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Resumo
Neste trabalho introduzimos figuras de mérito que permitem a comparação da capaci-

dade de correção de erros de códigos com parámetros clássicos semelhantes. Calculam-se

alguns limitantes para elas usando o princípio de Inclusão-Exclusão. Obtiveram-se ex-

pressões fechadas no caso de códigos perfeitos. Tudo considerando os pesos generalizados

de Hamming. Conjecturamos que o espectro do código é um conjunto completo de in-

variantes de códigos, sendo assim uma potencial ferramenta de classificação. Finalmente,

também foram classificados alguns códigos extremais Tipo III, para os quais dois novos

códigos extremais foram encontrados sendo feita uma generalização usando representações

monomiais.

Palavras-chave:Códigos corretores de erros, Peso generalizado de Hamming, Dualidade,

Análise espectral-Programas de computador, Representações monomiais.



Abstract
In this work we introduce a couple of figures of merit that allow the comparison of the

error correction capacity of codes with similar classical parameters. Some bounds for

them are calculated by means of the Inclussion-Exclussion principle. Closed expressions

are obtained for perfect codes. All this taking into consideration the generalized Hamming

weights. We conjecture the usage of the spectrum of a code as a complete set of invariants

of codes, being this way a potential classification tool. Finally, we also classified some

extremal Type III codes, for which a couple of new extremal codes were found and a

generalization is presented using monomial representations

Keywords: Error-correcting codes, Generalized Hamming weight, Duality, Spectrum

analysis-Computer programs, Monomial representations.
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Introduction

Due to the purpose of codes in the transmission of information, it is important

to know how many errors a code can correct or detect in a given scenario. In order to be

able to decode a message efficiently, one generally works on linear codes. The idea of error

correction has been usually associated only to the idea of always being able to correct

or detect such number of errors, which is directly related to the concept of minimum

distance of the code. But it is also possible to think that the chances a code has to correct

a number of errors, beyond the point where the correction process may be ambiguous,

depends also on the distribution of weights of all the codewords it has, and not only in

the smallest one. This is what motivated us to look for the impact that the generalized

weight of the code has in the error correction capabilities it has, giving a practical usage

to the concept introduced by (WEI, 1991) further from being just a theoretical definition.

We begin this thesis with the introduction of some basic definitions and results

in Chapter 1 that set the basis to work on two problems in coding theory. First the

error correction capacity that binary codes have and second working on the classification

of linear codes, both binary and ternary, given some particular conditions. It has been

noticed that the weight distribution of the code determines its error correction probability,

when transmitted over the erasure channel as studied in (SHEN; FU, 2019; DIDIER, 2006;

FASHANDI; GHARAN; KHANDANI, 2008; ROSENTHAL; YORK, 1997). Nonetheless,

to study their impact when the position of the errors is unknown, makes the task more

complex. In this thesis, we found some general bounds for the error correction capacity

a code has and closed expressions applied to codes belonging to the family of perfect

codes, as presented in Chapter 2. Secondly, we also got to a point in which we noticed

the relationship the spectrum of the code has with determining uniquely a code. And

it has interesting implications with the second usual problem in coding theory already

mentioned, the classification of codes. We have proved, by computational exhaustion, that

every code of length n ď 11 is uniquely determined up to equivalence by its spectrum.

The general statement remains a conjecture, but it is strongly supported by additional

conditions as it will be seen in Chapter 3. This is also approached in Chapter 4 but from

the perspective of the automorphism group of extremal codes, with fixed parameters.
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It was pursued the classification of extremal Type III codes of length 36, 52 and 60

with an automorphism of prime order p ě 5, and were obtained during the process,

nonequivalent codes to the previously known ones, of length 52 and 60. Finally, in Chapter

5 a generalization of the construction for the case of length 60 is presented, making use

of monomial representations. This is already published in (NEBE; VILLAR, 2013) and a

recent paper in the journal Mathematics (BOUYUKLIEVA; CRUZ; VILLAR, 2022).
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1 Preliminaries

In this chapter some basic definitions are introduced, in order to understand

the results presented subsequently. Concepts related to the Hamming distance, duality,

support of codes, action of groups and generalized Hamming weights. (WEI, 1991; JOSHI,

1989; HUFFMAN; PLESS, 2010)

1.1 Generalities on linear codes

Let Fq be the Galois field or finite field with q elements and n P N. A k-

dimensional vector subspace C ď Fn
q is called an rn, ksq-linear code over Fq. We call the

elements of C codewords and if q “ 2 or q “ 3, we then say that C is a binary or

ternary code, respectively, in general q-ary. The parameter n is the length of C.

For x “ px1, . . . , xnq, y “ py1, . . . , ynq P Fn
q we define the Hamming distance

between x and y

dpx, yq :“ |tj : 1 ď j ď n, xj ‰ yju|.

Theorem 1.1.1. The Hamming distance d is a metric. Then for every x, y, z P Fn
q the

following holds:

1. dpx, yq ě 0 and dpx, yq “ 0 if and only if x “ y,

2. dpx, yq “ dpy, xq (Symmetry),

3. dpx, yq ď dpx, zq ` dpz, yq (Triangular inequality).

Besides, d is also invariant under translations. This is, for every x, y, z P Fn
q

holds that

dpx ` z, y ` zq “ dpx, yq.

Proof. This result is well-known, and the details can be seen in (JOSHI, 1989, Th. 1.5

Ch. 3), for example. We only sketch the proof here. The non-negativity and symmetry

are immediate. Let x “ px1, . . . , xnq, y “ py1, . . . , ynq, z “ pz1, . . . , znq P Fn
q . For the
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triangular inequality, note that if xj ‰ yj, then xj ‰ zj or yj ‰ zj. And so we have the

statement proved.

On the other hand,

dpx, yq “ |tj : xj ‰ yj, j “ 1, . . . , nu|

“ |tj : xj ` zj ‰ yj ` zj, j “ 1, . . . , nu|

“ dpx ` z, y ` zq.

Another classical parameter of a code C is its minimum distance, denoted

by dpCq and it is defined by the following rule: if |C| ą 1, then

dpCq :“ mintdpx, yq : x, y P C, x ‰ yu.

and if |C| “ 1, then dpCq :“ 0. It is based on this parameter that many of the decoding

algorithms are constructed, making it very important.

If C is an rn, ks-linear code over Fq and has minimum distance dpCq “ d, we

say that C is an rn, k, ds-code over Fq or simply we say C is an rn, k, dsq-code. The triplet

rn, k, ds is called the main classical parameters of the code C.

We define the Hamming weight of x P Fn
q , represented by wtpxq as the

number of components different from zero in x. As well, the minimum weight of C ď Fn
q ,

denoted by wtpCq is defined as follows: If C ‰ t0u, then

wtpCq :“ mintwtpxq : 0 ‰ x P Cu.

If C “ t0u, then wtpCq :“ 0. As a consequence ofTheorem 1.1.1 which states the invariance

under translation of d, we have without difficulty that wtpCq “ dpCq. In this thesis

only linear codes will be considered. With the help of the weight function, the minimum

distance of a linear code can be determined faster. This, taking into account that when

calculating dpCq it is required to do
ˆ

qk

2

˙

operations, while to calculate wtpCq we do only

qk
´ 1. As k grows the first is much larger than the last one, then the weight simplifies

the calculations notably.

The Hamming weight and distance are related by the equalities
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dpx, yq “ wtpx ´ yq and wtpxq “ dpx, 0q.

Also, if for a code C of length n, we define Ai :“ |tc P C : wtpcq “ iu|, the number of

codewords of weight i, then

pxq :“
n
ÿ

i“0
Aix

i

is called the polynomial weight enumerator of C. By Sympnq we denote the symmetric

group of order n. Given σ P Sympnq and x P Fn
q the action of Sympnq on Fn

q is defined by

σpxq :“ pxσp1q, . . . , xσpnqq.

Equivalently, if we define the associated permutational matrix of σ as

Bσ “ pbijqnˆn, with bij “ 1, if σpiq “ j, and 0, otherwise,

then one can see the action of σ on x as the matrix product BσxT . The group of

linear isometries of Fn
q , endowed with the Hamming metric, is denoted by Isompnq. Any

element T P Isompnq can be described as the composition T “ A ˝ σ, where σ P Sympnq

and A is a n ˆ n regular (invertible) diagonal matrix, with coefficients in Fq or simply

put T “ ABσ, A P GLpn,Fqq, the general linear group of all the n ˆ n invertible matrices

with coefficients over Fq. This will be further discussed in Chapter 5.

For C a binary code, if σpxq P C, for every x P C, then σ is called an auto-

morphism of C. Two codes C, C 1 are said to be equivalent, if there is T P Isompnq such

that T pCq “ C. The set of all the automorphisms of C is the group of automorphisms

of C and will be written AutpCq. Using the notation Matpk ˆ n,Fq for the set of all the

k ˆ n matrices with coefficients over Fq, we define:

Definition. 1.1.1. Let C be an rn, ks-code over Fq.

1. If k ě 1, then G P Matpk ˆ n,Fqq is called a generator matrix of C, if

C “ Fk
qG “ tpx1, . . . , xkqG : xj P Fqu.

In particular, we get dimFq pCq “ RankpGq.

2. If k ă n, then H P Matpn ´ k ˆ n,Fqq is called a parity-check matrix of C, if

C “ tx P Fn
q : Hxt

“ 0u.
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On can easily check that

RankpHq “ n ´ dimpkerpHqq “ n ´ dimpCq “ n ´ k.

We say G, a generator matrix of a code C, is in its standard form if it can

be written as

G “ pIk | Bq,

here Ik denotes the identity matrix of size k ˆ k. A matrix in its standard form is also

in its reduced row echelon form. We remark that every code is equivalent to a code that

admits a generator matrix in a standard form. Here, equivalence is considered up to an

isometry as indicated before.

Next, we define the dual of a code C. As for euclidean vector spaces, this

concept is described using a formal inner product, determined by a bilinear (degenerate)

form. For this purpose we define

px|yq :“
n
ÿ

j“1
xjyj,

for x “ px1, . . . , xnq and y “ py1, . . . , ynq vectors in Fn
q .

We define the dual of C, denoted by CK, as follows:

CK :“ tx P Fn
q : px|cq “ 0, @c P Cu.

If C Ď CK, then it is said that C is self-orthogonal, and if C “ CK, it is called self-dual.

It is well known that

dimFq pCq ` dimFq pCK
q “ n.

Due to this, if C is an rn, ks-code over Fq, then CK is an rn, n ´ ks-code. In particular, if

C is self-dual, then n “ 2k.

1.2 Generalized weights

As mentioned in Section 1.1, the main invariants of a code are the length n,

the dimension k and the minimal distance d. Here we introduce a generalization of the

minimal distance due to Wei (WEI, 1991) which, as we shall see in Chapter 2, is an actual

refinement of the minimal distance, as an indicator of the capabilities of a code to correct

errors.
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The support Supppxq of a vector x P Fn
q is the set of its non-zero coordinates,

Supppxq :“ ti|xi ‰ 0u.

The support SupppXq of a subset X Ď Fn
q is the set of coordinates that are non-zero for

some element of X, i.e.,

SupppXq :“
ď

xPX

Supppxq.

Theorem 1.2.1. Given a k-dimensional linear code C with generator matrix

G :“

¨

˚

˚

˚

˝

c1
...

ck

˛

‹

‹

‹

‚

,

where ci is the i-th row of G. Then,

SupppCq “

k
ď

i“1
Supppciq

Proof. It is clear that the union of the supports of the codewords that generate the code

C is contained in the support of the code itself by definition. Then for the converse we

notice that every codeword in C can be written as a linear combination of tc1, . . . , cku

and, therefore, the support of this codeword is limited to the supports of such generators

having then the result.

This theorem makes the calculation of the support of a linear code much

easier, being it limited to the union of the support of generator codewords, k calculations

compared to 2k by the definition in the binary case. Theorem 1.2.1 is used in the algorithm

to calculate the support of vector spaces during the classification process further in this

thesis.

Now, we could redefine the weight of a vector in terms of its support, since

for x P Fn
q , wtpxq “ |Supppxq|. This gives us a hint of a generalization for the concept

of minimum distance of a code C. Then we define the i-th generalized Hamming

distance dipCq , as introduced by Wei (WEI, 1991):

dipCq :“ mint|SupppXq| : X ď C, dimFq X “ iu.1

1 X ď C represents X is a subspace of C
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Note that, since the support of a nonzero vector equals the support of the 1-dimensional

subspace, for i “ 1 we have that dpCq “ d1pCq. And as it is also natural for i “ dimFq C “

k, then dkpCq “ |SupppCq| and dkpCq “ n if and only if the code is non-degenerate,

i.e., the only vectors that annihilate the inner product with codewords in C is not the

null-vector. From the definition of dipCq we can easily get that dipCq ď di`1pCq, i “

1, . . . , k ´ 1. So we can summarize the next inequality

dpCq “ d1pCq ď . . . ď dkpCq “ |SupppCq|.

The sequence of numbers rd1pCq, d2pCq, . . . , dkpCqs corresponds to the so-called Weight

Hierarchy of C.

In fact, it was proved in (WEI, 1991, Theorem 1) that the inequality is strict.

Let us consider any i P t2, . . . , ku and we will check that di´1pCq ă dipCq. Take M ď C,

with |SupppMq| “ dipCq and dimpMq “ i. For any j P SupppMq take

Mj :“ tv P M : vj “ 0u,

i.e., the set of codewords in M with zeros in the j-th coordinate. It is clear Mj ‰ H, in

fact since j P Mj is the kernel of the linear operator that maps v P M to Projjpvq, the

projection of v on its j-th coordinate. This means Mj is a pi ´ 1q-dimensional subspace

of M . Then

dimpMjq “ i ´ 1 Ñ di´1pCq ď |SupppMjq| ď |SupppMq| ´ 1 ă dipCq

or

di´1pCq ă dipCq, for i “ 2, . . . , k.
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2 Error correction capabilities of a code

When transmitting data over a memoryless channel, it is often considered that

the transmission is through a symmetric channel, in which the probability a symbol is

received correctly or mistakenly is independent of the symbol that was sent. When con-

sidering a binary alphabet, the model that represents the channel is the binary symmetric

channel represented next. Shannon described the probability of error of a binary symmet-

0 0

1 1

1 ´ p

1 ´ p

p

p

Figure 1 – Binary symmetric channel.

ric channel, where the symbols 0 and 1 had the same chance p of being received wrongly

(SHANNON, 1984).

It was proved that for this type of channel, as can be seen in (ROMAN, 1992,

Chapter 3), the criteria of minimum distance, in which the sent codeword is assumed to

be the closest one to the received vector, was equivalent to that of maximum likelihood

decoding, i.e., considering the transmitted codeword to be the one with the highest

conditional probability of getting the received vector provided a codeword was sent. In

general, this assumption is not true, as for channels with memory, as indicated in (AZAR;

ALAJAJI, 2013). Then it became important to analyze which properties of a code would

benefit this kind of decoding with respect to that metric. As seen in (FIRER, 2021), for

each channel that has a metric associated, one could deal with this problem considering

different metrics.

In our case, we worked based on the Hamming distance to establish the capac-

ity of error correction of a given binary code. One can notice this decoding is completely

trustworthy if the number of errors and erasures combined is smaller or equal to the 1-st

packing radius or the biggest radius for which the balls centered at codewords of C are
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disjoint, denoted RpackpCq (we distinguish an order here, considering the weight hierarchy

introduced in Chapter 1)

δ1 :“
Y

d1pCq´1
2

]

. (2.1)

In other words, suppose that the codeword x is transmitted and the received

message is y “ x ` e. Here, e is the error vector. If wtpeq ď δ1 then, there is a unique

codeword closest to y and this is the original message x.

However, it is not possible to ensure that wtpeq ď δ1, if the channel is memory-

less. For wtpeq ą δ1 a received message may or may not be properly decoded (using either

minimal distance or maximum likelihood decoding). One interesting question that comes

from this fact, when considering errors beyond the 1-st packing radius, is how could we

compare the capacity of a given pair of codes to correct a determined number of errors?

For instance, if we have two codes with the same minimum distance, how can we say which

one behaves better facing a number of errors bigger than δ1? As a simple example, let us

consider C to be a binary 2-dimensional code generated by the words e1 “ p1, 0, ¨ ¨ ¨ , 0q

and e2 “ p0, 1, 0, ¨ ¨ ¨ , 0q. Let C 1 be another code, generated by e1 and 1 “ p1, 1, ¨ ¨ ¨ , 1q.

It is clear that dpCq “ dpC 1
q “ 1. We note that both the codes can correct a single error

if this error occurs in a coordinate 2 ă j ď n. However, C is not capable of correcting a

single error neither on the coordinate j “ 1 nor j “ 2, while C 1 is capable of correcting

every single error if it occurs in the coordinate j “ 2, that is, if e2 is the error vector.

This naive example calls the attention to a possible role of the generalized weights, since

2 “ d2pCq ă d2pC 1
q “ n.

This question brings into the actual picture the generalized Hamming weights.

The role of these weights to better determine the error correction capabilities of a code is a

hard question that has been researched in a few works, of which we quote the following. In

2006, Didier determined bounds for the block error probability over the erasure channel,

which he showed is related to the cryptographic algebraic immunity (DIDIER, 2006).

Later in 2008, Fashandi, et al., tried to establish the error probability over an erasure

channel either with memory or memoryless. They found that it was achieved for MDS

codes (FASHANDI; GHARAN; KHANDANI, 2008). Then in 2014 Lemes and Firer took

a step further, considering the support’s size distribution of subspaces of a given code or

spectrum. Analyzing the bounds for the error probability over the erasure channel they
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proved some facts about AMDS and MDS codes (LEMES; FIRER, 2014). Lately in 2019,

Shen and Fu found a closed expression for this probability also over the erasure channel

using the notion of incorrigible sets. They proved how the successful decoding probability

is associated to the code’s support weight distribution under list decoding and maximum

likelihood decoding.

The problem of determining how good a code is in terms of error correction is

a difficult one. This, even when considered a transmission over the erasure channel, where

the position of the errors is known. That allowed for example the use of list decoding

and of incorrigible sets. In our case, under the memoryless binary symmetric channel it

is even harder, because the errors can occur imperceptibly anywhere in the codeword.

Nonetheless, we work in this thesis on finding a way to check the intrinsic error correction

capacity of a code, even when their occurrence is unknown. We take a step further,

introducing some new concepts in the next section. These will be the figures of merit

that measure the number of vectors in the ambient space that the code can faithfully

reconstruct to be a codeword. We’ll talk a bit more about this before introducing the

definitions themselves.

Given two codes with equal classical parameters. If we consider only their

minimum distance, then there is not enough information about them. This is specially

true, if we try to compare how good the codes are by themselves, without the influence of

the channel. In an approach that is more systematic than the naive example, to determine

the capacity of error correction a code has, arises the need to consider the generalized

Hamming weights and even the complete, so-called Spectrum of the code. This way, the

object to be optimized is simplified by not considering the error probability of transmitting

the symbols through the channel. Instead, given a number of errors occur, we consider

the proportion of vectors that the code itself can correct.

2.1 PCDďepCq and PED“epCq

Here, we consider a message x sent through a channel using a code with min-

imum distance d1pCq. We suppose that the received message is y “ x ` e. Taking into

consideration Equation 2.1 and the covering radius of C, the smallest radius that allows

the complete ambient space Fn
q to be covered with balls centered in codewords of C,
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denoted RcovpCq, there are three possible situations that can happen:

1. wtpeq ď δ1;

2. δ1 ă wtpeq ă RcovpCq;

3. RcovpCq ď wtpeq.

The first case, which includes the case of non-error (wtpeq “ 0) is the best one: the original

codeword x is the closest one to the received message y,

dpy, Cq :“ min
cPC

dpy, cq “ dpy, xq,

so the message is always properly corrected.

The last case is the worst one, the original codeword x is never the closest

one to the received message y (dpy, Cq ă dpy, xq) so the message is always improperly

corrected.

The middle case, when δ1 ă wtpeq ă RcovpCq is the case of interest, since

some messages may be properly corrected (dpy, Cq “ dpy, xq) while others not (dpy, Cq ă

dpy, xq) and, an in between case, with some ambiguity, with more than one codeword at

distance wtpeq from y and one of those is the original x (there is x ‰ c P C such that

dpy, Cq “ dpy, xq “ dpy, cq).

Then, for not being defined what happens in general, it is interesting to see

what happens in between. What is the situation when the number of errors e is between

δ1 and RcovpCq? This is part of the problem we wanted to resolve. We wanted also to

obtain tools that would allow codes comparison. In particular, whenever they have similar

parameters but different correction capacity. To face this problem, we shall introduce two

figures of merit, of a code. The proportion of correct decoding, denoted PCDďe(C), and

the proportion of exact decoding, denoted PED“e(C).

In PCDďe(C), for each codeword c, we count the number of vectors y P Fn
q at

distance e from c that are not at the same distance or closer to any other codeword c1

(dpy, cq ď e and dpy, c1
q ą e, for all c1

P C) and then it is normalized with respect to

the total amount of vectors around c at a distance e or smaller. It gives a notion of the

capacity C has to correct without ambiguity up to e errors.
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In contrast to PCDďe(C), the other concept, PED“e(C) counts the proportion

of exact decoding or decoding without ambiguity when the number of errors during the

transmission is e, then here it is not considered the case less than e errors occur (dpy, xq “

e). We will see that in this particular scenario we have something to say when compared

to the packing radius or covering radius of a code C. We consider in this thesis both

definitions applied to binary codes.

In the next definition we consider the intrinsic capacity a code has to correct

up to a given number of errors, it means it is independent from the effect of the channel.

Therefore, it is not a probability.

Definition. 2.1.1 (Proportion of correct decoding). Given C a q-ary code of length n,

e P N. We define the proportion of correct decoding up to e errors for the code C as

PCDďepCq :“

ÿ

cPC

˜

e
ÿ

t“0

ˇ

ˇ

ˇ

ˇ

ˇ

Stpcq ∖
ď

c1PC∖tcu

Btpc1
q

ˇ

ˇ

ˇ

ˇ

ˇ

¸

ÿ

cPC

|Bepcq|
, (2.2)

where the sphere of radius r and centered in c is denoted by

Srpcq “ tx P Fn
q : dpx, cq “ ru

and the ball centered in c of radius r is denoted by

Brpcq “ tx P Fn
q : dpx, cq ď ru “ Y

r
i“0Srpcq.

We note that, considering C to be a linear code, the quantities |Stpcq ∖
ď

c1PC∖tcu

Btpc1
q| and |Bepcq| do not depend on c P C, so we redefine (2.2) as follows

PCDďepCq :“

e
ÿ

t“0

ˇ

ˇ

ˇ

ˇ

ˇ

Stp0q ∖
ď

0‰cPC

Btpcq

ˇ

ˇ

ˇ

ˇ

ˇ

|Bep0q|
. (2.3)

It is then clearer that this value does not depend on the codeword that is sent, but on

the code to which it belongs.

As an illustration, we can see in the Figure 2 which are the codewords that are

counted and which are not in PCDďepCq. Here we represent by x and o the codewords in

Brp0q, where the x cannot be uniquely decoded and instead o can, at least with respect

to the codeword c. The same is considered for any other c P C ∖ t0u .
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Figure 2 – Illustration of PCDďe(C)

If on the other hand, we need the capacity the code has to correct an exact

number of errors, then we introduce:

Definition. 2.1.2 (Proportion of Exact Decoding). Given C a q-ary code of length n,

e P N. We define the proportion of exact decoding e errors for the code C as

PED“epCq :“

ÿ

cPC

˜

|Sepcq ∖
ď

c1PC∖tcu

Bepc’q|

¸

ÿ

cPC

p|Sepcq|q
. (2.4)

And as for Definition 2.1.1 we can for linear codes simply consider c “ 0 and

then (2.4) turns into

PED“epCq :“
|Sep0q ∖

Ť

0‰cPC Bepcq|

|Sep0q|
. (2.5)

Example. 2.1.3. To illustrate these concepts presented in definitions 2.1.1 and 2.1.2 we

consider two codes, for which these values were calculated. The r7, 4s2-Hamming Code

CH,7 (which is perfect) and one of the best known linear codes of length 11, obtained from

the database in Magma, which we denote by Cr11,4,5s.
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C “ CH,7

Weight enumerator x7
` 7x4

` 7x3
` 1

k 1 2 3 4
dkpCq 3 5 6 7

e 1 2 3 4 5 ¨ ¨ ¨

PCDďepCq 1 0.276 0.12 0.08 0.06 ¨ ¨ ¨

PED“epCq 1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0

C “ Cr11,4,5s

Weight enumerator x8
` 2x7

` 6x6
` 6x5

` 1
k 1 2 3 4

dkpCq 5 8 10 11
e 1 2 3 4 5 ¨ ¨ ¨

PCDďepCq 1 1 0.379 0.156 0.085 ¨ ¨ ¨

PED“epCq 1 1 0.1272 0 ¨ ¨ ¨ 0

Table 1 – Proportions of correction for different binary codes

In Table 1 one can notice, that even beyond the packing radius (2 for Cr11,4,5s),

some errors can be properly corrected. That is the meaning of having PED“3pCq “ 0.1272,

that approximately 12% of the errors with weight 3 can be corrected. The fact that it does

not happen for the Hamming Code, that is, no error can be corrected beyond the covering

radius, gives us a hint for the role of the covering radius. As we shall see later in this

chapter, no error can be corrected at or beyond that point and there is always an error of

weight e that can be properly corrected for every e smaller than the covering radius.

On the other hand, as we could expect, PCDďepCq decreases with e and it is

always greater than 0, since messages with no error are always properly decoded, and this

means that PCDďnpCq ě qδ1{qn
ě 1{qn, for an rn, ksq-code.

Now we can work properly an example that is more significant than the naive

toy example given in the beginning of this chapter. We shall consider two codes C1, C2

both with equal classic parameters rn, k, dsq and yet PCDďe(C1) ‰ PCDďe(C2), for e ą δ1.

As we already mentioned, it is clear that if e ď δ1, then PCDďepCq “ 1.

Example. 2.1.4. In (PLESS, 1972a) Pless classified self-orthogonal code of length up to

n “ 20. Among those codes, we find the r16, 8s2 codes E16 and F16, which are the only

non-equivalent self-orthogonal (in fact self-dual) codes of length 16. They were chosen in

order to compare their PCD and PED in the fairest conditions, since they have the same
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minimal distance. Moreover, we calculated, and they happen to have the same weight

hierarchy, that is, dipE16q “ dipF16q for every 1 ď i ď 8, as we can see in the second row

of Table 2. However, they have different weight enumerators, x16
`28x12

`198x8
`28x4

`1

and x16
` 12x12

` 64x10
` 102x8

` 64x6
` 12x4

` 1, respectively. This difference in the

weight enumerator explains why F16 is expected to perform better: F16 has 12 codewords

of weight 4 while E16 has 28.

We calculated the invariants of both E16 and F16 and they are summarized in

Table 2.

k or e 1 2 3 4 5 6 7 8
dkpE16q “ dkpF16q 4 6 8 10 12 14 15 16

PCDďepE16q 1 0.124 0.0244 0.0067 0.0025 ¨ ¨ ¨

PCDďepF16q 1 0.59 0.116 0.032 0.0117 ¨ ¨ ¨

PED“epE16q 1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0
PED“epF16q 1 0.53 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0

Table 2 – Comparison of E16 and F16 error correction capabilities

In Table 2 it can be seen that not only both codes E16 and F16 have the

same 1st-minimum distance, but the hierarchical weight distribution is also the same for

them. Up to this point, we could expect that they will perform in the same way in what

concerns PCDďe and PED“e. However, we explicitly calculated the number of subcodes of

dimension j, for j ď 4 that reach the distance djpCq
1. They are represented by the arrays

p28; 56; 70; 56q for E16 and p12; 8; 2; 8q for F16. Having F16 less subspaces with minimum

support for each dimension j P t1, 2, 3, 4u, it allows the received vectors to be covered by

fewer codewords and this increases the values of both PCDďe(C) and PED“e(C), as seen

in Table 2.

As we mentioned in the beginning of this section, it is well known that ev-

ery codeword received with less errors than δ1 are always corrected. In consequence,

PED“epCq “ 1 for e ď RpackpCq. In the following remark we notice what is expected but

unknown: PED“epCq “ 0, for e ą RcovpCq.

Remark 2.1.1. Let C Ď Fn
q , with covering radius r :“ RcovpCq. That PED“epCq “ 0, for

e ą r is a direct consequence of the definition of covering radius, since every v P Sr`1pcq

1 Due to the size of these codes, only up to dimension 4 it was possible to determine the number of
subspaces that had the given minimum support.
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belongs to a ball centered at another codeword c1
P C ∖ tcu.

In the particular case of perfect codes, where RpackpCq “ RcovpCq, we have the

following.

Proposition 2.1.2. If C Ď Fn
q is a perfect code, then PED“epCq “ 0, for e ą RpackpCq,

its packing radius.

Remark 2.1.5. The converse is not true in general, i.e., that PED“epCq “ 0, for e ą

RpackpCq does not imply that C is a perfect code. For instance, if we consider C Ď F6
2 with

generator matrix

G “

¨

˚

˚

˚

˝

1 0 0 1 0 1

0 1 0 1 1 0

0 0 1 1 1 1

˛

‹

‹

‹

‚

We can do by extension the sets B1pcq, c P C and join them to finally compute that

|
ď

cPC

B1pcq |“ 56. C has covering radius 2, then |
ď

cPC

B2pcq |“ 64. Therefore, C is not

perfect and yet PED“epCq “ 0, for e ą 1. In fact, we can see the different balls of radius

1 centered in codewords of C as follows:

000000 100101 110011 010110 011001 111100 101010 001111
000001 100100 110010 010111 011000 111101 101011 001110
001000 101101 111011 011110 010001 110100 100010 000111
000100 100001 110111 010010 011101 111000 101110 001011
010000 110101 100011 000110 001001 101100 111010 011111
100000 000101 010011 110110 111001 011100 001010 101111
000010 100111 110001 010100 011011 111110 101000 001101

Table 3 – Set of all B1pcq, c P C.

In Table 3 the red row contains the codewords and below each one the 6 vectors

at distance 1. Here we can check that 110000, 001100 are not elements of such balls,

meaning the whole ambient space has not been covered by them.
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B2(001111) B2(111100) B2(110011)
0 0 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1
0 0 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0
1 0 0 1 1 1 0 1 0 1 0 0 0 1 1 0 1 1
0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0
1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1
0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1
0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1
0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 0 1
0 1 1 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0
1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1
0 0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0
1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1
1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0 1 0
0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 1 1
0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1
0 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1
0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 0
1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0 1 1
0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1
0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1
0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1

Table 4 – Set of balls of radius two centered at three codewords of C that cover S2p0q.

On the other hand, to check that effectively PED“epCq “ 0, for e ą 1, consi-

der when e “ 2. Here we consider first by the definition of PED“epCq the set

S2p0q :“ tp000110q, p001001q, p101000q, p000011q, p100010q, p010100q, p010001q,

p110000q, p000101q, p100100q, p100001q, p001010q, p011000q, p001100q, p010010qu

and check that it is covered by the balls B2pp001111qq, B2pp101010qq, B2pp110011qq, see

Table 2.1.5. The 15 elements of S2p0q appear in boldface, the colored ones are repeated.

2.2 Bounds for PCDďepCq

Calculating the proportion of correct decoding for a code is a hard problem,

so we shall look for bounds. One first approach to obtain bounds for PCDďe(C) is to find

an expression for Srp0qXBr(c). For that it is necessary to consider what vectors are in

this set, i.e.,

Srp0q X Brpcq :“
␣

v P Fn
q | wtpvq “ r and dpv, cq ď r

(

.
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Then as can be seen in the next figure we exclude only the part of the sphere that is

common with any other ball of radius r centered in codewords.

To determine the intersection of balls excluding their centers, we consider

r ă dp0, cq “ wtpcq. We denote w :“ wtpcq. At the same time, the closest a vector in the

intersection can be to c is w ´ r, then

w ´ r ď dpv, cq ď r.

Let us define

i :“ | ts : vs “ 1 and cs “ 1u |.

So if i coordinates of v belong to Supppcq, then r ´ i are non-zero coordinates among the

n ´ w other possible options. This means that for every choice of i ones contained in the

support of c, there are r ´ i options in its complement. Now we need to guarantee that

dpv, cq belongs to the closed interval rw ´ r, rs, then ppw ´ iq ` pr ´ iqq P rw ´ r, rs, or

w ´ r ď pw ´ iq ` pr ´ iq ď r

ñ w ´ r ď pw ` r ´ 2iq ď r

ñ w ´ 2r ď w ´ 2i ď 0

ñ ´2r ď ´2i ď ´w

ñ r ě i ě
w

2
Remark. We can just consider r

w

2 s, in general, just in case w is odd and still the inequa-

tion holds. So we get that for i coordinates taken from the w possible in the Supppcq we

take r ´ s among the n ´ w others, for i P rr
w

2 s, rs. Thus

|Srp0q X Brpcq| “

r
ÿ

i“r w
2 s

ˆ

w

i

˙ˆ

n ´ w

r ´ i

˙

. (2.6)

Example. 2.2.1. We compute for a code with parameters r16, 8, 4s2, considering a random

codeword c with wtpcq “ 8 and for r “ 5. Then

|S5p0q X B5pcq| “

5
ÿ

i“r 8
2 s

ˆ

8
i

˙ˆ

16 ´ 8
5 ´ i

˙

“

ˆ

8
5

˙ˆ

8
1

˙

`

ˆ

8
5

˙ˆ

8
0

˙

“ 70 ¨ 8 ` 56 ¨ 1 “ 616.
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2.2.0.1 INTERSECTION OF TWO BALLS

Now we can use Equation 2.6 to get the intersection of two balls of radius r. In

general, for every vector of weight j P rw ´ r, rs, where w ě r, if we consider as previously

that i 1’s of v lay on Supppcq, then j ´ i lay among the n ´ w other ones. Here

dpv, cq P rw ´ j, rs ñ pw ´ iq ` pj ´ iq P rw ´ j, rs.

Then

w ´ j ď w ´ i ` j ´ i ď r

so that

´2j ď ´2i ď r ´ w ´ j

and

j ě i ě
w ` j ´ r

2
This means that we have the following proposition.

Proposition 2.2.1. Given a codeword c of weight w, the number of vectors in the inter-

section of the balls of radius r centered at c and 0 is

|Brp0q X Brpcq| “

r
ÿ

j“w´r

j
ÿ

i“r
w`j´r

2 s

ˆ

w

i

˙ˆ

n ´ w

j ´ i

˙

. (2.7)

This way, we can count the vectors in the shadow zone in the next figure.

Figure 3 – Intersection of balls with same radius centered at 0 and c, wtpcq “ w

Example. 2.2.2. Under the same conditions as for Example 2.2.1 we have by means of

Proposition 2.2.1 that:

|B5p0q X B5pcq| “

5
ÿ

j“3

j
ÿ

i“r
3`j

2 s

ˆ

8
i

˙ˆ

8
j ´ i

˙
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ñ |B5p0q X B5pcq| “

ˆ

8
3

˙ˆ

8
0

˙

`

ˆ

8
4

˙ˆ

8
0

˙

`

ˆ

8
4

˙ˆ

8
1

˙

`

ˆ

8
5

˙ˆ

8
0

˙

“ 742.

Considering the weight of the codewords in C we introduce this definition that

allows us to distinguish the codewords of minimum weight in particular.

Definition. 2.2.3 (i-th subset of a code C). Given a code C we define the i-th subset

of C as all the codewords of the code with weight i, i.e.,

Ci :“ tc P C : |Supppcq| “ iu .

Then we can immediately see that the code can be decomposed as

C :“
n

9ď

j“0
Cj.

Next we define formally what we call the spectrum of a code C.

Definition. 2.2.4 (Spectrum). Given C ď Fn
q we define the spectrum of C denoted by

SpecpCq as the matrix pAj
i qkˆn, where

Aj
i :“ | tD Ă C : dimpDq “ i and ||D|| :“ |SupppDq| “ ju |.

If i “ 1, then
n
ÿ

j“1
Aj

1x
j is also the polynomial weight enumerator of C.

In the following remark, we take a first step into finding an appropriate bound

for PCDďepCq, for e ă dpCq.

Remark 2.2.2. For C ď Fn
q , one can verify that:

a.) If d2pCq ě2d1pCq, then A
d1pCq

1 ď
n

d1pCq
. This is, the number of one-dimensional

subspaces that reach the minimum support is bounded by how many times the 1st

minimum weight fits in the length of the code, whenever the 2nd minimum distance

is at least twice the first one.

b.) If tc1, . . . , cmu is the set of codewords with minimum weight in C and all the

subspaces that reach the i ´ th minimum distance are contained in xc1, . . . , cmy,

for every i. Then, A
d1pCq

1 “ m and A
dipCq

i ď

ˆ

m

i

˙

, for i ď k “ dimpCq, with

D :“ xch1 , . . . , chi
y Ă C, such that dimpDq “ i and ||D|| “dipCq. This is, if every
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subspace that is counted in A
dipCq

i is spanned by the codewords of minimum weight

in C, then A
dipCq

i ď

ˆ

m

i

˙

. In particular, the first one would be m, the number of

such codewords pA
d1pCq

1 “ mq.

c.) If q “ 2, given any two codewords of C, we can verify that

wtpc1q ` wtpc2q “ wtpc1 ` c2q ` 2|Supppc1q X Supppc2q|

ñ |Supppc1q X Supppc2q| “
wtpc1q ` wtpc2q ´ wtpc1 ` c2q

2 .

|Supppc1q ∖ Supppc2q| ` |Supppc2q ∖ Supppc1q| “ dpc1, c2q ě d1pCq.

2.2.0.2 INCLUSION-EXCLUSION PRINCIPLE

We have been trying to determine and use the number of elements in the

intersection of pairs and triplets of balls with the same radius centered in codewords,

because due to the definition of the Proportions PCDďepCq and PED“epCq, they depend

on the intersection that the union of all balls centered at non-zero codewords has with

the layered ball of radius r and centered at the null-vector. This implies that we need to

use the inclusion-exclusion principle, which in the simplest cases states that if we have M

and N finite sets. The size of their union can be calculated using

|M Y N | “ |M | ` |N | ´ |M X N |

this, since when computing |M | ` |N | we count twice the elements of M X N . This

redundancy is then compensated by subtracting |M X N |.

Now let us consider the scenario in which we have three finite sets, let us say

L, M and N . A counting exercise will show that

|L Y M Y N | “ |L| ` |M | ` |N | ´ |L X M | ´ |L X N | ´ |M X N | ` |L X M X N |. (2.8)

We could simply consider that the size of the union is |L| ` |M | ` |N | but this is again

wrong because the elements in L X M , L X N , and M X N would have been counted too

many times. Therefore, by subtracting |LXM |`|LXN |`|M XN |, we try to eliminate this

over-counting but then notice that L X M X N has been excluded more than appropriate.

And then we compensate by adding once |L X M X N |.
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Example. 2.2.5. Let A “ t1, 2, 3, 4u, B “ t3, 4, 5, 6u and C “ t2, 3, 4, 5, 6, 7u. Now

Equation (2.8) says 7 “ 4 ` 4 ` 6 ´ 2 ´ 3 ´ 4 ` 2, which is happily true.

In general, we have:

Theorem 2.2.3 (Inclusion-Exclusion principle). Given n P N and finite sets Ai for 1 ď

i ď n. Then
ˇ

ˇ

ˇ

ˇ

ˇ

ď

1ďiďn

Ai

ˇ

ˇ

ˇ

ˇ

ˇ

“
ÿ

1ďi1ďn

|Ai1 | ´
ÿ

1ďi1ďi2ďn

|Ai1 X Ai2 |

`
ÿ

1ďi1ďi2ďi3ďn

|Ai1 X Ai2 X Ai3 | ´ . . . ` p´1q
n`1

ˇ

ˇ

ˇ

ˇ

ˇ

n
č

i“1
Ai

ˇ

ˇ

ˇ

ˇ

ˇ

.

Its proof is natural from counting the elements as can be seen in (BONFER-

RONI, 1936).

It is also necessary to check that by considering the higher intersections the

expression to the right in Theorem 2.2.3 becomes closer to the union than considering

lesser terms. And it is what the following remark deals with.

Remark 2.2.4. We can notice that every term to the right is smaller than the ones to the

left, by being calculated through computing the intersection with each time more sets, and

also having the alternating signs leads to an oscillating value towards the exact value of the

union and as when reaching the last term the value is exactly the number of elements in

the union of n sets, this means that the oscillation is asymptotic to this number, meaning

that with each step the distance with respect to the final value gets smaller. Then we can

say that for k P t1, . . . , nu

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

1ďiďn

Ai

ˇ

ˇ

ˇ

ˇ

ˇ

´

k´1
ÿ

j“1
p´1q

j`1

˜

ÿ

1ďi1ă¨¨¨ăijďn

|Ai1 X . . . X Aij
|

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

1ďiďn

Ai

ˇ

ˇ

ˇ

ˇ

ˇ

´

k
ÿ

j“1
p´1q

j`1

˜

ÿ

1ďi1ă¨¨¨ăijďn

|Ai1 X . . . X Aij
|

¸
ˇ

ˇ

ˇ

ˇ

ˇ

From Remark 2.2.2 we get some bounds for some coefficients of SpecpCq. And

making use of the first step of Theorem 2.2.3, this is considering only the exclussion of

the intersection with the individual sets, one gets the following proposition.

Proposition 2.2.5. Given a code C, e P N. Then



Chapter 2. Error correction capabilities of a code 36

PCDďepCq ě

řt
w´1

2 u

t“0 |Stp0q| `
ře

t“t w
2 u

´

|Stp0q| ´
ř2t

j“1 |Cj||Stp0q X Btpcjq|

¯

|Bepcq|
,

where cj P Cj and w “ d1pCq. Moreover, if C is a constant weight linear code, then

PCDďepCq ě

řt
w´1

2 u

t“0
`

n
t

˘

`
ře

t“t w
2 u

´

`

n
t

˘

´ |Cw|
řt

i“r w
2 s

`

w
i

˘`

n´w
t´i

˘

¯

ře
i“0

`

n
i

˘ .

In order to apply the inclusion-exclusion principle to get bounds for PCDďepCq

and PED“epCq, respectively, we need to introduce some definitions that will make the

notation lighter. Also, whenever necessary, given a set X Ď rks, we will denote by cX “

tci|i P Xu, the codewords indexed by X. So we have for example tc1, . . . , c2hu “ cr2hs.

Definition. 2.2.6. Given c1, c2 P C, t P N. We define the set of triplets t-intersection

of C as:

T 3
t :“

!

tc1, c2u

ˇ

ˇ

ˇ
tc1, c2u is l.i. and Ξt

tc1,c2u ‰ H

)

,

where Ξt
tc1,c2u :“ Btpc1q X Btpc2q X Stp0q. A minimal set of triplets t-intersection

T 3
t Ă T 3

t of C is one of the smallest subsets such that

ď

cr2sPT 3
t

Ξt
cr2s

“
ď

cr2sPT 3
t

Ξt
cr2s

Then using this notation we get the following bounds, which are just a restate-

ment of the inclusion-exclusion principle.

Proposition 2.2.6.

řt
w´1

2 u

t“0 |Stp0q| `
ře

t“t w
2 u

´

|Stp0q| ´
ř2t

j“1 |Cj||Stp0q X Btpcjq| `
ř

cr2sPT 3
t

ˇ

ˇ

ˇ
Ξt

cr2s

ˇ

ˇ

ˇ

¯

|Bepcq|

ě PCDďepCq ě

řt
w´1

2 u

t“0 |Stp0q| `
ře

t“t w
2 u

´

|Stp0q| ´
ř2t

j“1 |Cj||Stp0q X Btpcjq|

¯

|Bepcq|
,

where cj P Cj and w “ d1pCq.

Proof. From Definition 2.1.1, Equation 2.3, what we need to get to these bounds is to

sequentially obtaining
ˇ

ˇ

ˇ

ˇ

ˇ

Stp0q ∖
ď

0‰cPC

Btpcq

ˇ

ˇ

ˇ

ˇ

ˇ

.
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We already know that if t ď δ1 it turns out to be only Stp0q. The rest of the expression is

a result from applying Theorem 2.2.3 and Remark 2.2.4. By doing this, if
Z

w ´ 1
2

^

ď t ď

e, w “ d1pCq, as seen in Proposition 2.2.5 we get a lower bound of PCDďepCq. This because

out of the elements of Stp0q we remove in a first step every non-empty intersection it has

with balls of radius t centered at codewords. To get the upper bound, now by Theorem

2.2.3 we add now the non-empty intersections of Stp0q with two balls of radius t centered

at codewords.

Unless we know for sure that any of the intersections with a higher number

of balls of radius t centered at codewords are empty, these expressions remain simply a

bound.

Remark 2.2.7. With this perspective, it would be interesting to find some co-relation

between a code having smaller generalized Hamming weight dkpCq, compared to another

one, and the numbers A
dkpCq

k . That is, being able to say something about the quantity of k-

dimensional subspaces that meet the minimum support. But even though according to the

observations seen on the spectrum of codes with length smaller or equal to 11, there seems

to be a tendency that for C1, C2, two comparable codes and k ď dimpC1q “ dimpC2q,

dkpC1q ă dkpC2q ñ A
dkpC1q

k ă A
dkpC2q

k , (2.9)

which I must admit is even counter-intuitive. But it is also in general not true. In fact, if

we consider

G1 :“

¨

˚

˚

˚

˚

˚

˚

˝

1000111111

0100111001

0010011110

0001001111

˛

‹

‹

‹

‹

‹

‹

‚

G2 :“

¨

˚

˚

˚

˚

˚

˚

˝

1000101000

0100010001

0010110000

0001000110

˛

‹

‹

‹

‹

‹

‹

‚

,

then we have two [10,4]-codes, where the one generated by G1 has a generalized weight

distribution of [4,6,8,10] and for each dimension the number of subspaces that meet that

size of support is (4,1,1,1) and the one generated by G2 has a generalized weight distribu-

tion of [3,5,7,10] and for each dimension the number of subspaces that meet that size of

support is (4,2,1,1). Here we notice that even when d2pC1q “ 6 ą d2pC2q “ 5 we see that

A
d2pC1q

2 “ 1 ă 2 “ A
d2pC2q

2 . This seems to be more natural than Equation 2.9, but not in
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general true. This tells us that, before hand, we cannot say something on what to expect

in relation to the spectrum. This based only in the weight hierarchy of the codes, without

analyzing the particular case.

We have seen that the weight hierarchy gives some hints on the coefficients of

SpecpCq and also how to determine the bounds we are looking for. So to continue this

path we now generalize Definition 2.2.6 for k-tuples as follows:

Definition. 2.2.7. Given c1, . . . , ck´1 in C, t P N. We define the set of k-tuples t-

intersection of C as:

T k
t :“

!

crk´1s

ˇ

ˇ

ˇ
crk´1s is l.i. and Ξt

crk´1s
‰ H

)

,

where Ξt
crk´1s

:“ Btpc1q X ¨ ¨ ¨ X Btpck´1q X Stp0q. A minimal set of k-tuples t-

intersection T k
t Ă T k

t of C is one of the smallest subsets such that
ď

crk´1sPT k
t

Ξt
crk´1s

“
ď

crk´1sPT k
t

Ξt
crk´1s

Remark 2.2.4 guarantees that these bounds are tighter with each step. The

next proposition tell us that if C is such that it meets the condition of Remark 2.2.2, then

we get additional bounds for the coefficients of SpecpCq.

Proposition 2.2.8. If we have that C has the property that the subcodes of dimension

k that have minimum support are spanned by words of minimum weight, then |T k`1
t | ď

A
dkpCq

k , t ě

Qw

2

U

. Furthermore, if those are the only codewords with weight smaller or equal

to 2t, then |T k`1
t | ď

ˆ

m

k

˙

. In particular, for k “ 2 we have , |T 3
t | ď A

d2pCq

2 ď

ˆ

m

2

˙

.

Proof. The fact that |T k`1
t | ď A

dkpCq

k , t ě

Qw

2

U

, is a consequence of the definition of T k`1
t .

Because, by definition, it is the smallest set of linearly independent k-tuples of C that

additionally are centers of balls not disjoint to Stp0q. Under the assumption that the

subspaces that are counted in A
dkpCq

k are generated by codewords with minimum weight,

then the k-tuples that span them contain T k`1
t . The upper bound is a result from counting

all the possibilities as remarked in 2.2.2 b).

This property mentioned in the previous proposition was observed in the binary

Hamming code of length 7. But it was not found as a general condition for every code.
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To structure the following expressions, let’s consider

∆ :“
t

w´1
2 u
ÿ

t“0
|Stp0q| `

e
ÿ

t“t w
2 u

˜

|Stp0q| ´

2t
ÿ

j“1
|Cj||Stp0q X Btpcjq|

¸

,

that is constant for a given e ě t
w

2 u.

Then, we can generalize the previous bounds given in Proposition 2.2.6, con-

sidering again all the terms of the inclusion-exclusion principle of Theorem 2.2.3 and the

fact that with each step the expression get closer to the exact value, as indicated in the

Remark 2.2.4. This results in

Theorem 2.2.9. Given l ď t
k

2 u, where k :“ dimpCq, we have:
¨

˝∆ `

e
ÿ

t“t w
2 u

l
ÿ

h“1

ÿ

cr2hsPT 2h`1
t

ˇ

ˇ

ˇ
Ξt

cr2hs

ˇ

ˇ

ˇ
´

e
ÿ

t“t w
2 u

l
ÿ

h“2

ÿ

cr2h´1sPT 2h
t

ˇ

ˇ

ˇ
Ξt

cr2h´1s

ˇ

ˇ

ˇ

˛

‚

|Bepcq|
ě PCDďepCq

ě

¨

˝∆ `

e
ÿ

t“t w
2 u

l´1
ÿ

h“1

ÿ

cr2hsPT 2h`1
t

ˇ

ˇ

ˇ
Ξt

cr2hs

ˇ

ˇ

ˇ
´

e
ÿ

t“t w
2 u

l´1
ÿ

h“2

ÿ

cr2h´1sPT 2h
t

ˇ

ˇ

ˇ
Ξt

cr2h´1s

ˇ

ˇ

ˇ

˛

‚

|Bepcq|

Just as in Proposition 2.2.6 the difference between the upper and lower bound

depends on the number of elements considered between the intersection of 2l balls and

2pl ´ 1q with the sphere. Then due to Remark 2.2.4 one knows this gap is smaller with

each step, and in the last step there will be none, meaning it will be the exact value of

PCDďepCq.

2.3 Closed expressions for perfect codes

Given these bounds we would like to determine how many steps are necessary

to get to the exact value. We know that it is always reached by means of the inclusion-

exclusion principle. But we also wish to relate them to the code’s weight distribution,

which provides further information than its minimum distance. It is this that will even-

tually allow us to distinguish between codes with equal minimum distance but different

weight spectrum, resulting in different correction capabilities. In this sense, we have two

important remarks. But first let us see an example that illustrates a situation for the first

statement, on the number of necessary steps to reach the exact value.
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Example. 2.3.1. If we consider the code C “ CH,7 being the Hamming Code with pa-

rameters r7, 4, 3s2, then we know for e “ 1 the number of errors either PCDďepCq or

PED“epCq are 1, because e ď δ1. Now for e “ 2 we get that the balls of radius two cen-

tered at the seven words of minimum weight intersected with the zero centered sphere are

disjoint by pairs. And they represent the first step, then we expect and so it is that the

exact value is already reached by the first step as follows: Let’s consider as before Cj the

set of the codewords of weight j. Take any c3 P C3, c4 P C4. Then we can obtain that for

e “ 2

| S2p0q X B2pc3q |“ 3 and | S2p0q X B2pc4q |“ 6.

That means there are intersections with the balls centered at words of weight 3

and 4, being even the intersection with codewords of weight 4 larger, but we noticed that

in spite of that, the intersection with the codewords of weight 3 are disjoint and cover all

the sphere meaning we get the exact amount PCDďepCq stands for. In fact

PCDď2pCq “ 0, 27586 “
|B1p0q| ` |S2p0q| ´ |C3||S2p0q X B2pc3q|

|B2p0q|

“
8 ` p21 ´ 7 ¨ 3q

29 “ 8{29.

Remark 2.3.1. • The number of necessary steps of the inclusion-exclusion principle

to be applied depends on up to what point the Minimal set of k-tuples t- intersections

are disjoint, that is T k
t Ă T k

t such that
ď

crk´1sPT k
t

Ξt
crk´1s

“
ď

crk´1sPT k
t

Ξt
crk´1s

have no intersection between them, being this the pk ´ 1q-th step of the process and

meaning the next l-tuples t-intersection will be empty and therefore do not count for

the union considered, for l ě k. And this leads us to the second remark.

• If a code C is such that all the k-dimensional subcodes that reach the minimum

support, that is ||D|| “ dkpCq, are generated by codewords of minimum weight and

conversely every l.i. k set of codewords of minimum weight span a k-dimensional

subcode with minimum support, then we have a direct influence of the spectrum (Aj
i )

into the bounds, since then |T k`1
t | “

ˆ

m

k

˙

, where m is the number of codewords of

minimum weight. Just as seen in the Example 2.3.1 |T 2
2 | “

ˆ

7
1

˙

“ 7.
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To see that the bounds presented in Theorem 2.2.6 in fact present the exact

value for perfect codes we see first the following lemma.

Lemma. 2.3.2. Let C be a linear perfect binary code with packing radius δ1 “

Y

d1pCq´1
2

]

.

Then

Sδ1`1p0q X Bδ1`1pc1q X Bδ1`1pc2q “ H,

for any different c1, c2 P C.

Proof. First we notice that if d :“ d1pCq is even the result is immediate since in this

case δ1 ă
d ´ 1

2 . Here, if we assume the statement is not true, then there exists v P

Sδ1`1p0q X Bδ1`1pc1q X Bδ1`1pc2q. Then since δ1 is the packing radius of C we can suppose

without loss of generality(wlog) that c1 is the only codeword that is at distance δ1 of

v, then we have dpv, c1q “ δ1, dpv, c2q “ δ1 ` 1, therefore by means of the triangular

inequality, which is true also since d is a distance, we get that:

dpc1, c2q ď dpc1, vq ` dpv, c2q “ δ1 ` δ1 ` 1 “ 2δ1 ` 1 ă 2
ˆ

d ´ 1
2

˙

` 1 “ d

Then, dpc1, c2q ă d. This contradicts d being the minimum distance of C.

In general, there is the chance of course that d is odd. In this case, we need to

check what happens in each scenario. We are going to show that if there is a vector v in the

given intersection, then there exists also a v1 in the same intersection and depending on the

distance between both we prove there exists, as well, a vector v˚ which is at a forbidden

distance considering that δ1 is the packing radius of C a perfect code. Then suppose

again the statement is not true and there exists v P Sδ1`1p0q X Bδ1`1pc1q X Bδ1`1pc2q, and

again wlog v P Bδ1pc1q, this means there exists too v1
P Sδ1`1p0q X Bδ1`1pc1q X Bδ1`1pc2q

different from v, but with v1
P Bδ1pc2q. In this case, we have dpv, c1q “ δ1 “ dpv1, c2q and

dpv, c2q “ dpv1, c1q “ δ1 ` 1. In particular, both v, v1
P Sδ1`1p0q, this means both have

the same weight and thus for them to be different, they need to differ in an even number

of coordinates, said in other words dpv, v1
q ” 0 mod 2. Of course since they are different

we have dpv, v1
q ‰ 0, then we will see what happens when the distance between them is

2 and when it is 4, that allows us to tackle any possibility from there on. We denote by

d |X p¨, ¨q, the distance between the codewords calculated only considering the coordinates

on X.
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• d(v,v’)=2. If it is so, then there are only two coordinates in which both vectors

differ, say p1, p2, with p1 P Supppvq∖Supppv1
q and p2 P Supppv1

q∖Supppvq. Then we

can write vp1vp2 “ 10, v1
p1v1

p2 “ 01. Now we analyze what happens with the distances

from both vectors with respect to one of the codewords, let’s say c1. This distance

can be decomposed as the distance calculated in the coordinates corresponding

to the intersection of the support of both vectors, plus the distance in the other

coordinates. Then let’s first notice that in this scenario d|SupppvqXSupppv1qpv, c1q “

d|SupppvqXSupppv1qpv1, c1q, dpv, c1q “ δ1, and dpv1, c1q “ δ1 ` 1. Being this, we have

four options for those coordinates in c1 as follows:

1) 00: d|SupppvqXSupppv1qpv, c1q “ δ1 ´ 1 and then dpv, c1q “ δ1, but dpv1, c1q “ δ1,

which contradicts that δ1 is 1-st the packing radius of C (from now on written CPR).

2) 01: d|SupppvqXSupppv1qpv, c1q “ δ1 ´ 2, then dpv, c1q “ δ1, but dpv1, c1q “ δ1 ´ 2,

this CPR.

3) 10: d|SupppvqXSupppv1qpv, c1q “ δ1, then dpv, c1q “ δ1, but dpv1, c1q “ δ1 ` 2 ‰

δ1 ` 1,, which contradicts the given hypothesis.

4) 11: d|SupppvqXSupppv1qpv, c1q “ δ1 ´ 1, then dpv, c1q “ δ1 “ dpv1, c1q this CPR.

• d(v,v’)=4 In this scenario there are four coordinates in which both vectors differ,

say p1, p2, p3 and p4. To construct v˚ we consider half of the coordinates in Supppvq∖

Supppv1
q Y Supppv1

q∖Supppvq trying to get half from each of these sets Supppvq∖

Supppv1
q and Supppv1

q∖Supppvq to balance the distance of v˚ from each v and v’,

whenever possible.

By way of illustration, let’s suppose p1, p2 P Supppvq ∖ Supppv1
q and p3, p4 P

Supppv1
q ∖ Supppvq. Then we consider for v˚ out of them only p1, p3 P Supppv˚

q,

that is, v˚ is 1010, vp1vp2vp3vp4 “ 1100, and v1
p1v1

p2v1
p3v1

p4 “ 0011 in those four co-

ordinates. Then with respect to the codeword c1 we have the options presented in

the next table.

By hypothesis, we suppose v is a vector in the intersection at distance δ1 from

c1, then what changes when considering the different options p1 through p4 for

c1 is dpv, c1q |SupppvqXSupppv1q and therefore dpv1, c1q, in general, we just check the

coordinates for each case. In Table 5 we can see that for any given possibility of c1



Chapter 2. Error correction capabilities of a code 43

c1p1
c1p2

c1p3
c1p4

dpv, c1q |SupppvqXSupppv1q dpv, c1q dpv1, c1q

0 0 0 0 δ1 ´ 2 δ1 δ1
0 0 0 1 δ1 ´ 3 δ1 δ1 ´ 2
0 0 1 0 δ1 ´ 3 δ1 δ1 ´ 2
0 0 1 1 δ1 ´ 4 δ1 δ1 ´ 4
0 1 0 0 δ1 ´ 1 δ1 δ1 ` 2 ‰ δ1 ` 1
0 1 0 1 δ1 ´ 2 δ1 δ1
0 1 1 0 δ1 ´ 2 δ1 δ1 ´ 2
0 1 1 1 δ1 ´ 3 δ1 δ1
1 0 0 0 δ1 ´ 1 δ1 δ1 ` 2 ‰ δ1 ` 1
1 0 0 1 δ1 ´ 2 δ1 δ1
1 0 1 0 δ1 ´ 2 δ1 δ1
1 0 1 1 δ1 ´ 3 δ1 δ1 ´ 2
1 1 0 0 δ1 δ1 δ1 ` 4 ‰ δ1 ` 1
1 1 0 1 δ1 ´ 1 δ1 δ1 ` 2 ‰ δ1 ` 1
1 1 1 0 δ1 ´ 1 δ1 δ1 ` 2 ‰ δ1 ` 1
1 1 1 1 δ1 ´ 2 δ1 δ1

Table 5 – Scenarios for the example with dpv, v1
q ” 0 mod 2

there is not a chance such that dpv, c1q “ δ1 and dpv1, c1q “ δ1 ` 1, having at the

same time dpv, v1
q ” 0 mod 2; this would mean that the analyzed intersection is

not empty. In particular, we can mention that the last column in the table allows

us to discard each case as follows:

– Having dpv1, c1q ď δ1 contradicts δ1 being the packing radius of the code (CPR).

– Any distance further from δ1 ` 1 is not possible, as we are considering balls

with such a radius.

This means that the only feasible option would have been a distance of exactly

δ1 ` 1. The same could be checked with respect to c2 and we can say that under the

given conditions, for the example taken into consideration, the lemma holds.

Now we check the general case. If we want v˚ to be as much as possible in the

middle between v and v’, and different from both, then among the four coordinates

studied we can suppose without loss of generality that p1, p2 P Supppvq ∖ Supppv1
q

and p3, p4 P Supppv1
q ∖ Supppvq, just by rearranging the coordinates suitably. This

leaves us with four possible v˚s, that is, 1010, 1001, 0110, 0101.

Then for each of these options, we check the distances with respect to all the possi-

bilities for c1. All the possible matches that would lead to a candidate being outside
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c1p1
c1p2

c1p3
c1p4

v˚
“1010 v˚

“1001 v˚
“0110 v˚

“0101
0 0 0 0 δ1 δ1 δ1 δ1
0 0 0 1 δ1 δ1 ´ 2 δ1 δ1 ´ 2
0 0 1 0 δ1 ´ 2 δ1 δ1 ´ 2 δ1 ´ 2
0 0 1 1 δ1 ´ 2 δ1 ´ 2 δ1 ´ 2 δ1 ´ 2
0 1 0 0 δ1 ` 2 δ1 ` 2 δ1 δ1
0 1 0 1 δ1 ` 2 δ1 δ1 δ1 ´ 2
0 1 1 0 δ1 δ1 ` 2 δ1 ´ 2 δ1
0 1 1 1 δ1 δ1 δ1 ´ 2 δ1 ´ 1
1 0 0 0 δ1 ` 1 δ1 δ1 ` 2 δ1 ` 2
1 0 0 1 δ1 ` 1 δ1 ´ 2 δ1 ` 2 δ1
1 0 1 0 δ1 ´ 2 δ1 δ1 δ1 ` 2
1 0 1 1 δ1 ´ 2 δ1 ´ 2 δ1 δ1
1 1 0 0 δ1 ` 2 δ1 ` 2 δ1 ` 2 δ1 ` 2
1 1 0 1 δ1 ` 2 δ1 δ1 ` 2 δ1
1 1 1 0 δ1 δ1 ` 2 δ1 δ1 ` 2
1 1 1 1 δ1 δ1 δ1 δ1

Table 6 – dpv˚, c1q considering rpSupppv1
q ∖ Supppvqq Y pSupppvq ∖ Supppv1

qqs

the intersection, mentioned in the lemma, are highlighted (also those with distance

δ1 ` 1 since they wouldn’t let us get to a contradiction and there are other options

on the same line that would indeed); but it is to notice that for every choice of c1

there is a choice for v˚ to which dpv˚, c1q ď δ1, meaning there is always a possible

v˚ we can choose from so that it contradicts the fact of being δ1 the packing radius,

since the same v˚ will have a similar behavior with respect to c2, by construction.

The only codeword for which no such a contradiction would be found is when

c1 |tp1,p2,p3,p4u“ 1100, but then again this choice is not possible because under such

circumstances the coordinates that count for dpv, c1q would be in SupppvqXSupppv1
q

and in consequence it would not be possible to increase the distance of c1 with re-

spect to v’ and at the same time changing the chosen four coordinates, that is,

there would be no way to obtain dpv1, c1q “ δ1 ` 1, which contradicts the general

hypothesis. Therefore, in general, given the circumstances of the lemma there does

not exist a vector in the intersection and in consequence it is empty. Of course, we

could check the same for the cases dpv, v1
q “ 6, 8, etc. But in those scenarios, it

is even clearer that we could find a vector that would contradict the condition of

being δ1 1-st the packing radius of the code. T herefore, there should not be an

intersection between balls with that radius.
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Remark 2.3.2. It could be thought that a generalization of the proposition of the previous

lemma would be possible, i.e., for k ď dimpCq and tc1, . . . , ck`1u Ă C ∖ t0u

Sδk`1p0q X Bδk`1pc1q X ¨ ¨ ¨ X Bδk`1pck`1q “ H

However, this property where the intersections of balls centered at non-zero codewords

with the sphere centered at the null-vector are mutually disjoint cannot be established in

general. For instance, let us consider C the Hamming r7, 4, 3s-code and let’s consider

k “ 1, c1 “ p0011010q, c2 “ p1101000q, c3 “ p0100011q, then we see that for this code

δ2 :“ t
d2pCq ´ 1

2 u “ 2. And yet

Sδ2`1p0q X Bδ2`1pc1q X Bδ2`1pc2q X Bδ2`1pc3q “ tp0101010qu ‰ H.

Also we could try to consider the packing radius for codes that are not perfect and see if the

property could be extended to their covering radius, but again this is not true in general.

Next, there is a counterexample. Let us consider C the code generated by the matrix

G “

¨

˚

˚

˚

˚

˚

˚

˝

10010110

01010101

00110011

00001111

˛

‹

‹

‹

‹

‹

‹

‚

,

this is an r8, 4, 4s binary code with covering radius 2 and packing radius 1, then δ1 `1 “ 2.

For this code if we take c1 “ p11000011q, c2 “ p10101010q we get

Sδ1`1p0q X Bδ1`1pc1q X Bδ1`1pc2q “ tp10000010qu ‰ H.

All this shows us that the condition of the code to be perfect is mandatory and that taking

the packing radius makes the expression tight, this means, it cannot be obtained for greater,

and by definition not even smaller, values for the radius.

After seeing this condition holds for perfect codes, we can then state the fol-

lowing theorem that provides us with a closed expression for PCDďepCq.

Proposition. 2.3.3. Let C be a linear binary perfect code with packing radius δ1, then if

e “ δ1 ` 1 the first step of the bound is in fact the exact value for PCDďepCq. Here:

PCDďepCq “

řδ1
t“0 |Stp0q| `

`

|Sep0q| ´ |Cd1pCq||Sep0q X Bepcd1pCqq|
˘

|Bepcq|
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“
|Bδ1p0q| `

`

|Sep0q| ´ |Cd1pCq||Sep0q X Bepcd1pCqq|
˘

|Bepcq|

Proof. Let us consider Cd1pCq the set of words of minimum weight, then by Lemma 2.3.2,

for every c1, c2 P Cd1pCq, with c1 ‰ c2, Bδ1pc1q X Bδ1pc2q “ H. Since it is true for every

pair of codewords, it is also true for the codewords in Cd1pCq. Now here also

Sδ1`1p0q X Bδ1`1pc1q X Bδ1`1pc2q “ H,

for every c1, c2 P Cd1pCq, with c1 ‰ c2. This tells us that the other steps in Proposition 2.2.6

are not necessary and the first step instead of a bound is the exact value of PCDďepCq.

Example. For C the binary Golay Code [23,12,7] we have δ1 “ 3. Then for

e “ 4 we get

PCDďepCq “
|B3p0q| ` p|S4| ´ |C7||S4p0q X B4pc7q|q

|B4pcq|

Then,

PCDďepCq “
2048 ` p8855 ´ 253 ¨ 35q

10903 “ 0, 187838

The generalized Hamming weights had already been useful to analyze the

error probability of a code over an erasure channel as seen in (SHEN; FU, 2019), but

this approach does not work over a binary symmetric channel, because we do not know

where the error occurs. Some bounds were established for the i-th Hamming weight itself

in (HELLESETH; KLØVE; YTREHUS, 1992), but not much had been said about the

error correction capacity a code C has, related to its weight distribution. And it is what

has been presented in this chapter.

We have seen how these two figures of merit of C, PCDďepCq and PED“epCq,

introduced in this work, are a meaningful tool to effectively compare codes with equal

or similar minimum distance, just as seen in Table 2. In general, due to the inclusion-

exclusion principle, these values can be calculated either tightly or exactly, depending on

the case.

For perfect codes, we saw in Proposition 2.3.3 that they provide an exact ex-

pression for each one of the values, being the first step the only one required. Nonetheless,

taking into consideration the generalized Hamming weights, drew our attention to the

complete spectrum of the code and how it could affect its ability to correct errors, but on
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the way more than that it showed also its potential as a new tool to classify codes, and it

is that what the next chapter is about.

2.4 Open question about PCDďepCq and PED“epCq

In this chapter we obtained bounds for the figures of merit PCDďepCq and

PED“epCq in the binary case. We would like to investigate later if we can generalize these

concepts over Fq, including the result for the intersection of balls presented previously in

Proposition 2.2.1. Also to determine if tighter bounds can be established and knowing

the number of steps necessary to get to the exact value of PCDďepCq by means of the

inclusion-exclusion principle.
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3 Generalized Hamming weights as complete

invariants of codes

Usually when considering the correction qualities of a code, it is only checked

how convenient its classical minimum distance is. However, what we have been seeing

along this work is that the capacity a code has to correct a given number of errors does

not depend only on this parameter, but more so on its generalized Hamming weights

and even its complete weight spectrum. Ever since Wei introduced the concept in (WEI,

1991), the generalized Hamming weights have remained an interesting definition, but its

role is not actually understood. Nonetheless, it has been used in other types of codes,

rather than linear block codes for which were defined. Rosenthal extended the definition

for convolutional codes in (ROSENTHAL; YORK, 1997), Ravagnani in (RAVAGNANI,

2016) for Gabidulin codes in relation to Network coding. Here we present some results that

support the idea that the generalized Hamming weights and, even further, the spectrum

of the code (which gives the complete weight distribution of the codewords in a code C)

is a complete set of invariants, that is, it can determine a code up to equivalence.

It is clear by many examples, that the fact that two codes have the same

minimum distance, does not imply any relation, in the matter of equivalence, between

such codes. For instance, consider the full ambient space Fn
q and the code spanned by

a weight one vector, both have minimum distance 1, but are clearly non-equivalent in

general. Now, what can be said about codes with the same weight enumerator? Is there

any between them under this consideration? It can be seen in the classification files found

on GitHub or in the following example from (CHEON, 2006) that equal weight polynomial

is not enough to say that the codes are equivalent.

Example. 3.0.1. Given

G1 “

¨

˚

˚

˚

˝

1 0 0 0 0 1

0 1 0 0 0 1

0 0 1 1 1 1

˛

‹

‹

‹

‚

, G2 “ pI3 | I3q.

And say Ci is the code whose generator matrix is Gi. Then, we have that wC1pxq “

p1 ` x2
q

3
“ 1 ` 3x2

` 3x4
` x6

“ wC2pxq. But, while for every x1, x2 P C2, x1 ‰ x2, of

https://bit.ly/3aprklP
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weight 2, we get wtpx1 `x2q “ 4; on C1 there exist x1
1, x1

2 of weight 2 and wtpx1
1 `x1

2q “ 2.

For instance, consider x1
1 “ G1r1, :s, x1

2 “ G1r2, :s.

This example tells us that having codes with equal weight polynomials is not

enough to say the codes are isomorphic. But, is there a way we could affirm something

like that, considering the support of all the subcodes of a given binary code C? This is the

question that motivates us in this chapter. Even though we do not have a final answer in

the general case, there is strong evidence that suggests that what we call the spectrum of

the code is a complete set of invariants, meaning it can be used to classify binary codes.

So let us begin first introducing this concept of the spectrum of a code.

3.1 Introduction

To get information about the capacity a code has to correct errors, and what

really defines it, we have noticed that not only the generalized Hamming weights are

important, but the weight spectrum itself, i.e., the matrix of the distribution of supports

for the subcodes of a given code C. We recall the spectrum definition as given in Definition

2.2.4 where SpecpCq “ pAj
i q, and

Aj
i :“ | tD Ă C : dimpDq “ i and ||D|| :“ |SupppDq| “ ju |.

We shall represent SpecpCq by a matrix, as in this example.

Example. 3.1.1. If C has a generator matrix

G :“

¨

˚

˚

˚

˝

1 1 0 1 0

0 0 1 1 1

0 0 0 1 0

˛

‹

‹

‹

‚

, then SpecpCq :“

¨

˚

˚

˚

˝

1 2 2 1 1

0 0 2 1 4

0 0 0 0 1

˛

‹

‹

‹

‚

In fact, we have C :“ t00000, 11010, 00111, 00010, 11101, 00101,

11000, 11111u. Counting the number of nonzero codewords of a given weight we get the first

row of SpecpCq. The number of 2-dimensional subspaces of C is given by the q-binomial

coefficient when q “ 2,

ˆ

3
2

˙

2
“ 7, which are:

• x11010, 00010y with support size 3

• x00111, 00010y with support size 3
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• x11101, 00101y with support size 4

• x11010, 00111y with support size 5

• x11010, 00101y with support size 5

• x00111, 11000y with support size 5

• x00010, 11101y with support size 5

From this we obtain the second row of SpecpCq and finally its last one comes

from the fact that |SupppCq| “ |t1, 2, 3, 4, 5u|.

From here on, in this chapter, our discussion is focused on linear binary codes,

unless otherwise stated. We next present a couple of examples that allows us to think that

given a pair of codes with equal spectrum, if we can find a couple of codewords with the

same weight in a respective basis for these codes, and they are removed, the effect over

the spectrum of such codes is the same, whether the codewords are equal or not, as long

as they have the same weight. And this gives us some ideas on how to associate what we

call spectrum preserving bases with the notion of equivalence. Then let us consider

G1 :“

¨

˚

˚

˚

˝

1 0 0 1 0 1 1 0

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

˛

‹

‹

‹

‚

, G2 :“

¨

˚

˚

˚

˝

1 0 0 1 0 1 1 0

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

˛

‹

‹

‹

‚

and define them to be generator matrices for Ci, i “ 1, 2, respectively. They are equivalent

codes with σ1
“ p175286qp34q P Symp8q. Their spectrum matrix is

SpecpCiq “

¨

˚

˚

˚

˝

0 0 0 7 0 0 0 0

0 0 0 0 0 7 0 0

0 0 0 0 0 0 1 0

˛

‹

‹

‹

‚

, i “ 1, 2.

We can define c1 :“ p00001111q, c2 :“ p01010101q, with support Supppc1q “ t5, 6, 7, 8u,

Supppc2q “ t2, 4, 6, 8u. If we include ci into the considered basis of Ci, we get C generated

by the matrix,

G :“

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 1 0 1 1 0

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

˛

‹

‹

‹

‹

‹

‹

‚

.
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We notice that σ1
“ p175286qp34q “ p17qp15qp12qp18qp16qp34q and removing those trans-

positions with coordinates on Supppc1q Y Supppc2q we get σ “ p1q “ Id as expected.

This example puts interest into looking how to work with the bases of the

codes to determine some relationship between the codes as we are looking for. That is

what motivates us to give the next definition that shows a condition we would expect to

be fulfilled by codes with equal spectrum.

3.2 Spectrum preserving bases

Definition. 3.2.1 (Codes with spectrum preserving bases). Given C, C 1 k-dimensional

binary codes of length n. We say that C, C 1 admit spectrum preserving bases if for

every B “ tc1, . . . , cku a basis of C, there exists B1
“ tc1

1, . . . , c1
ku a basis of C 1, such that

wtpciq “ wtpc1
iq and Specxc1, . . . , ciy “ Specxc1

1, . . . , c1
iy, for every i “ 1, . . . , k.

The next proposition tells us that the subspaces of codes with equal spectrum

are linked pairwise, so to say. This means that for every subspace in one of the codes,

there must be a subspace in the other, both, with equal spectrum.

Proposition 3.2.1. Let C, C 1
ď Fn

2 be codes with spectrum preserving bases. Then, for

every linear subcode S ď C, there exists S 1
ď C 1, such that SpecpSq “ SpecpS 1

q.

Proof. Given C, C 1 binary k-dimensional codes of length n that admit spectrum preserving

bases. For any S ď C, given a basis of S it can be extended to a basis B of C. Therefore,

wlog we can assume the first dimpSq vectors in B to constitute a basis of S and, by

definition, there exists a corresponding spectrum preserving basis B1 of C 1. For this B1 we

can also take the first dimpSq vectors of B1 to span a subspace of C 1 that, by definition

again, has the same spectrum as S and this subspace is the S 1 we needed.

The next lemma lets us know that whenever a pair of codes have equal spec-

trum, they must admit what we call spectrum preserving bases.

Theorem 3.2.2. Given C, C 1 k-dimensional binary codes of length n. They admit spec-

trum preserving bases if, and only if, SpecpCq “ SpecpC 1
q.
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Proof. The first implication is an immediate consequence of Definition 3.2.1, since we have

that it is true for every i :“ 1, . . . , k, it is in particular true for i “ k. For the converse,

since we suppose both C and C 1 have the same spectrum, we can fix a basis for C, let us

say B :“ tc1, . . . , ck´1, cku and we can choose c1
1 P C 1, with wtpc1q “ wtpc1

1q and it is clear

that having the same weight, the spectrum of the subcodes spanned, by these vectors

respectively, will be the same. Now suppose the statement is true up to dimension l ď

k ´ 1 ă k, i.e., if Specpxc1, . . . , clyq “ Specpxc1
1, . . . , c1

lyq, then xc1, . . . , cly and xc1
1, . . . , c1

ly

admit spectrum preserving basis. Let us prove for k, consider the hypothesis to be true

for l “ k ´ 1, then name the pk ´ 1q-dimensional subspaces S :“ xc1, . . . , ck´1y ď C

and S 1 :“ xc1
1, . . . , c1

k´1y ď C 1 for which SpecpSq “ SpecpS 1
q and that admit spectrum

preserving basis. We have by hypothesis that C and C 1 have the same spectrum, then

the weight distribution of the words in C and C ∖ S, and C 1 and C 1 ∖ S 1 are equal,

respectively. Moreover, ck P C ∖ S and there exists c1
k P C 1 ∖ S 1 with wtpckq “ wtpc1

kq

that completes a basis for C 1(any l.i with tc1
1, . . . , c1

k´1u of weight wtpckq) and clearly also

SpecpCq “ Specpxc1, . . . , ck´1, ckyq “ Specpxc1
1, . . . , c1

k´1, c1
kyq “ SpecpC 1

q, ending this

way our proof.

Remark 3.2.3. In this proof the existence of each c1
i with the same weight as ci is a

consequence of the hypothesis that SpecpCq “ SpecpC 1
q. On the other hand, that each

one fulfills the condition that the spanned vector spaces have the same spectrum comes

additionally from noticing that Definition 2.2.4 implies an appropriate organization of the

support of the subspaces. This in order to guarantee the equality of the higher dimension

subcodes. Thus, even though having subspaces with equal spectrum is not sufficient to

guarantee that the codes have equal spectrum too, it is indeed necessary. In this sense,

Definition 2.2.4 lets us assert that if for a given dimension l ď k “ dimpCq “ dimpC 1
q

there do not exist l-dimensional subspaces S ď C and S 1
ď C 1 with SpecpSq “ SpecpS 1

q,

then SpecpCq ‰ SpecpC 1
q.

As an illustration on how to obtain these spectrum preserving bases, we show

a couple of examples.
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I.) Let us consider the codes with generator matrices

G1 :“

¨

˚

˚

˚

˝

1 0 0 0

0 1 0 1

0 0 1 1

˛

‹

‹

‹

‚

, G2 :“

¨

˚

˚

˚

˝

1 0 1 0

0 1 1 0

0 0 0 1

˛

‹

‹

‹

‚

,

which are equivalent and have a spectrum matrix
¨

˚

˚

˚

˝

1 3 3 0

0 0 4 3

0 0 0 1

˛

‹

‹

‹

‚

First let’s obtain the three spectrum matrices of the subcodes generated by the

vectors of the considered basis of C1, the code generated by G1, that we need to

determine B1. These are

Specpxtp1000quyq “ p1 0 0 0 0 0q,

Specpxtp1000q, p0101quyq “

¨

˝

1 1 1 0

0 0 1 0

˛

‚

,

Specpxtp1000q, p0101q, p0011quyq “

¨

˚

˚

˚

˝

1 3 3 0

0 0 4 3

0 0 0 1

˛

‹

‹

‹

‚

Now if we notice from the vectors in the generator matrix G1, we see there are two

vectors of weight 2 and one of weight 1. Then, we need to work with the vectors of

weight 1 and 2 of the code generated by G2. These sets are t0001u, t1010, 0110, 1100u,

respectively. Then we start constructing the corresponding basis B1 with respect to

the basis with vectors in G1, by taking the first, and in this case only, vector of

weight 1 in C2, the code generated by G2, i.e., (0001). Of course then for dimension

1 we get as

Specpxtp0001quyq “ p100000q.

Next we need to choose one vector of weight two that, when joined to the basis,

spans a code with the same spectrum as that shown for dimension two for the code

C1. Then here there are three possible combinations,
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1 : tp0001q, p1010qu, 2 : tp0001q, p0110qu, 3 : tp0001q, p1100qu, which we call the op-

tions 1, 2 and 3. The respective spectrum matrices are,

1 :

¨

˝

1 1 1 0

0 0 1 0

˛

‚, 2 :

¨

˝

1 1 1 0

0 0 1 0

˛

‚, 3 :

¨

˝

1 1 1 0

0 0 1 0

˛

‚.

As we can notice they are all the same, which means there is not a unique option we

can choose. And therefore, any linearly independent vector in the set of 2-weighted

vectors will complete the basis and span the full code C2, which in consequence has

the same spectrum as C1. Then, for instance, an appropriate B1 obtained using this

procedure is tp0001q, p1010q, p0110qu.

II.) For the second example, let us consider the codes with generator matrices:

G1 :“

¨

˚

˚

˚

˝

1 0 0 0 0 0

0 1 1 0 0 1

0 0 0 1 1 0

˛

‹

‹

‹

‚

, G2 :“

¨

˚

˚

˚

˝

1 0 0 0 1 0

0 1 1 1 0 0

0 0 0 0 0 1

˛

‹

‹

‹

‚

,

which are equivalent and have a spectrum matrix
¨

˚

˚

˚

˝

1 1 2 1 1 1

0 0 1 1 1 4

0 0 0 0 0 1

˛

‹

‹

‹

‚

First let’s obtain the three spectrum matrices of C1, the code generated by G1, that

we need to determine B1. These are

Specpxtp100000quyq “ p1 0 0 0 0 0q,

Specpxtp100000q, p010001quyq “

¨

˝

1 0 1 1 0 0

0 0 0 1 0 0

˛

‚,

Specpxtp100000q, p010001q, p000011quyq “

¨

˚

˚

˚

˝

1 1 2 1 1 1

0 0 1 1 1 4

0 0 0 0 0 1

˛

‹

‹

‹

‚

.

Now if we notice from the vectors in the generator matrix G1, we see there is one

vector of weight 3, one of weight 2 and one of weight 1. Then according to the

Definition 3.2.1, we need to work with the vectors of weight 1, 2 and 3 of the

code generated by G2. These sets are tp000001qu, tp100010qu, tp011100q, p100011qu,
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respectively. Then we start constructing the corresponding basis B1 with respect

to the base with vectors in G1, by taking the first, and in this case only, vector of

weight 1 in C2, here the code generated by G2, i.e., (000001). Of course then for

dimension 1 we get as

Specpxtp000001quyq “ p100000q.

Next we need to choose one vector of weight three, if we want to preserve the

order of the rows in G1. We choose that vector so that, when joined to the basis, it

spans a code with the same spectrum as that shown for dimension two for the code

C1. Then here there are two possible combinations, 1 : tp000001q, p011100qu, 2 :

tp000001q, p100011qu, which we call the options 1 and 2. The respective spectrum

matrices are

1 :

¨

˝

1 0 1 1 0 0

0 0 0 1 0 0

˛

‚, 2 :

¨

˝

1 1 1 0 0 0

0 1 0 0 0 0

˛

‚.

We can see the only possible choice is the option 1, that preserves the spectrum,

as required. It does exists because codes C1 and C2 are equivalent. Finally just

add the only weight 2 codeword, i.e., (100010) obtain a basis of the code C2 and

consequently the full spectrum matrix. Then here B1 turns to be unique and is

tp000001q, p011100q, p100010qu.

3.3 Spectrum and equivalence

The following theorem relates equivalent codes with the property of having

equal spectrum.

Theorem 3.3.1. Equivalent binary codes have the same weight spectrum.

Proof. Let C, C 1
Ď Fn

2 be two equivalent codes. Then, by definition of equivalence, there

exists σ P Sympnq, such that σpCq “ C 1. Now since by Theorem 1.2.1 the support of a

code is determined by its generator matrix and since C, C 1 are equivalent, we have that

p@S ď CqpσpSq ď C 1 and ||S|| “ ||σpSq||q.

Analogously,

p@S 1
ď C 1

qpσ´1
pS 1

q ď C and ||S 1
|| “ ||σ´1

pS 1
q||q.
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This means there is a bijection between the subspaces of C and C 1, by means of the

isomorphism induced by σ, that also preserves the support of the subspaces that are

associated, and since it is true for every subspace we have in consequence that SpecpCq “

SpecpC 1
q.

Exploring the relationship between spectrum and equivalence has been the

purpose of this chapter and so far we have found the following implications

Equiv. codes Th. 3.3.1
ÝÝÝÝÝÝáâÝÝÝÝÝÝ
Conjecture

Equal spec. Th. 3.2.2
ÐÝÝÝÝÑ Admit spec. pres. basis

The following example illustrates a scenario in which the converse of Theorem 3.3.1 holds.

In this case, it is possible to obtain, from an isomorphism between subspaces, an isomor-

phism between the codes themselves.

GG1 :“

¨

˝

1 0 0 0 0 1 1 1

0 0 0 0 1 0 0 1

˛

‚ GG2 :“

¨

˝

0 0 0 1 0 1 1 1

0 0 0 0 1 0 0 1

˛

‚

and define GGi to be a generator matrix for CCi, i “ 1, 2. Both codes have the spectrum

matrix

SpecpCCiq “

¨

˝

0 1 0 2 0 0 0 0

0 0 0 0 1 0 0 0

˛

‚, i “ 1, 2.

These codes are equivalent, but not equal. In fact CC1 ” CC2, with σ1
“ p17423q and if

we include into their basis c˚
“(0 1 1 0 0 1 1 1) a vector of weight 5 we get respectively

C1 and C2 with the next generator matrices

G1 :“

¨

˚

˚

˚

˝

1 0 0 0 0 1 1 1

0 1 1 0 0 1 1 1

0 0 0 0 1 0 0 1

˛

‹

‹

‹

‚

G2 :“

¨

˚

˚

˚

˝

0 1 1 0 0 1 1 1

0 0 0 1 0 1 1 1

0 0 0 0 1 0 0 1

˛

‹

‹

‹

‚

We can check by simple inspection even, that C1 ” C2 with σ “ p14q P Symp8q. Both

codes have the spectrum

SpecpCiq “

¨

˚

˚

˚

˝

0 1 1 2 3 0 0 0

0 0 0 0 2 3 2 0

0 0 0 0 0 0 1 0

˛

‹

‹

‹

‚

, i “ 1, 2.

Now we notice that Supppc˚
q “ t2, 3, 6, 7, 8u and σ1

“ p17423q “ p17qp14qp12qp13q, if we

remove the transpositions with coordinates on Supppc˚
q we get σ “ p14q, which makes
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C1 ” C2. Unfortunately this is not always possible, then this technique does not allow us

to prove in general the converse of Theorem 3.3.1.

In fact, Theorem 3.3.1 is rather simple and can be generalized to q-ary codes.

We are rather interested in its reciprocal: does the generalized weight spectrum charac-

terizes a code up to equivalence? This would be a remarkable result, since considering

less than the spectrum is not sufficient to characterize a code: as we shall see, neither the

weight distribution (or Mac Williams polynomial) nor the generalized weigh hierarchy are

sufficient to ensure codes equivalence.

We devote the next section to explore this conjecture.

3.4 Shortcuts for classification by exhaustion

The following lemma tells us a relation between equivalent codes and their

duals. And therefore when searching for equivalent codes in a n-dimesional ambient space,

it is sufficient to search up to dimension n

2 or t
n

2 u ` 1 “ t
n ` 1

2 u, case n is odd.

Lemma. 3.4.1. Let C Ď Fn
q and σ P Sympnq. Then σpCq

K
“ σpCK

q. Or equivalently let

C1, C2 Ď Fn
q equivalent codes, i.e., there exists σ P Sympnq, such that, σpC1q “ C2. Then

σpC1q
K

“ CK
2 .

Proof. Let σ P Sympnq and C Ď Fn
q . Let us prove that σpCq

K
“ σpCK

q. In fact, for every

x “ px1, . . . , xnq P C, y “ py1, . . . , ynq P CK we have

0 “ xx, yy “

n
ÿ

i“1
xiyi “

n
ÿ

i“1
xσpiqyσpiq “ xσpxq, σpyqy

Then

y P CK
ô σpyq P σpCq

K.

And in consequence

σpCq
K

“ σpCK
q.

This lemma then allows us to assert that

C ” C 1
ô CK

” C 1K.
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There are two scenarios for which the general assertion, the converse of The-

orem 3.3.1, is true. They are the trivial case when dimension is 1, in which the vector

spaces, being binary, have only a nonzero codeword and both have the same weight, this

leads to being equivalent by having any bijection between the support of both codewords,

an induced isomorphism between the vector spaces. And the second case is proven in the

following proposition.

Proposition 3.4.1. Given C, C 1
ď Fn

2 2-dimensional spaces with SpecpCq “ SpecpC 1
q.

Then C ” C 1.

Proof. If C, C 1 are binary codes of dimension 2, then there exist α, β, x, x1
P Fn

2 such that

C “ xα, xy, C 1
“ xβ, x1

y and given the fact that both have the same spectrum, we can

suppose without loss of generality that wtpαq “ wtpβq and wtpxq “ wtpx1
q. In general,

we would get C “ t0, α, x, α ` xu, C 1
“ t0, β, x1, β ` x1

u. In this case, since SpecpCq “

SpecpC 1
q necessarily wtpα ` xq “ wtpβ ` x1

q. Now, how can this information lead to both

codes being equivalent? That is what we pretend to prove next. And we do this by showing

there is a partition of the support of the code in terms of the support of the elements

of the considered basis. Over F2 it is easy to check that for every y, z P Fn
2 , wtpy ` zq “

|pSpyq Y Spzqq ∖ pSpyq X Spzqq|. Moreover, wtpy ` zq “ wtpyq ` wtpzq ´ 2|Spyq X Spzq|.

This last one equality indicates that under the assumption we have that both α, β and

x, x1 have the same weight, respectively, and having the same spectrum both codes, then

it is also true that α ` x, β ` x1 have the same weight, then wtpα ` xq “ wtpαq ` wtpxq ´

2|SpαqXSpxq| “ wtpβq`wtpx1
q´2|SpβqXSpx1

q| “ wtpβ `x1
q. Therefore, |SpαqXSpxq| “

|Spβq X Spx1
q|. But with this we also have that |Spαq ∖ Spxq| “ |Spβq ∖ Spx1

q|, because

it is already true that |Spαq| “ |Spβq| and Spαq “ pSpαq ∖ Spxqq Y pSpαq X Spxqq, then

|Spαq ∖ Spxq| “ |Spβq ∖ Spx1
q|. The same can be seen with respect to Spxq and Spx1

q.

Then we have that effectively |Spαq Y Spxq| “ |Spβq Y Spx1
q| and there is a partition with

sizes of the sets corresponding to each other too, i.e.,

Spαq Y Spxq “ pSpαq ∖ Spxqq Y pSpαq X Spxqq Y pSpxq Y Spαqq,

Spβq Y Spx1
q “ pSpβq ∖ Spx1

qq Y pSpβq X Spx1
qq Y pSpx1

q Y Spβqq,

|Spαq ∖ Spxq| “ |Spβq ∖ Spx1
q|,

|Spxq ∖ Spαq| “ |Spx1
q ∖ Spβq| and
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|Spαq X Spxq| “ |Spβq X Spx1
q|.

Then there is a bijection σ1 between Spαq∖Spxq and Spβq∖Spx1
q, a bijection σ2 between

Spxq∖Spαq and Spx1
q∖Spβq, and a bijection σ3 between Spxq X Spαq and Spx1

q X Spβq.

Any of them in case of being empty turns σi to be the identity, and being a partition we

can consider then that σ “ σ1σ2σ3 induces an isomorphism between C and C 1.

Theorem 3.4.2. Two k-dimensional binary codes with same spectrum are equivalent for

k P t1, 2, n ´ 2, n ´ 1u.

Proof. The case k “ 1 is trivial and k “ 2 was proved in the previous proposition. The

cases k “ n ´ 2, n ´ 1 follow from Lemma 3.4.1.

3.4.0.1 COMPUTATIONS FOR n ď 11

The next proposition is also useful to reduce the calculations while computing

the number of equivalence classes of binary codes of a given length and dimension. By Sk

we denote a set of all the equivalence classes’ representatives of k-dimensional subspaces

of Fn
2 .

Proposition 3.4.3. Given Sk be a set of representatives of k-dimensional subspaces of

Fn
2 . Then for every C P Sk, any pk ´ 1q-dimensional subspace M ď C is equivalent to

some L P Sk´1

Proof. Given C P Sk. Suppose that for some M ď C with dimpMq “ k ´ 1 there is no

L P Sk´1 such that M ” L. This contradicts the fact that Sk´1 contains all the equivalence

classes’ representatives of pk ´ 1q-dimensional subspaces of Fn
2 .

This result was important, specially when analyzing n ě 9 where the number

of possible subspaces grows considerably. This guarantees that the set of representatives

of higher dimension may be obtained using those of smaller dimensions. And since we

were interested in checking the condition given in the Conjecture 3.4.2 for codes that

were not equivalent and had the same spectrum, if they existed, and we could verify that

it is not true. This is, whenever the codes had the same spectrum they necessarily were

equivalent.
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Besides the low dimension and co-dimension cases in Theorem 3.4.2, we checked

it for every rn, ks2-code with n ď 11. This was done using MAGMA. With Theorem 1.2.1

the calculation of the support of a vector space was reduced, making the algorithm work

through the cases faster by doing the calculation only with the generator matrices. Lemma

3.4.1 also helped us reduce the calculations by considering the codes up to half the di-

mension of the ambient spaces. This because guaranteeing the conditions for the first

dimensions, means it is also true for their duals or the higher dimensions. Proposition

3.4.3 helped to do some recursive work by using the results from smaller dimension to

analyze higher ones. Also, by means of Theorem 3.3.1 whenever a code was equivalent to

an already stored one, it was skipped and its spectrum was not calculated. All these con-

siderations working together allowed us to compute all the equivalence classes of binary

codes up to length 11 for which the task of classification by exhaustion was feasible. This

gives us the next result.

Theorem 3.4.4. Given C, C 1
ď Fn

2 , n ď 11. Then,

C ” C 1
ô SpecpCq “ SpecpC 1

q.

We were not able to extend this result to general dimensions, but we do believe

it should be true, so we conjecture:

Conjecture. 3.4.2. Two binary codes are equivalent if, and only if, they have the same

spectrum.

This conjecture is known to be true in the following cases:

1. The fact that equivalent codes have the same spectrum is proved in Theorem 3.3.1.

2. The reciprocal holds for low dimension and co-dimension cases in Theorem 3.4.2.

3. It also holds for codes with equal spectrum, therefore, equal spectrum preserving

basis (Theorem 3.2.2).

4. It is true for every rn, ks2-codes with n ď 11. This was checked computationally and

proves Theorem 3.4.4.
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It is also important to remark that the spectrum is the smallest invariant to

determine the code (up to equivalence), since neither the generalized weight hierarchy nor

the weight distribution can do it:

1. The weight hierarchy alone is not sufficient to guarantee the equivalence of codes,

as seen in Chapter 2, Table 2 that codes with equal weight hierarchy, for instance

E16, F16, are not equivalent.

2. The weight enumerators are also not sufficient to ensure equivalence of codes, as

was shown in Example 3.0.1.

Algoritmo 1 – Algorithm to verify that equal spectrum implies equivalence

Datos: rn, ks

Resultado: Sequences of generator matrices and spectrums of non-equivalent
rn, ks-codes

inicio
C ÐÝ tAll the l.i. k-tuples in Fn

2 u

EC, DS, CE ÐÝ r s EC stores Gen(C), DS stores Spec(C), CE
stores counterexample if found. Initialized empty

para t P C hacer
cod ÐÝ xty the code spanned by the t k-tuple is obtained
s ÐÝ Specpcodq its spectrum calculated
si s R DS entonces If new spectrum and gen matrix stored

Include cod in EC
Include s in DS

en otro caso
para cc with Specpccq “ s hacer Checks the codes with equal
spectrum stored

si cc ı cod entonces If not equiv. is a counterexample
Counterexample found, non-equivalent codes
with same spectrum Equivalence checked with Magma
CE ÐÝ rcc, cods This variable remained empty
Print CE

fin
fin

fin
Classification for rn, ks

Print rECs, rDSs

fin
fin

Then considering everything exposed in this chapter we have a strong belief of

it to be true in general.
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Doing a recap, we have seen in this chapter that even though two codes have

equal enumerator polynomial, as seen in Example 3.0.1, it is not sufficient to guarantee

they are equivalent codes. Also, we had already seen in Chapter 2, Table 2 that codes with

equal classical parameters, for instance E16, F16, may have different capacity to correct

errors. There, two codes of the same length, with the same dimension and same minimum

distance, but nonequivalent, have different values for PCDďepCq and PED“epCq due to

the differences in the distribution of subspaces’ support each one has.

We have explored the concept of using the spectrum as a classification tool

for binary codes. Proving that for dimension 2 it is always true that codes with equal

spectrum are equivalent, and we have also seen that given some conditions it is possible

to guarantee that having the same spectrum implies the codes are equivalent, the converse

is always true as seen in this work also.

We have by exhaustion classified all the block codes up to length 11 3.4.4,

using duality to check the dimension up to half the length 3.4.1. And in order to make the

search efficient, we have used some modifications of Data Analysis techniques. First, to

classify the vector spaces, searching for equivalence classes3.4.3, a modification of the K-

means algorithm has been used. This is an unsupervised machine learning technique, that

belongs to the clustering algorithms and in our case we used the correlation of data with

respect to equivalence between the spaces. To make more efficient the searching process we

have used also a variation of the Principal Component Analysis (PCA) applied to codes,

that is a Dimensionality Reduction Data Analysis’ algorithm by using the contrapositive

of Proposition 3.3.1. It is important to remark that the machine learning algorithms were

not the inspiration initially, but afterwards the link between the used technique and the

basic principles of K-means and Dimensionality reduction was perceived, in fact in their

pure form both are originally thought to be applied directly to classical vector spaces, but

our algorithm uses the essence of each algorithm but applied to Grassmanian spaces, i.e.,

spaces with vector spaces as its elements. Therefore, we do not claim to have implemented

the usual and pure form of K-means or Dimensionality Reduction Data Analysis but an

adaptation of their spirit. In every case, as can be checked in the GitHub repository,

the conjecture here presented is true up to length 11. This means that every pair of

binary code of length up to 11 and any dimension are equivalent if, and only if, they

have the same spectrum. Proving the remainder, in general, has been elusive due to the

https://bit.ly/3aprklP
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conditions to guarantee that an isomorphism between subspaces of the codes can induce

an isomorphism of the ambient codes. And this then gives some more opportunities to

continue this research path, along with some smaller steps as to prove it for dimension

3 or higher, or getting weaker conditions to extend such an isomorphism of subcodes to

the supercodes. For greater lengths this process was not computationally possible due to

running time restrictions. Figure 4 shows a logarithmic graphic normalized to the running

time of the case [8,4] that took about 5 min. Doing the calculations, if all the combinations

are considered the case [10,5] would have taken more than 6 continuous months of CPU

time and [11,5] 203, not to tell greater ones. But due to the restrictions used in the

algorithm the running time for [11,6] got to about three months. This made unfeasible

the pursuing of length 12.

Figure 4 – CPU running time in logarithmic scale, normalized to the case [8,4]„5 min.

3.5 Open questions related to the spectrum of codes

We have seen that the minimum distance, the weight enumerator polynomial

and even the weight hierarchy are not enough to determine a code, up to isomorphism.

Whereas the spectrum or the matrix of support distribution of the subcodes of C seems

to be the minimal set of invariants to consider in order to guarentee equivalence of codes.
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There are some results linking the concept of permutational equivalence with having the

same spectrum. But we would like to extend this concept to monomial equivalence, this

implies generalizing the definition of spectrum for larger fields than F2 and checking how

the results may be adapted in those conditions. In short, we would very much like to

prove the main conjecture presented in 3.4.2. Also it would be interesting to investigate

the relation of this potential classification technique with cryptosystems, such as McEliece.
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4 Extremal type III codes

In this chapter we work with a different problem: The classification of extremal

type III codes with some fixed parameters. It is known by (SHENGYUAN, 1999) that

self-dual ternary codes, much less extremal, do not exist if n “ 12i, i ě 70. That makes it

interesting, investigating the possible cases yet to be completely classified. In particular,

we will see that for length 60 and 52 it was possible to obtain codes that were previously

unknown. By means of monomial representations we obtained a family of codes invariant

under the group SL2ppq, including the extremal type III code of length 60. For the type III

code of length 52 an algebraic construction is presented. These results have been published

in (NEBE; VILLAR, 2013; BOUYUKLIEVA; CRUZ; VILLAR, 2022), and presented in

ALCOMA 2015 (VILLAR, 2015a) and in CWC 2015 (VILLAR, 2015b). In order to do it,

we deal first with the general concepts and necessary propositions to exclude some types

of automorphisms from the list of all the possible options. Some of these due to general

conditions presented and others considering the particular case to study the known bounds

for the minimum distances of codes available in (GRASSL, 2007). The way to do this, is

that if given rn, ks3 the expected d, if forbidden in the table, then that combination may

be excluded.

4.1 Definitions

Let r P N. We say a code C is r-divisible, if r | wtpcq, for every c P C. Self-

dual codes, those for which CK :“ tv P Fn
q : pv | cq “ 0, for all c P Cu “ C, have a special

classification, depending on the field over which they are defined and their r-divisibility,

as it follows: If C is a q-ary code, self-dual and r-divisible, with r ą 1, then we say that

C is a code of

a. Type I if q “ 2 and C is not doubly even, i.e., r ‰ 4.

b. Type II if q “ 2 and C is doubly even.

c. Type III if q “ 3, which by being self-dual is also 3-divisible.
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d. Type IV if q “ 4, and therefore, it is even (r=2) as well.

Gleason, et al. (ASSMUS; MATTSON; TURYN, 1967) proved that, if s ą 1

divides the size of the support of each codeword in a non-trivial binary self-dual code, then

either s “ 2 or s “ 4. Due to the self-duality, binary Type I, II codes satisfy naturally

this condition, when s “ 2. According to (GLEASON, 1971) doubly even binary self-dual

codes exist if n is a multiple of eight.

In (MALLOWS; SLOANE, 1973) C.L. Mallows and N.J.A. Sloane proved that

for C a ternary self-dual rn, k, ds-code the following inequality holds for d:

d ď 3
X

n
12

\

` 3.

And in (MACWILLIAMS et al., 1978) for C a quaternary self-dual rn, k, ds-code it holds

that:

d ď 2
X

n
6

\

` 2,

here txu denotes the floor of x. Codes meeting this bound are named extremal. Examples

of notable extremal binary codes are the r24, 12, 8s extended binary Golay code and the

r8, 4, 4s extended Hamming code (GOLAY, 1949; HAMMING, 1950). Due to Golay it is

also known the unique r12, 6, 6s ternary extremal code, the extended ternary Golay code

(GOLAY, 1949).

Finally, given C k-dimensional code of length n over Fq and σ P AutpCq of

order p, p a prime number, we say that σ P Sympnq is of type p´pt, fq if σ can be written

as the composition of t p-cycles and f fixed points.

Example. 4.1.1. Consider the permutation σ “ p123qp456qp789q P Symp14q. Then σ is

of type 3-(3,5), because it is of order p “ 3, there are 3 p-cycles and it has 5 fixed points

in the set r14s “ t1, . . . , 14u.

4.2 Code decomposition

When studying codes, specially large ones, it comes on handy to have the

chance to break them down into pieces that represent the whole set. This because, de-

pending on the case, the submodules turn out to be easier to handle than the complete
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code. It allows us to obtain the larger code from conditioning the smaller blocks. That is

what is behind the technique used in this section.

Let C be a self-dual extremal code of length n with n “ pt ` f and we define

two sets that we will see are indeed submodules of C.

Definition. 4.2.1. Given C a self-dual extremal code, σ an automorphism of C of order

p, a prime number, and type p ´ pt, fq. Suppose σ “ Ω1 ¨ . . . ¨ Ωt ¨ Ωt`1 ¨ . . . ¨ Ωt`f , where

wlog we take

Ωi :“

$

’

&

’

%

pppi ´ 1q ` 1, ¨ ¨ ¨ , ipq , i P t1, ¨ ¨ ¨ , tu

pppi ´ fq ` fq , i P tt ` 1, . . . , t ` fu

Then

FσpCq :“
␣

c P C : σpcq “ c ô c1 “ ¨ ¨ ¨ “ cp, ¨ ¨ ¨ , cppt´1q`1 “ ¨ ¨ ¨ “ ctp

(

,

is the fixed code and

EσpCq :“
#

c P C :
ÿ

iPΩ1

ci “ ¨ ¨ ¨ “
ÿ

iPΩt

ci “ ctp`1 “ ¨ ¨ ¨ “ ctp`f “ 0
+

,

is the σ ´ invariant complement of FσpCq. We also define the functions

πt : FσpCq ÝÑ Ft
q, πf : FσpCq ÝÑ Ff

q ,

v ÞÑ pvp, v2p, . . . , vtpq v ÞÑ pvtp`1, . . . , vtp`f q

Then we can define the projection homomorphism π : FσpCq ÝÑ Ft`f
q as follows.

For v P FσpCq,

πpvq :“ pπtpvq, πf pvqq

The following theorem provides some information on the decomposition of a

self-dual code C with an automorphism σ of order p ∤ charpFqq. We consider the automor-

phism organized as in Definition 4.2.1.

Theorem. 4.2.2. Let C “ CK
ď Fn

q , p ∤ charpFqq and σ P AutpCq of type p ´ pt, fq

with σ “ Ω1 ¨ . . . ¨ Ωt ¨ Ωt`1 ¨ . . . ¨ Ωt`f . Then FσpCq has dimension f ` t

2 and EσpCq has

dimension tpp ´ 1q

2 .
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Proof. Using the same homomorphism π from Definition 4.2.1, we shall denote πpFσpCqq

by FσpCq. In fact, π defined onto FσpCq is an isomorphism. This, because from its defi-

nition one can easily check that for all v, w P FσpCq, α P Fq, πpv ` wq “ πpvq ` πpwq

and πpαvq “ απpvq. Then it is a linear transformation. Now that it is surjective is

clear because it is defined to its image and it is injective because if v P FσpCq is such

that πpvq “ 0, then again by the definition of π all the coordinates of v are 0 or

v “ 0, meaning kerpπq “ t0u. In consequence, since C is self-dual, so is FσpCq, therefore

dimpFσpCqq “ dimpFσpCqq “
f ` t

2 . Thus, we get

dimpEσpCqq “
n

2 ´ dimpFσpCqq “
tp ` f

2 ´
f ` t

2 “
tpp ´ 1q

2 .

Now if we take πt, since

FσpCq{kerpπtq – Imgpπtq ď Ft
q,

we get

dimpFσpCqq ´ dimpkerpπtqq ď t ñ dimpkerpπtqq ě
f ´ t

2 .

Lemma 4.2.1. If f ă dpCq, then t ě f .

Proof. Suppose f ă dpCq, then kerpπtq “ t0u. In fact, in general we have

kerpπtq “ tv P FσpCq : v “ p0, . . . , 0, vt`1, . . . , vt`f qu.

If kerpπtq ‰ t0u we would get a subcode with minimum distance d1 smaller than d, which

contradicts d being the minimum distance of the code. Hence, if f ă d, it necessarily

implies kerpπtq “ t0u, i.e., πt is injective. Then

dimpFσpCqq “
t ` f

2 ď t “ dimpFt
qq ñ f ď t.

Lemma 4.2.1 is one key result to help us in the following section clean up the

list of possible types of automorphisms of order p. So is Theorem 4.2.2 too.
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4.3 Ternary extremal codes

In this section we work on the characterization of some ternary extremal codes,

those with parameters [36,18,12], [52,26,15] and [60,30,18], all extremal. The first one

corresponds to the Pless code for p “ 17 (PLESS, 1969), the second one there exist

two nonequivalent extremal Type III codes of length 52, one presented by Gaborit in

(GABORIT; OTMANI, 2003) and a second one previously unknown found in this work

and for the third case it was found that there exist three nonequivalent codes with such

parameters, two previously known the Extended QRp59q Code and the Pless code for

p “ 29 (PLESS, 1969), and a third one with an smaller automorphism group. We denote

by EσpCq
˚ the shortened code obtained from EσpCq by deleting the last f coordinates. If

we define K :“ kerpπtq, we also denote by K˚ the subcode with support only, at most, on

the last f coordinates. With the techniques used in this section only automorphisms of

order p ě 5 were studied. This since considering p “ 2, 3 implies taking into consideration

that p is even for 2 and that p divides the characteristic of the field for 3, and it requires the

refinement of the statements or include others that go beyond the scope of this research.

4.3.1 Extremal Type III code of length 36

The next table shows the different options of types p ´ pt, fq for a nontrivial

automorphism of a [36,18,12]-code C. Here 36 “ pt ` f .

p 2
t 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
f 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
p 3 5
t 12 11 10 9 8 7 6 5 4 3 2 1 7 6 5 4 3 2 1
f 0 3 6 9 12 15 18 21 24 27 30 33 1 6 11 16 21 26 31
p 7 11 13 17 19 23 29 31
t 5 4 3 2 1 3 2 1 2 1 2 1 1 1 1 1
f 1 8 15 22 29 3 14 25 10 23 2 19 17 13 7 5

Table 7 – List of types allowed for n “ 36

Now we proceed to exclude from this list the types that cannot occur.

Lemma. 4.3.1. No automorphism σ has only one p-cycle.

Proof. If t “ 1, then the code E˚ has length p and dimension p ´ 1
2 , this means in

particular that p ě 12, and also f ď 36 ´ p, i.e., f ď 23. Then K˚ is a code of dimension
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at least f ´ 1
2 , length f and minimum distance d ě 12. So, the options are for it to be a

[23,11], [19,9], [17,8] or [13,6]-code, dismissing [7,3] and [5,2] for obvious reasons, but by

(GRASSL, 2007) none of these are possible.

Lemma. 4.3.2. If t “ 2, then the p-cycles are of length 17.

Proof. If t “ 2, then the code E˚ has length 2p and dimension p´1 and minimum distance

at least 12, this means in particular that p ě 11 and p ď 17. If p “ 17, then t “ f “ 2.

So let us consider p ă 17, then either p “ 11 or p “ 13. Thus K˚ is either a [14,6]-code or

a [10,4]-code with d ě 12, but then again by (GRASSL, 2007) none of these are possible,

being the last one absurd.

Lemma. 4.3.3. If t “ 3, then p “ 11.

Proof. If t “ 3, then the code E˚ has length 3p, then p ď 12 and also dpE˚
q ě 12, thus

p ě 5. If p “ 11, then t “ f “ 3. So we analyze p “ 5, 7. If such a code existed, then

there would exist a [21,9] or [15,6] code with d ě 12 and using (GRASSL, 2007) these

codes do not exist.

Lemma. 4.3.4. If σ P AutpCq, then the order of σ ‰ 5, 7.

Proof. If p “ 7 there are only two options left, the types 7 ´ p4, 8q and 7 ´ p5, 1q. But if

t “ 4, f “ 8 ă 12 and t ě f , thus this is not possible by remark 4.2.1. On the other hand

if we have 7 ´ p5, 1q, the kernel K of the projection of FσpCq onto the first 35 coordinates

is trivial, then the projection is

F5
3 b xp1, 1, 1, 1, 1, 1, 1qy.

This means that p17, 028, f1q P FσpCq, where xn represents the vector of length n with x

in all its components, which is a vector of weight at most 8 ă 12, a contradiction to the

minimum distance. Then p “ 7 cannot occur. Now for p “ 5 we have the remaining types

for which

t P t4, 5, 6, 7u, f P t16, 11, 6, 1u,

respectively. But if t “ 4 then K˚ would be a code of length 16 and dimension 6 with

minimum distance at least 12, such code does not exist by (GRASSL, 2007). t “ 5 is
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excluded by 4.2.1. For t “ 6 we get

πtpFσpCqq – F6
3 b xp1, 1, 1, 1, 1qy

then p15, 025, f1, . . . , f6q P FσpCq and is a vector of weight at most 11 ă 12, not possible.

Analogously, if t “ 7 it means p15, 035, f1q P FσpCq is of weight, at most, 6 ă 12 which

excludes definitely 5 as a prime dividing the order of AutpCq.

Then with the techniques here presented it was possible to determine that the

only possible types for an extremal Type III code of length 36 with an automorphism

of order p ě 5 out of Table 7 are 17-(2,2) and 11-(3,3). Out of these two it is found

that the only known Code with these parameters corresponds to the Pless Code with

p “ 17, Pp17q, for which | AutpPp17qq |“ 27
¨ 32

¨ 17 “ 19584. The type 11-(3,3) as shown

in (HUFFMAN, 1992) does not yield extremal codes, since it has minimum distance 9.

Then we have

Theorem 4.3.1. Let C be an extremal Type III code of length 36 with an automorphism

of order p ě 5, then C is equivalent to the Pless code Pp17q.

4.3.2 Extremal Type III code of length 52

In this section we consider the possible types p ´ pt, fq for automorphisms of

an extremal Type III [52,26,15]-code of C, then 52=pt ` f .

p 2
t 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
f 0 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52
p 3 5
t 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1
f 1 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 2 52 52 52 52 52 52 52 52 52

p 7 11 13 17 19 23 29 31 37 41 43 47
t 7 6 5 4 3 2 1 4 3 2 1 4 3 2 1 3 2 1 2 1 2 1 1 1 1 1 1 1
f 3 52 52 52 52 52 52 8 52 52 52 0 52 52 52 1 52 52 14 52 6 52 23 21 15 11 9 5

Table 8 – List of types allowed for n “ 52

Lemma 4.3.2. There is no σ P AutpCq with type p ´ pt, fq and t “ 1.

Proof. If t “ 1, then necessarily p ě 17. Since Lemma 4.2.1 holds, p “ 41, 43, 47 are

excluded. For p “ 17, 19, 23, 29, 31, 37, one gets that K˚ is a code with parameters

r35, 17s, r33, 16s, r29, 14s, r23, 12s, r21, 10s, r15, 7s, respectively, and minimum distance 15,

but by (GRASSL, 2007) such codes do not exist.
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Lemma 4.3.3. There is no σ P AutpCq with two p-cycles.

Proof. If t “ 2, then 52 ě 2p ě 15, then 11 ď p ď 23. Thus is p “ 11, 13, 17, 19, 23. Cases

p “ 19, 23 get excluded from Lemma 4.2.1. For the rest, it means that K˚ is a code with

parameters r30, 14s, r26, 12s, r18, 8s, respectively, with minimum distance 15, but again by

(GRASSL, 2007) such codes do not exist.

Lemma 4.3.4. There is no σ P AutpCq with three p-cycles

Proof. If t “ 3, then 52 ě 3p ě 15. Then 5 ď p ď 17. For p “ 17 we notice that E is an

hermitian self-dual code of length 3, but it is impossible, since its length should be even.

In the case p “ 13 it contradicts Lemma 4.2.1. For the rest p “ 5, 7, 11, we get K˚ is

a code with parameters r37, 17s, r31, 14s, r19, 8s, respectively, and once again checking in

(GRASSL, 2007) it is not possible.

Then we have seen there is no automorphism of C with order p ě 17

Now we concentrate in the only option left for an autormorphism of order

p “ 13. That is, an automorphism of type 13-(4,0). With this we will verify the next

proposition.

Proposition 4.3.5. There exist at least two nonequivalent Type III codes of length 52

In (GABORIT; OTMANI, 2003) it was introduced the first extremal Type III

code of length 52 Gp52q using constructive algorithms. In this section we focus on the only

type possible of order 13, for such a code. This is the type 13-(4,0) and we find a second

extremal Type III code, namely C52 nonequivalent to Gp52q.

Given p, q different prime numbers. If we define

d :“ Ordpq mod pq,

i.e., d is the smallest natural number such that qd
” 1 mod p and a :“ p ´ 1

d
, then the

algebra can be decomposed as follows:

Fqrxs{pxp
´ 1q – Fq ‘

a
à

i“1
Fqd .

For p “ 13 and length n “ 52 over F3 we may consider the Algebra

F3rxs{px13
´ 1q,
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here px13
´ 1q “ px ´ 1q ¨ p1 ¨ p2 ¨ p3 ¨ p4, pi, i “ 1, 2, 3, 4, of degree 3, the order of 3 in F13,

irreducible over F3. By means of the Chinese remainder theorem, we get:

F3rxs{px13
´ 1q – F3rxs{px ´ 1q ‘ F3rxs{pp1q ‘ F3rxs{pp2q ‘ F3rxs{pp3q ‘ F3rxs{pp4q.

Let ei be the corresponding idempotent element in each submodule. In order to obtain

explicit generator matrices we observe the action of σ “ p1 2 ¨ ¨ ¨ 13q on each idempotent

by evaluating each one of them in the permutation matrix of order 13 ˆ 13 associated to

σ, M . Let us name them Ei :“ eipMq, i “ 0, . . . , 4. We take a generator matrix of the

form

G “

´

I26

ˇ

ˇ

ˇ

A B ¯

C D
,

since we are interested on the code to be self-dual, we want

G ¨ GT
“ 0 ñ

¨

˝

A B

C D

˛

‚¨

¨

˝

AT CT

BT DT

˛

‚“ ´

¨

˝

I13 0

0 I13

˛

‚.

In this case by transposing G, E0 is fixed and E1, E2 and E3, E4 are exchanged. For

instance if A “ a0E0 ` a1E1 ` a2E2 ` a3E3 ` a4E4, then AT
“ a0E0 ` a2E1 ` a1E2 `

a4E3 ` a3E4. Taking this into consideration we have:
¨

˝

A B

C D

˛

‚¨

¨

˝

AT CT

BT DT

˛

‚“

¨

˝

AAT
` BBT ACT

` BDT

CAT
` DBT CCT

` DDT

˛

‚“ ´

¨

˝

I13 0

0 I13

˛

‚.

Then we get the following equations:

• a2
0 ` b2

0 “ ´1, c2
0 ` d2

0 “ ´1.

• a0c0 ` b0d0 “ 0, a1c2 ` b1d2 “ 0,a2c1 ` b2d1 “ 0,a3c4 ` b3d4 “ 0,a4c3 ` b4d3 “ 0.

• a1a2 ` b1b2 “ ´1, a3a4 ` b3b4 “ ´1, c1c2 ` d1d2 “ ´1, c3c4 ` d3d4 “ ´1.

Because of the variables, we can sort the equations into the following independent systems:

1. a2
0 ` b2

0 “ ´1 2. a1c2 ` b1d2 “ 0 3. a3a4 ` b3b4 “ ´1

c2
0 ` d2

0 “ ´1. a2c1 ` b2d1 “ 0 a4c3 ` b4d3 “ 0.

a0c0 “ ´b0d0 a1a2 ` b1b2 “ ´1 a3a4 ` b3b4 “ ´1

c1c2 ` d1d2 “ ´1 c3c4 ` d3d4 “ ´1

Theorem. 4.3.5. There exist 18432 double circulant self-dual codes of length 52 over F3

with an automorphism of order p “ 13.
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Proof. To prove this assertion we count the number of solutions of the system shown

above. For the first one we know a0, b0, c0, d0 P F˚
3 , because of the first two equations, then

the third one can be rewritten as:

a0 “ ´b0d0c
´1
0 “ ´b0d0c0.

This tells us that the first system has 23 solutions.

The second system is more complex, therefore we distinguish the possibilities.

Before doing so let us remark that if b1 “ 0, then a1a2 “ ´1, thus a1, a2 ‰ 0, then

a1c2 “ 0 ñ c2 “ 0 ñ d1d2 “ ´1, then d1, d2 ‰ 0, also b2 “ 0 lead us to d1, d2 ‰ 0. Then

either b1 or b2 equal 0, imply neither d1 nor d2 equal 0, and conversely. So the possible

cases are:

i. b1 “ 0, b2 ‰ 0.

ii. b1 “ 0, b2 “ 0.

iii. b1 ‰ 0, b2 “ 0.

iv. d1 “ 0, d2 ‰ 0.

v. d1 “ 0, d2 “ 0.

vi. d1 ‰ 0, d2 “ 0.

vii. b1, b2, d1, d2 ‰ 0.

Let’s consider first the case ii. for being simpler. Here b1 “ b2 “ 0 ñ c1 “ c2 “ 0

and the system is then reduced to the equations a1a2 “ ´1, d1d2 “ ´1, equivalently

a1 “ ´a2, d1 “ ´d2 in F3. Then we get four(4) solutions. If i., i.e., b1 “ 0, b2 ‰ 0 the

system turns out to be equivalent to a1a2 “ ´1, d1d2 “ ´1, a2c1 “ ´b2d1 ô a2 “

´a1, d1 “ ´d2, c1 “ ´b2d1a2 “ ´b2d2a1. But then again, b2, d2, a1 P F˚
3 , thus we get

other eight(8) solutions. Analogously for iii. we get another 8 solutions and applying a

similar procedure for iv., v. and vi. we get in total for the cases i. to vi. 40 solutions. So
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we only have left the last case. vii.b1, b2, d1, d2 ‰ 0. We have the initial system

a1c2 ` b1d2 “ 0 (4.1)

a2c1 ` b2d1 “ 0 (4.2)

a1a2 ` b1b2 “ ´1 (4.3)

c1c2 ` d1d2 “ ´1 (4.4)

Under these circumstances if b1, b2, d1, d2 ‰ 0, then a1, a2, c1, c2 ‰ 0. Then from (1)

and (2) we get:

a1 “ ´
b1d2

c2

a2 “ ´
b2d1

c1

Also from (4) and considering that all variables are different from 0,

c1c2 “ d1d2 (4.5)

Using these equations in (3) we obtain:

b1d1b2d2

c1c2
` b1b2 “ ´1

ñ b1b2

„

d1d2

c1c2
` 1

ȷ

“ ´1

ñ b1b2 “ ´

„

d1d2

c1c2
` 1

ȷ

“ ´2 “ 1

ñ b1b2 “ 1

ñ b1 “ b2

With this result used in equation (3):

a1a2 ` b2
1 “ ´1

ñ a1a2 ` 1 “ ´1

ñ a1a2 “ 1

ñ a1 “ a2
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And from (5) and (4) we get 2d1d2 “ ´1 ñ d1d2 “ 1 ñ d1 “ d2 and c1 “ c2, thus our

system turns out to be equivalent to:

a1 “ a2 “ ´b1d1c1

d2 “ d1

b2 “ b1

c2 “ c1,

where b1, c1, d1 P F˚
3 , then we get eight additional solutions. In total, we get for our second

system 48 different solutions. Finally, for our third system if we identify

a1 Ø a3b1 Ø b3 c1 Ø c3d1 Ø d3

a2 Ø a4b2 Ø b4 c2 Ø c4d2 Ø d4

We notice that the second and third system are equivalent, therefore this one also has

48 solutions. This means that we get 8 ¨ 48 ¨ 48 “ 18432 doubly circulant self-dual codes

out of which the calculations with MAGMA say 384 are extremal and because of the

construction also equivalent to the new r52, 26, 15s3´ code found in this research project.

We checked with MAGMA the automorphism group of both Gp52q and C52.

And we get that

• | AutpGp52q| “ 25
¨ 13 “ 416.

• | AutpC52q| “ 22
¨ 3 ¨ 13 “ 156.

Where we can see clearly both are nonequivalent. And also that trying to generalize the

construction of C52 is not easy because its automorphism group is pretty small and has

no rich structure.

4.3.3 Extremal Type III code of length 60

Analogously to the previous cases, Table 9 shows the different options of types

to a nontrivial automorphism of an extremal Type III [60,30,18]-code C. Here 60 “ pt`f .

Lemma. 4.3.6. If t “ 1, then p “ 59.
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p 2
t 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
f 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
p 2 3
t 11 10 9 8 7 6 5 4 3 2 1 20 19 18 17 16 15 14 13
f 38 40 42 44 46 48 50 52 54 56 58 0 3 6 9 12 15 18 21
p 3 5
t 12 11 10 9 8 7 6 5 4 3 2 1 12 11 10 9 8 7 6
f 24 27 30 33 36 39 42 45 48 51 54 57 0 5 10 15 20 25 30
p 5 7 11 13
t 5 4 3 2 1 8 7 6 5 4 3 2 1 5 4 3 2 1 4
f 35 40 45 50 55 4 11 18 25 32 39 46 53 5 16 27 38 49 8

p 13 17 19 23 29 31 37 41 43 47 53 59
t 3 2 1 3 2 1 3 2 1 2 1 2 1 1 1 1 1 1 1 1
f 21 34 47 9 26 43 3 22 41 14 37 2 31 29 23 19 17 13 7 1

Table 9 – List of types allowed for n “ 60

Proof. Since EσpCq
˚ is of length p and of minimum distance d ě 18, we get

p P t19, 23, 29, 31, 37, 41, 43, 47, 53, 59u.

If p “ 59, t “ f “ 1. So we consider p ă 59, here K˚ is of length f and minimum

distance at least 18. But the codes, for every p, [41,20], [37,18], [31,15], [29,14], [23,11],

[19,9], [17,8], [13,6] and [7,3] do not exist by (GRASSL, 2007), being the last three on first

sight impossible.

Lemma. 4.3.7. If t “ 2, then p “ 29.

Proof. Since EσpCq
˚ is of length 2p and of minimum distance d ě 18, we get

p P t11, 13, 17, 19, 23, 29u and f P t38, 34, 26, 22, 14, 2u,

respectively. If p “ 29, t “ f “ 2. So we consider p ă 29, here K˚ is of length f and

minimum distance at least 18. But the codes, for every p, [38,18], [34,16], [26,12], [22,10]

and [14,6] do not exist by (GRASSL, 2007), being the last one immediately impossible.

This last lemma tells us that if an extremal Type III code with parameters

[60,30,18] has an automorphism of order 29, then it is of the type 29-(2;2). Our purpose

now is to prove the following theorem.

Theorem 4.3.6. There are exactly three nonequivalent extremal [60,30,18] Type III codes

with an automorphism of order p “ 29.
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Proof. For σ P AutpCq of order p “ 29 we have that EσpCq is a one-dimensional isotropic

subspace of F2
328 , isotropic with respect to some unitary form. In (TAYLOR, 1992) we

have that for V a unitary geometry of dimension n over Fq2 , then the number of totally

isotropic k-dimensional subspaces in V is
n
ź

i“n`1´2k

pqi
´ p´1q

i
q

O

k
ź

j“1
pq2j

´ 1q.

Then for our scenario we have q “ 314, n “ 2, k “ 1 and we get:
2
ź

i“2`1´2p1q

pp314
q

i
´ p´1q

i
q

O

1
ź

j“1
pp314

q
2j

´ 1q “ p314
` 1q “ 4782970.

This means, there are 4782970 possibilities for EσpCq. The group G :“ SUp2, 314
q acts

transitively on these subspaces, so they can be computed as an orbit. In this scenario

EσpCq “

!

pa, b, 0, 0q

ˇ

ˇ

ˇ
a, b P F29

3 ,
ÿ

i

ai “
ÿ

i

bi ” 0 mod 3
)

– F2
328 .

Then these elements in F2
328 are identified with words in F60

3 and we obtain generator

matrices for EσpCq of the form p˚ | 0 0q P F28ˆ60
q , here 0 P F28ˆ1

q . Also as in Theorem 4.2.2

we have that dimpFσpCqq “
t ` f

2 “ 2 and this leaves us FσpCq uniquely determined up

to equivalence as follows:

genpFσpCqq “

¨

˝

1 0 1 0

0 1 0 1

˛

‚,

where 1 is the all-one vector and 0 the zero-vector of length 29. Doing exhaustively this

process we found three inequivalent codes, the extended quadratic residue code for p “ 59

or XQRp59q, the Pless code for p “ 29 or Pp29q, and a new extremal Type III code for

p “ 29 named Vp29q. They have the following generator matrices and using Magma one

gets the automorphism groups:

• genpXQRp59qq “ pI30 | A1q, AutpXQRp59qq “ SL2p59q ˆ C2

| AutpXQRp59qq| “ 205320 “ 23
¨ 3 ¨ 5 ¨ 29 ¨ 59

• genpPp29qq “ pI30 | A2q, AutpPp29qq “ pPSL2p59q ˆ C4q ¨ 2

| AutpPp29qq| “ 97440 “ 25
¨ 3 ¨ 5 ¨ 7 ¨ 29

• genpVp29qq “ pI30 | A3q, AutpVp29qq “ SL2p29q ˆ C2

| AutpVp29qq| “ 24360 “ 23
¨ 3 ¨ 5 ¨ 7 ¨ 29
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Note the codes are clearly inequivalent since the order of their automorphism

group are all different, reinforcing the result already obtained from the computations with

Magma. Matrices Ai, i “ 1, 2, 3 are:

A1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

2 1 1 2 0 1 1 0 2 1 0 0 1 1 0 1 0 1 2 2 2 2 1 1 0 2 0 0 2 0
0 2 1 1 2 0 1 1 0 2 1 0 0 1 1 0 1 0 1 2 2 2 2 1 1 0 2 0 2 0
0 0 2 1 1 2 0 1 1 0 2 1 0 0 1 1 0 1 0 1 2 2 2 2 1 1 0 2 2 0
1 1 1 0 2 2 0 1 2 2 1 0 2 1 1 2 2 1 2 1 2 0 0 0 0 2 2 1 2 1
2 0 0 0 2 1 1 2 0 1 1 0 2 1 0 0 1 1 0 1 0 1 2 2 2 2 1 1 2 0
2 1 2 2 2 1 0 0 1 2 0 0 2 1 0 2 2 0 0 2 0 2 0 1 1 1 1 0 2 2
0 2 1 2 2 2 1 0 0 1 2 0 0 2 1 0 2 2 0 0 2 0 2 0 1 1 1 1 2 2
2 2 1 0 1 1 1 0 2 2 0 1 2 2 1 0 2 1 1 2 2 1 2 1 2 0 0 0 2 1
0 2 2 1 0 1 1 1 0 2 2 0 1 2 2 1 0 2 1 1 2 2 1 2 1 2 0 0 2 1
0 0 2 2 1 0 1 1 1 0 2 2 0 1 2 2 1 0 2 1 1 2 2 1 2 1 2 0 2 1
0 0 0 2 2 1 0 1 1 1 0 2 2 0 1 2 2 1 0 2 1 1 2 2 1 2 1 2 2 1
1 1 1 1 0 0 2 1 2 2 2 1 0 0 1 2 0 0 2 1 0 2 2 0 0 2 0 2 2 2
1 2 2 2 2 1 1 0 2 0 0 0 2 1 1 2 0 1 1 0 2 1 0 0 1 1 0 1 2 0
2 0 1 1 1 1 0 0 2 1 2 2 2 1 0 0 1 2 0 0 2 1 0 2 2 0 0 2 2 2
1 0 1 2 2 2 2 1 1 0 2 0 0 0 2 1 1 2 0 1 1 0 2 1 0 0 1 1 2 0
2 0 2 0 1 1 1 1 0 0 2 1 2 2 2 1 0 0 1 2 0 0 2 1 0 2 2 0 2 2
0 2 0 2 0 1 1 1 1 0 0 2 1 2 2 2 1 0 0 1 2 0 0 2 1 0 2 2 2 2
1 1 0 1 0 1 2 2 2 2 1 1 0 2 0 0 0 2 1 1 2 0 1 1 0 2 1 0 2 0
0 1 1 0 1 0 1 2 2 2 2 1 1 0 2 0 0 0 2 1 1 2 0 1 1 0 2 1 2 0
2 2 0 0 2 0 2 0 1 1 1 1 0 0 2 1 2 2 2 1 0 0 1 2 0 0 2 1 2 2
2 1 1 2 2 1 2 1 2 0 0 0 0 2 2 1 0 1 1 1 0 2 2 0 1 2 2 1 2 1
2 1 0 0 1 1 0 1 0 1 2 2 2 2 1 1 0 2 0 0 0 2 1 1 2 0 1 1 2 0
2 1 0 2 2 0 0 2 0 2 0 1 1 1 1 0 0 2 1 2 2 2 1 0 0 1 2 0 2 2
0 2 1 0 2 2 0 0 2 0 2 0 1 1 1 1 0 0 2 1 2 2 2 1 0 0 1 2 2 2
1 1 0 2 1 0 0 1 1 0 1 0 1 2 2 2 2 1 1 0 2 0 0 0 2 1 1 2 2 0
1 2 2 1 0 2 1 1 2 2 1 2 1 2 0 0 0 0 2 2 1 0 1 1 1 0 2 2 2 1
1 2 0 0 2 1 0 2 2 0 0 2 0 2 0 1 1 1 1 0 0 2 1 2 2 2 1 0 2 2
0 1 2 0 0 2 1 0 2 2 0 0 2 0 2 0 1 1 1 1 0 0 2 1 2 2 2 1 2 2
2 2 0 1 2 2 1 0 2 1 1 2 2 1 2 1 2 0 0 0 0 2 2 1 0 1 1 1 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

˛
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A2 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 1 0 2 2 2
1 2 2 1 1 1 1 2 1 2 2 2 1 2 2 1 2 2 2 1 2 1 1 1 1 2 2 1 2 0
2 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 1 2 2
2 1 2 0 0 2 2 2 2 0 2 0 0 0 2 0 0 2 0 0 0 2 0 2 2 2 2 0 2 1
0 2 1 2 0 0 2 2 2 2 0 2 0 0 0 2 0 0 2 0 0 0 2 0 2 2 2 2 2 1
1 1 0 2 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 2 2
0 1 1 0 2 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 2 2
0 0 1 1 0 2 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 2 2
0 0 0 1 1 0 2 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 2 2
2 2 2 2 0 0 2 1 2 0 0 2 2 2 2 0 2 0 0 0 2 0 0 2 0 0 0 2 2 1
1 0 0 0 0 1 1 0 2 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1 1 2 2
2 0 2 2 2 2 0 0 2 1 2 0 0 2 2 2 2 0 2 0 0 0 2 0 0 2 0 0 2 1
0 2 0 2 2 2 2 0 0 2 1 2 0 0 2 2 2 2 0 2 0 0 0 2 0 0 2 0 2 1
0 0 2 0 2 2 2 2 0 0 2 1 2 0 0 2 2 2 2 0 2 0 0 0 2 0 0 2 2 1
1 1 1 0 1 0 0 0 0 1 1 0 2 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 2 2
2 0 0 0 2 0 2 2 2 2 0 0 2 1 2 0 0 2 2 2 2 0 2 0 0 0 2 0 2 1
0 2 0 0 0 2 0 2 2 2 2 0 0 2 1 2 0 0 2 2 2 2 0 2 0 0 0 2 2 1
1 1 0 1 1 1 0 1 0 0 0 0 1 1 0 2 0 1 1 0 0 0 0 1 0 1 1 1 2 2
2 0 0 2 0 0 0 2 0 2 2 2 2 0 0 2 1 2 0 0 2 2 2 2 0 2 0 0 2 1
0 2 0 0 2 0 0 0 2 0 2 2 2 2 0 0 2 1 2 0 0 2 2 2 2 0 2 0 2 1
0 0 2 0 0 2 0 0 0 2 0 2 2 2 2 0 0 2 1 2 0 0 2 2 2 2 0 2 2 1
1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 1 0 2 0 1 1 0 0 0 0 1 2 2
2 0 0 0 2 0 0 2 0 0 0 2 0 2 2 2 2 0 0 2 1 2 0 0 2 2 2 2 2 1
1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 1 0 2 0 1 1 0 0 0 2 2
0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 1 0 2 0 1 1 0 0 2 2
0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 1 0 2 0 1 1 0 2 2
0 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 1 0 2 0 1 1 2 2
2 2 2 2 0 2 0 0 0 2 0 0 2 0 0 0 2 0 2 2 2 2 0 0 2 1 2 0 2 1
0 2 2 2 2 0 2 0 0 0 2 0 0 2 0 0 0 2 0 2 2 2 2 0 0 2 1 2 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

˛
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A3 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 2 0 0 0 2 2 2 1 0 1 1 2 2 2 0 2 2 2 1 2 2 1 2 0 1 2 1 2 0
2 0 1 2 2 2 1 1 1 0 2 0 0 1 1 1 2 1 1 1 0 1 1 0 1 2 0 1 2 2
2 1 2 0 1 1 1 0 0 0 2 1 2 2 0 0 0 1 0 0 0 2 0 0 2 0 1 2 2 1
1 0 2 0 1 2 2 2 1 1 1 0 2 0 0 1 1 1 2 1 1 1 0 1 1 0 1 2 2 2
1 2 1 0 1 2 0 0 0 2 2 2 1 0 1 1 2 2 2 0 2 2 2 1 2 2 1 2 2 0
1 2 0 2 1 2 0 1 1 1 0 0 0 2 1 2 2 0 0 0 1 0 0 0 2 0 0 2 2 1
1 2 0 1 0 2 0 1 2 2 2 1 1 1 0 2 0 0 1 1 1 2 1 1 1 0 1 1 2 2
2 0 1 2 0 2 1 2 0 1 1 1 0 0 0 2 1 2 2 0 0 0 1 0 0 0 2 0 2 1
0 2 0 1 2 0 2 1 2 0 1 1 1 0 0 0 2 1 2 2 0 0 0 1 0 0 0 2 2 1
1 1 0 1 2 0 1 0 2 0 1 2 2 2 1 1 1 0 2 0 0 1 1 1 2 1 1 1 2 2
2 0 0 2 0 1 2 0 2 1 2 0 1 1 1 0 0 0 2 1 2 2 0 0 0 1 0 0 2 1
0 2 0 0 2 0 1 2 0 2 1 2 0 1 1 1 0 0 0 2 1 2 2 0 0 0 1 0 2 1
0 0 2 0 0 2 0 1 2 0 2 1 2 0 1 1 1 0 0 0 2 1 2 2 0 0 0 1 2 1
2 2 2 1 2 2 1 2 0 1 2 1 0 1 2 0 0 0 2 2 2 1 0 1 1 2 2 2 2 0
1 0 0 0 2 0 0 2 0 1 2 0 2 1 2 0 1 1 1 0 0 0 2 1 2 2 0 0 2 1
0 1 0 0 0 2 0 0 2 0 1 2 0 2 1 2 0 1 1 1 0 0 0 2 1 2 2 0 2 1
0 0 1 0 0 0 2 0 0 2 0 1 2 0 2 1 2 0 1 1 1 0 0 0 2 1 2 2 2 1
1 1 1 2 1 1 1 0 1 1 0 1 2 0 1 0 2 0 1 2 2 2 1 1 1 0 2 0 2 2
0 1 1 1 2 1 1 1 0 1 1 0 1 2 0 1 0 2 0 1 2 2 2 1 1 1 0 2 2 2
1 1 2 2 2 0 2 2 2 1 2 2 1 2 0 1 2 1 0 1 2 0 0 0 2 2 2 1 2 0
2 0 0 1 1 1 2 1 1 1 0 1 1 0 1 2 0 1 0 2 0 1 2 2 2 1 1 1 2 2
2 1 2 2 0 0 0 1 0 0 0 2 0 0 2 0 1 2 0 2 1 2 0 1 1 1 0 0 2 1
0 2 1 2 2 0 0 0 1 0 0 0 2 0 0 2 0 1 2 0 2 1 2 0 1 1 1 0 2 1
0 0 2 1 2 2 0 0 0 1 0 0 0 2 0 0 2 0 1 2 0 2 1 2 0 1 1 1 2 1
2 2 2 1 0 1 1 2 2 2 0 2 2 2 1 2 2 1 2 0 1 2 1 0 1 2 0 0 2 0
0 2 2 2 1 0 1 1 2 2 2 0 2 2 2 1 2 2 1 2 0 1 2 1 0 1 2 0 2 0
0 0 2 2 2 1 0 1 1 2 2 2 0 2 2 2 1 2 2 1 2 0 1 2 1 0 1 2 2 0
1 1 1 0 0 0 2 1 2 2 0 0 0 1 0 0 0 2 0 0 2 0 1 2 0 2 1 2 2 1
1 2 2 2 1 1 1 0 2 0 0 1 1 1 2 1 1 1 0 1 1 0 1 2 0 1 0 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

˛
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4.3.3.1 Alternative method to classify [60,30] extremal codes over F2 and F3

The contents of this subsection is the result of a joint effort with professors

Javier de la Cruz and Stefka Bouyuklieva and it takes part of a paper that has been

published in the Journal Mathematics(BOUYUKLIEVA; CRUZ; VILLAR, 2022).

The most general definition for equivalence of linear codes of length n over

the finite field Fq is based on the action of the semilinear isometries group M˚
npqq “

MonnpF˚
q q ¸ AutpFqq ď ΓnpFqq on the vector space Fn

q , where ΓnpFqq is the set of all semi-

linear mappings, i.e. the general semilinear group, MonnpF˚
q q is the group of all monomial

n ˆ n matrices over Fq, and AutpFqq is the automorphisms group of the field Fq. Linear

q-ary codes C and C 1 of the same length n are equivalent whenever C 1
“ CT for some
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T P M˚
npqq. If CT “ C for an element T P M˚

npqq then T is called an automorphism of

the code. The set of all automorphisms of C form a group denoted by AutpCq.

Any element T P M˚
npqq can be written as T “ PDτ where P is a permu-

tation matrix (permutation part), D is a diagonal regular matrix (diagonal part), and

τ P AutpFqq. Note that in the case of prime q, M˚
npqq “ MonnpF˚

q q, and if q “ 2 then

M˚
npqq – Sympnq where Sympnq is the symmetric group of degree n. The following lemma

implies that in some cases, when considering automorphisms of prime order, we only need

to examine permutation automorphisms.

Lemma 4.3.7. (HUFFMAN, 1992) Let C be a linear code over Fq with an automorphism

T “ PDτ of prime order r where r ∤ pq ´ 1q and r ∤ |GalpFqq|. Then there exists a code

C 1 equivalent to C where P P AutpC 1
q.

We consider codes over F2 and F3 having an automorphism of odd prime order

r. For these fields r satisfies the conditions from Lemma 4.3.7 and therefore we can use

only permutation automorphisms of order r. So instead the action of the group M˚
npqq, we

use the action of the symmetric group Sympnq on Fn
q defined by vσ :“ pvσ´1p1q, . . . , vσ´1pnqq,

where v “ pv1, . . . , vnq P Fn
2 and σ P Sympnq.

To apply this theory in a general context a reinterpretation of Theorem 4.2.2

is presented.

Let C ď Fn
q be a code with a permutation automorphism σ P Sympnq of order

r with c cycles of length r and f fixed points. In this case, we say that σ is of type r-pc, fq.

Without loss of generality we can assume that

σ “ Ω1 . . . ΩcΩc`1 . . . Ωc`f (4.6)

where Ωi “ ppi ´ 1qr ` 1, . . . , irq, i “ 1, . . . , c, are the cycles of length r, and Ωc`i “

pcr ` iq, i “ 1, . . . , f , are the fixed points. Obviously, cr ` f “ n.

We put

FσpCq :“ tv P C : vσ “ vu

and

EσpCq :“ tv P C :
ÿ

iPΩj

vi “ 0 for all j “ 1, . . . , c ` fu.
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We use the Euclidean inner product over the field Fq, namely

u ¨ v “

n
ÿ

i“1
uivi, u “ pu1, . . . , unq, v “ pv1, . . . , vnq P Fn

q . (4.7)

The following theorem gives a very important decomposition of the linear code

C.

Theorem 4.3.8. (HUFFMAN, 1986) Let C ď Fn
q be a code with a permutation automor-

phism σ P Sympnq of order r such that charpFqq ∤ r. Then the following hold.

(i) C “ FσpCq ‘ EσpCq. Both FσpCq and EσpCq are σ-invariant.

(ii) If C is self-dual under (4.7), then dimpFσpCqq “ pc ` fq{2 and dimpEσpCqq “

cpr ´ 1q{2.

Note that v P FσpCq if and only if v P C and v |Ωj
is constant for j “

1, . . . , c ` f . Therefore, the map π : FσpCq Ñ Fc`f
q define by pπpvqqj “ vi for some i P Ωj,

j “ 1, 2, . . . , c ` f , v P FσpCq, is a monomorphism.

Theorem 4.3.9. (HUFFMAN, 1986; NEBE, 2012) Assume C is a self-dual rn, n{2, dsq

code under the inner product (4.7), and p “ charpFqq. Then Cπ “ πpFσpCqq is a rc `

f, pc ` fq{2, dπsq self-dual code with respect to the inner product

u ¨ v “

c
ÿ

i“1
ruivi `

c`f
ÿ

i“c`1
uivi. (4.8)

If either r ” 1 pmod pq or f “ 0, Cπ is self-dual under (4.7).

For the remainder of this section, we assume that σ is a permutation auto-

morphism of C of prime order r “ p different from charpFqq. By spq, pq we denote the

multiplicative order of q modulo p, spq, pq “ ordppqq. In this work, we focus on the case

when spq, pq “ p´1. Then the polynomial 1`x`¨ ¨ ¨`xp´1 is irreducible over the field Fq.

Let P be the principal ideal of Rp “ Fqrxs{pxp
´ 1q generated by the polynomial p1 ´ xq.

Obviously, P “ tvpxq P Rp :
p´1
ÿ

i“0
vi “ 0u. The following result generalizes Lemma 4 of

(HUFFMAN, 1982).

Lemma 4.3.10. (HUFFMAN, 1986) If 1`x`x2
` ¨ ¨ ¨ `xp´1 is irreducible over Fq, then

P is a finite field with qp´1 elements. The identity is p´1{pqpp1 ´ pq ` x ` x2
` ¨ ¨ ¨ ` xp´1.
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Multiplication by p´1{pqp1 ` p1 ´ pqx ` x2
` ¨ ¨ ¨ ` xp´1

q in P corresponds to multiplication

by x mod pxp
´ 1q.

Let EσpCq
˚ denote the code EσpCq without the last f coordinates. For v P

EσpCq
˚ we identify v |Ωj

“ pv0, v1, . . . , vp´1q with the polynomial v0 ` v1x ` ¨ ¨ ¨ ` vp´1x
p´1

from P Ă Rp. Thus, we obtain the map φ : EσpCq
˚

ÝÑ P c. Results in (HUFFMAN,

1982) and (YORGOV, 1983) show that if q “ 2 and p is prime, Cφ “ φpEσpCq
˚
q is

self-dual with respect to a given inner product. Huffman generalized this in the following

theorem.

Theorem 4.3.11. (HUFFMAN, 1986) Assume that C is a self-dual rn, n{2, ds code under

(4.7) and that 1 ` x ` x2
` ¨ ¨ ¨ ` xp´1 is irreducible over Fq. Suppose that there is a

nonnegative integer t such that qt
” ´1 pmod pq. Then Cφ is a rc, c{2, d1

s self-dual code

over P under the inner product x¨, ¨y given by

xu, vy “

c
ÿ

i“1
uiv

qt

i , (4.9)

where u “ pu1, . . . , ucq, v “ pv1, . . . , vcq P Pc.

On Pc, we can use the Hermitian inner product, defined in (LING; SOLÉ,

2001): for u “ pu1, . . . , ucq and v “ pv1, . . . , ucq

u ¨ v “

c
ÿ

i“1
uivi, (4.10)

where vi “ vipx
´1

q “ vipx
p´1

q.

Remark 4.3.12. In the last theorem note that vipx
´1

q “ vipx
qt

q “ vipxq
qt. Therefore, the

Hermitian product (4.10) is equivalent to

u ¨ v “

c
ÿ

i“1
uiv

qt

i .

Moreover, if spq, pq “ p ´ 1 and p ‰ 2, then q
p´1

2 ” ´1 mod p. Therefore, we can take

t “
p ´ 1

2 .

The following theorem is an immediate generalization of (YORGOV, 1983,

Theorem 3).
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Theorem 4.3.13. Let spq, pq “ p ´ 1 and C ď Fn
q is a linear code. Suppose that there is

a nonnegative integer t such that qt
” ´1 pmod pq. Then C is a self-dual code with an

automorphism σ of prime order p ‰ charpFqq if and only if the following two conditions

hold.

(i) πpFσpCqq is a self-dual code of length c ` f under the inner product (4.8).

(ii) φpEσpCq
˚
q is a self-dual code of length c over the field P under the inner product

(4.9).

Proof. Assume that C is self-dual. Conditions (i) and (ii) follow from Lemma 4.3.9

and Theorem 4.3.11, respectively. Reciprocally, assume (i) and (ii). In this case, we get

that dimFq pπpFσpCqqq “
c`f

2 and dimppφpEσpCq
˚
qq “ c

2 . Therefore, dimFq pEσpCqq “

dimFq pφpEσpCq
˚
qq “ pp´1q c

2 . Since C “ FσpCq‘EσpCq, then dimFq pCq “
pc`fq

2 `
cpp´1q

2 “

pcp`fq

2 “ n
2 . Now let’s prove that C ď CK. Since FσpCq K EσpCq, it is sufficient to prove

that FσpCq and EσpCq are self-orthogonal. For FσpCq the statement is trivial.

Let apxq “ α0 ` α1x ` ¨ ¨ ¨ ` αp´1x
p´1, bpxq “ β0 ` β1x ` ¨ ¨ ¨ ` βp´1x

p´1
P P .

If a “ pα0, . . . , αp´1q and b “ pβ0, . . . , βp´1q, then

apxqbpx´1
q “ pα0 ` ¨ ¨ ¨ ` αp´1x

p´1
qpβ0 ` β1x

p´1
` ¨ ¨ ¨ ` βp´1xq

“ a ¨ b ` pa ¨ pbσqqx ` ¨ ¨ ¨ ` pa ¨ pbσp´1
qqxp´1.

For u “ pu1pxq, . . . , ucpxqq, v “ pv1pxq, . . . , vcpxqq P Pc we have
c
ÿ

i“1
uipxqvipx

´1
q “

c
ÿ

i“1
ui ¨ vi ` p

c
ÿ

i“1
ui ¨ pviσqqx ` ¨ ¨ ¨

` p

c
ÿ

i“1
ui ¨ pviσ

p´1
qqxp´1.

Suppose that Cφ is a self-dual code with respect to the Hermitian inner product

(4.9). If u, v P Cφ then

0 “ xu, vy “

c
ÿ

i“1
uipxqvipx

´1
q “

c
ÿ

i“1
ui ¨ vi ` p

c
ÿ

i“1
ui ¨ pviσqqx ` ¨ ¨ ¨ ` p

c
ÿ

i“1
ui ¨ pviσ

p´1
qqxp´1.

It turns out that
c
ÿ

i“1
ui ¨ vi “

c
ÿ

i“1
ui ¨ pviσq “ ¨ ¨ ¨ “

c
ÿ

i“1
ui ¨ pviσ

p´1
q “ 0.
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If uipxq “ ui0 ` ¨ ¨ ¨ ` ui,p´1x
p´1, vipxq “ vi0 ` ¨ ¨ ¨ ` vi,p´1x

p´1, i “ 1, . . . , c, and u1
“

pu00, . . . , uc,p´1q P Fpc
q , v1

“ pv00, . . . , vc,p´1q P Fpc
q , then u1, v1

P EσpCq
˚ and

u1
¨ v1

“

c
ÿ

i“1

p´1
ÿ

j“0
uijvij “

c
ÿ

i“1
ui ¨ vi “ 0.

Hence the codewords of EσpCq
˚ are orthogonal to each other and the code is self-orthogonal.

The following result is a generalization of (YORGOV, 1987, Theorem 3).

Theorem 4.3.14. Let C and C 1 be self-dual codes in Fn
q and let σ P PAutpCq of prime

order p ‰ charpFqq. A sufficient condition for equivalence of C and C 1 with σ P PAutpC 1
q

is that C 1 can be obtained from C by

(i) a substitution x ÞÝÑ xt in φpEσpCq
˚
q where t is an integer with 1 ď t ď p ´ 1;

(ii) a multiplication of the j-th coordinate of φpEσpCq
˚
q by xtj where tj is an integer

with 0 ď tj ď p ´ 1 and j “ 1, . . . , c;

(iii) permutation of the first c cycles of C;

(iv) permutation of the last f coordinates of C.

We apply these results to give a classification of all extremal Type I and Type

III codes of length 60 with an automorphism of order 29. According to Lemma 4.3.7, we

can consider only permutation automorphisms of this order. We focus on permutation σ

of type 29-(2,2).

Let C be a binary or ternary self-dual r60, 30, d ą 2s code with a permutation

automorphism

σ “ p1, 2, . . . , 29qp30, 31, . . . , 58q. (4.11)

By Lemma 4.3.9, πpFσpCqq is a self-dual r4, 2, 2s code over F2 or F3, respectively, with

respect to the inner product (4.8). Thus,

genpFσpCqq “

¨

˝

1 0 1 0

0 1 0 1

˛

‚,

where 1 is the all-ones vector and 0 the zero-vector of length 29.
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Next we determine EσpCq. Note that spq, 29q “ 28 and q14
” ´1 pmod 29q for

q “ 2 and q “ 3. Thus, by Theorem 4.3.13, Cφ “ φpEσpCq
˚
q is a self dual r2, 1s code over

the field P “ Fq28 under the Hermitian product

xu, vy “ u1pxqv1pxq
q14

` u2pxqv2pxq
q14

.

According to Lemma 4.3.10, the identity element of P is e2pxq “ x`x2
`¨ ¨ ¨`x28

for q “ 2, and e3pxq “ 2 ` x ` x2
` ¨ ¨ ¨ ` x28 for q “ 3. Because of the orthogonality, the

weight of all nonzero codewords in Cφ is equal to 2. Hence, genpCφq “ pepxq, apxqq, where

0 ‰ apxq P P , and epxq is the identity of P . If α is a primitive element of the field P , we

have apxq “ αpxq
t for some t with 0 ď t ď q28

´ 2. Due to the orthogonality we get

xpepxq, apxqq, pepxq, apxqqy “ epxq ` apxq
q14`1

“ epxq ` αpxq
pq14`1qt

“ 0.

Then αpxq
pq14`1qt

“ ´epxq. Since the order of α is q28
´ 1, we have t “ p214

´ 1qk in the

binary case, 0 ď k ď 214, and t “
314 ´ 1

2 k in the ternary case, 0 ď k ď 2.314
` 1 with k

an odd integer. Let δ “ α214´1 in the binary case, and δ “ αp314´1q{2 in the ternary case,

respectively. It follows that genpCφq “ pepxq, δk
q.

Let cpxq P P , cpxq “ c0 `c1 `¨ ¨ ¨`c28x
28. Denote by rcpxqs the 28ˆ29 circulant

matrix with first row pc0, c1, . . . , c28q. From the considered generator matrix of the code

Cφ we obtain genpEσpCq
˚
q “ prepxqs, rδk

sq. So we proved the following lemma.

Lemma 4.3.15. Let C be a self-dual r60, 30, d ą 2sq code, q “ 2 or 3, with a permutation

automorphism of type 29-p2, 2q. Let α be a primitive element of the field P, and e be its

identity element. Then the code C has a generator matrix in the form

A “

¨

˚

˚

˚

˝

1 0 1 0

0 1 0 1

repxqs rδk
s 0 0

˛

‹

‹

‹

‚

, (4.12)

where δ “ αpq14´1q{pq´1q, 0 ď k ď pq ´ 1qq14
` q ´ 2.

By (MALLOWS; SLOANE, 1973) t is known that the weight enumerator of

an extremal r60, 30, 18s Type III code C is given by

WCpyq “

60
ÿ

j“0
Ajy

j
“

5
ÿ

i“0
aifpyq

15´3igpyq
i,
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where fpyq “ 1 ` 8y3, gpyq “ y3
p1 ´ y3

q
3 and ai P Z. A simple calculation shows that

a0 “ 1, a1 “ ´120, a2 “ 4440, a3 “ ´53320, a4 “ 140760 and a5 “ ´41184. Therefore,

the weight enumerator is uniquely determined and is given by

A18 “ 3901080

A21 “ 241456320

A24 “ 8824242960

A27 “ 172074038080

A30 “ 1850359081824

A33 “ 11014750094040

A36 “ 36099369380880

A39 “ 63958467767040

A42 “ 59278900150800

A45 “ 27270640178880

A48 “ 5739257192760

A51 “ 485029078560

A54 “ 13144038880

A57 “ 71451360

A60 “ 41184

Theorem 4.3.16. There are exactly three inequivalent extremal r60, 30, 18s Type III codes

with an automorphism of order p “ 29.

Proof. There are two possible types for a permutation automorphism of order 29, either

29-p1, 31q or 29-p2, 2q. For the first case, we have that EσpCq
˚ is a r29, 14, d1

s ternary code

with d1
ě 18. However, by (GRASSL, 2007) such a code does not exist and the type of σ

is 29-p2, 2q. Similarly as in the binary case, we reduce the number of possibilities for the

generating matrix (4.12). Now P is a field with 328
´1 elements and δ P P is an element of

order 2p314
`1q “ 29 ¨329860. As the binary case, the element xepxq of order 29 belongs to

the cyclic group xδy, and gcdp29, 329860q “ 1, so each element of xδy can be written in the

form xsθk, where θ P xδy has order 329860. According to Theorem 4.3.14, we can consider

only the elements apxq “ θk for 0 ď k ď 329859. The transformation k ÞÝÑ 3k divides

the set Z329860 in 11786 orbits orbpkq, of which only 5893 correspond to odd integers k.

With Magma we have checked that only the values 1031, 2261, 82465, 16493 and 181423
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lead to an extremal code. More precisely, we found that the values 181423 and 16493

corresponding to a new code, which we call Vp29q. The codes corresponding to 2261 and

1031 are equivalent to X QR and the code associated to 82465 is Pp29q. Using Magma

one gets the automorphism groups:

• AutpVp29qq “ SL2p29q, | AutpVp29qq| “ 24360 “ 23
¨ 3 ¨ 5 ¨ 7 ¨ 29

• AutpXQRp59qq “ SL2p59q, | AutpXQRp59qq| “ 205320 “ 23
¨ 3 ¨ 5 ¨ 29 ¨ 59

• AutpPp29qq “ 2.pPSL2p59q ˆ C4q, | AutpPp29qq| “ 97440 “ 25
¨ 3 ¨ 5 ¨ 7 ¨ 29.

Remark 4.3.17. The primitive element used in Theorem 4.3.16 has the following coeffi-

cients

r0, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1s.

Then we have seen that using the decomposition of self-dual ternary codes

is a nice approach that makes the task to classify these codes easier. We were able to

obtain a third extremal Type III code of length 60 invariant under SL2p29q and a second

extremal Type III code of length 52. It is the fact that the automorphism group of Vp29q

contains SL2p29q, that motivated us to try to obtain a family of invariant codes, by means

of monomial representations and it is what the final chapter deals with.

4.4 Open question for extremal Type III codes

We have seen how working with the automorphism type of extremal Type

III codes, one can classify codes, as was done for the Ternary codes with parameters

[60,30,18], [52,26,15] and [36,18,12], all extremal. The classification was done considering

an autormorphism of order greater or equal to 5. We would like to investigate if the

number of non-equivalent codes known up to this point does not change when considering

also automorphisms of order 3 and 2.
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5 Generalization of V(29)

5.1 Introduction

In coding theory, it has been always an interesting problem to look for codes

with the highest possible minimum distance. Mathematically those objects, if they are

also self-dual, then they are of particular interest. This because as shown in (HARADA;

KITAZUME; OZEKI, 2002), if these codes are what they call admissible, then there is a

construction that leads to an Unimodular lattices. Also, some codes with an automorphism

group that contains the special linear group are beautiful examples due to their symmetry.

This contents of this section is related to a published work in (NEBE; VILLAR, 2013)

and an accepted paper to appear in the Journal Mathematics. Therefore, there are some

minor changes in the notation. For instance, instead of Fq the field is denoted by K; the

set of isometries denoted in Chapter 1 by Isompnq is denoted here MonnpK˚
q and its

definition is presented in further detail, since it is in this chapter where this concept is

largely used.

One of such a family was discovered in 1969 by Vera Pless (PLESS, 1969),

a family of self-dual ternary codes Pppq of length 2pp ` 1q for primes p with p ” ´1

pmod 6q. Together with the extended quadratic residue codes XQRpqq of length q ` 1 (q

prime, q ” ˘1 pmod 12q) they define a series of self-dual ternary codes of high minimum

distance (see (MACWILLIAMS; SLOANE, 1977, Chapter 16, §8)). For p “ 5, the Pless

code Pp5q coincides with the Golay code g12 which is also the extended quadratic residue

code XQRp11q of length 12.

A. Gleason by means of invariant theory of finite groups, proved that the min-

imum distance of a self-dual ternary code of length 4n cannot exceed 3t
n

12u ` 3 (GLEA-

SON, 1971). Whenever a self-dual codes reaches the equality, it is called extremal. Both

constructions, the extended quadratic residue codes and the Pless symmetry codes yield

extremal ternary self-dual codes for small values of p.

In this section it is given an interpretation of the Pless codes using monomial

representations of the group SL2ppq. This construction allows to read off a large subgroup
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of the automorphism group of the Pless codes (which was already described in (PLESS,

1969)). Also, a related but different series of monomial representations of SL2ppq is looked

into to construct a new series of self-dual ternary codes Vppq of length 2pp ` 1q, for all

primes p ” 5 pmod 8q, as seen in (NEBE; VILLAR, 2013). The group SL2ppq is contained

in the automorphism group of Vppq. For p “ 5 again, as expected due to the classification

of self-dual ternary codes given by Mallows, Pless and Sloane in (MALLOWS; PLESS;

SLOANE, 1976) we find Vp5q – g12 the Golay code of length 12, but for larger primes

these codes are new. In particular, the code Vp29q is an extremal ternary self-dual code,

also called extremal type III code, of length 60, so we now know three, non-equivalent,

extremal ternary codes of length 60: XQRp59q, Pp29q and Vp29q.

5.2 Codes and monomial groups.

Let K be a field, n P N. Then the monomial group MonnpK˚
q ď GLnpKq

is the group of monomial n ˆ n-matrices over K, where a matrix is called monomial,

if it contains exactly one non-zero entry in each row and each column. So MonnpK˚
q –

K˚ ≀Sn – pK˚
q

n : Sn is the semidirect product of the subgroup pK˚
q

n of diagonal matrices

in GLnpKq with the group of permutation matrices. For any subgroup S ď K˚ we define

MonnpSq :“ Sn ≀ Sn to be the subgroup of monomial matrices having all non-zero entries

in S. There is a natural epimorphism π : MonnpSq Ñ Sn mapping any monomial matrix

to the associated permutation.

By MacWilliam’s extension Theorem ((MACWILLIAMS, 1962), see (WARD;

WOOD, 1996)) any K-linear weight preserving isomorphism between two subspaces of Kn

is the restriction of a monomial transformation in MonnpK˚
q. This justifies the following

commonly used notion of equivalence of codes, which also motivates the investigation of

monomial representations of finite groups to find good codes with large automorphism

groups.

Definition. 5.2.1. A K-code C of length n is a subspace of Kn. Given C and C 1 two codes

of length n we say they are monomially equivalent, if there is some g P MonnpK˚
q,

such that Cg “ C 1. And we say the monomial automorphism group of C is the set

of such isomorphisms for C 1
“ C denoted by

AutpCq :“ tg P MonnpK˚
q : Cg “ Cu.
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5.3 Endomorphism rings of monomial representations.

The theory exposed in this section is well known, a nice explicit formulation

is contained in (MÜLLER, 2003, Section I (1)).

Let G be some group. A linear K-representation ∆ of degree n is a group

homomorphism ∆ : G Ñ GLnpKq. The representation is called monomial, if its image

∆pGq is conjugate in GLnpKq to some subgroup of MonnpK˚
q.

We call the monomial representation transitive, if πp∆pGqq is a transitive

subgroup of Sn. In this case the set

th P G : 1πp∆phqq “ 1u “: H

is a subgroup of index n in G and ∆ is obtained by inducing up a degree 1 representation

of H as follows:

Let H be a subgroup of G of index n :“ rG : Hs. Choose g1, . . . , gm P G such

that

G “
.

Y
m
ℓ“1 HgℓH

and put

Hℓ :“ H X g´1
ℓ Hgℓ.

Choose some right transversal hℓ,j of Hℓ in H, so that hℓ,1 “ 1 and H “
.

Y
kℓ
j“1 Hhℓ,j. Then

G “
.

Y
m
ℓ“1

.
Y

kℓ
j“1 Hgℓhℓ,j

and the right transversal tgℓhℓ,j : ℓ “ 1, . . . , m, k “ 1, . . . , kℓu is a set of cardinality n

which we will use as an index set of our n ˆ n-matrices.

For a group homomorphism λ : H Ñ K˚ the associated monomial repre-

sentation of G is ∆ :“ λG
H : G Ñ MonnpλpHqq defined by

pλG
Hpgqqgℓhℓj ,gℓ1 hℓ1,j1 “

$

&

%

0 if gℓhℓjgpgℓ1hℓ1,j1q
´1

R H

λpgℓhℓjgpgℓ1hℓ1,j1q
´1

q if gℓhℓjgpgℓ1hℓ1,j1q
´1

P H
.

The representation λ restricts in two obvious ways to a representation of Hℓ:

λℓ : Hℓ Ñ K˚, h ÞÑ λphq

and

λgℓ
ℓ : Hℓ Ñ K˚, h ÞÑ λpgℓhg´1

ℓ q.
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Let I :“ tℓ P t1, . . . , mu : λℓ “ λgℓ
ℓ u and reorder the double coset representatives so that

I “ t1, . . . , du. Then the endomorphism ring

Endp∆q :“ tX P Knˆn : X∆pgq “ ∆pgqX for all g P Gu

has dimension d and the Schur basis of Endp∆q is pB1 “ In, B2, . . . , Bdq where pBℓq1,gℓ
“

1 and pBℓq1,gkhk,i
‰ 0 if and only if ℓ “ k. As ∆phℓ,kqBℓ “ Bℓ∆phℓ,kq we conclude

λphℓ,kqpBℓq1,gℓhℓ,j
“ ∆phℓ,kqgℓ,gℓhℓ,j

“ λphℓ,kqλph´1
ℓ,j q,

so pBℓq1,gℓhℓ,j
“ λphℓ,jq

´1 for all j. More generally, we get

Lemma 5.3.1. pBℓqgkhk,i,gk1 hk1,i1 “ 0 if gk1hk1,i1h´1
k,i g

´1
k R HgℓH. Otherwise, write for some

h P H, gk1hk1,i1h´1
k,i g

´1
k “ hgℓhℓ,j. Then

pBℓqgkhk,i,gk1 hk1,i1 “ λphq
´1λph´1

ℓ,j q.

Proof. To see this we choose g “ pgkhk,iq
´1

P G. Then ∆pgqgkhk,i,1 “ 1 and hence

p∆pgqBℓqgkhk,i,gℓhℓ,j
“ ∆pgqgkhk,i,1pBℓq1,gℓhℓ,j

“ λphℓ,jq
´1.

On the other hand

pBℓ∆pgqqgkhk,i,gℓhℓ,j
“ pBℓqgkhk,i,gk1 hk1,i1 ∆pgqgk1 hk1,i1 ,gℓhℓ,j

for the unique pk1, i1
q such that

h :“ gk1hk1,i1pgkhk,iq
´1

pgℓhℓ,jq
´1

P H

and then ∆pgqgk1 hk1,i1 ,gℓhℓ,j
“ λphq. As ∆pgqBℓ “ Bℓ∆pgq we compute

λphℓ,jq
´1

“ pBℓqgkhk,i,gk1 hk1,i1 λphq.

˝

5.4 Generalized Pless codes.

This section is a reinterpretation of the construction of the famous Pless sym-

metry codes Pppq discovered by Vera Pless (PLESS, 1969), (PLESS, 1972b). Explicit
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generator matrices for the Pless codes may be obtained from the endomorphism ring of a

monomial representation. Let p be an odd prime and

SL2ppq :“

$

&

%

¨

˝

a b

c d

˛

‚P F2ˆ2
p : ad ´ bc “ 1

,

.

-

the group of 2 ˆ 2-matrices over the finite field Fp with determinant 1. Let

B :“

$

&

%

¨

˝

a b

0 d

˛

‚P SL2ppq

,

.

-

“

C

h1 :“

¨

˝

1 1

0 1

˛

‚, ζ :“

¨

˝

α 0

0 α´1

˛

‚

G

.

Then B is a subgroup of SL2ppq or index p ` 1, isomorphic to the semidirect product

Cp : Cp´1, with center

ZpBq “ ZpSL2ppqq “ xζpp´1q{2
y “ t˘I2u.

Let

λ : B Ñ K˚,

¨

˝

1 1

0 1

˛

‚ ÞÑ 1, ζ ÞÑ ´1

Then λ

¨

˝

¨

˝

a b

0 d

˛

‚

˛

‚“

ˆ

a

p

˙

is just the Legendre symbol of the upper left entry. Let

∆ :“ λ
SL2ppq

B : SL2ppq Ñ Monp`1pK˚
q

be the monomial representation induced by λ. The following facts about this represen-

tation are well known, and easily computed from the general description in the previous

section.

Remark 5.4.1. (1) (Gauß-Bruhat decomposition) SL2ppq “ B
.

Y BwB, where

w “

¨

˝

0 1

´1 0

˛

‚.

(2) B X wBw´1
“ xζy.

(3) A right transversal of B in SL2ppq is given by r1, whx : x P Fps, where

hx :“

¨

˝

1 0

x 1

˛

‚P B.
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(4) The Schur basis of Endp∆q is pIp`1, P q, where P1,1 “ 0, P1,whx “ 1 for all x. Then

Pwhx,1 “

ˆ

´1
p

˙

and

Pwhx,why “

$

’

&

’

%

ˆ

x ´ y

p

˙

x ‰ y

0 x “ y.

(5) P 2
“

ˆ

´1
p

˙

p and PP tr
“ p.

To construct monomial representations of degree 2pp ` 1q the following group

is considered

Gppq :“
C

¨

˝

∆pgq 0

0 ∆pgq

˛

‚, Z :“

¨

˝

0 Ip`1

jIp`1 0

˛

‚: g P SL2ppq

G

ď Mon2pp`1qpK
˚
q,

where j “ ´

ˆ

´1
p

˙

“

$

&

%

1 p ” 3 pmod 4q

´1 p ” 1 pmod 4q.

Remark 5.4.2. Then we can say the following is true.

(1) Gppq –

$

&

%

C4 ˆ PSL2ppq p ” 1 pmod 4q

C2 ˆ SL2ppq p ” 3 pmod 4q

(2) EndpGppqq “

$

&

%

¨

˝

A B

jB A

˛

‚: A, B P Endp∆q

,

.

-

is spanned by

I2pp`1q, X :“

¨

˝

P 0

0 P

˛

‚, Y :“

¨

˝

0 Ip`1

jIp`1 0

˛

‚, XY “

¨

˝

0 P

jP 0

˛

‚,

such that X2
“ ´jp, Y 2

“ j, XY “ Y X, pXY q
2

“ ´p.

Definition 5.4.3. Let K “ Fq be the finite field with q elements and suppose that there

is some a P K˚ such that a2
“ ´p. Then put

Pqppq :“ aI2pp`1q ` XY P EndpGppqq

and define the generalized Pless code

Pqppq ď K2pp`1q

to be the code that is spanned by the rows of Pqppq.
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Theorem 5.4.4. Let a P F˚
q such that a2

“ ´p. The code Pqppq has generator matrix

paIp`1|P q and is a self-dual code in F2pp`1q
q , with minimum distance dpPqppqq ď pp`7q{2 if

q is odd and dpPqppqq ď 4 if q is even. And its autormorphismgroup AutpPqppqq contains

the subgroup Gppq.

Proof. The fact that the group Gppq ď AutpPqppqq comes out of the construction. As

PP tr
“ pIp`1 “ ´a2Ip`1

the code Pqppq is self-dual with respect to the standard inner product.

When adding from the generator matrix paIp`1|P q the first two rows, the upper bound

on the minimum distance is obtained. The sum has weight 4 if q is even. If q is odd then

the first row of P is of the form p0, 1p
q and the second row of P is of the form p´1, 0, vq,

where v P t˘1u
p´1 has exactly pp ´ 1q{2 ones and pp ´ 1q{2 minus ones. ˝

Remark 5.4.5. For K “ F3 and p ” ´1 pmod 3q we may choose a “ 1 Then

EndpGppqq –

$

&

%

F9 ‘ F9 p ” 1 pmod 4q

F3 ‘ F3 ‘ F3 ‘ F3 p ” 3 pmod 4q.

The first p ` 1 rows of the rank p ` 1 matrix I2pp`1q ` XY P EndpGppqq form exactly

the generator matrix of P3ppq, which is the generator matrix for the Pless symmetry code

Pppq as given in (PLESS, 1969).

With the assistance from Magma (BOSMA; CANNON; PLAYOUST, 1997)

the following invariants of the first few Pless codes are computed:

p 5 11 17 23 29 41 47

2pp ` 1q 12 24 36 48 60 84 96

dpP3ppqq 6 9 12 15 18 21 24

AutpP3ppqq 2.M12 Gp11q.2 Gp17q.2 Gp23q.2 Gp29q.2 ě Gp41q ě Gp47q

For q “ 5, 7, and 11 computed dpPqppqq with Magma in the following scenar-

ios:
pp, qq p11, 5qp19, 5qp29, 5qp31, 5qp3, 7qp5, 7qp13, 7q

2pp ` 1q 12 40 60 64 8 12 28

dpPqppqq 9 13 18 18 4 6 10
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pp, qq p17, 7qp19, 7q p7, 11qp13, 11qp17, 11qp19, 11q

2pp ` 1q 36 40 16 28 36 40

dpPqppqq 12 13 7 10 12 13

5.5 A new series of self-dual codes invariant under SL2ppq.

In an analogue manner, applying the same strategy as in Section 5.4, it is now

constructed a monomial representation of SL2ppq of degree 2pp ` 1q, where p is a prime

so that p ´ 1 ” 4 pmod 8q. Here, let’s suppose that charpKq ‰ 2.

Then the subgroup

Bp2q :“

$

&

%

¨

˝

a2 0

b a´2

˛

‚: a P F˚
p , b P Fp

,

.

-

ď SL2ppq

is of index 2pp ` 1q in SL2ppq and has a unique linear representation γ : Bp2q
Ñ K˚ with

γpBp2q
q “ t˘1u, then

γ

¨

˝

¨

˝

a2 0

b a´2

˛

‚

˛

‚“

ˆ

a

p

˙

.

Thus

∆1 :“ γ
SL2ppq

Bp2q

is a faithful monomial representation of degree 2pp ` 1q.

To obtain explicit matrices let us choose

w :“

¨

˝

0 1

´1 0

˛

‚

as above. By assumption 2 P F˚
pzpF˚

pq
2 and put

ϵ :“ diagp2, 2´1
q.

Then

B “ Bp2q .
Y Bp2qϵ

and

SL2ppq “ B
.

Y BwB “ Bp2q .
Y Bp2qwBp2q .

Y Bp2qϵ
.

Y Bp2qϵwBp2q

and a right transversal is given by

r1, whx, ϵ, ϵwhx : x P Fps,
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where hx :“

¨

˝

1 0

x 1

˛

‚P Bp2q.

Lemma 5.5.1. Endp∆1
q has a Schur basis pB1, Bw, Bϵ, Bϵw “ BϵBwq, where Bϵ, Bw are

given by Bϵ “

¨

˝

0 I

´I 0

˛

‚ and Bw “

¨

˝

X Y

´Y tr X tr

˛

‚with

X “

¨

˚

˚

˚

˚

˚

˚

˝

0 1 . . . 1

´1
... RX

´1

˛

‹

‹

‹

‹

‹

‹

‚

, Y “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 . . . 0

0
... RY

0

˛

‹

‹

‹

‹

‹

‹

‚

,

in which the rows and columns of RX and RY are indexed by the elements t0, . . . , p ´ 1u

of Fp and

pRXqa,b “

$

’

&

’

%

0 b ´ a R pF˚
pq

2
ˆ

c

p

˙

b ´ a “ c2
P pF˚

pq
2

pRY qa,b “

$

’

&

’

%

0 2pb ´ aq R pF˚
pq

2
ˆ

c

p

˙

2pb ´ aq “ c2
P pF˚

pq
2

Proof. Explicit computations with the general formulas may be found in Lemma 5.3.1.

For instance pBwqwhx,why ‰ 0 if and only if

whx´yw´1
“

¨

˝

1 y ´ x

0 1

˛

‚P Bp2qwBp2q.

This is equivalent to say that y ´ x “ a2, for some a P Fp and then

whx´yw´1
“

¨

˝

a2 0

1 a´2

˛

‚w

¨

˝

1 0

1 1

˛

‚

and hence pBwqwhx,why “

ˆ

a

p

˙

. ˝

Remark 5.5.2. Note that p´1q “ c2 is a square but not a 4th power, so
ˆ

c

p

˙

“ ´1 and

hence X is skew symmetric and

Btr
w “ ´Bw, Btr

ϵw “ ´Bϵw.
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The can be computed that B2
w “ B2

ϵw “ ´p and B2
ϵ “ ´1 so

Endp∆1
q –

ˆ

´p, ´1
K

˙

is isomorphic to a quaternion algebra over K. Also we obtain that

pBw ` Bϵwq
2

“ ´2p.

Definition. 5.5.1. Let p be a prime p ”8 4, K “ Fq so that there is some a P K˚ such

that a2
“ ´tp for t “ 1 or t “ 2. Now let’s put

Vtppq :“

$

&

%

aI2pp`1q ` Bw, t “ 1

aI2pp`1q ` Bw ` Bϵw, t “ 2

and let Vqppq be the linear code spanned by the rows of Vtppq.

Theorem 5.5.3. Vqppq is a self-dual code in F2pp`1q
q . Its monomial automorphism group

contains the group SL2ppq.

Proof. By construction, the code Vqppq ď F2pp`1q
q is invariant under SL2ppq – ∆1

pSL2ppqq.

To see that Vqppq is self-orthogonal we check that

V1ppqV1ppq
tr

“ pa ` Bwqpa ` Btr
w q

“ a2
` apBw ` Btr

w q ` BwBtr
w

“ a2
´ B2

w “ 0.

V2ppqV2ppq
tr

“ pa ` Bw ` Bϵwqpa ` Btr
w ` Btr

ϵwq

“ a2
´ pBw ` Bϵwq

2
“ 0.

To obtain the rank of the matrix Vtppq note that

Endp∆1
q –

ˆ

´p, ´1
Fq

˙

– F2ˆ2
q .

So the representation ∆1 is the sum of two equivalent representations over Fq. Which have

the same degree, p ` 1, half of the degree of ∆1 and therefore p ` 1 divides the rank of

any matrix in Endp∆1
q. ˝

Remark 5.5.4. The matrices of rank p`1 in Endp∆1
q yield q `1 different self-dual codes

invariant under ∆1
pSL2ppqq. In general, these fall into different equivalence classes. For

instance for q “ 7, where 2 is a square mod 7, the codes spanned by the rows of V1ppq

and V2ppq are nonequivalent. This is also true for p “ 5 and p “ 13, although they have

the same minimum distance. For q “ 3, p “ 29 all 4 codes are equivalent and are just

represented as the code V3p29q.
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The first few codes V3ppq have the following parameters (computed with Magma

(BOSMA; CANNON; PLAYOUST, 1997)):

p 5 13 29 37 53

2pp ` 1q 12 28 60 76 108

dpV3ppqq 6 9 18 18 24

AutpV3ppqq 2.M12 SL2p13q SL2p29q ě SL2p37q ě SL2p53q

For q “ 5, 7, and 11 and small lengths we computed dpVqppqq with Magma:

pp, qq p13, 5q p29, 5q p5, 7q p13, 7q p5, 11q p13, 11q

2pp ` 1q 28 60 12 28 12 28

dpVqppqq 10 16 6 9 7 11

Here we notice that even though the family yields extremal self-dual codes for q “ 3 and

smaller values of primes p, such that p ” 5 pmod 8q, the minimum distance does not grow

always with p, and for q ą 3 the minimum distance is also not bigger either. This is even

more noticeable for Generalized the Pless Codes presented in Section 5.4, which could

be a reason why, if explored by Dr. Pless, she did not present the construction for other

values of q other than 3.

On a final note we can clearly determine that the new V3p29q is not equivalent

to the previously known XQRp59q, Pp29q codes, since their automorphism groups are

different, which by the way can also be directly verified using Magma. Unfortunately

when checking the conditions given in (HARADA; KITAZUME; OZEKI, 2002) this new

code of length 60 is not admissible and, thus, does not lead to an unknown unimodular

lattice either.

All the files corresponding to the algorithms used to classify codes using spec-

trum, to check the types and look for all the codes with specific parameters, as well as,

the output files are contained in GitHub accessible via Darwin Villar’s GitHub repository.

5.6 Open question on the generalization of V3p29q

We found that the new extremal Type III code of length 60 had and automor-

phism group containing SL2p29q and by means of monomial representations of this group

we were able to obtain a family for which this code belonged. We would like to consider

https://bit.ly/3aprklP
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the construction taking into account an hermitian product and not only the euclidean

one. Then we would like to analyse if this would produce a new family of hermitian codes.
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