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Resumo

Existem quatro sorotipos do virus da dengue, os quais tém infectado milhares de pessoas
todos os anos, apresentando-se desde formas assintomaticas até casos graves, que muitas
vezes pode levar a morte. Uma infec¢ao primaria pelo virus da dengue fornece protecao ao
longo de toda a vida para reinfecgoes de mesmo sorotipo, e apenas uma protecao parcial nos
primeiros meses para os demais sorotipos. Uma das hipoteses de aumento da gravidade da
dengue em infecgoes secundarias é que os anticorpos liberados durante a infec¢gdo secundéria

4

poderiam reforcar a doenca, este fenémeno é conhecido como “reforco dependente de
anticorpos” (ADE). Neste trabalho sdo apresentados dois modelos matematicos compostos
por equagoes diferenciais ordinarias nao-lineares para descrever o fendmeno ADE. No
primeiro modelo, estudou-se a dinamica entre as células-alvo, o virus da dengue e as células
plasmaticas. O objetivo é analisar o efeito da capacidade de suporte para a proliferagao
das células plasmaticas. Conclui-se que se o nimero basico de reproducao, Ry, for menor
do que a unidade e se a proliferacao das células plasmaticas for menor do que um valor
limiar, o virus da dengue sera eliminado. No entanto, mesmo que o niimero bésico de
reproducao seja menor do que um, mas com uma alta proliferacdo das células plasmaticas
é possivel a ocorréncia de ADE. Em suma, o modelo sugere que quanto maior for a
proliferacao das células plasmaticas maior serd a possibilidade de ocorréncia do ADE.
Para este modelo também fez-se uma comparacao entre a abordagem deterministica e
estocéstica considerando o algoritmo de Gillespie para simulacao estocastica. Por fim
para o segundo modelo, estudou-se de maneira mais detalhada o fenémeno ADE, com
enfoque em analisar a influéncia do aumento da producao das células B e T de memoria.
Observou-se que a proliferacao das células B de memoria ¢ a principal responsavel pela
ocorréncia do ADE. Por outro lado, a meméria imunolégica das células T tem um papel

fundamental para o controle e possivel eliminacao do virus.

Palavras-chave: Virus da Dengue. Refor¢o dependente de anticorpos. Células B de

mémoria. Células T de meméria. Simulagao estocastica. Algoritmo de Gillespie.



Abstract

There are four serotypes of dengue virus, which have infected thousands of people every
year, ranging from asymptomatic forms to severe cases, which often can lead to death.
Primary infection with the dengue virus provides lifelong protection against the same
serotype reinfections, and only partial protection in the first months for other serotypes.
One of the hypotheses of increasing the severity of the dengue disease in secondary
infections is that the antibodies released during the secondary infection could reinforce
the condition; this phenomenon is known as antibody-dependent enhancement (ADE).
This work presents two mathematical models composed of ordinary nonlinear differential
equations to describe the ADE phenomenon. In the first model, the dynamics between the
target cells, the dengue virus, and the plasma cells were studied. The purpose is to analyze
the effect of the carrying capacity for the proliferation of plasma cells. It is concluded that
if the basic reproduction number, Ry, is less than one and if the expansion of plasma cells
is less than a threshold value, the dengue virus will be eliminated. However, even if the
basic reproduction number is less than one, but with a high proliferation of plasma cells,
the ADE occurence is possible. In short, the model suggests that the higher the increase of
plasma cells, the vaster the possibility of ADE occurrence. For this model a comparison was
also made between the deterministic and stochastic approaches considering the Gillespie
algorithm for stochastic simulation. Finally, in the second model, the ADE phenomenon
was studied in more detail, with a focus on analyzing the influence of increased production
of memory B and T cells. It was observed that the proliferation of memory B cells is the
main responsible for ADE occurrence. On the other hand, the immune memory of T cells

plays a crucial role in controlling and possibly eliminating the virus.

Keywords: Dengue virus. Antibody-dependent enhancement. Memory B cells. Memory T

cells. Stochastic simulation. Gillespie algorithm.
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Introducao

A Dengue é uma das arboviroses mais comum no mundo, o virus da Dengue
(DENV) ¢é transmitido durante a picada do mosquito fémea, principalmente das espécies
Ae. aegypti e Ae. albopictus. A Dengue é amplamente distribuida em regioes tropicais e
subtropicais, fatores como chuva, temperatura, humidade relativa favorecem o desenvol-
vimento e a proliferagdo dos vetores transmissores da doencga. Segundo a Organizagao
Mundial de Sauide, esses mosquitos infectam aproximadamente 390 milhdes de pessoas por
ano. Nos dois ultimos anos, cerca de 2,5 milhdes de casos de Dengue foram reportados no

Brasil.

Ha quatro sorotipos distintos do virus, DENV-1, DENV-2, DENV-3 e DENV-4,
os quais possuem 60%-80% de homologia entre si. Infec¢goes primarias por DENV fornecem
uma imunidade por toda a vida contra este mesmo sorotipo. Entretanto, a imunidade
cruzada para outros sorotipos fornece somente uma protecao parcial e temporaria. Infecgoes
secundarias por outros sorotipos aumentam o risco de desenvolver a forma severa da doenca.
Os mecanismos envolvidos no processo da severidade da dengue nao sao totalmente
compreendidos. A imunidade cruzada pode ser o principal desafio para a criacdo de uma

vacina tetravalente efetiva contra o DENV.

Os anticorpos de um sorotipo especifico do virus da dengue tém um papel
importante no controle da infeccao viral. No entanto, em alguns casos esse agente protetivo
pode contribuir para a replicagdo do virus. Esse fendmeno é conhecido como reforgo
dependente de anticorpos (ADE, em inglés), que é o objeto de estudo deste trabalho. Este
fenémeno foi primeiramente descrito por Hawkes em 1964, e somente em 1977 o ADE
obteve relevancia cientifica com a associac¢ao entre o conceito de reforco e da dengue severa
detalhada por Halstead and O’rourke.

O fenomeno ADE pode ser explicado da seguinte forma: quando uma pessoa
¢é infectada pela primeira vez por algum sorotipo da dengue, a resposta imune humoral
do hospedeiro produz anticorpos neutralizantes especificos contra esse sorotipo da pri-
meira infeccdo. Apds essa infeccdo primaria ser eliminada, células plasmaticas produzem
anticorpos especificos contra o sorotipo primario, os quais persistem no organismo devido
a memoria imunologica. Se esta pessoa ¢ infectada uma segunda vez com um sorotipo
diferente, anticorpos da infec¢do primaria se ligam ao virus formando o complexo imune,
mas nao conseguem neutraliza-lo. Além disso, macréfagos sdo recrutados para eliminar
este complexo imune. Eles internalizam o virus nao neutralizado e se tornam infectados
durante o processo de eliminagao do complexo. H& evidéncias que os receptores-Fc, os

quais sao proteinas na superficie de algumas células como macréfagos e mondcitos que
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se ligam ao complexo imune podem facilitar a entrada do virus na célula e reforgar a

replicagao viral.

Nesta tese, propomos e analisamos dois modelos matematicos compostos por
Equagoes Diferenciais Ordinarias para descrever a interagao de células especificas e o

DENYV na ocorréncia do fenémeno ADE.

No Capitulo 1, consideramos um modelo matematico para estudar a interacao
entre DENV, células plasméaticas e macréfagos. Neste primeiro modelo analisamos o efeito

da capacidade de suporte da proliferacao de células plasmaticas.

No Capitulo 2, foi proposto a comparacao de duas abordagens de modelagem
matematica: deterministica e estocastica. Para isto, consideramos o modelo deterministico

proposto no Capitulo 1 e a algoritmo de simulagao estocéstica proposto por Gillespie (2).

No Capitulo 3, apresentamos o segundo modelo matematico com o propdsito
de estudar o efeito da proliferacao das células B e T de memoria durante uma infeccao

secundaria por virus heterologo.

As conclusbes gerais e perspectivas futuras sao apresentadas no Capitulo 4.
Os Capitulos 1 a 3 foram escritos em inglés em formato de artigo para publicagdo em

periodicos internacionais.
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1 A mathematical model to describe antibody-
dependent enhancement and assess the ef-
fect of limiting cloning for plasma cells in

heterologous secondary dengue infection

Abstract. We propose a mathematical model to study the antibody-dependent enhancement
(ADE) phenomenon. Here we explored the interaction between macrophages, dengue virus,
and plasma cells, especially the effect of a limitation on plasma cell proliferation, which
occurs due to immunological memory. We determine the existence regions for the equilibrium
points of the model and their stability. Numerical simulations show that ADE can occur
even when the value of Ry is less than one. Sensitivity analysis was performed to analyze

the most influential parameters on the thresholds Ry and Q).

Keywords: Mathematical modeling. Sensitivity analysis. Antibody-dependent enhancement.

Severe dengue.

1.1 Introduction

Dengue disease is one of the most common arboviruses in the world; the dengue
virus is transmitted by Aedes mosquito bite. In tropical and subtropical regions, the Aedes
mosquito is widely distributed, mainly Ae. aegypti and Ae. albopictus. These mosquitoes
infect approximately 390 million people every year (3). Between 2010 and 2016, more than
100 thousand dengue cases were reported to the World Health Organization (WHO) as

suspected or confirmed case in Brazil and Mexico.

There are four serotypes of dengue virus (DENV), DENV1 - DENV4, which
have 60%-80% homology to each other (4, 5). The main difference between them lies in
the subtle discrepancies in surface proteins of different dengue subtypes. These subtle
discrepancies generate a cross-reaction that can contribute to the severity of the dengue
infection. In general, a person that gets infected with a dengue virus for the first time
experiences an asymptomatic or milder infection. This first DENV infection leads their
immune system to mount a defense against all serotypes for only 2-3 months; after this, it
provides protection only for the Dengue-specific serotype. When this short time wanes,

patients with secondary dengue infections are at higher risk of severe disease (6).

The mechanisms involved in the dengue severity process are barely understood.
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Cross-reaction may be the main challenge for creating an effective tetravalent vaccine.
Borges et al. (2019) showed that post-vaccination enhanced DENV infection in macaques
could be detected in their model. It shows that a vaccine might increase the risk of severe
dengue in vaccinated individuals. Thus, it is essential to understand cellular mechanisms

associated with the DENV infection process and how to fight against this pathogen.

Antibodies of a specific dengue-virus serotype play a vital role in viral infection
control. However, this protective agent may play a beneficial role in virus replication; this
phenomenon is known as Antibody-Dependent Enhancement (ADE). Hawkes described it
in 1964 (8); however, only in 1977, the ADE phenomenon had scientific relevance with the
association between the concept of reinforcement and severe dengue detailed by Halstead
and O’rourke (1977).

The primary target cells of DENV are macrophages, dendritic cells, and monocy-
tes. Monocytes can control viral replication through phagocytosis, innate and adaptative
system stimulation, and antigen presentation during DENV infection (10). After the first
dengue infection, a person is protected from having a new infection with the same serotype
because memory cells can act quickly and provide an adaptative response (11). These
cells can remain in the body for many years or even throughout a lifetime (12). However,
DENYV infection control is not effective when a person gets a secondary DENV infection

but with a different dengue virus serotype from the primary infection.

The specific antibodies of the primary DENV infection start acting on the
secondary virus because they suppose it is the same primary dengue virus. This false
recognition induces a reinforcement of the new virus. More severe dengue cases have been
reported in secondary infections, such as dengue hemorrhagic fever (DHF) and dengue
shock syndrome (DSS), which often can lead the patient to death. (4).

Here we propose a mathematical model to describe the ADE phenomenon in
secondary dengue infection. We consider that plasma cells produce specific antibodies to the
antigen of the primary DENV infection. We also consider that they do not start producing
the specific antibodies to the second dengue infection antigen at the beginning of secondary
DENYV infection. In a simple way, we consider only the plasma cells, macrophages, and

the dengue virus as dynamical variables to investigate this phenomenon.

The paper is structured as follows. In section 1.2, a mathematical model is
described. In section 1.3, the analysis of the model is presented. We analyzed the existence
regions of the equilibrium points and their stability. In Section 1.4, numerical simulations
are performed to test the properties of the equilibrium points related to stability. Section
1.5 provides a sensitivity analysis of the parameters Ry and @) to evaluate the most
influential parameters on these thresholds. Section 1.6 shows a discussion about the ADE

phenomenon dynamics. Conclusion is presented in Section 1.7.
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1.2 Mathematical modeling

We propose a mathematical model that considers only four compartments
to study the ADE phenomenon. Memory B cells quickly differentiate into plasma cells
in contact with DENV (13). Plasma cell concentration is denoted by B, which releases
specific antibodies against the DENV of the primary infection. We assumed that plasma
cells are maintained at a constant reposition rate Kz and death rate pg. In the DENV
presence, they have a proliferate rate ap (1 — B/K) V', with K being the carrying capacity

for plasma cell proliferation.

The antibodies released by plasma cells can bind to the free DENV and form
the antibody-antigen complex. The naive macrophages, which are denoted by S, are
maintained constant through the repositioning rate Kg and death rate pg. These cells are
responsible for intake free virus by phagocytosis (11). The per-capita rate ay describes
this process. Moreover, macrophages also can neutralize the virus by opsonization and
internalization of the immune complex. This process is facilitated by Fc-receptors, which are
proteins found on the surface of specific cells, including macrophages (14). It is described
by the per-capita engulfment rate ac. We consider that each naive macrophage engulfs N

immune complexes.

However, facing a secondary dengue infection, the macrophages cannot neu-
tralize the antigen. In fact, among these macrophages, a portion p will become infected,
which are denoted by I, contributing to virion production. The virion concentration is
denoted by V.

We assume that some infected macrophages can neutralize the immune complex
and return to the naive class, which occurs at a rate o. They also have a higher per-capita
mortality rate pu; = pug + pq, where p, is the additional mortality due to DENV infection.
These infected macrophages release new virions at a per-capita virion production rate ~,
and py represents the per-capita death rate of the virions. Also, the DENV can infect
others cells, but here we are interested in investigating only the infection in macrophages.
Since many antibodies can bind to the free DENV to form the immune complex, there
would be a small amount of free DENV to infect other cell types. So, we are considering

that most of the DENV infection occurs via macrophages.

Considering all the hypothesis above, we have the following system of nonlinear

ordinary differential equations,
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Figure 1.1 shows a flow chart for model (1.1).
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Figure 1.1 — Flow chart for model (1.1). The solid arrows mean a change of state, while
dashed arrows represent only interference between the cells.

Table 1.1 describes the variables of model (1.1), and their respective unit (vol
means an arbitrary volume unit). A summary of the parameters and their meanings can
be found in Table 1.2.

Variable Meaning Unit
B Plasma cells [B] /vol
S Naive macrophages [M] Jvol
I Infected macrophages [M] /vol
V Virions [V] Jvol
t Time T

Table 1.1 — Description of variables of the model (1.1).
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Parameter Meaning Value Unit Reference
Kp Production rate at rest of 40.0 [B]vol'T~! (15)
plasma cells
“B Per-capita mortality rate of 0.02 7! (16)
plasma cells
ap Per-capita proliferation rate of *3.0 x 1071 V] volT ™ Assumed
plasma cells
K Carrying capacity for prolife-  *8.0 x 103 [B] vol ™! Assumed
ration of plasma cells
Kg Production rate of naive ma- 6.8 x 10? [M]vol =71 (17, 18)
crophages
s Per-capita mortality rate of 0.017 7! (17)
naive macrophages
ac Per-capita engulfment rate of  *2.0 x 107 [B]™* [V] ' vol?T™'  Assumed
antigen-antibody complex
p Fraction of infected macropha- *3.6 x 1075 - (15)
ges
o Per-capita recovery rate of in- 0.2 7! (15)
fected macrophages
LT Per-capita rate mortality of in- 0.2 Tt (19)
fected macrophages
0% Per-capita releasing rate of vi-  6.12 x 10* (M) [v]T! (20, 17)
rions by infected macrophages
ay Per-capita phagocytosis rate 8.0 x 1079 [M] ! volT ! (15)
by naive macrophages
v Per-capita inactivation of viri- 3.3 7! (21)
ons
N Number of antigen-antibody 3.0 (M)~ [V] (15)
complex engulfed by ma-
crophages

Table 1.2 — Parameter description and values adopted in simulations of the model (1.1).
(We used vol = mm® and T' = day. *Value allowed to vary.)

The solutions of the system (1.1) with an initial condition in €, which is given

by

Kg 1K }7 (1.2)

K
Qz{Pz(B,S,I,V)ERi:B)B,S+I<,V<
KB s Hv s

are always positively limited.

Proposition 1.1. The set §2 is positively invariant with respect to system (1.1), considering
wr > ps and K > (Kg/ug).

Proof: See appendix 1.A. n
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1.3 Model Analysis

We determine the equilibrium points of the system (1.1) and their stability.
The equilibrium points are found, taking the derivatives of the system (1.1) equal to zero.
Supposing V' = 0 in (1.1) we obtain the virions-free equilibrium (VFE) point, which is
denoted by PY, and assuming V' > 0 in (1.1), the virions-presence equilibrium (VPE)
point, which is denoted by P*, is established. Through bifurcation diagrams, we show the

existence regions for P* and its stability.

1.3.1 Virions-free equilibrium point - P

The VFE point P has the coordinates (B°, S°, I',V°) = (Kp/ug, Ks/us,0,0).
The characteristic polynomial of the Jacobian Matrix of system (1.1) evaluated at this
point is p(A) = (A — up)(A — 1s)(A2 + p1A + po), in which

pr =0+ pr+ py + S%ay + NaeB°S°
po = (0 + pr)(S%ay + py)(1 — Ry),
and

P
- N
Kp Ks o+ ur

(1.3)

s
ay— + [y
s

The threshold R, displays a net amount of new virions produced by one invasive virus
in the early stages of secondary DENV infection. Biological details of this parameter are
found in Gémez and Yang (2019).

Thus, to guarantee the local stability of P°, we need that all eigenvalues of
Jacobian Matrix evaluated at P° have a negative real part (22), that is, all roots of p(\)
have a negative real part. As follows, using Routh-Hurwitz criteria, the local stability of

PY is asserted in Theorem 1.1.

Theorem 1.1. The VFE point P° is locally asymptotically stable (LAS) if Ry < 1 and
unstable if Ry > 1.

Proof: The Routh-Hurwitz criteria for a second-degree polynomial are p; > 0
and py > 0. Since all parameters are non-negative, it is easy to see that py is positive and
po > 0 when Ry < 1. So, the local asymptotic stability of P° is assured if Ry < 1 and if
Ry > 1 the VFE point P° is unstable. [

1.3.2 Virions-presence equilibrium point - P*

The VPE point P* = (B*, S*, I*,V*) is obtained by solving a system equivalent
to the system (1.1), given by



Chapter 1. A mathematical model to describe antibody-dependent enhancement and assess the effect of

limiting cloning for plasma cells in heterologous secondary dengue infection 22

( *

B
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0 = pacB*V*S* — (0 + up)I*

(0 = pyI* — N(o+ pp)I* — payS*V* — puy V*

We found the coordinates,

S*:So_ﬂl*
Ks
ppp (B* — B°) (ayS® + py)

B* Py ] 1BpOy fir
o+papBs (1- =) | L — — N| 4 EBEVEL (B« _ po
7+ oo ( K)[(U+MI) fs ( )

¥ _ R0
v he_(B *B) |
aB 1_B7 B*
(1-%)

and B* is the root of the polynomial z(B*), which is given by

I* =

with coefficients
R
by= =2
BO
b1 = R(] + f - Q
by = B°(Q — 1),
and
Kppy prpoc

Q= aplavKs + pvis) (@ + 1)

The parameter () can be interpreted as the ratio between the mortality rate of
infected macrophages and the proliferation rate of plasma cells; it is called ADE weakening
factor during DENV infection (15).

Notice that, for K >> 1 we can assume z(B*) = (Ry — Q)B* — B*(Q —1) = 0.
Thus, we get only one steady state P* = (B*, §* I*, V*) where B* = B°(Q —1)/(Ry — Q)
and B® = Kp/up, which is the same steady state P* presented in Gémez and Yang (15).

The VPE point P* stability is determined by analyzing the characteristic
polynomial of the Jacobian Matrix of the system (1.1) evaluated at this point, given by

g(N) = M+ g3\’ + X + @\ + qo, (1.6)
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wherein the coefficients are defined in Appendix 1.B. Due to the complexity of the
coefficients in ¢(\), we analyze with more details the existence regions for P* and its

respective stability with respect to the parameters () and R.

1.3.2.1 Existence regions for the VPE point and its stability

To analyze the VPE existence regions, we explore the existence regions for B*
varying Ry and ). As we presented in the previous section, the equation (1.5) shows a
second-degree polynomial with coefficients b;, j = 0,1, 2. Descartes’ rule of signs provides
that z(B*) can have only one positive root when ) > 1 and zero or two positive roots if
0 < Q < 1. However, we are interested only in roots belonging to the interval [B°, K[ to

obtain all non-negative equilibrium variables.

Notice that, for @) = 0, we have the following roots for z(B*): B} = K and
B} = B°/Ry. According to the value of Ry, Bi may be higher or less than B? or K. Figure

1.2 shows all the possibilities of position for this specific root.

BO BY
Ry>1 7<Ro <1 Ro<f<1
0 po B B K BY B
Ry Ry Ry

0

Figure 1.2 — Position of the root T when () = 0, according to the value of R,.
0

So, we start from () = 0 and analyze the existence regions for B* varying the
parameter () and considering three cases: (a) Ry < (B°/K) < 1, (b) (B’/K) < Ry < 1,
and (c) Ry > 1.

RO
1.3.22 (a) Case 1: Ry < % < 1

When Ry < (B?/K) < 1, the value of the root (B"/Ry) is greater than K, so
the bifurcation diagram is located above the range [B°, K[ when 0 < Q < 1. Besides that,
for Q > 1, there is only one positive root, which is less than B°. Thus, there is no positive

root belonging to [B°, K[, which implies that the plasma cell dynamics can converge to

B® because of Ry < 1. Figure 1.3 shows this behavior.
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B*A

BO

0 Q
BO
Figure 1.3 — Bifurcation diagram for B* with respect to Q when Ry < e

BO
1.3.2.3 (b) Case 2: X < Ry <1

In this case, there may be two VPE points, which we will denote by P* =
(B*,S*,I*,V*) and P* = (B*,S*,I*,V¥) with B* < B*. Consider Q = Q,_, with
: B B\

= = _9Ry— +2¥° 1.

and ¢ = B"Ry(Ry — 1)(B" — K). Notice that, ¢ > 0 because of Ry < 1 and B? < K.
For @ = Q+7_, the two positive roots for z(B*) are the same, which is denoted by
B} = B* = B*. However, when @) = Q., the root B* does not belong to [B°, K[, because

0 A
B*:E_I_Bi_QJfK:BO_@’
2 2Ry 2Ry Ry

which is less than BY. On the other hand, if Q = Q,, the root B* is higher than B°

because of R
KL B QK

B* b _ .
2 " 2R, 2Ry Ry

Therefore, if 0 < Q < Q_, there are two positive roots for z(B*), which are
BY and B*, but if Q_ < Q < 1, there is no root belonging to the interval [B°, K[. We
cannot state if the roots belong to the interval [B°, K[; we only know that they are higher
than B® when 0 < Q < Q_. On the other hand, if (B°/K) < R, < 1, we have that
(B°/K) e [B", K[, so the two roots will be in [B°, K[. Figure 1.4 shows a bifurcation
diagram for B*, according to the value of @) and considering (B°/K) < Ry < 1.
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B - .
0 Q- Q

BO
Figure 1.4 — Bifurcation diagram for B* with respect to @) when e < Ry < 1.

Concerning the stability of VPE points, P* and P, through numerical si-
mulations, we verified that the coefficients ¢; and ¢y of the characteristic polynomial

q(\) are negative for P*. For PY, all Routh-Hurwitz criteria were satisfied. Figure 1.5

4
shows all steady states and their respective stability, according to the value of () and
(B'/K) < Ry < 1. We fixed B® = 2000, K = 8000, and Ry = 0.1. Numerically we verified
the real part of all eigenvalues of the Jacobian Matrix of the system (1.1) evaluated at
point P*. If all eigenvalues had the negative real part, we mark the coordinate of the VPE
in blue, representing that it was stable. Otherwise, we designed this point in red color to
represent instability. In all bifurcation diagrams that show a numerical example of the
behavior for B* according to the value of ), we use red and blue colors to represent the

stability of the point B*.

10000
8000
' 6000

40007

A

2000_._.______________._._.______________._._._______

0 005 01 015 02 025 03 035
Q

Figure 1.5 — Bifurcation diagram for B* according to the value of Q, with B® = 2000,
K = 8000, and Ry = 0.1.
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1324 (c): Ry>1

Notice that z(B%) = (B/K)(K — B°)(Ry — 1) > 0, 2(K) = —Q(K — B®) <0,
and z(0) = B°(Q — 1) < 0. By Bolzano’s theorem, there exist a root B* € ]0, B°[ and
other root B* € |BY, K[. Thus, as z(B*) is a second-degree polynomial, we conclude that

there is only one root in [BY, K.

Figure 1.6 shows a diagram with the behavior of B* according to the value of

Q). We can see that B* approaches BY as we increase Q.

B*A
K

B ! ;
0 Q
Figure 1.6 — Bifurcation diagram for B* with respect to Q when Ry > 1. The arrows
indicate that B* is the unique attractor.

According to the local stability, the VFE point P is unstable, and the VPE
point P* is locally asymptotically stable. In fact, through numerical simulations, it was
verified that Routh-Hurwitz criteria are satisfied. Figure 1.7 shows a bifurcation diagram
with the steady state belonging to [B°, K[, with Ry = 1.2, BY = 2000, and K = 8000.
Again, the blue color represents when VPE point P* is locally asymptotically stable, and

the red color represents when VPE point P* is unstable.
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Figure 1.7 — Bifurcation diagram for B* with respect to Q when Ry = 1.2, K = 8000, and
B° = 2000.

Therefore, if Ry > 1, there is a unique VPE point. For 0 < Ry < 1, we have two
cases: if Ry < (BY/K) < 1 then there is only the VFE point; and when (B°/K) < Ry < 1,
we may have two VPE points or only the VFE point, according to the value of Q). Figure

1.8 shows existence regions for all steady states according to the values of Ry and Q).

01

Figure 1.8 — Existence region diagram for all steady states of the model (1.1), according
to parameters Ry and Q).
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1.4 Numerical simulations

In this section, we show some numerical results. For instance, we verified the
dynamical trajectories for all populations according to the initial virus inoculation and
the value of Ry. Also, we analyze the effect of plasma cell carrying capacity and the stable

viral load value (V) when Ry < 1.

In the previous section, we presented that the existence of positive steady
states for all populations is related to the value of Q_, which depends on the value of Ry
and some other parameters, among them the parameter K. To evaluate the effect of the
carrying capacity K in the amount of load viral, we analyze case (b) (in section 1.3.2.3),
in which the equilibrium P} is locally asymptotically stable. For this, we used different
values of K and all other parameters fixed. It was verified the viral load V7 and the time
it takes for the system to stabilize, which is denoted by t*. Table 1.3 shows these values

which are the units of .

K Viral load - V} t*
4B° 1,971 x 10°  331,1
8B 2,390 x 10°  110,4
10B° 2,490 x 108 104,6
20B° 2,680 x 108 78,3
40B° 2,776 x 108 78,2
80B° 2,823 x 108 74,3

Table 1.3 — Stable viral load and time spent to reach the stability for different values of K.

For the case K = oo, the viral load is V® = 2.8710 x 10%, as presented in
Gomez and Yang (2019). Notice that, as we increase the value of K, the value of viral
load tends to V* and the time spent decreases. Thus, the lower the carrying capacity K,
the lower the stable viral load, and the time required will be much longer for the system

to stabilize.

To illustrate the different VPE point existence cases, we use the values of
parameters, which are given in Table 1.2, and we vary only p and ag. This way, we are
able to reach Ry within the three cases ((a) : 0 < Ry < (B°/K), (b): (B°/K) < Ry < 1,
and (c): Ry > 1) and @ greater than or less than one.

For the case (B/K) < Ry < 1, we assumed p = 3.5x107° and ap = 5.0x 1071,
so that Ry = 0.5797 and Q = 0.0836 < Q_(R,) = 0.1124. Thus, we have three equilibrium
points, P’ (LAS), P* (unstable), and P¥ (LAS). We consider as initial condition the point
P*+(1, which is given by P* = (B*,S* I*,V*) with B* = 4.0482x10%, S* = 2.9818x10°,
I* = 8.6548 x 103, V* = 4.0970 x 107, and 1 is a vector with all four entries equal to one.

Assuming ¢ = 1, in Figure 1.9 all variables converge to their respective value of VPE point
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P¥, but if ¢ = —1, all populations converge to their respective value of VFE point PY.
Figure 1.10 shows the case with ( = —1.

Considering ag = 3.0 x 107!, we have Q = 1.3937. As Q > Q_(Ro) =0.1124,
there is only the VFE point, P°. Simulating the dynamic system with an initial condition
(B(0) = BY,S(0) = S° I(0) = 0,V (0) = 1.0x 10'), the system take around three hundred
days to converge to VFE point P°. As this case is analogous to the Figure 1.10 the graphs
are not shown here. So, even with a high virus inoculation, the population dynamics

converge to the VFE point P°, controlling the ADE phenomenon.

5
10000 3210
VA : W/\/w
o 5000 w 1
0 0
0 500 1000 0 500 1000
Time (days) Time (days)
4 8
4 x10 4 x10
—2 ‘J\/\/‘-— > 2 _J\/\"—
0 0
0 500 1000 0 500 1000
Time (days) Time (days)

Figure 1.9 — Simulations of system (1.4) with (B°/K) < Ry < 1 and initial condition given
by (B* +1,S* + 1,I* +1,V* +1).
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Figure 1.10 — Simulations of system (1.4) with (B°/K) < Ry < 1 and initial conditional
given by (B* —1,5* —1,I* —1,V* —1).
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Figure 1.11 — (a) Convergence of dynamic trajectories B(t), I(t), and V (), for the case
BO/K < Ry < 1. The blue and green colors represent that trajectories
converge to the equilibrium point P} and PP, respectively. The red point
represents the equilibrium P* and the cyan color represents P. (b) Same
graph as item (a) but restricted to a smaller region.

Figure 1.11 shows that the attraction region for the equilibrium point P* is
much larger than the attraction area to the free-equilibrium point P°. We randomly chose
the initial condition B(0), S(0), 1(0), and V(0) inside 2. The dynamical trajectories
approach the curve in black and then converge to the respective steady-state; this occurs
because the unstable equilibrium point (in red) has three negative real eigenvalues and
only one positive real eigenvalue, which means that te he unstable manifold has dimension

1, and the stable one dimension 3.

In the case Ry < (B°/K) < 1, there is only the steady state P°. We consider
ac = 7.0 x 1077, which leads us to Ry = 0.2161 < (B°/K) = 0.25. Indeed, even with a
high DENV inoculation, the dynamic converges to VFE point P". The only difference lies
in the time spent for the system to stabilize. With a low DENV inoculation, the dynamical
trajectory reaches out to the VFE much faster (around two days) than when a high DENV

inoculation (around one hundred days) is assumed. Again, the behavior is analogous to
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the case presented in Figure 1.10, so we do not show the graphs here.

Last, assuming p = 8.0 x 107° and ap = 3.0 x 10~ we have Ry = 2.2745 and
(@ = 3.1855. In this situation, for any value of (), we have only one VPE point P* and the
steady state P°. If the initial condition is (B(0), S(0),1(0),V(0)) = (B S°,0,1), with
BY = 2000 and SY = 4.0 x 10°, the trajectory of the dynamic system (1.1) converges to
the VPE point P*. Figure 1.12 shows that even a lower viremia the ADE is established.

5
3000 4210
m 2500 w2
2000 0
0 100 200 0 100 200
Time (days) Time (days)
4 9
15 x10 5 %10
10
— =1
5
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0 100 200 0 100 200
Time (days) Time (days)

Figure 1.12 — Simulation of system (1.4) with Ry > 1 and as initial condition the VFE
point P°, except for V, which we assumed V(0) = 1.

1.5 Sensitivity analysis

Sensitivity analysis (SA) is a method for quantifying uncertainty in any model.
The goal of SA is to identify inputs of a model and quantifying how the input uncertainty
impacts the model outcome (23). Here, we analyzed two different approaches: Global and

Local sensitivity analysis.

In order to perform the global sensitivity analysis, we use the Latin Hypercube
Sampling (LHS), which belongs to the Monte Carlo class of sampling methods, and the
Partial Rank Correlation Coefficient (PRCC) to evaluate the strength of a linear association
between the input and output. To implement the LHS scheme, firstly, we identify the
uncertain parameters that we would like to analyze. Secondly, we specify the probability
density or distribution function (pdf) for each LHS parameter and the baseline values or the
range of values for the parameters. After that, we choose the sample size for our analysis,

for instance, IN,, which we define as the number of simulations. The choice of N value is not
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arbitrary; it depends on the size N, of uncertain parameters (24, 25). After that, we divided
the sample for each parameter into /Ny non-overlapping equiprobable intervals. Thus, the
sampling distribution of all values for each LHS parameter reproduces the respective pdf
shape. Each equiprobable interval of each parameter is randomly sampled once. Moreover,

each parameter is sampled independently, so the parameters are uncorrelated (26).

Therefore, we obtain a LHS matrix, which size is Ny x N,,. Note that the values
of this matrix are random. There is no order for the values. After N, simulations, this
matrix produce an N, outcome measure. To perform PRCC, we rank the LHS matrix
and the outcome measure (for more details see (23, 26)). The PRCC value belongs to the
interval [-1, 1]. The closer the PRCC value to the edges of this range is, the more strongly
the LHS parameter influences the outcome measure. A negative sign of the PRCC value
indicates that the parameter is inversely proportional to the outcome measure. A positive
sign indicates that the LHS parameter is directly proportional to the outcome measure.
To perform the LHS/PRCC method, we consider the package “pcc” implemented in the R
language, which is a free and open-source language (27). We assess the influence of each

parameter that composes the parameters Ry and @), so we carry out a sensitivity analysis.

Here, we consider that the production and mortality parameters of plasma
cells, macrophages, and the dengue virus follow a normal distribution with a mean equal
to the value available in Table 1.2 and a standard deviation of 10% of the mean value
of each parameter. For the other parameters, we adopted a uniform distribution in the
interval [0, 1]. Besides that, we divide the range of each parameter into 1.0 x 10* parts, so
we have N, = 1.0 x 10%, N, = 10 for the parameter (), and N, = 12 for the parameter Ry,
in order to construct the Ny x N, LHS matrix. Table 1.4 summarizes the distribution of
each parameter considered. All histograms of each sampled parameter are presented in
Appendix 1.C.
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Parameter Distribution
ac U(0,107°)
Kp N (40, 4)
1B N(0.02,0.002)
Ks N (6.8 x 10%,680)
s N(0.017,0.0017)
N(6.12 x 10*,6120)
U(0,1)
U(0.2,1)
fir Un,1)
N U(1,10)
ay U107°1)
[y N(3.3,0.33)
ap U107 1)

Table 1.4 — Probability distribution assumed for each parameter that compose Ry and Q).
N (m,v) means Normal distribution, where m is the mean and v the variance
of the distribution. U(a, b) stands for Continuous Uniform distribution on the
interval [a, b]. To guarantee that always u; > pg, we assumed 1 = max yig,
where ug has the distribution N (0.017,0.0017).

Parameter Range Mean Error
ac [0,1077] 0.5 x 107° 0.5 x 107°
Kp [23,57] 40 17

pp (d) [0.01,0.03] 0.02 0.01
Kg [3600, 10000] 6800 3200
s (d) [0.009, 0.025] 0.017 0.008
y [31900,90500] 61200 29300
p [0,1] 0.5 0.5

o (d) [0.2,1] 0.6 0.4

pr (d) [0.025,1] 0.5125 0.4875
N [1,10] 5.5 4.5
ay [107°,1] 0.5 0.5

py (d) [2,4.6] 3.3 1.3
ap [10719,1] 0.5 0.5

Table 1.5 — Parameter values considered to the local sensitivity analysis. Here, we assumed
as “Error” the distance between the mean value and the limits of the respective

interval.
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To perform the Local Sensitivity Analysis (LSA), we based on the work of
Yang (2001). Considering H; as the derivative of Ry with respect to parameter ¢ and L; as

the derivative of () concerning parameter j, we have

oR 0
H-T ico amd L,- %9

01 dj
Where@:{aC7KBaKSaMB)MS?V?:OvNaO-HuIaaV7ﬂ’V} andF:{aCaKBvK57MBaMS7p70-7

Hr, v, Uy, aB}~

jer, (1.8)

We evaluated the matrices L and H considering the mean values presented in
the third column of the Table 1.5, this values are given in the second column of Table
1.6 and Table 1.7, respectively. We denoted that as “Derivative”. We call “Error” the
distance between the edge and the mean value of the parameter interval. The Error values
are presented in the fourth column of Table 1.5. In order to assess the local sensitivity
analysis of the parameter Ry, we multiply H|e and the respective Error. Also, we weight
these values with the highest absolute value of H|g x Error. We denote these values
as “sensitivity”. After that, we scaled these sensitivity values, so the maximum value of
LHS/PRCC analysis was the maximum sensitivity value. We denoted that as “scaled

sensitivity” in order to compare both methods.

The procedure is analogous in order to assess the local sensitivity analysis of
the parameter (). Figures 1.13 and 1.14 show the results of the sensitivity analysis of both
methods.

Parameter Derivative Sensitivity Scaled Sensitivity
Kp 2.23559 x 107? 3.8005 x 107 0.2906912
[y 2.70976 x 1078 3.52269 x 107® 0.2694422
o —8.03807 x 107%  —3.21523 x 1078 —0.2459253
p 1.78847 x 1077 8.94235 x 107® 0.6839792
ac 1.78847 x 1072 8.94235 x 1078 0.6839792
ap —1.78847 x 1077 —8.94235 x 107® —0.6839792
ay —1.78844 x 1077 —8.9422 x 1078 —0.6839677
Kg —1.31503 x 107" —4.2081 x 1078 —0.3218676
L —8.6792 x 10711 —6.94336 x 107'%  —5.310039 x 107°
[ 9.41042 x 1078 4.58758 x 1078 0.3508931

Table 1.6 — Local sensitivity analysis of the parameter Q).
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Parameter Derivative Sensitivity Scaled Sensitivity
ac 1.09999 x 10® 549.933 0.7797121
Kp 13.7498 233.747 0.3314138
1B —2.74997 x 10° —274.997 —0.3898993
Kg 1.33452 x 107%  4.27047 x 107®  6.054805 x 107°
[ —0.533808 —4.27047 x 107%  —6.054805 x 10~°

8.98862 x 1073 263.366 0.3734085
1.10021 x 10® 550.103 0.7799531
—494.475 —197.79 —0.2804328
I —494.475 —241.056 —0.3417767
N —1.99997 x 1072 —8.99985 x 1072 —0.0001276027
oy —1.09997 x 10° —549.984 —0.7797844
Ly —2.74992 x 107 —3.5749 x 107%  —5.068604 x 107°

Correlation value

Table 1.7 — Local sensitivity analysis of the parameter Rj.
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Figure 1.13 — Comparison between LHS/PRCC and LSA to the parameter Q).
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Figure 1.14 — Comparison between LHS/PRCC and LSA to the parameter Ry.

From Figure 1.14, we observe that a (0.77971), p (0.78000), and ay (-0.77978)
have higher PRCC absolute values than the other parameters. So, . and p are the most
influential parameters in the threshold Ry with a direct correlation and «y with an inverse
correlation. Similarly, p (0.6839792), ac (0.6839792), ap (-0.6839792), and ay, (-0.6839677)
have higher PRCC absolute values in Figure 1.13.

Furthermore, it can be seen that some parameters in both Figures 1.13 and 1.14
have correlation values that are not similar between the LHS/PRCC and LSA methods.
This difference occurs because we consider these parameters to have normal distributions,
and we also consider a standard deviation of 10% of the mean value. Thus, we have a
low variation of these parameters. The sampled values are more concentrated around the
mean value when applying the LHS/PRCC method, while with the uniform distribution,
we can capture a greater variation in the considered interval. It can be seen that for some
parameters with a normal distribution, the LHS/PRCC method has lower correlation
values compared to the LSA method. Thus, the correlation values in both methods were

not close for parameters that have a normal distribution.

About the basic reproduction number, the rate of engulfment of the immune
complex by naive macrophages, a¢, has a little bit higher influence than the fraction p of
naive macrophages that will become infected. Also, the process of phagocytosis of naive
macrophages is the most influential parameter in an inverse correlation with Ry. For ADE
weakening factor, ), we conclude that a¢, p, and ap are the most influential parameters.
The per-capita rate of phagocytosis by naive macrophages has a similar but slightly lower

value than the ones mentioned before.

Therefore, considering the specific parameter range presented in Table 1.4 we

conclude that a¢, p, and ay are the parameters with the most significant influence on
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both Ry and () parameters, as well ap in the parameter ().

1.6 Discussion

We proposed a mathematical model to describe the ADE phenomenon in
secondary dengue infections, considering that plasma cells have a limited proliferation.
A constant introduction of a carrying capacity K to plasma cell proliferation limited
the possible regions VFE points existence, compared to the model considering K = o0
presented by Gomez and Yang (2019). Their work showed that according to the value of
@ and Ry, they could have an attractor point, a VFE point, and a unique VPE point.
If 0 < Ry < 1and @ < Ry, they observed that the model had only the VFE (unstable)
and one attractor point, but if 0 < Ry < 1 and ) > Ry, then there only was the VFE
point (stable). In fact, from the equation (1.7), if K — oo then O_ — Ry, in that case,
the upper root B7 is no longer an equilibrium point, and we had a unique VPE point B*,

which is unstable when Ry < 1, as presented by Gémez and Yang (2019).

Also, increasing the carrying capacity of plasma cell proliferation, then the
value (B°/K) decreased, consequently more significant was the existence region for the
three steady states (P¥, P*, and P°). The threshold @) determined the existence region of
these three equilibrium points. The higher the value of Q_, the larger the existence region

for P¥ and P*. This variation in Q_ is analyzed in Figure 1.15.

Lo
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0.6 : _

o 6 ~— K=50000
0.4/ L K=8000
0.2 ;

| L K=4000
00—~ — ————
00 02 04 06 08 1.0 — K=3000
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Figure 1.15 — Graphic of parameter Q- by varying R, for different values of carrying
capacity of plasma cell cloning. The value of K top to bottom is decreasing.

A constant limitation of the plasma cell proliferation carrying capacity suggests
that the possibility of the ADE phenomenon is slighter than the case with an unlimited
increase of plasma cells. Thus, if the carrying capacity of plasma cell proliferation is a finite
value, then the existence region for a positive VPE point is less than when the plasma

cells have an unlimited carrying capacity of proliferation.
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Therefore, if Ry is less than one, then VFE point P is locally asymptotically
stable; and it is unstable if Ry > 1. However, suppose the value of Ry is located between
the values (B°/K) and 1. In that case, we have the possibility of the existence of two
positive steady states, that is, with positive values for all populations, which are denoted
by P} and P*.

To make it clear, consider the value of Ry fixed and less than (B°/K). Regardless
of initial DENV inoculation and the value of ), the ADE failed to progress in heterologous
secondary dengue infection. In that case, the immune system was capable of eliminating
the DENV. On the other hand, if (B°/K) < Ry < 1, then initial DENV inoculation was
determinant for the ADE occurrence. So, even if the number of virions produced by only
one DENV introduced in a population composed only of uninfected macrophages (that is,
there are no infected macrophages) is less than one, but higher than the proportion B’/K,
the ADE phenomenon could occur. As said before, this occurrence is directly related to
the initial DENV inoculation. Figure 1.11 showed that if the initial DENV inoculation was
relatively low, the dynamical trajectories could converge to the VFE point so that the host
was able to eliminate DENV. However, assuming that the initial DENV inoculation was
too high, the dynamical trajectory had a huge possibility of converging to the VPE point
since its region of attraction is much larger than the VFE attraction region. Therefore,

the possibility of reinforcement was much higher than the elimination of the DENV.

However, for the case Ry > 1, unlike what occurred in Gémez and Yang (2019),
the ADE is inevitable. The system (1.1) always had a unique positive steady state, which
was stable and denoted by P*, independently of the value of (). Thus, in that case, the

ADE weakening factor did not influence the occurrence of the ADE phenomenon.

In the sensitivity analysis, it is important to note that the LSA method proved
to be an excellent approach to analyze the influence of the parameters present in R
and (). The computational effort by the LSA method is minimal, in contrast to the
LHS/PRCC method, whose computational cost is hours of simulation. Also, considering
the LHS/PRCC method, we obtain the output provided by this method, but a positive or
negative correlation is not easy to understand. However, with the LSA method, we can
clearly understand why we get a positive or negative correlation. For instance, with the
LSA method, it is possible to see that the parameter ay has a negative correlation with
the threshold Ry since the first-order approximation gives a negative value. However, using

the LHS/PRCC method, the reason of a negative relationship is not easily seen.

Therefore, as pointed out, the LSA method is an excellent approach since

provides a better understanding of the results obtained by the sensitivity analysis.
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1.7 Conclusion

In conclusion, this model, in a simplified way, explained the dynamic of the
ADE phenomenon in secondary DENV infections. It showed that if the basic reproduction
number was less than the quotient between the number of plasma cells to their cloning
support capacity, the infection was controlled. However, it was possible to occur DENV
infection when the basic reproduction number is greater than the quotient between the
number of plasma cells to their cloning support capacity and less than one. In that case,
the DENV inoculation had an essential role in the ADE progress or elimination. Also, the
parameters related to the engulfment of the immune complex by naive macrophages, the
fraction of naive macrophages that will become infected, and the process of phagocytosis
are the most influential in the variation of both Ry and (). The model has some limitations.
We emphasize that the main goal here was to study the dynamic behavior of the ADE
phenomenon and do not make predictions. Stochastic and more predictive models that
consider other variables, as the specific antibodies of the primary DENV infection and the

cytotoxic cells, merit further investigations.
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Appendix

This Appendix presents proofs of the positive invariance set and coefficients of

the characteristic polynomial evaluated at the VPE point.

1.A Proof of Proposition 1.1

From the first equation of (1.1), considering V' = 0, we have

dB

dB Kp

— = Kp — B=0 if B=—= 1.10
di B — UB , 1 ,UB’ ( )

However, for V' > 0, we have

dB B Kp
— =K 1-—|VB—-—ugB>0, ifB=—
dt B+OCB( K> H“B > U, 1 MB7

dB
since K > (Kp/up). Thus, ’ > 0 at the boundary B = Kp/ug, and there is no flow
that crosses this boundary towards values smaller than B = Kpg/ug, once within of Q, the

flow remains inside this region. If we consider the lower limit as B = Kp/up, we have
B = 0.

For naive and infected macrophages, observe that

d(S+1)
dt

d(S+1)
dt

For V, its maximum production occurs when all macrophages are infected, that

= Ks — psS — purl

and as per hypothesis, pu; > g, so = Kg—pgS—pul <0if S+ 1< Kg/us.

is, S = 0, and so

av

=l >0, iV =0, (1.11)

% I

=l -V <0, V> 7 (1.12)
Ky

as the maximum value of I can be Kg/ug, so the value for maximum production of V' is
given by V™ = v Kg/(uypus).
Thus, we consider all initial conditions (B(0), S(0),(0),V(0)) inside €2, which

assures us that the flow will remain inside 2. O
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1.B  Coefficients of the polynomial (1.6)

2
45 = (KB* — 1) apV* + B*S*Nac + B* = VFacp + S*ay + 0 + pup + pr + pis + pv,
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1.C Histogram of each sampled parameter

This section presents the histogram of each sampled parameter with Normal or

Uniform distribution. Figures 1.16 and 1.17 show histograms with Uniform distribution,

while Figures 1.18, 1.19, and 1.20 show the histograms with Normal distribution.
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Figure 1.16 — Histograms of all parameters with Uniform distribution related to ma-
crophage dynamics.
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Figure 1.17 — Histograms of all parameters with Uniform distribution related to plasma
cell and DENV dynamics.
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Figure 1.18 — Histograms of all parameters with a Normal distribution related to plasma
cell dynamics.
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Figure 1.19 — Histograms of all parameters with a Normal distribution related to
crophage dynamics.
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Figure 1.20 — Histograms of all parameters with a Normal distribution related to DENV
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2 Modeling Antibody-Dependent Enhance-
ment Phenomenon - comparing the deter-

ministic and stochastic approaches

Abstract. We propose a mathematical model to study the antibody-dependent enhancement
(ADE) phenomenon. We investigate the interaction between plasma cells, macrophages,
and dengue virus in heterologous dengue infection. Here we compare two mathematical
modeling approaches: a deterministic one and a stochastic one. To make this comparison,
we considered a mathematical model composed of four ordinary differential equations and
applied the Gillespie Stochastic Simulation Algorithm to perform the stochastic approach.
We explore the influence of population size on the outcomes. The size of the population
showed an essential role in the convergence for the stochastic approach to obtain the same

results as the deterministic model.

Keywords: Mathematical modeling. Antibody-dependent enhancement. Stochastic Simula-

tion. Gillespie algorithm.

2.1 Introduction

Virus-specific antibodies have a fundamental play in controlling the virus
infection. However, sometimes these antibodies can be beneficial to enhance the virus
concentration in the host (29). This phenomenon is called Antibody-Dependent Enhance-
ment (ADE). Hawkes first described it in 1964 (8), and in 1977, the ADE phenomenon
had scientific relevance with the association between the concept of reinforcement and
severe dengue detailed by Halstead and O’rourke (1977). The mechanisms involved in
the dengue severity process are barely understood. One of these mechanisms is the ADE
phenomenon in heterologous dengue infection. There are four serotypes of dengue virus
(DENV), DENV1 - DENV4, which have 60%-80% homology to each other (4, 5). The
cross-reactive immune response contributes to increased disease severity following hetero-
logous infections (30, 15, 31). Thus, the specific antibodies of primary dengue infection
start acting on the secondary virus because they suppose it is the same primary dengue
virus. This false recognition induces a reinforcement of the new virus. More severe dengue
cases have been reported in secondary infections, such as dengue hemorrhagic fever (DHF)

and dengue shock syndrome (DSS), some cases leading the patient to death (4).

Mathematical modeling has been an important tool to investigate biological

systems. It is possible with computational and analytical approaches to assess different
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scenarios with low cost. Deterministic and stochastic models are two possible approaches
in order to investigate the dynamics of biological systems. Several deterministic models
have been proposed to simulate dengue disease considering ordinary or partial differential
equations (15, 32, 33, 34), and stochastic models have been used as well (35, 36, 37). The
main difference of these approaches lies in considering individual probabilities to event
occurrence in the stochastic framework, which does not occur with the deterministic one.
Also, in a deterministic model, all events occur simultaneously, but this may not be the

case when we consider a stochastic model.

Here, we compare a deterministic and stochastic approach analyzing the ADE
phenomenon in heterologous secondary infection. To make this comparison, we consider the
deterministic model presented by Rubio and Yang (2020); and we applied the Stochastic
Simulation Algorithm (SSA) proposed by Gillespie to simulate chemical reactions (2).

2.2 Materials and methods

In this section, we present the deterministic model considered and the existence
and stability conditions of the equilibrium points. Also, the procedures for stochastic

simulation are presented.

2.2.1 Deterministic model

We based on the mathematical model formulated by Rubio and Yang (2020).
They considered a compartmental model composed of four variables to describe the ADE
phenomenon: plasma cell, naive and infected macrophages, and the dengue viruses. In
that case, the authors assumed that the production rate of dengue viruses was /. So, the
amount of new virions released is proportional to the infected macrophage concentration.
Here, in order to consider that each infected macrophage releases 6 new virions in the

bloodstream after dies, we admit fu;I as the production rate to the virus dynamics.

Therefore, we have the following system adapted from Rubio and Yang (2020),

dB B

dS

dl

prie pacBVS — (o + up)l

dVv

o Ourl — NacBVS —ay SV — uyV.

Table 2.1 summarizes the variables and Table 2.2 describes the meaning of

each parameter considered in the system (2.1).
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Variable Meaning Unit
B Plasma cells [B] /vol
S Naive macrophages [M] Jvol
I Infected macrophages [M] Jvol
1% Virions [V] /vol
t Time T
Table 2.1 — Variables of the model (2.1) and their meanings.
Parameter Meaning Value Unit Reference
Kp Production rate at rest of 40.0 [B]vol 1Tt (15)
plasma cells
LB Per-capita mortality rate of 0.02 7! (16)
plasma cells
ap Per-capita proliferation rate of 3.0 x 107° [V] ! volT ™1 Assumed
plasma cells
K Carrying capacity for prolife- *8.0 x 10° [B]vol ™ Assumed
ration of plasma cells
Kg Production rate of naive ma- 6.8 x 10° [M]vol'T™! (17, 18)
crophages
Is Per-capita mortality rate of 0.017 7! (17)
naive macrophages
Qe Per-capita engulfment rate of  *2.0 x 107 [B]™* [V] ' wol?T™'  Assumed
antigen-antibody complex
p Fraction of infected macropha- 1.0 x 107! - Assumed
ges
o Per-capita recovery rate of in- 0.2 7! (15)
fected macrophages
LT Per-capita rate mortality of in- 0.2 71 (19)
fected macrophages
0 Number of virions released by 70 (M)~ [V]T™! Assumed
one infected macrophage
Qy Per-capita phagocytosis rate 8.0 x 1076 []\4]_1 volT~1 (15)
by naive macrophages
Ly Per-capita inactivation of viri- 3.3 7! (21)
ons
N Number of antigen-antibody 3.0 (M)~ [V] (15)

complex engulfed by ma-
crophages

Table 2.2 — Parameter description and values adopted in simulations of the model (2.1).
(We used vol = mm?® and T = day. *Value allowed to vary.)

Using a deterministic approach, Rubio and Yang (2020) determined the exis-

tence and stability of the equilibrium points of the system (2.1) concerning the parameters

Ry and @), which are the basic reproduction number and the ADE weakening factor,
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respectively. Figure 2.1 shows the existence conditions and stability for all equilibrium

points with respect to the value of Ry and (), where

o N
Ry — &Cﬁﬁ o+ and Q= Kppvprpac
UB Hs avﬁ F oy ag(ay Ks + pyps)(o + pur)
Hs

Figure 2.1 — Existence region diagram for all steady states of the model (2.1), according
to parameters Ry and Q). Extracted from (1).

Therefore, they obtained three scenarios for the equilibrium point existence.
The deterministic model showed that if Ry < B/K, the unique equilibrium point that
exists is the free-virus equilibrium (VFE) point, P°, which is locally asymptotically stable
(LAS). Also, if B°/K < Ry <1 and Q > Q_, where

B B &
C  _9R.— —9N*
K MR PR
with ¢ = B"Ro(Ry — 1)(B" — K) and B® = Kp/ug, only the VFE point exists (LAS); but

in that case, if Q < Q_, there are three equilibrium points, which are P° (LAS), and two

Q- =Ry +

virus-presence equilibrium (VPE) points: P* (unstable) and P} (LAS). It is important to
note, the coordinate of P} for the dengue virus (V) is higher than the coordinate of P*
for the dengue virus (V*). It shows that the unstable coordinate is located between the
two stable coordinates. Last, if Ry > 1 there is only the VPE point, P* (LAS), and the
VFE point, P° (unstable).
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2.2.2 Procedures for stochastic simulation

We considered Monte Carlo simulations (a thousand trajectories were simulated)
and the stochastic simulation algorithm (SSA) proposed by Gillespie to simulate chemical
reactions (2). In that work, he considered that the molecules P could change their shape,
at certain reaction rates (that could depend on the P value). Here, we consider the P
variable as the vector (B, S,1,V) and the reaction rates based on N = 8 possible events
ey, = 1,2,..., N: plasma cell proliferation, infected macrophage recovery, engulfment
process, phagocytosis process, and the natural mortality of the dengue virus, both naive
and infected macrophage, and the plasma cell. For more details about the events, see
Appendix 2.A.

We can divide the SSA execution into four steps: (i) initialization, (ii) calculating
the reaction rates, (iii) calculating the reaction time and choosing the event that happens,
and (iv) updating the values of the time and population. In the initialization step, we set
the population P at the zero time as the initial condition P(0) = (B(0), S(0), 1(0), V(0)).
In the second step, we calculate all reaction rates associated with the events e, and the
value Er, which corresponds to the sum of all reaction rates. In the third step, we generate
two random values 7 and p with uniform distribution in the interval [0, 1]. This part

is responsible for calculating the reaction time and what event will happen. The time

1 1

reaction is given by A; = s In () Once we calculated the reaction time, we choose
T T

the p-th event, verifying

p—

1 N ©
Se<odie <Y
i=1 i=1

i=1
The population is updated according to the p-th event, which is given by the vector
X, = (AB,AS,AI,AV).

Afterward, in the last step, we update the time ¢, adding the increment A; and
the population (B, S, I, V) according to the vector X,, chosen. For instance, suppose that
the event selected is the mortality rate of the dengue virus, then the vector X, is given by
(0,0,0,—1). In that case, the population is updated as P — P + X,,, that is,

(B,S,I,V) - (B7S7[7V)+(O’0707_1)

The steps 2 to 4 presented in the flowchart described in Figure 2.2 repeat
until a stop criterion. Here, we adopted as stop criterion a specific time or the extinction
scenario (Both infected macrophage and dengue virus null) in the case it occurs before the
time specified. Also, we separate the algorithm into three cases: (i) I > 0 and V > 0, (ii)
V =0and I >0, and (iii) V > 0 and I = 0, in order to properly define the events. The

algorithm was implemented in Python, which is a free and open-source language (38).
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e Set initial condition for P

e Input values for all parameters of the model

e Calculate ¢, v=1,...,N

N
e Calculate L7 = Z ey
v=1

e Generate 7~ U(0,1) and p~ U(0,1)

1
e Take A, = Eiln <7)
T T

p—1 o

e Take 4 so that ZC’“ <pkr < ZCU

v=1 v=1

e Updatetime t =1+ /A,

e Update P, accordingto X,

|
Figure 2.2 — Flowchart of the stochastic simulation algorithm proposed by Gillespie (1977)

(2).

2.3  Results

In this section, we present the results applying the Gillespie SSA in order to
explore all regions of the equilibrium points existence stochastically, that is, the cases:
Ry<land Q> Q_, Ry<land Q <Q_, and Ry > 1. Also, we analyze the influence of

the initial condition and the varying value of Ry in the Gillespie SSA convergence.

231 Case Ry<1land Q> Q_

To analyze the region where there is only the VFE point, we consider Ry = 0.8
and ap = 1.0 x 107% such that Q > Q,. In that case, we found that all stochastic
simulations converge to the VFE point, regardless the initial condition. Figure 2.3 shows
the dengue virus dynamics considering the initial condition (B(0),S(0),1(0),V(0)) =
(BY, 8% —1(0),5.0 x 10%,5.0 x 10?), where B" = Kp/up and S° = Kg/us.



Chapter 2. Modeling Antibody-Dependent Enhancement Phenomenon - comparing the deterministic and
stochastic approaches 53

Scenarios: Stochastic Simulation = Mean Stochastic Simulation = Deterministic Simulation
600
400
>
200
0
0 500 1000 1500

Time (days)

Figure 2.3 — Dengue virus dynamics with initial condition (B(0),S(0),(0),V(0))
(B°,S° —I(0),5.0 x 10%,5.0 x 10?) converging to the extinction.

The extinction time was set as te. Table 2.3 shows the time to reach the infec-
tion extinction for different initial condition, which was considered as (B(0), S(0), 1(0), V(0))

= (B, S8°—1(0),V(0)). To compare to the deterministic approach, we assumed if V (¢) < v

then tl, = t, and if I(t) < v then t2, = t, considering v = 0.1 and v = 1. These extinction
times are shown in Table 2.4.

V(0) and I(0) Median Mean  Min Max CI - 90%
100 149.35  167.57 40.61  658.23  [67.55, 348.55]
500 261.19  278.33 99.94 1024.66 [151.66, 456.98|
1000 309.1057 325.54 137.14 1113.95 [201.61, 506.44]

Table 2.3 — Extinction time to the stochastic simulations varying the initial condition.

V(0) and 1(0) oy (v =1) to (v=01) toq (v=1) toy (v=0.1)

100 265.99 434.68 338.52 507.17
500 383.72 552.34 456.27 624.91
1000 434.37 602.96 206.86 675.50

Table 2.4 — Extinction time of the deterministic model varying the initial condition and
the value of v.
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Through Tables 2.3 and 2.4, we can see that the extinction time in the deter-
ministic model increase as we decrease the value of v. It occurs in both cases, considering
the dengue virus or the infected macrophage less than the value of v. Also, the extinction

time when V < v (tl,) always occurs before I < v (t2,). It happens because the dengue

ext
virus is eliminated before the infected macrophage. Also, the asymptotic behavior for the
dynamics convergence to the equilibrium point contributes to a higher extinction time.

Besides that, the higher the initial condition is, the higher the extinction time is.

232 Case Ry<land Q <@Q_

For the region with three equilibrium points, we consider Ry = 0.5 and ap =
3.0 x 107°, such that Q < Q_. Also, we set as initial condition the coordinates of the
unstable virus-presence equilibrium point, P*. These initial condition coordinates were
approximated as an integer value closer to the respective coordinate of the stable virus-
presence equilibrium point. For instance, if V* = 152.7 and V' = 10540.6, we considered
V(0) = 153. On the other hand, if S* = 354050.8 and S = 154761.3, we assumed
S(0) = 354050. Figure 2.4 shows that the stochastic trajectories can converge to a stable
VPE point or a stable VFE point. Due to the initial condition assumed and the existence
of two stable equilibrium points, the mean curve (in red) lies in the middle of them. Here,
we present only the graphs to the dengue virus dynamics; graphs of the other variables

can be found in Appendix 2.B.
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Stochastic Simulation — Mean Stochastic Simulation — Deterministic Simulation

Scenarios:
20000
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Figure 2.4 — Dengue virus dynamics with initial condition (B(0),S(0),1(0),V(0)) =
(B*,S*,I*,V*), with perturbed initial condition in the direction of the
stable point VPE. The colors red and black are assumed to all trajectories
and only those going to V', respectively. Region between the dashed lines
represents the stochastic simulations with a confidence interval of 95%.

233 Case Ry >1
Now, supposing Ry > 1, for any perturbation in the non-negative initial
condition, the deterministic model shows that the dynamical trajectory converges to the
virus-presence equilibrium point since the VPE point is the only one stable equilibrium
point. However, for the stochastic simulation, this behavior does not replicate. Even
if the viral inoculation is not low, some simulations converge to extinction. Figure 2.5
shows the dynamical behavior for DENV, considering Ry = 1.5 and the initial condition
(B(0),5(0),1(0),V(0)) = (2.0 x 1*,5.0 x 10* 1.0 x 10%,1.0 x 10®). Also, in that case, all

trajectories converge to V¥, so we suppressed the dashed red lines from Figure 2.5.
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Scenarios: Stochastic Simulation — Mean Stochastic Simulation — Deterministic Simulation

100000
75000
> 50000
25000

0 L
0 100 200 300
Time (days)
Figure 2.5 — Dengue virus dynamics with convergence for V* R, = 1.5, and initial

condition (B(0), 5(0), 1(0),V(0)) = (2.0 x 10*,5.0 x 10* 1.0 x 10, 1.0 x 10?).
Region between the dashed lines represents the stochastic simulations with a
confidence interval of 95%.

In order to explore the influence of varying R, or the initial condition, we
consider two scenarios. First, we fixed the initial condition and varied the basic reproduction
number Ry, and second we fixed the value of Ry and varied the initial condition. For
the first scenario, as initial condition, we considered (B(0), S(0), 1(0),V(0)) = (B, S° —
1(0),100,100). In order to study the influence of varying the basic reproduction number,
we consider the following range for Ry: [0.7,2.5] with step by 0.1.

Figure 2.6 shows that the higher the basic reproduction number is, the fewer the
proportion of simulations going to extinction is. Also, values greater than Ry = 1.3 showed
less than 1% of simulations going to extinction; and starting at Ry = 2, all simulations

converged to the virus-presence equilibrium point.
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Figure 2.6 — Percentage of simulations going to extinction with respect to Ry with V(0) =
100 and 1(0) = 100.

In the second scenario, to investigate the influence of the initial condition in
the convergence of the stochastic simulations, we fixed the value of Ry and varied the
initial condition. Also, we fixed the values of B(0) and S(0) as equal to the correspondent
values of the VFE point. To evaluate the influence of increasing the initial condition
in the number of simulations that converge to the dengue virus extinction, we vary
the viral inoculation and the initial concentration of infected macrophages. Also we
consider that V' (0) = I(0), and as in the previous section, we consider the initial condition
(B(0),5(0),1(0),V(0)) = (B°,S° — 1(0),1(0), V(0)). To perform it, we consider Ry = 1
and the following values for V' (0) and 1(0): 5, 10, 50, 100, 250, 500, 750, and 1000.
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Figure 2.7 — Percentage of simulations going to extinction with respect to the initial
condition of dengue virus and infected macrophage with Ry = 1.

Figure 2.6 shows that as the value of DENV and infected macrophages increase,
the stochastic simulations tend to converge to the VPE point. Infected macrophage and

dengue virus initial condition higher than 500 made the all trajectories converged to the
VFE point, P*.

2.4 Discussion

This work presented a mathematical model to simulate the ADE phenomenon
in heterologous secondary dengue infection. The model was implemented considering two
approaches: a deterministic one and a stochastic one. Figure 2.6 showed a considerable
decrease in the number of simulations that go to extinction when we surpass Ry = 1; this
phenomenon occurs due to the deterministic threshold. Since for Ry > 1, with the same
parameter set and initial condition, the simulation is expected to converge to the VPE

point. However, in stochastic simulation, this may not be the case.

In general, if Ry < 1 in deterministic models, then any positive initial condition
of DENV drives the dynamics to an extinction-level, while the virus presence leads to
an endemic level of the dengue infection if Ry > 1. However, for stochastic models,
around Ry = 1, that behavior could not be replicated. It is necessary higher values of the
basic reproduction number to obtain the same deterministic model convergence results.

Nésell (2011) showed that in an SIS model exists a certain population level necessary
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to the stochastic model replicates the deterministic behavior (39). In some cases, the
basic reproduction number is sufficient to rule deterministic model convergence, but a
two-dimensional space is necessary for the stochastic framework. The stochastic model

convergence depends on the values of Ry and the population size.

Using Gillespie SSA, we obtained that the stochastic model results were similar
to the deterministic system, depending on the basic reproduction number value and the size
population as expected. It is important to note that for the case Ry < 1 when we analyzed
a deterministic model with bistability, we detected that the results of these two approaches
could differ greatly. That difference lies in the stochasticity present in the simulations and
the possibility of convergence to two stable equilibrium points. In Figure 2.4, we observed
that a simple shift in the initial condition toward the equilibrium point in the presence
of a stable virus; the deterministic model converges to the point Pf. Also, as the initial
condition is close to the unstable equilibrium point, P*, the dynamics system takes time
to reach convergence to the equilibrium point P;. However, in stochastic simulations,
the convergence of the mean curve (solid red line) for DENV fluctuated between stable
equilibrium values. If we take away all simulations (in gray) that have gone to extinction,
then the mean curve (solid black line) increases and reaches the same convergence of the
deterministic model. Also, for initial conditions with the dengue coordinate above the
value of V* many simulations converged to the virus extinction, which did not occur for

the deterministic model.

We also simulated the case with initial condition values closer to the VPE
point P} for the case Ry = 0.5. In that case, the mean curve (in red) approached the
deterministic curve (in blue) since fewer simulations (in gray) converged to the VFE point
PP For Ry > 1, the deterministic model (2.1) showed us that the VFE point is unstable
and the VPE is LAS; that is, a slight perturbation in the initial condition given by P°
will make the dynamics to converge to P*. However, using Gillespie SSA, we notice that a
simple perturbation in the initial condition is not enough to drive the dynamics to the
point P*. By increasing the virus injection and the number of infected macrophages, we

decrease the proportion of simulations that go to infection extinction.

Moreover, in our model, we obtained that for a large population and Ry > 1,
stochastic simulations approximate the behavior of the deterministic model. However, the
results may differ for small samples since each value of the population directly influences
the probability of the determined events, and it can lead the dynamics to extinction.
For a low population and Ry < 1, the stochastic model approaches the behavior of the
deterministic model when there is only a stable equilibrium point (the VFE point). A
higher population is necessary to obtain similar deterministic model convergence results in

a scenario with two stable equilibrium points.

Therefore, the deterministic model is crucial to understand the general idea
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of the dynamics considered, gathering the equilibrium points and essentials thresholds
to determine the existence and stability of the equilibrium points. On the other hand,
the stochastic simulation does not provide results of thresholds or stability equilibrium
points. For instance, suppose the value of Ry is around one. Without previous knowledge
about the expression of the basic reproduction number, it is impossible to determine if the
model was supposed to converge to a virus-presence equilibrium point or lead to extinction
through stochastic simulation. Besides, only with the stochastic simulation is it impossible
to determine if the value of Ry is less or greater than one. Considering the scenario shown
in Figure 2.4, if we increase the dengue virus and infected macrophage values in the initial
condition, we obtain a similar qualitative result of Figure 2.5, that is, all trajectories
converge to a virus-presence equilibrium point. Looking at the two scenarios, we could
presume that both portraits a case with Ry > 1. Also, if we decrease the initial condition
in the case shown in Figure 2.5, we obtain a scenario similar to the case shown in Figure
2.4. Again, we could suppose that both cases portrait the scenario with Ry > 1, with
some trajectories converging to the extinction. In fact, Figure 2.7 showed that for Ry = 1,
considering V(0) = I1(0) = 100 only half of the trajectories converged to the VPE point P*.
However, we noticed that Figures 2.4 and 2.5 presented a case with Ry < 1 and Ry > 1,
respectively. Also, using stochastic simulation, we cannot determine the expression of the
threshold Ry. Only with the deterministic model, we obtained the threshold (), which is
essential to determine the existence and stability of the virus-presence equilibrium points
of the model. Thus, we cannot infer anything through stochastic simulations about the

thresholds that appear in the model.

2.5 Conclusion

Here, we explored the deterministic and stochastic approaches in the context of
an ADE phenomenon mathematical model. We found that the initial condition has a vital
role in the stochastic simulation. Also, we concluded that considering stochastic simulation
is always possible to simulate the dynamic system and analyze different scenarios, such
as investigating the extinction time of a given infection, investigating the probability of
a given event occurring, obtaining confidence intervals for dynamic trajectories, among
other aspects. However, suppose the idea is to understand the model dynamics, infer the
attraction basin, or find the critical thresholds of the model. In that case, a study of the
corresponding deterministic model is necessary. It is advisable to consider the stochastic
simulation approach coupled with the respective deterministic model in order to get a
complete understanding of the model dynamics since stochastic models do not allow you

to determine threshold expressions, for instance Rj.
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Appendix

2.A  Events of the model

In this section, we present all events of the model and their respective population

updating.

Event 1 - Plasma cell proliferation:

The event associated with the plasma cell proliferation, e;, is given by the
term ap(l — (B/K))V B, if B < K, otherwise the event does not occur. Here, we do not
consider the possibility of B surpass K because that deterministic model showed that this
value could not surpass the carrying capacity of plasma cell proliferation. So, we admit

this simplification in event 1.

The population updating is given by
(B,S,I,V)—> (B+1,5,1,V).

Event 2 - Plasma cell natural mortality:

The term ppB gives the event associated with the natural mortality of plasma
cells. Here, we considered that one cell is consumed when the event occurs. The population

updating is given by
(B,S,I,V)—>(B—-1,5,1,V).

Event 3 - Infected macrophage recovery:

The event associated with the infected macrophage recovery is oI. The popula-

tion updating is given by
(B,S,I,V) - (B,S+1,I—-1,V).

Event 4 - Engulfing the dengue virus by the naive macrophage:

The event associated with the engulfment of the dengue virus by naive ma-

crophages is ac BV S. The population updating occurs in two processes:

(1) If V > N then

(B,S,I,V)— (B,S, I,V — N),
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else
(B,S,I,V)— (B,S,I,0).

(2) If pp < p then

(B,S,1,V) = (B,S — 1,1 + 1,V),

else there is no updating.

Event 5 - Natural mortality of naive macrophages:

The event associated with the natural mortality of naive macrophages is ugS,

the population updating is given by

(B,S,1,V) = (B,S —1,1,V).

Event 6 - Mortality of infected macrophages:

The event associated with the mortality of infected macrophages is pu;/. In
the model, we consider that the cell at death releases an r amount of virions. So, the

population updating is given by,

(B,S,1,V) > (B,S, I — 1,V + 7).

Event 7 - Phagocytosis of the virus via macrophage action:

The event associated with the process of phagocytosis is oy SV. The population
updating is given by
(B,S,I,V)— (B,S, I,V —1).

Event 8 - Natural mortality of the dengue virus:

The term py V' gives the event associated with the dengue virus natural mortality.

So, the population updating is

(B,S,1,V) = (B,S,1,V —1).

Moreover, we do not consider that plasma cell and naive macrophage production
are random events. The deterministic model has an invariance region that needs to be
respected. Biologically, it means that it has strong homeostasis. Although migration is an
event that exists, proliferation is much more intense than the migration process. Thus, we

do not consider the migration process in both plasma and macrophage cells for simplicity.
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We admit a Poisson process for naive macrophage and plasma cell reproduction,
with the Poisson parameter being, A\p = A;Kp and \s = A;Kg, respectively, in order
to maintaining the homeostasis from a biological point of view and because we do not

consider the migration process.

Besides, we split the algorithm into three parts in order to consider only the
events that could occur. We consider the cases (i) V' > 0and I >0, (ii) V =0 and I > 0,
and (iii) V' > 0 and I = 0. Therefore, we consider the following events in each case
i All events: 1 - 8;
ii Events: 2, 3, 5, and 6;

iii Events: 1, 2,4, 5, 7, and 8.

2.B  Stochastic simulations for plasma cell and both naive and

infected macrophage populations

This section presents the stochastic simulation graphs for the plasma cell
and both naive and infected macrophage populations, considering the cases Ry < 1 and
Q<Q_,and Ry > 1.
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2.B.1 Case Ry <1and Q < Q_

Scenarios: Stochastic Simulation — Mean Stochastic Simulation — Deterministic Simulation
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Figure 2.8 — Plasma cell dynamics with initial condition (B(0),S(0),1(0),V(0)) =
(B*,S*,I*,V*), with perturbed initial condition in the direction of the
stable point VPE. Region between the dashed lines represents the stochastic
simulations with a confidence interval of 95%.
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Scenarios: Stochastic Simulation — Mean Stochastic Simulation — Deterministic Simulation
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Figure 2.9 — Naive macrophage dynamics with initial condition (B(0), S(0),1(0),V(0)) =
(B*,S*,I*,V*), with perturbed initial condition in the direction of the
stable point VPE. Region between the dashed lines represents the stochastic
simulations with a confidence interval of 95%.
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Scenarios: Stochastic Simulation — Mean Stochastic Simulation — Deterministic Simulation
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Figure 2.10 — Infected macrophage dynamics with initial condition
(B(0),S5(0),1(0),V(0)) = (B*,S* I*,V*), with perturbed initial

condition in the direction of the stable point VPE. Region between the
dashed lines represents the stochastic simulations with a confidence interval

of 95%.
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2.B.2 Case Ry > 1

Scenarios: Stochastic Simulation — Mean Stochastic Simulation — Deterministic Simulation
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Figure 2.11 — Plasma cell dynamics with convergence for B*, Ry = 1.5, and initial con-
dition (B(0),S5(0),1(0),V(0)) = (2.0 x 1%,5.0 x 10* 1.0 x 10%,1.0 x 10?).
Region between the dashed lines represents the stochastic simulations with
a confidence interval of 95%.
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Scenarios: Stochastic Simulation — Mean Stochastic Simulation — Deterministic Simulation
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Figure 2.12 — Naive macrophage dynamics with convergence for S*, Ry = 1.5, and initial
condition (B(0), S(0), 1(0),V(0)) = (2.0 x 13,5.0 x 10*,1.0 x 10, 1.0 x 10%).
Region between the dashed lines represents the stochastic simulations with
a confidence interval of 95%.
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Scenarios: Stochastic Simulation — Mean Stochastic Simulation — Deterministic Simulation
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Figure 2.13 — Infected macrophage dynamics with convergence for I*, Ry = 1.5, and initial
condition (B(0), S(0), 1(0),V(0)) = (2.0 x 13,5.0 x 10*,1.0 x 10, 1.0 x 10%).
Region between the dashed lines represents the stochastic simulations with
a confidence interval of 95%.
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3 A mathematical model to evaluate the role
of memory B and T cells in heterologous

secondary dengue infection

Abstract. We propose a mathematical model to investigate the antibody-dependent enhan-
cement (ADE) phenomenon during secondary dengue infection. The model consists of
an ODEFE system that describes the interaction of the dengue virus with macrophages and
memory B and T cell role during the infection. The model qualitative analysis is done in
terms of memory B and T cell cloning parameters and the basic reproduction number Ry.
In the absence of memory B and T cell cloning, if Ry < 1 the virus population extinguishes,
while for Ry > 1, it tends asymptotically to a positive equilibrium. However, when we
consider the B cell cloning, it is possible to occur dengue infection even when Ry < 1.
Memory T cells have an essential role in eliminating the possibility of ADE occurrence

when Ry < 1.

Keywords: Mathematical model. Antibody-dependent enhancement. Memory B cells.

Memory T cells. Dengue virus.

3.1 Introduction

Dengue viruses (DENV) are transmitted by Aedes mosquito bite that causes
mild dengue fever (DF) or dengue severe (DS). There are more than 50 million DF cases each
year (30). There are four dengue virus serotypes, DENV-1, DENV-2, DENV-3 and DENV-4,
which have only 20%-35% divergence (31). The cross-reactive immune response contributes
to increased disease severity following heterologous infections (30, 15, 31). In general,
primary infections result in either asymptomatic or mild DF disease. Secondary infections
with different serotypes are either cleared or can induce severe dengue. Mechanisms
responsible for the severity of secondary dengue infections are not entirely understood.
One of them is the cross-reactive antibodies can enhance the disease, which is called
antibody-dependent enhancement (ADE) (9, 8). ADE is explained as follows. When a
person is first infected with one dengue strain, the humoral immune response of the host
produces neutralizing antibodies specific against this strain. After the primary infection
is eliminated, plasma cells produce specific antibodies for the first dengue strain, which
persist in the body due to the immunological memory. If this person is secondly infected
with a different dengue strain, antibodies from the primary infection bind the second virus

but do not neutralize it. Besides that, macrophages are recruited to clear the immune
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complex; they internalize this non-neutralized virus and become infected in the process of
clearance. There is evidence that Fc receptors, which are proteins on the surface of some
cells like macrophages and monocytes that bind to the antigen-antibody complex, might

facilitate viral entry in cells and increase dengue viral replication (15, 40, 41).

This article proposes a mathematical model to describe the ADE phenomenon
in secondary dengue infection, considering that partial cross-immunity occurs due to
primary dengue infection. We consider that the immune system has not yet performed
a complete response against the secondary infection. During this time, the circulating

antibodies against the primary virus can facilitate heterologous secondary infection.

Mathematical models were formulated to describe the ADE phenomenon in
secondary dengue infection. For instance, Gomez and Yang propose a model with only
some variables, such as B memory cell, macrophages, and the dengue virus. In order to
study the effect of B memory cell cloning during a heterologous secondary dengue infection
(15). Nikin-Beers and Ciupe investigate the role of antibodies in enhancing dengue virus
infection. They consider monocytes as target cells, B lymphocytes, plasma cells, and the
two dengue strains (primary and secondary, which is different from the first one) (30). Here
we consider few agents as macrophages, a specific antibody against the primary infection,
memory B cells, memory T cells, the formation of immune complex, and dengue virus. We
focus on the role of B and T cells during the secondary dengue infection. It is possible to
determine the basic reproduction number parameter, which is given by Ry and the effect

of B and T cell cloning during the secondary dengue infection.

The paper is structured as follows. In section 2.2, a mathematical model
is presented to describe the ADE phenomenon. In section 2.3, the model is analyzed,
determining the existence region of the equilibrium points and their stability. In Section
2.4, a discussion about the role of memory B and T cell cloning in secondary dengue

infection is presented. Section 2.5 gives the conclusion.

3.2 Mathematical modeling

We consider that memory B cells turn into plasma cells quickly in contact
with the dengue virus. These cells, denoted by B, are releasing specific antibodies against
the primary dengue virus, which are indicated by A. The memory B cells are kept in
homeostasis, through production rate kg and death pg. During secondary dengue infection,
through acquired memory of the first infection, these cells are stimulated to increase at a

per capita rate ag, to release more antibodies to neutralize the antigen.

Antibodies are produced at a per capita rate r4 and have a rate of degradation
4. We considered that n of these antibodies would contact the circulating virus of the

second infection, thus forming the antigen-antibody complex, which is denoted by C. This
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binding forms only one immune complex, so in the dynamic equation of C, ¢ represents a

correction factor whose value is 1/n.

These immune complexes remain interconnected during a time ug', where ¢
is the dissociation rate. We also assumed that the average number of immune complexes
engulfed by a macrophage is N > 1. Uninfected macrophages die at a per capita rate py,
and they are produced in the bone marrow at a constant per capita rate k,; in order to

maintain system homeostasis.

Naive macrophages can interact with the free virus in two ways: by phagocytosis
of the virus, resulting in a phagosome that fuses the lysosome to destroy the virus,
and by opsonization and internalization of the antigen-antibody complex in cells. Virus
phagocytosis is described by the phagocytosis per capita rate ay,, and we also assume
that the virus will always be destroyed. The FcyR receptors facilitate the engulfment
process on the macrophage membrane and other immune cells, which is described by the

engulfment per-capita rate ac.

Due to the heterologous antibodies against different cross-reactive viruses,
some naive macrophages become infected by releasing new viruses. We describe this
imperfect cross-reactive immune response in heterologous viruses by the parameter p, with
0 < p < 1, it means, macrophages harboring the immune complex can become infected
with probability p. Infected macrophages have a death rate uy, where puy > iy, which can
be increased by cell apoptosis. These infected macrophages release new virions at a per
capita production rate 7y, and they are eliminated through the cellular immune response
by the effector T' cells at a per capita rate yp. The circulating virus has a death rate py
and binds to n > 1 antibodies to result in the antigen-antibody complex. The process of

this formation of complex is described by the term ngAV.

Macrophages that engulf the immune complex and destroy the virus by the
action of enzymes return to their natural state at a per capita rate o,;. This process has
been assumed to be very rapid, and there is no associated mortality for this cell. It is also
possible that some macrophages may kill the virus and return to the natural class, which
occurs at a o per capita recovery rate. Memory 7' cells are produced at a per capita rate
kr and have a mortality rate of pr. In the presence of infected macrophages, these cells
are stimulated, at a per capita rate ap, to produce new memory 7T cells to help eliminate
infected macrophages. We considered that memory T cells turn into effector 71" cells quickly

in contact with the infected macrophage.

Thus, based on the hypothesis above, we have the following nonlinear ordinary

differential equations system,
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dB
% = k)B + OéBVB —,uBB
A
Cflt =rsB— usA—npVA
av
E = ’I“V_[—[,va—O[MMV—ﬁAV
dc
o mpVA—-NacMC — pcC (3.1)
M N
ddt =kyn +0l —acCM — uyM + oy M
dM .
- = (1—-p)acCM — oy M
dl
pri pocCM — (pr+ o)l —~T1
dr
E = k?T + OZT]T - ,uTT

Assuming macrophages spend a swift time in class M , that is, assuming
oy > ac, the sixth equation of the system (3.1) can be considered at the steady state.

So, we have o, M = (1 — p)aCM and substituting this term in the fifth equation (naive

macrophages) we get the following simplified system,

dB
% = ]{TB + OéBVB — ILLBB
dA
% = T'AB — ILLAA — nﬁVA
dv
E = Tvl—,uvv—OZMMV—BAV
d
d(; — 0BV A — NacMC — uoC
dM
dl
drl
% =kr +aplT — purT.

Table 3.1 shows the model variables described by the system of equations (3.1)
and Table 3.2 describes the parameters of the model (3.1).
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Variable Definition Unit

B Memory B cell [B]/vol

A Antibodies released by Plasma cell [A]/vol

V Dengue virus [V]/vol

C Antigen-antibody complex [A][V]/vol
M Naive macrophages [M]/vol
M Macrophages effectively eliminating virus [M]/vol

I Infected macrophages [1] /vol

T Memory T lymphocyte [T]/vol

Table 3.1 — Description of the variables of the model (3.1).
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Parameter Meaning Value Unit Reference
kp Production rate at rest of memory B 40.0 [Blvol'T1 (15)
cells
B Per-capita mortality rate of memory 0.02 7! (16)
B cells
ap Per-capita proliferation rate of me- - [V] " wolT™! -
mory B cells
ks Production rate of naive macrophages 6.8 x 10° [M]vol*T~! (17, 18)
I15Y; Per-capita mortality rate of naive ma- 0.017 Tt (17)
crophages
Qe Per-capita engulfment rate of antigen- - [B]'[V] ' wol?T ! -
antibody complex
p Fraction of infected macrophages 3.6 x107° - (15)
o Per-capita recovery rate of infected 0.2 T (15)
macrophages
T Per-capita recovery rate of effective - 7! -
macrophages
7% Per-capita rate mortality of infected 0.2 Tt (19)
macrophages
rv Per-capita releasing rate of virions by ~ 6.12 x 10* (MM [V]T™! (20, 17)
infected macrophages
ang Per-capita phagocytosis rate by naive 8.0 x 107° [M]™ volT™* (15)
macrophages
Ly Per-capita death rate of virus 3.3 Tt (21)
N Number of antigen-antibody complex 3.0 [M]'[V] (15)
engulfed by macrophages
Jé] Per-capita immune complex formation - [A] ' vol 771 -
rate
TA Antibody production rate by a plasma  1.728 x 10® [A][B] '+t (18, 30)
cell
A Per-capita degradation rate of anti- 0.07 71 (30)
body
n Number of antibodies that bind to a 15 (A v (42)
virus to form an immune complex
] Dimension correction factor 1/15 V] Assumed
e Per-capita mortality rate of immune 1.0 x 1073 7! Assumed
complex
kr Production rate at rest of memory T 30 [T]vol ™! 771 (43, 44)
lymphocytes T'
wr Per-capita mortality rate of memory 0.5 1 (43)
T cells T
0% Per-capita effector T cell killing rate ~ 2.77 x 10~° [T] " vol 771 (44)
ar Per-capita proliferation rate of me- - [M] " vol 771 -

mory 7T lymphocytes

Table 3.2 — Parameters description of the model (3.1) and values used in simulations of
the model (3.2). (We used vol = mm? and 7 = day.)
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Figure 3.1 — Flow chart for model (3.2). The solid arrows mean a change of state, while
dashed arrows represent only interference between the cells.

The solutions of the system (3.2) with an initial condition in €, which is given

by
k
Q:{Pz (B,A,V,C,M,I,T)eRT : B> -2 y < ymax
"B
CsomaX,M+I<W,T>kT},
122,74 KT

with V™ = ik /(uypar) and C™ = (63/uc)[nrykar/(uyvuar)]?, they are always
positively limited.

Proposition 3.1. The set Q) is positively invariant with respect to the system (3.2),

considering [y > [ipg-

Proof: See appendix 3.A. m

3.3 Model Analysis

The virus-free equilibrium point is W° = (B°, A°,0,0, M°,0,T°), where B® =
kp/up, A° = rakg/(uaps), M° = kyr/uar, and T° = kr/pr.
The steady state stability is determined by analyzing the signal of the real

part of the eigenvalues of the Jacobian matrix, J, evaluated at steady state. The Jacobian

matrix is given by
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[Ju 0 apB 0 0 0 0]
ra Jao —pnA 0 0 0 0
0 =BV J33 0 —ayV  ory 0
J(P)=| 0 BonV BénA Jua —NacC 0 0
0 0 0 —pacM Jss o 0
0 0 0 pacM pacC Jeg  —1
| 0 0 0 0 0 arT  Jr7 |

where Ji1 = agV —pup, Joo = =0V —pua, Js3 = —py —ay M — A, Jyy = —pc— NoacM,
Jss = —pacC — py, Jgg = —pur — o — T, and J7 = —pur — arl. The characteristic

polynomial associated to W° is given by

SO = O+ iar) 0+ a) O+ 1) (=X — ) 2(), (3.3)

where z(A\) = A* + 2,0% + 21\ + 2, wherein the coefficients are

rak k k
K55 M et ans) + T 4y 4ot + o
BARB MM HT

Z9 =

1
Zr = (2) papspr(kvans + papey ) (ky Noe + popior)
HARBHT M

1
+ <2) [karparkryapppr(Nae + an) + kaparkp NacraBur]
HARBHT M

1
+ <2) [appprky (o + Noe)(ur + o) + par*kpraBkry]
HAMBIT N

1
! <2) [ kpraBpr(pe + pr + 0) + i papskry(pe + )]
HARBHT M

1
<2) pind paps|(prpy + popr)(pr + o) + popriv]
HAMBHT N

1

20 = MM2MT(I{7MOZM + parpy ) (b Nae + popan)[kry + pr(pr + 0)](1 — Ry),

where Ry is given by

R <kB7‘ANM5> [kMCVCTv#TCSnP — (kuNac + pepar) [ Yer + pr(pr + U)]] (3.4)
° HAlB (knvans + parpev) (b Nae + popns) [k + pr(pr +0)] |

To guarantee the local stability of W', we need that all roots of s(\) have a
negative real part. Using the Routh-Hurwitz criteria, we prove the local stability of this

point, which is stated in Theorem 3.1.

Theorem 3.1. If Ry < 1 then the virus-free equilibrium point, W°, is locally asymptotically
stable and unstable if Ry > 1.

Proof: The characteristic polynomial s(\) has four negative real roots —pp,, —pia, —iB,

and —pr. To ensure the local stability of W°, it is necessary that the roots of z(\) must also
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have a negative real part. We use the Routh-Hurwitz criteria to complete the demonstration.
The Routh-Hurwitz criteria of a third-degree polynomial are zo > 0, zg > 0, and 2921 > 2.
We have zy and z1 as positive values because all parameters of the model (3.2) are non-
negative. The coefficient zy is positive when Ry < 1 and negative when Ry > 1. The last
condition zez1 > zg is easily checked. Therefore, if Ry < 1, the local stability of equilibrium

point W° is quaranteed. [

3.3.1 Biological meaning of the parameter R
We can rewrite the parameter Ry as Ry = Rj — R where
ABM nryacdp

Rt = d R =
0 (ue + NagMO)(uy + apyMO) (g + o + yT°) an 0

A%
pv + o MO

Biologically, the first term R represents that one virus in its lifespan (uy +
ayM®)™!, which is decreased by phagocytosis via macrophages, binds with a rate 3 n.A°
antibodies in circulation. This process forms ¢ antigen-antibody complex. These complexes,
during their lifespan (e + NacM®)™ are engulfed with a rate o by a macrophage
population M°. Note that the macrophage lifespan is decreased due to engulfment of N

immune complexes during the process of infection.

However, only a fraction p of naive macrophages will become infected ma-
crophages. During their lifespan (p; + 0 +~7°) ™!, which is decreased due to T lymphocyte
cytotoxic action and the possibility of macrophage recovery to the naive stage, these
infected macrophages will produce ry virions. So, Rf is the number of new viruses that
only one virus will produce when introduced into a population composed of uninfected

macrophages.

1
M0+NOécM0

1

1
) A% % § - -
5 X fnA” x § x PP

x ag x pM° x
wy + apy MO crp

X Ty

On the other hand, R can be interpreted as the amount of virus consumed
to form the antigen-antibody complex. Therefore, the parameter Ry represents the net
number of viruses generated by a single virus by forming the immune complex and
subsequent macrophage infection when the single virus is inserted in an organism completely
susceptible.

R; x fnA°.

- py + apg MO

The virus-presence equilibrium point is W* = (B* A*, V* C* M* I*,T"),

where
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kp
;- E—
(kB — apV*)
o rakp
(ks — agV*)(pa + npBV*)
M — ka(pr — arl®) — [pi(pr — apI*) + vhr] I (3.5)
pon (pr — o)
o _ [(o + pr)(pr — r ™) + vkr]pal”
poc{ku (pr — arl*) — [pr(pr — arI*) + ykr]1*}
T — kiT’
pr — apl*
with I* and V* being the positive solutions of the system,
0= va* - ,qu* - OéMM*V* - BA*V* (36)
0=6npV*A* — Nac M*C* — ucC*. (3.7)

Replacing all expressions obtained by I* and V* in equation (3.6), we obtain
an equation of second-degree to I* or third-degree to V*. Considering the equation (3.7)
we have a second-degree to V* or third-degree to I*. Thus, it is not possible to obtain a
linear relationship between V* and I*. In this way, we will analyse the model into three
parts. Firstly, we will analyse the case without the two cloning parameters ap and ag.
Secondly, a numerical study will be done to evaluate the effect of each cloning, that is,
ap # 0 and ar = 0 and after ag = 0 and ar # 0. Finally, the analysis of the joint effect
of cloning (ap # 0 and ar # 0) will be done.

3.3.2 Case study of no-cloning of both memory B and T cells

To analyze this case, we consider the model (3.2) with both parameters ap and
ar null. This absence will change only the virus presence equilibrium point W*, which

now is given by

pr_te
HB
o rakp
pp(pa +nBV*)
M — Eniper — (prpr + vhp) I (3.8)
M
I [ ps (v par + anrkar) (pa +nBV*) + papr Brakg]V*
ps(pa +nBV*)[rypapr + an(prpr + vhr)V*]
o — _ Mot upr + ybrlpa
paclkypr — (prpr + vkr)I*]

KT
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and V* is solution of the equation below,

InpA*V* = (NacM* + uc)C*. (3.9)

Substituting the population values, which are given by (3.8), in the equation
(3.9); we obtain a third-degree equation A(V*) = 0 where A(V*) = o(V*) — (V7*),
© = csV* + eV*? and ¢ = —;V* — ¢. The coefficients ¢;, i = 0,...,3 are given by
appendix 3.B.

Through the Descartes sign rule, we have the possibility of up to 3 positive
roots for A(V*), regardless of the value of Ry. However, if we impose the restriction
I < kyrpp/(prper + vkr) required for all population values to be non-negative in (3.8)

only one is feasible when Ry > 1 and there is no root feasible if Ry < 1.

Therefore, if 0 < Ry < 1, there is only the virus-free equilibrium point W°, and
if Ry > 1, there is only one positive virus-presence equilibrium point W*. Indeed, when
0 < Ry < 1, it is possible to show the global stability of the equilibrium point W for the

case without cloning of plasma cells and T cells. Theorem 3.2 asserts this result.

Theorem 3.2. The virus-free equilibrium point W° for the case without cloning for plasma

cells and T cells is globally asymptotically stable if Ry < 1.

Proof: See Appendiz 3.C. O

Figure 3.2 shows the forward bifurcation for V* in the absence of cloning in
the model (3.2).

V* A

O

Figure 3.2 — Bifurcation diagram for V* with respect to Ry.
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3.3.3 Cloning only memory B cells

We consider only the parameter ar equal to zero in the model (3.2). The

components of equilibrium point W* are given by

B* — ks
pup — agV*
o rakp
(kB — apV*)(pa + npvV*)
M — kavepr — (prpr + vhr) I (3.10)
K
I [(up — apV*)(uvin + caarkar)(pa + nBV) + parakpBlur V>
(B — apV*)(pa +nBV*)[rvpusepr + o (prper + vhr) V¥
o — _ Mo+ pnur + ykrlpal”
paclkypr — (prpr + vkr) 1]
_—
2y

and V* is the root of p(V*) = ((V*) — x(V*), where

C(V*) = dnBrakppnprpactkupr(ps — apV*)(pa + nBV*)[rvpapr
+ ay(prpr + vkr)V*] = (urpr + vke)[pr (s — apV™) (popinr + anrkar) (a
+nBVF) + pnprr aks BV Hrvpacpr + an(prpr + vkr) V]

X(V*) = pul(o + pr)pr + vkr)lpr(ns — apV*) (v pn + anckar) (pa + npve)
+ paaprraksBlpr(ps — agV*)(Nacka + pepinr)(pa + nBVE)[rv paspr
+an(prpr + vkr)V*] = Nac(uipr + vkr)[pr(ps — apV™*) (uv i + anrkar) (pa
+nBV*) 4+ parprraks BV}

Notice that ¢ is a fourth-degree polynomial, and y is a fifth-degree polynomial.
In order to analyze the amount of positive virus-presence equilibrium points, we construct

bifurcation diagrams with respect to the parameter ag and according to the value of R,.
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Figure 3.3 — Bifurcation diagrams for B*, A*, V* M?* I* and C* with respect to the
parameter ap and Ry = 0.8. The blue color indicates the stability of the
equilibrium point and the red color indicates instability.
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Figure 3.4 — Bifurcation diagrams for B*, A*, V* M?* I* and C* with respect to the
parameter ag and Ry = 1.5. The blue color indicates the stability of the
equilibrium point, and the red color indicates instability.

When Ry < 1, if ap is greater than aj, we found two positive virus-presence

equilibrium points, and if ap < aj then there is only the virus-free equilibrium point. It
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means that if B cells have a low proliferation ( ap < ;) then the virus will be eliminated,
but if the proliferation rate is higher than aj; the virus can persist in the body. It depends
on the initial inoculation of the virus. For the case Ry > 1, we obtain only one positive
virus-presence equilibrium point. In this case, the immune system will not be able to

eliminate the virus.

3.3.4 Cloning only memory T cells

The absence of plasma cell cloning is evaluated by ap = 0 in the model (3.2).

The components of the equilibrium point W* are given by

B kB
HB
AF — rakp
1B(pa +npvV*)
v pppa(NacM* + pc)C*
onfrakp — ppnfB(NacM* + juc)C*
o — Mot p)(pr — arl®) + yhrlpa I (3.11)
pacl(kar — prl*)(pr — apl*) — vk l*]
M (kar = pr %) (pr — apI™) — yhpI*
pon (pr — arl*)
T* — kiTy
pr — apl*

and I™* is solution of ¢(I*) = U([*) — ¢(I*) = 0, where

U(I*) = {pyvparps(pr — arl*) + ol (kar — i) (pr — arI®) — vk I} (paV %"
+nBV™™) + Brakppy (pr — apIF)V ey
G(I*) = VIrrypppun I* (ur — apl*) (paV > + npvmm),

and

Vvier — snpBrakpunpac(pr — apI*)[(ka — prI*) (pr — apl®) — vkpI*]
— ppnB{Nac|(ky — piI*)(pr — arl™) = vkrI*] + popn (pr — arI™)}
x [(0 + pr)(pr — apl*) + vk pau I*

VM = pypppal*[(o + pr)(pr — arI™) + vkr {Nac[(kyv — pil™) (pr — arI™) — vkrI™]
+ popa (pr — apl™)}.

As q(I*) is a tenth-degree polynomial, we can obtain up to ten positive real
values for I*. However, for all population equilibrium values are positive, I* must satisfy

two conditions:
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<1, (3.12)
—arpl* k I* oraB*

pac|(kar — prI*)(pr — arl*) — ykrl*]  po + NagM*

where [ is the lowest value solution of (ky; — prI™)(ur — apI™) = ykpI*.

A

(k}\/[ — /L[I*)(/LT - OKTI*)

Kar
KT

.
L p kar T*
ar 1234

Figure 3.5 — Region (in Gray) biologically viable for the value of I* satisfying the condition
(3.12).

Numerically, if Ry > 1 we obtain only one biologically viable root for I* and if
Ry < 1 there is no biologically viable root for I*. Thus, if Ry < 1 there is only the VFE
point W° and if Ry > 1 there are the VPE point W*, which is locally asymptotically
stable and the VFE point W, which is unstable. Figure 3.6 shows that memory T cell
cloning reduces the concentration of dengue virus, infected macrophages and the immune
complex. The effect of T cell cloning does not collaborate to increase the infection, which

occurs when we consider only the cloning of memory B cells.
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Figure 3.6 — Bifurcation diagrams for M*, I*, A*, V* C* and T* with respect to the
parameter ar and Ry = 1.5. The blue color indicates the stability of the
equilibrium point.
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3.3.5 Cloning both memory B and T cells

In this case, both memory B and T cells are cloning. To evaluate this joint
effect of cloning, we analyze for what values of ag and ar are possible the existence of one
or three equilibrium points, which all components are non-negative. Concerning Ry > 1,
we find only two equilibrium points, which are W° (unstable) and W* (LAS), regardless
of the values of ap and ar. When 0 < Ry < 1, the amount of equilibrium points depends

on the values of ap and ar.

Figure 3.7 shows that increasing the value of Rj the value of ap could be
reduced to exist a region with three equilibrium points. Besides that, the value of ar must

increase to eliminate the other two equilibrium points.

3.4 Discussion

In this paper, a compartmental mathematical model was developed to obtain
and analyze the steady states. We investigated the influence of memory B and T lymphocyte

cloning action during secondary dengue infection.

In the absence of memory B and T cell cloning, there was a forward behavior:
when Ry < 1 only if the virus-free equilibrium point W exists, which was locally and
asymptotically stable, and for Ry > 1 this same virus-free equilibrium point became
unstable and appeared one virus-presence equilibrium point W*, which was locally stable.
When we considered only the possibility of memory T cell cloning, assumed by ap = 0 and
ar # 0, memory T cells reduced the infected macrophage concentration, but qualitatively

the dynamical behavior was not altered.

However, when we considered the possibility of only memory B cell cloning,
through ag # 0 and ar = 0, this behavior changed. It was possible, even when the basic
reproductive number was less than one, the appearance of two virus-presence equilibrium
points, which depended on the value of ag. In that case, there was a steady state with
a colossal concentration for the virus, denoted by W7, which was locally asymptotically
stable, and another steady state (unstable) with a low density for the dengue virus,
indicated by W?*. This behavior is showed in Figure 3.3. Therefore, the dynamical system
behavior depended on the initial condition. For instance, for a high viral inoculation, the
system converged to the equilibrium point W7}. A low viral inoculation for the virus was

necessary for the virus to be eliminated.

For Ry > 1, regardless of the effect of plasma cell cloning, we had only steady
states W*, which were locally asymptotically stable and W (unstable). Thus, for any

positive viral initial condition, the infection persisted.

When we considered the possibility of the joint cloning of memory B and T
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Figure 3.7 — Existence regions for equilibrium points according to the value of Ry and
varying ap and ap. The colours indicate the region which equilibrium point
exists, with blue (W), yellow (W°, W* and W*), and green (W° and W*).

cells, the values for the parameters of cloning ag and ag directly influenced the equilibrium

points existence of the model, as presented in Figure 3.7.
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Notice that, for Ry > 1 the values of ag and a7 did not influence the equilibrium
points existence. In that case, there was only the virus-free equilibrium point W (unstable)
and the virus-presence equilibrium point W* (stable). However, for values of Ry in the
range [0, 1[, there were two non-trivial stationary states when ap > aj (the region in

yellow in Figure 3.8).

ar

Figure 3.8 — Effect of the joint cloning of memory B and T cells for the region equilibrium
points existence when 0 < Ry < 1.

Figure 3.8 shows the effect of the joint cloning of memory B and T cells for
the region equilibrium points existence when 0 < Ry < 1. Consider ap € [af, +0[, it
was necessary for the elimination of this two non-trivial equilibrium points that ar > ar,
as we can see in the blue region in Figure 3.8. The higher the value of ap, the greater
ar was necessary to eliminate the virus-presence equilibrium points. In other words, the
higher memory B cell cloning capacity, the greater memory T lymphocyte proliferation

was necessary to eliminate the possibility of ADE’s occurrence.
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Figure 3.9 — Dengue virus coordinate in terms of the parameters ag and ar, considering
Ry = 0.8.

Figure 3.9 shows the dengue virus concentration, in terms of the parameters
ap and ar, with Ry = 0.8. As presented in Figure 3.3c, we showed that for low values of
apg, there was no positive value for the virus coordinate of the virus-presence equilibrium
point, but as we increased this value, appeared two virus-presence equilibrium points,
with positive values for V*. Also, as we increased the value of ag, the two values for the
dengue virus coordinates approximated each other. Moreover, suppose the value of ay was
increased. In that case, the viral concentration decreased, eliminating the two surfaces
with positive values for the dengue viral concentration, left only the virus-free equilibrium

point, as presented in Figure 3.9.

Therefore, we found that the ADE phenomenon can occur in two cases: (i) the
cellular memory response is too weak or (ii) both cellular and humoral memory responses
are strong, but the cellular memory response decreased faster than the humoral memory
response. Thus, the action of T cells collaborated to eliminate the possibility of ADE
occurrence. However, an exaggerated concentration of T lymphocytes in the host may favor
the appearance of worsening infections (41, 45). T cells release cytokines to act during
the inflammatory process. The exacerbated releasing of cytokines, a phenomenon known
as cytokine storm, has been related to development of the vascular leak characteristic of
dengue severe (41, 46, 47). Thus, a balance of immune responses is necessary in order to
control but without aggravating the infection. So, the organism can eliminate the ADE
occurrence and at the same time not be aggravated by other factors, such as excessive

production of inflammatory cytokines.
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3.5 Conclusion

A mathematical model was proposed to analyze the effect of memory B and T
cells during a secondary dengue infection by heterologous dengue virus. In the impossibility
of cloning these cells, we found that if Ry < 1 there was no possibility of the ADE
appearance. However, when we introduced the memory B cell cloning, we observed that
an infectious state could arise even when the basic reproduction number is less than one -
suggesting that an increase in the production of antibodies may stimulate the formation
of a more significant amount of antigen-antibody complexes leading to a higher infection
of the target cells by the circulating virus. Analogously, when we analyzed only the effect
of memory T cell cloning, we saw that ADE emergence is not possible. These cells acted

only to reduce the viral concentration.

In order to portray a real circumstance, both B and T memory cells could clone
in the presence of antigen and infected macrophages, respectively. In that scenario, we
found that the main responsible for ADE appearance was the memory B cell, depending
on the clonal intensity. If they did not have a low cloning capacity, memory T cells were

responsible for eliminating this possibility of the ADE appearance.

This model adopted a limited number of variables and an unbounded cloning
capacity for both memory T and B cells. B and T cell cloning carrying capacity could be
incorporated in future work since they do not have an unbounded proliferation capacity.
We can also include the cytokines to understand better the role of T lymphocytes during

secondary dengue infection.
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Appendix

In this Appendix, proofs of the positive invariance region and the global stability
for virus-free equilibrium point without B and T cell cloning are presented. Also, the
polynomial coefficients that determine the equilibrium point V* (for the case without

cloning of memory B and T cells) are shown.

3.A  Proof of Proposition 3.1

For naive and infected macrophages, we have

d(M +1)

T kn — pa M — prl =TT

<k — p M — gl

Since py > par, then M + 1 < kyr/pr

For V', the maximum production value occurs when all naive macrophages are

infected. Thus, we have M =0, [ = [ = —M, and the maximum production value of V'
123.%s
k
jg ymax — TVEM
Ky epm

For B when V' = 0, we have

dB k

dt B

dB k

& —kp-upB=0, ifB=-2

dt UB

However, if V' > 0 then

dB k
& kp+agVB—pupB>0, ifB="Z
dt KB

dB k
Thus, o > 0 at the boundary B = —B, and no flow crosses this boundary

“B
k
towards values smaller than B = —2. Once within of 2, the flow remains inside this region.
1295
k
Consider the lower limit as B = —B, we have B > 0. Analogous to the limitation of B
KB
k
region, we found T" > °T
ur
For the variable C', analogous to V' limitation we found the maximum production
5 VmaxAmax
value for C' is when V' = V™ and A = A™*. Thus, we found C' < nﬁ— Since

He
n antibodies bind to one virus, then for V' = V™ we have nV™* antibodies bidden.

Therefore, we found the maximum production value for C' is
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3.B Coefficients of the ¢ and 1) polynomials

The coefficients of the polynomial p(V*) are

cs = —n*Bpppdppr(pipr + vkr) kpraacadpy (p + p™),
¢y = —npuippp{kpriccon Bop(kry + prpr)? + pp(kaoas + porpv ) [2kronypapc
+ EunNryacBur + 2anpapciirpr + nry Bucpiapr — 2N acpapy kry
— 2Nacpapy prpr)|[kry + pr(pr + o)
— kpraps(kry + pipr)[—kryamBucpn + 2kryNac By
— kryacaydpapyp + knacan Bkr Ny + kyacan Bnrydpurp
+ knacay BN prpr + kyacan SN pro — prac B pynryop
+ 2upacBunpy N(pr + 0) — pranacdpaprpvp — pran Bucin (b + o)},

and the coefficients of the polynomial ¢(V*) are

1 = —pair{papp (karonr + parpv ) vkrpa(ampe — Naopy)[kry + pr(pr + o))
+ ppp g (ks + parpy ) [kry + pr(pr + o) laspep
+ 2papp(karans + gy )[kry + pr(pr + o)nry Bk Nae + popiar)
— pang(karans + parp ) [kry + pr(pr + o) |Nacprpy
— kgrioc S (kry + ppr)kr Ny + kyrioc 82 p (kry + ppr)nrydprp
— kgraacS pua (key + prpr) N pr(pr + 0)}
— kpraBus iz (bry + popr) [krypa(anpe — 2Nacpy) + praspapiop
+ prnry Bpcpy — 2ur Nacpaprpy + prnrvacdpapy pl + iy propekranypa
+ T o o prapipir + parpropenty Buapr — 2N acpapy (kry + prpr)
— kyrackd Nayy? ia — kyracpznrydanpiapirp — kaacpuan -8 p
— kyacppNanpapr + kyocpgnry B (pr + o) + kyackryprnNry B
— kyjackryprnryondpap — kyackrypurNanpia(2pr + o)}
co = v i e (i + o) + ke (v + anckar) (parpic + Noacka) (R — 1),

& — k kr|N
where oﬂg1 = O;\A[/[“C and pth = (ag — ac)(pupy + anknr)[(pr + o) pr + vkr] ,UB‘

y (prpr + vkr)kpraacday

3.C Proof of the Theorem 3.2

We use the direct Lyapunov method to proof the Theorem 3.2. To construct

the Lyapunov function, we used a matrix-theoretic method, which is based on the Perron
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eigenvector (48) and the Next Generation Matrix (48, 49, 50, 51).

Firstly, we construct the vectors F and V), where F; represents the rate of new

infections in the ith disease compartment and V; represents the transition terms.

ra—npVA paA
_ ryl — BAV v wyV o+ apy MV
SnBAV |’ 1eC + NacMC
pacMC (0 +pr)l +~T1

Based on (49, 50) we defined two 4 x 4 matrices,

P |50 ad v | Fom).

(%cj 8xj
So, the inputs of matrices F and V are

0 —npBVA° 0 0
0 —ﬁAO 0 Ty

0 onpA° 0 0
0 0 pacM® 0

1A 0 0 0
v 0 py+ acM® 0 0
0 0 pe + NagM° 0

0 0 0 pr + o 4+~T°

Let G = V7'F and w be the left eigenvector of the non-negative matrix
V~'F corresponding to the eigenvalue p(V™'F) = p(FV™!) = A, where FV ! is the next
generation matrix (51) of the model (3.2). We obtain

P@CMOTV TV ]

T
—10 1
“ [ N2 (pr + 0 +4T) (v + anMO)  A(py + any M)

A0
and the characteristic polynomial of the matrix G is given by A(z) = 2°+ —6x2
wy + ap MO

ABnryacdpM®
. According to Yang and Greenhalgh (2015
(,uC—FNaCMO)(uV+onM0)(,uI+UO+ ~yT0) . & & . gh ( )
AYBnryacdipM A°B
e e eme Ho (e + NacMO)(py + anMO)(pr + 0 +91°)  pv + any MO ’
Then R is a threshold value for the disease to disappear in the sense that

(i) R§ > 1if and only if A > 1

(ii) Ry =1ifand only if A =1
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(i) Ry < 1if and only if A < 1.

We take @ : T’ — R, where I' = {(B,A,V,C,M,I,T) e RT : M < M", A <
AV =>0,1 =0} and

1 MO
V4 pac Ty O+ v I
pv + o MO N2 (g + 0+ 4T0) (py + anMO) (e + NaeMO) ™ Mpy + ay M)

Notice that Q(W?) = 0 and @ > 0 in T — {WW°}. Besides that, the derivative

function of @) is given by

aqQ 1 dV N pac MOry, dC
dt B ny + OéMMO dt /\2(//4 + 0+ ’YTO)(MV + aMMO)(,uC + NOécMO) dt
i Ty dl

Ay + ap MO) dt
1
(I -V —anuMV — BAV
v+ an MO (rvI — 'V —ay BAV)
N poce MOry
N(pr + o0+ T (py + apMO)(ue + NacMPO)

ry
CM — I —~TI
T X+ an M [pac (ur + o)l =TI,

(0nBVA - NacMC — ucC)

which can be rewritten as

d
d? =qvV +qcC +qil,

where

B My ay M BA
v = _uv +ay MO Wy + apy MO B v + apy MO

1 pocry MPndéBA
* A2 (g + 0 + 4T (v + anr MO) (e + Nag M)
B ry pacM

de = (g + 0 +~4T°) (y + apy MO)

1 pacry MO (NacM + uc)
NN (g + 0+ AT0) (v + anMO) (e + NaeMP)
- rv ur +o+~T _1]

BT G+ an M) (A + 0 +9T0) )

Using the assumptions M < M° A < A%, T < T° A()\) =0, and A < 1 we

obtain
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av =M —1<0 (3.14)
rypacM MO
= — —-M ) <0 3.15
e Apr + 0 +9T0) (py + an M) < A ) (315)
Ty 1
<——7——|-—-1) <0 3.16
u ny + OzMMO ()\ ) ( )

Therefore, Q" < 0 in I' — {W°} if and only if Ry < 1. So, we conclude by
LaSalle’s invariance principle (53), the equilibrium point W is globally asymptotically
stable. 0
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4 Conclusoes

Neste trabalho foram estudados dois modelos matematicos, com o propésito de
descrever o fénomeno reforco dependente de anticorpos, e analisar o efeito das células de

memoria durante uma infec¢ao secundéria por virus de dengue heterologo.

No Capitulo 1, estudou-se um modelo simplificado que aborda a interagao
somente das células plasma, a célula alvo (macréfagos) e o virus da dengue. O foco
neste trabalho foi avaliar o efeito da capacidade de suporte para a proliferacao das
células plasmaticas, isto é, analisar o efeito de uma proliferacdo limitada para estas
células. Foi encontrado que quanto maior a capacidade das células plasmaticas de se
proliferarem, maior serda a possibilidade do virus da dengue nao ser eliminado pela acao
do sistema imune. Encontramos que a proliferacao de células plasmaticas juntamente
com a inoculacao do virus tém um papel fundamental na ocorréncia do fenémeno reforgo
dependente de anticorpos. Foi feita uma analise de sensibilidade com o objetivo de analisar
quais parametros influenciavam mais os limiares Ry e (). Encontramos que a taxa de
engolfamento do complexo imune por macréfagos, a proporcao de macréfagos infectados
e a taxa de fagocitose do virus por macrofagos sao os parametros que mais influenciam
o numero de reprodutibilidade basal, enquanto que a taxa de proliferacao das células
plasmaticas juntamente com todos os parametros citados anteriormente influenciam o

fator de enfraquecimento do ADE.

No Capitulo 2 foi feito uma comparacgao entre as abordagens deterministica e
estocastica para simular a dindmica do ADE apresentada no capitulo anterior. Encontramos
que além do valor de Ry importante para determinar a estabilidade dos pontos de equilibrio,
a condicao inicial do sistema tem um papel fundamental nas simulagoes estocasticas. Vimos
que ha situagoes que a curva média das simulagoes estocasticas se aproxima da curva
deterministica ou nao, dependendo do valor da condicao inicial. A abordagem estocastica é
uma ferramenta util para simular sistemas, estudar tempo de extin¢ao de uma determinada
infeccao, investigar a probabilidade de um determinado evento ocorrer, entre outros
aspectos. Entretanto, sem uma andlise matematica do respectivo modelo deterministico,
extrair conclusoes da dinamica estudada pode ser complexo. Portanto, concluimos que
a abordagem de simulagao estocastica é uma 6tima abordagem para simular sistemas
biolégicos, mas para a compreensao da dinamica do fenomeno de interesse é necessario uma
analise do respectivo modelo deterministico. Em modelos de alta complexidade analitica
¢ interessante ao menos estudar o ponto trivial e obter analiticamente algum resultado
acerca do limiar Ry, importante para determinar a existéncia e estabilidade dos pontos de

equilibrios.
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No Capitulo 3 foram introduzidas novas variaveis, a fim de analisar a dindmica
do ADE de forma mais detalhada. Neste caso, além das varidveis ja descritas no Capitulo
1, introduzimos as células T de memoria, a formagao do complexo antigeno-anticorpo e a
liberacao de anticorpos pelas células B de memoéria. Observou-se que a proliferacao das
células B é o principal responsavel pela ocorréncia do fenémeno ADE. Caso as células B
de memoéria tenham uma alta proliferacao, é possivel o virus da dengue persistir e alcangar
uma alta carga viral, mesmo para uma baixa inoculacdo do virus. A existéncia de uma
maior quantidade de células T de memoria se mostrou eficaz no controle viral, sendo
possivel diminuir a concentragao de virus ou até mesmo eliminar a possibilidade do ADE.

As anélises dos dois modelos foram feitas sob o ponto de vista qualitativo.

Trabalhos futuros

Como trabalho futuro pretende-se continuar a investigacao do fenémeno re-
forco dependente de anticorpos incorporando novas variaveis ou pardmetros no modelo
apresentado no Capitulo 3. Por exemplo, considerando capacidades de suporte para a
proliferacao das células B e T de memoria e a inclusao como variavel dindmica de citocinas

pré-inflamatérias associadas com a severidade da dengue.
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