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Resumo
Endomorfismos de Anosov são uma versão mais geral de mapas que exibem hiperbolicidade
uniforme, contendo a já bem estudada classe dos difeomorfismos de Anosov e muitos outros
exemplos. Esses endomorfismos são difeomorfismos locais apresentando taxas uniformes
de contração e expansão ao longo de uma sequência de espaços tangente. Neste trabalho,
exploramos alguns aspectos desses mapas, focando nossos esforços na compreensão de seu
comportamento em superfícies, e na existência e regularidade de uma conjugação com um
endomorfismo linear do toro.

Para melhor compreender a regularidade da conjugação, quando ela existe, estudamos as
propriedades geométricas e mensuráveis das folheações estáveis e instáveis. A propriedade
principal é a de densidade uniformemente limitada (UBD), a versão uniformemente limitada
de continuidade absoluta folha-a-folha para folheações, que provamos ser equivalente às
holonomias terem jacobianos uniformemente limitados.

Finalmente, apresentamos no 2-toro uma caracterização da conjugação suave de endomor-
fismos de Anosov especiais com suas linearizações em termos da propriedade UBD, desde
que o sistema quase preserve volume ao longo das folheações invariantes, condição que
substitui a conservatividade para endomorfismos. Primeiro provamos que a condição de
regularidade nas folheações e a condição de volume implicam que os expoentes de Lyapunov
do endomorfismo são constantes e iguais aos da sua linearização. Então provamos que, se
os expoentes de Lyapunov nos pontos periódicos correspondentes de dois endomorfismos de
Anosov conjugados são iguais, então a conjugação é tão regular quanto os endomorfismos.

Palavras-chave: dinâmica suave. dinâmica hiperbólica. dinâmica não inversível. rigidez.



Abstract
Anosov endomorphisms are a more general version of maps displaying uniform hyperbolicity,
containing the well studied class of Anosov diffeomorphisms and many other examples.
These endomorphisms are local diffeomorphisms presenting uniform rates of contraction
and expansion along a sequence of tangent spaces. In this work, we explore some aspects
of these maps, focusing our efforts in comprehending their behavior on surfaces, and in
the existence and regularity of a conjugacy with a linear toral endomorphism.

To better grasp the regularity of the conjugacy, when it does exist, we study geometric
and measurable properties of the stable and unstable foliations. The main property is
the uniform bounded density (UBD) property, the uniform bounded version of leafwise
absolute continuity for foliations, which we prove to be equivalent to the holonomies having
uniformly bounded Jacobians.

Finally, we give on the 2-torus a characterization of smooth conjugacy of special Anosov
endomorphisms with their linearizations in terms of the UBD property, provided that
the system quasi preserves volume along invariant foliations, a condition that replaces
conservativeness for endomorphisms. We first prove that the regularity condition on the
foliations and the volume condition imply that the Lyapunov exponents of the map are
constant and equal to the ones of its linearization. Then we prove that, if the Lyapunov
exponents on corresponding periodic points of two conjugate Anosov endomorphisms are
equal, then the conjugacy is as regular as the maps.

Keywords: smooth dynamics. hyperbolic dynamics. non-invertible dynamics. rigidity.
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Introduction

Along this introduction, we present some context for our field and the main
concepts we work with, as a way to display how our results are related to the existing
research in Dynamical Systems. Then we present the results obtained in this work and the
structure of the text.

Uniform hyperbolicity
Nowadays, phenomena related to hyperbolicity are central in some fields of

work in Dynamical Systems. To comprehend how the history of the field provided this
development, it is key to highlight the role of stability when studying Dynamical Systems.
The information on this section is mostly inspired by the Preface of [9].

The field of Dynamical Systems emerged at the end of the 19th century from
the works of Henri Poincaré, who was the first to explore the behavior of orbits of a system
modeling celestial mechanics from a qualitative point of view. Since this paradigm change,
instead of studying systems of equations with analytic tools, many mathematicians started
to study topological and measure-theoretic properties of most orbits to describe the general
nature of the system.

Natural questions followed, mainly about stability, since it was already a
important question for celestial mechanics. The concept of stability was first explored for
states on the phase space, that is, given a system, it was desirable to know if a state of
the system would resist small perturbations, for instance on the positions and velocities
for mechanical systems.

In the 30s, Aleksandr Andronov and Lev Pontryagin [2] introduced another
kind of stability, now regarding the stability of the system instead of the stability of its
points or orbits. We say that a system is structurally stable if its topological behavior
persists under small perturbations of the map on some set of functions. Both concepts
of stability are vital to applications, since computations always incur errors, and if the
phenomenon modeled with small errors is not similar to the original one, the models may
not be good for predictions — for instance, as was noticed empirically by Edward Lorenz
[35] when he discovered the famous attractor that carries his name.

At the middle of the 20th century, mathematicians were interested in charac-
terize the systems with structural stability, with the belief that they were typical among
all systems on a given manifold — mostly because Andronov and Pontryagin proved [2]
that most flows on surfaces are structurally stable —, but Stephen Smale proved that it is
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not the case for higher dimensions or discrete-time dynamics [57].

Dmitri Anosov introduced — through the study of geodesic flows on negatively
curved manifolds [3] — a class of examples that are structurally stable, the uniformly
hyperbolic diffeomorphisms (also known as Anosov diffeomorphisms), that was formalized
by Smale. Uniformly hyperbolic diffeomorphisms have a splitting of the tangent space of
each point into a direction with uniform contraction and another with uniform expansion.
Later, in 1970, Jacob Palis and Stephen Smale [47] conjectured that this splitting on the
non-wandering set is fundamental, in fact, together with a transversality condition, it is
equivalent to structural stability. This conjecture was proved by Ricardo Mañe [37].

Uniform hyperbolicity, however, is too restrictive. Indeed, in dimension 2 and 3
tori are the only manifolds which support Anosov diffeomorphisms [22], and any Anosov
diffeomorphism on Tn is topologically conjugate (has the same topological dynamics) to a
linear toral automorphism [39]. Additionally, uniform hyperbolicity is not generic, there
are open sets of non-hiperbolic maps for any manifold.

Thenceforth, the field expanded to include weaker forms of hyperbolicity, such
as partial hyperbolicity, dominated splitting and non-uniform hyperbolicity. See [9] for a
complete view on the theory. Although not structurally stable, the interest in these systems
began as they surged as examples with robust properties (meaning that all nearby systems
have this property), such as the example given by [36] of a diffeomorphism with robust
transitivity that is not uniformly hyperbolic, but is partially hyperbolic.

Endomorphisms
In his thesis [54], Michael Shub widen the work of his advisor, Stephen Smale,

to non-invertible differentiable maps on manifolds. He proved the classical result that, on
the circle S1, any C1 endomorphism f : S1

Ñ S1 is topologically conjugate to z ÞÑ zd,
where d “ deg f . This result is in fact a particular case of a more general one, for he
introduced the concept of expanding endomorphism as a C1 map on a closed manifold such
that its derivative acts as a uniform expansion on the tangent bundle. Shub proved that
any two homotopic expanding maps on a compact manifold are topologically conjugate,
thus providing examples of structurally stable endomorphisms.

Despite his pioneer work about expanding maps on manifolds, Shub generalized
in his thesis [54, Theorem 6] some of his results for Anosov endomorphisms (having
both directions of expansion and contraction), including the structural stability, but he
considered every Anosov endomorphism to have a global unstable bundle, which was
proved independently by Feliks Przytycki [49] and by Ricardo Mañé and Charles Pugh
[38] to be false.
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This error in Michael Shub thesis was propagated in the work of John Franks
[22], for instance [22, Corollary 1.3] affirms that unstable leaves on the universal cover
are preserved under deck transformations, which is false. And in the remark after [22,
Proposition 1.9] it is stated that the stable manifolds are dense, which is also false, and we
detail it in Section 1.3. We do not know if [22, Proposition 1.9] is correct and the unstable
foliations for Anosov endomorphisms are always dense.

The fact that Anosov endomorphisms that are not invertible or expanding
maps are not structurally stable was proven by R. Mañé and C. Pugh [38] and F. Przytycki
[49], were they also introduced several properties of these systems.

Rigidity
The term rigidity is often use in the theory of dynamical systems, and it is

usually associated to the following idea

“Values of finitely many invariants determine the system either locally, i.e. in
a certain neighborhood of a ‘model’, or globally within an a priori defined class
of systems.” [8]

In [8] the authors work with a complementary concept, the one of flexibility,
meaning that on a fixed class of systems and under general restrictions, a set of invariants
can take arbitrary values. These two paradigms allow to better understand the general
behavior of a class of dynamical systems.

In our case, as stated in Theorem E, this is the precise meaning of rigidity:
we have that the invariants are the stable and unstable Lyapunov exponents, and they
determine that the system is a smooth coordinate change of a linear one, provided it only
has one unstable direction for each point. This is the particular case for which we know
examples of, but the proof works for a possible more general setting, as we explain better
at the end of this introduction.

The aforementioned result of [54] is a rigidity result, since the degree of a
C1 endomorphism of the circle determines its topological conjugacy class. These kind of
results were largely studied for one dimensional endomorphisms. For instance, together
with Dennis Sullivan, Shub [56] also proved that if f and g are Cr, r ě 2, expansions
on the circle that are absolutely continuously conjugate, then this conjugacy have the
same regularity Cr. Thus, the degree of the endomorphism actually determines its smooth
conjugacy class.

For Cr diffeomorphisms on the circle, the invariant to look at is the rotation
number α: if the rotation number of f is irrational, then the map is topologically conjugate



Introduction 14

to a rotation by α [17]; and with a condition bounding the derivatives Dfn, we have
that this conjugacy is Cr [31]. These results are part of the smooth classification problem,
that consists in giving conditions under which two smooth dynamical systems that are
topologically equivalent are in fact smooth equivalent, and they are under the umbrella of
the rigidity study. To more information on the one dimensional case, see [19, 15].

For higher dimensions, we consider the smooth classification problem for uni-
formly hyperbolic systems. For Anosov diffeomorphisms on T2 and Anosov flows on T3,
this problem was completed solved by Rafael de la Llave, José Manuel Marco and Roberto
Moriyón in a serie of works [40, 16, 41, 18], where they prove that two Anosov diffeomor-
phisms are smooth conjugate if and only if the Lyapunov exponents for corresponding
periodic points coincide. In T3, this problem is also addressed by Andrey Gogolev and
Misha Guysinsky [24, 23]. De la Llave shows in [17] that this characterization fails to hold
on manifolds of dimension greater than 3.

Theorem E then regards this problem for endomorphisms on T2, and it is more
general than a previous result by Fernando Micena [42]. Micena treats as well conditions
for smooth conjugacy for Anosov endomorphism on higher dimensional tori, by requiring
more hypothesis for it to hold.

When studying dynamical systems, we often are interested simultaneously
in different aspects of the systems, whether geometric, measurable or topological. More
generally, rigidity can reefer to results in which a condition under one of this aspects
implies a very specific behavior of the system under the same aspect or other. In this sense,
we also prove for Anosov endomorphisms in T2 that a kind of measurable regularity of the
stable and unstable foliations implies that the Lyapunov exponents are constant.

Regularity of foliations
As we mentioned above, one of the conditions that we require to obtain smooth

conjugacy is a kind of measurable regularity of the stable and unstable foliations. More
conventionally, this regularity is absolute continuity, and we have two approaches to it,
one of then using conditional measures, and the other using holonomies.

For the precise definitions of the concepts here mentioned, see Section 1.2, here
we recall the concepts briefly. Fubini’s Theorem essentially says that, to integrate in Rn

over a product of balls Ik ˆ In´k with respect to the product measure mk ˆmn´k, we can
integrate first with respect to mk on each set Ik ˆ tyu for y P In´k, and then integrate
the result with respect to mn´k. We want to generalize it by replacing tIk ˆ tyuuy with
a partition P of the space, considering any probability measure µ, and then getting a
similar decomposition of the integrals. This decomposition is called disintegration of µ
with respect to P , and each measure µP , for P P P , is called a conditional measure.
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We always have local conditional measures for continuous foliations, and if
they are equivalent to the induced volume, we say that the foliation is leafwise absolutely
continuous. The other extreme case is when they are atomic measures, in which case
we say that the foliations is atomic. Even foliations arising from dynamical systems can
present this behavior, see [48], for instance. For uniformly hyperbolic systems, however,
the foliations are always leafwise absolutely continuous.

A holonomy for a foliation is a map between two transverse discs that takes
one point in the first one and, by intersecting the leaf of this point with the second disc,
obtain its image. Roughly speaking, a point navigates from one disk to the other along
the leaves of the foliation. We say that a foliation is transverse absolutely continuous if its
holonomies preserve null measure sets on the discs.

These two definitions of absolute continuity are related: the former is weaker
than the latter, as we state precisely in Theorem 3. And the former implies the latter for
“good transversals”, as proved in the unpublished notes [50].

This regularity is not enough to guarantee smooth conjugacy. Even requiring
that the foliation is C1`α is not enough, since in T2 the foliations are C1`α, but there are
conjugate systems that are not smoothly conjugate. To overcome this we require that,
besides from being leafwise absolutely continuous, the conditional measures are uniformly
equivalent to the volume on the leaves, which we call UBD property, as defined by Fernando
Micena and Ali Tahzibi [43].

Theorem D is inspired by the following result.

Theorem 1. [60] Let f : T3
Ñ T3 be a C8 conservative partially hyperbolic diffeomor-

phism with hyperbolic linearization A. The center foliation has the UBD property if and
only if f is C8 semiconjugate to A.

Regularity conditions for the holonomies are frequently used in studying ergodic
theory for systems with some kind of hyperbolicity. For instance, codimension one foliations
for Anosov maps are C1, and this plays a role in our rigidity results. Another example
is given in [1, p. 105], where the condition (Y5) — introduced among other conditions
to guarantee the existence of Young structures for nonuniformly hyperbolic dynamics—
is that the holonomies have Jacobians with integrals uniformly bounded. The uniform
bound for the Jacobian is specifically used in [13], together with other conditions, to obtain
Markov partitions for uniformly hyperbolic invertible dynamical systems with singularities.

This motivates our study of the relation between holonomies with bounded
Jacobians and the UBD property, as done in Theorems A and B.
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Results and structure of the thesis
During Chapter 1, we present some necessary concepts to this work, such

as the definitions and properties of foliations and of uniform hyperbolicity for local
diffeomorphisms.

Chapter 2 is dedicated to explore the relation between uniform bounded
absolute continuity with respect to the holonomies (transverse) and with respect to the
disintegration (leafwise). The results that we prove about this relation are Theorems A
and B. In Theorem A, similarly to the proof that transverse absolute continuity implies
leafwise absolute continuity, we prove an uniformly bounded version.

Theorem A. If F is a transversely absolutely continuous foliation with uniformly bounded
Jacobians, then F has conditional measures along its leaves equivalent to the Lebesgue
measure and with uniformly bounded densities.

The proof of Theorem A is a direct consequence of the definitions. Its reciprocal,
however, is more complex, and holds for “well behaved” traversals.

Theorem B. If a foliation F has the UBD property, then for every transverse local
foliation T which is transversely absolutely continuous with uniformly bounded Jacobians,
the holonomy map hF : T1 Ñ T2 between almost every pair of T -leaves is absolutely
continuous with bounded Jacobian. The boundedness constant does not depend on T1 and
T2.

To prove Theorem B, we construct a family of transversely absolutely continuous
functions thgugPRk with uniformly bounded Jacobian (where k is the dimension of F) on
a foliated box, in such way that every local leaf T1 of T is taken to any other local leaf
T2 by a unique element of thgugPRk , that act as an holonomy through F -leaves. Moreover,
restricted to F-leaves, these functions are “translations by g” with uniformly bounded
Jacobian. This implies that, for almost every pair of T -leaves, hg is an F -holonomy and it
is absolutely continuous with bounded Jacobian.

The main issue when we adapt the proof of [50, Lemma 2.6] to the uniformly
bounded context is in Lemma 1, where we need, in order to complete the argument by
absurd, to construct a small measurable “rectangle” where some inequalities hold. Other
difficulties arise when defining the domain of each of the functions hg, as we do it in such
a way that they do not distort to much the lengths on F -leaves.

The previous theorems further motivate the definition of foliations having the
UBD property, in addition to the comments already made in this introduction. This
property is one of the hypothesis on Theorem C, our rigidity theorem inspired by Theorem
1.
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Working with preservation of volume for maps that are not invertible is more
subtle, since a conservative endomorphism does not have constant Jacobian. To overcome
the lack of conservativeness and its consequences, we introduce a technical hypothesis,
that may be improved. For an f -invariant foliation, we say that f quasi preserves densities
along the foliation — and we call it in this text Hypothesis pCq — if:

pCq : C´1
ď
dλ̂kfkpxq

dfk˚ λ̂
0
x

ď C,

for some uniform C ą 1, where we fix a local leaf W, and λ̂kx is the normalized volume
on fkpWq. Essentially, this hypothesis says that, by iterating with f , the densities of the
induced volume are not distorted too much. That means, in the hyperbolic case, that the
expansion/contraction seen on the leaf is “well distributed” along the leaf.

Theorem C. [12] Let f : T2
Ñ T2 be a C8 special Anosov endomorphism with quasi

preservation of densities along its invariant foliations, and let A be its linearization.
The stable and unstable foliations of f are absolutely continuous with uniformly bounded
densities if and only if f is C8 conjugate to A.

Theorem C is a consequence of Theorems D and E. The first one gives us that
the regularity of foliations implies equality of the Lyapunov exponents.

Theorem D. [12] Let f : T2
Ñ T2 be a C8 Anosov endomorphism and A its linearization.

If the stable and unstable foliations of f satisfy the Hypothesis pCq and are leafwise
absolutely continuous with uniformly bounded densities, then λσf ” λσA for σ P tu, su.

In the above result, f need not to be special. Besides f does not have a global
unstable foliation in general, since each point can have more than one unstable direction,
so by “the unstable foliations of f”, we are actually referring to a foliation on the universal
cover of T2.

The following theorem is inspired by previous rigidity results for Anosov
diffeomorphism on T2 and T3 [40, 16, 41, 18, 17, 24], and guarantees that, for two surface
Anosov endomorphisms that are conjugate, if the Lyapunov exponents on corresponding
periodic points coincide, then the conjugacy is as regular as the endomorphisms.

Theorem E. [12] Let f, g : T2
Ñ T2 be Ck, k ě 2, Anosov endomorphisms topologically

conjugated by h : T2
Ñ T2 homotopic to Id. If the corresponding periodic points of f and

g have the same Lyapunov exponents, the conjugacy h is Ck. In particular, if f and g are
C8, h is also C8.

In the case that f is special and g “ f˚ “ A is its linearization, Theorem E
was firstly proven by F. Micena [42, Theorem 1.10], and in the case that f and g are
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not special, he proves a similar result with different hypotheses [42, Theorem 1.7]. He
also explores conditions for regularity on higher dimensions with additional hypotheses.
Theorem E has counterexamples in higher dimensions [17], in which more hypotheses are
required for the invertible case [26, 25].

It remains to give examples of non-special Anosov endomorphisms on T2 that
are topologically conjugate but not smoothly conjugate. If f and g are topologically
conjugate, by lifting the conjugacy to the inverse limit space, f and g are inverse-limit
conjugate. Then, a necessary condition is that f and g have the same linearization, since by
Nobuo Aoki and Koichi Hiraide [4, Theorem 6.8.1] f and its linearization are inverse-limit
conjugate. Additionally, the conjugacy must necessarily be a homeomorphism between
W u
f px̃q and W u

g ph̃px̃qq for each of the unstable directions. Micena and Tahzibi [44] proved
that, if f is not special, there is a residual subset R P T2 such that every x P R has
infinitely many unstable directions. This suggests the complexity of this problem.

Question 1. Under which conditions do we have a topological conjugacy between two
non-special Anosov endomorphisms on Tn with the same linearization?

Remarks on the results and previous attempts

The results of this work are fruit of a constant (if somewhat slow) process of
better understating the nature of Anosov endomorphisms on tori, either topologically,
geometrically or measure theoretically.

The first problem that took most of our time was to understand the topological
(semi)conjugacy between an Anosov endomorphism and a nearby perturbation, in particular
when this perturbation is its linearization. Our first impression was that an Anosov
endomorphism with infinitely many unstable manifolds for a given point could be semi
conjugate to a linear one, with the semiconjugacy “collapsing” all unstable manifolds
of the same point into only one for the linear model, based on the possibility that the
conjugacy present on the universal cover or the natural extension could be projected when
its inverse could not. We prove in Proposition 11 that it cannot occur.

When attempting to understand the nature of the possible conjugacies between
two nearby Anosov endomorphisms, we tried to construct it with the shadowing property,
as presented in Section 1.3.1 and similar to the proof for diffeomorphisms, but it turned
out that is gives origin precisely to the conjugacy of their natural extensions, as already
stated by [49].

We then proceeded to consider only the case on which a conjugacy does in
fact exist. The natural hypothesis is suppose that the Anosov endomorphism f is special
(only has one unstable direction for each point). We attempted to encompass the case
in which f and g are not special but are topologically conjugate with h homotopic to
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identity, which was successful in Theorem E, although we do not know of examples that
make the theorem not vacuous for this case, that is, examples that are conjugated by a
homeomorphism that is not C1.

Additionally, our first proof of Theorem D contained an error, as we did not
required any preservation of volume and attempt to prove that f somehow preserved
normalized induced volume on the leaves, which is true only for large segments inside each
leaf, due to the quasi-isometry and the conjugacy with a linear foliation. To overcome this,
we added a hypothesis on the foliations that we call quasi preservation of densities. We
hope to refine this hypothesis in the nearby future.

At the time that we did not know of this error, our natural continuation of this
work was to either explore the construction of examples, or to motivate the UBD property
present on our hypotheses. Our first efforts was on this second topic, which gave origin to
the Chapter 2.

Therefore, there is still much to comprehend and explore on the topics of this
work, including the study of rigidity for Anosov endomorphisms on higher dimensional
manifolds. We remark that, along the proofs of Theorems D and E, we make explicit use
of the fact that the stable and unstable foliations are both one dimensional, thus the
generalization to higher dimensions would require several different arguments, as well as
additional hypotheses for dimension greater than three.
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1 Preliminary concepts

This chapter is dedicated to a brief presentation of some concepts relevant to
our results. Our main goal is to provide references to facilitate the reading of this text,
with the aim of making it as self-contained as possible. We omit most of the proofs of the
results here stated and provide references where they may be found.

During the first section, we present the general theory of dynamical systems,
focusing on concepts that will be particularly relevant along the text. The second section
contains an introduction to foliations, as well as some of their geometric and measurable
properties. The last section presents the theory of uniform hyperbolic dynamical systems,
including non-invertible ones.

1.1 General dynamical systems
Here, we briefly review the fundamental concepts in the general theory of Dy-

namical Systems and Ergodic Theory, introducing concepts such as topological dynamical
system, measurable dynamical system, invariant sets, ergodicity, entropy, and so on. We
also state some properties. For a thorough introduction, see [34, 52, 61] (there is also [46],
the original Brazilian Portuguese version of [61]).

A dynamical system is a space X with some structure (metric space, measure
space or Riemannian manifold, for instance) and an action f of a semigroup G on this space
that preserves the structure (f is continuous, measurable or differentiable, for instance).
Most commonly, the semigroup G is actually a group: G “ Z or G “ R.

If f : X Ñ X is a continuous map, its compositions define an N-action, and
in particular, if f is an invertible map, we can compose f´1 and we have a Z-action.
Reciprocally, a semigroup (group) action defines a (invertible) map fp1, ¨q. So we say that
an action is invertible if it is a group action.

We say that f is a discrete time dynamical system if G “ N or G “ Z, and
f : G ˆ X Ñ X is denoted by fn : X Ñ X for each n P G. In this case f 0

“ id and
fn ˝ fm “ fn`m for all m,n P G.

Similarly, we say that φ is a continuous time dynamical system if G “ R` or
G “ R, and φ : GˆX Ñ X is denoted by φt : X Ñ X for each t P G. In this case φ0 “ id
and φt ˝ φs “ φt`s for all t, s P G.

In these two cases, the action of the semigroup is often intuitively related with
the passage of time, since fn or φt can represent the state of a physical system after n
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observations or after t units of time have passed. Thus, a dynamical system is a model of
some phenomenon over time, given a general law of movement or behavior.

A topological dynamical system is a continuous action on a topological space
(often a metric space). A measurable dynamical system is a measurable action on a measure
space (often a probability space that also has a topological structure). Henceforth, we
suppose that X is a metric space and we deal exclusively with the discrete time case,
with f being a continuous action of Z in the invertible case and an action of N in the
non-invertible setting. Most of the definitions and properties for discrete time dynamical
systems are applicable to continuous ones.

The general approach of the theory of dynamical systems is to understand the
qualitative behavior of a system, that is, we do not want to compute the precise valor of
fn on some point, but to describe its behavior as n goes to infinity. The following sets are
some of the tools used to grasp this general behavior:

• Fixed points of f : Fixpfq “ tp P X : fppq “ pu;

• Periodic points of f : Perpfq “ tp P M : D k P N such that fkppq “ pu, and the
smallest such k is the period of p;

• ω-limit of p P X: ωf ppq “ ty P X : D nk kÑ8
ÝÝÝÑ 8 such that fnkppq kÑ8

ÝÝÝÑ yu;

• α-limit of p P X (if f is invertible):

αf ppq “ ty P X : D nk kÑ8
ÝÝÝÑ ´8 such that fnkppq kÑ8

ÝÝÝÑ yu;

• Non-wandering set of f : p P X is non-wandering if, given a neighborhood U of
p, there is n P N such that fnpUq X U ‰ H. Otherwise, the point is said to be a
wandering point. We denote by Ωpfq the set of non-wandering points of f .

These sets, besides being relevant to the understanding of the system, also have
the property of being somewhat preserved by the evolution of the system. To be precise,
we introduce the concept of invariance.

Definition 1. We say that a set A Ď X is f -invariant if f´1
pAq “ A. Additionally, A is

positively invariant if fpAq Ă A and negatively invariant if f´1
pAq Ă A.

Evidently, every fixed point is periodic, and every periodic point is in its ω- and
α-limits. Furthermore, ωf pxq is closed and positively invariant and, if f is a homeomorphism,
the limit sets ωf pxq and αf pxq are closed and invariant. Finally, ωf pxq Ď Ωpfq for all
x P X, Ωpfq is positively invariant, and if f is a homeomorphism then αf pxq Ď Ωpfq for
all x P X and Ωpfq is invariant. For the proofs of these facts, we recommend [52, Chapter
2].
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If two topological dynamical systems have “qualitatively” the same behavior,
we want to say that they are somehow equivalent. To make this notion precise, we define
topological conjugacy.

Definition 2. If X and Y are compact metric spaces, with f : X Ñ X and g : Y Ñ Y con-
tinuous maps, we say that f and g are topologically conjugate if there is a homeomorphism
h : X Ñ Y such that h ˝ f “ g ˝ h.

If h : X Ñ Y is surjective, we say that f and g are topologically semiconjugate,
or that g is a topological factor of f .

Another sense of equivalence can be considered if we take into account measure-
theoretic aspects of the dynamics.

Definition 3. If pX,A, µq and pY,B, νq are measure spaces, with f : X Ñ X and
g : Y Ñ Y measurable maps, we say that f and g are ergodically equivalent if there are
X 1
Ď X and Y 1 Ď Y , with µpXzX 1

q “ 0 and νpY zY 1q “ 0, and a measurable bijection
h : X 1

Ñ Y 1 such that h ˝ f “ g ˝ h.

If h : X 1
Ñ Y 1 is surjective, we say that g is a factor of f .

These notions of equivalence are in fact equivalence relations, and maps in the
same class are alike. For the topological conjugacy, two equivalent maps have corresponding
fixed points, periodic orbits and dense orbits; the limit sets and non-wandering set are
also preserved. As such, the topological behavior of the orbits is indistinguishable from
one system to the other.

There are topological and measure theoretic notions of how much a function
mix points on the space. We recall some of these definitions.

Definition 4. Given X a metric space, we say that a continuous map f : X Ñ X is
topologically transitive if, for all U, V Ď X non-empty open sets, there is k P N such that
fkpUq X V ‰ H.

Often the above definition is taken to be equivalent to the existence of a dense
orbit. Even though it is not always the case [20], this equivalence holds if X is separable,
second category and does not have isolated points.

Definition 5. Given X a metric space, we say that a closed invariant set Λ Ď X for a
continuous map f : X Ñ X is minimal if every orbit Of pxq :“ tfnpxq : n P Nu of points
x P Λ is dense in Λ. We say that f is a minimal dynamical system if X is a minimal set
for f .

Minimal dynamical systems are transitive, but there are transitive systems that
are not minimal, for instance, a transitive system with fixed points.



Chapter 1. Preliminary concepts 23

Definition 6. Given X a metric space, we say that a continuous map f : X Ñ X is
topologically mixing if, for all U, V Ď X non-empty open sets, there is k P N such that
fnpUq X V ‰ H for all k ě n.

Topological transitivity and mixture express that the system is somewhat
“chaotic” — in the sense that any point can approximate any other point after some
number of iterations — with the second property being stronger than the former. In the
same fashion, we have concepts for measurable dynamical systems that express something
similar, but from a measure-theoretic point of view. More precisely, we have the concepts
of ergodicity, weak mixture and mixture defined as follows.

Definition 7. If pX,B, µq is a measure space and f : X Ñ X a measurable map, we say
that f preserves µ or that µ is f -invariant if

µpAq “ µpf´1
pAqq for all A P B.

In this case we say that pX,B, µ, fq is a measurable dynamical system.

Definition 8. A measurable dynamical system pX,B, µ, fq is:

• ergodic if every measurable invariant set A satisfies µpAq “ 0 or µpXzAq “ 0;

• weak mixing if, for any A,B P B,

lim
nÑ8

1
n

n´1
ÿ

i“0
|µpf´ipAq XBq ´ µpAqµpBq| “ 0.

• mixing if, for any A,B P B,

lim
nÑ8

µpf´npAq XBq ´ µpAqµpBq “ 0.

It is easy to see that for a system, being mixing implies being weak mixing,
which itself in turn implies being ergodic [61].

Another important concept is the one of unique ergodicity, that may seem to
be measure-theoretic, but it is actually topological. A dynamical system is uniquely ergodic
if it admits only one invariant probability measure. In this case, this measure is necessarily
ergodic [61]. An example of uniquely ergodic actions is given by transitive translations on
compact and metrizable topological groups; the invariant measure in this case is the Haar
measure.

Topological transitivity and minimality do not relate directly to the measure-
theoretic concept of ergodicity, for there are measurable dynamical systems with topological
structure that are minimal but not ergodic with respect to a “natural” measure (see [61,
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Theorem 6.2.2]) or ergodic for some measure µ but not transitive (a non-transitive
continuous function on a compact metric space admits an ergodic measure), thus they can
not be minimal.

However, for a measurable dynamical system pX,B, µ, fq, we have that if f is
mixing, then its restriction to the support of µ is topologically mixing. A similar result
holds for weak mixing systems, implying that they are topologically weak mixing1 restricted
to the support of µ. Also, a uniquely ergodic system is minimal restricted to the support
of its unique invariant measure [61].

1.1.1 Stability

Most commonly in dynamical systems, we deal with the stability of points for
a fixed system. More precisely, given a topological dynamical system f : X Ñ X, we say
that x P X is stable for f if, for every ε ą 0, there is δ ą 0 such that dpx, yq ă δ implies
dpfnpxq, fnpyqq ă ε for all y P X and n P N. That is, any point sufficiently close to x has
its forward orbit as close as we want to the one of x. In contrast, a point x is said to be
unstable if there are points as close as we want to x whose forward orbits do not follow
the one of x.

We will deal in this work with other kind of stability, not for points under a
fixed map, but for maps on a suitable space of functions.

For topological dynamical systems, we can perturb the map on a small neigh-
borhood of an isolated periodic point to create many new periodic points, which obstructs
topological conjugacy between the original map and its perturbation. To avoid this sensi-
bility, we focus on differentiable dynamical systems and restrict the space in which the
perturbations can take place. A differentiable dynamical systems is given by a Riemannian
manifold M and a local diffeomorphism f P C1

pM,Mq. We imbue C1
pM,Mq with the

C1-topology, that, roughly speaking, is given by the notion that two maps are close when
the supremum of the distance between their images on the same point and the supremum
of the distance between their derivatives on the same point are both small. For more
details, we refer to [32].

This allows us to formulate a concept of stability for C1 maps: if their pertur-
bations have the same “topological behavior”, then they are stable.

Definition 9. A diffeomorphism f : M ÑM is structurally stable if there is a neighbor-
hood U of f , with respect to the C1 topology, such that, for every g P U , f and g are
topologically conjugate.
1 The system pX,B, µ, fq is topologically weak mixing if its Koopman operator Uf : L1pµq Ñ L1pµq

has no non-constant continuous eigenfunctions. Remember that the Koopman operator is given by
φ ÞÑ φ ˝ f .
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One cannot expect that the conjugacy between f and g is differentiable in
general. A differentiable conjugacy means that the systems are equal up to a C1 coordinate
change. In particular, this implies that some properties have to be preserved under
C1 conjugacy. For instance, by applying the chain rule to compute the differential of
fkpxq “ h´1

˝ gk ˝ hpxq, we have that

Dfkx “ Dh´1
gkphpxqq ˝Dg

k
hpxq ˝Dhx,

for all k P Z. Taking x to be a periodic point with period p, then gpphpxqq “ hpxq,
Dh´1

hpxq “ pD
h
xq
´1 and

Df px “ pD
h
xq
´1
˝Dgphpxq ˝Dhx.

This means that a necessary condition to have C1 conjugacy is that the
derivatives of corresponding periodic points are conjugate matrices. We see in Section
1.3.3 that this is equivalent to the fact that corresponding periodic points have similar
rates of exponential growth of their derivatives along some directions.

Thus, for differentiable dynamical systems, it makes sense to consider stability
in terms of topological equivalence, since differentiable conjugacy is more subtle. See [34,
Chapter 2] for a full discussion on this matter.

1.1.2 Natural extension

Dynamical systems are not always invertible, and most physical phenomena
are not reversible, so it is relevant to study non-invertible systems. For certain dynamical
aspects — such as unstable directions, as we see in Section 1.3 —, we need to analyze
the past orbit of a point. Since every point has more than one preimage, there are several
“choices of past”, and we can make each one of these choices a point on a new space,
defined as follows.

Definition 10. Let pX, dq be a compact metric space and f : X Ñ X continuous. The
inverse limit space (or natural extension) associated to the triple X, d and f is

• X̃ “ tx̃ “ pxkq P X
Z : xk`1 “ fpxkq, @k P Zu,

• pf̃px̃qqk “ xk`1 @k P Z and @x̃ P X̃,

• d̃px̃, ỹq “
ÿ

k

dpxk, ykq

2|k| .

We have that pX̃, d̃q is a compact metric space and the shift map f̃ is continuous
and invertible. Considering π : M̃ ÑM the projection on the 0th coordinate, πpx̃q “ x0,
then π is a continuous surjection. Therefore, every non-invertible topological dynamical
system is a topological factor of an invertible topological dynamical system.
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With a metric over M̃ , we can define precisely the continuity of objects that
depend on the orbit of a point, such as the invariant manifolds in Section 1.3.

By making use of the inverse limit space, it is possible to better comprehend
non-invertible systems. For C1 endomorphisms, it is the natural environment to look for
structural stability [7, 6], and it provides means to explore the measure-theoretic properties
of these systems [51].

1.2 Foliations
In this section we define some geometric and measurable properties of foliations,

and establish the kind of foliation we work with: continuous foliations with C1 leaves.
Consider Bk

“ Bp0, 1q the open ball in Rk centered at the origin and with radius one.
Given a partition P , we denote by Ppxq the element P P P containing x.

Definition 11. A foliation F of dimensrion k is a partition of M into C1 k-submanifolds
with, for every x P M , local charts φ : Bk

ˆ Bm´k
Ñ U Q x such that φpBk

ˆ tzuq “

Fpφp0, zqq X U . Additionally, h is C1 along Bk and continuous along Bn´k.

xBk

Bm´k

p0, zq φp0, zq

U

φ φpBk
ˆ tzuq

Figure 1 – A coordinate chart pU, φq for the foliation around the point x.

In other words, a continuous foliation with C1 leaves (or simply foliation) is a
partition into C1 submanifolds “stacked” continuously. The study of this kind of foliation
arises naturally in dynamical systems, since systems with uniform hyperbolicity — uniform
contraction and expansion along some directions in TM — provide foliations with this
regularity, as we see in Section 1.3.

A vector bundle is a way to associate, for each point of a given base space B, a
vector space in such way that this family of vector spaces vary continuously with respect
to the base space. Focusing on the case that B is a compact and connected topological
space, we define a vector bundle as a triple pE, π,Bq, where π : E Ñ X is a continuous
surjection and the fiber Ex :“ π´1

ptxuq is a k-dimensional vector space, with k P N the
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rank of E. Additionally, there must hold the compatibility condition, meaning that over
sufficiently small neighborhoods in B, the bundle π´1

pUq Ď E is homeomorphic to U ˆRk,
and the homeomorphism φ : U ˆ Rk

Ñ π´1
pUq satisfies: π ˝ φpx, vq “ x for all x P U and

v P Rk; and φpx, ¨q is a linear isomorphism between Rk and Ex. We say that pU, πq is a
local trivialization of E.

An example of vector bundle is given by subbundles, that is, W a family of
linear subspaces Wx Ď Ex that makes W a vector bundle over M with the projection π

ˇ

ˇ

W
.

Another example of vector bundle of rank k is the tangent bundle TM over a differential
k-manifold M . A subbundle of TM is called a distribution.

A distribution E is integrable if there is a foliation F with TxFpxq “ Ex, that
is, the leaves of F are tangent to E. Reciprocally, a k-dimensional foliation F provides an
integrable distribution by considering Ex “ TxFpxq for each x PM .

1.2.1 Quasi-isometry

A property frequently required for foliations in Rn when studying hyperbolic
systems is the one of quasi-isometry. It means, roughly speaking, that at a large scale the
foliation has lengths (along the leaf) between two points uniformly comparable with the
Euclidean distance between them.

Definition 12. Given a foliation F of Rn, with dF the distance along the leaves, we say
that F is quasi-isometric if there are constants a, b ą 0 such that, for every y P Fpxq,

dFpx, yq ď a}x´ y} ` b.

In particular, if the foliation F is uniformly continuous, the above definition is
equivalent to the existence of Q ą 0 such that, for every y P Fpxq,

dFpx, yq ď Q}x´ y}.

For invertible systems with uniform hyperbolicity, quasi-isometry is guaranteed
by the existence of a conjugacy between the map and a linear one, as we see in Section 1.3.

For systems with partial hyperbolicity — systems whose tangent space splits
into invariant directions Eu, Es with contraction and expansion, and a direction Ec

that is neither as expanded or contracted by the map —, quasi-isometry is the main
ingredient to guarantee dynamical coherence [10], that is, the distributions Euc

“ Eu
‘Ec

and Ecs
“ Ec

‘ Es are integrable. The quasi-isometry, as a geometrical property of the
foliations, also implies for partially hyperbolic systems with one-dimensional center bundle
that the dynamics on the leaves can be topologically classified accordingly to the dynamics
of a linear associated model [28].
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Thus, quasi-isometry is a geometrical property of foliations that, when present
for invariant foliations of a dynamical systems, provide geometric and topological conse-
quences. We see in Theorems D and E that, together with measurable hypotheses, it also
has consequences in the smooth classification of the hyperbolic dynamics on surfaces.

1.2.2 Conditional measures

Before we define measure theoretical ways to see how regular a foliation is, let
us digress for a short while into necessary concepts of measure theory. For the basics of
measure theory, see [53, Part Three], for instance.

Let pX,A, µq be a probability space, P a partition of X into measurable sets,
and π : M Ñ P the projection that assigns for each point x P M the element of P
containing x. We define a σ-algebra and a measure in P as follows: Q Ď P is measurable
if π´1

pQq is measurable in X, and µ̂pQq “ π˚µpQq “ µpπ´1
pQqq.

Thus, we have a way to measure collections of elements of a partition. If we
define a measure along each atom of the partition, we can ask whether we can compose
these two ways of measurement into the original measure of X. More specifically, we want
to generalize Fubini’s Theorem for the case in which we do not have a product space to
begin with. This is achieved if there is a family of measures defined on each atom of the
partition permitting this decomposition of the integral.

Definition 13. A family tµP uPPP of probability measures on X is a system of conditional
measures (or a disintegration of µ) with respect to a partition P if, for φ : M Ñ R
continuous

1. P ÞÑ
ż

φdµP is measurable;

2. µP pP q “ 1 for µ̂-almost every P P P ;

3.
ż

φdµ “

ż

P

ż

P

φdµPdµ̂.

Given a partition P , if the σ-algebra A is countably generated and there is a
system of conditional measures for µ with respect to P , then it is unique with respect to
µ̂. More precisely, we have the following result, which is proved in [61, Proposition 5.1.7],
for instance.

Proposition 1. If the σ-algebra A has a countable generator and tµP u and tνP u are
disintegrations with respect to P, then µP “ νP for µ̂-almost every P P P.

The Rokhlin disintegration theorem guarantees the existence of conditional
measures for partitions that can be generated by a countable family of sets.
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Definition 14. A partition P is a measurable partition (or countably generated) with
respect to µ if there is M0 PM with µpM0q “ 1 and a family tAiuiPN of measurable sets
such that, given P P P , there is tPiuiPN with Pi P tAi, AAiu such that P “

č

iPN
Pi restricted

to M0.

Theorem 2 (Rokhlin disintegration). If X is a complete and separable metric space and
P is a measurable partition, then the probability µ has a disintegration on a family of
conditional measures µP .

The Borel σ-algebra is always countably generated for a separable metric space
X, and the disintegration given by Rokhlin disintegration theorem is unique for µ̂-almost
every P . In particular, if the partition P is preserved by a measurable function T : M ÑM

that also preserves µ, then T carries conditional measures into conditional measures, that
is, T˚µP “ µT pP q for µ̂-almost every P , since tT˚µP u is a disintegration of µ with respect
to P .

In our context, we want to disintegrate the measure using a foliation to give the
partition. We have the disintegration locally for small sets filled with leaves of the foliation.
More precisely, a foliated box for a foliation F of dimension k on a complete Riemannian
n-manifold M is given by a local leaf X and a local pn ´ kq-dimensional transversal Y
to this leaf. The foliated box B is homeomorphic to X ˆ Y and the map φ : X ˆ Y Ñ B
takes sets on the form X ˆ tyu to local leaves Flocpyq. We identify X ˆ Y with B and
X ˆ tyu with Flocpyq.

A foliated box has its local leaves as a measurable partition. Indeed, with the
Riemannian structure inherited from M , Y is a separable metric space, having a countable
base of open sets tYiuiPN. The sets Ai :“

ď

yPYi

Flocpyq for i P N form a countable generator

for the partition, independent of the measure. Then, for foliated boxes, we can always
consider a disintegration of any probability measure, by the Rokhlin disintegration theorem.
The same does not necessarily hold for the whole partition, as it can not be countably
generated.

1.2.3 Absolute continuity

We regard the regularity of a foliation not only with respect to its topological or
differential properties, but with respect to metric properties of its leaves and the holonomy
maps that move points through leaves of the foliation.

Definition 15. Given a foliation F , we define the holonomy hF : Σ1 Ñ Σ2 between two
local discs Σ1 and Σ2 transverse to F by q ÞÑ Fpqq X Σ2, where Fpqq is the leaf of F
containing q.
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In this sense, we can use the holonomy to ascertain the regularity of a foliation.
But first, let us recall the definition of an absolutely continuous measurable function.

Definition 16. Given pM,A, µq and pN,B, νq measure spaces and a measurable function
f : M Ñ N . We say that f is absolutely continuous if, for each A P A, we have that
fpAq P B and

µpAq “ 0 ùñ νpfpAqq “ 0.

Equivalently, f is absolutely continuous if there is a positive and measurable
map q : M Ñ R, called the Jacobian of f , such that, for each A P A

νpfpAqq “

ż

A

qpzqdµpzq.

Definition 17. We say that a foliation F is transversely absolutely continuous if, given two
smooth transversals T1 and T2, the holonomy hF between them is absolutely continuous
with respect to λT1 and λT2 , their respective Riemannian volumes.

Another perspective from which to consider this regularity is regarding condi-
tional measures on the leaves as a partition.

Definition 18. We say that a foliation F is leafwise absolutely continuous if, given a
foliated box, the measures mFpxq, given on each leaf by the disintegration of the volume
m, are equivalent to the induced Lebesgue measure λFpxq on the same leaf.

This definition does not depend on the foliated box. Indeed, when foliated boxes
overlap, the conditional measures on a given leaf are the same up to multiplication by a
constant [5, Lemma 3.2]. Moreover, this definition is weaker than transversely absolute
continuity.

Theorem 3 ([11]). Transverse absolute continuity implies leafwise absolute continuity.

In contrast to leafwise absolute continuity, we have other extreme behavior on
foliations: if the conditional µFpxq is a sum of Dirac measures for almost every leaf, we say
that Fpxq has atomic disintegration with respect to µ.

To understand how the leaves of a foliation with atomic disintegration behave
under holonomies, we have the following.

Theorem 4 ([14]). Let F be a foliation with mono-atomic disintegration. Then, for almost
every pair of transversals, the holonomy between them takes a set of full Lebesgue measure
to a set of zero Lebesgue measure.

By “almost every pair of transversals” we mean the following: given T a smooth
transverse foliation for F , we consider T pxq and T pyq for mˆm-a. e. point px, yq PMˆM .
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Theorem 4 is a direct consequence of the result below, first presented in [14],
that we present here for completeness. Along the proof, since we only work with volume
along T -leaves, we denote λT pxq by λx.

Theorem 5 ([14]). Let F be a foliation on a manifold M and T a transverse C1 foliation.
Assume that F has atomic disintegration with k P N and a set N Ď M , mpNq “ 1,
such that the number of atoms in N X Fpxq is smaller than k for each x P N . Then, for
mˆm-almost every px, yq P N ˆN , the set Ax Ď T pxq given by

Ax “ T pxq X Λ,

is such that λxpAxq “ 1 and λypAx,yq “ 0, where Λ is the set of atoms for F , Ax,y “
hF ,ypAxq and hF ,y is the holonomy between the leaves T pxq and T pyq.

Proof. Considering
Ax “ T pxq X Λ,

we have that, for m-almost every point x, Ax has full λx-measure, since the set of atoms
has full m-measure.

The proof of the theorem follows once we show that λypAx,yq “ 0. By con-
tradiction, assume that there is a set W Ď N ˆN , with positive m ˆm measure, such
that

λypAx,yq ą 0, for all px, yq P W.

By Fubini’s theorem, there is a set V Ă N such that mpV q ą 0 and, for each
y P V , there is a set Hy Ď N such that mpHyq ą 0 and, for each x P Hy,

λypAx,yq ą 0.

Without loss of generality, we may assume that, for y P V , Hy is such that
λxpHy X T pxqq ą 0.

For each y P V , the set Hy is uncountable, thus there exists a sequence
txiuiPN Ă Hy such that

λypAxi,yq ą 1{n, for some n P N.

Note that for each xi P Hy, the set Axi “ T pxiq XΛ is formed by atoms from the leaves of
F .

Since 1{n ă λypAxi,yq ď 1, for all i P N, among the n` 1 sets

Ax1,y, Ax2,y, Ax3,y, ..., Axn`1,y

there exist two of them, that we denote by Axn1 ,y
and Axn2 ,y

, such that their intersection
A1
xn1 ,y

:“ Axn1 ,y
X Axn2 ,y

satisfies λypA1
xn1 ,y

q ą 1{n2. The leaves T pxn1q and T pxn2q are
distinct, then there exist leaves of F with at least two atoms intersecting A1

xn1 ,y
.
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Analogously, among the n` 1 sets

Axn`2,y, Axn`3,y, Axn`4,y, ..., Ax2n`2,y

there exist two of them with intersection, which we denote by A1
xn2 ,y

, satisfying λypA1
xn2 ,y

q ą

1{n2. Additionally, there are leaves of F with at least two atoms intersecting A1
xn2 ,y

. By
keeping this process, we obtain a sequence of sets pA1

xni ,y
qiPN, λypA1

xni ,y
q ą 1{n2, such that,

for each i P N, there exist leaves of F with at least two atoms that intersect A1
xni ,y

. Now,
repeating this argument as before with the sequence pA1

xni ,y
qiPN, we obtain a sequence

pA2
xni ,y

qiPN, λypA2
xni ,y

q ą 1{n4, such that, for each i P N, there exist leaves of F with at
least 22 atoms intersecting A2

xni ,y
. Therefore, repeating this process, we can always find

leaves of F with an arbitrary amount of atoms, which contradicts the hypothesis of the
theorem.

Question 2. Is the converse statement of Theorem 4 valid? In other words, how do we
characterize atomic disintegration in terms of holonomies?

1.2.4 Uniform boundedness for absolute continuity

We now introduce a uniformly bounded formulation of transverse absolute
continuity and leafwise absolute continuity.

Definition 19. A leafwise absolutely continuous foliation F is said to have the uniformly
bounded density property (UBD property) if there is K ą 1 such that, for every foliated
box B, the disintegration tmB

Fpxqu of volume normalized to B satisfies

K´1
ď
dmB

Fpxq

dλB
Fpxq

ď K,

where λB
Fpxq is the normalized induced volume in the connected component of

F X B containing x.

The above definition is given by [43], where the authors use it to prove that the
Lyapunov exponents are constant a. e. on a non-ergodic setting. Moreover, it is the natural
hypothesis to characterize smooth conjugacy with a linear model for low dimensional
Anosov maps [60, 12]. Indeed, in [60], it is shown that a smooth conservative partially
hyperbolic diffeomorphism on T3 is smoothly conjugate to its linearization if, and only if,
the center foliation has the UBD property. This can be seen as a sharp result, since it is
given an example on [59] of a conservative partially hyperbolic diffeomorphism on T3 such
that the center foliation is C1 but the conjugacy map is not C1.

We want to introduce a similar boundedness for transverse absolute continuity.
However, the uniform constant can not exist unless we limit the angles between the
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transversals and the foliation. Take for instance F to be a one-dimensional foliation
by horizontal lines in r0, 1s2 Ď R2. Let T1 be a vertical line and T2 a line with slope
α P p0, πq, as in Figure 2. Given a subset A Ď T1, we have that hFpAq Ď T2 satisfies
λT2phFpAqq “

1
senpαqλT1pAq. As α goes to 0, 1

senpαq goes to infinity, so there is no uniform
bound for the Jacobian. But a foliation by lines is as regular as a foliation can be, and so
we want to exclude this possibility.

T1 T2

α

Figure 2 – We need the angle condition to avoid the case in which a small set in T1 is
taken to a very large set in T2.

Definition 20. A foliation F is transversely absolutely continuous with uniformly bounded
Jacobians if, for every β ą 0 and any pair of C1 transverse discs T1 and T2 with
=pTxFpxq, TxTiq ą β for all x P Ti, i P t1, 2u, we have that the holonomy hF : T1 Ñ T2 is
absolutely continuous with respect to λ1 and λ2 and its Jacobian qF is uniformly bounded:
there is Cβ ą 1 such that

1
Cβ

ă qFpxq ă Cβ for λ1-a. e. x P T1.

The constant Cβ is fixed for all leaves of a given transverse foliation T if M is
compact. Additionally, it is also fixed locally for foliated boxes in any manifold.

Remark 1. The angle condition on the transverse discs above is satisfied, for instance,
for F “ F s the stable foliation for a uniformly hyperbolic diffeomorphism and T1 “ Fu

pxq

and T2 “ Fu
pyq, y R Fu

pxq, two distinct unstable leaves. A more general example is given
by leaves of invariant foliations of a diffeomorphism with dominated splitting (see [9]).

1.3 Uniform hyperbolicity
This section is intended to introduce the main concepts, results and tools of

hyperbolic dynamics — the field of dynamics interested in the study of maps that have a
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splitting of the tangent space of each point into a direction with uniform contraction and
another with uniform expansion. We focus specifically in the case in which the hyperbolicity
is uniform, that is, the rates of expansion and contraction are the same for each point.
Such maps, if invertible, are called Anosov diffeomorphisms, as a tribute to Dmitri Anosov
who introduced their study, as we mentioned at the introduction.

If the map is a local diffeomorphism but it is not invertible, several complications
arise, but we can still define uniform hyperbolicity, and maps having this property for
each point are called Anosov endomorphisms. The definition is analogous, as we state in
the following paragraphs, but the splitting is not global, it is defined along a fixed orbit
(equivalently, along points of the natural extension).

Most of the results here stated have the proofs omitted, but we reefer to their
demonstration. For a more detailed approach to the invertible case, see [34, 52, 55, 9].
Additionally, if possible, we state the results on the more general setting of endomorphisms,
highlighting the particularities of the invertible or expanding setting, cases that are included
in the definition of uniform hyperbolic endomorphisms, see [49, 38, 51, 4].

Let M be a closed (finite dimensional, compact, connected and without bound-
ary) C8 Riemannian manifold. The classical concept of a uniformly hyperbolic diffeomor-
phism (or Anosov diffeomorphism) overM is that there is a splitting TM “ Eu

‘Es of the
tangent bundle that is DF -invariant and such that DF acts as a uniform contraction over
Es and a uniform expansion over Eu. There is a more general notion of a diffeomorphism
with a hyperbolic set: there are Λ Ď U ĎM , with Λ closed and f -invariant and U open,
such that f : U ÑM is regular and f

ˇ

ˇ

Λ is uniformly hyperbolic.

Let us define a hyperbolic set for a local C1 diffeomorphism f : U ĎM ÑM .

Definition 21 ([49]). Let f : U Ď M Ñ M be a local C1 diffeomorphism. The closed
invariant set Λ is an hyperbolic set for f if, for all x̃ P Λ̃, there is, for all i P Z, a splitting
TxiM “ Eu

pxiq ‘ E
s
pxiq such that

• DfpxiqE
u
pxiq “ Eu

pxi`1q;

• DfpxiqE
s
pxiq “ Es

pxi`1q;

• there are constants c ą 0 and λ ą 1 such that, for a Riemannian metric on M ,

||Dfnpxiqv|| ě c´1λn||v||, @v P Eu
pxiq, @i P Z,

||Dfnpxiqv|| ď cλ´n||v||, @v P Es
pxiq, @i P Z.

Es{u
pxiq is called the stable/unstable direction for xi. When it is needed to make explicit

the choice of past orbit, we denote by Eu
px̃q the unstable direction at the point πpx̃q “ x0

with respect to the orbit x̃.
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In particular, if U “ Λ “M , we say that f is an Anosov endomorphism, or a
uniformly hyperbolic endomorphism. This definition includes Anosov diffeomorphisms (if f
is invertible) and expanding maps (if Eu

pxq “ TxM for each x). Throughout this work,
however, we consider the case in which Es is not trivial, excluding the expanding case,
unless it is mentioned otherwise.

A point can have more than one unstable direction under an Anosov endo-
morphism, even though the stable direction is always unique. Indeed, we find in [49] an
example in which a point has uncountable many unstable directions. Before we state this
example, let us introduce the stable and unstable manifolds. To guarantee their existence
and their properties, we state the Hadamard–Perron Theorem, which implies the Stable
Manifold Theorem.

Definition 22. Considering λ ă µ, we say that a sequence Lm : Rn
Ñ Rn, m P Z, of

invertible linear maps admits a pλ, µq-splitting if Rn
“ Eu

m ‘ E
s
m for every m, LmEs{u

m “

E
s{u
m`1 and

›

›

›
Lm

ˇ

ˇ

Esm

›

›

›
ď λ and

›

›

›
L´1
m

ˇ

ˇ

Eum

›

›

›
ď µ´1.

We say that tLmum admits a hyperbolic splitting if λ ă 1 ă µ.

Theorem 6 (Hadamard–Perron). Consider λ ă µ and r ě 1, and for all m P Z, let
fm : Rn

Ñ Rn be a Cr diffeomorphism such that

fmpx, yq “ pAmx` αmpx, yq, Bmy ` βmpx, yqq,

for all px, yq P Rk
ˆ Rn´k, where Am : Rk

Ñ Rk and Bm : Rn´k
Ñ Rn´k are linear maps

with |A´1
m } ď µ´1, }Bm} ď λ, αmp0q “ 0, βmp0q “ 0. Then, for 0 ă γ ă min

ˆ

1,
c

µ

λ
´ 1

˙

,

there is δ “ δpλ, µ, γq ą 0 such that, if }αm}C1 ă δ and }βm}C1 ă δ for all m P Z, then

1. there is a unique family tW u
mum of C1 k-dimensional manifolds

W u
mtpx, ϕ

u
mpxq : x P Rk

u “ graph ϕum,

where ϕum : Rk
Ñ Rn´k and }Dϕum} ď γ;

2. there is a unique family tW s
mum of C1

pn´ kq-dimensional manifolds

W s
mtpx, ϕ

s
mpxq : x P Rn´k

u “ graph ϕsm,

where ϕum : Rn´k
Ñ Rk and }Dϕsm} ď γ;

3. these families are invariant: fmpW s
mq “ W s

m`1, fmpW u
mq “ W u

m`1;
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4.

}fmpzq} ă p1` γqpλ` δp1` γqq
loooooooooooomoooooooooooon

λ1

}z} for all z P W s
m,

and }f´1
m´1pzq} ă

ˆ

µ

1` γ ´ δ
˙´1

loooooooomoooooooon

pµ1q´1

}z} for all z P W u
m;

5. If ν P pλ1, µ1q and }fm`l´1 ˝ ¨ ¨ ¨ ˝ fmpzq} ď Cνl}z} for a C ą 0 and all l ě 0, then
z P W s

m, analogously, if }f´1
m´l ˝ ¨ ¨ ¨ ˝ f

´1
m´1pzq} ď Cν´l}z} for a C ą 0 and all l ě 0,

then z P W u
m.

Note that, for Anosov endomorphisms, there is not a global splitting of the
tangent space; the splitting is along a given orbit x̃ “ pxiq on M̃ . But tDfxiu is a hyperbolic
sequence, and one can apply the Hadamard–Perron theorem in the same way it is done
for Anosov diffeomorphisms to prove that f has local stable and local unstable manifolds,
denoted by W s

f,Rpx̃q and W s
f,Rpx̃q, tangent to the stable and unstable directions.

Theorem 7 ([49]). Let Λ be a hyperbolic set with a pλ, λ´1
q splitting for a C1 local

diffeomorphism f : U ÑM . Then, for each x̃ P Λ̃ and each i P Z:

1. The sets
W s
f,Rpxiq :“ ty PM : @k ě 0, dpfkpyq, fkpxiqq ă Ru and

W u
f,Rpxiq “ ty PM : Dỹ P M̃ such that πpỹq “ y and @k ě 0, dpy´k, xi´kq ă Ru

are C1 manifolds, called respectively local stable manifold and local unstable manifold
of f at the point xi with respect to f̃ ipx̃q. R is a small constant that is locally constant
for f .

2. TxiW
s{u
f,Rpxiq “ E

s{u
f pxiq.

3. If y, z P W s
f,Rpxiq, then

dpfk`1
pyq, fk`1

pzqq ď
2` λ

3 ¨ dpfkpyq, fkpzqq and

if y, z P W u
f,Rpxiq, then, for the corresponding ỹ, z̃ P Λ̃,

dpy´k´1, z´k´1q ď
2` λ

3 ¨ dpy´k, z´kq

for k P Z.

Additionally, for R ą 0 sufficiently small, these manifolds are characterized by

W s
f,Rpx̃q “ ty PM : @k ě 0, dpfkpyq, fkpx0qq ă Ru
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and

W u
f,Rpx̃q “ ty PM : Dỹ P M̃ such that πpỹq “ y and @k ě 0, dpy´k, x´kq ă Ru.

The global stable/unstable manifolds are

W s
f px̃q “ ty PM : dpfkpyq, fkpx0qq

kÑ8
ÝÝÝÑ 0u

and
W u
f px̃q “ ty PM : Dỹ P M̃ such that πpỹq “ y and dpy´k, x´kq kÑ8

ÝÝÝÑ 0u.

Moreover, these manifolds are as regular as f . The stable manifolds do not depend on the
choice of past orbit for x0, but the unstable ones do.

In the case that the unstable directions do not depend on x̃, that is, Eu
px̃q “

Eu
pỹq for any x̃, ỹ P M̃ with x0 “ y0, then we say that f is a special Anosov endomorphism.

Hyperbolic toral endomorphisms are examples of special Anosov endomorphisms.

The fact that non-invertible Anosov endomorphisms, or expanding maps, are
not structurally stable was proven by R. Mañé and C. Pugh [38] and independently by F.
Przytycki [49] in the 1970’s, when they introduced the concept of Anosov endomorphisms
as we know today.

Since the stable and unstable manifolds are characterized topologically using the
distance, they are preserved under conjugacies, that is, if h ˝ f “ g ˝ h, then hpW s{u

f pxqq “

W s{u
g phpxqq. Thus, the number of different unstable manifolds for x and hpxq is the same

under f and g, respectively. The following example illustrates this lack of structural
stability, with a map f nearby a linear one with infinitely many unstable directions at a
given point.

Example 1 ([49]). Consider

A “

¨

˚

˝

n 1 0
1 1 0
0 0 n

˛

‹

‚

,

that defines in T3
“ R3

{Z3 a special Anosov endomorphism fAprxsq “ rAxs. If n is
sufficiently large, then for every neighborhood U of A in the C1 topology and for each
x P T3, there exists f P U such that x has infinitely many unstable directions for f .

This is a consequence of [49, Theorem 2.15], in which the strategy is to give
labels to the pre-images of x, and perturb the map fA on small neighborhoods depending
on this label.

If σ “ deg fA “ | detA|, then each point has σ pre-images, and there is τ ą 0
with, for every z1, z2 P T3, if fApz1q “ fApz2q and z1 ‰ z2, then dpz1, z2q ą 4τ . Without

loss of generality, assume that x is not periodic. We denote the points
8
ď

n“0
f´nA ptxuq by

n-tuples pσ1, . . . , σnq of integers 0 ď σi ă σ, as such:
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• At least σ ´ 1 points from A´1
ptxuq are outside the ball Bpx, 2τq. We denote these

points by p0q, p1q, . . . pσ ´ 2q and the remaining one is pσ ´ 1q;

• If pσ1, . . . , σnq is a point inA´nptxuq, the at least σ´1 points fromA´1
ptpσ1, . . . , σnquq

are outside the ball Bpx, 2τq. We denote these points by

pσ1, . . . , σn, 0q, pσ1, . . . , σn, 1q, . . . pσ1, . . . , σn, σ ´ 2q

and the remaining one is pσ1, . . . , σn, σ ´ 1q.

The orbits in π´1
pxq are sequences pσ1, σ2, . . . q. For each y “ pσ1, . . . , σnq P

8
ď

n“0
f´nA ptxuq with σn ‰ σ ´ 1, we define a neighborhood Upσ1,...,σnq as a projection of a

small box on TyT3, in such way that the Uy are fA-invariant and disjoint. We perturb fA
on these projected boxes to generate different unstable local leaves that, when iterated
until they reach x, give origin to different unstable leaves for x. For the details of this
perturbation, see [49].

x

Up0q Up1q

Up0,0q Up0,1q Up1,0q Up1,1q

p2q

p0, 2q p1, 2q

p2, 0q p2, 1q p2, 2q

Figure 3 – If the degree of fA is 3, then the gray sets illustrate where the perturbations
are made.

Mañé and Pugh also proved the following proposition, which is very useful to
generalize properties of Anosov diffeomorphisms to endomorphisms.

Proposition 2 ([38]). Let M be the universal cover of M and F : M Ñ M a lift
for f . Then f is an Anosov endomorphism if and only if F : M Ñ M is an Anosov
diffeomorphism. Additionally, the stable bundle of F projects onto that of f .

Usually, to study Anosov diffeomorphisms over a manifold M , we require M to
be compact. In our case, even though the universal cover is not compact, since F is a lift
for a map on a compact space, F carries some uniformity. This allows us to prove some
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results, that were originally stated for compact spaces, for the lifts proven in Proposition
2 to be Anosov diffeomorphisms.

Proposition 3 ([44]). If f : Tn Ñ Tn is a C1`α Anosov endomorphism, α ą 0, and
F : Rn

Ñ Rn is a lift for f to the universal cover, then there are W u
F and W s

F transversely
absolutely continuous foliations tangent to Eu

F and Es
F .

The above proposition is presented in [44] as Lemma 4.1. The proof is the same
one as in the compact case, since F projects on the torus, then its derivative is periodic
with respect to compact fundamental domains. With the same argument, we can prove
the following just as it is in [34, §19.1].

Proposition 4. Let f : M ÑM be an Anosov endomorphism and F : M ÑM a lift for
f to the universal cover. If the unstable distribution of F has codimension one, then it is
C1.

If dimM “ 2, since F is invertible, then both the stable and unstable distribu-
tion are C1. In general, these distributions are only Hölder continuous. This also implies
that the stable and unstable holonomies are C1.

Definition 23. Given a foliation F , we define the holonomy hΣ1,Σ2 : Σ1 Ñ Σ2 between
two local discs Σ1 and Σ2 transverse to F by q ÞÑ Fpqq X Σ2, where Fpqq is the leaf of F
containing q.

FpxqxhFpxq

T1T2

Figure 4 – The holonomy hF moves x P T1 to T2 along the leaf Fpxq.

That is, a holonomy moves the point q through its leaf on F . For Anosov
endomorphisms, we have transverse foliations on the universal cover, so the stable holonomy
can have local unstable leaves as the discs. When there is no risk of ambiguity, we denote
it simply by hs. The same goes for the unstable holonomy.

An important feature of Anosov endomorphisms on tori is transitivity. The
following theorem is a consequence of results in [4] for topological Anosov maps, which
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are continuous surjections with some kind of expansiveness and shadowing property, as
we introduce in Section 1.3.1. Anosov endomorphisms are particular cases of topological
Anosov maps that are differentiable.

Proposition 5 ([4]). Every Anosov endomorphism on Tn is transitive.

Proof. By [4, Theorem 8.3.5], every topological Anosov map f on Tn has Ωpfq “ Tn, its
nonwandering set is the whole manifold, which implies transitivity.

In Section 1.2.1 we introduced quasi-isometry as a geometric property of
foliations on Rn, consisting of a uniform equivalence between the measure along the leaves
and the Euclidean measure. If the endomorphism is close to is linearization, we have that

Proposition 6 ([44]). Let f : Tn Ñ Tn be an Anosov endomorphism C1-close to its
linearization A. Then W u

F and W s
F are quasi-isometric.

The above proposition is proved in [44] as Lemma 4.4. In the case that f
is a special Anosov endomorphism, however, the quasi-isometry is guaranteed by the
conjugacy between f and A: the stable and unstable foliations lift to foliations of Rn, that
are invariant under deck transformations, and together with the fact that H is uniformly
bounded and with the global product structure, this allows us to bound the lengths
properly. In particular, for dimension 2, W u{s

F is homeomorphic to a foliation by lines,
therefore it is Reebless and, by the classification of foliations on compact surfaces given in
[30, §4.3], W u{s

F is the suspension of a circle homeomorphism, thus being quasi-isometric
(this is similar to the argument given in [29] to prove dynamical coherence for special
partially hyperbolic endomorphisms on T2).

This argument does not apply forW u
F if f is not special, since this foliation does

not project to a foliation of Tn, but the quasi-isometry of W u
F follows from [27, Proposition

2.10] for partially hyperbolic endomorphisms on T2.

Concluding, for Anosov endomorphisms, the stable foliation is always quasi-
isometric. We have quasi-isometry of the unstable manifolds for special Anosov endomor-
phisms, it only is guaranteed locally around the linear maps for the general non-special
case, and on T2 it always holds. We still do not know if there are examples of Anosov
endomorphisms on Tn with unstable foliations that fail to be quasi-isometric, or if it can
be proved that Anosov endomorphisms always have quasi-isometric unstable manifolds.

1.3.1 Shadowing and c-expansivity

In this section, we prove that Anosov endomorphisms have two properties that,
together, imply the structurally stability at the natural extension level. These are the
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shadowing property and c-expansivity. In the invertible case, this proves the structural
stability.

A δ-pseudo-orbit is a sequence txiuiPZXra,bs of points of X, a ă b P Z, such that
dpfpxiq, xi`1q ă δ for i P ZX ra, bq. If a “ ´8 and b “ 8, we say that the δ-pseudo-orbit
is bi-infinite.

Essentially, pseudo orbits are orbits allowing a small error at each step, but
on a non-cumulative fashion: after an iteration, we are allowed to have instead a point
near the “right one”, but then we iterate the “right one” and get a new neighborhood of
allowed points.

We say that a δ-pseudo orbit is ε-shadowed by x P X if dpf ipxq, xiq ď ε for
i P ZX ra, bs (with a ě 0 if f is non-invertible). The map f : X Ñ X has the shadowing
property if, for ε ą 0, there is δ ą 0 such that every δ-pseudo orbit is ε-shadowed by a
x P X.

We can shadow a bi-infinite δ-pseudo-orbit for an endomorphism using points
of the natural extension.

The shadowing property gives us that every “approximated” orbit can be
replaced by a real orbit nearby. To prove that it is the case for Anosov endomorphisms,
let us first establish the local product structure.

The following is a consequence of the stable manifold theorem [51, Theorem
IV.2.3], [49, Theorems 2.3 and 2.6].

Theorem 8 (Local product structure for endomorphisms [51, 49]). If Λ a hyperbolic set
for the endomorphism f : U ĎM ÑM , then, given ε ą 0 small enough, there is 0 ă δ ă ε

such that

1. For ỹ P Λf and x0 P Λ with dpx0, y0q ă δ, we have that W u
ε pỹq&W

s
ε px0q is a single

point zx0,ỹ. See Figure 5.

2. If UδpΛq “ tpx0, ỹ P Λˆ Λf : dpx0, y0q ă δu, then

r., .sε,δ : UδpΛq Ñ Λ
px0, ỹq ÞÑ zx0,ỹ

is continuous.

3. If Λ is a basic (maximal and transitive) subset for f , then for all px0, ỹq P UδpΛq
there is a single point w̃ P Λf such that πpw̃q “ zx0,ỹ and dpw´n, y´nq ă ε for all
n P Z`.

Remark 2. We need that Λ is an axiom A basic set only for the uniqueness of w̃. Its
existence is given by the definition of local unstable manifold.



Chapter 1. Preliminary concepts 42

W u
ε pỹq

x0

y0zx0,ỹ

W s
ε px0q

Figure 5 – The local product between x0 and y0 is obtained from the intersection of the
stable manifold for x0 and an unstable manifold for y0. The unstable manifold
depends on a choice of pre images for y0, given by ỹ.

In what follows, we prove the Shadowing Lemma for endomorphisms, which is
already stated in [49, Corollary 1.14] and [4, Theorem 1.2.1], with our proof here being
an adaptation of [55, Proposition 8.20] to endomorphisms. Remember that a bi-infinite
pseudo-orbit for and endomorphism f : M ÑM is not shadowed by M , but by a point of
the natural extension M f .

Theorem 9 (Shadowing Lemma). Let Λ be a hyperbolic set for the Crendomorphism
f : U Ď M Ñ M , r ą 1. If Λ has local product structure, then for any β ą 0 there is
α ą 0 such that all α-pseudo-orbit in Λ is β-shadowed.

Proof. Consider in M the adapted metric, that is, a metric equivalent to the Riemannian
metric such that, for λ P p0, 1q,

||Dfxpvq|| ď λ||v|| if v P Es
pxq

||Dfx0pvq|| ě λ´1
||v|| if v P Eu

px̃q.

Let 0 ă ε ă p1 ´ λqβ be sufficiently small for the existence of local stable
and unstable manifolds. Consider 0 ă η “

ε

1´ λ ă β. By Theorem 8, there is 0 ă δ ă

mintε, β ´ ηu such that
r., .sε,2δ : UδpΛq Ñ Λ

px0, ỹq ÞÑ zx0,ỹ

is continuous.

We choose 0 ă α ă δ such that, given w̃ P Λf with dpz0, w0q ă α we have that

rz0, π
´1
pW s

λδpw0q X Λqs Ă W s
δ pz0q.

Such α exists by the continuity of the local product. See Figure 6.

Given a finite α-pseudo-orbit x “ tx0, . . . , xnu in Λ, we define inductively
ỹ0, . . . , ỹn with
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W s
δ pz0q

W s
λδpw0q

α

z0

w0

Figure 6 – We illustrate the choice of α in such way that the local unstable manifolds
passing through the local stable manifold of w0 intercept the local stable
manifold of z0 at a single point.

1. y0 :“ x0 P Λ and we fix a ỹ0 P π
´1
py0q.

2. y1 :“ rx1, f̃pỹ0qs. This local product is well defined because

dpx1, πpf̃pỹ0qqq “ dpx1, fpx0qq ă α ă δ.

Besides, from the definition of α and since dpx1, πpf̃pỹ0qqq ă α, we have that
y1 “ rx1, f̃pỹ0qs P W

s
δ px1q.

We choose ỹ1 as a point of Λf such that πpỹ1q “ y1 and dppỹ1q´n, pf̃pỹ0qq´nq ă ε for
all n P Z`, that exists due to the definition of local stable manifold.

3. We define yk :“ rxk, f̃pỹk´1qs for 1 ď k ď n, and ỹk as a point of Λf such that
πpỹkq “ yk and dppỹkq´n, pf̃pỹk´1qq´nq ă ε for all n P Z`.

x0 “ y0 x1 x2fpx0q

W s
ε px1q

y1

W u
ε pf̃pỹ0qq

f f f

W s
ε px2q

fpx1q

fpy1q
W u
ε pf̃pỹ1qqy2

xk

W s
ε pxkq

fpxk´1q

fpyk´1q
W u
ε pf̃p ˜yk´1qqyk

. . .

Figure 7 – We start with x0 “ y0. At the next step, y1 is defined as the intersection
between the stable manifold of x1 and the unstable manifold of f̃pỹ0q. Thus,
the define yi inductively.

To check that yk are well defined, we first prove by induction that yk P W s
δ pxkq.

Indeed, we saw that y1 P W
s
δ px1q, so it remains to assume the induction hypothesis and

conclude that it holds for k.
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Suppose that yk´1 P W
s
δ pxk´1q. Then fpyk´1q P W

s
λδpfpxk´1qq. Since

dpxk, fpxk´1qq ă α,

by the definition of α, we have that

rxk, π
´1
pW s

λδpfpxk´1qq X Λqs Ă W s
δ pxkq.

Therefore, yk “ rxk, f̃pỹk´1qs P W
s
δ pxkq.

To conclude that yk “ rxk, f̃pỹk´1qs is well defined, it suffices to prove that

dpxk, π ˝ f̃pỹk´1qq “ dpxk, fpyk´1qq ă 2δ.

But dpxk, fpyk´1qq ď dpxk, fpxk´1qq ` dpfpxk´1q, fpyk´1qq. The first term is
lesser than α, since x is an α-pseudo-orbit.

Since yk´1 P W
s
δ pxk´1q, then fpyk´1q P W

s
λδpfpxk´1qq, thus

dpfpxk´1q, fpyk´1qq ă λδ.

Therefore, dpxk, fpyk´1qq ă α ` λδ ă 2δ.

Now let us see how to use ỹi to find the shadowing orbit for the α-pseudo-orbit
x.

Since, by definition, yk P W u
ε pf̃pỹk´1qq, then, for j P Z`,

f jpykq P W
u
λ´jεpf̃

j`1
pỹk´1qq (1.1)

and, with ỹk “ p. . . , pỹkq´2, pỹkq´1, yk, fpykq, f
2
pykq, . . . q, we have that

pỹkq´j P W
u
λjεpf̃

´pj´1q
pỹk´1qq. (1.2)

Claim: ỹ :“ f̃´npỹnq β-shadows x, that is, y “ πpỹq “ pỹnq´n satisfies
dpf ipyq, xiq ă β for i “ 0, . . . , n.

Indeed, we have that

dppỹkq´j, yk´jq ă θj :“
j
ÿ

i“1
λjε, (1.3)

for k, j P N such that 0 ď j ď k ď n, that can be verified inductively over j by 1.2.

Remark 3. In [55], in the case that f is a diffeomorphism, we have that pỹkq´j P W u
θj
pyk´jq,

that does not hold in our case due to the existence of multiple unstable directions. However,
the inequality 1.3 still holds. See Figure 8.
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f 2
py1q

y3 fpy2q

f 3
py0q

W u
ε1pf̃pỹ2qq

W u
λ´1ε1pf̃

2
pỹ1qq

W u
λ´2ε1pf̃

3
pỹ0qq

f

ỹ3´1
y2

fpy1q f 2
py0q

W u
λε1pỹ2q

W u
ε1pf̃pỹ1qq

W u
λ´1ε1pf̃

2
pỹ0qq

ỹ3´2 ỹ2´1

y1 fpy0q

W u
λ2ε1pf̃

´1ỹ2q

W u
λε1pỹ1q

W u
ε1pf̃pỹ0qqf

Figure 8 – The unstable leaf of fpyk´1q is not necessarily the one of yk, but we can still
control their distances.

Thus, dpy, x0q “ dppỹnq´n, y0q ă θn ă η ă β and

dpfpyq, x1q “ dppỹnq´pn´1q, x1q ď dppỹnq´pn´1q, y1q ` dpy1, x1q ă η ` δ ă β

where the second term is lesser than δ since yk P W s
δ pxkq and the first one is lesser than η

due to inequality 1.3.

In the same way, for the general case with 1 ď i ď n,

dpf ipyq, xiq “ dppỹnq´pn´iq, xiq ď dppỹnq´pn´iq, yiq ` dpyi, xiq ă η ` δ ă β,

and this concludes the claim.

For any finite pseudo-orbit, the previous proof applies by reindexing the sequence
to make the first term x0.

If x is a bi-infinite α-pseudo-orbit,

x “ p. . . , x´2, x´1, x0, x1, x2, . . . q,

each finite segment xa,b of x is β-shadowed by an orbit ỹa,b. Let

A :“ tpa, bq P Zˆ Z such that a ă b´ 1u,

then tỹa,b : pa, bq P Au is countable in Λf compact, thus it has an accumulation point ỹ,
that β-shadows x.
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To apply the Shadowing Lemma to construct a conjugacy between the natural
extensions of nearby Anosov endomorphisms, we need the uniqueness of the shadowing
for small β. In the invertible case, this is guaranteed by the expansivity, and here we
generalize this concept.

Definition 24. If f : X Ñ X is a continuous and surjective function the compact metric
space X, we say that f is c-expansive if there is ε ą 0 such that, if x̃ and ỹ are distinct
points of the natural extension Xf , there is i P Z such that dpxi, yiq ą ε.

Equivalently, f is c-expansive if there is ε ą 0 such that if dpxk, yyq ă ε for all
k P Z, then x̃ “ ỹ.

See [4] for the properties of c-expansive functions. For instance, the following
result [4, Theorem 2.2.29] can be easily verified.

Proposition 7 ([4]). f : X Ñ X is c-expansive if and only if f̃ : Xf
Ñ Xf is expansive

at the natural extension.

Other result of [4] is the following.

Proposition 8 ([4]). If Λ is a hyperbolic set for the endomorphism f : U Ď M Ñ M ,
then f is c-expansive in Λ.

Thus, we have c-expasivity for hyperbolic sets of endomorphisms, and taking
β in Theorem 9 to be half the expansivity constant, we get uniqueness. The conjugacy
between f̃ and g̃, the inverse limit of two nearby Anosov endomorphisms, is given as
follows: if dC1pf, gq ă α, then any x̃ PM f is an α-pseudo orbit for g, thus it is β-shadowed
by a unique ỹ P M g; we define h̃px̃q “ ỹ that takes each pseudo orbit to its shadowing,
and we can prove that h̃ is a conjugacy, as in the invertible case [52, Theorem 7.1].

The proofs of this section are valid without the differentiable structure. We say
that a local homeomorphism f : M ÑM is an topological Anosov map if it is a continuous
surjection that has the shadowing property and is c-expansive. Topological Anosov maps
are stable on the natural extension [4, Theorem 6.8.1].

Having a conjugacy between the natural extensions of two nearby Anosov
endomorphisms could cause us to think we can project it somehow, but if it projects, then
f and g would be at least topologically semiconjugate. In the case that g is special and f
is not, it cannot occur, as we show in Proposition 11.

1.3.2 Conjugacy with a linear model

Given an Anosov endomorphism f : Tn Ñ Tn, its linearization A : Tn Ñ Tn

is the unique linear toral endomorphism homotopic to f , that is, A “ f˚ extended from
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Zn to Tn. Often the behavior of f is related to the one of A. In fact, if f is invertible or
expansive, f and A are topologically conjugate. In the more general non-invertible setting,
since a conjugacy should preserve stable and unstable manifolds, it does not exist if f is
not special.

With the results of the previous subsection, we see that f and A are conjugate
at the natural extension level [49, Theorem 1.20], but if this conjugacy projects to the
original manifold Tn then f is special, a necessary condition to establish the conjugacy
between f and A. We can approach the conjugacy using the universal cover, as was
classically done for diffeomorphisms [21, 39].

The version of Theorem E given by F. Micena requires the Anosov endomor-
phism to be strongly special — that is, W s

f pxq is dense for each x P M — in order to
guarantee the existence of conjugacy with its linearization. This relies on Proposition 9
stated below and given by Aoki and Hiraide in [4] for topological Anosov maps.

Proposition 9 ([4]). If f : Tn Ñ Tn is a strongly special Anosov endomorphism, then its
linearization A is hyperbolic and f is topologically conjugate to A.

We know that Anosov endomorphisms on tori are topologically transitive,
and a classical open question is whether every Anosov diffeomorphism is transitive. For
diffeomorphisms, transitivity is equivalent to the density of stable and unstable manifolds.

However even in the transitive case, general Anosov endomorphisms may have
non-dense stable manifolds. For instance, consider the linear Anosov endomorphism on T3

induced by the matrix

A “

¨

˚

˝

2 1 0
1 1 0
0 0 2

˛

‹

‚

.

It is easy to check that dimEu
“ 2, dimEs

“ 1, A : T3
Ñ T3 is transitive and W u

Apxq is
dense in T3 for each x, but, if x “ px1, x2, x3q P T3, W s

Apxq is restricted to T2
ˆ tx3u, then

it is not dense.

More recently, S. Moosavi and K. Tajbakhsh [45] proved, similarly to Aoki and
Hiraide, that the hypothesis on the density of the stable set is not required, and extended
the conjugacy result to topological Anosov maps on nil-manifolds. As a consequence, we
have the following.

Proposition 10 ([58, 45]). An Anosov endomorphism f : Tn Ñ Tn is special if and only
if it is conjugate to its linearization by a map h : Tn Ñ Tn homotopic to Id.

We saw in Example 1 that a small perturbation of a special Anosov endomor-
phism may be not special, and in particular, a perturbation can have uncountable many
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unstable directions on a given point. This is an obstruction to topological conjugacy. On
the universal cover, however, we do have a conjugacy.

If f : Tn Ñ Tn is an Anosov endomorphism, by [4, Theorem 8.2.1] there is a
unique continuous surjection H : Rn

Ñ Rn on the universal cover with

• A ˝H “ H ˝ F ;

• H is uniformly close to Id;

• H is uniformly continuous.

And, by [4, Proposition 8.4.2], the inverse H´1 exists and it is uniformly continuous,
regardless of the distance between f and A. These two results hold for f topological
Anosov map on the n-torus, with the c-expansivity playing a key hole to the injectivity of
H as in Section 1.3.1.

A necessary condition for H to project to the torus is that f is special. In fact,
we prove that even the existence of a semiconjugacy with the linearization on Tn implies
that f is special.

Proposition 11 ([12]). Let f : Tn Ñ Tn be an Anosov endomorphism and A its lineariza-
tion. If A is a factor of f , then f is special.

Proof. Supposing that A is a factor of f , then there is a continuous surjective map
h : Tn Ñ Tn with h ˝ f “ A ˝ h. Considering H a lift of h to Rn, we have that
Hpx`aq “ Hpxq`Ba for each x P Rn and a P Zn, where B : Zn Ñ Zn. Let F,A : Rn

Ñ Rn

be lifts of f and A.

For x „ y, i.e., y “ x ` a with a P Zn, we prove that ppW u
F pxqq “ ppW u

F pyqq.
Since H takes unstable leaves of F to unstable lines of A, then

HpW u
F pxqq “ W u

ApHpxqq and

HpW u
F pyqq “ HpW u

F px` aqq “ W u
ApHpx` aqq “ W u

ApHpxqq `Ba.

For any z P W u
F pxq, we have Hpzq P W u

ApHpxqq, then

Hpzq `Ba P W u
ApHpxqq `Ba “ HpW u

F pyqq.

By [4], H is invertible, then Hpzq`Ba “ Hpz`aq and, therefore, z`a P W u
F pyq. Therefore

ppW u
F pxqq Ď ppW u

F pyqqq, and the converse inclusion is analogous.

Thus, the set of unstable directions projected from the universal cover for each
point in Tn is unitary. Since the set of all unstable directions for a point is the closure of
the ones projected from the universal cover [44, Proposition 2.5], we conclude that f is
special.
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x Hpxq

Hpyq
y “ x` a

H

H

`a
`Ba

W u
F pxq

W u
F pyq

W u
ApHpxqq

W u
ApHpxqq `Ba

z

Hpzq

Hpzq `Ba

z ` a

Figure 9 – For any point on W u
F pxq, we show that its image under a deck transformation

`a is contained on W u
F px` aq.

In the conclusion of the previous result, we get that the invariance under deck
transformations of the unstable leaves on the universal cover is equivalent to f being
special, and the existence of a semiconjugacy on the torus would imply this invariance
because H is invertible.

1.3.3 Lyapunov exponents

Given a differentiable dynamical system f : M ÑM , Lyapunov exponents are
quantities defined for almost every point that describe the rates of exponential growth
along some directions of the tangent space TxM . Their existence and properties are given
by the Multiplicative Ergodic Theorem, as follows.

Theorem 10 ([51]). For f : M ÑM a C1 endomorphism, there is a f-invariant Borel
subset N ĎM that has full µ-measure for any f -invariant probability µ and

1. there is a measurable function r : N Ñ Z` with r ˝ f “ r;

2. there are real numbers `8 ą λ1
pxq ą λ2

pxq ą ¨ ¨ ¨ ą λrpxqpxq ě ´8 for all x P N ;

3. for all x P N , there are linear subspaces of TxM with

V p0qpxq “ TxM Ą V p1q Ą ¨ ¨ ¨ Ą V prpxqq “ t0u;

4. for x P N and 1 ď i ď rpxq, we have for all v P V pi´1q
pxqzV piqpxq that

lim
nÑ8

1
n

log |Dfnpxq ¨ v| “ λipxq and

lim
nÑ8

1
n

log |Dfnpxq ¨ v| “
rpxq
ÿ

i“1
λipxqmipxq,

where mipxq “ dim V pi´1q
pxq ´ dim V piqpxq for all 1 ď i ď rpxq;
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5. λipxq is measurably defined on tx P N : rpxq ě iu and f -invariant;

6. V piqpxq is Df -invariant for all 1 ď i ď rpxq.

The numbers λ1
pxq, ¨ ¨ ¨λrpxqpxq are called Lyapunov exponents of f at the point

x and mipxq are their multiplicity.

If pf, µq is ergodic, then rpxq and λipxq, for all 1 ď i ď rpxq, are con-
stants µ-almost everywhere. Additionally, if pf, µq satisfies the integrability condition
log | detDfpxq| P L1

pµq, then we have that
ż

M

log | detDfpxq|µpxq “
ż

N

rpxq
ÿ

i“1
λipxqmipxqµpxq.

We saw in Section 1.1.1 that the conjugacy of derivatives of corresponding
periodic points is a a necessary condition to have C1 conjugacy. For our rigidity result,
Theorem E, we require that corresponding periodic points have the same Lyapunov
exponents. Let us see that these conditions are equivalent in the context of this work.

Consider f, g : M ÑM topologically conjugate endomorphisms, h ˝ f “ g ˝ h.
If Df px “ B´1

˝Dgphpxq ˝ B for all periodic x with fppxq “ x, then the matrix B gives a
change of basis between the V piq directions of f and g, with the same Lyapunov exponents
at the periodic points.

Reciprocally, if Dfpxq and Dgpxq are diagonalizable for each x PM — that is
the case if M “ T2 and f and g are uniformly hyperbolic —, then

λif pxq “ λigphpxqq

implies the conjugacy of derivatives of corresponding periodic points. Indeed, for all n P N,
there are k P N and r P t0, ¨ ¨ ¨ , p´ 1u such that n “ kp` r. Then we can decompose the
derivatives to compute the Lyapunov exponents as

Dfnpxq “ Dpfk ˝Dkp
qpxq “ Df rpxqpDf ppxqqk

and, analogously, Dgnphpxqq “ DgrphpxqqpDgpphpxqqqk.

Then we have that

λif pxq “ lim
nÑ8

1
n

log |Df rpxqpDf ppxqqk|

“ lim
kÑ8

1
kp` r

log |Df rpxq| ` lim
kÑ8

k

kp` r
log |Df ppxq|

“
1
p

log |Df ppxq|,

and λigphpxqq “
1
p

log |Dgpphpxqq| along one dimensional corresponding di-
rections, that is, |Df ppxq| “ |Dgpphpxqq| along these directions and the matrices are
conjugate.
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2 Holonomies for foliations with
extreme disintegration behavior

In this chapter, we explore the relation of two approaches to the regularity
of a foliation with respect to the Lebesgue measure: by the regularity of the associated
conditional measures (leafwise absolute continuity), or by the measurable regularity of the
holonomy maps (transverse absolute continuity), as introduced in Sections 1.2.3 and 1.2.4.

As we have mentioned, the transverse absolute continuity is stronger than
leafwise absolute continuity, and, in Theorem A, we prove an analogous result for their
respective uniform formulations: transverse absolute continuity with uniformly bounded
Jacobians is stronger than leafwise absolute continuity with uniformly bounded densities
(and we call this UBD property).

Conversely, in the unpublished notes [50], the authors prove that leafwise
absolute continuity implies transverse absolute continuity “almost everywhere”. More
precisely, they prove that, if a foliation is leafwise absolutely continuous, then for any
transversely absolutely continuous transverse local foliation T , we have that the F-
holonomies between almost every pair of T -leaves are absolutely continuous. We also
provide a proof of a similar result for foliations having the UBD property. In Theorem B,
we prove that if a foliation has the UBD property, then for any transversely absolutely
continuous local foliation T with uniformly bounded Jacobians and transverse to F ,
we have that the F-holonomies between almost every pair of T -leaves are absolutely
continuous with uniformly bounded Jacobians. This result answers a question left as a
footnote in [43], when the authors define the UBD property.

These results also motivate the hypothesis that the stable and unstable foliations
have the UBD property in Theorem D that we prove in the next chapter, since requiring
that the Jacobian for the holonomies are uniformly bounded is common when studying
hyperbolic dynamics.

Another extreme behavior for a foliation — in contrast to the regularity given
by absolute continuity — is atomic disintegration, that is, when the conditionals are sums
of Dirac measures for almost every leaf. In this case, if almost every leaf has at most k
atoms, we prove in Theorem 5 that almost every holonomy should take a full Lebesgue
measure set to a null one.



Chapter 2. Holonomies for foliations with extreme disintegration behavior 52

2.1 Proof of Theorem A
Consider T a transverse local foliation to F . Take T to be transversely abso-

lutely continuous with uniformly bounded Jacobians and with the UBD property. There is
a foliation coordinate chart pU, hq for F such that U is a foliated box for both F and T .
Hereafter, all the computations take place on U , and we omit it from the notation.

Let m be the normalized volume on U , λFpxq the induced normalized volume
on Fpxq and mFpxq the conditional of the volume on Fpxq.

Since T has the UBD property, then the densities δy “
dmT pyq

dλT pyq
are uniformly

bounded for each leaf T pyq.

For each measurable A Ď U we have, using the conditionals, that

mpAq “

ż

Fpxq

ż

T pyq
χApzqδypzqdλT pyqpzqdλFpxqpyq. (2.1)

Fixed x P U , consider the holonomy hF ,y : T pxq Ñ T pyq that takes T pxq to
T pyq through the leaves of F and qF ,y its Jacobian. Then

ż

T pyq
χApzqδypzqdλT pyqpzq “

ż

T pxq
χAphF ,ypsqqqF ,ypsqδyphF ,ypsqqdλT pxqpsq, (2.2)

since
ż

T pxq
χCpzqqF ,ypzqdλT pxq “

ż

T pyq
χhF,ypCqpsqdλT pyqpsq

by the definition of Jacobian, and χfpCq “ χC ˝ f
´1.

By replacing (2.2) in the equation (2.1) and switching the order of integration,
we have that

mpAq “

ż

T pxq

ż

Fpxq
χAphF ,ypsqqqF ,ypsqδyphF ,ypsqqdλFpxqpyqdλT pxqpsq. (2.3)

Consider the holonomy hT ,s : Fpxq Ñ Fpsq that takes Fpxq to Fpsq through
the leaves of T and qT ,s its Jacobian. Consider the change of variables r “ hF ,ypsq,
y “ hT ,xprq “ h´1

T ,sprq. Then
ż

Fpxq
χAphF ,ypsqqqF ,ypsqδyphF ,ypsqqdλFpxqpyq “

ż

Fpsq
χAprqqF ,ypsqδyprqq

´1
T ,sprqdλFpsqprq,

(2.4)
therefore

mpAq “

ż

T pxq

ż

Fpsq
χAprqδyprqq

´1
T ,sprqqF ,ypsqdλFpsqprqdλT pxqpsq. (2.5)

Thus, δsprq :“ δyprqq
´1
T ,sprqqF ,ypsq is the density dmFpsq

dλFpsq
. The Jacobian q´1

T ,s is

uniformly bounded, since T is transversely absolutely continuous with uniformly bounded
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Fpxq

Fpsq

T pyq T

x

s

y

r

Figure 10 – We change the variables from y and s to r and s.

Jacobians, and T also has the UBD property, then δyprq is also uniformly bounded. Finally,
qF ,ypsq is uniformly bounded by our hypothesis on F , and we conclude that δs is uniformly
bounded.

2.2 Proof of Theorem B
Let pU, hq be a foliation coordinate chart for F in such way that U is also a

foliated box for T . The strategy of this proof is to construct a family of functions that have
uniformly bounded Jacobian, that restricted to F -leaves are translations with uniformly
bounded Jacobian, and that restricted to T -leaves are holonomies along F . Using this
family of functions, we prove that hF has uniformly bounded Jacobian for almost every
pair of T -leaves.

Fixed F “ Fpxq a leaf of F on U , there is a diffeomorphism i : F Ñ Rk, which
allows us to pullback to F the action by translations on Rk. More precisely, if the action
a : Rk

ˆRk
Ñ Rk is defined by g ¨x “ apg, xq “ g`x, then the pullback action is given by

a : Rk
ˆ F Ñ F

pg, xq ÞÑ i´1
pg ¨ ipxqq.

Having no risk of ambiguity, we denote g ¨ x “ apg, xq as the induced action on
F .

For every g P Rk, since apg, ¨q is smooth and preserves the Lebesgue measure
on Rk, then apg, ¨q is C1 (it is as regular as the leaves of F) and absolutely continuous.
However, since i takes a bounded manifold F to Rk, it takes sets of fixed volume on F to
arbitrarily large sets on Rk, therefore apg, ¨q does not have bounded Jacobian.
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To overcome this, consider V Ď U a compact foliated box for F and T , and
F̃ “ F X V . We only consider holonomies between leaves of T intercepting F̃ , that
is, between T pxq and T px1q with x, x1 P F̃ . Then, consider A Ď Rk such that g P A
implies that apg, ¨q : F̃ Ñ F has image satisfying apg, F̃ q X F̃ ‰ H. It is easy to see
that A is closed and its interior is a non-empty neighborhood of 0 in Rk. For g P A, let
Fg :“ ap´g, apg, F̃ q X F̃ q ‰ H be the pre image of apg, F̃ q X F̃ under apg, ¨q. In other
words, Fg is the subset of F̃ that remains inside F̃ after the translation by g. Then there
exists a constant CV such that, for all g P A, apg, ¨q restricted to Fg has Jacobian qa,g

satisfying
1
CV

ă qa,g ă CV ,

since i restricted to F̃ and i´1 restricted to dpF̃ q are C1 functions over fixed compact sets.

Hereafter, all the leaves are local leaves with respect to the foliated box V . We
can use the holonomies along the leaves of F to define, for each g P A, a homeomorphism

hg : Vg Ñ hgpVgq Ď V , where Vg “
ď

xPFg

T pxq.

We define hg as follows: for y P Vg, there is x P Fg such that y P T pxq.
Considering the holonomy hF : T pxq Ñ T pg ¨ xq,

hg : Vg Ñ hgpVgq

y ÞÑ hFpyq.

In other words, hgpyq “ hT pg ¨ h
´1
T pyqq, where hT : F Ñ Fpyq is the holonomy along the

leaves of T . Also, by the construction of hg, its restriction to T -leaves is the holonomy
hF : T pxq Ñ T pg ¨ xq.

F “ Fpxq

Fpyq

T pg ¨ xq T pxq

x
g ¨ x

g

yhgpyq
hg

Figure 11 – We define hg as a translation on F -leaves with restrictions to T -leaves being
F -holonomies.
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We have that hg restricted to F -leaves is absolutely continuous with uniformly
bounded Jacobian. Indeed, given a leaf Fpyq and a measurable I Ď Fpyq X Vg, we have
that hgpIq “ hT pg ¨h

´1
T pIqq, with the holonomies hT along the leaves of T having uniformly

bounded Jacobian and apg, ¨q also being bounded with the constant CV that does not
depend on g.

Furthermore, if z P Fpyq, then hgpzq P Fpyq. This means that hg preserves a
measure transverse to the foliation F . But hg restricted to F -leaves is absolutely continuous
with uniformly bounded Jacobian, thus hg : Vg Ñ hgpVgq is absolutely continuous with
uniformly bounded Jacobian.

We have a map hg that is absolutely continuous with uniformly bounded
Jacobian for whole open sets in the manifold and along the foliation F . But, restricted to
T -leaves, this map is precisely the F -holonomies, which we want to prove that is absolutely
continuous with uniformly bounded Jacobian along T . Thus, the heart of the proof is the
following lemma.

Lemma 1. There exists a constant C ą 1 such that, for each g P A, there is a λFg-full
measure set Xg Ď Fg such that for each x P Xg the holonomy hg

ˇ

ˇ

T pxq “ hF : T pxq Ñ T pg¨xq
is absolutely continuous and its Jacobian q satisfies q ď C.

Proof. Suppose that the lemma does not hold. Then for each C ą 1 there exists g P A
and B “ BC,g Ď Fg with positive volume such that for each x P B we have that
hg
ˇ

ˇ

T pxq : T pxq Ñ T pg ¨ xq does not have Jacobian q satisfying q ď C. Thus, for each x P B,
there is Zx,C Ď T pxq with positive volume such that qpyq ą C for all y P Zx,C .

Let z be a density point of Zx,C with respect to the volume measure λT pxq

on the leaf. That is, if BT pz, δq is the ball of center z and radius δ on the leaf and
Zx,C,δ :“ Zx,C XBT pz, δq, then

lim
δÑ0

λT pxqpZx,C,δq

λT pxqpBT pz, δqq
“ 1.

Since the foliation T is continuous, the holonomy hF along F leaves is continuous
and the Lebesgue volumes on T -leaves vary continuously, then, for a sufficiently small
interval I Ď Fpzq containing z, we can estimate the volumes of the images of Zx,C,δ
under F-holonomies and its images under hg. More precisely, for all w P I, considering
hF ,w : T pxq Ñ T pwq, we have that Zw,C,δ :“ hF ,wpZx,C,δq satisfies

δ

2 ď λT pwqpZw,C,δq ď
3δ
2 .

Moreover, its image hgpZw,C,δq satisfies

λT pg¨wqphgpZw,C,δqq ě
Cδ

2 ,
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since it is close to hgpZx,C,δq. Therefore, we have that

λT pg¨wqphgpZw,C,δqq ą
C

4 λT pwqpZw,C,δq. (2.6)

Fixed C ą 1, a small δ ą 0 and I sufficiently small so that the above inequality
holds, consider Z :“

ď

wPI

Zw,C,δ. To see that Z is measurable, it suffices to “see” it as a

product of I and Zx,C,δ. Indeed, consider

ρ : Z Ñ I ˆ Zx,C,δ

p ÞÑ phT ,zppq, hF ,zppqq,

where hT ,z : Fppq Ñ Fpzq is the holonomy along T -leaves and hF ,z : T ppq Ñ T pzq is the
holonomy along F-leaves. By our definition of Z and the fact that the holonomies are
continuous, we have that ρ is a homeomorphism, and then Z is measurable.

Since T is transversely absolutely continuous by hypothesis, then Z has positive
volume. We aim to conclude that mphgpZqq ą αCmpZq for some fixed constat α, which
leads to a contradiction to the fact that hg : Vg Ñ hgpVgq has uniformly bounded Jacobian.

Note that hgpZq “ hg

˜

ď

wPI

Zw,C,δ

¸

“
ď

wPI

hgpZw,C,δq, then

mphgpZqq “

ż

hgpIq

mT pg¨wqphgpZw,C,δqq dλF

ą

ż

hgpIq

1
K
λT pg¨wqphgpZw,C,δqq dλF

p2.6q
ě

ż

I

C

4KλT pwqpZw,C,δq dλF

ą

ż

I

C

4K2mT pwqpZw,C,δq dλF “
C

4K2mpZq.

where K is the constant from the UBD property. Since K does not depend on C or g,
we have that for each C ą 1, there is g P A such that hg is not uniformly bounded, a
contradiction.

Analogously to Lemma 1, we prove that

Lemma 2. There exists a constant C ą 1 such that, for each g P A, there is a λFg-full
measure set Yg Ď Fg such that for each x P Yg the holonomy hg

ˇ

ˇ

T pxq “ hF : T pxq Ñ T pg ¨xq

is absolutely continuous and its Jacobian q satisfies 1
C
ă q.

Now we proceed to prove that hF : T pxq Ñ T px1q is absolutely continuous with
uniformly bounded Jacobian for almost every px, x1q P F̃ ˆ F̃ .
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Consider
F̃ ˆ F̃ “

ď

gPA

tpx, g ¨ xq : x P Fgu,

as a partition of the product F̃ ˆ F̃ . This is indeed a partition since, for all x, y P F̃ , there
exists a unique g such that g¨x “ y. Moreover, F̃ is C1, and each set Gg :“ tpx, g¨xq : x P Fgu
is also C1. Therefore, the partition tGgugPA is in fact a foliation of F̃ ˆ F̃ homeomorphic
to an affine foliation of Rk

ˆ Rk by k-plaques restricted to the box Bp0, 1q ˆBp0, 1q, with
Bp0, 1q a unit ball in Rk.

By the Lemmas 1 and 2, for each g P A there is a full volume set Zg “ Xg X Yg

in Fg such that, for every x P Zg, the holonomy between T pxq and T pg ¨ xq is absolutely
continuous with uniformly bounded Jacobian. Thus, for all

px, x1q P
ď

gPA

tpx, g ¨ xq : x P Zgu,

the holonomy hF : T pxq Ñ T px1q is absolutely continuous with uniformly bounded
Jacobian. But Zgˆ g ¨Zg is a full measure subset of Gg, then a Fubini argument guarantees
that such pairs form a full measure set of F̃ ˆ F̃ .
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3 Rigidity for Anosov Endomorphisms
on surfaces

In this chapter, we prove two results to obtain as a corollary Theorem C, that
characterizes, for Anosov endomorphisms on surfaces, the smooth conjugacy between an
Anosov endomorphism and its linearization with the condition that the unstable and stable
foliations have a uniform kind of leafwise absolute continuity. This condition is called UBD
property, as defined in Section 1.2.4.

In the first result, Theorem D, we obtain a rigidity result relating the Lyapunov
exponents with the regularity of the unstable and stable foliations. More precisely, given
f : T2

Ñ T2 a smooth Anosov endomorphism, we prove that, if the stable and unstable
foliations have the UBD property and a volume condition is satisfied, then the Lyapunov
exponents of f are constant and equal to the ones of A. This volume condition replace the
role of conservativity for the non-invertible case, and we introduce it with more details
along the proof.

The second result, Theorem E, guarantee that, for two surface Anosov endo-
morphisms that are conjugate, if the Lyapunov exponents on corresponding periodic points
coincide, then the conjugacy is as regular as the endomorphisms.

By joining Theorems D and E for f special with the volume condition and
g “ A, we have that the UBD property implies equality of Lyapunov exponents, which
implies that h is as regular as f . Reciprocally, if the conjugacy h is C8, then a lift H of
h takes unstable leaves of F to unstable lines of A, implying the UBD property on the
unstable foliation of F . The same holds for the stable foliation, and Theorem C follows.

The results of this chapter were sent to publication and a pre-print is available
at [12].

3.1 Proof of Theorem D
Consider F : R2

Ñ R2 to be a lift of f to Rn the universal cover, and p : x ÞÑ rxs

to be the canonical projection from R2 to T2. By [4, Theorem 8.2.1] there is a conjugacy
H : R2

Ñ R2 between F and A, with dpH, Idq ă δ. In particular, this gives us global
product structure for the stable and unstable foliations of F .

Proposition 3 implies that the unstable and stable foliations W u
F and W s

F are
transversely absolutely continuous, therefore being leafwise absolutely continuous. So,
by requiring the Uniform Bounded Density property — promoting the leafwise absolute
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continuity to a uniform formulation — for both foliations, together with the volume
condition given by Hypothesis pCq, we prove that the exponents are constant at each point
on T2. We proceed by proving that λuf ” λuA and the proof for the stable exponents follows
analogously by using F´1.

We have that F has exactly one fixed point, because it is conjugate to A, and
we can suppose that F p0q “ 0. Consider B :“ W s

F p0q the stable leaf of 0 with respect to
F . We have that B is F -invariant and the unstable leaves of F intersect B transversely at
a unique point. Then we can define puF : R2

Ñ B as the projection taking each point z to
W u
F pzqXB. We can also fix an orientation on each leaf by choosing a connected component

of Bzt0u as positive. Assuming that F preserves the orientation on unstable manifolds, or
working with F 2 instead, consider the foliated strip

B0 :“ ty P R2 : duppuF pyq, yq ď γ0, y P W
u,`
F u,

where γ0 ą 0 is a constant that satisfies ppB0q “ T2 and is greater than 4δ. We can visualize
B0 as a strip “above” B whose projection covers the whole torus. Let Bk :“ F k

pB0q be the
iterates of B0. Since B is F -invariant and it expands along the unstable leaves, Bk´1 Ĺ Bk.

Define mk :“ m
ˇ

ˇ

Bk
to be the induced volume on Bk. Even with the mk being an

infinite measure, we can still consider conditional probability measures on foliated boxes
inside Bk: mk

x is the conditional probability measure in Wkpxq :“ W u
F pxqXBk for m-almost

every point in Bk. Additionally, this probability measure is unique up to multiplication by
a constant for almost every leaf.

Remark 4. Given this setting, before we proceed with the proof, let us explain the
Hypothesis pCq. We want it to hold to guarantee that, as we iterate under F the conditionals
on B0, obtaining F k

˚m
0
F´kpxq, they remain uniformly equivalent to the normalized volume

λ̂kx on Wk. This is the condition that allows us to compute the rates of exponential growth
of f as being equal to the ones of A along this proof.

Denoting with „ the uniform equivalence between two measures, we already
have that mk

x „ λ̂kx and F k
˚m

0
F´kpxq „ F k

˚ λ̂
0
F´kpxq by the UBD property. So, to obtain

F k
˚m

0
F´kpxq „ λ̂kx as we wish, it suffices to have that F k

˚m
0
F´kpxq „ mk

x or F k
˚ λ̂

0
F´kpxq „ λ̂kx,

with the latter being Hypothesis pCq, and the both being equivalent under the UBD
property. Thus, in this case, Hypothesis pCq regards the relation between F k

˚m
0
F´kpxq and

mk
x. We have that

a) dF k
˚m

0
“ | detDF´kp¨q|
looooooomooooooon

JF´kp¨q

dmk in Bk;

b) tmk
xux is a disintegration of mk;

c) tF k
˚m

0
F´kpxqux is a disintegration of F k

˚m
0.
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Then, for any ϕ : Bk Ñ R, we have on one hand that
ż

Bk
ϕdF k

˚m
0 cq
“

ż

B

ˆ
ż

Wkpxq

ϕpzqdF k
˚m

0
F´kpxqpzq

˙

dF k
˚µ

0
pxq. (3.1)

On the other hand, we have that
ż

Bk
ϕdF k

˚m
0 aq
“

ż

Bk
ϕ JF´kdmk bq

“

ż

B

ˆ
ż

Wkpxq

ϕpzqJF´kpzqdmk
xpzq

˙

dµkpxq. (3.2)

By comparing (3.1) and (3.2), we have that

dF k
˚m

0
F´kpxqpzq

dF k
˚µ

0

dµk
pxq “ JF´kpzqdmk

xpzq (3.3)

for any z P Wkpxq. Therefore, Hypothesis pCq is equivalent (under the UBD property) to
the existence of C ą 1 such that, for all x P Bk and z P Wkpxq

C´1
ď JF k

pzq
dF k

˚µ
0

dµk
pxq ď C. (3.4)

It is easy to check that this condition is satisfied if f is linear, or more generally
if JF is constant. The transverse measures µk and F k

˚µ
0 given by the disintegration satisfy

dF k
˚µ

0

dµk
pxq “ lim

εÑ0

F k
˚µ

0pIBε q

µkpIBε q
“ lim

εÑ0

m ˝ F´kpAεq

mpAεq
,

where IBε Ď B is a ball with center x and radius ε on B “ W s
F p0q, and

Aε “
ď

yPIBε

Wkpyq. Since

mpAεq “

ż

F´kpAεq

JF kdm,

then Hypothesis pCq tells us that the Jacobian JF k behaves regularity on Wkpxq indepen-
dently of k P N, replacing the role of conservativeness. This concludes our remarks on this
hypothesis. Whether this can be obtained from the other hypotheses or be refined, is open
to exploration.

The idea of this proof is to construct measures on the local leaves of Bk with
densities that decrease as k grows to 8 with a rate equal to α the unstable Lyapunov
exponent of the linearization A, and in such way that they are invariant under the dynamics
up to multiplication to α. This allows us to conclude that the unstable Lyapunov exponents
of F and A are the same. More specifically, we want to construct measures ηx such that
F˚ηx “ α´1ηF pxq and uniformly equivalent to the volume induced on the global leaves.

Consider the measures ηkx defined inductively as follows:
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η0
x :“ m0

x and

ηkx :“ αF˚η
k´1
F´1pxq “ αkF k

˚m
0
F´kpxq.

Here α is the unstable eigenvalue of A. Since |α| ą 1, ηkx is not a probability. Actually, we
prove that it is comparable with λx, where λx is the induced volume along the global leaf
W u
F pxq. For this, we use the quasi-isometry and the existence of a conjugacy uniformly

near to Id to show that the length of the unstable segments Wkpxq grows uniformly with
α as we apply F .

Lemma 3. There is K ą 1 such that, for each k P N and x P B0, we have that

K´1
ď
λFkpxqpWkpF

kpxqqq

αk
ď K.

Proof. The quasi-isometry implies that, to estimate λFkpxqpWkpF
k
pxqqq, it suffices to

estimate }ak ´ bk}, with ak, bk being the extreme points of WkpF
k
pxqq. But we have that

ak “ F k
pa0q and bk “ F k

pb0q, with a0 and b0 the extreme points of W0pxq. Then

}F k
pa0q ´ F

k
pb0q} ď }F

k
pa0q ´H ˝ F

k
pa0q} ` }H ˝ F

k
pa0q ´H ˝ F

k
pb0q}

` }H ˝ F k
pb0q ´ F

k
pb0q} ď 2δ ` }Ak ˝Hpa0q ´ A

k
˝Hpb0q},

where Hpa0q, Hpb0q are on the same unstable line for A, and δ “ dpId,Hq ą 0.

Since

}Ak ˝Hpa0q ´ A
k
˝Hpb0q} “ αk}Hpa0q ´Hpb0q}

ď αkp}a0 ´ b0} ` 2δq ď αkpλxpW0pxqq ` 2δq,

the upper bound follows because λxpW0pxqq “ γ0, and the lower bound is analogous.

The multiplicative ergodic theorem for endomorphisms (see [51], for instance),
gives us that the unstable Lyapunov exponent of f on a given point does not depend on the
choice of orbit that defines the unstable direction, and then we can obtain it at Lebesgue
almost every point in B0, since ppB0q “ T2, p is a local isometry and the projection of
unstable leaves of F are unstable leaves of f .

The next estimations are for points x P B0 such that mk
x is well defined for all

k ě 0. We then construct the measures ηx as the limit of measures ηkx for a given x P B0.
For that, we need ηkx to be well defined for every large enough k, which is only guaranteed
for a full volume set on the foliated strip B0. Indeed, for all k ě 0, there is a full volume
set Ak Ď Bk such that mk

x is well defined for each x P Ak. Considering A :“
č

kě0
Ak and

D :“
č

nPN
F n
pAq, we have that D is F -invariant, has full measure in B0 and mk

x is well

defined for each x P D and k ě 0.
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Now we construct ηx for x P D, and later, using the density of D, we construct
using the holonomies other measures to compute the Lyapunov exponents for all point in
B0.

Lemma 4. For m-almost every x P B0 there is a measure ηx on W u
F pxq such that F˚ηx “

α´1ηF pxq and ηx “ ρxλx with ρx uniformly bounded.

Proof. By the definition of ηkx, F˚ηkx “ α´1ηk`1
F pxq. Thus, it suffices to show that the sequence

tηkxukě0 has an accumulation point ηx such that ηk`1
F pxq converges under the same subsequence

to ηF pxq. First, to guarantee the existence of accumulation points to the sequence tηkxukě0,
we show that ηkx is uniformly equivalent to the induced volume on the leaf, which will also
imply the uniform bound for ρx.

Essentially, we have uniform equivalence between the following measures

1. mk
x „ λ̂kx by the UBD property;

2. mk
x „ F k

˚m
0
F´kpxq by the Hypothesis pCq;

3. F k
˚m

0
F´kpxq „ λ̂kx by items 1 and 2;

4. ηkx “ αkF k
˚m

0
F´kpxq „ αkλ̂kx.

By Lemma 3, αkλ̂kx is uniformly equivalent to λx, the induced volume on W u
F pxq. Let us

now formalize these ideas.

Consider ρkpx, .q : Wkpxq Ñ R to be the density relating the probability mk
x

and the normalized volume λ̂kx :“ λx
λxpWkpxqq

on the leaf segment Wkpxq, i. e., dmk
xp.q “

ρkpx, .qdλ̂
k
xp.q. For all k P N, since the unstable foliation of F has the UBD property,

ρk P rC
´1, Cs, then

C´1

λxpWkpxqq
dλx ď dmk

x ď
C

λxpWkpxqq
dλx. (3.5)

So, the density dmk
x

dλ̂kx
is bounded with C´1 and C. By the Hypothesis pCq, the

density dmk
x

dF k
˚m

0
F´kpxq

is also bounded with C´1 and C, thus

C´2
ď
dF k

˚m
0
F´kpxq

dλ̂kx
ď C2.

By multiplying by αk, we have that

C´2αkdλ̂kx ď dηkx ď C2αkdλ̂kx.
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By Lemma 3,

K´1dλx ď αkdλ̂kx “ αk
dλx

λpWKpxqq
ď Kdλx.

This implies that
C´2K´1dλx ď dηkx ď C2Kdλx

then the sequence tηkxukě0 have an accumulation point. Let ki index a subsequence such
that ηx :“ lim

i
ηkix . The sequence tηki`1

F pxqui has an accumulation point for a subsequence with
indices that also make tηkxukąj converge. By a diagonal argument, we get ηx as desired.

To compute the Lyapunov exponents, we would like to have the measures
ηx to be defined at every point in B0. But we only have them on D, a full volume set.
To overcome this, for any z P B0, we define the measures mz and Mz using the stable
holonomy hs, which carries points from a local unstable leaf of F to other by traveling
on stable leaves. Consider pznqn to be a sequence of points in B0 such that ηzn exists and
zn

nÑ8
ÝÝÝÑ z. Consider Iz to be the set of connected intervals on W u

F pzq. Define for all I P Iz

mzpIq :“ lim inf
n

1
n

n´1
ÿ

i“0
ηziph

s
pIqq,

MzpIq :“ lim sup
n

1
n

n´1
ÿ

i“0
ηziph

s
pIqq.

In the following, we see that these measures are uniformly equivalent to λx, the
volume induced on the global leaves, and that they are well behaved with respect to F , as
the measures ηx are. There is a constant γ and pznqn such that

γ´1λzpIq ď mzpIq ďMzpIq ď γλzpIq, (3.6)

for all I P Iz small enough, with γ independent of the choice of z. Indeed, by Lemma 4,

mzpIq “ lim inf
n

1
n

n´1
ÿ

i“0
ρziλziph

s
pIqq ě C´2K´1 lim inf

n

1
n

n´1
ÿ

i“0
λziph

s
pIqq.

The holonomies are C1 by Proposition 4, and for I small enough λziphspIqq is
uniformly close to λzpIq. Thus mzpIq ě γ´1λzpIq. MzpIq ď γλzpIq follows analogously.

For each I P IFkpzq small enough

F k
˚mzpIq “ α´kmFkpzqpIq,

F k
˚MzpIq “ α´kMFkpzqpIq.

(3.7)
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Indeed, by Lemma 4 and the fact that the holonomies are F -invariant:

F k
˚mzpIq “ mzpF

´k
pIqq “ lim inf

n

1
n

n´1
ÿ

i“0
ηziph

s
pF´kpIqqq “ lim inf

n

1
n

n´1
ÿ

i“0
ηzipF

´k
phspIqqq

“ lim inf
n

1
n

n´1
ÿ

i“0
α´kηFkpziqph

s
pIqq “ α´kmFkpzqpIq.

And for M it is analogous.

The inequality (3.6) and the equations (3.7) imply that the unstable Lyapunov
exponent of F at every point is logpαq. Indeed, for n P N

F n
˚ pγ

´1λzqpIq
p3.6q
ď F n

˚ pmzqpIq
p3.7q
“ α´nmFnpzqpIq and

F n
˚ pγλzqpIq

p3.6q
ě F n

˚ pMzqpIq
p3.7q
“ α´nMFnpzqpIq,

thus

γ´1F n
˚ pλzqpIq ď α´nmFnpzqpIq ď α´nMFnpzqpIq ď γF n

˚ pλzqpIq. (3.8)

By dividing by F n
˚ pλzqpIq and decrease the interval I, we get the derivative of

F´n at the unstable direction. More precisely, if x P I, consider Iε :“ ty P W u
F pF

n
pzqq :

dupx, yq ă εu the open ball around x on the unstable leaf of F n
pzq. Then, since by

(3.6) mFnpzq is uniformly bounded with respect to the volume measure on the leaf, then
mFnpzq “ τFnpzqλFnpzq with τFnpzq P rβ´1, βs, and

α´n
ş

Iε
β´1dλFnpzqpξq

λzpF´npIεqq
ď α´n

mFnpzqpIεq

F n
˚ pλzqpIεq

“ α´n
ş

Iε
τFnpzqpξqdλFnpzqpξq

λzpF´npIεqq
ď α´n

ş

Iε
βdλFnpzqpξq

λzpF´npIεqq
.

Taking the limit as εÑ 0, we have that

α´nβ´1
›

›

›
DF´n

ˇ

ˇ

EuF
pxq

›

›

›

´1
ď lim

εÑ0

α´nmFnpzqpIεq

λzpF´npIεqq
ď α´nβ

›

›

›
DF´n

ˇ

ˇ

EuF
pxq

›

›

›

´1
.

Now, by applying 1
n

log and taking the limit as nÑ 8, we have

´ logpαq ´ λuF´1pxq ď 0 ď ´ logpαq ´ λuF´1pxq,

where in the central expression we use the inequality (3.8) to bound α´n mFnpzqpIεq

λzpF´npIεqq
.

Hence, λuF pxq ” λuA for all x P B0. Since p : R2
Ñ T2 is a local isometry,

λuf pxq ” λuA for all x P T2. We conclude analogously that λsf pxq ” λsA for all x P T2.
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3.2 Proof of Theorem E
We adapt the proof in [24], that uses Journé’s Regularity Theorem (11), for the

non-invertible case. Even with f and g not invertible, we can use local transverse foliations
on the universal cover to apply Theorem 11. So we prove that the lift H of h restricted to
some local unstable foliation is Ck. For the stable foliations, the proof is analogous. Then,
H is Ck on a small foliated box on the covering space R2.

Theorem 11 ([33]). Let Mj be a manifold, W s
j , W u

j continuous transverse foliations
with uniformly smooth leaves (j “ 1, 2) and h : M1 Ñ M2 a homeomorphism such that
hpW σ

1 q “ W σ
2 (σ “ s, u). If h restricted to the leaves of the foliations W s

1 and W u
1 is

uniformly Cr`α, with r P N and α P p0, 1q, then h is Cr`α.

Consider F,G : R2
Ñ R2 lifts for f and g, and p : R2

Ñ T2 the canonical
projection. We have that F and G are Anosov diffeomorphisms and have stable and
unstable foliations W s

F {G and W u
F {G, which are quasi-isometric. For any ξ P T2, we consider

a foliated box B with respect to f containing ξ by fixing ξ P p´1
pξq and projecting a small

foliated box Bξ with respect to the foliation W u
F containing ξ, in such way that p

ˇ

ˇ

B
ξ

is a
bijection over its image B. By doing so, we have that p

ˇ

ˇ

B
ξ

is an isometry, which allows us
to work either on B or Bξ, since the regularity of h on B is the same as the regularity of
H on Bξ. On B, the projected unstable foliation is transverse to W s

f . We consider HpBq
the foliated box with respect to g obtained by applying H to B.

By Proposition 2, the stable leaves on B are invariant under deck transforma-
tions, thus they do not depend on the choice of ξ, and we denote them by W s

Bpxq. However,
the unstable leaves do depend on the choice of ξ. More specifically, given x P B, the
unstable leaf W u

B pxq is a local unstable leaf with respect to the orbit x̃ “ tppF k
pxqqukPZ,

where x “ p
ˇ

ˇ

B
ξ

´1
pxq.

Along this proof, we use x̃ to refer to the orbit of x P B given by the projection
of the orbit of x “ p

ˇ

ˇ

B
ξ

´1
pxq.

Lemma 5. h is uniformly Lipschitz along W u
B .

Proof. For x P B and y P W u
B pxq, consider

ρf px, yq :“
8
ź

n“1

Du
F pF

´npxqq

Du
F pF

´npyqq
, (3.9)

where Du
F pzq “

ˇ

ˇ

ˇ
DF

ˇ

ˇ

EuF
pzq

ˇ

ˇ

ˇ
and x and y are the lifts of x and y in Bξ. We will use ρf to

construct on B metrics on each leaf that behave “linearly” with respect to Du
f , that is,

that present the exact expansion of the derivative with respect to the unstable direction.

Since f is not necessarily special, then each point can have more than one
unstable direction for f , and each lift of a point on R2 can have a different unstable
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direction for F , so the definition of ρf depends on the choice of B. More specifically, Du
F p.q

is well defined for points in B, for we fix a lift of this point in R2 as the one in Bξ, and
ρf px, .q : W u

B px̃q Ñ R is well defined and Hölder continuous, since Du
F is uniformly bounded

and F´n contracts uniformly. Moreover, given x P B, Du
F p.q is well defined for points on

W u
f px̃q, the projection of the global unstable leaf of x with respect to F . Indeed, p is a

bijection betweenW u
F pxq andW u

f px̃q, which makes the choice of direction in R2 to compute
Du
F pyq unambiguous. Furthermore, since we have the orbits fixed as the ones projected

from Bξ, Du
F p.q is well defined for points belonging to iterates of these fixed global unstable

leaves, that is, on ppF i
pW u

F pxqqq for every i P Z, which are precisely W u
f pf̃

i
px̃qq for each

i P Z.

Hence, if x P B and y P W u
f px̃q, we can compute ρf pf ipxq, f ipyqq, and

ρf pfpxq, fpyqq “
Du
F pxq

Du
F pyq

ρf px, yq. (3.10)

Moreover, ρf p., .q is the unique continuous function satisfying both (3.10) and ρf px, xq “ 1.
Besides, note that, for all K ą 0, there is C ą 0 such that dupx, yq ă K implies
C´1

ă ρf px, yq ă C. We define ρgp., .q likewise by using the foliated box HpBq.

Fixed a p P B, consider hp : W u
f pp̃q Ñ W u

g phpp̃qq. We aim to prove that hp is
Lipschitz with a constant independent of B and p, i. e., that there exists K ą 0 such that
dug phppxq, hppyqq ď Kduf px, yq, with du the distance along the leaves. We actually do that
for a equivalent metric along the leaves, defined using ρf as follows. Let λp be the induced
volume on W u

f pp̃q. For x, y P W u
f pp̃q,

d̃f px, yq :“
ż y

x

ρf px, zqdλppzq (3.11)

is a metric in the leaf, and for all K ą 0 there exists C ą 0 such that dupx, yq ă K implies
C´1d̃f px, yq ă duf px, yq ă Cd̃f px, yq, since ρf px, ¨q is uniformly bounded along the leaf.
Moreover, d̃f pfpxq, fpyqq “ Du

F pxqd̃f px, yq, and, inductively, for all n P N

d̃f pf
n
pxq, fnpyqq “

n´1
ź

i“0
Du
F pF

i
pxqq d̃f px, yq. (3.12)

Additionally, d̃f is uniformly continuous: for all ε ą 0 there exists δ ą 0 such
that for all x, y, z, q with y P W u

f px̃q, q P W u
f pz̃q, z P Bpx, δq, and q P Bpy, δq we have that

|d̃f px, yq ´ d̃f pz, qq| ă ε.

Thus, to prove that hp is Lipschitz, it suffices to prove that, for an uniform K,
d̃gphppxq, hppyqq ă Kd̃f px, yq, where d̃g is defined similarly to d̃f .

Since the conjugacy h is homotopic to Id and H is a lift for h, Hpx `mq “

Hpxq`m for all x P R2 andm P Z2, then there is C ą 0 such that }Hpxq´Hpyq} ď C}x´y}

for }x´ y} ě 1, where }.} is the Euclidean norm on R2.
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Using the fact that p is an isometry between unstable leaves and by the quasi-
isometry of the unstable foliations W u

F and W u
G, the same inequality holds for the induced

metric on unstable leaves, that is, there is C ą 0 such that

dug phpxq, hpyqq ď Cduf px, yq for duf px, yq ě 1. (3.13)

So we already have the Lipschitz inequality for points far enough apart. For
x and y close, we use the Livshitz Theorem, that holds for Anosov endomorphisms, as
observed by F. Micena in [42].

Theorem 12 (Livshitz Theorem). Let M be a Riemannian manifold and f : M ÑM be
a transitive Anosov endomorphism. If ϕ1, ϕ2 : M Ñ R are Hölder continuous and

n
ź

i“1
ϕ1pf

i
pxqq “

n
ź

i“1
ϕ2pf

i
pxqq for all x such that fnpxq “ x,

then there is a function P : M Ñ R such that ϕ1

ϕ2
“
P ˝ f

P
. P is Hölder continuous and it

is unique up to a multiplicative constant.

We apply the above theorem for ϕ1pzq “ Du
F pzq and ϕ2pzq “ Du

GpHpzqq.
Remember that ϕ1pzq is only well defined for z P B, and for z P W u

f pf̃
i
px̃qq for each i P Z,

where x P B. But, by the transitivity of f , there is a x P B with dense orbit. Thus we
can extend ϕ1, for it is well defined for every point in the orbit of x. The same holds for
ϕ2, and both maps satisfy the hypothesis on periodic points due to the hypothesis on
Lyapunov exponents. Therefore, it follows from the Livshitz Theorem that

ϕ1pxq

ϕ2pxq
“

Du
F pxq

Du
GpHpxqq

“
P pfpxqq

P pxq
,

and, inductively,

P pfnpxqq

P pxq
“

n´1
ź

i“0

Du
F pF

ipxqq

Du
GpHpF

ipxqqq
for all x P T2 and n P N. (3.14)

For x, y P W u
f pp̃q, considerN P N to be the smallest n such that duf pfnpxq, fnpyqq ě

1. Then dug phpfnpxqq, hpfnpyqqq ď Cduf pf
n
pxq, fnpyqq.

The property (3.12) of the distance d̃f implies that

d̃f px, yq “
d̃f pf

Npxq, fNpyqq
N´1
ś

i“0
Du
F pF

ipxqq

,

and an analogous equality holds for d̃g, thus

d̃gphpxq, hpyqq

d̃f px, yq
“

N´1
ź

i“0

Du
F pF

ipxqq

Du
GpHpF

ipxqqq

d̃gphpf
Npxqq, hpfNpyqqq

d̃f pfNpxq, fNpyqq
.
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The first term of this product is is bounded, since it is equal to P pf
npxqq

P pxq
, and

the second one is bounded by the Lipschitz constant given by the inequality (3.13), using
the equivalent metric d̃f .

In fact, the above lemma proves that H is Lipschitz along W u
F pxq for all x P Bξ,

that is, h is Lipschitz along W u
f px̃q for x in B. Then, h is differentiable along unstable

leaves, u-differentiable, for almost every point with respect to the induced volume on the
leaves. If h is u-differentiable for x, then it is for fkpxq, k P N k P Z, since f is Ck and the
unstable leaves are f -invariant, and the same goes for H and F k

pxq.

Lemma 6. If h is u-differentiable at x P W u
Bppq, then it is u-differentiable at every

y P W s
Bpxq.

Proof. This proof is similar to the one of Step 1 on Lemma 5 in [24], which consists in
estimate the u-derivative of a point using a nearby u-differentiable point.

For y P W s
Bpxq and each n P N, we fix a yn P W u

F pF
n
pyqq close to F n

pyq.
Remember that d̃f and d̃g are uniformly continuous, P is Hölder continuous and H

is Lipschitz. Thus, for each small ε ą 0, there is δ ą 0 independent of n such that
ζ P BpF n

pyq, δq implies
|P pppζqq ´ P pfnpyqq| ă ε (3.15)

and there exists q P W u
F pζq with d̃f pζ, qq “ d̃f pF

n
pyq, ynq, q has the same orientation as

yn, q belongs to a small neighborhood of yn and

|d̃gpHpF
n
pyqq, Hpynqq ´ d̃gpHpζq, Hpqqq| ă ε. (3.16)

Bξ

x

y F n
pBξqF n

pyq

F n
pxq

yn

q

F n

Figure 12 – We estimate the u-derivative of H at the point F n
pyq using the one of H at

the nearby point F n
pxq.

We have that y P W s
Bpxq, then dpF k

pyq, F k
pxqq

kÑ8
ÝÝÝÑ 0 and we can fix n P N

such that F n
pxq P BpF n

pyq, δq. Then there exists q P W u
F pF

n
pxqq that satisfies (3.16) (see
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Figure 12). Consider z P W u
F pxq being such that F n

pzq “ q. Then, by taking n sufficiently
large, we have that d̃f px, zq is small enough so that

ˇ

ˇ

ˇ

ˇ

d̃gpHpxq, Hpzqq

d̃f px, zq
´Du

Hpxq

ˇ

ˇ

ˇ

ˇ

ă ε. (3.17)

Thus

d̃gpHpF
N
pyqq, HpyNqq

p3.16q
“ ε1 ` d̃gpHpF

n
pxqq, HpF n

pzqqq

p3.12q
“ ε1 `

N´1
ź

i“0
Du
GpHpF

i
pxqqq d̃gpHpxq, Hpzqq

p3.17q
“ ε1 `

N´1
ź

i“0
Du
GpHpF

i
pxqqq pDu

Hpxq ` ε2qd̃f px, zq

p3.12q
“ ε1 `

N´1
ź

i“0
Du
GpHpF

i
pxqqq pDu

Hpxq ` ε2q
d̃f pF

Npxq, FNpzqq
N´1
ś

i“0
Du
F pF

ipxqq

p3.16q
“
p3.14q

ε1 `
P pxq

P pfNpxqq
pDu

Hpxq ` ε2qd̃f pF
n
pyq, ynq

p3.15q
“ ε1 `

P pxq

P pfNpyqq ` ε3
pDu

Hpxq ` ε2qd̃f pF
n
pyq, ynq,

with |εi| ă ε, i “ 1, 2, 3. As ε ÝÑ 0, we have

d̃gpHpF
Npyqq, HpyNqq

d̃f pF npyq, yNq
“

P pxq

P pfNpyqq
Du
Hpxq,

with the right-hand side not depending on yN , then H is u-differentiable at F n
pyq. Hence,

H is u-differentiable at y and h is u-differentiable at y.

If K :“ tx P B : h is u-differentiable at xu and

Kppq :“ tx P W u
B ppq : h is u-differentiable at xu,

then the above lemma implies that
ď

xPKppq

W s
Bpxq Ď K. But W u

B ppq is transverse to the

leafwise absolutely continuous foliation W s
B. Then, since Kppq Ď W u

B ppq has full volume,
then m

ˇ

ˇ

BpKq “ 1. This implies that K is dense in B.

During the proof of Lemma 6 we did not use the fact that y P W s
Bpxq, unless

to guarantee that there is a u-differentiable point close to the orbit of y. Since the u-
differentiable points form a dense set, we can use the same argument as in the lemma and
estimate the u-derivative of any point with nearby u-differentiable points. In particular, if
x P B is a u-differentiable point with respect to h and it is sufficiently close to y, then

Du
Hpyq “

P pxq

P pyq
Du
Hpxq.
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Thus K “ B, that is, h is u-differentiable for each point in B and Du
H is C1`α.

In order promote the regularity of h to the one of f , let us see that

ρgphpxq, hpyqq “
Du
Hpxq

Du
Hpyq

ρf px, yq, (3.18)

for x, y P W u
B ppq. Considering

ρ̃gphpxq, hpyqq :“ Du
Hpxq

Du
Hpyq

ρf px, yq,

we have that ρ̃g satisfies (3.10) for g, then it is equal to ρg by uniqueness. Indeed,

ρ̃gpgphpxqq, gphpyqqq “ ρ̃gphpfpxqq, hpfpyqqq “
Du
HpF pxqq

Du
HpF pyqq

ρf pfpxq, fpyqq

“
Du
HpF pxqq

Du
HpF pyqq

Du
F pxq

Du
F pyq

ρf px, yq “
Du
H˝F pxq

Du
H˝F pyq

ρf px, yq

“
Du
G˝Hpxq

Du
G˝Hpyq

ρf px, yq “
Du
GpHpxqq

Du
GpHpyqq

Du
Hpxq

Du
Hpyq

ρf px, yq

“
Du
GpHpxqq

Du
GpHpyqq

ρ̃gphpxq, hpyqq.

With the same argument as [23, Lemma 2.4], we have that H is Ck: by [42,
Lemma 3.8], ρg and ρf are Ck´1. Thus, the relation (3.18) implies that Du

H is Ck´1, and
H is Ck along W u

F .

The proof for the stable direction is analogous, as we replace F´n by F n in the
definition of ρf (3.9). Then we can apply Theorem 11 for H in Bξ and conclude that H is
Ck.
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