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Resumo
Este trabalho aborda o problema de seleção da estrutura de interação de uma classe de
Campos Markovianos e de Cadeias de Markov de Alcance Variável sob uma perspectiva
Bayesiana. A vizinhança de interação dos Campos Markovianos e a árvore de contexto das
Cadeias de Markov de Alcance Variável são tratadas como objetos aleatórios não-observados
de um sistema Bayesiano, e métodos de Monte-Carlo Markov Chain são propostos para
gerar amostras desses objetos, construindo núcleos de proposta nesses espaços de objetos
arbitrários que representam modelos, superando dificuldades computacionais instrínsicas
desses modelos. Um ambiente completo para inferência em Campos Markovianos é proposto
no pacote em R mrf2d. Os métodos propostos são aplicados à seleção da vizinhança de
interaçao em um problema de análise de imagem de texture e na detecção de estados de
renovação em uma Cadeia de Markov de textos escritos codificados.

Palavras-chave: Seleção Bayesiana de Modelos. Campos Markovianos. Cadeias de Markov
de Alcance Variável.



Abstract
This work addresses the problem of selecting the interaction structure of a class of Markov
Random Fields and Variable-Length Markov Chain models from a Bayesian perspective.
The interaction neighborhood of the Markov Random Fields and the context tree of
the Variable-Length Markov Chain model are treated as unobserved random objects of
a Bayesian system, and Monte-Carlo Markov Chain methods are proposed to generate
samples of these objects, constructing proposal kernels on these spaces of arbitrary objects
that represent models, overcoming computational challenges intrinsic to these models. A
complete framework for inference on Markov Random Fields is proposed in the R package
mrf2d. The proposed methods are applied to selecting the interaction neighborhood in a
texture image analysis problem and for detecting renewal states in a Markov Chain of
encoded written texts.

Keywords: Bayesian Model Selection. Markov Random Fields. Variable-Length Markov
Chains.
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1 Introduction

Local dependence, referred as the Markov property, is a key assumption for
modeling high-dimensional dependent data with a reduced mathematical complexity. This
assumption allows us to describe the joint probability a high-dimensional random vector
through a product of local interactions. Two popular probabilistic models with local
dependence are Markov Chains, for sequence-indexed data, and Markov Random Fields
for more general structures, for example, lattice data.

Throughout this work, we consider a Markov Random Field (MRF) model
as a random vector indexed by a two-dimensional lattice, with local dependence based
on a set of relative positions, as in Freguglia et al. (2020). This class of MRF models
has many common definitions as particular cases, such as the texture models from Cross
and Jain (1983) and Gimel’farb (1996), and the Potts model, used for example, in image
segmentation problems (Zhang et al., 2001). Despite the decomposability of the probability
distributions of MRFs, inference for such models is challenging due to the intractability of
the normalizing constant that depends on parameters and is part of the Likelihood function.
Typically, the Likelihood function must be approximated by using the Pseudolikelihood
function (Besag, 1975) or using MCMC methods (Geyer and Thompson, 1992).

While MRFs have already proven useful for providing a probabilistic description
of complex texture images, they make use of a complete neighborhood region, what can
lead to an excessive number of unknown parameters to be estimated in inferential analyses.
Standard hypothesis testing and model selection methods cannot be applied due to the
unavailability of the Likelihood function and there are not many works dealing with
model selection under Likelihood intractability, except for particular cases, for example,
Ravikumar et al. (2010). Gimel’farb (1996) uses an heuristic method to search for smaller
interaction structures to describe texture data, but the method may lead to poor results
for some texture patterns.

Many strategies for Bayesian inference, in particular using Monte Carlo Markov
Chain (MCMC) methods, have been developed for intractable Likelihood problems over
the last few years. The main challenge for the use of MCMC methods is the intractability
of the Likelihood function, that prevents the computation of posterior densities even up to
a proportionality constant, because the intractable term of the Likelihood depends on the
parameters. The three most common strategies for MCMC under intractability are substi-
tuting the Likelihood function for a tractable approximation, such as the Pseudolikelihood
(Bouranis et al., 2017), using a Monte-Carlo approximation of the Likelihood function
(Atchadé et al., 2013) and using additional random elements to the Markov Chain with
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analytical properties that remove the dependence on the intractable constant (Murray
et al., 2012). In this work, we consider the Pseudolikelihood approach for MCMC methods
because it can produce a direct approximation without producing better approximation in
specific regions of the parameter space, which is an important factor for model selection
since we would need better approximations on different regions for each model.

The Reversible Jump Monte Carlo Markov Chain (RJMCMC) introduced by
Green (1995) is a powerful tool for turning MCMC into a variable selection procedure, by
creating a Markov Chain on varying-dimensional spaces with a specified target invariant
distribution over an arbitrary space that represents models and its parameters. This allows
us to consider the interaction structure of a MRF as a random variable and generate
a Markov Chain of interaction neighborhoods and parameter vectors associated with
those neighborhoods jointly, then it is possible to make model-related decisions using the
marginal posterior distribution of the interaction structures.

Even though RJMCMC and Likelihood approximations can be used for selection
of the neighborhood structure in the MRF model, we can still think of this representation
of models as an arbitrary random object in a Bayesian context as a more general framework,
and apply the same concepts to other stochastic processes. On a Variable-Length Markov
Chain (VLMC) model, the dependence structure of a Markov Chain with finite state space
is represented by a context tree rather than a neighborhood and, due to the natural ordering
of sequence data, the Likelihood function can be computed directly. Moreover, given a
context tree, one can integrate the product of the Likelihood function and the transition
probabilities prior distributions, especially when using conjugate priors, obtaining the
marginal posterior distribution of a context tree up to a proportionality constant.

While obtaining a marginal measure for a context tree of a VLMC model in
Bayesian context is useful for comparisons, the number of possible context trees grows
at doubly exponential rate with their maximum depth considered, what causes the sum
of marginal context tree measures to be intractable, preventing the direct computing
the context tree posterior distribution. Kontoyiannis et al. (2020) proposes a Metropolis-
Hastings algorithm to obtain a posterior sample of context trees under a specific choice of
context tree and transition probabilities prior distributions. This strategy is aligned with
the methodology proposed in Madigan et al. (1995), that constructs a Markov Chain based
on random walks in a graph of models. The context tree posterior distribution sample
allows us to perform all kinds of Bayesian inference decision regarding the model, based on
Monte Carlo methods, like selecting the set of highest posterior probability context trees
or computing measures such as the Intrinsic Bayes Factor (Berger and Pericchi, 1996) or
the Posterior Bayes Factor (Aitkin, 1991) for hypothesis evaluation.

The variety of applications of MRFs, with particular properties used in each
case, and the wide range of inferential methods resulted in the lack of proper software that
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can be used generally for implementing algorithms for the model. A common computational
framework unifying all particular cases in a complete class of MRF models and the main
tools required for creating new inference methods is highly useful. In this work we propose
a software that can be used for implementing algorithms in a wide class of MRF models.

This thesis is composed by three self-contained research articles presented in
the following three chapters. Chapter 2 (Freguglia and Garcia, 2022) introduces the mrf2d
package, a complete inference framework for Markov Random Fields on two-dimensional
lattices for the R programming language (R Core Team, 2020), with a detailed introduction
to the MRF model considered and an in-depth description of the main functionalities
available, with many practical examples such as image segmentation in neuroimaging data.
Chapter 3 proposes a Bayesian model selection framework for MRF models, where the
interaction structure, represented by a set of relative positions, is considered random with
a given prior distribution. A RJMCMC algorithm is described and Pseudolikelihood is
used as a proxy of the intractable Likelihood function to obtain Pseudoposteriors and the
method is applied to a texture synthesis problem with textile image data. In Chapter 4
(Freguglia and Garcia, 2021) we use the same idea of treating models as random variables
in the context of a VLMC model, being able to obtain posterior samples of random context
trees given an observed sequence, with arbitrary prior distributions. These distributions are
then used to estimate an Intrinsic Bayes Factor (Berger and Pericchi, 1996) and evaluate
whether a specific state of the VLMC is a renewal state. The Intrinsic Bayes Factor method
is applied to detecting renewal states in a dataset with sequences of encoded written texts
in Portuguese. Final considerations are presented in Chapter 5 with a description of future
works and extensions of the methodologies proposed in the articles.
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2 Inference Tools for Markov Random Fields
on Lattices: The R Package mrf2d

This chapter corresponds to the research article Freguglia and Garcia (2022)
published on the Journal of Statistical Software on January of 2022.

Abstract: Markov random fields on two-dimensional lattices are behind many
image analysis methodologies. mrf2d provides tools for statistical inference on a class of
discrete stationary Markov random field models with pairwise interaction, which includes
many of the popular models such as the Potts model and texture image models. The
package introduces representations of dependence structures and parameters, visualization
functions and efficient (C++-based) implementations of sampling algorithms, common
estimation methods and other key features of the model, providing a useful framework
to implement algorithms and working with the model in general. This paper presents a
description and details of the package, as well as some reproducible examples of usage.



JSS Journal of Statistical Software
January 2022, Volume 101, Issue 8. doi: 10.18637/jss.v101.i08

Inference Tools for Markov Random Fields on
Lattices: The R Package mrf2d

Victor Freguglia
University of Campinas

Nancy Lopes Garcia
University of Campinas

Abstract

Markov random fields on two-dimensional lattices are behind many image analysis
methodologies. mrf2d provides tools for statistical inference on a class of discrete station-
ary Markov random field models with pairwise interaction, which includes many of the
popular models such as the Potts model and texture image models. The package intro-
duces representations of dependence structures and parameters, visualization functions
and efficient (C++-based) implementations of sampling algorithms, common estimation
methods and other key features of the model, providing a useful framework to implement
algorithms and working with the model in general. This paper presents a description and
details of the package, as well as some reproducible examples of usage.

Keywords: Markov random fields, image analysis, R, Gibbs random fields, Potts model, tex-
ture.

1. Introduction
A Markov random field (MRF) is a generalization of the well-known concept of a Markov
chain where variables are indexed by vertices of a graph instead of a sequence and the notion
of memory is substituted by the neighborhood (edges) of that graph. Markov random fields
on lattices, or more generally, Gibbs distributions, have been studied in statistical mechanics
as models for interacting particle systems. They range from the basic Ising model (or its
generalization Potts model) with pairwise nearest-neighbor interaction to models with more
complex interaction types, presenting long-range and/or higher-order interaction. For an
introduction to the subject we refer to Liggett (2012) and references therein.
A finite 2-dimensional lattice is a direct representation of pixel positions on a digital image.
Geman and Geman (1984) make an analogy between image models and statistical mechanics
systems, introducing probability-based computational methods for image restoration under
a specific type of noise. Higher-order dependence structures are also described, for example,

Chapter 2. Inference Tools for Markov Random Fields on Lattices: The R Package mrf2d 13
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interactions with pixels more distant than nearest-neighbors. Cross and Jain (1983) use MRFs
with special interaction structures to model texture images.
Many modern image analysis methodologies in statistics and machine learning are grounded
on Markov random field theory and the local dependence characteristic of image data. Com-
mon tasks in image analysis involve image segmentation (Zhang, Brady, and Smith 2001; Kato
and Pong 2006; Roche, Ribes, Bach-Cuadra, and Krüger 2011; Cao, Zhou, Xu, Meng, Xu,
and Paisley 2018; Ghamisi et al. 2018), texture synthesis (Gimel’farb 1996; Freeman and Liu
2011; Versteegen, Gimel’farb, and Riddle 2016) and statistical modeling (Derin and Elliott
1987; Guillot, Rajaratnam, and Emile-Geay 2015; Freguglia, Garcia, and Bicas 2020) all of
which can be achieved with the use of MRFs. Some basic references are Blake, Kohli, and
Rother (2011) and Kato and Zerubia (2012).
In this paper, when we refer to a MRF, we consider the particular case where variables are
indexed by points of a 2-dimensional lattice, not a general graph structure. The regular grid
naturally creates a spatial structure and notions of distance and direction for the variables,
allowing models to be specified based on this spatial structure (see Besag 1974, for examples).
Parametric inference based on maximum likelihood for such models is difficult, even for the
simple models, because of the intractable constant that appears in the likelihood. Inference
for the simplest non-trivial case of the Ising model was first studied by Pickard (1987) and
continues to present challenges, see for example Bhattacharya and Mukherjee (2018). On
the other hand, while there is a continuous development of methodologies used in MRFs in
the theoretical field, implementing new algorithms is a challenge in practice, mostly due to
the high-dimensionality of the problem and the complexity of the data structures required
to represent the data in this type of problem. An overview of this topic, mainly from the
Bayesian perspective, can be found in Winkler (2012).
Most methodologies developed are based on Monte Carlo Markov chain methods, thus simple
tasks like evaluating pairs of pixels or sampling individual pixels need to be repeated millions
or billions of times in iterative methods, depending on the image size, making an efficient
implementation of such methods one of the main demands for researchers of the topic.
R (R Core Team 2021) is one of the most used programming languages among statistics
researchers, what makes the existence of good packages important for any field of statistics.
In a general context (considering the definition of MRFs with general undirected graphs),
packages like graph (Gentleman, Whalen, Huber, and Falcon 2021) and network (Butts 2008)
provides tools for representation and manipulation of graph structures which can be used for
constructing and visualizing graph-based models. Different versions of graph-based MRFs
appear in many packages. For example, the CRF package (Wu 2019) has inferential tools
Markov random fields with pairwise and unary interactions and their hidden MRF version,
MRFcov (Clark, Wells, and Lindberg 2018) allows inference for the interaction parameter
of between nodes of a graph considering covariates and gamlss.spatial (De Bastiani, Rigby,
Stasinopoulous, Cysneiros, and Uribe-Opazo 2018) allows fitting Gaussian Markov random
fields in a spatial context, similar to INLA (Rue, Martino, and Chopin 2009) and mgcv (Wood
2017).
Outside of the R ecosystem, there are powerful software in C++ used for image analysis related
to Markov random fields, such as the DGM library (Kosov 2013) and densecrf (Krähenbühl
and Koltun 2011), which also has a Python wrapper (Beyer 2015), and can be used for a
variety of tasks and use extremely efficient computational methods.

Chapter 2. Inference Tools for Markov Random Fields on Lattices: The R Package mrf2d 14
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For discrete MRFs on lattice data, closer to what is proposed in mrf2d, there are some
R packages available. The potts package (Geyer and Johnson 2020), implements simula-
tion algorithms and parameter estimation via composite-likelihood for a Potts model with
nearest-neighbor interactions only. PottsUtils (Feng 2018) also implements simulation and
tools for computing normalization constants in one, two and three-dimensional Potts model.
The package bayesImageS (Moores, Nicholls, Pettitt, and Mengersen 2020) provides Bayesian
image segmentation algorithms considering Gaussian mixtures driven by hidden Potts models
with slightly more complex interaction neighborhood. GiRaF (Stoehr, Pudlo, and Friel 2020)
allows calculation on, and sampling from general homogeneous Potts model. The Pottslab
(Storath and Weinmann 2014) package for MATLAB also provides image segmentation algo-
rithms using the Potts model, including for multivariate-valued data.
Although the available packages for discrete-valued MRFs offer efficient implementations of
their methods, they do not provide an interface that allows simple extensions to different
cases, for example, different interaction types for different positions and sparse long-range
interaction neighborhoods. Some of the algorithms used also rely on specific characteristics
of the specific setups they consider and cannot be applied more generally.
The mrf2d package (Freguglia 2022) provides a complete framework for statistical inference
on discrete-valued MRF models on 2-dimensional lattice data, where all the elements used by
algorithms (such as conditional probabilities, pseudo-likelihood function, simulation, sufficient
statistics and more) are available for the user, as well as many built-in model fitting functions.
The package uses the model described in Freguglia et al. (2020) as a reference. Many other
models, such as the Potts model and auto-models, are particular cases of our model obtained
by including restrictions to the parameters or using specific interacting neighborhoods. These
neighborhoods can be freely specified within the package and 5 families of parameter restric-
tions are available to cover the particular cases.
mrf2d (Freguglia 2022) is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=mrf2d and can be installed and loaded with

R> install.packages("mrf2d")
R> library("mrf2d")

The development version is in its GitHub repository and can be installed with

R> devtools::install_github("Freguglia/mrf2d")

This paper is organized as follows. Section 2 describes the model considered in mrf2d, Sec-
tion 3 presents the main functionalities of the package and details of the implementation,
which are illustrated by examples in Section 4. We finish with a discussion in Section 5. All
the results of example code in this article were obtained using R version 4.0.2 and mrf2d
version 1.0.

2. Model description
Let L ⊂ {i = (i1, i2) ∈ N2} be a finite set of locations in a two-dimensional lattice region and
Z = {Zi}i∈L a field of random variables indexed by those locations.
The main purpose of mrf2d is to provide a general framework for Markov random field models
which satisfy the following assumptions:

Chapter 2. Inference Tools for Markov Random Fields on Lattices: The R Package mrf2d 15
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(a) Finite support Each Zi can take values in Z = {0, . . . , C} for some finite C > 0.

(b) Pairwise interactions The probability of a complete configuration P(Z = z) can be
decomposed into a product of functions of the pairs (zi, zj), i ̸= j ∈ L.

(c) Homogeneous interactions For any two pixels i and j and any relative position r, the
interaction between pixels i and i + r is the same as for pixels j and j + r, i.e., the
interaction depends on the relative position of the pair of pixels, not on their position
in the lattice.

These assumptions are satisfied by most commonly used models in image processing.
We use the representation in Freguglia et al. (2020) which expresses the probability distri-
bution of the random field in the form of the exponential family and introduce additional
constraints to parameter space and/or different dependence structures to include particular
features of the model under study.

2.1. Homogeneous Markov random field with pairwise interactions
MRF models are characterized by their conditional independence property. Let N be a
neighborhood system on L, then Z is a Markov random field with respect to N if Zi given
its neighbors ZNi is conditionally independent from all other variables

P(Zi = zi | Z−i) = P(Zi = zi | ZNi), i ∈ L, (1)

where Z−i denotes the set of variables {Zj, j ̸= i}.
To start defining MRFs in an image processing context, a location of the lattice i ∈ L will be
referred as a pixel i and an observed value of the variable zi ∈ Z as pixel value or color.
We denote by R ⊂ Z2 a set of interacting relative positions such that, for no pair of elements
r, r′ ∈ R we have r′ = −r (no position in R is a reflection of another). Based on R, we
can construct a neighborhood system (interaction structure) N in such way that the set of
neighbors of site i, Ni can be represented by a graph with vertices L where there is an edge
connecting i and j if, and only if, j = i ± r. For example, a nearest-neighbor structure
corresponds to R = {(1, 0), (0, 1)}.
Given an interaction structure R, for any relative position r ∈ R the interactions associated
to that relative position are characterized by a map θr(·, ·), θr : Z2 → R. For a, b ∈ Z, the
value θr(a, b) is called a potential.
The model in mrf2d considers a neighborhood system N that connects pairs of pixel positions
i, j such that i− j ∈ R. Under assumptions (a), (b) and (c), the Hammersley-Clifford theorem
(Hammersley and Clifford 1971) implies that the probability function for Z belongs to the
exponential family and can be described by a set of natural parameters θ = {θr(a, b), r ∈
R, a, b, ∈ Z},

P(Z = z) = 1
ζθ

eH(z,θ), (2)

where
H(z, θ) =

∑

r∈R

∑

i,j∈L
θr(zi, zj)1(j=i+r) and ζθ =

∑

z′
eH(z′,θ). (3)

Figure 1 illustrates how the function H(z, θ) is computed for an example interaction structure
R and a field z.

Chapter 2. Inference Tools for Markov Random Fields on Lattices: The R Package mrf2d 16
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R = {(1, 0), (0, 1), (2, 2)}

i

(0, 1)

(1, 0)

Interaction Structure

Data

0 0 2
1 2 1
0 2 0

z =

0 0 2
1 2 1
0 2 0

0 0 2
1 2 1
0 2 0

0 0 2
1 2 1
0 2 0(2, 2)

θ(1,0)(0, 2) + θ(0,1)(0, 1) +

0 0 2
1 2 1
0 2 0

0 0 2
1 2 1
0 2 0

θ(0,1)(0, 1) +

θ(0,1)(1, 0) +

θ(1,0)(2, 1) +

Pairwise contributions to H(z, θ)

0 0 2
1 2 1
0 2 0

θ(1,0)(2, 1) +

0 0 2
1 2 1
0 2 0

θ(0,1)(2, 0) +

0 0 2
1 2 1
0 2 0

θ(1,0)(0, 0) +

0 0 2
1 2 1
0 2 0

θ(1,0)(2, 0) +

0 0 2
1 2 1
0 2 0

θ(1,0)(1, 2) +

0 0 2
1 2 1
0 2 0

θ(0,1)(1, 2)

0 0 2
1 2 1
0 2 0

θ(0,1)(2, 2) +

0 0 2
1 2 1
0 2 0

θ(2,2)(0, 2) +

Figure 1: Example of interaction structure with three relative positions and example field on
a 3 by 3 lattice (left) and contributions of each interacting pair to H(z, θ)(right).

Note that adding a constant a constant cr to the potentials associated with a relative position
r ∈ R results in the same probability because the constant cancels when dividing by ζθ. Thus,
constraints for the potentials θr(a, b) are necessary to obtain identifiability in the model. We
consider θr(0, 0) = 0 for all relative positions r, which ensures identifiability and also gives an
interpretation for interactions in terms of the pair (0, 0): θr(a, b) < 0 (resp. > 0) means that
the pair (a, b) is less (resp. more) likely to appear in a pair with relative position r than (0, 0).

Potts model as a particular case
The Potts model (Potts 1952) is one of the most important MRF model used in image seg-
mentation because it can assign higher probability for equal-valued pairs of nearest-neighbors,
creating large regions of pixels with the same values. The model has a single parameter ϕ
that is interpreted as the inverse temperature in a mechanical statistics context.
A standard Potts model can be expressed as Equation 2 with the function H(z, θ) taking the
form ∑

(i,j):||i−j||=1
ϕ1(zi ̸=zj). (4)

Assumptions (a), (b) and (c) are satisfied, thus, we can rewrite Equation 4 in terms of an
interaction structure R and potentials θ by noticing

• The set i, j : ||i − j|| = 1 are vertical and horizontal pairs of neighbors, therefore, the
interaction structure R is the set {(1, 0), (0, 1)}.
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• The potential θr(a, b) is equal to ϕ if a ̸= b and 0 otherwise, regardless of r. The
constraint θr(0, 0) = 0 is satisfied in this definition. Therefore, we have the parameter
restriction

θr(a, b) = ϕ1(a̸=b)

for all r ∈ R.

This parameter restriction corresponds to the "onepar" family described in Section 3.2.

2.2. Important elements of the model
The main inference challenge for MRFs lies in the normalizing constant ζθ appearing in
Equation 2. It cannot be evaluated in practice as it requires summing over Z |L| possible field
configurations and there is no analytical expression for it, except for trivial cases, leading to
an intractable likelihood.
Being unable to evaluate the likelihood function hinders the use of most statistical methods.
Inference under intractable likelihoods have been developed over the years. The main stud-
ies involve using conditional probability-based functions, like pseudo-likelihood (Jensen and
Künsch 1994, for example) and Monte Carlo methods (Geyer and Thompson 1992; Møller,
Pettitt, Reeves, and Berthelsen 2006, for example).
Although there is a wide variety of inferential methods available, most of them are built
using the same pieces of the model. Thus, having access to each of these pieces is necessary
to implement algorithms. We highlight important characteristics of the model available in
mrf2d that are used by inference methods.

Conditional probabilities
A consequence of the Markov property (conditional independence) is a simple expression for
conditional probabilities. H(z, θ) is a sum of terms that only depends on pairs of pixel values,
which implies that all terms not involving position i cancel out when evaluating P(Zi | Z−i).
Define the part of the sum that involves the pixel in position i as

hi(k | z) =
(i+r)∈L∑

r∈R
θr(k, z(i+r)) +

(i−r)∈L∑

r∈R
θr(z(i−r), k). (5)

The conditional probability of Zi = k given all other locations, P(Zi = k | ZNi), is then given
by the standard softmax of hi(k | z),

P(Zi = k | Z−i = zNi) = ehi(k|z)
∑

k′ ehi(k′|z) . (6)

Pseudo-likelihood function
The pseudo-likelihood function (Besag 1974, 1975) is defined as the product of conditional
probabilities of each variable given all other variables of a random field,

PL(θ; z) =
∏

i∈L
P(Zi = zi | Z−i = z−i) =

∏

i∈L

ehi(zi|z)
∑

k′ ehi(k′|z) . (7)
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Algorithm 1: Approximate sampling algorithm for MRFs using T steps of Gibbs sampler.
Initialize z with a starting configuration z = z(0);
Initialize the iteration counter t = 0; while t ≤ T do

Sample {i(1), i(2), . . . , i(|L|)} a random permutation of the pixel positions L;
for ℓ in 1, . . . , |L| do

Update zi(ℓ) conditional to the rest of the field z−i(ℓ) with probabilities from
Equation 6;

end
t = t + 1;
Result: output the final configuration z.

end

In the special case of an independent field, it is equivalent to the likelihood function. Notice
that the pseudo-likelihood function does not depend on the intractable normalizing constant
and Equation 7 is numerically equivalent to a logistic regression problem where each pixel
values corresponds to independent observations and the interacting pixel values are covariates
with coefficients corresponding to the associated potentials.

Generating MRFs via Gibbs sampler

While exact sampling from dependent and high-dimensional processes is a challenging task
overall, the conditional independence of MRFs simplifies the implementation of the Gibbs
sampler algorithm (Geman and Geman 1984). In the Gibbs sampler algorithm, each pixel
value is updated conditionally to the current state of its neighbors and a Gibbs sampler cycle
consists of updating each pixel exactly one time.
To avoid introducing any kind of bias due to updates order, a random permutation of L is
drawn to define the order in which pixels are updated at each cycle. After running a suitable
number of cycles in Algorithm 1, the distribution of the resulting field sampled in the process
is approximately the joint distribution of the MRF.
Sampling a field conditional to a subset of pixel values can be achieved with the same algorithm
by skipping the updates for those pixels which are being conditioned on.
There exist faster mixing algorithms for particular cases such as Swendsen-Wang algorithm
(Wang and Swendsen 1990), but they require specific conditions from the model and/or
particular implementations to be efficient. Therefore, despite its slower mixing times in
some scenarios, we keep the Gibbs sampler as the method of choice in this work due to its
generalization ability as it only requires computing conditional distributions.

Sufficient statistics

An important computational consequence of the model assumptions is the fact that, in order
to evaluate the probability (or likelihood) function for a particular observed field z, it is not
necessary to determine the values of each pixel individually, but only the co-occurrence counts
for each relative position r ∈ R.

Chapter 2. Inference Tools for Markov Random Fields on Lattices: The R Package mrf2d 19



8 mrf2d: Markov Random Fields on Lattices in R

The function H(z, θ) can be rewritten as

H(z, θ) =
∑

r∈R

C∑

a=0

C∑

b=0
θr(a, b)na,b,r(z), (8)

where na,b,r(z) = ∑
i∈L 1(zi=a,z(i+r)=b) is the count of occurrences of the pair (a, b) ∈ Z2 in

pairs of pixels with relative position r. Therefore,

SR(z) = {na,b,r(z), a, b ∈ Z, r ∈ R}

is a vector of sufficient statistics, where each component na,b,r(z) is associated with a corre-
sponding potential θr(a, b). Gimel’farb (1996) calls this sufficient statistic the co-occurrence
histogram.
Parameter constraints reduce the dimension of the sufficient statistic. Our identifiability
constraint θr(0, 0) = 0 implies that all n0,0,r(z) are excluded from SR(z) and equality con-
straints require aggregating (sum) co-occurrence counts to match the parameter dimension.
We shall keep the same notation for the constrained version of the sufficient statistics SN (z)
and potentials θ.
The main advantages of the representation with sufficient statistics are the reduced memory
usage in Monte Carlo methods and a convenient representation of H(z, θ) as an inner product
that simplifies dealing with likelihood ratios as it is done in Geyer and Thompson (1992),

H(z, θ) = ⟨SN (z), θ⟩. (9)

2.3. Gaussian mixtures driven by hidden MRFs
Another class of models present in the image processing field are hidden Markov random field
models (HMRFs). The hidden version considers a latent (unobserved) process, denoted Z
and an observed field, denoted Y, where Z is distributed as a MRF and the distribution of
Y | Z is reasonably simple.
In this type of modeling, Z is often considered the “true” image and Y is a noisy image.
Usually the goal of the analysis in this context is to recover the underlying field. Note that
for the models considered in this work, where Z has finite support, the hidden field defines a
segmentation of the image, making it a suitable approach for image segmentation.
In mrf2d, we provide built-in tools for the case where Y | Z is a finite Gaussian mixture with
mixture components driven by the hidden field. Additional covariates can also be included
as fixed effects for the mean,

Yi | Zi = a ∼ N(µa + xi⊤β, σ2
a), a = 0, 1, . . . , C. (10)

Given the latent field, observed values Y are assumed to be independent leading to the
conditional density

f(y | Z = z) =
∏

i∈L

1√
2πσ2

zi

exp
(

(yi − µzi − x⊤
i β)

2σ2
zi

)
(11)
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and the complete likelihood function

Lθ (β, {(µa, σa), a = 0, . . . , C}; y, z) = 1
ζθ

e(H(z,θ)) ∏

i∈L

1√
2πσ2

zi

exp
(

(yi − µzi − x⊤
i β)

2σ2
zi

)
(12)

Inference for this models involves estimating the parameters (µk, σk)k=0,1,...,C and β associated
with the Gaussian Mixture and predicting the labels of the latent field z simultaneously.
Bayesian methods and the EM algorithm are the most common approaches. The parameters
of the latent field distribution θ are fixed a priori and considered tuning hyper-parameters of
the algorithm.

3. Using the package

3.1. Model representation
The model described in Section 2 can be completely characterized by three components: the
random field z, the interaction structure R and the potentials θ. Additionally, y and the
mixture parameters (µk, σ2

k)k=0,...,C are included in hidden MRFs.
A consistent representation of each component is provided in the package so that inputs and
outputs of built-in functions, as well as methods the user may implement, are compatible and
usable in the analysis pipeline. Representations are described in Table 1.

Random fields z and y.
Realizations of a random fields z and y are represented by simple matrix objects with di-
mension N × M , where N ≥ maxi1(i1, i2) ∈ L and M ≥ maxi2(i1, i2) ∈ L, i.e., the maximal

Model Function Representation in mrf2d
component argument
z: Discrete-
valued field

Z A matrix object with values in {0, . . . , C}, where Z[w,q]
represents the pixel value in position (w, q) of the lattice. NA
values are used for positions that do not belong to L when it
is not a rectangular region.

y: Continuous-
valued field

Y A matrix object with real values, where Y[u,v] represents
the pixel value in position (u, v) of the lattice. NA values are
used for positions that do not belong to L when it is not a
rectangular region.

R: Interaction
structure

mrfi An object of the S4 class ‘mrfi’. It can be created with the
mrfi() and rpositions() functions.

θr(a, b): Array
of potentials

theta A three-dimensional array object with dimensions (C + 1) ×
(C + 1) × |R|. For a pair of values (a, b) and the s-th inter-
acting relative position rs of R, the corresponding potential
is mapped at theta[a+1, b+1, s].

Table 1: Model representation summary.
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coordinates. This matrix represents a rectangular set of pixels that contains L. The value in
row i1 and column i2 represents the observed value of the random field in position (i1, i2): an
integer in {0, 1, . . . , C} for z or a real number for y.
We do not require L to be a complete rectangular region. Pixels which position does not
belong to L are assigned the NA value.
Two functions are available for visualizing random fields: dplot() and cplot(). dplot()
should be used for discrete-valued fields z while cplot() is used for continuous-valued matri-
ces y. These functions provide an alternative to base R image() function, producing elegant
images in the form of ggplot objects. The main advantage is that they allow the use of
the ggplot2 package (Wickham 2016) to customize the image using the grammar of graphics.
Details and examples of customization of the images produced using ggplot2 can be found in
Appendix A.

Interaction structures R
Interaction structures are represented by objects of the S4 class ‘mrfi’ implemented in mrf2d.
These objects can be created with the mrfi() or rpositions() functions, which have argu-
ments max_norm, norm_type and positions. In mrfi(), the interaction structure created
will include all relative positions which satisfy ||(i1, i2)|| ≤ max_norm for the specified norm
type. positions can be passed as a list containing length 2 integer vectors with relative po-
sitions to include when using rpositions(). The function automatically checks for repeated
and opposite relative positions to ensure the structure is valid.
norm_type options are the same as R built-in norm() function, mainly, "1", "2" and "m" are
used for ℓ1, ℓ2 and the maximum norm, respectively. The default is ℓ1 norm.
An algebra of mrfi objects is implemented for manipulating these objects. + is used to perform
union of two mrfi objects or a mrfi object and a numeric vector with 2 integers can be used
to add a single interacting position to an existing mrfi object. Similarly, the - operator can
be used to perform set difference between two mrfi objects or to remove a single position if
a vector with 2 integers is used in the right-hand-side.
Some examples for creating different R are detailed below.

• mrfi(max_norm = 1) creates an interaction structure with all positions with ||(i1, i2)||1 ≤
1, which corresponds to a nearest-neighbor structure R = {(1, 0), (0, 1)}.

• rpositions(positions = list(c(1,0), c(0,1))) is an alternative way of specifying
the same structure of the previous example.

• mrfi(max_norm = 1) + rpositions(positions = list(c(2,0))) results in the in-
teraction structure R = {(1, 0), (0, 1), (2, 0)}.

• mrfi(max_norm = 1) + rpositions(positions = list(c(-1,0))) results in R =
{(0, 1), (−1, 0)}. The norm-based and position-based positions had an intersection (re-
flected position at (−1, 0)), so the redundant position (1, 0) was removed. In case of
opposite directions being added together, right-hand size argument is prioritized.

Additionally, conversion of mrfi objects to list is implemented in the as.list() method.
Subsetting methods are also available with the "[]" and "[[]]" operators. These methods
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Figure 2: Examples of interaction structures R created and their visualization.

are particularly important for model selection algorithms, as many distinct sparse interaction
structures can be obtained by using different subsets of a large reference base structure.
A plot method is available for mrfi objects. The code chunk below exemplifies the usage
of plotting functions and manipulation of mrfi objects. The resulting plots are presented
in Figure 2. The black square represents the origin position (0, 0), positions included in the
interaction structure R are represented by the dark-gray squares with black borders, while
their opposite directions are the light-gray squares.

R> plot(mrfi(max_norm = 1))
R> plot(mrfi(max_norm = 2, norm_type = "m") + c(4, 0))
R> plot(mrfi(4) - mrfi(2))
R> plot(mrfi(6, norm_type = "m")[c(1, 2, 6, 9, 19, 41)])

Potentials array θ

The collection of potentials, θr(a, b), is represented by an array object with dimensions (C +
1) × (C + 1) × |R|. Rows and columns are used to map a and b, respectively, while slices
are used to map relative positions r. A set of potentials {θr(a, b), a, b ∈ Z, r ∈ R} is always
related to an interaction structure R = {r1, r2, . . . , r|R|}. Since the i-th slice maps the i-th
relative position of R, ri, this is the minimal representation required to store all parameters
required by the model.
An important detail is that array indices in R start at 1, while we consider our set of possible
values Z = {0, 1, . . . , C}, therefore we need to shift a and b by one position when accessing
their value in the R array. Figure 3 illustrates how potentials can be represented as an array
in R in the C = 2 case. Two elements are highlighted and the associated indices used to
access them are shown as examples.

3.2. Parameter restriction families

Parameter restrictions play an important role in the inference process of our Markov random
field models. mrf2d functions support 5 families of parameter restrictions for the array of po-
tentials to be considered in inference algorithms. They are specified by the family argument
of functions to ensure the resulting output array (theta) respects those constraints. A brief
description of each interaction structure is given next. Table 2 presents the mathematical
definitions, number of free parameters and an example of a slice of the array of potentials for
the case with C = 2 in each family.
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θr3(0, 0) θr3(0, 1) θr3(0, 2)

θr3(1, 0) θr3(1, 1) θr3(1, 2)

θr1(2, 0) θr3(2, 1) θr3(2, 2)

θr2(0, 0) θr2(0, 1) θr2(0, 2)

θr2(1, 2)

θr3(2, 2)

θr1(0, 0) θr1(0, 1) θr1(0, 2)

θr1(1, 2)θr1(1, 1)θr1(1, 0)

θr1(2, 0) θr1(2, 1) θr1(2, 2)

. . .

. . .

a

b

r

R = {r1, r2, . . .}

theta[2,3,1]

theta[1,1,3]

C = 2

θrs(a, b) → theta[a+1, b+1, s]

R = {(1, 0), (0, 1), (2, 2)}

C = 1

θ(2,2)(1, 0) θ(2,2)(1, 1)

θ(2,2)(0, 0) θ(2,2)(0, 1)

θ(0,1)(1, 0) θ(0,1)(1, 1)

θ(0,1)(0, 0) θ(0,1)(0, 1)

θ(1,0)(1, 0) θ(1,0)(1, 1)

θ(1,0)(0, 0) θ(1,0)(0, 1)
i

(0, 1)

(1, 0)

(2, 2)

Figure 3: Left: Example of array representation of potentials with C = 2 for a generic
interaction structure R. Right: Array representation of potentials for the example from
Figure 1.

Family Restriction Free parameters Example slice

"onepar" θr(a, b) = ϕ1(a̸=b) 1




0 ϕ ϕ
ϕ 0 ϕ
ϕ ϕ 0




"oneeach" θr(a, b) = ϕr1(a̸=b) |R|




0 ϕr ϕr
ϕr 0 ϕr
ϕr ϕr 0




"absdif" θr(a, b) = ∑C
d=1 ϕr,d1(|b−a|=d) |R|C




0 ϕr,1 ϕr,2
ϕr,1 0 ϕr,1
ϕr,2 ϕr,1 0




"dif" θr(a, b) = ∑C
d=−C,d̸=0 ϕr,d1(b−a=d) |R|2C




0 ϕr,1 ϕr,2
ϕr,−1 0 ϕr,1
ϕr,−2 ϕr,−1 0




"free" θr(0, 0) = 0 |R|(C2 − 1)




0 ϕr,0,1 ϕr,0,2
ϕr,1,0 ϕr,1,1 ϕr,1,2
ϕr,2,0 ϕr,2,1 ϕr,2,2




Table 2: Description of parameter restriction families.

"onepar" A single-parameter (ϕ) model, where interactions depend only on the fact that
values are equal or different, regardless of their relative position. This restriction corre-
sponds to the classical Ising and Potts model.

"oneeach" The same interaction type as "onepar", but allowing different values ϕr for dif-
ferent interacting positions r ∈ R.

"absdif" For each r ∈ R, the potentials θr(a, b) depend only on the absolute differences of
their pixel values d = |b − a|. Note that "absdif" is equivalent to "oneeach" when
C = 1.
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"dif" Generalizes the "absdif" family allowing opposite signal differences to have different
interactions.

"free" No restrictions, except for the identifiability constraint θr(0, 0) = 0.

Families "dif" and "absdif" should only be used when pixel values represent quantities
and their differences are well-defined, for instance, in grayscale images with few levels, as
in the example analysed in Gimel’farb (1996). If relabeling the values does not change the
interpretation of the problem, then these restrictions are probably not suitable.
The function smr_array(theta, family) can be used to transform a parameter array into
a vector of appropriate length containing only the free parameters corresponding to the pro-
vided array (theta) and the restriction family. The opposite operation is also available as
the expand_array(theta_vec, family, mrfi, C) function. These transformations use a
simpler and less memory consuming structure so they are particularly useful for optimization
problems as most functions, for example R built-in optim function, require a vector of pa-
rameters. Also, they are convenient for storing multiple vectors, for example in Monte Carlo
methods.

3.3. Random field sampler
Being able to sample observations of Markov random fields is a key component of many
inference methods that aim to avoid the intractable normalizing constant. In mrf2d, a com-
plete and efficient routine to sample fields using the Gibbs sampler algorithm described in
Algorithm 1 is provided by the rmrf2d() function. Its arguments are:

• init_Z: The initial field configuration, or a length-2 vector with the dimensions of the
field to be sampled. If the dimensions are provided, the initial configuration is randomly
sampled from independent discrete uniform distributions.

• mrfi: A mrfi object representing the interaction structure R.

• theta: An array of potentials.

• cycles: The number of Gibbs sampler cycles.

• sub_region: Optional argument used for non-rectangular images when init_Z is a
vector holding the dimensions. A logical matrix with the same dimensions as specified
in init_Z. Pixels with FALSE value are not included in the image.

• fixed_region: Optional. A matrix with logical values. Pixel positions with TRUE
value are conditioned on their initial configuration (init_Z) value and are not updated.

We illustrate below the use of the sampling function on two fields: a 200×200 field (z_sample)
without conditioning on any pixel (nothing specified in fixed_region) and a 100 × 100 field
(z_border) conditioning on the boundary values being fixed as 0, sampled from a random
initial configuration. The resulting images are presented in Figure 4.

R> th <- expand_array(-1, family = "onepar", mrfi(1), C = 1)
R> z_sample <- rmrf2d(init_Z = c(200,200), mrfi = mrfi(1), theta = th)
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Figure 4: Simulated random fields from a nearest-neighbor structure. Left: no boundary
conditions. Right: conditional to all border values being 0 (black).

R> border <- matrix(FALSE, nrow = 100, ncol = 100)
R> border[1, ] <- border[100, ] <- border[, 1] <- border[, 100] <- TRUE
R> initial <- matrix(sample(0:1, 100*100, replace = TRUE),
+ nrow = 100, ncol = 100)
R> initial[border] <- 0
R> z_border <- rmrf2d(initial, mrfi = mrfi(1), theta = th,
+ fixed_region = border)

Non-rectangular fields can be sampled either by passing a non-rectangular field as the init_Z
argument or by using the sub_region argument and specifying the dimensions of the sampled
field.
Another important feature is conditioning on a subset of pixel values. There are many situ-
ations where keeping a subset of pixels fixed during the sampling process can be useful, for
example, filling a region of missing pixel values via simulation, defining boundary conditions
(our model corresponds to a free boundary condition, but other types such as fixed or periodic
boundary can be sampled with proper manipulation of the initial configuration and condi-
tioning region) or performing block-wise updates of the data using conditionally independent
blocks (for parallelization of algorithms).
Since the Gibbs sampler algorithm updates each pixel value multiple times, performance
is one of our main implementation concerns. To improve the performance and speed up
computations considerably, the internals of the sampling function, as well as most other
computationally intensive functions are written in C++ with the use of Rcpp (Eddelbuettel
and François 2011) and RcppArmadillo (Eddelbuettel and Sanderson 2014) packages.

3.4. Statistical inference in mrf2d
Inference methods for MRF models are diverse and their suitability highly depend on the type
of data being analyzed. The framework provided by mrf2d can be used to implement all sorts
of algorithms that are built from a common stack of components: simulation, conditional
probabilities and sufficient statistics. It also provides complete built-in routines for some
estimation algorithms.
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Function Use
Miscellaneous
rmrf2d Generates samples of a MRF via Gibbs sampler. Used for Monte Carlo

based methods.
cp_mrf2d Computes the conditional probabilities for a pixel position given its neigh-

bors.
pl_mrf2d Computes pseudo-likelihood value for an observed field considering inter-

action structure mrfi and array of potentials theta.
cohist Creates the co-occurrence histogram of an observed field given an in-

teraction structure. Can be converted to a vector of sufficient statistics
given a restriction family with the smr_stat function.

smr_array and
expand_array

Conversions between array and vector representation of potentials given
a parameter restriction family.

Built-in inference algorithms
fit_pl Estimates the parameter array given an observed field via pseudo-

likelihood optimization. Returns a mrfout object.
fit_sa Estimates the parameter array given an observed field via stochastic ap-

proximation algorithm. Returns a mrfout object.
fit_ghm Fits a Gaussian mixture driven by a given hidden MRF model using the

EM algorithm from Zhang et al. (2001). polynomial_2d and fourier_2d
can be used to create polynomial and 2-dimensional Fourier basis func-
tions, respectively, to be used as a fixed effect. Returns a hmrfout object.

Table 3: List of available functions used for inference in mrf2d with a brief description of each
one.

Table 3.4 presents a list of functions available in the package that can be used to construct
inference algorithms, as well as built-in functions for parameter estimation for MRF and for
the hidden MRF models defined in Section 2.3 that we describe next. The built-in inference
functions return objects of class ‘mrfout’ (MRF data) or ‘hmrfout’ (hidden MRF models),
which contains the information about the fitted model, as well as summary and plot methods
associated for interpretation of the results.

Maximum pseudo-likelihood estimation

The pseudo-likelihood function in Equation 7 can be evaluated efficiently because it does
not depend on the intractable normalizing constant. A common estimation procedure for
intractable likelihood problems is optimizing the pseudo-likelihood with respect to the pa-
rameters. The pseudo-likelihood estimator is given by

θ̂P L = arg max
θ

PL(θ; z). (13)

The function fit_pl() from mrf2d implements an optimization of the pseudo-likelihood
function using R built-in optim() function. It handles the conversions between array and
vector representation of potentials automatically, respecting the restriction family selected
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and returns the estimated array of potentials and maximum value of the pseudo-likelihood in
logarithmic scale. The arguments of fit_pl are:

• Z: The observed random field z.

• mrfi: A mrfi representing an interaction structure R.

• family: A parameter restriction family.

• init: An array with the initial configuration used in the optimization. 0 can be used
to start from the independent model.

• optim_args: A named list with additional arguments passed to the optim() function
call.

Stochastic approximation algorithm
Given an observed field z(0), the stochastic approximation algorithm (Robbins and Monro
1951) seeks to create a Markov chain of parameter vectors {θ(t)}t≥1 that converges to the
maximum likelihood estimate of θ, which is the solution of the zero gradient condition
Eθ(SR(Z)) = SR(z(0)), derived from Equation 9.
The algorithm is defined by the recurrence

θ(t+1) = θ(t) + γ(t)(SR(z(0)) − SR(z(t))), (14)

where z(t) is a field sampled using θ(t) and γ(t) is a sequence of positive constants that satisfies
∑∞

t=1 γ(t) = ∞ and ∑∞
t=1

(
γ(t)

)2
< ∞.

Stochastic approximation is implemented in mrf2d as the fit_sa() function. It samples
z(t) via Gibbs sampler considering the previous field z(t−1) as the initial configuration. Pe-
riodically, the field samples are refreshed, starting from an independent discrete uniform
distribution and running a greater number of Gibbs sampler cycles, this procedure prevents
the algorithms from getting stuck in problematic field samples. Its arguments are:

• Z: The observed field z(0).

• mrfi: The interaction structure R.

• family: The family of parameter restrictions considered when converting the potentials
array to a vector.

• gamma_seq: A sequence of step size values to be used as γ(t). These values are divided
by the number of pixels |L| internally to be invariant with respect to the image size. The
typical sequence recommended is seq(from = M, to = 0, length.out = B), with M
ranging from 0.5 to 2 and large number of iterations (B).

• init: The initial array of parameters or the value 0 to start from the independent
model.

• cycles: Number of Gibbs sampler ran between iterations.
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• refresh_each: Restarts the sample z(t) from a random configuration each refresh_each
iterations.

• refresh_cycles: When a refresh happens, how many Gibbs sampler cycles are ran in
the current parameter configuration.

Among the elements of the returned mrfout object, theta contains the estimated potential
array and metrics a data frame with the Euclidean distances between SR(z(0)) and SR(z(t))
for each iteration. This sequence of distances is used to monitor the convergence of the
algorithm as a form of diagnostics analysis.

EM algorithm for HMRF models
Gaussian Mixtures driven by hidden MRFs can be fitted in mrf2d with an extension of the
EM algorithm from Zhang et al. (2001) to include a fixed effect (see Freguglia et al. 2020,
for details). The probabilities computed for the latent label of each pixel in the E-step are
conditioned on the global maximum probability configuration of its neighbors, obtained via
iterated conditional modes (ICM) algorithm at each iteration (Besag 1986).
The complete algorithm is available in the fit_ghm function. Its main arguments are

• Y: The observed continuous-valued field y.

• mrfi: Interaction structure of the latent field R.

• theta: The array of potentials that defines the latent field distribution.

• fixed_fn: A list of functions of pixel positions f(i1, i2) to be used as fixed effect. Con-
structors for 2-dimensional polynomials and Fourier basis are available in the functions
polynomial_2d and fourier_2d, respectively.

• equal_vars: A logical value indicating if mixture components are forced to have
equal variances.

• init_mus and init_sigmas: Optional initial values of (µa, σa)a=0,...,C . If none is passed,
an independent Gaussian mixture is fitted with initial values based on quantiles and
the estimates of this fitted model are used as (often good) starting values in the main
procedure.

• maxiter: Maximum number of iterations before stopping.

• max_dist: Defines a stopping condition for the EM algorithm. For consecutive itera-
tions t and t+1, the absolute difference in each parameter, |µ(t)

k −µ
(t+1)
k | and |σ(t)

k −σ
(t+1)
k |

are computed for k = 0, 1, . . . , C. The algorithms stops if all differences are less than
max_dist.

• icm_cycles: Number of cycles of Iterated Conditional Modes algorithm executed in
each iteration.

fit_ghm() returns a hmrfout object represented by a data.frame containing par – the esti-
mates of the mixture parameters {(µ̂a, σ̂a), a = 0, 1 . . . , C}, Z_pred – the highest probability
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Figure 5: Visualization of field1.

configuration of the latent field computed via ICM algorithm ẑ, fixed – a matrix with the
estimated fixed effects

(
x⊤

i β̂
)

for each pixel, and predicted – a matrix with the predicted
mean for each pixel

(
x⊤

i β̂ + µ̂ẑi

)
.

4. Data analysis using mrf2d

4.1. Example 1: A binary image with texture-like pattern

Description

To illustrate the usage of mrf2d for finite-valued images, we use the object field1 available
in the package, which contains a binary field with anisotropic pattern as seen in Figure 5. It
is a synthetic texture image of the same type as the binary texture data presented in Cross
and Jain (1983). The data can be loaded and viewed using the code chunk below.

R> data("field1", package = "mrf2d")
R> dplot(field1, legend = TRUE)

Our goal is to fit a MRF model to this data and sample images from the fitted model to
evaluate if the patterns achieved in the generated data are similar to the original data. This
is the typical setup of a texture synthesis problem with finite-valued images.
This analysis involves three main stages: Specifying the model (interaction structure and
parameter restrictions), estimating the parameters and evaluating the fitted model. All of
the run times described in this section were obtained using an Intel Core i7-7500U 2.70GHz
CPU processor.
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Specifying R and parameter family
Model selection under intractability is a challenging problem because most algorithms require
comparing (maximum) likelihood functions for different models, what cannot be done exactly
and/or have a high computational cost for MRF models.
The main routes in the model specification stage are: using prior information of the data or
problem to select what type of restrictions and interaction structure are best suited, using the
most general model (e.g., no restrictions and a complex interaction structure) as in Freguglia
et al. (2020) or using some estimation technique.
This image presents a diagonal pattern what indicates a nearest-neighbor interaction structure
may not be appropriate to capture all the dependence present in the field. We first choose
what kind of parameter restriction family will be considered by checking that relabeling the
values Z does not change the patterns in the image indicating symmetric potentials should
be suited for this image, and there is a clear difference in the interactions when considering
pixels in different directions, what indicates we need different types of interaction for different
relative positions. These characteristics match the "oneeach" family that will be used in this
example.
In order to estimate the set of interacting positions R, we use use a naive algorithm which
consists of performing 300 steps of stochastic approximation considering a large set of can-
didate interacting positions (all positions with maximum norm less or equal 6, 84 positions
total) and then select the positions with absolute value of the associated potential higher than
a threshold value. This is a strategy similar to the heuristic search algorithm from Gimel’farb
(1996). Stochastic approximation was preferred over maximum pseudo-likelihood, for exam-
ple, because it is computationally more suited for high-dimensional situations and we are not
requiring a very accurate estimation at this point, so we can use a reasonably low number of
iterations.
The code below implements this naive interaction selection algorithm in a few lines using
the tools available in mrf2d considering a threshold value of 0.10. A large set of interaction
position (candidates) is defined and the stochastic approximation algorithm is executed
based on this complete interaction structure, obtaining complete_sa, then a selection based
on thresholding absolute values of interactions is performed (selected).

R> candidates <- mrfi(6, norm_type = "m")
R> set.seed(1)
R> complete_sa <- fit_sa(field1, candidates, family = "oneeach",
+ gamma_seq = seq(from = 1, to = 0, length.out = 300),
+ cycles = 2, refresh_each = 301)

The complete stochastic approximation procedure in the fit_sa() call took 168 seconds to
complete in total.

R> plot(complete_sa)
R> thr_value <- 0.1
R> theta_vec <- smr_array(complete_sa$theta, "oneeach")
R> selected <- which(abs(theta_vec) > thr_value)
R> R1 <- candidates[selected]
R> R1
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Figure 6: Plot of the complete_sa object. Nearest-neighbor positions have strong interactions
(with negative potential) for different-valued pairs, while position (4, 4) has a weaker positive
potential. This can be interpreted as nearest-neighbors having more weight when they are
equal, while pixel with relative position (4, 4) have more weight when they are different.

Figure 7: Candidate positions for the interaction structure (left) and selected positions (right).
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Estimating θ

Considering the parameter restriction family "onepar" and the selected interaction structure
R = {(1, 0), (0, 1), (4, 4)}, we have a model with 3 free parameters. A 3-dimensional optimiza-
tion problem is simple enough to be solved using the built-in pseudo-likelihood optimization
function. We also fit the model via stochastic approximation, now only considering the se-
lected interaction structure, for comparison. The results are compared with the summary()
method for the ‘mrfout’ class and presented below.

R> pl <- fit_pl(field1, R1, family = "oneeach")
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R> summary(pl)

Model adjusted via Pseudolikelihood
Image dimension: 150 150
2 colors, distributed as:

0 1
11083 11417

Interactions for different-valued pairs:
Position| Value Rel. Contribution

(1,0)| -0.993 1.000 ***
(0,1)| -1.021 0.995 ***
(4,4)| 0.183 0.735 **

R> sa <- fit_sa(field1, R1, family = "oneeach",
+ gamma_seq = seq(from = 1, to = 0, length.out = 300))
R> summary(sa)

Model adjusted via Stochastic Approximation
Image dimension: 150 150
2 colors, distributed as:

0 1
11083 11417

Interactions for different-valued pairs:
Position| Value Rel. Contribution

(1,0)| -0.964 1.000 ***
(0,1)| -0.983 0.987 ***
(4,4)| 0.183 0.756 ***

The resulting estimates were roughly the same using the two functions. The fit_pl call ran
in 2.371 seconds while the fit_sa call took 56.627 seconds to complete. The optimization
process from maximum pseudo-likelihood estimation was substantially faster, mainly due
to the low-dimensionality of the problem, than running a satisfactory number of stochastic
approximation steps to achieve reasonable precision.

Evaluating the fitted model

To evaluate how well the estimated parameters fit the data, we generate a new sample from
the fitted model. Figure 8 shows the original image and the image simulated from the fitted
model for comparison. The patterns created are visually very similar. Therefore the fitted
MRF model successfully describes the characteristics of the data and is capable of synthesizing
new images with the same texture pattern.

R> z_sim <- rmrf2d(dim(field1), R1, pl$theta)
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Figure 8: Original data (left) and random field simulated from the fitted model (right).

4.2. Example 2: Image segmentation of a hidden MRF

Description

The data available in the object hfield1 in the package will be used to illustrate the use of
mrf2d for Gaussian mixtures driven by hidden MRFs. It consists of an image with continuous-
valued pixels ranging from 0.3 to 15.2. A pattern similar to the previous example can be
observed with the addition of a continuous noise.

R> data("hfield1", package = "mrf2d")
R> cplot(hfield1)

We consider an image composed by a latent (hidden) MRF plus a random noise whose dis-
tribution for each pixel may depend on the pixel value in the latent field. The main goal
for this type of data is to recover the segmentation of the underlying pixel labels, an image
segmentation problem (Li, Wu, and Zhang 2009; Shah and Chauhan 2015, for example). This
is a typical problem where Gaussian mixtures driven by hidden Markov random fields are well
suited.

Fitting a hidden MRF with no fixed effect

The built-in function for fitting hidden MRFs (fit_ghm()), like most algorithms used for
Gaussian mixtures driven by HMRFs, considers the distribution of the underlying field as a
hyper-parameter specified a priori. In this example, since we observe an underlying pattern
similar to one in Example 1, we will reuse the model estimated by penalized likelihood as the
MRF distribution.
We fit a HMRF model to the data using the fit_ghm function. The mixture parameters
estimates are shown below and the resulting segmentation is presented in Figure 10(b).

R> hmrf_nofixed <- fit_ghm(hfield1, mrfi = R1, theta = pl$theta)
R> summary(hmrf_nofixed)
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Figure 9: Image data for hfield1.

Gaussian mixture model driven by Hidden MRF fitted by EM-algorithm.
Image dimensions: 150 150
Predicted mixture component table:

0 1
10988 11512

Number of covariates (or basis functions): 0
Interaction structure considered: (1,0) (0,1) (4,4)

Mixture parameters:
Component mu sigma

0 5.29 1.39
1 9.19 1.46

Model fitted in 4 iterations.

The labels in the segmentation follow the expected pattern only in the middle part of the
image. Two large clusters without the pattern appear at the upper and lower parts of the
image, what indicates there might be some missing spatial information not included in the
model.

Adding a polynomial trend as fixed effect
A HMRF model without covariates has an intrinsic assumption that the mean values of pixel
intensities, given their labels, are homogeneous along the image region. This is not the case
for the data in Figure 9, as a vertical gradient effect can be observed.
In order to incorporate this spatial effect not captured in the model, we include spatial
covariates, in the form of polynomial functions of pixel positions (i1, i2) as a fixed effect.
These covariates can be specified in fixed_fn argument of the function and a (centered)
polynomial can be created with the polynomial_2d() function from mrf2d.

Chapter 2. Inference Tools for Markov Random Fields on Lattices: The R Package mrf2d 35



24 mrf2d: Markov Random Fields on Lattices in R

50

100

150

50 100 150

5

10

15

(a)

50

100

150

50 100 150

0

1

(b)

50

100

150

50 100 150

−2

0

2

(c)

50

100

150

50 100 150

0

1

(d)

Figure 10: Results from the hidden MRF fits: (a) the original image data, (b) segmentation
obtained without adding a polynomial effect, (c) polynomial fitted as a fixed effect, (d) image
segmentation when the polynomial effect is included.

In this example, we include all terms of a two-dimensional centered cubic polynomial, that is,

p(i1, i2) =
3∑

d1=0

3∑

d2=0
βi1,i2 (i1 − c1)d1 (i2 − c2)d2 , (15)

where the centering position (c1, c2) is the middle pixel position of the image.

R> hmrf_poly <- fit_ghm(hfield1, mrfi = R1, theta = pl$theta,
+ fixed_fn = polynomial_2d(c(3, 3), dim(hfield1)))
R> summary(hmrf_poly)

Gaussian mixture model driven by Hidden MRF fitted by EM-algorithm.
Image dimensions: 150 150
Predicted mixture component table:

0 1
11718 10782

Number of covariates (or basis functions): 15
Interaction structure considered: (1,0) (0,1) (4,4)
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Mixture parameters:
Component mu sigma

0 6.79 0.62
1 7.82 1.20

Model fitted in 4 iterations.

The code chunk below illustrates how the resulting fields available in the function output can
be visualized. The results are presented in Figure 10.

R> cplot(hfield1)
R> dplot(hmrf_nofixed$Z_pred, legend = TRUE)
R> cplot(hmrf_poly$fixed)
R> dplot(hmrf_poly$Z_pred, legend = TRUE)

This example highlights two features of mrf2d that are not available in other packages: The
possibility to specify a distribution for the underlying field that is more flexible than a simple
Potts model and the option to include covariates (in this example, the polynomial trend) that
are estimated simultaneously to the mixture parameters, preventing undesired effects in the
segmentation results.

4.3. Example 3: Neuroimaging segmentation with BOLD5000 data
Neuroimaging is one of the most frequent applications of HMRF models (Zhang et al. 2001;
Shah and Chauhan 2015). We illustrate a brain magnetic resonance image segmentation using
a sample of the BOLD5000 dataset (Chang, Pyles, Marcus, Gupta, Tarr, and Aminoff 2019)
available in the bold5000 object in the package.

R> data("bold5000", package = "mrf2d")
R> cplot(bold5000)

Our main goal in this problem is to segment the brain image into large regions corresponding
to different elements, like a background, bones, fat, grey matter, white matter, etc.
The most common approach for the segmentation using HMRFs is to consider a simple Potts
model (nearest-neighbor interaction structure R = {(1, 0), (0, 1)} and the "onepar" parameter
restriction family. The potential associated with different-valued pairs controls, as well as the
number of components are considered fixed a priori and will not be discussed in this paper.
For the purpose of illustration, we use 4 components (C = 3) and the value −1 for the
potentials of different-valued pairs.

R> Rnn <- mrfi(1)
R> theta_nn <- expand_array(-1, family = "onepar", C = 3, mrfi = Rnn)

We add a constraint that all variance parameters of the mixture components must be equal
by setting the equal_vars parameter to TRUE. This improves the results in this problem by
preventing some of the mixture components to be estimated with too high variance, what
may causes pixels with large and small values to be predicted in the same class with high
probability.
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Figure 11: Brain magnetic resonance image in bold5000 data.

We also fit an independent Gaussian mixture (by multiplying all potentials by zero) for a
comparison with the HMRF model. Segmentation results are presented in Figure 12 and the
parameter estimates are shown below.

R> set.seed(1)
R> fit_brain <- fit_ghm(bold5000, Rnn, theta_nn, equal_vars = TRUE)
R> fit_brain_ind <- fit_ghm(bold5000, Rnn, theta_nn*0, equal_vars = TRUE)

R> summary(fit_brain)

Gaussian mixture model driven by Hidden MRF fitted by EM-algorithm.
Image dimensions: 176 256
Predicted mixture component table:

0 1 2 3
22921 6829 7305 8001

Number of covariates (or basis functions): 0
Interaction structure considered: (1,0) (0,1)

Mixture parameters:
Component mu sigma

0 7.23 28.78
1 128.90 28.78
2 207.53 28.78
3 294.71 28.78

Model fitted in 11 iterations.

R> summary(fit_brain_ind)
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Figure 12: Image segmentation predicted by the hidden MRF fitted (left) and the independent
mixture model (right).

Gaussian mixture model driven by Hidden MRF fitted by EM-algorithm.
Image dimensions: 176 256
Predicted mixture component table:

0 1 2 3
23013 7021 7065 7957

Number of covariates (or basis functions): 0
Interaction structure considered: (1,0) (0,1)

Mixture parameters:
Component mu sigma

0 7.51 30.23
1 133.10 30.23
2 211.72 30.23
3 295.33 30.23

Model fitted in 4 iterations.

The resulting parameter estimates are not much different when comparing the independent
mixture model and the HMRF and both ran in approximately 85 seconds, but the segmen-
tation is cleaner when using the HMRF model, without sparse different-labeled pixels inside
regions.

R> dplot(fit_brain$Z_pred, legend = TRUE)
R> dplot(fit_brain_ind$Z_pred, legend = TRUE)

5. Discussion
mrf2d provides a consistent programming interface for statistical inference in a large class of
discrete Markov random field models defined on 2-dimensional lattices. It has an efficient and
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simple to use implementation of the main stack of computations used by most of inference
algorithms, as well as complete routines for some commonly used and more complex estima-
tion methods. The objects used for representing each model component have been carefully
designed and tuned over several iterations to achieve a balance between performance and
usability in the stable version.
The model featured in the package generalizes Potts model from other available packages
in different ways, such as allowing a flexible definition of interacting pixel positions and
interaction types, with the drawback that it cannot take advantage of algorithms that require
the setup of a Potts model to improve their efficiency.
The versatility from the non-parametric model behind mrf2d and the flexible representation
proposed in the package allows us to create special 2-dimensional structures that are equiva-
lent to 3-dimensional representations of data. This can make mrf2d also an interesting option
for applications with 3-dimensional data where the assumptions of the model also hold. A
vignette is available with a deeper explanation on how to reshape 3-dimensional problems for
the mrf2d framework and it can be viewed by using the vignette() function.

R> vignette("three-dimensions-on-mrf2d", package = "mrf2d")

We currently have over 160 unit tests supported by the testthat package (Wickham 2011)
and more than 90% of the code covered in the tests. These tests were designed to verify
mathematical correctness of functions, the behavior of functions with unexpected input and
the consistency of error messages. The package is in constant development and new tests are
added whenever new functionalities are implemented to ensure its reliability over time.
For these reasons, mrf2d is an important tool for making statistical inference in images using
Markov random fields more accessible, allowing researchers to perform data analysis and
implement new algorithms in R with a simple and consistent framework.
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A. Customizing visualizations with ggplot2

A.1. Random field visualization
The two plotting functions dplot() and cplot() return an object of the ‘ggplot’ class, what
allows users to produce customized visualizations by changing scales, legend characteristics,
titles, themes and much more by using the grammar of graphics from the ggplot2 package
(Wickham 2016).
Random fields (represented by matrix objects) are transformed into a data.frame structure
with columns x, y and value. x and y are the indices of the matrix object while value maps
the pixel-value in that position (Z[x,y]).
The plots are constructed using a tile plane with rectangles (geom_tile() from ggplot2) with
the value column map to the fill aesthetics. In dplot(), which is used for finite-valued
fields, value is treated as a factor, while in cplot() it is a continuous numeric. This is the
only difference between the functions and it should be kept in mind when defining custom
color scales.
Figure 13 created with the code chunk below shows examples of customized versions of a
random field visualization built from the same base dplot() result. Modifications include
adding a title, removing all scale-related information (keeping only the actual image), using
a custom color-scale and changing the legend position, respectively.

R> library("ggplot2")
R> base_plot <- dplot(field1, legend = TRUE)
R> base_plot + ggtitle("This is a custom title")
R> base_plot + theme_void() + theme(legend.position = "none")
R> base_plot + scale_fill_manual(values = c("red", "blue"))
R> base_plot + theme(legend.position = "bottom")

A.2. Interaction structure visualization
Similarly to the functions used to visualize random fields, a plot() method is available for
mrfi objects. A data.frame with columns named rx and ry is created internally with the
coordinates of each interacting relative position. These columns are mapped to the x and
y axis, respectively and a geom_tile is used to produce the plot. The reverse positions
are included automatically with a light-gray color, but this can be prevented by setting
include_opposite = FALSE in the plot call. It also returns a ggplot object that can be
customized. The code chunk next presents examples of how plots can be customized by
adding custom colors, text labels to the interacting positions and a custom title.

R> mrfi_plot <- plot(mrfi(3) + c(5,1))

R> mrfi_plot + geom_tile(fill = "orange", color = "blue")
R> mrfi_plot + geom_text(aes(label = paste0("(", rx, ",", ry, ")")))
R> mrfi_plot + ggtitle("Add a custom title") +
+ theme(plot.title = element_text(hjust = 0.5, size = 24))
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Figure 13: Four examples of field visualizations achieved by adding ggplot2 layers to a base
plot produced in mrf2d.
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Figure 14: Examples of customized visualizations of mrfi objects.

B. Comparing methods between packages for a Potts model
One of the most important particular cases for the model presented in Section 2.1.1 is the
Potts model, which is used in the theory supporting many available packages. In particular,
the potts package (Geyer and Johnson 2020) provides functionalities similar to some of the
ones implemented in mrf2d, mainly random sampling and computing the composite likelihood
(comparable to the pseudo-likelihood function). The main difference between the packages
is that mrf2d uses a Gibbs sampler scheme, with sequential updates of individual pixel while
potts uses the Swendsen-Wang algorithm (Wang and Swendsen 1990), that updates blocks of
pixels at each iteration.

Chapter 2. Inference Tools for Markov Random Fields on Lattices: The R Package mrf2d 46



Journal of Statistical Software 35

mrf2d potts

0 20 40 60 800 20 40 60 80

400

500

600

700

Number of cycles/iterations

S
uf

fic
ie

nt
 s

ta
tis

tic
s

Figure 15: Sufficient statistics for 100 simulated realizations of the Potts Model with varying
number of iterations using both mrf2d and potts packages.

We conducted a simulation study in order to compare mrf2d and the potts package version 0.5-
9 with respect to the Potts model simulation algorithms. Our goal was not to compare
implementations as the algorithms are different, but to check whether the simulated fields are
comparable between packages as a form of validation and understanding the behavior of our
simulation method with respect to the number of Gibbs sampler cycles.
Considering the parametrization of the Potts model in Equation 4, 100 realizations of a three-
color (C = 2) Potts model with parameter ϕ = −1 (corresponds +1 in the parametrization
used in the potts package) were simulated considering number of iterations equal to 5, 15,
25, 35, 45, 55, 65 and 75 in each package. We use the term iteration referring to the cycles
parameter in mrf2d and nspace in potts. For each simulated field, we computed the sufficient
statistics T (z) = ∑

||i−j||=1 1(zi ̸=zj). The results are presented in Figure 15 and the code for
the simulations is available in the replication script for this article.
We can consider the algorithms achieved equilibrium when executing more iterations do not
change the distribution of the samples, which we summarize by the distribution of their
sufficient statistics. In this case, the Gibbs sampler from mrf2d seems to achieve equilibrium
within 35 to 45 cycles while roughly a value of 25 for the nspace parameter of potts seems to
be enough to achieve equilibrium in the Swendsen-Wang algorithm. Finally, we verify that the
distribution of the sufficient statistics after reaching an equilibrium state is approximately the
same in both packages and we conclude that even though potts uses the more specialized and
efficient Swendsen-Wang algorithm, mrf2d with a Gibbs sampler provides a valid alternative
simulation tool for the model that can also be extended, even within the scope of the Potts
model, to cases such as positive ϕ, not covered by the Swendsen-Wang algorithm.
We also compare estimation algorithms in both packages for the maximum pseudo-likelihood
method, which is a particular case of composite likelihood, thus available in potts. We simu-
lated 100 realizations of a 3 color Potts model in a 64 × 64 lattice again with the parameter
ϕ = −1. For each realization, we computed maximum pseudo-likelihood estimates using
mrf2d and potts to compare the results. Results are presented in Figure 16. In our compar-
ison, estimates obtained with potts were consistently greater (smaller absolute value) than
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Figure 16: Estimated parameter via pseudo-likelihood optmization for 100 simulated realiza-
tions of the Potts model using the mrf2d and potts packages. The solid line represents the
y = x equation and dashed lines mark the parameter value used in the simulations.

the ones obtained via mrf2d. The average estimate for mrf2d was −1.0027996 while for potts
the average was −0.9930211, with sample deviations equal to 0.0213258 and 0.0216528, re-
spectively. We conclude that maximum pseudo-likelihood estimation methods are roughly
equivalent in both packages.
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3 Sparse Interaction Neighborhood Selection
for Markov Random Fields via Reversible
Jump and Pseudoposteriors

3.1 Introduction
Markov Random Fields on two-dimensional lattices are popular probabilistic

models for describing features of digital images in a wide range of applications. Classical
problems like image segmentation rely on these models to describe unobserved variables
used for pixel classification (Held et al., 1997; Zhang et al., 2001), while more general
inference-oriented models describe pixel values directly as a Markov Random Field, for
example, in texture modeling problems (Hassner and Sklansky, 1981; Cross and Jain,
1983).

One of the main inferential challenges in Markov Random Fields is the fact that
these models have their dependence structure implicitly described by a graph which, in
most cases, contains cycles that prevents expressing the likelihood function as a product of
simpler conditional probabilities as in classical Markov Chain models. The impossibility of
decomposing the joint probability of a high-dimensional random vector into simpler pieces
makes a high-dimensional integral (or sum) required in order to compute the normalizing
constant of those probability measures. In general, the normalizing constant directly
depends on the parameters of the distribution, thus being an important part of likelihood-
based analyses. Whenever this high-dimensional integral cannot be computed in reasonable
time, often due to the exponential complexity of a non-independent high-dimensional
space, the likelihood function becomes intractable, rendering most of the usual inference
and model selection techniques unusable.

Inference under intractable likelihoods is a key topic for analyzing high-
dimension data with local dependence. In particular, in a Bayesian context, Monte Carlo
Markov Chain (MCMC) methods that generate samples from the posterior distributions
under intractability have been developed using different strategies, such as including
additional random elements with particular distributions that lead to convenient analytical
properties that cancels out the intractable constant (Murray et al., 2012) or generating
samples from model configurations that help producing approximations for the intractable
likelihood function at each step of the MCMC algorithm (Atchadé et al., 2013) or prior to
the Markov Chain iterations (Boland et al., 2018).

Another frequently used approach is to directly substitute the Likelihood func-
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tion term that appears in the posterior distribution for the Pseudolikelihood function,
introduced in Besag (1975), resulting in an analysis based not on the posterior distribution,
but on a function that is referred as the Pseudoposterior distribution. While the Pseudolike-
lihood function may differ from the actual Likelihood function in important characteristics
such as its mode, inference methods based on Pseudolikelihoods have theoretical results
available and demonstrated practical usefulness, including in Bayesian contexts, often with
adjustments such as in Bouranis et al. (2017). In the context of determining the basic
neighborhood for MRF pseudolikelihoods have been used by several authors. Csiszár and
Talata (2006) proved that a modification of the Bayesian Information Criteria replacing
the likelihood by the pseudolikelihood provides strongly consistent estimators of the basic
neighborhood from a single realization of the process observed at increasing regions. Under
the Bayesian paradigm, marginal pseudoposterior likelihood has been used to find the
dependence structure in Markov networks, see Pensar et al. (2017) and references therein.

Model selection is another highly important topic that has most of its common
methodologies unusable in Markov Random Field models due to the intractability of
likelihoods, and using an approximation of the likelihood function removes most of the
probabilistic properties which model selection and hypothesis testing in general rely on.
One advantage of studying complex models under a Bayesian framework is that the space of
unobserved random quantities may be extended to include not only a vector of real-valued
parameters, but also more general objects that can represent models, such as subsets
of an arbitrary parameter space, and obtaining distributions from these general objects
using MCMC methods tends to be more feasible than constructing efficient optimizations
algorithm in such arbitrary spaces. The Reversible-Jump Monte Carlo Markov Chain
(RJMCMC) methods, proposed in Green (1995), provide a framework for constructing a
Markov Chain with an arbitrary invariant distribution on general spaces, including varying-
dimensional parameter spaces that are highly useful for variable and model selection under
a Bayesian philosophy, but these methods require a careful construction of a proposal
kernel in order to be efficient.

Pseudolikelihood-based methods have been used for model selection purposes
in Ji and Seymour (1996) and in recent works considering the Reversible Jump as a
strategy for model selection with intractable likelihoods in a Bayesian context including
Arnesen and Tjelmeland (2017), which aims to select the dependence structure of an Ising
model among a small set of possible candidates with low-dimensional parameter spaces,
and Bouranis et al. (2018) that proposes a RJMCMC model selection procedure for the
exponential random graph model.

In this work, we propose a Pseudoposterior-based procedure for selecting the
interaction structure, in a large set of candidate subsets of a maximal structure, on a
general class of Markov Random Field models with pairwise interactions based on a set
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of relative positions as introduced in section 3.2, using RJMCMC with a kernel specially
constructed for this problem defined in section 3.3. In section 3.4 we use a simulation
study to evaluate the proposed method under different scenarios and apply the algorithm
in a texture synthesis problem with a real dataset in section 3.5.

3.2 Markov Random Fields with Spatially Homogeneous Pairwise
Interactions

3.2.1 Model Description and Definitions

In this manuscript we consider the Markov Random Field (MRF) model on
two-dimensional lattices with finite support and non-parametric pairwise interactions as
described in Freguglia et al. (2020). The probability function for this model is completely
defined by two main elements: a set of relative positions, that described the interaction
structure of the process, and a vector of potentials describing the weights of interactions
for each of these relative positions.

We denote by S a set of sites (also referred as pixels) in a finite n1 by n2

two-dimensional lattice

S “ ti “ pi1, i2q : 1 ď i1 ď n1, 1 ď i2 ď n2u,

and Z “ pZiqiPS a random field indexed by S, where each Zi is a random variable assuming
values in a finite alphabet denoted Z. Without loss of generality, we consider that that
Z “ t0, 1, . . . , Cu.

We define a Relative Position Set (RPS), denoted R, as a finite set of integer
vectors r P Z2 without pairs of vectors with opposing directions, i.e.,

r P R ùñ ´r R R,

and, given a fixed RPS R, we define a vector of potentials denoted θ, as a vector of real
numbers indexed by Z ˆ Z ˆR,

θ “ pθa,b,rqa,bPZ,rPR.

Given a RPS R and an associated vector θ, the Markov Random Field with
homogeneous pairwise interaction considered in this work is characterized by the probability
measure

fpz|R,θq “ 1
ζpθq

exp
˜

ÿ

iPS

ÿ

rPR

C
ÿ

a“0

C
ÿ

b“0
θa,b,r1pzi“aq1pzi`r“bq

¸

, (3.1)

where ζpθq “
ř

z1PZ |S|
exp

ˆ

ř

iPS

ř

rPR

C
ř

a“0

C
ř

b“0
θa,b,r1pz1i“aq1pz1i`r“bq

˙

is a normalizing constant, with

the convention that the term 1pz1i“aq is treated as 0 if i1 R S for every a P Z. This ensures
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that the sum terms are consistently defined across every pair of positions in S that
are within a relative position in R. Figure 1 presents an illustration of how the terms
ř

rPR θzi,zi`r,r are computed for some positions i of an example field z.

R = i
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(1, 0) (3, 0)

0 0

2 1

1 0

1 0

2020

i1

i2

1 2 3 4

1

2

3

0 0
2 1

1 0
1 0

2020

z =

i = (2, 2)

∑
r∈R θzi,zi+r,r
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0 0
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1 0
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2020
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2020
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Figure 1 – An example field z with dimensions n1 “ 4, n2 “ 3 and the computed sums
ř

rPR θzi,zi`r,r for some positions i considering a RPS R “ tp1, 0q, p0, 1q, p3, 0qu.

In (3.1), adding a constant value to the potentials θa,b,r associated with every
pair a, b P Z and a fixed relative position r, causes the value of fpz,R,θq to be unchanged,
as the resulting scale change is also reflected in the normalizing constant ζpθq. In other
words, two different vector of potentials θ may have the same likelihood, therefore, leading
to an non-identifiability problem. In order to obtain identifiability, additional constraints
are required and, following Freguglia et al. (2020), we adopt the zero-valued reference pair
(pa, bq “ p0, 0q) constraint

θ0,0,r “ 0 for all r P R.

Note that, while we still use the term θ0,0,r in some equations, for simplicity of notation, we
will not consider these indexes in the vector θ. Additionally, the vector θ can be expressed
in terms of subvectors θ “ pθrqrPR, where each subvector θr “ pθa,b,rqpa,bqPZ2,pa,bq‰p0,0q

corresponds to non-null potentials associated with a single relative position r and we
denote by d the dimension of θr, which is given by d “ p|Z|q2 ´ 1.

3.2.2 Conditional probabilities and Pseudolikelihood

While the MRF model introduced is well-defined, inference for such model gets
problematic on non-trivial cases due to the intractability of the normalizing constant,
ζpθq, as it requires computing a sum of an exponential number of terms, p|Z|qn1n2 , which
quickly becomes infeasible. For example, in practice, even for n1 “ n2 “ 100, which is not
even considered large for common applications, computing the normalizing constant is
impossible.
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One of the most important features of MRF models is local dependence that
makes probability functions decomposable into a product of functions that depend on z
only through subsets of it, like pairs pzi, zi`rq, in the case of (3.1). This decomposition
allows expressing the conditional probability of specific zi given every other element
z´i “ tzi1 : i1 P S, i1 ‰ iu as

fpzi|z´i,R,θq “ fpzi|zNi ,R,θq “
exp

ˆ

ř

rPR
θzi,zi`r,r ` θzi´r,zi,r

˙

ř

aPZ
exp

ˆ

ř

rPR
θa,zi`r,r ` θzi´r,a,r

˙ , (3.2)

where Ni Ă S denotes the set of neighbors of i based on the RPS R, i.e., Ni “ ti1 : i1 P
S and i1 “ i˘ r, r P Ru.

The computationally simple expressions for conditional probabilities on (3.2)
allows the use of alternative functions based on conditional probabilities instead of the
joint probability. For problems with high-dimensional dependent data, when conditional
probabilities are available and simple, a function widely used as a proxy for the likelihood
function is the Pseudolikelihood function from Besag (1975), defined as the product of
conditional probabilities evaluated at the observed values, zi,

f̃pz|R,θq “
ź

iPS
fpzi|zNi ,R,θq. (3.3)

Note that while the normalizing constant ζpθq from (3.1) requires a sum over
p|Z|q|S| random field configurations, (3.3) involves |S| normalizing constants that are
sums over |Z| terms. Thus, the computational cost for evaluating the Pseudolikelihood is
O p|Z| ˆ |S|q, while the exact likelihood function has a cost of order O

`

|Z||S|
˘

.

3.3 A Bayesian Framework for Sparse Interaction Structure Selec-
tion

In a Bayesian context, unobservable quantities, for example the parameters
of a model, are considered unobserved random variables with specific prior distributions
defined beforehand. Many Bayesian model selection methodologies extend this concept
by assuming that not only a set of real-valued parameters (the vector of free potentials
θ within the scope of this work) is a vector of random variables, but also the model
itself (interpreted as the RPS R) is an unobserved random object with its given prior
distribution.

Considering a collection of proper RPSs denoted M, we can define a Bayesian
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system hierarchically by

R „ qpRq, R P M,

θ|R „ φpθ|Rq, θ P Rd|R|,

z|R,θ „ fpz|R,θq, z P Z |S|,

where qpRq is the prior distribution of the RPS, φpθ|Rq is the prior distribution of the
parameter vector θ given a particular RPS R and fpz|R,θq is the probability function of
a MRF as in (3.1).

Given that the support of R represents the sets of interacting positions, a
natural choice for the collection of candidate models M is the power set of a maximal
RPS, denoted Rmax,

M “ tR1 : R1
Ă Rmaxu,

which contains 2|Rmax| possible neighborhoods. For simplicity of notation, we shall use
θ to denote a vector of varying dimension, which indexing is always associated with an
interaction structure R. The dimension, d|R|, and indexing of θ “ pθrqrPR are always
implicitly specified as the vector is consistently matched with an interaction structure R
in every expression. Note that, within this scope, we are referring as a model to the RPS
that defines the interaction structure of a MRF. This problem can also be interpreted
as a variable selection problem as any vector of interaction coefficients associated with a
RPS R, with restrictions that θa,b,r “ 0 for all a, b for specific r, can also be expressed (in
terms of identical likelihood values) to a model excluding r from R.

In a model selection context, our main interest is to find the marginal posterior
distribution of a model πpR|zq, which can be obtained by integrating the (complete)
posterior distribution,

πpR,θ|zq “ qpRqφpθ|Rqfpz|R,θqq
ř

R1PM qpR1q
ş

Rd|R1| φpθ
1
|R1qfpz|R1,θ1qdθ1

, (3.4)

with respect to θ.

Two main computational challenges arise from (3.4) making most direct analyses
prohibitively complex: (I) fpz|R,θqq cannot be evaluated directly due to the intractable
normalizing constant and (II) the denominator involves 2|M| integrations, possibly including
many high-dimensional functions that have intractable normalizing constants. Because of
these two sources of intractability, this type of posterior distribution is often referred in
the literature as a doubly-intractable distribution (Murray et al., 2012; Caimo and Mira,
2015).

Monte Carlo Markov Chain methods are used to generate an ergodic Markov
Chain which invariant distribution is equal to a specific target distribution which, in
most cases, is a posterior distribution with intractable normalizing constant like (3.4).



Chapter 3. Sparse Interaction Neighborhood Selection for Markov Random Fields via Reversible Jump
and Pseudoposteriors 55

Consider an ergodic Markov chain in the space that is a product of M by the space
of real vectors with varying dimension directly associated with the element of M, i.e.,
pRp1q,θp1qq, pRp2q,θp2qq, . . . , such that θptq P Rd|Rptq|, and invariant measure πp¨, ¨|zq. Then,
due to the ergodic theorem, for any bounded function g of the form

g : Mˆ

|Rmax|
ď

k“0
Rdk

Ñ R,

we have

n
ÿ

t“1
gpRptq,θptqq Ñ Eπ pgpR,θq|zq , a.s. (3.5)

where Eπ pgpR,θq|zq is the conditional expected value of the random variable gpR,θq given
the observed z, under the (target) distribution πpR,θ|zq. Some particular choices of g
lead to interpretable quantities that are useful for evaluating the plausibility of interaction
neighborhoods R based on their posterior distribution, such as gpR,θq “ 1pR “ R˚q,
which results in (3.5) being the posterior probability of a particular neighborhood R˚

or gpR,θq “ 1pr P Rq, which corresponds to the marginal posterior probability that a
particular relative position r belongs to the RPS.

Given the estimated marginal posterior probabilities for each position in Rmax,
obtained from a Metropolis-Hastings sample of size T , and a threshold value cth, a sparse
estimator of the RPS, denoted R̂sppcthq, can be obtained by selecting the set of all positions
with (estimated) posterior probability exceeding cth,

R̂sppcthq “ tr P Rmax : 1
T

T
ÿ

t“1
1
`

r P Rptq
˘

ą cthu. (3.6)

3.3.1 Pseudoposterior-based inference

In order to overcome the computational infeasibility due to the intractable
normalizing constant of the likelihood function f defined in (3.1), many methods for
inference on MRFs have been proposed. One of the commonly used approaches is to
replace the likelihood function, f , for the pseudolikelihood, f̃ , defined in (3.3), which can
be evaluated directly.

When applied to the Bayesian system defined in the previous section, this
replacement of the likelihood function leads to an alternative function referred as Pseudo-
posterior distribution, that is proportional to the product of prior distributions and the
pseudolikelihood, and it is formally defined as (cf. with (3.4))

π̃pR,θ|zq “ qpRqφpθ|Rqf̃pz|R,θqq
ř

R1PM qpR1q
ş

Rd|R1| φpθ
1
|R1qf̃pz|R1,θ1qdθ1

. (3.7)
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It is valuable to note that, while the pseudolikelihood is a plausible proxy for
the likelihood function in terms of optimization-related mathematical properties, these
functions may have different overall shapes depending on how much dependence exists on
the dataset considered, and composing functions using the pseudolikelihood instead of the
likelihood alters how these functions are interpreted. As a consequence, Bayesian inference
based on pseudoposterior produces useful quantities, but the information obtained cannot
be interpreted in the conventional way. For example, integrating the pseudoposterior
distribution over θ does not result exactly in the posterior distribution of the RPSs R, but
a dfferent measure that conceivably be useful for evaluating the plausibility of the RPSs.

3.3.2 A Reversible Jump Proposal Kernel for Sparse Neighborhood Detection

Constructing a proposal kernel for the Metropolis-Hastings algorithm that can
efficiently move through both the model space M and the space of interaction coefficients
within a model is not a simple task. Green (1995) proposes the Reversible Jump Monte
Carlo Markov Chain (RJMCMC) as a framework for Bayesian analysis of models and
varying dimension parameters simultaneously. In general, the strategy consists of composing
a proposal kernel which is a mixture of simpler kernels, some proposing within-model
moves that only changes parameter values and others proposing reversible jumps between
models that have good analytical or computational properties.

In this work, we construct a customized proposal kernel for the model inspired
on properties and examples from Brooks et al. (2003) with additional features that are
characteristics of the neighborhood selection for MRFs. This proposal kernel consists of a
mixture of 4 types of moves described next, where each attempts to come up with states
that may have higher pseudoposterior density then the current state with some probability.

Within-model random walk move

The first and simplest move consists of adding a random walk term to the
current value of the parameter vector. Given a current pair pR,θq, we keep the same
neighborhood, R1 “ R, and propose a new vector of interaction coefficients θ1 P Zd|R|

by adding a Gaussian noise term with matching dimension, where each coordinate is
independent and identically distributed with mean 0 and variance σ2

w, where σ2
w is a tuning

parameter of the algorithm.

The transition kernel density for this move is given by

κwpθ
1,R1

|θ,Rq “ 1
p2πσ2

wq
d|R|{2 exp

˜

´
1

2σ2
w

ÿ

rPR
pθr ´ θ

1
rq
J
pθr ´ θ

1
rq

¸

1pR1
“ Rq,

what makes this proposal density not only reversible, but also symmetrical, i.e., κwpθ1,R1|θ,Rq “
κwpθ,R|θ1,R1q. Since proposed states keep the same interaction structure, we also have
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qpRq “ qpR1q, so the terms corresponding to the neighborhood interaction structure are
also cancelled in acceptance ratios.

While this move does not contribute to jumping between RPSs, its goal is to
add small incremental changes in the parameters value so that the chain gradually moves
towards higher pseudoposterior density regions within a model. Typically, small values of
σ2
w values are preferred so that the coefficients within a RPS are slowly drifting towards

the maximum pseudoposterior vector for that RPS.

Birth and Death

We propose a jump move from a state pR,θq to a state pR1,θ1q, R1 ‰ R, by
either including a position from Rmax that is not already in R, or by removing one of
the positions in R. We refer to these moves as Birth and Death of a relative position,
respectively.

We define the RPS comparison operator r
ă as

R r
ă R1

ðñ R Ă R1, r R R and RY tru “ R1,

which means that R1 can be obtained by adding the position r to R. Given a current RPS
R, we randomly select a position r˚ from Rmax with uniform probabilities 1

|Rmax|
. Then

either a birth or death move is proposed depending on the selected r˚.

• If r˚ P R, the proposed RPS R1 is such that R1
r˚
ă R, i.e., r˚ is removed from R. For

the associated interaction coefficients θ1 to be proposed with R1, all the values are
kept the same θ1r “ θr for r P R1.

• If r˚ R R, R1 is proposed by including r˚, i.e., R r˚
ă R1. For the proposed parameter

θ1, we keep the values of the previous θ1r “ θr for the previously included positions
r P R and sample a new vector of i.i.d. Gaussian variables with mean 0 and variance
σ2

bd to assign to θ1r˚ .

Note that, by this definition, transitions between states with two different RPSs R and
R1 are allowed if, and only if, |ROR1| “ 1, where O denotes the symmetrical difference
operator for two sets. Therefore, the proposal kernel density for a birth/death jump move
is given by

κbdpθ
1,R1

|θ,Rq “

$

’

’

’

’

’

&

’

’

’

’

’

%

1
|Rmax|

exp
ˆ

´ 1
2σ2

bd
θ1Jr˚θ

1
r˚

˙

p2πσ2
bdq

d{2

ś

rPR 1pθ
1
r “ θrq , if R r˚

ă R1,

1
|Rmax|

ś

rPR1 1pθ
1
r “ θrq , if R1

r˚
ă R,

0 , if |ROR1| ‰ 1.
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Figure 2 – Illustration of a Birth/Death Jump proposal when sampling r˚ R R (top) and
r˚ P R (bottom).

Figure 2 illustrates how new states pR1,θ1q are proposed from a current pR,θq
when a randomly selected position r˚ is included or not included in R. It is straightforward
to conclude from the example that this type of jump can be reversed by selecting the
same position r˚ and, the case of adding a new position, sampling the appropriate θ1r˚ ,
therefore, κbdpθ

1,R1|θ,Rq ą 0 if, and only if, κbdpθ,R|θ1,R1q ą 0.

Position swap move

As second type of move constructed for proposing jumps between states with
different RPS is to swap one of positions in the current RPS, rin P R, for another one
rout P RmaxzR, while keeping all of the interaction coefficients the same, including the
subvector associated with the swapped position, θ1rout “ θrin . Figure 3 illustrates an
example of Position swap move proposal.

R R
′

θ
′

rout
= θrin

(0, 1) (0, 1)

(1, 0)(1, 0)

rout rin rout

θ =





θ(1,0)

θ(0,1)

θrin



 θ
′
=





θ(1,0)

θ(0,1)

θ
′

rout





Figure 3 – Illustration of a Position swap move proposal.

The positions rin and rout, for the swap move, are chosen independently and
uniformly distributed on R and RmaxzR, respectively. Therefore, for any states pθ,Rq and
pθ1,R1q such that |R| “ |R1| and |ROR1| “ 2, differing only in the presence of relative
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positions rin P R and rout P R1, the proposal density for the swap move is given by

κswpθ
1,R1

|θ,Rq “ 1
|R||RmaxzR|

ź

rPRXR1
1pθr “ θ

1
rq1pθrin “ θ

1
routq. (3.8)

Note that (3.8) is a symmetrical kernel since the inverse operation is proposed by selecting
the same pair of positions rin and rout reversed, the RPS prior probability only depends
on the size of the current RPS, |R|, and we have the condition that |R| “ |R1| for every
pair of states with positive proposal probability.

The rationale behind this move is that, due to the spatial dependence intrinsic to
lattice-based indexing of the MRF model considered, the counts of pairwise configurations
in some relative positions may present high correlation, especially when those relative
positions are close (e.g. r and r` p1, 0q) or a multiple one from another (e.g. r and 2r).

Note that while the same jumps proposed by swap moves could be achieved
by a series of birth and death moves, one of those steps would be to exclude a relative
position, rin, with associated interaction coefficient, θrin , possibly far from the zero vector,
what would cause the acceptance of such move to be highly unlikely. Thus, swap moves is
a proposal step that avoids the algorithm getting stuck at a local (with respect to RPSs)
maxima, by adding direct connections to states with different RPSs that may have similar
pseudoposterior values, taking into account very specific characteristics of the model.

Split and Merge

While the Position Swap Move is proposed in order to allow a relative position
included in a state to be substituted by another one that is not included but has a similar
pseudoposterior value, another type of local maxima may exist when two or more relative
positions with highly correlated sufficient statistics are included in a model simultaneously.

The correlation between vectors of sufficient statistics may cause interaction
weights for some relative positions θr to become very unstable, due to the possibility of
compensating shifts in one direction for one of the vectors with equivalent shifts in the
opposite direction.

We define the Split and Merge moves as a pair of reversible operations that
not only allow jumps between different RPSs but also control the values of θr involved.
This transition has the goal of redistributing the interactions coefficients, allowing smaller
or larger RPSs with similar likelihood to be proposed with some probability. The Merge
move permits excessive relative positions to be removed from the current state and possibly
generates a proposed state that distributes the interaction weights θr of the position to be
removed, by adding it to the remaining positions, hopefully keeping the pseudolikelihood
values on similar levels. The key premise on this pair of moves is that, for a pair of states
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ÿ
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Figure 4 – Illustration of Split (top) and Merge (bottom) moves.

Given a current state pR,θq, the process of proposing a state pR1,θ1q with a
Split move is composed by the steps of

1. Sample a new position r˚ to be included from RmaxzR with uniform probability.

2. Generate a new interaction coefficient vector θ1r˚ from a d-dimensional independent
Gaussian distribution with variances σ2

s , where the split variance, σ2
s , is a tuning

parameter of the algorithm.

3. Generate a vector of weights w “ pwrqrPR from a symmetric Dirichlet distribution
with all parameters equal to ν, where ν is another tuning parameter of the algorithm.

4. Propose R1 “ RYr˚ and θ1 such that θ1r˚ is the generated vector and θ1r “ θr´wrθ
1
r˚

for every other relative position r P R.

The proposal density for a Split move, κs, is given by

κspθ
1,R1

|θ,Rq “

ś

r˚PRmaxzR
1pR r˚

ă R1q

|RmaxzR|

exp
ˆ

´pθ1r˚
Jθ1r˚ q

2σ2
s

˙

p2πσ2
sq
d{2

Γ p|R|νq
ś

rPR
pΓpνqq

ź

rPR

»

—

—

–

ˆ

θ0,1,r ´ θ
1
0,1,r

θ10,1,r˚

˙ν´1

ˆ

1

ˆ

0 ă θ0,1,r´θ10,1,r
θ10,1,r˚

ă 1
˙

θ10,1,r˚

fi

ffi

ffi

fl

1

˜

ÿ

rPR
pθr ´ θ

1
rq “ θ

1
r˚

¸

ź

a,bPZ2

1

ˆ

θa,b,r ´ θ
1
a,b,r

θ1a,b,r˚
“
θ0,1,r ´ θ

1
0,1,r

θ10,1,r˚

˙

.
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The Merge proposal move is the reverse of the Split move and can be described
by the following sequence of steps

1. Sample a state r˚ from R, which interaction coefficient vector will be merged into
the others, with uniform probabilities.

2. Generate a vector of weights w “ pwrqrPpRzr˚q with Dirichlet distribution with all
parameters equal to ν.

3. Propose R1 “ Rzr˚ and θ1 such that θ1r “ θr ` wrθr˚ for each r P R1.

The proposal density for a Merge move is

κmpθ
1,R1

|θ,Rq “

ś

r˚PR
1pR1

r˚
ă Rq

|R|

Γ p|R1|νq
ś

rPR1
pΓpνqq

ź

rPR1

»

–

ˆ

θ10,1,r ´ θ0,1,r

θ0,1,r˚

˙ν´1

ˆ
1
´

0 ă θ10,1,r´θ0,1,r
θ0,1,r˚

ă 1
¯

θ0,1,r˚

fi

fl

1

˜

ÿ

rPR1
θ1r ´ θr “ θr˚

¸

ź

a,bPZ2

1

ˆ

θa,b,r ´ θ
1
a,b,r

θ1a,b,r˚
“
θ0,1,r ´ θ

1
0,1,r

θ10,1,r˚

˙

.

It is easy to see that an accepted Split move is reversed by a Merge move if the
sampled relative position r˚ and the generated vector of weights w is the same for both
moves. This fact also produces an analytical simplification in the ratio of proposal densities,
required for computing the acceptance ratio in the Metropolis-Hastings algorithm, for
these moves as

κmpθ,R|θ1,R1q

κspθ
1,R1|θ,Rq “

|RmaxzR|
|R1|

exp
ˆ

´pθ1r˚
Jθ1r˚ q

2σ2
s

˙

p2πσ2
sq
d{2 , (3.9)

for any pair of states pR,θq and pR1,θ1q such that κspθ
1,R1|θ,Rq ą 0. The ratio of

proposal densities for the reversed transitions can be achieved by applying the inverse of
(3.9).

Mixture proposal density

Each move described previously has a different goal in terms of how a region
(in terms of both RPS and interaction coefficients) of much higher posterior density could
be proposed with some probability improving the rate of convergence of the Metropolis-
Hastings algorithm to a region corresponding to a global maximum. In order to assemble
the five groups of moves into a single transition kernel, we define a proposal density κ that
is composed by a mixture of the of five described densities

κpθ1,R1
|θ,Rq “

ÿ

ΨPtw,bd,sw,m,su
pΨpRqκΨpθ

1,R1
|θ,Rq, (3.10)
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where pΨpRq corresponds to the probability of selecting a move Ψ when the current state
has the RPS component as R and

ř

Ψ pΨpRq “ 1. Having the mixture probabilities depend
on the current RPS is required to avoid undefined behaviors such as proposing a random
walk move κw when we have an empty RPS, R “ H.

Following Green (1995) and Brooks et al. (2003), we can describe the acceptance
of the Metropolis-Hastings (Reversible Jump) algorithm when using a mixture proposal
density by using the ratio of the sampled move Ψ at each step,

AΨpθ
1,R1

|θ,Rq “ qpR1q

qpRq
πpθ1|R1q

πpθ|Rq
f̃pθ1,R1q

f̃pθ,Rq
pΨ1pRq
pΨpRq

κΨ1pθ,R|θ1,R1q

κΨpθ
1,R1|θ,Rq , (3.11)

where Ψ1 is the inverse move of the move Ψ, i.e., Ψ1 “ Ψ if Ψ “ w, bd or sw and
swapped for Ψ “ s or m. The complete procedure is described in Algorithm 1. In practice,
computations involving AΨp¨, ¨|¨, ¨q can be performed in logarithmic scale for both analytical
and numerical simplicity.

Algorithm 1 – Metropolis-Hastings algorithm with mixture proposal density.

Set the initial state pRp0q,θp0qq;
foreach t “ 0, ..., niter do

Sample a random move Ψ from tw, bd, sw, s, mu with probabilities
pwpRptqq, pbdpRptqq, pswpRptqq, pspRptqq, pmpRptqq;
Propose a new state pR1,θ1q by sampling from the proposal density
κΨp¨, ¨|Rptq,θptqq;
Compute the Acceptance Ratio ApR1,θ1|Rptq,θptqq from (3.11);
if U ă ApR1,θ1|Rptq,θptqq then
pRpt`1q,θpt`1q

q Ð pR1,θ1q
else
pRpt`1q,θpt`1q

q Ð pRptq,θptqq
end

end

3.3.3 Prior Distributions Specification

An important element of Bayesian Inference is the choice of prior distributions
for the unobserved quantities. While these distributions are meant to reflect previous
information that can be accounted in the model, the general forms of these distributions
are often restricted to a specific family, that have good analytical and computational
properties, while still preserving some flexibility to include prior information in the form
of hyper-parameters that may have useful interpretations depending on the family of prior
distributions.
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In this work, for the prior distribution of the RPS, qpRq, we consider a class of
probability functions proportional to a function that penalizes complex models

qpRq “ β´αd|R|

ηMpα, βq
, (3.12)

where α ą 0 and β ą 0 are hyper-parameters that can be interpreted as composing a
multiplicative penalty introduced for each additional relative position introduced and
ηMpα, βq “

ř

R1PM β´αd|R| is a normalizing constant so that q is a proper distribution on
M.

Note that the ratio for two RPSs, R and R1, qpRq{qpR1q “ βαdp|R
1|´|R|q, is an

important quantity for the acceptance ratios of the Reversible-Jump proposal described
in (3.11). There are key interpretations for this value such as, any two RPSs with the
same number of relative positions have the same values for the function q, simplifying the
expression for moves that preserve the complexity of the RPS. Also, qpRq{qpR1q “ β´αd

when |R| “ |R1| ` 1, which corresponds to all the other proposal moves that include or
exclude positions one at time.

For the prior distribution of θ given a RPS, φpθ|Rq, a standard choice is to
use independent normal distributions, with a given fixed prior variance, σ2

p, and mean
equal to the zero vector, i.e.,

φpθ|Rq “ 1
p2πσ2

pq
|R|d{2 exp

˜

´
1

2σ2
p

ÿ

rPR
θJr θr

¸

. (3.13)

One of the main advantages of this prior distribution is that ratios, φpθ|Rq{φpθ1|R1q, used
for computing acceptance ratios of the Reversible Jump algorithm described previously,
can be computed more efficiently due to advantages from good analytical properties. For
example, the ratio is always 1 for Position Swap moves and the density (or the inverse of) of
a d-dimensional Normal distribution for Birth and Death moves. Since those computations
are carried in logarithmic scale, most of the terms involving θ will be sums of quadratic
forms that are simple to evaluate.

3.4 Simulation Study
In order to validate the practical use of the proposed Reversible-Jump algorithm

and understand the effect of choices of the RPS prior distribution on the selected models,
we conducted a simulation study where three MRFs on a 150 ˆ 150 lattice, Zpiq, were
simulated using sparse interaction structures Rpiq, i “ 1, 2, 3, and alphabet Z “ t0, 1, 2u.
The sparse RPSs considered have increasing complexity and are specified as follows:

• R1 “ tp1, 0q, p0, 1qu,



Chapter 3. Sparse Interaction Neighborhood Selection for Markov Random Fields via Reversible Jump
and Pseudoposteriors 64

• R2 “ tp1, 0q, p0, 1q, p3, 3qu,

• R3 “ tp1, 0q, p0, 1q, p3, 3q, p3, 0qu,

and for the maximal RPS we considered Rmax containing all relative positions within
a maximum distance of 5 from the origin, excluding positions that are the opposite of
another one included to ensure that it is a proper RPS, as illustrated in Figure 5.

(1) (2) (3) Maximal RPS

Figure 5 – Interaction structures considered in simulations Ri, i “ 1, 2, 3 and maximal
interaction structure Rmax considered in the reversible jump algorithm.

With |Z| “ 3, a total of d “ 8 coefficients may vary for each relative position r,
therefore, Rmax, which has a total of 60 positions, is associated with 480 free interaction
coefficients when every relative position is included, whereas R3, the most complex of the
three RPSs that generated the data, represents a model with 32 free interaction coefficients.
This reduction from 480 to 32 (or less) free quantities in a model may be extremely useful
for inference by reducing complexity and computational cost, as long the interactions
within the selected set of relative positions can capture most of the dependence structure
of the data.

We considered the same interaction coefficients θa,b,r across simulations for
overlapping positions r with values described in Table 1 and the simulated observations are
presented in Figure 6. The coefficient values were selected to generate different patterns
between sampled images and it is not clear, especially for the second and third simulated
fields, which set of relative position best describes the patterns generated.

(1) (2) (3)

0

1

2

Figure 6 – Simulated 150ˆ 150 MRFs zpiq, i “ 1, 2, 3.



Chapter 3. Sparse Interaction Neighborhood Selection for Markov Random Fields via Reversible Jump
and Pseudoposteriors 65

Table 1 – θa,b,r used in simulations.

r a b “ 0 b “ 1 b “ 2 r a b “ 0 b “ 1 b “ 2

p1, 0q
0 ´1.0 ´1.0

p1, 0q
0 ´1.0 ´1.0

1 ´1.0 0.0 ´1.0 1 ´1.0 0.0 ´1.0
2 ´1.0 ´1.0 0.0 2 ´1.0 ´1.0 0.0

p3, 3q
0 0.3 0.3

p3, 0q
0 0.3 0.3

1 0.3 0.0 0.3 1 0.3 0.0 0.3
2 0.3 0.3 0.0 2 0.3 0.3 0.0

Prior Distributions and Algorithm tuning

For the prior distributions we considered qpRq as in (3.12) for the RPS prior,
considering β “ |S| and we ran the algorithm over a grid of 10 values for α (0, 0.1, 0.5, 1, 1.5,
2, 2.5, 3, 5, 10) for each simulation. This specific setup corresponds to a prior distribution
over the RPS that can interpreted as a penalty to larger-complexity models similar to the
penalty introduced when using the Bayesian Information Criterion (BIC). When looking
at the pseudoposterior in logarithmic scale, an additive term, ´αd|R| logp|S|q, appears
and d|R| is the number of free parameters of the model and |S| can be roughly interpreted
as the sample size. The value of α controls the penalty on the prior probability for more
complex models and it is directly related to how complex the higher pseudoposterior
models tend to be, with a larger value of α leading to more mass concentrated on simpler
models. Since the coefficients themselves are hardly interpretable, we chose to use vague
priors for varying-dimensional vector θ, considering independent Gaussian priors with
mean 0 variance and prior variance of σ2

p “ 10 for each of its components, regardless of
what is the RPS associated with it.

As for the parameters involved in the proposal kernel, we executed multiple
short pilot runs to evaluate whether high pseudoposterior regions (RPS and coefficients)
were reached within a sensible number of iterations and acceptance rates were at a
reasonable level. We concluded that σ2

s “ σ2
bd “ 0.15, σ2

w “ 0.005 and ν “ 0.1 resulted in
good balance between exploring the complex space that is composed by the RPS and the
varying-dimension coefficient vector while maintaining the acceptance rate at reasonable
levels. Low values for ν should be used in order to “concentrate” the weights sampled from
the Dirichlet distribution in a few values when proposing a Split move.

For the mixture probabilities probabilities, we chose pΨpRq always proportional
to 4 for Ψ “ w and 1 for the remaining types of moves that are valid for the current state
R, resulting in

pwpRq941pR ‰ Hq pbdpRq91
pswpRq91pR ‰ Rmax,R ‰ Hq (3.14)
pmpRq91pR ‰ Rmax,R ‰ Hq pspRq91pR ‰ Rmax,R ‰ Hq.
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It is important to note that not every type of move is well-defined and not constant
for every RPS. For example, a random walk move cannot propose anything meaningful
when R “ H, regardless of how it is defined, and a swap move cannot be completed with
R “ Rmax. This “prohibitions” introduced by setting some probabilities to zero ensure that
we never propose moves that result in the exacts same values of the current state, which
would add no meaningful information to the sampled chain while demanding computing
resources.

The initial state of the chain is another factor that should be controlled in
order reach equilibrium with less iterations. Since the proposal distribution was designed
mainly to propose new points that jump between the modes of the coefficient distributions
for different RPSs that follow certain properties, better mixing is achieved when the initial
state has coefficients near the mode of the pseudoposterior for the initial RPS. In order to
obtain a reasonable initial state, we chose to use a warm-up run of 5000 iterations starting
with Rmax and only proposing points using the random walk move, i.e., pwpRmaxq “ 1 in
the warm-up run. This results in a chain that slowly drifts towards the region of the mode
of coefficient values associated with Rmax. We used the last sampled state of this warm-up
run as the initial state for the actual Reversible Jump run.

Results

In all thirty simulations (3 models ˆ 10 α-values), the Markov chain sampled
in the warm-up stage quickly converged to a stable distribution suggesting that the
initial state used for the RJMCMC was close to a sample taken from the coefficients
pseudoposterior for the maximal RPS.

Figure 7 illustrates the sampled chain behavior in each simulation for a specific
value of α and each interaction coefficient. Coefficients associated with some relevant
positions are highlighted and colored so they can be tracked across iterations. The values
for iterations in the warm-up stage (indexed by t ă 0) cannot be clearly identified as the
coefficients for all 60 positions are included in this stage, but as the main Reversible Jump
run starts, the number of positions included quickly reduces to no more than 4 within a
few iterations. In this figure, lines may “appear” or “disappear” as relative positions are
included or excluded, respectively, from the sampled RPS, and lines may change colors
when swap moves are accepted.

For every chain sampled with more strict RPS priors (α ě 1), after moves
between different RPSs, the Reversible Jump algorithm reached a state where only moves
within the same RPS (random walk moves) were accepted, even when different relative
positions were being constantly proposed. This “final” RPS varies depending on the
simulation (as in the examples of Figure 7) and the value of α. As α increases, the chains
converge to smaller RPSs excluding some positions that were part of the RPS used for
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Figure 7 – Values of the RJMCMC sampled for the interaction coefficients θr,1,0 for multiple
relative positions r in each simulation with α “ 1.5. Coefficients associated
with some particular set of relative positions are highlighted and colored and
the remaining ones are represented with gray lines. Iterations of the warm-up
run are indexed -4999 to 0.

simulating the data. Under less penalizing priors (α ď 1), supersets of the RPS used in the
simulation were obtained in the chains, with the exceeding relative positions constantly
switching.

While visualizing sets of relative positions or the multiple coefficients with
varying dimensions involved is not possible, we can use the marginal proportions which
each relative position appears in the sampled chain as a quick way to understand which
positions are more relevant for that run. Figures 8, 9 and 10 present these proportions
for all the values of α used in simulations 1, 2 and 3, respectively. These proportions
were computed with a burn-in of 100000 iterations and sampling only multiples of 10 to
reduce serial correlation, so that we can conclude that a run mostly concentrated in a few
relative positions not only had those positions included in most of the iterations, but also
converged to that final RPS quickly removing unnecessary positions in the burn-in period.

Considering the results obtained, we conclude that for the simulated scenarios,
a prior distribution with α “ 1.5 or 2 converges rapdly and leads to consistent results
concentrating high pseudoposterior mass on the RPS that was used to generate the data.
In fact, in the proposed study, the algorithm was sucessfulin identifying the RPS that
generated the data when applying the sparse estimator from (3.6) for many levels of
trhesholding constants especially for α “ 1.5 and 2. It is an interesting fact that α “ 2
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Figure 8 – Marginal pseudoposterior probabilities estimated of the inclusion of each relative
position for Simulation 1, varying the prior distribution of the RPS, qpRq,
according to α.
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Figure 9 – Marginal pseudoposterior probabilities estimated of the inclusion of each relative
position for Simulation 3, varying the prior distribution of the RPS, qpRq,
according to α.

makes the prior distribution numerically equivalent to the penalty used by the Bayesian
Information Criterion (BIC) used for model (variable) selection.

3.5 Application to Synthesis of Texture Image
In order to evaluate the proposed model selection methodology in a real data

context, we apply the proposed algorithm to a discrete texture image obtained as a result
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Figure 10 – Marginal pseudoposterior probabilities estimated of the inclusion of each
relative position for Simulation 3, varying the prior distribution of the RPS,
qpRq, according to α.

of the textile images analysis in Freguglia et al. (2020). In the original work, a Gaussian
mixture with 5 components, driven by the Markov Random Field model described in
section 3.2, is used to describe grayscale continuous-valued images of dyed textiles and one
of the products of the analysis is a pixel-wise segmentation of which mixture component
was estimated as the most probable. The interaction coefficients of the hidden MRF were
originally estimated considering a complete region, with every position within a maximum
distance of 5, but we are interested in investigating whether similar interactions for the
mixtures components could be described by sparser interaction structures, producing
synthetic texture images that have the same patterns as the reference image. We will
consider the 200 by 200 subset of one of the estimated discrete images presented in
Figure 11, and denote it as z˚.
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Figure 11 – A 200 by 200 pixels texture image with 5 colors (C “ 4), denoted z˚.
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Considering as input the image data from Figure 11, our goal is to determine
whether the complete interaction structure is necessary to properly model the observed
random field or a sparser interaction structure could be used, without significant differences
in terms of statistical inference.

The search for sparse neighborhoods for modeling texture has been the subject
of several papers in the literature, among them, Cross and Jain (1983) and Gimel’farb
(1996). However, the selection methods used are mostly heuristic. In this work, we propose
a novel statistical methodology that allows to perform proper statistical inference.

To run the algorithm, we consider the maximal interaction structure of the
algorithm, Rmax, as the neighborhood used in the original paper, which includes positions
with maximum norm up to 5. Hyper-parameters of prior distributions and of the Reversible
Jump algorithm were selected with the same values of the simulation study from section 3.4
and we fix the RPS prior distribution hyper-parameter α as 0.25. While values of α in
this range lead to most of the pseudoposterior mass being concentrated on a superset
of the RPS used to simulated the datasets, there was still a significant reduction in the
number of positions included. In practice, our goal is to keep all the positions required
to probabilistically describe the texture pattern while controlling the number of free
coefficients by selecting a RPS that is sparse when compared to the complete region
originally used.

We ran 500,000 iterations of the proposed Reversible-Jump algorithm after
10,000 warm-up iterations where the random walk move was selected with probability
1, starting from the maximal RPS. In the same way as described for the simulation
study from section 3.4, we stated the RJMCMC in an initial state close to a sample
of the pseudoposterior for the maximal Rmax. The proportions each relative position in
Rmax appear in the sampled chain are presented in Figure 12. Given the pseudoposterior
distribution, we used the thresholding RPS estimator strategy from (3.6) with a value
of cth “ 0.5 to select one sparse interaction structure to be used in our result analysis,
with a reduction from 60 to 15 relative positions, which corresponds to a reduction of
45 ˆ 24 “ 1125 free coefficients in the model. Other results could be drawn from RPS
pseudoposterior distribution for model selection purposes, such as the set of highest
pseudoposterior RPSs or the pseudoposterior probability of a group of RPSs with specific
characteristics, depending on the interests of the analysis being made.

Evaluating the results

Differently from the analysis made for the simulation study presented in
section 3.4, we do not have the interaction structure that generated the data available
to compare to the RPS pseudoposterior distribution obtained. Goodness of fit evaluation
strategies in a Bayesian context are proposed in Gelman et al. (1996) and Bayarri and
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Figure 12 – Map with the proportions of times each relative position is included in the
RPS sampled within final (left) and the sparse interaction structure selected
with a 0.5 thresholding value R̂spp0.5q (right).

Berger (2000), where metrics can be derived by generating realizations of the model by
sampling from the posterior distribution and comparing key statistics from the reference
dataset z˚ and those realizations. These methods are not directly applicable in our context
because we only have the pseudoposterior distribution available, rather the true posterior
distribution (although the differences between these two distributions could be mitigated by
using methods as the pseudoposterior adjustment from Bouranis et al. (2017)). Moreover,
we cannot define a small number of key statistic to use for the tests, as MRF texture
images have a high-dimensional vector of pairwise counts as sufficient statistics.

As an alternative approach to evaluate a single sparse model that was obtained
analysing the pseudoposterior distribution, we ran maximum likelihood estimation via
stochastic approximation, a standard inference method used in the context of MRFs, and
compared results of such inference using the selected sparse interaction structure against
the same analyses in scenarios where such sparse RPS is not available. Applying the
maximum likelihood estimation via stochastic approximation, we obtain the estimated
coefficients, then we generate realizations of the MRF using the estimated coefficients and
compare useful statistics for describing the texture from the generated samples and the
target dataset z˚.

We considered 3 different reference RPSs for comparison:

1. Rnn “ tp1, 0q, p0, 1qu: A nearest-neighbor RPS that we will use as a benchmark in
comparisons.

2. Rsp: The sparse RPS obtained using the thresholding estimator for our specific
thresholding constant choice presented in Figure 12.

3. Rmax: The maximal set of relative positions, containing all relative positions within
maximum distance of 5, as used in the original paper.

and our goal is to evaluate whether completing an analysis using Rsp leads to results at
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least as accurate as obtained using Rmax, and at the same time understand how relevant
the differences were when compared to the estimates obtained when using a naive model
choice with Rnn.

We used the Stochastic Approximation algorithm (Robbins and Monro, 1951)
to obtain a Maximum Likelihood estimate of the coefficients for each of the three described
RPSs. The algorithm consists of iteratively updating the solution according to a step size
sequence γttě0 and an estimate of the gradient function, that depends on the sufficient
statistic of the model, T p¨q, computed on the reference dataset z˚ and on a realization,
zptq, of the random field simulated from the current coefficients (see Freguglia and Garcia
(2022) for more details on the Stochastic Approximation algorithm used). The algorithm
is described by the recursion

θpt`1q
“ θptq ` γptq

`

T pz˚q ´ T pzptqq
˘

, (3.15)

with γptq being a decreasing sequence. Note that the sufficient statistics T p¨q has the same
dimension as the vector of free coefficients θ and, therefore, its indexing and dimension
also depends on the associated RPS. We used the proper definitions of T p¨q for each of the
three RPSs used.

We ran 1500 steps of (3.15) with γptq “ 1500´t
1500 starting from the zero-valued

coefficient vector θa,b,r “ 0 for every a, b, r for each of the three RPSs to obtain maximum
likelihood estimates of coefficients in each case. Then, we generated 100 samples from
each of three models with the estimated coefficients, which we will denote z̃nn “

`

zpvqnn
˘

,
z̃sp “

`

zpvqsp
˘

and z̃max “
`

zpvqmax
˘

, v “ 1, . . . , 100, for Rnn, Rsp and Rmax respectively, (the
tilde symbol is used to stress the fact that it is a set of MRF realizations). Examples
of one of the simulated images for each of the three scenarios considered are presented
in Figure 13. Notice that the first image generated from the Nearest-Neighbor model
completely misses the features of the texture, whereas there is not much difference between
the one generated with the sparse model and the full one.

Finally, we define ρa,b,rpzq “
ř

iPS 1pzi “ a, zi`r “ bq as the count of occurrences
of the pair pa, bq within relative position r (this is part of the vector of sufficient statistics
of the model when r is included in the RPS). To summarize this information, we compute
the average counts for a set of realizations as

ρ̄a,b,rpz̃q “
100
ÿ

v“1

ρa,b,rpzpvqq
100 ,

and the metric

∆pz̃, z˚q “ log

¨

˝

d

ÿ

aPZ

ÿ

bPZ

ÿ

rPRmax

pρa,b,rpz˚q ´ ρ̄a,b,rpz̃qq2
˛

‚,

which represents the logarithm of the Euclidean distance between the vector containing all
the pairwise counts for relative positions in the maximal RPS and the average vector of
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Figure 13 – Simulated realizations of the MRF model obtained from the Maximum Like-
lihood estimate considering a Nearest-Neighborhood structure (left), Esti-
mated Sparse interaction structure (middle) and Maximal interaction structure
(right).

pairwise counts in the set of samples z̃ for the same relative positions. This is a measure
of similarity between the patterns generated from each model and the observed sample z˚.
The smaller the value of ∆pz̃, z˚q, the closest the pairwise counts of the reference field z˚

to their expected values are (approximated by the samples average) under a model with
that specific RPS and its associated maximum likelihood estimators for the coefficients.
Note that we have used the counts in every relative position of the maximal RPS, Rmax,
because we want to ensure not only the counts of relative positions included in the RPS
used for estimation are similar to z˚, but also for a larger common set of statistics across
the three scenarios.

Table 2 – ∆pz̃, z˚q values considering the three sets of samples generated from the model
estimated with different RPSs.

RPS Rnn Rsp Rmax
∆pz̃, z˚q 10.6092 8.1320 9.5734

As pointed before, looking at the generated samples displayed in Figure 13, the
image generated from Rnn have a completely different pattern than the original dataset
z˚ and both the examples generated Rsp and Rmax presented patterns very similar when
compared to z˚. This is confirmed comparing the values of the computed values ∆pz̃, z˚q
presented in Table 2. We see that, as expected, the model estimated using the benchmark
nearest-neighbor structure presented the highest distance between pairwise counts of z˚

and their expected values in the model, and the model estimated from Rsp had their
expected statistics closer to the observed in z˚ than the ones computed using Rmax.

Therefore, we conclude that estimating coefficients from a sparse interaction
structure, obtained by thresholding the marginal RPS pseudoposterior distribution obtained
from our proposed algorithm, has lead to improved maximum likelihood estimation, both
in terms of computational costs, since there was significantly less coefficients to compute,
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and in terms of how similar the expected value of wide set of statistics is from the observed
field used for estimation.

3.6 Conclusion
We propose a novel approach to model selection in Markov Random Field

models with pairwise interactions in a Bayesian context by using a Reversible Jump
Markov Chain algorithm with a proposal distribution that was developed especially aiming
for efficient jumping between sets of relative positions, quickly reaching the models with
highest posterior mass.

In order to overcome the intractability of the normalizing constant inherent
from MRF models, we have used pseudolikelihood and proceeded with the analyses based
on the pseudoposterior distribution as a proxy of the true posterior distribution that
cannot be evaluated directly. It must be clear that the algorithm proposed can be directly
adapted for different strategies that may be used to deal with the intractable constants and
approximate likelihood function, such as Adjusted Pseudolikelihoods (Bouranis et al., 2018)
and Monte-Carlo approximations (Atchadé et al., 2013), but not every approximation
method is well suited for the varying-dimension feature of the model selection framework.

The main contributions of this work are:

1. Proposing a Bayesian framework for both the interaction structure and the parameters
of the Markov Random Field model considered.

2. Constructing a Reversible Jump proposal kernel that is especially useful for models
within the proposed framework.

3. Exploring the effects of the prior distribution specification in some scenarios to
understand their properties while still attaining enough flexibility in the methods so
that any choice of prior distribution can be considered.

We have used artificially generated datasets and an application to real data in
the context of texture synthesis, to evaluate the strengths of our method and study how
the algorithm behaves under different configurations and concluded that our method leads
to promising results for selecting sparse interaction structures for MRFs.

As future work it should be possible to develop new methods for approximating
the likelihood function (and the posterior distribution as a consequence) that can produce
good approximations across the varying-dimension spaces, as an alternative to the pseu-
dolikelihood. Also, to develop a constant free procedure for model selection. That is, to
provide a solution for the problem of optimal choice of the penalty constant α.
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The reproducible R language code is available as part of the R package
mrf2dbayes, available in https://github.com/Freguglia/mrf2dbayes. It leverages
the data structures provided by the mrf2d package (Freguglia and Garcia, 2022) and
extends it by introducing additional Bayesian analysis elements such as the likelihood
approximation method (in this work, the pseudolikelihood) and Metropolis-Hastings al-
gorithms. The source code used to reproduce the results in this work is available upon
request.
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4 Detecting Renewal States in Chains of Vari-
able Length via Intrinsic Bayes Factors

This chapter corresponds to the pre-print research article Freguglia and Garcia
(2021) available in the arxiv.org repository.

4.1 Introduction
Markov Chains with variable length are useful stochastic models that provide

a powerful framework for describing transition probabilities for finite-valued sequences
due the possibility of capturing long-range interactions while keeping some parsimony
in the number of free parameters. These models were introduced in the seminal paper
of Rissanen (1983) for data compression and became known in the statistics literature
as Variable Length Markov Chain (VLMC) by Bühlmann and Wyner (1999), and as
Probabilistic Suffix Trees (PST) in the machine learning literature (Ron et al., 1996).
The idea is that, for each past, only a finite suffix of the past is enough to predict the
next symbol. Rissanen called context, the relevant ending string of the past. The set of
all contexts can be represented by the set of leaves of a rooted tree if we require that no
context is a proper suffix of another context. For a fixed set of contexts, estimation of
the transition probabilities can be easily achieved. The problems lies into estimating the
set of contexts from the available data. In his seminal 1983 paper, Rissanen introduced
the Context algorithm, which estimates the context tree by aggregating irrelevant states
in the history of the process using a sequential procedure. A nice introductory guide to
this type of models and particularly to the Context algorithm can be found in Galves and
Löcherbach (2008).

Many of the tree model methods related to data compression tasks involve
obtaining better predictions based on weighting over multiple models. A classical example
is the Context-Tree Weighting (CTW) algorithm (Willems et al., 1995), which computes
the marginal probability of a sequence by weighting over all context trees and all probability
vectors using computationally convenient weights. Using CTW, Csiszár and Talata (2006)
showed that context trees can be consistently estimated in linear time using the Bayesian
information criterion (BIC). These weighting strategies can be translated to a Bayesian
framework where unobserved parameters of a probabilistic system are treated as additional
random components with given prior distribution and inference is based on integrating
over the nuisance parameters, which is a form of weighting over these quantities based on
the prior distribution. Nonetheless, inference performed following the Bayesian paradigm

arxiv.org
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for VLMC models is a relatively recent topic of research. Some works that explicitly use
Bayesian statistics in combination with VLMC models are Dimitrakakis (2010) which
introduced an online prediction scheme by adding a prior, conditioned on context, on the
Markov order of the chain, and Kontoyiannis et al. (2020) which provided more general
tools such as posterior sampling through Metropolis-Hastings algorithm and Maximum a
Posteriori context tree estimation focusing on model selection, estimation, and sequential
prediction. A Bayesian approach for model selection in high-order Markov chains, allowing
conditional probabilities to be partitioned into more general structures than the tree-based
structures of VLMC models, is also proposed in Xiong et al. (2016).

As aforementioned, the effort was mostly concentrated in estimating the context
tree structure. On the other hand, hypothesis testing for VLMC is a difficult topic, first
tackled by Balding et al. (2009) and pursued further by Busch et al. (2009) using a
Kolmogorov-Smirnov-type goodness-of-fit test, to compare if two samples come from
the same distribution. Under the Bayesian paradigm, hypothesis testing is done though
Bayes Factor, but computing Bayes Factors may depend on integrations that require
enormous computational effort depending on the random objects and hypotheses involved.
Particularly for VLMC problems, Bayes Factors require summing over the set of all
possible context trees, which cardinality grows doubly exponentially with the maximum
depth considered, quickly becoming intractable. To avoid such intractable quantities, we
use the Monte Carlo approximations of the Intrinsic Bayes Factor (Berger and Pericchi,
1996), which is based on averaging over posterior distributions, that tend to be highly
concentrated within a small set of context trees for VLMC models, and have been used
recently in many different fields with the same purpose, such as Cabras et al. (2015),
Charitidou et al. (2018) and Villa and Walker (2021). Alternatives to Bayes Factors based
on using posterior distributions instead of the prior distribution in integrations have been
evolving over the past decades, the classical method using this strategy is the Posterior
Bayes Factor (Aitkin, 1991), with applications in a variety of models such as Aitkin (1993)
and Aitkin et al. (1996).

In this work, we focus on one characteristic of interest in a context tree, the
presence of a renewal state or a renewal context. Renewal states play an important role
in some computational methods frequently used in statistical analysis such as designing
Bootstrap schemes and defining proper cross-validation strategies based on blocks. There-
fore, having some methodology not only to detect renewal states, but also to quantify how
plausible these assumptions are, can improve the robustness of analysis at the cost of some
pre-processing computations. For example, Galves et al. (2012) proposed a constant free
algorithm (Smallest Maximizer Criterion) to find the tree that maximizes the BIC based
on a Bootstrap scheme that uses the renewal property of one of the states. To the best
of our knowledge, using Bayes Factors for evaluating hypotheses involving probabilistic
context trees is a topic that has not been explored.
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4.2 Variable-Length Markov Chains

4.2.1 Model Description

Let A be an alphabet of m symbols, and without loss of generality, consider
A “ t0, 1, . . . , pm´ 1qu for simplicity. For t2 ą t1, a string pzt1 , . . . , zt2q P At2´t1`1 will be
denoted by zt2t1 and its length by `pzt2t1q “ t2 ´ t1 ` 1. A sequence snn´l is a suffix of a string
zn1 if sj “ zj for all j “ n ´ l, . . . , n. If l ă n we say that snn´l is a proper suffix of the
string zn1 .

Definition 1. Let L ą 0 and τ Ă YLj“1Aj be a set of strings formed by symbols in A. We
say that τ satisfies the suffix property if, for every string s´1

´j`j1 “ ps´j`j1 , . . . , s´1q P Aj´j1,
s´1
´j`j1 P τ implies that s´1

´j R τ for j ą 1, j1 “ 1, . . . , j.

Definition 2. Let L ą 0 and τ Ă YLj“1Aj be a set of strings formed by symbols in A. We
say that τ is an irreducible tree if, no string belonging to τ can be replaced by a proper
suffix without violating the suffix property.

Definition 3. Let τ be an irreducible tree. We say that τ is full if, for each string s P τ ,
any concatenation of a symbol k P A and a suffix of s is the suffix of a string s1 P τ .

Examples

Suppose that we have a binary alphabet A “ t0, 1u, then:

• τ “ t0, 1, 11u does not satisfy the suffix property because it contains both the
strings 1 and 11.

• τ “ t0, 01u is not an irreducible tree, because the string 01 can be replace by its
suffix, 1, without violating the suffix property, as the set t0, 1u satisfies the suffix
property.

• τ “ t0, 011, 111u is irreducible, but it is not full because 1 is a suffix of a string
in τ (either 011 or 111), but 01 (the concatenation of 0 P A and 1) is not.

• τ1 “ t0, 100, 101, 110, 111u, τ2 “ t01, 00, 10, 11u and τ3 “ t0, 10, 110, 1110, 1111u are
full irreducible trees.

A full irreducible tree τ can be represented by the set of leaves of a rooted tree
with a finite set of labeled branches such that

(1) The root node has no label,

(2) each node has either 0 or m children (fullness) and
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(3) when a node has m children, each child has symbol of the alphabet A as a label.

The elements of τ will be called contexts and we will refer to full irreducible
trees as context trees henceforth. Figure 14 presents 3 examples of contexts trees. The
depth ` of a tree τ is given by the maximal length of a context belonging to τ , defined as

`pτq “ maxt`pzq; z P τu.

In this work we will assume that the depth of the tree is bounded by an integer L. In this
case, it is straightforward to conclude that, for any string zt2t1 with at least L` 1 symbols,
there exist a suffix zt2t2´l and a leaf of τ such that the symbols between the leaf (including)
and the root node are exactly zt2t2´l. Galves et al. (2012) referred to this property as the
properness of a context tree.
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Figure 14 – Examples of context trees.

For each context tree τ , we can associate a family of probability measures
indexed by elements of τ ,

p “ tpp¨|sq : A Ñ r0, 1s; s P τu.

The pair pτ,pq is called a probabilistic context tree.

Given a tree τ with the described properties and depth bounded by L, define a
suffix mapping function ητ : Y8j“L`1Aj Ñ τ such that ητ pzt2t1q “ zt2t2´l is the unique suffix
zt2t2´l P τ .

Definition 4. A sequence of random variables Z “ pZtqTt“1 with state space A is a Variable
Length Markov Chain (VLMC) compatible with the probabilistic tree pτ,pq if it satisfies

P
`

Zt “ k|Zt´1
1 “ zt´1

1
˘

“ ppk|ητ pzt´1
1 qq, (4.1)

for all L ă t ď T , zt´1
1 P At´1, where ητ pzt´1

1 q P τ is the suffix of zt´1
1 .
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4.2.2 Likelihood Function

In order to extend the scope of VLMC models introduced previously to data
involving multiple sequences, we define a VLMC dataset of size I, denoted as rZ, as a
set of independent VLMC sequences rZ “ pZpiqqi“1,...,I and rz “ pzpiqqi“1,...,I will denote its
observed realizations.

For each sequence Zpiq, with length Ti, we will consider its first L elements
as constant values, allowing us to write the joint probabilities as a product of transition
probabilities in (4.1), without requiring additional parameters for consistently defining the
probabilities of the first symbols in each sequence. Hence, the likelihood function is given
by

fprz|τ,pq “
ź

sPτ

m´1
ź

k“0
pppk|sqqnskprzq , (4.2)

where nskprzq “
řI
i“1

řTi
t“L`1 1

´

z
piq
t “ k, ητ pzt´1piq

1 q “ s
¯

counts the number of occurrences
of the symbol k after strings with suffix s across all sequences.

4.2.3 Renewal States

A symbol a P A is called a renewal state if

P
´

Zt1

t`1 “ zt1t`1|Zt´1
1 “ zt´1

1 , Zt “ a
¯

“ P
´

Zt1

t`1 “ zt
1

t`1|Zt “ a
¯

,

for all t ą L, t1 ą t ` 1, zt´1
1 P At´1, zt1t`1 P At1´t. That is, conditioning on Zt “ a, the

distribution of the chain after t, pZuquąt, is independent from the past pZuquăt.

This property of conditional independences in a Markov Chain can be directly
associated to the structure of the context tree of a VLMC model. For a VLMC model with
associated context tree τ , a state a P A is a renewal state if a does not appear in any inner
node of the context tree. That is, for any context s P τ , expressing s as the concatenation
of l symbols s “ sl . . . s2s1, si ‰ a for i “ 1, . . . , l ´ 1. In this case, we say that the tree τ
is a-renewing.

Two out of the three trees displayed in Figure 14 present renewal states. Tree
(I) has 0 as a renewal state, Tree (II) has no renewal states due to the presence of the
contexts 001 and 00111, Tree (III) has only 1 as a renewal state. If, in Tree (III), the
branch formed by contexts 002, 102, 202 and 302 was pruned and substituted by the
context 02 only, then 0 would also be a renewal state. Note that a VLMC may contain
multiple renewal states.

A remarkable consequence of a being a renewal state is that the random blocks
between two occurrences of a are independent and identically distributed. This feature
allows the use of block Bootstrap methods, enables a straightforward construction of
cross-validation schemes and any other technique that relies on exchangeability properties.
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4.3 Bayesian Renewal Hypothesis Evaluation
A VLMC model is fully specified by the probabilistic context tree pτ,pq. The

dimension of p depends on the branches of τ . Both these unobserved components pτ,pq
can be treated as random elements with given prior distribution to carry out inference
under the Bayesian paradigm.

From now on, we will use the following notation, for each s P τ ,

ps “ ppp0|sq, . . . , ppm´ 1|sqq P ∆m

where ∆m denotes the m-simplex,

∆m “

#

x P Rt0,1,...,m´1u :
m´1
ÿ

k“0
xk “ 1 and @j, xj ě 0

+

.

In this section we discuss the prior specification for the probabilistic context
tree pτ,pq, as well as the resultant posterior distribution and how to perform hypothesis
testing using partial and intrinsic Bayes factor.

4.3.1 A Bayesian Framework for VLMC models

We consider a general prior distribution for τ proportional to any arbitrary
non-zero function h : TL Ñ r0,8q and, given τ , for each s P τ , ps will have independent
Dirichlet priors.

The complete Bayesian system can be described by the hierarchical structure

τ „
hpτq

ζph, Lq
, τ P TL,

p|τ „
ź

sPτ

Γp
řm´1
k“0 αskq

śm´1
k“0 Γpαskq

m´1
ź

k“0
pppk|sqqαsk´1 , p P ∆|τ |

m , (4.3)

rZ|τ,p „ fprz|τ,pq, zpiq P ATi ,

where
ζph, Lq “

ÿ

τPTL
hpτq (4.4)

is the normalizing constant of the tree prior distribution and fprz|τ,pq is given by (4.2). We
are assuming that the prior distribution for the transition probabilities ps are independent
Dirichlet distribution with hyperparameters αs “ pαs0, . . . , αspm´1qq. Therefore, the joint
distribution of pτ,p, rZq is given by

πpτ,p,rzq “ hpτq

ζph, Lq

ź

sPτ

Γp
řm´1
k“0 αskq

śm´1
k“0 Γpαskq

m´1
ź

k“0
pppk|sqqnskprzq`αsk´1 .
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Since our interest lies in making inferences about the dependence structure
represented by τ rather than the transition probabilities, we can simplify our analysis by
marginalizing the joint probability function over p, πpτ,rzq “

ş

πpτ,p,rzqdp, obtaining a
function that depends only on the context tree and the data. The product of Dirichlet
densities, assigned as the prior distribution of p, conjugates to the likelihood function,
allowing us to express the integrated distribution in closed-form as

πpτ,rzq “ hpτq

ζph, Lq

ź

sPτ

Γp
řm´1
k“0 αskq

śm´1
k“0 Γpαskq

śm´1
k“0 Γpnskprzq ` αskq

Γp
řm´1
k“0 nskprzq ` αskq

, (4.5)

obtained by multiplying the appropriate normalizing constant to achieve Dirichlet densities
with parameters pαs0`ns,0przq, . . . , αspm´1q`ns,m´1przqq for each s P τ , so that the integration
is done on a proper density. For a less convoluted notation, we shall denote

qpτ,rzq “
ź

sPτ

Γp
řm´1
k“0 αskq

śm´1
k“0 Γpαskq

śm´1
k“0 Γpnskprzq ` αskq

Γp
řm´1
k“0 nskprzq ` αskq

, (4.6)

and use, from now on, the shorter expression πpτ,rzq “ hpτq
ζph,Lq

qpτ,rzq.

Finally, the model evidence (marginal likelihood) can now be obtained by
summing (4.5) over all trees in TL,

Eprz;hq “
ÿ

τPTL
πpτ,rzq “

ÿ

τPTL

hpτq

ζph, Lq
qpτ,rzq. (4.7)

Note that we explicitly describe the model evidence in terms of the prior distribution h as
we will be interested in evaluating hypotheses based on different prior distributions.

4.3.2 Bayes Factors for Renewal State Hypothesis

Let rz “ pzpiqqi“1,...,I be a VLMC sample compatible with a probabilistic context
tree pτ,pq where τ has maximum depth L. We will call maximal tree the complete tree
with depth L and let a P A be a fixed state of the alphabet. Our goal is to use Bayes
Factors (Kass and Raftery, 1995) to evaluate the evidence in favor of the null hypothesis
Ha that τ is a-renewing against an alternative hypothesis Hā that τ is not a-renewing.
We denote T a

L Ă TL the set of a-renewing trees with depth no more than L and T̄ a
L the set

of trees with a as an inner node and, consequently, a is not a renewal state for those trees.

We are interested in defining a metric for evaluating the hypothesis Ha : τ P T a
L

against its complement Hā : τ P T̄ a
L in a Bayesian framework. These hypotheses can

be expressed in terms of special prior distributions proportional to functions ha and hā,
respectively, such that hapτq “ 0 if, and only if, τ P T̄ a

L . Similarly, hāpτq “ 0 if, and only
if, τ P T a

L .

The Bayes Factor for Ha against Hā is defined as

BFa,āprzq “
Eprz;haq
Eprz;hāq

“
ζphā, Lq

ζpha, Lq

ř

τPTL hapτqqpτ,rzq
ř

τPTL hāpτqqpτ,rzq
, (4.8)
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where ζp¨, Lq is given by (4.4) and q is given by (4.6).

Kass and Raftery (1995) proposed the following interpretation for the quantity
log10 pBFa,āprzqq as a measure of evidence provided by the data rz in favor of the hypothesis
that corresponds to a-renewing trees as opposed to the alternative one. A value between 0
and 1{2 is considered to provide evidence that is “Not worth more than a bare mention",
“Substantial" for values between 1{2 and 1, “Strong" if they are between 1 and 2 and
“Decisive" for values greater than 2. By symmetry, these intervals with negative sign provide
the same amount of evidence but reversing the hypotheses considered. Therefore, the sign
of log10 pBFa,āprzqq provides a straightforward measure whether the data provides more
evidence that the chain is compatible with a context tree τ that is a-renewing or that τ
belongs to T̄ a

L .

4.3.3 Metropolis-Hastings algorithm for context tree posterior sampling

Before further development of methods to compute the Bayes Factors from
(4.8), we need to introduce a Metropolis-Hastings algorithm for sampling from the marginal
posterior distribution of context trees, πpτ |rzq. From (4.5) and the Bayes rule we obtain

πpτ |rzq “
hpτq
ζph,Lq

qpτ,rzq
Eprz;hq 9hpτqqpτ,rzq, (4.9)

which has a simple expression up to the intractable proportionality terms, suggesting
that the Metropolis-Hastings algorithm (Hastings, 1970; Chib and Greenberg, 1995) is an
appropriate strategy to obtain an empirical sample from the posterior distribution given
by (4.9).

The main step for constructing the algorithm is defining a suitable proposal
kernel κpτ 1|τq, τ 1, τ P TL to move to new context trees from a current tree τ . We propose
the use of a graph-based kernel that can be viewed as a modification of the Monte Carlo
Markov Chain Model Composition (MC3) method from Madigan et al. (1995) by defining a
neighborhood system N over TL and constructing a proposal kernel that allows transitions
only between neighboring trees.

We first specify a set directed edges Nd such that, an edge pτ, τ 1q, from τ to τ 1,
is included if, and only if, |τOτ 1| “ m` 1 and |τ 1| ą |τ |, where O denotes the symmetric
difference operator AOB “ pAXBcq Y pAc XBq. An equivalent definition is that an edge
from τ to τ 1 is obtained substituting one of the contexts s P τ , by the contexts associated
with its m children nodes, tks, k P Au, in τ 1. We refer to this substitution as growing a
branch from s.
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Additionally, we define the grow (‘) and prune (a) operators, as

‘pτ, hq “ tτ 1 P TL : pτ, τ 1q P Nd and hpτ 1q ą 0u,
apτ, hq “ tτ 1 P TL : pτ 1, τq P Nd and hpτ 1q ą 0u.

The operator ‘ maps a tree τ to the set of trees with positive prior distribution that can
be obtained by growing new branches from τ , whereas a maps τ to the set of trees in TL
from which τ can be obtained after growing a branch.

Some important properties that can be easily checked are

1. For every τ P TL, if τ 1 P ‘pτ, hq and hpτq ą 0, then τ P apτ 1, hq.

2. For every τ P TL, if τ 1 P apτ, hq and hpτq ą 0, then τ P ‘pτ 1, hq.

3. For any finite sequence τ p1q, τ p2q, . . . , τ pNq such that hpτ p1qq ą 0 and τ pn`1q P

‘pτ pnq, hq Y apτ pnq, hq, we have τ pnq P ‘pτ pn`1q, hq Y apτ pn`1q, hq.

It follows from Properties 1 and 2 that any context tree τ can be recovered by applying
sequentially grow and prune operations. Property 3 is a direct consequence of Properties 1
and 2 and means that any sequence of context trees obtained by a sequence of grow or
prune operations can also be visited in reverse order with a sequence of grow and prune
operations. These properties also suggest that combining ‘ and a for constructing a set
of transitions with positive probabilities in a proposal kernel is a good strategy in order to
achieve the irreducibility condition κpτ |τ 1q ą 0 if, and only if, κpτ 1|τq ą 0.

We define a transition kernel κ as

κpτ 1|τq “

$

’

’

’

&

’

’

’

%

1
|‘pτ,hq|

1 pτ 1 P ‘pτ, hqq , if apτ, hq “ H,
1

|apτ,hq|
1 pτ 1 P apτ, hqq , if ‘pτ, hq “ H,

1
2

1
|‘pτ,hq|

1 pτ 1 P ‘pτ, hqq ` 1
2

1
|apτ,hq|

1 pτ 1 P apτ, hqq , o/w,

which allows us to propose a tree τ 1 in a simple two-step process. First, pick the operator
to be applied to τ , ‘ or a with probabilities 1{2 if both lead to non-empty set of trees,
otherwise pick the operation that produces a non-empty set. Then, pick τ 1 from ‘pτ, hq or
apτ, hq with uniform probabilities.

The idea of a proposal kernel for context trees based on growing and pruning
nodes of trees was already used in Kontoyiannis et al. (2020) for a specific prior distribution
h. The complete Metropolis-Hastings algorithm described in Algorithm 2, not only formally
defines the construction in terms of graphs, but also extends it to accommodate arbitrary
prior distributions.
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Algorithm 2 – Metropolis-Hastings algorithm for sampling context trees from πpτ |rzq
under a tree prior distribution proportional to h.

Set an initial tree τ p0q P TL;
for t “ 1, . . . , niter do

Sample an operation ‘ or a which leads to a non-empty set when applied to
τ pt´1q, with equal probabilities;
Randomly pick a proposed tree τ 1 from ‘pτ pt´1q, hq or apτ pt´1q, hq;
Compute the acceptance ratio

Apτ 1|τ pt´1q
q “ min

ˆ

hpτ 1qqpτ 1,rzq
hpτ pt´1qqqpτ pt´1q,rzq

κpτ pt´1q|τ 1q

κpτ 1|τ pt´1qq
, 1
˙

;

Generate a random variable U „ Unifp0, 1q;
if U ă Apτ |τ pt´1qq then

τ ptq Ð τ 1

else
τ ptq Ð τ pt´1q

end
end

4.3.4 Partial Bayes Factors and Intrinsic Bayes Factors

While BFa,āprzq given by (4.8) provides a measure of the plausibility of one
hypothesis with respect to another, computing this quantity may present an enormous
computational cost as the sum over TL involves a doubly exponential number of terms. In
fact, even the normalizing constant of the tree prior distribution ζph, Lq is intractable in
the general case for moderate values L, hindering the evaluation of the model evidence
Eprz;hq.

Previous algorithms proposed in the literature that use similar ideas to compute
the marginal likelihood, like the Context Tree Weighting (CTW) algorithm from Willems
et al. (1995), are not suitable for our purposes. While we are aiming to compute (4.7) for
an arbitrary prior, their weighting of context trees correspond to a very specific choice of
prior distributions as hpτq such that (4.7) can be computed recursively based on the nodes
of the maximal tree rather than every subtree. To overcome this difficulty, we consider the
Partial Bayes Factor (PBF) described in O’Hagan (1995) as an alternative approach for
model comparison.

The methodology consists of dividing the data rz into two independent chunks,
rztrain and rztest and then computing the Bayes Factor based on part of the data, rztest,
conditioned on rztrain as follows,

PBFa,āprztest|rztrainq “

ř

τPTL πapτ |rztrainqqpτ,rztestq
ř

τPTL πāpτ |rztrainqqpτ,rztestq
, (4.10)

where πapτ |rztrainq and πāpτ |rztrainq are the posterior distributions of τ conditioned on the
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training data rztrain under the hypotheses Ha and Hā, respectively.

Although the original goal of using PBF is to avoid undefined behaviors when
evaluating the ratio of terms involving improper priors, that are replaced by the posterior
distributions conditioned on the training sample, we can see that the same strategy is very
useful to avoid the intractable normalizing constant from the prior distribution.

Note that, even though (4.10) still involves sums over TL, the terms
ÿ

τPTL
πapτ |rztrainqqpτ,rztestq and

ÿ

τPTL
πāpτ |rztrainqqpτ,rztestq

can be written as expected values EHapqpτ,rztestq|rztrainq and EHāpqpτ,rztestq|rztrainq, which
can be obtained from ergodic Markov Chains pτ ptqa qtě1 and pτ ptqā qtě1with invariant measures
πapτ |rztrainq and πāpτ |rztrainq, respectively.

Therefore, we can use MCMC methods to approximate Partial Bayes Factors
by sampling two Markov Chains pτ ptqa q and pτ

ptq
ā q and using the ratio of empirical averages

instead of the expected values

zPBFa,āprztest|rztrainq “

řniter
t“1 qpτ

ptq
a ,rztestq

řniter
t“1 qpτ

ptq
ā ,rztestq

. (4.11)

To avoid the arbitrary segmentation of the dataset into train and test subsets,
Berger and Pericchi (1996) proposed the Intrinsic Bayes Factor (IBF), which averages
PBFs obtained using different segmentations, based on minimal training samples. Denote
by Iv the collection of subsets of t1, . . . , Iu of size v, i.e.,

Iv “ tti1, i2, . . . , ivu Ă t1, 2, . . . , Iuu.

The dataset is divided into minimal training samples, which we will consider a v-tuple
of sequences iv1 “ ti1, i2, . . . , ivu P Iv, denoted rzpiv1q and the remaining I ´ v sequences,
denoted as rzp´iv1q to be used as the test sample. For each possible subset of v sequences
iv1, we compute the Monte Carlo approximation of the PBF in (4.11) and take either
the arithmetic average to obtain the Arithmetic Intrinsic Bayes Factor (AIBF) or the
geometric average for the Geometric Intrinsic Bayes Factor (GIBF).

Denoting by pτ ptqa,iv1q and pτ
ptq
ā,iv1
q, t “ 1, . . . , niter the Markov Chains of context trees

obtained using Algorithm 2 with target distribution πapτ |zpi
v
1qq and πāpτ |zpi

v
1qq (considering

prior distribution proportional to ha and hā), respectively, the AIBF and GIBF are defined
as

AIBFa,āprzq “
ÿ

iv1PIv

1
`

I
v

˘

¨

˝

řniter
t“1 q

´

τ
ptq
a,iv1
,rzp´iv1q

¯

řniter
t“1 q

´

τ
ptq
ā,iv1
,rzp´iv1q

¯

˛

‚,

and

GIBFa,āprzq “
ź

iv1PIv

¨

˝

řniter
t“1 q

´

τ
ptq
a,iv1
,rzp´iv1q

¯

řniter
t“1 q

´

τ
ptq
ā,iv1
,rzp´iv1q

¯

˛

‚

pIvq
´1

.
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The complete procedure for obtaining these quantities for a given VLMC dataset is
described in Algorithm 3.

Note that, while a single sequence (v “ 1) is theoretically sufficient to identify
the context tree and can be considered a minimal training sample, computing posterior
distributions using small datasets may result in posterior distributions that assign very
low probabilities to context trees with long branches due to smaller total counts on those
longer branches. Therefore, using more sequences (higher value for v), may lead to more
consistent results as the posterior distribution used in each PBF is more likely to capture
long-range contexts. On the other hand, the number of PBFs to be computed is |Iv| “

`

I
v

˘

which quickly becomes prohibitive when v increases. The choice of v is a trade-off between
computational cost and the deepness of contexts to be captured by partial posterior
distributions.

Algorithm 3 – Complete algorithm for computing AIBF and GIBF with MCMC
approximations of Partial Bayes Factors for a dataset rz based on
v-tuples.

for iv1 P Iv do
Generate

´

τ
ptq
a,iv1

¯

, t “ 1, . . . , niter with the Context Tree Metropolis Hastings
algorithm with target distribution πapτ |zpi

v
1qq;

Generate
´

τ
ptq
ā,iv1

¯

, t “ 1, . . . , niter with target distribution πāpτ |zpi
v
1qq;

Compute the Partial Bayes Factor for the v-tuple iv1

zPBFa,āprzp´i
v
1q|zpiv1qq “

řniter
t“1 qpτ

ptq
a,iv1
,rzp´iv1qq

řniter
t“1 qpτ

ptq
ā,iv1
,rzp´iv1qq

.

end
Return the averages

AIBFa,āprzq “
1
`

I
v

˘

ÿ

iv1PIv

zPBFa,āprzp´i
v
1q|zpiv1qq

GIBFa,āprzq “
ź

iv1PIv

´

zPBFa,āprzp´i
v
1q|zpiv1qq

¯pIvq
´1

4.4 Simulation Studies and Application
To show the strength of our method, we analyzed artificial VLMC datasets

generated from two binary models models and a real one coming from the field of Linguistics.
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4.4.1 Simulation for binary models

In this section, the primary goal is to examine the performance of the AIBF
and GIBF for evaluating the evidence in favor of a null hypothesis of τ being a-renewing
considering aspects of the effect of the number of independent samples, the size of each
chain, and discrimination ability when similar trees are considered. We consider simulations
for binary VLMC models with three different sample sizes I “ 3, 10, 25. For each scenario
we sample I chains of equal length, but three different values Ti “ 1000, 2500, 5000. A
dataset was simulated for each combination of I and Ti, resulting in 9 datasets.

The two models considered are presented in Figure 15. Model 1 has a depth
equal to 6 with a “ 0 being a renewal state, while Model 2 is a modified version with an
additional branch grown from the node 01111, which is substituted by the two suffixes
001111 and 101111. Therefore, in Model 2, 0 is no longer a renewal state although both
trees are very similar.
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Figure 15 – Probabilistic Context Trees for Model 1 and Model 2. The pair of values below
each leaf corresponds to the transition probabilities for the suffix associated
with that leaf.

For each possible renewal state a “ 0 or a “ 1, we compute both Intrinsic Bayes
Factors (AIBF and GIBF) using Algorithm 3 considering prior distributions proportional
to

hapτq “ 1pτ P T a
L q and hāpτq “ 1pτ P T̄ a

L q

which correspond to the uniform distribution in the space of context trees that are allowed
under Ha and Hā, respectively.

For the hyper-parameter α, we choose αsk “ 0.001 for all s and k, resulting in
symmetrical prior distributions for the transition probabilities and a higher density for
vectors that are more concentrated.

In each scenario, we considered v “ 1 and v “ 2 as the number of sequences to
be used for the minimal training sample and ran niter “ 105 Metropolis-Hastings steps for
each PBF Monte Carlo approximation.
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Table 3 – AIBF and GIBF computed in log10 scale for simulations for Model 1.

a I v
Ti “ 1000 Ti “ 2500 Ti “ 5000

AIBF GIBF AIBF GIBF AIBF GIBF
0 3 1 4.28 2.39 2.35 2.03 1.69 1.65
0 3 2 1.04 0.66 1.54 1.20 1.88 1.86
0 10 1 25.32 6.00 1.97 1.94 2.55 2.53
0 10 2 4.05 2.31 1.96 1.90 2.49 2.46
0 25 1 68.98 11.87 4.40 2.90 2.59 2.57
0 25 2 67.29 3.54 2.63 2.60 2.59 2.57
1 3 1 -46.87 -49.03 -137.09 -147.48 -285.28 -287.18
1 3 2 -17.82 -20.41 -61.80 -68.78 -135.72 -138.05
1 10 1 -248.24 -265.45 -683.99 -695.28 -1401.88 -1411.24
1 10 2 -234.44 -238.54 -596.78 -616.72 -1237.09 -1252.95
1 25 1 -688.51 -741.06 -1921.76 -1951.27 -3834.79 -3862.61
1 25 2 -705.66 -719.25 -1822.97 -1869.77 -3653.59 -3701.06

Table 4 – AIBF and GIBF computed in log10 scale for simulations for Model 2.

a I v Ti “ 1000 Ti “ 2500 Ti “ 5000
AIBF GIBF AIBF GIBF AIBF GIBF

0 3 1 2.58 2.45 14.38 0.06 -7.51 -8.24
0 3 2 1.34 1.22 7.40 0.05 -2.94 -3.29
0 10 1 13.58 4.13 26.40 -7.77 70.50 -38.47
0 10 2 12.49 2.39 26.27 -2.94 65.34 -34.02
0 25 1 46.19 9.11 94.14 13.73 230.50 -95.80
0 25 2 46.49 5.54 93.36 -26.54 227.65 -111.42
1 3 1 -38.24 -40.92 -101.68 -114.08 -216.82 -233.08
1 3 2 -15.16 -18.32 -52.24 -54.20 -111.01 -113.50
1 10 1 -215.74 -222.35 -539.57 -573.34 -1062.60 -1167.87
1 10 2 -190.76 -201.17 -479.56 -509.43 -930.81 -1041.44
1 25 1 -566.23 -601.98 -1432.13 -1528.50 -2867.44 -3186.70
1 25 2 -535.09 -583.43 -1365.51 -1502.80 -2746.98 -3091.29

From Table 3, we can see that, for Model 1, both AIBF and GIBF lead to the
correct decision for both renewal states tested. For a “ 0, which was in fact a renewal
state, all cases returned a value, in log10 scale, greater than 1 (except one equals 0.66).
The discrepancy between AIBF and GIBF diminishes as Ti and I increase converging to a
value around 2.5 which was considered Decisive Evidence in the Kass-Raftery scale. On
the other hand, for a “ 1, which was not a renewal state, all cases reported AIBF and
GIBF in log10 scale smaller than ´15, converging to values around ´3000 when Ti “ 500
and I “ 25.

The results for Model 2, which includes a new pair of contexts causing 0 to be
no longer a renewal state, presented in Table 4, showed a similar performance rejecting
the 1-renewing hypothesis when compared to Model 1, which is expected due to the
similarity of both models with respect to the short-length nodes that do not involve 1.
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Figure 16 – Computed PBFs for Model 1 of the simulation study. Only 0 is a renewal
state for this model, therefore, the panels with a “ 0 are expected to have
positive PBFs in logarithmic scale and negative values for a “ 1.

The main difference occurred in the computed values for the 0-renewing hypothesis, where
the computed GIBFs were positive in logarithmic scale for Ti “ 1000, for all values of
I and v. Moreover, we can see that for Ti “ 5000, GIBF was negative for all scenarios
whereas AIBF was strongly positive for larger values of I. For intermediate value of the
sequences sizes (Ti “ 2500), AIBF pointed to the wrong direction in all scenarios while
GIBF identified the right hypothesis in three cases (I “ 10 and v “ 1 and 2 and I “ 25
and v “ 2). This suggests that for smaller sample sizes, the posterior distributions obtained
from the training samples were insufficient to capture the long-range contexts 111100 and
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Figure 17 – Computed PBFs for Model 2 of the simulation study. Neither 0 or 1 are renewal
states for this model, therefore, all panels are expected to have negative PBFs
in logarithmic scale. The structure of the tree used makes the renewal state
hypothesis violation for a “ 0 to not be captured (or does not produce strong
evidence against the renewal state hypothesis) for lower sample sizes.

111101 that break the renewal condition of the state 0.

Figures 16 and 17 present the empirical distributions of PBFs computed in
log10 scale for each scenario and each model. In general, the strength of the evidence tends
to be larger for v “ 1 as more data is being used on the test set, but on the other hand,
v “ 2 leads to more stable PBFs computed. The same behavior is observed as the number
of independent sequences I increases, what is expected as adding more data has an impact
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in the scale of the marginal likelihood function, also rescaling the Bayes Factors.

With Ti “ 2500, log10 PBFs tend to be distributed around 0, with high variance,
as can be observed in Figure 17, resulting in a very unstable average, leading to correct
results in some of the scenarios, and incorrect ones in others. As the sample size increases,
those long-range contexts are more likely to be captured by the posterior distribution.
With Ti “ 5000, we have decisive evidence that 0 is not a renewal state, except for the
scenario with I “ 3 and v “ 1, where the value of 0.13 provides very weak evidence, and,
in general, the distribution of log10 PBFs was highly concentrated with negative sign,
except for a few outliers. AIBF was highly affected by outliers and resulted in incorrect
conclusions with high evidence for some scenarios.

Note that, especially for the datasets with small samples (Ti “ 1000), outliers
with large values are observed, having great effect on the computed averages, although the
conclusions are not affected. For large datasets (Ti “ 5000), we have smaller variance in
the computed PBFs among different training sets compared to scenarios with sequences of
smaller sizes.

Therefore, we conclude that a decision based on GIBF leads to, at least, strong
evidence in the scale from Kass and Raftery (1995) (greater than 1{2 in log10 scale) for the
correct hypothesis in all cases where we had v “ 2 and Ti “ 2500 or 5000. The AIBF was
not robust to the presence of outliers in the set of PBFs, leading to incorrect conclusions
in the scenarios where the correct detection of the renewal state is harder task and the
sample sequences are shorter. The present of outliers also suggests other functions to
summarize PBFs other than geometric and arithmetic averages may be useful for avoiding
having results highly influenced for the results obtained for particular test samples, like
trimmed averages, removing the most extreme values from the IBF computation, or using
the median PBF, which corresponds to a trimmed average trimming all but one value,
as used in Charitidou et al. (2018). Context trees that break renewal state condition
on long-ranged contexts require larger samples (Ti or v) in order to be captured and
result in evidence against the renewal state hypothesis, while states that break renewal
state condition in short contexts can be immediately identified, even with short observed
sequences.

4.4.2 Application to rhythm analysis in Portuguese texts

It is known that Brazilian and European Portuguese (henceforth BP and EP)
have different syntaxes. For example, Galves et al. (2005) infered that the placement of
clitic pronouns in BP and EP differ in two senses, one of them being: “EP clitics, but not
BP clitics, are required to be in a non-initial position with respect to some boundary".
However, the question remains: are the choices of word placement related to different
stress patterns preferences? This question was addressed by Galves et al. (2012) that
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found distinguishing rhythmic patterns for BP and EP based on written journalistic
texts. The data consists of 40 BP texts and 40 EP texts randomly extracted from an
encoded corpus of newspaper articles from the 1994 and 1995 editions of Folha de São
Paulo (Brazil) and O Público (Portugal). Texts were encoded according on rhythmic
features resulting in discrete sequences with around 2500 symbols each and are available
at http://dx.doi.org/10.1214/11-AOAS511SUPP. After a preprocessing of the texts
(removing foreign words, rewriting of symbols, dates, compound words, etc) the syllables
were encoded by assigning one of four symbols according to whether or not (i) the syllable is
stressed; (ii) the syllable is the beginning of a prosodic word (a lexical word (noun, verbs,...)
together with the functional non-stressed words (articles, prepositions, ...) which precede
or succeed it). This classification can be represented by 4 symbols. Additionally an extra
symbol was assigned to encode the end of each sentence. The alphabet A “ t0, 1, 2, 3, 4u
was obtained as follows.

• 0 = non-stressed, non-prosodic word initial syllable;

• 1 = stressed, non-prosodic word initial syllable;

• 2 = non-stressed, prosodic word initial syllable;

• 3 = stressed, prosodic word initial syllable;

• 4 = end of each sentence.

For example, the sentence O sol brilha forte agora. (The sun shines bright now.)
is coded as

Sentence O sol bri lha for te a go ra .
Code 2 1 3 0 3 0 2 1 0 4

The Smallest Maximizer Criteria proposed by Galves et al. (2012) to select the
best tree for BP and EP, uses the fact that the symbol 4 appears as a renewal state to
perform Bootstrap sampling. Moreover, they conclude that “the main difference between
the two languages is that whereas in BP both 2 (unstressed boundary of a phonological
word) and 3 (stressed boundary of a phonological word) are contexts, in EP only 3 is a
context." These are exactly the type of questions to be addresses by the renewal state
detection algorithm.

Due to the encoding used, the grammar of the language, and the general
structure of written texts, some transitions are not possible. For example, two end of
sentences (symbol 4) cannot happen consecutively, therefore, a transition from 4 to 4 is
not allowed. Furthermore, there is one, and only one, stressed syllable in each prosodic
word. Table 5 summarizes the allowed and prohibited one-step transitions.

http://dx.doi.org/10.1214/11-AOAS511SUPP
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Table 5 – Allowed transitions for each encoded symbol.
From/To 0 1 2 3 4

0 yes yes yes yes yes
1 yes no yes yes yes
2 yes yes no no no
3 yes no yes yes yes
4 no no yes yes no

These prohibited transition conditions are included in the model with proper
modifications to the prior distribution, assigning zero probability to some context trees
and forcing the probabilities related to prohibited transitions to be zero. The modifications
are:

1. If a transition from k to k1 is prohibited and a context s has k as its last symbol,
we force ps,k “ 0 in our prior distribution. The remaining probabilities associated
with allowed transitions are then a priori distributed as a Dirichlet distribution with
lower dimension.

For example, for a context 102, the only allowed transitions from 2 are to 0 and
1, we have p102,2 “ p102,3 “ p102,4 “ 0 with prior probability 1, and the free
probabilities, pp102,0, p102,1q, distributed as a 2-dimensional Dirichlet distribution
with hyper-parameters pα102,0, α102,1q.

2. If s P τ includes a prohibited transition, then ns,kprzq “ 0 as there will not be any
occurrences of such sequence in the sample. As a consequence, these suffixes have no
contribution in qpτ,rzq as the term related to s of the product in (4.5) gets cancelled.

3. We define T ˚
L the space of context trees that do not have prohibited transitions in

inner nodes. For example, since the transition 44 is prohibited, a tree that contains
a suffix 044 cannot be in T ˚

L because the transition from 4 to 4 is not in a leaf (final
node), whereas a tree in TL can contain the suffix 44.

Note that, allowing final nodes to contain a prohibited transition is necessary to keep
the consistency of our definition based on full m-ary trees, as full tree contains the
suffix 34 (allowed) if, and only if, it contains another suffix ending in 44 (prohibited),
what is not a problem because this prohibited suffix will not contribute to the
marginal likelihood.

For each set of sequences in BP and EP, we compute Intrinsic Bayes Factors
as evidence for the five hypotheses that 0, 1, 2, 3, and 4 are renewal states. We took
L “ 5 which should be enough to cover all relevant context trees based on the results
from the original paper. For prior distributions, we used the same uniform distributions as
in the simulation experiment, but restricted to the trees that do not include prohibited
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transitions on inner nodes, i.e.,

hapτq “ 1pτ P T a
5 X T ˚

5 q and hāpτq “ 1pτ P T̄ a
5 X T ˚

5 q.

We also set αsk “ 0.001 for every s P τ and k P A. The algorithm ran for niter “ 106

iterations for computing each tree posterior distribution under each hypothesis, using
v “ 2 sequences (around 5000 symbols in each training sample) for each Partial Bayes
Factor, resulting in a total of

`40
2
˘

“ 780 posterior distributions for each hypothesis and
PBFs to average.

Due to the numerical instabilities caused by outliers in the set of estimated
PBFs as identified in the simulation study, especially in the AIBF, when some particular
texts zpiq are used as the training sample, we also computed a trimmed version of AIBF
(and GIBF), which consists of computing the arithmetic (and geometric) average excluding
the 10% lowest and 10% highest PBFs, this strategy was also used in Berger and Pericchi
(1996). The empirical distributions for the estimated Partial Bayes Factors for all renewal
state hypotheses after the 10% trimming are shown in Figure 18.

From the results presented in Table 6, we can see that decisive evidence was
obtained when evaluating the renewal hypothesis for states 2, 3 and 4 for the BP dataset
and 3 and 4 for the EP dataset which are consistent with the results from Galves et al.
(2012).

Table 6 – AIBF and GIBF for the BP and EP datasets.
AIBF GIBF

a Untrimmed Trimmed Untrimmed Trimmed
BP 0 -10321.12 -10591.73 -10720.48 -10727.80
BP 1 5.88 -7.92 -7.56 -8.55
BP 2 3.49 2.00 1.64 1.64
BP 3 19.41 17.69 14.17 14.10
BP 4 7.96 6.61 6.68 6.61
EP 0 -11487.31 -11641.82 -11744.90 -11747.73
EP 1 7.87 -10.51 -11.67 -11.19
EP 2 1.52 -2.05 -2.56 -2.60
EP 3 18.37 13.49 13.40 13.37
EP 4 12.52 6.66 6.64 6.57

Finally, for completeness of the Bayesian analysis of this example, we ran the
Metropolis Hastings algorithm for the entire BP and EP datasets, considering the same
uniform prior distribution on every tree in T ˚

5 (no renewal state hypothesis considered,
but controlling for prohibited transitions) and with αs,k “ 0.001 for each valid pair ps, kq.
The two context trees with highest posterior probabilities for BP and EP are presented
in Figure 19 and Figure 20, respectively. Leaves corresponding to contexts that contain
prohibited transitions, or other contexts with no occurrences are omitted from the trees in
the figures for interpretability purposes.
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pairs of sequences used as training sets, in each of the BP and EP
datasets after a trimming of 10% of the highest and lowest PBFs. Each pane
corresponds to a hypothesis of a different state being evaluated as a renewal
state.
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Figure 19 – Highest posterior probability context trees for the BP dataset.
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Figure 20 – Highest posterior probability context trees for the EP dataset.

4.5 Conclusions
We propose a Bayesian approach to Variable-Length Markov Chain models with

random context trees that allows us to evaluate evidence in favor of renewal hypothesis
based on a priori distributions that assign positive probability to each tree on a subset of
trees that depends on the renewal state being considered. The main novelties of this work
are:

1. The use of Bayes Factor to test the renewal hypothesis for VLMC models;

2. The use of Intrinsic Bayes Factor to evaluate this evidence and overcame the problem
of intractable normalizing constant from the prior distribution;

3. The proposal of a Metropolis-Hastings algorithm for sampling context trees that can
be performed under a tree prior distribution proportional to any arbitrary function
h. This freedom allows not only to incorporate experts prior information about the
possible context trees, but also to exclude forbidden trees just by assigning zero
probability to them.

To show the strength of our method, we analyzed artificial datasets generated
from two binary models and one example coming from the field of Linguistics. The analysis
of the artificial datasets suggests that evidence becomes stronger as the number of replicates
increases and/or the size of the sequences increases. However, it is possible to obtain good
results with as few as 3 replicates of each chain. In the linguistics example we could observe
that trimmed GIBF is more robust to possible outliers in the sample.

An R package containing functions for all the computations used in this work is
available at https://github.com/Freguglia/ibfvlmc and R scripts used to reproduce

https://github.com/Freguglia/ibfvlmc
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the simulation study are available upon request.
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5 Final Considerations and Future Work

This work addresses the problem of Bayesian model selection for two different
models with local dependence, Markov Random Fields and Variable-Length Markov Chains,
based on a common principle of treating the dependence structure of the model as a
random object.

In Chapter 2, we have introduced the computational framework used for MRF
models, the mrf2d package. The set of building blocks for inferential tools that compose
the package allowed us to quickly explore algorithms and experiment with many methods
proposed in the literature, using common data structures. A Bayesian extension of the
package was developed, mrf2dbayes, to implement the methods proposed in Chapter 3,
with many additional features that can be used in future works, such as the possibility of
using different approximations for the Likelihood function (only the Pseudolikelihood was
used in the article), and running the Metropolis-Hastings algorithm under a variety of
configurations.

Chapter 3 uses the RJMCMC algorithm as a strategy for model selection in
MRFs, using Pseudoposteriors. The (pseudo)posterior distribution of the Relative Position
Sets, that represent interaction structures, obtained by using the efficient proposal kernel
proposed for the RJMCMC, allows the use of many Bayesian analyses techniques that
depend on the marginal distribution of RPSs, such as selecting the maximum a posteriori
sets. We applied the proposed method to a textile image dataset to find a sparse interaction
neighborhood suited for describing the features of the texture in the image.

Further research that arise from the work presented in Chapter 3 include
applying adjustments to the Pseudolikelihood function when using the RJMCMC as in
Bouranis et al. (2018), but the method cannot be applied directly because the optimal
corrections may vary depending on the RPS, and there are typically 2|Rmax|, leading to
an excessive computational cost, since the approximations rely and maximum Likelihood
estimation and Monte Carlo approximations that require sampling multiple random field
configurations, and both require iterative methods to achieve. A second topic to be further
explored is to find approximations for the integral of posterior distribution with respect to
the coefficients, to obtain the marginal probability (up to a proportionality constant) of
each RPS directly, fitting in the Monte Carlo Markov Chain Model Composition framework
from Madigan et al. (1995), what would allow us to use a Metropolis-Hastings algorithm
over the space of RPSs instead of using RJMCMC considering the joint space of RPSs
and coefficients.

In Chapter 4 we address the problem of Bayesian inference for the context
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tree of a VLMC model. Using a Bayesian system with random context trees and, by
using Dirichlet distributions for the transition probabilities prior distributions, we could
obtain the marginal posterior distribution of context trees up to a normalizing constant.
A Metropolis-Hastings algorithm on the space of context trees was used, using a similar
proposal kernel from Kontoyiannis et al. (2020), but allowing any prior distribution for
the context tree to be used, instead of only a prior equivalent to the weighting from the
Context Tree Weighting algorithm (Willems et al., 1995). The context tree posterior sample
obtained was used for producing Monte Carlo estimates of key expected values involved
in the Intrinsic Bayes Factor, which was used instead of the Bayes Factor for evaluating
hypothesis because it averages over the posterior distribution, that is concentrated in a
few context trees, instead of the prior distribution and, therefore, is more likely cover most
relevant parts of the distribution with a reasonable number of samples. The method was
used to evaluate whether a particular state of an alphabet is a renewal state of the Markov
Chain, which is an important property to enable many inference methods. We applied
the proposed algorithm to a dataset of multiple sequences of European Portuguese and
Brazilian Portuguese written texts, encoded by a 5-symbol alphabet, from Galves et al.
(2012).

Future works regarding Bayesian inference for context trees include developing
clustering methods for VLMC sequences, based on a notion of distance between the context
tree posterior distribution of each individual sequence, what allows grouping sets of VLMC
sequences that have a similar underlying context tree and obtaining theoretical results
on the convergence rates of the Metropolis-Hastings algorithm for context trees. Since
the algorithm is essentially a special case of a graph random walk, with a graph that
is intrinsically attached to the proposal kernel considered for the Metropolis-Hastings,
results related to random walks on graphs may be useful for obtaining theoretical results
regarding the optimality of the proposal kernel for this scenario, or finding more efficient
strategies to improve the mixing of the Markov Chain of context trees obtained.

The main contributions of this thesis are:

1. Introduce a robust and extensible computational environment, where researchers can
work with a large class of Markov Random Field models for applications in many
probabilistic image modeling contexts.

2. Propose a interaction structure selection methodology for Markov Random Fields,
based on a Bayesian foundation that considers a random set of relative positions.

3. Define an efficient proposal kernel for the RJMCMC algorithm that is specially
suited for the proposed MRF model selection method.

4. Propose a novel methodology for detection of renewal states in Markov Chains of
variable-length in a Bayesian context.
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5. Describe a Metropolis-Hastings algorithm to sample context trees under an arbitrary
choice of prior distribution.
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