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Abstract We study sterile neutrinos in an extension of
the standard model, based on the gauge group SU(3)C ⊗
SU(3)L ⊗SU(3)R ⊗U(1)N , and use this model to illustrate
how to apply cosmological limits to thermalized particles
that decouple while relativistic. These neutrinos, NaL, can
be dark matter candidates, with a kiloelectron volt mass
range arising rather naturally in this model. We analyse the
cosmological limits imposed by Neff and dark matter abun-
dance on these neutrinos. Assuming that these neutrinos
have roughly equal masses and are not CDM, we conclude
that the Neff experimental value can be satisfied in some
cases and the abundance constraint implies that these neu-
trinos are hot dark matter. With this information, we give
upper bounds on the Yukawa coupling between the sterile
neutrinos and a scalar field, the possible values of the VEV
of this scalar field and lower bounds to the mass of one
gauge boson of the model.
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1 Introduction

Despite its effectiveness, the Standard Model of Particle
Physics remains unable to solve some important problems,
among them, the Dark Matter (DM) problem. This is a
problem related to discoveries made by astronomical obser-
vations, and DM play a central role in the standard cosmo-
logical model (known as �-CDM). Dark Matter probably is
a kind of particle, as yet unknown, that certainly interacts
trough gravity, maybe interacts trough the weak force, and
does not interact trough electromagnetism and the strong
nuclear force. It represents 27 % of the energy content of the
Universe.

This problem is among the major motivations for the
study of extensions of the SM. However, any candidates to
dark matter particles must satisfy constraints imposed by
cosmology. If the model predicts somewhat light candidates
(keV range or lower), these can be Warm or Hot Dark Mat-
ter, with the former possibility being the most attractive one,
since the latter is restricted to have at most a few percent of
the energy density of Cold Dark Matter. If these light can-
didates are thermalized, due to exchange of gauge bosons
with SM particles, then its number density has a fixed rela-
tion with its temperature. With this in mind, its possible to
impose the Neff (related to radiation energy) and abundance
constraints to any particle satisfying these requirements. Not
only that, but limits on the mass of the gauge boson that
mediates the interaction can also be given, which constrain
the value of the VEV (Vacuum Expectation Value) that is
related to this gauge boson mass and the mass of any other
particle that depends on this VEV.

Several models have viable candidates for DM. In Ref
[1], a model was proposed that attacks the DM problem,
based on the gauge group SU(3)C ⊗ SU(3)L ⊗ SU(3)R ⊗
U(1)N (the 3L3R model for short). This model modifies
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the electroweak sector of the SM, making the substitution
SU(2)L⊗U(1)Q → SU(3)L⊗U(1)N , that usually defines
the 3-3-1 models [2, 3] and adds a SU(3)R group to obtain
a Left-Right symmetry at higher energies. The neutrino sec-
tor is an important part of this model, and in it the model
predicts the existence of 12 neutrinos: three of them are
eV-range neutrinos, identified as the usual active neutri-
nos; three are left-handed, keV-range sterile neutrinos, NaL,
candidates for Warm Dark Matter (WDM), and the remain-
ing six are right-handed, ultra heavy neutrinos, with masses
around 1011 GeV, that could play a role in baryogeneses
through leptogenesis in the primordial universe. These neu-
trinos will be in this mass range, provided that the Yukawa
coupling constants between these neutrinos and the scalar
fields of the model are of O(1).

Our main objective in this paper is to analyse the viabil-
ity of the kiloelectron volt neutrinos of the 3L3R model as
candidates for dark matter and use this model as an example
to particle physicists of how to apply cosmological bounds
to light, stable particles. We impose the known restrictions
in Neff and DM abundance to several cases: (1) decoupling
of these neutrinos before μ,μ+ annihilation; (2) decou-
pling before pion annihilation; and (3) decoupling before
hadronization. These different decoupling temperatures also
give lower bounds on the mass of the gauge boson, UL, that
mediates interactions between NaL and charged leptons in
the primordial plasma. In this analysis, a critical assumption
is made: That all left-handed sterile neutrinos have roughly
equal masses and are not CDM, which in essence ensures
that they are stable and that they decouple while relativis-
tic. With this, we reproduce a known result that thermalized
kiloelectron volt stable particles are overproduced, so we
must conclude that the new left-handed neutrinos are Hot
Dark Matter. Finally, restrictions on the Yukawa couplings
of these neutrinos and a scalar field are given.

The paper is organized as follows: In Section 2, the 3L3R
model is presented. In Section 3, the sterile neutrinos tem-
perature and abundance are determined. Section 4 gives the
Neff of the sterile neutrinos. In Section 5, the decoupling
temperature of the sterile neutrinos is determined as a func-
tion of the mass of the UL gauge boson. Section 6 gives our
results, and Section 7 is reserved to our conclusions.

2 The 3L3R Model

As mentioned earlier, the 3L3R model is based on the gauge
group SU(3)C ⊗ SU(3)L ⊗ SU(3)R ⊗ U(1)N . With this
group, the electric charge operator is given by [1]

Q = T 3
L + T 3

R − b
(
T 8

L + T 8
R

)
+ N, (1)

where T 3
L,R = λ3/2 and T 8

L,R = λ8/2 are the diagonal
generators of the SU(3)L,R groups, N is the generator of

the U(1)N group, and b is a real parameter. The λi are the
Gell-Mann matrices. One nice consequence of the 3L3R is
that the requirement that the fermions have integer electric
charges, combined with the restriction that the Weinberg
angle, θW , satisfies sin2θW = 0.231 [6] implies that b =
1/

√
3 [1].

The leptons in the model are organized in triplets of the
SU(3)L,R groups,

�aL = (νaL, laL, NaL)T ∼ (1, 3, 1, −1/3) , (2)

�aR = (νaR, laR, NaR)T ∼ (1, 1, 3, −1/3) , (3)

where a = e, μ, τ are the three leptonic families, and Na

are new neutrinos. L and R indicate Left and Right com-
ponents of the fields. The numbers in parenthesis indicate
how these particles transform under the SU(3)C , SU(3)L,
SU(3)R , and U(1)N , respectively.

The scalar sector consists of 3 SU(3)L and 3 SU(3)R
triplets,1

ηL =
(
η0

L, η−
L , η

′0
L

)T ∼ (1, 3, 1, −1/3) ,

ηR =
(
η0

R, η−
R , η

′0
R

)T ∼ (1, 1, 3, −1/3) ,

ρL =
(
ρ+

L , ρ0
L, ρ

′+
L

)T ∼ (1, 3, 1, 2/3) ,

ρR =
(
ρ+

R , ρ0
R, ρ

′+
R

)T ∼ (1, 1, 3, 2/3) ,

χL =
(
χ0

L, χ−
L , χ

′0
L

)T ∼ (1, 3, 1, −1/3) ,

χR =
(
χ0

R, χ−
R , χ

′0
R

)T ∼ (1, 1, 3, −1/3) .

Only 6 of the 10 neutral components, χ
′0
L,R, η0

L,R, ρ0
L,R ,

have a non-vanishing Vacuum Expectation Value (VEV)
that are given by,
〈
η0

L

〉 = νηL
/
√

2,
〈
η0

R

〉 = νηR
/
√

2,〈
ρ0

L

〉 = νρL
/
√

2,
〈
ρ0

R

〉 = νρR
/
√

2,〈
χ

′0
L

〉
= ν

χ
′
L
/
√

2,
〈
χ

′0
R

〉
= ν

χ
′
R
/
√

2.

Since the Left-Right symmetry happens only at very high
energies, it is assumed that the VEV’s associated with the
SU(3)R scalar triplets are much higher than those associ-
ated with the SU(3)L triplets, that is to say, νR >> νL. And,
since new particles in the left triplets gain masses due to the
ν
χ

′
L

VEV, it is imposed that ν
χ

′
L

>> νηL
, νρL

. Like most 3-

3-1 models, it is assumed that ν
χ

′
L

is in the TeV range. This

happens to keep these new particles heavier than the known
quarks and weak gauge bosons.

In the gauge sector, there exists 16 weak gauge bosons.
The known W±

L , ZL of the SM, Z′
L,U±

L ,V 0
L ,(V 0)∗L are new

1A similar model, based on a SU(2)R ⊗ SU(2)L ⊗ U(1)B−L symme-
try, has a bidoublet in its scalar spectrum [4]. In the same spirit, the
introduction of a bitriplet in the 3L3R could generate a new and inter-
esting phenomenology. In this paper we adopt the scalar spectrum with
only scalar triplets, as described in Ref. [1].
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left handed gauge bosons, andW±
R , ZR, Z′

R, U±
R , V 0

R, (V 0)∗R
are new very heavy right handed bosons. The left and right
handed vector bosons are not mixed, and after symmetry break-
ing the masses of the non-diagonal bosons are given by:

M2
WL,R

= 1
4g2

(
ν2
ηL,R

+ ν2
ρL,R

)
,

M2
VL,R

= 1
4g2

(
ν2
ηL,R

+ ν2
χ

′
L,R

)
,

M2
UL,R

= 1
4g2

(
ν2
ρL,R

+ ν2
χ

′
L,R

)
.

(4)

In this article, only the mass of the UL boson is relevant to
our results. We will ignore νρL

since ν
′
χL

>> νρL
.2

Finally, the mass of the sterile neutrinos are given by
the Yukawa sector of the model for leptons, composed of
5-dimensional effective operators,

Ll
eff = hl

ab

�D

(
�̄aLρL

)(
ρ

†
R�bR

)
+ gD

ab

�D

(
�̄aLχL

) (
χ

†
R�bR

)
+

yD
ab

�D

(
�̄aLηL

)(
η

†
R�bR

)
+ gM

ab

�M

[(
(�aL)cχ∗

L

)(
χ

†
L�bL

)
+

(
(�aR)cχ∗

R

)(
χ

†
R�bR

)]
+ yM

ab

�M

[(
(�aL)cη∗

L

)(
η

†
L�bL

)
+

(
(�aR)cη∗

R

)(
η

†
R�bR

)]
+H.c,

where �D and �M denote energy scales (Dirac and Majo-
rana). �D is assumed to be in some grand unification scale,
and �M in the Planck scale. It is necessary that νηR

≈ νρR
≈

ν
χ

′
R

≈ �D in order to give known particles its correct mass

range. The neutrino mass matrix can be written based on
this Lagrangian,

Mν =
(

ML MD

MT
D MR

)
, (5)

where ML, MD , and MR are 6 × 6 block diagonal matrices.
The terms in each of these matrices are of order ML∼ ν2

L,
MD ∼ νLνR and MR∼ ν2

R . Since νR >> νL, we can
neglect the ML terms and apply the seesaw mechanism to
obtain the neutrino mass spectrum after diagonalization of
this matrix. We obtain two different mass scales for the neu-
trinos: The masses of the left and right-handed neutrinos.
These are given by:

M
ν

′
L

≈ −MD (MR)−1 MT
D, (6)

MνR
≈ MR. (7)

For the left handed neutrinos, we have

M
ν

′
L
=− �M

4�2
D

⎛
⎝yD

(
yM

)−1 (
yD

)T
ν2
ηL

0

0 gD
(
gM

)−1(
gD

)T
ν2
χ

′
L

⎞
⎠.

(8)

2In ref. [3], in a 3-3-1 model without the SU(3)R group, ν2
ρL

= 145.5
GeV. Adopting this value instead of zero does not change appreciably
our results.

Choosing the values of these parameters as �M = 1019 GeV,
�D = 1015 GeV, νηL

∼ O(10 GeV ), and ν
χ

′
L

∼ O(T eV ),

the value of the left neutrino masses is

MνL
∼ yD

(
yM

)−1 (
yD

)T

eV, (9)

MNL
∼ 10gD

(
gM

)−1 (
gD

)T

keV . (10)

So, with coupling constants of order one, the model predicts
three neutrinos with an electron volt mass and three sterile
neutrinos with kiloelectron volt mass. As mentioned by the
authors of [1], there is no mixing between νL and NL, which
protects NL against the X-Ray decay bound, NL → νL +γ .

3 Sterile Neutrinos Temperature and Abundance

In the standard treatment, the value of the ratio between
active neutrinos and photon temperature, Tν/T , is obtained
by the conservation of entropy in the primordial plasma [7,
8]. With the active neutrinos already decoupled, the value
of the photon temperature, when compared with Tν , can be
determined by counting the number of degrees of freedom
before and after ee+ annihilation, together with the fact that
the entropy is proportional to T 3. The known result relat-
ing neutrino and photon temperatures and abundances can
be obtained:

Tν =
(

4

11

)1/3

Tγ ; nν = 3

11
nγ . (11)

In the case of sterile neutrinos produced in thermal equi-
librium, the argument is similar. The entropy density is
given by

sR(T ) = gs(T )
2π2

45
T 3, (12)

where gs(T ) is the entropic degrees of freedom. gs counts
the number of internal degrees of freedom of the cou-
pled particles. The entropy of the decoupled particles is
conserved separately. Since a ∼ T −1, we have

s(T )a3 = constant. (13)

Suppose that the sterile neutrinos decouple at a temperature
TD with gsi entropic degrees of freedom. Right before the
active neutrino decoupling, gs = 2 + (7/8)(2.2 + 3.2) =
10.75 (when e, e+, photons and neutrinos are coupled). So
using (12) and (13), we have

gsiT
3
NL

= 10.75T 3
ν ⇒ TNL

Tν

=
(

10.75

gsi

)1/3

. (14)

As for the abundance, it is important to note that the
kiloelectron volt neutrinos today are non-relativistic. In this
regime, its energy density today is given by

ρNaL
(t0) = nNaL

mNaL
. (15)
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where nNaL
is the number density of the NaL neutrinos and

mNaL
denotes its mass. With the usual definition of NL

=
ρNL

/ρcr and DM = ρDM/ρcr , we have:

NL
h2 =

∑
a=e,μτ nNaL

mNaL

ρcr

(16)

where h is the dimensionless hubble parameter. For simplic-
ity, we make a critical assumption and consider that all the
sterile neutrinos have the same mass. This ensures that there
will be no decays from one sterile neutrino to another. So∑

a=e,μτ nNaL
mNaL

= nNL
mNL

.
Since the number density of a relativistic fermion is

roughly given by an integral of the Fermi-Dirac distribution,
fFD , which is proportional to the cube of its temperature,
and all the neutrinos involved decouple before annihilation,
it is expected that this should be the case even when they
become non-relativistic. That is to say that the ratio between
active and sterile neutrinos abundances is actually a ratio
between the cube of the temperatures of NL and νL. Intro-
ducing such relation in the well-known formula for ν , the
fraction of the energy density related to neutrinos, and using
equation (14), we obtain:

NL
h2 = mNL

94.1 eV

(
TNL

Tν

)3

= 114.2

gsi

( mNL

1 keV

)
. (17)

By this expression alone, it is possible to see that kilo-
electron volt neutrinos produced thermally would close the
universe unless they decouple very early. We will get back
to this point when analyzing the specific model presented
here.

Considering that a fraction ξ of dark matter is made of
sterile neutrinos, we have:

NL
= ξ × DM = 0.26ξ, (18)

and using h = 0.67 [6], we obtain:

978.5

gsi

( mNL

1 keV

)
= ξ (19)

It is possible to use the above results to constrain the
allowed values of the matrix elements gD

ab and gM
ab that

appears in the Yukawa Lagrangian. Using the mass of the
sterile neutrinos given by (8), assuming that all of these
matrices are proportional to the identity matrix, with values
gD and gM at the diagonal, and fixing �D and �M at the
GUT and Planck scale, respectively, then the neutrino mass
sum is given approximately by :

mNL
≈ 30ν2

χ ′
L
gD

2/4gMkeV, (20)

with ν
χ

′
L

in TeV. So, it is possible to relate the values of gD

and gM with ξ using (19).
It is important to note that we are always considering the

instantaneous decoupling approximation and that products
of annihilations are composed of particles still coupled to

the plasma. So, in principle, all that is needed is to determine
the decoupling temperature of the sterile neutrinos and the
entropic degrees of freedom at this temperature.

4 The Sterile Neutrinos Neff

We now proceed to the determination of the basic equations
for Neff of the sterile neutrinos expected to be found in the
early universe. The so called Effective Number of neutrino
species, Neff , describes the effect of additional particles in
the primordial plasma, in particular, how these new particles
change the radiation energy density in the early universe,
ρR . The impact of these particles is measured in terms of
the number of neutrinos with standard temperature (Tν =
(4/11)1/3Tγ ) that would have an equivalent effect. So, after
the ee+ annihilation, the energy density of radiation is
given by:

ρR = ργ + 3ρν +
∑

i,boson

ρi +
∑

j,fermion

ρj

= ργ

[
1 + 7

8

(
4

11

)4/3

Neff

]
. (21)

Since [7],

ρR = g∗
π2

30
T 4, (22)

g∗ =
∑

i,boson

gi

(
Ti

T

)4

+ 7

8

∑
j,fermion

gj

(
Tj

T

)4

. (23)

By using Tν/T = (4/11)1/3 and ργ = gγ π2T 4/30 when
necessary, after a few manipulations, we finally obtain an
expression for Neff :

Neff = 3 +
∑

boson,i

gi

gγ

(
8

7

)(
11

4

)4/3 (
Ti

T

)4

+
∑

fermion,j

gj

gγ

(
11

4

)4/3 (
Tj

T

)4

, (24)

where gi and gj are the internal degrees of freedom of
the bosons and fermions involved. Usually, Neff is writ-
ten as Neff = 3 + �Neff . If there are no new light
particles that are relativistic at this time, Neff = 3.3 How-
ever, if new light particles are present, the value of Neff

will change. This will in turn change the expansion rate
of the universe, since in this period the expansion rate is
sensitive to ρR and can have an impact on cosmological

3Actually, this is the value assuming an instantaneous decoupling of
the neutrinos and the plasma. When an non-instantaneous decoupling
is considered, Neff = 3.046.
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observables, like the Cosmic Microwave Background or Big
Bang Nucleosynthesis.

In the model, we are considering, only the kiloelectron
volt sterile neutrinos are possible as additional light parti-
cles. So, the bosonic term desappears, and the fermionic
term has only the sterile neutrinos.

The experimental value given to Neff is based on the ref-
erence [9]: Neff = 3.28±0.28. We will compare our results
with this value.

So, in order to determine the values of Neff , it is nec-
essary to know the value of TNL

/Tν , the ratio between
sterile and active neutrino temperatures. This is related to
the decoupling temperature of the sterile neutrinos.

Finally, the above result allows us to calculate Neff in
expressions (24). Using Tν = (4/11)1/3T when necessary:

�Neff =
(

10.75

gsi

)4/3

(per neutrino species), (25)

5 Decoupling Temperature of the NaL Sterile
Neutrinos

One important issue regarding the abundance and Neff of
the kiloelectron volt neutrinos in the model is the temper-
ature that they decouple from the primordial plasma. The
mechanism behind this fact is quite simple: As the uni-
verse expands and gets colder, its temperature falls below
the mass of some of the particles in the plasma. When this
happens, pair creation of these particles becomes largely
suppressed, although pair annihilation can still happen. If
these particles are still coupled to the plasma, pair annihi-
lation will destroy them and the liberated entropy will heat
the plasma. If, on the other hand, the particle already decou-
pled, them it does not interact anymore and its temperature
goes like T ∼ a−1 (where a is the scale factor) regardless
of what is happening in the plasma.

Active neutrinos have a lower temperature than the CMB
photons for this reason: They decouple before the ee+
annihilation, so the photons are heated by this event, and
neutrinos are not. But this decoupling, at T ∼ 1MeV , hap-
pens after other events that have heated the plasma, like
μμ+ annihilation, pion annihilation, and hadronization. If
the sterile neutrinos of the model decouple before any of
these events, they will not share the energy liberated by them
and, thus, will have smaller temperatures than Tν , the active
neutrino temperature.

A particle is considered coupled to the primordial
plasma, if its interaction rate (�) is much larger than the
expansion rate of the Universe (H ), and, at a first approxi-
mation, the decoupling temperature TD is the one that makes
the equality �(TD) = H(TD) hold. In the Standard Model,
the average interaction rate of the active neutrinos and the

electrons in the plasma4 is given by �(T ) = G2
F T 5, where

GF is the Fermi constant.
The Fermi constant is related to the W boson mass that

mediates some of the reactions of the active neutrinos:

GF =
√

2
8

(
g

MW c2

)2
(�c)3. However, the sterile neutrinos of

the 3L3R model do not interact through the W or Z bosons,
but only through the UL and Z′

L bosons, that have a much
larger mass. So, in our calculations, we will use an effective
Fermi constant,

G′
F =

√
2

8

(
g

MUc2

)2

(�c)3 =
(

MW

MU

)2

GF . (26)

This replacement is made because the UL now is the
mediator of charged currents with the sterile neutrinos NaL.
Since MU >> MW , then G′

F << GF and the decoupling
temperature for NaL should increase in comparison with
this temperature for the active neutrinos.

Using H(T ) =
√

8πG
3 g∗ π2

30 T 4 ∼ √
g∗ T 2

mpl
[7] and

making the equality �NaL
(TD) = H(TD) we get:

G′
F T 5

D = √
g∗

T 2
D

mpl

⇒ TD =
(

MU

MW

)4/3

g
1/6∗ MeV. (27)

It is possible to see in Equation (27) that the decoupling
temperature TD of sterile neutrinos is strongly dependent on
the MU/MW ratio, and weakly dependent on the relativistic
degrees of freedom. So, we shall leave the value of g∗ con-
stant, and equal to g∗ = 16 (a value that considers that only
electrons, positrons, photons and active and sterile neutri-
nos are fully relativistic at the time of decoupling) and adopt
different possible values of MU .

6 Results

In this final section, we want to give the values of Neff

and the allowed values of gD and gM for three different
cases. (1) When NaL decouple between pion and muon
annihilation (T ∈ [105, 140MeV ]), (2) when the decou-
pling happens between hadronization and pion annihilation
(T ∈ [140, 200MeV ]), (3) when NaL decouples before
hadronization (in the interval T ∈ [200, 220] MeV). We
adopt THad = 200MeV [7].

Given our assumptions, the decoupling temperature TD

given in (27) will be in case (1) if MU/MW ∈ [23.2, 28.8],
in case (2) if MU/MW ∈ [28.8, 37.6] and in case (3) if,
approximately, MU/MW ∈ [37.6, 40]. Relating these mass
ranges with Equation (4) for MUL

, the allowed values for

4The interaction between electrons and neutrinos, through charged
and neutral currents, makes the neutrinos stay in thermal equilibrium
with the electrons. Since the electrons are also in equilibrium with
the photons, a thermal equilibrium between neutrinos and photons
happens.
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ν
χ

′
L

is ν
χ

′
L

∈ [5.7, 7.2] TeV in case (1), ν
χ

′
L

∈ [7.2, 9.3] TeV

in case (2), and ν
χ

′
L

∈ [9.3, 9.9] TeV in case (3).

So, we have:5

Case (1): In this case, only muons, anti-muons, electrons,
positrons, neutrinos, and photons are coupled.
This gives,

gsi = 2︸︷︷︸
γ

+7

8
( 2.2︸︷︷︸

e,e+
+ 2.2︸︷︷︸

μ,μ+
+ 3.2︸︷︷︸

νL,ν̄L

) = 14.25,

(28)

which implies, from (25):

�Neff = 0.69. (29)

Given that the experimental limit is �Neff =
0.28 ± 0.28, even one additional sterile neutrino
would be excluded by 1σ .

Case (2): In this case, pions(neutral and charged) are now
coupled, and we have

gsi = 2︸︷︷︸
γ

+ 3︸︷︷︸
π

+7

8
( 2.2︸︷︷︸

e,e+
+ 2.2︸︷︷︸

μ,μ+
+ 3.2︸︷︷︸

νL,ν̄L

) = 17.25,

(30)

which gives

�Neff = 0.53. (31)

Now Neff allows only one additional sterile
neutrino at the 1σ level.

Case (3): Before the hadronization, gluons and the quarks
up, down and strange, and its respective anti-
quarks, are coupled to the plasma. This implies
in a huge increase in gsi , as it is shown below:

gsi = 2︸︷︷︸
γ

+ 8.2︸︷︷︸
gluons

+7

8
( 2.2︸︷︷︸

e,e+
+ 2.2︸︷︷︸

μ,μ+
+ 3.2︸︷︷︸

νL,ν̄L

+ 3.3.2.2︸ ︷︷ ︸
u,ū,d,d̄,s,s̄

) = 61.75,

(32)

which implies,

�Neff = 0.097. (33)

Now three additional neutrino species are
allowed, with a total �Neff = 0.29 in this case.

Limit Case:
We could think of a scenario where gsi assumes the max-

imum possible value for the 3L3R, a limit case, that should

5To our knowledge, there are no experimental limits on the mass of the
UL bosons of this model. There are experimental limits on the mass of
the Z

′
(the Z

′
L in the 3L3R) of a 3-3-1RH model [3], which is similar

to the left-handed sector of the 3L3R. These limits are given in [10].
The limit given is M

Z
′ ≥ 2.2T eV . This implies that MU/MW ≥ 25.

The results given in [10] are not completely applicable to the 3L3R.
But if they are used (to give at least an estimate of a lower limit of the
UL mass) NaL never decouples before pion annihilation.

maximize the allowed region for gM and gD . This could
happen if these neutrinos decoupled before every other par-
ticle in the left sector of the model. That is to say, it should
decouple before 9 quarks, 6 leptons, 10 scalar bosons, and
17 gauge bosons, with gsi = 162.25 and �Neff would
allow three sterile neutrinos. Unfortunately, the required
value for νχ ′

L
in this case should also be large and would

more than compensate the larger value of gsi , giving a very
restricted parameter space for gD and gM . So, we ignore this
limit case.

The abundance arguments gives the following results for
gD and gM parameter space, as shown in Fig. 1.

Figure 1 makes clear that values for which NL have
masses in the kiloelectron volt range are completely
excluded, by orders of magnitude. Indeed, the allowed mass
range for these neutrinos lie in the (in most cases) low eV
range, as shown in Table 1.

Dark Matter cannot be made only of these light particles.
For example, limits based on dwarf spheroidal galaxies and
lyman-α forest give a lower bound of MN > O(1) keV if all
of Dark Matter is made sterile neutrinos [5], which excludes
the ξ = 1 scenario. Since they are Hot Dark Matter (HDM),
a more realistic constraint on the values of gD and gM must
assume low values of ξ . For instance, ξ ≤ 0.1 and ξ ≤ 0.01
in Fig. 1 would be a safer region, since structure formation
allows that HDM is at most only a few percent of DM .
However, since only a very small fraction of DM can be
made of these neutrinos, the 3L3R is unable to solve the DM
puzzle.

Table 2 shows the maximum values that gD can have
for each case, depending on the value of ν

χ
′
L

. Case 1 is a

little better than case 2 regarding allowed values for gD .
However, as we’ve seen, this case does not satisfy the Neff

constraint and is therefore excluded. Case 2 is allowed, but
in strong tension with Neff (since only one neutrino species
is permitted, and at the very edge of 1 sigma) and at odds
with our calculations that assumes three new neutrinos. Case
3 satisfies Neff and its allowed parameter space region is
given in Table 2.

Since these candidates are hot dark matter, another dif-
ferent limit can be imposed. By reference [6], the sum
of neutrino masses by cosmology is

∑
mν < 0.23 eV

(results from Planck + BAO). The sterile neutrinos of the
3L3R should have an impact in this result, since they
are hot dark matter just as the active neutrinos. Indeed,
using the ν relation again, it is possible to deduce that
the sterile neutrinos affect the neutrino sum masses as∑

a[maν +(nNaL
/nν)mNaL

] < 0.23 eV. Since the minimum
sum of active neutrino masses by oscillation experiments is∑

mν ≥ 0.06 eV, we have:

∑
a

(nNaL
/nν)mNaL

≤ 0.17eV . (34)
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Fig. 1 Graphics of the allowed regions of parameter space for gD and
gM . Upper left Case 1 (νχ ′

L
= 5.7 TeV). Upper right Case 2 (νχ ′

L
= 7.2

TeV). Lower figure Case 3 (νχ ′
L

= 9.3 TeV). Cases 1 and 2 have only
one neutrino, and case 3 has three. In each graphic, from left to right,
the first three isolines gives the values of gD and gM for ξ = 0.01,

ξ = 0.1 and ξ = 1, with the thick line representing ξ = 1. The last two
isolines gives values for which the sterile neutrino mass is mNL

= 1
keV and mNL

= 10 keV, respectively. The dark purple area denotes
the region consistent with the constraint ξ ≤ 1. It is clear from this
figure that keV masses are not allowed

Table 1 Values of the allowed
neutrinos mass for each
scenario and neutrino energy
fraction of Dark Matter(ξ )

Cases

Case 1 (one neutrino) Case 2 (one neutrino) Case 3 (three neutrinos)

ξ mNaL
(eV) ξ mNaL

(eV) ξ mNaL
(eV)

0.01 0.14 0.01 0.17 0.01 0.21

0.1 1.45 0.1 1.76 0.1 2.1

1 14.56 1 17.62 1 21.03

68.66 1000 56.62 1000 47.53 1000

686.67 10000 567.25 10000 475.38 10000

It is clear that in all cases, the sterile neutrino masses must be in the eV-range or lower in order to satisfy the
constraint ξ ≤ 1
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Table 2 Maximum allowed
value for gD in each scenario,
with gM = 1 and νχ ′

L
= 5.7

TeV (case 1), νχ ′
L

= 7.2 TeV
(case 2) and νχ ′

L
= 9.3 TeV

(case 3)

Cases

ξ Case 1 (one neutrino) Case 2 (one neutrino) Case 3 (three neutrinos)

0.01 1.3 × 10−3 1.1 × 10−3 9.8 × 10−4

0.1 4.2 × 10−3 3.6 × 10−3 3.1 × 10−3

A greater value for νχ ′
L

implies a lower allowed value for gD , so the maximum value for gD in each case
corresponds to the minimum value of νχ ′

L
in that case

For case 2, (nNaL
/nν) = 0.62 and allows only one neu-

trino, and case 3 has (nNaL
/nν) = 0.17 and three neutrinos.

For ξ = 0.01, we have for case (2)
∑

a(nNaL
/nν)mNaL

=
0.62 × 0.17 ≈ 0.11 eV and case (3)

∑
a(nNaL

/nν)mNaL
=

0.17 × 3 × 0.21 ≈ 0.11 eV. So, for both cases, the bound
given in (34) is satisfied.

As expected by the value of allowed masses, note that
the ξ = 0.1 scenario is excluded, since relation (34) is not
satisfied.

With corrections given by the fact that only allows one
neutrino species, case 2 has a little larger parameter space
than case 3. Both cases obey the cosmological bounds
applied and, although unable to answer the DM problem,
are not ruled out as HDM candidates.

7 Conclusion

In this paper, we analysed the feasability of sterile neutrinos
in an extension of the SM, called 3L3R extension, as candi-
dates for warm dark matter. These neutrinos arise naturally
in this model, with a mass ∼ keV, and at first seem to satisfy
the requirements for dark matter. Since these neutrinos inter-
act through gauge bosons with SM particles, it is expected
that they were in thermal equilibrium with them some time
in the past, allowing us to determine their number density
as an integral of the Fermi-Dirac distribution, just like it is
done with active neutrinos.

We imposed the Neff and abundance constraints on these
particles and analysed them in three different cases. It was
shown that the Neff = 3.28 ± 0.28 constraint was satisfied
in two of the three cases, and case 1 is excluded at the 1σ

level. In case 2, only one additional neutrino was allowed
and �Neff = 0.53 and in case (3) all three neutrinos were
possible, giving a total �Neff = 0.29. The decoupling
temperature in each case also gives lower bounds to the UL

boson mass, with MUL
∼ 2.3 − 3 TeV in case (2) and

MUL
> 3 TeV in case (3).

The thermalized nature of these neutrinos, together with
the assumption that they have roughly equal masses and are
not CDM, implies that they must be much lighter than a
kiloelectron volt mass and are Hot Dark Matter particles.
Being HDM they can only constitute a fraction of DM. This

can give some constraints on the allowed mass, shown in
Table 1 (of order 0.1 eV for N ∼ 0.01CDM and 2 eV
for N ∼ 0.1CDM ) and on the allowed values for the gD

and gM parameters in the Yukawa lagrangian of the model.
This analysis have been made, and the allowed regions for
these parameters were shown in Fig. 1. If at most 1 % of
DM is made of the 3L3R, then gD ≤ 1.1 × 10−3 (case 2)
and gD ≤ 9.8 × 10−4 (case 3).

The HDM candidates would impact
∑

mν . Combining
the minimal active neutrino sum mass by terrestrial exper-
iments (

∑
mν ≥ 0.06 eV) and the cosmological limit on

these masses (
∑

mν ≤ 0.23 eV), it is possible to deduce
that

∑
a(nNaL

/nν)mNaL
≤ 0.17 eV. This relation is satis-

fied in cases (2) and (3), with a value of ∼ 0.11 eV for
NL

= 0.01CDM . If its energy density is equal to 10 % of
CDM, then the above relation is not satisfied.

It is also important to note that these conclusions of over-
abudance of kiloelectron volt particles are applicable to any
model that predicts stable particles in thermal equilibrium
with the primordial plasma, through the exchange of gauge
bosons, in the absence of mixing. Finally, the above results
are a consequence of the fact that the neutrinos in the 3L3R
are stable, and do not mix with the active neutrinos. If this
were not the case, the results could change. For example, if
the neutrinos have different masses, with one of the neutri-
nos heavy enough and relatively long lived, it could decay
out of equilibrium into another sterile neutrino, producing
a large amount of entropy that dilutes the abundance of the
remaining, stable neutrinos. This could produce the correct
abundance with kiloelectron volt sterile neutrinos, a result
shown in ref. [11]. We can apply this mechanism to the
3L3R in the future.

So, given our assumptions, we conclude that only cases
2 and 3 are consistent with the Neff constraint, and, even
in these cases, the allowed values for the sterile neutrino
masses and coupling constants in the Yukawa sector is very
small, since the abundance constraint implies a very low
mass. This neutrino is viable HDM particles.
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