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Resumo

Nessa tese estudamos problemas elipticos com diferentes tipos de singularidades e termos
nao lineares. Consideramos problemas definidos em regioes limitadas contidas em espagos
de dimensao finita. Quando essa regiao estiver contida no plano, admitimos termos com
crescimento exponencial. Ao longo do trabalho assumimos que as singularidades possuem
crescimento polinomial ou logaritmico perto da origem. Em regides de dimensao maior,
estudamos dois problemas singulares. O primeiro é um problema que envolve um termo
nao linear de crescimento polinomial subcritico. Resolvemos esse problema aproximando o
termo singular de maneira adequada. O segundo admite pesos que sao singulares perto
da fronteira do dominio no qual o problema esta definido. Para resolvé-lo, obtemos uma
subsolucao que ¢ estritamente positiva no interior dessa regiao. Os problemas discutidos
nesse trabalho tém uma ampla gama de aplicagoes. Eles modelam fenomenos de catalise
heterogénea e processos enzimaticos. Também existem aplicagoes em mecanica dos fluidos
e fluxos pseudoplasticos. Problemas desse tipo também estao relacionados com equagoes

de Schrodinger e de Klein-Gordon.

Palavras-chave: equacoes elipticas singulares; calculo das variagoes; existéncia de solugao;

operador laplaciano; crescimento critico.



Abstract

In this thesis we study elliptic problems with different types of singularities and nonlinear-
ities. We consider problems defined in bounded regions contained in finite dimensional
spaces. When this region is contained in the plane, we admit terms with exponential
growth. Throughout this work we assume that the singularities have either polynomial or
logarithmic growth near the origin. In regions contained in higher dimensions, we study
two singular problems. The first one involves a nonlinearity with subcritical polynomial
growth. We solve it by considering a suitable approximation of the singular term. The
second one admits weights that are allowed to be singular near the boundary of the domain
in which the problem is defined. To solve it, we obtain a subsolution that is strictly positive
in the interior of the region. The problems discussed in this work have a wide range of
applications. They model problems in heterogeneous catalysis and in enzymatic processes.
There are also applications in fluid mechanics and pseudoplastic flows. These problems

are also related to Schrodinger and Klein-Gordon equations.

Keywords: singular elliptic equations; calculus of variations; existence of solution; laplacian

operator; critical growth.
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Introduction

In this work we study different classes of elliptic equations. We are concerned
with the existence of solutions of certain problems that admit a term that is unbounded
near the origin. This term generates difficulties which are surpassed by using a perturbation
argument. We study two different types of problems. The first one is defined in a bounded
bidimensional region, and the second one in a bounded region of higher dimension. On one
hand, problems of the first type possess a further term that is allowed to have exponential

growth. On the other hand, the solutions of these problems are not strictly positive.

Problems of the second type do not possess elements with exponential growth.
However, in some situations they have terms that are singular near the boundary of the
region in which these problems are set. Furthermore, in some cases, we obtain positive

solutions.

When we tackle problems of the first and second type, we use an approximation
scheme. For problems of the first type and some problems of the second type, we approach
the singular term by a sequence of smooth functions, thus creating a family of perturbed
problems. By doing this, we cancel the effects of the singularity near the origin. For some
problems of the second type, we use a different form of approximation. First, we obtain a
subsolution that is positive inside the region in which the problem is defined. Next, instead
of perturbing the singular term (as done in problems of first type), we consider a sequence
of subdomains that are contained in the interior of the original region in which the problem
is defined. By doing this, we cancel out the effects of the terms that are singular near the
boundary of this region. Also, the fact that the subsolution is strictly positive in these

subdomains is useful to avoid the singularities near the origin.
For both types of problems, we split our ideas in two steps.

Step 1: We obtain solutions for a smooth perturbation of the original singular

problem (either by perturbing the singular term or by perturbing the domain)

Step 2: We show that the solutions obtained in Step 1 converge to a solution

of the original singular problem.

The main ingredient in Step 1 are results of calculus of variations. Indeed,
we obtain solutions that are mountain passes and local minima of certain perturbed
functionals. Furthermore, these solutions are nonnegative and enjoy suitable regularity

properties, which are very helpful when studying convergence in Step 2.

There is a vast literature on nonsingular problems. Let @ C RY, N > 2 be a
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bounded smooth domain. The problem

{ —Au = f(u) in€Q

1
u=20 on 02, 1)

has been extensively studied for continuous functions f, see [4], [11] [21], [30], [36], [43] and
[45]. When N > 2, the Sobolev Embedding implies that u? € L'(Q) for all 1 < p < N3

Consequently, initially it makes sense to look for solutions of problem (1) when f is

continuous and satisfies

1£(s)] < ay + ag|sl?, for all s € R,

2N
N -2 N -2

5~ 1 being subcritical. In the subcritical context,

1

where aq,as > 0 are positive constants and 0 < p < — 1, the case p =

being critical and the case 0 < p < N
problem (1) is solvable, provided f is continuous, see [21]. The critical case is more delicate.

The Pohozaev inequality, see [36], implies that the problem

N+2
—Au=u~-2 in{)
u>0 in Q (2)
u=>0 on 052,

is not solvable in €2. Nonetheless, in [4], the authors showed that there exists A; > 0 such
that the problem
—Au = !4+ u’ inQ
u>0 in 0 (3)
u=20 on 02,

N +2
with0<g<l<p< N + 5 has at least two solutions provided 0 < A < Aj.

When N = 2, the Sobolev imbedding implies that for each u € Hj(Q), the
function u? belongs to L'(€2) for all 0 < p < oo, so that problem (1) is solvable when f
has polynomial growth. However, a stronger result holds. The Trudinger-Moser inequality,
see [56], asserts that if Q C R? is a bounded domain, then e belongs to L'(Q) for all
a >0 and u € Hy(Q), so that we may study problem (1) with f satisfying the following

condition: There exists a > 0 such that
|f(s)] < Cexp(as?) for all s € R. (4)

For example, in [29], the authors studied the problem

—Au = h(u)e™ inQ
u>0 in 0 (5)
u=>0 on 0,
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where h is a continuous function that satisfies certain conditions and h(0) = 0. In [27], the

authors the authors obtained two solutions for the problem

—Au =l + e inQ
u>0 in Q (6)
u=0 on OS2,

provided A and « are sufficiently small and 0 < ¢ < 1. Observe that the right hand side of
(6) does not vanish for u = 0, but the right hand side of (5) does. See [1], [2], [3], [7], [15]
[30] and [31] for related results.

In this work, we study problems of the form

—Au = g(z,u)X{u=0p + f(z,u) nQ
u>0,uz0 in 2 (7)
u=0 on OS2,

where Q C RY, N > 2 is a bounded smooth domain and ¢ is singular at the origin with

lim g(z,s) = —oo for all x € Q.

s—0+

Problem (7) is a singular version of (2)—(6). The singularity ¢ at the right hand side of
(7) prevents us from solving this problem directly. To overcome this difficulty, we consider
smooth perturbations which are treatable in a similar way as problem (1). Singular
problems arise in several physical models such as fluid mechanics and pseudoplastic flows,
see [12], [18], [19], [41] and [57]. Problem (7) with g(x, s) = log s is associated to some phase
field models, see [20], [23], [35] and [44]. See also [61] where a reaction diffusion equation
with logarithmic singularity is studied. These problems are also related to Schrédinger
and Klein-Gordon equations, see [16], [24], [48], [64] and [67].

Solutions of problem (7) are not strictly positive in general, so that a free
boundary might arise. For example, in [53] the authors showed that problem (7) with
g(z,s) =logsand f(x,s) = As” for x € Q and s > 0 possesses a nontrivial solution uy > 0
that vanishes in a set of positive measure, provided A is sufficiently small. Equation (7) is
related to problems in heterogenous catalysis, see [6] and [33]. In this context, the regions
of €2 in which u = 0 are the regions of the catalyst pellet in which no reaction takes place.
See [32] for results on the free boundary of a related problem with logarithmic singularity.

The free boundary of singular elliptic equations was also studied in [40] and [60].

Elliptic problems with singularity of the form u~” have been studied in the last
decades. In [34] the authors considered the problem —Au = —u™" + Af(2) in Q, u = 0 in
o, with f >0, f € L*(Q). The sub-supersolution method was used and positive solutions
were obtained when 0 < 8 < 1 for large values of A. Multiplicity of solutions was discussed

in [17] with the assumption that f = 1. There, the authors showed that the unidimensional



Introduction 13

problem
—u" = —uP 4+ Xin (—L, L)
w>0in (=L, L) (8)
u(—L) =u(L) =0,

has at most one classical solution if 8 = 1/2. However, when 0 < 8 < 1/3, two distinct

solutions were obtained.

The problem

—Au = —u‘ﬂx{wo} + AP in Q
u>0,uz0in Q (9)
u =0 on 0f),

was studied in [25], [26], [54], [62] and [70]. In [70], the authors showed that (9) does not
admit a classical solution for § > 1. In [25] the authors obtained one positive solution of
problem (9) with 0 < p < 1 for large values of A. This result was extended in [54], where
the authors obtained two nonnegative solutions of problem (9) for large values of A. In
[26] the authors studied (9) with p > 1. When p > 1, they obtained one solution for each
A > 0. When p = 1, they showed that problem (9) is solvable for A > \;. The more general
equation —Au + K (2)u™ = MP with 0 < p < 1 and zero boundary condition was studied
in [62], where K is assumed to be of class C**(€2).

The problem
~Au = K(x)u™? in Q
u>0in Q (10)
u =0 on 02

was studied in [50], [69] and [71]. In [50], the authors showed that this problem has a
positive solution provided K is a continuous function such that K > 0 in Q. There, the
authors showed that this equation is solvable in Hj () if and only if 3 < 3. This result
was refined in [71] for K(x) = §(z)” with 6(z) = dist(z,0R). Finally, in [69], the authors
showed that problem (10) is solvable in Hj(f2) if and only if there exists uy € Hy () such
that

/QK((L’)|U0|1_’8 dr < 0.

Versions of the problem
—Au=u"" 4 \uf in Q
u>01in Q (11)
u =0 on 012,

were considered in [13], [14], [47] and [66]. In [13] the authors considered a version of
problem (11) for p = 1. In [14] the authors established results for (a problem more general

N +2
than) (11) with § > 3. In [47] the authors considered 0 < § < 1,1 < p < N+2

and they used variational methods to study the equation —Au = Au=? + u? with zero
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boundary condition. They showed that this problem possesses at least two distinct positive
solutions provided A is sufficiently small. This result was generalized in [66] for the equation
—Au = K(x)u™? + AP where K > 0 is nontrivial and K € L*(9). See also [8], [22], [46],

[58] and [59] where more general elliptic and quasilinear singular problems were discussed.

In Chapter 2, we study the problem

—Au = —u‘ﬁx{wg} + AP + pf(u) in€
u>0,uz0 in () (12)
u=>0 on 02,

where 2 C R? is a bounded smooth domain, 0 < p < 0o, A >0, > 0, f: [0,00) — R is
a continuous and differentiable function with f(0) = 0 and 0 < 8 < 1. By a solution of
problem (12) we mean a function u € Hy(£2) such that

u_ﬁx{u>0} € Llloc(Q>

and
— —u PP
/QVUVLp /m{u>0}( u "’ + Au +uf(u))g0,

for every ¢ € C}(Q). Our main contribution is that we allow the nonlinearity f to have
exponential growth at infinity. For example, for each A\ > 0 we prove that there exists
to > 0 such that the problem

—Au = —u""X(us0p + AP + p(e” —1) inQ
u>0,uz0 in ) (13)
u=20 on 05,

has a solution for all 0 < u < pg. We should compare equation (13) with (5) and (6).
Equations (5) and (6) have positive solutions, whereas the solutions of problem (13) are
not shown to be strictly positive, and might give rise to a free boundary d{u > 0}. The
method we use relies on the Ambrosetti-Rabinowitz condition, so that when p > 1, we
may consider f =0 or f(s) = s? for ¢ > 0 in (12). However, when 0 < p <1 in (12), the
function s — s” ceases to satisfy this condition. As a consequence, we have to impose
stricter assumptions on f, so that we can consider f(s) = s" only for > 3. Summarizing,

when p > 1 we show that for each A > 0 fixed, there exists jo > 0 such that the problem
—Au = —u_ﬁx{wo} + AP + pu? in €2

u>0,uz0 in (2
u=20 on 02,

has a solution for all 0 < pu < pg. An analogous statement holds for the problem

—Au = —u’ﬁx{wo} + M + pu” inQQ
u>0,uz0 in{
u=>0 on 0f2,
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with 0 < p < 1. Note also that problem (9) is a particular case of (12) with f = 0.

In Chapter 3, we assume that Q is a bounded smooth domain in RY for N >3

and we consider the problem

—Au = —u_’BX{u>0} + A+ uP in Q
u>0,u%0in (14)
u =0 on 012,

N +2
with 1 < p < N + 5 We obtain solutions of (14) for each A\ > 0, and consequently the

problem -
—Au = —u’ﬁx{wo} +u? in Q
u>0,uz%0in (2

u =0 on 0f),

2
. This result is already known, see [26]. Thus, our contribution

_l’_
is solvable for 1 < p <
is solvable for P<N 3

is when A > 0.

In Chapter 4, we consider problem (12) with the logarithmic function log(s)
replacing the term —u 7 and we assume again that f(0) = 0 and € is a smooth bounded
domain in R% We allow f to have exponential growth, and this is our main contribution.

For example, for each A > 0 we prove that there exists py > 0 such that the problem

—Au = (log u)Xus0y + AuP + p(e" — 1) inQ
u>0,uz0 inQ (15)
u=0 on 0,

with 1 < p < oo has a solution for all 0 < p < pg. We may consider A = 0, but we do not
have results when 0 < p < 1 in (15). We are also able to consider f = 0 in (15), so that

we generalize and improve the result of [52], where the authors showed that the problem

—Au = (log u)X{us0y + AuP inQ
u>0,uz0 in (16)
u=20 on 052,

with p > 1 has a solution for sufficiently large A. In this work, we obtain solutions of (16)
for all A > 0, provided p > 1.

Some results of this chapter were published in [38].

In Chapter 5, we extend the results of Chapter 4. Indeed, we consider problems

of the form
—Au = (logu + f(u))X{us0y in
u>0,u#0 in (17)
u=>0 on 052,
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where € is a smooth bounded domain in R? and f is a function that must be superlinear.

By a solution of problem (17), we mean a function u € Hy () such that

(IOg U)X{u>0} € Llloc(Q>

and
/QVuVso = /m{u>0}(10gu + f(u)e,
for every ¢ € C}(). We remark that f satisfies:
e For each a > 0 there exists C' = C, > 0 such that (4) holds;
e We no longer assume that f(0) = 0;
e We allow f to change sign.
For example, we obtain a solution for the problem
—Au = (logu +€" + A)xqus0y in€2

u>0,uz0 inQ
u=>0 on 011,

for all A € R. We may also consider f(u) = u” 4+ A for p > 1, so that the problem

—Au = (logu + u” + X)Xus0p in€Q
u>0,uz0 in 2
u=2>0 on 0f2,

is solvable for all A € R. We also show that the problem

—Au = (logu+u+e")Xqus0yp n€Q
u>0,uz0 in Q2
u=20 on 02,

is solvable.

Chapters 2-5 have more or less the same structure, but there are nuances. In

these chapters, we consider an associated perturbed functional of the form

I(u) = ;/Q|Vu]2+/QG€(u)dx—/QF(u)dx,

and we show that I, satisfy the Palais-Smale condition and the hypothesis of the Mountain-
Pass Theorem, so that it admits a critical point u.. This is done in the same spirit of
[30] and [63]. Next, we show that u. is bounded in H;(2) by a constant that does not
depend on €, as in [37], [52] and [54]. This bound is essential, and only holds for the specific
solutions we obtain. The final, crucial step is to study the convergence of these solutions
as € — 0. To do this, we rely on the Moser iteration scheme, see [45] and [56], and in

gradient estimates for the critical points of I, similar in essence to [5], [37] and [52].
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In Chapter 6, we consider problem (17) with f having critical growth in the

sense of Trudinger-Moser, which states that there exists a > 0 such that

£ (5)] |/ (s)]

lim ————— =oo forall 0 < k < @, and lim ————- =0 for all K > a. (18)
s—00 exp(ks?) s—00 exp(ks?)

Examples of functions with critical growth are f(s) = ¢ and f(s) = s"¢® with 7 > 0.
See also Remark 6.1 at page 102.

In Section 6.1, we obtain ag > 0 such that problem (17) is solvable for 0 <

a < ap. For example, we conclude that for each p > 1, there exists ap > 0 such that the

problem
—Au = (logu + u? exp(au2))X{u>0} in )
=0 on 051,

is solvable for 0 < a < ay. Next, in Section 6.2, we study the parametrized problem

—Au = (logu+ Af(u))Xqus0y in€
u>0,u#%0 in (19)
u=>0 on 0f2,

where f satisfies (18) for some o > 0. The goal here is to obtain results without controlling
the value of a. Such an approach has issues. Indeed, we can only show that problem (19)

is solvable provided A is sufficiently large and
Q] <, (20)

for some constant ¢ > 0 that (sadly) depends on Q2. We are not able to give examples of
admissible sets 2, but in Section 6.3 we obtain rather explicit values for the admissibility

constant ¢ when f(s) = sexp(as?) and f(s) = exp(as?).
In Chapter 7, we study the problem
—Au = a(x)g(u) + Ab(x) u? in{)

u>0 in(2 (21)
u=0 on 0,

where 0 < p < 1. We will assume that the function g is allowed to be singular near the

origin and that there exists 0 < ¢, 5 < 1 such that

limg(s) = —oo, lim|%g(s)] < o0, and lim X < oo
s—

s—0 s—oo g4

so that ¢ is sublinear at co. Our contribution is that the weights a(z) and b(z) are allowed
to be singular near the boundary of €2, and g is allowed to change sign. We show that
under certain conditions on g,a and b, problem (21) has a solution for large values of .

We also show that this solution is unique in a certain class provided that p is small enough.
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Our approach is as follows: first we show that problem (21) possesses a subsolu-
tion u satisfying u > 0 in 2 and u = 0 on 02 provided \ is large enough. Next, we consider
a sequence () #£ Q) CC Qy CC Q3... CC 2 of smooth domains €2 such that U, Q= Q.

We then use variational methods to obtain positive solutions u; of the problem

—Au = a(z)g(u) + Ab(z) uP in
u> 0 in (22)

U=1u OHan,

Such solutions are obtainable because problem (22) is set in the interior of €2, so that the

eventual singularities of a and b on the boundary 02 and of g have no effect. We show

that the limit v = klim uy is a solution of problem (21). Next, we show that this solution
—00

is unique in a certain class.

Our uniqueness result can be extended for a wide range of singular and nonsin-
gular equations, for example we may consider g =0 or g = 1 in (21). Observe also that
problem (21) with g(u) = u™” for 0 < 3 < 1 is very similar to (8), the key difference being
the presence of the term u”. We thus get a existence and uniqueness result for a modified

version of the problems discussed in [17].

We should also compare equation (21) with the ones studied in Chapters 2-6.
The term «” in (21) is sublinear, and we are able to get a positive solution, thanks to
the existence of a positive subsolution. On the other hand, in Chapters 2-6 we consider
superlinear nonlinearities, and we obtain nonnegative (but not strictly positive) solutions
thanks to the fact that these nonlinearities satisfy a version of the Ambrosetti-Rabinowitz

condition (this condition is not satisfied for sublinear terms).

Some of the results of this chapter were published in [55].
Some open problems

In problem (12) studied in Chapter 2, we may consider f(s) = As? 4+ us? for
0 < q <1< p,but in Chapters 4-6 we cannot consider such f, because, as far as we know,

the mountain pass ceases to exist. Thus, problems of the form

—Au = (logu)Xusoy + Au? + pf(u) in€Q
u>0,uz0 in (2
u=0 on 0f2,

with @ C R?, 0 < ¢ < 1 and A,z > 0 are left open.

In Chapters 2-6, we do not study the regularity of the solutions u € Hj(£2)
that we obtain. We know, however, that « must be locally Lipschitz continuous, because
it is obtained as a uniform limit of smooth functions. Results of [53] and [62] suggest that

v might be of class C for some 0 < v < 1. The positivity of u is another open problem.
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Throughout these chapters, we merely show that « is nontrivial and nonnegative. We do
not study under which circumstances u is positive, and there are examples of solutions
which are shown not to be positive in ). Here is an example: for all A > 0, let uy be a
solution of problem (12) with f =0 and 0 < p < 1, so that

_ —uP P od
/QVU,\VgO /QO{W>O}( uy” + Auh )y de,

for all ¢ € C}(Q2). We will show that uy cannot be strictly positive in € if the parameter ) is
sufficiently small. Indeed, assume by contradiction that u, > 0 in . By an approximation

argument, we get
/VU)\VQD :/(—u;6+)\u§)g0dx,
Q Q

for all ¢ € C*(€). Choosing ¢ = ¢1, where ¢, is the first eigenfunction of —A with

@11l 3 ) = 1, we obtain

)\1/QU,\¢1 :/Q(—U;ﬁ"‘)\ug)% dx.

Consequently,
A [ dorde = [ Qv+ 7)o

Since there exists ¢; > 0 independent of A\ such that A\;s + s >¢ >0 forall s> 0, we
get

A/uggbldxzcl/ é1.
Q Q

But the function uy remains bounded as A — 0, see [25]. We have thus proven that there
exists A* > 0 such that the set {uy > 0} has positive measure if 0 < A < A*. Consequently,
such problems admits a free boundary 0{u > 0}, see [25] and [32].

A further question related to the discussion developed in Chapters 2-6 is the
following. Can we obtain similar results for related problems with more general singularities?
For example, let 0 < £, f2 < 1 and suppose that  is a smooth bounded domain in R?
and that f is a continuous function with exponential or polynomial growth. For what

values of > 0 is the problem

—Au= (u" —u )Xoy + pf(u) nQ
u>0,u#0 in {2
u = on Jf).

solvable?
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1 Main contributions of this work

In this chapter, we compare results found in the literature with ours.

1.1 Contribution of Chapter 2

In Chapter 2 we study a class of singular elliptic equations in a bounded smooth
domain ©Q C R?. We extend results proven in [4], [26] and [63]. In [4], the nonsingular
elliptic problem

—Au = A u? 4+ uP in Q
u>0in Q (1.1)
u =0 on 0f),

was studied for 0 < ¢ < 1 < p. The authors showed that problem (1.1) has two solutions
for sufficiently small A. In [63], the authors considered the problem

—Au = X" in
u>0 in Q2 (1.2)
u=0 on Jf).

They obtained two solutions for problem (1.2) provided A is sufficiently small. In [26] the
authors studied the problem

—Au = —u’ﬁx{wo} + Au? in Q
u>0,uz0in Q (1.3)
u =0 on 0f).

with 0 < § < 1 < p. They showed that problem (1.3) has a solution for each A > 0. We
should compare equations (1.1)-(1.3). Equation (1.3) has the singular term v, but the
solution obtained is not strictly positive in . Problems (1.1) and (1.2) do not have singular
terms, but the solutions of these problems are strictly positive in €2. In this chapter, we

study problems of the form

—Au = —u’ﬁx{uw} + AP + pf(u) inQ
u>0,uz0 in € (1.4)
u=>0 on 0f2,

where Q C R? is a bounded smooth domain, 0 < 3 < 1,0 < p < 0o, u > 0 and f is a
differentiable function with f(0) = 0. Our main contribution is that we allow f to have

exponential growth. We may consider nonlinearities f of the form

f(s)=e*—1 and f(s) = s for k> 1,5 >0,
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and when p > 1, we may consider
f(s)=0, and f(s)=slfors>0and0<gq<1.
With these choices of f, problem (1.4) becomes

—Au = _U75X{u>0} + AuP + ,u(e“ — 1) in
u>0,u%0in € (1.5)
u =0 on 012,

—Au = —u’ﬁx{wo} + P 4 puet in Q

u>0,u%0in (1.6)
u =0 on 0f),
and
—Au = —u_ﬁx{wo} + \u? 4+ pu? in
u>0,u%0in (1.7)
u =0 on 0.

We prove that problems (1.5) and (1.6) have a nontrivial solution for each A > 0 and
0 < p < o0, provided p is small enough. When A = 0, problems (1.5) and (1.6) are singular
versions of problem (1.2). Observe that the right hand side of (1.2) does not vanish at the
origin but the nonlinear terms of (1.5) and (1.6) do. We also show that problem (1.3) has
a nonnegative and nontrivial solution for each A > 0 and p > 1, thus obtaining the result
of [26]. Furthermore, we obtain a solution for problem (1.7) with 0 < ¢ < 1 < p, where
both concave and convex nonlinearities are present. We show that for each A > 0 there
exists o > 0 such that problem (1.7) has a nonnegative solution provided 0 < u < pp.
Finally, when 0 < p < 1, we show that for each A > 0 there exists py > 0 such that the
problem

—Au = —u_ﬁx{wo} + AP + pu” in €

u>0,u%0in (1.8)

u =0 on 02,
with 7 > 3, has a nonnegative solution provided 0 < 1 < ug. Observe that problems (1.7)

and (1.8) are singular versions of problem (1.1), studied in [4].

1.2 Contribution of Chapter 3

In this chapter we study a singular elliptic problem in a bounded smooth
domain Q C RY with N > 3. We extend results of [11] and [37]. In [11] the authors

considered the nonsingular problem
“Au= Mt uv: inQ
u>0 in Q2 (1.9)
u=20 on 0f2.
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They proved that problem (1.9) is solvable when N >4 and 0 < A < A, where \; denotes
the first eigenvalue of —A. Furthermore, the authors showed that problem (1.9) is not
solvable for A > A\;. When N = 3, this problem is much more delicate. The authors showed
that if ) is a ball, then there exists a solution of problem (1.9) if and only if A\; /4 < X < A;.
In [37] the authors studied the problem

—Au = —u_ﬁx{wo} + AuP + uNs in Q)
u>0,u#0in 2 (1.10)
u =0 on 0f),

for0 <p<2*—1and p# 1. 1f 0 < p < 1, they obtained two distinct solutions of (1.10)
for small values of \. When 1 < p < 2" — 1, they obtained one solution of (1.10) for large
values of A. Problems (1.9) and (1.10) should be compared. Equation (1.10) has a singular
term, but the subcritical term in the right hand side is not allowed to be linear. On the
other hand, problem (1.9) is not singular, but admits a linear term. In this work, we study

the equation
—Au = —u’ﬁx{wo} + M+ uP in

u>0,uz0in Q (1.11)
u =0 on 012,
where Q@ € R" is a bounded smooth domain with N > 3,0 < 8 < 1, A > 0 and
N +2
1 2" —1, with2* - 1= ——.
<p< , W1 N _o

We show that problem (1.11) possesses at least one solution for each A > 0

provided 1 < p < 2* — 1. Therefore, we conclude that the problem

—Au = —u’ﬁx{wo} + uP in Q
u>0,uz0in (1.12)
u =0 on 0f),

is solvable for 1 < p < 2* — 1. This result is already known and was proved in [26].

1.3 Contribution of Chapter 4

In this chapter we study an elliptic problem in a bounded smooth domain
Q C R? with a singularity of logarithmic type. We extend the results of [52] and [53]. In
[53], the problem
—Au = (logu)Xuso0y + Af(z,u) in Q
u>0,uz0in Q (1.13)
u =0 on 0,

was studied. The authors assumed that f > 0, f # 0 nondecreasing and

o )

5—00 S

= 0 uniformly for x € Q.
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With these hypothesis, the authors obtained a solution u, of problem (1.13) for each
A > 0. Moreover, the authors proved that uy > 0 in €2 provided A is sufficiently large. The

superlinear case was treated in [52], where the problem

—Au = (log u)X{us0y + Au? in
u>0,u%#0in Q (1.14)
u =0 on 02,

was studied with p < 2* — 1. If 0 < p < 1 in (1.14), the authors obtained two distinct
nontrivial solutions when the parameter A is large. If 1 < p < 2" — 1 in (1.14), they

obtained one solution for sufficiently large A.

In this chapter, we study problems of the form

—Au = (logu)X{us0y + Au? + pf(u) in Q
u>0,uz0in Q (1.15)
u =0 on 012,

where Q C R? is a bounded smooth domain, A > 0 and p > 0 are positive parameters, p > 1,
f(0) =0 and f is allowed to have exponential growth. We may consider nonlinearities f
of the form

f(s)=e*—1 and f(s) = s for k> 1,5 >0,

and when p > 1, we may consider
f(s)=0, fors>0,
and obtain problem (1.14). With these choices of f, problem (1.15) becomes

—Au = (log u)Xqus0y + AuP + p(e" — 1) in Q
u>0,u%0in (1.16)
u =0 on 012,

and

—Au = (log u)X{u=0) + M + pufe” in Q

u>0,u#0in Q (1.17)

u =0 on 0f),
We prove that problems (1.16) and (1.17) have a nontrivial solution for each A > 0 and
1 < p < oo, provided p is small enough. When A = 0, problems (1.16) and (1.17) are
singular versions of problem (1.2). We also prove that problem (1.14) has a nontrivial
nonnegative solution for each A > 0 provided p > 1 (this is the case f = 0 in (1.15)), thus
improving the result of [52]. We should also compare problem (1.15) with (1.4). The term
log u is less singular then —u ™ near the origin, but the function log v changes sign and is
unbounded at infinity. We obtain results for problem (1.4) with 0 < p < 1, but we can not
consider this case in (1.15). Also, when p > 1, we may consider f(s) = s? with 0 < ¢ <1
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in (1.4) but we may not take such f in (1.15). We remark that, unlike the sublinear case
(1.13) studied in [53], we do not obtain results on the positivity of the solution w, so that

the set {u = 0} may have positive measure.

1.4 Contribution of Chapter 5

The aim of this chapter is to generalize and extend the results obtained in

Chapter 4. Indeed, we consider problems of the form

—Au = (logu + f(u))X(us0y in
u>0,u#0in Q (1.18)
u =0 on 0f),

where f:[0,00) — R is a function that is allowed to have exponential growth. Here we

make two major improvements over the problems discussed in Chapter 4.
e We no longer make use of parameters, as in (1.15);
e We do not assume that f(0) = 0.

We obtain solutions for a large class of problems. For example, we show that
the problem
—Au = (logu + Ae" + p1) X {uso0y in
u>0,u%0in Q
u =0 on 0f),
possesses a nontrivial solution for all A > 0 and u € R, compare with problem (1.2) studied
in [63].

Furthermore, we allow f to change sign. For example, we may consider
f(s)=As? —pus?, with0<g<1<p.
With this choice of f, we obtain a solution for the problem

—Au = (logu + AP — pu?) X us0y in Q
u>0,u%0in
uw =0 on 0,

for all A > 0 and p > 0. This equation is a singular version of the problem (1.1) treated in
[4]-

1.5 Contribution of Chapter 6

In this chapter, we study problem (1.18) with f having critical growth. Indeed,
in Chapters 2, 4 and 5, we assume that for each o > 0 there exists C, > 0 such that

|f(5)] < Cyexp(as?) for all s > 0.
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In Chapter 6, we assume the following stricter condition: that there exists o > 0 such that

lim sl =oo forall 0 < kK < o, and lim ) =0foral kK >a.  (1.19)
s exp(ks?) 500 exp(ks?)
Elliptic problems involving functions satisfying (1.19) are of interest even in the nonsingular

case, see for example [27], where the problem

“Au = Ml + e inQ
u>0 in Q (1.20)
u=2>0 on 0f2,

with A > 0, 0 < ¢ < 1 was studied, and the authors obtained two solutions provided «

and A are sufficiently small.

In Section 6.1, we show that, under certain conditions on f, there exists ay > 0
such that problem (1.18) is solvable provided 0 < a < ap. The main problem we have in

mind here is
—Au = (logu +u” exp(au2))X{u>0} in Q)

u>0,uz0in (1.21)
u =0 on 0f),
with 7 > 1. We remark, however, that we do not require f(0) = 0. As a consequence, we

also obtain the following result: for each u € R, there exists ay > 0 such that the problem
—Au = (logu + u” exp(au®) + 1) X {u>0y in O
u>0,u%0in
u =0 on 0f),

is solvable for 0 < a < «p.

Next, in Section 6.2, we consider the parametrized problem

—Au = (logu + Af(u))x{u>0y in Q2
u>0,u%#0in Q (1.22)
u =0 on 0f),

where f satisfies (1.19) for some o > 0. Here, we cease to control the value of o, and as a
consequence, two drawbacks appear. The first one, is that we have use the parameter A in
order to obtain suitable energy estimates, which only hold for large values of A. The second,
main drawback, is that we can only show that problem (1.22) is solvable provided that €
satisfies a certain admissibility condition. Indeed, we show that, under certain hypothesis
on f, there exists A9 > 0 such that problem (1.22) is solvable for A > Xy provided || < ¢,
where ¢ is a constant that depends on A and «. The issue here is that \y depends on
(), and consequently, so does c¢. We are unable to obtain examples of sets {2 which are

admissible. However, in Section 6.3, we give estimates for the value of ¢ for the problems
—Au = (logu + Auexp(au?)) xqusoy in Q
u>0,uz0in
u =0 on 0f),
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and
—Au = (logu + Xexp(au®))X{usoy in 2

u>0,uz%0in 2
u = 0 on If).

1.6 Contribution of Chapter 7

In [54] the authors studied the problem

—Au=—-u+ P inQ
u>0 in(2 (1.23)
u=>0 on 0f2,

where Q ¢ RY, N > 1 is a bounded smooth domain, with 0 < < 1 and 0 < p < 1. The

authors proved two results:

e Problem (1.23) admits a positive solution uy € Hj(f2) provided X is sufficiently
large. Furthermore, there exists u € Hé(Q) with v > 0 in €2 such that uy > u.

e There exists 0 < pyg < 1 such that the solution u, is unique in the set
{u € H}(Q) : u > u}, provided 0 < p < po.

We also refer to [42], where the authors studied the problem

—Au = a(z)g(u) + Af(z,u) + pub(z) inQ
u>0 inQ (1.24)
u=20 on 0f),

with A, u > 0. There, the authors assumed that there exists 0 < v < 1 such that
a,b € C”(Q) with a,b > 0 in Q. (1.25)

As for the functions f and g, it was assumed that

g is nonpositive, nondecreasing and g € C”(0, 00), (1.26)
[ :Qx[0,00) = [0,00) is nonnegative and f € C¥(Q x (0,00)), (1.27)
Sli_)rglog(s) = —00. (1.28)

and there exist constants C' > 0, dp > 0 and 0 < 8 < 1 such that
l9(s)| = —g(s) < Cs7 for 0 < s < &. (1.29)

The authors also assumed that the mapping

| I
S

is nonincreasing for all z € Q, (1.30)
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and that

lim flz.s) _ 00, lim f(z5) = 0, uniformly for x € Q. (1.31)

s—0 S §—00 S
With this hypothesis, they showed that there exist A* > 0 and p* > 0 such that problem
(1.24) is solvable provided A > A* or p > p*. Conditions (1.30) and (1.31) mean that f is
a generalization of the function f(x,s) = s” for 0 < p < 1. Condition (1.29) imply that

I
/ g(t) dt < oo, and the authors proved that if
0

1
[ owat =,
0
then problem (1.24) is not solvable.
In this chapter we consider the problem
—Au = a(z)g(u) + Ab(z)u? in{

u>0 in (1.32)
u=20 on 05,

where @ ¢ RN, N > 1 is a bounded smooth domain, A > 0 is a positive parameter, a
and b are positive weight functions, g : (0,00) — R is continuous, satisfies (1.28)-(1.29)
and 0 < p < 1. Observe that problem (1.32) may be obtained from problem (1.24) by
considering p = 0 and f(x,s) = s”. On the other hand,

e we allow g to change sign
and
e we allow the weights a and b to be singular near the boundary 02 of €.

Indeed, instead of (1.25), we assume that
a,b e C(Q), m(%n{a, b} > 0,
and that there exist C' > 0 and 0 < ¢ < 1 with ¢ 4+ 8 < 1 such that
max{a(z),b(z)}d(x)” < C for all z € Q,
where
0(z) = dist(x,00) = yie%fﬂ |z — yl.

However, we add the assumption that the nonlinearity ¢ is sublinear at infinity, that is,

there are constants 0 < ¢ < 1 and C5 > 0 such that

lim 9N _ o) (1.33)

s—oo g4

Under these hypothesis, we show that there exists Ag > 0 such that problem (1.32) has a
subsolution u € H&(Q) for A > Ag. Next, we obtain a solution u, > u provided A > ).
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If we further assume that g is of class C' and that there exists 0 <y <2 — o
such that
|9’ (5)] < Cyls|™7 for everys > 0, (1.34)

then a uniqueness result hods: the solution uy is unique in the class of the functions
{u € HY() : u > u}. We thus generalize the results of [54]. Our uniqueness result is very
general, and also holds for nonsingular problems. For example, we may consider a = b =1
in Q and g(s) = s? with 0 < ¢ < 1 in (1.32), so that the problem

—Au=u?+ AuP inQ
u>0 in Q2
u=20 on 02,

is uniquely solvable in the class {u > u} for small values of p. We may also take g = 0 in
(1.32), so that the problem

—Au= X u? inQ
u>0 inQ
u=>0 on 052,

is uniquely solvable in the class {u > u} for small values of p.



29

2 A problem in the plane with terms of expo-

nential growth

In this chapter we study the problem

—Au = —u_ﬁx{wo} + AP + pf(u)inQ
u>0,uz0in (2.1)
u = 0on 02,

where 0 C R? is a bounded smooth domain, 0 < 3 < 1,0 < p < oo and f is allowed to
have exponential growth. The aim of this chapter is to show that problem (2.1) has a
nonnegative solution for every A > 0 when the parameter p > 0 is small. We will suppose
that f satisfies

f(s)=0for s <0, feC*(0,00)NC[0,00) for some 0 < v < 1, (2.2)
and that for each a > 0 there exists a constant C,, > 0 such that

|f(s)] < Cyexp (as2>, for every s > 0. (2.3)

Examples of function f satisfying (2.3) for all &« > 0 are f(s) = ¢ and
f(s) = s7e® with 7 > 1.

We will use a perturbation technique. For each 0 < € < 1, we consider the

problem
—Au+ g(u) = P + pf(u) inQ
u>0 in Q (2.4)
u=>0 on 052,
with the perturbation g. given by
54
———— for s >0
ge(s) =4 (s+e)ut? - (2.5)
0 for s <0,

where 0 < ¢ < min{1, p}. Our aim is to obtain solutions of (2.4) that converge to solutions
of (2.1). Observe that g.(0) = 0 and g. € C*°(0,00) N C(R) converges pointwisely to s
for s > 0. We define the functional I, , : Hy(Q) — R by

Topp(u /IVu|2dx+/ G 1—|—p/ +)1+p—u/QF(u)dx, (2.6)

where F(u / f(s)ds and G.(u) = / ge(s)ds. From the fact that f and g. are
0

continuous functlons that satisfy (2.2), (2.3) and (2.5), we conclude I, , is of class C"
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and
17, (u)(v) = / Vqu—i—/ ge(u)v—)\/ (u+)pv—u/ f(u)v, for all u,v € Hy (), (2.7)
" Q Q Q Q
see Theorem B.16. Consequently, if u, € H,(€2) is a critical point of I, , then

/QVU6VU + /Qge(ue)v = )\/Q(uj)pv + u/ﬂ fu)v, for all v e Hy(9Q). (2.8)

Choosing v = u_ in (2.8) and using (2.2), we obtain

—/Q|V(u5)_|2 —0.

Hence, u, > 0 in 2. We conclude that critical points u. € H&(Q) of I, are nonnegative

and
/ Vu.Vv +/ ge(ue)v = )\/ uPv + ,u/ fuc)v, for all v € Hy(Q). (2.9)
Q Q Q Q

Therefore, critical points of I ), are weak solutions of problem (2.4). Furthermore, if
ue € L>(Q), then for each 0 < e < 1 fixed

SUp(|ge(ue)| + Au + pil f(ue)]) < oo,
and consequently
Au, € L*(Q).
We conclude from Elliptic Regularity Theory (Theorem B.14) that u, € W?*"(Q) for all
r > 1. Thus, the Sobolev Embedding (Theorem B.13) implies that u, € C*" (), where
0 < v < 1is given by (2.2). Summarizing, we have
Lemma 2.1. Suppose that [ satisfies (2.2) and (2.3). The following assertions hold:

(1) Critical points of I. 5, are nonnegative weak solutions of problem (2.4).

(ii) If u € Hy(Q) N L®(Q) is a nonnegative weak solution of problem (2.4), then u is
smooth and u € C""(Q), with v given by (2.2).

Remark 2.1. The fact that critical points of I », are nonnegative is key for our purposes.
If instead of (2.2), we assume that

f(0)#0,  feC(0,00)NC[0,00),

then we can no longer assume that f(s) =0 for s <0, because then the functional I, ),

would cease to be of class C*. However, we will solve this issue in Chapter 5.

Throughout this chapter, we will use the Trudinger-Moser inequality, see
Theorem B.6. We observe that
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Lemma 2.2. Assume that f satisfies (2.3) and that f(s) = 0 for s < 0. The following

assertions hold

(i) For each o« > 0 there exists a constant C' > 0 that depends on o such that
max{|f(s)|,|F(s)|} < Cexp (as®) for s € R. (2.10)
(ii) If there exist a sequence (uy) in Hy(Q) and a constant D > 0 such that
[tnllzay < D for alln € N,
then there exists u € Hy(Q) such that up to a subsequence u, — u weakly in Hy(SY),

/Qf(un)dx — /Qf(u)dx asn — oo, (2.11)

and
/QF(un)dm — /QF(u)da: as n — oo. (2.12)

Proof of Lemma 2.2. First we prove item (). Suppose that f satisfies (2.3) and fix
a > 0. From the fact that f(s) =0 for s < 0, we can find a constant C; > 0 depending on
a such that

|f(s)] < Cyexp (as?®) for s € R.

From hypothesis (2.3) there is a constant Cy > 0 such that

|F(s)] < / |f(t)]dt < C’Q/ exp (§t2> dt < Csls|exp <gs2> for s € R.
0 0
Since there exists a constant C'3 > 0 depending only on « such that
|s| < Csexp (gsz) for s € R,
we obtain
|F(s)] < CyCsexp (a52) for s € R.
This proves (2.10).

Now we prove (ii). Since the sequence (u,,) is uniformly bounded in Hj(2), we
know that there exists u € Hj () such that up to a subsequence, u,, — u weakly in H; ()
and

up, — win L"(Q) for all r > 1. (2.13)

Assertions (2.11) and (2.12) follow from (2.3) and from Theorems B.6 and B.8. Indeed,
choose o > 0 such that 2aD? < 47. From Holder’s inequality we have

/Q]unf(un)\ dx < C/Q |, | exp (qu?) do < C (/Q exp (2cu?) d:v); (/Q |un|2dsn'>é .
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From (B.8) and (2.13) we get a constant C' > 0 such that

/Q|unf(un)| dz < C

Then, (2.11) follows by Theorem B.8. Assertion (2.12) follows analogously: we only need

to use item (i) and replace f by F' in the previous estimates. We have proved item (i7). [

Throughout this chapter, we will need estimates on the perturbation g. which

are uniform in €. We have

Lemma 2.3. The following assertions hold

()
1

1-p

0 < ge(s) <s” and 0 < G(s) < s'7F for s > 0. (2.14)

(ii)

gs* (g +pB)st!
S + 6)‘1"1‘/3 (5 + E)q+,3+1 :
(iii) Let 0 < g < 1 be a constant such that 0 < q < @, where q is given by (2.5). Then, for

each M > 0, there exists 0 < § = §(M) < 1 such that

salls) = ¢ (2.15)

M _
G(s) > ms‘ﬁl for 0 <s <. (2.16)
Proof of Lemma 2.3. Items (i) and (i) are clear from the definition of g, see (2.5). We

now prove item (ii7). Note that

(s) = > = 9 f > ().
9e(s) (5+ €)1 8 = (st 1)it8 (54 1)atB~ ors =0

Hence,

1 _
ge(s) > 2q+ﬂsq’qs for0<s<1.

Since 0 < ¢ < g, we know that for each M > 0 there exists d = §(M) < 1 such that
ge(s) > Ms?for 0 < s <0< 1.
We thus obtain

s s _ M - _
G(s) :/ ge(t) dt > / MtTdt = ——sT for 0 < s <6 < 1.
0 0 1+7q

This proves item (ii7). O

Remark 2.2. In other works, for example [25] and [20], the authors consider the simpler

perturbation
s

()= G+
0 for s < 0.

for s >0
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Observe, however, that the function g, does not satisfy item (iii) of Lemma 2.3.

The functions j. : R — R defined by

Je(s) = A(sT)" + pf(s) = ge(s),

and J(s) = / Je(t) dt will play an important role in this chapter, because
0

1
Ioyu(u) = 5/ |Vul? —/ J(u) for all u € Hy(Q). (2.17)
Q Q
We will denote the functions j. and J. merely by 7 and J respectively. In order to get
important properties of j and J we assume that f satisfies the following condition.

There exists a constant sg > 0 such that
min{ f(s), F(s)} > 0 for every s > s,. (2.18)

Under certain circumstances we also assume that there exist constants A > 0, and v > 2
such that
F(s) > Als|” for every s > s. (2.19)

Condition (2.19) will also be important later, when we proceed to obtain an element

$o € Hy(Q) with negative energy. For now we establish elementary properties of j and J.

Lemma 2.4. The following assertions hold.
(1) Suppose that f satisfies (2.2). For each R > 0, there exists a constant C' > 0
that does not depend on € such that

max{|J(s)|,|sj(s)|} < C forall s < R.

(ii) Suppose that A > 0, u > 0 and that f satisfies conditions (2.2) and (2.18).
Then, there exists Ry > 0 such that J(s) > 0 for all s > R,.

(7ii) Suppose that A = 0, u > 0 and that [ satisfies (2.2), (2.18) and (2.19).
Then, there ewxists R, > 0 such that J(s) >0 forall s > R,.

Proof of Lemma 2.4. First we prove item (7). Note that

A
_ p+1 F(s) — f > 2.2
J(s) Y 75 + pF(s) — G(s) for s > 0, (2.20)

and
s7(s) = AsPT 4+ pusf(s) — sge(s) for s > 0.

Then, it follows from Lemma 2.3 that

A 1
J(s)| < ——RPH! 4 F(s)|+ ——R'"P for 0 < s <R,
\@ﬂ_p+1 ugg;!@ﬂ T3 or0<s<
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and
55(s)| < ARP™ + i sup |sf(s)| + R*P for 0 < s < R.
0<s<R

This proves item (7). Item (i7) follows from (2.18), (2.20) and Lemma 2.3. Indeed,

A 1
J(s) > msp“ 1 551_ﬁ for s > sy.
Hence, J(s) > 0 provided
+1
> P2
T A1-5)

We have proved item (ii). Now we prove item (iii). Applying (2.19), Lemma 2.3 and the

condition A = 0, we get

1
J(s) > pAs? — ms“ﬁ for s > sq.

Hence, J(s) > 0 provided
1
grtB-1 > -
pA(1 = )
We have proved Lemma 2.4. O

2.1 Properties and solutions of the perturbed problem

In this section, we study the perturbed problem (2.4). The first aim of this
section is to show that under certain conditions on f, there exist constants 0 < 6 < 1/2
and Ry, > 0 that do not depend on € such that

J(s) < 0sj(s) for s > Ry -

Using this result and Lemma 2.4, we will be able to show that the functional I ) , given

by (2.17) satisfies a compactness condition. We make the following assumptions on f.

e When p > 1 in (2.1) we assume that
pf(s) < sf'(s) for all s > s, (2.21)
or that there exists constants C' > 0 and p < p such that
Ipf(s) — sf'(s)| < Cs” for all s > s. (2.22)

Observe that f = 0 satisfies (2.21) and f(s) = s” satisfies (2.22) when 0 < 7 < 1.

e When 0 < p <1 in (2.1) we suppose that

lim s'7f'(s) = oo, (2.23)

S5—00
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and that there exists a constant 0 < v; < 1 such that

sf'(s)

>3 for all s > 5. 2.24
s) = +uv, forall s > s (2.24)
e When A =0 in (2.1) we assume that there exists a constant 0 < v, < 1 such that
sf'(s)
> 2 for all s > 2.25
s) = + vy, forall s > s, (2.25)
and
lim sf’(s) = oc. (2.26)

Under these assumptions, we get

Lemma 2.5. Suppose that f satisfies (2.2), (2.18) and that one of the following assertions
hold:

(1)) A=0, p >0 and f satisfies (2.19), (2.25) and (2.26).
(i) A >0, u>0,0<p<1, and f satisfies (2.23) and (2.24).

(iii) A >0, p > 1, and f satisfies one of the conditions (2.21) or (2.22).
1
Then there exist constants 0 < 0 < 3 and Ry, > 0 such that

0 < J(s) <8sj(s) for s > Ry .
Consequently, item (i) of Lemma 2.4 implies that there exists Dy, > 0 such that

|J(s)| < Do, +0sj(s) for all s € R.

Proof of Lemma 2.5. From Lemma 2.4, we know that J(s) > 0 for large value of s. For

1
each 0 < 0 < 3 let B.(s) = J(s) — 0sj(s). We only need to show that B(s) < 0 when s

is large. We have
Bi(s) = (1= 0)j(s) — 0s5'(s).
Hence,
Bi(s) = =(1 = 0)ge(s) + Osgc(s) + M(L = 0)s” — Ops”) + u((1 = 0)f(s) — Osf'(s)).
From (2.15) we obtain
[sg.(s)] < als|™ + (g + B)|s|™” — 0 as s — oc.

It is also clear that
(1 —=0)g(s) = 0ass— 0.

Hence, for each 0 < 7 < 1 there exists T, > 0 such that

Bl(s) <7+ A(1—0—0p))s" + u((1—0)f(s) —b0sf'(s)) for s > T,. (2.27)
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Case 1: Suppose that p > 1 and (i) holds.

In this case, we choose 6 such that

(2.18), we obtain

1 1
P <0< 3 Hence, 1 — 0 —0p < 0. Using

Bl(s) <74+ M(1—0 —0p))s” + ub(pf(s) — sf'(s)) for s > max{so, T} }.

Choosing 7 = 1/2 and using the fact that f satisfies one of the conditions (2.21) or (2.22),

we find a constant Ty, > so such that

Bl(s) < —1for s > Ty . (2.28)
Note that
A
B(s) = ﬁ(f)p“ + 1F(s) = Ge(s) = 0s(M(sT)" + puf(s) — ge(s))
Hence,
Be(TG,)\,;L) S Rla
where Ner )p—i—l
= % + uF(TO,A,u) + Q(TG,A,M)P’B-

From (2.28), we conclude that there exists a constant Ry > 0 such that
B.(s) < —s+ Ry for s > Tj 5.

Hence, Bc(s) < 0 for s > max{Ry, Ty, }. This proves (ii1).

Case 2: Suppose that 0 < p < 1 and that (i) holds. We claim that there exists constants
1
0<9<§andT2>0suChthat

AM(1—60—06p))s® +u((1—0)f(s) —0sf'(s)) < —1 for s > Th. (2.29)
Indeed, (2.29) holds if and only if
M1 —=60—=0p)s"+u(1—0)f(s)+1< pubsf'(s) for s > Ts.

Consequently, it is enough to show that

3 31— 0)f(s)

Sf(s) > : 3A(1—0—0p)

16

, and s'77f'(s) >

Y

for sufficiently large s. Claim (2.29) then follows by choosing 6 such that

(1 —6) %1
1 1+ —.
< 0 <l+ 3

and by (2.23) and (2.24). Then, from (2.27) we obtain

Bl(s) <1 —1 for s > max{T,,T>}.
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Choosing 7 = 1/2, we find a constant 7{9:“ > () such that
/ 1 7
Bl(s) < ~3 for s > Tj 5 .-

(77) then follows by a similar argument given in (#ii).

Case 3: Suppose that A = 0 and that (7) holds. We will show that there exists T3 > 0
such that
p((L—=0)f(s) —0sf'(s)) < —1 for s > Ts. (2.30)

Indeed, (2.30) holds if and only if
u(l—80)f(s)+1 < ubsf'(s) for s > R,,.

Consequently, it is enough to show that

2(1 - 6)f(s)

sf’(s)>£andsf’(s)> 7 :

" (2.31)

for sufficiently large s. (2.31) then follows by (2.25), (2.26) and by choosing € such that

(1—0) 1)
1+ —=.
R

Hence, (2.30) follows. Then, from (2.27) and from the fact that A = 0, we obtain

1<

Bl(s) <7 —1 for s > max{T,, T3}
Choosing 7 = 1/2, we find a constant Tj , > 0 such that
, 1
Bl(s) < —5 for s > Ty ,.

() then follows by a similar argument given in (i:3).
0

We now obtain a compactness result. We follow ideas of [30] and [63]. The main ingredient

is a lemma due to Lions, see Theorem B.7.

Lemma 2.6. Fiz 0 < e <1 and assume that f satisfies (2.2), (2.3) and (2.18). Suppose
that one of the following conditions hold:

(i) A =0, f satisfies (2.19), (2.25) and (2.26).

(1) A > 0,0 < p <1, f satisfies (2.23) and (2.24).

(1ii) A >0, p > 1, f satisfies one of the conditions (2.21) or (2.22).

Then the functional I. 5, defined in (2.17) satisfies the Palais-Smale condition at every
level ¢ # 0.
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Proof of Lemma 2.6. If f satisfies (2.3), then j also satisfies (2.3) and for each a > 0

there exists a constant C,, > 0 depending only on € and a such that
max{|j(s)|,|J(s)|} < C. o exp (as?) for s € R. (2.32)

Throughout this proof we denote || - || z1(q) by || - [|. Let (v;,)nen be a Palais-Smale sequence
for I, in Hy(Q) at the level c. That is
1
5””2”2 - / J(v;)dx — cas n — oo, (2.33)
Q
and there is a sequence 7,, — 0 such that

< 7, ||w| for each w € Hy(£2). (2.34)

|/ Vs Vw dx — / Jjui)wdx
Q Q
Let 0 < 6 < 1/2 and Dy, > 0 be given by Lemma 2.5. We have
[T (W] < Do+ 0035 (v7,).
Using (2.33) we obtain a constant Dy > 0 that does not depend on € > 0 such that
1
Slesl < Dy +6 [ o) da.
Taking w = v, in (2.34) we also conclude that
[ @ de < )12+ mallog
Hence,
1
Sloall® < Dy + lvr|I* + b5l
Since 6 < 1/2, there is a constant D > 0 such that
vy || < D. (2.35)

It follows from (2.32) and Lemma 2.2 that there exist a subsequence (v¢ ) in Hy () that

Nk

we continue to denote by (v¢) and an element v € H;(2) such that

vy, — v° weakly in Hé(Q);

v, — v in L"(Q) for every r > 1;

v, — v a.e in

|vs| < h, a.e in Q for some h, € L"(f2); (2.36)
o) d / () dos

[iw)de = [ jw)da
J@)de — [ J(w)dr,

/Q (Un) z o (U ) X

For simplicity of notation we will denote the sequence (v)) and the function v merely by
(v,) and v respectively. From (2.33), (2.34) and (2.36), we get

Jim ffoall? = 2(e+ | J(v) o), (237)
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and
lim vnj(vn) =2(c +/ v)dx). (2.38)

n—oo

We will now split the proof in two cases.

Case 1. Suppose that ¢ # 0 and v # 0. We will show that I, 5 ,(v) = c. Assume
by contradiction that I ,(v) < c. Then

]2 < 2 (c—l— /Q (o) d:c) . (2.39)

Let W,, = v,/||vn|| and W = U/\/Q(C-i-/ J(v)dx). Hence, W,, — W weakly in Hj(2),
Q
|W,|| =1 and ||[W| < 1. From Theorem B.7, we get a constant ko > 0 such that

47

sup/ exp(tW?) < ky for every 0 <t < ————.
n Ja (L= [W][?)

We know from (2.32) that for each 7 > 1 there is a constant C--__, > 0 such that

6,0

|(vn)| < Tmexp(rav) C= exp(?a||vn||2Wn). (2.40)

€,

We want to choose « and ¢ such that

R A dr(c+ [ J(v
Fallv.|]? <t < E = ( o/l ))
S | ) c— I u(v)
2(c+fQ J(v))
To do that, we fix t > 0 such that
Ar(c+ [o J(v))
13 ;
c—Iepu(v)
and take v > 0 so small that .
a < =55

where D is given by (2.35). With these choices of o and ¢ we obtain from (2.40) and
Theorem B.7

7,6,

/|j Un)|" d:zc</ = 0 XD (Fa||v, [[PW,) < G ks for cach 7> 1, neN.

Hence, from (2.38),from Holder’s inequality, and from (2.36), we get

2 (c+/ J(v) d:t:) = lim | v,j(v,)dx = lim vj(vn) dx.
0

n—oo QO n—oo

On the other hand, from (2.34),

/anVvdx—/Q (vp)v dx

< T,||v]] for each n € N.

Hence,

—Jv||7 + / Jj(vp)vdr < / Vu,Vudz < ||v||7, + / j(v,)vdx for each n € N.
0 Q Q
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Letting n — oo, we get

|v||> = lim [ Vu,Vvdr = lim [ vj(v,)do=2(c+ [ J(v)dz).
=

n—oo JO

This contradicts (2.39). We have thus proven that I ) ,(v) > ¢. On the other hand, (2.36)
and (2.37) imply that

o]l < Tim [Jon? = 2 (c+/ T(v) dx) .
n—oo Q

Hence, I, ,(v) < c. Therefore, we must have I, » ,(v) = c. As a consequence, using (2.37),

we obtain
: 2 _ — 12
Jim ol =2 (e [ J(0)de) = ol
Then, it follows that v, — v strongly in Hg(£2).

Case 2. Assume that ¢ # 0 and v = 0. We will prove that this cannot happen.
We first show that
/ 1i(va)[ dz < oo for each 7 > 1. (2.41)
Q

Fix a constant 0 < d < 1. From v = 0 and (2.37), we know that for large n,
|vn|I? < 2¢ 4+ d.

From (2.32), we know that for each a > 0 there is a constant C;, . > 0 such that

[ lil e < Cr,,, [ exp{(Fand)} do.

Choosing )
T

T F2c+d)
it follows from (B.8) that there is a constant C, > 0 such that, for a sufficiently large n,

/Qyj(vn)ﬁdx < Cs k.

This proves the claim (2.41). We now apply Holder’s inequality and use the fact that
v, — 0 strongly in L*(€2) to get

|/vn] vy) dx|< </ |7 (vn |2dx) (/ |vn|2d:v>2—>0asn—>oo.
0 0

On the other hand,

< 7u||vn]| for all n € N.

‘/ |an|2dav—/Q (V) dx| <

This means that

—71,D + / J(vp)v, de < / Vo, |*dx < 7,,D + / J(vp)v, dx for all n € N.
Q Q 0
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Hence,

[on]l = 0 = [[o]].
This contradicts the fact that ||v,|| — 2¢ # 0. This proves the result. O

We have proved that the functional I, , satisfies the Palais-Smale condition.
Also, we know that I , is of class C'. We turn our attention into showing that problem
(2.4) possesses a nontrivial solution u. > 0. We will obtain a solution that is a Mountain-
Pass. To do that we need to prove that there exist constants a; > 0 and 0 < p < 1 such
that
Iexu(u) 2 ay for [lul| gy o) = p,

and that there exists an element ¢y € Hy(€2) such that
[Goll () > 1 and I x (o) < (2.42)

The lemma below guarantees that (2.42) holds for ¢9 = Ny when Ny > 0 is large. It is
here that condition (2.19) comes into play.

Lemma 2.7. Suppose that f satisfies (2.2), (2.18) and that one of the following assertions
hold:

(1)) A=0, u>0 and [ satisfies (2.19).
(1) A>0, u>0,0<p<1and f satisfies (2.19).

(1ii) A >0, u >0 and p > 1.

Then there exist constants Ny > 0 and ay > 0 such that

Icxu(Nopr) < —1 for every 0 < e <1, (2.43)
and
sup Iy (sNop1) < ag for every 0 < e < 1. (2.44)
0<s<1

Proof of Lemma 2.7. First we prove (7). Note that

2
Ioou(sp1) = % + /Q Ge(spr) — u/ﬂF(sqﬁl) for all s > 0.

1-8
Since 0 < g.(s) < s it follows that Ge(s) < 15 3 for all s > 0. Let so > 0 be given by
(2.18). We have
52
I.o,u(s91) < —+ / F(spp)— F(s¢q) for all s > 0.
0n(31) < S+ é1 M oo <ony (s¢1) —pu (o100} (s¢1) 2

Using (2.19) and the continuity of F' we obtain a constant ¢; > 0 such that

82
Ie,O,u(Sd)l) S 5

e — ,uAs'Y/Q @] for all s > 0.

ﬂ{sd)l >80}
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Hence, there are constants co, c3 > 0 such that

2
2
Lou(spr) <+ % + o5t P — 387 for all s > Su;(q)bl.
Thus, I, (s¢1) < —1 provided
2
c + 5 + o5t TP — 387 < —1.
Since v > 2 > 1 — 3, we know that
2

lim <01 + st — 0357> = —00,

5—00 2
and therefore lim I.ou(sp1) = —oo. This proves (2.43). Let Ny > 2 be such that

Ie,O,u<N0¢l) < —1. It follows that
s2Ng

Lo (sNooy) < + /Q G (sNod1) d — /Q F(sNo¢n) for all s > 0,

From (2.18) the exists ¢4 > 0 such that

2 N2 N 5 1-8
I ou(sNog1) < ca + i 5 0 0 e / (b% P dx for all s > 0.
Hence,
sup e, (sNod1) < az,
s€[0,1]
where ) s
Ny Ny~ 1-8
= dx.
2 2 "1-8 /Q ¢ de

This proves (2.44). The proof of (7) is complete.

The proof of (ii) is very similar to the one given in (7) because

2
Lp(sn) < % +/QGE(S(Z51) _ ,u/QF(S(bl) for all s > 0.

The result then follows by using condition (2.19) as in the proof of (7).
Now we prove (izi). We have

A

]eku(sgbl 7+/G S¢1 ‘l‘l

p+1/¢p+1—,u/ (s¢y) for all s > 0.

From (2.18) we obtain a constant ¢s such that

2
Tepu(s91) < s+ % +/ Ge(sp1) — 75“1/ ¢ for all s > 0.
Q )

p+1

Hence, there are constants cg, c; > 0 such that

2
Icxu(so1) <cs+ % + st — crsPT! for all s > 0.
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Thus, I, (s¢1) < —1 provided

2

S
Cs + 5 -+ CﬁSliﬁ — C7Sp+1 < —1.

Since p+1>2 > 1— 3, we know that
. s° 1 1
lim <c5 + 5 + cest P — cpsPT > = —00,

and therefore lim I u(s¢1) = —oo. This proves (2.43). Let Ny > 2 be such that
I\ (Nop1) < —1. It follows that

2 772
E

A
Toan(sNody) = 220 4 /Q ClsNog) da—25 /ﬂ (sNogy "' —pu /Q F(sNyéy) for all s> 0,

From (2.18) the exists cg > 0 such that

$2N2 leﬁsl—ﬁ

Icxu(sNopr) < cs + 5 0 4 01 5 / qb}_ﬁ dx for all s > 0.
— Q

Hence,

sup e u(sNod1) < az,

s€[0,1]
where ) X

N5 Ny~
a2—08+7+ L /gbl b dx.

This proves Lemma 2.7. ]

Next we obtain solutions for the perturbed problem (2.4).

Proposition 2.1. Fiz A\ > 0 and let ay be given by Lemma 2.7. Suppose that [ satisfies
(2.2), (2.3) and (2.18) and that one of the following conditions hold:

(1)) A =0 and f satisfies (2.19),(2.25) and (2.26).
(1i)) A > 0,0 <p<1and [ satisfies (2.19), (2.23) and (2.24).
(iii) X >0, p > 1 and f satisfies one of the conditions (2.21) or (2.22).

Then, there exists a constant g > 0 such that problem (2.4) possesses a
nonnegative nontrivial solution u. for each 0 < u < pg. Moreover, there exist constants

ay > 0 and D > 0 that do not depend on e such that
0 <ay < Ia(ue) < ay,

and
[well 20y < D
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Proof of Proposition 2.1.Let ¢ be given by (2.16) and suppose that A > 0. Note that

A
I u(u / |Vul? + /u<§} Ge(u) — 1 et u/ ) for every u € Hy ().
1+
Choosing M = A+ in (2.16), we obtain
I+p
Ioa(u) > / |Vu |2—L u/ u) dx for every u € Hy(Q).
© p+1 u>5}

Observe that there exists a constant C; > 0 such that
P < O sPT2 for s > 6.
Hence, there exists a constant C'y > 0 such that
Ioa(u) > ||u||H1(Q) 02/ |2+ — M/ w) da for every u € HL(S).
Hence, from the Sobolev embedding there is a constant C3 > 0 such that
Foan) 2 0l oy = Collullyte, = p [ Flu)de for every uw € HY(©).

Therefore,
Toru) 2 Gllulli ey — e [ F(u)dr for Jull ey < (2.45)

_<1>3’
P=\acy)

Note that (2.45) also holds when A = 0 and p = 1. Hence, from now on we will assume

where

4

that A > 0. Let 0 < a < —Z From (2.3) and Lemma 2.2 we get a constant Cy > 0 such
p

that

2
1 U
) = Ml )~ [ e (anun%{m () ) iz for |l ey < o

[l 7730

Hence, from the Trudinger-Moser inequality, (B.8), we get

1
Tenu(u) = i”“”%{&(@) — pCyky for HUHH&(Q) <p.

Choosing
ILL — L
* T 8Cuky
we obtain
1 2 P’
Lep(u) = 1 lull g @) — R for every 0 < p < po, [Jullma) < e
Hence,

Ieau(u) 2 ay for [ul| gy o) = p,
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where
_r
T
Let I' = {y € C([0,1], Hy(Q)) : v(0) = 0,~(1) = No¢ }. By the Mountain Pass Theorem

(Theorem B.18), we conclude that there is a sequence (u) in Hj(£2) and a number

ay

c. = inf sup I, s)),
inf sup L(3(5)

such that
lim Iou(up) = ccand lim I7,  (uy,) = 0.
That is,
1. . €
§||un||§{3(ﬂ) — /Q J(u,) dx — c. (2.46)

And there is a sequence 7, — 0 such that

< Tul[v[| g1 () for each v € Hi(Q). (2.47)

/Vu;Vvdm—/j(u;)vdx
Q Q

We will now show that there is a constant D > 0 that does not depend on € such that
HU:LHHS(Q) <D. (2.48)

1
Fix 0 <6< 5 and assume that one of the conditions (i), (¢7) or (¢i7) hold. Then, we may

apply Lemma 2.5 to obtain a constant Dy, > 0 depending only on 6, A and p such that
| (u)| < Doy + Ougj(uy,).
Since a; < ¢, < ag, we know from (2.46) that there is a constant D; > 0 such that
1 €112 [
Sl < D +0 | st da
Taking v = u, in (2.47) we also conclude that
[ sy do < By ) + ol gy

Hence,

1 € € €
§||Un||12r{3(9) < Dy + 0l|up I3 @) + mllun | @)

1
Since 6 < Y (2.48) follows. We conclude that there is u. € Hy (), [tell 3y < D such
that
uf, — u, weakly in Hy(Q).
We know that (u;,) is a Palais-Smale sequence at a positive level. By Lemma 2.6, it follows

that w, is a critical point of I 5 ,. The result then follows from Lemma 2.1 O
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2.2 Convergence of the perturbed solutions

In this section, we study the convergence of the solutions u, of problem (2.4)
obtained in Proposition 2.1. This proposition guarantees that there exists a constant D > 0
such that
[well ) < D, for each 0 < e < 1.

Hence, there exist u € Hj(£2) and a sequence (¢,) in (0,1) such that ¢, — 0 as n — oo
and

u., — u weakly in H;(€),

U, — u in L"(Q) for every r > 1,

(2.49)
Ue, — U a.e in §2,

[tte,,| < h, a.e in Q) for some h, € L"(2).

Under additional conditions on f, we can apply regularity results discussed in Appendix

A to conclude that u., are smooth and that u is continuous. Assume that there exist

constants 0 < ¢y < 1 and 0 < ¢; < 1 such that

lim ’“’;250)’ < o, (2.50)
and
Sl_i}(rﬁr st f(s)] < o0, (2.51)

From Lemma A.2 we obtain a constant K; > 0 such that
l|te,, || o) < Ky for all 0 <€, < 1.

Then, it follows from Lemma 2.1 that u., € C"*(Q), where v is given by (2.2). We proceed
by obtaining gradient estimates for the functions u.,. Let Q' be a smooth subdomain of Q
such that ' C ¥ C Q. We would like to get a bound of the form

sup |V, (z)] < C < oo,
Q/

for some constant C' > 0 that does not depend on e. Actually, we obtain a sharp result.
There exists a function Z € C[0,00) with Z(0) = 0 such that

|Vue, (x)| < MZ(u,,(x)) for all z € Q.

It follows from Lemma A.3 that there exist a constant M > 0 that depends on €' but not

on ¢, and a universal constant ¢y > 0 such that
Vue, ()] < M(ue, ()7 +u,, (2)) < 2MK, for every 2 € @, 0<e<e. (2.52)

Hence, it follows from the Arzela-Ascoli Theorem (Theorem B.5) that w., — w uniformly
in compact subsets of €2, so that u is continuous and 0 < u < K;. In this section, we will

show that u is a solution of problem (2.1) in the sense that

O N O
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for every ¢ € C1(Q) and
u_BX{“>0} € Llloc(Q)'
We have
Lemma 2.8. The function u is nontrivial and u’ﬁ)(m belongs to L, (Q), where 2, =

{z € Q:u(x) > 0}. :

Proof of Lemma 2.8. First we show that « is nontrivial. Since ., is a critical point of

I, u, we have

It Wgion + [ Gen it e, = A [ 0 | fue e,

and

1
[€n7)‘nu(u€n) = il‘uan%Ié(Q) +/QG€n(u€n) Y u%::_l - /‘LA F(uén) > al?

where a; is given by Proposition 2.1. Hence,

1 1 1
-[En,)\,,LI,(uen) - /Q (Gen (u5n> - §g€n <u€n)u5n> dx + >\ (2 - W—) ‘/Quzé)aj_l dCU
1
+ u/Q <2f(u€n)u6n — F(uen)) dx > ay. (2.54)

Recall that 0 < u,, < K; in Q and consequently 0 < u < K in (). Hence, from the

Dominated Convergence Theorem, we obtain

n—oo

lim /Qf(uen)uen d:z:z/ﬂf(u)udx.

From Lemma 2.2, we get

It is also clear that
lim / Je, (Ue, e, dz = / u' P dx
Q Q

n—oo

and .

Taking the above limits into account and letting n — oo in (2.54) we obtain

uw=f yth 1 1 , 1

We proved that u is nontrivial. Now let V C  be a open set such that V' C Q. We will
show that

/ u Pxor dr < oo.
v
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Take ¢ € C}(Q) such that 0 < ¢ < 1and ¢ =1 in V. Since u,, is a nonnegative critical

point of I, »,, we obtain

| 9w )e =2 [t [ flug)C= [ Y, VE

Since 1., — u weakly in Hj () and u,., — u uniformly in compact subsets of , we get

/Qggn(uen)g — /Q()\up + puf(u))C —/QVUVC as n — 00. (2.55)

Define the set Q, = {z € Q : u(z) > p} for p > 0. It follows from (2.55) and by the
definition of ¢ that there exists a constant C' > 0 that does not depend on € nor on p such
that

ug
/vmp (ter + )17 = /Qgen(uen)c <Cforall0<e <e, p>0,

where € is given by (2.52). Letting n — oo and using Fatou’s Lemma, we get

/ u’ﬁpr <C.
1%

Letting p — 0 and applying Fatou’s Lemma again, we conclude that

/VufﬁX{wo} < 0Q.
Since V' was arbitrarily chosen, Lemma 2.8 is proved. O

We state the main result of the chapter.

Theorem 2.1. Suppose that f satisfies (2.2), (2.3), (2.18), (2.50) and (2.51). The following

assertions hold:

(i) Fiz A > 0, suppose that p > 1 and that f satisfies one of the conditions (2.21)
or (2.22). Then there exists jo > 0 such that problem (2.1) has a nontrivial nonnegative

solution for every 0 < p < pyo.

(ii) Fix X\ > 0, suppose that 0 < p < 1 and that f satisfies (2.19), (2.23) and
(2.24). Then there exists g > 0 such that problem (2.1) has a nontrivial nonnegative
solution for every 0 < p < .

(iii) Suppose that f satisfies (2.19), (2.25) and (2.26). Then, there exists jio > 0
such that the problem

—Au = —u’ﬁx{wo} + pf(u) in Q
uZ0in
u =0 on 0L,

has a nontrivial nonnegative solution for every 0 < pu < pyo.

Before proving Theorem 2.1, we remark that we allow the nonlinearity f to

change sign. Furthermore, we obtain
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Corollary 2.1. (i) Let p > 1. The problem

—Au = —u_ﬁx{wo} + AP in Q
u#0 in (2.56)
u=20 on 0f2

has a nonnegative and nontrivial solution for each A > 0.

(17) Suppose that 0 < g <1 < p. For each A\ > 0, there exists o > 0 such that
the problem
—Au = —u’ﬁx{wo} + AP 4+ pu? in Q
uZz0in
u =0 on 0N

has a nontrivial nonnegative solution for each 0 < p < .

(7i1) Suppose that 0 < p < 1 and r > 3. For each A > 0, there exists yg > 0
such that the problem

—Au = —u_ﬁx{wo} + AP 4 pu” in Q)
uZ0in €
u =0 on 0

has a nontrivial nonnegative solution for each 0 < p < .

(1v) Suppose that p > 0 and let i € {1,2}. For each A > 0, there exists o > 0
such that the problem

—Au = —u"xus0p + AP + pfi(u) in Q
uZ0in
u =20 on N

has a nontrivial nonnegative solution for each 0 < p < o, where fi(s) = ske* k>0 and

fa(s) =¢€* — 1.

Item (i) of Corollary 2.1 was proved in [26]. Items (ii) and (éi7) should be com-
pared with [4], where nonsingular elliptic equations with concave and convex nonlinearities
were studied. Item (iv) gives examples of f with exponential growth for which problem
(2.1) is solvable.

Proof of Theorem 2.1. We follow ideas given in in [37] and [54]. Let (e,) and (u,,) be
the sequences defined in (2.49), and let u be given by Lemma 2.8. We will prove that u
is a solution of (2.1). The nontriviality and continuity of u is guaranteed by Lemma 2.8.
Also recall that u., — u in Cp.(Q2). Let ¢ € C(Q). Since u,, € C'(Q) is a solution of

loc

problem (2.4), we know that

| Vo= [ (=g, (ue,) + i, + puf ) (257)
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We would like to let n — oo in (2.57). Since the term —g,, (u.,) does not converge
pointwisely to v X{u>0}, We need to consider an auxiliar function n that vanishes near the
origin . Throughout this proof, we will denote the functions u., merely by u. and we will
let e - 0. Let n e C*(R),0<n<1,n(s)=0fors<1/2 n(s)=1for s >1. Form >0
we define the function o := @n(u./m). Note that ¢ belongs to C(Q), because u, € C*(Q).

From continuity, the set Q, = {z € Q : u(z) > 0} is open. Let Q be an open
set such that support(y) C Q and Q C Q. Let Qy = Q. N Q. Since u, — « uniformly in Q,

we know that for every m > 0 there is an ¢; > 0 such that
uc(x) < m/2 for every x € Q\ Qp and 0 < € < €. (2.58)
Replacing ¢ by ¢ in (2.57) we obtain

VT Cntue/m)) = [ (~gu(ue) + N+ puf (w)en(u/m). (259

We break the previous integral as

A= [ (=g + X+ af () on(ue/m)

and

Bei= [ o (=ge(ue) M o puf () (e /m).

Clearly, B. = 0, whenever 0 < € < ¢; by (2.58) and the definition of . We claim that

A — A (—u™? + MNP + pf (u))en(u/m) as e — 0. (2.60)

Indeed, u, — u uniformly in €y. Then,

/QO()\uf + pf (we))en(ue/m) de — /QU(/\up + pf (u))en(u/m) dr as € — 0.

Hence, we only need to show that

/Qo —ge(ue)on(uc/m) — /QO —uPn(u/m) as € — 0.

If u < m/4 then, for € > 0 sufficiently small, we have u. < m/2. Consequently, from the
definition of n,

0= / —u’ = li T Ye\Ue € .
ey " pn(u/m) = lim ourtuemty Y (ue)on(ue/m)

If w > m/4, then u, > m/8 for ¢ > 0 small enough. We then apply the Dominated

Convergence Theorem as ¢ — 0 to get

—Uu u/m) = lim —g.(u. u./m).
/Qoﬂ{u>m/4} SDTI( / ) e—0 Qoﬁ{u>m/4} g ( )9077( / )

We have proved claim (2.60). Hence,

Hm | (=ge(ue) + Al + puf (uc))on(ue/m) = /Q (—u™" + X + pf (u))en(u/m).

e—0 /O 0
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We take the limit in m to conclude that
/Q (—u™ + MNP + puf (u))en(u/m) — /Q (—u™" + MP + pf(u))p asm — 0, (2.61)
0 0

since n(u/m) < 1 and u Pxqr + MP + puf(u) € L1(Q), according to Lemma 2.8,

We proceed with the integral on the left side of (2.59),

/Q VucV (on(u/m)) = /Q (Y Vo)n(ue/m) + C.. (2.62)

Consequently,
| (TuT o /m) > [ (VuVie)n(u/m) as e = 0.

since u, — u in H}(Q) and u, — u uniformly in . Consequently, by the Dominated

Convergence Theorem,

/Q(Vquo)n(u/m) — /QVUVQO as m — 0. (2.63)
We claim that
Vud?
Ce = /~ 7' (ue/m)p — 0as e — 0 (and then as m — 0). (2.64)
o m

Let Zo(u) = u'™ 4 u. The estimate |Vu|?> < MZy(u.) in Q provided by (2.52) yields

M
limsup |C| < — lim Zo(ue)|n' (ue/m)g
e—0

m e—=0 Qﬂ{% <ue<m}
Zo(ue)|n' (ue/m) ¢l

< Mlim /[
=0 JON{ 2 <u.<m} Ue
Hence,

Zo(ue
limsup |Ce| < M sup || sup |p|lim [ olue)

e—0 e—0 QN{F <u.<m} Ue

< Msup|i/|sup | | (140,

QN{F <um}

for every m > 0.

Thus invoking Lemma 2.8 and letting m — 0, (2.64) is proved. As an immediate
consequence of (2.59)—(2.64), we have

— el S VY
/QVWsD /m{u>0}( u™" + Au +uf(U))so,

for every ¢ € C}(Q). This concludes the proof of Theorem 2.1. O
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3 A problem in higher dimension

In this chapter we study the problem

—Au = —u_ﬁx{wo} + A+ uP in Q

u>0,u%0in (3.1)
u =0 on 01},
where Q ¢ RY is a bounded smooth domain, 0 < 8 <1, A>0and 1 < p < 2* — 1, with
2N
2" = N_9o We will again use a perturbation argument. Consider the problem

—Au+ ge(u) = M+ uP in Q
u#0in (3.2)
u =0 on 0f),

where g.(u) — u™? for u > 0 pointwisely as ¢ — 0 and is again given by

Sq
—C _fors>0
{ TG (3.3)

0 for s <0,

ge(s) =

with 0 < ¢ < 1/2. We define the functional I, , : Hj(€2) — R associated to problem (3.2)

by
u) = ;/Q|Vu|2+/QGE / Hp/(zﬁ)w, (3.4)

where G(s) = / gc(t) dt. Consequently, if u. € Hy(S2) is a critical point of I, then
0

/QVU€VU - /Qge(ue)v = /\/Q(uj)v - /Q(uj)pv, for all v € Hy (). (3.5)

Choosing v = u_ in (3.5), we obtain

= 1V =0

Hence, u, > 0 in 2. We conclude that critical points u, € H&(Q) of I, ) are nonnegative

and
/ Vu. Vv +/ ge(ue)v = )\/ U +/ uPv, for all v € Hy(Q). (3.6)
0 Q Q Q

Therefore, critical points of I, , are weak solutions of problem (3.2). We also have the

following estimates ( uniform for €) on the functions g. and G..

Lemma 3.1. The following assertions hold

(i)
1

0<g(s) <s and 0 < G(s) < T

s'7F for s > 0. (3.7)
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(ii)
qs" (¢ +p)sr!
(54 €)ath N (s + €)ath+l’

sge(s) = (3-8)

(iii)
1
Ge(s) > 596(3)3, for every s > 0.

(iv) For each M > 0 there exists d = 6(M) > 0 such that

Proof of Lemma 3.1. Items (i) and (i7) are clear from the definition of g., see (3.3).

~ 1 N
Now we prove item (iii). Let B.(s) = Ge(s) — 596(5)5. We have that B.(0) = 0 and

1 s, 1

BI(s) = 0.(5) ~ 50e(5) = S0L(5) = 5 (0e(s) — s9(5)).

Therefore, B!(s) > 0 if and only if

9e(s) = 5g.(s).

From (3.8), this inequality will be true if

(3 —+ 6)‘1"‘5 - (3 —+ 6)‘1"‘5 '

(3.9)

Since ¢ < 1/2, (3.9) holds for each s > 0. We conclude that B, is nondecreasing. This
proves item (iii).
We now prove item (iv). Note that

1

s s s

2 1
e = > = 2 f > ().
9:(5) (s +e)it8 = (st 1)itB  (s1 Dats” 7=
Hence,
1 11
-1 1
ge(s) > 5017° 252 for 0 < s < 1.

1
Therefore, from the fact that 0 < ¢ < 2 it follows that for each M > 0 there exists
0 =0(M) < 1 such that

ge(s) > My/s > Msfor 0 <s<d<1.

The result then follows from item (ii7). O

With these estimates we are able to obtain bounds for weak solutions of problem
(3.2). Indeed, let u, be a nontrivial critical point of I, y. Then, (3.4) and (3.6) yield

1 1 1
[e,)\(ue) - /Q (Ge(ue) - 2g6(u6>u6) d.’]j + (2 — p—|_1> /Qu€+1 dx
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Hence, from item (7i7) of Lemma 3.1, and the fact that p > 1, we get

1 1
Ioa(u)> (=— —— / P dp > 0.
’A(m—(z p+1> Qe
We conclude that

Lemma 3.2. The following assertions hold:
(i) Critical points of I\ are nonnegative weak solutions of problem (3.2).

(i) If uc € Hy(S2) is a nonnegative nontrivial weak solution of problem (3.2), then I. x(u.) >
0. Furthermore, if there ezists a constant C' > 0 such that 0 < I \(u.) < C, then there

exists a constant D > 0 that does not depend on € such that

[well 20y < D

Proof of Lemma 3.2.: We only need to prove item (ii). If I x(u.) < C, we get

1 1
- ptl g
(2 1>/Qu6 x < C.

Hence, [|uc||rp+1(q) < Co for some constant Cy > 0. The result then follows from the fact

that
1/|Vu\2 /|Vu\2—|—/Gu = I \(ue) / /u”p
2 /g € € € 6/\ € 2 1+p e ¢
[
As in Chapter 2, we define
jels) = As*) + (577 = gu(s) for s € R,
so that
Ia(u 2/ Va2 - /J ) for all u € HL(Q), (3.10)

where J.(s) = / ) Je(t) dt. Throughout this chapter, we will denote j. and J. merely by j
0

and J respectively.

We finish this section by giving a result similar to Lemma 2.3.

Lemma 3.3. The following assertions hold

(i) For each R > 0, there exists a constant C' > 0 that does not depend on € such that
max{|J(s)|,|sj(s)|} < C forall s < R.

(ii) There ezists a constant Ry > 0 such that J(s) > 0 for all s > Ry.
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Proof of Lemma 3.3. Note that

)\ 412 (S+)p+1
(S ) + p+1

J(s) = — G(s) for s € R, (3.11)

2
and

s7(s) = A(sT)? + (sT)PT! — sg.(s) for s € R.
Then, it follows from item (i) of Lemma 3.1 that

|J()|<51~22+Rp+1+—1 RPfor0<s<R
A S R ol==T

and
|si(s)| < AR + RPT + R P for 0 < s < R.

This proves (v). Item (vi) is a consequence of the fact that

sPtl 1

p+1 1-0

J(s) > s'7F for s € R.

This proves Lemma 3.3. O

In Section 3.1 we study the perturbed problem (3.2) when 1 < p < 2* — 1.

Next, we study the convergence of these solutions.

3.1 Solutions to the perturbed problem

The goal of this section is to show that problem (3.2) possesses a nonnegative
nontrivial solution wu, in the subcritical case 1 < p < 2* — 1. The structure of this section
is very similar to Section 2.1. First we study compactness of the functional I, and then

we obtain solutions u. of problem (3.2). The following result is analogous to Lemma 2.5.

1
Lemma 3.4. Suppose that 1 < p < 2" —1. For each T < 0 < 1/2 there exists Rgx > 0
p

such that
0 < J(s) <sj(s) for s > Ryx. (3.12)

Proof of Lemma 3.4. Let B(s) = J(s) — 0sj(s). We have
Bi(s) = (1= 0)j(s) — 055" (s).
Hence,
Bl(s) = —(1=0)ge(s) + 0sg.(s) + (1 — 0)s” — Ops”) + A((1 — 0)s — 0s).
From Lemma 3.3 we obtain

1sg/(s)| < qls| ™" + (¢ + B)|s|” = 0as s = occ.
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and
(1 —-0)g(s) = 0ass— 0.

Hence, there exists R > 0 such that

1
(1= 8)ge(s)| +[s9c(s)] < 5 for s = R.

Therefore,
1
Bl(s) < 5t (1—=0—06p))s® + A(1 —20)s for s > R. (3.13)
1
Since 6 > T it follows that 1 — 6 — 6p < 0. From the fact that p > 1, we conclude that
p

the right hand side of (3.13) converges to —oo as s — co. Hence, there exists a constant
Ty » > 0 such that
Bl(s) < —1 for s > Ty ,.

Note that
B.(2Ty\) < Ry,
where
2Ty )P AN(2T) )2
p+1 2
Therefore, there exists a constant Ry ) > 0 such that

Ry = +0(2Tp)" 7.

BE(S) < —s+4 R.g,)\ for s > 2T9?)\.

Hence, B(s) < 0 for s > max{ Ry, 27y }. This proves Lemma 3.4. O

As in Section 2.1, we turn our attention into showing that problem (3.2)
possesses a nontrivial solution u, > 0 that is a Mountain Pass. To do that we need to

prove that there exist constants a; > 0 and 0 < p < 1 such that
Ienu(u) 2 ay for [lul| gy o) = p,
and that there exists an element ¢y € Hy () such that
@0l a1y = 1 and I ,(¢o) < 0. (3.14)

The lemma below guarantees that (3.14) holds for ¢ = Ny¢y, where ¢ € Hy(Q) is the
first eigenfunction of the operator —A with [[¢1[[ 1) = 1. We have

Lemma 3.5. Suppose that 1 < p < 2* —1 and that A > 0. There exist constants Ny > 0,
as > 0 and by > 0 such that

I.\(Nog1) < —by <0, for every 0 <e <1, (3.15)
and
sup I x(sNog1) < ag for every A > 0,0 < e < 1. (3.16)
0<s<1

Moreover, these constants do not depend on .
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Proof of Lemma 3.5. For each t > 0, we have

t? A2, ¢ Lp
La(téy) = §+/Q(;€(t¢1) _ 7/9@ dm—erl/gbl dz.

7)‘ 2 ] 1 ° °

Since p+1 > 2 > 1 — 3, inequality (3.15) then follows by taking ¢ large enough in (3.17).

We also have

IE,A(SN0¢1) S

p+1NP+1
) — Si/gbﬁp dz, for every s > 0.
P+

Consequently, we get

$2NZ  s- ﬁN

I a(s¢r) < 5

/(ﬁ P for every s > 0.

We conclude that
sup Iex(sNog1) < as,

0<s<1
where ) -
_ Ny Noo 15
2= +1—5/g¢1 '
This proves (3.16). We have proved Lemma 3.5. O

We now get a compactness result.

Lemma 3.6. Fiz 0 < e <1 and suppose that 1 < p < 2* — 1. The functional 1. defined
in (3.10) satisfies the Palais-Smale condition.

Proof of Lemma 3.6. Throughout this proof we denote || - [[g1(q) by || - || Let (v},)nen
be a Palais-Smale sequence for Iy in H;(€2). That is, there exists ¢ € R such that

1
5“@2]\2—/ J(vy,) dx — ¢ as n — o0, (3.18)
Q
and there is a sequence 7,, — 0 such that

Vv Vwdzx —/ [(vE)w dz|< 7, ||w|| for each w € Hy (). (3.19)
0

We will show that there is a constant D > 0 that does not depend on € such that

[onl| < D. (3.20)

1
le <6< 3 From Lemma 3.4 there is a constant Ry, > 0 depending only on ¢

and /\ such that
0 < J(t) < 0tj(t) for t > Ry
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From itens (v) and (vi) of Lemma 3.3, we may find a constant Dy, > 0 such that
J(v;,) < Do + 0vpj(vy,).
We know from (3.18) that there is a constant Dy > 0 such that
1
Sl < Dy +0 [ o) do.
Taking w = v}, in (3.19) we also conclude that
[ s de < [ 12+ o)
Hence,
1
SIS < Dy Ol + b

1
Since 0 < 1 (3.20) follows. Since J, has subcritical growth at infinity (see Theorem B.16),
Lemma 3.6 follows. O
Next, we obtain solutions for the perturbed problem (3.2).
Proposition 3.1. Suppose that X > 0 and let as > 0 be given by Lemma 3.5. Then, there

is a nonnegative solution u. of problem (3.2) and there exist constants a; > 0 and D > 0

that do not depend on € such that
0< a1 S Ie,)\(ue) S 2,
and

||Ue||H3(Q) <D.

Proof of Proposition 3.1. Let 0 < § < 1 be given by item (iv) of Lemma 3.1. Note that

A
2 Ja

1

1
Toa(u) > 3 /Q |Vul* + <) G (u) (ut)? — P Q(zﬁ)’”rl for every u € Hy(2).

Choosing M = X in item (iv) of Lemma 3.3, we obtain

Io\(u) > ;/ﬂ |Vul? - ;\ ) u? — pj—l Q(uJ“)f"Jrlfor every u € Hy(€2).
Observe that there exists a constant C; > 0 such that
s2 < CysPt for s > 6.
Hence, there exists a constant Cy > 0 such that
Ioa(u) > ;HUH%T(%(Q) — (Y /Q |u|"*? for every u € Hy(S2).

Hence, from the Sobolev embedding there is a constant C3 > 0 such that

1 1
Ioa(u) > 5““”%{3(9) - 03”““1;;1(9)'
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Therefore,
1
Iea(u) > ZHUH%{é(Q) for ||U||H5(Q) < P
where )
. < 1 )pl
P=\ac,)
Also,
Iea(u) = aq for [|ullgi) = p
where
=2
L=

Let I' = {y € C([0,1], Hy(Q)) : 7v(0) = 0,~(1) = No¢1 }. By the Mountain Pass Theorem

(Theorem B.18) we conclude that there is a sequence (uS) in Hy(€2) and a number

¢ = inf sup I.\(y(s)),
’YEF 36[0»1]

such that

Jim Iea(up,) = cc and lim I7, (u;,) = 0.

Since (uy,) is a Palais-Smale sequence, we conclude from Lemma 3.6 that up to a subse-
quence, there exists u, € Hy () such that u$ — u, strongly in Hj(£2). From the fact that
I\ is of class C', we conclude that 1'6/7/\(u6) = 0. Therefore, u, is a critical point of I .

From Lemma 3.5 we know that a; < c¢. < ay. Consequently,
ai S -[E7>\(u6) S as.
From Lemma, 3.2, we conclude that u, > 0 and that there exists D > 0 such that
[well 20y < D-

This proves the result. O

3.2 Convergence of the perturbed solutions

In this section. we study the convergence of the solutions u, of problem (3.2)

obtained in Proposition 3.1, which implies that there exists a constant D > 0 such that
[well gy < D, for each 0 <e < 1.

Hence, there exist u € Hy(€) and a sequence (e,) in (0,1) such that €, — 0 as n — oo
and
., — u weakly in Hj(€),

U, — win L"(Q) for every r > 1,
(3.21)

U, — W a.e in {2,

[te,,| < hy a.e in Q for some h, € L"(€2).
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We may apply Lemma A.1 to obtain a constant K; > 0 such that
l|te,, || o) < K for all 0 <€, < 1.

Since u,, is a solution of problem (3.2), we get
Au,, € L>(Q) for all n € N.

Then, it follows from elliptic regularity theory and from rhe Sobolev Embedding (Theorems
B.13 and B.14) that u., € C*'(Q). As in Chapter 2, we proceed to obtain gradient estimates
for the solutions u.,. Lemma A.3 implies that there exists a constant ¢y > 0 such that for
each smooth subdomain Q' C € C ) there exists a constant M > 0 that depends on ¢

but not on € such that
(Vue(2))? < M(uc(z)' ™ + u(z)) < 2MK, for every z € ', 0 < € < ¢. (3.22)

Hence, it follows from the Arzela-Ascoli Theorem (Theorem B.5) that u., — u uniformly

in compact subsets of €2, so that u is continuous and 0 < u < Kj.

As in Chapter 2, will show that u is a nontrivial solution of (3.1) in the sense

that
VuV :/ —u PN P, 3.23
/Q uV m{u>0}( u "’ + u+u)gp ( )

for every ¢ € C}(Q) and
U™ X (>0} € Lige(Q).

First, we prove the following result.

Lemma 3.7. The sequence (u,) of solutions obtained in Proposition 3.1 and defined
in (3.21) has a subsequence which converges weakly in Hy()) to a nontrivial function
u € Hy () and uPxq, belongs to L},.(2), where Q4 = {z € Q : u(z) > 0}.

Proof of Lemma 3.7. First we show that u is nontrivial. Since u,, is a nonnegative

critical point of I, », we have

e gy + ] G ety = 4 [ 2+ [ 2

and

1 A 1
Teoalte) = gllten Figeoy + [ Genlt) =5 [ 2, = 2 [t > an,

where a; is given by Proposition 3.1. Hence,

1 1
I, A(ue,) = /Q (Gen (ue,) — 2gen(u6n)u6n) dx + (2 - > /Qufjl dx > a;. (3.24)

It is also clear that

lim / Ge,, (Ue, Ve, dx:/ukﬁ dx,
e 0

n—oo
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and .
lim [ Ge,(ue,)do = - [ '~ da.
im QGn(un) x - U x

n—oo

Taking the above claims into account and letting n — oo in (3.24) we obtain

ul=p ul=p 1 1
- de+A[>— —— / e > ay.
/Q<1—5 ) ) v (2 p—i—l) ol el

We proved that u is nontrivial.

Let V' C Q be a open set such that V' C Q. Take ¢ € C}(Q) such that 0 < ¢ <1

and ¢ =1 in V. Since u, is a critical point of /. 5, we obtain

/{Ml_e} ge(u)¢ = /Q Al + /Q ¢ — /Q Vu e [ g

Since u, — u weakly in H} () and u, — u uniformly in compact subsets of €2, we get

/{u€<1_6} ge(Ue)C — /Q()\u + up>C — /QVUVC + /{UZH u*ﬁc as € — 0. (325)

Define the set Q, = {x € Q : u(z) > p} for p > 0. It follows from (3.25) that there exists

a constant C' > 0 that does not depend on € nor on p such that

u4
e U —€ < € € < C f H 0 < < , > 07
/Vrm,, (e, + )arB Hue<t 16 = /{u€<1e}g (ue)C or a € <o p

where ¢ is given by (3.22). Letting ¢ — 0 and using Fatou’s Lemma, we then get
/ u ™’ Xa, < C.
1%
Letting p — 0 and applying Fatou’s Lemma again, we conclude that
/ u_ﬁx{wo} < Q.
v

Since V' was arbitrarily chosen, Lemma 3.7 is proved. O

We now prove the main result of this chapter.
Theorem 3.1. If1 < p < 2*—11in (3.1), then problem (3.1) has a nontrivial nonnegative
solution for each \ > 0.

By taking A = 0 in item (i), we conclude that the problem

—Au = —u‘ﬂx{wo} + u? in Q
u>0,uz%0in 2
uw =0 on 0

is solvable. This is a version of the result in [26].

Proof of Theorem 3.1. We proceed in a similar way as in Chapter 2. Let (¢,,) and (u,,)

be the sequences defined in (3.21), and let u be given by Lemma 3.7. We will prove that u
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is a solution of (3.1). The nontriviality and continuity of u is guaranteed by Lemma 3.7.
This Lemma also implies that U,_ﬂX{u>0} € L, (), so that we only need to prove (3.23).
Also recall that u., — u in CL.(2). Let ¢ € C}(Q). Since u,, € C'(Q) is a solution of
problem (3.2), we know that

We would like to let n — oo in (3.26). Since the term —g,, (u.,) does not converge
pointwisely to u” X{u>0}, We need to consider an auxiliar function 7 that vanishes near the
origin . Throughout this proof, we will denote the functions u., merely by u. and we will
let e » 0. Let n € C*(R),0<n<1,n(s) =0for s <1/2,n(s)=1for s > 1. Form >0
we define the function o := @n(u./m). Note that ¢ belongs to C}(Q), because u, € C*(Q).

Replacing ¢ by ¢ in (3.26) we obtain

| VucTentucm) = [ (=g + M+ ub)en(uc/m). (3.27)

Arguing as in the proof of Theorem 1.1, we get

lim lim [ (—ge(ue) + Aue + ue)?)en(ue/m) = / (—u™ + Au+ uP)g,
Q

m—0e—0 /O

and

lim lim/QVUEV(gpn(ue/m)) = /QVUEVQO.

m—0 e—0

This proves Theorem 3.1. O
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4 A problem with logarithmic singularity

In this chapter we study the problem

—Au = (logu)Xuso0y + Au? + pf(u) in Q
u>0,u%0in € (4.1)
u =0 on 0f),

where 0 C R? is a bounded smooth domain, A > 0 and p > 0 are positive parameters,
p > 1 and f is allowed to have exponential growth. The structure of this chapter is very

similar to Chapter 2. We will again study a perturbed problem of the form

—Au+ ge(u) = P + pf(u)inQ
u>0in Q (4.2)
u = 0on Jf2.

Here, g. € C*(0, 00) is defined by
€
—1lo <3+> for s >0
g.(s) = B\ T s re = (4.3)
0 for s < 0,

so that g.(0) = 0 for all € > 0 and g.(s) — —log(s) pointwisely for s > 0 as € — 0. We shall
see that the behaviour of this perturbation near the origin prevent us from considering

0 <p<1lin (4.1). We will again assume that [ satisfies the following conditions.
f(s)=0for s <0, fisof class C""(0,00) N C[0, 00) for some 0 < v < 1, (4.4)
and that for each a > 0 there exists a constant C,, > 0 such that
1f(s)] < Cyexp (a32>, for every s > 0. (4.5)

As in Chapter 2, we define the functional [67,\# : H3(Q) — R by

Topul(u /|Vu|2dm+/ G ( (u +)p+1dx—u/QF(u)dx, (4.6)

p+1

where F'(u / f(s)ds and G (u) = / ge(s)ds. From the fact that f and g. are
0

continuous functlons that satisfy (4.3)—(4.5), we conclude I, , is of class C'' and

Iy (u /VUVU+/ ge(u)v— )\/ pv—u/ﬂf(u)v, for all u,v € Hy(Q). (4.7)

Consequently, if u, € Hy(f2) is a critical point of I, , then

/QVu€VU - /Qge(ue)v = )\/Q(uj)pv + M/Qf(ue)v, for all v € Hy(Q). (4.8)
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Choosing v = u_ in (4.8) and using (4.4), we obtain
— [ [V(u)"]? =0.
[ 196u)]

Hence, u, > 0 in 2. We conclude that critical points u. € H&(Q) of I, , are nonnegative

and
/ Vu. Vv +/ ge(ue)v = )\/ ubv + ,u/ f(u)v, for all v € Hy(Q). (4.9)
Q Q Q Q
Therefore, critical points of I, are weak solutions of problem (4.2). Furthermore, if
ue. € L>(Q2), then for each 0 < e < 1 fixed

SUp(|ge(ue)| + Aue + il f(ue)l) < oo,

and consequently
Au, € L*(Q).

We conclude from Elliptic Regularity Theory (Theorem B.14) that u. € W*"(Q) for all
r > 1. Thus, the Sobolev Embedding (Theorem B.13) implies that u, € C*" (), where
0 < v < 1is given by (4.4). Summarizing, we have

Lemma 4.1. Suppose that f satisfies (4.4) and (4.5). The following assertions hold:
(1) Crritical points of I. », are nonnegative weak solutions of problem (4.2).

(ii) If u € Hy(Q) N L®(Q) is a nonnegative weak solution of problem (4.2), then u is
smooth and u € C*"(Q), with v given by (4.4).

Now we summarize the properties of the perturbation g. defined in (4.3). We

remark that the estimates below are uniform in e.

Lemma 4.2. The following assertions hold.

(i) We have
0< —gc(s) <s fors>1—g¢, (4.10)
0<G(s) <2, forevery0<s<1l—eand0<e<1l, (4.11)
and )
|G(s)] < %—I—s—l—Qfor all s > 1 —e. (4.12)

(ii) For each py > 2 there ezists a constant kg > 0 such that
Ge(s) > —kos? foralls>1—¢,0<e<1/2. (4.13)
(iii) There exists a constant C' > 0 that does not depend on 0 < ¢ < 1 such that
15ge(s)| < C(1+ %) for all s > 0. (4.14)
(iv) We have
lim g/(s) = 1 — 1. (4.15)

s—0+
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Remark: Observe that the perturbation G, does not possess a lower bound near the origin

as in item (i) of Lemma 2.3. Consequently, we do not obtain results for the case 0 < p < 1
in (4.1)

Proof of Lemma 4.2. By definition of g., we have g.(s) > 0 for 0 < s < 1 — ¢ and
ge(s) <0 for s > 1 — €. Assertion (4.10) follows from the fact that

—g.(s) =log (s—ksj_e) <log(s+e)<sfors>1—e.
Now we observe that —\/Zlogt < 1for 0 <t < 1. Hence,
0 <g(s) < —log(e+s) < (s—i—e)’% < §73 for0<s<1-—e
Consequently (4.11) follows, because
OgGe(s):/Osgg(t)dt:%l/2 <2forevery 0 <s<1l—ecand 0<e<l1.

Inequality (4.12) holds. Indeed, using (4.11) and the fact that logt < t for all t > 0, we get

|Ge(3)| <2 +/8 |g€(t)|dt = 2+/s log <t_|_ 6) dt
e e t+e

S S 2
<24 G+ €>ﬁ§2+/@+mﬁ:2+s+&
1—e t+e€ 0 2

where s > 1 — e and 0 < € < 1. Note that for each pg > 2 there exists kg > 0 such that

52 1
§—|—S+2 < kosP for all s > 3
Thus, from (4.12) we obtain

2
G.(s) > — (52 +S+2> > —kos™ for s > 1 — € and for every 0 < e < 1/2,

proving (4.13). Now we prove (4.14). For each 0 < ¢ < 1 and 0 < s < 1 — ¢ there exists a
constant C' > 0 independent of € such that

lge(s)s| < —slog <s + 6) < (—logs)s < C.
S+ €
On the other hand, for s > 1 — € we have
€
. < sl ( ><1 < 2
lgc(s)s| < slog | s+ i og(s+e) <s
We conclude that there exists a constant C' > 0 such that
19¢(s5)s| < C(1 + s%) for each s >0, 0 < e < 1.

Inequality (4.14) then follows from the fact that g.(s) = 0 for s < 0. Finally, (4.15) is a

consequence of

d d € s+ e €
@5 = - S (5 N (1 ) foran .
dsg(s) s og(s—l—s+6) <s2+se+e)< (8+6)2> orall s >0

As in Chapter 2, we have the following convergence result.
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Lemma 4.3. Assume that f satisfies (4.5) and that f(s) = 0 for s < 0. The following

assertions hold

(i) For each o« > 0 there exists a constant C' > 0 that depends on o such that
max{|f(s)|,|F(s)|} < Cexp (as®) for s € R. (4.16)
(ii) If there exist a sequence (uy) in Hy(Q) and a constant D > 0 such that
[tnllzay < D for alln € N,

then there exists u € Hy(Q) such that up to a subsequence u, — u weakly in Hy(SY),

/ f(up)de — / f(u)dz as n — oo, (4.17)
Q Q
and
/ F(u,)dx — / F(u)dz as n — oo. (4.18)
Q Q
Proof of Lemma 4.3. See the proof of Lemma 2.2. [

We again consider the functions j. : R — R defined by

Je(s) = A(sT)" + pf(s) = ge(s),

and J(s) = /8 Je(t) dt. Observe that
0

Lou(u) = ; /Q Vul? — /Q J.(w). (4.19)

We will again denote j. and J. by 5 and J respectively and we will assume that there

exists a constant sg > 0 such that
min{ f(s), F(s)} > 0 for every s > s. (4.20)
Using this assumption, we obtain

Lemma 4.4. The following assertions hold.

(i) Suppose that f satisfies (4.4). For each R > 0, there exists a constant C' > 0
that does not depend on € such that

max{|J(s)|, [sj(s)|} < C forall s < R.

(it) Suppose that X > 0, > 0 and that f satisfies conditions (4.4) and (4.20).
Then, there exists S > 1 such that J(s) > 0 for all s > S.
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Proof of Lemma 4.4. First we prove item (7). Note that

A
= Pt F(s) — f > 4.21
J(s) = 278+ uF(s) = Ge(s) for s 2 0, (4.21)

and
s7(s) = AsPT 4+ pusf(s) — sge(s) for s > 0.

Then, it follows from Lemma 4.2 that

2

A
|J(s)| < ——RP' + 1 sup |F(s)|+£+R+2f0r0§s <R,
p+1 0<s<R 2

and
s7(s)] < ARPTY + 11 sup |sf(s)]+C(1+ R*) for 0 < s <R.
0<s<R

This proves item (7). Item (i7) follows from (4.21) and from the fact that there must exist
s1 > 1 independent of € such that G.(s) < 0 for s > s;. Choosing S = max{so, 1}, and
using (4.20), we obtain from (4.21) that

J(s) >0 for s > S.

We have proved Lemma 4.4. O

4.1 Existence of solutions of the perturbed problem

The first aim of this section is to show that there exist constants 0 < 6 < 1/2
and Ry, > 0 that do not depend on € such that

J(s) < 0sj(s) for s > Ry .-

The proof of this result is not entirely analogous to the one given in Chapter 2, because

now the perturbation g. is unbounded at oo.

e When A > 0 and p > 1 in (4.1) we assume that there exists sy > 0 such that
pf(s) < sf'(s) for all s > s, (4.22)
or that there exists constants C' > 0 and p < p such that
Ipf(s) — sf'(s)| < Cs” for all s > s. (4.23)

Observe that f = 0 satisfies (4.22) and f(s) = s” satisfies (4.23) when 0 < 7 < 1.

e When A =0 in (4.1), we will assume that there exists 0 < 4 < 1 such that

Ji £10) = 0w Jyy S5

> 2+ V1. (424)

Observe that (4.24) implies (4.20).
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Lemma 4.5. Suppose that f satisfies (4.4), (4.20) and that one of the following assertions
hold:

(1)) A>0, u>0andp>1in (4.1) and f satisfies (4.22) or (4.23).
(i) A\ =0 and pp > 0 in (4.1), and f satisfies (4.24).

1
Then there exist constants 0 < 0 < 5 and Ry, > 0 such that
0 < J(s) <8sj(s) for s > Ry . (4.25)
Consequently, item (i) of Lemma 4.4 implies that there exists Dy, > 0 such that

|J(s)| < Do, +0sj(s) for all s € R.

Proof of Lemma 4.5. Let 0 < 0 < ; be a positive constant to be chosen later. Define
Be(s) = J(s) — Osj(s).
We first claim that there exists Tj 5 , > 0 that does not depend on € such that
Bl(s) < —g for s > Tp .- (4.26)

First we recall that

/ - (S+6)2—6
96(8)—<(52+S€+6)<S+6>> <0 for s > 1,

and
Bi(s) = (1= 0)j(s) — 055" (s).
Consequently,

(s+¢€)* —¢
(s2+ se+¢€)(s+e)

Bl(s) = (1=0)(1nf (s)+As"—ge(s))—Ousf'(s)—OApsP—0s ( ) for s > 1.

0
Hence, Bl(s) < ~5 if and only if

(1= 0)(As” + uf(s) — ge(s)) + g <0 <>\psp +psf'(s) + S det s s ) :

s3 + 25%€ + s€2 + se + €2
Note that 2s%¢ > es if s > 1/2. Hence,

s34+ 25% + s€ — €s - 53
3 +252¢ + s€2 +se+€2 " s34+ 283 + 53+ g3 4 g3

:éforaHSZL with 0 < e < 1.

Hence, it suffices to know for which values of s > 1 the following inequality holds

(1 =0)(As” + pf(s) —ge(s)) + z <4 ()\psp + usf'(s) + é) :
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We need to solve the inequality
(1= 0)(As" + puf(s) = ge(s)) < 0 (Aps” + psf'(s)) -

From (4.10), it is enough to show that

As? + uf(s) +s < & (Aps? + psf'(s)),

which is equivalent to

5+ AsP (1— 19_1’9> + 1ﬁ9((1 —0)f(s) — 0sf'(s)) < 0. (4.27)

We now split the proof in two cases.

Case 1: When A\ > 0, we choose 6 such that

0
1< — .
< g <p

Consequently, # < 1/2 and 1 — 6 < 0p, so that from (4.27) we only need to prove that

s+ As? (1 — 10—p€> + 1'@96(]9][(3) —sf'(s)) < 0.

Claim (4.26) then follows from (4.22), (4.23) and from the facts that p > 1 and

Op

1—
1—-6

< 0.

Case 2: When A\ = 0, inequality (4.27) becomes

9 li
1—-6
This inequality will be true if
2(1 1—-0
f/(s) > <u0 ) and Sf/(S) > ( Q)f(S)
We choose 8 such that
1-— 0 1%}
1< —< 14+ —,

0 2
where v is given by (4.24). This choice of # and hypothesis (4.24) guarantee that (4.26)

holds when s is large enough.

Now we prove (4.25). First note that if s is large enough, we may use (4.10)
and (4.12) to obtain

A
B(s) = stpﬂ + pF(s) = Ge(s) = 05(As” + puf(s) — ge(s))
2
< pj\_lsp“ + pF(s) + 3; +s+2—0usf(s).
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Hence,
B(2Tpx ) < Bopus
where
__ A 3(2Tp.,.)?
56,/\,;1 = m(2T0,>\,u>p+1 + PJF(QTG,A,M) + (;/\7#) + 2T97)\7M +2— QQMTgy)\,Mf(QTg,)HM).

Using (4.26), there is a constant 3 = [y, such that
0
Be(s) < _68 + 3 for s > 2Ty 5 .

We conclude that B.(s) < 0 if s > max{fif,QTgﬁ,\,u}. Choosing Rp )y, = 695, (4.25)

follows. O]

The following compactness result is analogous to Lemma 2.6, see page 37.

Lemma 4.6. Fiz 0 < € <1 and suppose that [ satisfies (4.4), (4.5) and (4.20). Assume

that one of the following assertions hold:
(i))AN>0,u>0andp>11in (4.1) and f satisfies (4.22) or (4.23).
(ii)) A =0 and p > 0 in (4.1), and [ satisfies (4.24).

Then the functional I, defined in (4.6) satisfies the Palais-Smale condition
at every level ¢ # 0.

Proof of Lemma 4.6. The proof is similar to the one given in Lemma 2.6. The only
difference is that we use Lemmas 4.4 and 4.5 instead of Lemmas 2.4 and 2.5. Recall that
j(s) =0 for s <0, since f(s) =0 for s < 0. Hence, if f satisfies (4.5), then j also satisfies
(4.5) and for each o > 0 there exists a constant C., > 0 depending only on € and « such
that

max{|j(s)],[J(s)]} < Ceqexp (as®) for s € R. (4.28)
Let (vS) be a Palais-Smale sequence for Iy, in Hj(f2) at the level c. Throughout this
proof we denote vj, by v, and the norm || - [|gi(q) by || - [|. Thus (v,) satisfies
1 2
§anH — / J(vy) dz — cas n — oo, (4.29)
0

and there is a sequence 7,, — 0 such that

< 7,||w]| for each w € Hy (). (4.30)

/Qandex—/Qj(vn)wda:

From Lemma 4.5 there exist constants 0 < § < 1/2 and Dy, , > 0 depending only on 6, A
and p such that
|J(vn)| < Dogxp+ Ovnj(vy).



Chapter 4. A problem with logarithmic singularity 71

Therefore, there is a constant Dy = D;(6) > 0 that does not depend on € > 0 such that

1 .

Slel < Dy 40 [ vnj(v) da.
Taking w = v, in (4.30) we also conclude that

| i@nvnde < llel® + mllvall

Hence,

1
5”“71“2 < Dy + 0lJon|* + 7 8|vn .
Since 6 < 1/2, there is a constant D > 0 such that
[on|| < D. (4.31)

It follows from (4.28) and Lemma 4.3 that there exist a subsequence (v,,) in H,(Q) that

we continue to denote by (v,) and an element v € H}(f2) such that
v, — v weakly in HJ (),
v, — v in L7() for every r > 1,

v, — v a.ein €,

|vn| < A, a.e in € for some h, € L"(Q), (4.32)
(0)d / () de.
| iw)de = [ i) de
J(n)de — [ J(v)da.
/Q (vp) dx — ) (v) dx
From (4.29), (4.30) and (4.32), we get
Tim ol = 2(c + /Q J(v) dz), (4.33)
and
I wi(va) = 2(c+ [ J(v)do). 4.34
Jim J vnj(vn) = 2(c+ | J(v)d) (4.34)
The result then follows by the same argument given in the proof of Lemma 2.6. m

As in Chapter 2, we will show that problem (4.2) possesses a nontrivial solution
ue > 0 that is a Mountain Pass. Recall that a function u, € Hj(€2) is a weak solution of
problem (4.2) if

_ P 1
/QVuGVv + /Qge(ue)v )\/Quefu +M/Qf(u6)v for all v € Hy(Q). (4.35)

We proceed to obtain constants a; > 0 and 0 < p < 1 and an element ¢, € H,(2) such
that

Iexu(u) > ay for ||U||H3(Q) =P,

and
@0l a1y = 1 and Ie x u(¢o) < 0. (4.36)

To obtain this element, we will assume that

there exist constants A, sp > 0 and 7 > 2 such that F'(s) > Als|” for all s > sq. (4.37)



Chapter 4. A problem with logarithmic singularity 72

Lemma 4.7. Let ¢ € Hy(Q) N L¥(Q) be such that ¢ > 0 in  and ¢l = 1 and
suppose that f satisfies (4.4) and (4.20). Assume that one of the following conditions hold

(1)) A >0 and >0, or
(i) A\ =10 and pp > 0 in (4.1), and f satisfies (4.37).

Then, there exists a constant No = No(\, p) such that

Loy, (Nog) < 0. (4.38)

Also, there exists a constant ay > 0 such that

sup Iy u(sNog) < as. (4.39)
s€[0,1]

Proof of Lemma 4.7. Using (4.11) and the fact that g.(s) <0 for all s > 1 — ¢, we have
G(s) <2 for all s > 0. Hence,

Lau(t) < t;+2m| M Lo = [ Fito). (4.40)

We split the proof in two cases.
Case 1: Suppose that A > 0. Then, (4.20) implies that

)\tp-H

Ioau(te) < 7;+2|Q| qsf’“ F(tg).

/S;ﬂ{Mn <SQ}

Hence, there are constants c;, co > 0 depending on A and p such that

tQ
Ioxu(to) < 5 +¢ — cotPT forall t > 0.

Inequality (4.38) then follows from the facts that p + 1 > 2 and by letting t — oo.
Case 2: Suppose that A = 0 and (4.37) holds.

From (4.37) and (4.40) we obtain constants cs,cqs > 0 depending on p such

that )

4 2
Ioau(to) < B + c3 — ¢cyt” for all t > 50

Supg ¢
where sy > 0 is given by (4.37). Thus, I ,(t¢) < 0 provided

2
§+03—C4t7<0,

which is true for sufficiently large ¢, because v > 2. Hence, there exists Ny > 2 such that
I . (Nog) < 0. This proves (4.38).

Now we see that

2

s2 N2 /\SPHNerl
Lanl(sNoo) = 50 + [ GulsNog) da = 0 | 91— 1 [ F(sNog) da
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Since 0 < sNyp < Nysup ¢ for all 0 < s < 1, there exists ¢5 > 0 depending on A and p
Q

such that .

O fegforall0<s<1.

IE,A,M(SN0¢) <

Hence,
sup ey u(sNog) < az,
s€[0,1]
where
NE
g = —— )
2 9 C3
We have proved Lemma 4.7. O

We conclude with

Proposition 4.1. Suppose that f satisfies (4.4), (4.5) and (4.20). Assume also that one
of the following conditions hold

(i))A>0, u>0andp>1in (4.1) and f satisfies (4.22) or (4.23).
(1i) A\ =10 and > 0 in (4.1), and [ satisfies (4.24) and (4.37).

Let ay be given by Lemma 4.7. Then, there exist constants o > 0 and a; > 0
such that for each 0 < p < pg, problem (4.2) has a weak solution u. > 0, with 0 < a; <
Iy u(ue) < ag. Also, there is a constant D > 0 that does not depend on € such that

el 2 () < D-

Proof of Proposition 4.1. Since g.(s) > 0 for 0 < s <1 — ¢, we have

1
L. >f/ Vuld G / P+l /
aplu) > 5 Q\ ul” dx + o1 o1 lu|P™ dr —

for all u € H}(Q). Hence, item (i) of Lemma 4.2, implies

1
o) 2 By~ o [ 1 = 2 [l = [ Pla) de
Using the Sobolev embedding, we obtain
Lo )‘ijrrll +1
Tonaw) 2 5 [ulfyor = RO ) = S5l — o, Pl do

where C; is the best constant of the immersion Hj(f2) < L'(£2). Assume that

||U||12L101(Q) < p?

1 7o p+1 1 .
i fA>0
i) Ge) )

1 p02'f>\ 0
8koCRe PATE

where

p
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We obtain
Toanl) 2 Ll oy — 1 [ Flu)de for lull ey < p (4.41)

4
We may assume that p < 1. Let o = —Z By Lemma 4.3 we conclude that there
p

is a constant C' > 0 such that

1
L) = Slulye = nC [ exp(au?)da for |lull o) < p.

Using (B.8), we obtain a constant k; > 0 such that
Lo
Tou(u) > gHUHHg(Q) — pCky for HUHHg(Q) < p.

Choosing

0

Ho = 160,

we have

1 0
Tepu(u) > 3 (HUH?{(}(Q) - 2) for 0 < p < puo, ||UHH;(Q) < p-

From Lemma 4.7, we obtain

Ie,)\,u(O) = 07 ]E,A,,u(NOQb) <0

and
Iexp(u) = ay for [ullgiq) = p,

where
0

E.
Let T' = {v € C([0,1], H3()) : 7(0) = 0,7(1) = Ny¢}. By the Mountain Pass Theorem,

we conclude that there is a sequence (uf) in Hy(f2) and a number

a; =

ce := inf sup I, s)),
'YGFSG[Opl] /\,u(’)/( ))

such that
lim Ty u(u) = c. and lim Ie,\“( ug) = 0.

That is,
1 € €
S By — [ T() de = e

And there is a sequence 7, — 0 such that

/Q (ug, v dz|<

It is clear that ¢, > a; > 0. Using Lemma 4.7 we also obtain

< Tal[v[| g1 () for each v € H3(Q). (4.42)

ce < sup ey u(sNog) < as.
s€[0,1]
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Hence, for a sufficiently large n,
0<ay <Iyu(uy) < as. (4.43)

Arguing as in the proof of Lemma 4.6, we may use (4.42), (4.43) and Lemma 4.5 to obtain
a constant D > 0 that does not depend on € such that

[ |l 2 ) < D-
We conclude that there is u, € Hy () with [tell 3y < D such that
uf, — u, weakly in Hg(Q).

We know that (u;,) is a Palais-Smale sequence at a positive level. It follows from (4.43) and
Lemma 4.6 that up to a subsequence, u;, — u, strongly in Hg(Q). Hence, I/, ,(uc) = 0,

and the result follows from Lemma 4.1 O

4.2 Convergence of the perturbed solutions

In this section. we study the convergence of the solutions u, of problem (4.2)
obtained in Proposition 4.1. This proposition guarantees that there exists a constant D > 0
such that
[tell a0y < D, for each 0 < e < 1.

Hence, there exist u € Hy () and a sequence (¢,) in (0,1) such that €, — 0 as n — oo
and
u., — u weakly in Hp(€),

U, — u in L"(Q) for every r > 1,
(4.44)
Ue, — U a.e in §2,

[te, | < h, a.e in Q for some h, € L"(92).

As in Chapter 2, under additional conditions on f, we can apply regularity results discussed
in Appendix A to conclude that u, is smooth for all n € N and that u is continuous.
Indeed, assume that

. /

ll_r}% |f(s)] < 0. (4.45)

From Corollary A.1, we know that there exists a constant K; > 0 such that
| te,, || o) < K for all 0 <€, < 1.

Then, it follows from elliptic regularity theory and from the Sobolev Embedding that
u., € C*(Q), see Lemma 4.1. Lemma A.5 implies that there exists a constant ey > 0 such
that for each smooth subdomain €' C € C ) there exists a constant M > 0 that depends

on € but not on € such that

\Vue, (2)]* < MZ(ue,(x)) for every z € ', 0 < e < e, (4.46)
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where

N |

t?+t—tlogt for 0 <t <
Z(t) = )

1 1 1
-4+ =(1+log?2 — — ] (1+1log2) f > —,
4—|—2(—|—0g)+<t 2>(+0g) ort >

Hence, it follows from the Arzela-Ascoli Theorem that w., — w uniformly in compact
subsets of €2, so that u is continuous and 0 < u < Kj. In this section, we show that u is a

solution of (4.1) in the sense that
= / 1 + M + , 4.47
/Q VuVp o) ( ogu U ,uf(u))cp ( )

for every o € C}(Q) and
(log u)X{us0} € L. ().
First, we show that
Lemma 4.8. The function u is nontrivial and the function (logu)xa, belongs to L,.(S),
where Q. = {x € Q :u(x) > 0}.

Proof of Lemma 4.8. First we show that « is nontrivial. Since u,, is a critical point of

I, u, we have

||u€n||i[01(9) + /ngn(ue'n)uen = )\/Qu];—:l + M\/Qf(’ufn)ubn’

and

A

1
Teon(ter) = g e gy + | Cenlrr) = 25 [ o [ Flue,) >

Hence,

1 1 1
I apu(ue,) = /Q (Gen(uen) — den(uen)u€n> dr + \ (2 — p+1> /Qulgzrl dx

+ /L/Q (;f(uen)uen — F(uen)) dx > ay, (4.48)

where a; is given by Proposition 4.1. Recall that 0 < u., < K in Q and consequently

0 <u < Ky in €. Hence, from the Dominated Convergence Theorem, we obtain

lim /Qf(uen)uendx:/gf(u)udx.

n—oo

From Lemma 4.3, we get

lim F(ugn)da::/ F(u)dx.

n—o0 Q QO

From the Dominated Convergence Theorem and Lemma 4.2, we have

lim, [ geo (e, e, dz = | g(w)uxgusoy do, where g(s) = —logs
Q Q

n—oo
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and
lim / G, (ue,) dr = / G(u) dx, where G(s) = —/ log ¢ dt.
Q Q 0

n—oo

Taking the above claims into account and letting n — oo in (4.48) we obtain

/Q (G(u) - ;g(u)“X{WO}) dz+A (; - 1) /Qup+1 dx—i—u/ﬂ (;f(u)u — F(u)) dz > ay.

p+1

We proved that u is nontrivial. Now let Let V' C € be a open set such that V' C Q. We
will show that

/V | log u|X {u>0} dx < 00.

Indeed, take ¢ € C}(£2) such that 0 < ¢ <1 and ¢ =1 in V. Since u,, is a critical point

of I, x ., we obtain

€ € = )\/ p / € - / \V4 € V(- / . . .
/{u€"<1_€n} e (e, )C ue, 6t | pflue,)C = | Ve, VE o1y (ue,)C
The Dominated Convergence Theorem, Lemma 4.2 and (4.44) imply that

Lz [ e
| £)e = [ F,

/ Ve VC - / VuV( as € — 0,
Q Q
and
/ Gen (Ue, )C — log(u)¢ as € — 0.
{uen>1—en} {u>1}
Hence,

/{uen<1_en}gen(uﬁn)C - A/QUPCJru/QJ‘(U)C—/Q VuVC+/{u21} log(u)¢ as € — 0. (4.49)

Define the set 0, = {x € Q : u(x) > p} for p > 0. Then

u? + eu, + € u? + eu, + €
/Vrmp & ( Ue + € X{ue<1-e}§ < {ue<1—e} & Ue + € ¢

Hence,
.

The constant C' does not depend on € and does not depend on p. It follows from Fatou’s

< (C < 0.

ufn + €xle, + €n
log i

Lemma that
[ o, < o0,

independently of p. Letting p — 0 and applying Fatou’s Lemma again, we conclude that
/V | log u|xa+ < oo,

for every open set V C Q such that V C Q. O

We state the main result of this chapter.
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Theorem 4.1. Suppose that f satisfies (4.4), (4.5), (4.20) and (4.45). Assume also that

one of the following conditions hold
(1)) A>0, u>0andp>1in (4.1) and f satisfies (4.22) or (4.23).
(i) A\ =10 and > 0 in (4.1), and [ satisfies (4.24) and (4.37).

Then there exists py > 0 such that for each 0 < p < g, problem (4.1) has a

nonnegative nontrivial solution wu.

We remark that when p > 1, we may consider f = 0, but we may not consider
f(s) =s?for 0 < ¢ <1 in view of (4.45). This condition is relevant, because one of the

hypothesis of Lemma A.4 is that there exists 0 < €y, < 1 such that
ge(s) > f(s) for all s <4, 0 <€ < €,

which is a consequence of (4.45). However, it might be possible to replace this condition
for a weaker one, so that f(s) = s? becomes admissible. As an immediate consequence of

Theorem 4.1, we get
Corollary 4.1. Suppose that p > 1 in (4.1). Then, the problem

—Au = (logu)Xuso0y + AuP in Q
u>0,uzz0 i
u=0 on 0N

is solvable for each A > 0.

This is an improvement of the result in [52]. Furthermore, Theorem 4.1 provides

solutions for a large class of singular problems. Indeed,
Corollary 4.2. There exists o > 0 such that the problems

—Au = (logu)Xuso0y + p(e” — 1) in Q
u>0,uz0in
u=0 on 09,

—Au = (log u)xqusoy +u° + p(e" — 1) in Q
u>0,uz0in
u=0 on 09,

—Au = (log u) X {us0y + puet in Q
u>0,uz0in
u =0 on 0,

—Au = (log u) X us0y + u* + pufe” in Q
u>0,uz0in
u =0 on 09,
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and
—Au = (logu)X{us0y + w1 4 pe) in Q
u>0,uz0in
u=0 on 09,

are solvable for 0 < u < pg and k > 1.

We finish the section by proving Theorem 4.1.

Proof of Theorem 4.1.

We follow ideas given in [52]. Let (e,) and (u.,) be the sequences defined in
(4.44), and let u be given by Lemma 4.8. We will prove that w is a solution of (4.1). The
nontriviality and continuity of u is guaranteed by Lemma 4.8. Also recall that u., — w in
CP (Q). Let ¢ € CHQ). Since u,, € C'(Q) is a solution of problem (4.2), we know that

| Vu, Ve = [ (=ge, ) + X2, + pf(u,)e. (450)

We would like to let n — oo in (4.50). Since the term —g,,(u.,) does not converge
pointwisely to log(u)xu>0}, we need to consider an auxiliar function 7 that vanishes near
the origin . Throughout this proof, we will denote the functions u,, merely by u. and
we will let € — 0. Let n € C*(R), 0 <n <1, n(s) =0for s <1/2,n(s) =1 for s > 1.
For m > 0 we define the function o := ¢n(u./m). Note that o belongs to C}(Q), because
u. € CH(Q).

From continuity, the set Q. = {z € Q : u(z) > 0} is open. Let Q be an open
set such that supp(¢) € Q and Q C Q. Let Qy = Q. N Q. Since u, — u uniformly in Q,

we know that for every m > 0 there is an ¢; > 0 such that
uc(x) < m/2 for every € Q\ Qo and 0 < € < . (4.51)
Replacing ¢ by o in (4.50) we obtain

[ VuTentufm) = [ (=giue) + 2 + uf () n(u m). (4.52)

We break the previous integral as

Aci= [ (=gu(ud) + 2+ pf () on(ue/m).

and

Bei= [ o (el + M+ (we)on(ue/m).

Clearly, B, = 0, whenever 0 < € < ¢ by (4.51) and the definition of . We claim that

A — ) (logu + AP + puf(u))en(u/m) as € — 0. (4.53)
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Indeed, v, — u uniformly in €2y. Then,

|, Oz wen(ue/my de = [ (i + uf (w))on(u/m) da as ¢ = 0.

Hence, we only need to show that

/Qo —Ge(uc)pn(ue/m) — /QO log(u)en(u/m) as e — 0.

If u < m/4 then, for € > 0 sufficiently small, we have u, < m/2. Consequently, from the
definition of 7,

0= /Qom{u<m/4} log(u)pn(u/m) = lim —ge(ue)pn(ue/m).

=0 JQon{u<m/4}
If w> m/4, then u, > m/8 for € > 0 small enough. We then apply the Dominated

Convergence Theorem as ¢ — 0 to get

log(u)en(u/m) = lim —GelUe)pn(te/m).
/Qoﬂ{u>m/4} g< )9077(/ ) =0 JQon{u>m/4} g( )9077< / )

We have proved claim (4.53). Hence,

g [ (=) + M2 - () Jon(ue/m) = | Qo+ X+ pf (u)m(us/m).

We take the limit in m to conclude that
/Qo(logu + AP + pf(w))en(u/m) — /Qo (logu + AP + uf(u))p asm — 0,  (4.54)
since n(u/m) < 1 and (logu)xa+ + M? + uf(u) € L*(Q), according to Lemma 4.8,
We proceed with the integral on the left hand side of (4.52),
| Ve (en(ue/m)) = [ (VueT@)m(ue/m) + C.. (4.55)

Consequently,
/ﬁ(Vngo)n(uE/m) — /Q(Vquo)n(u/m) as € — 0,

since u, — u weakly in H} () and u, — u uniformly in Q. Consequently, by the Dominated

Convergence Theorem,
/Q(Vquo)'r](u/m) — /QVqup as m — 0. (4.56)
We claim that
Vul? |
C. = /Q e (ue/m)p — 0 ase — 0 (and then as m — 0). (4.57)

The estimate |Vu|*> < MZ(u.) in Q given in (4.46) and recalling that 1'(u./m) = 0 if
ue > m yield
_ M . /
limsup |C| < — lim Z(ue) | (ue/m) |
e—0

m €0 Qﬂ{%guegm}
/
< Miim [ Z(u)ln (ue/m)e|
=0 JON{Z <u.<m} Ue
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1 1
Since Z(t) = t(1 + log?2) + 1 if 3 <t < 1, we may find a constant ¢ > 0 such that

1
' (t) < 70 for 1/2 <t < 1. Hence

Z(UE)
li C.l < M/ i _—
imop [l < MEup LI Jo ot w2 e/ m)

But if 1/2 < u./m < 1 then Z(u./m) > 1/2. Hence,

Z(ue
limsup |C,| < 2M/{sup |p|lim [ (ud)
e—0 €e—0 ON{F<uc<m} U
< 2M/su u+1—logu))X{u>0
< POl o o 8w))X (>0}

for every m > 0. Thus invoking Lemma 4.8 and letting m — 0, (4.57) is proved. As an

immediate consequence of (4.52)—(4.57), we have
Vuvy = [ log u + M + ,
/Q uVe= | {M}( ogu + Au uf(U))w

for every ¢ € C}(£2). This concludes the proof of Theorem 4.1. O
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5 Log—exp problems without parameters

In this chapter we study problems of the form

—Au = (logu + f(u))X{us0} in Q
u>0,u%0in Q (5.1)
u =0 on 01,

where Q C R? is a bounded smooth domain and f is allowed to have exponential growth.

We will again study a perturbed problem of the form

—Au+ ge o) (1) = f(u) in 2
w>0in Q (5.2)
u = 0on 0f).

Here, g.;, € C*°(0, 00) is defined by

ce?

— log <s+

b for s < 0,

)forsZO

gen(s) = s+e (5.3)

where b = f(0), so that g.,(0) = b = f(0) for all e > 0 and g.(s) — —log(s) pointwisely
for s > 0 as € — 0. The perturbation g, is a generalization of the perturbation considered
in Chapter 4, and we no longer need to assume that f(0) = 0. We will assume that f

satisfies the following assumptions:

e f(s) = f(0) for all s <0, f € C*(0,00) NC(R) and sup |sf'(s)| < oo, (5.4)

0<s<1
for some 0 < v < 1, and that for each a > 0 there exists a constant C, > 0 such that

| f(s)| < Cyexp (ong), for every s > 0. (5.5)

As in the previous chapters, we work with the functional I, : Hj(Q2) — R given by

L(u) = ;/Q|Vu|2dx+/QGe7f(o)(u)—/QF(u) da, (5.6)

where F(u) = /u f(s)ds and Gep(u) = /s ges(s)ds. From the fact that f and g, are
0 0

continuous functions that satisfy (5.3), (5.4) and (5.5), we conclude I, is of class C' and
I'(u)(v) = / VuVu +/ Ge,f(0) (w)v —/ f(u)v, for all u,v € Hy(Q). (5.7)
Q Q Q
Consequently, if u, € Hy () is a critical point of I, then

/QVu€VU + /Qggyf(o)(ue)v :/Qf(ue)v, for all v € Hy (). (5.8)
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Consequently, critical points u. of I, are weak solutions of problem (5.2).

Remark 5.1. It is important to choose b = f(0) in (5.3) to guarantee that critical points

of the functional I, are nonnegative.

Indeed, choosing v = —u_ in (5.8) and assuming that I’(u.) = 0, we get

Vu_2:/ . ueu_—/ Ue)U_
TR SR STOIUA T MR (AT

- f(O) /Qﬁ{u€<0} te — f<0) /Qﬂ{ue<0} te

=0

Consequently u, > 0 in €.

Furthermore, if u. € L>(2), then for each 0 < € < 1

sup(|ge(ue)| + |f (ue)[) < oo,
and consequently
Au, € L*(Q).
We conclude from Elliptic Regularity Theory (Theorem B.14) that u, € W*"(Q) for all
r > 1. Thus, the Sobolev Embedding (Theorem B.13) implies that u, € C*"(Q), where
0 < v < 1is given by (5.4). Summarizing, we have
Lemma 5.1. Suppose that f satisfies (5.4) and (5.5). The following assertions hold:

(i) Critical points of I. are nonnegative weak solutions of problem (5.2).

(ii) If u € Hy(Q) N L®(Q) is a nonnegative weak solution of problem (5.2), then u is
smooth and u € C™*(Q), with v given by (5.5).

Now we summarize the properties of the perturbation g.; defined in (5.3).
Lemma 5.2. Let b € R and § > 0. There exists a constant 0 < ¢y < 1/2 that depends on
b and & such that the following assertions hold for each 0 < € < €.

(1) If b < 0, then gep(s) < 0 for s < spe, gen(s) >0 for spe < s < Sy, and
Gen(s) <0 for s > Sy, where

G, - (1—e+/(1 —;)2 — de(e b — 1)

and

(1—€)—/(1—e)2—de(e? — 1)
. .

Sphe =

Also, 0 < sp < 1/2, and
Spe < 0 for all 0 < e < €.
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Moreover,
gen(s) > b—log?2 for s <e".

(i7) If b > 0, then gcp(s) > 0 for s < Sy and gep(s) <0 for s > Sp..
(iii) The following inequality holds

1 3
§<Sb,€<§f0rall()<e<eo.

(iv) For each constant R > 0, there exists Cy, > 0 such that
|sgen(s)| < Cy and |Gen(s)] < Cy for 0 < s < R.
(v) For each py > 2, there exists a constant ky > 0 such that

Gep(s) > —kos™ for all s > and 0 < € < €.

(vi)

, (s+€)? —ee®
= — lls>0,
Geols) (s +€)(s? + se +ee?) for all s
so that .
g ,(0)==—¢e"—= 00 ase—0.
’ €

Proof of Lemma 5.2. First we prove item (7). Assume that b < 0 and observe that

gep > 0 if and only if

—b
€e
s+ <1,

S+ €

or equivalently,
s+ (e—1)s+e(e®—1)<0.

This inequality holds if and only if

= Spe.

) _1—6—\/(1—6)2—46<€_b—1> C e 1—€+\/(1—€>2—4€(6_b—1)
be = 5 <s<

2

Observe that these quantities are well defined if (1 — €)? — 4e(e™® — 1) > 0, which holds
provided

(1—¢)?
Aeb—1)

The assumption 0 < € < 1/2 assure us that s, and S are well defined when

O<e<

1

0 S
ST OT 16— 1)

We also have
1—¢ 1
sb75<?<§forall()<e<eo.
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We now show that there exists ¢y > 0 such that s, < ¢ for all 0 < € < €. Indeed, 5,5 < 0
if and only if

1—e— /(1 —€)? —de(ed — 1) < 26.

Equivalently,

1—6—25<\/(1—6)2—46(6_b—1).

This result clearly holds if 1 — e — 20 < 0. Otherwise, we must consider € > 0 such that

(1—€)? —de(e™®—1) > (1 —€—26)°
(1—e€)? —de(e™®—1) > (1 —€)* —4(1 — €)§ + 45
—de(e™" — 1) > 4ed — 40 + 462
4e((e7® = 1) +6) < 46(1 —6)

5(1—6)
‘et 1o

We further have
—b

gen(s) > b—log?2 if and only if log (s - <
' s+e€

) < —b+log2,

which is equivalent to

which is true provided

We have proved item (7). The proof of (i) is very similar. We now prove (iiz), thus

proceeding with the estimates for S, .. We know that S, < 3/2 provided

\/(1—6)2—46(6_b—1)<2—|—6
(1—€)? —de(e™® —1) < (2+¢)?
12+ —de(e® —1) <d+4de+ €.

Hence, we need to solve

3+2(3+2(e—1))>0
3+ 2¢(1+2e7") >0,

which is clearly true. Furthermore, S, ;. > 1/2 provided
V0L —e)?2 —de(ed —1) > ¢

(1—€)? —de(e™® —1) > ¢
1 -2+ —4de(e?—1)>¢€
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Consequently,

1 —2¢—4ele®—1)>0
1>e2+4(e™—1)) =e(4e™ —2).

This result is obviously true for small values of e. We have proved (iii). Now we prove
(iv). Let R > S, be a constant. In what follow, C; > 0, i = 1,2,3,... denote positive

constants that do not depend on €. Observe that

ee? ee?
slog<s+ )‘:slog<s+ )
S+¢€ s+e¢€

< slog(s + e_b) for 0 < s < sp.

[5gep(s)] =

Consequently, |sg.s(s)| < slog(2e7?) if s < e? and |sg(s)| < slog(2s) < Cife™® < s <
Spe < 1/2. We thus obtain

|sgep(s)| < Cp for 0 < s < sp.

Also,
|Sge,b<8)| = SlOg (S + 866—'— 6) ’ — _SIOg (S—l— ;e—f_(E)
< —slogs < Cy for s, < s < Sy < 3/2.
Finally,
ee? ce—b
€ - 1 — 1

< slog(s + ) for She < s <R.

Consequently, [sgcs(s)| < slog(2e7) if S, < s < e? and |sge,(s)| < slog(2s) < C if
e’ < s < R. We thus obtain

15gep(s)] < C5 for 0 < s < R.
eb |</ |geb<t|dt

We proceed to prove estimates for G ;. Note that
< / log (

)
</log(

=(s+e” log(s +e ) —(s+e) = (e log(e™) —e?) < Cyfor 0 < s < s < 1/2,
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so that |G, (s)] < Cy for 0 < s < 3. Furthermore,

|Gep(s)] <

Gep(Spe) —l—/ Gen(t) dt'
Sb,e

S 04 + |ge,b(t)| dt

Sb,e
—b
$ €e
<Cy+ —log [t + dt
= Sb,e & < t+ €>

§C4+/ —logtdt
Sb,e

=Cy— (slogs — ) + (spelog spe — spe) < Cs for s < s < Spe < 3/2.
Finally
R
Geals)] < |Ge,b<sb,e> + [ gt dt‘
b,e
R
<1Geal o)l + [ lgeal®)
b,e

cr [T ),
< +/ og |t + t
=0 Sp.e g( t—i—e)

< Cs+ [: log (t+ ") dt

=Cs+(R+elog(R+e®) —(R+e™)
— ((Spe + e™?) log(Sp.e + e’ — (Spe + e ) < Cg for Spe < s <R.

Now we prove (v). From (i), we may choose ¢y > 0 such that s, < J. Consequently, from

A%
|
Q

C
—%SPO for 6 <s < 5.

v
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On the other hand, from (iii) and (iv), we have
Ge,b(s) = GE(S@E) +/S geyb(t) dt
b,e

> —C— [ Jgealt) dt
Sb,e

—b
s ee

=-C — log|[t+—— | dt
Sb,e s ( t+ 6)

>—C — log (t + e*b) dt
Sb,e

> _(C — t+etdt
Sb,e

> —C—/st+e—bdt
0
2
=-C— <2 +e_bs> for s > Sy > 0.

Consequently,

C'sPo gPo e~bgpo
Gep(s) = = ( 50 9gp2 T gpooi )

= —kos™ for s > Sy, > 0.
This proves item (v). Item (vi) is a direct consequence of (5.3). We have proved Lemma
5.2. [

We further have

Lemma 5.3. There exist constants Cy, > 0 and R, > 0 that do not depend on € satisfying

the following assertions.

(i) |sg;b(s)| <1 forall s >0,

1
(i) |5g.,(s)] = —sgc4(5) > A for all s > Ry, and 0 < € < 1. If b > 0, then
Ry, =2.

(111) 0 < —gep(s) < s forall s > Ry, and 0 < e < 1.

(iv) Gep(s) <0 forall s> Ry and 0 < € < 1.

Proof of Lemma 5.3. First, we prove (7). Observe that

s%+2es+ €2 —ee®
$3 4 2es? + s(€? + ee7b) + e2e b

_gé,b(s) =

Consequently,

3 2 | (2 ~b
57 4 2es” + (€ + e ’)s -1

/
<
[59c0(5)] < s3 + 2es? 4 (ee7P + €2)s + e2e7b —
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b
This proves (i). Furthermore, —g/ ,(s) > 0 if 2es > ee~", which holds for s > %. Also,

es<sfor0<e<l,s>1,

cels<sPfor0<e<1lands>e??

and
e t<sBfor0<e<1ands>e 3

We conclude that

/ > s® s> e’ p s 1
_Sge,b(s)— 19195 15 6 or § > max 7,6 ,€ ,1p.
This proves (ii). We now prove (iii). Indeed, from items (i), (#i) and (¢ii) of Lemma 5.2,
there exists Ry, > 0 such that

—b

« ) < log(s + e_b) < s forall s > Ry, > Sp.
€

0 < —gep(s) =log (s +
S

Now we prove (iv). Indeed, from Lemma item (iv) of 5.2,

Gepl(5) = Gep(Sne) + /S ges(t) dt
b,e

<C / ] t+€€_b dt
J— O [
= Sh.e & t+¢€

< Cy — / log t dt
Sb,e

=Cy— (slogs —s) + (Spelog(Spe) — She)
< C5 — s(logs —1).

Consequently, G.(s) < 0 if s(logs — 1) > C5. This proves the result. O

We remark that the estimates given in Lemmas 5.2 and 5.3 are uniform in e.

5.1 Existence of solutions for the perturbed problem

In this chapter, we obtain critical points of the functional I, given by (5.6). We
again consider the functions j. : R — R defined by

Je(8) = [(5) = 9e.s(0)(5);

and J(s) = /S Je(t) dt. Observe that
0

I(u) = ;/Q|Vu|2—/QJ€(u). (5.9)

Also, (5.3) and (5.4) imply that j.(s) = Jc(s) = 0 for s < 0. We assume further that f

satisfies the following conditions:
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e There exist constants 0 < €y, < 1 such that
Geo,£(0)(8) > f(s) for all s <6, (5.10)
This condition is satisfied when, for example

. /
T |f/(s)] < oo.

The existence of ¢, satisfying condition (5.10) implies that
Ge,f(0)(8) > f(s) for all s < 6,0 < e < €.
e There exist constants 0 < § < 1/2 and sy > 0 such that
min{ f(s), F(s)} > 0 for s > s, (5.11)

and
(1—=60)(f(s)+s) <Osf'(s) for s > s. (5.12)

e There exist constants A > 0 and v > 2 such that
F(s) > Als|” for s > sp. (5.13)

Condition (5.10) will be used to show that the origin is a local minimum for the functional
I for all 0 < e < 1. Condition (5.13) will imply that there exists an element ¢y € H; ()
with I.(¢g) < 0 for all 0 < € < 1. From the Mountain Pass Theorem, we will get a
Palais-Smale sequence (u;,) for I.. Conditions (5.11) and (5.12) will be important to show
that the sequence (u,) is bounded in Hy () by a constant that does not depend on e. We

n

will then conclude that it converges to a critical point u, of I.. First, we get

Lemma 5.4. Assume that (5.4) and (5.5) hold. The following assertions are true.
(i) If (5.10) holds, then j.(s) <0 for s <0 and 0 < € < €.

(i4) Assume further that (5.11) and (5.12) hold. Then, there exists R} > 0
and €y > 0 such that

0 < Jc(s) < Osje(s) for s > Ry and 0 < € < €.
We thus obtain a constant C' = Cy > 0 such that
|Je(s)| < C +0sje(s) for all s >0 and 0 < € < ¢.

Proof of Lemma 5.4. It is clear that condition (5.10) implies (z). We prove (ii). Observe
that J.(s) > 0 for large s provided F(s) — G s@y(s) > 0. This follows from (5.11) and

1
Lemma 5.3. Now let B(s) = F(s) — Gc 0)(s) — 05(f(5) = ge,f(0)(5)), where 0 < 8 < 3 is
given by (5.12). We will show that B.(s) < 0 for large values of s. Indeed,

Bi(s) = (1= 0)(f () = ges)(5)) — 05 f"(5) + Osg. (0 (5).
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Therefore, from item (4i) of Lemma 5.3, we conclude that
Bl(s) < (1—=6)(f(s)+s)—0sf'(s) — Z for s > R,

where R = Ry(q) is a constant that does not depend on e. Therefore, B.(s) < —60/6 for
s > R provided
(1—=0)(f(s)+s)—0sf'(s) <0 for s >R,

which follows from (5.12). Furthermore,
B(R)=F(R) — Gﬁjf(o)(R) —ORf(R) + QRng(o)(R).

Consequently, from item (iv) of Lemma 5.2 and (5.4) , we obtain a constant C' > 0 that

does not depend on € such that
|Be(R)| < Croy + |F(R)| + |Rf(R)| = C, forall 0 < e < ¢.

We conclude that o
B.(s) < —g + C forall 0 < € < €,

~ 6C
where the constant C' does not depend on €. Hence, B¢(s) < 0 for s > B Consequently,

there must exist R* > 0 such that
0 < J(s) < 0Osj(s) for all s > R* and 0 < € < ¢.

From Lemma 5.2, we know that there exists a constant Cy > 0 such that |sj.(s)| < Cy
and |J.(s)| < Cy forall 0 < s < R* and 0 < € < €. Consequently,

|Je(s)| < C3+ 0sje(s) for s € R and 0 < € < €,

where C3 > 0 is a constant that does not depend on €. This proves the estimate. O

We also need the following energy estimates.

Lemma 5.5. Assume that [ is a function that satisfies (5.4), (5.5) and (5.13). Then,
there exist ¢g € Hy(Q) N L>®(Q) such that

I(po) <0 forall0<e<1 (5.14)
Furthermore, there exists C' > 0 that does not depend on € such that

sup I (tpo) < C for all for all0 < e < 1.

te(0,1]

Proof of Lemma 5.5. Indeed, let ¢ € Hy(Q) N L™(Q) be a function such that ¢ > 0 in
Q2 and sup ¢ > 1/2. Then
Q

t2
L{too) = 5 [ Vo] du+ /Q Ger0)(t0) — /Q F(té) da for all ¢ > 0.
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Consequently, from (5.13),

2
1(t0) = 5 [ V6P dut [ Gogfto)- [

F(to) de— At / & dx for all t > 0.
{t¢<so} {t¢>s0}

We choose ty > 0 so large that

1
%0 = 7 80 that {¢ > 1/4} C {t¢ > s} for all t > t,.
0

From (5.4), item (iv) of Lemma 5.2 and item (iv) of Lemma 5.3, we conclude that

L(te) < f/ V|2 dz + C) — Aﬂ/ & du for all t > t,,
{171}

where C7 > 0 is a positive constant that does not depend on ¢. Inequality (5.14) then
follows by choosing ¢y = T'¢, where T' > 0 is so large that I.(T'¢) < 0. Furthermore, (5.4)
implies that there exists C5 > 0 such that

|F(s)| < Cy for 0 < s < sup ¢y.
Q

Consequently, from item (iv) of Lemma 5.2,

1t6n) = S leullyen + [ Gusolton) - [ Fitan)

oolligior + [, Gesoton) + ol

1
< 5”%”313(9) +Czforall0 <t <1,0<e<1.

I/\

We have proved the result. O

Now we obtain the main result of this section. As in the preceding chapters,
the idea is to apply the Mountain-Pass Theorem to obtain a critical point of I.. We remark
that (5.5) implies that

max{|f(s)|,|F(s)|} < C,exp(as?) for all s >0 and a > 0, (5.15)

see Lemma 2.2.

Proposition 5.1. Suppose that f satisfies (5.4), (5.5) and (5.10) — (5.13). Then, there
exvist D > 0 and ¢y > 0 such that I. has a critical point u, € H}(Q) satisfying

HueHHl < D for all 0 < € < €.
Moreover, there exist constants ay,as > 0 such that

a; < I (ue) < as. (5.16)
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Proof of Proposition 5.1. Let 0 < ¢y, < 1 be given by (5.10). As a consequence of

item (7) of Lemma 5.4 and item (v) of Lemma 5.2, we get
1
o= [ [
)= [ 1vuf* ~ [ 1w
1
> [ 2—/ J.
-2 /Q [Vl Qn{u>6} ()

1
=~ [ |Vup / G(u) — / F
2/9| ul+ Qn{u>6} () QN{u>6} (v)

1
> f/ |Vu|2—l<:0/ o — F(u), for all u € HY(Q),0 < ¢ < «.
2 Ja Qn{u>6} on{u>s}

Choosing py = 3, using the Trudinger-Moser inequality, (5.15), the Sobolev embedding

and Holder’s inequality, we obtain

1
L) =5 [1VufP—k [ wt-Cy exp(u?).
2 Ja Qn{u>6} QN{u>6}

1 C
St 2 / 3_i/ 3 2
> o L1Vl = ko [l =55 [l exp(u?)

1 C 1 1
S+ 2 / 3_3</ 6)2(/ 2)2
> L1Vl =k [l =53 ([ )" ([ exp(2u?)

1
> 5”“”%}3(9) - C4HUH§’{3(Q) for ”UHQHg(Q) <2,

where C; are positive constants that do not depend on €. Consequently, there exists p > 0

that does not depend on € such that
1 .
I(u) > 1”“”%13(9) for all u € Hy () with [ull a0y < p- (5.17)

We know that I, is a functional of class C'. Consequently, Lemma 5.5, (5.17) and the
Mountain-Pass Theorem imply that there exists a Palais-Smale sequence (us,) for I, at
level

ce = inf max I.(V(t)),

Vel 0<t<1

where
I ={¥ecC(0,1],Hy(Q)) : ¥(0) = 0 and V(1) = ¢}

From (5.17) we obtain
2

062%, for all 0 < € < €.
Furthermore, Lemma 5.5 imply that c. < C' for some constant C' > 0 that does not depend
on €. Consequently,
2
L L)l < c,

for sufficiently large n. We thus get, from Lemma 5.4,

1 €112 €
Sl < €+ [ (@) do

<C+ 00+ Q/QUZjE(u;) d,
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where 0 < 0 < 1/2 is given by (5.12). Furthermore, I’(uf) — 0 as n — oo. Consequently,
there exists a sequence (7)) in (0, 1) such that 7, — 0 and

n

/QVu;Vvdm—/Qje( Vo de

< Tollvll o) for all v € H () and n € N, (5.18)
Taking v = u;, in (5.18), we get
~ralld gy < s 2y - /96 Juf, dz < o || 3y for all n € N,

Consequently,

]_ € € €
5”%”%{5(9) < C+ CilQ| + 07| [ g2 ) + 0||unH§{3(Q)

We thus get
1 . e
(5 9) Iy < C -+ Gl + 67 s e

Hence, (uf) must be uniformly bounded in H(2). Letting n — oo we get

1
(2 —e) lim [ a0y < €+ C1l2)

n—oo

Consequently, )

n—oo

We thus obtain a constant D > 0 1ndependent of € such that
HUZH%T&(Q) < D for all 0 < € < €.
Hence, there must exist u, € Hy(2) such that, up to a subsequence,

— u, weakly in Hj(€),
— u in LP(Q) for every p > 1, (5.19)

U

U

IS» 3o 30

ud — u,. a.e in Q.

We recall that since f satisfies (5.5), there exists a constant C. > 0 such that
2
max{[j.(s)], |J.(s)} < C.exp (532) for s € R. (5.20)

Let 1 <r < 2. From (B.8), we get

. 2
/ |7e(us)|" dx < C. / exp | 2mr <u”> < C.k; for all n € N.
||U%||H3(Q)

From (5.18), (5.19) and Holder’s inequality, we get

lim / (Vu,|?dz = lim [ j.(ul)us dz
Q

n—o0 n—oo (9]

= lim [ je(uy)ucdx

n—oo JO

= lim / Vu;, Vuedx

n—oo JO

= / Vu|? dx.
0
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We conclude that uf — u, strongly in Hj(£2). Hence, I'(u.) = 0 and

p2

The fact that u. > 0 in €2 is a consequence of Lemma 5.1. The result then follows by
2

taking a; = pz and as = C. O

5.2 Convergence of the perturbed solutions

In this section. we study the convergence of the solutions u, of problem (5.2)

obtained in Proposition 5.1. This proposition guarantees that there exists a constant D > 0
such that

HUEH%I(}(Q) < D, for each 0 < € < ¢. (5.21)

Hence, there exist u € Hy(2) and a sequence (e,) in (0, €) such that €, — 0 as n — oo
and
u., — u weakly in Hj (),

Ue, — w in L"(2) for every r > 1,
(5.22)
Ue, — U a.e in {2,

lte,, | < k- a.e in Q for some h, € L"(€2).

As in Chapters 2 and 4, we will apply regularity results discussed in Appendix A to
conclude that u., is smooth for all n € N and that u is continuous. Indeed, if (5.21) holds,
then Corollary A.1, implies that there exists a constant K; > 0 such that

|te,, || o) < K for all 0 < €, < €. (5.23)

Then, it follows from elliptic regularity theory and from the Sobolev Embedding that
u., € C*(Q), see Lemma 5.1. Lemma A.5 implies that there exists a constant ey > 0 such
that for each smooth subdomain €' C € C ) there exists a constant M > 0 that depends

on € but not on € such that
\Vue, (z)]* < MZ(u,,(x)) for every € ', 0 < e < e, (5.24)

where

DN | —

t?4+t—tlogt for 0 <t <
Z(t): 1

1 1 1
4+ (1 +log?2 ——)(1+1og?2) fort> —.
4+2(—|—0g)+<t 2>(+Og) 0rt_2

Hence, it follows from the Arzela-Ascoli Theorem that u., — w uniformly in compact
subsets of €2, so that u is continuous and 0 < u < Kj. In this section, we show that u is a

solution of (5.1) in the sense that

/QVchp = /m{u>0} (logu + f(u))gp, (5.25)
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for every ¢ € C1(Q) and
(log U)X{U>0} € Llloc(Q)'

First, we show that

Lemma 5.6. The function u is nontrivial and the function (logu)xa, belongs to Ly,.(S),
where 0y = {x € Q:u(xr) > 0}.

Proof of Lemma 5.6. First we show that u is nontrivial. Indeed, since u., > 0 is a

critical point of I, and 0 < a; < I, (u.), we have

It gy + [ gensio e e, = [ Fue, e,

and |
Ty (10,) = 5l gy + [ Cosor(e) = [ Flue) > ar
Hence,
I, (ue,) = (5.26)
/Q (GGn,f(o)(uen) — ;gen 0 )(uen)u%) dx +/ ( (Ue, )Ue, — F(uen)> dzx > ay.

We will show that

/an y (e, e, da —>/ —logu) X fusoyu dz. (5.27)

First, observe that if g. r)(s) < 0 then

ee‘b
|w$n=mgG+s+63ﬂ%@+a%

and if ge (0)(s) > 0 then

ee‘b < 1
—slog s.
s+e) &

5Ge,7(0)(5)| = —slog (S +

Consequently,
15Ge,7(0)(s)] < g1(s) for all s >0 and 0 < e <1,

where
g1(s) = max{|slog(s +e7")|,|slogs|} € L*(0, K,),

with K given by (5.23). Now we prove (5.27). Indeed, fix € Q such that u(z) > 0. We
know that wu., () — u(x). Hence,

ene_b

W) — —u(x)logu(z),

%M@WJ@mwwzﬂ%@mg@am+

pointwisely as n — oco. On the other hand, if u(z) = 0, then u., (z) — 0 as n — oo, so
that
|Ge, (e, e, | < g1(te,) = 0 = —u(log u)x{u>0y pointwisely as n — oco.
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Inequality (5.27) then follows from the dominated convergence Theorem. We proceed to
show that

/QGen,f(O)<Uen) —>/QG(u) dz,

where
G(s) = —/ log t dt.
0
Indeed,
Uer (%) ene? o0 ene?
Gen 1(0) (Ue, () = —/D log (S o ) ds = —/0 log (8 + o ) X{s<ue, (@)} dS-

Observe that

ene_b
<log (8 + s ) XsSua @) — (log s) X fs<u(z)} as n — oo for s & {0, u(z)}

and
€e

1 SSUu x
og<s+8+6n>><{s n (@)}

< |92(5)’X{0§53K1} for all n € N,

where
g2(s) = max{|log(s + e")|,|log s|} € L'(0, K1).

The Dominated Convergence Theorem then implies that
Lim Ge, 1(0)(Ue, (7)) = —/0 log s ds for all x € .
From item (iv) of Lemma 5.2, we know that there exists C; > 0 such that
|Ge0)(s)] < Cpforall 0 <s < Kq,0<e<e.
Applying the Dominated Convergence Theorem again, we get
Gy gi0)(tt,) d = [ G(u) da
| Gesioue,) da = [ Glu)da
Moreover, it follows directly from the Dominated Convergence Theorem that
[ (3, = Flue)) do = [ (57000 - F(w)) d
| 5/ (e )ue, Ue, x L g f(wu u) ) dx.
Letting n — oo in (5.26), we get
1 1
/ (G(u) - 5(— log u)ux{u>0}) dx +/ (2f(u)u — F(u)) dr > ay, (5.28)
Q Q

so that u is nontrivial. We proceed to show that (logu)yq, belongs to L,.(©2). Let V C Q
be a open set such that V C V C Q. Take ¢ € C}(Q2) such that 0 < (< land ( =1in V.

Since wu., is a critical point of I, , we obtain

€n>)

/ 90, ()¢ = [ Fle)¢ = [ Fue, V¢ - 9o (10, )C:
{ten <St0),en Q Q {ten>5¢(0),en
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(5.22), (5.23) and the fact that u., — w uniformly in compact subsets of € imply that

[ fu)e = [ F

/QVuEnVC — /QVUVC as n — 0o,

and

|Gen,f(0) (Ue, )| < Ch, for allm € N,

€ uE < /
|/{uen>sf(0),€n} Gens10) (U )| QN{1/2<uc, <K1}

where C'; > 0 is a positive constant that does not depend on €. Hence, there exists Cy > 0
such that
< Oy for all n € N. (5.29)

Gen,f(0) (Ue, )C
|/{u€n<sf(0),en} 7o) )

We split the proof in two cases

Case 1: First, assume that f(0) > 0. Item (i7) of Lemma 5.2 implies that
Gen.f(0)(8) = 0 for 0 < s < Sygy,e,. From item (izi) of Lemma 5.2 we may also assume that
St©),e. > 1/2, so that, from (5.29),

. U dr < (5 for all n € N.
L o s (I < €

Consequently,
_/ |Gen.7(0) (e, )|C d < Cy for all n € N,

where Cy > 0 is a positive constant independent on n. Define the set Q, = {x € Q : u(z) >
p} for p > 0. Then
Jora,

It follows from Fatou’s Lemma and (5.29) that

€En€
., T €n

log (uen + > |C < Cy.
/ | log u|xa, < Ci,
.

independently of p. Letting p — 0 and applying Fatou’s Lemma again, we conclude that
/ |log u|xq+ < o0,
v

for every open subset V C V C Q.

Case 2: When f(0) < 0, we should recall ( from item (i) of Lemma 5.2) that
£(0) —log2 < ge(s) <0 for 0 < s <min{sqy.,, e}, so that

/ 96, (16,1 dv < (1 (0)] + 10 2)[2] =
Qﬁ{Ogugn <5f(0),en}

From (5.29), we obtain a constant Cg such that

/ 90, (1., )| di < Co.
QN {s£(0),en, Sten <Sf(0),en t
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Consequently, we obtain C7 > 0 such that

J 1600, )G dr < 96,001, |C

QN{0<ue, <S(0),en }

Gen,f(O ('LL n) Cdx
/Qm{sf(o)v‘n§“€n<5f(0),€n} ‘ F(0)(te ’

€n Ue,, dr < C .
/Qm{sf(o),EnUEnSKl} |g ’f(o)( )|C 7

The result then follows as in Case 1. O]

We now state the main result of this chapter.

Theorem 5.1. Assume that f is a function that satisfies (5.4), (5.5) and (5.10) — (5.13).

Then problem (5.1) has a nontrivial nonnegative solution.

Observe that this theorem extends the result of the previous chapter. Indeed,
we no longer assume that f(0) = 0 and we make no use of parameters. For example, we

get
Corollary 5.1. (i) The problem

—Au = (logu + pe")xqusoy in Q2
u>0, uz0in
u =0 on 012,

is solvable for all p >0
(73) The problem

—Au = (logu + puP)xus0y in
u>0, uzz0in
uw =20 on 0N,

is solvable for all p > 1 and p > 0.
(1ii) The problem

—Au = (logu + puPe") X fuso0y in Q
u>0, uz0inQ
u =0 on 02,

is solvable for all p > 1 and p > 0.

Observe also that we allow f to change sign. Indeed,
Corollary 5.2. (i) The problem

—Au = (logu +€" — p)xqus0y in Q
u>0, uzz0in
u =0 on 0L,
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is solvable for all pn > 0.

(12) The problem

—Au = (logu +u? — p)Xquso0y in
u>0, uz0inQ
u =20 on 0,

is solvable for all p >0, p > 1
(7i1) The problem

—Au = (logu + uPe" — )X fuso0p n
u>0, uz0in
u =0 on 09,

is solvable for all p >0 and p > 1.

(iv) The problem

—Au = (logu + AP — pu?) X fuso0y in
u>0,uz0in
uw =20 on 0N,

is solvable for all A >0,0<qg<1<pand p>0.

Proof of Theorem 5.1. The proof is essentially the same of Theorem 4.1, see page 79.
The nontriviality of u is guaranteed by Lemma 5.6. Let u. be an arbitrary solution of
problem (5.2) and let ¢ € C}(©2). We have

[ Vue = [ (=gu) + (). (5.30)

We again introduce the auxiliary function n € C*°(R), 0 <7 < 1, n(s) =0 for s < 1/2,
n(s) =1 for s > 1. For m > 0 the function g := n(u./m) belongs to C}(2), because wu, is

smooth, according to Lemma 5.1.

From continuity, the set Q. = {z € Q : u(z) > 0} is open. Let Q be an open
set such that support(¢) C Q and Q C Q. Let Qy = Q, N Q. Since u, — u uniformly in Q,

we know that for every m > 0 there is an ¢; > 0 such that
uc(r) < m/2 for every . € Q\ Qp and 0 < € < €. (5.31)
Replacing ¢ by ¢ in (5.30) we obtain
| T (entue/m)) = [ (=g + f(w))entuc/m)
We break the previous integral as

Ac= [ (=giuw) + fu)en(ue/m)

0
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and

Boi= [ (=guu) + flu)en(uc/m).

O\Q

Clearly, B, = 0, whenever 0 < € < ¢; by (5.31) and the definition of 1. Furthermore,
A — /Qo(logu+ fw)en(u/m) as e — 0,
because u, — u uniformly in £2y. Next, we take the limit in m to conclude that
|, Gogu+ Fw)enu/m) = [ (logu+ f(u)p as m 0.

since n(u/m) < 1 and (logu)xa+ + f(u) € LY(Q), according to Lemma 5.6. The result is
then obtained by following the proof of Theorem 4.1. O]
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6 Critical Log—exp problems

In this chapter we study problems of the form

—Au = (logu + f(u))Xuso0} in Q
u>0,u%0in (6.1)
u =0 on 0f),

where 0 C R? is a bounded smooth domain and f has critical growth in the following

sense.

Definition 1. Let f : [0,00) = R be a continuous function. We say that f has critical
growth if there exists a > 0 such that

limM:ooforall()<n<a, and limM

=0 k> a. 6.2
s=00 exp(ks?) s—00 exp(ks?) for allr >« (62)

s2

Examples of functions with critical growth are f(s) = ¢* and f(s) = s"e
with 7 > 1.

Remark 6.1. In Chapter 5 we studied problem (6.1) with functions satisfying: for all
o > 0 there exists C,, > 0 such that

|f(s)] < Cyexp (as?) for all s >0, (6.3)

see conditions (2.3), (4.5) and (5.5). Observe that f satisfies (6.3) for all « > 0 if and

only if

lim ) =0 for all @ > 0. (6.4)

s—00 exp(as?)
Functions satisfying (6.4) are called subcritical. Examples of functions of subcritical
growth are f(s) =e€°, f(s) = s” and f(s) = se® with p > 0.

Remark 6.2. If f is a function of critical growth, then problem (6.1) was studied in Chapter
5. The novelty in this chapter is that we consider problem (6.1) with f having critical
growth. The main difficulty here is that the associated functional I. lacks compactness. To
overcome this difficulty, we need to obtain sharper estimates in Hy(Q) for the solutions of

the approzimated problem.
We will again study a perturbed problem of the form
—Au+ ge o) (1) = f(u) in 2

u>0in Q (6.5)
u = 0on df2.
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Here, g, € C*°(0, 00) is defined by

ce™?

—log<s+ ) for s > 0

b for s <0,

gen(s) = 5+ € (6.6)

where b = f(0), so that g.,(0) =b = f(0) for all € > 0 and g.,(s) — — log(s) pointwisely
for s > 0 as € = 0. We will further assume that
f(s) = f(0) for all s <0, f € C*(0,00) N C(R) and sup |sf'(s)| < oo, (6.7)
0<s<1
for some 0 < v < 1. As in Chapter 5, we work with the functional I, : Hy(Q2) — R given
by .
I(w) = /Q Vul? dr + /Q G oy () — /Q Fl(u) de, (6.8)

where F(u) = / f(s)ds and Gp(u) = / ges(s)ds. From the fact that f is a function
0 0
with critical growth satisfying (6.7) and g is continuous satisfying (6.6), we conclude I,

is of class C' and
I'(u)(v) = /Q VuVo + /Q G0 (v — /Q Fluo, for all u,v € HAQ).  (6.9)
Consequently, if u, € Hy () is a critical point of I, then

/QVU€VU+/Qge7f(O)(u€)U :/Qf(ue)v, for all v € H(S). (6.10)

Consequently, critical points u, of I, are weak solutions of problem (6.5). Arguing as in

the proof of Lemma 5.1, we obtain

Lemma 6.1. Suppose that f is a function of critical growth that satisfies (6.7). The

following assertions hold:
(i) Critical points of 1. are nonnegative weak solutions of problem (6.5).

(ii) If u € Hy(2) N L>(Q) is a nonnegative weak solution of problem (6.5), then u is
smooth and v € C*(Q), with v given by (6.7).

In Section 6.1, we assume that f satisfies certain assumptions which are uniform
for . The goal is to obtain a nontrivial solution of problem (6.1) when f has critical
growth for small values of a. Next, in Section 6.2, we study a parametrized version of
problem (6.1) and remove the hypothesis that « is small. The drawback of not controlling
the value of « is that a certain abstract admissibility condition for €2 appears. We are
unable to give examples of sets {2 which are admissible. However, in Section 6.3, we give

more concrete examples of the result given in Section 6.2.
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6.1 Problems without parameters

In this section we study problem (6.1) when f satisfies the following assumptions,

analogous to the ones stated in Chapter 5. We assume that:

e There exist 0 < a < 1 and constants C,Cy > 0, ¢ > 0 that do not depend

on « such that

1£(s)] < Cys%exp (as?) + Cy and |F(s)| < Cys¢ exp (as?) for all s > 0; (6.11)

e f(0) is a constant that does not depend on «; (6.12)

e There exist constants 0 < €y, d < 1 which do not depend on « such that
Geo,f(0)(8) > f(s) for all s < 4. (6.13)
Again observe that the existence of ¢y satisfying condition (6.13) implies that
Ge,r0)(8) = f(s) for all s < 6,0 < € < €.
e There exist constants 0 < # < 1/2 and sy > 0 which do not depend on « such that
min{ f(s), F(s)} > 0 for s > s, (6.14)

and
(1—0)(f(s)+s) <0Osf'(s) for s > s. (6.15)

e There exist constants A > 0 and v > 2 which do not depend on « such that
F(s) > Als|” for s > sq. (6.16)

Condition (6.12) imply that the estimates for g ro) given by Lemmas 5.2 and 5.3 do not
depend on «. Conditions (6.11) and (6.13) will be used when showing that the origin is
a local minimum of /.. Condition (6.16) will again imply that there exists an element
b € Hy(Q) such that I.(¢g) < 0 for all € > 0. We will thus be able to apply the Mountain
Pass Theorem, which will give a Palais-Smale sequence (u;,) for I.. Conditions (6.14) and
(6.15) will imply that (uf) converges in Hj(f2) to a critical point wu,, if the constant «
given by (6.11) is sufficiently small, say 0 < a < a, where ag > 0 is an adequate constant
to be chosen later. The fact that the constants defined in (6.11)-(6.16) do not depend on

a yields estimates uniform in «, which will imply that «q is well defined.

The prototype of function f with critical growth and satisfying conditions
(6.11) — (6.16) is f(s) = s™ exp(as®) with 7 > 1. We again are interested in the quantity
Je : R — R defined by

Je(s) = f(5) = ger0)(5),
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and J.(s) = /8 Je(t) dt, so that
0

1
L(u) == / 2 / (u). 1
= [ 1vul? = [ g (6.17)
We may use Lemmas 5.2 and 5.3 to obtain the following version of Lemma 5.4.
Lemma 6.2. Assume that (6.7), (6.11) and (6.12) hold. The following assertions are true.
(1) If (6.13) holds, then jc(s) <0 for s <6 and 0 < € < €.

(17) Assume further that (6.14) and (6.15) hold. Then, there exists R* > 0 and
€0 > 0 such that
0 < J(s) <0sj(s) for s > R* and 0 < € < €.

We thus obtain a constant C > 0 such that
|Je(s)] < C 4+ 0sje(s) for all s >0 and 0 < € < €.

Furthermore, C' does not depend on o (given by (6.11)).

Proof of Lemma 6.2 . The proof is entirely analogous to the one given in Lemma 5.4, see
page 90. We point out that condition (6.12) implies that the constants defined in Lemmas
5.2 and 5.3 do not depend on a. O

As in Chapter 5, we obtain the following energy estimate.

Lemma 6.3. Assume that f is a function that satisfies (6.7), (6.11), (6.12) and (6.16).
Then, there exist ¢g € Hy(Q) N L>®(Q) such that

I(po) <0 forall0 <e<1 (6.18)
Furthermore, there exists C > 0 that does not depend on € nor on « such that

sup I (tgg) < C for all0 < e < 1.
t€[0,1]

Proof of Lemma 6.3. The proof of this result is entirely analogous to the proof of
Lemma 5.5, see page 91. We point out that due to (6.12) and (6.16), the constant C' > 0
does not depend on « (given by (6.11)). O

We now obtain critical points u,. of the functional I,

Proposition 6.1. Suppose that f is a function of critical growth that satisfies (6.7), (6.11)
and (6.12) — (6.16). Then, there exists ay > 0 such that I. has a critical point ue > 0
satisfying

7
HUE”%’S(Q) < % forall0 <e<e and 0 < a < .

Furthermore, there exists constants ay,as > 0 such that

0<ay <I(u) <ag forall0 <e<e and 0 < o < ay. (6.19)
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Proof of Proposition 6.1. Let 0 < ¢y, < 1 be given by (6.13). As a consequence of

item (7) of Lemma 6.2 and item (v) of Lemma 5.2, we get
1
L) =5 [ 1Vl = [ U
= [ 1vuf* ~ [ 1w)
1
> [P = [
-2 /Q [Vl Qn{u>6} ()

1
=~ [ |Vup? / G, —/ F
5 /Q [Vul® + - 0y (W) o) (u)
1
> 7/ |Vu|2—/<:0/ uPo — F(u), for all u € Hy(2),0 < € < €.
2 Jo Qn{u>6} QN{u>6}

Choosing py = 3, using (B.8), (6.11) and Hélder’s inequality, we obtain from the Sobolev
Embedding (and from the fact that 0 < o < 1) that

1
> f/ |Vul? — k:o/ u® — Cy u® exp(au?).
QN{u>s} ON{u>d}

> 2 [ 1wul =k [l = S [ expe?)

1
> 5 [1vup ko [ = 5 () ([ expou)
> Nl — Calluliy ey — Collll S5, for ully ey < 2.

where C; are positive constants that do not depend on «. Consequently, there exists p > 0

that does not depend on € nor on « such that
1 .
I(u) > ZHMH%IS(Q) for all u € Hy () with [ull 1) < p- (6.20)

We know that I, is a functional of class C'. Consequently, Lemma 6.3, (6.20) and the
Mountain-Pass Theorem imply that there exists a Palais-Smale sequence (us,) for I, at
level

c. = inf max I.(¥(t)),

vel' 0<t<1

where
I ={¥eC(0,1],Hy(Q)) : ¥(0) = 0 and V(1) = ¢p}.
From (6.20) we obtain
2
cgz%, for all 0 < € < €.

Furthermore, Lemma 6.3 imply that ¢, < C' for some constant C' > 0 that does not depend
on «. Consequently,

[e(uy)| < C,
for sufficiently large n. We thus get, from Lemma 6.2,
Sl < O+ [ Guy (@) da

<C+ 00+ Q/QUZjE(u;) d,
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where 0 < 0 < 1/2 is given by (6.15) and C; > 0 does not depend on «. Furthermore,
I'(ug) — 0 as n — oo. Consequently, there exists a sequence (7;) in (0, 1) such that 75 — 0

and

< Tollvll o) for all v € H;(Q) and n € N. (6.21)

/Vu Vvdx—/je Judx
Taking v = u;, in (6.21), we get
gy < N gy = [ Gelui s d < 7l gy for all m € N

Consequently,

1 € € €
5 i) < €+ CuIQI+ 0mlu Ly o) + Ol Iy )

We thus get

1 € €
(5-6) Islize < €+ C1I90 + Omalluslngeo

Hence, (uf) must be uniformly bounded in Hy (). Letting n — oo we get
1 ) .
(5-9) Jim N3y @ < €+ Crl01

Consequently, )
lnn [Jut 30 < (1=55 ) (€ + C1l2):

n—oo

If we choose ay > 0 so small that

2 3
(1—28) (C+C1|9Q]) < Eﬂ for all 0 < a < ap,

we get

T
- 2
lim ||u;||H3(Q) <3 for all 0 < a < oy
Consequently, there exist constants 1,75 > 1 independent of n such that
r1r2a||ufl||%101(m <4m foralln € Nand 0 < a < .
Furthermore, there must exist u. € Hy(€2) such that

uf, — u, weakly in Hy(Q),
u;, — ue in LP(§2) for every p > 1, (6.22)
u;, — U a.e in Q.

Observe that since f satisfies (6.11) for some a > 0, then there exists a constant C, , > 0

such that
max{|jc(s)], | ()|} < Cenexp (rias?) for s € R. (6.23)

Consequently, from (B.8),

/|jE T2dx<C’€a/eXp (ariro(us)?) < C. ok for all n € N.



Chapter 6. Critical Log—exp problems 108

From (6.21) and Hoélder’s inequality, we get

lim, [ [V do = lim [ jolug)us d
im Q| Up|” dx Jim QJ(Un)Un x

n—o0

= lim ) Je(us, ) ue dx

= lim / Vu;, Vuedx
Q

n—oo
= / Vu|? dx.
0

We conclude that uf — u, strongly in H}(£2). Hence, I'(u.) = 0 and

e

The fact that ue > 0 in €2 is a consequence of Lemma 6.1. The result then follows by
2

taking a; = Pz and ay = C. O
We now replicate ideas given in Chapter 5 to study the convergence of the
solutions u, of problem (6.5) obtained in Proposition 6.1. This proposition guarantees that

there exists a constant ag > 0 and ¢y > 0 such that
9 m
HUeHHg(Q) < 5y for each 0 < e < ¢,0 < a < ag

Hence, there exist u € Hy(£2) and a sequence (e,) in (0, ¢) such that ¢, — 0 as n — oo
and
u., — u weakly in Hj (),

U, — win L"(Q) for every r > 1,
(6.24)

U, — w a.e in ),

lte,| < hy a.e in Q for some h, € L"(2).

As in Chapter 5, we will apply regularity results discussed in Appendix A to conclude that
e, is smooth for all n € N and that w is continuous. Indeed, if (6.7) holds, then Corollary
A.1, implies that there exists a constant K; > 0 such that

e, || Loe () < K for all 0 < €, < €. (6.25)

Then, it follows from elliptic regularity theory and from the Sobolev Embedding that
u., € C*(Q), see Lemma 6.1. Lemma A.5 implies that there exists a constant e, > 0 such
that for each smooth subdomain €' C € C ) there exists a constant M > 0 that depends

on ) but not on € such that
Vue (2)|? < MZ(u. (x)) for every z € ', 0 < € < €,
| n n

where

N | —

Z(t) = 1 1 1
4+2(1+10g2)+<t—2> (1 +1log2) fort>
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Hence, it follows from the Arzela-Ascoli Theorem that u., — w uniformly in compact
subsets of €2, so that u is continuous and 0 < u < K;. We may now mimic the approach

given in Chapter 5 to prove that u is a solution of (6.1) in the sense that

Vuve = | 1 ,
Lyuve= [ (logu+tfw)e
for every ¢ € C1(Q) and

(log u)X{u>0} € Llloc(Q)‘

Indeed, we have

Lemma 6.4. The function u is nontrivial and the function (logu)xa, belongs to L,.(S2),
where Q. = {x € Q:u(x) > 0}.

Proof of Lemma 6.4. The proof of this result is entirely analogous to the one given in

Chapter 5, Lemma 5.6, see page 96. O

We conclude that

Theorem 6.1. Assume that f is a function that satisfies (6.7), (6.11) and (6.12) — (6.16).
Then, there exists ag > 0 such that problem (6.1) has a nontrivial nonnegative solution

provided 0 < o < .

Proof of Theorem 6.1. The proof of this result is entirely analogous to the ones given

in Chapters 4 and 5, Theorems 4.1 and 5.1, see pages 79 and 100 respectively. O]

As an immediate consequence, we get

Corollary 6.1. Let f(s) = s” exp(as®) with T > 1. There exists ag > 0 such that problem

(6.1) has a nontrivial nonnegative solution provided 0 < a < .
Corollary 6.2. For each p € R and 7 > 1, there exists ag > 0 such that the problem

—Au = (logu + u” exp(au®) + f1)X >0y i
u>0,u#0 in
u =10 on 0L,

has a nontrivial nonnegative solution provided 0 < o < ay.

6.2 Problems with parameters

In this section, we study the problem

—Au = (logu+ Af(u))X{usoy in 2
u>0,uZ0in (6.26)
u =0 on 0f),
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where X > 0, Q C R? is a bounded smooth domain and f has critical growth. Our goal
is to study whether problem (6.26) can be solvable independently of the value of «. In
Section 6.1, we showed that problem (6.26) has a nontrivial solution provided that the
constant 0 < o < 1 given by (6.11) is small. Here, we want to drop this condition. In

doing so, an admissibility condition appears. We consider the perturbed problem

—Au+ gerpo)(u) = Af(u) in Q
u# 0 in 2 (6.27)
u =0 on 012,

where g, is given by (6.6). In this context, we consider the functional I, , : Hy(2) — R
defined by

Loa(u) = ; LIVuP + [ Gors) = A [ Flu) forue HY(@). (6.28)
We assume that f has critical growth, so that there exists a > 0 and C' > 0 such that
max{|f(s)|,|F(s)|} < Cexp(as?) for all s > 0. (6.29)
Moreover, we assume that there exists 6 > 0 such that
f(s) >0forall 0 < s <. (6.30)

We will use condition (6.30) to obtain an element ¢y € Hy(§2) with I.(¢g) < 0 for all € > 0.
Assumptions (6.7) and (6.29) imply that the functional I,  is of class C' and

I\ (u)(v) = / Vu. Vo +/ Gerf(o)(w)v — )\/ f(u)v for all u,v € HY(R),0 < e < 1.
’ Q Q Q
(6.31)
Furthermore, critical points of I, are nonnegative weak solutions of problem (6.27),

according to Lemma 6.1.
Let ¢ € Hy()NL®(Q), ¢1 > 0in Q be the first eigenfunction of —A satisfying
@11l 3 ) = 1. We get

Lemma 6.5. Let a, A >0 and 0 < 0 < 1/2. Assume that (6.7), (6.29) and (6.30) hold.
There exists to > 0 that does not depend on A and e > 0 such that

™

t? 1—26
7t /Q Geapo)(tor) do < <2> o Jor all0 <t <ty, 0 <e<e. (6.32)

Proof of Lemma 6.5. Continuity and (6.30) implies that f(0) > 0. Consequently, from
items (77) and (i77) of Lemma 5.2, we get g fo)(s) = 0 for 0 < s < 2 provided e is

s
sufficiently small. Hence, s — G, »f()(s) is nondecreasing for 0 < s < 1/2. Furthermore,

gers(0)(s) = —log <8+ ) < —logs for 0 <s<1/2.

S+ €



Chapter 6. Critical Log—exp problems 111

Consequently,
0 < Geppoy(s) < / —logtdt = —(tlogt —t)];_y = s —slogs for 0 < s <1/2.
0

Since li_r)r&(s — slog s) = 0, we may choose t; > 0 such that

1—26
s—slogs<< 5 >2a7|TQ\ forall 0 < s < t.

We choose t; > 0 such that

t2 1-20\ «
50 < <2> % and topy () < t; for all x € Q.

We conclude that

Genpo)(tor) <ty — torlog(ter) < todr — todr log(todr)

1-2
<< 9) " for all 0 <t <ty

2 2a|Q
Consequently,
152 1—26 s 1—26
Geaioy(tér) dz < 2 / dz = T forall0 <t <t
/ AF(0 ¢1 X 2+< 5 )QQQ{|Q| X ( 5 >aora 0-
This proves (6.32). O

Let I,  be given by (6.28). From Lemma 6.5, we get

La(téy) = —+/G€W (tén) daz—A/ (té1) da
(6.33)

1-2
< <6>—)\/F(tgb1)dx for all 0 < ¢ < to.
2 « Q

Hence,

Ie)\(t()qbl) < 07

1—20 s
AF( ; )(anF(to%)) (6:34)

Observe that )y depends on 2. We now obtain

provided A > \g, where

Lemma 6.6. Let Ay be given by (6.34) and fixr X > \g. There exists 0 < t) < to such that

1—260
I \(tad1) <0 and |I. A (to1)] < <2> £ for all 0 <t <ty. (6.35)
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Proof of Lemma 6.6. Indeed, we choose 0 < t, < ty such that

(1:;w> A/‘ tk¢1dx<:<1_é20>(l.

This choice of t, is possible because F' is continuous with F'(0) = 0 and

)\O/QF(tOCbI) = (1_229> g-

The choice of ¢y and (6.33) imply that

Ica(tadr) < (1_229> g - >\/QF(15A¢1)d93 <0

and

2
[IcA(t1)| < t2+/ Gerpo)(tor) de + )\/ F(t¢y)dx

< <1_229> +>\/ (tor) dx

1—-2
§<9>”+A/F@mgm
2 o Q
1—-20\ 3
g()ﬁforall()ﬁtﬁt)\<to.
2 o

This proves (6.35). O
We further assume that

e There exist constants 0 < €, 0, < 1 (which may depend on « and \) such
that
Geonf(0)(8) = Af(s) for all s < 0. (6.36)

e There exist constants 0 < # < 1/2 and s, > 0 such that
min{ f(s), F'(s)} > 0 for s > s,. (6.37)
and
(1—=0)(Af(s)+s) <OAsf'(s) for s > sy, (6.38)

with 0 independent of A. If f has critical growth and satisfies (6.29) and (6.36) — (6.38),
then the argument used in the proof of Lemma 5.4 yields a constant C' = C , > 0 such
that

[Jea(s)| < Cha + 0sjer(s) for all s € R, (6.39)

where jex(s) = Af(5) = gerp0)(5), Jer(s / Jea(t)dt and 0 < § < 1/2 is given by (6.38).

We now prove
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Proposition 6.2. Let Ao > 0 be given by (6.34). Assume that f is a function with critical
growth that satisfies (6.7), (6.29), (6.30) and (6.36) — (6.38). Then, there exist u, € Hy(Q)

such that I] ,(uc) = 0 and constants ay,as,c > 0 such that
0<ay <Ix(ue) < ag,

provided A > Ao and |Q)| < c¢. The constants ay, as and ¢ do not depend on € but depend
on A and « (given by (6.29) ). Furthermore,

T
||u€||§{é(m < 5 for all 0 < e < €. (6.40)

Proof of Proposition 6.2 . Recall that J, > 0 is given by (6.36). As a consequence of

1 2
5 Jo1vul = [ Jeatw)
1
= w2 — / .
2/9' ul QNn{u>6x} ’A(u)
1
=— [ |Vul? / G, - A F
> [Vl + oy Goro@ =A [ Fw)

1
5/ Vul? - ko/ uP — A Fu).
Q Qﬂ{uZﬁ/\} Qﬂ{uZ(SA}

Choosing py = 3 in Lemma 5.2 and using (6.29), we obtain from the Sobolev Embedding

Lemma 5.2, we get

v

v

1
Io\(u) > —/ Vul? — ko/ u? — \C exp(au?)
2 Qﬂ{u>§>\} QN{u>6,1}
> — /]VuP k’o/ ul® — 53 / |u|? exp(au?

2y I o (e >2</QW>>%

2T
||U|IH1(Q Cillull @) — 02||U||H1 for ||u||§{5(ﬂ)<;7

| \/

where the constants C; do not depend on e. Consequently, there exists p > 0 that does not

depend on € such that
1
Icoa(u) > ZHUH%(Q) for all u € Hy () with [ull a0y < p- (6.41)

We know that I, is a functional of class C". Consequently, (6.35), (6.41) and the Mountain-

Pass Theorem imply that there exists a Palais-Smale sequence (uy,) for I, , at level

o = Jh 2 T (V)

where

I ={VeC(0,1],Hy(Q)) : ¥(0) = 0 and ¥(1) = ty¢1}.
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From (6.41) we obtain
2

Cen > pz, for all 0 < € < €.

1—260\ 3
Furthermore, (6.35) implies that ¢, ) < <2> o Consequently,
o
1—-20\ 3
[T (us)| < <2> " for all n € N.
o

Inequality (6.39) implies that

1,y 1-20\ 37 )
sty < (F57) 2+ [ tuston s

1—20\ 3«
< -
_( . )a CM\Q|+0/ U o () dar

Furthermore, I, (u5,) — 0 as n — oo. Consequently, there exists a sequence (75) in (0, 1)

such that 75 — 0 and

Vu Voudr — / Jea(ug)v dz| < 7pl[v]| i o for all v € H(Q) and n € N, (6.42)

Taking v = uf, in (6.42), we get
~rallu e < oy — [ der (g oy < 7 gy for all o N

Consequently,

1, — 20
310 g < (152 ) 2+ Cualet 0l g + Ol g

We thus get
1 . 20
(5-9) by < (152) 2+ Canlt+ 0l g

Consequently, (uf) must be uniformly bounded in Hy (). Letting n — oo we get

1 o 20
(5-9) dimw g < (“52) 2+ el

Consequently,

n—oo

3T 2
tim N ) < 2+ (=) Cral9
If we choose |€2| so small that
2 s
—— Q < — A4
(1—29) Cralfl < 50 (6.43)
we get

T
- 2
,}gngo ||U;||Hg(sz) < 2
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Consequently, there exists » > 1 independent of n such that
raHunHHl < 4r for all n € N.
Furthermore, there must exist u. € Hy () such that
uf, — u, weakly in Hy(9),
us, — ue in LP(Q) for every p > 1, (6.44)
u;, — U a.e in Q.
We recall that if f satisfies (6.29) for some a > 0, then there exists C, o > 0 such that
max{[jcx(s)], | Jea(s)]} < Ceanexp (as®) for s € R. (6.45)
Consequently, from (B.8),
/’Je/\ )" dl'<CeaA/Q€Xp(CW( €)?) < Ceank for all n € N.

From (6.42), (6.44) and Holder’s inequality, we get

lim / |Vu,|? dr = lim /Je,\ Juy, dx

n—oo [9) n—o0

n—o0

= lim /36,\ Jue dx

= lim / Vu, Vu, dx

n— oo 9]
= /Q |Vu|? dz.
We conclude that uf, — u, strongly in Hg(Q2). Consequently, I ,(u.) = 0 and
2
0< pz < Ia(u) < (1_229> ZZT
This proves the result. 0

We again replicate ideas given in Section 6.1 and in Chapter 5 to study
the convergence of the solutions u. of problem (6.27) obtained in Proposition 6.2. This

proposition guarantees that there exists a constant ay > 0 and ¢y > 0 such that
9 m
||Ue||H5(Q) <5 for each 0 < € < €y,0 < a < ayp,
provided (2 satisfies the admissibility condition
Q] <ec.

Hence, there exist u € H;(2) and a sequence (e,) in (0, €) such that €, — 0 as n — oo
and
., — u weakly in Hj(€),

U, — win L"(Q) for every r > 1,
(6.46)
U, — W a.e in {2,

[te,,| < hy a.e in Q for some h, € L"(€2).
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As in Chapter 5, we will apply regularity results discussed in Appendix A to conclude that
u,, is smooth for all n € N and that u is continuous. Indeed, if (6.40) holds, then Lemma

A 4, implies that there exists a constant K; > 0 such that
e, || oo () < K for all 0 < €, < €. (6.47)

Then, it follows from elliptic regularity theory and from the Sobolev Embedding that
u., € C'(Q), see Lemma 6.1. Lemma A.5 implies that there exists a constant ey > 0 such
that for each smooth subdomain ' C € C Q there exists a constant M > 0 that depends

on € but not on e such that

Ve, ()] < MZ(u., () for every x € ', 0 < e < e, (6.48)
where
9 1
t“+t—tlogt f0r0§t§§
Z(t) =

1+1(1+1 2)+<t 1>(1+1 2) fi 15>1

-+ = 0 - = 0 0 —.

172 & 2 82 O E =7

Hence, it follows from the Arzela-Ascoli Theorem that u., — wu uniformly in compact
subsets of €2, so that u is continuous and 0 < u < K;. We may now mimic the approach

given in Chapter 5 to prove that u is a solution of (6.26) in the sense that

/QVquo = /Qm{u>o} (logu + f(u))gp, (6.49)

for every ¢ € C}(Q) and
(log )X {u>0) € Lioo(2).

Indeed, we have

Lemma 6.7. The function u is nontrivial and the function (logu)xa, belongs to Ly,.(S),
where Q. = {x € Q :u(x) > 0}.

Proof of Lemma 6.7. The proof of this result is entirely analogous to the one given in

Chapter 5, Lemma 5.6, see page 96. O]

We conclude that

Theorem 6.2. Assume that f is a function with critical growth that satisfies (6.7),
(6.29),(6.30) and (6.36) — (6.38). There exists Ao > 0 such that problem (6.26) has a
nontrivial nonnegative solution provided A > g and |Q] < ¢, where ¢ = cop) > 0 is a

constant depending on o, X and 6.

Proof of Theorem 6.2. The proof of this result is entirely analogous to the ones given

in Chapters 4 and 5, Theorems 4.1 and 5.1, see pages 79 and 100 respectively. O
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6.3 The admissibility condition for specific problems

In this section we look more closely at the admissibility condition || < ¢ given
by Theorem 6.2. We do not give explicit examples of sets 2 satisfying this condition, but
in some cases we can obtain nice values for c. First we consider f(s) = sexp(as?) and

next we take f(s) = exp(as?).

Theorem 6.3. Let o > 3/4 and assume that f(s) = sexp(as?). There exists \g > 1 such

that problem (6.26) has a nontrivial nonnegative solution for A\ > X, and | < ¢y o, where

T 1 s < e >
g=—|—---<|==—++——].
M 8a (Reve+ L)) 2\ +a

Proof of Theorem 6.3 . Let f(s) = sexp(as?), so that

F(s) = ;a (exp(asz) — 1) and f'(s) = exp(as?) + 2as? exp(as?).

Since f(0) = 0, we consider the perturbation

€
—1 — ) 1 >0
95(8){ Og(8+s+e> ore=

0 for s < 0,

and G.(s) = / ge(t) dt. We will mimic the proof of Lemma 5.4 and see where this leads
0

1 1
us. Indeed, let B(s) = AF(s) — Ge(s) — Z)\sf(s) + nge(s). We have

3 1 1
B() = 20f(5) = 0.9) = SAsF(5) + Ssgl(s)
Therefore, from Lemma 5.3, we conclude that
BI(s) < SOM(5) +5) — SAsf'(s) — = for 5 > 2
e(8) < 7 §) ) = g Asf'(s) = 5 for s = 2.
Therefore, B.(s) < —1/24 for s > 2 provided
3(Af(s)+s) —Asf'(s) <0 for s > 2. (6.50)
Observe that

3(Af(s) +s) < Asf'(s) if and only if 3Asexp(as?) + 3s < A(sexp(as®) + 2as® exp(as?))

Equivalently,
2X exp(as®) + 3 < 2a\s® exp(as?).

This inequality holds provided

2\ exp(as?) < als® exp(as®) and 3 < als® exp(as?).
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Assuming that A > 1 it holds for s > sy with
asi = 3, (6.51)

so that sp = \/3/a. Assuming that a > 3/4, we conclude that (6.50) holds, and conse-
quently,
Bl(s) < —1/24 for s > 2. (6.52)

Furthermore, . .

Observe that

-G (2) = /02 log (t + 6) dt

at + €
2
< / log(t+1)dt
0

3
:/ logt dt
1

=3log3—3<0,

(6.53)

€
(2)=—log(24+——) < —log2<0, 6.54
9.2) = ~log (24 ) <~ log2 < (6.54)

F(2) = (" —1) (6.55)

and
f(2) = 2¢*. (6.56)

From (6.53), (6.54), (6.55) and (6.56), we conclude that

B.(2) <A <1 (e4a - 1) - e4a) <0,

2a

since av > 3/4. From (6.52), we conclude that
B(s) <0 for s > 2.

Consequently,
1
Jea(s) < Zsjw(s) for s > 2, (6.57)

where jex(s) = Af(s) — ge(s). Furthermore,

= (F(s) - isf(s)) —G(s)+ isgﬁ(s) + isjE,A(s) for 0 <s<2.

1 1 2 S 2 2 1 S 1
S = (e — 1) = 2t — s [ _2) - <g<
F(s) 4sf(s) (e 1) e e (2@ 4> 500 for 0 < s <2,
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—Ge(s) <0 for 0 <s <2

and

1 1 1
1596(3) = —ZSIOg (S + S—T—E) < —Zslogs for 0 < s <2,

we conclude that
A e, ] 1
Jea(s) < —e"* + — sup (—slogs) + —sjea(s). for 0 < s < 2.
' 200 0<s<2 4
Consequently,
A 1 1
Jea(s) < ge‘l/a + P + ZSjE,A(s). for 0 < s <2.
We get from (6.57) that

A 1 1
Jea(s) < %64/0‘ + P + Zsjgv,\(s). for s > 0.
Consequently, (6.39) holds for

A 1

Crg = —eV/* 4 —.
& 20ze + 4e

Consequently, (6.43) implies that |Q2] must satisfy

A 1 T
4=t =9l < —.
(2046 + 46) i 2a
This proves Theorem 6.3. O

Theorem 6.4. Let o > 3 and assume that f(s) = exp(as®). There exists Ao > 0 such that

problem (6.26) has a nontrivial nonnegative solution for A > Ao, and || < ¢y o, where

(0 1
P = 80 (18)\ exp(a(24B)?) + (24B + 1) log(24B + 1) + 41@> ’
with
1 3\,

B = _— 4+ 2
TREC

Proof of Theorem 6.4 . Now we consider f(s) = exp(as®) and study versions of Lemma

5.4 in this context. Observe that
0 < F(s) < sexp(as®) and f/(s) = 2as exp(as?).

Since f(0) = 0, we consider the perturbation

ce™A

—1
0g<3+$+6

A for s < 0,

for s >0
96(5> = )

and G(s) = /S ge(t) dt. Note that
0

3(\f(s) + s) < sAf/(s) if and only if 3\ exp(as?) + 35 < 2a\s® exp(as?). (6.58)
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This inequality holds provided
3Xexp(as?) < als®exp(as?) and 3s < ads® exp(as?).

Hence, it holds provided
as® >3, and 3 < als. (6.59)

Assume that aw > 3 and A > 1. In this case, inequality (6.58) holds for s > 2. We will
mimic the proof of Lemma 5.4. Let B(s) = AF(s) — G.(s) — 0Asf(s) + 0sg.(s). We have

Bi(s) = (L= 0)(Af(s) = ge(s)) — OAsf'(s) + Osgc(s).
Therefore, from Lemma 5.3, we conclude that
Bl(s) < (1—=0)(Af(s)+s)—0sAf'(s) — g for s > 2.
Therefore, B.(s) < —6/6 for s > 2 provided
(1—=0)(Af(s)+s)—0OsAf'(s) <0 for s > 2.
Choosing § = 1/4, this is equivalent to
3(Af(s)+s) —sAf'(s) <0 for s > 2,

which holds from (6.58). Consequently,

Bl(s) < —214 for s > 2. (6.60)
Furthermore,
BL(2) = AF(2) ~ Cu(2) ~ 5 /2) + La.(2).
We have

2 ee™?
-G (2) = /0 log (t +2 n e) dt

2
g/ log(t 4 e™*) dt
0

2
§/ log(t + 1) dt (6.61)
0
3
:/ logtdt
1
—3log3—3<0,
) = —og 2+ ) < —log2 <0 (6.62)
€ = — 10 s — 10 S U, .
g & 2+e¢€ s

2 2
F2) = / o dt < 2et. (6.63)
0
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and
f2) = e (6.64)

From (6.61), (6.62), (6.63) and (6.64), we conclude that

A
B.(2) < (2)\ - 2) et
From (6.60), we conclude that
B.(s) < —i + B for all s > 2,

where

1 M 4o

We conclude that
B(s) <0 for all s > 24B.

Consequently,
1
J(s) < Zsj(s) for s > 24B, (6.65)

where j(s) = Af(s) — ge(s). We now study the behaviour of j and J in the interval [0, 24 B].
Indeed,

J(s)=A (F(s) - isf(s)) - (Ge(s) - lesge(s)> + isj(s) for 0 < s <24B.
Observe that
—Ge(s) < (s+1)log(s+1)—(s+1) < (24B+1)log(24B+ 1) for all 0 < s < 24B.

Next, we have
Y

€e 1
) > slogs > ——,
€ e

—59.(s) = slog (5 +
s

for all 0 < s < 24B. Consequently,

1 1
_- > _— < 5 < 24B.
4sge(s) 2 -0 forall 0 < s <24B
Furthermore,
F(s) = / exp(at?) dt < sexp(as?) for all 0 < s < 24B,
0
and
sf(s) = sexp(as®) for all 0 < s < 24B.
Hence,

1 1
J(s) < <> sexp(as?) + (24B + 1) log(24B + 1) + P Zsj(s) for 0 < s <24B.
e
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From (6.65), we conclude that
I
J(s) < Cha+ ZSJ(S) for s >0,

where .
Cra = 18\ exp(a(24B)?) + (24B + 1) log(24B + 1) + 1
(&

Consequently, (6.43) implies that |Q2] must satisfy
1
4 <18/\ exp(a(24B)?) + (248 + 1) log(24B + 1) + 4> 0] < o
e a

This proves Theorem 6.4. O
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7 A problem with singular weights

In this chapter we consider the problem

—Au = a(z)g(u) + Ab(z) v’ in{
u>0 inQ (7.1)
u=10 on 0,

where Q@ ¢ RN, N > 1 is a bounded smooth domain, A > 0 is a positive parameter, a
and b are positive weight functions that may be singular near the boundary 9f2 of €,

g:(0,00) — R is singular at the origin and 0 < p < 1.

We assume that the singular function g : (0,00) — R is C'' and behaves in a

certain way near the origin. We assume that
li = — 7.2
; L%i g(s) 00, (7.2)

and there exist constants 0 < § < 1 and C > 0 such that
lim |g(s)s”| = C}. (7.3)
s—0t

We will also assume that g has sublinear growth, that is, there are constants 0 < ¢ < 1
and Cy > 0 such that

lim G = Cs. (7.4)

s—oo g4
Observe that the function ¢ is a generalization of —u™?. Other examples of ¢ that we can

have in mind are

® g(s) = logs;
o g(s) = s Plogs + ps?, where p > 0;
o g(s)=—s" +logs;
1
e g(s) = —m—i—psq, where 0 < o, 5,¢ < 1 and p > 0.

We assume that the weights a and b satisfy
a,b e C(Q2) and Hgg{a(x),b(x)} > 0. (7.5)

These weights are allowed to be singular near the boundary of €2 provided that there are
constants ¢ > 0 and C53 > 0 such that

o+p<1, (7.6)

a(x)d(z)? < Cs for every = € Q, (7.7)
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and
b(x)d(x)? < C5 for every x € €, (7.8)

where

d(z) = dist(x,00) = 1Er(19fQ |z —yl.
Yy

The function ¢ plays an important role in this chapter. We recall the classical Hardy

inequality, see [10], that states that there exists a constant A > 0 such that

2
A/Q % < /Q |V|? for every ¢ € C°(9). (7.9)

Our first result asserts that problem (7.1) possesses a positive subsolution. To construct

this subsolution, we introduce the auxiliary functions Y and ¢, solutions of the problems

—AY =1 inQ
Y >0 in 2
Y =0 on 02,

and
—Agbl = )\1@251 lHQ
¢ >0 inQ2
¢ =0 on 0f,

respectively. Here A\ > 0 denotes the first eigenvalue of the Laplacian operator. We
know that these functions have certain regularity properties. From Lemma B.2, there are
constants Ay, Ay > 0 and By, By > 0 such that

A1d(z) <Y(z) < Bid(z) for all x € Q

and
Asd(x) < ¢1(z) < Bod(z) for all x € Q.

Hence, there must exist constants A, B, ¢ > 0 with ¢ small such that ¢; — 2cY > 0 in Q

and
Ad(z) < (z) < Bi(x) for all x € Q, (7.10)

where ¢ (x) = ¢ — cY'. Hence, from (7.9) we get
A i < / |Vip|? for every ¢ € C°(9). (7.11)
aY? ~ Ja ¢
Inequalities (7.9) and (7.11) hold (by extension) for all ¢ € H,(€2). We now show that

problem (7.1) possesses a subsolution of the form u = K" provided that A > 0 is
sufficiently large.

Lemma 7.1. Suppose that (7.2)-(7.8) hold. There exists \g > 0 (that does not depend on
p) such that problem (7.1) has a positive subsolution u for all A > X\ and 0 < p < 1.
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Proof Let K > 0 and v > 1 be constants to be fixed later and take u = K".
Then,
—Au = —Kvy" ' Ay — Kv(v — )" 2| V|2

Then, u is a subsolution of (7.1) if and only if
—Au=—Kvi" TAY — Kv(v — D" 2|V ]? < a(z)g(u) + Ab(z)u? in Q. (7.12)

We have
—AY(x) = M¢p1(x) — ¢ < 0 near the boundary 0f2.

Then we choose a smooth subdomain ' CC Q such that
—A¢(z) <0 forall z € Q\ Q.
Then, to prove (7.12) in 2\ Q' we just need to show that
— Ky — 1) 2|Vl < a(@)g(u) in @\ €.

But by Hopf’s Lemma, we can assume that there exists a positive number 7; > 0 such
that |[Ve|? > n; in Q\ . Therefore, it is enough to prove that

—Kv(v —1)¢"?n; < a(z)g(u) in Q\ Q.

But by condition (7.4) and by choosing Q' sufficiently close to 92, we can also assume
that there exists a constant D; > 0 such that

lg(w)| < Dyw ™ = DK P47 in Q\ .
Hence, it is enough to prove that
—Kv(v— 1" % < —Dya(z)K 5™ in Q\ Q.
Therefore, we need to find K > 0 and v > 1 such that

— 148
a(x)w(x>2—u(1+ﬁ) < mv(v Dl)K in Q\ .
1

But by (7.5) and (7.10) we need only to show that
§(z) o2 v(1+6) < %y(y “ DK™ i 0\ Q. (7.13)
1

Then, we choose v > 1 such that

2—0
144’

so that the left side of (7.13) is bounded. Once such v is fixed, we take K > 0 large enough
so that (7.13) holds. Observe that the choices of v and K do not depend on p nor on A.

l<rv<
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Thus we have proven that there exist constants K > 0, ¥ > 1 and a smooth subdomain
Q' cc Q such that (7.12) holds in Q \ ©'. We proceed to prove that (7.12) holds in Q" for
A > 0 sufficiently large. Let m; > 0 be defined by my, = 1516161 b(x). We will find Ay > 0 such
that for all A > )\

—Kv" A < a(z)g(u) + dmyu? in €.

Hereafter D; > 0,7 = 2,3, ... denote various constants. By the boundedness of —A1 and
by the fact that supy < oo, it is enough to prove that
Q

KDy < a(z)g(u) + Ampu?
= a(z)g(u) + AKPmyyp*? in Q.
Note that there exists 0 < 7 < 1 such that 1) > 1, in . Since u > K7} > min{7ns, ng} in
Q) we have |g(u)| < Dg in Q. Also, the function a is bounded in €. Hence, one is led to

verify
KDy < —Dg + AKPmyns? in ).

Observe that 73" > 13, because 0 < vp < 2. Hence, we only need to verify

KD, < —Dy + AK?Ds, (7.14)

where D5 > 0 does not depend on p nor on A. Indeed (7.14) holds if we choose \g > 0
such that for all A > \g

Dy + Dy X,
————= < —in?. 1
D, & in (7.15)
Observe that we may choose Ay independently of p. The proof is complete. O

In the next two sections we establish the main results of this chapter.

7.1 Existence of solution

Recall that u € Hy(Q) is a solution of problem (7.1) if

/ VuVedr = / f(z,u)pdx for all ¢ € C°(Q),
Q Q

where f(x,s) = a(z)g(s) + Ab(x)s? for x € Q and s > 0. We have shown that there exists
a subsolution u for problem (7.1) provided A > Ag. Consequently, u must satisfy the
inequality

/QVQV<p dx < /Qf(x,g)go dz for all ¢ € C2°(), ¢ > 0. (7.16)

In this section we will consider the truncation

oo | ) s
f@,9) {f(a:,s) if s

u(z)

<
> u(x),
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and we will look for solutions of the auxiliary perturbed problems

{ —Au = f(x,u), inQy (7.17)

U
U=1u on 08y,

where ) # Q; CC Qy CC ... CC Qis a sequence of smooth domains such that U Q, = Q.
k=1
Observe that uy is a solution of problem (7.17) if and only if vy = uy — u is a solution of

{ —AUZ.]?(ZE,U‘FQ)"‘AQ; ank (7 18)

v=20 on 0€2y,.

Using variational arguments, we will prove that problem (7.18) has a nonnegative solution
vy € HY(Q). Define the functional I, : H(Q)) — R by

- 1
[k(v)zi/g |Vv]2d:c—/9 Fz,v)+ [ VuVvda, (7.19)

Qp

where F(z,v) = / f(z, s+ u(x)) ds. From Theorem B.16, we know that the functional I,
0

is of class C' and

Il(v)(w) = | VoVwds — /Q

A f(:v,v + uw)w + /Q VuVwdz for all v,w € Hy ().
k k

k

Hence, if v is a critical point of Iy, then

-~

VoVwdr = / flx,v+ww— | VuVwdzr for all w € Hy(52,). (7.20)

Qp Q Qp

Therefore, critical points of I, are weak solutions of problem (7.18). We have

Lemma 7.2. The functional I, is coercive, that is, I;(v) — 0o as 0] 2 () — 00

Consequently, I, possesses a nonnegative critical point vy € Hol(Qk).

Proof of Lemma 7.2. Observe that

Fla.v) = vf(x,u(x)) ifv <0
’ F(z,v+u(x)) — F(z,u(z)) ifv>0,

(7.21)

where F(z,v) = / f(x,s)ds. We will estimate the term F. We have
0

Pz, s) _/Os Fla,t) dt—/ouf(x,t) dt+/: Fla,t) dt—Uf(x,u(x))—ir/usf(x,t) dt

— u(a) (a(@)g(u(@)) + M) (@) + ae) [ g(t)dt+No(@) [ e,

u() u(z)
=a(@) [ altydt+ % T al@)ule)gule)) + Ao («) (1 - pil) -
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Next, we split F' into three integrals (I),(II) and (I11I), and estimate each of them. Let

(1) =a(@) [ g(t)a,

u(x)
_ Ab(x)sP T
(11) = M
and |
(I11) = a(e)u@)g(ue)) + Mo(x)e™ (@) (1 - p+1> .
Then,
F(x,v) = (I) + (II) + (I1I) (7.22)

Estimate of |(I)|: There exists a constant a; > 0 such that a(z) < a; for all z € Q4. By
conditions (7.3) and (7.4), we can find positive constants A, B, C' > 0 indepedent of k such
that

\UﬂgahLMMQﬂﬁgaaA(Mﬁﬂ+BﬁP+C)ﬁ

Aay|s|'*™?  Bay|s|9

+ Cayls]|.
= 1-4 1+gq H

Given € > 0 we are able to find positive constants Ay, By, C > 0 such that for every s € R

_ €(1—
[s|' 7 < %%?wﬁ+m
1+
|s|'*9 < 6(636”?) |s|* 4+ By
and
€
< 2
51 < Gl + Ci
Hence, we can find a constant D > 0 such that
€
|Uﬂ§§bP+Dh (7.23)

Estimate of |(I1)| and |(I11)|: Similarly, we can find constants Ej, Fy > 0 such that
(ID)] < S1sP + Ex. (7.24)
and
|(II1)] < Fy. (7.25)

Then substituting (7.23), (7.24) and (7.25) in (7.22) we find a constant ¢, > 0 that depends
on k such that
|F(x, 5)] < e|s|® + c. (7.26)
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Let v € H} (). From (7.21) and (7.26), we get

Qp

> 5 [ IVelde = [ plls )] - [ 1ot u@)] - [ 1Plu)

Qp

. 1 -
I(v) = 5/9 \VU!QCI:U—/Q F(z,v)+ | VuVvdx

1
> Sl = clvlloy = [ o+ u@) - du.

k

2 b2
Using that |a+b]* < Jaf" + b7

such that

, and the Sobolev Embedding we obtain constants C, D > 0

Ik(U)

Vv

! €

5“1)”%&(5%) - CkHU”Ll(Qk) — Q/Qk |U|2 —d,
1

> (5 = ) vl — Derllvlmya,) — dic

The coercivity of I then follows by taking ¢ > 0 sufficiently small. We also obtain that I,

is bounded from below.

We now claim that each Palais-Smale sequence of I, must be uniformly bounded
in H}(Q). Indeed, if (v,) is a sequence in Hg () such that | (v,)| < C for some positive
constant C' > 0, then (7.4), (7.19) and (7.21) imply that there exist constants ay, by, ¢y > 0
that do not depend on n such that

1 1 1

5””””%{5(90 < akanHHg(Qk) + kaU"HH-E%Qk) + Ck“UNHH—EZEQk)

This proves the claim. From Theorem B.16, we conclude that I, satisfies the Palais-Smale

condition. Next, we apply Theorem B.17 to obtain a function v, € H}(€) such that
y 0

v = iIll(f )fk(v). Hence, vy, is a solution to problem (7.18) and uy, := vy, + u is a solution
’UGI{0 Qp

to problem (7.17). We proceed to show that v, > 0 in Q. Choosing w = —v,; in (7.20)
and using (7.16) we obtain

— [Ivuidr == v flwutu)de+ [ Vuved
/Qk| v |7 dx {vk<0}v,€f(x vk +u) dx o, uVu, dz

= — v f(x,u) de + VuVu, dr <0.
Q

{vr<0}
This proves that vy > 0 almost everywhere in €2, and therefore u; > u almost everywhere
in Qk L]

We now prove the main result of this section.

Theorem 7.1. Suppose that (7.2)-(7.8) hold. Let u = max{p, q}. Suppose that
2N — (14 p)(N —2)
2N '

Then, there exists A\g > 0 (that does not depend on p) such that problem (7.1) has a solution
for each X\ > X\g and for all 0 < p < 1.

(7.27)
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Proof of Theorem 7.1. First we will prove that [|vg||g1(q,) is bounded by a constant
that does not depend on k. Choosing w = vy in (7.20) and the fact that vy > 0 in  we
get

||Uk||§{3((2k) = / flz, v + w)vg do — / VuVuy dx
Q Qp
= / a(z)g(vg + wvgdr + X [ b(x)(vg + w)Pvrde — [ VuVugde

= (J) + (JJ) + (JJJ).

Let’s estimate (J). By conditions (7.2) and (7.4) we can find constants A, B, s; > 0 such
that g(s) < 0 for every 0 < s < s1 and |g(s)| < A+ B|s|? for every s > s;. Therefore,
(J) = / a(z)g(ve + w)vr dr < a(z)g(v, + w)vy dz
Qp QrN{vk+tu>s1}

<A|[| a(x)vdx+ B/ a(z)|v, + ultvy dz
Qk Qk

<A §oude+ B/ 57 vk + ul vy da.
Qp

Qp
2N 1

We choose a number r > 1 such that <r < —. Then

2N — (1 + p)(N =2) o

1 q(r—1) _r—1

v r(g+1) @iDr rlatl) (g+D)r
/ 0 v + ultv dr < (/ " dx) (/ (v + w) = da:) o (/ v, dx) :

Q Qe Q Qe

(7.28)

Since 0 < or < 1 we have from Lemma B.1 that

(/Q 5o dgc)i <C

Then, inserting in (7.28) we obtain

[ 07+ wltonda < Cllur + il o ol g
Qk [ r—1 L r—1

T

Therefore, by Minkowski inequality,

/ 5_U|Uk +Q|qvk dx < C (Hkaqt(qu) + ||Uk:|| r(g+1) > .
Q =T Lm=T"(Q)

L =1 (Q)

Also, note that by the Holder inequality

L 7.
/Qk 6~ vedr < Clluill, 21

so that

< I qul r .
(7)< Al + 8 (0l + ol )

Similarly
1
(JJ)y<C (Hvkl Pery |‘”k||L“ﬂﬁ”<Qk>> ‘

L =T (Q)
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It is also clear that
(JJJ) < Dl|vgl|aa0,)-

Note that the constants A, B, C, D do not depend on k. Using that 4 > p and p > q we
conclude that

loelgon < A (ol s+l + 0P + o)

r—1 Qk) Tr—1 Qk
r(p+1) < 2N
r—1 — N-=2

By the choice of r, we have Then, the Sobolev Embedding Theorem

implies that
1 1
sl (e < A (1orllmz e + oxll%s0,) + oxlito,))
Hence, there must exist a constant C' > 0 that does not depend on & such that
vkl za o, < C for all k € N.

Since uy, = vy, + u, and by construction u € Hy(f2), we conclude that there exists D > 0
such that

Therefore, there must exist u € Hy(£2) such that uj, — u weakly in Hj(2) and

up — u, in Hy(Q)
2N

up —u  inL7(Q),foralll <7< N3

ur — v almost everywhere in €.

Since u;, > u for all £ € N, we conclude that v > w in 2. We prove in the sequel that wu is
a weak solution of (7.1). Indeed, let ¢ € C2°(€) be a test function and choose k' € N such
that support(y) CC Q. Then,

; VupVe = A (a(x)g(ug) + Xb(z)ul)p for every k > k' (7.29)
k! K/

Since up > u > ¢, we get |g(ug)| < A+ Blug|? and g(ug) — g(u) almost everywhere
in Q. Also, |a(z)] < ap, |[b(x)] < by in Q. Hence, a(z)g(ug)p — a(x)g(u)p almost
everywhere in ()3 as k — 0o. Observe that

|a(x)g(ur)e| < Cwlg(ur)e] < Co(le| + |u|e) < D (le| + |u| ™ + ¢]) € LN(Q).

Hence, by the Dominated Convergence Theorem,

[, a@stm)e = [ at)e.

b p / b p
L, dange = [ v

Hence, letting £k — oo in (7.29) we obtain

o VuVep = o (a(z)g(u) + Ab(z)u”)e.

Similarly,

The proof of Theorem 7.1 is complete. O]
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7.2 Uniqueness of solution

In this section we get a uniqueness result for the solutions of problem (7.1).
Moreover, we may weaken our hypothesis, so that we may consider a singularity g such
that
lim ¢(s) = +o0.

s—0t

For example, our uniqueness result is applicable for the problem

—Au = a(z)u™ + \b(z) u? inQ
u>0 in (2
u=20 on 0S2.

Here, the Hardy inequality (7.11) will play an important role.

Theorem 7.2. Let \, K > 0 and v > 1 be constants. Suppose that g is of class C' and
that (7.5), (7.7) and (7.8) hold for 0 < o < 2. Assume also that there are constants
0<vy<2—0and Cy > 0 such that

lg'(s)| < Cyl|s|™"  for everys > 0. (7.30)

Then, there exists C' > 0 that does not depend on p nor on A such that if

2—0

1<u<min{2—a, } and K > C,

then there exists 0 < py < 1 small depending on A and K such that if 0 < p < po there is

at most one solution of problem (7.1) in the class of functions u > u = Ky".

This theorem is applicable for a large class of problems. For example, we may
consider ¢ = 0 or ¢ = 1 in problem (7.1). Moreover, we may choose a = 1 and b = 1.

Consequently, we get

Corollary 7.1. Fiz A\ > 0 and 0 < 3,q < 1. There exists po > 0 such that the problems

—Au= X u" nf
u>0 )
u=0 on df2,

—Au=ul+ X nQ
u >0 n
u=>0 on 0f2,

—Au=\5(z) 3P inQ
u>0 in €2
u = on s,
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—Au=0(z) 3 (—uV2 £ AuP) inQ

u >0 n§2
u=0 on 0,
—Au = 8(z) 3w uP) inQ
u>0 in ()
u=20 on oS,
—Au= (u" +AuP) inQ
u >0 n s
u=>0 on 051,
—Au=(—uP+AuP) inQ
u>0 in 2
u=20 on df2,

have at most one solution for 0 < p < poy in the class of functions u > w, provided K 1is

large enough.

Theorem 7.2 also implies that the solution obtained in Theorem 7.1 is unique

in the class u > u.

Corollary 7.2. Suppose that (7.2)-(7.8), (7.27) and (7.30) hold. Let Ny be given by
Theorem 7.1. Then, for each A > \g there exists pg > 0 such that the solution u given by
Theorem 7.1 is unique in the class u > w provided 0 < p < po.

In the proof of Theorem 7.2, we do not use the fact that u is a subsolution of

problem (7.1) for large values of A.

Proof of Theorem 7.2. Suppose that u > u and v > u are solutions of (7.1), so that
u,v € Hy(Q) and
—Au = f(x,u) and — Av = f(z,v) in Q.

Observe that
[ u) = f2,0) = a(z)(g(u) = g(v)) + Ab(z)(u” — 7). (7.31)
We will estimate the right hand side of (7.31). Note that
g(u) — g(v) = /01 jtg(tu b (1= b)) dt = (u—n) /01 g (tu+ (1 — t)v) dt.
Hence, using (7.7), on the set {u —v > 0},
o) — 9(0)] < Clw—v) [ [t —v) + ol 7t < ol =) [ ol

and
lg(u) — g(v)| < Calu—v)|v|™.
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By concavity of the function s — s” we have
uP —vP < poPH(u — ),
so that
|f(z,u) — f(x,v)] < Cya(x)(u — v)v™" + Ab(z)pv” ' (u — v) on the set {u —v > 0}.
Since v > u, by (7.5), (7.7) and (7.8) we get

[f (@, u) = f(z,0)] < Cha(@)(u —v)u™" + Ab(z)pu?" (u — v)
= Cya(z)(u — v)(KY") "7 + Ab(2)p(K¢")" ™ (u — v)

= zp u—v (C K vwz 7”+)\pb( )Kp—lw%u(kp))
(7.32)

< C@b 'U) ( —O K~ 'yw2 v + 5 a)\pr le v(1— p))
< qu/J U) (K 7¢2 yv—o + )\pr 1w2 v(l—p)—0oc )
< Cw U) (K 7¢2 y—o + Apr 1¢2 v(l—p)—0o )

Notice that 2 —yv —o >0 and 2 —v(1 —p) — o > 0, and let A > 0 be given by (7.11). If
K is so large that
CK "> "7 < Ain Q,

then there exists py > 0 such that if 0 < p < py then
C(K w0 4 \pKP~Lyp2v(1=p)— 7) < Ain Q.

Hence,

|f (@, u) = f(z,0)] < Ap™*(u—v) on {u —v > 0}.
An analogous argument yields

|f(2,v) = flz,u)| < AP~ (v —u) on {v —u > 0},
so that

|f(z,u) — f(z,v)] < AY~?|u —v| in Q.

Let w = u — v. From the facts that w € H}(Q2) and —Aw = f(z,u) — f(x,v), we know
that

/QVngo dx = /Q(f(x,u) — f(z,v))pdz for all p € CZ°(Q).

We claim that this equality can be extended for all ¢ € Hg(Q). Indeed, let o € Hj ()
and let (¢,) be a sequence in C2°(2) such that ¢, — g in Hy(Q) as n — oo. We know
that

/QVngon dx = /Q(f(x, u) — f(x,v))p, dx for all n € N. (7.33)
Observe that

|(f (2, u) = f(2,0)(en — o)l < AW u—v)) (¥ en — ol),
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so that from Holder’s inequality, we get

L1 w) = @) 800|<A< |u—v|2> </ o — woP)

From Hardy’s inequality (7.11), we conclude that there exists a constant C' > 0 such that

L 1@ w) = fla,0)(en = o)l da

<C (/Q |V (ju— v|)|2dx>é (/Q IV (|on — wol)|? dm)% — 0 as n — oo.
Hence, letting n — oo in (7.33) we get

/wao dr = /Q(f(x,u) @, 0))po da for all g € H(S).
We proved the claim. Taking ¢, = w™, we get
L1vet e = [ (fa.u) = flz.0)(w") de.

From (7.32), we get

/Q IVt |?de < /Q Co (K277 4 \pKP 007 ()2 da.

Using the Hardy inequality (7.11), we conclude that

2—yv—o 1,/2—v(1— +\2
0< QW(A C(K > =7 4 ApKP~ 12070y (w*)? day
+12 7. (wh)? 2—y—0o 1,/,2—v(1
§/Q|Vw|dx /Q @b? (CUE27 =7 4 MpKP 127 0-9=9)) g < 0.

Hence, w" = 0 and then (u —v)" = 0. Similarly, (v — u)* = 0. Therefore, u = v. O
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APPENDIX A - Regularity results

Here we give regularity results used in Chapters 2-6. In these chapters, we

studied problems of the form

—Au+ g(u) = f(u) in Q
u# 0in Q (A1)
u =0 on 0f),

where g, is a smooth perturbation of a singular term and Q € R" is a bounded smooth

domain for N > 2. We will assume that f is a nonlinear function such that
f € Cl0,00) N C™(0,00) for some 0 < v < 1. (A.2)
In Chapters 2 and 3 we considered

54
————fors >0

ge(s) =4 (s+e)ut? - (A.3)
0 for s < 0,

where 0 < ¢ < 1.

We say that a function u, € Hy(f2) is a solution of problem (A.1) provided
/QVUEVU + /Qge(ue)v = /va(ue)v for all v € Hy(S2). (A.4)
Lemma A.1. Let g and f be given by (A.3) and
f(s) =As+ 8" for \>0,1<p<2*—1ands>0,

respectively. Suppose also that Q C RY is a bounded smooth domain for N > 3. Let
u. € Hy(Q) be a nonnegative solution of problem (A.1) and assume that there exists a

constant D > 0 independent of € such that

[tellpy < D for each 0 < e < 1. (A.5)
Then u. € L*(Q) and there ezists a constant Ky > 0 such that

|[te|| oo () < K for each 0 < e < 1. (A.6)

Proof of Lemma A.1. This result follows from a version of the Moser iteration technique,
see [56]. Indeed, note that

A a+h
J (Z) = (s +SZ) (As) < (s + 1)1 (As'™9) — 0 as s — 0.
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Hence, the exists 0 < J, < 1 that does not depend on € such that

As
ge(s)

< 1 for s < d,. (A7)

Consequently, from (A.4), we get

/ Vu. Vv + ge(u)v < A U +/ uPv for all v € Hy(2).0 > 0.
Q {U€>6)\} Q

{Ue>6)\}
Since g > 0 and p > 1, we conclude that there exists a constant Cs ) > 0 such that
/ Vu Vo < Csa / wP for all v e HY(Q), v > 0. (A.8)
Q Q
For L > 1 we define,

ue(x), if w(x) <L
L, if wu/(x)>L,

2(oc—1) o—1
ZLe=Up. Uc and WLe = U7 .,

with o > 1 to be determined later. Note that z; . € H&(Q), 21 > 0 and
VL. uL . )VUE +2(0 — 1)u€u2" Vg
Taking v = z1, . in (A.8) we obtain
/Qui(i 2 ]Vue\z +2(0 — 1)/ uEuLE “VuVug, < C)\g/ p“ui(z D
Since ¢ > 1 and
/Qu u’*Vu Vg, = ~/{u5<L} w2V 2 >0,

we conclude that

/QuL6 | Vu|? < C,\,(;/Quﬁ’“ui(fzfl) < CA,(;/Quf_luf". (A.9)
On the other hand, from the Sobolev embedding, we know that there is a constant C; > 0
such that .
</w 1d:c> <C’1/ |Vwp,|? dr.
Since

o—1 o—2
Vwr, =uj . Vue+ (0 — Nucug “Vur,,

it follows that

(/ wp+1d:v> o <C’1/uLE |Vu€|2d:v+01(0—1) /QUQUiZ 2 Vur,|?

+2C4 (0 — 1)/QueuL6 VuVup, .




APPENDIX A. Regularity results 143

From the definition of ur, ., we conclude that

</ wp+1dx> i < Cio? /ﬂuLe | Vu|? de.

Using (A.9), we obtain

_2
</ wﬁtl dx) < Co C’M/ w2 (A.10)

Now observe that

2 2 2
(/ U)Iitl d.l’) p+1 _ </ u€+1u%:—1)(0—1) dl’) p+1 Z </ UL(f+1) d{,(]) p+1 '
Q ’ Q ’ Q ’

Hence, there is a constant CA’(;:\ > () such that
_2
o p+1 _
(/ uL(fH dx) < 0205,\/ uP e, (A.11)
Q Q

1 1
Let ay, a9 > 1 be constants such that — + — =1l and p+ 1 < ay(p — 1) < 2*. From
aq &%)

(A.11) and Hélder’s inequality it follows that

2 1 L
</ uL(eJrl) dq:) p+1 <o C(;,\ (/ u?l(pfl) d.’]ﬂ') ay (/ u?o’ag dx) ag .
Q Q Q

Using (A.5) and the Sobolev Embedding, we obtain a constant C' > 0 such that

[ <6
o ¢ -

Hence, there exists a constant C > 0 that does not depend on ¢ nor on € such that

2 L
(/ uLfH d:c) "< Co? (/ u?°*? d:c) L (A.12)
Q Q

Letting L — oo in (A.12) and using Fatou’s Lemma, we conclude that

2 il
(/ u P dx) < Co? (/ u?7*? dx> ** for each o > 1,
Q Q

provided u, € L***2(Q). Equivalently,

[te|| poriny < C7 07 ||| p2ras for each o > 1, (A.13)

where C' = \/C. Observe that the choices of a; and ay imply that o(p 4+ 1) > 20ay. The

result now follows from an iterative argument. Indeed, take

p+1
20[2.

g1 =

Using the Sobolev embedding and (A.5) we obtain a constant D > 0 such that

1 a1

L ~ 1 2
lttell os oy < C7r 07 ]| oy < DO7H oy
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Now take o5 = o7 in (A.13). We get
T S R e e
el 2040y < C7F 5" [l o < DO (077l ).
Taking o}, = of in (A.13), we get
B D 1
el ot gy < DE T (M0 ). (A14)

It is clear that

|-

Sk L

el < ool

=

lim <Hfla{’i> = lim <Hflaf.> < oo and klim C
—00

k—o0 k—o0

Letting k£ — oo in (A.14), it follows from Theorem B.10 that u. € L>(Q2) and we obtain a
constant K; > 0 that does not depend on € such that

ell oo () < K.
This proves (A.6). We have proved the Lemma. O
Now we state a similar result for the problem studied in Chapter 2. We have

Lemma A.2. Suppose that 2 C R? is a bounded smooth domain and let u. € Hy () be a
nonnegative weak solution of problem (A.1) with f satisfying (A.2) and g. given by (A.3).

Also, assume that for each o > 0 there exists a constant Cy, > 0 such that
|/ (s)| < Cyexp (a52) for every s > 0, (A.15)

and that there exists 0 < gy < 1 such that

tim MO _ 00, (A.16)

s—0 g90

so that f(0) = 0. Then, the following assertion holds: If there exists a constant D > 0

independent on € such that
[tellp@y < D for each 0 < e <1, (A.17)
then ue € L*(Q2) and there exists a constant Ky > 0 such that

[ te|| ooy < K for each 0 < e < 1. (A.18)

Proof of Lemma A.2. From (A.4), we know that

/QVUEVU + /Qgﬁ(uﬁ)v = /Qf(ue)v for all v € Hy(S2).

From (A.16) and from the fact that we may assume without loss of generality that

0 < q < qo, we get

IﬂM<<@+WW

1/ (s)]
ge(5> N 51 0

a7 = (s 70 (L) s 0 s,

sS4
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Hence, the exists 0 > 0 that does not depend on € such that

1/ (s)]
ge(s)

1
< = fi <.
5 or s <
Consequently,

1 _
/QVUGVU + 3 /Qge(ue)v < /Qm{u>5} fuo)v for all v € Hy(Q2),v > 0.

Let @ > 0 be such that 2aD? < 47. Using (A.15) we obtain a constant C; = C5 > 0 such
that
/ Vu Vv < C’l/ u exp (au?)v for all v € H (), v > 0. (A.19)
0 0

For L > 1 we define, as before
ue(x), if w(x) <L

ur(z) =
L, if wu/(x)>L,

2(c—1) o—1
ZLe=Up. Ue and wr, = ueug,

with ¢ > 1 to be determined later. In the course of the present proof, C, Cs, Cj, .. .denote
various positive constants independent on e.

Choosing ¢ = 2z, in (A.19) we have

/ VuVz, < 01/ u exp (au?)zp .. (A.20)
Q Q
We now estimate the left-hand side of equation (A.20). Note that

Vepe=upl Vue+2(0 = )ui?uVuy.

€

Hence
/VuGV,zL6 :/ui(zfl)Wue\zdijQ(a— 1)/ uFPuNVug V.
Q o Q

Since Vur, =0 on {u. > L} we obtain

/Q“i‘,’e‘:”uewuewe = / w2 Vu|* dz > 0.

{ue<L}
We conclude that
/ VuNVzp > / w7 |V, 2.
Q Q 7
Substituting in (A.20) we obtain

L Ve <6 [ ucexp(@ud)zye = O [ wtexp )l (A2))
Q Q @ ’

Now we note that
Vwr,e =u].' (0 = 1)Vur, + Vu,) .
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Hence,

Vwp.e| < oul M| Vuel.

Substituting in (A.21) we conclude that

1 2(c—1)
~ [ 62<c/ 2 2y, 201,
02/9‘ wr|* < Cy Qu6 exp (Oﬂ@uge

Let 7 > 1 to be fixed later. Using the Sobolev embedding L"(Q) < Hy (), there is a

constant C5 > 0 such that

2
(/ |wL’E|T>T < 0202/ u? exp (auf)ui(z_l). (A.22)
Q Q ’

Note that

/ u? exp (auf)ui(z_l) = / u?? exp (qu?) + (L7 u)? exp (au?).
Q ’ {uc<L} {ue>L}

Hence,
2 2y, 2(0—1 2 2
/Qu6 exp (ozue)uL(z )S/Quegexp (au?).

Replacing in (A.22) we get

2
(/ |wL’E|T>T < 0202/ u?? exp (au?).
Q Q

From Holder’s inequality we obtain

(/Q |wL7€|r>i < Cyo? (/Q exp (2auf)) 1

From the choice of «, we conclude from (B.8) that

(o)} s (o)

N}
N\
53\

<
LS
q
N——
SIS

Since u‘LE < wre, we have

(1) = (o) 0w ()

Letting L — oo it follows from Fatou’s Lemma that
; ;
</ u20> < Cy0° (/ uf") )
Q Q

||u€||%o-”’((2) S 030—2”“5”%040(9).

This means that

Taking r = 8 in the equation above, we get

1
]| o () < C3 07 ||| Loy for all o > 1.

The result then follows by the iteration argument given in the proof of Lemma A.1.

We now prove the gradient estimate used in Chapters 2 and 3.

O
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Lemma A.3. Suppose that g. is given by (A.3) and assume that f satisfies (A.2). Let Q C
RY is a bounded smooth domain with N > 2. For each 0 < e < 1, let u, € Hy(Q) N L>(f)
be a nonnegative solution of problem (A.1) and assume that there exist constants Ky > 0

and 0 < q; <1 such that

|te|| oo () < Ky for every 0 < e <1, (A.23)
and
lim s'~9|f'(s)] < oo. (A.24)
s—0t

Let 1 be such that (an example of one such v is ¢ = ¢f where ¢y is the first normalized
eigenfunction of —A)

[Vo?
(8

1s bounded in §.

e C*Q), v>0inQ, ¥=0 ondQ and
Then there exist constants M > 0 and €y > 0 such that

V(@) Vue(2))? < M(uc(2) ™" 4 u(x)) for everyz € Q, 0< e < .

Proof of Lemma A.3. From (A.24) we obtain constants C; > 0 and 0 < ¢y < 1 such
that
|//(s)] < Cys™™t for 0 < s < 1. (A.25)

From (A.23) we obtain that Au, is bounded in L>(€2). Thus, by standard elliptic regularity,
u,. belongs to C*(Q2). We define

We shall denote u, simply by u. Define the functions

|V

Zo(u) =" +u+a, w Zo@)’

= wp,
where a > 0 is small. We will argue by contradiction, thus we assume that
supv > M, (A.26)
Q

where M > 0 will be chosen later independent of 0 < e < 1 and a > 0.

The function v is continuous in 2, hence it attains its maximum at some point
xo € Q. Thus, by (A.26) we obtain
v(zo) > M.
Then z( € €2, because v = 0 on 0f2. Hence

Vu(xg) =0
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and
Av(zo) < 0. (A.27)

We will compute Av and evaluate it at the point xy. As we shall see this leads

to the absurd Awv(zg) > 0 if one fixes M large enough.

Note that u(xzg) > 0, since otherwise xy would be a critical point of u and
w(zp) = 0. By continuity, there must exist an open ball B C ) centered at xy such that
u > 0 in B. Since u is positive in B, we know that h.(u) € C*(B). Since u satisfies the
equation —Au + h(u) = 0 in B, we conclude that u € C*(B).

The computations already carried out in [52] and [54] lead to the following

expression evaluated at x

Av > s v (520" = Zu(u)ZL(w))
+w (2wZa(u)h/6(u) — R (w) Z. () — KOZa(u)) (A.28)

. KOZL/l(u)Za(u)l/leﬂwB/Q] ’

where

2
Ko = max (Sgp <|¢V11//)2|> ,sgp (Al/} — 2|V$| )) > 0.

We will show that if v(xg) is large enough then the right hand side of (A.28)
must be positive, which would contradict (A.27).

For this purpose we need to establish the following estimates uniformly for

every e sufficiently small.

Z4(0) Za(u) 7 < C(SZuw) — Z(u) Zo(w), (4.29)
Zu(w) )] < CO,Zaw) — Z0() Zo(w), (4.30)
Z(u)lhw)] < O Zuw) — Z0(u) Zo(w), (A31)

Zulw) < CL 74’ — Z0(u) Za(w), (A32)

for every 0 < u < K;. The constant C' depends only on K7, but not on € nor on a.

Assuming for a moment that (A.29)—(A.32) are true. Inequality (A.28) implies

that
3Za(W)? = Zy(u) Za(u) 12, 3/2
Av > Za(u) (ww - C(w + w / w / ))
_ %ZZL(“)Z — Zy(u)Zy(u) 2 3/2
= Z.(a)0 (v — Cv+v* ))

Thus if v(zo) = supwv > M for some large enough M independent on 0 < ¢ < 1 we obtain
a contradiction with (A.27).
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We prove now the relations (A.29)-(A.32). Note that
Zo(u) = v +u+a,

Ziw) = (1= By +1,  Z/(u) = —B(1 — Hu~1,
Hence,
Lo ) = 20(w) Za(u) > a-sr (v +1)+aB(1— B’ foru>0 (A33)
274 T E
We first prove (A.32). Indeed, there is a constant C' > 0 such that

Za(u):ul_ﬂ—i—u—i—aSC’forOSuSKl.

Hence, (A.32) follows from (A.33).

We now prove (A.31). Note that there exists a constant C' > 0 such that

Zo(w)he(w)] < (1= B)u™" + 1)(ge(u) + |f(w)])

<(1=Bu+1-pBu? sup [f(s)|+u+ sup [f(s)|
0<s<K 0<s<K;

<C(1+u™™).
Inequality (A.31) then follows from (A.33).

Now we prove (A.30). Note that

/ w1 ~

Ee(u) = (’LL + €)q+ﬂ+1 (QC - BU’) - f/(u)

We split the proof of (A.30) in three cases.

Case I. Suppose that 0 < u < min{;];,to}, where 0 < ty < 1 is given by
(A.25). We define

ud=t

(u + e)arbrl
where C} > 0 is given by (A.25). We claim that there exists ¢y > 0 such that w.(u) > 0

€
for each 0 < € < €y. Indeed, assume by contradiction that w,(u) < 0 for some 0 < u < A

23
We then have

we(u) = (ge — fu) — Cru®™ ",

q+B+1
geut™" < Bul + Cru® M (u + )P < pud  CutTlertAT (1 + 2%) .
Now take ¢y > 0 such that

+8+1
C q+B8+1 1 q ! €q
1€ —’—% <5f01“0<6<€0.

We then get
—1 q—1
< Pu? + equ2 )

6unl

geud™! < Bu? +
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Hence,
geud=!
< pul,
5 5
which implies that
qe
u > —.
2

This contradicts our initial assumption. The claim is proven. Since

qeud™? < u? € o 4
(u+ )1 = Ty )0 (u + e)fH = yf+l

we obtain
/ -/ q+ Cluqﬁ_'g qe "

\h(u)] = h (u) < S for 0 <u < min{%, 0

}.

Hence,
=/

2
h_(u S—qfor0<u<min£
€ uBJrl

to, t
267 05 1}7

where t; > 0 is chosen such that
Chu®+P < q for 0 < u < t.

Therefore,

— 2 2 2qa €
: - q q 2 _q
Za(u)|h6(U)| S (u +u + a) (uﬂ+1> S ﬁ + uﬁ""l for 0 S u S mln{%,to,tl}.

Comparing with (A.33), it follows that there exists a constant C' > 0 that does not depend

on a such that

_ 1
ZﬁMdWﬂgC«ZQWV—ZﬂWZJM>ﬁm0<u<nmﬂ§;mhh 0<e<e
(A.34)
Case II. Suppose that 26% < u < min{ty, t; }. We have

= ul”|ge — Bu a1 €
]hé(u)| S W—FC&U for % §u§t0

Note that |ge — fu| < pu if 28u > ge. We then obtain

1
. Bul + Crud+a+h (1 + %)qw *
[he(u)] < (u+ )1+

qe
for — < u <ty.
OIQﬁ_u_ 0

Now, observe that there exists 0 < ty < min{to,?;} that does not depend on € such that

9 q+B+1
CLu®r <1 + 5) < pBfor 0 <u<t,.
q

Therefore,
— 2
mwmgugﬁmqegu<u

26
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Comparing with (A.33) we obtain

Zo(w)|h.(u)| < C (;Zg(uf - Z;'(u)Za(u)> for 3; <u <ty (A.35)

Case III. Assume that ¢35 < v < K. Since there exists a constant C' > 0 such that
Ih.(u)| < C for ty < u < K, it follows from (A.32) that

Zo (W) ()] < C (;Z;m)? - Z;'(u)za(u)> for t» < u < K. (A.36)

Hence, (A.30) follows from (A.34), (A.35) and (A.36).
We now prove (A.29). Observe that

Z!(u) Zy(u)? = (1 = B)u™ + 1)\Jul=F +u+a.

Hence
Z!(u) Zy(u)Y? < /3K ((1 = B)u™” + 1).

When 0 < u < 1 we know that u* < u. Hence v < u™?’. Therefore, from (A.33), there
exist constants C; > 0 and Cy > C; such that

7' (W) Za ()2 < Ch(u? + 1) < Cy (;Z;(U)Q - Zg(u)za(u)> for0<u<1. (A37)

If 1 <u < K, we know that there exists a constant Cs > 0 such that Z’(u)Z(u)? < Cs.
Hence, from (A.33), there exists a constant Cy > 0 such that

7 (W) Za(u)? < C, (;ZQ(U)Q - Zg(u)za(u)> for l<u<K,  (A38)

Inequality (A.29) then follows from (A.37) and (A.38). We proved that (A.26) is false.

Hence, there exists M > 0 that does not depend on € nor on a such that

|Vu(z)[*e(x)
w(@) =P +u(z) +a

v(x) = < M for all z € Q.

The result follows by letting a — 0. We have proved Lemma A.3. [

We now obtain regularity results for the perturbed problem studied in Chapters
4,5 and 6. There, we studied problem (A.1) with

—log | s+ for s >0
S+ €

(A.39)
f(0) for s < 0.

We now assume that the function f satisfies (A.2) and (A.15) for some a > 0. Furthermore,

we will assume that there exist constants 0 < ¢y, < 1 such that

ge(s) > f(s) for 0 < € < ¢ and s < 0. (A.40)
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We recall that item (vi) of Lemma 5.2 states

1
li -—1
i gels) =
Consequently, condition (A.40) is satisfied if
N
lim [ f*(s)] < o0
We have

Lemma A.4. Suppose that Q C R? is a bounded smooth domain and let u, € Hy(Q)

be a nonnegative weak solution of problem (A.1) with g. given by (A.39). Assume that f
satisfies (A.2), (A.40), and that (A.15) holds for some o > 0.

Then, the following assertion holds: If
l|uc||3 < m for each 0 < e < (A.41)
€ Hé(Q) =~ 20[ € €o, .
then ue € L*(Q2) and there exists a constant Ky > 0 such that

||| ooy < K4 for each 0 < € < €. (A.42)

Proof of Lemma A.4. We know that u, is a weak solution of problem (A.1). Hence,

from (A.4) we get
/ Vu. Vv +/ ge(ue)v = / fluv for all v € HL(Q),v > 0.
Q 0 Q
Let 6 > 0 be given by (A.40). We have
/QVuGVv = /Q (f(ue) - ge(ue)x{ue<5}) v — /{uezé} ge(ue)v.

Using (A.40) and that there exists Cs > 0 such that |g.(s)| < Css for s > §, we get

/ Vu. Vo < f(ue)v + 05/ UeV.
Q {ue>0%} {ue>6}
Hence,

/VuGVgo ST uelf(u€)|v+Cg/Quev

From (A.15), it follows that there exists o > 0 and C, > 0 such that

/ Vu. Vo < —/ u exp (ou?)v + Cg/ UV
Q {ue>6}

Since exp s > 1 for s > 0, we have

C
/VUEVU < —/ Ue €XP (auf)v+C’5/ ue exp (au?)v.
Q 0 J{uc>s} Q
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Hence, there is a constant C' > 0 that does not depend on € such that
/ Vu Vo < C’/ u exp (au?)v for every v € Hj(Q),v > 0. (A.43)
Q Q

For L > 1 we define,

ue(x) if wue(zr) <L
ur.(z) ==
L if wul(z)>L,

o, 2(0-1) L o—1
Zpe=up, U and  wpei=wuaug .

with o > 1 to be determined later. In the course of the present proof, C, C,, C and 5’(1

denote various positive constants which are independent of e.

Choosing v = zp, . in (A.43) we have
/QVUEVZL,E < C/Qu6 exp (au?)zp, ..
We now estimate the left-hand side of equation (A.44)). Note that
Vzpe= ul? o DVu, + 2(0 — Dup’ PuNVug.

Hence

/ Vu Ve = / uQL(Z VIV ? do + 2(0 — 1)/ ui’uVug V.
0 0

Since Vur, =0 on {u. > L} we obtain

/Qu%"6 3uEVuL,EVuE = / u? *|Vu.|[* dx > 0.

{ue<L}

/ Vu Vo, > / 2o=1)

Substituting in (A.44) we obtain

We conclude that

/ (o— 1)|Vue|2 <C’/ ue exp (au )zLE_C/ u? exp (au )UL(Z D
Q

Now we note that
Vwr,e =u],.' (0 = 1)Vur, + Vu,).

Hence,
Vwp. | < ouf M| Vuel.

Substituting in (A.45) we conclude that

1 1
= [IVu P <c [ v 2o-1),
= [ IVun 2 <€ [ u?exp (au)ui

(A.44)

(A.45)
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Let ¢ > 1 to be fixed later. Using the Sobolev embedding Hy () — L%((2), there is a
constant C, > 0 such that

([ ")’ < Coo? [ aexp (o)™, (A.46)
By construction ur . < u,, then

/QUQGXp(Ozu uLe )</ 7 exp (au?
Replacing in (A.46) we get

(/ lwp, | ) < C,0? /Quf"exp(auf). (A.47)

From Holder’s inequality we obtain

(/ lwr, | ) < C,0? (/Qexp(rauf))i</ﬂuf’"/">:l,

where 7 > 1 is chosen such that ra|u|* < 47 and 1/r + 1/r" = 1. We conclude from the
Trudinger-Moser inequality that

2 L
(Lot} <o ([ )
Q Q

Since u . < wr, e, we have

(f) = (fimnr) ([

Letting L — oo it follows from Fatou’s Lemma that
2
(o) < ()
) Q

||u€||LqU < C 02||u€||L2ra
@

1
o

1
o

This means that

Taking ¢ = 47" in the equation above, we get a constant C' > 0 such that

el garo 0y < Cro %||u€||L2m @ forall o > 1. (A.48)

The result follows by considering a suitable sequence of values of ¢ in the above

inequality and iterating. Indeed, we first choose o7 = 2. Using the Sobolev embedding we

~1.1 Tm _~1 1
||u6||L8r’(Q) < C422||Ue||L4r'(Q) < \/;00422,

for some constant C' > 0. Now take g = 4 in (A.48). We get

obtain

ok
2c0

N

(432

N

ALy
el o ) < CF 43 [Juel| s ) <

).
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Taking o}, = 2" in (A.48) we obtain,

[Tm =Sk 1 L
||U6||L2k+2r’(9) < %OCZZ:I 2t (H§:1(2 )Ql) . (A.49)
1 i) > 1 1
It is clear that I3, (2")2" = 4, which is a consequence of » 5 = 2. Moreover, » 51 = o
i=1 i1

Thus letting £ — oo in (A.49) and using Theorem B.10, it follows that u, G_LOO(Q) and

we obtain a constant K; > 0 that does not depend on ¢ such that
[te][ oo () < K.

This proves the result. [

Lemma A.4 possesses the following variants.

Corollary A.1. Suppose that Q C R? is a bounded smooth domain and let u. € Hy ()

be a nonnegative weak solution of problem (A.1) with g. given by (A.39). Assume that f
satisfies (A.2) and (A.40). We have:

(1) Instead of (A.15), assume that f satisfies the following condition: There
exists C,Cy > 0 and ¢ > 0 such that

1£(s)] < C1s° exp(as?®) + Cy for all s > 0. (A.50)
Further assume that -
T
”Ue”%]g(sz) <3 for all 0 < e < ¢
Then, u. € L*>(Q) and inequality (A.42) holds.

(17) Assume that f satisfies condition (A.15) for all a > 0. If there exists D > 0
such that
||u6||%13(9) < D for all 0 < € < €,

then (A.42) holds.
Proof of Corollary A.1 . We prove (7). Indeed, condition (A.50) implies that for each
r > 1 there exists C, > 0 such that
1f(s)] < C,exp(ars?) for all s >0
We then choose 1,79 > 1 such that
T1r2a||u5||§{é(m < A4 for all 0 < € < €,

and mimic the proof of Lemma A.4.

Item (i¢) follows by taking o > 0 such that

7T
D < —
2a°
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and applying Lemma A 4. O

We now prove the gradient estimate used in Chapters 4, 5 and 6.

Lemma A.5. Suppose that Q C R? is a bounded smooth domain and let u, € Hy(Q)
be a nonnegative weak solution of problem (A.1) with g. given by (A.39). Assume that f
satisfies (A.2) and that

sup |sf'(s)] < oo.
s€[0,1]

Assume further that there exists a constant Ky > 0 such that
|te|| oo () < K for every 0 < e < 1. (A.51)

Again, let ¢ be such that

2
e C*Q), v>0inQ, ¥=0 ondQ and VY|

1s bounded in €.

Then there exists a constant M > 0 such that
V(1) Vue(2)|? < MZ(u(x)) for every x € Q,0 < e < 1/2, (A.52)

where
1

t?+t—tlogt for0<t<
Z(t) = )

1 1 1

-+ —(1+log2 — =] (1+log2 > —
4—|—2(—|—og)+<t 2>(+og)f0rt_2
.51), we conclude

Proof of Lemma A.5. The proof is similar to Lemma A.3. From (A.5
(). We define

Au, € L(Q). Thus, by standard elliptic regularity, u. belongs to C*

7 ] N s 0
)= —tog 5+ ) < i) for s >

We shall denote u, simply by u. As in the proof of Lemma A.3, let 0 < a < 1 be small and
define the functions
| Vu?

Zo(u) = Z(u) + a, w Zo@)’

v = wy.

Note that v is C? at all points x € Q such that u(z) > 0. Indeed, let z € © be one
such point. By continuity, there must exist an open ball B C €2 centered at x such that
u > 0 in B. Consequently, we know that g.(u) € C*"(B) and f(u) € C""(B). Hence,
he(u) € C*(B). Since u satisfies the equation —Au + h(u) = 0 in B, we conclude that
u € C*(B), implying that Z,(u) and w are C* in B.

Our aim is to prove the estimate by contradiction, thus we assume that

supv > M, (A.53)
Q
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where M > 0 will be chosen later independently of ¢ and 0 < e < €*.

The function v is continuous in €, hence it attains its maximum at some point
xo € Q0. Thus, by (A.53) we obtain

v(zg) > M.

Then z( € 2, because v = 0 on 0f2. Note that u(xy) > 0, because otherwise Vu(zg) =0

and then v(z) = 0. Hence, v is C? at o,
Vou(zg) =0

and
Av(zg) < 0. (A.54)

We will compute Av and evaluate it at the point zy. As we shall see this leads
to the absurd Aw(zg) > 0 if one fixes M large enough. To do that, we observe that Z,

satisfies the following crucial properties
Zy € C%(0,00), Z4(t) >0, Z.(t)>0and Z"(t) <0 forall t > 0.

Consequently, the computations already carried out in [52, Section 3| are applicable, and

they lead to the following expression evaluated at g

Av> Zj(u) [ (5202 = Zu(w)Z(w)

(20 2o () ~ B0 Z4(w) ~ KZu(w) (A.55)

_ ]{Z(;(U)Za(u)1/277ZJ1/2u)Z3/2]7

where )
K = 4max (s%p (‘Z;ﬁ) ,sgp|A¢ — 2|V$‘ ) > 0.

We will show that if v(xg) is large enough then the right hand side of (A.55)
must be positive, which would contradict (A.54).

For this purpose we need to establish the following estimates uniformly for

every 0 < e < €".

Z4(0) Za(u) 7 < CUSZuw) — Z(u) Zo(w), (4.50)
Zu(w) ()] < C(5Za(w)? — Z2(u) Zo(w), (A57)
Z ()b < ClyZuw) ~ Z0(w) Za(w), (A.58)

Zu(u) < O 24w — Z() Zo(u), (A.59)
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for every 0 < u < K;. The constant C' depends only on K7, but not on € nor on a either.

Assuming for a moment that (A.56)—(A.59) are true. Inequality (A.55) implies

that
%Z;(U)Q — Zy(u) Zo(u) 2 1/2, 3/2
Av > A0 (ww —C(w—i—w/w/))
5 Za(w)* = Z(u) Zo(u) ( 3/2
= Zoa)y (v —C(v—i—v/)).

Thus if v(zg) = supv > M for some large enough M independent of @ and 0 < € < €" we
obtain a contradiction with (A.54). Hence, there must exist M > 0 independent of a such
that ¢|Vul? < MZ,(u) in Q. The result then follows by letting a — 0.

We prove now the relations (A.56)—(A.59). The only difference from [52] is
the proof of (A.57) and (A.58). The key ingredient is that the function s — [sf'(s)] is
bounded for 0 < s < 1/2.

1
Case 1. If u(xg) > 3 then the left hand sides of (A.56)—(A.59) are uniformly bounded in
the interval [1/2, K4]. Since

1 1
QZ;(U)2 —ZNu)Z,(u) = 5 (141log2)* foru> =, (A.60)

N —

the right hand sides of (A.56)—(A.59) are also uniformly bounded. This proves (A.56)—
(A.59).

Case 2. If 0 < u(x) < 1/2, then

N | —

1
Zo(u) =u? +u—ulogu+a, Z (u)=2u—logu, Z'(u)=2-—"for0<u<
u

We conclude that

L 20w - 20w Za(w) >

1 1 1
57Za (logu)Q—logu—i—Z—i—%for0<u§§,0<a<g. (A.61)

| —

Note that

Z! () Zo(u)'? = (2u — logu)(u?® + u — ulogu + a)'/? for 0 < u <

| —

1
Since (u? 4+ u — ulogu + a) is bounded for 0 < u < 2 and (2u —logu) < 1 — logu, we
conclude that (A.56) holds. Inequality (A.59) is also clear. To prove (A.57) and (A.58),



APPENDIX A. Regularity results 159

note that

Zuw) )| < (u+1 - togu+ ) (

(u =+ €)(u? + ue + ee—F(0) AR

a (u+e)2—|—ee_f(0) - )
<wulu+1-logu+ — = U
<uu+1-logu+?) (( T W)

u+ €)(u? + ue + ee 10

3 4 2eu? + (2 4 ee— 10 .
<3/2 Clogut a) u” + 2eu +~(€ +ee Ty ol ()
u/ \ud + 2eu? + (ee= 70 + e2)u + e2e~10)

(u+€)? — eeF© ’ = )

IN

< (3/2—togu+2) (1 +ulf (w))
< C(l—logu—l—Z)-

This estimate and (A.61) prove (A.57). We now prove (A.58). We have

| ee*f(o) ~ for 0 1
<u< =
og {ut+ ——— [ |+|f(w)][] for0<u< .

Zg(u)|he(u)| < (2u — logu) (

We split the proof in two cases. If
ce=1© e 1©
log | u + =log [u+ ,
U+ € U+ €

_ ce— 10 _
Z,(u)lhe(u)] < (2u — logu) (log u+ ) + !f(U)!)

then

U+ €
< (2u —logu) <10g (u—i—e f(0>+|f(u>’)
< (2u —logu) ( (1/2—1-6_? >+|f( )|>
0<

< C(1—-1logu) for

) ce—f(0
log | v+ = —log [ u+ ,
u+e€ U+ €

_ ce— 10 _
Zi(w)lh(w)] < (2u—logu) (_10g (u+ o ) + |f(U)|)

Do \

On the other hand, if

then

<2(1—logu) (—logu—l— |f(u)|) for 0 < u <

We conclude that
1

Z' (W) [he(u)] < sup |f(s)] +log?u— (14 sup |f(s)|)logu for 0 <u < =
0<s<1/2 0<s<1/2

This estimate and (A.61) prove (A.58). O

l\D
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APPENDIX B - Some basic notions

B.1 Basic notions and notation

We introduce some basic notation that will be used throughout the text. We
define

(a) Q ¢ RN, N > 1 denotes a bounded and open subset of RY with smooth
boundary 0f2;

b) We say that Q is smooth if 9 is of class C* for k > 2, see Definition 2;

(

(c) s = max{s,0} and s~ = max{—s,0};

(d) The set {f(x) # 0} C Q is called the support of the function f: Q — R;
(

e) Let k € N,k > 1. The space C*(Q) (C°(Q)) denotes the space of functions
of class C* (C*) with compact support in . The space of functions f of class C* such
that sup |V*f(z)| < oo is denoted by C*(Q);

€

(f) The space C(2) denote the space of continuous functions defined in €;

(g) Let 0 < 7 < 1. We say that f is uniformly Holder continuous with exponent

7 if f is continuous and

|f(z) = fy)]

sup ————=— < Q.
e v =yl

This space is denoted by C7(€2);

(h) Let ¥ € N and 0 < 7 < 1. The space C*"(Q) is the space of functions of
class C* such that each derivative of order k is belongs to C7(Q);

(i) We say that u,, — u in CJ () if u., — u uniformly in compact subsets of
&
(j) Let A c RY be a set. The function x4 : R — R is defined by y4(z) = 1

for z € A and ya(z) = 0 for z € RV \ A;

2N
k) For N > 2 define 2* = ———.
(k) For , we define N7

1) The function 1€ Hl ) is the first eigenfunction of the operator —A with
0 g f t th
”¢1|’HS(Q) = 1, so that

/ Ve Vo de = /\1/ 1w dz for all v € HL(Q),
Q Q

where A\; > 0 is the first eigenvalue of the operator —A.
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Let N € N, N > 1. We will equip the space RY, with the Lebesgue o-algebra
Ly~y and with the Lebesgue measure | - |, see [9] and [39].

Let Q C RY be a bounded and open subset of RY with smooth boundary 9.
We will equip it with the Lebesgue o-algebra Lo = Ley NQ ={BNQ: B € Lzn}. We
say that a property holds almost everywhere in 2 if it holds in a set V' C €2 such that
2\ V]| =0.

A map f:Q — R is called Lebesgue measurable if f~'(B) € Lq for all B € Lq,.
Let
A={f:Q—R: fis Lebesgue measurable }

be the set of measurable functions defined in 2. Suppose that f,g € A. We define the

equivalence relation ~ in A as
f ~ g if and only if f — g = 0 almost everywhere in ).
Let p > 1. We define
LL(Q) ={f e A~ /V|f| <ooforall VcVcQl
(here V stands for the closure of V in Q) and
Q) ={f € Lipe(®) : [ If1” < o},

We endow the space LP(§2) with the norm

e = ([ 11"

We say that f € LP(Q) is weakly differentiable if for each i € {1,2,..., N} there exists a
measurable function f,, : @ — R such that

/fago - —/ fop. forall p € C2(9).

Q" dx; Q

We define Vf = (fu,, fua,- -+ fen). The Sobolev space W'(Q) is the set defined by
WP (Q) = {f € LP(Q): fo, € LP(Q) for all i € {1,2,...,N}}.

We equip the space W'?(€) with the norm

I fllwre) = (/Q |f|p+/ﬂ|Vf|p>;.

We denote the space W?(Q) merely by H'(£2). We then define the space Hj(f2) as

7””1{1 Q
Hy () = C(Q) ",
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where CgO(Q)MHl(Q) denotes the closure of C2°(€2) in L], () with respect to the norm
| - [ 1 (). The Sobolev Embedding Theorem imply that the quantity

%
Jullio = ([, IVl do) (B.1)

defines a norm in Hy(€2), which is equivalent to || - ||z1(q). We always equip H(£2) with
the norm given by (B.1).

Finally, we say that f € L>(Q) if f: Q — R is a Lebesgue measurable function
and if there exists a constant C' > 0 such that |f(z)| < C for almost all z € Q. We also

define the norm
| fllzoo() = inf{C' : | f(x)| < C almost everywhere in Q2}.

The spaces LP(€), W'?(Q) and L*(Q) equipped with their respective norms are Banach
spaces. The spaces H'(2) and H; () equipped with their respective norms are Hilbert
spaces, see [9] and [36]. We also recall the concept of weak convergence and dual space. Let
E be a Banach space with norm || - ||g. We say that f: E — R is a linear functional if for
each x,y € E and ¢ € R we have

fle+y)=f@)+ fly), and f(cx)=cf(z).
Also, f is continuous if there exists a constant C' > 0 such that
|f(z)| < Cllz||g for all z € E.

We denote by E* the dual space of E, that is, the space of all continuous linear functionals

defined on F. We may equip E* with the norm

/1

g = sup |f(z)].

Izl z<1

It is known that E* equipped with the norm || - ||z« is a Banach space. We denote by
L(E, E™) the space formed by the bounded linear mappings between E and E*. That is,

L:FE — E* € L(E,E") if and only if there exists a constant C' > 0 such that

[1L(x)]

g < C|lz||g for all z € E

and

L(z+vy) = L(x) + L(y), L(cx)=cL(x), forall x,y € E,c € R.
We say that a sequence (x,) in E converges weakly to an element x € E, and we write
z, — ¢ if

f(x,) — f(x) for all f € E”.
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We will denote the space Hj(€Q)* merely by H (). Let f € H'(Q2). The Riesz Repre-
sentation Theorem, see [9, Section 5.2], asserts that there exists w € Hy () such that

flu) = / VwVu for all u € Hy(S2).
Q
Hence, u, — u weakly in Hy(€2) if and only if
/ VwVu, — / VwVu as n — oo for all w € Hy(Q).
0 Q

We remark that if u, — u weakly in H; () and lunllgi@) = llullai), then u, — u
strongly in H}(Q), see [9, Exercise 5.19]. Finally, we give the concept of Fréchet differentia-
bility, see [68]. Let I : Hy(Q2) — R be a functional. We say that I has a Fréchet derivative
fe H H Q)" at u € Hy(Q) if

lim —  (I(u+ k) — I(u) — (f,h)) = 0.

h—0 ||h||H3(Q)

We write f = I'(u) and we say that the functional I is of class C* if I'(u) is well defined
for all u € Hy(Q2) and if the mapping u — I’(u) is continuous in H (). Moreover, we say
that I satisfies the Palais-Smale condition if any sequence (u,) in Hy(€2) such that

I(uy) is bounded and I'(u,) — 0 as n — oo (B.2)

possesses a convergent subsequence. A sequence (u,) satisfying (B.2) is called a Palais-
Smale sequence for I. Moreover, if there exists ¢ € R such that I(u,) — ¢, then (u,) is

called a Palais-Smale sequence for I at level c.

We now study smoothness of bounded sets in RY.

Definition 2. A bounded domain Q in RN and its boundary are of class C* if at each
point xq € OS) there exists a ball B centered at xq and a one to one mapping ¥ of B onto
D c RY such that

UeCHB), ¥ 'eCHD), ¥(BNQ) CRY andy(BNoQ) CT,
where I' = {x = (v1,...,25) € RY : 2y = 0}.

Let © ¢ RY be a bounded smooth domain and let 6 :  — R, be given by
d(z) = inf |z — y|. We have

yeIN

Lemma B.1. Suppose that Q@ C RY is a domain of class C* for some k > 1. Then

/95($)_” < oo forall0 <o < 1.
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Proof of Lemma B.1. Fix 0 < ¢ < 1 and let xg € 0f). From the smoothness of €,

we know that there exist a ball B centered at xy and applications ¥ : B — D and
U~ D — B such that

U eC*B), v 1'tecCkD), ¥(BNQ) CRY, and ¥(BNIQ) CT,

4+

where I' = {z = (21,...,2y) € RY 12y =0} and RY = {z = (21,...,2y) € RV 1y >
0}. We claim that

/m §(2)~7 < oo, (B.3)

where B is a ball centered at o such that B C B C B. Let B be one such ball. Claim
(B.3) is a consequence of the Change of Variables Theorem and from the fact that ¥ is
Lipschitz continuous in the interior of B. Indeed, we know that there must exist a ball B
centered at o and such that BC B C B C B C B. Let d = dist(dB,dB). From the fact
that U € C*(B), we know that U € Ck(E) and therefore,

|U(z) — U(y)| < Clz —y| for all 2,y € B, (B.4)

where C' = sup |VU(z)|. Observe that

zeB

r = .
BNQ (S(CL‘)U BNQ (infyeag |£L’ — y|)‘7
Let y € 9Q\ B. We know that in this case
|z —y| > d for all z € BN Q.

Therefore

1 1
/~ dr = [_ 5 dx.
Bra 6(x)° Bno [ . ,
ming d,inf _, 5|z =yl

Hence, we need to show that

1 [
/~ ( ) dr < oo.
Bno \ inf — 9|

y€8§2m§ ‘SL‘

From (B.4) and from the fact that WU(y) € T" for all y € 0Q N B, we get

/Em (inf : — y|) de < 7 /fém (inf 1(x) — ‘Il(y)|) da

yeonB [ yedQNB v
1

< o
s¢ /fB'mQ Uy (z)e d
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Using the change of variables x — ¥ (z) = (Vy(z),...,Un(x)) = (21, ... 2n), and the fact
that U(B N Q) C DNRY is a bounded set, we get

1 0 1
Bna \ inf Y| DRY, 2%

yedONB |z —

2%
03 1—o1M
=1 [2n 7)o < oo,
where M is a positive constant chosen such that 0 < zy < M for all z = (z1,...,2x) €

D NRY. This proves the claim (B.3). Lemma B.1 follows from the compactness of Q. [

The following result is a consequence of Hopf’s Lemma, see Theorem B.9.

Lemma B.2. Let Q C RY, N > 2 be a bounded smooth domain and let u € C*(Q)NC*(Q)
be a function such that —Au > 0 in Q and uw =0 in 0. Let §(z) = dist(x,0). Then,

there exists constants A > a > 0 such that

ad(x) < u(x) < Ad(z) for every x € Q. (B.5)

Proof of Lemma B.2. From smoothness, we may assume that Q = B;(0) NRY is the
upper half of the ball centered at the origin with radius 1, and that v = 0 in ', where
I' = 0B,(0) N {x, = 0}. We need to show that there exist constants A > a > 0 such that

adp(z) < u(z) < Adp(z) for every x € By »(0) NRY, (B.6)

where dr(x) = dist(z,I") = x,. From Hopf’s Lemma, we know that there exists an open

strip T' containing I' N By /»(0) and a constant ¢ > 0 such that

ou

%(ﬁ) > ¢ for every x € T.

It is clear that (B.6) holds in (Bj2(0) N RY) \ 7. We know that there are constants
c1, ¢y > 0 such that

8; (x) < coe™ for all x € T. (B.7)

Define, for each x = (21,...x,) € TN By2(0)

cre’r <

and
9(t) = (@1, 22, ..., Tpr, Ly).
It is clear that g(0) = ¥(0) = 0 and ¢(1) = ¢(x). From (B.7), we have

0
g(1) — g(0) _/Olg/(wdt_/olxnaf(xl,...,mn)dtzo.
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Hence, 1(z) > 0 for all # € T', which implies that

etn —1

u(z) > (e — 1) =z, ( ) for all z € T.

n

Using the fact that (¢* —1)/s > 1 for s > 0, we obtain
u(z) > ez, = c10p(z) for all x € T.

Analogously,
u(z) < exop(z) for all x € T.

This proves (B.6). Inequality (B.5) then follows from a change of variables and from the

compactness of ). O

B.2 Results used throughout the text

First, we give some basic results

Theorem B.1 (Fatou’s Lemma). Let (f,) be a sequence in L'(Q) such that f, > 0

almost everywhere in ) and sup [ f, < oo. Then,
n Q

/ ) < hm 1nf / folz
Q

where f(x) = lim inf fulz).

Theorem B.2 (Dominated Convergence Theorem). Let (f,) be a sequence in L' ()
such that f,(x) — f(x) almost everywhere in 0 and assume that there exists g € L'(Q)
such that | f,(z)| < g(x) almost everywhere in Q0. Then, f € L*(Q) and f, — f in L'().

Theorem B.3 (Generalized Dominated Convergence Theorem). Let (f,) and (g,)
be sequences in L' () such that f,(x) — f(x) and g,(x) — g(x) almost everywhere in <.
Assume that | f, ()] < gn(z) almost everywhere in Q. If g € L*(Q) and

/an(a:) dw—)/ﬂg(x)dx
/an(a:)d:n—>/gf(x)dx

Theorem B.4 (Holder’s inequality). Let 1 < p < o0 and 1 < q < oo be positive
1 1

constants such that — + = = 1. Assume that f € LP(Q) and g € LY(2). Then fg € L*(Q)
p g

and . )
/Q\fg!dxg (/ny|pdx>p (/Q\g\qu)"

Next, we give a version of the Arzela-Ascoli Theorem.

then f € L'(Q) and
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Theorem B.5. Let Q be a domain in RY for N > 1 and let (u,) be a sequence in
C*(Q). Assume that for each smooth bounded subdomain Q' C ' C Q there are constants
Ki, Ky > 0 such that

sup |up(x)| < Ky and sup |Vu,(z)| < Ky for all n € N.
zeQ zeQy

Then, there exists a continuous function uw € C(2) and a subsequence (u,,) such that

Up, — w uniformly in compact subsets of €.

We now state the Trudinger-Moser inequality, see [56].
Theorem B.6 (Trudinger-Moser inequality).
exp(aw?) € LY(Q) for every w € Hy(2) and a > 0,
and there is a constant k1 > 0 such that

sup exp(aw?) < ky for every a < 4w and w € Hy (). (B.8)

w <1/Q
” ”Hé(g)_

The next result was proven in [51, Section 1.7, Remark 1.18].

Theorem B.7. Let (u,) be a sequence of functions in Hy () with ||Vuy,||r2@) = 1 such
that u, — u # 0 weakly in H}(QY). Then for every
4m

0<t<
(1- HVUH%Q(Q))

we have

sup/ exp(tu?) < ko for some constant ky > 0 independent on n.
n JQ

The next theorem is proven in [30, Lemma 2.1].

Theorem B.8. Let (u,) be a sequence of functions in L'(Q2) converging to u in L*(£2).
Assume that f(u,(x)) and f(u(z)) are also L' functions. If there exists a constant C' > 0
such that

/Q |un () f(un(2))| < C for alln € N,
then f(u,) converges in L' to f(u).

We now state a version of the Hopf’s Lemma, see [45, Lemma 3.4]

Theorem B.9 (H6pf’s Lemma). Let Q@ C RN, N > 2 be a bounded smooth domain
and let u € C*(Q) N CY(Q) be a function such that —Au >0 in Q and v = 0 in . Let

x € 0N). Then,

ou(z)
o <V

where v is the unit vector that is orthogonal to 0S) at x.
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For the next result, see [45, Exercise 7.1].

Theorem B.10. Let Q C RY be a bounded domain and suppose that u € LP(Q) for all
p > 1. Then,

Jim, @, (u) = sup ful,

where

B, (u) = (|§2| [ |u|pdx)p

We now state some Sobolev embeddings. We refer the reader to [9], [36] and
[45].

Theorem B.11. Let Q be a bounded open subset of RY with N > 3 and suppose that
2N
u € Hy (). Then u € LP(Q) for all 1 < p < N

C > 0 that depends on p, N and Q) such that

5 Furthermore, there exists a constant

lullzr) < Cllullago)-

2N
Also, if 1 <p< N5 then Hy () is compactly embedded in LP(Q2). Consequently if (uy,)
is a bounded sequence in Hy (), then there exists a subsequence (u,,) in Hy(Q) and an

element u € Hy () such that u,, — u in LP(9).

Theorem B.12. Let Q be a bounded open subset of R*, and suppose that u € Hy(Q). Then
u € LP(Q) for all 1 < p < oo. Furthermore, there exists a constant C' > 0 that depends on
p and €2 such that

HUHLP(Q) < CHUHH;(Q)-

Moreover, Hy(S)) is compactly embedded in LP(QQ). Consequently if (u,) is a bounded
sequence in H}(Q), then there exists a subsequence (u,,) in Hy(Q) and an element u €
Hy(Q) such that u,, — u in LP(S).

Theorem B.13. Let Q be a smooth bounded open subset of RY, and suppose that u €
W?2P(Q) for all p>1. Then, u € C*(Q) for all 0 < v < 1. Moreover, the embedding

CHQ) — W?P(Q)
is continuous, so that there exists a constant C' > 0 that depends on p and €2 such that
[ullor@y < Cllullwze@).-

The next two results are found in [45] and [49].
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Theorem B.14. Let Q be a smooth bounded open subset of RY with N > 2, and suppose
that f € LP(Q) for some 1 < p < oo. Then, there exists a unique function u € W?P(2) N
Wy (Q) such that

u=0 on 0f.

and there exists a constant C' > 0 that does not depend on u nor on f such that

{Au:finﬂ

[ullwzr) < ClfllLe@)-

N
In particular, if p > 5 then u € C(Q) NW2P(Q).

loc

Theorem B.15. Suppose that f € C*(Q) then, there exists a unique function u € C**(Q)
satisfying

u=0 on 0f.
Furthermore, if f € C**(Q), then u € C*2%(Q)).

{Au:finﬂ

The next results are found in [21, Remark 2.2.1, Proposition 2.2.1], [65, Ap-
pendix C] and [68].

Theorem B.16. Let Q be a bounded smooth domain in RY with N >3 and let f : Q —
R — R be a function satisfying

(1) f(-,8) is measurable in Q2 for every fized s € R.

(7i) f(x,-) is continuous in R for almost all x € €.

2
N3 such that

|f(z,s)| < c|s|” +d for each x € Q,s € R.

(1ii) There exist constants ¢,d >0 and 0 < o <

Let I : H)(2) — R be the functional defined by
1
I :/f 2_ R
(w) = | 5IVul (z,u) d,
where F(z,s) = /s f(z,t)dt. Then, I is of class C* and
0
I'(u)(v) :/Vqudx—/ f(z,u)vdx.
Q Q

The same conclusion holds when N =2 and f satisfies (i), (ii) and the following condition

(iv) There exist constants o> 0 and C > 0 such that

|f(z,5)| < Cexp{as®} for each x € Q,s € R.

N
We also remark that if f satisfies (i) — (iii) with 0 < o < N+2’
satisfies the Palais-Smale condition, see (B.2), provided each Palais-Smale sequence for I

then the functional 1

is uniformly bounded in Hp(€2).
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Theorem B.17. Suppose that I : Hy(Q) — R is a functional of class C* that is bounded
from below and that satisfies the Palais-Smale condition. Then, there exists ug € Hy ()
such that I(ug) = inf I(u) and ug is a critical point of I.

ueH}(Q)

For the next result, see [28, Theorem 5.1]

Theorem B.18 (The Mountain-Pass Theorem). Let Q2 be a smooth bounded domain
in RY and I € C'(Hy(Q),R). Suppose that there exists e € Hy(Q)) and r > 0 such that
r < |le]| and

inf I(u) > I(0) > I(e).

l[ull=r

Then, for each € > 0 there ewists u € Hy(S)) such that

c—2e <I(u) <c+ 2,

and
[ (w)]] < 2e,
where
= inf I
¢ = Inf max (v(t))
and

I'={y € C([0,1], Hy(Q)) : 7(0) = 0, (1) = e}.
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