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Resumo

A hipétese de Riemann (HR) é considerada o problema aberto mais importante na
matematica, que afirma que os zeros nao triviais da funcao zeta de Riemann se encontram
na “linha critica”. Este problema foi estudado durante cerca de um século e meio, mas
ainda nao se tem uma demonstragao para ele. O principal objectivo desta tese é estudar o

semigrupo de operadores de composi¢ao ponderada (W,,),>1, onde
Wof(z) = (1+z+---+2"Hf(z")

sobre o espaco de Hardy H? do disco aberto unitdrio. Mostramos uma nova reformulacio
da HR envolvendo este semigrupo. Encontramos uma nova familia de vetores ciclicos a fim
de generalizar o critério Baez-Duarte em H?. Também fazemos uma abordagem da HR

através do critério Baez-Duarte no espago Hardy do semi-plano H?(C; ).

Palavras-chave: Espacos de Hardy; Hipdtese de Riemann; Operador de composi¢ao pon-

derado; Subespacos invariantes; Vetores ciclicos; Problema de Completude de Dilatacao
Periédica (PCDP).



Abstract

The Riemann hypothesis (RH) is considered to be the most important open problem in
mathematics, which states that the non-trivial zeros of the Riemann zeta function lie
on the “critical line”. This problem has been studied for about a century and a half, but
there is still no proof for it. The main purpose of this thesis is to study the semigroup of

weighted composition operators (W,,),>1, where
Wof(z) = (1+z+---+2"Hf(z")

on the Hardy space H? of the open unit disk. We show a new reformulation of the RH
involving this semigroup. We find a new family of cyclic vectors in order to generalize
the Bédez-Duarte criterion in H?. We also make an approach of the RH through the
Béez-Duarte criterion in the Hardy space of the half-plane H?(C; ).

Keywords: Hardy spaces; Riemann hypothesis; Weighted composition operator; Invariant

subspaces; Cyclic vectors; Periodic Dilation Completeness Problem (PDCP).
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List of symbols

the set of natural numbers.

the set of non-negative integers.

the set of complex numbers.

the set {z : |z| < 1}.

the set {z : || = 1}.

the set {ze C: Re z > a}.

the space of all holomorphic functions on D.
the Hardy-space of the unit disk.

the set {f € H*(D) : f(0) = 0}.

the Hardy-space of the half-plane C,,.

the set of analytic functions on D which are bounded.

the Hilbert space of Dirichlet series.

Hilbert space.

the bounded operators on H.

the weighted Bergman space of the unit disk.
the local Dirichlet spaces at ( € T.

the space of square-integrable functions on (0, 1).

the functions which are a.e constant on each sub-interval (—i—l’
n

n=0,1,2..

the norm of H*(DD).

the norm of H*(ID).
the norm of H*(C,).
the norm of #H?.

composition operators.

n

1

1

],



Ty weighted composition operators.

0 the Md&bius function.

¢ the Riemann zeta function.

[ 2] the integer part of x.

{x} fractional part of x.

X(a,b) characteristic function of the interval (a, b).
dA the normalized area measure of D.

log(t) logarithm on the basis e of t > 0.
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Introduction

The Riemann hypothesis (RH) is a mathematical conjecture which was first
published in 1859 by Bernhard Riemann. This conjecture is considered to be the most
important open problem in mathematics: It states that the zeros of the Riemann zeta
function in the complex plane that have real part between 0 and 1 lie on the “critical line”

Re(s)=1/2. This problem is one of the millennium problems.

In 1950, Bertil Nyman introduced in his doctoral thesis, [15], a reformulation
for the RH, equivalent to the density of the space spanned by a family of functions
{fr:0 <X <1} on L*0,1), where fy(z) = {\x} — M1/x}. Five years later, [5], Arne
Beurling makes a generalization of Nyman Theorem, where, besides generalizing the space
L*(0,1) to the spaces LP(0,1), 1 < p < 1, he adds another equivalence stating that the RH
is equivalent to x(o,1) being in the closure of the space spanned by the family mentioned

above. These three equivalences are known today as the Nyman-Beurling criterion for the
RH.

In 2003, [2], Baez-Duarte showed a stronger version of the Nyman-Beurling
criterion in L?(0,1). He proved that the uncountable family {fy : 0 < A < 1} may be
replaced by the sequence {fi, : k > 1}.

Applying an unitary operator between Hilbert spaces, Bagchi, [3], gave an
equivalent version of the Béez-Duarte criterion in a weighted sequence space (2, where
the functions fy/, were replaced by sequences r, = (k{1/k}, k{2/k}, k{3/k},...) and the

characteristic function x(o1y was replaced by the constant sequence 1= (1,1,1,...).

Recently, Noor, [22], gave the Hardy space H? version of the Béez-Duarte

Theorem. Let N denote the linear span of functions

1 L+z+- 4271
R

for k = 2. Then the Baez-Duarte criterion may be stated as follows:

“The RH holds if and only if the constant 1 belongs to the closure of N in H*”.

In [22], a semigroup of weighted composition operators W = (W,,),>1 on H?

was introduced, where

f(Z").

1—=2

Each W, is bounded on H?, W, = I and W,,W,, = W, for each m,n > 1. The connection
of W to the RH stems from the fact that subspace N is invariant under W, that is,
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W,(N) € N for all n > 2. A vector f € H? is called a cyclic vector for an operator
semigroup {5, : n > 1} if the span of {S,,f : n = 1} is dense in H*. Noor showed that the
constant 1 appearing in the Béez-Duarte criterion in H? may be replaced by any cyclic

vector for the semigroup W.

The semigroup W is also related to an open problem in harmonic analysis
known as the Periodic Dilation Completeness problem (PDCP). The PDCP asks which 2-
periodic functions ¢ on (0, o) have the property that the span of its dilates {¢(nz) : n > 1}
is dense in L*(0,1). Such ¢ are called PDCP functions. This difficult open problem was
first considered independently by Wintner, [23], and Beurling, [6].

The PDCP has an equivalent reformulation in H*. N. Nikolski, [14], proved
that solving this problem is equivalent to characterizing the cyclic vectors of a semigroup
T = (Ty)ns1 on H := H*© C, defined by T,,f(z) = f(z"). Although the semigroups T
and W are not unitarily equivalent (see details in section 2.3), they are semiconjugate;
this is, T,(I — S) = (I — S)W,,, where S is the shift of multiplication by z in H?. This
relation allowed Noor to guarantee that cyclic vectors of W are properly embedded into
the PDCP functions. The multiplicative semigroup 7 is completely characterized, up to

unitary equivalence, by four properties (see [16, Theorem 2.2]):

1) For each prime p, T), defines a shift operator.

2) For different primes p and ¢, T}, and 7;, double commute; this is, 7}, and 7}, commute,
and so do T}, and T

3) The semigroup 7 is such that
0
dim ﬂ KerT) = 1.
k=1

4) The semigroup 7 is such that

ﬁ (}SO/TPIC> = {0}7

where {py};, is the sequence of prime numbers.

In order to study the semigroup (W,,/v/n),=1, we shall see that this semigroup satisfies
condition 1), 3) and 4), but not condition 2).

This thesis will be divided into four chapters. In the first chapter we shall
provide basic results that will be required throughout this work. We shall discuss the
Riemann hypothesis, some Hilbert spaces of holomorphic functions and properties related

to the shift and weighted composition operators.
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Chapter two will be concerned with the study of the semigroup W. In the first
section we shall provide the explicit form of each operator W, for n > 1. In the second
section we shall see that the subspace spanned by {h, — h,, : n,m = 2} is not dense in
H?*(D), and, in addition, the dimension of this subspace is closely related to the RH. The
last section is focused on the invariant subspaces; in particular, a new reformulation of the

RH involving the invariance of Nt under Wy, for any k > 2, is presented.

In chapter three, generalizations of the Bédez-Duarte criterion in H? will be
presented. For a first reformulation, a result of Yang, [24], will be used. For a second

generalization, a question about cyclic vectors for the semigroup W will be solved.

In chapter four we shall discuss about the Baez-Duarte criterion in the Hardy
space of the half-plane H?(C, /2) - We shall prove that in a Hardy space of a smaller
half-plane, the function E can be approximated by a linear combination of functions Gy
(see [3, Theorem 2J).
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1 Preliminaries

In this chapter some necessary concepts for the development of this thesis will
be given. We shall start by introducing the Riemann zeta function and a famous conjecture
related to it: the Riemann hypothesis. We shall provide some reformulations related to
this conjecture in the Hardy spaces H*(D) and H*(C,). Then we shall present a shift
semigroup of weighted composition operators in H? (D) having a relation with the RH
and another important open problem: The Periodic Dilation Completeness Problem from

Harmonic analysis.

1.1 The Riemann zeta function

In this section we shall introduce the Riemann zeta function and its extension
as a meromorphic! function in the complex plane. Also, some properties that satisfy this

function will be presented.

The results of this section can be found at [20].

Definition 1.1.1. The Riemann zeta function is initially defined for real s > 1 by the

()=

n=1

convergent series

The Riemann zeta function can be extended analytically to a meromorphic
function in the complex plane. First, we extend the series defining ¢ to a half-plane of C
and, after that, it is extended by analytic continuation to the entire complex plane. These

classical facts are summarized in the following results.

Proposition 1.1.2. The series defining ((s) converges for Re(s) > 1, and the function C is
holomorphic in this half-plane.

Theorem 1.1.3. The zeta function has a meromorphic continuation into the entire complex

plane, whose only singularity s a simple pole at s = 1.

Now we present some properties related to the zeros of the Riemann zeta

function.

Theorem 1.1.4. The only zeros of ¢ outside the strip 0 < Re(s) < 1 are at the negative

even integers, —2,—4,—6,. ...

1 A meromorphic function on an open subset Q of the complex plane is a function that is holomorphic

on all of 2, except for a set of isolated points, which are poles of the function.
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Theorem 1.1.5. The zeta function has no zeros on the line Re(s) = 1.

The zeros of ¢ located outside the strip 0 < Re(s) < 1 are called the trivial

zeros of the zeta function.

1.1.1 The Riemann Hypothesis

In this subsection we shall present a conjecture related to the zeros of the
Riemann zeta function, known as the Riemann hypothesis and considered the most
important open problem in mathematics. In addition, some results on number theory will

be introduced.

We begin by denoting the space C,, a € R, as the half-plane
Co={s=o0+it:0>a,—0<t<w}.

The set {s = o+ it:0 =1/2,—0 <t < 0} is called the critical line.

By the analytic continuation of the zeta function, it is shown that the zeros of
¢ occur in symmetric pairs about the critical line; that is, if p is a zero, so is 1 — p, p and
1 — 7. In particular, since ¢ has no zero on the line Re(s) = 1, it follows that it has no

zero on the line Re(s) = 0.

At this point, we know that all of the non-trivial zeros of the Riemann zeta
function must lie in the strip 0 < Re(s) < 1. Riemann, in his famous paper [18], introduced

a conjecture about this problem, which is stated as follows.

Conjecture 1. (Riemann hypothesis®). The non-trivial zeros of the Riemann zeta

function lie on the critical line.

In view of the symmetry mentioned above, the RH is equivalent to saying that

¢ has no zeros on Cy . In chapter 4, there is a particular interest on this half-plane.

1.2 Spaces of holomorphic functions and the PDCP

1.2.1 The Hardy-Hilbert space of the unit disk

Let D be the open unit disk on the complex plane. The Hardy-Hilbert space of
the disk, to be denoted H?(ID), is the Banach space of all analytic functions f on I having

power series representation with square-summable complex coefficients. More precisely,

flz) = i f(n)z" € H*(D) if and only if ||f]?:= i 1f(n)]? < .
n=0 n=0

2 Sometimes we will denote the Riemann hypothesis by RH.
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The inner product inducing the H?(ID) norm is given by
e @]
frg02 =Y, F()a(n)
n=0

where (f(n))®_, and (§(n))®_, are the sequences of Maclaurin coefficients for f and g,

respectively.

There is an alternative definition of the Hardy—Hilbert space.

Theorem 1.2.1. (See [12, Theorem 1.1.12]) Let f be an analytic on D. Then f € H*(D) if

and only if
L7 ey < o
sup — re :
0<r1<31 2m 0
Moreover, for f e H*(D),
1 2m o1
I£I2 = sup o— | [f(re”)[*db.
O<r<l1 0

For any f € H? and ( € T, the radial limit f*({) := lil{l_ f(r¢) exists m—a.e

on T, where m denotes the normalized Lebesgue measure on T.

A space of analytic functions arises in order to study operators on H*(DD).

Definition 1.2.2. The space H*(ID) consists of all functions that are analytics and bounded
on D. The norm of a function f on H*(D) is defined by | f|le = sup{f(z) : z € D}.

The space (H*(D), || - |) defines a Banach space. Furthermore, every element

of H®(D) belongs to H*(D) . In fact,
1 2T

) 1 2w
sup —— | [f(re”)?d8 < sup 5 | 11%dd = IfI

O<r<1 27 0 O<r<1 0

In particular, | f]2 < || f]c-

1.2.2 A weighted Bergman space

The weighted Bergman space of the unit disk, to be denoted by A, is the
Hilbert space of analytic functions f(z Z a,z" and g(z Z b,z" defined on D for

. . . . n=0 n=0
which the inner product is given by

anby,

g _Z i+ D(n+2)

There also exists an area integral form of the corresponding A-norm given by

17 = [ £GP = 2P

where dA is the normalized area measure on . The text [10] is a modern reference for

such weighted Bergman spaces.
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1.2.3 Local Dirichlet spaces

Another important family of proper subspaces of H*(D) are known as the local
Dirichlet spaces. Let d. be the Dirac measure at ¢ € T. The local Dirichlet space at ¢ € T,
denoted by D;,, consists of all f e H ? satisfying

—|2[?
f f' (2 C|2dA(Z) < o, (1.2.1)

where dA is the normalized area measure of ID. Then Ds, is a Hilbert space with the norm
HszpéC = ||f]5 + Dc(f). The book [13] is a reference for such local Dirichlet spaces.

These subspaces can be redefined as follows.

Theorem 1.2.3. (See [13, Theorem 7.2.1]) Let ( € T and f € Hol(D). Then D¢(f) < oo if
and only if

f(z) = a+(z=(g(2)

for some ge H* and a € C. In this case D¢(f) = |g|5 and

0= F*(Q) = lim f(70).

Each local Dirichlet space Dy, is a proper dense subspace of H 2 and it has the
property that evaluation at the boundary f — f*(() is a bounded linear functional (see
[13, Theorem 8.1.2 (ii)]).

An alternative way to verify the integral condition (1.2.1) is as follows (see [13,

Page 115, exercise 5]). For completeness we give a proof.

0 e}
Theorem 1.2.4. Let f be holomorphic on D with f(z Z 22" and (€ T. If Z a,C"
n=0 =
converges and
v} 0 2
DD anl"| <o, (1.2.2)
k=0 |[n=k+1

then D¢(f) < oo.

Proof. We illustrate here the case ( = 1 (the generalized case is made by a change of

variable z — (z). Define
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By (1.2.2), it is easy to see that ¢ is in H?. Now, notice that

k=0 \n=k+1
0 e} e e} [ve}
S a)e-B (5 w)-
k=0 \n=k+1 k=0 \n=k+1
0 0 o 0
5[] S (5 w)
k=1 \n=k k=0 \n=k+1
0 0 0 o0
=3 Dlan— Zan>zk—2an
k=1 \n=k n=k+1 n=1
e} 0
= Z apz’ — Z ap
k=1 n=1
0 0 Q0
=Y =Y an = f(2) = D an
k=0 n=0 n=0
Then
Q0
f(z) = (z=1)g(z) + ) an
n=0
By Theorem 1.2.3, the assertion follows. O

1.2.4 The Hilbert space of Dirichlet series

In this section we are concerned with Dirichlet series, which are series of the

form

f(s) = Z a,n”® seC,
n=1

e}

.1 1s a complex sequence.

where (a,)

The Hilbert space of Dirichlet functions, to be denoted by H?, is the Hilbert
space of all analytic functions on C,/; having Dirichlet series representation with square-

summable complex coefficients. More precisely,

o0 o0
f(s) = Z a,n ® € H? if and only if |f|f5,2 := Z lan|? < oo.
n=1

n=1

It is a complex Hilbert space when endowed with the inner product

<f7 g>7{2 = Z ana?
n=1

where f(s) = Z a,n”° and g(s) = Z b,n~".

n=1 n=1
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There is a natural semigroup S = (S, ),>1 in H? defined by
Snf(s) =n""f(s).

The semigroups S = (S,,)n>1 and T = (T,),>1 are unitarily equivalent. Defining
the unitary operator R : Hy — H? by:

R:2F— k7%,

it is not difficult to verify that S, R = RT,, for each n > 1.

This semigroup was extensively studied in [16]. In particular as an immediate

consequence of Theorem 2.2 of this paper, we can state:

Theorem 1.2.5. The semigroup S is the only multiplicative semigroup, up to unitary

equivalence, satisfying the following properties:

1) For each prime p, S, defines a shift operator.

2) For different primes p and q, S, and S, double commute; this is, S, and S, commute,
and so do S, and S .

3) The semigroup S is such that

(e8]
dim ﬂ KerS;k = 1.
k=1

4) The semigroup S is such that

ﬁ (50/ SPk) = {0}7

where {px}i_, is the sequence of prime numbers.

Throughout the next chapters, we shall see that the multiplicative semigroup
(W,,/v/n)n=1 satisfies condition 1), 3) and 4), but not condition 2).

1.2.5 Hardy space of the half-plane

The Hardy-Hilbert space of the half-plane C,, to be denoted H?*(C,), is the
Hilbert space of all analytic functions F' in C, such that

1 o0
Fl3 ‘= sup — F(z +it)|*dt < co.
Pl = swae | IFG+infar <o
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It is known that any F in H?(C,) has, almost everywhere on the line {Re(s) = a}, a
non-tangential boundary value F* given by (see [11, Chapter 8]):

F*(a+it) = lim F(z + it).

Tr—x

This F'* is such that

1 [0 0]
1P — f F* (o + i) 2dt.
H2(Ca) 2 J_ o

Thus H?*(C,) may be identified (via the isometric embedding F' +— F*) with a closed

subspace of the L*-space of the line {Re(s) = a} with respect to the Lebesgue measure

1
scaled by the factor —.
2T

1.2.6 A reformulation of the Riemann hypothesis on H2(C1/2)
In this subsection we introduce the unitary equivalent version of the Baez-Duarte
criterion for H?(Cy ) given in [3].

For each k > 2, define

Gr(s) = (k= — k_l)C(SS) and E(s) = i, se Cyp,

which belong to H*(Cy2) (see [3, Page 139]). In terms of these notations, the formulation

of the Baez-Duarte criterion in H*(Cy,) is the following.

Theorem 1.2.6. Riemann hypothesis is true if and only if E belongs to the closed linear
span of {Gy, : k =2} in H*(Cyp).

In Chapter 4 we shall give an approach to the RH through this reformulation.

1.2.7 Weighted composition operators on H*(ID)

We begin by introducing the definition of composition operators, which are
operators induced by analytic self-maps of ID. More precisely, if ¢ is an analytic function

mapping D into itself, we define the composition operator Cy by

(Co)(2) = f(0(2)),
for all f e H*(D) and z € D.

Composition operators are always bounded linears operators on H*(D) (see
[12, Theorem 5.1.5]).

A weighted composition operator is nothing more than a composition operator
followed by a multiplication. More precisely, if ¢/ is analytic on D and ¢ analytic self-map

of D, we define the weighted composition operator Ty, 4 by
(T )(2) = ¥(2) f(8(2)),
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for all f € H*(D) and z € D.

In particular, if » € H*, Ty 4 defines a bounded linear operator on H*(ID). This
comes from the fact that the composition operator is bounded and the multiplication by a
function in H*(D) induces a bounded linear operator on H*(D) (see [12, Chapter 3]).

Example 1.2.7. i) For each n =1, let T), be the linear operator on H*(D) defined by

Tnf(2) = f(z").

Making ¢,(z) = 2", it is easy to see that T, is a composition operator, since T,, = C, .
Note also that Ty = I and T,,T,, = Tyn; this means that T = (T,),>1 defines a

multiplicative semigroup on H*(D).
ii) For each n = 1, let W, be the linear operator on H*(D) defined by
Wof(z) =142+ + 2" f(z").

Making ,(2) = 142+ 4+2""1 it is easy to see that W, is a weighted composition
operator, since W, = 1,,Cy,. . Note also that Wy = I and W,,W,, = W,,,,; this means
that W = (W,))n=1 defines a multiplicative semigroup on H*(D).

The semigroup 7 when restricted to HZ := {f € H*(D) : f(0) = 0} was
extensively studied in [14]. The semigroup W was first introduced in [22] and its study is
related to the RH. For this reason, a major part of this thesis is devoted to the study of

this semigroup.

1.2.8 A reformulation of the Riemann hypothesis on H?*(ID)

In [4], Balazard and Saias introduced an equivalent version of the Béez-Duarte

criterion in the weighted space [ with inner product given by
N 2(n)y(n)
gy =)~
~ n(n + 1)
for sequences z,y € I2. For each k > 2, let 7, denote the sequence defined by ri.(n) = k{n/k}.

Then the Béez-Duarte criterion in I may be stated as follows.

Theorem 1.2.8. The RH is true if and only if 1 := (1,1,1,...) belongs to the closed linear
span of {ry + k =2} in 2.

In [22], Noor gave a unitary equivalent version of Theorema 1.2.8 for the Hardy
space H*(D) by using the unitary operator ® := T~ o ¥ : [> — H*(D), where ¥ : [2 — A
and T': H*(D) — A are unitary operators defined by

U(x(1),2(2),...) = > a(k + 1) (1.2.3)

k=0
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and

1 _ !/
Tz = LZ2E) (1.2.4)
1—2
The operator ¥ was first introduced, in a equivalent form, in [3, page 145], whereas T' can
be found in [13, Lemma 7.2.3]. Such operator T is initially defined on the whole space
of holomorphic functions on I, Hol(D), but when restricted to H* defines an isometric

isomorphism onto the weighted Bergman space A.

Noor showed that

1
R(z) :=V1 = 1
Then
1 =T 'R=—1 and ®r, =T 'R; = hy,

where

1 L4z 44 21
hk(z)zl_zlog( . >,

which belongs to H*(ID). Then the Baez-Duarte criterion in H*(ID) can be stated as follows.

Theorem 1.2.9. (See [22, Theorem 6]) The Riemann hypothesis holds if and only if the

constant 1 belongs to the closed linear span of {hy : k = 2}.

Noor also related the Riemann hypothesis with the multiplicative semigroup
W. It is easy to see that

Wohy = hpg — hy, for all k,n =1 (where hy = 0).

Hence the linear span of {hy, : k > 2} is invariant under W. A vector f € H*(D) is called a
cyclic vector for an operator semigroup {S,, : n = 1} if the span of {S,,f : n > 1} is dense

in H?(D). Hence the following result generalizes Theorem 1.2.9.

Theorem 1.2.10. (See [22, Theorem 8]) The following statements are equivalent:

1) the Riemann hypothesis,
2) the closed linear span of {hy : k = 2} contains a cyclic vector for W,
3) span{hy : k = 2} is dense in H*(D).
Items 1) and 2) say that the constant 1 appearing in 1.2.9 may be replaced by

any cyclic vector of W. At this point, there is only one known cyclic vector: the constant

1. In chapter 3 we shall discover a family of cyclic vectors for W.
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We finish this subsection with two important results of [22] that will be useful
in Chapter 2 and 4. Let S be the shift operator on H?*(ID) defined by Sf(z) = zf(2).

The Mobius function is defined on N by pu(n) = (—1)" if n is the product of
k distinct primes and p(n) = 0 otherwise. For the proof of the following Lemma, Noor

required of the Prime Number Theorem in equivalent forms.

o0
k
Lemma 1.2.11. (See [22, Lemma 11]) The series Z 'LL;)(I — S)hy converges to 1 — z in
k=2
H*(D), where u is the Mobius function

Theorem 1.2.12. (See [22, Theorem 12]) Let N be the linear span of {hy : k = 2}. Then

N+~ Ds, = {0}.

1.2.9 The Periodic Dilation Completeness Problem (PDCP)

Aurel Wintner in 1944, [23], and, independently, Arne Beurling in 1945, [6],

formulated the following completeness problem.

Periodic Dilation Completeness Problem (PDCP). To characterize
functions 1 € L*(0,1) for which the dilation system {¢(kx) : k = 1,2,...} is complete in
L?*(0,1), where 1 is identified with its extension to an odd 2-periodic function on R. Such

a function 1 is said to be a PDCP function.

Partial results have been achieved, but the problem is still open. See [14],
9], [22] and [8] for references. In particular, Noor showed that the cyclic vectors of the

semigroup W are properly embedded into PDCP functions.
Theorem 1.2.13. There exists an injective linear map V : H*(D) — L*(0,1) such that if f
is a cyclic vector for W in H*(D), then V f is a PDCP function.

The embedding of Theorem 1.2.13 is given by V' = UP(I — 5), where P is the
orthogonal projection of H*(D) onto H and U : H3 — L*(0,1) is the unitary operator
defined by

U: 2" — +/2sin(nnz),

with e, := v/2sin(n7x), n = 1, an orthonormal basis of L*(0,1).

1.2.10 Shift operators

Let #H be a Hilbert space and £(#) be the set of bounded linear operators on
H. An operator S in L£(H) is a shift operator if S is an isometry and S*" — 0 strongly,
that is, [|S*™ f|| — 0 for all f in H.

There is an alternative definition for the shift operators (see [19]).
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oo}

Theorem 1.2.14. An isometry S € L(H) is a shift operator if and only if ﬂ SIH = {0}.

j=0

We next introduce a decomposition of a Hilbert space in terms of a shift

operators.

Theorem 1.2.15. (See [19, Chapter 1]) Let S € L(H) be a shift operator. A subspace M of
H reduces S if and only if

M = i P 57 My,
j=0

0
where My is a subspace of KerS*. Each f € M has a unique representation f = Z Sjk;j,
5=0
where kj € My, j = 0.
Definition 1.2.16. Two shift semigroups S = (Sk)i=1 and V = (Vi )r=1 defined on Hilbert
spaces H and IKC, respectively, are said to be unitarily equivalent if there exists an unitary
operator R : H — K such that R™'V,R = S, for each k > 1.

We define the multiplicity of a shift operator S € L(H) to be the dimension of
the Ker S™.

Theorem 1.2.17. (See [19, Chapter 1]) Two shift operators are unitarily equivalent if and
only if they have the same multiplicity.

In chapter 2 we shall see that the semigroup (W;/ \/E)k>1 defines a semigroup

of shift operators.
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2 A semigroup related to the Riemann hy-

pothesis

This chapter is concerned with the study of the semigroup W. In the first part
we shall see that the subspace spanned by {h, — h,, : n,m > 2} is not dense in H*(D),
and, in addition, the dimension of this subspace is closely related to the RH. The second
part is focused on the invariant subspaces; in particular, a new reformulation of the RH

involving the invariance of Nt under Wy, for any k > 2, is presented.

From now on we shall denote H? := H*(DD).

2.1 Explicit form of W

The main objective of this section is to provide the explicit form of each element
of the semigroup W* = (W.),~1. We also prove that each operator W,,, n = 1, defines an

1sometry.
By the definition of W,,, it is not difficult to see that
Wo,=I+S+--+S5"YHT,, Vn=1,
where T, f(z) = f(z") and Sf(z) = zf(z). Taking adjoint, we obtain
Wi =T+ TS + -+ Tr5*n 1, (2.1.1)
where S* is given by (S*f)(z) = f(z);f(()) (see [19, Page 1]). So if we find the explicit

form of T)7, we are done. To do that, we use the following result.

Theorem 2.1.1. (See [7, Section 2]) Let ¢ be an analytic function on D such that (D) < D.

Then the adjoint of a composition operator C, on H? is given by

(CNE) = o L ' e / ;egefe)zde.

Since T,, is a composition operator with symbol ¢(z) = 2", Theorem 2.1.1 can
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be applied to 7). Indeed,
1 27 f(eie)
T - |
e
1 27 eni@f(em'ﬁ)

2 Jo  emf —z

do

_ 1T
S 2mi )y (-2 e
_ 1 f ¢ Q)
2mi Jp (€ = /)€ = {zwn) - (C = Fzwp ™)
where {/z is the principal n-th root of z and w, = ™/"
obtain
v W2 ()
) = =) (2~ o)
. (/2w (/)
(zm = VD (on = 3/72) - (Yaiom — o)
RN € ™ e (C
(Vzwi =t = ¥/z) - (it = 2w =?)
_IGA
(1—wy)...(1—wr
wi” f (§/2wn)
* (wWn — D(wn —w?) ... (wp, — w1
I Y
T e D e )
e
(1—w,)...(1—wr 1)
f(&/2wn)
(1—wH{1—wp)...(1 —wn2)
PR (0 s N
(1—wa ™) (1= wy)
Therefore

fQ/2) + f(Rzwn) + - + f({z037)

(T, )(2) =

(1—wy)...(1—wnh
TR + f(Rewn) + -+ f(zwp )

n

where the last equality comes from

=1l=(zZ-1)(z—w,)...

= ltzt+- 42" = (2 —w). . (z—wTh.

. By the Residue Theorem, we
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In order to use relation (2.1.1), note that, by using the definition of S*, we can
verify

(5 )y = JEO=FO = fWe = o= fln =1z

A Zn
@) =X fG)Y
— -
Then, for n > 2,
Weh)(z) = 71L ( ) fwl/z) + Y (S* Wl /) + - + 2(5*(n1)f)(w£%)>
j=0 j=0 =0
:i<_ﬂ%v@+_f@ﬂﬁiﬂ®
j=0 =0 WnA/Z

+W+Sfm%%”_j€ﬂM%Vd>. (2.1.2)

=0 (wh {/z)nt

To simplify this expression, note that

n—1

_ n 0/ l CL)j(l—n+1)
w@n%ﬂﬂm¢);%n

- o DO Dt~

N
i
o

where the last equality comes from the identity (see [1, Theorem 8.1])

iy n if nlm
Zwﬁz{ (2.1.3)

0 otherwise.

Then, going back to (2.1.2):

wh

" NS 14 f(whi/z) 1 fwhi/e)
(an)(z):Tl(;)f(wn\/g)—i_ {L/E;)—i_—i_ (\n/g)n—ljgo w%(nfl) )

We state now some properties involving these semigroups.

Theorem 2.1.2. The following statements hold:
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1. W*T, =1,
2. WrSHT, =1, fork=0,1,...,n—1,
3. W*S"T, = S,

4. WXW, =nl,

Proof. 1. Notice that

* LS @ LN (L)@ v?)
1 [=) 1 el f(z) 1 n—1 f(Z)
o <JO fer V= 7=0 Wi, L (/z)n 1 ]Zlo wﬁ(n—ﬂ)
= f(2),

Where the last equality comes by using the identity (2.1.3). Hence W*T,, = I.

2. Let us take 0 < k <n—1. Then

(WESHT, £)(2) = 711 (n_ (ST ) (wl Z) + -+ ’f‘ (S’“Tnf)j(wﬁ;c/g)

(\n/z)n—l four] 7,]1(77, 1)

SRS

S|

vl
+- -
(\Tb/g)nil =0 w%n—k—l))

where the last equality comes by using identity (2.1.3). Hence W*S*T,, = I.
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3. Notice that

(W*S™T, f)(z) = 711 ._ (S"Tuf)(wpd/z) + - + ( {L/;)n_l Z_] (SnTj&(ﬁ %))
(D@ e e 3 @nff(z)>
= :L Y zf(z) + nlz 2 Z];(JZ) Tt (\n/gl)n—1 ) :]{ngz)>
= zf(2),

where the last equality comes by using identity (2.1.3). Hence W S"T,, = S.
4. Notice that
WiW, =W I +S+---+ ST,

= W*T, + W*ST, + --- + W*S"™'T,
=I+I+---+I=nl.

Hence W W,, = nl.
O

Property 4) of Theorem 2.1.2 says that the operator V,, := W, /v/n, for each

n = 1, defines an isometry.

2.2 Properties of the semigroup W

In section 2.1 we described the explicit form of each W,'; due to the complexity
of that expression, it sometimes will be useful to work with the coefficient form. We start

this section by finding this expression.

As introduced in Section 1.2.7, each W, is defined by

Wof(z) = (1424 -+ 2" f(").

0
Let f(z) = 2 f(k)z" be the expansion of an arbitrary function in H2. Then
k=0

Wof(z) =1 +z+-- 42" Z F(k)2"*
k=0

0
= Z f(k.)(znk + an-i—l 44 an-i—n—l)'
k=0
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ee}

Now, for any other g € H? of the form g(z) = Z G(k)2", we have
k=0

[ee]
Wof. g2 = > f()(G(nk) + §(nk + 1) + -+ + g(nk +n — 1)) = (£, W, g)a.
k=0
Hence we can identify the adjoint operators as follows:
a0
Wrg(z) = ). Bu(k)z", (2.2.1)
k=0

where B, (k) = §(nk) + g(nk + 1) + -+« + g(nk +n —1).

Theorem 2.2.1. The semigroup WV is such that
0 0
(| KerW; = [ KerW; =1 - 2),
n=2 n=1

where P := {pn},>, is the set of all primes.

Proof. Suppose f € KerW for all n > 2. Computing the first term of the power series
(2.2.1), we have

A

Bn(0) = f(0)+ f() + -+ f(n—1)=0, ¥n=2

This implies that f(n) = By 1(0) — B,(0) = 0, for all n > 2, and hence

A

f(2) = J0) + f(1)z = fO)(1 ~ 2).

This implies that

eel
KerWr < {1 — 2).

n=2
The other containment is straightforward. Now, to verify
0 o6}
ﬂ KerW) = ﬂ KerW},
k=1 k=2

we use the multiplicative property of {W* : n > 2}. Indeed, by the fundamental theorem
of arithmetic, each natural number can be represented as a product of prime power:

n = pips?...p*. Then

* *71 *79Q L
Wi = WETWere W,

We generalize this result as follows:
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Theorem 2.2.2. The semigroup VW is such that

a0
ﬂ KerW;:span{l—z,l—z2,...,1—zk}.

n=k+1

Proof. Follows as Theorem 2.2.1. n

Let {M,}..; be a family of subsets of a Hilbert space H; we denote \//\/lZ as
1€l
the closed linear span of U M.

iel

Corollary 2.2.3. The semigroup YV is such that

Q0
\/ ImWn:{1—2,1—22,...,1—zk}L.

n=k+1

Proof. Since

0 e 6}
() KeeWy = () ImW;

n=k+1 n=k+1
= ( U ImWn) = < \ ImWn> :
n=k+1 n=k+1
the corollary follows as an immediate consequence of Theorem 2.2.2. O

The following result provides us a tool to know when an element in H? is not a

cyclic vector for W.

Theorem 2.2.4. If f 1 1 — z, then [ is not cyclic vector for V.

0
Proof. By Corollary 2.2.3, \/ImWn ={1- z}L. Then, for every f € H?:

n=2

a0
span {W,, f :n > 2} c \/ImWn —{1—2z}".
n=2

In particular, if f 1 1 — 2z, we have

span {W, f:n =1} c {1 —z}" ¢ H>

Another consequence is the following. For every k > 2, set
N = WiN = span {h,r — hy, : n > 2}.

Since
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it is easy to see that

0

Ny, = span {h,, — by, : n,m > 2}.
=2

k

Next theorem shows that this is a proper subspace of H?. This is an unexpected result
since RH holds if and only if the subspace N = span {h,, : n > 2} is dense in H?.

0
Theorem 2.2.5. \/./\/k is a closed proper subspace of H?.
k=2

e} 0
Proof. This is an immediate consequence of \/Nk being a subspace of \/ ImWy. O]
k=2 k=2

These subspaces are also related to RH as follows.

L
e e}
Theorem 2.2.6. Let n > 1. Then the RH is true if and only if dim( \/ Nk> =n.

k=n+1
Proof. Suppose RH is true. Since N = H? and W}/ Vk is an isometry, we obtain
N =WN© = (W N)E = ImW;- = KerW; .
Then

Q0 L 0 Q0
<\/Nk> = ﬂ Ni = ﬂ KerWWy.

k=n+1 k=n-+1 k=n+1

By Theorem 2.2.2,

" L
(\/ ./\/'k> =span{l —z,1—2%...,1—2"}.

k=n+1

i
e}
For the converse, suppose dim( \/ Nk> = n. By Theorem 2.2.2,

k=n+1

span{l — z,...,1 — 2"} = ( {O/ Ika> c ( <O/ ./\fk> .

k=n+1 k=n+1

By our assumption

" 1
N+ ( \/ Nk> =span{l —z,...,1—2"}.

k=n+1

Since N*- N Ds, = {0}, we conclude that N = {0}. Hence RH is true. O

Corollary 2.2.7. RH is true if and only if the orthogonal complement of {h, — hy, : n,m = 2}

1s one dimensional.

Proof. Just take n = 1 in Theorem 2.2.6. n
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2.3 Invariant subspaces

The main objective of this section is to obtain a new reformulation for the RH
in terms of the invariance of the closure of N" under W, for any n > 2. Other properties

of this semigroup are also presented.

Lemma 2.3.1. The semigroup W is such that

fjl (SZImek> = ﬁ <SO/nIka> = {0}.

Proof. By Corollary 2.2.3,

0
\/Ikaz{1—2,1—z2,...,1—z”_1}L.

0 o0}
If fe ﬂ <\/ Ika>, then f 1 1 — 2", for every n > 1. This implies that

Thus f = 0. Therefore

This completes the proof. O

Corollary 2.3.2. For any k > ﬂ = {0}.

Proof. Just notice that W' = Wix. So

O Wi(H?) < () (\/ Ika> = {0}

n=2

]

A consequence of Corollary 2.3.2 is that Vj := Wy/ vk is not only an isometry,
but a shift operator too, for every k = 2 (see Theorem 1.2.14). Even though (Vj)>1 is a
shift semigroup satisfying Theorem 2.2.1 and Lemma 2.3.1, the operators V,, and V* do

not always commute, for different primes p and ¢. In particular,
WoWil =1+ 2z #2=W;W,l.

SoV = (Vi)r=1 and T = (T})r=1 are not unitarily equivalent semigroups (see Theorem
1.2.5).
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Theorem 2.3.3. KerW, is infinite-dimensional for all n = 2.

Proof. 1t is not difficult to verify that KerW contains the functions
PN Zjn + Zjn-i—l 4o Zjn+n—2 o (TL . 1)Zjn+n—1'

Since all of the above functions are mutually orthogonal, KerWW* is infinite-dimensional. [

By Theorem 1.2.17, we derive that the shift operators V,, = W,,/y/n, for n > 2,

are unitarily equivalent to each other.

Lemma 2.3.4. Ker W is a subset of the local Dirichlet space Dy, for all n = 2.

Proof. Let f e KerW;r. Our goal is to prove that D;(f) < oo using (1.2.2). By (2.2.1) we

have
B,(k) = f(nk) + f(nk+1) + -+ f(nk+n—1) =0

for all & = 0. Using this relation and the fact that liII(l] 17(5)| = 0 (since f e H?), we obtain
j*}
that

if(j) =0,

which is the first condition in (1.2.2). For the second condition, let k; be the unique positive
integer such that nk; <i+ 1 < nk; + n — 1 for each ¢ = 0. Then by (1.2.2) we have

00 . o |[nk;+n—1 N 2 [e'e) nk;+n—1 . 2
Di(f)= > O] =2, 10) <2< > If(j)|>
i=0 |j=i+1 i=0| j=i+1 i=0 \ j=nk;
o nki+n—1 R oo n{i+1)—1 A
<2} =2 > 1fG)P
i=0 j=nk; 1=0 gj=n1
w A
N
3=0
Therefore f € Dy,. O

The new reformulation of the RH can be stated as follows.

Theorem 2.3.5. Let n = 2. Then the Riemann hypothesis is true if and only if the closure
of N is W-invariant.

Proof. Suppose the RH is true. Then the closure of A is H?, so the assertion follows.
Conversely, suppose the closure of N is invariant under W for a given n > 2. Note that
the closure of A is also invariant under W,,; therefore, the closure of N reduces W, what
is equivalent, A" reduces W,,. Since W, /+/n is a shift operator, it follows by Theorem
1.2.15 that there exists a subspace M, of KerWW* such that
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LRy i P W) M,

V' j=0

In particular, My < N'*, and by Lemma 2.3.4, My < Dj,. Since N*nD;, = {0}, My = {0},
which means that A= = {0} . Hence RH is true. O

NL:ZZ)@

Theorem 2.3.6. W,, has no eigenvectors for any n = 2.

Proof. For n > 2, suppose there exists f # 0 in H? and A € C such that W, f = Af. By
the injectivity of W,,, A # 0. Notice that

Woaf = Nf, ... Waf =Xof, ..

Since n* — w0 as k — oo, follows that
[ee) e}
fel) (\/Ika> = {0},
n=2 \k=n
which is a contradiction. ]

As an important consequence of this Theorem, we derive the following Corollary.

Corollary 2.3.7. W,, does not have non-trivial finite-dimensional invariant subspace, for

any n = 2.
Proof. 1t is an immediate consequence of Theorem 2.3.6. O]

The natural question now is to know if any W, has a non-trivial infinite-

dimensional invariant subspace, for n > 2. Notice that
Ni € ImW,, = (KerW;)".
Then KerW} = Nj-. Thus Nj- is a non-trivial infinite-dimensional invariant subspace for

each W), n = 2 (see Theorem 2.3.3).

2.3.1 Eigenvectors and the spectrum of W’

In this subsection we provide a characterization for all common eigenvectors of

W* and we found out who the spectrum of W, and W} are, for every k > 2.

Theorem 2.3.8. A non-zero function f is a common eigenvector of W* if and only if

satisfy the following properties:

i) f(n) = A1 — M) F0), Vn =1,
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o0
”) Z |>‘n+1 - )\n|2 < %0,

n=1

i0i) Amn = AmAn (A1 =1), myneN,
where N\, is the corresponding eigenvalues for Wp.

Proof. Suppose f is a common eigenvector of W* with eigenvalues {);},-,. This means
that
Wif=Mf, VE=1

Computing the first term of the power series (2.2.1), we have
Bi(0) = f(0) + f(1) + -+ + f(k = 1) = A f (0):
This implies that
F(k) = Biy1(0) = Bi(0) = (\esr — M) f(0), VE = 1.

Hence item ) follows. Item ii) follows by the fact that f is in H* and f # 0. Finally, item
i) follows by the fact that W, = W>W". Conversely, suppose f is a non-zero function
satisfying property 4), 1) and #i4). By item 4) and 4i), f € H*. Without loss of generality,

let us take f(0) = 1; then
k-1
< f(kn —i—j)) 2
=0

+i<2fkn+]>

Wih(z) =

s

I
i MH

J

o]
= N\ + (Mkntke — Akn) 2"
n=1
0
=\ {1 + 37 gt = ) z”}
n=1
= Mef(2), VE=2.

In particular,

is a common eigenvector of W*.

Let o(T) be the spectrum of a given operator T' and B(a,r), B(a,r) the open

and closed ball of radius r center at a in the complex plane, respectively.
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Theorem 2.3.9. o(W}) = o(W},) = B(0,Vk).
Proof. Note first, by using properties of the spectrum, that
a(W) < B0, [W¢]) = B(0,VE).

To prove the other containment, let A € B(0, \/%) We must show that A is an eigenvalue
for W7 . Indeed, note that W} f = A\f is equivalent to

f(k) + f(k+1) + f(2k — 1) = Af(1)

FO) + f(1) + -+ f(k— 1) = Af(0)
+ (
F2K) + f2k+1) + F(3k —1) = Af(2)

So a f satisfying this can be defined like this:

fO) =1, f0) = @) == f 1) =22
N A A AfA—1
f(k)Zf(k+1)="'=f(’f2—1)=k(k_l)
N N A A2 A—1
f(k:Q)zf(k2+1)=---=f(k3—1)=k2<k_1).
We only need to show is that f e H*
O |7 A -1 M1, A A1)
l;f( )| - L (b= 1)+ = D o+ R = ) e

D e (A R
E-1) "k (h—1) " K (k-1

|A—1| Z('”)

where the last summation converges because |\| < vk. Thus B(0,Vk) < o(W}). Since
the spectrum of an operator is closed, we conclude that o(W;*) = B(0,vk). To verify that
o(Wi) = B(0,Vk), we simply use the fact that

— 1+

={X:xeoc(W})}.
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3 Generalization of the Baez-Duarte criterion
in H?

Recently, the mathematician Jongho Yang, [24], generalized the classical Nyman-
Beurling criterion of the RH in L?(0,1) by replacing X(0,1) With xap) forany 0 <a < b < 1.
With this in mind and a contribution of Bagchi, [3], to the Baez-Duarte criterion in L*(0, 1),
we shall generalize the Noor criterion of the RH in H?. The second part is also focused
on generalizing the Béez-Duarte criterion in H?, but this time with an unexplored tool

provided by Noor: cyclic vectors for the semigroup {W,, : n > 1}.

We start this chapter by introducing the Jongho Yang’s generalization of the
Nyman-Beurling criterion. This criterion can be stated, in a slighted modified form, as

follows:

Theorem 3.0.1. (See [2/, Theorem 1.2]) Let fy(x) = {\/x} — M1/x}. Then the Riemann
hypothesis is true if and only if x5 belongs to the closed linear span of {fy :0 <A < 1}
for any 0 < a <b<1in L*0,1].

In [3], Bagchi showed that in addition to the Baéz-Duarte criterion, RH is
equivalent to the density of the linear span of { Jip k= 1} in the closed subspace of

L*(0,1], let us call V, consisting of the functions which are a.e. constant on each sub-

1 1
interval Tl n = 0,1,2.... It is shown that in fact these functions fi(z) =
n n

{1/kx} —1/k{1/x} are in V since

fl/k(l') = fi <711> = {%}, Vx € (71_1’_1771] )

Theorem 3.0.2. (See [3, Theorem 7]) The following statements are equivalents:

i) The Riemann hypothesis,
i) X(o0,1] belongs to the closed linear span of {fl/k k= 1}, and

iii) the linear span of {fl/k k= 1} s dense in V.

Combining these two results, we can generalize the original Baez-Duarte crite-

rion as follows.

Theorem 3.0.3. The Riemann hypothesis is true if and only if X 1y belongs to the closed
linear span of {fl/k k= 1} for any n € N.
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Proof. 1t is clear that x(, 1) € V. Suppose the RH is true; by Theorem 3.0.2 follows that
X(0,1] belongs to the closed linear span of { fip k= 1}. The converse is straightforward
by Theorem 3.0.1. [

Theorem 3.0.4. The Riemann hypothesis is true if and only if X(-L; 1 belongs to the closed
linear span of {fl/k k= 1} for any n € N.

Proof. 1t follows as Theorem 3.0.3. n

Our purpose is to transfer Theorem 3.0.3 and Theorem 3.0.4 to H?, so we need
to choose a suitable unitary operator from V to H2. In subsection 1.2.8, Noor transferred
the Baez-Duarte criterion in I2 to H? through the unitary operator ® := 7' oW : [2 — H?
(see 1.2.3 and 1.2.4). If we consider the canonical isometric isomorphism Y : V — [2 given
by

Tf= (1), f(1/2), f(1/3),...),

then the operator ® oY =T 'oW oY :V — H? defines a unitary operator. The operator
Vo :V — Ais such that

(Vo T)f(2) = if ()

We shall use these operators to generalize the Béez-Duarte criterion in H?.

Theorem 3.0.5. The Riemann hypothesis is true if and only if the polinomial 1+ 2z +---+ 2"
belongs to the closed linear span of {hy, : k = 2} in H* for any n € N.

Proof. In order to prove this, we must show that there exists a constant ¢, such that

e T)X(O’%] =co(l+2+4---+2"), foreach neN. (3.0.1)
In fact, note that
o n
PYoT L= ko z
(¥o )X(o,m] ;z —
and
]- - 1 e n\\/
T(1+z+...+zn):(( Z)( N +Z))
1—2z
(1-— zn-i-l)/ "
_ - 0 = 1 .
1-z (n+1)7—
Therefore

Lzt t 2"
n+1 '
This proves (3.0.1) and the theorem (as a consequence of Theorem 3.0.3). O

(@oY)xp.1g=(T""oWo T)X,1 = —

‘n+1
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For n > 1, define
n—1
pn(z) =nz2" — Z 2~
k=0

In [13, Lemma 7.2.2] it was shown that {p, : n > 1} is an orthogonal basis for H*. In terms

of these polinomials, we have the following generalization for the RH.

Theorem 3.0.6. The Riemann hypothesis is true if and only if the polinomial p,, belongs to
the closed linear span of {hy, : k = 2} in H* for any n e N.

Proof. Notice that
(¥o T)X(L 1) = 21

n+tl'n

and

(1= 2)(n2" = 35 2M)'
1—-=2
((n+1)2" —nz"tt — 1Y
1—=2

n—1 __

(Tpn)(2) =

ZTL

11—z
=n(n+1)2""L

=n(n+1)

Therefore
Pn

((I)OT)X( 1 1] :m

ntl’n

As a consequence of Theorem 3.0.4, the proof is complete. m

Due to Theorem 1.2.10, it is natural to ask whether 1+ z + --- 4+ 2" and p,(z),
for n > 1, are cyclic vectors for WW. By Corollary 2.2.4, it is not difficult to see that each
1+2z4---4+2" for n > 1, is not a cyclic vector. The same holds for each p,, n = 2. It
remains to be known whether p;(z) = 1 — z is a cyclic vector or not. We shall answer this

question in the next subsection.

3.1 Cyclic vectors for the semigroup VW

In this subsection we are concerned on generalizing the Baez-Duarte criterion
in H? by finding a new family of cyclic vectors for the semigroup . As a consequence we

provide a generalization of the original Baez-Duarte criterion in L*(0,1).

Let pma(z) i=2"+---4+2z—X, meNand A e C.

Theorem 3.1.1. Let m e N and A € C such that |\ + 1| > v/m + 1. Then p,,\ is a cyclic
vector for W.



Chapter 3. Generalization of the Bdez-Duarte criterion in H? 41

Proof. Note first that

(Wapma)(2) = Wy (2™ + -+ 2 = A)

n(m+1)—1 2n—1 n—1
j=nm Jj=n J=0
n{m+1)—1 n—1
= Z 2 — Z Az
Jj=n Jj=0

So, let us take f € H? such that f L W,p,,., for each n > 1; this is

n{m+1)—1 ) n—1 A
D1 FG) =D MG), Yn=1 (3.1.1)
j=n =0
Looking at the particular cases n = (m + 1)" in (3.1.1), k = 0, we get:
k=0 2. 1G) = Af(0)
j=1
(m+1)2-1 m
k=1 PO EPOIIG)
j=m+1 =0

(m+1)3-1 m+1)2—
k=2 >, fo)y=x > f0)
j=(m+1)? j=0

and for the general case we use induction to obtain

(m+1)k+i-1

Y fU) =2+ 1),

j=(m+1)k

By the geometric sum formula with common ratio A + 1 we have

(m+1)FH—1 k
FG) = 2 AN+ 1D)FF(0) + f(0)
- (11__(?;?1;1) Af(0) + £(0)
= (A + )" =1) f(0) + f(0)

Thus



Chapter 3. Generalization of the Bdez-Duarte criterion in H? 42

Using the Cauchy-Schwarz inequality, we have

R 1 k+1
for< ().

and

k+1
1
(|)7\7:_—i—1|> — 0 as k—o o= vm+1<|\+1]|

So, in these conditions, f (0) = 0. By using the same arguments, for each r > 1, taking
n=(r+1)(m+1)*in (3.1.1), it can be shown that f(r) = 0; thus, f = 0 . Therefore,
Pma(z) = 2™ + -+ + 2z — X is a cyclic vector for A + 1| > vm + 1. O

The new generalization of the Béez-Duarte criterion in H? can be stated as

follows.

Theorem 3.1.2. Let m € N and X € C such that |\ +1| > v/m + 1. The Riemann hypothesis
is true if and only if p,, » belongs to the closed linear span of {hy : k = 2} in H?.

Proof. Immediate consequence of Theorem 3.1.1 and Theorem 1.2.10. n

Transfering Theorem 3.1.2 to L*(0, 1], we obtain a new generalization of the

original Baez-Duarte criterion. Let f,, \ :== (A + 1)X(# 1] + (A — m)X(O )
m+1’ ‘m+1

Theorem 3.1.3. Let m € N and A € C such that |\ +1| > v/m + 1. The Riemann hypothesis
is true if and only if fm belongs to the closed linear span of {fl/k k= 1} in L*(0,1].

Proof. Notice that

(1=2)(z"+---+2=N))

(Toma)(2) = o
(=2 =X+ A2)
B 1—2
(TN = (m+1)m
B 1—-=z

=((14+ ) — i

0
=L+ 4+ L+ D (A —m)2"
Then

(T 0@ Hppn = (X" o0 o T)pr = frnn.

As a consequence of Theorem 3.1.2, the proof is complete. n
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To finish this section, we present a family of PDCP functions. For every m € N
and A€ C, let gpp = (1 + Nep — epe1, where eg(z) = v/2sin(kra).

Theorem 3.1.4. Let m € N and X\ € C such that |\ + 1| > v/m + 1. Then g, is a PDCP

function.
Proof. In order to use the embedding of Theorem 1.2.13 and Theorem 3.1.1, we see that
P(I — S)pmr =Pz — 2™ =X+ X2) = (1 + Nz — 2"t

Applying the unitary operator U : z" — e,,, the desired result follows. O]
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4 An approach to the Riemann hypothe-

sis through the Baez-Duarte criterion in

H?(Cq)

In section 1.2.5 it was introduced the Bez-Duarte criterion in H*(Cy ;). This
criterion says that the Riemann hypothesis is true if and only if the function E belongs to
the closed linear span of {Gy : k = 2} (see Theorem 1.2.6). In this chapter we prove that
this convergence is in fact true but in a Hardy space with a smaller half-plane. We also

prove this convergence explicitly.

In order to reach the goal, we shall make use of Lemma 1.2.11. First note that

1 l+z+--- 421
hi(z) = 10g( k: )

1—=2
= liz (log(1 — 2*) —log(1 — 2) — log k) ,
SO
(I — S)hie(2) = log(1 — 2F) —log(1 — 2) — log k.
Applying the orthogonal projection P : H* — Hj, we have

gu(2) = P(I = S)hy(2) = log(1 — %) — log(1 - 2)

= % Z % (4.0.1)

—_

Applying the unitary operator R : H3 — H?* (see Section 1.2.4), we have

—S —S

(Rgi)(s) =Z”n -y
Z} —(s+1)
=(1—-k)((s+1), s€Cyp.

To take these functions to the Hardy space of a half-plane, we consider the following

bounded linear operator (see [17, Page 1622])

M H? — H*(Cyp)
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defined by
(M[)(s) = f(s)/s, s€Cyp.
By making a translation, we can define the linear operator
Myt H? — H*(Cyp)
given by

(Mif)(s) = f(s = 1)/s, s€Cyp.
Let us see that this operator is well defined and bounded. In fact, for f € H? and o > 3/2,

1 (™ |f(oc —1+it)]
21 ) o+ it

1 (® |f(c —1+it)]
21 ) o —1+it]P

9] -1\ |2
1J fa+it)l

1 o0
J My f (o +it)]dt =
2 )

<

< sup —
e>12 21 ) o |z 4 it]

= HMf”iI?((Cl/z)‘

Taking supremum over all o > 3/2, we derive that M, f is in HQ((C:),/Q). And, by the

boundedness of M, we have
M Sy < IM Lz g < MUl VF € H2

Therefore, M is also a bounded linear operator. The operator M satisfies the following

properties:
(Mi1)(s) =
and
(M1ng)($) _ (ng)(s - 1)
=(1— kl—S)CS)
= —k(k™° — k_l)cis)
= —]{JGk(S)

With all this in mind, we state the following theorem.

a0
Theorem 4.0.1. The series Z 1(k)Gy, converges to E in H*(Cy).
k=2
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Proof. By Lemma 1.2.11 we have that
ZMT (I —S)hy — 1—2z in H%

By the continuity of P and R, we have

p(k)
2

: 2
gy —> —z in H

=

b
Il
V)

and
ok
ZM(;{;)ng_’—l in H2.

Applying the linear operator M;, we have

0 ¢]
D k)G — E in H*(Cyp).
k=2
O
Corollary 4.0.2. E belongs to the closed linear span of {Gy : k =2} in H*(Cs).
Proof. Follows as a consequence of Theorem 4.0.1. O]

We turn next to improve Theorem 4.0.1. The objective will be to show that
this convergence still holds in a Hardy space with a larger half-plane. Our motivation to
do this will be Lemma 1.2.11. So we start by generalizing functions (4.0.1) in the following
way. For 7 > 1/2 and k > 1, define

© on D _nk
HOEL D W) Yo
n=1 n=1 n
It is clear that g; € HZ. Notice that

(e8] nfs 0 nfs

(Rg)(s) =k Y — =k Y —

n=1 n n=1 n

e 0]

= kT 1 n7(8+7') —(s+71)
S

= (kffl — k) (s + 1), s€Cyp.
Let us define now the linear operator

M. H? — H*(Cyjoy,)
given by

M, f— f(s—T)/s.
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Following the same ideas as in the case of My, it is possible to prove that the operator

M. is well defined and bounded. Such operator M. satisfies the following properties:

(M.1)(s) = -
and
(Mo Rgp) () = =T
SR
R
= KTG(s). S

The following lemma is inspired from Lemma 1.2.11. The idea of the proof is
still maintained.

pu(k)
kT

e}
Lemma 4.0.3. The series Z gr coverges to —z in Hj for each T > 1/2.
k=2

Proof. Since g; = 0, we have

=2 k=1
) [ G &
Dk Sl Nabs
= j=1 j=1
k) 0 P o oplk) o A
- Z e Z G 2 kT Z i
k=1 j=1 k=1 j=1
and
k) o aAGHESES
N N T Py
= j=1 Hg k=1 j=1 Hg
as n — o0, because (see [1, Theorem 4.16])
o
k
Z (k) —0
ok
So, we only need to prove that
‘—Z";)Ziﬂ —0 (4.0.2)
k=1 =1 2
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as n — 0. Indeed,

5 op(k) o 2R $ o 20k
I I WED)

k=1 Jj=

—

u(d)> N It
dlj '

7=1 ] j=n+1 J dl|j,
1<d<n
"1 e
ZZT[-]JF P IDINICR (4.0.3)
=1J L jong1d dlj,

1<d<n

The last equality comes from the identity (see [1, Theorem 2.1])

Sui = [3]

Going back to (4.0.3), we have

— > ) |
a5,
1<d<n

where

1 .
o) = D, | = 2 wd) |7
j=n+1 J dlj,

1<d<n

If we prove that ||¢nHHg —> 0, as n — oo, we shall be done

48
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If o(n) denotes the number of divisor of n, it follows that
2

oul2e = ) | ) uld)

2T
j:n+1] d|j,
1<d<n

)

2
()
jQT

N

1
j T
g

0
Jj=n+1
0
j=n+1

The function o satisfies the relation o(n) = o(n)", for every € > 0 (see [1, page 296]). In
particular, o(n) < n® for some € > 0 such that 7 > 1/2 + €. Therefore

oo) .9¢ 0
2 J 1
[6ulliz £ D) S5 < D0

j=n+17 j=nt+1/
Since 27 — 2¢ > 1, we have

Hgf)nHHg — 0 as n—> oo.

This proves (4.0.2) and the lemma. O

The refinement of Theorem 4.0.1 can be stated as follows.

a0
Theorem 4.0.4. The series Z 1(k)Gy, converges to E in H*(Cyjoy,) for every T > 1/2.
k=2

Proof. By Lemma 4.0.3, we have

(ke
Z 'u]iT)g,Z — —z in H{.
k=2

Applying the linear operator M, o R, we obtain that

— Z “li’f) k"Gy — —E in H*(Cij4r).

k=2

This means that

M(k)(;k'__ﬁ E in }{2((h/2+7).

k=2

]

Corollary 4.0.5. E belongs to the closed linear span of {Gy : k = 2} in H*(Cy,.) for every
e>0.

! The notation f(n) = o(g(n)) as n — oo means that lim f) = 0.
n—x g(n)
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Proof. Follows as a consequence of Theorem 4.0.4. O

The most interesting fact of Theorem 4.0.4 is that we can know explicitly the
coefficients; so the question is: this convergence is still maintained in the Hardy space
H?(Cy)? If s0, the RH would be true.
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