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Resumo

Diversos trabalhos têm caracterizado instâncias fracas do problema LWE sobre anéis
(Ring-LWE) explorando vulnerabilidades provenientes de estruturas algébricas. Apesar
dessas instâncias fracas não serem englobadas pelos teoremas de pior caso, permitir a
instanciação de outros anéis aumenta o escopo de aplicações possíveis e favorece a diver-
sificação de hipóteses de segurança. A primeira parte desta tese é dedicada a estender
o problema Ring-LWE na Criptografia Baseada em Reticulados para incluir reticulados
algébricos construídos através de mergulhos torcidos. Primeiramente, uma nova classe
de problemas, intitulada Twisted Ring-LWE, é definida substituindo o mergulho canônico
por uma versão estendida. A segurança do problema Twisted Ring-LWE é demonstrada
através de uma redução computacional do Ring-LWE para o Twisted Ring-LWE nas vari-
antes de busca e decisão. Além disso, demonstra-se que o fator de torção não interfere nos
fatores de aproximação nas reduções de pior caso para caso médio. Assim, o Twisted Ring-
LWE mantém a segurança consolidada do Ring-LWE e aumenta o escopo de reticulados
algébricos que podem ser considerados para aplicações de criptografia. Depois disso, essa
tese foca na construção algébrica do reticulado Zn através de mergulhos torcidos. Assim,
apresenta-se como amostrar eficientemente de distribuições Gaussianas esféricas e como
conectar instâncias do Twisted Ring-LWE construídas sobre corpos de números distin-
tos. Por fim, um criptossistema de chave pública é modificado para incorporar mergulhos
torcidos, culminando em uma discussão de como suas principais sub-rotinas podem ser
executadas.

A segunda parte desta tese compreende uma análise do uso da Transformada Discreta
de Galois (DGT) para multiplicação polinomial em anéis ciclotômicos com condutor po-
tência de dois. A DGT é comparada com técnicas usadas por candidatos na segunda
rodada do projeto de padronização do NIST intitulado Post-Quantum Cryptography na
arquitetura x64. Conclui-se que a DGT não apresenta melhora de desempenho se compa-
rada às formulações da Transformada Numérica (NTT). Além disso, o algoritmo four-step
de Bailey, originalmente formulado sobre a Transformada Rápida de Fourier, é modificado
para acelerar a DGT em esquemas de encriptação homomórfica em GPUs. A nova for-
mulação recursiva da DGT resulta em uma multiplicação homomórfica até 3,6 vezes mais
rápida do que o estado da arte. Um experimento posterior indicou que a DGT recursiva
induz uma melhora de até 15% na multiplicação homomórfica se comparada com uma
abordagem equivalente da NTT.



Abstract

Several works have characterized weak instances of the Ring-LWE Problem by exploring
vulnerabilities arising from algebraic structures. Although worst-case hardness theorems
do not address these weak instances, enabling other ring instantiations enlarges the scope
of possible applications and favors the diversification of security assumptions. The first
part of this thesis is devoted to extending the Ring-LWE Problem in lattice-based cryp-
tography to include algebraic lattices realized through twisted embeddings. First, we
define the class of problems Twisted Ring-LWE, replacing the canonical embedding with
an extended form. We prove that Twisted Ring-LWE is secure by providing a reduction
from Ring-LWE to Twisted Ring-LWE in search and decision forms. It is also shown that
the torsion factor does not affect the asymptotic approximation factors in the worst-case
to average-case reductions. Thus, Twisted Ring-LWE maintains the consolidated hard-
ness guarantee of Ring-LWE and increases the existing scope of algebraic lattices that can
be considered for cryptographic applications. Next, we focus on the algebraic construc-
tion of rotated Zn-lattices via twisted embeddings. We show how to sample efficiently
from spherical Gaussian distributions and connect Twisted Ring-LWE instances built on
distinct number fields. Finally, we modify a public-key cryptosystem to integrate twisted
embeddings and discuss how to perform its primary algorithmic operations.

The second part of this thesis comprehends the Discrete Galois Transform (DGT) eval-
uation for polynomial multiplication in power-of-two cyclotomic rings. We compare the
DGT with techniques used by round-two candidates of NIST’s Post-Quantum Cryptogra-
phy standardization project in the x64 architecture. We conclude that the DGT does not
improve efficiency compared to Number-Theoretic Transform (NTT) formulations. Then,
we modify Bailey’s four-step algorithm based on the Fast Fourier Transform to improve
the DGT for homomorphic encryption schemes on GPUs. The new recursive formulation
of DGT allows up to 3.6 times faster homomorphic multiplication than the state-of-the-
art. A further experiment indicated that the recursive DGT induces an improvement of
up to 15% in homomorphic multiplication compared to a similar approach of NTT.
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Chapter 1

Introduction

This thesis is organized into two parts, aiming to advance the area of lattice-based cryp-
tosystems and, in particular, Ring-LWE cryptography. Cryptanalysis efforts of ideal-
lattice cryptography inspired the first part of this thesis. The second part is influenced
by NIST’s Post-Quantum Cryptography standardization process [101] and also by the
consortium for Homomorphic Encryption Standardization [5]. In the next section, we
motivate and give a short introduction to the problems that we have tackled in this work.
Our contributions are summarized in Section 1.2, and the organization of this thesis is
given in Section 1.3.

1.1 Motivation and Context
The terminology post-quantum cryptography emerged in mid-2006 to describe the re-
sponse to advances in quantum computing. Post-quantum cryptosystems are conjectured
to be resistant to quantum attacks, especially the variants of Shor’s algorithm [128], that
break factorization- and discrete logarithm-based primitives. Quantum-resistant cryp-
tosystems are categorized according to the class of their underlying hard problem. Cur-
rently, the most relevant classes are based on hard problems over lattices, error-correcting
codes, hash functions, multivariate quadratic equations, and elliptic-curve isogenies.

Lattices can be informally described as repeating arrangements of points in an n-
dimensional space in a grid pattern. The Zn-lattice in dimension two is depicted in
Figure 1.1. Some hard computational problems are defined over this structure, and their
conjectured hardness against classical and quantum computers forms the theoretical foun-
dation of a handful of cryptographic constructions. These constructions gave rise to the
field of lattice-based cryptography, whose security is based on the Shortest Independent
Vectors Problem (SIVP), the Shortest Vector Problem (SVP), and the Closest Vector
Problem (CVP) [3, 114].

Ajtai [3] was the first to explore the computational hardness of lattices for cryptog-
raphy. He presented a public-key cryptosystem whose security is based on a worst-case
to average-case reduction. In other words, it means that breaking the cryptosystem, on
average, is as hard to break as solving worst-case instances of certain NP-hard lattice
problems. In cryptography, average-case complexity means that the reduction works for
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Figure 1.1: The integer lattice Z2.

all but a negligible fraction of instances.
No efficient algorithms are known for solving the SVP, CVP, and SIVP problems using

either classical or quantum computers. Because of that, in lattice-based cryptography,
the security proofs consider approximations for such problems, in which an approximation
factor γ determines a distance from the optimal solution. Particularly, the SVP problem
is commonly defined as a promise problem as follows.

Definition 1 (GapSVPγ). For an approximation factor γ = γ(n) ≥ 1, the GapSVPγ
is: given a lattice Λ and length d > 0, output YES if λ1(Λ) ≤ d and NO if λ1(Λ) > γd.

Promise problems generalize decision problems, where the input is promised to belong
to a particular subset of all possible inputs. However, the behavior is not specified for
the complement of this subset, and the algorithm may return any answer [93]. Promise
problems are indicated by the predicate “gap”.

Lattice-based cryptography offers fast and energy-saving primitives as well as quantum
resistance. This claim is reinforced by practical experimentation such as Saarinen’s [105],
which evaluated the bandwidth, latency, and energy consumption of round-two submis-
sions to NIST’s Post-Quantum Cryptography standardization project on an ARM Cortex
M4 processor. His results also take into account measurements for ECDH and ECDSA
algorithms, which are elliptic-curve cryptosystems for key-encapsulation and digital sig-
natures. Tables 1.1 and 1.2 present selected results for ECC- and lattice-based cryptosys-
tems. Notice the superior performance of lattices compared to current cryptosystems in
terms of running time, at the expense of increased memory consumption. Saarinen’s com-
plete evaluation also indicates that the considered lattice-based cryptosystems consume
less energy than elliptic-curve cryptography.
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Table 1.1: Bandwidth and latency, in bytes and 106 clock cycles, respectively, of post-
quantum KEM algorithms on an ARM Cortex M4 STM32F at 96 Mhz [105].

KEM Algorithm Post-Quantum Level pk ct KGen Enc Dec
ECDH-secp256k1 none 64 64 4.108 8.215 4.108
ECDH-secp256r1 none 64 64 5.814 11.63 5.815
Kyber512 L1 800 736 0.516 0.654 0.623
Kyber768 L3 1184 1088 0.978 1.150 1.100
Kyber1024 L5 1568 1568 1.575 1.784 1.714
NTRU-HPS2048509 L1 699 699 78.79 0.634 0.546
NTRU-HPS2048677 L3 930 930 141.3 0.943 0.849
NTRU-HRSS701 L3 1138 1138 154.2 0.398 0.898
NTRU-HPS4096821 L5 1230 1230 212.0 1.189 1.079
LightSaber L1 672 736 0.457 0.651 0.677
Saber L3 992 1088 0.899 1.170 1.209
FireSaber L5 1312 1472 1.455 1.791 1.854

Table 1.2: Bandwidth and latency, in bytes and 106 clock cycles, respectively, of post-
quantum signature schemes on an ARM Cortex M4 STM32F at 96 Mhz [105].

Signature Scheme Post-Quantum Level pk ct KGen Sig Vf
ECDSA-secp256k1 none 64 64 4.109 4.475 4.546
ECDSA-secp256r1 none 64 64 5.814 6.185 6.639
Dilithium2 L1 1184 2044 1.328 4.663 1.389
Dilithium3 L2 1472 2701 2.172 7.212 2.116
Dilithium4 L3 1760 3366 2.930 7.263 2.997
FALCON-512 L1 897 690 182.2 39.57 0.493
FALCON-512-tree L1 897 690 200.9 18.19 0.492
FALCON-1024 L5 1793 1330 380.2 79.36 1.013

1.1.1 NIST’s Post-Quantum Cryptography Standardization
Project

In 2016, NIST initiated a process for standardization of public-key quantum-resistant
cryptographic algorithms. The process, named Post-Quantum Cryptography, requested
nominations of key-encapsulation mechanisms, public-key encryption algorithms, and
schemes for digital signatures [101]. In the past few years, this process drew strong interest
from the academic community and the industry to develop and implement post-quantum
cryptosystems. In November 2017, 82 candidates, whose categorization is depicted in
Figure 1.2, were submitted for consideration by NIST. Among these, 69 submissions met
the minimum acceptance criteria and were accepted as first-round candidates. The first
round lasted until January 2019, and 26 algorithms were selected to advance to the second
round. The second-round candidates are organized by their underlying classes of problems
in Figure 1.3.

In Figure 1.4, we detail the second-round NIST candidates. The magenta nodes in-
dicate the submissions that did not match the minimum acceptance criteria to advance
to the third round. The third round announcement occurred in July 2020, classifying the
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Figure 1.3: Categorization of submis-
sions accepted for the second round of
NIST’s standardization project.

submissions as third-round finalists and alternate candidates, represented by gray and
cyan nodes, respectively. From the beginning of the standardization project, lattice-based
cryptography has been the most prominent class of problems. Currently, it represents five
of the seven third-round finalists.

The main computational problem in the foundation of more recent lattice-based cryp-
tosystems is the Learning With Errors (LWE) Problem [121]. Since its introduction in
the cryptographic realm in 2005, algebraically structured variants of LWE have been
proposed, such as LWE over rings [88], denoted Ring-LWE, Poly-LWE [62], and Module-
LWE [35, 83, 7], among others [116]. These algebraic structured lattices, called ideal
lattices, arise from a ring R, which is usually taken as a polynomial ring R = Z[x]/(f(x)).
In the Ring-LWE Problem, this ring is usually isomorphic to the ring of integers of a
cyclotomic number field.

Among the third-round NIST candidates, the hardness of CRYSTALS-Dilithium [63,
64], CRYSTALS-Kyber [31, 18], and Saber [60, 25] is based on LWE variants. Moreover,
Kyber, Dilithium, Saber, and FALCON [69] operate on polynomial rings of the form
R = Z[x]/(xn + 1) for n a power of two. In particular, xn + 1 is maximally sparse,
allowing polynomial multiplication using the Number-Theoretic Transform (NTT), which
provides linear-time multiplication in the transform domain.

The evaluation criteria adopted throughout NIST’s standardization process evaluate
three aspects of the candidates: i) security; ii) cost and performance; and iii) algorithm
and implementation characteristics [98]. At the beginning of the third round, the re-
maining candidates survived a considerable amount of cryptanalysis, which reinforced
their security claims. This belief motivated the development of efficient and secure im-
plementations in various platforms [102, 103]. In particular, the tasks of polynomial
multiplication and error sampling are the most computationally expensive operations in
lattice-based cryptography. Following this branch of cryptographic engineering, we de-
signed experiments on the x64 architecture for evaluating the suitability of the Discrete
Galois Transform (DGT) for polynomial multiplication in those candidates that adopt
the NTT. The results are discussed in Chapter 6, Part II.
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round. Third-round finalists and alternate candidates are represented by gray and cyan
nodes, respectively.

1.1.2 Homomorphic Encryption Standardization
Apart from the algorithms for key generation, encryption, and decryption, a homomor-
phic encryption scheme also defines homomorphic addition and multiplication. These
additional algorithms allow the computation over encrypted data without requiring de-
cryption. A basic framework for homomorphic encryption is as follows. Consider an
encryption scheme defined as a tuple of algorithms (KGen, Enc, Dec). Also, consider two
messages m0 and m1 given in plaintext. A homomorphic encryption scheme is endowed
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with a property which satisfies

Dec(Enc(m0, pk) • Enc(m1, pk), sk) = Dec(Enc(m0 �m1, pk), sk).

In the RSA cryptosystem, both operators refer to multiplication. However, in Paillier’s
cryptosystem [112], � and • are the usual addition and multiplication, respectively.

In 1978, Rivest, Adleman, and Dertouzos [123] conceived the notion of Homomorphic
Encryption (HE) schemes. The idea was to preserve some mathematical structure after
encryption that enabled the evaluation of arithmetic circuits over ciphertexts without
decryption or knowledge of the secret key. The first HE schemes had limited capability,
supporting either additions or multiplications, and because of that, they were called Par-
tially Homomorphic Encryption (PHE) schemes. Examples of PHE schemes are due to
ElGamal [70] and Paillier [112]. These schemes do not support addition and multiplication
simultaneously, making their suitability to real-world implementations limited.

Around thirty years later, Gentry [72] introduced the first practical construction of
Fully Homomorphic Encryption (FHE), supporting an unlimited number of additions and
multiplications. The early proposals were not attractive due to high latency or memory
consumption, but Gentry’s work served as a blueprint for many FHE schemes [73, 35, 32,
86, 68, 47, 45]. His main contribution was the proposal of a bootstrapping operation that
homomorphically evaluates the decryption procedure to remove the upper bound on the
complexity of supported functions [72].

Homomorphic encryption has enabled new services for secure data computation for
the medical, health, and financial sectors. Because of that, a consortium of industry,
government, and academia was created in 2017 to standardize homomorphic encryption
schemes. The standard [5] summarizes the security of most current FHE schemes, rec-
ommending security parameters for several security levels. In particular, the primary
schemes for implementation of HE are the BGV [35] and BFV [68]. The CKKS [45] is
referred to as an alternative scheme. Notice that most libraries for homomorphic encryp-
tion implement schemes based on the Ring-LWE Problem, displaying common choices of
underlying rings, the most common being R = Z[x]/(xn + 1) with n a power of two.

The standard recommends parameter sets depending on the cost model and error
distribution. In general, the ring dimension ranges from 1024 to 32 768. The modulus
size can be as small as log 15 or as large as log 829. In this sense, depending on the
application, HE schemes require high-performance computers such as Graphics Processing
Units (GPUs), which deliver memory bandwidth of around one terabyte per second and
thousands of cores.

Although the overhead on computation over ciphertexts has been significantly reduced
in modern schemes [125, 48], their implementation relies on polynomial arithmetic. Thus,
libraries of HE require efficient techniques to reduce the overhead of costly operations
such as polynomial multiplication and division. In particular, the CUDA paradigm1 can
be used to explore the Single Instruction Multiple Data (SIMD) capability of GPUs for
accelerating the implementation of polynomial multiplication [58, 80, 22, 2].

1Compute Unified Device Architecture (CUDA) is a SIMD architecture developed and maintained by
NVIDIA to employ GPU parallelism in tasks beyond graphical processing.
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In this context, we present in Chapter 7, Part II, CUDA-enabled implementations of
the BFV [68] and CKKS [45] homomorphic encryption schemes. We focus our implemen-
tation efforts on accelerating polynomial multiplication using formulations of the Discrete
Galois Transform (DGT). The results are evaluated in NVIDIA Tesla GPUs.

1.1.3 Alternative Instantiations for Ring-LWE Cryptography
Several works have been exploring properties of number fields used in the foundation
of cryptosystems based on ideal lattices. An example is a quantum polynomial-time
algorithm to find a small generator of a principal ideal in the ring of algebraic integers of
cyclotomic rings [36], which applies to a few schemes, including the fully-homomorphic
encryption scheme of Smart and Vercauteren [129]. Moreover, a sequence of works has
characterized weak instances of Ring-LWE and Poly-LWE problems and proposed attacks
using special properties for specific parameters [65, 66, 44, 38, 37, 43, 40, 41, 42, 130].
Another motivation for searching for alternative number fields is the inflexibility of system
parameters that grow as a power-of-two. When it is required to increase the security level
in such cryptosystems, it may be necessary to increase the lattice dimension, which implies
doubling its size. However, a more suitable dimension could be a value much smaller than
the next power of two. A ring dimension ranging from 700 to 800 suffices for 128-bit
security [6].

Although these weak instances are not addressed by worst-case hardness theo-
rems [115], new proposals adopting non-conventional rings have emerged as alternatives,
thus favoring the diversification of security assumptions. For NTRU-based schemes, ex-
amples are the NTTRU [90], the third-round NTRU submission [39] in the NIST Post-
Quantum Cryptography contest [101], and NTRU Prime [29]. For Ring-LWE, the in-
stantiations have been restricted to cyclotomic number fields. Lyubashevsky, Peikert,
and Regev introduced a toolkit with techniques for secure implementation of Ring-LWE
primitives over any cyclotomic number field [89], allowing applications to work on cyclo-
tomic rings with non-power-of-two dimension. Later on, this toolkit was implemented
in software in two distinct libraries [92, 57]. An alternative instantiation could be the
adoption of the polynomial ring Z[x]/(xp − x − 1) for p prime, which was proposed for
NTRU Prime [29], and suggested for the Ring-LWE setting [118].

We conjecture that the Ring-LWE Problem can be parameterized by number fields
other than the cyclotomic for cryptographic applications. Furthermore, we extended the
Ring-LWE class of problems to embrace more general algebraic constructions of lattices
which allow additional factors on the embedding coordinates. Part I of this thesis is
dedicated to the advances in this investigation.

1.2 Contributions
In the last few years, the standardization and practicality of cryptographic constructions
based on the Ring-LWE Problem advanced rapidly, motivated by NIST’s Post-Quantum
Cryptography standardization process and the Homomorphic Encryption Standardization
consortium. However, these cryptosystems’ security was not submitted to an extensive
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test of time since Ring-LWE is dated from 2010 [88]. Also, homomorphic encryption
schemes usually require huge ring instantiations, requiring high-computational power for
arithmetic operations. This thesis aims to provide evidence of the security of Ring-LWE
cryptography and propose alternative algorithms for its efficient implementation. We
achieve the proposed objectives through theoretical and practical contributions summa-
rized as follows.

DGT on x64 architecture. We re-implement the polynomial multiplication in the ref-
erence code of selected cryptosystems targeting the x64 architecture, replacing the
NTT with two variations of the Discrete Galois Transform (DGT). One variation
was introduced by Badawi et al. [4]. The second is proposed in Section 6.5.1 and
merges the twisting procedure with the computation of the transform. The ex-
perimental evaluation is done in an Intel Skylake processor and reported in Sec-
tion 6.5.2. Complementary experimental results on an Intel Haswell processor are
given in Appendix A. Unfortunately, our results indicate that both DGT’s variants
do not explore well the x64 architecture in comparison with the NTT, even in an
AVX2-optimized implementation.

Recursive transforms on GPUs. Motivated by a recursive formulation of the Fast
Fourier Transform (FFT), we define the Recursive DGT (RDGT) in Chapter 7,
which is compared to the straightforward DGT in CUDA-enabled implementa-
tions [22, 2] of homomorphic encryption schemes in GPUs. Then, we contrast the
RDGT with a recursive formulation of NTT in the same context. As a result, the
experiments indicate that the high arithmetic density of DGT is natively suitable to
the GPU architecture. In particular, the homomorphic multiplication in the BFV
scheme [68] using the RDGT is up to 3.6 times faster than the state-of-the-art. Also,
the homomorphic multiplication in the CKKS scheme [45] is up to 15% faster than
an implementation using the Recursive NTT.

Twisted Ring-LWE. Part I is dedicated to our proposal, the Twisted Ring-LWE Prob-
lem. We extend the Ring-LWE Problem in Chapter 3 by replacing the canonical
embedding with twisted embeddings on both the search and decision variants. We
explore some applications of Twisted Ring-LWE in Chapter 4, including a special
case of ideal lattices in which the spherical Gaussian sampling can be performed di-
rectly in the number field without any loss in the sphericity or standard deviation.
Further, we show that twisted embeddings can be used for converting instances
between distinct number fields if the corresponding lattices in Rn are equivalent.
The applicability of Twisted Ring-LWE for cryptography is discussed in Chapter 5,
examining a public-key encryption scheme over a maximal real cyclotomic number
field. As a result, algebraic constructions from coding theory via twisted embeddings
can also be used in cryptographic applications based on the Ring-LWE Problem.
Also, we conjecture that algebraic properties of equivalent number fields can be used
to assert the actual security of a ring instantiation.
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Publications
Most of the content described in Part I was published in the open-access journal En-
tropy [109] as a result of collaborative work with Robson R. de Araujo, Diego F. Aranha,
Sueli I. R. Costa, and Ricardo Dahab. Early versions of this work [109] were presented at
LAWCI 2018 [111] and CrossFyre 2019 [108], and posted online at the IACR Cryptology
ePrint Archive [110]. Moreover, the results in Section 4.2, and 5.3 are contemporary to
these publications.

Part II results from joint work with Pedro Geraldo M. R. Alves and Diego F. Aranha.
The experimental results on Chapter 6 evaluating the DGT on x64 architecture were not
published. However, the results obtained for the BFV homomorphic encryption scheme
in Section 7.3 can be found in the proceedings of the International Conference on Fi-
nancial Cryptography and Data Security 2021 [13]. Finally, the experimental evaluations
of RDGT in the CKKS homomorphic encryption scheme presented in Section 7.4 were
submitted to the Journal of Cryptographic Engineering in December 2021.

1.3 Thesis Organization
Part I describes our advances in introducing twisted embeddings in Ring-LWE cryptog-
raphy. Particularly, Chapter 2 presents concepts of lattices and algebraic number theory
and the Ring-LWE Problem. The proposed class of problems, named Twisted Ring-LWE,
is given in Chapter 3. Chapter 4 is dedicated to applications of twisted embeddings for
Ring-LWE cryptography, focusing on the algebraic construction of rotated Zn-lattices
under twisted embeddings. Finally, Chapter 5 discusses how to perform the main algo-
rithmic tasks of a public-key encryption scheme assuming that the geometrical analysis
of Ring-LWE is done via twisted embeddings.

Experimental results with the Discrete Galois Transform for polynomial multiplication
in the ring Z[x]/(xn+1) are given in Part II. Chapter 6 discuss the applicability of DGT for
polynomial multiplication in a key-encapsulation mechanism and selected digital signature
schemes. Experiments with DGT in homomorphic encryption schemes are detailed in
Chapter 7. Lastly, Chapter 8 presents final remarks and directions for future works.
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Part I

Twisted Embeddings
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Introduction to Part I
Figure 1.5 illustrates the organization of the first part of this thesis. We start Chapter 2
by covering introductory concepts on Euclidean vector spaces. Then, we define lattices
on these vector spaces and properties relevant to this thesis, such as duality and equiva-
lence. Next, we cover algebraic number theory, relating algebraic number fields to lattices
using field monomorphisms. Finally, we present the Ring-LWE Problem and hard lattice
problems related to its security results.

Euclidean vector spaces
(Rn, H ⊆ Rs1 × C2s2)

Lattices
(Basis, NP-hard problems)

Algebraic Number Theory
(Number field, Embeddings)

Ring-LWE Problem
(Search and decision problems)

Twisted Ring-LWE
(Search and decision problems)

Applications and PKE
(Spherical Gaussian sam-

pling, Arithmetic operations)

Chapter 2

Chapter 3

Chapters 4 and 5

Figure 1.5: Structure of the first part of this thesis.

After that, the primary contribution of this thesis, named Twisted Ring-LWE, is given
in Chapter 3 using results from algebraic number theory to extend the Ring-LWE Problem.
Finally, in Chapters 4 and 5, we conclude the first part by presenting applications of
Twisted Ring-LWE and a public-key encryption scheme defined on the proposed class of
problems.
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Chapter 2

Preliminaries

Notations. First, we state the notation used throughout this thesis. For a positive
integer number m, denote by [m] the set {1, . . . ,m}. We represent vectors using bold
lower-case letters, for example, a = (a1, . . . , an). We use bold capital letters for matrices,
for example, M. In particular, the n-by-n identity matrix is denoted as In. We denote the
set of integer, real, and complex numbers as Z, R, and C, respectively. For 1 ≤ p < ∞,

the `p-norm of a vector a in Rn or Cn is ‖a‖p =
(

n∑
i=1
|ai|p

)1/p
, and the `∞-norm is

‖a‖∞ = maxi |ai|. We denote as a $←− E that e is sampled from the uniform distribution
over E. For a complex number a ∈ C, we denote its real and imaginary parts as <(a)
and =(a), respectively. The conjugate of a complex number a ∈ C is a = <(a)− i=(a) in
which i =

√
−1.

2.1 Euclidean Vector Spaces
An Euclidean vector space (E, 〈, 〉E) is an n-dimensional R-vector space E with an inner
product 〈, 〉E, which is isometric to Rn with the standard inner product. In the Ring-LWE
context, lattices are conveniently defined in a specific subspace of Cn isometric to Rn: the
space H.

Definition 2 (Space H). Let s1 and s2 be non-negative integer numbers such that n =
s1 + 2s2 > 0. The subspace H ⊆ Cn is defined as

H =
{

(a1, . . . , an) ∈ Rs1 × C2s2 : aj+s1+s2 = aj+s1 , ∀ j ∈ [s2]
}
.

We consider H endowed with the inner product obtained as a restriction of the stan-
dard inner product of two vectors a,b in Cn:

〈a,b〉H :=
n∑
i=1

aibi =
s1∑
i=1

aibi +
s2∑
j=1

(aj+s1bj+s1+s2 + aj+s1+s2bj+s1) ∈ R.

In this sense, the norm (usually `2-norm) of a ∈ H is defined as ‖a‖ =
√
〈a, a〉H .

Denote by ui the vector with all zero coordinates except for the i-th position, which is
equal to one, for 1 ≤ i ≤ n. We consider {u1, . . . ,un} the canonical basis of Rn (over R)
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and Cn (over C). An orthonormal basis1 for H can be defined in terms of the canonical
basis of Cn as follows.

Definition 3 (Canonical basis of H). Let s1 and s2 be non-negative integer numbers
such that n = s1 + 2s2 > 0. For i ∈ [s1], define hi = ui. For i ∈ [s2], define hi+s1 =

1√
2 (ui+s1 + ui+s1+s2) and hi+s1+s2 = i√

2(ui+s1−ui+s1+s2). Then, the set B = {h1, . . . ,hn}
is an orthonormal basis of H, which we call the canonical basis of H as an n-dimensional
R-vector space.

Notice that any vector a ∈ H ⊆ Cn can be written as an R-linear combination of the
vectors of the canonical basis B of H as

a =
s1∑
i=1

aihi +
s2∑
j=1

√
2<(aj+s1)hj+s1 +

s2∑
j=1

√
2=(aj+s1)hj+s1+s2 .

The linear map κ
(

n∑
i=1

bihi
)

:=
n∑
i=1

biui, with bi ∈ R, defines an isomorphism between
the R-vector spaces H and Rn, such that 〈a,b〉H = 〈κ(a), κ(b)〉, where 〈, 〉 denotes the
standard inner product in Rn. Then, it follows that H and Rn are isometric, that is, H
is an Euclidean space. In particular, the norm of an element a ∈ H coincides with the
usual norm of κ(a) ∈ Rn, that is, ‖a‖2 = ‖κ(a)‖2.

2.2 Lattices
Consider an Euclidean vector space (E, 〈, 〉E) with an orthonormal basis B(E) =
{e1, . . . , en} of E. A set Λ ⊂ E is said to be a full-rank lattice (or simply lattice), if
Λ is a discrete additive subgroup of E with rank n. Equivalently, Λ ⊂ E is a lattice if
there exists a set of linearly independent vectors B = {v1, . . . ,vn} ⊂ E such that

Λ = Λ(B) =
{

n∑
i=1

aivi : ai ∈ Z
}
.

The set B is called a basis (or a Z-basis) of Λ. For each vj ∈ B, it can be written in terms
of the orthonormal basis B(E) as vj =

n∑
i=1

vijei for vij ∈ R. In Figure 2.1, the hexagonal
lattice is presented as an example of lattice in R2, for which a basis is given by the set of
vectors B = {(1, 0), (1/2,

√
3/2)}.

The minimum distance of a lattice Λ in the `p-norm, denoted λ(p)
1 (Λ), is the length of a

shortest nonzero lattice vector, that is, λ(p)
1 (Λ) = min

06=x∈Λ
‖x‖p. Similarly, for any k ≤ n, the

k-th successive minimum of a lattice Λ, denoted λ(p)
k (Λ), is the smallest r̂ > 0 such that Λ

contains at least k linearly independent vectors of norm at most r̂. These quantities will
be used to define Gaussian measures over lattices and compute the approximation factors
in security reductions.

1A subset {v1, . . . ,vn} of an Euclidean vector space (E, 〈, 〉E) is called orthonormal if 〈vi,vj〉E = 0
when i 6= j. Also, all vectors vi are required to have unit length.
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Figure 2.1: Hexagonal lattice and a basis B = {(1, 0), (1/2,
√

3/2)}.

The matrix M = [vij]n×n, for which the j-th column is given by the coefficients of
vj written in the orthonormal basis B(E), is called a generator matrix of Λ. Two basis
generate the same lattice if and only if the associated generator matrices M and M′ are
related as M′ = MU, where U is unimodular2. The matrix G = M>M is called the
Gram matrix of Λ with respect to M. Since the basis B(E) of the Euclidean vector space
is orthonormal, then G = [〈vi,vj〉E]n×n. The determinant of G is called the determinant
of Λ and is denoted by det(Λ). Clearly, det(Λ) = det(M)2 does not depend of a particular
basis of Λ.

The dual lattice of Λ is the lattice Λ∗ = {a ∈ E : 〈a,b〉E ∈ Z,∀ b ∈ Λ}. It is known
that (Λ∗)∗ = Λ and if Λ has generator matrix M, then (M>)−1 is a generator matrix for
Λ∗ and therefore det(Λ∗) = det(Λ)−1. We represent the dual of the hexagonal lattice in
Figure 2.2.

A lattice Λ ⊂ E is called integral if 〈a,b〉E ∈ Z for all a,b ∈ Λ. Equivalently, Λ
is an integral lattice if and only if Λ ⊂ Λ∗ ⊂ (Λ/ det(Λ)). An integral lattice is called
unimodular, or self-dual, if det(Λ) = 1 or Λ = Λ∗.

Two lattices Λ and Λ′ are said to be equivalent if one can be obtained from the other
through a rotation, a reflection, or a change of scale. Two Gram matrices G and G′ of two
equivalent lattices Λ and Λ′, respectively, are related as G′ = c2U>GU, where c 6= 0 is a
real constant and U is unimodular. Notice that the dual lattice in Figure 2.2 is equivalent
to the hexagonal lattice up to a rotation and a scaling factor [52, Exercise 2.10].

We say that a lattice Λ in (E, 〈, 〉E) is orthogonal if it has a basis B = {v1, . . . ,vn}
such that 〈vi,vj〉 = 0 if i 6= j, for all i, j ∈ [n]. This means that Λ has a diagonal Gram
matrix. Moreover, if the basis B satisfies 〈vi,vj〉 = 0 if i 6= j and 〈vi,vj〉 = c if i = j,
for all i, j ∈ [n] and some c ∈ R, then Λ is equivalent to the Zn-lattice. In this case, Λ
has a Gram matrix G = c In. In particular, when c = 1, we say that Λ is an orthonormal
lattice.

2A matrix U is said to be unimodular if it has integer entries and det(U) = ±1.
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Figure 2.2: Hexagonal lattice and its dual lattice represented in black and magenta dots,
respectively. A basis for the dual lattice is {(1,−1/

√
3), (0, 2/

√
3)}. Notice that, in this

case, the dual lattice is a rotated and expanded version of the original lattice and contains
the double of it.

2.2.1 Gaussian Measures
For r > 0, define the Gaussian function ρr,c : H → (0, 1] centered at c as

ρr,c(a) = exp(−π‖a − c‖2/r2). (2.1)

The subscript c is taken to be 0 when omitted. The Gaussian mass of a coset c + Λ is
defined as ρr(c + Λ) = ∑

x∈c+Λ
ρr(x). By normalizing the Gaussian function, we obtain the

continuous Gaussian probability distribution Dr of width r, whose density is given by
r−n · ρr(x).

We extend this definition to elliptical Gaussian distributions in {hi}i∈[n], the canonical
basis of H, as follows. Let r = (r1, . . . , rn) ∈ (R+)n be a vector of positive real numbers
such that rj+s1+s2 = rj+s1 for each j ∈ [s2]. Then, a sample from the n-dimensional
distribution Dr is given by

n∑
i=1

xihi, where the terms xi are chosen independently from the
one-dimensional Gaussian distribution Dri over R.

For any c ∈ Rn, real r > 0, and an arbitrary lattice Λ with dimension n, normalizing
the Gaussian function ρr,c(a) gives the discrete Gaussian distribution over Λ as

DΛ,r,c(a) = ρr,c(a)
ρr,c(Λ) ,

for all a ∈ Λ.
The smoothing parameter is a lattice parameter defining the width beyond which a

discrete Gaussian starts to behave similarly to a continuous distribution [96].

Definition 4 (Smoothing parameter). For an n-dimensional lattice Λ and positive
real ε > 0, the smoothing parameter ηε(Λ) is the smallest r such that ρ1/r(Λ∗ \ {0}) ≤ ε.
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It relates to the minimum distance and the successive minimum of a lattice, and it will
be used to derive the approximation factors in the worst-case to average-case reduction
for the Twisted Ring-LWE Problem.

2.3 Algebraic Number Theory
In this section, we summarize concepts and results from algebraic number theory, pre-
senting the case of cyclotomic number fields and their maximal real subfields. Details can
be found in [126, 131, 107].

An (algebraic) number field K is a finite extension of the field Q, meaning that Q ⊂ K

and K is a Q-vector space with finite dimension. The degree of K, denoted [K : Q], is
the dimension of the Q-vector space K. In general, if K and L are number fields such
that K ⊂ L, the symbol [L : K] is defined to be the integer number [L : Q]/[K : Q] and
is called the degree of the extension L/K.

By the Primitive Element Theorem, there exists an element θ ∈ K such that K =
Q(θ), which is equivalent to say that {1, . . . , θn−1}, with n = [K : Q], is a power basis of
K over Q. In this sense, an element a ∈ K can be represented in the power basis as

a = c1 + c2θ + . . .+ cnθ
n−1, ∀ ci ∈ Q.

An algebraic number θ is a root of a nonzero polynomial with rational coefficients. If
θ satisfies no similar equation of degree up to n, then θ is said to be an algebraic number
of degree n.

If f(x) is the minimal polynomial of θ over Q, then K is isomorphic to Q[x]/(f(x))
and K = Q(θ′) for some root θ′ of f(x). The roots of f(x) are called the conjugates of θ.

Example 2.3.1. The field Q(
√

2) = {c1 + c2
√

2 : c1, c2 ∈ Q} is a quadratic number
field, that is, it is a number field of degree two over Q. By associating

√
2 with the

indeterminate x, Q(
√

2) is isomorphic to the polynomial ring Q[x]/(x2 − 2).

Example 2.3.2 (Cyclotomic number field). A number field of particular interest is
Q(ζm), them-th cyclotomic field, where ζm = exp(2πi/m) is a primitivem-th root of unity
for any integer number m ≥ 1. The degree of Q(ζm) is ϕ(m), where ϕ(·) denotes Euler’s
totient function. The minimal polynomial of ζm, called the m-th cyclotomic polynomial,
is Φm(x) = ∏

k∈Z∗m(x− ζkm), where Z∗m denotes the group of invertible elements in Zm.

Example 2.3.3 (Maximal real subfield). For m 6≡ 2 (mod 4), m > 1, the number
field Q(ζm + ζ−1

m ) ⊂ R ∩ Q(ζm) is the maximal real subfield of Q(ζm) and has degree
ϕ(m)/2.

LetK be a number field. A map ¯: K → K is called an involution ofK if a+ b = a+b,
a · b = a · b, and a = a, for all a, b ∈ K. If K = C, the complex conjugation is an example
of involution. If K = Q(ζm) is a cyclotomic number field, then ζm = ζ−1

m is the same
involution given by the complex conjugation. In this work, whenever the cyclotomic
number field is used, we implicitly assume this involution. For the maximal real subfield
Q(ζm + ζ−1

m ), we consider the involution given by the identity map.
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The subfield F = {a ∈ Kfa = a}, called the fixed field by involution of K, satisfies
[K : F ] ≤ 2. When [K : F ] = 1 (or F = K), we say that the involution is trivial (it is
the identity); otherwise, the involution is said to be non-trivial. If K = Q(ζm), the fixed
field by the involution ζm = ζ−1

m of K is its maximal real subfield [27].

2.3.1 Field Monomorphisms
Definition 5 ([107]). Let L1, L2 be two field extensions of a field K. A field monomor-
phism σ from L1 to L2 is a non-trivial field homomorphism, that is, a map from L1 to L2

such that

σ(a · b) = σ(a) · σ(b)
σ(a+ b) = σ(a) + σ(b)

σ(1) = 1
σ(0) = 0

for all a, b ∈ L1.

These monomorphisms are Q-monomorphisms, that is, σ(a) = a for all a ∈ Q. Let K
be a number field of degree n. There are exactly n distinct field monomorphisms σi from
K to C. If K = Q(θ) and f(x) is the minimal polynomial of θ, these monomorphisms are
defined as σi(θ) = θi for i ∈ [n], where θi are all the distinct roots of f(x).

A monomorphism σi : K → C is said to be real if σi(K) ⊂ R. Otherwise, it is said to
be complex. If σi is a complex monomorphism, then σi is another complex monomorphism
defined by σi(a) = σi(a). So, the number field degree n can be written as n = s1 + 2s2,
where s1 ≥ 0 is the number of real monomorphisms and 2s2 ≥ 0 is the number of complex
monomorphisms from K to C. The pair (s1, s2) is called the signature of K. We say that
K is totally real when s2 = 0, and that K is totally complex when s1 = 0. The number
field K is said to be a CM-field if it is totally complex and has degree two over its fixed
field by the involution F [27].

Any cyclotomic number field K = Q(ζm), with m ≥ 3, is totally complex. Their
monomorphisms are defined as σi(ζm) = ζ im for each i ∈ [m] such that gcd(i,m) = 1. In
turn, any maximal real cyclotomic subfield Q(ζm + ζ−1

m ) is totally real. Their monomor-
phisms are defined as σi(ζm + ζ−1

m ) = ζ im + ζ−im for each 1 ≤ i ≤ bm/2c such that
gcd(i,m) = 1. Note that Q(ζm) is a CM-field once Q(ζm) is a totally complex field of
degree two over Q(ζm + ζ−1

m ).
The number field K is said to be a Galois number field if, for every x ∈ K, the minimal

polynomial of x over Q has all its roots in K. In this case, the set of automorphisms
σ : K → K, where σ(a) = a for all a ∈ Q, constitutes a group under the composition,
called Galois group of K over Q, denoted Gal(K/Q). If K ⊂ C is a Galois number
field, then the monomorphisms from K to C are exactly the elements of Gal(K/Q).
An important fact is that any Galois number field is totally real or totally complex.
Cyclotomic number fields and their maximal real subfields are Galois number fields.
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2.3.2 Ring of Integers and Its Ideals
Let K be a Galois number field. For every a ∈ K, the trace and norm of any element
a ∈ K can be defined, respectively, as

TrK(a) =
∑

σ∈Gal(K/Q)
σ(a) and NK(a) =

∏
σ∈Gal(K/Q)

σ(a).

For all a ∈ K, TrK(a) and NK(a) are elements of Q.
The set of all elements in a number field K that are the root of a monic polynomial

in Z[x] is a ring called the ring of integers of K, denoted OK . If K is a number field of
degree n, its ring of integers has a Z-basis with n elements, which is called an integral
basis of K. If a ∈ OK , then TrK(a) and NK(a) are elements of Z.

If I is a nonzero (integral) ideal of OK , then I has a Z-basis with n elements. The
same holds if I is a fractional ideal of K, which is a subset of K satisfying the condition
that dI ⊂ OK is an integral ideal for some element d ∈ OK . Note that every integral
ideal is also fractional (d = 1). Also, any Z-basis of some nonzero fractional ideal of K,
including its ring of integers, is a Q-basis of K.

In the case of cyclotomic number fields Q(ζm) of degree n = ϕ(m), OK = Z[ζm], which
is the set of all Z-linear combinations of powers of ζm:

OK = {c1 + c2ζm + . . .+ cnζ
n−1
m : ci ∈ Z}.

Similarly, the ring of integers of Q(ζm+ζ−1
m ) is Z[ζm+ζ−1

m ]. In general, the ring of integers
of a number field K = Q(θ) does not have the form Z[θ]. When this is the case, we say
that K is a monogenic number field.

The fractional ideal D−1
K = {a ∈ K : TrK(aOK) ⊂ Z} is the codifferent ideal, that is,

the dual ideal of the ring of integers. Frequently, the codifferent ideal is also denoted by
O∨K . Note that OK ⊂ D−1

K . If OK = Z[θ] for some θ ∈ K, then O∨K = (p′(θ))−1OK , where
p′(x) is the derivative of the minimal polynomial f(x) of θ [122, Section 13.2, J]. The
inverse ideal of the codifferent, that is, DK = (D−1

K )−1, is an ideal of OK called different
of K. In general, the dual ideal of any fractional ideal I of K is the fractional ideal I∨ of
K, defined as

I∨ := {a ∈ K : TrK(aI) ⊂ Z} = I−1 · O∨K .

If I is any ideal of the ring OK , then the congruence relation modulo I is defined as
follows. For a, b ∈ OK , let a ≡ b (mod I) when a − b ∈ I. The equivalence class of an
element a ∈ OK is given by

a+ I := {a+ r : r ∈ I}.

If I 6= OK , the congruent classes modulo I are identified with the elements of the quotient
ring OK/I [122].

For a nonzero fractional ideal I of OK , the norm of I is N(I) = |OK/I|, that is,
the cardinality of the quotient of additive groups. If I and J are ideals of OK , then
N(IJ ) = N(I) N(J ), where IJ denotes the product of I and J , that is, the set all finite
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sums of products ab for a ∈ I and b ∈ J . If I is a principal ideal generated by some
a ∈ K, then N(I) = |NK(a)|.

2.4 Ideal Lattices
In 2006, Lyubashevsky and Micciancio [87] introduced the concept of ideal lattices as a
generalization of cyclic lattices in the context of the Short Integer Solution Problem over
rings (Ring-SIS). In a nutshell, a lattice is cyclic if it is invariant under cyclic rotations of
coordinates [94]. Consider a lattice Λ spanned by the vectors of B.

Definition 6 ([87]). An ideal lattice is an integer lattice Λ(B) ⊆ Zn such that
Λ(B) = {g(x) mod f(x) : g(x) ∈ I} for some monic polynomial f(x) of degree n and
ideal I ⊆ Z[x]/(f(x)).

Later, in 2010, Lyubashevsky, Peikert, and Regev [88] introduced a ring-based variant
of the Learning With Errors (LWE) Problem. Their main focus was on rings of the form
Z[x]/(Φm(x)) in which Φm(x) is the m-th cyclotomic polynomial. However, in contrast
with Definition 6, they chose the ring homomorphism as the canonical embedding rather
than the coefficient embedding. Notice that, in the coefficient embedding, the lattice
vectors are precisely the vector containing the coefficients of elements in the ring.

For a number field K, consider the n distinct field monomorphisms σi from K to C.
It follows that fractional ideals in K yields lattices under the canonical embedding, also
known as the Minkowski embedding.

Definition 7. The canonical embedding from K into the subspace H is the homomor-
phism

σ(a) = (σ1(a), . . . , σn(a)) .

Consider a fractional I with Z-basis {b1, . . . , bn}. The image of the canonical embed-
ding in the space H is an ideal lattice with rank n and basis {σ(b1), . . . , σ(bn)} ⊂ H.
Thus, an ideal in K can be identified by its embedded lattice σ(I) in which geometrical
norms are taken. In particular, for any a ∈ K and any p ∈ [1,∞], the `p-norm of a is

‖a‖p = ‖σ(a)‖p =
(

n∑
i=1
|σi(x)|p

)1/p
for p <∞ and maxi |σi(a)| when p =∞.

The fact that addition and multiplication are taken component-wise in the canon-
ical embedding started to be used to design efficient algorithmic tasks and bound the
error growth after multiplications. Especially, the expansion of an element resulting from
multiplication is given by

‖a · b‖p ≤ ‖a‖∞ · ‖b‖p,

for any a, b ∈ K. In the coefficient embedding, such analysis requires computing the
expansion factor of the underlying ring, which depends on the minimal polynomial f(x).
Section 5.2 will give details on the computation of the expansion factor.

Finally, the canonical embedding allows defining Gaussian distributions over ideals in
K using the fact that the space H is isomorphic to the tensor field KR = K ⊗Q R. The
field KR represents the number field K by extending rational coefficients to reals.
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2.5 The Ring-LWE Problem
In 2005, Regev introduced the Learning With Errors (LWE) Problem along with a reduc-
tion from worst-case lattice problems such as the decision version of the Shortest Vector
Problem (SVP) and the Shortest Independent Vectors Problem (SIVP) [121]. In 2010,
Lyubashevsky, Peikert, and Regev proposed an algebraic variant of LWE called Ring-
LWE that exploits algebraic structure to make cryptographic applications more efficient
in terms of memory and running time [88].

For defining the Ring-LWE distribution and its associated computational problems,
consider a number field K with ring of integers R = OK . Recall that R∨ is the (fractional)
codifferent ideal of K, and let T = KR/R

∨. Let q ≥ 2 be an integer modulus and, for any
fractional ideal I of K, let Iq = I/qI.

Definition 8 ([88] Ring-LWE Distribution). For s ∈ R∨q , called the secret, and an
error distribution ψ over KR, a sample from the Ring-LWE distribution As,ψ over Rq×T
is generated by choosing a $←− Rq uniformly at random, choosing e ← ψ, and outputting
(a, b = (a · s)/q + e mod R∨).

Definition 9 ([88] Ring-LWE, Search). Let Ψ be a family of distributions over KR.
The search version of the Ring-LWE Problem, denoted R-LWEq,Ψ, is defined as follows:
given access to arbitrarily many independent samples from As,ψ, for some arbitrary s ∈ R∨q
and ψ ∈ Ψ, find s.

Definition 10 ([88, 117] Ring-LWE, Average-case Decision). Let Υ be a distri-
bution over a family of error distributions, each over KR. The average-case Ring-LWE
decision problem, denoted R-LWEq,Υ, is to distinguish (with non-negligible advantage) be-
tween independent samples from As,ψ for a random choice of (s, ψ) ← U(R∨q ) × Υ, and
the same number of uniformly random and independent samples from Rq × T.

Lyubashevsky, Peikert, and Regev proved the hardness of Ring-LWE in two compo-
nents [88]. The first component is a quantum reduction from approximate SVP on ideal
lattices in a ring R to the search variant of Ring-LWE. This reduction works for any
number field. The second component is a classical reduction from the search problem to
the decision variant of Ring-LWE. The authors provided two versions for this reduction:
one with a nonspherical error distribution in the canonical embedding and the other with
a spherical error distribution but with a limited number of samples. However, this second
component only works for prime moduli that split completely and cyclotomic number
fields.

In 2017, Peikert, Regev, and Stephens-Davidowitz extended to decision the hardness
results for the search variant of Ring-LWE [117]. In particular, they gave a polynomial-
time quantum reduction from worst-case approximate SIVP directly to the decision vari-
ant of (Ring-)LWE. In this sense, the hardness results of both search and decision vari-
ants follow the same template: a worst-case to average-case reduction from the Discrete
Gaussian Sampling Problem (DGS) to Ring-LWE and a reduction from the Generalized
Independent Vectors Problem (GIVP), which is a generalization of SIVP, to DGS.
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We now formally define the computational problems which form the foundation of the
(Ring)-LWE hardness, namely approximations for GapSVP, SIVP, and DGS, which is
denoted K-DGS when the underlying lattice is taken over a number field K [88].

Definition 11 (GapSVPγ). For an approximation factor γ = γ(n) ≥ 1, the GapSVPγ
is: given a lattice Λ and length d > 0, output YES if λ1(Λ) ≤ d and NO if λ1(Λ) > γd.

Definition 12 (SIVPγ). For an approximation factor γ = γ(n) ≥ 1, the SIVPγ is: given
a lattice Λ, output n linearly independent lattice vectors of length at most γ(n) · λn(Λ).

By seeing a fractional ideal I of an arbitrary number field K as a lattice using the
canonical embedding, let DI,r denote the discrete Gaussian distribution of width r over
I in KR = K ⊗Q R, which is isomorphic to the space H.

Definition 13 (K-DGSγ). For a function γ that maps lattices to nonnegative reals, the
K-DGSγ problem is: given an ideal I in K and a parameter r ≥ γ = γ(I), output an
independent sample from a distribution that is within negligible distance of DI,r.

Alternatively, for the purpose of the worst-case to average-case reduction for
(Ring-)LWE, the DGS problem can be stated as follows: given an n-dimensional lat-
tice Λ and a number r ≥

√
2n · ηε(Λ)/α, output a sample from DΛ,r.

Regev gave reductions from both SIVP and GapSVP to DGS [121, Section 3.3], pro-
viding a quantum algorithm for solving these hard lattice problems. Particularly, the
hardness result from SIVP is given in Lemma 2.1.

Lemma 2.1 ([121, Lemma 3.17]). For any ε = ε(n) ≤ 1
10 and any ϕ(Λ) ≥

√
2ηε(Λ),

there is a polynomial time reduction from GIVP2
√
nϕ to DGSϕ.

For completeness, we present the theorems that state the hardness results for both
search and decision variants of Ring-LWE. These theorems will be used in Section 3.3.1
for analyzing the approximation factors in the presence of torsion factors. First, we define
the class of error distributions Ψ≤α for which the search Ring-LWE is proved to be hard.

Definition 14 ([88, Definition 3.4]). For a positive real α > 0, the family Ψ≤α is the
set of all elliptical Gaussian distributions Dr (over KR) where each parameter ri ≤ α.

Theorem 2.2 ([88, Theorem 4.1]). Let K be an arbitrary number field of degree n and
R = OK. Let α = α(n) > 0, and let q = q(n) ≥ 2 be such that αq ≥ 2 · ω(

√
log n)3. For

some negligible ε = ε(n), there is a probabilistic polynomial-time quantum reduction from
K-DGSγ to R-LWEq,Ψ≤α, where

γ = max
{
ηε(I) · (

√
2/α) · ω

(√
log n

)
,
√

2n/λ1(I∨)
}
.

Similarly, we define the distribution over a family of error distributions Υα for which
instances of the decision variant of Ring-LWE are supported by hardness results.

3In this context, ω(f(n)) denotes an arbitrary function that grows asymptotically faster than f(n).
Conversely, O(f(n)) denotes an arbitrary function upper bounded by the function f(n).
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Definition 15 ([117]). Fix an arbitrary f(n) = ω(
√

log n). For α > 0, a distribution
sampled from Υα is an elliptical Gaussian Dr, where r ∈ G is sampled as follows: for
i ∈ [s1], sample xi ← D1 and set r2

i = α2(x2
i + f 2(n))/2. For i = s1 + 1, . . . , s1 + s2,

sample xi, yi ← D1/
√

2 and set r2
i = r2

i+s2 = α2(x2
i + y2

i + f 2(n))/2

Theorem 2.3 ([117, Theorem 6.2]). Let K be an arbitrary number field of degree n and
R = OK. Let α = α(n) ∈ (0, 1), and let q = q(n) ≥ 2 be an integer such that αq ≥ 2·ω(1).
There is a polynomial-time quantum reduction from K-DGSγ to (average-case, decision)
R-LWEq,Υα for any

γ = max
{
η(I) ·

√
2/α · ω(1),

√
2n/λ1(I∨)

}
.
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Chapter 3

Twisted Ring-LWE

In this chapter, we describe the main contribution of this thesis: the class of problems
Twisted Ring-LWE. The proposed class of problems generalizes the original Ring-LWE
Problem [88, 117] by replacing the canonical embedding with twisted embeddings.

The Ring-LWE Problem was introduced in the cryptographic realm in 2010, aiming
at exploiting extra algebraic structure to reduce the quadratic overhead of the LWE
problem [121]. The Ring-LWE was proposed focusing on polynomial rings of the form
Z[x]/(Φm(x)) for Φm(x) the m-th cyclotomic polynomial, which is a representation for the
ring of integers of them-th cyclotomic number field. By fixing the underlying ring R as the
ring of integers, the canonical embedding σ maps R to a lattice σ(R) in Rn (Figure 3.1),
in which approximated lattice problems are proved to be NP-hard. Also, the canonical
embedding is a ring homomorphism from the number field to a space isomorphic to Rn,
meaning that the ring structure of R is preserved in σ(R).

Ring of integers
R

Lattice
σ(R) ⊂ Rn

a
b
c
...
z

σ(c)
σ(b)
σ(z)

...
σ(a)

Figure 3.1: The canonical embedding depicted.

By noticing that twisted embeddings generalize the canonical embedding, we adapted
the Ring-LWE Problem to incorporate algebraic constructions of rotated lattices. This
modification enlarges the scope of lattices considered for cryptography, either to allow
new ring instantiations or to provide additional information for cryptoanalysis.

We start this chapter by collecting necessary results on algebraic lattices obtained
through twisted embeddings (Section 3.1). Then, Section 3.2 presents the class of prob-
lems Twisted Ring-LWE. The hardness of Twisted Ring-LWE is demonstrated by security
reductions from the original Ring-LWE Problem. Also, we recompute the approximation
factors in the worst-case to average-case reduction from SIVP, considering the torsion
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factor which defines the twisted embedding (Section 3.3). Applications and practical as-
pects of using twisted embeddings in a cryptographic scheme are elaborated in Chapters 4
and 5.

3.1 Twisted Embeddings
In this section consider the following setting. Let K be an algebraic number field with
degree n, signature (s1, s2), and ¯ a fixed involution. Consider F to be the fixed field
by the involution of K. Let σi be the real monomorphisms for i ∈ [s1], and σi+s1 be the
complex monomorphisms for i ∈ [2s2] from K to C, where σi+s1+s2 = σi+s1 for all i ∈ [s2].
The twisted embeddings defined next are a generalization of the canonical embedding [27].
An element τ ∈ K is said to be totally positive if τ ∈ F and τi = σi(τ) is a positive real
number for all i ∈ [n].
Definition 16 (Twisted embeddings). For any totally positive τ ∈ F , the twisted
embedding στ is the homomorphism στ : K → H, defined as

στ (a) =
(√

τ1σ1(a), . . . ,√τs1σs1(a),
√
τ1+s1σ1+s1(a), . . . ,√τ2s2+s1σ2s2+s1(a)

)
.

Since the element τ = 1 in F is totally positive, then στ=1 = σ and twisted embeddings
are generalizations of the canonical embedding. Twisted embeddings provide a way to
obtain a variety of lattices in H ' Rn in addition to the ones obtained via canonical
embedding, as a consequence of Proposition 3.1 [27].
Proposition 3.1 ([27]). If M is a free Z-module of rank n in K (particularly, if M is
the ring of integers of K or any fractional ideal of K), then στ (M) is a full-rank lattice
in H.

Twisted embeddings can be extended fromK toKR as follows. For any totally positive
element τ ∈ F , the R-vector space στ (KR) is isomorphic to H ' Rn. If B is a Q-basis of
the number field K, then B is an R-basis of KR. So, for all totally positive τ ∈ F , στ (B)
is an R-basis of H.

Consider the natural extension of the trace function TrK : K → Q to TrK : KR → R.
For any totally positive τ ∈ F , we can define an inner product in KR as

〈a, b〉τ := 〈στ (a), στ (b)〉H = TrK(τab), a, b ∈ KR.

By considering the inner product 〈, 〉τ , the R-vector space KR is an Euclidean vector space
of dimension n isometric to both (H, 〈, 〉H) and (Rn, 〈, 〉).

Recall that, for each a ∈ KR, the `p-norms of a under the canonical embedding are
‖a‖p = ‖σ(a)‖p = (∑n

i=1 |σi(a)|p)1/p for p <∞, and maxi |σi(a)| for p =∞. Similarly, the
`p-norms induced from Cn under twisted embeddings are defined as

‖a‖p,τ := ‖στ (a)‖p =
(

n∑
i=1
|
√
τiσi(a)|p

)1/p
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for p <∞, and the `∞-norm is

‖a‖∞,τ := ‖στ (a)‖∞ = max
i
|
√
τiσi(a)|

in which τi = σi(τ) for a totally positive element τ ∈ F . Thus, any free Z-module1 M of
rank n can be seen as a full-rank lattice directly in the Euclidean vector space (KR,〈, 〉τ ).
However, the image of στ (M) is frequently considered as in (H, 〈, 〉H).

Using the fact that στ (a · b) = σ(a)� στ (b) = στ (a)� σ(b) for any a, b ∈ KR, where �
is the component-wise multiplication in the space H, it follows that

‖a · b‖p,τ ≤ ‖a‖∞‖b‖p,τ and ‖a · b‖p,τ ≤ ‖a‖p‖b‖∞,τ . (3.1)

Notice that, since multiplication of elements in KR is mapped to coordinate-wise mul-
tiplication in H, for any element a ∈ KR, we have that the distribution of a ·Dr is Dr′ ,
where r′i = ri ·

∣∣∣√τiσi(a)
∣∣∣ for i ∈ [n]. Because of the induced norms from C, which maps

elements of K to H, an elliptical distribution defined in the space H can be seen as a
distribution directly over KR. For practical applications, sampling from an error distri-
bution in KR is done by generating the error in H and mapping it to its corresponding
element in KR, via twisted embeddings. However, in some special cases, an error can be
efficiently sampled directly in KR without requiring the computation of the inverse of the
Vandermonde matrix with respect to στ [62].

Since KR ' Rn under twisted embeddings, it follows that KR admits an orthonormal
basis. Thus, for any Z-basis B = {v1, . . . , vn} of the free Z-moduleM of rank n in K, the
matrix [〈vi, vj〉τ ]n×n is a Gram matrix of the lattice M in (KR,〈, 〉τ ), which coincides with
the Gram matrix of στ (M) in (H, 〈, 〉H) with respect to the basis {στ (v1), . . . , στ (vn)}. It
should be clear that, for different totally positive elements, the lattices obtained from M

may not be equivalent, as can be seen below.

Example 3.1.1. Let K = Q(
√

3) = {c1 + c2
√

3 : a, b ∈ Q} be a totally real number
field with degree two. It follows that the fixed field by the usual involution is F = K. For
any totally positive element τ ∈ F , consider the lattice Mτ = OK = Z[

√
3] in the inner

product space (KR, 〈, 〉τ ). The set {1,
√

3} is a Z-basis of Mτ and the Gram matrix of the
lattice Mτ is given by

Gτ =
[

TrK(τ) TrK(τ
√

3)
TrK(τ

√
3) TrK(3τ)

]
.

For example, for τ = 1 and τ = 2 +
√

3, the Gram matrices are

G1 =
[
2 0
0 6

]
and G2+

√
3 =

[
4 6
6 12

]
. (3.2)

Suppose that these two lattices are equivalent. Then, there exists a square matrix U
with integer entries and determinant ±1, and a real number k 6= 0 such that G2+

√
3 =

1In general, if A is a commutative ring, then an A-module is a set M , endowed with the operations of
addition + : M ×M → M and scalar multiplication · : M ×M → M , which satisfy precisely the same
axioms as the addition and scalar multiplication of a vector space, except that the scalars are taken from
a ring instead of a field [82, Chapter 3].
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k2U>G1U. Since the determinant of both matrices in (3.2) is equal to 12, then k = ±1.
Now, consider U to be a matrix for which the rows are given by the vectors (a, b) ∈ Z2 and
(c, d) ∈ Z2. So, the system of equations G2+

√
3 = U>G1U has no solution (a, b, c, d) ∈ Z4

because the equation 2 = a2 + 3c2, provided by the first entry, has no solution (a, c) ∈ Z2.
This gives a contradiction. Therefore, the lattices given by the same module M = OK in
the two different inner product spaces (KR, 〈, 〉1) and (KR, 〈, 〉2+

√
3) are not equivalent.

Any full-rank lattice M in (KR, 〈, 〉τ ) is said to be an algebraic lattice. If M = I is a
fractional ideal in K and the lattice I is integral – that is, 〈a, b〉τ ∈ Z for all a, b ∈ I –,
then I can be called an ideal lattice in (KR, 〈, 〉τ ). Since 〈a, b〉τ = TrK(τab), an ideal I
of K constitutes an ideal lattice in (KR, 〈, 〉τ ) if and only if τII ⊂ D−1

K (= O∨K). Ideal
lattices can be obtained if and only if K is either a totally real number field or a CM-
field. In particular, ideal lattices can be obtained via cyclotomic number fields and their
maximal real subfields.

Let I be a fractional ideal of K. It is known that σ(I∨) = σ(I)∗ in H under the
canonical embedding. However, the same does not hold for twisted embeddings in general,
as can be inferred from Proposition 3.2.

Proposition 3.2. Let τ ∈ F be a totally positive element and let I be a fractional ideal
of K. Then, in the Euclidean vector space (KR, 〈, 〉τ ), it follows that:

(i) I∗ = τ−1I∨; and

(ii) I is an unimodular (self-dual) lattice in (KR, 〈, 〉τ ) if and only if τII = D−1
K .

Proof. By definition, a ∈ I∗ if and only if TrK(τaI) ⊂ Z, which occurs if and only if
τa ∈ I∨, which is equivalent to a ∈ τ−1I∨. This proves (i). Secondly, I is unimodular
when I is integral and I = I∗. The lattice I is integral if and only if τII−1 ⊂ D−1

K .
In turn, by (i), I = I∗ if and only if I = τ−1I∨ = τ−1I−1D−1

K , which is equivalent to
τII = D−1

K . Therefore, I is unimodular if and only if τII = D−1
K .

3.2 Twisted Ring-LWE Problem
This section introduces a new class of problems, named Twisted Ring-LWE, that extends
the Ring-LWE Problem, adopting twisted embeddings instead of canonical embedding.
We prove that solving the Twisted Ring-LWE Problem is at least as hard as solving the
original Ring-LWE Problem [88] by providing a polynomial-time reduction from Ring-
LWE to Twisted Ring-LWE.

In the Ring-LWE distribution (Definition 8), the error e is randomized by a distribution
ψ over the space (KR, 〈, 〉τ=1). In this sense, an error in KR can be seen as the inverse
image of a sample from the distribution ψ in H ' Rn via canonical embedding. In our
general case, we consider K a number field with an involution, F its associated fixed field,
τ ∈ F a totally positive element, and στ the twisted embedding. Thus, the error e is
randomized by a distribution ψ over (KR, 〈, 〉τ ). In the following, it is assumed q ≥ 2 is
an integer number, R = OK , and Iq = I/qI for any fractional ideal I of K.
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Definition 17 (Twisted Ring-LWE Distribution). For a totally positive element
τ ∈ F , let ψτ denote an error distribution over the inner product 〈, 〉τ and s ∈ R∨q , called
the secret, be an uniformly randomized element. The Twisted Ring-LWE distribution
As,ψτ produces samples of the form

(a, b = a · s+ e mod qR∨) ∈ Rq ×KR/qR
∨, (3.3)

where a $←− Rq is sampled uniformly at random and the error e is randomized by ψτ in
(KR, 〈, 〉τ ).

Originally, Ring-LWE was defined in the space KR provided with the inner product
associated with the canonical embedding [88]. Analogously, we can define the search and
decision variants of Ring-LWE in (KR, 〈, 〉τ ). We modify the definition of the family of
error distributions Ψ and Υ previously given in (14) and (15) for the space (KR, 〈, 〉τ ).
Consider that we strictly follow the search problem as defined by Lyubashevsky et al. [88]
and the decision problem which was further defined by Peikert et al. [117].

Definition 18. For a positive real α > 0, the family Ψ(τ)
≤α is the set of all elliptical

Gaussian distributions Dr over (KR, 〈, 〉τ ), where each parameter ri ≤ α.

Definition 19 (Twisted Ring-LWE, Search). Let Ψ(τ) be a family of distributions
over the inner product space (KR,〈, 〉τ). The search version of the Twisted Ring-LWE
Problem, denoted R-LWEq,Ψ(τ), is defined as follows: given access to arbitrarily many
independent samples from As,ψτ for some arbitrary s ∈ R∨q and ψτ ∈ Ψ(τ), find s.

Definition 20. Fix an arbitrary f(n) = ω
(√

log n
)
. For α > 0, a distribution sampled

from Υ(τ)
α is an elliptical Gaussian Dr in (KR, 〈, 〉τ ), where r is sampled as follows: for

i ∈ [s1], sample xi ← D1 and set r2
i = α2(x2

i + f 2(n))/2. For i = s1 + 1, . . . , s1 + s2,
sample xi, yi ← D1/

√
2 and set r2

i = r2
i+s = α(x2

i + y2
i + f 2(n))/2.

Notice that, in Definition 20, sampling xi ← D1 for i ∈ [s1] and xi, yi ← D1/
√

2 for
i = s1 + 1, . . . , s1 + s2 is done according to the Gaussian function given in Equation 2.1,
using the norm induced by the corresponding twisted embedding στ .

Definition 21 (Twisted Ring-LWE, Average-case Decision). Let Υ(τ) be a distribu-
tion over a family of error distributions, each in the inner product space (KR,〈, 〉τ). The
average-case Twisted Ring-LWE decision problem, denoted R-LWEq,Υ(τ), is to distinguish,
with non-negligible advantage, between arbitrarily many independent samples from As,ψτ ,
for a random choice of (s, ψτ )← U(R∨q )×Υ(τ), and the same number of uniformly random
and independent samples from Rq ×KR/R

∨.

Generally speaking, the Twisted Ring-LWE distribution and the search and decision
variants of Twisted Ring-LWE collapse to their original definitions in the Ring-LWE
Problem when τ = 1.
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3.3 Hardness of the Twisted Ring-LWE
In this section, we provide evidence for the hardness of Twisted Ring-LWE. First, we give
reductions from Ring-LWE to the Twisted Ring-LWE Problem. By doing so, Twisted
Ring-LWE is proven to be at least as hard as NP-hard lattice problems. Moreover, these
are indeed self reductions, in the sense that they preserve the secret term s ∈ R∨q , only
distorting the error distribution over KR.

Theorem 3.3. Let K be an arbitrary number field with R = OK and τ ∈ K be totally
positive. Let (s, ψ) be randomly chosen from (U(R∨q )×Ψ) in (KR, 〈, 〉τ=1). Then, there is
a polynomial-time reduction from R-LWEq,Ψ to R-LWEq,Ψ(τ).

Proof. We assume the existence of an oracle for R-LWEq,Ψ(τ) that, given a set of indepen-
dent samples from As,ψτ , for some arbitrary s ∈ R∨q and ψτ ∈ Ψ(τ), recovers the secret
term s. Given a set of independent samples from the Ring-LWE distribution As,ψ, solving
the search version of Ring-LWE amounts to finding the secret s. In order to evoke the
R-LWEq,Ψ(τ) oracle to solve Ring-LWE, we must ensure that the error terms from the
input samples follow a Gaussian distribution ψτ ∈ Ψ(τ). Let the input samples from As,ψ
be represented as

(ai, bi = ai · s+ ei mod qR∨) ∈ Rq × T,

where ei
ψ←− KR. Thus, we use the fact that ei = σ−1(ẽi), for some ẽi obtained from the

Gaussian distribution ψ over H. The Twisted Ring-LWE samples are obtained by first
computing the corresponding representatives of each pair (ai, bi) in H as

{(σ(ai), σ(bi))} = {(σ(ai), σ(ai) · σ(s) + ẽi)} .

By applying the inverse transformation σ−1
τ , we obtain that{(

σ−1
τ (σ (ai)) , σ−1

τ (σ(bi))
)}

=
{(
σ−1
τ (σ (ai)) , σ−1

τ (σ (ai)) · s+ σ−1
τ (ẽi)

)}
. (3.4)

Notice that s was unchanged by the transformations, so it is a randomized element over
R∨q . Because ai was sampled according to a uniform distribution over Rq and both σ and
σ−1
τ transformations are injective, σ−1

τ (σ(ai)) is also uniform in Rq. And, finally, since
e′i = σ−1

τ (ẽi) is randomized by ψτ in (KR, 〈, 〉τ ), the set of samples in (3.4) follows the
distribution As,ψτ . Given the set of samples (3.4) as input for the Twisted Ring-LWE
solver, it finds the secret s. Then, mapping the solution to the Ring-LWE instance of the
R-LWEq,Ψ(τ) solution is done by the identity transformation. Since the computation of
the transformations σ and σ−1

τ can be seen as vector-matrix multiplications, the reduction
costs O(n2) operations. Thus, the given reduction from R-LWEq,Ψ to R-LWEq,Ψ(τ) runs
in polynomial time. This concludes the proof.

Theorem 3.4. Let K be an arbitrary number field with R = OK and τ ∈ K be a totally
positive element. Let (s, ψ) be randomly chosen from (U(R∨q )×Υ) in (KR, 〈, 〉τ=1). There
is a polynomial-time reduction from R-LWEq,Υ to R-LWEq,Υ(τ).

Proof. Given a set of m pairs of the form (ai, bi) ∈ Rq×T, each drawn either from As,ψ or
from a uniform distribution over Rq×T, we prove that the (decision) Ring-LWE Problem
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can be solved using only an oracle for (decision) Twisted Ring-LWE and a polynomial-
time function for mapping the input instances. As in the reduction for the search variant,
we apply the transformations σ and σ−1

τ , in this order, to each pair (ai, bi) ∈ Rq × T.
As a result, those pairs drawn from (U(Rq), U(T)) are still uniformly distributed over
Rq × T, since both σ and σ−1

τ are injective maps. On the other hand, the pairs drawn
from Aq,ψ now follow the Twisted Ring-LWE distribution Aq,ψτ . Thus, given an algorithm
that solves (decision) R-LWEq,Υ(τ) , it distinguishes in two different sets the m/2 samples
drawn from Aq,ψτ and those m/2 uniformly distributed. Since mapping Ring-LWE to
Twisted Ring-LWE instances preserves distributions, the solution for (decision) Ring-
LWE problem is done by an identity transformation. Finally, the computation of the
transformations σ and σ−1

τ costs O(n2) operations; thus, the reduction runs in polynomial
time. This concludes the proof.

3.3.1 Computing the Approximation Factors
Consider an arbitrary number field K of degree n with a ring of integers R = OK , and a
fractional ideal I in K. This section analyzes the effect of redefining the inner product in
the Ring-LWE security reductions. Note that the same fractional ideal leads to different
lattices up to the change of ring homomorphism.

By strictly following the setting of Lyubashevsky et al. [88], we start by deriving upper
bounds for the smoothing parameter concerning the `p-norm under twisted embeddings.
From the inequalities in (3.1), we are able to relate the `p-norm under twisted embeddings
with the infinity norm under the canonical embedding as

‖a‖∞ ≥
‖a‖p,τ(
n∑
i=1

τ
p/2
i

) 1
p

.

We can also relate `p-norms under both embeddings in H as

1
maxi τi

· ‖a‖p,τ ≤ ‖a‖p ≤
1

mini τi
· ‖a‖p,τ .

Using the above inequalities, Lemmas 3.5 and 3.6 present upper bounds for the smooth-
ing parameter associated with twisted embeddings, which are a simple adaptation of Lem-
mas 2.7 and 3.5 from [113]. Notice that, when τ = 1, these upper bounds are exactly
the same as presented in [113]. Consider that λ(p,τ)

n (Λ) and λ
(p,τ)
1 (Λ) denotes the k-th

successive minimum and the minimum distance of a lattice Λ in the `p-norm, respectively,
under a twisted embedding denoted στ .

Lemma 3.5. Let K be an arbitrary number field and τ ∈ K be totally positive. For any
p ∈ [2,∞], any n-dimensional lattice Λ in (KR, 〈, 〉τ ), and any ε > 0,

ηε(Λ) ≤ λ(p,τ)
n (Λ) · n

1/2−1/p

mini τi
·
√

log(2n(1 + 1/ε))/π.
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In particular, for any ω
(√

log n
)
function, there is a negligible function ε(n) for which

ηε(Λ) ≤ λ(p,τ)
n (Λ) · n

1/2−1/p

mini τi
· ω
(√

log n
)
.

Lemma 3.6. Let K be an arbitrary number field and τ ∈ K totally positive. For any
p ∈ [1,∞], any n-dimensional lattice Λ in (KR, 〈, 〉τ ), and any ε > 0,

ηε(Λ) ≤
maxi τi · n1/p ·

√
log(2n(1 + 1/ε))/π

λ
(p,τ)
1 (Λ∗)

.

In particular, for any ω
(√

log n
)
function, there is a negligible function ε(n) such that

ηε(Λ) ≤ max
i
τi · n1/p · ω

(√
log n

)
/λ

(p,τ)
1 (Λ∗).

The hardness of search Ring-LWE consists of two reductions: (i) a worst-case to
average-case reduction from DGS to Ring-LWE (Theorem 2.2); and (ii) a reduction from
SIVP to DGS (Lemma 2.1). Thus, we use the inequalities for the smoothing parameter
ηε derived in Lemmas 3.5 and 3.6 to recompute the approximation factors in both reduc-
tions. We start by computing the approximated factor γ from Theorem 2.1. As long as
α <

√
log n/n, it follows that the K-DGSγ parameter is

γ = ηε(I) ·
(√

2/α
)
· ω
(√

log n
)

= ηε(I) · Õ(1/α).

Using the inequality ηε(I) ≤ λ(p,τ)
n (Λ) · n1/2−1/p

mini τi · ω
(√

log n
)
from Lemma 3.5, we obtain

that the parameter ϕ in Lemma 2.1 is

ϕ ≤ λ(p,τ)
n (Λ) · n

1/2−1/p

mini τi
· ω
(√

log n
)
· Õ(1/α).

Now, using the above inequality for ϕ, we define the upper bound for the SIVP parameter
to be µ, for which

µ = 2
√
nϕ ≤ 2

√
n · λ(p,τ)

n (Λ) · n
1/2−1/p

mini τi
· ω
(√

log n
)
· Õ(1/α).

Remark. Notice that, regardless of the `p-norm, µ = Õ (
√
n/α). Since Õ (

√
n/α) is the

approximation factor for the search version of the Ring-LWE Problem [88, Section 4],
we conclude that the approximation factors remain unchanged concerning the change of
embeddings due to the asymptotic notation. Moreover, since the torsion factor does not
depend on the number field degree n, the approximation factors for the decision version
of the Twisted Ring-LWE Problem also remain unchanged.
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Chapter 4

Applications of Twisted Ring-LWE

In this chapter, we present two applications of twisted embeddings. In both cases, we focus
primarily on the algebraic construction of rotated Zn-lattices, mainly because the ring of
integers of power-of-two cyclotomic number fields builds the Zn-lattice in the canonical
embedding and are widely adopted in the literature [31, 12, 60, 10, 63, 69, 45].

As summarized by Peikert [115], some weak instances of the Ring-LWE Problem pre-
sented in the literature in the last few years [65, 66, 44, 38, 43] are insecure because
the error distributions are not covered by hardness results. In general, a cryptosystem
based on the intractability of Ring-LWE performs its algorithmic tasks in the polynomial
representation of the ring of integers in KR. Moreover, for efficiency reasons, the error
distribution is taken as a spherical Gaussian distribution. However, the error distribution
must remain spherical when seen in H under the canonical embedding. When the num-
ber field is a power-of-two cyclotomic, the format of error distribution is preserved in H,
but the width is enlarged by a factor related to the field conductor. For other choices of
number fields, neither the format nor the standard deviation may be preserved.

Informally speaking, the main result of Section 4.1 states that when the ideal lattice is
a rotated Zn-lattice, a spherical Gaussian distribution over KR is totally preserved when
seen in the space H. This result embraces the power-of-two cyclotomic case since the
canonical embedding is a specialization of twisted embeddings.

Theorem (Informal). If an ideal lattice is congruent to Zn under a twisted embedding,
it is possible to sample from a spherical Gaussian distribution in KR with a hardness
guarantee.

In Section 4.2 we restrict the transformation used in the Ring-LWE to Twisted Ring-
LWE reductions to lattices equivalent in the space H. In the security reductions, we
assume that the Ring-LWE distribution is defined over a number field K. Then, we use
a totally positive element τ ∈ K to compute σ−1

τ (σ(bi = ai · s + ei)) to adjust the error
terms ei. After these transformations, the error terms follow an error distribution under
the twisted embedding στ . As a result, the Twisted Ring-LWE instance is composed of a
pair of elements in K. However, if we could choose a torsion factor in a distinct number
field L, for which a fractional ideal I leads to a lattice equivalent to σ(OK), then we can
convert elements of OK into I. In this sense, we can switch samples of Twisted Ring-
LWE from the number field K to L by computing the unimodular matrix that relates
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their lattices in H. This result is summarized in the following statement.

Theorem (Informal). If two ideal lattices are equivalent in H, then the Twisted Ring-
LWE instances upon them are efficiently convertible into each other.

Moreover, if we takeK as a power-of-two cyclotomic number field and L as its maximal
real subfield, we verify that instantiating the Ring-LWE Problem over K is equivalent to
instantiating the Twisted Ring-LWE Problem over L. This result may provide additional
information for asserting the hardness of using power-of-two cyclotomic number fields for
cryptography.

4.1 Efficient Spherical Error Sampling
Ducas and Durmus [62] showed how to sample efficiently from a spherical Gaussian dis-
tribution in cyclotomic polynomial rings. This section extends this result to a more gen-
eral class of number fields, taking the algebraic realization of Zn-lattices as an example.
Consequently, if a lattice is equivalent to Zn, we can sample from a spherical Gaussian
distribution in the tensor field KR with a hardness guarantee.

Durmus and Ducas proved a special case when a spherical Gaussian distribution with
width s in the power basis corresponds to a spherical Gaussian distribution with width
s
√
m′ over the space H [62, Theorem 4.1]. In the statement of Theorem 4.1, let m′ = m if

m is odd and m′ = m/2 if m is even. Also, let β represent the polynomial reduction from
Q[x]/(Θm(x)) to Q[x]/(Φm(x)), where Θm(x) = xm

′−1 if m is odd, and Θm(x) = xm
′ + 1

if m is even. Let the linear operator T : H → H with matrix in the canonical basis of H
be:

T = 1√
2

(
Iφ(m)/2 i Iφ(m)/2

Iφ(m)/2 −i Iφ(m)/2

)
, with i =

√
−1. (4.1)

Theorem 4.1 ([62, Theorem 5]). Let v ∈ Q[x]/(Θm(x)) be a random variable dis-
tributed as ψm′s in the power basis. Then, the distribution of (T−1 ◦ σ ◦ β)(v), seen in the
canonical basis of H, is the spherical Gaussian ψφ(m)

s
√
m′
.

In order to sample directly over the cyclotomic ring Q[x]/(Φm(x)), leading to the
correct distribution in the embedding representation, they sample the error polynomial in
the ring Q[x]/(Θm(x)). Then, the reduction modulo Φm leads to the correct distribution
under the canonical embedding. This method avoids resorting to complex embeddings
and the inverse of the Vandermonde matrix.

The shape of the distribution is preserved because the transformation T−1 ◦ σ is, in
fact, a scaled-orthogonal map from the power basis of Q[x]/(Φm(x)) to the space H,
where T−1 is Hermitian (T−1 = T>). The proof for Theorem 4.1 reduces to proving
that M ∈ Cφ(m)×m′ , the matrix representing the linear map γ from the power basis
of Z[x]/(Θm(x)) to the canonical basis of Cφ(m) satisfies C = MM> = m′ Iφ(m). The
coefficients of M are given by mi,j = σj(xi) = ζ ijm. Then, for all i, j ∈ Z∗m, we have that

ci,j =
m′∑
k=1

ζ ikmζ
jk
m =

m′∑
k=1

(ζ i−jm )k =

m
′ if i = j,

0 otherwise.
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Thus, E = T−1M = E, so EE> = EE> = T−1MM>T = m′ Iφ(m). This last equation
implies that, if a random variable v ∈ Q[x]/(Θm(x)) has covariance matrix s2 Im′ , then
the covariance matrix of (T−1 ◦ γ)(v) is s2E Im′ E

> = s2m′ Iφ(m), and the distribution of
(T−1 ◦ γ)(v) is the spherical Gaussian ψφ(m)

s
√
m′
.

In the following, we discuss how the shape of spherical Gaussian distributions may
be preserved when seen in the space H for special algebraic constructions under twisted
embeddings. Following Ducas and Durmus’ approach, we are interested in lattices equiv-
alent to Zn, whose Gram matrices have the form c In for c ∈ R. In this sense, the matrix
mapping elements of KR to the space H is a scaled-orthogonal map [62]. It follows that
any algebraic realization of the Zn-lattice preserves the shape of an error distribution over
KR when seen as in H.

In Theorem 4.2, we prove that fractional ideals realizing lattices equivalent to Zn in
an orthonormal basis, which are the particular case when the Gram matrix is simply
In, preserve both format and standard deviation of spherical Gaussian distributions. We
recall that ideal lattices can be obtained if and only if K is a totally real number field or
if K is a CM-field. Recall that a CM-field is a totally imaginary quadratic extension of a
totally real number field [27].

Theorem 4.2. Let K be a number field with an involution. Consider τ ∈ K totally
positive and I ⊂ OK a fractional ideal such that I is an ideal lattice in (KR, 〈, 〉τ ). If I is
a lattice equivalent to Zn, then both the format and the standard deviation of a spherical
Gaussian distribution in an orthonormal basis of I ⊂ KR are preserved when seen in the
canonical basis of the space H (via the twisted embedding στ).

Proof. Let n be the degree of K and let v ∈ I be a random variable over the spherical
Gaussian distribution with covariance matrix s2 In in an orthonormal Z-basis of I, for
some real number s. Since the twisted embedding στ : KR → H is a linear transformation,
the covariance matrix of στ (v) in the canonical basis of H is Es2 In E>, where E = T−1M,
with T as in (4.1) and M is the generator matrix of στ (I). Since MM> = M>M = In,
and because MM> is the Gram matrix of the Zn-equivalent lattice I in (KR, 〈, 〉τ ), the
covariance matrix of στ (v) is

Es2 In E> = T−1Ms2 In M>T = s2 In,

which proves that στ (v) is randomized in the spherical Gaussian distribution over the
canonical basis of H with the same standard deviation as v over KR in the orthonormal
basis of I. This concludes the proof.

Examples of ideal lattices equivalent to Zn are those obtained from cyclotomic number
fields Q(ζ2k) [27], and their maximal real subfields [16], and the maximal real subfields
Q(ζp + ζ−1

p ) for any prime p ≥ 5. The case of the power-of-two cyclotomic number fields
were previously addressed by Lyubashevsky et al. [88], and Ducas and Durmus [62]. In
the following, we discuss the family of lattices equivalent to Zn built on Q(ζp + ζ−1

p ), for
any p ≥ 5 prime.

Let p ≥ 5 be a prime number, n = (p − 1)/2, and ζ = ζp = exp (−2iπ/p). The
cyclotomic construction of the Zn-lattice (Proposition 4.3) is on the ring of integers of
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the maximal real subfield of a cyclotomic number field whose integral basis is C = {ej =
ζj + ζ−j : 1 ≤ j ≤ n}.

Proposition 4.3 ([106, Proposition 1]). Let p ≥ 5 be a prime number, and let K =
Q(ζp + ζ−1

p ) and τ = 1
p
(1− ζp)(1− ζ−1

p ). Then OK in (KR, 〈, 〉τ ) is a lattice equivalent to
Zn with basis C ′ = {e′1, . . . , e′n : e′n = en and e′j = ej + e′j+1}, where C = {e1, . . . , en} is an
integral basis of K.

The generator matrix of the Zn-lattice in H = Rn, realized in Proposition 4.3, is given
by

M = DM′U, (4.2)

where D = diag
[√

σk(τ)
p

]
n×n

, M′ = [σi(ζj + ζ−j)]i,j∈[n]×[n] and

U =



1 0 0 · · · 0 0
1 1 0 · · · 0 0
1 1 1 · · · 0 0
... ... ... . . . ... ...
1 1 1 · · · 1 1


n×n

.

Notice that, in this context, H = R because K is a totally real number field. As an
immediate consequence of Theorem 4.2, in Corollary 4.3.1 we prove that the construction
for the Zn-lattice mentioned above, in fact, does not change the shape of the error distri-
bution and, more importantly, the standard deviation is the same when the distribution
is seen over H.

Corollary 4.3.1. Let K = Q(ζp + ζ−1
p ) for p ≥ 5 prime and let v ∈ OK be a random

variable distributed as ψns in the basis C ′. Then, the distribution of (T−1 ◦ στ )(v) for
τ = 1

p
(1− ζp)(1− ζ−1

p ), seen in the canonical basis of H, is the spherical Gaussian ψns .

Proof. In the realization of the Zn-lattice (Proposition 4.3), the matrix representing the
linear map στ from the basis C ′ of OK to the canonical basis of Rn is given by M (4.2).
Since OK is a lattice equivalent to Zn in the basis C ′, the result follows immediately from
Theorem 4.2. This concludes the proof.

4.2 Connecting Twisted Ring-LWE Instances
In this section, we relate distinct number fields by applying the transformation used to
reduce an instance of the Ring-LWE Problem to the Twisted Ring-LWE. The basic idea is
as follows. If two fractional ideals, each on a distinct number field, lead to the same lattice
in H under twisted embeddings, they are equivalent lattices. So, there is a unimodular
matrix related to their generator matrices, which we use to convert elements between the
two fractional ideals.

Again, we take the case of lattices equivalent to Zn as an example. It is known
that the rings of integers of three distinct number fields leads to rotated versions of
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the Zn-lattice under twisted embeddings. In particular, we could assume that K is a
power-of-two cyclotomic number field, L is the maximal real subfield of a power-of-two
cyclotomic number field, and M is the maximal real subfield of a p-th cyclotomic number
field. However, the value of n only equals a power of two in the three cases when p = 5.
Recall that, for the number field M , n = (p − 1)/2. Because of that, in Figure 4.1,
we only consider the number fields K and L as defined above. For K, the twist factor
is τ1 = 1, corresponding to the canonical embedding. For the maximal real subfield L,
τ2 = 2−(ζ2r +ζ−1

2r ), in which r ≥ 3 and n = [L : Q] = 2r−2 [16, Section 3.1]. In both cases,
the construction of the rotated Zn-lattice is done from the respective ring of integers.

H ∼= Rs1 × C2s2

OK

OL

Zn

στ1=1

στ2=2−(ζ2r+ζ−1
2r )

Figure 4.1: Distinct number fields that lead to a rotation of the Zn-lattice.

The generator matrix of the Zn-lattice built from K is M1 = [σi (ζjm)]i,j∈[n] for m = 2`,
` ∈ Z, and n = m/2, which is given in terms of the integral basis {ζjm} for j ∈ [n], the
power basis of OK . The Gram matrix of M1 is G1 = M>

1 M1 = n In, which is equivalent
to

Tr(xx) =
n∑
i=1

σi(ζjm)σi(ζkm) =
n∑
i=1

ζ ijmζ
ik
m =

n∑
i=1

(ζj−km )i =

n if j = k,

0 otherwise.

On the other hand, the generator matrix of the Zn-lattice associated with the ring of
integers of L is given by

M2 = 1√
2r−1

DM′U,

where D = diag
[√
σi(2− (ζ2r + ζ−1

2r ))
]
n×n

, M′ =
[
σi(ζj2r + ζ−j2r )

]
i,j∈[n]×[n]

, and

U =



1 0 0 · · · 0 0
1 1 0 · · · 0 0
1 1 1 · · · 0 0
... ... ... . . . ... ...
1 1 1 · · · 1 1


n×n

.

In this case, an integral basis of OL is given by e1 = 1 and ei = ζ i2r + ζ−i2r for 2 ≤ i ≤ n.
The construction of the Zn-lattice is done in the basis {e′i}i∈[n] in which e′i =

i∑
j=1

ej for
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i ∈ [n]. Since both στ1(OK) and στ2(OL) are rotated versions of the Zn-lattice, they are
also equivalent to each other. In this sense, there exists a unimodular matrix U′ such
that M1 = U′M2. Since the vectors in M2 are linearly independent, det(M2) 6= 0 and
M2 is invertible. Thus, the matrix U′ can be determined by computing

M1M−1
2 = U′M2M−1

2 = U′.

Notice that the matrix M−1
2 can be precomputed, assuming that the values for m and

r are fixed such that [K : Q] = [L : Q]. In this sense, the conversion of elements between
OK and OL can be performed efficiently in O(n2) operations.

We formalize this transformation in Theorem 4.4 and use it to convert Twisted Ring-
LWE instances defined over two distinct number fields. The particular case of power-of-
two cyclotomic number fields and their maximal real subfields is addressed in Proposi-
tion 4.5.

Theorem 4.4. Consider any two Twisted Ring-LWE instances over distinct fractional
ideals I ⊆ OK and J ⊆ OL. If the lattices στ1(I) and στ2(J ) are equivalent in H for
totally positive elements τ1 ∈ K and τ2 ∈ L, then a Twisted Ring-LWE instance over I
can be efficiently converted into an instance over J .

Proof. If two lattices στ (I) and σν(J ) are equivalent, then one can be obtained from the
other through a rotation, a reflection, or a change of scale as follows. Let M1 and M2

be the generator matrices of στ1(I) and στ2(J ), respectively. There exists a unimodular
matrix U such that M1 = UM2 which can be computed as M1M−1

2 . The existence of
M−1

2 is guaranteed since M2 is a basis. Given a set of samples from the Twisted Ring-LWE
distribution As,τ1 as

(ai, bi = ai · s+ ei) ∈ Rq ×KR/R
∨,

where ei
ψτ1←−− KR, their representatives in H under the twisted embedding στ1 are com-

puted by performing the matrix multiplications M>
1 · a and M>

1 · b, in which a and b
are the coefficient vectors of ai and bi in the power basis of K. The corresponding set
of samples from the Twisted Ring-LWE distribution As,ψτ2

is obtained by computing the
change of basis given by U, which is done by left multiplying the coefficient vectors by
U>. Notice that

M>
1 · a = (UM2)> · a = M>

2 U> · a.

In this sense, the coefficient vector of an element a ∈ KR in the field LR = L⊗QR is given
by U> ·a. Since a matrix multiplication can be performed in O(n2) operations, the above
conversion of Twisted Ring-LWE instances is efficiently computable. This concludes the
proof.

Proposition 4.5. Consider the number fields K = Q(ζm) with m ≥ 4 a power of two,
n = m/2 and ring of integers OK = Z[ζm], and L = Q(ζ2r + ζ−1

2r ) with r ≥ 3, n = 2r−2,
and ring of integers OL = Z[ζ2r + ζ−1

2r ]. A Twisted Ring-LWE instance over OK can be
efficiently converted into an instance over OL, and vice-versa.

Proof. The ring of integers OK in the power basis {ζ im}i∈[n] leads to a construction of
the Zn-lattice in the canonical embedding [27, Proposition 2.8]. Recall that the canonical
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embedding corresponds to the twisted embedding στ1 when τ1 = 1. Similarly, the ring of
integers OL leads to a construction of the Zn-lattice in the basis {e′i}i∈[n] under the twisted
embedding στ2 with τ2 = 2 − (ζ2r + ζ−1

2r ). The basis {e′i}i∈[n] is e′i = ∑i
j=1 ej for i ∈ [n],

where {ei}i∈[n] is an integral basis given by e1 = 1 and ei = ζ i2r + ζ−i2r for 2 ≤ i ≤ n [16,
Proposition 4]. Since both στ1(OK) and στ2(OL) are equivalent to the Zn-lattice, they
are also equivalent to each other. Thus, by Theorem 4.4, a Twisted Ring-LWE instance
over OK can be efficiently converted into a Twisted Ring-LWE instance over OL, and
vice-versa.

Notice that, in comparison with the notation used in Section 3.3, we restrict the
transformation used in both Theorem 4.4 and Proposition 4.5 to the coefficient vector
representation. Consequently, we do not compute the integral basis of the number fields
or explicitly perform the transformations σ and σ−1

τ . This simplification results from the
related generating matrices being equivalent. The coefficient representation is used in the
cyclotomic toolkit of Lyubashevsky, Peikert, and Regev [89] and Chapter 5.

An immediate consequence of Proposition 4.5 is that instantiating Ring-LWE using
power-of-two cyclotomic number fields may be equivalent to considering only its maximal
real subfield. The equivalence of these two number fields can be used for assessing the
hardness of widely used ring instantiations for cryptography in future works. Recall that
power-of-two number fields have being used in cryptographic applications ranging from
public-key schemes [31, 12, 60] and digital signature schemes [10, 63, 69] to more complex
systems as fully homomorphic encryption [45]. In this direction, algebraic properties of
maximal real subfields could be explored for cryptoanalysis of power-of-two number fields
in the light of previous efforts [53, 54, 56].

Analogously to Proposition 4.5, similar results can be obtained for other classes of
algebraic lattices such as Dn-lattices [33, 79, 78, 61]. In coding theory, algebraic lattice
constructions have been used to obtain lattices with good properties for Gaussian and
Rayleigh fading channels. In this sense, by fixing the target lattice in Rn, the equivalence
of distinct algebraic constructions can be used to provide evidence of the hardness of ring
instantiations for cryptographic use.
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Chapter 5

The Twisted Ring-LWE on a
Public-Key Cryptosystem

In this chapter, we adapt the compact Public-Key Encryption scheme (PKE) of Lyuba-
shevsky, Peikert, and Regev [89, Section 8.2] to deal with twisted embeddings. Originally,
this public-key cryptosystem was designed for general cyclotomic number fields in the
canonical embedding.

In this context, we are interested in algebraic lattices equivalent to Zn, which are known
to be constructed from power-of-two cyclotomic number fields [27] and their maximal real
subfields [16], and from the maximal real subfields of p-th cyclotomic number fields for
any prime p ≥ 5 [26]. Recall from Chapter 4 that lattices equivalent to Zn lead to efficient
sampling from spherical Gaussian distributions. In this sense, our motivation to provide
a practical evaluation of twisted embeddings on maximal real subfields of p-th cyclotomic
number fields is two-fold. First, power-of-two cyclotomic number fields are already widely
adopted in practical protocols, e.g. [60, 31, 63, 10, 12]. Thus, enabling an alternative ring
instantiation for the Ring-LWE Problem increases the existing scope of algebraic lattices
that can be considered for cryptographic applications. Second, when p is a prime, the
ring dimension is n = (p − 1)/2. Considering that the dimension does not increase as a
power of two, one may want to find a ring instantiation to better achieve a target security
level. For example, to obtain a ring dimension between 700 and 800, the required for
achieving 128-bit security [90], possible choices for the value of p range from the 223-th
to the 252-th prime numbers, comprehending twenty-nine possible choices.

Notations. In the following sections, the symbol b·e denotes a valid discretization to
cosets of R∨ or p′R∨. For any a ∈ Zq, let JaK denote the unique representative a ∈
(a+ qZ)∩ [−q/2, q/2), that is, a is the representative of a in the balanced representation
of Zq, which is entry-wise extended to vectors and polynomials. Finally, the notation
x

ψτ←− KR indicates that x is sampled according to the error distribution ψτ over the field
KR.
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5.1 The Public-Key Cryptosystem
Consider the number field K = Q(ζp + ζ−1

p ) for p ≥ 5 a prime with ζ = ζp = e−2iπ/p a
primitive p-th root of unity in C, and n = (p− 1)/2. We denote the minimal polynomial
of ζp + ζ−1

p as Ψp(x). The ring of integers of K is OK = Z[ζp + ζ−1
p ] and its dual is

O∨K = 〈t−1〉, in which t = Ψ′p(ζp + ζ−1
p ) [122].

Our modified public-key cryptosystem is PKE = (KGen,Enc,Dec) as defined in Algo-
rithms 1, 2, and 3. It is parameterized by the ring of integers of K, which is denoted by
R = OK , and two coprime integers p′ and q. The message space is defined as Rp′ , and q
is the Twisted Ring-LWE modulus. Consider that ψτ is a spherical Gaussian distribution
over (KR, 〈, 〉τ ) for a totally positive element τ = 1

p
(1− ζp)(1− ζ−1

p ) ∈ K.

Algorithm 1: PKE.KGen: Key
pair generation algorithm
Output: A public key

pk = (a, b) ∈ Rq ×Rq

and a secret key
sk = x ∈ R∨

1 a
$←− Rq

2 x
ψτ←− KR

3 x = bxeR∨
4 e

ψτ←− KR

5 e = bp′ · eep′R∨
6 b = a · x+ e mod qR

7 return (pk = (a, b), sk = x)

Algorithm 2: PKE.Enc: Encryp-
tion algorithm
Input: A message µ ∈ Rp′ and

the public key
pk = (a, b) ∈ Rq ×Rq

Output: The ciphertext
ct = (u, v) ∈ Rq ×R∨q

1 z
ψτ←− KR

2 z = bzeR∨
3 e′

ψτ←− KR

4 e′ = bp′ · e′ep′R∨
5 e′′

ψτ←− KR

6 e′′ = bp′ · e′′et−1µ+p′R∨

7 u = a · z + e′ mod qR

8 v = z · b+ e′′ ∈ R∨q
9 return ct = (u, v)

Algorithm 3: PKE.Dec: Decryption algorithm
Input: A ciphertext ct = (u, v) ∈ Rq ×R∨q and

the secret key sk = x ∈ R∨
Output: The message µ ∈ Rp′

1 d = v − u · x mod qR∨

2 d = Decode(JdK) ∈ R∨
3 µ = t · d mod p′R

4 return µ

In comparison with the original public-key cryptosystem, we define the error distri-
bution in PKE as a spherical Gaussian distribution under twisted embeddings, denoted
ψτ , in which τ ∈ K is the torsion factor. Recall that, when ψ = 1, the corresponding
twisted embedding collapses to the canonical embedding. Also, we removed the scaling
factor m̂ from both PKE.KGen and PKE.Dec algorithms. For R = Z[ζm], t = m̂/g ∈ R,
where m̂ = m/2 if m is even, otherwise m̂ = m, in which m is the cyclotomic index and
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g = ∏
p(1 − ζp) ∈ R [89, Definition 2.17]. Thus, the use of m̂ is particular to the case of

ring of integers of cyclotomic number fields. In our case, m̂ = 1; thus, we suppressed this
parameter from our cryptosystem.

In particular, we are interested in efficiently performing the following algorithmic
operations when K is the maximal real subfield of a cyclotomic number field.

• Uniform sampling on Rq.

• Sampling from the spherical Gaussian distribution ψτ .

• Discretizing error samples to cosets of R∨ or R∨p′ .

• Multiplying in Rq, R∨q , and Rp′ .

• Decoding noise terms in the decryption algorithm.

Uniform sampling. Uniform sampling is required by the PKE.KGen algorithm for gen-
erating the public element a ∈ Rq. Uniformly random integers modulo q can be ob-
tained by rejection sampling on a uniformly-random byte array, as performed by the
key-encapsulation mechanisms CRYSTALS-Kyber [31] and Saber [60].

Sampling from the spherical Gaussian distribution. Since R is an algebraic lattice
equivalent to Zn under twisted embeddings, we can sample from a spherical Gaussian
distribution directly on both KR and H in an orthonormal basis with security hardness
guarantee.

The following sections discuss how to evaluate the remaining algorithmic operations
using polynomial and coefficient vector representations. First, in Section 5.2, we analyze
the use of the polynomial representation, which is widely adopted in the literature related
to the Ring-LWE Problem. Then, we discuss the format and the expansion factor of the
defining polynomial Ψp(x), which helps in determining the size of the integer modulus q.
Finally, we conclude that the exponential growth of the polynomial coefficients after a re-
duction modulo Ψp(x) turns the polynomial representation impractical for cryptographic
use. As a consequence, in Section 5.3, we investigate the coefficient representation, as
adopted by Lyubashevsky et al. [89]. The coefficient representation generalizes the poly-
nomial representation, allowing the replacement of the power basis. As a result, we use
an orthonormal basis for all algorithmic operations in the PKE, not restricting to the
spherical Gaussian sampling operation.

5.2 The Polynomial Representation
In Ring-LWE cryptosystems over power-of-two cyclotomic number fields [60, 31, 63, 10,
12, 88], arithmetic operations such as addition and multiplication are performed in the
polynomial representation of the ring of integers. The ring of integers of the maximal real
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subfield Q(ζp + ζ−1
p ) is Z[ζp + ζ−1

p ]. Thus, associating ζp + ζ−1
p with indeterminate x yields

an isomorphism between Z[ζp + ζ−1
p ] and Z[x]/ (Ψp(x)), in which Ψp(x) is the minimal

polynomial of ζp + ζ−1
p . Considering that sampling from a spherical Gaussian distribution

is done in an orthonormal basis C ′, performing arithmetic operations in the polynomial
representation requires a change of basis from C ′ to the power basis {(ζp + ζ−1

p )j : 0 ≤ j <

n} for n = (p− 1)/2.
The coefficients of the defining polynomial Ψp(x) vary according to the choice of p.

Aranés and Arenas provided a closed formula for the coefficients of Ψpυ(x):

Ψpυ(x) = a0 + a1x+ · · ·+ an−1x
n−1 + anx

n,

for p prime, υ ≥ 1, an = 1, and n = 1
2ϕ(pυ) = pυ−1(p−1)/2, which is given in Theorem 5.2.

First, consider that, for strictly positives r and k, Ar(k) are the determinants of order k,
defined in Theorem 5.1. Details can be found in [17].

Theorem 5.1 ([17, Theorem 1]). For any strictly positive integers r and k, we have
that

Ar(k) =
(
r + k − 2

k

)
+
(
r + k − 3
k − 1

)
,

in which
(
r
k

)
denotes the binomial coefficient r!

k!(r−k)! .

Theorem 5.2 ([17, Theorem 2]). The coefficients aj of the polynomial Ψpυ(x) are given
as follows. If p is odd,

aj =



0, if j > n− pυ−1;[
n−j
pυ−1

]
∑
k=1

k≡1 (mod 2)

(−1)(n−j−kpυ−1)/2Aj+2
(
n−j−kpυ−1

2

)
, if n+ j ≡ 1 (mod 2);

(−1)n−j2

[
n−j

2pυ−1

]
∑
k=0

(−1)kAj+2
(
n−j

2 − kp
υ−1

)
, if n+ j ≡ 0 (mod 2);

and in the case p = 2 and υ ≥ 3:

aj =

(−1)n−j2 Aj+2
(
n−j

2

)
, if j is even;

0, otherwise.

Notice that, in our case, υ = 1; thus, all coefficients are always non-zero. For example,
when p = 31, we have that n = 15 and the defining polynomial Ψp(x) is

Ψ31(x) = x15 + x14 − 14x13 − 13x12 + 78x11 + 66x10 − 220x9 − 165x8

+ 330x7 + 210x6 − 252x5 − 126x4 + 84x3 + 28x2 − 8x− 1,

which is very dense, and the coefficients are not restricted to the set {0, 1}. However,
depending on the choice of value for the coefficient’s modulus q, the defining polynomial
may have a complete factorization modulo q, which allows algorithms based on the Chinese
Remainder Theorem (CRT) for efficient polynomial multiplication. For example, for
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p = 31 and q = 61, the defining polynomial factors in 15 distinct degree-one polynomials
as follows:

Ψ31(x) mod 61 = (x+ 5)(x+ 6)(x+ 15)(x+ 16)(x+ 21)(x+ 22)(x+ 24)(x+ 27)
(x+ 29)(x+ 36)(x+ 38)(x+ 41)(x+ 48)(x+ 49)(x+ 51).

Thus, f(x) = Ψp(x) can be factored as f(x) = ∏k
i=1 fi(x) (mod q), in which fi(x) are

polynomials of small degree. The multiplication a(x) · b(x) modulo f(x) is done by com-
puting ai(x) = a(x) mod fi(x) and bi(x) = b(x) mod fi(x) for 1 ≤ i ≤ k, computing the
component-wise multiplication ai(x) · bi(x) and, finally, using the inverse operation to ob-
tain the polynomial c(x) such that c(x) mod fi(x) = ai(x)bi(x) mod fi(x), as discussed
by Lyubashevsky and Seiler [90]. Although the asymptotic cost of an algorithm based on
this technique is O(n log n), the hidden constants may be large due to the increased num-
ber of reductions modulo q in comparison with CRT-based algorithms for power-of-two
cyclotomic number fields [90, 49].

Another important aspect of the defining polynomial is captured by the expansion
factor, a property introduced by Lyubashevsky and Micciancio [87]. The expansion factor
of a polynomial f(x) is

EF(f(x), k) = max
g(x)∈Z[x],deg(g(x))≤k(deg(f(x))−1)

‖g(x)‖f(x)/‖g(x)‖∞,

in which ‖g(x)‖f is the norm of the polynomial g(x) after reduction modulo f(x). In this
context, we compute the norm of a polynomial by taking its coefficient vector, that is,
‖f(x)‖ := ‖f‖ in which f(x) = ∑n−1

i=0 fix
i ∈ R and f = [f0, . . . , fn−1] ∈ Zn. By computing

the expansion factor of Ψp(x), we can measure the increase in magnitude of the maximum
coefficient of ‖g(x)‖Ψp(x). Also, the expansion factor helps us in choosing a value for q
such that the coefficients do not wrap around after arithmetic operations, avoiding the
occurrence of decryption errors.

We analyze the expansion factor of Ψp(x) by comparing it with xn + 1, the defining
polynomial of cyclotomic polynomial rings with dimension a power of two, which is widely
adopted in practical applications. For that, we recall Lemma 5.3, which defines an upper
bound for the size of the coefficients of a polynomial g(x) ∈ Z[x] after a reduction modulo
f(x).

Lemma 5.3. If g(x) is a polynomial in Z[x] and f(x) is a monic polynomial in Z[x] such
that deg (g(x)) ≥ deg (f(x)), then ‖g(x)‖f(x) ≤ ‖g(x)‖∞ (2‖f(x)‖∞)deg(g(x))−deg(f(x))+1.

For the case f(x) = Ψp(x), it is sufficient to analyze the value of ‖f(x)‖∞. First, for
f(x) = xn + 1, we have that ‖f(x)‖∞ = 1. On the other hand, when f(x) = Ψp(x),
‖f(x)‖∞ takes the maximum value of aj according to Theorem 5.2. For example, for
p = 31, ‖f(x)‖∞ = 330, leading to an exponential growth of coefficients, which is roughly
330deg(g(x))−deg(f(x))+1 times bigger with respect to the case when f(x) = x16 + 1. Such
growth of coefficients requires an increased value for the choice of the modulus q to avoid
the coefficients wrapping around after polynomial operations. However, this also leads to
an increase in the length of system parameters and consequently memory and bandwidth
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requirements for transmission of public parameters.
Unfortunately, the exponential growth of the expansion factor makes the polynomial

representation of limited interest since coefficients’ modulus may become very large to
avoid the occurrence of decryption errors. Because of that, in the next section, we evalu-
ate performing the PKE’s algorithmic tasks using the coefficient vector representation, as
previously done by Lyubashevsky, Peikert, and Regev in the toolkit for arbitrary cyclo-
tomic rings [89].

5.3 The Coefficient Vector Representation
In this section, we evaluate performing the algorithmic tasks of PKE, described in Algo-
rithms 1, 2, and 3, using coefficient vectors as representatives of number field elements.

Commonly, elements in R are represented in the power basis {(ζp + ζ−1
p )j : 0 ≤ j < n}

or, equivalently, as residue polynomials in Z[x]/(Ψp(x)) by associating ζp + ζ−1
p with x.

However, ring elements can also be represented by vectors of integer coefficients in any
Z-basis B ⊂ R. For an element a ∈ R, it follows that

a = a1b1 + a2b2 + . . .+ anbn,

in which ai ∈ Z for 1 ≤ i ≤ n and B = {b1, . . . , bn} ∈ R. In other words, a ∈ R is
represented by the inner product

a = 〈B, a〉 = M> · a,

in which a = [a1, . . . , an] ∈ Zn and M is a generator matrix.
When K is the maximal real subfield of a p-th cyclotomic number field for p ≥ 5, an

orthonormal basis is B = C ′ = {ζjp + ζ−jp }nj=1 and the generator matrix of στ (R) in the
space H is

M = DM′U,

in which D = diag
[√

σi(τ)
p

]
n×n

, M′ = [σi(ζj + ζ−j)]i,j∈[n]×[n], and

U =



1 0 0 . . . 0 0
1 1 0 . . . 0 0
1 1 1 . . . 0 0
... ... ... . . . ... ...
1 1 1 . . . 1 1


.

Computing with the matrix M requires floating-point representations and matrix-
vector multiplication, for which a naïve algorithm has a quadratic cost. Because of that,
we can choose to keep the coefficient vector representation in the space H, avoiding the
computation of M−1. For example, consider the n field embeddings from K into R:

σk(ζj + ζ−j) = ζkj + ζ−kj = 2 cos
(

2πkj
p

)
.
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For p = 7, the generator matrix M is

M =


−0.3279852776056815 −0.7369762290995779 −0.5910090485061034
−0.591009048506103 −0.32798527760568197 0.736976229099578
−0.7369762290995778 0.5910090485061037 −0.3279852776056813

 .
Notice that symmetries on the matrix M can be explored to reduce the quadratic cost

of multiplying M by some vector. In our case, we fix the representation basis of R as στ (C ′)
for all PKE’s operations and the computations are done on coefficient vectors. Thus, we
avoid changing the representation between various bases and converting elements between
the space H and the field KR.

In the following, we present Lemma 5.4 before defining the basis for the dual ring R∨.
In this context, consider that R is a Dedekind domain, K is its field of quotients, and
L|K is a separable extension of degree n. Moreover, notice that the ring of integers of a
number field is a Dedekind domain [122].

Lemma 5.4 ([122, Chapter 13, J.]). Let L = K(θ), where θ is integral over R and

f(x) = b0 + b1x+ · · ·+ bn−2x
n−2 + xn−1 ∈ R[x]

is the minimal polynomial of θ over K, and let f ′(x) denote its derivative. Then,

1. TrL|K
(

θi

f ′(θ)

)
= 0 when 0 ≤ i ≤ n− 3 and TrL|K

(
θn−2

f ′(θ)

)
= 1;

2. R[θ]∨ = 1
f ′(θ)R[θ].

From Lemma 5.4, by taking R = OK , we have that the elements in R∨ can be repre-
sented in the basis C?:

C? = Ψ′p(ζp + ζ−1
p )−1 · C ′,

in which Ψ′p(x) is the derivative of the minimal polynomial of ζp + ζ−1
p and C ′ is a Z-basis

for R [122].

Definition 22. For R = Z[ζp + ζ−1
p ], define g = t−1 ∈ K, where t = Ψ′p(ζp + ζ−1

p ) ∈ R.

Consider that Ψp(x) = b0 +b1x+ · · ·+bn−1x
n−1 +xn with n = (p−1)/2. The derivative

of Ψp(x), denoted Ψ′p(x), is Ψ′p(x) = b1 + 2b2x + 3b3x
2 + · · · + (n − 1)bn−1x

n−2 + nxn−1.
We can write Ψ′(ζp + ζ−1

p ) in the power basis of R as

b1 + 2b2(ζp + ζ−1
p ) + 3b3(ζp + ζ−1

p )2 + · · ·+ (n− 1)bn−1(ζp + ζ−1
p )n−2 + n(ζp + ζ−1

p )n−1,

and, thus, t ∈ R.
Notice that, in PKE, some system parameters such as the public key pk, the message

µ, and the ciphertext ct all lie on a quotient ring. For that, we prove that a Z-basis for a
nonzero ideal I ⊆ OK is also a Zq-basis for the quotient ideal I/qI, for q ≥ 2 an integer.

Proposition 5.5. Let B be a Z-basis for a nonzero ideal I ⊆ OK. Then, for an integer
q ≥ 2, B′ = {b′1, . . . ,b′n} is a Zq-basis for the quotient I/qI, in which b′i = bi + qI.
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Proof. We first prove the linear independence of B′. Consider that
n∑
i=1

aib′i = qI in I/qI
with ai ∈ Z. It follows that,

n∑
i=1

ai(bi + qI) = qI

⇒
n∑
i=1

aibi +
n∑
i=1

aiqI = qI

⇒
n∑
i=1

aibi = qI −
n∑
i=1

aiqI = qI.

Thus, we have that
n∑
i=1

aibi =
n∑
i=1

qcibi for ci ∈ I and ai = qci, ∀ i. Then, ai ≡ 0 (mod q),
and finally ai = 0 ∈ Zq, ∀ i. Now, let v ∈ I. It follows that,

v =
n∑
i=1

aibi ai ∈ Z

⇔ v =
n∑
i=1

ai(b′i − qI)

⇔ v =
n∑
i=1

aib′i −
n∑
i=1

aiqI

⇔ v =
n∑
i=1

aib′i −
n∑
i=1

aiqI

⇔ v =
n∑
i=1

aib′i ∈ I/qI.

Since the vectors in B′ are linearly independent and B′ spans OK/qI, B′ is a basis for
I/qI. This concludes the proof.

By Proposition 5.5, since C ′ ⊂ R and C? ⊂ R∨ are Z-basis for R and R∨, respectively,
then C ′ and C? are also Zq-basis for the quotients Rq = R/qR and R∨q = R∨/qR∨, for
q ≥ 2 an integer.

5.3.1 Discretization
In Ring-LWE applications, the discretization procedure rounds an element of the complex
space H to some randomly determined nearby element of H in a lattice coset Λ + c [100].
Specifically, the PKE requires converting a continuous Gaussian into a discrete Gaussian-
like distribution. However, the discretization introduces an additional error in the samples,
increasing its length. The notion of the subgaussian parameter captures the quality of
the discretized sample.

In this section, we present how the discretization is done, using the coordinate-wise
randomized rounding for sampling the intermediate vector f . Then, we show that the
discretized error samples are 0-subgaussian with parameter

√
2π when K is the maximal

real subfield of a p-th cyclotomic number field.
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First, we formally define supplementary statistic notions required by the main result
of this section.

Definition 23. The n-th moment of a random variable X is E[Xn]. Also, the n-th
central moment of X is E[(X − E[X])n].

The expectation of a random variable X is the first moment of a random variable X
denoted by E[X]. Also, the second central moment is the variance of X.

A subgaussian random variable is a random variable that is bounded in a certain
technical sense by a normal random variable [99]. Micciancio and Peikert [95] introduced
the concept of δ-subgaussian random variable as a relaxation of a subgaussian random
variable. We use moment-generating functions to compute a distribution’s moments and
δ-subgaussian to measure the length of the offset vector produced by the discretization
algorithm.

Definition 24. The moment-generating function of a random variable X is a function
MX(s) defined as

MX(s) = E[exp(sX)].

We say that the moment-generating function of X exists if there is an h > 0 such that
MX(s) is finite for all s ∈ [−h, h].

Definition 25. For any δ ≥ 0, we say that a random variable X (or its distribution) over
R is δ-subgaussian with parameter s > 0 if for all t ∈ R, the (scaled) moment-generating
function satisfies

E[exp(2πtX)] ≤ exp(δ) · exp(πs2t2)

Notice that the exp(πs2t2) term on the right is the (scaled) moment-generating func-
tion of the one-dimensional Gaussian distribution of parameter s over R.

Finally, we define the concept of the largest singular value of a matrix M, also known
as the spectral norm, which is denoted by s1(M).

Definition 26. For a square matrix M, the square roots of the eigenvalues of M>M are
called singular values.

Consider a lattice Λ = L(B) represented by a good basis B = {bi}i∈[n] – that is, a
basis containing reasonably short and orthogonal vectors –, a point x ∈ H, and a point
c ∈ H representing a lattice coset Λ + c. The goal is to discretize x to a point y ∈ Λ + c,
denoted y← bxeΛ+c, so that the subgaussian parameter of y− x is not too large.

The discretization is done by sampling a relatively short offset vector f from the coset
c′ = Λ + (c− x), and outputting y = x + f . In PKE, we can use the coordinate-wise
randomized rounding in an orthonormal basis for sampling the vector f . The coordinate-
wise randomized rounding works as follows: given a coset Λ + c′, we represent c′ in
the basis B as c′ = ∑n

i=1 aibi mod Λ for some coefficients ai ∈ [0, 1], then randomly
and independently choose each fi from {ai − 1, ai} to have expectation zero, and output
f = ∑n

i=1 fibi ∈ Λ + c′. In our setting, the vector c′ is already given in H. So, there is no
need to explicitly convert it so some basis in H to obtain the representative of c′ in H.
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Corollary 5.5.1 (Corollary 2.3 [89]). Let δi, si ≥ 0 and Xi be random vectors in Rn

(or in H), and let Ai be n× n matrices for i = 1, . . . , k. Suppose that for every i, when
conditioning on any values of X1, . . . ,Xi−1, the random vector Xi is δi-subgaussian with
parameter si. Then,

n∑
i=1

AiXi is (∑ δi)-subgaussian with parameter λmax
(∑ s2

iAiA>i
)1/2

,
where λmax denotes the largest eigenvalue.

In the coordinate-wise randomized rounding method, each fi has expectation zero and
is bounded by one in magnitude. So, it is 0-subgaussian with parameter

√
2π, and hence so

is the entire vector of fi values [89, Section 2.4.2]. For R = Z[ζp+ ζ−1
p ] in the orthonormal

basis C ′ = {e′1, . . . , e′n : e′n = en and e′j = ej + e′j+1}, where {ej = ζjp + ζ−jp }nj=1, we have
that στ (R) is a lattice equivalent to Zn. Thus, M>M = In, where M is the generator
matrix of στ (R), and s1(M) = 1. Finally, by Corollary 5.5.1, the output vector f is
0-subgaussian with parameter

√
2π · s1(M) =

√
2π for any value of p.

In contrast, for Z[ζm] in the decoding basis ~d [89], the spectral norm is s1(~d) =√
rad(m)/m, where rad(m) represents the radical1 of the cyclotomic index m. In this

case, s1(~d) can be as large as one. In conclusion, the discretization method does not
produce worst samples than in the cyclotomic case. The error samples are enlarged by a
constant factor of

√
2π regardless of the choice of the number field index p.

5.3.2 Arithmetic Operations
In PKE, we need to perform addition, subtraction, and multiplication of ring elements.
For that, we assume that all arithmetic operations are performed over H in the basis
στ (C ′) and στ (C?) of R and R∨, respectively.

By linearity, the addition of two elements in a vector space corresponds to the
component-wise addition of the respective coordinate vectors, at least if both elements are
represented in the same basis [92]. In particular, additions in the PKE are done between
elements of the dual ring R∨. For that, we can use the fact that στ (a+ b) = στ (a) +στ (b)
to perform the ring additions as the component-wise addition of the coefficient vectors of
a, b ∈ R∨ in the basis στ (C?).

The PKE computes three distinct multiplications. Firstly, it performs p′ · e, for p′ ∈ Z
being the modulus defining the message space, and e ∈ KR an error drawn from the
spherical Gaussian distribution ψτ . In this case, the multiplication is simply a scaling of
an error term by p′. Secondly, we have computations of the form a · x, for a ∈ Rq, and
x ∈ R∨ a discretized sample from the spherical Gaussian distribution ψτ . Finally, in the
decryption algorithm, we have t · d, for t ∈ R being the factor for which R∨ = 〈t−1〉, and
d ∈ R∨ being the result from the decoding procedure in the decryption algorithm.

In summary, we still need to compute the ring multiplication between elements of
R and R∨. Since a Z-basis for R is also a Zq-basis for Rq, both multiplications can be
performed using the same procedure. For that, both elements must be represented on the
same basis. Assuming that x ∈ R and y ∈ R∨, the multiplication x · y can be done by

1The radical of an integer m, denoted rad(m), is the product of distinct prime numbers dividing m,
that is, rad(m) =

∏
prime p|m

p.
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scaling y by t ∈ R, so that x · y lies in the ring R. Thus, the multiplication in the ring R
can be performed using the fact that

στ (a · b) = σ(a)� στ (b) = στ (a)� σ(b),

for any a, b ∈ KR, with � denoting the component-wise product. Notice that performing
the multiplication of ring elements under twisted embeddings requires having one of the
operands in the canonical embedding. Concretely, one of the operands needs to be trans-
formed from the basis στ (C ′) to σ(C ′). Recall that a = 〈B, a〉 for any element a ∈ R,
which is equal to say that a = B> · a, for a basis B and some coefficient vector a over
Z [89, Section 4]. In particular, for B = στ (C ′), we have that

a = M> · a
= (DM′U)> · a
= U>M′>D> · a.

On the other hand, for B = σ(C ′), it follows that

a = (M′U)> · a
= U>M′> · a.

In this sense, the coefficient vector of an element a ∈ R under the canonical embedding
is given by D> · a.

In summary, the multiplication of elements in R and R∨ requires the multiplication of
an operand by D> and the multiplication of the element in R∨ by t. In other words, the
multiplication by the diagonal matrix D corresponds to the component-wise multiplication
by

(√
σ1(τ)
p
, . . . ,

√
σn(τ)
p

)
. Moreover, we have that

στ (t · x · y) = σ(t)� στ (x)� σ(y),

in which t ∈ R, x, y ∈ KR, and σ(t) can be precomputed in an offline phase. Finally, the
multiplication in R can be done as

στ (t · x · y) = σ(t)� στ (x)� tτ � σ(y),

in which t, x ∈ R, y ∈ R∨, and tτ is the linear transformation tτ =
(√

σ1(τ)
p
, . . . ,

√
σn(τ)
p

)
.

Notice that we can precompute σ(t) for later use since t ∈ R is a fixed parameter with
respect to the choice of number field and prime p. Thus, the overall cost for computing a
multiplication under twisted embeddings is exactly 3n multiplications in R.

Consequently, the expansion of the coefficients after multiplications is independent of
the expansion factor of f(x). The length of the elements relies on the inequalities taken
under twisted embeddings:

‖a · b‖p,τ ≤ ‖a‖∞‖b‖p,τ and ‖a · b‖p,τ ≤ ‖a‖p‖b‖∞,τ ,
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for any a, b ∈ KR. In contrast with the polynomial representation, discussed at the end of
Section 5.2, the error growth is bounded by the infinity norm under twisted embeddings.
Thus, the coefficient representation does not require an exponential value of modulus q to
avoid decryption errors. We leave as future work providing a close formula to the choice
of value for the modulus q and the correctness and hardness proofs for our modified PKE.

5.3.3 Decoding R∨

The main operation in the decryption algorithm is the decoding of the term d = v− u · x
mod qR∨ in the dual ring R∨. The algorithm asks to recover an unknown short vector
x ∈ H given t = x mod Λ, which is essentially a solution for the Bounded Distance
Decoding (BDD) Problem. For completeness, we define the BDD Problem in the following.

Definition 27 (BDDα). Given a n-dimensional lattice Λ and a vector t such that
dist(t,Λ) < α · λ1(Λ), find a lattice vector x such that ‖x− t‖ < α · λ1(Λ).

For the Ring-LWE context, Lyubashevsky et al. [89, Section 2.4.1] define an extension
of Babai’s round-off algorithm [19]. Babai’s round-off algorithm is given in Theorem 5.6.
The theorem as presented next is an adaptation of both [77, Theorem 7.34] and [91,
Theorem 3]. Notice that Babai’s round-off algorithm can be executed with an arbitrary
basis B = {bi} ∈ Rn for the lattice Λ. A ‘good basis’ consists of a set of vectors reasonably
orthogonal to one another, whereas a ‘bad basis’ contains highly non-orthogonal vectors.
Thus, when the algorithm is executed using a good basis, it is likely to be successful in
solving CVP, effectively returning a lattice vector close to the target vector t ∈ Rn. On
the other hand, for a bad basis B, the algorithm does not work properly, outputting a
lattice vector far from the target t.

Theorem 5.6. For n ∈ N, let the set {bi} ∈ Rn be the basis for the lattice Λ ⊂ Rn and
let t ∈ Rn be a target vector. If the basis vectors {bi} are sufficiently orthogonal to one
another, the procedure of Babai’s round-off method given in Algorithm 4 solves CVP.

Algorithm 4: Babai’s round-off method
Input: A basis {bi} for a lattice Λ ⊂ Rn, and a target vector t ∈ Rn.
Output: A lattice vector x ∈ Λ.

1 Write t in the basis {bi} as t = ∑
i cibi such that t = B> · c

2 Compute the coefficient vector as c = (B>)−1 · t
3 Round each entry of c to the nearest integer as ci = JciK ∈ Z
4 Compute the lattice vector x as x = B> · c
5 return x ∈ Λ

In general, if the vectors in the basis are reasonably orthogonal to one another, then the
algorithm solves some version of approximation CVP, but if the basis vectors are highly
non-orthogonal, then the lattice vector returned by the algorithm is generally far from the
closest vector to the target vector t ∈ Rn.

The extended algorithm of Lyubashevsky et al. [89] starts by fixing a set {vi} of n
linearly independent, and typically short, vectors in the dual lattice Λ∨. Notice that this
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definition generalizes the original Babai’s round-off algorithm, which requires the input
set of vectors to be a basis of Λ∨. Then, the target vector t = x mod Λ is represented
in the basis {bi} as

∑
i cibi, where ci ∈ R/Z2. In this case, {bi} is the dual basis of {vi},

which generates the superlattice Λ′ ⊇ Λ. Claim 1 [89, Claim 2.10] follows from the fact
that ci = 〈x,vi〉 mod 1.

Claim 1. Let Λ ⊂ H be a lattice, let {vi} ⊂ Λ∨ be a set of linearly independent vectors in
its dual, and let {bi} ⊂ Λ denote the dual basis of {vi}. The above round-off algorithm,
given input x mod Λ, outputs x if and only if all the coefficients ai = 〈x,vi〉 ∈ R in the
expansion x = ∑

i aibi are in [−1/2, 1/2).

In summary, Claim 1 states that the success of the decoding process depends inversely
on the length of the vectors in the dual basis {vi}. Recall that, in PKE, the decoding
process is performed in the dual ring R∨ in the basis στ (C?), where C? = t−1 · C ′. In this
sense, we need to determine the dual vectors of στ (C?) and also their maximum length.

From Proposition 3.2, item (i), we have that I∗ = τ−1I∨ in the space (KR, 〈, 〉τ ).
Equivalently,

στ (I)∗ = στ (τ−1I∨),

from which we derive how to obtain the vectors dual to στ (I
∨) as

στ (I)∗ = στ (τ−1I∨)
⇔ σ−1

τ (στ (I)∗) = τ−1I∨

⇔ τ · σ−1
τ (στ (I)∗) = I∨

⇔ στ (τ · σ−1
τ (στ (I)∗)) = στ (I

∨)
⇔ στ (τ · σ−1

τ (στ (I)∗))∗ = στ (I
∨)∗.

In contrast with the canonical embedding, σ(I∨) is simply σ(I)∗. When I = R, the
ring of integers of K, it follows that σ(R∨)∗ = σ(R).

For any Q-basis B = {bj} of K, its dual basis is denoted by B∨ = {b∨j }, which is
characterized by the fact that Tr(bi · b∨j ) = δi,j, the Kronecker delta. In our case, we need
to characterize the vectors dual to στ (R∨), which can be done by finding a basis dual to
στ (C?).

Notice that, by construction, 1
p

Tr(τe′ie′j) = δi,j, in which C ′ = {e′j} is given by e′n = en
and e′j = ej + e′j+1 for 1 ≤ j < n, and {ei = ζ i + ζ−i}ni=1 is an integral basis of R. In
particular, since we are working with the inner product induced by twisted embeddings,
we need to determine a basis dual to C? as

Tr(τ · C? · (C?)∨) = δi,j.

2Any two elements a, b ∈ R in R/Z are said to be equivalent if and only if a− b ∈ Z. In this sense, if a
and b are equivalent, their representative is the fractional part which lies in [0, 1). Formally, the quotient
R/Z is {Z + r : r ∈ [0, 1)}.
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In fact, such basis dual to C? is 1
p
· t · C ′, for which it follows that

Tr(τ · C? · (C?)∨)
= Tr(τ · (t−1 · C ′) · (p−1 · t · C ′))
= Tr(τ · C ′ · (p−1 · C ′))

= 1
p

Tr(τe′ie′j)

= δi,j.

In this sense, the `2-norm of the basis dual to C? can be computed as

‖(C?)∨‖2 =
∥∥∥∥∥1
p
· t · C ′

∥∥∥∥∥
2

=
∥∥∥στ (p−1 · t · C ′)

∥∥∥
2

=
(〈
στ (p−1 · t · C ′), στ (p−1 · t · C ′)

〉) 1
2

=
(
Tr(τ · p−1 · t · C ′)

) 1
2

=
(

1
p

Tr(τ · t · C ′)
) 1

2

=
1
p
·
n∑
j=1

σj(τ)σj(t)σj(e′j)
 1

2

=
1
p
·
n∑
j=1

σj(2− (ζ + ζ−1))σj(t)σj(e′j)
 1

2

,

and the `∞-norm is given by

max
1≤i≤n

∣∣∣∣√σi(2− (ζ + ζ−1))σi(t)σi(e′j)
∣∣∣∣ , ∀ j ∈ [n].

The computation of both `p and `∞-norms use the fact that the n field embeddings of K
are

σk(ej) = ζkj + ζ−kj = 2 cos
(

2πkj
p

)
,

and the element t ∈ R is

t = b1 + 2b2(ζp + ζ−1
p ) + 3b3(ζp + ζ−1

p )2 + · · ·+ (n− 1)bn−1(ζp + ζ−1
p )n−2 + n(ζp + ζ−1

p )n−1,

for bj ∈ Z. Recall from Section 5.2 that the coefficients bi ∈ Z of the defining polynomial
Ψp(x) increase rapidly according to the prime number p. Thus, the maximum length
of the dual vectors may render the basis C? of R∨ impractical for decoding error terms.
However, the fact that Tr(ζk + ζ−k) = ∑n

j=1 σj(ζk + ζ−k) = −1 for any 1 ≤ k ≤ n, and
the relations inherent to the vectors e′j may still be explored to simplify the computation
of the norms. For details on these properties, see the work of Oggier et al. [106].
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Moreover, in light of the work of Lyubashevsky et al. [89], in which each algorithmic
task is performed on a distinct basis, one may find a basis for R∨ which suits better the
decoding task considering the length of the vectors dual to R∨. These opportunities may
be explored as future work.

5.4 Discussion
In light of the ongoing NIST’s standardization process, we informally contrast PKE with
similar third-round finalists, assuming the main algorithmic tasks, as discussed in previous
sections.

The uniform sampling of elements in Rq may proceed as CRYSTALS-Kyber and Saber.
However, the exact rejection rate depends on the integer modulus used for arithmetic
operations and its bit size. Thus, a proper analysis requires an actual instantiation of
PKE, that is, choosing values for the parameters p, p′, and q. In practice, sampling
from a spherical Gaussian distribution may reduce to obtain samples from a binomial
distribution, as was first done for New Hope [12] and further extended to other public-
key encryption schemes. Although it requires a formal proof, switching to a binomial
distribution makes the discretization procedure unnecessary, simplifying the PKE design.

In PKE, one may consider representing ring elements using coefficient vectors. As-
suming that all algorithmic operations are done on the same basis, arithmetic operations
such as addition and multiplication have linear cost, not requiring the computation of
NTTs or a Toom-Cook-based algorithm for multiplication. Notice, however, that this
analysis assumes the precomputation of t ∈ R and the diagonal matrix D. Finally, the
most expensive operation is decoding error terms in R∨, which is done through Babai’s
round-off algorithm. This step is more involving and requires additional research.
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Part II

Algorithms for Polynomial
Multiplication
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Introduction to Part II
Figure 5.1 depicts the organization of Part II of this thesis, which is composed of two
chapters, 6 and 7, each represented by a descriptive diagram. This part aims at exploring
the suitability of using the Discrete Galois Transform (DGT) for polynomial multiplication
in two distinct architectures, namely x64 desktop machines and Graphics Processing Units
(GPUs). In particular, we consider the polynomial ring R = Z[x]/(xn+1) with n a power
of two.

FFT-based transforms
(NTT, DGT)

Theoretical contributions
(Forward/Inverse DGT-T)

Evaluation on x64 architecture
(NIST’s 2nd-round candidates)

FFT-based
Recursive transforms

(Bailey’s four-step algorithm)

Theoretical contributions
(Recursive DGT)

Evaluation on GPUs
(BFV and CKKS homomor-
phic encryption schemes)

Figure 5.1: Structure of the second part of this thesis. The left part of this diagram refers
to Chapter 6. The right part is a representation of the content in Chapter 7.

Chapter 6 starts by revisiting Fast Fourier Transform (FFT) algorithms, specially
radix-2 FFT algorithms. Next, we present the Number-Theoretic Transform (NTT), a
widely adopted algorithm for polynomial multiplication in the quotient ring Rp = R/pR,
for p a prime number. Then, we present the Discrete Galois Transform, which we evaluate
for its use in lattice-based cryptosystems based on the Ring-LWE Problem. Motivated by
NIST’s Post-Quantum Cryptography standardization project, we present experimental re-
sults comparing the DGT with the NTT for CRYSTALS-Dilithium [64], NewHope [9], and
qTESLA [30] cryptosystems. These cryptosystems were being considered for standardiza-
tion during the second round of NIST’s project, time of development of our experiments.
We considered the DGT for polynomial multiplication as introduced in the literature by
Badawi et al. [22] and also our new formulation, named DGT-T, which combines the
DGT transform with its twisting procedure. Lastly, experimental results indicate that
the DGT does not perform better for polynomial multiplication in comparison with the
NTT, considering portable-C and AVX2 implementations targeting the x64 architecture.

Chapter 7 presents experimentals results indicating the suitability of the Recursive
DGT (RDGT) in GPUs. RDGT is a formulation of the DGT based on the Recursive
FFT [71, 23] that considers architectures with a fast but small first-level memory. First,
we compare the RDGT with state-of-the-art CUDA-enabled implementations of DGT for
polynomial multiplication in the BFV homomorphic encryption scheme [68] in NVIDIA
Tesla GPUs. Then, we implement both RDGT and Recursive NTT for polynomial mul-
tiplication in the CKKS homomorphic encryption scheme [45].
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Chapter 6

DGT Evaluation on Round-Two
NIST’s PQC Candidates

At the end of 2016, NIST initiated the Post-Quantum Cryptography project [101], a
process for standardizing quantum-resistant public-key algorithms. Fifteen candidates
are still under analysis at the end of the third round. Seven submissions are based on
lattices, the most prominent class of problems, comprehending five of the seven finalists.
Most lattice cryptosystems are constructed over algebraic lattices and require efficient
polynomial multiplication algorithms to be competitive performance-wise.

Polynomial multiplication can be handled efficiently using algorithms such as Karat-
suba [81] and Toom-Cook [132, 50], or the Number-Theoretic Transform (NTT). The
NTT has quasi-linear complexity, and it is known to be efficient in the case when the
polynomial ring is of the form Zp[x]/(xn + 1), with n being a power of two and p a prime
number satisfying p ≡ 1 (mod 2n). For this choice of parameters, xn + 1 splits in Zp
into irreducible polynomials of degree one, and the polynomial multiplication in the NTT
domain reduces to the component-wise product of integers modulo p.

Lyubashevsky and Seiler [90] showed how to evaluate the NTT when the polynomial
ring is Z7681[x]/(x768−x384 +1) in the NTTRU key encapsulation scheme. The polynomial
x768−x384+1 initially splits into (x384+684)(x384−685); then, each factor forms a splitting
tree in which each root splits into two polynomials of the form xi± r′ until the irreducible
polynomials x3 ± r are reached. This observation allowed the NTT to be instantiated
using smaller choices of modulus p, such that n | (p− 1) or, even, n2 | (p− 1) [18]. Before
that, the smallest prime number such that there exists a primitive 2n-th root of unity
modulo p is 12 289.

In the second version of Kyber documentation [18], the modulus p = 3329 is such that
n | (p−1) but 2n - (p−1) and elements in Zp[x]/(x256 +1) decompose modulo polynomials
of the form x2 − r′. Then, component-wise multiplication is performed with degree-one
polynomials instead of scalars. The possibility of stopping at an arbitrary level in the
NTT splitting tree was further discussed in detail by Alkim, Bilgin, and Cenk [11].

In contrast with the NTT, the Discrete Galois Transform (DGT) computes the polyno-
mial multiplication in the domain of Gaussian integers, denoted Zp[i], in which the arith-
metic is performed similarly to the complex numbers, by representing elements α ∈ Zp[i]
as α = a + bi, with a, b ∈ Zp and i =

√
−1. One of the main advantages of the DGT
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is computing an n
2 -length transform by processing two coefficients at a time. Because of

that, the DGT, by itself, only requires that n
2 | (p− 1).

The DGT was considered for polynomial multiplication in combination with the
Residue Number System (RNS) in the context of homomorphic encryption schemes [2, 13].
Badawi et al. proposed algorithms for polynomial multiplication using the DGT via
Gentleman-Sande and Cooley-Tukey butterflies [4]. Alves et al. introduced a recursive
form of DGT based on Badawi et al.’s algorithms, obtaining speedups to compute the
transform and homomorphic multiplication.

In this scenario, we analyze adopting the DGT for polynomial multiplication in smaller
cryptosystems, such as key encapsulation mechanisms and digital signature schemes. Our
contributions are two-fold. First, we propose new algorithms for computing the for-
ward and inverse DGT using the Cooley-Tukey and Gentleman-Sande butterflies, respec-
tively (Section 6.5.1). This order of the butterflies allows merging the twisting procedure
with both forward and inverse DGT transforms computation. We experimentally eval-
uate the performance of polynomial multiplication via DGT by providing software im-
plementations for the NewHope key exchange protocol [9], and for the signature schemes
CRYSTALS-Dilithium [64] and qTESLA [30]. Also, we evaluate the new algorithms for
the DGT computation by comparing software implementations of the cryptosystems men-
tioned above using the DGT with and without the merge (Section 6.5.2).

We verified that merging the twisting procedure with the computation of the
DGT transform does not bring performance gains. For CRYSTALS-Dilithium,
NewHope1024CCA, and qTESLA-p-I, we obtained a slowdown of 0.68, 0.65, and 0.85, in
this order. Although the merge may simplify the polynomial multiplication via DGT, it
increases the overall number of integer operations modulo p. In this sense, we adopted
Badawi et al.’s algorithms [4] for polynomial multiplication via DGT. Nonetheless, our
experimental evaluation indicates that it may be very hard to explore the x64 architecture
capabilities to obtain speedups using the DGT.

6.1 The Discrete Fourier Transform
In general, the product of two polynomials a(x), b(x) ∈ Z[x] with degree up to n can be
defined as

c(x) = a(x) · b(x) =
n−1∑
i=0

n−1∑
j=0

aibjx
i+j. (6.1)

In the cyclotomic case with n a power of two, where the polynomial multiplication is
taken modulo xn + 1, the fact that xn ≡ −1 mod xn + 1 allow us to rewrite Equation 6.1
as

c(x) = a(x) · b(x) mod xn + 1 =
n−1∑
i=0

n−1∑
j=0

(−1)b
i+j
n caibjxi+j mod n. (6.2)

This strategy of replacing xn with −1 is known as the negacyclic convolution.
In general, a schoolbook algorithm for calculating the polynomial multiplication as in

Equation 6.2 has the asymptotic cost of O(n2) operations. The Fast Fourier Transform
(FFT) is a well-known algorithm used to reduce the computational complexity of polyno-
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mial multiplication. A vector containing the operand’s coefficients is treated as a signal
in the time domain, which is transformed to the frequency domain via Discrete Fourier
Transform (DFT). Thus, the polynomial multiplication corresponds to the component-
wise multiplication in the frequency domain. The FFT computes the DFT of a vector’s
element with O(log n) operations; thus, the overall cost of a polynomial multiplication is
O(n log n).

The Discrete Fourier Transform (DFT) is the Fourier transform over a
finite field. The Fourier transform decomposes functions of time, denoted
f(t), into functions of frequency F (ζ), and vice-versa:

F (ζ) =
∫ +∞

−∞
f(t)e−jζt dt and f(t) = 1

2π

∫ +∞

−∞
F (ζ)ejζt dζ.

The underlying idea is that any periodic function can be represented by a
series of sines and cosines. For example, given a sound wave recorded over
time, the Fourier transform can decompose the amplitudes into its constituent
frequencies in Hertz. Jean-Baptiste Joseph Fourier, a French mathematician
who lived in the XVIII and XIX centuries, was the first to explore the Fourier
transforms.

The DFT takes as input a finite sequence of complex numbers with size n, denoted f ,
and compute its transform as the complex sequence obtained by computing F as

Fr =
n−1∑
j=0

fjζ
−jr
n , (6.3)

where ζn = exp(2πi/n) is a primitive n-th complex root of unity and r ∈ [n]. Similarly,
the inverse transform is defined as

fr = n−1
n−1∑
j=0

Fjζ
jr
n . (6.4)

A naïve implementation of Equations 6.3 and 6.4 incurs in an algorithm with quadratic
cost. However, the DFT can be efficiently computed using FFT algorithms, which are
presented in the following.

6.2 Fast Fourier Transform Algorithms
Fast Fourier Transform (FFT) algorithms adopt a divide-and-conquer paradigm which
allows the DFT to be computed with the quasi-linear cost of O(n log n) operations [51].
A widely used FFT algorithm is the radix-2 FFT, which divides the original problem (the
computation of the summations defined in Equations 6.3 and 6.4) into two sub-problems.
Because of that, we assume that the size n is a power of two. Depending on how the sub-
problems are defined, the radix-2 algorithms may be classified as Decimation-In-Time
(DIT) or Decimation-In-Frequency (DIF). Details can be found in [49].
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In the following, for a primitive n-th complex root of unity ζn = exp(2πi/n), we
repeatedly use the fact that ζ2

n = ζn
2
, ζ

n
2 +r
n = ζ−rn , and ζrkn = ζ(r+n)k

n .

6.2.1 Decimation-in-time Radix-2 Algorithms
A Decimation-In-Time (DIT) algorithm splits the summation in Equation 6.3 into two
sets, one containing the elements of f with even indexes and the other with the odd ones.
Then, the problem of computing the forward DFT is rewritten as

Fr =
n
2−1∑
k=0

f2kζ
−2kr
n +

n
2−1∑
k=0

f2k+1ζ
−(2k+1)r
n

=
n
2−1∑
k=0

f2kζ
−kr
n
2

+ ζ−rn

n
2−1∑
k=0

f2k+1ζ
−kr
n
2
.

(6.5)

Notice that, using the fact that ζ−rkn
2

= ζ
−(r+n

2 )k
n
2

, it only suffices to compute Fr for r ∈
[
n
2

]
.

Since the inverse DFT is the forward transform but taking negative powers of the root of
unity ζn, this same strategy can be used for evaluating Equation 6.4.

From Equation 6.5, we define gk = f2k and hk = f2k+1, which leads to the two sub-
problems Gr and Hr:

Gr =
n
2−1∑
k=0

gkζ
−kr
n
2

and Hr =
n
2−1∑
k=0

hkζ
−kr
n
2
, (6.6)

which can be seen as two problems with size n
2 similar to the original problem as in

Equation 6.3. This process can be repeated until the two sub-problems become trivial;
then, the solutions for Gr and Hr can be combined to solve the original problem as
Fr = Gr + ζ−rn Hr. For obtaining the solution for the second half of Fr, which corresponds
to the indexes r ∈

{
n
2 , . . . , n− 1

}
, it follows that

Fr+n
2

=
n
2−1∑
k=0

gkζ
−k(r+n

2 )
n
2

+ ζ
−(r+n

2 )
n

n
2−1∑
k=0

hkζ
−k(r+n

2 )
n
2

=
n
2−1∑
k=0

gkζ
−kr
n
2
− ζ−rn

n
2−1∑
k=0

hkζ
−kr
n
2
,

(6.7)

which provides the solution for the original problem as Fr = Gr−ζ−rn Hr. The expressions
Fr = Gr + ζ−rn Hr for r ∈

[
n
2

]
and Fr = Gr − ζ−rn Hr for r ∈

{
n
2 , . . . , n− 1

}
are commonly

referred to as the Cooley-Tukey butterfly [51].

6.2.2 Decimation-in-frequency Radix-2 Algorithms
Decimation-In-Frequency (DIF) radix-2 algorithms divide the original problem, defined
in Equation 6.3, into two halves. Then, a different sub-problem is defined for the even
and odd indexes. The general idea is the opposite of that adopted in DIT algorithms.
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First, the original problem is rewritten as

Fr =
n
2−1∑
j=0

fjζ
−jr
n +

n−1∑
j=n

2

fjζ
−jr
n

=
n
2−1∑
j=0

fjζ
−jr
n +

n
2−1∑
j=0

fj+n
2
ζ
−(j+n

2 )r
n

=
n
2−1∑
j=0

(
fj + fj+n

2
ζ
−r n2
n

)
ζ−jrn .

(6.8)

Then, the sub-problems are derived by taking the odd and even indexes of Fr separately.
When r is even, the original problem is Fr = F2k:

F2k =
n
2−1∑
j=0

(
fj + fj+n

2
ζ−knn

)
ζ−2kj
n

=
n
2−1∑
j=0

(
fj + fj+n

2

)
ζ−kjn

2
,

(6.9)

for k ∈
[
n
2

]
. From the above summation, we define Gk = F2k and gj = fj + fj+n

2
, which

let us define the sub-problem Gk as

Gk =
n
2−1∑
j=0

gjζ
−kj
n
2
, (6.10)

for k ∈
[
n
2

]
. On the other hand, when r is odd, Fr = F2k+1 and then

F2k+1 =
n
2−1∑
j=0

(
fj + fj+n

2
ζ
−(2k+1)n2
n

)
ζ−j(2k+1)
n

=
n
2−1∑
j=0

((
fj − fj+n

2

)
ζ−jn

)
ζ−kjn

2
.

(6.11)

Similarly, by definingHk = F2k+1 and hj =
((
fj − fj+n

2

)
ζ−jn

)
, the second sub-problem

is

Hk =
n
2−1∑
j=0

hjζ
−kj
n
2
, (6.12)

for k ∈
[
n
2

]
. The computation of gj = fj + fj+n

2
and hj =

((
fj − fj+n

2

)
ζ−jn

)
defines

the Gentleman-Sande butterfly [71]. Notice that all sub-problems defined in both Cooley-
Tukey and Gentleman-Sande butterflies are identical to the original problem in Equa-
tion 6.3. Because of that, the above formulas can be repeatedly used between themselves
to obtain small enough sub-problems.

In summary, any radix-2 algorithm for computing the FFT can be used for obtaining
polynomial multiplication with quasi-linear computational cost by using properties of
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the primitive n-th root of unity and a divide-and-conquer paradigm. Nonetheless, the
FFT is defined in the set of complex numbers, which may incur precision errors from
floating-point arithmetic use. Thus, in lattice-based cryptography, the Number-Theoretic
Transform (NTT) is used instead, in which the base field is Zp, for some prime number p.

6.3 The Number-Theoretic Transform
The Number-Theoretic Transform (NTT) is a variation of the DFT that replaces the
primitive n-th complex root of unity by a primitive n-th root of unity in a ring Zq [119].
For existing a primitive n-th root of unity in Zq when n is a power of two, the NTT
requires q = p to be a prime number and that n | (p−1). In this case, Pollard [119] proved
that there exists a primitive n-th root of unity in Zp that can be computed as r(p−1)/n,
where r is the primitive root modulo p. Because of that, some cryptosystems based on
polynomial rings adopt non-NTT algorithms for efficient polynomial multiplication, such
as Karatsuba [81] and Tom-Cook [132, 50] multiplications, or an integer modulus q which
allows fast modular reduction.

For a polynomial a(x) =
n−1∑
j=0

ajx
j ∈ Z[x], the n-point NTT computes

NTT(a(x), ζn) =
(
a(ζ0

n), a(ζ1
n), . . . , a(ζn−1

n )
)
.

In its turn, the inverse transform computes

INTT(a(x), ζ−1
n ) = n−1 · NTT(a(x), ζ−1

n )

in which n−1 is the multiplicative inverse of n modulo p.
Notice that the NTT can be used to compute the cyclic convolution using the fact

that ζjn are the roots of the polynomial xn − 1. Thus, the polynomial multiplication
c(x) = a(x) · b(x) mod xn − 1, which corresponds to the cyclic convolution, can be
obtained by computing three n-point NTTs as

c(x) = INTT(NTT(a(x), ζn)� NTT(b(x), ζn), ζ−1
n ),

where� denotes the component-wise multiplication. Considering the butterflies presented
in Section 6.2, polynomial multiplication modulo xn−1 can be performed with asymptotic
cost O(n log n) by means of radix-2 FFT algorithms based on the Cooley-Tukey and
Gentleman-Sande butterflies.

An iterative radix-2 NTT algorithm based on the Cooley-Tukey butterfly is presented
in Algorithm 5 [124]. Notice that, in the first step, Algorithm 5 changes the order of
coefficients using the bit-reversal operation1, denoted BitReverse, producing an output in
standard ordering.

1The bit-reversal operation takes as input an integer number ε which is in the integer interval
{0, . . . , µ}. Then, it i) computes the binary representation of ε as (b0, b1, . . . , blog2(µ)−1), ii) reverses
the integer representation as (blog2(µ)−1, . . . , b1, b0), and iii) returns the corresponding integer obtained
from converting from the base-2 to base-10 representation. For example, when µ = 8, the bit-reversed
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Algorithm 5: In-place radix-2 NTT algorithm based on the Cooley-Tukey but-
terfly
Input: A polynomial a(x) ∈ Zp[x] of degree at most n− 1, a prime number p,

and ζn a primitive n-th root of unity modulo p
Output: a = NTT(a, p, ζn)

1 a = BitReverse(a)
2 for m = 2;m < n;m = 2m do
3 ζm = ζ

n
m
n

4 ζ = 1
5 for j = 0; j < m

2 ; j = j + 1 do
6 for k = 0; k < n; k = k +m do
7 t = ζ · ak+j+m

2

8 u = ak+j
9 ak+j = (u+ t) (mod p)

10 ak+j+m
2

= (u− t) (mod p)
11 ζ = ζ · ζm
12 return a

For obtaining the polynomial multiplication c(x) = a(x)·b(x) ∈ Rp, for R = Z[x]/(xn+
1), one can use the fact that xn + 1 | x2n− 1 to adopt the 2n-point NTT by zero-padding
the input polynomials with zeros in the n highest coefficients. By doing so, performing
the reduction modulo xn + 1 on the output of the 2n-point INTT produces the expected
result.

As done for the polynomial xn − 1, it would be more efficient if the NTT could be
evaluated directly in the roots of xn + 1, which are given by ζ2j+1

2n . By rewriting ζ2j+1
2n

as ζ2n · ζjn, it evidences that the n-point NTT can be used for multiplication modulo
xn + 1 by scaling the operands as â(x) = ζ2n · a(x). Thus, removing the scaling factor
as c(x) = ζ−1

2n · ĉ(x) after computing ĉ(x) = INTT(NTT(â(x), ζn) � NTT(b̂(x), ζn), ζ−1
n )

produces the expected result in Rp. This technique of scaling the input polynomials by
ζ2n is referred to as the negative wrapped convolution.

For avoiding pre and post-computation steps, the powers of ζ2n were incorporated in
the NTT via Cooley-Tukey by Roy et al. [124]. Similarly, the powers of ζ−1

2n were merged
with the INTT via Gentleman-Sande by Pöppelmann et al. [120]. As a result, the state-
of-the-art NTT allows polynomial multiplication avoiding pre and post-processing phases
and also several calls to the bit-reversal procedure [85].

6.4 The Discrete Galois Transform
The Discrete Galois Transform (DGT) is an alternative to the NTT over the finite field
Fp2 for a prime number p. The DGT was introduced as a method for integer convolution
by Crandall [55] and was further considered for polynomial multiplication by Badawi et
al. [22].

counterparts of the elements {0, 1, 2, 3, 4, 5, 6, 7} are {0, 4, 2, 6, 1, 5, 3, 7}.
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Let p be a prime number, ζn a primitive n-th root of unity in Zp, and f a vector such
that fj ∈ Fp2 . The DGT and its inverse transform are defined in Equations 6.13 and 6.14,
respectively.

Fk =
n−1∑
j=0

fjζ
jk
n (6.13)

fk = n−1
n−1∑
j=0

Fjζ
−jk
n (6.14)

In Equation 6.14, n−1 is taken as the multiplicative inverse of n modulo p. Here, the
elements in Fp2 are represented using the set of Gaussian integers modulo p, which is
defined as Zp[i] = {a+ ib | a, b ∈ Zp}, for i =

√
−1. The arithmetic in Zp[i] is identical

to the complex but the real and imaginary parts are taken modulo p.
Consider a, b ∈ Fp2 represented as in Zp[i], with p a prime number. The operations of

addition, subtraction, and multiplication in Zp[i] are defined as follows.

(a± b) = (<(a)±<(b)) + i (=(a)±=(b))
(a · b) = (<(a)<(b)−=(a)=(b)) + i (<(a)=(b) + =(a)<(b))

Notice that the multiplications in Equations 6.13 and 6.14 are done between a Gaussian
integer, either fj or Fj, and an integer, which is some power of ζn. In this case, since
=(b) = 0, the above formula for multiplication in Zp[i] simplifies to

<(fj)<(ζjkN ) + i
(
=(fj)<(ζjkN )

)
,

requiring only two integer multiplications. This fact will be used to estimate the total
number of operations required for computing a DGT transform using the algorithms of
Badawi et al. [22] and the new algorithms proposed in Section 6.5.1.

6.4.1 The Negacyclic Case
Crandall [55] defined the folding and twisting procedures that allow the computation of
the negacyclic convolution (6.2) via DGT. The folding procedure maps an input operand
f ∈ Znp to F ∈ Zp[i]

n
2 , halving its length:

Fj = fj + ifj+n
2
∈ Zp[i], j ∈

[
n

2

]
.

The inverse transform from Zp[i]
n
2 to Znp is denoted as unfolding and it is given by

fj = <(Fj) and fj+n
2

= =(Fj), j ∈
[
n

2

]
.

Also, the twisting procedure multiplies the folded vector F by powers of ωn
2
, a primitive

n
2 -th root of i modulo p:

Fj = Fj · ωjn
2
.

The corresponding inverse convolution multiplies a vector F ∈ Zp[i]
n
2 by powers of the
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inverse primitive n
2 -th root of i modulo p used in the forward step:

Fj = Fj · ω−jn
2
.

Hence, the polynomial multiplication a(x) · b(x) mod xn + 1 via DGT is computed by
applying the folding procedure to a = (a0, . . . , an−1) and b = (b0, . . . , bn−1), the coefficient
vectors of the operands, resulting in the vectors a′,b′ ∈ Zp[i]

n
2 . Then, each vector a′ and b′

is twisted by ωn
2
and transformed via DGT. After computing the point-wise multiplication

in the DGT domain, the result of the polynomial multiplication is given by computing
the IDGT, the removal of the twisting factors, and the unfolding procedure, in this order.

In comparison with the NTT, the main advantage of using the DGT is the negacyclic
convolution being computed with half-sized transforms. Because of that, storing the
powers of ζn requires only half of the space in memory. However, the DGT imposes some
additional constraints:

• The component-wise multiplication is performed in Zp[i] instead of Zp;

• The input polynomials have to be folded and twisted beforehand;

• A procedure is required for finding a primitive n
2 -th root of i modulo p;

• The aforementioned procedure requires that 4n | (p− 1) instead of 2n | (p− 1), in
comparison with the NTT.

Notice that, for a pair of values for n and p, a primitive n
2 -th root of i modulo p can

be precomputed only once. At first, the DGT was proposed for prime numbers p that are
Gaussian integers, that is, prime numbers satisfying p ≡ 3 (mod 4) [55]. Then, Badawi et
al. showed that the DGT transform can be applied using primes p ≡ 1 (mod 4). Recall
that any prime number either satisfies p ≡ 3 (mod 4) or p ≡ 1 (mod 4). Additionally,
Badawi et al. proposed an algorithm for finding primitive n

2 -th roots of i modulo p when
p ≡ 1 (mod 4).

The next section revisits such an algorithm, extending the discussion started by the
authors [4, Section V.B] and showing that only primes p ≡ 1 (mod 4) are suitable for
polynomial multiplication using the DGT when the polynomial degree is a power of two.

Generating Primitive Roots Modulo p

For polynomial multiplication with reduction via negacyclic convolution, the DGT re-
quires the existence of a primitive n

2 -th root of unity modulo p and a primitive n
2 -th root

of i modulo p. Assume that n is always a power of two and, for readability, let N = n
2 .

First, we analyze the requirement of a primitive N -th root of unity modulo p.
Let p be a prime number and a ∈ N. By Fermat’s Little Theorem, it follows that

ap ≡ a (mod p).

When a and p are relative primes, then

ap−1 ≡ 1 (mod p). (6.15)
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By definition, a primitive root of a prime p is an integer r such that r (mod p) has
multiplicative order p − 1, that is, rp−1 ≡ 1 (mod p). Then, in Equation 6.15, a is a
primitive root of p. From Equation 6.15, it is possible to determine primitive k-th roots
of unity by computing a p−1

k (mod p), for every k which satisfies k | (p− 1). In our case,
it is required that N | (p− 1), with N being a power of two.

If p ≥ 3 is a prime number, then either p ≡ 3 (mod 4) or p ≡ 1 (mod 4). In the
first case, we have that p is a number of the form p = 4k + 3, with k ∈ Z. Thus,
(p − 1) = 4k + 2 = 2(2k + 1). Since k ∈ Z, then 2k + 1 is an odd number. In this case,
(p− 1) is only divisible by a power of two 2` when ` is zero or one. Considering that the
dimension of the polynomial ring is always much bigger than two, prime numbers such
that p ≡ 3 (mod 4) are not suitable for cryptographic purposes. On the other hand, when
p ≡ 1 (mod 4), it follows that p is a prime number of the form p = 4k + 1, with k ∈ Z.
Thus, (p− 1) = 4k and k can be either an odd or even number. In this case, (p− 1) can
be a power of two divisible by N .

Because of that, from hereon, we focus on the case when p is a prime number such
that p ≡ 1 (mod 4), presenting the algorithm of Badawi et al. for finding primitive N -th
roots of i modulo p.

Generating primitive N-th roots of imodulo p. Badawi et al. proposed an efficient
algorithm for determining a primitive N -th root of i modulo a prime number p ≡ 1
mod 4 [4]. For describing the algorithm, we define relevant properties of Gaussian integers
and prove a result on the factorization of a prime number p ≡ 1 (mod 4) in Zp[i].

Let z = a+ ib be a Gaussian integer. The norm of z is N(z) = N(a+ ib) = (a+ ib)(a−
ib) = a2 + b2, that is, N(z) = z · z An element z ∈ Z[i] is a Gaussian prime if one of the
following properties is satisfied:

• If both a and b are nonzero, then a+ ib is a Gaussian prime if and only if a2 + b2 is
a prime number.

• If a = 0, then ib is a Gaussian prime if and only if |b| is a prime number and
|b| ≡ 3 (mod 4).

• If b = 0, then a is a Gaussian prime if and only if |a| is a prime number and
|a| ≡ 3 (mod 4).

Lemma 6.1 ([135]). Let p be a prime number such that p ≡ 1 (mod 4). Then, there is
a Gaussian prime z such that p = z · z.

Proposition 6.2 ([135]). For each prime number p ≡ 1 (mod 4), there are exactly two
Gaussian primes z and z with norm p.

Badawi et al.’s algorithm is based on Lemma 6.1 and Proposition 6.2 and comprehends
three steps: i) finding the factorization of p into two Gaussian primes, which are denoted
as z0 and z1; ii) finding a generator gi for the cyclic groups defined by each zj, with
j ∈ {0, 1}; and iii) computing a primitive N -th root of i using the Chinese Remainder
Theorem (CRT).
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1. Finding the factorization of p. Algorithm 6 gives a procedure for factorization
of p in the set of Gaussian integers.

Algorithm 6: FactorIntoGaussianPrimes: Find elements z0 and z1 such that p =
z0 · z1

Input: A prime p such that p ≡ 1 (mod 4)
Output: Gaussian primes z0 and z1 such that p = z0 · z1

1 do
2 a

$←− Zp
3 while a(p−1)/2 6≡ −1 (mod p)
4 k = a(p−1)/4 mod p
5 z = gcd(p, k + i)
6 return (z0, z1) = (z, z)

From Equation 6.15, Algorithm 6 assumes that if p is a prime, then ap−1 ≡ 1 (mod p)
for all a ∈ Zp. Hence, the square root of ap−1 must be equivalent to either 1 or −1. In
the latter case, we can find a number k2 such that k ≡ a(p−1)/4 ≡ i (mod p). In other
words, if k2 ≡ −1 (mod p) then k2 + 1 ≡ 0 (mod p) and p divides k2 + 1. Since k2 + 1
factors into (k + i) · (k − i), we may have found the factorization of p in Zp[i]. In order
to determine the exact factors of p, we introduce Lemma 6.4, which requires the result of
Lemma 6.3.

Lemma 6.3 ([135]). If z ∈ Z[i] is such that N(z) is a prime number, then z is a Gaussian
prime.

Lemma 6.4. Let p be an odd prime such that p ≡ 1 (mod 4) and let k ∈ Zp. The greatest
common divisor of p and k + i is either k + i or a Gaussian prime z such that z | p and
z | k + i.

Proof. By Fermat’s theorem on sums of two squares2, we have that p = a2 + b2, with
a, b ∈ Z. Since a2 + b2 = (a+ ib)(a− ib) and N(a+ ib) = N(a− ib) = p, then a+ ib and
a− ib are Gaussian primes and p = (a+ ib)(a− ib) is the unique factorization of p in Zp[i],
disregarding the order of factors3. On the other hand, we have that (k + i)(k − i) ≡ p

(mod p), by construction. Combining the two facts, we obtain that p = (a+ ib)(a− ib) ≡
(k + i)(k − i), which is equivalent to (k + i)(k − i) = `(a + ib)(a − ib) for some ` ∈ Z.
When ` = 1, we have an equality and we find that (k + i) and (k − i) are indeed the
factors of p. When ` 6= 1, (k+ i) is not a Gaussian prime and still can be factored in Zp[i];
otherwise, it would be a factor of p. We know that p divides (k + i)(k − i) but not k + i,
or its conjugate, since k < p and (k + i)/p is not a Gaussian integer. Then, k + i and p
must share a common factor z that can be found as the greatest common divisor. Since
the two factors of p are a+ ib and a+ ib, z must be one of them. Finally, the factors of p
can be found by computing the greatest common divisor of p and k+ i and its conjugate.

2Fermat’s theorem on sums of two squares states that an odd prime p can be expressed as p = a2 + b2,
with x, y ∈ Z, if and only if p ≡ 1 (mod 4).

3Wuthrich proves in Theorem 5.8 that any 0 6= z ∈ Z[i] has a unique factorization [135].
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Since p = a2 + b2 and N(a + ib) = N(a − ib) = a2 + b2, by Lemma 6.3, the factors are
Gaussian primes.

Still, there is no guarantee that k + i is a Gaussian prime. By Lemma 6.4, we find
that the greatest common divisor of p and k + i is k + i or there exists some z such that
z | p and z | k + i. Thus, since z = gcd(p, k + i) results in a Gaussian prime, we take it
as the first factor of p. From Lemma 6.1, z is the second factor.

2. Finding a generator. From the first step, we have two Gaussian primes defining
a cyclic group corresponding to the set of Gaussian integers modulo zj for j = {0, 1}. So,
the next step consists in using Algorithm 7 to find a generator gj for each cyclic group.

Algorithm 7: SampleGenerator: Find a generator g for the cyclic group Zp[i]
(mod z)
Input: A prime number p, and z ∈ Zp[i] a factor of p
Output: A generator g for the cyclic group Zp[i] (mod z)

1 do
2 a

$←− Zp
3 b

$←− Zp
4 g = (a+ bi) mod z
5 for j = 1; j < p; j = j + 1 do
6 d = gj mod z
7 if d = 1 and j = p− 1 then
8 return g mod p

9 while true

Algorithm 7 describes a brute-force procedure for finding a generator for the cyclic
group Zp[i] (mod zi). Elements a and b are sampled uniformly at random from Zp to
construct a Gaussian integer gj ∈ Zp[i] mod zj. The algorithm repeats these steps until
an element with multiplicative order p − 1 is found. Recall that a primitive N -th root
of i modulo p is computed only once for a given pair of values for n and p. Because of
that, Algorithm 7 is not heavily invoked in this context. However, Gauss’s algorithm can
replace the above procedure for finding a generator for the cyclic groups.

3. Constructing a primitive N-th root of i modulo p. The method for com-
puting a primitive N -th root of i modulo p, denoted ωN , uses Algorithm 6 to find the
factorization of p as p = z0 · z1 ∈ Zp[i]. Then, the generators gj for Zp[i] (mod zj) are
found using Algorithm 7. The N -th roots of i modulo p in the corresponding cyclic groups
are computed as ω(j) = g

(p−1)
4N

j mod zj. Lastly, a candidate root is computed in the larger
ring Zp[i] as ω = z1 ·

(
z−1

1 · ω(0) mod z0
)

+ z0 ·
(
z−1

0 · ω(1) mod z1
)

mod p. If ωN ≡ i

(mod p), ω is asserted as a primitive N -th root of i modulo p. The complete procedure
for generating ωN is described in Algorithm 8.

Notice that since Algorithm 7 is not deterministic, so it is not Algorithm 8, producing
a different output at each execution.
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Algorithm 8: Compute a primitive N -th root of i modulo p
Input: An integer N = n

2 , and a prime number p satisfying 4n | (p− 1) and
p ≡ 1 (mod 4)

Output: A primitive N -th root of i modulo p
1 (z0, z1) = FactorIntoGaussianPrimes(p)
2 do
3 for j = 0; j < 2; j = j + 1 do
4 gj = SampleGenerator(p, zj)
5 ω(j) = g

b(p−1)/(4n)c
j mod zj

6 ω = z1 ·
(
z−1

1 · ω(0) mod z0
)

+ z0 ·
(
z−1

0 · ω(1) mod z1
)

mod p

7 if ωN ≡ i (mod p) then
8 return ω

9 while true

6.5 Polynomial Multiplication via DGT
Similarly to FFT and NTT, the DGT can be efficiently computed using both Cooley-
Tukey and Gentleman-Sande butterflies. Badawi et al. [4] introduced a DGT transform
via Gentleman-Sande and an inverse DGT via Cooley-Tukey, which are presented in
Algorithms 9 and 10, respectively.

Algorithm 9: In-place forward DGT via Gentleman-Sande
Input: A folded vector F ∈ Zp[i]N in standard order, a prime number p, and ζN a

primitive N -th root of unity in Zp
Output: F← DGT(F, p, ζN ) in bit-reversed order

1 for m = N/2;m ≥ 1;m = m/2 do
2 for j = 0; j < m; j = j + 1 do
3 a = ζ

jN/2m
N

4 for i = j; i < N ; i = i+ 2m do
5 u = Fi
6 v = Fi+m
7 Fi = (u+ v) (mod p)
8 Fi+m = a(u− v) (mod p)
9 return BitReverse(F)

Additionally, Badawi et al. [4] define Algorithm 11 for polynomial multiplication via
DGT in Rq = Zq[x]/(xn + 1), with n a power of two and q an integer modulus. The
integer moduli p and q are distinguished from hereon: q is adopted in a broader context
of the cryptosystem, whereas p is a prime number internal to the procedure of polynomial
multiplication. Notice that the input polynomials a(x), b(x) are taken in Rq with the
restriction that ai, bi ∈

[
0, q ≤

⌊√
p

4N

⌋]
. In this case, the modulus q acts as an upper

bound for the coefficient’s growth after integer multiplications as follows. Consider the
polynomial multiplication c(x) = a(x) · b(x) ∈ Rq. Then,

cj =
n∑
k=0

ajbkx
j+k.



81

Algorithm 10: In-place inverse DGT via Cooley-Tukey
Input: A vector F ∈ Zp[i]N in bit-reversed order, a prime number p, and ζN a

primitive N -th root of unity in Zp
Output: F← IDGT(F, p, ζN ) in standard order

1 F = BitReverse(F)
2 for m = 1;m < N ;m = 2m do
3 for j = 0; j < m; j = j + 1 do
4 a = ζ

−jN/2m
N

5 for i = j; i < N ; i = i+ 2m do
6 u = Fi
7 v = a · Fi+m
8 Fi = (u+ v) (mod p)
9 Fi+m = (u− v) (mod p)

10 return F ·N−1

Algorithm 11: Polynomial multiplication in Rq via DGT
Input: Polynomials a(x), b(x) ∈ Rq, with ai, bi ∈

[
0, q ≤

⌊√
p

4N

⌋]
, a prime

number p satisfying 4n | (p− 1), ζN a primitive N -th root of unity in Zp,
and ωN a primitive N -th root of i modulo p

Output: c(x) = a(x) · b(x) ∈ Rq = Zq[x]/(xn + 1) with n a power of two
1 for j = 0; j < N ; j = j + 1 do
2 a′j = aj + iaj+N
3 b′j = bj + ibj+N
4 for j = 0; j < N ; j = j + 1 do
5 a′j = ωjN · a′j (mod p)
6 b′j = ωjN · b′j (mod p)
7 a′ = DGT(a′, p, ζN)
8 b′ = DGT(b′, p, ζN)
9 for j = 0; j < N ; j = j + 1 do

10 c′j = a′j · b′j (mod p)
11 c′ = IDGT(c′, p, ζN)
12 for j = 0; j < N ; j = j + 1 do
13 c′j = ω−jN · c′j (mod p)
14 for j = 0; j < N ; j = j + 1 do
15 cj = <(c′j)
16 cj+N = =(c′j)
17 return c

Also, consider that each coefficient of the operands a(x), b(x) are represented in the
interval [0, q). Since |aj| < q and |bk| < q, then |ajbk| = |aj||bk| ≤ q2 and |cj| ≤

n∑
k=0

q2 ≤

nq2. Assuming that the coefficients from the output of Algorithm 11 are in the balanced
representation (−p/2, p/2], it follows the restriction that nq2 ≤ p

2 , which is equivalent to
the condition q ≤

⌊√
p

2n

⌋
[22]. Algorithm 11 was proposed for homomorphic encryption

schemes [22, 21, 20, 4, 2] in which the size of parameters is huge in comparison with
schemes for encryption and digital signatures. In this context, the modulus p is taken as
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p = 264 − 232 + 1, a 64-bit prime number which special form allows an efficient modular
reduction algorithm [22]. Thus, since p 6= q, the requirements of the transform only apply
to the value of p, providing freedom for choosing the system’s modulus q focusing on
security estimates.

However, for small cryptosystems such as encryption and digital signatures schemes,
the estimated bound for q leads to prohibitive values of p. For Kyber [18], which adopts
small values for q and n, we have that q = 3329 and n = 256. These values require
p ≥ 5 674 107 392, translating into a 32-bit prime number. In order to minimize the effect
of computing the polynomial multiplication using a much larger prime number, p can be
chosen with a special form, such as a Solinas prime or a pseudo/general Mersenne prime,
as already suggested in the literature [55, 22]. Nevertheless, no 32-bit special prime is
known, and the closest prime is 231− 1, which does not surpass the predetermined upper
bound and also n - (p − 1), even for small values of n such as n = 256. Additionally, in
some cryptosystems like NewHope [9], both ciphertext and public key are transmitted in
the transform domain. Thus, replacing the original modulus q with p in the polynomial
multiplication would enlarge the bandwidth requirement for transmission and storage of
public parameters.

Alternatively, the arithmetic operations can be performed directly in Zp[i] assuming
p = q. In this scenario, the cryptosystem modulus q must consider the restrictions
imposed by the underlying transform. In particular, the DGT requires that n | (p − 1)
and 4n | (p− 1) for the existence of a primitive N -th root of unity and a primitive N -th
root of i modulo p, respectively.

6.5.1 Merging Twisting with DGT
Inspired by the independent work of Roy et al. [124] and Pöppelmann et al. [120], we
introduce new algorithms for computing the DGT transform merging the twisting proce-
dure with the DGT via Cooley-Tukey. Similarly, we merge the inverse twisting with the
IDGT via Gentleman-Sande.

Merging Twisting with DGT via Cooley-Tukey

As discussed by Crandall [55], the folding and twisting procedures provide the following
N -point DGT transform:

F ′r =
N−1∑
j=0

ωjNFjζ
jr
N , (6.16)

which can be used for computing polynomial reduction modulo xn+1 for free via negacyclic
convolution. We refer to the summation in Equation 6.16 as the problem to be solved
using the divide-and-conquer strategies presented in Section 6.2 for the DFT.

For a Decimation-In-Time algorithm, the coefficients Fj in Equation 6.16 are grouped
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into even- and odd-indexed sets as follows:

F ′r =
N
2 −1∑
k=0

ω2k
N F2k ζ

2kr
N +

N
2 −1∑
k=0

ω2k+1
N F2k+1 ζ

(2k+1)r
N

=
N
2 −1∑
k=0

ωkN
2
F2k ζ

kr
N
2

+ ωNζ
r
N

N
2 −1∑
k=0

ωkN
2
F2k+1 ζ

kr
N
2
.

(6.17)

Then, the coefficients are renamed as Gk = F2k and Hk = F2k+1 and the sub-problems G′r
and H ′r are defined as

G′r =
N
2 −1∑
k=0

ωkN
2
Gkζ

kr
N
2

and H ′r =
N
2 −1∑
k=0

ωkN
2
Hkζ

kr
N
2
.

From Equation 6.17, the first N
2 coefficients of the solution for the original problem F ′r

are obtained by computing F ′r = G′r + ωNζ
r
NH

′
r for r ∈

[
N
2

]
. Similarly, the second half of

the original problem is derived as

F ′
r+N

2
=

N
2 −1∑
k=0

ωkN
2
Gk ζ

k(r+N
2 )

N
2

+ ωN ζ
r+N

2
N

N
2 −1∑
k=0

ωkN
2
Hk ζ

k(r+N
2 )

N
2

=
N
2 −1∑
k=0

ωkN
2
Gk ζ

kr
N
2
− ωN ζrN

N
2 −1∑
k=0

ωkN
2
Hk ζ

kr
N
2
,

(6.18)

and the solution to the second half of F ′r is obtained from Equation 6.18 by combining
the solutions from the sub-problems G′r and H ′r as F ′r+N

2
= G′r − ωNζrNH ′r.

Notice that the coefficients in F ′r, G′r, and H ′r are multiplied by the primitive root of i
modulo p corresponding to the problem size. Specially, considering that the sub-problems
are divided until a small enough problem is reached, the next iteration replaces ω N

2j
with

ω N

2j+1
, for j ≥ 0. In summary, the powers of ζN at the j-th level are multiplied by ω2j

N ,
with j ∈ {log2N − 1, . . . , 0}.

As a result, we introduce Algorithm 12 for computing the forward DGT using the
Cooley-Tukey butterfly without requiring bit-reversal and precomputation steps. We
refer to this new algorithm as DGT-T in which the letter ‘T’ stands for the twisting
procedure. Given the powers of ζN in bit-reversed order, the algorithm takes as input a
folded vector F ∈ Zp[i]N in standard order and outputs DGT(F) in bit-reversed order [49].
Notice that all arithmetic operations in Algorithm 12 are performed in Zp[i].

Merging Inverse Twisting with IDGT via Gentleman-Sande

Given the component-wise multiplication of two polynomials a(x) and b(x) evaluated by
Equation 6.16, the result of the polynomial multiplication modulo xn + 1 is recovered by
first computing

f ′r = ω−rN

N−1∑
`=0

F` ζ
−`r
N , r ∈ [N ], (6.19)
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Algorithm 12: DGT-T: in-place forward DGT via Cooley-Tukey
Input: A vector F ∈ Zp[i]N in standard order, a prime number p, ζN a primitive N -th

root of unity in Zp, and ωN a primitive N -th root of i modulo p
Output: F← DGT-T(F, p, ζN , ωN ) in bit-reversed order

1 d = N
2

2 for m = 1;m < N ;m = 2m do
3 for k = 0; k < m; k = k + 1 do
4 j1 = 2kd
5 j2 = j1 + d− 1
6 a = ζ

BitReverse(k)
N · ωdN

7 for j = j1; j ≤ j2; j = j + 1 do
8 u = a · Fj+d
9 Fj+d = (Fj − u) (mod p)

10 Fj = (Fj + u) (mod p)
11 d = d/2
12 return F

and unfolding the vector containing the coefficients f ′r. In Equation 6.19, the scaling by
N−1 was intentionally omitted.

Similarly to the forward DGT, the computation of the inverse DGT can be seen as a
problem f ′ of size N = n

2 that can be recursively divided into two sub-problems g′ and h′

with half of the size. The definition of the sub-problems derives from Equation 6.19 as
follows:

f ′r = ω−rN


N
2 −1∑
j=0

Fj ζ
−jr
N +

N−1∑
j=N

2

Fj ζ
−jr
N


= ω−rN


N
2 −1∑
j=0

Fj ζ
−jr
N +

N
2 −1∑
j=0

Fj+N
2
ζ
−(j+N

2 )r
N


= ω−rN

N
2 −1∑
j=0

(
Fj + Fj+N

2
ζ
−rN2
N

)
ζ−rjN , r ∈ [N ] .

Thus, when r is even, f ′r = f ′2k:

f ′2k = ω−2k
N

N
2 −1∑
j=0

(
Fj + Fj+N

2
ζ
−2kN2
N

)
ζ−2kj
N

= ω−2k
N

N
2 −1∑
j=0

(
Fj + Fj+N

2

)
ζ−2kj
N , k ∈

[
N

2

]
.

Consider that the sub-problem g′ is defined as g′k = f ′2k and the coefficients are renamed
as gj = (Fj + Fj+N

2
). Then,

g′k = ω−kN
2

N
2 −1∑
j=0

gjζ
−kj
N
2
. (6.20)
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Similarly, when r is odd, the coefficients f ′r are computed as

f ′2k+1 = ω
−(2k+1)
N

N
2 −1∑
j=0

(
Fj + Fj+N

2
ζ
−(2k+1)N2
N

)
ζ
−(2k+1)j
N

= ω−2k
N ω−1

N

N
2 −1∑
j=0

(
Fj − Fj+N

2

)
ζ−2kj
N ζ−jN

= ω−2k
N

N
2 −1∑
j=0

((
Fj − Fj+N

2

)
ζ−jN ω−1

N

)
ζ−2kj
N , k ∈

[
N

2

]
.

Then, the coefficients of h′ are h′k = f ′2k+1 and hj = (Fj − Fj+N
2

)ζ−jN ω−1
N . It follows that

h′k = ω−kN
2

N
2 −1∑
j=0

hjζ
−kj
N
2
, (6.21)

and both sub-problems g′ and h′ are solvable using the same algorithm for the original
problem f ′. From the above formulas, we introduce Algorithm 13, a Decimation-In-
Frequency algorithm for computing the IDGT, which is referred to as IDGT-T. In this
algorithm, no bit-reversal step is required in the output because the input vector F and
the powers of ζN are assumed to be in bit-reversed order.

Algorithm 13: IDGT-T: in-place inverse DGT via Gentleman-Sande
Input: A vector F ∈ Zp[i]N in bit-reversed order, a prime number p, ζN a primitive

N -th root in Zp, and ωN a primitive N -th root of i modulo p
Output: F← IDGT-T(F, p, ζN , ωN ) in standard order

1 d = 1
2 for m = N ;m > 1;m = m/2 do
3 for j1 = 0; j1 < d; j1 = j1 + 1 do
4 r = 0
5 for i = j1; i < N − 1; i = i+ 2d do
6 u = Fi
7 v = Fi+d
8 Fi = (u+ v) (mod p)
9 Fi+d = ζ

−BitReverse(r)
N ω−dN (u− v) (mod p)

10 r = r + 1
11 d = 2d
12 return F ·N−1 (mod p)

Comparing Equation 6.19 with Equations 6.20 and 6.21 shows that ω−1
N is replaced

by ω−1
N
2

in the corresponding sub-problems. Considering that the problem is recursively
divided until a small problem is reached, we have that ω N

2j
is replaced by ω N

2j+1
in the

next iteration. Then, in Algorithm 13, it suffices to multiply the powers of ζN by ω−2j
N for

j ∈ {0, . . . , log2N − 1}.
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6.5.2 Experimental Results on x64 Architecture
In this section, we report experimental results for the implementation of DGT in the x64
architecture. We considered round-two submitters of NIST’s Post-Quantum Cryptogra-
phy standardization project [101] that adopt the NTT for polynomial multiplication. In
particular, we selected submitters that could benefit from DGT considering the require-
ment on the modulus p being a prime number satisfying 4n | (p− 1). Thus, we replaced
the portable-C implementation of NTT in the submitter’s reference code with constant-
time implementations for DGT. First, the DGT-T performance is compared with the
DGT formulation of Badawi et al. [4]. The experiments indicated that Badawi et al.’s
formulation provides a faster algorithm for polynomial multiplication in the x64 architec-
ture. Because of that, we adopted their procedures in further experiments. Finally, we
compared AVX2-optimized implementations of both transforms in the qTESLA digital
signature scheme [30].

Among the round-two submitters of NIST’s Post-Quantum Cryptography standard-
ization project, the cryptosystems adopting the NTT for polynomial multiplication are
CRYSTALS-Kyber [18], CRYSTALS-Dilithium [64], NewHope [9], FALCON [69], and
qTESLA [30]. For CRYSTALS-Kyber, the ring parameters are p = 3329 and n = 256.
Since 1024 - 3328, Kyber was not considered for this experiment. For both NewHope and
FALCON, it follows that p = 12 289 and n = 1024. Thus, we opted by NewHope, since
FALCON only uses the NTT in public-key operations. Shortly, considering the objective
of selecting distinct pairs of values for the ring parameters (p, n), the experiments were
executed for CRYSTALS-Dilithium, NewHope and qTESLA.

The experimental results were obtained by collecting the median clock cycles for 10 000
executions on an Intel Skylake with processor Intel Core i7-6700K running at the constant
clock frequency of 4000 MHz with both Turbo Boost and Hyperthreading technologies dis-
abled. The source code was compiled using the GCC compiler version 11.2.1. Appendix A
presents additional experimental results on an Intel Haswell with processor Intel Core i7-
4770 running at the constant clock frequency of 3400 MHz. The parameter sets considered
for the experiments are in Table 6.1. The parameters k and ` determine the module rank
in the scope of CRYSTALS-Dilithium; especially, a public matrix A is uniformly sampled
in (Rq)k×`.

Table 6.1: Parameter sets considered for comparing the NTT and DGT transforms.

Cryptosystem p n (k, `)
Dilithium II 8 380 417 256 (4,3)
Dilithium III 8 380 417 256 (5,4)
Dilithium IV 8 380 417 256 (6,5)
NewHope512CCA 12 289 512 (1,1)
NewHope1024CCA 12 289 1024 (1,1)
qTESLA-p-I 343 576 577 1024 (1,1)
qTESLA-p-III 856 145 921 2048 (1,1)
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Performing Polynomial Multiplication with DGT-T

In this section, we argue that Badawi et al.’s formulation of DGT better suits small
cryptosystems such as CRYSTALS-Dilithium [64], NewHope [9], and qTESLA [30] in
comparison with DGT-T. In general, the arithmetic operations in DGT are performed
over Gaussian integers. However, the multiplications in Algorithms 9 and 10 are done
between Gaussian integers and powers of ζN , a primitive N -th root of unity in Zp. In other
words, the multiplications are performed between Gaussian integers and integers. In turn,
the multiplications in our algorithms rely entirely on Zp[i] because ζN is multiplied by
ωN ∈ Zp[i]. Thus, even though Badawi et al.’s and our algorithms have the asymptotic cost
O(n log n), the overall number of integer operations are quite different. In Algorithm 14,
we describe our algorithm for polynomial multiplication in a power-of-two cyclotomic ring
using DGT-T algorithms, for which we analyze the overall number of operations.

Algorithm 14: Polynomial multiplication in Rp via DGT-T
Input: Polynomials a(x), b(x) ∈ Rp, and a prime number p satisfying 4n | (p− 1)
Output: c(x) = a(x) · b(x) ∈ Rp = Zp[x]/(xn + 1) with n a power of two

1 for j = 0; j < N ; j = j + 1 do
2 a′j = aj + iaj+N
3 b′j = bj + ibj+N
4 a′ = DGT-T(a′, p, ζN , ωN)
5 b′ = DGT-T(b′, p, ζN , ωN)
6 for j = 0; j < N ; j = j + 1 do
7 c′j = a′j · b′j (mod p)
8 c′ = IDGT-T(c′, p, ζN , ωN)
9 for j = 0; j < N ; j = j + 1 do

10 cj = <(c′j)
11 cj+N = =(c′j)
12 return c

Consider a, b ∈ Zp[i]. The multiplication a · b ∈ Zp[i] is defined as

(a · b) = (<(a)<(b)−=(a)=(b)) + i (<(a)=(b) + =(a)<(b)) . (6.22)

Thus, a multiplication in Zp[i] requires four multiplications (M) and two additions (A)
in Zp. On the other hand, a multiplication between a Gaussian integer and an integer
consumes 2M plus 2A, which is equivalent to assuming that =(b) = 0 in Equation 6.22.
In this sense, computing a polynomial multiplication using Algorithm 11 has the overall
cost of

CDGT = 2
(
n

2 (4M + 2A)
)

+ 2
(
n

2 log
(
n

4

)
(2M + 4A)

)
.

Moreover, a polynomial multiplication using Algorithm 14 invoking the DGT-T ex-
pends CDGT-T integer operations:

CDGT-T = 2
(
n

2 log
(
n

4

)
(4M + 6A)

)
.
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If one tries to determine whether CDGT-T < CDGT, a contradiction is found:

log
(
n

4

)
(2M + 2A) ≤ 4M + 2A.

For the Dilithium cryptosystem, for which n = 256 is the smallest ring degree con-
sidered in our analysis, the above inequality leads to 6M + 6A > 2M + A, showing that
our algorithm consumes four extra integer multiplications. Besides, each multiplication
usually requires a Montgomery reduction [97] and additions may require a Barrett reduc-
tion [24] when lazy reduction is not possible. Then, the additional cost of Algorithm 14
in comparison with Algorithm 11 makes the proposed algorithm not attractive for poly-
nomial multiplication in power-of-two cyclotomic rings in the cryptographic context.

Notice that using Karatsuba [81] for computing the multiplication in Equation 6.22
would reduce the number of integer multiplications at the expense of increasing the num-
ber of additions, which have a similar cost for small integers in modern x64 architectures.
Nonetheless, Algorithm 14 might be of independent interest for another application.

For completeness, we present next experimental results obtained by using both DGT’s
formulations in selected round-two submissions of NIST’s Post-Quantum Cryptography
standardization project [102].

For experimentally evaluating the DGT’s variants, we ran a polynomial multiplication
procedure using the parameter sets corresponding to Dilithium II, NewHope1024CCA,
and qTESLA-p-I. The results are summarized in Table 6.2. Notice that the ring param-
eters of CRYSTALS-Dilithium are identical in all parameter sets. Thus, in a standalone
evaluation of polynomial multiplication, any parameter set would have the same perfor-
mance.

Table 6.2: Skylake cycle counts for the median of 10 000 executions of CRYSTALS-
Dilithium, NewHope, and qTESLA reference code using both versions of the DGT: Badawi
et al.’s version presented in Section 6.4, denoted DGT, and our formulation combining
the transform computation with the twisting procedure denoted as DGT-T.

Dilithium II NewHope1024CCA
DGT DGT-T DGT/DGT-T DGT DGT-T DGT/DGT-T

Poly. Mul. 26 334 38 846 0.68 142 814 218 672 0.65

qTESLA-p-I
DGT DGT-T DGT/DGT-T

Poly. Mul. 97 434 114 435 0.85

As a result, the DGT-T increases the cost of polynomial multiplication via DGT up
to 53%. For a fair comparison, the polynomial multiplication procedure was executed in
the context of the corresponding cryptosystems, adopting optimization techniques used
in the reference codes for the NTT.

Because of that, the experiments in the following sections consider Badawi et al.’s
formulation of DGT, applying the twisting procedure outside the scope of the transforms.
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A Comparison of NTT and DGT Transforms

In this section, we implement the polynomial multiplication via DGT as in Algorithm 11
proposed by Badawi et al. [4], which invokes Algorithm 9 for the forward transform and
Algorithm 10 for its inverse. The DGT implementations ran in constant time and are writ-
ten in portable-C programming language. For each cryptosystem, namely CRYSTALS-
Dilithium [64], NewHope [9], and qTESLA [30], the polynomial multiplication module
using the NTT was replaced with our implementation based on the DGT. We used the
same code-level optimization techniques as in the reference code to allow a fair comparison
between both implementations.

Next, we present experimental results for our implementations, comparing their per-
formance with the reference codes. The results for CRYSTALS-Dilithium, NewHope and
qTESLA are summarized in Tables 6.3, 6.4, and 6.5, respectively.

Table 6.3: Skylake cycle counts for the median of 10 000 executions of CRYSTALS-
Dilithium reference code using either the NTT or DGT transform.

Dilithium II Dilithium III
Reference Ours NTT/DGT Reference Ours NTT/DGT

Keypair 284 048 291 066 0.98 404 813 422 813 0.96
Sign 1 156 893 1 194 617 0.97 1 586 314 1 692 240 0.94
Verify 287 561 302 921 0.95 394 411 419 900 0.94
Transform 7011 7784 0.90 6540 7252 0.90
Point-wise Mul. 1231 2085 0.59 1010 1698 0.59
Inv. Transform 9725 8441 1.15 7736 7965 0.97

Dilithium IV
Reference Ours NTT/DGT

Keypair 539 496 561 041 0.96
Sign 1 472 362 1 575 270 0.93
Verify 546 682 574 469 0.95
Forward Transform 6547 6972 0.94
Point-wise Mul. 1224 1842 0.66
Inverse Transform 7734 7795 0.99

Table 6.4: Skylake cycle counts for the median of 10 000 executions of the NewHope
reference code using either the NTT or DGT transform.

NewHope512CCA NewHope1024CCA
Reference Ours NTT/DGT Reference Ours NTT/DGT

Keypair 117 593 124 872 0.94 222 445 240 229 0.93
Encaps 163 558 169 052 0.97 320 449 336 735 0.95
Decaps 180 173 184 762 0.98 360 227 374 513 0.96
Forward Transform 19 998 22 513 0.89 41 555 45 713 0.91
Point-wise Mul. 4694 7731 0.61 9808 15 463 0.63
Inverse Transform 21 342 16 554 1.29 44 203 35 388 1.25

In our implementations, the powers of a primitive n
2 -th root of unity and the powers

of a primitive n
2 -th root of i modulo p are precomputed. In particular, the n

2 -th root of i
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Table 6.5: Skylake cycle counts for the median of 10 000 executions of qTESLA reference
code using either the NTT or DGT transform.

qTESLA-p-I qTESLA-p-III
Reference Ours NTT/DGT Reference Ours NTT/DGT

Keygen 2 336 010 2 321 057 1.01 13 234 216 13 213 465 1.00
Sign 2 059 141 2 044 792 1.01 4 754 599 4 768 281 1.00
Verify 759 582 745 238 1.02 1 982 184 1 944 773 1.02
Transform 30 374 33 328 0.91 83 043 82 168 1.01
Inv. Transform 32 112 30 720 1.05 73 675 67 575 1.09

modulo p is obtained through a script implementing Badawi et al.’s procedure [4, Section
5.2]. A primitive n

2 -th root of unity in Zp is obtained by calculating r(p−1)/(n2 ) (mod p),
where r is the primitive root of p. The primitive root of a prime p can be computed in
the Wolfram Language using PrimitiveRoot[p] [133] via WolframAlpha [134].

Now, we strictly analyze the numbers of integer operations modulo p for computing
a polynomial multiplication. In the NTT, a Gentlemen-Sande or Cooley-Tukey butterfly
consumes one multiplication and two additions/subtractions, taking as input two coeffi-
cients. In turn, the same butterfly in the DGT consumes 2M plus 4A by taking as input
four coefficients at a time. Since the size of the DGT transform is n

2 instead of n, the over-
all cost is roughly n

2 log n
2 (2M+4A). For the NTT, the estimated cost is n log n(1M+2A).

Thus, the computation of a DGT transform shows a reduction of n log 2(2M+4A) integer
operations modulo p.

The polynomial multiplication via DGT requires applying the twisting factors before
the forward DGT and removing them after the computation of the inverse transform.
Each of these tasks adds a linear cost of n

2 (4M + 2A) integer operations modulo p, which
is amortized by the reduced cost of computing a half-sized transform. The third aspect
of performing polynomial multiplication via DGT is point-wise multiplication, which is
computed in Zp[i]

n
2 . Thus, it consumes n(2M + 1A) integer operations modulo p, in

comparison with only nM operations for NTT.
In summary, the DGT and IDGT are expected to show an improvement for larger

values of n and p, as indicated in our experimental results in Tables 6.3, 6.4, and 6.5. The
improvement is reinforced by the fact that the DGT has been efficiently used in lattice-
based homomorphic encryption schemes [2], which require much larger ring parameters
than schemes for digital signatures and public-key encryption.

Additionally, the IDGT is computed using the Gentleman-Sande butterfly, which is
expected to provide better performance than the DGT using the Cooley-Tukey butterfly.
Usually, Gentleman-Sande is the most efficient butterfly because the additions and sub-
tractions are performed before the multiplication, which may avoid a complete reduction
modulo p. However, notice that optimization techniques particular to the reference im-
plementations also influence the final results. In general, since the DGT/IDGT by itself
only requires half of the powers of a root of unity, it may consume fewer clock cycles due
to cache misses. Nevertheless, it is expected for the point-wise multiplication to have a
less efficient behavior than in the NTT.

For CRYSTALS-Dilithium, the original reference code outperforms the DGT by at
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most 7% for signature generation in Dilithium IV. In this case, the number of function
calls related to polynomial multiplication depends on the parameter k and the number
of iterations of the rejection sampling procedure. The point-wise multiplication, which
consumes up to 69% more clock cycles, is the most invoked function, being called a
quadratic number of times concerning the parameter k.

For NewHope, the performance of polynomial multiplication via NTT and DGT is
similar. Although the IDGT is more capable than the INTT of exploring the loop unrolling
technique, achieving 1.29 and 1.25 of speedup in our experiments, this advantage is mostly
hampered by the additional cost imposed by the point-wise multiplication. Additionally,
the forward transform and point-wise multiplication are invoked twice as many times as
the IDGT.

Finally, for qTESLA, our implementation is even with the reference source code, at-
taining 1.02 of speedup for signature verification in both parameter sets. In this context,
the cycle count for the inverse transform in Table 6.5 refers to the added cost of executing
the point-wise multiplication and the inverse IDGT. In general, this wrapped function is
called k times the number of calls to the forward procedure, which is either 4 or 5. In the
signature generation, this ratio is multiplied by the number of iterations of the rejection
sampling algorithm.

AVX2 Implementation of qTESLA

Considering the slight speedup attained for qTESLA-p-I and qTESLA-p-III in Table 6.5,
we present experimental results for polynomial multiplication via DGT in a highly-
optimized implementation using AVX2. In Table 6.6, we compare the performance of our
AVX2-optimized implementation with the AVX2-optimized code provided by qTESLA’s
authors.

Table 6.6: Skylake cycle counts for the median of 10 000 executions of qTESLA digital
signature scheme using an AVX2-optimized implementation of either NTT or DGT.

qTESLA-p-I
Reference Ours NTT/DGT

Keygen 2 218 689 2 212 576 1.00
Sign 1 276 929 1 375 358 0.93
Verify 635 918 638 032 1.00
Transform 10 018 8714 1.15
Inv. Transform 7747 9791 0.79

Unfortunately, in our implementations, the DGT was unable to explore the hardware
capabilities offered by the vector instructions. As a result, the performance is highly
influenced by the misalignment inherent to the folding procedure and the overhead induced
by the multiplication in Zp[i], as depicted in Figure 6.1. Recall that Gaussian integer
multiplications require the integer multiplication modulo p of the real and imaginary
parts of the operands.

Nonetheless, in the next chapter, we present a recursive formulation for the DGT that
indicates its good adaptability in the GPU architecture.
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a′0 a′1 a′2 a′3 a′4 a′5 a′6 a′7

b′0 b′1 b′2 b′3 b′4 b′5 b′6 b′7

Folding

Twisting

Figure 6.1: Memory accesses during folding and twisting procedures.
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Chapter 7

Evaluation of Recursive Algorithms
on GPUs

Gentleman and Sande [71] introduced the Recursive FFT (RFFT) and Bailey [23] recap-
tured its formulation as the four-step FFT algorithm. More recently, the Recursive NTT
(RNTT) was introduced in GPU implementations [58, 80] of algorithms for multiplying
large integer numbers and polynomials in rings of the form Z[x]/(xn + 1), with n a power
of two. The RNTT is a simply adaptation of the four-step FFT algorithm, replacing the
set of complex numbers by the finite field Zp. Concurrently, Badawi et al. [4] explored
using the DGT for polynomial multiplication in CUDA-implementations of homomorphic
encryption schemes.

In this context, we introduce the Recursive DGT (RDGT), which we use for polynomial
multiplication in the quotient ring Zp[x]/(xn+1), with n a power of two and p a prime num-
ber (Section 7.2). First, we compare a CUDA-implementation of the BFV homomorphic
encryption scheme [68] adopting the RDGT with state-of-the-art implementations [22, 2]
(Section 7.3). Then, we present experimental results for CUDA-implementations of both
RNTT and RDGT in the CKKS homomorphic encryption scheme [45]. Apart from a
straightforward comparison of both recursive transforms, RNTT and RDGT are evaluated
in the inference phase of Logistic Regression (Section 7.4). As a result, the experimental
results indicate that RDGT naturally performs better in the GPU platform. However,
the RNTT presents similar performance when the arithmetic density is improved. All
experiments were executed in NVIDIA Tesla GPUs running on Google Cloud instances.

Notations. For defining the recursive transforms, consider that a polynomial a(x) =∑n−1
j=0 ajx

j ∈ Z[x], for n = NrNc a power of two, is conveniently represented as a matrix
ANr×Nc containing the coefficients aj ∈ Z. The matrix A can also be indexed as an
one-dimensional array by concatenation of rows. The j-th row and the k-th column of
ANr×Nc are denoted by Aj,� ∈ ZNc and A�,k ∈ ZNr , respectively.
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7.1 The Recursive Number-Theoretic Transform
The Recursive NTT (RNTT) is an adaptation of Bailey’s four-step FFT [23] that replaces
FFT calls by the NTT and takes the twiddle factor ζn as a primitive n-th root of unity
in Zp.

In 1966, the Recursive FFT (RFFT) was proposed by Gentleman and Sande [71]
and remained forgotten until 1989 when Bailey [23] recaptured it as the four-step FFT
algorithm. The required amount of local memory was insufficient to store all the operands
for large FFTs. Thus, many data had to be stored in devices such as disks or tapes, in
which memory accesses are costly. In this context, the RFFT replaces the computation of
a large transform with many minor FFT instances. Consider that the size of the transform
is n = NrNc. The forward RFFT transform on a coefficient vector arranged as a matrix
ANr×Nc is as follows.

1. Perform Nc FFTs of size Nr along the columns;

2. Multiply each element aj,k of the matrix ANr×Nc by the corresponding twiddle factor
ζjkn , for ζn = exp(2πi/n);

3. Perform Nr FFTs of size Nc along the rows; and

4. Transpose A from Nr ×Nc to Nc ×Nr.

Similarly, the inverse RFFT consists of these four steps executed in the reversed order,
but IFFT replaces the calls to FFT and the twiddle factors are ζ−jkn .

Further, in 2018, Dai et al. [58, Section VIII.B] introduced the RNTT in a lattice-
based key-policy attribute-based encryption. They recursively apply the Cooley-Tukey
butterfly, following an approach similar to the one used by Emmart and Weems [67] for
the FFT, which is, in turn, the four-step FFT of Bailey [23]. The forward and inverse
RNTTs are given in Algorithm 15 and 16, respectively.
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Algorithm 15: RNTT: Recursive
NTT
Input: A polynomial a(x) ∈ Rp

treated as a matrix ANr×Nc ,
a prime number p, integer
numbers Nr and Nc such
that n = NrNc, and ζn a
primitive n-th root of unity
in Zp

Output: A =
RNTT(A, p,Nr, Nc, ζn)

1 for k = 0; k < Nc; k = k + 1 do
2 A�,k = NTT(A�,k, p, ζn)
3 for j = 0; j < Nr; j = j + 1 do
4 for k = 0; k < Nc; k = k + 1 do
5 aj,k = aj,k · ζjkn (mod p)
6 for j = 0; j < Nr; j = j + 1 do
7 Aj,� = NTT(Aj,�, p, ζn)
8 return A

Algorithm 16: RINTT: Recursive
INTT
Input: A matrix ANr×Nc in the

RNTT domain, a prime
number p, integer numbers
Nr and Nc such that
n = NrNc, and ζn a
primitive n-th root of unity
in Zp

Output: a =
RINTT(A, p,Nr, Nc, ζn)

1 for j = 0; j < Nr; j = j + 1 do
2 Aj,� = INTT(Aj,�)
3 for j = 0; j < Nr; j = j + 1 do
4 for k = 0; k < Nc; k = k + 1 do
5 aj,k = aj,k · ζ−jkn (mod p)
6 for k = 0; k < Nc; k = k + 1 do
7 A�,k = INTT(A�,k)
8 return A

Recall from Section 6.3 that multiplication in Rp = Zp[x]/(xn + 1), with n a power
of two and p a prime number, can be efficiently performed via NTT using the negative
wrapped convolution. In this sense, Dai et al. adopt the NTT for arithmetic in Rp for
p = 264 − 232 + 1, implementing the forward and inverse NTT transforms using recursive
algorithms. The polynomial multiplication in Rp via RNTT is presented in Algorithm 17,
using the fact that ζ2

2n = ζn.

Algorithm 17: Polynomial multiplication in Rp via RNTT
Input: Polynomials a(x), b(x) ∈ Rp, a prime number p, integer numbers Nr and

Nc such that n = NrNc, and ζ2n a primitive 2n-th root of unity in Zp
Output: c(x) = a(x) · b(x) ∈ Rp = Zp[x]/(xn + 1) with n a power of two

1 for j = 0; j < n; j = j + 1 do
2 aj = aj · ζj2n (mod p)
3 bj = bj · ζj2n (mod p)
4 A = RNTT(A, p,Nr, Nc, ζ

2
2n)

5 B = RNTT(B, p,Nr, Nc, ζ
2
2n)

6 for j = 0; j < n; j = j + 1 do
7 cj = aj · bj (mod p)
8 C = RINTT(C, p,Nr, Nc, ζ

2
2n)

9 for j = 0; j < n; j = j + 1 do
10 cj = cj · ζ−j2n (mod p)
11 return C
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The forward and inverse recursive transforms invoked in Algorithm 17 are given in
Algorithm 15 and 16, respectively. In particular, the negative wrapped convolution is
computed in Lines 1 and 9 of Algorithm 17. Thus, the NTT in Algorithm 15 can be
computed using any algorithm that does not merge the multiplication by ζ2n with the
transform.

7.2 The Recursive Discrete Galois Transform
In this section, we propose the Recursive DGT (RDGT) that splits the DGT transform
into smaller blocks to avoids the synchronization of large sets of threads in GPUs. Sim-
ilarly to the RNTT, the RDGT is an adaptation of the four-step FFT algorithm [23] in
the finite field Fp2 . In this context, the RDGT is used for polynomial multiplication in
the ring Rp = Zp[x]/(xn + 1) for n a power of two and p a prime number satisfying p ≡ 1
(mod 4) and 4n | (p− 1). From hereon, consider that N = n

2 .
The steps for polynomial multiplication via RDGT are the same described in Algo-

rithm 11 (Chapter 6). Shortly, the input polynomials are mapped into vectors of Gaussian
integers through the folding procedure. Then, the folded vectors are twisted by ωN , a
primitive N -th root of i in Zp. The point-wise multiplication in the RDGT domain is
done as c = RDGT(twist(fold(a(x)))) � RDGT(twist(fold(b(x)))), and the result of the
polynomial multiplication is obtained by computing unfold(untwist(RIDGT(c))).

The Recursive DGT is presented in Algorithm 18, in which an N -length vector of
Gaussian integers is treated as a matrix Ã with dimensions Nr × Nc. In this case, one
may choose the values for Nr and Nc to be as close as possible since equality allows
reusing precomputed values for the primitive roots, minimizing memory requirements,
and achieving workload balance.

Algorithm 18: RDGT: Recursive DGT
Input: A vector of Gaussian integers represented as a matrix ÃNr×Nc , a prime

number p, integer numbers Nr and Nc such that N = NrNc, and ζN a
primitive N -th root of unity in Zp

Output: Ã = RDGT(Ã, p,Nr, Nc, ζN)
1 for k = 0; k < Nc; k = k + 1 do
2 Ã�,k = DGT(Ã�,k, p, ζN)
3 for j = 0; j < Nr; j = j + 1 do
4 for k = 0; k < Nc; k = k + 1 do
5 ãj,k = ãj,k · ζBitReverse(j)·k

N (mod p)
6 for j = 0; j < Nr; j = j + 1 do
7 Ãj,� = DGT(Ãj,�, p, ζN)
8 return Ã

In Algorithm 18, the DGT routine refers to the forward transform via Gentleman-
Sande (Algorithm 9), avoiding the bit-reverse procedure at the output. In Line 5, the
twiddle factors are ζBitReverse(j)·k

N instead of ζjkN because the DGT’s output is in bit-reversed
order. Thus, the indexes coincide with the position of the corresponding element ãj,k.
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Algorithm 19: RIDGT: Recursive IDGT
Input: A vector Ã ∈ Zp[i]N in the RDGT domain, a prime number p, integer

numbers Nr and Nc such that N = NrNc, and ζN a primitive N -th root
of unity in Zp

Output: Ã = RIDGT(Ã, p,Nr, Nc, ζN)
1 for j = 0; j < Nr; j = j + 1 do
2 Ãj,� = IDGT(Ãj,�, p, ζN)
3 for j = 0; j < Nr; j = j + 1 do
4 for k = 0; k < Nc; k = k + 1 do
5 ãj,k = ãj,k · ζ−j·BitReverse(k)

N ·N−1
c (mod p)

6 for k = 0; k < Nc; k = k + 1 do
7 Ã�,k = IDGT(Ã�,k, p, ζN)
8 return Ã

The inverse counterpart of the RDGT, denoted RIDGT, is described in Algorithm 19.
It adopts the IDGT transform via Cooley-Tukey (Algorithm 10) without bit-reversing the
input vector. Notice Gentleman-Sande butterflies transform standard order vectors into
bit-reversed ones, whereas Cooley-Tukey butterflies perform the opposite transformation.
Thus, the bit-reverse procedure can be avoided in both DGT and IDGT.

The RIDGT starts by applying the IDGT over the rows of Ã. The twiddle factors
from the forward transform are removed by multiplying the element ãj,k by ζ−j·BitReverse(k)

N ,
since the column indexes of the output of the previous step are still in bit-reversed order.
Notice that precomputing the values of ζ−j·BitReverse(k)

N allows the twiddle factors to be
stored multiplied by the scaling factor N−1

c (mod p). By doing so, the multiplication
by N−1 modulo p can be avoided at the end of each call to the IDGT over the rows of
Ã. Finally, after executing the IDGT over the columns of Ã, the matrix indexes are in
standard ordering. Similarly to the scaling factor for the rows of Ã, the powers of ζ−1

N

can be precomputed and multiplied by the scalar N−1
r (mod p).

7.3 Comparing RDGT and DGT on GPUs
The Recursive DGT (RDGT) first appeared in our implementation [13] of the BFV1

homomorphic encryption scheme [68]. Further, we directly compared the RDGT and
RNTT transforms [15] in the CKKS homomorphic encryption scheme [45]. The target
architecture in both works [13, 15] is NVIDIA GPUs.

Graphics Processing Units (GPUs) were originally designed as a programmable pro-
cessing unit dedicated to graphics manipulation. A GPU is composed of many small and
specialized cores that together delivers a massive performance through a Single Instruc-
tion Multiple Data (SIMD) paradigm. Shortly, a GPU processes a strenuous workload by
demanding each core to execute concurrently the same task in a distinct piece of data.

1BFV refers to the initials of Brakerski, Fan, and Vercauteren. Although authored by Fan and
Vercauteren, the BFV is an adaptation of the fully homomorphic encryption scheme of Brakerski [34] to
the Ring-LWE setting.
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GPUs can be used for general-purpose computing using a programming model such as the
Compute Unified Device Architecture (CUDA) platform [104] maintained by NVIDIA.

The computation of FFTs in GPUs faces a memory constraint similar to the one
encountered in the 90’s decade. Although GPUs provide massively parallel processing, the
amount of fast memory is constrained and may become a bottleneck on bigger instances.
In this context, Govindaraju et al. [74], and Emmart and Weems [67] independently
adopted RFFTs for the computation of DFTs and the multiplication of large integer
numbers on GPUs.

Some implementations of homomorphic encryption schemes such as BFV [68] and
CKKS [46, 45] adopt polynomial rings with dimensions ranging from 2048 to 65536 [2,
22, 80]. In particular, the DGT has been considered as a replacement to the NTT for
polynomial multiplication to reduce the computational complexity of expensive routines
such as homomorphic multiplication. In this context, the remaining of Section 7.3 presents
experimental results of our BFV implementation [13] and compares the state-of-the-art
DGT employed by Badawi et al. in two distinct works [2, 22] with our recursive algorithm
for computing the DGT. Then, in Section 7.4 we present our experimental evaluation of
CKKS using either RDGT or RNTT [15].

7.3.1 BFV Homomorphic Encryption Scheme
The hardness of the BFV homomorphic encryption scheme is based on the decision version
of the Ring-LWE Problem [88]. The plaintext space is taken as Rt for R = Z[x]/(xn + 1),
with n a power of two, and some integer t > 1. Similarly, the ciphertext space is Rq for
a modulus q much bigger than t. Details on BFV can be found in [68].

The parameter sets adopted in this experiment are given in Table 7.1, replicating the
values in the related works [2, 22]. Notice that the plaintext modulus is fixed at t = 256.

Table 7.1: Parameter sets considered for comparing distinct BFV implementation on
GPUs.

Related Work (log n, log q)
BPAVR [2] – (12,60) (13,120) (14,360) (15,600)
BVMA [22] (11,62) (12,186) (13,372) (14,744) –

BFV is based on the encryption scheme of Lyubashevsky, Peikert, and Regev [88],
requiring as additional parameters a security parameter λ, a decomposition base w, and a
one-dimensional discrete Gaussian distribution DZ,σ centered at zero. Polynomials in Rq

can be expressed in terms of `+ 1 polynomials in basis w in which ` = blogw qc. Also, ∆
denotes the scaling factor ∆ = bq/tc and the notation [a]q refers to the unique integer in
Zq with [a]q := a mod q. This notation is coefficient-wise extended to polynomials. The
BFV homomorphic encryption scheme defines algorithms for key generation, encryption,
decryption, homomorphic addition, relinearization, and homomorphic multiplication, as
follows.

BFV.KGen(λ,w): The secret key is a ternary polynomial sk← R2 where each coefficient
is taken from the set {−1, 0, 1}. The public key pk is a pair of polynomials (b, a) =
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([−(a · sk + e)]q , a), where a $←− Rq is sampled from a uniformly random distribution
and e← DZ,σ. The evaluation key evk is a set of `+1 pairs of polynomials computed
as follows. For i ∈ [`], sample ai $←− Rq uniformly at random and ei ← DZ,σ. Then,
evk is a vector in which evki =

(
[wi · sk2 − (ai · sk + ei)]q, ai

)
. Output (sk, pk, evk).

BFV.Enc(m, pk): For a message m ∈ Rt, the ciphertext ct is computed under the public
key pk = (b, a) as ct =

(
[b · u+ ∆ ·m+ e1]q , [a · u+ e2]q

)
, where u $←− R2 is sampled

from a uniformly random distribution and e1, e2 ← DZ,σ.

BFV.Dec(ct, sk): Define c0 = ct0, c1 = ct1, and s = sk = (b, a). The message is recovered
as plaintext by computing m =

[⌊
t
q

[c0 + c1 · s]q
⌉]
t
.

BFV.Add(ct(0), ct(1)): For two ciphertexts ct(0) = (ct(0)
0 , ct(0)

1 ) and ct(1) = (ct(1)
0 , ct(1)

1 ), the
homomorphic addition is computed as

([
ct(0)

0 + ct(1)
0

]
q
,
[
ct(0)

1 + ct(1)
1

]
q

)
.

BFV.Relin(c, evk): For c = (c0, c1, c2) ∈ (Rq)3, an evaluation key evki = (bi, ai) for i ∈ [`],
and a decomposition of c2 in basis w such that c2 = ∑̀

i=0
ĉiw

i, the relinearization
procedure returns [c0 +

∑̀
i=0

bi · ĉi
]
q

,

[
c1 +

∑̀
i=0

ai · ĉi
]
q

 .
BFV.Mul(ct(0), ct(1), evk): For two ciphertexts ct(0) = (ct(0)

0 , ct(0)
1 ) and ct(1) = (ct(1)

0 , ct(1)
1 ),

the homomorphic multiplication is given by computing

c =
[⌊ t

q
· ct(0)

0 · ct(1)
0

⌉]
q

,

[⌊
t

q
·
(
ct(0)

0 · ct(1)
1 + ct(0)

1 · ct(1)
0

)⌉]
q

,

[⌊
t

q
· ct(0)

1 · ct(1)
1

⌉]
q

 ,
and returning the output of the relinearization BFV.Relin(c, evk).

7.3.2 Experimental Results
We implemented the BFV homomorphic encryption scheme [68] in a library named
SPOG2 [14] using CUDA platform. The experimental environment is inherited from the
literature, which comprehends the NVIDIA Tesla V100 and NVIDIA Tesla K80 GPUs.

Table 7.2 contains the raw average running time, in milliseconds, for the average of
100 independent executions of BFV in a Tesla K80 GPU. Notice that, in this context,
the authors’ source code was not made publicly available to the community. Thus, our
results are compared to the values provided by Badawi et al. in their paper [22].

The speedups obtained in the Tesla K80 GPU for encryption, decryption, addition,
and multiplication are depicted in Figure 7.1. Consider that, in real-world applications,
the use of HE is motivated by their ability to perform additions and multiplications ho-
momorphically. In this sense, these arithmetic operations are expected to be the most

2Acronym to Secure Processing on GPGPUs. GPGPU is an abbreviation for General-Purpose Graph-
ics Processing Unit.



100

Table 7.2: Tesla K80 running time, in milliseconds, for the average of 100 independent
executions of SPOG and Badawi et al.’s implementation of BFV [22].

(log n, log q)
(11,62) (12,186) (12,186) (12,186)

Ours [22] Ours [22] Ours [22] Ours [22]
Encryption 0.303 0.541 0.309 1.440 0.575 2.645 1.630 6.657
Decryption 0.089 0.151 0.098 0.194 0.191 0.252 0.542 0.610
Addition 0.009 0.037 0.010 0.052 0.021 0.068 0.066 0.127
Multiplication 0.926 3.343 1.214 3.873 3.061 7.700 13.914 28.953
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Figure 7.1: SPOG speedups in a Tesla K80 GPU in comparison with Badawi et al.’s
implementation of BFV [22].

invoked functions on the GPU. Furthermore, due to the key management policy, the key
generation procedure only has to be executed at application setup or in case of key expi-
ration. In turn, encryption is used for creating a private database in a third-party service,
and decryption is executed by the data owner when retrieving the computation’s output.
The speedups for homomorphic addition range from 1.9 to 5.2, but these results are due
to complementary optimizations since DGT is not executed during addition. However,
the speedups are expressive for homomorphic multiplication, which highly depends on
polynomial multiplication, comprehending 3.6, 3.2, 2.5, and 2.1.

Table 7.3: Tesla V100 running time, in milliseconds, for the average of 100 independent
executions of SPOG and Badawi et al.’s implementation of BFV [2].

(log n, log q)
(12,60) (13,120) (14,360) (15,600)

Ours [2] Ours [2] Ours [2] Ours [2]
Decryption 0.029 0.054 0.031 0.059 0.049 0.087 0.099 0.111
Multiplication 0.423 0.859 0.472 1.012 0.823 2.010 2.325 4.826

In Table 7.3, experimental results for decryption and homomorphic multiplication on
a Tesla V100 GPU are reported in comparison with Badawi et al.’s implementation [2],
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whose source code was not made publicly available to the community. In this case, the
authors only provided latencies for these two BFV procedures. Similarly, the speedups are
depicted in Figure 7.2. For homomorphic multiplication, the main optimization focus, the
speedups are consistent in the range of 2.0 and 2.4. For decryption, the results degrade
from 1.9 to 1.1. However, the client may execute the decryption in less powerful hardware,
as discussed before.
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Figure 7.2: SPOG speedups in a Tesla V100 GPU in comparison with Badawi et al.’s
implementation of BFV [2].

7.4 Comparing RDGT and RNTT on GPUs
In a further experiment [15], we developed CUDA implementations of the CKKS homo-
morphic encryption scheme [45] adopting either the RNTT or RDGT transform. Our
implementations were evaluated in the NVIDIA Tesla V100 and Tesla A100 GPUs.

Cheon-Kim-Kim-Song proposed a leveled homomorphic encryption scheme known as
CKKS [45] in which the plaintext domain is composed of complex numbers. Similar to
BFV, CKKS defines algorithms for key generation, encryption, decryption, homomorphic
addition, and homomorphic multiplication. However, the homomorphic multiplication
requires extending the ciphertext representation from an element in a RNS basis C to an
element in the composed basis C + D, for a secondary basis D. Then, a multiplication
by an evaluation key is performed on this extended basis, and the result is compressed to
C. These basis conversions are done through approximate modulus switching functions
referred to as ModUp and ModDown. Details on CKKS can be found in [45].

In this context, the Residue Number System (RNS) is used to represent polynomials
with large integer coefficientes. Consider that C = {q0, . . . , q`} is a set of coprime integers
and q = Π`

i=0qi. If s ∈ RC, there exists s′ ∈ Rq such that s := {[s′]q0 , . . . , [s′]q`}. For
example, a CKKS ciphertext, denoted ct = (c0, c1), is a pair of elements in RC, for C a RNS
basis defined as above. In other words, ct = {(c0,i, c1,i}0≤i≤` such that (c0,i, c1,i) ∈ Rqi×Rqi .

Consider that GPUs contains several Streaming Multiprocessors (SM) and modern
SMs execute groups of 32 threads at a time, called warps, which are the primary processing
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unit in a GPU. Also, recall from Section 7.1 and 7.2 that recursive algorithms compute
transforms of size Nr or Nc such that n = Nr ·Nc, where the input polynomial has degree
at most n− 1. Thus, Nc blocks of dNr/2e threads are needed to compute the transform
over the columns. Similarly, the computation of the corresponding transform over the
rows requires Nr blocks of dNc/2e threads.
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Figure 7.3: Ratio (RNTT/RDGT) of Tesla V100 GPU running time, in milliseconds, for
the average of 100 independent executions of RNTT and RDGT on varying polynomial
degrees and RNS basis sizes.

In Figure 7.3, we present the ratio RNTT/RDGT for the average running time of
RNTT and RDGT transforms on an NVIDIA Tesla V100 GPU. The behavior of the
recursive transforms is mostly evidenced in 4096- and 8192-degree polynomial rings. In
RDGT, 4096-degree polynomials are folded into 2048-length vectors of Gaussian integers.
Since 2048 = 64 · 32, there will be blocks with 32/2 = 16 threads running in the GPU,
which do not reach the CUDA warp size. Since warps are only composed of threads
contained in the same block, blocks smaller than 32 imply wasting SM resources. In
RNTT, the operands are processed as 4096-degree polynomials. Thus, 4096 = 64 · 64,
and all blocks are set with 32 threads, fitting in a warp perfectly. On the other hand,
the RDGT benefits from the SM processing when n = 8192. In this case, some RNTT
thread blocks have 64 elements, but the RDGT enters in its optimal setup with 32-thread
blocks. The RNTT starts to deviate from its optimal configuration with n = 8192. At
the same time, RDGT achieves its best performance, showing a speedup for RNS bases
containing 10 to 45 residues. For large polynomial rings, the performance of both RDGT
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and RNTT suffer from the increased shared memory consumption, which raises bank
conflicts. Moreover, thread block synchronizations become costly since the thread blocks
need to be split among several warps.

We extended the straightforward comparison of RNTT and RDGT to homomorphic
operations. The homomorphic addition consists in the point-wise addition of the corre-
sponding residues represented in a given RNS basis. Thus, we focus on homomorphic
multiplication which arithmetic density is much higher, as depicted in Algorithm 20. In
Algorithm 20, Transform and InverseTransform refer to the forward and inverse transforms
of either RNTT or RDGT. In turn, BasisExtension, ModUp, and ModDown are algorithms
for basis manipulation.

Algorithm 20: CKKS homomorphic multiplication
Input: Ciphertexts ct0 = CKKS.Enc(m0) and ct1 = CKKS.Enc(m1), and evk an

evaluation key
Output: A ciphertext ct2 such that ct2 = CKKS.Enc(m0 ·m1)

1 ĉt0 = Transform(ct0)
2 ĉt1 = Transform(ct1)
3 d̂ = BasisExtension(ĉt0, ĉt1)
4 d = InverseTransform(d̂)
5 e2 := ModUpC`←D`(d2)
6 ê2 = Transform(e2)
7 ĉt := ê2 · evk
8 ct = InverseTransform(ĉt)
9 a := ModDownD`←C`(ct)

10 ct2 := (a0 + d0, a1 + d1)
11 return ct2

In Table 7.4, we provide experimental results for each component of the homomorphic
multiplication on an instance with n = 216, log q = 1831, and RNS bases of 53 and 54
residues. NVIDIA’s profiler showed that the basis extension procedures are critical in
homomorphic multiplication. For RNTT, the ModUp and ModDown functions consumes
61% and 23% of the homomorphic multiplication overall running time. Also, these same
procedures consumes 43% and 30% of RDGT execution time, respectively.

In particular, the profiling tool indicated that ModUp is roughly two times slower in
RNTT in comparison with RDGT. We concluded that the processor scheduler is being less
efficient since our implementation of ModUp for RNTT issues 2.2 times more instructions
than in RDGT. Because of that, our implementation of basis extension was refactored for
the RNTT to induce the processor dual-issue by increasing arithmetic density. As a result,
we emulated the processor behavior when executing the RDGT, improving the ModUp
procedure and reducing the previous slowdown of 0.48 to 0.92. In Table 7.4, RNTTopt

refers to the RNTT using the optimized basis conversion algorithm. Notice that the
folding procedure of RDGT naturally increases the arithmetic density of the transform,
indicating its best suitability for the GPU platform.
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Table 7.4: NVIDIA Tesla V100 GPU running time for subroutines of homomorphic mul-
tiplication using either RDGT or RNTT for polynomial multiplication.

RDGT RNTT RNTTopt RDGT/RNTT RDGT/RNTTopt
ModUp 2377.0 4928.9 2592.8 0.48 0.92
ModDown 1659.2 1854.7 1896.6 0.89 0.87
Transform 1131.2 1054.8 1062.8 1.07 1.06
Integer Op. 354.3 227.3 203.2 1.56 1.74
Total 5521.7 8065.7 5755.5 0.68 0.96

7.4.1 Case Study: Homomorphic Logistic Regression
In this section, we present experimental results for the RDGT and RNTT in a CUDA
implementation of Logistic Regression (LR). Our implementations were evaluated in the
NVIDIA Tesla V100 and Tesla A100 GPUs.

Logistic Regression (LR) is a machine learning method for predicting a binary outcome
based on continuous variables. In particular, LR takes as input datasets composed by n
records of the form (xi, yi), with yi ∈ {0, 1} and xi ∈ Rd. The probability, denoted y, is
modeled as a function of the input variables x as

Pr[y = 1 | x,w] = 1
1 + exp(−〈(1 | x),w〉) . (7.1)

The training phase aims at learning the weight vector w, which is done by computing
a wapprox that sufficiently approximates w. Thus, the value of y for a new sample x can be
inferred with a predictable accuracy by evaluating the probability Pr[y = 1 | x,wapprox]
using Equation 7.1. In fact, the probability y cannot be computed homomorphically. In
this sense, similar works that also implement LR inference on homomorphic encryption
schemes avoid its computation by assuming 〈(1 | x),w〉 as the classification result [28].
An alternative approach is to approximate the probability computation using the related
Taylor series expansion [76].

Notice that the training phase is done much less frequently than inference. Also,
approximating wapprox is computationally costly and a delicate procedure that may require
thousands of multiplications to achieve a suitable wapprox. Consequently, our evaluation
of recursive transforms in LR is restricted to the online inference phase. The inference
phase is composed of an online and an offline phase. The computation during the online
phase is intensive and can be executed homomorphically on a powerful device such as
a GPU. The dataset is kept encrypted during this time, and the decryption key is not
required. In the offline phase, the probability matrix is decrypted, and the prediction is
made by selecting the index of the maximum element.

In this experiment, we adopt the MNIST dataset [84], a data collection of handwritten
digits that are represented by images, each with 784 pixels. The digit recognition problem
involves classifying m images among d = 10 classes of digits, each image having its pixels
serialized as an array. The MNIST images are split into a training and a test dataset
containing 60 000 and 10 000 records, respectively. The training and test datasets are used
for generating the weight vector wapprox and to determine the accuracy of the generated
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model, which is 0.9167, in our case. Shortly, the model is a matrix of real numbers
containing d = 10 weight vectors wi of length n = 784. In this context, the LR inference
can be executed on an encrypted model or in plaintext. Plaintext models contemplate
cases where the model owner is a server contracted to evaluate third-party user data. In
turn, when encrypted, the third party will perform computations on the user’s model.

For homomorphically evaluating the inner product in Equation 7.1, the model can
be treated in both traditional and transposed forms. The same is done for the dataset
containing the m images of length n for the inference phase. Each model row is regularly
encrypted in a ciphertext having their columns distributed through n slots. For encrypting
the images, a set ofm images becomes a set ofm ciphertexts, each using n slots. Although
the traditional approach optimizes memory consumption, it requires a sequence of slot
rotations. Conversely, in the transposed form, the image dataset becomes a matrix of
n rows and m columns, and each row is encrypted to a single ciphertext. However,
the inner product requires each model element to be encrypted in a single ciphertext,
implying a considerable increase in memory requirement. Shortly, the traditional and
transposed ciphertext designs require d + m = 10 + 10 000 = 10 010 and n · (d + 1) =
784 ·11 = 8624 ciphertexts, respectively. For comparing the two designs, consider that the
traditional method performs two homomorphic multiplications for computing the inner
product, whereas the transposed one requires one multiplication.

Table 7.5 presents NVIDIA Tesla V100 GPU running times, in microseconds, for
computing the online phase of the inference on one record in the MNIST test dataset.
The results refer to the minimum parameter set that provides a 128-bit security level and
the required multiplicative depth for each approach. The traditional approach runs with
n = 213 and log q = 167 while the transposed version runs with n = 215 and log q =
115, offering 172-bit and 1343-bit security level, respectively, according to Albrecht’s
estimator [8].

Table 7.5: Tesla V100 GPU running time, in microseconds, for computing the online
inference of LR per record. The classification result is obtained as the inner product of
the input sample and the weights.

Plaintext Encrypted
Traditional Transposed Traditional Transposed

RNTTopt 12 827.6 15.2 14 396.8 238.5
RDGT 13 885.9 15.6 15 461.2 226.8
RNTTopt/RDGT 0.92 0.97 0.93 1.05

In our experiments, the procedure for accumulating the homomorphic multiplication
during inner product impacted the RDGT latency on the traditional approach. Nonethe-
less, the transpose approach avoids the summation of ciphertext slots; thus, RDGT and
RNTT show similar execution times. Also, the optimized basis extension for RNTT did
not produce a significant impact on the overall result.

Recall that so far the classification result is assumed to be 〈(1 | x),w〉 instead of com-
puting the probability as in Equation 7.1. In the following experiment, we approximate
the probability function using a polynomial obtained by the truncation at the eighth
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term of its Taylor series approximation [1]. This method is evaluated through Horner’s
rule, increasing by eight the number of homomorphic multiplications needed for infer-
ence, affecting performance and memory consumption. Because of that, we evaluated
the LR inference on an NVIDIA Tesla A100 GPU, which offers more CUDA cores and
bigger memory size. Table 7.6 presents our experimental results, in microseconds, for
computing the inference per record in the MNIST test dataset. The traditional design
runs with n = 214 and log q = 583, whereas the transposed version runs with n = 215 and
log q = 531, offering 94-bit and 225-bit security level, respectively [8].

Table 7.6: Tesla A100 GPU running time, in microseconds, for computing the online
inference of LR per record. The classification result is obtained as an approximation of
the probability function.

Plaintext Encrypted
Traditional Transposed Traditional Transposed

RNTT 60 968.6 33.4 65 998.5 562.6
RNTTopt 56 053.7 32.5 58 200.0 517.6
RDGT 56 013.2 33.1 60 279.7 475.7
RNTT/RDGT 1.09 1.01 1.09 1.18
RNTTopt/RDGT 1.00 0.98 0.97 1.09
RNTT/RNTTopt 1.09 1.03 1.13 1.09

In major instances, like those considered in Table 7.6, the higher arithmetic density
of RDGT implied in speedups when compared to the non-optimized RNTT. However,
the RNTT with optimized basis extension, denoted NTTopt, is capable of reversing that
scenario. In the plaintext transposed design, both implementations present a consistent
similarity. Notice that homomorphic addition and multiplication are taken coefficient-wise
when the model is in plaintext.

Although the RDGT’s folding procedure halves the transform length, it does not imply
in reduction of the required number of operations. However, the scalability of a DGT-
based implementation seems promising, reducing the execution time of complex methods
as the rotation of ciphertext slots within basis extension procedures. This behavior agrees
with the conclusion in Section 7.4, which suggests that the RDGT implementation better
explore CUDA’s paradigm. Also, the results corroborate the fact that the RNTT can
perform at least as well as the RDGT when increasing its arithmetic density using the
optimized ModUp procedure.
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Part III

Final Remarks
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Chapter 8

Conclusions

Apart from quantum resistance, lattice-based cryptography offers fast and energy-saving
public-key primitives, as evidenced by Saarinen’s [105] results presented in Tables 1.1
and 1.2. Furthermore, advances on lattice cryptography in recent years allowed the prac-
tical construction of functional encryption schemes, specially Homomorphic Encryption
(HE) schemes such as BGV [35], BFV [68], and CKKS [45], which stimulated the devel-
opment of several general-purpose libraries. Examples include SEAL [127], HElib [75],
cuHE [59], among others.

In this context, the objectives of this thesis are threefold: i) to provide alternative in-
stantiations for Ring-LWE cryptography, aiming at number fields other than cyclotomic;
ii) to contribute with the cryptographic engineering of lattice-based cryptosystems sub-
mitted to NIST’s Post-Quantum Cryptography standardization process; and iii) support
the cryptographic engineering of privacy-preserving algorithms. We now elaborate on
each of these objectives.

Alternative instantiations for Ring-LWE cryptography. In particular, we aimed
at extending the Ring-LWE Problem to embrace algebraic constructions via twisted em-
beddings. As a result, we redefined the Ring-LWE Problem considering a twisting factor,
providing security reductions to substantiate our claim that the hardness of Ring-LWE
remains unchanged. Also, we offered a Ring-LWE instance over a maximal real subfield
of a cyclotomic number field which is not achievable in the original proposal.

Nevertheless, the scope of new algebraic lattice constructions is mostly limited to
cyclotomic number fields and their maximal real subfields. The literature accounts for
algebraic lattice constructions that determine the ring of integers and its correspond-
ing twisting factor. Similar constructions arise from coding theory for Rayleigh fading
channels. Additionally, it is not straightforward to determine the ring of integers of a
number field, in general. The special case is monogenic number fields, for which the
ring of integers is of the form Z[θ], for a generator θ. However, one may want to avoid
monogenic number fields in the light of past efforts to determine weak Ring-LWE in-
stances [65, 66, 44, 38, 37, 43, 40, 41, 42, 130]. As discussed in Chapter 5, for the case of
maximal real subfields, an alternative algebraic construction still lacks a good representa-
tion for applications. Unfortunately, the corresponding polynomial representation may be
impractical, requiring exponential integer modulus. However, as discussed in Section 5.3,
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ring elements can be represented by coefficient vectors instead of polynomials in the power
basis, but require an additional effort of cryptographic engineering.

Although this research aims at extending the Ring-LWE for building new construc-
tions, the line of work in Section 4.2 seems to be the most promising in the short term,
possibly leading to weak instances of Ring-LWE. Also, for efficiently implementing the
PKE in Chapter 5, one can use a distinct basis for each algorithmic task in the same vector
space, considering the efficiency of the related algorithm. In contrast, in the Lyubashevsky
et al.’s toolkit, algorithmic tasks are defined in the ring of integers R and its dual R∨ us-
ing the coefficient vector representation [89]. For working in R, the authors define two
distinct bases, the powerful and the CRT. For the dual ring R∨, they define the powerful
basis, the CRT basis, and also the decoding basis of R∨, which is specialized for decoding
noise terms during decryption. Thus, the algorithms operate on the coefficient vectors
and convert representations when needed by acknowledging the corresponding basis. De-
tails can be found in [89, 92, 57]. Another line for future work is the exploration of other
classes of algebraic lattices for the Ring-LWE, such as Dn-lattices [33, 79, 78, 61].

Cryptographic engineering of lattice-based NIST’s candidates. Specifically, our
objective in this project was to accelerate the polynomial multiplication of second-round
NIST candidates that originally used the NTT. We replaced the NTT by the DGT and ex-
perimentally evaluated our implementations on an Intel Skylake processor. Unfortunately,
neither our portable-C or AVX2-optimized implementations of polynomial multiplication
via DGT improved the reference codes. The DGT in the x64 architecture is mainly im-
pacted by memory misalignments caused by arithmetic in Fp2 and the folding procedure.
Also, the number of operations in Zp is higher in DGT than in the NTT, requiring the
execution of more instructions for computing a polynomial multiplication. The idea of
experimenting with the DGT for the x64 architecture arose from recent works implement-
ing this transform on GPUs [22, 2]. Although the results looked promising on the GPU
platform, an implementer should be aware of the characteristics and latencies of each
platform, and also that SIMD techniques may behave distinctively on each architecture.

In Section 6.5.1, we introduced the T-DGT that increases the arithmetic density of
DGT by performing all multiplications within the transform in Fp2 . Considering the
experimental results in Section 7.4, in which the RNTT benefited from increasing the
arithmetic density on GPUs, we conjecture that T-DGT could delivery improved perfor-
mance in a CUDA-enabled implementation compared to DGT.

Cryptographic engineering of privacy-preserving algorithms. In Chapter 7, our
efforts were dedicated to support the engagement of DGT’s formulations into HE schemes,
providing the design and proof-of-concept implementations of both RNTT and RDGT. An
adaptation of the four-step FFT, named RDGT, was used for polynomial multiplication
in the BGV [68] and CKKS [45] homomorphic encryption schemes. We demonstrated a
performance improvement in homomorphic multiplication obtained by using the RDGT
instead of the usual DGT. Also, we verified the natural adaptability of RDGT in GPUs.
We also found that the same result can be obtained for RNTT by increasing its arithmetic
density.
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A limitation of the work presented in Section 7.3 is that it does not isolate each imple-
mentation technique from the HE scheme, making it unfeasible to accurately evaluate a
possible prevalence of the DGT over the NTT. We overcame this limitation, in the work
presented in Section 7.4. In its turn, the RDGT and RNTT comparison is limited to
CKKS [45], not extrapolating the evaluation to other homomorphic encryption schemes
based on the LWE and Ring-LWE problems. The scope of this work can also be extended
to other functional encryption schemes, since the RNTT was originally introduced for
the implementation of a lattice-based key-policy attribute-based encryption scheme [58].
Moreover, we left to future work evaluating recursive transforms for TFHE [47].

Finally, I would say that researchers of ideal-lattice cryptography may find themselves
with a colorful wardrobe of hats and hundreds of paper sheets. During a day of research,
one may see himself/herself wearing the hat of an algebraist, a computer scientist, an
engineer, a cryptographer, and a cryptanalyst. Also, one may find it challenging to
translate the results from coding theory to cryptography since an algebraist, a coding
theorist, and a cryptographer may describe the properties of a mathematical structure
using their specific vocabulary. Nevertheless, although becoming an interpreter requires
some years of experience, the results are worthwhile.



111

Bibliography

[1] Milton Abramowitz, Irene A Stegun, and Robert H Romer. Handbook of mathe-
matical functions with formulas, graphs, and mathematical tables, 1988.

[2] A. Ahmad Al Badawi, Y. Polyakov, K. M. M. Aung, B. Veeravalli, and K. Rohloff.
Implementation and Performance Evaluation of RNS Variants of the BFV Homo-
morphic Encryption Scheme. IEEE Transactions on Emerging Topics in Computing,
pages 1–1, 2019.

[3] M. Ajtai. Generating Hard Instances of Lattice Problems (Extended Abstract). In
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, pages 99–108, New York, NY, USA, 1996. ACM.

[4] Ahmad Al Badawi, Bharadwaj Veeravalli, and Khin Mi Mi Aung. Efficient Poly-
nomial Multiplication via Modified Discrete Galois Transform and Negacyclic Con-
volution. In Kohei Arai, Supriya Kapoor, and Rahul Bhatia, editors, Advances in
Information and Communication Networks, pages 666–682, Cham, 2019. Springer
International Publishing.

[5] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod Vaikun-
tanathan. Homomorphic Encryption Security Standard. Technical report, Homo-
morphicEncryption.org, Toronto, Canada, November 2018.

[6] Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson, Rachel Player,
Eamonn W. Postlethwaite, Fernando Virdia, and Thomas Wunderer. Estimate all
the LWE, NTRU schemes! Cryptology ePrint Archive, Report 2018/331, 2018.
https://eprint.iacr.org/2018/331.

[7] Martin R. Albrecht and Amit Deo. Large modulus Ring-LWE ≥ Module-LWE.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASI-
ACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part I, volume 10624 of Lecture Notes in Computer Science, pages
267–296. Springer, 2017.

[8] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of
Learning with Errors. J. Math. Cryptol., 9(3):169–203, 2015.

https://eprint.iacr.org/2018/331


112

[9] Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas, Antonio de la Piedra,
Thomas Pöppelmann, Peter Schwabe, and Douglas Stebila. NewHope: Algorithm
Specifications and Supporting Documentation. NIST Post-Quantum Cryptography
Standardization Process, 2019. https://newhopecrypto.org/.

[10] Erdem Alkim, Paulo S. L. M. Barreto, Nina Bindel, Patrick Longa, and Jefferson E.
Ricardini. The Lattice-Based Digital Signature Scheme qTESLA. Cryptology ePrint
Archive, Report 2019/085, 2019. https://eprint.iacr.org/2019/085.

[11] Erdem Alkim, Yusuf Bilgin, and Murat Cenk. Compact and Simple RLWE Based
Key Encapsulation Mechanism, pages 237–256. Springer Nature Switzerland, 09
2019.

[12] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum
Key Exchange—A New Hope. In 25th USENIX Security Symposium (USENIX
Security 16), pages 327–343, Austin, TX, 2016. USENIX Association.

[13] Pedro Geraldo M. R. Alves, Jheyne N. Ortiz, and Diego F. Aranha. Faster Homo-
morphic Encryption over GPGPUs via Hierarchical DGT. In Nikita Borisov and
Claudia Diaz, editors, Financial Cryptography and Data Security, pages 520–540,
Berlin, Heidelberg, 2021. Springer Berlin Heidelberg.

[14] Pedro G.M.R. Alves and Jheyne N. Ortiz. SPOG: Secure Processing on GPGPUs.
https://github.com/spog-library, 2021.

[15] Pedro G.M.R. Alves, Jheyne N. Ortiz, and Diego F. Aranha. Performance of
Hierarchical Transforms in Homomorphic Encryption: A case study on Logis-
tic Regression inference. Cryptology ePrint Archive, Report 2022/099, 2022.
http://eprint.iacr.org/2022/099.

[16] A. A. Andrade and J. C. Interlando. Rotated Zn-Lattices via Real Subfields of
Q(ζ2r). TEMA (São Carlos), 20:445 – 456, 12 2019.

[17] M. Aranés and A. Arenas. On the defining polynomials of maximal real cyclotomic
extensions. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales.
Serie A. Matemáticas, 101(2):187–203, 2008.

[18] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS – Kyber: Algorithm Specifications And Supporting Doc-
umentation. NIST Post-Quantum Cryptography Standardization Process, 2019.
https://pq-crystals.org/kyber/.

[19] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Com-
binatorica, 6(1):1–13, Mar 1986.

[20] A. Al Badawi, Y. Polyakov, K. Aung, B. Veeravalli, and K. Rohloff. Implementation
and Performance Evaluation of RNS Variants of the BFV Homomorphic Encryption

https://newhopecrypto.org/
https://eprint.iacr.org/2019/085
https://github.com/spog-library
http://eprint.iacr.org/2022/099
https://pq-crystals.org/kyber/


113

Scheme. IEEE Transactions on Emerging Topics in Computing, 9(02):941–956, apr
2021.

[21] Ahmad Al Badawi, Yuriy Polyakov, Khin Mi Mi Aung, Bharadwaj Veeravalli, and
Kurt Rohloff. Implementation and Performance Evaluation of RNS Variants of the
BFV Homomorphic Encryption Scheme. IACR Cryptol. ePrint Arch., 2018:589,
2018.

[22] Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun, and Khin Mi Mi Aung.
High-Performance FV Somewhat Homomorphic Encryption on GPUs: An Imple-
mentation using CUDA. IACR Transactions on Cryptographic Hardware and Em-
bedded Systems, 2018(2):70–95, May 2018.

[23] David H. Bailey. FFTs in external or hierarchical memory. The Journal of Super-
computing, 4(1):23–35, Mar 1990.

[24] Paul Barrett. Implementing the Rivest Shamir and Adleman Public Key Encryption
Algorithm on a Standard Digital Signal Processor. In Andrew M. Odlyzko, editor,
Advances in Cryptology — CRYPTO’ 86, pages 311–323, Berlin, Heidelberg, 1987.
Springer Berlin Heidelberg.

[25] Andrea Basso, Jose Maria Bermudo Mera, Jan-Pieter D’Anvers, Angshuman Kar-
makar, Sujoy Sinha Roy, Michiel Van Beirendonck, and Frederik Vercauteren.
Saber: Mod-LWR based KEM (round 3 submission). Submission to the NIST
Post-Quantum Cryptography Standardization Project, 2020. https://www.esat.
kuleuven.be/cosic/pqcrypto/saber/index.html.

[26] E. Bayer-Fluckiger, F. Oggier, and E. Viterbo. New algebraic constructions of
rotated Zn-lattice constellations for the Rayleigh fading channel. IEEE Transactions
on Information Theory, 50(4):702–714, April 2004.

[27] Eva Bayer-Fluckiger. Lattices and Number Fields. Algebraic Geometry: Hirzebruch
70, 241, 1999.

[28] Ayoub Benaissa, Bilal Retiat, Bogdan Cebere, and Alaa Eddine Belfedhal.
TenSEAL: A Library for Encrypted Tensor Operations using Homomorphic En-
cryption, 2021.

[29] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van
Vredendaal. NTRU Prime: reducing attack surface at low cost. Cryptology ePrint
Archive, Report 2016/461, 2016. http://eprint.iacr.org/2016/461.

[30] Nina Bindel, Erdem Alkim, Paulo S. L. M. Barreto, ohannes Buchmann, Edward
Eaton, Gus Gutoski, Juliane Krämer, Patrick Longa, Harun Polat, Jefferson E.
Ricardini, and Gustavo Zanon. Submission to NIST’s post-quantum project (2nd
round): lattice-based digital signature scheme qTESLA. NIST Post-Quantum Cryp-
tography Standardization Process, 2019. https://qtesla.org/.

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/index.html
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/index.html
http://eprint.iacr.org/2016/461
https://qtesla.org/


114

[31] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS – Kyber: a CCA-secure
module-lattice-based KEM. Cryptology ePrint Archive, Report 2017/634, 2017.
http://eprint.iacr.org/2017/634.

[32] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved Security
for a Ring-Based Fully Homomorphic Encryption Scheme. In Martijn Stam, editor,
Cryptography and Coding, pages 45–64, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[33] J. Boutros, E. Viterbo, C. Rastello, and J. C. Belfiore. Good lattice constellations
for both Rayleigh fading and Gaussian channels. IEEE Transactions on Information
Theory, 42(2):502–518, Mar 1996.

[34] Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching from
Classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances
in Cryptology – CRYPTO 2012, pages 868–886, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[35] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) Fully homo-
morphic encryption without bootstrapping. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, ITCS ’12, page 309–325, New York,
NY, USA, 2012. Association for Computing Machinery.

[36] Peter Campbell, Michael Groves, and Dan Shepherd. SOLILOQUY: A Cautionary
Tale. Docbox.Etsi.Org, pages 1–9, 2013.

[37] Wouter Castryck, Ilia Iliashenko, and Frederik Vercauteren. On error distributions
in ring-based LWE. LMS Journal of Computation and Mathematics, 19(A):130–145,
2016.

[38] Wouter Castryck, Ilia Iliashenko, and Frederik Vercauteren. Provably Weak In-
stances of Ring-LWE Revisited. In Proceedings of the 35th Annual International
Conference on Advances in Cryptology — EUROCRYPT 2016 - Volume 9665, pages
147–167, New York, NY, USA, 2016. Springer-Verlag New York, Inc.

[39] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hülsing, Joost Rijneveld,
John M. Schanck, Tsunekazu Saito, Peter Schwabe, William Whyte, Keita Xa-
gawa, Takashi Yamakawa, and Zhenfei Zhang. NTRU algorithm specifications and
supporting documentation. Submission to the NIST Post-Quantum Cryptography
Standardization Project, 2020. https://ntru.org/resources.shtml.

[40] Hao Chen. Solving Ring-LWE over Algebraic Integer Rings. Cryptology ePrint
Archive, Report 2019/791, 2019. https://ia.cr/2019/791.

[41] Hao Chen. Subset Attacks on Ring-LWE with Wide Error Distributions I. Cryp-
tology ePrint Archive, Report 2020/440, 2020. https://ia.cr/2020/440.

http://eprint.iacr.org/2017/634
https://ntru.org/resources.shtml
https://ia.cr/2019/791
https://ia.cr/2020/440


115

[42] Hao Chen. Ring-LWE over two-to-power cyclotomics is not hard. Cryptology ePrint
Archive, Report 2021/418, 2021. https://ia.cr/2021/418.

[43] Hao Chen, Kristin Lauter, and Katherine E. Stange. Security Considerations for
Galois Non-dual RLWE Families. In Roberto Avanzi and Howard Heys, editors,
Selected Areas in Cryptography – SAC 2016, pages 443–462, Cham, 2017. Springer
International Publishing.

[44] Hao Chen, Kristin E. Lauter, and Katherine E. Stange. Attacks on the Search-
RLWE problem with small error. Cryptology ePrint Archive, Report 2015/971,
2015. https://eprint.iacr.org/2015/971.

[45] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
A full RNS variant of approximate homomorphic encryption. In Carlos Cid and
Michael J. Jacobson Jr., editors, Selected Areas in Cryptography - SAC 2018 - 25th
International Conference, Calgary, AB, Canada, August 15-17, 2018, Revised Se-
lected Papers, volume 11349 of Lecture Notes in Computer Science, pages 347–368.
Springer, 2018.

[46] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic En-
cryption for Arithmetic of Approximate Numbers. In Tsuyoshi Takagi and Thomas
Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, pages 409–437, Cham,
2017. Springer International Publishing.

[47] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster
Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology – ASI-
ACRYPT 2016, pages 3–33, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[48] Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable Bootstrapping En-
ables Efficient Homomorphic Inference of Deep Neural Networks. In Shlomi Dolev,
Oded Margalit, Benny Pinkas, and Alexander A. Schwarzmann, editors, Cyber Secu-
rity Cryptography and Machine Learning - 5th International Symposium, CSCML
2021, Be’er Sheva, Israel, July 8-9, 2021, Proceedings, volume 12716 of Lecture
Notes in Computer Science, pages 1–19. Springer, 2021.

[49] Eleanor Chu and Alan George. Inside the FFT Black Box – Serial and Parallel Fast
Fourier Transform Algorithms. CRC Press, Boca Raton, FL, 2000.

[50] Stephen A. Cook. On the minimum computation time of functions. PhD thesis,
Department of Mathematics, Harvard University, 1966. URL: http://cr.yp.to/
bib/entries.html#1966/cook.

[51] James Cooley and John Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[52] Sueli I.R. Costa, Frédérique Oggier, Antonio Campello, Jean-Claude Belfiore, and
Emanuele Viterbo. Lattices Applied to Coding for Reliable and Secure Communica-
tions. Springer, Cham, 2017.

https://ia.cr/2021/418
https://eprint.iacr.org/2015/971


116

[53] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering Short
Generators of Principal Ideals in Cyclotomic Rings. In Proceedings of the 35th
Annual International Conference on Advances in Cryptology — EUROCRYPT 2016
- Volume 9666, pages 559–585, New York, NY, USA, 2016. Springer-Verlag New
York, Inc.

[54] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short Stickelberger Class
Relations and Application to Ideal-SVP. In EUROCRYPT (1), pages 324–348.
Springer, 2017.

[55] Richard E. Crandall. Integer convolution via split-radix fast Galois transform, 1999.

[56] Eric Crockett and Chris Peikert. Challenges for Ring-LWE. Cryptology ePrint
Archive, Report 2016/782, 2016. https://ia.cr/2016/782.

[57] Eric Crockett and Chris Peikert. Λoλ: Functional Lattice Cryptography. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016, pages 993–
1005. ACM, 2016.

[58] Wei Dai, Yarkın Doröz, Yuriy Polyakov, Kurt Rohloff, Hadi Sajjadpour, Erkay
Savaş, and Berk Sunar. Implementation and evaluation of a lattice-based key-policy
abe scheme. IEEE Transactions on Information Forensics and Security, 13(5):1169–
1184, 2018.

[59] Wei Dai and Berk Sunar. cuHE: A Homomorphic Encryption Accelerator Library. In
Enes Pasalic and Lars R. Knudsen, editors, Cryptography and Information Security
in the Balkans, pages 169–186, Cham, 2016. Springer International Publishing.

[60] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Ver-
cauteren. Saber: Module-LWR Based Key Exchange, CPA-Secure Encryption and
CCA-Secure KEM. In Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi,
editors, Progress in Cryptology – AFRICACRYPT 2018, pages 282–305, Cham,
2018. Springer International Publishing.

[61] Robson R. de Araujo and Grasiele C. Jorge. Constructions of full diversity Dn-
lattices for all n. Rocky Mountain J. Math., 50(4):1137–1150, 08 2020.

[62] Léo Ducas and Alain Durmus. Ring-LWE in Polynomial Rings, pages 34–51.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[63] Leo Ducas, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehle. CRYSTALS – Dilithium: Digital Signatures from Module
Lattices. Cryptology ePrint Archive, Report 2017/633, 2017. http://eprint.
iacr.org/2017/633.

https://ia.cr/2016/782
http://eprint.iacr.org/2017/633
http://eprint.iacr.org/2017/633


117

[64] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS – Dilithium: Algorithm Specifica-
tions and Supporting Documentation. NIST Post-Quantum Cryptography Stan-
dardization Process, 2019. https://pq-crystals.org/dilithium/index.shtml.

[65] Kirsten Eisenträger, Sean Hallgren, and Kristin Lauter. Weak Instances of PLWE,
pages 183–194. Springer International Publishing, Cham, 2014.

[66] Yara Elias, Kristin E. Lauter, Ekin Ozman, and Katherine E. Stange. Provably
Weak Instances of Ring-LWE, pages 63–92. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2015.

[67] Niall Emmart and Charles C. Weems. HIGH PRECISION INTEGER MULTIPLI-
CATION WITH A GPU USING STRASSEN’S ALGORITHM WITH MULTIPLE
FFT SIZES. Parallel Processing Letters, 21(03):359–375, September 2011.

[68] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic
Encryption. Cryptology ePrint Archive, Report 2012/144, 2012. https://ia.cr/
2012/144.

[69] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte,
and Zhenfei Zhan. Falcon: Fast-Fourier Lattice-based Compact Signatures over
NTRU. NIST Post-Quantum Cryptography Standardization Process, 2019. https:
//falcon-sign.info.

[70] Taher El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. In CRYPTO, volume 196 of Lecture Notes in Computer Science,
pages 10–18. Springer, 1984.

[71] W. M. Gentleman and G. Sande. Fast fourier transforms: For fun and profit. In
Proceedings of the November 7-10, 1966, Fall Joint Computer Conference, AFIPS
’66 (Fall), page 563–578, New York, NY, USA, 1966. Association for Computing
Machinery.

[72] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Uni-
versity, 2009. crypto.stanford.edu/craig.

[73] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In Proceedings
of the Forty-First Annual ACM Symposium on Theory of Computing, STOC ’09,
page 169–178, New York, NY, USA, 2009. Association for Computing Machinery.

[74] Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and John
Manferdelli. High Performance Discrete Fourier Transforms on Graphics Processors.
In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC ’08,
pages 2:1–2:12, Piscataway, NJ, USA, 2008. IEEE Press.

[75] Shai Halevi and Victor Shoup. HElib. https://github.com/shaih/HElib, 2021.

https://pq-crystals.org/dilithium/index.shtml
https://ia.cr/2012/144
https://ia.cr/2012/144
https://falcon-sign.info
https://falcon-sign.info
crypto.stanford.edu/craig
https://github.com/shaih/HElib


118

[76] Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and Daejun Park. Efficient
Logistic Regression on Large Encrypted Data. IACR Cryptol. ePrint Arch., page
662, 2018.

[77] Jeffrey Hoffstein. Lattices and Cryptography, pages 1–87. Springer New York, New
York, NY, 2008.

[78] Grasiele C. Jorge and Sueli I.R. Costa. On rotated Dn-lattices constructed via
totally real number fields. Archiv der Mathematik, 100(4):323–332, 2013.

[79] Grasiele C. Jorge, Agnaldo J. Ferrari, and Sueli I. R. Costa. Rotated Dn-lattices.
Journal of Number Theory, 132(11):2397 – 2406, 2012.

[80] Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon, and Younho
Lee. Over 100x Faster Bootstrapping in Fully Homomorphic Encryption through
Memory-centric Optimization with GPUs. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(4):114–148, Aug. 2021.

[81] Anatoly A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on
automata. Soviet Physics Doklady, 7:595–596, 1963. URL: http://cr.yp.to/bib/
entries.html#1963/karatsuba.

[82] Serge Lang. Algebra. Springer, New York, NY, 2002.

[83] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for
module lattices. Designs, Codes and Cryptography, 75(3):565–599, Jun 2015.

[84] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database,
2010.

[85] Patrick Longa and Michael Naehrig. Speeding up the Number Theoretic Transform
for Faster Ideal Lattice-Based Cryptography. In Sara Foresti and Giuseppe Persiano,
editors, Cryptology and Network Security, pages 124–139, Cham, 2016. Springer
International Publishing.

[86] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-Fly Multi-
party Computation on the Cloud via Multikey Fully Homomorphic Encryption. In
Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing,
STOC ’12, page 1219–1234, New York, NY, USA, 2012. Association for Computing
Machinery.

[87] Vadim Lyubashevsky and Daniele Micciancio. Generalized Compact Knapsacks Are
Collision Resistant. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo
Wegener, editors, Automata, Languages and Programming, pages 144–155, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[88] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learn-
ing with Errors over Rings, pages 1–23. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2010.



119

[89] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A Toolkit for Ring-
LWE Cryptography. Cryptology ePrint Archive, Report 2013/293, 2013. http:
//eprint.iacr.org/2013/293.

[90] Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly Fast NTRU Using NTT.
Cryptology ePrint Archive, Report 2019/040, 2019. https://eprint.iacr.org/
2019/040.

[91] Arif Mandangan, Hailiza Kamarulhaili, and Muhammad Asyraf Asbullah. Good
basis vs bad basis: On the ability of Babai’s Round-off Method for solving the
Closest Vector Problem. Journal of Physics: Conference Series, 1366:012016, 11
2019.

[92] Christoph M. Mayer. Implementing a Toolkit for Ring-LWE Based Cryptography in
Arbitrary Cyclotomic Number Fields. Cryptology ePrint Archive, Report 2016/049,
2016. http://eprint.iacr.org/2016/049.

[93] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient
one-way functions from worst-case complexity assumptions. In Proceedings of the
43rd Symposium on Foundations of Computer Science, FOCS ’02, pages 356–365,
Washington, DC, USA, 2002. IEEE Computer Society.

[94] Daniele Micciancio. Generalized Compact Knapsacks, Cyclic Lattices, and Efficient
One-Way Functions. In Computational Complexity, pages 365–411, 2007.

[95] Daniele Micciancio and Chris Peikert. Trapdoors for Lattices: Simpler, Tighter,
Faster, Smaller. In David Pointcheval and Thomas Johansson, editors, Advances in
Cryptology – EUROCRYPT 2012, pages 700–718, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[96] Daniele Micciancio and Oded Regev. Worst-Case to Average-Case Reductions Based
on Gaussian Measures. SIAM J. Comput., 37(1):267–302, April 2007.

[97] Peter L. Montgomery. Modular multiplication without trial division. Mathematics
of Computation, 44:519–521, 1985.

[98] Dustin Moody, Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, John
Kelsey, Yi-Kai Liu, Carl Miller, Rene Peralta, Ray Perlner, Angela Robinson, Daniel
Smith-Tone, and Jacob Alperin-Sheriff. Status Report on the Second Round of the
NIST Post-Quantum Cryptography Standardization Process, 2020-07-22 2020.

[99] Sean Murphy and Rachel Player. δ-subgaussian Random Variables in Cryptography.
In Julian Jang-Jaccard and Fuchun Guo, editors, Information Security and Privacy,
pages 251–268, Cham, 2019. Springer International Publishing.

[100] Sean Murphy and Rachel Player. Discretisation and Product Distributions in Ring-
LWE. Journal of Mathematical Cryptology, 15(1):45–59, 2021.

http://eprint.iacr.org/2013/293
http://eprint.iacr.org/2013/293
https://eprint.iacr.org/2019/040
https://eprint.iacr.org/2019/040
http://eprint.iacr.org/2016/049


120

[101] National Institute of Standards and Technology - NIST. Post-Quantum Cryptog-
raphy, 2017. https://csrc.nist.gov/projects/post-quantum-cryptography.

[102] National Institute of Standards and Technology - NIST. Round 2 Submis-
sions - Post-Quantum Cryptography, 2019. https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[103] National Institute of Standards and Technology - NIST. Third PQC
Standardization Conference , 2021. https://csrc.nist.gov/Events/2021/
third-pqc-standardization-conference.

[104] NVIDIA. CUDA Toolkit Documentation. http://docs.nvidia.com/cuda/, 2022. Last
accessed: 2022/01/26.

[105] Markku-Juhani O. Saarinen. Mobile Energy Requirements of the Upcoming NIST
Post-Quantum Cryptography Standards. In 2020 8th IEEE International Confer-
ence on Mobile Cloud Computing, Services, and Engineering (MobileCloud), pages
23–30, 2020.

[106] Frédérique Oggier and Emanuele Viterbo. Algebraic Number Theory and Code De-
sign for Rayleigh Fading Channels. Commun. Inf. Theory, 1(3):333–416, December
2004.

[107] Frédérique Oggier. Introduction to algebraic number theory, 2010. https://feog.
github.io/ANT10.pdf.

[108] Jheyne N. Ortiz. Algebraic construction of lattices for the Ring-LWE
problem. 9th International Workshop on Cryptography, Robustness, and
Provably Secure Schemes for Female Young Researchers (CrossFyre), 2019.
https://www.crossing.tu-darmstadt.de/news_events/conferences_
workshops/crossfyre_19/index.en.jsp.

[109] Jheyne N. Ortiz, Robson R. de Araujo, Diego F. Aranha, Sueli I. R. Costa, and
Ricardo Dahab. The Ring-LWE Problem in Lattice-Based Cryptography: The
Case of Twisted Embeddings. Entropy, 23(9), 2021.

[110] Jheyne N. Ortiz, Robson R. de Araujo, Ricardo Dahab, Diego F. Aranha, and Sueli
I. R. Costa. In Praise of Twisted Canonical Embedding. Cryptology ePrint Archive,
Report 2018/356, 2018. https://eprint.iacr.org/2018/356.

[111] Jheyne N. Ortiz, Robson R. de Araujo, Ricardo Dahab, Diego F. Aranha, and
Sueli I. R. Costa. On Lattices for Cryptography. Latin America Week on Coding
and Information (LAWCI 2018), 2018. http://www.dev.ime.unicamp.br/lawci/
index.php.

[112] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT, volume 1592 of Lecture Notes in Computer Science,
pages 223–238. Springer, 1999.

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/Events/2021/third-pqc-standardization-conference
https://csrc.nist.gov/Events/2021/third-pqc-standardization-conference
https://feog.github.io/ANT10.pdf
https://feog.github.io/ANT10.pdf
https://www.crossing.tu-darmstadt.de/news_events/conferences_workshops/crossfyre_19/index.en.jsp
https://www.crossing.tu-darmstadt.de/news_events/conferences_workshops/crossfyre_19/index.en.jsp
https://eprint.iacr.org/2018/356
http://www.dev.ime.unicamp.br/lawci/index.php
http://www.dev.ime.unicamp.br/lawci/index.php


121

[113] Chris Peikert. Limits on the Hardness of Lattice Problems in Lp Norms. Comput.
Complex., 17(2):300–351, May 2008.

[114] Chris Peikert. A Decade of Lattice Cryptography. Found. Trends Theor. Comput.
Sci., 10(4):283–424, March 2016.

[115] Chris Peikert. How (Not) to Instantiate Ring-LWE, pages 411–430. Springer Inter-
national Publishing, Cham, 2016.

[116] Chris Peikert and Zachary Pepin. Algebraically Structured LWE, Revisited. In
Dennis Hofheinz and Alon Rosen, editors, Theory of Cryptography, pages 1–23,
Cham, 2019. Springer International Publishing.

[117] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of
ring-LWE for Any Ring and Modulus. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, pages 461–473, New
York, NY, USA, 2017. ACM.

[118] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of
Ring-LWE for Any Ring and Modulus (Slides), 2017. https://web.eecs.umich.
edu/~cpeikert/pubs/slides-anyring.pdf.

[119] John M. Pollard. The fast Fourier transform in a finite field. Mathematics of Com-
putation, 25:365–374, 1971. URL: http://cr.yp.to/bib/entries.html#1971/
pollard.

[120] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. High-Performance Ideal
Lattice-Based Cryptography on 8-Bit ATxmega Microcontrollers. In Kristin Lauter
and Francisco Rodríguez-Henríquez, editors, Progress in Cryptology – LATIN-
CRYPT 2015, pages 346–365, Cham, 2015. Springer International Publishing.

[121] Oded Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. In Proceedings of the Thirty-seventh Annual ACM Symposium on Theory
of Computing, STOC ’05, pages 84–93, New York, NY, USA, 2005. ACM.

[122] Paulo Ribenboim. Classical Theory of Algebraic Numbers. Universitext. Springer-
Verlag New York, 2001.

[123] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On Data Banks and
Privacy Homomorphisms. Foundations of Secure Computation, Academia Press,
pages 169–179, 1978.

[124] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen,
and Ingrid Verbauwhede. Compact Ring-LWE Cryptoprocessor. In Lejla Batina
and Matthew Robshaw, editors, Cryptographic Hardware and Embedded Systems –
CHES 2014, pages 371–391, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

https://web.eecs.umich.edu/~cpeikert/pubs/slides-anyring.pdf
https://web.eecs.umich.edu/~cpeikert/pubs/slides-anyring.pdf


122

[125] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald
Dreslinski, Christopher Peikert, and Daniel Sanchez. F1: A Fast and Pro-
grammable Accelerator for Fully Homomorphic Encryption. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’21,
page 238–252, New York, NY, USA, 2021. Association for Computing Machinery.

[126] Pierre Samuel and Allan J. Silberger. Algebraic Theory of Numbers. Hermann,
Paris, 1970.

[127] Microsoft SEAL (release 3.7). https://github.com/Microsoft/SEAL, September
2021. Microsoft Research, Redmond, WA.

[128] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM J. Comput., 26(5):1484–1509, October
1997.

[129] N. P. Smart and F. Vercauteren. Fully Homomorphic Encryption with Relatively
Small Key and Ciphertext Sizes, pages 420–443. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[130] Katherine E. Stange. Algebraic aspects of solving Ring-LWE, including ring-based
improvements in the Blum-Kalai-Wasserman algorithm. Cryptology ePrint Archive,
Report 2019/183, 2019. https://ia.cr/2019/183.

[131] Ian N. Stewart and David O. Tall. Algebraic Number Theory and Fermat’s Last
Theorem: Third Edition. A K Peters/CRC Press: New York, 2001.

[132] Andrei L. Toom. The complexity of a scheme of functional elements realizing the
multiplication of integers. Soviet Mathematics Doklady, 3:714–716, 1963.

[133] Eric W. Weisstein. Primitive Root. Last accessed: 2022/01/17.

[134] Wolfram. Wolfram|Alpha: Making the world’s knowledge computable. Last ac-
cessed: 2022/01/17.

[135] Christian Wuthrich. Further Number Theory. https://www.maths.nottingham.
ac.uk/plp/pmzcw/download/fnt_chap5.pdf, 2011. Last accessed: 2020/06/18.

https://github.com/Microsoft/SEAL
https://ia.cr/2019/183
https://www.maths.nottingham.ac.uk/plp/pmzcw/download/fnt_chap5.pdf
https://www.maths.nottingham.ac.uk/plp/pmzcw/download/fnt_chap5.pdf


123

Appendix A

Experimental Results on an Intel
Haswell Architecture

Table A.1: Haswell cycle counts for the median of 10 000 executions of CRYSTALS-
Dilithium reference code using either the NTT or DGT transform.

Dilithium II Dilithium III
Reference Ours NTT/DGT Reference Ours NTT/DGT

Keypair 293 260 301 156 0.97 426 152 435 756 0.98
Sign 1 253 880 1 299 164 0.97 1 735 124 1 800 600 0.96
Verify 309 724 323 544 0.96 427 364 440 788 0.97
Transform 8016 8636 0.93 7736 8208 0.94
Point-wise Mul. 1536 2300 0.67 1280 1676 0.76
Inv. Transform 10 184 9272 1.10 9104 8712 1.04

Dilithium IV
Reference Ours NTT/DGT

Keypair 560 096 581 004 0.96
Sign 1 608 484 1 703 436 0.94
Verify 579 272 606 068 0.96
Forward Transform 7660 8016 0.96
Point-wise Mul. 1280 1916 0.67
Inverse Transform 8948 8704 1.03

Table A.2: Haswell cycle counts for the median of 10 000 executions of the NewHope
reference code using either the NTT or DGT transform.

NewHope512CCA NewHope1024CCA
Reference Ours NTT/DGT Reference Ours NTT/DGT

Keypair 124 712 136 360 0.91 252 972 268 258 0.94
Encaps 177 572 186 656 0.95 366 420 374 630 0.98
Decaps 200 184 207 328 0.97 421 056 422 972 1.00
Forward Transform 21 514 25 924 0.83 49 564 54 592 0.91
Point-wise Mul. 5656 8232 0.69 11 288 16 452 0.69
Inverse Transform 23 224 18 308 1.27 52 980 41 448 1.28
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Table A.3: Haswell cycle counts for the median of 10 000 executions of qTESLA reference
code using either the NTT or DGT transform.

qTESLA-p-I qTESLA-p-III
Reference Ours NTT/DGT Reference Ours NTT/DGT

Keygen 3 114 686 3 149 422 0.99 17 587 772 17 679 170 0.99
Sign 2 278 650 2 248 942 1.01 5 382 434 5 317 728 1.01
Verify 812 980 816 596 1.00 2 168 358 2 170 600 1.00
Transform 34 400 37 196 0.92 91 012 93 212 0.98
Inv. Transform 35 376 33 984 1.04 83 072 78 952 1.05

Table A.4: Haswell cycle counts for the median of 10 000 executions of qTESLA digital
signature scheme using an AVX2-optimized implementation of either NTT or DGT.

qTESLA-p-I
Reference Ours NTT/DGT

Keygen 2 995 658 3 060 310 0.98
Sign 1 445 964 1 593 796 0.91
Verify 692 154 712 036 0.97
Transform 11 132 9932 1.12
Inv. Transform 11 444 13 884 0.82
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