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Abstract
Exploiting the plasmonic behavior of Ag nanoparticles grown on α-Ag2WO4 is a widely
employed strategy to produce efficient photocatalysts, ozone sensors, and bactericides. However,
a description of the atomic and electronic structure of the semiconductor sites irradiated by
electrons is still not available. Such a description is of great importance to understand the
mechanisms underlying these physical processes and to improve the design of silver
nanoparticles to enhance their activities. Motivated by this, we studied the growth of silver
nanoparticles to investigate this novel class of phenomena using both transmission electron
microscopy and field emission scanning electron microscopy. A theoretical framework based on
density functional theory calculations (DFT), together with experimental analysis and
measurements, were developed to examine the changes in the local geometrical and electronic
structure of the materials. The physical principles for the formation of Ag nanoparticles on α-
Ag2WO4 by electron beam irradiation are described. Quantum mechanical calculations based on
DFT show that the (001) of α-Ag2WO4 displays Ag atoms with different coordination numbers.
Some of them are able to diffuse out of the surface with a very low energy barrier (less than
0.1 eV), thus, initiating the growth of metallic Ag nanostructures and leaving Ag vacancies in the
bulk material. These processes increase the structural disorder of α-Ag2WO4 as well as its
electrical resistance as observed in the experimental measurements.
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Introduction

Electrons show dual wave–particle behavior. During the last
few years, it has been well established that the electron beams
generated by a transmission electron microscope or a scan-
ning electron microscope are very powerful tools for the
atomic-scale characterization of structure, chemical compo-
sition, and the electronic properties of materials [1–6]. Fur-
ther, the use of such electron beams allows precise control at
the nanoscale or single nanoparticle (NP) level. Transmission
electron microscopy (TEM) is based on the interaction of an
electron beam with the material under examination, and
interesting phenomena often occur due to the electron-solid
interactions as observed during imaging [7]. Furthermore,
useful insights have been obtained from existing under-
standing of the interaction of electron beams with solid
matter [8].

Bombardment of solids with high-energy electrons leads
to novel phenomena, many of which have been discovered in
the process of making TEM measurements; for example,
nanoscale crystallization and growth processes that only
occur in the presence of the electron beam [9–14]. Other
examples of materials for which structural changes have been
observed under irradiation by an electron beam include the
nanoscale phase/shape transformation [15, 16] that is
observed on Au nanoparticles [17], metal oxide nanoparticles
[18], silicon oxide nanowires [19], and lead iodide nano-
particles [20], and the morphological and structural evolution
of WS2 nanosheets [21]. Also, other phenomena such as the
modification of inorganic nanostructures [22], formation of
nanorods and particles [23], and nanostructure fabrication
[24] and coalescence [25] can occur. All these processes are
essentially different from, for example, ion bombardment
techniques inducing the formation of nanostructures [26, 27].

At the nanoscale, electrons also induce local reactions in
adsorbed functional molecules. It has been shown that these
electron beam induced processes can be performed on almost
any kind of substrate [28]. Recently, Bohler et al [29] reviewed
low-energy, electron-initiated molecular syntheses and their
applications in the modification of surfaces. In summary,
irradiation of materials with an electron beam in a TEM can be
used to fabricate nanomaterials and to investigate their
morphology, structure, and chemical transformations. This is
important for the development of novel nanostructures, espe-
cially for materials that cannot be fabricated using conventional
chemical and physical methods. On account of these so-called
localized surface plasmon resonances (LSPRs), NPs show
intense light absorption and scattering due to a near-field
enhancement because of their nanoscale confinement [30–32].
Semiconductor nanocrystals gain their optical properties from
excitonic quantum confinement, which leads to particle-in-
spherical-box like energy levels [33]. However, unlike this
idealized model, the surface forms a finite potential barrier of
the stoichiometric semiconductor lattice core, resulting in wave
function leakage [34].

One of the main goals in NP research is to obtain noble
metal NPs, such as gold or silver, that exhibit LSPRs at
optical frequencies [35, 36], and to manipulate the potential
barrier and leakage. The ability to do this would increase the
range of applications of these materials in many fields, ran-
ging from photovoltaics to bioimaging [37–40]. Recently, this
effect has been discussed concerning semiconductor nano-
crystals [41, 42]. Desirable electrical and optical properties of
novel metal nanoparticles can be achieved by tailoring their
size, shape, and morphology [43]. However, synthetic meth-
ods to achieve this have yet to be developed. In this context,
electron beam irradiation has great potential for the prep-
aration of noble and transition metal NPs [44, 45]; for
example, the synthesis of Ag nanoparticles by electron beam
irradiation has been reported by Rani et al [46].

Although recent advances in in situ electron microscopy
techniques have allowed direct observation of the growth of
colloidal nanocrystals [47–50], giving insights into its
mechanism, less attention has been paid to the atomistic
description of this effect induced by the irradiation of elec-
trons. Primarily, this is because these phenomena occur too
rapidly to be detected on the nanocrystal surfaces. Very
recently, using an electron beam in an electron microscope
under high vacuum, we identified the formation and growth of
Ag nanoparticles on α-Ag2WO4 [51–57], β-Ag2WO4 [58], β-
Ag2MoO4 [59, 60], and Ag3PO4 [61], and other authors have
also reported interest in these fascinating systems [62–71].
Much of the applications of the aforementioned Ag materials
are based on their photoluminescence properties [53] and
bactericidal/antibacterial effect (which allows their use in
clinical sterilization) [57].

Our understanding of the new and interesting phenomena
that occur on nanocrystal surfaces remains in its infancy. The
lack of systematic information about these phenomena has
prompted us to explore trends in the formation of Ag NPs.
Consequently, in the present work, our target is to understand
the physical principles behind the formation of Ag NPs on α-
Ag2WO4 caused by electron beam irradiation. Using theor-
etical analysis in the form of density functional theory (DFT)
calculations and ab initio molecular dynamics simulations,
along with the experimental observations, we have attempted
to understand the described phenomena under experimental
conditions. Our investigations have provided atomistic
insights into the electronic and structural localization of
plasmonic behavior. Also, our investigation indicates that the
injected electrons survive longer by being captured at sites
localized near the surface. These sites have all the char-
acteristics required to be active sites in plasmonic
applications.

This paper is organized as follows: in the methods
section, the theoretical procedures and computational meth-
ods, as well as the experimental aspects of the synthesis,
structural, optical and morphological characterization, are
described; the results section is used to present and discuss the
results; and the conclusions section provides a summary of
this work and concluding remarks.
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Methods

Theoretical methods and model systems

Electronic structure calculations using DFT were performed
for the α–Ag2WO4 system using the VASP code [72–74].
Plane waves were used to describe the valence electrons and
the inner electrons were treated using the projector augmented
wave (PAW) method [75, 76]. The valence states that were
explicitly included in the calculation were 4d and 5s (11
electrons) for Ag atoms, 5d and 6s (6 electrons) for W atoms,
and 2s and 2p (6 electrons) for O atoms. All other electrons
were considered as core electrons with their densities frozen
as in the reference used to extract the PAW potential. A
kinetic energy cutoff of 460 eV was used for the plane wave
expansion for all systems, which was adequate to obtain total
energies converged to at least 1 meV/atom.

Sampling of the Brillouin zone was performed using the
Monkhorst–Pack method with different k-points grids
according to the system size. Therefore, for the analysis of the
electronic structure, the number of k-points was tested with
respect to the geometry optimization process. The tetrahedron
method with Blöchl corrections [77] was also used. All cal-
culations were non spin-polarized.

Exchange and correlation effects were treated using the
generalized gradient approximation using the Perdew–Burke–
Ernzerhof density functional [78, 79]. The conjugate gradient
method was used to perform energy minimization to obtain
the relaxed systems. Atoms were considered fully relaxed
when the Hellmann−Feynman forces converged to less than
0.005 eV Å−1 per atom.

Selected structures were also studied using ab initio
molecular dynamics simulations in the canonical ensemble at
300 K. The time step was 3 fs, and a typical simulation
spanned about 3 ps.

Minimum energy pathways for the diffusion process of
Ag atoms from positions in the first slab layer to outer sites on
the surface were investigated using the nudged elastic band
(NEB) method. Both the initial and final configurations were
previously optimized. Subsequently, four intermediate con-
figurations were generated by linear interpolation between the
initial and end points. These intermediate configurations were
relaxed under NEB constraints in which the ions were con-
nected by springs to keep them equidistant from neighboring
configurations. More details of the NEB method can be found
in [80].

Experiment

Synthesis

α-Ag2WO4 nanoparticles were synthesized via a co-pre-
cipitation reaction in aqueous media. Firstly, two aqueous
solutions were prepared by adding, separately, a silver salt
(2 mmol, AgNO3; 99.8% purity, Sigma-Aldrich) and a salt of
tungstate (1 mmol, Na2WO4.2H2O; 99.5% purity, Sigma-
Aldrich) to two portions of distilled water. Then, the silver

solution was added dropwise to the stirred tungsten solution
at 90 °C for 30 min. The α-Ag2WO4 precipitate was filtered
and washed several times with distilled water, and dried at
60 °C for 24 h.

The α-Ag2WO4 microcrystals and the formation of Ag
nanofilaments were observed using a field-emission scanning
electron microscopy (FE-SEM) instrument model Supra 35-
VP, Carl Zeiss, Germany operated at 15 kV.

Fabrication set-up for electric transport property
measurements

A non-conducting gap was made on an indium tin oxide
(ITO) glass by scratching the conductive surface, separating it
into two pieces. Thus, each piece was used as an electrode.
The as-synthesized α-Ag2WO4 nanoparticles were mixed into
a paste with isopropanol. This paste was poured on the sur-
face of the gap between the two electrodes. After drying in air
at room temperature, the ITO glass with the thick film cov-
ering was isostatically pressed at 300MPa to increase the
adhesion of the film to the gap. This led to a thick film of α-
Ag2WO4 nanoparticles that covered the gap between the two
ITO pieces. The electrode was dried overnight at 70 °C and
then stored in a low humidity environment (using silica gel)
until variable time electron beam irradiation was carried out in
a scanning electron microscope.

I–V measurements of the thick film (Keithley 2400
Source Meter), before and after exposure to electron beam,
were carried out at room temperature at 30 kV for 5, 10, 20,
40, and 60 min. To avoid external environmental influences,
all measurements were carried out in a closed cell filled with
silica gel so that the humidity level was low. The electrical
resistance was calculated from the slope of the I–V curve. The
experimental device is schematically shown in the inset of
figure 4 and in the supplementary material.

Results and discussion

α-Ag2WO4 crystals, the object of the present study, have
been studied previously both experimentally and theoretically
[51–57].

The formation of Ag nanostructures when α-Ag2WO4

crystals are irradiated with an electron beam becomes evident
using time-resolved FE-SEM techniques. Figure 1 shows two
images extracted from a real time movie included in the
supplementary material.

In the present article, we studied theoretically in detail
one of the most stables surfaces of α-Ag2WO4: the (001)
surface, and, this surface has been studied by TEM and x-ray
diffraction experiments previously [81].

In previous studies, the geometrical and the electronic
structure of the (100) surface were modeled using a three-
layer model [54]. In this work, we used a similar strategy to
generate a super-cell model for the (001) surface at low
computational cost. Thus, we combined geometry optimiza-
tions along with ab initio molecular dynamics simulations for
two supercells of 11.234×12.574 Å area with three and six
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layers, respectively. We found that after relaxation, the sur-
faces were significantly different from those of the just-
cleaved planes. Because both the three and six-layer models
reproduced this effect, to reduce computational costs all fur-
ther calculations were carried out using three layers. The
cleaved surface was relaxed by electronic structure relaxation
and a new reconstructed geometry was obtained. Figure 2
shows the two slabs, the cleaved surface, (a), and the recon-
structed structure, (b). Figure 2 and table 1 show that there are
eight Ag surface atoms with coordination numbers (CN)
ranging from 2 to 6 (see table 1). The CNs of the cleaved
surface are different to those of the reconstructed surface. The
CNs of the Ag atoms in the reconstructed surface (figure 2(b))
correlate with their surface height, as can be seen in table 1.
Thus, the atoms Ag-7 and Ag-8 that are further out from the
surface are those with the lowest CNs: 2 and 3, respectively,
whereas the atoms in the interior have higher CNs (from 4 to
6) more like those of the atoms in the bulk.

This structural rearrangement suggests that the (001)
surface can be understood in terms of an assembly of corner-
sharing Ag clusters, as shown in the middle panel of figure 2.
This is distinct from that of the (100) surface that was studied
previously [54]. In that model, only Ag atoms with CNs of 4
and 6 were found. Even more generally speaking, these α-
Ag2WO4 systems can be seen as metal oxides with a structure
based on exposed Ag clusters whose geometries change
slightly in response to external effects. Hence, pressure

fluctuations or the presence of different solvents and mole-
cular adsorption might significantly alter the arrangement of
the surface clusters and, consequently, the surface stability.

Another external factor that could affect the surface
structure is electron injection. In particular, upon electron
bombardment, the α-Ag2WO4 crystals show Ag nucleation at
the surfaces. Clearly, this is a surface induced effect that
occurs first with the rearrangement of some Ag clusters, fol-
lowed by the diffusion of Ag atoms from the interior of the
crystal to form the observed Ag NPs at the surface.

Therefore, our first aim was to understand possible routes
for the diffusion of the Ag atoms from the bulk material to the
surface, in particular, for those Ag atoms closer to the surface.
The energy barrier for the movement of the outmost Ag atom
out of the surface has been calculated using the NEB method.
In addition to the NEB calculations, to find the stability of Ag
atoms in their final position outside the surface, we performed
geometry optimizations on the system after displacing one Ag
atom to a position outside the surface. This procedure was
done for each of the eight Ag surface atoms in the supercell.
Only two Ag atoms, referred to as Ag-4 and Ag-5, found
stable positions outside the surface, while the others returned
to their original positions. Therefore, we performed NEB
calculations for atoms Ag-4 and Ag-5.

Figure 3 shows images of the evolution of Ag-4 from its
surface position (I-00) to its final stable position (I-05). It also
shows the energy profile along with the position of the
moving atom. A low value for the energy barrier of 0.08 eV
was found, indicating that Ag-4 atom is very mobile. Figure 4
shows the same process for the Ag-5 atom; again it shows the
evolution of the Ag-5 atom from I-00 to I-05, similar to Ag-4.
The movement of Ag-5 has an energy profile with a minimum
at I-01 and a total energy barrier of 0.05 eV, even smaller than
that of Ag-4. These NEB calculations show that, in these two
cases, the Ag atoms are loosely bound and are excellent
candidates to initiate the diffusion of atoms out of the surface
to form the experimentally observed Ag NPs and nanorods.
Another interesting aspect arises from the analysis of the
electron density distribution based on the computed Bader
charges. These show that Ag-4 and Ag-5 gain charges of 0.12
and 0.31 e−, respectively, on moving along the diffusion
pathway; therefore, their diffusion is accompanied by
reduction.

The formation of Ag NPs observed in the accompanying
experiments is triggered by the injection of electrons from the
electron microscope. Previous studies have shown that the
process is not actually dependent on the energy of the
incoming electrons and is, instead, associated with exposure
time [54]. Therefore, we argue that the loose surface Ag
atoms gain the necessary energy to diffuse from the surface
from impact with the incoming electrons.

We have also carried out calculations of the electron
injection process, including the effect of additional electrons
on the structure of the surface slab. Thus, we have verified
that the addition of between 1 to 4 electrons did not sig-
nificantly alter the geometry of the surface as illustrated in the
Supplementary Material. Our results, and those of previous
theoretical studies, indicate that some Ag surface atoms can

Figure 1. In situ FEG-SEM images of α-Ag2WO4 crystals at (a) time
zero (after a rapid approach and focus adjustment) and (b) 5 min.
The formation of Ag nanostructures is highlighted with yellow
circles.
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migrate to positions above the surface, and this is a possible
mechanism for the formation of Ag clusters and NPs at the
surfaces provoked by the electron irradiation. As a con-
sequence, Ag vacancies [ ]¢VAg are formed in the bulk solid,
contributing to disorder. This disorder has clear consequences
on the conductivity of α-Ag2WO4. Also, upon further irra-
diation, the formation processes of Ag NPs can reverse, and
some of the Ag NPs reenter the bulk α-Ag2WO4. This might
be related to the fact that the energy barriers for movement
out of the surface are very small, but also due to the presence

Figure 2. The α-Ag2WO4 (001) surface (a) generated from the bulk after cleaving and (b) after the relaxation process. The bottom panels
show lateral views of the three-layer slab in ball-and-stick view. Ag, W, and O atoms are colored in gray, blue, and red, respectively. The
middle panels show a polyhedral model of the top layer slab rotated by 30° to assist viewing. A detail of each AgOx polyhedron is shown in
the top panel.

Table 1. Coordination number (CN) and relative heights (z-distance)
respect to the lowest Ag atom for the outmost external Ag atoms in
the supercell for the unreconstructed (Z1) and reconstructed (Z2)
surfaces.

(001) Reconstructed (001)

Atom CN Z1 CN Z2 Z1–Z2

Ag-1 6 0.010 5 0.181 0.051
Ag-2 6 0.008 6 0.199 0.071
Ag-3 4 0.474 4 0.192 −0.402
Ag-4 3 0.000 4 0.000 −0.121
Ag-5 3 0.027 3 0.461 0.313
Ag-6 4 0.144 3 0.664 0.399
Ag-7 5 0.468 2 1.999 1.410
Ag-8 5 0.473 3 1.502 0.908

Figure 3. Structures and energy profile for the diffusion of the Ag-4
surface atom, obtained from NEB calculations. The top two images,
labeled (I-0) and (I-5), depict the initial and final structures,
respectively. Below, the energy profile along the reaction coordinate,
which has a very small energy barrier of 0.08 eV. Insets of each of
these structures (labeled I-0 to I5) are shown adjacent to each energy
value.
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of energy wells along the reaction coordinate, as can be seen
from the NEB profiles (see figures 3 and 4).

α-Ag2WO4 crystals were irradiated during SEM experi-
ments. Figure 5 shows the electrical resistance values as a
function of the electron beam exposure time. The measure-
ments show that after irradiation at 30 kV for 5 min the
resistance increased almost 30% with respect to the non-
irradiated sample. As the exposure time increased, the
resistance also increased, and after 20 min irradiation, the
resistance increased by 50%. For longer irradiation times, a

decrease in resistance was observed; even so, the resistance
was still 30% greater than the initial resistance value.

It has been observed before [51, 52] that irradiation of α-
Ag2WO4 NPs with electrons generates structural and elec-
tronic disorder, for example, increasing the electron-hole
density. The increase in resistance (and consequent lower
conductivity) is consistent with the appearance of Ag0 at the
nanoparticle surface, as observed by FE-SEM (figure 1 and
supplementary material). This effect is called electro-
chemireduction (ECR). ECR increases with irradiation time,
creating clusters of silver and silver vacancies [ ]¢VAg that are
responsible for the increase in electrical resistance. These
clusters interact, giving rise to nanowires that emerge at the
crystal surface. Simultaneously, there is the formation of a
large number of [ ]¢V OxAg and holes, h•. Finally, there is
growth of Ag nanofilaments (as observed by FE-SEM, see
figure 1). When the density of Ag filaments reaches a critical
amount, in this case after irradiation for 20 min, these fila-
ments contribute to a higher surface conductivity, and, con-
sequently, lower the bulk resistance.

Conclusions

Finely focused electron beams in a transmission electron
microscope or scanning electron microscope are routinely
used to visualize nanomaterials. However, the electron irra-
diation can cause temporary or permanent changes in the
surface or bulk structure of the specimen. Thus, we have the
opportunity to observe new surface phenomena. In this paper,
we have studied and described the physics behind the growth
behavior of Ag nanoparticles on α-Ag2WO4 crystals exposed
to electron beam irradiation. This growth phenomenon is
discussed here based on physical models required to describe
its unique features; in turn, this has allowed us to ask fun-
damental questions regarding the nature of Ag NPs growth
mechanism provoked by electron excess and the effect of
order-disorder on the different local CN of Ag atoms.

Theoretical results, connected with experimental evi-
dence, reveal the Ag atoms that are likely, under the impact of
the electron beam, to diffuse out of the surface to form the
experimentally observed Ag NPs. DFT calculations have
shown that there are surface Ag atoms with different CNs in
the (001) surface. Furthermore, some of these are predisposed
to diffuse out the surface following a pathway with a very low
energy barrier (less than 0.1 eV). The energy profiles along
the reaction coordinate have small wells that could explain the
observed reversibility that sometimes occurs after the emer-
gence of the Ag NPs. These calculations provide a deeper
understanding of the important mechanisms involved in the
electron irradiation of α-Ag2WO4 and the subsequent growth
of Ag NPs.

Additionally, conductance measurements on the electron
irradiated samples indicate that disorder increases in the bulk
crystal upon irradiation due to the migration of Ag atoms out
of the surface to form Ag clusters. Thus, Ag vacancies form in
the bulk. Further irradiation causes some Ag metal atoms to
return into the sample reducing the electrical resistance.

Figure 4. Structures and energy profile for Ag-5 surface atom,
obtained from NEB calculations. The top two images labeled (I-0)
and (I-5) depict the initial and final structures, respectively. Below,
the energy profile along the reaction coordinate for the diffusion of
Ag-5, showing its very small energy barrier of 0.05 eV. Insets of
each of these structures (labeled I-0 to I5) are shown adjacent to each
energy value.

Figure 5. Changes in electrical resistance of α-Ag2WO4 nanopar-
ticles as a function of the electron irradiation time. The experimental
device is shown schematically in the inset.
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In summary, our model describes the experimental
observables, and the computational work described here
makes a connection between the chemical composition of the
surface and its resulting electronic structure, as suggested by
the electric transport property measurements. However, there
undoubtedly remains considerable work to be done. DFT
studies help to explain observations in the context of actual
atomistic changes on the crystal surface. Rapidly advancing
computational methods allow for more realistic crystal mod-
els and let us re-evaluate long held theories about surface
chemistry. A plasmonic model to explain surface excitonics is
now more pertinent than ever.
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