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RESUMO 

Modelos dinâmicos de crescimento de culturas associados à imensa massa de dados disponíveis 

têm sido enxergados como parte da resposta ao problema de uma produção agrícola mais 

eficiente quanto ao uso de recursos. Apesar de tais modelos demandarem etapas de calibração 

sem as quais seu desempenho preditivo pode ser insuficiente para auxílio na tomada de decisão, 

o monitoramento em tempo real poderia ser capaz de contornar essa necessidade. Modelos 

dinâmicos e imagens de satélites têm sido combinados por meio de técnicas de assimilação de 

dados para diminuição dos erros de predição de variáveis de estado relacionadas ao dossel das 

culturas, a propriedades do solo ou à produtividade. Em ambientes protegidos, porém, em que 

o uso de modelos e de sensores permite o monitoramento e a automação de sistemas de controle, 

de modo que é possível otimizar as condições ambientais visando maior lucratividade da 

produção, a aplicação de técnicas de assimilação aos dados de monitoramento é pouco 

explorada. Este projeto teve como objetivo, portanto, determinar o desempenho de técnicas de 

assimilação de dados utilizando sensoriamento do ambiente e da cultura em uma casa de 

vegetação, bem como determinar qual a resolução temporal necessária para sua realização e o 

grau tecnológico necessário para que a abordagem possa ser replicada em condições de 

produção. Para isso, foram monitorados os fatores meteorológicos de uma casa de vegetação 

com o cultivo de tomate, bem como o crescimento dos vegetais, por meio de pesagem direta de 

plantas e do uso de imagens capturadas com câmeras de baixo custo. Por meio de técnicas de 

estimação de estado como o Unscented Kalman Filter e o Ensemble Kalman Filter, foi realizada 

assimilação dos dados no modelo TOMGRO reduzido. Uma vez que o uso dessas técnicas em 

cultivo protegido não havia sido realizado, foi necessário caracterizar cuidadosamente os 

elementos que afetam o desempenho dos modelos, bem como dos filtros. Foi observado que: 1. 

dependendo do modelo de crescimento utilizado, a assimilação de uma variável de estado pode 

não impactar as demais, como sugerido por análises de sensibilidade, 2. a qualidade das 

observações é determinante para o bom desempenho das técnicas de assimilação, 3. a 

assimilação teve melhor desempenho quando houve necessidade de adequar as estimativas a 

perturbações no crescimento, 4. uma vez que o desempenho dos filtros leve a melhores 

estimativas da produtividade, não são requeridas observações contínuas. Embora, de modo 

geral, não tenha sido possível obter desempenhos superiores aos do modelo calibrado, este 

potencial existe, uma vez que melhores modelos de observações e melhores observações 

estejam disponíveis. 

Palavras-chave: Modelos de crescimento; Assimilação de dados; Cultivo Protegido; Tomate   



 

 

ABSTRACT 

Dynamic crop growth models coupled with the vast amount of available data have been seen 

as part of the answer to the problem of more resource-efficient agricultural production. 

Although such models require calibration steps without which their predictive performance may 

be insufficient to aid decision making, real-time monitoring could be able to overcome this 

need. Dynamic models and satellite images have been combined using data assimilation 

techniques to reduce the prediction errors of state variables related to crop canopy, soil 

properties, or yield. In protected environments, however, where the use of models and sensors 

allows the monitoring and automation of control systems so that it is possible to optimize 

environmental conditions for greater production profitability, the assimilation of monitoring 

data is not explored. This project aimed, then, to determine the performance of data assimilation 

techniques using environmental and crop sensing in a greenhouse, as well as to determine the 

acquisition frequency required and the technological level necessary for the approach to be 

replicated under production conditions. To do so, the meteorological factors of a greenhouse 

with tomato cultivation were monitored, as well as crop growth, through direct weighing of 

plants and the use of images captured with low-cost cameras. Using state estimation techniques 

such as the Unscented Kalman Filter and the Ensemble Kalman Filter, data assimilation in the 

Reduced State TOMGRO model was performed. Since the use of these techniques in protected 

cultivation had not been carried out, it was necessary to carefully characterize the elements that 

affect the performance of the models, as well as the filters. It was observed that: 1. depending 

on the growth model used, the assimilation of one state variable may not impact the others, as 

suggested by sensitivity analyses, 2. the quality of observations is crucial for good performance 

of the assimilation techniques, 3. the assimilation performed better when there was a need to 

adjust the estimates to growth disturbances, 4. when filters lead to better productivity estimates, 

continuous observations are not required. Although, in general, it has not been possible to obtain 

better performances than the calibrated model, this potential exists, as long as better observation 

models and better-quality observations are available. 

Keywords: Crop models; Data assimilation; Protected cultivation; Tomato 
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1. INTRODUCTION 

The improvement of models of agricultural systems has been widely discussed in the 

scientific community and has been the subject of special issues of various journals, such as 

Agricultural Systems (Antle et al., 2017b), European Journal of Agronomy (Wallach and 

Thorburn, 2017) and Environmental Modelling & Software (Athanasiadis et al., 2015; 

Holzworth et al., 2014). Researchers expect a new generation of crop growth and development 

models that can draw on both historical and real-time data (Jones et al., 2017a). As Antle et al. 

(2017a) point out, in addition to high-resolution historical yield data, which is already available 

for many growers, there is a vast amount of information available, such as weather forecasts, 

satellite imagery, thermal imaging and high-resolution spectral data obtained by unmanned 

aerial vehicles. 

Although Antle et al. (2017a) and Jones et al. (2017a) focused mainly on the 

opportunities for open-field agriculture, the growing demand for food in a context of climate 

change and shortage of productive land has also required advances in protected cultivation. This 

has been reflected in the new paradigms of food production, such as vertical farms and urban 

agriculture, in addition to traditional greenhouses (Graamans et al., 2018; Lawson, 2016; 

Pinstrup-Andersen, 2017; van Delden et al., 2021). But while the improvement and 

requirements of models for grasslands, field crops and livestock have been thoroughly 

discussed, horticultural crops are often not included in crop modeling discussions. 

Even as a lot of work has been done in the modeling of the growth and development 

of greenhouse tomatoes (Heuvelink et al., 2018; Marcelis et al., 1998), assessments that would 

allow for their wider usage are less frequent, particularly for tropical growth in low-tech 

greenhouses. For instance, a first arduous and necessary step for the use of crop growth models 

is calibration of crop specific parameters (Seidel et al., 2018), but for Brazilian growth 

conditions — either specific cultivars or weather —, no studies have been performed to 

calibrate these models. And while one could argue the weather variability issues that often lead 

to different responses to the environment are not present in controlled environments, this is not 

the case for low- or medium- technology greenhouses (Montero et al., 2019). 

It could then be the case that for these environments, one use of the new deluge of data 

could be to bypass the need for calibration for obtaining good estimates. Steppe (2012) 

highlighted how sensing data in greenhouses can be used along with mechanistic models to 

assist in management decisions, so that interventions are connected to the needs of the plant, 

within the concept of "speaking plant". Observations from continuous monitoring in 
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greenhouses come in multiple forms, such as stem diameters, crop weight, plants’ images, but 

have been explored only by machine learning techniques (Hemming et al., 2020, 2019) even if 

non-calibrated mechanistic models could assist in providing trends and constraints that could 

not be observed during growth. 

One way to associate sensing data and crop growth process-based models is by data 

assimilation. Data assimilation is a widely used method in hydrology and meteorology, which 

consists in combining observed values to the states estimated by the models, taking into account 

both errors intrinsic to the model and in the observations (Pellenq and Boulet, 2004; Rodell et 

al., 2004). In the case of crop modeling, data assimilation has been used with remote sensing 

images to estimate state variables related to crop canopy or soil properties, which has led to 

better estimates of yield, leaf area index and soil moisture (Dorigo et al., 2007; Jin et al., 2018). 

Shifting from the traditional use of satellite images as sources of additional growth 

information, recent works have explored unmanned aerial vehicles (UAV) and digital images, 

such as in Yu et al. (2020), to improve yield estimates by assimilating sugarcane height. Linker 

and Ioslovich (2017) incorporated into the Aquacrop model estimates of canopy cover obtained 

from digital images of the canopy, as well as data obtained from destructive analysis as biomass 

observations. 

Destructive analysis data has also been used by Ruíz-García et al. (2014) with lettuces 

and the Nicolet model, but data automatically collected in protected environments has not yet 

been explored. The lack of studies means it is still unclear what type of growth observation 

could be useful, particularly if the goal is to obtain better estimates of yield. As some authors 

(Linker and Ioslovich, 2017; Nearing et al., 2012) observed, assimilation of one variable will 

not necessarily capture enough information for the model to change yield outcomes. Several 

challenges and opportunities of data assimilation with remote sensing discussed by recent 

reviews (Huang et al., 2019a; Jin et al., 2018) would not extrapolate for proximal sensing, as 

they refer to problems of large areas. However, some of them, such as frequency of assimilation 

and its impacts on the computational structure required for storing or processing data, would 

also be present. Furthermore, considering the potential availability of solutions based on this 

principle, the sources of data for models’ environmental inputs and growth observations should 

come from low-cost sensors, even though these could increase the uncertainty of the inputs, 

impairing the improvement of estimates. 

While assimilation of monitoring data has then the potential to allow for the use of 

imperfect horticultural growth models, not much is known regarding how it could be used. This 
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work explores if it would be possible to obtain good estimates of tomato growth if real-time 

observations were assimilated into a non-calibrated tomato model and different approaches to 

reach this outcome, regarding sources of observations and frequency. 
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2. OBJECTIVES 

To achieve the overall goal of determining if there is an approach to assimilation of 

monitoring data that could circumvent the need for calibrating a greenhouse-tomato model of 

growth and development to achieve good estimates of greenhouse tomato growth, there are 

several goals that must also be achieved: 

• Determine how different sources of growth data impact the update of state 

variables, including yield. 

• Determine the difference in performance of data assimilation techniques when 

environmental inputs and growth data are provided by scientific-grade and by low-

cost sensors. 

• Assess the impact of assimilation frequency in the uncertainty of estimates 

obtained by a non-calibrated model subject to growth data assimilation. 
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3. LITERATURE REVIEW 

3.1. Crop models 

Briefly, crop models are mathematical representations of plants throughout their 

growth as affected by the factors that influence said growth, e. g. crop’s genetics and the 

environment. De Vries (1982) proposed three levels of complexity for categorizing crop 

models: preliminary, comprehensive, or summary models. While the first type contains basic 

features of the system and aims at a first understanding of the subject, once more knowledge 

into the processes is gained and imbued into the model, it becomes closer to the second type 

which, to be made more accessible to others, may then be simplified into the third type, 

depending on the intended use of the model. Passioura (1996) discussed two other categories, 

which are related to the intent of their development and use: they could be aimed at farmers, to 

aid in their decision-making and, for that, understanding of the underlying mechanisms would 

not be required, or they could be aimed at scientific purposes, which means that the description 

of mechanisms should be related to theories and validated by hypothesis testing. The first case 

is generally associated with the terms functional, empirical, statistical and phenomenological 

and the second, to the terms mechanistic and process-based (Jones et al., 2017b). 

Throughout the years, the discipline has evolved to include innovations in data sources, 

as well as the new requirements of such models. Crop models were no longer standalone tools 

and became elements of agricultural systems models, through integration across different 

domains, along with soil, livestock systems, pests and diseases, economic, and landscape and 

watershed models, enhancing their roles in policy and decision-making (Holzworth et al., 2015; 

Jones et al., 2017a). And while the first models created could be described as curiosity-driven 

(Jones et al., 2017b), the denominated “Next Generation of Crop Models” was expected to 

improve representation of spatial heterogeneity and temporal dynamics, accurately represent 

the effects of extreme events, incorporate genetics, characterize crop nutrition, include 

responses to pests and diseases, admit intercrops, crop rotation and livestock production, and 

comprise economic and social dimensions (Antle et al., 2017a). As Keating and Thorburn 

(2018) observed, in the past twenty years, research has moved from descriptive and nomothetic 

contexts to policy and action-driven ones. 

This evolution relates to the previously defined categories. While Jones et al. (2017a) 

state that models are “either functional or mechanistic”, Jones et al. (2017b) expand this idea 

by mentioning how explanatory models may be fully mechanistic, but may also include both 

mechanistic and functional model components. One may also look into Keating and Thorburn 
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(2018) and how they point to a situation that, right now, in a context of “Big Data” and “Internet 

of Things”, is more blurred than the allocation of models in such strict categories. They expect 

a new relationship with data that would increase its role in model use and development through, 

e. g. model-data fusion and inverse modelling, and new roles for remote and proximal sensing 

in their initialization and calibration. 

Almost twenty-five years ago, a special issue of the journal Scientia Horticulturae 

covered the existing modeling approaches for fruits, vegetables, and ornamental plants. One 

question Gary, Jones and Tchamitchian (1998) aimed to clarify was what was expected from 

crop modeling in horticulture. As others before them (Boote et al., 1996), they mentioned how 

crop models have value for scientists, growers and policy-makers. For instance, by providing 

quantitative information regarding crop timing, irrigation, fertilization, crop protection, and 

climate control, growers would be able to make decisions at the field scale while, on a regional 

scale, policies could be evaluated from estimations of potential yields, water needs and fertilizer 

losses. For horticultural models specifically, they mention the diversity of crop management 

problems: fruit crops and ornamentals, as perennial species, require not only being maintained 

at high levels of production but also of survival for the following cycle and greenhouses, as 

another specific cultivation system, can be compared to industrial production systems and crop 

models may be used in different temporal and spatial scales, allowing for more meticulous 

management of greenhouses and aiding in crop planning. This management is detailed in the 

same issue by Lentz (1998) who, when describing the decision levels in the production context, 

pointed to how crop models could be used to optimize environmental conditions for growth but 

that would require them to be highly accurate.  

However, the improvement of crop models throughout the years that has been 

thoroughly presented (Holzworth et al., 2015; Jones et al., 2017b) has often been aimed at 

grasslands, field crops and livestock and has not included horticultural crops, despite belonging 

to the same field of study. Differently from other crops, there are few studies using tomato 

growth models to understand production. Berrueta et al. (2020) evaluated greenhouse-grown 

tomatoes in Uruguay regarding their yield gap, using the Tomsim model to estimate potential 

growth, presenting management alternatives to reduce the gap and Bojacá, Gil and Cooman 

(2009) used the Tomgro model to evaluate yield variability in greenhouses in Colombia, but 

these analyses are not as widespread. However, the community has started directing its attention 

to the need of advancing modeling of non-staple crops. One example comes from Antle et al. 

(2017) pointing to how since one of the primary correlates of health in people moving out of 
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hunger is fruit and vegetable consumption, one needs to understand better how they will be 

affected by climate change. 

 

3.2. Models of greenhouse tomatoes growth and development 

After potatoes, tomatoes are the most frequently grown vegetable crops worldwide. 

As is the case for all crops, tomato yield is not an isolated characteristic, so if the plant does not 

grow well, it will not have a high yield (Van Ploeg and Heuvelink, 2005). Therefore, models 

that represent tomato growth and development should be able to characterize the interactions 

between events and their effects. 

Marcelis, Heuvelink and Goudriaan (1998) reviewed horticultural crop models 

focusing on the representation of growth and development. They discussed the existing 

approaches for calculating light interception, photosynthesis, respiration, and partitioning, 

concluding that the larger gaps in modeling these processes lied on the simulation of leaf area 

development, maintenance respiration, organ abortion, dry mass content and product quality. 

Among their examples for photosynthesis-based models of tomatoes, they mentioned Tomgro 

(Dayan et al., 1993a; Gary et al., 1995) and Tomsim (Heuvelink, 1996) models. Heuvelink, Li 

and Dorais (2018) summarized the subsequent progress in model development for tomatoes. 

For process-based models (PBM), it mainly consisted of the adaptation of previously existing 

models CropGro and Aquacrop to also simulate tomato growth (Boote et al., 2012; Katerji et 

al., 2013; Scholberg et al., 1997).  

In both cases, the development is related to the simulation of field-grown tomatoes 

and, particularly for the case of Cropgro-Tomato, it was motivated by the inability of the 

previously developed Tomgro model to simulate field-grown tomatoes. McNeal et al. (1995) 

and Scholberg (1996) explored how they could adapt the model, but branching of the semi-

determinate field cultivars impacted the number of nodes in the main stem as well as resulted 

in faster build-up and decline of leaf canopy in a way that the model did not represent. The 

Cropgro-Tomato model has recently been evaluated in greenhouse models (Deligios et al., 

2017), but it was preliminary and the authors suggest there should be further evaluations. Other 

process-based models not mentioned include the reduced-state version of the Tomgro Model 

(Jones et al., 1999), the model developed by Vanthoor et al. (2011), the VegSyst model 

(Gallardo et al., 2014; Giménez et al., 2013) and the Simple model (Zhao et al., 2019). 

The goal of TOMGRO development was to create a dynamic model capable of 

characterizing tomato responses to the environment aimed at greenhouse control systems (Jones 
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et al., 1991). According to the authors, a model of the biological response, associated with 

physical models of the environment and the greenhouse control systems, besides information 

on production costs and crop financial return, allows an optimization approach aiming at greater 

profit due to the control of environmental conditions. However, the large number of state 

variables in the model makes it too complex for use in control systems. This led to the 

development of the Reduced TOMGRO model (Jones et al., 1999), which is an example of 

using more comprehensive crop models to create reduced form crop models that produce 

responses needed for specific applications (Jones et al., 2017a). 

The model developed by Vanthoor et al. (2011) aimed at the optimization of 

greenhouse design, capturing the effects on tomato yield of light, carbon dioxide concentration 

in the air and temperature, including extreme ones. One of their reasons for developing a new 

model was that previous models were not fully differentiable, which compromised their 

optimization design goal. The VegSyst model was developed to assist with Nitrogen and 

irrigation management of greenhouse vegetable crops (Gallardo et al., 2011) and in 2014 was 

calibrated for tomatoes and incorporated into a decision support system (Gallardo et al., 2014). 

The Simple model, recently developed, attempted to address the gap in modeling 

vegetables, was well as other oil and fiber crops and fruits (Zhao et al., 2019). It has been 

evaluated on datasets of field-grown tomatoes, but not in greenhouse-grown. While it likely 

would not be used for controlling the environment, since it uses daily inputs, it could still be 

useful for estimating yield by the end of the growth cycle. The Simple model exists in the 

context of the discussion of universal models. While many authors emphasize their limitations, 

even advising against their development, (Affholder et al., 2012; Boote et al., 1996; Sinclair 

and Seligman, 1996), it could be the case that after so many years of progress in the field, it is 

possible to summarize overall growth in a useful albeit limited way. Only further assessments 

could answer that. 

Kuijpers et al. (2019) and Lin, Wei and Xu (2019) aimed at taking advantage of the 

different representations of similar processes from different models and combined them to 

obtain accurate growth models. While Monteith (1996) has argued that changes to model 

structure should be rigorously tested, modular representations of validated processes should not 

be constrained by these requirements and has been argued throughout the modeling community 

(Jones et al., 2017b; Vanthoor et al., 2011). Some even emphasize the advantage of this 

approach as allowing for periodical updates, which would reflect new biological knowledge 
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(Kim et al., 2019). However, associated to model structure there are often parameters that 

should be adequately dealt with, as discussed in section 3.3. 

Among the limitations of greenhouse tomato models developed thus far, most do not 

account for water restrictions, as they assume plants are well watered. However, deficit 

irrigation (DI) has been suggested as a strategy of saving water, even in protected environments, 

particularly in arid and semi-arid regions (Khapte et al., 2019). Simulation of plant water 

relations could also be helpful in understanding dry matter content and fresh weights, as 

indicated by Marcelis, Heuvelink and Goudriaan (1998). Models should also account for 

salinity (Karlberg et al., 2006), given problems of water quality and the possibility of water 

reuse. Finally, aspects discussed by Vanthoor et al. (2011) included how tomato quality models 

could play a role in optimization of the environment as well as how fertigation could influence 

crop growth.  

Heuvelink, Li and Dorais (2018) also mentioned two developments in modeling that 

build on process-based models: functional-structural plant models (FSPM) and knowledge-and-

data-driven models (KDDM). As several fronts of the advance in scientific and decision-

making goals are intertwined, this is reflected in the solutions being presented. So, KDDM 

consist of using elements from both FSPM and machine learning. While there is an expectation 

of FSPM being used for optimizing greenhouse energy use and crop performance 

simultaneously (Evers and Marcelis, 2019), this role has been performed by artificial 

intelligence models. Recently, machine learning models have outperformed traditional growers 

in the Autonomous Greenhouse Challenge, which in 2018 aimed at optimizing the growth of 

cucumbers (Hemming et al., 2019) and in 2019, of cherry tomatoes (Hemming et al., 2020). It 

is becoming clearer that there is room and need for a wide range of modeling approaches. As 

Van Delden et al. (2021) recently stated, a combination of mechanistic and data-driven models 

may create an ideal blend of interpretability, which machine learning and artificial intelligence 

often lacks, and predictive power, for which mechanistic models are often more limited by their 

calibration requirements and their uncertainties. 

 

3.3. Calibration and uncertainty of crop models 

Diving deeper into the discussion of how to represent crop growth and development, 

one may investigate other aspects intimately related to modeling. In the process of modeling, 

scientists are faced with choices regarding how to represent model structure. Archontoulis and 

Miguez (2015) describe non-linear functions for a myriad of processes, e.g. sigmoid curves for 
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growth rate, exponential curves for light distribution and bell curves for soil moisture effects 

on nitrous oxide emissions. 

These representation choices may allow for some flexibility in the form of parameters. 

Parameters may be understood as properties of the components of a system that are unknown 

and are not measured directly, and therefore must be estimated using observations of system 

behavior (Wallach et al., 2019a). In crop models, parameters have a dual role in model structure: 

to give flexibility to the relationships given uncertainty in measurements and elements of the 

structure that are unaccounted for, as well as to represent behaviors associated to crop’s 

genetics, which may vary throughout cultivars of the same crop. Wallach (2019) further 

distinguishes parameters as fixed, which are determined based on the literature and as they do 

not change, are part of model structure, and calibrated. Kersebaum et al. (2015) attribute the 

name ‘parametrization’ to the estimation of fixed parameter values and ‘calibration’ to the other 

parameters. 

Calibration is often performed by an optimization of goodness-of-fit metric, but how 

to properly estimate parameters’ values is still the object of studies. Seidel et al. (2018) 

discussed how guidelines could be established to clarify the consequences of the different 

approaches to choosing which parameters are to be adjusted, the trade-off between parameters 

compensating for errors throughout the model and their meanings and to discuss approaches to 

protect against overfitting and proper evaluation of the calibration process. Wallach et al. (2021) 

have made progress in this discussion for phenology parameters, but the overall need for these 

guidelines, may be exemplified by a few examples in tomato modeling. 

Regarding the methods and overall need for calibration, in Kuijpers et al. (2019) the 

authors’ claimed their approach of interchanging model components was not entirely successful 

because not all model parameters were identifiable, given calibration based solely on the 

available weather inputs and observed biomass and yield. They suggest that for a use such as 

theirs, that rely on the modularity of the model, the model should be calibrated at the process 

level, but acknowledge it is not always possible to do so. However, their choice of not 

calibrating any parameters from the new models obtained by the combination of components, 

using them as they were published, likely affected their conclusions, as calibrated parameter 

values are only valid for the model configuration that was used for the calibration (Kersebaum 

et al., 2015). Another issue is the choice of which parameters to calibrate and which to treat as 

fixed. Vanthoor et al. (2011) treated all parameters — including cardinal temperatures — as 

fixed. As a likely consequence, the model underestimated crop yield as well as the fruit growth 
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period. The authors note in their discussion how, since temperature effects on crop yield are 

cultivar-dependent, the model performance could be improved by calibration of the parameters 

related to the growth inhibition functions, photosynthesis functions and fruit growth period. As 

for their meaning and the compensation of errors, Vazquez-Cruz et al. (2014) calibrated the 

Reduced Tomgro model using genetic algorithms, following a sensitivity analysis in which they 

defined which parameters they would treat as fixed and which they would calibrate. While their 

approach followed a common flow indicated by Seidel et al. (2018), they did not account for 

the meaning of the parameters when performing the optimization, ascribing a value larger than 

1.0 to the parameter that represents tissue conversion efficiency.  

The work from Seidel et al. (2018) was based on a survey aimed at identifying the 

approaches currently used for calibration and the challenges associated to the process. But even 

in the cases in which parameters are estimated addressing their concerns, all the different valid 

approaches may entail different results which would not mean any of the assessments is wrong, 

but that could imply different results obtained by different approaches may be equally 

acceptable. How different calibration approaches lead to different results has been discussed in 

the context of climate change assessments by Angulo et al. (2013) and have been established 

as affecting significatively the results (Confalonieri et al., 2016). 

Since estimates obtained by crop models are not perfect, some uncertainty could be 

ascribed to them. For Wallach and Thorburn (2017), uncertainty means the distribution of the 

errors of prediction. By defining the model error (𝑒) as in Equation 1, these distributions may 

be ascertained in two different ways, depending on the predictor (𝑓(𝑋 ;  𝜃)) being treated as 

fixed or random, a discussion which is at the center of Wallach et al. (2016). If the predictor is 

treated as fixed, the model error may be ascertained by hindcasts, determining the discrepancy 

between the prediction and an observed value (𝑌). If it is not treated as fixed, each of its 

elements may then be treated as random variables, with several possible values and, therefore, 

uncertainty in the predictor may have as sources uncertainty in inputs (𝑋), model structure itself 

(𝑓(𝑋 ;  𝜃)) and parameters (𝜃).  

𝑒 =  𝑌 −  𝑓(𝑋 ;  𝜃) Equation 1 

 

Wallach and Thorburn (2017) commented on the different ways of assessing 

uncertainty, depending on each source. For model structure, a common protocol is to 

standardize the data for calibration, input data and outputs to be simulated, to ensure that 

differences in the outcomes arise from differences in model structure. As for parameter- and 
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input-related uncertainty, the central issue refers to the approximation of the distribution. For 

parameters, one possibility is to sample from a range found in the literature, but a least squares 

algorithm in calibration would also provide estimates for the distribution of calibrated 

parameters. For inputs, it is rarely the case that the full range of possibilities may be simulated, 

so historical weather is often used to represent uncertainty in daily weather, modified by crop 

management practices, such as sowing date and cycle length. The authors suggested both the 

need for guidelines for quantifying uncertainty in model structure, parameters, and inputs, and 

for widespread assessments of prediction uncertainty, so that end-users can determine if the 

results are sufficiently reliable for their purpose. In the context of yield gap assessments, Schils 

et al. (2022) already proposed a protocol, which led to a ranking of the uncertainty sources that 

could allow for prioritizing future efforts to reduce the uncertainty around yield gaps. 

Antle et al. (2017) examine model credibility as a factor for model-usage adoption by 

decision-makers. They assert that model accuracy and uncertainties should be effectively 

communicated and that strategies for assessing them both are well developed, for instance 

through uncertainty and sensitivity analysis. For greenhouse tomato models, uncertainty was 

only explicitly addressed by Cooman and Schrevens (2006) and by Cooman and Schrevens 

(2007). Cooman and Schrevens (2006) discussed the effects of parameter uncertainty in the 

outputs of the second version of the Tomgro model. They used a Monte Carlo approach for 

sampling and their assumed distributions mostly referred to measurements previously 

performed or values estimated from the literature. Cooman and Schrevens (2007), on the other 

hand, evaluated the effects of weather input, using two different approaches: factorial and one-

at-time. It should be noted that given the context of their evaluation was restricted to the Bogota 

Plateau, their assessment was likely affected by the choices previously made in the calibration 

step. In both studies, the authors also aimed at identifying which parameter or input mostly 

affected the uncertainty of the outputs. 

The idea of assessing the contribution of elements of the model, particularly 

parameters and inputs, to overall uncertainty is expressed by an evaluation denominated 

sensitivity analysis. In the systematic review by Pianosi et al. (2016), the authors organized the 

way in which the methods may be categorized according to: 

• The purpose of the analysis: if the goal is to identify the order in which the input 

factors contribute to the output uncertainty (ranking), which are the least relevant 

factors, that could therefore be fixed (screening), or which region of the input 

variability space produce significant output values (mapping); 
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• Computational complexity: the number of model runs required may range from 

approximate the same number of input factors evaluated to thousands of times this 

number; 

• Sampling approach: if all the factors are sampled at the same time (all-at-a-time) 

or individually (one-at-a-time); 

• Type of analysis: if the method accounts for the entire space of variability of the 

input factors (global) or only around specific values of the input factors (local). 

They also describe each of the most used methods, their advantages and disadvantages, 

and how they relate to those categories, as well as provide a workflow for performing a 

sensitivity analysis. When discussing common errors on the subject, Saltelli et al. (2019) 

highlighted as one of the main problems the use of methodologies that rely on local techniques, 

which are invalid for nonlinear models and for accounting for interactions. While it is clear that 

there may be interactions among inputs that are neglected in local analyses, the outcomes of 

calibration also influence the results, as they are treated as fixed elements. The analysis may 

then reflect only particular conditions in which the model is to be used, since factors are not all 

changed at the same time and take only the value defined for that simulation. 

Sensitivity analyses strategies for evaluating tomato models have included one-at-a-

time approaches (Bertin and Heuvelink, 1993; Jones et al., 1991; Kuijpers et al., 2019) and 

global ones (Lin et al., 2019; Vazquez-Cruz et al., 2014). Their goals include understanding 

models’ responses to the environment and to parameters (Bertin and Heuvelink, 1993), 

evaluating if models’ responses referred to the same system (Kuijpers et al., 2019) and 

identifying which parameters should be selected for calibration (Vazquez-Cruz et al., 2014). 

They have assessed both parameters (Bertin and Heuvelink, 1993; Vazquez-Cruz et al., 2014) 

and inputs (Bertin and Heuvelink, 1993). Global analyses, on the other hand, do not allow for 

these detailed evaluations, even though they may point to the most relevant parameters. 

Vazquez-Cruz et al. (2014) performed a global sensitivity analysis in the parameters of the 

Reduced Tomgro model and used the EFAST and Sobol methods for calculating the first-order 

and total effect indexes for each of the five state variables of the model. Their analysis included 

17 parameters, ascribing a uniform probability density function for each, and both methods led 

to similar results as to the highest sensitivities. This algorithmic approach led to different 

parameters than the ones Jones; Kenig and Vallejos (1999) decided should be calibrated or 

treated as fixed. 
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3.4. Data assimilation on crop models 

One conclusion drawn from the theoretical evaluation of crop models’ 

misspecification is that as the parameters obtained from calibration with data from one 

population do not necessarily correspond to the model true parameters values, models should 

always be calibrated using a sample from the target population for them to show an improved 

performance (Wallach, 2011). Besides calibration for improving performance, there are also 

approaches for reducing uncertainty in model estimates. Wallach and Thorburn (2017) 

summarized them as the improvement of models, using the median of multi-model ensembles, 

redefining the quantity to be predicted. Evidently, if possible, other alternatives include using 

more data in the calibration step or higher quality input measurements. But apart from the 

constraints of what we can call the model framework — which is limited by its inputs, variables, 

and structure —, including additional measurements could allow for lower prediction errors as 

well as lower uncertainty in the outputs, since this is an additional information to what is 

contained in the model (Wallach et al., 2019b). One approach that does that is called data 

assimilation. 

Data assimilation on crop models has often been performed by the integration of 

remote sensing data into mechanistic models. The subject has been frequently revisited given 

the evolution in computational capacity and available state estimation techniques (Dorigo et al., 

2007; Fischer et al., 1997; Huang et al., 2019a; Jin et al., 2018). Overall, the methods consist in 

combining estimates from crop models and external observations accounting for their expected 

errors. The goals of data assimilation works are often connected to the improvement of 

agricultural systems’ models predictive capability, differing in which state variables are 

assimilated as well as the techniques used and the source of data that constitute the observations 

that will be assimilated. Recent reviews of data assimilation with crop models (Huang et al., 

2019a; Jin et al., 2018) addressed the frequently used methods and their shortcomings, but the 

following sections aim at expanding some of their discussions regarding the decisions to be 

made when deciding to use data assimilation techniques. 

 

3.4.1. Methods 

The reviews of data assimilation in crop models previously mentioned refer to three 

types of data assimilation: forcing, calibration and update. As there are several sources for better 

understanding them, this section will only briefly present the approaches, focusing on strategies 

for updating. Table 1 includes the equations that summarize the relationships between states, 
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observations and their uncertainties, expressed by their covariances, following the notations 

and parallels Labbe Jr (2020) used for filters of the Kalman family, i.e., the Kalman Filter (KF), 

the Extended Kalman Filter (EKF), the Ensemble Kalman Filter (EnKF) and the Unscented 

Kalman Filter (UKF). Overall, these filters follow a pattern of using the process or model 

equation to predict the next estimate and updating the estimate by including the information 

brought by the observation, accounting for the uncertainty present both in the model estimate 

and the observation. The first step is often called forecast, prior or predict and the second step, 

update, posterior or analysis. Relevant moments from the update step include the calculation of 

the residual, which consists in the difference between the estimate and the observation, and of 

the gain, which corresponds to the weight of the residual when modifying the value estimated 

by the model, as well as the uncertainty of the outcome. This means that assimilation using 

filters of the Kalman family requires having a model that establishes a relationship between 

observation and state, so that they can be compared, and quantifying uncertainty in models and 

measurements.  

Filters’ equations and their elements are presented in Table 1 to help make the terms 

and logic used in the other sections of this work more familiar, but no specific mathematical 

treatment will be presented. In the predict equations of Table 1, x and P are the state mean and 

covariance, F is the process function in matrix form — as the filter problem is often solved with 

matrices operations — while f is the equivalent nonlinear process model or numerical derivative 

and Q is the process covariance. In the update equations, z and R are the measurement mean 

and noise covariance, H is the measurement function while h is the equivalent nonlinear process 

model or numerical derivative, y and K are the residual and Kalman gain. In the UKF, χ are the 

sigma points and 𝓨 are the transformed sigma points while wm and wc are weights. One 

approach for generating the ensemble is presented for the EnKF but as it will be commented, 

there are multiple ways of doing so.  
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Table 1. Summary of equations used in the Kalman Filter (KF), the Extended Kalman Filter (EKF), the Ensemble Kalman Filter (EnKF) and the Unscented 

Kalman Filter (UKF). 

 KF EKF EnKF UKF 

Predict  𝐅 =  
𝜕𝑓(𝐱t)

𝜕𝐱
|

𝐱t

 𝛘 ~𝓝(𝐱0, 𝐏0)  

   𝓨 = f(𝛘) + 𝓋𝑄 𝓨  =  f(𝛘) 

 𝐱̅ = 𝐅𝐱 𝐱̅ = f(𝐱) 𝐱̅  =  
1

𝑁
∑ 𝓨

𝑁

1

 𝐱̅  =   ∑ 𝓌 𝓂𝓨 

 𝐏̅ = 𝐅𝐏𝐅T + 𝐐 𝐏̅ = 𝐅𝐏𝐅T + 𝐐 𝐏̅  =  
1

𝑁 − 1
∑(𝓨 − 𝐱̅)(𝓨 − 𝐱̅)𝑻

𝑁

1

 𝐏̅  =   ∑ 𝓌𝒸(𝓨 − 𝐱̅)(𝓨 − 𝐱̅)𝑻   +  𝐐 

Update  𝐇 =  
𝜕ℎ(𝐱̅𝒕)

𝜕𝐱̅
|

𝐱̅t

 𝓩 = h(𝓨) 𝓩 = h(𝓨) 

   𝛍𝒛 =  
1

𝑁
∑ 𝓩

𝑁

1

 𝛍𝒛 = ∑ 𝓌 𝓂𝓩 

 𝐲  =  𝐳  −  𝐇𝐱̅ 𝐲  =  𝐳  −  h(𝐱̅) 𝐲 = 𝐳 −  𝓩 + 𝓋𝑅 𝐲  =  𝐳  −  𝛍𝒛 

 𝐒 =  𝐇𝐏̅𝐇T + 𝐑  𝐏𝐳𝐳 =
1

𝑁 − 1
∑(𝓩 − 𝛍𝒛)(𝓩 − 𝛍𝒛)𝑻

𝑁

1

  + 𝐑 𝐏𝐳𝐳 = ∑ 𝓌𝒸(𝓩 − 𝛍𝒛)(𝓩 − 𝛍𝒛)𝑻   + 𝐑 

   𝐏𝐱𝐳 =
1

𝑁 − 1
∑(𝓨 − 𝐱̅)(𝓩 − 𝛍𝒛)𝑻

𝑁

1

 𝐏𝐱𝐳 = ∑ 𝓌𝒸(𝓨 − 𝐱̅)(𝓩 − 𝛍𝒛)𝑻 

 𝐊  =  𝐏̅𝐇T 𝐒−1 𝐊  =  𝐏̅𝐇T (𝐇𝐏̅𝐇T + 𝐑)
−1

 𝐊 =  𝐏𝐱𝐳𝐏𝒛𝒛
−𝟏 𝐊 =  𝐏𝐱𝐳𝐏𝒛𝒛

−𝟏 

 𝐱 =  𝐱̅ + 𝐊𝐲 𝐱 =  𝐱̅ + 𝐊𝐲 𝛘 =  𝐱̅  +  𝐊𝐲 𝐱  =  𝐱̅  +  𝐊𝐲 

   𝐱  =  
1

𝑁
∑ 𝛘

𝑁

1

  

 𝐏 = (𝐈  −  𝐊𝐇)𝐏̅ 𝐏 = (𝐈  −  𝐊𝐇)𝐏̅  𝐏 = 𝐏̅ −  𝐊𝐏𝐳𝐳𝐊T 𝐏  =  𝐏̅ −  𝐊𝐏𝐳𝐳𝐊T 
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3.4.1.1. The Kalman Filter (KF) 

The main assumptions of the Kalman Filter are that the model estimates and the 

observations follow a normal distribution, and that the process model and the observation 

function are linear. Huang et al. (2019a) clarify the linearity requirement stating that if the crop 

model can be assumed locally linear between adjacent time steps, the standard Kalman Filter 

could be a viable choice.  

Given its restrictions, there are fewer examples of the application of this technique. In 

some of them, the premise of the filter is used, but with modifications. Instead of calculating 

the gain, Vazifedoust et al., (2009) tested different values, using the best one as fixed, 

circumventing the need for identifying the source error values. This approach was repeated by 

Chen Zhang and Tao (2018), who also normalized simulated and observation values according 

to the maximum value obtained so that they would be in the same range. Operating in this 

normalized space allowed them to focus on spatial variability and, in part, trends, instead of 

absolute values. Later, Chen and Tao (2020) explored more approaches for defining an 

appropriate value for the fixed gain, by a grid search of an optimal value, as well as exploring 

historical values. 

 

3.4.1.2. Extended Kalman Filter (EKF) 

The Extended Kalman Filter is an adaptation of the Kalman Filter to deal with non-

linear cases. To do so, it takes advantage of local linearization by replacing the model and the 

measurement function by their partial derivatives. The use of this technique is limited, as it 

requires access to the Jacobian of the model or, in some cases, to an approximation by finite 

differences that often will not scale to higher dimensions (Huang et al., 2019a), so there are also 

few examples on crop modeling that apply this technique and most of those which use the 

method give few details of the implementation. One of the few examples in which there is an 

explanation of how the filter was used is the work of Linker and Ioslovich (2017). The authors 

used data from growth experiments of cotton and potatoes aiming at improving estimates of 

canopy cover and biomass through state assimilation and through the recalibration of three 

parameters from the Aquacrop model. They used dry biomass direct measurements and the 

images used as canopy cover observations were digital pictures taken 1.5 m and 2 m above 

canopy.  

Given there were two different approaches for improving estimates, they estimated the 

covariance matrix of the errors in the state variables in two ways. For the assimilation process, 
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by calculating the difference between the square of the model residuals and the dispersion of 

the measurements. They chose not to propagate the matrix along the process, given its strong 

nonlinearity, and recalculated it at each new time of measurement. They justified this choice by 

claiming the propagation without assimilation of new measurements would only increase the 

uncertainty related to the linearization and to the unknown initial data of the model errors. For 

the recalibration process, the matrix was calculated using an assumption that the corresponding 

standard deviation of each of the chosen parameters is equal to 20% of the current value of 

corresponding parameter. In their assimilation approach, the H matrix corresponded to the unit 

matrix, as the measurements directly corresponded to the states and, in the recalibration one, 

the components of the partial derivatives matrix H were calculated numerically at each instance 

of canopy cover measurement. 

 

3.4.1.3. Ensemble Kalman Filter (EnKF) 

Overall, in the Ensemble Kalman Filter, an ensemble of initial states is generated and 

each individual ensemble member is propagated through the model until an observation is 

available. Then the update step is performed individually in each member. This allows for 

recalculation of the ensemble mean for the states and generation of a new ensemble. The 

ensemble approach comes from the premise that at least some of the particles will represent the 

true state. There are, however, different ways of approaching this problem and the elements of 

uncertainty are intimately connected to other decisions. 

 

• Composition of ensemble elements 

Huang et al. (2016) observed that two common methods to generate ensemble 

members are by directly adding a Gaussian perturbation to the state and by adding a Gaussian 

perturbation to the uncertain input parameters, which are then used by the model for the 

simulation. These methods have been explored in different ways. Input perturbation examples 

come from Lei et al. (2020), who perturbed precipitation and irrigation inputs via multiplicative 

rescaling with mean-unity lognormally distributed random errors that have a standard deviation 

equal to 20% of the corresponding input, and from De Wit and Van Diepen (2007), who 

generated precipitation ensembles based on a highly accurate precipitation dataset that was 

perturbed with an additive error component and a multiplicative component that generated 

binary rain or no-rain events on locations in which the records pointed to the absence of 

precipitation. 
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In cases in which states are perturbed, Xie et al. (2017) input the initial states and 

parameters into the CERES-Wheat and, at the beginning of the green-up stage, leaf area index 

(LAI) and soil moisture were perturbed according to the errors between the field measurements 

and the simulated LAI and soil moisture. Ines et al. (2013) randomly sampled, at the start of the 

simulation, values of leaf weight at emergence and plant leaf area at emergence, to increase the 

variability of the ensemble. Beyond inputs, Lei et al. (2020) also applied direct perturbations to 

soil moisture states at all depths independently with random errors sampled from a mean-zero, 

normal distribution with temporally varying standard deviation equal to 10% of the state value, 

followed by the introduction of a vertical auto-correlation at the different depths. 

Researchers have used multiple ways of ascribing uncertainty to parameters. Huang et 

al. (2016) chose the parameters based on the results of a sensitivity analysis and set the values 

of the standard deviations of two parameters according to the results of a previous study. Ines 

et al. (2013) identified which parameters had major influence in the model and, with an 

uncertainty level of 10%, perturbed each model parameter using a Gaussian distribution, 

generating ensemble members by randomly sampling model parameter combinations from the 

perturbed arrays. Zhao, Chen and Shen (2013) even tried to evaluate the impact of using 

parameter uncertainty to generate the ensembles. They chose one parameter that was mostly 

correlated to crop yield and ascribed a distribution to it, multiplying its standard deviation by 

different fixed values. Lu et al. (2021) took advantage of the existing uncertainty in parameters 

and used this as an artifact to generate ensembles without calibrating the model. They sampled 

parameters that they called variant as well as a fixed factor to scale phenological parameters for 

the canopy in a given year.  

One issue in perturbing parameters or inputs for generating the ensembles is what 

Curnel et al. (2011) denominated phenological shift. This effect refers to ensemble members 

presenting ensemble elements that are in different phenological stages, which leads, at the same 

point in the simulation, to different modules in the model to be active and, therefore, the 

assimilation of an observation having a different meaning for each ensemble member. 

As for observations, Ines et al., (2013) state that the variance used in the perturbation 

is based on the uncertainty of the data. But more precisely, Huang et al. (2016) mentions that 

the standard deviation of the Gaussian white noise error needs to be a realistic value for it to 

represent the uncertainty of the remotely sensed observation. In section 3.4.2, errors are more 

thoroughly described, but as an example, Xie et al. (2017) used the errors between the 
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measurements and observations to determine the standard deviations of the observed LAI and 

soil moisture.  

 

• Ensemble size 

The choice of ensemble size is often performed in three different ways: testing, 

referencing a theoretical result or referencing other assimilation work on the literature. Pellenq 

and Boulet (2004) affirmed a preliminary study must be performed to find the minimum 

ensemble size that ensures particles may follow the same trajectory as the true state. They say 

the number usually corresponds to value above which assimilation results are identical. With 

this approach, Nearing et al. (2012) showed an example in which the number depended on the 

goal of the assimilation. The authors tested different values when assimilating LAI and soil 

moisture aiming at improving estimates of wheat yield, LAI and soil moisture. In the cases of 

assimilation of the state variable, root mean squared error (RMSE) became stable with a number 

of elements of 25. In the other cases, the stability came with an ensemble of 100 elements. Lu 

et al. (2021) evaluated ensemble sizes for simultaneous assimilation of canopy cover and soil 

moisture from 10 to 400 and overall observed little improvement for more than 200, even 

though in some years 10 elements were enough for stable results. 

Several works, however, refer to the experiences of other authors. Frequently, authors 

refer to De Wit and Van Diepen (2007) when commenting on their choice for the ensemble size 

(Bai et al., 2019; Li et al., 2014; Zhao et al., 2013) The work by De Wit and Van Diepen (2007), 

however, applies to assimilating soil moisture with an ensemble obtained by perturbing 

precipitation and with an initial state ascribed by sampling a calculated Gaussian acceptable 

value and it is possible that they do not generalize for other approaches. Additionally, the 

authors mention that although they observed reduced RMSE in soil moisture estimates, this was 

not applied to the variance. Despite that, their results were compatible with other results for soil 

moisture, and recently, Mishra, Cruise and Mecikalski (2021) followed the suggestion from the 

work of Yin et al. (2015), who theoretically and through an example showed that the ideal 

ensemble size for assimilating soil moisture is 12, which suggests 50 would be a reasonable 

estimate in similar situations. 

 

3.4.1.4. Unscented Kalman Filter (UKF) 

Similarly to the EnKF, the Unscented Kalman Filter uses the average of an ensemble 

as the state estimate, instead of the direct estimates provided by the model. However, the 
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ensemble is not just sampled from a distribution. It uses what is called the unscented transform 

to generate particles — the sigma points — and weights for those particles that, when combined, 

are more representative of the expected state value. These sigma points are propagated through 

the non-linear model, which provides more accurate approximations of the mean and 

covariance matrix of the state vector, and thus more accurate state estimation. (Mansouri et al., 

2013). 

The Unscented Kalman Filter has been used in the context of crop growth with 

tomatoes and lettuce. Torres-Monsivais et al., (2017) evaluated the technique along with data 

simulated with the Reduced State Tomgro model, perturbed by several noise levels, 

representing measurements. Ruíz-García et al. (2014) used data from destructive analyses of 

lettuce in a greenhouse to assess uncertainty of the NICOLET model. In the work with tomato, 

the authors ascribed lower errors to the model and higher to the measurements, which were then 

subjected to a tuning process, while in the work with lettuce, the values were tuned until 

reasonable results were obtained. 

 

3.4.2. Errors and uncertainties 

How to identify errors in the elements involved in assimilation and their uncertainties 

is widely discussed by Jin et al. (2018) and Huang et al. (2019a), as they are central in filtering 

approaches. For crop models, the sources of uncertainty they list include both the issues 

presented in section 3.3 as well as the difference between simulations and actual growth, which 

is impacted by pests and diseases. For observations, they mention errors in the measurement 

themselves and in retrieval methods. In both cases, often their works emphasize aspects of 

satellite-derived observations, such as errors in spatial data and scale mismatches. This section 

aims to revisit this topic, with more details and examples on how these uncertainties have been 

quantified and applied in data assimilation works. Although the discussion in this section 

focuses on trying to ascribe meaning and understanding the uncertainties, these are filter 

hyperparameters that may be estimated from data (Wallach et al., 2019b). 

 

3.4.2.1. Observation errors 

Overall, data assimilation in crop models rely on observations retrieved from satellite 

monitoring of Earth’s surface. Dorigo et al. (2007) covered methods used to derive canopy state 

variables from optical remote sensing data in the visible to near-infrared and shortwave infrared 

regions. These methods either rely on statistical relationships between the spectral signature 
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and the measured biophysical or biochemical properties of the canopy or they derive the states 

from the known behaviors of leaf reflectance and radiation propagation through the canopy. 

Both are used to obtain remote sensing products, which directly estimate the state for the final 

user. And both remote sensing products and reflectance itself, are used in assimilation. For 

those products, Huang et al. (2019a) mention how guidelines for uncertainty quantification are 

still being established by the community and that many EO-derived products have poor or no 

uncertainty information available. Particularly for satellite‐derived leaf area index (LAI) 

products, Fang et al. (2019) also comment on how given the complexity associated to the 

retrieval process, a comprehensive quantitative assessment of the quality of LAI products is 

still missing. In the case of assimilating reflectance or albedo, the crop model is coupled with a 

radiative-transfer model (RTM), which allows for quantifying uncertainty in the measurements 

directly (Huang et al., 2019b). 

By assimilating products, several works (Huang et al., 2016; Ines et al., 2013; Zhao et 

al., 2013) are able to consider the assimilation of the product as the assimilation of the state 

directly, which means the relationship between states and observations may be obtained by the 

unit matrix, simplifying the approach. However, this choice could affect the outcome as it may 

lead to bias in the residual and to the cross-variance term not taking any effect of dispersion 

caused by the observation model into account when determining the gain. Bias in the residual 

leads the updated estimate to the wrong value and in the gain, to the wrong weight of the 

residuals in the new estimate. These effects are not often discussed and the only example found 

that mentions them comes from the work of De Wit and Van Diepen (2007), which makes it 

explicit that the variance they ascribed to observations did not account for deficiencies in the 

conversion model itself, later concluding that the value they ascribed to the variance was indeed 

underestimated. Nevertheless, errors in retrieval have been acknowledged (Jin et al., 2018) and 

an alternative to avoid them is operating in the measurement space, which leads to avoiding the 

error in the inversion process (Guo et al., 2018). Additionally, Huang et al. (2019b) used the 

RTM PROSAIL, arguing this is a good way to avoid the process of regional LAI retrieval and 

Li et al. (2017) used the PROSAIL model and characterized errors in the observations, pointing 

to errors from 0.09 to 0.51 m2 m-2 of error in LAI in the different development stages of wheat. 

For those who develop their own measurement functions, they often establish them 

with empirical relationships and characterize their uncertainty based on field data. So works 

such as the one by Huang et al. (2016), which converted vegetation indices into LAI, obtained 

field measurements and used the regression error between LAI field observations and the 
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indices to estimate errors in each phenological stage. As the problems that have been addressed 

often refer to large areas, estimates of observation uncertainty may be established as the 

variability across fields. For instance, Zhao, Chen and Shen (2013) understood that neighboring 

pixels had similar uncertainties for the same period and used the variance among fields as 

uncertainty of remote sensing LAI. 

Other than satellite retrieved data, there are other sources for observations to which 

error is ascribed in other ways. For instance, Linker and Ioslovich (2017) and Ruíz-García et 

al. (2014) used destructive measurements of the assimilated state. In the first case, the authors 

used direct measurements of aboveground biomass of potatoes and cotton and in the second 

case, of lettuces. As for non-destructive measurements, Linker and Ioslovich (2017) also used 

pictures taken from 1.5 and 2 m above the crop to determine canopy cover, which, as a fraction 

of the fraction of the soil surface covered by the canopy, may also be considered a direct 

measurement of the state. In these cases, errors corresponded to variance from measurements. 

Data retrieved by unmanned aerial vehicles (UAVs) often have similar limitations as satellites 

regarding scale, but brings into discussions other aspects, particularly, as cameras are able to 

capture other types of data. For instance, Yu et al. (2020) used plant height detected by UAVs 

as well as field measured and discussed the effects of multiple values ascribed to errors, arguing 

the trial-and-error procedure could provide a guideline when the true field observation error is 

unknown. 

Finally, one relevant aspect refers to how soil-crop systems may not have a constant 

value for the error. Nearing et al. (2012) explain how the soil moisture observation uncertainty 

is variable throughout time, since measurement accuracy degrades as vegetation water content 

increases throughout the season. They ascribed to error measurement a value derived from the 

relationship between variance in the soil moisture retrieval and this fraction of plant population 

and plant biomass that corresponds to water. Lei et al. (2020) evaluated a time-varying error for 

soil moisture observations as a function of LAI. They observed an overall improvement in soil 

moisture estimates, but also a somewhat less stable DA performance. Also for soil moisture, 

Mishra; Cruise and Mecikalski (2021), chose a constant error for the observation, but they were 

aware that the errors in the sensors used behaved in contrasting ways over crop growth stages, 

and that this choice may have led to errors that were too low in the early growth season and 

larger later in the season. Lu et al. (2021) used the multi-year average value of the daily standard 

deviation of the observations from the 4 soil moisture profiles. But for canopy cover, they noted 

the error varies dramatically during the growing season, with significant variability in the 
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exponential growth stage and the decay period canopy cover, and only marginal when the 

canopy was near maximum. So, they assumed canopy cover observation error as dynamic, and 

the standard deviation of the samplings from the different zones on each sampling day was used 

separately. Li et al. (2017) considered the standard deviation of the LAI observations as 10% 

of the measured value, based on their observations of LAI, and Curnel et al. (2011) used a 

coefficient of variation to characterize uncertainty, thus ascribing to this hyperparameter of the 

filter a value that corresponded to a fraction of the observation. 

 

3.4.2.2. Model errors 

As mentioned in section 3.3, model uncertainty may be ascribed to its parameters, 

inputs, and structure. In the case of Pellenq and Boulet (2004), they had two situations, and the 

differences in model behavior, regarding soil moisture and biomass, required different 

approaches for determining sources of model uncertainty. When analyzing the effects of initial 

input values, they observed that for biomass, as the state value is propagated throughout growth, 

there is no compensation for previous errors, and errors in the estimates of initial conditions 

could impact the following behavior. And while for soil water, the reliance on previous values 

is lower, with shorter “memory” of the system, in the coupled case, the initial water content 

could strongly impact biomass evolution. As for crop model noise, they assumed there would 

be at least one parameter set in the ensemble that could satisfactorily reproduce natural 

conditions. So, they decided by generating ensembles ascribing uncertainty to parameters and 

to inputs. On the other hand, in the case of soil moisture, since it tends towards low variance 

and equilibrium, they suggested including model noise as well, which should be nonetheless 

calibrated to avoid the loss of model integrity. Nearing et al. (2012) evaluated uncertainty in 

weather inputs, through correlated perturbations in weather time-series. Their results were not 

conclusive as in one of their systems, the assimilation of LAI improved yield estimates, but not 

the exclusive assimilation of soil moisture.  

Uncertain inputs also manifest through unusual events, which are often not included 

in models. Therefore, for some authors, an advantage of filter assimilation methods is that they 

can incorporate these dynamic changes (Li et al., 2014). For example, Hu et al. (2019) improved 

sugarcane yield estimates by assimilating leaf area index into the SWAP-Wofost model, after 

the interference in LAI caused by artificial leaf stripping and natural storms, and in Zhao, Chen 

and Shen (2013), the authors observed high errors when simulating yield for four regions in 
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which meteorological disasters had occurred, which were then reduced to some extent by 

assimilating observations. 

Calibration is an issue that is often mentioned regarding model errors, as it makes the 

model more consistent with the spatially limited field measurements and calculated uncertainty 

in parameters could be propagated through the model (Huang et al., 2019a). Kang and Özdoğan 

(2019) identified that over large areas, calibration is no longer specific for cultivar, sowing dates 

or management. They commented on how the bias in model estimates this generates leads to 

violating the assumptions of assimilation techniques that require model errors to have zero 

means. The authors analyzed the impact of high model bias and uncertainty on yield estimates 

obtained by LAI assimilation and observed that bias with the same sign for LAI and yield led 

to lower errors after assimilation than the open-loop reference, while opposite signs led to 

assimilation enlarging the errors. It is nevertheless the case that before performing assimilation, 

models are frequently calibrated. Lu et al. (2021) believed the standard was lower, aiming at 

having an ensemble of non-calibrated simulations that could capture the dynamics of key model 

states and that its spread reflected the model state variability. Their assimilation of canopy cover 

and soil moisture was able to improve yield when compared to the no-assimilation case.  

 

3.4.3. Variables 

In a way, the largest restrictions to performing data assimilation in crop models are 

which additional data is available and if the knowledge or ability of how to relate them to 

models’ state variables exists. This is one reason why LAI, canopy cover and soil moisture are 

frequently explored as observations, as there are several satellite products available for them. 

But being able to perform data assimilation does not mean that assimilation will be effective. 

As summarized by Lei et al. (2020), the performance of any data assimilation algorithm is 

fundamentally related to the strength of the relationship between observations and model states.  

For Mishra, Cruise and Mecikalski (2021), assimilation of soil moisture, especially in 

irrigated areas, led to improvements in yield estimates, which is a very direct relationship, but 

for Ines et al. (2013), they expected assimilation of soil moisture in the DSSAT-CSM-Maize 

model to update the rootzone soil moisture, affecting soil nitrogen and, therefore, yield. There 

is then no guarantee that the included observations will improve estimates. For instance, Linker 

and Ioslovich (2017) discuss how since the Aquacrop model is water-driven, and as such, solar 

radiation is not considered explicitly, which may lead to underestimating the effect of canopy 

cover on crop development. And if assimilation not improving the outcomes is undesirable, it 
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should be noted that it could even have an adverse effect on the estimates, depending on how 

variables interact with each other. Tewes et al. (2020a) argue that as model complexity rises, 

sequential update of only one or few state variables could threaten the model’s integrity and 

cause an undefined state of the model, such as when the simulation triggers a new module by 

reaching a threshold value, but the filter updates the estimate to a value lower than the threshold. 

Time-averaged correlation has been suggested as not very helpful when determining 

best assimilating state variables by Nearing et al. (2012). In their experiments, they point to 

several cases, using different realistic uncertainty scenarios, in which high correlation is not 

connected to improvement in yield estimates. Nearing et al. (2018) framed this discussion by 

relying on concepts of information theory, proposing a method to quantify how efficient data 

assimilation may be, through the quantification of information content on simulated model 

states and of the retrieval data relative to the imperfect evaluation data, and then measuring the 

fraction of this information that is extracted by a given DA implementation or algorithm.  

 

3.4.4. Timing and frequency 

An issue that interacts with which variable is going to be assimilated to improve an 

estimate is at what time of growth and how often should the estimate be updated. Frequently, 

the discussion is connected to at which moment of the cycle the observation available will be 

most informative. Dente et al. (2008) evaluated the exclusion of one more precise image and 

observed that for wheat, within the conditions they observed, the data should include images 

from either the end of stem elongation stage or the beginning of heading, when the LAI reaches 

the maximum value. Timing of assimilation in wheat has been widely discussed (Curnel et al., 

2011; Dente et al., 2008; Guo et al., 2019; Kang and Özdoğan, 2019; Li et al., 2017; Xie et al., 

2017) with some authors reaching the conclusion that images from the whole cycle presented 

the best results (Kang and Özdoğan, 2019; Li et al., 2017). For sugarcane, on the other hand, 

Yu et al. (2020) concluded that assimilation of height in the late period of the elongation stage, 

involving the maximum plant height, can be the most useful, without the need for its sampling 

over the whole development stage.  

As remote sensing observations are often only available with large intervals between 

them, their assimilation allows for the model to adjust to the updates, but local assimilation of, 

for example, soil moisture, would present a different situation. Lu et al. (2021) commented on 

how their use of local probes for monitoring soil moisture allowed for daily assimilation of this 

state, which likely improved their results. As crop systems models often present daily steps, it 
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is not the case that assimilation would be performed in more frequent intervals, but in other 

contexts, such as weather forecasts, it has been argued that very frequent updates could insert 

noise in models, degrading forecasts (He et al., 2020).  
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4. METHODS 

All data used in this work is available at https://doi.org/10.25824/redu/EP4NGO. All 

code is available in https://github.com/mnqoliveira/data-assimilation-tomato-models. 

 

4.1. Experimental design and data collection 

4.1.1. Growth infrastructure 

The experiments were conducted in research greenhouses at the School of Agricultural 

Engineering of the University of Campinas (22º 49' 06” S, 47º 03' 40” W, 635 m altitude). Four 

cycles of minitomatoes growth were performed (Table 2).  

 

Table 2. Summary of growth cycles for data gathering. 

Growth Cycle Cultivar Start date End date 

Cycle 0 Seminis – DRC 564 11/jan/2019 04/apr/2019 

Cycle 1 Fercam – Milla 12/jul/2019 28/oct/2019 

Cycle 2 Feltrin – Carolina 05/nov/2020 12/feb/2021 

Cycle 3 Seminis – DRC 564 16/mar/2021 11/jun/2021 

 

• Cycle 0 

This growth cycle was conducted in the same setting of Cycles 1 and 2 described 

below, but as monitoring was not completely established from the beginning, it was treated as 

a pilot to test the installation of sensors, the irrigation system and to obtain experience in 

growing the plants. 

 

• Cycle 1 and Cycle 2 

These growth cycles were conducted in a research greenhouse with 6.4 m of width, 

10.98 m of length, 3.0 m of height from the floor to the gutter and 4.5 m of total height. The 

greenhouse has a gable roof covered with low density polyethylene of 150 μm width with light 

diffuser and anti-UV treatment. The ridge of the greenhouse section was oriented North-South. 

The section was only bounded to the East, by another greenhouse of the same dimensions. Its 

cooling system consisted of a pad-fan system, activated by a scheduling device. The South-

facing side wall was covered with an evaporative cooling pad and an insect screen. Other walls 

were covered with the same plastic as the cover. Seedlings provided by commercial units were 

transplanted to polyethylene pots (8 L) filled with coconut fiber approximately 30 days after 

seeding. They were distanced 1.5m x 0.5m (1.33 plants m-2). Figure 1 shows the overall 

disposition of pots.  

https://doi.org/10.25824/redu/EP4NGO
https://github.com/mnqoliveira/data-assimilation-tomato-models
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Figure 1. Disposition of the pots in the first research greenhouse, used for cycles one and two. 

 

• Cycle 3 

The experiment was conducted in a research greenhouse with dimensions 6.4 m of 

width, 18 m of length and 3.0 m of height from the floor to the gutter. It has a gable roof covered 

with low density polyethylene, light diffuser with 150 μm width and anti-UV treatment. The 

ridge of the greenhouse section was oriented North-South. The section was not bounded in any 

directions. All walls were covered by an insect screen. Locally cultivated seedlings were 

transplanted to polyethylene pots (8 L), filled with coconut fiber, distanced 0.9 m x 0.5 m (2.22 

plants m-2) approximately 30 days after seeding. Lines of pots were intercalated with lines of 



46 

 

 

nutrient film hydroponic growth (Nutrient Film Technique – NFT), which were not used in this 

project. Figure 2 shows the environment. 

Cycle 3 also included application of neem oil, Bordeaux mixture and lime-sulfur 

prevent the occurrence of pests and an abamectin-based pesticide (Syngenta’s VERTIMEC® 

18 EC) after appearance of rust mite. 

 

 

Figure 2. Disposition of the pots in the second research greenhouse used, for cycle three. 

 

4.1.2. Management practices 

All cycles consisted of around 100 days and in all of them plants had reached the 

highest wire, when the growth was stopped. Management practices (thinning, staking, pruning, 

pest management and diseases) overall followed the recommendations for hydroponic growth 

in Alvarenga (2013). Only one stem was grown per pot. Removal of side shoots happened once 

to three times a week. Leaves were pruned only when their senescence was dominant. Harvest 

happened when the whole truss was mature. Irrigation consisted of fertigation through a drip 

irrigation system and while the nutritive solution mainly followed the recommendations in Pires 

et al. (2011), concentrations were changed according to plants’ responses. In Cycles 0 and 1, 
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irrigation length used fixed time through the cycle, but in Cycle 1 the duration proved 

insufficient by the end of the cycle. In Cycles 2 and 3, total irrigation time was defined as that 

which would not allow for deficit by the end of the day, to minimize mass fluctuations from 

one day to the following caused by variation in irrigations. Cycle 1 showed water deficits 

throughout growth. Cycle 2 suffered with excessive nitrogen fertilization followed by rust mite 

while Cycle 3 more closely resembled full irrigation and fertilization. 

 

4.1.3. Environmental data 

Environmental data was gathered with the sensors from Table 3. They may be 

characterized as scientific grade (SG) and low-cost (LC). The scientific grade sensors for 

temperature and relative humidity corresponded to SHT75 transducers protected by porous 

capsules which, by their turn, were protected by polyvinylchloride tubes coated with aluminum 

foil. The tubes included downstream fans. The sensors were installed in a hardware platform 

for wireless sensor networks (Radiuino BE900), with daily backup. For photosynthetically 

active radiation (PAR), the scientific grade sensors corresponded to quantum sensors Licor LI-

190SA with a datalogger Licor LI-1400. Low-cost sensors were connected to Raspberry Pi 

model B computers. 

 

Table 3. Sensors and frequency of data acquisition used for monitoring the environment. 

Variable Type Model Frequency 

Air temperature  SG SHT75 5 minutes 

Relative humidity SG SHT75 5 minutes 

Air temperature  LC DHT22 5 minutes 

Relative humidity LC DHT22 5 minutes 

Substrate moisture SG EC-05 10 minutes 

Luminosity LC BH1750 5 minutes 

Photosynthetically active radiation SG LI190SA 15 minutes 

 

Each sensor node was positioned close to one of the monitored plants and each node 

included two sensors of the same type and for the same variable for redundancy, except for 

radiation and luminosity, which only include one of each type. As there were differences in the 

experimental set-ups, they are separately detailed as follows. Sensors were positioned as in 

Figure 3 for Cycles 0 to 2 and as in Figure 4 for Cycle 3. 
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Figure 3. Positions of sensors of temperature (T), relative humidity (RH), and PAR and luminosity (Rad) 

during growth cycles 0 to 2. Gray rectangle refers to the door and blue rectangle refers to the wet pad. 

Green circles correspond to the vases. Monitored plants are highlighted in dark green. Distances are at 

scale. 

 

 

Figure 4. Positions of sensors of temperature (T), relative humidity (RH), and PAR and luminosity (Rad) 

during growth cycle 3. Gray rectangle refers to the door and green rectangles refer to the NFT grown 

tomatoes. Green circles correspond to the vases. Monitored plants are highlighted in dark green. 

Distances are at scale. 

 

4.1.4. Growth data 

Plants were characterized by destructive and non-destructive analysis. Destructive data 

refer to the characterization of dry weight of the plant and leaf area. Every one to three weeks, 

three plants were removed and used for destructive analysis. Keeping guard plants of the 

destructed plants was not always possible and could have effects on the results. Plant material 

was weighted before and after drying for four days or as until constant weight was reached. 

Leaves, stem and green and mature fruits were separated for weighting. After being weighted, 
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while fresh, leaves were digitized with a scanner. Digitization included a reference of known 

size. Leaves were cut to accommodate more leaf area simultaneously in the same scan and 

speed the process. Before starting the removal procedure, plants selected for analysis were first 

photographed from above and laterally with a cellphone camera. 

Non-destructive data refers to the continuous weight monitoring using force 

transducers HBM S2M with nominal force of 10 N (0.02 % accuracy) and stored in a data 

logger PMX WGX002, measure card PX455, and to the pictures taken from lateral and superior 

views, with fixed Raspberry Pi Camera Modules v2, connected to Raspberry Pi Zero.  

 

4.2. Data preprocessing 

Data obtained by the environmental sensors and from the weighting system was 

preprocessed in the R language while images were processed using Python. Environmental data 

required cleaning of outliers, unit conversions and imputation of missing data, often caused by 

failures in the sensors. 

 

4.2.1. Environmental data 

Outliers were removed from the dataset and treated as missing data. For temperatures, 

measurements were expected to be higher than -5oC and lower than 60oC, for air humidity, 

larger than 0% and lower than 100%, and for solar radiation or lux, larger than 0 in whichever 

unit it was measured. All measurements then were aggregated into tens of minutes for 

imputation. Four imputation approaches were used:  

1. Redundancy: Replaced missing value with the measurement from the identical 

sensor in the same node. 

2. Different sensors for the same variable: Replaced missing value with the average 

measurement from the sensors for the same variable in the same node. 

3. Different sensors in different plants: Replaced missing value with the average 

measurement from all sensors of the same variable from the other node 

4. External data: data extracted from the NASA Power database was interpolated 

through the day using the strategies from Spitters, Toussaint e Goudriaan (1986) and Lizaso et 

al. (2003) for solar radiation and of Parton e Logan (1981), for temperature. 

For temperature and air humidity, they were prioritized in the order 1-2-3-4. For solar 

radiation, we prioritized as 1-3-2-4, with the premise that differences would be lower between 

different positions in the greenhouse than between different types of sensors. 
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In the case of PAR, as the different sensors were not directly equivalent, unit 

conversion was required. Data from the luxmeters was converted into photosynthetically active 

radiation [μmol s-1 m-2] by multiplying measured value by 18 x 10-3 μmol s-1 m-2 lux-1. (Hall 

and Scurlock, 1993). When external radiation was used, it was converted from [MJ m-2 day-1] 

of global radiation into [μmol s-1 m-2] of PAR by multiplying the measurement by 550.6 (Keulen 

and Dayan, 1993), including a 0.7 factor to account for plastic transmissivity. 

 

4.2.2. System mass 

The first step of processing referred to converting weight into mass by dividing the 

measurements by -9.81 x 10-3 N g-1. Although we attempted to adjust the influence of water as 

a function of moisture in the substrate, this was not possible. Outliers were not observed, and 

as measurements were obtained each minute, they were aggregated into hourly observations. 

In all growth cycles, as plants were harvested when mature trusses were available, this 

weight had to be summed to the system mass observation to make it compatible with model’s 

estimate accumulated biomass. 

 

4.2.3. Images 

Labeling of the plant organs in the images was done manually, using the software 

GIMP. Only areas in which there was confidence the organ corresponded to the correct plant 

were marked, which entailed that if there was uncertainty or occlusion, the area was not marked. 

Leaves, immature fruits, and mature fruits were colored differently. Figure 5 and Figure 6 show 

examples in which the original image is being overlayed by the annotations, but it is possible 

to export only the layers referring to the labels.  
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Figure 5. Example of non-destructive observation of lateral leaf area and fruit area of sampled plant. 

Leaves are marked in green, mature fruits are marked in red, and non-mature fruits are marked in yellow. 

The A4 sheet used as reference is marked in cyan. Obstruction from adjacent plants prevents the 

identification of all organs corresponding to the plant sampled. 
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Figure 6. Example of image captured by fixed camera with overlayed labels for plant and reference. 

Green tomatoes are marked in yellow and leaves are marked in green. Reference is marked in cyan. 
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The OpenCV library was used to process both the digitized leaves and labeled images. 

Images contained a reference with known dimensions to be used as scale, which allowed for 

calculating the relationship between real size and the size in pixels. Table 4 shows how many 

images were annotated for this study. As for digitized leaf area, the algorithm from the Easy 

Leaf Area software (Easlon and Bloom, 2014) was used to identify leaves. Two dimensional 

references in images also allowed for calculating areas and estimating uncertainty in these 

measurements. 

 

Table 4. Number of images annotated for estimating visible area of organs in pictures in each growth 

cycle divided by type of observation. 

Cycle Monitoring Calibration 

Cycle 1 170 53 

Cycle 2 167 44 

Cycle 3 148 36 

 

4.3. Model implementation and calibration 

4.3.1. The Reduced TOMGRO model 

This study uses the Reduced State Tomgro (RT) model, which is a summary model 

from the TOMGRO model, aimed at being used in greenhouse control systems. In summary, 

the model has only five state variables: number of nodes, leaf area index, aboveground dry 

biomass, fruit dry biomass and mature fruit dry biomass. Based on hourly temperature and 

photosynthetically active solar radiation data, the model quantifies the growth and development 

of the tomato plant when water and nutrients do not limit growth. Development is indicated by 

the number of nodes, and growth, by the other states. The leaf area index influences 

photosynthesis, which, along with respiration, determines total carbohydrates available for 

growth of aboveground biomass and fruit biomass. The RT model, which has its variables and 

parameters further detailed in Jones et al. (1999), is therefore a simple model that does not 

include root growth or irrigation, and this simplicity may help in a first approach. An overview 

of its equations and parameters may be seen in Appendix A. 

The RT model used in this work was implemented in the Python language, using Jones 

et al. (1991), Jones et al. (1999), and the spreadsheet provided by Dr James W Jones as sources. 

The difference equations were integrated by the Euler method. Having access to the spreadsheet 

used by the authors allowed for observing the equations as implemented, as well as the original 
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data. By running the code written for this work with the original input data and by using the 

same strategy for calibration — minimizing the squared errors of one variable at a time —, the 

same parameters and outputs were obtained for all five datasets: Avignon, Lake City and all 

three from Gainesville. The simulation outputs in Figure 7, Figure 8 and Figure 9 were obtained 

using the Python implementation and represent the results in Figures 1, 3 and 5 in Jones et al. 

(1999). 

 

 
Figure 7. Results from simulation with the Python implementation using Gainesville data. Squares 

represent observations from destructive analyses. 
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Figure 8. Results from simulation with the Python implementation using Avignon data. Squares 

represent observations from destructive analyses. 
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Figure 9. Results from simulation with the Python implementation using Lake City data. Squares 

represent observations from destructive analyses. 

 

4.3.2. Calibration 

Jones et al. (1999) calibrated parameters for the Reduced-State Tomgro sequentially, 

minimizing the sum of the squared error for LAI, fruits, mature fruits, and aboveground 
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biomass, with a total of 10 parameters being calibrated. However, as values of one variable may 

inform on the other, optimizing all parameters simultaneously would also be a valid approach.  

In this study, from all parameters assessed in the sensitivity analysis, the ones with 

largest total sensitivity indexes for each state variable, including number of nodes, were 

adjusted in two ways: by minimizing an error metric using a global optimization algorithm and 

by visually determining good adjustments of growth curves to the observed values in the 

destructive analyses. Although the second approach was informative, to make the work more 

reproducible, optimization was adopted. 

The error metric used in optimization was the root square of the sum of squared errors, 

which were calculated by the difference of log-transformed observations and estimates. 

Transformation was applied to compensate for the differences in magnitudes of the state 

variables. The root square was used to smooth the effect of extreme error values. 

Data from the destructive analyses was used to calibrate the Reduced Tomgro model. 

Given there were three different cycles, each with different conditions, a calibrated run used 

data from the respective cycle. Non-calibrated runs used parameters from the original 

Gainesville calibration. Regardless of calibration, input data such as maximum leaf area or plant 

density referred to data from the evaluated cycle. 

 

4.4. Model uncertainty and sensitivity analyses 

An uncertainty analysis was performed to identify values which could be ascribed to 

filters’ hyperparameters, both for inputs and for parameters. The assessment was also used to 

identify which parameters should be calibrated and perturbed in ensemble generation. 

 

4.4.1. Uncertainty ascribed to parameters 

A wide range of weather series, referring to Campinas historical data, was used to 

assess parameters across several ranges of external factors. Since environmental inputs are 

intimately correlated, instead of randomly generating them, multiple examples were drawn 

from actual weather series. 

For each of the 20 years selected and 4 planting dates with a length of 160 days, the 

model was run with parameter ranges from Appendix A sampled following Saltelli's extension 

of the Sobol sequence1. Inputs refer to historical weather of the Campinas. While temperature 

 
1 Sampling used SALib library (Herman and Usher, 2017) 
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is maintained as is, assuming natural or mechanical ventilation, radiation is reduced to 70%, 

ascribed to cover material transmissivity. CO2 was sampled to represent modifications to the 

environment either by accumulation or depletion. While keeping the internal temperature the 

same as the outside led to unlikely low temperatures, we assumed a passive low-tech 

greenhouse, in which these problems exist. 

Total number of runs accounted for the combinations of one thousand samples of each 

parameter. The maximum value of the leaf area index, or its equivalent of intercepted solar 

radiation, is an input in the model and was included in the analysis (Appendix A) as it is 

intimately related to canopy photosynthesis and, therefore, growth, in all models. 

 

4.4.2. Uncertainty ascribed to input variables 

Parameters’ values refer to the ones obtained in the calibration of Cycle 3. As for 

weather inputs, variations should be consistent with minor variability across the time-series, as 

the parameters used could not be valid if weather inputs differ by much from the calibration 

condition. So, to account for autocorrelation between adjacent values, as well as between 

variables, but taking into account that measurement error could in fact lead to incompatible 

measurements, the sampling strategy applied a uniform change to the series from Saltelli's 

extension of the Sobol sequence with normal distribution, zero mean, to account for positive 

and negative changes, and a standard deviation that could correspond to variability within a 

greenhouse, roughly 5% of the average observation. Radiation and carbon dioxide 

concentrations were bounded to a minimum of zero. Total number of runs was 50 thousand to 

account for the combinations of 10 thousand samples of each variable. 

 

4.5. Modeling the relationship of observed variables to state variables 

Observation models were created from data obtained from plants subjected to 

destructive and non-destructive analyses. The modeling strategy focused on obtaining simple 

empirical relationships, and the generalized least squares method was used to account for the 

heteroscedasticity and correlation between residues. To avoid data leakage, despite the different 

growth conditions, data from the cycle was not used to obtain the relationship that would be 

used in that cycle. All observations obtained per plant were multiplied by plant density to make 

units compatible with the states in the model. 

We used area extracted from lateral and top images to determine the leaf area index, 

fruit area extracted from lateral images to infer fruit dry mass and weight as determined by the 
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weighting system to infer aboveground biomass. In this last case, we performed a conversion 

that would consider the difference caused by roots depending on development stage, and the 

difference from fresh to dry biomass. It was not possible to address changes in water content in 

the system plant-substrate-water. 

 

4.6. Data assimilation 

The algorithms for data assimilation were based on the FilterPy library2, and modified 

as needed. To account for this being a first approach, and as data for obtaining observation 

models was limited, only one variable was assimilated at a time. In this work, three state 

variables were estimated: aboveground dry biomass, leaf area index and fruit dry biomass. 

As the processes represented by the model are non-linear, two techniques were adopted 

— Ensemble Kalman Filter and Unscented Kalman Filter— and their hyperparameters and 

additional requirements are described below. In all cases, variance in the measurements was 

determined as the variance of the indirect observations of the calibration samples. While we are 

aware that this corresponds to partial leakage, we believe this was the best way to provide an 

estimate for these filter parameters. 

 

4.6.1. Overall assimilation approach 

4.6.1.1. UKF 

This method requires specifications of uncertainty that were ascribed as following. 

Uncertainty in the initial states was determined as the variance of the samples analyzed in the 

transplanting day. Uncertainty in the model was determined as the absolute error calculated by 

the difference between observations of the states in the calibration samples in the cycle and the 

simulated value of the uncalibrated model. The technique also has hyperparameters for 

sampling the sigma points, but they were kept as the default from FilterPy. 

 

4.6.1.2. EnKF 

For the EnKF, uncertainty in the process depend on the ensemble generation process. 

In this study, it was ascribed to a model parameter, by adding a perturbation sampled from a 

normal distribution with zero mean and standard deviation of 10% of the parameter value. The 

parameter depended on the state variable being assimilated: for leaf area index, the maximum 

 
2 https://filterpy.readthedocs.io/en/latest/ 
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leaf area expansion per node was perturbed, for aboveground biomass, the leaf quantum 

efficiency, and for fruit biomass, the maximum partitioning of new growth to fruit. The number 

of elements in the ensemble was tested and defined as 100. 

 

4.6.2. Assessment of influence from low-cost sensors 

Growth data from Cycle 3 was used to calibrate the model and simulations from the 

calibrated model with the weather data from all four cycles were then treated as the truth of an 

artificial dataset. The simulations of fruit and mature fruit biomass were perturbed by gaussian 

noise sampled from a distribution of zero mean and standard deviation corresponding to 10%, 

30% and 50% of the simulated truth. The perturbed simulations were treated as observations 

and the EnKF was used to assimilate them using the non-calibrated model as source of model 

estimates. In this case, ensembles were generated by perturbation of weather inputs 

corresponding to 10% of the measured input. The procedure was repeated 20 times to avoid 

biasing the results due to sampling. An additional random perturbation — N(1, 0.09) — was 

included in the observations and represents the variability of the sampling noise. 

 

4.6.3. Determination of temporal resolution  

We used images captured every other day as the full set of observations. Data from the 

weighting system was captured each minute and was then averaged in the hour and data from 

between 4 am and 5 am, before sunrise in all cycles, was used as the observation for each day. 

We then subsampled these observations to determine the effect of frequency. Subsampling was 

applied to the observations and corresponded to using 50% and 10% of the data available in the 

cycle. To avoid results being biased by sampling, the procedure was performed 20 times. One 

of the repetitions was sampled in regular intervals through the cycle and the others were 

randomly sampled.  
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5. RESULTS AND DISCUSSION 

5.1. Data 

As detailed in the methods section, this work required growing tomatoes and 

characterizing growth cycles through monitoring the environment as well as plants. Data 

gathering was then quite laborious and there was an improvement in the quality of data obtained 

in Cycles 2 and 3, when compared to Cycles 0 and 1. It is not expected for this difference to 

have an impact on the assimilation results, but as it appears through the work, it will be further 

commented on the following sections. One reason for the difference is that it was only possible 

to identify issues after processing raw data, which, by its turn, required data gathering to write 

the scripts to process and analyze the results. 

 

5.1.1. Weather 

The curves from Figure 10 show the summaries of daily environmental data in the 

greenhouse, which correspond to the final value ascribed to the scientific grade instruments, 

after processing, and that were used in the simulations. For solar radiation, as a reference, 

external solar radiation is included. This reference suggests there may have been an interference 

with measured values especially in Cycle 1, but possibly in Cycle 2, indicated by the different 

trends of the measurements. In Cycle 1, there is a step reduction in the measured value that was 

possibly caused by the height in which the sensor was placed being lower than the plants’ 

maximum height, subjecting the sensors to shadows. In Cycle 2, there is no such reduction but 

there is a trend of decline in the measurement that is not observed for the external radiation. 

The difference in this case, however, could be ascribed to the conversions of PAR and global 

radiation not being very accurate and relying on more information than the approximations used 

allowed for. Nevertheless, the values overall correspond to daily integrals ranging from 6 to 16 

MJ PAR m-2 day-1, or 12 to 32 MJ m-2 day-1 of global radiation, which is considered above the 

minimum required — 0.85 MJ m-2 day-1 — for flowering (Alvarenga, 2013). 

As for temperatures, they were within a range considered appropriate for tomato 

growth pointed by Alvarenga (2013) — 10°C to 34°C — during the most part of growth cycles. 

But the author also points to specific ranges in developmental stages that are more narrow and 

often minimum temperatures were larger than those recommended, i.e., 18°C to 24°C during 

flowering, 14°C to 17°C during the nights and 19°C to 24°C during the days in the fructification 

phase and 20°C to 24°C for maturity. As Cycles 1 and 2 used a cooling system, there were few 

days in which maximum temperatures exceeded the more general recommendations. The 
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highest observed temperature in Cycle 2 refers to a day in which an electrical issue led the 

ventilation and refrigerating systems to shut down for a few hours. The average being closer to 

minimum temperatures in Cycle 2 suggests that maximum daily temperatures were mostly 

exceptions during the day, before the cooling system was activated. Higher relative humidity 

through the cycle also suggests there was more interference from the system, even though this 

also meant that for this environmental variable, ideal conditions were not maintained for tomato 

growth. For Cycle 3, maximum temperatures in the initial stages could not be circumvented, 

but it does not seem to have damaged growth. Cycle 3 also presented the largest differences in 

measurements of the different nodes and as Node 2 reached highest temperatures, this was 

accompanied by the lowest relative humidity measurements. 

 

 
Figure 10. Summary of environmental data after processing, for the growth cycles with complete data 

gathering. External daily radiation included as reference and represented by the points. Vertical lines 

refer to the approximate dates of change in the development stage (flowering, appearance of fruits and 

maturity). 
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Figure 11 and Figure 12 show the results from imputation strategies used in each 

sensor node for hourly data. In these two figures, percentage imputed refers to the fraction of 

the total observations in that hour that was extracted from another source to reach the scheduled 

number of observations. As mentioned in the description of growth infrastructure in section 

4.1.1, not all sensors were installed in Cycle 0, which is why it required imputation from 

external data and, afterward, replacement from one sensor to the other. In the other cycles, the 

indicated imputation for solar radiation refers to data from the night, in which the schedule from 

the quantum sensors logger interrupted data gathering, but as this only refers to data after sunset 

and before sunrise, it just included replacement by zeros. Data from low-cost sensors in Node 

2 also required imputation in Cycle 1. As no redundancy was available for luxmeters, it used 

data from the other node. On the other hand, for half of the cycle, it relied on the other sensor 

for temperature and, later, on data from the SHT75 transductors. Although it was not possible 

to fix the issues during growth, it was later fixed for the following growth cycle. 

 

 
Figure 11. Map of imputations performed in sensors of Node 1. Each pair (x, y) refers to one hour in 

each of the days in the different cycles. The vertical left axis indicates the hour in the day. Colors are 

mapped into the different strategies of imputation. The amount of data required to be estimated, 

relatively to the number of measurements expected in the hour, is shown by transparency in the 

respective square. 
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Figure 12. Map of imputations performed in sensors of Node 2. Each pair (x, y) refers to one hour in 

each of the days in the different cycles. The vertical left axis indicates the hour in the day. Colors are 

mapped into the different strategies of imputation. The amount of data required to be estimated, 

relatively to the number of measurements expected in the hour, is shown by transparency in the 

respective square. 

 

As imputation sometimes used data from other sensors, it is reasonable to assess the 

correspondence between their measurements. Figure 13 and Figure 14 show the relationship 

between the raw measurements from different sensors. These results suggest that using data 

from one sensor as replacement for missing measurements of the other was adequate. Although 

the relationship between luxmeters and quantum sensors is not as good as the one of 

temperature sensors, it is reasonable to admit that for the few cases in which they were 

necessary, mainly for Cycle 2, this replacement should be acceptable. 
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Figure 13.Scatterplots of relationships between measurements of PAR converted from data obtained by 

BH1750 luxmeters and measurements of PAR obtained by LI190SA quantum sensors. 

 

 

Figure 14. Scatterplots of relationships between measurements of temperature obtained by DHT22 

sensors and measurements of temperature obtained by SHT75 transductors. 

 

5.1.2. Plant growth 

The three cycles presented different developments, caused by differences in 

management, which were explored in this work: the first may be characterized by low irrigation, 

subjecting plants to water deficit, the second, by an excess of nitrogen fertilization and an attack 

of tomato rust mite by the end of the cycle, and the third cycle was conducted closer to full 

water and fertilization. The following sections detail how these differences impacted the 

outcomes, as well as how they relate to the previously presented environmental data. But before 

commenting on the meaning of the outcomes, the methods used for growth characterization 

merit some comments.  



66 

 

 

Leaf area measurement by digitization of leaves with a scanner (Figure 15) is 

dependent on how the expected leaf area was defined in the code. For instance, Li et al. (2020) 

generated a gray image by doubling the weight of the green component in the RGB image, 

while Easlon and Bloom (2014) first defined a minimum green level and then used ratios, i.e. 

green/red (G/R) and green/blue (G/B), to identify the leaves. In this work, the latter approach 

achieved better results. But as the script focused on identifying green leaves, leaf area was 

mostly represented as green LAI, which may not be what the developers of the crop model 

intended. This work used only thresholding and other basic RGB processing and more advanced 

algorithms could have improved separation. However, from what was observed in the results, 

it should not lead to vastly different outcomes, as one problem would be detecting yellow parts 

on the leaves, but these often appeared in a moment that the model was no longer very sensitive 

to differences in LAI values, as will be discussed ahead. 

 

 

Figure 15. Example of leaf scan from Cycle 3, including the contour obtained automatically, which was 

used to calculate the area corresponding to leaf in the picture. 
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In this study, we used the size reference included for unit conversion, to estimate errors 

in the method, as its area was often known (Table 5). These errors do not extrapolate for the 

errors in the identification of leaves, as the thresholds for leaves and the reference are different, 

but they indicate the errors of conversion, since when the reference was misidentified, it 

propagates into the conversion calculation. The largest errors observed in Cycle 1 were likely 

caused by the reference being black, which was difficult to separate from the shadows of the 

scanner. An additional aspect analyzed was that the largest errors were more prevalent in 

images from the beginning of the cycle, in which increases would not amount to major 

differences in the final value. 

 

Table 5. Average and standard deviation of the relative error [%] in reference area measurement for 

digitized leaves.  

 Monitoring* Calibration 

Cycle 1 5.1 ± 1.3 5.5 ± 7.4 

Cycle 2 3.8 ± 2.1 2.6 ± 2.5 

Cycle 3 0.8 ± 1.8 4.6 ± 1.4 

* Final value, when they were subjected to destructive analyses. 

 

Regarding the areas of monitored plants, as data gathering was also a learning process, 

references in Cycle 1 were ascribed to fixed and known measurements of objects in the 

environment in almost all pictures. In Cycle 2, the reference for the view from above in 

monitored plants was higher than the references in calibration, since only later it would be 

detected later that plants’ leaves would cover the reference. This should lead to underestimation 

of the area in monitored plants, in comparison to the calibration plants. Similarly to the case of 

digitized leaf area, two-dimensional references allowed for estimating error in the area of the 

reference (Table 6).  

 

Table 6. Average and standard deviation of the relative error [%] in reference area measurement. 

Growth Cycle Position Monitoring Calibration 

Cycle 1 Above - - 

Lateral - 4.4±3.2 

Cycle 2 Above 1.5 ± 1.5 2.2±3.4 

Lateral 4.0 ± 3.1 3.0 ±3.0 

Cycle 3 Above 2.4 ± 2.2 4.7±4.4 

Lateral 1.9 ± 2.0 2.8±1.7 

 

Another type of data obtained when monitoring growth refers to the measurements 

from the weighting system. In this case, an attempt was made at establishing a relationship 

between moisture and the voltage measured by a soil moisture sensor. This would allow for 
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quantifying the amount of water in the substrate and subtract it from the system, identifying the 

mass that corresponded only to the plant. The calibration attempt, however, led to poor 

relationships as the substrate is very porous and the relationships seemed quite dependent on 

the degree of compaction of the substrate in the vase. As it was understood that measured values 

could suffer additional interference from plant growth, as identified by Kang, Van Iersel e Kim 

(2019), attempts to quantify water in the system were abandoned. 

To avoid interference from irrigation and evapotranspiration, another decision referred 

at what time the measurements would be made. We used the standard deviation of hourly 

measurements, which naturally pointed to fewer changes before sunrise, and measurements 

between 4 and 5 am were then used. However, this decision would likely not have substantially 

influenced the results, as Figure 16 suggests. 

 

Figure 16. Daily observations of system weight with measurement time defined in different hours of 

the day. 
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The direct or indirect approaches used for growth characterization led to curves that 

were compatible with each cycle characteristic. Figure 17 shows the curves related to leaf area, 

either identified in photos or by digitization of leaves, and Figure 18 shows the curves related 

to biomass, either total or exclusively from fruits. In Figure 17, there is a difference in leaf area 

per plant and leaf area index, as the second case is influenced by plant density. In Cycle 3, the 

smaller distance between lines led to higher plant density and, therefore, higher leaf area index, 

even though the final values of plant leaf area were similar to the ones in Cycle 2. The overlap 

between plants influence photosynthesis and therefore should not be disregarded, but this issue 

is further explored in the simulation section. The rust mite attack led to lower leaf area and 

higher variability in this variable in plants sampled by the end of the Cycle 2. On the other hand, 

excess nitrogen led to a steeper curve for leaf area in the same growth cycle. 

 

 

Figure 17.Characterization of leaf area identified in the scans and in pictures of calibration samples. LAI 

corresponds to leaf area multiplied by plant density. 

 

Despite the similar values for plant leaf area, plants in Cycle 2 had much higher green 

cover from the lateral view. This was possibly caused by the shape of the leaves, which were 
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curled, leading to more visible areas being detected in pictures. It should be noted that the areas 

identified in lateral images are much lower than the total leaf area of the plant and while images 

from above show more compatible magnitudes, they capture not only growth but also proximity 

to the camera. 

Data from the destructive analyses point to smaller plants, with lower leaf area in Cycle 

1 and lower biomass, caused by restricted irrigation. It is interesting that despite the restrictions, 

fruit production was not as largely affected and the opposite of what happened in Cycle 2 was 

observed, with most of the final biomass being composed by fruits, instead of leaves and stem. 

On the other hand, despite similar leaf areas from Cycles 2 and 3 and similar aboveground 

biomass, the previously mentioned excess nitrogen was also the probable cause of the lower 

fruit mass in Cycle 2. 

In Heuvelink (1995), the experiments which provided data for the development of the 

Tomsim model and their results are described. The author grew the cultivar Counter, mostly in 

optimal conditions, also for around 100 days. The author reported that total dry weight, which 

includes harvested fruits, ranged from 94 g plant-1 to 488 g plant-1. The wide range of biomass 

can be attributed to the different planting dates, which subjected some experiments to low 

radiation intensity. The results are similar to the ones observed in this study for Cycles 2 and 3. 

Although biomass in this study did not include picked leaves, for monitored plants, which were 

the last observed values, no removal of leaves was performed, so they are comparable. With 

few exceptions, in their work, fruits comprised between 50 and 60% of total dry biomass, which 

was different from even the best case of this study, in which this percentage was of about 30%. 
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Figure 18. Characterization of plant biomass of calibration samples in each growth cycle. 
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Overall, growth from monitored plants, measured indirectly through pictures and 

through the weight system, was similar to the growth of other plants in the environment (Figure 

19). Areas corresponding to leaves and fruits extracted from the images obtained with 

cellphones were compatible with the ones extracted from images obtained by the fixed cameras. 

Growth trends are noticeable, but are also very sensitive to lighting and occlusion, which often 

explains the discontinuities. As few observations were obtained for mature fruits, they were not 

included. 

 

Figure 19. Times-series of observations from monitored plants and values for the same variables from 

the calibration samples. For the weighting system, values for the calibration samples refer to 

aboveground fresh mass, with the last calibration observations corresponding to the monitored plants. 
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When areas of the lateral view of monitored plants were larger than from calibration 

data, this effect likely can be attributed to occlusion, as monitored plants were slightly 

dislocated from the planting line, for example for Cycle 3 and Plant 1 in Cycle 2, and the 

visibility of plants used in calibration was affected by adjacent plants (Figure 5). On the other 

hand, for calibrated plants, we note that visible area in Cycle 3 is equivalent to the visible area 

in Cycle 1, even if in the latter, maximum leaf area per plant reached an average of 0.44 m2 

leaves/plant and in Cycle 1, 1.91 m2 leaves/plant, as indicated in Figure 19. This was likely a 

consequence of fewer leaves reducing the complexity of annotations in the environment of 

Cycle 1. 

In Figure 19, height was included with two purposes: as a reference of information 

extracted from pictures in a comprehensible unit, but also to show how monitored plants having 

their growth interrupted earlier than plants used in calibration is particularly noticeable in Cycle 

3, as their heights remain constant by the end of the cycle. Curves of area of fruits in Cycles 1 

and 2 are interrupted before the end of the cycle because as plants were harvested, observations 

did not correspond to total fruit mass any longer and were not compatible with the principle of 

accumulated biomass used in the growth model. In the green cover area identified from the 

above view, interruption often refers to the plant reaching the camera and occupying all visible 

area, being no longer informative. The very low values observed in Cycle 1 for the above view 

may be connected not only to lower leaf area, but also to a slight dislocation of the camera, so 

that it did not fully capture the plant. 

As for the system wet mass, one can observe how the first cycle corresponded to 

unstable mass values, mostly corresponding to the amount of irrigation applied. In the second 

and third cycles, these fluctuations are less prevalent. In those cycles, we can observe values 

from monitored plants are larger than for calibrated samples as roots are included in the system. 

Their accommodation of more water also increases total mass. 

 

5.2. Model uncertainty and sensitivity analysis 

5.2.1. Parameters 

Figure 20 shows the interannual variability of the total sensitivity index of parameters 

for all state variables, as well as its progress through growth. The largest total sensitivity indices 

mean the largest fraction of the variance observed on the output is ascribed to that parameter, 

so a change in a parameter index through growth means the fraction is different for the same 

parameter in different moments. These differences were expected. As plants respond to the 
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environment, it is natural that differences in weather should impact what process is affecting 

growth the most and, therefore, the calculated index. Similarly, as growth progresses, what 

impacts a state variable the most changes, as partitioning changes the dynamics of carbon 

allocation. While it could be the case that for indeterminate growth of tomatoes, after reaching 

a certain stage, changes in indices should not be very substantial, weather variability may still 

affect the indices, as progress in season also means changes in the weather, leading to the high 

variability still observed in indices by the end of the cycle. So, while one can guide themselves 

by the average, it should be clear that different years could lead to different outcomes in which 

parameters would impact simulations the most.  

 

 

Figure 20. Total effect sensitivity indices of yield to models’ parameters for the Reduced Tomgro model 

with the Campinas historical weather dataset. Parameters’ full names are presented in the Appendix A. 

Lines correspond to the average index value while dots correspond to the results in each scenario 

assessed. Only averages larger than 0.05 are shown. For fruits, the X axis starts at 40 days after 

transplanting as before often there is a lot of instability in the averages. 
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Instead of using the parameters indicated in Jones, Kenig and Vallejos (1999), these 

results led to selecting ten parameters for calibration (Table 7). The criteria for selection 

included being relevant not only to the state variable whose equation included the parameter, 

but also other state variables. For instance, differently from those authors, we included the 

calibration of parameters from the equation of number of nodes as it was clearly relevant for all 

variables and, in the worst case, its value would remain unchanged. On the other hand, ranking 

the highest indices pertaining to the state variable’s equation led to choosing alpha_F, delta and 

Qe as parameters to generate the ensembles of fruit biomass, leaf area index and aboveground 

biomass, respectively. 

 

Table 7. List of parameters identified for calibration. 

Original parameters* Parameters State variable equation 

- N_max Number of nodes 

belta, delta, N_b belta, delta and N_b Leaf area index 

Vmax Qe Aboveground biomass 

alpha_F, T_crit, V, N_FF alpha_F, T_crit and N_FF Fruit biomass 

DFMax and K_F DFMax and K_F Mature fruit biomass 

*Parameters calibrated in Jones, Kenig and Vallejos (1999). 

 

In Figure 21, one of the eighty assessed weather time-series was used to exemplify the 

impact of different parameters on the simulation of the different state variables. It shows the 

curves of the resulting simulations using the maximum or minimum value of the most important 

parameters, considering the average index through the cycle. Multiple curves appear as a result 

of the combinations present after sampling using Saltelli's extension of the Sobol sequence. One 

can see how important parameters either lead to very different outcomes or, in the case the 

outcomes are similar, a clear divide existed at some point during growth, disappearing 

afterward. This disappearance does not entail that a parameter should not be adjusted if it is no 

longer appearing as important by the end of the cycle. In this case, an error on its estimation 

could lead to systematic bias that no longer would affect variability in the outcome. Vazquez-

Cruz et al. (2014) performed a similar analysis, but as sensitivity indices are mostly quantifying 

effects that are relative from one parameter to the other, and since in their case they allowed for 

ranges of parameters representing percentages to be larger than 1, the results are not 

comparable. 
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Figure 21. Simulations using maximum and minimum values of selected parameters with highest 

average total sensitivity index, for one weather scenario in Campinas for each state variable simulated 

by the Reduced Tomgro model. 

 

5.2.2. Input variables 

In this case, sensitivity analysis results are more limited. Since there is an interaction 

between parameters and the weather, we could not assess the impact of environmental factors 

without a robust calibration process, that accounted for different weather conditions. These 

indices also reflect more of the external conditionals and bottlenecks than the parameters’ case. 

Figure 22 shows the results of the sensitivity analysis considering perturbations in the 

measurements of environmental variables in Cycle 3. Overall, temperatures dominate the 

results and are the most relevant for all state variables, but for aboveground biomass, as growth 

progresses, solar radiation becomes more relevant than temperatures and this could be either 

because temperatures became lower by the end of this cycle, leading to less variability caused 

by this input, or because solar radiation is also lower and changing its values would impact 

more simulations’ outcomes. 
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Figure 22. Total effect sensitivity indices of input factors on variables simulated by the Reduced Tomgro 

model. Values not shown refer to the absence of variability on the variable by that point in growth. 

 

Figure 23 shows an example of the effect of the largest perturbations assessed. As the 

disturbances were sampled from normal distributions, the results shown refer to perturbations 

larger than 18% in the observed input. It shows that aboveground biomass would be affected 

by solar radiation and that fruits would be severely affected by temperature. One can also see 

the point of the effects of one factor being relative to the other in the different assessments of 

each state variable. While the change in magnitude of fruit biomass caused by the high 

importance of temperature would be of 200% percent more, in the case of number of nodes, it 

would affect the results by 13%, even though they both present similar total sensitivity indices. 
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The model ascribes little effect to temperature in the calculation of biomass rate, mainly relating 

to the indirect effect of temperature on leaf area and effect on photosynthesis, while it directly 

affects fruits by the same effects as well as the indirect effects on nodes and direct effects on 

fruit abortion. Although overall temperatures were the most relevant variables, this analysis 

showed how errors in solar radiation measurements could clearly impact biomass, leading to 

the indices in Figure 22. Given it is easier to increase the number of measurements of 

temperatures than of solar radiation, therefore reducing its uncertainty, solar radiation was 

chosen when perturbing an input was required for assimilation. 

 

 

Figure 23. Simulations using maximum and minimum values of all input factors with highest total 

sensitivity index, for data of one node of Cycle 3, for each state variable simulated by the Reduced 

Tomgro model. 
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5.3. Model implementation and calibration 

As mentioned in section 4.3.1, the Python implementation was able to reach the 

original results, when using the same strategy of calibration. As the strategy used in this study 

was different in multiple different ways — parameters from all variables were optimized 

simultaneously with a different error metric and algorithm, as well as different parameters were 

chosen for calibration — the simulation outcomes were also different, although not 

substantially (Figure 24). The shapes of the LAI curves became slightly steeper and 

aboveground biomass and fruit biomass were no longer overestimated, with a slight 

underestimation of mature fruits. 

 

 

Figure 24. Results for the simulation using the Reduced Tomgro model with Gainesville input data with 

different approaches for calibration of parameters. Squares represent data used in calibration. 
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For Campinas, the different approaches, in this case manual adjustment and global 

optimization, led to differences especially in mature fruit weight (Figure 25), which was caused 

by the optimization exploring the low samples of day 66, as the metric used gave a lot more 

weight to it than to the final observations. The curve representing number of nodes suggests 

either the parameter used or the process could be reassessed to best describe plant development. 

On the other hand, although the maximum value allowed for the parameter was of 0.7, the 

optimization algorithm changed the parameter from 0.5 to 0.57 nodes day-1, likely given the 

influence of the other variables, observed previously in Figure 20. 

 

Figure 25.Results for the simulation using the Reduced Tomgro model with input data from the third 

growth cycle in Campinas and different approaches for calibration of parameters. Squares represent data 

used in calibration. 
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Both approaches underestimated aboveground biomass, even as Qe, the leaf quantum 

efficiency, was increased from 0.08 to 0.09 μmol CO2 fixed μmol photon -1. In their work, 

Vazquez-Cruz et al. (2014) ascribed a value of 2.07 to the parameter representing the ratio of 

biomass to photosynthate available for growth, which could suggest they also observed 

problems in achieving compatible results between the leaf area available and the aboveground 

biomass and their optimization led to amplifying biomass to reduce the errors. But it could also 

be an issue with the solar radiation data obtained in this study, although there is no identified 

reason as to why Cycle 3 would have had this type of problem. 

Another issue that should be noted regarding using this model for the growth cycles 

observed is that as the model developed for optimal growth, it could have been the case that it 

would not accurately represent Cycles 1 and 2. However, Figure 26 indicates the model showed 

flexibility and was able to be adjusted well for most variables in all cycles. Low biomass in 

Cycle 1 was accompanied by changes in the magnitudes of the other state variables, even though 

it led to a larger underestimation of biomass than the non-calibrated model. One more 

remarkable exception is the case of fruits for Cycle 2, as the inhibition was caused by a change 

in partitioning and the model could not, naturally, capture this effect. In all cycles, the 

observations referring to the number of nodes used for calibration did not include data collected 

after the removal of apical meristem. It can be also noted in Figure 26 that the model was able 

to capture, as in Bojacá, Gil and Cooman (2009), the effects of differences in the environment 

mentioned in section 5.1.1, leading to slightly different curves for each node. 

Given the reasonable results, even when compared with other approaches, for 

consistency and reproducibility, the optimization method was adopted through the remaining 

steps. Modeling is also further discussed in Appendix C. 
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Figure 26. Simulation with optimized calibration for Campinas in all complete cycles. Squares represent 

data used in calibration. 

 

5.4. Modeling the relationship of observed variables to variables of interest 

In the case of assimilation for large areas using remote sensing images as the source 

of observations, several products are already available. For example, Fang et al. (2019) presents 

an overview of global LAI products and Jiang et al. (2020) evaluate two soil moisture products. 

This step, however, was still needed in this study, as there is no established relationship between 

the non-destructive observations used and the state variables to be updated (Figure 27). 



83 

 

 

 

 

Figure 27. Scatterplots of relationships between observations of plants used in the destructive analyses, 

used for the development of observation models. Observations that refer to an area were extracted from 

images and aboveground fresh mass was obtained by weighting plants before drying. 

 

While the original goal of this study aimed at proposing a relationship that could lead 

to the dismissal of future calibration, reaching it was not possible, as the different conditions in 

each cycle led to different growth patterns. Nevertheless, one can see (Table 8) that even as 

these differences existed, the models obtained had similar slopes, with the largest range being 

for the equation obtained for fruits in Cycle 3. As the conversion of fruit biomass is the only 

case in which the slope and intercept present similar magnitude, the differences in the intercept 

also affect this outcome. These differences affected assimilation as will be discussed, but the 

other results suggest it should be possible to generate a model that can be generalized if 
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conditions are similar. It also suggests that even linear methods could be explored. Nyakwende; 

Paull and Atherton (1997) explored polynomial relationships to quantify leaf area of tomato 

plants younger than 40 days through images, but linear relationships are frequently explored to 

relate vegetation indexes and LAI or canopy cover (Betbeder et al., 2016; Dorigo et al., 2007; 

Tenreiro et al., 2021).  

 

Table 8. Equations derived from calibration data for observation models, i.e., conversion of state 

variable into the equivalent observation. 

Growth 

Cycle 
Equation State variable 

Observed 

variable 

Cycle 1 𝑤𝑓_𝑙𝑎𝑡 =  1.19 × 10−4 × 𝑊𝑓  +  1.97 × 10−3 

Wf Area Wf Cycle 2 𝑤𝑓_𝑙𝑎𝑡 =  1.31 × 10−4 × 𝑊𝑓  +  1.77 × 10−3 

Cycle 3 𝑤𝑓_𝑙𝑎𝑡 =  3.34 × 10−4 × 𝑊𝑓  +  1.36 × 10−4 

Cycle 1 𝑤_𝑓𝑚 =  8.32 × 𝑊 +  4.74 × 10−1 

W W_fm Cycle 2 𝑤_𝑓𝑚 =  7.81 × 𝑊 −  5.26 × 10−1 

Cycle 3 𝑤_𝑓𝑚 =  6.90 × 𝑊 +  6.79 × 10−1 

Cycle 1 𝑙𝑎𝑖_𝑙𝑎𝑡 =  1.42 × 10−1 × 𝐿𝐴𝐼 +  3.44 × 10−3 

LAI 

GC Lat Cycle 2 𝑙𝑎𝑖_𝑙𝑎𝑡 =  2.54 × 10−1 × 𝐿𝐴𝐼 +  2.97 × 10−3 

Cycle 3 𝑙𝑎𝑖_𝑙𝑎𝑡 =  2.26 × 10−1 × 𝐿𝐴𝐼 +  4.75 × 10−3 

Cycle 1 𝑙𝑎𝑖_𝑎𝑏𝑣 =  9.87 × 10−1 × 𝐿𝐴𝐼 +  5.74 × 10−4 

GC Abv Cycle 2 𝑙𝑎𝑖_𝑎𝑏𝑣 =  1.30 × 𝐿𝐴𝐼 −  1.28 × 10−3 

Cycle 3 𝑙𝑎𝑖_𝑎𝑏𝑣 =  1.16 × 𝐿𝐴𝐼 −  4.81 × 10−4 

Wf: dry mass of fruits [g m-2], W: aboveground dry biomass [g m-2], LAI: leaf area index [m-2 m-2], Area 

Wf: area of fruits on images [m-2 m-2], W_fm: aboveground fresh mass [m-2 m-2], GC Lat: area of leaves 

identified on images from lateral view [m-2 m-2], GC Abv: area of leaves identified on images from the 

above view [m-2 m-2]. 

 

Table 9 shows the metrics from the observation models after excluding data from the 

cycle. While correlations are compatible with what is visible from the scatterplots, error metrics 

point to large uncertainties. Since these models are used to convert the state variable into the 

same unit of the observation, they should be evaluated in the observations’ unit. And while an 

error of 0.40 g FM m-2 may be considered very small when compared to the mass of the 

weighting system, the opposite is true for an error of 0.61 m2 m-2 for the area visible on images. 

This larger error was likely caused by the different behaviors from the three growth cycles. 

Mean Absolute Percentage Errors confirm that the error in the unseen cycle is very large and 

suggest that using these models to convert state variables in the assimilation may lead to lower 

efficiency of the process. The issues previously discussed regarding the determination of all 

these measurements likely affected this step, and improvements in them should also reduce the 

errors in the models. However, while large, it is not uncommon for remote sensing LAI products 

used in assimilation to reach errors larger than 0.5 m2 m-2. Fang et al. (2019) report validation 
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RMSE errors from moderate and high-resolution leaf area index products for crops ranging 

from 0.2 to 0.8 m2 m-2. 

In the case of mature fruit biomass, which was not explored here as there were not 

enough observations to develop the models, obtaining good relationships should be a lot easier, 

as occlusion by leaves is minimized by pruning practices. 

 

Table 9. Standard error (SE), mean absolute percentage error (MAPE) and coefficient of determination 

(R2) from each observation model for data from each cycle. SE is reported from training in the other 

cycles and MAPE is reported from validation in the same cycle. 

Assimilated 

variable 

 LAI LAI W Wf 

Observed 

Variable 

 GC Abv  

[m2 m-2] 

GC Lat  

[m2 m-2] 

W_fm  

[g FM m-2] 

Area Wf 

[m2 m-2] 

Cycle 1 SE (training) 0.988 0.311 0.395 0.062 

Cycle 2  0.597 0.613 0.339 0.084 

Cycle 3  0.921 0.436 0.257 0.252 

Cycle 1 R2 (training) 0.64 0.73 0.94 0.81 

Cycle 2  0.86 0.82 0.98 0.77 

Cycle 3  0.44 0.87 0.99 0.36 

Cycle 1 MAPE (validation) 30 % 41 % 34 % 373 % 

Cycle 2  122 % 55 % 29 % 82 % 

Cycle 3  26 % 113 % 58 % 122 % 

*Observations as: GC Lat: green cover (lateral view), GC Abv: green cover (above view), W_fm fresh 

mass from destructive analyses, Area Wf: total area of fruits. 

 

5.5. Data assimilation 

Pellenq and Boulet (2004) posed four questions that guide this discussion: if the 

assimilation of a particular observation improves all components of the simulation; if 

calibration errors can be compensated by tuning state variables instead of parameters; what the 

optimum frequency of measurements is and what the most suitable assimilation strategy (noise 

specification, assimilation method, etc.) to fulfill a particular goal is. The first three will be 

commented on section 5.5.1 and are expanded in Appendix D and Appendix E. The last one is 

commented on section 5.5.2. Section 5.5.3 will explore the idea of using low-cost 

environmental sensors as a source of input data given observations with reasonably low errors 

are available. 

 

5.5.1. Overall assimilation results 

For very precise measurements, the techniques will basically replace estimates by 

measurements. Their advantage comes when models and measurements alike are noisy. Table 

10 highlights the cases in which RMSE of the growth cycle for a state variable was lower with 
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assimilation of that variable than without, regardless of calibration. Overall, calibration led to 

the lowest errors, but in almost all cases, assimilation slightly improved the results when the 

model was not calibrated. No technique was consistently better either across variables or across 

growth cycles. 

 

Table 10. Average root mean squared error [g m-2] for estimates of state variables updated with data 

from different sources with the Unscented Kalman Filter and the Ensemble Kalman Filter, and from the 

model without assimilation with and without calibration. 

State 

variable 
Filter 

Assim. 

state 

Obs. 

variable* 
Cycle 1 Cycle 2 Cycle 3 

LAI None – 

Calib. 
- - 0.08 0.53 0.31 

None –  

Not Calib. 
- - 0.17 1.17 1.76 

EnKF LAI GC Lat 0.08 0.70 1.83 

UKF   0.10 0.69 1.83 

EnKF  GC Abv 0.07 1.07 0.80 

UKF   0.09 1.07 1.71 

W None – 

Calib. 
 - 42.4 29.8 124.8 

None –  

Not Calib. 
- - 30.8 148.8 275.4 

EnKF W W_fm_full 64.8 59.1 142.9 

UKF W  66.6 65.2 123.8 

Wf None – 

Calib. 
- - 15.9 82.7 12.4 

None –  

Not Calib. 
- - 25.8 34.8 90.1 

EnKF Wf Area Wf 24.1 33.2 88.7 

UKF Wf  23.6 16.3 86.2 

*Observations as: GC Lat: green cover (lateral view), GC Abv: green cover (above view), W_fm_full: 

weighting system, Area Wf: total area of fruits. Bold numbers refer to root mean squared errors lower 

than the larger RMSE between the non-calibrated and calibrated error. 

 

Although calibration is expected to improve model performance, this was not observed 

in some cases, as growth did not correspond to the situation for which the model was developed. 

In Cycle 1, in which total biomass and leaf area were affected by irrigation, the optimization 

used in calibration could not determine parameters that would generate compatible estimates 

between these two variables. In Cycle 2, similarly, excessive nitrogen led to much lower fruit 

production, and this effect was not properly captured by the parameters selected. Assimilation 

results in both cases depended on the quality of observations. In Cycle 1, in which the system 

biomass was affected by irrigation, the large errors also led to poor estimates and, therefore, the 
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best results came from the non-calibrated simulation. In Cycle 2, on the other hand, assimilation 

of the images led to the adjustment of the estimates to the lower values that actually happened. 

The errors in the weighting system of Cycle 1 were a particularity of that growth cycle, 

but since it should be the most precise measurement, it led to the largest improvements, and the 

results in Cycle 2 were very similar to the calibrated estimates, while on Cycle 3, errors were 

reduced in almost 50%. The improvement not being higher in Cycle 3 is likely caused by the 

same reason that led to the underestimation of biomass after calibration, as the model cannot 

simulate higher rates of biomass with the inputs that were used or with its current structure. 

As for the uncertainties in observations from images that were discussed in the 

previous sections, they would affect all image-based assimilation. However, as these are 

permeated through the observation models, one should look to the models with lower validation 

errors (Table 9) to better understand this potential. In this case, the best example comes from 

using the pictures from above and the EnKF to estimate the leaf area index in Cycle 3. The large 

error by the end of the cycle is possibly caused by the absence of images, which led the model 

to simulate based on the last available update. It could also be noted that for Cycles 1 and 2, 

assimilation of images led to estimates as good as the ones obtained by calibration. 

As some comments require more clarity of what happened in the simulations, Figure 

28 to Figure 31 show the curves of assimilation of the different observations. Two remarks refer 

to the assimilation of fruit area. In Figure 28, observations of fruit area in Cycle 3 were 

apparently barely used, and the assimilated curve closely resembles the simulation without 

calibration. This is likely caused by the slope in the observation model presented in section 5.3. 

Figure 19 showed that monitored plants in Cycle 3 had the largest areas of fruits by the end of 

the growth cycle. Still, the scatterplot from Figure 27 shows how a model obtained with data 

from the other two cycles would likely underestimate the fruit mass observation. So, when the 

estimated fruit biomass value was converted to the equivalent observation, the difference in 

magnitude of what was estimated by the model and the observation would not be captured in 

the residual calculation. 

In Cycle 2, the calibrated model performed poorly, but UKF assimilation of fruit area 

in images partially improved the yield results (Figure 28). This was also observed for fruit 

biomass itself, but it is not necessarily the case that improvement of one state variable will 

cascade into improving the other. It should be noted that conversion by observation models also 

led to negative estimates, which is another point to the necessity of improving such models. 
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Figure 28. Growth curves for each monitored plant as estimated by the different techniques used for assimilation of indirect observations of fruit biomass, by 

the Reduced Tomgro with calibration and by the Reduced Tomgro without calibration. Dots refer to the values determined by destructive measurements, and 

the bar represents the associated standard deviation. The final value for the monitored plant is represented by a larger dot. 
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When analyzing the results focusing on yield, overall, assimilation of either leaf area 

(Figure 29 and Figure 30) or aboveground biomass (Figure 31) did not improve the estimates 

as much as assimilation of fruit area. Metrics for this analysis are presented in Appendix B. 

This is likely connected to leaf area index being more relevant in the beginning of growth, as 

also seen in section 5.2.1, so that after light interception saturation, other factors are more 

relevant (Heuvelink et al., 2005). One issue regarding assimilation of images of leaves using 

the UKF is the visible decrease in the estimates by the end of the growth. This was caused by 

the sampling of the unscented transform leading to some sigma points reaching the maximum 

leaf area defined as an input and the others not doing so, in a way that the average between 

them led to values that were lower than the previous. Changes in the filters’ parameters that 

would reduce the spread of the sigma points could have solved this issue. 

Finally, it is particularly interesting to observe an effect that happened in the 

assimilation of aboveground biomass using the weighting system. Even though it thoroughly 

improved aboveground biomass, it had an adverse effect on fruit dry biomass. Because the 

Reduced Tomgro model calculates fruit biomass based on photosynthesis and respiration, 

instead of as a fraction of aboveground biomass, the increase in biomass may lead to an increase 

in respiration that is not compensated by an increase in photosynthesis through LAI, thus 

decreasing assimilates available for fruits. 
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Figure 29. Growth curves for each monitored plant as estimated by the different techniques used for assimilation of indirect observations of leaf area index, by 

the Reduced Tomgro with calibration and by the Reduced Tomgro without calibration. Observations in this case corresponded to pictures taken from lateral 

view. Dots refer to the values determined by destructive measurements, and the bar represents the associated standard deviation. The final value for the monitored 

plant is represented by a larger dot. 
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Figure 30. Growth curves for each monitored plant as estimated by the different techniques used for assimilation of indirect observations of leaf area index, by 

the Reduced Tomgro with calibration and by the Reduced Tomgro without calibration. Observations in this case corresponded to pictures taken from above 

view. Dots refer to the values determined by destructive measurements, and the bar represents the associated standard deviation. The final value for the monitored 

plant is represented by a larger dot. 
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Figure 31. Growth curves for each monitored plant as estimated by the different techniques used for assimilation of indirect observations of aboveground 

biomass, by the Reduced Tomgro with calibration and by the Reduced Tomgro without calibration. Observations in this case corresponded to pictures taken 

from lateral view. Dots refer to the values determined by destructive measurements, and the bar represents the associated standard deviation. The final value for 

the monitored plant is represented by a larger dot. 
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5.5.2. Temporal resolution 

It could be the case that for inaccurate measurements, fewer observations could lead 

to similar outcomes of using all available data. Figure 32 shows the results for assimilation 

using the UKF and its impact on yield, including all the observed RMSE in the repeated 

simulations. By reducing the frequency, ranges increase, because the usefulness of observations 

is not equal across time, and since later observations are often connected to poorer data quality, 

as the environment becomes more complex. Therefore, while fewer observations may lead to 

lower errors in most simulations, and the minimum observed RMSE in the multiple sampling 

is often similar to the one obtained using all observations, inferior results, i.e., larger errors, 

may also occur. This means that if the cost of acquiring and storing them is not high, using 

more observations — in the context of very uncertain observations and model estimates — is 

likely the best strategy. 

 

 

Figure 32. Root mean squared error [g m-2] for yield estimates assimilating data from different sources 

with the Unscented Kalman Filter for all the twenty samplings of the dataset. Horizontal solid line 

corresponds to the error of the simulation without calibration and horizontal dashed line, to the 

simulation with calibration. Observations as: GC Lat/LAI: green cover (lateral view) for leaf area index, 

GC Abv/LAI: green cover (above view) for leaf area index, W_fm_full/W: weighting system for 

aboveground biomass, Area Wf/Wf: total area of fruits for fruit dry biomass. 
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5.5.3. Low-cost sensors 

The use of low-cost sensors increases the uncertainty in model inputs and therefore in 

model variance. From results in section 5.2.2, one can see average temperatures affect all state 

variables the most, while solar radiation mainly affects aboveground biomass. However, it 

could also be seen in Figure 13 that the only relationship that could be compromised by 

changing the sensor would be that of photosynthetically active radiation. And given the 

systematic error in the estimation of aboveground biomass, this uncertainty was explored to 

generate the ensembles and data from the low-cost sensors was used as input. As assimilation 

was performed in the non-calibrated model, uncertainty was already deemed very large and 

there should be no large influence from micrometeorological data. It could be the case, 

however, that by using uncertainty in the inputs as the driver for the ensembles, the difference 

of performance across sensors could be mitigated.  

Table 11 presents the errors from this strategy, both with assimilation of simulated 

observations of fruits and of mature fruits. Simulations using any of the two sensors either 

already presented large differences (Cycles 1 and 2) or almost no difference (Cycles 0 and 3), 

so to satisfy the premise of the analysis, these differences should be lower after assimilation. 

This was not clearly observed and, in particular, results were not consistent across variables or 

growth cycles. As for the effectiveness of assimilation, overall, only minor improvements were 

observed with one positive exception for the assimilation of mature fruits in Cycle 2 and one 

negative exception for the assimilation of fruits in Cycle 0. 

 

Table 11. Average root mean squared error (RMSE) of yield estimates for all the executions of 

assimilation of fruit and mature fruit biomass using the Ensemble Kalman Filter and luxmeters (L) or 

quantum sensors (Q) for the input of solar radiation. 
 No assim. 10% 30% 50% 

Growth 

Cycle/Sensor 
L Q L Q L Q L Q 

Variable   Wf 

Cycle 0 14.16 13.84 12.71 12.38 13.05 12.73 20.29 20.16 

Cycle 1 9.81 15.62 7.66 13.82 8.33 14.51 8.39 14.57 

Cycle 2 42.35 49.64 39.33 47.62 39.49 47.87 39.51 47.90 

Cycle 3 18.39 20.09 16.63 18.37 16.64 18.39 16.64 18.39 

Variable   Wm 

Cycle 0 14.16 13.84 9.92 9.67 9.92 9.67 9.92 9.67 

Cycle 1 9.81 15.62 4.50 8.77 4.50 8.77 4.50 8.77 

Cycle 2 42.35 49.64 27.20 37.53 27.20 37.53 27.20 37.53 

Cycle 3 18.39 20.09 11.53 14.42 11.53 14.42 11.53 14.42 
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The absence of impact of assimilation could have been caused by the approach used 

for generating the ensemble. Seemingly, ascribing the uncertainty to radiation input data was 

not enough to shift the outcomes, regardless of noise level in the observations. The low variance 

in the ensemble led assimilation towards the simulated value. Figure 33 and Figure 34 show the 

differences in the observation covariance, the state covariance in the ensemble and the gain 

through growth after assimilation of fruits and of mature fruits observations, respectively. It is 

possible to note that in comparison to the covariance, the observation covariance is much larger 

in all cycles, leading the gain to have a low value. 

 

 

Figure 33. Evolution of filter hyperparameters on the assimilation of fruit biomass with different noise 

levels for the observations using the low-cost sensor as source of solar radiation input. 
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Figure 34. Evolution of filter hyperparameters on the assimilation of mature fruit biomass with different 

noise levels for the observations using the low-cost sensor as source of solar radiation input. 
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6. FINAL REMARKS AND CONCLUSION 

Modeling is a common strategy to aide in decision-making in multiple fields of study. 

Crop modeling relies on agronomical and biological research to unveil the mechanisms that 

lead to crop growth and development, considering the different environmental and management 

inputs. Recent developments in data gathering and processing led to an expectation of this new 

deluge of potential information to accelerate knowledge discovery and its application in the 

modeling processes. Although much of this expectation has been directed to empirical models, 

through deep learning and machine learning techniques, there is a gap on the use of state 

estimation approaches in lower spatial scale contexts. 

 

This study covered aspects of the data assimilation framework of research, redirecting 

previous knowledge of assimilation in large areas with satellite images. But several 

intermediate steps were required before achieving the goal of assimilation: crop management, 

data gathering, model understanding, implementation and calibration, and determination of 

observation models. Apart from the crop management, which was certainly challenging and led 

to the unintended different outcomes across cycles, the first step relates to data gathering. 

Regarding environmental data, as data imputation and processing were required, these steps 

would provide the complete hourly environmental datasets required by the growth model, but 

they also add uncertainty to the model estimates in a way that could not be quantified. It is not 

expected for the results from the uncertainty analyses or calibration to have been affected by 

this step, as in all cycles, few cases required imputation. Uncertainty associated with 

measurements are certainly present in plant annotations as well. Even as a lot of care was taken 

in the process, often with two persons responsible for each image, it cannot be guaranteed that 

there are no errors, especially for green areas. While unfortunately these uncertainties may have 

negatively affected the results of the work, one positive aspect of uncertainty being an 

overarching theme of this study was to lead to a more comfortable relationship with its presence 

either in model estimates or in observations. 

 

When reviewing the literature to contextualize and better understand the problem 

treated in this study, a few questions arose. Is there any understanding of how the assimilation 

of one state variable may impact the frequently desired outcome of improving yield estimates? 

Is there any suggestion of how to characterize the uncertainties involved in the process? This 

motivated the work in the Appendix E, in which these questions were explored. As there was 
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no protocol established for data assimilation and, especially given assimilation in protected 

environments being a new subject of research, different approaches were evaluated. 

 

As the use of data assimilation in protected environments is new, how much work has 

already been done on the subject and could be used as basis for this study was scarce. This study 

had to validate models used on greenhouse growth, identifying which parameters should be 

calibrated, to obtain the observation models, and to determine how to ascribe uncertainty to the 

parameters of the filters. This means that the potential uncovered in this study may be further 

explored by more research. 

 

Destructive analyses suggested that it was possible to obtain good estimates of fruit 

growth through pictures even when parts of the plant were occluded. At the same time, the 

outcomes of assimilation with artificial observations of fruit growth suggested good 

improvements of yield estimates are possible from assimilating fruit data directly. There is then 

a potential of data assimilation with fruits images as a source of observation for better yield 

estimates in protected environments. The use of photos from smartphones as non-destructive 

measurements in commercial settings has been previously proposed (Li et al., 2020) and is 

subject of research on its own. This could be a step in the direction of enhancing production 

planning, as well as of controlling the system for optimized production and resource usage. By 

enabling the use of this technology for small growers, they could leverage benefits of crop 

models, such as planning and optimizing resources. 

 

It should be remembered that the model used in this study did not include irrigation or 

other aspects that are relevant to the management of tomato growth, such as fertilization 

supplemental lighting. But when the focus is not yield, although other variables are not as 

appropriate for assimilation, they could be informative for other model states and possibly, 

management. There is no established method for assessing which variables would be 

informative, and some points with this regard have been made in section 3.4.3. Some hints of 

how to perform this assessment come from the sensitivity analysis performed in this study, as 

it showed the lower influence of parameters from leaf area on yield and that the most relevant 

parameters were connected to fruit biomass estimation. Perhaps an approach could be devised 

that would be able to explore pairs of state variables within valid values to assess how one 

variable could affect the other. The outcome would be a combination of sensitivity analysis of 
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state variables, weather (as it is likely unknown), but of model bias as well, as the assessment 

of Kang and Özdoğan (2019) showed how it could affect results. Ines et al. (2013) concluded 

that weather conditions expected during the growing season could provide information as to 

when a variable is best to be assimilated, and this would include a beneficial constraint in the 

analyses, as the historical assessment led to longer processing time in the sensitivity analysis of 

this study. 

 

Another way of seeing the problem of improving estimates could have been by using 

real-time calibration of parameters. Indirect observations have been used for calibration 

(Richetti et al., 2019) and they would lead to a more permanent improvement of model 

estimates, without relying on observations. And as data assimilation is characterized by the 

three strategies — forcing, update and recalibration — there is already an overlap between 

strategies, particularly update and recalibration, as well as discussions that convey this 

approach. The recalibration strategy often relies on optimization methods, similarly to 

calibration so the novelty would come from taking advantage of filters. Yu et al. (2020) used a 

smoother to ensure the consistency between states and parameters, assimilating all available 

observations simultaneously. Shadrin et al. (2020) suggested the use of an extended state vector 

which included parameters from a logistic S-curve which would characterize growth in a 

controlled environment using the Extended Kalman Filter. Zhang et al. (2021) used an approach 

they called Informed Particle Filter as they used a sensitivity analysis to determine parameters 

that would be included in the extended state vector as well as included bounds to the estimates 

of the filter. 

 

The mention of Particle Filters leads to another possible expansion of this study that 

includes the exploration of other techniques or modifications. For instance, Particle Filters 

would account for non-Gaussian distribution of errors. But it is the case that even the techniques 

used in this study have also been adapted in other works for improvement in some respects, e. 

g., EnKF adaptations to not perturb observations aiming at minimizing the risk of pairing LAI 

observations with unusual planting date (Ines et al., 2013) or to include inflation parameters to 

perturb the ensemble to avoid filter divergence (Ines et al., 2013; Xie et al., 2017), the constant 

gain in the Kalman Filter, previously mentioned, that according to Chen, Zhang and Tao (2018) 

alleviated the effect of filter divergence. Gruber; De Lannoy and Crow (2019) used an adaptive 
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approach, i.e., one that would try to estimate state variables and their error statistics 

simultaneously, based on the Kalman Filter. 

 

One aspect of filters that could not be explored is the reduction in the uncertainty of 

the estimate. As the magnitudes of errors were very large — consider the error in the estimate 

of a non-calibrated model, or the errors of more than 100% in the validation of the observation 

models —, there is little added to the knowledge of how the approach would perform by 

analyzing the outcomes in detail. But as the filters act as a weighted average, there could be 

room for a sensitivity analysis of the gain, to assess the expected improvement of estimates 

given the expected uncertainty in measurements and model estimates, in cases in which errors 

are expected to be much larger in one estimate than the other. 

 

This study aimed at using data assimilation to circumvent the need for calibration of a 

tomato growth model. Overall, while assimilation of observations only slightly improved 

estimates obtained by models, regardless of the source of observation being of very high quality, 

such as minute observations of plant weight, or indirect observations of plant growth through 

images, in some cases there were remarkable improvements when compared to the non-

calibrated model, especially when the observation error is low. Data assimilation seemed 

especially valuable to adjust estimates in growth cycles in which potential growth was not 

observed. However, the ability to extend the approach for other users rely on the availability of 

good and generalizable observation models. 

When assessing sensors of different accuracy levels for providing weather inputs, the 

approach was inconclusive. In some cases, lower errors were indeed observed, but the results 

were not consistent through all the experiments assessed. Finally, in the conditions analyzed, 

we observed that when the goal is to assess the effect of assimilation on yield, although lower 

frequency can lead to lower errors, it could also lead to larger errors, likely depending on the 

timing of the assimilated observation. 
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Appendix A — MODEL EQUATIONS AND PARAMETERS OF THE REDUCED-STATE TOMGRO 

MODEL 

 

The model calculates growth and development of tomatoes mostly based on the 

equations below. The model is represented by five difference equations of the states number of 

nodes (N), leaf area index (LAI), aboveground dry biomass (W), fruit dry biomass (Wf) and 

mature fruit dry biomass (Wm). It uses photosynthetically active solar radiation (PPFD) and 

temperatures (T) as inputs. Their parameters are presented in Table 12.  

 
𝑑𝑁

𝑑𝑡
= 𝑁𝑚 ⋅ 𝑓𝑁(𝑇) Equation 2 

𝑑𝐿𝐴𝐼

𝑑𝑡
= ρ ⋅ δ ⋅ λ(𝑇𝑑) ⋅  

𝑒[𝛽(𝑁−𝑁𝑏)]

1 +  𝑒[𝛽(𝑁−𝑁𝑏)]
⋅

𝑑𝑁

𝑑𝑡
 

 

Equation 3 

𝐺𝑅𝑛𝑒𝑡 = E ⋅ (𝑃𝑔 − 𝑅𝑚) ⋅ [1 − 𝑓𝑅(𝑁)] 

 
Equation 4 

𝑅𝑚 = ∑ 𝑄10
(𝑇−20)

⋅ 𝑟𝑚 ⋅ (𝑊 −  𝑊𝑚) dt 

 
Equation 5 

𝑃𝑔 =   ∑ {
D ⋅ 𝐿𝐹𝑚𝑎𝑥 ⋅ PGRED(T)

𝐾

⋅ ln [
(1 − 𝑚) ⋅ 𝐿𝐹𝑚𝑎𝑥  + 𝑄𝑒 ⋅ K ⋅ PPFD 

(1 − 𝑚) ⋅ 𝐿𝐹𝑚𝑎𝑥  + 𝑄𝑒 ⋅ K ⋅ PPFD ⋅ e−K⋅LAI
]}   

 

Equation 6 

𝑑𝑊

𝑑𝑡
= 𝐺𝑅𝑛𝑒𝑡 − 𝑝1 ⋅ ρ ⋅

𝑑𝑁

𝑑𝑡
 

 

Equation 7 

𝑑𝑊

𝑑𝑡 𝑚𝑎𝑥
=  

𝑑𝑊𝐹

𝑑𝑡
+ {(𝑉𝑚𝑎𝑥 − 𝑝}1) ⋅ ρ ⋅

𝑑𝑁

𝑑𝑡
 

 

Equation 8 

g(𝑇𝑑𝑎𝑦𝑡𝑖𝑚𝑒) = 1.0 − 0.154 ⋅ (𝑇𝑑𝑎𝑦𝑡𝑖𝑚𝑒 − 𝑇𝐶𝑅𝐼𝑇) 

 
Equation 9 

𝑑𝑊𝐹

𝑑𝑡
= 𝐺𝑅𝑛𝑒𝑡 ⋅ α𝐹 ⋅ 𝑓𝐹(𝑇𝑑) ⋅ [1 − 𝑒ϑ−(𝑁−𝑁𝐹𝐹)] ⋅ 𝑔(𝑇𝑑𝑎𝑦𝑡𝑖𝑚𝑒) 

 

Equation 

10 

𝑑𝑊𝑀

𝑑𝑡
= 𝐷𝐹{(𝑇}𝑑) ⋅ (𝑊𝐹 − 𝑊𝑀) 

 

Equation 

11 

 

For the sensitivity analyses performed, all parameters from Table 12 were sampled 

within a uniform distribution, in which Lim. 1 is the lower value and Lim. 2 is the upper value. 

Sources used as references for bounds estimates were: (1) (Jones et al., 1999); (2) (Jones et al., 
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1991); (3) (Jones et al., 1999), spreadsheet; (4) (Dayan et al., 1993b); (5) (Ramirez et al., 2004); 

(6) (Marcelis et al., 1998). 

 

Table 12. Parameters from the Reduced Tomgro model. 

Parameter Fixed? Lim. 1 Lim. 2 Sources 

delta (δ) – Maximum leaf area expansion per node [m2 leaf node-1] N 0.03 0.07 (1), (3), (5) 

beta (β) – Coefficient in expolinear equation [node-1] N 0.1 0.5 (1), (3), (5) 

N_b (Nb) – Project of linear segment of LAI vs N to horizontal axis 

[node] 
N 10 25 (1), (3), (5) 

alpha_F (αF) – Maximum partitioning of new growth to fruit [fraction 

d-1] 
N 0.50 0.95 (1), (3), (5) 

V (ϑ) – transition coefficient between vegetative and full fruit growth 

[node–1] 
N 0.1 0.27 (1), (3) 

N_FF (NFF) – nodes per plant when first fruit appears [node] N 10 25 (1), (3) 

T_crit (TCRIT) – Mean daytime temperature above which fruit 

abortion starts [°C] 
N 22 29 (1), (3), (5) 

K_F – development time from first fruit to first ripe fruit [node] N 4 8 (1), (3) 

DFmax – Average development rate used to move fruits from green 

to mature stage [d-1] 
N 0.02 0.10 (1), (3) 

Vmax (Vmax) – Maximum increase in vegetative tissue d.w. growth 

per node [g dw node-1] 
N 6.0 9.0 (1), (3), (5) 

tmaxPg – Temperature below which photosynthesis decreases from 

maximum [oC] 
Y 34 40 (2) 

N_max (Nm)– Maximum rate of node appearance (at optimal 

temperatures) [node d-1] 
Y 0.4 0.7 (1), (3), (5) 

Qe (Qe) – Leaf quantum efficiency [μmol (CO2 fixed) μmol (photon)-

1] 
Y 0.055 0.09 (1), (3), (5) 

tmin_fr_gr – Minimum temperature that affects fruit growth [°C] Y 6 10 (3) 

sl_N1 – Parameter to modify node development rate [°C-1] Y 0.02 0.03 (1), (3) 

sl_N2 – Parameter to modify node development rate [°C-1] Y 0.04 0.06 (1), (3) 

sl_R – Parameter to modify partitioning of biomass to roots [nodes-1] Y 0.003 0.0035 (3) 

tau1 – Carbon dioxide use efficiency [μmol (CO2)/m2 s ppm (CO2)] Y 0.06 0.1 (1), (3), (5) 

tau2 – Carbon dioxide use efficiency for concentrations larger than 

350 ppm [μmol CO2 (m2 s ppm CO2)-1] 
Y 0.058 0.1 (3) 

TSlop – Parameter to reduce rate of leaf area expansion [°C] Y 18.54 22.66 (3) 

E – Growth efficiency, ratio of biomass to photosynthate available 

for growth [g d.w. g–1CH2O] 
Y 0.6 0.8 (1), (3), (5) 

K – Light extinction coefficient Y 0.5 0.8 (1), (3), (6) 

p_1 (p1) – Loss of leaf d.w. per node after LAI_max is reached [g 

leaf node-1] 
Y 1.5 2.5 (1) 

LAImax [m2 m-2] Input 2.3 4.0 (1) 

Representation in parenthesis refer to how they were presented in Equations Equation 2 to Equation 11. 
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Appendix B — ERROR METRICS 

 

Table 13. Root mean squared error [g m-2] from estimates of the state variable updated with data from 

different sources with the Unscented Kalman Filter and the Ensemble Kalman Filter, and from the model 

without assimilation with and without calibration. 

State 

variable 
Filter 

Assim. 

state 

Obs. 

variable* 
Cycle 1 Cycle 2 Cycle 3 

    Plant 1  Plant 2  Plant 1  Plant 2  Plant 1  Plant 2  

LAI None – Calib. - - -0.21 -0.21 -0.02 0.00 0.49 0.58 

None – Not Calib. - - -0.21 -0.21 1.23 1.24 3.07 3.11 

EnKF LAI GC Lat -0.15 -0.16 1.02 0.94 1.47 1.55 

UKF   0.11 0.10 1.02 1.27 3.35 3.76 

EnKF  GC Abv -0.05 -0.20 1.02 1.29 3.34 3.05 

UKF   0.13 -0.21 1.02 1.48 3.33 2.99 

W None – Calib.  - 103.68 71.86 -25.10 -8.96 273.74 250.47 

None – Not Calib. - - 95.80 64.69 216.12 209.09 533.57 525.46 

EnKF W W_fm_full 70.38 127.88 36.69 122.14 297.01 311.92 

UKF W  75.84 134.96 5.74 128.88 257.07 290.18 

Wf None – Calib. - - -0.19 -25.18 -130.49 -109.63 -5.73 -26.20 

None – Not Calib. - - 85.70 76.98 -67.59 -63.32 164.10 160.55 

EnKF Wf Area Wf 81.53 72.63 -54.75 -57.27 169.09 159.52 

UKF Wf  67.98 24.55 -20.28 -36.60 181.41 141.26 

*Observations as: GC Lat: green cover (lateral view), GC Abv: green cover (above view), W_fm_full: 

weighting system, Area Wf: total area of fruits. Bold numbers refer to root mean squared errors lower 

than the larger RMSE between the non-calibrated and calibrated error. 

 

Table 14. Root mean squared error [g m-2] from estimates of yield updated with data from different 

sources with the Unscented Kalman Filter and the Ensemble Kalman Filter, and from the model without 

assimilation with and without calibration. 

Filter 
Assim. 

state 

Obs. 

variable* 
Cycle 1 Cycle 2 Cycle 3 

   Plant 1 Plant 2 Plant 1 Plant 2 Plant 1 Plant 2 

None – Calib. - - 5.05 10.11 29.05 25.34 36.00 31.49 

None – Not Calib. - - 20.48 17.95 22.45 21.72 62.21 61.12 

EnKF LAI GC Abv 22.51 20.02 26.17 19.35 46.95 40.83 

UKF   24.59 23.01 29.04 21.19 49.05 46.43 

EnKF  GC Lat 25.54 19.22 65.40 40.92 63.77 58.46 

UKF   27.15 20.24 64.35 41.75 63.62 58.76 

EnKF W W_fm_full 44.70 10.25 35.88 7.59 89.27 47.51 

UKF  - 20.76 9.85 7.19 11.40 71.73 71.65 

EnKF Wf Area Wf 19.76 14.79 22.89 21.78 61.27 56.49 

UKF   14.47 9.26 5.91 8.99 61.55 51.25 

*Observations as: GC Lat: green cover (lateral view), GC Abv: green cover (above view), W_fm_full: 

weighting system, Area Wf: total area of fruits. Bold numbers refer to root mean squared errors lower 

than the larger RMSE between the non-calibrated and calibrated error. 
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Appendix C — DELVING INTO THE PERFORMANCE OF GREENHOUSE TOMATO GROWTH 

MODELS 

 

ABSTRACT 

Models can be powerful tools to aid decision-making, but depending on the crop and 

location of production, their use is incipient. For greenhouse tomatoes growth, a lot has been 

done in model development, but there is more that could be done to allow for their use in low-

tech environments. This work aims at discussing a few options for tomato modeling of 

greenhouse grown tomatoes, focusing on aspects of their uncertainties. We have implemented 

code for models of greenhouse tomato growth — the Reduced State Tomgro model and the 

model developed by Vanthoor and colleagues — and evaluated them in two distinct locations. 

We also evaluated the ability of a determinate growth tomato model — the Simple model — to 

represent indeterminate growth. We showed both models developed for protected environments 

may be deemed adequate to represent indeterminate growth in both locations assessed, albeit 

some improvement may be required for calibration, and that the model for field-grown tomatoes 

requires a few adaptations. We also showed that interannual weather variability affect 

parameter importance more than which location was evaluated. We observed that errors in the 

most important parameters may impact the outcome very substantially. This knowledge about 

those models may enhance the understanding of their uncertainties and applications that require 

such evaluations, such as calibration, will benefit from these analyses. 

 

C1. INTRODUCTION 

Almost twenty-five years ago, Marcelis et al. (1998) reviewed horticultural crop 

models focusing on their representation of growth and development processes. They discussed 

the existing approaches for calculating light interception, photosynthesis, respiration, and 

partitioning, concluding that the larger gaps in modeling these processes lied on the simulation 

of leaf area development, maintenance respiration, organ abortion, dry mass content and 

product quality. Among their examples for photosynthesis-based models of tomatoes, they 

mentioned Tomgro (Dayan et al., 1993a; Gary et al., 1995) and Tomsim (E Heuvelink, 1996). 

Heuvelink et al. (2018) summarized the subsequent progress in model development for 

tomatoes. For process-based models (PBM), it mainly consisted of the adaptation of previously 
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existing models CropGro and Aquacrop to also simulate tomato growth (Boote et al., 2012; 

Katerji et al., 2013; Scholberg et al., 1997).  

In both cases, the development was related to the simulation of field-grown tomatoes 

that, for the case of Cropgro-Tomato, was motivated by the inability of the previously 

developed Tomgro model to simulate field-grown tomatoes. McNeal et al. (1995) and 

Scholberg (1996) explored how they could adapt the model, but branching of the semi-

determinate field cultivars impacted the number of nodes in the main stem as well as resulted 

in faster build-up and decline of leaf canopy in a way that Tomgro did not account for. The 

Cropgro-Tomato model has recently been evaluated under greenhouse conditions (Deligios et 

al., 2017), but it was a preliminary study and the authors suggested there should be further 

evaluations. Other process-based models not mentioned in Heuvelink et al. (2018) include the 

reduced-state version of the Tomgro Model (Jones et al., 1999) the model developed by 

Vanthoor et al. (2011), VegSyst (Gallardo et al., 2014; Giménez et al., 2013) and the Simple 

model (Zhao et al., 2019). Their developments are ascribed to multiple reasons, including 

previous models having an excessive number of parameters (Jones et al., 1999) or not being 

fully differentiable and being valid on a limited temperature range (Vanthoor et al., 2011), and 

to assist with N and irrigation management of greenhouse vegetable crops (Gallardo et al., 

2011). 

When Gary et al. (1998) commented on the advantage of modeling growth and 

development of fruits, vegetables, and ornamental plants, they mentioned, as others before them 

(Boote et al., 1996), how crop models could have value for scientists, growers and policy-

makers. They also mentioned greenhouses as a specific cultivation system, that could be 

compared to industrial production systems, in which crop models could be used in different 

temporal and spatial scales, aiding in online control systems and crop planning. Since that work 

was published, models developed for greenhouse tomatoes have been integrated in control 

systems that include from temperature and humidity (Rodríguez et al., 2015) to lighting and 

heating (Katzin et al., 2020; Kuijpers et al., 2021; Righini et al., 2020). Other benefits for 

growers from PBMs relate to uncovering knowledge regarding plant growth. Berrueta et al. 

(2020) used the Tomsim model to estimate potential yield from the daily dry matter production 

in Uruguay, and then evaluated the yield gap of greenhouse growers, and Bojacá et al. (2009) 

used the Tomgro model to evaluate yield variability in greenhouses in Colombia. All this 

potential, however, has not been reflected in overall assessments of horticultural models. 
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The improvement and requirements of models for grasslands, field crops and livestock 

has been thoroughly discussed by Jones et al. (2017). Despite belonging to the same agricultural 

field of study, horticultural crops are often not included in crop modeling discussions. Granted, 

this has not halted progress in the horticultural modeling community, which has advanced in 

complex functional-structural plant modeling which, as expected by Evers and Marcelis (2019), 

could be used for optimizing greenhouse energy use and crop performance simultaneously. But 

while these advances happen, aspects such as uncertainty and model comparison are less 

frequently addressed in the already existing models, even when the goals of the wider 

community include quantifying issues of food security, nutrition and the need for change in 

diets to reduce greenhouse gases emissions (Antle et al., 2017; Mbow et al., 2019). 

Among greenhouse tomato growth models, most evaluations refer to the Tomsim or 

the comprehensive Tomgro model (Bertin and Heuvelink, 1993; Dayan et al., 1993b; E. 

Heuvelink, 1996; Heuvelink, 1999; Heuvelink and Bertin, 1994) with the other models 

previously mentioned, accounting for fewer studies (Lin et al., 2019; Ramirez et al., 2004; 

Vazquez-Cruz et al., 2014). The Simple model, developed to address the gap in modeling 

vegetables, oil and fiber crops and fruits, has been evaluated on field-grown tomatoes, but not 

in greenhouse-grown, and no assessment of its performance for indeterminate growth has been 

done for tomatoes. As for uncertainty analysis, which is performed in order to assess a model’s 

credibility (Antle et al., 2017), they are often limited and sensitivity analyses are mostly local, 

without or only partially accounting for non-linearities and interactions (Bertin and Heuvelink, 

1993; Cooman and Schrevens, 2007, 2006; Heuvelink and Bertin, 1994; Ramirez et al., 2004; 

Vanthoor et al., 2011; Vazquez-Cruz et al., 2014). 

Finally, while several publications point to the usage in high-technology greenhouses 

(Katzin et al., 2020; Kuijpers et al., 2021; Righini et al., 2020), there is a great fraction of the 

environments that are defined as low-tech (Montero et al., 2019) and these have not been the 

focus of those analyses. By evaluating models on those conditions and making them more 

available, these production settings could have more to rely on than solely data-driven models. 

There are several fronts in which greenhouse tomato growth models may be brought 

closer to the broader discussions of the community. This work aims to do that by analyzing two 

greenhouse tomato growth models, assessing their ability to represent growth and their 

uncertainties in two different locations. We also evaluate the Simple model in the context of 

protected cultivation of tomatoes. 
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C2. MATERIALS AND METHODS 

C2.1 Data 

Field data used in this work was obtained from experiments used in the development 

of the Reduced Tomgro Model (Jones et al., 1999) and from an experiment performed in a low 

technology plastic greenhouse in Brazil3, respectively from Gainesville, Florida, United States, 

and Campinas, São Paulo, Brazil. Historical radiation and air temperature were gathered from 

the NASA POWER Data Access Viewer, Single Point Data Access Tool. Solar radiation 

interpolation throughout the day used the equations in Spitters et al. (1986) and Lizaso et al. 

(2003) and air temperature interpolation, the equations in Parton and Logan (1981). 

 

C2.2 Models 

Three models were used in this work: the Reduced-State Tomgro Model, the model 

presented in Vanthoor et al. (2011), which we call Vanthoor model, and the Simple model. 

Code for all models was written and run in Python 3.8 and is available in an only repository, as 

is the remainder of the code used in this work4. The Reduced Tomgro implementation used 

(Jones et al., 1999, 1991) as sources and the spreadsheet provided by Dr James W Jones. The 

R code for the SIMPLE model was also shared by the team and along with the information in 

Zhao et al. (2019), it was used to rewrite the code. Source codes and original data allowed for 

a more thorough validation of the models. The Vanthoor model implementation was based in 

the simplified version by Katzin et al. (2020) and in the supplementary material from Vanthoor 

et al. (2011).  

 

C2.3 Calibration 

Both the Reduced-State Tomgro and the Simple model are explicit about which 

parameters should be calibrated and which are treated as fixed. For the Vanthoor model, while 

the authors treated in their validation all parameters related to the growth inhibition and 

photosynthesis functions and fruit growth period as fixed, they acknowledged these parameters 

 
3 Data available at https://doi.org/10.25824/redu/EP4NGO 
4https://github.com/mnqoliveira/data-assimilation-tomato-models 

https://doi.org/10.25824/redu/EP4NGO
https://github.com/mnqoliveira/data-assimilation-tomato-models
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probably should be calibrated. For the Simple model, to represent indeterminate growth and 

postpone senescence, we allowed the maturity parameter to reach upper limits larger than the 

ones observed in Zhao et al. (2019). 

All parameters available for calibration are described in Supplementary Material 1. As 

field data was limited, not all of them were included in calibration, to avoid over-

parameterization. The results of the sensitivity analysis of parameters in section 2.4.1 were used 

to select those that would be calibrated. Fixed parameters that were included refer to our 

assessment of the possibility of them being calibrated for greenhouse-grown tomatoes. 

Calibration followed the approach of minimizing the root square of squared error of the 

difference of log-transformed observations and estimates, using a global optimization 

algorithm. All parameters were calibrated simultaneously. 

 

C2.4 Uncertainty and sensitivity analysis 

Uncertainty analysis in this work has two goals. The first one is to determine which 

parameters affect state variables the most throughout the cycle. The other goal is aimed at 

determining the effect of uncertainty in weather inputs, which could be ascribed to internal 

variability in a greenhouse or measurement errors. Even though uncertainty and variability are 

different concepts, they could be ascertained through the same strategy. These different goals 

require different approaches. In both cases, the number of runs was increased until stable results 

for the sensitivity indices were obtained. 

 

C2.4.1 Parameters and inputs 

A wide range of weather series, referring to the studied locations, was used to assess 

parameters across several ranges of external factors. Since environmental inputs are intimately 

correlated, instead of randomly generating these, multiple examples were drawn from actual 

weather series. 

For each time-series of the 20 years selected and 4 planting dates with a length of 160 

days, the model was run with parameter values from Supplementary Material 1 sampled 

following Saltelli's extension of the Sobol sequence5. Inputs refer to historical weather of the 

Campinas and Gainesville regions. While temperature is maintained as is, assuming natural or 

mechanical ventilation, radiation is reduced to 70%, ascribed to cover material transmissivity. 

 
5 Sampling used SALib library (Herman and Usher, 2017). 
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CO2 was sampled to represent modifications to the environment either by accumulation or 

depletion. While keeping the internal temperature the same as the outside led to unlikely low 

temperatures, we assumed passive low-tech greenhouse, in which these problems exist. 

Total number of runs accounted for the combinations of five thousand samples of each 

parameter. The maximum value of the leaf area index, or its equivalent of intercepted solar 

radiation, is an input in all models and was included in the analysis as it is intimately related to 

canopy photosynthesis and, therefore, growth, in all models. For the Vanthoor model, the input 

that corresponds to the beginning of the generative phase was also included. 

 

C2.4.2 Greenhouse internal variability 

Parameters’ values refer to the ones obtained in the calibration of each original dataset 

(Gainesville and Campinas). As for weather inputs, variations should be consistent with minor 

variability across the time-series, as the parameters used could not be valid if weather inputs 

differ by much from the calibration condition. So, to account for autocorrelation between 

adjacent values, as well as between variables, but also considering that measurement error could 

in fact lead to incompatible measurements, the sampling strategy applied a uniform change to 

the series. This perturbation was drawn from Saltelli's extension of the Sobol sequence with 

normal distribution, with zero mean, to account for positive and negative changes, and a 

standard deviation of 0.05, which would then be multiplied and added to the measured values. 

Radiation and carbon dioxide concentrations were bounded to a minimum value of zero. Total 

number of runs was of 50 thousand to account for the combinations of 10 thousand samples of 

each variable, i.e. average, maximum and minimum temperatures, solar radiation and carbon 

dioxide concentration. 

 

C3. RESULTS 

C3.1 Model comparison 

Overall, both models developed for greenhouse tomatoes were able to capture the 

trends and magnitudes of all variables in both datasets (Figure 1). The Reduced Tomgro Model 

adequately represented leaf area index and fruit biomass in all datasets, but while it also 

adequately represented aboveground biomass and mature fruit biomass in the Gainesville 

dataset, this did not happen in the Campinas dataset, in which it underestimated both variables. 

The Vanthoor model underestimated all variables in all datasets, except for fruit biomass in the 
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Campinas dataset. The expected effect on fruit biomass caused by instant temperatures should 

have been observed in the Gainesville dataset, which included different temperature scenarios, 

but this was not the case and all three experiments had approximately the same estimates. 

The absence of this effect may be associated to the calibration approach used. On the 

one hand, it led to results for the Reduced Tomgro model in the Gainesville dataset that are 

compatible with the ones previously obtained by the models’ developers. On the other hand, to 

reach the observed curves in the Vanthoor model, calibration led to parameters that do not 

properly represent the meaning ascribed to them. As optimal temperatures are expressed by 

combining two curves, parameters that characterize them were changed so that optimal ranges 

were no longer observed in both datasets. It also led to the maximum instantaneous temperature 

parameter to be equal to the twenty-four-hour average, which is not representative of the 

intended effect. 
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Figure 1. Model comparison after calibration. Black dots refer to the average of measured values and 

lines refer to simulations performed in the respective environments. 

 

The Simple model was not able to adjust to observed values in the Gainesville dataset, 

seemingly because to be able to optimize both biomass accumulation and solar radiation 

interception simultaneously, the model often reached maximum values of the fraction of 

intercepted radiation, which was not observed in the experiments. Although it tracked the 

magnitude of the equivalent leaf area in the Campinas dataset, it also underestimated biomass. 

As the yield is estimated as a fixed fraction of biomass, calibration of the harvest index may 

adjust the final value observed. However, as the advantages of indeterminate growth models 

include estimates of intermediate harvests, this fixed relationship would suggest that mature 
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fruits are available through all growth, overestimating mature fruit availability in the first 

months. 

By averaging models’ daily outputs into an ensemble, the shortcomings were 

smoothed into good estimates. Although the outputs for aboveground biomass in Campinas, 

could not be improved, as it was underestimated by all models, the ensemble results were better 

than the ones obtained by the Vanthoor model in Gainesville.  

 

C3.2 Uncertainty and sensitivity analysis 

C3.2.1 Model parameters 

Sensitivity analyses in model parameters show mainly two results: different locations 

may show similar patterns for indices and interannual weather variability may impact the 

importance of a parameter more than its location. Figure 2 shows the total sensitivity index 

calculated for the Reduced Tomgro model, Figure 3, for the Vanthoor model and Figure 4, for 

the Simple model. We focus on mature fruit mass estimates to limit the number of variables. 

Supplementary Material 2 includes state variables beyond yield. 

In both Vanthoor and Reduced Tomgro models, the most important parameters are 

connected to the effect of high temperatures in yield. In the Reduced Tomgro model, this effect 

is seen in the importance of T_crit, which is the mean daytime temperature above which fruit 

abortion starts, and in the Vanthoor model, in the importance of ksMaxTCan and ksMaxTCan24, 

which govern the upper limits of optimal temperatures. The other pronounced effect is of 

development and partitioning, noticed in the DFmax and alpha_F, in the Reduced Tomgro 

model, parameters which govern moving fruits from green to mature stage and partitioning to 

fruits from available carbohydrates, respectively, and in ttsum and nDev in the Vanthoor model, 

parameters connected to fruit appearance and to the beginning of harvest. From the inputs 

included, the Vanthoor model was the most affected, with ttsum having the largest importance 

through the whole cycle and laiMax appearing by the end of the evaluated period. 

As the models were developed with different approaches, the Reduced Tomgro model 

with its individual equations for each state variable shows influence of parameters that can be 

ascribed to other state variables, such as N_max, which influences the rate of node appearance. 

Meanwhile, in the Vanthoor model, this distinction is not as pronounced and apart from the 

maximum leaf area, which could be connected to the leaf area state variable, other parameters 

influence all variables simultaneously. This is a consequence of the model being a pool of 

carbohydrates that is distributed to plant organs. 
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As for the Simple model, even though yield is only calculated by the end of the cycle, 

we can observe the progress in the indices, as if the growth is considered indeterminate. The 

same effect of parameters related to temperatures (I50A and T_base) being more or as important 

than the constant attributed to partitioning (HI) is observed. 

 

 

Figure 2. Total effect sensitivity indices of yield to models’ parameters for the Reduced Tomgro model 

with the Gainesville (panels A and C) and Campinas (panels B and D) historical weather datasets. 

Parameters’ full names are presented in the Supplementary Material. The upper graphs (A and B) refer 

to the standard deviation of the total sensitivity index in all the scenarios evaluated. The lower graphs 

(C and D) refer to the average total sensitivity index for each parameter through the cycle. Only averages 

larger than 0.02 are shown. The X axis starts at 40 days after transplanting as before often there is a lot 

of instability in averages. 
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Figure 3. Total effect sensitivity indices of yield to models’ parameters for the Vanthoor model with 

the Gainesville (panels A and C) and Campinas (panels B and D) historical weather datasets. Parameters’ 

full names are presented in the Supplementary Material. The upper graphs (A and B) refer to the standard 

deviation of the total sensitivity index in all the scenarios evaluated. The lower graphs (C and D) refer 

to the average total sensitivity index for each parameter through the cycle. Only averages larger than 

0.02 are shown. The X axis starts at 40 days after transplanting as before often there is a lot of instability 

in averages. 
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Figure 4. Total effect sensitivity indices of yield to models’ parameters for the Simple model with the 

Gainesville (panels A and C) and Campinas (panels B and D) historical weather datasets. Parameters’ 

full names are presented in the Supplementary Material. The upper graphs (A and B) refer to the standard 

deviation of the total sensitivity index in all the scenarios evaluated. The lower graphs (C and D) refer 

to the average total sensitivity index for each parameter through the cycle. Only averages larger than 

0.02 are shown. The X axis starts at 40 days after transplanting as before often there is a lot of instability 

in the averages. 

 

Figures 2 to 4 show the standard deviation of the index across years. The largest 

standard deviations are observed in the Vanthoor model in the Gainesville dataset, likely since 

most parameters evaluated are related to temperatures and those are the most affected variables 

when comparing weather inputs from different years and locations. For the ttsum parameter, 

the standard deviation is larger than 0.2 in Gainesville, when its value is about 0.5 and may 

signify that the combination of season-year impacts more the index than when comparing to 

Campinas. In the Reduced Tomgro model, the largest standard deviations are observed for 

T_crit, which is directly related to environmental conditions, as well as N_FF and N_max, 

parameters connected to the number of nodes, which evolve based solely on temperatures. 
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Largest standard deviation connected to temperature is also observed in the Simple model and 

the parameter I50A, as it is also connected to cumulative temperature. 

The largest total sensitivity indices mean the largest fraction of the variance observed 

on the output is ascribed to that parameter, so a change in a parameter index through growth 

means the fraction is different for the same parameter in different moments. Figure 5 shows one 

example of the different curves obtained for yields in one random weather scenario if the 

maximum or minimum value of the most important parameters — considering the average 

index through the cycle — are used. One can see how important parameters either lead to very 

different outcomes or, in the case the outcomes are similar, a clear divide existed at some point 

during growth, disappearing afterward. One example comes from ttsum in the Vanthoor model 

which creates differences in the beginning of the cycle, but not by the end. 

 

 

Figure 5. Simulations of yield using maximum and minimum values of selected parameters with highest 

total sensitivity index for one weather scenario. The lighter background refers to results in Gainesville 

weather (A, C and E) and the darker background, in Campinas (B, D and F). First line (A and B) refers 
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to outcomes of the Simple model, second line (C and D), to the Vanthoor model and third line (E and 

F), to the Reduced Tomgro model. 

 

C3.2.1 Weather inputs 

We focus on the results from the Reduced Tomgro (Figure 6) and the Vanthoor (Figure 

7) models, which more closely resembled observed growth and development patterns. 

Sensitivity indices in this case represent which environmental measurements, if slightly 

different, would affect model outcomes the most. The results from these analyses are intimately 

connected both to the way state variables are represented in the models and to the environmental 

conditions. For example, leaf area index in the Reduced Tomgro model is defined by an 

equation that solely relies on the temperature while in the Vanthoor model, it is converted from 

biomass destined to the leaves. It is to be expected that for leaf area, solar radiation and carbon 

dioxide affect more the leaf area outcomes in the Vanthoor model than in the Reduced Tomgro 

model, even though, in both cases, temperatures dominate the variance in the results, leading to 

higher indices. As for the environment, one can notice how temperatures become more relevant 

for aboveground biomass as the scenarios in the Gainesville dataset move from Cool to Warm, 

and since solar radiation and carbon dioxide concentrations remained the same, this effect 

reflects how the results from one factor are relative to the other. 
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Figure 6. Total effect of input factors on variables simulated by the Reduced Tomgro model. Values 

not shown refer to the absence of variability on the variable by that point in growth. 
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Figure 7. Total effect sensitivity indices of input factors on variables simulated by the Vanthoor model. 

Values not shown refer to the absence of variability on the variable by that point in growth. 

 

In the Campinas dataset, one can also observe how there is a shift in the importance of 

solar radiation for aboveground biomass in the Reduced Tomgro model, as well as for fruit 

weight in the Vanthoor model. These could mean that, in fact, larger errors in solar radiation 

measurements could impact those variables more, but it could also reflect how lower 

temperatures were being recorded by the end of the cycle so that the perturbations applied did 

not impact the outcome as much as the ones of other variables. Either way, both models were 

not as sensitive to changes in carbon dioxide in the environment, although the Vanthoor model 

was more influenced by this input. It should be noted that carbon dioxide was estimated by 

concentrations outside the greenhouse, so these results could be improved by measured values. 

Table 1 exemplifies the differences in yield caused by extreme values of the 

parameters. As the disturbances were sampled from normal distributions, the results shown 
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refer to perturbations larger than 18% in the observed input. As suggested by the total sensitivity 

index, average temperature has a large impact on yield in both models. 

 

Table 1. Summary of uncertainty in yield, characterized by the range of observed values, 

caused by artificial systematic errors in input measurements, as simulated by the perturbation 

of measured inputs. 

Model Factor City Minimum yield 

[g DM m-2] 

Maximum yield 

[g DM m-2] 

Reduced Tomgro Average 

temperature 

Campinas 

51.8 155.2 

 Solar radiation  118.6 147.8 

 CO2  127.9 135.7 

 Average 

temperature 

Gainesville - 

Cool 51.4 97.2 

 Solar radiation  51.5 73.1 

 CO2  61.5 64.7 

Vanthoor Average 

temperature 

Campinas 

51.4 97.2 

 Solar radiation  91.0 146.0 

 CO2  95.5 134.7 

 Average 

temperature 

Gainesville - 

Cool 2.7 84.2 

 Solar radiation  68.1 88.4 

 CO2  74.2 84.8 

 

C4. DISCUSSION 

C4.1 Model comparison 

Models for indeterminate growth of tomato plants have been developed and are being 

used to different degrees of support in production, but with fewer examples for low-technology 

greenhouses. Our qualitative evaluation showed they are able to describe overall growth, but 

we can observe biases in the estimates, which are amplified when converted to fresh mass, 

which is the quantity of interest (Marcelis et al., 1998). On the other hand, there is also an issue 

that these models represent cumulative harvests, accumulating errors as well, and the impact on 

each harvest would not be as large. 

Model structure of the evaluated greenhouse-tomato models are quite different as, for 

the Vanthoor model, each state variable may influence the other, as available carbohydrates are 

drawn for the organs from the same pool. The Reduced Tomgro model is constituted by 

individualized equations and up to a point, it is possible to show good adjustment to a variable 

and not to other. For instance, fruit biomass does not rely explicitly on aboveground biomass, 
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as it recalculates available carbohydrates, which could explain the good fit for this variable in 

the Campinas dataset, but not for aboveground biomass. Temperature effects seemed to have 

been captured in the Reduced Tomgro model, leading to high temperatures for impacting fruit 

establishment, but not in the Vanthoor model, as observed in the Gainesville dataset. 

While we expect calibration to account for accommodating differences in cultivars, 

for example the original optimal growth range in the Vanthoor model which is 18 °C to 22 °C, 

being different from Brazilian recommendations from 20 °C to 25 °C (Alvarenga, 2013), we 

also observed other issues in the process. For example, optimization for the error metric used 

led to underestimating mature fruit biomass, as low observations in one day had larger weight 

than the others, but this was a limitation of simultaneously accounting for all variables, as 

required by the structure of the Vanthoor model. As previously mentioned, the parameters that 

account for optimal temperatures led to values that would always penalize the conversion of 

carbohydrates in the buffer to plant organ growth. We also decided for allowing one parameter 

accounting for development rate TSumEnd to reach much larger values than the whole cycle, 

to accommodate for the case of the process not being fully represented. Another decision that 

could have influenced the results was to approximate total biomass as 90% of the calculated 

biomass, to exclude root biomass, which is calculated in the model along with stem biomass. 

The Simple model showed promising results in the Campinas dataset, but it should be 

adapted to fully accommodate indeterminate growth, i.e., after the initial vegetative phase, 

inflorescences appear indefinitely after every three leaves, leading to an expo-linear growth 

pattern (Heuvelink et al., 2018; Heuvelink and Okello, 2018). Although the model uses a daily 

step and provides estimates of yield for all the cycle, the proportion between total biomass and 

accumulated mature fruit mass changes through growth, before the effect of vegetative mass 

from the beginning is negligible, so a harvest index may not be defined for shorter cycles. A 

second aspect is that the parameter T_sum is related to reaching physiological maturity, but also 

determines the beginning of senescence. The result for LAI in the hot scenario of the Gainesville 

dataset properly identifies senescence of leaves, which exists, but as the model was not defined 

for indeterminate growth, it does not represent senescence of old leaves and pruning being 

compensated by new growth, so that leaf area is expected to remain approximately constant. 

Finally, in the Gainesville dataset, to be able to reach total biomass, the model also reached the 

maximum fraction of intercepted solar radiation, which could have also been compensated by 

modifying radiation use efficiency (RUE). This is treated in the model as a species parameter, 

and at first, it could be considered fixed. But it is possible that  the value could be adjusted from 
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1.05 g MJ total radiation-1 (2.1 g MJ PAR-1) to 2 g MJ total radiation-1, closer to the observed 

in the Hortsyst and Vegsyst models (Gallardo et al., 2014), in which it was defined as 4.01 g 

MJ PAR-1. This change is also supported by Higashide and Heuvelink (2009) and Heuvelink et 

al. (2018), who pointed to light use efficiency value for modern greenhouse cultivar ranging 

from 3.3 to 3.5 g MJ PAR-1.  

These three different model structures also showed an example in which one may take 

advantage of model ensembles for improvement of predictive performance. For example, 

aspects in which the Simple model poorly represented indeterminate tomato growth were 

compensated by the ability of other models to do so. And while the other models underestimated 

yield in Campinas, the Simple model was able to help increase the estimates. 

 

C4.2 Uncertainty and sensitivity analyses of parameters 

Observing changes in parameters’ sensitivity indices through growth was of interest 

for two reasons. The first is that as our sensitivity analyses informed calibration, observing 

parameters that impacted the outcomes through the whole cycle allowed for choosing and 

adjusting parameters that would influence how a model would represent the different state 

variables. The other reason is that as this is an example of indeterminate growth, fruit and 

mature fruit weight show different behaviors at least before the stabilization of continuous 

harvesting. 

Changes in indices through the cycles are expected, as plants develop and given 

different weather, they develop in different rates. For indeterminate growth of tomatoes, it could 

also be expected that after reaching a certain stage in growth, for similar weather conditions, 

changes in indices should not be very substantial. And as we are concerned here with protected 

cultivation, different weather conditions could be highly reduced as more control over the 

environment is possible. But since this is not always the case for low-technology greenhouses, 

weather variability may affect the indices, as progress in season also means changes in the 

weather, leading to the high variability still observed in indices by the end of the cycle. 

The structure of the Reduced Tomgro model leads to very few points in which one 

state variable depend on the other, differently from the Vanthoor model. This seemingly leads 

to other state variables not influencing yield as much. This does not entail that a parameter 

should not be adjusted if it is no longer appearing as important by the end of the cycle.  In this 

case, an error on its estimation could lead to systematic bias that no longer affect variability in 

the outcome. This is observed for phenology parameters, which for example, if they lead to 
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earlier fruit production, fruit biomass may be systematically increased. This also suggests that 

timing of sampling may affect calibration results and that good quality or more observations 

for the different state variables at different moments of the cycle may be desirable. On the other 

hand, we included the leaf area input as it is harder for growers to determine and we wanted to 

assess how it could impact results. While leaf area progress estimates would be harmed, if the 

goal is determining yield, the results seem to allow for using the model even if this information 

is not precisely defined. In the case of both greenhouse tomato models, if maximum leaf area 

is reached before fruit growth, yield will not be affected, otherwise, only first trusses are 

supposed to be affected and would not sum up to large differences. This is likely connected to 

leaf area index being more relevant in the beginning of growth, so that after light interception 

saturation, other factors are more relevant (Heuvelink et al., 2005).  

Another aspect of our analysis refers to the choice of performing global sensitivity 

analyses, which had two motives: interactions among factors are neglected in local analyses, 

but also that the outcomes of calibration influence local analyses, as those parameters are treated 

as fixed elements. Local analysis may then reflect only the conditions associated to calibration. 

As we observed, even for the same location, models may have very different outcomes in 

different years, as they rely more on different parameters. Variability shows how calibration 

that works for one year may not work for the other as an optimization may reach low values for 

the cost function without ascribing the best value for a parameter if in that environment it does 

not affect the result as much. While our analysis ascribed uncertainty to all parameters and this 

could lead to unrealistic noise, because living systems contain homeostatic regulations that 

dampen variations (Gary et al., 1998), it is the case that determining parameters values without 

directly measuring them could input this noise into the estimates and our choice was to take this 

issue into account. We also discuss total sensitivity and this is more prone to include 

combinations that could not exist, which were not excluded from the analysis as this is difficult 

to estimate. 

 

C4.3 Uncertainty and sensitivity analyses of weather 

From the perspective of internal variability, it is to be expected that radiation and 

carbon dioxide do not vary much in a naturally or mechanically ventilated greenhouse, but as 

temperatures may, and we can observe that yield is sensitive to average temperature, we note 

that models can characterize the effects of this variability. From the perspective of errors in 

measurement, the more extreme environmental conditions are, the more likely they will impact 
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outcomes if wrongly measured. In the conditions evaluated, we noted that temperatures 

dominate yield estimates, which is interesting given they are more easily measured and 

including more sensors to reduce the error could be feasible. 

 

C5. CONCLUSION 

In this work, we explored, through the steps of calibration, uncertainty, and sensitivity 

analyses, how models would perform in low- or medium-technology greenhouses. We showed 

that for these environments, greenhouse-grown tomato models may show high uncertainty in 

their parameters, to the point of substantially changing the outcome of a simulation if they are 

wrongly determined. In the same sense, if there is no limitation to growth caused by the 

environmental factors, temperature is the factor with highest total sensitivity index, which is 

positive given including more measurements to reduce uncertainty or bias in the value is less 

costly than including more measurements of solar radiation.  

Although we were able to perform simulations that closely resembled observed values, 

more attention may be required to the calibration step, as simultaneous calibration with a global 

optimization algorithm is leading to parameters that do not correspond to their expected 

meaning. 
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SUPPLEMENTARY MATERIAL C1 

Table 2. Parameters from the Reduced Tomgro model. 
Parameter Fixed? Calibrated? Lim. 1 Lim. 2 Sources 

delta – Maximum leaf area expansion per node [m2 leaf node-1] N Y 0.03 0.07 (1), (3), (5), Estimated 

beta – Coefficient in expolinear equation [node-1] N Y 0.1 0.5 (1), (3), (5), Estimated 

N_b – Project of linear segment of LAI vs N to horizontal axis [node] N Y 10 25 (1), (3), (5), Estimated 

alpha_F – Maximum partitioning of new growth to fruit [fraction d-1] N Y 0.50 0.95 (1), (3), (5), Estimated 

V – transition coefficient between vegetative and full fruit growth [node–1] N N 0.1 0.27 (1), (3), Estimated 

N_FF – nodes per plant when first fruit appears [node] N Y 10 25 (1), (3), Estimated 

T_crit – Mean daytime temperature above which fruit abortion starts [o C] N Y 22 29 (1), (3), (5), Estimated 

K_F - development time from first fruit to first ripe fruit [node] N Y 4 8 (1), (3), Estimated 

DFmax – Average development rate used to move fruits from green to 

mature stage [d-1] 

N Y 0.02 0.10 (1), (3), Estimated 

Vmax – Maximum increase in vegetative tissue d.w. growth per node [g dw 

node-1] 

N N 6.0 9.0 (1), (3), (5), Estimated 

tmaxPg – Temperature below which photosynthesis decreases from 

maximum [oC] 

Y N 34 40 (2), Estimated 

N_max - Maximum rate of node appearance (at optimal temperatures) 

[node d-1] 

Y Y 0.4 0.7 (1), (3), (5), Estimated 
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Qe – Leaf quantum efficiency [μmol (CO2 fixed) μmol (photon) -1] Y Y 0.055 0.09 (1), (3), (5), Estimated 

tmin_fr_gr – Minimum temperature that affects fruit growth [o C] Y N 6 10 (3), Estimated 

sl_N1 – Parameter to modify node development rate [oC-1] Y N 0.02 0.03 (1), (3), Estimated 

sl_N2 – Parameter to modify node development rate [oC-1] Y N 0.04 0.06 (1), (3), Estimated 

sl_R – Parameter to modify partitioning of biomass to roots [nodes-1] Y N 0.003 0.0035 (3), Estimated 

tau1 - Carbon dioxide use efficiency [μmol (CO2)/m2 s ppm(CO2)] Y N 0.06 0.1 (1), (3), (5), Estimated 

tau2 - Carbon dioxide use efficiency for concentrations larger than 350 

ppm [μmol CO2 (m2 s ppm CO2)-1] 

Y N 0.058 0.1 (3), Estimated 

TSlop - Parameter to reduce rate of leaf area expansion [o C] Y N 18.54 22.66 (3), Estimated 

E – Growth efficiency, ratio of biomass to photosynthate available for 

growth [g d.w. g–1CH2O] 

Y N 0.6 0.8 (1), (3), (5), Estimated 

K – light extinction coefficient Y N 0.5 0.8 (1), (3), (6) 

p_1 - Loss of leaf d.w. per node after LAI_max is reached [g leaf node-1] Y N 1.5 2.5 (1), Estimated 

LAImax [m2 m-2] Input Input 2.3 4.0 (1) 

All parameters were sampled within a uniform distribution, in which Lim. 1 is the lower value and Lim. 2 is the upper value. Non-calibrated parameters were 

only included in the sensitivity analysis. References: (1) (Jones et al., 1999); (2) (Jones et al., 1991); (3) (Jones et al., 1999), spreadsheet; (4) (Dayan et al., 

1993b); (5) (Ramirez et al., 2004); (6) (Marcelis et al., 1998); (7) (Zhao et al., 2019); (8) (Vanthoor et al., 2011) 

 

Table 3. Parameters from the Simple model. 
Parameter Fixed? Calibrated? Lim. 1 Lim. 2 Source 
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Tsum – Thermal time until crop maturity [oC] N Y 2500 5000 (7), Estimated 

HI – Potential harvest index N Y 0.10 0.80 (7), Estimated 

I50A – Cumulative temperature requirement for leaf area development to 

intercept 50% of radiation [oC d] 

N Y 200 3000 (7), Estimated 

RUE – Radiation use efficiency (aboveground only and without respiration) [g 

MJ-1] 

Y Y 0.8 2 (7) 

T_base – Base temperature for phenology development and growth [oC] Y Y 4 15 (7), (8) 

T_opt – Optimal temperature for biomass growth [oC] Y N 23 30 (7), Estimated 

T_heat – Threshold temperature to start accelerating senescence from heat stress 

[oC] 

Y Y 40 50 (7), Estimated 

T_ext – The extreme temperature threshold when RUE becomes 0 due to heat 

stress [oC] 

Y Y 30 34 (7), Estimated 

fSolarMax [-] Input Input 0.65 0.99 (1) 

All parameters were sampled within a uniform distribution, in which Lim. 1 is the lower value and Lim. 2 is the upper value. Non-calibrated parameters were 

only included in the sensitivity analysis. References: (1) (Jones et al., 1999); (2) (Jones et al., 1991); (3) (Jones et al., 1999), spreadsheet; (4) (Dayan et al., 

1993b); (5) (Ramirez et al., 2004); (6) (Marcelis et al., 1998); (7) (Zhao et al., 2019); (8) (Vanthoor et al., 2011) 

 

Table 4. Parameters from the Vanthoor model. 
Parameter Fixed? Calibrated? Lim. 1 Lim. 2 Source 

K1 – light extinction coefficient Y N 0.5 0.8 (1), (3), (6) 

ksMinTCan24 – Parameter to adjust curve of 24 hour mean crop growth 

inhibition [°C] 

N Y 8 18 (8), Estimated 
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ksMaxTCan24 – Parameter to adjust curve of 24 hour mean crop growth 

inhibition [°C] 

N Y 22 30 (8), Estimated 

ksMinTCan – Parameter to adjust curve of instantaneous crop growth inhibition 

[°C] 

N Y 5 18 (8), Estimated 

ksMaxTCan – Parameter to adjust curve of instantaneous crop growth inhibition 

[°C] 

N Y 22 32 (8), Estimated 

cDev2 - Fruit development rate coefficient 2 [s-1 °C-1] 

Y Y 1 x 10-8 1.3 x 10-8 (8), Estimated 

cMaxBufFruit2 - Maximum fruit set regression coefficient 2 [fruits plant-1 s-1 °C-

1] 

Y N 7 x 10-7 8 x 10-7 (8), Estimated 

sla - Specific leaf area  m2 {leaf} mg-1 {CH2O} 

N Y 2.4 x 10-5 7.5 x 10-5 (2), (8) 

TSumEnd - Temperature sum when fruit growth rate is at full potential °C d 

N Y 800 2500 (8), Estimated 

ttsum – Thermal time until the start of generative phase [oC d-1] Input Y -900 -300 (8), Estimated 

LAImax [m2 m-2] Input Input 2.3 4.0 (1) 

All parameters were sampled within a uniform distribution, in which Lim. 1 is the lower value and Lim. 2 is the upper value. Non-calibrated parameters were 

only included in the sensitivity analysis. References: (1) (Jones et al., 1999); (2) (Jones et al., 1991); (3) (Jones et al., 1999), spreadsheet; (4) (Dayan et al., 

1993b); (5) (Ramirez et al., 2004); (6) (Marcelis et al., 1998); (7) (Zhao et al., 2019); (8) (Vanthoor et al., 2011) 



145 

 

 

 

SUPPLEMENTARY MATERIAL C2 

 

Figure 8. Total effect sensitivity indices of yield to models’ parameters for the Simple model with the 

Campinas and Gainesville historical weather datasets. Parameters’ full names are presented in the 

Supplementary Material. Lines correspond to the average index value while dots correspond to the results 

in each scenario assessed. Only parameters with averages larger than 0.05 are shown. For fruits, the X axis 

starts at 40 days after transplanting as before often there is a lot of instability in the averages. 
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Figure 9. Total effect sensitivity indices of yield to models’ parameters for the Reduced Tomgro model with 

the Campinas and Gainesville historical weather datasets. Parameters’ full names are presented in the 

Supplementary Material. Lines correspond to the average index value while dots correspond to the results 

in each scenario assessed. Only averages larger than 0.05 are shown. For fruits, the X axis starts at 40 days 

after transplanting as before often there is a lot of instability in the averages. 
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Figure 10. Total effect sensitivity indices of yield to models’ parameters for the Vanthoor model with the 

Campinas and Gainesville historical weather datasets. Parameters’ full names are presented in the 

Supplementary Material. Lines correspond to the average index value while dots correspond to the results 

in each scenario assessed. Only averages larger than 0.05 are shown. For fruits, the X axis starts at 40 days 

after transplanting as before often there is a lot of instability in the averages. 
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Appendix D — LEVERAGING DATA FROM REAL-TIME MONITORING IN CROP MODELS 

 

ABSTRACT 

Researchers using crop models have been devising new roles for data and crop modeling 

based on the availability of data and the new techniques available for modeling. From the various 

techniques available, modeling may be tackled by data-driven methods or through a process-based 

approach. And process-based or mechanistic models may take advantage from real-time 

observations through data assimilation. This work provides a case study of data assimilation in a 

protected environment, capturing tomato growth data from different sources. We updated growth 

estimates of the Reduced State TOMGRO model, by assimilating observational data obtained 

through the continuous monitoring of plant mass and images captured by low-cost cameras, using 

the Unscented Kalman Filter and the Ensemble Kalman Filter. These techniques had not been used 

yet in the protected cultivation of tomatoes, so it was necessary to develop the observation models 

as well, establishing the relationship between the observed variables and the ones estimated by the 

process-based model. We observed that the quality of observations and of observation models is 

crucial for good performance of the assimilation techniques. We also observed that the assimilation 

performed better than calibrated models when there was a need to adjust the estimates to growth 

disturbances and that when filters lead to better productivity estimates, continuous observations 

may not be required. Our results show great potential in the new contexts of the internet of things 

(IoT) in agriculture, vertical farming, and digital twins. 

 

KEYWORDS 

Data assimilation, greenhouse, crop model, proximal sensing 

 

D1.  INTRODUCTION 

Traditionally, crop growth data has been used with crop models from their development 

to calibration performed prior to their use. There are, however, new roles envisioned for it in crop 

modeling that are premised on its abundance and quality. For example, Keating and Thorburn 

(2018) mentioned a new relationship with data that would increase its role in model use and 
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development through, e.g. model-data fusion and inverse modeling, and new roles for remote and 

proximal sensing in their initialization and calibration. 

Data assimilation is a widely used method in hydrology and meteorology which consists 

in combining observed values to the states estimated by models, taking into account the uncertainty 

that exists in model estimates and observations (Pellenq and Boulet, 2004). In the case of crop 

modeling, data assimilation has been used with remote sensing images to update state variables 

related to crop canopy or soil properties, obtaining better estimates of yield, leaf area index, and 

soil moisture (Dorigo et al., 2007; Jin et al., 2018). Recent reviews of data assimilation in crop 

modeling suggest the Ensemble Kalman Filter and the Particle Filter as the most frequent 

algorithms used (Huang et al., 2019; Jin et al., 2018).  

These reviews also point out to the limitations of current approaches, such as those relating 

to their use in large areas, as this application has mostly been limited its application to the temporal 

and spatial resolutions of satellites. Recent works have explored unmanned aerial vehicles (UAV) 

and digital images, such as in Yu et al. (2020), to improve yield estimates by assimilating sugarcane 

height. Linker and Ioslovich (2017) incorporated into the Aquacrop model estimates of canopy 

cover obtained from digital images of the canopy, as well as data obtained from destructive analysis 

as biomass observations. Destructive analysis data has also been used by Ruíz-García et al. (2014) 

with lettuces and the Nicolet model. 

In the case of vegetables and other crops usually grown in greenhouses and other protected 

environments, it is possible to monitor vegetation growth more intensely than in large areas. 

Consequently, it becomes possible to perform assimilation with automatic observations obtained 

at greater temporal and spatial resolutions, as van Mourik et al. (2019) have done for monitoring 

greenhouse environments. 

Automatic plant-related measurement in protected environments has been applied to 

obtain different kinds of information, as a few examples show. Growers monitoring plant growth 

through load cells had been registered in the Netherlands by de Koning and Bakker (1992) and has 

been suggested by works such as Helmer et al. (2005) and Lee and Son (2019), and in Chen et al. 

(2016) for plant factories. Automatic measurement has also been suggested for determining water 

demand (De Graaf et al., 2004). Finally, automatic plant-related measurement has the potential to 

be used for crafting digital twins, which may be defined as “a dynamic representation of a real-life 

object […] that can be used to monitor, analyze and simulate current and future states of and 
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interventions on these objects, using data integration, artificial intelligence and machine learning.” 

(Verdouw et al., 2021). 

The assimilation of these observations could enhance a broad range of modeling 

strategies, from those that rely on feedback information from sensors (Marcelis et al., 2000), to the 

ones relying on machine learning methods for dealing with real-time data, such as Gong et al. 

(2021), Hemming et al. (2020) and Hemming et al. (2019). In their recent review of the status of 

vertical farming systems, van Delden et al. (2021) comment on how sensor-informed artificial 

intelligence (AI) can be used to update self-learning dynamic growth prediction models that are 

partially process-based and partially data-driven as a strategy to increase radiation use efficiency. 

However, both models and measurements still retains an aspect of uncertainty, which data 

assimilation techniques can address. 

Since data assimilation with data from diverse sources could prove useful in this different 

environment, leveraging the intense monitoring as well as crop models, our goal was to perform a 

first approach of data assimilation in a greenhouse tomato growth model, evaluating its potential 

to improve estimates from a non-calibrated model. With data retrieved in a production-like 

environment, we obtained the observation models required for assimilation.  Using the Reduced 

State Tomgro model (Jones et al., 1999), we obtained estimates of tomato growth, which were 

combined by data assimilation techniques with data extracted from images and from a weighting 

system. 

 

D2. MATERIAL AND METHODS 

D2.1 Crop model 

This work uses the Reduced State Tomgro (RT) model, which is a summary model from 

the TOMGRO model, aimed at being used in greenhouse control systems. The RT models growth 

of tomatoes when water and nutrients are not limiting factors. In summary, the model has only five 

state variables — number of nodes, leaf area index, aboveground dry biomass, fruit dry biomass 

and mature fruit dry biomass — and was developed to control the environment. Based on hourly 

temperature and photosynthetically active solar radiation data, the model quantifies the growth and 

development of the tomato plant when water and nutrients do not limit growth. Development is 

indicated by the number of nodes, and growth, by the other states. The leaf area index influences 



151 

 

 

 

photosynthesis, which, along with respiration, determines total carbohydrates available for growth 

of aboveground biomass and fruit biomass. The RT model, which has its variables and parameters 

further detailed in Jones et al. (1999), is therefore a simple model that does not include root growth 

or irrigation, and this simplicity may help in a first approach.  

The RT model used in this paper was implemented in the Python language, using Jones et 

al. (1991), Jones et al. (1999), and the spreadsheet provided by Dr James W Jones as sources. The 

difference equations were integrated by the Euler method. All code used in this work, including 

the model code, is available in https://github.com/mnqoliveira/data-assimilation-tomato-models. 

 

D2.2 Data sources 

The experiments were conducted in research greenhouses at the School of Agricultural 

Engineering of the University of Campinas (22º 49' 06” S, 47º 03' 40” W, 635 m altitude)6. Three 

cycles of cherry tomato growth were performed (Table 1).  

 

Table 1. Growth cycles for data gathering. 

Growth Cycle Cultivar Start date End date 

Cycle 01 Fercam - Milla 12/jul/2019 28/oct/2019 

Cycle 02 Feltrin - Carolina 05/nov/2020 12/feb/2021 

Cycle 03 Seminis - DRC-564 09/mar/2021 11/jun/2021 

 

Two kinds of environmental data were measured: air temperature and photosynthetically 

active radiation. The sensors for temperature were SHT75 transducers protected by porous capsules 

which, by their turn, were protected by tubes of polyvinylchloride tubes coated with aluminum foil. 

The tubes included downstream fans. The sensors were installed in a hardware platform for 

wireless sensor networks (Radiuino BE900), with daily backup. For measurements of 

photosynthetically active radiation (PAR), we used quantum sensors Licor LI-190SA with a 

datalogger Licor LI-1400. 

Plants were characterized by destructive analysis and by non-destructive observations. 

Non-destructive data refers to the pictures taken from side and superior views, by fixed Raspberry 

Pi Camera Modules v2, connected to Raspberry Pi Zero. It also refers to the continuous — every 

 
6 Description and data are submitted as a data article. 

https://github.com/mnqoliveira/data-assimilation-tomato-models
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minute — weight monitoring using force transducers HBM S2M with nominal force of 10 N (0.02 

% accuracy) and stored in a data logger PMX WGX002, measure card PX455. 

Destructive data refers to the characterization of dry weight of the plant and leaf area. In 

intervals of one to three weeks, three plants were removed from the greenhouse. Leaves, fruits, 

stem, and mature fruits were separated for weighting. Before being weighted, leaves were digitized 

with a scanner. Digitization included a reference of known size. Plant material was weighted before 

and after drying for four days or as until constant weight was reached.  

Before removal, those plants were first photographed from above and laterally with a 

smartphone camera, and all pictures included references of known size. Labeling of the plant 

organs in the images was done manually, using the software GIMP. Marking was done only in 

areas in which there was certainty the organ corresponded to the correct plant; if there was 

uncertainty or occlusion, the area was not marked. The organs were colored differently, and were 

then detected by a script in python, also included in the repository previously mentioned. The 

corresponding area was scaled by using the reference. Fruit area refers to the area of mature and 

immature fruits. All data is available at https://doi.org/10.25824/redu/EP4NGO. 

The three cycles presented different developments, which are explored in this work: the 

first may be characterized by low irrigation, subjecting plants to water deficit, the second, by an 

excess of nitrogen fertilization and an attack of tomato rust mite by the end of the cycle, and the 

third cycle was conducted closer to full water and fertilization. 

 

D2.3 Model calibration 

Data from the destructive analyses was used to calibrate the Reduced Tomgro model. 

Calibration followed the approach of minimizing the relative squared error using a global 

optimization algorithm. Given there were three different cycles, each with different conditions, a 

calibrated run used data from the respective cycle. Non-calibrated runs used data from the original 

Gainesville calibration. We also used the calibration of the cycle with full fertilization and 

irrigation as a manner of incorporating particularities of growth of cherry tomatoes in tropical 

conditions, providing a basis for assimilation in the two other cycles. Regardless of calibration, 

input data such as maximum leaf area or plant density referred to data from the evaluated cycle. 

 

https://doi.org/10.25824/redu/EP4NGO
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D2.4 Observation models 

Observation models were created from data obtained from plants subjected to destructive 

and non-destructive analyses. Our modeling strategy focused on obtaining simple empirical 

relationships, and the generalized least squares method was used to account for the 

heteroscedasticity and correlation between residues. To avoid data leakage, despite the different 

growth conditions, data from the cycle was not used to obtain the relationship that would be used 

in that cycle. All observations obtained per plant were multiplied by plant density to make units 

compatible with the states in the model. 

We used area extracted from lateral and top images to determine the leaf area index, fruit 

area extracted from lateral images to infer fruit dry mass and weight as determined by the weighting 

system to infer aboveground biomass. In this last case, we performed a conversion that would 

consider the difference caused by roots depending on development stage, and the difference from 

fresh to dry biomass. 

 

D2.5 Data assimilation 

Two assimilation techniques were used: Ensemble Kalman Filter (EnKF) and Unscented 

Kalman Filter (UKF). These approaches require specifications of uncertainty that were ascribed as 

following. Uncertainty in the initial states was determined as the variance of the samples analyzed 

in the transplanting day. For the EnKF, uncertainty in the process was ascribed to a model 

parameter, depending on the state variable being assimilated. Uncertainty in the model for the UKF 

was determined as the absolute error, calculated by the difference between observations of the 

states in the calibration samples in the cycle and the simulated value of the uncalibrated model. 

Variance in the measurements was determined as the standard deviation of the indirect observations 

of the calibration samples. While we are aware that this corresponds to partial leakage, we believe 

this was the best way to provide an estimate for these filter parameters. In this work, three state 

variables were estimated: aboveground dry biomass, leaf area index and fruit dry biomass. 

 

D2.6 Frequency of assimilation 

We used images captured every other day as the full set of observations. Data from the 

weighting system was captured each minute and averaged in the hour. Data from between 4 am 
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and 5 am, before sunrise in all cycles, was used as the observation for each day. We then 

subsampled these observations to determine the effect of frequency. Subsampling was applied to 

the observations, and corresponded to using 50% and 10% of the data available in the cycle. To 

avoid results being biased by sampling, the procedure was performed 20 times. One of the 

repetitions was sampled in regular intervals through the cycle, and the others were randomly 

sampled. 

 

D2.7 Evaluation 

Since our goal was to determine how much the non-calibrated model estimates could be 

improved by assimilating observations from different sources, we evaluated our approach by 

calculating the root mean squared error through the cycle, using samples from destructive analysis, 

comparing non-calibrated, calibrated, and filtered series. We also compared the last estimated value 

for the states from the assimilation and the final measured value for the monitored plants.  

 

D3. RESULTS 

D3.1 Plant monitoring 

Overall, growth from monitored plants, measured indirectly through pictures and through 

the weight system, was similar to the growth of other plants in the environment (Figure 1). Areas 

corresponding to leaves and fruits extracted from the images obtained with cellphones were 

compatible with the ones extracted from images obtained by the fixed cameras. Growth trends are 

noticeable, but are also very sensitive to lighting and occlusion, which often explains the 

discontinuities. 

When areas of the lateral view of monitored plants were larger than from calibration data, 

this effect likely can be attributed to occlusion, as monitored plants were slightly dislocated from 

the planting line, for example for Cycle 3 and Plant 1 in Cycle 2, and the visibility of plants used 

in calibration was affected by adjacent plants (Figure 2). On the other hand, for calibrated plants, 

we note that visible area in Cycle 3 is equivalent to the visible area in Cycle 1. This happened 

despite maximum leaf area per plant reached an average of 0.44 m2 leaves/plant in Cycle 3 and in 

Cycle 1, 1.91 m2 leaves/plant. This was likely a consequence of fewer leaves reducing the 

complexity of annotations in the environment of Cycle 1. 
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In Figure 1, height was included with two purposes: as a reference of information extracted 

from pictures in a comprehensible unit, but also to show how monitored plants having their growth 

interrupted earlier than plants used in calibration is particularly noticeable in Cycle 3, as their 

heights remain constant by the end of the cycle. 
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Figure 1. Times-series of observations from monitored plants and values for the same variables from the 

calibration samples. For the weighting system, values for the calibration samples refer to aboveground fresh 

mass and last observations from aboveground data correspond to the monitored plants. 
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Curves of area of fruits in Cycles 1 and 2 are interrupted before the end of the cycle 

because as plants were harvested, observations did not correspond to total fruit mass any longer 

and were not compatible with the principle of accumulated biomass used in the growth model. In 

the green cover area identified from the above view, interruption often refers to the plant reaching 

the camera and occupying all visible area, being no longer informative. The very low values 

observed in Cycle 1 for the above view may be connected not only to lower leaf area, but also to a 

slight dislocation of the camera, so that it did not fully capture the plant. 

As for the system wet mass, one can observe how the first cycle corresponded to unstable 

mass values, mostly corresponding to the amount of irrigation applied. In the second and third 

cycles, these fluctuations are less prevalent. In those cycles, we can observe values from monitored 

plants are larger than for calibrated samples as roots are included in the system. Their 

accommodation of more water also increases total mass. 
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Figure 2. Example of non-destructive observation of lateral leaf area and fruit area of sampled plant. Leaves 

are marked in green, mature fruits are marked in red, and non-mature fruits are marked in yellow. The A4 

sheet used as reference is marked in cyan. Obstruction from adjacent plants prevents the identification of all 

organs corresponding to the plant sampled. 

 

D3.2 Observation models 

Figure 3 shows the scatterplots of the relationships that gave basis to the observation 

models that we obtained. Although linear relationships may be observed, particularities of each 
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cycle are noticeable, such as larger fruit biomass in Cycle 3 and lower leaf area in Cycle 1. For 

Cycle 2, excessive nitrogen fertilization at the beginning of the cycle, followed by mite attack after 

the beginning of the fruit stage, led to large leaf areas but low fruit mass. 

As mentioned for the indirect observations, as plants reach the camera, one can no longer 

distinguish leaf area from images taken from the above view, which is an issue similar to the one 

of leaf area observed by satellites after leaf area reaches a certain value. In this sense, the 

relationship becomes non-linear, and images from the side view represent the leaf area better than 

from above. One can also see that in all cases of observations extracted from images, but 

particularly for fruits, observed values are concentrated in the lower range, making it harder to 

obtain good relationships for larger values. This may also have been caused by our choice of not 

compensating for occlusion and only including areas in which there was confidence the area 

corresponded to the plant, which led total organ area identified in images to being smaller than the 

total area that the organs occupy on plants. This did not impair our attainment of a reasonably good 

linear relationships between said areas and their corresponding observed state within a cycle. For 

aboveground biomass, although the linear relationship is very visible, uncertainty relates to the 

other aspect of conversion, which concerns the fraction of system biomass ascribed to aboveground 

biomass and which could not be measured. 
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Figure 3. Scatterplots of relationships between observations of plants used in the destructive analyses, used 

for the development of observation models in each growth cycle. Observations that refer to an area were 

extracted from images and aboveground fresh mass was obtained by weighting plants before drying. 

 

Table 2 shows the metrics from the observation models after excluding data from the 

cycle. While correlations are compatible with what is visible from the scatterplots, error metrics 

point to large uncertainties. Since these models are used to convert the state variable into the same 

unit of the observation, they should be evaluated in the observations’ unit. And while an error of 

0.40 g FM m-2 may be considered very small when compared to the mass of the weighting system, 

0.61 [m2 m-2] is very large for the area visible on images, and is likely caused by the different 

behaviors from the three growth cycles. Mean Absolute Percentage Errors confirm that the error in 
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the unseen cycle is very large and suggests that using these models to convert state variables in the 

assimilation may lead to lower efficiency of the process. 

 

Table 2. Standard error (SE), mean absolute percentage error (MAPE) and coefficient of determination (R2) 

from each observation model for data from each cycle. SE is reported from training in the other cycles and 

MAPE is reported from validation in the same cycle. 

Assimilated 

variable 

 LAI LAI W Wf 

Observed 

Variable 

 GC Abv  

[m2 m-2] 

GC Lat 

[m2 m-2] 

W_fm  

[g FM m-2] 

Area Wf 

[m2 m-2] 

Cycle 1 SE (training) 0.988 0.311 0.395 0.062 

Cycle 2  0.597 0.613 0.339 0.084 

Cycle 3  0.921 0.436 0.257 0.252 

Cycle 1 R2 (training) 0.64 0.73 0.94 0.81 

Cycle 2  0.86 0.82 0.98 0.77 

Cycle 3  0.44 0.87 0.99 0.36 

Cycle 1 MAPE (validation) 30 % 41 % 34 % 373 % 

Cycle 2  122 % 55 % 29 % 82 % 

Cycle 3  26 % 113 % 58 % 122 % 

*Observations as: GC Lat: green cover (lateral view), GC Abv: green cover (above view), W_fm fresh mass 

from destructive analyses, Area Wf: total area of fruits. 

 

D3.3 Assimilation 

Table 3 highlights the cases in which RMSE of the growth cycle for a state variable was 

lower with assimilation of that variable than without, regardless of calibration. Overall, calibration 

led to the lowest errors, but in almost all cases, assimilation slightly improved the results. No 

technique was consistently better either across variables or across growth cycles.  

Although calibration is expected to improve model performance, this was not observed in 

some cases, as growth did not correspond to the situation for which the model was developed. In 

Cycle 1, in which total biomass was affected by irrigation, the optimization used in calibration 

could not determine parameters that would generate compatible estimates between all variables. In 

Cycle 2, similarly, excessive nitrogen led to much lower fruit production, and this effect was not 

properly captured by the parameters selected. Assimilation results in both cases depended on the 

quality of observations. In Cycle 1, in which the system biomass was affected by irrigation, the 

large errors also led to poor estimates and, therefore, the best results came from the non-calibrated 

simulation. In Cycle 2, on the other hand, assimilation of the images led to the adjustment of the 

estimates to the lower values that actually happened. 
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The errors in the weighting system of Cycle 1 were a particularity of that growth cycle, 

but since it should be the most precise measurement, it led to the largest improvements, and the 

results in Cycle 2 were very similar to the calibrated estimates, while on Cycle 3, errors were 

reduced in almost 50%. As for the uncertainties in observations from images that were discussed 

in the previous sections, they would affect all image-based assimilation. However, as these are 

permeated through the observation models, one should look to the models with lower validation 

errors to better understand this potential. In this case, the best example comes from using the 

pictures from above and the EnKF to estimate the leaf area index in Cycle 3. The large error by the 

end of the cycle is possibly caused by the absence of images, which led the model to simulate based 

on the last available update. It could also be noted that for Cycles 1 and 2, assimilation of images 

led to estimates as good as the ones obtained by calibration. 
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Table 3. Summary of errors for state variables assimilated in the evaluations. 

Filter 
Assim. 

state 

Obs. 

variable* 
Plant 1 - Cycle 1 Plant 2 - Cycle 1 Plant 1 - Cycle 2 Plant 2 - Cycle 2 Plant 1 - Cycle 3 Plant 2 - Cycle 3 

   
Cycle 

RMSE 

Final 

error 

Cycle 

RMSE 

Final 

error 

Cycle 

RMSE 

Final 

error 

Cycle 

RMSE 

Final 

error 

Cycle 

RMSE 

Final 

error 

Cycle 

RMSE 

Final 

error 

None – Calib. - - 0.08 -0.21 0.08 -0.21 0.53 -0.02 0.53 0.00 0.24 0.50 0.30 0.60 

None – Not Calib. - - 0.17 -0.21 0.17 -0.21 1.17 1.23 1.17 1.24 1.75 3.07 1.78 3.11 

EnKF LAI GC Lat 0.08 -0.05 0.08 -0.20 0.50 -0.21 0.91 1.29 1.92 3.34 1.75 3.05 

UKF   0.12 0.13 0.08 -0.21 0.45 1.02 0.93 1.48 1.93 3.33 1.73 2.99 

EnKF  GC Abv 0.06 -0.15 0.07 -0.16 1.02 0.96 1.11 0.94 0.78 1.47 0.71 1.55 

UKF   0.09 0.11 0.08 0.10 1.07 1.79 1.06 1.27 1.60 3.35 1.82 3.76 

None – Calib.  - 47.81 103.68 37.01 71.86 32.56 -25.10 27.12 -8.96 71.73 136.83 68.85 129.62 

None – Not Calib. - - 35.98 95.80 25.68 64.69 149.79 216.12 147.78 209.09 277.36 533.57 273.51 525.46 

EnKF W W_fm_full 45.71 70.38 81.58 127.88 41.18 36.69 68.69 122.14 141.98 297.01 142.70 311.92 

UKF W  53.44 75.84 79.70 134.96 52.34 5.74 77.99 128.88 119.08 257.07 128.45 290.18 

None – Calib. - - 12.31 -0.19 19.47 -25.18 88.72 -130.49 76.73 -109.63 2.66 5.12 0.90 -0.88 

None – Not Calib. - - 27.36 85.70 24.26 76.98 35.86 -67.59 33.82 -63.32 90.84 164.10 89.33 160.55 

EnKF Wf Area Wf 25.89 81.53 22.82 72.63 28.55 -54.75 30.00 -57.27 92.17 169.09 88.47 159.52 

UKF Wf  24.86 67.98 22.42 24.55 13.70 -20.28 18.84 -36.60 97.02 181.41 75.35 141.26 

*Observations as: GC Lat: green cover (lateral view), GC Abv: green cover (above view), W_fm_full: weighting system, Area Wf: total area of 

fruits. Bold numbers refer to root mean squared errors lower than the larger RMSE between the non-calibrated and calibrated error. 

 



164 

 

 

 

When analyzing the results focusing on yield, overall, assimilation of either leaf area or 

aboveground biomass did not improve the estimates. But there are a few results that deserve further 

comments. The first result refers to the example from Cycle 3 (Figure 4), in which fruit area 

observations were apparently barely used, and the assimilated curve closely resembles the 

simulation without calibration. This is likely caused by bias in the observation model. Figure 1 

showed that monitored plants in Cycle 3 had the largest areas of fruits by the end of the growth 

cycle. Still, the scatterplot from Figure 3 shows how a model obtained with data from the other two 

cycles would likely underestimate fruit mass. So even though there existed larger observations, this 

difference in magnitude of what was estimated by the model and the observation would not be 

captured in the residual calculation. 

The second concerns the results of the Cycle 2, in which the calibrated model performed 

poorly, but UKF assimilation of fruit area in images, in part, improved the results (Figure 4). This 

was also observed for fruit biomass itself, but it is not necessarily the case that improvement of one 

state variable will cascade into improving the other. It should be noted that conversion by 

observation models also led to negative estimates, which is another point to the necessity of 

improving such models. 
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Figure 4. Growth curves for each monitored plant with the different methods used for assimilation of the 

indirect measurement of fruit dry biomass corresponding to the area of fruits in images. Dots refer to the 

average observation determined by destructive measurements, and the bar represents the associated standard 

deviation. The final value for the monitored plant is represented by a larger dot. 

 

The last relevant result refers to the assimilation of aboveground biomass using the 

weighting system (Figure 5). Even though it thoroughly improved aboveground biomass, it had an 

adverse effect on fruit dry biomass. Because the Reduced Tomgro model calculates yield based on 

photosynthesis and respiration, instead of aboveground biomass previous values, the increase in 

biomass may lead to an increase in respiration that is not compensated by an increase in 

photosynthesis through LAI, thus decreasing assimilates available for fruits. 
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Figure 5. Growth curves for each monitored plant in Cycle 3 with the different methods used for assimilation 

of the indirect measurement of aboveground biomass corresponding to fresh plant weighting system. Dots 

refer to the values determined by destructive measurements, and the bar represents the associated standard 

deviation. The final value for the monitored plant is represented by a larger dot. 

 

Another aspect to be observed is that it could be the case that for imprecise measurements, 

fewer observations may lead to similar outcomes of using all available data. Table 4 shows the 

results for assimilation using the UKF and its impact on yield, with the range of the observed RMSE 

in the repeated simulations. By reducing the frequency, ranges increase, as the usefulness of 

observations is not equal across time, and as later observations are often connected to poorer data 

quality, since the environment becomes more complex. Therefore, while fewer observations may 

lead to lower errors in most simulations, and the minimum observed RMSE in the multiple 
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sampling is often similar to the one obtained using all observations, inferior results, i.e. larger 

errors, may also occur. 
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Table 4. Root mean squared error [g m-2] for yield estimates assimilating data from different sources with the Unscented Kalman Filter. For 10% and 

50% frequencies, observations were randomly sampled, so they are presented as the minimum and maximum RMSE obtained. 

Frequency 
Assim. 

state 

Obs. 

variable* 

Plant 1 - Cycle 

1 

Plant 2 - Cycle 

1 

Plant 1 - Cycle 

2 

Plant 2 - Cycle 

2 

Plant 1 - Cycle 

3 

Plant 2 - Cycle 

3 

   Min Max Min Max Min Max Min Max Min Max Min Max 

- 

None 

– 

Calib 

- 5.05 10.11 29.05 25.34 4.65 5.50 

- 

None 

– Not 

Calib. 

- 20.48 17.95 22.45 21.72 62.21 61.12 

10% LAI GC Abv 24.64 26.42 22.99 25.41 16.54 29.20 14.13 21.67 48.94 54.02 46.19 61.99 

50% LAI GC Abv 24.54 24.97 22.96 23.75 24.57 29.28 19.66 22.41 48.98 52.40 46.21 53.98 

100% LAI GC Abv 24.59 24.59 23.01 23.01 29.04 29.04 21.19 21.19 49.05 49.05 46.43 46.43 

10% LAI GC Lat 26.43 28.97 21.03 24.82 51.23 66.69 36.80 43.78 62.70 64.68 56.75 59.76 

50% LAI GC Lat 26.83 27.66 20.46 21.79 62.02 65.58 39.26 43.07 63.50 63.90 57.90 59.21 

100% LAI GC Lat 27.15 27.15 20.24 20.24 64.35 64.35 41.75 41.75 63.62 63.62 58.76 58.76 

10% W W_fm_full 17.99 24.33 9.23 13.62 7.43 10.20 11.78 15.41 65.69 70.78 64.01 70.39 

50% W W_fm_full 19.52 21.62 9.45 11.43 6.99 7.40 11.22 12.14 71.04 71.59 71.04 71.57 

100% W W_fm_full 20.76 20.76 9.85 9.85 7.19 7.19 11.40 11.40 71.73 71.73 71.65 71.65 

10% Wf Area Wf 14.43 24.77 7.32 9.52 5.25 9.94 8.38 11.91 59.64 61.70 47.33 51.44 

50% Wf Area Wf 13.87 16.38 7.79 9.64 5.50 5.92 8.46 9.70 60.73 62.56 48.01 51.59 

100% Wf Area Wf 14.47 14.47 9.26 9.26 5.91 5.91 8.99 8.99 61.55 61.55 51.25 51.25 

*Observations as: GC Lat: green cover (lateral view), GC Abv: green cover (above view), W_fm_full: weighting system, Area Wf: total area of 

fruits. Bold numbers refer to root mean squared errors lower than the larger RMSE between the non-calibrated and calibrated error. 
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Finally, as the results observed are also a consequence of the reference used, we 

evaluated the results using another reference. The best example from the results is the case of 

the fruit estimates in Cycle 2 (Figure 6). One can see the model now overestimates fruit and 

mature biomass. Assimilation lowers the estimates while there are observations available, but 

as the rate of fruit biomass is calculated independently from the current value of the state, 

relying exclusively on net biomass, development stage, some parameters and air temperature, 

the steep increase observed in the non-calibrated estimates is then also observed in the curves 

of the assimilated cases. 

 

 

Figure 6. Growth curves for each monitored plant in Cycle 2 with the different methods used for 

assimilation of fruit dry biomass corresponding to the area of fruits in images. Dots refer to the values 

determined by destructive measurements and the bar represents the associated standard deviation. Final 

value for the monitored plant is represented by a larger dot. 

 

D4. DISCUSSION 

Calibration is usually a required step in assimilation, so that errors in the model are not 

as biased and the premises of the filters are not violated. However, this may be an excessively 

demanding step, as the parameters obtained from calibration with data from one population do 

not necessarily correspond to the true parameter values (Wallach, 2011), leading to the 

necessity of calibration for every different location and cultivar. Data assimilation of indirect 

measurements could replace this need if good data and good observation models are available. 
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Destructive measurements used for calibration could also be used in the development of 

observation models, so that for future work, these could be reused. Even in our case study, in 

which the three cycles were so different, often observations had similar magnitudes, so it should 

then be possible to obtain generalizable relationships. Furthermore, relationships may be 

improved: we focused on linear relationships, but fruit mass is proportional to volume, so 

treating them as linearly related to the area may be undermining how much information can be 

extracted. 

As assimilation of a variable should impact their own estimates as well as the ones 

from other variables, we expected assimilation of several different state variables to improve 

yield outcomes in different ways. For instance, changes in leaf area index should affect 

aboveground biomass and fruit biomass as it affects photosynthesis. There are, however, several 

mechanisms that govern other state variables, such as respiration and fruit abortion, so that it is 

not necessarily the case that, even if there are improvements in the assimilated state, they are 

going to be propagated to other variables. It is then often unclear how assimilation may affect 

the results, since how much one state affects the other is not fixed even in potential growth, as 

changes in the weather inputs or cultivar could modify crop behavior. In our case, propagation 

led to two different outcomes after assimilation: both improvement and deterioration of the 

yield estimates. Our results suggest that for this greenhouse tomato model, the best approach 

should be assimilating fruit biomass: it is directly connected to yield and not only aboveground 

biomass could compromise the estimates as observed, but as the model expects leaf area to 

remain constant, so this data would stop being informative. 

It could be the case that the high errors of observation models affected the ability of 

the techniques to extract information from the observations. These errors would lead to poorer 

estimates of the residuals and the gain, shifting how much the filter should rely on observations. 

Automatic annotation of images would allow for monitoring more plants and making the results 

more robust and based on more observations, which also impacts the observation models. Our 

observation models were limited, particularly for fruit area, as there were fewer observations, 

but they are promising, as suggested by the overall high correlations. When more observations 

are available, one can delve deeper into the question of which is the more appropriate timing 

for obtaining them, as it seems possible, with fewer observations, to achieve results as good as 

with observations every other day. 

Hu et al. (2019) performed data assimilation in the SWAP-Wofost model, aiming to 

account for the interference in sugarcane LAI by artificial leaf stripping and natural storms, 
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adjusting the potential growth provided by the model to real growth. In our case, we had three 

different scenarios: water stress, nutrient stress and adequate fertilization and irrigation. We 

observed the method was able to adjust the estimated variables obtained by the simulation, 

which expects potential growth, into more realistic values. And as yield variability in 

greenhouses may be even detected by models (Bojacá et al., 2009), this approach could be seen 

as a low-cost improvement of yield assessment by growers. 

 

D5. CONCLUSIONS 

In this work, we used data from different sources in a production-like environment to 

assimilate observations into a tomato growth model. Similarly to other data assimilation works, 

we observed that not all observations improve estimates, and the quality of observations and 

observation models greatly impact the outcome. But we showed how imperfect information 

from real-time observations could be used along with an imperfect model. Our work was a first 

attempt to use data assimilation techniques in a new context, and there are a few factors to 

disentangle from the observed outcomes — noisy observations and preliminary observation 

models —, and this work points to several venues of exploration. 
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Appendix E — DATA ASSIMILATION IN CROP MODELS: OLD EXPERIENCES IN NEW CONTEXTS 

 

ABSTRACT 

Data assimilation has been used with remote sensing and crop models for decades, but often 

techniques requirements are not specified. As the concept may now be extrapolated to other 

contexts, such as greenhouse-grown plants or vertical farming, aided by computer vision to 

obtain data on plant growth, there is a great potential of these techniques being used for models 

to be available without the need for calibration. First, we delved into the requirements of 

assimilation techniques and how the particularities of remote sensing could be extrapolated to 

the protected environments context. Then, we performed an Observation System Synthetic 

Experiment to evaluate how assimilation of fruit or mature fruits in a greenhouse tomato growth 

model would impact the outcome, in the absence of calibration. We used three assimilation 

techniques — Ensemble Kalman Filter, Unscented Kalman Filter and Particle Filters — and 

evaluated different uncertainty characterizations, different observations assimilations, level of 

uncertainty acceptable and frequency of assimilation. We showed how filter uncertainty 

parameter choices greatly impacts outcomes and that their specification is also conditional on 

the frequency of observation availability. 

 

E1. INTRODUCTION 

Crop models are important tools but, as is the case with all models, their accuracy may 

be limited by the simplification of the processes they represent. One conclusion drawn from the 

theoretical evaluation of crop models’ misspecification is that as the parameters obtained from 

calibration with data from one population do not necessarily correspond to the true parameters 

values, models should always be calibrated using a sample from the target population for them 

to show an improved performance (Wallach, 2011). Besides accuracy, model usage is also 

improved by reducing uncertainty in their estimates. To achieve the latter goal, (Wallach & 

Thorburn, 2017) mentioned the improvement of models, using the median of multi-model 

ensembles, redefining the quantity to be predicted. Evidently, if possible, other alternatives 

include using more data in the calibration step or higher quality input measurements.  

One method that could tackle both uncertainty and accuracy issues, aligned to the new 

abundance of data, is called data assimilation (DA). Data assimilation on crop models has 
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mostly been performed by the integration of remote sensing data into mechanistic models. The 

subject has been frequently revisited given the evolution in computational capacity and 

available state estimation techniques (Dorigo et al., 2007; Fischer, Kergoat, & Dedieu, 1997; 

Huang, Gómez-Dans, et al., 2019; Jin et al., 2018). The goals of data assimilation works are 

often connected to the improvement of agricultural systems’ models predictive capability, 

differing in which variables are assimilated as well as the techniques used and the source of 

data that constitute the observations that will be assimilated.  

The reviews that clarify how the approach has been used in crop modelling have 

looked into it from different perspectives: Previously, (Dorigo et al., 2007) had covered 

methods used to derive biophysical and biochemical canopy state variables from optical remote 

sensing data in the VNIR-SWIR regions. (Huang, Gómez-Dans, et al., 2019) recently detailed 

theoretical basis for methods as well as a walkthrough of the steps required to apply them. The 

authors suggest elements that should be considered when choosing the technique, the spatial 

and temporal scale, and presented an overview of uncertainty characterization. This last aspect 

is intimately connected to the discussion on (Jin et al., 2018), which also comment on sources 

of errors. All these works, however, emphasize aspects of satellite-derived observations, such 

as scale mismatches. In this sense, many of the lessons that have been learned by the crop 

modelling and remote sensing community could still be discussed and extended into other 

domains.  

For instance, monitoring can happen frequently in greenhouse environments 

(Hemming, de Zwart, Elings, Petropoulou, & Righini, 2020; Hemming, de Zwart, Elings, 

Righini, & Petropoulou, 2019). And while the reviews previously mentioned point to multiple 

goals and approaches, such as assimilating soil moisture, leaf area index, vegetation indexes, 

leaf nitrogen accumulation and intended on improving yield, soil moisture, aboveground 

biomass, and leaf area index, many of the works are either very opaque for reproducing their 

methods or too specific to the problems of large areas.  

It is often the case that works with simulations and artificial data are more detailed and 

their goals are more related to investigating the behaviour of the system with more 

methodological control. These have been called Observation System Synthetic Experiments 

(OSSE) (G. S. Nearing et al., 2012; Pellenq & Boulet, 2004) and synthetic twin (Lei et al., 

2020) and have been used for answering questions such as if the assimilation of an observation 

improves all components of the model’s simulations, if calibration errors can be compensated 

by assimilation (Pellenq & Boulet, 2004), which are limitations imposed by the model, the 
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assimilation method, and uncertainty in model inputs and observations (G. S. Nearing et al., 

2012), and appropriate ensemble size (Lei et al., 2020). In the greenhouse context, artificial data 

has also been used to emulate leaf area index measurements with the Reduced-State Tomgro 

model by (Torres-Monsivais, López-Cruz, Ruíz-García, Ramírez-Arias, & Peña-Moreno, 

2017), aiming at evaluating the Unscented Kalman Filter performance on the estimation of leaf 

area index, aboveground biomass and number of nodes.  

In this work, we aim at learning from satellite large scale experiences and bring these 

lessons to the other context of protected cultivation, revisiting aspects of data assimilation that 

are often not detailed in other reviews, as they focus on larger spatial scales and the issues 

associated to them, discussing theoretical aspects, along with an application with artificial data. 

We use greenhouse tomato growth as an example and the Reduced-State Tomgro model (Jones, 

Kenig, & Vallejos, 1999), aiming at improving yield estimates through assimilating simulated 

images of tomato in a greenhouse environment. 

 

E2. THEORY 

The reviews of data assimilation in crop models previously mentioned refer to three 

types of data assimilation: forcing, calibration and update. As there are several sources for better 

understanding them, this section will only briefly present the approaches, focusing on strategies 

for updating. 

 

E2.1 Filter methods and their requirements 

E2.1.1 The Kalman Filter (KF) 

The main assumptions of the Kalman Filter are that the model estimates and the 

observations follow a normal distribution, and that the process model and the observation 

function are linear. Huang et al. (2019a) clarify the linearity requirement stating that if the crop 

model can be assumed locally linear between adjacent time steps, the standard Kalman Filter 

could be a viable choice.  

Given its restrictions, there are fewer examples of the application of this technique. In 

some of them, the premise of the filter is used, but with modifications. Instead of calculating 

the gain, Vazifedoust et al., (2009) tested different values, using the best one as fixed, 

circumventing the need for identifying the source error values. This approach was repeated by 
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Chen Zhang and Tao (2018), who also normalized simulated and observation values according 

to the maximum value obtained so that they would be in the same range. Operating in this 

normalized space allowed them to focus on spatial variability and, in part, trends, instead of 

absolute values. Later, Chen and Tao (2020) explored more approaches for defining an 

appropriate value for the fixed gain, by a grid search of an optimal value, as well as exploring 

historical values. 

 

E2.1.2 Extended Kalman Filter (EKF) 

The Extended Kalman Filter is an adaptation of the Kalman Filter to deal with non-

linear cases. To do so, it takes advantage of local linearization by replacing the model and the 

measurement function by their partial derivatives. The use of this technique is limited, as it 

requires access to the Jacobian of the model or, in some cases, to an approximation by finite 

differences that often will not scale to higher dimensions (Huang, Gómez-Dans, et al., 2019), 

so there are also few examples on crop modeling that apply this technique and most of those 

which use the method give few details of the implementation. One of the few examples in which 

there is an explanation of how the filter was used is the work of Linker and Ioslovich (2017). 

The authors used data from growth experiments of cotton and potatoes aiming at improving 

estimates of canopy cover and biomass through state assimilation and through the recalibration 

of three parameters from the Aquacrop model. They used dry biomass direct measurements and 

the images used as canopy cover observations were comprised of digital images taken 1.5 m 

and 2 m above canopy.  

Given there were two different approaches for improving estimates, they estimated the 

covariance matrix of the errors in the state variables in two ways. For the assimilation process, 

by calculating the difference between the square of the model residuals and the dispersion of 

the measurements. They chose not to propagate the matrix along the process, given its strong 

nonlinearity, and recalculated it at each new time of measurement. They justified this choice by 

claiming the propagation without assimilation of new measurements would only increase the 

uncertainty related to the linearization and to the unknown initial data of the model errors. For 

the recalibration process, the matrix was calculated using an assumption that the corresponding 

standard deviation of each of the chosen parameters is equal to 20% of the current value of 

corresponding parameter. In their assimilation approach, the H matrix corresponded to the unit 

matrix, as the measurements directly corresponded to the states and, in the recalibration one, 
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the components of the partial derivatives matrix H were calculated numerically at each instance 

of canopy cover measurement. 

 

E2.1.3 Ensemble Kalman Filter (EnKF) 

Overall, in the Ensemble Kalman Filter, an ensemble of initial states is generated and 

each individual ensemble member is propagated through the model until an observation is 

available. Then the update step is performed individually in each member. This allows for 

recalculation of the ensemble mean for the states and generation of a new ensemble. The 

ensemble approach comes from the premise that at least some of the particles will represent the 

true state. There are, however, different ways of approaching this problem and the elements of 

uncertainty are intimately connected to other decisions. 

 

• Composition of ensemble elements 

Huang et al. (2016) observed that two common methods to generate ensemble 

members are by directly adding a Gaussian perturbation to the state and by adding a Gaussian 

perturbation to the uncertain input parameters, which are then used by the model for the 

simulation. These methods have been explored in different ways. Input perturbation examples 

come from Lei et al. (2020), who perturbed precipitation and irrigation inputs via multiplicative 

rescaling with mean-unity lognormally distributed random errors that have a standard deviation 

equal to 20% of the corresponding input, and from De Wit and Van Diepen (2007), who 

generated precipitation ensembles based on a highly accurate precipitation dataset that was 

perturbed with an additive error component and a multiplicative component that generated 

binary rain or no-rain events on locations in which the records pointed to the absence of 

precipitation. 

In cases in which states are perturbed, Xie et al. (2017) input the initial states and 

parameters into the CERES-Wheat and, at the beginning of the green-up stage, LAI and soil 

moisture were perturbed according to the errors between the field measurements and the 

simulated LAI and soil moisture. Ines et al. (2013) randomly sampled, at the start of the 

simulation, values of leaf weight at emergence and plant leaf area at emergence, to increase the 

variability of the ensemble. Beyond inputs, Lei et al. (2020) also applied direct perturbations to 

soil moisture states at all depths independently with random errors sampled from a mean-zero, 

normal distribution with temporally varying standard deviation equal to 10% of the state value, 

followed by the introduction of a vertical auto-correlation at the different depths. 
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Researchers have used multiple ways of ascribing uncertainty to parameters. Huang et 

al. (2016) chose the parameters based on the results of a sensitivity analysis and set the values 

of the standard deviations of two parameters according to the results of a previous study. Ines 

et al. (2013) identified which parameters had major influence in the model and, with an 

uncertainty level of 10%, perturbed each model parameter using a Gaussian distribution, 

generating ensemble members by randomly sampling model parameter combinations from the 

perturbed arrays. Zhao, Chen and Shen (2013) even tried to evaluate the impact of using 

parameter uncertainty to generate the ensembles. They chose one parameter that was mostly 

correlated to crop yield and ascribed a distribution to it, multiplying its standard deviation by 

different fixed values. Lu et al. (2021) took advantage of the existing uncertainty in parameters 

and used this as an artifact to generate ensembles without calibrating the model. They sampled 

parameters that they called variant as well as a fixed factor to scale phenological parameters for 

the canopy in a given year.  

One issue in perturbing parameters or inputs for generating the ensembles is what 

Curnel et al. (2011) denominated phenological shift. This effect refers to ensemble members 

presenting ensemble elements that are in different phenological stages, which leads, at the same 

point in the simulation, to different modules in the model to be active and, therefore, the 

assimilation of an observation having different a meaning for each ensemble member. 

As for observations, Ines et al., (2013) state that the variance used in the perturbation 

is based on the uncertainty of the data. But more precisely, Huang et al. (2016) mentions that 

the standard deviation of the Gaussian white noise error needs to be a realistic value for it to 

represent the uncertainty of the remotely sensed observation. In section 3.4.2, errors are more 

thoroughly described, but as an example, Xie et al. (2017) used the errors between the 

measurements and observations to determine the standard deviations of the observed LAI and 

soil moisture.  

 

• Ensemble size 

The choice of ensemble size is often performed in three different ways: testing, 

referencing a theoretical result or referencing other assimilation work on the literature. Pellenq 

and Boulet (2004) affirmed a preliminary study must be performed to find the minimum 

ensemble size that ensures particles may follow the same trajectory as the true state. They say 

the number usually corresponds to value above which assimilation results are identical. With 

this approach, Nearing et al. (2012) showed an example in which the number depended on the 
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goal of the assimilation. The authors tested different values when assimilating LAI and soil 

moisture aiming at improving estimates of wheat yield, LAI and soil moisture. In the cases of 

assimilation of the state variable, RMSE became stable with number of elements of 25. In the 

other cases, the stability came with an ensemble of 100 elements. Lu et al. (2021) evaluated 

ensemble sizes for simultaneous assimilation of canopy cover and soil moisture from 10 to 400 

and overall observed little improvement for more than 200, even though in some years 10 

elements were enough for stable results. 

Several works, however, refer to the experiences of other authors. Frequently, authors 

refer to De Wit and Van Diepen (2007) when commenting on their choice for the ensemble size 

(Bai et al., 2019; Y. Li et al., 2014; Zhao et al., 2013) The work by De Wit and Van Diepen 

(2007), however, applies to assimilating soil moisture with an ensemble obtained by perturbing 

precipitation and with an initial state ascribed by sampling a calculated Gaussian acceptable 

value and it is possible that they do not generalize for other approaches. Additionally, the 

authors mention that although they observed reduced RMSE in soil moisture estimates, this was 

not applied to the variance. Despite that, their results were compatible with other results for soil 

moisture, and recently, Mishra, Cruise and Mecikalski (2021) followed the suggestion from the 

work of Yin et al. (2015), who theoretically and through an example showed that the ideal 

ensemble size for assimilating soil moisture is 12, which suggests 50 would be a reasonable 

estimate in similar situations. 

 

E2.1.4 Unscented Kalman Filter (UKF) 

Similarly to the EnKF, the Unscented Kalman Filter uses the average of an ensemble 

as the state estimate, instead of the direct estimates provided by the model. However, the 

ensemble is not just sampled from a distribution. It uses what is called the unscented transform 

to generate particles — the sigma points — and weights for those particles that, when combined, 

are more representative of the expected state value. These sigma points are propagated through 

the non-linear model, which provides more accurate approximations of the mean and 

covariance matrix of the state vector, and thus more accurate state estimation. (Mansouri, 

Dumont, & Destain, 2013). 

The Unscented Kalman Filter has been used in the context of crop growth with 

tomatoes and lettuce. Torres-Monsivais et al., (2017) evaluated the technique along with data 

simulated with the Reduced State Tomgro model, perturbed by several noise levels, 

representing measurements. Ruíz-García et al. (2014) used data from destructive analyses of 
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lettuce in a greenhouse to assess uncertainty of the NICOLET model. In the work with tomato, 

the authors ascribed lower errors to the model and higher to the measurements, which were then 

subjected to a tuning process, while in the work with lettuce, the values were tuned until 

reasonable results were obtained. 

 

E2.2 Errors and uncertainty 

How to identify errors in the elements involved in assimilation and their uncertainties 

is widely discussed by Jin et al. (2018) and Huang et al. (2019a), as they are central in filtering 

approaches. For crop models, the sources of uncertainty they list include both the issues 

presented in section 3.3 as well as the difference between simulations and actual growth, which 

is impacted by pests and diseases. For observations, they mention errors in the measurement 

themselves and in retrieval methods. In both cases, often their works emphasize aspects of 

satellite-derived observations, such as errors in spatial data and scale mismatches. This section 

aims to revisit this topic, with more details and examples on how these uncertainties have been 

quantified and applied in data assimilation works. Although the discussion in this section focus 

on trying to ascribe meaning and understanding the uncertainties, these are filter 

hyperparameters that may be estimated from data (Wallach, Makowski, Jones, & Brun, 2019a). 

 

• Observation errors 

Overall, data assimilation in crop models rely on observations retrieved from satellite 

monitoring of Earth’s surface. Dorigo et al. (2007) covered methods used to derive canopy state 

variables from optical remote sensing data in the visible to near-infrared and shortwave infrared 

regions. These methods either rely on statistical relationships between the spectral signature 

and the measured biophysical or biochemical properties of the canopy or they derive the states 

from the known behaviors of leaf reflectance and radiation propagation through the canopy. 

Both are used to obtain remote sensing products, which directly estimate the state for the final 

user. And both remote sensing products and reflectance itself, are used in assimilation. For 

those products, Huang et al. (2019a) mention how guidelines for uncertainty quantification are 

still being established by the community and that many EO-derived products have poor or no 

uncertainty information available. Particularly for satellite‐derived leaf area index (LAI) 

products, Fang et al. (2019) also comment on how given the complexity associated to the 

retrieval process, a comprehensive quantitative assessment of the quality of LAI products is 
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still missing. In the case of assimilating reflectance or albedo, the crop model is coupled with a 

radiative-transfer model (RTM), which allows for quantifying uncertainty in the measurements 

directly (Huang, Ma, et al., 2019). 

By assimilating products, several works (Huang et al., 2016; Ines et al., 2013; Zhao et 

al., 2013) are able to consider the assimilation of the product as the assimilation of the state 

directly, which means the relationship between states and observations may be obtained by the 

unit matrix, simplifying the approach. However, this choice could affect the outcome as it may 

lead to bias in the residual and to the cross-variance term not taking any effect of dispersion 

caused by the observation model into account when determining the gain. Bias in the residual 

leads the updated estimate to the wrong value and in the gain, to the wrong weight of the 

residuals in the new estimate. These effects are not often discussed and the only example found 

that mentions them comes from the work of De Wit and Van Diepen (2007), which makes it 

explicit that the variance they ascribed to observations did not account for deficiencies in the 

conversion model itself, later concluding that the value they ascribed to the variance was indeed 

underestimated. Nevertheless, errors in retrieval have been acknowledged (Jin et al., 2018) and 

an alternative to avoid them is operating in the measurement space, which leads to avoiding the 

error in the inversion process (Guo et al., 2018). Additionally, Huang et al. (2019b) used the 

RTM PROSAIL, arguing this is a good way to avoid the process of regional LAI retrieval and 

Li et al. (2017) used the PROSAIL model and characterized errors in the observations, pointing 

to errors from 0.09 to 0.51 m2 m-2 of error in LAI in the different development stages of wheat. 

For those who develop their own measurement functions, they often establish them 

with empirical relationships and characterize their uncertainty based on field data. So works 

such as the one by Huang et al. (2016), which converted vegetation indices into LAI, obtained 

field measurements and used the regression error between LAI field observations and the 

indices to estimate errors in each phenological stage. As the problems that have been addressed 

often refer to large areas, estimates of observation uncertainty may be established as the 

variability across fields. For instance, Zhao, Chen and Shen (2013) understood that neighboring 

pixels had similar uncertainties for the same period and used the variance among fields as 

uncertainty of remote sensing LAI. 

Other than satellite retrieved data, there are other sources for observations to which 

error is ascribed in other ways. For instance, Linker and Ioslovich (2017) and Ruíz-García et 

al. (2014) used destructive measurements of the assimilated state. In the first case, the authors 

used direct measurements of aboveground biomass of potatoes and cotton and in the second 
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case, of lettuces. As for non-destructive measurements, Linker and Ioslovich (2017) also used 

pictures taken from 1.5 and 2 m above the crop to determine canopy cover, which, as a fraction 

of the fraction of the soil surface covered by the canopy, may also be considered a direct 

measurement of the state. On these cases, errors corresponded to variance from measurements. 

Data retrieved by unmanned aerial vehicles (UAVs) often have similar limitations as satellites 

regarding scale, but brings into discussions other aspects, particularly, as cameras are able to 

capture other types of data. For instance, Yu et al. (2020) used plant height detected by UAVs 

as well as field measured and discussed the effects of multiple values ascribed to errors, arguing 

the trial-and-error procedure could provide a guideline when the true field observation error is 

unknown. 

Finally, one relevant aspect refers to how soil-crop systems may not have a constant 

value for the error. Nearing et al. (2012) explain how the soil moisture observation uncertainty 

is variable throughout time, since measurement accuracy degrades as vegetation water content 

increases throughout the season. They ascribed to error measurement a value derived from the 

relationship between variance in the soil moisture retrieval and this fraction of plant population 

and plant biomass that corresponds to water. Lei et al. (2020) evaluated a time-varying error for 

soil moisture observations as a function of LAI. They observed an overall improvement in soil 

moisture estimates, but also a somewhat less stable DA performance. Also for soil moisture, 

Mishra; Cruise and Mecikalski (2021), chose a constant error for the observation, but they were 

aware that the errors in the sensors used behaved in contrasting ways over crop growth stages, 

and that this choice may have led to errors that were too low in the early growth season and 

larger later in the season. Lu et al. (2021) used the multi-year average value of the daily standard 

deviation of the observations from the 4 soil moisture profiles. But for canopy cover, they noted 

the error varies dramatically during the growing season, with significant variability in the 

exponential growth stage and the decay period canopy cover, and only marginal when the 

canopy was near maximum. So, they assumed canopy cover observation error as dynamic, and 

the standard deviation of the samplings from the different zones on each sampling day was used 

separately. Li et al. (2017) considered the standard deviation of the LAI observations as 10% 

of the measured value, based one their observations of LAI, and Curnel et al. (2011) used a 

coefficient of variation to characterize uncertainty, thus ascribing to this hyperparameter of the 

filter a value that corresponded to a fraction of the observation. 

 

• Model errors 
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As mentioned in section 3.3, model uncertainty may be ascribed to its parameters, 

inputs, and structure. In the case of Pellenq and Boulet (2004), they had two situations, and the 

differences in model behavior, regarding soil moisture and biomass, required different 

approaches for determining sources of model uncertainty. When analyzing the effects of initial 

input values, they observed that for biomass, as the state value is propagated throughout growth, 

there is no compensation for previous errors, and errors in the estimates of initial conditions 

could impact the following behavior. And while for soil water, the reliance on previous values 

is lower, with shorter “memory” of the system, in the coupled case, the initial water content 

could strongly impact biomass evolution. As for crop model noise, they assumed there would 

be at least one parameter set in the ensemble that could satisfactorily reproduce natural 

conditions. So, they decided by generating ensembles ascribing uncertainty to parameters and 

to inputs. On the other hand, in the case of soil moisture, since it tends towards low variance 

and equilibrium, they suggested including model noise as well, which should be nonetheless 

calibrated to avoid the loss of model integrity. Nearing et al. (2012) evaluated uncertainty in 

weather inputs, through correlated perturbations in weather time-series. Their results were not 

conclusive as in one of their systems, the assimilation of LAI improved yield estimates, but not 

the exclusive assimilation of soil moisture.  

Uncertain inputs also manifest through unusual events, which are often not included 

in models. Therefore, for some authors, an advantage of filter assimilation methods is that they 

can incorporate these dynamic changes (Y. Li et al., 2014). For example, Hu et al. (2019) 

improved sugarcane yield estimates by assimilating leaf area index into the SWAP-Wofost 

model, after the interference in LAI caused by artificial leaf stripping and natural storms, and 

in Zhao, Chen and Shen (2013), the authors observed high errors when simulating yield for four 

regions in which meteorological disasters had occurred, which were then reduced to some 

extent by assimilating observations. 

Calibration is an issue that is often mentioned regarding model errors, as it makes the 

model more consistent with the spatially limited field measurements and calculated uncertainty 

in parameters could be propagated through the model (Huang, Gómez-Dans, et al., 2019). Kang 

and Özdoğan (2019) identified that over large areas, calibration is no longer specific for 

cultivar, sowing dates or management. They commented on how the bias in model estimates 

this generates leads to violating the assumptions of assimilation techniques that require model 

errors to have zero means. The authors analyzed the impact of high model bias and uncertainty 

on yield estimates obtained by LAI assimilation and observed that bias with the same sign for 
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LAI and yield led to lower errors after assimilation than the open-loop reference, while opposite 

signs led to assimilation enlarging the errors. It is nevertheless the case that before performing 

assimilation, models are frequently calibrated. Lu et al. (2021) believed the standard was lower, 

aiming at having an ensemble of non-calibrated simulations that could capture the dynamics of 

key model states and that its spread reflected the model state variability. Their assimilation of 

canopy cover and soil moisture was able to improve yield when compared to the no-assimilation 

case.  

 

E2.3 Variables 

In a way, the largest restrictions to performing data assimilation in crop models are 

which additional data is available and if the knowledge or ability of how to relate them to 

models’ state variables exists. This is one reason why LAI, canopy cover and soil moisture are 

frequently explored as observations, as there are several satellite products available for them. 

But being able to perform data assimilation does not mean that assimilation will be effective. 

As summarized by Lei et al. (2020), the performance of any data assimilation algorithm is 

fundamentally related to the strength of the relationship between observations and model states.  

For Mishra; Cruise and Mecikalski (2021), assimilation of soil moisture, especially in 

irrigated areas, led to improvements in yield estimates, which is a very direct relationship, but 

for Ines et al. (2013), they expected assimilation of soil moisture in the DSSAT-CSM-Maize 

model to update the rootzone soil moisture, affecting soil nitrogen and, therefore, yield. There 

is then no guarantee that the included observations will improve estimates. For instance, Linker 

and Ioslovich (2017) discuss how since the Aquacrop model is water-driven, and as such, solar 

radiation is not considered explicitly, which may lead to underestimating the effect of canopy 

cover on crop development. And if assimilation not improving the outcomes is undesirable, it 

should be noted that it could even have an adverse effect on the estimates, depending on how 

variables interact with each other. Tewes et al. (2020a) argue that as model complexity rises, 

sequential update of only one or few state variables could threaten the model’s integrity and 

cause an undefined state of the model, such as when the simulation triggers a new module by 

reaching a threshold value, but the filter updates the estimate to a value lower than the threshold. 

Time-averaged correlation has been suggested as not very helpful when determining 

best assimilating state variables by Nearing et al. (2012). In their experiments, they point to 

several cases, using different realistic uncertainty scenarios, in which high correlation is not 

connected to improvement in yield estimates. Nearing et al. (2018) framed this discussion by 
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relying on concepts of information theory, proposing a method to quantify how efficient data 

assimilation may be, through the quantification of information content on simulated model 

states and of the retrieval data relative to the imperfect evaluation data, and then measuring the 

fraction of this information that is extracted by a given DA implementation or algorithm.  

 

E2.4 Timing and frequency 

An issue that interacts with which variable is going to be assimilated to improve an 

estimate is at what time of growth and how often should the estimate be updated. Frequently, 

the discussion is connected to at which moment of the cycle the observation available will be 

most informative. Dente et al. (2008) evaluated the exclusion of one more precise image and 

observed that for wheat, within the conditions they observed, the data should include images 

from either the end of stem elongation stage or the beginning of heading, when the LAI reaches 

the maximum value. Timing of assimilation in wheat has been widely discussed (Curnel et al., 

2011; Dente et al., 2008; Guo et al., 2019; Kang & Özdoğan, 2019; H. Li et al., 2017; Xie et 

al., 2017) with some authors reaching the conclusion that images from the whole cycle 

presented the best results (Kang & Özdoğan, 2019; H. Li et al., 2017). For sugarcane, on the 

other hand, Yu et al. (2020) concluded that assimilation of height in the late period of the 

elongation stage, involving the maximum plant height, can be the most useful, without the need 

for its sampling over the whole development stage.  

As remote sensing observations are often only available with large intervals between 

them, their assimilation allows for the model to adjust to the updates, but local assimilation of, 

for example, soil moisture, would present a different situation. Lu et al. (2021) commented on 

how their use of local probes for monitoring soil moisture allowed for daily assimilation of this 

state, which likely improved their results. As crop systems models often present daily steps, it 

is not the case that assimilation would be performed in more frequent intervals, but in other 

contexts, such as weather forecasts, it has been argued that very frequent updates could insert 

noise in models, degrading forecasts (He, Lei, Whitaker, & Tan, 2020). 
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E3. MATERIALS AND METHODS 

E3.1 Data sources 

Environmental data collection was performed in research greenhouses at the School of 

Agricultural Engineering of the University of Campinas (22º 49' 06” S, 47º 03' 40” W, 635 m 

altitude), cultivated with tomatoes. Dry mass and leaf area index from destructive analyses of a 

tomato growth cycle was also collected for calibration of the models. 

 

E3.2 Crop models 

With the environmental data from greenhouses, we simulated growth using the 

Reduced State Tomgro model (Jones et al., 1999) and the Vanthoor model (Vanthoor, de Visser, 

Stanghellini, & van Henten, 2011). We performed assimilation in the Reduced Tomgro model 

with calibrated parameters from the original experiment in Gainesville, using two different 

sources of simulated observations, as explained in section 3.3. Calibration was performed in 

both models through minimizing the relative squared error. 

Code was implemented in python language and difference equations were integrated 

by the Euler method. Model code, as all code used in this work, is available in 

https://github.com/mnqoliveira/data-assimilation-iot/. 

 

E3.3 Data assimilation 

We evaluated the impacts of different approaches for performing data assimilation for 

yield estimates. Ground truth values corresponded to the simulation performed in each of the 

four environments with the calibrated Reduced Tomgro. For the different approaches for 

assimilation, we included: 

- Three assimilation techniques: Ensemble Kalman Filter (EnKF), Unscented Kalman 

Filter (UKF), Particle Filters (PF). 

- Two assimilated variables: Fruit dry weight (Wf) and Mature fruit dry weight (Wm) 

- Two sources of observations: one in which three noise levels were ascribed to the 

simulations of the calibrated Reduced Tomgro in the respective environments (Case 1) and one 

in which calibrated Vanthoor model was used for simulations (Case 2). 
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- Uncertainty in crop model: UKF requires determining a value for uncertainty in model 

estimates. In both Cases, as assimilation was performed in the non-calibrated Reduced Tomgro 

model, these were ascribed as the root mean squared error from the non-calibrated Reduced 

Tomgro model for the assimilated variable. This error was both tested as fixed and as a value 

variable through the cycle, corresponding to the error of the non-calibrated model to the samples 

used for calibration. For the EnKF, as this uncertainty could be ascribed in four different ways, 

we made an assessment of the different approaches: ascribing to the initial states the standard 

deviation of the observed initial values, ascribing to a parameter, conditioned to which state 

variable would be assimilated, a perturbation of 10% of its value, ascribing to the hourly 

photosynthetically active radiation a perturbation of 10% of its value and ascribing the values 

used in the variable case of the UKF directly to the model state. 

- Uncertainty in observations: In Case 1, we ascribed the root mean squared error from 

the calibrated Vanthoor model for the assimilated variable, either using the RMSE of the whole 

cycle or the RMSE of the different observations in one day (Table 1). In Case 2, three different 

noise levels (10%, 30% and 50%) were ascribed to observations of the calibrated Reduced 

Tomgro Model. The level multiplied by the observation was treated as the standard deviation 

of a normal distribution from which the perturbation was sampled, as well as treated as 

uncertainty ascribed to that observation. 

- We subsampled the observations to determine the effect of frequency. Subsampling 

used 50% and 10% of the data available in the cycle and in one of the repetitions, sampling was 

regularly spaced through the cycle while in the others, it was random. 

 

In both Cases, we repeated the process 20 times to avoid biasing the results due to 

sampling. In the case of controlled error, we included additional random perturbations — N(1, 

0.09) — in the observations and account for the variability of sampling the noise. The number 

of elements in Particle Filters was of 10.000 and in the Ensemble Kalman Filter, of 500. 

 

Table 15. Errors ascribed to the filters as uncertainty estimates.  

 
Simulation 

day 
Model Observations (Case 1) 

State variable  Wf Wm Wf Wm 

Fixed – Non-

calibrated model 
All 90 60 45 20 

Variable 

10 0 0 0 0 

27 0 0 0 0 

38 1.73 0 2.85 0.0260 

52 38.7 0 6.20 2.01 
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66 93.4 6.00 22.3 2.38 

90 144 82.5 8.21 45.6 

94 164 142 19.5 98.3 

 

We evaluated our approaches by calculating the daily absolute relative error through 

growth. Our focus on evaluating daily results is related to the indeterminate growth. Differently 

from other crops in which one value is ascribed to yield, harvest for indeterminate crops is 

continuous, and therefore, model errors through the growth cycle affect estimates along 

harvests. As the excess of zeros from the vegetative phase could skew these results, they were 

not included in the calculation. 

 

E4. RESULTS AND DISCUSSION 

We have identified in the Theory section that even when the problem is well 

established, ascribing the covariances of filters’ parameters is performed in multiple ways. In 

our evaluation of strategies to determine how to ascribe uncertainty to model and observations, 

we aimed at observing how imperfect measurements can allow for improvements on estimates 

of tomato yield, when compared to using the model without calibration (Open Loop). In 

general, Open Loop simulations in Experiments 1 and 2 underestimated the assumed truth a lot 

less than in Experiments 3 and 4. And as observations followed the trends in the truth, the larger 

differences in observations and model estimates would be observed in these two growth cycles. 

As for observations obtained from the Vanthoor model, there are differences depending on the 

variable. For fruits, they are overall slightly larger than the estimates of the non-calibrated 

model in Experiments 1 to 3 and much closer to the simulated truth in Experiment 4; for mature 

fruits, they are close to the non-calibrated model in Experiment 1, slightly larger than the model 

estimates in Experiments 2 and 3 and close to the simulate truth in Experiment 4. 

We begin by the case in which we had no control on the error of the observation, Case 

1, and attempt to understand and generalize them based on the results of Case 2. Figure 1 shows 

the relative errors of daily estimates through each cycle of all repetitions. One can observe how 

assimilation using both the UKF and the EnKF and fruits’ observations in general improved the 

outcomes in comparison to the model without calibration and that assimilation of mature fruits’ 

observations also showed improvements for most experiments. On the other hand, particle 

filters could not improve the estimates with assimilation of fruits, even deteriorating them, and 

only in some experiments it could improve estimates, particularly when all observations of 

mature fruit were available.  
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As in this first case errors on observations are not designed, uncertainty ascribed to 

them was evaluated as variable or fixed. Kalman filter methods are an optimized approach for 

performing a weighted average, in which the weights are related to the covariance of each 

estimate. If the residual magnitude is amplified by large uncertainties in the measurement, the 

impact on the updated value will be large, unless the uncertainty of the model is much lower 

than in the measurement, to guarantee the updated estimate would not be modified. As we used 

the non-calibrated model to provide models’ estimates, which differs from the usual protocol, 

one could already expect, from Table 1, that models’ larger covariances would lead assimilation 

to take more advantage of observations when their covariances are low. As it is often the case 

that crop models do not have constant variance (Wallach, Makowski, Jones, & Brun, 2019b), it 

is to be expected that errors grow through the cycle, so it seems that the process is more 

informed if covariances could vary with the magnitude of the observations and estimates. So, 

for the Kalman Filters, in this scenario, if model uncertainty is treated as variable, by ascribing 

the fixed value from Table 1 to the uncertainty in observations, the beginning of the growth 

cycle would mostly rely on the model and only final observations would be explored by the 

filter. On the other hand, if both are considered variable or if both are considered fixed, lower 

covariances of observations would move estimates towards them. Figure 1 shows that in Case 

1, differences in the outcomes caused by uncertainty configuration depend both on the 

technique and frequency of assimilation. The EnKF should be mostly insensitive to the 

approaches evaluated regarding model covariance — unless if the perturbation was directly 

applied to the states, but in this case, it was applied to parameters —, as it calculates models’ 

covariance based on the ensemble. The results then show marked differences based on how the 

observation covariance was treated. For the UKF, the ascribed uncertainty values led to very 

similar outcomes regardless of configuration, except for Experiment 4, in which the 

observations were the most different from the model estimates. In this case, allowing 

observation uncertainty to be lower than the model’s led assimilation to rely more on them. 

For the particle filter, the quality of the model estimates also affect the performance, 

but in a different way. In this case, instead of acting as a weight, model uncertainty spreads the 

particles of estimates for possible state variables’ values and large covariances entail a very 

large spread. This spread is reduced by the selection of particles that are compatible to 

observations’ uncertainties and values. Particles are then weighted considering their probability 

given the distribution of observation and, in this example, only in a few experiments it was 

possible to take advantage of both model estimates and observations to improve results through 
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assimilation. Overall, divergence happened because the large spread of particles led to 

continuous resampling, without observations being used. 

 

Figure 1. Relative errors for daily estimates of mature fruit dry mass obtained by assimilation of fruit 

dry biomass (Wf) or mature fruit dry biomass (Wm) as estimated by the Vanthoor model using the 

Ensemble Kalman Filter (EnKF), the Unscented Kalman Filter (UKF) or Particle Filters (PF) through 

the whole cycle with different fractions of the complete observation dataset for the four weather 

experiments and four different approaches of ascribing uncertainty (Model error and observation error 

fixed, only observation error fixed, only model error fixed and both varying through the cycle). 

Horizontal orange lines refer to the relative errors of the Reduced Tomgro model in estimating mature 

fruits without assimilation: full line corresponds to the median and dashed lines to the 25th and 75th 

percentiles. Y-axis is truncated at 100%. 

 

Assimilation frequency may be considered complementary to uncertainty estimates, 

since assimilating an observation with large errors very frequently may not allow for the model 

to correct the estimates. As in most experiments of Case 1, observations were expected to 

improve estimates, except for assimilation of mature fruits in Experiment 1, which may be used 

as an example of fewer observations leading to slightly better results. On the other hand, in 

some cases, the difference between assimilation with half or 100% of observations of either 

variable for the Kalman Filters does not seem large, even in Experiment 4, in which 

observations lower relative errors the most. 
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With controlled errors, one can see the points previously made. It was expected that 

increasing noise would lead to deterioration of filter performance and that this is conditioned 

on model covariance, i.e., the larger the covariance is, more reliant the estimate is going to be 

on the observation. And that, except for large discrepancies, there will be a compromise 

between the two values. Figure 2 includes plots for relative error distribution in both fixed and 

variable model error cases in all four experiments for the assimilation of all observations 

available. Regarding the strategy of ascribing uncertainty to models, the previously mentioned 

effect of the EnKF is observed again. But the strategies lead to visibly different results for UKF 

and mature fruits. In this case, as observations are reasonably similar to the truth, they vastly 

improve the results of assimilation and the more the process is allowed to rely on them, by 

fixing model covariance as a large value, the lower the errors, similarly to what happened in 

Experiment 4 of Case 1. One can also note an interesting case for 30% of noise in fruits’ 

observations and the Ensemble Kalman Filter in which the compromise between both model 

and observation uncertainty leads to yield estimates with lower relative errors than the lowest 

noise level. Before we delve into this issue, there is a comment to be made regarding 

assimilation frequency. 
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Figure 2. Relative errors for daily estimates of mature fruit dry mass obtained by assimilation of fruit 

dry biomass (Wf) or mature fruit dry biomass (Wm) as estimated by perturbations of different levels in 

the outputs of the Reduced Tomgro model using the Ensemble Kalman Filter (EnKF), the Unscented 

Kalman Filter (UKF) and Particle Filters (PF) through the whole cycle with different fractions of the 
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complete observation dataset for the four weather experiments and two different approaches of ascribing 

uncertainty (Model error fixed and model varying through the cycle). Horizontal orange lines refer to 

the relative errors of the Reduced Tomgro model in estimating mature fruits without assimilation: full 

line corresponds to the median and dashed lines to the 25th and 75th percentiles. Y-axis is truncated at 

100%. 

 

The effect of removing observations in the relative error over the growth cycle may be 

seen in Figure 3, in which the variable model uncertainty strategy is used. The main difference 

in outcomes relate to which variable is being assimilated, with worse outcomes for the more 

frequent assimilation of fruits’ observations and the opposite being true for the assimilation of 

mature fruits. One can note that for both variables, as long as observations are not frequently 

used, outcomes are often similar regardless of noise level. This brings back the point of 30% of 

noise level in fruits observations leading to better outcomes with the EnKF noted in Figure 2, 

which is also clarified in Figure 4. 
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Figure 3. Relative errors for daily estimates of mature fruit dry mass obtained by assimilation of fruit 

dry biomass (Wf) or mature fruit dry biomass (Wm) as estimated by perturbations of different levels in 

the outputs of the Reduced Tomgro model using the Ensemble Kalman Filter (EnKF) and the Unscented 

Kalman Filter (UKF) through the whole cycle with different fractions of the complete observation 

dataset for the four weather experiments and ascribing variable model uncertainty to the filter. 

Horizontal orange lines refer to the relative errors of the Reduced Tomgro model in estimating mature 

fruits without assimilation: full line corresponds to the median and dashed lines to the 25th and 75th 

percentiles. Y-axis is truncated at 100%. 

 

As assimilation relies both on observation quality and model performance, Figure 4 

highlights the difference between experiments and how observations influence them. We 

selected for Case 1 the example of 100% of observations in which both uncertainty values are 

allowed to vary through growth. One can see in all experiments, that as the non-calibrated 

model underestimated both state variables, improvement provided by assimilation would come 
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from taking advantage of the larger magnitude of observations to enlarge the estimates. But 

while it is evident that this would happen in Experiment 4, in which the variable of interest is 

the same as the one being assimilated, so there is no additional step of processing, this is less 

clear for the assimilation of fruits. Experiment 2 is a good example of this issue. In this 

experiment, even though observations of fruits were lower than the truth, the outcome when 

evaluating yield was much better than without assimilation. On the other hand, in Experiment 

4, as observations of fruits were larger, this led to overestimating mature fruits after 

assimilation. This happens because assimilation does not change how the non-calibrated model 

relates fruits and mature fruits. This result is similar to the one of 30% of noise producing better 

results for yield, since it relates to how the updated state will impact the desired variable. In this 

sense, the idea of using few observations for the case of fruits relate to slightly changing 

magnitude but also capturing the trend with the model, causing an indirect positive effect on 

yield estimates. 

 

 

Figure 4. Growth curves for fruit and mature fruit dry mass obtained by assimilation of fruit dry biomass 

(Meas: Wf) or mature fruit dry biomass (Meas: Wm) estimated by the Vanthoor model as observations, 

using the Ensemble Kalman Filter (EnKF) or the Unscented Kalman Filter (UKF) with the complete 

observation dataset for the four weather experiments and ascribing variable uncertainty for both model 

and observations. Curves refer to all repetitions of the experiment. 
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Finally, in the previous discussions we focused on the generation of ensembles by 

using parameter perturbation. Figure 5 shows an example of the impact of the other approaches 

evaluated. Perturbating initial states had negligible effect in shifting estimates and perturbating 

states directly caused large variability on the values and if mature fruit is of interest, this is not 

desirable. This left inputs and parameters as possibilities, and we opted by the latter as outcomes 

seemed better. 

 

 

Figure 5. Growth curves for the estimates of both state variables evaluated, by assimilation of fruit dry 

biomass (Meas: Wf) or mature fruit dry biomass (Meas: Wm) using the Ensemble Kalman Filter with 

different approaches for ascribing uncertainty to the model, in all repetitions in each of the four weather 

experiments, for the case of variable model uncertainty in simulations using 30% of noise in 

observations. Smaller black dots represent the observations assimilated. 
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E5. CONCLUSION 

Even though our focus was on discussing the new sources of data, assimilation with 

greenhouse tomato models is mostly new, so there is little information as to how different 

variables may impact the results. In this work we focused on assimilating fruit and mature fruit 

masses. It would be expected that direct assimilation of mature fruits could lead to the largest 

improvements, but we observed that intermittent assimilation of fruit mass also led to better 

estimates of mature fruit mass when compared to no assimilation.  

We also aimed at enhancing clarity as to how to perform data assimilation and focused on 

a new field of application, in protected environments. The main characteristics of this new 

context for application are the new data sources, that could, for instance, rely on digital images 

to estimate fruit mass, as well as the frequency for obtaining them, which in this example could 

be daily. In this new context, in which availability of observations is not a restriction, some 

aspects of the process must be revaluated. Filter uncertainty parameter choices really impacts 

outcomes, and its specification is also conditional on the frequency of observation availability. 
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