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Resumo

Como conhecido na literatura, a escolha da distribuigao a priori é um aspecto chave no
método Bayesiano e em muitos casos nao ¢ trivial. Neste trabalho, duas distribui¢ées a
priori padrao foram derivadas para realizar inferéncia Bayesiana nos modelos Student-t

espacial e de regressao bindria.

No primeiro caso, sob a perspectiva da analise Bayesiana objetiva, foi introduzida uma
priori baseada no método de referéncia e duas prioris de Jeffreys para o modelo Student-t
espacial (T-SR) considerando os graus de liberdade desconhecidos. Além disso, foram
mostradas as condigoes sob as quais estas densidades geram distribuig¢oes a posteriori
proprias. Estudos de simulagoes e uma aplicacao em dados reais foram usados com o
objetivo de avaliar o rendimento das prioris mencionadas, incorporando uma priori vaga

no processo de comparagao.

Com relagao ao modelo de regressao bindria, a distribuicao a priori com complexidade
penalizada foi introduzida para o parametro de assimetria na familia de funcoes de
ligacdo poténcia, uteis para lidar com dados nao balanceados. Uma expressao geral para a
distribuicao a priori foi derivada e a sua utilidade mostrada para alguns casos particulares,
como por exemplo as ligacdes logito e probito poténcia. Adicionalmente, foi mostrado
que a ligacao log-log complementar e sua ligacao reversa associada sao nao identificaveis.
Para a obtencdo de amostras a posteriori o algoritmo de Monte Carlo Hamiltoniano foi
implementado, evitando, assim, os comportamentos de caminhada aleatéria dos algoritmos
de amostragem Metropolis-Hastings e Gibbs. Um estudo de simulagao e uma aplicacao em
dados reais foram usados para avaliar o rendimento das distribuigoes a priori introduzidas

quando comparadas com as densidades Gaussiana e uniforme.

Palavras-chave: Geoestatistica, Distribuicao Student-t multivariada, Priori objetiva,
Distribuicao a priori propria, Distribuicao a priori Priori de complexidade penalizada,

Estatistica Bayesiana, Ligacoes de Poténcia, Regressao binaria,



Abstract

As widely indicated in the literature, the choice of the prior distribution is a key aspect of
the Bayesian method, and in many cases is not trivial. In this work, we derive two default
prior distributions to perform Bayesian inference using the spatial Student-t and binary

regression models.

In the first case, we use the objective Bayesian analysis framework to introduce a reference-
based and two Jeffreys priors for the spatial Student-t regression (T-SR) model with
unknown degrees of freedom. We also show the conditions under which these densities
yield to a proper posterior distribution. Simulation studies and a real data application are
used to evaluate the performance of the mentioned priors, incorporating a vague one in

the comparison process.

Regarding the binary regression model, we introduce the penalized complexity prior of
the skewness parameter o for the family of power links, which are useful to deal with
imbalanced data. We derive a general expression for this density and show its usefulness
in some particular cases, such as the power logit and the power probit links. In addition,
we show that the power complementary log-log and its associated reversal link are non-
identifiable. To obtain posterior samples, we use Hamiltonian Monte Carlo, which avoids
the random walk behavior of the Metropolis and Gibbs sampling algorithms. A simulation
study and a real data application are used to assess the efficiency of the introduced densities

in comparison with the Gaussian and uniform densities.

Keywords: Geostatistics, Multivariate Student-t distribution, Objective prior, Proper

prior, PC prior, Bayesian statistics, Power links, Binary regression.
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1 Introduction

The Bayesian method can be used to analyze information in scientific, medical
and socioeconomic problems. Its main advantage is to fully account for the parameter
uncertainty when performing prediction and inference, even in small samples (Berger et al.,
2001). This practice has evolved into an important tool that allows the use of statistical
methods jointly with prior knowledge (usually provided by an expert), to investigate a
phenomenon of interest (Leonard, 2014). One of the main challenges of Bayesian statistics
is the elicitation of prior distributions. There are many circumstances in which either there
is no information at all, or there is only a small amount of previous knowledge about the
problem being studied. The main purpose of this work is to propose default priors to deal

with these situations in the context of regression analysis.

In the first part of this study, we propose a novel method to develop Bayesian
inference in the Student-t spatial regression model without the need for prior information.
We focus our effort on developing an objective analysis based on the Jeffreys and reference
priors. The first one, was proposed by Jeffreys (1946) and is related to the information
matrix. One of the main advantages is that these priors are invariant under different
reparameterizations, so they work particularly well in the one-dimensional case. Nonetheless,
these priors have received several criticisms and various problems have been detected
when they are applied to multiparameter scenarios (see, for instance, Syversveen, 1998;
Aldrich, 2008). The reference prior, on the other hand, was introduced by Bernardo
(1979) as an extension of Jeffreys’ work. This prior overcomes many of the inadequacies of
Jeffreys’ method, by decomposing the parameter space into spaces of lower dimensions.
Unfortunately it still has some drawbacks when dealing with hierarchical models because

its derivation is challenging. Simpson et al. (2017).

Regarding the second part, we work from the perspective of weakly informative
priors in the context of regression models applied to binary, binomial and bounded data. The
most common practice in this case, is to make use of prior distributions previously /wrongly
employed in the literature or to specify new priors based on historical studies (Lemoine,
2019). Another common practice is to choose conjugated priors to reduce both analytical
and computational efforts (Robert, 2007). These ad-hoc methods have received criticisms.
On one hand, the use of priors from previous research can lead to incorrect inferences,
since they were designed specifically to solve a particular problem and probably will not
work with adequate efficiency in prediction problems. Moreover, the use of conjugate
priors, despite of their analytical advantages, cannot be justified at all, since they trade
these facilities for the subjective determination of the prior distribution, which can leads

to ignoring part of the prior information. Our aim here is to introduce a new density
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function for the skewness parameter of power links based on the penalized complexity
(PC) prior proposed by (Simpson et al., 2017). Under the assumption of the existence of a
baseline model, the PC prior uses the Kullback- Leibler divergence to measure the loss of
information when this model is used instead of a more flexible one. This proposal can be
weakly informative or informative, depending on the researcher’s knowledge about the size
of the complexity parameter. The PC prior has desirable properties like invariance under
reparameterizations, computational feasibility, and no need to fix prior specifications based
on previous research. Nonetheless, the concept of "baseline" model is more subjective than
objective. Also, the fact of leaving the specification of the complexity parameter to the

user is not very realistic when dealing with models having hierarchical structures.

1.1 Preliminaries

In this section, we give a brief description of some basics settings used in this
work, these include models definition, covariance structures and Bayesian and mathematical

background.

1.1.1 The Student-t spatial regression Model

Let Y (s;) denote the response over location s; € Dy where Dy is a continuous
spatial domain in IR?. We assume that the observed data y = (y(s1),...,y(s,))" is a
single realization of a Student-t stochastic process Y (s) = y(s) : s € D (Palacios & Steel,
2006). Thus, if Y follows a multivariate Student-t distribution with location vector pu,
scale matrix ¥ and v degrees of freedom, Y ~ ¢,(X3, X, v). A Student-t spatial regression
(T-SR) model can be represented as

Y(S’L) :X(Si)ﬁ+esi7 S =8S1,...,8n, (11>

where X(s;) is a n x p nonstochastic matrix of full rank and € is a n x 1 random vector
such that E[e] = 0, which represents the error of the process. Therefore, a realization
of a Student-t process can be represented by setting € ~ ¢,(0,3,v), or equivalently,
Y ~ t,(X3,3,v) with a valid covariance function for the scale matrix 3. We concentrate
on a particular parametric class of covariance functions such that the scale matrix is given
by

2 = [C(si;85)] = o"R(d) + 71,

where in standard geostatistical terms: o2 is the sill; 7 is the nugget effect; ¢ determines
the range of the spatial process; R(¢) is an n x n correlation matrix; and I is the identity
matri of order n. We assume that R(¢) is an isotropic correlation matrix and depends only

the Euclidean distance d;; = ||s; — s;|| between the points s; and s;. Thus, the likelihood
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function of the model parameters 6 = (83,02, ¢, 7,v)", based on the observed data y, is

given by

L)Y o xa s (v xgn -5 1.2
FOy g XS o xe) )

where |A| denotes the determinant of the matrix A. Note that this process is stationary

L(Bly) =

since y = X3 is constant for all s in IR? and the isotropy of R(¢) makes that the covariance
matrix only depend on the vector difference between s; and s;. In this work, we consider

the following four general families of isotropic correlation functions in IR?:

1. The Matérn family, given by:

1 dij \ " ) ”
R(0) = 2P</~z>(¢> Kildig/6), dij >0,

17 dij = 07

(1.3)

1 (™ _
where ¢ > 0; K, (u) = B f 2" Lem 2+ gy is the modified Bessel function of the

0
third kind of order k (see, Gradshtejn & Ryzhik, 1965), with x > 0 fixed.

2. The power exponential family, defined by:

ol
expi— [ — , dii >0, 0<k <2,
R(¢) = { <¢ ’

1, d;; = 0.

Like the Matérn family, the power exponential has a scale parameter ¢ > 0, a shape
parameter x, in this case bounded by 0 < k < 2. It generates correlation functions

which are monotone decreasing in d;;.

3. The spherical family, given by:

3 1
1= 20,/0) 4 L/, 0<dy <0,
O’ dij > ¢

R(¢) =

4. The Cauchy family, defined as:

Note that for spherical family, one qualitative difference with respect to others
families described earlier is that it has a finite range i.e., R(¢) = 0 for sufficiently large

d;j, namely d;; > ¢.
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1.1.2 Basic concepts from Bayesian inference

By modeling both the observed data y and the unknown parameters 6 as random
variables, the Bayesian approach to statistical analysis provides a coherent framework for
combining complex data and external knowledge or expert opinion (Banerjee et al., 2014).
This allows parameter uncertainty in the predictions, giving more realistic estimates of
the prediction variance. In this approach, we observe data from a sampling density f(y|6),
assigning to 6 a prior density 7(6) (prior knowledge) then, through the Bayes theorem, we

can update this probabilities using y as:
0)m(0
Soly) - FO1O
| rvtoras

One of the main objectives of Bayesian analysis is to summarize (1.4) to perform

(1.4)

) .
)do

inferences about functions of #. Due to the form of the resulting posterior, this process
involve integrals that only can be evaluated through numerical approximations. Rejection
sampling and Monte Carlo Markov Chains (MCMC) methods could be adequate to deal
with this problem, both procedures consist of sampling from the posterior distribution and
make inferences about a function of 6 based on the obtained sample. In this work we give
a brief summary of the Metropolis-Hastings and the Gibbs algorithm. These methods are
use to sample from the posterior density resulting from the reference and the Jeffreys prior
obtained for the spatial Student-t model. For more details, see for example Metropolis

et al. (1953), Hastings (1970) and Gilks & Wild (1992).

One of the objectives of this thesis is the development of a new prior for the
Student-t spatial regression model, based on the reference method. We dedicated the
following subsection to give a brief introduction to this procedure in a general context, i.e,

considering f(z) as an arbitrary density function.

1.1.3 The reference prior method

Bernardo (1979) initiated the reference prior approach to develop non-informative
priors. This procedure removes the need for ad hoc modifications by partitioning multidi-
mensional @ = (04, ...,0;) into the parameters of interest and the nuisance parameters.
This procedure is widely described in Berger & Bernardo J. (1991) considering the following

notation:

e The separation of @ in m groups, represented by:

0(1) = (91’ e 79711) ) 0(2) = (9n1+17 cee 79n1+n2) )
- 70(2) = (0Ni71+17 R 79N¢) 70(m) = (QNm_lJrl? s 79k) )
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J
where N; = an

i=1

¢ The definition of ;) and 8., as:

011 = (0ny, -, 00)) = (01, 0;),
9[“]] = (0(j+1)a <o 79(m)) = (QN]-+1, .. ,Qk)

with the convention 8[.q) = € and 6 vacuous.

o The general definition of the Kullback - Leibler divergence between two densities on
O as:

KLD(g,h) = J 9(0) log (z%) 0 (1.5)

(S}

« Finally, the definition of the density of Z, = (X}, ..., X}), a random variable arising

from ¢ independent replications of the original experiment as:
t
p(=/0) =] | f(xil6). (1.6)
i=1

Having this definitions, the method is described in four steps as in algorithm 1. The
following subsection give a brief description of some sampling procedures widely used in
Bayesian statistics, they facilitate the inference approximating moments and quantities of

interest by the use of random samples.

1.1.4 Metropolis-Hastings method

The Metropolis-Hastings (M-H) algorithm allows to obtain an approximate
sample from an univariate density for which is not easy to carry out this procedure. Let f
be the target distribution we are interested in sampling and ¢ the proposal distribution.
Following Metropolis et al. (1953) and Hastings (1970), the method starts at ¢ = 0 drawing
at random 0¥ from ¢ under the condition that f (x(o)) > 0. Given %, the method

t+1)

generates 6 as shown in algorithm 2.

1 only depend on 6%,

The generated chain has the Markov property since ¢
Irreducibility and aperiodicity of the same are sufficient conditions to ensure that the

obtained sample converges to a unique limiting stationary distribution.

1.1.5 Gibbs sampling

This method allows sampling from a multidimensional density function, As
in the M-H algorithm, the goal is to obtain a chain with the Markov property whose
distribution converges to the target distribution f. Following Geman & Geman (1984),
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Algorithm 1 Obtaining the reference prior for a general model.

1: Choose a nested sequence {@E} of compact subsets if theta such that, uz’;@e =0
2: Order the coordinates @ = (61, ..., 60x) and divide them into m groups. Usually is better
to have m = k, and the order should typically be according inferential importance.

3: For j=m,m —1,...,1, iteratively compute the densities 7 (HN(J»_I)‘ 0;_11), using:

5 (O~G-0] Op-11) & 75 (0| O (65| Ops-1)

where ¢, 41 = 1and hﬁ is computed following the next steps:

(a) Define pt(B(j)]O[j,l]) by:

p(0|6p-1) £ exp (JP(Zt\G[j])IOg (p(9<j>|2t>9[j—1]))dzt)v

where (using p(-) generically to represent the conditional density of the given
variables)

palop) = | pal0)m,, (61~ 1185) o[~ ).
(0|2 0-11) = p(216157)p(0(5|01-17).
(b) Assuming the limit exists, define:
h5(0)|0p—n) = lim pi(8(;)|0p-1).
4: Define a reference prior 7(0), as any prior for which:
EXKLD(7!(0]|X),7(0|X)) — 0 as £ — oo,
where K LD is defined in 1.5 and Ej( is the expectation with respect to:

Pa) = Lﬂxre)wf(mde,

(writing 7% (@) for (0]~ 0]|0[0])).

Let @ = (6;,...,60,) and denote 8_; = (01,...,0;_1,0;41,...,0,). Under the assumption
that 0;|@_; can be easily sampled, the Gibbs sampling procedure can be described as in

algorithm 3.

It is possible to combine the Gibbs procedure with a M-H sampling allowing
a proposal distribution which varies over the time. Each Gibbs cycle will consist of p

Metropolis—Hastings steps. To see this, note that the ith Gibbs step in a cycle effectively

proposes the candidate vector 8% = (95”1), 0§t+2), . ,9?:{1), 975*), Qz(i)l, e ,Qz(fﬂ)) given
the current state of the chain (9%””, thﬂ), e ,G,Etfll), 9?, 0§i)1, e ,9;”1)). Thus, the ith

univariate Gibbs update can be viewed as a Metropolis—Hastings step drawing,
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Algorithm 2 Obtaining a random sample using the Metropolis-Hastings algorithm.

1: Sample a candidate 6* from the proposal distribution g (.|0(t))
2: Compute the M-H ratio as:

F(6)g (616%)
F(0W)g (6+10))

R(6W,0%) =

3: Sample a value for 641 as:

0*, with probability min(R (6, 6*),1)
04D otherwise

)~ {

4: Increment ¢ and go to step 1.

Algorithm 3 Obtaining a random sample using Gibbs algorithm.

1: Select the starting values 0 and fix ¢ = 0
2: Generate,

0~ f(6:16Y)
0§t+1)|' ~ f(92|9§t+1)7 0:(;)’ cee 7‘9(t))

p

oI~ f(0,0%7)

p

3: Increment ¢ to ¢t + 1 and go to step 1.

o¥100 ) ot 6 00,0 < g, (w?*”, B GRNCN R ,9;,”1))
It can be shown that in this case the Metropolis—Hastings ratio equals 1, which
means that the candidate is always accepted. The Gibbs sampler should not be applied
when the dimensionality of @ changes (e.g., when moving between models with different

numbers of parameters at each iteration of the Gibbs sampler).

1.1.6  Hamiltonian Monte Carlo and NUTS sampler

In general, simple methods such as Gibbs sampling (Geman & Geman, 1984)
and random walk Metropolis (Metropolis et al., 1953) requires a long time to converge to
the target distribution, this is due to its random walk behavior and sensitivity to correlated
parameters. An alternative to deal with this problem is the hybrid Monte Carlo (HMC)
sampler (Duane et al., 1987; Neal, 2011) which avoids unnecessary iterations by taking
a series of steps informed by first-order gradient information. These settings allow it to

converge to high-dimensional target distributions much more quickly than other common
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methods. The algorithm uses Hamiltonian dynamics to simulate a random process via the

Stormer-Verlet (“leapfrog”) integrator,

rt+§ =t + gveg(et’y)7 9t+1 -6 + EI'H_%, rite = rt+§ + %V0£(9t+e|y)’

where r’ is an auxiliary momentum variable at time ¢ and Vg denotes the gradient with
respect to 6. Obtaining the momentum variables using this sampler, L leapfrog updates
are applied to the position and the momentum variables, generating a proposal position-

momentum pair. The proposal (T, é) is accepted following a Metropolis reject step with

probability,
| exp ((8]y) — 5T'F)
min < 1, T T )
exp (£(6"'|y) — 2r0Tx0)
where 7° are the sampled momentum variables before they are put through the leapfrog

integrator. Despite the advantages of this method over simpler alternatives, the requirement
of the gradient and the user’s specification of the step size € and the number of steps
L represents a challenge to its use. An extension of the HMC algorithm called NUTS
(Non-U Turn Sampler) (Hoffman & Gelman, 2014) avoids these issues by setting € and L

automatically and computing the gradient Vy through automatic differentiation.

1.1.7 Big O notation

Let f be a real or complex valued function and g a function defined in the
positive real numbers. Following Landau (1909), we say f(z) = O(g(z)) if there is a real

number C' > 0 and a real number zy such that

|f(z)| < Cg(x), forall x> x.

This notation is used to describe the behavior of certain functions at limiting points. The
Big-O notation is useful in this work, since we are interest in knowing the behavior of some
functions at the extremes of their domain, in this way, we are able to establish boundaries
which are helpful in showing propriety for the prior distributions we are studying. Some of

the most important properties of this concept are,

o If a is a constant, then

af = O(f).

o If fi = O(g1) and fo = O(gz), then

fi + f2 = O(max(g1, 92)).
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o If fi = O(g1) and fo = O(gz), then

Jife = 0(9192)~

1.1.8 Generalized linear models.

Following McCullagh & Nelder (1989), the Generalized Linear Model (GLM) is
a flexible extension of ordinary linear regression which allows the use of response variables
with errors distributed different from the normal distribution. This generalization has

three fundamental characteristics,

1. The random component: In this case the vector of responses Y, which were

established to belong to the exponential family.
2. The linear predictor: Usually denoted by n = XS.

3. The link function: Which is a function g which related the expected value of Y

given a set of covariates with the linear predictor through the equation,
g~ () = .

In this thesis, we work with the GLM particular case where Y follows a binomial
or a bounded distribution, i.e, the binary regression model. The following subsection gives

a brief description of its components including the family of links we consider.

1.1.8.1 Bounded regression

Consider Y = (Y1,...,Y,)" an n x 1 vector of n independent random variables
representing either a binomial or a bounded (in (0, 1)) response of n individuals. Also,
let x; = (21, . .. ,xip)T be the vector of covariates associated with individual i. Then, the

hierarchical regression model for these types of responses is of the form:

Yi ~ fyilps, 0), (1.7)
9(ps) = F~ (i) = x; B,

where f denotes the probability density function (pdf) of each Y;, B = (f4,... ,ﬁp)T are
the fixed effects, g = F~*() is typically called the link function in the context of generalized
linear models, where F' is a the cumulative distribution function (cdf) of a random variable
with support in the real line. When F' is symmetric, then the resulting link is called a
symmetric link, while if F' is asymmetric, ¢ is called a skewed link. The logit and probit
functions are the most popular specifications for ¢ when analyzing these kinds of responses.

They are symmetric and obtained from the cdf of the logistic and the standard normal
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distributions, respectively. The complementary log-log is a popular skewed one, obtained

by taking F' as the reversal Gumbel distribution.

In this work, we define a PC prior for the asymmetry parameter « of the
power link family (Bazéan et al., 2017; Lemonte, 2017) whose cumulative cdf and pdf are,

respectively, of the form,

Fola) = Falo) = [F (“2)]

o

folw) = falo) = 2[F (S (T, (19

o g g

where 0 = (i, 0,«), F(-) denotes any absolute continuous cdf of a random variable with

support in the real line and f(-) denotes its pdf which must be unimodal and log-concave.

1.1.9 Model selection criteria

In this section we give a brief description of some of the most used information

criteria in the literature.

The deviance information criteria (DIC) is a generalization of Akaike’s Infor-

mation criteria (AIC) given by,
DIC =D(8) + pp = 2D(8) — D(8),

where @ = E(8ly), D(8) = —2E(log f(y|0)|y) is the deviance of the considered
model, D(0) is the posterior expectation of D(6) (in this case a random variable) and pp
defined as D(@) — D(0) is a measure of the effective number of parameters in the model.
In general, the computation of D(0) is quite complex, a good approximation can be easily

obtained from the MCMC sample {0, ...,60,} using the sample mean of the deviations

D= —2— Z log(f(y|0.m)]y), in this way we get the estimator DIC =D - D().

The expected Akaike information (EAIC) and expected Bayesian information
(EBIC) criteria discussed in Brooks (2002) are given by,

EAIC =D +2p EBIC =D + plog(n),

with p the number of model parameters and n, the effective sample size. Additionally,
we use a recent proposal of Watanabe (2010), the widely applicable information criteria
(WAIC) which can be seen as approximation to cross-validation in Ando (2011) with an

only difference in the computation of the parameter of complexity pwarc,

PwAIC = Z ~ 1 (log f(yil0:m)),

M
with VM (a) = 1/m—1 Z (G —a)? and @ = 1/m Z . Then,

m=1 m=1

WAIC = E + 2pWAIC.
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Prediction measures in binary regression

An useful measure to assess the quality of the estimated rates in a Binomial

regression is the square root of the mean square of error (MSE), this is given by,

where p; is the fitted proportion obtained from the model of interest, p; is the observed

sample proportion and ny;,, is the number of binomial observations.

The use of the confusion matrix is very common to perform classification in
binary regression, its usual structure is showed in Table 1. The response 1 indicates an
observed or predicted success, and 0 represents an observed or predicted failure. The terms
of the diagonal are the number of times in which the model makes correct predictions, i.e,
True Positives (TP) and True Negatives (TN), the remaining terms indicates the frequency
in which the model makes incorrect predictions, that is, false positives (FP) and false

negatives (FN).

Table 1 — General structure of the confusion matrix.

Predicted

Observed 0 1
0 TN FP
1 FN TP

As in Fawcett (2006), we use the most common measures for classification,
accuracy (ACC), sensitivity or true positive rate (TPR), specificity or true negative rate
(TNR) and area under the ROC curve (AUC), these are given by,

TP+TN TPR — TP TNR TN

ACCZTP+TN+FP+FN’ TP + FP’ " TN+ FN’

Also, given the unbalanced nature of data, we use the critical success index (CSI), Sokal &
Sneath index (SSI), Faith index (FAITH) and distance measure pattern difference (PDIF)
as were proposed in de la Cruz et al. (2019) to measure the similarity between the observed

and predicted classification. These measures are defined by,

TP TP
CSI = SSI =
TP+ FP+FN TP +2(FP+ FN)
TP +0.5TN AFPFN
FAITH = PDIF = .
TP+TN+FP+FN (TP +TN + FP + FN)?

Excepting the PDIF criterion, for all criteria mentioned above, the smaller the
values, the better the model fit.
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1.1.10 Randomized normalized quantile residuals

To verify the adequacy of the model described by equations (1.7) - (1.8), we
can use the normalized randomized quantile residuals defined in Dunn & Smyth (1996).
These are given by,

Tqi = (I)_l(ui)7

where for binary regression models, u; is a random value of a uniform distribution in the
following interval,

g 2= yiy), Liop, (T =i, L+ wi)]
with I,(a,b) = B@ab)/B@p) being the regularized incomplete beta function and fi; =
F(z} B) is the estimated probability through the use of a link function. If the model
fits correctly, then the normalized randomized quantile residual has a standard normal

distribution, which can be evaluated through an envelope graph as suggested by Atkinson

(1985).

1.2 Organization of the thesis

This thesis is composed of six chapters containing default procedures to perform
Bayesian estimation for both the Student-t spatial and the bounded regression models.

This work is organized as follows.

In Chapters 2 and 3 we provide an objective Bayesian method to analyze the
Student-t spatial linear regression model. Specifically, in Chapter 2 we establish theoretical
foundations of this analysis, starting by giving a general form of the marginal posterior
for the range parameter and the degrees of freedom. After that, we give equations which
describe the proposed reference based prior, and the Jeffreys priors, the most common
non-informative densities in Bayesian statistics. Finally, we show conditions under which
these priors generate proper posteriors. In Chapter 3 we also assess the performance of

these methods using simulation studies and a real dataset.

In Chapters 4 and 5, we provide a procedure based on the PC prior to estimate
the asymmetry parameter for the family of power links proposed by Lemonte (2017).
Similar to the previous case, in Chapter 4 we also describe the theoretical background of
this method, starting with basic settings, establishing a general expression for the PC prior
for the family of power links, and using this formula in some particular cases such as the
power logit and power probit links. Chapter 5, on the other hand, describes a simulation
study and a real application to assess the relevance of the proposed procedure. Finally,

some concluded remarks are discussed in Chapter 6.
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2 Objective Bayesian analysis for geostatis-
tical Student-t processes: theoretical set-

tings

2.1 Introduction

Geostatistical data modeling has now virtually permeated all areas of epidemi-
ology, hydrology, agriculture, environmental science, demographic studies, just to name a
few. Here, the prime objective is to account for the spatial correlation among observations
collected at various locations, and also to predict the values of interest for non-sampled
sites (Cressie, 1993). In this chapter, we will focus on a fully Bayesian approach to analyze
spatial data, whose main advantage is that parameter uncertainty is fully accounted for
when performing prediction and inference, even in small samples (Berger et al., 2001).
However, the elicitation of priors for the correlation parameter in Gaussian processes is a
nontrivial task (Kennedy & O’Hagan, 2001).

The problem of inference and prediction for spatial data with Gaussian processes
using objective priors has received attention in the recent literature. It started with Berger
et al. (2001) that develop an exact non-informative prior for unknown parameters of
Gaussian random fields by using exact marginalization in the reference prior algorithm
(see, Berger & Bernardo J., 1991). Further, Paulo (2005) and Ren et al. (2013) generalized
the previous results to an arbitrary number of parameters in the correlation matrix. After
the precursor proposal of De Oliveira (2007), that allows the inclusion of measurement
error for reference prior elicitation, other extensions from this perspective were proposed
in the literature, see, for instance, Ren et al. (2012) and Kazianka & Pilz (2012).

In the context of the Student-t distribution, Zellner (1976) was the first to
present a Bayesian and non-Bayesian analysis of a linear multiple regression model with
Student-t errors, assuming a scalar dispersion matrix and known degrees of freedom.
An interesting result of this work is that inferences about the scale parameter of the
multivariate-t distribution can be made using an F-distribution rather than the usual x?(or
inverted x?) distribution. Later, Fonseca et al. (2008) developed an objective Bayesian
analyses based on the Jeffreys-rule prior and the independence Jeffreys prior for linear
regression models with independent Student-t errors and unknown degrees of freedom.
This procedure allowed a non-subjective statistical analysis with adaptive robustness to
outliers and with a full account of the uncertainty. Branco et al. (2013) introduced an

objective prior for the shape parameter using the skew-t distribution proposed by Azzalini
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& Capitanio (2003). Villa & Walker (2014) constructed an objective prior for the degrees
of freedom of the univariate Student-t distribution when this parameter is taken to be
discrete. More recently, He et al. (2020) proposed objective priors for univariate Student-t

regression and study its frequentist properties.

Even though some solutions have been proposed in the literature to deal
with the problem of objective prior under the Student-t distribution, to the best of our
knowledge there are no studies conducting objective Bayesian analyzes under the Student-t
spatial regression model. We introduce a reference prior based on the exact marginalization
and we derive the conditions that it yields a valid posterior distribution. Moreover, the
independence Jeffreys and the Jeffreys-rule priors are derived and analyzed. We show that
the Jeffreys priors suffer many drawbacks while the proposed reference prior produces

more accurate estimates with good frequentist properties.

The chapter is organized as follows. In Section 2.2, a general form of improper
priors is presented and the reference prior is provided with the conditions of its validity.
Section 2.3 introduces the independence Jeffreys and the Jeffreys-rule priors with the
necessary conditions to obtain a valid posterior distribution. In Section 2.4.2, model
selection criteria are presented in order to evaluate the competing Bayesian models.

Technical derivations are relegated to Appendix A.

2.2 The Reference Prior

Palacios & Steel (2006) discuss that the derivation of a reference prior for
non-Gaussian processes is not trivial. In this section, we introduce a reference prior for
the T-SR model defined in (1.1) without a nugget effect, i.e., 3 = 0*R(¢). We obtain
7(¢,v) through the marginal model defined via integrated likelihood.

2.2.1 Prior density for

For 6 = (B,07%,¢,v) € Q = IR? x (0, +m0) x (0,+0) x (0, +0), consider the
family of improper priors of the form

m(¢,v)

(o)’

(0)oc (2.1)

for different choices of 7(¢,v) and a. Selection of the prior distribution for ¢ and v is
not straightforward. Assuming an independence structure m(¢,v) = m(¢) x m(r), one
alternative could be to select improper priors for these two parameters, nevertheless, it is
necessary to be careful, since it is obligatory to show that such selection produces a proper
posterior distribution. For ¢, the use of truncation over the parameter space or vague
proper priors are alternatives to overcome the improper posterior distribution problem,

however, in both cases inferences are often highly dependent on the bounds used or on the
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hypeparameters selected for the vague distribution (Berger et al., 2001). And, for v even
when the parameter space is restricted, the maximum likelihood estimator may not exist
with positive probability (Fonseca et al., 2008; He et al., 2020). Other choices of priors can
be found in Geweke (1993); De Oliveira (2007); Ren et al. (2012); Kazianka & Pilz (2012);
Ren et al. (2013); Fonseca et al. (2008); Branco et al. (2013), but none of this authors

consider a Student-t spatial regression framework.

The expression for 7(¢, v|y) based on an arbitrary prior 7(¢, v) is presented in

the following proposition.

Proposition 2.1. Consider the model described by (1.1) and (1.2). Fora <v/2+1, v >4

and different choices for w(¢,v), the posterior density w(¢p,v|y) can be written as
1

(o, vly)rAw) BRI V] {(n— p)s?} U (.0, (2:2)

Vs

where A(v) = v~ 19T <g —a+ 1>/F <g>, S? — 2R/, ), z = (y — XB) and Vi =
(XTR'X)™

Let B (¢) = (XTR'X)'X "Ry be the generalized least square estimator of
B. So, given w(p,v), to guarantee propriety of the posterior density w(S3, o2, o, vly) and

the existence of the first two moments of the Student-t distribution, we have to ensure that,

J+oo J+OO A(y) ‘R|_% V[a 3 {(n _p)SQ}_(%-‘rG—l) 7T(g25, V)dyd¢ < 4o (2‘3)
0 4

Proof. Let g(v) = TCt/2perwp), vy = n, + v, n, = n — p, with p = rank(X) and
vy = vy + n,. To obtain 7(¢, v|y), first note that

I 2 2 2
wooly) = || 060 on(e.t 6.

1O e { (y—Xﬂ)TRl(y—Xﬂ)}_ny
oc Jo J}Rp 7(02)% R|% v+ P
(6, )
o dBdo*

(v+n)

vz gw)m(o,v)

oC

NI

n+v

R
J“OJ 1@ {V+ (y—Xﬂ)TR‘l(y—Xﬂ)} 2 Bdo®.
0 RP (U2>2+a

o2

o2V + nyS?
with B = (X'R™'X)"'X"R™'y. After some algebra manipulations, we have that

Now, let V5 = X'R!X, 5% = and S? = —XB) R (y-XB)/(n—p)

)

_vitp

e Y—a - Ty - 2
o) o« [ L {m(ﬁ PV, 18 m} 140"
R?

O 5
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(1/+n)

Vg )e(o.v)
R

Note that, the term inside of the integral with respect to B is the kernel of the
to( B,V 3, v1) distribution. Hence,

(V+n)
14 +O (52 z—a O (52 s—a
(¢, v|y)C—= W(gzﬁ, I/)J ( ~2) o daroclf ( ~2) odo?,
g(vl)!RP o (@) o (&%)
(u+n>
v
where ¢; = — (¢, v) and g(vy) = T(1422)/721 0, ). Now,
n (1) |R| :
v_, u
J*OO (JNQ)EU1 5o? o *OO o’v + npSQ) o
o (%)=

o0 3 §-a 2\ — %
B f 2 (U)ul <1+V02) o
0 (npS?)=2 ny S

71 n v_ _n
o i (Sz) (3 +a) JJFOO 072 o 1+ L‘LQ : do?
n]? 0 S2 n, S?

400 0_2 l1—a 0_2 %,1 1/0'2 7"71
7 7 1+ 272} 7 a0
L&) (3 (ng) «

Let W = 0?/5?, then S?dw = do?, 0 < W < +c0 and

400 0_2 1—a 0_2 %,1 1/0_2 7”71
7 7 1+ 272} 7 a0
L&) (&) (ens) w

v

o v v 7
= S2f wi-epyz—t <1+W) dw

0 Tp

Y

_ 52W <np> * g {w)

where E{.} corresponds to the expectation of the F(v,n,) distribution. Let W* = W™,
then W* ~ F(n,,v) and

p\“'T a— 1T
e () e

2

—a+1)

) ,

[SIN MN

for a < g + 1. Thus,

o g\ g2\ ! v o2\ 7
_— — 14+ = 2
L&) ) (F) @
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TP g (Y —a+ 1
- ¥ (”) & — Shoerl) oy
Mp (%55~)
By using Equation (2.4), we have that
(vn) 3
VW) Vol 0 F i sean
m(@ly) * —= -2 (72)
v ® g(n) [R[2 7
Fr2+a—-1)IE—-a+1) Py,
2 F(np-i-V; (52) (F+ 1)71'(@5, V)?
2
for a < v/2 + 1. Using the fact that g(v)/g(v1) = V?F(%)/(V%F(g)), and after some
algebraic manipulations, we have finally that
——aF<z_a’+1) -1 3 —(Z2 4a—
m(¢vly) o« v )Z)FW IR|72 |V3|" (n,8%) " (g, v)
2
1
1 2 — a—1
o AW RI7 V| {(n,)5*} T a(o.)
o AW)L*(¢,y)7(v,9)

where A(v) = v~ 0797 (g —a+ 1>/F <g> So, the result follows. O

2.2.2 Proposal of 7(¢p, )

Rewrite § = (B, 0*), with 6* = (02, ¢,v) and L(f]y) the sampling distribution
defined in (1.2). For the reference prior, 6 is the parameter of interest and we assume that
B is a nuisance parameter. Now, factorizing the prior distribution 7 (3, 0*) = 7(8|0* )7 (6*)

and choosing 7(3]0*) = 1 as this is the reference prior in Equation (1.2), we have that

) - | L<e|y>w<ﬂ|e*>dﬂocrr<<”§) )=

1 1 v
Va2 IR 202, (2.5)
)t n=p)sy
where S* = 5%/o2 and v; = (n — p) + v. It is possible to show that this expression converge

to the normal case when v — +00. Using the prior reference method (Berger & Bernardo J.,

2
1991), it is necessary to calculate F {ZT21Z§321Z|S*} and F { <ZT21(Z§ZIZ> |S* },

where Z = (Y — XB) Unfortunately, these conditional expectations have no analytical
form for the Student-t case. One possible solution is to numerically compute these expres-
sions by using Monte Carlo approximation which will demand a high computational cost,

making inference infeasible. For this reason, we suggest the use of the marginal expectations

by by 2
E {ZTE_la&qﬁZ_lZ} and F { <ZT2_1Z¢E_1Z> } in our prior proposal. This suggestion

may result in a improper prior (Theorem 2.1), but lead to a proper posterior distribution
(Theorem 2.2).
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Theorem 2.1. Under the T-SR model defined by (1.1) and (1.2), for ¢ > 0 and v > 4,
the prior distribution obtained through the reference prior method is of the form (2.1), with

a=1 and

1
2

1
(¢, v)oc (BC’D + 16 (B11C11 B2 — BCY)) — 8BL,C — 23311)) : (2.6)

where

p - Yo o (2<”_p)+1)A—”+2tr2[q>],

7(v) T(v)v v—2
~_(2(n—p) T(v)+2 5 _ 2w(n—p) ,
p - (B ey ) B e
= — nTp an 11 = n—p T
Pe = w2 M T vt - e
with T(v) = n—p+v+2,® = a;;R‘lP, P=17-XXRX)'X'R™! 4 =
=2 =1 (2tr [®%] + tr* [®]), and 61(v) = Wy (vtn-pf2) — Uy (v)2), where U1(.) de-

notes the trigamma function.

More details about the proof along with the proof that 7f{(¢,v) > 0 are
available in Appendices A3 and A4. The following Lemma provides conditions to prove
the results of Theorem 2.2.

Lemma 2.1. Consider h =v—4 and 1= (1,...,1)" being an n x 1 vector of ones. Under

conditions presented in the Appendix A1.1, we have that:

e If1 is not a column of X. Then,

(a) as (¢,h) — (+00,40),

T (G,v) = O (h;; 1og¢<¢>) ;

(b) as (¢,h) = (+2,0),

R (p,0) = O (hid‘ib 1ogw<<z>>> .

e If1 is a column of X. Then,

(a) as (¢,h) — (400, 4+0),

e-ofriz 1)

(b) as (¢, h) = (+,0),

o033 nl:)
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where P(p) = v(¢p) and w(p) are as defined in Berger et al. (2001) for each correlation

matriz discussed in Section 1.1.1.
Proof. Consider h = v — 4. Under the conditions of Section Al.1, we have that,

1. If 1 is not a column of X. Then,

tr[0] = O (;‘fb 1ogw<¢>) ;

2. If 1 is not a column of X. Then,

w(¢) d [w(@])
tr{®| =0 —=<—log|—%|].
=0 (5525 |5
Next, we will proof the case when 1 is not a column of X, the case when 1 is a column of

X is analogous and will be omitted. Let n, = n — p and using the Stirling approximation

for the trigamma function (¥, (x) = 2~ + (22?)~"), we have that

3 3 2.9 2 2
D~ 1 { —2n,v + 2n;, — 2nv° — 4npl/ + 8n, + 8nyr + 8n,

— — o0
4 vi(n, + v?)(n, + v +2) }’ wor ’

where ~ denotes assymptotic equality. Note that, the higher order for the numerator
(in terms of v) is 2, while the denominator is a polynomial of order 5, so we have that
D = O(v™?) and,

BCD =0(1) (O(l)A —O(1)tr* [(ID]) O(v™?).

Now, A = O(1) (2tr [®*] + tr* [®]). Then, as ¢ — +o0, we have that

BCD = O(v~3)0 ((dlogw(¢))2> .

do
Analogously,
2un?
_ P 2
BuCnBiy = v+, + 2P0 — 220 + np)2tr [D]
_ d ’
- 00 ((m g 010 ) ,
and hence

|]1(9*)| < BCD+311011312

_ oo (($10g¢(¢>)2) +O()0 ((jask’g ¢<¢))2)

— 00 (;‘;mgw)z)
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Table 2 — Conditions to guarantee the propriety of the posterior distribution using the
proposal prior.

Correlation Family 1 is a column of X is not a column of X

1
Spherical —1<a<g+1 l<a<——i—1
Power exponential 0 < a < K+1 %<a<+1
Cauchy 0<a<g+1 %<a<+1
Matern (k < 1) 2—1@71<a<g—|—1 §<a<+1

O(h)0 <(j¢1ogw<¢>)2) .

Finally, when A — 0 (or v — 4) we have,
BCD + B11CiiBis = O(1) (A= O(1)tr* [@]) O(1) + O(1)tr*(®)

, where, A = O (Vn) (2tr [@*] + tr* [®]), so, as we have Un grows faster than a constant

function when h — 0, then,

2
BCD + BllCllBlQ =0 (}11 (quﬁ 10g¢(¢)) > .

and the result follows. O

The next Theorem 2.2 shows the conditions under which the prior in (2.1)
generates a proper posterior using 7(¢,v) = 7%(¢,v) as described in Theorem 2.1, the

proposed prior is a particular case considering a = 1.

Theorem 2.2. Using the prior defined in (2.1), n(¢,v) = ©7(¢,v) and under the T-SR
model (1.1), the posterior distribution of (B, 0, ¢,v) is proper if the conditions in Table 2
are satisfied for the hyperparameter a. This holds for any of the families of correlation

functions considered in Section 1.1.1.

Proof. Let,

1

L*(6,y) = IR |V3|" ((n = p)s?) (=) (2.7)

and 7(¢,v) = 7%(¢,v). To guarantee the propriety of the posterior distribution condi-
tion (2.3) must be satisfied. To show this, we have to proof integrability of (2.2) at the
integration limits for both ¢ and v. When ¢ — 0, 3 — I, so, we have that,

Vs

A(h)L*(9,y),

is bounded when A — 0 and h — +co. This is true because A(h) has a constant behavior
when h — 0, while, when h — +o0 we have that A(h) — 2'"* (Appendix A2). With
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respect to (¢, v), following the first paragraph of the proof of Theorem 4 in Berger et al.
(2001), we can conclude that we also have integrability of (¢r? [9E/a¢>])1/ ? when ¢ — 0.
Using this fact and Lemma 2.1, we have that for a small M,

M
f 7R(¢, h)dé = O (h—) . when h — +oo,

0

JM (¢, h)de = O (h—%> ., when i — 0,

0

thus, 7%(¢,v) is integrable when (¢,h) — (0,4+x0) = (¢,v) — (0,+o) and (¢,h) —
(0,0) = (¢,v) — (0,4) , since we have that h™2 and h™2 are integrable functions at +o0
and 0, respectively. Then we can conclude that (2.2) is integrable when (¢, v) — (0,4) and
(¢,v) — (0,+0). Now, when ¢ — +o0, v — +00 or ¥ — 4, by Lemma 2.1 and Lemma 1

from Berger et al. (2001), if 1 is a column of X we have that,

*“’ : R ot |W(@) d\  w(d)
| Amzoyane.min < cor |55 S0 S5 @)
while if 1 is not a column of X,
A(h)L* (¢, y)m" (¢, h)dh < Ctp(¢)*~2|log v(9)|, (2.9)

0

with C' a limiting constant. The previous reasoning is true because A3 and h™% are
integrable at +oo and 0, respectively. Therefore, expressions (2.8) and (2.9) coincides
with the boundaries of the normal case which has been proven to be integrable when
¢ — +oo (Berger et al., 2001). With all these facts, it follows that (2.2) is integrable when
(p,v) = (+00,4) and (¢, v) — (+00, +00). O

Muré (2020) has shown that under the normal distribution, the Matérn family
with k£ > 1 does not fulfill all the conditions to generate proper posteriors when 7TR(¢) is
used. As the correlation matrix structures considered for the T-SR are the same as the
normal one, the results from Muré (2020) are also applicable under the T-SR. Therefore,
for the T-SR, the Matérn family with x > 1 does not generate proper posteriors and was
not included in Table 2.

The following section states the Jeffreys priors which are built using the
information matrix. Here, we establish both the Jeffreys rule and the Jeffreys independence
densities giving conditions under which they generate proper posteriors distributions.
These priors will be used in simulation studies and a real data application as comparison

points for the proposal procedure.

2.3 The Jeffreys Prior

Let £(f]y) = log(L(8]y)) be the log-likelihood (1.2) for the T-SR model, with
0 = (8,07, ¢,v). Using the information matrix 7(6) from Lange et al. (1989), the Jeffreys-
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rule prior for model (1.1) is given by 7(0)ocn/|1(0)], with

0-5{(19) (497) )

where Ejp{.} is the conditional expectation of Y given a value of §. The independence

Jeffreys prior can be derived from I(#) assuming that 8 and 8* = (62, ¢, v) are independent
a priori.

‘R
Theorem 2.3. Let (v) = n+v+2,& = —R™ and V() the trigamma function.

0
Under the T-SR model (1.1).

1. The independence Jeffreys prior denoted by 71 (B, 0, ¢,v) is of the form (4.22), with
a=1,¢>0,v>4 and

(¢, v)oc (B*C*D* + 8B;, Bf,Cy — 4Bj5C — 4C1B — BffD*)% , (2.10)
where
n(v + 2) 1 5 5
B* = * = — Ntr [®2] — tr? [®
Tl(V) ) C Tl(V) {(7—1<V) ) 7’[ 1] r [ 1]}7

D = % {;‘1’ <(;_2> -5n(3) + u<:<(;>1(—y)2>+<7—21><u>> } ’

* —_—
Bll -

Chi = o tr[®],

2. The Jeffreys-rule prior denoted by n’ (B, 0, ¢,v), is of the form (4.22) with a = p/2+1,
v > max{p,4}, and

E 7l (¢,v), (2.11)

where 1.(v) and 71 (¢, v) are given in item (1).

Proof. Let £(6) be the log-likelihood of # = (B, 6*) for the T-SR model, with 6* = (o2, ¢, v/).
As in Lange et al. (1989), let us define 4 = X8 and 3 = o?R.. Then, the Fisher information

matrix can be written as:

I0)=F <5€(¢9)> (ag(g))T _ Iggr O _ o' L2y Iy Iy2,
@9 60 OT Ig* QT _[02(;5 I(¢)2 I¢y ;

0" Ip, I Ie
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where 0 is a p x 3 matrix of zeros, 0 is a 3-dimensional vector of zeros and:

S

foe = 8 { (‘35((,?)2} ) 2(17471(:1(;2) = 5"
lpp = B { <6g(j))2} = ﬁz(:l)(;)Qtr [21] - QTll(V)tT2 (1] = ;C*,
o - f(my)

- S () 0 e ) 3
- () ()
el
Iy, = E{(agf)) (‘%;(f))} - _va (@] = 5C%,

‘R
with (v) = n+v+ 2,9 = %R’l and Wy(.) denoting the trigamma function. For
the independence Jeffreys prior, we have that 7(8,0%, ¢, v)oun(8) x 7(6*), where it is

assumed that m(8)ocl and 7(0%)ocA/|lp«|. After some algebra, we obtain the prior defined
in equation (4.22) of section 2.2.1 in the main version of the manuscript, with a = 1 and
7(¢,v) as defined in Equation (2.10) in section 2.3.

For the Jeffreys-rule case, we take advantage of the block diagonal structure of 1(6)
obtaining (8,07, ¢, )0y /|1557| X [Ipx|. After some algebraic manipulation, we obtain
the prior defined in equation (4.22) of section 2.2.1, with a = #/2+ 1 and 7 (¢, v) as defined
in Equation (2.10) in section 2.3. O

As we can see, the Jeffreys prior is the resulting product between the inde-
pendence Jeffreys prior with another function that depends on ¢ and v. In the following
Lemma, besides analyzing 77/ (¢, ) at v — +o0, we also consider the case v — max(4, p),
this will be useful to show propriety of the Jeffreys prior (a = #/2 + 1) since there is a
discontinuity point at v = p, whereby, the integrability property could not be assured.

Lemma 2.2. Let p* = max(p,4), with u = v — p*. Under conditions introduced in the
Appendiz Al.1, we have that

1. asu — 0 and ¢ — +00,

~1(6,0) = O (;; 1ogw<¢>) ; (2.12)
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2. as u — +0 and ¢ — +0,

(v, ¢) = O (U_Qdd¢ log @/J(gb)) . (2.13)

Proof. As we know, the Jeffreys prior is the resulting product between the Jeffreys
independent prior with another functions that depends on ¢ and v. In this section, we
analize the behaviour of 77! (¢,v) at u = v — p* since for the Jefreys prior, there appears

to be a discontinuity at v = p, note first that,

(v, u) < (B*C*D* + 16B% BY,C%)?.

For fixed n, as v — p*, we have that

(n(u + p* + 2)(u + p* +n)) _ O) n(u + p* + 2) — O(u)
72(u) ’ 72 (u) 7
i =0, TS <o,
n . 1 ul
@) ") Twwry T

Then, as ¢ — +0,

* Yk Tk * * % \1/2 _1 d
(B*C*D +BnB12011)/ =0 (U 2d¢10g¢(¢))>

d
since ¢; = O (d¢ log w(qﬁ)). Thus, by the transitive property of real numbers

(¢, v) = O <u—%dd¢ 1og¢(¢)) . (2.14)

On the other hand, as v — +0o0, by using the Stirling approximation, we have that

—n2v —4ny — n® — 2n?
D* ~ =0@w™.
V(v +n)?(v+n+2) ()

2
Also, B* - 1, C* =0 ((Czblogw(@) > and

d 2
BL Bl = O )0 <(d¢10g¢<¢>> ) |

hence

O (u_2d 1og¢(¢)) . (2.15)

w(0,6) = 0 (v log (o)) :

de
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Moreover, in the following theorems, we present the conditions under which

the independence Jeffreys and the Jeffreys-rule priors have a proper posterior distribution.

Theorem 2.4. Consider the T-SR model (1.1) with the families of correlation functions
listed in Section 1.1.1. Then, when 1 is not a column of X, the independence Jeffreys prior
7/ (B, 0, ¢,v), yields a proper posterior distribution, while when 1 is a column of X, the

independence Jeffreys prior yields an improper posterior distribution.

Proof. As for the reference case, we have to study the behavior of (2.2) at the integration

limits. We already explained in proof of Theorem 2.2 that L*(¢,y) is bounded when ¢ — 0,

ox 1\ "
on the other hand, since <tr2 l(?gb]) is integrable at zero, using Lemma 2.2, for a small
enough M, we have that,

JM (¢, u)dp = O (u_%) , when u — 0,

0

M
f (¢, u)dp = O (U_Q) , when u — o0,
0

thus, 7% (¢, v) is integrable when (¢, u) — (0,0) = (¢, v) — (0,p*) and (¢, u) — (0, +0) =
(¢,v) — (0, +m), since we have u~7* and u~? are integrable functions at 0 and oo,
respectively. Then Equation (2.2) is integrable when (¢, v) — (0,p*) and (¢, ) — (0, +00).
Now, when ¢ — +00, u — 0 or u — 400, by Lemma 2.1 , Lemma 1 and 3 from Berger
et al. (2001), if 1 is a column of X we have that,

[ AW L 6y (6,0)du < 9(6)1C]log ()
< Cllog(o)), (2.16)

while if 1 is not a column of X,

fwA(u)L*w,y)wa,u)du < CY(e)' 2| logy(9)] (2.17)
< Cv(0):|logv(9)],

with C' a limiting constant. Because u~7? and u~? are integrable functions at 0 and
+0o0 respectively, we conclude that the previous reasoning is true. Like in the proof of
Theorem 2.2, expressions (2.16) and (2.17) coincide with the boundaries of the normal
case which were already explored by Berger et al. (2001) for all the correlation functions

considered. Therefore, the result follows. O

Theorem 2.5. For the T-SR model (1.1) and any family of correlation functions considered

in Section 1.1.1, the Jeffreys-rule prior 7TJ<B, o, ¢,v) yields a proper posterior distribution.
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Proof. First, note that for the Jeffreys prior we have a = g + 1 then,

T2V R (-0 000

considering the change of variable u = v — p*, For the Jeffreys-rule prior, we have to prove
that

Awu¢wwwm=Aw(

Lm foo A(u) (W) % R["2 (n—p)S?) "2 7/1(¢, u)dudg < +o0.  (2.18)

Now, we proceed to analyze each term of the integral (2.18). As ¢ — 400, we have that
d _1 e _
0 -0 (foloxu()) . IRIE = OWw(@P™) and 5* = 0o ™),
T(u) — 2
7(u)

(7_()152 O(u) and A(u) = O(u™"), then, by Lemma 2.2

also when u — 400 we have, = O(1) and A(u) = O(1) while when u — 0,

A()L(g, y)m/ (p,u) = O ( Cislog gb) , when u — 0, (2.19)
A()L(¢,y)m” (p,u) = O ( ;; log gb) , when u — o0. (2.20)

Hence, when (¢,u) — (+%,0) = (¢,v) — (+%,p%) or (p,u) — (+0,%0) = (¢,v) —

(+00,00) we have that

| 7 AL, )7 (6, w)du = (j(b log ¢> (2.21)

Since ©"z and u~? are integrable fuctions at zero and +oo, respectively, then (2.18) is
integrable at (¢, v) — (+0,p*) and (¢,v) — (+00, +00). Similarly to the previous priors,

p—3

o=\ "
we have that (tr2 [(?QS]) is integrable at zero and because of the integrability of u 2

and u~? at the points of interest, we conclude that (2.18) is integrable at (¢,v) — (0,p*)
and (¢,v) — (0, +00). O

Having established the priors we use through this work jointly with conditions
under which they generate proper posteriors, we proceed to give details about the sampling

procedure we used to make the Bayesian inferences about the considered model.

2.4 Bayesian Inference

In this section, we present our Gibbs sampler algorithm with a metropolis step.

In addition, the model selection metrics are also introduced.
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2.4.1 Gibbs sampling

Using the properties given in Kotz & Nadarajah (2004) for the Student-t
distribution, we can generalize the results of Zellner (1976) considering a covariance matrix
3 = o’R.. Given the model in (1.1) and conditioning on the values of (¢, v), the posterior
density of (8,0?) is given by

vtn

[ B-pve-p)]
= v +

p(B,0°¢,v, Z)oc< : (2.22)

52)“s" 2

where 6% = v +n,S%/v1, vy = n, + v, n, =n —p, S(¢)? = S = (Z - XB)TR;I(Z -

XB))/ny, B(8) = B = (X'R;'X) ' X'R;'y and V; = (XTR;'X)"". Using (2.22),
2

it can be shown that B¢,y ~ tp(,B,S2Vﬁ,np) and %M), v,y ~ F(v,n,). Therefore, we

propose Algorithm 4, a Gibbs sampler with a metropolis step, to sample from the conditional

distributions.

Algorithm 4 Obtaining a random sample from (8, 0%, ¢, v|y) using Gibbs Sampling
with a metropolis step.

1: Sample (¢, )
o Generate a candidate (", ¢*) from an independent proposal q(v, ¢) = q(v)q(9).
(¢, v*ly)a(e® Y, vih)
m(pt=V, v Dy)g(¢*, v*)
o Sample U ~ Uniform(0, 1).
o Set (09,09 = (¢*, ") if u < a or (¢, V) = (¢L~V V) otherwise.
2: Sample W = o/52(6)) ~ F(v¥) n,):
o Given ¢!, compute S*(¢'¥) and recover 62 = §2(¢®))w.

3. Sample &) ~ lp (B(Cb(s))a S2(¢(S))VB(¢(S))a ”p)'

e Calculate o =

In Algorithm 4, as in Lobo & Fonseca (2020), we use ¢(v) = TLN(v® Y0, >
4), where TLN(p; 0; A) denotes the log-normal distribution with location and scale pa-
rameters u € R and o > 0, truncated on the interval A; and ¢(¢) = U(a,b) with the
hyperparameters calibrated to control the metropolis acceptance to be around 30%. Using
Algorithm 4, we implement the 0BASpatial R package (Ordonez et al., 2021) that is
available for download at CRAN repository. The R package is used to run the simulations

and the real data analysis.

2.4.2 Model selection

Let us start by setting up the model selection as an hypothesis testing problem

(Banerjee et al., 2014; Berger et al., 2001). Thus, replace the usual hypotheses by a
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candidate parametric model, say my, having respective parameter vectors 6,,,. Under the
prior density proposal in Equation (4.22) we compute the marginal density for a model

mg as

maly) = j L(01)7(0,,)6,,

- [ awrr

where L(0},) is the likelihood (1.2) for the model my.To compare ¢ different models my,

V; : {(n— p)s2}‘(%+a‘1) (¢, v)dvde,

with kK = 1,...,q, we assign equal prior probabilities to the models. Therefore, the resulting
posterior probability for the k-th model is defined by

my(y)

plme |y) = e oy

;1':1 m;(y)

Under this criterion a model with the largest posterior probability is preferable. Another
possibility to perform model selection is to choose the model with best prediction power.
Suppose that ng locations are separated as a validation set. The mean square prediction
error (MSPE) of the k-th model is defined by

N 2
e V(s - T (s:)}
MSPE,;, = ,

o

where }A/(k)(sl-) is the predicted response for observation in location s; under the k-th model.

Thus, the model that minimizes the MSPE is the most suitable under this criterion.
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3 Objective Bayesian analysis for geostatisti-
cal Student-t processes: applications with

simulated and real data

In this chapter we assess the performance of the proposed prior through
simulation and a real data application. In Section 3.1, two simulation studies are performed
to assess the frequentist properties of the Bayesian estimates under different priors and
compare the performance of the Student-t and Gaussian spatial regression. A real data
analysis is performed in Section 3.2 to corroborate our findings of Section 3.1 and finally, a

brief discussion is presented in Section 3.3. Technical derivations are relegated to Appendix

B.

3.1 Simulation Study

We present a two fold simulation study: 1) we study the frequentist properites
of the reference prior in comparison with the Jeffreys and vague priors; and 2) we compare

the performance of the Student-t versus Gaussian processes under different priors.

3.1.1 Frequentist properties

The study of the frequentist properties of Bayesian inference is of interest to
assess and understand the properties of non-informative or default priors (e.g., Stein, 1985;
De Oliveira, 2007; Kazianka & Pilz, 2012; Branco et al., 2013; He et al., 2020). Therefore,
a simulation study is performed to assess the performance of the proposal method and
compare it with both Jeffreys priors: the Jeffreys-rule (Jef rul) and the independence
Jeffreys (Jef ind) and a vague prior (vague) of the form (4.22).

We propose two T-SR models with coordinates s = (xi, X3) and R belonging
to the Matérn family with x = 0.5 (exponential correlation structure), o> = 0.8 and ¢ = 2

to study the proposed priors. The first one (Scenario 1) is given by,
y(s;)) =10 +es, i,...,m, (3.1)

with ¢ ~ ¢,(0,0°R,v = 5). And, to illustrate the existing intercept and dimension
restrictions of the independent Jeffreys and Jeffreys-rule prior respectively, the second

T-SR model (Scenario 2) is given by

y(si) = 0 — 2.221; + 0.539; + 1703, + 2.4733; + 3.501;29; + €, (3.2)
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Table 3 — Simulation study 1. Coverage probability (and expected log-length) of the
variance structure parameters under two simulation scenarios for n = 100.

Prior o [0) v
reference  0.91 (0.921)  0.98 (0.985) 1 (2.55)
Scenario 1 vague  0.351 (-0.102) 0.85 (0.794)  0.86 (2.40)
Jef rul  0.575 (0.623)  0.777 (0.681) 0.808 (2.55)
reference  0.939 (0.94)  0.93 (1.097) 1 (2.54)
) vague  0.434 (-0.14)  0.909 (0.97) 0.2 (2.43)
Scenario 2 jo¢p  0.376 (-0.44) 0.586 (0.496) 0 (2.41)
Jefind  0.495 (0.385) 0.859 (0.904) 0.1 (2.53)

A total of K = 100 Monte Carlo simulations were generated for each scenario, the
coordinates s were sampled at n = 50, 100,250 and 500 locations of a regular lattice in

D, = [0,10] x [0, 10].

For the vague proper prior, we consider a = 2.1 and 7(¢,v) = w(¢) x w(v)
with m(¢) = U(0.1,4.72) and n(v) = Texp(\;v € A), where 7w(\) = U(0.01,0.25),
A = [4.1,+o) and Texp(\, v € A) denote the truncated exponential distribution. The
distribution of A is such that it allows the mean of the prior of v to vary from 4 to
100. The exponential prior of v is truncated above 4.1 to guarantee the existence of the
Student-t process and the prior of ¢ allow that the distance such that the empirical range,
corr(s;, s;) < 0.05, varies from 0.30 to 14 (which is the minimum and maximum distance

between the locations, respectively).

For the two scenarios, we compute the highest posterior density 95% credible
interval for all parameters, based on the four priors. We also compute the coverage
probability for each parameter as the number of simulations in such the parameter is inside
the credible limits, and the expected log length of each credible interval as the mean of the

logarithm of the difference (log-length) between the upper and lower credible limits for each
K

1 ~
simulation. The relative error of each parameter was estimated as Bias; = e Z |9f —0;]/6;,
k=1
where 0; is the true parameter value and 8;? is the median posterior estimate for the j-th

parameter in the k-th Monte Carlo simulation.

Table 3 and Figure 1 show the results for the spatial dependence parameters
considering n = 100 under different scenarios. The simulation results corresponding to
the regression parameters and additional n values for both scenarios can be found in
Appendix B1. Since the model in Scenario 1 has only the intercept, the independent
Jeffreys prior is not valid once it provides an improper posterior (Theorem 2.4). Looking
over the results for § (see Appendix B1), it can be seen that there is a negligible bias for
this parameter except for some atypical points for both the constant and the linear trend.
The variability also looks similar, with 5, and p5 being the parameters with the higher

variance for Scenario 2. Regarding credibility intervals, the reference and vague priors
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seem to provide closer coverage probability to the nominal value than the Jeffreys priors.

On the other hand, the variance parameters seem to present different properties
overall priors considered. Looking at the relative error, the reference prior seems to provide
lower bias than the vague and Jeffreys priors for 2 and v in both scenarios, this situation
is especially remarkable on o2, where for each n we can see atypical points which can reach
up to 2000% of error for Jeffreys priors, this situation is also observed for reference and
vague priors but in a smaller proportion. For the range parameter ¢, we can see that there
is almost no difference in bias for the priors considered in Scenario 1, but it changes for

the linear trend, where the reference and the vague priors presented smaller bias.

Regarding credibility intervals properties, it is clear that the proposed reference
prior is the one that provides the best results. Despite this prior provides wider credibility
intervals, its coverage probabilities are more appropriate compared to the other priors,

especially when looking at o2, where its performance is considerably higher.
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Figure 1 — Simulation study 1. Relative error for the dependence parameters of the T-SR
model under Scenario 1 ((a)-(c)) and Scenario 2 ((d)-(f)) for n = 100.

3.1.2 Student-t versus Gaussian spatial regression

To compare the performance of the T-SR and Gaussian spatial regression (N-

SR) and the different priors, we generated data from a T-SR with the same specifications
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of the previous Subsection 3.1.1. Then, the T-SR and N-SR models were fitted, using
the proposed priors, for the simulated data. The main goal here is to establish if there is
any difference between models on both goodnesses of fit and prediction capacity between

models and prior choices.

Tables 4 and 5 show information about the relative error and coverage proba-
bilities of the dependence parameters for n = 100. Because ¢ is a scale parameter in the
T-SR and a variance parameter in the N-SR model, to make a fair comparison of 6%, in
o?. Results for the

regression parameters and other sample sizes can be found in Appendix B2. As observed in

the N-SR model we compare it to the T-SR variance given by
Subsection 3.1.1, there is negligible bias when looking at the regression parameters for both
normal and Student-t cases. Again the estimates under the Jef rul provide smaller coverage

probability for these parameters in comparison with other priors taken into consideration.

Regarding the spatial dependence parameters, it can be seen that the T-SR
recovers o better than the N-SR having less bias (and standard deviation) for both
scenarios and the reference and vague priors. Regarding the Jef rul prior, it appears to
have a larger bias for the T-SR case. The range parameter ¢ also appears to have a larger

bias for the normal case for all priors, but it is not remarkable.

It can be observed for o2 that the coverage probabilities for the reference prior
is considerably closer to the nominal credibility level 95% for the T-SR and N-SR models
in comparison to the other priors. Concerning the range parameter ¢, the credibility levels
look similar for both scenarios, but for n = 50 and 100, the expected log-length is smaller
for the T-SR case. The N-SR model generates wider intervals for this parameter when

either the sample size is small or the data present heavy tail behavior.

To analyze the prediction features, coordinates equivalent to 10% of the original
sample size were removed, thus, the total simulated datasets consisted of n = ngps + Nprea
observations, with n.,, = 45,90, 225,450 the number of observations used to estimate
the model (training data) and n,..q = 10%n the number of observations used to assess
prediction capacity for both models (test data). Figure 2 shows the MSPE and the expected
log-length of each prediction point for both scenarios and n = 100, results corresponding
to n = 50,250, 500 are in the Appendix B2.

The pointwise predictions are very similar between models under both scenarios,
even under model misspecification. This finding is in agreement with Kaufman & Shaby
(2013) who state that the mean predictor under model misspecification can be consistent
under relatively weak conditions. However, although the log-length of the predictions
credible interval looks similar between priors, they do not between processes. From Figure 2
(b) and (d) we can see that the N-SR generates wider intervals. The T-SR credible intervals
are, on average, 50.3% smaller than the N-SR one for Scenarios 1 and 2, with similar

coverage probabilities.
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Table 4 — Simulation study 2. Expected relative error (and standard deviation) of the
variance parameters for both Student-t and normal distributions considering

n = 100.
Scenario  Distribution Prior o’ 10) v
reference  0.50 (0.83) 0.21 (0.2) 0.33 (0.19)
T-SR vague 1.24 (2.4) 0.21 (0.18) 0.95 (1.14)
Jef rul  2.07 (5.68) 0.24 (0.22) 1.17 (0.62)
Scenario 1 reference 0.84 (1.27) 0.26 (0.21) -
N-SR vague  1.42 (2.33) 0.32 (0.28) -
Jef rul  3.47 (8.01) 0.25 (0.21) .
reference 0.67 (1.26) 0.27 (0.22) 0.42 (0.38)
vague  1.82 (4.5) 0.26 (0.32) 4.34 (7.3)
1-SR Jef rul  2.71 (3.04) 0.52 (0.36) 2.17 (1.02)
Jefind  3.70 (10.8) 0.39 (0.29) 1.90 (0.93)
Scenario 2 reference 1.25 (1.43) 0.28 (0.17) -
vague  1.89 (2.74) 0.46 (0.18) -
N-SR Jef rul  2.88 (7.28) 0.45 (0.34) -
Jef ind  4.64 (9.17) 0.33 (0.25) ;

Table 5 — Simulation study 2. Coverage probability (and expected log-length) of the
variance parameters for both Student-t and normal distributions considering

n = 100.
Scenario  Distribution Prior o’ ) v
reference  0.97 (0.89) 0.98 (0.98) 1 (2.55)
TSR vague  0.38 (-0.12) 0.85 (0.83) 0.83 (2.43)
Jefrul 0.4 (0.33) 0.84 (0.76) 0.92 (2.57)
Scenario 1 reference  0.96 (1.35) 0.93 (1.18) -
N-SR vague  0.33 (0.03) 0.98 (1.40) -
Jefrul  0.49 (0.60) 0.87 (0.98) ;
reference  0.95 (0.91) 0.95 (1.08) 1 (2.35)
vague  0.32 (-0.27) 0.85 (0.9) 0.15 (2.34)
T-SR Jef rul  0.27 (-0.49) 0.61 (0.51) 0 (2.45)
Jefind  0.39 (0.33) 0.84 (0.33) 0.09 (0.33)
Scenario 2 reference  0.99 (1.51) 0.96 (1.32) -
vague  0.61 (0.34) 0.97 (1.66) -
N-SR Jef rul 042 (0.02) 0.47 (0.38) -
Jefind 060 (0.85) 0.99 (1.50) -
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Figure 2 — Simulation study 2. MSPE and log-length of prediction points under Scenario
1 ((a)-(b)) and Scenario 2 ((c)-(d)) for n = 100.

3.2 Application

In this section, we illustrate the performance of our reference prior applying
it to the calcium content in soil samples data (Ribeiro Jr et al., 2020) (Oliveira, 2003).
We use the posterior probability and MSPE to compare different priors and covariance
structures. The data was collected by researchers from PESAGRO and EMBRAPA-Solos
at the Experimental Campos Station, Rio de Janeiro, Brazil and contains the calcium
content measured in soil samples taken from n = 178 locations separated at every 50
meters (see Figure 3 (a)). The study area was divided into three regions represented in
Figure 3 (a) by different symbols and colors. The first region represent calcium levels
in its natural content since it is typically flooded during the rain season and not used
as an experimental area. The second region is typically occupied by rice fields and has

received fertilizers some time ago. Finally, the third region is an experimental area that
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has recently received fertilizers. For each sample location, information about elevation
is also available. Regarding the correlation structure, Figure 3 (b) shows the variogram
for the calcium content dataset. As a first sight, it seems that the Matern family seems
to be more adequate for modelling this data, in comparison to other common families of

correlation functions.
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Figure 3 — Simulation study 2. MSPE and log-length of prediction points under Scenario
1 ((a)-(b)) and Scenario 2 ((c)-(d)) for n = 100.

To study and investigate the different prior proposals, we consider the following
T-SR model:
Y = [y + ix1 + Sixae + O3x3 + ¢,

where Y is the calcium content, x; is the elevation, x;, ¢+ = 2,3 are dummy variables
indicating the sub-area that the location belongs (1: if y; belongs to sub-area 4, 0: otherwise,
j=1,...,n) and ¢ ~ t,(0,0°R, v). For the dependence structure, R, we consider three
options from the Matérn family (1.3) with x = 0.3,k = 0.5,x = 0.7. To adequate the
vague prior to the characteristics of the calcium data, the prior w(¢) = U(12.5,430) was
selected, such that, it allows the spatial empirical range to vary from the minimum to the

maximum distances in the dataset. The model is fitted using the 0BASpatial package.

Table 6 shows the results for all fitted models under the four different priors.
It is important to notice that since our second covariate is categorical, in this case, an
intercept can be included to represent the baseline value and the Jef ind prior will still
provide a proper posterior since this model is equivalent to a model without intercept
and 3 levels for the categorical variable. Likewise in the simulation studies the fixed
effect parameters seems to be closely estimated by all priors. By looking at the posterior
probability p(my|y) we can see that the reference prior is preferable under all x’s priors
and that the Jef rul prior presents the lower posterior probability for most of the scenarios.

Moreover, under the MSPE criterion, the reference prior provides the smaller prediction
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Table 6 — Soil samples data. Bayesian estimates, posterior probabilities and MSPE of the
models considered of the calcium dataset.

Model Prior Bo b1 Ba B3 o? 0] v plmgly) MSPE
reference 37.41 1.07 5.75 11.30 119.54 211.27 7.33 0.74 77.16
vague 38.34 0.37 7.03 13.85 219.98 7238 9.03 0.04 87.34

r=0.3 Jef rul 38.98 0.62 6.42 12.66 138.27 17582 8.93 0.01 84.78
Jefind  36.43 0.99 5.87 11.70 125.40 220.13 11.66 0.00 80.56
reference  38.08 1.01 5.47 11.35 135.28 109.49 6.91 0.14 80.93

w05 vogue 39.39 0.01 7.62 14.63 181.01 4585 9.51 0.01 97.46
Jef rul 38.73 0.64 6.30 1281 198.03 97.52 6.98 0.00 88.24
Jefind 3574 1.34 545 10.89 192.72 191.77 10.93 0.00 87.42
reference 39.43 0.66 5.35 11.68 110.46 63.26  7.66 0.06 85.64

og 7 vague 39.73 0.05 7.23 15.02 266.98 20.89 6.33 0.00 99.16

Jef rul 38.18 1.26 3.63 9.78 297.60 153.19 10.61 0.00 93.58
Jefind  37.88 1.33 390 9.75 24541 144.03 10.75 0.00 87.82

errors followed by the vague prior. The best fitting results was provided for the reference

prior with x = 0.3 with higher posterior probability and better predictive power.

For the hyperparameters #*, we proceed with our analysis only for k = 0.3
(the best model). For all priors the data appears to present a heavy tail behavior with a
small value estimated for v, indicating a lack of adequacy of the N-SR (not fitted). We
notice that the Jef rul prior is the one that provided the higher estimates for v. From
Figure 4(a), we can see that the posterior for v have the same shape for all priors, but it is
more concentrated for lower values for the reference prior and less for the Jef ind. Further,
the reference and Jeffreys priors seems to provide similar results for o2 and ¢, while the
vague prior provides different results. Figure 4(b) shows the posterior distribution for ¢.
From this figure we can see that such difference could be due to the sensitivity of the
vague prior to the choice of the bounds over ¢ (Berger et al., 2001). Using the estimated ¢
for the reference prior, we calculate the spatial range of the process as 418 meters which is
37% the maximum distance, indicating a strong spatial dependence of the calcium content

in the soil.

Finally, from this application we can conclude that the introduced reference
prior presents more stable results for the hyperparameters without affecting its capacity to
estimate the fixed effects. Moreover, both model selection criteria show better performance
of the reference prior in terms of fit and prediction power. Like observed by in the Gaussian
case, the Jeffreys priors seem perform poorly with low posterior probability and high
MSPE.

3.3 Discussion

In this chapter we propose a reference prior for the spatial Student-t regression.

Also, two Jeffery’s type prior were introduced and analyzed. For all the proposed priors,
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Figure 4 — Soil samples data. Marginal posterior distributions for: (a) the degrees of
freedom v and (b) the range parameter ¢ when using the reference (R), vague

(V), Jef rul (JR) and Jef ind (JI) prior distributions for the soil samples data.

the conditions under which those priors yield a proper posterior distribution were presented

and discussed.

We show through simulations that the reference prior is the one that presents
better performance. Basically, it shows small estimation bias and adequate frequentist
coverage for all parameters. Looking for the hyperparameters of interest, out of the other
priors choice, the Jef ind is the one that provides better C.P., however it has a very strong
restriction of not allowing an intercept in the model, making it not suitable for many
applications since without an intercept in the model the other fixed effects estimates can
be severely biased. In a second simulation study, a comparison between the T-SR and
the N-SR and the proposed priors are discussed. When the data present outliers it is
possible to see that the reference prior provides better coverage for the parameters for
both processes. Although the pointwise prediction is very similar between the two models,
the T-SR presents smaller prediction credible intervals providing, therefore, more accurate
interval estimates with adequate nominal coverage. An illustration with calcium content
in the soil was studied to show the applicability and robustness of the proposed reference
prior. An R package 0BASpatial, is available at CRAN for download and allow practitioners

to fit the proposed model with the different priors introduced in the manuscript.

Although the proposed reference prior has shown to have a good performance
in the parameters estimates it still presents two limitations. One of them is the restriction
that the degrees of freedom v must be greater that 4, this restriction is necessary because
as it can be seen in (2.6) we have that v — 4 is in the denominator of A which a cause
a discontinuity if not imposed. Moreover, this restriction is also necessary to guarantee

the existence of the first two moments of multivariate Student-t distribution (Ho et al.,
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2012), which makes this restriction necessary in any multivariate Student-t regression
models. The second one is that our proposal does not incorporate the nugget effect (or
measurement error) as a parameter in the model. The inclusion of the nugget effect makes
the calculations for the reference prior and its properties not trivial to be obtained and
shown, thus, we understand that this topic is out of the scope of our proposal and must
be investigated as future work. It is important to emphasize that even for the N-SR there
was a gap of 11 years between the first reference prior proposal and reference priors that
includes the nugget effect (Berger et al., 2001; Kazianka & Pilz, 2012; Ren et al., 2012).
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4 Penalized complexity priors for the skew-
ness parameter of power links: theoretical

settings

4.1 Introduction

Both binary and proportional data are often observed in many applications such
as, medicine, public health, social sciences, demographic studies, financial and insurance
markets and biological species behavior, to name a few. In practice, generalized linear
models with symmetrical links (logit and probit, for example) are the most popular
approaches for this kind of data. However, these approaches do not always provide an
appropriate fits. In the context of binary regression, symmetrical links are particularly
inadequate when the probability of the response variable approaches to zero at different
rates than it approaches to one (imbalanced data), this can leads to substantial bias in
the mean response estimate (Chen et al., 1999). In this chapter, we focus on a proposal of
a new family of prior distributions based on the penalized complexity prior (PC prior)
proposed by Simpson et al. (2017). Based on the underlying concepts of the PC prior we
believe that the proposed priors will provide intuitive and interpretable behaviors and can

be naturally calibrated, especially for small samples.

Most of the links from the (0, 1) interval to the real line have been introduced
in the literature in the form of binary or binomial regression models. Many of them, aim
to handle problems of imbalanced data (de la Cruz et al., 2019).

From a frequentist point of view, Lemonte (2017) introduced the family of
parametric power link functions that are considered here. This family includes an extra
parameter which represents the skewness of its associated distribution. They performed
inference via the maximum likelihood (ML) method and proposed residuals and influence
diagnostic procedures to deal with outlying observations and other departures from the
model assumptions. Later, Lee & Sinha (2019) investigated the identifiability of the binary
regression model with skew-probit link in the presence of both a binary and a continuous
covariate. As in the power link family, this link has an additional parameter associated
with its skewness. They also studied strategies to reduce the bias of the ML estimator, by
penalizing the likelihood through methods proposed by Firth (1993).

On the other hand, from the Bayesian perspective, Chen et al. (1999) introduced
a new asymmetric link for dichotomous binary data. This was done by including a latent

variable in the linear predictor with a skewed distribution. With regard to model fitting,



Chapter 4. PC priors for the skewness parameter of power links: theoretical settings 53

Bayesian inference was performed characterizing the propriety of the posterior using both
informative and non-informative priors. Afterwards, Chen et al. (2001) considered a skewed
logit model to analyze binary responses, Bayesian inference was performed proposing
informative priors based on historical information. Additionally, conditional prediction
ordinates (CPO) and Bayesian latent residuals were used for model comparison and model
adequacy, respectively. Subsequently, Bazan et al. (2010) reviewed the various asymmetrical
links used in binary regression and proposed a unified approach for two skew-probit links
proposed in the literature. This time both frequentist and Bayesian inference were used
in model fitting, enabling the existence of ML estimators and the posterior distribution
in the presence of improper priors. Later, Naranjo et al. (2014) suggested the use of the
exponential power (EP) family of distributions as a link to binary regression models. They
exploited the mixture representation of this distribution along with a data augmentation
framework to improve the efficiency of Gibbs sampling algorithms, in both, informative
and non-informative scenarios. A Bayesian approach for power links was introduced in
Bazéan et al. (2017). Among other potential proposals, we can mention the beta regression
proposed by Ferrari & Cribari-Neto (2004) and some of its extensions (see, for instance,
Galvis et al., 2014; Bayes et al., 2017; Flores et al., 2021).

Although many research works have used power links in the context of binary
regression, to the best of our knowledge, there are no studies considering them in a more
general context. Moreover, the research field of “practical prior specification” has so far
not received, much attention (Simpson et al., 2017). Particularly for power links, common
choices of priors have been used for the skewness parameter without solid justifications
according to the problem under investigation. In this work, we introduce a new prior
distribution for the family of power links (Lemonte, 2017) and establish a general expression
of the PC priors for the asymmetry parameter. Bayesian inference is performed, via the

Hamiltonian Monte Carlo algorithm, to study additional properties of the proposed priors.

By considering different analysis in a Bayesian approach (model selection
criteria, distance to compare predictions with observations, predictive measures and
residual analysis), we show that the interpretation of the results in the application can
be more convenient when using the PC prior than other common priors studied in the
previous literature. Additionally, since the approach to find the PC prior is general, it can
be extended to other link functions with an extra parameter proposed for binomial or

binary regression models.

The chapter is organized as follows. In Section 4.2, we describe the general
hierarchical model with binary, binomial or bounded data. In Section 4.3, e present the
PC prior in a general way, as well as, derive a general expression for the particular case of
the power link family. Further, we discuss some particular cases in which this expression

can be used. Section 4.4 presents the common prior choices for the skewness parameters,
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full conditionals of the model parameters and the intuition on how to properly specify the

hyperparameter under the PC prior.

4.2 Preliminaries

In this section, a brief description of the PC prior (Simpson et al., 2017) is
presented and some advantages and disadvantages in comparison to other commonly used

priors are discussed.

4.2.1 The Penalized Complexity prior

Simpson et al. (2017) stated that the penalized complexity (PC) prior was
constructed based on four principles, all of them which consider the existence of a baseline
model. The first one, is the Occam’s razor or parsimony principal, which states that simpler
models is preferable if there is not enough support for a more complex one. The second
principle, is the measurement of complexity based on the Kullback-Leibler divergence (see
Equation (4.1)). This principle establishes a metric to measure the amount of information
lost when approximating a more flexible model with the baseline one. The Kullback-Leibler

divergence is defined as

KLD (fl|f) = f felo) o fila)do - f fela)log fol@hde, (41

where X' is the domain of z, fc(z) = f(z|¢) and f., (z) = f(z|¢ = (o) represent density
functions associated with the baseline model and its flexible extension, respectively. The
third concept is the constant rate penalization, which basically penalizes deviations from
the base model with a constant decay rate r. And the last principle is the user defined
scale, which declares that the user should have an idea of a sensible size of ( represented by
a tuning parameter \ or a property of the model component. These previous statements
imply exponential behavior of the PC prior on the d(¢) = \/ 2K LD (f¢||fe,) scale, which

in the univariate space is of the form,

(0 = exp(-2a0)} |75

Therefore, the tuning parameter X is selected to control the contraction of the PC prior
towards the baseline model. The intuition behind this prior is to choose A such that the
prior probability of observing a model far from the baseline is small. This can be achieved
by defining two quantities: 1) a quantile W of the distance between the flexible distribution
and the baseline and 2) its associated probability py,. With this information and the
equality

P(d(¢) > W) = pw = exp(—AW), (4.2)

we have that A = —log (pw)/W.
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Considering the previous statements, this prior is characterized as being infor-
mative (although possibly weakly), computationally feasible, indifferent to model parame-
terization and also, avoids the problem of letting prior specifications to a previous research
(the use of common priors as the Gaussian or the uniform, for example). Nonetheless,
some care must be taken, because the definition of a “baseline model” might be more
subjective than objective, which would generate difficulties when constructing this prior.
Also, the modeller’s role in choosing the level of complexity A does not seem to be realistic
for hierarchical modeling with several types of parameters, since it only has local meaning
by construction (Robert & Rousseau, 2017).

4.3 PC prior for power link functions

In this section, we develop the general form of the PC prior for the family of
power links. Furthermore, we also describe some specific cases in which this formula can

be reduced to a more straightforward expression.

The parameterization in (1.8) may present inferential issues since its moments
depend on « (see the generalized logistic distribution in Subsection 4.3.1, for instance). The
problem is that this fact causes the mean and the variance to be affected by the inference of
this parameter, so that it is not orthogonal between them, making identifiability between
the parameters and convergence of the MCMC harder to obtain. An initial choice of y =0
and ¢ = 1 seems reasonable since the power links are just extensions of the traditional
ones by the inclusion of a skewness parameter. However in this setting these values do not
solve the problem. For instance, for the generalized logistic case there is still a dependency

among F(X), V(X) and a when the parameters are set at ;1 =0 and o = 1.

In order to alleviate this confounding issue, the PC prior was constructed
over the standardized version of a link function (van Niekerk & Rue, 2020), such that,
E; (X)=0and Vj, (X) = 1. Let X be a random variable with density:

«

falr) = —F(:ra)o‘_lf(xa), (4.3)

Oq

where z, = (@=#a)/s, and fi,, 0, are functions of o to guarantee that Ey, (X) = 0 and
Vi (X) = 1. Then, we say X ~ PD(j,04,0). This parameterization guarantees that
inferences about these moments will not be affected by the skewness parameter, making
them orthogonal to a. Nonetheless, as in the skew normal case (see, van Niekerk &
Rue, 2020; Lee & Sinha, 2019), identifiability problems still persist when an intercept is
included in the linear predictor. The next theorem gives a general form for the PC prior
under the power distributions. As a particular case of equation (4.3), when o = 1 we get

fi(z) = Yo, f(x1), which is the density we consider as the baseline link.
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Theorem 4.1. Consider fi(z) = Yo f(z1) as the baseline model distribution, X, =
X _
Ho ind KLD(a) = KLD (fu||f1). The PC prior for the power link family can be
o

written as in (4.1), with

KLD(a) = log (Zia) — a; ! + Ey, {log J}Ef(?; } : (4.4)

&;(;) _ \f (KLD(a)y b+ ZELDL) gf (@) (4.5)
OKLD(«) a—-1 100, 0 f(Xa)

e T & o.ia + a—aEfa {log (X)) } . (4.6)

Proof. For the family of links in Equation (1.8), we have,

f Fulz)log fal(z)dz = log (O‘) +(a—1) f L pal(g) f(a) log Faa)dz +

« 0-&

ffa(x) log f(zq)dx.

Using the change of variable x, = (#=#a)/s, we have that,

faFa_l(xa)f(xa) log F(z,)dz = « J Fo Yz f(za)log F(24)dz,.

Oa
Let u = F(z,) and du = f(x,)dz, note that u € (0,1) given that f(z,) is also a density

function. Therefore,

1

JFO‘_I(xa)f(xa) log F(z,)dz = Jo u® " log(u)du, (4.7)

taking v = log(u) and dw = u®~* we can solve the integral of the right side of Equation
(4.7) using integration by parts, that is,
1 u !
L u* 1 log(u)du = vw — dev = log(u) — o2 |y
also, it can be shown that:

lin% u®log(u) = 0. (4.8)

So, using (4.8), we have
1 o N
a—1 o U U 1 . 1 . 1
Jo u*" " log(u)du = ™ log(u) — 5|, 0= -

and
JaFal(l’a)f(l’a) log F(x4)dz = —

1
Oa o

therefore,

J Ful2) log fa(z)dz = log (f) _ O‘; i By {log f(Xa)}. (4.9)

«
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Now,

Jfa(x) log fi(z)dz = log (011) + By {log f(X1)}, (4.10)
then, substituing (4.9) and (4.10) in Equation (4.1) with f.(z) = fo(z) and f¢,(x) = fi(2)
we have . ()

01 Q@ — o'
KLD(«) = log (%a) - + By, {log F(X) } . (4.11)
To obtain 7(«), we can rewrite 94(@)/aq as:
od 2 _1 0KLD
1) 2 (e L)
where,
OKLD(a) a—-1 100, 0 f(Xa)
o SR R + %Efa {log (X)) } (4.12)
[

Using the stochastic decomposition of X = 0,7 + 1, where Z ~ PD(0,1, «)
and the fact that Ey, (X) = 0 and V} (X) = 1, we can obtain p, and o, by solving:

0 = 0.E(Z)+ pa,
1 = o2V (2). (4.13)

From this equation system, we have that p, = —£()/,/v(z) and o, = 1/,/v(2) where
E(Z) and V(Z) correspond to the expectation and variance values from the PD(0, 1, o)
distribution which can be easily obtained using numerical integration. Using the solutions
of (4.13), we have the following general formulas:

1 av(Z) _ OE(Z)

oo V(2) ’ (4.14)
U s (4.15)

Equations (4.4) - (4.6) can be written in a simpler way for some specific cases (for instance,
the power normal distribution). On the other hand, equations (4.14) and (4.15) must be
used in those cases where no explicit expressions for i, and o, are available. The next

subsections illustrate particular cases in which Equations (4.4)-(4.6) can be simplified.

4.3.1 Generalized logistic distribution

The random variable X is said to follow a generalized logistic distribution of
type I (X ~ GLI(u,0,a)), if the pdf is given by,

« exp(—*£)

ag

o {1+ exp(—Z£)ja+l’

f(x|p,o,a) =
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where 1 and o are location and scale parameters, respectively. For Z ~ GLI(0,1, ) we
have that,

E(Z) = ¢(a) = (1) V(Z) = ¢'(a) + /(1)
where 1(a) and 1)'(a) are the digamma and trigamma functions, respectively (Gupta &
Kundu, 2010). It can be shown that, if X ~ GLI(u, 0, ) then Z = (X-w/e ~ GLI(0,1, @),
and

E(X) =p+o0@a)—9(1), V(X) =" (a)+¢'(1)),

so, by setting F(X) =0, V(X) = 1 and solving the two equations, we have

o= - Wl @) 1
RV VR C R R RO

Now, the standardized version of the original variable is X, = (X—#a)/s, and it is used to

avoid identifiability problems.

4.3.1.1 PC prior for the GLI distribution

Using the standardized variable X,, we have that the distribution for the

candidate model is given by,
a  exp(—a)
0o (14 exp(—z4))*""

falz) = (4.16)

As a particular case of (4.16), for @ = 1, we define the baseline model distribution with
w1 = 0 and o = 4/1Y2¢/(1). The following result gives specific expressions for this link as a

consequence of the expressions given in Equations (4.4) - (4.6).

Corollary 1. The PC prior for the GLI distribution can be written as in Equations (4.4)
- (4.6), with

1 o X
KLD(a) = log (Zla) - a; + ';L + 2Fy, [log {1 + exp (—01) H ,

+2iEfa [log {1 + exp (—X> }] ,
o o1

a « / " aY o
e (v O,
doo  Y'(a)

oo O

ode) V2 _1 0KLD(a)

2 = o (KLD(a)) PR
OKLD(a) 1 _ 00a N 1 1 Opa  0og
fele}  ao, %" 50 a? o2 700 M0

with,
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Proof. We have that,
a X — lq
Es {log f(Xa)} = 'Z— —2E;, [log {1 + exp (— - a )H ,
X

Bruflog fx) = 26, [l {1 e (-2 )}

01

Using the change of variables u = 1 + exp <—x — ,ua) and du = ~Yo, exp <x — ,ua) dx,

« O-Oé

ffa(x) log {1 + exp (—x ;aﬂa) } dx = Ozf h;igﬁ) du = —aJu_(O‘H) log(u)du.

We can solve the last integral by parts by taking v = log(u) and dw = uw~ @) In this

particular case —o0 < x < o0, so, 1 < u < 0. Also, we can show that:

lim u“log(u) = 0.

u—00

Using these facts jointly, we have:

ffa(x)log{Hexp (—x;jO‘)}da: - oe(_fbaa log(U)—t;) ‘T

then,

E;, [mg{;g‘i‘; H = gz + Z + 28, {log {1 + exp (—i) }] .

Finally, using (4.4), we have that the Kullback-Leibler divergence for this distribution is:

1 X
KLD(«) = log <Uloz) _ar T 2E;, [log {1 + exp (—) }] ,

o' o o1

with

0K LD(a) 1 (aa_(%a&)_i_ 1 1 ( Ol (%ta)

= Y a A~ Ma
oo a0, fofe’ a? o2 fofe! fofe

+2iEfa [log {1 + exp <—X> }] .
o o1

4.3.2 Power normal distribution

Unfortunately when X follows a power normal (PN) distribution there are not
closed expressions for F(X) and V(X). However, we can obtain a simplified version of the
PC prior getting u, and o, through simple numerical integration. Its density function is
given by:

falw) = = ®(za)* Bl

Oq
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where z,, = (@—#a)/s, and ¢(.) ,®(.) correspond to the pdf and cdf of the standard normal
univariate random variable, respectively. Note that for the baseline model (o = 1), we

have yi; = 0 and 07 = 1 because the analysis of these choices guarantees that E; (X) =0
and V, (x) = 1.

4.3.2.1 PC prior for the power normal distribution

Like the GLI distribution, Equations (4.4) - (4.6) can be used in order to get a

simpler version of the PC prior for the PN link. This is summarized in the next corollary

Corollary 2. The PC prior for the PN distribution can be written as in (4.1), with

a—1 1 1+ 2
KLD(a) = log(a)— +5- logo, — 207
od(e) /2 ~1 JKLD(a)
b~ g HLD)E
OKLD(a) a—1+i&0a 1+,ui_1 Mo O
Ja a2 0o O o2 o2 da’

where %heloa and 99a/oa can be computed as in (4.14) and (4.15).

Proof. Let X, = (X=na)/s,, by computing the expectation term of Equation (4.4) for the

power normal case, we have that:

Bruflog f(X)) = [ Sa(a) o) (g logn - 32 ) do

o 2

1 1

We already have, by construction, that E¢, (X) = 0 and V}, (X) = 1. Therefore, E;, (X?) =

1 and 2
X — Mo 1+ /L2
E: (X})=E _ - Ha
1 (X2) f{( — )} o
S0,
1 1+
Efa{log [(Xa)} = —510g 2m — 202 . (4.17)
Also,
o a—1 1 1 2
Ef"{logf(Xl)} - ;Cb(wa) ¢(wa) _5 log 2 — §ZE dx
1 1

Substituting (4.17) and (4.18) in (4.4), we have that

-1 1 1+ p
- + - —logo, — Ha

KLD(«a) = log(a) — 5 52
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and

5 :
02 oo

oo a? Oo O o?

OKLD(a) a—l_i_i% (1+u§_1> o Ofta,

4.3.3 Power Student-t distribution

A random variable X follows a power Student-t (PT) distribution if its pdf is

given by,
!

fa<x) = 7TV(xa)a_1tV(xa)7

Oq
where t and T correspond to the pdf and cdf of a standard Student-t univariate random

variable with v degrees of freedom. Note that for the base model (o = 1) we have py =0

-2
and o; = = which assure that Ey, (X) =0 and V (X) = 1.
%

Like in the power normal case, no closed form expressions for £(X) and V(X)
can be obtained, or a more straightforward expression in terms of its first two moments.
Thus, the PC prior for the power Student-t link, needs to be numerically computed by
using the general Equations (4.4)-(4.6) to obtain the K'LD(«) measure and its derivative

as a function of u, and o,.

4.3.4 Power Gumbel distribution

A random variable X follows the power Gumbel distribution (X ~ PG(u, 0, a))
if the pdf is given by,

flxlp,o,a) = %exp{*aexp <*x;M> - (m—u)}. (4.19)

o

Equation (4.19) can be used to obtain the first two moments of this distribution, which
are necessary to get the standardized variable X,. This will be done using the moments

generating function of this density.
Proposition 4.1. If X ~ PG(0,1,«), then,

mx(t) = E{exp(tX)} = a'T(1 1),

7T2

and as a consequence, we have that E(X) = log(a) —T"(1) and V(X)) = 5
Proof. We have that,
E (exp(tX)) = Jexp(tX)oz exp{—aexp(—x) — x}dz

= « f exp(tx) exp(—z) exp{—a exp(—x)}dz,
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now, taking r = —log(u), de = —du/u, we have:
a f exp(tr) exp(—z) exp{—aexp(—z)}dr = « f exp{—tlog(u)} exp(—au)du

= « J u” " exp(—au)du

r'a-—t)
oal—t
ol-t
J T 7j)u(l_t)_l exp(—au)du,

note that since —o0 < x < o, then 0 < u < o0 and therefore, the term inside the last
integral corresponds to the gamma distribution. Since this integral is 1, the result follows.

As a consequence of Equation (21) of the main paper, we have that:

miy(t) = a'log(a)l(1—1t) —a'T'(1 1)
mi(t) = log(a)m’(t) + a'T"(1 —t) — ' log(a)IV (1 — ),

and therefore, E(X) = m/y(0) = log(a) — I''(1) and

B(X?) = m(0) = log(a) {log(a) — T'(1)} + (1) — log(a)T(1)
= log®(a) — 2log(a)T(1) + (1),

then,

Var(X) = log*(a) — 2log(a)I’(1) + I'"(1) — {log(a) — I"(1)}?
= (1) —{I'()}y* =

™

2
6

O

Considering Y = 0 X + u ~ PG(u,0,a), and the restrictions F(Y) = 0 and
V(Y) =1, we can get the standardized form X, by setting,

o = —\/g(log(a) ~T’(1)), and 0, = \/g

Note that o does not depend on «. Using this fact, Theorem 4.2 shows that this family is

non-identifiable for «.

Theorem 4.2. For the power Gumbel distribution, f,(x) does not depend on «.

Proof. Equation (4.19) establishes that the power Gumbel distribution has, in terms of «,
po = —ci1(loga — ¢) and o, = ¢1, where ¢; = 1/6/z2, co = I'(1). Then, substituting these
values in (4.19), we have

fe) = e {_aexp (_x +er(loga— cz)) } . {_w + er(loga — ¢) } )

C1 C1 &1
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but,

eXp{_erq(logoz—@)}:leXp (02_13> (4.21)
a

C1 1

and substituting (4.21) in (4.20), we obtain,

folz) = ClleXp {—eXp <62 - Z) } exp (02 - :1) :

which does not depend on «, so, the result follows. O

Based on Theorem 4.2, the power Gumbel link proposed by Bazén et al. (2017)

is not well defined, so, it is senseless to use it as a valid alternative in modeling.

4.4 Bayesian inference

In this section, we present the elements required to perform Bayesian estimation
for the model (1.7) using the family of link functions in (1.8). We give a brief description of
some of the most common priors used in the literature (which we also use for comparison
purposes) and general expressions for the full conditional distributions according to each
prior considered. Finally, we state a way of choosing « according to the tail behavior of

one of the priors we use in the comparison procedure.

44,1 Commonly used priors

Let 0 = (B, a, ) be the model parameters. The first step is to define the prior

distribution 7(8, «t, ). Therefore, we consider an independent structure where
(B, o, y)ocm(B)m(a)m (). (4.22)

Since B is a vector, we consider 7(8) ~ N,(1g, Xg) as prior where pg is the
mean vector and Yz the covariance matrix. For the skewness parameter prior 7(«), Bazan
et al. (2017) considered the reparameterization § = log(a) and set a uniform prior for
J in such a way that for the uniform prior, « € (exp(—2), exp(2)). Given the support of
«, another common alternative is to use a truncated normal (TN) distribution. In the
skew probit regression context, van Niekerk & Rue (2020) considered a PC prior for a
by comparing it with a Gaussian distribution of parameters z = 0 and o® = 10%. Note
that for the extreme cases @« — 0 and a — o0, the success probability p; goes to 1 and
0, respectively, in such a way that the random variables Y; become degenerate. So, a
good way to establish hyperparameters when considering common priors without previous

information, is to set them in such a way that these extreme cases are taken into account.

The ~ vector accommodates any other parameters of the distribution of interest,

so an adequate prior specification depends on the likelihood distribution.
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4.4.2 Posterior analysis

Without loss of generality, as commonly observed in the literature, we present

our analysis for a binomial regression. Thus, § = (83, «) and we can define the likelihood

Lly) = | (Zj)p?i(l — )Y (4.23)

i=1

as

where p; = F(x; B) is the probability of success and n; is the number of Bernoulli trials

at observation i. Then, the posterior distribution for § = (3, «) is given by,

m(0ly)ocm(0)L(0]y),

where 7(6) has the form (4.22) and L(f]y) has the form (4.23). Starting from this equation,
we can derive the full conditional distribution for 3 as,

n

T(Blayy) o exp (—(B — 1p) S5 (B — pa)) [ 2V (1 —p)" v

i=1
For «, the full conditionals depend on the prior choice discussed in the previous subsection.
Taking into account the prior reparameterization § ~ U(—b,b), we have that oo = exp(J).
Using this fact, the explicit expressions of the full conditional distributions for the skewness

parameter given the priors we consider here, have the form,
mus(alB,y) o« *Hp (1 —p)" %,

(04 #TN) = ; i —ys
mrn(alB,y) o« expTl(Oé)(om)Hp? (L—=p)m,
TN

=1
n
n nz Yi
Y
=1

where the indexes Us, TN and PC' denote the resulting posteriors obtained from the uniform

mpc(a|B,y) oo Nexp{—Ad(« '

9, the TN and the PC priors respectively, while (urn, ory) and A are the hyperparameters
associated with the TN and the PC priors and 1(c)(g,+0) represents the indicator function,

according to which a belongs to the positive real line.

Unfortunately, the expressions above do not have closed form, making hard
to establish a MCMC scheme to obtain Bayesian inferences. The NUTS method, briefly
described in Section 1.1.6, is already implemented in the STAN software available in the R
statistical software (R Core Team, 2020) through the rstan package (Stan Development

Team, 2020). It is used to perform all of our Bayesian analyses in this chapter.

4.4.3 Choice of A

The main purpose of this chapter is to introduce a new prior for a.. To provide

evidence of its advantages, we are interested in assessing its performance in comparison
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with commonly used ones. As mentioned in Subsection 4.4.1, the uniform (for § = log(«))
and TN priors are the most common choices in the literature. To make a fair comparison
between the priors, we construct the priors to be comparable with each other. This premisse

guides our choices of A and the others priors parameters, as explained next.

Equation (4.2) presents the criteria which set A as a result of the tail behavior
of d(¢) for the PC prior. Using this fact, we fix the tail behavior of one of the priors and
select the other prior parameters to mimic it. Since o > 0, let us consider the TN prior in

(0, +00) as our baseline traditional prior. Note that for this distribution,
P(CY > 20’) = DTN, (424)

where o is the scale parameter for this prior. Starting from this point, we can fix W = d(20)
and py = pry in Equation (4.2) to obtain a similar tail for the PC prior. The value of A
will depend on the power link used in our analyses. For the uniform prior this can also be
achieved by replacing o = exp(d) and using the fact that 6 ~ U(—b,b), b > 0. In this way,
one can find b such that Equation (4.24) is satisfied.
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5 Penalized complexity priors for the skew-
ness parameter of power links: applications

with simulated and real data

In this chapter, a simulation study is reported to assess the frequentist properties
of the Bayesian estimates under different priors. In Section 5.2 a real dataset is analyzed

to validate our findings. Finally, some closing remarks are discussed in Section 5.3.

5.1 Simulation Study

In this section we present a simulation study to assess the performance of the
proposed prior for the skewness parameter a. A total of m = 200 binary datasets were
simulated using the generalized logit (GL) and the power normal (PN) links. The power
robit link (Subsection 4.3.3) requires numerical calculations that we were unable to code
in rstan. For this reason, this link is not included here. Furthermore, as mentioned in
Section 4.3, there is an identifiability issue between the intercept and a. With the goal of
correctly studying the prior sensitivity effect on the model fit we opted to not include it in

the linear predictor.

To simulate the datasets, we independently generated x1; ~ N(0,1%), 2o ~
N(1,3%) and 3 ~ N(0.5,2%) for i = 1...n taking 8 = (3,0.8,1.7) and o = 2.2. Using
these results we got the linear predictor x.8 where X, = (1;, To;, x3;) and p; = F(x.8) for
both links in each sample. Finally, we simulated y; by following a Bernoulli distribution
with parameter p; considering n = 50, 100 and 250. The likelihood in this scenario was

obtained by setting n; = 1 in Equation (4.23).

Concerning the prior structure for the linear predictor parameters, we considered
independent 3; ~ N(0,100) for j = 1,2, 3. For the skewness parameter, to evaluate the
performance of the PC prior, we compared it with the TN and the uniform prior (for
d = log(a)) using different criteria. Following the idea presented in Subsection 4.4.3,
we defined the tail behavior for each distribution by setting a ~ TN (0,10% A), where
A = (0, +0). The resulting hyperparameters were A\g; = 8.936 and Apy = 15.479 for the
PC prior using the GL and PN links respectively, and b = 3.296 for the uniform prior.

Regarding the comparison criteria, we calculated 1) the relative error, 2) the

expected log-length of the highest posterior 95% credible interval and 3) the coverage

1 & 4
probability for each parameter. The first one, was computed as Err; = i Z | - 0,1/0;,
m=1
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where 0; is the true parameter value and éJM is the mean posterior estimate for the j-th
parameter in the m-th Monte Carlo simulation. The second one was calculated as the
mean of the logarithm of the difference (log-length) between the upper and lower credible
interval limits for each simulation. Finally, the last one was computed as the number of

simulations where the true parameter lies inside the credible limits.

Tables 7 and 8 show the log-length and the coverage probability for the
credibility intervals of @ and B considering the GL and PN links. For the credibility
intervals for «, it can be observed that, for the GL link, the coverage probability is highest
when n = 50 and the PC prior is used. For the PN link on the other hand, the coverage
probability for the TN prior is slightly higher, but the PC prior shows much smaller
interval log-lengths. For n = 100, 250, despite the fact the coverage probability seems to
reach the theoretical 95% level for all priors, the interval lengths are still much shorter for
the PC prior. Although all models have the same prior for 8, the selected prior for a also
affects its posterior results. Thus, concerning 3, the estimated intervals generated by the
PC prior model under the GL link present better properties in terms of log-length and
coverage probability, with 5 being the best estimated parameter. Under the PN link and
for n = 50, it can be observed that the model using the PC prior presents larger intervals,
although its coverage probabilities are higher compared with the models using the two
other priors. For n = 100, 250, these properties for the other links improve in relation to
the model with the PC prior.

Table 7 — Simulation study. Expected log-length (and coverage probability) of the skewness
parameter o with both the GL and PN links.

Prior
Link | n pPC TN Uniform
50 | 1.54 (0.85) 2.09 (0.80) 2.05 (0.78
GL | 100 | 1.08 (0.90) 1.49 (0.90) 1.42 (0.93
250 | 0.47 (0.95) 0.6 (0.95) 0.56 (0.95

PN | 100 | 1.49 (0.93) 1.94 (0.92) 1.90 (0.93

(0.85) )
(0.90) (0.93)
(0.95) (0.95)
50 | 1.68 (0.92) 2.42 (0.95) 2.38 (0.91)

(0.93) ( (0.93)
250 | 0.75 (0.94) 0.92 (0.94) 0.87 (0.93)

Figure 5 shows the relative error for a. The results for 8 are available in
Figures 15-17 (Appendix C1). Under this metric, the model using the PC prior shows
better results particularly for the skewness parameter o, where for both links, this measure
is considerably smaller compared with the other priors. This behavior is more pronounced
when n is small but is also valid for larger ones. Regarding B, the model using the PC
prior under the GL link gives less biased estimates, while for the PN link this is more
pronounced for n = 50, and for the larger sample sizes similar results between the priors

are observed.
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Table 8 — Simulation study. Expected log-length (and coverage probability) of the linear
predictor parameters with both the GL and PN links.

GL PN
n | B PC TN Uniform PC TN Uniform
B | 1.95 (0.88) 2.02 (0.72) 2.04 (0.75) | 2.18 (0.76) 2.13 (0.66) 2.16 (0.68)
50 | B2 | 0.58 (0.89) 0.66 (0.69) 0.68 (0.74) | 0.78 (0.80) 0.75 (0.61) 0.77 (0.69)
Bs | 1.37 (0.84) 1.44 (0.67) 1.46 (0.70) | 1.54 (0.74) 1.51 (0.60) 1.52 (0.63)
By | 1.27(0.90) 1.34 (0.80) 1.33 (0.84) | 1.47 (0.87) 1.49 (0.71) 1.50 (0.77)
100 | B2 | -0.03 (0.90) 0.04 (0.79)  0.04 (0.84) | 0.15 (0.84) 0.16 (0.70)  0.18 (0.75)
Bs | 0.63(0.92) 0.71 (0.78) 0.71 (0.83) | 0.88 (0.85) 0.89 (0.70)  0.91 (0.74)
B, | 0.60 (0.93) 0.61 (0.90) 0.61 (0.90) | 0.79 (0.90) 0.80 (0.85) 0.80 (0.86)
950 | B2 | -0.69 (0.93) -0.67 (0.87) -0.68 (0.87) | -0.56 (0.91) -0.54 (0.83) -0.55 (0.85)
Bs | 0.01 (0.94) 0.03 (0.85) 0.02 (0.89) | 0.19 (0.90) 0.20 (0.85) 0.20 (0.87)
n= 50 n= 100 n= 250
s, 5 <§4' ; ; 3 :
. i SO e 5
; ﬁ ﬁ
o- T “—v—“ T o- T =S T 0.0 I I I
Normal PPp Uniform Normal PPp Uniform Normal PP'C Uniform
(a) (b) ()
n= 50 n= 100 n= 250
4, o = :
4 T 1.0 1 %
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Figure 5 — Simulation study. Relative errors for the skewness parameter a with the GL

link ((a)-(c)) and the PN link ((d)-(f)) and different sample sizes.
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5.2 Application

In this section we illustrate the good performance of the PC prior for selecting
the skewness parameter in a binomial regression model with power links considering a real
dataset. Specifically, we propose different analysis using the Bayesian approach for bladder
cancer data (Devidas et al., 1993).

This dataset refers to the effects on mice continuously exposed to low doses of
2-acetylaminofluorene (2-AAF). Doses of this biochemical were fed to female mice, from
weanling until the mice were either sacrificed, became moribund or died. The dose or
concentration of 2-AAF in parts per million (ppm) (z;) was fixed and the number of mice
with tumors (y;) out of the number of mice exposed (n;) was registered as shown in data
in Table 9, reproduced from Devidas et al. (1993).

Table 9 — Observed bladder cancer data for mice exposed to 2-AAF

Dose (ppm) 0 30 35 45 60 75 100 150
No. mice with tumors 1 5 0 2 2 12 21 11
No. mice exposed 101 443 200 103 66 75 31 11

In the binomial regression model, GL and PN links were considered for p;
and a quadratic effect of the doses was tested because some investigators report that
the dose-response curve begins to straighten at higher doses, leading some to propose
that a linear-quadratic-linear dose response model is more appropriate (Astrahan, 2008).
Thus, the linear predictor is n; = Syx; + ngf where as indicated in Section 4.3, because of

identifiability issues, the intercept was no considered in the linear predictor.

With respect to prior specification, we consider an independent Gaussian prior
for B in all models, i.e., 3; ~ N(0,100) for i = 1,2. For the skewness parameter o on
the other hand, we defined the priors as in Section 5.1, i.e., @ ~ TN(0,10% A) with
A = (0,+w), a ~ U(=b,b) with b = 3.296 and o ~ PC(\) with Ap;, = 8.936 and
Apy = 15.479 for the GL and PN links, respectively. To fit the models, two chains with
different initial values were run. For each of them, a total of 5000 posterior samples with no
thinning were generated and the first 1000 were discarded as burn-in. Therefore, we ended
up with a final posterior sample of 8000 observations for each parameter. The convergence
of the HMC was verified by the Gelman & Rubin (1992) criterion. To exemplify the
convergence of the posterior sample obtained by the models fitted, Figure 18 (Supplement
Material C2) shows the trace and ACF plots for the parameters of the PC link with the
PC prior.

Table 10 shows some of the most common model selection criteria (see Subsec-
tion 1.1.9) for the bladder cancer data considering PN and GL links under different prior

specifications for the parameter a.
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Table 10 — Bladder cancer data. Model selection criteria for the GL and PN links

Link | Criterion PC TN Uniform
DIC | 65811 65.605 65.662
EAIC | 32919 32.797 32.852
GL | EBIC |33.157 33.035 33.000
WAIC | 29.773 29.274  29.535
DIC | 64515 64.712 64.789
EAIC | 32.360 32.439 32.489
PN | EBIC |32.:508 32678 32.727
WAIC | 28.543 28.717 28.815

Most of the criteria indicate that the PN link would be more adequate in this case.
Additionally, considering the different priors, it can be seen that these measures are very
similar in the different models fitted. This is expected, since we fitted the same model

under different priors and their final impact on the model fit is subtle.

Additionally, as reference, we also fit the traditional Logistic (logit) and Normal (probit)
links considering a quadratic effect and intercept. The respective versions without intercept
were also fitted, but did not converge. We found that the restriction that the linear
predictor must pass to the origin when no intercept is included in the model combined
with a symmetric link was too prohibitive and the model was not able to fit these data

well.

Table 11 — Bladder cancer data. Information criteria for the logit (L) and normal (N) links
considering an intercept for the linear predictor.

Link DIC EAIC EBIC WAIC
LI 66.430 33.146 33.384 29.603
NI 64.673 32.466 32.704 28.670

It can be seen from the Table 11 that the probit link with an intercept term presents
results closer to the models discussed above. Nonetheless, there is still a difference when

compared with the PN link, so we selected this model as the best for the data.

Additionally, Table 12 displays the bladder cancer rates fitted according to the
models studied. The results show that the LI and NI models greatly underestimated the
cancer rates of the control and lowest-dose groups. Also, the GL model under different
priors overestimated the cancer rates of the control and lowest-dose groups. In order to
better predict the cancer rate in the unexposed control group, we compute VMSE (see,
Subsection 1.1.9). When considering this criterion, the best model was the PN model with
PC prior.
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Table 12 — Bladder cancer data. Observed and fitted bladder cancer rates x10° for mice exposed
to 2-AAF continuously. Models were fitted using the full dataset in Table 9.

Dose
Model 0 30 35 45 60 75 100 150 VMSE
LI 510.5  820.7 994.3 1604.5 4128.5 13228.0 70605.0 99985.4 1521.30
NI 911.5 733.0 &875.1 1463.6 4286.0 14536.3 68870.8 100000.0 876.84

GLpc 1669.4 612.3 701.0 1174.0 3992.5 15622.8 66785.2 99789.0 692.53

GLry 1031.1  591.1 713.6 1283.0 4419.2 16208.5 64546.1 99624.5 1301.94

GLy 13729 589.7 689.5 1190.8 4104.4 15787.5 65992.5 99740.2  851.69

PNpc 1389.1 662.8 767.0 1268.5 3981.1 14794.6 67847.7 99997.8  687.93

PNry 998.4 614.3 7344 12749 41147 14889.3 67030.4 999954  721.50

PNy 1104.5 626.5 741.3 1267.4 4054.8 14739.6 671654 99996.2  728.02
Group rate  990.1 1128.7 0 1941.7 3030.3 16000 67741.9 100000

Fitted models using all data: z is dose in rpm/100:

LI: Logistic with intercept: {1 + exp (—5.27 — 0.36z + 6.51x2)}_1

NT: Probit with intercept: ® (—2.36 — 1.60x + 4.4527)

GLpc: Generalized Logistic (PC prior): {1 + exp (f —2.63x + 5.281:2)}
GLyy: Generalized Logistic (Normal prior): {1 + exp (71.92:v + 4.59z2) }6'59
GLy: Generalized Logistic (Uniform prior): {1 + exp (—2.36$ + 5.03x2) }6'18
PNpc: Power Probit (PC prior): ® (—1.34z + 2.89962)6'17

PNrpy: Power Probit (Normal): ® (—1.092 + 2.663:2)6'65

PNy: Power Probit (Uniform): ® (—1.17x + 2.72:B2)

5.90

6.50

In order to compare with more details the performance of the priors studied
in the PN model, we considered a predictive modeling approach. In Table 13 we show
different prediction measures commonly used in binary regression, some of them, such as as
the Critical Success Index (CSI), recommended when the response variable is unbalanced
(de la Cruz et al., 2019). The binomial data were treated as having a Bernoulli distribution
to get these measures, and except for the PDIF', the model with the largest values of
these criteria should be chosen since this indicates the strongest similarity between the
observed and predicted responses. More detailed information about these measures is

available in Subsection 1.1.9.

Table 13 — Bladder cancer data. Predictive measures for the PN link with the PC, Gaussian and uniform

priors.
Predicted
Prior Value 0 1 | AUC ACC TPR TNR CSI SSI FAITH PDIF (10*3)
01903 73
PC prior | Observed | { | 10 44 09 092 082 093 035 0.21 0.48 2.75
0839 137
TN Observed | 1 | g 46 09 08 085 086 024 0.14 0.45 4.13
0839 137
Uniform | Observed | | 8 46 09 08 085 08 024 0.14 0.45 4.13

Notes: ACC: accuracy, TPR: sensitivity, TNR: specificity, AUC: area under the curve, CSI: critical success index,
SSI: Sokal & Sneath index, FAITH: Faith index and PDIF: pattern difference

From the obtained results, the fitted model using the PN link and the PC
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prior presented better values of these criteria compared to the Gaussian and uniform
priors confirming results discussed previously. This is verified by the ACC, TNR, CSI,
SSI, FAITH and PDIF criteria. The PN with the PC prior does not present the better
performance in the TPR metric. Again, the results confirmed that the PN link with the
PC prior is the best model to predict bladder cancer rates.

On the other hand, for the selected binomial regression model with PN link,
Table 14 shows the Bayesian estimates and the 95% credible intervals (in parentheses) for

each parameter considering the different priors for the parameter a.

Table 14 — Bladder cancer data. Mean posterior estimation and 95% credible interval in
the parentheses for the PN link using the considered priors.

Prior
Estimate PC TN Uniform
1531 -1.339 (-2.673, -0.064) -1.093 (-2.346, 0.227) -1.167 (-2.559, 0.117)
o) 2.886 (1.548, 4.170) 2.661 (1.406, 3.983) 2.728 (1.409, 4.089)
o 6.170 (4.236, 8.421) 6.646 (4.443, 9.037) 6.500 (4.359, 8.959)

The results for each prior studied confirmed that an asymmetric link is adequate
for these data because the credibility intervals obtained for o do not contain the baseline
model (o = 1). We highlight that shorter intervals for « were obtained using the PC prior
in comparison to the others. Another important observation is that unlike the Gaussian
and uniform priors, the PC prior has a significant linear term ; in comparison with the
other priors. This is remarkable from the standpoint of interpreting the results, since
considering only a quadratic trend without a linear effect might affect the conclusions if

its absence is not justified.

Finally, we include a short diagnostic of the selected model considering the
normalized randomized quantile residuals proposed by Dunn & Smyth (1996) for the
binary response. Figure 6 shows the simulated envelope of residuals for the selected model
considering the PN link under the PC prior. There are no observations lying outside the
envelope. This provides further evidence of the adequacy of the PN link using the PC prior.
Figure 20 (Appendix C2) shows the scatter plot of the residuals and their distribution.
This figure also support the suitability of the model fitted using the PN link and the PC

prior. A brief description of this residual method can be found in Subsection 1.1.10.

5.3 Discussion

In this chapter, general and specific expressions of the PC prior were derived
for the power link family. This family of links functions is widely applied to binary,
binomial and bounded regressions. Moreover, as discussed in Section 4.2.1, we believe

this family of priors is constructed based on meaningful principles and in our case offers
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a straightforward strategy to select the complexity measure A when d(«) is used as an
interpretable transformation of this hyperparameter. This observation is advantageous
since enables elucidating prior knowledge about the skewness parameter. Among the results
established in this work, we showed the non-identifiability of the power complementary
log-log and its associated reversal link. This was done by using the moments generating

function of the power Gumbel distribution jointly with the parameterization proposed by
van Niekerk & Rue (2020).

Simulation studies showed that, in terms of relative error, length of credibility
intervals and coverage probabilities, the PC prior presented better frequentist properties
across the considered priors, especially for smaller sample sizes. From the real data
application, the PN link using the PC prior with a quadratic trend was the best according
to most of the selection criteria used. A comparison with the traditional logit and probit
links with an intercept in the linear predictor was also studied, and according to the model
selection criteria the PN link with the PC prior was still preferable. Different prediction
measures were also used and indicated that the PN link with the PC prior provided then
best prediction capacity among the compared models and priors. Also, residual analysis
corroborated the appropriate fit of the selected model. Another interesting result is that
out of the priors used in the fitting procedure, the PC prior was the only one able to detect
the linear term in the quadratic predictor significantly. And, as discussed in Section 5.2,

this is preferable in terms of model interpretation.

2.59

0.0

Quantile residuals

-2.51

-2 0 2
Theoretical Quantiles
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Figure 6 — Bladder cancer data: Envelope considering quantile residuals for the PN link
under the PC prior
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6 Concluding remarks

In this thesis, two default priors were proposed to perform Bayesian estimation

considering two different kinds of responses.

With respect to the Student-t spatial regression model, a reference based and
two Jeffreys priors were described, establishing conditions which allow them to generate
proper posterior distributions. The applicability of the introduced priors was assessed
through simulation studies and a real dataset on calcium content in the soil. Limitations
in the number of degrees of freedom and the absence of a nugget effect of this method
were also mentioned. We hope solutions will be found in future research. An R package

OBASpatial was also developed and is available on CRAN for download.

As other research topics, different generalizations of the family of correlation
functions are of clear interest, e.g, ansiotropic functions and/or separable ones. Another
promising avenue for future research is to pursue a more flexible class of distributions,

such as the multivariate skew-t distribution (Azzalini & Capitanio, 2003).

Regarding the binary regression case, weakly informative priors were introduced
for the asymmetry parameter of the family of power links. This procedure relied on the
univariate family of PC priors developed by Simpson et al. (2017). Particular cases, such
as the power logit and power probit were studied, obtaining straightforward expressions
for the PC prior in these cases. Additionally, non-identifiability of the power Gumbel and
its reversal link was shown through the use of the moment generating function and the
parameterization proposed by van Niekerk & Rue (2020). As in the Student-t case, a
simulation study and a real data application involving bladder cancer in mice were used

to assess the performance of the proposed procedure.

As further studies, the inclusion of random effects in the linear predictor might
be taken into account when modeling since in many phenomena, binary or bounded
responses can be indexed or correlated, e.g., by temporal or spatial patterns. Additionally,
the observed identifiability issue between the intercept and skewness parameter for the
power links should be better explored. Finally, the development of an R package including
all the routines regarding the PC priors for this family of link functions is also of interest,

due to the interesting properties mentioned.
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APPENDIX A — Appendix for chapter 2:

proofs of propositions and lemmas.

Al Technical details

First, we state some useful properties that will be needed to proof the main

results of the manuscript.

1. Consider Y ~ t,(pn, X, v) and A, B two symmetric matrices. Then,

14

a) E{Y'AY} =p"Ap+ 1l [AY],
b)
T T _ 212
Cov{Y'AY,Y'BY} = = 2)(v 1) tr  AXBX|
212
+ =220 = 4)tr [AX]tr [BY].

2. Suppose that X ~ F(dy,ds). Then, X has density given by

160 =t (2 o (1+5)

3. If X ~ F(dy,dy), then X~ ~ F(dy,d;).
di

dy d
do 1 2
1~ Pl ). then 3 ~ Beta( )

5. If X ~ Beta(a,b), then 1 — X ~ Beta(b,a) (Mirror property).

6. If X ~ Beta(a,b), then

a
a+b

Var{X} =

E{X} =
ab
(a+b)2(a+b+1)
E{log(X)} = ¥(a) — ¥(a + b)

E{Xlog(X)} = a%b [U(a+1) — U(a+b+1)], where ¥(.) is the digamma

function.
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A1.1 Conditions of Lemma 2 (Berger et al., 2001)

In this section, we introduce the conditions of Lemma 2 (Berger et al., 2001)
necessary for the results presented in the main version of the manuscript. These conditions

are the following:

1. The correlation matrix can be decomposed as R(¢) = 117 + ¢(¢)D + w(¢)D* +
R*(¢) and (726) R(¢) = ¥/(¢)D + w(¢)'D* + (Y2¢) R*(¢), with 1 = (1,...,1)", D
(nonsigular) and D* fixed matrices; and ¥ (¢) (> 0), w(¢) and R*(¢) differentiable.

2. As ¢ > o,
od) o W) R LR OL
o) " Y e Y w9 0 and

[CoR* @oofur(9)]| + [R*ODuio)]lp
W(9)fy (¢) — “(B)/p(9)

0,
where [|A[, = max |A;;].
7/7‘7

The presented hypotheses are satisfied by following families of correlation functions: the
spherical family, 1/(¢) = ¢! and w(¢) = ¢ ; the power exponential family, ¥)(¢) = ¢~ "
and w(p) = ¢~2*; the Cauchy family, 1)(¢) = ¢ 2 and w(¢) = ¢~*; and the Matérn family
where the expressions for 1(¢) and w(¢) are given in Appendix C of Berger et al. (2001).

A2  Behavior of A(v)

In this section we analyze the behaviour of A(v), considering that the Student-t
distribution converges to the normal distribution as v — +oco0. By Stirling formula, it

follows that

Then,
N's—-—a+1
lim A(v) = lim »~ (79 G-a+l)
v—+00 V=400 F(%)
Vo (5-a) (£0)
= liriloou_(l @) - 71
2r (5 - 1) (£4)°

[NIANIINIEN
[ ]
|
SN— [ —r

|

-

|

&
VR
ISINIININ
[ ]
=
v
[SIN
/N
(VNIAN

|

]
N~
T

=]
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—Qa % 1% 1—a
G-
—1> 2

The last equality follows because the first two terms of the limit tends to 1, as v — +o0.

v

[NJAN

= lim l/_(l_a)<

V—+0

SIS

14

a\ 2
We have also that <2 1) — 1 as v — 400 (it can be easily showed by studying the

v

2
limit of its natural logarithm and using L’Hé6pital’s Rule). Then,

1-a - l1-a
lim A(v) = lim »~ (-9 (Z_a> ~ ol <u 2a> 1

v—+00 v—+00 2 v o 21_‘1.

Therefore, the behaviour of A(v) is constant, as v — 400. So, for an appropriate choice of

(v, ¢), we have that its posterior distribution converges to the normal one.

A3 Proof of Theorem 2.1

Let £1(0%) = log(L1(6%)) and S* = 5°/52, then

00" = log {r (” znp)} ~log {r (g)} - % log(0?) — ;log(]XTR_lX])
. (” +2”p) log(v + n,S*) — ;log(|R|) + glog(y). (A3.1)
From Equation (A3.1), we have that
on(*) 1 {np N (v + ny)n, 85*}
do? 2 o2 v+n,S* do%)’
%1@2?*) _ _; {Vl/—:—n:g* npaai* . l(XTR1X>1XTR1 a('/3]2RlX

v RS

1 1 1 n,tv 1 1
- = = S -1 -
20+ 5o <,, n np8*> 2w+ g 208 3

o) - o (24) () .

Now, we proceed to calculate each component of the matrix I;(6*). Thus, we have

00N R T IR S* 2 2
E{( 2 ) = i np—an(l/+np)E TS +np(y+np)><

() | (a3

2 2

S
It can be shown that % ~ F(v,n,), then S* = Pl F(n,,v). Now, it follows that

E{S} = B # :1E{V§}:1E{1_}L}
v+ n,S* v(1+ 125%) ny (14 -25* np 1+ 25*

01 (0%)
ov

Define I;(0%), as
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- B(1-Q),

* 1 1
where @ ~ Beta(g, %) Then, E{ 5 } _

o — = . Moreover,
V+ny np +vng np +v

5% \? 1 TpgE 2 1 )
E{<u+np5*) } B nZ%E{<1+’§f’S*) } - nT%E{(l_Q) -
In this case, we have by the mirror property that 1 —Q ~ Beta(%, g), thus, £ {1 — Q} =

2vn
V{l-Q)= >
ny+ v’ t=e (ny + nug)?(v + ny, + 1)

B < S* )2 B 1{ 2un,, N n’ }
v+ n,S* o2 () (vtn,+ 1) (ny+v)?

1 2n,, 9
2 2 T
n2(v+mny)? (v +mn, +2

. Then,

and replacing each expectation in Equation(A3.2), we have that
o0, (0%)\ 1 wn 1
E = P = B. A3.3
{( do? 200v+n, +2 20t ( )
Since P=1—-X(X'R'X)'X"R™! and Z, = (Y-X)/s ~ 1,(0, PR, v), then

2h(*) o6 (0*) 1 [ (wanny, o1 0R LR
36 T = d0f)  (vrmeH) BB g Rt mir |[RTISE

1 0R
0

—R'Z,

—  nptr [(XTR’lx)’IXTR —R"~ x]

(V+np) Np kT 1R

v+ n,S*)2 29 2R 00
p

(v + np)n,pS*

(v 4+ npS*)

(v + ny)nypS* [R 16R] }

R R 0R

Tp—lvy\—1l<xT
tr[(X R X)X 3

R—lx]

(v + npS*) 00

and

06 (0%) o (6%) | 1) (v +np)np 7 1Ry
E{ op  0Oo? } a 402{ E{(VJrnpS*)ZR ﬁgbR Zl}

— mytr l(XTR—lx)*XTR—lgR*X]

(v + np)°ny 7T R
E{l— V4
- {(VJrnS*)S 1RTSIRTZ

_ R (v + ny)nyS*

TR-Iyv\-IxwTR-1 1 p)Tp

+ tTl(X R7X)"X'R™ é%R X]E{ (v + 1n,5%) }
8R]

0

+  nytr [R‘l (A3.4)



APPENDIX A. Appendix for chapter 2: proofs of propositions and lemmas. 85

— tr lRlaafZ] E {M} } (A3.5)

Now, we proceed to compute each expectation value involved in Equation (A3.4). Note

first that,

(v+ny)np 1 1 OR (v +ny)n, T 1R ¥
E{ —FF77, 2,; =FE{ —F"FE<Z —_— Z )
{(V+np5*) R 7<;SR ! (v + n,S*) R 7¢R 11

Hence, by using the Property 1 of Section A1, it follows that

E { (V + np)np ZTR 1 aRRlzl} ~ v E { (V + np)npt lR 167RR IPR] }

&

(v +mn,S*) ! 3l0) v—2 ((v+n,S*) 13l0)
L mlrsnd (el )
= e L e )
<y [ Seoe| By,
where Q ~ Beta(g ). Then,
T
Second, we have that
cllptan Buva) - sl
E{ZTR 1051; ‘1Z1\S*}}
~ ””p(V”_+2"”> tr [(?;;R P]

E{ S ! }
v+ n,S* v 4 npS*

Moreover,
S* 1 1
E = E c 1- c)f
{y+npS*V+npS*} nyV 1Qell = Qo))
Dp G
where Q. = W = (1-Q)andQ ~ Beta(g,%). Then, E{Q.} = np”—z; - and
2

E{Q?} = )%+ s 1 and therefore,

np+V (np +v)*(np + v +2)

g S 1 np 2n,
(v + n,S*)? npv \v+mn, @v+n,)? (n,+v)%(n,+v+2)
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and
(v +1)°p o1 R 1 R
E{——= *~G§*7Z — Z o~ — P
{(u+np5*)2s 1R 6¢R ! I/_2t7“ 8¢R .
2n,v
2 =P
{(y + ny)n, n, v D) }

(v N Rpap )
v—2\n,+v+2 0o
Third, we have that

B v+ np)npS* | (v + )1y
v+ n,S* v

LE{QC} _ (V4+np)n, vy o,
p

v NpV + 1y

Replacing the expectations obtained in Equation (A3.4), we have that

E{(%l(e*)(%l(e*)} N 1 <( —2ynpy_2)tT {aRR—lp])

op 002 40?2 \ (n, + v + 2)( 3]
1
Now, we have
ol (0%) ot (%) Ny 1 n, + v
E{ do? ov 40t Cw)+Elog v+ n,S* b v+ n,S*
VN, .
+ log(v) +1 E{I/+npS*S }C(V)

v+mn 1
- B! P g¥] - -
{V+npS*S Og<1/+np8*>}
(n, + v)*S* v+n,
E{ ——"———FE{———5%}1
- { (v + n,S*)? v+ npS*S o8 (V)
v+n
- B! —_"P g% )
{V—i—npS*S}]
(A3.7)
Since,
gl wtv l_pfvtm ol _ | g (n, +v)25* _ Myt
v+ n,S* v+ npS* (v + npS*)? ny+v+2

it follows that

st (Lo )| - TEE - Q) og) + Iox(@)

v+ npS* v+ npS* np

and

B {mg (1)} _ B { log(v) + log(@)} = log(v) — C(v)

v+ npS*
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where @ ~ Beta(§ ?) Replacing in (A3.7), we have therefore that

7 {(%1(6’*) (951(6’*)} _ : —ny _ iBlg. (A3.8)

02 ov o(ny, +v)(n,+v+2) o2

Furthermore,

={ ()} - i{E{EZIZ%*E ()} [m ]
R

0¢
} tr l(XTRlX)lXTRl

X'R'X)'X'R™ R‘lX]

v+ np)n, 05*

ol

-2 {V+npS* 0¢
{
|

R
0

ROX|

+ 9E V+npnp(95} lR_ (9R]

0

— 2tr (XTR‘lX)‘lXTR‘la;;R‘lX] (A3.9)

x tr lR 1(21;” (A3.10)

Now, we proceed to calculate each expectation involved in Equation (A3.10). First, using
the Property 1 of the Section A1 for the Student-t distribution, we have that

v+ np,S* 0¢

(v+mnp)n, dS*  —v—mn, o 10R_
E{u+np5* 5 = g FQF{ERI Rz S
v R
RN . SN

Second, we have
(v +mnp)°ny (0S*\?| 2 1 TR-10R *
E{<u+nps*>2<a¢> B o B (AR S Z) o
and using the Property 1 of Section A1, we have
IR 2 22 IR 2
E{(Z{RT'-R'Z ) = —_—— ( R~ P)
{< e } -2 [ 00

o[ R 2 o R 4
TEPHET [(wR P}+<u—2>2” [%R P]

- M{Qtr[(ﬁl{—lpy + tr? {(ZER P]}

and

A 1 G N R e
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Further,
1 2n
vi—— oy = v
{y+np5*} 2 @ (v +ny)* (v + ny, + 2)v7

then

1 1 2v 1

El—— v = +
{ (v + npS*)Q} V2 (@} (v+n,)2(v+n,+2)v  (n, +v)?

1 ( 2n,, )
= 5 +1),
(np +1v)2 \ (v +n, +2)v

e () ] - (g v 1) o

SO

Also, we have

R _, LR, LR, -
P|= RIPR| = "R !PRP
tr[ad)R ] tr[R R R] tr[R 5o R 'PRPT).

and it can be shown that

R LR
- 191 T _ -
tr[R agbR PRP] [R 8@5}
— tr [(XTR—1X)—1XTR-1?;R—1X]. (A3.11)

Replacing these expectations along with (A3.11) in Equation (A3.10), we finally have that

()]~ HEmmm ) () Bl

(A3.12)

Now,

ol () ot (0*) 1 (v + ny)n, 05* R _
E{ 2 26 } = —4{C(I/)E{ VT n,5* 00 }+C(1/)tr l(?(bR 1P]

(v + ny)n, 05*
EAl
- o8 (y+npS*> v+ n,S* 0¢

{
{o (e e[ ]
{anru npas*} E{"W}t [aRR P]

0¢
0S* ‘R
+ log(v)E { (ZIZ:;ZP 2% } + log(v)tr [8¢ R~ 1P]

(v + ny)n, 05* ‘R
e e | N

+
&S|

|
&5

(v +n,S5*)% 0¢ v+ n,S*
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Since,
) - ol
E {log (H}%S)} _ log(v) — C(v),
B (s e ) R b
and
E {log (V n 21)5*) (ZiZ:;Zp 8;: } = i 5 <V(V2anp) — log(v) — C(V)) x
daadt

Replacing these expectations in (A3.13), we obtain that

ol (0%) 06,(0%) | n, ) R, )
E{ ov 9 } N (V—Q)(V+np)(y+np+2)t [8¢R P] Chi- (A3.14)

Lastly,

()} = {em o () oo )
+ log*(v) + 1 +20(v)E {log (szps) }

— 20WE {;%} + 2log(1)C(v)

n, + v 1
— |
+ 200 2E{V+np5* o8 <V+np5*>}
1 1

21 ELl _— 2E <1 _—

2t o (e ) o ()}
n, + vV n, + vV

— 21 E{—Lt YV _opl{ 2

og(v) {1/+np5*} {I/—i—npS*}

+ 210g(1/)}. (A3.15)

Using the Properties (5) and (6), given in Section Al, we have that

B (i )| = (e - CW)? - a0
o B et

E {log (H;ps) } _ log(v) — (),
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E{ n, + v } _ 1
v+ n,S*

E{Wlog (1)} _ M o) — C).

v+ n,S* v+ n,S* v(n, +v)

Replacing these expectations in (A3.15), we have that

B} { <a€la(f*))2} - () W= @s9

n, +v
2

where C(v) = ¥(

) — ‘Il(%) and W(.) is the digamma function.

Finally, using the results (A3.3), (A3.6),(A3.8) (A3.12),(A3.14) and (A3.16), we have
therefore that

1 1 1
21043 I‘f 11 ;312
L(0%) = 4T2311 EC Ch (A3.17)
1
—B -D
2012 Ciy 1

and

1
2

1 1
(8,02 ¢, y)ocP (BCD + 16B,,C11 B1y — 8B},C — 16 BCY, — 2Ble)

A4 Proof of |I1(6")| > 0

’B 20°B
Through elemental row operations Ry : R3— a—iRl and Rs : Rs— il

we obtain a reduced form R;(6*) for the matrix I;(6*) in (A3.17), which is given by
1 1 1 7

R17

2018 2B poasil
. 1 1B2 1 B1»B
MO = 0 05 Gy g
i =9 B 4 B
-1 1 1
2510 2Pn poasl
4 8 B . o2 ’
0 0 -p-_ =2
B 4 B

= (. Then, we obtain an upper triangular matrix and we have that
|I,(60%)] > 0 if |R1(6%)] > 0. So, we only need to show that the product of the diagonal
elements of the matrix R;(0*) is greater than 0. First, note that @B > 0 and it can be
shown that

e (e e R e e o) il E LB
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then
1 1 B? 1 v+4 n,v(6 — v) R _
175 él 7 2w —2) (@-4) - (y—4)<y—2)(u+y+2>)>"2 [aqu IP]
> 0,

since nyv(6 = v)
(v—=4)(v—2)(v+n, +2))
value) when v > 6. Now, for n, > 0 and v > 4,

) > 0 when 4 < v < 6, and less than 1 (in absolute

2

ED_QB%Q _ 1D—2 v+n,+2 n
4 B 4 npV (np, +v)%(n, + v +2)?
_ ED B 2n,,
4 (ny, +v)%(ny, + v+ 2)v
ny n, +v+4 2 1
= - + - -C > 0.
(ny, +v)(ny, +v+2)v < 2 (ny, + 1) 4 1(v)

This result was also verified trought a bivariate plot of n, > 0 and v > 4. Then, |,(6*)| > 0.
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Bl Complementary results in the simulation study: Student-t pro-
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Bo Bo
0.6- 0.6-
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w w
o o ¢
! .
. ) Y
0.2- H : . 0.2- . s
i i { i [ ;
| I
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Prior Prior
(a) (b)
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w T w . .
o o
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. T 1
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0.01 L ; ] L ; 1 L ; ] 0.0- I - ] [ - I [ N ]
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(c) (d)

Figure 7 — Simulation study 1. Student-t process under Scenario 1, relative error for 50
considering (a) n = 50, (b) n = 100 (c¢) n = 250 (d) n = 500.

Table 15 — Simulation study 1. Coverage probability (and expected log-length) for the
mean structure parameter 5y (Scenario 1) considering different sample sizes.

Prior/n 50 100 250 500

reference 0.95 (0.42)  0.96 (0.39) 0.97 (0.35) 0.97 (0.30)
vague  0.91 (0.39) 0.95 (0.35) 0.94 (0.36)  0.96 (0.33)
Jefrul  0.73 (0.24) 0.82 (0.22) 0.828 (0.18) 0.84 (0.19)
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Table 16 — Simulation study 1. Coverage probability (and expected log-length) for the
mean structure parameters under Scenario 2 considering different sample

sizes.
n Prior Bo B B2 B3 By Bs

reference  0.94 (1.52) 0.929 (0.20) 0.91 (0.21) 0.88 (-2.24)  0.94 (-2.25) 0.93 (-2.30)
vague  0.92 (1.49) 092 (0.18)  0.93 (0.2) 0.9 (-2.28)  0.93 (-2.28)  0.92(-2.31)

501 Jefrul 079 (1.21) 0.78 (-0.05) 0.86 (-0.03) 0.78 (-2.50)  0.87 (-2.48)  0.79 (-2.56)
Jef ind 0.89 (-0.13) 0.93 (-0.14) 0.88 (-2.37)  0.93 (-2.37)  0.95 (-2.57)
reference  0.98 (1.45) 0.97 (0.14) 0.93 (0.14) 0.93 (-2.31) 0.92 (-2.31) 0.97 (-2.36)
vague  0.94 (1.39)  0.97 (0.10)  0.89 (0.10)  0.91 (-2.36)  0.89 (-2.36) 0.97 (-2.41)

100 jefrul  0.86 (1.17) 0.87 (-0.10) 0.84(-0.10)  0.88 (-2.55)  0.84 (-2.55) 0.92 (-2.60)
Jef ind 0.89 (-0.14) 0.88 (-0.14) 0.8 (-2.40)  0.87 (-2.41)  0.93 (-2.59)
reference 0.95 (1.39) 0.97 (0.08) 0.93 (0.07) 0.95 (-2.39)  0.95 (-2.39) 0.95 (-2.43)
vague 091 (1.32)  0.96 (0.03) 0.91 (0.02) 0.93 (-2.43)  0.89 (-2.43) 0.94 (-2.48)

250 | Jefrul 078 (1.09) 0.80 (-0.12) 0.77 (-0.12) 0.79 (-2.60)  0.82 (-2.62) 0.77 (-2.61)
Jef ind 0.81 (-0.13) 0.85 (-0.13) 0.83 (-2.42)  0.82 (-2.41) 0.82 (-2.52)
reference 0.88 (1.31) 0.89 (-0.15) 0.86 (-0.14) 0.875 (-2.38) 0.875 (-2.35) 0.92 (-2.50)
vague  0.91 (1.30) 0.96 (-0.02) 0.91 (-0.00) 0.93 (-2.48)  0.89 (-2.47) 0.94 (-2.50)

500 | Jefrul 076 (1) 0.77 (-0.10) 0.79 (-0.10) 0.78 (-2.55)  0.83 (-2.55) 0.84 (-2.60)
Jef ind 0.78 (-0.14) 0.76 (-0.14) 0.72 (-2.40)  0.78 (-2.41)  0.85 (-2.59)

Table 17 — Simulation study 1. Coverage probability (and expected log-length) for the
variance structure parameters under two simulation Scenarios and considering
different sample sizes.

n Scenario Prior o’ v
reference  0.92 (0.95)  0.96 (0 99) 1 (2.56)
Scenario 1 vague  0.37 (-0.05) 0.80 (0.88)  0.79 (2.42)
Jefrul 045 (1.11)  0.62 (0.85)  0.68 (2.63)
" — 50 reference  0.94 (0.83)  0.97 (1.12) 1 (2.56)
' vague  0.31 (-0.1)  0.90 (0.97) 0 (2.42)
Scenario 2 jerpy 0.22 (-0.55)  0.56 (0.6)  0.06 (2.51)
Jefind  0.43 (0.28)  0.85 (0.87)  0.08 (2.55)
reference  0.95 (0.89)  0.96 (0.98) 1(2.39)
Scenario 1 vague  0.36 (-0.12) (0.76)  0.85 (2.38)
Jef rul  0.45 (0.54) (0.66)  0.79 (2.35)
" — 250 reference  0.96 (0.99) (1.07) 1 (2.56)
' vague  0.31 (-0.24) (0.82)  0.22 (2.35)
Scenario 2 Jofpyl 055 (-0.33) 0.6 (0.58) 0 (2.32)
Jef ind  0.50 (0.52) (1.03)  0.14 (2.52)
reference  0.95 (0.82) (0.95) 1 (2.36)
Scenario 1 vague  0.37 (-0.14) (0.69)  0.94 (2.36)
Jefrul  0.50 (0.4) (0.87) 0.9 (2.36)
n — 500 reference  0.95 (0.91)  0.90 (1.05) 1 (2.36)
_ vague  0.37 (-0.13) 0.827 (0.85) 0.225 (2.38)
Scenario 2 jor 0 56 (-0.88)  0.66 (0.61) 0 (2.32)
Jefind 0.5 (0.55)  0.704 (0.99)  0.16 (2.5)
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Figure 8 — Simulation study 1. Student-t process under Scenario 2, relative error for B
considering different sample sizes.
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Figure 10 — Simulation study 1. Relative error for &, (/3 and 7 under Scenario 1 (figures
(a)-(c)) and Scenario 2 (figures (d)-(f)) for n = 250.
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B2 Complementary results: Student-t versus Gaussian spatial re-

gression

Table 18 — Simulation study 2. Expected Relative Error (and standard deviation) and Cov-
erage Probability (and expected log-length) for the mean structure parameter
Bo (Scenario 1), considering different distributions and sample sizes.

Distribution MRE-CP  Prior / n 50 100 250 500

reference 0.07 (0.07) 0.06 (0.06) 0.05 (0.05) 0.05 (0.05)

MRE | wvague 007 (0.07) 0.06 (0.06) 0.05 (0.05) 0.05 (0.05)

Jefrul  0.07 (0.07) 0.06 (0.06) 0.05 (0.05) 0.05 (0.05)

T-SR reference  0.94 (0.56) 0.7 (0.48) 0.04 (0.51) 0.84 (0.06)
op vague  0.95 (0.73) 0.99 (0.65) 0.97 (0.67) 0.82 (0.04)

Jefrul 086 (0.41) 0.92 (0.36) 0.93 (0.36) 0.75 (-0.08)

reference  0.07 (0.07) 0.06 (0.06) 0.05 (0.05) 0.05 (0.05)

MRE | vague 007 (0.07) 0.06 (0.06) 0.05 (0.05) 0.05 (0.05)

Jefrul - 0.07 (0.07) 0.06 (0.06) 0.05(0.05)  0.05 (0.05)

N-SR reference 0.95 (0.52) 0.7 (0.48) 0.98 (0.49) 0.85 (0.06)
Cp vague  0.92 (0.43) 0.96 (0.41) 0.96 (0.43) 0.94 (0.42)

Jef rul  0.86 (0.35) 0.96 (0.35) 0.70 (-0.11) 0.69 (-0.07)

Table 19 — Simulation study 2. Expected relative error (and standard deviation) for the
mean structure parameters under Scenario 2, considering n = 50,100 and
different distributions.

n  Process Prior Ioh B 03 B4 Os
reference 0.17 (0.17) 0.37 (0.32) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
vague  0.17 (0.17) 0.37 (0.34) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
TSR | Jefrul 017 (0.17)  0.38 (0.3)  0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
Jefind  0.11 (0.13) 0.32 (0.29) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
50 reference 0.17 (0.17) 0.37 (0.32) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
vague  0.17 (0.17) 0.37 (0.32) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
N-SR | Jefrul 017 (017) 038 (.32)  0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
Jefind  0.11 (0.13) 0.30 (0.28) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
reference 0.11 (0.16) 0.26 (0.29) 0.01 (0.02) 0.01 (0.01) 0.01 (0.01)
vague  0.11 (0.16) 0.27 (0.29) 0.01 (0.02) 0.01 (0.01) 0.01 (0.01)
T-SR | Jefrul 012 (0.16) 0.28 (0.29) 0.01 (0.02) 0.01 (0.01) 0.01 (0.01)
Jefind  0.09 (0.12) 0.21 (0.26) 0.01 (0.02) 0.01 (0.01) 0.01 (0.01)
100 reference 0.11 (0.16) 0.28 (0.3) 0.01 (0.02) 0.01 (0.01) 0.01 (0.01)
vague  0.11 (0.16) 0.27 (0.29) 0.01 (0.02) 0.01 (0.01) 0.01 (0.01)
N-SR | Jefrul 012 (0.16) 0.28 (0.3) 0.01 (0.02) 0.01 (0.01) 0.01 (0.01)
Jefind ~ 0.09 (0.12) 0.21 (0.25) 0.01 (0.02) 0.01 (0.01) 0.01 (0.01)
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Table 20 — Simulation study 2. Expected relative error (and standard deviation) for the
mean structure parameters under Scenario 2, considering n = 250, 500 and
different distributions.

n  Distribution Prior 51 5o 53 B4 Bs
reference 0.11 (0.11) 0.26 (0.31) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
vague  0.11 (0.11) 0.26 (0.29) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
T-SR Jefrul  0.11 (0.12) 0.28 (0.33) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
Jef ind  0.08 (0.08) 0.19 (0.17) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
250 reference 0.11 (0.11) 0.26 (0.29) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
vague  0.11 (0.12) 0.28 (0.34) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
N-SR Jef rul  0.13 (0.15) 0.32 (0.43) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
Jef ind  0.11 (0.13) 0.26 (0.31) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
reference 0.12 (0.13) 0.23 (0.22) 0.01 (0.01) 0.01 (0.01) 0.01(0.01)
vague  0.12 (0.13) 0.24 (0.22) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
1T-5R Jef rul - 0.15 (0.18) 0.32 (0.34) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
Jefind  0.13 (0.16) 0.28 (0.36) 0.01 (0.01) 0.01 (0.02) 0.01 (0.01)
500 reference 0.12 (0.13) 0.24 (0.22) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
vague  0.12 (0.13) 0.24 (0.21) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
N-SR Jefrul 012 (0.13) 0.25(0.22) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
Jefind  0.10 (0.12) 0.23 (0.21) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)

Table 21 — Simulation study 2. Coverage probability (and expected log-length) for the
mean structure parameters under Scenario 2, considering n = 50, 100 and
different distributions.

n Distribution Prior 5o 5y 5 33 B 55
reference  0.90 (1.56) 0.9 (0.29)  0.95 (0.28) 0.94 (-2.15) 0.92 (-2.15) 0.89 (-2.19)
vague  0.88 (1.49)  0.88 (0.24) 0.87 (0.23) 0.88 (-2.20) 0.89 (-2.20) 0.85 (-2.24)
T-SR Jef rul  0.73 (1.26)  0.82 (0.07) 0.77 (0.08) 0.85 (-2.39) 0.81 (-2.39) 0.75 (-2.45)
Jef ind 0.92 (0.10) 0.91 (0.12) 0.96 (-2.22) 0.94 (-2.23) 0.96 (-2.40)
n = 50 reference  0.859 (1.47) 0.87 (0.19) 0.84 (0.208) 0.89 (-2.23) 0.89 (-2.24) 0.85 (-2.29)
vague 091 (1.67)  0.91 (0.35) 0.89 (0.35) 0.90 (-2.10) 0.93 (-2.10) 0.88 (-2.12)
N-SR Jef rul  0.69 (1.15)  0.78 (-0.06) 0.72 (-0.06) 0.82 (-2.48) 0.78 (-2.49) 0.75 (-2.56)
Jef ind 0.96 (0.06) 0.90 (0.07) 0.99 (-2.18) 0.91 (-2.18) 0.94 (-2.34)
reference  0.93 (1.33)  0.96 (0.12)  0.94 (0.13) 0.92 (-2.33) 0.93 (-2.32) 0.94 (-2.38)
vague  0.94 (1.37)  0.95 (0.08) 0.91 (0.08) 0.92 (-2.37) 0.92 (-2.37) 0.95 (-2.41)
T-SR Jef rul  0.88 (1.15)  0.91 (-0.10) 0.81 (-0.11) 0.87 (-2.54) 0.87 (-2.54) 0.85 (-2.60)
Jef ind 0.94 (-0.15) 0.92 (-0.16) 0.91 (-2.40) 0.95 (-2.41) 0.91 (-2.58)
n = 100 reference  0.94 (1.34)  0.95 (0.05)  0.90 (0.05) 0.91 (-2.41) 0.91 (-2.40) 0.92 (-2.44)
vague 1 (1.56) 0.96 (0.19)  0.91 (0.20) 0.94 (-2.27) 0.94 (-2.27) 0.97 (-2.30)
N-SR Jef rul  0.85 (1.03)  0.86 (-0.22) 0.79 (-0.22) 0.83 (-2.65) 0.84 (-2.27) 0.80 (-2.72)
Jef ind 0.95 (-0.1)  0.93 (-0.10) 0.94 (-2.38) 0.96 (-2.38) 0.93 (-2.54)
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Table 22 — Simulation study 2. Coverage probability (and expected log-length) for the
mean structure parameters under Scenario 2, considering n = 250, 500 and
different distributions.

n Distribution Prior Bo o [ 3 B4 (s
reference  0.97 (1.44)  0.96 (0.11)  0.93 (0.127) 0.94 (-2.34) 0.95 (-2.34)  0.96 (-2.40)
vague  0.96 (1.40)  0.96 (0.08)  0.92 (0.10)  0.98 (-2.37)  0.93 (-2.36)  0.93 (-2.43)
T-5R Jef rul  0.81 (0.40)  0.83 (-0.96) 0.84 (-0.86) 0.78 (-3.34) 0.81 (-3.27)  0.89 (-3.41)
Jef ind 0.62 (-0.87) 0.65 (-0.81) 0.61 (-3.14)  0.62 (-3.06)  0.71 (-3.23)
n = 250 reference 0.95 (1.40) 093 (0.07) 0.94 (0.07) 0.93 (-2.40) 0.923 (-2.40) 0.96 (-2.43)
vague 097 (1.59)  0.97 (0.21)  0.95 (0.22) 0.96 (-2.26) 0.94 (-2.27)  0.98 (-2.30)
N-SR Jef rul  0.86 (1.07)  0.89 (-0.20) 0.82 (-0.18)  0.86 (-2.64) 0.85 (-2.64)  0.91 (-2.71)
Jef ind 0.95 (-0.06) 0.94 (-0.083) 0.94 (-2.37) 0.967 (-2.38) 0.96 (-2.55)
reference 0.9 (1) 0.88(-0.25) 0.84 (-0.24) 0.87 (-2.7) 0.87 (-2.69)  0.89 (-2.77)
vague  0.96 (1.318)  0.94 (0.02)  0.94 (0.01) 0.94 (-2.44) 0.89 (-2.45)  0.82 (-2.50)
T-SR Jef rul  0.73 (0.32)  0.78 (-0.99) 0.832 (-0.94) 0.86 (-3.40) 0.84 (-3.41)  0.88 (-3.47)
Jef ind 0.68 (-0.82) 0.614 (-0.78) 0.65 (-3.1)  0.62 (-3.0)  0.68 (-3.31)
n = 500 reference. 0.88 (0.99)  0.88 (-0.26) 0.82 (-0.26) 0.85 (-2.71) 0.85 (-2.72)  0.88 (-2.79)
vague  0.86 (1) 0.88 (-0.25) 0.80 (-0.25) 0.88 (-2.70)  0.86 (-2.7)  0.89 (-2.77)
N-SR Jef rul  0.83 (0.89)  0.86 (-0.35) 0.75 (-0.35) 0.84 (-2.79)  0.78 (-2.8)  0.841 (-2.87)
Jef ind 0.85 (-0.52) 0.77 (-0.52) 0.83 (-2.75)  0.79 (-2.75)  0.88 (-2.98)

Table 23 — Simulation study 2. Expected relative error (and standard deviation) of the
variance parameters for both Student-t and normal distributions considering

n = 50.
Scenario  Distribution Prior o? v
reference  0.41 (0.55)  0.19 (0 19) 0.31 (0.16)
TSR vague  0.88 (1.45)  0.20 (0.19)  0.76 (0.73)
Jef rul  1.02 (2.05) 023 (0.21)  1.15 (0.60)
Scenario 1 reference  0.82 (1.50)  0.274 (0.261) -
N-SR vague 1.48 (3.14)  0.353 (0.347) -
Jefrul  2.41 (7.34)  0.265 (0.233) -
reference  0.84 (0.75) 0.26 (0.2) 0.369 (0.3)
vague  1.91 (4.07) 025 (0.31)  3.50 (7.5)
T-SR Jef rul 174 (4.9)  0.57 (0.34)  2.09 (0.83)
Jefind  3.31 (7.72)  0.34 (0.34)  1.845 (0.87)
Scenario 2 reference  1.24 (1.77)  0.36 (0.22) -
vague 2.39 (5.82)  0.43 (0.18) -
N-SR Jef rul  1.98 (5.33)  0.60 (0.27) -
Jefind  4.12 (9.37)  0.37 (0.24) _

Table 24 — Simulation study 2. Expected relative error (and standard deviation) of the
variance parameters for both Student-t and normal distributions considering

n = 250.
Scenario  Distribution Prior o’ v
reference  0.425 (0.53)  0.20 (0 19)  0.33 (0.19)
T-SR vague 0.96 (1.34) 0.23 (0.29)  1.09 (1.3)
Jefrul 262 (3.94)  0.28 (0.34) 1.7 (0.97)
Scenario 1 reference  1.06 (2.85)  0.289 (0.257) -
N-SR vague 1.75 (6.10)  0.367 (0.345) -
Jef rul  3.45 (8.78)  0.260 (0.228) ;
reference  0.69 (1.24) 0.31 (0.25)  0.42 (0.35)
vague 1.86 (3.91) 0.27 (0.40) 5.64 (7.02)
T-SR Jefrul 313 (6.76)  0.40 (0.30)  2.26 (1.34)
Jefind  4.15 (7.24) 042 (0.35)  2.34 (1.45)
Scenario 2 reference  1.77 (3.74) 0.27 (0.19) -
vague 3.29 (8.52) 0.44 (0.16) -
N-SR Jef rul  3.24 (7.49) 0.4 (0.33) -
Jef ind ~ 4.89 (7.95) 0.3 (0.25) -
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Table 25 — Simulation study 2. Expected relative error (and standard deviation) of the
variance parameters for both Student-t and normal distributions considering

n = 500.
Scenario Distribution Prior o’ v
reference  0.41 ( 5) 0.19 (() 19)  0.31 (0.16)
T-SR vague  0.88 (1.45)  0.20 (0.19)  0.76 (0.73)
Jefrul  1.02 (2.05) 0.23 (0.21)  1.15 (0.60)
Scenario 1 reference  0.36 (0.59)  0.24 (0.15) -
NSR vague 1.24 (2.03) 0.33 (0.144) -
Jefrul  2.84 (5.17)  0.26 (0.156) -
reference  0.84 (0.75)  0.26 (0.2)  0.369 (0.3)
vague 191 (4.07)  0.25 (0.31)  3.50 (7.5)
T-SR Jefrul 174 (4.9)  0.57 (0.34)  2.09 (0.83)
Jefind 331 (7.72)  0.34 (0.34)  1.84 (0.87)
Scenario 2 reference  0.49 (0.70)  0.35 (0.3) -
vague 1.38 (2.23)  0.50 (0.35) -
N-SR Jef rul  2.45 (4.48)  0.67 (0.32) -
Jef ind 310 (5.50) 0.4 (0.36) -

Table 26 — Simulation study 2. Coverage probability (and expected log-length) of the
variance parameters for both Student-t and normal distributions considering

n = 50.
Scenario  Distribution Prior o’ v
reference  0.97 (0.89) 0.93 (1 03) 1 (2.55)
T.SR vague  0.42 (-0.01)  0.93 (0.90)  0.92 (2.45)
Jefrul  0.56 (0.35)  0.94 (0.90)  0.97 (2.63)
Scenario 1 reference  1.00 (1.35)  0.990 (1,376) -
N-SR vague 0.47 (0.18)  0.949 (1,544) -
Jef rul 0.54 (0.61) 0.929 (1,173) -
reference  0.95 (0.99) 0.93 (1.07) 1 (2.55)
vague  0.33 (0.01)  0.86 (0.97)  0.06 (2.41)
T-SR Jef rul  0.27 (-0.32)  0.58 (0.63) 0 (2.50)
Jefind  0.46 (0.52)  0.88 (0.52)  0.08 (0.52)
Scenario 2 reference  0.97 (1.39) 0.91 (1.25) -
vague 0.51 (0.20) 1.00 (1.71) -
N-SR jef rul  0.34 (-0.30)  0.31 (0.32) -
jefind 056 (0.70)  0.97 (1.53) -

Table 27 — Simulation study 2. Coverage probability (and expected log-length) of the
variance parameters for both Student-t and normal distributions considering

n = 250.
Scenario Distribution Prior o’ v
reference  0.97 (0.53) 0.93 ( 6)  0.95 (2.55)
T-SR vague 0.41 (1.34) 0.92 (0.72)  0.93 (2.40)
Jefrul 045 (3.94)  0.71 (0.64)  0.74 (2.51)
Scenario 1 reference  0.98 (1.53)  0.918 (1,123) -
N.SR vague  0.60 (0.31)  0.938 (1,37) -
Jef rul  0.61 (1.05)  0.866 (0,946) -
reference  0.97 (1.08) 0.97 (1.07) 1 (2.56)
vague 0.41 (0.14) 0.81 (0.79)  0.19 (2.34)
T-SR Jef rul  0.28 (-0.44)  0.51 (0.24) 0 (2.27)
Jefind 047 (0.64)  0.68 (0.65)  0.12 (0.64)
Scenario 2 reference  0.97 (1.53) 0.95 (1.19) -
vague 0.49 (0.30) 0.94 (1.59) -
N-SR Jef rul  0.16 (-0.65)  0.45 (0.24) -
Jefind 057 (0.75)  0.96 (1.40) -
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Table 28 — Simulation study 2. Coverage probability (and expected log-length) of the
variance parameters for both Student-t and normal distributions considering

n = 500.
Scenario Distribution Prior o’ 10} v
reference  0.85 (0.47)  0.85 (0.89) 0.98 (2.47)
T-SR vague 0.4 (0.09) 0.83 (0.77) 0.83 (2.43)
Jef rul 0.45 (0.67) 0.69 (0.68) 0.71 (2.57)
Scenario 1 reference 1 (0.89) 0.75 (0.66) -
N-SR. vague 0.54 (0.34) 0.73 (0.71) -
Jef rul 0.55 (0.75)  0.79 (0.62) -
reference  0.82 (1.05) 0.88 (0.89) 1 (2.54)
vague 0.35 (0.11)  0.83 (0.72) 0.22 (2.33)
T-SR Jef rul  0.17 (-0.41)  0.52 (0.65) 0 (2.31)
Jef ind 0.50 (0.62)  0.62 (0.64) 0.14 (0.45)
Scenario 2 reference  0.89 (0.78)  0.85 (0.93) -
vague 0.46 (0.18)  0.85 (0.88) -
N-SR Jef rul  0.50 (-0.77)  0.81 (0.74) -
Jef ind 0.5 (0.47) 0.86 (0.78) -
5
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Figure 12 — Simulation study 2. MSPE and log-length of prediction points under Scenario
1 (figures (a)-(b)) and Scenario 2 (figures (c)-(d)) for n = 50.
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Figure 13 — Simulation study 2. MSPE and log-length of prediction points under Scenario
1 (figures (a)-(b)) and Scenario 2 (figures (c)-(d)) for n = 250.
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Figure 14 — Simulation study 2. MSPE and log-length of prediction points under Scenario
1 (figures (a)-(b)) and Scenario 2 (figures (c)-(d)) for n = 500.
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C1 Further simulations results

In this section results about the 8 parameters is presented under different links,

sample size and prior specification.

n= 50 n= 100 n= 250
8-
2.0~
ol \ it : 10
9 . 1.5- + o { -
H
~ g L — i —~ i
<& H ] <& <&
i T H w10 o »
w w 1
« ¢ c 4 i i '
.
0.5 [}
o \ \ 0,01 \ 0.0 \ \ \
Normal PC Uniform Normal PC Uniform Normal PC Uniform
Prior Prior Prior
(a) (b) (c)
n= 50 n= 100 n= 250
51 H
4-
4- b
1.0 .
3- . & . 3 w
3 . ] . ] . e . :
< < $ : ' & 7 5
= = H H . =
w Ho ¢ : ) ¥
2 H
I 0.5
0- ‘ 0- 0.0 ‘ ‘ ‘
Normal PC Uniform Normal PC Uniform Normal PC Uniform
Prior Prior Prior
(d) (e) (f)

Figure 15 — Simulation study. Relative error for 3, under the GL link ((a)-(c)) and the
PP link ((d)-(f)) and different sample sizes.
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Figure 16 — Simulation Study. Relative error for 3, under the GL link ((a)-(c)) and the
PN link ((d)-(f)) and different sample sizes.
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Figure 17 - Simulation Study. Relative error for 55 under the GL link ((a)-(c)) and the
PN link ((d)-(f)) and different sample sizes.
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C2 Further results relative to parameter estimation and model ad-
equacy

In this section additional analysis of the bladder cancer dataset are presented.
These analysis include posterior densities histograms, trace and autocorrelation plots of
the parameters for the PN link with the PC prior, prediction results using the traditional

links and residual plots of the selected model.
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Figure 18 — Bladder cancer data. Trace and ACF plots for the model parameters consider-
ing the PN link with the PC prior.
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Figure 19 — Bladder cancer data. Posterior density for the fixed effects and skewness
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Figure 20 — Bladder cancer data. Diagnostic plots for the PN link under the PC prior.
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