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Resumo

O objetivo desta dissertação é apresentar alguns aspectos combinatórios de grupos de
Weyl afins, motivados por suas conexões com a teoria de representações de álgebras
de Kac-Moody afins. Mais especificamente, estamos interessados em ferramentas com-
binatórias que possam simplificar o cômputo de certas órbitas de pesos dominantes de
um grupo de Weyl afim Ŵ . Em particular, é conveniente trabalhar com um conjunto
mínimo de expressões para os elementos de Ŵ . Neste sentido, introduzimos o conceito
de extratos completamente longos à esquerda (cle) e mostramos que todo elemento
possui um único tal extrato. Quando Ŵ tem tipo Ân, n ≥ 2, descrevemos uma expressão
reduzida específica para cada componente dos extratos cle. Isso acaba por estabelecer
uma correspondência dos extratos cle com certos pares de sequências finitas monóto-
nas de inteiros não-negativos, chamadas sequência esquerda e sequência direita. Estas
sequências dão origem a um grafo orientado, chamado grafo de extratificação, o qual
codifica uma família de fórmulas para expressões de todos os elementos de Ŵ . Conjec-
turamos que este é um conjunto mínimo de expressões e, utilizando propriedades de
grupos de Coxeter, mostramos que este é de fato o caso para expressões onde figuram
até duas vezes um certo elemento distinguido. Por fim, demonstramos a conjectura
para n = 2 usando formas de permutações e de alcovas para os elementos de Ŵ e,
então, calculamos as órbitas desejadas.

Palavras-chave: Grupos de Weyl afins. Caminhos de alcovas. Grupos de Coxeter.
Combinatória. Expressões reduzidas. Órbitas.



Abstract

The goal of this dissertation is to present some combinatorial aspects of affine Weyl
groups, motivated by its connection with representation theory of affine Kac-Moody
algebras. More specifically, we are interested in combinatoric tools which might simplify
the computation certain orbits of dominant weights of an affine Weyl group Ŵ . In
particular, it is convenient to work with a minimal set of expressions for the elements
of Ŵ . In this sense, we introduce the concept of fully left-long (fll) extract and show
that every element has such an extract. When Ŵ has type Ân, n ≥ 2, we describe
a specific reduced expression for each component of an fll extract. This establishes
a correspondence of fll extracts with certain pairs of finite monotonous sequences
of non-negative integers, called left and right sequences. These sequences give rise
to a directed graph, called the extract graph, which encodes a family of formulae
for expressions for all elements of Ŵ . We conjecture that this is a minimal set of
expressions and show that that is indeed the case for expressions where a certain
distinguished element appears at most two times. Finally, we prove the conjecture for
n = 2, using permutation and alcove forms for the elements of Ŵ and, then, compute
the desired orbit.

Keywords: Affine Weyl groups. Alcove paths. Coxeter groups. Combinatorics. Reduced
expressions. Orbits.
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Introduction

The theory of representations of Lie algebras emerged at the end of nineteenth
century in the context of the study of differential equations from the point of view of
its symmetry groups. Besides being an interesting research area by itself, it emerged
as a powerful tool for several areas of mathematics and physics. The structure of a
simple Lie algebra can be codified by a matrix with integer entries, which is called the
associated Cartan matrix. Later, Victor Kac and Robert Moody generalized the concept
of Cartan matrix and associated Lie algebras to them. In particular, we are interested
in the affine Kac-Moody algebras, which are the algebraic structures used in many
areas of physics, as conformal field theory, string theory, and integrable systems of
statistical mechanics.

The relation between certain areas of physics and Lie theory has become stronger
since the development of quantum groups four decades ago. Quantum groups may
be realized as one-parameter deformations of the universal enveloping algebras of
the Kac-Moody algebras. Quantum groups became even more interesting once they
established unexpected connections between distinct fields. In particular, we mention
the construction of topological invariants that made possible the classification theorems
on knot theory, advances in the study of representation theory of algebraic groups over
positive characteristic, and several results related to number theory. These results have
strong combinatorial aspects, including the main motivation for the concept of Cluster
algebras, which enabled revolutionary progress in many areas of mathematics at the
beginning of this millennium.

The purpose of this dissertation is to study combinatorial aspects of Coxeter
groups, in particular, the subclass of affine Weyl groups, seeking to apply this knowl-
edge in representation theory of affine Kac-Moody algebras and current algebras, on
which combinatorial aspects are prominent. Our main motivation arises from results
presented in (JAKELIĆ; MOURA, 2018) for the case of the algebra of type Â1 and
whose extension to higher rank requires a better understanding of the characterization
of certain elements of the corresponding affine Weyl group and, hence, of the under-
lying combinatorics. Since the main part of this text will not address the underlying
Lie theoretic background behind our main focus of study, let us dedicate the next few
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paragraphs to provide further explanation of the wider context and the motivation
behind the problem being investigated in this thesis.

The main result of (JAKELIĆ; MOURA, 2018) explores the connection between
two kinds of multiplicity problems, establishing a formula for computing one of them
in terms of the other. On one hand, there is the problem of computing the so-called
outer multiplicities for tensor products of simple modules in the category of integrable
weight modules for an affine Kac-Moody algebra. This is a classical problem which is
relevant for mathematical physics and number theory and whose various answers are
very rich in combinatorial aspects. There are algorithmic answers such as the ones given
in (KING; WELSH, 1991; LITTELMANN, 1994; OKADO; SCHILLING; SHIMOZONO,
2003) and more direct answers leading to proofs of Rogers-Ramanujan-type identities
as well as partition identities (see (FEINGOLD, 1981; LEPOWSKY; WILSON, 1982;
MISRA; WILSON, 2013; MISRA; WILSON, 2014) and references therein).

On the other hand, the study of multiplicities in Demazure flags for graded mod-
ules for current algebras has risen to prominence in recent years motivated by the study
of certain structural aspects of representations of quantum affine algebras, specially
after a standing conjecture about the character of the so called local Weyl modules
was settled in (NAOI, 2012) by using results on Demazure flags from (JOSEPH, 2003;
JOSEPH, 2006). More precisely, it was proved in (NAOI, 2012) that, if the underlying
finite-dimensional simple Lie algebra g is simply laced, any level-ℓ Demazure mod-
ule for the current algebra admits a Demazure flag of level ℓ + 1. The main result
of (JAKELIĆ; MOURA, 2018) was inspired by a reversed engineering of the proof
of this result and establishes a connection with the problem of outer multiplicities
discussed previously since the results of (JOSEPH, 2003; JOSEPH, 2006) are strongly
related to that problem. It is interesting to remark that (JOSEPH, 2003; JOSEPH, 2006)
make strong use of the context of quantum groups, global basis, and combinatorics of
crystals.

The papers (BISWAL; CHARI; KUS, 2018; BISWAL et al., 2016; BISWAL et al.,
2021; BISWAL; KUS, 2021; CHARI et al., 2014) are dedicated to studying multiplicities
in Demazure flags in certain special cases obtaining various formulae in terms of
generalizations of combinatorial objects such as MacDonald polynomials, Fibonacci
sequences, and theta functions. In particular, in the case g = sl2, the multiplicities in
level-2 Demazure flags for level-1 Demazure modules were described in (CHARI et
al., 2014) in terms of gaussian binomials. Combined with the main result of (JAKELIĆ;
MOURA, 2018), this leads to an expression for outer multiplicities for tensor products
of fundamental modules for the affine Kac-Moody algebra of type Â1 in terms of a
finite sum of partitions with bounded parts. The same tensor products were studied
in (MISRA; WILSON, 2014) for type Ân by completely different methods (Demazure
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flags do not play a role) and the results were also expressed in terms of different kinds
of partitions. Thus, a comparison of the two formulae in the Â1 case led to a proof of
partition identities.

In addition to the result about Demazure flags from (CHARI et al., 2014), the
other main ingredient used in (JAKELIĆ; MOURA, 2018) to obtain such expression
for outer multiplicities was an explicit description of the elements of the affine Weyl
group or, more importantly, the characterization of the elements of the orbit of a given
dominant affine weight whose projections onto the weight lattice of g is dominant.
More precisely, let Ŵ denote the affine Weyl group, P̂ the affine weight lattice, P
the underlying finite type weight lattice so that P̂ = CΛ0 ⊕ P⊕Cδ, where Λ0 is the
highest weight of the basic representation of the affine Kac-Moody algebra and δ is
the generator of imaginary roots, and let π ∶ P̂ → P be the associated projection. The
computation in (JAKELIĆ; MOURA, 2018) relies on an explicit description of the set

ΓΛ ∶= {wΛ ∶ π(wΛ) is dominant}

for every dominant affine weight Λ. While such computations for type Â1 are straight-
forward, moving to higher rank they are much more challenging, even for type Â2.
Thus, studying several combinatorial approaches seeking to find efficient ways of
describing the above set was the motivating goal of the present work. Using the notion
of alcove walks and computer based computations, an answer for type Â2 was partially
given in (BURGER, 2017).

The action of an affine Weyl group on an Euclidean space gives rise to a hyper-
plane arrangement which partitions the complement of the hyperplanes into some
open convex simplices called alcoves. These objects have a structural importance for
the theory of affine Weyl groups. Since these groups act simply transitively on the set
of alcoves, their elements are in a bijective correspondence with the alcoves determined
by their action. On the other hand, a realization of affine Weyl groups as permutation
groups was introduced by (LUSZTIG, 1983) in order to understand when certain
irreducible representations of the Hecke algebra of an affine Weyl group correspond to
a square integrable representation of a simple p-adic group. Different characterizations
of affine Weyl groups of type Â were compared in (SHI, 1980), such as expressions
in terms of Coxeter generators, permutation forms and alcove forms. Later, in (SHI,
1987), the author extended the description of the alcove forms for all types. Moreover,
in (SHI, 1999), formulae for the transition between alcove and permutation forms for
other types were obtained.

The classical Bertrand’s Ballot Problem can be rephrased in the context of finite
Weyl groups as the following question: how many ways are there to walk from the
origin to an arbitrary point using positive unit steps in such a way that the walk
remains in the region x1 ≥ x2 ≥ . . . ≥ xn? In (GESSEL; ZEILBERGER, 1992), this question
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was generalized and answered for affine Weyl groups by counting the number of
distinct k-step random walks that remain in the same Weyl chamber. In (GRABINER;
MAGYAR, 1993), this generalization was shown to be equivalent to the problem of
describing the decomposition of the k-th tensor power of certain representations of
reductive Lie groups as a direct sum of simple modules. Later, when studying results
related to Markov chains, (BIDIGARE; HANLON; ROCKMORE, 1999) and (BROWN;
DIACONIS, 1998) described random walks in the set of facets of alcoves of affine Weyl
groups. This description was recently used in (DEFOSSEUX, 2016) to present some
characters as the eigenfunctions of the Dirichlet problem on such alcoves, while (LAM,
2015) used it to describe the possible shapes of randomly generated elements of an
affine Weyl group, and (LECOUVEY; TARRAGO, 2020) used it for the description of
certain affine Grasmannian elements.

Some ideas behind random alcove walks have been independently developed
in the works of Littelman (LITTELMANN, 1994) and (LITTELMAN, 1995), which
construct a path model in order to describe the characters of irreducible representations
of complex semisimple Lie groups by counting some paths related to the corresponding
semisimple Lie algebra, in particular, the so-called LS-paths. Prior to (LECOUVEY;
TARRAGO, 2020), connections with the geometry of affine Grasmannian were made
in (GAUSSENT; LITTELMAN, 2005), by replacing the path model by an equivalent
gallery model with the concept of LS-gallery, a certain sequence of facets of alcoves of
the corresponding affine Weyl group. This made it possible to describe the coefficients
of Hall-Littlewood polynomials in (SCHWER, 2006) and, hence, the structure constants
of the spherical Hecke algebra in a combinatorial way.

The definition of an alcove path as a sequence of alcoves was given in (LENART;
POSTNIKOV, 2007). It was shown that the decomposition of the corresponding group
in product of Coxeter generators is in bijective correspondence with alcove paths
starting in the fundamental alcove. Alternatively, (RAM, 2006) and (PARKINSON;
RAM, 2008) introduced alcove walks as some sequences of crossings from an alcove
to an adjacent one and foldings of an alcove on itself. This definition gives rise to
what (LENART; POSTNIKOV, 2007) calls an alcove path, but allowing also paths
from the alcove on itself. This generalization clarified the relations between the path
model with crystal theory, for instance. It also made it possible to relate affine Hecke
algebras with the combinatorics of spherical functions on p-adic groups, the so-called
Hall-Littlewood polynomials. Ram’s theory of alcove walks was used to provide an
alternative method to deal with presentations of affine Hecke algebras, which helped
in the study of problems related to sheaves on affine flag manifolds. Later, (LENART,
2011) also defined alcove walks but in a different language and was able to generalize
results about Hall-Littlewood polynomials that were previously known just for type Â.
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The definition of alcove walk used by (BURGER, 2017) coincides with the def-
inition of alcove path given by (LENART, 2011). Thus, in this work, we chose to
adopt the terminology of alcove path instead of alcove walk, which is already used
for a generalized notion. For type Â2, the approach of (BURGER, 2017) consisted of
describing specific alcove paths from the fundamental alcove to each fixed alcove,
inducing a corresponding set of expressions for the elements of the group in terms
of its Coxeter generators. Then, using the software SageMath, the author computed
the corresponding expression of each element, determining 52 sets of conditions on
elements in the orbit of affine dominant weights that, under the action of Ŵ , project to
anti-dominant weights of W . An analysis of the conditions presented by (BURGER,
2017) made us find out that, at least in this case, the set of elements corresponding to
alcoves contained in the fundamental Weyl chamber is always contained in the orbit of
affine dominant weights that project to dominant weights.

Although the approach using alcove walks used in (BURGER, 2017) provides
an interesting geometric intuition and the tables with computer based calculations
from (BURGER, 2017) were fundamental for our initial understanding of the problem,
the complexity of such analysis for higher rank grows so fast that, at this moment,
we do not see how to handle it beyond affine rank 3. However, building up on this
work, we sought a more conceptual manner of approaching the problem which, in
particular, led to a much simpler answer for type Â2 without relying on computer
based computations. From now on we describe the main features of our approach
which is based on a specific choice of reduced expressions for the elements of Ŵ .
Alcove paths will not play a significant role in our strategies, but we intend to bring as
much connections as we find.

First we will describe a presentation of the elements of an arbitrary affine Weyl
group Ŵ on uniquely determined finite sequences of elements of W in Section 1.8.
We will refer to each one of these sequences as the fully left-long (fll) extract of the
corresponding element. We obtain that Ŵ = WE , where W is the underlying finite
Weyl group and E is the set of elements of Ŵ corresponding to alcoves contained in
the fundamental Weyl chamber. In particular, if E projects dominant affine weights to
dominant weights, then ΓΛ = EΛ. In Section 3.3, we prove that this occurs for type Â2.
Our strategy consists of choosing some specific expressions for the elements of E (of
an arbitrary rank) and then computing the respective orbit in rank 2.

More generally, in Section 2.3, we prove that, in type Ân, n ≥ 2, each element
is determined by a pair of monotonous finite sequences of non-negative integers
satisfying certain conditions, which we call the left and right sequences. Conversely,
the set of pairs of finite sequences satisfying such conditions gives rise to a directed
graph which we call the extract graph of type Ân. Each oriented path in this graph
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corresponds to a formula for a family of expressions coming from certain left and right
sequences. Thus, the set of such paths provides a class of reduced expressions for the
elements of Ŵ .

For type Â2, we prove that this set is minimal, that is, the elements corresponding
to the set of expressions induced by the graph are all distinct. Using the alcove form
of each one of these elements in Section 3.1, we prove that the expressions are all
reduced, while the computation of the permutations forms in Section 3.2 shows that
the elements are all distinct. Moreover, each one of these expressions correspond to the
fll extract of the element. In Section 3.3, we compute the expression associated to each
element of E applied to a dominant affine weight Λ, obtaining 2 families of formulae
to describe the elements of ΓΛ.

Even though in type Â2 there are only 6 maximal oriented paths in the extract
graph, giving rise to 6 families of formulae used to compute ΓΛ, in Â3 this number in-
creases to 18. Thus, finding an efficient way of dealing with the associated formulae for
higher rank remains a challenge. Nevertheless, since part of the formula in (JAKELIĆ;
MOURA, 2018) is essentially controlled by a certain “asymptotic” behavior of such
computations, it might happen that the combinatorics of these graphs are sufficient to
obtain information in order to understand this asymptotic behavior. This is one of the
directions we shall start working on next.

It is interesting to remark that the reason behind the fact that we have proved
some of the results here only for type Â2, arises from a similar jump in the difficulty-
level of the combinatorics we have been exploring here. However, as we were finalizing
the text, we came across the recent preprint (AL HARBAT, 2021) which apparently
proves the two conjectures for type Â made in Section 2.4. We added comments
comparing (AL HARBAT, 2021) to the present work in Remark 2.4.5 and develop a few
steps of the strategy utilized in (AL HARBAT, 2021) in Section 2.5. We regard the fact
that one of the main questions addressed in this work was the topic of a recent preprint
as a further indication of the relevance of the project that led to this dissertation.

This work is organized as follows. Chapter 1 contains most of the theoretical
framework about Weyl groups and Coxeter groups. In Chapter 2, we present different
presentations of the main example of the work, the affine Weyl group of type Ân, n ≥ 2.
Finally, in Chapter 3, we focus in the case n = 2, applying the combinatorial tools
developed in the previous chapters, in order to compute ΓΛ.

Throughout the work, we adopt the notations

Z≥i = {x ∈Z ∶ x ≥ i} and Ii,j = {x ∈Z ∶ i ≤ x ≤ j},

for i, j ∈Z.
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Chapter 1

Weyl groups

The aim of this chapter is to introduce affine Weyl groups, which are special
cases of Coxeter groups. Since we are most interested in combinatorial aspects of affine
Weyl groups, we begin, in Section 1.1, by presenting some general combinatorial
properties of Coxeter groups concerning reduced expressions for its elements, following
(HUMPHREYS, 1990) and (BJÖRNER; BRENTI, 2005). These properties provide a
special factorization of a Coxeter group as the end of a chain of inclusion of certain
proper subgroups, which we present in Section 1.2 following (BJÖRNER; BRENTI,
2005) and (STEMBRIDGE, 1997). It has been proved that finite Coxeter groups are
precisely finite reflection groups, a class of groups which contains the finite Weyl
groups. In Section 1.3, we introduce finite Weyl groups under a geometric point of
view, by seeing them as reflection groups acting on an Euclidean space, following
(HUMPHREYS, 1990). These groups are related with representation of semisimple
Lie algebras, as we briefly expose in Section 1.4, following (KAC, 1990). In Section
1.5, we present affine Weyl groups, which are infinite Coxeter groups, following
(HUMPHREYS, 1990). Although there exist other classes of infinite Coxeter groups
beyond affine Weyl groups, in this work we will focus on this particular class only.
Affine reflections fix pointwise certain hyperplanes which not necessarily pass through
the origin. The action of an affine Weyl group on the connected components of the
intersection of all such hyperplanes is simply transitive, inducing a bijection between
the components, called alcoves, and the elements of the group, which are the subject of
Sections 1.6 and 1.7, following (HUMPHREYS, 1990), (LENART; POSTNIKOV, 2007),
(SHI, 1987), and (SHI, 1999). Finally, in Section 1.8, we present a characterization of
special reduced expressions of the elements of an affine Weyl group. Such expressions
will be crucial in Section 2.3. As a rule, we omit all proofs contained in books here and,
with a few exceptions, we present the proofs of the papers (SHI, 1987) and (SHI, 1999).
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1.1 Coxeter Groups
Let W be a general group generated by a set S. Thus, each element w ∈ W can be

written non uniquely as a product of generators w = s1s2 . . . sk, for some si ∈ S. If k is
minimal among all such expressions for w, then k is called the length of w and denoted
by ℓ(w) = k. In this case, the expression s1s2 . . . sk is called a reduced expression for w
(with respect to S). By convention, ℓ(e) = 0, where e is the identity element ofW . Given
w ∈ W , it will be convenient to consider the left descent set associated with w,

D(w) ∶= {s ∈ S ∶ ℓ(sw) < ℓ(w)}.

Analogously, one can define right descent sets, but in this work we will only deal with
the left version.

Several properties of finite and affine Weyl groups can be deduced directly from
the presentation (W , S), where S is a finite generating set subjected to the relations of
the form

(ss′)m(s,s′) = 1,

for some m(s, s′) ∈Z>0 ∪ {∞}, with m(s, s) = 1, and m(s, s′) ≥ 2 for s ≠ s′. The condition
m(s, s′) = ∞ means no relation of the form (ss′)n = 1, n ∈Z>0, is imposed. An abstract
group admitting this kind of presentation is called a Coxeter group.

The pair (W , S) is called a Coxeter system and the elements of S are the Coxeter
generators. The cardinality of S is called the rank of the system. In particular, if si1si2⋯sil
is a reduced expression for w ∈ W , then

sij ≠ sij+1 , for all 1 ≤ j < l. (1.1.1)

From the definition, we see that a Coxeter system is determined by a finite set S
and a set {m(s, s′) ∶ s, s′ ∈ S} ⊆Z>0 ∪ {∞}, which satisfies the conditions m(s, s) = 1 and
m(s, s′) ≥ 2, if s ≠ s′. Thus, the Coxeter system can be represented by its Coxeter graph,
that is, the undirected graph whose vertex set is S and whose edges are the unordered
pairs {s, s′} such that m(s, s′) ≥ 3. Each edge is labeled by the corresponding number
m(s, s′). As a simplifying convention, the edges for which m(s, s′) = 3 have the label
omitted. By definition, a Coxeter graph has no loops and m(s, s′) = 2 if s ≠ s′ are not
connected by an edge.

A Coxeter system is called irreducible if its Coxeter graph is connected. It can
be shown that each Coxeter group W is a direct product of certain subgroups Wi

with generating set Si, so that each pair (Wi, Si) is irreducible (HUMPHREYS, 1990,
Proposition 6.1).

The length function on a Coxeter group can be characterized by two important
properties, which are called the Exchange Property and the Deletion Property. These
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properties characterize a Coxeter system in the sense that, if W is a group generated
by the finite set S all of whose elements have order 2, then the pair (W , S) is a Coxeter
system if and only if the Exchange Property or, equivalently, the Deletion Property is
satisfied.

Proposition 1.1.1. (Exchange Property) (HUMPHREYS, 1990, Theorem 5.8) Let w ∈ W ,
s ∈ S, and s1s2 . . . sk be any expression for w. If s ∈ D(w), then sw = s1 . . . ŝi . . . sk, for
some 1 ≤ i ≤ k. If the expression is reduced, then the index i is unique.

Corollary 1.1.2. (BJÖRNER; BRENTI, 2005, Corollary 1.4.4) Let w = s1 . . . sk ∈ W and
s ∈ D(w). Then, there exists 1 ≤ i ≤ k such that s = usiu−1 with u = s1s2 . . . si−1. If the
expression is reduced, then the index i is unique.

Corollary 1.1.3. (BJÖRNER; BRENTI, 2005, Corollary 1.4.6) Let w ∈ W and s ∈ S. Then,
s ∈ D(w) if and only if some reduced expression for w begins with s.

Corollary 1.1.4. Suppose u, w ∈ W satisfy ℓ(uw) = ℓ(u) + ℓ(w). Then, D(u) ⊆ D(uw).

Proof. Let s1 . . . sm and sm+1 . . . sl be reduced expressions for u and w, respectively so
that s1 . . . sl is a reduced expression for uw. If s ∈ D(u), we can assume s1 = s by
Corollary 1.1.3. It follows that suw = s2 . . . sl and, hence,

ℓ(suw) ≤ l − 1 < l = ℓ(uw),

showing s ∈ D(uw).

Proposition 1.1.5. (Deletion property) (BJÖRNER; BRENTI, 2005, Proposition 1.4.7) If
w = s1s2 . . . sk and ℓ(w) < k, then w = s1 . . . ŝi . . . ŝj . . . sk, for some 1 ≤ i < j ≤ k.

Corollary 1.1.6. (BJÖRNER; BRENTI, 2005, Corollary 1.4.8)

(i) Any expression w = s1s2 . . . sk contains a reduced expression for w, obtainable by
deleting an even number of Coxeter generators.

(ii) The set of Coxeter generators appearing in a reduced expression for w is inde-
pendent of the chosen expression.

(iii) S is a minimal set of generators for W . That is, no Coxeter generator can be
expressed in terms of the others.

The next theorem characterizes Coxeter groups in terms of the Exchange and
the Deletion properties. For instance, assume that W is a general group with a set of
generating S. The pair (W , S) is said to have the Exchange Property (Deletion Property)
if Proposition 1.1.1 (respectively, Proposition 1.1.5) is true.
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Theorem 1.1.7. (BJÖRNER; BRENTI, 2005, Theorem 1.5.1) Let W be a group and S a
set of generators which have order 2 in W . Then the following are equivalent:

(i) (W , S) is Coxeter system;

(ii) (W , S) has the Exchange Property;

(iii) (W , S) has the Deletion Property.

Let V be the real Euclidean space with basis {αs ∶ s ∈ S}. Consider the symmetric
bilinear form (., .) on V, given by

(αs, αs′) = − cos( lim
t→m(s,s′)

π/t) , for s, s′ ∈ S. (1.1.2)

Then, it is possible to show that the form is positive definite precisely when W is
finite (HUMPHREYS, 1990, Theorem 6.4). Finite Coxeter groups correspond to finite
reflection groups. The groups for which the form is positive semi-definite are infinite
and correspond to affine reflection groups. Weyl groups are special cases of reflections
groups, which are the subject of Sections 1.3 and 1.5.

1.2 Parabolic Coxeter Subgroups
Given X ⊆ S, let WX = ⟨X⟩ be the subgroup generated by X. It is well-known

that (WX, X) is also Coxeter system and that the length function on WX relative to X
coincides with the restriction of the length function on W to WX. The subgroups of W
of the form WX, X ⊆ S, are called parabolic subgroups of W . Let also

WX = {w ∈ W ∶ ℓ(xw) > ℓ(w) ∀ x ∈ X},

which is called the set of shortest right coset representatives of W relative to WX because
of the next proposition. For a proof of the proposition, see (BJÖRNER; BRENTI, 2005,
Proposition 2.4.4) or (HUMPHREYS, 1990, Proposition 1.10(c)).

Proposition 1.2.1. For every w ∈ W , there exists a unique pair (u, v) ∈ WX ×WX such
that w = uv. Moreover, this pair satisfies ℓ(w) = ℓ(u) + ℓ(v) and v is the unique minimal
length representative of the right coset WXw.

In particular, we have:

ℓ(uv) = ℓ(u) + ℓ(v) for all (u, v) ∈ WX ×WX, X ⊆ S. (1.2.1)

We shall use this later on with X = S ∖D(w) for elements w such that #D(w) = 1. In
that case we have w ∈ WX.
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Suppose W ∶= {e} = W0 ⊂ W1 ⊂ ⋯ ⊂ Wn = W is a chain of inclusion of maximal
proper parabolic subgroups and, for 1 ≤ i ≤ n, let Wi be the set of shortest right coset
representatives of Wi relative to Wi−1. It follows that every w ∈ W admits a unique
factorization

w = w1w2⋯wn with wi ∈Wi for all 1 ≤ i ≤ n

and, moreover,

ℓ(w) =
n
∑
i=1

ℓ(wi).

We shall refer to this factorization as the W-factorization of w (it is referred to as
canonical factorization in (STEMBRIDGE, 1997)). The element wi of the factorization
will be referred to as the i-th component of the factorization.

1.3 Finite Weyl Groups
From now on, we fix V a real Euclidean space endowed with a positive definite

symmetric bilinear form (⋅, ⋅), GL(V) denotes the linear group of V and O(V) denotes
the subgroup of orthogonal transformations.

A reflection is a diagonalizable element s ∈O(V), whose eigenvalues are 1 and −1,
the latter with multiplicity 1. That is, s sends some nonzero vector α to its negative
while it fixes pointwise the hyperplane orthogonal to α. We shall denote by sα the
reflection with such property. In other words,

sαβ = β − 2
(β, α)
(α, α)α for all β ∈ V.

Given a finite set of reflections S, the subgroup W of GL(V) generated by S is called a
finite reflection group.

LetW be a finite reflection group. A subset Φ ⊆ V of nonzero vectors is said to be
a root system for W if

Φ ∩Rα = {α,−α}, sα(Φ) = Φ for all α ∈ Φ, and W = ⟨sα ∶ α ∈ Φ⟩. (1.3.1)

In that case, the elements of Φ are referred to as roots.

Fix a total ordering in V satisfying:

(i) if λ ≠ 0, then λ > 0⇔−λ < 0,

(ii) if λ, µ > 0 and c ∈R>0, then λ + µ > 0 and cλ > 0.

For instance, the lexicographic ordering with respect to some fixed ordered basis of V.
An element λ of V is said to be positive (negative) if λ > 0 (respectively, λ < 0). A subset
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Φ+ of Φ is called a positive system if it consists of all of the positive roots (with respect
to the fixed ordering). Similarly, the subset Φ− ∶= −Φ+ is called a negative system. Of
course, Φ = Φ+ ∪Φ−. A subset ∆ of Φ+ is called a simple system if ∆ is a basis for the
real vector space generated by Φ, so that each element of Φ has all of its coefficients
relative to ∆ all of the same sign. It is possible to show that every positive system in
Φ contains a unique simple system, and that each simple system in Φ is contained in
some unique positive system in Φ (HUMPHREYS, 1990, Theorem 1.3). Of course, each
choice of total ordering in V leads to different positive and simple systems in Φ.

It can be shown that any two positive (simple) systems are conjugate under W
(HUMPHREYS, 1990, Theorem 1.4, Theorem 1.8). The next proposition characterizes
α ∈ ∆ as the unique positive root made negative by sα.

Proposition 1.3.1. (HUMPHREYS, 1990, Proposition 1.4) Let ∆ be a simple system with
Φ+ the corresponding positive system. If α ∈ ∆ and β ∈ Φ+ ∖ {α}, then sαβ ∈ Φ+.

Fix Φ a root system for W and choose a positive system Φ+ and corresponding
simple system ∆. Set S ∶= {sα ∶ α ∈ ∆}. Then, it is possible to show that (W , S) is a
Coxeter system (HUMPHREYS, 1990, Theorem 1.9), i.e., W is generated by S subjected
only to relations of the form (sαsβ)m(α,β) = 1, α, β ∈ ∆, where m(α, β) is the order of the
element sαsβ in W . In this case, the Coxeter generators are called simple reflections. In
particular, the simple system ∆ can be chosen in such a way that the bilinear form in V
coincides with (1.1.2) in the basis ∆ (HUMPHREYS, 1990, Theorem 6.4). The possible
graphs that can be realized as connected Coxeter graphs coming from finite reflection
groups are shown in Figure 1.3.1. The subscript in each case is the rank n of the system.
They are all distinct, except for small values of n, and classify up to isomorphism all
irreducible pairs (W , S).

Associated with each α ∈ ∆, there exists a hyperplane Hα ∶= {λ ∈ V ∶ (λ, α) = 0}.
Each hyperplane determines a semiplane H+α ∶= {λ ∈ V ∶ (λ, α) > 0}. The intersection Ce

of all H+α , α ∈ ∆, is called the fundamental Weyl chamber and the remaining Weyl chambers
are Cw ∶= wCe, w ∈ W . It is possible to show that W acts simply transitively on the set
of Weyl chambers (HUMPHREYS, 1990, Proposition 1.12). In particular, the simple
transitivity implies that there must exist a unique element wo ∈ W sending Φ+ to Φ−.
This element, called the longest element ofW is the unique element with maximal length
ℓ(wo) = #Φ+ (HUMPHREYS, 1990, Section 1.8).

We are particularly interested in the special class of finite reflection groups called
Weyl groups. Their associated root systems play an important role in the theory of
semisimple Lie algebras. A root system Φ is called a crystallographic root system if for all
α, β ∈ Φ, we have sαβ = β + kα, for some k ∈Z. The finite reflection group W associated
with a crystallographic root system is called the Weyl group of the crystallographic



Chapter 1. Weyl groups 21

Figure 1.3.1 – Classification of finite reflection groups.

root system. In this case, W stabilizes some lattice in V.

Weyl groups of crystallographic root systems are precisely the reflections groups
for which all m(α, β) lie in {2, 3, 4, 6}. When W is irreducible at most two distinct root
lengths are possible and the ratios of the squared lengths of long roots and short roots
can only be 2 or 3. If just one root length occur, all roots are considered as short ones.
Geometrically, since the ratios are constant, we can assume from now on, without
loss of generality, all short roots have length 1, that is ∣α∣2 ∶= (α, α) = 1, for α ∈ ∆. Most
finite reflection groups are Weyl groups, except for the classes H3, H4 and I2(m), for
m /∈ {2, 3, 4, 6} (HUMPHREYS, 1990, Proposition 2.8). Moreover, when W is irreducible,
there must exist a unique highest root α0, so that for all positive roots α, α0 − α is a sum
of simple roots.

Finally, we present some W-stable lattices in V. The Z-span Q of Φ in V is called
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the root lattice associated with Φ. For each α ∈ Φ, define α∨ ∶= 2α

(α, α) , which is called the

coroot associated with α. Note (α∨)∨ = α, for all α ∈ Φ. The set Φ∨ ∶= {α∨ ∶ α ∈ Φ} of all
coroots is also a crystallographic system in V, with simple system ∆∨ ∶= {α∨ ∶ α ∈ ∆},
which is called the dual root system. The root lattice Q∨ associated with Φ∨ is called
the coroot lattice associated with Φ. In particular, if all roots are short, then we may
consider α∨ = 2α, for all α ∈ Φ. Since sα = sα∨ for all α ∈ Φ, it follows that the group W∨

associated with Φ∨ coincides with W .

The weight lattice of Φ is

P ∶= {λ ∈ V ∶ (λ, α∨) ∈Z, for all α ∈ Φ}.

The latter is generated by the fundamental weights ω1, . . . , ωn, defined as (ωi, α∨j ) = δij,
where n is the rank of Φ. Consider also the set of dominant weights

P+ ∶= {λ ∈ P ∶ (λ, α) ≥ 0, for all α ∈ Φ}.

Example 1.3.2. The symmetric group Sn+1 is a Weyl group of type An, for n ≥ 1. Indeed,
it is well known that Sn+1 can be generated by the set of transpositions S = {si ∶ i ∈ I1,n},
where si = (i i + 1). Let V =Rn+1 with standard basis {ε1, . . . , εn+1}. Make Sn+1 act on
V by permuting the subscripts of the fixed basis. Consider αi = εi − εi+1, 1 ≤ i ≤ n. Notice
that

siαi = si(εi − εi+1) = εi+1 − εi = −αi,

while si fixes pointwise the hyperplane
⎧⎪⎪⎨⎪⎪⎩
∑

j∈I1,n+1

ajε j ∶ ai = ai+1

⎫⎪⎪⎬⎪⎪⎭
, for 1 ≤ i ≤ n. Thus, Sn+1

acts on V as a finite reflection group of rank n with simple system ∆ = {α1, . . . , αn}.
Since Sn+1 satisfies relations of the form

∣sisj∣ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3, if j ∈ {i − 1, i + 1},
2, if j /∈ {i, i − 1, i + 1},
1, if j = i,

it follows from the classification of finite reflection groups that Sn+1 has type An. The
associated root system is Φ = {αi,j ∶ 1 ≤ i ≠ j + 1 ≤ n + 1}, where αi,j ∶= ∑

k∈Ii,j

αk = εi − ε j+1.

Considering the simple system ∆, it has as positive system

Φ+ = {αi,j ∶ 1 ≤ i ≤ j ≤ n}.

In this case, the highest root is α0 = α1,n and all roots have the same length. Moreover,
this action fixes pointwise the line spanned by ε1 + . . . + εn+1, while leaves stable its
orthogonal complement, the hyperplane generated by the simple roots. Thus, we
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Figure 1.3.2 – Root system of type A2.

may consider Sn+1 acting on Rn when it is convenient. The fundamental weights
{ωi ∶ 1 ≤ i ≤ n} satisfy

α1 = 2ω1 −ω2, αi = 2ωi −ωi−1 −ωi+1, 2 ≤ i ≤ n − 1, and αn = 2ωn −ωn−1. (1.3.2)

In particular, A2 has simple system ∆ = {α1, α2}, with highest root α0 = α1 + α2

and positive system Φ+ = {α0, α1, α2}. Fix {i, j} = I1,2 and denote si ∶= sαi . By Proposition
1.3.1, siαj = α0 and siα0 = αj. Since

sisjsi(α0) = sisj(αj) = −si(αj) = −α0,

we have sα0 = sisjsi = sjsisj. In particular, ℓ(sα0) = 3 = #Φ+, following that sα0 is the
longest element wo of A2 and, then, wo(Φ+) = Φ−. Since the action is simply transitive,
we must have wo(αi) = −αj, {i, j} = I. Figure 1.3.2 exhibits the root system, some
hyperplanes, and the Weyl chambers. Since m(α1, α2) = 3 and all roots are short, by
(1.1.2),

(α1, α2) = −cos(π/3) = −1/2 and (αi, α0) = (αi, αi) + (αi, αj) = 1/2, (1.3.3)

for {i, j} = I1,2.

1.4 Connections with Lie Algebras
The exposition in this section follows (KAC, 1990).

A finite-dimensional complex algebra g is said to be a Lie algebra if the multiplica-
tion [⋅, ⋅] ∶ g× g→ g satisfies:



Chapter 1. Weyl groups 24

(i) [x, x] = 0,

(ii) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0,

for all x, y, z ∈ g. A subspace h ⊆ g is a subalgebra if [h,h] ⊆ h. If [g,h] ⊆ h, then h is
called an ideal of g. If dimg > 1 and the only ideals of g are {0} and g, then g is said to
be simple. A Lie algebra is semisimple if it can be written as the direct sum of simple
algebras

g = ⊕
1≤i≤k

gi, with [gi,gj] = {0}, if i ≠ j.

If g is simple, then there exists a subalgebra h, with [h,h] = {0}, and Φ ⊆ h∗ finite
such that

g = h⊕⊕
α∈Φ

gα, where gα = {x ∈ g ∶ [h, x] = α(h)x, for all h ∈ h}, with dimgα = 1.

(1.4.1)

Moreover, the set Φ ⊆ V is a crystallographic root system and the rank of Φ is the
dimension of h, where V ⊆ h∗ is the real Euclidean space generated by Φ. The Weyl
group W associated with Φ is said to be the Weyl group associated with g and the
type of g is the type ofW . In the case that all roots are short, g is said to be simply laced.
Given a positive system Φ+, denote

n+ = ⊕
α∈Φ+

gα. (1.4.2)

In this work, we are most interested in the Weyl group associated with the
complex Lie algebra sln+1 of square matrices with trace zero, whose type is An. Fix
∆ ∶= {αi ∶ 1 ≤ i ≤ n} a simple system, with corresponding fundamental weights
{ωi ∶ 1 ≤ i ≤ n}, then h has a basis {hi ∶ 1 ≤ i ≤ n} defined by

ωi(hj) = δi,j, i, j ∈ I1,n. (1.4.3)

In this case, putting si = sαi , i ∈ I1,n, the action of W on V can also be given by

si(λ) = λ − λ(hi)αi, for all λ ∈ V.

For further use, it will be convenient to define hα0 ∶= ∑
i∈I1,n

hi, which satisfies

ωi(hα0) = 1, for all i ∈ I1,n. (1.4.4)
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1.5 Affine Weyl Groups
We are now interested in the affine reflection groups, i.e., groups generated by

affine reflections. An affine reflection is a reflection relative to a hyperplane that does
not necessarily pass through the origin of V. Such groups are infinite and admit
presentations as Coxeter groups. A particularly interesting class of such groups consists
of the affine Weyl groups, which play an important role in the theory of Kac-Moody
algebras.

Consider A f f (V) the semidirect product of GL(V) and the group of translations
in V. It is easy to see that the group of translations is indeed normalized by GL(V).
Given a root system Φ ⊆ V, for each root α and k ∈ R, define the associated affine
hyperplane as the set

Hα,k ∶= {λ ∈ V ∶ (λ, α) = k}.

The corresponding affine reflection is given by

sα,kλ ∶= sαλ + kα∨ = λ − ((λ, α) − k)α∨ for all λ ∈ V.

Note that sα,k fixes the affine hyperplane Hα,k and sends the 0 vector to kα∨. More
generally, the restriction of sα,k to Hα,ℓ is the translation to Hα,2k−ℓ along the direction
determined by α. More precisely:

sα,kλ = λ + (k − ℓ)α∨ for all λ ∈ Hα,ℓ.

It is not difficult to see that sα,0 = sα.

If W is the Weyl group associated with the crystallographic root system Φ, the
affine Weyl group Ŵ is defined to be the subgroup of A f f (V) generated by the affine
reflections sα,k, with α ∈ Φ, k ∈ Z. That is, Ŵ is the semidirect product of W and the
subgroup of translations given by elements of the coroot lattice Q∨. Let Tλ denote the
translation by λ ∈ Q∨. Then, each sα,k can be written uniquely as

sα,k = wλ = Tλw, where w = sα and λ = kα∨. (1.5.1)

Fix ∆ ∶= {α1, . . . , αn} a simple system for Φ and let α0 be the highest root relative
to ∆. Denote

Ŝ ∶= {si ∶ 0 ≤ i ≤ n}, (1.5.2)

where s0 ∶= sα0,1 and si ∶= sαi , for 1 ≤ i ≤ n. It is possible to show that Ŵ is generated by
the set Ŝ, subjected only to the relations

(sisj)m(i,j) = 1,
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Figure 1.5.1 – Classification of affine Weyl groups.

where m(i, j) is the order of the element sisj ∈ A f f (V), with 1 ≤ i ≤ n (HUMPHREYS,
1990, Theorem 4.6). That is, (Ŵ , Ŝ) is a Coxeter system. All possible graphs arising
from an affine Weyl group were classified and are exhibited in Figure 1.5.1, where the
subscript n denotes the rank of the root system.

1.6 Alcoves
Let Φ be an irreducible root system. Although the underlying finite Weyl groups

W and W∨ coincide, the affine Weyl groups Ŵ and Ŵ∨ do not need to be isomorphic.
These groups are isomorphic if and only if Φ has only short roots. Anyway, since
(Φ∨)∨ = Φ, we may work with dual root systems to characterize affine Weyl groups,
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preserving the indexing by roots instead of coroots. It turns out that this change makes
easier to phrase some results that we are interested in, following (SHI, 1999).

Let Ŵ be an affine Weyl group, with positive system (Φ∨)+ ⊆ V and simple
system ∆ = {α∨1 , . . . , α∨n}. Let also Ŝ = {si ∶ i ∈ I0,n}, where

si = sα∨i ,0, i ∈ I1,n, and s0 = sα∨0 ,1.

Note sαi = sα∨i
, for all i ∈ I0,n. By abuse of notation, let Hα,k denote the affine hyperplane

Hα∨,k, for α ∈ Φ, k ∈Z.

The connected components of

V ∖ ⋃
α∈Φ,k∈Z

Hα,k

are called alcoves. Let us denote A the set of all alcoves. Define a strip as a set of the
form H1

α,k ∶= {λ ∈ V ∶ k < (λ, α∨) < k + 1}, for α ∈ Φ. Note

H1
−α,k = H1

α,−k−1, for all α ∈ Φ, k ∈Z. (1.6.1)

Given a family k = (kα)α∈Φ+ of integers, define

Ak ∶= ⋂
α∈Φ+

H1
α,kα
= {λ ∈ V ∶ kα < (λ, α∨) < kα + 1, α ∈ Φ+}.

Setting

k−α ∶= −kα − 1, for α ∈ Φ− (1.6.2)

and using 1.6.1, it follows that Ak = ⋂
α∈Φ

H1
α,kα

. These sets are not alcoves in general, but

every alcove coincide with one such set as proved in (SHI, 1987), where it was also
proved a precise characterization of the families k such that Ak is an alcove (SHI, 1987,
Theorem 5.2). The next result is a simplification of this characterization given in (SHI,
1999, Theorem 1.1). The proof consists of handling a series of inequalities, including
ones which depend on a case by case analysis according to type of the subsystem
generated by a given pair of positive roots. As the steps of the proof are not relevant
for our purposes, we have decided to omit the details here.

Lemma 1.6.1. Let k = (kα)α∈Φ+ be a family of integers. The set Ak is an alcove if and
only if, for all α, β, γ ∈ Φ+ such that γ = (α∨ + β∨)∨, the following holds

kα + kβ ≤ kγ ≤ kα + kβ + 1. (1.6.3)

In particular, if Φ has only short roots, then γ = α + β in the lemma. Proceeding
inductively, one can then easily check the following.
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Corollary 1.6.2. Suppose Φ has only short roots and that α = ∑
j∈I1,m

αij for some m ∈Z>1

and ij ∈ I1,n. Then, ∑
j∈I1,m

kαij
≤ kα ≤ ∑

j∈I1,m

kαij
+m − 1 .

If k = (kα)α∈Φ+ satisfies (1.6.3), we shall say k is the coordinate form of the alcove
Ak. We let k = 0 denote the fundamental alcove, i.e., the one associated with the family
kα = 0 for all α ∈ Φ+. Straightforward computations show that

A0 = {λ ∈ V ∶ 0 < (λ, α∨i ),∀i ∈ I1,n, (λ, α∨0) < 1}. (1.6.4)

Note Ak is contained in the fundamental Weyl chamber if and only if

kα ≥ 0, for all α ∈ Φ+. (1.6.5)

From Corollary 1.6.2 immediately follows the next.

Corollary 1.6.3. Let k = (kα)α∈Φ+ . If Φ has just short roots, then Ak ⊆ Ce if and only if
kαi ≥ 0, for all i ∈ I1,n.

Example 1.6.4. Suppose Ŵ and, hence, Ŵ∨ have type Â2. By Example 1.3.2, we have
Φ+ ∖∆ = {α0}. Then, the only inequality that must be satisfied is

kα1 + kα2 ≤ kα0 ≤ kα1 + kα2 + 1.

Thus, the triple (kα1 , kα2 , kα0) = (1, 0, 0) does not correspond to an alcove, for instance.
Figure 1.6.1 shows alcoves labeled by their corresponding coordinate form.

The length function in an affine Weyl group has a geometric characterization in
terms of alcoves. Let H = {Hα,k ∶ α ∈ Φ+, k ∈ Z}. The hyperplane H ∈ H separates two
alcoves if each one of them lies in different half-spaces relative to H. The number of
such hyperplanes for two fixed alcoves is always finite, then it is well-defined the
number n(w) as the cardinality of the set

H(w) ∶= {H ∈ H ∶ H separates Ae and Aw}, w ∈ Ŵ∨.

For instance, H(s) = {Hs,0}, for all s ∈ Ŝ.

The group Ŵ∨ acts on the set of alcoves A , via the correspondence given by
A ↦ wA, A ∈ A , w ∈ Ŵ∨.

Theorem 1.6.5. (HUMPHREYS, 1990, Theorem 4.5) Let w ∈ Ŵ∨ ∖{e}, with a reduced ex-
pression si1 . . . sim , and denote Hj ∶= Hsij

,δij ,0
. Then H(w) = {H1, si1 H2, . . . , sj1 . . . sjm−1 Hm}

and these hyperplanes are all distinct. In particular, ℓ(w) = n(w), for all w ∈ Ŵ∨, and
Ŵ∨ acts simply transitively on A .
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Figure 1.6.1 – Coordinate form for alcoves of type Â2.

Since the action is simply transitive, it allows us to define Aw ∶= w(A0). In
particular, A0 = Ae. Moreover, there exists a well-defined map k ∶ Ŵ∨ ×Φ+ → Z

determined by

Aw = ⋂
α∈Φ+

H1
α,k(w,α).

The map kw ∶ Φ+ →Z, α ↦ k(w, α), or, equivalently, the family of integers (k(w, α))α∈Φ+ ,
is called the alcove form of w. Since the correspondence w ↦ Aw is a bijection, w is
determined by its alcove form.

Write wλ = Tλw, for w ∈ W∨ and λ ∈ Q. By 1.5.1, Ŵ∨ = {wλ ∶ w ∈ W∨, λ ∈ Q}. We
want to characterize the alcove form of wλ ∈ Ŵ∨ in terms of w and λ. It will be useful
to recall that (w−1α)∨ = w−1α∨ and

(wλ, α∨) = (λ, w−1α∨), for all w ∈ W∨, λ ∈ V, α ∈ Φ, (1.6.6)

since W∨ is a group of orthogonal transformations in V.
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Lemma 1.6.6. (SHI, 1987, Lemma 3.1) If w ∈ W∨, then k(w, α) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if w−1α ∈ Φ+,

−1, if w−1α ∈ Φ−.

Proof. Let µ ∈ Ae and α ∈ Φ+. Then wµ ∈ Aw. By (1.6.6), (wλ, α∨) = (λ, w−1α∨), for
all α ∈ Φ+. If w−1α ∈ Φ+, then 0 < (µ, w−1α∨) < 1. Thus, 0 < (wµ, α∨) < 1, following
that k(w, α) = 0. Otherwise, if w−1α ∈ Φ−, then −w−1α ∈ Φ+. Similarly, it follows that
−1 < (µ, w−1α∨) < 0 and, hence, −1 < (wµ, α∨) < 0, proving that k(wµ, α) = −1.

Lemma 1.6.7. (SHI, 1999, (1.5.1)) Let w ∈ W∨ and λ ∈ Q. Then k(wλ, α) = k(w, α)+(λ, α∨).

Proof. Notice Awλ
= {λ} +Aw. For all α ∈ Φ+, µ ∈ Aw, k(w, α) < (µ, α∨) < k(w, α) + 1. Let

η = λ + µ ∈ Awλ
. Since (η, α∨) = (λ, α∨) + (µ, α∨), we have

k(w, α) + (λ, α∨) < (η, α∨) < k(w, α) + (λ, α∨) + 1,

from where the lemma follows.

In particular, if Ŝ is a generating set for Ŵ∨ as in (1.5.2),

k(si, α) = −δαi,α and k(s0, α) = δα0,α, for all i ∈ I1,n, α ∈ Φ+. (1.6.7)

This leads to the following formula for the alcove form of an element of Ŵ∨ in terms
of a reduced expression.

Proposition 1.6.8. Let w = si1 . . . sim be a reduced expression for w ∈ Ŵ∨ and set
ul = sαi1

. . . sαil
∈ W∨, for 1 ≤ l ≤ m. Then

k(w, α) = k(um, α) + ∑
j∈I1,m

δij,0(uj−1α0, α∨), for all α ∈ Φ+.

Proof. Write w = uλ, u ∈ W∨, λ ∈ Q. By Lemma 1.6.7, it suffices to check that u = um

and λ = ∑
j∈I1,m

δij,0uj−1α0. Indeed, let us proceed by induction on ℓ(w) = m ∈Z≥1. Recall

si = sαi + δi,0α0, i ∈ I0,n. Thus, for m = 1, the result is clear. If m > 1, then the induction
hypothesis imply

wµ = (si1 . . . sim−1)(sim µ) = um−1sim µ + ∑
j∈I1,m−1

δij,0uj−1α0

= um−1(sαim
µ + δim,0α0) + ∑

j∈I1,m−1

δij,0uj−1α0

= umµ + δim,0um−1α0 + ∑
j∈I1,m−1

δij,0uj−1α0 = umµ + ∑
j∈I1,m

δij,0uj−1α0

for all µ ∈ V, as claimed.
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Corollary 1.6.9. (SHI, 1999, Section 1.6) For all i ∈ I0,n, w ∈ Ŵ∨, and α ∈ Φ+, we have

k(siw, α) = k(w, sαi α) + δi,0(α0, α∨). (1.6.8)

Proof. Since u−1(vα) = (v−1u)−1α, it follows from Lemma 1.6.6 that

k(u, vα) = k(v−1u, α), for all u, v ∈ W∨. (1.6.9)

Therefore, by Proposition 1.6.8,

k(siw, α) = k(sαi um, α) + δi,0(α0, α∨) + ∑
j∈I1,m

δij,0(sαi uj−1α0, α∨)

(1.6.6)=
(1.6.9)

k(um, sαi α) + δi,0(α0, α∨) + ∑
j∈I1,m

δij,0(uj−1α0, (sαi α)∨)

= k(w, sαi α) + δi,0(α0, α∨).

The length and the left descent set of an element of Ŵ∨ can be computed in
terms of alcoves, as seen in the next theorem. A proof for type Â is given in the book
(SHI, 1980, Proposition 6.4.1). It is claimed the proof works for all types in (SHI, 1987,
Proposition 4.3).

Theorem 1.6.10. (SHI, 1999, Proposition 1.9) For all w ∈ Ŵ∨, we have ℓ(w) = ∑
α∈Φ+
∣k(w, α)∣

and D(w) = {si ∶ i = 0 and k(w, α0) > 0 or i ∈ I1,n and k(w, αi) < 0}.

Corollary 1.6.11. An alcove Aw is contained in the fundamental Weyl chamber if and
only if D(w) = {s0}.

Proof. Theorem 1.6.10 implies that

D(w) = {s0} ⇔ k(w, αj) > 0, for all j ∈ I0,n.

By Corollary 1.6.3, the result follows.

Example 1.6.12. Suppose Ŵ∨ has type Â2. Let us compute the alcove forms of s0si,
s0sisj, s0wo, for {i, j} = I1,2. Using (1.6.7) and (1.6.8), one easily checks that, for all
w ∈ Ŵ∨, we have

k(spu, αq) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−k(u, αi) − 1, if p = q = i,

−k(u, α0) + 1, if p = q = 0,

k(u, αr), if p = i,{q, r} = {0, j},
−k(u, αr), if p = 0,{q, r} = {i, j}.

(1.6.10)
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Figure 1.6.2 – Elements corresponding to alcoves of type Â2.

Now, iterating this, we get

k(s0siu, αq) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−k(u, αj) + 1, if q = 0,

−k(u, α0), if q = i,

k(u, αi) + 1, if q = j.

(1.6.11)

Plugging w = e, we see that the alcove form of s0si is

k(s0si, αi) = 0 and k(s0si, α0) = k(s0si, αj) = 1. (1.6.12)

Using (1.6.10) and (1.6.11), we get

k(s0sisju, α) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−k(u, αi), if q = i,

k(u, αr) + 1+ δq,0, if {q, r} = {0, j}.
(1.6.13)

For w = e, we see the alcove form of s0sisj is

k(s0sisj, αi) = 0, k(s0sisj, αj) = 1, k(s0sisj, α0) = 2. (1.6.14)

Using (1.6.13) and (1.6.10), we have

k(s0wou, αq) = k(u, αq) + 1+ δq,0, for all u ∈ Ŵ∨.

Hence, the alcove form of s0wo is

k(s0wo, αi) = k(s0wo, αj) = 1, k(s0wo, α0) = 2. (1.6.15)

Comparison with Figure 1.6.1 gives us Figure 1.6.2. Note also Theorem 1.6.10 implies
ℓ(s0sisj) = 3 and ℓ(s0wo) = 4, as expected.
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1.7 Alcove Paths
By (1.6.4), the boundary of Ae is contained in ⋃

i∈I0,n

Hαi,δi,0 . Moreover, since the ac-

tion of Ŵ∨ permutes the set of alcoves, the boundary of Aw is contained in ⋃
i∈I0,n

wHαi,δi,0 ,

for any w ∈ Ŵ∨. These n + 1 hyperplanes will be referred to as the walls of Aw. For
i ∈ I0,n, the hyperplane Hαi,δi,0 is the unique wall shared by Ae and Asi .

The intersection of the closure of an alcove with one of its walls will be referred to
as a facet. Let F be the set of facets, i.e., F = {F ⊆ V ∶ F is a facet of A for some A ∈ A }.
Since the action of Ŵ∨ on A is simply transitive, it induces an action on F . Moreover,
given F ∈ F , there exists a unique facet F′ of Ae such that F = wF′ for some w ∈ Ŵ∨.
We say F is an i-facet, i ∈ I0,n, if F′ is contained in the wall shared by Ae and Asi . We let
Fi be the subset of F containing the i-facets.

The following lemma can be regarded as a motivation to the definition of the
notion of alcove paths.

Lemma 1.7.1. (SHI, 1987, Lemma 6.1) Let w, w′ ∈ Ŵ∨. Then w′ = wsi, for some i ∈ I0,n, if
and only if Aw and Aw′ share an i-facet.

Proof. Suppose w′ = wsi. Then Aw = w(Ae) and Aw′ = w(Asi). Since Ae and Asi share an
i-facet, so do Aw and Aw′ . Conversely, if Aw and Aw′ share an i-facet, there exists v ∈ Ŵ∨

such that Aw = v(Ae) = Av and Aw′ = v(Asi) = Avsi . Hence, w = v and w′ = wsi.

Two alcoves are said to be adjacent if they are distinct and share a facet. We write
A i∼ A′ if A and A′ are adjacent and share an i-facet. In particular, Ae

i∼ Asi , i ∈ I0,n.

An alcove path is a finite sequence of adjacent alcoves. We shall write

A1
i1→ A2

i2→ . . .
il→ Al+1

to denote such a given path if Aj
ij∼ Aj+1, j ∈ I1,l . The alcove path is said to be reduced if l

is minimal among all alcove paths from A1 to Al+1. We let P(A,A′) denote the set of
alcove paths from A to A′ and set P(A) =P(Ae,A).

Given w ∈ Ŵ∨, let

Ew =
⎧⎪⎪⎨⎪⎪⎩

ι ∶ I1,l → I0,n ∶ l ∈Z≥0, w =
Ð→
∏

1≤j≤l
sι(j)

⎫⎪⎪⎬⎪⎪⎭
.

We refer to Ew as the set of expressions for w. The subset of Ew containing the reduced
expressions for w will be denoted Rw. For ι ∈ Ew, the length of ι, denoted by ℓ(ι), is the
cardinality of the domain of ι. As usual, by abuse of notation, we let ij = ι(j). Given
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ι ∈ Ew, consider

vl =
Ð→
∏

1≤j≤l
sij and ul =

Ð→
∏

1≤j≤l
sαij

, 0 ≤ l ≤ ℓ(ι). (1.7.1)

In particular, v0 = w0 = e and vℓ(ι) = w. Lemma 1.7.1 implies

Avl−1

il∼ Avl , 1 ≤ l ≤ ℓ(ι). (1.7.2)

Hence, we can associate the following element of P(Aw) with ι, which we denote by
ϱι:

Ae
i1→ Av1

i2→ Av2⋯
iℓ(ι)→ Aw.

Consider also
βl = ul−1αil , 1 ≤ l ≤ ℓ(ι).

Proposition 1.7.2. (LENART; POSTNIKOV, 2007, Lemma 5.3) The map Ew →P(Aw),
ι ↦ ϱι, is a bijection and ι ∈ Rw if and only if ϱι is reduced. Moreover, for 1 ≤ l ≤ ℓ(ι),
the il-facet shared by Avl−1 and Avl is contained in Hβl ,m for some m ∈Z.

As observed in (LENART; POSTNIKOV, 2007), the proof of Proposition 1.7.2 is
essentially contained in (HUMPHREYS, 1990) and, therefore, we omit the details here.
A streamlined proof is presented in (LENART; POSTNIKOV, 2007) nevertheless.

Example 1.7.3. Suppose Ŵ∨ has type Â2. Figure 1.7.1 exhibits 1-facets in red, 2-facets
in blue, and 0-facets in green, according to Lemma 1.7.1. Two different alcove paths
from Ae to Awo are presented following Proposition 1.7.2. Moreover, since ℓ(wo) = 3,
both alcove paths are reduced.

We end this section with an analysis of reduced paths contained in the funda-
mental Weyl chamber. We show that these paths can be described by certain families
of finite non-decreasing sequences of non-negative integers indexed by Φ+.

Lemma 1.7.4. Let Aw ⊆ Ce, w ∈ Ŵ∨. Let also si1 . . . sim be a reduced expression for w
and vl, ul, 0 ≤ l ≤ m, as in (1.7.1). Then, for each i ∈ I2,l, there exists α̃i ∈ Φ+ such that
k(vi, α) = k(vi−1, α) + δα,α̃i . In particular, any reduced alcove path in P(Aw) is contained
in the fundamental Weyl chamber.

Proof. From Proposition 1.7.2, it follows that the unique hyperplane crossed in the

path Avl−1

sil→ Avl is orthogonal to βl. Define α̃l as the positive root in {βl,−βl}. Hence,

k(vl, α) = k(vl−1, α) ± δα,α̃l . (1.7.3)

Moreover, notice that, by Theorem 1.6.10,

ℓ(vl) > ℓ(vl−1) ⇔ ∣k(vl, α̃l)∣ > ∣k(vl−1, α̃l)∣. (1.7.4)
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Figure 1.7.1 – Alcoves paths from Ae to Awo .

Let us proceed by induction on l ∈ I1,m to prove that 0 ≤ k(vl−1, α) ≤ k(vl, α), for all
α ∈ Φ+. By Corollary 1.6.11, v1 = s0, then the claim holds for l = 1. Suppose, thus,
l > 1. Then, the induction hypothesis and (1.7.4) ensures the result. In particular, by
(1.7.3), the first part of the lemma follows. The second part follows immediately since
k(vl, α) ≥ 0, for all α ∈ Φ+, l ∈ I1,m.

Let w ∈ Ŵ∨, Aw ∈ Ce. Each pair (ι, α) ∈Rw ×Φ+ determines a sequence (kα,l)l∈I0,m ,
where m = ℓ(w), kα,l = k(vl, α), for vl as in (1.7.1), l ∈ I1,m, which will be referred to as
the α-sequence associated with ι. These sequences satisfy

(i) kα,0 = 0, kα,l ∈Z≥0, for all α ∈ Φ+,

(ii) for each l ∈ I1,m, there exists α̃l such that kα,l = kα,l−1 + δα,α̃l , for all α ∈ Φ+,

(iii) kα,l + kβ,l ≤ kγ,l ≤ kα,l + kβ,l + 1, for all l ∈ I1,m, α, β, γ ∈ Φ+, with γ = (α∨ + β∨)∨.

Given m ∈ Z≥0, consider the set of Φ+-families of I1,m-families of integers. An
element of this set will be denoted by (kα)α∈Φ+ , while, for each α, kα = (kα,l)l∈I1,m

with kα,l ∈ Z. We shall say such a family is a reduced Φ+-family if its members satisfy
conditions (i)-(iii) above.
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Proposition 1.7.5. There is a bijection between {ι ∈ Rw ∶ w ∈ Ŵ∨,Aw ⊆ Ce} (or, equiv-
alently, reduced alcove paths contained in the fundamental chamber) and reduced
Φ+-families.

Proof. We have already proved that α-sequences associated with ι ∈ Rw, w ∈ Ŵ∨,
with Aw ⊆ Ce, form a reduced Φ+-family. Conversely, let F = {(kα,l)l∈I1,m ∶ α ∈ Φ+}
be a reduced Φ+-family. Since it satisfies (i) and (iii), by (1.6.3) and (1.6.5), each Akl

,
kl = (kα,l)α∈Φ+ , 0 ≤ l ≤ m, is an alcove in the fundamental chamber and Ak0 = Ae. Let
wl ∈ Ŵ∨ be the such that Akl

= Awl , l ∈ I1,m. By (ii),

Ae
i1→ Aw1

i2→ . . .
im→ Awm

is an alcove path. From Proposition 1.7.2, it follows that si1 . . . sil is an expression for
wl, for each l ∈ I1,m. Moreover, from (i), (ii), and Theorem 1.6.10, it follows that each
expression is reduced. Proposition 1.7.2 also ensures that the corresponding path is
reduced. Therefore, F is the family of α-sequences, α ∈ Φ+, associated with ι ∈Rw, for
which ι(j) = ij.

In particular, for all u ∈ Ŵ∨, with Au ⊆ Ce, the reduced alcove paths in P(Au)
are contained in the fundamental Weyl chamber and can be completely characterized
by reduced Φ+-families. If v ∈ Ŵ∨, with Av ⊆ Cw, w ∈ W∨, write v = wu, with Au ⊆ Ce.
Corollary 1.8.5 below ensures ℓ(v) = ℓ(w) + ℓ(u). Hence, any reduced path in P(Av)
passing through the alcove Aw is composed by a reduced path in P(Aw) followed by
a reduced path in P(Aw,Av), which is the image by w of a reduced path contained in
the fundamental Weyl chamber.

Remark 1.7.6. These paths do not describe completely Rv when Av /⊆ Ce. It may exist
si1 . . . sim ∈Rv for which the first occurrence of il = 0 is such that l < ℓ(w). For example,
in Figure 1.7.2, we see two distinct reduced alcove paths in P(Av). One corresponds to
the reduced expression s1s2s0s2 and it is obtainable by the method we have described,
for w = s1s2 and u = s0s2, while the other one, corresponding to the expression s1s0s2s0,
only enters Cw in its last step.

1.8 Left-long Extracts of Affine Weyl Groups
The main motivation for our work comes from the study of certain structural

aspects of representations of affine Kac-Moody algebras which involves the computa-
tion of specific elements in the orbits of the action of the corresponding affine Weyl
group on affine dominant weights. In order to compute such orbit elements, it is useful
to obtain a set of reduced expressions for the elements of the group as minimal as
we can. In this section, inspired by Remark 1.7.6, we express each element v of an
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Figure 1.7.2 – Distinct types of alcoves paths from Ae to As1s2s0s2 .

affine Weyl group Ŵ , as v = wu, for w ∈ W ,Av ⊆ Cw, and Au ⊆ Ce, giving rise to the
concept of left-long extract. Arranging systematically the set of reduced expressions
associated with left-long extracts, we describe a subset of Rv, for which the positions
of the occurrences of s0 do not depend on the chosen reduced expression.

Let W be a Weyl group with rank n and Ŵ be the corresponding affine Weyl
group, with generating sets S and Ŝ, respectively. It will be convenient to introduce the
following notation. Given a sequence w1, . . . , wm ∈ Ŵ , set

Ð→
∏

1≤j≤m
wj = w1w2 . . . wm and

←Ð
∏

1≤j≤m
wj = wmwm−1 . . . w1.

Since Ŵ is generated by Ŝ, we have

Ŵ = {si1si2 . . . sik ∣ sij ∈ Ŝ, 1 ≤ j ≤ k, k ∈Z≥0}.

Of course, the inconvenience of this presentation is that it does count all possible
expressions for the elements of Ŵ , eventually with many repetitions. Considering also
its set of relations, the aim of this section is to describe a smaller set of expressions for
the elements of Ŵ , without so many repetitions, and more suitable to compute some
linear representations in Chapter 3.
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Given w ∈ Ŵ and m ∈Z≥0, set

Em(w) =
⎧⎪⎪⎨⎪⎪⎩
(σ0, . . . , σm) ∈ Wm+1 ∶ w = σ0

Ð→
∏

1≤i≤m
(s0σi) and ℓ(w) = m + ∑

i∈I0,m

ℓ(σi)
⎫⎪⎪⎬⎪⎪⎭

.

One easily checks that

(σ0, . . . , σm) ∈ Em(w) and 0 < j < m ⇒ σj ≠ e. (1.8.1)

Moreover, any reduced expression for w gives rise to an element of Em(w) where m is
the number of appearances of s0 in the expression. In particular, Em(w) ≠ ∅ for some
m ∈Z. Set also

E(w) = ⋃
m≥0

Em(w).

We will refer to an element σ ∈ Em(w) as a Ŵ-extract for w of depth d(σ) ∶= m. We also
define the (affine) depth of w to be

d(w) =min{m ∶ Em(w) ≠ ∅}.

If σ = (σ0, . . . , σd(σ)) ∈ E(w) for some w ∈ Ŵ , we will refer to the element σj as the
j-th component of σ. If j > 0, we say σj is a distinguished component. Set also

σ̂j = (σj, σj+1, . . . , σd(σ)), σ̃j =
Ð→
∏

j<i≤d(σ)
(s0σi), and σ̄j = σjσ̃j.

In particular, σ̄0 = w,

σ̂j ∈ Ed(σ)−j(σ̄j) and d(σ̄j) = d(σ) − j for all 0 ≤ j ≤ d(σ). (1.8.2)

Moreover,
ℓ(σ̃j) = d(σ) − j + ∑

i∈Ij+1,d(σ)
ℓ(σi) for all 0 ≤ j ≤ d(σ).

We shall say that the extract σ for w is left-long if

τ ∈ E(w) ⇒ ℓ(τ0) ≤ ℓ(σ0).

Finally, we say σ is fully left-long (fll) if σ̂j is a left-long extract for σ̄j for all 0 ≤ j ≤ d(σ).

Proposition 1.8.1. For every w ∈ Ŵ , Ed(w)(w) contains the unique fll element of E(w).

Lemma 1.8.2. Suppose σ ∈ E(w) is left-long and that σ0 = siw′ for some i ∈ I1,n, w′ ∈ W
such that ℓ(siσ0) = ℓ(w′). Then, τ = (w′, σ1, . . . , σd(σ)) is a left-long element of E(siw)
which is fll if so is σ.
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Proof. It is clear that τ ∈ E(siw). Suppose τ is not left-long and choose ξ ∈ E(siw) such
that ℓ(ξ0) > ℓ(w′). In particular, we have siw = w′σ̃0 = ξ0ξ̃0 and

ℓ(ξ0) + ℓ(ξ̃0) = ℓ(siw) = ℓ(w) − 1.

Since w = siξ0ξ̃0, this implies (siξ0, ξ1, . . . , ξd(ξ)) ∈ E(w) and ℓ(siξ0) = 1 + ℓ(ξ0) > 1 +
ℓ(w′) = ℓ(σ0), contradicting the assumption that σ is left-long. The last claim is now
obvious.

Proof of Proposition 1.8.1. Let us begin by showing that Ed(w)(w) contains a fll element
of E(w). We proceed by induction on m ∶= d(w), which clearly begins when m = 0. If
m > 0, chose any left-long element ς ∈ Em(w). It follows from (1.8.2) that d(ς̄1) = m − 1
and then, by induction hypothesis, Em−1(ς̄1) contains a fll element of E(ς̄1), say τ. It
follows that σ ∶= (ς0, τ0, . . . , τm−1) ∈ Em(w) is fll.

To prove uniqueness, we proceed by induction on ℓ(w) which clearly starts for
w = e. Moreover, uniqueness is also clear if w ∈ W since E0(w) = {w} and ℓ(σ0) < ℓ(w) if
σ ∈ E(w)∖E0(w). Thus, let w ∉ W and suppose σ, τ ∈ E(w) are fll elements. In particular,
ℓ(σ0) = ℓ(τ0) and d(w) > 0.

Assume first that ℓ(σ0) ≠ 0. In this case, we have σ0 = siw′ for some i ∈ I1,n

and w′ ∈ W , such that ℓ(siσ0) = ℓ(w′). Lemma 1.8.2 and the induction hypothesis
imply σ′ ∶= (siσ0, σ1, . . . , σd(σ)) is the fll in E(siw). If ℓ(siτ0) < ℓ(τ0), it follows that
τ′ ∶= (siτ0, τ1, . . . , τd(τ)) ∈ E(siw) is a left-long element (as ℓ(siτ0) = ℓ(siσ0)) and, hence,
also fll. Therefore, τ′ = σ′ and, hence,

d(τ) = d(σ), τj = σj for j > 0, and siτ0 = siσ0,

which clearly implies, τ = σ. If ℓ(siτ0) > ℓ(τ0), since ℓ(siw) < ℓ(w), Proposition 1.1.1
implies there exists a reduced expression for siw which starts with a reduced expression
for τ0. This reduced expression gives rise to ξ ∈ E(siw) having ℓ(ξ0) > ℓ(σ′0), yielding a
contradiction since σ′ is left-long.

Finally, assume σ0 = τ0 = e. In particular, σ̃1 = τ̃1 and the induction hypothesis
implies this element admits a unique fll extract, which concludes the proof.

If σ is the fll extract of w, set

ε(w) = σ, ε0(w) = σ0, ε̃0(w) = σ̃0.

In particular, w = ε0(w)ε̃0(w). Set also

E = {ε̃0(w) ∶ w ∈ Ŵ}.

Therefore,
Ŵ = {wu ∶ w ∈ W , u ∈ E}. (1.8.3)
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Lemma 1.8.3. Let w ∈ Ŵ , σ ∈ Em(w). Then σ is fully left-long if and only if D(σ̃j) = {s0},
for all 0 ≤ j < d(σ).

Proof. Assume σ is fll and suppose σ̃j = siw′ with i ≠ 0 and ℓ(w′) = ℓ(σ̃j) − 1. Then,
σ̄j = σjsiw′ and, since σ is fll, we must have ℓ(σjsi) < ℓ(σj). Letting

l = ℓ(w) − ℓ(σ̄j) = ℓ(w) − ℓ(σ̃j) − ℓ(σj),

we conclude that
ℓ(w) ≤ l + ℓ(σjsi) + ℓ(w′) < ℓ(w), (1.8.4)

yielding a contradiction. Conversely, if σ is not fll, there exists 0 ≤ j ≤ d(σ) and τ ∈ E(σ̄j)
such that ℓ(τ0) > ℓ(σj). In particular,

σ̃j = σ−1
j τ0τ̃0.

We might as well assume τ = ε(σ̄j) and, hence, D(τ̃0) = {s0}. Since σ−1
j τ0 ∈ W , it then

follows from (1.2.1) that
ℓ(σ̃j) = ℓ(σ−1

j τ0) + ℓ(τ̃0).

Also, S ∩D(σ−1
j τ0) ≠ ∅ since σ−1

j τ0 ≠ e and Corollary 1.1.4 then implies S ∩D(σ−1
j τ0) ⊆

D(σ̃j) ∖ {s0}.

In light of Corollary 1.1.3, it follows that D(w) = {s0}, for all w ∈ E . Conversely,
let us show that

D(w) = {s0} ⇒ w ∈ E .

Indeed, if w ∉ E , it follows, in particular, that w ≠ ε̃(w) and, hence, ε0(w) ∈ W ∖ {e}.
This implies there exists i ∈ I1,n such that si ∈ D(w), reaching the desired contradiction.
Thus, we have shown

w ∈ E ⇔ D(w) = {s0}. (1.8.5)

Since W = ŴS,
E = ŴS.

In particular, (1.2.1) becomes

ℓ(uv) = ℓ(u) + ℓ(v) for all u ∈ W , v ∈ E (1.8.6)

and Proposition 1.2.1 says that, for all w ∈ Ŵ , there exist unique (u, v) ∈ W × E such
that w = uv. In fact, v is the shortest representative of Ww.

Note also that Lemma 1.8.3, together with (1.2.1), imply that, if σ = ε(w), then

ℓ(w) = d(w) + ∑
j∈I0,d(w)

ℓ(σj).
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Hence, in order to find a reduced expression for w, it suffices to describe reduced
expressions for all the components of σ.

On the other hand, (1.8.5) together with Corollary 1.6.11 implies the following.

Proposition 1.8.4. Let w ∈ Ŵ . The alcove Aw is contained in the fundamental chamber
if and only if w ∈ E .

This allows to recover, without using the theory of parabolic subgroups the
following fact.

Corollary 1.8.5. For all v ∈ Ŵ , there exist unique (w, u) ∈ W × E such that v = wu. In
particular, ℓ(wu) = ℓ(w) + ℓ(u), for all w ∈ W and u ∈ E .

Proof. After (1.8.3), it remains to prove uniqueness. Indeed, if v = wu with w ∈ W and
u ∈ E , we have

Av = wAu ⊆ wCe = Cw,

and we are done since W acts simply transitively on the set of chambers. For the last
statement, since wu = ε0(wu)ε̃0(wu), it follows from the first part that w = ε0(wu) and
u = ε̃0(wu). The conclusion follows since ℓ(ε0(v)) + ℓ(ε̃0(v)) = ℓ(v) for all v ∈ Ŵ , by
definition.
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Chapter 2

Affine Weyl group of type Ân

The aim of this chapter is to describe from different points of view the affine
Weyl group of type Ân, n ≥ 2. We begin with a realization as a permutation group
in Section 2.1 and then relate it with the respective alcove form of each element,
following (BJÖRNER; BRENTI, 1996) and (SHI, 1999). By seeing them as Coxeter
groups, following (STEMBRIDGE, 1997) and (AL HARBAT, 2021), we obtain special
W-factorizations of elements of maximal parabolic subgroups in Section 2.2. This
allows us to present, in Section 2.3, a characterization of the fll extracts of elements
of Ân, which can be codified in a special directed graph, which will be the subject
of Section 2.4. We conjecture that the expressions arising from this characterization
provide a minimal set of reduced expressions for the elements of Ân. In Section 2.5,
we prove that indeed it does for depth 2. Finally, in Section 2.6, we briefly describe the
connection of Ân with the affine Kac-Moody algebra ŝln+1, following (KAC, 1990).

Let Ŵ be an affine Weyl group of type Ân, n ≥ 2. Recall that, as a Coxeter group,
Ŵ has a set of generators Ŝ = {si ∶ i ∈ I0,n}, satisfying the relations

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

s2
i = e, for all i ∈ I0,n,

sisi+1si = si+1sisi+1, for all i ∈ I1,n,

sisj = sjsi, if j ≠ i − 1, i + 1,

(2.0.1)

while W is generated by S ∶= {s1, . . . , sn}.

2.1 Affine Symmetric Group
In this section we introduce the affine symmetric group Ŝn, which is an affine Weyl

group of type Ân−1, n ≥ 2. It has the same root system as the symmetric group Sn

regarded as a Weyl group of type An−1, and it contains a subgroup isomorphic to Sn.
Regarding Ŝn as an affine Weyl group leads us to describe alcove forms for its elements
and, hence, compare them with the expression of each element given by a permutation.
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The set Ŝn of permutations π of Z such that

π(x + n) = π(x) + n for all x ∈Z, (2.1.1)

and

∑
x∈I1,n

π(x) = (n + 1
2
), (2.1.2)

is a group under composition of functions. The elements of Ŝn are called affine permuta-
tions and Ŝn is called the affine symmetric group.

From (2.1.1), it follows that π is uniquely determined by its values on I1,n, writing
π(i) = nri + ki, ri ∈Z and ki ∈ I1,n, we can denote

π = (r1, . . . , rn ∣ π̄),

where π̄ ∈ Sn, π̄(i) = ki, and, by (2.1.2), ∑
i∈I1,n

ri = 0. In this case, (BJÖRNER; BRENTI,

1996, Section 3)

π−1 = (−r(π̄)−1(1), . . . ,−r(π̄)−1(n) ∣ (π̄)−1). (2.1.3)

The group Ŝn is generated by S ∶= {s0, s1, . . . , sn−1} where si ∶= (0, . . . , 0 ∣ (i i + 1))
for i ∈ I1,n−1 and s0 ∶= (−1, 0, . . . , 0, 1 ∣ (1 n)). It is clear that the subgroup generated by
{s1, . . . , sn} is isomorphic to Sn.

Let us describe an action of Ŝn on V = Rn. Recall the action of Sn on V which
permutes the subscripts of the standard basis {ε1, . . . , εn} presented in Example 1.3.2.
That is, for each 1 ≤ i ≤ n, si acts on V as the reflection in the direction determined by
αi = εi − εi+1, which fixes the origin. Make the affine permutation s0 act on V as the
affine reflection in the direction determined by α0 = ε1 − εn, which sends 0 to α0. Since
Ŝn is the group generated by affine reflections associated with the Weyl group Sn of
type An−1, it follows that Ŝn is an affine Weyl group of type Ân−1.

For x ∈R, let ⌊x⌋ denote the largest integer less than or equal to x. The next theo-
rems give us formulae to the transition between the alcove form and the permutation
form of an element of Ŝn.

Theorem 2.1.1. (SHI, 1999, Theorem 1.4) For 1 ≤ i < j ≤ n and π ∈ Ŝn, we have

k(π, αi + . . . + αj−1) = ⌊
π−1(j) −π−1(i)

n
⌋ .

Theorem 2.1.2. (SHI, 1999, Theorem 5.2) Let π ∈ Ŝn and t ∈ I1,n. Then

π−1(t) = t + ∑
j∈I1,t−1

k(π, αj + . . . + αt−1) − ∑
j∈It+1,n

k(π, αt + . . . + αj−1).
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2.2 W-factorizations
In this section, we describe W-factorizations, for special chains W. This charac-

terization will be helpful in the description of the fll extracts of elements of Ŵ in the
next section.

Given 1 ≤ i ≤ j ≤ n, set

si,j =
Ð→
∏

i≤k≤j
sk and sj,i =

←Ð
∏

i≤k≤j
sk

Since each simple reflection appears exactly once in the definition of si,j, we have

ℓ(si,j) = ∣i − j∣ + 1 for all 1 ≤ i, j ≤ n.

Consider the chain W of inclusions of maximal proper parabolic subgroups obtained
by letting Wi = ⟨s1, . . . , si⟩. It is not difficult to check that Wi = {e} ∪ {si,j ∶ 1 ≤ j ≤ i}.
Therefore, the W-factorization of a given element is characterized by a family (ik, jk) ∈
I × I, jk ≤ ik, 1 ≤ k ≤ m such that ik+1 > ik for k < m where 0 ≤ m ≤ n is the number of
nontrivial components of the factorization:

w =
Ð→
∏

1≤k≤m
sik,jk .

Moreover, since there are exactly (n + 1)! such sequences, all of them arise from W-
factorizations. We shall refer to sik,jk as the k-th nontrivial W-component of w. Note
the k-th nontrivial component of si,j, i ≤ j, is si+k−1 = si+k−1,i+k−1, 1 ≤ k ≤ j − i + 1. In other
words, the number of nontrivial components is equal to the length. On the other hand,
if i ≥ j, si,j has a unique nontrivial component.

The elements

aj ∶= s1,j, bj ∶= sn,j and cj,k ∶= ajbk

will be of special relevance to us. For convenience, we set a0 = e = bn+1. Note the above
discussion implies cj,k has j+1− δk,n+1 nontrivial components and ℓ(cj,k) = ℓ(aj)+ ℓ(bk) =
n + j − k + 1. Consider also the reflections

Ð→
ti = ai−1sia−1

i−1, 1 ≤ i ≤ n,
←Ð
ti = bi+1sib−1

i+1, 1 ≤ i ≤ n, (2.2.1)

and ti,j = ai
←Ð
tj a−1

i , 0 ≤ j < n, 1 ≤ i ≤ n.

Note
Ð→
ti = ai−1si,1 and

←Ð
ti = bi+1si,n, and, it will become clear in Lemma 2.3.2(v) that

Ð→
ti = ai−1si,1 = si,2ai

←Ð
ti = bi+1si,n = si,n−1bi. (2.2.2)

The above discussion gives us the W-factorization of
Ð→
ti . In particular,

ℓ(Ð→ti ) = 2ℓ(ai−1) + 1 = 2i − 1 and supp(Ð→ti ) = {1, 2, . . . , i} for all 1 ≤ i < n.
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Suppose W′ is another chain satisfying W′
n−1 = Wn−1 and W′

n−2 = ⟨si ∶ 1 < i < n⟩.
Then, W′

n−1 = {e} ∪ {s1,j ∶ 1 ≤ j < n}. Thus, the of W by W′
n−2 is {cj,k ∶ 0 ≤ j < n, 1 ≤ k ≤

n + 1}. Hence, every element of W has a unique factorization of the form

ucj,k for some u ∈ ⟨si ∶ 1 < i < n⟩, 0 ≤ j < n, 1 ≤ k ≤ n + 1 (2.2.3)

and, moreover ℓ(w) = ℓ(u) + ℓ(cj,k) for all such u, j, k (cf. (AL HARBAT, 2021, Lemma
2.3)).

Consider a sequence (s̃i)i∈I1,n , where either s̃i = si+j, 0 ≤ j ≤ n and ī ≅n+1 j̄, s̃i =
sn−j−i+1, 0 ≤ j ≤ n and ī ≅n+1 n − j + 1, for i ∈ I1,n. The subgroup ⟨s̃1, . . . , s̃n⟩ of Ŵ is
isomorphic to W . Thus, if W is the chain of inclusions of maximal proper parabolic
subgroups obtained by letting Wi = ⟨s̃1, . . . , s̃i⟩, the previous argument also ensures

ℓ(s̃1 . . . s̃i . . . s̃1) = 2i − 1 for all 1 ≤ i ≤ n.

In particular,

ℓ(←Ðti ) = 2ℓ(bi+1) + 1 = 2(n − i) − 1 and supp(←Ðti ) = {i, i + 1, . . . , n} for all 1 ≤ i ≤ n.

The W-factorization of the reflections tj,i, 0 ≤ j < n, 1 ≤ i ≤ n will be given in the Section
2.4.

2.3 Left and Right Sequences
As we have seen in Section 1.8, an element of an affine Weyl group Ŵ admits a

unique fll extract. By (1.8.3), up to a reflection in W , the action of Ŵ on V is described
by the action of E on V. As we have observed in (1.8.1), not every element of W may
appear as a distinguished component of an fll extract of an element of E . Our goal in
this section is to characterize such elements by presenting a unique special reduced
expression for each one of them. Moreover, we show that there is a correspondence
between those reduced expressions and certain pairs of monotonous finite sequences
with non-negative integer entries.

Given w ∈ W , with ℓ(w) = l > 0 set

R(w) = {(i1, . . . , il) ∈ I l ∣ w = si1si2 . . . sil}

and
pn(w) =max{k ∣ ∃ (i1, . . . , il) ∈ R(w), ik = n, ij ≠ n for j < k}.

We set pn(w) = ∞ if either w = e or ℓ(w) > 0 and w has a reduced expression with no
occurrence of sn. We shall say a reduced expression for w is n-deferred if

ij ≠ n for j < pn(w). (2.3.1)
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Proposition 2.3.1. If w is a distinguished component of an fll extract, then an n-deferred
reduced expression for w is of the form cj,k for some choice of 0 ≤ j < n and 1 ≤ k ≤ n+ 1.

Proof. If ℓ(w) = 0, then w = e = a0. For ℓ(w) > 0, let si1 . . . sil be a reduced expression for
w and note i1 ∈ {1, n}. Indeed, let σ be an extract having w as a component, let w′ be the
component preceding w, and suppose i1 ∉ {1, n}. Then, w′s0w = w′si1s0si2 . . . sil and, by
definition of fll extract, we must have ℓ(w′si1) < ℓ(w

′). Note we also have ℓ(si2 . . . sil) =
ℓ(w)−1. An argument similar to that leading to (1.8.4) yields a contradiction. By (2.2.3),
w = ucj,k for a unique choice of j, k and u ∈ ⟨si ∶ 1 < i < n⟩. Thus, if u ≠ e, w would
have a reduced decomposition with i1 ∉ {1, n}, yielding a contradiction. Thus, u = e,
completing the proof of the proposition.

Let σ be the fll extract of w ∈ Ŵ . The above proposition says that, for each
1 ≤ i ≤ d ∶= d(w), there exist 0 ≤ ji < n and 1 ≤ ki ≤ n + 1 such that σi = aji bki

. We refer to
the sequences (j1, . . . , jd) and (k1, . . . , kd) as the left and right sequences associated with
w, respectively. We now investigate the behavior of these sequences. For this, denote
sn+1 ∶= s0.

Lemma 2.3.2. The following hold

(i) s0ajs0 = s1s0aj, for 1 ≤ j ≤ n − 1,

(ii) s0bks0 = sns0bk, for 2 ≤ k ≤ n,

(iii) ajs0aj = s0

Ð→
∏

1≤l≤j
slsl−1, for 1 ≤ j ≤ n − 1,

(iv) bks0bk = s0

←Ð
∏

k≤l≤n
slsl+1, for 2 ≤ k ≤ n,

(v) sj,ksk−1,j = sk,j+1sj,k, for 1 ≤ j < k ≤ n,

(vi) s2
j,k = sj+1,ksj,k−1, for 1 ≤ j < k ≤ n,

(vii) cj,k =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

bkaj, if (j, k) = (0, 1) or 0 ≤ j < k − 1 ≤ n − 1

bk+1aj+1, if 1 ≤ k ≤ j + 1 ≤ n + 1.

Proof. Part (i) for j = 1 holds by (2.0.1). Otherwise, if 2 ≤ j ≤ n − 1, then

s0ajs0 = s0a1(s2,js0) = (s0s1s0)s2,j = s1s0aj.

Part (ii) follows from (2.0.1) if k = n. Supposing 2 ≤ k ≤ n − 1, we have

s0bks0 = s0bn(sn−1,ks0) = (s0sns0)sn−1,k = sns0bk.
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Let us proceed by induction on 1 ≤ j ≤ n − 1 to prove part (iii). Since (2.0.1), the
result is clear for j = 1. Otherwise, assuming 1 < j < n − 1 and applying the induction
hypothesis, we conclude that

aj+1s0aj+1 = aj(sj+1)s0aj−1sjsj+1 = ajs0aj−1(sj+1sjsj+1) = (aj)s0(aj−1sj)sj+1sj = (ajs0aj)sj+1sj

=
⎛
⎝

s0

Ð→
∏

1≤l≤j
slsl−1

⎞
⎠
(sj+1sj) = s0

Ð→
∏

1≤l≤j+1
slsl−1.

To prove part (iv), let us proceed by induction on p = n − k, 0 ≤ p ≤ n − 2. If p = 0,
then k = n and the result follows from (2.0.1). If not, assuming that 0 < p < n − 2, then
k = n − p and it follows from the induction hypothesis that

bn−(p+1)s0bn−(p+1) = bn−p(sn−p−1)s0bn−p+1sn−psn−p−1 = bn−ps0bn−p+1(sn−p−1sn−psn−p−1)
= bn−ps0(bn−p+1sn−p)sn−p−1sn−p = (bn−ps0bn−p)sn−p−1sn−p

=
⎛
⎝

s0

←Ð
∏

n−p≤l≤n
slsl+1

⎞
⎠
(sn−p−1sn−p) = s0

←Ð
∏

n−(p+1)≤l≤n
slsl+1.

Let 1 ≤ j ≤ n − 1. In order to prove part (v), we shall proceed by induction on
p = k − j, 1 ≤ p ≤ n − 1, once more. If p = 1, then k = j + 1, following that

sj,j+1sj,j = sjsj+1sj = sj+1sjsj+1 = sj+1,jsj+1,j+1.

Otherwise, supposing 1 < p < n−1, then k = j+ p and applying the induction hypothesis
we obtain

sj,j+p+1sj+p,j = sj,j+p−1(sj+psj+p+1sj+p)sj+p−1,j = (sj,j+p−1sj+p+1)sj+p(sj+p+1sj+p−1,j)
= sj+p+1sj,j+p−1(sj+psj+p−1,j)sj+p+1 = sj+p+1(sj,j+p−1sj+p,j)sj+p+1

= (sj+p+1sj+p,j+1)(sj,j+psj+p+1) = sj+p+1,j+1sj,k+p+1.

For part (vi), 1 ≤ j ≤ n − 1, we similarly proceed by induction on p = k − j,
1 ≤ p ≤ n − 1. If p = 1, then k = j + 1 and

sj,j+1sj,j+1 = sjsj+1sjsj+1 = sj+1sjsj+1sj+1 = sj+1sj = sj+1,j+1sj,j.

In the case 1 < p < n − 1, then k = j + p and the induction hypothesis implies

sj,j+p+1sj,j+p+1 = sj,j+1sjsj+2,j+p+1sj+1,j+p+1 = sj+1sjsj+1sj+2,j+p+1sj+1,j+p+1

= sj+1,jsj+1,j+p+1sj+1,j+p+1 = sj+1,jsj+1,j+p+1sj+1,j+p+1 = sj+1,jsj+2,j+p+1sj+1,j+p

= sj+1,j+p+1sj,j+p.

Finally, to prove part (vii), notice that it is immediate that if either (j, k) = (0, 1) or
0 ≤ j < k − 1 ≤ n − 1, then cj,k = bkaj. If 2 ≤ k = j + 1 ≤ n, then

cj,j+1 = (ajbj+2)sj+1 = bj+2(ajsj+1) = bj+2aj+1.
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Suppose then 1 ≤ k ≤ j ≤ n − 1. Thus, by part (v),

cj,k = ak−1(sk,jbj+2)sj+1,k = ak−1bj+2(sk,jsj+1,k) = ak−1(bj+2sj+1,k+1)sk,j+1 = (ak−1bk+1)sk,j+1

= bk+1(ak−1sk,j+1) = bk+1aj+1.

The next proposition reveals a monotonous behavior of left and right sequences.
Note the condition ji < ki − 1 is equivalent to saying that the set of simple reflections
appearing in a decomposition of the distinguished component cji,ki

, given by Corollary
1.1.6(ii), is not the whole set S.

Proposition 2.3.3. Let (j1, . . . , jd) and (k1, . . . , kd) be the left and the right sequences
associated with w, respectively. Then (j1, . . . , jd) is non-increasing and (k1, . . . , kd) is
non-decreasing. Moreover, if

i < d(w) and ji < ki − 1 ⇒ ji > ji+1 (2.3.2)

and
1 < i and ji < ki − 1 ⇒ ki−1 < ki. (2.3.3)

Proof. If d ∈ {0, 1}, then the monotonicity of the left and the right sequences associated
with v is trivial. Thus, we shall consider d > 1 and let vi = cji,ki

, for 1 ≤ i ≤ d.

We begin by noting that

(ji, ki) ∈ U ∶= {(j, k) ∣ 1 ≤ j ≤ n − 1, 1 ≤ k ≤ n} ∪ {(0, 1)} for all 1 ≤ i < d. (2.3.4)

Indeed, since vi ≠ e, (ji, ki) ≠ (0, n + 1). If it could be ki = n + 1 and ji > 0, Lemma 2.3.2(i)
would imply

s0vis0vi+1 = (s0aji s0)vi+1 = s1s0aji vi+1,

yielding a contradiction with Lemma 1.8.3. Similarly, if it could be ji = 0 and ki ∉
{1, n + 1}, Lemma 2.3.2(ii) would imply

s0vis0vi+1 = (s0bki
s0)vi+1 = sns0bki

vi+1,

yielding a contradiction with Lemma 1.8.3 once more.

Let us show the left sequence is non-increasing. Thus, fix 1 ≤ i < d and assume
we could have ji+1 > ji. We will use Lemma 2.3.2 to reach a contradiction with Lemma
1.8.3 as before. Indeed, if ji = 0, we have ki = 1 by (2.3.4) and the assumption ji+1 > ji
implies aji+1 = s1s2,ji+1 . It would then follow from Lemma 2.3.2(ii) that

s0vis0vi+1 = s0b1s0aji+1bki+1
= s0b2s1s0s1s2,ji+1bki+1

= s0b2s0s1s0s2,ji+1bki+1

= sns0b2s1s0s2,ji+1bki+1
.



Chapter 2. Affine Weyl group of type Ân 49

If ji > 0, by Lemma 2.3.2(vii), we must have

cji,ki
= braq, for (q, r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(ji, ki), if 1 ≤ ji < ki − 1 ≤ n − 1

(ji + 1, ki + 1), if 1 ≤ ki ≤ ji + 1 ≤ n
.

The assumption of ji+1 > ji implies q ≤ ji + 1 ≤ ji+1 and consequently aji+1 = aqsq+1,ji+1 .
Hence, from (iii) and (ii) of Lemma 2.3.2, we would have

s0vis0vi+1 = s0(aji bki
)s0aji+1bki+1

= s0braqs0(aji+1)bki+1
= s0br(aqs0aq)sq+1,ji+1bki+1

= (s0brs0)
⎛
⎝
Ð→
∏

1≤l≤q
slsl−1

⎞
⎠

sq+1,ji+1bki+1
= sns0br

⎛
⎝
Ð→
∏

1≤l≤q
slsl−1

⎞
⎠

sq+1,ji+1bki+1
.

Moreover, if i < d0(v) and ji < ki − 1, let us check that ji ≠ ji+1. Indeed, from Lemma
2.3.2(vii), it follows that bki

aji = aji bki
. If we could have ji = ji+1, then (iii) and (ii) of

Lemma 2.3.2 would imply that

s0vis0vi+1 = s0(aji bki
)s0aji bki+1

= s0bki
(aji s0aji)bki+1

= (s0bki
s0)s1s0s2s1 . . . sji sji−1bki+1

= sns0bki
s1s0s2s1 . . . sji sji−1bki+1

,

yielding another contradiction with Lemma 1.8.3.

Now we show the right sequence is non-decreasing. Evidently, there is nothing to
do if ki = 1. Thus, assume ki > 1. By (2.3.4), we must have ji < n. From Lemma 2.3.2(vii)
it follows that

cji+1,ki+1
= braq, for (q, r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(ji+1, ki+1), if 1 ≤ ji+1 < ki+1 − 2 ≤ n − 1

(ji+1 + 1, ki+1 + 1), if 1 ≤ ki+1 ≤ ji+1 + 1 ≤ n
.

If we could have ki+1 < ki, it would imply that r ≤ ki+1 + 1 ≤ ki and hence br = bki
ski−1,r.

Then, using (iv) and (i) of Lemma 2.3.2, we would have that

s0vis0vi+1 = s0aji bki
s0(aji+1bki+1

) = s0aji bki
s0(br)aq = s0aji(bki

s0bki
)ski−1,raq

= (s0aji s0)
⎛
⎝
←Ð
∏

ki≤l≤n
slsl+1

⎞
⎠

ski−1,raq = s1s0aji (
←Ð
∏

k≤l≤n
slsl+1) ski−1,raq,

yielding again contradiction with Lemma 1.8.3. Finally, if i ≤ d0(v) and ji < ki − 1, by
Lemma 2.3.2(vii), cji,ki

= bki
aji . If we could have ki−1 = ki, then, from (iv) and (i) of

Lemma 2.3.2, it would follow that

s0vi−1s0vi = s0aji−1bki
s0(aji bki

) = s0aji−1(bki
s0bki
)aji

= (s0aji−1s0)sns0sn−1sn . . . ski
ski+1aji = s1s0aji−1sns0sn−1sn . . . ski

ski+1aji ,

yielding a contradiction with Lemma 1.8.3 once more.
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2.4 Extract Graphs
Let V = {(j, k) ∈Z2 ∶ 0 ≤ j < n, 1 ≤ k ≤ n+1} equipped with the partial order defined

by (j′, k′) ≤ (j, k) if and only if the following conditions hold

(i) j′ ≤ j and k′ ≥ k;

(ii) j′ < j if j < k − 1;

(iii) k′ > k if j′ < k′ − 1.

Let also G be the directed graph having vertex set V and arrows v Ð→ v′ with v > v′, for
which there is no v′′ ∈ V satisfying v < v′′ < v′. We refer to G as the left-long Ân-extract
graph or, for short, the extract graph of type Ân. We say (j, k) is a restricted vertex if
j < k − 1. We refer to v = (j, k) as a terminal vertex if v is a minimal element of V . In
other words, by (ii) and (iii), v is terminal if and only k = n + 1 or j = 0 and k ≠ 1 (cf.
Proposition 2.4.6 below). Finally, letM be the set of functions µ ∶ V → Z≥0 satisfying
the following properties

(i) The support of µ is a totally ordered subset of V ;

(ii) µ(v) ≤ 1 if v is a restricted vertex.

Given v = (j, k) ∈ V , set wv = s0cj,k and, given µ ∈ M, set

wµ =
Ð→
∏

v∈supp(µ)
wµ(v)

v .

Proposition 2.3.3 implies
E ⊆ {wµ ∶ µ ∈ M}. (2.4.1)

Conjecture 2.4.1. The equality holds in (2.4.1).

Example 2.4.2. The extract graph of type Â2 is

(1, 1)

(1, 2) (0, 1)

(1, 3) (0, 2)

(0, 3)
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and the bottom three vertices are the restricted ones. Note

w(1,1) = wo, w(1,2) = s1s2, w(0,1) = s2s1, w(1,3) = s1, w(0,2) = s2, w(0,3) = e.

Thus, in this case, V →W , v ↦ wv, is a bijection. Given {i, j} = I1,2, x, y ∈Z≥0, set

wx,y
i = (s0wo)x(s0sisj)y. (2.4.2)

The element wx,y
i is the one associated with the function µ satisfying µ(1, 1) = x, µ(ī, ī +

1) = y where ī ∈ {0, 1}, ī ≅2 i, and µ(v) = 0 for the other vertices. It follows that

E ⊆ {wx,y
i u ∶ i ∈ I1,2, u ∈ {e, s0, s0si}, x, y ∈Z≥0}. (2.4.3)

Example 2.4.3. In general, the natural map V →W is only injective, since #V = n(n+1) <
#W = (n + 1)!. For instance, the extract graph of type Â3 is

(2, 1)

(2, 2) (1, 1)

(2, 3) (1, 2) (0, 1)

(2, 4) (1, 3) (0, 2)

(1, 4) (0, 3)

(0, 4)

and the restricted vertices are the ones in the bottom three rows.

Given µ ∈ M, let d = ∑
v∈V

µ(v) and let σµ ∈ Wd be the element obtained by ordering

the family
(s0wµ(v)

v )v∈V

according to the order of supp(µ). Here, the exponent µ(v) means the element appears
that many times in the family. Let also ε(µ) =∈ W ×Wd.

Conjecture 2.4.4. For all ε(wµ) = ε(µ).

In particular, d(wµ) = ∑
v∈V

µ(v) and ℓ(wµ) = ∑
v∈V

µ(v)ℓ(wv) and Conjecture 2.4.1

follows.
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In light of (2.4.1), the description of the elements of E is deeply related to the
study of oriented paths in extract graphs. If, moreover, Conjecture 2.4.1 is true, such
study leads to a description of a minimal set of expressions for the elements of Ŵ .
Furthermore, if Conjecture 2.4.4 holds, then extract graphs also describe fll extracts.
With this in mind, we end this section with a first step in the direction of studying the
combinatorics of extract graphs by classifying the adjacent vertices.

Remark 2.4.5. Apparently, Conjecture 2.4.4 has been proved as the main result of the
preprint (AL HARBAT, 2021). Our original strategy for proving this conjecture was
based on the computation alcove forms and permutation forms. This strategy is carried
out for n = 2 in Chapter 3. So far we have not found an efficient way of performing
the same computations for rank higher than 2. The strategy of (AL HARBAT, 2021)
is different, exploring strongly several consequences of the Exchange Property. After
becoming aware of the existence of (AL HARBAT, 2021) at the end of January 2022, we
have tried to understand this strategy. This gave rise to Section 2.5, where we present a
proof of Conjecture 2.4.4 for all n but only for µ of depth at most 2, i.e., ∑

v∈V
µ(v) ≤ 2.

As of this moment, we have not understood the extra details to complete the proof for
higher depth. We are actively working on it.

We point out some further differences between the present work and (AL HAR-
BAT, 2021). First, (AL HARBAT, 2021) deals only with type Â and does not consider the
notion of fll extract for other types, although the author claims they will be addressed
in forthcoming publications. The main result of (AL HARBAT, 2021) gives an explicit
reduced expression for all elements of Ŵ , termed canonical and, in the process of
proving they are indeed reduced expressions, deduces several properties of such ex-
pressions which amount to the properties of what we would call fully right (instead of
left) long extracts. By putting these properties in the conceptual forefront of the study,
we are able to prove existence and uniqueness of fll extracts for all types, remaining
to address the task of characterizing explicit expression for their components. In type
A, this initiates with the concept of Left and Right sequences or, equivalently, Extract
Graphs, and is completed once Conjecture 2.4.4 is proved.

If σ is the fll extract of w, the element corresponding to σ̃0 is called the affine
block of w in (AL HARBAT, 2021) while the set corresponding to E is denoted by
Bn there. A few other interesting questions which we have not considered here are
answered in (AL HARBAT, 2021). The connection with alcoves and, hence, Proposition
1.8.4, is not considered in (AL HARBAT, 2021). As far as we know, the notion of extract
graph has not been considered in the literature, but here.

We now initiate the study of combinatorics of Extract Graphs. In order to char-
acterize the incoming and outgoing arrows of a fixed vertex, it will be convenient to
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introduce some terminology. For v = (j, k), let l(v) ∶= j − k. If l(v) = −1, we will refer to
v as a critical vertex. If v is neither a restricted nor a critical vertex, it will be referred to
as a free vertex. Notice that v is a free if and only if l(v) ≥ 0. Similarly, v is a restricted
vertex if and only if l(v) ≤ −2. Denote by

a(v) = {v′ ∈ V ∶ v Ð→ v′ is an arrow in G}.

Proposition 2.4.6. Let v = (j, k) ∈ V .

(i) If v is free, then a(v) = {(j − 1, k), (j, k + 1)} ∩ V .

(ii) If v is critical, then

a(v) = ({(j − 1, k + p) ∶ p ∈ I1,n+1−k} ∪ {(j − q, k) ∶ q ∈ I1,j}) ∩ V .

(iii) If v is restricted, then

a(v) = ({(j − 1, k + p) ∶ p ∈ I1,n+1−k} ∪ {(j − q, k + 1) ∶ q ∈ I2,j}) ∩ V .

In particular, v is terminal if and only k = n + 1 or j = 0 and k ≠ 1.

Proof. Let v′ = (j′, k′) ∈ V . Suppose v is free. In this case, l(v) ≥ 0 and, if (j − 1, k), (j, k +
1) ∈ V , they are minimal non-comparable free vertices and, hence, belong to a(v).
Notice that if v′ is either free or critical, then v′ < v if and only if v′ ≠ v, j′ ≤ j, and k ≤ k′.
In the case j′ = j, then k′ > k + 1 and v′ ≤ (j, k + 1) < v. Otherwise, j′ ≤ j − 1 and k′ ≥ k,
following that v′ ≤ (j − 1, k) < v. Similarly, if v′ is restricted, then v′ < v if and only if
j′ < j and k′ ≥ k, implying that v′ ≤ (j − 1, k) < v. Therefore, part (i) holds.

For part (ii), assume v is critical. In particular, every element in a(v) is restricted.
In this case, v′ < v if and only if j′ < j and k′ ≥ k. Write j′ = j − 1 − q and k′ = k + p, for
some p ∈ I0,n+1−k and q ∈ I0,j−1. If k′ = k+ p, for some p ∈ I1,n+1−k, then v′ ≤ (j−1, k+ p) < v.
Otherwise, if k′ = k, we have j′ = j − q, for some q ∈ I1,j. Since (j − 1, k + p), p ∈ I1,n+1−k,
are all restrict, these elements are all non-comparable with each other. Similarly, the
elements (j − q, k), q ∈ I1,j, are all non-comparable with each other. Since j − 1 > j − q and
k + p > k, (j − 1, k + p) and (j − 1, k) are also non-comparable for p ∈ I1,n+1−k, q ∈ I1,j. Thus,
part (ii) holds.

Finally, if v is restricted, then v′ < v if and only if j′ < j and k′ > k. One can do an
an analysis similar to the one in the previous case and check part (iii).

2.5 Proof of Conjecture 2.4.4 for Depth Two
Let N be the set of all functions from V to Z≥0 and define a partial order on N by

ν ≤ µ ⇔ ν(v) ≤ µ(v) for all v ∈ V .
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In particular,
ν ≤ µ ⇒ supp(ν) ⊆ supp(µ). (2.5.1)

Let us denote by 0 the function µ ∈ N such that µ(v) = 0 for all v ∈ V . One easily checks
that

µ ∈ M and ν ≤ µ ⇒ ν ∈ M.

We shall use the notation

(wm1
1 , . . . , wmk

k ), where k ∈Z≥0, mj ∈Z≥0, 1 ≤ j ≤ k,

for an element of Wm, m =
k
∑
j=1

mj, whose m1 first components are equal to w1, and so

on. For instance, given µ ∈ N , suppose

supp(µ) = {v1, . . . , vk} and vj < vj+1 for all 1 ≤ j < k,

and define
ε(µ) = (e, (s0wv1)µ(v1) , . . . , (s0wvk)µ(vk)).

Note this definition coincides with the one given just prior to 2.4.4. By Lemma 1.8.3
and (1.8.6), we have

D(wν) = {s0} for all 0 ≠ ν ≤ µ ⇒ ε(µ) = ε(wµ).

In light of (2.5.1), in order to prove Conjecture 2.4.4, it then suffices to show

D(wµ) = {s0} for all µ ∈ M∖{0} (2.5.2)

or, equivalently,
s ∉ D(wµ) for all µ ∈ M, s ∈ S. (2.5.3)

Let d = ∑
v∈V

µ(v) and write ε(µ) = (e, σ1, . . . , σd). Given 0 ≤ r ≤ d, let µr ∈ M

correspond to (e, σ1, . . . , σr). In particular,

µd = µ and µr < µ for all r < d.

Let us simplify notation and set wr = wµr .

Lemma 2.5.1 (cf. (AL HARBAT, 2021, Lemma 2.9)). Conjecture 2.4.4 holds if d = 1.

Proof. We have wµ = s0cj,k where (j, k) is the unique element in supp(µ). There is
nothing to do if (j, k) = (0, n + 1) since wµ = s0 in that case. Otherwise, if (2.5.3) failed,
Corollary 1.1.2 would imply that there exists s ∈ S such that

either s = s0ai−1sia−1
i−1s0 with 1 ≤ i ≤ j

or s = s0cj,i+1sic−1
j,i+1s0 with k ≤ i ≤ n.
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Using (2.2.1), let us rewrite this as

s0ss0 ∈ {ti , tj,i′ ∶ 1 ≤ i ≤ j , k ≤ i′ ≤ n}.

It follows that s0ss0 ∈ W and, hence, must be equal to s. Therefore, s ∉ {s1, sn}. However,
s = ti implies s = si and i = 1, whereas s = tj,i′ implies s = si and i = n, yielding a
contradiction in both cases.

Corollary 2.5.2. Let 1 ≤ j ≤ n − 1, 2 ≤ k ≤ n and consider the elements

s1sns0sns1, s0
Ð→
tj s0, s0

←Ð
tk s0, b1s0b−1

1 , and
←Ð
tn s0
←Ð
tn .

The lengths of these elements are equal to the sum of the lengths of the factors in the
corresponding definitions.

Proof. Note

s1sns0sns1 = s1sns0a1bn, b1s0b−1
1 = b1s0an−1bn,

←Ð
tn s0
←Ð
tn =
←Ð
tn s0an−1b1

and, by (2.2.2),

s0
Ð→
tj s0 = a−1

j s0aj, and s0
←Ð
tk s0 = b−1

k s0bk.

By Lemma 2.5.1, the right side of each expression is the fll extract of the corresponding
element. Hence, the corollary follows.

Now we turn to the proof of the case d = 2. Let σ1 = cj,k, σ2 = cj′,k′ . If (2.5.3) failed,
Corollary 1.1.2 would imply that there exists s ∈ S, 1 ≤ i ≤ j′, k′ ≤ i′ ≤ n, such that

s ∈ {w1s0w−1
1 , w1s0tis0w−1

1 , w1s0tj,i′s0w−1
1 }. (2.5.4)

Recall (2.2.1) and, given v = (j, k) ∈ V , set tv = tj,k. In particular, tv = e if v = (0, n+1)
and, otherwise, tv =

←Ð
tk if j = 0 and tv =

Ð→
tj if k = n + 1.

Lemma 2.5.3. Let v = (j, k) ∈ V , k ≤ n. If v is not critical, there exists k̃ > k such that
tv =
←Ð
tk̃ . If v is critical, then tv =

←Ð
t1 .

Proof. Suppose v is not critical. If v is restricted, then cj,k = bkaj, following that aj
←Ð
tk =←Ð

tk aj and, hence,
tj,k = aj

←Ð
tk a−1

j =
←Ð
tk .

Otherwise, if v is free, then k − 1 < (j + 1) − 1 and, by (2.2.2) and Lemma 2.3.2(vi),

tj,k = aj
←Ð
tk a−1

j = ajsk,n−1bka−1
j = ak−1s2

k,j
←Ð
tj+1s2

j,ka−1
k−1 = ak−1sk+1,jsk,j−1

←Ð
tj+1sj−1,ksj,k+1a−1

k−1

= sk+1,jak−1
←Ð
tj+1a−1

k−1sj,k+1 = sk+1,j
←Ð
tj+1sj,k+1 =

←ÐÐ
tk+1.
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If v is critical, then, by (2.2.2),

tj,k = aj
←Ð
tj+1a−1

j = ajsj+1,n−1bj+1a−1
j =
←Ð
t1 .

In light of (2.5.3), the next lemma ends the proof.

Lemma 2.5.4. Let v, v′ ∈ V , say v = (j, k) and v′ = (j′, k′), be such that v < v′. Then, for
s ∈ S, we have

s0cj,ks0ts0c−1
j,ks0 /∈ S for t ∈ {s0,

Ð→
tj′ , tj′,k′}.

Proof. Since v is not terminal, we have k > n + 1 and j > 0 if k > 1. Denote

t0 = s0cj,ks0c−1
j,ks0, ta = s0cj,ks0

Ð→
tj′ s0c−1

j,ks0, and tb = s0cj,ks0tj′,k′s0c−1
j,ks0.

These are the elements we need to show are not in S according to the options for t.

Let us first prove that t0 /∈ S. Suppose j < n − 1 and k > 1. In particular, since k > 1,
j > 0. Note

t0 = s0s1(s2⋯sj)sn(sn−1⋯sk)s0(sk⋯sn−1)sn(sj⋯s2)s1s0

= s0s1sns0sns1s0 = s0s1s0sns0s1s0 = s1s0s1sns1s0s1 = s1s0sns0s1 = s1sns0sns1.

Corollary 2.5.2 then implies t0 ∉ S. In the case k = 1, if j = 0 then t0 = s0b1s0b−1
1 s0, and if

0 < j < n − 1 we also have

t0 = s0ajb1s0b−1
1 a−1

j s0 = s0b2aj+1s0a−1
j+1b−1

2 s0 = s0b2s1s2,j+1s0sj+1,2s1b−1
2 s0 = s0b1s0b−1

1 s0,

whereas for j = n − 1 and k > 1, we get

t0 = s0an−1snsn−1,ks0sk,n−1sna−1
n−1s0 = s0b−1

1 s0b1s0.

Since s0b1s0b−1
1 s0 = (s0b−1

1 s0b1s0)−1, if one these elements is not in S, neither is the
other. If we had s0b1s0b−1

1 s0 = si ∈ S, it would follow that b1s0b−1
1 = s0sis0, yielding a

contradiction with Corollary 2.5.2. Finally, if j = n − 1 and k = 1, then

t0 = s0an−1b1s0b−1
1 a−1

n−1 = s0
Ð→
tn s0
Ð→
tn s0,

contradicting Corollary 2.5.2.

Now we prove ta /∈ S. Since j′ < n

ta = s0cj,ka−1
j′ s0aj′c−1

j,ks0. (2.5.5)
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Also note

aqa−1
q′ = aq′+1a−1

q′ sq′+2,q =
ÐÐ→
tq′+1sq′+2,q

(2.2.2)= a−1
q′+1s2,q (2.5.6)

when 0 < q′ < q ≤ n − 1 n − 1 ≥ q > q′ > 0, and

ajb−1
k =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b−1
k aj, if j + 1 < k,

b−1
1 , if j + 1 = k,

b−1
k+1aj−1, if j + 1 > k.

(2.5.7)

Indeed, the first two equalities are immediate and the last follows from observing that
j − 1 ≥ k and then

ajb−1
k a−1

j−1bk+1 = aj(aj−1bk)−1bk+1aj(bk+1aj)−1bk+1 = e.

If j′ + 1 < k, then j < n − 1, k > 1, j′ + 1 < k′ and then we must have j′ < j, following that

ta
(2.5.7)= s0aja−1

j′ bks0b−1
k aj′a−1

j s0 = s0aja−1
j′ sns0snaj′a−1

j s0
(2.5.6)= s0a−1

j′+1s2,jsns0snsj,2aj′+1s0

= s0a−1
j′+1sns0snaj′+1s0 = s0sna−1

j′+1s0aj′+1sns0
(2.5.5)= s0sns0

ÐÐ→
tj′+1s0sns0

= sns0sn
ÐÐ→
tj′+1sns0sn = sns0

ÐÐ→
tj′+1s0sn.

The assumption sns0
ÐÐ→
tj′+1s0sn = si ∈ S would imply s0

ÐÐ→
tj′+1s0 = snsisn ∈ W , contradicting

Corollary 2.5.2, so ta /∈ S. In the case j′ + 1 = k, we get

ta = s0ajbka−1
k−1s0ak−1b−1

k a−1
j s0

(2.5.7)= s0ajb1s0b−1
1 a−1

j s0 = s0b1s2,j+1s0sj+1,2b−1
1 s0

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

s0b1s0b−1
1 s0, if j′ < n − 1,

s0
Ð→
tn s0
Ð→
tn s0, if j′ = n − 1,

which we have already proved do not belong to S. Otherwise, if j′ ≥ k, we get

ta
(2.5.7)= s0aja−1

j′−1bk+1s0b−1
k+1aj′−1a−1

j s0 = s0aja−1
j′−1sns0snaj′−1a−1

j s0
(2.5.6)= s0a−1

j′ s2,jsns0snsj,2aj′s0

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

s0a−1
j′ sns0snaj′s0, if j < n − 1,

s0a−1
j′ b−1

2 s0b2aj′s0, if j = n − 1
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sns0
Ð→
tj′ s0sn, if j < n − 1,

s0b−1
1 s0b1s0, if j = n − 1, j′ = 1,

s0b−1
1 s0
ÐÐ→
tj′−1s0b1s0, if j = n − 1, j′ > 1,

where the last expression follows from (2.5.5). We have already checked that the first
two expressions are not in S, so it remains to verify s0b−1

1 s0
ÐÐ→
tj′−1s0b1s0 /∈ S. Indeed, if we

had s0b−1
1 s0
ÐÐ→
tj′−1s0b1s0 = si ∈ S, it would imply

s0
ÐÐ→
tj′−1s0 = b1sib−1

1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b1sib−1
1 , if 1 < i < n,

b2s0b−1
2 , if i = 1,

b1s0sns0b−1
1 , if i = n,
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whereas Corollary 2.5.2 implies s0, s1 ∈ supp(s0
ÐÐ→
tj′−1s0) and sn /∈ supp(s0

ÐÐ→
tj′−1s0), yielding

a contradiction.

Finally, let us prove tb /∈ S. Note

brb−1
r′ = br′−1b−1

r′ sr′−2,r =
←ÐÐ
tr′−1sr′−2,r

(2.2.2)= b−1
r′−1sn−1,r (2.5.8)

for 1 ≤ r < r′ < n + 1. Suppose v′ is not critical. Then, by Lemma 2.5.3, there exists k̃ > k
for which tj′,k′ =

←Ð
tk̃ , such that

tb = s0cj,kb−1
k̃

s0bk̃c−1
j,ks0. (2.5.9)

If j + 1 < k̃, since 1 ≤ k < k̃ ≤ n, then j < n − 1, k̃ > 1, and

tb
(2.5.8)= s0ajb−1

k̃−1
sn−1,ks0sk,n−1bk̃−1a−1

j s0 = s0b−1
k̃−1

ajs0a−1
j bk̃−1s0

(2.5.9)= s0s1s0
←ÐÐ
tk̃−1s0s1s0

= s1s0
←ÐÐ
tk̃−1s0s1.

Similarly as for the previous case, one can use Corollary 2.5.2 to prove tb /∈ S. For
k̃ = j + 2, we have k ≤ k̃ − 1 = j + 1 and hence

tb = s0bk+1aj+1b−1
j+2s0bj+2a−1

j+1b−1
k+1s0

(2.5.7)= s0bk+1b−1
1 s0b1b−1

k+1s0
(2.5.8)= s0an−1bks0b−1

k a−1
n−1s0

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

s0b−1
1 s0b1s0, if k > 1

s0
Ð→
tn s0
Ð→
tn s0, if k = 1,

which we have already seen do not belong to S. Otherwise, if k̃ ≤ j+ 1, then k ≤ j+ 1 and

tb = s0bk+1aj+1b−1
k̃

s0bk̃a−1
j+1b−1

k+1s0
(2.5.7)= s0bk+1b−1

k̃+1
ajs0a−1

j bk̃+1b−1
k+1s0

(2.5.8)= s0b−1
k̃

sn−1,k+1s1s0s1sk+1,n−1bk̃s0 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

s0b−1
k̃

s1s0s1bk̃s0, if k > 1

s0b−1
k̃

a−1
n−1s0an−1bk̃s0, if k = 1

(2.5.9)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

s1s0
←Ð
tk̃ s0s1, if k > 1

s0b1s0b−1
1 s0, if k = 1, k̃ = n

s0b1s0
←ÐÐ
tk̃+1s0b−1

1 s0, if k = 1, k̃ < n.

The first two expressions we have already proved are not in S and analogously to the
respective case ta, one can check s0b1s0

←ÐÐ
tk̃+1s0b−1

1 s0 /∈ S using Corollary 2.5.2. It remains
to check tb /∈ S when v′ is critical. In this case, by Lemma 2.5.3, tj′,k′ =

←Ð
t1 , following that

tb = s0cj,ks0
←Ð
t1 s0c−1

j,ks0. (2.5.10)
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If k > 1,

bks0
←Ð
t1 s0b−1

k
(2.2.2)= sns0sn−1,kak−2sk−1,n−1snsn−1,k−1a−1

k−2sk,n−1s0sn

= sns0ak−2sn−1,ksk−1,n−1snsn−1,k−1sk,n−1a−1
k−2s0sn

= sns0ak−2sk−1,n−1sn,k−1snsk−1,nsn−1,k−1a−1
k−2s0sn

= sns0ak−2sk−1,n−2sn−1snsn−1snsn−1snsn−1sn−2,k−1a−1
k−2s0sn

= sns0ak−2sk−1,n−2sn−1sn−2,k−1a−1
k−2s0sn = sns0

ÐÐ→
tn−1s0sn

(2.5.5)= sna−1
n−1s0an−1sn = b1s0b−1

1 ,

where the third equality follows from Lemma 2.3.2(v), and, hence, if j < n − 1,

tb = s0ajb1s0b−1
1 a−1

j s0 = s0ajbj+2a−1
j+1s0aj+1b−1

j+2a−1
j s0 = s0bj+2aja−1

j+1s0aj+1a−1
j b−1

j+2s0

(2.2.2)= s0bj+2a−1
j+1a2,j+1s0sj+1,2aj+1b−1

j+2s0 = s0bj+2a−1
j+1s0aj+1b−1

j+2s0 = s0b1s0b−1
1 s0,

whereas if j = n − 1,

tb = s0an−1b1s0b−1
1 a−1

n−1s0
(2.2.2)= s0

Ð→
tn s0
Ð→
tn s0,

which are both expressions we have known cannot belong to S. In the case k = 1 and
j < n − 1, as for the case k > 1, one can shows aj+1s0

←Ð
t1 s0a−1

j+1 = b−1
1 s0b1 and, hence,

tb = s0ajb1s0
←Ð
t1 s0b−1

1 a−1
j s0 = s0b2aj+1s0

←Ð
t1 s0a−1

j+1b−1
2 = s0b2b−1

1 s0b1b−1
2 = s0

Ð→
tn s0
Ð→
tn s0,

which is not in S. Finally, it j = n − 1 and k = 1, we have

tb = s0an−1b1s0
←Ð
t1 s0b−1

1 a−1
n−1s0 = s0

Ð→
tn s0
←Ð
t1 s0
Ð→
tn s0 = s0

Ð→
tn s0
Ð→
tn s0
Ð→
tn s0.

The assumption s0
Ð→
tn s0
Ð→
tn s0
Ð→
tn s0 = si ∈ S would imply

Ð→
tn s0
Ð→
tn = s0sis0

Ð→
tn s0. If 1 < i < n it

would follow that
Ð→
tn s0
Ð→
tn = si

Ð→
tn s0, whereas if i = 1, it would imply

Ð→
tn s0
Ð→
tn = s1s0s1

Ð→
tn s0 = s1s0s2,n−1b1,

yielding a contradiction with Corollary 2.5.2 once more. Similarly, one can prove the
case i = n cannot occur, which ends the proof.

2.6 Representation of Affine Kac-Moody Algebras
Let g be a complex simple Lie algebra of type An, i.e., g ≅ sln+1. The affine Kac-

Moody algebra ĝ ≅ ŝln+1 associated with g is the Lie algebra ĝ = g⊗C[t, t−1] ⊕Cc⊕Cd
with

[x⊗ tr, y⊗ ts] = [x, y]⊗ tr+s+ rδr,−s(n+1)Tr(xy)c, [c, ĝ] = {0}, and [d, x⊗ tr] = rx⊗ tr
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for any x, y ∈ g and r, s ∈Z, where Tr(xy) denotes the trace of xy. The Lie algebra g can
be considered as a subalgebra of ĝ. Recall (1.4.1) and set ĥ = h⊕Cc⊕Cd. Then

ĝ = ĥ⊕⊕
α∈Φ

ĝα, where ĝα = {x ∈ ĝ ∶ [h, x] = α(h)x, for all h ∈ ĥ}.

Denote n̂+ = n+⊕(g⊗ tC[t]) (recall (1.4.2)) and b̂ = n̂+⊕ ĥ. Identify h∗ with the subspace
{λ ∈ ĥ∗ ∶ λ(c) = λ(d) = 0}. Let Λ0, δ ∈ ĥ∗ be defined by

Λ0(d) = 0 = Λ0(h), Λ0(c) = 1, δ(c) = 0 = δ(h), δ(d) = 1.

Also, set h0 = c − hα0 and
Λi = ωi +Λ0, for i ∈ I1,n.

Then, Λi(hj) = δi,j for all i, j ∈ I0,n, and{hi ∶ i ∈ I0,n} ∪ {d} is a basis of ĥ. Consider the
linear endomorphisms of ĥ∗ defined by

s0(λ) = λ − λ(h0)(δ − α0), si(λ) = λ − λ(hi)αi, i ∈ I1,n for all λ ∈ ĥ∗. (2.6.1)

The group Ŵ ∶=< s0, s1, . . . , sn > is an affine Weyl group of type Ân. The subgroup
W ∶=< s1, . . . , sn > is the Weyl group of g, which has type An. For convenience of
notation, set Λn+1 = Λ0. In this case, if ∆ ∶= {α1, . . . , αn}, then

αi = 2Λi −Λi−1 −Λi+1, i ∈ I1,n, and α0 = −2Λ0 +Λ1 +Λn.

Moreover,

s0(Λj) = Λj + δ0,j(α0 − δ), si(Λj) = Λj − δijαi, i ∈ I1,n, and si(δ) = δ, i ∈ I0,n. (2.6.2)

The orbit of an element Λ ∈ ĥ∗ by Ŵ is the set ŴΛ = {wΛ ∶ w ∈ Ŵ}. The affine
weight lattice is the set

P̂ = {λ ∈ ĥ∗ ∶ λ(hi) ∈Z for all i ∈ I0,n} =ZΛ0 ⊕ZΛ1 ⊕ . . .⊕ZΛn ⊕Cδ =ZΛ0 ⊕ P⊕Cδ,

where P is the weight lattice ofW . Given Λ ∈ ĥ∗, the number ℓ ∶= Λ(c) is called the level
of Λ. Since α(c) = 0 for every α ∈ Φ̂+, it follows that wΛ(c) = Λ(c) for all λ ∈ P̂, w ∈ Ŵ .
Hence, all elements of ŴΛ have the same level as Λ, for all Λ ∈ ĥ∗. It is well known
that #(ŴΛ ∩ P̂+) ≤ 1, for all Λ ∈ P̂. It will be useful do denote

P̂+ = {Λ ∈ P̂ ∶ ŴΛ ∩ P̂+ ≠ ∅}. (2.6.3)

If Λ ∈ P̂, there exist unique µ ∈ P and dΛ ∈ C such that

Λ = ℓΛ0 + µ + dΛδ.

Let π ∶ P̂ → P be given by π(Λj) = ωj, π(δ) = 0. In other words,

π(ℓΛ0 + µ + dΛδ) = µ.
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The affine dominant weight lattice is

P̂+ = {λ ∈ P̂ ∶ λ(hi) ≥ 0 for all i ∈ I0,n} =Z≥0Λ0 ⊕Z≥0Λ1 ⊕ . . .⊕Z≥0Λn ⊕Cδ.

Hence,

Λ = ℓΛ0 + ∑
i∈I1,n

miωi + dΛδ ∈ P̂+ ⇔ mi ≥ 0, i ∈ I1,n, and ℓ ≥ ∑
i∈I1,n

mi. (2.6.4)

Given Λ ∈ P̂+, let

Ŵ+Λ = {w ∈ Ŵ ∣ π(w(Λ)) ∈ P+} and ΓΛ = {wΛ ∣ w ∈ Ŵ+Λ}. (2.6.5)

Conjecture 2.6.1. If Λ ∈ P̂+, then E ⊆ Ŵ+Λ.

Let Λ ∈ P̂+. If the conjecture is true, then it implies

ΓΛ = EΛ. (2.6.6)

Indeed, let Λ = ℓΛ0 + λ + dΛδ, with ℓ ∈ Z≥0, dΛ ∈ C, λ ∈ P+. Given v ∈ Ŵ+Λ, write v = wu
for some w ∈ W and u ∈ E using (1.8.3). Since w ∈ W , then wΛ = ℓΛ0 + wλ + dΛδ,
following that π(wΛ) ∈ P+ if and only if w ∈ Wλ ∶= {w′ ∈ W ∶ w′λ = λ}. If the conjecture
holds, µ = π(uΛ) ∈ P+. It follows that π(vΛ) ∈ P+ if and only if w ∈ Wµ and, hence,
vΛ = uΛ. One of our goals for the next chapter is to prove Conjecture 2.6.1 and compute
ΓΛ when n = 2.
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Chapter 3

Affine Weyl group of type Â2

In this last chapter, we restrict to the case n = 2. We first compute the alcove forms
of the elements of E in Section 3.1 and, then, prove Conjecture 2.4.1. In Section 3.2,
we use the alcove form to compute the permutation form of the elements of E and
prove Conjecture 2.4.4. In Section 3.3, we prove Conjecture 2.6.1 and compute the sets
ΓΛ in (2.6.5). We end the work with some final remarks and an outline of how our
conclusions may help in the solution of problems related to multiplicities in Damazure
flags.

3.1 Alcoves of Type Â2

We now turn to the proof of Conjecture 2.4.1. Recall the elements defined in
(2.4.2). We need to show

wx,y
i u ∈ E for all x, y ∈Z≥0, i ∈ I1,2, u ∈ {e, s0, s0si}. (3.1.1)

In light of Corollary 1.6.3 and Proposition 1.8.4, it suffices to show

k(wx,y
i u, αq) ≥ 0 for all q, i ∈ I1,2, x, y ∈Z≥0, u ∈ {e, s0, s0si}, (3.1.2)

but for further use, we will compute k(wx,y
i u, αq) also when q = 0.

The remainder of the section is dedicated to computing the alcove form of the
elements wx,y

i u appearing in (3.1.2).

Lemma 3.1.1. Let u ∈ Ŵ , x, y ≥ 0, ϵ ∈ I0,1, {i, j} = I1,2, w = wx,2y+ϵ
i . Then

k(wu, αq) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(−1)ϵk(u, αi) + x, if q = i,

k(u, α(1−ϵ)j) + x + ϵ + 3y, if q = j,

k(u, αϵj) + 2(x + ϵ) + 3y, if q = 0.

.



Chapter 3. Affine Weyl group of type Â2 63

Proof. We begin by showing that

k(wx,0
i u, αq) = k(u, α) + (1+ δq,0)x, for all x ∈Z≥0. (3.1.3)

We proceed by induction on x, which clearly starts with x = 0. Moreover, (1.6.15) proves
the case x = 1. Thus, assume x > 1. Using the induction hypothesis, we get

k((s0wo)x+1u, αq) = k(s0wo(s0wo)xu, αq)
(1.6.15)= k((sowo)xu, αq) + 1+ δq,0

= k(wou, αq) + 1+ δq,0 + (1+ δq,0)x
= k(u, αq) + (1+ δq,0)x + 1+ δq,0,

from where (3.1.3) follows.

Next, we prove

k(w0,2y
i u, αq) = k(u, αq) + 3(1− δq,i)y for all y ∈Z≥0, (3.1.4)

which is clear for y = 0. Note

k(w0,2(y+1)
i u, αq) = k(s0sisj(s0sisj)2y+1u, αq)

(1.6.14)=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−k((s0sisj)2y+1u, αi), if q = i,

k((s0sisj)2y+1u, αr) + 1+ δq,0, if {q, r} = {0, j}.

If q = i, another application of (1.6.14) and the induction hypothesis immediately imply
(3.1.4). If q ≠ i, since we also have r ≠ q above, (1.6.14) implies

k((s0sisj)2y+1u, αr) = k((s0sisj)2yu, αq) + 1+ δr,0

and, therefore, since δr,0 + δq,0 = 1, we get

k(w0,2(y+1)
i u, αq) = k(w0,2y

i u, αq) + 3.

The induction hypothesis on r now implies (3.1.4). Applying (1.6.14) to (3.1.4), one
easily checks that k(w0,2y+1

i u, αi) = −k(u, αi) and k(w0,2y+1
i u, αq) = k(u, αr) + 1+ δr,0 + 3y,

for y ∈Z≥0, {q, r} = I1,2.

Therefore, letting w = wx,2y+ϵ
i , we get

k(wu, αq)
(3.1.3)= k(w0,2y+ϵ

i u, αq) + (1+ δq,0)x

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(−1)ϵk(u, αi), if q = i,

k(u, α(1−ϵ)j) + x + ϵ + 3y, if q = j,

k(u, αϵj) + 2(x + ϵ) + 3y, if q = 0,

from where the lemma follows.
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Claim (3.1.2) and, hence, (3.1.1), is immediate from the next proposition.

Proposition 3.1.2. Let {i, j} = I1,2, x, y ≥ 0, ϵ ∈ {0, 1}, and u ∈ {e, s0, s0si}. Let also ℓr(u)
be the number of appearances of sr in the expression for u, r ∈ {0, i}. Then

k(wx,2y+ϵ
i u, αq) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x, if q = i,

x + 3y + δϵ,1(ℓ0(u) + 1) + δϵ,0ℓi(u), if q = j,

2x + 3y + δϵ,1(ℓi(u) + 2) + δϵ,0ℓ0(u), if q = 0.

Proof. By (1.6.10) and (1.6.12), we have

k(s0, αq) = δq,0ℓ0(u) and k(s0si, αq) = δq,0ℓ0(u) + δq,jℓi(u).

This proves the proposition for x = y = ϵ = 0. Plugging this back on Lemma 3.1.1, we
are done.

Let us use Proposition 3.1.2 to show

ℓ(wx,y
i u) = 4x + 3y + ℓ(u) for all x, y ∈Z≥0, i ∈ I, u ∈ {e, s0, s0si}. (3.1.5)

One then easily sees that

∑
α∈Φ+
∣k(wx,2y+ϵ

i u, α)∣ = ∑
q∈I0,2

k(wx,2y+ϵ
i u, αq) = 4x + 3(2y + ϵ) + ℓ0(u) + ℓi(u),

which is the right-hand side of (3.1.5). By Proposition 1.6.10, this is also the left-hand
side.

In particular, {wx,y
i u ∶ i ∈ I1,n, x, y ∈Z≥0, u ∈ {e, s0s0si}} is a minimal set of reduced

expressions for the elements of Ŵ . It induces then a minimal set of representatives of
reduced paths for each P(Aw), w ∈ Ŵ .

3.2 Permutation Forms
Given x, y ∈Z≥0,{i, j} ∈ I1,2, u ∈ {e, s0, s0si}, let

σ
x,y
i,u =

⎛
⎜⎜⎜
⎝

wo, . . . , wo´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
x times

, sisj, . . . , sisj
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

y times

, sℓi(u)
i²

ℓ0(u) times

⎞
⎟⎟⎟
⎠

This is the element σµ defined in the paragraph preceding Conjecture 2.4.4, where
µ(1, 1) = x, µ(ī, ī + 1) = y with ī ∈ {0, 1}, ī ≅2 i, µ(v) = δwv,u if v is restricted vertex, and
µ(v) = 0 for the remaining vertices (cf. Example 2.4.2). Note σx,0

1,u = σx,0
2,u , for x ∈ Z≥0

u ∈ {e, s0}, since they do not depend on i. It follows from (3.1.5) that

σ
x,y
i,u ∈ Ed(w

x,y
i u), where d = x + y + ℓ0(u). (3.2.1)
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We have just seen that the fll extract of wx,y
i u is of the form σ

x′,y′
i′,u′ for some x′, y′ ∈

Z≥0, i′ ∈ I, u′ ∈ {e, s0, s0si′}. Denote wx,y
i,t = wx,2y

i ui,t, vx,y
i,t = (w

x,y
i,t )
−1, and

(ui,t)5t=0 = (e, s0, s0si, s0sisj, s0sisjs0, s0sisjs0si). (3.2.2)

Therefore, Conjecture 2.4.4 follows if we show that, for (y, t) /∈ {(0, 0), (0, 1)},

(x, y, i, t) ≠ (x′, y′, i′, t′) ⇒ wx,y
i,t ≠ wx′,y′

i′,t′ . (3.2.3)

This will be clear from the permutation forms of these elements which we compute in
the remainder of this section.

From Theorem 2.1.2, it follows that

vx,y
i,t (1) = 1− k(wi,t, α1) − k(wi,t, α0),

vx,y
i,t (2) = 2+ k(wi,t, α1) − k(wi,t, α2), and (3.2.4)

vx,y
i,t (3) = 3+ k(wi,t, α0) + k(wi,t, α2).

Rephrasing Proposition 3.1.2 gives us

k(wi,t, αi) = x,

k(wi,t, αj) = x + 3y + δt,2 + δt,3 + 2(δt,4 + δt,5), and (3.2.5)

k(wi,t, α0) = 2x + 3y + δt,1 + δt,2 + 2(δt,3 + δt,4) + 3δt,5.

Replacing (3.2.5) in (3.2.4) with i = 1, we get

vx,y
1,t (1) = −3(x + y) + δt,0 − δt,3 − δt,4 − 2δt,5,

vx,y
1,t (2) = −3y + 2(δt,0 + δt,1) + δt,2 + δt,3, and

vx,y
1,t (3) = 3(x + 2y + 1) + t.

Writing vx,y
1,t (s) = 3rs + ks, rs ∈Z, {k1, k2, k3} = I1,3, we obtain

(r1, r2, r3) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(−x − y,−y, x + 2y), if t = 0,

(−x − y − 1,−y, x + 2y + 1), if t ∈ I1,3,

(−x − y − 1,−y − 1, x + 2y + 2), if t ∈ I4,5,

and (v̄1,t)5i=0 = (e, (1 3), (1 3 2), (1 2), (1 2 3), (2 3)), where v̄i,t denotes the
underlying finite permutation corresponding to vx,y

i,t , which we see does not depend
on x and y. Hence, by (2.1.3),

wx,y
1,0 = (x + y, y,−x − 2y ∣ e), wx,y

1,1 = (−x − 2y − 1, y, x + y + 1 ∣ wo),

wx,y
1,2 = (y,−x − 2y − 1, x + y + 1 ∣ s1s2), wx,y

1,3 = (y, x + y + 1,−x − 2y − 1 ∣ s1),
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wx,y
1,4 = (−x − 2y − 2, x + y + 1, y + 1 ∣ s2s1), wx,y

1,5 = (x + y + 1,−x − 2y − 2, y + 1 ∣ s2)

One can do similar computations with i = 2 to find

wx,y
2,0 = (x + 2y,−y,−x − y ∣ e), wx,y

2,1 = (−x − y − 1,−y, x + 2y + 1 ∣ wo),

wx,y
2,2 = (−x − y − 1, x + 2y + 1,−y ∣ s2s1), wx,y

2,3 = (x + 2y + 1,−x − y − 1,−y ∣ s2),

wx,y
2,4 = (−y − 1,−x − y − 1, x + 2y + 2 ∣ s1s2), wx,y

2,5 = (−y − 1, x + 2y + 2,−x − y − 1 ∣ s1).

Two distinct expressions wx,y
i,t and wx′,y′

i′,t′ can only express the same element if
the underlying finite permutations v̄i,t and v̄i′,t′ are the same. Equalities of the form
wx,y

i,t = wx′,y′
i,t , i ∈ I1,2, t ∈ I0,5, imply x = x′ and y = y′. Also, note wx,y

1,t = wx′,y′
2,t can only

occur if (y, t) /∈ {(0, 0), (0, 1)}, which is not the case to be considered. On the other hand,
comparisons of the respective permutations of type wx,y

1,t = wx′,y′
2,t′ , with {t, t′} = {2, 4}

or {t, t′} = {3, 5}, always lead to the absurd y = −1/2. Therefore, (3.2.3) and, hence,
Conjecture 2.4.4 follow.

3.3 Computation of ΓΛ

The aim of this section is to compute the set ΓΛ in (2.6.5). Using (2.6.2), one easily
checks that

s0(Λ0) = Λ0 +ω1 +ω2 − δ, s0(ωi) = −ωj + δ, s0(δ) = δ

si(Λ0) = Λ0 si(ωj) = ωj, si(ωi) = ωj −ωi, si(δ) = δ,
(3.3.1)

if {i, j} = I1,2. Also, α0 = ω1 +ω2. Recall (3.2.2).

Lemma 3.3.1. Let Λ = ℓΛ0 +m1ω1 +m2ω2 + dδ ∈ P̂, m0 ∶= m1 +m2, and {i, j} = I1,2. Then

(i) wx,2y
i Λ = Λ + xℓα0 + 3yℓωj − ((x + y)(m0 + 3yℓ) + x2ℓ + ymj)δ, for any x, y ≥ 0.

(ii) If k ∈ I1,3, then ui,kΛ = ℓΛ0+(ℓ−mpk)ωi +(ℓ+(−1)δpk ,j mqk)ωj+(d− ℓ+(−1)δpk ,i mrk)δ,
with (pk)k∈I1,3 = (j, 0, i), (qk)k∈I1,3 = (i, i, 0), (rk)k∈I1,3 = (0, j, j).

(iii) If k ∈ I4,5, then ui,kΛ = ℓΛ0 +mpk ωi + (3ℓ −mqk)ωj + (d − 3ℓ +mqk + (−1)δpk ,0mrk)δ,
with (pk)k∈I4,5 = (j, 0), (qk)k∈I4,5 = (0, j), (rk)k∈I4,5 = (i, i).

Proof. To prove part (i), we first proceed by induction on x to show

(s0wo)xΛ = Λ + xℓα0 − x(m0 + xℓ)δ (3.3.2)

which clearly starts with x = 0. Since woΛ = ℓΛ0 −m2ω1 −m1ω2 + dδ, it follows from
(3.3.1) that

s0woΛ = Λ + ℓα0 − (m0 + ℓ)δ. (3.3.3)
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Therefore, by the induction hypothesis, we have

(s0wo)xΛ = (s0wo)(s0wo)k−1Λ = (s0wo) (Λ + (x − 1)ℓα0 − (x − 1)(m0 + (x − 1)ℓ)δ)
(3.3.3)= Λ + (x − 1)ℓα0 − (x − 1)(m0 + (x − 1)ℓ)δ + (ℓα0 − (m0 + 2(x − 1)ℓ + ℓ)δ)
= Λ + xℓα0 − (x(m0) + ℓ((x − 1)2 + 2x − 1))δ = Λ + xℓα0 − x(m0 + xℓ)δ,

proving (3.3.2). Now we proceed by induction once again to prove

(s0sisj)2yΛ = Λ + 3yℓωj − y(mi + 2mj + 3yℓ)δ, (3.3.4)

for y ≥ 0. The case y = 0 is immediate. Since (3.3.1) implies

siΛ = ℓΛ0 −miωi +m0ωj + dδ, (3.3.5)

it follows from (3.3.3) that

s0sisjΛ = s0wosiΛ = ℓΛ0 + (ℓ −mi)ωi + (ℓ +m0)ωj + (d − ℓ −mj)δ. (3.3.6)

Iterating once more we get

(s0sisj)2Λ = ℓΛ0 +miωi + (3ℓ +mj)ωj + (d − 3ℓ −mi − 2mj)δ, (3.3.7)

which proves (3.3.4) with y = 1. A simple inductive argument proves (3.3.4). Therefore,
applying (3.3.2) to (3.3.4), we have (i).

To prove part (ii), note (3.3.1) implies

ui,1Λ = ℓΛ0 + (ℓ −m2)ω1 + (ℓ −m1)ω2 − (ℓ −m0 − d)δ, (3.3.8)

while applying (3.3.5) to (3.3.8) gives us

ui,2Λ = ℓΛ0 + (ℓ −m0)ωi + (ℓ +mi)ωj − (ℓ −mj − d)δ. (3.3.9)

Thus, by (3.3.8), (3.3.9), and (3.3.6), it follows (ii).

Finally, to prove (iii), first apply (3.3.6) to (3.3.8) and obtain

ui,4 = ℓΛ0 +mjωi + (3ℓ −m0) + (d − 3ℓ +m0 +mi)δ,

then apply (3.3.6) once again to (3.3.9) and get

ui,5 = ℓΛ0 +m0ωi + (3ℓ −mj)ωj + (d − 3ℓ +mj −mi)δ.

The following proposition answers Conjecture 2.6.1 in rank 2.

Proposition 3.3.2. If Λ ∈ P̂+, then E ⊆ Ŵ+Λ. Moreover, ΓΛ = EΛ.
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Proof. Using the notation of Lemma 3.3.1, Λ ∈ P̂+ if and only if ℓ, m1, m2 ∈ Z≥0 and
ℓ ≥ m1 +m2. Fix i ∈ I1,2 and let u ∈ {ui,k ∶ k ∈ I0,5}. Parts (ii) and (iii) of Lemma 3.3.1 imply
π(uΛ) ∈ P+. On the other hand, if w is as in part (i) of the lemma and µ ∈ P̂ satisfies
π(µ) ∈ P+, then π(wµ) ∈ P+. In particular, this is true for µ = uΛ. In light of (2.4.3), this
completes the proof of the first claim. The second affirmation follows from (2.6.6).

Finally, we present the computation of ΓΛ.

Proposition 3.3.3. Let Λ = ℓΛ0 +m1ω1 +m2ω2 + dδ ∈ P̂+. Denote m0 ∶= m1 +m2 and
δ̄k,l ∶= 1− δk,l, k, l ∈Z≥0. Then λ ∈ ΓΛ if and only if

λ = ℓ fi(x, y) +mpωi + (3ℓδ̄p,i + (−1)δ̄p,i mq)ωj + gp,q(Λ, x, y)δ, (3.3.10)

or

λ = ℓ fi(x, y) + (ℓ −mp)ωi + (ℓ + (−1)δp,j mq)ωj + hp,q(Λ, x, y)δ, (3.3.11)

for some x, y ∈Z≥0, {i, j} = I1,2, and {p, q, r} = I0,2, where

fi(x, y) = Λ0 + xωi + (x + 3y)ωj − (x2 + 3xy + 3y2)δ,

gp,q(Λ, x, y) = d − 3ℓδ̄p,i(x + 2y + 1) −mp(x + y) + (−1)δp,i mq(x + 2y + δ̄p,i) + (−1)δp,0 δ̄p,imr,

if (p, q, r) ∈ {(i, j, 0), (0, j, i), (j, 0, i)}, and

hp,q(Λ, x, y) = d − ℓ(2x + 3y + 1) +mp(x + y) + (−1)δ̄p,j mq(x + 2y) + (−1)δp,i mr

if (p, q, r) ∈ {(j, i, 0), (0, i, j), (i, 0, j)}.

Proof. By Proposition 3.3.2, λ ∈ ΓΛ if and only if there exists w = ww,2y
i ui,k such that

λ = wΛ, for some {i, j} = I1,2, x, y ≥ 0, and k ∈ I0,5. If k = 0, part (i) of Lemma 3.3.1
ensures λ is as in (3.3.10), whereas applying (i) to (iii) of the lemma gives (3.3.10) for
k ∈ I4,5. Otherwise, if k ∈ I1,3, applying part (i) of the lemma to (ii) results (3.3.11).

3.4 Final Remarks and Further Steps
In this last section, we first describe briefly how our results and approaches relate

with multiplicities in Damazare flags. Then, we point out some further steps and
discuss some challenges in increasing the rank and changing the type of the group.

Given Λ ∈ P̂+, we fix and denote by V(Λ) an integrable irreducible ĝ-module
of highest weight Λ. For θ ∈ P̂+ (recall (2.6.3)), the Demazure module D(θ) is the b̂-
submodule of V(Λ) generated by V(Λ)θ, where Λ is the unique element of Ŵθ ∩ P̂+

and V(Λ)µ denotes the weight space

V(Λ)µ = {v ∈ V(Λ) ∶ hv = µ(h)v for all h ∈ }̂, for all µ ∈ ĥ∗.
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It turns out that D(θ) is a g-submodule of V(Λ) and, hence, also a g[t]-submodule, if,
and only if, π(θ) ∈ −P+ or, equivalently,

θ = wowΛ for some w ∈ Ŵ+Λ.

As reviewed in (JAKELIĆ; MOURA, 2018, Section 2.3), we have

V(Λ) = ⋃
w∈Ŵ+Λ

D(wowΛ). (3.4.1)

Set
Γ−Λ = woΓΛ, Λ ∈ P̂+ and Γ = ⋃

Λ∈P̂+
Γ−Λ ⊆ P̂+.

A g[t]-module V admits a Demazure flag if there exist l > 0, λj ∈ S, j = 1, . . . , l, and a
sequence of inclusions

0 = V0 ⊂ V1 ⊂ ⋯ ⊂ Vl−1 ⊂ Vl = V with Vj/Vj−1 ≅ D(λj) ∀ 1 ≤ j ≤ l. (3.4.2)

If λj(c) = ℓ for some ℓ and all j, such a sequence is said to be a level-ℓ Demazure flag for
V. Let V be a Demazure flag of V as in (3.4.2) and, for a Demazure module D, define
the multiplicity of D in V by

[V ∶ D] = #{1 ≤ j ≤ l ∶ Vj/Vj−1 ≅ D}.

As observed in (CHARI et al., 2014, Lemma 2.1), the multiplicity does not depend on
the choice of the flag and, hence, by abuse of language, we shift the notation from
[V ∶ D] to [V ∶ D].

Given a ĝ-module V such that

V ≅ ⊕
θ∈P̂+

V(θ)⊕mθ for some mθ ∈Z≥0,

we set
[V ∶ V(θ)] = mθ.

The following is the main result of (JAKELIĆ; MOURA, 2018).

Theorem 3.4.1. Suppose g is simply laced and let V = V(Λ0) ⊗V(Λ) for some Λ ∈ P̂+.
Then,

[V ∶ V(θ)] = ∑
Ψ∈Γ−

θ

max
Υ∈Γ−Λ

[D(Υ) ∶ D(Ψ)] for all θ ∈ P̂+, θ(c) = Λ(c) + 1.

In the particular case that g = sl2 and Λ(c) = 1, the right-hand side of the
above formula was expressed in terms of partitions with bounded parts in (JAKELIĆ;
MOURA, 2018, Proposition 2.6.3). One important ingredient for doing this was the
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explicit description of the sets Ŵ+Λ for Λ ∈ P̂+ such that Λ(c) ≤ 2. Thus, the computations
of Section 3.3 provide the necessary generalization for type Â2. The other relevant
ingredient was the results of (CHARI et al., 2014) relating multiplicities in level-2
flags for level-1 Demazure modules to Gaussian binomials. For type Â2, a similar
description is given in (WAND, 2015, Theorem 16), which may be helpful to extend
the formulae involving partitions. The results of (WAND, 2015) were deeply expanded
in (BISWAL et al., 2021).

The extracts graphs of type Ân provide families of formulae for all elements
of an affine Weyl group Ŵ of type Ân. Thus, it is possible in theory to compute ΓΛ

for higher ranks, although quite impractical at the moment. Therefore, in our next
steps, we intend to look for properties of extract graphs which might lead to some less
explicit computations which still contains sufficient information in order to to reach
nice formulae as in (JAKELIĆ; MOURA, 2018, Proposition 2.6.3).

Although the inclusion (2.4.1) gives a smaller set of expressions when compared
with the whole set of expressions for elements of Ŵ , beyond type Â2, the methods
we have used so far did not lead us to a proof that this is a minimal set. Apparently,
(AL HARBAT, 2021) have proved this minimality for a slightly different set, but,
unfortunately, we came across (AL HARBAT, 2021) too close to the deadline for
submitting this dissertation and, hence, we did not have time to study it properly in
order to include it here. This study is certainly one of the first things we will do in the
next steps of our project. In particular, although (AL HARBAT, 2021) is focused on type
Â only, we expect it should provide further intuition to generalize these constructions
for other types.

Throughout this work we have intended to bring as many approaches for the
problem as we could. The identifications with permutation forms, alcove forms, and
alcove paths made possible to establish an equivalence of working with certain fll
extracts, left and right sequences, elements corresponding to alcoves in the fundamental
chamber, and reduced paths contained in the fundamental chamber. The connections
as stated in this work have not lead to solutions for higher ranks and different types
yet, but point towards certain approaches which might be worth exploring.
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. Tensor product decomposition of ŝl(n)-modules and identities. Contemporary
Mathematics, v. 627, p. 131–144, 2014. Cited on page 10.

NAOI, K. Weyl modules, Demazure modules and finite crystals for non-simply laced
type. Advances in Mathematics, v. 229, n. 2, p. 875–934, 2012. Cited on page 10.

OKADO, M.; SCHILLING, A.; SHIMOZONO, M. A tensor product theorem related to
perfect crystals. Journal of Algebra, v. 267, p. 212–245, 2003. Cited on page 10.

PARKINSON, J.; RAM, A. Alcove walks, buildings, symmetric functions and
representations. arXiv:0807.3602, 2008. Cited on page 12.

RAM, A. Alcove walks, Hecke algebras, spherical functions and column strict tableaux.
Pure and Applied Mathematics Quarterly, v. 2, n. 4, p. 135–183, 2006. Cited on page 12.

SCHWER, C. Galleries, Hall-Littlewood polynomials and structure constants of the
spherical Hecke algebra. International Mathematics Research Notices, v. 2006, n. 75935,
2006. Cited on page 12.

SHI, J. The Kazhdan-Lusztig cells in certain affine Weyl groups. Berlin: Springer, 1980.
(Lecture Notes in Mathematics). Cited 2 times on pages 11 and 31.

. Alcoves corresponding to an affine Weyl group. Journal of the London
Mathematical Society, v. 2-35, n. 1, p. 42–55, 1987. Cited 6 times on pages 11, 15, 27, 30,
31, and 33.

. On two presentations of the affine Weyl groups of classical types. Journal of
Algebra, v. 221, n. 1, p. 360–383, 1999. Cited 7 times on pages 11, 15, 27, 30, 31, 42,
and 43.

STEMBRIDGE, J. Some combinatorial aspects of reduced words in finite Coxeter
groups. Transactions of the American Mathematical Society, v. 349, n. 4, p. 1285–1332, 1997.
Cited 3 times on pages 15, 19, and 42.

WAND, J. O. Demazure Flags of Local Weyl Modules. Ph.D. Dissertation — University of
California Riverside, 2015. Cited on page 70.


	Primeira folha
	Folha de rosto
	Ficha catalográfica
	Agradecimentos
	Resumo
	Abstract
	Contents
	Introduction
	Weyl groups
	Coxeter Groups
	Parabolic Coxeter Subgroups
	Finite Weyl Groups
	Connections with Lie Algebras
	Affine Weyl Groups
	Alcoves
	Alcove Paths
	Left-long Extracts of Affine Weyl Groups

	Affine Weyl group of type n
	Affine Symmetric Group
	W-factorizations
	Left and Right Sequences
	Extract Graphs
	Proof of Conjecture 2.4.4 for Depth Two
	Representation of Affine Kac-Moody Algebras

	Affine Weyl group of type 2
	Alcoves of Type 2
	Permutation Forms
	Computation of 
	Final Remarks and Further Steps

	Bibliography

