
UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Engenharia Elétrica e de Computação

Raphael Adamski

Multi-Objective Differentiable Neural
Architecture Search

Busca Multiobjetivo e Diferenciável de
Arquitetura de Rede Neural

Campinas

2022

UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Engenharia Elétrica e de Computação

Raphael Adamski

Multi-Objective Differentiable Neural Architecture Search

Busca Multiobjetivo e Diferenciável de Arquitetura de
Rede Neural

Dissertation presented to the School of Elec-
trical and Computer Engineering of the Uni-
versity of Campinas in partial fulfillment of
the requirements for the degree of Master, in
Electrical Engineering the area of Computer
Engineering.

Dissertação apresentada à Faculdade de En-
genharia Elétrica e de Computação da Uni-
versidade Estadual de Campinas como parte
dos requisitos exigidos para a obtenção do
título de Mestre em Engenharia Elétrica, na
Àrea de Engenharia de Computação

Supervisor: Prof. Dr. Fernando José Von Zuben
Co-supervisor: Prof. Dr. Marcos Medeiros Raimundo

ESTE TRABALHO CORRESPONDE À VERSÃO
FINAL DA DISSERTAÇÃO DEFENDIDA PELO
ALUNO RAPHAEL ADAMSKI, E ORIENTADA
PELO PROF. DR. FERNANDO JOSÉ VON
ZUBEN

Campinas
2022

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Área de Engenharia e Arquitetura
Rose Meire da Silva - CRB 8/5974

 Adamski, Raphael, 1993-
 Ad196m AdaMulti-objective differentiable neural architecture search / Raphael Adamski.

– Campinas, SP : [s.n.], 2022.

 AdaOrientador: Fernando José Von Zuben.
 AdaCoorientador: Marcos Medeiros Raimundo.
 AdaDissertação (mestrado) – Universidade Estadual de Campinas, Faculdade

de Engenharia Elétrica e de Computação.

 Ada1. Redes neurais (Computação). 2. Redes neurais profundas. 3.

Otimização multiobjetivo. I. Von Zuben, Fernando José. II. Raimundo, Marcos
Medeiros. III. Universidade Estadual de Campinas. Faculdade de Engenharia
Elétrica e de Computação. IV. Título.

Informações para Biblioteca Digital

Título em outro idioma: Busca multiobjetivo e diferenciável de arquitetura de rede neural
Palavras-chave em inglês:
Neural networks (Computing)
Deep neural networks
Multi-objective optimization
Área de concentração: Engenharia de Computação
Titulação: Mestre em Engenharia Elétrica
Banca examinadora:
Fernando José Von Zuben [Orientador]
Gisele Lopo Pappa
Levy Boccato
Data de defesa: 21-03-2022
Programa de Pós-Graduação: Engenharia Elétrica

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0001-5356-4078
- Currículo Lattes do autor: http://lattes.cnpq.br/6513405765499129

Powered by TCPDF (www.tcpdf.org)

COMISSÃO JULGADORA - DISSERTAÇÂO DE MESTRADO

Candidato(a): Raphael Adamski RA: 227179
Data de defesa: 21 de Março de 2022
Título da Tese: ”Multi-Objective Differentiable Neural Architecture Search”

Prof. Dr. Fernando José Von Zuben (Presidente, FEEC/UNICAMP)
Profa. Dra. Gisele Lobo Pappa (Titular externo, DCC/UFMG)
Prof. Dr. Levy Boccato (Titular interno, FEEC/UNICAMP)

A Ata de Defesa, com as respectivas assinaturas dos membros da Comissão Julgadora,
encontra-se no SIGA (Sistema de Fluxo de Dissertação/Tese) e na Secretaria de Pós-
Graduação da Faculdade de Engenharia Elétrica e de Computação.

Dedico esta dissertação a minha esposa, meus pais e meus familiares que sempre
estiveram comigo, me apoiaram e me deram todo suporte para chegar aqui.

Agradecimentos

O presente trabalho foi realizado com apoio do SiDi Campinas que me per-
mitiu estudar 8 horas semanais durante o período de trabalho. Também houve apoio
incondicional do Co-Orientador Prof. Dr. Marcos Raimundo em todo o desenvolvimento
do projeto. Gostaria de agradecer ao Orientador Prof. Dr. Fernando Von Zuben por me
acolher, propor a ideia inicial deste trabalho e me apoiar ao longo de todo o processo de
maneira séria, respeitosa e incentivadora. Por fim agradeço à Comissão de Pós-graduação
da Faculdade de Engenharia Elétrica e de Computação pela transparência, apoio e agili-
dade durante todo o período de pós-graduação.

“If I have seen further, it is by standing on the shoulders of giants.”
(Isaac Newton in a 1675 letter to Robert Hooke)

Resumo
O tema central desta pesquisa é busca automática de arquiteturas de redes neurais (NAS,
do inglês Neural Architecture Search), que corresponde ao processo de automação da busca
por arquiteturas com mínima interferência humana. O principal objetivo da pesquisa é
aplicar técnicas de otimização multiobjetivo (MOO, do inglês Multi-objective optimiza-
tion) para promover diversidade de modelos com diferentes qualidades em NAS com foco
em Differentiable ARchiTecture Search (DARTS). Para tanto, foram empregadas as re-
gularizações 𝐿1 e 𝐿2 com cross-entropy, capazes de promover redução de complexidade
em classificação multiclasse. Ao mesmo tempo, a existência de diversos modelos eficientes
aproximando a fronteira de Pareto nos permitiu construir um ensemble com o propósito
de competir com o estado da arte em NAS. A existência de uma diversidade de modelos
permite que o usuário aplique preferências a posteriori de interesse prático, selecionando
modelos de acordo com sua parcimônia, latência ou acurácia. Os resultados mostraram que
efetivamente é possível encontrar modelos otimizados e específicos para cada aplicação,
empregando um montante reduzido de recursos computacionais nesta busca e recorrendo
a células básicas distintas em sua composição. Por fim, a perspectiva multiobjetivo levou
a uma nova abordagem em NAS, a qual explora diretamente a existência de diversidade
entre modelos de aprendizado eficientes, caracterizados por compromissos ótimos entre
múltiplos objetivos do aprendizado.

Palavras-chaves: Busca de arquiteturas de redes neurais; Otimização multiobjetivo; Co-
mitê de máquinas; Conjunto diverso de modelos eficientes; Busca diferenciável de arqui-
teturas.

Abstract
The main topic of this research is Neural Architecture Search (NAS), which corresponds
to the process of automating architecture engineering with minimal human interference.
The goal of the research is to apply Multi-objective optimization (MOO) techniques to
promote diversity of models with distinct traits in NAS, with the focus on Differen-
tiable ARchiTecture Search (DARTS). We applied 𝐿1 and 𝐿2 regularization terms with
cross-entropy, aimed at promoting the reduction of complexity in multiclass classification.
Additionally, the existence of a diverse set of efficient models close to the Pareto frontier
is explored to build an ensemble of learning models, with the purpose of achieving the
state-of-the-art performance on NAS. This model diversity allows the user to apply a
posteriori preferences, selecting models according to parsimony, latency or accuracy. The
results show that our proposal is capable of finding optimized and specific models for
each application with limited resources due to distinct basic cells on their composition.
Finally, the explicit multi-objective perspective led to an entirely new approach on NAS
which explores directly the existence of diverse efficient models characterized by optimal
trade-offs among multiple learning objectives.

Keywords: Neural Architecture Search; Multi-objective optimization; Ensemble learning;
Diversity set of efficient models; Differentiable ARchiTecture Search (DARTS).

List of Figures

Figure 2.1 – Representation of a neuron . 19
Figure 2.2 – Representation of an MLP . 20
Figure 2.3 – Representation of a convolution . 21
Figure 2.4 – Representation of pooling operation . 22
Figure 2.5 – DARTS overview . 29
Figure 2.6 – PC-DARTS overview . 31
Figure 3.1 – Pareto frontier representation for the heart-cleveland dataset 33
Figure 3.2 – NISE’s calculation of the weight vector w and the error margin 𝜇𝑖,𝑗 . . 35
Figure 3.3 – Steps of the NISE algorithm . 36
Figure 3.4 – Extending NISE algorithm for non-convex Pareto frontiers 37
Figure 4.1 – Proposed flow of experimental scenarios 42
Figure 5.1 – Comparison of manual and automatic scalarization methods 44
Figure 5.2 – Pareto frontier population on the Search stage 45
Figure 5.3 – PC-DARTS behavior along the approximated Pareto frontier applying

regularization . 47
Figure 5.4 – Comparison of the code of the best trade-offs and the baseline 48
Figure 5.5 – Comparison of search vs Evaluation stage for 𝐿2 regularization 50
Figure 5.6 – Correlation matrix for 𝐿2 regularization case. 52
Figure 5.7 – Comparison of search vs Evaluation stage for 𝐿1 regularization with

fixed 𝐿2 . 54
Figure 5.8 – Correlation matrix for 𝐿1 regularization case 55
Figure 5.9 – Comparison of search vs Evaluation stage for 𝐿1 regularization with

fixed 𝐿2 . 57
Figure 5.10–Correlation matrix for 𝐿1 regularization with fixed 𝐿2 loss case. 58
Figure 5.11–Proposed framework for user application 59

List of Tables

Table 2.1 – Networks performance comparison on CIFAR-10 most relevant results . 26
Table 5.1 – Experiment 1 duration per case . 46
Table 5.2 – 𝐿2 loss case Pareto frontier evaluation 51
Table 5.3 – 𝐿1 loss case Pareto frontier evaluation 53
Table 5.4 – 𝐿1 loss with fixed 𝐿2 case Pareto frontier evaluation 56
Table 5.5 – Experiment 3 trained codes . 61

List of Abbreviations

conv Convolutional layer
batchNorm Batch normalization

acc Accuracy

Valid Validation

crit loss Loss as the optimization criterion
reg loss Loss as the regularization term

params number of parameters

List of Acronyms

NAS Neural Architecture Search

DARTS Differentiable ARchiTecture Search

MOO Multi-objective optimization

PC-DARTS Partially-Connected Differentiable ARchiTecture Search

NISE Non-Inferior Set Estimation

RL Reinforcement Learning

EA Evolutionary Algorithm

FLOPs floating-point operations

SMBO Sequential model-based optimization

NNs Artificial Neural Networks

MLP Multilayer perceptron

GPU Graphics processing unit

TPU Tensor processing unit

CNNs Convolutional Neural Networks

BLO Bilevel optimization

List of Symbols

ℒ𝑣𝑎𝑙 validation set loss function
ℒ𝑡𝑟 train set loss function
ℒ𝑟𝑒𝑔 regularization loss function
𝐿2 mean square error loss function
𝐿1 mean absolute error loss function

𝛼 architecture operation parameter

𝛽 architecture concatenation parameter

𝑤 neural network model weights
𝑤* optimized neural network model weights
w weight vector scalarizing the objective functions

𝜈 regularization weight scalar

𝒪 space of neural networks operations
𝑜 fixed operation ∈ 𝒪

𝜉 learning rate

𝑆 binary matrix to mask channels

Contents

1 Introduction . 17
2 Searching Architectures in NNs . 19

2.1 Neural Networks . 19
2.2 Operations in Convolutional Neural Networks 21
2.3 Hyperparameter Optimization . 23
2.4 Neural Architecture Search (NAS) . 23

2.4.1 Search Space . 23
2.4.2 Optimization Methods . 24
2.4.3 Surrogate models . 26

2.5 Differentiable Neural Architecture Search 27
2.5.1 Problem Characterization . 27
2.5.2 Related work . 27

3 Multi-objective optimization (MOO) . 32
3.1 Multi-objective NAS . 33
3.2 Non-Inferior Set Estimation (NISE) . 34

3.2.1 Weighted sum method . 35
3.3 Sampling scalarized NAS solutions . 36

3.3.1 Extending NISE to non-convex scenarios 36
3.3.2 Proposed Multi-objective NAS formulation 38

4 Methodology and Proposed Experiments . 40
4.1 Experimental analysis . 40
4.2 Cases: Conflicting Objectives . 41

5 Experimental Results . 44
5.1 Initialization . 44
5.2 Experiment 1: Validation of multi-objective Search stage 45
5.3 Experiment 2: Effect of multi-objective proxy models on Evaluation stage . 48

5.3.1 𝐿2 loss . 49
5.3.2 𝐿1 loss . 53
5.3.3 𝐿1 loss with fixed 𝐿2 . 56
5.3.4 Cases evaluation . 59

5.4 Framework Based on Results . 59
5.5 User Guideline . 60
5.6 Experiment 3: Evaluation of single models 60
5.7 Experiment 4: Evaluation of ensemble models 61

Concluding remarks . 62

References . 64

17

1 Introduction

Selecting the learning model and its hyperparameters is crucial to employ ad-
equate machine learning systems. Several challenges are posed in this selection including
accuracy, time-response, memory limitations, and fairness. A wide range of methodologies
attempt to deal with those challenges, particularly in deep learning. Neural Architecture
Search (NAS) and Multi-objective optimization (MOO) are gaining more attention and
are already responsible for impressive results, considering multiple performance criteria.
NAS selects neural network deep architectures and components with minimal human in-
terference (REN et al., 2021), seeking for the most suitable model giving the constraints
(WISTUBA; RAWAT; PEDAPATI, 2019). The associated methods usually rely on evo-
lutionary, gradient-based, Bayesian or reinforcement learning algorithms. On the other
hand, multi-objective strategies resort to a pool of learning machines satisfying distinct
trade-offs among multiple objectives, namely: high accuracy, low complexity, low hardware
latency, high interpretability, high diversity of base cells (JIN; SENDHOFF, 2008). Thus,
MOO will explicitly incorporate multiple conflicting objectives on the NAS formulation,
potentially yielding more efficient and diverse models (WISTUBA; RAWAT; PEDAPATI,
2019).

NAS helped automatizing the time-consuming, arduous and error-prone task
of searching for suitable deep learning architectures, at the cost of an expressive increase in
the requirements for computational resources during the search. With that in mind, search
methods that are not so computationally intensive are gaining more attention (WIS-
TUBA; RAWAT; PEDAPATI, 2019). Among them, methods employing gradient descent
on differentiable deep learning models were faster than their competitors without compro-
mising accuracy improvement. Recent MOO research (RAIMUNDO; DRUMOND, et al.,
2021) was able to train multiple learning models with deterministic and automatic spread
of efficient learning models along the Pareto frontier (composed of efficient solutions) cre-
ated by the multinomial loss vs. regularization trade-off. This intersection would result
in a huge advantage to the NAS field because high-quality sampling of the Pareto fron-
tier creates a controlled distribution of trade-offs between accuracy and complexity, thus
making available multiple and diverse models as well as models with distinct purposes
(depending on their complexity).

Although NAS automatically searches for the best deep architectures and re-
duces the number of parameters to tune, there are still some hyperparameters arbitrarily
selected according to the demands of the application, such as the regularization coefficient.

Chapter 1. Introduction 18

Therefore, we want to explicitly investigate the effect of the regularization coefficient in a
multi-objective perspective. Since overall loss (training error) and regularization strength
(usually empirically selected) are conflicting optimization objectives, more vigorous reg-
ularization can restrain the flexibility of the learning model, potentially increasing the
overall loss (RAIMUNDO; DRUMOND, et al., 2021).

Our research then focuses on gradually adding regularization (complexity mea-
sure) strength to the model, thus filling an approximation of the Pareto frontier with
efficient learning models exhibiting distinct and automatically defined trade-offs between
error and model complexity. Subsequently, some a posteriori preference of the user may
be adopted to select the best deep learning model, with minimum accuracy reduction. The
selected NAS implementation, used as a baseline and starting point, was PC-DARTS1,
given the effectiveness of the architecture search and the distinguished performance of the
obtained deep learning model. This algorithm has a fixed 𝐿2 regularization by default.
In our work, 𝐿2 and 𝐿1 regularization criteria were considered and also a determinis-
tic multi-objective solver called NISE2 were used to maximally distribute the efficient
deep learning models along the Pareto frontier. Notice that more conflicting objectives
could have been incorporated in the formulation, such as hardware latency, potentially
producing additional diversity in the final deep architectures. However, this extension
would require replacing NISE with MONISE (RAIMUNDO; DRUMOND, et al., 2021),
an extension of NISE to more than two objectives.

Finally our proposal is able to achieve a diverse set of models that support
two major contributions: the possibility of choosing a posteriori the best model among a
diverse set of distinct trade-offs (in replacement to the proposition of a single option after
the NAS execution), and the possibility of implementing a powerful ensemble of efficient
and diverse learning models, possibly overcoming the state-of-the-art performance in the
literature.

The second and third chapters will depicture the conceptual basis used to
support methodology and experiments. On the fourth chapter detailed experiments are
proposed and explained to the user. Finally the fifth chapter will analyse the results of
the experiments and outline the main contributions.

1Partially-Connected Differentiable ARchiTecture Search (XU et al., 2020)
2Non-Inferior Set Estimation (COHON; CHURCH; SHEER, 1979)

19

2 Searching Architectures in NNs

Before introducing the main problem on Section 2.5 we are going to present
the general concepts of neural networks, the relevant operations in Convolutional Neural
Networks (CNNs) and the motivation for their adoption as the basic architectures on
NAS.

2.1 Neural Networks

Mcculloch and Pitts (1943) proposed a mathematical model to represent a
neuron. After fifteen years a learnable neuron was first proposed by Rosenblatt (1958),
called Perceptron. This is the simplest network, with one unit and adjustable weights,
guiding to a trainable linear classifier. Figure 2.1 show this structure and the generic
definition is:

𝑓(𝑤𝑗 , 𝑥) = 𝑓(
𝑚∑︁

𝑖=1
𝑤𝑗𝑖𝑥𝑖 + 𝑤𝑗0) (2.1)

where 𝑓(·) is the activation function and 𝑚 is the number of inputs.

wj1

wj2

wj3

wjm

x1

x2

x3

xm

f() yj

Activation
funciton

wj0 Bias

Figure 2.1 – Representation of the Perceptron and its adjustable weights.

Since then, several attempts have been made toward more general neural net-
work models, theoretically capable of universally approximating arbitrary continuous non-
linear functions on a compact input space (HORNIK; STINCHCOMBE; WHITE, 1989).
The Multilayer perceptron (MLP) (or more generally speaking feedforward networks)

Chapter 2. Searching Architectures in NNs 20

was one of them. It consists of many layers of neurons, each one performing the afore-
mentioned input-output mapping of a single Perceptron. In other words it is a cascade of
multidimensional nonlinear mappings. The nonlinear mapping performed by each neuron
on the 𝑖-th layer with 𝑛 neurons on the layer before and 𝑘 neurons on the current layer is
given by:

𝑜𝑖
𝑗(𝑥) = 𝑓 𝑖(

𝑛∑︁
𝑎=0

𝑤𝑖
𝑗𝑎 · 𝑜𝑖−1

𝑎 (𝑥) + 𝑤𝑖
𝑗0) (2.2)

where 𝑗 = [1, ..., 𝑘], 𝑤𝑖 are the weights of the 𝑖-th layer and 𝑜 represents the layer output.

f1 fn

input layer

output layer

hidden layers

Figure 2.2 – Representation of an MLP. All the outputs of a previous layer are taken as
inputs of all the neurons at the subsequent layer, with each input multiplied
by an adjustable weight. The dark gray circles represent neurons and the
light gray ones represent features from the inputs and output.

This chain of non-linear multidimensional mappings allows multilayer neural
networks to solve non-linear problems, by jointly adjusting the whole set of weights with
the purpose of reducing the accumulated error produced at the output layer. The out-
put error should then be backpropagated along the layers (RUMELHART; HINTON;
WILLIAMS, 1986), thus implementing a learning process founded on gradient descent
(WIDROW; HOFF, 1960).

With the advent of cheaper hardwares, faster and dedicated boards (GPUs and
TPUs for instance), pretraining and other advanced techniques for making deep learning
computationally efficient, it was possible to work with big data and deep architectures
in neural network learning. Krizhevsky, Sutskever, and Hinton (2012) took another step
with their deep convolutional networks, in which the convolutional layers were further

Chapter 2. Searching Architectures in NNs 21

demonstrated to perform representation learning (BENGIO; COURVILLE; VINCENT,
2013) by extracting along the layers a hierarchy of relevant features from the input data.

2.2 Operations in Convolutional Neural Networks

Convolutional Neural Networks (CNNs) played a decisive role on the recent
attention at deep learning. It happens due to the feature extraction ability of the con-
volutional operator (MARQUES, 2018), which consists of a small kernel convoluted (or
cross-correlationed) throughout a whole input image with a specific stride and padding.
This creates a sparse interaction meaning that we need to store fewer parameters compared
to a fully connected layer (see Figure 2.2) (GOODFELLOW; BENGIO; COURVILLE,
2016).

The CNNs, on the other hand, exhibit a dimensionality issue along the cascade
of convolutional layers. For instance, a color input image of 32 × 32 × 3 when processed
by a Convolutional layer (conv) with 16 kernels of 3×3 (see Fig. 2.3) yields a 30×30×16
output. Aiming at reducing the amount of weights for the subsequent convolutional layer,
a pooling operator can be introduced between consecutive convs.

Figure 2.3 – Representation of a 2D Convolution with 2 kernels (channels or filters), height
3, width 3, stride 1, and 0 padding.

The pooling operator is applied normally on the height and width of the image,
leaving the channel dimension intact (MARQUES, 2018). The most known and used
pooling operators are the max pooling and the (weighted) average pooling shown
on Fig. 2.4. The total number of weights in CNNs may also be reduced by considering
separable convolution operators (GOODFELLOW; BENGIO; COURVILLE, 2016).

Chapter 2. Searching Architectures in NNs 22

Figure 2.4 – Representation of pooling operation on one dimension with height 2, width
2, stride 2, and 0 padding.

Other challenges for the computational efficiency of the training process are
verified when the neural architecture becomes deeper, such as the vanishing and the ex-
ploding gradient due to the increasing number of layers that can make the gradient near
zero on the first stages of backpropagation algorithm, or even accumulate the residuals un-
til it explodes. This was addressed using many techniques: smaller learning rate (along
with slower training), proper weight initialization (GLOROT; BENGIO, 2010), non-
saturating activation functions (NAIR; HINTON, 2010), gradient clipping (PAS-
CANU; MIKOLOV; BENGIO, 2013), skip-connection (HE, K. et al., 2016) and Batch
normalization (batchNorm) (IOFFE; SZEGEDY, 2015).

Differently from other mentioned techniques, Batch normalization is a layer
added to the model (to the output of any input or hidden layer) with adaptive reparametriza-
tion (GOODFELLOW; BENGIO; COURVILLE, 2016) and is explored on our baselines.
The normalization is applied to a distinct mini-batch at each step of a given training
epoch. Let 𝑋 be a minibatch of outputs from a layer where each row 𝑖 is a sample to
normalize:

𝑋 ′ = 𝑋 − 𝜇

𝜎
(2.3)

where 𝜇 is the mean and 𝜎 is the standard deviation, both calculated independently for
each feature of the mini-batch. For the 𝑖-th sample point, the update would be 𝑥′

𝑖 =
batchNorm(𝑥𝑖, 𝑋). This way it propagates (forward and backward) values unaffected by
the scale of the layer parameters, stabilizing the growth of the parameters and allowing
higher learning rates (consequently faster training).

Chapter 2. Searching Architectures in NNs 23

The skip-connection (shortcut connection or identity function) is not a layer
by definition, but it creates a direct connection between two non-consecutive layers, with-
out additional weights. Kaiming He et al. (2016) successfully used this type of operation
with stacked blocks (set of predefined subnetworks), very similar to the architecture of
our baselines. This connection helps the lower layers to receive a gradient that is not
vanishing or exploding, mitigating the training degradation and then promoting accuracy
improvement on deeper networks (HE, K. et al., 2016).

2.3 Hyperparameter Optimization

Despite the increasing accessibility to NNs, the number of design decisions to
make, involving both architecture definition and weight adjustment procedure, tends to
increase uncontrollably, making it impossible to test all architectures and all aspects of
the optimization algorithm in the search of the best model for each problem.

Those decisions that control the behavior of NNs when solving learning prob-
lems (GOODFELLOW; BENGIO; COURVILLE, 2016) are called hyperparameter be-
cause they are decided before the training and are not learned. Some relevant examples
are: number of layers; type of layers (operations described on Sec. 2.2); number of neural
units (e.g. number of convolutional kernels) at each layer; learning rate; convolution kernel
size; loss metric; and the optimization algorithm.

Some techniques were develop to avoid manual testing, like grid search, Bayesian
optimization or evolutionary optimization. Although powerful for continuous variables,
like learning rate and weight decay, they struggle with the discrete parameters that are
not easy to differentiate. In this context NAS was able to improve architecture design
and show impressive results.

2.4 Neural Architecture Search (NAS)

NAS aims at automatically finding the best architectures given a data set, thus
avoiding human hyperparameter intervention. This search depends on the search space
(modular, or global) and the optimization method (how to generate new candidate
solutions and test them), necessarily relying on some human expertise to tune the ultra-
parameters that will determine how to search the space of network hyperparameters.

2.4.1 Search Space

We can classify the search space into two categories: (1) Global/Macro space,
which defines graphs that represent the entire network. (2) Cell-based space, which defines

Chapter 2. Searching Architectures in NNs 24

a block or basis subnetwork that will be cascaded to compose the whole network.

Global Search allows more freedom and possibilities for the network. Each iteration of
this method combines sequence of nodes and trains a model using this structure. The
order, quantity, operations and hyperparameters inside each node enables flexibility that
allow an explosive amount of combinations, thus imposing a challenge since it is impossible
to test all. Baker et al. (2016) started pruning notably poor or expensive architectures.
Further works added more freedom with skip-connections (ZOPH; LE, 2017), but had to
reduce the search space toward feasibility.

Cell Search is based on rewarded handcrafted networks with many repeated basic struc-
tures like fully-connected or convolutional layers (here called cells). The goal is to find
one normal cell (responsible for finding the best operations that yield most loss function
reduction) and one reduction per search (responsible for reducing spatial resolution) that
will become the basic units of the final network, thus reducing the number of possibilities
in the search. Each cell is composed of nodes with a fixed topology but various oper-
ations connecting those nodes. Those different combinations of order and layers create
the population of cells to test. Zoph, Vasudevan, et al. (2018) proposed a reduction cell
to handle the feature dimension and most following works also used it. Normal cells use
stride one to avoid changing the dimensions and the most common number of nodes is 5.
Reduction cells use stride two to reduce spacial size on intermediate points. Each block
can have multiple inputs, one or two of the previous cells, then creating skip-connections.
Cell-based search is usually composed of two steps (See Subsection 2.4.3), one devoted to
search the cell and another to train the final net from scratch using the obtained cells.
Relevant studies (CAI; ZHU; HAN, 2019; CAI; GAN, et al., 2020) tried to avoid surrogate
models like this, but, nonetheless, proxies improve the speed and exhibit accuracy very
close to the ones achieved by non-proxy algorithms.

2.4.2 Optimization Methods

In this section we will discuss different optimization algorithms to search the
best architecture 𝛼 with respect to the objective function (e.g., minimizing the loss func-
tion taken as accuracy or cross-entropy). The first high quality NAS algorithms used
Reinforcement Learning (RL) (ZOPH; LE, 2017; BAKER et al., 2016) and neuroevolu-
tion (REAL; MOORE, et al., 2017) consuming hundreds of GPU hours to find appropriate
architectures (WISTUBA; RAWAT; PEDAPATI, 2019).

Reinforcement Learning models an agent that takes decisions to change the environ-
ment, i.e the architecture, to maximize its reward, usually accuracy, taking into account
the past state-action moves. Although most cases limits the iteration to finite states and

Chapter 2. Searching Architectures in NNs 25

episodes, those algorithms were mainly used in the early achievements of the field (ZOPH;
LE, 2017), being characterized by a computational overhead. This issue is presented at
Table 2.1 where the GPU Days column reveals a high computational burden.

Evolutionary Algorithm relies on a population of candidate architectures for NAS
that suffer mutation (recombination does not show good results in this case) throughout
the epochs to generate new models based on the fitness results. The mutations can occur
in a cell or global space (definition made in Section 2.4.1). The most relevant proposals
are founded on genetic algorithms. Due to the mutation step of the algorithm, it is very
expensive training the networks from scratch after each iteration. The first relevant work
from Real, Moore, et al. (2017) using global search space was too permissive allowing re-
dundant operations. Later on Real, Aggarwal, et al. (2018) the notable AmoebaNet-B and
AmoebaNet-C strategies were proposed and set the new records on image classification
task dataset CIFAR-10 and ImageNet at the cost of 3,150 GPU hours.

One-Shot Architectures search method consists of training only one deep architecture
during the search process. This drastically reduces the search time cost but increases the
memory cost because it requires an over-parameterized network to be trained. This tech-
nique is very suitable to work with Surrogate models, Cell Search and gradient descent
optimizers. Aiming at training a single super-architecture, researches used many inter-
esting ideas: in Zoph and Le (2017) an RL controller samples the architecture and then,
using gradient descent, updates the architecture and the controller weights. The network
parameters are updated on another step. Evidently, this causes optimization issues due
to constant structural changes in the neural architecture which does not share weights
smoothly. Liu, Simonyan, and Yang (2019) tried to train the entire network with all pos-
sibilities at once. They proposed a linear combination of the operations on a cell-style
network using softmax, allowing them to make the architecture differentiable. The pa-
rameters of the softmax operation (minimized by loss) highlight the best operation to use
for the final training step.

Random Search has proven to be an extremely strong baseline method when the search
space is known to sample well-performing architectures (WISTUBA; RAWAT; PEDAP-
ATI, 2019). Yu et al. (2019) argued that the search methods still deliver good results due
to the very limited search space. They provide empirical evidence that a random search
outperforms many of the previously described methods in the search for an RNN cell. Li
and Talwalkar (2019) also confirm this result and additionally show that random search
finds architectures that perform at least as well as the ones obtained from established
optimizers for CNNs.

Chapter 2. Searching Architectures in NNs 26

2.4.3 Surrogate models

A surrogate model is indicated when an outcome of interest cannot be easily
obtained, and a function approximation of the outcome is then adopted (WISTUBA;
RAWAT; PEDAPATI, 2019). In the case of very costly calculations, a surrogate model
may represent an interesting efficiency vs. precision trade-off. In the case of NAS this
technique avoids training the entire network while testing different setups. A surrogate
model is similar to the original one but it can be smaller (also called proxy model) or
trained for fewer epochs (early stopping) and the accuracy is not required to be high
because there will be another step to train the final net, thus alleviating the load during
search iterations. Given that, the ranking for architectures is desired as long as it is useful,
otherwise it can misguide the decision and invalidate the process.

Table 2.1 – Networks performance comparison on CIFAR-10 (NAS and human-designed)
most relevant results. Networks were organized by optimization method: Rein-
forcement Learning (RL), Evolutionary Algorithm (EA), One-shot (gradient
optimization) and random search. GPU Days refers to total search time of
each model and it can be calculated by 𝐺𝑃𝑈 𝐷𝑎𝑦𝑠 = # 𝑜𝑓 𝐺𝑃𝑈𝑠× 𝑡 where
t is the number of days the process took to run (LIU, Y. et al., 2021). Data
was extracted from Ren et al. (2021).

Search Method Research Error Acc (%) Params (M) GPU Days

Human-
designed

PyramidSepDrop
+ ShakeDrop 2.67 26.2

N/AShark 3.55 2.9
ResNet 6.41 1.7

RL
ProxylessNAS-R* 2.3 5.8 8.3
Path-level EAS* 2.49 5.7 200
NASNet-A* 2.65 3.3 2,000

EA

AmoebaNet 3.34 3.2 3,150
Neuro-Cell-based
Evolution* 3.57 5.8 0.5

Hierarchical-EAS 3.75 15.7 300

One-Shot

ProxylessNAS-G* 2.08 5.7 8.3
P-DARTS* 2.50 3.4 0.3
PC-DARTS* 2.57 3.6 0.1
SGAS 2.66 3.7 0.25
GDAS-NSAS 2.73 3.54 0.4
DARTS (1𝑛𝑑 order)* 3.00 3.3 1.5
DARTS (2𝑛𝑑 order)* 2.76 3.3 4

Random
RandomNAS-NSAS 2.64 3.08 0.7
RandomNAS* 2.85 4.3 2.7
DARTS Random 3.29 3.2 4

* results using Cutout (DEVRIES; TAYLOR, 2017), a data augmentation technique.

Chapter 2. Searching Architectures in NNs 27

2.5 Differentiable Neural Architecture Search

During the search for an architecture, it was usually assumed that each compo-
nent or operation should be present or not in a discrete manner. However, Liu, Simonyan,
and Yang (2019) surpassed this limitation by obtaining a differentiable architecture with a
linearly weighted combination of operations on a surrogate model (WISTUBA; RAWAT;
PEDAPATI, 2019). After training architecture and operations weights interchangeably,
the final architecture is chosen based on the largest weights of the linear combination. The
following subsections will explain this proposal in details and the main recent advances.

2.5.1 Problem Characterization

NAS can be described as a two-part problem: find the best weights given the
best architecture. Previous initiatives to solve this optimization problem guided to labori-
ous job that required testing as many architectures as possible. Based on a gradient-based
formulation, the whole optimization problem can be described as a Bilevel optimization
(BLO) problem:

min
𝛼

ℒ𝑣𝑎𝑙(𝑤*(𝛼), 𝛼) (2.4)

𝑠.𝑡. 𝑤*(𝛼) = arg min
𝑤
ℒ𝑡𝑟(𝑤, 𝛼) (2.5)

where ℒ𝑣𝑎𝑙 and ℒ𝑡𝑟 refer to loss value on validation and training sets, respectively, 𝑤

represents the vector of network weights and 𝛼 stands for the architecture weights (HE,
C. et al., 2020). In this case Eq. (2.4) represents the outer (or upper level) problem, which
searches the best architecture 𝛼 given the optimized weights 𝑤* from Eq. (2.5), which
represents the inner (or lower level) problem (LIU, R. et al., 2021) that optimizes the
weight 𝑤 given a fixed architecture 𝛼.

This problem requires that the network be entirely trained for each 𝛼 update.
This would be prohibitive and further research proposed heuristics to approximate 𝑤*(𝛼)
or even the adoption of a single level optimization method where the current 𝑤 is 𝑤*(𝛼),
resuming the problem to:

min
𝑤,𝛼
ℒ𝑡𝑟(𝑤, 𝛼) (2.6)

speeding up the process but with a tendency to degrade the performance (LIU; SI-
MONYAN; YANG, 2019).

2.5.2 Related work

Having in mind that a multi-objective perspective of NAS would require iter-
ating on the NAS process many times, we started excluding evolutionary, RL and some

Chapter 2. Searching Architectures in NNs 28

gradient-based algorithms that have high GPU footprint. Hence we selected an extension
of Liu, Simonyan, and Yang (2019) work (PC-DARTS) as the base NAS strategy for
our research due to its good results, low computational burden for the search process
(existence of proxy networks) and availability of open source code.

Differentiable ARchiTecture Search (DARTS) (LIU; SIMONYAN; YANG, 2019)
was the first NAS gradient-based algorithm with low cost and good results. It changed
the field showing that the architecture could be tuned using gradient descent with all
candidate operations in a One-Shot architecture. Many subsequent researches tried to
improve its speed, results and reduce the proxy model (Search stage) and final model
(Evaluation stage) (XU et al., 2020; CHEN et al., 2019; JIANG et al., 2019; GREEN
et al., 2020).

The search step creates a network with 𝐿 sequential cells. Each cell has 𝑁

nodes, where each node defines a network layer with multiple concurrent operations.
Each node 𝑁 is connected to all previous nodes. There is a pre-defined space of operations
denoted by 𝒪, in which each element, 𝑜(·), is a fixed operation (e.g., identity connection,
and 3×3 convolution) on a network layer. Within a cell, the goal is to choose one operation
from𝒪 to connect each pair of nodes. Let a pair of nodes be (𝑖, 𝑗), where 0 ≤ 𝑖 < 𝑗 ≤ 𝑁−1,
the core idea of DARTS is to formulate the information propagated from node 𝑖 to 𝑗 as
a weighted sum over |𝒪| operations:

𝑓𝑖,𝑗(𝑥𝑖) =
∑︁
𝑜∈𝒪

𝑒𝑥𝑝{𝛼𝑜
𝑖,𝑗}∑︀

𝜃∈𝒪 𝑒𝑥𝑝{𝛼𝜃
𝑖,𝑗}
· 𝑜(𝑥𝑖) (2.7)

where 𝑥𝑖 is the output of the node 𝑖 and 𝛼 is the weight for operation 𝑜(𝑥𝑖). The output
of a node is the sum of all node inputs transformed ∑︀

𝑖<𝑗 𝑓𝑖,𝑗(𝑥𝑖). The output for the cell
is the sum of all nodes that are not cell‘s input. There is an overview at Figure 2.5.

The search finds two types of cells: (i) the normal cell which preserves the
spatial dimensions and has stride 1 on its operations when applicable and (ii) the reduc-
tion cell, in which all the operations adjacent to the input nodes are of stride two. The
architecture encoding therefore is (𝛼𝑛𝑜𝑟𝑚𝑎𝑙, 𝛼𝑟𝑒𝑑𝑢𝑐𝑒), where 𝛼𝑛𝑜𝑟𝑚𝑎𝑙 is shared by all the
normal cells and 𝛼𝑟𝑒𝑑𝑢𝑐𝑒 is shared by all the reduction cells (LIU; SIMONYAN; YANG,
2019).

Half of training samples are used to train the architecture parameters 𝛼 and
the other half to train the operations weights. To speed-up the process, two types of
approximation are proposed:

First-order Approximation (Eq. (2.6)):

𝑤*(𝛼) ≈ 𝑤

Chapter 2. Searching Architectures in NNs 29

0

1

2

3

(a)

0

1

2

3

(b)

0

1

2

3

(c)

Figure 2.5 – DARTS overview at the cell level of DARTS search: (a) Initially it has
the same probability for all operations. (b) Different operations start to be
highlighted given the optimization algorithm. (c) At the end of Search stage,
the most likely operation creates the discrete architecture cell. Please be
aware that no connection is an operation under evaluation and it can be
selected, which means removing the connection itself from the cell. This
image was based on Liu, Simonyan, and Yang (2019) Figure 1.

Second-order Approximation:

𝑤*(𝛼) ≈ 𝑤 − 𝜉∇𝑤ℒ𝑡𝑟(𝑤, 𝛼)

where 𝜉 is the current learning rate.

This allows DARTS to train the architecture (BLO upper level - Eq. (2.4))
and weights (BLO lower level - Eq. (2.5)) interchangeably. Each epoch consists of an
update of 𝛼 followed by an update of weights. Although they did not provide convergence
guarantees, the algorithm was able to reach a fixed point (LIU; SIMONYAN; YANG,
2019). Finally the second-order approximation was considered better empirically (see
Table 2.1).

Afterward, only the operation with the biggest 𝛼𝑜
𝑖,𝑗 (𝑓𝑖,𝑗 = arg max𝑜∈𝒪 𝛼𝑜

𝑖,𝑗)
for each node is maintained in the final discrete network. It can be visualized in Figure
5.4 and it is suitably encoded in a string that we will call architecture code from now on.
Then the Evaluation stage is done sequentially connecting 𝐽 cells, normally bigger then 𝐿,
and training for more epochs. The number 𝐽 can vary depending on the dataset, DARTS
used 𝐿 = 8 and 𝐽 = 20 for CIFAR-10 and 𝐽 = 14 for ImageNet (mobile settings). Since
DARTS rely on Surrogate models ranking and the datasets are similar, they empirically
claim that the cell is transferable to ImageNet dataset, avoiding another searching process.

Partially-Connected Differentiable ARchiTecture Search (PC-DARTS) is an
extension that samples a subset of the network on Search stage to reduce the redundancy

Chapter 2. Searching Architectures in NNs 30

in exploring the network space. It helps with the high memory footprint on GPUs (that
are not expandable memory normally) allowing to train with a larger batch size, yielding
faster and better generalization due to stability when back propagating the gradient (XU
et al., 2020).

The innovation is the use of partial connection on the channel dimension of
the operations. 1/𝐾 proportion of the channels are calculated on the operation between
edges, while 1− 1/𝐾 proportion is bypassed and concatenated with the operation output
as follows:

𝑓𝑃 𝐶
𝑖,𝑗 (𝑥𝑖; 𝑆𝑖,𝑗) =

∑︁
𝑜∈𝒪

𝑒𝑥𝑝{𝛼𝑜
𝑖,𝑗}∑︀

𝜃∈𝒪
𝑒𝑥𝑝{𝛼𝜃

𝑖,𝑗}
· 𝑜(𝑆𝑖,𝑗 * 𝑥𝑖) + (1− 𝑆𝑖,𝑗) * 𝑥𝑖 (2.8)

where 𝑆𝑖,𝑗 assigns 1 to selected channels and 0 to masked ones. By varying K, we could
trade off between architecture search accuracy and efficiency. For instance, DARTS is
equivalent to 𝐾 = 1.

Edge Normalization

Sampling channels reduces the difference between two sets of hyperparame-
ters 𝛼𝑜

𝑖,𝑗 when optimizing the architecture, but operations with weights would propagate
inconsistent information across iterations before their weights are well optimized, thus
creating a biased preference for a weight-free operation (skip-connection, max pooling,
etc.) over a weight-equipped one (convolutions) in 𝒪.

To mitigate the fluctuation of the channel sampling on the architecture pa-
rameters 𝛼𝑜

𝑖,𝑗, a new set of parameters was introduced after the operation output using
the same softmax logic to select edges. Instead of concatenating all the operations output,
it was introduced a new parameter 𝛽𝑖,𝑗 between edges (𝑖, 𝑗):

𝑥𝑃 𝐶
𝑗 =

∑︁
𝑖<𝑗

𝑒𝑥𝑝{𝛽𝑖,𝑗}∑︀
𝑖′<𝑗 𝑒𝑥𝑝{𝛽𝑖′,𝑗}

· 𝑓𝑃 𝐶
𝑖,𝑗 (𝑥𝑖) (2.9)

Figure 2.6 helps to visualize this new parameter. The final edge (𝑖, 𝑗) weight
given by the network optimization is obtained multiplying 𝛼𝑖,𝑗 softmax value by 𝛽𝑖,𝑗

softmax value.

Chapter 2. Searching Architectures in NNs 31

0

1

2

3

Figure 2.6 – PC-DARTS overview. 𝛼𝑜
𝑖,𝑗 (operation parameter) and 𝛽𝑖,𝑗 (edge parameter)

represent the architecture parameters between nodes, where 0 ≤ 𝑖 < 𝑗 and
𝑜 ∈ 𝒪. Only a subset, 1/K, of channels are used to update 𝛼𝑜

𝑖,𝑗 so that the
memory consumption is reduced by K times. This image was based on Figure
1 in Xu et al. (2020).

32

3 Multi-objective optimization (MOO)

MOO is the field of Mathematical Programming that studies optimization
problems with more than one conflicting objectives (MIETTINEN, 2012). The conflict
implies that the multiple objectives cannot be simultaneously optimized, thus imposing
a trade-off among the active objectives. Hence, there is no single best solution, but many
solutions with different trade-offs for all objectives, denoted Pareto-optimal (or efficient)
solutions. Relevant multi-objective techniques focus primarily on finding a good represen-
tation of this set of efficient solutions (RAIMUNDO; DRUMOND, et al., 2021).

Hyperparameter tuning methods are often guided solely by the performance
on the validation set, ignoring eventual intrinsic properties of the trade-offs between the
different parameters considered. Sampling and populating the Pareto frontier is an in-
teresting way to do so, because it produces a population of diverse efficient solutions
(or approximated efficient solutions if the Pareto frontier could not be sampled exactly),
avoids the waste of resources, supports model selection and provides a pool of diverse com-
ponents to feed ensembles (RAIMUNDO; DRUMOND, et al., 2021). Moreover, works in
the field rarely take advantage of deterministic multi-objective optimization methods,
which are particularly useful for performing a controlled distribution of efficient solutions,
properly reacting to the particular conformation of the Pareto frontier. Raimundo, Dru-
mond, et al. (2021) illustrated this advantage on his research using the NISE algorithm
(see Figure 3.1).

Formally a multi-objective problem can be defined as (based on (RAIMUNDO,
2018)):

min
𝑥

f(x) ≡ {𝑓1(x), 𝑓2(x), ..., 𝑓𝑚(x)}

𝑠.𝑡. x ∈ Ω, Ω ⊂ R𝑛

f(·) : Ω→ Ψ, Ψ ⊂ R𝑚

(3.1)

where the set Ω ⊂ R𝑛 is known as the decision space and Ψ ⊂ R𝑚 is known as the objective
space. The objective function maps values from the decision space to the correspondent
point at the objective space.

Since the objective space is multidimensional, two solutions only have a domi-
nance relation when the worse solution (dominated solution) has, with respect to a better
solution (non-dominated solution), all objectives of equal or lower quality and at least one
objective strictly of lower quality (WIECEK; EHRGOTT; ENGAU, 2016). The solutions
not dominated by any other feasible solution are called Pareto-optimal solutions (also
called efficient solution, further defined). Given so, it is also relevant to define two other

Chapter 3. Multi-objective optimization (MOO) 33

concepts:

• Efficiency/Pareto-optimality: A solution x* ∈ Ω is efficient (Pareto-optimal) if there
is no other solution x ∈ Ω such that 𝑓𝑖(x) ≤ 𝑓𝑖(x*),∀𝑖 ∈ {1, 2, ..., 𝑚} and
𝑓𝑖(x) < 𝑓𝑖(x*) for some 𝑖 ∈ {1, 2, ..., 𝑚}.

• Efficient front/Pareto frontier: An efficient front Ψ* (Pareto frontier) is the set of
all efficient solutions. When considered the problem on Eq. (3.1), the efficient front
Ψ* is formed by efficient objective vectors f(x*) ∈ Ψ* which has a corresponding
feasible solution x* ∈ Ω.

Beyond single model selection, multiple models can be combined to obtain a
committee machine or ensemble. Generally, the synthesis of an ensemble involves three
steps: generation of learning machines, selection of a proper subset of these machines,
and the composition of the selected machines to achieve a single outcome (ZHOU, 2012).
Multi-objective approaches usually address multiple performance metrics (instead of solely
model losses or regularization strengths) in the first two steps of the ensemble framework.

(a) NISE (b) Log grid search (c) Constant grid search

Figure 3.1 – Pareto frontier representation for the heart-cleveland dataset. Each blue
point corresponds to an optimal value of the regularized multinomial re-
gression with distinct Multinomial loss vs 𝐿2 norm trade-off.
Extracted with permission from Raimundo (2018) Figure 20.

3.1 Multi-objective NAS

Although convex objective functions favor the sampling of a convex Pareto
frontier, there is no guarantee it will happen in a multi-objective deep learning problem
due to the following reasons: (i) the stochastic initialization, which promotes a distinct
outcome at each execution; (ii) it generally has a non-convex loss function (guiding to
the existence of local minima); (iii) the nondeterministic behaviour of the optimization
given the precision rounding and CUDA convolutions on GPUs; (iv) the usage of proxy
networks that are not fully trained. All those reasons can generate different architectures,

Chapter 3. Multi-objective optimization (MOO) 34

loss and accuracy for very similar settings. Furthermore the combination of operations
can be sometimes harmful for the network, just like excessive or restrained regularization,
making even harder to have a well-behaved function.

Nevertheless the early NAS formulations that yield good results focused mainly
on showing the relevance and promisingness of the field. Just after the first results, re-
searches started to care about other factors such as number of parameters, latency and
models for specific hardwares. The new objectives could impose new constraints or penal-
ties or be considered as the a posteriori preference of the decision maker.

Previous approaches using MOO on NAS are not computationally viable
by focusing on an evolutionary search engine (KIM et al., 2017; ELSKEN; METZEN;
HUTTER, 2019):

Hsu et al. (2018) tried to use a weighted sum of the objectives (accuracy, power con-
sumption and MAC operations) with Zoph and Le (2017) models, for instance;

Dong et al. (2018) went further and used device awareness with Sequential model-based
optimization (SMBO) in a cell structured search. It is worth mentioning that the search
for their Pareto frontier took 8 GPU days on CIFAR10, even though they were using
surrogate models;

Lu et al. (2020) used Genetic Algorithm to minimize two objectives: classification er-
ror and floating-point operations (FLOPs). The search took 4 GPU Days on CIFAR10
dataset;

Only a few differentiable objectives were explored so far: Cai, Zhu, and Han
(2019) was able to differentiate latency using expected latency from the combination of
the candidate models (LI; SUN, et al., 2021), i.e. a network to predict latency given the
operators. To the best of our knowledge, there is no previous initiatives involving MOO
on One-Shot NAS (mainly DARTS) with such clear differentiable formulation even in a
multi-objective context, thus opening the possibility of speeding up the search.

3.2 Non-Inferior Set Estimation (NISE)

This technique (COHON; CHURCH; SHEER, 1979) is an iterative approach
that uses the weighted sum method to automatically create, at the same time, an inner
and an outer approximation of the Pareto frontier using a linear approximation. At every
iteration, based on the already calculated efficient solutions, a segment between each
neighboring pair of efficient solutions is traced, determining new weighting vectors. Then,
the next w vector is selected using the highest error margin 𝜇𝑖,𝑗 among all pairs on the
Pareto frontier as shown on Figure 3.2.

Chapter 3. Multi-objective optimization (MOO) 35

Figure 3.2 – NISE’s calculation of the weight vector w and the error margin 𝜇𝑖,𝑗. The
weight vector w corresponds to the line that connects f(xi) and f(xj). The
error margin 𝜇𝑖,𝑗 is the distance between the minimal potentially achievable
value r and the current representation r. Extracted with permission from
Raimundo (2018) Figure 4.

This procedure finds an accurate and fast approximation for problems with
two objectives (ROMERO; REHMAN, 2003). Two neighboring efficient solutions (called
neighborhood) are used to determine a new efficient solution employing the weighted sum
method. The stopping criterion is defined to ensure the quality threshold of the approxi-
mation (RAIMUNDO; FERREIRA; ZUBEN, 2020). Figure 3.3 illustrates an iteration of
this process. NISE was further extended by Raimundo, Ferreira, and Zuben (2020) for
more than two objectives, given rise to MONISE (many-objectives NISE).

On the other hand, in the case of non-convex Pareto frontiers, efficient solutions
dominated by convex combinations of other efficient solutions are not achievable by NISE,
as it happens with all strategies based on the weighted sum method. This limitation has
forced us to adapt NISE to find an approximation of the frontier in order to find Pareto-
optimal solutions (see Subsection 3.3.1).

3.2.1 Weighted sum method

This method consists of a simple manner to implement a weighted combination
of the objectives. Each component of the vector w represents the relative importance of
each objective, or, in other words, it represents the preference for each objective. In our
research, these weights are automatically determined and updated by NISE, with the
purpose of populating the desired regions of the frontier (RAIMUNDO; FERREIRA;

Chapter 3. Multi-objective optimization (MOO) 36

(a) Initialization (b) First iteration (c) Second iteration

Figure 3.3 – Steps of the NISE algorithm. In (a) Initialization, w1 (horizontal line) and
w2 (vertical line) are used to find the extreme solutions f(x1) and f(x2).
In (b) First iteration, the weight vector w3 (established by the line that
connects f(x1) and f(x2)) is used to find f(x3). In (c) Second iteration, the
weight vector w4 (established by the line that connects f(x1) and f(x3)) is
used to find f(x4), which is the choice that maximizes the margin.
Extracted with permission from Raimundo (2018) Figure 8.

ZUBEN, 2020). The method is defined as:

min
𝑥

w⊤f(x)

𝑠.𝑡. x ∈ Ω, Ω ⊂ R𝑛

f(·) : Ω→ Ψ, Ψ ⊂ R𝑚

(3.2)

where w ∈ R𝑚, ∑︀𝑚
𝑖=1 w𝑖 = 1 and w𝑖 > 0 ∀𝑖 ∈ {1, 2...𝑚}.

3.3 Sampling scalarized NAS solutions

NISE was the baseline adopted in our formulation due to its simplicity, de-
terministic nature and automatic distribution of the obtained efficient solutions along the
frontier, using scalarization of loss and regularization terms, briefly illustrated in Figure
3.3.

3.3.1 Extending NISE to non-convex scenarios

NISE relies on the convexity of the frontier to estimate the error 𝜇 between
pairs of current efficient solutions and then estimating the next weight w. However, in a
non-convex scenario, it is not possible to rely on it. NISE algorithm would fail for NAS

Chapter 3. Multi-objective optimization (MOO) 37

solutions because it might face non-convex frontiers while generating efficient solutions1.
For instance w𝑘⊤ is not a convex combination of w𝑖⊤ and w𝑗⊤ on Figure 3.4b, taken as a
core step of NISE’s operation (RAIMUNDO; FERREIRA; ZUBEN, 2020). In fact, in the
case of non-convex Pareto frontiers, it is possible to obtain errors 𝜇 that are not related
to the frontier (e.g., 𝜇𝑖,𝑘 on Figure 3.4b). In other words, it can yield big errors for a small
distance.

(a) Convex frontier (b) Non-convex frontier (c) Suitable behavior for a non-
convex frontier

Figure 3.4 – Extending NISE algorithm for non-convex Pareto frontiers: f(x𝑘) is an ef-
ficient solution but the Pareto frontier is not convex in Figure (b) and (c).
In (b) 𝜇𝑖,𝑘 is bigger than 𝜇𝑘,𝑗 however the neighbourhood between f(xj) and
f(xk) is less explored. This discrepancy is reduced in (c) using Euclidean
distance metric to calculate 𝜇.

Aiming at generalizing the formulation to non-convex scenarios, we calculate
the error using a simple metric: the Euclidean distance between the solutions in a neigh-
borhood. Besides that adaptation, the algorithm follows the same logic of NISE to find
the weights using the following linear system:⎧⎪⎪⎨⎪⎪⎩

w⊤f(x𝑖) = w⊤f(x𝑗),
2∑︀

𝑖=1
w𝑖 = 1,

(3.3)

The steps of the algorithm to sample the weights of the Pareto frontier can be
summarized with the following pseudo code:

1Be aware that those solutions could be non-optimal on a convex frontier, but without guarantees of
optimality, the unknown shape of the frontier and the usage of proxies, we worked with the worst case
scenario of a non-convex frontier.

Chapter 3. Multi-objective optimization (MOO) 38

Algorithm 3.1 NISE extension for non-convex scenarios
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑← 0.15
𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ← [𝑓𝑖𝑛𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(1.0, 0.0), 𝑓𝑖𝑛𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(0.0, 1.0)] ◁ Equation (3.4)
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒←∞
while 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do

𝑚𝑎𝑥_𝑑← 0
for 𝑖 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟)− 1 do

𝑑← 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟[𝑖], 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟[𝑖 + 1])
if 𝑑 > 𝑚𝑎𝑥_𝑑 then

𝑚𝑎𝑥_𝑑← 𝑑
𝑤 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑊𝑒𝑖𝑔ℎ𝑡(𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟[𝑖], 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟[𝑖 + 1]) ◁ Equation (3.3)

end if
end for
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒← 𝑚𝑎𝑥_𝑑
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒← 𝑓𝑖𝑛𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑤) ◁ Equation (3.4)
if 𝑖𝑠𝑃𝑎𝑟𝑒𝑡𝑜𝑂𝑝𝑡𝑖𝑚𝑎𝑙(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟) then

𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ← 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 + 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
𝑠𝑜𝑟𝑡(𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟) ◁ The frontier needs to be in order for 𝑑 calculation

end if
end while

The threshold represents the stopping criterion for the algorithm. It is calcu-
lated using the normalized values of the objectives to avoid one objective being considered
more important than another. The 𝑓𝑖𝑛𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 method returns the 2D solution found
using the weight w (parameter of the scalarization).

The non-optimality of solvers for non-convex problems enforces an adaptation
that consists of discarding dominated solutions and reordering the solutions to calculate
the weights. Given that, 𝑖𝑠𝑃𝑎𝑟𝑒𝑡𝑜𝑂𝑝𝑡𝑖𝑚𝑎𝑙 method checks if a solution belongs to the
current approximation of the Pareto frontier, which means it cannot be bigger (on both
dimensions at the same time) than any other point on the frontier. If the solution doesn’t
belong to the frontier, then it is discarded.

We created a constraint to guarantee that each w from one pair of parents
(points from the frontier) is explored only once to avoid infinite loops. Thus, if that w
yield a dominated point, the neighborhood is invalidated. Besides that, it is relevant
to highlight that one candidate can dominate multiple points on the frontier at once,
shrinking the frontier elements eventually.

3.3.2 Proposed Multi-objective NAS formulation

The weighted sum method and the gradient-based NAS formulation were com-
bined in our proposal by means of a convex combination. Starting from the BLO formu-
lation from DARTS to differentiate NAS (Eq. (2.5)), we arrive at a convex combination

Chapter 3. Multi-objective optimization (MOO) 39

of two conflicting objectives:

𝑤*(𝛼) = arg min
𝑤
{(1− 𝜈) · ℒ𝑡𝑟(𝑤, 𝛼) + 𝜈 · ℒ𝑟𝑒𝑔(𝑤)} (3.4)

where 𝑤 are the weights of the neural network and w = [1− 𝜈, 𝜈] to comply with NISE
(see Equation (3.3)).

The multi-objective procedure generates different weights 𝜈 (0 ≤ 𝜈 ≤ 1), thus
promoting the creation of multiple models, each one with a unique trade-off between
accuracy (ℒ𝑡𝑟) vs. complexity (ℒ𝑟𝑒𝑔). Unfortunately applying regularization directly to
architecture parameters (𝛼 or 𝛽) is not possible because they are already a weighted sum
with a fixed value.

In the next chapter, we will explain how we applied Eq. (3.4) on the Search
stage of PC-DARTS in order to populate the Pareto frontier and find relevant results
using the efficient models on it.

40

4 Methodology and Proposed Experiments

This research resulted in two theoretical developments to achieve our goals: (i)
Formulation of NAS exploring MOO (see Subsec. 3.3.2): it consists of considering the loss
function as conflicting with a regularization factor (𝐿1 or 𝐿2); (ii) NISE adaptation for
non-convex functions to generate the Pareto frontier (see Subsec. 3.3.1) using scalarization
of the objectives in order to have distributed samples at a reasonable computational cost.

Using a NISE adaptation on a multi-objective NAS model generates a set of
codes (base architecture cell structure encoded in a string) with loss vs. regularization
trade-off. Given that, we designed a series of experiments to validate the following as-
sumptions: (Experiment 1) is Alg. 3.1 capable of finding a good representation of Pareto
frontier of NAS models? (Experiment 2) Is it possible to select the diverse models found
by Alg. 3.1 without needing to execute PC-DARTS’ evaluation stage for all codes? (Ex-
periment 3) Is the model diversity of the (loss vs. regularization trade-off) Pareto frontier
also diverse in accuracy, model size and latency? (Experiment 4) Can the aggregation of
Pareto-optimal PC-DARTS’ models improve accuracy performance?

4.1 Experimental analysis

The following experiments are according to PC-DARTS Search and Evalua-
tion stages while iterating over each of them finding trade-offs of model complexity and
accuracy (check Figure 4.1 for visual representation):

Experiment 1: Validation of multi-objective Search stage. In this experiment, we
used Alg. 3.1 to estimate weights 𝜈 to populate the entire non-convex loss vs. regularization
frontier, in which every solution of the frontier is obtained by the Search stage of PC-
DARTS. Our goal in this experiment is to evaluate the capability of NISE’s adaptation
to create a representation of the Pareto-frontier for NAS models. Based on Eq. (3.4), we
changed the original Search Stage loss calculation (sum of criterion loss) to a weighted
sum of criterion and regularization loss weighted by 1-𝜈 and 𝜈 respectively. We could
select three different regularization cases (described on Section 4.2) in order to elect the
most suitable regularization a posteriori. For each run of Search stage we found a proxy
model and a code.

Experiment 2: Effect of multi-objective proxy models on Evaluation stage.
In order to know the final performance of a code, we need to use it on the Evaluation
stage to generate and train the final model with stacked cells. When training all efficient

Chapter 4. Methodology and Proposed Experiments 41

models from the Pareto frontier using the codes from previous experiment (for each case)
we obtained the real performance of each member of the frontier. Given that, the goal
of this experiment is to find evidence of proxy features (accuracy, scalarization profile,
or complexity of the model) that indicates the comparability with larger scale model
performance (Evaluation stage result) (LIU, Y. et al., 2021). If we find such association
we could avoid the cumbersome work to run each model in the Evaluation stage, that
would be only necessary for the selected ones. We also compared the results between cases
to elect the best one for this application accounting for the duration of Experiment 1
and proxy quality. Given the insights obtained we developed a guideline to select a small
subset of codes (of the case with best results) in order to find the most accurate models.
This guideline is used to guide the following experiments.

Experiment 3: Evaluation of single models. Using the framework created (See Sec-
tions 5.4 and 5.5) we trained the most accurate models in order to check the best single
model result and, at the same time, training a diverse pool of learning machines for the
next experiment to reach the best possible outcome.

Experiment 4: Evaluation of ensemble model. An Ensemble was created using the
models trained on Experiment 3 given that proper representation of the Pareto frontier
is a good sampling strategy for ensemble model generation, since it creates a diverse
set of efficient models (in contrast to any other diverse set of models) (RAIMUNDO;
DRUMOND, et al., 2021). The main purpose here is to demonstrate that the increase in
complexity (with the ensemble of multiple efficient models) is compensated favorably by
the improvement in performance.

4.2 Cases: Conflicting Objectives

The conflicting objectives used for sampling the frontier, restricting the model
weights, are:

• Cross-entropy: default model loss function used to tune free parameters (weights)
by means of the backpropagation process.

• 𝐿2 or mean squared error: This loss function is used as ℒ𝑟𝑒𝑔(𝑤) = ∑︀𝑛
𝑖=1(𝑤𝑖)2 where

𝑛 is the number of elements of the weight vector or matrix.

• 𝐿1 or mean absolute error: This loss function is used as ℒ𝑟𝑒𝑔(𝑤) = ∑︀𝑛
𝑖=1 |𝑤𝑖| where

𝑛 is the number of elements of the weight vector or matrix.

Chapter 4. Methodology and Proposed Experiments 42

Start

Exp 1Exp 1 Exp 1

Exp 2Exp 2 Exp 2

Select best case Experiment 3 Experiment 4 End

Estimate 𝜈

Search stage

d > t

Pareto frontier

Pareto frontier generation

Get one code

Evaluation stage

fin

Result analysis

Evaluation Loop

Case 1

Case 2

Case 3

no

yes

no

yes

variables
d : distance
t : threshold
fin : finish training

all codes
Exp 1 : Experiment 1
Exp 2 : Experiment 2

Figure 4.1 – Proposed flow of experimental scenarios. The output from Experiment 1
is the input for Experiment 2 case-wise. The Experiment 3 is going to
evaluate again the best codes of the best case. For more details about d and
t please refer to Alg. 3.1

We decided to use 𝐿2 and 𝐿1 regularization because they are wide-spread
functions to avoid overfitting and 𝐿1 also promote feature pruning. We set an experiment
using Cross-entropy vs. 𝐿2 loss and another using Cross-entropy vs. 𝐿1 loss.

Since 𝐿2 is already present on the original baseline to help with optimization,
acting like a penalty to generate smaller layer weights, this inspired us to create a third
experiment using Cross-entropy versus 𝐿1, while 𝐿2 is fixed using baseline weight value
(3e-4). Therefore, we have the following final three cases for Experiments 1 and 2:

Chapter 4. Methodology and Proposed Experiments 43

1. Cross-entropy loss and 𝐿2 loss objectives;

2. Cross-entropy loss and 𝐿1 loss objectives;

3. Cross-entropy loss and 𝐿1 loss objectives with fixed weight of 𝐿2 loss;

44

5 Experimental Results

In this research, we present and analyze the results of the four experiments
described in Section 4 using the baseline implementation PC-DARTS (XU et al., 2020)
with minor code changes. We employed an automatic adaptive variation of the weights
using Algorithm 3.1 to investigate the multi-objective nature of the model and understand
the impact of distinct trade-off solutions between training loss vs. complexity of the model
(𝐿1 and 𝐿2 regularization). Figure 5.1 shows the improvement against preliminary tests
using manual weight estimation, a commonly used method with fixed step (linear or
exponential) rate to estimate hyperparameter values during grid-search.

(a) Manual (b) Automatic using Algorithm 3.1

Figure 5.1 – Comparison of manual and automatic scalarization methods.

Notice that there is no guarantee of achieving any point belonging to the Pareto
frontier, given the non-convexity of the learning problem. Nonetheless, the search were
able to provide candidate solutions to populate a multi-objective like Pareto frontier with
valuable trade-offs of size and accuracy. It was also possible to obtain smaller models with
competitive performance when compared to the baseline. The source code is available at
https://github.com/iksmada/MOOD-NAS.

5.1 Initialization

After preliminary tests and given the nature of neural networks, it does not
make sense to initialize the weights as proposed by NISE (𝜈 = 0.0 in Equation (3.4)
that result in a model that only optimizes cross-entropy and 𝜈 = 1.0 that only optimizes

https://github.com/iksmada/MOOD-NAS

Chapter 5. Experimental Results 45

regularization). Instead, we empirically selected 𝜈 = 0 and 𝜈 = 0.2 initial regularization
loss weights for the cases because starting with 𝜈 = 1.0 created a long loop until it starts
generating Pareto-optimal solutions, inflating the computational burden.

Finally 𝜈 = 0.2 proved to be a good approximation for the initialization since
it generated, for our 3 cases, codes (base architecture cell structure encoded in a string)
with weight-free operations (pooling or skip-connections). The model size (Params) of
𝜈 = 0.2 on Tables 5.2, 5.3 and 5.4 attests that behavior. Another empirical tuned value
was the threshold. We decided that 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑=0.15 on Alg. 3.1 was a reasonable value
because it was able to populate the entire space using around 10 to 20 solutions on the
frontier.

When training time is a constraint, it can be reduced (with sampling damage)
using a higher threshold. It is worth mentioning that GPUs with smaller memory size run
slower while new GPU architectures run faster.

(a) L2 loss (b) L1 loss (c) L1 loss with fixed L2 weight

Figure 5.2 – Pareto frontier population on the Search stage for all 3 cases.

5.2 Experiment 1: Validation of multi-objective Search stage

We ran one case at a time with two conflicting objectives looping over the
Search stage (described on Subsec. 2.5.2): 𝐿2 loss and cross-entropy loss; 𝐿1 loss and cross-
entropy loss; and 𝐿1 loss and cross-entropy loss with a fixed value of 𝐿2 loss. The duration
of each case changed given the number of drawn samples, with Table 5.1 summarizing it.
The configuration was the same from baseline, except small code changes to monitor loss:

• 50% of the data is used for model weights training and 50% for architecture weights
training.

• The total number of epochs is limited to 50, out of which the first 15 were not used
to train the architecture to alleviate the preference for parameterized operations.

Chapter 5. Experimental Results 46

• The search step consists of stacking 8 cells (6 normal and 2 reductions cells on 1/3
and 2/3 of the whole network).

• Each cell has 6 nodes. The first and second nodes of cell 𝑘 are set equal to the
outputs of cell 𝑘 − 2 and cell 𝑘 − 1. See Figure 5.4.

• For partial connections we used 𝐾 = 4, thus only 1/4 features are sampled on each
edge, which yields almost 4 times bigger batch size.

• First-order approximation was used for 𝑤*(𝛼).

• 𝒪 = { 3 × 3 and 5 × 5 separable conv, 3 × 3 and 5 × 5 dilated separable conv,
3 × 3 max pooling, 3 × 3 average pooling, identity (skip-connection), and zero (no
connection) }. This set is the same from the baselines.

• Tests used Tesla V100 GPU with 12 GB of memory.

• All tests ran on the CIFAR10 dataset.

Table 5.1 – Experiment 1 duration per case. The Pareto-optimal ratio was calculated
using the number of optimal solutions on the frontier divided by the Model
quantity column.

Cases Model
quantity

Pareto-optimal
ratio (%)

Time (GPU days)
Total Average

𝐿2 26 65 4.4 0.17
𝐿1 11 82 1.9 0.17
𝐿1 with fixed 𝐿2 15 80 2.2 0.15
PC-DARTS 1 N/A N/A 0.16*

*For 10 runs

The experiment applied weighted sum regularization penalizing original cross-
entropy loss using the proposed multi-objective NAS formulation on Eq. (3.4). By chang-
ing the weight 𝜈 we were able to sample multiple architecture codes (candidates in the
search space). The response to the regularization objectives resulted in relevant trade-offs
that support the motivations of this research and can be seen on Figure 5.3. The results
will be discussed in the next section.

Chapter 5. Experimental Results 47

(a) (b)

(c)

Figure 5.3 – PC-DARTS behavior along the approximated Pareto frontier applying
regularization. (a) and (c) follow Eq. (3.4) using 𝐿1 and 𝐿2 loss as ℒ𝑟𝑒𝑔

respectively. (b) Since it has a fixed 𝐿2 value, Eq. (3.4) loss became:
(1− 𝜈) · ℒ𝑡𝑟 + 𝜈 · 𝐿1 + 3e-4 · 𝐿2.

Chapter 5. Experimental Results 48

5.3 Experiment 2: Effect of multi-objective proxy models on Eval-
uation stage

The appearance of the frontier during Search stage was above expectation, but
on the other hand the only output from it are the codes. For that reason we spent time
training all samples from the frontiers to validate our findings and the proxies (i.e. Search
stage results) reliability.

To train each code of the candidate solutions at the frontier we used the
Evaluation stage (complete network defined by the edges with the highest weights only)
configuration from the baseline without any relevant intervention, since each sample from
the frontier has an architecture code of the normal and reduction cell, that can be easily
visualized on Fig. 5.4. The network has 20 stacked cells (18 normal and 2 reduction cells
as well) and was trained for 600 epochs. The training was made using cutout (DEVRIES;
TAYLOR, 2017) and an auxiliary loss tower (XU et al., 2020) following the same settings
from the baseline in order to have comparable results. At the same time we introduced
a validation set with 10% of the training set to check its reliability for filtering methods
when creating a diverse ensemble or imposing accuracy constraints.

c_{k-2} 0
dil_conv_5x5

c_{k-1}

dil_conv_5x5

1
max_pool_3x3

max_pool_3x3
2

max_pool_3x3
c_{k}

max_pool_3x3
3max_pool_3x3

max_pool_3x3

(a) Fig. 5.3c 𝜈 = 3e-2

c_{k-2}

0

skip_connect

1
sep_conv_3x3

2

sep_conv_5x5 3

avg_pool_3x3

c_{k-1}

sep_conv_3x3

dil_conv_3x3

sep_conv_3x3

dil_conv_3x3
c_{k}

(b) PC-DARTS

c_{k-2}

0

dil_conv_5x5

1

dil_conv_3x3

3

sep_conv_5x5

c_{k-1}

sep_conv_3x3

skip_connect
2

sep_conv_3x3

avg_pool_3x3

c_{k}

dil_conv_3x3

(c) Fig. 5.3c 𝜈 = 1e-3 pink circle

Figure 5.4 – Comparison of the code of the best trade-offs and the baseline. It is
worth mentioning that the smaller models, like (a) (See Table 5.2 𝜈 =
{0.03, 0.0013}), has more weightless operations like skip_connect, max_pool
or no connection.

Chapter 5. Experimental Results 49

Each subsection will focus on each case results and analysis. At the end of
those sections the framework and a guide will be introduced to help user decision.

5.3.1 𝐿2 loss

We evaluated all samples from the Pareto frontier of Figure 5.3c, the case using
𝐿2 loss and cross-entropy loss. From the data generated we have drawn the following
conclusions:

• The evaluation accuracy and search Accuracy (acc) had a high correlation (Check
Test acc and Search acc on Figure 5.6), namely 97%, but the Figures 5.5a and b
show a high uncertainty close to the smallest values of 𝜈.

• Based on Figure 5.5c the weight had a direct effect on the accuracy so one can rely
on it to select models from the proxies. Worth mentioning that such correlation does
not indicate that lowest regularization would improve the performance, but that low
regularization in the Pareto frontier improve performance.

• Some relevant trade-offs were found from the frontier when looking at Table 5.2:

– for 𝜈 = 0.0013 we have a competitive accuracy whereas it is 10% smaller than
the baseline (check Table 5.5).

– for 𝜈 = 0.03 we have a 51% smaller model whereas it is only 4% less accurate
than the baseline.

This test was also useful to check the reliability of a validation set on Evaluation
stage encouraging its use as heuristic for ensemble generation or any other selection step.
The original configuration uses all training data from CIFAR10 to train the model. The
correlation between test and validation accuracy on Evaluation stage was 97%, showing
that it is reliable if needed. This is also valid for the next subsections.

Chapter 5. Experimental Results 50

(a) Search stage accuracy (b) Search stage Cross-entropy

(c) Weight

Figure 5.5 – Comparison of the behavior between search and validation set accuracy on
Evaluation stage for 𝐿2 regularization. Metrics on Search stage refers to the
training set (half of the training samples used to train the model weights).

Chapter 5. Experimental Results 51

Table 5.2 – 𝐿2 loss case Pareto frontier evaluation. Validation (Valid) and Test refers to
the sets during Evaluation stage. All other data is known at the end of Search
stage. Loss as the optimization criterion (crit loss) is cross-entropy loss and
Loss as the regularization term (reg loss) is 𝐿2 loss in this case. The latency
for GPU is measured with batch size 8 on NVIDIA 1660Ti with Pytorch
1.8.1+cuDNN in miliseconds.

Weight
𝜈

Params
(M)

FLOPs
(×108)

Latency
GPU

Accuracy
Search Valid Test

0.2 1.37 2.3 8.51 43.55 88.96 88.02
0.1 1.37 2.3 8.72 47.60 87.96 87.56
0.08 1.37 2.3 11.74 60.17 88.00 87.91
0.06 1.37 2.3 11.92 47.60 87.56 86.98
0.03 1.78 2.9 12.71 66.81 93.58 93.13
0.01 2.25 3.7 17.76 74.98 94.56 93.99
0.007 3.19 5.1 26.77 80.50 95.42 95.17
0.00429 4.11 6.4 36.93 83.94 96.32 96.16
0.00425 3.99 6.3 36.46 83.82 96.28 96.07
0.003 4.66 7.4 42.05 86.14 96.36 96.34
0.0023 4.25 6.6 39.53 86.50 96.94 96.72
0.00196 4.07 6.3 36.20 86.94 96.44 96.23
0.00191 4.44 6.9 40.26 86.74 96.76 96.64
0.0014 3.80 5.9 34.27 87.53 96.90 96.94
0.0013 3.29 5.2 24.03 87.16 96.66 96.85
0.0009 3.81 5.8 34.41 87.91 97.06 97.08
0.0007 3.99 6.2 45.41 86.96 96.94 96.76

Chapter 5. Experimental Results 52

Figure 5.6 – Correlation matrix for 𝐿2 regularization case. Table 5.2 was used to calcu-
late it. The data gathered from Search stage is to the left of the red line.
We selected Spearman Rank (KOKOSKA; ZWILLINGER, 2000) because it
works better for logarithm relations since it ranks the values.

Chapter 5. Experimental Results 53

5.3.2 𝐿1 loss

We evaluated all samples from the Pareto frontier of Figure 5.3a, the case
using 𝐿1 loss and cross-entropy loss. From the data generated we have drawn the following
conclusions:

• The evaluation accuracy and search accuracy hasn’t as high correlation as the 𝐿2

case (Check Test acc and search acc on Figure 5.8), namely 92%. Figures 5.7a
and b show a correlation between axis, although the values are scattered. That way
we cannot rely entirely on the search acc.

• Based on Figure 5.7c the weight had an effect on accuracy, but not as correlated as
the case before.

• The correlation between test and validation accuracy on Evaluation stage was 100%,
showing that it is reliable when used in a model selection step.

• Some relevant trade-offs were found from the frontier when looking at Table 5.3:

– for 𝜈 = 0.00006 we have a competitive accuracy whereas it is 15% smaller than
the baseline (check Table 5.5).

– for 𝜈 = 0.01 we have a 52% smaller model whereas it is only 4.3% less accurate
than the baseline.

Table 5.3 – 𝐿1 loss case Pareto frontier evaluation. Valid and Test refers to the sets during
Evaluation stage. All other data is known at the end of Search stage. crit loss
is cross-entropy loss and reg loss is 𝐿1 loss in this case. The latency for GPU
is measured with batch size 8 on NVIDIA 1660Ti with Pytorch 1.8.1+cuDNN
in miliseconds.

Weight
𝜈

Params
(M)

FLOPs
(×108)

Latency
GPU

Accuracy
Search Valid Test

0.2 1.42 2.3 7.32 10.08 90.64 90.10
0.01 1.72 2.7 12.31 14.80 93.46 93.16
0.009 1.45 2.4 12.16 26.63 92.18 91.60
0.005 1.66 2.7 10.73 42.44 92.86 92.32
0.003 2.56 3.9 20.65 50.74 95.16 94.55
0.001 3.10 4.9 26.44 65.99 96.10 95.80
0.0004 4.03 6.5 33.03 78.27 95.76 95.55
0.0002 3.73 6.0 33.60 83.63 97.08 96.89
0.00006 3.08 4.8 24.45 84.81 97.06 96.79

Chapter 5. Experimental Results 54

(a) Search stage accuracy (b) Search stage Cross-entropy

(c) Weight

Figure 5.7 – Comparison of the behavior between search and validation set accuracy on
Evaluation stage for 𝐿1 regularization with fixed 𝐿2. Metrics on Search stage
refers to the training set (half of the training samples used to train the model
weights).

Chapter 5. Experimental Results 55

Figure 5.8 – Correlation matrix for 𝐿1 regularization case. Table 5.3 was used to calcu-
late it. The data gathered from Search stage is to the left of the red line.
We selected Spearman Rank (KOKOSKA; ZWILLINGER, 2000) because it
works better for logarithm relations since it ranks the values.

Chapter 5. Experimental Results 56

5.3.3 𝐿1 loss with fixed 𝐿2

We evaluated all samples from the Pareto frontier of Figure 5.3b, the case
using 𝐿1 loss and cross-entropy loss with 𝐿2 loss weight from the baseline. From the data
generated we have drawn the following conclusions:

• The evaluation accuracy and search accuracy was the worst among cases(Check Test
acc and search acc on Figure 5.10), namely 83%. Figures 5.9a and b supports it
based on how the candidate solutions are spread out.

• Based on Figure 5.9c the weight had a direct effect on the accuracy for small 𝜈

values, so one can rely on it to select the most accurate models from the proxies.

• Some relevant trade-offs were found from the frontier when looking at Table 5.4:

– for 𝜈 = 0.000003 we have a competitive accuracy whereas it is 15% smaller
than the baseline (check Table 5.5).

– for 𝜈 = 0.2 we have a 52% smaller model whereas it is only 2.7% less accurate
than the baseline.

Table 5.4 – 𝐿1 loss with fixed 𝐿2 case Pareto frontier evaluation. Valid and Test refers
to the sets during Evaluation stage. All other data is known at the end of
Search stage. crit loss is cross-entropy loss and reg loss is 𝐿1 loss in this case.
The latency for GPU is measured with batch size 8 on NVIDIA 1660Ti with
Pytorch 1.8.1+cuDNN in miliseconds.

Weight
𝜈

Params
(M)

FLOPs
(×108)

Latency
GPU

Accuracy
Search Valid Test

0.2 1.73 2.8 13.16 10.08 95.40 94.74
0.02 1.81 2.9 13.77 20.17 94.62 94.20
0.01 1.40 2.3 9.02 22.42 92.30 91.29
0.008 2.33 3.7 19.74 32.45 95.92 95.51
0.004 2.56 3.9 21.31 39.73 94.82 94.46
0.002 1.82 2.9 17.58 57.18 94.26 93.42
0.0008 3.41 5.6 29.70 70.94 96.38 95.66
0.0002 3.97 6.4 42.46 81.69 96.40 96.12
0.0001 4.25 6.6 39.42 85.26 96.76 96.55
0.000007 3.28 5.1 28.46 85.24 96.90 96.71
0.000004 3.99 6.3 36.68 85.26 96.94 96.90
0.000003 3.10 4.8 26.67 85.09 97.04 96.71

Chapter 5. Experimental Results 57

(a) Search stage accuracy (b) Search stage Cross-entropy

(c) Weight

Figure 5.9 – Comparison of the behavior between search and validation set accuracy on
Evaluation stage for 𝐿1 regularization with fixed 𝐿2. Metrics on Search stage
refers to the training set (half of the training samples used to train the model
weights).

Chapter 5. Experimental Results 58

Figure 5.10 – Correlation matrix for 𝐿1 regularization with fixed 𝐿2 loss case. Table 5.4
was used to calculate it. The data gathered from Search stage is to the left
of the red line. We selected Spearman Rank (KOKOSKA; ZWILLINGER,
2000) because it works better for logarithm relations since it ranks the
values.

Chapter 5. Experimental Results 59

5.3.4 Cases evaluation

Experiment 2 results outlined in the previous subsections showed us that
the frontiers using 𝐿1 loss objective with fixed 𝐿2 were faster than using 𝐿2 loss given the
bigger optimal solution ratio (Tab. 5.1). 𝐿1 loss without 𝐿2 loss were even faster but less
stable (compare Fig. 5.7 and 5.9) than the case using fixed 𝐿2 loss. For that reason the
case of 𝐿1 loss with fixed 𝐿2 loss is more appropriate to use on the framework presented
on Figure 5.11.

5.4 Framework Based on Results

We created a framework where the user can explore the diversity of the frontier
according to the practical scenario while applying constraints after Search and Evaluation
stage results. The proposed framework will generate the Pareto frontier for 𝐿1 loss with
fixed 𝐿2 loss case only (like Experiment 1). Given the results, the user needs to train the
suitable models according to the rules learned on Experiment 2 (summarized on Section
5.5) and finally create an ensemble or select specific models. Figure 5.11 represents this
framework.

Start

Estimate 𝜈

Search stage

d > t

Pareto frontier Code selection Get one code Evaluation stage

fin

Model selection

Ensemble

End

no

yes
no

yes

variables
d : distance
t : threshold
fin: finish training all codes

Figure 5.11 – Proposed framework for user application. For more details about d and t
please refer to Alg. 3.1.

Most part of this framework is automatic using the source code available. On
the other hand, two steps are manual and need attention given the user requirements:

• Code selection: A lot of metrics are available after the frontier is populated, namely:
number of parameters, model size, FLOPs and latency. It is suitable to apply at
that point any constraints in order to avoid infeasible training models.

Chapter 5. Experimental Results 60

• Model selection: After Evaluation stage the final performance is available making
the selection more reliable since the proxies are approximations and comparable
models to save time and resources.

5.5 User Guideline

When running the framework for specific intent some configuration can be
tweaked. The main highlights are:

• Most accurate model: evaluate the codes of around 5 smallest weights 𝜈 of the
frontier without validation set. Compare the accuracy among them after training to
proceed to the final selection;

• Apply constraints: model related metrics (like Params, FLOPs or latency) can be
used to filter codes before evaluating, thus saving time;

• Filtering: for model filtering focused on ensemble creation or other matters that
require data analysis after training, one need to train all models, similar to Section
5.3, with validation set;

• Best trade-offs: the highlighted trade-offs were only spotted after evaluating all
models, thus evaluating all codes. Validation set can be removed.

5.6 Experiment 3: Evaluation of single models

Since Experiment 1 has the same first 4 steps from the framework shown on
the previous sections, we decided to use the Pareto frontier from the case 𝐿1 loss with
fixed 𝐿2 to do a posteriori code selection and make models and plots shared on this entire
chapter.

We selected and evaluated the codes of the 5 smallest weights using no val-
idation set in order to obtain the best accuracy possible and compare those with the
baseline. Namely we used the weights 𝜈 = {0.000003, 0.000004, 0.000007, 0.0001, 0.0002}
from Table 5.4 or visually the weights 𝜈 = {3e-6, 4e-6, 7e-6, 1e-4, 2e-4} from Figure 5.9
following the instructions from our guideline.

The best result locally achieved using PC-DARTS code (Fig. 5.4b) was 97.31%,
a value that Xu et al. (2020) also claim to achieve on their paper on one of their 5 runs,
but this is normal since we are using different GPUs (yielding different batch sizes and
internal calculation) and the stochastic initialization by itself discussed on Section 3.1.

Chapter 5. Experimental Results 61

Although our results achieved a close performance with the one produced by
the baseline, considering individual models, some of our results were able to reduce the
gap between training and test accuracy and to generate smaller models yet competitive.
Check Table 5.5 for more information.

Table 5.5 – Experiment 3 trained codes. The training was made using cutout and an
auxiliary loss tower (XU et al., 2020). The ensemble is composed of all models
from the list except PC-DARTS and 𝜈 = 2e-4.

Characteristics Train Acc Test Acc Params (M)
PC-DARTS * 98.98 97.31 3.63
Fig. 5.3b 𝜈 = 3e-6 98.82 96.85 3.10
Fig. 5.3b 𝜈 = 4e-6 97.15 96.82 3.99
Fig. 5.3b 𝜈 = 7e-6 96.79 96.86 3.28
Fig. 5.3b 𝜈 = 1e-4 96.43 97.02 4.25
Fig. 5.3b 𝜈 = 2e-4 91.95 96.18 3.97
Ensemble 99.54 97.42 14.62

* Our reproduction.

5.7 Experiment 4: Evaluation of ensemble models

An ensemble was created using the codes of the 5 smallest weights from 𝐿1

loss with fixed 𝐿2 to test the improvement on performance. We assigned weights to the
models using the validation dataset with a voting system. Each model received a vote
when it predicted correcly while some other member of the committee don’t. Finally
the votes where normalize to weights between 0 and 1. The model related to the weight
𝜈 = 2e-4 received 0 votes, so it was removed from the final accuracy estimation. We used
a simple weighted sum of the last layer classes probabilities of all models to calculate the
predictions. Test accuracy improved when compared to the results of our reproduction of
the baseline, at the cost of a model four times bigger.

62

Concluding remarks

The first contribution of this research is the explicit formulation of the learning
problem as a Multi-objective optimization problem. Many works took into account the
model size or system latency (CAI; ZHU; HAN, 2019; CAI; GAN, et al., 2020) but with-
out exploring the existence of a set of efficient candidate solutions at, or near, the Pareto
frontier. Our research then aimed to explore the improvements that can be achieved by
sampling multiple efficient candidate solutions, which are promoted by a multi-objective
approach, with applications to both single model selection as well as to ensemble genera-
tion.

The second contribution is the algorithm to explore efficiently the approxima-
tion of the Pareto frontier adapting during iterations in order to explore automatically
regions of interest with efficient solutions even for the non-convex neighbourhood.

The third contribution is a framework to train networks using this novel MOO
formulation over a differentiable NAS outlined on Figure 5.11 and available with imple-
mentation detail at https://github.com/iksmada/MOOD-NAS. This allows the user to
select the best code that fits the intended application based on memory, latency or size
constraints, thus tuning automatically hyperparameters.

The last brings to the user more freedom and choice when training a NAS
solution not based solely on one expert hyperparameter tuning, but with a relevant num-
ber of model trade-offs using an adaptive algorithm sampler together with a fast search
procedure, given the high cost of NAS.

Future Work

The next straightforward step is to apply this framework to other datasets
ready on the baseline, like CIFAR100 and ImageNet. Moreover, PC-DARTS also claim
that CIFAR10 codes are transferable to ImageNet Evaluation stage.

We also intend to apply this same framework on different baselines. Since this
multi-objective approach requires only a small amount of changes on the Search stage, we
can apply our multi-objective proposal to almost any other NAS work with proxies.

At the same time we also consider to use 3 or more objectives with NISE
extensions (RAIMUNDO; FERREIRA; ZUBEN, 2020) since it is clear from our results
the conflicting objectives present on NAS formulation on Eq. (3.4).

https://github.com/iksmada/MOOD-NAS

Chapter 5. Experimental Results 63

Finally we want to combine different cells on the same network sequentially,
given the cell diversity found on the frontier, creating a novel solution on the NAS field.
This can overcome the barrier between cell and global space search to some intermedi-
ate path that can improve the lack of freedom in cell space search and a plethora of
combinations provided by global space search.

64

References

BAKER, Bowen; GUPTA, Otkrist; NAIK, Nikhil; RASKAR, Ramesh. Designing Neural
Network Architectures using Reinforcement Learning. arXiv preprint
arXiv:1611.02167, 2016. arXiv: 1611.02167. Cited 2 times on pages 24.

BENGIO, Yoshua; COURVILLE, Aaron; VINCENT, Pascal. Representation learning: a
review and new perspectives. IEEE transactions on pattern analysis and machine
intelligence, v. 35, n. 8, p. 1798–1828, Aug. 2013. ISSN 0162-8828. DOI:
10.1109/tpami.2013.50. Cited 1 time on page 21.

CAI, Han; GAN, Chuang; WANG, Tianzhe; ZHANG, Zhekai; HAN, Song. Once for All:
Train One Network and Specialize it for Efficient Deployment. In: ICLR 2020.
International Conference on Learning Representations. [S.l.: s.n.], 2020.
Available from: <https://arxiv.org/pdf/1908.09791.pdf>. Cited 2 times on
pages 24, 62.

CAI, Han; ZHU, Ligeng; HAN, Song. ProxylessNAS: Direct Neural Architecture Search
on Target Task and Hardware. In: ICLR 2019. International Conference on
Learning Representations. [S.l.: s.n.], 2019. Available from:
<https://arxiv.org/pdf/1812.00332.pdf>. Cited 3 times on pages 24, 34, 62.

CHEN, Xin; XIE, Lingxi; WU, Jun; TIAN, Qi. Progressive differentiable architecture
search: Bridging the depth gap between search and evaluation. In: ICCV 2019. 2019
IEEE/CVF International Conference on Computer Vision. [S.l.: s.n.], 2019.
P. 1294–1303. Cited 1 time on page 28.

COHON, Jared L; CHURCH, Richard L; SHEER, Daniel P. Generating multiobjective
trade-offs: An algorithm for bicriterion problems. Water Resources Research, Wiley
Online Library, v. 15, n. 5, p. 1001–1010, 1979. Cited 2 times on pages 18, 34.

DEVRIES, Terrance; TAYLOR, Graham W. Improved Regularization of Convolutional
Neural Networks with Cutout. arXiv preprint arXiv:1708.04552, 2017. arXiv:
1708.04552. Cited 1 time on page 26, 48.

DONG, Jin-Dong; CHENG, An-Chieh; JUAN, Da-Cheng; WEI, Wei; SUN, Min.
DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures. In:
ECCV 2018. Proceedings of the European Conference on Computer Vision.
[S.l.: s.n.], Sept. 2018. Cited 1 time on page 34.

https://arxiv.org/abs/1611.02167
https://doi.org/10.1109/tpami.2013.50
https://arxiv.org/pdf/1908.09791.pdf
https://arxiv.org/pdf/1812.00332.pdf
https://arxiv.org/abs/1708.04552

References 65

ELSKEN, Thomas; METZEN, Jan Hendrik; HUTTER, Frank. Efficient Multi-Objective
Neural Architecture Search via Lamarckian Evolution. In: ICLR 2019. International
Conference on Learning Representations. [S.l.: s.n.], 2019. Available from:
<https://openreview.net/forum?id=ByME42AqK7>. Cited 1 time on page 34.

GLOROT, Xavier; BENGIO, Yoshua. Understanding the difficulty of training deep
feedforward neural networks. In: AISTATS 2010. Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics. Chia Laguna
Resort, Sardinia, Italy: PMLR, May 2010. v. 9, p. 249–256. Available from:
<https://proceedings.mlr.press/v9/glorot10a.html>. Cited 1 time on page 22.

GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning. [S.l.]:
MIT Press, 2016. http://www.deeplearningbook.org. Cited 4 times on pages 21, 22,
23.

GREEN, Sam; VINEYARD, Craig M.; HELINSKI, Ryan; KOC, Cetin Kaya.
RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search. In: IJCNN
2020. International Joint Conference on Neural Networks. [S.l.: s.n.], 2020.
P. 1–7. DOI: 10.1109/IJCNN48605.2020.9206969. Cited 1 time on page 28.

HE, Chaoyang; YE, Haishan; SHEN, Li; ZHANG, Tong. MiLeNAS: Efficient neural
architecture search via mixed-level reformulation. In: CVPR 2020. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
[S.l.: s.n.], 2020. P. 11993–12002. Cited 1 time on page 27.

HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing; SUN, Jian. Deep Residual Learning
for Image Recognition. In: CVPR 2016. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. [S.l.: s.n.], 2016.
P. 770–778. DOI: 10.1109/CVPR.2016.90. Cited 3 times on pages 22, 23.

HORNIK, Kurt; STINCHCOMBE, Maxwell; WHITE, Halbert. Multilayer feedforward
networks are universal approximators. Neural Networks, v. 2, n. 5, p. 359–366, 1989.
ISSN 0893-6080. DOI: 10.1016/0893-6080(89)90020-8. Available from:
<https://www.sciencedirect.com/science/article/pii/0893608089900208>.
Cited 1 time on page 19.

HSU, Chi-Hung; CHANG, Shu-Huan; LIANG, Jhao-Hong; CHOU, Hsin-Ping;
LIU, Chun-Hao; CHANG, Shih-Chieh; PAN, Jia-Yu; CHEN, Yu-Ting; WEI, Wei;
JUAN, Da-Cheng. MONAS: Multi-Objective Neural Architecture Search using
Reinforcement Learning. arXiv preprint arXiv:1806.10332, 2018. arXiv:
1806.10332. Cited 1 time on page 34.

https://openreview.net/forum?id=ByME42AqK7
https://proceedings.mlr.press/v9/glorot10a.html
http://www.deeplearningbook.org
https://doi.org/10.1109/IJCNN48605.2020.9206969
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://arxiv.org/abs/1806.10332

References 66

IOFFE, Sergey; SZEGEDY, Christian. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In: ICML’15. Proceedings of
the 32nd International Conference on International Conference on Machine
Learning. Lille, France: JMLR.org, 2015. v. 37, p. 448–456. Cited 1 time on page 22.

JIANG, Yufan; HU, Chi; XIAO, Tong; ZHANG, Chunliang; ZHU, Jingbo. Improved
Differentiable Architecture Search for Language Modeling and Named Entity
Recognition. In: EMNLP-IJCNLP. Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing. Hong Kong,
China: Association for Computational Linguistics, Nov. 2019. P. 3585–3590. DOI:
10.18653/v1/D19-1367. Available from:
<https://www.aclweb.org/anthology/D19-1367>. Cited 1 time on page 28.

JIN, Yaochu; SENDHOFF, Bernhard. Pareto-based multiobjective machine learning: An
overview and case studies. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), IEEE, v. 38, n. 3, p. 397–415,
2008. Cited 1 time on page 17.

KIM, Ye-Hoon; REDDY, Bhargava; YUN, Sojung; SEO, Chanwon. NEMO :
Neuro-Evolution with Multiobjective Optimization of Deep Neural Network for Speed
and Accuracy. Journal of Machine Learning Research: Workshop and
Conference Proceedings, 2017. Cited 1 time on page 34.

KOKOSKA, Stephen; ZWILLINGER, Dan. CRC Standard Probability and
Statistics Tables and Formulae, Student Edition. [S.l.: s.n.], Mar. 2000. ISBN
9781482273847. DOI: 10.1201/b16923. Cited 0 times on pages 52, 55, 58.

KRIZHEVSKY, Alex; SUTSKEVER, Ilya; HINTON, Geoffrey E. ImageNet
Classification with Deep Convolutional Neural Networks. In: NIPS CONFERENCE.
Advances in Neural Information Processing Systems. [S.l.]: Curran Associates,
Inc., 2012. v. 25. Available from: <https://proceedings.neurips.cc/paper/2012/

file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf>. Cited 1 time on page 20.

LI, Liam; TALWALKAR, Ameet. Random Search and Reproducibility for Neural
Architecture Search. arXiv preprint arXiv:1902.07638, 2019. arXiv: 1902.07638.
Cited 1 time on page 25.

LI, Siyi; SUN, Yanan; YEN, Gary G.; ZHANG, Mengjie. Automatic Design of
Convolutional Neural Network Architectures Under Resource Constraints. IEEE
Transactions on Neural Networks and Learning Systems, p. 1–15, 2021. DOI:
10.1109/TNNLS.2021.3123105. Cited 1 time on page 34.

https://doi.org/10.18653/v1/D19-1367
https://www.aclweb.org/anthology/D19-1367
https://doi.org/10.1201/b16923
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/1902.07638
https://doi.org/10.1109/TNNLS.2021.3123105

References 67

LIU, Hanxiao; SIMONYAN, Karen; YANG, Yiming. DARTS: Differentiable
ARchiTecture Search. In: ICLR 2019. International Conference on Learning
Representations. [S.l.: s.n.], 2019. Available from:
<https://openreview.net/forum?id=S1eYHoC5FX>. Cited 7 times on pages 25, 27,
28, 29.

LIU, Risheng; GAO, Jiaxin; ZHANG, Jin; MENG, Deyu; LIN, Zhouchen. Investigating
Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey
and Beyond. arXiv preprint arXiv:2101.11517, 2021. arXiv: 2101.11517. Cited 1
time on page 27.

LIU, Yuqiao; SUN, Yanan; XUE, Bing; ZHANG, Mengjie; YEN, Gary G.;
TAN, Kay Chen. A Survey on Evolutionary Neural Architecture Search. IEEE
Transactions on Neural Networks and Learning Systems, p. 1–21, 2021. DOI:
10.1109/TNNLS.2021.3100554. Cited 1 time on page 26, 41.

LU, Zhichao; WHALEN, Ian; DHEBAR, Yashesh; DEB, Kalyanmoy;
GOODMAN, Erik; BANZHAF, Wolfgang; BODDETI, Vishnu Naresh. NSGA-Net:
Neural Architecture Search using Multi-Objective Genetic Algorithm (Extended
Abstract). In: IJCAI-20. Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence. [S.l.: s.n.], July 2020. P. 4750–4754. Sister
Conferences Best Papers. DOI: 10.24963/ijcai.2020/659. Cited 1 time on page 34.

MARQUES, Alan Caio Rodrigues. Contribuição a Abordagem de Problemas de
Classificação por Redes Convolucionais Profundas. 2018. PhD thesis – University
of Campinas - School of Electrical and Computer Engineering. DOI:
10.47749/T/UNICAMP.2018.991774. Cited 2 times on pages 21.

MCCULLOCH, Warren; PITTS, Walter. A Logical Calculus of Ideas Immanent in
Nervous Activity. Bulletin of Mathematical Biophysics, v. 5, p. 127–147, 1943.
Cited 1 time on page 19.

MIETTINEN, Kaisa. Nonlinear multiobjective optimization. [S.l.]: Springer
Science & Business Media, 2012. v. 12. Cited 1 time on page 32.

NAIR, Vinod; HINTON, Geoffrey E. Rectified Linear Units Improve Restricted
Boltzmann Machines. In: ICML’10. Proceedings of the 27th International
Conference on International Conference on Machine Learning. Haifa, Israel:
Omnipress, 2010. P. 807–814. ISBN 9781605589077. Cited 1 time on page 22.

PASCANU, Razvan; MIKOLOV, Tomas; BENGIO, Yoshua. On the Difficulty of
Training Recurrent Neural Networks. In: ICML’13. Proceedings of the 30th
International Conference on International Conference on Machine Learning.
Atlanta, GA, USA: JMLR.org, 2013. v. 28, iii–1310–iii–1318. Cited 1 time on page 22.

https://openreview.net/forum?id=S1eYHoC5FX
https://arxiv.org/abs/2101.11517
https://doi.org/10.1109/TNNLS.2021.3100554
https://doi.org/10.24963/ijcai.2020/659
https://doi.org/10.47749/T/UNICAMP.2018.991774

References 68

RAIMUNDO, Marcos M.; DRUMOND, Thalita F.; MARQUES, Alan Caio R.;
LYRA, Christiano; ROCHA, Anderson; VON ZUBEN, Fernando J. Exploring
multiobjective training in multiclass classification. Neurocomputing, v. 435,
p. 307–320, 2021. Cited 7 times on pages 17, 18, 32, 41.

RAIMUNDO, Marcos M.; FERREIRA, P.; ZUBEN, F. V. An extension of the
non-inferior set estimation algorithm for many objectives. European Journal of
Operational Research, v. 284, p. 53–66, 2020. Cited 5 times on pages 35, 37, 62.

RAIMUNDO, Marcos Medeiros. Multi-objective optimization in machine
learning. 2018. PhD thesis – University of Campinas - School of Electrical and
Computer Engineering. DOI: 10.47749/T/UNICAMP.2018.1082001. Cited 1 time on
page 32, 33, 35, 36.

REAL, Esteban; AGGARWAL, Alok; HUANG, Yanping; LE, Quoc. Regularized
Evolution for Image Classifier Architecture Search. Proceedings of the AAAI
Conference on Artificial Intelligence, v. 33, Feb. 2018. DOI:
10.1609/aaai.v33i01.33014780. Cited 1 time on page 25.

REAL, Esteban; MOORE, Sherry; SELLE, Andrew; SAXENA, Saurabh;
SUEMATSU, Yutaka Leon; TAN, Jie; LE, Quoc V.; KURAKIN, Alexey. Large-Scale
Evolution of Image Classifiers. In: ICML’17. Proceedings of the 34th International
Conference on Machine Learning. [S.l.]: PMLR, Aug. 2017. v. 70, p. 2902–2911.
Available from: <http://proceedings.mlr.press/v70/real17a.html>. Cited 2 times
on pages 24, 25.

REN, Pengzhen; XIAO, Yun; CHANG, Xiaojun; HUANG, Po-yao; LI, Zhihui;
CHEN, Xiaojiang; WANG, Xin. A Comprehensive Survey of Neural Architecture
Search: Challenges and Solutions. ACM Comput. Surv., Association for Computing
Machinery, New York, NY, USA, v. 54, n. 4, May 2021. Cited 1 time on page 17, 26.

ROMERO, Carlos; REHMAN, Tahir. Multiple criteria analysis for agricultural
decisions. [S.l.]: Elsevier, 2003. v. 11. Cited 1 time on page 35.

ROSENBLATT, F. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, v. 65, n. 6, p. 386–408, 1958. ISSN
0033-295X. DOI: 10.1037/h0042519. Available from:
<http://dx.doi.org/10.1037/h0042519>. Cited 1 time on page 19.

RUMELHART, David E.; HINTON, Geoffrey E.; WILLIAMS, Ronald J. Learning
Representations by Back-propagating Errors. Nature, v. 323, n. 6088, p. 533–536, 1986.
DOI: 10.1038/323533a0. Available from:
<http://www.nature.com/articles/323533a0>. Cited 1 time on page 20.

https://doi.org/10.47749/T/UNICAMP.2018.1082001
https://doi.org/10.1609/aaai.v33i01.33014780
http://proceedings.mlr.press/v70/real17a.html
https://doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
https://doi.org/10.1038/323533a0
http://www.nature.com/articles/323533a0

References 69

WIDROW, Bernard; HOFF, Marcian E. Adaptive Switching Circuits. In: WESTERN
ELECTRONIC SHOW AND CONVENTION LOS ANGELES. 1960 IRE WESCON
Convention Record, Part 4. New York: IRE, 1960. P. 96–104. Cited 1 time on
page 20.

WIECEK, Margaret; EHRGOTT, Matthias; ENGAU, Alexander. Continuous
Multiobjective Programming. In: Multiple Criteria Decision Analysis: State of
the Art Surveys. [S.l.: s.n.], Jan. 2016. v. 233, p. 739–815. DOI:
10.1007/978-1-4939-3094-4_18. Cited 1 time on page 32.

WISTUBA, Martin; RAWAT, Ambrish; PEDAPATI, Tejaswini. A Survey on Neural
Architecture Search. arXiv preprint arXiv:1905.01392, 2019. arXiv: 1905.01392.
Cited 7 times on pages 17, 24, 25, 26, 27.

XU, Yuhui; XIE, Lingxi; ZHANG, Xiaopeng; CHEN, Xin; QI, Guo-Jun; TIAN, Qi;
XIONG, Hongkai. PC-DARTS: Partial Channel Connections for Memory-Efficient
Architecture Search. In: ICLR 2020. International Conference on Learning
Representations. [S.l.: s.n.], 2020. Available from:
<https://openreview.net/forum?id=BJlS634tPr>. Cited 6 times on pages 18, 28,
30, 31, 44, 48, 60, 61.

YU, Kaicheng; SCIUTO, Christian; JAGGI, Martin; MUSAT, Claudiu;
SALZMANN, Mathieu. Evaluating the Search Phase of Neural Architecture Search.
arXiv preprint arXiv:1902.08142, 2019. arXiv: 1902.08142. Cited 1 time on
page 25.

ZHOU, Zhi-Hua. Ensemble methods: foundations and algorithms. [S.l.]: CRC
Press, 2012. Cited 1 time on page 33.

ZOPH, Barret; LE, Quoc V. Neural Architecture Search with Reinforcement Learning.
In: ICLR 2017. International Conference on Learning Representations.
[S.l.: s.n.], 2017. Available from: <https://openreview.net/forum?id=r1Ue8Hcxg>.
Cited 5 times on pages 24, 25, 34.

ZOPH, Barret; VASUDEVAN, Vijay; SHLENS, Jonathon; LE, Quoc V. Learning
Transferable Architectures for Scalable Image Recognition. In: CVPR 2018.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. [S.l.: s.n.], June 2018. Cited 1 time on page 24.

https://doi.org/10.1007/978-1-4939-3094-4_18
https://arxiv.org/abs/1905.01392
https://openreview.net/forum?id=BJlS634tPr
https://arxiv.org/abs/1902.08142
https://openreview.net/forum?id=r1Ue8Hcxg

	Title page
	Approval
	Dedication
	Agradecimentos
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Searching Architectures in NNs
	Neural Networks
	Operations in Convolutional Neural Networks
	Hyperparameter Optimization
	Neural Architecture Search (NAS)
	Search Space
	Optimization Methods
	Surrogate models

	Differentiable Neural Architecture Search
	Problem Characterization
	Related work

	Multi-objective optimization (MOO)
	Multi-objective NAS
	Non-Inferior Set Estimation (NISE)
	Weighted sum method

	Sampling scalarized NAS solutions
	Extending NISE to non-convex scenarios
	Proposed Multi-objective NAS formulation

	Methodology and Proposed Experiments
	Experimental analysis
	Cases: Conflicting Objectives

	Experimental Results
	Initialization
	Experiment 1: Validation of multi-objective Search stage
	Experiment 2: Effect of multi-objective proxy models on Evaluation stage
	L2 loss
	L1 loss
	L1 loss with fixed L2
	Cases evaluation

	Framework Based on Results
	User Guideline
	Experiment 3: Evaluation of single models
	Experiment 4: Evaluation of ensemble models

	Concluding remarks
	References

