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Abstract. Contrary to conventional quantum mechanics, which treats measurement as instantaneous, here
we explore a model for finite-time measurement. The main two-level system interacts with the measurement
apparatus in a Markovian way described by the Lindblad equation, and with an environment, which does
not include the measuring apparatus. To analyse the environmental effects on the final density operator,
we use the Redfield approach, allowing us to consider a non-Markovian noise. In the present hybrid theory,
to trace out the environmental degrees of freedom, we use a previously developed analytic method based
on superoperator algebra and Nakajima-Zwanzig superoperators. Here, we analyse two types of system-
environment interaction, phase and amplitude damping, which allows us to conclude that, in general, a
finite-time quantum measurement performed during a certain period is more efficient than an instantaneous
measurement performed at the end of it, because the rate of change of the populations is attenuated by
the system-measurement apparatus interaction.

1 Introduction

The measurement problem in quantum mechanics is responsible for most of the controversy surrounding this theory [1,
2]. While in classical physics the observation of an object does not presuppose any changes of its properties, in quantum
mechanics this interaction, far from insignificant, causes profound changes on the object under observation. Besides
changing the state of the system, the measurement of a given property can influence the value of another (the case
of conjugate observables such as position and momentum). Another aggravating aspect is the fact that it is not
possible to predict with certainty the result of a specific measurement: quantum mechanics rules allow us to know
only the several possible results and their respective probabilities —it is an ensemble theory, as found by Born [3,4]
and Dirac [5,6].

To describe a measurement, it is necessary to expand the wave function in terms of the eigenstates of the observable
to be measured: the possible results of the measurement will be the respective eigenvalues of the observable, and the
corresponding probabilities will be the square moduli of the expansion coefficients. When the measurement is complete,
the wave function reduction takes place, and the state of the system is projected onto the eigenstate corresponding to
the eigenvalue obtained. All this was synthesized by von Neumann in his pioneer treatise on quantum mechanics [7],
where he states the two possible processes of wave function evolution:

1) Reduction, when a measurement is made.

2) Unitary evolution according to the Schrödinger equation, between measurements.

In von Neumann’s original work [7], the transmission of information to the measuring apparatus is described by
considering two Hilbert spaces which we shall call I, the principal system under observation, and II, the measurement
apparatus. Here, let Â(I) be the observable of I to be measured, {|an〉} the set of its eigenfunctions with associated
eigenvalues an, and let |φ(I)〉 be the initial state of the system, given as the linear combination

|φ(I)〉 =
∑

n

cn|an〉. (1)
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Obviously, |〈an|φ(I)〉|2 is the probability to find an as the possible result of the measurement. Considering that the
measurement results for apparatus II are shown on a scale of values, we define an observable B̂(II) that gives us
the pointer position of the eingenvalue bn (referring to the eigenstate |bn〉). In this case, there is a direct correlation
between an and bn: the result of the measurement of B̂(II) over II will give bn only if the result of the measurement
of Â(I) over I gives an.

Next, let us define the initial state |φ(I)〉 of I —unknown in the sense of its being a linear combination of eigenstates
of Â(I) (the goal of the measurement is to determine the state)— and the initial state |φ(II)〉 of II, denoted, for
simplicity, by |b0〉. The initial state of the combined system I + II will then be

|φ(I+II)(0)〉 = |φ(I)〉 ⊗ |φ(II)〉, (2)

where ⎧
⎪⎨

⎪⎩

|φ(I)〉 =
∑

n

cn|an〉

|φ(II)〉 = |b0〉
. (3)

For simplicity, the ⊗ symbol will be omitted from now on. The transmission of information from I to II will be made
through the unitary operation —i.e., by the process 2 above— associated to the Ĥ

(I+II)
meas Hamiltonian, which acts over

the global system I + II. If the measurement extends over a time interval τ , the final global state will be

|φ(I+II)(τ)〉 = e−
i
�

Ĥ(I+II)
meas τ |φ(I+II)(0)〉. (4)

At this point, von Neumann defines the unitary operator

Δ̂ ≡ e−
i
�

Ĥ(I+II)
meas τ (5)

to simplify his calculations. The question, then, is how to find a form for Δ̂ that fits the established measurement
criteria. This is a simple task and the result is

Δ̂
∑

m,n

xmn|am〉|bn〉 =
∑

m,n

xmn|am〉|bm+n〉. (6)

It can be shown that applying (5) to (2) gives

|φ(I+II)(τ)〉 = Δ̂|φ(I+II)(0)〉 = Δ̂
∑

n

cn|an〉|b0〉 =
∑

n

cn|an〉|bn〉.

The acquisition of information of the state is made by the process 1 above, with the results having associated proba-
bilities |cn|2 —Born’s rule.

In his work, von Neumann did not explicitly consider the time during which the measurement apparatus interacts
with the system because the introduction of Δ̂ eliminates the measurement time τ from the calculations. A way to
analyze this time period within the conventional structure of quantum mechanics as a statistical theory (and non-causal
in von Neumann’s point of view [7]) consists of considering the interaction between the system and the measurement
apparatus evolving according to the Schrödinger equation or, more generally, the Liouville-von Neumann equation. In
such an approach, we still have an equation for the density operator and, consequently, the probabilistic character of
quantum mechanics is still present: the populations provide the associated probabilities for the possible results. Here,
the problem of the wave function reduction will not be analyzed and/or refuted —there are, indeed, interpretations
of quantum mechanics where the reduction phenomenon is treated as non-existent [8–11].

To clarify this treatment, it is convenient to use a framework that resembles the one by Peres [12], who labeled the
procedure of acquiring information regarding the physical system as intervention. That procedure is divided into two
parts: the measurement, when the apparatus interacts with the system and acquires the information, and the reading
(or output), when the results of the intervention become known and the reduction of the wave function occurs. In the
last step, the probabilistic information is contained in the populations of the density operator.

As mentioned previously, a more realistic description of the measurement apparatus implies the distinction between
its microscopic and macroscopic degrees of freedom. To each possible eigenvalue measured, there is one and only one
macroscopic value. However, this variable does not describe completely the state of the measurement apparatus,
because there are many microscopic states corresponding to the same value of the macroscopic variable. As in the
measurement the only important variable is the macroscopic one, we must take the partial trace over the microscopic
variables. Under the Markov approximation for the interaction between the system and the measurement apparatus,
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this procedure leads to the Lindblad equation [13–15], where only the system coordinates appear. This equation for the
density operator has a term for unitary evolutions (the Liouvillian, already known) and a second term, for the non-
unitary evolutions, named Lindbladian. It is exactly the non-unitary term that allows us to introduce the time interval
during the interaction between the system and the measurement apparatus [16]. In the quantum-measurement-theory
context, its derivation was sugested in [12] and made in a simple manner in [17].

Until now, we have a situation where only two systems are considered: the system on which the measurement is
made (which is the object of our interest), and the measurement apparatus. However, in real situations, the perfect
isolation of the system is not always possible to achieve and, consequently, the environment perturbations change
the final density operator in some way. To treat this situation, we consider that the system interacts with both the
environment and the measurement apparatus, the effects of the environment being introduced in the Liouvillian of
the Lindblad equation. In this way, with the partial trace over the environmental degrees of freedom, we obtain an
equation in the Lindblad form, provided the environment is assumed as Markovian. To calculate the more general
trace over the environmental degrees of freedom appearing in the Lindblad equation, we developed a formalism [18]
based on the superoperator algebra and the Nakajima-Zwanzig projectors [19,20].

It should be noted that alternative methods of describing continuous measurements that do not recur to the
Lindblad superoperator exist, and include the introduction of an extra term to the Hamiltonian to account for the
interaction with the measurement apparatus [21,22], and the use of a stochastic master equation [23]. This latter
description is not incompatible with the one provided by the Lindblad equation [16], which, for this choice of Lindblad
operators, is also equivalent to the master equation for continuous position measurements derived by Barchielli et al.
and Caves et al. [24,25]. Our choice of employing the Lindblad equation as the starting point of our model, however,
has proven satisfactory for the solution of the problem of the noisy finite-time measurement, that is, a finite-time
measurement that occurs while the system suffers errors caused by an external environment. The investigation of this
problem is what constitutes our original contribution to the field.

In previous papers [18,26,27], our formalism was applied to a two-state system in contact with an environment
via phase-damping interaction, in the case of an Ohmic spectral density. Under some restrictions —both the natural
system frequency and the environmental temperature set to zero— chosen to simplify the problem and allow analytical
solutions, we verified that [26], when the measurement does not commute with the system-environment interaction,
i) the more intense the system-environment interaction, the more marked is the decrease of the population —i.e.,
the larger is the measurement error— and ii) the more intense the system-measurement apparatus interaction, the
less marked is the rate of change of the populations. From ii), we concluded that finite-time measurements can be
more efficient than instantaneous ones, when the measurement does not commute with the interaction between the
system and the environment, because the nature of the system-apparatus interaction reduces the rate of change of the
populations. To estimate the efficiency of a measurement, here, we adopt the criterion that an ideal measurement would
consist of the instantaneous acquisition of information from the system before its state was altered by the environmental
noise. If the populations of the system have been significantly altered by the time the measurement reaches its
completion, the probabilities of encountering the apparatus’s pointer in either state will be visibly different from the
probabilities associated with the initial state of the system measured, thus rendering the process inefficient. Next,
analyzing the behavior of the coherences, which decrease with time, we established a criterion for the measurement
duration [27].

In the present work, we remove the restrictions and treat the interaction between the system and the environment
as either the phase-damping or the amplitude-damping type, aiming at verifying, in a more general form, the influence
of the environment on the final reduced density operator. We verify that, in general, the conclusions obtained in
the previous works for state protection and system-environmental coupling apply to both interactions (phase and
amplitude damping), even in the case of a finite environmental temperature. The addition of system frequency induces
an oscillatory behavior on the populations. For the coherences, however, we observe that the introduction of the system
frequency causes their moduli to approach, after a certain time interval, a constant asymptotic value, that may or
may not be zero. Although we cannot, in this case, obtain a simple expression for the duration of the measurement,
we still use the coherences to establish the time at which the system-environment interaction can be interrupted and
the reading of the state accomplished —in this case, the time when the coherences assume the constant asymptotic
value. Obviously, in more general cases, when the behavior of the system is not simple (the coherences no longer show
a monotonic decrease), its physical properties must be considered in the establishment of the measurement time. Here,
we do not change the spectral density and do not increase the number of states of the system under measurement
—these extensions are left open and can be more safely developed under the light of the knowledge of the results
presented here.

The possibility of application of this kind of measurement to improve the quality of the results depends, however,
on the practical existence of measurements that can be performed during a finite period of time, in accordance with
the model. There is, however, a recent application of our work —see ref. [28]— in the context of Measurement-based
Direct quantum Feedback Control (MDFC) [29,30].

This article is structured as follows: in sect. 2, we recapitulate our description of noisy finite-time measurements,
providing the basis for the solutions obtained in sects. 3 and 4, first for the phase-damping case, and then for the
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amplitude-damping one. Analyses of the solutions, together with graphs, are presented in sect. 5, conclusions and per-
spectives are given in sect. 6. An appendix explains how this model of finite-time measurement could be experimentally
tested against the more conservative approach that presupposes instantaneous measurements.

To present the results in a more logical and complete fashion, some of the contents of this article have been
recapitulated from our previous works. Section 2 briefly explains the method that can be found, with greater details,
in [18] and solutions for the Lindblad equation for the x-component measurement without environment found on [26];
sect. 3 shows the z-component solution and the simplified (T = 0 and ω0 = 0) x-component solutions found on [26]
for the phase-damping interaction; finally, in sect. 5 we show the formula for the upper limit for the measurement
duration found in [27]. All the other results, however, are new.

2 The model of finite-time measurement

In this section, we overview the model of noisy finite-time measurement that was developed and employed in our
previous works [26,27]. This model assumes that the system interacts with the measurement apparatus through a
Markovian interaction. However, the finite nature of this description allows for other processes to occur before the
measurement reaches its end.

In the usual treatment, when measurements are performed over the principal system S, it is assumed that S is
perfectly isolated from the environment, interacting non-unitarily with the measurement apparatus. However, as we
are considering the measurement as a finite-time process that may take a certain period to reach its completion, here
we make the assumption that the system is not isolated, but also interacting with an environment B. To deal with
this situation, we describe the additional interaction between the system and the environment as a unitary evolution,
with the Hamiltonian

Ĥ = ĤB + ĤSB + ĤS , (7)

where ĤS and ĤB are the system and the environment Hamiltonians, and ĤSB is the interaction between them.
Therefore, to model the noisy measurement we describe both the measured object and the environment by a total

density operator ρ̂SB obeying the Lindblad equation [13–15]:

d
dt

ρ̂SB = − i

�

[
Ĥ, ρ̂SB

]
+
∑

j

(
L̂

(S)
j ρ̂SBL̂

(S)†
j − 1

2

{
L̂

(S)†
j L̂

(S)
j , ρ̂SB

})
. (8)

Here, the first term of the right-hand side, − i
�
[Ĥ, ρ̂SB ], is the Liouvillian and corresponds to unitary evolutions,

while the second term,
∑
j

(L̂(S)
j ρ̂SBL̂

(S)†
j − 1

2{L̂
(S)†
j L̂

(S)
j , ρ̂SB}), is the Lindbladian and corresponds to the non-unitary

evolutions. The L̂
(S)
j operators are the Lindblads, which act only on the system S, and can describe measurement

processes [12,16,17,26] if they are Hermitian, or dissipation processes [14], if non-Hermitian. When the Lindblads are
all zero, we recover the Liouville-von Neumann equation, i.e., there is no measurement occurring.

Here, we are only interested in the reduced density operator ρ̂S of S. In our formalism [18], this is done with the
help of the Nakajima-Zwanzig projectors [19,20] that, for the general operator X̂(t) and the initial instant t0, act as

ˆ̂
PX̂(t) ≡ ρ̂B(t0) ⊗ TrB

{
X̂(t)

}
, (9)

ˆ̂
Q ≡ 1 − ˆ̂

P, (10)

where we are using superoperator algebra. In the present case, we have defined superoperators referring to the contri-
butions by the system S

ˆ̂
SX̂ = − i

�

[
ĤS , X̂

]
+
∑

j

(
L̂

(S)
j X̂L̂

(S)†
j − 1

2

{
L̂

(S)†
j L̂

(S)
j , X̂

})
, (11)

the environment B:
ˆ̂
BX̂ = − i

�

[
ĤB , X̂

]
, (12)

and to the interaction between them,
ˆ̂
FX̂ = − i

�

[
ĤSB , X̂

]
. (13)
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With these definitions, we obtain the integral equation

d
dt

[ ˆ̂
Pα̂(t)

]
=
∫ t

0

dt′
[ ˆ̂
P

ˆ̂
G(t) ˆ̂

G(t′) ˆ̂
Pα̂(t)

]
, (14)

where we defined the new “interaction-picture” density operator

α̂(t) ≡ exp
(
− ˆ̂

St − ˆ̂
Bt
)
ρ̂SB(t) (15)

and the superoperator
ˆ̂
G(t) ≡ exp

(
− ˆ̂

St − ˆ̂
Bt
) ˆ̂
F exp

( ˆ̂
St + ˆ̂

Bt
)
. (16)

One of the advantages of (14), as verified in [18,26], is to make the contributions referring to S and B easily
factorized. Both here and in our previous applications [18,26,27], we have considered S a 2-state system and B the
environment, with corresponding Hamiltonians

ĤS = �ω0σ̂z, (17)

ĤB = �

∑

k

ωk b̂†k b̂k, (18)

and the Lindbladian represented by a single Lindblad operator, with the form

L̂(S) = λσ̂j , j = x, z, λ ∈ R, (19)

where b̂k and b̂†k are the destruction and creation operators of the environment B, ωk are the frequencies associated
to each environmental mode, ω0 is the characteristic frequency of the system S, λ is a constant associated with the
intensity of the interaction between the system S and the measurement apparatus, and σ̂j are the Pauli matrices:

σ̂z =
(

1 0
0 −1

)
, σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
. (20)

Furthermore, we have adopted an Ohmic spectral density [14] given by

J(ω) = ηωe−ω/ωc , η � 0, ωc > 0. (21)

When we analyse the final density operator ρ̂S , we have to write it in terms of the basis of eigenstates of the
measurement apparatus responsible for the Lindblad L̂(S). Since we start our calculations using the basis corresponding
to the σ̂z eigenstates, {|0〉, |1〉}, the L̂(S) = λσ̂z case will not require additional attention. However, in the L̂(S) = λσ̂x

case it will be necessary the change to the basis of the σ̂x eigenstates, {|+〉, |−〉}, namely,

|±〉 =
|0〉 ± |1〉√

2
, (22)

using the basis transformation matrix

M̂ =
1√
2

(
1 1
1 −1

)
= M̂−1. (23)

We observe that the basis in which the reduced density operator is written will be specified by the superscript (j), as
in ρ̂

(j)
S (t).
To solve eq. (14), it is often useful to adopt the notation

R̂(t) ≡ e−
ˆ̂
Stρ̂S(t), (24)

so that
ˆ̂
Pα̂(t) = R̂(t)ρ̂B . (25)

In the end, the density operator for the system can be recovered simply by applying the inverse transformation

ρ̂S(t) = e
ˆ̂
StR̂(t). (26)
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With the definition of R̂(t), the integrand of eq. (14) can be expanded. We illustrate how this is done for the
specific case of a phase-damping interaction,

ĤSB = σ̂z

∑

k

�

(
gkb†k + g∗kbk

)
, (27)

where the gk are the associated coefficients of the spectral density. In this case, ˆ̂
G(t) ˆ̂

G(t′)R̂(t)ρ̂B from eq. (16) yields

ˆ̂
G(t) ˆ̂

G(t′)R̂(t)ρ̂B = ie−
ˆ̂
Ste−

ˆ̂
Bt ˆ̂

F

{
e

ˆ̂
S(t−t′)

[(
e

ˆ̂
St′R̂(t)

)
σ̂z

]}{
e

ˆ̂
B(t−t′)

[(
e

ˆ̂
Bt′ ρ̂B

)∑

k

�

(
gkb†k + g∗kbk

)]}

− ie−
ˆ̂
Ste−

ˆ̂
Bt ˆ̂

F

{
e

ˆ̂
S(t−t′)

[
σ̂z

(
e

ˆ̂
St′R̂(t)

)]}{
e

ˆ̂
B(t−t′)

[
∑

k

�

(
gkb†k + g∗kbk

)(
e

ˆ̂
Bt′ ρ̂B

)]}
. (28)

The following procedure is to replace the superoperators in eq. (28) with the definitions from (11), (12) and (13).

To do this, it is necessary to clarify the effect of the temporal exponentials of the superoperators, e
ˆ̂
St and e

ˆ̂
Bt. For

example, defining X̂ ′ as the result of applying e
ˆ̂
Bt on an operator X̂:

X̂ ′ = e
ˆ̂
BtX̂ (29)

and taking the time derivative on both sides, we have

d
dt

X̂ ′ = ˆ̂
Be

ˆ̂
BtX̂ = ˆ̂

BX̂ ′, (30)

but, by the definition (12), eq. (30) will be

d
dt

X̂ ′ = − i

�

[
ĤB , X̂ ′

]
. (31)

This is the Liouville-von Neumann equation, whose solution, for a time-independent Hamiltonian ĤB , will be, remem-
bering that X̂ ′(0) = X̂,

X̂ ′ = e
ˆ̂
BtX̂ = e−i

ĤB
�

tX̂ei
ĤB

�
t. (32)

Equivalently, the action of e
ˆ̂
St on the density operator elements ρij (i, j = 1, 2) will be determined by eq. (11),

being the solution of the Lindblad superoperator with no environment. For L̂(S) = λσ̂z, the solution will be given
by [16]

ρ
(z)
11 (t) = ρ

(z)
11 (0), (33)

ρ
(z)
12 (t) = ρ

(z)
12 (0)e−2λ2te−i2ω0t. (34)

However, for L̂(S) = λσ̂x, the solution is more complicated and will be given, in the σ̂z eigenstates basis, by [26]
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
(z)
11 (t) =

1
2

+
2ρ

(z)
11 (0) − 1

2
e−2λ2t,

ρ
(z)
12 (t) = e−λ2t

{
ρ
(z)
12 (0) cosh

(√
λ4 − 4ω2

0t
)
− ρ

(z)
12 (0)

i2ω0√
λ4 − 4ω2

0

sinh
(√

λ4 − 4ω2
0t

)

+
λ2

√
λ4 − 4ω2

0

ρ
(z)∗
12 (0) sinh

(√
λ4 − 4ω2

0t
)}

.

(35)

Finally, it is necessary to change the basis to the eigenstates of the measurement apparatus, furnishing
⎧
⎪⎨

⎪⎩

ρ
(x)
11 (t) =

1
2

+ Re
{

ρ
(z)
12 (t)

}
,

ρ
(x)
12 (t) = −1

2
+ ρ

(z)
11 (t) − i Im

{
ρ
(z)
12 (t)

}
.

(36)
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In possession of these solutions, it is possible to solve the master equation under certain circumstances, which is
done in the next two sections.

In our previous works [18,26,27], to obtain analytical solutions, we had considered only the system-environment
interaction in the phase-damping format and, in the case when the Lindblad does not commute with that interaction,
we had considered the particular situation when the frequency ω0 and the environment temperature T are both zero.
In the following sections, we will present numerical implementations without these restrictions and with the use of
both kinds of interaction. For the environment, we adopt the initial thermal state:

ρ̂B =
1

ZB

∏

p

e−�βωpb̂†pb̂p , ZB =
∏

l

1
1 − e−�βωl

, (37)

with β = 1
kBT , where kB is Boltzmann constant and T is the environmental temperature.

3 Phase-damping interaction

The case of phase-damping interaction was solved in two different manners: first, using the master equation given
in the section above, valid for weak system-environment interaction. This is presented in the first subsection below.
Afterward, we explain how the algorithm to numerically solve the Lindblad equation was written.

3.1 Solutions of the master equation

For the case of the phase-damping interaction,

ĤSB = �σ̂z

∑

k

(
gk b̂†k + g∗k b̂k

)
, (38)

the treatment of the environment degrees of freedom was shown in [26], furnishing

ˆ̂
P

ˆ̂
G(t) ˆ̂

G(t′) ˆ̂
Pα̂(t) = η

∫ ∞

0

dωωe−
ω

ωc

{
coth

(
�βω

2

)
cos [ω(t − t′)] + i sin [ω(t − t′)]

}

× e−
ˆ̂
St

[
σ̂z,

{
e

ˆ̂
S(t−t′)

[(
e

ˆ̂
St′R̂(t)

)
σ̂z

]}]
⊗ ρ̂B

+ η

∫ ∞

0

dωωe−
ω

ωc

{
coth

(
�βω

2

)
cos [ω(t − t′)] − i sin [ω(t − t′)]

}

× e−
ˆ̂
St

[{
e

ˆ̂
S(t−t′)

[
σ̂z

(
e

ˆ̂
St′R̂(t)

)]}
, σ̂z

]
⊗ ρ̂B , (39)

where we took the limit to the continuum by defining the spectral density function

J(ω) =
∑

l

|gl|2δ(ω − ωl), (40)

and employed an Ohmic spectral density (21).

3.1.1 The z-component measurement

The measurement of the z component, i.e., L̂(S) = λσ̂z will furnish the (relatively) simple solutions [26]:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ11(t) = ρ11(0),

ρ12(t) = ρ12(0)

[
Γ
(

1
ωcβ�

+ i t
β�

)
Γ
(

1
ωcβ�

− i t
β�

)

Γ 2
(

1
ωcβ�

) Γ
(

1
ωcβ�

+1+i t
β�

)
Γ
(

1
ωcβ�

+1−i t
β�

)

Γ 2
(

1
ωcβ�

+1
)

]2η

e−2λ2tei2ω0t,

(41)
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3.1.2 The x-component measurement

In the σ̂z eigenbasis, as obtained in [26], the populations for L̂(S) = λσ̂x will be
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ
(z)
11 (t) =

2ρ
(z)
11 (0) − 1

2
e−2λ2t +

1
2

ρ
(z)
12 (t) =

e−λ2t

Ω

{
[Ω cosh(Ωt) − i2ω0 sinh(Ωt)] r12(t) + λ2 sinh(Ωt)r21(t)

}
, (42)

Ω =
√

λ4 − 4ω2
0 , (43)

where r12(t) and r21(t) are both solutions of the system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d
dt

r12(t) = −4
η

Ω3

∫ t

0

dt′
∫ ∞

0

dω ωe−
ω

ωc cos [ω(t − t′)] coth
(

β�ω

2

)
[Q1(t, t′)r12(t) + Q2(t, t′)r21(t)]

d
dt

r12(t) = −4
η

Ω3

∫ t

0

dt′
∫ ∞

0

dω ωe−
ω

ωc cos [ω(t − t′)] coth
(

β�ω

2

)
[Q∗

2(t, t
′)r12(t) + Q∗

1(t, t
′)r21(t)]

, (44)

with
{

Q1(t, t′) ≡ K1(t) [K∗
1 (t − t′)K∗

1 (t′) − K2(t − t′)K2(t′)] + K2(t) [K2(t − t′)K∗
1 (t′) − K1(t − t′)K2(t′)]

Q2(t, t′) ≡ K1(t) [K∗
1 (t − t′)K2(t′) − K2(t − t′)K1(t′)] + K2(t) [K2(t − t′)K2(t′) − K1(t − t′)K1(t′)]

, (45)

{
K1(t) ≡ Ω cosh(Ωt) + i2ω0 sinh(Ωt)

K2(t) ≡ λ2 sinh(Ωt)
. (46)

3.2 Numerical solution of the Lindblad equation

To compare the semi-analytical results of the hybrid master equation with the numerical simulations of the Lindblad
equation, we employed the same superoperator-splitting method described in a previous article [26]. A few adaptations
were necessary for the inclusion of non-vanishing ω0 and temperature T . We shall approach the introduction of these
two parameters separately in the subsections that follow.

3.2.1 Introduction of ω0

As stated in eq. (41) of [26], the final state of the system subject to phase noise and a perpendicular measurement can
be calculated using the superoperator-splitting method through the algorithm:

(
ρ
(z)
12 (t)

ρ
(z)
21 (t)

)
= e−λ2t

∑

q1∈{−1,1}
. . .

∑

qN∈{−1,1}

N∏

n=1

[Aqn
(Δt)] TrB

{
N∏

n=1

[ ˆ̂
Kqn

(Δt)
]
ρ̂B

}(
ρ
(z)
12 (0)

ρ
(z)
21 (0)

)
, (47)

where t = NΔt and the superoperators ˆ̂
Kq(Δt) satisfy, when the noise is along the ẑ direction,

ˆ̂
Kq(Δt)X̂ ≡ e−i

P

k ωk(b̂k+qgk/ωk)†(b̂k+qgk/ωk)ΔtX̂ei
P

k ωk(b̂k−qgk/ωk)†(b̂k−qgk/ωk)Δt,

and the Aqn
(Δt) are 2 × 2 matrices that depend on the solution of the noiseless Lindblad equation, i.e.

d
dt

ρ(t) = −iω0 [σz, ρ(t)] + λ2 [σxρ(t)σx − ρ(t)] .

In our previous article we chose ω0 = 0, thus rendering the solution of the equation in the eigenbasis of σz simply
(

ρ
(z)
12 (Δt)

ρ
(z)
21 (Δt)

)
= e−λ2ΔtA

(0)
+ (Δt)

(
ρ
(z)
12 (0)

ρ
(z)
21 (0)

)
+ e−λ2ΔtA

(0)
− (Δt)

(
ρ
(z)
12 (0)

ρ
(z)
21 (0)

)
,
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where the matrices A
(0)
± (Δt) are

A
(0)
+ (Δt) =

(
cosh(λ2Δt) sinh(λ2Δt)

0 0

)
, A

(0)
− (Δt) =

(
0 0

sinh(λ2Δt) cosh(λ2Δt)

)
.

In this new situation where ω0 �= 0, the solution for the coherences will require these matrices instead:

A+(Δt) =
1
Ω

(
Ω cosh(ΩΔt) − 2iω0 sinh(ΩΔt) λ2 sinh(ΩΔt)

0 0

)
,

A−(Δt) =
1
Ω

(
0 0

λ2 sinh(ΩΔt) Ω cosh(ΩΔt) + 2iω0 sinh(ΩΔt)

)
,

where Ω ≡
√

λ4 − 4ω2
0 . It is easy to verify that, when ω0 = 0, Ω = λ2, the original matrices A

(0)
± (Δt) are recovered.

The full expression of the algorithm in eq. (47) requires a product of N such matrices for each term of the N
summations. We can reduce the computational overhead by simplifying analytically the results before writing the
program. Following the method employed in the previous article, we first define the functions

c+(Δt) ≡ cosh(ΩΔt) − 2iω0
1
Ω

sinh(ΩΔt),

c−(Δt) ≡ λ2 1
Ω

sinh(ΩΔt),

so that the products of these matrices can be written as

Aqn
(Δt)Aqn+1(Δt) = cqn

qnqn+1
(Δt)(σx)(1−qnqn+1)/2Aqn+1(Δt),

where a minus sign as a superscript in the c(Δt) represents taking its complex conjugate (c+ = c, c− = c∗).
Proceeding iteratively with all the N products, we find

N∏

n=1

[Aqn
(Δt)] =

N−1∏

n=1

cqn
qnqn+1

(Δt)(σx)
PN−1

n=1 (1−qnqn+1)/2AqN
(Δt).

Noting additionally that (σx)(1−q1q2)/2(σx)(1−q2q3)/2 = (σx)1−q2(q1+q3)/2 = (σx)(1−q1q3)/2, the product simplifies even
further. Back to eq. (47),

(
ρ12(NΔt)
ρ21(NΔt)

)
= e−λ2(NΔt)

∑

q1∈{−1,1}
. . .

∑

qN∈{−1,1}

[
N−1∏

n=1

cqn
qnqn+1

(Δt)

]
(σx)(1−q1qN )/2

× AqN
(Δt)

N∏

m,n=1

{
1 +

2(ωcΔt)−2 + (1 − 2|m − n|2)
[(ωcΔt)−2 + |m − n|2]2

}−ηqmqn
(

ρ12(0)
ρ21(0)

)
,

where we have already replaced the trace for its result at zero temperature, given in appendix G of [26]. In the next
section, we will see how this trace is modified for the case when T > 0.

3.2.2 Introduction of T

In the case when the system has some temperature T > 0, the trace we have to take is

TrB

{
N∏

n=1

[ ˆ̂
Kqn

(Δt)
] e−β�

P

k ωk b̂k
†
b̂k

Z

}
.

We will employ once again the basis of coherent states to take the trace. When acting upon the superoperator
ˆ̂
Kqn

(Δt), coherent-state bras and kets result in:
⊗

k

〈α′
k|

ˆ̂
Kq(Δt)X̂

⊗

k

|αk〉 =
⊗

k

〈eiωkΔtα′
k + (eiωkΔt − 1)Gk|X̂

⊗

k

|eiωkΔtαk − (eiωkΔt − 1)Gk〉

×e
P

k(G∗
k(1−eiωkΔt)(αk+α′

k)−Gk(1−e−iωkΔt)(αk+α′
k)∗)/2,



Page 10 of 24 Eur. Phys. J. Plus (2014) 129: 206

where we have defined
Gk ≡ q

gk

ωk
.

Repeating the procedure N times, we find:

⊗

k

〈αk|
N∏

n=1

[ ˆ̂
Kqn

(Δt)
]
ρB(0)

⊗

k

|αk〉 =
⊗

k

〈
eiNωkΔt

[
αk +

N∑

n=1

(eiωkΔt − 1)Gn,k

]∣∣∣∣∣

× e−β�
P

k ωk b̂k
†
b̂k

Z

⊗

k

∣∣∣∣∣e
iNωkΔt

[
αk −

N∑

n=1

(eiωkΔt − 1)Gn,k

]〉

× e
P

n,k(G∗
n,ke−iωkΔt(1−eiωkΔt)αk−Gn,keiωkΔt(1−e−iωkΔt)α∗

k),

where
Gn,k ≡ e−inωkΔtqn

gk

ωk

and the X̂ operator has been replaced by the initial density matrix of the environment. Its action on the coherent
state yields

e−β�ωk b̂k
†
b̂k

∣∣∣∣∣e
iNωkΔt

[
αk −

N∑

n=1

(eiωkΔt − 1)Gn,k

]〉
=

∣∣∣∣∣e
−β�ωkeiNωkΔt

[
αk −

N∑

n=1

(eiωkΔt − 1)Gn,k

]〉

× e−
1
2 (1−e−2β�ωk )|αk−

PN
n=1(e

iωkΔt−1)Gn,k|2 .

Therefore,

⊗

k

〈αk|
N∏

n=1

[ ˆ̂
Kqn

(Δt)
]
ρB(0)

⊗

k

|αk〉 =
∏

k

(
1

1 − e−β�ωk

)−1

exp
{
−(1 − e−β�ωk)|αk|2

}

× exp

{
− (1 + e−β�ωk)

N∑

n=1

2i Im
[
G∗

n,k(1 − e−iωkΔt)αk

]
}

× exp

{
− (1 + e−β�ωk)

∣∣∣∣
N∑

n=1

(eiωkΔt − 1)Gn,k

∣∣∣∣
2
}

.

Taking the trace, we find ourselves integrating over the complex plane:

Tr . . . =
∏

k

(
1

1 − e−β�ωk
)−1 1

π

×
∫ ∞

−∞
dx exp

{
−(1 − e−β�ωk)x2

}
exp

{
−(1 + e−β�ωk)2i Im

[
N∑

n=1

G∗
n,k(1 − e−iωkΔt)

]
x

}

×
∫ ∞

−∞
dy exp

{
−(1 − e−β�ωk)y2

}
exp

{
−(1 + e−β�ωk)2iRe

[
N∑

n=1

G∗
n,k(1 − e−iωkΔt)

]
y

}

× exp

⎧
⎨

⎩−(1 + e−β�ωk)

∣∣∣∣∣

N∑

n=1

(eiωkΔt − 1)Gn,k

∣∣∣∣∣

2
⎫
⎬

⎭ .

These are integrals of Gaussians, which can be solved by
∫ ∞

−∞
dx e−ax2

e−2i Im(b)x

∫ ∞

−∞
dy e−ay2

e−2i Re(b)y =
π

a
e−|b|2/a,

yielding the result of, after taking the continuous limit of frequencies, and Ohmic spectral density (21):

Tr . . . = exp

{
−8η

N∑

m,n=1

qmqn

∫ ∞

0

dωe−ω/ωc
e−i(m−n)ωΔt

ω
coth

(
�βω

2

)
sin2

(
ωt

2

)}
.
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This final expression clearly recovers the integral given in appendix G of our previous article [26] in the limit when
T → 0, because

lim
β→∞

coth
(

�βω

2

)
= 1.

Moreover, it reduces to the expression of decoherence in a finite-temperature (eq. (18) of ref. [31]) environment
when we take just one step (N = 1):

exp
{
−8η

∫ ∞

0

dω
e−ω/ωc

ω
coth

(
�βω

2

)
sin2

(
ωt

2

)}
.

4 Amplitude-damping interaction

The amplitude-damping interaction —which, here, is only solved using the master equation— is described by the
Jaynes-Cummings interaction Hamiltonian:

ĤSB = �

∑

k

(
gk b̂kσ̂+ + g∗k b̂†kσ̂−

)
, (48)

where

σ̂+ =
(

0 1
0 0

)
,

σ̂− =
(

0 0
1 0

)
. (49)

The partial trace for the environmental degrees of freedom, following the procedures already shown in [18,26],
furnish:

ˆ̂
P

ˆ̂
G(t) ˆ̂

G(t′) ˆ̂
Pα̂(t) = η

∫ ∞

0

dωωe−
ω

ωc
e−iω(t−t′)

e�βω − 1
e−

ˆ̂
St

[
σ̂+,

{
e

ˆ̂
S(t−t′)

[
(e

ˆ̂
St′R̂(t))σ̂−

]}]
ρ̂B

+ η

∫ ∞

0

dωωe−
ω

ωc
eiω(t−t′)

1 − e−�βω
e−

ˆ̂
St

[
σ̂−,

{
e

ˆ̂
S(t−t′)

[
(e

ˆ̂
St′R̂(t))σ̂+

]}]
ρ̂B

+ η

∫ ∞

0

dωωe−
ω

ωc
eiω(t−t′)

e�βω − 1
e−

ˆ̂
St

[{
e

ˆ̂
S(t−t′)

[
σ̂+(e

ˆ̂
St′R̂(t))

]}
, σ̂−

]
ρ̂B

+ η

∫ ∞

0

dωωe−
ω

ωc
e−iω(t−t′)

1 − e−�βω
e−

ˆ̂
St

[{
e

ˆ̂
S(t−t′)

[
σ̂−(e

ˆ̂
St′R̂(t))

]}
, σ̂+

]
ρ̂B . (50)

where we are employing the Ohmic spectral density (21).

4.1 The z-component measurement

For L̂(S) = λσ̂z, the treatment of (50) and its substitution in (14) will furnish, for R̂(t),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

R11 = 2R22(t)η
∫ t

0

dτ

∫ ∞

0

dω
ωe−

ω
ωc

e�βω − 1
e−2λ2τ cos [(2ω0 − ω)τ ]

−2R11(t)η
∫ t

0

dτ

∫ ∞

0

dω
ωe−

ω
ωc

1 − e−�βω
e−2λ2τ cos [(2ω0 − ω)τ ]

R12(t) = R12(0) exp

{
−η

∫ t

0

dt′
∫ ∞

0

dωωe−
ω

ωc
e2λ2t′ei(2ω0−ω)t′ − 1
2λ2 + i(2ω0 − ω)

coth
(

�βω

2

)}
, (51)

remembering that R11(t) + R22(t) = 1 and R12(t) = R∗
21(t).



Page 12 of 24 Eur. Phys. J. Plus (2014) 129: 206

4.2 The x-component measurement

For L̂(S) = λσ̂x, as expected, the expressions will be more complex, furnishing,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

R11 = 2R11(t)e2λ2t

∫ t

0

dt′
∫ ∞

0

dωJ(ω)Re

{
a2(t′)b∗1(t − t′)

e−iω(t−t′)

e�βω − 1
− a1(t′)b1(t − t′)

eiω(t−t′)

1 − e−�βω

}

+2R22(t)e2λ2t

∫ t

0

dt′
∫ ∞

0

dωJ(ω)Re

{
a1(t′)b∗1(t − t′)

e−iω(t−t′)

e�βω − 1
− a2(t′)b1(t − t′)

eiω(t−t′)

1 − e−�βω

}

d
dt

R12 = −R12(t)
∫ t

0

dt′
∫ ∞

0

dωJ(ω)e−2λ2(t−t′) coth
(

�βω

2

)[
b1(−t)b1(t′)e−iω(t−t′) + b2(−t)b2(t′)eiω(t−t′)

]

−R21(t)
∫ t

0

dt′
∫ ∞

0

dωJ(ω)e−2λ2(t−t′) coth
(

�βω

2

)[
b1(−t)b2(t′)e−iω(t−t′) + b∗1(t

′)b2(−t)eiω(t−t′)
]

, (52)

where ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1(t) =
1 + e−2λ2t

2

a2(t) =
1 − e−2λ2t

2

b1(t) =
e−λ2t

Ω
[Ω cosh(Ωt) − i2ω0 sinh(Ωt)]

b2(t) =
λ2

Ω
e−λ2t sinh(Ωt)

, (53)

remembering that again R11(t)+R22(t) = 1 and R12(t) = R∗
21(t). After R̂ has been found, it is still necessary a change

of basis to find the density operator in the eigenbasis of σ̂x, as in the discussion of eq. (44).

5 Results and analysis

After laying down the methods for obtaining the solutions, we now can observe what they look like in graphs. There
are four parameters to be analysed:

– λ, the coupling strength between the system and the measuring apparatus;
– η, the coupling strength between the system and the environment;
– ω0, the splitting, in frequency units, between the two energy levels of the principal system, henceforth called the

natural frequency of the system;
– T , the environment temperature, also expressed in terms of β = 1/kBT , where kB is the Boltzmann constant. Note

that T = 0 corresponds to the limit in which β → ∞.

In this section, we observe how the measurement, represented by λ, affects the evolution of the system for different
values of the other three parameters η, ω0, and β.

It may be noted that in some cases the natural frequency of the system is taken as zero (ω0 = 0). This is not simply
a manner of simplifying the calculations, despite certainly having this advantage. This is equivalent to turning off the
natural evolution of the two-level system, as in the case of a memory qubit. It is, therefore, a situation of relevance in
the context of quantum computation, because quantum memories are necessary to the proper synchronization of the
internal processes of a quantum computer [32].

5.1 Phase damping

The phase damping channel merely causes the loss of coherence in the basis of σ̂z, thus having an effect similar to a
measurement of this observable. It does not affect the populations in this basis and, therefore, the outcome of the σ̂z

measurement remains unchanged. However, as it makes the coherences disappear, it does affect the outcomes of the
measurement of σ̂x, for example. In this case, as the coherences in the original basis vanish, the populations in the
basis of σ̂x approach 1/2, thus destroying any information that we initially could obtain from a measurement of that
observable.
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Fig. 1. Populations and coherences in the eigenbasis of the measured observable for ω0 = 0 and T = 0. In this case the
conclusions are the same as those presented in ref. [26].

5.1.1 The z-component measurement

Equation (41) is the complete analytical solution for this case, and it includes all the parameters of our problem. For
this case, we can see [26] that:

– the populations are constant in time, for any value of the parameters ω0, λ, η, and T ;
– the moduli of the coherences are independent of ω0 and an increase in the other parameters just makes the decay

more intense.

These results are expected, because the frequency ω0 only affects the phases of the coherences, and both the mea-
suring apparatus and the environment are responsible for measuring the system in the eigenbasis of σ̂z, thus causing
decoherence. The only new result is that the environmental temperature also helps to increase the decoherence, an
effect not unlike those found in other works that did not involve the measuring apparatus [31].

5.1.2 The x-component measurement

While in [26] we had to make the restrictions ω0 = 0 and T = 1
kBβ = 0 in (42)–(46) to obtain analytical solutions,

here the equation is solved numerically to analyse the influence of all parameters.
Figure 1 reproduces the analytical results of [26,27] for ω0 = 0 and T = 0, namely, that the change in value of

the population, caused by the interaction with the environment and therefore increased with η, is attenuated by the
system-apparatus coupling λ. Regarding the coherences, which tend to zero in absolute value, we are able to establish
a time for the measurement process to reach completion. In [27] we have found, for this specific situation, an upper
limit for the measurement duration:

tM = − 1
2λ2

ln f, (54)

where f is an arbitrary fraction of the initial value of the moduli of the coherences (0 < f < 1).
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Fig. 2. Curves referring to the population in the eigenbasis of the measured observable, considering many values of λ and η,
and a non-zero value of ω0, while keeping T = 0.

Moreover, the comparison between the solution of the master equation and the numerical results obtained from
the superoperator-splitting procedure are in good agreement for low values of η, but the two curves depart more and
more from each other as the strength of the coupling increases. This is due to the fact that the master equation is a
lower-order approximation valid only in the limit of small η. For higher values of η, the approximation fails.

After reproducing the numerical results known to the analytical approach, we add a new parameter: the system
frequency, ω0. Figure 2 is equivalent to fig. 1, now considering a non-zero value for ω0.

From fig. 2, we note that the increase of the system frequency changes the behavior of the populations, which is
no longer monotonic. In the time interval considered here, we are able to observe that the populations oscillate. From
fig. 2(c), we observe that, the lower the value of λ, the closer is the evolution of the populations to the unperturbed
case (dashed lines). This might mislead us into thinking that the finite-time measurement is less efficient than the
instantaneous in this case. This notion is false, however, because the state we want to measure is the one at the instant
t = 0, when the measurement apparatus is turned on. In general, the curve with the highest λ is still the one that
conserves the population closest to its initial value for most of the time, meaning that the measurement protects the
system from the environment and prevents its inherent evolution, as in the Zeno effect [33].

For the moduli of the coherences, the monotonic behavior is likewise eliminated. However, while for the populations
we found a point of maximum, here we find also a point of minimum at zero, where the coherences change sign and
their moduli bounce upwards. As the system-environment coupling strength η becomes more intense, the time when
the magnitude of the coherences is zero becomes smaller, while keeping the moduli in general closer to zero even after
the point of minimum. A similar effect is observed for λ, which is expected from the fact that both the apparatus and
the environment interactions are contributing to the decoherence.

Now, we will consider the effects of another parameter neglected in our previous works [26,27]: the temperature
of the environment. Figure 3 shows the behavior of populations and coherences for a fixed value of the strength of
the coupling between the system and the environment when the system has zero frequency ω0, in the case in which
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Fig. 3. Curves for the analysis of the effects of the environmental temperature for ω0 = 0.

we vary λ and T . It is possible to observe, for populations, that, while an increase of the temperature makes the
deleterious effects of the environment more pronounced, a similar increase in λ is capable of compensating for these
effects, thus attenuating the rate of population change. Therefore, we can conclude that the simple addition of the
environment temperature to the model does not change our previously published conclusions about state protection
and measurement error [26,27].

For the moduli of the coherences, we still have the same effects of faster decrease for higher λ, as seen in fig. 3(d).
The only new fact is that the environmental finite temperature has a similar effect to η in making the coherences
approach zero.

Ending the analysis of phase-damping interaction, fig. 4 shows several curves with fixed and non-zero environment
parameters η and T , varying λ. As in the previous cases, here we once again verify that the measurement has a twofold
effect on the system: it attenuates the changes in the populations and increases the rate at with which the coherences
vanish, confirming, so far, the conclusions of our previous works [26,27].

5.2 Amplitude damping

The amplitude-damping system-environment interaction differs from phase-damping by not simply being an agent of
decoherence. This kind of interaction causes the decay of the excited state |1〉 to the ground state |2〉, thus resulting
in the gradual decrease of the population ρ11(t) until its complete disappearance.

However, if the temperature is not zero, as in many cases we are treating here, the repopulation of the excited
state by the environment will result in a final equilibrium population that lies above zero. This value, proportional
to the Boltzmann weight e−�βω0 , increases with temperature (with more energy available, the environment will more
easily repopulate the excited state) but decreases with ω0 (the higher the energy difference, the more difficult it is to
repopulate). For T > 0 and ω0 = 0, both populations assume a final value of 0.5, as will be seen below.
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Fig. 4. Simultaneous influence of the frequency of the system and the environmental temperature.
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Fig. 5. Curves for the amplitude-damping interaction, during a measurement of the z-component, considering different values
of λ and η, but with T = ω0 = 0.

5.2.1 The z-component measurement

Contrary to the phase-damping case, amplitude-damping changes the value of the populations in the eigenbasis of σ̂z,
allowing us to observe interesting effects even in this case. Figure 5 shows curves for the population and modulus of
the coherence considering several values of η and λ, but still with temperature T and frequency ω0 turned off.

The strengthening of the system-environment coupling η causes a more intense decrease of the population that can
be compensated by an increase in the system-measurement apparatus coupling λ. This causes a reduction of the rate of
decay analogous to the phase-damping interaction with an x-component measurement. For the coherence, the increase
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Fig. 6. Curves for the population and modulus of the coherence considering different values of λ, with non-zero ω0.

of η or λ causes a more intense decrease of the modulus. Therefore, the conclusions from [26,27] and the previous
section of this article remain valid here, despite our having changed not simply the system-environment interaction
but the measured component too.

Let us introduce the system frequency, ω0. From fig. 6, we note this parameter does not change significantly the
population and coherence behavior and, then, we have the same conclusions about the effects of λ and η.

The coherences have their behavior governed mainly by λ, which, as always, makes the moduli go faster to zero
while keeping the population closer to its original value. For both variables, a larger system frequency ω0 results in
a more intense decrease. For the populations, this fact can be easily explained because an increase in the difference
between the energy levels makes repopulation more difficult. Then, ω0 and λ have compensating effects.

With the introduction of the environmental temperature T (fig. 7), we note that, as expected, if we keep T
constant, we have the well-known protecting effect of the finite-time measurement. On the other hand, the measurement
apparatus has its already-observed effect of increasing the reduction rate of the coherences.

The coherence has its rate of decay sharpened as the environment temperature rises. From the graphs, we can
also see that as the environmental temperature rises the population has its decrease rate attenuated, i.e., for a higher
temperature, we have a lower measurement error. Hence we see that the environment can have contradictory effects over
the measuring process: the coupling intensity η acts to increase the error associated to the measurement process and
decrease the measurement time; however, the temperature T acts to reinforce the effects of the system-measurement
apparatus coupling λ, preventing the decay and increasing the measurement time.

This curious effect is a fortuitous coincidence caused by our choice of ω0 and initial state. With ω0 = 0, the thermal
energy from the environment will eventually lead to a state of thermal equilibrium between the two systems that will
stabilize both populations at the same value. Starting at ρ11(0) = 0.5, our initial state is already the expected final
state. An increase in temperature, in this case, only makes faster the approach of the equilibrium situation.

The maintenance of the system in the excited state, however, can be verified even with the ω0 and T parameters
above zero. As illustrated in fig. 8, we can, with a strong enough choice of the measurement coupling λ, keep an ensemble
of initially excited systems as close as possible to their original states even at times when they would normally have
completely decayed by themselves. This is not simply a more efficient way of performing a measurement of their initial
state, but may be a means of observing the quantum Zeno effect [33] (i.e., keeping a system in its excited state by
observing it) for finite-time measurements.

Finally, fig. 9 shows curves for non-zero environmental temperature, considering constant system-environment
coupling and changing the frequency of system and its coupling with the measurement apparatus. We see that the
introduction of ω0 does not change the evolution of the moduli of the coherences, but intensifies the population decrease
for a fixed λ.

Contrary to the case with phase-damping interaction, here we verified some curious effects when we change the
system-environment interaction to amplitude damping:

– both system-measurement apparatus coupling λ and environment temperature T can have the effect of preserving
the system in the excited state; the first effect is universal, while the second only occurs for certain values of the
initial population and temperature, and is a direct consequence of the repopulation of the excited state caused by
the thermal energy of the environment;

– both the system frequency ω0 and the system-environment coupling η intensify the decrease of the population;
– in general, the conclusions obtained by the measurement of the x-component with phase-damping interaction are

valid in the present case, except, perhaps, the formula for the upper limit of the measurement duration.
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Fig. 7. Introduction of temperature of the environment for the amplitude-damping interaction.
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Fig. 9. Populations and moduli of the coherences, and their dependence on λ and T .
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Fig. 10. Populations and coherences for two values of λ and different values of η.

5.2.2 The x-component measurement

Figure 10 shows population and coherence curves for several values of λ and η, while keeping ω0 = T = 0. As
previously observed, the system-environment interaction acts in the sense of accentuating the population decrease
and, consequently, the error associated to the measurement process. However, the measurement apparatus still keeps
the populations close to their original values.
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Fig. 11. Populations and coherences obtained for a fixed η, varying λ and ω0.

Although we cannot, in this case, obtain a simple expression for the duration of the measurement, we still use the
coherences to establish the time at which the system-environment interaction can be interrupted and the reading of
the state accomplished —in this case, the time when the coherences assume the constant asymptotic value. Obviously,
in more general cases, when the behavior of the system is not simple (the coherences no longer display a monotonic
decrease), its physical properties must be considered to the establishment of the measurement time. In these non-
monotonous cases, there are at least two possible criteria that could be taken to determine the end of the measurement:
the instant when the moduli of the coherences reach zero, or when they assume an asymptotically constant value.

The next step is to introduce a system frequency ω0. In this case, we observe a similarity with the behavior of the
measurement of the x-component for phase-damping interaction: the populations do not exhibit monotonic behavior
anymore, instead displaying a maximum point. As the system-environment coupling increases, both its intensity and
the time when it occurs decrease. On the other hand, increasing the system-measurement apparatus coupling diminishes
the maximum intensity.

Figure 11 shows that the element that determines the qualitative format of the curves is the frequency of the system
ω0. One should note, while observing these results, that all of them were plotted in the basis of the measurement, that
is, σ̂x. These populations depend on the real part of the coherences in the basis of σ̂z, which is expected to oscillate
when ω0 �= 0. For example, in the case of a spin in a z-oriented field, the expectation values of σ̂x and σ̂y change while
the spin rotates around the z-axis. This explains the non-monotonous behavior of the populations, a phenomenon
observed previously in fig. 2(a).

Lastly, we analyse the effects of the environmental temperature. For the present case, contrary to the previous sec-
tion, we verified that, for a larger environmental temperature, the rate of change of the populations is increased. Then,
the environment —through T— acts to increase the measurement error, reinforcing the fact that the temperature-
originated protection found in the previous section was merely fortuitous.

Figure 12 shows several curves for different environment temperatures and ω0 = 0 and, after that, curves where
all relevant parameters are present. Once again, the qualitative behavior is determined by ω0.
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Fig. 12. Effect of the introduction of T , followed by the introduction of T and ω0. The last three graphs contain the coherences
corresponding to the populations plotted in the third one. To avoid confusion caused by the superposition of different curves,
they were broken in three.

6 Conclusions and perspectives

In this work, we employed the formalism that we developed to treat the hybrid formulation of the master equation [18],
which helped us to simplify the analytic solution, although the system of equations encountered still had to be solved
numerically. In both cases, phase and amplitude damping, the interaction between the system and the measurement
apparatus diminishes the effects of the noise on the population of the main system, allowing us to generalize our
previous conclusions in this sense [26]. This means that in both cases we are capable of performing a measurement
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more efficiently if instead of measuring it instantly at t > 0, we perform a finite-time measurement from 0 to t, even
at finite temperature. Likewise, for finite-time measurements, an increase in the system-apparatus coupling constant
λ is capable of making their results more reliable.

The possibility of application of this kind of measurement to improve the quality of the results depends, however,
on the practical existence of measurements that can be performed for a finite period of time, in accordance to the
model. In the following appendix, we propose a verification of our hypothesis by a simple experimental setting that,
if yielding positive results, would not only affect fundamental aspects of quantum theory but, also, other areas such
as quantum information theory [34].

Besides the assumption that measurements are finite in time, we took the additional step of approximating the
system-apparatus interaction as a Markovian process. Even though having the advantage of simplifying our calcula-
tions, this is a hypothesis far less straightforward to justify than the finite-time measurement. Future prospects of our
research include eliminating this approximation by letting the λ2 vary in time [35] and seeing the effects of this in the
noisy measurement process.
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Appendix A. Proposed experimental test

Beyond what has been shown in [28], here we propose an alternative experimental application of our formalism.
Throughout this and previous articles, we made the bold assumption that the measurement can ultimately be described
as a finite-time interaction between the system and a large number of (traced-out) degrees of freedom of the apparatus.
Moreover, we assumed that this interaction could be described as Markovian. The accuracy of these assumptions is far
from uncontroversial, but could be verified in the experimental test described below, which is based on the theory of
weak measurements [36]. We should note, before proceeding, that in this test we are mostly interested in the validity
of the first assumption, that is, the possibility of making finite-time measurements in practice. In case the Markovian
approximation is not valid the experiment can still be used to test the extension of our model to non-Markovian
measurement apparatus, currently a work in progress.

In this experimental setting, we analyse what happens when we measure the magnetic moment of a spin-1/2
particle with two Stern-Gerlach apparatus, which corresponds to the kind of two-state measurement described in the
body of this article. The first apparatus performs a “weak” measurement, i.e., one that does not completely destroy
the coherences; and the second promoting the full collapse of the wave function. As the second equipment’s task is
simply to measure the state of the spins of the particle after they have been through the first equipment, we shall
not concern ourselves with its inner workings, and it will not be necessary for this second apparatus to actually be a
Stern-Gerlach.

We choose the direction of the z axis so the final measurement is done along it. As this experiment will yield trivial
results if we choose the observable measured by the weak measurement as the same the second one, we will tilt the
first apparatus with an angle β in respect with the z axis. In this case, the observable being measured by it will be:

σ̂β = cos βσ̂z + sin βσ̂x,

where we are calling the direction along which the particles move the y axis.
We shall not make any assumptions about the initial state of the spins of the particles, allowing it to be represented

by any 2 × 2 density matrix ρ̂(0). When these particles cross the first equipment, which we will consider noiseless for
simplicity, it will reduce their coherences (in the basis of eigenstates of σ̂β) to a fraction 0 < b < 1 of their original
value, while leaving the populations intact. For “strong”, or “complete” measurements, the wave function collapse
would result in the coherences completely vanishing (b = 0), but for a weak measurement b is actually closer to one.

Explicitly, we can write that, if a particle enters the apparatus at t = 0 and leaves it at τ , its final state will be:

ρ̂(τ) =
1
2

[1 + b(τ)] ρ̂(0) +
1
2

[1 − b(τ)] σ̂β ρ̂(0)σ̂β .

In the equation above, we have given the fraction b a time dependence, which is precisely the hypothesis we wish to
test. If the measurement is instantaneous, this function will be constant, while it will display other kinds of behavior
if it is actually a dynamical process. Therefore, our experiment should be capable of providing us information about
the form of b(t).
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The final measurement, if performed correctly, will give us simply the expectation value of the variable σ̂z at t = τ ,
regardless of how much time it takes to extract this information from the quantum system, or of how this process is
performed. Therefore, from the equation above, we can conclude that the expectancy value of the experiment will be:

〈σ̂z〉(τ) =
[
cos2 β + b(τ) sin2 β

]
〈σ̂z〉(0) +

1
2

[1 − b(τ)] sin(2β)〈σ̂x〉(0),

if we consider that the system does not evolve between the two measurements, i.e. ω0 = 0.
Comparing this theoretical formula with the results of the experiments described below, one would be able to

deduce the form of the function b(t). Indeed, the results of 〈σ̂z〉(τ) and 〈σ̂z〉(0)can be measured directly by turning
on or off the first Stern-Gerlach apparatus. If 〈σ̂x〉(0) cannot be known from the preparation of the spins, we can
eliminate it from the equation by taking β = π/2:

〈σ̂z〉(τ) = b(τ)〈σ̂z〉(0), β =
π

2
.

This is probably the preferred setting of the experiment, but we will proceed nevertheless treating β as any angle, to
keep our results as general as possible. The only thing we have to keep in mind is that we cannot choose β = nπ,
n ∈ Z,as this would reduce the expression above to something trivial.

Appendix A.1. Checking if the measurement is “weak”

The experiment proposed requires the assumption that the first measurement is weak. If it turns out that the first
Stern-Gerlach is actually completely collapsing the wave function, there will be no meaningful results.

In this undesirable situation, we would have b = 0, yielding a measurement of:

〈σ̂z〉b=0(τ) = cos2 β〈σ̂z〉(0) +
1
2

sin(2β)〈σ̂x〉(0).

We should, therefore, make sure our test results are sufficiently distant from those expected when the measurement
is not weak. The difference between the preferred and failed cases is of:

Δz ≡
∣∣〈σ̂z〉b≈1 (τ) − 〈σ̂z〉b=0 (τ)

∣∣ ≈
∣∣∣∣cos2 β〈σ̂z〉(0) − 1

2
sin(2β)〈σ̂x〉(0)

∣∣∣∣ .

Therefore, it is desirable to choose the initial conditions and the angle β so that Δz is bigger than our experimental
errors, in order to distinguish the case when the measurement is weak from the case when it is too strong.

In the best setting, where β = π/2, the undesirable situation has 〈σ̂z〉b=0(τ) = 0. This means that, as long as we
choose an initial condition satisfying |〈σ̂z〉(0)| > 0, we just have to measure an average value distinguishable from
zero to be sure we are indeed performing “weak” measurements. The error of the experiment, therefore, must be kept
below Δz = |〈σ̂z〉(0)| > 0. On the other hand, it may also be important to verify if 〈σ̂z〉(τ) is distinguishable from
〈σ̂z〉(0), i.e., that some intermediary measurement is being performed.

Appendix A.2. Varying times of measurement

The previous experiment can be only used to make sure that there is a b function in action, but gives no information
about the time dependency of that function. To acquire information about it, we must vary the measurement periods
τ and see what effect these have in the final result. There are two possible ways of varying the time of exposure in a
Stern-Gerlach equipment: you can change the velocity with which the particles cross the apparatus, or you can change
the length of their path. It is just important not to change the strength of measurement (by altering the gradient of
the magnetic field, for example), instead of the time of exposure of the spin.

In its most general form, the average value measured will be:

〈σ̂z〉(τ) = A + b(τ)C,

where A, C are constants. Once we calculate them using the known values of the initial conditions and the tilting of the
intermediary measurement β, we can plot the values of b(τ), thereby verifying whether it is constant or if measurement
indeed has a time dependency. For the situation where β = π/2, the function becomes simply a renormalization of the
measured average values:

b(τ) =
〈σ̂z〉(τ)
〈σ̂z〉(0)

.

If the measurement is an instantaneous phenomenon that does not depend on the time of interaction of the apparatus,
we should encounter a constant, while a smooth dynamical measurement would produce a positive function with the
limits b(τ → 0) = 1, b(τ → ∞) = 0.
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Appendix A.3. Connection with our model of measurement

In our model of measurement as a Markovian interaction between the system and the measurement apparatus, the
b(τ) function has the form of a negative exponential:

b(τ) = e−2λ2τ ,

where λ is the constant that represents the strength of the coupling between the system and the measurement appa-
ratus. This is a function that satisfies the limits given in the previous section, thus being a plausible candidate for the
results that can be found experimentally.

If controlling the time the particles remain under measurement is not a feasible task in some laboratory, one
could vary instead the coupling strength with the measurement apparatus (represented by the rate of change of the
magnetic field, in the case of the Stern-Gerlach experiment). If the dependence found between b and λ2 in this case is
exponential, it will not be a confirmation that measurement is a finite-time phenomenon, but it could be a good first
step towards confirming our theory. Conversely, if we are capable of controlling τ and measuring b with good precision,
we can use the equation above to calculate λ2, transforming this theoretical parameter into something concrete.

We should note, finally, that the heart of the Markovian approximation is that λ2 is a positive constant. In case
it is not, we would still find some change in the value of b(t), even though not as simple as a negative exponential.
Therefore, this experiment could still be used to determine the finite-time length of the measurement, while our model
would have to be altered to account for varying of λ2. As mentioned in the final section of this article, these adaptations
are currently work in progress.
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