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Resumo
Nessa tese estudamos problemas elípticos com diferentes tipos de singularidades e termos
não lineares. Consideramos problemas definidos em regiões limitadas contidas em espaços
de dimensão finita. Quando essa região estiver contida no plano, admitimos termos com
crescimento exponencial. Ao longo do trabalho assumimos que as singularidades possuem
crescimento polinomial ou logarítmico perto da origem. Em regiões de dimensão maior,
estudamos dois problemas singulares. O primeiro é um problema que envolve um termo
não linear de crescimento polinomial subcrítico. Resolvemos esse problema aproximando o
termo singular de maneira adequada. O segundo admite pesos que são singulares perto
da fronteira do domínio no qual o problema está definido. Para resolvê-lo, obtemos uma
subsolução que é estritamente positiva no interior dessa região. Os problemas discutidos
nesse trabalho têm uma ampla gama de aplicações. Eles modelam fenômenos de catálise
heterogênea e processos enzimáticos. Também existem aplicações em mecânica dos fluidos
e fluxos pseudoplásticos. Problemas desse tipo também estão relacionados com equações
de Schrödinger e de Klein-Gordon.

Palavras-chave: equações elípticas singulares; cálculo das variações; existência de solução;
operador laplaciano; crescimento crítico.



Abstract
In this thesis we study elliptic problems with different types of singularities and nonlinear-
ities. We consider problems defined in bounded regions contained in finite dimensional
spaces. When this region is contained in the plane, we admit terms with exponential
growth. Throughout this work we assume that the singularities have either polynomial or
logarithmic growth near the origin. In regions contained in higher dimensions, we study
two singular problems. The first one involves a nonlinearity with subcritical polynomial
growth. We solve it by considering a suitable approximation of the singular term. The
second one admits weights that are allowed to be singular near the boundary of the domain
in which the problem is defined. To solve it, we obtain a subsolution that is strictly positive
in the interior of the region. The problems discussed in this work have a wide range of
applications. They model problems in heterogeneous catalysis and in enzymatic processes.
There are also applications in fluid mechanics and pseudoplastic flows. These problems
are also related to Schrödinger and Klein-Gordon equations.

Keywords: singular elliptic equations; calculus of variations; existence of solution; laplacian
operator; critical growth.
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Introduction

In this work we study different classes of elliptic equations. We are concerned
with the existence of solutions of certain problems that admit a term that is unbounded
near the origin. This term generates difficulties which are surpassed by using a perturbation
argument. We study two different types of problems. The first one is defined in a bounded
bidimensional region, and the second one in a bounded region of higher dimension. On one
hand, problems of the first type possess a further term that is allowed to have exponential
growth. On the other hand, the solutions of these problems are not strictly positive.

Problems of the second type do not possess elements with exponential growth.
However, in some situations they have terms that are singular near the boundary of the
region in which these problems are set. Furthermore, in some cases, we obtain positive
solutions.

When we tackle problems of the first and second type, we use an approximation
scheme. For problems of the first type and some problems of the second type, we approach
the singular term by a sequence of smooth functions, thus creating a family of perturbed
problems. By doing this, we cancel the effects of the singularity near the origin. For some
problems of the second type, we use a different form of approximation. First, we obtain a
subsolution that is positive inside the region in which the problem is defined. Next, instead
of perturbing the singular term (as done in problems of first type), we consider a sequence
of subdomains that are contained in the interior of the original region in which the problem
is defined. By doing this, we cancel out the effects of the terms that are singular near the
boundary of this region. Also, the fact that the subsolution is strictly positive in these
subdomains is useful to avoid the singularities near the origin.

For both types of problems, we split our ideas in two steps.

Step 1: We obtain solutions for a smooth perturbation of the original singular
problem (either by perturbing the singular term or by perturbing the domain)

Step 2: We show that the solutions obtained in Step 1 converge to a solution
of the original singular problem.

The main ingredient in Step 1 are results of calculus of variations. Indeed,
we obtain solutions that are mountain passes and local minima of certain perturbed
functionals. Furthermore, these solutions are nonnegative and enjoy suitable regularity
properties, which are very helpful when studying convergence in Step 2.

There is a vast literature on nonsingular problems. Let Ω ⊂ RN , N ≥ 2 be a
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bounded smooth domain. The problem −∆u = f(u) inΩ
u = 0 on ∂Ω,

(1)

has been extensively studied for continuous functions f , see [4], [11] [21], [30], [36], [43] and
[45]. When N > 2, the Sobolev Embedding implies that up ∈ L1(Ω) for all 1 ≤ p ≤ 2N

N − 2 .
Consequently, initially it makes sense to look for solutions of problem (1) when f is
continuous and satisfies

|f(s)| ≤ a1 + a2|s|p, for all s ∈ R,

where a1, a2 > 0 are positive constants and 0 < p ≤ 2N
N − 2 − 1, the case p = 2N

N − 2 − 1

being critical and the case 0 < p <
2N
N − 2 − 1 being subcritical. In the subcritical context,

problem (1) is solvable, provided f is continuous, see [21]. The critical case is more delicate.
The Pohozaev inequality, see [36], implies that the problem

−∆u = u
N+2
N−2 inΩ

u > 0 in Ω
u = 0 on ∂Ω,

(2)

is not solvable in Ω. Nonetheless, in [4], the authors showed that there exists Λ1 > 0 such
that the problem 

−∆u = λuq + up inΩ
u > 0 in Ω
u = 0 on ∂Ω,

(3)

with 0 < q < 1 < p ≤ N + 2
N − 2 has at least two solutions provided 0 < λ < Λ1.

When N = 2, the Sobolev imbedding implies that for each u ∈ H1
0 (Ω), the

function up belongs to L1(Ω) for all 0 < p <∞, so that problem (1) is solvable when f
has polynomial growth. However, a stronger result holds. The Trudinger-Moser inequality,
see [56], asserts that if Ω ⊂ R2 is a bounded domain, then eαu2 belongs to L1(Ω) for all
α > 0 and u ∈ H1

0 (Ω), so that we may study problem (1) with f satisfying the following
condition: There exists α > 0 such that

|f(s)| ≤ C exp(αs2) for all s ∈ R. (4)

For example, in [29], the authors studied the problem
−∆u = h(u)eαu2 inΩ
u > 0 in Ω
u = 0 on ∂Ω,

(5)
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where h is a continuous function that satisfies certain conditions and h(0) = 0. In [27], the
authors the authors obtained two solutions for the problem

−∆u = λuq + eαu
2 inΩ

u > 0 in Ω
u = 0 on ∂Ω,

(6)

provided λ and α are sufficiently small and 0 < q < 1. Observe that the right hand side of
(6) does not vanish for u = 0, but the right hand side of (5) does. See [1], [2], [3], [7], [15]
[30] and [31] for related results.

In this work, we study problems of the form
−∆u = g(x, u)χ{u>0} + f(x, u) inΩ
u ≥ 0, u 6≡ 0 inΩ
u = 0 on ∂Ω,

(7)

where Ω ⊂ RN , N ≥ 2 is a bounded smooth domain and g is singular at the origin with

lim
s→0+

g(x, s) = −∞ for all x ∈ Ω.

Problem (7) is a singular version of (2)–(6). The singularity g at the right hand side of
(7) prevents us from solving this problem directly. To overcome this difficulty, we consider
smooth perturbations which are treatable in a similar way as problem (1). Singular
problems arise in several physical models such as fluid mechanics and pseudoplastic flows,
see [12], [18], [19], [41] and [57]. Problem (7) with g(x, s) = log s is associated to some phase
field models, see [20], [23], [35] and [44]. See also [61] where a reaction diffusion equation
with logarithmic singularity is studied. These problems are also related to Schrödinger
and Klein-Gordon equations, see [16], [24], [48], [64] and [67].

Solutions of problem (7) are not strictly positive in general, so that a free
boundary might arise. For example, in [53] the authors showed that problem (7) with
g(x, s) = log s and f(x, s) = λsp for x ∈ Ω and s ≥ 0 possesses a nontrivial solution uλ ≥ 0
that vanishes in a set of positive measure, provided λ is sufficiently small. Equation (7) is
related to problems in heterogenous catalysis, see [6] and [33]. In this context, the regions
of Ω in which u = 0 are the regions of the catalyst pellet in which no reaction takes place.
See [32] for results on the free boundary of a related problem with logarithmic singularity.
The free boundary of singular elliptic equations was also studied in [40] and [60].

Elliptic problems with singularity of the form u−β have been studied in the last
decades. In [34] the authors considered the problem −∆u = −u−β + λf(x) in Ω, u = 0 in
∂Ω, with f ≥ 0, f ∈ L1(Ω). The sub-supersolution method was used and positive solutions
were obtained when 0 < β < 1 for large values of λ. Multiplicity of solutions was discussed
in [17] with the assumption that f ≡ 1. There, the authors showed that the unidimensional



Introduction 13

problem 
−u′′ = −u−β + λ in (−L,L)
u > 0 in (−L,L)
u(−L) = u(L) = 0,

(8)

has at most one classical solution if β = 1/2. However, when 0 < β < 1/3, two distinct
solutions were obtained.

The problem 
−∆u = −u−βχ{u>0} + λup in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(9)

was studied in [25], [26], [54], [62] and [70]. In [70], the authors showed that (9) does not
admit a classical solution for β ≥ 1. In [25] the authors obtained one positive solution of
problem (9) with 0 < p < 1 for large values of λ. This result was extended in [54], where
the authors obtained two nonnegative solutions of problem (9) for large values of λ. In
[26] the authors studied (9) with p ≥ 1. When p > 1, they obtained one solution for each
λ > 0. When p = 1, they showed that problem (9) is solvable for λ > λ1. The more general
equation −∆u+K(x)u−β = λup with 0 < p < 1 and zero boundary condition was studied
in [62], where K is assumed to be of class C2,α(Ω).

The problem 
−∆u = K(x)u−β in Ω
u > 0 in Ω
u = 0 on ∂Ω

(10)

was studied in [50], [69] and [71]. In [50], the authors showed that this problem has a
positive solution provided K is a continuous function such that K > 0 in Ω. There, the
authors showed that this equation is solvable in H1

0 (Ω) if and only if β < 3. This result
was refined in [71] for K(x) = δ(x)γ with δ(x) = dist(x, ∂Ω). Finally, in [69], the authors
showed that problem (10) is solvable in H1

0 (Ω) if and only if there exists u0 ∈ H1
0 (Ω) such

that ∫
Ω
K(x)|u0|1−β dx <∞.

Versions of the problem 
−∆u = u−β + λup in Ω
u > 0 in Ω
u = 0 on ∂Ω,

(11)

were considered in [13], [14], [47] and [66]. In [13] the authors considered a version of
problem (11) for p = 1. In [14] the authors established results for (a problem more general
than) (11) with β ≥ 3. In [47] the authors considered 0 < β ≤ 1, 1 < p ≤ N + 2

N − 2
and they used variational methods to study the equation −∆u = λu−β + up with zero
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boundary condition. They showed that this problem possesses at least two distinct positive
solutions provided λ is sufficiently small. This result was generalized in [66] for the equation
−∆u = K(x)u−β + λup where K ≥ 0 is nontrivial and K ∈ L2(Ω). See also [8], [22], [46],
[58] and [59] where more general elliptic and quasilinear singular problems were discussed.

In Chapter 2, we study the problem
−∆u = −u−βχ{u>0} + λup + µf(u) inΩ
u ≥ 0, u 6≡ 0 inΩ
u = 0 on ∂Ω,

(12)

where Ω ⊂ R2 is a bounded smooth domain, 0 < p <∞, λ ≥ 0, µ > 0, f : [0,∞)→ R is
a continuous and differentiable function with f(0) = 0 and 0 < β < 1. By a solution of
problem (12) we mean a function u ∈ H1

0 (Ω) such that

u−βχ{u>0} ∈ L1
loc(Ω)

and ∫
Ω
∇u∇ϕ =

∫
Ω∩{u>0}

(
− u−β + λup + µf(u)

)
ϕ,

for every ϕ ∈ C1
c (Ω). Our main contribution is that we allow the nonlinearity f to have

exponential growth at infinity. For example, for each λ ≥ 0 we prove that there exists
µ0 > 0 such that the problem

−∆u = −u−βχ{u>0} + λup + µ(eu − 1) inΩ
u ≥ 0, u 6≡ 0 inΩ
u = 0 on ∂Ω,

(13)

has a solution for all 0 < µ < µ0. We should compare equation (13) with (5) and (6).
Equations (5) and (6) have positive solutions, whereas the solutions of problem (13) are
not shown to be strictly positive, and might give rise to a free boundary ∂{u > 0}. The
method we use relies on the Ambrosetti-Rabinowitz condition, so that when p > 1, we
may consider f ≡ 0 or f(s) = sq for q > 0 in (12). However, when 0 < p ≤ 1 in (12), the
function s → sp ceases to satisfy this condition. As a consequence, we have to impose
stricter assumptions on f , so that we can consider f(s) = sr only for r > 3. Summarizing,
when p > 1 we show that for each λ > 0 fixed, there exists µ0 > 0 such that the problem

−∆u = −u−βχ{u>0} + λup + µuq inΩ
u ≥ 0, u 6≡ 0 inΩ
u = 0 on ∂Ω,

has a solution for all 0 < µ < µ0. An analogous statement holds for the problem
−∆u = −u−βχ{u>0} + λup + µur inΩ
u ≥ 0, u 6≡ 0 inΩ
u = 0 on ∂Ω,
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with 0 < p ≤ 1. Note also that problem (9) is a particular case of (12) with f = 0.

In Chapter 3, we assume that Ω is a bounded smooth domain in RN for N ≥ 3
and we consider the problem

−∆u = −u−βχ{u>0} + λu+ up in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(14)

with 1 < p <
N + 2
N − 2 . We obtain solutions of (14) for each λ ≥ 0, and consequently the

problem 
−∆u = −u−βχ{u>0} + up in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

is solvable for 1 < p <
N + 2
N − 2 . This result is already known, see [26]. Thus, our contribution

is when λ > 0.

In Chapter 4, we consider problem (12) with the logarithmic function log(s)
replacing the term −u−β and we assume again that f(0) = 0 and Ω is a smooth bounded
domain in R2. We allow f to have exponential growth, and this is our main contribution.
For example, for each λ ≥ 0 we prove that there exists µ0 > 0 such that the problem

−∆u = (log u)χ{u>0} + λup + µ(eu − 1) inΩ
u ≥ 0, u 6≡ 0 inΩ
u = 0 on ∂Ω,

(15)

with 1 < p <∞ has a solution for all 0 < µ < µ0. We may consider λ = 0, but we do not
have results when 0 < p < 1 in (15). We are also able to consider f = 0 in (15), so that
we generalize and improve the result of [52], where the authors showed that the problem

−∆u = (log u)χ{u>0} + λup inΩ
u ≥ 0, u 6≡ 0 inΩ
u = 0 on ∂Ω,

(16)

with p > 1 has a solution for sufficiently large λ. In this work, we obtain solutions of (16)
for all λ > 0, provided p > 1.

Some results of this chapter were published in [38].

In Chapter 5, we extend the results of Chapter 4. Indeed, we consider problems
of the form 

−∆u = (log u+ f(u))χ{u>0} inΩ
u ≥ 0, u 6≡ 0 inΩ
u = 0 on ∂Ω,

(17)
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where Ω is a smooth bounded domain in R2 and f is a function that must be superlinear.
By a solution of problem (17), we mean a function u ∈ H1

0 (Ω) such that

(log u)χ{u>0} ∈ L1
loc(Ω)

and ∫
Ω
∇u∇ϕ =

∫
Ω∩{u>0}

(log u+ f(u))ϕ,

for every ϕ ∈ C1
c (Ω). We remark that f satisfies:

• For each α > 0 there exists C = Cα > 0 such that (4) holds;

• We no longer assume that f(0) = 0;

• We allow f to change sign.

For example, we obtain a solution for the problem
−∆u = (log u+ eu + λ)χ{u>0} inΩ
u ≥ 0, u 6≡ 0 inΩ
u = 0 on ∂Ω,

for all λ ∈ R. We may also consider f(u) = up + λ for p > 1, so that the problem
−∆u = (log u+ up + λ)χ{u>0} inΩ
u ≥ 0, u 6≡ 0 inΩ
u = 0 on ∂Ω,

is solvable for all λ ∈ R. We also show that the problem
−∆u = (log u+ u+ eu)χ{u>0} inΩ
u ≥ 0, u 6≡ 0 inΩ
u = 0 on ∂Ω,

is solvable.

Chapters 2-5 have more or less the same structure, but there are nuances. In
these chapters, we consider an associated perturbed functional of the form

Iε(u) = 1
2

∫
Ω
|∇u|2 +

∫
Ω
Gε(u) dx−

∫
Ω
F (u) dx,

and we show that Iε satisfy the Palais-Smale condition and the hypothesis of the Mountain-
Pass Theorem, so that it admits a critical point uε. This is done in the same spirit of
[30] and [63]. Next, we show that uε is bounded in H1

0 (Ω) by a constant that does not
depend on ε, as in [37], [52] and [54]. This bound is essential, and only holds for the specific
solutions we obtain. The final, crucial step is to study the convergence of these solutions
as ε → 0. To do this, we rely on the Moser iteration scheme, see [45] and [56], and in
gradient estimates for the critical points of Iε, similar in essence to [5], [37] and [52].
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In Chapter 6, we consider problem (17) with f having critical growth in the
sense of Trudinger-Moser, which states that there exists α > 0 such that

lim
s→∞

|f(s)|
exp(κs2) =∞ for all 0 < κ < α, and lim

s→∞

|f(s)|
exp(κs2) = 0 for all κ > α. (18)

Examples of functions with critical growth are f(s) = es
2 and f(s) = sτes

2 with τ > 0.
See also Remark 6.1 at page 102.

In Section 6.1, we obtain α0 > 0 such that problem (17) is solvable for 0 <
α < α0. For example, we conclude that for each p > 1, there exists α0 > 0 such that the
problem 

−∆u = (log u+ up exp(αu2))χ{u>0} inΩ
u ≥ 0, u 6≡ 0 inΩ
u = 0 on ∂Ω,

is solvable for 0 < α < α0. Next, in Section 6.2, we study the parametrized problem
−∆u = (log u+ λf(u))χ{u>0} inΩ
u ≥ 0, u 6≡ 0 inΩ
u = 0 on ∂Ω,

(19)

where f satisfies (18) for some α > 0. The goal here is to obtain results without controlling
the value of α. Such an approach has issues. Indeed, we can only show that problem (19)
is solvable provided λ is sufficiently large and

|Ω| < c, (20)

for some constant c > 0 that (sadly) depends on Ω. We are not able to give examples of
admissible sets Ω, but in Section 6.3 we obtain rather explicit values for the admissibility
constant c when f(s) = s exp(αs2) and f(s) = exp(αs2).

In Chapter 7, we study the problem
−∆u = a(x)g(u) + λb(x)up inΩ
u > 0 inΩ
u = 0 on ∂Ω,

(21)

where 0 < p < 1. We will assume that the function g is allowed to be singular near the
origin and that there exists 0 < q, β < 1 such that

lim
s→0

g(s) = −∞, lim
s→0
|sβg(s)| <∞, and lim

s→∞

|g(s)|
sq

<∞,

so that g is sublinear at ∞. Our contribution is that the weights a(x) and b(x) are allowed
to be singular near the boundary of Ω, and g is allowed to change sign. We show that
under certain conditions on g, a and b, problem (21) has a solution for large values of λ.
We also show that this solution is unique in a certain class provided that p is small enough.
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Our approach is as follows: first we show that problem (21) possesses a subsolu-
tion u satisfying u > 0 in Ω and u = 0 on ∂Ω provided λ is large enough. Next, we consider
a sequence ∅ 6= Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 . . . ⊂⊂ Ω of smooth domains Ωk such that ∪∞k=1Ωk = Ω.
We then use variational methods to obtain positive solutions uk of the problem

−∆u = a(x)g(u) + λb(x)up inΩk

u > 0 inΩk

u = u on ∂Ωk,

(22)

Such solutions are obtainable because problem (22) is set in the interior of Ω, so that the
eventual singularities of a and b on the boundary ∂Ω and of g have no effect. We show
that the limit u = lim

k→∞
uk is a solution of problem (21). Next, we show that this solution

is unique in a certain class.

Our uniqueness result can be extended for a wide range of singular and nonsin-
gular equations, for example we may consider g ≡ 0 or g ≡ 1 in (21). Observe also that
problem (21) with g(u) = u−β for 0 < β < 1 is very similar to (8), the key difference being
the presence of the term up. We thus get a existence and uniqueness result for a modified
version of the problems discussed in [17].

We should also compare equation (21) with the ones studied in Chapters 2-6.
The term up in (21) is sublinear, and we are able to get a positive solution, thanks to
the existence of a positive subsolution. On the other hand, in Chapters 2-6 we consider
superlinear nonlinearities, and we obtain nonnegative (but not strictly positive) solutions
thanks to the fact that these nonlinearities satisfy a version of the Ambrosetti-Rabinowitz
condition (this condition is not satisfied for sublinear terms).

Some of the results of this chapter were published in [55].

Some open problems

In problem (12) studied in Chapter 2, we may consider f(s) = λsp + µsq for
0 < q < 1 < p, but in Chapters 4-6 we cannot consider such f , because, as far as we know,
the mountain pass ceases to exist. Thus, problems of the form

−∆u = (log u)χ{u>0} + λuq + µf(u) inΩ
u ≥ 0, u 6≡ 0 inΩ
u = 0 on ∂Ω,

with Ω ⊂ R2, 0 < q < 1 and λ, µ > 0 are left open.

In Chapters 2-6, we do not study the regularity of the solutions u ∈ H1
0 (Ω)

that we obtain. We know, however, that u must be locally Lipschitz continuous, because
it is obtained as a uniform limit of smooth functions. Results of [53] and [62] suggest that
u might be of class C1,ν for some 0 < ν < 1. The positivity of u is another open problem.
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Throughout these chapters, we merely show that u is nontrivial and nonnegative. We do
not study under which circumstances u is positive, and there are examples of solutions
which are shown not to be positive in Ω. Here is an example: for all λ > 0, let uλ be a
solution of problem (12) with f = 0 and 0 < p < 1, so that∫

Ω
∇uλ∇ϕ =

∫
Ω∩{uλ>0}

(−u−βλ + λupλ)ϕdx,

for all ϕ ∈ C1
c (Ω). We will show that uλ cannot be strictly positive in Ω if the parameter λ is

sufficiently small. Indeed, assume by contradiction that uλ > 0 in Ω. By an approximation
argument, we get ∫

Ω
∇uλ∇ϕ =

∫
Ω

(−u−βλ + λupλ)ϕdx,

for all ϕ ∈ C1(Ω). Choosing ϕ = φ1, where φ1 is the first eigenfunction of −∆ with
‖φ1‖H1

0 (Ω) = 1, we obtain

λ1

∫
Ω
uλφ1 =

∫
Ω

(−u−βλ + λupλ)φ1 dx.

Consequently,
λ
∫

Ω
upλφ1 dx =

∫
Ω

(λ1uλ + u−βλ )φ1.

Since there exists c1 > 0 independent of λ such that λ1s+ s−β ≥ c1 > 0 for all s > 0, we
get

λ
∫

Ω
upλφ1 dx ≥ c1

∫
Ω
φ1.

But the function uλ remains bounded as λ→ 0, see [25]. We have thus proven that there
exists λ∗ > 0 such that the set {uλ > 0} has positive measure if 0 < λ < λ∗. Consequently,
such problems admits a free boundary ∂{u > 0}, see [25] and [32].

A further question related to the discussion developed in Chapters 2-6 is the
following. Can we obtain similar results for related problems with more general singularities?
For example, let 0 < β1, β2 < 1 and suppose that Ω is a smooth bounded domain in R2

and that f is a continuous function with exponential or polynomial growth. For what
values of µ > 0 is the problem

−∆u = (u−β1 − u−β2)χ{u>0} + µf(u) inΩ
u ≥ 0, u 6≡ 0 inΩ
u = 0 on ∂Ω.

solvable?
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1 Main contributions of this work

In this chapter, we compare results found in the literature with ours.

1.1 Contribution of Chapter 2
In Chapter 2 we study a class of singular elliptic equations in a bounded smooth

domain Ω ⊂ R2. We extend results proven in [4], [26] and [63]. In [4], the nonsingular
elliptic problem 

−∆u = λuq + up in Ω
u > 0 in Ω
u = 0 on ∂Ω,

(1.1)

was studied for 0 < q < 1 < p. The authors showed that problem (1.1) has two solutions
for sufficiently small λ. In [63], the authors considered the problem

−∆u = λeu inΩ
u > 0 in Ω
u = 0 on ∂Ω.

(1.2)

They obtained two solutions for problem (1.2) provided λ is sufficiently small. In [26] the
authors studied the problem

−∆u = −u−βχ{u>0} + λup in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω.

(1.3)

with 0 < β < 1 < p. They showed that problem (1.3) has a solution for each λ > 0. We
should compare equations (1.1)–(1.3). Equation (1.3) has the singular term u−β, but the
solution obtained is not strictly positive in Ω. Problems (1.1) and (1.2) do not have singular
terms, but the solutions of these problems are strictly positive in Ω. In this chapter, we
study problems of the form

−∆u = −u−βχ{u>0} + λup + µf(u) inΩ
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(1.4)

where Ω ⊂ R2 is a bounded smooth domain, 0 < β < 1, 0 < p < ∞, µ > 0 and f is a
differentiable function with f(0) = 0. Our main contribution is that we allow f to have
exponential growth. We may consider nonlinearities f of the form

f(s) = es − 1 and f(s) = skes for k ≥ 1, s ≥ 0,
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and when p > 1, we may consider

f(s) = 0, and f(s) = sq for s ≥ 0 and 0 < q < 1.

With these choices of f , problem (1.4) becomes
−∆u = −u−βχ{u>0} + λup + µ(eu − 1) in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(1.5)


−∆u = −u−βχ{u>0} + λup + µukeu in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(1.6)

and 
−∆u = −u−βχ{u>0} + λup + µuq in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω.

(1.7)

We prove that problems (1.5) and (1.6) have a nontrivial solution for each λ ≥ 0 and
0 < p <∞, provided µ is small enough. When λ = 0, problems (1.5) and (1.6) are singular
versions of problem (1.2). Observe that the right hand side of (1.2) does not vanish at the
origin but the nonlinear terms of (1.5) and (1.6) do. We also show that problem (1.3) has
a nonnegative and nontrivial solution for each λ > 0 and p > 1, thus obtaining the result
of [26]. Furthermore, we obtain a solution for problem (1.7) with 0 < q < 1 < p, where
both concave and convex nonlinearities are present. We show that for each λ > 0 there
exists µ0 > 0 such that problem (1.7) has a nonnegative solution provided 0 < µ < µ0.
Finally, when 0 < p ≤ 1, we show that for each λ > 0 there exists µ0 > 0 such that the
problem 

−∆u = −u−βχ{u>0} + λup + µur in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(1.8)

with r > 3, has a nonnegative solution provided 0 < µ < µ0. Observe that problems (1.7)
and (1.8) are singular versions of problem (1.1), studied in [4].

1.2 Contribution of Chapter 3
In this chapter we study a singular elliptic problem in a bounded smooth

domain Ω ⊂ RN with N ≥ 3. We extend results of [11] and [37]. In [11] the authors
considered the nonsingular problem

−∆u = λu+ u
N+2
N−2 inΩ

u > 0 in Ω
u = 0 on ∂Ω.

(1.9)
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They proved that problem (1.9) is solvable when N ≥ 4 and 0 < λ < λ1, where λ1 denotes
the first eigenvalue of −∆. Furthermore, the authors showed that problem (1.9) is not
solvable for λ > λ1. When N = 3, this problem is much more delicate. The authors showed
that if Ω is a ball, then there exists a solution of problem (1.9) if and only if λ1/4 < λ < λ1.
In [37] the authors studied the problem

−∆u = −u−βχ{u>0} + λup + u
N+2
N−2 in Ω

u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(1.10)

for 0 < p < 2∗ − 1 and p 6= 1. If 0 < p < 1, they obtained two distinct solutions of (1.10)
for small values of λ. When 1 < p < 2∗ − 1, they obtained one solution of (1.10) for large
values of λ. Problems (1.9) and (1.10) should be compared. Equation (1.10) has a singular
term, but the subcritical term in the right hand side is not allowed to be linear. On the
other hand, problem (1.9) is not singular, but admits a linear term. In this work, we study
the equation 

−∆u = −u−βχ{u>0} + λu+ up in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(1.11)

where Ω ⊂ RN is a bounded smooth domain with N ≥ 3, 0 < β < 1, λ ≥ 0 and
1 < p < 2∗ − 1, with 2∗ − 1 = N + 2

N − 2 .

We show that problem (1.11) possesses at least one solution for each λ ≥ 0
provided 1 < p < 2∗ − 1. Therefore, we conclude that the problem

−∆u = −u−βχ{u>0} + up in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(1.12)

is solvable for 1 < p < 2∗ − 1. This result is already known and was proved in [26].

1.3 Contribution of Chapter 4
In this chapter we study an elliptic problem in a bounded smooth domain

Ω ⊂ R2 with a singularity of logarithmic type. We extend the results of [52] and [53]. In
[53], the problem 

−∆u = (log u)χ{u>0} + λf(x, u) in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(1.13)

was studied. The authors assumed that f ≥ 0, f 6= 0 nondecreasing and

lim
s→∞

f(x, s)
s

= 0 uniformly for x ∈ Ω.
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With these hypothesis, the authors obtained a solution uλ of problem (1.13) for each
λ > 0. Moreover, the authors proved that uλ > 0 in Ω provided λ is sufficiently large. The
superlinear case was treated in [52], where the problem

−∆u = (log u)χ{u>0} + λup in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(1.14)

was studied with p < 2∗ − 1. If 0 < p < 1 in (1.14), the authors obtained two distinct
nontrivial solutions when the parameter λ is large. If 1 < p < 2∗ − 1 in (1.14), they
obtained one solution for sufficiently large λ.

In this chapter, we study problems of the form
−∆u = (log u)χ{u>0} + λup + µf(u) in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(1.15)

where Ω ⊂ R2 is a bounded smooth domain, λ ≥ 0 and µ > 0 are positive parameters, p > 1,
f(0) = 0 and f is allowed to have exponential growth. We may consider nonlinearities f
of the form

f(s) = es − 1 and f(s) = skes for k ≥ 1, s ≥ 0,

and when p > 1, we may consider

f(s) = 0, for s ≥ 0,

and obtain problem (1.14). With these choices of f , problem (1.15) becomes
−∆u = (log u)χ{u>0} + λup + µ(eu − 1) in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(1.16)

and 
−∆u = (log u)χ{u>0} + λup + µukeu in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(1.17)

We prove that problems (1.16) and (1.17) have a nontrivial solution for each λ ≥ 0 and
1 < p < ∞, provided µ is small enough. When λ = 0, problems (1.16) and (1.17) are
singular versions of problem (1.2). We also prove that problem (1.14) has a nontrivial
nonnegative solution for each λ > 0 provided p > 1 (this is the case f = 0 in (1.15)), thus
improving the result of [52]. We should also compare problem (1.15) with (1.4). The term
log u is less singular then −u−β near the origin, but the function log u changes sign and is
unbounded at infinity. We obtain results for problem (1.4) with 0 < p < 1, but we can not
consider this case in (1.15). Also, when p > 1, we may consider f(s) = sq with 0 < q < 1
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in (1.4) but we may not take such f in (1.15). We remark that, unlike the sublinear case
(1.13) studied in [53], we do not obtain results on the positivity of the solution u, so that
the set {u = 0} may have positive measure.

1.4 Contribution of Chapter 5
The aim of this chapter is to generalize and extend the results obtained in

Chapter 4. Indeed, we consider problems of the form
−∆u = (log u+ f(u))χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(1.18)

where f : [0,∞)→ R is a function that is allowed to have exponential growth. Here we
make two major improvements over the problems discussed in Chapter 4.

• We no longer make use of parameters, as in (1.15);

• We do not assume that f(0) = 0.

We obtain solutions for a large class of problems. For example, we show that
the problem 

−∆u = (log u+ λeu + µ)χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

possesses a nontrivial solution for all λ > 0 and µ ∈ R, compare with problem (1.2) studied
in [63].

Furthermore, we allow f to change sign. For example, we may consider

f(s) = λsp − µsq, with 0 < q < 1 < p.

With this choice of f , we obtain a solution for the problem
−∆u = (log u+ λup − µuq)χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

for all λ > 0 and µ ≥ 0. This equation is a singular version of the problem (1.1) treated in
[4].

1.5 Contribution of Chapter 6
In this chapter, we study problem (1.18) with f having critical growth. Indeed,

in Chapters 2, 4 and 5, we assume that for each α > 0 there exists Cα > 0 such that

|f(s)| ≤ Cα exp(αs2) for all s ≥ 0.
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In Chapter 6, we assume the following stricter condition: that there exists α > 0 such that

lim
s→∞

|f(s)|
exp(κs2) =∞ for all 0 < κ < α, and lim

s→∞

|f(s)|
exp(κs2) = 0 for all κ > α. (1.19)

Elliptic problems involving functions satisfying (1.19) are of interest even in the nonsingular
case, see for example [27], where the problem

−∆u = λuq + eαu
2 inΩ

u > 0 in Ω
u = 0 on ∂Ω,

(1.20)

with λ > 0, 0 < q < 1 was studied, and the authors obtained two solutions provided α
and λ are sufficiently small.

In Section 6.1, we show that, under certain conditions on f , there exists α0 > 0
such that problem (1.18) is solvable provided 0 < α < α0. The main problem we have in
mind here is 

−∆u = (log u+ uτ exp(αu2))χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(1.21)

with τ > 1. We remark, however, that we do not require f(0) = 0. As a consequence, we
also obtain the following result: for each µ ∈ R, there exists α0 > 0 such that the problem

−∆u = (log u+ uτ exp(αu2) + µ)χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

is solvable for 0 < α < α0.

Next, in Section 6.2, we consider the parametrized problem
−∆u = (log u+ λf(u))χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(1.22)

where f satisfies (1.19) for some α > 0. Here, we cease to control the value of α, and as a
consequence, two drawbacks appear. The first one, is that we have use the parameter λ in
order to obtain suitable energy estimates, which only hold for large values of λ. The second,
main drawback, is that we can only show that problem (1.22) is solvable provided that Ω
satisfies a certain admissibility condition. Indeed, we show that, under certain hypothesis
on f , there exists λ0 > 0 such that problem (1.22) is solvable for λ > λ0 provided |Ω| < c,
where c is a constant that depends on λ and α. The issue here is that λ0 depends on
Ω, and consequently, so does c. We are unable to obtain examples of sets Ω which are
admissible. However, in Section 6.3, we give estimates for the value of c for the problems

−∆u = (log u+ λu exp(αu2))χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,
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and 
−∆u = (log u+ λ exp(αu2))χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω.

1.6 Contribution of Chapter 7
In [54] the authors studied the problem

−∆u = −u−β + λup inΩ
u > 0 inΩ
u = 0 on ∂Ω,

(1.23)

where Ω ⊂ RN , N ≥ 1 is a bounded smooth domain, with 0 < β < 1 and 0 < p < 1. The
authors proved two results:

• Problem (1.23) admits a positive solution uλ ∈ H1
0 (Ω) provided λ is sufficiently

large. Furthermore, there exists u ∈ H1
0 (Ω) with u > 0 in Ω such that uλ ≥ u.

• There exists 0 < p0 < 1 such that the solution uλ is unique in the set
{u ∈ H1

0 (Ω) : u ≥ u}, provided 0 < p < p0.

We also refer to [42], where the authors studied the problem
−∆u = a(x)g(u) + λf(x, u) + µb(x) inΩ
u > 0 inΩ
u = 0 on ∂Ω,

(1.24)

with λ, µ ≥ 0. There, the authors assumed that there exists 0 < ν < 1 such that

a, b ∈ Cν(Ω) with a, b > 0 in Ω. (1.25)

As for the functions f and g, it was assumed that

g is nonpositive, nondecreasing and g ∈ Cν(0,∞), (1.26)

f : Ω× [0,∞)→ [0,∞) is nonnegative and f ∈ Cν(Ω× (0,∞)), (1.27)

lim
s→∞

g(s) = −∞. (1.28)

and there exist constants C > 0, δ0 > 0 and 0 < β < 1 such that

|g(s)| = −g(s) ≤ Cs−β for 0 < s < δ0. (1.29)

The authors also assumed that the mapping

s→ f(x, s)
s

is nonincreasing for all x ∈ Ω, (1.30)
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and that
lim
s→0

f(x, s)
s

=∞, lim
s→∞

f(x, s)
s

= 0, uniformly for x ∈ Ω. (1.31)

With this hypothesis, they showed that there exist λ∗ > 0 and µ∗ > 0 such that problem
(1.24) is solvable provided λ > λ∗ or µ > µ∗. Conditions (1.30) and (1.31) mean that f is
a generalization of the function f(x, s) = sp for 0 < p < 1. Condition (1.29) imply that∫ 1

0
g(t) dt <∞, and the authors proved that if

∫ 1

0
g(t) dt =∞,

then problem (1.24) is not solvable.

In this chapter we consider the problem
−∆u = a(x)g(u) + λb(x)up inΩ
u > 0 inΩ
u = 0 on ∂Ω,

(1.32)

where Ω ⊂ RN , N ≥ 1 is a bounded smooth domain, λ > 0 is a positive parameter, a
and b are positive weight functions, g : (0,∞) → R is continuous, satisfies (1.28)-(1.29)
and 0 < p < 1. Observe that problem (1.32) may be obtained from problem (1.24) by
considering µ = 0 and f(x, s) = sp. On the other hand,

• we allow g to change sign

and

• we allow the weights a and b to be singular near the boundary ∂Ω of Ω.

Indeed, instead of (1.25), we assume that

a, b ∈ C(Ω),min
Ω
{a, b} > 0,

and that there exist C > 0 and 0 < σ < 1 with σ + β < 1 such that

max{a(x), b(x)}δ(x)σ < C for all x ∈ Ω,

where
δ(x) = dist(x, ∂Ω) = inf

y∈∂Ω
|x− y|.

However, we add the assumption that the nonlinearity g is sublinear at infinity, that is,
there are constants 0 < q < 1 and C2 ≥ 0 such that

lim
s→∞

|g(s)|
sq

= C2. (1.33)

Under these hypothesis, we show that there exists λ0 > 0 such that problem (1.32) has a
subsolution u ∈ H1

0 (Ω) for λ > λ0. Next, we obtain a solution uλ > u provided λ > λ0.
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If we further assume that g is of class C1 and that there exists 0 < γ < 2− σ
such that

|g′(s)| ≤ C4|s|−γ for every s > 0, (1.34)

then a uniqueness result hods: the solution uλ is unique in the class of the functions
{u ∈ H1

0 (Ω) : u ≥ u}. We thus generalize the results of [54]. Our uniqueness result is very
general, and also holds for nonsingular problems. For example, we may consider a ≡ b ≡ 1
in Ω and g(s) = sq with 0 < q < 1 in (1.32), so that the problem

−∆u = uq + λup inΩ
u > 0 inΩ
u = 0 on ∂Ω,

is uniquely solvable in the class {u ≥ u} for small values of p. We may also take g ≡ 0 in
(1.32), so that the problem 

−∆u = λup inΩ
u > 0 inΩ
u = 0 on ∂Ω,

is uniquely solvable in the class {u ≥ u} for small values of p.
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2 A problem in the plane with terms of expo-
nential growth

In this chapter we study the problem
−∆u = −u−βχ{u>0} + λup + µf(u) inΩ
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(2.1)

where Ω ⊂ R2 is a bounded smooth domain, 0 < β < 1, 0 < p <∞ and f is allowed to
have exponential growth. The aim of this chapter is to show that problem (2.1) has a
nonnegative solution for every λ ≥ 0 when the parameter µ > 0 is small. We will suppose
that f satisfies

f(s) = 0 for s ≤ 0, f ∈ C1,ν(0,∞) ∩ C[0,∞) for some 0 < ν < 1, (2.2)

and that for each α > 0 there exists a constant Cα > 0 such that

|f(s)| ≤ Cα exp
(
αs2

)
, for every s ≥ 0. (2.3)

Examples of function f satisfying (2.3) for all α > 0 are f(s) = es and
f(s) = sτes with τ > 1.

We will use a perturbation technique. For each 0 < ε < 1, we consider the
problem 

−∆u+ gε(u) = λup + µf(u) inΩ
u ≥ 0 inΩ
u = 0 on ∂Ω,

(2.4)

with the perturbation gε given by

gε(s) =


sq

(s+ ε)q+β for s ≥ 0

0 for s < 0,
(2.5)

where 0 < q < min{1, p}. Our aim is to obtain solutions of (2.4) that converge to solutions
of (2.1). Observe that gε(0) = 0 and gε ∈ C∞(0,∞) ∩ C(R) converges pointwisely to s−β

for s > 0. We define the functional Iε,λ,µ : H1
0 (Ω)→ R by

Iε,λ,µ(u) = 1
2

∫
Ω
|∇u|2 dx+

∫
Ω
Gε(u)− λ

1 + p

∫
Ω

(u+)1+p − µ
∫

Ω
F (u) dx, (2.6)

where F (u) =
∫ u

0
f(s) ds and Gε(u) =

∫ u

0
gε(s) ds. From the fact that f and gε are

continuous functions that satisfy (2.2), (2.3) and (2.5), we conclude Iε,λ,µ is of class C1
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and

I ′ε,λ,µ(u)(v) =
∫

Ω
∇u∇v+

∫
Ω
gε(u)v−λ

∫
Ω

(u+)pv−µ
∫

Ω
f(u)v, for all u, v ∈ H1

0 (Ω), (2.7)

see Theorem B.16. Consequently, if uε ∈ H1
0 (Ω) is a critical point of Iε,λ,µ then∫

Ω
∇uε∇v +

∫
Ω
gε(uε)v = λ

∫
Ω

(u+
ε )pv + µ

∫
Ω
f(uε)v, for all v ∈ H1

0 (Ω). (2.8)

Choosing v = u−ε in (2.8) and using (2.2), we obtain

−
∫

Ω
|∇(uε)−|2 = 0.

Hence, uε ≥ 0 in Ω. We conclude that critical points uε ∈ H1
0 (Ω) of Iε,λ,µ are nonnegative

and ∫
Ω
∇uε∇v +

∫
Ω
gε(uε)v = λ

∫
Ω
upεv + µ

∫
Ω
f(uε)v, for all v ∈ H1

0 (Ω). (2.9)

Therefore, critical points of Iε,λ,µ are weak solutions of problem (2.4). Furthermore, if
uε ∈ L∞(Ω), then for each 0 < ε < 1 fixed

sup
Ω

(|gε(uε)|+ λupε + µ|f(uε)|) <∞,

and consequently
∆uε ∈ L∞(Ω).

We conclude from Elliptic Regularity Theory (Theorem B.14) that uε ∈ W 2,r(Ω) for all
r > 1. Thus, the Sobolev Embedding (Theorem B.13) implies that uε ∈ C1,ν(Ω), where
0 < ν < 1 is given by (2.2). Summarizing, we have

Lemma 2.1. Suppose that f satisfies (2.2) and (2.3). The following assertions hold:

(i) Critical points of Iε,λ,µ are nonnegative weak solutions of problem (2.4).

(ii) If u ∈ H1
0 (Ω) ∩ L∞(Ω) is a nonnegative weak solution of problem (2.4), then u is

smooth and u ∈ C1,ν(Ω), with ν given by (2.2).

Remark 2.1. The fact that critical points of Iε,λ,µ are nonnegative is key for our purposes.
If instead of (2.2), we assume that

f(0) 6= 0, f ∈ C1,ν(0,∞) ∩ C[0,∞),

then we can no longer assume that f(s) = 0 for s < 0, because then the functional Iε,λ,µ
would cease to be of class C1. However, we will solve this issue in Chapter 5.

Throughout this chapter, we will use the Trudinger-Moser inequality, see
Theorem B.6. We observe that
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Lemma 2.2. Assume that f satisfies (2.3) and that f(s) = 0 for s < 0. The following
assertions hold

(i) For each α > 0 there exists a constant C > 0 that depends on α such that

max{|f(s)|, |F (s)|} ≤ C exp (αs2) for s ∈ R. (2.10)

(ii) If there exist a sequence (un) in H1
0 (Ω) and a constant D > 0 such that

‖un‖H1
0 (Ω) < D for all n ∈ N,

then there exists u ∈ H1
0 (Ω) such that up to a subsequence un ⇀ u weakly in H1

0 (Ω),∫
Ω
f(un)dx→

∫
Ω
f(u)dx as n→∞, (2.11)

and ∫
Ω
F (un)dx→

∫
Ω
F (u)dx as n→∞. (2.12)

Proof of Lemma 2.2. First we prove item (i). Suppose that f satisfies (2.3) and fix
α > 0. From the fact that f(s) = 0 for s < 0, we can find a constant C1 > 0 depending on
α such that

|f(s)| ≤ C1 exp (αs2) for s ∈ R.

From hypothesis (2.3) there is a constant C2 > 0 such that

|F (s)| ≤
∫ s

0
|f(t)| dt ≤ C2

∫ s

0
exp

(
α

2 t
2
)
dt ≤ C2|s| exp

(
α

2 s
2
)
for s ∈ R.

Since there exists a constant C3 > 0 depending only on α such that

|s| ≤ C3 exp
(
α

2 s
2
)
for s ∈ R,

we obtain
|F (s)| ≤ C2C3 exp

(
αs2

)
for s ∈ R.

This proves (2.10).

Now we prove (ii). Since the sequence (un) is uniformly bounded in H1
0 (Ω), we

know that there exists u ∈ H1
0 (Ω) such that up to a subsequence, un ⇀ u weakly in H1

0 (Ω)
and

un → u in Lr(Ω) for all r > 1. (2.13)

Assertions (2.11) and (2.12) follow from (2.3) and from Theorems B.6 and B.8. Indeed,
choose α > 0 such that 2αD2 < 4π. From Hölder’s inequality we have

∫
Ω
|unf(un)| dx ≤ C

∫
Ω
|un| exp (αu2

n) dx ≤ C
(∫

Ω
exp (2αu2

n) dx
) 1

2
(∫

Ω
|un|2 dx

) 1
2
.
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From (B.8) and (2.13) we get a constant C̃ > 0 such that∫
Ω
|unf(un)| dx ≤ C̃.

Then, (2.11) follows by Theorem B.8. Assertion (2.12) follows analogously: we only need
to use item (i) and replace f by F in the previous estimates. We have proved item (ii).

Throughout this chapter, we will need estimates on the perturbation gε which
are uniform in ε. We have

Lemma 2.3. The following assertions hold

(i)
0 < gε(s) < s−β and 0 < Gε(s) ≤

1
1− β s

1−β for s ≥ 0. (2.14)

(ii)

sg′ε(s) = qsq

(s+ ε)q+β −
(q + β)sq+1

(s+ ε)q+β+1 . (2.15)

(iii) Let 0 < q < 1 be a constant such that 0 < q < q, where q is given by (2.5). Then, for
each M > 0, there exists 0 < δ = δ(M) < 1 such that

Gε(s) ≥
M

1 + q
sq+1 for 0 ≤ s < δ. (2.16)

Proof of Lemma 2.3. Items (i) and (ii) are clear from the definition of gε, see (2.5). We
now prove item (iii). Note that

gε(s) = sq

(s+ ε)q+β ≥
sq

(s+ 1)q+β = sq−q

(s+ 1)q+β s
q for s ≥ 0.

Hence,
gε(s) ≥

1
2q+β s

q−qsq for 0 ≤ s < 1.

Since 0 < q < q, we know that for each M > 0 there exists δ = δ(M) < 1 such that

gε(s) ≥Msq for 0 ≤ s < δ < 1.

We thus obtain

Gε(s) =
∫ s

0
gε(t) dt ≥

∫ s

0
Mtq dt = M

1 + q
sq+1 for 0 ≤ s < δ < 1.

This proves item (iii).

Remark 2.2. In other works, for example [25] and [26], the authors consider the simpler
perturbation

gε(s) =


s

(s+ ε)1+β for s ≥ 0

0 for s < 0.



Chapter 2. A problem in the plane with terms of exponential growth 33

Observe, however, that the function gε does not satisfy item (iii) of Lemma 2.3.

The functions jε : R→ R defined by

jε(s) = λ(s+)p + µf(s)− gε(s),

and Jε(s) =
∫ s

0
jε(t) dt will play an important role in this chapter, because

Iε,λ,µ(u) = 1
2

∫
Ω
|∇u|2 −

∫
Ω
Jε(u) for all u ∈ H1

0 (Ω). (2.17)

We will denote the functions jε and Jε merely by j and J respectively. In order to get
important properties of j and J we assume that f satisfies the following condition.

There exists a constant s0 > 0 such that

min{f(s), F (s)} ≥ 0 for every s ≥ s0. (2.18)

Under certain circumstances we also assume that there exist constants A > 0, and γ > 2
such that

F (s) ≥ A|s|γ for every s ≥ s0. (2.19)

Condition (2.19) will also be important later, when we proceed to obtain an element
φ0 ∈ H1

0 (Ω) with negative energy. For now we establish elementary properties of j and J .

Lemma 2.4. The following assertions hold.

(i) Suppose that f satisfies (2.2). For each R > 0, there exists a constant C > 0
that does not depend on ε such that

max{|J(s)|, |sj(s)|} ≤ C for all s ≤ R.

(ii) Suppose that λ > 0, µ > 0 and that f satisfies conditions (2.2) and (2.18).
Then, there exists Rλ > 0 such that J(s) ≥ 0 for all s ≥ Rλ.

(iii) Suppose that λ = 0, µ > 0 and that f satisfies (2.2), (2.18) and (2.19).
Then, there exists Rµ > 0 such that J(s) ≥ 0 for all s ≥ Rµ.

Proof of Lemma 2.4. First we prove item (i). Note that

J(s) = λ

p+ 1s
p+1 + µF (s)−Gε(s) for s ≥ 0, (2.20)

and
sj(s) = λsp+1 + µsf(s)− sgε(s) for s ≥ 0.

Then, it follows from Lemma 2.3 that

|J(s)| ≤ λ

p+ 1R
p+1 + µ sup

0≤s≤R
|F (s)|+ 1

1− βR
1−β for 0 ≤ s ≤ R,
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and
|sj(s)| ≤ λRp+1 + µ sup

0≤s≤R
|sf(s)|+R1−β for 0 ≤ s ≤ R.

This proves item (i). Item (ii) follows from (2.18), (2.20) and Lemma 2.3. Indeed,

J(s) ≥ λ

p+ 1s
p+1 − 1

1− β s
1−β for s ≥ s0.

Hence, J(s) ≥ 0 provided
sp+β ≥ p+ 1

λ(1− β) .

We have proved item (ii). Now we prove item (iii). Applying (2.19), Lemma 2.3 and the
condition λ = 0, we get

J(s) ≥ µAsγ − 1
1− β s

1−β for s ≥ s0.

Hence, J(s) > 0 provided
sγ+β−1 ≥ 1

µA(1− β) .

We have proved Lemma 2.4.

2.1 Properties and solutions of the perturbed problem
In this section, we study the perturbed problem (2.4). The first aim of this

section is to show that under certain conditions on f , there exist constants 0 < θ < 1/2
and Rθ,λ,µ > 0 that do not depend on ε such that

J(s) ≤ θsj(s) for s ≥ Rθ,λ,µ.

Using this result and Lemma 2.4, we will be able to show that the functional Iε,λ,µ given
by (2.17) satisfies a compactness condition. We make the following assumptions on f .

• When p > 1 in (2.1) we assume that

pf(s) ≤ sf ′(s) for all s ≥ s0, (2.21)

or that there exists constants C > 0 and p̃ < p such that

|pf(s)− sf ′(s)| ≤ Csp̃ for all s ≥ s0. (2.22)

Observe that f = 0 satisfies (2.21) and f(s) = sτ satisfies (2.22) when 0 < τ < 1.

• When 0 < p ≤ 1 in (2.1) we suppose that

lim
s→∞

s1−pf ′(s) =∞, (2.23)
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and that there exists a constant 0 < ν1 < 1 such that

sf ′(s)
f(s) ≥ 3 + ν1 for all s ≥ s0. (2.24)

• When λ = 0 in (2.1) we assume that there exists a constant 0 < ν2 < 1 such that

sf ′(s)
f(s) ≥ 2 + ν2 for all s ≥ s0, (2.25)

and
lim
s→∞

sf ′(s) =∞. (2.26)

Under these assumptions, we get

Lemma 2.5. Suppose that f satisfies (2.2), (2.18) and that one of the following assertions
hold:

(i) λ = 0, µ > 0 and f satisfies (2.19), (2.25) and (2.26).

(ii) λ > 0, µ > 0, 0 < p ≤ 1, and f satisfies (2.23) and (2.24).

(iii) λ > 0, p > 1, and f satisfies one of the conditions (2.21) or (2.22).
Then there exist constants 0 < θ <

1
2 and Rθ,λ,µ > 0 such that

0 ≤ J(s) ≤ θsj(s) for s ≥ Rθ,λ,µ.

Consequently, item (i) of Lemma 2.4 implies that there exists Dθ,λ,µ > 0 such that

|J(s)| ≤ Dθ,λ,µ + θsj(s) for all s ∈ R.

Proof of Lemma 2.5. From Lemma 2.4, we know that J(s) ≥ 0 for large value of s. For
each 0 < θ <

1
2 , let Bε(s) = J(s)− θsj(s). We only need to show that Bε(s) ≤ 0 when s

is large. We have
B′ε(s) = (1− θ)j(s)− θsj′(s).

Hence,

B′ε(s) = −(1− θ)gε(s) + θsg′ε(s) + λ((1− θ)sp − θpsp) + µ((1− θ)f(s)− θsf ′(s)).

From (2.15) we obtain

|sg′ε(s)| ≤ q|s|−β + (q + β)|s|−β → 0 as s→∞.

It is also clear that
(1− θ)gε(s)→ 0 as s→∞.

Hence, for each 0 < τ < 1 there exists Tτ > 0 such that

B′ε(s) < τ + λ((1− θ − θp))sp + µ((1− θ)f(s)− θsf ′(s)) for s ≥ Tτ . (2.27)
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Case 1: Suppose that p > 1 and (iii) holds.

In this case, we choose θ such that 1
p+ 1 < θ <

1
2 . Hence, 1−θ−θp < 0. Using

(2.18), we obtain

B′ε(s) < τ + λ((1− θ − θp))sp + µθ(pf(s)− sf ′(s)) for s ≥ max{s0, Tτ}.

Choosing τ = 1/2 and using the fact that f satisfies one of the conditions (2.21) or (2.22),
we find a constant Tθ,λ,µ > s0 such that

B′ε(s) < −1 for s ≥ Tθ,λ,µ. (2.28)

Note that

Bε(s) = λ

p+ 1(s+)p+1 + µF (s)−Gε(s)− θs(λ(s+)p + µf(s)− gε(s)).

Hence,
Bε(Tθ,λ,µ) ≤ R1,

where
R1 = λ(Tθ,λ,µ)p+1

p+ 1 + µF (Tθ,λ,µ) + θ(Tθ,λ,µ)1−β.

From (2.28), we conclude that there exists a constant R2 > 0 such that

Bε(s) ≤ −s+R2 for s ≥ Tθ,λ,µ.

Hence, Bε(s) ≤ 0 for s ≥ max{R2, Tθ,λ,µ}. This proves (iii).

Case 2: Suppose that 0 < p ≤ 1 and that (ii) holds. We claim that there exists constants
0 < θ <

1
2 and T2 > 0 such that

λ((1− θ − θp))sp + µ((1− θ)f(s)− θsf ′(s)) < −1 for s ≥ T2. (2.29)

Indeed, (2.29) holds if and only if

λ((1− θ − θp))sp + µ(1− θ)f(s) + 1 < µθsf ′(s) for s ≥ T2.

Consequently, it is enough to show that

sf ′(s) > 3
µθ
, sf ′(s) > 3(1− θ)f(s)

θ
, and s1−pf ′(s) > 3λ(1− θ − θp)

µθ
,

for sufficiently large s. Claim (2.29) then follows by choosing θ such that

1 < (1− θ)
θ

< 1 + ν1

3 .

and by (2.23) and (2.24). Then, from (2.27) we obtain

B′ε(s) < τ − 1 for s ≥ max{Tτ , T2}.
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Choosing τ = 1/2, we find a constant T̂θ,λ,µ > 0 such that

B′ε(s) < −
1
2 for s ≥ T̂θ,λ,µ.

(ii) then follows by a similar argument given in (iii).

Case 3: Suppose that λ = 0 and that (i) holds. We will show that there exists T3 > 0
such that

µ((1− θ)f(s)− θsf ′(s)) < −1 for s ≥ T3. (2.30)

Indeed, (2.30) holds if and only if

µ(1− θ)f(s) + 1 < µθsf ′(s) for s ≥ Rτ1 .

Consequently, it is enough to show that

sf ′(s) > 2
µθ

and sf ′(s) > 2(1− θ)f(s)
θ

, (2.31)

for sufficiently large s. (2.31) then follows by (2.25), (2.26) and by choosing θ such that

1 < (1− θ)
θ

< 1 + ν2

2 .

Hence, (2.30) follows. Then, from (2.27) and from the fact that λ = 0, we obtain

B′ε(s) < τ − 1 for s ≥ max{Tτ , T3}.

Choosing τ = 1/2, we find a constant Tθ,µ > 0 such that

B′ε(s) < −
1
2 for s ≥ Tθ,µ.

(i) then follows by a similar argument given in (iii).

We now obtain a compactness result. We follow ideas of [30] and [63]. The main ingredient
is a lemma due to Lions, see Theorem B.7.

Lemma 2.6. Fix 0 < ε < 1 and assume that f satisfies (2.2), (2.3) and (2.18). Suppose
that one of the following conditions hold:

(i) λ = 0, f satisfies (2.19), (2.25) and (2.26).

(ii) λ > 0, 0 < p ≤ 1, f satisfies (2.23) and (2.24).

(iii) λ > 0, p > 1, f satisfies one of the conditions (2.21) or (2.22).
Then the functional Iε,λ,µ defined in (2.17) satisfies the Palais-Smale condition at every
level c 6= 0.
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Proof of Lemma 2.6. If f satisfies (2.3), then j also satisfies (2.3) and for each α > 0
there exists a constant Cε,α > 0 depending only on ε and α such that

max{|j(s)|, |J(s)|} ≤ Cε,α exp (αs2) for s ∈ R. (2.32)

Throughout this proof we denote ‖ · ‖H1
0 (Ω) by ‖ · ‖. Let (vεn)n∈N be a Palais-Smale sequence

for Iε,λ,µ in H1
0 (Ω) at the level c. That is

1
2‖v

ε
n‖2 −

∫
Ω
J(vεn) dx→ c as n→∞, (2.33)

and there is a sequence τn → 0 such that∣∣∣∣∣
∫

Ω
∇vεn∇w dx−

∫
Ω
j(vεn)w dx

∣∣∣∣∣≤ τn‖w‖ for each w ∈ H1
0 (Ω). (2.34)

Let 0 < θ < 1/2 and Dθ,λ,µ > 0 be given by Lemma 2.5. We have

|J(vεn)| < Dθ,λ,µ + θvεnj(vεn).

Using (2.33) we obtain a constant D1 > 0 that does not depend on ε > 0 such that
1
2‖v

ε
n‖2 < D1 + θ

∫
Ω
vεnj(vεn) dx.

Taking w = vεn in (2.34) we also conclude that∫
Ω
j(vεn)vεn dx < ‖vεn‖2 + τn‖vεn‖.

Hence,
1
2‖v

ε
n‖2 < D1 + θ‖vεn‖2 + τnθ‖vεn‖.

Since θ < 1/2, there is a constant D > 0 such that

‖vεn‖ < D. (2.35)

It follows from (2.32) and Lemma 2.2 that there exist a subsequence (vεnk) in H1
0 (Ω) that

we continue to denote by (vεn) and an element vε ∈ H1
0 (Ω) such that

vεn ⇀ vε weakly in H1
0 (Ω);

vεn → vε in Lr(Ω) for every r > 1;

vεn → vε a.e in Ω;

|vεn| ≤ hr a.e in Ω for some hr ∈ Lr(Ω);∫
Ω
j(vεn) dx→

∫
Ω
j(vε) dx;∫

Ω
J(vεn) dx→

∫
Ω
J(vε) dx.

(2.36)

For simplicity of notation we will denote the sequence (vεn) and the function vε merely by
(vn) and v respectively. From (2.33), (2.34) and (2.36), we get

lim
n→∞

‖vn‖2 = 2(c+
∫

Ω
J(v) dx), (2.37)
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and
lim
n→∞

∫
Ω
vnj(vn) = 2(c+

∫
Ω
J(v) dx). (2.38)

We will now split the proof in two cases.

Case I. Suppose that c 6= 0 and v 6= 0. We will show that Iε,λ,µ(v) = c. Assume
by contradiction that Iε,λ,µ(v) < c. Then

‖v‖2 < 2
(
c+

∫
Ω
J(v) dx

)
. (2.39)

Let Wn = vn/‖vn‖ and W = v/

√
2(c+

∫
Ω
J(v) dx). Hence, Wn ⇀ W weakly in H1

0 (Ω),

‖Wn‖ = 1 and ‖W‖ < 1. From Theorem B.7, we get a constant k2 > 0 such that

sup
n

∫
Ω

exp(tW 2
n) < k2 for every 0 < t <

4π
(1− ‖W‖2) .

We know from (2.32) that for each r̂ > 1 there is a constant Cr̂,ε,α > 0 such that

|j(vn)|r̂ < Cr̂,ε,α exp (r̂αv2
n) = Cr̂,ε,α exp (r̂α‖vn‖2Wn). (2.40)

We want to choose α and t such that

r̂α‖vn‖2 < t <
4π

1− ‖v‖2
2(c+

∫
Ω J(v))

= 4π(c+
∫

Ω J(v))
c− Iε,λ,µ(v) .

To do that, we fix t > 0 such that

t <
4π(c+

∫
Ω J(v))

c− Iε,λ,µ(v) ,

and take α > 0 so small that
α <

t

r̂D2 ,

where D is given by (2.35). With these choices of α and t we obtain from (2.40) and
Theorem B.7∫

Ω
|j(vn)|r̂ dx <

∫
Ω
Cr̂,ε,α exp (r̂α‖vn‖2Wn) < Cr̂,ε,αk2 for each r̂ ≥ 1, n ∈ N.

Hence, from (2.38),from Hölder’s inequality, and from (2.36), we get

2
(
c+

∫
Ω
J(v) dx

)
= lim

n→∞

∫
Ω
vnj(vn) dx = lim

n→∞

∫
Ω
vj(vn) dx.

On the other hand, from (2.34),∣∣∣∣∣
∫

Ω
∇vn∇v dx−

∫
Ω
j(vn)v dx

∣∣∣∣∣≤ τn‖v‖ for each n ∈ N.

Hence,

−‖v‖τn +
∫

Ω
j(vn)v dx ≤

∫
Ω
∇vn∇v dx ≤ ‖v‖τn +

∫
Ω
j(vn)v dx for each n ∈ N.
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Letting n→∞, we get

‖v‖2 = lim
n→∞

∫
Ω
∇vn∇v dx = lim

n→∞

∫
Ω
vj(vn) dx = 2

(
c+

∫
Ω
J(v) dx

)
.

This contradicts (2.39). We have thus proven that Iε,λ,µ(v) ≥ c. On the other hand, (2.36)
and (2.37) imply that

‖v‖2 ≤ lim
n→∞

‖vn‖2 = 2
(
c+

∫
Ω
J(v) dx

)
.

Hence, Iε,λ,µ(v) ≤ c. Therefore, we must have Iε,λ,µ(v) = c. As a consequence, using (2.37),
we obtain

lim
n→∞

‖vn‖2 = 2
(
c+

∫
Ω
J(v) dx

)
= ‖v‖2.

Then, it follows that vn → v strongly in H1
0 (Ω).

Case 2. Assume that c 6= 0 and v = 0. We will prove that this cannot happen.
We first show that ∫

Ω
|j(vn)|r̃ dx <∞ for each r̃ > 1. (2.41)

Fix a constant 0 < d < 1. From v = 0 and (2.37), we know that for large n,

‖vn‖2 < 2c+ d.

From (2.32), we know that for each α > 0 there is a constant Cr̃,α,ε > 0 such that∫
Ω
|j(vn)|r̃ dx < Cr̃,α,ε

∫
Ω

exp{(r̃αv2
n)} dx.

Choosing
α = 2π

r̃(2c+ d) ,

it follows from (B.8) that there is a constant Cr̃,ε > 0 such that, for a sufficiently large n,∫
Ω
|j(vn)|r̃ dx < Cr̃,εk1.

This proves the claim (2.41). We now apply Hölder’s inequality and use the fact that
vn → 0 strongly in L2(Ω) to get∣∣∣∣∣

∫
Ω
vnj(vn) dx

∣∣∣∣∣≤
(∫

Ω
|j(vn)|2 dx

) 1
2
(∫

Ω
|vn|2 dx

) 1
2
→ 0 as n→∞.

On the other hand,∣∣∣∣∣
∫

Ω
|∇vn|2 dx−

∫
Ω
j(vn)vn dx

∣∣∣∣∣≤ τn‖vn‖ for all n ∈ N.

This means that

−τnD +
∫

Ω
j(vn)vn dx ≤

∫
Ω
|∇vn|2 dx ≤ τnD +

∫
Ω
j(vn)vn dx for all n ∈ N.
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Hence,
‖vn‖ → 0 = ‖v‖.

This contradicts the fact that ‖vn‖ → 2c 6= 0. This proves the result.

We have proved that the functional Iε,λ,µ satisfies the Palais-Smale condition.
Also, we know that Iε,λ,µ is of class C1. We turn our attention into showing that problem
(2.4) possesses a nontrivial solution uε ≥ 0. We will obtain a solution that is a Mountain-
Pass. To do that we need to prove that there exist constants a1 > 0 and 0 < ρ < 1 such
that

Iε,λ,µ(u) ≥ a1 for ‖u‖H1
0 (Ω) = ρ,

and that there exists an element φ0 ∈ H1
0 (Ω) such that

‖φ0‖H1
0 (Ω) ≥ 1 and Iε,λ,µ(φ0) < 0. (2.42)

The lemma below guarantees that (2.42) holds for φ0 = N0φ1 when N0 > 0 is large. It is
here that condition (2.19) comes into play.

Lemma 2.7. Suppose that f satisfies (2.2), (2.18) and that one of the following assertions
hold:

(i) λ = 0, µ > 0 and f satisfies (2.19).

(ii) λ > 0, µ > 0, 0 < p ≤ 1 and f satisfies (2.19).

(iii) λ > 0, µ > 0 and p > 1.

Then there exist constants N0 > 0 and a2 > 0 such that

Iε,λ,µ(N0φ1) < −1 for every 0 < ε < 1, (2.43)

and
sup

0≤s≤1
Iε,λ,µ(sN0φ1) < a2 for every 0 < ε < 1. (2.44)

Proof of Lemma 2.7. First we prove (i). Note that

Iε,0,µ(sφ1) = s2

2 +
∫

Ω
Gε(sφ1)− µ

∫
Ω
F (sφ1) for all s ≥ 0.

Since 0 ≤ gε(s) ≤ s−β, it follows that Gε(s) ≤
s1−β

1− β for all s ≥ 0. Let s0 > 0 be given by
(2.18). We have

Iε,0,µ(sφ1) ≤ s2

2 + s1−β

1− β

∫
Ω
φ1−β

1 −µ
∫

Ω∩{sφ1≤s0}
F (sφ1)−µ

∫
Ω∩{sφ1>s0}

F (sφ1) for all s ≥ 0.

Using (2.19) and the continuity of F we obtain a constant c1 > 0 such that

Iε,0,µ(sφ1) ≤ s2

2 + s1−β

1− β

∫
Ω
φ1−β

1 + c1 − µAsγ
∫

Ω∩{sφ1>s0}
φγ1 for all s ≥ 0.
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Hence, there are constants c2, c3 > 0 such that

Iε,0,µ(sφ1) ≤ c1 + s2

2 + c2s
1−β − c3s

γ for all s ≥ 2s0

supφ1
.

Thus, Iε,0,µ(sφ1) < −1 provided

c1 + s2

2 + c2s
1−β − c3s

γ < −1.

Since γ > 2 > 1− β, we know that

lim
s→∞

(
c1 + s2

2 + c2s
1−β − c3s

γ

)
= −∞,

and therefore lim
s→∞

Iε,0,µ(sφ1) = −∞. This proves (2.43). Let N0 > 2 be such that
Iε,0,µ(N0φ1) < −1. It follows that

Iε,0,µ(sN0φ1) ≤ s2N2
0

2 +
∫

Ω
Gε(sN0φ1) dx− µ

∫
Ω
F (sN0φ1) for all s ≥ 0.

From (2.18) the exists c4 > 0 such that

Iε,0,µ(sN0φ1) < c4 + s2N2
0

2 + N1−β
0 s1−β

1− β

∫
Ω
φ1−β

1 dx for all s ≥ 0.

Hence,
sup
s∈[0,1]

Iε,0,µ(sN0φ1) < a2,

where
a2 = c4 + N2

0
2 + N1−β

0
1− β

∫
Ω
φ1−β

1 dx.

This proves (2.44). The proof of (i) is complete.

The proof of (ii) is very similar to the one given in (i) because

Iε,λ,µ(sφ1) ≤ s2

2 +
∫

Ω
Gε(sφ1)− µ

∫
Ω
F (sφ1) for all s ≥ 0.

The result then follows by using condition (2.19) as in the proof of (i).

Now we prove (iii). We have

Iε,λ,µ(sφ1) = s2

2 +
∫

Ω
Gε(sφ1)− λ

p+ 1s
p+1

∫
Ω
φp+1

1 − µ
∫

Ω
F (sφ1) for all s ≥ 0.

From (2.18) we obtain a constant c5 such that

Iε,λ,µ(sφ1) ≤ c5 + s2

2 +
∫

Ω
Gε(sφ1)− λ

p+ 1s
p+1

∫
Ω
φp+1

1 for all s ≥ 0.

Hence, there are constants c6, c7 > 0 such that

Iε,λ,µ(sφ1) ≤ c5 + s2

2 + c6s
1−β − c7s

p+1 for all s ≥ 0.
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Thus, Iε,λ,µ(sφ1) < −1 provided

c5 + s2

2 + c6s
1−β − c7s

p+1 < −1.

Since p+ 1 > 2 > 1− β, we know that

lim
s→∞

(
c5 + s2

2 + c6s
1−β − c7s

p+1
)

= −∞,

and therefore lim
s→∞

Iε,λ,µ(sφ1) = −∞. This proves (2.43). Let N0 > 2 be such that
Iε,λ,µ(N0φ1) < −1. It follows that

Iε,λ,µ(sN0φ1) = s2N2
0

2 +
∫

Ω
Gε(sN0φ1) dx− λ

p+ 1

∫
Ω

(sN0φ1)p+1−µ
∫

Ω
F (sN0φ1) for all s ≥ 0.

From (2.18) the exists c8 > 0 such that

Iε,λ,µ(sN0φ1) < c8 + s2N2
0

2 + N1−β
0 s1−β

1− β

∫
Ω
φ1−β

1 dx for all s ≥ 0.

Hence,
sup
s∈[0,1]

Iε,λ,µ(sN0φ1) < a2,

where
a2 = c8 + N2

0
2 + N1−β

0
1− β

∫
Ω
φ1−β

1 dx.

This proves Lemma 2.7.

Next we obtain solutions for the perturbed problem (2.4).

Proposition 2.1. Fix λ ≥ 0 and let a2 be given by Lemma 2.7. Suppose that f satisfies
(2.2), (2.3) and (2.18) and that one of the following conditions hold:

(i) λ = 0 and f satisfies (2.19),(2.25) and (2.26).

(ii) λ > 0, 0 < p ≤ 1 and f satisfies (2.19), (2.23) and (2.24).

(iii) λ > 0, p > 1 and f satisfies one of the conditions (2.21) or (2.22).

Then, there exists a constant µ0 > 0 such that problem (2.4) possesses a
nonnegative nontrivial solution uε for each 0 < µ < µ0. Moreover, there exist constants
a1 > 0 and D > 0 that do not depend on ε such that

0 < a1 ≤ Iε,λ(uε) ≤ a2,

and
‖uε‖H1

0 (Ω) < D.
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Proof of Proposition 2.1.Let δ be given by (2.16) and suppose that λ > 0. Note that

Iε,λ,µ(u) ≥ 1
2

∫
Ω
|∇u|2 +

∫
{u<δ}

Gε(u)− λ

p+ 1

∫
Ω

(u+)p+1 − µ
∫

Ω
F (u) for every u ∈ H1

0 (Ω).

Choosing M = λ(1 + q)
1 + p

in (2.16), we obtain

Iε,λ(u) ≥ 1
2

∫
Ω
|∇u|2 − λ

p+ 1

∫
{u>δ}

up+1 − µ
∫

Ω
F (u) dx for every u ∈ H1

0 (Ω).

Observe that there exists a constant C1 > 0 such that

sp+1 ≤ C1s
p+2 for s ≥ δ.

Hence, there exists a constant C2 > 0 such that

Iε,λ(u) ≥ 1
2‖u‖

2
H1

0 (Ω) − C2

∫
Ω
|u|2+p − µ

∫
Ω
F (u) dx for every u ∈ H1

0 (Ω).

Hence, from the Sobolev embedding there is a constant C3 > 0 such that

Iε,λ,µ(u) ≥ 1
2‖u‖

2
H1

0 (Ω) − C3‖u‖p+2
H1

0 (Ω) − µ
∫

Ω
F (u) dx for every u ∈ H1

0 (Ω).

Therefore,
Iε,λ,µ(u) ≥ 1

4‖u‖
2
H1

0 (Ω) − µ
∫

Ω
F (u) dx for ‖u‖H1

0 (Ω) ≤ ρ, (2.45)

where
ρ =

( 1
4C3

) 1
p

.

Note that (2.45) also holds when λ = 0 and ρ = 1. Hence, from now on we will assume
that λ ≥ 0. Let 0 < α <

4π
ρ2 . From (2.3) and Lemma 2.2 we get a constant C4 > 0 such

that

Iε,λ,µ(u) ≥ 1
4‖u‖

2
H1

0 (Ω) − µC4

∫
Ω

exp
α‖u‖2

H1
0 (Ω)

(
u

‖u‖H1
0 (Ω)

)2
 dx for ‖u‖H1

0 (Ω) ≤ ρ.

Hence, from the Trudinger-Moser inequality, (B.8), we get

Iε,λ,µ(u) ≥ 1
4‖u‖

2
H1

0 (Ω) − µC4k1 for ‖u‖H1
0 (Ω) ≤ ρ.

Choosing
µ0 = ρ2

8C4k1
,

we obtain

Iε,λ,µ(u) ≥ 1
4

(
‖u‖2

H1
0 (Ω) −

ρ2

2

)
, for every 0 < µ < µ0, ‖u‖H1

0 (Ω) ≤ ρ.

Hence,
Iε,λ,µ(u) ≥ a1 for ‖u‖H1

0 (Ω) = ρ,
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where
a1 = ρ2

4 .

Let Γ = {γ ∈ C([0, 1], H1
0 (Ω)) : γ(0) = 0, γ(1) = N0φ1}. By the Mountain Pass Theorem

(Theorem B.18), we conclude that there is a sequence (uεn) in H1
0 (Ω) and a number

cε = inf
γ∈Γ

sup
s∈[0,1]

Iε,λ,µ(γ(s)),

such that
lim
n→∞

Iε,λ,µ(uεn) = cε and lim
n→∞

I ′ε,λ,µ(uεn) = 0.

That is,
1
2‖u

ε
n‖2

H1
0 (Ω) −

∫
Ω
J(uεn) dx→ cε. (2.46)

And there is a sequence τn → 0 such that∣∣∣∣∣
∫

Ω
∇uεn∇v dx−

∫
Ω
j(uεn)v dx

∣∣∣∣∣≤ τn‖v‖H1
0 (Ω) for each v ∈ H1

0 (Ω). (2.47)

We will now show that there is a constant D > 0 that does not depend on ε such that

‖uεn‖H1
0 (Ω) < D. (2.48)

Fix 0 < θ <
1
2 and assume that one of the conditions (i), (ii) or (iii) hold. Then, we may

apply Lemma 2.5 to obtain a constant Dθ,λ,µ > 0 depending only on θ, λ and µ such that

|J(uεn)| < Dθ,λ,µ + θuεnj(uεn).

Since a1 ≤ cε ≤ a2, we know from (2.46) that there is a constant D1 > 0 such that

1
2‖u

ε
n‖2

H1
0 (Ω) ≤ D1 + θ

∫
Ω
uεnj(uεn) dx.

Taking v = uεn in (2.47) we also conclude that∫
Ω
j(uεn)uεn dx < ‖uεn‖2

H1
0 (Ω) + τn‖uεn‖H1

0 (Ω).

Hence,
1
2‖u

ε
n‖2

H1
0 (Ω) < D1 + θ‖uεn‖2

H1
0 (Ω) + τnθ‖uεn‖H1

0 (Ω).

Since θ < 1
2 , (2.48) follows. We conclude that there is uε ∈ H1

0 (Ω), ‖uε‖H1
0 (Ω) < D such

that
uεn ⇀ uε weakly in H1

0 (Ω).

We know that (uεn) is a Palais-Smale sequence at a positive level. By Lemma 2.6, it follows
that uε is a critical point of Iε,λ,µ. The result then follows from Lemma 2.1
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2.2 Convergence of the perturbed solutions
In this section, we study the convergence of the solutions uε of problem (2.4)

obtained in Proposition 2.1. This proposition guarantees that there exists a constant D > 0
such that

‖uε‖H1
0 (Ω) < D, for each 0 < ε < 1.

Hence, there exist u ∈ H1
0 (Ω) and a sequence (εn) in (0, 1) such that εn → 0 as n→∞

and 

uεn ⇀ u weakly in H1
0 (Ω),

uεn → u in Lr(Ω) for every r > 1,

uεn → u a.e in Ω,

|uεn| ≤ hr a.e in Ω for some hr ∈ Lr(Ω).

(2.49)

Under additional conditions on f , we can apply regularity results discussed in Appendix
A to conclude that uεn are smooth and that u is continuous. Assume that there exist
constants 0 < q0 < 1 and 0 < q1 < 1 such that

lim
s→0

|f(s)|
sq0

<∞, (2.50)

and
lim
s→0+

s1−q1|f ′(s)| <∞. (2.51)

From Lemma A.2 we obtain a constant K1 > 0 such that

‖uεn‖L∞(Ω) < K1 for all 0 < εn < 1.

Then, it follows from Lemma 2.1 that uεn ∈ C1,ν(Ω), where ν is given by (2.2). We proceed
by obtaining gradient estimates for the functions uεn . Let Ω′ be a smooth subdomain of Ω
such that Ω′ ⊂ Ω′ ⊂ Ω. We would like to get a bound of the form

sup
Ω′
|∇uεn(x)| < C <∞,

for some constant C > 0 that does not depend on ε. Actually, we obtain a sharp result.
There exists a function Z ∈ C[0,∞) with Z(0) = 0 such that

|∇uεn(x)| ≤MZ(uεn(x)) for all x ∈ Ω′.

It follows from Lemma A.3 that there exist a constant M > 0 that depends on Ω′ but not
on ε, and a universal constant ε0 > 0 such that

|∇uεn(x)|2 ≤M(uεn(x)1−β + uεn(x)) ≤ 2MK1 for every x ∈ Ω′, 0 < ε < ε0. (2.52)

Hence, it follows from the Arzela-Ascoli Theorem (Theorem B.5) that uεn → u uniformly
in compact subsets of Ω, so that u is continuous and 0 ≤ u ≤ K1. In this section, we will
show that u is a solution of problem (2.1) in the sense that∫

Ω
∇u∇ϕ =

∫
Ω∩{u>0}

(
− u−β + λup + µf(u)

)
ϕ, (2.53)
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for every ϕ ∈ C1
c (Ω) and

u−βχ{u>0} ∈ L1
loc(Ω).

We have

Lemma 2.8. The function u is nontrivial and u−βχΩ+ belongs to L1
loc(Ω), where Ω+ =

{x ∈ Ω : u(x) > 0}.

Proof of Lemma 2.8. First we show that u is nontrivial. Since uεn is a critical point of
Iεn,λ,µ, we have

‖uεn‖2
H1

0 (Ω) +
∫

Ω
gεn(uεn)uεn = λ

∫
Ω
up+1
εn + µ

∫
Ω
f(uεn)uεn ,

and

Iεn,λ,µ(uεn) = 1
2‖uεn‖

2
H1

0 (Ω) +
∫

Ω
Gεn(uεn)− λ

p+ 1

∫
Ω
up+1
εn − µ

∫
Ω
F (uεn) > a1,

where a1 is given by Proposition 2.1. Hence,

Iεn,λ,µ(uεn) =
∫

Ω

(
Gεn(uεn)− 1

2gεn(uεn)uεn
)
dx+ λ

(
1
2 −

1
p+ 1

)∫
Ω
up+1
εn dx

+ µ
∫

Ω

(1
2f(uεn)uεn − F (uεn)

)
dx > a1. (2.54)

Recall that 0 ≤ uεn ≤ K1 in Ω and consequently 0 ≤ u ≤ K1 in Ω. Hence, from the
Dominated Convergence Theorem, we obtain

lim
n→∞

∫
Ω
f(uεn)uεn dx =

∫
Ω
f(u)u dx.

From Lemma 2.2, we get

lim
n→∞

∫
Ω
F (uεn) dx =

∫
Ω
F (u) dx.

It is also clear that
lim
n→∞

∫
Ω
gεn(uεn)uεn dx =

∫
Ω
u1−β dx

and
lim
n→∞

∫
Ω
Gεn(uεn) dx = 1

1− β

∫
Ω
u1−β dx.

Taking the above limits into account and letting n→∞ in (2.54) we obtain
∫

Ω

(
u1−β

1− β −
u1−β

2

)
dx+ λ

(
1
2 −

1
p+ 1

)∫
Ω
up+1 dx+ µ

∫
Ω

(1
2f(u)u− F (u)

)
dx ≥ a1.

We proved that u is nontrivial. Now let V ⊂ Ω be a open set such that V ⊂ Ω. We will
show that ∫

V
u−βχΩ+ dx <∞.
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Take ζ ∈ C1
c (Ω) such that 0 ≤ ζ ≤ 1 and ζ ≡ 1 in V . Since uεn is a nonnegative critical

point of Iεn,λ,µ, we obtain∫
Ω
gεn(uεn)ζ = λ

∫
Ω
upεnζ + µ

∫
Ω
f(uεn)ζ −

∫
Ω
∇uεn∇ζ.

Since uεn ⇀ u weakly in H1
0 (Ω) and uεn → u uniformly in compact subsets of Ω, we get∫

Ω
gεn(uεn)ζ →

∫
Ω

(λup + µf(u))ζ −
∫

Ω
∇u∇ζ as n→∞. (2.55)

Define the set Ωρ = {x ∈ Ω : u(x) ≥ ρ} for ρ > 0. It follows from (2.55) and by the
definition of ζ that there exists a constant C > 0 that does not depend on ε nor on ρ such
that ∫

V ∩Ωρ

uqεn
(uεn + εn)q+β ≤

∫
Ω
gεn(uεn)ζ < C for all 0 < εn < ε0, ρ > 0,

where ε0 is given by (2.52). Letting n→∞ and using Fatou’s Lemma, we get∫
V
u−βχΩρ < C.

Letting ρ→ 0 and applying Fatou’s Lemma again, we conclude that∫
V
u−βχ{u>0} <∞.

Since V was arbitrarily chosen, Lemma 2.8 is proved.

We state the main result of the chapter.

Theorem 2.1. Suppose that f satisfies (2.2), (2.3), (2.18), (2.50) and (2.51). The following
assertions hold:

(i) Fix λ > 0, suppose that p > 1 and that f satisfies one of the conditions (2.21)
or (2.22). Then there exists µ0 > 0 such that problem (2.1) has a nontrivial nonnegative
solution for every 0 < µ < µ0.

(ii) Fix λ > 0, suppose that 0 < p ≤ 1 and that f satisfies (2.19), (2.23) and
(2.24). Then there exists µ0 > 0 such that problem (2.1) has a nontrivial nonnegative
solution for every 0 < µ < µ0.

(iii) Suppose that f satisfies (2.19), (2.25) and (2.26). Then, there exists µ0 > 0
such that the problem 

−∆u = −u−βχ{u>0} + µf(u) in Ω
u 6≡ 0 in Ω
u = 0 on ∂Ω,

has a nontrivial nonnegative solution for every 0 < µ < µ0.

Before proving Theorem 2.1, we remark that we allow the nonlinearity f to
change sign. Furthermore, we obtain
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Corollary 2.1. (i) Let p > 1. The problem
−∆u = −u−βχ{u>0} + λup in Ω
u 6≡ 0 in Ω
u = 0 on ∂Ω

(2.56)

has a nonnegative and nontrivial solution for each λ > 0.

(ii) Suppose that 0 < q < 1 < p. For each λ > 0, there exists µ0 > 0 such that
the problem 

−∆u = −u−βχ{u>0} + λup + µuq in Ω
u 6≡ 0 in Ω
u = 0 on ∂Ω

has a nontrivial nonnegative solution for each 0 < µ < µ0.

(iii) Suppose that 0 < p < 1 and r > 3. For each λ > 0, there exists µ0 > 0
such that the problem 

−∆u = −u−βχ{u>0} + λup + µur in Ω
u 6≡ 0 in Ω
u = 0 on ∂Ω

has a nontrivial nonnegative solution for each 0 < µ < µ0.

(iv) Suppose that p > 0 and let i ∈ {1, 2}. For each λ ≥ 0, there exists µ0 > 0
such that the problem 

−∆u = −u−βχ{u>0} + λup + µfi(u) in Ω
u 6≡ 0 in Ω
u = 0 on ∂Ω

has a nontrivial nonnegative solution for each 0 < µ < µ0, where f1(s) = skes, k > 0 and
f2(s) = es − 1.

Item (i) of Corollary 2.1 was proved in [26]. Items (ii) and (iii) should be com-
pared with [4], where nonsingular elliptic equations with concave and convex nonlinearities
were studied. Item (iv) gives examples of f with exponential growth for which problem
(2.1) is solvable.

Proof of Theorem 2.1. We follow ideas given in in [37] and [54]. Let (εn) and (uεn) be
the sequences defined in (2.49), and let u be given by Lemma 2.8. We will prove that u
is a solution of (2.1). The nontriviality and continuity of u is guaranteed by Lemma 2.8.
Also recall that uεn → u in C0

loc(Ω). Let ϕ ∈ C1
c (Ω). Since uεn ∈ C1(Ω) is a solution of

problem (2.4), we know that∫
Ω
∇uεn∇ϕ =

∫
Ω

(−gεn(uεn) + λupεn + µf(uεn))ϕ. (2.57)



Chapter 2. A problem in the plane with terms of exponential growth 50

We would like to let n → ∞ in (2.57). Since the term −gεn(uεn) does not converge
pointwisely to u−βχ{u>0}, we need to consider an auxiliar function η that vanishes near the
origin . Throughout this proof, we will denote the functions uεn merely by uε and we will
let ε→ 0. Let η ∈ C∞(R), 0 ≤ η ≤ 1, η(s) = 0 for s ≤ 1/2, η(s) = 1 for s ≥ 1. For m > 0
we define the function % := ϕη(uε/m). Note that % belongs to C1

c (Ω), because uε ∈ C1(Ω).

From continuity, the set Ω+ = {x ∈ Ω : u(x) > 0} is open. Let Ω̃ be an open
set such that support(ϕ) ⊂ Ω̃ and Ω̃ ⊂ Ω. Let Ω0 = Ω+ ∩ Ω̃. Since uε → u uniformly in Ω̃,
we know that for every m > 0 there is an ε1 > 0 such that

uε(x) ≤ m/2 for every x ∈ Ω̃ \ Ω0 and 0 < ε ≤ ε1. (2.58)

Replacing ϕ by % in (2.57) we obtain∫
Ω
∇uε∇(ϕη(uε/m)) =

∫
Ω̃

(−gε(uε) + λupε + µf(uε))ϕη(uε/m). (2.59)

We break the previous integral as

Aε :=
∫

Ω0
(−gε(uε) + λupε + µf(uε))ϕη(uε/m)

and
Bε :=

∫
Ω̃\Ω0

(−gε(uε) + λupε + µf(uε))ϕη(uε/m).

Clearly, Bε = 0, whenever 0 < ε ≤ ε1 by (2.58) and the definition of η. We claim that

Aε →
∫

Ω0
(−u−β + λup + µf(u))ϕη(u/m) as ε→ 0. (2.60)

Indeed, uε → u uniformly in Ω0. Then,∫
Ω0

(λupε + µf(uε))ϕη(uε/m) dx→
∫

Ω0
(λup + µf(u))ϕη(u/m) dx as ε→ 0.

Hence, we only need to show that∫
Ω0
−gε(uε)ϕη(uε/m)→

∫
Ω0
−u−βϕη(u/m) as ε→ 0.

If u ≤ m/4 then, for ε > 0 sufficiently small, we have uε ≤ m/2. Consequently, from the
definition of η,

0 =
∫

Ω0∩{u≤m/4}
−u−βϕη(u/m) = lim

ε→0

∫
Ω0∩{u≤m/4}

−gε(uε)ϕη(uε/m).

If u > m/4, then uε ≥ m/8 for ε > 0 small enough. We then apply the Dominated
Convergence Theorem as ε→ 0 to get∫

Ω0∩{u>m/4}
−u−βϕη(u/m) = lim

ε→0

∫
Ω0∩{u>m/4}

−gε(uε)ϕη(uε/m).

We have proved claim (2.60). Hence,

lim
ε→0

∫
Ω̃

(−gε(uε) + λupε + µf(uε))ϕη(uε/m) =
∫

Ω0
(−u−β + λup + µf(u))ϕη(u/m).
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We take the limit in m to conclude that∫
Ω0

(−u−β + λup + µf(u))ϕη(u/m)→
∫

Ω0
(−u−β + λup + µf(u))ϕ as m→ 0, (2.61)

since η(u/m) ≤ 1 and u−βχΩ+ + λup + µf(u) ∈ L1(Ω̃), according to Lemma 2.8.

We proceed with the integral on the left side of (2.59),∫
Ω
∇uε∇(ϕη(uε/m)) :=

∫
Ω̃

(∇uε∇ϕ)η(uε/m) + Cε. (2.62)

Consequently, ∫
Ω̃

(∇uε∇ϕ)η(uε/m)→
∫

Ω̃
(∇u∇ϕ)η(u/m) as ε→ 0,

since uε ⇀ u in H1
0 (Ω) and uε → u uniformly in Ω̃. Consequently, by the Dominated

Convergence Theorem,∫
Ω̃

(∇u∇ϕ)η(u/m)→
∫

Ω̃
∇u∇ϕ as m→ 0. (2.63)

We claim that

Cε :=
∫

Ω̃

|∇uε|2

m
η′(uε/m)ϕ→ 0 as ε→ 0 ( and then as m→ 0). (2.64)

Let Z0(u) = u1−β + u. The estimate |∇uε|2 ≤MZ0(uε) in Ω̃ provided by (2.52) yields

lim sup
ε→0

|Cε| ≤
M

m
lim
ε→0

∫
Ω̃∩{m2 ≤uε≤m}

Z0(uε)|η′(uε/m)ϕ|

≤M lim
ε→0

∫
Ω̃∩{m2 ≤uε≤m}

Z0(uε)|η′(uε/m)ϕ|
uε

.

Hence,

lim sup
ε→0

|Cε| ≤M sup |η′| sup |ϕ| lim
ε→0

∫
Ω̃∩{m2 ≤uε≤m}

Z0(uε)
uε

≤M sup |η′| sup |ϕ|
∫

Ω̃∩{m2 ≤u≤m}
(1 + u−β),

for every m > 0.

Thus invoking Lemma 2.8 and letting m→ 0, (2.64) is proved. As an immediate
consequence of (2.59)–(2.64), we have∫

Ω
∇u∇ϕ =

∫
Ω∩{u>0}

(
− u−β + λup + µf(u)

)
ϕ,

for every ϕ ∈ C1
c (Ω). This concludes the proof of Theorem 2.1.
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3 A problem in higher dimension

In this chapter we study the problem
−∆u = −u−βχ{u>0} + λu+ up in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(3.1)

where Ω ⊂ RN is a bounded smooth domain, 0 < β < 1, λ ≥ 0 and 1 < p < 2∗ − 1, with
2∗ = 2N

N − 2 . We will again use a perturbation argument. Consider the problem

−∆u+ gε(u) = λu+ up in Ω
u 6≡ 0 in Ω
u = 0 on ∂Ω,

(3.2)

where gε(u)→ u−β for u > 0 pointwisely as ε→ 0 and is again given by

gε(s) =


sq

(s+ ε)q+β for s ≥ 0

0 for s < 0,
(3.3)

with 0 < q < 1/2. We define the functional Iε,λ : H1
0 (Ω)→ R associated to problem (3.2)

by
Iε,λ(u) = 1

2

∫
Ω
|∇u|2 +

∫
Ω
Gε(u)− λ

2

∫
Ω

(u+)2 − 1
1 + p

∫
Ω

(u+)1+p, (3.4)

where Gε(s) =
∫ s

0
gε(t) dt. Consequently, if uε ∈ H1

0 (Ω) is a critical point of Iε,λ then
∫

Ω
∇uε∇v +

∫
Ω
gε(uε)v = λ

∫
Ω

(u+
ε )v +

∫
Ω

(u+
ε )pv, for all v ∈ H1

0 (Ω). (3.5)

Choosing v = u−ε in (3.5), we obtain

−
∫

Ω
|∇(uε)−|2 = 0.

Hence, uε ≥ 0 in Ω. We conclude that critical points uε ∈ H1
0 (Ω) of Iε,λ are nonnegative

and ∫
Ω
∇uε∇v +

∫
Ω
gε(uε)v = λ

∫
Ω
uεv +

∫
Ω
upεv, for all v ∈ H1

0 (Ω). (3.6)

Therefore, critical points of Iε,λ are weak solutions of problem (3.2). We also have the
following estimates ( uniform for ε) on the functions gε and Gε.

Lemma 3.1. The following assertions hold

(i)
0 < gε(s) < s−β and 0 < Gε(s) ≤

1
1− β s

1−β for s ≥ 0. (3.7)
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(ii)

sg′ε(s) = qsq

(s+ ε)q+β −
(q + β)sq+1

(s+ ε)q+β+1 . (3.8)

(iii)
Gε(s) ≥

1
2gε(s)s, for every s ≥ 0.

(iv) For each M > 0 there exists δ = δ(M) > 0 such that

Gε(s) ≥
M

2 s2 for 0 ≤ s < δ < 1.

Proof of Lemma 3.1. Items (i) and (ii) are clear from the definition of gε, see (3.3).
Now we prove item (iii). Let B̃ε(s) = Gε(s)−

1
2gε(s)s. We have that B̃ε(0) = 0 and

B̃′ε(s) = gε(s)−
1
2gε(s)−

s

2g
′
ε(s) = 1

2 (gε(s)− sg′ε(s)) .

Therefore, B̃′ε(s) ≥ 0 if and only if

gε(s) ≥ sg′ε(s).

From (3.8), this inequality will be true if

sq

(s+ ε)q+β ≥
qsq

(s+ ε)q+β . (3.9)

Since q < 1/2, (3.9) holds for each s ≥ 0. We conclude that B̃ε is nondecreasing. This
proves item (iii).

We now prove item (iv). Note that

gε(s) = sq

(s+ ε)q+β ≥
sq

(s+ 1)q+β = sq−
1
2

(s+ 1)q+β s
1
2 for s ≥ 0.

Hence,
gε(s) ≥

1
2q+β s

q− 1
2 s

1
2 for 0 ≤ s < 1.

Therefore, from the fact that 0 < q <
1
2 , it follows that for each M > 0 there exists

δ = δ(M) < 1 such that

gε(s) ≥M
√
s > Ms for 0 ≤ s < δ < 1.

The result then follows from item (iii).

With these estimates we are able to obtain bounds for weak solutions of problem
(3.2). Indeed, let uε be a nontrivial critical point of Iε,λ. Then, (3.4) and (3.6) yield

Iε,λ(uε) =
∫

Ω

(
Gε(uε)−

1
2gε(uε)uε

)
dx+

(
1
2 −

1
p+ 1

)∫
Ω
up+1
ε dx.
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Hence, from item (iii) of Lemma 3.1, and the fact that p > 1, we get

Iε,λ(uε) ≥
(

1
2 −

1
p+ 1

)∫
Ω
up+1
ε dx > 0.

We conclude that

Lemma 3.2. The following assertions hold:

(i) Critical points of Iε,λ are nonnegative weak solutions of problem (3.2).

(ii) If uε ∈ H1
0 (Ω) is a nonnegative nontrivial weak solution of problem (3.2), then Iε,λ(uε) >

0. Furthermore, if there exists a constant C > 0 such that 0 < Iε,λ(uε) < C, then there
exists a constant D > 0 that does not depend on ε such that

‖uε‖H1
0 (Ω) < D.

Proof of Lemma 3.2.: We only need to prove item (ii). If Iε,λ(uε) < C, we get(
1
2 −

1
p+ 1

)∫
Ω
up+1
ε dx < C.

Hence, ‖uε‖Lp+1(Ω) < C2 for some constant C2 > 0. The result then follows from the fact
that

1
2

∫
Ω
|∇uε|2 ≤

1
2

∫
Ω
|∇uε|2 +

∫
Ω
Gε(uε) = Iε,λ(uε) + λ

2

∫
Ω
u2
ε −

1
1 + p

∫
Ω
u1+p
ε .

As in Chapter 2, we define

jε(s) = λ(s+) + (s+)p − gε(s) for s ∈ R,

so that
Iε,λ(u) = 1

2

∫
Ω
|∇u|2 −

∫
Ω
Jε(u) for all u ∈ H1

0 (Ω), (3.10)

where Jε(s) =
∫ s

0
jε(t) dt. Throughout this chapter, we will denote jε and Jε merely by j

and J respectively.

We finish this section by giving a result similar to Lemma 2.3.

Lemma 3.3. The following assertions hold

(i) For each R > 0, there exists a constant C > 0 that does not depend on ε such that

max{|J(s)|, |sj(s)|} ≤ C for all s ≤ R.

(ii) There exists a constant R2 > 0 such that J(s) ≥ 0 for all s ≥ R2.
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Proof of Lemma 3.3. Note that

J(s) = λ

2 (s+)2 + (s+)p+1

p+ 1 −Gε(s) for s ∈ R, (3.11)

and
sj(s) = λ(s+)2 + (s+)p+1 − sgε(s) for s ∈ R.

Then, it follows from item (i) of Lemma 3.1 that

|J(s)| ≤ λ

2R
2 + Rp+1

p+ 1 + 1
1− βR

1−β for 0 ≤ s ≤ R,

and
|sj(s)| ≤ λR2 +Rp+1 +R1−β for 0 ≤ s ≤ R.

This proves (v). Item (vi) is a consequence of the fact that

J(s) ≥ sp+1

p+ 1 −
1

1− β s
1−β for s ∈ R.

This proves Lemma 3.3.

In Section 3.1 we study the perturbed problem (3.2) when 1 < p < 2∗ − 1.
Next, we study the convergence of these solutions.

3.1 Solutions to the perturbed problem
The goal of this section is to show that problem (3.2) possesses a nonnegative

nontrivial solution uε in the subcritical case 1 < p < 2∗ − 1. The structure of this section
is very similar to Section 2.1. First we study compactness of the functional Iε,λ and then
we obtain solutions uε of problem (3.2). The following result is analogous to Lemma 2.5.

Lemma 3.4. Suppose that 1 < p < 2∗− 1. For each 1
1 + p

< θ < 1/2 there exists Rθ,λ > 0
such that

0 ≤ J(s) ≤ θsj(s) for s ≥ Rθ,λ. (3.12)

Proof of Lemma 3.4. Let Bε(s) = J(s)− θsj(s). We have

B′ε(s) = (1− θ)j(s)− θsj′(s).

Hence,

B′ε(s) = −(1− θ)gε(s) + θsg′ε(s) + ((1− θ)sp − θpsp) + λ((1− θ)s− θs).

From Lemma 3.3 we obtain

|sg′ε(s)| ≤ q|s|−β + (q + β)|s|−β → 0 as s→∞.
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and
(1− θ)gε(s)→ 0 as s→∞.

Hence, there exists R > 0 such that

|(1− θ)gε(s)|+ |sg′ε(s)| <
1
2 for s ≥ R.

Therefore,
B′ε(s) <

1
2 + ((1− θ − θp))sp + λ(1− 2θ)s for s ≥ R. (3.13)

Since θ > 1
p+ 1 , it follows that 1− θ− θp < 0. From the fact that p > 1, we conclude that

the right hand side of (3.13) converges to −∞ as s→∞. Hence, there exists a constant
Tθ,λ > 0 such that

B′ε(s) < −1 for s ≥ Tθ,λ.

Note that
Bε(2Tθ,λ) ≤ R1,

where
R1 = (2Tθ,λ)p+1

p+ 1 + λ(2Tθ,λ)2

2 + θ(2Tθ,λ)1−β.

Therefore, there exists a constant Rθ,λ > 0 such that

Bε(s) ≤ −s+Rθ,λ for s ≥ 2Tθ,λ.

Hence, Bε(s) ≤ 0 for s ≥ max{Rθ,λ, 2Tθ,λ}. This proves Lemma 3.4.

As in Section 2.1, we turn our attention into showing that problem (3.2)
possesses a nontrivial solution uε ≥ 0 that is a Mountain Pass. To do that we need to
prove that there exist constants a1 > 0 and 0 < ρ < 1 such that

Iε,λ,µ(u) ≥ a1 for ‖u‖H1
0 (Ω) = ρ,

and that there exists an element φ0 ∈ H1
0 (Ω) such that

‖φ0‖H1
0 (Ω) ≥ 1 and Iε,λ,µ(φ0) < 0. (3.14)

The lemma below guarantees that (3.14) holds for φ0 = N0φ1, where φ1 ∈ H1
0 (Ω) is the

first eigenfunction of the operator −∆ with ‖φ1‖H1
0 (Ω) = 1. We have

Lemma 3.5. Suppose that 1 < p < 2∗ − 1 and that λ ≥ 0. There exist constants N0 > 0,
a2 > 0 and b1 > 0 such that

Iε,λ(N0φ1) < −b1 < 0, for every 0 < ε < 1, (3.15)

and
sup

0≤s≤1
Iε,λ(sN0φ1) < a2 for every λ ≥ 0, 0 < ε < 1. (3.16)

Moreover, these constants do not depend on λ.
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Proof of Lemma 3.5. For each t > 0, we have

Iε,λ(tφ1) = t2

2 +
∫

Ω
Gε(tφ1)− λt2

2

∫
Ω
φ2

1 dx−
tp+1

p+ 1

∫
φ1+p

1 dx.

Hence,
Iε,λ(tφ1) ≤ t2

2 + t1−β
∫

Ω
|φ1|1−β −

tp+1

p+ 1

∫
φ1+p

1 dx. (3.17)

Since p+ 1 > 2 > 1− β, inequality (3.15) then follows by taking t large enough in (3.17).
We also have

Iε,λ(sN0φ1) ≤ s2N2
0

2 +
∫

Ω
Gε(sN0φ1)− sp+1Np+1

0
p+ 1

∫
φ1+p

1 dx, for every s ≥ 0.

Consequently, we get

Iε,λ(sφ1) ≤ s2N2
0

2 + s1−βN1−β
0

1− β

∫
Ω
φ1−β

1 , for every s ≥ 0.

We conclude that
sup

0≤s≤1
Iε,λ(sN0φ1) < a2,

where
a2 = N2

0
2 + N1−β

0
1− β

∫
Ω
φ1−β

1 .

This proves (3.16). We have proved Lemma 3.5.

We now get a compactness result.

Lemma 3.6. Fix 0 < ε < 1 and suppose that 1 < p < 2∗ − 1. The functional Iε,λ defined
in (3.10) satisfies the Palais-Smale condition.

Proof of Lemma 3.6. Throughout this proof we denote ‖ · ‖H1
0 (Ω) by ‖ · ‖. Let (vεn)n∈N

be a Palais-Smale sequence for Iε,λ in H1
0 (Ω). That is, there exists c ∈ R such that

1
2‖v

ε
n‖2 −

∫
Ω
J(vεn) dx→ c as n→∞, (3.18)

and there is a sequence τn → 0 such that∣∣∣∣∣
∫

Ω
∇vεn∇w dx−

∫
Ω
j(vεn)w dx

∣∣∣∣∣≤ τn‖w‖ for each w ∈ H1
0 (Ω). (3.19)

We will show that there is a constant D > 0 that does not depend on ε such that

‖vεn‖ < D. (3.20)

Fix 1
p+ 1 < θ <

1
2 . From Lemma 3.4 there is a constant Rθ,λ > 0 depending only on θ

and λ such that
0 ≤ J(t) ≤ θtj(t) for t ≥ Rθ,λ.
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From itens (v) and (vi) of Lemma 3.3, we may find a constant Dθ,λ > 0 such that

J(vεn) < Dθ,λ + θvεnj(vεn).

We know from (3.18) that there is a constant D1 > 0 such that

1
2‖v

ε
n‖2 ≤ D1 + θ

∫
Ω
vεnj(vεn) dx.

Taking w = vεn in (3.19) we also conclude that∫
Ω
j(vεn)vεn dx < ‖vεn‖2 + τn‖vεn‖.

Hence,
1
2‖v

ε
n‖2 < D1 + θ‖vεn‖2 + τnθ‖vεn‖.

Since θ < 1
2 , (3.20) follows. Since Jε has subcritical growth at infinity (see Theorem B.16),

Lemma 3.6 follows.

Next, we obtain solutions for the perturbed problem (3.2).

Proposition 3.1. Suppose that λ ≥ 0 and let a2 > 0 be given by Lemma 3.5. Then, there
is a nonnegative solution uε of problem (3.2) and there exist constants a1 > 0 and D > 0
that do not depend on ε such that

0 < a1 ≤ Iε,λ(uε) ≤ a2,

and
‖uε‖H1

0 (Ω) < D.

Proof of Proposition 3.1. Let 0 < δ < 1 be given by item (iv) of Lemma 3.1. Note that

Iε,λ(u) ≥ 1
2

∫
Ω
|∇u|2 +

∫
{u<δ}

Gε(u)− λ

2

∫
Ω

(u+)2 − 1
p+ 1

∫
Ω

(u+)p+1 for every u ∈ H1
0 (Ω).

Choosing M = λ in item (iv) of Lemma 3.3, we obtain

Iε,λ(u) ≥ 1
2

∫
Ω
|∇u|2 − λ

2

∫
{u>δ}

u2 − 1
p+ 1

∫
Ω

(u+)p+1for every u ∈ H1
0 (Ω).

Observe that there exists a constant C1 > 0 such that

s2 ≤ C1s
p+1 for s ≥ δ.

Hence, there exists a constant C2 > 0 such that

Iε,λ(u) ≥ 1
2‖u‖

2
H1

0 (Ω) − C2

∫
Ω
|u|1+p for every u ∈ H1

0 (Ω).

Hence, from the Sobolev embedding there is a constant C3 > 0 such that

Iε,λ(u) ≥ 1
2‖u‖

2
H1

0 (Ω) − C3‖u‖p+1
H1

0 (Ω).
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Therefore,
Iε,λ(u) ≥ 1

4‖u‖
2
H1

0 (Ω) for ‖u‖H1
0 (Ω) ≤ ρ,

where
ρ =

( 1
4C3

) 1
p−1

.

Also,
Iε,λ(u) ≥ a1 for ‖u‖H1

0 (Ω) = ρ,

where
a1 = ρ2

4 .

Let Γ = {γ ∈ C([0, 1], H1
0 (Ω)) : γ(0) = 0, γ(1) = N0φ1}. By the Mountain Pass Theorem

(Theorem B.18) we conclude that there is a sequence (uεn) in H1
0 (Ω) and a number

cε = inf
γ∈Γ

sup
s∈[0,1]

Iε,λ(γ(s)),

such that
lim
n→∞

Iε,λ(uεn) = cε and lim
n→∞

I ′ε,λ(uεn) = 0.

Since (uεn) is a Palais-Smale sequence, we conclude from Lemma 3.6 that up to a subse-
quence, there exists uε ∈ H1

0 (Ω) such that uεn → uε strongly in H1
0 (Ω). From the fact that

Iε,λ is of class C1, we conclude that I ′ε,λ(uε) = 0. Therefore, uε is a critical point of Iε,λ.
From Lemma 3.5 we know that a1 ≤ cε ≤ a2. Consequently,

a1 ≤ Iε,λ(uε) ≤ a2.

From Lemma, 3.2, we conclude that uε ≥ 0 and that there exists D > 0 such that

‖uε‖H1
0 (Ω) < D.

This proves the result.

3.2 Convergence of the perturbed solutions
In this section. we study the convergence of the solutions uε of problem (3.2)

obtained in Proposition 3.1, which implies that there exists a constant D > 0 such that

‖uε‖H1
0 (Ω) < D, for each 0 < ε < 1.

Hence, there exist u ∈ H1
0 (Ω) and a sequence (εn) in (0, 1) such that εn → 0 as n→∞

and 

uεn ⇀ u weakly in H1
0 (Ω),

uεn → u in Lr(Ω) for every r > 1,

uεn → u a.e in Ω,

|uεn| ≤ hr a.e in Ω for some hr ∈ Lr(Ω).

(3.21)
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We may apply Lemma A.1 to obtain a constant K1 > 0 such that

‖uεn‖L∞(Ω) < K1 for all 0 < εn < 1.

Since uεn is a solution of problem (3.2), we get

∆uεn ∈ L∞(Ω) for all n ∈ N.

Then, it follows from elliptic regularity theory and from rhe Sobolev Embedding (Theorems
B.13 and B.14) that uεn ∈ C1(Ω). As in Chapter 2, we proceed to obtain gradient estimates
for the solutions uεn . Lemma A.3 implies that there exists a constant ε0 > 0 such that for
each smooth subdomain Ω′ ⊂ Ω′ ⊂ Ω there exists a constant M > 0 that depends on Ω′

but not on ε such that

|∇uε(x)|2 ≤M(uε(x)1−β + uε(x)) ≤ 2MK1 for every x ∈ Ω′, 0 < ε < ε0. (3.22)

Hence, it follows from the Arzela-Ascoli Theorem (Theorem B.5) that uεn → u uniformly
in compact subsets of Ω, so that u is continuous and 0 ≤ u ≤ K1.

As in Chapter 2, will show that u is a nontrivial solution of (3.1) in the sense
that ∫

Ω
∇u∇ϕ =

∫
Ω∩{u>0}

(
− u−β + λu+ up

)
ϕ, (3.23)

for every ϕ ∈ C1
c (Ω) and

u−βχ{u>0} ∈ L1
loc(Ω).

First, we prove the following result.

Lemma 3.7. The sequence (uεn) of solutions obtained in Proposition 3.1 and defined
in (3.21) has a subsequence which converges weakly in H1

0 (Ω) to a nontrivial function
u ∈ H1

0 (Ω) and u−βχΩ+ belongs to L1
loc(Ω), where Ω+ = {x ∈ Ω : u(x) > 0}.

Proof of Lemma 3.7. First we show that u is nontrivial. Since uεn is a nonnegative
critical point of Iεn,λ, we have

‖uεn‖2
H1

0 (Ω) +
∫

Ω
gεn(uεn)uεn = λ

∫
Ω
u2
εn +

∫
Ω
up+1
εn dx,

and
Iεn,λ(uεn) = 1

2‖uεn‖
2
H1

0 (Ω) +
∫

Ω
Gεn(uεn)− λ

2

∫
Ω
u2
εn −

1
p+ 1

∫
Ω
up+1
εn > a1,

where a1 is given by Proposition 3.1. Hence,

Iεn,λ(uεn) =
∫

Ω

(
Gεn(uεn)− 1

2gεn(uεn)uεn
)
dx+

(
1
2 −

1
p+ 1

)∫
Ω
up+1
εn dx > a1. (3.24)

It is also clear that
lim
n→∞

∫
Ω
gεn(uεn)uεn dx =

∫
Ω
u1−β dx,
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and
lim
n→∞

∫
Ω
Gεn(uεn) dx = 1

1− β

∫
Ω
u1−β dx.

Taking the above claims into account and letting n→∞ in (3.24) we obtain∫
Ω

(
u1−β

1− β −
u1−β

2

)
dx+ λ

(
1
2 −

1
p+ 1

)∫
Ω
up+1 dx ≥ a1.

We proved that u is nontrivial.

Let V ⊂ Ω be a open set such that V ⊂ Ω. Take ζ ∈ C1
c (Ω) such that 0 ≤ ζ ≤ 1

and ζ ≡ 1 in V . Since uε is a critical point of Iε,λ, we obtain∫
{uε<1−ε}

gε(uε)ζ =
∫

Ω
λuεζ +

∫
Ω
upεζ −

∫
Ω
∇uε∇ζ −

∫
{uε≥1−ε}

gε(uε)ζ.

Since uε ⇀ u weakly in H1
0 (Ω) and uε → u uniformly in compact subsets of Ω, we get∫

{uε<1−ε}
gε(uε)ζ →

∫
Ω

(λu+ up)ζ −
∫

Ω
∇u∇ζ +

∫
{u≥1}

u−βζ as ε→ 0. (3.25)

Define the set Ωρ = {x ∈ Ω : u(x) ≥ ρ} for ρ > 0. It follows from (3.25) that there exists
a constant C > 0 that does not depend on ε nor on ρ such that∫

V ∩Ωρ

uqε
(uε + ε)q+βχ{uε<1−ε}ζ ≤

∫
{uε<1−ε}

gε(uε)ζ < C for all 0 < ε < ε0, ρ > 0,

where ε0 is given by (3.22). Letting ε→ 0 and using Fatou’s Lemma, we then get∫
V
u−βχΩρ < C.

Letting ρ→ 0 and applying Fatou’s Lemma again, we conclude that∫
V
u−βχ{u>0} <∞.

Since V was arbitrarily chosen, Lemma 3.7 is proved.

We now prove the main result of this chapter.

Theorem 3.1. If 1 < p < 2∗− 1 in (3.1), then problem (3.1) has a nontrivial nonnegative
solution for each λ ≥ 0.

By taking λ = 0 in item (i), we conclude that the problem
−∆u = −u−βχ{u>0} + up in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω

is solvable. This is a version of the result in [26].

Proof of Theorem 3.1. We proceed in a similar way as in Chapter 2. Let (εn) and (uεn)
be the sequences defined in (3.21), and let u be given by Lemma 3.7. We will prove that u
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is a solution of (3.1). The nontriviality and continuity of u is guaranteed by Lemma 3.7.
This Lemma also implies that u−βχ{u>0} ∈ L1

loc(Ω), so that we only need to prove (3.23).
Also recall that uεn → u in C0

loc(Ω). Let ϕ ∈ C1
c (Ω). Since uεn ∈ C1(Ω) is a solution of

problem (3.2), we know that∫
Ω
∇uεn∇ϕ =

∫
Ω

(−gεn(uεn) + λuεn + upεn)ϕ. (3.26)

We would like to let n → ∞ in (3.26). Since the term −gεn(uεn) does not converge
pointwisely to u−βχ{u>0}, we need to consider an auxiliar function η that vanishes near the
origin . Throughout this proof, we will denote the functions uεn merely by uε and we will
let ε→ 0. Let η ∈ C∞(R), 0 ≤ η ≤ 1, η(s) = 0 for s ≤ 1/2, η(s) = 1 for s ≥ 1. For m > 0
we define the function % := ϕη(uε/m). Note that % belongs to C1

c (Ω), because uε ∈ C1(Ω).

Replacing ϕ by % in (3.26) we obtain∫
Ω
∇uε∇(ϕη(uε/m)) =

∫
Ω̃

(−gε(uε) + λuε + upε)ϕη(uε/m). (3.27)

Arguing as in the proof of Theorem 1.1, we get

lim
m→0

lim
ε→0

∫
Ω

(−gε(uε) + λuε + uε)p)ϕη(uε/m) =
∫

Ω
(−u−β + λu+ up)ϕ,

and
lim
m→0

lim
ε→0

∫
Ω
∇uε∇(ϕη(uε/m)) :=

∫
Ω
∇uε∇ϕ.

This proves Theorem 3.1.
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4 A problem with logarithmic singularity

In this chapter we study the problem
−∆u = (log u)χ{u>0} + λup + µf(u) in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(4.1)

where Ω ⊂ R2 is a bounded smooth domain, λ ≥ 0 and µ > 0 are positive parameters,
p > 1 and f is allowed to have exponential growth. The structure of this chapter is very
similar to Chapter 2. We will again study a perturbed problem of the form

−∆u+ gε(u) = λup + µf(u) inΩ
u ≥ 0 in Ω
u = 0 on ∂Ω.

(4.2)

Here, gε ∈ C∞(0,∞) is defined by

gε(s) =

 − log
(
s+ ε

s+ ε

)
for s ≥ 0

0 for s < 0,
(4.3)

so that gε(0) = 0 for all ε > 0 and gε(s)→ − log(s) pointwisely for s > 0 as ε→ 0. We shall
see that the behaviour of this perturbation near the origin prevent us from considering
0 < p < 1 in (4.1). We will again assume that f satisfies the following conditions.

f(s) = 0 for s ≤ 0, f is of class C1,ν(0,∞) ∩ C[0,∞) for some 0 < ν < 1, (4.4)

and that for each α > 0 there exists a constant Cα > 0 such that

|f(s)| ≤ Cα exp
(
αs2

)
, for every s ≥ 0. (4.5)

As in Chapter 2, we define the functional Iε,λ,µ : H1
0 (Ω)→ R by

Iε,λ,µ(u) = 1
2

∫
Ω
|∇u|2 dx+

∫
Ω
Gε(u)− λ

p+ 1

∫
Ω

(u+)p+1 dx− µ
∫

Ω
F (u) dx, (4.6)

where F (u) =
∫ u

0
f(s) ds and Gε(u) =

∫ s

0
gε(s) ds. From the fact that f and gε are

continuous functions that satisfy (4.3)–(4.5), we conclude Iε,λ,µ is of class C1 and

I ′ε,λ,µ(u)(v) =
∫

Ω
∇u∇v+

∫
Ω
gε(u)v−λ

∫
Ω

(u+)pv−µ
∫

Ω
f(u)v, for all u, v ∈ H1

0 (Ω). (4.7)

Consequently, if uε ∈ H1
0 (Ω) is a critical point of Iε,λ,µ then∫

Ω
∇uε∇v +

∫
Ω
gε(uε)v = λ

∫
Ω

(u+
ε )pv + µ

∫
Ω
f(uε)v, for all v ∈ H1

0 (Ω). (4.8)
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Choosing v = u−ε in (4.8) and using (4.4), we obtain

−
∫

Ω
|∇(uε)−|2 = 0.

Hence, uε ≥ 0 in Ω. We conclude that critical points uε ∈ H1
0 (Ω) of Iε,λ,µ are nonnegative

and ∫
Ω
∇uε∇v +

∫
Ω
gε(uε)v = λ

∫
Ω
upεv + µ

∫
Ω
f(uε)v, for all v ∈ H1

0 (Ω). (4.9)

Therefore, critical points of Iε,λ,µ are weak solutions of problem (4.2). Furthermore, if
uε ∈ L∞(Ω), then for each 0 < ε < 1 fixed

sup
Ω

(|gε(uε)|+ λupε + µ|f(uε)|) <∞,

and consequently
∆uε ∈ L∞(Ω).

We conclude from Elliptic Regularity Theory (Theorem B.14) that uε ∈ W 2,r(Ω) for all
r > 1. Thus, the Sobolev Embedding (Theorem B.13) implies that uε ∈ C1,ν(Ω), where
0 < ν < 1 is given by (4.4). Summarizing, we have

Lemma 4.1. Suppose that f satisfies (4.4) and (4.5). The following assertions hold:

(i) Critical points of Iε,λ,µ are nonnegative weak solutions of problem (4.2).

(ii) If u ∈ H1
0 (Ω) ∩ L∞(Ω) is a nonnegative weak solution of problem (4.2), then u is

smooth and u ∈ C1,ν(Ω), with ν given by (4.4).

Now we summarize the properties of the perturbation gε defined in (4.3). We
remark that the estimates below are uniform in ε.

Lemma 4.2. The following assertions hold.

(i) We have
0 ≤ −gε(s) ≤ s for s ≥ 1− ε, (4.10)

0 ≤ Gε(s) ≤ 2, for every 0 ≤ s ≤ 1− ε and 0 < ε < 1, (4.11)

and
|Gε(s)| ≤

s2

2 + s+ 2 for all s ≥ 1− ε. (4.12)

(ii) For each p0 > 2 there exists a constant k0 > 0 such that

Gε(s) ≥ −k0s
p0 for all s ≥ 1− ε, 0 < ε < 1/2. (4.13)

(iii) There exists a constant C > 0 that does not depend on 0 < ε < 1 such that

|sgε(s)| ≤ C(1 + s2) for all s ≥ 0. (4.14)

(iv) We have
lim
s→0+

g′ε(s) = 1
ε
− 1. (4.15)
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Remark: Observe that the perturbation Gε does not possess a lower bound near the origin
as in item (iii) of Lemma 2.3. Consequently, we do not obtain results for the case 0 < p < 1
in (4.1)

Proof of Lemma 4.2. By definition of gε, we have gε(s) ≥ 0 for 0 ≤ s ≤ 1 − ε and
gε(s) ≤ 0 for s ≥ 1− ε. Assertion (4.10) follows from the fact that

−gε(s) = log
(
s+ ε

s+ ε

)
≤ log (s+ ε) ≤ s for s ≥ 1− ε.

Now we observe that −
√
t log t < 1 for 0 ≤ t ≤ 1. Hence,

0 ≤ gε(s) ≤ − log(ε+ s) ≤ (s+ ε)− 1
2 ≤ s−

1
2 for 0 ≤ s ≤ 1− ε.

Consequently (4.11) follows, because

0 ≤ Gε(s) =
∫ s

0
gε(t) dt = 2s1/2 ≤ 2 for every 0 ≤ s ≤ 1− ε and 0 < ε < 1.

Inequality (4.12) holds. Indeed, using (4.11) and the fact that log t ≤ t for all t ≥ 0, we get

|Gε(s)| ≤ 2 +
∫ s

1−ε
|gε(t)|dt = 2 +

∫ s

1−ε
log

(
t+ ε

t+ ε

)
dt

≤ 2 +
∫ s

1−ε

(
t+ ε

t+ ε

)
dt ≤ 2 +

∫ s

0
(t+ 1)dt = 2 + s2

2 + s,

where s ≥ 1− ε and 0 < ε < 1. Note that for each p0 > 2 there exists k0 > 0 such that
s2

2 + s+ 2 ≤ k0s
p0 for all s ≥ 1

2 .

Thus, from (4.12) we obtain

Gε(s) ≥ −
(
s2

2 + s+ 2
)
≥ −k0s

p0 for s ≥ 1− ε and for every 0 < ε < 1/2,

proving (4.13). Now we prove (4.14). For each 0 < ε < 1 and 0 ≤ s ≤ 1− ε there exists a
constant C > 0 independent of ε such that

|gε(s)s| ≤ −s log
(
s+ ε

s+ ε

)
≤ (− log s)s ≤ C.

On the other hand, for s ≥ 1− ε we have

|gε(s)s| ≤ s log
(
s+ ε

s+ ε

)
≤ s log(s+ ε) ≤ s2.

We conclude that there exists a constant C > 0 such that

|gε(s)s| ≤ C(1 + s2) for each s ≥ 0, 0 < ε < 1.

Inequality (4.14) then follows from the fact that gε(s) = 0 for s ≤ 0. Finally, (4.15) is a
consequence of

d

ds
gε(s) = − d

ds
log

(
s+ ε

s+ ε

)
= −

(
s+ ε

s2 + sε+ ε

)(
1− ε

(s+ ε)2

)
for all s > 0.

As in Chapter 2, we have the following convergence result.
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Lemma 4.3. Assume that f satisfies (4.5) and that f(s) = 0 for s < 0. The following
assertions hold

(i) For each α > 0 there exists a constant C > 0 that depends on α such that

max{|f(s)|, |F (s)|} ≤ C exp (αs2) for s ∈ R. (4.16)

(ii) If there exist a sequence (un) in H1
0 (Ω) and a constant D > 0 such that

‖un‖H1
0 (Ω) < D for all n ∈ N,

then there exists u ∈ H1
0 (Ω) such that up to a subsequence un ⇀ u weakly in H1

0 (Ω),∫
Ω
f(un)dx→

∫
Ω
f(u)dx as n→∞, (4.17)

and ∫
Ω
F (un)dx→

∫
Ω
F (u)dx as n→∞. (4.18)

Proof of Lemma 4.3. See the proof of Lemma 2.2.

We again consider the functions jε : R→ R defined by

jε(s) = λ(s+)p + µf(s)− gε(s),

and Jε(s) =
∫ s

0
jε(t) dt. Observe that

Iε,λ,µ(u) = 1
2

∫
Ω
|∇u|2 −

∫
Ω
Jε(u). (4.19)

We will again denote jε and Jε by j and J respectively and we will assume that there
exists a constant s0 > 0 such that

min{f(s), F (s)} ≥ 0 for every s ≥ s0. (4.20)

Using this assumption, we obtain

Lemma 4.4. The following assertions hold.

(i) Suppose that f satisfies (4.4). For each R > 0, there exists a constant C > 0
that does not depend on ε such that

max{|J(s)|, |sj(s)|} ≤ C for all s ≤ R.

(ii) Suppose that λ ≥ 0, µ > 0 and that f satisfies conditions (4.4) and (4.20).
Then, there exists S > 1 such that J(s) ≥ 0 for all s ≥ S.
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Proof of Lemma 4.4. First we prove item (i). Note that

J(s) = λ

p+ 1s
p+1 + µF (s)−Gε(s) for s ≥ 0, (4.21)

and
sj(s) = λsp+1 + µsf(s)− sgε(s) for s ≥ 0.

Then, it follows from Lemma 4.2 that

|J(s)| ≤ λ

p+ 1R
p+1 + µ sup

0≤s≤R
|F (s)|+ R2

2 +R + 2 for 0 ≤ s ≤ R,

and
|sj(s)| ≤ λRp+1 + µ sup

0≤s≤R
|sf(s)|+ C(1 +R2) for 0 ≤ s ≤ R.

This proves item (i). Item (ii) follows from (4.21) and from the fact that there must exist
s1 > 1 independent of ε such that Gε(s) < 0 for s > s1. Choosing S = max{s0, s1}, and
using (4.20), we obtain from (4.21) that

J(s) ≥ 0 for s ≥ S.

We have proved Lemma 4.4.

4.1 Existence of solutions of the perturbed problem
The first aim of this section is to show that there exist constants 0 < θ < 1/2

and Rθ,λ,µ > 0 that do not depend on ε such that

J(s) ≤ θsj(s) for s ≥ Rθ,λ,µ.

The proof of this result is not entirely analogous to the one given in Chapter 2, because
now the perturbation gε is unbounded at ∞.

• When λ > 0 and p > 1 in (4.1) we assume that there exists s0 > 0 such that

pf(s) ≤ sf ′(s) for all s ≥ s0, (4.22)

or that there exists constants C > 0 and p̃ < p such that

|pf(s)− sf ′(s)| ≤ Csp̃ for all s ≥ s0. (4.23)

Observe that f = 0 satisfies (4.22) and f(s) = sτ satisfies (4.23) when 0 < τ < 1.

• When λ = 0 in (4.1), we will assume that there exists 0 < ν1 < 1 such that

lim
s→∞

f ′(s) =∞ and lim
s→∞

sf ′(s)
f(s) > 2 + ν1. (4.24)

Observe that (4.24) implies (4.20).
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Lemma 4.5. Suppose that f satisfies (4.4), (4.20) and that one of the following assertions
hold:

(i) λ > 0, µ > 0 and p > 1 in (4.1) and f satisfies (4.22) or (4.23).

(ii) λ = 0 and µ > 0 in (4.1), and f satisfies (4.24).

Then there exist constants 0 < θ <
1
2 and Rθ,λ,µ > 0 such that

0 ≤ J(s) ≤ θsj(s) for s ≥ Rθ,λ,µ. (4.25)

Consequently, item (i) of Lemma 4.4 implies that there exists Dθ,λ,µ > 0 such that

|J(s)| ≤ Dθ,λ,µ + θsj(s) for all s ∈ R.

Proof of Lemma 4.5. Let 0 < θ <
1
2 be a positive constant to be chosen later. Define

Bε(s) = J(s)− θsj(s).

We first claim that there exists Tθ,λ,µ > 0 that does not depend on ε such that

B′ε(s) < −
θ

6 for s ≥ Tθ,λ,µ. (4.26)

First we recall that

g′ε(s) = −
(

(s+ ε)2 − ε
(s2 + sε+ ε)(s+ ε)

)
< 0 for s ≥ 1,

and
B′ε(s) = (1− θ)j(s)− θsj′(s).

Consequently,

B′ε(s) = (1−θ)(µf(s)+λsp−gε(s))−θµsf ′(s)−θλpsp−θs
(

(s+ ε)2 − ε
(s2 + sε+ ε)(s+ ε)

)
for s ≥ 1.

Hence, B′ε(s) < −
θ

6 if and only if

(1− θ)(λsp + µf(s)− gε(s)) + θ

6 < θ

(
λpsp + µsf ′(s) + s3 + 2s2ε+ sε2 − εs

s3 + 2s2ε+ sε2 + sε+ ε2

)
.

Note that 2s2ε > εs if s > 1/2. Hence,

s3 + 2s2ε+ sε2 − εs
s3 + 2s2ε+ sε2 + sε+ ε2

>
s3

s3 + 2s3 + s3 + s3 + s3 = 1
6 for all s ≥ 1, with 0 < ε < 1.

Hence, it suffices to know for which values of s ≥ 1 the following inequality holds

(1− θ)(λsp + µf(s)− gε(s)) + θ

6 < θ
(
λpsp + µsf ′(s) + 1

6

)
.
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We need to solve the inequality

(1− θ)(λsp + µf(s)− gε(s)) < θ (λpsp + µsf ′(s)) .

From (4.10), it is enough to show that

λsp + µf(s) + s <
θ

1− θ (λpsp + µsf ′(s)) ,

which is equivalent to

s+ λsp
(

1− θp

1− θ

)
+ µ

1− θ ((1− θ)f(s)− θsf ′(s)) < 0. (4.27)

We now split the proof in two cases.

Case 1: When λ > 0, we choose θ such that

1 < 1− θ
θ

< p.

Consequently, θ < 1/2 and 1− θ < θp, so that from (4.27) we only need to prove that

s+ λsp
(

1− θp

1− θ

)
+ µθ

1− θ (pf(s)− sf ′(s)) < 0.

Claim (4.26) then follows from (4.22), (4.23) and from the facts that p > 1 and

1− θp

1− θ < 0.

Case 2: When λ = 0, inequality (4.27) becomes

s+ µf(s) < µθsf ′(s)
1− θ .

This inequality will be true if

f ′(s) > 2(1− θ)
µθ

and sf ′(s) > (1− θ)f(s)
θ

.

We choose θ such that
1 < 1− θ

θ
< 1 + ν1

2 ,

where ν1 is given by (4.24). This choice of θ and hypothesis (4.24) guarantee that (4.26)
holds when s is large enough.

Now we prove (4.25). First note that if s is large enough, we may use (4.10)
and (4.12) to obtain

Bε(s) = λ

p+ 1s
p+1 + µF (s)−Gε(s)− θs(λsp + µf(s)− gε(s))

<
λ

p+ 1s
p+1 + µF (s) + 3s2

2 + s+ 2− θµsf(s).
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Hence,
Bε(2Tθ,λ,µ) < β̃θ,λ,µ,

where

β̃θ,λ,µ = λ

p+ 1(2Tθ,λ,µ)p+1 + µF (2Tθ,λ,µ) + 3(2Tθ,λ,µ)2

2 + 2Tθ,λ,µ + 2− 2θµTθ,λ,µf(2Tθ,λ,µ).

Using (4.26), there is a constant β = βθ,λ,µ such that

Bε(s) < −
θ

6s+ β for s ≥ 2Tθ,λ,µ.

We conclude that Bε(s) < 0 if s > max{6β
θ
, 2Tθ,λ,µ}. Choosing Rθ,λ,µ = 6β

θ
, (4.25)

follows.

The following compactness result is analogous to Lemma 2.6, see page 37.

Lemma 4.6. Fix 0 < ε < 1 and suppose that f satisfies (4.4), (4.5) and (4.20). Assume
that one of the following assertions hold:

(i) λ > 0, µ > 0 and p > 1 in (4.1) and f satisfies (4.22) or (4.23).

(ii) λ = 0 and µ > 0 in (4.1), and f satisfies (4.24).

Then the functional Iε,λ,µ defined in (4.6) satisfies the Palais-Smale condition
at every level c 6= 0.

Proof of Lemma 4.6. The proof is similar to the one given in Lemma 2.6. The only
difference is that we use Lemmas 4.4 and 4.5 instead of Lemmas 2.4 and 2.5. Recall that
j(s) = 0 for s ≤ 0, since f(s) = 0 for s ≤ 0. Hence, if f satisfies (4.5), then j also satisfies
(4.5) and for each α > 0 there exists a constant Cε,α > 0 depending only on ε and α such
that

max{|j(s)|, |J(s)|} ≤ Cε,α exp (αs2) for s ∈ R. (4.28)

Let (vεn) be a Palais–Smale sequence for Iε,λ,µ in H1
0 (Ω) at the level c. Throughout this

proof we denote vεn by vn and the norm ‖ · ‖H1
0 (Ω) by ‖ · ‖. Thus (vn) satisfies

1
2‖vn‖

2 −
∫

Ω
J(vn) dx→ c as n→∞, (4.29)

and there is a sequence τn → 0 such that∣∣∣∣∣
∫

Ω
∇vn∇w dx−

∫
Ω
j(vn)w dx

∣∣∣∣∣≤ τn‖w‖ for each w ∈ H1
0 (Ω). (4.30)

From Lemma 4.5 there exist constants 0 < θ < 1/2 and Dθ,λ,µ > 0 depending only on θ, λ
and µ such that

|J(vn)| < Dθ,λ,µ + θvnj(vn).
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Therefore, there is a constant D1 = D1(θ) > 0 that does not depend on ε > 0 such that
1
2‖vn‖

2 < D1 + θ
∫

Ω
vnj(vn) dx.

Taking w = vn in (4.30) we also conclude that∫
Ω
j(vn)vn dx < ‖vn‖2 + τn‖vn‖.

Hence,
1
2‖vn‖

2 < D1 + θ‖vn‖2 + τnθ‖vn‖.

Since θ < 1/2, there is a constant D > 0 such that

‖vn‖ < D. (4.31)

It follows from (4.28) and Lemma 4.3 that there exist a subsequence (vnk) in H1
0 (Ω) that

we continue to denote by (vn) and an element v ∈ H1
0 (Ω) such that

vn ⇀ v weakly in H1
0 (Ω),

vn → v in Lr(Ω) for every r > 1,

vn → v a.e in Ω,

|vn| ≤ hr a.e in Ω for some hr ∈ Lr(Ω),∫
Ω
j(vn) dx→

∫
Ω
j(v) dx,∫

Ω
J(vn) dx→

∫
Ω
J(v) dx.

(4.32)

From (4.29), (4.30) and (4.32), we get

lim
n→∞

‖vn‖2 = 2(c+
∫

Ω
J(v) dx), (4.33)

and
lim
n→∞

∫
Ω
vnj(vn) = 2(c+

∫
Ω
J(v) dx). (4.34)

The result then follows by the same argument given in the proof of Lemma 2.6.

As in Chapter 2, we will show that problem (4.2) possesses a nontrivial solution
uε ≥ 0 that is a Mountain Pass. Recall that a function uε ∈ H1

0 (Ω) is a weak solution of
problem (4.2) if∫

Ω
∇uε∇v +

∫
Ω
gε(uε)v = λ

∫
Ω
upεv + µ

∫
Ω
f(uε)v for all v ∈ H1

0 (Ω). (4.35)

We proceed to obtain constants a1 > 0 and 0 < ρ < 1 and an element φ0 ∈ H1
0 (Ω) such

that
Iε,λ,µ(u) ≥ a1 for ‖u‖H1

0 (Ω) = ρ,

and
‖φ0‖H1

0 (Ω) ≥ 1 and Iε,λ,µ(φ0) < 0. (4.36)

To obtain this element, we will assume that

there exist constants A, s0 > 0 and γ > 2 such that F (s) ≥ A|s|γ for all s ≥ s0. (4.37)
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Lemma 4.7. Let φ ∈ H1
0 (Ω) ∩ L∞(Ω) be such that φ > 0 in Ω and ‖φ‖H1

0 (Ω) = 1 and
suppose that f satisfies (4.4) and (4.20). Assume that one of the following conditions hold

(i) λ > 0 and µ > 0, or

(ii) λ = 0 and µ > 0 in (4.1), and f satisfies (4.37).

Then, there exists a constant N0 = N0(λ, µ) such that

Iε,λ,µ(N0φ) < 0. (4.38)

Also, there exists a constant a2 > 0 such that

sup
s∈[0,1]

Iε,λ,µ(sN0φ) < a2. (4.39)

Proof of Lemma 4.7. Using (4.11) and the fact that gε(s) ≤ 0 for all s ≥ 1− ε, we have
Gε(s) ≤ 2 for all s ≥ 0. Hence,

Iε,λ,µ(tφ) ≤ t2

2 + 2|Ω| − λtp+1

p+ 1

∫
Ω
φp+1 − µ

∫
Ω
F (tφ). (4.40)

We split the proof in two cases.

Case 1: Suppose that λ > 0. Then, (4.20) implies that

Iε,λ,µ(tφ) ≤ t2

2 + 2|Ω| − λtp+1

p+ 1

∫
Ω
φp+1 − µ

∫
Ω∩{tφ1<s0}

F (tφ).

Hence, there are constants c1, c2 > 0 depending on λ and µ such that

Iε,λ,µ(tφ) ≤ t2

2 + c1 − c2t
p+1 for all t ≥ 0.

Inequality (4.38) then follows from the facts that p+ 1 > 2 and by letting t→∞.

Case 2: Suppose that λ = 0 and (4.37) holds.

From (4.37) and (4.40) we obtain constants c3, c4 > 0 depending on µ such
that

Iε,λ,µ(tφ) ≤ t2

2 + c3 − c4t
γ for all t ≥ 2s0

supΩ φ
,

where s0 > 0 is given by (4.37). Thus, Iε,λ,µ(tφ) < 0 provided

t2

2 + c3 − c4t
γ < 0,

which is true for sufficiently large t, because γ > 2. Hence, there exists N0 > 2 such that
Iε,λ,µ(N0φ) < 0. This proves (4.38).

Now we see that

Iε,λ,µ(sN0φ) = s2N2
0

2 +
∫

Ω
Gε(sN0φ) dx− λsp+1Np+1

0
p+ 1

∫
Ω
φp+1 − µ

∫
Ω
F (sN0φ) dx.
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Since 0 ≤ sN0φ ≤ N0 sup
Ω
φ for all 0 ≤ s ≤ 1, there exists c5 > 0 depending on λ and µ

such that
Iε,λ,µ(sN0φ) < s2N2

0
2 + c3 for all 0 ≤ s ≤ 1.

Hence,
sup
s∈[0,1]

Iε,λ,µ(sN0φ) < a2,

where
a2 = N2

0
2 + c3.

We have proved Lemma 4.7.

We conclude with

Proposition 4.1. Suppose that f satisfies (4.4), (4.5) and (4.20). Assume also that one
of the following conditions hold

(i) λ > 0, µ > 0 and p > 1 in (4.1) and f satisfies (4.22) or (4.23).

(ii) λ = 0 and µ > 0 in (4.1), and f satisfies (4.24) and (4.37).

Let a2 be given by Lemma 4.7. Then, there exist constants µ0 > 0 and a1 > 0
such that for each 0 < µ < µ0, problem (4.2) has a weak solution uε ≥ 0, with 0 < a1 <

Iε,λ,µ(uε) < a2. Also, there is a constant D > 0 that does not depend on ε such that

‖uε‖H1
0 (Ω) < D.

Proof of Proposition 4.1. Since gε(s) ≥ 0 for 0 ≤ s ≤ 1− ε, we have

Iε,λ,µ(u) ≥ 1
2

∫
Ω
|∇u|2 dx+

∫
Ω∩{u≥1−ε}

Gε(u)− λ

p+ 1

∫
Ω
|u|p+1 dx− µ

∫
Ω
F (u) dx,

for all u ∈ H1
0 (Ω). Hence, item (ii) of Lemma 4.2, implies

Iε,λ,µ(u) ≥ 1
2‖u‖

2
H1

0 (Ω) − k0

∫
Ω
|u|p0 − λ

p+ 1

∫
Ω
|u|p+1 − µ

∫
Ω
F (u) dx.

Using the Sobolev embedding, we obtain

Iε,λ,µ(u) ≥ 1
2‖u‖

2
H1

0 (Ω) − k0C
p0
p0 ‖u‖

p0
H1

0 (Ω) −
λCp+1

p+1

p+ 1 ‖u‖
p+1
H1

0 (Ω) − µ
∫

Ω
F (u) dx,

where Ci is the best constant of the immersion H1
0 (Ω) ↪→ Li(Ω). Assume that

‖u‖2
H1

0 (Ω) < ρ2,

where

ρ =


min

{(
1

8k0C
p0
p0

) 1
p0−2

,

(
p+ 1

8λCp+1
p+1

) 1
p−1

}
if λ > 0(

1
8k0C

p0
p0

) 1
p0−2

if λ = 0.
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We obtain
Iε,λ,µ(u) ≥ 1

8‖u‖
2
H1

0 (Ω) − µ
∫

Ω
F (u) dx for ‖u‖H1

0 (Ω) < ρ. (4.41)

We may assume that ρ < 1. Let α = 4π
ρ2 . By Lemma 4.3 we conclude that there

is a constant C > 0 such that

Iε,λ,µ(u) ≥ 1
8‖u‖

2
H1

0 (Ω) − µC
∫

Ω
exp (αu2) dx for ‖u‖H1

0 (Ω) < ρ.

Using (B.8), we obtain a constant k1 > 0 such that

Iε,λ,µ(u) ≥ 1
8‖u‖

2
H1

0 (Ω) − µCk1 for ‖u‖H1
0 (Ω) < ρ.

Choosing
µ0 = ρ2

16Ck1
,

we have
Iε,λ,µ(u) ≥ 1

8

(
‖u‖2

H1
0 (Ω) −

ρ2

2

)
for 0 < µ < µ0, ‖u‖H1

0 (Ω) < ρ.

From Lemma 4.7, we obtain

Iε,λ,µ(0) = 0, Iε,λ,µ(N0φ) < 0,

and
Iε,λ,µ(u) ≥ a1 for ‖u‖H1

0 (Ω) = ρ,

where
a1 = ρ2

16 .

Let Γ = {γ ∈ C([0, 1], H1
0 (Ω)) : γ(0) = 0, γ(1) = N0φ}. By the Mountain Pass Theorem,

we conclude that there is a sequence (uεn) in H1
0 (Ω) and a number

cε := inf
γ∈Γ

sup
s∈[0,1]

Iε,λ,µ(γ(s)),

such that
lim
n→∞

Iε,λ,µ(uεn) = cε and lim
n→∞

I ′ε,λ,µ(uεn) = 0.

That is,
1
2‖u

ε
n‖2

H1
0 (Ω) −

∫
Ω
J(uεn) dx→ cε.

And there is a sequence τn → 0 such that∣∣∣∣∣
∫

Ω
∇uεn∇v dx−

∫
Ω
j(uεn)v dx

∣∣∣∣∣≤ τn‖v‖H1
0 (Ω) for each v ∈ H1

0 (Ω). (4.42)

It is clear that cε ≥ a1 > 0. Using Lemma 4.7 we also obtain

cε ≤ sup
s∈[0,1]

Iε,λ,µ(sN0φ) < a2.
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Hence, for a sufficiently large n,

0 < a1 ≤ Iε,λ,µ(uεn) < a2. (4.43)

Arguing as in the proof of Lemma 4.6, we may use (4.42), (4.43) and Lemma 4.5 to obtain
a constant D > 0 that does not depend on ε such that

‖uεn‖H1
0 (Ω) < D.

We conclude that there is uε ∈ H1
0 (Ω) with ‖uε‖H1

0 (Ω) < D such that

uεn ⇀ uε weakly in H1
0 (Ω).

We know that (uεn) is a Palais–Smale sequence at a positive level. It follows from (4.43) and
Lemma 4.6 that up to a subsequence, uεn → uε strongly in H1

0 (Ω). Hence, I ′ε,λ,µ(uε) = 0,
and the result follows from Lemma 4.1

4.2 Convergence of the perturbed solutions
In this section. we study the convergence of the solutions uε of problem (4.2)

obtained in Proposition 4.1. This proposition guarantees that there exists a constant D > 0
such that

‖uε‖H1
0 (Ω) < D, for each 0 < ε < 1.

Hence, there exist u ∈ H1
0 (Ω) and a sequence (εn) in (0, 1) such that εn → 0 as n→∞

and 

uεn ⇀ u weakly in H1
0 (Ω),

uεn → u in Lr(Ω) for every r > 1,

uεn → u a.e in Ω,

|uεn| ≤ hr a.e in Ω for some hr ∈ Lr(Ω).

(4.44)

As in Chapter 2, under additional conditions on f , we can apply regularity results discussed
in Appendix A to conclude that uεn is smooth for all n ∈ N and that u is continuous.
Indeed, assume that

lim
s→0
|f ′(s)| <∞. (4.45)

From Corollary A.1, we know that there exists a constant K1 > 0 such that

‖uεn‖L∞(Ω) < K1 for all 0 < εn < 1.

Then, it follows from elliptic regularity theory and from the Sobolev Embedding that
uεn ∈ C1(Ω), see Lemma 4.1. Lemma A.5 implies that there exists a constant ε0 > 0 such
that for each smooth subdomain Ω′ ⊂ Ω′ ⊂ Ω there exists a constant M > 0 that depends
on Ω′ but not on ε such that

|∇uεn(x)|2 ≤MZ(uεn(x)) for every x ∈ Ω′, 0 < ε < ε0, (4.46)
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where

Z(t) =


t2 + t− t log t for 0 ≤ t ≤ 1

2
1
4 + 1

2(1 + log 2) +
(
t− 1

2

)
(1 + log 2) for t ≥ 1

2 .

Hence, it follows from the Arzela-Ascoli Theorem that uεn → u uniformly in compact
subsets of Ω, so that u is continuous and 0 ≤ u ≤ K1. In this section, we show that u is a
solution of (4.1) in the sense that∫

Ω
∇u∇ϕ =

∫
Ω∩{u>0}

(
log u+ λup + µf(u)

)
ϕ, (4.47)

for every ϕ ∈ C1
c (Ω) and

(log u)χ{u>0} ∈ L1
loc(Ω).

First, we show that

Lemma 4.8. The function u is nontrivial and the function (log u)χΩ+ belongs to L1
loc(Ω),

where Ω+ = {x ∈ Ω : u(x) > 0}.

Proof of Lemma 4.8. First we show that u is nontrivial. Since uεn is a critical point of
Iεn,λ,µ, we have

‖uεn‖2
H1

0 (Ω) +
∫

Ω
gεn(uεn)uεn = λ

∫
Ω
up+1
εn + µ

∫
Ω
f(uεn)uεn ,

and

Iεn,λ,µ(uεn) = 1
2‖uεn‖

2
H1

0 (Ω) +
∫

Ω
Gεn(uεn)− λ

p+ 1

∫
Ω
up+1
εn − µ

∫
Ω
F (uεn) > a1.

Hence,

Iεn,λ,µ(uεn) =
∫

Ω

(
Gεn(uεn)− 1

2gεn(uεn)uεn
)
dx+ λ

(
1
2 −

1
p+ 1

)∫
Ω
up+1
εn dx

+ µ
∫

Ω

(1
2f(uεn)uεn − F (uεn)

)
dx > a1, (4.48)

where a1 is given by Proposition 4.1. Recall that 0 ≤ uεn ≤ K1 in Ω and consequently
0 ≤ u ≤ K1 in Ω. Hence, from the Dominated Convergence Theorem, we obtain

lim
n→∞

∫
Ω
f(uεn)uεn dx =

∫
Ω
f(u)u dx.

From Lemma 4.3, we get

lim
n→∞

∫
Ω
F (uεn) dx =

∫
Ω
F (u) dx.

From the Dominated Convergence Theorem and Lemma 4.2, we have

lim
n→∞

∫
Ω
gεn(uεn)uεn dx =

∫
Ω
g(u)uχ{u>0} dx, where g(s) = − log s
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and
lim
n→∞

∫
Ω
Gεn(uεn) dx =

∫
Ω
G(u) dx, where G(s) = −

∫ s

0
log t dt.

Taking the above claims into account and letting n→∞ in (4.48) we obtain∫
Ω

(
G(u)− 1

2g(u)uχ{u>0}

)
dx+λ

(
1
2 −

1
p+ 1

)∫
Ω
up+1 dx+µ

∫
Ω

(1
2f(u)u− F (u)

)
dx ≥ a1.

We proved that u is nontrivial. Now let Let V ⊂ Ω be a open set such that V ⊂ Ω. We
will show that ∫

V
| log u|χ{u>0} dx <∞.

Indeed, take ζ ∈ C1
c (Ω) such that 0 ≤ ζ ≤ 1 and ζ ≡ 1 in V . Since uεn is a critical point

of Iεn,λ,µ, we obtain∫
{uεn<1−εn}

gεn(uεn)ζ = λ
∫

Ω
upεnζ +

∫
Ω
µf(uεn)ζ −

∫
Ω
∇uεn∇ζ −

∫
{uεn≥1−εn}

gεn(uεn)ζ.

The Dominated Convergence Theorem, Lemma 4.2 and (4.44) imply that∫
Ω
upεnζ →

∫
Ω
upζ,∫

Ω
f(uεn)ζ →

∫
Ω
f(u)ζ,∫

Ω
∇uεn∇ζ →

∫
Ω
∇u∇ζ as ε→ 0,

and ∫
{uεn≥1−εn}

gεn(uεn)ζ →
∫
{u≥1}

log(u)ζ as ε→ 0.

Hence,∫
{uεn<1−εn}

gεn(uεn)ζ → λ
∫

Ω
upζ+µ

∫
Ω
f(u)ζ−

∫
Ω
∇u∇ζ+

∫
{u≥1}

log(u)ζ as ε→ 0. (4.49)

Define the set Ωρ = {x ∈ Ω : u(x) ≥ ρ} for ρ > 0. Then∫
V ∩Ωρ

− log
(
u2
ε + εuε + ε

uε + ε

)
χ{uε<1−ε}ζ ≤

∫
{uε<1−ε}

− log
(
u2
ε + εuε + ε

uε + ε

)
ζ <∞.

Hence, ∫
V ∩Ωρ

∣∣∣∣∣log
(
u2
εn + εnuεn + εn
uεn + εn

) ∣∣∣∣∣< C <∞.

The constant C does not depend on ε and does not depend on ρ. It follows from Fatou’s
Lemma that ∫

V
| log u|χΩρ <∞,

independently of ρ. Letting ρ→ 0 and applying Fatou’s Lemma again, we conclude that∫
V
| log u|χΩ+ <∞,

for every open set V ⊂ Ω such that V ⊂ Ω.

We state the main result of this chapter.
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Theorem 4.1. Suppose that f satisfies (4.4), (4.5), (4.20) and (4.45). Assume also that
one of the following conditions hold

(i) λ > 0, µ > 0 and p > 1 in (4.1) and f satisfies (4.22) or (4.23).

(ii) λ = 0 and µ > 0 in (4.1), and f satisfies (4.24) and (4.37).

Then there exists µ0 > 0 such that for each 0 < µ < µ0, problem (4.1) has a
nonnegative nontrivial solution u.

We remark that when p > 1, we may consider f ≡ 0, but we may not consider
f(s) = sq for 0 < q < 1 in view of (4.45). This condition is relevant, because one of the
hypothesis of Lemma A.4 is that there exists 0 < ε0, δ < 1 such that

gε(s) ≥ f(s) for all s ≤ δ, 0 < ε < ε0,

which is a consequence of (4.45). However, it might be possible to replace this condition
for a weaker one, so that f(s) = sq becomes admissible. As an immediate consequence of
Theorem 4.1, we get

Corollary 4.1. Suppose that p > 1 in (4.1). Then, the problem
−∆u = (log u)χ{u>0} + λup in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω

is solvable for each λ > 0.

This is an improvement of the result in [52]. Furthermore, Theorem 4.1 provides
solutions for a large class of singular problems. Indeed,

Corollary 4.2. There exists µ0 > 0 such that the problems
−∆u = (log u)χ{u>0} + µ(eu − 1) in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

−∆u = (log u)χ{u>0} + u2 + µ(eu − 1) in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,
−∆u = (log u)χ{u>0} + µukeu in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

−∆u = (log u)χ{u>0} + u2 + µukeu in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,
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and 
−∆u = (log u)χ{u>0} + uk+1(1 + µeu) in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

are solvable for 0 < µ < µ0 and k ≥ 1.

We finish the section by proving Theorem 4.1.

Proof of Theorem 4.1.

We follow ideas given in [52]. Let (εn) and (uεn) be the sequences defined in
(4.44), and let u be given by Lemma 4.8. We will prove that u is a solution of (4.1). The
nontriviality and continuity of u is guaranteed by Lemma 4.8. Also recall that uεn → u in
C0
loc(Ω). Let ϕ ∈ C1

c (Ω). Since uεn ∈ C1(Ω) is a solution of problem (4.2), we know that∫
Ω
∇uεn∇ϕ =

∫
Ω

(−gεn(uεn) + λupεn + µf(uεn))ϕ. (4.50)

We would like to let n → ∞ in (4.50). Since the term −gεn(uεn) does not converge
pointwisely to log(u)χ{u>0}, we need to consider an auxiliar function η that vanishes near
the origin . Throughout this proof, we will denote the functions uεn merely by uε and
we will let ε → 0. Let η ∈ C∞(R), 0 ≤ η ≤ 1, η(s) = 0 for s ≤ 1/2, η(s) = 1 for s ≥ 1.
For m > 0 we define the function % := ϕη(uε/m). Note that % belongs to C1

c (Ω), because
uε ∈ C1(Ω).

From continuity, the set Ω+ = {x ∈ Ω : u(x) > 0} is open. Let Ω̃ be an open
set such that supp(ϕ) ⊂ Ω̃ and Ω̃ ⊂ Ω. Let Ω0 = Ω+ ∩ Ω̃. Since uε → u uniformly in Ω̃,
we know that for every m > 0 there is an ε1 > 0 such that

uε(x) ≤ m/2 for every x ∈ Ω̃ \ Ω0 and 0 < ε ≤ ε1. (4.51)

Replacing ϕ by % in (4.50) we obtain∫
Ω
∇uε∇(ϕη(uε/m)) =

∫
Ω̃

(−gε(uε) + λupε + µf(uε))ϕη(uε/m). (4.52)

We break the previous integral as

Aε :=
∫

Ω0
(−gε(uε) + λupε + µf(uε))ϕη(uε/m),

and
Bε :=

∫
Ω̃\Ω0

(−gε(uε) + λupε + µf(uε))ϕη(uε/m).

Clearly, Bε = 0, whenever 0 < ε ≤ ε1 by (4.51) and the definition of η. We claim that

Aε →
∫

Ω0
(log u+ λup + µf(u))ϕη(u/m) as ε→ 0. (4.53)
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Indeed, uε → u uniformly in Ω0. Then,∫
Ω0

(λupε + µf(uε))ϕη(uε/m) dx→
∫

Ω0
(λup + µf(u))ϕη(u/m) dx as ε→ 0.

Hence, we only need to show that∫
Ω0
−gε(uε)ϕη(uε/m)→

∫
Ω0

log(u)ϕη(u/m) as ε→ 0.

If u ≤ m/4 then, for ε > 0 sufficiently small, we have uε ≤ m/2. Consequently, from the
definition of η,

0 =
∫

Ω0∩{u≤m/4}
log(u)ϕη(u/m) = lim

ε→0

∫
Ω0∩{u≤m/4}

−gε(uε)ϕη(uε/m).

If u > m/4, then uε ≥ m/8 for ε > 0 small enough. We then apply the Dominated
Convergence Theorem as ε→ 0 to get∫

Ω0∩{u>m/4}
log(u)ϕη(u/m) = lim

ε→0

∫
Ω0∩{u>m/4}

−gε(uε)ϕη(uε/m).

We have proved claim (4.53). Hence,

lim
ε→0

∫
Ω̃

(−gε(uε) + λupε + µf(uε))ϕη(uε/m) =
∫

Ω0
(log u+ λup + µf(u))ϕη(u/m).

We take the limit in m to conclude that∫
Ω0

(log u+ λup + µf(u))ϕη(u/m)→
∫

Ω0
(log u+ λup + µf(u))ϕ as m→ 0, (4.54)

since η(u/m) ≤ 1 and (log u)χΩ+ + λup + µf(u) ∈ L1(Ω̃), according to Lemma 4.8.

We proceed with the integral on the left hand side of (4.52),∫
Ω
∇uε∇(ϕη(uε/m)) :=

∫
Ω̃

(∇uε∇ϕ)η(uε/m) + Cε. (4.55)

Consequently, ∫
Ω̃

(∇uε∇ϕ)η(uε/m)→
∫

Ω̃
(∇u∇ϕ)η(u/m) as ε→ 0,

since uε ⇀ u weakly in H1
0 (Ω) and uε → u uniformly in Ω̃. Consequently, by the Dominated

Convergence Theorem,∫
Ω̃

(∇u∇ϕ)η(u/m)→
∫

Ω̃
∇u∇ϕ as m→ 0. (4.56)

We claim that

Cε :=
∫

Ω̃

|∇uε|2

m
η′(uε/m)ϕ→ 0 as ε→ 0 (and then as m→ 0). (4.57)

The estimate |∇uε|2 ≤ MZ(uε) in Ω̃ given in (4.46) and recalling that η′(uε/m) = 0 if
uε ≥ m yield

lim sup
ε→0

|Cε| ≤
M

m
lim
ε→0

∫
Ω̃∩{m2 ≤uε≤m}

Z(uε)|η′(uε/m)ϕ|

≤M lim
ε→0

∫
Ω̃∩{m2 ≤uε≤m}

Z(uε)|η′(uε/m)ϕ|
uε

.
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Since Z(t) = t(1 + log 2) + 1
4 if 1

2 ≤ t < 1, we may find a constant ` > 0 such that

η′(t) ≤ `

Z(t) for 1/2 < t < 1. Hence

lim sup
ε→0

|Cε| ≤M` sup |ϕ| lim
ε→0

∫
Ω̃∩{m2 ≤uε≤m}

Z(uε)
uεZ(uε/m) .

But if 1/2 ≤ uε/m ≤ 1 then Z(uε/m) ≥ 1/2. Hence,

lim sup
ε→0

|Cε| ≤ 2M` sup |ϕ| lim
ε→0

∫
Ω̃∩{m2 ≤uε≤m}

Z(uε)
uε

≤ 2M` sup |ϕ|
∫

Ω̃∩{m2 ≤u≤m}
(u+ 1− log u))χ{u>0},

for every m > 0. Thus invoking Lemma 4.8 and letting m → 0, (4.57) is proved. As an
immediate consequence of (4.52)–(4.57), we have∫

Ω
∇u∇ϕ =

∫
Ω∩{u>0}

(
log u+ λup + µf(u)

)
ϕ,

for every ϕ ∈ C1
c (Ω). This concludes the proof of Theorem 4.1.
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5 Log–exp problems without parameters

In this chapter we study problems of the form
−∆u = (log u+ f(u))χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(5.1)

where Ω ⊂ R2 is a bounded smooth domain and f is allowed to have exponential growth.
We will again study a perturbed problem of the form

−∆u+ gε,f(0)(u) = f(u) inΩ
u ≥ 0 in Ω
u = 0 on ∂Ω.

(5.2)

Here, gε,b ∈ C∞(0,∞) is defined by

gε,b(s) =


− log

(
s+ εe−b

s+ ε

)
for s ≥ 0

b for s < 0,
(5.3)

where b = f(0), so that gε,b(0) = b = f(0) for all ε > 0 and gε(s)→ − log(s) pointwisely
for s > 0 as ε→ 0. The perturbation gε,b is a generalization of the perturbation considered
in Chapter 4, and we no longer need to assume that f(0) = 0. We will assume that f
satisfies the following assumptions:

• f(s) = f(0) for all s ≤ 0, f ∈ C1,ν(0,∞) ∩ C(R) and sup
0≤s≤1

|sf ′(s)| <∞, (5.4)

for some 0 < ν < 1, and that for each α > 0 there exists a constant Cα > 0 such that

|f(s)| ≤ Cα exp
(
αs2

)
, for every s ≥ 0. (5.5)

As in the previous chapters, we work with the functional Iε : H1
0 (Ω)→ R given by

Iε(u) = 1
2

∫
Ω
|∇u|2 dx+

∫
Ω
Gε,f(0)(u)−

∫
Ω
F (u) dx, (5.6)

where F (u) =
∫ u

0
f(s) ds and Gε,b(u) =

∫ s

0
gε,b(s) ds. From the fact that f and gε,b are

continuous functions that satisfy (5.3), (5.4) and (5.5), we conclude Iε is of class C1 and

I ′ε(u)(v) =
∫

Ω
∇u∇v +

∫
Ω
gε,f(0)(u)v −

∫
Ω
f(u)v, for all u, v ∈ H1

0 (Ω). (5.7)

Consequently, if uε ∈ H1
0 (Ω) is a critical point of Iε then∫

Ω
∇uε∇v +

∫
Ω
gε,f(0)(uε)v =

∫
Ω
f(uε)v, for all v ∈ H1

0 (Ω). (5.8)
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Consequently, critical points uε of Iε are weak solutions of problem (5.2).

Remark 5.1. It is important to choose b = f(0) in (5.3) to guarantee that critical points
of the functional Iε are nonnegative.

Indeed, choosing v = −u−ε in (5.8) and assuming that I ′ε(uε) = 0, we get∫
Ω
|∇u−ε |2 =

∫
Ω∩{uε<0}

gε,f(0)(uε)u−ε −
∫

Ω∩{uε<0}
f(uε)u−ε

= f(0)
∫

Ω∩{uε<0}
u−ε − f(0)

∫
Ω∩{uε<0}

u−ε

= 0

Consequently uε ≥ 0 in Ω.

Furthermore, if uε ∈ L∞(Ω), then for each 0 < ε < 1

sup
Ω

(|gε(uε)|+ |f(uε)|) <∞,

and consequently
∆uε ∈ L∞(Ω).

We conclude from Elliptic Regularity Theory (Theorem B.14) that uε ∈ W 2,r(Ω) for all
r > 1. Thus, the Sobolev Embedding (Theorem B.13) implies that uε ∈ C1,ν(Ω), where
0 < ν < 1 is given by (5.4). Summarizing, we have

Lemma 5.1. Suppose that f satisfies (5.4) and (5.5). The following assertions hold:

(i) Critical points of Iε are nonnegative weak solutions of problem (5.2).

(ii) If u ∈ H1
0 (Ω) ∩ L∞(Ω) is a nonnegative weak solution of problem (5.2), then u is

smooth and u ∈ C1,ν(Ω), with ν given by (5.5).

Now we summarize the properties of the perturbation gε,b defined in (5.3).

Lemma 5.2. Let b ∈ R and δ > 0. There exists a constant 0 < ε0 < 1/2 that depends on
b and δ such that the following assertions hold for each 0 < ε < ε0.

(i) If b < 0, then gε,b(s) ≤ 0 for s ≤ sb,ε, gε,b(s) ≥ 0 for sb,ε ≤ s ≤ Sb,ε, and
gε,b(s) ≤ 0 for s ≥ Sb,ε, where

Sb,ε =
(1− ε) +

√
(1− ε)2 − 4ε(e−b − 1)

2

and

sb,ε =
(1− ε)−

√
(1− ε)2 − 4ε(e−b − 1)

2 .

Also, 0 < sb,ε < 1/2, and
sb,ε < δ for all 0 < ε < ε0.
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Moreover,
gε,b(s) ≥ b− log 2 for s ≤ e−b.

(ii) If b ≥ 0, then gε,b(s) ≥ 0 for s ≤ Sb,ε and gε,b(s) ≤ 0 for s ≥ Sb,ε.

(iii) The following inequality holds

1
2 < Sb,ε <

3
2 for all 0 < ε < ε0.

(iv) For each constant R > 0, there exists C̃b > 0 such that

|sgε,b(s)| ≤ C̃b and |Gε,b(s)| ≤ C̃b for 0 ≤ s ≤ R.

(v) For each p0 > 2, there exists a constant k0 > 0 such that

Gε,b(s) ≥ −k0s
p0 for all s ≥ δ and 0 < ε < ε0.

(vi)

g′ε,b(s) = − (s+ ε)2 − εe−b

(s+ ε)(s2 + sε+ εe−b) for all s > 0,

so that
g′ε,b(0) = 1

ε
− eb →∞ as ε→ 0.

Proof of Lemma 5.2. First we prove item (i). Assume that b < 0 and observe that
gε,b ≥ 0 if and only if

s+ εe−b

s+ ε
≤ 1,

or equivalently,
s2 + (ε− 1)s+ ε(e−b − 1) ≤ 0.

This inequality holds if and only if

sb,ε =
1− ε−

√
(1− ε)2 − 4ε(e−b − 1)

2 ≤ s ≤
1− ε+

√
(1− ε)2 − 4ε(e−b − 1)

2 = Sb,ε.

Observe that these quantities are well defined if (1− ε)2 − 4ε(e−b − 1) ≥ 0, which holds
provided

0 < ε <
(1− ε)2

4(e−b − 1) .

The assumption 0 < ε < 1/2 assure us that sb,ε and Sb,ε are well defined when

0 < ε < ε0 = 1
16(e−b − 1) .

We also have
sb,ε ≤

1− ε
2 <

1
2 for all 0 < ε < ε0.
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We now show that there exists ε0 > 0 such that sb,ε < δ for all 0 < ε < ε0. Indeed, sa,b,ε < δ

if and only if
1− ε−

√
(1− ε)2 − 4ε(e−b − 1) < 2δ.

Equivalently,
1− ε− 2δ <

√
(1− ε)2 − 4ε(e−b − 1).

This result clearly holds if 1− ε− 2δ < 0. Otherwise, we must consider ε > 0 such that

(1− ε)2 − 4ε(e−b − 1) > (1− ε− 2δ)2

(1− ε)2 − 4ε(e−b − 1) > (1− ε)2 − 4(1− ε)δ + 4δ2

−4ε(e−b − 1) > 4εδ − 4δ + 4δ2

4ε((e−b − 1) + δ) < 4δ(1− δ)

ε <
δ(1− δ)

e−b − 1 + δ
.

We further have

gε,b(s) ≥ b− log 2 if and only if log
(
s+ εe−b

s+ ε

)
≤ −b+ log 2,

which is equivalent to

s+ εe−b

s+ ε
≤ 2e−b,

which is true provided
s ≤ e−b.

We have proved item (i). The proof of (ii) is very similar. We now prove (iii), thus
proceeding with the estimates for Sb,ε. We know that Sb,ε < 3/2 provided√

(1− ε)2 − 4ε(e−b − 1) < 2 + ε

(1− ε)2 − 4ε(e−b − 1) < (2 + ε)2

1− 2ε+ ε2 − 4ε(e−b − 1) < 4 + 4ε+ ε2.

Hence, we need to solve

3 + 2ε(3 + 2(e−b − 1)) > 0

3 + 2ε(1 + 2e−b) > 0,

which is clearly true. Furthermore, Sa,b,ε > 1/2 provided√
(1− ε)2 − 4ε(e−b − 1) > ε

(1− ε)2 − 4ε(e−b − 1) > ε2

1− 2ε+ ε2 − 4ε(e−b − 1) > ε2.
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Consequently,

1− 2ε− 4ε(e−b − 1) > 0

1 > ε(2 + 4(e−b − 1)) = ε(4e−b − 2).

This result is obviously true for small values of ε. We have proved (iii). Now we prove
(iv). Let R > Sb,ε be a constant. In what follow, Ci > 0, i = 1, 2, 3, . . . denote positive
constants that do not depend on ε. Observe that

|sgε,b(s)| =
∣∣∣∣∣s log

(
s+ εe−b

s+ ε

) ∣∣∣∣∣ = s log
(
s+ εe−b

s+ ε

)
≤ s log(s+ e−b) for 0 ≤ s ≤ sb,ε.

Consequently, |sgε,b(s)| ≤ s log(2e−b) if s ≤ e−b and |sgε,b(s)| ≤ s log(2s) ≤ C if e−b ≤ s ≤
sb,ε < 1/2. We thus obtain

|sgε,b(s)| ≤ C1 for 0 ≤ s ≤ sb,ε.

Also,

|sgε,b(s)| =
∣∣∣∣∣s log

(
s+ εe−b

s+ ε

) ∣∣∣∣∣ = −s log
(
s+ εe−b

s+ ε

)
≤ −s log s < C2 for sb,ε ≤ s ≤ Sb,ε < 3/2.

Finally,

|sgε,b(s)| =
∣∣∣∣∣s log

(
s+ εe−b

s+ ε

) ∣∣∣∣∣ = s log
(
s+ εe−b

s+ ε

)
≤ s log(s+ e−b) for Sb,ε ≤ s ≤ R.

Consequently, |sgε,b(s)| ≤ s log(2e−b) if Sb,ε ≤ s ≤ e−b and |sgε,b(s)| ≤ s log(2s) ≤ C if
e−b ≤ s ≤ R. We thus obtain

|sgε,b(s)| ≤ C3 for 0 ≤ s ≤ R.

We proceed to prove estimates for Gε,b. Note that

|Gε,b(s)| ≤
∫ s

0
|gε,b(t)| dt

≤
∫ s

0
log

(
t+ εe−b

t+ ε

)
dt

≤
∫ s

0
log

(
t+ e−b

)
dt

= (s+ e−b) log(s+ e−b)− (s+ e−b)− (e−b log(e−b)− e−b) ≤ C4 for 0 ≤ s ≤ sb,ε < 1/2,
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so that |Gε,b(s)| ≤ C4 for 0 ≤ s ≤ sb,ε. Furthermore,

|Gε,b(s)| ≤
∣∣∣∣∣Gε,b(sb,ε) +

∫ s

sb,ε

gε,b(t) dt
∣∣∣∣∣

≤ C4 +
∫ s

sb,ε

|gε,b(t)| dt

≤ C4 +
∫ s

sb,ε

− log
(
t+ εe−b

t+ ε

)
dt

≤ C4 +
∫ s

sb,ε

− log t dt

= C4 − (s log s− s) + (sb,ε log sb,ε − sb,ε) ≤ C5 for sb,ε ≤ s ≤ Sb,ε < 3/2.

Finally

|Gε,b(s)| ≤
∣∣∣∣∣Gε,b(Sb,ε) +

∫ R

Sb,ε

gε,b(t) dt
∣∣∣∣∣

≤ |Gε,b(Sb,ε)|+
∫ R

Sb,ε

|gε,b(t)| dt

≤ C5 +
∫ R

Sb,ε

log
(
t+ εe−b

t+ ε

)
dt

≤ C5 +
∫ R

Sb,ε

log
(
t+ e−b

)
dt

= C5 + (R + e−b) log(R + e−b)− (R + e−b)

− ((Sb,ε + e−b) log(Sb,ε + e−b)− (Sb,ε + e−b)) ≤ C6 for Sb,ε ≤ s ≤ R.

Now we prove (v). From (i), we may choose ε0 > 0 such that sb,ε < δ. Consequently, from
(iv),

Gε,b(s) ≥ Gε(sb,ε)

≥ −C

≥ − C

δp0
sp0 for δ ≤ s ≤ Sb,ε.
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On the other hand, from (iii) and (iv), we have

Gε,b(s) = Gε(Sb,ε) +
∫ s

Sb,ε

gε,b(t) dt

≥ −C −
∫ s

Sb,ε

|gε,b(t)| dt

= −C −
∫ s

Sb,ε

log
(
t+ εe−b

t+ ε

)
dt

≥ −C −
∫ s

Sb,ε

log
(
t+ e−b

)
dt

≥ −C −
∫ s

Sb,ε

t+ e−b dt

≥ −C −
∫ s

0
t+ e−b dt

= −C −
(
s2

2 + e−bs

)
for s ≥ Sb,ε ≥ δ.

Consequently,

Gε,b(s) ≥ −
(
Csp0

δp0
+ sp0

2δp0−2 + e−bsp0

δp0−1

)
= −k0s

p0 for s ≥ Sb,ε ≥ δ.

This proves item (v). Item (vi) is a direct consequence of (5.3). We have proved Lemma
5.2.

We further have

Lemma 5.3. There exist constants Cb > 0 and Rb > 0 that do not depend on ε satisfying
the following assertions.

(i) |sg′ε,b(s)| ≤ 1 for all s ≥ 0,

(ii) |sg′ε,b(s)| = −sg′ε,b(s) ≥
1
6 for all s ≥ Rb and 0 < ε < 1. If b ≥ 0, then

Rb = 2.

(iii) 0 ≤ −gε,b(s) ≤ s for all s ≥ Rb and 0 < ε < 1.

(iv) Gε,b(s) ≤ 0 for all s ≥ Rb and 0 < ε < 1.

Proof of Lemma 5.3. First, we prove (i). Observe that

−g′ε,b(s) = s2 + 2εs+ ε2 − εe−b

s3 + 2εs2 + s(ε2 + εe−b) + ε2e−b
.

Consequently,

|sg′ε,b(s)| ≤
s3 + 2εs2 + (ε2 + εe−b)s

s3 + 2εs2 + (εe−b + ε2)s+ ε2e−b
≤ 1.
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This proves (i). Furthermore, −g′ε,b(s) ≥ 0 if 2εs ≥ εe−b, which holds for s ≥ e−b

2 . Also,

ε2s ≤ s3 for 0 < ε < 1, s > 1,

εe−bs ≤ s3 for 0 < ε < 1 and s ≥ e−b/2.

and
ε2e−b ≤ s3 for 0 < ε < 1 and s ≥ e−b/3.

We conclude that

−sg′ε,b(s) ≥
s3

s3 + 2s3 + 2s3 + s3 = 1
6 for s ≥ max

{
e−b

2 , e−b/2, e−b/3, 1
}
.

This proves (ii). We now prove (iii). Indeed, from items (i), (ii) and (iii) of Lemma 5.2,
there exists Rb > 0 such that

0 ≤ −gε,b(s) = log
(
s+ εe−b

s+ ε

)
≤ log(s+ e−b) ≤ s for all s ≥ Rb ≥ Sb,ε.

Now we prove (iv). Indeed, from Lemma item (iv) of 5.2,

Gε,b(s) = Gε,b(Sb,ε) +
∫ s

Sb,ε

gε,b(t) dt

≤ C4 −
∫ s

Sb,ε

log
(
t+ εe−b

t+ ε

)
dt

≤ C4 −
∫ s

Sb,ε

log t dt

= C4 − (s log s− s) + (Sb,ε log(Sb,ε)− Sb,ε)

≤ C5 − s(log s− 1).

Consequently, Gε(s) ≤ 0 if s(log s− 1) ≥ C5. This proves the result.

We remark that the estimates given in Lemmas 5.2 and 5.3 are uniform in ε.

5.1 Existence of solutions for the perturbed problem
In this chapter, we obtain critical points of the functional Iε given by (5.6). We

again consider the functions jε : R→ R defined by

jε(s) = f(s)− gε,f(0)(s),

and Jε(s) =
∫ s

0
jε(t) dt. Observe that

Iε(u) = 1
2

∫
Ω
|∇u|2 −

∫
Ω
Jε(u). (5.9)

Also, (5.3) and (5.4) imply that jε(s) = Jε(s) = 0 for s ≤ 0. We assume further that f
satisfies the following conditions:
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• There exist constants 0 < ε0, δ < 1 such that

gε0,f(0)(s) ≥ f(s) for all s ≤ δ, (5.10)

This condition is satisfied when, for example

lim
s→0+

|f ′(s)| <∞.

The existence of ε0 satisfying condition (5.10) implies that

gε,f(0)(s) ≥ f(s) for all s ≤ δ, 0 < ε ≤ ε0.

• There exist constants 0 < θ < 1/2 and s0 > 0 such that

min{f(s), F (s)} ≥ 0 for s ≥ s0, (5.11)

and
(1− θ)(f(s) + s) ≤ θsf ′(s) for s ≥ s0. (5.12)

• There exist constants A > 0 and γ > 2 such that

F (s) ≥ A|s|γ for s ≥ s0. (5.13)

Condition (5.10) will be used to show that the origin is a local minimum for the functional
Iε for all 0 < ε < 1. Condition (5.13) will imply that there exists an element φ0 ∈ H1

0 (Ω)
with Iε(φ0) < 0 for all 0 < ε < 1. From the Mountain Pass Theorem, we will get a
Palais-Smale sequence (uεn) for Iε. Conditions (5.11) and (5.12) will be important to show
that the sequence (uεn) is bounded in H1

0 (Ω) by a constant that does not depend on ε. We
will then conclude that it converges to a critical point uε of Iε. First, we get

Lemma 5.4. Assume that (5.4) and (5.5) hold. The following assertions are true.

(i) If (5.10) holds, then jε(s) ≤ 0 for s ≤ δ and 0 < ε < ε0.

(ii) Assume further that (5.11) and (5.12) hold. Then, there exists R∗f(0) > 0
and ε0 > 0 such that

0 ≤ Jε(s) ≤ θsjε(s) for s ≥ R∗f(0) and 0 < ε < ε0.

We thus obtain a constant C = Cf(0) > 0 such that

|Jε(s)| ≤ C + θsjε(s) for all s ≥ 0 and 0 < ε < ε0.

Proof of Lemma 5.4. It is clear that condition (5.10) implies (i). We prove (ii). Observe
that Jε(s) ≥ 0 for large s provided F (s) − Gε,f(0)(s) ≥ 0. This follows from (5.11) and
Lemma 5.3. Now let Bε(s) = F (s)−Gε,f(0)(s)− θs(f(s)− gε,f(0)(s)), where 0 < θ <

1
2 is

given by (5.12). We will show that Bε(s) ≤ 0 for large values of s. Indeed,

B′ε(s) = (1− θ)(f(s)− gε,f(0)(s))− θsf ′(s) + θsg′ε,f(0)(s).
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Therefore, from item (ii) of Lemma 5.3, we conclude that

B′ε(s) ≤ (1− θ)(f(s) + s)− θsf ′(s)− θ

6 for s ≥ R,

where R = Rf(0) is a constant that does not depend on ε. Therefore, B′ε(s) ≤ −θ/6 for
s ≥ R provided

(1− θ)(f(s) + s)− θsf ′(s) ≤ 0 for s ≥ R,

which follows from (5.12). Furthermore,

Bε(R) = F (R)−Gε,f(0)(R)− θRf(R) + θRgε,f(0)(R).

Consequently, from item (iv) of Lemma 5.2 and (5.4) , we obtain a constant C > 0 that
does not depend on ε such that

|Bε(R)| ≤ Cf(0) + |F (R)|+ |Rf(R)| = C, for all 0 < ε < ε0.

We conclude that
Bε(s) ≤ −

θs

6 + C̃ for all 0 < ε < ε0,

where the constant C̃ does not depend on ε. Hence, Bε(s) ≤ 0 for s ≥ 6C̃
θ
. Consequently,

there must exist R∗ > 0 such that

0 ≤ Jε(s) ≤ θsjε(s) for all s ≥ R∗ and 0 < ε < ε0.

From Lemma 5.2, we know that there exists a constant C2 > 0 such that |sjε(s)| ≤ C2

and |Jε(s)| ≤ C2 for all 0 ≤ s ≤ R∗ and 0 < ε < ε0. Consequently,

|Jε(s)| ≤ C3 + θsjε(s) for s ∈ R and 0 < ε < ε0,

where C3 > 0 is a constant that does not depend on ε. This proves the estimate.

We also need the following energy estimates.

Lemma 5.5. Assume that f is a function that satisfies (5.4), (5.5) and (5.13). Then,
there exist φ0 ∈ H1

0 (Ω) ∩ L∞(Ω) such that

Iε(φ0) < 0 for all 0 < ε < 1 (5.14)

Furthermore, there exists C > 0 that does not depend on ε such that

sup
t∈[0,1]

Iε(tφ0) < C for all for all 0 < ε < 1.

Proof of Lemma 5.5. Indeed, let φ ∈ H1
0 (Ω) ∩ L∞(Ω) be a function such that φ > 0 in

Ω and sup
Ω
φ > 1/2. Then

Iε(tφ0) = t2

2

∫
Ω
|∇φ|2 dx+

∫
Ω
Gε,f(0)(tφ)−

∫
Ω
F (tφ) dx for all t > 0.
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Consequently, from (5.13),

Iε(tφ) = t2

2

∫
Ω
|∇φ|2 dx+

∫
Ω
Gε,f(0)(tφ)−

∫
{tφ≤s0}

F (tφ) dx−Atγ
∫
{tφ>s0}

φγ dx for all t > 0.

We choose t0 > 0 so large that

s0

t0
= 1

4 , so that {φ > 1/4} ⊂ {tφ > s0} for all t > t0.

From (5.4), item (iv) of Lemma 5.2 and item (iv) of Lemma 5.3, we conclude that

Iε(tφ) ≤ t2

2

∫
Ω
|∇φ|2 dx+ C1 − Atγ

∫
{φ>1/4}

φγ dx for all t ≥ t0,

where C1 > 0 is a positive constant that does not depend on t. Inequality (5.14) then
follows by choosing φ0 = Tφ, where T > 0 is so large that Iε(Tφ) < 0. Furthermore, (5.4)
implies that there exists C2 > 0 such that

|F (s)| ≤ C2 for 0 ≤ s ≤ sup
Ω
φ0.

Consequently, from item (iv) of Lemma 5.2,

Iε(tφ0) = t2

2 ‖φ0‖2
H1

0 (Ω) +
∫

Ω
Gε,f(0)(tφ0)−

∫
Ω
F (tφ0)

≤ t2

2 ‖φ0‖2
H1

0 (Ω) +
∫

Ω
Gε,f(0)(tφ0) + C2|Ω|

≤ 1
2‖φ0‖2

H1
0 (Ω) + C3 for all 0 ≤ t ≤ 1, 0 < ε < 1.

We have proved the result.

Now we obtain the main result of this section. As in the preceding chapters,
the idea is to apply the Mountain-Pass Theorem to obtain a critical point of Iε. We remark
that (5.5) implies that

max{|f(s)|, |F (s)|} ≤ Cα exp(αs2) for all s ≥ 0 and α > 0, (5.15)

see Lemma 2.2.

Proposition 5.1. Suppose that f satisfies (5.4), (5.5) and (5.10)− (5.13). Then, there
exist D > 0 and ε0 > 0 such that Iε has a critical point uε ∈ H1

0 (Ω) satisfying

‖uε‖2
H1

0 (Ω) ≤ D for all 0 < ε < ε0.

Moreover, there exist constants a1, a2 > 0 such that

a1 < Iε(uε) < a2. (5.16)
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Proof of Proposition 5.1. Let 0 < ε0, δ < 1 be given by (5.10). As a consequence of
item (i) of Lemma 5.4 and item (v) of Lemma 5.2, we get

Iε(u) = 1
2

∫
Ω
|∇u|2 −

∫
Ω
Jε(u)

≥ 1
2

∫
Ω
|∇u|2 −

∫
Ω∩{u≥δ}

Jε(u)

= 1
2

∫
Ω
|∇u|2 +

∫
Ω∩{u≥δ}

Gε(u)−
∫

Ω∩{u≥δ}
F (u)

≥ 1
2

∫
Ω
|∇u|2 − k0

∫
Ω∩{u≥δ}

up0 −
∫

Ω∩{u≥δ}
F (u), for all u ∈ H1

0 (Ω), 0 < ε < ε0.

Choosing p0 = 3, using the Trudinger-Moser inequality, (5.15), the Sobolev embedding
and Hölder’s inequality, we obtain

Iε(u) ≥ 1
2

∫
Ω
|∇u|2 − k0

∫
Ω∩{u≥δ}

u3 − C2

∫
Ω∩{u≥δ}

exp(u2).

≥ 1
2

∫
Ω
|∇u|2 − k0

∫
Ω
|u|3 − C3

δ3

∫
Ω
|u|3 exp(u2)

≥ 1
2

∫
Ω
|∇u|2 − k0

∫
Ω
|u|3 − C3

δ3

(∫
Ω
|u|6

) 1
2
(∫

Ω
exp(2u2)

) 1
2

≥ 1
2‖u‖

2
H1

0 (Ω) − C4‖u‖3
H1

0 (Ω) for ‖u‖2
H1

0 (Ω) < 2π,

where Ci are positive constants that do not depend on ε. Consequently, there exists ρ > 0
that does not depend on ε such that

Iε(u) ≥ 1
4‖u‖

2
H1

0 (Ω) for all u ∈ H1
0 (Ω) with ‖u‖H1

0 (Ω) ≤ ρ. (5.17)

We know that Iε is a functional of class C1. Consequently, Lemma 5.5, (5.17) and the
Mountain-Pass Theorem imply that there exists a Palais-Smale sequence (uεn) for Iε at
level

cε = inf
Ψ∈Γ

max
0≤t≤1

Iε(Ψ(t)),

where
Γ = {Ψ ∈ C([0, 1], H1

0 (Ω)) : Ψ(0) = 0 and Ψ(1) = φ0}.

From (5.17) we obtain

cε ≥
ρ2

4 , for all 0 < ε < ε0.

Furthermore, Lemma 5.5 imply that cε ≤ C for some constant C > 0 that does not depend
on ε. Consequently,

ρ2

4 < |Iε(uεn)| < C,

for sufficiently large n. We thus get, from Lemma 5.4,
1
2‖u

ε
n‖2

H1
0 (Ω) ≤ C +

∫
Ω
Jε(uεn(x)) dx

≤ C + C1|Ω|+ θ
∫

Ω
uεnjε(uεn) dx,
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where 0 < θ < 1/2 is given by (5.12). Furthermore, I ′ε(uεn)→ 0 as n→∞. Consequently,
there exists a sequence (τ εn) in (0, 1) such that τ εn → 0 and∣∣∣∣∣

∫
Ω
∇uεn∇v dx−

∫
Ω
jε(uεn)v dx

∣∣∣∣∣≤ τ εn‖v‖H1
0 (Ω) for all v ∈ H1

0 (Ω) and n ∈ N. (5.18)

Taking v = uεn in (5.18), we get

−τn‖uεn‖H1
0 (Ω) ≤ ‖uεn‖2

H1
0 (Ω) −

∫
Ω
jε(uεn)uεn dx ≤ τn‖uεn‖H1

0 (Ω) for all n ∈ N.

Consequently,
1
2‖u

ε
n‖2

H1
0 (Ω) ≤ C + C1|Ω|+ θτn‖uεn‖H1

0 (Ω) + θ‖uεn‖2
H1

0 (Ω).

We thus get (1
2 − θ

)
‖uεn‖2

H1
0 (Ω) ≤ C + C1|Ω|+ θτn‖uεn‖H1

0 (Ω).

Hence, (uεn) must be uniformly bounded in H1
0 (Ω). Letting n→∞ we get(1

2 − θ
)

lim
n→∞

‖uεn‖2
H1

0 (Ω) ≤ C + C1|Ω|.

Consequently,
lim
n→∞

‖uεn‖2
H1

0 (Ω) ≤
( 2

1− 2θ

)
(C + C1|Ω|).

We thus obtain a constant D > 0 independent of ε such that

‖uεn‖2
H1

0 (Ω) ≤ D for all 0 < ε < ε0.

Hence, there must exist uε ∈ H1
0 (Ω) such that, up to a subsequence,

uεn ⇀ uε weakly in H1
0 (Ω),

uεn → uε in Lp(Ω) for every p > 1,

uεn → uε a.e in Ω.

(5.19)

We recall that since f satisfies (5.5), there exists a constant Cε > 0 such that

max{|jε(s)|, |Jε(s)|} ≤ Cε exp
(2π
D
s2
)
for s ∈ R. (5.20)

Let 1 < r < 2. From (B.8), we get
∫

Ω
|jε(uεn)|r dx ≤ Cε

∫
Ω

exp
2πr

(
uεn

‖uεn‖H1
0 (Ω)

)2
 ≤ Cεk1 for all n ∈ N.

From (5.18), (5.19) and Hölder’s inequality, we get

lim
n→∞

∫
Ω
|∇un|2 dx = lim

n→∞

∫
Ω
jε(uεn)uεn dx

= lim
n→∞

∫
Ω
jε(uεn)uε dx

= lim
n→∞

∫
Ω
∇uεn∇uε dx

=
∫

Ω
|∇uε|2 dx.



Chapter 5. Log–exp problems without parameters 95

We conclude that uεn → uε strongly in H1
0 (Ω). Hence, I ′ε(uε) = 0 and

ρ2

4 ≤ Iε(uε) ≤ C.

The fact that uε ≥ 0 in Ω is a consequence of Lemma 5.1. The result then follows by
taking a1 = ρ2

4 and a2 = C.

5.2 Convergence of the perturbed solutions
In this section. we study the convergence of the solutions uε of problem (5.2)

obtained in Proposition 5.1. This proposition guarantees that there exists a constant D > 0
such that

‖uε‖2
H1

0 (Ω) < D, for each 0 < ε < ε0. (5.21)

Hence, there exist u ∈ H1
0 (Ω) and a sequence (εn) in (0, ε0) such that εn → 0 as n→∞

and 

uεn ⇀ u weakly in H1
0 (Ω),

uεn → u in Lr(Ω) for every r > 1,

uεn → u a.e in Ω,

|uεn| ≤ hr a.e in Ω for some hr ∈ Lr(Ω).

(5.22)

As in Chapters 2 and 4, we will apply regularity results discussed in Appendix A to
conclude that uεn is smooth for all n ∈ N and that u is continuous. Indeed, if (5.21) holds,
then Corollary A.1, implies that there exists a constant K1 > 0 such that

‖uεn‖L∞(Ω) < K1 for all 0 < εn < ε0. (5.23)

Then, it follows from elliptic regularity theory and from the Sobolev Embedding that
uεn ∈ C1(Ω), see Lemma 5.1. Lemma A.5 implies that there exists a constant ε0 > 0 such
that for each smooth subdomain Ω′ ⊂ Ω′ ⊂ Ω there exists a constant M > 0 that depends
on Ω′ but not on ε such that

|∇uεn(x)|2 ≤MZ(uεn(x)) for every x ∈ Ω′, 0 < ε < ε0, (5.24)

where

Z(t) =


t2 + t− t log t for 0 ≤ t ≤ 1

2
1
4 + 1

2(1 + log 2) +
(
t− 1

2

)
(1 + log 2) for t ≥ 1

2 .

Hence, it follows from the Arzela-Ascoli Theorem that uεn → u uniformly in compact
subsets of Ω, so that u is continuous and 0 ≤ u ≤ K1. In this section, we show that u is a
solution of (5.1) in the sense that∫

Ω
∇u∇ϕ =

∫
Ω∩{u>0}

(
log u+ f(u)

)
ϕ, (5.25)
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for every ϕ ∈ C1
c (Ω) and

(log u)χ{u>0} ∈ L1
loc(Ω).

First, we show that

Lemma 5.6. The function u is nontrivial and the function (log u)χΩ+ belongs to L1
loc(Ω),

where Ω+ = {x ∈ Ω : u(x) > 0}.

Proof of Lemma 5.6. First we show that u is nontrivial. Indeed, since uεn ≥ 0 is a
critical point of Iεn and 0 < a1 < Iεn(uε), we have

‖uεn‖2
H1

0 (Ω) +
∫

Ω
gεn,f(0)(uεn)uεn =

∫
Ω
f(uεn)uεn ,

and
Iεn(uεn) = 1

2‖uεn‖
2
H1

0 (Ω) +
∫

Ω
Gεn,f(0)(uεn)−

∫
Ω
F (uεn) > a1.

Hence,

Iεn(uεn) = (5.26)∫
Ω

(
Gεn,f(0)(uεn)− 1

2gεn,f(0)(uεn)uεn
)
dx+

∫
Ω

(1
2f(uεn)uεn − F (uεn)

)
dx > a1.

We will show that ∫
Ω
gεn,f(0)(uεn)uεn dx→

∫
Ω

(− log u)χ{u>0}u dx. (5.27)

First, observe that if gε,f(0)(s) < 0 then

|sgε(s)| = s log
(
s+ εe−b

s+ ε

)
≤ s log(s+ e−b),

and if gε,f(0)(s) ≥ 0 then

|sgε,f(0)(s)| = −s log
(
s+ εe−b

s+ ε

)
≤ −s log s.

Consequently,
|sgε,f(0)(s)| ≤ g1(s) for all s ≥ 0 and 0 < ε < 1,

where
g1(s) = max{|s log(s+ e−b)|, |s log s|} ∈ L1(0, K1),

with K1 given by (5.23). Now we prove (5.27). Indeed, fix x ∈ Ω such that u(x) > 0. We
know that uεn(x)→ u(x). Hence,

gεn,f(0)(uεn(x))uεn(x) = −uεn(x) log
(
uεn(x) + εne

−b

uεn(x) + εn

)
→ −u(x) log u(x),

pointwisely as n → ∞. On the other hand, if u(x) = 0, then uεn(x) → 0 as n → ∞, so
that

|gεn(uεn)uεn| ≤ g1(uεn)→ 0 = −u(log u)χ{u>0} pointwisely as n→∞.
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Inequality (5.27) then follows from the dominated convergence Theorem. We proceed to
show that ∫

Ω
Gεn,f(0)(uεn)→

∫
Ω
G(u) dx,

where
G(s) = −

∫ s

0
log t dt.

Indeed,

Gεn,f(0)(uεn(x)) = −
∫ uεn (x)

0
log

(
s+ εne

−b

s+ εn

)
ds = −

∫ ∞
0

log
(
s+ εne

−b

s+ εn

)
χ{s≤uεn (x)} ds.

Observe that(
log

(
s+ εne

−b

s+ εn

)
χ{s≤uεn (x)}

)
→ (log s)χ{s≤u(x)} as n→∞ for s 6∈ {0, u(x)}

and ∣∣∣∣∣log
(
s+ εne

−b

s+ εn

)
χ{s≤uεn (x)}

∣∣∣∣∣≤ |g2(s)|χ{0≤s≤K1} for all n ∈ N,

where
g2(s) = max{| log(s+ e−b)|, | log s|} ∈ L1(0, K1).

The Dominated Convergence Theorem then implies that

lim
n→∞

Gεn,f(0)(uεn(x)) = −
∫ u(x)

0
log s ds for all x ∈ Ω.

From item (iv) of Lemma 5.2, we know that there exists C1 > 0 such that

|Gε,f(0)(s)| ≤ C1 for all 0 ≤ s ≤ K1, 0 < ε < ε0.

Applying the Dominated Convergence Theorem again, we get∫
Ω
Gεn,f(0)(uεn) dx =

∫
Ω
G(u) dx.

Moreover, it follows directly from the Dominated Convergence Theorem that∫
Ω

(1
2f(uεn)uεn − F (uεn)

)
dx→

∫
Ω

(1
2f(u)u− F (u)

)
dx.

Letting n→∞ in (5.26), we get∫
Ω

(
G(u)− 1

2(− log u)uχ{u>0}

)
dx+

∫
Ω

(1
2f(u)u− F (u)

)
dx > a1, (5.28)

so that u is nontrivial. We proceed to show that (log u)χΩ+ belongs to L1
loc(Ω). Let V ⊂ Ω

be a open set such that V ⊂ V ⊂ Ω. Take ζ ∈ C1
c (Ω) such that 0 ≤ ζ ≤ 1 and ζ ≡ 1 in V .

Since uεn is a critical point of Iεn , we obtain∫
{uεn<Sf(0),εn}

gεn(uεn)ζ =
∫

Ω
f(uεn)ζ −

∫
Ω
∇uεn∇ζ −

∫
{uεn≥Sf(0),εn}

gεn(uεn)ζ.
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(5.22), (5.23) and the fact that uεn → u uniformly in compact subsets of Ω imply that∫
Ω
f(uεn)ζ →

∫
Ω
f(u)ζ,

∫
Ω
∇uεn∇ζ →

∫
Ω
∇u∇ζ as n→∞,

and ∣∣∣∣∣
∫
{uεn≥Sf(0),εn}

gεn,f(0)(uεn)ζ
∣∣∣∣∣≤

∫
Ω∩{1/2≤uεn≤K1}

|gεn,f(0)(uεn)| < C1, for all n ∈ N,

where C1 > 0 is a positive constant that does not depend on ε. Hence, there exists C2 > 0
such that ∣∣∣∣∣

∫
{uεn<Sf(0),εn}

gεn,f(0)(uεn)ζ
∣∣∣∣∣≤ C2 for all n ∈ N. (5.29)

We split the proof in two cases

Case 1: First, assume that f(0) ≥ 0. Item (ii) of Lemma 5.2 implies that
gεn,f(0)(s) ≥ 0 for 0 ≤ s ≤ Sf(0),εn . From item (iii) of Lemma 5.2 we may also assume that
Sf(0),εn > 1/2, so that, from (5.29),∫

{uεn<1/4}
|gεn,f(0)(uεn)|ζ dx ≤ C3 for all n ∈ N.

Consequently, ∫
Ω
|gεn,f(0)(uεn)|ζ dx ≤ C4 for all n ∈ N,

where C4 > 0 is a positive constant independent on n. Define the set Ωρ = {x ∈ Ω : u(x) ≥
ρ} for ρ > 0. Then ∫

V ∩Ωρ

∣∣∣∣∣log
(
uεn + εne

−b

uεn + εn

) ∣∣∣∣∣ζ < C4.

It follows from Fatou’s Lemma and (5.29) that∫
V
| log u|χΩρ < C4,

independently of ρ. Letting ρ→ 0 and applying Fatou’s Lemma again, we conclude that∫
V
| log u|χΩ+ <∞,

for every open subset V ⊂ V ⊂ Ω.

Case 2: When f(0) < 0, we should recall ( from item (i) of Lemma 5.2) that
f(0)− log 2 ≤ gε(s) ≤ 0 for 0 ≤ s ≤ min{sf(0),εn , e

−f(0)}, so that∫
Ω∩{0≤uεn<sf(0),εn}

|gεn(uεn)|ζ dx ≤ (|f(0)|+ log 2)|Ω| = C5.

From (5.29), we obtain a constant C6 such that∫
Ω∩{sf(0),εn≤uεn<Sf(0),εn}

|gεn(uεn)|ζ dx ≤ C6.
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Consequently, we obtain C7 > 0 such that∫
Ω
|gεn,f(0)(uεn)|ζ dx ≤

∫
Ω∩{0≤uεn<sf(0),εn}

|gεn,f(0)(uεn)|ζ dx

+
∫

Ω∩{sf(0),εn≤uεn<Sf(0),εn}
|gεn,f(0)(uεn)|ζ dx

+
∫

Ω∩{Sf(0),εnuεn≤K1}
|gεn,f(0)(uεn)|ζ dx < C7.

The result then follows as in Case 1.

We now state the main result of this chapter.

Theorem 5.1. Assume that f is a function that satisfies (5.4), (5.5) and (5.10)− (5.13).
Then problem (5.1) has a nontrivial nonnegative solution.

Observe that this theorem extends the result of the previous chapter. Indeed,
we no longer assume that f(0) = 0 and we make no use of parameters. For example, we
get

Corollary 5.1. (i) The problem
−∆u = (log u+ µeu)χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

is solvable for all µ > 0

(ii) The problem
−∆u = (log u+ µup)χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

is solvable for all p > 1 and µ > 0.

(iii) The problem
−∆u = (log u+ µupeu)χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

is solvable for all p > 1 and µ > 0.

Observe also that we allow f to change sign. Indeed,

Corollary 5.2. (i) The problem
−∆u = (log u+ eu − µ)χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,
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is solvable for all µ > 0.

(ii) The problem
−∆u = (log u+ up − µ)χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

is solvable for all µ > 0, p > 1

(iii) The problem
−∆u = (log u+ upeu − µ)χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

is solvable for all µ > 0 and p ≥ 1.

(iv) The problem
−∆u = (log u+ λup − µuq)χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

is solvable for all λ > 0, 0 < q < 1 < p and µ ≥ 0.

Proof of Theorem 5.1. The proof is essentially the same of Theorem 4.1, see page 79.
The nontriviality of u is guaranteed by Lemma 5.6. Let uε be an arbitrary solution of
problem (5.2) and let ϕ ∈ C1

c (Ω). We have∫
Ω
∇uε∇ϕ =

∫
Ω

(−gε(uε) + f(uε))ϕ. (5.30)

We again introduce the auxiliary function η ∈ C∞(R), 0 ≤ η ≤ 1, η(s) = 0 for s ≤ 1/2,
η(s) = 1 for s ≥ 1. For m > 0 the function % := ϕη(uε/m) belongs to C1

c (Ω), because uε is
smooth, according to Lemma 5.1.

From continuity, the set Ω+ = {x ∈ Ω : u(x) > 0} is open. Let Ω̃ be an open
set such that support(ϕ) ⊂ Ω̃ and Ω̃ ⊂ Ω. Let Ω0 = Ω+ ∩ Ω̃. Since uε → u uniformly in Ω̃,
we know that for every m > 0 there is an ε1 > 0 such that

uε(x) ≤ m/2 for every x ∈ Ω̃ \ Ω0 and 0 < ε ≤ ε1. (5.31)

Replacing ϕ by % in (5.30) we obtain∫
Ω
∇uε∇(ϕη(uε/m)) =

∫
Ω̃

(−gε(uε) + f(uε))ϕη(uε/m).

We break the previous integral as

Aε :=
∫

Ω0
(−gε(uε) + f(uε))ϕη(uε/m)
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and
Bε :=

∫
Ω̃\Ω0

(−gε(uε) + f(uε))ϕη(uε/m).

Clearly, Bε = 0, whenever 0 < ε ≤ ε1 by (5.31) and the definition of η. Furthermore,

Aε →
∫

Ω0
(log u+ f(u))ϕη(u/m) as ε→ 0,

because uε → u uniformly in Ω0. Next, we take the limit in m to conclude that∫
Ω0

(log u+ f(u))ϕη(u/m)→
∫

Ω0
(log u+ f(u))ϕ as m→ 0,

since η(u/m) ≤ 1 and (log u)χΩ+ + f(u) ∈ L1(Ω̃), according to Lemma 5.6. The result is
then obtained by following the proof of Theorem 4.1.
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6 Critical Log–exp problems

In this chapter we study problems of the form
−∆u = (log u+ f(u))χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(6.1)

where Ω ⊂ R2 is a bounded smooth domain and f has critical growth in the following
sense.

Definition 1. Let f : [0,∞)→ R be a continuous function. We say that f has critical
growth if there exists α > 0 such that

lim
s→∞

|f(s)|
exp(κs2) =∞ for all 0 < κ < α, and lim

s→∞

|f(s)|
exp(κs2) = 0 for all κ > α. (6.2)

Examples of functions with critical growth are f(s) = es
2 and f(s) = sτes

2

with τ ≥ 1.

Remark 6.1. In Chapter 5 we studied problem (6.1) with functions satisfying: for all
α > 0 there exists Cα > 0 such that

|f(s)| ≤ Cα exp (αs2) for all s ≥ 0, (6.3)

see conditions (2.3), (4.5) and (5.5). Observe that f satisfies (6.3) for all α > 0 if and
only if

lim
s→∞

|f(s)|
exp(αs2) = 0 for all α > 0. (6.4)

Functions satisfying (6.4) are called subcritical. Examples of functions of subcritical
growth are f(s) = es, f(s) = sp and f(s) = spes with p > 0.

Remark 6.2. If f is a function of critical growth, then problem (6.1) was studied in Chapter
5. The novelty in this chapter is that we consider problem (6.1) with f having critical
growth. The main difficulty here is that the associated functional Iε lacks compactness. To
overcome this difficulty, we need to obtain sharper estimates in H1

0 (Ω) for the solutions of
the approximated problem.

We will again study a perturbed problem of the form
−∆u+ gε,f(0)(u) = f(u) inΩ
u ≥ 0 in Ω
u = 0 on ∂Ω.

(6.5)
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Here, gε,b ∈ C∞(0,∞) is defined by

gε,b(s) =


− log

(
s+ εe−b

s+ ε

)
for s ≥ 0

b for s < 0,
(6.6)

where b = f(0), so that gε,b(0) = b = f(0) for all ε > 0 and gε,b(s)→ − log(s) pointwisely
for s > 0 as ε→ 0. We will further assume that

f(s) = f(0) for all s ≤ 0, f ∈ C1,ν(0,∞) ∩ C(R) and sup
0≤s≤1

|sf ′(s)| <∞, (6.7)

for some 0 < ν < 1. As in Chapter 5, we work with the functional Iε : H1
0 (Ω)→ R given

by
Iε(u) = 1

2

∫
Ω
|∇u|2 dx+

∫
Ω
Gε,f(0)(u)−

∫
Ω
F (u) dx, (6.8)

where F (u) =
∫ u

0
f(s) ds and Gε,b(u) =

∫ s

0
gε,b(s) ds. From the fact that f is a function

with critical growth satisfying (6.7) and gε,b is continuous satisfying (6.6), we conclude Iε
is of class C1 and

I ′ε(u)(v) =
∫

Ω
∇u∇v +

∫
Ω
gε,f(0)(u)v −

∫
Ω
f(u)v, for all u, v ∈ H1

0 (Ω). (6.9)

Consequently, if uε ∈ H1
0 (Ω) is a critical point of Iε then∫

Ω
∇uε∇v +

∫
Ω
gε,f(0)(uε)v =

∫
Ω
f(uε)v, for all v ∈ H1

0 (Ω). (6.10)

Consequently, critical points uε of Iε are weak solutions of problem (6.5). Arguing as in
the proof of Lemma 5.1, we obtain

Lemma 6.1. Suppose that f is a function of critical growth that satisfies (6.7). The
following assertions hold:

(i) Critical points of Iε are nonnegative weak solutions of problem (6.5).

(ii) If u ∈ H1
0 (Ω) ∩ L∞(Ω) is a nonnegative weak solution of problem (6.5), then u is

smooth and u ∈ C1,ν(Ω), with ν given by (6.7).

In Section 6.1, we assume that f satisfies certain assumptions which are uniform
for α. The goal is to obtain a nontrivial solution of problem (6.1) when f has critical
growth for small values of α. Next, in Section 6.2, we study a parametrized version of
problem (6.1) and remove the hypothesis that α is small. The drawback of not controlling
the value of α is that a certain abstract admissibility condition for Ω appears. We are
unable to give examples of sets Ω which are admissible. However, in Section 6.3, we give
more concrete examples of the result given in Section 6.2.
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6.1 Problems without parameters
In this section we study problem (6.1) when f satisfies the following assumptions,

analogous to the ones stated in Chapter 5. We assume that:

• There exist 0 < α < 1 and constants C1, C2 > 0, ζ > 0 that do not depend
on α such that

|f(s)| ≤ C1s
ζ exp (αs2) + C2 and |F (s)| ≤ C1s

ζ exp (αs2) for all s ≥ 0; (6.11)

• f(0) is a constant that does not depend on α; (6.12)

• There exist constants 0 < ε0, δ < 1 which do not depend on α such that

gε0,f(0)(s) ≥ f(s) for all s ≤ δ. (6.13)

Again observe that the existence of ε0 satisfying condition (6.13) implies that

gε,f(0)(s) ≥ f(s) for all s ≤ δ, 0 < ε ≤ ε0.

• There exist constants 0 < θ < 1/2 and s0 > 0 which do not depend on α such that

min{f(s), F (s)} ≥ 0 for s ≥ s0, (6.14)

and
(1− θ)(f(s) + s) ≤ θsf ′(s) for s ≥ s0. (6.15)

• There exist constants A > 0 and γ > 2 which do not depend on α such that

F (s) ≥ A|s|γ for s ≥ s0. (6.16)

Condition (6.12) imply that the estimates for gε,f(0) given by Lemmas 5.2 and 5.3 do not
depend on α. Conditions (6.11) and (6.13) will be used when showing that the origin is
a local minimum of Iε. Condition (6.16) will again imply that there exists an element
φ0 ∈ H1

0 (Ω) such that Iε(φ0) < 0 for all ε > 0. We will thus be able to apply the Mountain
Pass Theorem, which will give a Palais-Smale sequence (uεn) for Iε. Conditions (6.14) and
(6.15) will imply that (uεn) converges in H1

0 (Ω) to a critical point uε, if the constant α
given by (6.11) is sufficiently small, say 0 < α < α0, where α0 > 0 is an adequate constant
to be chosen later. The fact that the constants defined in (6.11)-(6.16) do not depend on
α yields estimates uniform in α, which will imply that α0 is well defined.

The prototype of function f with critical growth and satisfying conditions
(6.11)− (6.16) is f(s) = sτ exp(αs2) with τ > 1. We again are interested in the quantity
jε : R→ R defined by

jε(s) = f(s)− gε,f(0)(s),
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and Jε(s) =
∫ s

0
jε(t) dt, so that

Iε(u) = 1
2

∫
Ω
|∇u|2 −

∫
Ω
Jε(u). (6.17)

We may use Lemmas 5.2 and 5.3 to obtain the following version of Lemma 5.4.

Lemma 6.2. Assume that (6.7), (6.11) and (6.12) hold. The following assertions are true.

(i) If (6.13) holds, then jε(s) ≤ 0 for s ≤ δ and 0 < ε < ε0.

(ii) Assume further that (6.14) and (6.15) hold. Then, there exists R∗ > 0 and
ε0 > 0 such that

0 ≤ Jε(s) ≤ θsjε(s) for s ≥ R∗ and 0 < ε < ε0.

We thus obtain a constant C > 0 such that

|Jε(s)| ≤ C + θsjε(s) for all s ≥ 0 and 0 < ε < ε0.

Furthermore, C does not depend on α (given by (6.11)).

Proof of Lemma 6.2 . The proof is entirely analogous to the one given in Lemma 5.4, see
page 90. We point out that condition (6.12) implies that the constants defined in Lemmas
5.2 and 5.3 do not depend on α.

As in Chapter 5, we obtain the following energy estimate.

Lemma 6.3. Assume that f is a function that satisfies (6.7), (6.11), (6.12) and (6.16).
Then, there exist φ0 ∈ H1

0 (Ω) ∩ L∞(Ω) such that

Iε(φ0) < 0 for all 0 < ε < 1 (6.18)

Furthermore, there exists C > 0 that does not depend on ε nor on α such that

sup
t∈[0,1]

Iε(tφ0) < C for all 0 < ε < 1.

Proof of Lemma 6.3. The proof of this result is entirely analogous to the proof of
Lemma 5.5, see page 91. We point out that due to (6.12) and (6.16), the constant C > 0
does not depend on α (given by (6.11)).

We now obtain critical points uε of the functional Iε

Proposition 6.1. Suppose that f is a function of critical growth that satisfies (6.7), (6.11)
and (6.12) − (6.16). Then, there exists α0 > 0 such that Iε has a critical point uε ≥ 0
satisfying

‖uε‖2
H1

0 (Ω) ≤
7π
2α for all 0 < ε < ε0 and 0 < α < α0.

Furthermore, there exists constants a1, a2 > 0 such that

0 < a1 < Iε(uε) < a2 for all 0 < ε < ε0 and 0 < α < α0. (6.19)
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Proof of Proposition 6.1. Let 0 < ε0, δ < 1 be given by (6.13). As a consequence of
item (i) of Lemma 6.2 and item (v) of Lemma 5.2, we get

Iε(u) = 1
2

∫
Ω
|∇u|2 −

∫
Ω
Jε(u)

≥ 1
2

∫
Ω
|∇u|2 −

∫
Ω∩{u≥δ}

Jε(u)

= 1
2

∫
Ω
|∇u|2 +

∫
Ω∩{u≥δ}

Gε,f(0)(u)−
∫

Ω∩{u≥δ}
F (u)

≥ 1
2

∫
Ω
|∇u|2 − k0

∫
Ω∩{u≥δ}

up0 −
∫

Ω∩{u≥δ}
F (u), for all u ∈ H1

0 (Ω), 0 < ε < ε0.

Choosing p0 = 3, using (B.8), (6.11) and Hölder’s inequality, we obtain from the Sobolev
Embedding (and from the fact that 0 < α < 1) that

Iε(u) ≥ 1
2

∫
Ω
|∇u|2 − k0

∫
Ω∩{u≥δ}

u3 − C2

∫
Ω∩{u≥δ}

uζ exp(αu2).

≥ 1
2

∫
Ω
|∇u|2 − k0

∫
Ω
|u|3 − C

δ3

∫
Ω
|u|3+ζ exp(u2)

≥ 1
2

∫
Ω
|∇u|2 − k0

∫
Ω
|u|3 − C

δ3

(∫
Ω
|u|6+2ζ

) 1
2
(∫

Ω
exp(2u2)

) 1
2

≥ 1
2‖u‖

2
H1

0 (Ω) − C4‖u‖3
H1

0 (Ω) − C5‖u‖3+ζ
H1

0 (Ω) for ‖u‖
2
H1

0 (Ω) < 2π.

where Ci are positive constants that do not depend on α. Consequently, there exists ρ > 0
that does not depend on ε nor on α such that

Iε(u) ≥ 1
4‖u‖

2
H1

0 (Ω) for all u ∈ H1
0 (Ω) with ‖u‖H1

0 (Ω) ≤ ρ. (6.20)

We know that Iε is a functional of class C1. Consequently, Lemma 6.3, (6.20) and the
Mountain-Pass Theorem imply that there exists a Palais-Smale sequence (uεn) for Iε at
level

cε = inf
Ψ∈Γ

max
0≤t≤1

Iε(Ψ(t)),

where
Γ = {Ψ ∈ C([0, 1], H1

0 (Ω)) : Ψ(0) = 0 and Ψ(1) = φ0}.

From (6.20) we obtain

cε ≥
ρ2

4 , for all 0 < ε < ε0.

Furthermore, Lemma 6.3 imply that cε ≤ C for some constant C > 0 that does not depend
on α. Consequently,

|Iε(uεn)| < C,

for sufficiently large n. We thus get, from Lemma 6.2,
1
2‖u

ε
n‖2

H1
0 (Ω) ≤ C +

∫
Ω
Jε(uεn(x)) dx

≤ C + C1|Ω|+ θ
∫

Ω
uεnjε(uεn) dx,
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where 0 < θ < 1/2 is given by (6.15) and C1 > 0 does not depend on α. Furthermore,
I ′ε(uεn)→ 0 as n→∞. Consequently, there exists a sequence (τ εn) in (0, 1) such that τ εn → 0
and ∣∣∣∣∣

∫
Ω
∇uεn∇v dx−

∫
Ω
jε(uεn)v dx

∣∣∣∣∣≤ τ εn‖v‖H1
0 (Ω) for all v ∈ H1

0 (Ω) and n ∈ N. (6.21)

Taking v = uεn in (6.21), we get

−τn‖uεn‖H1
0 (Ω) ≤ ‖uεn‖2

H1
0 (Ω) −

∫
Ω
jε(uεn)uεn dx ≤ τn‖uεn‖H1

0 (Ω) for all n ∈ N.

Consequently,

1
2‖u

ε
n‖2

H1
0 (Ω) ≤ C + C1|Ω|+ θτn‖uεn‖H1

0 (Ω) + θ‖uεn‖2
H1

0 (Ω).

We thus get (1
2 − θ

)
‖uεn‖2

H1
0 (Ω) ≤ C + C1|Ω|+ θτn‖uεn‖H1

0 (Ω).

Hence, (uεn) must be uniformly bounded in H1
0 (Ω). Letting n→∞ we get(1

2 − θ
)

lim
n→∞

‖uεn‖2
H1

0 (Ω) ≤ C + C1|Ω|.

Consequently,
lim
n→∞

‖uεn‖2
H1

0 (Ω) ≤
( 2

1− 2θ

)
(C + C1|Ω|).

If we choose α0 > 0 so small that( 2
1− 2θ

)
(C + C1|Ω|) <

3π
α

for all 0 < α < α0,

we get
lim
n→∞

‖uεn‖2
H1

0 (Ω) <
7π
2α for all 0 < α < α0

Consequently, there exist constants r1, r2 > 1 independent of n such that

r1r2α‖uεn‖2
H1

0 (Ω) < 4π for all n ∈ N and 0 < α < α0.

Furthermore, there must exist uε ∈ H1
0 (Ω) such that

uεn ⇀ uε weakly in H1
0 (Ω),

uεn → uε in Lp(Ω) for every p > 1,

uεn → uε a.e in Ω.

(6.22)

Observe that since f satisfies (6.11) for some α > 0, then there exists a constant Cε,α > 0
such that

max{|jε(s)|, |Jε(s)|} ≤ Cε,α exp (r1αs
2) for s ∈ R. (6.23)

Consequently, from (B.8),∫
Ω
|jε(uεn)|r2 dx ≤ Cε,α

∫
Ω

exp (αr1r2(uεn)2) ≤ Cε,αk1 for all n ∈ N.
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From (6.21) and Hölder’s inequality, we get

lim
n→∞

∫
Ω
|∇un|2 dx = lim

n→∞

∫
Ω
jε(uεn)uεn dx

= lim
n→∞

∫
Ω
jε(uεn)uε dx

= lim
n→∞

∫
Ω
∇uεn∇uε dx

=
∫

Ω
|∇uε|2 dx.

We conclude that uεn → uε strongly in H1
0 (Ω). Hence, I ′ε(uε) = 0 and

0 < ρ2

4 ≤ Iε(uε) ≤ C.

The fact that uε ≥ 0 in Ω is a consequence of Lemma 6.1. The result then follows by
taking a1 = ρ2

4 and a2 = C.

We now replicate ideas given in Chapter 5 to study the convergence of the
solutions uε of problem (6.5) obtained in Proposition 6.1. This proposition guarantees that
there exists a constant α0 > 0 and ε0 > 0 such that

‖uε‖2
H1

0 (Ω) <
7π
2α, for each 0 < ε < ε0, 0 < α < α0

Hence, there exist u ∈ H1
0 (Ω) and a sequence (εn) in (0, ε0) such that εn → 0 as n→∞

and 

uεn ⇀ u weakly in H1
0 (Ω),

uεn → u in Lr(Ω) for every r > 1,

uεn → u a.e in Ω,

|uεn| ≤ hr a.e in Ω for some hr ∈ Lr(Ω).

(6.24)

As in Chapter 5, we will apply regularity results discussed in Appendix A to conclude that
uεn is smooth for all n ∈ N and that u is continuous. Indeed, if (6.7) holds, then Corollary
A.1, implies that there exists a constant K1 > 0 such that

‖uεn‖L∞(Ω) < K1 for all 0 < εn < ε0. (6.25)

Then, it follows from elliptic regularity theory and from the Sobolev Embedding that
uεn ∈ C1(Ω), see Lemma 6.1. Lemma A.5 implies that there exists a constant ε0 > 0 such
that for each smooth subdomain Ω′ ⊂ Ω′ ⊂ Ω there exists a constant M > 0 that depends
on Ω′ but not on ε such that

|∇uεn(x)|2 ≤MZ(uεn(x)) for every x ∈ Ω′, 0 < ε < ε0,

where

Z(t) =


t2 + t− t log t for 0 ≤ t ≤ 1

2
1
4 + 1

2(1 + log 2) +
(
t− 1

2

)
(1 + log 2) for t ≥ 1

2 .
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Hence, it follows from the Arzela-Ascoli Theorem that uεn → u uniformly in compact
subsets of Ω, so that u is continuous and 0 ≤ u ≤ K1. We may now mimic the approach
given in Chapter 5 to prove that u is a solution of (6.1) in the sense that∫

Ω
∇u∇ϕ =

∫
Ω∩{u>0}

(
log u+ f(u)

)
ϕ,

for every ϕ ∈ C1
c (Ω) and

(log u)χ{u>0} ∈ L1
loc(Ω).

Indeed, we have

Lemma 6.4. The function u is nontrivial and the function (log u)χΩ+ belongs to L1
loc(Ω),

where Ω+ = {x ∈ Ω : u(x) > 0}.

Proof of Lemma 6.4. The proof of this result is entirely analogous to the one given in
Chapter 5, Lemma 5.6, see page 96.

We conclude that

Theorem 6.1. Assume that f is a function that satisfies (6.7), (6.11) and (6.12)− (6.16).
Then, there exists α0 > 0 such that problem (6.1) has a nontrivial nonnegative solution
provided 0 < α < α0.

Proof of Theorem 6.1. The proof of this result is entirely analogous to the ones given
in Chapters 4 and 5, Theorems 4.1 and 5.1, see pages 79 and 100 respectively.

As an immediate consequence, we get

Corollary 6.1. Let f(s) = sτ exp(αs2) with τ > 1. There exists α0 > 0 such that problem
(6.1) has a nontrivial nonnegative solution provided 0 < α < α0.

Corollary 6.2. For each µ ∈ R and τ > 1, there exists α0 > 0 such that the problem
−∆u = (log u+ uτ exp(αu2) + µ)χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

has a nontrivial nonnegative solution provided 0 < α < α0.

6.2 Problems with parameters
In this section, we study the problem

−∆u = (log u+ λf(u))χ{u>0} in Ω
u ≥ 0, u 6≡ 0 in Ω
u = 0 on ∂Ω,

(6.26)
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where λ > 0, Ω ⊂ R2 is a bounded smooth domain and f has critical growth. Our goal
is to study whether problem (6.26) can be solvable independently of the value of α. In
Section 6.1, we showed that problem (6.26) has a nontrivial solution provided that the
constant 0 < α < 1 given by (6.11) is small. Here, we want to drop this condition. In
doing so, an admissibility condition appears. We consider the perturbed problem

−∆u+ gε,λf(0)(u) = λf(u) in Ω
u 6≡ 0 in Ω
u = 0 on ∂Ω,

(6.27)

where gε,b is given by (6.6). In this context, we consider the functional Iε,λ : H1
0 (Ω)→ R

defined by

Iε,λ(u) = 1
2

∫
Ω
|∇u|2 +

∫
Ω
Gε,λf(0)(u)− λ

∫
Ω
F (u) for u ∈ H1

0 (Ω). (6.28)

We assume that f has critical growth, so that there exists α > 0 and C > 0 such that

max{|f(s)|, |F (s)|} ≤ C exp(αs2) for all s ≥ 0. (6.29)

Moreover, we assume that there exists δ > 0 such that

f(s) > 0 for all 0 < s < δ. (6.30)

We will use condition (6.30) to obtain an element φ0 ∈ H1
0 (Ω) with Iε(φ0) < 0 for all ε > 0.

Assumptions (6.7) and (6.29) imply that the functional Iε,λ is of class C1 and

I ′ε,λ(u)(v) =
∫

Ω
∇uε∇v +

∫
Ω
gε,λf(0)(u)v − λ

∫
Ω
f(u)v for all u, v ∈ H1

0 (Ω), 0 < ε < 1.
(6.31)

Furthermore, critical points of Iε,λ are nonnegative weak solutions of problem (6.27),
according to Lemma 6.1.

Let φ1 ∈ H1
0 (Ω)∩L∞(Ω), φ1 > 0 in Ω be the first eigenfunction of −∆ satisfying

‖φ1‖H1
0 (Ω) = 1. We get

Lemma 6.5. Let α, λ > 0 and 0 < θ < 1/2. Assume that (6.7), (6.29) and (6.30) hold.
There exists t0 > 0 that does not depend on λ and ε0 > 0 such that

t2

2 +
∫

Ω
Gε,λf(0)(tφ1) dx <

(
1− 2θ

2

)
π

α
, for all 0 ≤ t ≤ t0, 0 < ε < ε0. (6.32)

Proof of Lemma 6.5. Continuity and (6.30) implies that f(0) ≥ 0. Consequently, from
items (ii) and (iii) of Lemma 5.2, we get gε,λf(0)(s) ≥ 0 for 0 ≤ s ≤ 1

2 , provided ε is
sufficiently small. Hence, s→ Gε,λf(0)(s) is nondecreasing for 0 ≤ s ≤ 1/2. Furthermore,

gε,λf(0)(s) = − log
(
s+ εe−λf(0)

s+ ε

)
≤ − log s for 0 ≤ s ≤ 1/2.
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Consequently,

0 ≤ Gε,λf(0)(s) ≤
∫ s

0
− log t dt = −(t log t− t)|st=0 = s− s log s for 0 ≤ s ≤ 1/2.

Since lim
s→0

(s− s log s) = 0, we may choose t1 > 0 such that

s− s log s <
(

1− 2θ
2

)
π

2α|Ω| for all 0 ≤ s ≤ t1.

We choose t0 > 0 such that

t20
2 <

(
1− 2θ

2

)
π

2α and t0φ1(x) < t1 for all x ∈ Ω.

We conclude that

Gε,λf(0)(tφ1) ≤ tφ1 − tφ1 log(tφ1) ≤ t0φ1 − t0φ1 log(t0φ1)

<

(
1− 2θ

2

)
π

2α|Ω| for all 0 ≤ t ≤ t0.

Consequently,

t2

2 +
∫

Ω
Gε,λf(0)(tφ1) dx < t20

2 +
(

1− 2θ
2

)∫
Ω

π

2α|Ω| dx =
(

1− 2θ
2

)
π

α
for all 0 ≤ t ≤ t0.

This proves (6.32).

Let Iε,λ be given by (6.28). From Lemma 6.5, we get

Iε,λ(tφ1) = t2

2 +
∫

Ω
Gε,λf(0)(tφ1) dx− λ

∫
Ω
F (tφ1) dx

≤
(

1− 2θ
2

)
π

α
− λ

∫
Ω
F (tφ1) dx for all 0 ≤ t ≤ t0.

(6.33)

Hence,
Iε,λ(t0φ1) < 0,

provided λ ≥ λ0, where

λ0 =
(

1− 2θ
2

)(
π

α
∫

Ω F (t0φ1)

)
. (6.34)

Observe that λ0 depends on Ω. We now obtain

Lemma 6.6. Let λ0 be given by (6.34) and fix λ > λ0. There exists 0 < tλ < t0 such that

Iε,λ(tλφ1) < 0 and |Iε,λ(tφ1)| ≤
(

1− 2θ
2

)
3π
α

for all 0 ≤ t ≤ tλ. (6.35)
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Proof of Lemma 6.6. Indeed, we choose 0 < tλ < t0 such that(
1− 2θ

2

)
π

α
< λ

∫
Ω
F (tλφ1) dx <

(
1− 2θ

2

)
2π
α
.

This choice of tλ is possible because F is continuous with F (0) = 0 and

λ0

∫
Ω
F (t0φ1) =

(
1− 2θ

2

)
π

α
.

The choice of tλ and (6.33) imply that

Iε,λ(tλφ1) ≤
(

1− 2θ
2

)
π

α
− λ

∫
Ω
F (tλφ1) dx < 0

and

|Iε,λ(tφ1)| ≤ t2

2 +
∫

Ω
Gε,λf(0)(tφ1) dx+ λ

∫
Ω
F (tφ1) dx

≤
(

1− 2θ
2

)
π

α
+ λ

∫
Ω
F (tφ1) dx

≤
(

1− 2θ
2

)
π

α
+ λ

∫
Ω
F (tλφ1) dx

≤
(

1− 2θ
2

)
3π
α

for all 0 ≤ t ≤ tλ < t0.

This proves (6.35).

We further assume that

• There exist constants 0 < ε0, δλ < 1 (which may depend on α and λ) such
that

gε0,λf(0)(s) ≥ λf(s) for all s ≤ δλ. (6.36)

• There exist constants 0 < θ < 1/2 and sλ > 0 such that

min{f(s), F (s)} ≥ 0 for s ≥ sλ. (6.37)

and
(1− θ)(λf(s) + s) ≤ θλsf ′(s) for s ≥ sλ, (6.38)

with θ independent of λ. If f has critical growth and satisfies (6.29) and (6.36)− (6.38),
then the argument used in the proof of Lemma 5.4 yields a constant C = Cλ,α > 0 such
that

|Jε,λ(s)| ≤ Cλ,α + θsjε,λ(s) for all s ∈ R, (6.39)

where jε,λ(s) = λf(s)−gε,λf(0)(s), Jε,λ(s) =
∫ s

0
jε,λ(t) dt and 0 < θ < 1/2 is given by (6.38).

We now prove
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Proposition 6.2. Let λ0 > 0 be given by (6.34). Assume that f is a function with critical
growth that satisfies (6.7), (6.29), (6.30) and (6.36)− (6.38). Then, there exist uε ∈ H1

0 (Ω)
such that I ′ε,λ(uε) = 0 and constants a1, a2, c > 0 such that

0 < a1 ≤ Iε,λ(uε) < a2,

provided λ > λ0 and |Ω| < c. The constants a1, a2 and c do not depend on ε but depend
on λ and α (given by (6.29)). Furthermore,

‖uε‖2
H1

0 (Ω) ≤
7π
2α for all 0 < ε < ε0. (6.40)

Proof of Proposition 6.2 . Recall that δλ > 0 is given by (6.36). As a consequence of
Lemma 5.2, we get

Iε,λ(u) = 1
2

∫
Ω
|∇u|2 −

∫
Ω
Jε,λ(u)

≥ 1
2

∫
Ω
|∇u|2 −

∫
Ω∩{u≥δλ}

Jε,λ(u)

= 1
2

∫
Ω
|∇u|2 +

∫
Ω∩{u≥δλ}

Gε,λf(0)(u)− λ
∫

Ω∩{u≥δλ}
F (u)

≥ 1
2

∫
Ω
|∇u|2 − k0

∫
Ω∩{u≥δλ}

up0 − λ
∫

Ω∩{u≥δλ}
F (u).

Choosing p0 = 3 in Lemma 5.2 and using (6.29), we obtain from the Sobolev Embedding

Iε,λ(u) ≥ 1
2

∫
Ω
|∇u|2 − k0

∫
Ω∩{u≥δλ}

u3 − λC
∫

Ω∩{u≥δλ}
exp(αu2)

≥ 1
2

∫
Ω
|∇u|2 − k0

∫
Ω
|u|3 − λC

δ3
λ

∫
Ω
|u|3 exp(αu2)

≥ 1
2

∫
Ω
|∇u|2 − k0

∫
Ω
|u|3 − λC

δ3
λ

(∫
Ω
u6
) 1

2
(∫

Ω
exp(2αu2)

) 1
2

≥ 1
2‖u‖

2
H1

0 (Ω) − C1‖u‖3
H1

0 (Ω) − C2‖u‖3
H1

0 (Ω) for ‖u‖2
H1

0 (Ω) <
2π
α
,

where the constants Ci do not depend on ε. Consequently, there exists ρ > 0 that does not
depend on ε such that

Iε,λ(u) ≥ 1
4‖u‖

2
H1

0 (Ω) for all u ∈ H1
0 (Ω) with ‖u‖H1

0 (Ω) ≤ ρ. (6.41)

We know that Iε is a functional of class C1. Consequently, (6.35), (6.41) and the Mountain-
Pass Theorem imply that there exists a Palais-Smale sequence (uεn) for Iε,λ at level

cε,λ = inf
Ψ∈Γ

max
0≤t≤1

Iε,λ(Ψ(t)),

where
Γ = {Ψ ∈ C([0, 1], H1

0 (Ω)) : Ψ(0) = 0 and Ψ(1) = tλφ1}.
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From (6.41) we obtain

cε,λ ≥
ρ2

4 , for all 0 < ε < ε0.

Furthermore, (6.35) implies that cε,λ ≤
(

1− 2θ
2

)
3π
α
. Consequently,

|Iε,λ(uεn)| <
(

1− 2θ
2

)
3π
α

for all n ∈ N.

Inequality (6.39) implies that

1
2‖u

ε
n‖2

H1
0 (Ω) ≤

(
1− 2θ

2

)
3π
α

+
∫

Ω
Jε,λ(uεn(x)) dx

≤
(

1− 2θ
2

)
3π
α

+ Cλ,α|Ω|+ θ
∫

Ω
uεnjε,λ(uεn) dx

Furthermore, I ′ε,λ(uεn)→ 0 as n→∞. Consequently, there exists a sequence (τ εn) in (0, 1)
such that τ εn → 0 and∣∣∣∣∣

∫
Ω
∇uεn∇v dx−

∫
Ω
jε,λ(uεn)v dx

∣∣∣∣∣≤ τ εn‖v‖H1
0 (Ω) for all v ∈ H1

0 (Ω) and n ∈ N. (6.42)

Taking v = uεn in (6.42), we get

−τn‖uεn‖H1
0 (Ω) ≤ ‖uεn‖2

H1
0 (Ω) −

∫
Ω
jε,λ(uεn)uεn dx ≤ τn‖uεn‖H1

0 (Ω) for all n ∈ N.

Consequently,

1
2‖u

ε
n‖2

H1
0 (Ω) ≤

(
1− 2θ

2

)
3π
α

+ Cλ,α|Ω|+ θτn‖uεn‖H1
0 (Ω) + θ‖uεn‖2

H1
0 (Ω).

We thus get (1
2 − θ

)
‖uεn‖2

H1
0 (Ω) ≤

(
1− 2θ

2

)
3π
α

+ Cλ,α|Ω|+ θτn‖uεn‖H1
0 (Ω).

Consequently, (uεn) must be uniformly bounded in H1
0 (Ω). Letting n→∞ we get(1

2 − θ
)

lim
n→∞

‖uεn‖2
H1

0 (Ω) ≤
(

1− 2θ
2

)
3π
α

+ Cλ,α|Ω|.

Consequently,
lim
n→∞

‖uεn‖2
H1

0 (Ω) ≤
3π
α

+
( 2

1− 2θ

)
Cλ,α|Ω|.

If we choose |Ω| so small that ( 2
1− 2θ

)
Cλ,α|Ω| <

π

2α, (6.43)

we get
lim
n→∞

‖uεn‖2
H1

0 (Ω) ≤
7π
2α.
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Consequently, there exists r > 1 independent of n such that

rα‖uεn‖2
H1

0 (Ω) < 4π for all n ∈ N.

Furthermore, there must exist uε ∈ H1
0 (Ω) such that

uεn ⇀ uε weakly in H1
0 (Ω),

uεn → uε in Lp(Ω) for every p ≥ 1,

uεn → uε a.e in Ω.

(6.44)

We recall that if f satisfies (6.29) for some α > 0, then there exists Cε,α,λ > 0 such that

max{|jε,λ(s)|, |Jε,λ(s)|} ≤ Cε,α,λ exp (αs2) for s ∈ R. (6.45)

Consequently, from (B.8),∫
Ω
|jε,λ(uεn)|r dx ≤ Cε,α,λ

∫
Ω

exp (αr(uεn)2) ≤ Cε,α,λk1 for all n ∈ N.

From (6.42), (6.44) and Hölder’s inequality, we get

lim
n→∞

∫
Ω
|∇un|2 dx = lim

n→∞

∫
Ω
jε,λ(uεn)uεn dx

= lim
n→∞

∫
Ω
jε,λ(uεn)uε dx

= lim
n→∞

∫
Ω
∇uεn∇uε dx

=
∫

Ω
|∇uε|2 dx.

We conclude that uεn → uε strongly in H1
0 (Ω). Consequently, I ′ε,λ(uε) = 0 and

0 < ρ2

4 ≤ Iε,λ(uε) ≤
(

1− 2θ
2

)
3π
α
.

This proves the result.

We again replicate ideas given in Section 6.1 and in Chapter 5 to study
the convergence of the solutions uε of problem (6.27) obtained in Proposition 6.2. This
proposition guarantees that there exists a constant α0 > 0 and ε0 > 0 such that

‖uε‖2
H1

0 (Ω) <
7π
2α, for each 0 < ε < ε0, 0 < α < α0,

provided Ω satisfies the admissibility condition

|Ω| < c.

Hence, there exist u ∈ H1
0 (Ω) and a sequence (εn) in (0, ε0) such that εn → 0 as n→∞

and 

uεn ⇀ u weakly in H1
0 (Ω),

uεn → u in Lr(Ω) for every r > 1,

uεn → u a.e in Ω,

|uεn| ≤ hr a.e in Ω for some hr ∈ Lr(Ω).

(6.46)
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As in Chapter 5, we will apply regularity results discussed in Appendix A to conclude that
uεn is smooth for all n ∈ N and that u is continuous. Indeed, if (6.40) holds, then Lemma
A.4, implies that there exists a constant K1 > 0 such that

‖uεn‖L∞(Ω) < K1 for all 0 < εn < ε0. (6.47)

Then, it follows from elliptic regularity theory and from the Sobolev Embedding that
uεn ∈ C1(Ω), see Lemma 6.1. Lemma A.5 implies that there exists a constant ε0 > 0 such
that for each smooth subdomain Ω′ ⊂ Ω′ ⊂ Ω there exists a constant M > 0 that depends
on Ω′ but not on ε such that

|∇uεn(x)|2 ≤MZ(uεn(x)) for every x ∈ Ω′, 0 < ε < ε0, (6.48)

where

Z(t) =


t2 + t− t log t for 0 ≤ t ≤ 1

2
1
4 + 1

2(1 + log 2) +
(
t− 1

2

)
(1 + log 2) for t ≥ 1

2 .

Hence, it follows from the Arzela-Ascoli Theorem that uεn → u uniformly in compact
subsets of Ω, so that u is continuous and 0 ≤ u ≤ K1. We may now mimic the approach
given in Chapter 5 to prove that u is a solution of (6.26) in the sense that∫

Ω
∇u∇ϕ =

∫
Ω∩{u>0}

(
log u+ f(u)

)
ϕ, (6.49)

for every ϕ ∈ C1
c (Ω) and

(log u)χ{u>0} ∈ L1
loc(Ω).

Indeed, we have

Lemma 6.7. The function u is nontrivial and the function (log u)χΩ+ belongs to L1
loc(Ω),

where Ω+ = {x ∈ Ω : u(x) > 0}.

Proof of Lemma 6.7. The proof of this result is entirely analogous to the one given in
Chapter 5, Lemma 5.6, see page 96.

We conclude that

Theorem 6.2. Assume that f is a function with critical growth that satisfies (6.7),
(6.29),(6.30) and (6.36) − (6.38). There exists λ0 > 0 such that problem (6.26) has a
nontrivial nonnegative solution provided λ > λ0 and |Ω| < c, where c = cα,θ,λ > 0 is a
constant depending on α, λ and θ.

Proof of Theorem 6.2. The proof of this result is entirely analogous to the ones given
in Chapters 4 and 5, Theorems 4.1 and 5.1, see pages 79 and 100 respectively.
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6.3 The admissibility condition for specific problems
In this section we look more closely at the admissibility condition |Ω| < c given

by Theorem 6.2. We do not give explicit examples of sets Ω satisfying this condition, but
in some cases we can obtain nice values for c. First we consider f(s) = s exp(αs2) and
next we take f(s) = exp(αs2).

Theorem 6.3. Let α ≥ 3/4 and assume that f(s) = s exp(αs2). There exists λ0 > 1 such
that problem (6.26) has a nontrivial nonnegative solution for λ > λ0, and |Ω| < cλ,α, where

cλ,α = π

8α

 1(
λ

2αe
4/α + 1

4e

)
 = π

2

(
e

2λe4/α + α

)
.

Proof of Theorem 6.3 . Let f(s) = s exp(αs2), so that

F (s) = 1
2α

(
exp(αs2)− 1

)
and f ′(s) = exp(αs2) + 2αs2 exp(αs2).

Since f(0) = 0, we consider the perturbation

gε(s) =

 − log
(
s+ ε

s+ ε

)
for s ≥ 0

0 for s < 0,

and Gε(s) =
∫ s

0
gε(t) dt. We will mimic the proof of Lemma 5.4 and see where this leads

us. Indeed, let Bε(s) = λF (s)−Gε(s)−
1
4λsf(s) + 1

4sgε(s). We have

B′ε(s) = 3
4(λf(s)− gε(s))−

1
4λsf

′(s) + 1
4sg

′
ε(s).

Therefore, from Lemma 5.3, we conclude that

B′ε(s) ≤
3
4(λf(s) + s)− 1

4λsf
′(s)− 1

24 for s ≥ 2.

Therefore, B′ε(s) ≤ −1/24 for s ≥ 2 provided

3(λf(s) + s)− λsf ′(s) ≤ 0 for s ≥ 2. (6.50)

Observe that

3(λf(s) + s) ≤ λsf ′(s) if and only if 3λs exp(αs2) + 3s ≤ λ(s exp(αs2) + 2αs3 exp(αs2))

Equivalently,
2λ exp(αs2) + 3 ≤ 2αλs2 exp(αs2).

This inequality holds provided

2λ exp(αs2) ≤ αλs2 exp(αs2) and 3 ≤ αλs2 exp(αs2).
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Assuming that λ > 1 it holds for s ≥ s0 with

αs2
0 = 3, (6.51)

so that s0 =
√

3/α. Assuming that α > 3/4, we conclude that (6.50) holds, and conse-
quently,

B′ε(s) ≤ −1/24 for s ≥ 2. (6.52)

Furthermore,
Bε(2) = λF (2)−Gε(2)− 1

2λf(2) + 1
2gε(2).

Observe that

−Gε(2) =
∫ 2

0
log

(
t+ ε

at+ ε

)
dt

≤
∫ 2

0
log(t+ 1) dt

=
∫ 3

1
log t dt

= 3 log 3− 3 ≤ 0,

(6.53)

gε(2) = − log
(

2 + ε

2a+ ε

)
≤ − log 2 ≤ 0, (6.54)

F (2) = 1
2α

(
e4α − 1

)
(6.55)

and
f(2) = 2e4α. (6.56)

From (6.53), (6.54), (6.55) and (6.56), we conclude that

Bε(2) ≤ λ
( 1

2α
(
e4α − 1

)
− e4α

)
≤ 0,

since α ≥ 3/4. From (6.52), we conclude that

Bε(s) ≤ 0 for s ≥ 2.

Consequently,
Jε,λ(s) ≤

1
4sjε,λ(s) for s ≥ 2, (6.57)

where jε,λ(s) = λf(s)− gε(s). Furthermore,

Jε,λ(s) = λF (s)−Gε(s)−
1
4sjε,λ(s) + 1

4sjε,λ(s)

= λ
(
F (s)− 1

4sf(s)
)
−Gε(s) + 1

4sgε(s) + 1
4sjε,λ(s) for 0 ≤ s ≤ 2.

Since

F (s)− 1
4sf(s) = 1

2α
(
eαs

2 − 1
)
− s

4e
αs2 = eαs

2
( 1

2α −
s

4

)
− 1

2α for 0 ≤ s ≤ 2,
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−Gε(s) ≤ 0 for 0 ≤ s ≤ 2,

and
1
4sgε(s) = −1

4s log
(
s+ ε

s+ ε

)
≤ −1

4s log s for 0 ≤ s ≤ 2,

we conclude that

Jε,λ(s) ≤
λ

2αe
4/α + 1

4 sup
0≤s≤2

(−s log s) + 1
4sjε,λ(s). for 0 ≤ s ≤ 2.

Consequently,
Jε,λ(s) ≤

λ

2αe
4/α + 1

4e + 1
4sjε,λ(s). for 0 ≤ s ≤ 2.

We get from (6.57) that

Jε,λ(s) ≤
λ

2αe
4/α + 1

4e + 1
4sjε,λ(s). for s ≥ 0.

Consequently, (6.39) holds for

Cλ,α = λ

2αe
4/α + 1

4e.

Consequently, (6.43) implies that |Ω| must satisfy

4
(
λ

2αe
4/α + 1

4e

)
|Ω| < π

2α.

This proves Theorem 6.3.

Theorem 6.4. Let α ≥ 3 and assume that f(s) = exp(αs2). There exists λ0 > 0 such that
problem (6.26) has a nontrivial nonnegative solution for λ > λ0, and |Ω| < cλ,α, where

cλ,α = π

8α

(
1

18λ exp(α(24B)2) + (24B + 1) log(24B + 1) + 1
4e

)
,

with
B = 1

12 + 3λ
2 e4α.

Proof of Theorem 6.4 . Now we consider f(s) = exp(αs2) and study versions of Lemma
5.4 in this context. Observe that

0 ≤ F (s) ≤ s exp(αs2) and f ′(s) = 2αs exp(αs2).

Since f(0) = 0, we consider the perturbation

gε(s) =


− log

(
s+ εe−λ

s+ ε

)
for s ≥ 0

λ for s < 0,

and Gε(s) =
∫ s

0
gε(t) dt. Note that

3(λf(s) + s) ≤ sλf ′(s) if and only if 3λ exp(αs2) + 3s ≤ 2αλs2 exp(αs2). (6.58)
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This inequality holds provided

3λ exp(αs2) ≤ αλs2 exp(αs2) and 3s ≤ αλs2 exp(αs2).

Hence, it holds provided
αs2 ≥ 3, and 3 ≤ αλs. (6.59)

Assume that α ≥ 3 and λ ≥ 1. In this case, inequality (6.58) holds for s ≥ 2. We will
mimic the proof of Lemma 5.4. Let Bε(s) = λF (s)−Gε(s)− θλsf(s) + θsgε(s). We have

B′ε(s) = (1− θ)(λf(s)− gε(s))− θλsf ′(s) + θsg′ε(s).

Therefore, from Lemma 5.3, we conclude that

B′ε(s) ≤ (1− θ)(λf(s) + s)− θsλf ′(s)− θ

6 for s ≥ 2.

Therefore, B′ε(s) ≤ −θ/6 for s ≥ 2 provided

(1− θ)(λf(s) + s)− θsλf ′(s) ≤ 0 for s ≥ 2.

Choosing θ = 1/4, this is equivalent to

3(λf(s) + s)− sλf ′(s) ≤ 0 for s ≥ 2,

which holds from (6.58). Consequently,

B′ε(s) ≤ −
1
24 for s ≥ 2. (6.60)

Furthermore,
Bε(2) = λF (2)−Gε(2)− λ

2f(2) + 1
2gε(2).

We have

−Gε(2) =
∫ 2

0
log

(
t+ εe−λ

t+ ε

)
dt

≤
∫ 2

0
log(t+ e−λ) dt

≤
∫ 2

0
log(t+ 1) dt

=
∫ 3

1
log t dt

= 3 log 3− 3 ≤ 0,

(6.61)

gε(2) = − log
(

2 + εe−λ

2 + ε

)
≤ − log 2 ≤ 0, (6.62)

F (2) =
∫ 2

0
eαt

2
dt ≤ 2e4α. (6.63)
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and
f(2) = e4α. (6.64)

From (6.61), (6.62), (6.63) and (6.64), we conclude that

Bε(2) ≤
(

2λ− λ

2

)
e4α.

From (6.60), we conclude that

Bε(s) ≤ −
s

24 +B for all s ≥ 2,

where
B = 1

12 +
(

2λ− λ

2

)
e4α.

We conclude that
Bε(s) ≤ 0 for all s ≥ 24B.

Consequently,
J(s) ≤ 1

4sj(s) for s ≥ 24B, (6.65)

where j(s) = λf(s)− gε(s). We now study the behaviour of j and J in the interval [0, 24B].
Indeed,

J(s) = λ
(
F (s)− 1

4sf(s)
)
−
(
Gε(s)−

1
4sgε(s)

)
+ 1

4sj(s) for 0 ≤ s ≤ 24B.

Observe that

−Gε(s) ≤ (s+ 1) log(s+ 1)− (s+ 1) ≤ (24B + 1) log(24B + 1) for all 0 ≤ s ≤ 24B.

Next, we have

−sgε(s) = s log
(
s+ εe−λ

s+ ε

)
≥ s log s ≥ −1

e
,

for all 0 ≤ s ≤ 24B. Consequently,

−1
4sgε(s) ≥ −

1
4e for all 0 ≤ s ≤ 24B.

Furthermore,

F (s) =
∫ s

0
exp(αt2) dt ≤ s exp(αs2) for all 0 ≤ s ≤ 24B,

and
sf(s) = s exp(αs2) for all 0 ≤ s ≤ 24B.

Hence,

J(s) ≤
(

3λ
4

)
s exp(αs2) + (24B + 1) log(24B + 1) + 1

4e + 1
4sj(s) for 0 ≤ s ≤ 24B.
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From (6.65), we conclude that

J(s) ≤ Cλ,α + 1
4sj(s) for s ≥ 0,

where
Cλ,α = 18λ exp(α(24B)2) + (24B + 1) log(24B + 1) + 1

4e
Consequently, (6.43) implies that |Ω| must satisfy

4
(

18λ exp(α(24B)2) + (24B + 1) log(24B + 1) + 1
4e

)
|Ω| < π

2α.

This proves Theorem 6.4.
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7 A problem with singular weights

In this chapter we consider the problem
−∆u = a(x)g(u) + λb(x)up inΩ
u > 0 inΩ
u = 0 on ∂Ω,

(7.1)

where Ω ⊂ RN , N ≥ 1 is a bounded smooth domain, λ > 0 is a positive parameter, a
and b are positive weight functions that may be singular near the boundary ∂Ω of Ω,
g : (0,∞)→ R is singular at the origin and 0 < p < 1.

We assume that the singular function g : (0,∞)→ R is C1 and behaves in a
certain way near the origin. We assume that

lim
s→0+

g(s) = −∞, (7.2)

and there exist constants 0 < β < 1 and C1 ≥ 0 such that

lim
s→0+

|g(s)sβ| = C1. (7.3)

We will also assume that g has sublinear growth, that is, there are constants 0 < q < 1
and C2 ≥ 0 such that

lim
s→∞

|g(s)|
sq

= C2. (7.4)

Observe that the function g is a generalization of −u−β. Other examples of g that we can
have in mind are

• g(s) = log s;

• g(s) = s−β log s+ ρsq, where ρ ≥ 0;

• g(s) = −s−β + log s;

• g(s) = − 1
s−α + s−β

+ ρsq, where 0 < α, β, q < 1 and ρ ≥ 0.

We assume that the weights a and b satisfy

a, b ∈ C(Ω) and min
x∈Ω
{a(x), b(x)} > 0. (7.5)

These weights are allowed to be singular near the boundary of Ω provided that there are
constants σ > 0 and C3 > 0 such that

σ + β < 1, (7.6)

a(x)δ(x)σ ≤ C3 for every x ∈ Ω, (7.7)
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and
b(x)δ(x)σ ≤ C3 for every x ∈ Ω, (7.8)

where
δ(x) = dist(x, ∂Ω) = inf

y∈∂Ω
|x− y|.

The function δ plays an important role in this chapter. We recall the classical Hardy
inequality, see [10], that states that there exists a constant Λ > 0 such that

Λ
∫

Ω

ϕ2

δ2 ≤
∫

Ω
|∇ϕ|2 for every ϕ ∈ C∞c (Ω). (7.9)

Our first result asserts that problem (7.1) possesses a positive subsolution. To construct
this subsolution, we introduce the auxiliary functions Y and φ1, solutions of the problems

−∆Y = 1 inΩ
Y > 0 inΩ
Y = 0 on ∂Ω,

and 
−∆φ1 = λ1φ1 inΩ
φ1 > 0 inΩ
φ1 = 0 on ∂Ω,

respectively. Here λ1 > 0 denotes the first eigenvalue of the Laplacian operator. We
know that these functions have certain regularity properties. From Lemma B.2, there are
constants A1, A2 > 0 and B1, B2 > 0 such that

A1δ(x) ≤ Y (x) ≤ B1δ(x) for all x ∈ Ω

and
A2δ(x) ≤ φ1(x) ≤ B2δ(x) for all x ∈ Ω.

Hence, there must exist constants A,B, c > 0 with c small such that φ1 − 2cY > 0 in Ω
and

Aδ(x) ≤ ψ(x) ≤ Bδ(x) for all x ∈ Ω, (7.10)

where ψ(x) = φ1 − cY . Hence, from (7.9) we get

Λ
∫

Ω

ϕ2

ψ2 ≤
∫

Ω
|∇ϕ|2 for every ϕ ∈ C∞c (Ω). (7.11)

Inequalities (7.9) and (7.11) hold (by extension) for all ϕ ∈ H1
0 (Ω). We now show that

problem (7.1) possesses a subsolution of the form u = Kψν provided that λ > 0 is
sufficiently large.

Lemma 7.1. Suppose that (7.2)-(7.8) hold. There exists λ0 > 0 (that does not depend on
p) such that problem (7.1) has a positive subsolution u for all λ > λ0 and 0 < p < 1.
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Proof Let K > 0 and ν > 1 be constants to be fixed later and take u = Kψν .
Then,

−∆u = −Kνψν−1∆ψ −Kν(ν − 1)ψν−2|∇ψ|2.

Then, u is a subsolution of (7.1) if and only if

−∆u = −Kνψν−1∆ψ −Kν(ν − 1)ψν−2|∇ψ|2 ≤ a(x)g(u) + λb(x)up in Ω. (7.12)

We have
−∆ψ(x) = λ1φ1(x)− c < 0 near the boundary ∂Ω.

Then we choose a smooth subdomain Ω′ ⊂⊂ Ω such that

−∆ψ(x) < 0 for all x ∈ Ω \ Ω′.

Then, to prove (7.12) in Ω \ Ω′ we just need to show that

−Kν(ν − 1)ψν−2|∇ψ|2 ≤ a(x)g(u) in Ω \ Ω′.

But by Hopf’s Lemma, we can assume that there exists a positive number η1 > 0 such
that |∇ψ|2 > η1 in Ω \ Ω′. Therefore, it is enough to prove that

−Kν(ν − 1)ψν−2η1 ≤ a(x)g(u) in Ω \ Ω′.

But by condition (7.4) and by choosing Ω′ sufficiently close to ∂Ω, we can also assume
that there exists a constant D1 > 0 such that

|g(u)| ≤ D1u
−β = D1K

−βψ−νβ in Ω \ Ω′.

Hence, it is enough to prove that

−Kν(ν − 1)ψν−2η1 ≤ −D1a(x)K−βψ−νβ in Ω \ Ω′.

Therefore, we need to find K > 0 and ν > 1 such that

a(x)ψ(x)2−ν(1+β) ≤ η1ν(ν − 1)K1+β

D1
in Ω \ Ω′.

But by (7.5) and (7.10) we need only to show that

δ(x)−σ+2−ν(1+β) ≤ η1

D1
ν(ν − 1)K1+β in Ω \ Ω′. (7.13)

Then, we choose ν > 1 such that

1 < ν <
2− σ
1 + β

,

so that the left side of (7.13) is bounded. Once such ν is fixed, we take K > 0 large enough
so that (7.13) holds. Observe that the choices of ν and K do not depend on p nor on λ.
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Thus we have proven that there exist constants K > 0, ν > 1 and a smooth subdomain
Ω′ ⊂⊂ Ω such that (7.12) holds in Ω \ Ω′. We proceed to prove that (7.12) holds in Ω′ for
λ > 0 sufficiently large. Let mb > 0 be defined by mb = min

x∈Ω
b(x). We will find λ0 > 0 such

that for all λ > λ0

−Kνψν−1∆ψ ≤ a(x)g(u) + λmbu
p in Ω′.

Hereafter Di > 0, i = 2, 3, . . . denote various constants. By the boundedness of −∆ψ and
by the fact that sup

Ω
ψ <∞, it is enough to prove that

KD2 ≤ a(x)g(u) + λmbu
p

= a(x)g(u) + λKpmbψ
νp in Ω′.

Note that there exists 0 < η2 < 1 such that ψ > η2 in Ω′. Since u ≥ Kην2 ≥ min{η2, η
2
2} in

Ω′, we have |g(u)| ≤ DK in Ω′. Also, the function a is bounded in Ω′. Hence, one is led to
verify

KD2 ≤ −DK + λKpmbη
νp
2 in Ω′.

Observe that ηνp2 > η2
2, because 0 < νp < 2. Hence, we only need to verify

KD2 ≤ −DK + λKpD5, (7.14)

where D5 > 0 does not depend on p nor on λ. Indeed (7.14) holds if we choose λ0 > 0
such that for all λ > λ0

D2 +DK

D5
≤ λ

K
in Ω′. (7.15)

Observe that we may choose λ0 independently of p. The proof is complete.

In the next two sections we establish the main results of this chapter.

7.1 Existence of solution
Recall that u ∈ H1

0 (Ω) is a solution of problem (7.1) if∫
Ω
∇u∇ϕdx =

∫
Ω
f(x, u)ϕdx for all ϕ ∈ C∞c (Ω),

where f(x, s) = a(x)g(s) + λb(x)sp for x ∈ Ω and s ≥ 0. We have shown that there exists
a subsolution u for problem (7.1) provided λ > λ0. Consequently, u must satisfy the
inequality ∫

Ω
∇u∇ϕdx ≤

∫
Ω
f(x, u)ϕdx for all ϕ ∈ C∞c (Ω), ϕ ≥ 0. (7.16)

In this section we will consider the truncation

f̂(x, s) =

 f(x, u(x)) if s ≤ u(x)
f(x, s) if s ≥ u(x),
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and we will look for solutions of the auxiliary perturbed problems −∆u = f̂(x, u), inΩk

u = u on ∂Ωk,
(7.17)

where ∅ 6= Ω1 ⊂⊂ Ω2 ⊂⊂ . . . ⊂⊂ Ω is a sequence of smooth domains such that
∞⋃
k=1

Ωi = Ω.

Observe that uk is a solution of problem (7.17) if and only if vk = uk − u is a solution of −∆v = f̂(x, v + u) + ∆u, inΩk

v = 0 on ∂Ωk.
(7.18)

Using variational arguments, we will prove that problem (7.18) has a nonnegative solution
vk ∈ H1

0 (Ωk). Define the functional Ĩk : H1
0 (Ωk)→ R by

Ĩk(v) = 1
2

∫
Ωk
|∇v|2 dx−

∫
Ωk
F̃ (x, v) +

∫
Ωk
∇u∇v dx, (7.19)

where F̃ (x, v) =
∫ v

0
f̂(x, s+ u(x)) ds. From Theorem B.16, we know that the functional Ĩk

is of class C1 and

Ĩ ′k(v)(w) =
∫

Ωk
∇v∇w dx−

∫
Ωk
f̂(x, v + u)w +

∫
Ωk
∇u∇w dx for all v, w ∈ H1

0 (Ωk).

Hence, if v is a critical point of Ĩk, then∫
Ωk
∇v∇w dx =

∫
Ωk
f̂(x, v + u)w −

∫
Ωk
∇u∇w dx for all w ∈ H1

0 (Ωk). (7.20)

Therefore, critical points of Ĩk are weak solutions of problem (7.18). We have

Lemma 7.2. The functional Ĩk is coercive, that is, Ĩk(v)→∞ as ‖v‖H1
0 (Ω) →∞.

Consequently, Ĩk possesses a nonnegative critical point vk ∈ H1
0 (Ωk).

Proof of Lemma 7.2. Observe that

F̃ (x, v) =

 vf(x, u(x)) if v < 0
F̂ (x, v + u(x))− F̂ (x, u(x)) if v ≥ 0,

(7.21)

where F̂ (x, v) =
∫ v

0
f̂(x, s) ds. We will estimate the term F̂ . We have

F̂ (x, s) =
∫ s

0
f̂(x, t) dt =

∫ u

0
f̂(x, t) dt+

∫ s

u
f̂(x, t) dt = uf(x, u(x)) +

∫ s

u
f(x, t) dt

= u(x) (a(x)g(u(x)) + λb(x)up(x)) + a(x)
∫ s

u(x)
g(t) dt+ λb(x)

∫ s

u(x)
tp dt.

= a(x)
∫ s

u(x)
g(t) dt+ λb(x)sp+1

p+ 1 + a(x)u(x)g(u(x)) + λb(x)up+1(x)
(

1− 1
p+ 1

)
.
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Next, we split F̂ into three integrals (I), (II) and (III), and estimate each of them. Let

(I) = a(x)
∫ s

u(x)
g(t) dt,

(II) = λb(x)sp+1

p+ 1 ,

and
(III) = a(x)u(x)g(u(x)) + λb(x)up+1(x)

(
1− 1

p+ 1

)
.

Then,
F̂ (x, v) = (I) + (II) + (III) (7.22)

Estimate of |(I)|: There exists a constant ak > 0 such that a(x) ≤ ak for all x ∈ Ωk. By
conditions (7.3) and (7.4), we can find positive constants A,B,C > 0 indepedent of k such
that

|(I)| ≤ ak

∫ s

u(x)
|g(t)| dt ≤ ak

∫ s

0

(
A|t|−β +B|t|q + C

)
dt

≤ Aak|s|1−β

1− β + Bak|s|1+q

1 + q
+ Cak|s|.

Given ε > 0 we are able to find positive constants Ak, Bk, Ck > 0 such that for every s ∈ R

|s|1−β ≤ ε(1− β)
6Aak

|s|2 + Ak

|s|1+q ≤ ε(1 + q)
6Bak

|s|2 +Bk

and
|s| ≤ ε

6Cak
|s|2 + Ck

Hence, we can find a constant Dk > 0 such that

|(I)| ≤ ε

2 |s|
2 +Dk. (7.23)

Estimate of |(II)| and |(III)|: Similarly, we can find constants Ek, Fk > 0 such that

|(II)| ≤ ε

2 |s|
2 + Ek, (7.24)

and
|(III)| ≤ Fk. (7.25)

Then substituting (7.23), (7.24) and (7.25) in (7.22) we find a constant ck > 0 that depends
on k such that

|F̂ (x, s)| ≤ ε|s|2 + ck. (7.26)
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Let v ∈ H1
0 (Ωk). From (7.21) and (7.26), we get

Ĩk(v) = 1
2

∫
Ωk
|∇v|2 dx−

∫
Ωk
F̃ (x, v) +

∫
Ωk
∇u∇v dx

≥ 1
2

∫
Ωk
|∇v|2 dx−

∫
Ωk
|v||f(x, u(x))| −

∫
Ωk
|F̂ (s, v + u(x))| −

∫
Ωk
|F̂ (x, u(x))|

≥ 1
2‖v‖

2
H1

0 (Ωk) − ck‖v‖L1(Ωk) −
∫

Ωk
ε|v + u(x)|2 − dk.

Using that |a+b|2 ≤ |a|
2 + |b|2

2 , and the Sobolev Embedding we obtain constants C,D > 0
such that

Ĩk(v) ≥ 1
2‖v‖

2
H1

0 (Ωk) − ck‖v‖L1(Ωk) −
ε

2

∫
Ωk
|v|2 − dk

≥
(1

2 − Cε
)
‖v‖2

H1
0 (Ωk) −Dck‖v‖H1

0 (Ωk) − dk,ε.

The coercivity of Ĩk then follows by taking ε > 0 sufficiently small. We also obtain that Ĩk
is bounded from below.

We now claim that each Palais-Smale sequence of Ĩk must be uniformly bounded
in H1

0 (Ω). Indeed, if (vn) is a sequence in H1
0 (Ωk) such that |Ik(vn)| < C for some positive

constant C > 0, then (7.4), (7.19) and (7.21) imply that there exist constants ak, bk, ck > 0
that do not depend on n such that

1
2‖vn‖

2
H1

0 (Ωk) ≤ ak‖vn‖H1
0 (Ωk) + bk‖vn‖1+q

H1
0 (Ωk) + ck‖vn‖1+p

H1
0 (Ωk)

This proves the claim. From Theorem B.16, we conclude that Ĩk satisfies the Palais-Smale
condition. Next, we apply Theorem B.17 to obtain a function vk ∈ H1

0 (Ωk) such that
vk = inf

v∈H1
0 (Ωk)

Ĩk(v). Hence, vk is a solution to problem (7.18) and uk := vk + u is a solution

to problem (7.17). We proceed to show that vk ≥ 0 in Ωk. Choosing w = −v−k in (7.20)
and using (7.16) we obtain

−
∫

Ωk
|∇v−k |2 dx = −

∫
{vk<0}

v−k f̂(x, vk + u) dx+
∫

Ωk
∇u∇v−k dx

= −
∫
{vk<0}

v−k f(x, u) dx+
∫

Ωk
∇u∇v−k dx ≤ 0.

This proves that vk ≥ 0 almost everywhere in Ωk and therefore uk ≥ u almost everywhere
in Ωk.

We now prove the main result of this section.

Theorem 7.1. Suppose that (7.2)-(7.8) hold. Let µ = max{p, q}. Suppose that

σ <
2N − (1 + µ)(N − 2)

2N . (7.27)

Then, there exists λ0 > 0 (that does not depend on p) such that problem (7.1) has a solution
for each λ > λ0 and for all 0 < p < 1.
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Proof of Theorem 7.1. First we will prove that ||vk||H1
0 (Ωk) is bounded by a constant

that does not depend on k. Choosing w = vk in (7.20) and the fact that vk ≥ 0 in Ωk we
get

||vk||2H1
0 (Ωk) =

∫
Ωk
f(x, vk + u)vk dx−

∫
Ωk
∇u∇vk dx

=
∫

Ωk
a(x)g(vk + u)vk dx+ λ

∫
Ωk
b(x)(vk + u)pvk dx−

∫
Ωk
∇u∇vk dx

= (J) + (JJ) + (JJJ).

Let’s estimate (J). By conditions (7.2) and (7.4) we can find constants A,B, s1 > 0 such
that g(s) < 0 for every 0 < s < s1 and |g(s)| ≤ A+B|s|q for every s ≥ s1. Therefore,

(J) =
∫

Ωk
a(x)g(vk + u)vk dx ≤

∫
Ωk∩{vk+u>s1}

a(x)g(vk + u)vk dx

≤ A
∫

Ωk
a(x)vk dx+B

∫
Ωk
a(x)|vk + u|qvk dx

≤ A
∫

Ωk
δ−σvk dx+B

∫
Ωk
δ−σ|vk + u|qvk dx.

We choose a number r > 1 such that 2N
2N − (1 + µ)(N − 2) ≤ r <

1
σ
. Then

∫
Ωk
δ−σ|vk + u|qvk dx ≤

(∫
Ωk
δ−σr dx

) 1
r
(∫

Ωk
(vk + u)

r(q+1)
r−1 dx

) q(r−1)
(q+1)r

(∫
Ωk
v
r(q+1)
r−1

k dx

) r−1
(q+1)r

.

(7.28)
Since 0 < σr < 1 we have from Lemma B.1 that(∫

Ωk
δ−σr dx

) 1
r

< C.

Then, inserting in (7.28) we obtain∫
Ωk
δ−σ|vk + u|qvk dx ≤ C||vk + u||q

L
r(q+1)
r−1
||vk||

L
r(q+1)
r−1

.

Therefore, by Minkowski inequality,∫
Ωk
δ−σ|vk + u|qvk dx ≤ C

(
||vk||q+1

L
r(q+1)
r−1 (Ωk)

+ ||vk||
L
r(q+1)
r−1 (Ωk)

)
.

Also, note that by the Hölder inequality∫
Ωk
δ−σvk dx ≤ C||vk||L r

r−1 (Ωk),

so that
(J) ≤ A||vk||L r

r−1 (Ωk) +B

(
||vk||q+1

L
r(q+1)
r−1 (Ωk)

+ ||vk||
L
r(q+1)
r−1 (Ωk)

)
.

Similarly

(JJ) ≤ C

(
||vk||p+1

L
r(p+1)
r−1 (Ωk)

+ ||vk||
L
r(p+1)
r−1 (Ωk)

)
.
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It is also clear that
(JJJ) ≤ D||vk||H1

0 (Ωk).

Note that the constants A,B,C,D do not depend on k. Using that µ ≥ p and µ ≥ q we
conclude that

||vk||2H1
0 (Ωk) ≤ A

(
||vk||

L
r(1+µ)
r−1 (Ωk)

+ ||vk||q+1

L
r(µ+1)
r−1 (Ωk)

+ ||vk||p+1

L
r(µ+1)
r−1 (Ωk)

+ ‖vk‖H1
0 (Ωk)

)
.

By the choice of r, we have r(µ+ 1)
r − 1 ≤ 2N

N − 2 . Then, the Sobolev Embedding Theorem
implies that

||vk||2H1
0 (Ωk) ≤ A

(
||vk||H1

0 (Ωk) + ||vk||q+1
H1

0 (Ωk) + ||vk||p+1
H1

0 (Ωk)

)
.

Hence, there must exist a constant C > 0 that does not depend on k such that

‖vk‖H1
0 (Ωk) < C for all k ∈ N.

Since uk = vk + u, and by construction u ∈ H1
0 (Ω), we conclude that there exists D > 0

such that
‖uk‖H1

0 (Ω) < D for all k ∈ N.

Therefore, there must exist u ∈ H1
0 (Ω) such that uk ⇀ u weakly in H1

0 (Ω) and
uk ⇀ u, inH1

0 (Ω)

uk → u inLτ (Ω), for all 1 ≤ τ <
2N
N − 2

uk → u almost everywhere inΩ.

Since uk ≥ u for all k ∈ N, we conclude that u ≥ u in Ω. We prove in the sequel that u is
a weak solution of (7.1). Indeed, let ϕ ∈ C∞c (Ω) be a test function and choose k′ ∈ N such
that support(ϕ) ⊂⊂ Ωk′ . Then,∫

Ωk′
∇uk∇ϕ =

∫
Ωk′

(a(x)g(uk) + λb(x)upk)ϕ for every k ≥ k′. (7.29)

Since uk ≥ u ≥ ck′ , we get |g(uk)| ≤ A + B|uk|q and g(uk) → g(u) almost everywhere
in Ωk′ . Also, |a(x)| ≤ ak′ , |b(x)| ≤ bk′ in Ωk′ . Hence, a(x)g(uk)ϕ → a(x)g(u)ϕ almost
everywhere in Ωk′ as k →∞. Observe that

|a(x)g(uk)ϕ| ≤ Ck′|g(uk)ϕ| ≤ Ck′(|ϕ|+ |uk|qϕ) ≤ Dk′(|ϕ|+ |uk|q+1 + |ϕ|q+1) ∈ L1(Ω).

Hence, by the Dominated Convergence Theorem,∫
Ωk′

a(x)g(uk)ϕ→
∫

Ωk′
a(x)g(u)ϕ.

Similarly, ∫
Ωk′

b(x)upkϕ→
∫

Ωk′
b(x)upϕ.

Hence, letting k →∞ in (7.29) we obtain∫
Ωk′
∇u∇ϕ =

∫
Ωk′

(a(x)g(u) + λb(x)up)ϕ.

The proof of Theorem 7.1 is complete.
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7.2 Uniqueness of solution
In this section we get a uniqueness result for the solutions of problem (7.1).

Moreover, we may weaken our hypothesis, so that we may consider a singularity g such
that

lim
s→0+

g(s) = +∞.

For example, our uniqueness result is applicable for the problem
−∆u = a(x)u−β + λb(x)up inΩ
u > 0 inΩ
u = 0 on ∂Ω.

Here, the Hardy inequality (7.11) will play an important role.

Theorem 7.2. Let λ,K > 0 and ν > 1 be constants. Suppose that g is of class C1 and
that (7.5), (7.7) and (7.8) hold for 0 < σ < 2. Assume also that there are constants
0 < γ < 2− σ and C4 > 0 such that

|g′(s)| ≤ C4|s|−γ for every s > 0. (7.30)

Then, there exists C > 0 that does not depend on p nor on λ such that if

1 < ν < min
{

2− σ, 2− σ
γ

}
and K > C,

then there exists 0 < p0 < 1 small depending on λ and K such that if 0 < p < p0 there is
at most one solution of problem (7.1) in the class of functions u ≥ u = Kψν.

This theorem is applicable for a large class of problems. For example, we may
consider g ≡ 0 or g ≡ 1 in problem (7.1). Moreover, we may choose a ≡ 1 and b ≡ 1.
Consequently, we get

Corollary 7.1. Fix λ > 0 and 0 < β, q < 1. There exists p0 > 0 such that the problems
−∆u = λup inΩ
u > 0 inΩ
u = 0 on ∂Ω,

−∆u = uq + λup inΩ
u > 0 inΩ
u = 0 on ∂Ω,
−∆u = λδ(x)−1/3 up inΩ
u > 0 inΩ
u = 0 on ∂Ω,
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
−∆u = δ(x)−1/3(−u−1/2 + λup) inΩ
u > 0 inΩ
u = 0 on ∂Ω,
−∆u = δ(x)−1/3(u−1/2 + λup) inΩ
u > 0 inΩ
u = 0 on ∂Ω,

−∆u = (u−β + λup) inΩ
u > 0 inΩ
u = 0 on ∂Ω,
−∆u = (−u−β + λup) inΩ
u > 0 inΩ
u = 0 on ∂Ω,

have at most one solution for 0 < p < p0 in the class of functions u ≥ u, provided K is
large enough.

Theorem 7.2 also implies that the solution obtained in Theorem 7.1 is unique
in the class u ≥ u.

Corollary 7.2. Suppose that (7.2)-(7.8), (7.27) and (7.30) hold. Let λ0 be given by
Theorem 7.1. Then, for each λ > λ0 there exists p0 > 0 such that the solution u given by
Theorem 7.1 is unique in the class u ≥ u provided 0 < p < p0.

In the proof of Theorem 7.2, we do not use the fact that u is a subsolution of
problem (7.1) for large values of λ.

Proof of Theorem 7.2. Suppose that u ≥ u and v ≥ u are solutions of (7.1), so that
u, v ∈ H1

0 (Ω) and
−∆u = f(x, u) and −∆v = f(x, v) in Ω.

Observe that

f(x, u)− f(x, v) = a(x)(g(u)− g(v)) + λb(x)(up − vp). (7.31)

We will estimate the right hand side of (7.31). Note that

g(u)− g(v) =
∫ 1

0

d

dt
g(tu+ (1− t)v) dt = (u− v)

∫ 1

0
g′(tu+ (1− t)v) dt.

Hence, using (7.7), on the set {u− v ≥ 0},

|g(u)− g(v)| ≤ C4(u− v)
∫ 1

0
|t(u− v) + v|−γ dt ≤ C4(u− v)

∫ 1

0
|v|−γ dt,

and
|g(u)− g(v)| ≤ C4(u− v)|v|−γ.
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By concavity of the function s→ sp we have

up − vp ≤ pvp−1(u− v),

so that

|f(x, u)− f(x, v)| ≤ C4a(x)(u− v)v−γ + λb(x)pvp−1(u− v) on the set {u− v ≥ 0}.

Since v ≥ u, by (7.5), (7.7) and (7.8) we get

|f(x, u)− f(x, v)| ≤ C4a(x)(u− v)u−γ + λb(x)pup−1(u− v)

= C4a(x)(u− v)(Kψν)−γ + λb(x)p(Kψν)p−1(u− v)

= ψ−2(u− v)
(
C4a(x)K−γψ2−γν + λpb(x)Kp−1ψ2−ν(1−p)

)
≤ Cψ−2(u− v)

(
δ−σK−γψ2−γν + δ−σλpKp−1ψ2−ν(1−p)

)
≤ Cψ−2(u− v)

(
K−γψ2−γν−σ + λpKp−1ψ2−ν(1−p)−σ

)
≤ Cψ−2(u− v)

(
K−γψ2−γν−σ + λpKp−1ψ2−ν(1−p)−σ

)
.

(7.32)

Notice that 2− γν − σ > 0 and 2− ν(1− p)− σ > 0, and let Λ > 0 be given by (7.11). If
K is so large that

CK−γψ2−γν−σ < Λ in Ω,

then there exists p0 > 0 such that if 0 < p < p0 then

C(K−γψ2−γν−σ + λpKp−1ψ2−ν(1−p)−σ) ≤ Λ in Ω.

Hence,
|f(x, u)− f(x, v)| ≤ Λψ−2(u− v) on {u− v ≥ 0}.

An analogous argument yields

|f(x, v)− f(x, u)| ≤ Λψ−2(v − u) on {v − u ≥ 0},

so that
|f(x, u)− f(x, v)| ≤ Λψ−2|u− v| in Ω.

Let w = u− v. From the facts that w ∈ H1
0 (Ω) and −∆w = f(x, u)− f(x, v), we know

that ∫
Ω
∇w∇ϕdx =

∫
Ω

(f(x, u)− f(x, v))ϕdx for all ϕ ∈ C∞c (Ω).

We claim that this equality can be extended for all ϕ ∈ H1
0 (Ω). Indeed, let ϕ0 ∈ H1

0 (Ω)
and let (ϕn) be a sequence in C∞c (Ω) such that ϕn → ϕ0 in H1

0 (Ω) as n→∞. We know
that ∫

Ω
∇w∇ϕn dx =

∫
Ω

(f(x, u)− f(x, v))ϕn dx for all n ∈ N. (7.33)

Observe that

|(f(x, u)− f(x, v))(ϕn − ϕ0)| ≤ Λ(ψ−1|u− v|)(ψ−1|ϕn − ϕ0|),
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so that from Hölder’s inequality, we get

∫
Ω
|(f(x, u)− f(x, v))(ϕn − ϕ0)| ≤ Λ

(∫
Ω

|u− v|2

ψ2

) 1
2
(∫

Ω

|ϕn − ϕ0|2

ψ2

) 1
2

.

From Hardy’s inequality (7.11), we conclude that there exists a constant C > 0 such that∫
Ω
|(f(x, u)− f(x, v))(ϕn − ϕ0)| dx

≤ C
(∫

Ω
|∇(|u− v|)|2 dx

) 1
2
(∫

Ω
|∇(|ϕn − ϕ0|)|2 dx

) 1
2
→ 0 as n→∞.

Hence, letting n→∞ in (7.33) we get∫
Ω
∇w∇ϕ0 dx =

∫
Ω

(f(x, u)− f(x, v))ϕ0 dx for all ϕ0 ∈ H1
0 (Ω).

We proved the claim. Taking ϕ0 = w+, we get∫
Ω
|∇w+|2 dx =

∫
Ω

(f(x, u)− f(x, v))(w+) dx.

From (7.32), we get∫
Ω
|∇w+|2 dx ≤

∫
Ω
Cψ−2

(
K−γψ2−γν−σ + λpKp−1ψ2−ν(1−p)−σ

)
(w+)2 dx.

Using the Hardy inequality (7.11), we conclude that

0 ≤
∫

Ω

1
ψ2

(
Λ− C(K−γψ2−γν−σ + λpKp−1ψ2−ν(1−p)−σ)

)
(w+)2 dx

≤
∫

Ω
|∇w+|2 dx−

∫
Ω

(w+)2

ψ2

(
C(K−γψ2−γν−σ + λpKp−1ψ2−ν(1−p)−σ)

)
dx ≤ 0.

Hence, w+ ≡ 0 and then (u− v)+ ≡ 0. Similarly, (v − u)+ ≡ 0. Therefore, u ≡ v.
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APPENDIX A – Regularity results

Here we give regularity results used in Chapters 2-6. In these chapters, we
studied problems of the form 

−∆u+ gε(u) = f̃(u) in Ω
u 6≡ 0 in Ω
u = 0 on ∂Ω,

(A.1)

where gε is a smooth perturbation of a singular term and Ω ⊂ RN is a bounded smooth
domain for N ≥ 2. We will assume that f̃ is a nonlinear function such that

f̃ ∈ C[0,∞) ∩ C1,ν(0,∞) for some 0 < ν < 1. (A.2)

In Chapters 2 and 3 we considered

gε(s) =


sq

(s+ ε)q+β for s ≥ 0

0 for s < 0,
(A.3)

where 0 < q < 1.

We say that a function uε ∈ H1
0 (Ω) is a solution of problem (A.1) provided∫

Ω
∇uε∇v +

∫
Ω
gε(uε)v =

∫
Ω
f̃(uε)v for all v ∈ H1

0 (Ω). (A.4)

Lemma A.1. Let gε and f̃ be given by (A.3) and

f̃(s) = λs+ sp for λ > 0, 1 < p < 2∗ − 1 and s ≥ 0,

respectively. Suppose also that Ω ⊂ RN is a bounded smooth domain for N ≥ 3. Let
uε ∈ H1

0 (Ω) be a nonnegative solution of problem (A.1) and assume that there exists a
constant D > 0 independent of ε such that

‖uε‖H1
0 (Ω) ≤ D for each 0 < ε < 1. (A.5)

Then uε ∈ L∞(Ω) and there exists a constant K1 > 0 such that

‖uε‖L∞(Ω) ≤ K1 for each 0 < ε < 1. (A.6)

Proof of Lemma A.1. This result follows from a version of the Moser iteration technique,
see [56]. Indeed, note that

λs

gε(s)
= (s+ ε)q+β

sq
(λs) ≤ (s+ 1)q+β(λs1−q)→ 0 as s→ 0.
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Hence, the exists 0 < δλ < 1 that does not depend on ε such that

λs

gε(s)
< 1 for s ≤ δλ. (A.7)

Consequently, from (A.4), we get∫
Ω
∇uε∇v +

∫
{uε>δλ}

gε(uε)v ≤ λ
∫
{uε>δλ}

uεv +
∫

Ω
upεv for all v ∈ H1

0 (Ω).v ≥ 0.

Since gε ≥ 0 and p > 1, we conclude that there exists a constant Cδ,λ > 0 such that∫
Ω
∇uε∇v ≤ Cδ,λ

∫
Ω
upεv for all v ∈ H1

0 (Ω), v ≥ 0. (A.8)

For L > 1 we define,

uL,ε(x) =


uε(x), if uε(x) ≤ L

L, if uε(x) ≥ L,

zL,ε = u
2(σ−1)
L,ε uε and wL,ε = uεu

σ−1
L,ε ,

with σ > 1 to be determined later. Note that zL,ε ∈ H1
0 (Ω), zL,ε ≥ 0 and

∇zL,ε = u
2(σ−1)
L,ε ∇uε + 2(σ − 1)uεu2σ−3

L,ε ∇uL,ε.

Taking v = zL,ε in (A.8) we obtain∫
Ω
u

2(σ−1)
L,ε |∇uε|2 + 2(σ − 1)

∫
Ω
uεu

2σ−3
L,ε ∇uε∇uL,ε < Cλ,δ

∫
Ω
up+1
ε u

2(σ−1)
L,ε .

Since σ > 1 and ∫
Ω
uεu

2σ−3
L,ε ∇uε∇uL,ε =

∫
{uε<L}

u2(σ−1)
ε |∇uε|2 ≥ 0,

we conclude that∫
Ω
u

2(σ−1)
L,ε |∇uε|2 < Cλ,δ

∫
Ω
up+1
ε u

2(σ−1)
L,ε < Cλ,δ

∫
Ω
up−1
ε u2σ

ε . (A.9)

On the other hand, from the Sobolev embedding, we know that there is a constant C1 > 0
such that (∫

Ω
wp+1
L,ε dx

) 2
p+1
≤ C1

∫
Ω
|∇wL,ε|2 dx.

Since
∇wL,ε = uσ−1

L,ε ∇uε + (σ − 1)uεuσ−2
L,ε ∇uL,ε,

it follows that(∫
Ω
wp+1
L,ε dx

) 2
p+1
≤ C1

∫
Ω
u

2(σ−1)
L,ε |∇uε|2 dx+ C1(σ − 1)2

∫
Ω
u2
εu

2(σ−2)
L,ε |∇uL,ε|2

+ 2C1(σ − 1)
∫

Ω
uεu

2σ−3
L,ε ∇uε∇uL,ε.
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From the definition of uL,ε, we conclude that
(∫

Ω
wp+1
L,ε dx

) 2
p+1
≤ C1σ

2
∫

Ω
u

2(σ−1)
L,ε |∇uε|2 dx.

Using (A.9), we obtain
(∫

Ω
wp+1
L,ε dx

) 2
p+1
≤ C1σ

2Cδ,λ

∫
Ω
up−1
ε u2σ

ε . (A.10)

Now observe that(∫
Ω
wp+1
L,ε dx

) 2
p+1

=
(∫

Ω
up+1
ε u

(p+1)(σ−1)
L,ε dx

) 2
p+1
≥
(∫

Ω
u
σ(p+1)
L,ε dx

) 2
p+1

.

Hence, there is a constant C̃δ,λ > 0 such that
(∫

Ω
u
σ(p+1)
L,ε dx

) 2
p+1
≤ σ2C̃δ,λ

∫
Ω
up−1
ε u2σ

ε . (A.11)

Let α1, α2 > 1 be constants such that 1
α1

+ 1
α2

= 1 and p + 1 < α1(p − 1) < 2∗. From
(A.11) and Hölder’s inequality it follows that

(∫
Ω
u
σ(p+1)
L,ε dx

) 2
p+1
≤ σ2C̃δ,λ

(∫
Ω
uα1(p−1)
ε dx

) 1
α1
(∫

Ω
u2σα2
ε dx

) 1
α2
.

Using (A.5) and the Sobolev Embedding, we obtain a constant C̃ > 0 such that∫
Ω
uα1(p−1)
ε dx ≤ C̃.

Hence, there exists a constant Ĉ > 0 that does not depend on σ nor on ε such that(∫
Ω
u
σ(p+1)
L,ε dx

) 2
p+1
≤ Ĉσ2

(∫
Ω
u2σα2
ε dx

) 1
α2
. (A.12)

Letting L→∞ in (A.12) and using Fatou’s Lemma, we conclude that
(∫

Ω
uσ(p+1)
ε dx

) 2
p+1
≤ Ĉσ2

(∫
Ω
u2σα2
ε dx

) 1
α2 for each σ > 1,

provided uε ∈ L2σα2(Ω). Equivalently,

‖uε‖Lσ(p+1) ≤ C
1
σσ

1
σ ‖uε‖L2σα2 for each σ > 1, (A.13)

where C =
√
Ĉ. Observe that the choices of α1 and α2 imply that σ(p+ 1) > 2σα2. The

result now follows from an iterative argument. Indeed, take

σ1 = p+ 1
2α2

.

Using the Sobolev embedding and (A.5) we obtain a constant D̃ > 0 such that

‖uε‖Lσ1(p+1)(Ω) ≤ C
1
σ1 σ

1
σ1
1 ‖uε‖Lp+1(Ω) ≤ D̃C

1
σ1 σ

1
σ1
1 .
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Now take σ2 = σ2
1 in (A.13). We get

‖uε‖
L
σ2

1(p+1)(Ω)
≤ C

1
σ2

1 σ
1
σ2
2 ‖uε‖Lσ1(p+1) ≤ D̃C

1
σ1

+ 1
σ2

1

(
σ

1
σ1
1 σ

1
σ2
2

)
.

Taking σk = σk1 in (A.13), we get

‖uε‖
L
σk1 (p+1)(Ω)

≤ D̃C

∑k

i=1
1
σi1

(
Πk
i=1σ

1
σi
i

)
. (A.14)

It is clear that

lim
k→∞

(
Πk
i=1σ

1
σi
i

)
= lim

k→∞

(
Πk
i=1σ

i

σi1
1

)
<∞ and lim

k→∞
C

∑k

i=1
1
σi1 <∞.

Letting k →∞ in (A.14), it follows from Theorem B.10 that uε ∈ L∞(Ω) and we obtain a
constant K1 > 0 that does not depend on ε such that

‖uε‖L∞(Ω) ≤ K1.

This proves (A.6). We have proved the Lemma.

Now we state a similar result for the problem studied in Chapter 2. We have

Lemma A.2. Suppose that Ω ⊂ R2 is a bounded smooth domain and let uε ∈ H1
0 (Ω) be a

nonnegative weak solution of problem (A.1) with f̃ satisfying (A.2) and gε given by (A.3).
Also, assume that for each α > 0 there exists a constant Cα > 0 such that

|f̃(s)| ≤ Cα exp
(
αs2

)
for every s ≥ 0, (A.15)

and that there exists 0 < q0 < 1 such that

lim
s→0

|f̃(s)|
sq0

<∞, (A.16)

so that f̃(0) = 0. Then, the following assertion holds: If there exists a constant D > 0
independent on ε such that

‖uε‖H1
0 (Ω) ≤ D for each 0 < ε < 1, (A.17)

then uε ∈ L∞(Ω) and there exists a constant K1 > 0 such that

‖uε‖L∞(Ω) ≤ K1 for each 0 < ε < 1. (A.18)

Proof of Lemma A.2. From (A.4), we know that∫
Ω
∇uε∇v +

∫
Ω
gε(uε)v =

∫
Ω
f̃(uε)v for all v ∈ H1

0 (Ω).

From (A.16) and from the fact that we may assume without loss of generality that
0 < q < q0, we get

|f̃(s)|
gε(s)

≤
(

(s+ ε)q+β
sq

)
(|f̃(s)|) ≤ (s+ 1)q+β

(
|f̃(s)|
sq0

sq0−q
)
→ 0 as s→ 0.
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Hence, the exists δ > 0 that does not depend on ε such that

|f̃(s)|
gε(s)

<
1
2 for s ≤ δ.

Consequently,∫
Ω
∇uε∇v + 1

2

∫
Ω
gε(uε)v <

∫
Ω∩{u≥δ}

f̃(uε)v for all v ∈ H1
0 (Ω), v ≥ 0.

Let α > 0 be such that 2αD2 < 4π. Using (A.15) we obtain a constant C1 = Cδ > 0 such
that ∫

Ω
∇uε∇v < C1

∫
Ω
uε exp (αu2

ε)v for all v ∈ H1
0 (Ω), v ≥ 0. (A.19)

For L > 1 we define, as before

uL,ε(x) =


uε(x), if uε(x) ≤ L

L, if uε(x) ≥ L,

zL,ε = u
2(σ−1)
L,ε uε and wL,ε = uεu

σ−1
L,ε

with σ > 1 to be determined later. In the course of the present proof, C1, C2, C3, . . . denote
various positive constants independent on ε.

Choosing ϕ = zL,ε in (A.19) we have∫
Ω
∇uε∇zL,ε ≤ C1

∫
Ω
uε exp (αu2

ε)zL,ε. (A.20)

We now estimate the left-hand side of equation (A.20). Note that

∇zL,ε = u
2(σ−1)
L,ε ∇uε + 2(σ − 1)u2σ−3

L,ε uε∇uL,ε.

Hence ∫
Ω
∇uε∇zL,ε =

∫
Ω
u

2(σ−1)
L,ε |∇uε|2 dx+ 2(σ − 1)

∫
Ω
u2σ−3
L,ε uε∇uL,ε∇uε.

Since ∇uL,ε = 0 on {uε > L} we obtain∫
Ω
u2σ−3
L,ε uε∇uL,ε∇uε =

∫
{uε≤L}

u2σ−2
ε |∇uε|2 dx ≥ 0.

We conclude that ∫
Ω
∇uε∇zL,ε ≥

∫
Ω
u

2(σ−1)
L,ε |∇uε|2.

Substituting in (A.20) we obtain∫
Ω
u

2(σ−1)
L,ε |∇uε|2 ≤ C1

∫
Ω
uε exp (αu2

ε)zL,ε = C1

∫
Ω
u2
ε exp (αu2

ε)u
2(σ−1)
L,ε . (A.21)

Now we note that
∇wL,ε = uσ−1

L,ε ((σ − 1)∇uL,ε +∇uε) .
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Hence,
|∇wL,ε| ≤ σuσ−1

L,ε |∇uε|.

Substituting in (A.21) we conclude that
1
σ2

∫
Ω
|∇wL,ε|2 ≤ C1

∫
Ω
u2
ε exp (αu2

ε)u
2(σ−1)
L,ε .

Let r > 1 to be fixed later. Using the Sobolev embedding Lr(Ω) ↪→ H1
0 (Ω), there is a

constant C2 > 0 such that(∫
Ω
|wL,ε|r

) 2
r

≤ C2σ
2
∫

Ω
u2
ε exp (αu2

ε)u
2(σ−1)
L,ε . (A.22)

Note that∫
Ω
u2
ε exp (αu2

ε)u
2(σ−1)
L,ε =

∫
{uε≤L}

u2σ
ε exp (αu2

ε) +
∫
{uε≥L}

(Lσ−1uε)2 exp (αu2
ε).

Hence, ∫
Ω
u2
ε exp (αu2

ε)u
2(σ−1)
L,ε ≤

∫
Ω
u2σ
ε exp (αu2

ε).

Replacing in (A.22) we get(∫
Ω
|wL,ε|r

) 2
r

≤ C2σ
2
∫

Ω
u2σ
ε exp (αu2

ε).

From Hölder’s inequality we obtain(∫
Ω
|wL,ε|r

) 2
r

≤ C2σ
2
(∫

Ω
exp (2αu2

ε)
) 1

2
(∫

Ω
u4σ
ε

) 1
2
.

From the choice of α, we conclude from (B.8) that(∫
Ω
|wL,ε|r

) 2
r

≤ C3σ
2
(∫

Ω
u4σ
ε

) 1
2
.

Since uσL,ε ≤ wL,ε, we have
(∫

Ω
urσL,ε

) 2
r

≤
(∫

Ω
|wL,ε|r

) 2
r

≤ C3σ
2
(∫

Ω
u4σ
ε

) 1
2
.

Letting L→∞ it follows from Fatou’s Lemma that(∫
Ω
urσε

) 2
r

≤ C3σ
2
(∫

Ω
u4σ
ε

) 1
2
.

This means that
‖uε‖2σ

Lrσ(Ω) ≤ C3σ
2‖uε‖2σ

L4σ(Ω).

Taking r = 8 in the equation above, we get

‖uε‖L8σ(Ω) ≤ C
1

2σ
3 σ

1
σ ‖uε‖L4σ(Ω) for all σ > 1.

The result then follows by the iteration argument given in the proof of Lemma A.1.

We now prove the gradient estimate used in Chapters 2 and 3.
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Lemma A.3. Suppose that gε is given by (A.3) and assume that f̃ satisfies (A.2). Let Ω ⊂
RN is a bounded smooth domain with N ≥ 2. For each 0 < ε < 1, let uε ∈ H1

0 (Ω) ∩ L∞(Ω)
be a nonnegative solution of problem (A.1) and assume that there exist constants K1 > 0
and 0 < q1 < 1 such that

‖uε‖L∞(Ω) < K1 for every 0 < ε < 1, (A.23)

and
lim
s→0+

s1−q1|f̃ ′(s)| <∞. (A.24)

Let ψ be such that (an example of one such ψ is ψ = φ2
1 where φ1 is the first normalized

eigenfunction of −∆)

ψ ∈ C2(Ω), ψ > 0 in Ω, ψ = 0 on ∂Ω and |∇ψ|
2

ψ
is bounded in Ω.

Then there exist constants M > 0 and ε0 > 0 such that

ψ(x)|∇uε(x)|2 ≤M(uε(x)1−β + uε(x)) for every x ∈ Ω, 0 < ε < ε0.

Proof of Lemma A.3. From (A.24) we obtain constants C1 > 0 and 0 < t0 < 1 such
that

|f̃ ′(s)| ≤ C1s
q1−1 for 0 ≤ s ≤ t0. (A.25)

From (A.23) we obtain that ∆uε is bounded in L∞(Ω). Thus, by standard elliptic regularity,
uε belongs to C1,ν(Ω). We define

hε(u) = gε(u)− f̃(u).

We shall denote uε simply by u. Define the functions

Za(u) = u1−β + u+ a, w = |∇u|
2

Za(u) , v = wψ,

where a > 0 is small. We will argue by contradiction, thus we assume that

sup
Ω
v > M̃, (A.26)

where M̃ > 0 will be chosen later independent of 0 < ε < 1 and a > 0.

The function v is continuous in Ω, hence it attains its maximum at some point
x0 ∈ Ω. Thus, by (A.26) we obtain

v(x0) > M̃.

Then x0 ∈ Ω, because v = 0 on ∂Ω. Hence

∇v(x0) = 0
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and
∆v(x0) ≤ 0. (A.27)

We will compute ∆v and evaluate it at the point x0. As we shall see this leads
to the absurd ∆v(x0) > 0 if one fixes M̃ large enough.

Note that u(x0) > 0, since otherwise x0 would be a critical point of u and
w(x0) = 0. By continuity, there must exist an open ball B ⊂ Ω centered at x0 such that
u > 0 in B. Since u is positive in B, we know that hε(u) ∈ C1,ν(B). Since u satisfies the
equation −∆u+ hε(u) = 0 in B, we conclude that u ∈ C3(B).

The computations already carried out in [52] and [54] lead to the following
expression evaluated at x0

∆v ≥ 1
Za(u)

[
ψw2

(1
2Z
′
a(u)2 − Za(u)Z ′′a (u)

)
+ w

(
2ψZa(u)h′ε(u)− ψhε(u)Z ′a(u)−K0Za(u)

)
−K0Z

′
a(u)Za(u)1/2ψ1/2w3/2

]
,

(A.28)

where
K0 = max

(
sup

Ω

(
|∇ψ|
ψ1/2

)
, sup

Ω

(
∆ψ − 2 |∇ψ|

2

ψ

))
> 0.

We will show that if v(x0) is large enough then the right hand side of (A.28)
must be positive, which would contradict (A.27).

For this purpose we need to establish the following estimates uniformly for
every ε sufficiently small.

Z ′a(u)Za(u)1/2 ≤ C(1
2Z
′
a(u)2 − Z ′′a (u)Za(u)), (A.29)

Za(u)|h′ε(u)| ≤ C(1
2Z
′
a(u)2 − Z ′′a (u)Za(u)), (A.30)

Z ′a(u)|hε(u)| ≤ C(1
2Z
′
a(u)2 − Z ′′a (u)Za(u)), (A.31)

Za(u) ≤ C(1
2Z
′
a(u)2 − Z ′′a (u)Za(u)), (A.32)

for every 0 ≤ u ≤ K1. The constant C depends only on K1, but not on ε nor on a.

Assuming for a moment that (A.29)–(A.32) are true. Inequality (A.28) implies
that

∆v ≥
1
2Z
′
a(u)2 − Z ′′a (u)Za(u)

Za(u)

(
ψw2 − C(w + ψ1/2w3/2)

)

=
1
2Z
′
a(u)2 − Z ′′a (u)Za(u)

Za(u)ψ

(
v2 − C(v + v3/2)

)
.

Thus if v(x0) = sup v > M̃ for some large enough M̃ independent on 0 < ε < 1 we obtain
a contradiction with (A.27).
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We prove now the relations (A.29)–(A.32). Note that

Za(u) = u1−β + u+ a,

Z ′a(u) = (1− β)u−β + 1, Z ′′a (u) = −β(1− β)u−β−1.

Hence,

1
2Z
′
a(u)2 − Z ′′a (u)Za(u) ≥ (1− β)2

2
(
u−2β + 1

)
+ aβ(1− β)u−1−β. for u > 0. (A.33)

We first prove (A.32). Indeed, there is a constant C > 0 such that

Za(u) = u1−β + u+ a ≤ C for 0 ≤ u ≤ K1.

Hence, (A.32) follows from (A.33).

We now prove (A.31). Note that there exists a constant C̃ > 0 such that

Z ′a(u)|hε(u)| ≤ ((1− β)u−β + 1)(gε(u) + |f̃(u)|)

≤ (1− β)u−2β + (1− β)u−β sup
0≤s≤K1

|f̃(s)|+ u−β + sup
0≤s≤K1

|f̃(s)|

≤ C̃(1 + u−2β).

Inequality (A.31) then follows from (A.33).

Now we prove (A.30). Note that

h
′
ε(u) = uq−1

(u+ ε)q+β+1 (qε− βu)− f̃ ′(u).

We split the proof of (A.30) in three cases.

Case I. Suppose that 0 < u < min{ qε2β , t0}, where 0 < t0 < 1 is given by
(A.25). We define

ωε(u) = uq−1

(u+ ε)q+β+1 (qε− βu)− C1u
q1−1,

where C1 > 0 is given by (A.25). We claim that there exists ε0 > 0 such that ωε(u) > 0
for each 0 < ε < ε0. Indeed, assume by contradiction that ωε(u) < 0 for some 0 < u <

qε

2β .
We then have

qεuq−1 < βuq + C1u
q1−1(u+ ε)q+β+1 < βuq + C1u

q1−1εq+β+1
(

1 + q

2β

)q+β+1

.

Now take ε0 > 0 such that

C1ε
q+β+1

(
1 + q

2β

)q+β+1

<
εq

2 for 0 < ε < ε0.

We then get
qεuq−1 < βuq + εquq1−1

2 < βuq + εquq−1

2 .
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Hence,
qεuq−1

2 < βuq,

which implies that
u >

qε

2β .

This contradicts our initial assumption. The claim is proven. Since

qεuq−1

(u+ ε)q+β+1 ≤ q
uq

u(u+ ε)q
ε

(u+ ε)β+1 ≤
q

uβ+1 ,

we obtain
|h′ε(u)| = h

′
ε(u) ≤ q + C1u

q1+β

uβ+1 for 0 < u < min{ qε2β , t0}.

Hence,
|h′ε(u)| ≤ 2q

uβ+1 for 0 < u < min{ qε2β , t0, t1},

where t1 > 0 is chosen such that

C1u
q1+β < q for 0 ≤ u ≤ t1.

Therefore,

Za(u)|h′ε(u)| ≤ (u1−β + u+ a)
( 2q
uβ+1

)
≤ 2q
u2β + 2qa

uβ+1 for 0 ≤ u ≤ min{ qε2β , t0, t1}.

Comparing with (A.33), it follows that there exists a constant C > 0 that does not depend
on a such that

Za(u)|h′ε(u)| ≤ C
(1

2Z
′
a(u)2 − Z ′′a (u)Za(u)

)
for 0 < u < min{ qε2β , t0, t1}, 0 < ε < ε0.

(A.34)
Case II. Suppose that εq

2β ≤ u ≤ min{t0, t1}. We have

|h′ε(u)| ≤ uq−1|qε− βu|
(u+ ε)q+β+1 + C1u

q1−1 for qε

2β ≤ u ≤ t0.

Note that |qε− βu| ≤ βu if 2βu ≥ qε. We then obtain

|h′ε(u)| ≤
βuq + C1u

q+q1+β
(
1 + 2β

q

)q+β+1

(u+ ε)q+β+1 for qε

2β ≤ u ≤ t0.

Now, observe that there exists 0 < t2 < min{t0, t1} that does not depend on ε such that

C1u
q1+β

(
1 + 2β

q

)q+β+1

< β for 0 ≤ u ≤ t2.

Therefore,
|h′ε(u)| ≤ 2β

uβ+1 for qε

2β ≤ u < t2.
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Comparing with (A.33) we obtain

Za(u)|h′ε(u)| ≤ C
(1

2Z
′
a(u)2 − Z ′′a (u)Za(u)

)
for qε

2β ≤ u < t2. (A.35)

Case III. Assume that t2 ≤ u ≤ K1. Since there exists a constant C > 0 such that
|h′ε(u)| ≤ C for t2 ≤ u ≤ K1, it follows from (A.32) that

Za(u)|h′ε(u)| ≤ C
(1

2Z
′
a(u)2 − Z ′′a (u)Za(u)

)
for t2 ≤ u ≤ K1. (A.36)

Hence, (A.30) follows from (A.34), (A.35) and (A.36).

We now prove (A.29). Observe that

Z ′a(u)Za(u)1/2 = ((1− β)u−β + 1)
√
u1−β + u+ a.

Hence
Z ′a(u)Za(u)1/2 ≤

√
3K1((1− β)u−β + 1).

When 0 ≤ u ≤ 1 we know that u2 ≤ u. Hence u−β ≤ u−2β. Therefore, from (A.33), there
exist constants C1 > 0 and C2 > C1 such that

Z ′a(u)Za(u)1/2 ≤ C1(u−2β + 1) ≤ C2

(1
2Z
′
a(u)2 − Z ′′a (u)Za(u)

)
for 0 ≤ u ≤ 1. (A.37)

If 1 ≤ u ≤ K1, we know that there exists a constant C3 > 0 such that Z ′(u)Z(u)1/2 ≤ C3.
Hence, from (A.33), there exists a constant C4 > 0 such that

Z ′a(u)Za(u)1/2 ≤ C4

(1
2Z
′
a(u)2 − Z ′′a (u)Za(u)

)
for 1 ≤ u ≤ K1. (A.38)

Inequality (A.29) then follows from (A.37) and (A.38). We proved that (A.26) is false.
Hence, there exists M > 0 that does not depend on ε nor on a such that

v(x) = |∇u(x)|2ψ(x)
u(x)1−β + u(x) + a

≤M for all x ∈ Ω.

The result follows by letting a→ 0. We have proved Lemma A.3.

We now obtain regularity results for the perturbed problem studied in Chapters
4, 5 and 6. There, we studied problem (A.1) with

gε(s) =


− log

s+ εe−f̃(0)

s+ ε

 for s ≥ 0

f̃(0) for s < 0.
(A.39)

We now assume that the function f̃ satisfies (A.2) and (A.15) for some α > 0. Furthermore,
we will assume that there exist constants 0 < ε0, δ < 1 such that

gε(s) ≥ f̃(s) for 0 < ε < ε0 and s < δ. (A.40)
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We recall that item (vi) of Lemma 5.2 states

lim
s→0+

g′ε(s) = 1
ε
− 1.

Consequently, condition (A.40) is satisfied if

lim
s→0
|f̃ ′(s)| <∞.

We have

Lemma A.4. Suppose that Ω ⊂ R2 is a bounded smooth domain and let uε ∈ H1
0 (Ω)

be a nonnegative weak solution of problem (A.1) with gε given by (A.39). Assume that f̃
satisfies (A.2), (A.40), and that (A.15) holds for some α > 0.

Then, the following assertion holds: If

‖uε‖2
H1

0 (Ω) ≤
7π
2α for each 0 < ε < ε0, (A.41)

then uε ∈ L∞(Ω) and there exists a constant K1 > 0 such that

‖uε‖L∞(Ω) ≤ K1 for each 0 < ε < ε0. (A.42)

Proof of Lemma A.4. We know that uε is a weak solution of problem (A.1). Hence,
from (A.4) we get∫

Ω
∇uε∇v +

∫
Ω
gε(uε)v =

∫
Ω
f̃(uε)v for all v ∈ H1

0 (Ω), v ≥ 0.

Let δ > 0 be given by (A.40). We have∫
Ω
∇uε∇v =

∫
Ω

(
f̃(uε)− gε(uε)χ{uε<δ}

)
v −

∫
{uε≥δ}

gε(uε)v.

Using (A.40) and that there exists Cδ > 0 such that |gε(s)| ≤ Cδs for s ≥ δ, we get∫
Ω
∇uε∇v ≤

∫
{uε≥δ}

f̃(uε)v + Cδ

∫
{uε≥δ}

uεv.

Hence, ∫
Ω
∇uε∇ϕ ≤

1
δ

∫
{uε≥δ}

uε|f(uε)|v + Cδ

∫
Ω
uεv.

From (A.15), it follows that there exists α > 0 and Cα > 0 such that∫
Ω
∇uε∇v ≤

C

δ

∫
{uε≥δ}

uε exp (αu2
ε)v + Cδ

∫
Ω
uεv.

Since exp s ≥ 1 for s ≥ 0, we have∫
Ω
∇uε∇v ≤

C

δ

∫
{uε≥δ}

uε exp (αu2
ε)v + Cδ

∫
Ω
uε exp (αu2

ε)v.
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Hence, there is a constant C > 0 that does not depend on ε such that∫
Ω
∇uε∇v ≤ C

∫
Ω
uε exp (αu2

ε)v for every v ∈ H1
0 (Ω), v ≥ 0. (A.43)

For L > 1 we define,

uL,ε(x) :=


uε(x) if uε(x) ≤ L

L if uε(x) ≥ L,

zL,ε := u
2(σ−1)
L,ε uε and wL,ε := uεu

σ−1
L,ε .

with σ > 1 to be determined later. In the course of the present proof, C, Cq, C̃ and C̃q
denote various positive constants which are independent of ε.

Choosing v = zL,ε in (A.43) we have∫
Ω
∇uε∇zL,ε ≤ C

∫
Ω
uε exp (αu2

ε)zL,ε. (A.44)

We now estimate the left-hand side of equation (A.44)). Note that

∇zL,ε = u
2(σ−1)
L,ε ∇uε + 2(σ − 1)u2σ−3

L,ε uε∇uL,ε.

Hence ∫
Ω
∇uε∇zL,ε =

∫
Ω
u

2(σ−1)
L,ε |∇uε|2 dx+ 2(σ − 1)

∫
Ω
u2σ−3
L,ε uε∇uL,ε∇uε.

Since ∇uL,ε = 0 on {uε > L} we obtain∫
Ω
u2σ−3
L,ε uε∇uL,ε∇uε =

∫
{uε≤L}

u2σ−2
ε |∇uε|2 dx ≥ 0.

We conclude that ∫
Ω
∇uε∇zL,ε ≥

∫
Ω
u

2(σ−1)
L,ε |∇uε|2.

Substituting in (A.44) we obtain∫
Ω
u

2(σ−1)
L,ε |∇uε|2 ≤ C

∫
Ω
uε exp (αu2

ε)zL,ε = C
∫

Ω
u2
ε exp (αu2

ε)u
2(σ−1)
L,ε . (A.45)

Now we note that
∇wL,ε = uσ−1

L,ε ((σ − 1)∇uL,ε +∇uε) .

Hence,
|∇wL,ε| ≤ σuσ−1

L,ε |∇uε|.

Substituting in (A.45) we conclude that

1
σ2

∫
Ω
|∇wL,ε|2 ≤ C

∫
Ω
u2
ε exp (αu2

ε)u
2(σ−1)
L,ε .
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Let q > 1 to be fixed later. Using the Sobolev embedding H1
0 (Ω) ↪→ Lq(Ω), there is a

constant Cq > 0 such that
(∫

Ω
|wL,ε|q

) 2
q

≤ Cqσ
2
∫

Ω
u2
ε exp (αu2

ε)u
2(σ−1)
L,ε . (A.46)

By construction uL,ε ≤ uε, then∫
Ω
u2
ε exp (αu2

ε)u
2(σ−1)
L,ε ≤

∫
Ω
u2σ
ε exp (αu2

ε).

Replacing in (A.46) we get(∫
Ω
|wL,ε|q

) 2
q

≤ Cqσ
2
∫

Ω
u2σ
ε exp (αu2

ε). (A.47)

From Hölder’s inequality we obtain(∫
Ω
|wL,ε|q

) 2
q

≤ Cqσ
2
(∫

Ω
exp (rαu2

ε)
) 1
r
(∫

Ω
u2r′σ
ε

) 1
r′
,

where r > 1 is chosen such that rα‖uε‖2 < 4π and 1/r + 1/r′ = 1. We conclude from the
Trudinger-Moser inequality that(∫

Ω
|wL,ε|q

) 2
q

≤ C̃qσ
2
(∫

Ω
u2r′σ
ε

) 1
r′
.

Since uσL,ε ≤ wL,ε, we have
(∫

Ω
uqσL,ε

) 2
q

≤
(∫

Ω
|wL,ε|q

) 2
q

≤ C̃qσ
2
(∫

Ω
u2r′σ
ε

) 1
r′
.

Letting L→∞ it follows from Fatou’s Lemma that(∫
Ω
uqσε

) 2
q

≤ C̃qσ
2
(∫

Ω
u2r′σ
ε

) 1
r′
.

This means that
‖uε‖2σ

Lqσ(Ω) ≤ C̃qσ
2‖uε‖2σ

L2r′σ(Ω).

Taking q = 4r′ in the equation above, we get a constant C̃ > 0 such that

‖uε‖L4r′σ(Ω) ≤ C̃
1

2σσ
1
σ ‖uε‖L2r′σ(Ω) for all σ > 1. (A.48)

The result follows by considering a suitable sequence of values of σ in the above
inequality and iterating. Indeed, we first choose σ1 = 2. Using the Sobolev embedding we
obtain

‖uε‖L8r′ (Ω) ≤ C̃
1
4 2 1

2‖uε‖L4r′ (Ω) ≤
√

7π
2αCC̃

1
4 2 1

2 ,

for some constant C > 0. Now take σ2 = 4 in (A.48). We get

‖uε‖L16r′ (Ω) ≤ C̃
1
8 4 1

4‖uε‖L8r′ (Ω) ≤
√

7π
2αCC̃

1
8 + 1

4 (4 1
4 2 1

2 ).
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Taking σk = 2k in (A.48) we obtain,

‖uε‖L2k+2r′ (Ω) ≤
√

7π
2αCC̃

∑k

i=1
1

2i+1
(
Πk
i=1(2i)

1
2i
)
. (A.49)

It is clear that Π∞i=1(2i)
1
2i = 4, which is a consequence of

∞∑
i=1

i

2i = 2. Moreover,
∞∑
i=1

1
2i+1 = 1

2 .

Thus letting k →∞ in (A.49) and using Theorem B.10, it follows that uε ∈ L∞(Ω) and
we obtain a constant K1 > 0 that does not depend on ε such that

‖uε‖L∞(Ω) ≤ K1.

This proves the result.

Lemma A.4 possesses the following variants.

Corollary A.1. Suppose that Ω ⊂ R2 is a bounded smooth domain and let uε ∈ H1
0 (Ω)

be a nonnegative weak solution of problem (A.1) with gε given by (A.39). Assume that f̃
satisfies (A.2) and (A.40). We have:

(i) Instead of (A.15), assume that f satisfies the following condition: There
exists C1, C2 > 0 and ζ > 0 such that

|f(s)| ≤ C1s
ζ exp(αs2) + C2 for all s ≥ 0. (A.50)

Further assume that
‖uε‖2

H1
0 (Ω) <

7π
2α for all 0 < ε < ε0

Then, uε ∈ L∞(Ω) and inequality (A.42) holds.

(ii) Assume that f satisfies condition (A.15) for all α > 0. If there exists D > 0
such that

‖uε‖2
H1

0 (Ω) < D for all 0 < ε < ε0,

then (A.42) holds.

Proof of Corollary A.1 . We prove (i). Indeed, condition (A.50) implies that for each
r > 1 there exists Cr > 0 such that

|f(s)| ≤ Cr exp(αrs2) for all s ≥ 0

We then choose r1, r2 > 1 such that

r1r2α‖uε‖2
H1

0 (Ω) < 4π for all 0 < ε < ε0,

and mimic the proof of Lemma A.4.

Item (ii) follows by taking α > 0 such that

D <
7π
2α,
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and applying Lemma A.4.

We now prove the gradient estimate used in Chapters 4, 5 and 6.

Lemma A.5. Suppose that Ω ⊂ R2 is a bounded smooth domain and let uε ∈ H1
0 (Ω)

be a nonnegative weak solution of problem (A.1) with gε given by (A.39). Assume that f̃
satisfies (A.2) and that

sup
s∈[0,1]

|sf̃ ′(s)| <∞.

Assume further that there exists a constant K1 > 0 such that

‖uε‖L∞(Ω) < K1 for every 0 < ε < 1. (A.51)

Again, let ψ be such that

ψ ∈ C2(Ω), ψ > 0 in Ω, ψ = 0 on ∂Ω and |∇ψ|
2

ψ
is bounded in Ω.

Then there exists a constant M > 0 such that

ψ(x)|∇uε(x)|2 ≤MZ(uε(x)) for every x ∈ Ω, 0 < ε < 1/2, (A.52)

where

Z(t) =


t2 + t− t log t for 0 ≤ t ≤ 1

2
1
4 + 1

2(1 + log 2) +
(
t− 1

2

)
(1 + log 2) for t ≥ 1

2 .

Proof of Lemma A.5. The proof is similar to Lemma A.3. From (A.51), we conclude
∆uε ∈ L∞(Ω). Thus, by standard elliptic regularity, uε belongs to C1,ν(Ω). We define

hε(s) = − log
s+ εe−f̃(0)

s+ ε

− f̃(s) for s ≥ 0.

We shall denote uε simply by u. As in the proof of Lemma A.3, let 0 < a < 1 be small and
define the functions

Za(u) = Z(u) + a, w = |∇u|
2

Za(u) , v = wψ.

Note that v is C2 at all points x ∈ Ω such that u(x) > 0. Indeed, let x ∈ Ω be one
such point. By continuity, there must exist an open ball B ⊂ Ω centered at x such that
u > 0 in B. Consequently, we know that gε(u) ∈ C1,ν(B) and f(u) ∈ C1,ν(B). Hence,
hε(u) ∈ C1,ν(B). Since u satisfies the equation −∆u+ hε(u) = 0 in B, we conclude that
u ∈ C3(B), implying that Za(u) and w are C2 in B.

Our aim is to prove the estimate by contradiction, thus we assume that

sup
Ω
v > M̃, (A.53)
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where M̃ > 0 will be chosen later independently of a and 0 < ε < ε∗.

The function v is continuous in Ω, hence it attains its maximum at some point
x0 ∈ Ω. Thus, by (A.53) we obtain

v(x0) > M̃.

Then x0 ∈ Ω, because v = 0 on ∂Ω. Note that u(x0) > 0, because otherwise ∇u(x0) = 0
and then v(x0) = 0. Hence, v is C2 at x0,

∇v(x0) = 0

and
∆v(x0) ≤ 0. (A.54)

We will compute ∆v and evaluate it at the point x0. As we shall see this leads
to the absurd ∆v(x0) > 0 if one fixes M̃ large enough. To do that, we observe that Za
satisfies the following crucial properties

Za ∈ C2(0,∞), Za(t) > 0, Z ′a(t) > 0 and Z ′′a (t) ≤ 0 for all t > 0.

Consequently, the computations already carried out in [52, Section 3] are applicable, and
they lead to the following expression evaluated at x0

∆v ≥ 1
Za(u)

[
ψw2

(1
2Z
′
a(u)2 − Za(u)Z ′′a (u)

)
+ w

(
2ψZa(u)h′ε(u)− ψhε(u)Z ′a(u)−KZa(u)

)
−KZ ′a(u)Za(u)1/2ψ1/2w3/2

]
,

(A.55)

where
K = 4 max

(
sup

Ω

(
|∇ψ|
ψ1/2

)
, sup

Ω

∣∣∣∣∣∆ψ − 2 |∇ψ|
2

ψ

∣∣∣∣∣
)
> 0.

We will show that if v(x0) is large enough then the right hand side of (A.55)
must be positive, which would contradict (A.54).

For this purpose we need to establish the following estimates uniformly for
every 0 < ε < ε∗.

Z ′a(u)Za(u)1/2 ≤ C(1
2Z
′
a(u)2 − Z ′′a (u)Za(u)), (A.56)

Za(u)|h′ε(u)| ≤ C(1
2Z
′
a(u)2 − Z ′′a (u)Za(u)), (A.57)

Z ′a(u)|hε(u)| ≤ C(1
2Z
′
a(u)2 − Z ′′a (u)Za(u)), (A.58)

Za(u) ≤ C(1
2Z
′
a(u)2 − Z ′′a (u)Za(u)), (A.59)
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for every 0 < u ≤ K1. The constant C depends only on K1, but not on ε nor on a either.

Assuming for a moment that (A.56)–(A.59) are true. Inequality (A.55) implies
that

∆v ≥
1
2Z
′
a(u)2 − Z ′′a (u)Za(u)

Za(u)

(
ψw2 − C(w + ψ1/2w3/2)

)

=
1
2Z
′
a(u)2 − Z ′′a (u)Za(u)

Za(u)ψ

(
v2 − C(v + v3/2)

)
.

Thus if v(x0) = sup v > M̃ for some large enough M̃ independent of a and 0 < ε < ε∗ we
obtain a contradiction with (A.54). Hence, there must exist M > 0 independent of a such
that ψ|∇u|2 ≤MZa(u) in Ω. The result then follows by letting a→ 0.

We prove now the relations (A.56)–(A.59). The only difference from [52] is
the proof of (A.57) and (A.58). The key ingredient is that the function s → |sf ′(s)| is
bounded for 0 ≤ s ≤ 1/2.

Case 1. If u(x0) ≥ 1
2 , then the left hand sides of (A.56)–(A.59) are uniformly bounded in

the interval [1/2, K1]. Since

1
2Z
′
a(u)2 − Z ′′a (u)Za(u) = 1

2 (1 + log 2)2 for u ≥ 1
2 , (A.60)

the right hand sides of (A.56)–(A.59) are also uniformly bounded. This proves (A.56)–
(A.59).

Case 2. If 0 < u(x0) ≤ 1/2, then

Za(u) = u2 + u− u log u+ a, Z ′a(u) = 2u− log u, Z ′′a (u) = 2− 1
u

for 0 < u ≤ 1
2 .

We conclude that

1
2Z
′
a(u)2 − Z ′′a (u)Za(u) ≥ 1

2(log u)2 − log u+ 1
4 + a

u
for 0 < u ≤ 1

2 , 0 < a <
1
8 . (A.61)

Note that

Z ′a(u)Za(u)1/2 = (2u− log u)(u2 + u− u log u+ a)1/2 for 0 < u ≤ 1
2 .

Since (u2 + u − u log u + a) is bounded for 0 < u ≤ 1
2 , and (2u − log u) ≤ 1 − log u, we

conclude that (A.56) holds. Inequality (A.59) is also clear. To prove (A.57) and (A.58),
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note that

Za(u)|h′ε(u)| ≤ u
(
u+ 1− log u+ a

u

)∣∣∣∣∣ (u+ ε)2 − εe−f̃(0)

(u+ ε)(u2 + uε+ εe−f̃(0))

∣∣∣∣∣+|f̃ ′(u)|


≤ u
(
u+ 1− log u+ a

u

) (u+ ε)2 + εe−f̃(0)

(u+ ε)(u2 + uε+ εe−f̃(0))
+ |f̃ ′(u)|


≤
(

3/2− log u+ a

u

) u3 + 2εu2 + (ε2 + εe−f̃(0))u
u3 + 2εu2 + (εe−f̃(0) + ε2)u+ ε2e−f̃(0)

+ u|f̃ ′(u)|


≤
(

3/2− log u+ a

u

)
(1 + u|f̃ ′(u)|)

≤ C
(

1− log u+ a

u

)
.

This estimate and (A.61) prove (A.57). We now prove (A.58). We have

Z ′a(u)|hε(u)| ≤ (2u− log u)
∣∣∣∣∣log

u+ εe−f̃(0)

u+ ε

 ∣∣∣∣∣+|f̃(u)|
 for 0 < u ≤ 1

2 .

We split the proof in two cases. If∣∣∣∣∣log
u+ εe−f̃(0)

u+ ε

 ∣∣∣∣∣= log
u+ εe−f̃(0)

u+ ε

 ,
then

Z ′a(u)|hε(u)| ≤ (2u− log u)
log

u+ εe−f̃(0)

u+ ε

+ |f̃(u)|


≤ (2u− log u)
(

log
(
u+ e−f̃(0)

)
+ |f̃(u)|

)
≤ (2u− log u)

(
log

(
1/2 + e−f̃(0)

)
+ |f̃(u)|

)
≤ C (1− log u) for 0 < u ≤ 1

2 .

On the other hand, if ∣∣∣∣∣log
u+ εe−f̃(0)

u+ ε

 ∣∣∣∣∣= − log
u+ εe−f̃(0)

u+ ε

 ,
then

Z ′a(u)|hε(u)| ≤ (2u− log u)
− log

u+ εe−f̃(0)

u+ ε

+ |f̃(u)|


≤ 2 (1− log u)
(
− log u+ |f̃(u)|

)
for 0 < u ≤ 1

2 .

We conclude that

Z ′a(u)|hε(u)| ≤ sup
0≤s≤1/2

|f̃(s)|+ log2 u− (1 + sup
0≤s≤1/2

|f̃(s)|) log u for 0 < u ≤ 1
2 .

This estimate and (A.61) prove (A.58).
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APPENDIX B – Some basic notions

B.1 Basic notions and notation
We introduce some basic notation that will be used throughout the text. We

define

(a) Ω ⊂ RN , N ≥ 1 denotes a bounded and open subset of RN with smooth
boundary ∂Ω;

(b) We say that Ω is smooth if ∂Ω is of class Ck for k ≥ 2, see Definition 2;

(c) s+ = max{s, 0} and s− = max{−s, 0};

(d) The set {f(x) 6= 0} ⊂ Ω is called the support of the function f : Ω→ R;

(e) Let k ∈ N, k ≥ 1. The space Ck
c (Ω) (C∞c (Ω)) denotes the space of functions

of class Ck (C∞) with compact support in Ω. The space of functions f of class Ck such
that sup

x∈Ω
|∇kf(x)| <∞ is denoted by Ck(Ω);

(f) The space C(Ω) denote the space of continuous functions defined in Ω;

(g) Let 0 < τ < 1. We say that f is uniformly Hölder continuous with exponent
τ if f is continuous and

sup
x,y∈Ω

|f(x)− f(y)|
|x− y|τ

<∞.

This space is denoted by Cτ (Ω);

(h) Let k ∈ N and 0 < τ < 1. The space Ck,τ (Ω) is the space of functions of
class Ck such that each derivative of order k is belongs to Cτ (Ω);

(i) We say that uεn → u in C0
loc(Ω) if uεn → u uniformly in compact subsets of

Ω;

(j) Let A ⊂ RN be a set. The function χA : RN → R is defined by χA(x) = 1
for x ∈ A and χA(x) = 0 for x ∈ RN \ A;

(k) For N > 2, we define 2∗ = 2N
N − 2 .

(l) The function φ1 ∈ H1
0 (Ω) is the first eigenfunction of the operator −∆ with

‖φ1‖H1
0 (Ω) = 1, so that∫

Ω
∇φ1∇v dx = λ1

∫
Ω
φ1v dx for all v ∈ H1

0 (Ω),

where λ1 > 0 is the first eigenvalue of the operator −∆.
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Let N ∈ N, N ≥ 1. We will equip the space RN , with the Lebesgue σ-algebra
LRN and with the Lebesgue measure | · |, see [9] and [39].

Let Ω ⊂ RN be a bounded and open subset of RN with smooth boundary ∂Ω.
We will equip it with the Lebesgue σ-algebra LΩ = LRN ∩ Ω = {B ∩ Ω : B ∈ LRN}. We
say that a property holds almost everywhere in Ω if it holds in a set V ⊂ Ω such that
|Ω \ V | = 0.

A map f : Ω→ R is called Lebesgue measurable if f−1(B) ∈ LΩ for all B ∈ LΩ.
Let

A = {f : Ω→ R : f is Lebesgue measurable }

be the set of measurable functions defined in Ω. Suppose that f, g ∈ A. We define the
equivalence relation ∼ in A as

f ∼ g if and only if f − g = 0 almost everywhere in Ω.

Let p ≥ 1. We define

L1
loc(Ω) = {f ∈ A/ ∼:

∫
V
|f | <∞ for all V ⊂ V ⊂ Ω},

(here V stands for the closure of V in Ω) and

Lp(Ω) = {f ∈ L1
loc(Ω) :

∫
Ω
|f |p <∞}.

We endow the space Lp(Ω) with the norm

‖f‖Lp(Ω) =
(∫

Ω
|f |p

) 1
p

.

We say that f ∈ Lp(Ω) is weakly differentiable if for each i ∈ {1, 2, . . . , N} there exists a
measurable function fxi : Ω→ R such that∫

Ω
f
∂ϕ

∂xi
= −

∫
Ω
fxiϕ. for all ϕ ∈ C∞c (Ω).

We define ∇f = (fx1 , fx2 , . . . , fxN ). The Sobolev space W 1,p(Ω) is the set defined by

W 1,p(Ω) = {f ∈ Lp(Ω) : fxi ∈ Lp(Ω) for all i ∈ {1, 2, . . . , N}}.

We equip the space W 1,p(Ω) with the norm

‖f‖W 1,p(Ω) =
(∫

Ω
|f |p +

∫
Ω
|∇f |p

) 1
p

.

We denote the space W 1,2(Ω) merely by H1(Ω). We then define the space H1
0 (Ω) as

H1
0 (Ω) = C∞c (Ω)‖·‖H1(Ω) ,
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where C∞c (Ω)‖·‖H1(Ω) denotes the closure of C∞c (Ω) in L1
loc(Ω) with respect to the norm

‖ · ‖H1(Ω). The Sobolev Embedding Theorem imply that the quantity

‖u‖H1
0 (Ω) =

(∫
Ω
|∇u|2 dx

) 1
2

(B.1)

defines a norm in H1
0 (Ω), which is equivalent to ‖ · ‖H1(Ω). We always equip H1

0 (Ω) with
the norm given by (B.1).

Finally, we say that f ∈ L∞(Ω) if f : Ω→ R is a Lebesgue measurable function
and if there exists a constant C > 0 such that |f(x)| ≤ C for almost all x ∈ Ω. We also
define the norm

‖f‖L∞(Ω) = inf{C : |f(x)| ≤ C almost everywhere in Ω}.

The spaces Lp(Ω), W 1,p(Ω) and L∞(Ω) equipped with their respective norms are Banach
spaces. The spaces H1(Ω) and H1

0 (Ω) equipped with their respective norms are Hilbert
spaces, see [9] and [36]. We also recall the concept of weak convergence and dual space. Let
E be a Banach space with norm ‖ · ‖E. We say that f : E → R is a linear functional if for
each x, y ∈ E and c ∈ R we have

f(x+ y) = f(x) + f(y), and f(cx) = cf(x).

Also, f is continuous if there exists a constant C > 0 such that

|f(x)| ≤ C‖x‖E for all x ∈ E.

We denote by E∗ the dual space of E, that is, the space of all continuous linear functionals
defined on E. We may equip E∗ with the norm

‖f‖E∗ = sup
‖x‖E≤1

|f(x)|.

It is known that E∗ equipped with the norm ‖ · ‖E∗ is a Banach space. We denote by
L(E,E∗) the space formed by the bounded linear mappings between E and E∗. That is,
L : E → E∗ ∈ L(E,E∗) if and only if there exists a constant C > 0 such that

‖L(x)‖E∗ ≤ C‖x‖E for all x ∈ E

and
L(x+ y) = L(x) + L(y), L(cx) = cL(x), for all x, y ∈ E, c ∈ R.

We say that a sequence (xn) in E converges weakly to an element x ∈ E, and we write
xn ⇀ x if

f(xn)→ f(x) for all f ∈ E∗.
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We will denote the space H1
0 (Ω)∗ merely by H−1(Ω). Let f ∈ H−1(Ω). The Riesz Repre-

sentation Theorem, see [9, Section 5.2], asserts that there exists w ∈ H1
0 (Ω) such that

f(u) =
∫

Ω
∇w∇u for all u ∈ H1

0 (Ω).

Hence, un ⇀ u weakly in H1
0 (Ω) if and only if∫

Ω
∇w∇un →

∫
Ω
∇w∇u as n→∞ for all w ∈ H1

0 (Ω).

We remark that if un ⇀ u weakly in H1
0 (Ω) and ‖un‖H1

0 (Ω) → ‖u‖H1
0 (Ω), then un → u

strongly in H1
0 (Ω), see [9, Exercise 5.19]. Finally, we give the concept of Fréchet differentia-

bility, see [68]. Let I : H1
0 (Ω)→ R be a functional. We say that I has a Fréchet derivative

f ∈ H−1(Ω)∗ at u ∈ H1
0 (Ω) if

lim
h→0

1
‖h‖H1

0 (Ω)
(I(u+ h)− I(u)− (f, h)) = 0.

We write f = I ′(u) and we say that the functional I is of class C1 if I ′(u) is well defined
for all u ∈ H1

0 (Ω) and if the mapping u→ I ′(u) is continuous in H1
0 (Ω). Moreover, we say

that I satisfies the Palais-Smale condition if any sequence (un) in H1
0 (Ω) such that

I(un) is bounded and I ′(un)→ 0 as n→∞ (B.2)

possesses a convergent subsequence. A sequence (un) satisfying (B.2) is called a Palais-
Smale sequence for I. Moreover, if there exists c ∈ R such that I(un) → c, then (un) is
called a Palais-Smale sequence for I at level c.

We now study smoothness of bounded sets in RN .

Definition 2. A bounded domain Ω in RN and its boundary are of class Ck if at each
point x0 ∈ ∂Ω there exists a ball B centered at x0 and a one to one mapping Ψ of B onto
D ⊂ RN such that

Ψ ∈ Ck(B), Ψ−1 ∈ Ck(D), Ψ(B ∩ Ω) ⊂ RN
+ , and ψ(B ∩ ∂Ω) ⊂ Γ,

where Γ = {x = (x1, . . . , xN) ∈ RN : xN = 0}.

Let Ω ⊂ RN be a bounded smooth domain and let δ : Ω → R+ be given by
δ(x) = inf

y∈∂Ω
|x− y|. We have

Lemma B.1. Suppose that Ω ⊂ RN is a domain of class Ck for some k ≥ 1. Then∫
Ω
δ(x)−σ <∞ for all 0 < σ < 1.
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Proof of Lemma B.1. Fix 0 < σ < 1 and let x0 ∈ ∂Ω. From the smoothness of Ω,
we know that there exist a ball B centered at x0 and applications Ψ : B → D and
Ψ−1 : D → B such that

Ψ ∈ Ck(B), Ψ−1 ∈ Ck(D), Ψ(B ∩ Ω) ⊂ RN
+ , and Ψ(B ∩ ∂Ω) ⊂ Γ,

where Γ = {x = (x1, . . . , xN) ∈ RN : xN = 0} and RN
+ = {x = (x1, . . . , xN) ∈ RN : xN >

0}. We claim that ∫
B̃∩Ω

δ(x)−σ <∞, (B.3)

where B̃ is a ball centered at x0 such that B̃ ⊂ B̃ ⊂ B. Let B̃ be one such ball. Claim
(B.3) is a consequence of the Change of Variables Theorem and from the fact that Ψ is
Lipschitz continuous in the interior of B. Indeed, we know that there must exist a ball B̂
centered at x0 and such that B̃ ⊂ B̃ ⊂ B̂ ⊂ B̂ ⊂ B. Let d = dist(∂B̂, ∂B̃). From the fact
that Ψ ∈ Ck(B), we know that Ψ ∈ Ck(B̂) and therefore,

|Ψ(x)−Ψ(y)| ≤ C|x− y| for all x, y ∈ B̂, (B.4)

where C = sup
x∈B̂
|∇Ψ(x)|. Observe that

∫
B̃∩Ω

1
δ(x)σ dx =

∫
B̃∩Ω

1
(infy∈∂Ω |x− y|)σ

dx.

Let y ∈ ∂Ω \ B̂. We know that in this case

|x− y| ≥ d for all x ∈ B̃ ∩ Ω.

Therefore ∫
B̃∩Ω

1
δ(x)σ dx =

∫
B̃∩Ω

1(
min

{
d, inf

y∈∂Ω∩B̂ |x− y|
})σ dx.

Hence, we need to show that

∫
B̃∩Ω

 1
inf

y∈∂Ω∩B̂ |x− y|

σ dx <∞.
From (B.4) and from the fact that Ψ(y) ∈ Γ for all y ∈ ∂Ω ∩B, we get

∫
B̃∩Ω

 1
inf

y∈∂Ω∩B̂ |x− y|

σ dx ≤ Cσ
∫
B̃∩Ω

 1
inf

y∈∂Ω∩B̂ |Ψ(x)−Ψ(y)|

σ dx
≤ Cσ

∫
B̃∩Ω

1
ΨN(x)σ dx.
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Using the change of variables x→ Ψ(x) = (Ψ1(x), . . . ,ΨN(x)) = (z1, . . . zN), and the fact
that Ψ(B̃ ∩ Ω) ⊂ D ∩ RN

+ is a bounded set, we get

∫
B̃∩Ω

 1
inf

y∈∂Ω∩B̂ |x− y|

σ dx ≤ C2

∫
D∩R+

N

1
zσN

dz

≤ C3

∫ M

0

1
zσN

dzN

= C3

1− σ [z1−σ
N ]M0 <∞,

where M is a positive constant chosen such that 0 < zN < M for all z = (z1, . . . , zN) ∈
D ∩ RN

+ . This proves the claim (B.3). Lemma B.1 follows from the compactness of Ω.

The following result is a consequence of Höpf’s Lemma, see Theorem B.9.

Lemma B.2. Let Ω ⊂ RN , N ≥ 2 be a bounded smooth domain and let u ∈ C2(Ω)∩C1(Ω)
be a function such that −∆u > 0 in Ω and u = 0 in ∂Ω. Let δ(x) = dist(x, ∂Ω). Then,
there exists constants A > a > 0 such that

aδ(x) ≤ u(x) ≤ Aδ(x) for every x ∈ Ω. (B.5)

Proof of Lemma B.2. From smoothness, we may assume that Ω = B1(0) ∩ RN
+ is the

upper half of the ball centered at the origin with radius 1, and that u = 0 in Γ, where
Γ = ∂B1(0) ∩ {xn = 0}. We need to show that there exist constants A > a > 0 such that

aδΓ(x) ≤ u(x) ≤ AδΓ(x) for every x ∈ B1/2(0) ∩ RN
+ , (B.6)

where δΓ(x) = dist(x,Γ) = xn. From Höpf’s Lemma, we know that there exists an open
strip T containing Γ ∩B1/2(0) and a constant c > 0 such that

∂u

∂xn
(x) > c for every x ∈ T.

It is clear that (B.6) holds in (B1/2(0) ∩ RN
+ ) \ T . We know that there are constants

c1, c2 > 0 such that
c1e

xn <
∂u

∂xn
(x) < c2e

xn for all x ∈ T. (B.7)

Define, for each x = (x1, . . . xn) ∈ T ∩B1/2(0)

ψ(x) = u(x)− c1(exn − 1),

and
g(t) = ψ(x1, x2, . . . , xn−1, txn).

It is clear that g(0) = ψ(0) = 0 and g(1) = ψ(x). From (B.7), we have

g(1)− g(0) =
∫ 1

0
g′(t) dt =

∫ 1

0
xn

∂ψ

∂xn
(x1, . . . , txn) dt ≥ 0.
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Hence, ψ(x) ≥ 0 for all x ∈ T , which implies that

u(x) ≥ c1(exn − 1) = c1xn

(
exn − 1
xn

)
for all x ∈ T.

Using the fact that (es − 1)/s ≥ 1 for s ≥ 0, we obtain

u(x) ≥ c1xn = c1δΓ(x) for all x ∈ T.

Analogously,
u(x) ≤ c2δΓ(x) for all x ∈ T.

This proves (B.6). Inequality (B.5) then follows from a change of variables and from the
compactness of Ω.

B.2 Results used throughout the text
First, we give some basic results

Theorem B.1 (Fatou’s Lemma). Let (fn) be a sequence in L1(Ω) such that fn ≥ 0
almost everywhere in Ω and sup

n

∫
Ω
fn <∞. Then,

∫
Ω
f(x) ≤ lim inf

n→∞

∫
Ω
fn(x),

where f(x) = lim inf
n→∞

fn(x).

Theorem B.2 (Dominated Convergence Theorem). Let (fn) be a sequence in L1(Ω)
such that fn(x)→ f(x) almost everywhere in Ω and assume that there exists g ∈ L1(Ω)
such that |fn(x)| ≤ g(x) almost everywhere in Ω. Then, f ∈ L1(Ω) and fn → f in L1(Ω).

Theorem B.3 (Generalized Dominated Convergence Theorem). Let (fn) and (gn)
be sequences in L1(Ω) such that fn(x)→ f(x) and gn(x)→ g(x) almost everywhere in Ω.
Assume that |fn(x)| ≤ gn(x) almost everywhere in Ω. If g ∈ L1(Ω) and∫

Ω
gn(x) dx→

∫
Ω
g(x) dx,

then f ∈ L1(Ω) and ∫
Ω
fn(x) dx→

∫
Ω
f(x) dx.

Theorem B.4 (Hölder’s inequality). Let 1 < p < ∞ and 1 < q < ∞ be positive
constants such that 1

p
+ 1
q

= 1. Assume that f ∈ Lp(Ω) and g ∈ Lq(Ω). Then fg ∈ L1(Ω)
and ∫

Ω
|fg| dx ≤

(∫
Ω
|f |p dx

) 1
p
(∫

Ω
|g|q dx

) 1
q

.

Next, we give a version of the Arzelà-Ascoli Theorem.
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Theorem B.5. Let Ω be a domain in RN for N ≥ 1 and let (un) be a sequence in
C1(Ω). Assume that for each smooth bounded subdomain Ω′ ⊂ Ω′ ⊂ Ω there are constants
K1, K2 > 0 such that

sup
x∈Ω′
|un(x)| ≤ K1 and sup

x∈Ω′
|∇un(x)| ≤ K2 for all n ∈ N.

Then, there exists a continuous function u ∈ C(Ω) and a subsequence (unk) such that
unk → u uniformly in compact subsets of Ω.

We now state the Trudinger-Moser inequality, see [56].

Theorem B.6 (Trudinger-Moser inequality).

exp(αw2) ∈ L1(Ω) for every w ∈ H1
0 (Ω) and α > 0,

and there is a constant k1 > 0 such that

sup
‖w‖

H1
0(Ω)≤1

∫
Ω

exp(αw2) ≤ k1 for every α ≤ 4π and w ∈ H1
0 (Ω). (B.8)

The next result was proven in [51, Section I.7, Remark I.18].

Theorem B.7. Let (un) be a sequence of functions in H1
0 (Ω) with ‖∇un‖L2(Ω) = 1 such

that un ⇀ u 6≡ 0 weakly in H1
0 (Ω). Then for every

0 < t <
4π

(1− ‖∇u‖2
L2(Ω))

we have

sup
n

∫
Ω

exp(tu2
n) < k2 for some constant k2 > 0 independent on n.

The next theorem is proven in [30, Lemma 2.1].

Theorem B.8. Let (un) be a sequence of functions in L1(Ω) converging to u in L1(Ω).
Assume that f(un(x)) and f(u(x)) are also L1 functions. If there exists a constant C > 0
such that ∫

Ω
|un(x)f(un(x))| ≤ C for all n ∈ N,

then f(un) converges in L1 to f(u).

We now state a version of the Höpf’s Lemma, see [45, Lemma 3.4]

Theorem B.9 (Höpf’s Lemma). Let Ω ⊂ RN , N ≥ 2 be a bounded smooth domain
and let u ∈ C2(Ω) ∩ C1(Ω) be a function such that −∆u > 0 in Ω and u = 0 in ∂Ω. Let
x ∈ ∂Ω. Then,

∂u(x)
∂ν

< 0,

where ν is the unit vector that is orthogonal to ∂Ω at x.
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For the next result, see [45, Exercise 7.1].

Theorem B.10. Let Ω ⊂ RN be a bounded domain and suppose that u ∈ Lp(Ω) for all
p > 1. Then,

lim
p→∞

Φp(u) = sup
Ω
|u|,

where

Φp(u) =
(

1
|Ω|

∫
Ω
|u|p dx

) 1
p

.

We now state some Sobolev embeddings. We refer the reader to [9], [36] and
[45].

Theorem B.11. Let Ω be a bounded open subset of RN with N ≥ 3 and suppose that
u ∈ H1

0 (Ω). Then u ∈ Lp(Ω) for all 1 ≤ p ≤ 2N
N − 2 . Furthermore, there exists a constant

C > 0 that depends on p, N and Ω such that

‖u‖Lp(Ω) ≤ C‖u‖H1
0 (Ω).

Also, if 1 ≤ p <
2N
N − 2 , then H

1
0 (Ω) is compactly embedded in Lp(Ω). Consequently if (un)

is a bounded sequence in H1
0 (Ω), then there exists a subsequence (unk) in H1

0 (Ω) and an
element u ∈ H1

0 (Ω) such that unk → u in Lp(Ω).

Theorem B.12. Let Ω be a bounded open subset of R2, and suppose that u ∈ H1
0 (Ω). Then

u ∈ Lp(Ω) for all 1 ≤ p <∞. Furthermore, there exists a constant C > 0 that depends on
p and Ω such that

‖u‖Lp(Ω) ≤ C‖u‖H1
0 (Ω).

Moreover, H1
0 (Ω) is compactly embedded in Lp(Ω). Consequently if (un) is a bounded

sequence in H1
0 (Ω), then there exists a subsequence (unk) in H1

0 (Ω) and an element u ∈
H1

0 (Ω) such that unk → u in Lp(Ω).

Theorem B.13. Let Ω be a smooth bounded open subset of RN , and suppose that u ∈
W 2,p(Ω) for all p ≥ 1. Then, u ∈ C1,ν(Ω) for all 0 < ν < 1. Moreover, the embedding

C1(Ω) ↪→ W 2,p(Ω)

is continuous, so that there exists a constant C > 0 that depends on p and Ω such that

‖u‖C1(Ω) ≤ C‖u‖W 2,p(Ω).

The next two results are found in [45] and [49].
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Theorem B.14. Let Ω be a smooth bounded open subset of RN with N ≥ 2, and suppose
that f ∈ Lp(Ω) for some 1 < p <∞. Then, there exists a unique function u ∈ W 2,p(Ω) ∩
W 1,p

0 (Ω) such that ∆u = f in Ω

u = 0 on ∂Ω.
and there exists a constant C > 0 that does not depend on u nor on f such that

‖u‖W 2,p(Ω) ≤ C‖f‖Lp(Ω).

In particular, if p > N

2 , then u ∈ C(Ω) ∩W 2,p
loc (Ω).

Theorem B.15. Suppose that f ∈ Cα(Ω) then, there exists a unique function u ∈ C2,α(Ω)
satisfying ∆u = f in Ω

u = 0 on ∂Ω.

Furthermore, if f ∈ Ck,α(Ω), then u ∈ Ck+2,α(Ω).

The next results are found in [21, Remark 2.2.1, Proposition 2.2.1], [65, Ap-
pendix C] and [68].

Theorem B.16. Let Ω be a bounded smooth domain in RN with N ≥ 3 and let f : Ω→
R→ R be a function satisfying

(i) f(·, s) is measurable in Ω for every fixed s ∈ R.

(ii) f(x, ·) is continuous in R for almost all x ∈ Ω.

(iii) There exist constants c, d > 0 and 0 ≤ σ ≤ N + 2
N − 2 such that

|f(x, s)| ≤ c|s|σ + d for each x ∈ Ω, s ∈ R.

Let I : H1
0 (Ω)→ R be the functional defined by

I(u) =
∫

Ω

1
2 |∇u|

2 − F (x, u) dx,

where F (x, s) =
∫ s

0
f(x, t) dt. Then, I is of class C1 and

I ′(u)(v) =
∫

Ω
∇u∇v dx−

∫
Ω
f(x, u)v dx.

The same conclusion holds when N = 2 and f satisfies (i), (ii) and the following condition

(iv) There exist constants α > 0 and C > 0 such that

|f(x, s)| ≤ C exp{αs2} for each x ∈ Ω, s ∈ R.

We also remark that if f satisfies (i) − (iii) with 0 ≤ σ <
N + 2
N − 2 , then the functional I

satisfies the Palais-Smale condition, see (B.2), provided each Palais-Smale sequence for I
is uniformly bounded in H1

0 (Ω).
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Theorem B.17. Suppose that I : H1
0 (Ω)→ R is a functional of class C1 that is bounded

from below and that satisfies the Palais-Smale condition. Then, there exists u0 ∈ H1
0 (Ω)

such that I(u0) = inf
u∈H1

0 (Ω)
I(u) and u0 is a critical point of I.

For the next result, see [28, Theorem 5.1]

Theorem B.18 (The Mountain-Pass Theorem). Let Ω be a smooth bounded domain
in RN and I ∈ C1(H1

0 (Ω),R). Suppose that there exists e ∈ H1
0 (Ω) and r > 0 such that

r < ‖e‖ and
inf
‖u‖=r

I(u) > I(0) ≥ I(e).

Then, for each ε > 0 there exists u ∈ H1
0 (Ω) such that

c− 2ε ≤ I(u) ≤ c+ 2ε,

and
‖I ′(u)‖ < 2ε,

where
c = inf

γ∈Γ
max
t∈[0,1]

I(γ(t))

and
Γ = {γ ∈ C([0, 1], H1

0 (Ω)) : γ(0) = 0, γ(1) = e}.
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