations tend to be dislocated towards the center of the image, which is the expected
answer (since a bigger window would not fit the corner of the image, for instance). Figure
5.5 illustrates this behavior: notice how, in Figure 5.5(a) we have several candidates in

48

(a) Mean distance (in pixels) over differ-
ent segmentation size thresholds.

(b) Number of ties (in blue) and unan-
swered queries (in red) over different seg-
mentation size thresholds.

Figure 5.3: How segmentation size threshold affects our algorithm.

the corner, while in Figure 5.5(b) the candidates are pushed towards the center, due to
the bigger window size. Hence, a small error with a big covisibility window is neither
beneficial, as it only happens because candidates are naturally closer to the answer, nor
desired, as possibly meaningful candidates in the corners leave to be considered.

(a) Mean distance (in pixels) over differ-
ent covisibility window sizes.

(b) Number of ties over different covisibil-
ity window sizes.

Figure 5.4: How covisibility window size threshold affects our algorithm.

In Figure 5.6, the results for our tests with covisibility stride are shown. The results
vary, but there does not seem to be any particular logic or reason behind this. Hence, we
decided to keep the default value of 1 for the next experiments, as it tends to make the
graph as informative as possible.

Lastly, we performed tests with different methods for landmark extraction: using the
components itself, its centroid, and a sampling points in a grid (we used strides of 20, 50
and 100 pixels). For this experiment, we used a slightly expanded dataset with 40 image
pairs. Results are shown in Figure 5.7 and bring several interesting insights: though the
change is not very significant, we can see that the error increases when we use the centroid
instead of the whole component, which makes sense since the centroid loses important
information about the shape of the component; the number of ties and unanswered queries
explodes when we use a grid of stride 100, which also makes sense because we might

49

(a) Running the algorithm with
a covisibility window size of
50px.

(b) The same image with a win-
dow size of 500px.

Figure 5.5: How covisibility window size affects the positions of the candidate locations in
our algorithm. In light orange we see candidate locations, and in green the top-5 locations.

Figure 5.6: How covisibility stride affects our algorithm.

completely miss components that are too small. Overall, none of the automatic extraction
methods came close to the manual results, but still using the components themselves or
a grid of smaller size seem to be the two most promising approaches.

5.3.1 Hierarchical Search Refinement

In Section 3.1.5, we presented a possible extension of the graph matching algorithm that
works in a hierarchical manner, refining the search in each iteration. Table 5.6 presents
the results of this approach as compared to our baseline (standard algorithm with default
parameters) using two different methods for landmark extraction (component and grid of
size 20). The results are unfortunately worse than the baseline in all scenarios. This could
be explained by the fact that, when we run our algorithm in a smaller window, we lose
probably useful information about the areas not inside this window. In fact, our whole
algorithm was devised in the hypothesis that information about how the landmarks are
geographically distributed could be useful for localization. When we reduce the search

50

(a) Mean distance (in pixels) over differ-
ent landmark extraction methods.

(b) Number of ties and unanswered sam-
ples over different landmark extraction
methods.

Figure 5.7: How landmark extraction method affects our algorithm.

Table 5.6: Results of our search-refinement method, as compared to our baseline (standard
algorithm with default parameters).

Mean Error (pixels) Component Extraction Grid Extraction (stride 20)
Search Refinement 265.2 ± 75.7 265.3 ± 87.9

Baseline 251.5 ± 132.2 243.5 ± 130.1

window and consider a smaller portion of the image, we lose such information, making
the graphs less informative and leading to poorer results.

5.3.2 Removing Edges Connecting Similar Landmarks

We also considered the possibility of post-processing landmarks graph to rectify possible
mistakes caused by errors in the segmentation. More specifically, we noticed that, in
some cases, the generated graph contains edges connecting elements that are clearly from
the same landmark. To avoid this, we tried to project a deep learning based approach
to remove edges connecting elements that are too similar to each other. This approach
works as follows: first, 64×64 patches are extracted for each connected component; if a
patch cannot be found (for instance, if the component is too small), the component is
ignored in the following steps; then, we extract feature vectors (FVs) of each path by
forwarding them through a neural network and getting the output of the last layer before
the fully connected layers; we use ResNet [29] for ground images and our own AirSegNet
for aerial images; if a component contains more than one patch, we use the mean of the
FVs; lastly, given the FVs describing each component, we check all edges of the graph
and, if the distance between the corresponding FVs is smaller than a predefined threshold
T , this edge is removed.

Using the procedure described above, we performed several experiments. Firstly, we
tested several different values of the threshold T . This parameter is important because,
if a very big threshold is used, too many edges will be removed, making the graph so

51

uninformative that, sometimes, the algorithm cannot even find viable candidate locations.
We also noticed that the dimensions of the feature vectors might be too large, particularly
for AirSegNet (which has features of 12 × 15 × 512 = 92, 160 dimensions, while ResNet
uses 2048 dimensions), so we experimented with two dimensionality reduction algorithms:
PCA[25] and UMAP[53]. Since we have less than 2000 features, and it would not be
possible to reduce FVs to 2048 dimensions, we decided to reduce both aerial and ground
FVs to 1024 dimensions. For PCA, the total variance of the data explained by this
reduction was 91.6% for aerial features and 99.8% for ground features.

Lastly, we performed tests with two different distances metrics: Euclidean distance and
cosine distance. Figure 5.8(a) shows the mean distance, in pixels, over our test dataset, for
different thresholds T (for brevity, the numerical values are omitted, but it suffices to say
that they are in ascending order) and dimensionality reduction algorithms (the original
FVs, in blue, and then after applying PCA and UMAP, in red and green, respectively).
For this experiment, a subset of CVUSA with 100 images was used. The baseline result
(original algorithm without edge removal) is also shown, to make comparison easier. We
can see that the mean error starts reducing as the threshold grows bigger. However, there
is a small caveat: as previously mentioned, too big thresholds will make the graph too
uninformative and might make the algorithm fail to find any viable solution in some cases.
In fact, for this experiment, all tests with threshold T9 and UMAP tests with T8 generated
cases where no answer was found. Still, we can see that some results are interesting: in
the best case here, T7 with UMAP, the mean error was reduced from 249 of the baseline
to 240, while still being able to provide an answer to all cases. In Figure 5.8(b), we see
the same experiment setting, but using cosine distance. All tests with T9 and T10 and also
T8 with the original feature vectors resulted in unanswered cases. However, in the best
scenario that could still provide answers for all samples, T8 with UMAP, the mean error
was reduced from 249 to 231 pixels, a considerable improvement, and our best result so
far. Overall, we can see that this approach of post-processing the graph to try to mitigate
possible mistakes in the segmentation step are indeed promising and can lead to more
informative graphs and better results.

5.3.3 Non-matching Pairs

Up to this point, we have been analyzing our algorithm with matching pairs of aerial
and ground images, the scenario for which it was developed. However, we also thought it
could be meaningful to explore its behavior in the case of a non-matching pair. Our main
goal here was to understand if the algorithm behaved significantly different for matching
and non-matching pairs, and if it could somehow be used to discard non-matching pairs
in the general cross-view image matching problem.

We projected the following experiment: using the 15 pairs of images in our small
test dataset, we first ran the algorithm for all positive pairs (15 results), and then for
all possible negative pairs (15 × 14 = 210 results). We then plotted the distribution of
the probabilities returned by the algorithm for the top-5 candidates and for the other
candidates, for both the positive and negative pairs. Our intuition was that, if the algo-
rithm could indeed be applicable to this scenario, the probabilities of the top-5 locations

52

(a) Results using Euclidean distance.

(b) Results using cosine distance.

Figure 5.8: Results of our method to remove edges connecting similar landmarks, using
several different thresholds and dimensionality reduction algorithms.

would be higher for the positive pairs (since the algorithm would be more certain that
the candidate locations belong to that image); on the other hand, the probabilities for
the negative pairs would be more evenly distributed, since the algorithm would not have
high confidence in any candidate (because there is no correct candidate here). In Figure
5.9, we present the results of such experiments. Unfortunately, the distribution of prob-
abilities does not seem to have any significant difference of behavior when the algorithm
is ran with non-matching pairs instead of matching ones. This is somewhat expected: as
the algorithm was not projected for this scenario, it will still try to find the most likely
candidates among the available ones, even if none is indeed a match.

53

(a) Probability distribution for top-5
candidates in positive pairs.

(b) Probability distribution for top-
5 candidates in negative pairs.

(c) Probability distribution for non-
top-5 candidates in positive pairs.

(d) Probability distribution for non-
top-5 candidates in negative pairs.

Figure 5.9: Probability distribution comparison between matching and non-matching
pairs, for most probable candidates (top-5) and non-top-5 candidates.

54

Chapter 6

Conclusion

In this work, we studied the problem of geolocalization of a given ground query image.
Due to the current worldwide availability of geo-tagged satellite imagery, the problem can
be posed as a cross-view image matching problem: the ground query image has to be
matched against a large database of geo-tagged aerial images. This is the approach used
by many works in the literature [74, 84, 12, 31].

Differently from the most common approach, which relies upon a Siamese network
architecture with convolutional neural networks (CNNs) in each branch, we propose a
graph-matching based approach that attempts to take advantage of the view-invariant
local relationships between landmark points visible in both aerial and ground images.
We investigated the simpler problem of viewpoint localization: localizing a 360◦ ground
image within a broader aerial view of the same area. We developed and described an
unsupervised algorithm to solve this problem based on graph matching, which follows the
steps of generating landmark graphs from a given set of salient points (or landmarks) in
both views, extracting candidate locations from the aerial image and then calculating a
probability distribution over them, according to a likelihood model specifically studied
and proposed for this problem. We then proposed a method that can automatically find
and extract the set of landmarks, which initially were manually annotated. To do so, we
studied semantic segmentation of ground and aerial images. While segmentation is more
advanced for ground images, we could not find suitable solutions for aerial images, so
we created our own solution by gathering a dataset for semantic segmentation of aerial
images and training a neural network for this purpose from scratch. By doing so, we are
able to propose a fully automated algorithm for graph-based localization.

We studied our proposed algorithm for cases of manually and automatically extracted
landmarks, and some possible extensions such as investigating if the algorithm could
be applied to non-matching pairs of images and if post-processing techniques could be
applied to the landmark graphs to generate more reliable answers. Some of the results
were promising enough to indicate that the approach of graph-view matching could be
employed in the problem of localization, if not as a standalone method, then perhaps as
an auxiliary step to more traditional, deep learning based approaches. Though we could
not reach results with a fully-automated algorithm as good as those obtained with manual
annotation, we still believe that further improvements could help reduce this gap, as was
achieved by our experiments with the removal of similar edges, for instance. Additionally,

55

as a result of our early work, focusing on manual extraction of landmark points, we had
one published paper [72]. According to our tests and experiments, the recommended
pipeline to investigate this problem would be: use as landmark extraction method either
the component or the grid approach (with a small stride); lastly, employ our proposed
method for removal of edges connecting similar landmarks, applying a dimensionality
reduction algorithm to reduce the dimension of the feature vectors.

From our research, we can see that most of the current research on the topic of image
geolocalization poses the problem as a cross-view image matching problem: matching
ground images to satellite images with known location. The matching problem, in its turn,
is usually approached with Deep Learning techniques. Some approaches employ additional
data, such as elevation maps [4] or drone imagery [76]: while using such data can be very
useful, it is important to consider the availability of the required data, since using input
that is not available worldwide could impair the applicability of the method to larger areas.
Regarding the cross-view image matching problem, the vast majority of the research work
employs the architecture of a Siamese network with two branches, one for the aerial images
and one for the ground images. This works well and we can see that further improvements
can be achieved by adding elements and customizations to this architecture (such as the
addition of the NetVLAD layer [2] or capsule layers [66]). We can also conclude that, while
some works in this area, specifically in the early stages, treated images as “black boxes”
and did not use any problem-specific information, recent research [41, 88, 76] shows that
developing solutions that combine classic Deep Learning methods with problem-specific
information seems to be a more promising approach. Another strategy that seems worth
exploring is to consider more realistic versions of the problem, such as taking temporal
differences into account [51] or assuming that ground and aerial images are not always
perfectly aligned [89]. Lastly, investigating alternative methods that do not employ Deep
Learning, such as the algorithm we proposed, could prove fruitful: though we were not
able to extend our approach to the cross-view image matching problem, we can still
conclude that it shows potential to extract meaningful information, especially regarding
the spatial relationships among significant objects. In this sense, studying and proposing
solutions that can combine the well-established Deep Learning methods with alternative
techniques is a line of research that can be pursued.

Finally, a natural extension of this work would be to extend it, possibly with the de-
velopment of new techniques, for the cross-view image matching problem itself, studying
if, and how, the generated graphs from different views can be compared and analyzed to
extract meaningful insights. Also, since semantic segmentation is a key aspect of our pro-
posed method, further studies are necessary to investigate alternatives to SegNet, since
a better segmentation method could improve the overall performance of our algorithm.
Lastly, thought it was not the focus of our work, the topic of graph neural networks
(GNNs) [79], and particularly graph convolutional networks (GCNs) deserves to be stud-
ied: since our proposed method already models the problem as graphs, these techniques
could prove very useful and provide new strategies to solve the localization problem.

56

Bibliography

[1] 2D Semantic Labeling Challenge. ISPRS (International Society for Photogram-
metry and Remote Sensing). http://www2.isprs.org/commissions/comm3/wg4/
semantic-labeling.html. Accessed: 2022-02-08.

[2] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic.
Netvlad: Cnn architecture for weakly supervised place recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 5297–5307,
2016.

[3] Josep Aulinas, Yvan Petillot, Joaquim Salvi, and Xavier Lladó. The slam problem:
a survey. Artificial Intelligence Research and Development, pages 363–371, 2008.

[4] Georges Baatz, Olivier Saurer, Kevin Köser, and Marc Pollefeys. Large scale vi-
sual geo-localization of images in mountainous terrain. In European conference on
computer vision, pages 517–530. Springer, 2012.

[5] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation. IEEE transactions on
pattern analysis and machine intelligence, 39(12):2481–2495, 2017.

[6] Mayank Bansal and Kostas Daniilidis. Geometric urban geo-localization. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3978–3985, 2014.

[7] Mayank Bansal, Harpreet S Sawhney, Hui Cheng, and Kostas Daniilidis. Geo-
localization of street views with aerial image databases. In Proceedings of the 19th
ACM international conference on Multimedia, pages 1125–1128. ACM, 2011.

[8] BBC News. Anatomy of a killing. https://www.youtube.com/watch?v=
4G9S-eoLgX4, 2018.

[9] Gabriel J Brostow, Julien Fauqueur, and Roberto Cipolla. Semantic object classes
in video: A high-definition ground truth database. Pattern Recognition Letters,
30(2):88–97, 2009.

[10] Horst Bunke and Kaspar Riesen. Towards the unification of structural and statistical
pattern recognition. Pattern Recognition Letters, 33(7):811–825, 2012.

http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
https://www.youtube.com/watch?v=4G9S-eoLgX4
https://www.youtube.com/watch?v=4G9S-eoLgX4

57

[11] Tibério S Caetano, Julian J McAuley, Li Cheng, Quoc V Le, and Alex J Smola.
Learning graph matching. IEEE transactions on pattern analysis and machine intel-
ligence, 31(6):1048–1058, 2009.

[12] Sudong Cai, Yulan Guo, Salman Khan, Jiwei Hu, and Gongjian Wen. Ground-
to-aerial image geo-localization with a hard exemplar reweighting triplet loss. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
8391–8400, 2019.

[13] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L. Yuille. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(4):834–848, 2018.

[14] Lyujie Chen, Feng Liu, Yan Zhao, Wufan Wang, Xiaming Yuan, and Jihong Zhu.
Valid: A comprehensive virtual aerial image dataset. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 2009–2016, 2020.

[15] Ping-Rong Chen, Hsueh-Ming Hang, Sheng-Wei Chan, and Jing-Jhih Lin. Dsnet:
An efficient cnn for road scene segmentation. APSIPA Transactions on Signal and
Information Processing, 9, 2020.

[16] Shuxiao Chen, Xiangyu Wu, Mark W Mueller, and Koushil Sreenath. Real-time geo-
localization using satellite imagery and topography for unmanned aerial vehicles. In
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 2275–2281. IEEE, 2021.

[17] Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong Lu, Jifeng Dai, and
Yu Qiao. Vision transformer adapter for dense predictions. arXiv preprint
arXiv:2205.08534, 2022.

[18] Dragos Costea, Alina Marcu, Emil Slusanschi, and Marius Leordeanu. Roadmap
generation using a multi-stage ensemble of deep neural networks with smoothing-
based optimization. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 220–224, 2018.

[19] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, volume 1, pages 886–893. IEEE, 2005.

[20] Ilke Demir, Krzysztof Koperski, David Lindenbaum, Guan Pang, Jing Huang, Saikat
Basu, Forest Hughes, Devis Tuia, and Ramesh Raskar. Deepglobe 2018: A challenge
to parse the earth through satellite images. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pages 172–181, 2018.

[21] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

58

[22] Xueqing Deng, Yi Zhu, and Shawn Newsam. What is it like down there? generating
dense ground-level views and image features from overhead imagery using conditional
generative adversarial networks. In Proceedings of the 26th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems, pages 43–52,
2018.

[23] Xueqing Deng, Yi Zhu, and Shawn Newsam. Using conditional generative adversar-
ial networks to generate ground-level views from overhead imagery. arXiv preprint
arXiv:1902.06923, 2019.

[24] Hao Ding, Songsong Wu, Hao Tang, Fei Wu, Guangwei Gao, and Xiao-Yuan Jing.
Cross-view image synthesis with deformable convolution and attention mechanism.
In Chinese Conference on Pattern Recognition and Computer Vision (PRCV), pages
386–397. Springer, 2020.

[25] Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 2(11):559–572, 1901.

[26] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan,
Hanna Wallach, Hal Daumé Iii, and Kate Crawford. Datasheets for datasets. Com-
munications of the ACM, 64(12):86–92, 2021.

[27] Sean Gillies et al. Shapely: manipulation and analysis of geometric objects, 2007–.

[28] James Hays and Alexei A Efros. Im2gps: estimating geographic information from a
single image. In 2008 IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–8. IEEE, 2008.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[30] Sixing Hu, Mengdan Feng, Rang MH Nguyen, and Gim Hee Lee. Cvm-net: Cross-
view matching network for image-based ground-to-aerial geo-localization. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
7258–7267, 2018.

[31] Sixing Hu and Gim Hee Lee. Image-based geo-localization using satellite imagery.
International Journal of Computer Vision, 128(5):1205–1219, 2020.

[32] Humans in the Loop. Semantic segmentation of aerial im-
agery. https://www.kaggle.com/datasets/humansintheloop/
semantic-segmentation-of-aerial-imagery, 2020.

[33] Jinhyun Jang, Taeyong Song, and Kwanghoon Sohn. Semantic-aware network for
aerial-to-ground image synthesis. In 2021 IEEE International Conference on Image
Processing (ICIP), pages 3862–3866. IEEE, 2021.

https://www.kaggle.com/datasets/humansintheloop/semantic-segmentation-of-aerial-imagery
https://www.kaggle.com/datasets/humansintheloop/semantic-segmentation-of-aerial-imagery

59

[34] Pascal Kaiser, Jan Dirk Wegner, Aurélien Lucchi, Martin Jaggi, Thomas Hofmann,
and Konrad Schindler. Learning aerial image segmentation from online maps. IEEE
Transactions on Geoscience and Remote Sensing, 55(11):6054–6068, 2017.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural information processing
systems, 25, 2012.

[36] Tzu-Sheng Kuo, Keng-Sen Tseng, Jia-Wei Yan, Yen-Cheng Liu, and Yu-Chiang
Frank Wang. Deep aggregation net for land cover classification. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pages 252–256, 2018.

[37] Feng Li, Hao Zhang, Shilong Liu, Lei Zhang, Lionel M Ni, Heung-Yeung Shum, et al.
Mask dino: Towards a unified transformer-based framework for object detection and
segmentation. arXiv preprint arXiv:2206.02777, 2022.

[38] Zuoyue Li, Jan Dirk Wegner, and Aurélien Lucchi. Topological map extraction from
overhead images. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1715–1724, 2019.

[39] Tsung-Yi Lin, Serge Belongie, and James Hays. Cross-view image geolocalization. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 891–898, 2013.

[40] Tsung-Yi Lin, Yin Cui, Serge Belongie, and James Hays. Learning deep representa-
tions for ground-to-aerial geolocalization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5007–5015, 2015.

[41] Liu Liu and Hongdong Li. Lending orientation to neural networks for cross-view
geo-localization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5624–5633, 2019.

[42] David G Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, 2004.

[43] Xiaohu Lu, Zuoyue Li, Zhaopeng Cui, Martin R Oswald, Marc Pollefeys, and
Rongjun Qin. Geometry-aware satellite-to-ground image synthesis for urban areas. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 859–867, 2020.

[44] Dimitrios Marmanis, Jan D Wegner, Silvano Galliani, Konrad Schindler, Mihai
Datcu, and Uwe Stilla. Semantic segmentation of aerial images with an ensemble
of cnss. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences, 2016, 3:473–480, 2016.

[45] Christopher Mei, Gabe Sibley, and Paul Newman. Closing loops without places. In
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
3738–3744. IEEE, 2010.

60

[46] Microsoft Bing. Aerial view - bing maps. https://www.bing.com/maps/aerial.

[47] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org .
https://www.openstreetmap.org, 2017.

[48] Dan Popescu and Loretta Ichim. Aerial image segmentation by use of textural fea-
tures. In 2016 20th international conference on system theory, control and computing
(ICSTCC), pages 721–726. IEEE, 2016.

[49] Krishna Regmi and Ali Borji. Cross-view image synthesis using conditional gans. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3501–3510, 2018.

[50] Krishna Regmi and Mubarak Shah. Bridging the domain gap for ground-to-aerial
image matching. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pages 470–479, 2019.

[51] Royston Rodrigues and Masahiro Tani. Are these from the same place? seeing the
unseen in cross-view image geo-localization. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 3753–3761, 2021.

[52] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between
capsules. In Advances in neural information processing systems, pages 3856–3866,
2017.

[53] Tim Sainburg, Leland McInnes, and Timothy Q Gentner. Parametric umap em-
beddings for representation and semisupervised learning. Neural Computation,
33(11):2881–2907, 2021.

[54] Noe Samano, Mengjie Zhou, and Andrew Calway. You are here: Geolocation by
embedding maps and images. In European Conference on Computer Vision, pages
502–518. Springer, 2020.

[55] Qi Shan, Changchang Wu, Brian Curless, Yasutaka Furukawa, Carlos Hernandez,
and Steven M Seitz. Accurate geo-registration by ground-to-aerial image matching.
In 2014 2nd International Conference on 3D Vision, volume 1, pages 525–532. IEEE,
2014.

[56] Yan Shen, Meng Luo, Yun Chen, Xiaotao Shao, Zhongli Wang, Xiaoli Hao, and Ya-Li
Hou. Cross-view image translation based on local and global information guidance.
IEEE Access, 9:12955–12967, 2021.

[57] Yujiao Shi, Dylan John Campbell, Xin Yu, and Hongdong Li. Geometry-guided
street-view panorama synthesis from satellite imagery. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

[58] Yujiao Shi, Liu Liu, Xin Yu, and Hongdong Li. Spatial-aware feature aggregation
for image based cross-view geo-localization. In Advances in Neural Information Pro-
cessing Systems, pages 10090–10100, 2019.

https://www.bing.com/maps/aerial
 https://www.openstreetmap.org

61

[59] Yujiao Shi, Xin Yu, Dylan Campbell, and Hongdong Li. Where am i looking at?
joint location and orientation estimation by cross-view matching. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
4064–4072, 2020.

[60] Yujiao Shi, Xin Yu, Liu Liu, Tong Zhang, and Hongdong Li. Optimal feature trans-
port for cross-view image geo-localization. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 11990–11997, 2020.

[61] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In International Conference on Learning Representations,
2015.

[62] Josef Sivic and Andrew Zisserman. Video google: a text retrieval approach to ob-
ject matching in videos. In Proceedings Ninth IEEE International Conference on
Computer Vision, pages 1470–1477 vol.2, Oct 2003.

[63] Elena Stumm, Christopher Mei, and Simon Lacroix. Building location models for
visual place recognition. The International Journal of Robotics Research, 35(4):334–
356, 2016.

[64] Elena Stumm, Christopher Mei, Simon Lacroix, and Margarita Chli. Location graphs
for visual place recognition. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 5475–5480. IEEE, 2015.

[65] B. Sun, C. Chen, Y. Zhu, and J. Jiang. Geocapsnet: Ground to aerial view image
geo-localization using capsule network. In 2019 IEEE International Conference on
Multimedia and Expo (ICME), pages 742–747, 2019.

[66] Bin Sun, Chen Chen, Yingying Zhu, and Jianmin Jiang. Geocapsnet: Aerial
to ground view image geo-localization using capsule network. arXiv preprint
arXiv:1904.06281, 2019.

[67] Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda. Visual slam algorithms: A
survey from 2010 to 2016. IPSJ Transactions on Computer Vision and Applications,
9(1):1–11, 2017.

[68] Hao Tang, Dan Xu, Nicu Sebe, Yanzhi Wang, Jason J Corso, and Yan Yan. Multi-
channel attention selection gan with cascaded semantic guidance for cross-view image
translation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2417–2426, 2019.

[69] Yicong Tian, Chen Chen, and Mubarak Shah. Cross-view image matching for geo-
localization in urban environments. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3608–3616, 2017.

[70] Aysim Toker, Qunjie Zhou, Maxim Maximov, and Laura Leal-Taixé. Coming down
to earth: Satellite-to-street view synthesis for geo-localization. In Proceedings of the

62

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6488–
6497, 2021.

[71] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[72] Sebastiano Verde, Thiago Resek, Simone Milani, and Anderson Rocha. Ground-to-
aerial viewpoint localization via landmark graphs matching. IEEE Signal Processing
Letters, 27:1490–1494, 2020.

[73] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borg-
wardt. Graph kernels. Journal of Machine Learning Research, 11:1201–1242, 2010.

[74] Nam N Vo and James Hays. Localizing and orienting street views using overhead
imagery. In European conference on computer vision, pages 494–509. Springer, 2016.

[75] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007.

[76] Tingyu Wang, Zhedong Zheng, Chenggang Yan, Jiyong Zhang, Yaoqi Sun, Bolun
Zheng, and Yi Yang. Each part matters: Local patterns facilitate cross-view geo-
localization. IEEE Transactions on Circuits and Systems for Video Technology, 2021.

[77] Tobias Weyand, Ilya Kostrikov, and James Philbin. Planet-photo geolocation with
convolutional neural networks. In European Conference on Computer Vision, pages
37–55. Springer, 2016.

[78] Scott Workman, Richard Souvenir, and Nathan Jacobs. Wide-area image geolo-
calization with aerial reference imagery. In Proceedings of the IEEE International
Conference on Computer Vision, pages 3961–3969, 2015.

[79] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu
Philip. A comprehensive survey on graph neural networks. IEEE transactions on
neural networks and learning systems, 32(1):4–24, 2020.

[80] Hongji Yang, Xiufan Lu, and Yingying Zhu. Cross-view geo-localization with evolving
transformer. arXiv preprint arXiv:2107.00842, 2021.

[81] Jiangye Yuan, Shaun S. Gleason, and Anil M. Cheriyadat. Systematic benchmark-
ing of aerial image segmentation. IEEE Geoscience and Remote Sensing Letters,
10(6):1527–1531, 2013.

[82] Amir Roshan Zamir and Mubarak Shah. Accurate image localization based on google
maps street view. In European Conference on Computer Vision, pages 255–268.
Springer, 2010.

[83] Andrei Zanfir and Cristian Sminchisescu. Deep learning of graph matching. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
2684–2693, 2018.

63

[84] Menghua Zhai, Zachary Bessinger, Scott Workman, and Nathan Jacobs. Predicting
ground-level scene layout from aerial imagery. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 867–875, 2017.

[85] Gang Zhang, Tao Lei, Yi Cui, and Ping Jiang. A dual-path and lightweight convo-
lutional neural network for high-resolution aerial image segmentation. ISPRS Inter-
national Journal of Geo-Information, 8(12), 2019.

[86] Yifei Zhang, Olivier Morel, Marc Blanchon, Ralph Seulin, Mojdeh Rastgoo, and
Désiré Sidibé. Exploration of deep learning-based multimodal fusion for semantic
road scene segmentation. In VISIGRAPP (5: VISAPP), pages 336–343, 2019.

[87] Bolei Zhou, Liu Liu, Aude Oliva, and Antonio Torralba. Recognizing city identity via
attribute analysis of geo-tagged images. In European conference on computer vision,
pages 519–534. Springer, 2014.

[88] Sijie Zhu, Taojiannan Yang, and Chen Chen. Revisiting street-to-aerial view image
geo-localization and orientation estimation. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 756–765, 2021.

[89] Sijie Zhu, Taojiannan Yang, and Chen Chen. Vigor: Cross-view image geo-
localization beyond one-to-one retrieval. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3640–3649, 2021.

[90] Yi Zhu, Karan Sapra, Fitsum A Reda, Kevin J Shih, Shawn Newsam, Andrew Tao,
and Bryan Catanzaro. Improving semantic segmentation via video propagation and
label relaxation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8856–8865, 2019.

64

Appendix A

Datasheet for the Aerial Segmentation
Dataset

This appendix contains the Datasheet for the Aerial Segmentation Dataset described in
Section 4.2.1. This datasheet was created following the instructions provided by [26] and
is also distributed with the dataset.

A.1 Motivation

For what purpose was the dataset created? Was there a specific task in
mind? Was there a specific gap that needed to be filled? Please provide a
description.

The dataset was created to enable research on the topic of semantic segmentation of
aerial (satellite) images.

Who created the dataset (for example, which team, research group) and
on behalf of which entity (for example, company, institution, organization)?

The dataset was created by Thiago Resek and prof. Anderson Rocha at the Institute
of Computing of the University of Campinas.

Who funded the creation of the dataset? If there is an associated grant,
please provide the name of the grantor and the grant name and number.

No funding.

Any other comments?
None.

A.2 Composition

What do the instances that comprise the dataset represent (for example,
documents, photos, people, countries)? Are there multiple types of instances
(for example, movies, users, and ratings; people and interactions between
them; nodes and edges)? Please provide a description.

65

Instances represent aerial (satellite) images and their corresponding semantic segmen-
tation in 13 classes: Building, Construction Area, Industrial Area, Parking, Highway,
Footway, Dirt Road, Beach, Water, Park, Tree, Grass, Natural.

How many instances are there in total (of each type, if appropriate)?
There are 277 pairs (image and segmentation).

Does the dataset contain all possible instances or is it a sample (not nec-
essarily random) of instances from a larger set? If the dataset is a sample,
then what is the larger set? Is the sample representative of the larger set (for
example, geographic coverage)? If so, please describe how this representative-
ness was validated/verified. If it is not representative of the larger set, please
describe why not (for example, to cover a more diverse range of instances,
because instances were withheld or unavailable).

The dataset is a sample of images collected at random locations centered in 9 urban
areas (Berlin, Boston, Chicago, London, Manhattan, Paris, Rome, San Francisco and
São Paulo) and 5 rural areas (Carver, Lincoln, Palmer, Waynesville, Zolfo Springs). The
locations were manually selected so that the dataset would contain a mix of urban and
rural areas. For the urban areas, big cities were manually selected in order to improve
data quality. For rural areas, the selection was arbitrary.

What data does each instance consist of? "Raw" data (for example, unpro-
cessed text or images) or features? In either case, please provide a description.

Satellite images consist of raw images. Segmentation images consist of RGB images
colored according to the corresponding classes and the following code: Building: [255,
255, 255]; Highway: [50, 50, 255]; Grass: [0, 255, 0]; Natural: [0, 100, 0]; Construction:
[133, 104, 102]; Industrial: [163, 66, 201]; Beach: [242, 209, 119]; Water: [119, 242, 242];
Footway: [128, 181, 255]; Parking: [168, 189, 173]; Park: [50, 205, 50]; Dirt Road: [232,
116, 32]; Tree: [69, 237, 114]; Unlabeled: [0, 0, 0].

Is there a label or target associated with each instance? If so, please provide
a description.

The label is the corresponding segmentation (located in the ‘segmented’ folder, with
the same name as the satellite image).

Is any information missing from individual instances? If so, please provide
a description, explaining why this information is missing (for example, because
it was unavailable). This does not include intentionally removed information,
but might include, for example, redacted text.

No missing instances.

Are relationships between individual instances made explicit (for example,
users’ movie ratings, social network links)? If so, please describe how these
relationships are made explicit.

None explicitly.

66

Are there recommended data splits (for example, training, development,
validation, testing)? If so, please provide a description of these splits, explain-
ing the rationale behind them.

None.

Are there any errors, sources of noise, or redundancies in the dataset? If
so, please provide a description.

Segmentation data is obtained and processed from OpenStreetMap, which is a Wiki-
like platform. Hence, the segmentation data is dependent on 3rd party user input, and
hence prone to errors, particularly in rural areas.

Is the dataset self-contained, or does it link to or otherwise rely on external
resources (for example, websites, tweets, other datasets)?

Self-contained.

Does the dataset contain data that might be considered confidential (for
example, data that is protected by legal privilege or by doctor-patient confi-
dentiality, data that includes the content of individuals’ non-public communi-
cations)?

No.

Does the dataset contain data that, if viewed directly, might be offensive,
insulting, threatening, or might otherwise cause anxiety?

No.

A.3 Collection process

How was the data associated with each instance acquired? Was the data di-
rectly observable (for example, raw text, movie ratings), reported by subjects
(for example, survey responses), or indirectly inferred/derived from other data
(for example, part-of-speech tags, model-based guesses for age or language)?
If the data was reported by subjects or indirectly inferred/derived from other
data, was the data validated/verified? If so, please describe how.

Satellite images were downloaded from Bing Maps using the API provided by the plat-
form. Segmentation data was generated by downloading the data from OpenStreetMap
in the same location as the satellite image (using their provided APIs) and processing
the relevant information there to generate an image (drawing elements according to their
descriptions). Segmentation images with low contrast or 70% or more of unlabeled area
are discarded.

What mechanisms or procedures were used to collect the data (for example,
hardware apparatuses or sensors, manual human curation, software programs,
software APIs)? How were these mechanisms or procedures validated?

Bing and OpenStreetMaps APIs.

67

If the dataset is a sample from a larger set, what was the sampling strategy
(for example, deterministic, probabilistic with specific sampling probabilities)?
Not applicable.

Who was involved in the data collection process (for example, students,
crowdworkers, contractors) and how were they compensated (for example,
how much were crowdworkers paid)?

Only the researchers were involved.

Over what timeframe was the data collected? Does this timeframe match
the creation timeframe of the data associated with the instances (for example,
recent crawl of old news articles)? If not, please describe the timeframe in
which the data associated with the instances was created.

Data was collected from the corresponding platforms on July 2020, though there is no
way of knowing when the platforms collected the data themselves.

Were any ethical review processes conducted (for example, by an insti-
tutional review board)? If so, please provide a description of these review
processes, including the outcomes, as well as a link or other access point to
any supporting documentation.

None.

A.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (for example,
discretization or bucketing, tokenization, part-of-speech tagging, SIFT feature
extraction, removal of instances, processing of missing values)? If so, please
provide a description. If not, you may skip the remaining questions in this
section.

Satellite images were downloaded from Bing in 256x256 resolution in a 5x5 grid around
the interest point, then merged into a 1280x1280 image. Data from OpenStreetMap was
processed using software developed by the authors to generate a visual representation.
Images with low resolution or 70% or more of unlabeled area were discarded.

Was the "raw" data saved in addition to the preprocessed/cleaned/labeled
data (for example, to support unanticipated future uses)? If so, please provide
a link or other access point to the "raw" data.

Raw data was not saved.

Is the software that was used to preprocess/clean/label the data available?
If so, please provide a link or other access point.

The software, developed by the authors, is currently not publicly available.

Any other comments?
None.

68

A.5 Uses

Has the dataset been used for any tasks already? If so, please provide a
description.

The dataset was used to train a network for aerial segmentation as part of a Masters
dissertation.

Is there a repository that links to any or all papers or systems that use the
dataset? If so, please provide a link or other access point.

No.

What (other) tasks could the dataset be used for?
Mainly for semantic segmentation of aerial images, or subsets of this problem (e.g.,

segmentation of roads).

Is there anything about the composition of the dataset or the way it was
collected and preprocessed/cleaned/labeled that might impact future uses?
For example, is there anything that a dataset consumer might need to know
to avoid uses that could result in unfair treatment of individuals or groups (for
example, stereotyping, quality of service issues) or other risks or harms (for
example, legal risks, financial harms)? If so, please provide a description. Is
there anything a dataset consumer could do to mitigate these risks or harms?

There is minimal risk, since data was already public and available on other platforms.

Are there tasks for which the dataset should not be used? If so, please
provide a description.

The data was collected solely for the aerial semantic segmentation problem.

Any other comments? None.

A.6 Distribution

Will the dataset be distributed to third parties outside of the entity (for
example, company, institution, organization) on behalf of which the dataset
was created? If so, please provide a description.

Yes, it will be available via request in Zenodo platform.

How will the dataset be distributed (for example, tarball on website, API,
GitHub)? Does the dataset have a digital object identifier (DOI)?

Yes, the DOI is 10.5281/zenodo.4927665

When will the dataset be distributed?
It is already available.

Will the dataset be distributed under a copyright or other intellectual
property (IP) license, and/or under applicable terms of use (ToU)? If so,

69

please describe this license and/ or ToU, and provide a link or other access
point to, or otherwise reproduce, any relevant licensing terms or ToU, as well
as any fees associated with these restrictions.

No. Specific licenses by Zenodo, Bing Maps or OpenStreetMap might apply.

Have any third parties imposed IP-based or other restrictions on the data
associated with the instances? If so, please describe these restrictions, and
provide a link or other access point to, or otherwise reproduce, any relevant
licensing terms, as well as any fees associated with these restrictions.

No.

Do any export controls or other regulatory restrictions apply to the dataset
or to individual instances? If so, please describe these restrictions, and pro-
vide a link or other access point to, or otherwise reproduce, any supporting
documentation.

No.

Any other comments?
None.

A.7 Maintenance

Who will be supporting/hosting/maintaining the dataset?
The dataset will be hosted at Zenodo platform. Thiago Resek will support it.

How can the owner/curator/manager of the dataset be contacted (for ex-
ample, email address)?

The author can be contacted at resek.thiago [@] gmail . com.

Is there an erratum? If so, please provide a link or other access point.
No.

Will the dataset be updated (for example, to correct labeling errors, add
new instances, delete instances)? If so, please describe how often, by whom,
and how updates will be communicated to dataset consumers (for example,
mailing list, GitHub)?

There are no plans to update it yet.

If the dataset relates to people, are there applicable limits on the retention
of the data associated with the instances (for example, were the individuals
in question told that their data would be retained for a fixed period of time
and then deleted)? If so, please describe these limits and explain how they
will be enforced.

Not applicable.

70

Will older versions of the dataset continue to be supported/hosted/maintained?
If so, please describe how. If not, please describe how its obsolescence will be
communicated to dataset consumers.

Not applicable.

If others want to extend/augment/build on/contribute to the dataset, is
there a mechanism for them to do so? If so, please provide a description.
Will these contributions be validated/verified? If so, please describe how.
If not, why not? Is there a process for communicating/distributing these
contributions to dataset consumers? If so, please provide a description.

Please contact the author for contribution.

Any other comments?
None.

	Introduction
	Related Work
	Directly Related Work
	Additional Topics

	Localization Through Graph Matching
	View-point Localization and Landmark Graphs
	Graph Generation
	Candidate Locations
	Class Adjacency Matrices
	Location Likelihood
	Hierarchical Search Refinement

	Semantic Segmentation
	Ground Image Segmentation
	Aerial Image Segmentation
	Building an Aerial Segmentation Dataset
	Training an Aerial Segmentation Network

	Extracting Landmarks from Segmentation

	Experiments and Results
	Localization with Manual Landmarks
	Semantic Segmentation of Aerial Images
	Localization With Automated Landmarks
	Hierarchical Search Refinement
	Removing Edges Connecting Similar Landmarks
	Non-matching Pairs

	Conclusion
	Bibliography
	Datasheet for the Aerial Segmentation Dataset
	Motivation
	Composition
	Collection process
	Preprocessing/cleaning/labeling
	Uses
	Distribution
	Maintenance

