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Abstract
The alternating direction method of multipliers (ADMM) can be used to efficiently
distribute the centralized energy management system (EMS) of microgrids. However,
different configurations and versions of the ADMM can lead to dissimilar performances.
Thus, a sensibility analysis is carried out in this paper to determine the best version of
the ADMM to be applied as a microgrid controller. In this case, two types of EMSs are
modeled via convex optimization and then distributed using the ADMM method: EMS for
microgrids with and without the internal network. Both study cases consider distributed
energy resources, such as renewable energy sources, direct load control, and battery energy
storage systems, and they can be used to operate in either a grid-connected or isolated
mode. In order to test the ADMM algorithm, the combination of the following versions have
been considered: scaled, unscaled, synchronous, and asynchronous. A sensibility analysis
is carried out based on different values of the penalty parameter ρ, aiming to assess its
impact on convergence and optimality. Monte Carlo simulations have been deployed to
statistically analyze the performance of the algorithms and to achieve insightful conclusions.
The results show that the optimality of the problem and the speed of convergence are
very dependent on the choice of ρ, but values closer to the unity generate overall better
performance. Finally, it has been shown that communication issues could affect the time
of convergence, but not the optimality of the ADMM.

Keywords: Alternating direction method of multipliers (ADMM), distributed optimization,
energy management system, microgrids, synchronous and asynchronous ADMM.



Resumo

O método de multiplicadores de direção alternada (ADMM) pode ser usado para distribuir
com eficiência o sistema de gerenciamento de energia centralizado (EMS) das microrredes.
No entanto, diferentes configurações e versões do ADMM podem levar a desempenhos
diferentes. Assim, neste trabalho é realizada uma análise de sensibilidade para determinar
a melhor versão do ADMM a ser aplicada como controlador de microrrede. Nesse caso, dois
tipos de EMSs são modelados via otimização convexa e depois distribuídos pelo método do
ADMM: EMS para microrredes com e sem rede interna. Ambos casos de estudo consideram
recursos de energia distribuída, como fontes de energia renováveis, controle de carga direto
e sistemas de armazenamento de energia de bateria, e podem ser usados para operar em
um modo conectado à rede ou isolado. Para testar o algoritmo ADMM, a combinação das
seguintes versões foi considerada: escalado, não escalado, síncrono e assíncrono. É realizada
uma análise de sensibilidade com base em diferentes valores do parâmetro de penalidade ρ,
com o objetivo de avaliar o seu impacto na convergência e otimização. Simulações de Monte
Carlo foram implementadas para analisar estatisticamente o desempenho dos algoritmos
e para chegar a conclusões perspicazes. Os resultados mostram que a otimalidade do
problema e a velocidade de convergência são muito dependentes da escolha do ρ, mas
valores mais próximos da unidade geram um melhor desempenho geral. Finalmente, foi
demonstrado que problemas de comunicação podem afetar o tempo de convergência, mas
não a otimização do ADMM.

Palavras-chaves: Método de Direção Alternada de Multiplicadores (ADMM), otimização
distribuída, sistema de gestão de energia, microrredes, ADMM síncrono e assíncrono.
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1 Introduction

1.1 Motivation
Currently, a transition is being experienced in the energy sector in search of a

decentralized, flexible, economic and safe network that is based on renewable sources to
face the climate change that we have been experiencing in recent decades. The adoption
of renewable energy resources is reflected in the increase in their participation in the
world energy matrix, especially driven by the growth of solar and photovoltaic generation,
because they are rentable energy sources and and their cost trend with a negative slope in
recent years. The Fig. 1.1 shows the constant increase of renewable generation, where it
can be seen that in recent years the consumption of renewable generation has increased by
almost 8 percent year-on-year.

Figure 1.1 – Global renewable electricity consumption by technology.[Source: (IEA et al.,
2021)

Renewable energies based on wind and solar sources are an important factor
in the transformation of the energy scenario, however, they do not provide flexibility
to the system because they are subject to interference. In classic electrical systems the
flexibility depends on the generation reserves of hydroelectric and thermal units that
can adjust their generation to the variable demand. Despite being a small-scale system,
microgrids are a promising solution that addresses this flexibility problem, also they add
resilience, reliability, quality, and sustainability of energy to the electricity grid, which
reflects their importance in this scenario of energy transition. Thus, these characteristics
of improvement to the network provided by the microgrid are due to the fact that it is
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integrated with distributed energy resources (DERs), such as distributed generation units
(DG), controllable loads, energy storage devices, among others.

There are many definitions about microgrid, according to the United States
Department of Energy (DOE) a microgrid is “a group of interconnected loads and dis-
tributed energy resources within clearly defined electrical boundaries that acts as a single
controllable entity with respect to the grid . A microgrid can connect and disconnect from
the grid to enable it to operate in both grid-connected or island-mode” (DOE, 2011).

An adequate operation is based on the balance between the energy demanded
and supplied within it. The increase and development of DERs together with the im-
plementation of advanced metering, monitoring and control systems in last years brings
challenges of control and coordination of the microgrid operation (FENG et al., 2018).
For a proper operation of microgrids, an efficient and reliable energy management system
(EMS) is essential. The EMS monitors the microgrid assets, schedules the operation of the
dispatchable DERs, and coordinates the transition from grid-connected to islanded mode,
and vice-versa (SU; WANG, 2012),(HATZIARGYRIOU, 2014). Several centralized and
non-centralized EMS techniques can be found in the specialized literature (KATIRAEI
et al., 2008), (ZIA; ELBOUCHIKHI; BENBOUZID, 2018; OLIVARES; CAñIZARES;
KAZERANI, 2011; SILVA et al., 2021), where non-centralized techniques are divided into
decentralized and distributed techniques (YAZDANIAN; MEHRIZI-SANI, 2014), (HAN
et al., 2018).

1.2 Problem Statement
Traditionally, microgrids use centralized control systems, wherein a unique

controller receives, aggregates and processes all data, e.g., power generated by the renewable
energy sources (RESs), energy consumption, and energy arbitrage with the main grid,
among others. With this information, the central controller optimizes the dispatch of the
flexible DERs and makes the most convenient operational decisions, considering energy
prices over the long term. Most practical and academic works regarding EMS are focused
on this control scheme because it is easy to develop and maintain. Several algorithms
based on mathematical programming (HELAL et al., 2017; AMROLLAHI; BATHAEE,
2017; VERGARA et al., 2017; SILVA et al., 2021; GIRALDO et al., 2019; IGUALADA et
al., 2014), meta-heuristics (MARZBAND et al., 2017),(MARZBAND et al., 2014), fuzzy
logic (CHAOUACHI et al., 2013), genetic algorithms (ELSIED et al., 2016), and neural
networks (WANG; HE; DENG, 2019) have been proposed. However, centralized EMSs
have shortcomings. The computational burden of central controllers is a concern because
all data is processed by a single agent, which has to make all the decisions and broadcast
them. Moreover, all DERs must share their information with the central controller, which
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creates a single point of failure, cyber-attacks and data privacy violations (YAZDANIAN;
MEHRIZI-SANI, 2014). Additionally, a microgrid with a large number of spatially dispersed
DERs implies a greater investment in the infrastructure for a centralized control and the
system communication (FENG et al., 2018). In this context, new control and monitoring
techniques based on distributed control have been developed in recent years. Distributed
control allows each element or subsystem to make its own decisions without the need for a
central coordinator.

Non-centralized controllers do not need a central server because each agent
of the system is controlled by its own local controller. A decentralized control scheme
lacks communication between agents. In this case, each agent schedules its own operation,
regardless of the others. A distributed control scheme, on the other hand, has communica-
tion among agents, but not a central server. This allows information to be shared between
neighbor agents and improves its performance (HAN et al., 2018). Distributed control
offers flexibility, reliability, privacy, and a more robust communication system.

There are several ways to deploy a distributed EMS in microgrids (YAZ-
DANIAN; MEHRIZI-SANI, 2014). One that has been successfully implemented is the
multi-agent system (MAS) due to its well-established telecommunication and control
architectures that orchestrate independent agents, i.e., DERs (OLIVARES; CAñIZARES;
KAZERANI, 2011), (YAZDANIAN; MEHRIZI-SANI, 2014). However, the optimality and
feasibility of the MAS operation depends on the algorithm used to deploy it. The most
promising MAS techniques are those based on analytical optimization models, such as the
alternating direction method of multipliers (ADMM) which guarantee the convergence
(BOYD et al., 2011).

Currently, the ADMM is one of the most widely used distributed optimization
techniques (LU et al., 2018), it posses a good convergence properties, acceptable accuracy,
scalability and robustness (BOYD et al., 2011). Different EMS problems for microgrids
have been solved with the ADMM, some of which use it as the main MAS algorithm
(ULLAH; PARK, 2019; ZHENG et al., 2018; LIU; GOOI; XIN, 2017). Authors in (LIU
et al., 2018; RAJAEI et al., 2021; MOHITI et al., 2019) use the ADMM for multiple
microgrids integrated by an AC distribution network. To deal with the uncertainty of
RESs, authors in (MA et al., 2018) use an ADMM based on regret minimization. A
distributed EMS for network hybrid AC/DC microgrids is developed in (XU et al., 2020).
An ADMM applied to distributed EMS considering multiple interconnected microgrids
has been formulated in (LIU; GOOI; XIN, 2017), (MANSOUR-SAATLOO et al., 2021;
AKULA; SALEHFAR, 2018; NGUYEN; ISHIHARA, 2021). Since the telecommunication
among agents might not be perfect, the asynchronous version of the ADMM was proposed
in (ULLAH; PARK, 2019) and (ZHENG et al., 2018). Thus, based on the literature
review, it is safe to say that the ADMM is suitable for distributed EMS. Regarding the
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convergence analysis of ADMM and its impact due to the chosen penalty parameter ρ

value, few studies have been carried out. The work in (GAO et al., 2018) performed a
deterministic analysis of the convergence properties of ADMM applied to distributed EMS
in networked microgrids by varying ρ, in (KARGARIAN et al., 2018), the impact of ρ on
the convergence of the ADMM applied to optimal power flow in electric power systems
was analyzed. New variations of ADMM method were proposed in (SHEN et al., 2020)
and (UMER et al., 2021), studying the effect of the tuning parameter ρ on its convergence,
futhermore, (UMER et al., 2021) performed an analysis with complete and incomplete
communication. However, there is still a lack of conciseness about which type of ADMM
is better for different EMS configurations and, more importantly, what the impact of the
penalty parameter ρ (used in all versions of the ADMM algorithm) is on the performance
of the EMS, both in terms of convergence and optimality.

In this sense, this thesis focuses on the sensibility analysis of the ADMM method
applied to distributed EMS. The sensibility analysis is carried out based on different values
of the penalty parameter ρ, aiming to assess its impact on convergence and optimality,
thus determining the most suitable configuration and type of ADMM to be used as the
distributed EMS algorithm.

1.3 Objectives
The dissertation’s main goal is to develop an optimization model based on

distributed control using a combination of ADMM method versions: scaled, unscaled,
synchronous, and asynchronous for the EMS in microgrids in order to perform a sensitivity
analysis of the ADMM method. To reach this goal, the following partial objectives are
proposed:

• To develop two suitable mathematical models of EMS in microgrids in a centralized
form: one that is an EMS based on devices and energy balance, disregarding the
internal network, and another that considers the network that interconnects the
DERs within the microgrid.

• To distribute the two centralized models using scaled, unscaled, synchronous, and
asynchronous ADMM. For each configuration and model, the impact of using dis-
similar values of ADMM the penalty parameter ρ will be empirically studied.

• To perform a statistical analysis using Monte Carlo simulations to asses the conver-
gence and optimal of the ADMM-based EMS under demand, renewable and prices
uncertainty, validating which is the most practical and efficient way to distribute
the EMS microgrid through the ADMM , considering or disregarding the internal
network.
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1.4 Contributions
The main contributions of this thesis are explicitly as follow:

1. Formulation of optimization models based on distributed control using a combination
of ADMM method versions: scaled, unscaled, synchronous, and asynchronous for the
EMS in microgrid.

2. Even though ADMM has been used in the past to distribute the EMS of microgrids,
to the best of our knowledge, this is the first work that analyses the statistical
performance of different types of ADMM via sensibility analysis and Monte Carlo
simulations.

1.5 Thesis Outline
The outline of this thesis is as follows:

In Chapter 2 : Two EMSs for microgrids are presented and formulated through centralized
mathematical optimization models.

In Chapter 3 : A review of the ADMM algorithm is presented in order to show the state
of art.

In Chapter 4 : Analyze diverse versions of ADMM when used as the main algorithm for
solving both EMS formulations.

In Chapter 5 : Simulations and results are presented. In order to test the effectiveness of
the ADMM algorithms and to perform a sensibility analysis, the two types of EMS for the
microgrids.

Finally, conclusions and future works are addressed in Chapter 6.
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2 Proposed Centralized Mathematical Pro-
gramming Model

Notation
Sets:

N Set of nodes

E Set of branches

Ng Set of distributed generators (DG)

Nb Set of battery energy storage systems (BESS)

Ni Set of demand response agents (DR)

Ei Set of branches connected to node i

Indexes:

i Node (Bus "From") i ∈ N

j Node (Bus "To") j ∈ N

ij Circuit (Branch) ij ∈ E

Parameters:

∆t Duration of each load level [h]

ηc Cost of BESS aging [m.u./kW]

ηinc Cost of DR incentives [m.u./kW2]

ηloss Cost of BESS losses [m.u./kW2]

ηp Cost of BESS utilization [m.u./kW]

minc Constant DR incentives [m.u.]

EBESS Maximum energy of the BESS [kWh]

f j→h Maximum power flow at the branch j → h [kW]

P DLC Maximum direct load control (DLC) power [kW]

P BESS Maximum injection/extraction of the BESS [kW]
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P P V Constant PV generation [kW]

P i Maximum injected power by the distributed energy resource (DER) [kW]

P MG Maximum active power exchanged with the distribution network [kW]

f j→h Minimum power flow at the branch j → h [kW]

P i Minimum injected power by the DER [kW]

ai DG quadratic cost [m.u./kW2]

bi DG linear cost [m.u./kW]

ci DG constant cost [m.u.]

C0 Electricity price at the point of interconnection (POI) with the distribution
network [m.u./kWh]

CDLC Penalization cost of DLC [m.u./kWh]

Cl Price of demand shedding [m.u./kWh]

Cp Price of purchasing energy from the main grid [m.u./kWh]

Cs Price of selling energy to the main grid [m.u/kWh]

dj→h
i Parameter that indicates the direction of the power flow at the branch j → h

E0
BESS Initial state of charge of the BESS [kW]

P MG Maximum power transference of the microgrid [kW]

Continuous variables:

EBESS State of charge of the BESS [kWh]

f j→h Power flow at branch j → h [kW]

PDLC Non-essential demand that can be reduced via DLC [kW]

PBESS Charging/discharging power of the BESS [kW]

Pi Active power injected/extracted by the DER at node i [kW]

Ps Active power sold to the main grid [kW]

Pp Active power supplied by main grid [kW]
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2.1 Introduction
In this chapter, two EMSs for microgrids are presented and formulated through

centralized mathematical optimization models. The first model is an EMS based on devices
and energy balance, disregarding the internal network. The second model, on the other
hand, does consider the network and the DERs are located along the nodes. The first
model is suitable for small-scaled applications (e.g., smart-homes, nanogrids, etc), whereas
the second model is suitable for complex microgrids composed of numerous DERs.

The rest of the chapter is organized as follows: Section 2.2 describes the
formulation and modeling of a device-based centralized EMS. Section 2.3 describes the
formulation and modeling of a centralized EMS considering the internal network. Finally,
Section 2.4 contains a summary of the chapter.

2.2 Centralized EMS based on devices
In this model, the DERs of a small microgrid (e.g., a smart-home) are controlled

by an EMS. The smart-home can purchase or sell energy directly from the distribution
network. It is composed of a rooftop PV generator, a DLC scheme for non-essential loads
and a BESS. Excess energy can be stored in the BESS for use at a suitable future time.

For these small-scaled applications, the objective is to minimize the operational
cost given by (2.1), which avoids the purchase of energy from the distribution network
and maximizes its sale, as well as avoiding a penalty for not supplying energy to the DLC
demand, where Cp is the price of purchasing energy from the DN, in m.u./kWh; Cs is the
price of selling energy to the DN in m.u/kWh; and CDLC is the price of reducing any DLC
demand, in m.u/kWh. The EMS based on devices is formulated for one time interval ∆t

and is given by constraints (2.1)–(2.8).

min {∆tCpPp −∆tCsPs −∆tCDLCPDLC} (2.1)

subject to:
Pp + PP V − Pd − PBESS − Ps − PDLC = 0 (2.2)

EBESS = E0
BESS + ∆tPBESS (2.3)

0 ≤ Pp ≤ P MG (2.4)

0 ≤ Ps ≤ P MG (2.5)

0 ≤ PDLC ≤ P DLC (2.6)

−P BESS ≤ PBESS ≤ P BESS (2.7)

0 ≤ EBESS ≤ EBESS (2.8)
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The above formulation described in (2.1)–(2.8) is a linear programming model, where (2.2)
is the active power balance at the smart home. Constraint (2.3) calculates the energy of
the battery (EBESS) in kWh, considering ideal efficiency and ∆t is the duration of each
time-step in hours. Constraints (2.4) and (2.5) define the power limits to be exchanged
with the main grid. Constraint (2.6) limits the amount of demand that can be reduced
via DLC, while (2.7) limits by P

BESS the power injection and extraction from the BESS,
positive values of PBESS indicate loading and negative values indicate unloading. Finally,
constraint (2.8) limits the BESS capacity.

Note that the linear formulation for this optimization problem is convex, thus
ensuring the optimal solution. In addition, this model can be distributed through the
ADMM, since from the perspective that each device in the smart home can be considered
as an autonomous agent.

2.3 Centralized EMS considering the internal network
This model is based on (ZHENG et al., 2018). The purpose is to optimally

schedule the DERs within the microgrid, such as dispatchable DGs, BESSs, and loads/RESs,
with and without DR capabilities (a.k.a., prosumers) for a single time interval. These
DERs are interconnected by an internal network, modeled using a simplified network flow.

Each DER is associated with a cost function, as shown in (2.9)-(2.11):

For DG agents, a quadratic cost function that represents the energy cost of thermal
generators (2.9) is used, where ai, bi, ci are generation cost parameters :

Ci (Pi) = aiP
2
i + biPi + ci ∀i ∈ Ng (2.9)

The operational cost of the BESS agents is represented by (2.10), in which the utilization
(ηp), degradation (ηc), and efficiency (ηloss) cost coefficients are related to the BESS
dispatch (ZHENG et al., 2018):

Ci (Pi) = ηpPi + ηc ∥Pi∥+ ηlossP
2
i ∀i ∈ Nb (2.10)

For prosumers, the cost of participating in DR programs is based on incentives as in (2.11),
where minc is the constant incentive and ηinc is the variable incentive.

Ci (Pi) = minc + ηincP
2
i ∀i ∈ Nd (2.11)

In addition, the energy exchange between the microgrid and the main grid is taken
into account using the price of the electricity C0 and the power exported at the point
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of interconnection (POI) via P0 = ∑
i∈N Pi. In this way, the objective function (2.12)

minimizes the total energy cost for the microgrid. The complete optimization problem is
shown in (2.12)–(2.15).

min
Pi

{∑
i∈N

[Ci (Pi)− C0 (Pi)]
}

(2.12)

subject to:

Pi =
∑

j→h∈Ei

dj→h
i f j→h ∀ i ∈ N (2.13)

P i ≤ Pi ≤ P i ∀i ∈ N (2.14)

f j→h ≤ f j→h ≤ f
j→h ∀j → h ∈ E (2.15)

The above formulation described in (2.12)–(2.15) is a quadratic programming model,
where (2.13) represents the active power balance per node, where dj→h

i is a parameter that
indicates the direction of the power flow at the branch j → h, either positive or negative.
For simplicity, voltage in buses, active power losses, reactive flow and three-phase electrical
network model are not taken into account in this formulation, but they will be considered
in future works. Constraint (2.14) limits the injection of active power from DERs at each
node, and (2.15) limits the power flow through the branches.

Note that the quadratic formulation for this optimization problem is also
convex, thus ensuring the optimal solution. In addition, this model can be distributed
through the ADMM, treating each node in the internal network as an autonomous agent.

Note that the two EMS models are convex optimization problems: the model
formulated by (2.1)–(2.8) is a linear programming problem, and the model formulated by
(2.9)-(2.15) is a quadratic programming problem. Both models can be distributed through
the ADMM.

2.4 Summary
In this chapter, two centralized mathematical programming models: Linear

Programming (LP) and Quadratic programming (QP) were proposed to solve EMS
problem applied to microgrids. The two models are convex optimization problems, thus,
guaranteeing the optimal global solution. Both models are suitable to be distributed
through the ADMM method.
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3 Alternating Direction Method of Multipliers
Algorithm

3.1 Introduction
The ADMM method is a very popular and powerful algorithm that solves

convex optimization problems in a distributed manner. ADMM was first introduced in the
mid-1970s by (GLOWINSKI; MARROCO, 1975), (GABAY; MERCIER, 1976), studied in
the 1980s, and by the mid-1990s many theoretical conclusions had been established. In 2011,
the method became popular through publication (BOYD et al., 2011), and since then it
has been widely applied in wireless sensor networks, machine learning, and electrical power
system. Currently, the ADMM is one of the most widely used distributed optimization
techniques (LU et al., 2018), it posses a good convergence properties, acceptable accuracy,
scalability, robustness and has a an important role in ensuring data privacy (BOYD et al.,
2011) .

The ADMM algorithm is a iterative process based on a decomposition- coor-
dination, it consists of dividing the global problem into subproblems (sorted by regions,
elements, units, etc.) where each subproblem is easier to deal with, moreover, the procedure
that follows the solution of the subproblems is in such a way that the general process
converges to the global optimum of the original problem (BOYD et al., 2011).

There are two types of variables in the ADMM method, local variables and
consensus variables (PUTRATAMA et al., 2021), local variables are obtained through
measurements or computational methods and they are only known by their own agent,
thus, different agents have different local variables. On the other hand, the consensus
variables are those that are shared between several agents, these variables are obtained
and updated in each iteration of the ADMM algorithm process where communication and
coordination between each agent and its neighbors is required.

The ADMM method and its versions used in this work are the unscaled,
scaled,synchronous, and asynchronous versions.

The rest of the chapter is organized as follows: Section 3.2 presents the Unscaled
ADMM. Section 3.3 describes the Scaled ADMM, Section 3.4 presents the Synchronous
ADMM, Section 3.5 presents the Asynchronous ADMM. Finally, Section 3.6contains a
summary of the chapter.
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3.2 Unscaled ADMM
The ADMM method introduces copies of coupling variables for each area to

decouple the coupling constraints, while enforcing agreement between the copies of the
coupling variables using consistency constraints

This is the most basic version, in which the ADMM is used to solve the following
type of optimization problems:

min
x,z

f(x) + g(z)

subject to: Ax + Bz = c (3.1)

where the functions f and g are convex, variables x ∈ Rn and z ∈ Rm, and parameters
A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp. The augmented Lagrangian of (3.1) is given by (3.2).

Lρ(x, z) = f(x) + g(z) + λT (Ax + Bz − c) + (ρ/2) ∥Ax + Bz − c∥2
2 (3.2)

where ρ > 0 is the penalty parameter and λ ∈ Rp is the dual variable. The ADMM
algorithm consists of updating the primal variables, x and z, and the dual variable λ

iteratively, as shown in (3.3a)–(3.3c).

xk = argminxLρ(x, zk−1, λk−1) (3.3a)
zk = argminzLρ(xk, z, λk−1) (3.3b)

λk = λk−1 + ρ(Axk + Bzk − c) (3.3c)

where k is the iteration. The algorithm will iterate until a given convergence criterion is
satisfied. The convergence conditions are given by the primary and dual residuals, εprimal

and εdual, in (3.4) and (3.5), respectively.

εprimal = ||Axk + Bzk − c||22 (3.4)
εdual = ||λk − λk−1||22 (3.5)

The ADMM ends when both residuals εprimal, and εdual, are lower than a given convergence
tolerance ϵ. Under convex conditions of the original problem (3.1), and disregarding
computational approximation errors, the final solution is shown to be optimal (BOYD et
al., 2011).

3.3 Scaled ADMM
In this case, the dual variables are scaled by making u = (1/ρ)λ. Then, replacing

λ with u and combining the linear and quadratic terms in (3.2), the augmented Lagrangian
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is rewritten as shown in (3.6).

Lρ (x, z, u, ρ) = f (x) + g (z) + (ρ/2) ∥Ax + Bz − c + u∥2
2 + const. (3.6)

Thus, the scaled ADMM algorithm consists of the following updates, as shown in (3.7a)–
(3.7c).

xk = argminx

{
f(x) + (ρ/2)

∥∥∥Ax + Bzk−1 − c + uk−1
∥∥∥2

2

}
(3.7a)

zk = argminz

{
g(z) + (ρ/2)

∥∥∥Axk + Bz − c + uk−1
∥∥∥2

2

}
(3.7b)

uk = uk−1 + Axk + Bzk − c (3.7c)

In general, the scaled form is shorter than the unscaled form, and can be
computationally advantageous when the dual variables take large values (BOYD et al.,
2011).

3.4 Synchronous ADMM
Being ADMM a iterative method, it requires synchronized communication

among all the controller units of the system. Thus, this type of ADMM considers a
communication scenario in which the exchange of information among neighboring agents
is ideal. Hence, the synchronous ADMM is the same as implementing either (3.3a)–(3.3c)
or (3.7a)–(3.7c), without delays.

3.5 Asynchronous ADMM
This concept was introduced in (WEI; OZDAGLAR, 2013). In a heterogeneous

system, each local problem may have a different computational time, so some units must
wait to receive information from a slower unit and thus be able to proceed to the next
iteration. Also, there may be delays or failures in the communication or retransmission of
messages. Thus, asynchronous ADMM considers that the communication between agents
might be far from ideal.

In this way, the values of xk, yk, and λk in (3.3a)–(3.3c) and of xk, yk, and uk

in (3.7a)–(3.7c) are not updated with the latest information, causing the ADMM to use
old values at each agent.

Fig. 3.1 show how the ADMM behaves with synchronous and asynchronous
communication assuming three controller units that interact with each other. It is observed
in Fig. 3.1-(a) that to start the next iteration, the local problems of all agents must
have been processed and therefore have shared their updated local information with the
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neighboring agents. On the other hand, Fig. 3.1-(b) shows delays or advances in the
processing of each local problem by iteration, and for the next iteration there is not the
necessity to have the information of the neighboring units updated.

Agent 1

Agent 3

Agent 2

1st itera�on 2nd itera�on 3rd itera�on 4th itera�on . . .
. . .

. . .

. . .

Agent 1

Agent 3

Agent 2

1st itera�on 2nd itera�on 3rd itera�on 4th itera�on . . .
. . .

. . .

. . .

(a) Synchronous ADMM

(b) Asynchronous ADMM

Figure 3.1 – Illustrative example of synchronous and asynchronous ADMM [Source:
adapted from (GUO; HUG; TONGUZ, 2017)]

3.6 Summary
In this chapter, the ADMM algorithm that solves convex optimization problems

by breaking them into smaller pieces was presented, including a basic convergence theorem,
some variations on the basic version that are useful in practice. These variations are:
Unscaled ADMM, the elemental version of representing the ADMM; Scaled ADMM, another
way of representing the ADMM obtained by scaling the dual variables; Synchronous ADMM,
to be used in case of having an ideal communication system; Asynchronous ADMM, willing
to deal with communication problems that arise in the system.
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4 Transition from Centralized to Distributed
EMS

4.1 Introduction
The purpose of this section is to analyze diverse versions of ADMM when used

as the main algorithm for solving both EMS formulations presented in Section 3. In this
section, models (2.1)–(2.8) and (2.9)–(2.15) are distributed in such a way that each agent
is a DER of the microgrid, taking into account that communication exists between agents,
but each one of them must optimize its own subproblem.

4.2 EMS based on devices
As the first part of the methodology, it is necessary to consider that the system

developed to solve the EMS problem based on devices is a multi-agent system, each agent
processing its own information and the information obtained from the interaction with
neighboring agents, taking the best operating decision. Thus, for the distribution of the
model presented in the subsection 2.2, the BESS, DLC and POI were considered as agents.

To the distribute the EMS based on devices model, the global problem formu-
lated in (2.1)–(2.8) is divided into local problems, each local problem is associated with an
agent (BESS, DLC or POI). Therefore, each local problem must be subject to the agent’s
own objectives and constrain, however (2.2) is the only complicating constraint that couples
variables from different agents. Thus, auxiliary copies are created for these variables: P aux1

DLC ,
P aux3

DLC , P aux1
BESS, P aux2

BESS, and, consequently, its respective equality constraints (4.1)–(4.2) are
introduced, where λBESS and λDLC are dual variables associated with each restriction.
Constrains (2.2), (2.3), (2.6), and (2.7) are rewritten as shown in (4.3)–(4.6).

P aux1
BESS = P aux2

BESS : λBESS (4.1)
P aux1

DLC = P aux3
DLC : λDLC (4.2)

Pp + PP V − Pd − P aux1
BESS − Ps − P aux1

DLC = 0 (4.3)
EBESS = E0

BESS + ∆tP
aux2
BESS (4.4)

−P BESS ≤ P aux2
BESS ≤ P BESS (4.5)

0 ≤ P aux3
DLC ≤ P DLC (4.6)
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For the constrains above (4.1)–(4.6), it is observed that state and control
variables can be redefined for each agent: BESS (P aux2

BESS, EBESS), DLC (P aux3
DLC) and POI

(Pp, Pd, P aux1
BESS, P aux1

DLC). However, the model is not distributed due to the presence of the
equality constrains of the auxiliary variables introduced (4.1)–(4.2). Therefore, as previous
step of the unscaled ADMM algorithm, through the Augmented Lagrangian, the constrains
(4.1)–(4.2) are added to the objective function (2.1) multiplied by their respective dual
variable (λBESS, λDLC) and the ADMM penalty parameter (ρ). Thus, the original model
can be expressed as follows:

min {CpPp − CsPs + CDLCPDLC

+λBESS (P aux1
BESS − P aux2

BESS) + ρ/2 (P aux1
BESS − P aux2

BESS)2

+λDLC(P aux1
DLC − P aux3

DLC) + ρ/2 (P aux1
DLC − P aux3

DLC)2
}

(4.7)

Subject to: (2.4), (2.5), (2.8), (4.3)–(4.6).

For the proposed model, a communication system is considered in such a way
that only the POI agent interacts with the BESS and DLC agents, excluding a possible
interaction between the BESS and DLC agents. Consequently, the above model (4.7)
can already be distributed using unscaled ADMM, where, in the iteration k it can be
decomposed into three subproblems, each subproblem per agent, as follows:

For the POI:

minP
aux1
BESS , P

aux1
DLC

{
CpPp − CsPs + λk−1

BESS

(
P aux1

BESS − P aux2,k−1
BESS

)
+ ρ/2

(
P aux1

BESS − P aux2,k−1
BESS

)2

+λk−1
DLC(P aux1

DLC − P aux3,k−1
DLC ) + ρ/2

(
P aux1

DLC − P aux3,k−1
DLC

)2
}

(4.8)

Subject to: (2.4), (2.5), (4.3).

For the BESS:

minP
aux2
BESS

{
λk−1

BESS

(
P aux1,k−1

BESS − P aux2
BESS

)
+ ρ/2

(
P aux1,k−1

BESS − P aux2
BESS

)2
}

(4.9)

Subject to: (2.8), (4.4), (4.5).

For the DLC:

minP
aux3
DLC

{
CDLCP aux3

DLC + λk−1
DLC(P aux1,k−1

DLC − P aux3
DLC) + ρ/2

(
P aux1,k−1

DLC − P aux3
DLC

)2
}

(4.10)

Subject to: (4.6).
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For a more straightforward representation (4.7) is expressed in a reduced form,
given by F (Y, X1, X2, X3, Λ). For the established sets in (4.11a)–(4.11e): X1, X2, and X3

are sets that contain the coupling variables between the agents, Y is the set that contains
the primal variables and Λ is the set that contains dual variables.

X1 = [P aux1
BESS, P aux1

DLC ] (4.11a)
X2 = [P aux2

BESS] (4.11b)
X3 = [P aux3

DLC ] (4.11c)
Y = [Pp, Ps, EBESS] (4.11d)
Λ = [λBESS, λDLC ] (4.11e)

Then, having the distributed model, the process for deploying the unscaled
synchronous ADMM is given by Algorithm 1. By using scaled ADMM, each agent will
solve its own optimization and transfer the exchange variable with neighbor agent until
convergence. In this process, at the k-th iteration, Xk

1 , Xk
2 , Xk

3 and Λk, are considered
parameters.

For the distributed problem throught unscaled ADMM in Algorithm 1, if there
is a failure in the exchange of information between neighbor agents after the iteration the
k, for the next iteration k + 1 the value of coupled variables will not be updated and the
last stored value will be used, that is, the value obtained in the previous iteration k − 1.
The process for deploying the unscaled asynchronous ADMM is given by Algorithm 2.
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Algoritmo 1: Unscaled synchronous ADMM for a EMS based on devices
1 Step 1: Initialization
2 k ← 0
3 Xk

1 ← 0, Xk
2 ← 0, Xk

3 ← 0, Λk ← 1
4 Step 2: Subproblem for each agent
5 k ← k + 1
6 for each agent do
7 if agent is the POI then
8 Xk

1 = argminX1F
(
Y, X1, Xk−1

2 , Xk−1
3 , Λk−1

)
9 s.t.: (2.4), (2.5) and (4.3).

10 end
11 if agent is the BESS then
12 Xk

2 = argminX2F
(
Y, Xk−1

1 , X2, Xk−1
3 , Λk−1

)
13 s.t.: (2.8), (4.4) and (4.5).
14 end
15 if agent is the DLC then
16 Xk

3 = argminX3F
(
Y, Xk−1

1 , Xk−1
2 , X3, Λk−1

)
17 s.t.: (4.6).
18 end
19 Z = [P aux2

BESS, P aux3
DLC ]

20 end
21 Step 3: Update dual variables
22 Λk = Λk−1 + ρ(Xk

1 − Zk)
23 Step 4: Convergence test
24 if ∑ ∣∣∣Xk

1 − Zk
∣∣∣ ≤ ϵ and ∑ ∣∣∣Λk − Λk−1

∣∣∣ ≤ ϵ then
25 End algorithm
26 else
27 Return to Step 2
28 end
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Algoritmo 2: Unscaled asynchronous ADMM for a EMS based on devices
1 Step 1: Initialization
2 k ← 0
3 Xk

1 ← 0, Xk
2 ← 0, Xk

3 ← 0, Λk ← 1
4 Step 2: Subproblem for each agent
5 k ← k + 1
6 for each agent do
7 if communication with neighbor devices is successful then
8 if agent is the POI then
9 Xk

1 = argminX1F
(
Y, X1, Xk−1

2 , Xk−1
3 , Λk−1

)
10 s.t.: (2.4), (2.5) and (4.3).
11 end
12 if agent is the BESS then
13 Xk

2 = argminX2F
(
Y, Xk−1

1 , X2, Xk−1
3 , Λk−1

)
14 s.t.: (2.8), (4.4) and (4.5).
15 end
16 if agent is the DLC then
17 Xk

3 = argminX3F
(
Y, Xk−1

1 , Xk−1
2 , X3, Λk−1

)
18 s.t.: (4.6).
19 end
20 else
21 Xk

i ← Xk−1
i

22 end
23 Z = [P aux2

BESS, P aux3
DLC ]

24 end
25 Step 3: Update dual variables
26 Λk = Λk−1 + ρ(Xk

1 − Zk)
27 Step 4: Convergence test
28 if ∑ ∣∣∣Xk

1 − Zk
∣∣∣ ≤ ϵ and ∑ ∣∣∣Λk − Λk−1

∣∣∣ ≤ ϵ then
29 End algorithm
30 else
31 Return to Step 2
32 end
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Rewriting the distributed EMS based on devices via unscaled synchronous
ADMM into scaled synchronous ADMM, the dual variables are scaled in the following way:
uBESS = λBESS/ρ and uDLC = λDLC/ρ. Thus, scaling the dual variable and combining
the linear and quadratic terms in the augmented Lagrangian (4.7), (4.12) is obtained :

min {CpPp − CsPs − CDLCPDLC

+ρ/2 (P aux1
BESS − P aux2

BESS + uBESS)− ρ/2 (uBESS)2

+ρ/2 (P aux1
DLC − P aux3

DLC + uDLC)− ρ/2 (uDLC)2
}

(4.12)

Consequently, the augmented Lagrangian (4.12) subject to the constrains (2.4),
(2.5), (2.8), (4.3)–(4.6) is decomposed through scaled ADMM. In the iteration k of the
algorithm three subproblems are obtained, each one per agent as follows:

For the POI:

minP
aux1
BESS , P

aux1
DLC

{
CpPp − CsPs + ρ/2

(
P aux1

BESS − P aux2,k
BESS + uk

BESS

)
− ρ/2

(
uk

BESS

)2

ρ/2
(
P aux1

DLC − P aux3,k
DLC + uk

DLC

)
− ρ/2

(
uk

DLC

)2
}

(4.13)

Subject to: (2.4), (2.5), (4.3).

For the BESS:

minP
aux2
BESS

{
ρ/2

(
P aux1,k

BESS − P aux2
BESS + uk

BESS

)
− ρ/2

(
uk

BESS

)2
}

(4.14)

Subject to: (2.8), (4.4), (4.5).

For the DLC:

minP
aux3
DLC

{
CDLCPDLC + ρ/2

(
P aux1,k

DLC − P aux3
DLC + uk

DLC

)
− ρ/2

(
uk

DLC

)2
}

(4.15)

Subject to: (4.6).

Same as unscaled ADMM, (4.12) is expressed in a reduced form, given by
G (Y, X1, X2, X3, U), where Uk. is the set that contains the scaled dual variables.

U = [uBESS, uDLC ] (4.16a)

Following the same logic as the unscaled synchronous and asynchronous unscaled
ADMM, the process for deploying the synchronous and asynchronous scaled ADMM is
given by Algorithm 3 and Algorithm 4, considering that at the k-th iteration, Xk

1 , Xk
2 ,

Xk
3 , Λk, and Uk are considered parameters.



CHAPTER 4. TRANSITION FROM CENTRALIZED TO DISTRIBUTED EMS 35

Algoritmo 3: Scaled synchronous ADMM for a EMS based on devices
1 Step 1: Initialization
2 k ← 0
3 Xk

1 ← 0, Xk
2 ← 0, Xk

3 ← 0, Uk ← 1/ρ
4 Step 2: Subproblem for each agent
5 k ← k + 1
6 for each agent do
7 if agent is the POI then
8 Xk

1 = argminX1G
(
Y, X1, Xk−1

2 , Xk−1
3 , Uk−1

)
9 s.t.: (2.4), (2.5) and (4.3).

10 end
11 if agent is the BESS then
12 Xk

2 = argminX2G
(
Y, Xk−1

1 , X2, Xk−1
3 , Uk−1

)
13 s.t.: (2.8), (4.4) and (4.5).
14 end
15 if agent is the DLC then
16 Xk

3 = argminX3G
(
Y, Xk−1

1 , Xk−1
2 , X3, Uk−1

)
17 s.t.: (4.6).
18 end
19 Z = [P aux2

BESS, P aux3
DLC ]

20 end
21 Step 3: Update dual variables
22 Uk = Uk−1 + (Xk

1 − Zk)
23 Step 4: Convergence test
24 if ∑ ∣∣∣Xk

1 − Zk
∣∣∣ ≤ ϵ and ∑ ∣∣∣Uk − Uk−1

∣∣∣ ≤ ϵ then
25 End algorithm
26 else
27 Return to Step 2
28 end
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Algoritmo 4: Scaled asynchronous ADMM for a EMS based on devices
1 Step 1: Initialization
2 k ← 0
3 Xk

1 ← 0, Xk
2 ← 0, Xk

3 ← 0, Uk ← 1/ρ
4 Step 2: Subproblem for each agent
5 k ← k + 1
6 for each agent do
7 if communication with neighbor devices is successful then
8 if agent is the POI then
9 Xk

1 = argminX1G
(
X1, Xk−1

2 , Xk−1
3 , Uk−1

)
10 s.t.: (2.4), (2.5) and (4.3).
11 end
12 if agent is the BESS then
13 Xk

2 = argminX2G
(
Xk−1

1 , X2, Xk−1
3 , Uk−1

)
14 s.t.: (2.8), (4.4) and (4.5).
15 end
16 if agent is the DLC then
17 Xk

3 = argminX3G
(
Xk−1

1 , Xk−1
2 , X3, Uk−1

)
18 s.t.: (4.6).
19 end
20 else
21 Xk

i ← Xk−1
i

22 end
23 Z = [P aux2

BESS, P aux3
DLC ]

24 end
25 Step 3: Update dual variables
26 Uk = Uk−1 + (Xk

1 − Zk)
27 Step 4: Convergence test
28 if ∑ ∣∣∣Xk

1 − Zk
∣∣∣ ≤ ϵ and ∑ ∣∣∣Uk − Uk−1

∣∣∣ ≤ ϵ then
29 End algorithm
30 else
31 Return to Step 2
32 end
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4.3 EMS considering the internal network
This model consists of the energy management of the DERs located within the

microgrid, the DERs are interconnected by an internal network. Considering the context
of a multi-agent system for the microgrid, each DG, DR load/RES, BESS is represented
by the respective optimal energy dispatch agent. Each agents is associated with a node,
it can interact with neighboring nodes in order to optimize the global operation of the
microgrid.

The objective is to decompose the problem, obtaining subproblems for each
agent. Therefore, a subproblem per node is solved. Thus, the model (2.9)–(2.15) is dis-
tributed, considering that each node is an independent agent. It is observed that the
variable f j→h complicates the decomposition of the problem, because it associates two
nodes: j and h. Thus, auxiliary variables f j→h

j and f j→h
h are introduced to substitute f j→h

where each auxiliary variable is associated with nodes j and h, respectively. Consequently,
constraints (2.13) and (2.15) are modified by (4.17) and (4.18). Note that f j→h

j must be
equal to f j→h

h ; hence, constraint (4.19) is required.

Pi =
∑

j→h∈Ei

dj→h
i f j→h

i ∀ j → h ∈ Ei,∀ i ∈ N (4.17)

f j→h ≤ f j→h
i ≤ f

j→h ∀ j → h ∈ Ei,∀ i ∈ N (4.18)
f j→h

j = f j→h
h ∀j → h ∈ E (4.19)

The reformulated problem is described by (2.9)–(2.12), (2.14), and (4.17)–(4.19).
Even if the auxiliary variables have been created, the problem can not still be decomposed,
because the constraint (4.19) involves two variables from different nodes. Therefore, to
reach the total distribution of the problem, the auxiliary constraint (4.19) will be raised
to the objective function by means of the Augmented Lagrangian technique leaving the
problem distributed as follows:

min
{∑

i∈N

[Ci (Pi)− C0 (Pi)] +

∑
j→h∈Ei,i∈N

[
λj→h

(
f j→h

j − f j→h
h

)
+ ρ/2

(
f j→h

j − f j→h
h

)2
] (4.20)

Subject to (2.9)–(2.11), (2.14), (4.17), (4.18).

With the problem approach mentioned above, this can already be distributed
through ADMM. Firstly, synchronous non-scaling ADMM is used to decompose the
problem into subproblems per node in the iteration k as follows:

For node i:
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minPi,f
j→h
i
{Ci (Pi)− C0 (Pi)

+
∑

j→h∈Ei,i=j

[
λj→h,k−1

(
f j→h

j − f j→h,k−1
h

)
+ ρ/2

(
f j→h

j − f j→h,k−1
h

)2
]

+
∑

j→h∈Ei,i=h

[
λj→h,k−1

(
f j→h,k−1

j − f j→h
h

)
+ ρ/2

(
f j→h,k−1

j − f j→h
h

)2
] (4.21)

Subject to (2.9)–(2.11), (2.14), (4.17), (4.18).

For a more straightforward representation, the augmented Lagrangian in (4.20)
is expressed as M(Pi, λj→h, f j→h

j , f j→h
h ). The process for deploying the unscaled syn-

chronous ADMM is given by Algorithm 5, where, at the k-th iteration: λj→h,k, f j→h,k
j , and

f j→h,k
h are considered parameters.

The previous case in Algorithm 5 is valid only if a synchronous communication
is taken into account, however the system is vulnerable to problems with the sending of
information due to failures or delays in communication between agents. Then, similarly to
the asynchronous model of the previous Section 4.3, an unscaled asynchronous ADMM
algorithm is performed to EMS considering the internal network. The process for deploying
the unscaled synchronous ADMM is given by Algorithm 6.

Rewriting the distributed EMS considering the internal network via unscaled
synchronous ADMM into scaled synchronous ADMM, the dual variables are scaled in the

Algoritmo 5: Unscaled synchronous ADMM for a EMS considering the internal
network
1 Step 1: Initialization
2 k ← 0
3 f j→h,k

i ← 0, λj→h,k ← 1, ∀ i ∈ N, j → h ∈ Ei

4 Step 2: Subproblem for each node i in N, with (j → h) ∈ Ei

5 k ← k + 1
6 for i ∈ N do
7 {Pi, f j→h,k

i } =
argmin{Pi,f

j→h
i }M(Pi, λj→h, [f j→h

j , f j→h,k−1
h ]i=j, [f j→h,k−1

j , f j→h
h ]i=k)

8 end
9 Step 3: Update dual variables

10 λj→h,k = λj→h,k−1 + ρ(f j→h,k
j − f j→h,k

h ),∀j → h ∈ E
11 Step 4: Convergence test
12 if ∑

j→h |f j→h,k
j − f j→h,k

h | ≤ ϵ and
∑

j→h |λj→h,k − λj→h,k−1| ≤ ϵ then
13 End algorithm
14 else
15 Return to Step 2
16 end
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Algoritmo 6: Unscaled asynchronous ADMM for a EMS considering the internal
network
1 Step 1: Initialization
2 k ← 0
3 f j→h,k

i ← 0, λj→h,k ← 1, ∀ i ∈ N, j → h ∈ Ei

4 Step 2: Subproblem for each node i in N, with (j → h) ∈ Ei

5 k ← k + 1
6 for i ∈ N do
7 if communication with neighbor nodes is successful then
8 {Pi, f j→h,k

i } =
argmin{Pi,f

j→h
i }M(Pi, λj→h, [f j→h

j , f j→h,k−1
h ]i=j, [f j→h,k−1

j , f j→h
h ]i=k)

9 else
10 f j→h,k

i ← f j→h,k−1
i

11 end
12 end
13 Step 3: Update dual variables
14 λj→h,k = λj→h,k−1 + ρ(f j→h,k

j − f j→h,k
h ),∀j → h ∈ E

15 Step 4: Convergence test
16 if ∑

j→h |f j→h,k
j − f j→h,k

h | ≤ ϵ and
∑

j→h |λj→h,k − λj→h,k−1| ≤ ϵ then
17 End algorithm
18 else
19 Return to Step 2
20 end

following way: uj→h = λj→h/ρ,∀j → h ∈ E. Thus, scaling the dual variable and combining
the linear and quadratic terms in the augmented Lagrangian (4.20), (4.22) is obtained:

min
{∑

i∈N

[Ci (Pi)− C0 (Pi)] +

∑
j→h∈Ei

[
ρ/2

(
f j→h

j − f j→h
h + uj→h

)
− ρ/2

(
uj→h

)2
] (4.22)

Finally, the scaled augmented Lagrangian (4.22) subject to the constrains (2.9)–
(2.11), (2.14), (4.17), (4.18) is decomposed through scaled synchronous ADMM. In the
iteration k of the algorithm, the number of subproblems obtained is equal to the number
of nodes within the microgrid, being each subproblem obtained per node as follows:

For node i:
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Algoritmo 7: Scaled synchronous ADMM for a EMS considering the internal
network
1 Step 1: Initialization
2 k ← 0
3 f j→h,k

i ← 0, uj→h,k ← 1/ρ, ∀ i ∈ N, j → h ∈ Ei

4 Step 2:Subproblem for each node i in N, with (j → h) ∈ Ei

5 k ← k + 1
6 for i ∈ N do
7 {Pi, f j→h,k

i } =
argmin{Pi,f

j→h
i }M(Pi, uj→h, [f j→h

j , f j→h,k−1
h ]i=j, [f j→h,k−1

j , f j→h
h ]i=k)

8 end
9 Step 3: Update dual variables

10 uj→h,k = uj→h,k−1 + (f j→h,k
j − f j→h,k

h ),∀j → h ∈ E
11 Step 4: Convergence test
12 if ∑

j→h |f j→h,k
j − f j→h,k

h | ≤ ϵ and
∑

j→h |uj→h,k − uj→h,k−1| ≤ ϵ then
13 End algorithm
14 else
15 Return to Step 2
16 end

minPi,f
j→h
i
{Ci (Pi)− C0 (Pi)

+
∑

j→h∈Ei,i=j

[
ρ/2

(
f j→h

j − f j→h,k−1
h + uj→h,k−1

)
− ρ/2

(
uj→h,k−1

)2
]

+
∑

j→h∈Ei,i=h

[
ρ/2

(
f j→h,k−1

j − f j→h
h + uj→h,k−1

)
− ρ/2

(
uj→h,k−1

)2
] (4.23)

Subject to (2.9)–(2.11), (2.14), (4.17), (4.18).

For a more simplified representation, the augmented Lagrangian in (4.22) is
expressed as N(Pi, uj→h, f j→h

j , f j→h
h ). In the same way as for the unscaled synchronous

and asynchronous case, the process for deploying the synchronous and asynchronous
scaled ADMM is given by Algorithm 7 and Algorithm 8, respectively. Furthermore, it is
considered that at the k-th iteration uj→h,k, f j→h,k

j and f j→h,k
h are considered parameters.

4.4 Summary
In this chapter the adaptation of the centralized to distributed EMS mathemat-

ical optimization models using a combination of different versions of ADMM algorithm
mentioned in Chapter 3 (unscaled ADMM, scaled ADMM, synchronous ADMM and
asynchronous ADMM) was presented. The centralized models: EMS based on devices and
EMS considering the internal network were formulated in the Section 2.2 and Section



CHAPTER 4. TRANSITION FROM CENTRALIZED TO DISTRIBUTED EMS 41

Algoritmo 8: Scaled asynchronous ADMM for a EMS considering the internal
network
1 Step 1: Initialization
2 k ← 0
3 f j→h,k

i ← 0, uj→h,k ← 1/ρ, ∀ i ∈ N, j → h ∈ Ei

4 Step 2: Subproblem for each node i in N, with (j → h) ∈ Ei

5 k ← k + 1
6 for i ∈ N do
7 if communication with neighbor nodes is successful then
8 {Pi, f j→h,k

i } =
argmin{Pi,f

j→h
i }M(Pi, uj→h, [f j→h

j , f j→h,k−1
h ]i=j, [f j→h,k−1

j , f j→h
h ]i=k)

9 else
10 f j→h,k

i ← f j→h,k−1
i

11 end
12 end
13 Step 3: Update dual variables
14 uj→h,k = uj→h,k−1 + (f j→h,k

j − f j→h,k
h ),∀j → h ∈ E

15 Step 4: Convergence test
16 if ∑

j→h |f j→h,k
j − f j→h,k

h | ≤ ϵ and
∑

j→h |λj→h,k − λj→h,k−1| ≤ ϵ then
17 End algorithm
18 else
19 Return to Step 2
20 end

2.3, respectively, in a general and simple way in order to appreciate the constrains that
complicate the distribution of the problem. In addition, both distributed models were
based on a multi-agent system architecture, each agent was associated with a DER, which
operates autonomously. The multi-agent system complements the ADMM algorithm in
terms of reducing the complexity of the problem by dividing it into smaller problems.
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5 Test and Results

5.1 Introduction
In this chapter the simulations and results obtained with the method described

in Chapter 3 were presented. The simulations are focused on testing the effectiveness
and accuracy of the ADMM algorithms: unscaled ADMM, scaled ADMM, synchronous
ADMM and asynchronous ADMM through deterministic and statistical evaluations. The
effectiveness of the algorithms was carried out through the analysis and comparison of the
results obtained in terms of optimality and convergence time of the study cases. For the
simulations performed for the study cases, it was considered two test system: A Smart
Home model and a Modified IEEE 15-node distribution radial system, which were based on
the centralized programming models proposed in the Chapter 2, and its versions distributed
through the ADMM algorithm, presented in Chapter 4.

All algorithms were implemented in AMPL (R. Fourer and D. M. Gay and B.
W. Kernighan, 2003), and the solutions to the convex subproblems were obtained using
the comercial solver CPLEX (IBM ILOG, 2009), in a server with an Intel(R) Xeon(R)
CPU E5-2620, 32 GB RAM and 12 cores.

The rest of the chapter is organized as follows: Section 5.2 presents the study
cases, Section 5.3 presents the results of a deterministic analysis for the two study cases,
Section 5.3.1 presents the results of a statistical analysis for the two study cases . Finally,
Section 5.4 contains a summary of the chapter.
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5.2 Study Cases

5.2.1 Case 1: Smart-Home

Nowadays, consumers are increasingly converting their homes into “smart
homes". A Smart House consists of a set of systems that automates home installations
thanks to technological innovations, for the benefit of its inhabitants.

With the development of new technologies such as smart grids, smart meters,
electric vehicles, solar panels, storage systems, the paradigm is changing to not only being
energy consumers, the prosumer concept and the term residential electrical management
appeared, this last term is one of the main advantages that a smart home can offer.
The monitoring system allows monitoring the use of DERs in real time, as well as using
historical data to develop future operating strategies.

This case is based in the model proposed in 2.2. It consists of managing the
resources of a smart-home, which can operate either grid-connected or isolated. The
resources included were one rooftop PV unit, critical and non-critical loads with DLC, a
BESS, and a POI with the main grid as shown in Fig. 5.1. The smart home model is flexible,
the results obtained in the EMS depending on the configuration and the values assigned
to the parameters. For subsequent simulations in order to study the ADMM method and
its versions, the value of the parameters considered in the smart-home model are shown in
the Table 5.1. Besides, the cost of energy purchased from the DN is Cp = 1.0 m.u./kWh
(monetary units), the cost of energy sold to the DN is Cs = 0.5 m.u./kWh, and the cost of
load curtailment via DLC is CDLC = 2.0 m.u./kWh.

For the sake of simplicity, only one time interval is optimized in (2.1)–(2.8),
and its duration is ∆t = 1 h. For all ADMM algorithms, the convergence tolerance is
ϵ = 1 · 10−5. For the sensibility analysis, simulations were performed with different values
of the penalty parameter ρ : 0.01, 0.1, 0.5, 1, 5, 10, 20, and 100. The asynchronous ADMM
versions use a random telecommunication delay generator to simulate communication
issues between agents at each iteration of Algorithms.

Table 5.1 – Case 1: Values of the parameters

Smart Home Parameter Value Measuring Unit
PP V 5.0 kW
Pd 5.0 kW

E0
BESS 2.5 kWh

P DLC 5.0 kW
P s 20.0 kW

P BESS 5.0 kW
EBESS 10 kWh

[Source: made by the author]
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PBESS

PPV

PDLC

Pp

Ps

Pd

Smart Home

PV

BESSDistribution network

Loads

Figure 5.1 – Smart-Home Energy Management System
[Source : made by the author]

5.2.2 Case 2: Modified IEEE 15-node microgrid

A microgrid is a small-scale electrical network that integrates DERs including
controlled and variable distributed generation, storage device, controlled and critical loads,
and can operate connected or isolated to the distribution network (ZIA; ELBOUCHIKHI;
BENBOUZID, 2018) .

This study case is based in the model formulated in subsection 2.3, it includes
a modified version of the IEEE 15-node distribution radial system formulated in (ZHENG
et al., 2018). The system is shown in Fig. 5.2, it consists of four DGs located at nodes
5 to 8, three BESSs located at nodes 10 to 12, and two prosumers with DR capability
located at nodes 14 and 15. The POI is located at node 1. The parameters associated
with each DER are detailed in in the Table 5.2. The energy transaction cost at the POI is
C0 = 5.0 m.u./kWh and the net demand is 300 kWh. For this study case, the simulations
were performed considering only a period of time, with duration of ∆t = 1 h.

1 2

6 11

13

15

14

12

10

9

8

7

543

DG

DG

DG

DG

SE

Figure 5.2 – A modified IEEE 15-node distribution radial system [Source: made by the
author]
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Table 5.2 – Technical Data

DER Location Parameter Minimum Maximum
Node Power (kW) Power (kW)

ah bh ch

DG

5 0.01 8.5 0 10 100
6 0.015 8.5 0 10 100
7 0.01 9 0 5 50
8 0.015 9 0 5 50

np nc nloss

BESS
10 0.15 0.01 0.1 -50 50
11 0.2 0.01 0.12 -30 30
12 0.3 0.01 0.1 -30 30

ninc minc

DR 14 0.2 5 -20 20
15 0.1 10 -20 20
[Source: adapted from (ZHENG et al., 2018)]

The settings for the sensibility analysis, convergence process, and asynchronous
communication approach are the same as in the previous case, i.e., the simulations for the
sensibility analysis were performed with different values of the penalty parameter ρ : 0.01,
0.1, 0.5, 1, 5, 10, 20, and 100, additionally, the convergence tolerance of ϵ = 1 ·10−5 was set,
and, the asynchronous ADMM process was modeled with a random telecommunication
delay generator.

5.3 Sensibility Analysis: Deterministic Approach
The study cases were simulated considering deterministic data mentioned in

the section 5.2 regarding photovoltaic generation (PP V ), demanded power (Pd) , purchase
and sale energy costs (Cp, Cs), initial battery state (E0

BESS) for the Case 1: Smart Home,
and, limits of the power sold or consumed by prosumers (P 14, P 15, P 14, P 15) for the Case
2: modified IEEE 15-node microgrid.

Fig 5.3 and 5.4 shows the performance of the four versions of ADMM discussed
in the section 3 (i.e., unscaled, scaled, synchronous, and asynchronous) when is applied
to the two study cases: smart-home and modified IEEE 15-node microgrid, respectively,
considering the criteria from section 3.

For each version of ADMM, three subplots are shown in each figure from Fig.
5.3 and Fig. 5.4. The first (top) subplot shows the values of the dual residuals εdual at
each iteration for different values of ρ. The second (middle) subplot shows the values of
the primal residuals εprimal at each iteration for different values of ρ. Finally, the third
(bottom) subplot shows the values of the objective function at each iteration for different
values of ρ. The first two subplots are indicators of the convergence process, whereas the
third subplot is an indicator of the optimality because the optimal value obtained as a
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result of the simulation of the centralized model is depicted by the red dashed line. For
all ADMM versions, it is noted that very low (i.e., lower than 0.5) and very large (i.e.,
larger than 5) values of ρ tend to increase the number of iterations and it may not even
reach the optimality, as shown in Case 1: Smart Home, ρ = 100 does not converge to the
optimal value of the objective function.

On the other hand, it is noted that having communication issues (i.e., asyn-
chronous versions of ADMM) increases the time of convergence, but it does not affect
the optimality. Finally, it is worth noting that, in both study cases, the scaled and un-
scaled versions of ADMM behave almost identically for the synchronous and asynchronous
versions.

The output values of the variables obtained as a results of the simulations in
the two study cases for the centralized and distributed models using the different ρ values
are shown in Tables 5.3 – 5.10. It is observed in both cases that although some variables
take their critical value: PDLC = 5kW for the Case 1: Smart Home in Tables 5.3 – 5.6,
and P5 = 10kW, P6 = 10kW, P7 = 5kW, P8 = 5kW for the Case 2: modified IEEE 15-node
microgrid in Tables 5.7 – 5.10, the convergence of the ADMM algorithm is not affected.
Additionally, in the Case 1: Smart Home, Tables 5.7 – 5.10 corroborate the optimality
subplots (iii) for all ADMM variations in the Fig 5.3, where for a value of ρ equal to 100,
the result do not converge to the optimum.

Table 5.3 – Case 1 - Synchronous Unscaled ADMM: Comparative table of the outputs
variables after convergence.

Boundaries Centra- Synchronous
min max lized Unscaled ADMM

ρ 0.01 0.1 0.5 1 5 10 20 100
Pp 0 20 2.50 2.50 2.50 2.50 2.50 2.23 1.86 2.50 0.11
Ps 0 20 0 0 0 0 0 0 0 0 0.40

PBESS -5 5 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -1.12
EBESS 0 10 0 0 0 0 0 0 0 0 1.38
PDLC 0 5 5 5 5 5 5 5 5 5 0.84

Table 5.4 – Case 1 - Synchronous Scaled ADMM: Comparative table of the outputs
variables after convergence.

Boundaries Centra- Synchronous
min max lized Scaled ADMM

ρ 0.01 0.1 0.5 1 5 10 20 100
Pp 0 20 2.50 2.50 2.50 2.50 2.50 2.23 1.86 2.50 0.11
Ps 0 20 0 0 0 0 0 0 0 0 0.40

PBESS -5 5 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -1.12
EBESS 0 10 0 0 0 0 0 0 0 0 1.38
PDLC 0 5 5 5 5 5 5 5 5 5 0.84
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Table 5.5 – Case 1 - Asynchronous Unscaled ADMM: Comparative table of the outputs
variables after convergence.

Boundaries Centra- Asynchronous
min max lized Unscaled ADMM

ρ 0.01 0.1 0.5 1 5 10 20 100
Pp 0 20 2.50 2.50 2.50 2.50 2.50 2.50 1.84 2.50 0.23
Ps 0 20 0 0 0 0 0 0 0 0 0.35

PBESS -5 5 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -1.19
EBESS 0 10 0 0 0 0 0 0 0 0 1.31
PDLC 0 5 5 5 5 5 5 5 5 5 1.06

Table 5.6 – Case 1 - Asynchronous Scaled ADMM: Comparative table of the outputs
variables after convergence.

Boundaries Centra- Asynchronous
min max lized Scaled ADMM

ρ 0.01 0.1 0.5 1 5 10 20 100
Pp 0 20 2.50 2.50 2.50 2.50 2.50 2.50 1.84 2.50 0.23
Ps 0 20 0 0 0 0 0 0 0 0 0.35

PBESS -5 5 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -1.19
EBESS 0 10 0 0 0 0 0 0 0 0 1.31
PDLC 0 5 5 5 5 5 5 5 5 5 1.06

Table 5.7 – Case 2 - Synchronous Unscaled ADMM: Comparative table of the outputs
variables after convergence.

Boundaries Centra- Synchronous
min max lized Unscaled ADMM

ρ 0.01 0.1 0.5 1 5 10 20 100
P1 -300 300 -98.36 -98.36 -98.36 -98.36 -98.36 -98.36 -98.35 -98.35 -98.30
P2 0 0 0 0 0 0 0 0 0 0 0
P3 0 0 0 0 0 0 0 0 0 0 0
P4 0 0 0 0 0 0 0 0 0 0 0
P5 10 100 10 10 10 10 10 10 10 10 10
P6 10 100 10 10 10 10 10 10 10 10 10
P7 5 50 5 5 5 5 5 5 5 5 5
P8 5 50 5 5 5 5 5 5 5 5 5
P9 0 0 0 0 0 0 0 0 0 0 0
P10 -50 50 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2
P11 -30 30 19.96 19.96 19.96 19.96 19.96 19.96 19.96 19.96 19.96
P12 -30 30 23.45 23.45 23.45 23.45 23.45 23.45 23.45 23.45 23.45
P13 0 0 0 0 0 0 0 0 0 0 0
P14 -20 20 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
P15 -20 20 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
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Table 5.8 – Case 2 - Asynchronous Scaled ADMM: Comparative table of the outputs
variables after convergence.

Boundaries Centra- Asynchronous
min max lized Unscaled ADMM

ρ 0.01 0.1 0.5 1 5 10 20 100
P1 -300 300 -98.36 -98.36 -98.36 -98.36 -98.36 -98.36 -98.35 -98.35 -98.30
P2 0 0 0 0 0 0 0 0 0 0 0
P3 0 0 0 0 0 0 0 0 0 0 0
P4 0 0 0 0 0 0 0 0 0 0 0
P5 10 100 10 10 10 10 10 10 10 10 10
P6 10 100 10 10 10 10 10 10 10 10 10
P7 5 50 5 5 5 5 5 5 5 5 5
P8 5 50 5 5 5 5 5 5 5 5 5
P9 0 0 0 0 0 0 0 0 0 0 0
P10 -50 50 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2
P11 -30 30 19.96 19.96 19.96 19.96 19.96 19.96 19.96 19.96 19.96
P12 -30 30 23.45 23.45 23.45 23.45 23.45 23.45 23.45 23.45 23.45
P13 0 0 0 0 0 0 0 0 0 0 0
P14 -20 20 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
P15 -20 20 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Table 5.9 – Case 2 - Asynchronous Unscaled ADMM: Comparative table of the outputs
variables after convergence

Boundaries Centra- Asynchronous
min max lized Unscaled ADMM

ρ 0.01 0.1 0.5 1 5 10 20 100
P1 -300 300 -98.36 -98.36 -98.36 -98.36 -98.36 -98.33 -98.36 -98.35 -98.35
P2 0 0 0 0 0 0 0 0 0 0 0
P3 0 0 0 0 0 0 0 0 0 0 0
P4 0 0 0 0 0 0 0 0 0 0 0
P5 10 100 10 10 10 10 10 10 10 10 10
P6 10 100 10 10 10 10 10 10 10 10 10
P7 5 50 5 5 5 5 5 5 5 5 5
P8 5 50 5 5 5 5 5 5 5 5 5
P9 0 0 0 0 0 0 0 0 0 0 0
P10 -50 50 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2
P11 -30 30 19.96 19.96 19.96 19.96 19.96 19.96 19.96 19.96 19.96
P12 -30 30 23.45 23.45 23.45 23.45 23.45 23.45 23.45 23.45 23.45
P13 0 0 0 0 0 0 0 0 0 0 0
P14 -20 20 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
P15 -20 20 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
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Table 5.10 – Case 2 - Asynchronous Scaled ADMM: Comparative table of the outputs
variables after convergence.

Boundaries Centra- Asynchronous
min max lized Scaled ADMM

ρ 0.01 0.1 0.5 1 5 10 20 100
P1 -300 300 -98.36 -98.36 -98.36 -98.36 -98.36 -98.33 -98.36 -98.35 -98.35
P2 0 0 0 0 0 0 0 0 0 0 0
P3 0 0 0 0 0 0 0 0 0 0 0
P4 0 0 0 0 0 0 0 0 0 0 0
P5 10 100 10 10 10 10 10 10 10 10 10
P6 10 100 10 10 10 10 10 10 10 10 10
P7 5 50 5 5 5 5 5 5 5 5 5
P8 5 50 5 5 5 5 5 5 5 5 5
P9 0 0 0 0 0 0 0 0 0 0 0
P10 -50 50 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2
P11 -30 30 19.96 19.96 19.96 19.96 19.96 19.96 19.96 19.96 19.96
P12 -30 30 23.45 23.45 23.45 23.45 23.45 23.45 23.45 23.45 23.45
P13 0 0 0 0 0 0 0 0 0 0 0
P14 -20 20 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
P15 -20 20 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Detailed information about the performance of each ADMM version for both
test cases is shown in Table 5.11 and Table 5.12. The number of iterations is an indicator
of the computational speed, whereas column “RE” stands for relative error of the final
solution, i.e., “RE” is the perceptual difference between the optimal value of the objective
function obtained by the ADMM and the centralized model. In addition, the results in
Tables 5.3 – 5.6 are validated in Table 5.11, where it is observed that for the Synchronous
case with ρ = 5, 10, 100 and for the Asynchronous case with ρ = 10, 100 the results do not
reach the optimal values.

Table 5.11 – Case 1: Iterations and relative errors for several values of ρ.

Synchronous
Unscaled ADMM

Synchronous
Scaled ADMM

Asynchronous
Scaled ADMM

Asynchronous
Scaled ADMM

ρ
number of
iterations

RE
(% )

number of
iterations

RE
(% )

number of
iterations

RE
(% )

number of
iterations

RE
(% )

0.01 192 0 192 0 395 0 395 0
0.1 114 0 114 0 278 0 278 0
0.5 127 0 127 0 315 0 315 0
1 111 0 111 0 268 0 268 0
5 63 11 63 11 431 0 431 0
10 111 26 111 26 176 28 176 28
20 1000∗ - 1000∗ - 1000∗ - 1000∗ -
100 59 229 59 229 155 217 155 217
* ADMM reached the maximum number of permitted iterations.
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Table 5.12 – Case 2: Iterations and relative errors for several values of ρ.

Synchronous
Unscaled ADMM

Synchronous
Scaled ADMM

Asynchronous
Scaled ADMM

Asynchronous
Scaled ADMM

ρ
number of
iterations

RE
(% )

number of
iterations

RE
(% )

number of
iterations

RE
(% )

number of
iterations

RE
(% )

0.01 507 0 507 0 579 0 579 0
0.1 180 0 180 0 190 0 190 0
0.5 216 0 216 0 250 0 250 0
1 400 0 400 0 464 0 464 0
5 1735 0 1735 0 2006 0 2006 0
10 3236 0 3236 0 3863 0 3863 0
20 6008 0 6008 0 7271 0 7271 0
100 24687 0 24687 0 33647 0 33647 0

5.3.1 Sensibility Analysis: Monte Carlo Simulations

An analysis within a deterministic scenario for both case studies is a biased
approach for sensibility analysis. Thus, in this subsection, a statistical assessment of the
impact of ρ is performed via Monte Carlo simulations. This statistical analysis consists of
performing 1000 simulations with uniformly random values of demands (Pd), renewable
sources (PP V ), energy costs (Cp, Cs) and limits of the power sold or consumed by prosumers
(P 14, P 15, P 14, P 15) in order to calculate the median (µ) and standard deviation (σ) for
the number of iterations and RE, for each version of ADMM.

The results in Tables 5.13 - 5.16 show that the standard deviation of the
number of iterations and RE is lower for values of ρ closer to one and according to ρ

moves away from that value, σ increases, and, further, due to the convergence time factor,
when ρ = 100, 50 Monte Carlo iterations were performed. It is noted that the results
of the average values (µ) obtained by the Monte Carlo simulations are similar to those
obtained by the deterministic analysis. Moreover, the “RE” values in Tables 5.13 - 5.16
show that high accuracy in terms of optimal value of the objective function is attained
when 0.1 ≤ ρ ≤ 5, for either the synchronous and asynchronous versions of ADMM. Finally,
any noticeable differences between the scaled and unscaled versions of ADMM were not
found in this analysis, which is expected, since both are mathematically equivalent (BOYD
et al., 2011), and dual variables are not computationally big numbers.
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Table 5.13 – Case 1: Median (µ) and standard deviation (σ) of number of iterations, for
different values of ρ.

Synchronous Synchronous Asynchronous Asynchronous
Unscaled ADMM Scaled ADMM Unscaled ADMM Scaled ADMM

ρ µ σ µ σ µ σ µ σ

Number
of
iterations

0.01 235.44 219.84 235.44 219.84 384.86 217.06 384.86 217.06
0.1 105.58 69.56 105.58 69.56 236.82 85.47 236.82 85.47
0.5 88.33 40.68 88.33 40.68 209.52 58.02 209.52 58.02
1 82.53 30.92 82.53 30.92 200.48 66.18 200.48 66.18
5 181.83 268.11 181.83 268.11 327.89 270.06 327.89 270.06
10 379.74 422.29 379.74 422.29 564.90 379.81 564.90 379.81
20 581.47 451.97 581.47 451.97 737.28 374.75 737.28 374.75
100 765.17 403.16 765.17 403.16 679.46 410.34 679.46 410.34

Table 5.14 – Case 1: Median (µ) and standard deviation (σ) of RE, for different values of
ρ.

Synchronous Synchronous Asynchronous Asynchronous
Unscaled ADMM Scaled ADMM Unscaled ADMM Scaled ADMM

ρ µ σ µ σ µ σ µ σ

RE

0.01 2.28×10−2 1.60×10−1 2.28×10−2 1.60×10−1 2.24×10−2 1.57×10−1 2.24×10−2 1.57×10−1

0.1 8.49×10−4 2×10−2 8.49×10−4 2×10−2 1.60×10−3 2.24×10−2 1.60×10−3 2.24×10−2

0.5 3.70×10−3 4.88×10−2 3.70×10−3 4.88×10−2 1.62×10−2 3.64×10−1 1.62×10−2 3.64×10−1

1 1.20×10−2 1.14×10−1 1.20×10−2 1.14×10−1 1.11×10−2 1.44×10−1 1.11×10−2 1.44×10−1

5 8.15×10−2 4.83×10−1 8.15×10−2 4.83×10−1 8.87×10−2 1.56 8.87×10−2 1.56
10 4.15×10−1 2.31 4.15×10−1 2.31 1.77×10−1 1.60 1.77×10−1 1.60
20 2.95 4.15×101 2.95 4.15×101 1.68 1.59×101 1.68 1.59×101

100 5.73 6.72×101 5.73 6.72×101 1.80×101 3.07×102 1.80×101 3.07×102

Table 5.15 – Case 2: Median (µ) and standard deviation (σ) of number of iterations, for
different values of ρ.

Synchronous Synchronous Asynchronous Asynchronous
Unscaled ADMM Scaled ADMM Unscaled ADMM Scaled ADMM

ρ µ σ µ σ µ σ µ σ

Number
of
iterations

0.01 492.18 17.51 492.18 17.51 601.81 27.55 601.81 27.55
0.1 181.15 0.63 181.15 0.63 186.79 7.06 186.79 7.06
0.5 216.17 2.70 216.17 2.70 247.88 6.66 247.88 6.66
1 399.01 5.40 399.01 5.40 458.85 12.96 458.85 12.96
5 1727.6 26.10 1727.6 26.10 2032.4 68.98 2032.4 68.98
10 3223 51.07 3223 51.07 3843.30 141.74 3843.30 141.74
20 5981.6 103.50 5981.6 103.50 7277.20 281.61 7277.20 281.61

100∗ 24482 516 24482 516 32556 1746.2 32556 1746.2
* For this ρ value, 50 Monte Carlo simulations were carried out.

5.4 Summary
In this chapter, the results of the simulations on two case studies were presented:

Smart Home and modified IEEE 15-node microgrid. The simulations carried out were based
on a centralized and distributed model through ADMM in order to test the effectiveness of
the ADMM method. Numerical tests with different ρ values applied to the four versions of
ADMM (i.e., unscaled, scaled, synchronous, and asynchronous) were performed considering
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Table 5.16 – Case 2: Median (µ) and standard deviation (σ) of RE, for different values of
ρ.

Synchronous Synchronous Asynchronous Asynchronous
Unscaled ADMM Scaled ADMM Unscaled ADMM Scaled ADMM

ρ µ σ µ σ µ σ µ σ

RE

0.01 1.02 ×10−6 1.73 ×10−5 1.02 ×10−6 1.73 ×10−5 3.14×10−7 1.35×10−6 3.14×10−7 1.35×10−6

0.1 2.06 ×10−6 3.45×10−5 2.06 ×10−6 3.45×10−5 6.18×10−7 6.93×10−6 6.18×10−7 6.93×10−6

0.5 2.37 ×10−6 4.25 ×10−5 2.37 ×10−6 4.25 ×10−5 3.42×10−7 1.20×10−6 3.42×10−7 1.20×10−6

1 2.38 ×10−6 4.25 ×10−5 2.38 ×10−6 4.25 ×10−5 4.14 ×10−7 3.73 ×10−6 4.14 ×10−7 3.73 ×10−6

5 3.29×10−7 8.30×10−6 3.29×10−7 8.30×10−6 1.10×10−3 3.34×10−2 1.10×10−3 3.34×10−2

10 1.36×10−7 1.11 ×10−6 1.36×10−7 1.11 ×10−6 1.23×10−7 3.67×10−7 1.23×10−7 3.67×10−7

20 4.31×10−7 8.64×10−7 4.31×10−7 8.64×10−7 2.50×10−6 2.56×10−5 2.50×10−6 2.56×10−5

100∗ 1.98×10−6 2.55×10−6 1.98×10−6 2.55×10−6 8.21×10−7 1.17×10−6 8.21×10−7 1.17×10−6

* For this ρ value, 50 Monte Carlo simulations were carried out.

deterministic input parameters of demands, renewable sources and energy costs, and,
further, in order to have a more objective view, a statistical analysis is carried out through
a Monte Carlo simulations, which consisted of performing 1000 simulations with random
values of the same input parameters, followed by the calculation of the median (µ) and
standard deviation (σ) of the number of iterations and the relative error.
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(a) Synchronous Unscaled ADMM
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(i)
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(b) Synchronous Scaled ADMM
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(i)

(iii)
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(c) Asynchronous Unscaled ADMM
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(ii)

(d) Asynchronous Scaled ADMM

Figure 5.3 – Case 1: Smart Home. Comparison between ADMM versions, deterministic
analysis: scaled, unscaled, synchronous, and asynchronous ADMM for different
values of ρ. (i) Dual residuals εdual, (ii) Primal residuals εprimal, (iii) Values
of the objective function. [Source: made by the author]
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(a) Synchronous Unscaled ADMM
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(iii)
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(b) Synchronous Scaled ADMM
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(iii)
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(c) Asynchronous Unscaled ADMM
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Asynchronous Scaled ADMM
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(iii)

(ii)

(d) Asynchronous Scaled ADMM

Figure 5.4 – Case 2: Modified IEEE 15-node microgrid. Comparison between ADMM ver-
sions, deterministic analysis: scaled, unscaled, synchronous, and asynchronous
ADMM for different values of ρ. (i) Dual residuals εdual, (ii) Primal residuals
εprimal, (iii) Values of the objective function. [Source: made by the author]
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6 Conclusions

6.1 Conclusions
In this work, two energy management systems (EMS) for microgrids were

formulated as convex optimization problems. The first case considers an EMS based on
devices without the internal network. The second case considers an EMS with a basic
network flow. Both centralized models were distributed via the alternating direction method
of multipliers (ADMM) and its versions: unscaled, scaled, synchronous, and asynchronous.
For validation, two study cases were used: a smart-home and a modified IEEE 15-node
microgrid. First, a deterministic sensibility analysis was performed, considering different
values of ρ and different versions of the ADMM for a single instance of both study cases. The
convergence process and optimality were contrasted in this deterministic analysis, which
makes it possible to visualize the performance of each ADMM algorithm independently, as
functions of the number of iterations. Then, to guarantee an unbiased assessment, a Monte
Carlo analysis was carried out by simulating 1000 uniformly random instances of both
study cases. Results show that all versions of the ADMM algorithm behave statistically
better in terms of optimality and convergence whenever values of ρ = 1 are used; a
bad choice of ρ can lead to non-optimality and delay convergence. We can verify the
robustness of the ADMM method that despite communication problems in the exchange of
information between agents or due to a heterogeneous nature of the system, the optimality
was not affected, but the convergence may be slower. Furthermore, although the fact that
some variables reached their critical value for the different values of ρ tested, the ADMM
algorithm converged to the global optimum.

6.2 Future Works
1. Considering a dynamic penalty parameter ρ in the iterative process that is inherent

of the ADMM algorithm, which can be adjusted in order to improve the efficiency of
the algorithm in terms of solution quality and convergence time.

2. Deploying in a day-ahead framework, using a multi-period version of the algorithm
ADMM (GUPTA et al., 2018), for both EMS formulations in microgrids: EMS based
on devices and EMS considering the internal network.

3. The scope of the ADMM can be applied to an improvement of the EMS considering
the internal network model considering voltage magnitude in buses, active power
losses, reactive flow and three-phase electrical network.
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