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Resumo
Uma das hipóteses mais comuns na Teoria dos Sistemas Dinâmicos Não Suaves consiste
na regularidade da variedade de descontinuidade, caso no qual existe a bem definida e
estabelecida dinâmica de Filippov. Entretanto, apesar da presença em muitos modelos
relevantes, sistemas com variedade de descontinuidade singular carecem de uma dinâmica
igualmente bem estabelecida. Neste trabalho, apresentamos uma metodologia que, através
de blow-ups e perturbação singular, permite a extensão da dinâmica de Filippov para
o caso singular. Mais especificamente, focamos em sistemas em R2 e R3 cuja variedade
de descontinuidade consiste em uma variedade algébrica com auto-interseção transversal,
em formato de cruz. Em R2, estudamos a realização e estabilidade estrutural de uma
configuração conhecida como Sela Deslizante. Em R3, estudamos a dinâmica e estabilidade
estrutural da parte singular de uma configuração conhecida como Descontinuidade Dupla.
Em ambos os casos, focamos em sistemas dados por campos vetoriais afins.

Palavras-chave: Sistemas dinâmicos. Sistemas de Filippov. Perturbação singular (Mate-
mática). Estabilidade estrutural.



Abstract
One of the most common hypotheses on the Theory of Non-Smooth Dynamical Systems is
a regular surface as switching manifold, at which case there is at least the well-defined
and established Filippov dynamics. However, although present in many relevant models,
systems with singular switching manifolds still lack such well-established dynamics. At this
work, we present a framework that, through blow-ups and singular perturbation, allows
the extension of Filippov dynamics to the singular case. More specifically, we focus on
systems in R2 and R3 whose switching manifold consists of an algebraic manifold with
transversal, cross-like, self-intersection. In R2, we study the realization and structural
stability of a configuration known as Sliding Saddle. In R3, we study the dynamics and
structural stability of the singular part of a configuration known as Double Discontinuity.
In both cases, we focus on systems given by affine vector fields.

Keywords: Dynamical systems. Filippov systems. Singular perturbations (Mathematics).
Structural stability.
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Introduction

A dynamical system is a mathematical rule governing the time evolution of
the points in a given geometrical space. Having its origins in Newtonian Mechanics, we
might think of the Theory of Dynamical Systems as a mathematical generalization of it.
Permeating practically all areas of science through the creation of models with temporal
evolution, the Theory of Dynamical System is one of the most active and important areas
of modern Mathematics.

Formally, a dynamical system consists of an action of a 1-parameter group of
maps into a set. The two more common ways this action presents itself consist of the
iteration of a diffeomorphism or the solutions of an ordinary differential equation. In both
cases, we might attribute the success and importance of the theory to the philosophy
employed in the study of these actions: prioritizing qualitative instead of quantitative
analysis. In particular, the holy grail of the theory is to prove the structural stability of
a given system which, roughly speaking, means that the dynamics of the system do not
change upon small perturbations of its parameters.

The Theory of Dynamical Systems given by ordinary differential equations

9x “ Fpxq, (1)

where F : Rn
Ñ Rn is at least a continuous vector field evolved naturally with the birth

of Calculus itself, with [2] and [32] being exceptional modern references on the subject.
In fact, the machinery provided by this theory has been used in the study of models all
around science: from classical Newtonian Mechanics to modern Machine Learning [55].

However, either naturally or due to simplifications and practicality, many of
these phenomena are better approached with non-smooth models, i.e., where the vector
field F above has discontinuities. More specifically, given U Ă Rn open, h : U Ñ R
continually differentiable having 0 as a regular value and two vector fields F˘ : U Ñ Rn

of class Ck
pUq with k ě 1, we understand as a Non-Smooth Dynamical System that given

by a differential equation as (1) where

Fpxq “

$

&

%

F`pxq, if x P Σ`,

F´pxq, if x P Σ´,
(2)

with Σ` “ tx P U ; hpxq ě 0u and Σ´ “ tx P U ; hpxq ď 0u intersecting at a regular
surface Σ called switching manifold. We denote the set of vector fields F defined as
above by
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Rk
pUq ” Ck

pU,Rn
q ˆ Ck

pU,Rn
q

which we consider equipped with the Whitney topology. Generally, we write F “ pF`,F´q
to denote the elements of this set. These systems arise frequently, for instance, in the
study of mechanical systems with impact or friction [6, 27, 33,56], electronic circuits with
switches [4, 5, 12,52], biological and climate models with abrupt changes [3, 10,34,41,42],
economics and politics [1, 51, 53], etc. Hence, not only due to its applications, but also its
mathematical beauty, the theory of Non-Smooth Dynamical System is a very active field,
attracting and mobilizing scientists from all around the world.

In this endeavor, the establishment of definitions is one of the main challenges.
The definition of solution for a non-smooth system, for instance, is not always clear.
Nevertheless, in this context, one of the greatest contributions came from Filippov in [22],
which introduced a convention to define such solutions in such a way that, apparently, is
both geometrically beautiful and consistent with the physical world1. More specifically,
for points x P UzΣ, the usual local dynamics of the fields F˘ is considered. On the other
hand, roughly speaking, for points x P Σ and considering the Lie derivative F˘hpxq :“
∇hpxq ¨ F˘pxq, the switching manifold Σ splits into three regions:

• Crossing Region: Σcr
“ tx P Σ; F`hpxqF´hpxq ą 0u. In this case, any trajectory

which meets Σcr cross Σ through concatenation.

• Sliding Region: Σsl
“ tx P Σ; F`hpxq ą 0, F´hpxq ă 0u. In this case, any trajec-

tory which meets Σsl remains tangent to Σ for positive time.

• Escaping Region: Σes
“ tx P Σ; F`hpxq ă 0, F´hpxq ą 0u. In this case, any

trajectory which meets Σes remains tangent to Σ for negative time.

Due to the continuity, all regions above are open sets separated by the so-
called tangency points x P Σ where F`hpxqF´hpxq “ 0 which, dynamically, acts as
singularities. Moreover, for points x P Σs :“ Σsl

Y Σes, the trajectory slides tangent to Σ
according to a well-defined sliding vector field Fs : Σs

Ñ TΣs given by

Fs
pxq “

F´hpxqF`pxq ´ F`hpxqF´pxq
F´hpxq ´ F`hpxq

, (3)

which consists of the single vector in the intersection ConvptF`pxq,F´pxquq X Σ, where
Convp¨q represents convex hull.
1 It is important to remark, however, that other conventions exist with equal beauty. Filippov’s convention

just happens to be the most accepted one nowadays. For instance, we cite here Carathéodory [47] and
Utkin [50] conventions. See also [23] for some historical aspects.
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Using the above construction, many advances have been achieved on this class of
systems concerning, for instance, its bifurcations [25], regularization [40, 46, 49], structural
stability [7, 24, 48] and uncountable works regarding minimal sets. However, as previously
observed, the theory established by Filippov’s convention has a fundamental hypothesis: a
regular surface as switching manifold between the smooth parts of the system, i.e., a surface
Σ “ h´1

pt0uq where 0 is a regular value of h. Many relevant phenomena, however, require
a model where Σ is, actually, the preimage of a singular value. Generally speaking, models
where two or more abrupt changes might occur. See, for instance, the “On or Off Genes”
section in [30, p. 28], where a model is presented for two genes interacting in an organic
cell of a living system in order to produce proteins. At that same reference, [30, p. 30],
the section “Jittery Investments” presents another interesting model for a game with two
players buying or selling stocks of a company.

In this context, an important class of Non-Smooth Dynamical Systems in R3

with singular switching manifold, known as Gutierrez-Sotomayor and described in [26], is
obtained when the regularity condition is broken in a dynamically stable manner. More
precisely, in order to avoid non-trivial recurrence on non-orientable manifolds, a restriction
to Σ is imposed so that its smooth parts are either orientable or diffeomorphic to an open
set of P2 (projective plane), K2 (Klein’s bottle) or G2

“ T2#P2 (torus with cross-cap).
After a proper coordinates normalization, this restriction leads to five algebraic manifolds,
with a regular configuration

R “
 

px, y, zq P R3; z “ 0
(

. (4)

known as regular discontinuity and four singular configurations given by

D “
 

px, y, zq P R3; xy “ 0
(

,

T “
 

px, y, zq P R3; xyz “ 0
(

,

C “
 

px, y, zq P R3; z2
´ x2

´ y2
“ 0

(

,

W “
 

px, y, zq P R3; zx2
´ y2

“ 0
(

,

(5)

and known as double, triple, cone and Whitney discontinuities, respectively. See
Figure 1.

For systems whose switching manifold is homeomorphic to (4), the Filippov
dynamics described above is fully applicable. In fact, these systems exactly corresponds
to those described at the beginning of this text. However, for systems whose switching
manifold is homeomorphic to one of the singular configurations (5), Filippov dynamics is
not directly applicable to the whole manifold Σ. More precisely, the switching manifold
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R

Dz

y

x

(a) R in blue, D in red and T “ RYD.

C

x

y

z

(b) C in red.

y

z

x

W

(c) W in red.

Figure 1 – Gutierrez-Sotomayor algebraic manifolds.

can be decomposed in the following disjoint union:

Σ “ ΣR Y ΣS (6)

where ΣR consists, locally, of regular discontinuities; and ΣS consists of points where
Σ self-intersects, difficulting direct application of the usual Filippov dynamics. In fact,
an attempt to directly generalize the Filippov convention to points in ΣS , leads to the
existence of up to infinite possible sliding fields, as proved at Lemma 2.4 of [28, p. 1087].
See Figure 2a.

In other words, the class of Non-Smooth Dynamical Systems F “ pFiq whose
switching manifold is homeomorphic to one of those at (5), in the sense of Gutierrez-
Sotomayor, represents the simplest singular systems. However, besides its many applications,
knowledge of its dynamics is scarce. In particular, over the last decade, three main
frameworks arose to study these systems. Not necessarily in chronological order, these
frameworks are briefly presented below.
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The first one, presented in [28] by Jeffrey, propose an extension of the Filippov
dynamics to ΣS through the so-called “canopy”, a convex-like ruled surface, built with the
convex hull ConvptFiuq, which can be proved to intersect Σ at a finite number of points,
see Figure 2b. Each one of these intersections represents a sliding vector and, therefore,
this methodology leads again to non-uniqueness of the sliding field. To deal with this lack
of uniqueness, the author there conjectures the so-called “dummy dynamics” acting over
the canopy. This idea led to many results such as, for instance, [29,31,54]. However, as
stated at [28, p. 1102], a justification for the dummy dynamics remains an open problem.

ΣS

(a) Hull.

ΣS

(b) Canopy.

Figure 2 – Convex hull and canopy.

The next one, presented in [13] by Dieci et al., although older than the previous
methodology, proposes a similar construction where, again, non-uniqueness of sliding
vectors happens. Here, however, the authors show that, imposing certain attractivity
hypothesis on the switching manifold Σ, many conclusions can be proved on the behavior
of the dynamics. In fact, this idea led to the sequence of works [14–20] where several aspects
of the dynamics are explored under different types of attractivity: from minimal sets to
structural stability. However, imposing conditions on Σ is a fundamental and restrictive
hypothesis here.

Finally, [8] by Buzzi et al., propose an extension of the Filippov dynamics to ΣS

through the application of a proper blow-up and use of Geometrical Singular Perturbation
Theory (see [21,49]), or GSP-Theory for short, to study the resulting slow-fast systems.
Although distant from a direct generalization of Filippov’s convention, this methodology
is also a natural approach with advantages over the previous ones. In fact, while the
non-uniqueness of the sliding field is also predicted, here it is managed naturally, as will be
seen over the text. Moreover, yet in comparison with the previous ones, due to the blow-up,
this methodology provides a broader view of the dynamics. Even more, no assumptions
neither on Σ or the underlying vector fields Fi are required here. However, both [8] and
the posterior works [35, 37, 40] lack a clear presentation and justification for the dynamics
induced over ΣS . Up to our knowledge, there are no works focused on the study of this



Introduction 19

dynamics for any class of fields Fi such as, for instance, linear ones. In fact, the main
focus of the above cited works above lies on the verification that, after the blow-up, the
resulting system contains only regular discontinuities.

Given the arguments above, for this text, we embrace and improve the blow-up
based methodology to study the dynamics associated with singular switching manifolds,
since it

1. does not depend on imposing conditions on Σ;

2. deals naturally with the non-uniqueness of sliding vectors; and

3. provide a broader view of the dynamics over ΣS .

F1

F3 F4

F2

Σx

(a) Dk
2

Σx

F1F2

F3 F4

(b) Dk
3

Figure 3 – Double discontinuity.

More specifically, we deal essentially with the Gutierrez-Sotomayor algebraic
manifold D, the double discontinuity, both an equivalent in R2 and the traditional in R3,
whose classes of vector fields are henceforth denoted Dk

2 and Dk
3 , respectively, see Figure 3.

Geometrically, these configurations represent transversal self-intersections of the switching
manifold. We focus on systems given by affine vector fields

Fipxq “ Aix ` bi,

where Ai and bi are real matrices for every i P t1, 2, 3, 4u respectively of sizes j ˆ j and
jˆ1, with j P t2, 3u representing the dimension and progressively increasing its complexity:
starting at the constant case (Ai “ 0), linear (bi “ 0) and then, finally, the complete
affine case. We denote these classes of constant, linear and affine vector fields, respectively,
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as Cj , Lj and Aj . This program assures a progressive and effective increase on the intuition
and understanding of the dynamics.

First, in R2, we deal with the class Dk
2 of piecewise vector fields having a

cross-like singular switching manifold which is just a slice of the Double Discontinuity,
see Figure 3a. In this context, inspired by the works of Dieci et al in [13–20], we study
the realization and structural stability of a particular configuration which we baptized as
Sliding Saddle, where saddle-like attractivity conditions as imposed on Σ. Regarding its
realization, we not only provide explicit conditions on the parameters for each one of the
classes of vector fields C2, L2 and A2, but also conjecture a relation between the sliding
saddles realized by Ll and A2 at Conjecture 3.1:

Conjecture 3.1. Given F “ pF1, ¨ ¨ ¨ ,F4q P L2, there exists translations T1, ¨ ¨ ¨ , T4 such
that F̃ “ pT1 ˝ F1, ¨ ¨ ¨ ,T4 ˝ F4q P A2 realize a sliding saddle if, and only if,

(a) F realizes a sliding saddle; and

(b) Ti does not create visible singularities in Fi.

Regarding structural stability, as we will see, Sotomayor-Teixeira regularization
plays a major role. In fact, we provide results establishing a relation between the structural
stability of the regularization and that of the sliding field of the piecewise vector field or,
in other words, a converse to the main result of [46]. More precisely, we state Theorem 3.1
below for the case R of regular Filippov systems and also provide Conjecture 3.2, which
has a similar statement, but regarding the case Dk

2 of planar double discontinuities.

Theorem 3.1. Let ϕ : R Ñ R be a monotonous transition function, N Ă Rk a subset
satisfying the (PH) hypothesis and F P N such that Fε is structurally stable in N ε. Then,
there exists an open neighborhood W Ă N of F such that

G P W ñ Gs
„ Fs,

i.e., Fs is structurally stable upon small perturbations of F in N .

Next, in R3, we deal with the class Dk
3 of piecewise vector fields having the

traditional2 Double Discontinuity as switching manifold, see Figure 3b. Here, we tackle the
main problem of defining a dynamics over ΣS , given by a straight line Σx. In particular,
we use the cylindrical blow-up suggested in [37] to induce a dynamics over Σx, with
GSP-Theory playing a major role. As a result, we obtain the Fundamental Lemma 4.1
stated below:
2 As presented in Figure 1a.
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Lemma 4.1 (Fundamental Dynamics). Given F P Dk
3 with components Fi “ pwi, pi, qiq,

let F̃ P D̃k
3 be the vector field induced by the blow-up

φ1px, θ, rq “ px, r cos θ, r sin θq.

Then, this blow-up associates the dynamics over Σx with the following dynamics over the
cylinder C “ Rˆ S1

“ S1 Y . . .Y S4: over each stripe Si acts a slow-fast dynamics whose
reduced dynamics is given by

#

9x “ wi

0 “ qi cos θ ´ pi sin θ
, (4.9)

with slow radial dynamics 9r “ pi cos θ ` qi sin θ; and layer dynamics given by

#

x1 “ 0
θ1 “ qi cos θ ´ pi sin θ

, (4.10)

with fast radial dynamics r1 “ 0. Finally, at every equation above the functions wi, pi and
qi must be calculated at the point φ1px, θ, 0q “ px, 0, 0q.

We note here that no blowing-down is ever carried out over this text, i.e., once
we have the blow-up induced (fundamental) dynamics above over the cylinder C, the
inverse operation is never performed to recover a dynamics over Σx with the original
coordinates. Actually, this operation would make little to no sense most of the times given
the higher codimension of Σx, i.e., most of the information on the dynamics would be
lost. For instance, under the so-called fundamental hypothesis (WFH) or (SFH), the
fundamental lemma assures not only the sequence of qualitative theorems bellow for the
general, non-linear case, but also most of the original results in this text and, hence, its
name.

Theorem 4.2. The radial dynamics can only be transversal ( 9r ‰ 0) to the cylinder C
over the slow manifold Mi. More over, under (WFH), it is in fact transversal.

Theorem 4.3. The slow manifold Mi is locally a graph px, θpxqq under (WFH). However,
if ‖pfiqθ‖ admits a global positive minimum, then Mi is globally a graph px, θpxqq. Either
way, θpxq is of class Ck.

Theorem 4.4. The slow manifold Mi is normally hyperbolic at every point that satisfies
(WFH).

Theorem 4.5. The hyperbolic singularities of the reduced system (4.9) acts as hyperbolic
saddle or node singularities of Si under (WFH).
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Then, using these fundamental dynamics, we focus on the constant (C3) and
affine (A3) cases, to fully describe the respective induced dynamics over the cylinder as
stated in Theorem 4.6 for the constant case and Theorem 4.7 below for the affine case.

Theorem 4.7 (Affine Dynamics). Given F P A3 with affine components Fi given by
(4.16) and such that γi ‰ 0, let F̃ P Ã3 be the vector field induced by the blow-up
φ1px, θ, rq “ px, r cos θ, r sin θq. Then, this blow-up associates the dynamics over Σx with
the following dynamics over the cylinder C “ Rˆ S1

“ S1 Y . . .Y S4: over each stripe Si
acts a slow-fast dynamics whose slow manifold is given by Mi “ Ai Y A

π
i , where Aπi is a

π-translation of Ai in θ and

1. case ai2 ‰ 0, then

Ai “ tpx, θq P r´8, αis ˆ r0, 2πs ; θ “ θipxq ` πuY

Y tpx, θq P rαi,`8s ˆ r0, 2πs ; θ “ θipxqu

with θipxq “ arctan
ˆ

ai3x` di3
ai2x` di2

˙

, which consists in an arctangent-like curve inside

the cylinder C with θ “ βi ` π and θ “ βi as negative and positive horizontal
asymptotes, respectively;

2. case ai2 “ 0, then

Ai “ tpx, θq P Rˆ r0, 2πs ; θ “ θipxqu

with θipxq “ arctan
ˆ

ai3x` di3
di2

˙

, which consists in an arctangent-like curve in-

side the cylinder C with θ “ σi´ and θ “ σi` as negative and positive horizontal
asymptotes, respectively.

Both arctangents are increasing if γi ą 0 and decreasing if γi ă 0. Over them act
the reduced dynamics 9x “ ai1x`di1 and, around them, acts the layer dynamics described in
Table 3, but exchanging ai2 with di2 if ai2 “ 0. Finally, the new parameters above are given

by αi “ ´
di2
ai2

, βi “ arctan
ˆ

ai3
ai2

˙

, γi “ ai3di2 ´ di3ai2, δi “ ´
di1
ai1

and σi˘ “ ˘ sgn pγiq
π

2 .

Finally, combining this fine-grained control of the dynamics with the structural
stability characterization provided by [7], we also derive Peixoto-like theorems characteriz-
ing semi-local structural stability of the dynamics over the cylinder for both the constant
(Theorem 4.8) and affine (Theorem 4.9 as stated below) cases.
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Theorem 4.9 (Affine Dynamics Stability). Let F P A3 be given by (4.22) with γi ‰ 0.
Given Σθ0 P ĨC , let X “ pX´,X`q be the Filippov system induced around Σθ0 and inside a
convex compact set K Ă C` Y C´, where C` and C´ are two consecutive stripes meeting
at Σθ0. Then, F is pΣθ0 , Kq-semi-local structurally stable in A3 if, and only if, X` and
X´ satisfies

1. ai1 ‰ 0 and P R Σθ0, where P is the only singularity of X˘;

2. conditions (C.6) — (C.9) of Proposition 4.2.

For clarification on the technicalities involved, especially in the statement above,
we encourage the interested reader to please consult the respective chapter in the text,
which is structured as follows:

Chapter 1. To establish notations and terminologies, we formally introduce the Theory
of Non-Smooth Dynamical Systems. In particular, we formally introduce the Filippov
systems.

Chapter 2. First, we introduce the regularization process developed by Sotomayor and
Teixeira. Next, we show how this process connects with Filippov dynamics through
GSP-Theory.

Chapter 3. Here, we formally introduce the concept of Sliding Saddle and obtain sets of
conditions to realize it with affine vector fields. Finally, we study its regularization and
structural stability.

Chapter 4. In this chapter, we formally introduce the concept of Double Discontinuity.
Next, we use a proper blow-up and GSP-Theory to induce dynamics over the singular
parts. Finally, we study its semi-local structural stability.

Chapter 5. We provide interesting further directions of investigation for the topics here
discussed.
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1 Non-Smooth Systems

In this chapter, we have as a goal to establish notations and terminologies, as
well as to introduce the main protagonist of this text: the Filippov Systems. In the first
section, we introduce the piecewise vector fields, whose dynamics we are willing to study.
In the second section, we present the differential inclusions, which is the fundamental tool
used to define the dynamics given by such vector fields, and finally, we define the Filippov
systems in the last section.

1.1 Piecewise Vector Fields
Definition 1.1. Let U Ă Rn be an open set, F˘ : U Ñ Rn vector fields of class Ck with
k ě 1 and h : U Ñ R a function of class C1 which has 0 as a regular value. We say that
F : U Ñ Rn given by

Fpxq “

$

&

%

F`pxq, if hpxq ě 0,

F´pxq, if hpxq ď 0,
(1.1)

is a piecewise (or discontinuous) vector field.

As 0 is a regular value of h, then Σ “ h´1
p0q is a codimension 1 regular

submanifold. Hence, UzΣ consists of two regions Σ` “ h´1
p0,`8q and Σ´ “ h´1

p´8, 0q,
where acts F` and F´, respectively. We say that Σ is the switching manifold of the
vector field F. See Figure 4.

Σ

F`

F´

Σ`

Σ´

U

Figure 4 – Piecewise vector field.

The set of all vector fields F defined as above will be denoted

Rk
pUq ” Ck

pU,Rn
q ˆ Ck

pU,Rn
q
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and equipped with the usual Whitney product topology. Generally, we write F “ pF`,F´q
to denote the elements of this set.

We would like to define a possible dynamics for piecewise (or discontinuous)
differential equations given by

9x “ Fpxq, (1.2)

where F P Rk
pUq and 9x “ dx

dt
; we would then say that (1.2) gives birth to a piecewise

(or discontinuous, or non-smooth) dynamical system. Observe that there is an
obstacle associated to the definition of such dynamics. In fact, given a point p P Σ, if
F`ppq and F´ppq are vectors pointing to the same side of Σ, then it is reasonable to say
that the local trajectory of p consists in the concatenation of the trajectories of F` and
F´ through p. However, if F`ppq and F´ppq are vectors pointing to opposite sides of Σ,
then there is no obvious definition for the local trajectory of p. In the next sections, we
will present the solution to this problem as proposed in [22]. We start by introducing the
concept of differential inclusion.

1.2 Differential Inclusions
Differential inclusions are a generalization of the concept of ordinary differential

equations. In order to define and study them, we need to understand first the concept of
multivalued vector fields and their continuity. See [45] for details.

Definition 1.2. Given U Ă Rn an open set, we say that F : U Ñ P pRn
q, where P pRn

q

is the powerset of Rn, is a multivalued vector field.

In other words, multivalued fields are “fields” whose image of each point in its
domain is not necessarily a single point in the codomain. The continuity of these vector
fields is presented in the definition below.

Definition 1.3. Let F : U Ñ P pRn
q be a multivalued vector field and p P U . Then, we

say that F is

(a) upper semi-continuous at p if, for every open neighborhood B Ă Rn of Fppq,
there exists an open neighborhood A Ă U of p such that FpAq Ă B;

(b) lower semi-continuous at p if, for every open set B Ă Rn such that BXFppq ‰ ∅,
there exists an open neighborhood A Ă U of p such that Fpxq X B ‰ ∅ for every
x P A;

(c) continuous at p if it is upper and lower semi-continuous at p.
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Now we can define the concept of a differential inclusion which, as previously
said, is nothing more than a generalization of the concept of ordinary differential equations.
More specifically:

Definition 1.4. Let F : U Ñ P pRn
q be a multivalued vector field. We say that the

expression

9x P Fpxq (1.3)

is an ordinary differential inclusion.

In order to motivate the definition of solution for a differential inclusion,
remember that, if F : U Ñ Rn is a usual vector field, then a solution of the ordinary Initial
Value Problem

#

9x “ Fpxq
xp0q “ p

is a differentiable curve ϕ : r´T, T s Ñ U such that

9ϕptq “ Fpϕptqq e ϕp0q “ p

or, equivalently,

ϕptq “ p`
ż t

0
Fpϕpsqqds ô ϕptq “ p`

ż t

0
9ϕpsqds.

Definition 1.5. We say that the curve ϕ : r´T, T s Ñ U is absolutely continuous if
there exists p P U and an integrable function g : r´T, T s Ñ Rn such that

ϕptq “ p`
ż t

0
gpsqds

or, equivalently,

ϕptq “ p`
ż t

0
9ϕpsqds

since, in this case, ϕ is differentiable almost everywhere and, therefore, 9ϕpsq “ gpsq almost
everywhere.

The set of all absolutely continuous curves ϕ : r´T, T s Ñ U defined as above
will be denoted by
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ACpr´T, T s, Uq ” Rn
ˆ L1pr´T, T s, Uq

and equipped with the norm

‖ϕ‖ “ ‖ϕp0q‖`
ż T

0
‖ 9ϕpsq‖ds

which transforms it in a Banach space.

Definition 1.6. Let F : U Ñ P pRn
q be a multivalued vector field. We say that ϕ P

ACpr´T, T s, Uq is a solution of the differential inclusion

9x P Fpxq

if

9ϕptq P Fpϕptqq

for almost every t P r´T, T s.

The set of all solutions of the differential inclusion 9x P Fpxq such that ϕp0q “
p P U will be denoted by

SFppq “ tϕ P ACpr´T, T s, Uq; 9ϕptq P Fpϕptqq e ϕp0q “ pu .

Observe that, generally, due to the multivalued nature of the definition of
differential inclusion, we cannot expect uniqueness of solutions through a given point
p P U . In particular, the maps x ÞÑ SFpxq and px, tq ÞÑ SFpxqptq “ tϕptq; ϕ P SFpxqu are
multivalued. However, as to the existence of solutions we have the following:

Theorem 1.1 (retrieved from [45], page 98). Let U Ă Rn be an open set and F : U Ñ Rn

be a multivalued vector field. Suppose that F is upper semi-continuous and, for every x P U ,
Fpxq is convex. Then,

(a) SFppq ‰ ∅,

(b) SFppq Ă ACpr´T, T s, Uq and SFppqptq Ă Rn are connected sets,

for every p P U .
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As for the dependency of solutions relative to initial conditions we have the
following:

Theorem 1.2 (retrieved from [45], page 109). Let U Ă Rn be an open set and F : U Ñ Rn

be a multivalued vector field. Suppose that F is upper semi-continuos and, for every x P U ,
Fpxq is convex and compact. Then, x ÞÑ SFpxq and px, tq ÞÑ SFpxqptq are upper semi-
continuous.

1.3 Filippov Systems
Let U Ă Rn be an open bounded set and F “ pF`,F´q P Rk

pUq be a piecewise
vector field. In order to define a dynamics for the non-smooth differential equation

9x “ Fpxq, (1.4)

with switching manifold Σ “ h´1
p0q, consider the multivalued vector field given by

ZFpxq “

$

’

’

’

&

’

’

’

%

tF`pxqu, if hpxq ą 0,

tF´pxqu, if hpxq ă 0,

ConvptF`pxq,F´pxquq, if hpxq “ 0,

(1.5)

where

ConvptF`pxq,F´pxquq “
"

1` λ
2 F`pxq `

1´ λ
2 F´pxq; ´1 ď λ ď 1

*

is the convex hull of the set tF`pxq,F´pxqu. See Figure 5, where the convex hull is
represented in gray.

F`pxq

F´pxq

x

Figure 5 – Convex hull of the set tF`pxq,F´pxqu.

For every x P U , we have that ZFpxq is a convex and compact set. Even more,
due to Proposition 2.2 of [45] we also have that ZF is upper semi-continuous. Hence, the
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conclusions of Theorem 1.1 and Theorem 1.2 are true for this multivalued field. In other
words, the differential inclusion

9x P ZFpxq (1.6)

admits solutions which are upper semi-continuous with respect to initial conditions.
Therefore, in [22], Aleksei Fedorovich Filippov introduced the following convention1 to
define the solutions of the non-smooth differential equation (1.4):

Definition 1.7. (Filippov’s Convention) We say that ϕ is a solution of the non-smooth
differential equation (1.4) if ϕ is a solution of the differential inclusion (1.6). We say that
(1.4) with this dynamics is a Filippov system.

Now that we have a dynamics associated to the differential equation (1.4), we
would like to describe its local trajectories. For that, observe initially that, from (1.5)
follow that the local trajectory of points p R Σ is given by the usual smooth dynamics of
the vector fields F` or F´. On the other hand, in order to describe the local trajectory of
points p P Σ, the following operation will be useful:

Definition 1.8. Let U Ă Rn be an open set, F : U Ñ Rn a vector field of class Ck and
h : U Ñ R a function of class C1. We say that Fh : U Ñ R given by

Fhppq “ ∇hppq ¨ Fppq

is the Lie derivative of h relative to the field F at the point p, where ¨ is the usual inner
product of Rn. Generally, we write

Fnhppq “ ∇pFhqn´1
ppq ¨ Fppq,

to denote the n-th Lie derivative.

Geometrically, the Lie derivative tells us which side of Σ the field F points to.
In fact, as 0 is a regular value of h, then Σ “ h´1

p0q is an orientable surface. Therefore,
we have the following cases:

(a) If Fhppq ą 0, then Fppq and ∇hppq points to the same side of TpΣ.

(b) If Fhppq ă 0, then Fppq and ∇hppq points to opposite sides of TpΣ.

(c) If Fhppq “ 0, then Fppq P TpΣ.
1 As remarked at the Introduction, other conventions exist with equal beauty and importance, for

instance, Carathéodory [47] and Utkin [50] conventions. Naturally, under these other conventions,
many of the dynamical aspects described on this section would be different.
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1.3.1 Crossing Region

Definition 1.9. We say that the open subset Σc of the switching manifold Σ given by

Σc
“ tp P Σ; F`hppqF´hppq ą 0u ,

is the crossing region and every p P Σc is a crossing point.

In this case, due to the geometrical interpretation of the Lie derivative given
above, we have that the fields F` and F´ both points to the same side of Σ. In particular,
it can be proved that there will be no intersection between ConvptF`ppq,F´ppquq and
TpΣ, as represented at Figure 6. More precisely:

Proposition 1.1. If p P Σc, then ZFppq X TpΣ “ ∅.

F´ppqF`ppq

Σp

Figure 6 – Vector fields at a crossing point.

Therefore, given p P Σc, if ϕ˘pt,pq are the respective solutions for the Initial
Value Problems

#

9x “ F˘pxq
xp0q “ p

then this curves behaves locally as represented at Figure 7.

Σ
Σ`

Σ´

ϕ`pt,pq

ϕ´pt,pq

p

(a)

Σ
Σ`

Σ´

ϕ`pt,pq

ϕ´pt,pq

p

(b)

Figure 7 – All local trajectories through a crossing point.

For both cases, let ϕpt,pq be a local concatenation of the curves ϕ˘pt,pq. More
precisely, for the case Figure 7a, define

ϕpt,pq “

$

&

%

ϕ´pt,pq, t P r´T, 0s,

ϕ`pt,pq, t P r0, T s,
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and, for the case Figure 7b, define

ϕpt,pq “

$

&

%

ϕ`pt,pq, t P r´T, 0s,

ϕ´pt,pq, t P r0, T s,

where T ą 0 is sufficiently small.

Proposition 1.2. Given p P Σc, the curve ϕpt,pq defined as above is the only local
trajectory of (1.4) through p.

1.3.2 Sliding Region

Definition 1.10. We say that the open subset Σs of the switching manifold Σ given by

Σs
“ tp P Σ; F`hppqF´hppq ă 0u

is the sliding region and every p P Σs is a sliding point.

In this case, due to the geometrical interpretation of the Lie derivative given
above, we have that the fields F` and F´ points to opposite sides of Σ. In particular,
it can be proved that there is intersection between ConvptF`ppq,F´ppquq and TpΣ, as
represented at Figure 8. More precisely:

Proposition 1.3. If p P Σs, then ZFppq X TpΣ “ tFs
ppqu, where

Fs
ppq “

F´hppqF`ppq ´ F`hppqF´ppq
F´hppq ´ F`hppq

. (1.7)

Even more,

Fs : Σs
Ñ TΣs

p ÞÑ Fs
ppq

is a well-defined vector field over Σs.

We say that Fs is the sliding field of (1.4). Its trajectories give birth to local
trajectories of (1.4). More precisely:

Proposition 1.4. Given p P Σs, if ϕspt,pq is a solution for the Initial Value Problem

#

9x “ Fs
pxq

xp0q “ p
,
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then ϕspt,pq is a local trajectory of (1.4) through p.

F`ppq

F´ppq
Σp

Fs
ppq

Figure 8 – Vector fields at a sliding point.

Beyond that, given p P Σc, if ϕ˘pt,pq are the respective solutions for the Initial
Value Problems

#

9x “ F˘pxq
xp0q “ p

then these curves behave locally as represented at Figure 9, where a possible curve ϕspt,pq
was also represented for illustrative purposes only.

Σ
Σ`

Σ´

ϕ`pt,pq

ϕ´pt,pq

p
ϕspt,pq

(a)

Σ
Σ`

Σ´

ϕ`pt,pq

ϕ´pt,pq

p
ϕspt,pq

(b)

Figure 9 – Some local trajectories through a sliding point.

For both cases2, again, concatenation gives birth to local trajectories of (1.4).
More precisely, in the case of Figure 9a, define

ψ˘pt,pq “

$

&

%

ϕspt,pq, t P r´T, 0s,

ϕ˘pt,pq, t P r0, T s,

and, in the case of Figure 9b, define

ψ˘pt,pq “

$

&

%

ϕ˘pt,pq, t P r´T, 0s,

ϕspt,pq, t P r0, T s,

where T ą 0 is sufficiently small.
2 The cases presented at Figure 9 are called escaping and sliding, respectively. In this text, we will

often commit the language abuse of calling both cases as sliding.
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Proposition 1.5. Given p P Σs, the curves ψ˘pt,pq defined as above are local trajectories
of (1.4) through p.

Recall that from Theorem 1.1 it follows that the set of solutions SZFppq is
connected. However, up until now, we constructed only three points of this set. In order
to connect these points, making the set connected, in the case of Figure 9a, define

Γ˘ε pt,pq “

$

&

%

ϕspt,pq, t P r´T, εs,

ϕ˘pt´ ε, ϕ
s
pε,pqq, t P rε, T s,

and, in the case of Figure 9b, define

Γ˘ε pt,pq “

$

&

%

ϕ˘pt` ε, ϕ
s
p´ε,pqq, t P r´T,´εs,

ϕspt,pq, t P r´ε, T s,

where T ą 0 is sufficiently small and 0 ď ε ď T . Observe that Γ˘0 “ ψ˘ and Γ˘T “ ϕs. In
Figure 10 we represent in gray the region covered by the solutions Γ˘ε with 0 ă ε ă T .

Σ
Σ`

Σ´

ϕ`pt,pq

ϕ´pt,pq

p
ϕspt,pq

(a)

Σ
Σ`

Σ´

ϕ`pt,pq

ϕ´pt,pq

p
ϕspt,pq

(b)

Figure 10 – All local trajectories through a sliding point.

Proposition 1.6. Given p P Σs, the curves Γ˘ε pt,pq defined as above are the only local
trajectories of (1.4) through p.

1.3.3 Singularities

A careful reading of the text so far reveals the existence of three types of points
associated with Filippov systems which deserve to be called singularities. In fact, outside
the switching manifold Σ we have the usual singularities of the vector fields F˘. Over
the manifold Σ we have the singularities of the sliding field Fs and, finally, we also have
the tangencies, i.e., points where F˘hppq “ 0. In what follows, we formally define these
singularities.

We start with the singularities of the vector fields F˘ which lie outside the
manifold Σ. Observe that these singularities may or may not be inside the respective
acting region of the field, i.e., Σ˘. More precisely:
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Definition 1.11. We say that p P Σ˘ with F˘ppq “ 0 is a visible usual singularity
of (1.4). We say that p P Σ¯ with F˘ppq “ 0 is an invisible usual singularity of (1.4).

The usual singularities behave locally as expected, i.e., as the well-known and established
results for smooth dynamics dictate. In particular, we remark that these singularities are
stationary trajectories reached in infinite time.

Furthermore, over the sliding region Σs of the switching manifold, we have the
singularities of the sliding field Fs. More precisely:

Definition 1.12. We say that p P Σs with Fs
ppq “ 0 is a pseudo-equilibrium of (1.4).

Just like in the previous case, over the sliding region, the pseudo-equilibriums behave
as expected, i.e., as the well known and established results for smooth dynamics dictate.
However, over UzΣ, due to Proposition 1.6, we remark that these singularities can have a
stationary component reached in finite time.

Finally, still over the switching manifold, we have the tangencies of the fields
F˘ with Σ. More precisely:

Definition 1.13. Let n ě 2 be a natural number. We say that p P Σ such that

F˘hppq “ pF˘q2hppq “ ¨ ¨ ¨ “ pF˘qn´1hppq “ 0 and pF˘qnhppq ‰ 0

is a tangency of order n of (1.4). In particular, if n “ 2, then we say that p is a fold
point; if n “ 3, then we say that p is a cusp point.

We say that

SF˘ “ tp P Σ : F˘hppq “ 0u

are the tangency sets of the vector fields F˘. The tangencies, especially the folds, are
some of the most interesting singularities of Filippov systems. For instance, folds can
give birth to a phenomenon known as T-singularity3, which exhibits nondeterministic
chaos [11].

Geometrically, the fold points are those where quadratic tangencies of the fields
F˘ with the manifold Σ occur. These tangencies are classified as visible or invisible, see
Figure 11, and can be distinguished as presented in the proposition below.

3 So named in honor to its discoverer, Marco Antonio Teixeira, in [48].
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Proposition 1.7. Let p P Σ. Supposing that F`hppq “ 0, then p is a fold point

(a) visible if pF`q2hppq ą 0;

(b) invisible if pF`q2hppq ă 0.

Supposing that F´hppq “ 0, then p is a fold point

(c) visible if pF´q2hppq ă 0;

(d) invisible if pF´q2hppq ą 0.

Σ
Σ`

Σ´

p

(a) Visible fold.

Σ
Σ`

Σ´

p

(b) Invisible fold.

Figure 11 – Fold points of the vector field F`.

1.3.4 Structural Stability

The study of structural stability of certain Filippov systems is one of the goals
of this text. Therefore, we recall here the classical definition (given in [48]) for this concept.
First, we define the concept of local topological equivalence between Filippov systems:

Definition 1.14. Let F, F̃ P Rk
pUq and p P U . We say that F and F̃ are topologically

equivalent at p if there exists neighborhoods V and Ṽ of p in Rn and a homeomorphism
φ : V Ñ Ṽ which keeps Σ invariant and takes trajectories of F into trajectories of F̃
preserving time orientation.

Now, we can define the concept of local structural stability between Filippov
systems naturally:

Definition 1.15. We say that F P Rk
pUq is structurally stable at p P U if there exists

an open neighborhood W of F in Rk
pUq such that, if F̃ P W , then F̃ and F are topologically

equivalent at p.

The concept of global structural stability can be naturally obtained from the
following definition of global topological equivalence:
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Definition 1.16. Let F, F̃ P Rk
pUq. We say that F and F̃ are topologically equivalent

and denote F „ F̃ if there exists a homeomorphism φ : U Ñ U that keeps Σ invariant and
takes orbits of F into orbits of F̃ preserving time orientation.
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2 Regularization

In this chapter, we have as a goal to introduce the concept of regularization
developed by Jorge Sotomayor and Marco Antonio Teixeira in [46]. In the first section, given
a piecewise vector field, we construct its regularization, which consists of a 1-parameter
family of smooth vector fields which converges to the given piecewise field. Next, in the
second section, we introduce part of the Geometric Singular Perturbation Theory developed
by Neil Fenichel in [21] and its connection with Filippov dynamics through regularization.

2.1 Sotomayor-Teixeira
Let F “ pF`,F´q P Rk

pUq be a piecewise smooth vector field as defined
above with a switching manifold Σ “ h´1

p0q. A Sotomayor-Teixeira regularization of F,
as described at [46], is a 1-parameter family of smooth vector fields Fε that converges
pointwisely to F as εÑ 0. More precisely, for x P UzΣ, observe that the field F can be
written in the form

Fpxq “
„

1` sgnphpxqq
2



F`pxq `
„

1´ sgnphpxqq
2



F´pxq, (2.1)

where sgn : RÑ R is the signal function given by

sgnpxq “

$

’

’

’

&

’

’

’

%

´1, if x ă 0,

0, if x “ 0,

1, if x ą 0,

which is a discontinuous function whose graph if represented at Figure 12a.

In order to approximate the piecewise smooth vector F with a 1-parameter
family of smooth vector fields, we approximate the signal function at (2.1) with a certain
type of smooth function. More precisely:

Definition 2.1. We say that a smooth function ϕ : RÑ R is amonotonous1 transition
function if

ϕpxq “

$

&

%

´1, if x ď ´1,

1, if x ě 1,
1 A study on the regularization process with non-monotonous transition functions can be found at the

chapter 6 of [38].
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and ϕ1pxq ą 0 for ´1 ă x ă 1.

x

sgnpxq

1

´1

(a) Signal function.

x

ϕpxq

1

´1

´1 1

(b) Transition function.

Σ

F`

F´

Σ`

Σ´

U

(c) Piecewise field.

F`

F´

Σ`

Σ´

U

´ε ă hpxq ă ε

(d) Regularized field.

Figure 12 – Grid representation of the Sotomayor-Teixeira’s regularization with the signal
function (a) associated to the piecewise smooth vector field (c) and the
transition function (b) associated to the regularized vector field (d).

The graph of a typical transition function is represented at Figure 12b. Observe
that, if we define ϕεpxq “ ϕ

´x

ε

¯

, where ε ą 0, then clearly ϕε Ñ sgn pointwisely when
εÑ 0, as long as their domains are restricted to the set Rzt0u. In particular, if we define

Fε
pxq “

„

1` ϕεphpxqq
2



F`pxq `
„

1´ ϕεphpxqq
2



F´pxq, (2.2)

then we get a 1-parameter family of vector fields Fε
P Ck

pUq such that Fε
Ñ F pointwisely

when εÑ 0, as long as their domains are restricted to the set Rzt0u.

Definition 2.2. Let ϕ : RÑ R be a monotonous transition function. We say that (2.2)
is a ϕε-regularization of (2.1).

Observe that the regularization Fε coincides with F outside the rectangle given
by ´ε ă hpxq ă ε. In fact,
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Fε
pxq “

$

&

%

F`pxq, if hpxq ě ε,

F´pxq, if hpxq ď ´ε,

as represented at Figure 12d. In particular, it is clear that Fε recovers the smooth
component of the Filippov dynamics given by F, i.e., that associated to the region UzΣ, as
long as we take ε ą 0 small enough. As described in the next section, Fε also recovers the
non-smooth component of the Filippov dynamics, i.e., that associated to the region Σ.

2.2 Geometrical Singular Perturbation Theory
Let W Ă Rm`n be an open set whose elements are represented by px,yq. Let

also f : W ˆ r0, 1s Ñ Rm and g : W ˆ r0, 1s Ñ Rn be vector fields of class Ck with k ě 1.
Given 0 ă ξ ă 1, consider the system of differential equations

#

x1 “ fpx,y, ξq
y1 “ ξgpx,y, ξq

, (2.3)

where ˝1 “ d˝{dτ, x “ xpτq and y “ ypτq. Applying at the previous system the time
rescaling given by t “ ξτ , we obtain the new system

#

ξ 9x “ fpx,y, ξq
9y “ gpx,y, ξq

, (2.4)

where 9̋ “ d˝{dt, x “ xptq and y “ yptq.

As 0 ă ξ ă 1, then (2.3) and (2.4) have exactly the same phase portrait, except
for the trajectories speed, which is greater for first system and smaller for the second.
Therefore, the following definition makes sense:

Definition 2.3. We say that (2.3) and (2.4) form a pm,nq-slow-fast system with fast
system given by (2.3) and slow system given by (2.4).

Taking ξ Ñ 0 in (2.3), we get the so-called layer system

#

x1 “ fpx,y, 0q
y1 “ 0

, (2.5)

which has dimension m. Taking ξ Ñ 0 in (2.4), we get the so-called reduced system

#

0 “ fpx,y, 0q
9y “ gpx,y, 0q

, (2.6)
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which has dimension n. Beyond that, we say that the set

M “ tpx,yq P W ; fpx,y, 0q “ 0u

is the slow manifold. Observe that, on one hand, M represents the set of singularities of
the layer system; on the other hand, M represents the manifold over which the dynamics
of the reduced system takes place.

The main idea of Geometrical Singular Perturbation Theory, or GSP-Theory
for short, established by Fenichel in [21], consists of combining the dynamics of the limit
systems (layer and reduced) to recover the dynamics of the initial system (slow-fast) with
ξ ą 0 small. In fact, considering ξ as an additional variable of the slow system (2.4) we
get the new one

$

’

&

’

%

x1 “ fpx,y, ξq
y1 “ ξgpx,y, ξq
ξ1 “ 0

, (2.7)

whose Jacobian matrix at px0,y0, 0q P Mˆ t0u is

Jfast “

»

—

–

fx fy 0
0 0 0
0 0 0

fi

ffi

fl

, (2.8)

where fx and fy represent the partial derivatives calculated at the point px0,y0, 0q. The
matrix above has the trivial eigenvalue λ “ 0 with algebraic multiplicity n ` 1. The
remaining eigenvalues, called non-trivial, are divided in three categories: negative, zero or
positive real parts; we denote the number of such eigenvalues by ks, kc and ku, respectively.

Definition 2.4. We say that px0,y0, 0q P M ˆ t0u is normally hyperbolic if every
non-trivial eigenvalue of (2.8) have non-zero real part, i.e., kc “ 0.

Fenichel, in [21], proved that normal hyperbolicity allows the persistence
of invariant compact parts of the slow manifold under singular perturbation, i.e., the
dynamical structure of such parts with ξ “ 0 persists for ξ ą 0 small. Even more, with
predictable stability. More precisely:

Theorem 2.1 (Retrieved from [49], page 1953). Let N be a normally hyperbolic compact
invariant j-dimensional submanifold of M. Suppose that the stable and unstable manifolds
of N , with respect to the reduced system, have dimensions j ` js and j ` ju, respectively.
Then, there exists a 1-parameter family of invariant submanifolds tNξ; ξ „ 0u such that
N0 “ N and Nξ has stable and unstable manifolds with dimensions j ` js ` ks and
j ` ju ` ku, respectively.
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The reverse idea of GSP-Theory can also be used to recover the non-smooth
component of the Filippov dynamics, given by the piecewise vector field (ε “ 0), from
its regularization (ε ą 0). In fact, let F “ pF`,F´q P Rk

pU, hq be a piecewise smooth
vector field with switching manifold Σ “ h´1

pt0uq. Let also ϕ : RÑ R be a monotonous
transition function and Fε the ϕε-regularization of F.

We need to transform Fε in a slow-fast system. In order to do so, observe that,
as 0 is a regular value of h, then from the Local Normal Form for Submersions follows
that, without loss of generality, we can admit that hpx1, . . . , xnq “ x1 in a neighborhood
of a given point x P Σ. Therefore, if we write F` “ pf`1 , . . . , f`n q and F´ “ pf´1 , . . . , f´n q,
then follows that Fε can be written as

9xi “

„

1` ϕεpx1q

2



f`i px1, . . . , xnq `

„

1` ϕεpx1q

2



f´i px1, . . . , xnq,

where i P t1, . . . , nu. Now, applying to the system above the polar blow-up given by
x1 “ ξ cos θ and ε “ ξ sin θ, where ξ ě 0 and θ P r0, πs, we obtain a p1, n ´ 1q-slow-fast
system given by

#

ξ 9θ “ α1pθ, x2, . . . , xn, ξq

9xi “ αipθ, x2, . . . , xn, ξq
, (2.9)

where i P t2, . . . , nu.

Observe that, for ξ “ 0, we have x1 “ 0 and ε “ 0, i.e., we are at the non-
regularized system F over the manifold Σ. In the other hand, for ξ ą 0 and θ P p0, πq,
we have ´ξ ă x1 ă ξ and 0 ă ε ă ξ, i.e., we are at the regularized system Fε over the
rectangle where it does not coincide to F, see Figure 12d. The authors of [49] then proved
the result below:

Theorem 2.2 (Retrieved from [49], page 1950). Consider the piecewise smooth vector
field F and the slow-fast system (2.9). The sliding region Σs is homeomorphic to the slow
manifold given by

α1pθ, x2, . . . , xn, 0q “ 0

and the dynamics of the sliding vector field Fs over Σs is topologically equivalent to that
of the reduced system given by

#

0 “ α1pθ, x2, . . . , xn, 0q
9xi “ αipθ, x2, . . . , xn, 0q

,

where i P t2, . . . , nu.
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Concisely, the Filippov dynamics of F is completely recovered by its regulariza-
tion Fε. In order to do so, the following steps, described in details above, are necessary:

1. Normalization of the switching manifold.

2. Regularization of the piecewise smooth vector field.

3. Polar blow-up of the regularization.

4. Analysis of the resulting limit systems (layer and reduced).

(a) Piecewise field. (b) Regularized field.

Figure 13 – Complete regularization process.

Example 2.1. Let F´px, yq “ px` 1,´y` 1q and F`px, yq “ p0, 1q be vector fields in R2

and F “ pF`,F´q be the piecewise smooth vector field given by

Fpx, yq “

$

&

%

F´px, yq, if y ě x

F`px, yq, if y ď x
,

with switching manifold given by Σ “ h´1
p0q, where h : R2

Ñ R is given ny hpx, yq “ x´y,
i.e., Σ “

 

px, yq P R2; y “ x
(

. Therefore, we have the Filippov system represented at
Figure 13a, where clearly the red sliding region is given by Σs

“ tpx, xq; x ą 0u. Lets see
how the regularization process described above recovers the sliding dynamics:

1. (Normalization)
Applying a π

4 radians rotation we get the normalized vector field
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F̃px, yq “

$

&

%

?
2

2 px` y, x´ y ` 2q, if x ď 0
?

2
2 p´1, 1q, if x ě 0

,

i.e., now the switching manifold is given by the map px, yq ÞÑ x.

2. (Regularization)
Let ϕ : R Ñ R be an arbitrary monotonous transition function. Applying the ϕε-
regularization to F̃ we get the 1-parameter family of smooth vector fields

F̃ε
px, yq “

?
2

4 p´1` x` y ´ p1` x` yqϕεpxq,
3` x´ y ` p´1´ x` yqϕεpxqq

where ε ą 0.

3. (Blow-up)
Applying the polar blow-up given by x “ ξ cos θ and ε “ ξ sin θ, where ξ ě 0 and
θ P r0, πs, to the regularization F̃ε we get the slow system

#

ξ 9θ “
?

2
4 sin θ p1´ ξ cos θ ´ y ` p1` ξ cos θ ` yqϕpcot θqq

9y “
?

2
4 p3` ξ cos θ ´ y ` p´1´ ξ cos θ ` yqϕpcot θqq

.

4. (Analysis of the singular perturbation problem)
Taking ξ “ 0 in the slow system above, we get that the slow manifold is the curve
ypθq given by

ϕpcot θq “ y ´ 1
y ` 1

connecting the points pθ, yq “ p0,`8q and pθ, yq “ pπ, 0q. Beyond that, the reduced
system is given by

9y “

?
2

4

ˆ

3´ y ` p´1` yqy ´ 1
y ` 1

˙

“

?
2

y ` 1 ą 0,

since, as seen above, y ą 0 over the slow manifold. On the other hand, the layer
system is given by

θ1 “

?
2

4 sin θ p1´ y ` p1` yqϕpcot θqq

and, therefore, θ1 ą 0 below the slow manifold and θ1 ă 0 above it. Therefore, the
recovery of the initial Filippov dynamics through regularization and GSP-Theory can
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be represented as in Figure 13b, where the reduced system is represented in red and
the layer system is represented in green.2

2 A new rotation by and angle of ´π
4 was applied in order to bring back the system to the original

coordinates.
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3 Sliding Saddle

In this chapter, we have as a goal to study the realization and structural
stability of a particular configuration of the sliding region that we baptise as sliding saddle.
In the first section, we classify the Filippov systems in R2 given by affine vector fields
which realizes a sliding saddle. In the second section, we study the regularization and local
structural stability of the sliding saddles obtained in the previous section.

3.1 Realization
Let Fi : R2

Ñ R be vector fields of class Ck with i P t1, 2, 3, 4u and k ě 1.
Consider the piecewise vector field F “ pF1, . . . ,F4q given by

Fpx, yq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

F1px, yq, if x ě 0 and y ě 0,

F2px, yq, if x ď 0 and y ě 0,

F3px, yq, if x ď 0 and y ď 0,

F4px, yq, if x ě 0 and y ď 0,

(3.1)

i.e., whose switching manifold Σ is the cross given by the union of the lines x “ 0 and
y “ 0, as represented at Figure 14. The set of all vector fields F defined as above will be
denoted by

Dk
2 ” Ck

pR2
q ˆ Ck

pR2
q ˆ Ck

pR2
q ˆ Ck

pR2
q

and equipped with the Whitney product topology.

F1

F3 F4

F2

x

y

Figure 14 – Cross switching manifold.
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Consider the Filippov system given by F. Observe that, whenever necessary,
we have a sliding field Fs well-defined at Σztp0, 0qu. At the origin p0, 0q, however, there
is no well-defined Filippov dynamics. In fact, Σ “ h´1

p0q, where h : R2
Ñ R given by

hpx, yq “ xy has 0 as a singular value, since Dhp0, 0q is not surjective.

In this section, given a Filippov system as above and considering Σztp0, 0qu,
we would like to study the realization of the sliding region configuration represented at
Figure 15. We say that this configuration is a sliding saddle.

F1

F3 F4

F2

Σ41

Σ12

Σ34

Σ23

e1

e1

e2e2

Figure 15 – Sliding saddle.

In order to formally define a sliding saddle, consider the partition Σztp0, 0qu “
Σ12 Y Σ23 Y Σ34 Y Σ41, where

Σ12 “ tp0, yq; y ą 0u “ π´1
1
ˇ

ˇ

p0,8qp0q,

Σ23 “ tpx, 0q; x ă 0u “ π´1
2
ˇ

ˇ

p0,´8qp0q,

Σ34 “ tp0, yq; y ă 0u “ π´1
1
ˇ

ˇ

p0,´8qp0q,

Σ41 “ tpx, 0q; x ą 0u “ π´1
2
ˇ

ˇ

p0,8qp0q,

are open subsets and π1, π2 : R2
Ñ R are the canonical projections. Beyond that, remem-

bering the geometrical interpretation of the Lie derivative given at Section 1.3, without
loss of generality, we will simplify the calculations considering reference vectors e1 “ p1, 0q
at Σ41 and Σ23; and e2 “ p0, 1q at Σ12 and Σ34, as represented at Figure 15. Even more, let

Fs
ij “

pFj ¨ elqFi ´ pFi ¨ elqFj

pFj ¨ elq ´ pFi ¨ elq

be the sliding field at Σij, where l “ 1 for Σ12 and Σ34; and l “ 2 for Σ41 and Σ23.

To assure the sliding configuration at Σ12 represented at Figure 15, the field F1

should point from Σ12 to Σ41; whereas the field F2 should point from Σ12 to Σ23. Beyond
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that, the sliding field Fs
12 should be decreasing. More specifically, the following conditions

should be assured:

Σ12 :

$

’

’

’

’

&

’

’

’

’

%

y ą 0
F1p0, yq ¨ e1 ą 0
F2p0, yq ¨ e1 ă 0
π2 ˝ Fs

12p0, yq ă 0

. (3.2)

Similarly, in order to assure the configurations at Σ23, Σ34 and Σ41 represented
at 15, the following respective sets of conditions should be verified:

Σ23 :

$

’

’

’

’

&

’

’

’

’

%

x ă 0
F2px, 0q ¨ e2 ă 0
F3px, 0q ¨ e2 ą 0
π1 ˝ Fs

23px, 0q ă 0

, (3.3)

Σ34 :

$

’

’

’

’

&

’

’

’

’

%

y ă 0
F3p0, yq ¨ e1 ă 0
F4p0, yq ¨ e1 ą 0
π2 ˝ Fs

12p0, yq ą 0

, (3.4)

Σ41 :

$

’

’

’

’

&

’

’

’

’

%

x ą 0
F4px, 0q ¨ e2 ą 0
F1px, 0q ¨ e2 ă 0
π1 ˝ Fs

23px, 0q ą 0

. (3.5)

Definition 3.1. We say that the switching manifold of the Filippov system (3.1) is a
sliding saddle if the sets of conditions (3.2), (3.3), (3.4) and (3.5) are satisfied.

Now that we have formally defined the sliding saddle, we will study its realization
with affine vector fields Fi. More precisely, at the following subsections, we will consider
vector fields1

Fipx, yq “ Ai

«

x

y

ff

` bi “

«

ai1 ai2

ai3 ai4

ff«

x

y

ff

`

«

bi1

bi2

ff

, (3.6)

where Ai and bi are real matrices for every i P t1, 2, 3, 4u, progressively increasing its
complexity: starting at the constant case (Ai “ 0), linear (bi “ 0) and then, finally, the
affine case (3.6).
1 Sometimes, without loss of generality, we will commit the abuse of terminology of confusing matrix

with vector notation.
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3.1.1 Constant Fields

Let C2 be the set of constant fields given by (3.6) with Ai “ 0. In order to
realize a sliding saddle with F P C2, we apply the sets of conditions (3.2), (3.3), (3.4) and
(3.5) to obtain the following new sets of conditions:

Σ12 :

$

’

’

’

’

&

’

’

’

’

%

y ą 0
b11 ą 0
b21 ă 0
b21b12´b11b22

b21´b11
ă 0

ñ Σ12 :
#

b11 ą 0
b21 ă 0

, (3.7)

Σ23 :

$

’

’

’

’

&

’

’

’

’

%

x ă 0
b22 ă 0
b32 ą 0
b32b21´b22b31

b32´b22
ă 0

ñ Σ23 :
#

b22 ă 0
b32 ą 0

, (3.8)

Σ34 :

$

’

’

’

’

&

’

’

’

’

%

y ă 0
b31 ă 0
b41 ą 0
b41b32´b31b42

b41´b31
ą 0

ñ Σ34 :
#

b31 ă 0
b41 ą 0

, (3.9)

Σ41 :

$

’

’

’

’

&

’

’

’

’

%

x ą 0
b42 ą 0
b12 ă 0
b12b41´b42b11

b12´b42
ą 0

ñ Σ41 :
#

b42 ą 0
b12 ă 0

. (3.10)

Observe that, considering the three first lines of each left-hand side set above,
the fourth line is automatically satisfied and, therefore, is unnecessary. Even more, the first
lines become unnecessary. Therefore, we obtain the right-hand side final sets of conditions.

Example 3.1. Applying the sets of conditions (3.7), (3.8), (3.9) and (3.10), one can
verify that the constant vector fields

F2px, yq “

«

´1
´1

ff

, F1px, yq “

«

1
´1

ff

,

F3px, yq “

«

´1
1

ff

, F4px, yq “

«

1
1

ff

,

(3.11)

represented at Figure 16, realize a sliding saddle.
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(a) F “ pF1, . . . ,F4q (b) F1

Figure 16 – Constant vector fields realizing a sliding saddle.

3.1.2 Linear Fields

Let L2 be the set of linear fields given by (3.6) with bi “ 0. In order to realize
a sliding saddle with F P L2, we apply the sets of conditions (3.2), (3.3), (3.4) and (3.5) to
obtain the following new sets of conditions:

Σ12 :

$

’

’

’

’

&

’

’

’

’

%

y ą 0
a12 ą 0
a22 ă 0
a22a14´a12a24

a22´a12
y ă 0

ñ Σ12 :

$

’

&

’

%

a12 ą 0
a22 ă 0
a22a14 ´ a12a24 ą 0

, (3.12)

Σ23 :

$

’

’

’

’

&

’

’

’

’

%

x ă 0
a23 ą 0
a33 ă 0
a33a21´a23a31

a33´a23
x ă 0

ñ Σ23 :

$

’

&

’

%

a23 ą 0
a33 ă 0
a33a21 ´ a23a31 ă 0

, (3.13)

Σ34 :

$

’

’

’

’

&

’

’

’

’

%

y ă 0
a32 ą 0
a42 ă 0
a42a34´a32a44

a42´a32
y ą 0

ñ Σ34 :

$

’

&

’

%

a32 ą 0
a42 ă 0
a42a34 ´ a32a44 ą 0

, (3.14)

Σ41 :

$

’

’

’

’

&

’

’

’

’

%

x ą 0
a43 ą 0
a13 ă 0
a13a41´a43a11

a13´a43
x ą 0

ñ Σ41 :

$

’

&

’

%

a43 ą 0
a13 ă 0
a13a41 ´ a43a11 ă 0

. (3.15)
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Observe that, considering the three first lines of each left-hand side set above,
the fourth line can be simplified. Even more, the first lines become unnecessary. Therefore,
we obtain the right-hand side final sets of conditions.

Example 3.2. Applying the sets of conditions (3.12), (3.13), (3.14) and (3.15) one can
verify that the linear vector fields

F2px, yq “

«

1 ´1
1 ´2

ff«

x

y

ff

, F1px, yq “

«

1 1
´1 ´2

ff«

x

y

ff

,

F3px, yq “

«

1 1
´1 ´2

ff«

x

y

ff

, F4px, yq “

«

1 ´1
1 ´2

ff«

x

y

ff

,

(3.16)

represented at Figure 17, realize a sliding saddle.

(a) F “ pF1, . . . ,F4q (b) F1

Figure 17 – Linear vector fields realizing a sliding saddle.

3.1.3 Affine Fields

Let A2 be the set of affine fields given by (3.6). In order to realize a sliding
saddle with F P A2, we apply the sets of conditions (3.2), (3.3), (3.4) and (3.5) to obtain
the following new sets of conditions:

Σ12 :

$

’

’

’

’

&

’

’

’

’

%

y ą 0
a12y ` b11 ą 0
a22y ` b21 ă 0
pa22y ` b21qpa14y ` b12q ´ pa12y ` b11qpa24y ` b22q ą 0

, (3.17)
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Σ23 :

$

’

’

’

’

&

’

’

’

’

%

x ă 0
a23x` b22 ă 0
a33x` b32 ą 0
pa33x` b32qpa21x` b21q ´ pa23x` b22qpa31x` b31q ă 0

, (3.18)

Σ34 :

$

’

’

’

’

&

’

’

’

’

%

y ă 0
a32y ` b31 ă 0
a42y ` b41 ą 0
pa42y ` b41qpa34y ` b32q ´ pa32y ` b31qpa44y ` b42q ą 0

, (3.19)

Σ41 :

$

’

’

’

’

&

’

’

’

’

%

x ą 0
a43x` b42 ą 0
a13x` b12 ă 0
pa13x` b12qpa41x` b41q ´ pa43x` b42qpa11x` b11q ă 0

. (3.20)

Observe that, considering the three first lines of each left-hand side set above,
the fourth line has already been simplified. Even more, the final sets of conditions here
resemble those for the linear case above. In fact, given linear vector fields that realize
a sliding saddle, applying proper translations, it is easy to obtain affine fields that also
realize a sliding saddle.

Example 3.3. Consider the linear fields Fi obtained at Example 3.2. Moving the singularity
of F1 to p´1,´1q, of F2 to p1,´1q, of F3 to p1, 1q and of F4 to p´1, 1q, one obtain the
affine fields F̃i given by

F̃2px, yq “

«

1 ´1
1 ´2

ff«

x

y

ff

`

«

´2
´3

ff

, F̃1px, yq “

«

1 1
´1 ´2

ff«

x

y

ff

`

«

2
´3

ff

,

F̃3px, yq “

«

1 1
´1 ´2

ff«

x

y

ff

`

«

´2
3

ff

, F̃4px, yq “

«

1 ´1
1 ´2

ff«

x

y

ff

`

«

2
3

ff

,

(3.21)

represented at Figure 17, which realize a sliding saddle, as can be verified using the sets of
conditions (3.17), (3.18), (3.19) and (3.20).

Therefore, given the evidence provided by both the previous example and other
similar ones, we formulate the following conjecture, which provides an alternative method
to construct sliding saddles with affine vector fields:
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Conjecture 3.1. Given F “ pF1, ¨ ¨ ¨ ,F4q P L2, there exists translations T1, ¨ ¨ ¨ , T4 such
that F̃ “ pT1 ˝ F1, ¨ ¨ ¨ ,T4 ˝ F4q P A2 realize a sliding saddle if, and only if,

(a) F realizes a sliding saddle; and

(b) Ti does not create visible singularities in Fi.

(a) F “ pF1, . . . ,F4q (b) F1

Figure 18 – Affine vector fields realizing a sliding saddle.

3.2 Stability
Let F “ pF1, ¨ ¨ ¨ ,F4q P Dk

2 be a piecewise vector field with a cross as switching
manifold. In this section, first, we will build a regularization of F and, next, we present a
possible way to study the structural stability of its sliding field through the study of its
regularization. In particular, we will study the local structural stability of sliding saddles.

3.2.1 Regularization

Given ϕ : RÑ R a monotonous transition function, the regularization of F will
be constructed applying a double Sotomayor-Teixeira ϕ-regularization, as represented at
Figure 19. More specifically, first we apply a horizontal (see Figure 19b) ϕε-regularization,
i.e., considering Σ41 and Σ23, obtaining smooth fields

Fε
41pxq “

„

1` ϕεpπ2pxqq
2



F1pxq `
„

1´ ϕεpπ2pxqq
2



F4pxq “

“

„

1` ϕεpyq
2



F1pxq `
„

1´ ϕεpyq
2



F4pxq
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when considering Σ41, and

Fε
23pxq “

„

1` ϕεpπ2pxqq
2



F2pxq `
„

1´ ϕεpπ2pxqq
2



F3pxq “

“

„

1` ϕεpyq
2



F2pxq `
„

1´ ϕεpyq
2



F3pxq

when considering Σ23. Now, we apply a vertical (see Figure 19c) ϕδ-regularization, i.e.,
considering Σ12 and Σ34, obtaining the smooth field

Fε,δ
pxq “

„

1` ϕδpπ1pxqq
2



Fε
41pxq `

„

1´ ϕδpπ1pxqq
2



Fε
23pxq “

“

„

1` ϕδpxq
2



Fε
41pxq `

„

1´ ϕδpxq
2



Fε
23pxq

which can be written as

Fε,δ
pxq “

„

1´ ϕδpxq
2

 „

1` ϕεpyq
2



F2pxq `
„

1` ϕδpxq
2

 „

1` ϕεpyq
2



F1pxq`

`

„

1´ ϕδpxq
2

 „

1´ ϕεpyq
2



F3pxq `
„

1` ϕδpxq
2

 „

1´ ϕεpyq
2



F4pxq.
(3.22)

Definition 3.2. Let ϕ : RÑ R be a monotonous transition function. We say that (3.22)
is a ϕε,δ-regularization of (3.1).

F1

F3 F4

F2

x

y

(a) Cross.

Fε
41Fε

23

y

(b) Horizontal.

Fε,δ

(c) Vertical.

Figure 19 – Regularization of the cross switching manifold.

For a particular set of vector fields N Ă Dk
2 and a fixed transition function ϕ,

we define the respective set of regularizations

N ε,δ
“
 

Fε,δ; F P N
(

,

whose importance becomes clear over the next subsection.
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3.2.2 Structural Stability

Let Fε,δ be the ϕε,δ-regularization of a particular F “ pF1, . . . ,F4q P N given
by (3.1), where N Ă Dk

2 is a fixed subset. Suppose that Fε,δ is structurally stable in N ε,δ,
i.e., there exists an open neighborhood U Ă N ε,δ of Fε,δ such that

H P U ñ H „ Fε,δ, (3.23)

where „ represents topological equivalence.

Now, consider perturbations of F given by

Fµ “ pF1 ` µ1P1, . . . ,F4 ` µ4P4q

where µ “ pµ1, . . . , µ4q P R4 and P “ pP1, . . . ,P4q P N . Moreover, suppose also that N
satisfies the following condition

F P N ñ Fµ P N (PH)

henceforth, called perturbation hypothesis, or PH for short.

Observe that, from (3.22) and (PH), it follows that the ϕε,δ-regularization of
Fµ is an element of N ε,δ given by

Fε,δ
µ “ Fε,δ

` Pε,δ
µ ,

where Pε,δ
µ depends on µi and Pi and satisfy Pε,δ

µ Ñ 0 when µÑ 0. Hence, we have that

Fε,δ
µ “ Fε,δ

` Pε,δ
µ Ñ Fε,δ (3.24)

when µÑ 0.

In particular, from (3.23) and (3.24) follows the existence of an open neighbor-
hood V Ă R4 of µ “ 0 such that

µ P V ñ Fε,δ
µ P U ñ Fε,δ

µ „ Fε,δ. (3.25)

That is, if we define the set

Wi “
 

Fi ` µiPi; π´1
i pµiq P V

(
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for every i P t1, 2, 3, 4u, then from (PH) follows that W “ W1 ˆ ¨ ¨ ¨ ˆ W4 is an open
neighborhood of F in N such that

G P W ñ Gε,δ
„ Fε,δ. (3.26)

Now, suppose that a similar result to Theorem 2.2, which is valid for regular
systems in Rk, can be proved for Filippov systems in Dk

2 . More precisely, suppose that
after a proper blow-up of Fε,δ we obtain a singular perturbation problem that recovers
the sliding field of F. Let Bp¨q be the operator given by the mentioned blow-up. Since
blow-ups are just changes of variables, then from (3.26) follows that

G P W ñ Gε,δ
„ Fε,δ

ñ BpGε,δ
q „ BpFε,δ

q ñ Gs
„ Fs,

i.e., Fs is structurally stable upon small perturbations of F in N .

In particular, since Theorem 2.2 is actually truth in the set of regular systems
Rk, then we do have proved2 the theorem bellow which, in a sense, serve as a converse
to the Main Result of [46], where the structural stability of the regularization is studied
given conditions on the piecewise field.

Theorem 3.1. Let ϕ : R Ñ R be a monotonous transition function, N Ă Rk a subset
satisfying the (PH) hypothesis and F P N such that Fε is structurally stable in N ε. Then,
there exists an open neighborhood W Ă N of F such that

G P W ñ Gs
„ Fs,

i.e., Fs is structurally stable upon small perturbations of F in N .

Whereas for systems in Dk
2 , we actually do have a similar result to Theorem 2.2:

the Theorem 4.1, which can be found in [37, p. 498] and is explored over the next chapter of
this text and, therefore, its details are omitted here. However, it remains an open problem
to determine if this theorem is enough to assure the conjecture below.

Conjecture 3.2. Let ϕ : RÑ R be a monotonous transition function, N Ă Dk
2 a subset

satisfying the (PH) hypothesis and F P N such that Fε,δ is structurally stable in N ε,δ.
Then, there exists an open neighborhood W Ă N of F such that

G P W ñ Gs
„ Fs,

i.e., Fs is structurally stable upon small perturbations of F in N .
2 Some natural and trivial adaptations on the notes are necessary though.
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Using the conjecture above, we are able to study the structural stability of
the sliding saddles realized in the previous section. In fact, it is easy to verify that the
sets C2, L2 and A2 considered in Section 3.1 satisfy the (PH) hypothesis and, therefore,
Conjecture 3.2 is applicable. In order to do so, for every example below, let ϕ : R Ñ R
be a monotonous transition function such that ϕp0q “ 0 which, in the examples below,
assures that p0, 0q is an isolated singularity of the regularization Fε,δ, regardless of the
values of ε and δ.

Example 3.4 (Constant). Let F P C2 be the field obtained at Example 3.1, i.e., F is
formed of constant fields and realizes a sliding saddle. It can be verified using (3.22) that
its ϕε,δ-regularization is given by

Fε,δ
px, yq “

´

ϕ
´x

δ

¯

,´ϕ
´y

ε

¯¯

and, since ϕp0q “ 0, then p0, 0q is the only singularity of Fε,δ, regardless of the values of ε
and δ

Beyond that, one can verify that the Jacobian matrix of Fε,δ at p0, 0q is

JC “

«

ϕ1p0q
δ

0
0 ´

ϕ1p0q
ε

ff

,

whose eigenvalues are the real numbers ϕ1p0q
δ
ą 0 and ´ϕ1p0q

ε
ă 0, since ϕ1p0q ą 0. That is,

p0, 0q is an isolated hyperbolic singularity and, therefore, from Hartman-Grobman Theorem
follows the existence of an open neighborhood U Ă R2 of p0, 0q where Fε,δ

ˇ

ˇ

U
„ JC. But,

since JC is hyperbolic, then it is structurally stable as a linear operator. Hence, from the
continuity of the Jacobian operator follows the structural stability of Fε,δ

ˇ

ˇ

U
in Cε,δ2 .

Therefore, from Conjecture 3.2 it follows that Fs
ˇ

ˇ

U
is structurally stable upon

small perturbations of F
ˇ

ˇ

U
in C2. In other words, the sliding saddle realized by F is

structurally stable in C2 at a neighborhood of the origin.

Example 3.5 (Linear). Let F P L2 be the field obtained at Example 3.2, i.e., F is
formed of linear fields and realize a sliding saddle. It can be verified using (3.22) that its
ϕε,δ-regularization is given by

Fε,δ
px, yq “

´

x` yϕ
´x

δ

¯

ϕ
´y

ε

¯

,´2y ´ xϕ
´y

ε

¯

ϕ
´x

δ

¯¯

and, since ϕp0q “ 0, then p0, 0q is an isolated singularity of Fε,δ, regardless of the values
of ε and δ

Beyond that, one can verify that the Jacobian matrix of Fε,δ at p0, 0q is



Chapter 3. Sliding Saddle 57

JL “

«

1 ϕ2
p0q

´ϕ2
p0q ´2

ff

,

whose eigenvalues are the real numbers 1 ą 0 and ´2 ă 0, since ϕp0q “ 0, which implies
that JL is hyperbolic.

Therefore, the same argument used in Example 3.4 assures that the sliding
saddle realized by F is structurally stable upon small perturbations in L2 at a neighborhood
of the origin.

Example 3.6 (Affine). Let F P A2 be the field obtained at Example 3.3, i.e., F is
formed of affine fields and realizes a sliding saddle. It can be verified using (3.22) that its
ϕε,δ-regularization is given by

Fε,δ
px, yq “

´

x` ϕ
´x

δ

¯´

2` yϕ
´y

ε

¯¯

,´2y ´ ϕ
´y

ε

¯´

3` xϕ
´x

δ

¯¯¯

and, since ϕp0q “ 0, then p0, 0q is an isolated singularity of Fε,δ, regardless of the values
of ε and δ

Beyond that, one can verify that the Jacobian matrix of Fε,δ at p0, 0q is

JA “

«

1` 2ϕ1p0q
δ

ϕ2
p0q

´ϕ2
p0q ´2´ 3ϕ1p0q

ε

ff

,

whose eigenvalues are the real numbers 1` 2ϕ1p0q
δ

ą 0 and ´2´ 3ϕ1p0q
ε
ă 0, since ϕp0q “ 0

and ϕ1p0q ą 0, which implies that JA is hyperbolic.

Therefore, as before, the same argument used in Example 3.4 assures that the
sliding saddle realized by F is structurally stable upon small perturbations in A2 at a
neighborhood of the origin.
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4 Double Discontinuity

In this chapter, reproducing the contents of [44], we investigate the dynamics
and structural stability of a tridimensional piecewise system with a singular switching
manifold similar to that studied in the previous chapter: the double discontinuity. In the
first section, we properly state the problem and propose a solution in the second section.
The third and fourth sections are then devoted to the use of this proposed framework to
describe the dynamics presented by double discontinuities generated by constant and affine
vector fields, respectively. Finally, in the last section, we study the structural stability.
Many, if not all, of the results obtained here, can be naturally adapted to the planar case
studied in the previous chapter.

4.1 Statement of the Problem
One of the fundamental hypothesis in the theory described in Chapter 1 is the

fact that 0 P R is a regular value of the function h : RÑ R and, therefore, the switching
manifold Σ “ h´1

pt0uq is a regular surface. In that case, as we have seen, there exists
at least one well-defined and established dynamics associated: the Filippov dynamics. A
natural question to ask then is: can a Filippov-like dynamics be defined for the case when
0 P R is a singular value of the function h : RÑ R, i.e., when the switching manifold is
not a regular surface?

Σx

F1F2

F3 F4

Figure 20 – Double discontinuity.
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In the next sections, we would like to study the particular case known as the
double discontinuity. This particular configuration of the switching manifold is the
simplest one between the four singular configurations (known as Gutierrez-Sotomayor or
simple manifolds) that, according to [26], breaks the regularity condition in a dynamically
stable manner. The double discontinuity is described in detail below.

Let Fi : R3
Ñ R3 be vector fields of class Ck

pR3
q with i P t1, 2, 3, 4u. The

piecewise smooth vector field F : R3
Ñ R3 given by

Fpx, y, zq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

F1px, y, zq, if y ě 0 and z ě 0,

F2px, y, zq, if y ď 0 and z ě 0,

F3px, y, zq, if y ď 0 and z ď 0,

F4px, y, zq, if y ě 0 and z ď 0,

(4.1)

and denoted by F “ pF1,F2,F3,F4q is said to have a double discontinuity as switching
manifold, see Figure 20. The set of all vector fields F defined as above will be denoted by

Dk
3 ” Ck

pR3
q ˆ Ck

pR3
q ˆ Ck

pR3
q ˆ Ck

pR3
q

and equipped with the Whitney product topology.

The double discontinuity, as defined above, consists of the planes xy and xz
perpendicularly intersecting at the x-axis, Σx “ tpx, 0, 0q; x P Ru. For points in ΣzΣx, the
ordinary Filippov dynamics described in Section 1.3 can be locally applied. However, for
points px, 0, 0q P Σx that theory cannot be directly applied. In fact, Σ “ h´1

pt0uq, where
h : R3

Ñ R given by hpx, y, zq “ yz has 0 P R as a singular value, since Dhpx, 0, 0q is not
a surjective map for px, 0, 0q P Σx.

Therefore, we state the problem: given F P Dk
3 , can we define a Filippov-like

dynamics over Σx? How does it generally behave there? In the next section, we present a
framework, based on [8, 37,40,49], to approach this problem.

4.2 Framework
The first step consists of the application of a polar blow-up at the origin of the

slice represented at Figure 21a or, in other words, a cylindrical blow-up at Σx. More
specifically, assuming that the components of F P Dk

3 can be written as

Fi “ pwi, pi, qiq,

we apply the blow-up φ1 : Rˆ S1
ˆ R` Ñ R3 given by
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φ1px, θ, rq “ px, r cos θ, r sin θq,

which induces a piecewise smooth vector field F̃ “ rpφ1q
´1
˚ Fs ˝ φ1 whose components are

given by

F̃i “

ˆ

wi,
qi cos θ ´ pi sin θ

r
, pi cos θ ` qi sin θ

˙

,

where wi, pi and qi must be calculated at the point φ1px, θ, rq. We then define the set

D̃k
3 “

 

F̃ “ rpφ1q
´1
˚ Fs ˝ φ1; F P Dk

3
(

of all blow-up induced vector fields.

F1

F3 F4

F2

Σx

(a) Slice.

F̃1

F̃3 F̃4

F̃2

(b) Blow-up.

Figure 21 – Framework process at slice-level.

An extremely important observation at this point consists in the theorem stated
below with minor adaptations to our notation relative to the original one found in [37]1.

Theorem 4.1 (Retrieved from [37], page 498). The map φ1 : R ˆ S1
ˆ R` Ñ R3 given

by φ1px, θ, rq “ px, r cos θ, r sin θq induces a vector field F̃ satisfying that any discontinuity
q P Σ̃ “ φ´1

1 pΣq is regular.

Hence, since the induced vector field F̃ has only regular discontinuities, then classical
Filippov theory, as presented at Section 1.3, is enough for its analysis. More precisely, we
1 Up to our knowledge, this theorem where actually first stated in [8, p. 449]. However, [37] also provides

analogous results for the triple, cone, and Whitney discontinuities. See Figure 1. Regarding the double
discontinuity, similar versions of the theorem can also be found in [40], within the context of foliations,
and in [49], which is actually a survey.
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have now a piecewise smooth vector field F̃ given by the four smooth vector fields F̃i,
which induces the four slow-fast systems

$

’

&

’

%

9x “ wi

r 9θ “ qi cos θ ´ pi sin θ
9r “ pi cos θ ` qi sin θ

, (4.2)

where 9̋ “ d˝{{dt; wi, pi and qi must be calculated at the point φ1px, θ, rq; and r is the time
rescaling factor.

The study of the dynamics of (4.1) has therefore been reduced to the study of
the slow-fast systems (4.2). In particular, the dynamics over Σx, previously undefined, can
now be associated with (4.2) at r “ 0, which is given by the combination of the dynamics
of the reduced system

$

’

&

’

%

9x “ wi

0 “ qi cos θ ´ pi sin θ
9r “ pi cos θ ` qi sin θ

(4.3)

and the dynamics of the layer system

$

’

&

’

%

x1 “ 0
θ1 “ qi cos θ ´ pi sin θ
r1 “ 0

, (4.4)

where ˝1 “ d˝{{dτ with t “ rτ ; and the components wi, pi and qi must be calculated at the
point φ1px, θ, 0q “ px, 0, 0q.

More geometrically, the dynamics over Σx in (4.1) can now be associated to
the dynamics over the cylinder C “ Rˆ S1 divided in the four infinite stripes

S2 “ Rˆ rπ{2, πs, S1 “ Rˆ r0, π{2s,
S3 “ Rˆ rπ, 3π{2s, S4 “ Rˆ r3π{2, 2πs,

as represented at Figure 22, where the slow-fast systems given by (4.3) and (4.4) acts,
respectively. As we previously stated at Theorem 4.1, the four lines where these stripes
intersect admits at most regular discontinuities. Finally, the analysis of the dynamics on
each stripe Si can then be carried out using GSP-Theory.



Chapter 4. Double Discontinuity 62

F̃3 F̃4

θ “ 0

θ “
π

2

θ “
3π
2

θ “ π

F̃1F̃2

S1S2

S3 S4

θ “
π

2

θ “ 0

Figure 22 – Green cylinder C divided in the four stripes Si. A scheme of the stripe S1 is
also put in evidence.

In particular, the first two equations of the system (4.3) are independent of r
and, therefore, it can be decoupled as

#

9x “ wi

0 “ qi cos θ ´ pi sin θ
, (4.5)

which gives the reduced dynamics over Si; and

9r “ pi cos θ ` qi sin θ, (4.6)

which gives the respective slow radial dynamics or, in other words, it indicates how
the external dynamics communicates with the dynamics (4.5) over the cylinder: entering
( 9r ą 0), leaving ( 9r ă 0) or staying ( 9r “ 0) at Si.

Analogously, the first two equations of the system (4.4) are independent of r
and, therefore, it can also be decoupled as

#

x1 “ 0
θ1 “ qi cos θ ´ pi sin θ

, (4.7)

which gives the layer dynamics over Si; and

r1 “ 0, (4.8)
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which gives the respective fast radial dynamics over the cylinder.

Summarizing, we conclude that the dynamics over Σx behaves as described in
the fundamental lemma below, whose proof consists in the analysis done above.

Lemma 4.1 (Fundamental Dynamics). Given F P Dk
3 with components Fi “ pwi, pi, qiq,

let F̃ P D̃k
3 be the vector field induced by the blow-up

φ1px, θ, rq “ px, r cos θ, r sin θq.

Then, this blow-up associates the dynamics over Σx with the following dynamics over the
cylinder C “ Rˆ S1

“ S1 Y . . .Y S4: over each stripe Si acts a slow-fast dynamics whose
reduced dynamics is given by

#

9x “ wi

0 “ qi cos θ ´ pi sin θ
, (4.9)

with slow radial dynamics 9r “ pi cos θ ` qi sin θ; and layer dynamics given by

#

x1 “ 0
θ1 “ qi cos θ ´ pi sin θ

, (4.10)

with fast radial dynamics r1 “ 0. Finally, at every equation above the functions wi, pi and
qi must be calculated at the point φ1px, θ, 0q “ px, 0, 0q.

In order to perform a deeper analysis of the dynamics given by Lemma 4.1
with GSP-Theory as described at Section 2.2, let Si be one of the cylinder’s stripe and let

Mi “
 

px, θq P Rˆ S1; fipx, θ, 0q “ 0
(

be its slow manifold, where fipx, θ, 0q “ qi cos θ ´ pi sin θ.

Given px0, θ0, 0q P Mi ˆ t0u, the Jacobian matrix of the complete layer system
(4.4) over this point is

Jfast “

»

—

–

0 0 0
pfiqx pfiqθ 0

0 0 0

fi

ffi

fl

,

where pfiqx and pfiqθ represents the partial derivatives calculated at px0, θ0, 0q. The eigen-
values of this matrix are the elements of the set t0, 0, pfiqθu and, therefore, px0, θ0q is
normally hyperbolic if, and only if, pfiqθ ‰ 0. However, we observe that, since we are over
the slow manifold, then pfiqθ “ 0 leads to the homogeneous linear system
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#

fi “ 0
pfiqθ “ 0

„

#

qi cos θ ´ pi sin θ “ 0
qi sin θ ` pi cos θ “ 0

„

«

cos θ ´ sin θ
sin θ cos θ

ff«

qi

pi

ff

“

«

0
0

ff

whose unique solution is the trivial, pi “ qi “ 0, since the trigonometrical matrix above is
invertible (det ” 1) for every θ P S1 and, therefore, we conclude that pfiqθ ‰ 0 whenever

pi ‰ 0 or qi ‰ 0, (WFH)

henceforth, called weak fundamental hypothesis, or WFH for short. We also observe
that

pfiqx “ pqiqx cos θ ´ ppiqx sin θ

which, as above, supposing pfiqx “ 0 leads to the homogeneous linear system

#

qi cos θ ´ pi sin θ “ 0
pqiqx cos θ ´ ppiqx sin θ “ 0

„

«

qi pi

pqiqx ppiqx

ff«

cos θ
sin θ

ff

“

«

0
0

ff

which only admits the absurd solution cos θ “ sin θ “ 0 if the matrix above is invertible.
Hence, we can ensure pfiqx ‰ 0 by imposing this absurd, i.e.,

0 ‰ det
«

qi pi

pqiqx ppiqx

ff

“ qippiqx ´ pipqiqx (SFH)

which always implies the weak fundamental hypothesis and, therefore, will be called strong
fundamental hypothesis, or SFH for short.

Theorem 4.2. The radial dynamics can only be transversal ( 9r ‰ 0) to the cylinder C
over the slow manifold Mi. More over, under (WFH), it is in fact transversal.

Proof. The first part of the statement is assured by Lemma 4.1. For the second part, just
observe that 9r “ ´pfiqθ ‰ 0 under (WFH).

Theorem 4.3. The slow manifold Mi is locally a graph px, θpxqq under (WFH). However,
if ‖pfiqθ‖ admits a global positive minimum, then Mi is globally a graph px, θpxqq. Either
way, θpxq is of class Ck.

Proof. The first part is assured by the usual Implicit Function Theorem applied to
fipx0, θ0, 0q “ 0 over Mi, since under (WFH) we have ‖pfiqθ‖ ą 0. Analogously, the second
part is assured by the Global Implicit Function Theorem found in [57, p. 253], which
requires a stronger hypothesis.
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Theorem 4.4. The slow manifold Mi is normally hyperbolic at every point that satisfies
(WFH).

Proof. Just observe that the only non-trivial eigenvalue, pfiqθ, is non-zero under (WFH).

Theorem 4.5. The hyperbolic singularities of the reduced system (4.9) acts as hyperbolic
saddle or node singularities of Si under (WFH).

Proof. Let P “ px0, θ0q P Mi be a hyperbolic singularity of the reduced system, i.e.,
wipx0, 0, 0q “ 0 with eigenvalue λ1 “ pwiqxpx0, 0, 0q ‰ 0. We have two possibilities:

• λ1 ą 0 ñ pjs, juq “ p0, 1q; or

• λ1 ă 0 ñ pjs, juq “ p1, 0q,

where js and ju are the dimensions of the stable and unstable manifolds of P with respect
to the reduced system, respectively.

On the other hand, under (WFH) we also have the non-trivial eigenvalue
λ2 “ pfiqθpx0, θ0, 0q ‰ 0 for the layer system and, therefore, the two possibilities:

• λ2 ą 0 ñ pks, kuq “ p0, 1q; or

• λ2 ă 0 ñ pks, kuq “ p1, 0q,

where ks and ku are the dimensions of the stable and unstable manifolds of P with respect
to the layer system, respectively.

Hence, observing that j “ dim P “ 0 and remembering Theorem 2.1, any
combination of the signs of λ1 and λ2 leads to the total sum of dimensions

pjs ` ksq ` pju ` kuq “ 2 “ dimSi,

and, therefore, P acts as a hyperbolic singularity of Si. Finally, the saddle-node duality
comes from the fact that both non-trivial eigenvalues above have no imaginary parts.

In other words, under (WFH), the slow manifold Mi is, at the very least,
locally a graph. More than that, it is the entry-point for the external dynamics to the
cylinder. Besides that, it is normally hyperbolic at its full extension, assuring then not
only persistence and well-behaved stability for its invariant compact parts, but also that
Mi is always attracting or repelling the surrounding (layer) dynamics. All these nice
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properties come at the low cost of (WFH). Therefore, it is not a surprise that, for every
system studied below, we require at least (WFH), but also always test for (SFH), whose
importance will become clear when studying affine systems.

4.3 Constant Dynamics
Let C3 Ă Dk

3 be the set of all piecewise smooth vector fields F with a double
discontinuity given by the constant vector fields

Fipx, y, zq “ pdi1, di2, di3q, (4.11)

where dij P R for all i and j. According to Lemma 4.1, the dynamics over Σx of such a field
is blow-up associated to the following dynamics over the cylinder C “ RˆS1

“ S1Y. . .YS4:
over each stripe Si acts a slow-fast dynamics whose reduced dynamics is given by

#

9x “ di1

0 “ di3 cos θ ´ di2 sin θ
, (4.12)

with radial slow dynamics 9r “ di2 cos θ ` di3 sin θ; and layer dynamics given by

#

x1 “ 0
θ1 “ di3 cos θ ´ di2 sin θ

, (4.13)

with radial fast dynamics r1 “ 0.

Besides that, for (4.11), we have pi “ di2 and qi “ di3 so that (WFH) is satisfied
as long as

di2 ‰ 0 or di3 ‰ 0, (4.14)

whereas (SFH) is never satisfied, since ppiqx “ pqiqx “ 0.

Therefore, our goal at this section is to fully describe the dynamics of (4.11)
over the cylinder C under the hypothesis (4.14). In order to do so, we are going to
systematically analyze the slow-fast systems (4.12)–(4.13) for the two cases suggested by
(4.14). This analysis takes place in Sections 4.3.1 and 4.3.2, resulting in Theorem 4.6 stated
and exemplified at Section 4.3.3.

4.3.1 Case di2 ‰ 0

In order to explicitly define the slow manifold Mi, observe that whenever
cos θ ‰ 0 the second equation of (4.12) gives us
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0 “ di3 cos θ ´ di2 sin θ ô tan θ “ di3
di2

ô θ “ arctan
ˆ

di3
di2

˙

` nπ “ θi ` nπ,

where n P Z. Therefore, without loss of generality, the slow manifold can be written as
Mi “ Li Y L

π
i , where

Li “ tpx, θq P Rˆ r0, 2πs ; θ “ θiu and
Lπi “ tpx, θq P Rˆ r0, 2πs ; θ “ θi ` πu ,

which consists of two straight lines inside the cylinder C “ Rˆ r0, 2πs, as the red part of
Figure 23.

Observe that, since θi P
´

´
π

2 ,
π

2

¯

and θi ` π P
ˆ

π

2 ,
3π
2

˙

, then either Li Ă S1

and Lπi Ă S3 or Li Ă S4 and Lπi Ă S2. In other words, this straight lines are always at
intercalated stripes. Therefore, a given stripe Si might or might not contain one of this
straight lines, depending exclusively on the value of θi.2 This completes the qualitative
analysis of the shape of the slow manifold.

θ “ 0

θ “
π

2

θ “ π

θ “
3π
2

θ “ 2π

Lπi

Li

Figure 23 – Constant double discontinuity dynamics for di1 “ 1 ą 0, di2 “ 0.7 ą 0 and
di3 “ 1 ą 0. At this example we have θi “ arctan 1

0.7 « 0.96. Therefore, for
example, S1 has θ “ θi as an attracting visible part of the slow manifold;
whereas S2 has none.

2 In particular, when di3 “ 0 we have θi “ 0 and, therefore, the straight lines Li and Lπi are given by
θ “ 0 and θ “ π, respectively, which are part of the stripes’ boundary.
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Over both the straight lines Mi “ Li Y Lπi , we have the one-dimensional
dynamics given by the first equation of (4.12), i.e., 9x “ di1. Analyzing this equation we
observe that, considering the usual growth direction of the x-axis, the dynamics over Mi

is increasing if di1 ą 0 and decreasing if di1 ă 0. This completes the qualitative analysis of
the reduced dynamics.

Regarding the layer dynamics, we have the layer system (4.13) which says that
for each fixed value of x P R, we have a one-dimensional dynamics given by the second
equation of (4.13). In particular, assuming that cos θ ą 0 and di2 ą 0, then

θ1 ą 0 ô di3 cos θ ´ di2 sin θ ą 0 ô tan θ ă di3
di2

ô θ ă arctan
ˆ

di3
di2

˙

“ θi,

since the arctangent function is strictly increasing. Likewise and under the same conditions,
we have that

θ1 ă 0 ô θ ą arctan
ˆ

di3
di2

˙

“ θi

and, therefore, we conclude that for di2 ą 0, the straight line Li is attractor of surrounding
layer dynamics and, therefore, Lπi is a repellor, as the green part of Figure 23. An analogous
study for di2 ă 0 allows us to reach the results summarized in Table 1.

di2 ă 0 di2 ą 0
Li repellor attractor
Lπi attractor repellor

Table 1 – Layer dynamics around the straight lines Li and Lπi that compose the slow
manifold Mi “ Li Y L

π
i .

Finally, at cos θ “ 0 with di2 ‰ 0 the reduced system (4.12) tells us that
Mi “ H and, therefore, there is only the fast dynamics (4.13) which reduces to

#

x1 “ 0
θ1 “ ´di2

and
#

x1 “ 0
θ1 “ di2

for θ “ π

2 and θ “
3π
2 , respectively, whose dynamics is consistent with Table 1. This

completes the qualitative analysis of the layer dynamics and, therefore, the qualitative
analysis of this case. See Example 4.1.
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4.3.2 Case di2 “ 0

Now, the reduced system (4.12) can be written as

#

9x “ di1

0 “ di3 cos θ
, (4.15)

whose slow manifold Mi is implicitly given by the equation 0 “ di3 cos θ which actually
means 0 “ cos θ, since we are under (WFH) and, therefore, di3 ‰ 0. In other words,
Mi “ Li Y Lπi with Li and Lπi being the straight lines given by θ “

π

2 and θ “
3π
2 ,

respectively.3 The dynamics over and around Mi behaves exactly as in the case di2 ‰ 0,
but exchanging di2 with di3 at Table 1.

4.3.3 Theorem and Examples

Summarizing, we conclude that the dynamics over Σx for constant fields behaves
as described in the theorem below, whose proof consists in the analysis done above in
Sections 4.3.1 and 4.3.2.

Theorem 4.6 (Constant Dynamics). Given F P C3 with constant components Fi “

pdi1, di2, di3q such that di2 ‰ 0 or di3 ‰ 0, let F̃ P C̃3 be the vector field induced by the
blow-up φ1px, θ, rq “ px, r cos θ, r sin θq. Then, this blow-up associates the dynamics over
Σx with the following dynamics over the cylinder C “ Rˆ S1

“ S1 Y . . .Y S4: over each
stripe Si acts a slow-fast dynamics whose slow manifold is given by Mi “ Li Y L

π
i , where

Lπi is a π-translation of Li in θ and

1. case di2 ‰ 0, then

Li “

"

px, θq P Rˆ r0, 2πs ; θ “ arctan
ˆ

di3
di2

˙*

;

2. case di2 “ 0 and di3 ‰ 0, then

Li “
!

px, θq P Rˆ r0, 2πs ; θ “ π

2

)

;

which, in both cases, consists of two straight lines inside the cylinder C, possibly invisible
relative to Si. Over this straight lines acts the reduced dynamics 9x “ di1 and, around then,
acts the layer dynamics described in Table 1, but exchanging di2 with di3 if di2 “ 0.

3 Here, again, the straight lines Li and Lπi are part of the boundary of the stripes.
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Σx

F1

F3 F4

F2

(a) Before the blow-up.

θ “ 0

θ “
π

2

θ “
3π
2

θ “ π

F̃1

F̃3 F̃4

F̃2

(b) After the blow-up.

Figure 24 – Slices of the system studied at Example 4.1.

Example 4.1. Let F P C3 be given by the constant vector fields

F2px, y, zq “ p1,´1,´1q, F1px, y, zq “ p1,´1, 1q,
F3px, y, zq “ p1, 1,´1q, F4px, y, zq “ p1, 1, 1q,

that behaves as represented at Figure 24a. Using Theorem 4.6 we can verify that, over the
cylinder C given by the blow-up of Σx, this system behaves as expected, i.e., as represented
at Figure 24b.

For instance, over the stripe S1 “ Rˆ r0, π{2s we have

pd11, d12, d13q “ F1px, y, zq “ p1,´1, 1q

such that, according to Theorem 4.6, induces over S1 a slow-fast system with L1 Ă M1

given by

θ “ θ1 “ arctan
ˆ

d13

d12

˙

“ arctan
ˆ

1
´1

˙

“ ´
π

4 ,

and, therefore, the slow manifold M1 consists of the straight lines L1 Ă S4 and Lπ1 Ă S2

given by θ “ θ1 “ ´
π

4 and θ “ θ1 ` π “
3π
4 , respectively. In particular, none of these

lines are visible at S1. Over these lines acts the reduced dynamics 9x “ d11 “ 1. Finally,
since d12 “ ´1 ă 0, then L1 is repellor and Lπ1 is attractor of surrounding layer dynamics,
according to Table 1.

Therefore, we conclude that the dynamics generated by F1 over the whole
cylinder C behaves as represented in Figure 25. In particular, the dynamics over the stripe
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S1 behaves as represented in Figure 24b. The dynamics over the other stripes can be
similarly verified to be as represented.

θ “ 0

θ “
π

2

θ “ π

θ “
3π
2

θ “ 2π

L1

Lπ1

Figure 25 – Dynamics over C generated by the field F1 studied at Example 4.1. The
dynamics over S1 behaves as represented in Figure 24b.

4.4 Affine Dynamics
Let A3 Ă Dk

3 be the set of all piecewise smooth vector fields F with a double
discontinuity given by the affine vector fields

Fipx, y, zq “ pai1x` bi1y ` ci1z ` di1,

ai2x` bi2y ` ci2z ` di2,

ai3x` bi3y ` ci3z ` di3q,

(4.16)

where aij, bij, cij, dij P R for all i and j. According to Lemma 4.1, the dynamics over
Σx of such a field is blow-up associated to the following dynamics over the cylinder
C “ Rˆ S1

“ S1 Y . . .Y S4: over each stripe Si acts a slow-fast dynamics whose reduced
dynamics is given by

#

9x “ ai1x` di1

0 “ pai3x` di3q cos θ ´ pai2x` di2q sin θ
, (4.17)
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with radial slow dynamics 9r “ pai2x ` di2q cos θ ` pai3x ` di3q sin θ; and layer dynamics
given by

#

x1 “ 0
θ1 “ pai3x` di3q cos θ ´ pai2x` di2q sin θ

, (4.18)

with radial fast dynamics r1 “ 0.

Besides that, for (4.16), we have pi “ ai2x ` di2 and qi “ ai3x ` di3 so that
(WFH) is satisfied as long as

ai2x` di2 ‰ 0 or ai3x` di3 ‰ 0, (4.19)

whereas, since ppiqx “ ai2 and pqiqx “ ai3, then (SFH) is satisfied as long as

0 ‰ pipqiqx ´ qippiqx “

“ pai2x` di2qai3 ´ pai3x` di3qai2 “

“ ai3di2 ´ ai2di3 “: γi,

(4.20)

which not only assures the fundamental hypothesis but also avoids the already studied
constant case, as we will see below.

As in the constant case, our goal at this section is to fully describe the dynamics
of (4.16) over the cylinder C under the hypothesis (4.20). In order to do so, we are going
to systematically analyze the slow-fast systems (4.17)–(4.18) for the cases suggested by
(4.19) and outlined at Table 2.

ai2x` di2 ‰ 0 ai2x` di2 “ 0
ai2 ‰ 0 A B
ai2 “ 0 C D

Table 2 – Division (4.16) dynamics in study cases.

Observe that case (B) actually complements case (A). Moreover, observe that
at case (D) we have ai2 “ 0 and di2 “ 0 which implies the absurd γi “ 0. Therefore,
cases (A) and (B) complement each other and it will be studied at Section 4.4.1; case (C)
will be studied at Section 4.4.2. The resulting Theorem 4.7 is stated and exemplified at
Section 4.4.3.

4.4.1 Case ai2 ‰ 0

Lets start with case (A), i.e., assume that ai2 ‰ 0 and ai2x` di2 ‰ 0. In order
to explicitly define Mi, observe that whenever cos θ ‰ 0 the second equation of (4.17)
gives us
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0 “ pai3x` di3q cos θ ´ pai2x` di2q sin θ ô

ô tan θ “ ai3x` di3
ai2x` di2

“: hpxq ô

ô θ “ arctan
ˆ

ai3x` di3
ai2x` di2

˙

` nπ “ θi pxq ` nπ,

where n P Z. Therefore, without loss of generality, the slow manifold can be written as
Mi “ Hi YH

π
i , where

Hi “ tpx, θq P Rˆ r0, 2πs ; θ “ θipxqu and
Hπ
i “ tpx, θq P Rˆ r0, 2πs ; θ “ θipxq ` πu ,

which consists of two arctangent-normalized hyperboles inside the cylinder C “ Rˆ S1.
In fact, since ai2 ‰ 0, then hpxq is a hyperbole such that

d

dx
hpxq “

d

dx

„

ai3x` di3
ai2x` di2



“
ai3di2 ´ di3ai2
pai2x` di2q2

“
γi

pai2x` di2q2

or, in other words, it is an increasing hyperbole if γi ą 0 and decreasing if γi ă 04. Besides
that, observe that hpxq has a vertical asymptote at

ai2x` di2 “ 0 ô x “ ´
di2
ai2

“: αi

which satisfies

lim
xÑα˘i

hpxq “ ¯8 and lim
xÑα˘i

hpxq “ ˘8

if γi ą 0 and γi ă 0, respectively; and hpxq has a horizontal asymptote at

lim
xÑ˘8

hpxq “ lim
xÑ˘8

ˆ

ai3x` di3
ai2x` di2

˙

“
ai3
ai2
.

Translating the information above about the hyperbole hpxq to the arctangent-normalized
hyperbole Hi, we get that it

• is an increasing curve if γi ą 0 and decreasing if γi ă 0;
4 If γi “ 0, then hpxq is a constant function and, therefore, Hi and Hπ

i are straight lines. In other words,
the constant case is recovered.
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• has a vertical asymptote at x “ αi which satisfies

lim
xÑα˘i

θipxq “ ¯
π

2 and lim
xÑα˘i

θipxq “ ˘
π

2

if γi ą 0 and γi ă 0, respectively;

• has a horizontal asymptote at θ “ arctan
ˆ

ai3
ai2

˙

“: βi.

More precisely, the hyperbole Hi behave as the red part of Figure 26a. However, putting
together the hyperboles Hi and Hπ

i we get that they actually behave as two arctangent-like
curves as represented at Figure 26b.

These arctangent-like curves will be denoted by Ai and Aπi . Based on the
analysis done before, we conclude that they are given by

Ai “ tpx, θq P r´8, αis ˆ r0, 2πs ; θ “ θipxq ` πuY

Y tpx, θq P rαi,`8s ˆ r0, 2πs ; θ “ θipxqu ,

Aπi “ tpx, θq P r´8, αis ˆ r0, 2πs ; θ “ θipxquY

Y tpx, θq P rαi,`8s ˆ r0, 2πs ; θ “ θipxq ` πu ,

and, therefore, on one hand, Ai is an arctangent-like curve with θ “ βi ` π and θ “ βi

as negative and positive5 horizontal asymptotes, respectively; on the other hand, Aπi is
an arctangent-like curve with θ “ βi and θ “ βi ` π as negative and positive horizontal
asymptotes, respectively.6 Moreover, because of the very definition of βi, the positioning
of the asymptotes inside the cylinder behaves similarly as the straight lines Li and Lπi in
Section 4.3. This completes the qualitative analysis of the shape of the slow manifold and,
from now on we will write Mi “ Ai Y A

π
i .

Over both the arctangents Mi “ AiYA
π
i , we have the one-dimensional dynamics

given by the first equation of (4.17), i.e., 9x “ ai1x`di1. Analyzing this equation we observe
that, if ai1 ‰ 0, then there are hyperbolic critical points at

x “ ´
di1
ai1

“: δi,

being these points attractors if ai1 ă 0 and repellers if ai1 ą 0, as represented at Figure 26b.
Since we are under (SFH), then Theorem 4.5 tells us that, in this case, these hyperbolic
singularities are actually hyperbolic singularities of the whole stripe Si. If ai1 “ 0, then
5 Where negative means xÑ ´8 and positive means xÑ `8.
6 In particular, when ai3 “ 0 we have βi “ 0 and, therefore, the horizontal asymptotes are given by

θ “ 0 and θ “ π, which are part of the stripes’ boundary.
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´
π

2

0

π

2

βi

x “ αi x “ δi

P

(a) Hyperbole Hi.

P

Pπ

0

βi

π

2

π

βi ` π

3π
2

2π

(b) Hyperboles Hi and Hπ
i together at the cylinder C forming the arctangents Ai

and Aπi .

Figure 26 – Affine double discontinuity dynamics for ai1 “ 1, di1 “ ´1, ai2 “ 1, di2 “ 1,
ai3 “ 1 and di3 “ 0. At this example we have αi “ ´1, βi “

π

4 and δi “ 1.
Therefore, for example, S1 has part of the hyperbole Hi as a visible part of
the slow manifold; whereas S2 has only part of Aπi visible.

there is no critical point and the dynamics over Mi is exactly as in the constant case
described in Section 4.3. This completes the qualitative analysis of the reduced dynamics.

Regarding the layer dynamics, we have the layer system (4.18) which says that
for each fixed value of x P R, we have a one-dimensional dynamics given by the second
equation of (4.18). In particular, assuming that cos θ ą 0 and ai2x` di2 ą 0, then

θ1 ą 0 ô θ ă θipxq,

since the arctangent function is strictly increasing. Likewise, and under the same conditions,
we have that
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θ1 ă 0 ô θ ą θipxq,

and, therefore, we conclude that for ai2x` di2 ą 0, the piece of curve θ “ θipxq is attractor
of the surrounding dynamics and, therefore, θ “ θipxq ` π is repellor. Moreover, if ai2 ą 0,
then ai2x` di2 ą 0 happens for x ą αi; if ai2 ă 0, then ai2x` di2 ą 0 happens for x ă αi.
Completing this analysis and comparing with the definition of Ai and Aπi we reach the
results summarized at Table 3 and represented as the green part of Figure 26. Moreover,
at cos θ “ 0 with ai2 ‰ 0 and ai2x` di2 ‰ 0, (4.18) give us the layer systems

#

x1 “ 0
θ1 “ ´pai2x` di2q

and
#

x1 “ 0
θ1 “ ai2x` di2

for θ “ π

2 and θ “
3π
2 , respectively, whose dynamics is consistent with Table 3. This

completes the qualitative analysis of the layer dynamics for case (A).

Now, lets consider the case (B), which complements the case (A) studied above
defining the missing dynamics over ai2x` di2 “ 0 (ô x “ αi) with ai2 ‰ 0. At this case,
the reduced system (4.17) becomes

#

9x “ ai1x` di1

0 “ pai3x` di3q cos θ
,

whose slow manifold Mi is implicitly given by the equation 0 “ pai3x` di3q cos θ which
actually means 0 “ cos θ, since we are under SFH and, therefore ai3x` di3 ‰ 0. In other
words, Mi “

"

´

αi,
π

2

¯

,

ˆ

αi,
3π
2

˙*

. Over these points acts the dynamics 9x “ ai1x` di1,

which is consistent with case (A). Regarding the fast dynamics, we have the layer system

#

x1 “ 0
θ1 “ pai3x` di3q cos θ

„

$

&

%

x1 “ 0
θ1 “ ´

γi
ai2

cos θ ,

since x “ αi, which can be easily verified to be consistent with the layer dynamics given
by Table 3 and, therefore, it is consistent with case (A). Therefore, we conclude that case
whole (B) is consistent with case (A). In other words, the dynamics over the asymptote
ai2x` di2 “ 0 agrees with the surrounding dynamics.

ai2 ă 0 ai2 ą 0
Ai repellor attractor
Aπi attractor repellor

Table 3 – Layer dynamics around the arctangents Ai and Aπi that compose the slow
manifold Mi “ Ai Y A

π
i .
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4.4.2 Case ai2 “ 0

0

σi`

π

σi´

2π

Pπ

P

Figure 27 – Affine double discontinuity dynamics for ai1 “ 1, di1 “ ´1, ai2 “ 0, di2 “ 1,
ai3 “ 1 and di3 “ 1. At this example we have δi “ 1 and σi˘ “ ˘

π

2 .

For case (C), remember that we have ai2 “ 0 and ai2x ` di2 ‰ 0 implying
di2 ‰ 0. Therefore, everything at the beginning of Section 4.4.1 is true. However, whenever
cos θ ‰ 0, the explicit expression for the slow manifold Mi is now

θ “ arctan
ˆ

ai3x` di3
di2

˙

` nπ “ θipxq ` nπ,

where n P Z. Therefore, without loss of generality, the slow manifold can be written as
Mi “ Ai Y A

π
i , where

Ai “ tpx, θq P Rˆ r0, 2πs ; θ “ θipxqu and
Aπi “ tpx, θq P Rˆ r0, 2πs ; θ “ θipxq ` πu ,

which consists of two arctangent-like curves inside the cylinder C “ RˆS1 as the red part
of Figure 27. In fact, since ai2 “ 0, then hpxq is a straight line and, therefore,

θ “ θipxq “ arctan phpxqq

is an arctangent curve. Besides that, we have

d

dx
hpxq “

γi
pai2x` di2q2

“
γi
d2
i2
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and, therefore, Ai and Aπi are increasing curves if γi ą 0 and decreasing if γi ă 07. Moreover,
since

lim
xÑ˘8

θipxq “ lim
xÑ˘8

„

arctan
ˆ

ai3x` di3
di2

˙

“

“ arctan
„

lim
xÑ˘8

ˆ

ai3x` di3
di2

˙

“

“ arctan
„

˘ sgn
ˆ

ai3
di2

˙

8



“

“ ˘ sgn
ˆ

ai3
di2

˙

π

2 “ ˘ sgn
ˆ

γi
d2
i2

˙

π

2 “

“ ˘ sgn pγiq
π

2 “
: σi˘,

then Ai has σi´ and σi` as negative and positive horizontal asymptote, respectively; while
Aπi has σi` and σi´ as negative and positive horizontal asymptote, respectively. This
completes the qualitative analysis of the shape of the slow manifold.

Over both the arctangents Mi “ AiYA
π
i , we have the one-dimensional dynamics

given by the first equation of (4.17), i.e., 9x “ ai1x ` di1 which behaves as described in
Section 4.4.1. This completes the qualitative analysis of the reduced dynamics.

Regarding the layer dynamics, a completely analogous analysis such as that
made for the previous cases allows us to conclude that it behaves as described in Table 3,
including the case cos θ “ 0, but exchanging ai2 with di2.

4.4.3 Theorem and Examples

Summarizing, we conclude that the dynamics over Σx for affine fields behaves
as described in the theorem below, whose proof consists in the analysis done above.

Theorem 4.7 (Affine Dynamics). Given F P A3 with affine components Fi given by
(4.16) and such that γi ‰ 0, let F̃ P Ã3 be the vector field induced by the blow-up
φ1px, θ, rq “ px, r cos θ, r sin θq. Then, this blow-up associates the dynamics over Σx with
the following dynamics over the cylinder C “ Rˆ S1

“ S1 Y . . .Y S4: over each stripe Si
acts a slow-fast dynamics whose slow manifold is given by Mi “ Ai Y A

π
i , where Aπi is a

π-translation of Ai in θ and

1. case ai2 ‰ 0, then
7 Again, if γi “ 0 (ô ai3 “ 0), then hpxq is a constant function and, therefore, Ai and Aπi are straight

lines. In other words, the constant case is recovered.



Chapter 4. Double Discontinuity 79

Ai “ tpx, θq P r´8, αis ˆ r0, 2πs ; θ “ θipxq ` πuY

Y tpx, θq P rαi,`8s ˆ r0, 2πs ; θ “ θipxqu

with θipxq “ arctan
ˆ

ai3x` di3
ai2x` di2

˙

, which consists in an arctangent-like curve inside

the cylinder C with θ “ βi ` π and θ “ βi as negative and positive horizontal
asymptotes, respectively;

2. case ai2 “ 0, then

Ai “ tpx, θq P Rˆ r0, 2πs ; θ “ θipxqu

with θipxq “ arctan
ˆ

ai3x` di3
di2

˙

, which consists in an arctangent-like curve in-

side the cylinder C with θ “ σi´ and θ “ σi` as negative and positive horizontal
asymptotes, respectively.

Both arctangents are increasing if γi ą 0 and decreasing if γi ă 0. Over them act
the reduced dynamics 9x “ ai1x`di1 and, around them, acts the layer dynamics described in
Table 3, but exchanging ai2 with di2 if ai2 “ 0. Finally, the new parameters above are given

by αi “ ´
di2
ai2

, βi “ arctan
ˆ

ai3
ai2

˙

, γi “ ai3di2 ´ di3ai2, δi “ ´
di1
ai1

and σi˘ “ ˘ sgn pγiq
π

2 .

Example 4.2. Let F P A3 be given by affine vector fields such that

F2 :

»

—

–

a21 d21

a22 d22

a23 d23

fi

ffi

fl

“

»

—

–

1 ´2
´1 1
´1 0

fi

ffi

fl

, F1 :

»

—

–

a11 d11

a12 d12

a13 d13

fi

ffi

fl

“

»

—

–

´1 2
´1 1

1 0

fi

ffi

fl

,

F3 :

»

—

–

a31 d31

a32 d32

a33 d33

fi

ffi

fl

“

»

—

–

1 ´2
1 1
´1 0

fi

ffi

fl

, F4 :

»

—

–

a41 d41

a42 d42

a43 d43

fi

ffi

fl

“

»

—

–

´1 2
1 1
1 0

fi

ffi

fl

,

with parameters cij’s and dij’s arbitrary since, according to Theorem 4.7, they only affect
the dynamics outside the cylinder. Using this theorem we can also verify that, over the
cylinder C given by the blow-up of Σx, the system has a single slow cycle as represented
at Figure 28.

For instance, according to Theorem 4.7, the field F1 induces a slow-fast system
whose slow manifold M1 “ A1 Y A

π
1 consists of arctangents with horizontal asymptotes
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θ “ β1 “ arctan
ˆ

a13

a12

˙

“ arctan p´1q “ ´π4

at S4 and θ “ β1 ` π “
3π
4 at S2. Besides that, since

γ1 “ a13d12 ´ a12d13 “ 1

then these arctangents are increasing. Therefore, we conclude that M1 X S1 Ă Aπ1 , and it
transversally crosses S1 as represented at the lowest stripe of Figure 28 from R1 to Q1,
where the point Q1 is given by

π

2 “ θ1pxq “ arctan
ˆ

ai3x` di3
ai2x` di2

˙

“ arctan
ˆ

x

´x` 1

˙

,

which happens when xÑ 1´; and the point R1 is given by

0 “ θ1pxq “ arctan
ˆ

ai3x` di3
ai2x` di2

˙

“ arctan
ˆ

x

´x` 1

˙

,

which happens when xÑ 0`. Dynamically it also goes R1 Ñ Q1, since over M1 X S1 acts
the reduced dynamics 9x “ ´x` 2, which has x “ 2 as a stable singularity. Finally, since
a12 “ ´1 ă 0 and M1 X S1 Ă Aπ1 , then M1 X S1 attracts the surrounding layer dynamics,
according to Table 3.

Q1

R1
0

π

2

π

3π
2

2π

Figure 28 – Dynamics over C generated by the field F studied at Example 4.2.
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Therefore, we conclude that the dynamics generated by F1 over the stripe S1,
in fact, behave as represented at Figure 28. The dynamics over the other stripes can be
similarly verified to be as represented.

Corollary 4.1. Every F P A3 with γi ‰ 0 can induce at most one slow cycle over the
cylinder.

Proof. Given a stripe Si, according to Theorem 4.7 the arctangents that forms the slow
manifold Mi can either have a horizontal asymptote inside Si or not.

If a horizontal asymptote is inside Si, then a slow cycle construction is im-
possible, even if the asymptote is at one of the borders of Si, since Mi does not cross
transversally both borders of Si.

However, if no horizontal asymptote is inside Si, then a construction similar to
that realized at Example 4.2 can occur. Finally, no more than one slow cycle can occur,
since the arctangents are strictly monotonous and, therefore, transversally crosses Si at
most once.

4.5 Structural Stability
Let F P Dk

3 be a piecewise smooth vector field with a double discontinuity given
by affine vector fields (4.16). The theorems obtained in the previous sections fully describe
the affine double discontinuity dynamics over the cylinder C of the induced vector field
F̃ P D̃k

3 . As an application, we would like to use this knowledge to study its structural
stability. The first step in this process consists of defining a concept of structural stability
which fits the systems we are studying. In order to do so, we are going to mimic the
classical definition for the regular case, Rk

pUq, obtained from Definition 1.16, which can
be easily extended to Dk

3 . In fact, on one hand, systems in Rk
pUq have a single subset

that should be kept invariant, Σ “ h´1
p0q; on the other hand, systems in Dk

3 have a set of
subsets

I “ tΣ12,Σ23,Σ34,Σ14,Σxu

which should be kept invariants by topological equivalence. Therefore, a direct substitution
gives us the following definition:

Definition 4.1. Let F,G P Dk
3 . We say that F and G are topologically equivalent

and denote F „ G if, and only if, there exists a homeomorphism ϕ : R3
Ñ R3 that keeps

every I P I invariant and takes orbits of F into orbits of G preserving the orientation of
time. From this definition the concept of structural stability in Dk

3 is naturally obtained.
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For the blow-up induced vector fields, D̃k
3 , the set of invariant subsets are given

by

Ĩ “
 

Σ̃12, Σ̃23, Σ̃34, Σ̃14, C
(

and, therefore, we define:

Definition 4.2. Let F̃, G̃ P D̃k
3 . We say that F̃ and G̃ are topologically equivalent and

denote F̃ „ G̃ if, and only if, there exists a homeomorphism ϕ̃ : RˆS1
ˆR` Ñ RˆS1

ˆR`

that keeps every I P Ĩ invariant and takes orbits of F̃ into orbits of G̃ preserving the
orientation of time. From this definition the concept of structural stability in D̃k

3 is naturally
obtained.

Now, let F̃, G̃ P D̃k
3 be topologically equivalent by a homeomorphism ϕ̃. In this

case, we have that ϕ̃
ˇ

ˇ

I
with I P Ĩ are also homeomorphisms taking orbits into orbits and

preserving the orientation of time. In other words, the existence of these homeomorphisms
is a necessary condition for the topological equivalence. More precisely:

Proposition 4.1. If F̃ „ G̃, then F̃
ˇ

ˇ

I
„ G̃

ˇ

ˇ

I
for every I P Ĩ.

We are interested on the dynamics over the cylinder C. Therefore, given F P Dk
3 ,

we look for necessary and/or sufficient conditions for the structural stability of F̃
ˇ

ˇ

C
. Beyond

the intrinsic interest, given in Proposition 4.1 above, such conditions shall also reveal
relevant information on the structural stability of F̃ and, therefore, on the structural
stability of F. In fact, from Proposition 4.1 it follows the result below.

Corollary 4.2. If F̃ is structurally stable, then F̃
ˇ

ˇ

I
is structurally stable for every I P Ĩ.

Proof. Given I P Ĩ, let W̃ Ă Dk
3 be an open neighborhood of F̃. Observe that

W̃
ˇ

ˇ

I
“
 

H̃
ˇ

ˇ

I
; H̃ P W̃

(

is an open neighborhood of F̃
ˇ

ˇ

I
.

Therefore, if F̃
ˇ

ˇ

I
was not structurally stable, would exist G̃

ˇ

ˇ

I
P W̃

ˇ

ˇ

I
such that

F̃
ˇ

ˇ

I
 G̃

ˇ

ˇ

I
and, therefore, from Proposition 4.1 would follow that G̃  F̃, then implying

that F̃ would not be structurally stable.

Thus, from now on, we will exclusively study conditions for the structural
stability of F̃

ˇ

ˇ

C
. In order to do so, remember that over C acts a regular Filippov dynamics

whose switching manifold is formed by the elements of
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ĨC “
!

Σ0,Σπ
2
,Σπ,Σ 3π

2

)

,

where Σθ “ tpx, θq; x P Ru. Therefore, without loss of generality for the previous results,
it is natural to adopt the following definitions of equivalence and stability for C:

Definition 4.3. Let F̃, G̃ P D̃k
3 . We say that F̃ and G̃ are C-topologically equivalent

and denote F̃ „c G̃ if, and only if, there exists a homeomorphism ϕ̃ : C Ñ C that keeps
every I P ĨC invariant and takes orbits of F̃

ˇ

ˇ

C
into orbits of G̃

ˇ

ˇ

C
preserving the orientation

of time. From this definition the concept of C-structural stability is naturally obtained.

Although global and naturally derived from the regular case, C-structural
stability, as presented above, is still a fairly complex property to prove and, in fact, to the
best of the author’s knowledge, it is an open problem to characterize it through simple
conditions and, therefore, shall be treated in future works.

However, many of the difficulties found at characterizing C-structural stability
comes from its global aspect. In fact, conditions for a semi-local approach can be found
in [7] and, in order to apply these results, a regular and compact Filippov section of the
cylinder C must be taken.

S`

S´

X`

X´

Σθ0

K

Figure 29 – Regular Filippov system X “ pX´,X`q defined at a convex compact set
K Ă C` Y C´ with switching manifold Σθ0 .

More precisely, given F P Dk
3 and two consecutive stripes C` and C´ meeting at

a straight line Σθ0 P ĨC , let X` and X´ be the smooth vector fields induced over C` XK
and C´XK, respectively, as described at the previous sections and where K Ă C`YC´ is
a convex compact set, see Figure 29. Observe that X “ pX´,X`q is a regular and compact
Filippov system with a connected (due to the convexity of K) switching manifold Σθ0 .

Then, a direct application of Theorem B from [7, p. 5] and the Proposition 1.1
from [39, p. 122] give us the following result:
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Proposition 4.2. Given F P Dk
3 , two consecutive stripes C` and C´ and a convex compact

set K Ă C` Y C´, then the induced Filippov system X “ pX´,X`q is structurally stable
inside K if, and only if, the following sets of conditions are satisfied:

(I) X` and X´ are robustly8 Morse-Smale, i.e., they have:

(C.1) finitely many critical elements9, all hyperbolic;

(C.2) no saddle-connections;

(C.3) only critical elements as non-wandering points;

(II) X` and X´ robustly satisfies that:

(C.4) none of them vanishes at a point of Σθ0;

(C.5) they are tangent to Σθ0 at only finitely many points with both never tangent at
the same point;

(C.6) they are colinear at only finitely many points;

(III) X have:

(C.7) only hyperbolic periodic orbits;

(C.8) no separatrix-connections or relations10;

(C.9) only trivial recurrent orbits.

Observe that (I) refers only to the usual dynamics of X` and X´ over the
smooth parts. On the other hand, (II) considers only the values of X` and X´ over the
switching manifold Σθ0 . Finally, only (III) refers to the actual Filippov dynamics of X.
With that in mind, over the next, and final sections, we will apply Theorem 4.6 and
Theorem 4.7 to analyze this conditions for the particular cases of constant and affine
double discontinuities, respectively, and therefore derive semi-local structural stability
theorems or, more precisely:

Definition 4.4. We say that F P Dk
3 is pI,Kq-semi-local structurally stable if, and

only if, the induced Filippov system X “ pX´,X`q is structurally stable inside a convex
compact set K Ă C` Y C´, where C` and C´ are two consecutive stripes meeting at
I P ĨC.

In fact, given the bifurcation described below, it is natural to study the constant
and affine cases separately, since the first is always structurally unstable inside the last
one. More precisely:
8 In other words, the property is stable under small perturbations.
9 Singularities and periodic orbits.
10 Unstable separatrices arriving at the same point are said to be related.
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Proposition 4.3. Every F P C3 is structurally unstable as an element of A3.

Proof. Let F P C3 Ă Dk
3 be a piecewise smooth vector field with a double discontinuity

given by constant vector fields

Fipx, y, zq “ pdi1, di2, di3q,

where dij P R for all i and j.

Assume, without loss of generality, that di1 ą 0. Then, according to Theorem 4.6,
over the slow manifold we have the dynamics 9x “ di1. As di1 ą 0, then it is strictly
increasing and, in particular, has no singularities.

However, considering F as an element of A3 Ă Dk
3 and, in particular, perturbing

Fi inside A3 with ai1 ‰ 0, then we would now have the dynamics 9x “ ai1x` di1 over the
slow manifold. As di1 ą 0 and ai1 ‰ 0, then it does now have a single singularity at x “ δi

and, besides that, half of its stability was inverted when compared with the unperturbed
dynamics.

In other words, F as an element of A3 violates the robustness of condition (C.1)
of Proposition 4.2 and, therefore, is structurally unstable.

4.5.1 Constant Dynamics

Let F P C3 be a piecewise smooth vector field with a double discontinuity given
by constant vector fields

Fipx, y, zq “ pdi1, di2, di3q, (4.21)

with di2 ‰ 0 or di3 ‰ 0. Remember that, in this case, Theorem 4.6 provides a full description
of the dynamics of (4.21) and, therefore, we would like to combine it with Proposition 4.2
to derive a semi-local structural stability theorem.

In order to apply this results, given Σθ0 P ĨC , let X “ pX´,X`q be the Filippov
system induced by (4.21) in a convex compact set K Ă C`YC´, where C` and C´ are two
consecutive stripes meeting at Σθ0 as represented at Figure 29. According to Theorem 4.6,
the following are the possible categories of dynamics for a stripe Si P tC`, C´u, which we
now analyze against conditions (C.1) — (C.5) of Proposition 4.2 case by case in order
to discover those that can possibly generate structural stable systems, henceforth called
candidates:
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1. di2 ‰ 0:

a) di3 ‰ 0:
One, and only one, of the straight lines Li or Lπi is visible inside the stripe.
Hence, if di1 “ 0, then we have a continuum of singularities, i.e., a violation of
condition (C.1). However, if di1 ‰ 0, then no critical elements are present and,
therefore (C.1) and (C.2) validates. About (C.3), since the slow manifold acts as
α or ω-limit of the surrounding dynamics, then it also validates if di1 ‰ 0. Even
more, since over the borders of Si there is only transversal layer dynamics, then
(C.4) and (C.5) also validates. Finally, observe that, invoking theorems such
as continuity theorems and Thom Transversality Theorem, we easily conclude
the robustness of the properties validated above when perturbing inside C3.
Therefore, this case is a candidate if, and only if, di1 ‰ 0.

b) di3 “ 0:
The only difference between this case and the previous is the fact that, now,
one of straight lines Li or Lπi is over one of the borders of the stripe Si and,
therefore, (C.5) is possibly violated, whatever di1. More specifically, if Li or Lπi
coincides with Σθ0 , then we have instability; otherwise, we have a candidate.

2. di2 “ 0 and di3 ‰ 0:
This case is similar to the previous one (di2‰0 and di3 “ 0): whatever di1, if Li or Lπi
coincides with Σθ0 , then we have instability; otherwise, we have a candidate.

The analysis of the remaining conditions (C.6) — (C.9) requires the combined
dynamics of the stripes C` and C´. Therefore, in order to decide stability, we shall now
analyze all the combinations of candidates obtained above, and summarized at Table 4,
against these conditions.

di2 ‰ 0 di2 “ 0
di3 ‰ 0 di1 ‰ 0 θi ‰ θ0
di3 “ 0 θi ‰ θ0 unstable

Table 4 – Conditions under which the stripe Si is a semi-local structural stability candidate.

Actually, most of the remaining conditions can be easily dropped. In fact,
according to Theorem 4.6, none of the candidates have periodic orbits and, besides that,
because of the α and ω-limit nature of Mi, an orbit that enters Si never touches the
same border again and, therefore, (C.7) always validates, because there is no periodic
orbits. Likewise, there is no singularities, usual or not and, therefore, there is no separatrix-
connections or relations, i.e., (C.8) always validates. Finally, as long as di1 ‰ 0, Poincaré-
Bendixson Theorem assures that no non-trivial recurrent orbits can happen inside Si and,
besides that, again because of the α and ω-limit nature of Mi, neither can they happen
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thought the switching manifold and, therefore, (C.9) also always validates. At this point,
the following theorem has been proved:

Theorem 4.8 (Constant Dynamics Stability). Let F P C3 be given by (4.21) with di2 ‰ 0
or di3 ‰ 0. Given Σθ0 P ĨC, let X “ pX´,X`q be the Filippov system induced around Σθ0

and inside a convex compact set K Ă C` Y C´, where C` and C´ are two consecutive
stripes meeting at Σθ0. Then, F is pΣθ0 , Kq-semi-local structurally stable in C3 if, and only
if, X` and X´ satisfies at least one of the conditions

1. di1di2di3 ‰ 0; or

2. di1 ‰ 0, d2
i2 ` d

2
i3 ‰ 0 and θi ‰ θ0;

and, additionally, X` and X´ are non-colinear over Σθ0, except at finitely many points.

Example 4.3. Lets see an example of instability around the discontinuity manifold Σπ
2
P ĨC

of the cylinder generated by constant vector fields. More precisely, take F P C3 with

F1px, y, zq “ p1,´1, 1q and F2px, y, zq “ p´1, 1, 1q,

whose dynamics over the stripes S1YS2, represented at Figure 30 below, can be determined
as in Example 4.1 using Theorem 4.6.

Since d11d12d13 “ ´1 ‰ 0 and d21d22d23 “ ´1 ‰ 0, then the first part of
Theorem 4.8 is satisfied. However, the induced dynamics X1 and X2 over the stripes S1

and S2, respectively, are colinear over their whole intersection, the discontinuity manifold
Σπ

2
.

In fact, as represented at Figure 30a, for F1 the slow manifold consists of the
straight lines given by θ “ θ1 “ ´

π

4 and θ “ θ1 ` π “
3π
4 ; over then acts the increasing

dynamics 9x “ 1. Besides that, the first line is repellor and, the second, attractor of the
allround dynamics. On the other hand, as represented at Figure 30b, for F2 the slow
manifold consists of the straight lines given by θ “ θ2 “

π

4 and θ “ θ1 ` π “
5π
4 ; over

then acts the decreasing dynamics 9x “ ´1. Besides that, the first line is attractor and, the
second, repellor of the surrounding layer dynamics. In other words, the only differences
between their dynamics is a π-translation in θ and inverse stability.

This symmetry assures the colinearity of X1 and X2 over Σπ
2
, as represented

at Figure 30c. Hence, the final part of Theorem 4.8 is violated and, therefore, this configu-
ration is structurally unstable around Σπ

2
, whatever the convex compact set K considered.

Geometrically, the instability here comes from the fact that each point of colinearity is
associated with a pseudo-singularity of the sliding vector field of the Filippov system
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X “ pX1,X2q and, at our configuration we have a continuum of them. This whole contin-
uum of pseudo-singularities can be easily destroyed by perturbing any of associated vector
fields.

(a) X1 (b) X2

(c) X “ pX1,X2q

Figure 30 – Dynamics over the stripes S1 Y S2 generated by the fields studied at Exam-
ple 4.3.

4.5.2 Affine Dynamics

Let F P A3 be a piecewise smooth vector field with a double discontinuity given
by affine vector fields

Fipx, y, zq “ pai1x` bi1y ` ci1z ` di1,

ai2x` bi2y ` ci2z ` di2,

ai3x` bi3y ` ci3z ` di3q,

(4.22)

with γi ‰ 0. Remember that, in this case, Theorem 4.7 provides a full description of the
dynamics of (4.22) and, therefore, as in the previous section, we would like to combine it
with Proposition 4.2 to derive a semi-local structural stability theorem.



Chapter 4. Double Discontinuity 89

In order to apply this results, given Σθ0 P ĨC , let X “ pX´,X`q be the Filippov
system induced by (4.22) in a convex compact set K Ă C`YC´, where C` and C´ are two
consecutive stripes meeting at Σθ0 as represented at Figure 29. According to Theorem 4.7,
the following are the possible categories of dynamics for a stripe Si P tC`, C´u, which we
now analyze against conditions (C.1) — (C.5) of Proposition 4.2 case by case in order to
discover those that can possibly generate structural stable systems, i.e., the candidates:

1. ai2 ‰ 0:

a) ai3 ‰ 0:
The characterizing property of this case is the fact that βi ‰ 0 and, therefore,
the horizontal asymptotes resides inside the stripes, possibly even Si. As a
consequence, there is always a visible part of the slow manifold inside Si. Hence,
if ai1 “ 0 and di1 “ 0, then we have a continuum of singularities; if ai1 “ 0 and
di1 ‰ 0, then we have a similar bifurcation to that described at Proposition 4.3
when perturbing. Either way, (C.1) is violated. However, if ai1 ‰ 0, then
Theorem 4.5 assures the existence of at most one robust singularity P, always
hyperbolic and, therefore, (C.1) and (C.2) validates, since obviously the is no
periodic orbits inside Si. As in the constant case, the α or ω-limit nature of
the slow manifold also assures (C.3). For (C.4) and (C.5), observe that the
fast dynamics is always transversal and, therefore, we only need the additional
condition P R Σθ0 . Finally, as in the constant case, invoking theorems such
as continuity theorems and Thom Transversality Theorem, we easily conclude
the robustness of the properties validated above when perturbing inside A3.
Therefore, this case is a candidate if, and only if, ai1 ‰ 0 and P R Σθ0 .

b) ai3 “ 0:
The only difference between this case and the previous is the fact that βi “ 0
and, therefore, the horizontal asymptotes are exactly at the borders θ “ 0 and
θ “ π of the stripes. However, since we are working inside a convex compact
set K, then the same arguments of the previous case apply here.

2. ai2 “ 0:
Finally, the only difference between this case and the previous (ai2 ‰ 0 and ai3 “ 0)
is the fact that now the horizontal asymptotes are exactly at the borders θ “ π{2

and θ “ 3π{2 of the stripes. Therefore, the same arguments applies.

The analysis of the remaining conditions (C.6) — (C.9) requires the combined
dynamics of the stripes C` and C´. Therefore, in order to decide stability, we need
to analyze all the combinations of candidates obtained above against these conditions.
Generally, it is fairly easy to perform this analysis given a specific combination. However,
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a translation of these final conditions to parametric ones, although possible, would lead
to a relatively large number11 of conditions that, worse than that, would carry little to
no geometrical meaning. Hence, leaving these final conditions “untranslated” is a better
approach and, therefore, the following theorem has been proved:

Theorem 4.9 (Affine Dynamics Stability). Let F P A3 be given by (4.22) with γi ‰ 0.
Given Σθ0 P ĨC , let X “ pX´,X`q be the Filippov system induced around Σθ0 and inside a
convex compact set K Ă C` Y C´, where C` and C´ are two consecutive stripes meeting
at Σθ0. Then, F is pΣθ0 , Kq-semi-local structurally stable in A3 if, and only if, X` and
X´ satisfies

1. ai1 ‰ 0 and P R Σθ0, where P is the only singularity of X˘;

2. conditions (C.6) — (C.9) of Proposition 4.2.

Example 4.4. Lets see an example of instability around the discontinuity manifold Σ0 P ĨC
of the cylinder generated by affine vector fields. More precisely, take F P A3 with F4 and
F1 affine vector fields given by (4.22) such that

F4 :

»

—

–

a41 d41

a42 d42

a43 d43

fi

ffi

fl

“

»

—

–

´1 1
0 ´1
1 0

fi

ffi

fl

and F1 :

»

—

–

a11 d11

a12 d12

a13 d13

fi

ffi

fl

“

»

—

–

1 ´1
0 1
1 0

fi

ffi

fl

,

whose dynamics over the stripes S4YS1, represented at Figure 31 below, can be determined
as in Example 4.2 using Theorem 4.7.

Regarding F4, since a42 “ 0 and γ4 “ ´1 ă 0, then Theorem 4.7 tells us that
the slow manifold is a decreasing arctangent with horizontal asymptotes θ “ ´π{2 and
θ “ π{2, as represented at Figure 31a. This manifold crosses the line θ “ θ0 “ 0 at x P R
such that

0 “ θ0 “ θ4pxq “ arctan
ˆ

a43x` d43

d42

˙

“ arctan p´xq ô x “ 0,

i.e., at the point Q4 “ p0, 0q. Besides that, over the slow manifold acts the dynamics
9x “ ´x` 1 whose only singularity at the point

P4 “ pδ4, θ4pδ4qq “ p1, arctan p´1qq “
´

1,´π4

¯

,

11 More specifically, Theorem 4.7 give us a normal form with 8 possible dynamics for each stripe. Combining
them 2 by 2 (with repetition) leave us with 36 combinations. Even if half of the combinations lead to a
repeating condition, we would still be left with 18 conditions!
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is stable, since a41 ă 0. Even more, since a42 “ 0 and d42 ă 0 then, according to Table 3,
the slow manifold repels the layer dynamics around. Therefore, remembering of Theorem 4.5
we conclude that P4, as a singularity of X4, is a hyperbolic saddle.

P4

Q4

(a) X4

P1

Q1

(b) X1

P1

P4

Q

(c) X “ pX4,X1q (d) X “ pX4,X1q with r ą 0

Figure 31 – Dynamics over the stripes S4 Y S1 generated by the fields studied at Exam-
ple 4.4.

On the other hand, regarding F1, since a12 “ 0 and γ1 “ 1 ą 0, then Theo-
rem 4.7 tells us that the slow manifold is a decreasing arctangent with horizontal asymp-
totes θ “ ´π{2 and θ “ π{2, as represented at Figure 31b. This manifold crosses the line
θ “ θ0 “ 0 at x P R such that

0 “ θ0 “ θ1pxq “ arctan
ˆ

a13x` d13

d12

˙

“ arctan pxq ô x “ 0,

i.e., also at the point Q1 “ p0, 0q. Besides that, over the slow manifold acts the dynamics
9x “ x´ 1 whose only singularity at the point
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P1 “ pδ1, θ1pδ1qq “ p1, arctan p1qq “
´

1, π4

¯

,

is unstable, since a11 ą 0. Even more, since a12 “ 0 and d12 ą 0 then, according to Table 3,
the slow manifold attracts the layer dynamics around. Therefore, remembering Theorem 4.5
we conclude that P1, as a singularity of X1, is also a hyperbolic saddle.

Hence, as represented at Figure 31c, since Q4 “ Q1 with P4 and P1 hyperbolic
saddles, then the Filippov system X “ pX4,X1q has a separatrix-connection and, therefore,
it violates condition (C.8) of Proposition 4.2, whatever the convex compact set K considered.
In other words, according to Theorem 4.9, this configuration is structurally unstable around
the discontinuity manifold Σ0.

Finally, we observe that, as represented at Figure 31c, there is actually two
separatrix-connections between the saddles P4 and P1. These connections enclose a rotating
region, represented at Figure 31d.
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5 Further Directions

Regarding Chapter 3, as for the realization of sliding saddles, a natural further
direction of investigation consists in the proof of Conjecture 3.1. Another one consists
in the use of the already obtained results to derive normal forms for the more general,
non-linear, case. As for the structural stability, besides the proof of Conjecture 3.2, another
further direction of investigation consist in a deeper analysis of the regularizations (in the
examples presented there) through Peixoto Theorem, for instance, in order to search for
global stability both in the linear and non-linear case.

Regarding Chapter 4, as for the structural stability, since the semi-local ap-
proach, as in Definition 4.4, is a necessary condition for the global one, as in Definition 4.3,
then it is reasonable to conjecture that a set of conditions for the global case would be
given by Proposition 4.2, taken from [7], plus an additional set of conditions similar to (III),
but involving the whole cylinder, rather just one of its discontinuities. Another further
direction consists in the adaptation of the results studied in this chapter to the planar
case studied in Chapter 3.

In both chapters, Sliding Saddles and Double Discontinuities, the investigation
on the existence of minimal sets (limit cycles, homoclinic and heteroclinic orbits, etc.) is
a must which, especially for double discontinuities, can now be investigated even when
dealing with the singular part, given the detailed dynamical descriptions here provided. In
this context, the works [9, 36,43] are interesting sources of inspiration.

Finally, in this text, we only dealt with one of the Gutierrez-Sotomayor algebraic
manifolds, the double discontinuity. Therefore, a natural further direction of investigation
consists in a similar analysis of the dynamics of non-smooth systems presenting one of the
other singular configurations as switching manifold, namely, the triple, cone, and Whitney
discontinuities. For this, [37] is an important reference, since it provides the necessary
blow-ups and results.
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