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Resumo
Nesta Tese, investigamos o conceito de consistência por meio de suas formalizações semân-
ticas e sintáticas. Em especial, mostramos que tais formalizações não capturam inteira-
mente o conceito pré-teórico, intuitivo, de consistência.

Nossa análise do conceito dá-se mediante o argumento de Kreisel, conhecido como
argumento de compressão. Ao examinar o argumento original, bem como suas variantes,
concluímos que as formalizações semânticas e sintáticas da consistência capturam apenas
parcialmente o conceito informal de consistência, embora essas formalizações sejam expli-
cações do conceito informal. Além disso, mostramos que o próprio conceito informal de
consistência é teoricamente sofisticado para ser considerado como pré-teórico, ou intuitivo.

Uma vez que as formalizações semânticas e sintáticas sejam explicações de suas con-
trapartes informais, investigamos as propriedades gerais do conceito semântico bem como
as do conceito sintático de consistência. Para tal, utilizamos extensivamente as lógicas
modais, visto que elas são ferramentas tradicionalmente utilizadas na análise de conceitos
formais, tais como o conceito de provabilidade aritmética. Nossa análise do conceito de
consistência abrange teorias formais que não possuem necessariamente o mesmo poder ex-
pressivo de teorias aritméticas. Então, mostramos que as propriedades gerais dos conceitos
formais de consistência são capturadas por lógicas modais não-normais consideravelmente
fracas.
Palavras-chave: Kreisel, Georg, 1923-2015 - Crítica e interpretação, Consequência lóg-
ica, Modalidade (Lógica), Lógica simbólica e matemática.



Abstract
In this Thesis, we investigate the concept of consistency through its semantic and

syntactic formalizations. Particularly, we show that such formalizations do not totally
capture the pre-theoretical, intuitive concept of consistency.

Our analysis of this concept takes place through Kreisel’s squeezing argument. In
analyzing Kreisel’s original argument, and its variants, we show that the semantic and
syntactic formalizations of consistency partially capture the informal concept of consis-
tency, even if they are explications of the informal concept. Moreover, we show that the
informal concept of consistency is theorized enough to be called pre-theoretical or intuitive
consistency.

Given that the semantic and syntactic formalizations of consistency are explications
of the informal concept, we investigate the general properties of such formalizations. For
such purposes, we extensively use modal logics since they are traditionally used tools in
the analysis of formal concepts, such as the concept of provability in arithmetical theo-
ries. Our analysis of the concept of consistency comprehends formal theories which do
not necessarily have the expressive power of arithmetical theories. Then, we show that
considerably weak non-normal modal logics captures the general properties of the formal
counterparts of consistency.
Keywords: Kreisel, Georg, 1923-2015 - Criticism and interpretation, Logical conse-
quence, Modality (Logic), Symbolic and mathematical logic.
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Chapter 1

Introduction: modal logic and formal
concepts

This Thesis defends that the informal counterpart of the formal concept of consistency,
present in mathematical and logical discussions, is not a primitive notion. The concept
of consistency has different characterizations in literature. In some characterizations,
consistency is understood as non-contradictoriness. The leibnizian account of modality, a
proposition is possible if it is not self-contradictory (LOOK, 2013). In this sense, possible
propositions are consistent. On the other hand, it is not necessary that consistency
involves, at least directly, non-contradictoriness. For example, in Metaphysics, consistency
means persistence over time and change. That is, a property P is consistent if it persists
over time and change. In this sense, consistency has a narrow connection with the concept
of essence (Fine (1994)) because P may be a property of an object O without which O
would not exist. Instead, consistency is significantly theorized already based in its informal
characterization. Here we will focus on the logical characterization of consistency, where
it was largely investigated. The concept of consistency had a central role in development
of modern logic due to the “crisis” of paradoxes in foundations of Mathematics in the
beggining of 20th century. For example, the Russell’s paradox posed a real challenge to
Set Theory as a foundation of Mathematics until Zermelo’s work in 1908.1 According to
Kneale & Kneale (1962) and Zach (2016), already in 1899, Hilbert had drawn attention
to the need for the axiomatization of logic and mathematics as a whole in order to avoid
paradoxes. According to Hilbert, from the axiomatization of a theory T it is possible to
know if T is consistent or not by means of a finitary proof. Disregarding the question of
whether or not Hilbert’s program succeeded, his program had the importance of putting
consistency as a central issue in Mathematics.

Given a theory T one can define consistency in two ways:

Definition 1.0.1 (Proof theory). T is consistent iff T does not prove a contradiction ϕ
1See Kneale & Kneale (1962) and Enderton (1977) for more historical details.
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and ¬ϕ.

Definition 1.0.2 (Model theory). T is consistent iff there is a model which makes true
the formulas of T .

Gödel’s completeness theorem for First-Order Logic (FOL) establishes that the theo-
rems of FOL are precisely the valid formulas. Thus, this theorem extensionally collapses
the set of valid formulas (model-theoretical) with the set of theorems (proof-theoretical).
Thus, ultimately, this theorem also collapses these two formal definitions of consistency.

Although consistency can be formally characterized by two different ways, such formal
approaches are different in nature. The proof-theoretical counterpart of a theory T is
finite by its nature. The syntactical proofs within T are finite, because proofs are defined
as a finite sequences of formulas. But this is not necessarily the case with the model-
theoretical counterpart of T , simply because models can be infinite. Moreover, there are
theories such that their proof systems are not capable to capture the semantical validities
of T . This conceptual difference between the semantical and the syntactical aspects of
consistency inpired proposals of investigating consistency at the informal level, such as
Kreisel (1967)’s squeezing argument, which aims to justify the use of informal concepts
in Mathematics. One of the concepts which Kreisel concentrates is the concept of logical
validity. Then, he considers the informal validity, which is stronger than the standard
model-theoretical notion of validity because it comprehends structures whose domains
are classes. In this sense, informal validity is reducible neither to syntactical validity nor
to semantical validity. By establishing principles which connects informal validity to its
formal counterparts, Kreisel shows that the completeness theorem collapses these three
aspects of validity. In this sense, as Andrade-Lotero & Novaes (2012) observe, informal
validity can be taken as a bridge that connects syntactical validity and semantical validity.
This connection is attested by the completeness theorem, which proves the extensional
equivalence of the set of valid formulas T and the set of theorems of T . But, as we will
see, Kreisel’s definition of informal validity comprises only validity in First-Order Logic
in a way this concept of informal validity does not work for other logics, like Infinitary
Logic and Second-Order Logic. This limitation is pointed out by Kennedy & Väänänen
(2017), which propose to give broader definitions of informal validity capable to give
squeezing arguments for other logics. They conclude that each logic has its own definition
of informal validity, which corresponds to the formal validity definitions of the particular
system.

As we can see, the concept of informal validity seems to have a local character, so
being unable to cover the plethora of the existing formal logical systems. If there is such
concept, may be it is not interestingly informative. On the other hand, there are broader
notions of validity than logical validity, such as Myhill (1960)’s absolute provability of
mathematical sentences. But, as Myhill himself argues, such notion covers only sentences
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from set-theory and analysis, and it heavily relies on set-theoretical vocabulary. So, the
existence of a notion of validity, and so consistency, which covers all domains of knowledge
does not seem to make sense.

In this Thesis, we will treat consistency as a derived notion from the model-theoretical
and proof-theoretical apparatus and we will investigate the minimal properties that such
concept. This means that we will investigate the properties of consistency by means of
a semantic predicate Con as the dual of validity predicate V al and a syntactic predicate
Con′ as the dual of a provability predicate Prov. So our discussion will be also a discussion
about the validity and provability predicates. Second, we will show that these approaches
can be formalized in modal logics. That is, the predicate of validity will be related
to the modality � and the predicate of consistency will be related to the modality ♦.
So, we investigate what are the minimal properties that these modalities of consistency
should satisfy in order to be called a modality of consistency. As we will see, in the
systematization of consistency in complete logical theories, � will stand for both V al and
Prov.

Tarski (1956)’s undefinability result about truth in mathematical languages and Gödel’s
incompleteness theorems inaugurated a trend about the incorporation of semantic and
syntactic concepts in the object language of formal theories. Gödel’s (1931,1986b) for-
malization of the provability predicate in his proof of his incompleteness theorems in-
stigated several investigations of provability in arithmetical theories. In the case of the
validity predicate, one of the first investigations of this predicate can be traced to Myhill
(1960)’s investigation of the predicate of absolute provability, i.e, provability which is
not particular to a single formal theory. In general terms, the main investigations about
the predicate of validity aim to give consistent formalizations of its general properties in
a sufficient strong and theory of syntax, where it is possible to talk about expression,
formulas and sentences. Generally such theory is also Peano Arithmetic (PA). By Mon-
tague (1963)’s theorem, such formalization is not possible if we maintain that validity is
truth-preserving and that arithmetical theorems are valid in this wide sense. Then, the
proposals that we find nowadays adopt theories weaker than PA in the formalization of
truth or they adopt validity predicates. Both lines of research aim to establish what are
the most general principles about validity as a semantic concept.

The sistematization of formal concepts by means of modal logic showed itself to be
fruitful from Gödel (1986a)’s work where he showed that the modal logic S4 satisfies
Brouwer-Heyting-Kolmogorov interpretation for Intuitionistic Logic. But the main appli-
cation of modal logic to formal concepts was the provability logics. The main investigation
on logics of provability was due to Solovay (1976), when he uses the logic KGL to inter-
pret the provability predicate of Peano Arithmetic. Solovay’s work started a trend about
the use of modal logics to interpret provability in formal theories.2 One example is the

2Urbaniak & Pawlowski (2018) present many applications of modal logics to formal theories.
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logic of proofs presented by Artëmov & Straßen (1992), where they interpret the explicit
provability predicates in a modal language. Thus, �xϕ means that “x is a proof of ϕ”.
In addition to the application of modal logics to formal theories of arithmetic, there are
also applications of modal logic to describe the Tarskian consequence operator, such as
Naumov (2006)’s and Mortari e Feitosa (2011)’s approaches, which can be seen as logics
of provability of classical propositional logic.

This Thesis is organized as follows. Chapter 2 presents the notation and some sys-
tems used in the course of the discussion. Thus, Classical Propositional Logic, First-Order
Logic, First-Order Peano Arithmetic and Modal Logics will be presented. The presenta-
tion of First-Order Peano Arithmetic will be relevant to delineate some important results
about Metamathematics. The presentation of Modal Logics is justified by the fact that
we will use these logics to interpret the provability predicate as the modality of necessity.

Chapter 3 discusses the plausibility of taking the notion of consistency as a primitive
notion, which does not depend on abstract entities. Thus, we present Kreisel (1967)’s
squeezing argument as a proposal for considering the notion of informal validity. We
will see that his characterization does not yield a primitive notion since it depends on
mathematical abstract entities. Then we will present two proposals which defend that
consistency is a primitive notion. First, we present Field (1991)’s version of the squeezing
argument, which attempts to pose consistency as a primitive notion which is, in a certain
sense, captured by a modality. As we will see, his argument faces some objections in
such a way that fails to establish the primitiveness of consistency. Second, we present
the paraconsistent approach to consistency. Our aim is to show that this approach does
not succeed to justify that the connective of consistency ◦, present in Logics of Formal
Inconsistency, has some counterintuitive aspects if it is interpreted as consistency in a
more mathematical sense. We finish the chapter by discussing the difficulty of taking such
notion as a primitive one. And, then, we suggest to treat consistency in two separated
ways: consistency as a derived notion from the perspective of proof-theory as well as a
derived notion from the perspective of model-theory.

Chapters 4 and 5 propose to consider consistency as a derived notion. Chapter 4 con-
centrates on the interpretation of the modality � as standing for the syntactic provability
predicate Prov. In order to do so, we first present the provability predicate ProvPA formal-
izable in Peano Arithmetic as well as the fundamental results concerning this predicate
such as Gödel’s Incompleteness Theorems. Then we present the modal logic KGL, the
modal logic that completely captures the predicate ProvPA. We will present the modal
operator � which captures the PA predicate of true provability. In the case of � we will
present the minimal logic of the modality K�, which captures the general properties of
such modality. We will discuss an arithmetical completeness theorem for KD presented
by Kurahashi (2018) with respect to Rosser provability predicate. Last we will discuss if
it is possible to obtain a modality which captures the consistent provability predicate of
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PA.
Chapter 5 concentrates on the interpretation of � as the semantic validity predicate

V al. Thus, we present Skyrms (1978)’s hierarchical interpretation of modal logics, where
he defends that the logic S5 is the modal logic which formalizes the predicate V al in a
hierarchical setting. But as we will see, S5 is not adequate to interpret validity in a non-
hierarchical setting. Thus we present alternative proposals of V al, such as the Ketland
(2012)’s proposal. As we will see, the non-normal modal logic S0.5 is sound but not
complete with respect to Ketland’s proposal. Last, we will present a validity predicate for
FOL and we will prove that it is captured by the first-order modal logic QS0.5. In what
concerns the latter result, we will discuss the status of Barcan Formula.

Chapter 6 discusses the systematization of consistency in non-classical logic. Given
the plethora of non-classical logics, it is quite reasonable to wonder about the properties
of this metatheoretical notion in this logics. Here we will concentrate our discussion to
the case of Many-valued Logics, the logics which have more values than truth and falsity.
Given these logics, call them L we will prove that the modal logics LS0.5 and LS5 capture,
respectively the predicate of logical validity in L’s and hierarchical validity in L’s. We also
show that � and ♦ in such logics may work as recovery operators.

Some parts of this thesis were already published in co-autorship:

• The discussion about informal pluralism in Chapter 3 is presented in “Squeezing
arguments and the plurality of informal notions”. (joint work with Giorgio Venturi).
Journal of Applied Logics - IfCoLog Journal. Number 7. Volume 8. 2021.

• The basic logic K� is originally presented in “A Non-Standard Kripke Semantics for
the Minimal Deontic Logic” (joint work with Giorgio Venturi). Logic and Logical
Philosophy. Number 1. Volume 30. 2021;

• Chapter 6 was based on “Many-valued logics and bivalent modalities” (joint work
with Giorgio Venturi). Submitted.
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Chapter 2

Logical preliminaries

In this section we specify the notation we will use througout this work.

2.1 Propositional Logics

2.1.1 Basic theory: Language and semantics

The language LL of a logic L is the set LL = {V , ck1
1 , . . . , c

km
m }, where V = {pi | i ∈ N}

is the set of propositional variables,1 ck1
1 , . . . , c

km
m are connectives of such that the arity cki

i

is k. The set of formulas of LL, For(LL) is defined inductively as follows
The set of formulas of LL, For(LL), is defined inductively as follows:

pi | cki
i (ϕ1, . . . , ϕk)

For 1 ≤ i ≤ n and ϕ1, . . . , ϕk ∈ For(LL).

Definition 2.1.1. A matrix for L is a structure ML = 〈Vn, ok1
1 , . . . , o

kn
n , DL〉 where Vn =

{ m
n−1 | 0 ≤ m ≤ n − 1,m, n ∈ N} is the set of truth-values, ok1

1 , . . . , o
kn
n are operations

on Vn such that the arity oki
i is k, DL ⊂ Vn is the set of designated values { r

n−1 , . . . , 1},
where 0 < r. For practical purposes we will assume that the values 1 and 0 denote the
classical values of truth and falsity. A valuation v is a homomorphism v : V → Vn which
is extended to For(LL) as follows:

1 v(ckm
m (ϕ1, . . . , ϕk)) = okm

m (v(ϕ1), . . . , v(ϕk)).

The definition of okm
m is particular to the specific logic. The set of valuations v :

For(LL)→ Vn is called the semantics of LL, semL.

Definition 2.1.2. Let ϕ ∈ For(LL). We say that v is a model for ϕ if v(ϕ) ∈ DL.
Let Γ ⊆ For(LL). We say that v is a model of Γ if v is a model of each γ ∈ Γ. If

1For the sake of simplicity, we use the variables p,q,r,... instead of p0,p1,p2,p3, and so on.
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v(ϕ) ∈ DL, for some (resp., for every) v ∈ semL, we say that ϕ is satisfiable (resp.,
a tautology) of L. If v(ϕ) /∈ DL for every v ∈ semL, then ϕ is a anti-tautology of L.
The semantic consequence relation, |=semL⊆ ℘(For(LL))× For(LL) is defined as follows:
consider Γ ∪ {α} ⊆ For(LL). We say that α is a semantic consequence of (Γ |=semL α) Γ
iff: if v(γ) ∈ DL, for every γ ∈ Γ, then v(α) ∈ DL.

When the context is clear, we shall omit the subscript. It is clear that the definition of
|=L as preservation of designated values from premises to conclusion implies the following
properties:2

(1) Γ ∪ {ϕ} |=L ϕ (Reflexivity);

(2) Γ |=L ϕ and Γ ⊆ ∆, then ∆ |=L ϕ (Monotonicity);

(3) If Γ |=L ϕ and ∆, ϕ |=L ψ, then ∆,Γ |=L ψ (Transitivity);

(4) If Γ |=L ϕ, then, for every substitution σ, σ(Γ) |=L σ(ϕ),
where σ(Γ) = {σ(γ) | γ ∈ Γ} (Structurality).

Definition 2.1.3. A logic L is Tarskian structural if its consequence relation satisfies
(1)-(4).

Classical Propositional Logic

The language LCPL of CPL is the set LCPL = {V ,¬,→} where ¬ is a unary connective
of negation and → is a binary connective of implication. Then, its set of formulas is
recursively defined as follows:

pi | ¬ϕ | ϕ→ ψ

For ϕ, ψ ∈ For(LCPL). A matrix for CPL is a structureM = 〈{1, 0}, {¬,→},{1}〉, where
1 is the only distinguished value. The operators of the matrix have the following truth-
tables:

¬
1 0
0 1

→ 1 0
1 1 0
0 1 1

Definition 2.1.4. A valuation v of CPL is a function v : For(LCPL) → {1, 0} governed
by the following conditions:

2See Łoś & Suszko (1958) and Wójcicki (2013) for results concerning consequence relations.
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(1) v(¬ϕ) = 1− v(ϕ);

(2) v(ϕ→ ψ) = min{1, (1− v(ϕ)) + v(ψ)}

The set of valuations v : For(LCPL)→ {1, 0} is called semantics of CPL, semCPL.

In Mendelson (2009) one finds the following axiomatization of CPL:

Definition 2.1.5. (MENDELSON, 2009) The logic CPL is axiomatized as follows:

(Ax1) ϕ→ (ψ → ϕ);

(Ax2) (ϕ→ (ψ → γ))→ ((ϕ→ ψ)→ (ϕ→ γ));

(Ax3) (¬ϕ→ ¬ψ)→ ((¬ϕ→ ¬ψ)→ ϕ);

(MP) From ` ϕ and ` ϕ→ ψ we infer ` ψ;

The provability relation `CPL⊆ ℘(For(LCPL))× For(LCPL) is defined as follows:

Definition 2.1.6. Σ `CPL ϕ if there is a sequence 〈ϕ1, . . . , ϕn−1, ϕn〉 such that:

(1) For each γj (1 ≤ j ≤ n− 1):

(1.a) is an axiom;

(1.b) γj ∈ Γ; or (1.3) γj is obtained by the application of inference rules to γi’s for
i < j.

(2) ϕn = ϕ.

If Γ = ∅, we say that ϕ is a theorem of CPL.

Mendelson (2009) proves that CPL is sound and complete with respect to MCPL.
Definition 2.1.6 can be easily extended to extensions of CPL such as first-order logic and
modal logics.

2.2 First-Order Logic (FOL)
The language LFOL of FOL is the set LFOL = {V,C, P, F,=,¬,→,∀} where V = {xn|n ∈ N}
is the set of individual variables, C = {cn|n ∈ N} is the set of individual constants, P =
{P n

k |n, k ∈ N} is the set of relation symbols, F = {fnk |n, k ∈ N} function symbols, and =
is the symbol of identity. All the definitions in this section are taken from (MENDELSON,
2009).

Definition 2.2.1. The terms of the language are recursively defined as follows:



CHAPTER 2. LOGICAL PRELIMINARIES 19

(1) variables and individual constants are terms;

(2) if fnk is a function symbol and t1, . . . , tn are terms, then fnk (t1, . . . , tn) is a term;

(3) an expression is a term if it can be shown to be a term on basis of 1 and 2.

The set of terms of LFOL is denoted by Term.

Definition 2.2.2. The set For(LFOL) of well-formed formulas of LFOL are defined as
follows:

(1) if P n
k is a relation symbol and t1, . . . , tn are terms, then P n

k (t1, . . . , tn) ∈ For(LFOL);

(2) if ϕ, ψ ∈ For(L1), then ¬ϕ, ϕ→ ψ ∈ For(LFOL);

(3) if xi is a individual variable and ϕ is a formula, then ∀xiϕ ∈ For(LFOL) is a formula.

(4) an expression is a formula if it can be shown to be a term on basis of i-iii.

Let t be a term and ϕ a formula of LFOL. We say that t is free for xi in ϕ if no free
occurrence of xi in the formula ϕ lies in the scope of any quantifier ∀xj, where xj is a
variable in t. Finally, a formula ϕ is a sentence or a closed formula if ϕ has no free variable
occuring in ϕ.

Definition 2.2.3. The set of sentences of LFOL is denoted by Sent(LFOL) If xi occurs free
in ϕ, we write ϕ(xi).

Mendelson provides the following axiom system for FOL:

Definition 2.2.4. FOL is axiomatized as follows:

(CPL) Ax1 - Ax3 of Definition 2.1.5;

(Ax4) ∀xiϕ(xi)→ ϕ(t) where t is free for xi;

(Ax5) ∀xi(ϕ→ ψ)→ (ϕ→ ∀xiψ) if ϕ does not contain free occurrences of xi;

(Ax6) ∀xi(xi = xi);

(Ax7) xi = xj → (ϕ(xi, xi)→ ϕ(xi, xj));

(MP) From ` ϕ and ` ϕ→ ψ we infer ` ψ;

(Gen) from ` ϕ we infer ` ∀xiϕ.

It is clear that all tautologies of CPL are probable in FOL by using only the axioms
Ax1 - Ax3 and the rule MP of Definition 2.1.5. The notion of proof of FOL is defined
similarly as in Definition 2.1.6. Then the following proposition is immediate:

The existential quantifier is traditionally introduced as follows:
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∃xiϕ := ¬∀xi¬ϕ

Theorem 2.2.5. (MENDELSON, 2009) Every ϕ′ ∈ LFOL which is an instance of a CPL-
tautology ϕ is a theorem of FOL, and it may be proved using only axioms Ax1 - Ax3 of
Definition 2.1.5 and modus ponens.

Proof. Let ψ be a tautology CPL. Since CPL is complete, ψ is provable by the axioms
Ax1 - Ax3 of Definition 2.1.5 and modus ponens. Call this proof D. Given D uniformly
substitute the formulas γ occur in the proof D by formulas γ′ of FOL. The resulting proof,
call it D′, will be a proof of a substitution instance of the tautology ψ in FOL. Q.E.D.

By Proposition 2.2.5 it is possible to use tautology instances of CPL in FOL proofs. In
each step of proofs where tautology instances are introduced we will write CPL.

We define now the semantics for the language LFOL.

Definition 2.2.6. An interpretation A = 〈D, (·)A〉 for the language LFOL is a pair where
D 6= ∅ is a non-empty set called domain and (·)A is a function such that:

(1) For each relation symbol P n
k of LFOL there is an assigment of a n-place relation (P n

k )A

in D;

(2) For each function symbol fnk of LFOL there is an assigment of a n-place operation
(fnk )A in D;

(3) For each individual cn of LFOL there is an assigment of some fixed element (cn)A of
D.

Let s = (s1, s2, s3 . . .) be a denumerable sequence of objects of D and Seq be the set of
all denumerable sequences s of D. Given a s ∈ Seq we define a function s∗ : Term→ D,
which assigns to each term t ∈ Term an element s∗(t) ∈ D as follows:

Definition 2.2.7. Let s ∈ Seq be a sequence of objects of D. The function s∗ : Term→ D

is defined as follows:

(1) If t ∈ Term is a variable xi, let s∗(xi) = si;

(2) If t ∈ Term is a constant ci, then s∗(cj) = (cn)A;

(3) If t ∈ Term is fnk (t1, . . . tn), where fnk ∈ F and t1, . . . tn ∈ Term, then s∗(fnk (t1, . . . tn)) =
(fnk )A(s∗(t1), . . . , s∗(tn)).

Now we define the notion of satisfiability

Definition 2.2.8. Let s ∈ Seq be a sequence and ϕ a formula LFOL, the notion of satis-
fiability of a formula ϕ, A |=s ϕ, is defined as follows:
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(1) If ϕ is P n
k (t1, . . . tn), then A |=s P

n
k (t1, . . . tn) iff (s∗(t1), . . . , s∗(tn)) ∈ (P n

k )A;

(2) If ϕ is t1 = t2, then A |=s t1 = t2 iff s∗(t1) = s∗(t2)

(3) If ϕ is ¬ψ, then A |=s ¬ψ iff A 2s ψ;

(4) If ϕ is ψ → γ, then A |=s ψ → γ iff A 2s ψ or A |=s γ;

(5) If ϕ is ∀xjψ, then A |=s ∀xjψ iff every sequence s′ ∈ Seq that differs from s in at
most the i-th component is such that A |=s′ ψ.

We say that ϕ is true in A (|=A ϕ) (or A is a model of ϕ) iff every sequence s ∈ Seq
satisfies ϕ. A is a model for Γ iff every γ ∈ Γ is such that A is a model of γ. ϕ is logically
valid (respectively, satisfiable) iff ϕ is true for every (resp., some) model A. When ϕ is
valid, we write |= ϕ. We say that ψ is a logical consequence of Γ iff for every A, if A is
a model of Γ, A is a model of ψ.

As a immediate consequence of Definition 2.2.8, we have the following consequence:

Proposition 2.2.9. A |= ϕ iff A |= ∀xiϕ.

We now state without proof important lemmas about quantification which will be
discussed in Chapter 5.

Lemma 2.2.10. If the variables of ϕ occurr in the list xi1 , . . . , xin and if the sequences s
and s′ have the same components in ith1, . . . , ithn places of the sequence, then

A |=s ϕ iff A |=s′ ϕ. (2.1)

For all ϕ ∈ LFOL.

Lemma 2.2.11. Let t be free for xi in ϕ(xi). Then:

(A) A sequence s = (s1, s2, . . .) satisfies ϕ(t) iff the sequence s′, obtained from s by
substituting s∗(t) for si in the ith place, satisfies ϕ(xi).

(B) If ∀xiϕ(xi) is satisfied by the sequence s, then ϕ(t) also is satisfied by s.

In Mendelson (2009) one finds the characterization results with respect to FOL.

Theorem 2.2.12. If ` ϕ, then |= ϕ.

Theorem 2.2.13. If |= ϕ, then ` ϕ.
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2.2.1 Peano Arithmetic (PA)

The language LPA = {+, ·, s, 0} is built on LFOL where +, · , s are takes as function
symbols and 0 is taken as a constant.

Definition 2.2.14. (MENDELSON, 2009) PA has the following axioms:

(PA1) xi = xj → (xi = xl → xj = xl);

(PA2) xi = xj → s(xi) = s(xj);

(PA3) 0 6= s(0);

(PA4) s(xi) = s(xj)→ xi = xj;

(PA5) xi + 0 = xi;

(PA6) xi + s(xj) = s(xi + xj);

(PA7) xi · 0 = 0;

(PA8) xi · s(xj) = s(xi · xj) + xi;

(PA9) ϕ(0)→ (∀xi(ϕ(xi)→ ϕ(s(xi))→ ∀xiϕ(xi)) for all ϕ(xi).

Let ∃x < yϕ and ∀x < yϕ abbreviate ∃x(x < y ∧ ϕ) and ∀x(x < y → ϕ). These
formulas are called bounded formulas. Consider now the following definition:

Definition 2.2.15. (BOOLOS, 1995) A strict Σ1-formula is a member of the smallest
class that contains all formulas xi = xj, 0 = xj, s(xi) = xj, xi + xk = xj, xi.xk = xj and
contains ϕ ∧ ψ, ϕ ∧ ψ, ∃xϕ and ∀x < yϕ, whenever it contains ϕ and ψ. A Σ1-formula
is one that is provably equivalent in PA to a strict Σ1-formula.

Boolos (1995) observes that the class of Σ1-formulas are of specific interest since every
recursive function can be represented as a Σ1-formula. And it can be proved that:

Theorem 2.2.16. If ϕ is a true Σ1-sentence, then `PA ϕ.

The proof of Theorem 2.2.16 can be checked in (BOOLOS, 1995, p.25). Boolos says
that this theorem establishes a kind of partial completeness of PA. The reason to say
that Theorem 2.2.16 is a partial completeness due to the fact that PA fails to prove some
arithmetical truths which are negations of Σ1-formulas. One of these formulas is a formula
which states the consistency of PA. As we will see further, PA is not able to prove its own
consistency due to Gödel’s Incompleteness Theorems.
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2.3 Modal logic

Let LCPL be the language of CPL. The language L�CPL is the set L�CPL = LCPL∪{�}, where
� is a unary connective of necessity. The set of formulas of L�CPL, For(L�CPL), is defined
inductively as follows:

pi | ¬ϕ | ϕ→ ψ | �ϕ

For ϕ, ψ ∈ For(L�CPL).

Modal semantics

The semantics for L�CPL is defined as follows.

Definition 2.3.1. A frame F is an ordered pair F = 〈W,R〉, where W is a nonempty set
of possible worlds and R ⊆ W ×W is a binary relation, a accessibility relation, defined on
W ×W . A modelM based on F = 〈W,R〉 is a frameM = 〈F, V 〉 where V : V → ℘(W )
is a valuation. The interpretation for the language L�CPL is defined as follows:

(1) M, w |= p iff w ∈ V (p);

(2) M, w |= ¬ϕ iffM, w 2 ϕ;

(3) M, w |= ϕ→ ψ iffM, w 2 ϕ orM, w |= ψ;

(4) M, w |= �ϕ iff for every y ∈ W such that wRy,M, y |= ϕ.

ϕ is true in a model M iff every w ∈ W of M, M, w |= ϕ. ϕ is valid on a frame
F iff it is true in every model M based on F . In order to put away confusions, when
we refer to the satisfiability with respect to a specific modal logic, for example L, we write
M, w |=L. We shall not use the subscript when the context is clear.

The modal operator ♦ is introduced as:

♦ϕ := ¬�¬ϕ

Then its semantic condition is stated as follows:3

(5) M, w |= ♦ϕ iff there is y ∈ W such that wRy,M, y |= ϕ.

Definition 2.3.2. (HUGHES; CRESSWELL, 1996) The modal logic K is axiomatized as
follows:

(CPL) All the propositional tautologies;
3Of course, it is possible to define � from ♦ as �ϕ := ¬♦¬ϕ.
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(K) �(ϕ→ ψ)→ (�ϕ→ �ψ);

(MP) From ` ϕ and ` ϕ→ ψ we infer ` ψ;

(Nec) From ` ϕ we infer ` �ϕ;

The logic K is sound and complete with respect to the class CK of all frames. It is
the weakest logic of the family of normal modal logics. Roughly speaking, normal modal
logics are commonly understood as extensions of logic K. In (CHELLAS, 1980), Chellas
provides the following general characterization for this family of logics as follows:

Definition 2.3.3. A modal system L� is normal if it contains:

(Def) `L� �ϕ↔ ¬♦¬ϕ;

(RK) From `L� (ϕ1 ∧ . . . ∧ ϕn)→ ψ we obtain `L� (�ϕ1 ∧ . . . ∧�ϕn)→ �ψ.

It is easy to see that axiom K is provable from the rules presented in Definition 2.3.3.

Theorem 2.3.4. (CHELLAS, 1980) Let L� be a modal system which conforms according
to Definition 2.3.3. Then `L� �(ϕ→ ψ)→ (�ϕ→ �ψ) and Nec is a rule of L�.

Proof. Consider the following derivation:

1. ((ϕ→ ψ) ∧ ϕ)→ ψ Taut
2. (�(ϕ→ ψ) ∧�ϕ)→ �ψ RK,1
3. �(ϕ→ ψ)→ (�ϕ→ �ψ) Taut,2

The case of necessitation is simple, just take the case n = 0 in the rule RK. This
concludes the proof. Q.E.D.

Given Definition 2.3.3 we obtain non-normal modal logics by rejecting Def or RK. In
what concerns RK, there is more than a way to reject it, because we can have a version
of axiom K but not Nec. Or we can have rule Nec and not axiom K. In Chapter 4 we will
give an example of the first case.

If we add constraints on the accessibility relation R we obtain stronger logics. Consider
the following definitions:

Definition 2.3.5. Let W be a set and R ⊆ W ×W be a relation on R.

• R is reflexive iff for all w ∈ W : wRw;

• R is serial iff for every w ∈ W there is y ∈ W such that wRy;

• R is symmetric iff for all w, y ∈ W : wRy implies yRw;

• R is transitive iff for all w, y, z ∈ W : wRy and yRz imply wRz;
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• R is euclidean iff for all w, y, z ∈ W : wRy and wRz imply yRz.

It is easy to check that:

Proposition 2.3.6. The following items are true.

(A) �ϕ→ ϕ (T) is valid in the class CKT of all reflexive frames.

(B) �ϕ→ ♦ϕ (D) is valid the in class CKD of all serial frames.

(C) ♦ϕ→ �♦ϕ (B) is valid the in class CKB of all symmetric frames.

(D) �ϕ→ ��ϕ (4) is valid the in class CK4 of all transitive frames.

(E) ϕ→ �♦ϕ (5) is valid the in class CK5 of all euclidean frames.

Now we present extensions of the basic logic K in the definition bellow:

Definition 2.3.7. Let K be the logic defined as in Definition 2.3.2. Then:

• The logic KT is obtained by extending K with formula T.

• The logic KD is obtained by extending K with formula D.

• The logic KB is obtained by extending K with formula B.

• The logic K4 is obtained by extending K with formula 4.

• The logic K5 is obtained by extending K with formula 5.

• The logic S4 is obtained by extending K with formulas T and 4.

• The logic S5 is obtained by extending K with formulas T and 5.

In standard introductory textbooks of modal logics such as Chellas (1980) and Hughes
& Cresswell (1996) one finds soundness and adequacy results for the above systems. In
normal modal logics, the operator � is usually introduced as a primitive operator, and
then we define ♦ as above. But, there are modal logics where the interdefinability between
� and ♦ does not hold. Most of them are modal logics whose basic propositional logic is
non-classical. In Chapter 6, we will present such logics.
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Chapter 3

Formalizations of Consistency

In this chapter we will defend that the notion of logical consistency is not a primitive
notion, in the sense that it cannot be reduced in terms of simpler ones. In order to defend
this, we will present Kreisel’s squeezing argument to argue that the informal concept of
validity, intended to bridge the model and proof-theoretical validity is not a primitive con-
cept. Instead, it is indeed an informal concept which is a theoretical construct, defined in
terms of more basic concepts. Further, we will see that, even if both formal approaches to
consistency do not entirely capture informal consistency, they capture important aspects
of this notion.

3.1 Is consistency a primitive concept?

Definitions 2.1.6 and 2.2.8 show two ways in which the concept of consistency can be
reduced. The completeness theorem link these notions by showing that every valid formula
is provable. Even so, it is widely accepted that there is an informal notion of validity
which is irreducible to these formal approaches. Now we will turn to the discussion about
informal validity.

3.1.1 Kreisel’s squeezing argument

Informal rigour consists in the precise analysis of intuitive notions in order to “eliminate
the doubtful properties of the intuitive notions when drawing conclusions about them”
(KREISEL, 1967, p.138). In his famous work , Kreisel (1967) undertook this analysis to
show that some intuitive concepts used in Mathematics are meaningful, and the informal
validity appears among these concepts.1 Although it is clear that validity can be defined
by means of the metalogical frameworks, both proof-theoretically and model-theoretically,
Kreisel defends that there is an informal concept of validity which is not fully reduced

1Another famous application of squeezing argument lies in the analysis of the informal concept of
computability.
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neither to syntax nor to semantics. Let ϕ be a first-order formula. So, he states these
three aspects this concept may have:

(Informal) V al(ϕ) means that ϕ is true in all structures;

(Semantical) V (ϕ) means that ϕ is true in all structures in the cummulative hierarchy;

(Syntactical) D(ϕ) means that ϕ is derivable by means of some fixed sets of formal rules.

The informality of V al lies in not specifying what structures we are dealing with. V and
D are formal because they are theoretically precise. Then informality here is understood
as not being defined within a well-structured conceptual framework. Given these three
aspects which define validity, we present the reasons which justify the irreducibility of
Val. Kreisel defends that Val is not reduced to D because nobody reasons according to
formal rules. In his own words,

(...) First (e.g. Bourbaki) ‘ultimately’ inference is nothing else but fol-
lowing formal rules, in other words D is primary (...) This is a specially
peculiar idea, because 99 per cent of the readers, and 90 percent of the
writers of Bourbaki, don’t have the rules in their heads at all!! Nobody
would expect a mathematician to work on groups if he did not know the
definition of a group. (KREISEL, 1967, 153-154)

It is also generally accepted that the concept of validity is not properly captured by
purely syntactic devices, such as proof systems. A well-known objection to the proof-
theoretical approach to validity is due to Prior (1960). If one maintains that the meaning
of a connective can be pure and solely described by means of its introduction and elim-
ination rules, one should accept that this characterization is trivial and then everything
is provable. The reason stems from the fact that such requeriments for meaning are very
broad.2 Prior (1960) presents the connective called “Tonk” characterized by the following
rules:

(Tonk-intr) ϕ ` ϕTψ

(Tonk-elim) ϕTψ ` ψ

Now, the following demonstration shows that we can deduce anything with Tonk:

Argument 3.1.1. Prior’s argument can be summarized as follows:

1. ϕ Assumption
2. ϕT⊥ Tonk-intr, (1)
3. ⊥ Tonk-elim, (2)

2This discussion presupposes natural deduction systems.
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Then, for every assumption ϕ, we can deduce every ψ, ϕ ` ψ. So, we have a trivial
theory. Therefore, the broad conception according to which the meaning of a connective
is captured by its introduction and elimination rules lead us to triviality.

On the other hand, we think that this latter objection is very far from being definitive
with respect to the proof-theoretical approach to validity. It is possible avoid Argument
3.1.1 by adding some constraints in the proper deductions. The requirement of harmony
between introduction and elimination is able to block derivations like of Argument 3.1.1.
Roughly speaking, such requirement means that whenever we apply an introduction rule
of a connective c to ϕ1, . . . , ϕn, we gain nothing in applying the elimination rule of c right
after we applied c to ϕ1, . . . , ϕn. It is clear that it blocks the step (3) in Argument 3.1.1.

The requirement of harmony is not the unique strategy to block Prior’s argument.
Belnap (1962) observes that there is an essential use of the transitivity of consequence
relation in the derivation of Argument 3.1.1. So, if we dispense transitivity, Prior’s argu-
ment does not work. There are other two requeriments: conservativeness and uniqueness.
Conservativeness says that any extension of a deducibility statement of the form ϕ1, . . .,
ϕn ` ψ with a connective c produces deducibility statements where c must occur. That
is, from ϕ1, . . ., c(ϕi, ϕj), . . ., ϕn ` ψ we cannot obtain deducibility statements ϕ1, . . .,
ϕn ` ψ which does not have any occurrence of c. This requirement also blocks Argument
3.1.1. Last, there is the requirement of uniqueness, which says that any connective must
be uniquely determined by its inference rules. As Naibo and Petrolo (2015) observe, the
connective tonk alone satisfies uniqueness, but it fails to be conservative.3

In last instance, Prior’s argument shows that the wittgensteinian claim that meaning
is use should be taken carefully. That is, it is necessary to adopt some constraints in
order to defend that the meaning of the logical constants can be given by their inference
rules. According to Peregrin (2012), this inferential approach to logical validity seems
to give more a know how of the inference rules rather than a knowledge that such rules
represent. One advantages of the proof-theoretical approach, according to Peregrin, is
that its makes possible to explain the emergence of the logical constants and logic itself.
So, this syntactical approach figures as a promising way to capture our informal notion
of validity.

On the other hand, one may resist to proof-theoretical approach by claiming that it
rules out systems which cannot be characterized by a proof system. Second-Order Logic
(SOL), for example, does not have a complete proof-system due to its high expressive
power. So, if we defend that the meaning of the logical constants is given by its inference

3There are many ways of solving this problem raised by Prior. We refer the reader to Stevenson
(1961) for another proposal for solving the challenge posed by Prior. The very idea of Proof-Theoretical
Semantics shows that it is possible to maintain that the meaning of the logical operations may be given
by its inference rules. Of course, it is necessary to adopt constraints in order to block Argument 3.1.1,
such as the harmony requirement. Here we will not discuss such an approach, but we refer the reader to
Schroeder-Heister (2018) for a more detailed discussion.
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rules, the case of SOL is put aside. The proof-theoretical approach may not be enough if
one defends the logical status of SOL.

It is important to stress that Kreisel did not prove the relation between V al, V and D.
He recognizes that talking about structures is too vague, whereas talking about structures
in the cummulative hierarchy of sets (the sets of ZFC, for example) and provability in
deductive systems are precise concepts. Then it makes no sense in trying to prove the
relation of a formal concept with a informal one. What Kreisel did was to argue for the
plausibility of the relations of these three concepts. For him, even if informal validity is
not essentially proof-theoretical, it follows immediately that D(ϕ)⇒ V al(ϕ) (Soundness
Assumption, SA henceforth). Then, derivability is a sufficient condition for informal
validity. Kreisel’s argument for SA is itself interesting.

Let us go back to the fact (which is not in doubt) that one reasons
in mathematical practice, using the notion of consequence or of logical
consequence, freely and surely, ((...) the ‘crises’ in the past in classical
mathematics were not due to lack of precision in the notion of con-
sequence.) Also it is generally agreed that at the time of Frege who
formulated rules for first-order logic, Bolzano’s set-theoretic definition
of consequece had been forgotten (and had to be rediscovered by Tarski)
yet one recognizes the validity of Frege’s rules. (KREISEL, 1967, pp.
153)

The interesting point is that in 1967 model-theoretical soundness results were already
available. Even so, Kreisel takes Frege’s deductive system as an example. Frege (1972)
himself did not provide a model-theoretical semantics for his system in 1879. What he
did was to use some principles, such as the Principle of Non-Contradiction and Excluded
Middle, to prove the validity of the axioms of his system. These last two principles are
taken for granted. They are constituents of the pure thinking.

At this point it must be clear that the SA stands for an informal soundness instead the
metatheoretical soundness. Informal validity and model-theoretical validity are different:
the former is a informal concept and the latter is a formal one. Of course, someone can
informally show that the axioms of FOL are sound with respect to this informal notion of
validity. In such informal demonstration, one uses some classical principles and inference
rules, such as (informal) modus ponens, to show that FOL axioms and rules are informally
valid.

But, one can question the informal principles we estipulate to argue in favor of SA.
In other words, how can we know that the principles of V al are valid? This may seen a
silly question, but it involves the issue of justification of basic principles of logic. Feigl
(1981) calls attention for this problem. First, he holds that we cannot defend that the
basic principles of logic are the most basic laws of nature. On contrary, it is attributed
to them factual content. The problem is that factual statements are inductively justi-
fied. Moreover, inductive justifications presuppose deductive rules. Then, we would be
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committed to circularity. Therefore, those basic principles cannot be empirical. Second,
we cannot consider the logical axioms and rules as norms for the correct reasoning. This
move does not provide us what guarantees the validity of these basic principles.4 Feigl
points that a possible way to solve this problem is to appeal to the analytic character
of the deducibility relation. The problem, according to him, is that analytic inferences
pressupose logical rules. And this is also circular.

According to Feigl, if we consider justification as standing for pragmatical vindication,
it is possible to shed light in the problem of justification of the basic principles of logic.
Feigl understands a justification as a pragmatical vindication if it provides means towards
to an end. If we follow the axioms and rules of FOL, it is because we want to avoid at
all costs inconsistencies and to yield true conclusions from true premises.5 Note that this
kind of justification differs from justification as a validation of a principle. In the case of
(classical) Mathematics, we follow, even if silent, the rules of FOL.

Of course, this is not to say that Kreisel adopts the concept of justification as prag-
matical vindication to argue for SA. What we did here was to show that it is plausible to
accept SA.

It is also the case that informal validity is not essentially model-theoretical because
V al leaves open the possibility for the structure to be class sized. Then a formula ϕ

can be informally valid without being model-theoretically valid, because the domains
of the models of first-order language are set sized. Thus, V al cannot be reduced to
the V . According to Etchemendy (1999) models can be understood in two ways: in a
representational point of view and in an interpretational one. From a representational
point of view, the truth of a sentence is related to the possible configurations of the
world. Taking truth-tables as a guiding example, each line of the truth-table represents
the possible changes in the world. In this case, logical validity is seen as truth in all
possible configurations of the world. On the other hand, the interpretational point of
view treats logical validity in the traditional way, by varying the interpretation of the non-
logical vocabulary. So, if a sentence remains true in all reinterpretations of the non-logical
vocabulary, then it is logically valid. However, Etchemendy (1999) argues that the model-
theoretical approach fails to satisfy to both perspectives. The representational point of
view fails to capture the formality of the consequence relation. And the interpretational
point of view faces the difficulty of justifying what is taken as a logical constant and what
is not. To sum up, the model-theoretical approach fails to capture the intuitive notion of
logical validity.

4In our view, this objection does not work since it is plausible to maintain that the logical principles are
codifications of a established and well-grounded mathematical practice, the truth-preserving reasoning.
See, Kennedy & Väänänen (2017) for arguments in this direction.

5It is important to keep in mind that not every logical system is adequate to formalize truth preserving
reasoning, when truth is understood in general terms. Intuionistic logic, for example, is better understood
as describe a very narrow notion of truth, which is equated to the presence of a constructive proof.
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A very common objection to the proof-theoretical approach to informal validity con-
cerns the arbitrariness of the choice of proof systems which characterize this informal
notion. In the case of FOL, we have sequent calculus, Hilbert’s axiomatic systems, nat-
ural deduction systems, and tableaux. As we know, all of them are sound and complete
with respect to the models of FOL. That being said, what is the proof system which cap-
tures the informal notion of validity? As Field (1991) and Etchemendy (1999) argue, it
is quite arbitrary to say that informal validity is tied to a particular set of axioms and/or
inference rules. We think that the same question can be raised to the model-theoretical
approach. In fact, there are many model-theories with respect to a particular logic L,
and some of them do not give us intuitions about the connectives of the language of
L. According to Copeland (1986), there are two stages in the development of a model-
theoretical semantics for L. The first is the construction of a mathematical formalism,
and the second concerns to the interpretation of this formalism as capturing the meaning
of the logical constants. Copeland says that many model-theories stop in the first stage,
like the case of algebraic semantics for intuitionistic logic. One of the first model-theories
capable to shed light upon the logical constants of intuitionistic logic was Kripke seman-
tics. In this case, we can say that Kripke semantics yields the second stage. We can also
cite the case of the paraconsistent logics. Many Costa (1974)’s paraconsistent systems
Cn are characterized in terms of bivaluation semantics, which are simple devices to prove
soundness and completeness of the formal systems Cn. But they lack the intuitive account
of the logical constants of these systems. Finally, we give the example of fuzzy logics,
which are logics intending to deal with degrees of truth. One common objection to fuzzy
logics is that their metatheories are classical. This objection threats who proposes these
logics as alternatives to classical logic. As Bacon (2013) defends, if it is possible to give
a non-classical metatheory for a non-classical logic, then the objection to non-classical
logics that they are metatheoretically bivalent disappears.6 To sum up, the possibility of
giving more than one semantical framework for logical systems shows that model-theory
is also subjected to the objection faced by proof-theoretical approaches to logic.

Even so, if one takes for granted that Logic applies to Mathematics, we have V al(ϕ)⇒
V (ϕ) (Logic and Mathematics Assumption). Moreover, the definition of V al encompasses
set-theoretical structures. So, if a formula is valid in V al sense, then so is in V sense.
Then, set-theoretical validity is a necessary condition for informal validity. The argument
below shows that the completeness theorem extensionally collapses these three notions of
logical validity:

6One consequence of his position is that model-theory and semantics are not the same thing. Semantics
has a more general character and it has to do with the intended meaning of the logical constants of the
language. It is possible that the case of classical logic is one of the only logics which have a model-theory,
Tarski’s semantics, giving a good account of the meaning of its logical constants. Of course, it does
not prevent other model-theories for classical logic. So, in general, when we use “semantics” to refer to
“model theory” we are doing so in a very loose way.
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Argument 3.1.2. Kreisel’s argument can be summarized as follows:

1. D(ϕ)⇒ V al(ϕ) Soundness assumption
2. V al(ϕ)⇒ V (ϕ) LM assumption
3. V (ϕ)⇒ D(ϕ) Completeness Theorem
4. V (ϕ)⇒ V al(ϕ) Logic (1),(3)
5. D(ϕ)⇔ V al(ϕ)⇔ V (ϕ) Logic (1)-(4)

From Kreisel’s definitions of validity we can define the notion of consistency as the
dual of the notion of validity as follows:

(Informal) Coninf (ϕ) means that there is a structure where ϕ is true (Coninf (ϕ) :=
¬V al(¬ϕ));

(Semantical) Consem(ϕ) means that there is a structure in the cummulative hierarchy ϕ
where is true (Consem(ϕ) := ¬V (¬ϕ));

(Syntactical) Consyn(ϕ) means that ¬ϕ is not derivable by means of some fixed sets of
formal rules (Consyn(ϕ) := ¬D(¬ϕ)).

An argument similar to Argument 3.1.2 can be done in order to show that Coninf (ϕ),
Consem(ϕ) and Consyn(ϕ) are extentionally equivalent.

Squeezing arguments, such as given in Argument 3.1.2, give a philosophical under-
standing of the completeness theorem since, as Andrade-Lotero & Novaes (2012) observe,
the informal notion of validity is a bridge between the formal notions of validity. The im-
portance of this theorem is evident when looking for versions of this argument for other
logics. In the case of FOL, Argument 3.1.2 is immediate since there is a completeness
theorem for FOL. If we consider logics which do not have a corresponding complete proof-
system, Kreisel’s argument cannot be applied directly. SOL is an example of logic which
does not have a complete proof system, and this absence may pose some difficulties in
order to establish a version of the squeezing argument for this logic. Despite this absence,
Kennedy & Väänänen (2017) show that it is still possible to provide a version of this
argument for extensions of FOL, such as SOL and Infinitary Logics.

In search of versions of the squeezing argument for strong logics, Kennedy & Väänänen
(2017) observe that Kreisel seems to implicitly assume in his paper that the completeness
theorem for a logic L is enough to get a squeezing argument for L. In the same paper,
Kennedy & Väänänen exemplify some completeness results for some logics stronger than
FOL. The case of SOL is particularly interesting, because it is widely known that this
logic is a extension of FOL but it is not complete with respect to its standard semantics
(sometimes called full semantics).7 That is, let us denote, as Kennedy & Väänänen do,
ϕ2 a second-order formula and:

7We will not enter in formal details about this logic. For those details, one can check Mendelson
(2009).
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(Semantical) V (ϕ2) means that ϕ2 is true in all set-theoretical structures;

(Informal) V al(ϕ2) means that ϕ2 is informally true in all structures, including class-
sized structures and including structures which do not have set-theoretical definition;

(Syntactical) D(ϕ2) is provable in the axiom system for SOL.

Since it is not the case that V (ϕ2) ⇒ D(ϕ2), we have neither V al(ϕ2) ⇔ V (ϕ2) nor
V (ϕ2) ⇔ D(ϕ2). So, we do not have a squeezing argument for SOL if we consider its
full semantics. On the other hand, SOL is complete with respect to Henkin’s general
models and this may completely change the scenario with respect to the possibility of
a squeezing argument for SOL. Consider the following definition of semantical validity
given by Kennedy & Väänänen which corresponds to validity in general models:

(Semantical) V ′(ϕ2) means that ϕ2 is valid with respect to set-theoretically defined
general models.

V ′(ϕ2) is also a necessary condition for V al(ϕ2). Thus, we have the following schema:

D(ϕ2)⇒ V al(ϕ2)⇒ V ′(ϕ2)⇒ V (ϕ2)

The completeness theorem of SOL establishes that V ′(ϕ2)⇒ D(ϕ2), obtaining

V al(ϕ2)⇔ D(ϕ2)⇔ V ′(ϕ2)

But Kennedy & Väänänen recognize that the implication V al(ϕ2) ⇒ V ′(ϕ2) is a
problematic one, since from the informal level the general models and the full models
are not discernible. On the other hand, in the mathematical practice, we refer only to
definable relations and sets, which are, as they say, “known” by the general models. In
sum, the squeezing argument for SOL is possible if the difference between general and
full models is not attached to the informal validity. Such a possibility shows how broad
Kreisel’s argument is.

Smith (2011) points out that even if Kreisel considers V al(ϕ) as an informal conception
of validity, V al(ϕ) is not an intuitive characterization of our pre-theoretical notion of
validity. It is instead is a result of a necessary refinement of an intuitive concept to the
success of the squeezing argument. That is, the informal notion V al must be theoretically
robust enough to make the Argument 3.1.2 work. This observation also applies to Kennedy
& Väänänen’s arguments for strong logics.

That V al may fail to capture our intuitive/pre-theoretical notion of logical validity,
which we barely know what it is, does not constitute a crucial problem for Kreisel’s
original argument. As argued in Kennedy & Väänänen, the informal notion adopted in
natural mathematical language is semantic, close to a model-theoretical approach. Then,
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from this perspective, Kreisel’s informal notion seems to capture a notion of validity from
mathematical practice. And indeed this seemed to be Kreisel’s goal in his 1967’s paper. If
Kreisel’s objective were to capture the informal notion of consequence of natural language,
then V al may fail to do so because it is not straightforward that mathematical structures
are able to completely capture the material inferences. In this respect, Andrade-Lotero
& Novaes say:

It seems to us that the idea of developing logic in connection with math-
ematical structures is essentially related to the logicist project of provid-
ing logical foundations to mathematics, and it is not obvious that this
assumption should hold irrestrictly also beyond the scope of the logicist
program. After all, deductive validity is a notion that goes well beyond
its possible interpretations onto mathematical structures.(ANDRADE-
LOTERO; NOVAES, 2012, p.396)

The example of informal inferences is illuminating because one may think that the
intuitive definition of valid informal inference requires a connection between sentences we
take as premises and the sentence we take as the conclusion. But the required connection
is difficult to characterize even in informal terms, as the following argument shows:

Argument 3.1.3. Consider the example given by Haack (1978, pp. 25):

The President signed the treaty with a red pen.
∴ The President signed the treaty.

This argument can be considered as intuitively valid, but is clearly invalid from a
formal standpoint, even according to Kreisel’s definition of informal validity. Although
there is a connection between the premise and the conclusion, it is quite difficult to grasp it
in a formal system like FOL. In light of this, some people may consider it as an objection
to Kreisel’s argument. But this is far from being correct because, as we said before,
Kreisel’s approach aims to justify the use of informal notions in Mathematics, not in the
every day discourse. The only thing we can say about his approach is that V al does not
capture the intuitive meaning of validity present in natural language and that informal
concepts may not be intuitive because the informal concepts can be a result of a formal
refinement.

Besides noting that Kreisel’s definition of V al is not an intuitive notion, it is also
important to note that V al is not a primitive notion in the sense that it is not defined
in terms of more basic entities. From his definition, it is very clear that V al is defined in
terms of more basic entities like structures which are, ultimately, sets and classes. Then,
V al cannot be assumed, for example, by a nominalist who wants to avoid abstract entities
at all costs.

Last, but not least, it is important to stress that Kreisel (1967)’s objective was not to
establish that V al is the informal notion to be captured by V and D. That is, Argument
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3.1.2 does not imply that V al is the unique informal notion captured by its formal coun-
terparts. His argument establishes that the informal notion, once properly articulated,
extensionally collapses with its formal counterparts. Even if it was not Kreisel’s objective
in determining whether V al is unique or not, we think it to be relevant to ask whether
it is the case. If such notion is not the only notion captured by V and D, there may be
other informal notions, still theorized, which may provide a more intuitive understanding
of the formal notions of validity.

Squeezing arguments gained attention in the literature, due its simplicity and schematic
form, in order to capture intuitive notions of validity from natural language. In the next
section, we will direct our attention to this latter approach, and we will see that the plu-
rality of informal notions to be captured by V and D suggests that formal consequence
relations are underdetermined by their informal counterparts.

3.1.2 Variants of squeezing argument

Shapiro (2005) formulates a version of squeezing argument to defend that the model and
the proof-theoretical accounts of logical consequence capture relevant informal notions
of logical consequence in natural language. For such, he delineates some definitions of
informal logical consequence, which we will present now. We will use the notation F to
mean that F is a sentence of natural language which is a counterpart of a formal sentence
ϕ and Prem is a counterpart in natural language of a set Γ of formal sentences.

Definition 3.1.4. The relation V alB(Prem, F ) holds whenever F is logical consequence
of Prem in the blended sense; that is, it is not possible to every member of Prem to be
true and F be false, and this impossibility holds in virtue of the meaning of the logical
terms. V alB(F ) means that F is valid in the blended sense.

This blended notion of informal consequence captures elements of formality and ne-
cessity of consequence relation and it is intended to be the informal counterpart of the
model-theoretical consequence relation. Now, it is clear that every ϕ provable in FOL is
valid in the sense of V alB. So, we say that the deductive system of FOL is faithful with
respect to V alB. It is also clear that every valid F , which is a natural language correspon-
dent of ϕ, has a valid formalization ϕ in FOL. In this sense, we say that V is adequate to
V alB. Then assuming that F and Prem are counterparts of ϕ and Γ in natural language,
we can present the following squeezing argument for the informal notion V alB:

Argument 3.1.5. Shapiro’s argument can be summarized as follows:

1. D(ϕ)⇒ V alB(F ) Faithfulness
2. V alB(F )⇒ V (ϕ) Adequacy
3. V (ϕ)⇒ D(ϕ) Completeness Theorem
4. V (ϕ)⇒ V alB(ϕ) Logic (1),(3)
5. D(ϕ)⇔ V alB(F )⇔ V (ϕ) Logic (1)-(4)
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Shapiro (2005) presents another informal notion of validity, which tends more to a
deductive validity.

Definition 3.1.6. The relation V alDed(Prem, F ) holds whenever F is logical consequence
of Prem in the deductive sense; that is, there is a deduction of F from Prem by a chain
of legitimate gap-free (self-evident) rules of inference. V alDed(F ) means that F is valid
in the deductive sense.

Argument 3.1.7. Shapiro’s second argument can be summarized as follows:

1. D(ϕ)⇒ V alDed(F ) Faithfulness
2. V alDed(F )⇒ V (ϕ) Adequacy
3. V (ϕ)⇒ D(ϕ) Completeness Theorem
4. V (ϕ)⇒ V alDed(ϕ) Logic (1),(3)
5. D(ϕ)⇔ V alDed(F )⇔ V (ϕ) Logic (1)-(4)

Griffiths (2014) raises some objections to Shapiro’s version of squeezing arguments.
First, neither V alB nor V alB give account for the totality of natural language, but only for
a well-behaved fragment of natural language formalizable in FOL. Second, the Argument
3.1.5 assumes the ϕ is the formalization of F in FOL. That is, as Griffiths points, F
can be takes as the reading of ϕ, where reading is understood as the reverse process of
formalization. That being said, he argues that Argument 3.1.5 only works in virtue of the
correspondence between F and ϕ. Then, there is nothing special about both V alB and
V alB.

As a consequence of Arguments 3.1.5 and 3.1.7, we obtain:

V alDed(F )⇔ V alB(F ) (3.1)

Considering the correspondence between F and ϕ, we obtain:

V alDed(F )⇔ V al(ϕ)⇔ V alB(F ) (3.2)

But this extensional equivalence holds because F is taken to be the reading of first-
order formulas. If we F were a reading of a second-order formula, the biconditional 3.1
may not hold, because (full) SOL is not complete.

We can now advance a further objection to Shapiro’s argument(s). We agree with
Griffiths that the three notions V al, V alB, and V alDed, are coextensive (3.2). But then,
if the formal notions of classical FOL capture the three of them, which one can be seen as
the informal or the intuitive content of the formal notions? This is a relevant question due
to the fact that the V al, V alB, and V alDed are meant to be intensional objects: properties
of formulas.8 If these squeezing arguments are able to show that we can capture these

8One could say that the objections also works against Kreisel. It would do so if Kreisel’s interests
were natural language. But, as we highlighted before, his interests were only mathematical.



CHAPTER 3. FORMALIZATIONS OF CONSISTENCY 37

notions by means of extensional concepts (V and D), however, we are left in the dark with
respect to which one of these represents the intentional concept we associate to logical
(classical FOL) validity. In this sense, logical validity is therefore underdetermined by its
formal counterparts, even if these manifest a perfect correspondence between syntax and
(formal) semantics.

One could resist to these objections by simply arguing that FOL captures informal
notions of validity which have semantic or syntactic aspects. Then, the completeness
theorem shows that these notions are extensionally equivalent, despite their intensional
difference. This response, however, misses our main point: Argument 3.1.5 and Argu-
ment 3.1.7 only hold in virtue of the correspondence between F and ϕ, not in virtue of
the intrinsic characteristics of V alB and V alDed. To make our point clear, consider the
following notion presented in Griffiths (2014):

Definition 3.1.8. The relation V alNec(Prem, F ) holds whenever F is logical consequence
of Prem in the modal sense if and only if necessarily, every member of Prem is true, F
is true. V alNec(F ) means that F is valid in the modal sense.

In his aforementioned paper, Griffiths presents a squeezing argument for V alNec in
order to show that there is nothing distinctive about V alB (and V alDed) since V alNec
holds by the same reason as the validity in the blended sense. There may be other
informal notions logical validity which are captured by V and D, but are extensionally
different from the ones presented here.9 Given this abundance of options, and since formal
logic is mute on this topic, any choice is therefore moved by pre-theoretical choices, which
therefore suggests a form of informal pluralism with respect to our pre-formal notion of
validity.

A consequence of this phenomenon is that the formal consequence relation of FOL is
not able to capture the intuitive notion of logical consequence. Kreisel’s argument and
its variants neither capture such intuitive notion nor they capture an unique one, even if
they capture relevant informal notions, which regulate our inferential practice. Moreover,
following Griffiths’s analysis of Shapiro’s argument, we cannot hold that these informal
notions capture the whole of our inferential practices, but only a small, formalizable
fragment of natural language inferences. Probably, to capture all inferences of natural
language in a system like FOL, we should be able to extend it to the point of doubting
that it remains formal.10

9It is not our purpose to give an exhaustive list of these notions.
10Glanzberg (2015) argues that natural language is not determined by a consequence relation in the

same sense of formal logic.
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3.1.3 Field’s view on consistency

It is common to see in the literature that model-theoretical approach to validity/consistency
gives an account of the modal component of informal validity, such as given in Definition
3.1.8. However, such formal approach faces some objections when it is taken to formalize
our pre-theoretical notion of validity. As we saw earlier, models for FOL are structures
whose domains are sets. This implies, according to Field (2008), that logically valid
sentences may not be actually true. That is, models do not reflect reality. Adopting
Field’s vocabulary, we can say that technical soundness is not genuine soundness. But,
then, in what sense can we say that model-theoretical validity captures genuine validity?
According to Field, Kreisel’s argument offers a good way to look to this question.

Field deals with squeezing argument in some of his works. Field (1991) uses Kreisel’s
argument to argue that consistency can be treated as a primitive concept, irreducible
model-theoretical notions nor to proof-theoretical ones. Field says that both model the-
ory and proof theory are platonistic since they use abstract concepts such as models and
proofs. And the idea of proposing consistency as a primitive notion is to make meta-
logic possible for nominalists. On the other hand, he recognizes that consistency can be
partially treated in terms of models, but he defends that the model-theoretical approach
to consistency does not capture what consistency is in its full totality. That is, even if
consistency is tractable by means of model-theoretical tools, it cannot be totally reducible
to a model-theoretical concept. In order to defend such view, Field raises an objection
to the model-theoretical approach to consistency. For example, let Γ be a set containing
all the truths about set theory which are statable inside set theory. Since Γ is the set
of all truths statable in set theory, Γ should be consistent. Thus, a natural model for
Γ should be set of all sets. However, due to the set-theoretical result which says that
there is no set of all sets, it seems that there is no such model for Γ. At the same time,
if Γ set is stated in the language of FOL, there is a model for Γ due to a variation of
Löwenheim-Skolem-Theorem. In his own words:

(...) Second, we must go from this conclusion to the existence of a model
that makes all members of Γ true, and here is where the fancy model
theory comes in: we use one of the fancy model-theoretic arguments
that underlie the classical completeness theorem for first order logic.
These arguments are pretty fancy (they are variations on the Skolem-
Löwenheim theorem), and the models of set theory they produce are
quite unnatural (for instance, in being countable, and in there being
no guarantee that what gets assigned to ‘∈’ looks very much like mem-
bership). The fact is that it is only by virtue of an “accident of first
order logic” that the Tarski account of consequence gives the intuitively
desirable results. (FIELD, 1991, pps. 3-4)

According to the above passage, the fact that Γ has a model stems from an accident of
FOL. From Field’s words, it seems that this accident basically consists in the possibility
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of using a variation of Löwenheim-Skolem-Theorem to define such model. Since this
possibility is an “accidental feature” of FOL, it is better to avoid it if one wants to
contemplate other logics different than FOL. So, according to him, consistency cannot
be purely model-theoretical. In a more recent work, Field (2008) also objects the model-
theoretical approach to validity/consistency. His argument goes as follows: the concepts
of validity and consistency are defined in terms of the model-theoretical concept of truth.
Since models have sets as their domains and the actual world is not a set, then model-
theoretical truth does not yield actual truth. As a consequence, model-theoretical validity
does not capture informal validity.

On the other hand, Field argues that consistency cannot be reduced to proof-theoretical
notions due to the fact that it would be particular to a given formal system. Thus, con-
sistency also cannot be purely proof-theoretical. It is very important to Field that con-
sistency cannot be reduced to these concepts, because, according to him, if we can treat
consistency as a primitive notion, then we do not need to deal with abstract mathematical
entities in metalogic, such as models and proofs. In this case, a nominalist can freely talk
about this notion. Moreover, Field defends that the primitiveness of consistency explains
better the significance of the completeness theorem for FOL.

Then, as an alternative, he proposes to treat consistency (logical validity) as a primitive
notion, in the sense that “we cannot clarify its meaning by giving a definition of it in more
basic terms” (FIELD, 1991). Field proposes to understand the meaning of consistency by
means of some principles which govern it together, in the same sense that we understand
the meaning of the logical connectives according to the rules governing them. According
to Field, the Model Theoreical Possibility Principle (MTP) and the Modal Soundness
(MS) are two principles that govern the meaning of consistency. MTP and MS are stated
as follows:

(MTP) If there is a model in which Γ is true, then Γ is consistent;

(MS) If Γ is consistent, it is formally irrefutable in a formal system S.

MTP is a sufficient condition for consistency, while MS is a necessary condition. But
neither MTP nor MS alone fully characterize the concept of consistency, which is taken
as primitive. Since MTP and MS are a sufficient and necessary conditions for consistency,
we have:

MTP ⇒ Primitive consistency⇒MS.

In this point, Field proposes a version of the squeezing argument, which he attributes
to Kreisel, in order to characterize primitive consistency. Analogously to Kreisel’s ar-
gument, the completeness theorem plays the fundamental role, since it proves that if a
set Γ is formally irrefutable in a formal system, then Γ has a model. Then we obtain
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that MS ⇒MTP . So, the completeness theorem proves that MTP, consistency and MS
extentionally coincide. This version of squeezing argument establishes that MTP and MS
govern the primitive consistency, but neither MTP nor MS alone capture primitive consis-
tency. Besides the principles MTP and MS, he argues that there are two rules governing
consistency: the C-rules and I-rules. The C-rules are used to show that something is
consistent, while I-rules are used to show that one thing implies another thing.

We will summarize now the structure of Field’s argument. Let Conprim(Γ) mean that
Γ is primitively consistent, IS(Γ) mean that Γ is formally irrefutable in a formal system
S, and M(Γ) mean that there is a model in which Γ is true. Then:

Argument 3.1.9. Field’s argument can be summarized as follows:11

1. Conprim(Γ)⇒ IS(Γ) MS
2. M(Γ)⇒ Conprim(Γ) MTP
3. IS(Γ)⇒M(Γ) Completeness Theorem
4. IS(Γ)⇒ Conprim(Γ) Logic (2),(3)

Since it is assumed that consistency is neither a model-theoretical nor a proof-theoretical
notion, Field proposes to treat consistency as a modal operator. In this sense, consistency
is taken as the ♦ operator of modal logics and it is understood as a logical notion. So, ♦ϕ
means that “ϕ is consistent”. From consistency, we can define a dual concept of logical
truth, whose primitiveness is also defended by Field. Thus, it makes no difference whether
we take � or ♦ as primitive since they are interdefinable. Specifically, he leaves open if
these modalities belong to S4 or to S5. He says that if we accept the axiom ♦ϕ→ �♦ϕ,
we are assuming that the concept of logical truth and logical consistency have “a certain
vagueness or indeterminacy”, since second-order quantifiers, in general, have no recursive
proof procedure. According to Field, the reason for treating consistency and validity as
modalities is that the laws governing such concepts include modal axioms, not that they
are essentially modal. Lastly, Field’s squeezing argument applies only to theories which
have an available proof system. If we consider a a theory built in second-order logic, the
squeezing argument cannot be applied since second-order logic, in general, does not have
a complete proof system.

As mentioned before, Field attributes his view to Kreisel. But, the way Kreisel deals
with the squeezing argument is different from Field’s account, even if the structure of the
Argument 3.1.2 and Argument 3.1.9 are similar. The difference between those arguments
becomes clear when we analyse their details, because Field does not seem to understand
consistency in the same way as Kreisel does. It is clear that Field’s primitive consistency is
not ipsis litteris Kreisel’s definition, since Kreisel deals with mathematical structures (set
or class sized). That is, Field requires consistency to be taken as a primitive notion, not

11Field (2008) gives a similar version of Argument 3.1.9, but for primitive validity. Since he understands
consistency as the dual of validity, the difference lies just in the presentation.
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being defined in terms of abstract entities, whereas Val is defined in terms of structures,
which are defined in terms of sets, as we showed in the Section 3.1.1. The problem is that
Field ignores that Kreisel’s argument works because the informal validity has a precise
definition. That is, V al(ϕ) ⇒ V (ϕ) and D(ϕ) ⇒ V al(ϕ) hold because V al is properly
defined.

The obscurity involving primitive consistency may raise objections against Field’s
view. Akiba (1996) raises some objections against Field’s proposal on primitive consis-
tency. One of his main objections is outlined as follows. By comparing Kreisel’s and
Field’s squeezing arguments, Akiba argues that Kreisel’s approach to informal valid-
ity/consistency is interpretational in the sense that validity and consistency are defined
in terms of structures which interpret the non-logical vocabulary of the language of FOL,
and he argues that Kreisel’s consistency clearly satisfies the principles MTP and MS.
Moreover, Kreisel’s approach allows a procedure to determine what is consistent/valid
and what is not. On the other hand, Field does not explain the procedure of how the
I-rules as well as the C-rules are applied in order to determine whether or not a statement
is consistent/valid or not.12 Since Field attributes his argument to Kreisel and he did not
provide a clear explanation about what primitive consistency is, we have a good reason
to consider Kreisel’s definition as taken by Field. But, if this is the case, Field’s approach
depends on abstract entities.13

Second, it seems that Field confuses informality with primitiveness. Primitive con-
cepts, by definition, are not defined in terms of more basic terms. The most we can
do with respect to them is to stipulate some basic principles which govern them. The
principles MS and MTP hold if we consider Kreisel’s informal notion. We cannot be sure
that MS and MTP still hold in the case that consistency is taken as primitive. Field does
not provide a convincing argument to defend that MS and MTP hold when consistency
is taken as primitive. On the other hand, informal concepts are not necessarily primi-
tive. The proper definition of informal validity V al shows this. The reason for which V al
is considered as informal is due to the fact that Kreisel did not specify the size of the
structures which define V al. Shapiro’s definition is informal in a different way, because
he does not clarify the meaning of necessity and possible worlds occurring in the defini-
tion of validity in the blended sense. And his definition is intended to capture validity
in a fragment of natural language. But both notions are articulated enough so that it
is possible to provide a squeezing argument for V al and V alB, as well as their variants.
As Smith (2011) argues, such refinement is necessary for the success of these arguments.
Then, while informal concepts can be defined in terms of simpler ones, primitive concepts
cannot. This is a confusion committed by Field.

12In a more recent work, Field (2008) does not make use of these rules in his formulation of the
argument. Then, I-rules and C-rules do not play a relevant role in Field’s argument.

13Akiba (1996) raises other objections against Field’s view on primitive consistency comparing Field’s
approach to consistency to Etchemendy’s approach.
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The strategy of taking consistency as a primitive notion is not restricted to nominalists
like Field. Balaguer (1995) argues that it is possible to consider Field’s and Kreisel’s
definition of informal consistency as a primitive notion in order to explain how we do
acquire mathematical knowledge. But we claim that Balaguer commits a confusion similar
to Field with respect to the distinction between informal concepts and primitive ones, since
Kreisel’s definition is not primitive, but it is defined in terms of structures.

To sum up, even if Field is right in defending that consistency is not totally reducible
to formal notions, he fails in showing that it is primitive.

3.1.4 Consistency from a paraconsistent point of view

The idea of incorporating metatheoretical concepts in the object language has become a
fruitful field of investigation with the development of provability logics.14 Field’s proposal
can be seen as an attempt to incorporate (primitive) consistency in the object language
of logic because he defends that consistency and validity obey modal principles. In re-
cent years, many works in this direction were done, and the case of Logics of Formal
Inconsistency (LFIs) became widely known in the literature (CARNIELLI; CONIGLIO;
MARCOS, 2007). In this section, we will argue that the consistency operator present in
LFIs fails to be interpreted as primitive metatheoretical consistency in light of squeezing
arguments.15

The presence of a contradiction ϕ and ¬ϕ in a classical theory T leads T to triviality
due to the principle of explosion (ϕ,¬ϕ `T ψ). In order to deal with contradictions in a
non-trivial way, paraconsistent logics are often employed. Paraconsistent logics are logics
which reject this principle.16 LFIs are paraconsistent logics which, at the same time that
they transgress explosion, they respect the gentle principle of explosion (◦ϕ, ϕ,¬ϕ `T ψ),
where ◦ϕ means that ‘ϕ is consistent’. It is distinctive in this class of paraconsistent
logics the incorporation of the notion of consistency into their object language. The
gentle principle of explosion follows the following intuition: if a theory T admits ϕ, ¬ϕ
and ◦ϕ, then T is trivial. That is, explosion holds for consistent formulas. In general,
LFIs have the interesting property of recapturing classical inferences due to Derivability
Adjustment Theorem.17

14We will focus in provability logics in the next chapter.
15In Chapter 6, we argue that these logics capture the interpretation of classicality, as developed by

Omori and Sano (2014).
16Here we understand contradictions as the presence of a pair of contradictory formulas of the form
{ϕ,¬ϕ} and as formulas like ϕ ∧ ¬ϕ. In this sense, contradictions make essential use of the connective
of negation. On the other hand, as Novaes (2007) shows, contradictions do not need to be reduced to
situations involving negation. For example, ‘Aristotle is dead’ and ‘Aristotle is alive’ are contradictory
statements because they cannot be true together and they cannot be false together, but none of the state-
ments make use of negation. But, by terminological issues, we will understand contradictory statements
as involving the use of the negation operator.

17This theorem can be checked in (CARNIELLI; CONIGLIO; MARCOS, 2007).
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In what follows we present a LFI system which was proposed to capture the concept
of inconsistency, LFI1 presented in Carnielli et al (2004). The language of LFI1 is L• =
L∪{•}, where L is the same language of LCPL and ◦ is a unary connective of consistency.
The set of formulas of LFI1, For(L•) is inductively defined as:

pi∈N | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | • ϕ | ϕ↔ ψ

For ϕ, ψ ∈ For(L•). •ϕ means that “ϕ is inconsistent”. From these connectives, we
define the consistency connective ◦ϕ as:

◦ϕ ≡ ¬ • ϕ

Definition 3.1.10. (CARNIELLI; MARCOS; AMO, 2004) The logic LFI1 is axiomatized
as follows:

(Ax1) ϕ→ (ψ → ϕ)

(Ax2) (ϕ→ ψ)→ ((ϕ→ (ψ → γ))→ (ϕ→ γ))

(Ax3) ϕ→ (ψ → (ϕ ∧ ψ))

(Ax4) (ϕ ∧ ψ)→ ϕ

(Ax5) (ϕ ∧ ψ)→ ψ

(Ax6) ϕ→ (ϕ ∨ ψ)

(Ax7) ψ → (ϕ ∨ ψ)

(Ax8) (ϕ→ γ)→ ((ψ → γ)→ ((ϕ ∨ ψ)→ γ))

(Ax9) ϕ ∨ ¬ϕ

(Ax10) ¬¬ϕ↔ ϕ

(Ax11) ◦ϕ→ (ϕ→ (¬ϕ→ ψ))

(Ax12) •ϕ→ (ϕ ∧ ¬ϕ)

(Ax13) •(ϕ ∧ ψ)↔ ((•ϕ ∧ ψ) ∨ (•ψ ∧ ϕ))

(Ax14) •(ϕ ∨ ψ)↔ ((•ϕ ∧ ¬ψ) ∨ (•ψ ∧ ¬ϕ))

(Ax15) •(ϕ→ ψ)↔ (ϕ ∧ •ψ)

(MP) From ϕ and ϕ→ ψ we infer ψ
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The logic LFI1 is characterized by the matrix MLFI1 = 〈{1, 1
2 , 0}, •,¬,∧,∨,→,↔,

{1, 1
2}〉, whose operations have the following tables:

→ 1 1
2 0

1 1 1
2 0

1
2 1 1

2 0
0 1 1 1

∧ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

∨ 1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

↔ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 1

¬ •
1 0 0
1
2

1
2 1

0 1 0

As a consequence, ◦ϕ has the following truth-table:

◦
1 1
1
2 0
0 1

Carnielli et al (2004) proved that LFI1 is sound and complete with respect to these
truth-tables. Although LFI is a label covering a wide range of logics, we choose to analyse
the case of LFI1, because of its truth-functionality.

In general, LFIs intend to be a logical basis for non-trivial inconsistent theories, thus
being able to deal with contradictory reasoning in a “remarkably natural and elegant
way”, as Carnielli (2011) argues. Diverging from traditional approaches to contradictions,
which defends their existence in the real world, such as Priest’s Dialetheism, LFIs face
contradictions in an epistemological perspective as the following passage shows:18

At this point we would like to call attention to the fact that logics of for-
mal inconsistency, although neutral with respect to real contradictions,
are perfectly well suited to the idea that we do not know whether or not
there are real contradictions, despite the fact that we have to deal with
contradictions. When a physicist considers two theories to be inconsis-
tent when put together, (s)he is doing exactly the kind of thing that
logics of formal inconsistency are designed for – using classical logic in
the theories taken separately, but restricting the principle of explosion
with respect to the contradiction yielded by combining them together.
Thus we affirm that logics of formal inconsistency act primarily within
the epistemic domain of logic, without any commitment to the existence
of real contradictions. (CARNIELLI; RODRIGUES, 2012, pp. 13)

This epistemological approach to contradictions shows itself to be interesting by two
reasons. First, it is certainly more scientifically guided and philosophically plausible to
accept that contradictions occur only in the level of information than accepting that there
is a real contradiction. The second reason is that, in general, paraconsistent logics are
too weak to represent many forms of reasoning present which are difficult to neglect their
validity. For example, some paraconsistent logics do not validate modus ponens as well

18For an ontological defense of paraconsistency, check Priest (2006) for more details.
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as contraposition, which are forms of reasoning present in mathematical reasoning. But,
differently from these paraconsistent logics, LFIs are able to recover these inference rules
by estipulating that the sentences in question are consistent. Then, these logics do not
put ourselves very distant from the classical reasoning, present in Mathematics. In sum,
this approach can shed new light on the nature of contradictions.

This broad character of ◦ in LFIs makes it difficult to say what aspect of consistency it
captures, even in the epistemological realm. For us, it is clear that the proposed meaning
for ◦ does not capture the metatheoretical concept of consistency.19 In order to show that
◦ does not capture metatheoretical consistency, we will give an indirect argument. We
will give a squeezing argument for LFI1, and then we will compare the informal notion
of the argument with the proposed informal reading of ◦. The argument runs as follows.
Let DLFI1 and VLFI1 respectively denote validity in a formal deductive system for a LFI1
and validity in an adequate model-theory. Lastly, let V alDes be defined as follows:

V alDes(ϕ): ϕ is designated in all models.20

The informality of V alDes lies in the non specification of, for example, the cardinality
of the set of truth-values V of the matrix. Indeed, V alDes may stand as an informal
notion of validity for many-valued logics, in general.21 It is clear that every LFI1-theorem
is informally valid. Then (1) DLFI1(ϕ) ⇒ V alDes(ϕ). Moreover, if ϕ is designated in all
models, ϕ is designated in the three-valued matrices of LFI1. Then, (2) V alDes(ϕ) ⇒
VLFI1(ϕ). The squeezing argument runs as follows:

Argument 3.1.11. The squeezing argument for LFI1 can be summarized as follows:

1. DLFI1(ϕ)⇒ V alDes(ϕ) (1)
2. V alDes(ϕ)⇒ VLFI1(ϕ) (2)
3. VLFI1(ϕ)⇒ DLFI1(ϕ) Completeness Theorem
4. VLFI1(ϕ)⇒ V alDes(ϕ) Logic 2,3
5. DLFI1(ϕ)⇔ V alDes(ϕ)⇔ VLFI1(ϕ) Logic 1-4

Argument 3.1.11 establishes that the informal notion V alDes extensionally collapses
with the formal notions DLFI1 and VLFI1 when LFI1-formulas are at issue. Consider the
dual of V alDes(ϕ), defined as

ConDes(ϕ): ϕ is designated in some model.
19Mendonça & Carnielli (2020) recognize that the operator ◦ does not faithfully capture model-

theoretical consistency. In their paper, they argue that the operator ◦ captures a particular form of
consistency, present in information theories.

20Of course, in each case it is necessary to take for granted that V alDes adapts to the recursive
definitions of the valuations v ∈ semL for each many-valued logic L.

21In the last chapter of this thesis, we will concentrate on this family of logics.
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Now we present some remarkable differences between ConDes and ◦. Consider the
following (informal) assertion:

Assertion 3.1.12. Let ∧ and → be interpreted as the in truth-tables of LFI1. Then, the
meta-scheme

(ConDes(ϕ) ∧ ConDes(¬ϕ))→ ConDes(ϕ ∧ ¬ϕ) (3.3)

is not valid.

Proof. Consider an instance of the meta-scheme 3.3 where ϕ = ◦p. Now, take two models
M andM ′ which respectively attribute 1 and 1

2 to p. Then, ConDes(◦p) and ConDes(¬◦p)
are true, and hence (ConDes(◦p) ∧ ConDes(¬ ◦ p)). Since there is no model for ◦p ∧ ¬ ◦ p
in LFI1, ConDes(◦p ∧ ¬ ◦ p). Therefore, the meta-schema 3.3 is not valid.

Q.E.D.

It is easy to check that the following formulas are LFI1 theorems:

1 `LFI1 (◦ϕ ∧ ◦ψ)→ ◦(ϕ ∧ ψ);

2 `LFI1 ◦⊥.

Then, as Assertion 3.1.12 shows, the informal notion of consistency expressed by
ConDes does not coincide with the notion of consistency expressed by ◦. Since V alDes is
the informal bridge between DLFI1 and VLFI1, we can conclude that ◦ is independent from
model-theoretical and proof-theoretical definitions of consistency.

The Assertion 3.1.12 can be extended to other LFIs which extends the logic mbC with
axiom:

(cc) ◦ ◦ ϕ.

So, this shows that our argument affects a wide class of LFIs.22 Our conclusion is
compatible with some proponents of the LFIs about ◦, who defend that:

Taking into account that a primitive concept is one that is not defined
in terms of other concepts, the idea of consistency viewed as a primitive
concept is rendered formal by means of a propositional operator (or a
primitive connective) governed by certain logic axioms.
Consistency, in this sense, would certainly be a notion totally inde-
pendent of model theoretical and proof-theoretical means. (BUENO-
SOLER; CARNIELLI, 2017, p. 12)

22There are LFIs which validates both the meta-scheme 3.3 and the formula (◦ϕ∧ ◦¬ϕ)→ ◦(ϕ∧¬ϕ),
such as mbCciw (Carnielli and Coniglio (2016)). So, Assertion 3.1.12 cannot be used as a definitive
argument to all LFIs. Of course, one has to verify other principles envolving ◦ in these LFIs in order to
say that ◦ may stand for ConDes. I thank Professor Coniglio for these observations.
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In this section we analysed so far the interpretation of ◦ as standing for a metathe-
oretical concept of consistency and we argued that ◦ fails in doing so. This conclusion
was reached by formulating a variation of the so called squeezing argument in an informal
notion of validity for LFI1. Then, we saw that such informal notion considerably differs
from the proposed meaning for ◦. We think that the same procedures can be applied to
other LFIs to evaluate whether their operator ◦ succeeds in interpreting metatheoretical
consistency, but we will leave this question open. Further, in Chapter 6, we will show
that the connective ◦ of LFI1 captures an interesting formal notion of classicality.

3.2 Consistency as a derivative notion

The discussion raised in Section 3.1 shows the difficulty of stipulating a concept as primi-
tive. We showed that squeezing arguments do not reach pre-theoretical concepts. Instead,
they capture notions which previously went through an idealization process. Indeed, they
only work for notions which are theorized enough to be captured. All informal notions
analysed in this chapter exemplify this. Of course, some are sharper than others, but all
of them are theorized enough to be captured by the formal notions of validity previously
presented. The fact that it is possible to have squeezing arguments for the same logic
with different informal notions is due to the fact that formalization itself is not a discrete
process, but continuous. That is, we do not obtain a totally formalized notion F (I) from
a totally informal notion I at once, like a magic. It is more plausible to accept these
informal notions are themselves products of such continuous process.

On the other hand, the choice for a single notion is guided by theoretical preferences.
Something similar happens in the relation between informal proofs and their formaliza-
tions. For a single informal proof there may be several formalizations of it. According
to Marfori (2010), it suggests that informal proofs are underdetermined with respect to
its formalizations. The choice for a single formalization is also guided by theoretical
preferences.

We hold that squeezing arguments are the best way to establish if an informal notion
of validity is captured by formal notions of validity. If, for example, an informal notion of
validity V al′′ fails in DL(ϕ)⇒ V al′′(ϕ), we know that this informal notion is not adequate
for interpreting logic L. On the other hand, if informal notions must be theorized enough
for the success of their corresponding squeezing arguments, then we have good reasons to
say that validity and consistency are not primitive notions. Indeed, the many intentionally
different notions of validity captured by the formal notions of validity are result of some
idealization process. As a consequence, such sharpening makes those notions conceptually
robust. Any attempt to define intuitive/primitive consistency will result in a robust
concept which depends on the existence of other concepts. For this reason, we do not
believe in the existence of such primitive notions of validity (and consistency).
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One could say that all the above informal notions of validity (resp, consistency) are
pre-conceptions resulting from the contemporary development of logic and that, therefore,
we are unable to obtain a primitive notion of logical validity. So, he/she might suggest
that looking for notions of logical consequence prior to the contemporary development
of logic may shed light towards to a primitive notion of validity. However, as Smiley
(1998) points, even the ancient logic tradition approaches to logical validity fall in the
same detail: each approach to logical validity is couched in a web of diverse theories. He
gives the example of Aristotle’s syllogistic. Even if Aristotle himself did not provide a
precise definition of logical consequence, we can draw its distinctive properties. Aristotle’s
theory of consequence presupposes modal elements as well as the formality of logical
consequence. The latter feature requires, as we know nowadays, the distinction of logical
and non-logical constants. In sum, even in the ancient approach to logic the question of
the non-primitiveness of logical validity is salient.

As Sorensen (2003) remarks, the deductive practice present in Greek culture came
from the Greeks’s proof centred mathematical practice. For example, the pythagoreans,
who saw the activity of proving as the emulation of the gods’s perfection, defended that
the proofs of mathematical statements should become public in order to make it possible
for the mathematical community to check the reasoning step by step. Making a proof
accessible to the public highlights, according to Novaes (2016), the public character of
the proofs and the dialogical dimension of deductive practice, where the persuasion plays
an important role. In the act of proving a mathematical statement it is necessary for
the prover to provide convincing deductive arguments where each step is convincingly
justified. In this sense, Novaes argues that informal logical deductions have this dialogical
component. In a dialogical situation where the prover wants to show for the skeptic that
a certain conclusion follows from a certain set of premises, the prover asks for the skeptic
to take these premises for granted. Then, the prover must show that each step of his
deduction is truth preserving. The skeptic, by its turn, tries to give a counterexample in
each step of prover’s reasoning. So, if each step deductively follows from the premises, the
skeptic is not able to provide such counterexamples; on contrary, this counterexample is
available and then the argument is invalid. In this sense, logic is inherently dialogical. Of
course, as she remarks, our logical practice internalizes the skeptic: when we are to show
that a certain conclusion indeed follows from the premises, we must assure that each step
of the argument is truth preserving. That is, the steps of the proof are not susceptible to
counterexamples.

There are, in fact, several notions of informal validity. Many of them are captured
by the same formal notions of validity, while others are not. That is, the same formal
system captures different informal notions of validity. For Bezerra & Venturi (2021), this
constitutes what we call informal pluralism. Informal pluralism asserts that we do not
have purely logical reasons to choose what is the informal notion captured by the formal
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notions.
As an example of informal notion which is not adequately captured by classical FOL,

consider the following informal notion:

V alI(ϕ): ϕ is constructively provable.

The informality of V alI stems from the absence of a specification of the methods of
construction. And, as Iemhoff (2016) observes, different interpretations of constructibil-
ity may lead us to different conceptions of constructivism. For example, under Markov’s
(Dalen & Toelstra (1988)) interpretation of constructivism, every algorithm must ter-
minate, whereas Brouwer’s intuitionism allows the construction of infinite sequences of
objects.

(...) the ideal mathematician may construct longer and longer initial
segments α(0), . . . , α(n) of an infinite sequence of natural numbers a
where a is not a priori determined by some fixed process of producing
the values, so the construction of a is never finished: a is an example of
a choice sequence. (DALEN; TROELSTRA, 1988, pp.5)

Let DI and VI now stand for deductibility in an intuitionistic proof system and VI

for structures whose internal logic is Intuitionistic Logic (IL). We now argue for the
coextensivity of DI , V alI and VI .

Although V alI is theoretically irreducible to both DI and VI , nonetheless (A’) V alI is
sound with respect to IL, as Dalen (1986) argues, and also (B’) the constructions allowed
by V alI can clearly be carried out in structures whose internal logic is IL. Indeed, the
methods of constructions codified by IL represent a qualification of the (in principle)
more general notion of constructibility. Therefore, we can argue that DI captures a more
restricted version of constructibility than V alI . We can, therefore, run an analogous of
Kreisel’s squeezing argument.

Argument 3.2.1. A squeezing argument for IL can be summarized as follows:.

1. DI(ϕ)⇒ V alI(ϕ) (A’)
2. V alI(ϕ)⇒ VI(ϕ) (B’)
3. VI(ϕ)⇒ DI(ϕ) Completeness
4. DI(ϕ)⇔ V alI(ϕ)⇔ VI(ϕ) from (1)-(3)

Accepting instances of informal validity such as V alI and V al amount us to accept
a version of logical pluralism which says that the consequence relations of two different
logical systems preserve different things. That is, incompatibility of two different systems
is apparent because their consequence relation preserve different things. The Argument
3.2.1 shows that classical and intuitionistic logic do not need to be seen as rivals. In-
deed, they can be seen as talking about different things: while classical logic may be
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seen as giving a good account of preservation of truth, intuitionistic logic can be see as
giving a good account of preservation of proof-constructibility. As a consequence, differ-
ent logics preserve different informal notions of logical validity. For example, if DFOL is
the derivability relation of classical FOL, we know that DFOL(ϕ ∨ ¬ϕ) ⇒ V alI(ϕ ∨ ¬ϕ)
do not hold because intuitionistic logic does not validate excluded middle. So, given
two different logics L and L∗, we have that they do not share informal notions of logi-
cal validity since squeezing arguments establishes that VL(ϕ) ⇔ V alL(ϕ) ⇔ DL(ϕ) and
VL∗(ϕ)⇔ V alL∗(ϕ)⇔ DL∗(ϕ).23

Logical pluralism received several objections in the literature. One of the main objec-
tions against such philosophical view about logics was formulated by Quine (1986). Quine
defends that there is no dispute between logics because they simply talk about different
things. The following fragment illustrates Quine’s view:

My view of this dialogue is that neither party knows what he is talking
about. They think they are talking about negation, ‘∼’, ‘not’; but surely
the notation ceased to be recognizable as negation when they took to
regarding some conjunctions of the form ‘p. ∼ p’ as true, as stopped
regarding such sentences as implying all others. Here, evidently, is the
deviant logician’s predicament: when he tries to deny doctrine he only
changes the subject. (QUINE, 1986, pg. 81)

That is, let L1 and L2 be two logical systems which are substantially different each
other, in the sense that they disagree on at least one logical principle. According to
Quine, L1 and L2 do not need to be as rivalling each other since they talk about different
things. As a consequence, even if L1 and L2 share a connective c, the meaning of c
is different in the systems L1 and L2. Although the informal pluralism defended here
has some similarities with Quine’s view, they are different views. As the passage above
suggests, Quine is considering the case where both systems talk about truth. So, it
seems that the possibility of L1 and L2 are preserving different notions than truth is not
under consideration. This difference is important for the meaning of the connectives. For
example, from the perspective of informal pluralism, ∨ can be considered as disjunction in
both logics CPL and IL. Since both systems preserve different informal notions of validity,
it is to be expected that CPL validates ϕ ∨ ¬ϕ whereas does not.24

23This shows that squeezing arguments have an interesting application, as a criteria to know whether
an informal notion can be taken to interpret the formal notions of validity of a formal system. That is, in
order to know that a certain informal validity notion V al∗ is adequate to interpret VL and DL, we try to
formulate a squeezing argument for this informal notion. If we can conclude VL(ϕ)⇔ V al∗(ϕ)⇔ DL(ϕ),
then V al∗ is an adequate notion to interpret the formal notions of validity of L. If we cannot, then V al∗
is not adequate for L.

24In Bezerra and Venturi (2021) we discussed the informal pluralism present in translation of logics.
It is a well-known result that there is a translation between IL and S4. Moreover, it is well-known that
the latter system has different interpretations in the literature: epistemologic (STALNAKER, 2006),
informal provability (BURGESS, 1999). So, these translation results between these logics can be used
to argue that IL can also be epistemologically interpreted as well as in terms of informal provability.
Such discussion can be extended to the relation between classical and intuitionistic logic due to the
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Logical pluralism is attested by our logical practice. Many systems are often proposed
to deal with several problems. In this sense, in principle is possible to provide at least
one informal notion of validity for each logic we find in the literature. If we have a
plurality of informal notions of validity (and consistency) and we do not have purely
logical reasons to say that only one is the correct, the we have that logical validity, even
in its informal characterization, is a local notion. In fact, if there are many logical systems
capturing at least one informal notion of validity and we do not have an ultimate reason to
choose one of them as the true, then we have good reasons to defend that there are many
notions of validity. The plurality of logical systems, then, are able to offer an elucidative
characterization of these informal notions.

It is clear, however, that both formal accounts of validity/consistency fail to capture
primitive consistency since we do not know what primitive consistency is . They partially
capture the informal notions of validity when we consider a fixed class of formulas. We say
partially because the informal notions themselves, such as Kreisel’s informal notion V al,
cannot be totally captured by the model-theoretical and proof-theoretical approaches
to validity. In the case of Kreisel’s V al, we saw that it also comprehends class-sized
structures while V only considers set-sized structures. But V al, V and D coincide when
we fix the vocabulary of FOL. In this sense, we say that the informal notions of validity
are partially captured by the formal definitions of validity. In what follows, we will
defend that the formal approaches can be seen as explications of informal notion of logical
validity/consistency.

In this Chapter, we focused in the relation between informal notions of logical validity
and their corresponding formalizations. But as we argued before, the informal notions
presented here do not account of all valid inferences since they are extensionally equivalent
to the formal ones. In Chapter 5, we will present a more general notion of validity and
how this notion can be formalized.

3.2.1 Model-theory and proof-theory as explanations of validity

Despite the difficulties that both approaches to validity face, we can see them, as Griffiths
(2014) proposes, as explications of validity. The explanation here is understood in the
sense of Carnap (1950). The informal notions of validity presented in this chapter has
at least one occurrence of an imprecise concept, in the sense that its reference it is not
clear at first. As an example, the definition of V alNec has the occurrence of the concept
of necessity, which is not clear what is its reference. In this sense, such informal notions
play the role of explicandum.

By their turn, the model and proof-theoretical definitions of validity occur in precise
and well-defined frameworks. In this sense, they are the explicata of informal validity. In
double negation translation between such systems (GLIVENKO, 1929). Here we will not develop such
discussion and it will be left for further investigation.
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the case of FOL, of complete systems in general, we have that two explicata, E1 and E2,
each one corresponding to a formal approach. E1 and E2 explain two sides of the same
coin.

Carnap (1950, pp. 7) delineates some criteria to classify something as an explanation.
In his own words:

1. Similarity: The explicatum is to be similar to the explicandum in such a way that, in
most cases in which the explicandum has so far been used, the explicatum can be used;

2. Exactness: The characterization of the explicatum, that is, the rules of its use (for
instance, in the form of a definition), is to be given in an exact form, so as to introduce
the explicatum into a well-connected system of scientific concepts.

3. Fruitfulness. The explicatum is to be a fruitful concept, that is, useful for the formu-
lation of many universal statements (empirical laws in the case of a nonlogical concept,
logical theorems in the case of a logical concept).

4. Simplicity. The explicatum should be as simple as possible; this means as simple as
the more important requirements as the requirements 1, 2 and 3 permit.

It is clear that the formal approaches to informal validity fulfil the above requirements.
The only one which we have to devote more attention is the first. As we can see, the
squeezing argument fail to capture an unique notion of validity. Some of them may have
considerable differences with respect to its formalizations. Consider, for example, the case
of V alNec. This informal notion is considerably different from V . So, it may suggests that
the requirement 1 is violated. However, Carnap himself recognizes that it is not always
that this similarity will occur. He allows “considerable differences”. This is usual in most
cases of formal theories. That is, the formalizations are not similar in the way that clause
1 suggests. In the cases of formal theories, we can appeal, as Novaes & Reck (2017) do,
to a weaker requirement, which is the material adequacy. The squeezing arguments show
that if we consider a restrict class of sentences, we can show that these informal notions
can be captured by their model and proof-theoretical counterparts. In this sense, we can
say that V and D are similar to their informal counterparts.

In the next chapters we will adopt both perspectives in order to obtain the general
properties which govern them. By model-theoretical approach we mean the analysis of
consistency as the dual of the semantic validity predicate V al.25 By proof-theoretical
approach we mean the analysis of consistency as the dual of the syntactic provability

25As we will see in the last chapter, the view that consistency is the dual of validity works in the
classical case. If we look for proper fragments of classical logic, we will see that consistency should be
defined independently of validity. But, of course, this does not mean that consistency will become a
primitive notion in Field’s sense.
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predicate Pr. So it is to be expected that the discussion about consistency will become
a discussion about validity/provability since we are taking consistency as the dual of
validity. Then we will wonder whether there are modal logics which captures the general
properties of V al and Prov. So, the predicate V al (respec., Prov) will stand for the modal
operator � and the predicate Con will stand for ♦. We want to keep this characterization
as general as possible, for we want to include theories which do not necessarily contain
arithmetic. As we will see, the logical validity predicate are captured by considerably
weak modal logics, which sugests that such predicate keeps very general properties.
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Chapter 4

Necessity as provability

In this Chapter, we will present some formalizations of the notion of provability by means
of modal logics. First, we will give a general overview of Gödel’s incompleteness results
and of the early development of logics of provability. Then we will discuss the modal
approach of formal and informal provability and we will point the principles that each no-
tion satisfy. Second, we will present the modal logic KGL, the modal logic which captures
the provability predicate of PA, and the results that show that this formal interpretation
is well justified. Last, we will present to modalities which capture the predicates of true
provability and consistent provability. In both cases, we will provide the axiomatizations
of both modalities in the class of all frames as well as their characterization results.

4.1 On Hilbert’s Program

Hilbert’s Program is a program about provability. It aims to prove the consistency of
classical mathematics via finitary proofs. The crisis in the foundations of mathematics
generated by the paradoxes in the early 20th century showed the need for research on the
foundations of mathematics. In the case of Set Theory, for example, Russell’s paradox
showed that the concept of set could not be as wide as it was in Cantor’s naïve Set
Theory. Zermelo’s axiomatization of Set Theory in 1908, ZFC, became one of the most (if
not the most) prominent foundational theories. Even if one cannot show the consistency
of ZFC axioms inside ZFC, one can easily show that Russell’s set cannot be formulated
in ZFC without violating the axioms of Zermelo’s theory.1 Already in 1905, Hilbert
(1905) saw that the axiomatic method was capable of overcoming the difficulties posed
by the paradoxes. Later, in the decade of 1920, Hilbert and his students developed such
axiomatic approach to mathematical theories, which gave rise to Proof Theory. Such
development, along with the formalization of logic, should be able in principle to show

11This can be checked in any introductory book of Set Theory, such as Enderton (1977).
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that contradictions do not raise in this approach to mathematics.2

As Zach (2007) points out, the development of an axiomatic theory allows to make
explicit the logical relationships between the basic concepts of the theory and dispensing
with any appeal to intuition. In addition to dispensing with any appeal to intuition
concerning mathematical theories, Hilbert’s Formalism, according to Franks (2009), aimed
to rid mathematics of any philosophical inclinations, as the following passage shows:

One must see him [Hilbert] deliberately offering mathematical explana-
tions where philosophical ones were wanted. He did this, not to provide
philosophical foundations, but to liberate mathematics from any appar-
ent need for them (. . .) The legitimacy of Hilbert’s philosophical stance
lies precisely in its ability to generate an arena for the scientific study
of mathematics. (FRANKS, 2009, pp. 7)

What matters, therefore, are the logical relationships between the concepts expressed
by the axioms. As we will see below, the axiomatic development of mathematical theories
must be simultaneous to the development of formal logic. Different from the logicist
school, which saw that logic has a priority over mathematics, Hilbert saw that logic and
mathematics are closely connected. But this question about such priority does not raise
for Hilbert.3

As is known, Hilbert’s basic requirement for an axiomatic theory is its consistency.
Such requirement plays a central role because it is a existential condition for mathematical
objects. That is, the objects of consistent mathematical theories exist. In general, the
axiomatic method must be able to show that any axiomatic mathematical theory is free
of contradictions. In addition to the requirement for consistency, Hilbert demanded that
demonstration methods in axiomatic theories be finitary.

Obviously, the requirement for consistency is not only present in the works of Hilbert,
but also in the works of Frege and Zermelo. There is a subtle difference between Frege’s
and Hilbert’s conceptions of consistency. As Schmidt & Venturi (2021) observe, such
difference is expressed by their views about existence of mathematical objects. For Frege,
mathematical objects are consistent because they exist. Then, the axioms of Freges’s
theory are intended to grasp such pre-existing reality.4 Hilbert, by its turn, defended that
mathematical objects exist because they are consistent. The postulates of the axiomatic
theory express the meaning of the objects of the theory. In this case, the consistency of
the theory is a precondition for the existence of the objects characterized by the theory.

2This last aspect is important, as this concern in the development of logic has driven studies in
metatheory. Further, we will come back to this issue.

3There are views according to which mathematics has priority over logic. For example, according to
Franks (2009), Peirce defended such view.

4Frege’s conception of axiomatics comes, in a certain sense, from Euclids’s axiomatic method. As
Mancosu et al (2009) point, consistency proofs were not necessary in the ancient approach to axiomatics
because there was the assumption that the axioms are true of some reality. In this case, such proofs are
not necessary.
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In other words, consistency proofs of mathematical theories guarantee that the objects of
such theories exist.

According to Hilbert (2002), the inconsistency of Cantor’s theory of transfinite num-
bers was because the deductive logic methods do not work for infinite collections if such
methods are adopted without any restrictions being made. Specific axiomatic treatment
for sets is necessary so that the logic can be correctly applied. In Hilbert’s words:

Kant already taught -and indeed it is part and parcel of his doctrine-
that mathematics has at its disposal a content secured independently of
all logic and hence can never be provided with a foundation by means
of logic alone; that is why the efforts of Frege and Dedekind were bound
to fail. (HILBERT, 2002, pp. 376)

As the passage above attests, it is necessary to provide proper axioms for mathe-
matics as well as a solid logical background. Logic itself is not capable of handling all
mathematical reasoning.

The elementary number theory plays an important role in this discussion. By applying
simple finite operations (successor, addition and multiplication) on sequence of strokes,
which do not have themselves a meaning, one can generate infinitely many strokes. Al-
though these strokes have no meaning, they play the role of numerals. That is, by means
of finite operations on strokes, one can generate a structure like ω-sequence. According
to Hilbert (2002), no contradiction can arise by this methods of generating strokes. Such
theory, according to Hilbert’s finitist point of view, is the contentful part of mathematics.
Then, the formal theory which describes such structure must be a finitary arithmetic for
which we can prove consistency results.

As Silva (2003) observes, although Hilbert is not clear about what is the formal ax-
iomatic theory will formalize the elementary number theory, Skolem’s Primitive Recursive
Arithmetic (PRA) seems to fulfill the requirements. Informally speaking, PRA has as ax-
ioms the primitive recursive functions (e.g. successor, addition and multiplication), it
does not make use of unbounded quantification and the variables range over only in finite
domains.5

The consistency proof aimed by Hilbert must proceed by direct proof. That is, there
is no appeal to a model which validates the axioms of PRA. The attitude of providing
a model in order to prove the consistency might go in the opposite direction of that of
grounding the axiomatic method as a foundation of mathematics.

Now, in what concerns Set Theory, the procedure must be the same. That is, one
should provide a finitary direct proof of consistency of Set Theory. As Silva (2003) notes,
proving the consistency of Set Theory, which is a theory of the infinite, by finitary methods
does not mean giving up the infinite. It only means that the bases of the Set Theory are
themselves finitary. To sum up, Hilbert’s program aims to provide consistent finitary bases

5We invite the reader to Skolem (2002) to a presentation of PRA.
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to foundations of mathematics by means of axiomatic theories. As a result, Mathematics
would be seen as a stock of finitary provable formulas. In what follows, we briefly present
Gödel’s incompleteness theorems in order to show that Hilbert’s program cannot totally
succeed.

4.1.1 Provability in mathematical theories

In this subsection, we will give an informal presentation of Gödel incompleteness results
and we will discuss some of its consequences. If T is a theory which contains PA, T is
strong enough to represent the (finitary) recursive primitive functions in the following
sense:

Theorem 4.1.1. Let T be a theory extending PA and n-ary f a recursive function. We
say that T represents f if there is a n-ary predicate F of T such that:

`T F (x1, . . . , xn, y) iff f(x1, . . . , xn) = y (4.1)

By being capable of representing primitive recursive functions, T is capable to talk
about its own syntax, T is capable to express names pϕq of its sentences ϕ, as well as
the recursive primitive provability predicate ProvT , where ∃yProvT (y, pϕq) means that
y is the code of the proof of ϕ in T. From ∃yPrT (y, pϕq), one defines ProvT (pϕq) as
ProvT (pϕq) := ∃yPrT (y, pϕq). The Diagonalisation Lemma makes it possible for T to
provide certain statements about equivalences.6

Lemma 4.1.2 (Diagonalisation Lemma). Let T be a theory extending PA. For any for-
mula A(x) of T with a free variable x there is a sentence C such that `T C ↔ A(pCq).

Given Lemma 4.1.2 it is possible to construct for a sentences C a materially equivalent
to the sentence A(pCq).7 Particularly, one can construct a sentence A which is materially
equivalent to ¬ProvT (pAq). That is, T is capable to construct the following sentence:

A↔ ¬ProvT (pAq) (4.2)

The next two theorems are of fundamental importance in foundations of mathematics.
If they are not the two most important results in the foundations of mathematics, they
are certainly among the most important ones. Formal theories like our T are capable
to represent all the (finitary) recursive operations of elementary number theory. That

6In a loose way of speaking, Diagonalisation Lemma provides a way of making self-referential state-
ments.

7It is very common so see in the philosophical literature scholars saying that Lemma 4.1.2 allows
self-reference in arithmetical sentences. However, as Raatikainen (2020) argues, it is an informal way of
speech. It is not immediate at all that such Lemma provides a way to obtain self-reference in the formal
system. Diagonalisation Lemma only says that they are provably equivalent, not that they have the same
meaning. So, self-reference is an informal way of speak about this Lemma.
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is, all the finitary operations of the elementary number theory can be codified within T .
Gödel’s Incompleteness Theorems give a robust answer about the feasibility of Hilbert’s
program. The First incompleteness theorem shows that if T is consistent, then there is
a sentence that T cannot prove nor disprove. The Second incompleteness theorem shows
that T cannot prove its consistency. Of course, if T is inconsistent, then all sentences
are provable, including the sentence about its consistency. So, the important case here is
when T is consistent. Then the next two theorems assume the consistency of T .

Theorem 4.1.3 (First Incompleteness Theorem). Let ProvT be a provability predicate
such that for all sentences A:

(Completeness) If `T A then `T ProvT (pAq);

(Soundness) If `T ProvT (pAq) then `T A.

Moreover, if we let ϕ↔ ¬ProvT (pϕq), then

(i) 0T ϕ

(ii) 0T ¬ϕ

Proof. Suppose that `T ϕ. Then:

1. `T ϕ Hyp.
2. `T ϕ↔ ¬ProvT (pϕq) Hyp.
3. `T ϕ→ ¬ProvT (pϕq) CPL 2
4. `T ¬ProvT (pϕq) MP 1,3
5. `T ProvT (pϕq) Completeness 1

Contradiction. Then 0T ϕ. Now suppose that `T ¬ϕ. Then:

1. `T ¬ϕ Hyp.
2. `T ϕ↔ ¬ProvT (pϕq) Hyp.
3. `T ¬ProvT (pϕq)→ ϕ CPL 2
4. `T ¬ϕ→ (¬ProvT (pϕq)→ ¬ϕ) CPL
5. `T ¬ProvT (pϕq)→ ¬ϕ MP 1,4
6. `T ¬ProvT (pϕq) CPL 3,5
7. `T ¬ϕ Soundness 6

Contradiction. Then 0T ¬ϕ. This concludes the proof. Q.E.D.

The full proof of the Theorem 4.1.3 and of the Lemma 4.1.2 can be found in Smoryński
(1985). The Theorem 4.1.3 establishes that the unprovability of the sentence C, which is
equivalent to its unprovability, depends on the consistency of T. That is, if T does not
prove a contradiction, then C is not provable. The sentence C is true in the standard
model of T, but not provable in T. According to Smoryński, the second incompleteness
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theorem shows that the sentence which express the consistency of the system T is one of
the sentences that T cannot prove.

Theorem 4.1.4 (Second Incompleteness Theorem). Let 0 = 1 be a sentence denoting an
absurd and Con = ¬ProvT (p0 = 1q). Then 0T Con.

According to Smoryńsky, Theorem 4.1.4 could be proved in a similar way than the
Theorem 4.1.3. But to avoid excessive labour, it is convenient to introduce the so called
Gödel-Löb Derivability Conditions, which are stated as follows:

Fact 4.1.5. Let ProvT be a provability predicate of the theory T . ProvT satisfies the
following conditions:

(DC1) If `T ϕ, then `T ProvT (pϕq)

(DC2) `T ProvT (pϕ→ ψq)→ (ProvT (pϕq)→ ProvT (pψq))

(DC3) `T ProvT (pϕq)→ ProvT (pProvT (pϕq)q)

(DC4) If `T ProvT (pProvT (pϕq)→ ϕq), then `T ProvT (pϕq)

Theories T , obviously including PA, which contain arithmetic are capable to code their
own sentences, as well as the proofs within itself. So, if T proves a sentence ϕ, then there
is a code n which codifies the proof of ϕ in T . What condition (DC1) asserts is that T is
able to prove that n is a proof of ϕ. Then `T ProvT (pϕq). The condition (DC2) asserts
that the provability is preserved under modus ponens. The condition (DC3) asserts that
if ϕ is provable, then it is provable that ϕ is provable. Finally, the condition (DC4) is
the Löb’s Theorem (1955), which asserts that ProvT (pϕq) → ϕ is provable only in the
case that ϕ is already provable. So, given that ProvT satisfies Löb conditions, the second
incompleteness theorem is easily provable by means of a simple formal derivation. (DC4)
can be seen as a generalization of Theorem 4.1.4, because it says that the reflection schema
only holds already proved formulas.8 Before presenting the proof for Theorem 4.1.4, we
prove the following auxiliary result:

Proposition 4.1.6. The following schemas are theorems of T :

(A) `T ProvT (pϕ ∧ ψq)↔ (ProvT (pϕq) ∧ ProvT (pψq));

(B) `T ProvT (pϕ↔ ψq)→ (ProvT (pϕq)↔ ProvT (pψq)).

Proof. Consider the following formal derivations:
8Smoryński (1985, pg.10) says: “Consistency is an expression of faith in the system which the Second

Incompleteness Theorem asserts the system cannot prove; Löb’s Theorem generalises this by character-
izing provable instances of a more general expression of faith.”
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1. `T ϕ→ (ψ → (ϕ ∧ ψ)) CPL
2. `T ProvT (pϕ→ (ψ → (ϕ ∧ ψ))q) DC1,1
3. `T ProvT (pϕ→ (ψ → (ϕ ∧ ψ))q)→ DC2

(ProvT (pϕq)→ ProvT (pψ → (ϕ ∧ ψ)q) DC2(3).
4. `T (ProvT (pϕq)→ ProvT (pψ → (ϕ ∧ ψ)q) MP 2,3
5. `T ProvT (pψ → (ϕ ∧ ψ)q)→ (ProvT (pψq)→ ProvT (pϕ ∧ ψq)) DC2
6. `T ProvT (pϕq)→ (ProvT (pψq)→ ProvT (pϕ ∧ ψq)) CPL 4,5
7. `T (ProvT (pϕq) ∧ ProvT (pψq))→ (ProvT (pϕ ∧ ψq)) CPL,6
For the converse:

1. `T (ϕ ∧ ψ)→ ϕ CPL
2. `T (ϕ ∧ ψ)→ ψ CPL
3. `T ProvT (p(ϕ ∧ ψ)→ ϕq) DC1,1
4. `T ProvT (p(ϕ ∧ ψ)→ ψq) DC1,2
5. `T ProvT (p(ϕ ∧ ψ)→ ϕq)→ (ProvT (pϕ ∧ ψq)→ ProvT (pϕq)) DC2
6. `T ProvT (p(ϕ ∧ ψ)→ ψq)→ (ProvT (pϕ ∧ ψq)→ ProvT (pψq)) DC2
7. `T ProvT (pϕ ∧ ψq)→ ProvT (pϕq) MP3,5
8. `T ProvT (pϕ ∧ ψq)→ ProvT (pϕq) MP4,6
9. `T ProvT (pϕ ∧ ψq)→ (ProvT (pϕq) ∧ ProvT (pψq)) CPL 7,8

The proof of (B) is left for the reader. This concludes the proof.
Q.E.D.

Now we present the proof of Theorem 4.1.4:

Proof. By Diagonalisation Lemma, we obtain a sentence ϕ which is provably equivalent
to its non-provability, ϕ↔ ¬Prov(pϕq). We have to show that Con→ ϕ.
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1. `T ϕ↔ ¬Prov(pϕq) Lemma 4.1.2
2. `T ¬¬Prov(pϕq)↔ ¬ϕ CPL 1
3. `T ¬¬Prov(pϕq)↔ Prov(pϕq) CPL
4. `T Prov(pϕq)↔ ¬ϕ CPL 3,2
5. `T Prov(pProv(pϕq)↔ ¬ϕq) DC1,4
6. `T ProvT (pProv(pϕq)↔ ¬ϕq)→

(ProvT (pProv(pϕq)q)↔ ProvT (p¬ϕq)) Th. 4.1.6(cont. 6)
7. `T ProvT (pProv(pϕq)q)↔ ProvT (p¬ϕq) MP 5,6
8. `T ProvT (pϕq)→ ProvT (pProvT (pϕq)q) DC3
9. `T ProvT (pϕq)→ ProvT (p¬ϕq) CPL 7,8
10. `T ProvT (pϕq)→ ProvT (pϕq) CPL
11. `T (ϕ ∧ ¬ϕ)→ 0 = 1 CPL
12. `T ProvT (p(ϕ ∧ ¬ϕ)→ 0 = 1q)→

(ProvT (pϕ ∧ ¬ϕq)→ ProvT (p0 = 1q)) DC2 (cont.)
13. `T ProvT (p(ϕ ∧ ¬ϕ)→ 0 = 1q) DC1, 11
14. `T (ProvT (pϕ ∧ ¬ϕq)→ ProvT (p0 = 1q)) MP 12,13
15. `T (ProvT (pϕq) ∧ ProvT (p¬ϕq))→ ProvT (pϕ ∧ ¬ϕq) Th. 4.1.6
16. `T (ProvT (pϕq) ∧ ProvT (p¬ϕq))→ ProvT (p0 = 1q) CPL 14,15
17. `T ProvT (pϕq)→ (ProvT (pϕq) ∧ ProvT (p¬ϕq)) CPL 9,10
18. `T ProvT (pϕq)→ ProvT (p0 = 1q) CPL 16,17
19. `T ¬ProvT (p0 = 1q)→ ¬ProvT (pϕq) CPL 18

This means that Con→ ϕ. So, if `T Con, the sentence ϕ↔ ¬Prov(pϕq) would also
be provable in T , which we know that it is not the case, by Theorem 4.1.3. This concludes
the proof.

Q.E.D.

Gödel’s theorems had a considerable impact on foundations of mathematics. As we
said before, they show that Hilbert’s program cannot succeed. Both incompleteness the-
orems can also be proved for axiomatic Set Theory such as ZFC. Then, foundational
theories like ZFC cannot prove their own consistency. According to Gödel (1995), it is
the second incompleteness theorem which asserts the incompleteness of mathematical ax-
iomatic theories. In view of this result, it is impossible to say that such axiomatic theories
contain all mathematics. Even if one believes, or is certain, that such axiomatic theories
are consistent, he/she cannot prove the consistency of these theorems. It means that we
cannot totally capture the infinitary mathematics by finitary means.

There are many interpretations of Gödel results in the literature. A very standard
interpretation of Theorem 4.1.3 states that there are true sentences which are not provable
in T . Let SG := A↔ ¬ProvT (pAq). What does it mean to say that SG is true? According
to Verbrugge (2017), SG is true in the standard model, i.e., in the model N of natural
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numbers. On the other hand, if T = PA, T has non-standard models, i.e., a model which
has at least one number which is different from all natural numbers. And SG may not be
true in non-standard models. Then ‘SG is true’ actually means SG is true in the standard
model.9

According to Raatikainen (2005), the best way to understand the truth of SG is to
consider the following biconditional:

SG is true iff T is consistent (4.3)

It is clear that biconditional 4.3 is not provable in T . Now, if T is inconsistent, SG is
true because everything would be true. On the other hand, if T is consistent, then SG is
true. Under this semantic interpretation, first incompleteness theorem is also a problem
for intuitionists because the identification between truth and provability is not valid.

In what concerns the philosophical interpretations of Gödel’s theorems, there are some
things which are important to discuss. According to Raatikainen (2018), Gödel (1995)’s
own interpretation is a very cautious one. His interpretation is known as Gödel’s Disjunc-
tion (GD), which can be stated as (RAATIKAINEN, 2018):

(GD) Either the human mind (even within the realm of pure mathematics) can surpass
the power of any finite computing machine, or there are absolutely undecidable
mathematical problems.

The second disjunct means that there are mathematical problems which cannot be
solved in finitary formal systems. There are some interpretations that seem to be com-
patible with GD which will be useful for our discussion. Some interpretation maintain that
Gödel’s theorems show that there are mathematical inferences which are not formalizable
in formal systems which extend PA.10 For example, Marfori (2010) argues that:

Incompleteness results in mathematical logic seriously undermined the
formalist-reductionist project and showed that the project could not
provide the desired secure foundations for mathematics, at least not in
its original formulation(s). More specifically, the incompleteness theo-
rems undermined the claim that mathematical provability was indeed
reducible to provability within a formal system, and accordingly a fun-
damental part of the project of giving axiomatic foundations to mathe-
matics. (MARFORI, 2010, pp. 263)

Marfori’s passage follows Myhill (1960)’s interpretation according to which mathemat-
ical provability has an absolute/informal sense that is not captured by formal provability.

9In the literature there are many discussions about how to know if sentences like SG are true. We will
not enter in such discussion.

10Here we will focus on mathematical provability. Of course, if we go for natural language, there will
be of course inferences which are not adequately formalizable in a mathematical language. For example,
if someone says “I smell smoke”, she/he can safely infer that there is a fire principle nearby.
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In these wide understanding of absolute provability, he defends that sentences like SG are
provable. In his work, however, he does not provide a definition of absolute provability.
He only says that absolute provability is not reducible to proof-theoretical concepts nor
to model-theoretical concepts.

Of course, there is a clear distinction between informal provability and formal prov-
ability: while the latter is particular to a specific formal system, the former does not
depend on a particular formal system. Informal provability also seems to encompass epis-
temological elements which are somewhat rejected by the formal approach. So it is to be
expected that formal and informal provability do not coincide. But, in what concerns to
mathematical provability, whether formal or informal, it is somewhat difficult to believe
that such informal proofs cannot be formalized. Here we are not saying that such informal
proofs must be necessarily formalizable in a first-order theory. We are just saying that it
is difficult to accept that such inferences cannot be formalizable at all in a formal system,
whether it is a first-order, higher-order systems or even infinitary logics.

In order to defend the status of informal provability, Pawlowski (2018b) points the
difficulty of converting informal proofs into formal ones, in the sense that something can
be lost in this process of formalization. Even if it may be true, this is the cost of the
precision present in formal theories. A formal proof of the statement FT in a formal theory
T may be much more difficult to grasp than the proof of F in an informal mathematical
language. But such translation has advantages, such as the clear logical relations in the
steps of the formal proofs. Moreover, this problem of losing “something” is characteristic
of the process of translations, even between natural languages.

It is a matter of fact the existence of informal notions of validity. On the other hand,
we defend that such notions must be sharp enough to be understood as a provability
relation. As we defended in Chapter 3, it is very difficult to grasp what is characteristic
of an informal inference. There we also defended that the notion of validity is a notion
which is theorized enough to be called primitive. And, because it is theorized, it is very
difficult to accept the existence of an absolute notion of provability not amenable to formal
analysis. It can encompass many formal systems, but not all.

Now we turn to the analysis of the provability predicate by means of modal logics.

4.2 The logics of provability

As the name suggests, the logics of provability are intended to formalize, in terms of
modalities, the concept of provability of mathematical theories such as, for example, PA.
We can say that the interest of studying provability of these theories is influenced by
Gödel’s two incompleteness theorems. Roughly speaking, the first theorem says that if
T is a theory which contains arithmetic, then T has non-provable true sentences. And
the second establishes that T cannot prove its own consistency. On the other hand,



CHAPTER 4. NECESSITY AS PROVABILITY 64

differently from the alethic concepts of necessity and possibility, the logics of provability
give a precise meaning to modal operators since the concept of provability in a formal
theory is rigorously defined, leaving no room for ambiguities.

4.3 The birth of logics of provability

One of the most successful achievements of modal logics was the so called Provability
Logics. One of the first investigations in this direction was due to Gödel (1986a) in
interpreting the Intuitionistic Propositional Calculus (IPC) into a modal system.11 The
formula ‘�ϕ’ (originally written “Bϕ”) was intended to mean that “ϕ is provable” (B
stands for “beweisbar”). The resulting modal logic of this translation was the logic G,
nowadays known as S4 (Definition 2.3.7).

Under the provability interpretation of �, the axiom �(ϕ → ψ) → (�ϕ → �ψ)
says that provability is preserved under modus ponens. The axiom �ϕ → ϕ says that
whatever it is provable it is true. The axiom �ϕ→ ��ϕ says that if ϕ is provable, then
it is provable that ϕ is provable. The latter axiom is a kind of introspection principle.
The necessitation rule has a similar meaning as in the latter case.

Gödel (1986a) points out that S4 does not coincide with provability in formal systems.
That is, �ϕ cannot stand for “ϕ is provable in a formal system ” which contains arithmetic.
According to Gödel (1986a), the reason for this is the following:

It is to be noted that for the notion “provable in a certain formal system
S” not all the formulas provable in G hold. For example, B(Bp → p)
never holds for that notion, that is, holds for no system S that contains
arithmetic. For otherwise, for example, B(0 6= 0)→ 0 6= 0 and therefore
also ¬B(0 6= 0) would be provable in S, that is, the consistency of S
would be provable. (GÖDEL, 1986a, p. 301-302)

In other words, this interpretation would contradict the second incompleteness the-
orem, which says that the consistency of first-order arithmetic cannot be proved. The
problem is to take Bϕ→ ϕ as an axiom of the system G. The incompatibility of G with
the interpretation of provability of arithmetical theories justifies the search for modal
logics which are compatible with respect to this interpretation.

As Dean (2014) observes, it is interesting that Gödel uses the logic S4 in order to give
a provability interpretation for IPC. As we know, Brouwer Heyting Kolmogorov (BHK)
interpretation for IPC interprets the logical constants of intuitionistic logic in terms of
constructive provability.12 So, according to this interpretation, `IPC ϕ means that ϕ is
constructively provable. On the other hand, Gödel at the same time defends that �
operator of S4 cannot be interpreted as provability in theories which contains arithmetic.

11For the axiomatization of IPC check (MOSCHOVAKIS, 2018).
12For a presentation and discussion of BHK interpretation, consult Dalen e Troelstra (1988).
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Both interpretations contradict each other when taken together. As Bezerra & Venturi
(2021) show, we can run a squeezing argument for each informal interpretation of IPC.
The possibility of presenting these two squeezing arguments for IPC corroborates which
the view, originally defended by Barrio (2018), that formal systems do not have canonical
interpretations.

Even if S4 cannot be taken to interpret provability in theories which contain arithmetic,
there is a sense that S4 can be said to capture something akin to provability. We can say
that S4 captures a broader concept of provability, which we can call absolute.13 According
to Crocco (2019), Gödel understands absolute provability in two ways: in a weak sense
and in a strict sense. In the weak sense, absolute provability means independence from
formal languages and systems. It encompass a transfinite hierarchy which it is highly set
theoretical, in the sense that it uses set-theoretical language. In the strict sense, absolute
provability means independence from any formal languages and objects.14 According to
Crocco, we have “no clear analysis of what absolute proofs can be” in the strict sense. It
is more plausible to accept that S4 captures absolute provability in this weak sense.

According to Myhill (1960), absolute provability is reducible neither proof-theoretical
constructs nor to model-theoretical ones. In the course of his paper, Myhill does not
give a definition of what he understands by absolute provability, but it seems that he
understands such concept in a similar way as Halldén (1963) does. So, absolute provability
of ϕ is understood as giving compelling logical grounds to belive ϕ. Myhill argues that the
undecidable statements of PA are provable in the absolute sense, as the following passage
attests:

I am asserting that there is an absolute sense of ‘provable’, neither syn-
tactical nor semantical nor psychological, and that in this sense of ‘prov-
able’, Gödel undecidable statements are provable. The proof which I
assert not to be formalizable in elementary arithmetic is as follows: The
axioms of elementary arithmetic are true, and the rules of inference are
truth-preserving. Therefore, every theorem of elementary arithmetic is
true. Therefore 0 = 1 is not a theorem of elementary arithmetic. There-
fore a certain statement p (the arithmetization of the statement that
0 = 1 is not a theorem) is true. (MYHILL, 1960, pp. 463)

Definition 4.3.1. Let ϕ be formula in the language LPA. The formula AbPr(pϕq) means
that ϕ is absolutely provable. AbPr has the following properties:

1. AbPr(pϕq)→ ϕ;

2. AbPr(pϕ→ ψq)→ (AbPr(pϕq)→ AbPr(pψq));

3. if ϕ is a theorem, then AbPr(pϕq).
13Based on Crocco (2019) we prefer not to refer to Gödel’s broader concept of provability as informal

provability because of translation issues from German to English.
14This distinction can be found in Gödel (1990).
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The introspection principle AbPr(pϕq)→ AbPr(pAbPr(pϕq)q) is not valid, according
to Myhill, because the interest at issue is the absolute provability of arithmetical sentences.
And formulas of the form AbPr(pϕq) are not expected to be arithmetical because the
predicate AbPr is intended to be in a higher hierarchy than arithmetical statements.

By Gödel’s incompleteness theorems, such predicate cannot consistently extend PA.
Myhill’s observations is an informal version of Montague’s theorem, Montague (1963),
about modal predicates in arithmetical theories. Roughly speaking, if T extends PA with
a predicate P satisfying the properties 1-3 of Definition 4.3.1, then T is trivial. In the next
Chapter, we will present Montague’s theorem and discuss its philosophical significance.

Although the concept expressed by AbPr is reducible neither to model-theoretical nor
to proof-theoretical concepts, Myhill’s sense of absolute provability is highly formal. As
Crocco (2019) points, his notion of absolute provability is particular to mathematics.
That is, it does not extrapolates to other areas of reasoning. And the Myhill’s reason to
defend that absolute provability is irreducible is that we cannot assure that our present
mathematical theories capture an idealized notion of proof. The following passage resumes
well Myhill’s point.

(. . .) (M)athematics is in a state of slow, jerky motion (which has inci-
dentally become more rapid rather than less since the advent of formal-
ization). I hope that this will make it appear reasonable that there is an
ideal of proof to which historically given mathematical formalisms are
better and better approximations. If one thinks seriously and realisti-
cally about contemporary mathematics compared with the mathematics
of the eighteenth century, and if one prognosticates even conservatively
about what the mathematics of the twenty-second century is likely to be
like, it becomes just a little silly to think of equating ‘correct provability’
with, for example, provability in Zermelo-Frankel set-theory. (MYHILL,
1960, pp. 464)

So, as the above passage shows, the provability in our present mathematical theories
are approximations to this ideal of proof. For this reason, we cannot say that, for example,
provability in PA captures the whole concept of provability.

At this point, it should be clear that Kreisel’s informal notion of validity does not col-
lapse with Myhill’s notion of informal provability. Even if both are highly mathematical,
they have considerable differences. As Crocco (2019) observes, while Kreisel’s informal
notion of validity is a result of a conceptual analysis that aims “to eliminate the doubtful
properties of the intuitive notions”, and that coincides with the formal notions of va-
lidity when first-order formulas are taken into consideration, Myhill’s notion of absolute
provability refers to an ideal of proof which is partially captured by the mathematical
formalism.

The concept of informal provability inspired some attempts in the literature in order
to clarify such concept. Halldén (1963) defines informal provability as provability by
any correct logical means. In his work, informal provability also comprehends scientific
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theories other than mathematics, and the logic which regulates informal provability is
also S4. Inspired in Halldén’s arguments, Burgess (1999) argues that S4 is the logic of
demonstrability, in the sense that the latter notion may not take into consideration the
theoretical limitations of a particular theory, whereas (formal) provability is particular to
the theory in question.

Because it is not a precise concept, some authors defend that question about the
logic which captures the most general principles of informal provability is still an open
problem. There is a consensus, however, that the logic S4 is at least (informally) sound
with respect to informal provability, when we are not exclusively dealing with absolute
provability of arithmetical sentences. On the other hand, it is an open problem whether S4
is (informally) complete with respect to informal provability. Even if there are arguments
in favour of S4’s informal completeness, Leitgeb (2009) points out that this is an open
problem yet because it is debatable if we have a complete understanding about all our
intuitions about proofs. He defends that an investigation on formal proofs may shed lights
upon our understanding of informal proofs.

Speaking of intuitions of proofs is certainly not void of content. Proof
theorists seem to rely on quite clear non semantic representations of
proofs in terms of trees or other graphs; while the proofs in question are
of course formal ones, something like this might also be true of informal
proofs. If so, then some formal results on the geometry or topology of
formal proofs might become applicable in the realm of informal prov-
ability, too. (LEITGEB, 2009, pp. 30)

As above quote shows, the informal rigour à la Kreisel is needed in order to understand
our informal notion of proofs. But the present case is not analogous to Kreisel’s informal
notion of validity. Kreisel’s informal notion is sufficiently sharp, capturing the same
validities as its formal counterparts in first-order logic. In the present case, we cannot
say the same unless we provide a definition of what informal provability is. Even so, the
suggestion to look for formal results in order to understand informal proofs shows that
formal tools are not only simple systematizations of our informal concepts. The results
about those formal tools improves our understanding of informal notions.15

4.4 The modal logic of arithmetical provability: KGL
The most known provability logic is called KGL and it is defined as follows:

15The present discussion supposes that our activity of proving has classical logic as the basic logic.
There are works suggesting that informal provability is better understood if we change the basic logic.
For example, Pawlowski (2018a) proposes that the logic of informal provability is non-determinitic in
the sense that the truth-value of a complex formula is not totally determined by the truth-values of
its constituents. In the last Chapter, we develop a similar, but different, proposal. There we will use
non-classical logics to discover the most general properties of model-theoretical validity, but without
suggesting what is the logic of validity.
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Definition 4.4.1. (BOOLOS, 1995) The logic KGL is obtained by adding to K the axiom:

(GL) �(�ϕ→ ϕ)→ �ϕ

The axiom is also called Löb’s Axiom. Boolos (1995) proves that the formula (4)
�ϕ→ ��ϕ is a theorem of KGL.

Theorem 4.4.2. `KGL �ϕ→ ��ϕ

As a consequence of the Theorem 4.4.2, the logic K4 is a subsystem of KGL.

Definition 4.4.3. Let W be a set and R ⊆ W ×W be a relation on W.

i A relation is conversely well-founded iff for every non-empty set X there is x ∈ X such
that for no y ∈ X where wRy. That is, there is no infinite ascending chains.

Theorem 4.4.4. (BOOLOS, 1995) For all frames F = 〈W,R〉, F |= �(�ϕ→ ϕ)→ �ϕ
iff R is transitive conversely well-founded.

Theorem 4.4.5 (Soundness). KGL is sound with respect to transitive conversely well-
founded frames.

Differently from several normal modal logics, the completeness of KGL cannot be
proved using the method of canonical models. Roughly speaking, the frame of the canon-
ical model of KGL does not validate all of its theorem. But it can be proved that KGL is
complete with respect to the class of finite transitive and conversely well-founded frames.16

Theorem 4.4.6 (Completeness). KGL is sound with respect to transitive conversely well-
founded frames.

4.4.1 KGL and arithmetical provability

KGL is a very interesting modal logic because it is one of the few modal systems whose
interpretation is indisputable. For example, take the example of deontic logics and epis-
temic logics. It is difficult to assert what is the right deontic (respectively, epistemic) logic
which capture our deontic (respectively, epistemic) informal intuitions, which are vague
in a certain instance. Then, there may be the case that a theorem of a deontic logic may
not reflect our deontic intuitions. On the other hand, provability in a formal theory is not
a vague concept, since it is defined within a well-structured conceptual framework.

According to Verbrugge (2017), the origins of the axiom KGL lies in Henkin’s question
about sentences which express its own provability. For example, A↔ Pr(pAq), where A is
a formula of PA. As we said before, Löb answered this question by proving that sentences
of the form Pr(pAq)→ A can be proved in PA just in case A is already provable in PA.

16For an exposition of this proof check Hughes & Cresswell (1996).
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Theorem 4.4.7 (Löb’s theorem). If `KGL �ϕ→ ϕ, then `KGL ϕ.17

Theorems like Theorem 4.4.7 show that the logic KGL can represent the most important
results concerning the provability predicate of PA. But the fact that KGL is able to capture
these results in the modal language is not an accident. Consider the following definition
given by Boolos et al (2002):

Definition 4.4.8. (BOOLOS; BURGESS; JEFFREY, 2002) Let LPA be the language of
arithmetic and φ a realization which assigns to sentence letters sentences of LPA. We
associate each modal sentence α a sentence αφ as follows:

pφ = φ(p), where p is a sentential letter
⊥φ = 0 = 1
(α→ β)φ = αφ → βφ

(�α)φ = Prov(pαq)

From the Definition 4.4.8, Solovay (1976) proved two results which show the relations
between KGL and PA:

Theorem 4.4.9. (SOLOVAY, 1976, Arithmetical soundness) If `KGL α, then ,for every
φ, `PA α

φ.

Proof. The proof of Theorem 4.4.9 is simple. Consider any φ according to Definition 4.4.8.
The proof proceeds by induction on the length of PA proofs. First, we have to show that
KGL axioms are provable in PA modulo realization φ and that the rules of KGL preserve
theoremhood. The cases of propositional axioms are immediate. The inference rules are
also straightforward. Let us focus on the modal axioms and rules. Since we are dealing
with PA we will omit bellow the subscript PA in ProvPA.

`KGL α such that α = (�ϕ → ϕ) → (�ϕ → �ψ). By applying the function φ to α,
we obtain Prov(pϕφ → ψφq) → (Prov(pϕφq) → Prov(pψφq)). As we can see, αφ is the
derivability condition (DC2) of Fact 4.1.5.

`KGL α such that α = �ϕ → ��ϕ. By applying the function φ to α, we obtain
Prov(pϕφq)→ Prov(pProv(pϕφq)q), which is derivability condition (DC3) of Fact 4.1.5.

`KGL α such that α = �(�ϕ → ϕ) → �ϕ. By Löb’s Theorem, it suffices to prove that
Prov(pProv(pProv(pψφq) → ψφq) → Prov(pψφq)q) → (Prov(pProv(pψφq) → ψφq) →
ψφq)). In the following derivation, we write Pr(ψφ) instead of Prov(pψφq) in order to
simplify the notation. Let γ = ψφ. Then:

17It is worth saying that Löb (1955) proved this result in PA, not using modal logic, but his proof has
a strong modal character.
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1. Pr(Pr(Pr(γ)→ γ)→ Pr(γ))→ (Pr(Pr(Pr(γ)→ γ))→ Pr(Pr(γ))) (DC2)
2. Pr(Pr(γ)→ γ)→ γ)→ (Pr(Pr(γ))→ Pr(γ)) (DC2)
3. Pr(Pr(γ)→ γ)→ Pr(Pr(Pr(γ)→ γ))) (DC3)
4. Pr(Pr(Pr(γ)→ γ)→ Pr(γ))→ (Pr(Pr(γ)→ γ)→ Pr(Pr(γ))) CPL 1,3
5. Pr(Pr(Pr(γ)→ γ)→ Pr(γ))→ (Pr(Pr(γ)→ γ)→ Pr(γ)) CPL 2,4

This concludes the proof. Q.E.D.

It is sometimes convenient to adopt instead KGL the logic K4LR, which is K4 extended
with Löb rule (LR):18

(LR) From ` �ϕ→ ϕ, we obtain ` ϕ

Is is possible to prove that KGL and K4LR are in fact the same logic.

Theorem 4.4.10. KGL and K4LR are equivalent.

Proof. First, we prove that the rule LR is provable in KGL.

1. �ϕ→ ϕ Hyp.
2. �(�ϕ→ ϕ)→ �ϕ GL
3. �(�ϕ→ ϕ) Nec, 1
4. �ϕ MP 2,3
5. ϕ MP 1,4

Second, we prove that the axiom GL is provable in K4LR. Actually, if we consider the
modal version of the proof given in Theorem 4.4.9 in the step α = �(�ϕ → ϕ) → �ϕ,
we have our desired proof. Then, KGL and K4LR are equivalent systems.

Q.E.D.

Even if it is not our objective here to investigate in detail the applications of KGL,
we will spend a few words about interesting applications of KGL in the analysis of formal
notion of provability.

The Theorem 4.4.9 is itself has interesting consequences, since it allows establishing
facts about PA by means of KGL. That is, the theorems of KGL are theorems about
provability in PA. The possibility of establishing facts about provability of PA in KGL
allows the investigation of fixed points from a modal point of view. Roughly speaking,
given a sentence ϕ where an atomic sentence p occurs, it is possible to find a sentence ψ
containing atomic sentences occurring in ϕ excepting p and

`KGL �(p↔ ϕ)↔ (p↔ ψ)
18The rule LR is presented in Chellas (1980) under the name Gr.
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where �α := �α ∧ α. The fixed point theorem has many proofs in the literature. We
refer the reader to Reidhaar-Olson (1989)’s proof due to its simplicity and to the fact that
it gives a simple procedure to calculate fixed points. As an example, given the algorithm
given by Reidhaar-Olson in her paper, one can prove that the fixed point for the formula
¬��p is ¬��⊥.

Results like Theorem 4.4.7 witness that KGL can provide a modal version of important
metamathematical results. The following theorems show that KGL can give a modal proof
of the two most fundamental metamathematical results, the incompleteness theorems. Let
the formula ‘¬�⊥’ mean that PA is consistent, that is, that does not prove a contradiction.
Let ϕ be the sentence ‘I am not provable’. It is statable in modal logic as:

ϕ↔ ¬�ϕ

Then we have the following theorem:

Theorem 4.4.11. If `KGL ϕ↔ ¬�ϕ, then `KGL ¬�⊥ → ¬�ϕ.

The proof of Theorem 4.4.11 can be found in Benthem (2010), and it is quite similar to
the proof of Theorem 4.1.3.

Theorem 4.4.12. (SOLOVAY, 1976, Arithmetical completeness) For every φ, if `PA ϕ
φ,

then `KGL ϕ
φ.

Let ϕ ∈ L� such that 0KGL ϕ. Solovay’s theorem proceeds by defining a finite, tran-
sitive and conversely well-founded model M = 〈W,R, V 〉 which is embeddable in PA.
Given such embedding, Solovay shows that 0PA ϕ

φ. We refer the reader to Solovay’s own
paper and (BOOLOS, 1995, Chapter 9) for the proof of Theorem 4.4.12. Then, Theorems
4.4.9 and 4.4.12 establishes that KGL is the logic of provability of PA

These results are important for two reasons. First, it shows that KGL is the logic
which captures the formal concept of provability in PA. Thus it constitutes a response to
Quine’s criticism against modalities. Second, it shows that the concept of provability in
PA can be described in a decidable system.

4.4.2 KGL and consistency operator

In the Section 4.2 we pointed out that a provability interpretation of �, or better, B,
cannot contain the schema �ϕ → ϕ (T) if � stands for provability in mathematical
theories which contain arithmetic. Interestingly, if we add the axiom T to KGL, we obtain
a trivial system, as the following theorem shows:

Theorem 4.4.13. Let KGLT be the modal system resultant of extending KGL with formula
T. KGLT is trivial.
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Proof. Consider the following proof:

1. �⊥ → ⊥ T
2. �(�⊥ → ⊥) Nec 1
3. �(�⊥ → ⊥)→ �⊥ GL
4. �⊥ MP 2, 3
5. ⊥ MP 1, 4

This concludes the proof. Q.E.D.

Besides being incompatible with the axiom T, GL is also incompatible with a weaker
axiom �ϕ → ♦ϕ (D) which, according to the provability interpretation of modalities,
expresses a form of consistency. In this interpretation, the axiom D states that if ϕ is
provable, then ¬ϕ is not provable.

Theorem 4.4.14. Let KGLD be the modal system resultant of extending KGL with formula
D. KGLD is trivial.

Proof. Consider the following proof:

1. �> → ♦> D
2. �> N
3. ♦> MP 1, 2
4. > → ♦> CPL 3
5. ¬♦> → ⊥ CPL 4
6. �⊥ → ¬♦> K-theorem
7. �⊥ → ⊥ CPL 5, 6
8. �(�⊥ → ⊥) Nec 7
9. �(�⊥ → ⊥)→ �⊥ GL
10. �⊥ MP 8, 9
11 ⊥ MP 8, 10

This concludes the proof.
Q.E.D.

Theorem 4.4.14 establishes, in last instance, that KGL does not have theorems of
the form ♦>. Despite this incompatibility, the consistency can also be formalized in the
language of KGL as the non provability of a contradiction, ¬�⊥, as showed by the Theorem
4.4.11. This formalization of consistency is close to Hilbert’s definition of consistency,
which refers exclusively to proof in formal systems. So, if consistency is understood as
¬�⊥ in KGL, what does ♦ stand for? Boolos (1980) shows that the connective ♦ can
interpreted as omega consistency (or simply ω-consistency) which is defined as:
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Definition 4.4.15 ((CHANG; KEISLER, 1990)). Let T be a first-order arithmetical the-
ory and N be a ω-model (i.e., the model of natural numbers). We say that T is ω-consistent
if there is no formula ϕ(x) of T such that:

N |= ϕ(1), N |= ϕ(2),. . ., N |= ϕ(n), . . ., for all n, but N 2 ∀xϕ(x).

Using the Solovay’s methods, Boolos (1980) shows that KGL is also the modal logic
of ω-consistency. As we said before, all these results are interesting because they show
how a decidable theory can talk about the provability of an arithmetical theory, which we
know to be undecidable.

4.5 The modal logic of true provability

The incompatibility between KGL and �ϕ → ϕ may suggest a mismatch between arith-
metical provability and arithmetical necessity, where necessity is understood as truth in
all possible worlds. As Gilbert & Venturi (2020) note, such mismatch is not surpris-
ing because KGL-operator � captures ProvPA(y) := ∃xPr(x, y), which is a local notion,
whereas alethic necessity requires that everything necessary be actually true. Because of
the failure of axiom T, Goldblatt (1978) proposes a modal system where �ϕ interprets ϕ
is PA-provable and true. Such logic is S4Grz, which is defined as follows:

Definition 4.5.1. (GRZEGORCZYK, 1967) The logic S4Grz is the logic which extends
S4 (Definition 2.3.7) with the following axiom:

(Grz) �(�(ϕ→ �ϕ)→ ϕ)→ ϕ

Definition 4.5.2. Let R ⊆ W ×W be a relation on W . We say that R is antisymmetric
iff wRy and yRw implies w = y.

As in the case of KGL, the completeness of S4Grz cannot be proved by the method
of canonical models because it its canonical frame does not validate all of its theorems.
But it can be proved that S4Grz is characterized by the class of finite, reflexive, transitive
and antisymmetric frames. The proof of non-canonicity of S4Grz as well as the proof of
its characterization results for finite frames can be found in Hughes & Cresswell’s paper
(1982).19

Now, since KGL interprets provability in PA and it is incompatible with T, how the
question is about the relation between KGL and S4Grz. Consider the following translation:

Definition 4.5.3. Define ~ : L� → L� as follows:
19In Hughes & Cresswell (1982), S4Grz appears under the name K1.1.
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p~ = p

(¬ϕ)~ = ¬ϕ~

(ϕ→ ψ)~ = ϕ~ → ψ~

(�ϕ)~ = �ϕ~ ∧ ϕ~

Given translation ~, one can prove by induction of the complexity of ϕ the following
lemma:

Lemma 4.5.4. Let M = 〈W,R, V 〉 and N = 〈W,S, V 〉 be two models for the language
such that wSy iff wRy and w 6= y. Then, for every ϕ ∈ L�, and every w ∈ W :

M, w |= ϕ iff N , w |= ϕ~.

Given Lemma 4.5.4, it is provable that:

Theorem 4.5.5. For every ϕ ∈ L�:

`S4Grz ϕ iff `KGL ϕ
~.

Therefore, as a consequence of Lemma 4.5.4 and Theorem 4.5.5, we have a version of
arithmetical completeness theorem for S4Grz:

Theorem 4.5.6. (GOLDBLATT, 1978) For every realization φ, if `S4Grz ϕ then `PA

(ϕ~)φ.

So, in light of Theorem 4.5.6, �ϕ stands for ϕφ ∧ Prov(pϕφq).

4.5.1 The modality �

In the Section 4.5 we presented the logic of true provability, S4Grz. We saw that this logic
has the same theorems as KGL under translation ~, and its modality � means �ϕ ∧ ϕ.
Now, we will present a systematic investigation of the modality �, which says that ϕ is
necessary and true.

�ϕ := �ϕ ∧ ϕ

So, we will take � as a primitive operator in the language. We consider the language
L� = L ∪ {�} whose set of formulas For(L�) is inductively defined as follows:20

pi | ¬ϕ | ϕ→ ψ | � ϕ

20Since the modal logics of this chapter extend CPL, we will omit the subscript CPL in L�.
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For ϕ, ψ ∈ For(L�). The modality � is not new in the literature. For example, as we
said before, it was presented in the context of provability logics, such as in the works of
Goldblatt (1978) and Boolos (1995). This modality also appears in Pelletier (1984) and
French & Humberstone (2009) in the context of translations between modal systems.21

The semantic clause for � is given by the following definition:

Definition 4.5.7. The semantics for the language L� is a Kripke semantics, as presented
in Definition 2.3.1, differing in the clause 4:

4” M, w |= �ϕ iffM, w |= ϕ and for all y ∈ W such that wRy,M, y |= ϕ.

Consider the following definition:

Definition 4.5.8. (FAN; WANG; DITMARSCH, 2015) Given two logical languages L1

and L2 that are interpreted in the same class M of models.

• L2 is at least as expressive as L1, L1 � L2, iff for every ϕ1 ∈ L1 there is ϕ2 ∈ L2

such that for all pointed models (M, w) ∈M,M, w |= ϕ1 iffM, w |= ϕ1;

• L1 and L2 are equally expressive, L1 ≡ L2, iff L1 � L2 and L2 � L1;

• L2 is less expressive than L1 iff L1 � L2 and not-L2 � L1

Given Definition 4.5.7, we will show that � and � are not equally expressive.

Theorem 4.5.9. L� is less expressive than L� in the class of all models.

Proof. Consider the translation h : L� → L� defined as follows:

h(p) = p

h(¬ϕ) = ¬h(ϕ)
h(ϕ→ ψ) = h(ϕ)→ h(ψ)
h(�ϕ) = �h(ϕ) ∧ h(ϕ)

We can prove that for all ϕ ∈ L�, M, w |= ϕ iff M, w |= h(ϕ). Then L� � L�.
On the other hand, consider two one world models N1 = 〈W1, R1, V1〉, where W1 = {w},
R1 = {< w,w >} and V1 be arbitrary over propositional variables, and N2 = 〈W2, R2, V2〉,
where W2 = {w}, R2 = ∅ and V2(pi) = V1(pi), for all pi. It is easy to see that for all
ϕ ∈ L�, N1, w |= ϕ iff N2, w |= ϕ. Then it is easy to see that while � differentiates both
models with the formula �⊥, � does not because formulas of the form �⊥ are always
false. By the semantic definition of �, we can see that � cannot distinguish reflexive
worlds from non-reflexive ones. Then, L� ≺ L�. Q.E.D.

21To be honest, Pelletier does not explicitly use the modality �. Instead, he directly uses �ϕ ∧ ϕ.
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From the semantical definition of the operator � it is clear that it carries an intrinsic
property of reflexivity, and this justifies the validity of the axiom T� in the class CK. As
a consequence, if one defines the translation f : L� → L�

f(p) = p

f(¬ϕ) = ¬f(ϕ)
f(ϕ→ ψ) = f(ϕ)→ f(ψ)
f(�ϕ) = �f(ϕ)

which replaces all the occurrences if � by �, then it is provable by induction on the
complexity of ϕ following proposition:

Proposition 4.5.10. Given ϕ ∈ For(L�) and F = 〈W,R〉 is a reflexive frame. Then,
for all w ∈ W ,

F,w |= ϕ iff F,w |= f(ϕ).

Even if � is not a new modality it is not of our knowledge its minimal axiomatization.
Here, we provide the axiomatization of the minimal axiomatization of � in the language
L� is the following:

Definition 4.5.11. The axiom system for logic K� is defined as follows:

(CPL) All propositional tautologies;

(K�) �(ϕ→ ψ)→ (�ϕ→ �ψ);

(T�) �ϕ→ ϕ;

(MP) from ` ϕ and ` ϕ→ ψ we infer ` ψ;

(Nec�) from ` ϕ we infer ` �ϕ

Theorem 4.5.12. ` �(ϕ ∧ ψ)↔ (�ϕ ∧�ψ)

The proof of Theorem 4.5.12 runs as in Theorem 4.6.14 and Theorem 4.6.14. It is also
immediate to prove that:

Theorem 4.5.13. ` �ϕ↔ (�ϕ ∧ ϕ).

Proof. Consider the following formal deduction:

1. (�ϕ ∧ ϕ)→ �ϕ CPL
2. �ϕ→ �ϕ CPL
3. �ϕ→ ϕ T�

4. �ϕ→ (�ϕ ∧ ϕ) CPL 2,3
5. �ϕ↔ (�ϕ ∧ ϕ) CPL 1,4

This concludes the proof. Q.E.D.
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Given the semantic characterization of the language L� given in Definition 4.5.7, we
can prove by induction of the length of proofs that K� is sound in the class CK.

Theorem 4.5.14. K� is sound with respect to the class CK.

Proof. We will show that the axioms of K� are valid in the class CK. The non-modal
axioms and rules are given by the soundness of CPL. Then we will focus only in the modal
axioms and rules.

I) Axiom �(ϕ→ ψ)→ (�ϕ→ �ψ).
Suppose that for every M = 〈W,R, v〉, for every w ∈ W,M, w |= �(ϕ → ψ) and

M, w |= �ϕ. Then, (M, w |= ϕ→ ψ and for every y ∈ W such that wRy,M, y |= ϕ→ ψ)
and (M, w |= ϕ and for every y ∈ W such that wRy,M, y |= ϕ). By semantic modus
ponens,M, w |= ψ. SinceM, y |= ϕ→ ψ andM, y |= ϕ, for every y ∈ W such that wRy,
we obtainM, y |= ψ. Then,M, w |= �ψ. Therefore,M, w |= �(ϕ→ ψ)→ (�ϕ→ �ψ).

II) Axiom �ϕ → ϕ.. The validity of this axiom immediately follows from the semantic
definition of �.

III) Rule Nec�.
Suppose that M, w |= ϕ for every model M = 〈W,R, v〉, for every w ∈ W. Then so

(M, w |= ϕ and M, y |= ϕ, for every y ∈ W such that wRy). Therefore, M, w |= �ϕ.
This concludes the proof. Q.E.D.

Now, consider the following definition:

Definition 4.5.15. The canonical modelM = 〈W�, R�, V �〉 is defined as follows:

(1) W� is the set of maximal consistent set of formulas in L�;

(2) For all w, y ∈ W� the relation R� ⊆ W� × W� is defined as follows: wR�y iff
λ(w) ⊆ y, where λ(w) = {ϕ | � ϕ ∈ w}.

(3) the function V � : V → ℘(W ) is defined as: w ∈ V �(p) iff p ∈ w.

Theorem 4.5.16. Let w be a maximal consistent set of formulas of For(L�). Then:

(A) ϕ ∈ w iff ` ϕ;

(B) ¬ϕ ∈ w iff ϕ /∈ w;

(C) ϕ→ ψ ∈ w iff ϕ ∈ w implies ψ ∈ w.

The proof of Theorem 4.5.16 can be found in (CHELLAS, 1980, pp.53, Theorem 2.18).

Definition 4.5.17. (HUGHES; CRESSWELL, 1996) Let S be a modal system and ∆
be a set of formulas in the language of S. We say that ∆ is S-consistent if there is no
γ1, ..., γn ∈ ∆ such that
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` ¬(γ1 ∧ ... ∧ γn).

Lemma 4.5.18 (Lindenbaum Lemma). Let ∆ be S-consistent set of formulas. Then
there is a maximal S-consistent set of formulas Γ such that ∆ ⊆ Γ.

Lemma 4.5.19. Let w be a maximal consistent of formulas in L�. If �ϕ /∈ w, then
ϕ /∈ w or λ(w) ∪ {¬ϕ} is consistent.

Proof. Suppose that �ϕ /∈ w, by Theorem 4.5.13, we have (i) ϕ /∈ w or (ii) the consistency
of λ(w) ∪ {¬ϕ}. We will show (ii). Suppose that λ(w) ∪ {¬ϕ} is inconsistent. Then by
Definition 4.5.17 there is {γ1, ..., γn} ⊆ λ(w) such that:

(1) ` ¬(γ1 ∧ ... ∧ γn ∧ ¬ϕ) Def. 4.5.17
(2) ` (γ1 ∧ ... ∧ γn)→ ϕ CPL 1
(3) ` �(γ1 ∧ ... ∧ γn)→ �ϕ RK�, 2
(4) ` (�γ1 ∧ ... ∧�γn)→ �(γ1 ∧ ... ∧ γn) Theorem
(5) ` (�γ1 ∧ ... ∧�γn)→ �ϕ CPL 3,4
(6) ` ¬(�γ1 ∧ ... ∧�γn ∧ ¬� ϕ) CPL 5

Thus, {�γ1, ...,�γn,¬�ϕ} is inconsistent, contradicting the consistency of w. Q.E.D.

Lemma 4.5.20. LetM be a canonical model for K�. The for every w ∈ W� and every
formula ϕ ∈ K�:

M, w |= ϕ iff ϕ ∈ w.

Proof. The proof runs by induction on ϕ. The atomic case is given by definition and the
boolean cases follow from Theorem 4.5.16. Then let ϕ = �ψ. Suppose that �ψ ∈ w and
λ(w) ⊆ y for all y ∈ W�. Because �ψ → ψ ∈ w we conclude ψ ∈ w. Moreover, ψ ∈ y.
By definition of R�, we obtain wR�y. By applying the induction hypothesis twice, we
concludeM, w |= ψ andM, y |= ψ. Then,M, w |= �ψ.

Conversely, suppose that �ψ /∈ w. By Lemma 4.5.19, ψ /∈ w or λ(w) ∪ {¬ψ} is
consistent. Consider the second disjunct. By Lindenbaum lemma, we extend λ(w)∪{¬ψ}
to a maximal consistent set of formulas y in the language L�. Then, λ(w) ∪ {¬ψ} ⊆ y.
So, ¬ψ ∈ y. Because y is maximally consistent, we obtain ψ /∈ y. By applying induction
hypothesis twice, (i) M, w 2 ψ or (ii) M, y 2 ψ. In both cases, we obtain M, w 2
�ψ. Q.E.D.

Theorem 4.5.21. If ϕ is valid, then ` ϕ.

Proof. Suppose that 0 ϕ. Then there is a maximal consistent set of formulas such that
ϕ /∈ w. Then, by Theorem 4.5.16, ¬ϕ ∈ w. By Lemma 4.5.20, M, w |= ¬ϕ. Therefore,
M, w 2 ϕ. Q.E.D.
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Given a sound and complete axiomatization for � in the class of all models, we also
conjecture to be possible to prove that � collapses, in the class of all models, all logics
between the logics K and KT. This collapse would happen due to the fact that � does
not distinguish worlds which are related to themselves and worlds which are not related
to themselves. From the semantical point of view, this phenomenon can be captured by
the following definition:

Definition 4.5.22. (MARCOS, 2005a) Let F = 〈W,R〉 and Fm = 〈W,R〉 be frames such
that Rm ⊆ R and R − Rm ⊆ {(x, x)|w ∈ W}. Then Fm is said to be a mirror reduction
of F. Two frames F1 and F2 are mirror-related, F1 ∼m F2, if they are mirror reductions
of a common frame.

With the minimal �-logic K�, and Definition 4.5.22 at hands the following proposition
is provable:

Proposition 4.5.23. Let F = 〈W,R〉 and Fm = 〈W,Rm〉 be frames such that Fm is a
mirror reduction of F. Then, for every model M based on F, every model Mm based on
Fm, and every w ∈ W :

M, w |= ϕ iffMm, w |= ϕ

for every ϕ ∈ For(L�).

It is important to stress here the importance of a minimal axiomatization for �-
logic in the class CK. In the presence of a such sound and complete axiomatization, the
Proposition 4.5.23 allows to prove that all logics KX such that K ⊆ KX ⊆ KT collapse in
the language L�. Now we present the proof of Proposition 4.5.23:

Proof. The boolean cases are straightfoward. We will consider the case where ϕ = �ψ.
Suppose thatM, w |= �ψ. ThenM, w |= ψ and, for every y ∈ W , if wRy thenM, y |= ψ.
Since Rm ⊆ R, then if wRmy thenM, y |= ψ. By I.H.,Mm, w |= ψ andMm, y |= ψ, for
every y ∈ W such that wRmy. Therefore,Mm, w |= �ψ.

For the converse, suppose thatM, w 2 �ψ. Then, we have the following cases:

1. M, w 2 ψ and, for all y ∈ W , if wRy thenM, y |= ψ;

2. M, w 2 ψ and, for some y ∈ W such that wRy,M, y 2 ψ;

3. M, w |= ψ and for some y ∈ W such that wRy,M, y 2 ψ.

The cases 1 and 2 are straightfoward because M, w 2 ψ. Thus, applying I.H., we
obtainMm, w 2 ψ. ThenMm, w 2 �ψ. So we will concentrate on the case 3. So, there
is some y ∈ W such that wRy andM, y 2 ψ. Remove now some reflexive arrows from R,
possibly including wRw. Let Rm be the result of this removal. Clearly, Rm ⊆ R. Since
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M, w |= ψ, such removal makes no difference since ψ is true at w. So, by I.H., we obtain
Mm, w |= ψ. Also, for some y ∈ W such that wRmy, M, y 2 ψ. By I.H., we obtain
Mm, y 2 ψ for some y ∈ W such that wRmy. Therefore, we concludeMm, w 2 �ψ. This
concludes the proof.

Q.E.D.

As a consequence of the Proposition 4.5.23 we have the following corollary:

Corollary 4.5.24. Let F1 = 〈W,R〉 and F2 = 〈W,R〉 be two frames such that F1 ∼m F2.
Then, for every ϕ ∈ For(L�),

F1, w |= ϕ iff F2, w |= ϕ.

Therefore, given a sound and complete axiomatization for the minimal �-logic, the
Proposition 4.5.23 and Corollary 4.5.24 will establish the collapse of all logics between K
and KT in the language L�.

The modality > can be defined as:

>ϕ := ¬� ¬ϕ

In the provability interpretation of �, >ϕ means that “ϕ is either provable or true”.
By the results of this section, we obtain that > validates the same principles as ♦ in the
class of all frames.

4.6 The modal logic of consistent provability

In the provability interpretation of modal logics, the �ϕ → ♦ϕ expresses a form of
consistency because it says that the provability of ϕ implies the non provability of ¬ϕ.
From Theorem 4.4.14, it is clear that there is no consistent extension of KGL with the
axiom D. So, the operator � of KD cannot interpret the predicate ProvPA as KGL does.
Consider the following definition:

Definition 4.6.1. Let T be a theory in the language of LPA and ProvT be a provability
predicate of T . we say that ProvT is a standard provability predicate if it satisfies the
conditions DC1-DC4 of the Claim 4.1.5. ProvT non-standard if it is not standard.

It is obvious that ProvPA is standard. In the literature about provability in formal
theories, the search for non-standard provability predicates became and their associated
provability logics became a relevant problem. Consider the following definition

Definition 4.6.2. (KURAHASHI, 2018) Let PrT (x, y) be a predicate of theory T in the
language of LPA and ¬(x) be the operation which gives the Gödel number of a negated
formula whose Gödel number is x. For each PrT the formula
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∃y(PrT (y, x) ∧ ¬PrT (y,¬(x))) (4.4)

is a Rosser provability predicate of T .

As a consequence of Definition 4.6.2, the following proposition hilds

Proposition 4.6.3. (KURAHASHI, 2018) Let ProvRT be a Rosser provability predicate.
Then, if `T ¬ϕ, then ` ¬ProvRT (pϕq).

By a variation of Solovay’s theorem, Kurahashi proves that the logic KD is the logic
which completely captures ProvRT . Consider the following definition

Definition 4.6.4. (KURAHASHI, 2018) Let LPA be the language of arithmetic and ♣ a
realization which assigns to sentence letters sentences of LPA. We associate each modal
sentence ϕ a sentence ϕφ as follows:

p♣ = φ(p), where p is a sentential letter
⊥♣ = 0 = 1
(ϕ→ ψ)♣ = ϕ♣ → ψ♣

(�ϕ)♣ = PrRT (pϕ♣q)

Theorem 4.6.5. (KURAHASHI, 2018) There exists a Rosser provability predicate PrRT (x)
of T such that the following conditions hold:

1. For any ϕ ∈ L�: if `KD ϕ, then `T ϕ♣, for any realization ♣ based on PrRT (x).

2. There exists a realization ♣ based on PrRT (x) such that for any ϕ ∈ L�: `KD ϕ iff
`T ϕ♣.

The logic KD is characterized by the class CKD of serial frames. Then, it is easily
probable that:

Theorem 4.6.6. `KD �ϕ↔ (�ϕ ∧ ♦ϕ)

Proof. Consider the following formal derivation:

1. (�ϕ ∧ ♦ϕ)→ �ϕ CPL
2. �ϕ→ ♦ϕ D
3. �ϕ→ �ϕ CPL
4. �ϕ→ (�ϕ ∧ ♦ϕ) CPL 2,3
5. �ϕ↔ (�ϕ ∧ ♦ϕ) CPL 1,4

This concludes the proof. Q.E.D.

Theorem 4.6.4 establishes that the logic KD captures a Rosser provability predicate,
in the lines of Definition 4.6.2. Now, consider the following translation
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Definition 4.6.7. Define ⊕ : L� → L� as follows:

p⊕ = p

(¬ϕ)⊕ = ¬ϕ⊕

(ϕ→ ψ)⊕ = ϕ⊕ → ψ⊕

(�ϕ)⊕ = �ϕ⊕ ∧ ♦ϕ⊕

Consider the following definition:

Definition 4.6.8. The modal system KD4 is obtained by extending the logic KD with the
axiom �ϕ→ ��ϕ.

Even if KGL is not compatible with axiom D, we wonder, inspired in Goldblatt (1978),
if there is a logic L extending KD4 such that the following is provable:

Question 4.6.9. Let L be a modal logic extending KD4. For every ϕ ∈ L�:

`L ϕ iff `KGL ϕ
⊕.

If there is such logic according to Question 4.6.9, then L is the logic of consistent
provability. This means that �ϕ in such L means ProvPA(pϕφq) ∧ ¬ProvPA(p¬ϕφq).

4.6.1 The modality �

In the Section 4.6, we introduced the translation ⊕ where �ϕ is translated as �ϕ ∧ ♦ϕ.
Now, we will present a systematic investigation of the modality �, which says that ϕ is
necessary and possible:

�ϕ := �ϕ ∧ ♦ϕ

In a provability interpretation of modal logics �ϕ expresses the notion of consistent
provability. The modality � is non-normal, because, as we will see below, it does not
validate necessitation in the class of all models. Now, we will consider a modal logic
where � is taken as the only primitive modal operator of the modal language. Thus, we
consider the language L� as the set L� = L ∪ {�}. The set of formulas of L�, For(L�),
is defined inductively as follows:

pi | ¬ϕ | ϕ→ ψ | � ϕ

For ϕ, ψ ∈ For(L�).
Now we present the deductive system for the minimal logic which contains the operator

�.

Definition 4.6.10. The logic K� is defined as follows:
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(CPL) All propositional tautologies;

(K�) �(ϕ→ ψ)→ (�ϕ→ �ψ);

(D�) �ϕ→ ¬� ¬ϕ;

(MP) from ` ϕ and ` ϕ→ ψ we infer ` ψ;

(RK�) from ` ϕ→ ψ we infer ` �ϕ→ �ψ.

Definition 4.6.11. The semantics for the language L� is also a Kripke semantics of
Definition 2.3.1, differing in the clause 4:

4’ M, w |= �ϕ iff (for every z ∈ W such that wRz, M, z |= ϕ) and (there is x ∈ W

such that wRx,M, x |= ϕ).

From the semantic definition of �, it is immediate to see that in the class CK of all
frames, the necessitation rule is not a valid schema due to the presence of dead ends.
Thus, in order to validate the inference rule of necessitation, the class of frames must be
totally serial.

Despite the non-normality of the operator �, one can define the normal operator in
K� as follows:22

�ϕ := �> → �ϕ

In fact, one can prove that in the class of serial frames, �ϕ and�ϕ are interchangeable.
First, consider the following definition:

Definition 4.6.12. Define the following translation, that we call the �-translation, from
For(L�) to For(L�):

(p)� = p

(¬ϕ)� = ¬ϕ�

(ϕ→ ψ)� = ϕ� → ψ�

(�ϕ)� = �ϕ�

Proposition 4.6.13. Given ϕ ∈ For(L�) and F = 〈W,R〉 is a serial frame, then, for all
w ∈ W ,

F,w |= ϕ iff F,w |= ϕ�

The proof easily follows by induction on the complexity of formulas.
Consider now the following theorems which will be useful for the characterization

results for K�.
22We thank Lloyd Humberstone for suggesting this definition in a private communication.
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Theorem 4.6.14. ` �(ϕ ∧ ψ)→ (�ϕ ∧�ψ)

Proof. We give a formal deduction:

1. (ϕ ∧ ψ)→ ϕ CPL
2. �(ϕ ∧ ψ)→ �ϕ RK� 1
3. (ϕ ∧ ψ)→ ψ CPL
4. �(ϕ ∧ ψ)→ �ψ RK� 3
5. �(ϕ ∧ ψ)→ (�ϕ ∧�ψ) CPL 2,4

This concludes the proof. Q.E.D.

Theorem 4.6.15. ` (�ϕ ∧�ψ)→ �(ϕ ∧ ψ)

Proof. We give a formal deduction:

1. ϕ→ (ψ → (ϕ ∧ ψ)) CPL
2. �ϕ→ �(ψ → (ϕ ∧ ψ)) RK� 1
3. �(ϕ→ (ϕ ∧ ψ))→ (�ϕ→ �(ϕ ∧ ψ)) K�

4. �ϕ→ (�ψ → �(ϕ ∧ ψ)) CPL 2,3
5. (�ϕ ∧�ψ)→ �(ϕ ∧ ψ) CPL 4

This concludes the proof. Q.E.D.

These two results also establish that K� is the minimal logic of the operator �. It is
easy to prove that this logic is sound on the class of all frames.

Theorem 4.6.16. The logic K� is sound with respect to CK.

The system K� can be seen as a regular modal system in the sense of Segerberg (1971):
a modal system L� is called regular if L� contains the modal axiom K, the rule MP and
the rule RK; indeed it is the case that E20 ⊆ K� ⊆ E2 = E20 + T , where E20 is the
minimal regular system.

The proof of completeness is inspired by Steinsvold (2011). We define the canonical
model of K� as follows:

Definition 4.6.17. The canonical modelM = 〈W�, R�, V �〉 is defined as follows:

(1) W� is the set of maximal consistent sets of formulas in L� such that W� = W s∪W¬s

where:

(1.1) w ∈ W s if and only if ∃ϕ(�ϕ ∈ w);

(1.2) w ∈ W¬s if and only if ¬∃ϕ(�ϕ ∈ w).

(2) Let w, y ∈ W�. The relation R� ⊆ W� ×W� is defined as follows:

(2.1) if w ∈ W s, then let wR�y iff λ(w) ⊆ y (where λ(w) = {ϕ | � ϕ ∈ w});
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(2.2) if w ∈ W¬s, then there is no y ∈ W� such that wR�y.

(3) The function V � : V ar → ℘(W�) is defined as follows: w ∈ V �(p) iff p ∈ w.

Proposition 4.6.18. Let w be a maximally K�-consistent set of formulas such that
λ(w) 6= ∅. If ¬� ϕ ∈ w, then λ(w) ∪ {¬ϕ} is K�-consistent.

Proof. Suppose that λ(w) ∪ {¬ϕ} is not K�-consistent. Since λ(w) 6= ∅, then, by Defini-
tion 4.5.17 there is {γ1, ..., γn} ⊆ λ(w) such that:

(1) ` ¬(γ1 ∧ ... ∧ γn ∧ ¬ϕ) Def. 4.5.17
(2) ` (γ1 ∧ ... ∧ γn)→ ϕ Taut,1
(3) ` �(γ1 ∧ ... ∧ γn)→ �ϕ RK�, 2
(4) ` (�γ1 ∧ ... ∧�γn)→ �(γ1 ∧ ... ∧ γn) Theorem
(5) ` (�γ1 ∧ ... ∧�γn)→ �ϕ Taut 3,4
(6) ` ¬(�γ1 ∧ ... ∧�γn ∧ ¬� ϕ) Taut,5

Thus, {�γ1, ...,�γn,¬�ϕ} is inconsistent, contradicting the consistency of w. Q.E.D.

Theorem 4.6.19. Let M be a canonical model for K�. Then, for every w ∈ W� and
every formula ϕ of K�:

M, w |= ϕ iff ϕ ∈ w.

Proof. The atomic case and the Boolean cases are straightforward. Then let �ψ ∈ w.
Therefore w ∈ W s and so not only wR�y iff λ(w) ⊆ y. Then, ψ ∈ y. By induction
hypothesis,M, y |= ψ for all y, wR�y. Moreover, since �ψ → ψ is an axiom, we conclude
that ¬ � ¬ψ ∈ w. By Proposition 4.6.18, we conclude that λ(w) ∪ {ψ} is consistent.
Then, by the Lindenbaum lemma, we can extend λ(w)∪ {ψ} to a maximal consistent set
z of K� formulas. Then, ψ ∈ z. y induction hypothesis,M, z |= ψ for some z such that
wR�z. Therefore,M, w |= �ψ.

Conversely, suppose that �ψ /∈ w. Then ¬� ψ ∈ w. There are two possibilities: w ∈
W s or w ∈ W¬s. If w ∈ W s, then λ(w) 6= ∅ and, by the Proposition 4.6.18, λ(w) ∪ {¬ψ}
is BK-consistent. So, applying Lindenbaum lemma, we can extend λ(w) ∪ {¬ψ} to a
maximal, BK-consistent set y. Then λ(w) ∪ {¬ψ} ⊆ y. So λ(w) ⊆ y and ¬ψ ∈ y.
Moreover, by K�-consistency of y, we have ψ /∈ y. By induction hypothesis, M, y 2 ψ

and soM, w 2 �ψ.
On the other hand, if w ∈ W¬s, then there is no y ∈ W� such that wR�y. Therefore,

by the semantic definition of the �-operator,M, w 2 �ψ.
Q.E.D.
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Generalized completeness for �-logics

As noted earlier, the non-normality of the operator � lies in the failure of necessitation
rule in the class of all models. But, if we concentrate on serial frames and their restrictions,
the operator � becomes normal and we regain the necessitation rule. The possibility of
regaining normality above serial frames allows us to characterize the �-counterparts of
normal modal logics which extend the logic KD. In this section we will apply a method
that we will call the generated subframe method, first introduced in Goldblatt & Mares
(2006) for the study of quantified modal logic and then adapted in Gilbert & Venturi
(2016) to the study of non-normal modal logics. We therefore provide characterization
results for �-logics, whose theorems are valid in serial frames.

For this method to work, we need first to isolate the basic normal modal logic to
which, later, apply a theorem-preserving translation between L� and L�. Then, the
same translation will be used to characterize all extensions of this logic. Because of the
theorem-preserving character of the translation, we need to preserve the application of
the necessitation rule and therefore we are forced to consider KD as our basic logic.

We then define the �-logic that will allow us to define the appropriate translation.

Definition 4.6.20. The logic BD is axiomatized as follows:

(CPL) All instances of propositional tautologies.

(K�) �(ϕ→ ψ)→ (�ϕ→ �ψ)

(D�) �ϕ→ ¬� ¬ϕ

(MP) From ` ϕ and ` ϕ→ ψ we infer ` ψ

(Nec�) From ` ϕ we infer ` �ϕ

By minimality of K� we have that K� ⊆ BD. Moreover, it is immediate to see that BD

is sound with respect to serial frames.

Theorem 4.6.21. BD is sound with respect to CD. Q.E.D.

For completeness we again use a canonical model construction. The proof of the
completeness theorem for BD follows closely that of K�. The only difference, that is
actually a simplification, consists in noting that there is no world of the canonical model
for BD which does not contain formulas of form �ϕ.

Theorem 4.6.22. The logic BD is complete with respect to the class of serial frames.
Q.E.D.

Now we define the � translation:
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Definition 4.6.23. Define the following translation, that we call the �-translation, from
Form(L�) to Form(L�):

(p)� = p

(¬ϕ)� = ¬ϕ�

(ϕ ∧ ψ)� = ϕ� ∧ ψ�

(ϕ ∨ ψ)� = ϕ� ∨ ψ�

(ϕ→ ψ)� = ϕ� → ψ�

(�ϕ)� = �ϕ�

Moreover, for a normal modal logic L, define L� be the smallest logic in the language
L� extending BD and containing ϕ� for every ϕ ∈ L. We will call L� the �-counterpart
of L.

It is easy to see that BD is indeed the minimal logic of � in serial frames.

Theorem 4.6.24. KD� = BD.

Proof. That BD ⊆ KD� is obvious. On the other hand, we prove by induction on the length
of proofs that KD� ⊆ BD. If α is an instance of a K-axiom �(ϕ → ψ) → (�ϕ → �ψ),
then α� is:

�(ϕ� → ψ�)→ (�ϕ� → �ψ�)

which is an axiom of Bd. If α is an instance of a D-axiom �ϕ→ ¬�¬ϕ, then α� is:

�ϕ� → ¬� ¬ϕ�

which is a theorem of the minimal �-logic and therefore also of BD. For Modus Ponens,
there is nothing to prove, while in the case of necessitation, notice that by definition the
logic BD is closed under the �-translation of necessitation. Therefore BD = KD�. Q.E.D.

From now on, we will refer to BD as the minimal �-logic with respect to the �-
translation and it will be denoted by KD�.

We are now in the position to apply the generated subframe method. In order to do
so, recall the following, standard, definitions and results Blackburn et al (2001).

Definition 4.6.25 (Bounded Morphism). Let F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉 be
frames. Then f : W1 → W2 is a bounded morphism from F1 to F2 when the following two
conditions are met:

(forth) xR1y implies f(x)R2f(y);

(back) if f(x)R2z, then there is a w s.t. xR1w and f(w) = z.

When there is a surjective bounded morphism from F1 onto F2, written F1 � F2, F2

is said to be a bounded morphic image of F1.
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Definition 4.6.26 (Generated Subframe). Let F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉 be
frames. F2 is a generated subframe of F1, written F2 � F1, when F2 is a subframe of F1

and the following condition holds:

if x ∈ W2 and xR1y, then y ∈ W2.

Theorem 4.6.27. Let F1 and F2 be frames and α a modal formula.

If F1 � F2, then F2 |= α implies F1 |= α;

If F1 � F2, then F1 |= α implies F2 |= α.

Definition 4.6.28 (Canonical Logic). A normal modal logic L is said to be canonical
when the frame of its canonical model is an L-frame; that is, when all L-theorems are
valid on the canonical frame.

Our goal is to prove the following theorem.

Theorem 4.6.29. Let L be a normal modal logic that is canonical and that is compatible
with the axiom D. Furthermore, let its canonical frame be contained in the class CLD.
Then L� is also complete with respect to CLD.

Remark 4.6.30. Notice that requiring the compatibility with D is used to avoid the
trivial cases when the �-translation produces inconsistent set of sentences. Indeed, the
�-counterpart of a logic is a set of formula of L� that extends the logic KD�, which, in
turn, characterizes the class of serial frames. However, notice that the above theorem is
giving some more. Indeed, completeness results are preserved upwards with respect to
the ⊆-relation between classes of frames. For this reason, Theorem 4.6.29 shows that L�

is also complete with respect to CL.

In order to prove Theorem 4.6.29 we construct an isomorphism between the canonical
model for L� and a generated subframe of the canonical model for LD. Specifically, we
will construct an injective bounded morphism from the canonical model of L� to that of
LD.

Consider a mapping from V ar onto For(L�):

V ar → For(L�)
p 7→ p∗

This map exists since our sets of formulas are countable. Now extend it recursively to
a map:

For(L�) → For(L�)
α 7→ α∗
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where α∗ is defined similarly to Definition 4.6.23:

(¬ϕ)∗ = ¬ϕ∗

(ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗

(�ϕ)∗ = �ϕ∗

We call the above function the ∗-map.
Because of how L� is defined, the ∗-map preserves theoremhood. Indeed, notice that

the characteristic axiom D is mapped, by the ∗-translation to the axiom �ϕ → ¬ � ¬ϕ
of KD�, which is included in L�. Moreover, by construction of L�, if ϕ is a theorem of L,
then ϕ∗ is a theorem of L�. Finally, notice that L� is closed under the rules of MP and
Nec�, therefore the closure of the axioms for LD with respect to the deduction rules, is
preserved under the ∗-translation. All this shows that if ϕ is a theorem of LD, then ϕ∗ is
a theorem of L�.

Now, let FL� = 〈WL� , RL�〉 be the canonical frame for L�, as defined before, and let
FLD = 〈WLD, RLD〉 be the canonical frame for LD as it is usually defined.

We can then define the following function:

f : WL� → WLD

w 7→ {ϕ : ϕ∗ ∈ w} = f(w)

for any maximal L�-consistent w ∈ WL� .

The proof of the next proposition is verbatim the same as in Gilbert & Venturi (2016).

Proposition 4.6.31. The set f(w) is maximal and LD-consistent. Q.E.D.

Proposition 4.6.32. The function f is injective. Q.E.D.

Proposition 4.6.33. If wRL�z then f(w)RLDf(z). Q.E.D.

We report the proof next proposition, since this is where KD� is used.

Proposition 4.6.34. If f(w)RLDx, there is a z such that wRL�z and f(z) = x.

Proof. Define the following set:

z0 = {ϕ∗ : �ϕ∗ ∈ w} ∪ {ψ∗ : ψ ∈ x}

We claim that z0 is L�-consistent. If it is not, then there is ϕ∗, ψ∗ ∈ For(L�)∩z0 such
that

L� ` ϕ∗ ∧ ψ∗ → ⊥

Then, we have the following deductions:

1. L� ` ϕ∗ → ¬ψ∗
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2. L� ` ϕ∗ → (�(ϕ∗ → ¬ψ∗)→ (�ϕ∗ → �¬ψ∗))

3. L� ` �(ϕ∗ → ¬ψ∗)

where (2) is an instance of a Theorem of KD�, being of K�.
Now, because ϕ∗ ∈ w, we obtain �¬ψ∗ ∈ w. Then, (�¬ψ)∗ ∈ w and, therefore,

�¬ψ ∈ f(w). Then, ¬ψ ∈ x, contradicting the consistency of x.
We extend now the set z0 to some maximal consistent set z. We show that λ(w) ⊆ x

and that f(z) = x.
Assume that ϕ ∈ λ(w). Since ϕ is a formula of L�, we know that there is a p ∈ V ar

such that p∗ = ϕ. Thus, �p∗ ∈ w. Then, p ∈ z0 ⊆ x. So, ϕ ∈ z.
To see that f(z) = x is the case, it is enough to note that x ⊆ f(z). Moreover,

f(z) ⊆ x holds because x is maximal. Q.E.D.

Propositions 4.6.32, 4.6.33 and 4.6.34 show that the function f is an injective bounded
morphism from the canonical frame of L� to that of LD. Symbolically, we have

FL�
∼= Fsub� FLD

(where Fsub is the subframe of FLD). Therefore, FL� is actually an LD-frame, from Theorem
4.6.27.

Finally, assume that some formula ϕ is not a theorem of L�. Then, clearly, it is not
valid on the canonical frame FL� . In turn, we then know that there is a generated subframe
of FLD, call it Fsub, on which ϕ is not valid (since FL�

∼= Fsub). This then implies that ϕ is
not valid on FLD (because Fsub � FLD and so FLD |= ϕ implies Fsub |= ϕ). Therefore, on
the assumption that LD is canonical, we have that L� is complete with respect to classes
of frames CLD containing the canonical frame of L, as desired. This completes the proof
of Theorem 4.6.29.

Generalized Soundness

In this section we will provide a general soundness result for �-counterparts, thus pro-
viding the last ingredient for a general characterization theorem. We can reformulate
Proposition 4.6.13 in terms of the �-translation.

Lemma 4.6.35. Let M = 〈W,R, V 〉 a model based on the serial frame F = 〈W,R〉.
Then, for every w ∈ W ,

F |= ϕ iff F |= ϕ�.

Q.E.D.

Consider now the following definition, that is the adaptation of robustness with respect
to reflexivity, as defined in Gilbert & Venturi (2016).
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Definition 4.6.36. Let CL be a class of L-frames. We say that CL is robust with respect
to seriality when the following condition holds: if F = 〈W,R〉 ∈ CL and F d = 〈W,Rd〉 is
the result of adding (w,w) to R where w is a dead end in F, then F d = 〈W,Rd〉 ∈ CL.

It is immediate from this definition that from a frame F which is not serial, we obtain
a frame F d which is serial.

Theorem 4.6.37. Let L be a normal modal logic that is sound with respect to a class CL

that is robust with respect to seriality. Then, L� is sound with respect to CLD.

Proof. Suppose that L is sound with respect to a class CL that is robust with respect to
seriality. Thus, we can assume CLD 6= ∅. Assume that L� is not sound with respect to
CLD. Then there is a frame F ∈ CLD and a formula ϕ ∈ L, such that F 2 ϕ�. Therefore,
by Lemma 4.6.35, F 2 ϕ, which contradicts the fact that ϕ ∈ L. Q.E.D.

From Theorem 4.6.29 and Theorem 4.6.37, we obtain a general characterization result.

Corollary 4.6.38. Let L be a normal modal logic that is canonical and that is sound and
complete with respect to a class CL, which is robust with respect to seriality. Then L� is
sound and complete with respect to CLD.

Notice that the condition on the compatibility with the axiom D has now been sub-
sumed under the robustness with respect to seriality.

Main results and axiomatizations

We have some immediate corollaries of Theorem 4.6.38.

Corollary 4.6.39. The logic K4� is sound and complete with respect to the class of all
serial and transitive frames. Q.E.D.

Corollary 4.6.40. The logic KB� is sound and complete with respect to the class of all
serial and symmetric frames. Q.E.D.

Indeed, it is obvious to see that the class of frames which are transitive and symmetric
are robust with respect to seriality. For what concerns euclidean frames we need to work
a bit more.

Proposition 4.6.41. Euclidean frames are robust with respect to seriality.

Proof. First, recall the definition of euclidean relation:

for every w, y and z, if wRy and wRz, then yRz
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We need to show that if there is an euclidean frame F = 〈W,R〉 that is not serial,
then F d = 〈W,Rd〉 is also euclidean. Notice that if y is a dead end of F , then y is an
isolated point. Otherwise, if there were an x ∈ W accessing y, we would have xRy and
xRy, which implies yRy, since R is euclidean. But then, in F d, the world y is such that
yRy, which is perfectly compatible with being an euclidean frame. Therefore, euclidean
frames are robust under seriality. Q.E.D.

We therefore get that the following corollary.

Corollary 4.6.42. The logic K5� is sound and complete with respect to the class of all
serial and eculidian frames. Q.E.D.

Moreover, since reflexivity implies seriality, we get the following results.

Corollary 4.6.43. The logic KT� is sound and complete with respect to the class of all
reflexive frames. Q.E.D.

Corollary 4.6.44. The logic S4� is sound and complete with respect to the class of all
reflexive and transitive frames. Q.E.D.

Corollary 4.6.45. The logic S5� is sound and complete with respect to the class of all
reflexive symmetric, and transitive frames. Q.E.D.

Notice that the notion of robustness with respect to reflexivity, defined in Gilbert &
Venturi (2016), is a stronger notion since it requires that the addition of all reflexive
arrows to a frame results in a frame of the similar kind. On the contrary, the robustness
under seriality requires only the addition of some reflexive arrows: namely those added to
dead-ends. This simple observation shows that if a class of frames is robust with respect
to reflexivity, then it is also robust with respect to seriality. Therefore, the generated
subframe method is here applied to an actually larger—because of Corollary 4.6.42—
class of logics than those to which it is applied in Gilbert & Venturi’s aforementioned
paper.

Of course there are logics to which this method cannot be applied. For example the
logic whose axiom is ¬♦>, since, being incompatible with D, it characterizes a class of
frames that is not robust with respect to seriality.

Now, in what concerns the axiomatization of �-logics, we can prove the following
theorem:

Theorem 4.6.46. Let L be a normal modal logic such that L = K + ϕ. Let KD� + ϕ�

be the smallest �-counterpart containing all the instances of the axiom ϕ�. Then, L� =
KD� + ϕ�.
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Proof. The direction KD� + ϕ� ⊆ L� is obvious by definition of L�. While for the other
direction we only need to check that �-translation preserves theoremhood, since KD� is
the minimal � logic in serial frames.

which is the case, as already argued in Theorem 4.6.24. Q.E.D.

Among others, we get the following corollaries.

Corollary 4.6.47. The logic KD� + �ϕ → ϕ is sound and complete with respect to the
class CKT. Q.E.D.

Corollary 4.6.48. The logic KD�+�ϕ→ ϕ+�ϕ→ ��ϕ is sound and complete with
respect to the class CS4. Q.E.D.

Corollary 4.6.49. The logic KD�+�ϕ→ ϕ+¬�¬ϕ→ �¬�¬ϕ is sound and complete
with respect to the class CS5. Q.E.D.

4.6.2 � and consistent provability

In this subsection we will argue that it is not obvious that the logic which captures
ProvPA(pϕφq) ∧ ¬Provpa(p¬ϕφq) exists. That is, we will argue that the response to the
Question 4.6.9 seems to be negative.

Given the translations of Definitions 4.6.7 and 4.6.12 we prove the following results:

Lemma 4.6.50. Let ϕ ∈ For(L�) be any modal formula. For any modelM = 〈W,R, v〉
we have that:

M, w |= ϕ� iffM, w |= ϕ⊕

For all w ∈ W .

Proof. The proof runs by induction on ϕ. The non modal cases are immediate. We will
focus in the case where ϕ = �ψ. Then:
M, w |= (�ψ)� iff M, w |= �ψ� iff (for all y ∈ W such that wRy, M, w |= ψ�) and
(exists y ∈ W such that wRy,M, w |= ψ�). By induction hypothesis, (for all y ∈ W such
that wRy,M, w |= ψ⊕) and (exists y ∈ W such that wRy,M, w |= ψ⊕) iffM, w |= �ψ⊕

andM, w |= ♦ψ⊕ iffM, w |= �ψ⊕ ∧ ♦ψ⊕ iffM, w |= (�ψ)⊕. Q.E.D.

As a consequence of Lemma 4.6.50 we have the following corollary:

Corollary 4.6.51. Let ϕ ∈ For(L�) be any modal formula. Then:

1. For all frames F = 〈W,R〉: F,w |= ϕ� iff F,w |= ϕ⊕, for all w ∈ W ;

2. CL |= ϕ� iff CL |= ϕ⊕.
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The next theorem shows that the possibility of self-embedding a logic L in itself forces
a form of seriality, via �-translation.

Theorem 4.6.52. Let L be a normal modal logic characterized by a class of frames CL.
Then, the following are equivalent:

1. KD ⊆ L

2. For every ϕ ∈ For(L�), if `L ϕ
⊕ then `L ϕ;

3. For every ϕ ∈ For(L�), `L ϕ
⊕ iff `L ϕ;

4. For every ϕ ∈ For(L�), `L ϕ
⊕ ↔ ϕ

Proof. (1) implies (2). Suppose that `L ϕ
⊕. By soundness of L,CL |= ϕ⊕. By Lemma

4.6.50, CL |= ϕ�. By hypothesis, KD ⊆ L, which means that all frames in CL are at least
serial. Then, by Proposition 4.6.13 CL |= ϕ. Therefore, by completeness, we obtain `L ϕ.
(2) implies (1). By definition translation ⊕, `L (�ϕ→ ¬�¬ϕ)⊕ implies that `L (�ϕ⊕ ∧
♦ϕ⊕)→ (�ϕ⊕ ∨ ♦ϕ⊕), which is a truth-functional tautology, clearly provable in L.
(2) implies (3). Suppose that `L ϕ

⊕. By hypothesis, (2), `L ϕ. Now suppose that `L ϕ.
Since (1) and (2) are equivalent, we know that L extends KD. Then the class of frames CL

which characterizes L is obviously robust with respect to seriality, then `L ϕ
�, because

`L �ϕ↔ (�ϕ∧♦ϕ). and `L �ϕ↔ (�ϕ∧�ϕ). By soundness and Lemma 4.6.49, `L ϕ⊕.
(3) trivially implies (2).
(4) implies (3) by applications of modus ponens.
(1) implies (4). In other words, if KD ⊆ L, then

`L ϕ
⊕ ↔ ϕ (4.5)

For all ϕ ∈ For(L�). The proof of 4.5 runs by induction. When ϕ = �ψ, the result
follows from Theorem 4.6.6.

Q.E.D.

Now turning to the Question 4.6.9 seems to be negative, we ask whether there is a
logic L such that for all ϕ ∈ For(L�).

`KGL ϕ
⊕ iff `L ϕ (4.6)

If this logic L proves `L ϕ↔ ϕ⊕, then L extends KD, by Theorem 4.6.52, Ł extends KD,
which means that `L �> ↔ (�>∧ ♦>). The problem is, as Theorem 4.4.14 shows, that
KGL does not prove formulas of the form ♦>. So, since KGL does not prove formulas ♦>,
then KGL does not prove formulas (�ϕ)⊕. It means that the logic of consistent provability
which captures ProvPA(pϕφq)∧¬ProvPA(p¬ϕφq) cannot be normal. Therefore, the answer
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to the Question 4.6.9 is negative. On the other hand, if L is non-normal, the question is
open.

The above discussion does not show that the logics which extend KD as well as the
logics in the language L� do not have provability interpretation. In fact, as the Theorem
4.6.5 shows, the logic KD, and so the logics K� and KD�, capture Rosser provability
predicate, which is a consistent provability predicate.
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Chapter 5

Necessity as validity

In this Chapter, we will focus on the validity predicate. First, we will give a general
overview of Tarski’s theorem about undefinability of truth, and then we will present
Montague’s theorem and Curry’s theorem, which show that the predicate of validity is as
problematic as naïve truth is in arithmetical theories. Second, we will present alternative
formalisations of the predicate of validity and their relations with modal logics. Last, we
will present a validity theory for FOL and its relation with quantified modal logic.

5.1 Tarski’s theorem and semantic concepts

Tarski’s theorem establishes that the arithmetical truth predicate cannot be expressible
(i.e., representable in the sense of Definition 4.1.1) in strong mathematical theories. In
particular, it cannot be expressible in arithmetical theories which extends Q.1 That is,
given a predicate Tr(·) satisfying transparency:

Tr(pϕq)↔ ϕ (5.1)

which says that ‘ϕ’ is true iff ϕ (e.g. ‘Snow is white’ is true if and only if snow is white),
one can obtain the liar sentence via Diagonalisation Lemma:

¬Tr(pϕq)↔ ϕ (5.2)

Sentence 5.2 states that ϕ is equivalent to its non-truth. Since we are dealing with
classical logic, sentence 5.2 states that ϕ is equivalent to its falsity. Then we can prove
Tarski’s theorem as follows:2

1The arithmetic Q is a subsystem of PA, obtained by dropping the axiom of induction (PA9) from PA.
2The full proof of Tarski’s theorem can be consulted in Smullyan (1992). Tarski’s theorem also provides

a proof of Gödel’s first incompleteness theorem. Roughly speaking, since the provability predicate is
representable in PA and the truth predicate is not, then there are true sentences which are not provable.
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Theorem 5.1.1. Let T be a theorem extending Q with a predicate Tr(·) satisfying (5.1).
Then, T is inconsistent.

Proof. Consider the following derivation:

1. `T ¬Tr(pϕq)↔ ϕ (5.2)
2. `T Tr(pϕq)↔ ϕ (5.1)
3. `T Tr(pϕq)↔ ¬Tr(pϕq) CPL 1,2
4. `T Tr(pϕq) ∧ ¬Tr(pϕq) CPL 3
5. `T (Tr(pϕq) ∧ ¬Tr(pϕq))→ ⊥ CPL
6. `T ⊥ MP 4,5

This concludes the proof.
Q.E.D.

So Theorem 5.1.1 establishes that the arithmetical truth predicate is inconsistent with
arithmetical theories. Tarski’s original solution was the adoption of a hierarchy of lan-
guages, where the predicate of the true sentences of a theory T is only expressible in an
expressively stronger theory T 1. In T 1 we have the resources to talk about the syntax as
well as the semantical concepts of T . The same reasoning applies to T 1, thus generating
an transfinite hierarchy of languages T ω. This means that no language LTn is capable
to talk about itself using its own expressive resources. As a immediate consequence of
Tarski’s result, the concept of arithmetical truth is local, in the sense that “truth” means
“truth-in-LTn .” That is, there is no truth predicate which applies to every language. In
this sense, as Peregrin (1999) says, truth is ineffable.

Tarski’s undefinability result gave rise to a research program about the incorporation
of semantic concepts into the object language of formal theories. For example, several
theories of truth were proposed in order to accommodate the truth predicate in a way to
avoid the troublesome inference of Theorem 5.1.1.3 Such result also motivated the search
for other semantic concepts, such as satisfiability and validity. In the next section, we
will present some results which show that the concept of validity is not less problematic
than the notion of truth.

5.2 Naïve validity and Montague’s theorem

As defined in Definition 2.2.8, model-theoretic validity is commonly defined as truth in all
(set-theoretic) models. In Section 3.1.1 we discussed that Kreisel’s definition of informal

3The main strategies to deal with liar sentence are the paracomplete and paraconsistent theories of
truth. The paracomplete account (e.g., Kripke’s fixed point theory) proceeds by showing that sentence
5.2 is neither true nor false. The paraconsistent account proceeds by showing that the inconsistency
caused by such sentence does not imply that the theory itself is trivial. We invite the reader to consult
Barrio (2014) for a nice presentation of theories of truth.
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validity pressuposes the language of FOL in his version of the squeezing argument. So,
V al(ϕ) is the informal notion corresponding to FOL. As a consequence, it does not
capture some validities which are valid in an informal standpoint, such as the Argument
3.1.3 presented in Section 3.1.1:

The President signed the treaty with a red pen.
∴ The President signed the treaty.

This example shows that first-order validity does not capture all valid inferences, which
shows that validity does not coincide with logical validity. The former is broader than the
latter. Such broader notion of validity will be called naïve validity and will be denoted
by Val. Naïve validity is expected to incorporate semantic concepts as well as principles
of formal logic. We can understand naïve validity in the lines of Halldén (1963) as giving
compelling logical grounds to believe ϕ. The naive validity predicate Val should satisfy
the following schemas:

(Val-K) Val(pϕ→ ψq)→ (Val(pϕq)→ Val(pψq));

(Val-T) Val(pϕq)→ ϕ;

(Val-4) Val(pϕq)→ Val(pVal(pϕq)q);

(Val-Nec) If ϕ is valid, then Val(pϕq).

According to such understanding of naïve validity, it is clear that it satisfies the above
principles. It is clear that validity is preserved under modus ponens. Second, if we provide
compelling logical grounds to believe ϕ, then ϕ is the case. Third, if we give logical
compelling grounds to believe ϕ, then we can assume that the principles we assumed in
the justification of the validity of ϕ as themselves valid. Last, logical provable formulas
are valid in the naïve sense.

It is worth to note that the concept expressed by the predicate Val is wider than
Kreisel’s informal notion V al. V al is a set-theoretical informal notion for FOL, which
collapses with formal notions of validity when first-order formulas are taken into consid-
eration. V al does not validate inferences such as that of the Argument 3.1.3. By its turn,
Val is wide enough to encompass analytical inferences as well as valid natural language
inferences. One could respond by saying that V al is still able to capture such inferences
given some adequate assumptions. For example, in the case of Argument 3.1.3, one may
correctly point that there is an implicit premise. So the argument has the following form:

The President signed the treaty with a red pen.
If the President signed the treaty with a red pen, then she/he signed the treaty.

∴ The President signed the treaty.
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Even if we recognize that this is correct, V al needs all the enthymemes in order to make
the Argument 3.1.3 to work, whereas Val does not.4 The fact that Val does not need such
enthymemes present in the inferences is enough for our argument.

Before we continue, it is important to make it explicit what we mean by “logical” in
“compeling logical grounds”. By logical we are assuming the axioms and inference rules of
FOL. So, the compelling logical grounds are purely deductive. So, this definition of naïve
validity does not comprehend all kinds of inferences, given that there are non deductive
inferences which are not valid according to Val. As an example, consider the case of
informal logic. As Pugliese (2020) observes, informal logic does not have at its disposal
a mechanical procedure capable to distinguish valid arguments from invalid ones because
informal logic includes inferences which are not necessarily deductive. In this Thesis
we deal only with deductive inferences. We speculate that a predicate of validity which
includes non deductive inferences may not satisfy Val-T, because inductive inferences does
not guarantee truth.

In the analysis of predicates such as validity, PA is generally considered as the basic
theory, because it has sufficient expressive power to talk about its own syntax. Let PAVal

be the theory obtained by adding to the language LPA the one-place predicate Val(x),
where x is the Gödel number of an expression of LPA. However, the addition of the
predicate Val with those three properties to PA is troublesome due to the following result
proved by Montague (1963) . Let P be any predicate. Then:

Theorem 5.2.1. (MONTAGUE, 1963) Suppose that T is any theory such that

(i) T is an extension of Q;

(ii) `T P (pϕq)→ ϕ;

(iii) `T P (pϕq) whenever ϕ is a sentence such that `T ϕ;

Then, T is inconsistent.

Proof. Consider the following proof:

4As Glanzberg (2015) points, natural language has many verbal inferences. For example, if we say
that “Roberto Dinamite kicked the ball”, we infer that “German Cano used his foot.” In order to capture
this kind of inferences in a first-order setting, we must add some enthymemes. But, in order to make
FOL to encompass all these inferences, it may not be formal any more.
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1. `T ϕ↔ ¬P (pϕq) Diagonalization
2. `T ϕ→ ¬P (pϕq) CPL, 1
3. `T P (pϕq)→ ϕ (ii)
4. `T ¬¬P (pϕq)→ ¬ϕ CPL, 2
5. `T P (pϕq)→ ¬¬P (pϕq) CPL
6. `T P (pϕq)→ ¬ϕ CPL 5, 4
7. `T ¬P (pϕq) CPL 3, 6
8. `T ¬P (pϕq)→ ϕ CPL, 1
9. `T ¬ϕ→ ¬¬P (pϕq) CPL, 8
10. `T ¬ϕ→ ¬P (pϕq) CPL, 3
11. `T ¬¬ϕ CPL 9, 10
12. `T ¬¬ϕ→ ϕ CPL
13. `T ϕ MP 11, 12
14. `T P (pϕq) (iii), 1

This concludes the proof. Q.E.D.

It is clear that if we replace P by Val in the Theorem 5.2.1 we obtain that the extention
of PA with the predicate Val is inconsistent. This result is generalized by Murzi (2014),
where he proves that the validity predicate is neither definable nor expressible in PA.

We can also prove a similar result to Theorem 5.2.1 by taking the dual of Val, the
predicate Con of informal consistency. Con satisfies the following properties:

(Con-T) ϕ→ Con(pϕq);

(Con-4) Con(pϕq)→ Con(pCon(pϕq)q);

(Con-Intr) If ¬ϕ is valid, then ¬Con(pϕq).

Such principles are sound in an intuitive reading. (Con-T) says that if ϕ is the case,
then it is consistent. In other words, (Con-T) says that truth implies consistency. The
converse implication is clearly invalid. As Woleński (2010) argues, the consistency of a
story does not imply its truth. The second principle, (Con-Intr), says that the negation
of valid formulas is inconsistent. The following result is an easy modification of Theorem
5.2.1.

Theorem 5.2.2. Let T be a theory which extends PA with predicate R such that:

(i) `T ϕ→ R(pϕq);

(ii) `T ¬R(pϕq), whenever `T ¬ϕ.

Then, T is inconsistent.
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Proof. By Diagonalization Lemma, we obtain the sentence ϕ ↔ ¬R(pϕq). Then we
obtain the following deduction:

1. `T ϕ↔ ¬R(pϕq) Diag.
2. `T ϕ→ R(pϕq) (i)
3. `T ϕ→ ¬R(pϕq) CPL 1
4. `T ¬ϕ CPL 2,3
5. `T ¬ϕ→ (¬R(pϕq)→ ¬ϕ) CPL
6. `T ¬R(pϕq)→ ϕ MP 4,5
7. `T ¬R(pϕq)→ ϕ CPL 1
8. `T R(pϕq) CPL 6,7
9. `T ¬ϕ→ ¬¬R(pϕq) CPL 7
10. `T ¬R(pϕq) (ii), 4

This concludes the proof.
Q.E.D.

Theorem 5.2.1 has a philosophical importance in the early discussion about the legit-
imacy of modal logics. As it is known, Quine was one of the main critics of the use of
modal logics. Quine (1966) outlined three ways in which we can be involved. The first
concerns the use of modalities as predicates (syntactical approach); the second concerns
the use of modalities as sentence operators; and the third concerns the use of modalities as
operators in first-order modal logic. Among these three ways, Quine argues that the first
is the least pernicious, since there are some predicates of sentences which are, according
to him, legitimate, such as the theoremhood predicate

Something very much to the purpose of the semantical predicate ‘Nec’
is regularly needed in the theory of proof. When, e.g., we speak of the
completeness of a deductive system of quantification theory, we have in
mind some concept of validity as norm with which to compare the class
of obtainable theorems. The notion of validity in such contexts is not
identifiable with truth. A true statement is not a valid statement of
quantification theory unless not only it but all other statements similar
to it in quantificational structure are true. Definition of such a notion
of validity presents no problem, and the importance of the notion for
proof theory is incontestable. (QUINE, 1966, pp.153)

On the other hand, if the unique reasonable way to use modalities can lead to in-
consistencies, then, as Montague (1963) argues, modal logics “must be sacrified”.5 Then,
as Slater (1995) suggests, Montague’s theorem establishes that predicate approaches to
modalities are doomed to failure.

The second problem with considering validity as being captured by the above principles
is that one can prove another inconsistency with PA. First, observe that CPL validates
the principle of contraction:

5(MONTAGUE, 1963, pg. 161).



CHAPTER 5. NECESSITY AS VALIDITY 102

(Contr) `CPL (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ)

The following theorem is a version of Curry Paradox, the validity-Curry paradox, which
also shows that the addition of the predicate Val satisfying the properties (Val-K), (Val-T)
and (Val-Nec) is inconsistent with Q (hence, with PA) as the following theorem shows.6

Let PAVal be the theory obtained by adding the predicate Val to PA, satisfying the
properties (Val-K), (Val-T) and (Val-Nec). Then we have the following result.

Theorem 5.2.3. PAVal is inconsistent.

Proof. By Diagonalization Lemma (Lemma 4.1.2), we obtain the sentence ϕ↔ (Val(pϕq)→
⊥), which says that its own validity implies ⊥. Then we have the following proof:

1. `T ϕ↔ (Val(pϕq)→ ⊥) Hyp.
2. `T ϕ→ ϕ CPL
3. `T ϕ→ (Val(pϕq)→ ⊥) CPL 1,2
4. `T Val(pϕq)→ ϕ Val - T
5. `T (Val(pϕq)→ (Val(pϕq)→ ⊥))→ (Val(pϕq)→ ⊥) Contr.
6. `T Val(pϕq)→ (Val(pϕq)→ ⊥) CPL 3,4
7. `T Val(pϕq)→ ⊥ MP 5,6
8. `T ϕ CPL, 1,7
9. `T Val(pϕq) Val-Nec 8
10. `T ⊥ MP 7,9

This concludes the proof. Q.E.D.

Theorem 5.2.3 has an interesting philosophical significance, because it poses a problem
to the non-classical solutions to logical paradoxes, specially to the paracomplete and
paraconsistent approaches. Both strategies are adopted in order to restrict the behaviour
of the negation operator, and so blocking the troublesome steps of Theorem 5.1.1 and
Theorem 5.2.1. On the other hand validity-Curry does not make use of negation operator.
Since negation does not play a significant role in Theorem 5.2.3, the legitimacy of such
non-classical solutions becomes questionable.7

At this point, one could wonder if the concept of informal validity is itself inconsistent
with PA. We think, however, that this move is not straightforward. Indeed, the naïve

6The proof of the Theorem 5.2.3 is an adaptation of the proof given in Shapiro & Beall (2018). There,
they used sequent calculus to prove this theorem. Curry (1942) proved the original result for certain
classes of systems called combinatorial systems. His theorem was known by the fact that this does not
make use of the connective of negation.

7Curry paradox motivates the substructural solutions of logical paradoxes. Such substructural theories
are obtained by subtracting some structural rules of sequent calculus such as (left and right) weakening,
(left and right) contraction, and (left and right) interchange. For good presentation of sequent calculus,
we refer the reader to Smullyan (1995, Chapter 11) and for a substructural solution to validity Curry we
refer the reader to Barrio et al (2016).
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validity predicate is inconsistent with arithmetical theories where it is possible to prove
Diagonalization lemma. In this case, one is authorized to say that this naïve validity is too
general to allow diagonalization. On the other hand, there are proposals in the literature
which challenges the idea that the names of sentences must necessarily be given by Gödel
numbers. As Skyrms (1978), Niemi (1972) and Schweizer (1992) observe, Theorem 5.2.1
can be blocked if we accept that names of sentences can be given by other devices than
Gödel numbers.8 Schweizer (1992) proves that PA is consistent with a predicate N which
satisfies the same principles as the propositional S5. The point here is that the predicate
N is defined to have sentence names as arguments instead of Gödel numbers of sentences.9

Now, if one wants to maintain that the names of the sentences must be given by
Gödel numbers, then it is necessary to restrict the notion of validity by adopting weaker
principles which govern the behaviour of the predicate. For example, Ketland (2012)
proves that the predicate of logical validity is consistent with PA. In this case, we do
not appeal to intuitive principles of general validity, but the principles which govern the
predicate of logical validity exclusively depend on the deductive power of the logic of the
theory. That is, such predicate of logical validity captures the general principles of validity
of the logical basis of PA, which is FOL. This means that we do not use our intuitions
about validity to talk about logical validity. Here we must be attained to the deductive
capabilities of the logic at issue.

In what follows, we will present Skyrms’s metalinguistic models as Schweizer ap-
proaches and how they block the paradoxes of proved in Theorem 5.2.1 and Theorem
5.2.3. So, we will present Skyrms’s result that his metalinguistic models are captured by
the modal logic S5. Second, we will present Ketland’s proposal for logical validity and its
relations with the modal logic S0.5. Last, by adopting Skyrms and Schweizer formalisms,
we will present a validity theory for pure FOL. We will not use Gödel numbers because
we will use a rather weak validity theory.

5.3 Skyrms’s approach

Skyrms (1978) proposes to establish a connection between the concepts of necessity and
validity. His work is twofold. First, he proposes a construction of a hierarchy of languages
Ln where L0 is the base language, which is supposed to contain at least CPL. Moreover,
each Lk (0 < k ≤ n) is expressively stronger than its predecessors in the hierarchy, and
Lk contains validity predicates and sentence names ϕ which describe the valid formulas of

8Schweizer approach goes in the direction of Gupta (1982)’s solution to liar paradox in the context of
theories of truth.

9As we will see, even if Skyrms and Schweizer adopt alternative devices to deal with validity, it is to
be noted that their notion of validity is not informal. They adopt a very restrict notion of formal validity,
defined as truth in all models. But, of course, their move does not mean that informal validity is itself
inconsistent. With a similar move, it should be possible to show that informal validity is consistent.
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the weaker languages. Thus, in this case, necessity is interpreted as predicates of formulas
in terms of a predicate Val. That is, if a formula ϕ is valid in the logic corresponding to
the language Ln, then V al(ϕ) is a sentence of the language Ln+1. On the other hand, he
shows that this predicate has a modal counterpart. That is, the validity predicate V al can
be treated as a modality operator in the sense that this predicate satisfies some familiar
modal axioms. Skyrms proves that under certain interpretations of validity predicate, the
modal axioms in question are the axioms of the modal logic S5.

Let T be a theory which extends at least CPL. The hierarchical language relative to T
takes LT as the base language, which we denote by L0

T for convenience. Informally, given
L0
T , we construct a hierarchy of increasingly stronger languages L1

T ,L2
T , . . . ,LiT , . . ., where

each LiT , for i > 0, contains the formulas ϕ of the languages LkT , 0 ≤ k < i, as well as
sentence names ϕ for each ϕ and the predicate V al. Informally, given the base language
L0
T , we construct a hierarchy of increasingly stronger languages L1

T ,L2
T , . . . ,LkT , . . ., where

each LkT (0 < k ≤ n) is expressively stronger than its predecessors in the hierarchy, and
LkT contains validity predicates and sentence names ϕ which describe the valid formulas
of the weaker languages in the hierarchy. Taking the union of all the LkT ’s, we obtain LωT .
Formally:

Definition 5.3.1. Let L0
L be the language of L which extends at least the language of CPL.

From L0
L we define inductively the languages LnL, for n ∈ N.

(1) For(LnL) ⊆ For(Ln+1
L );

(2) If ϕ ∈ For(LnL), then Ln+1
L contains ϕ and V al(ϕ) ∈ For(Ln+1

L );

LωL = ⋃
n∈ω LnL.

Since Skyrms has a general assumption about L, he makes use of a broad notion of
extensional model which is defined as follows:

Definition 5.3.2. An extensional model is a function v : For(LL) → {1, 0} which is
defined as follows:

(1) v(ϕ) = 1 or v(ϕ) = 0, for all ϕ ∈ LL;

(2) v(¬ϕ) = 1 iff v(ϕ) = 0;

(3) v(ϕ→ ψ) = 1 iff v(ϕ) = 0 or v(ψ) = 1.

Of course, if the language of L includes quantifiers, we should extend Definition 5.3.2
by adequating it to the definitions of first order models.10 Given the extensional models
for L, the models for LωL are defined as follows.

10This is done in Schweizer (1992).
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Definition 5.3.3. (SKYRMS, 1978) The models vn of the language LnL are induced by
an extensional model v0 of L0

L as follows:

(1) The model v0 of L0
L is v of Definition 5.3.2.

(2) The model vn+1 of Ln+1
L is induced by a model v0 of L0

L is the smallest extension of
vn of LnL such that:

(2.1) vn+1(V al(ϕ)) = 1 if v′n(ϕ) = 1 for all models v′n of LnL;
otherwise vn+1(V al(ϕ)) = 0;

(2.2) The interpretation of ¬ and → are given by the truth-tables of L.

The model vω of the language LωL induced by the model vn of LωL is the union of the
models vn of LnL.

An interesting way to know what are the valid principles of the models of Definition
5.3.3 is by stablishing a translation r from the sentences of L�L to the sentences of LωL
defined as follows.11

Definition 5.3.4. Let r : L�♦L → LωL be a function defined as follows:

If ϕ is a modal free sentence, then r(ϕ) = ϕ;

If ϕ = ¬ψ, then r(¬ψ) = ¬r(ψ);

If ϕ = γ → ψ, then r(γ → ψ) = r(ϕ)→ r(ψ);

If ϕ = �ψ, then r(�ψ) = V al(r(ψ)).

Given the translation r of Definition 5.3.4, one can prove that the models vω validates
the principles of S5 extending L:

Theorem 5.3.5. (SKYRMS, 1978) If `S5 ϕ, then r(ϕ) is true in all models vω of LωL .

Proof. We will show that the translation of S5-axioms and rules are valid in models vω of
LωL . The propositional axiom and rules of L are immediate, since LωL and L�♦L share the
same base language. Then we only look for S5 axioms and necessitation rule. Applying
the translation to S5 principles, we obtain:

(Kr) V al(r(ϕ)→ r(ψ))→ (V al(r(ϕ))→ V al(r(ψ)));

(Tr) V al(r(ϕ))→ r(ϕ);

(5r) r(ϕ)→ V al(Con(r(ϕ)));
11Note that L�

L is not necessarily the propositional modal language. The only assumption about L�
L

is that it contains at least the modal propositional language.
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(Necr) If r(ϕ) is valid in models vω, then is so V al(r(ϕ)).

Suppose that vω(V al(r(ϕ)→ r(ψ))) = vω(V al(r(ϕ))) = 1 in every model vω of LωL .
Then, V al(r(ϕ)→ r(ψ)) and V al(r(ϕ)) are true in vk+1 of Lk+1

L , where k + 1 ∈ ω and
LkL is the first metalanguage which contains r(ϕ) → r(ψ) and r(ϕ). By definition, vk+1

of Lk+1
L is induced by v0 of L0

L. So, if vk(r(ϕ) → r(ψ)) = vk(r(ϕ)) = 1, by “metalin-
guistic” modus ponens, we infer vk(r(ψ)) = 1, for all vk of LkL. Then vk+1(V al(r(ψ))) =
1. So, we obtain vk+1(V al(r(ϕ)→ r(ψ)) → (V al(r(ϕ)) → V al(r(ψ)))) = 1. Thus,
vω(V al(r(ϕ)→ r(ψ))→ (V al(r(ϕ))→ V al(r(ψ)))) = 1.

If r(ϕ) is valid, then r(ϕ) is true in every vω of LωL , where vω is induced by v0 of L0
L.

By Definition 5.3.3, vk(r(ϕ)) = 1, for every model vk of LnL , and so vk+1(V al(r(ϕ))) = 1.
Therefore, vω(V al(r(ϕ))) = 1 for every vω of LωL .

The verification of the other principles is similar.
Q.E.D.

We know that S5 is characterized by modelsM = 〈W,R, V 〉 where R is an equivalence
relation. Since every world w ∈ W is related to every other world, we can define S5 as
pairsM = 〈W,V 〉 by dropping R. Then, truth for modal formulas is defined as follows:

(�-S5) M, w |= �ϕ iffM, y |= ϕ for every y ∈ W ;

(♦-S5) M, w |= ♦ϕ iffM, y |= ϕ for some y ∈ W .

Consequently, as Hughes & Cresswell (1996) observe, every formula�ϕ is true through-
outM or it is false throughoutM due to the extensionality of the model.

Now, it is possible to prove that S5, based on L, captures all valid principles in models
of Definition 5.3.3. Consider the following definitions:

Definition 5.3.6. A metalinguistic model for L�♦L is a pair 〈v0, L〉, where v0 is a model
for the logic L with language L0

L, such that v0 induces models vω as in Definition 5.3.3.
〈v0, L〉 is a model for ϕ ∈ For(L�♦L ) iff r(ϕ) is true in 〈v0, L〉.

Definition 5.3.7. The metalinguistic counterpart of a model M = 〈W,V 〉 is a model
〈v0, L〉 whose language L0

L is the non-modal fragment of L�♦L . v0 is taken to be the restric-
tion of the valuation V in each world w ∈ W to L0

L (i.e., L). The set of models v0 will be
taken to include each restriction of V in each w ∈ W to L0

L.

Theorem 5.3.8. (SKYRMS, 1978) If ϕ ∈ For(L�♦) has a modelM = 〈W,V 〉, then the
metalinguistic counterpart ofM is a metalinguistic model for ϕ.

Proof. The proof runs by induction on ϕ. When ϕ is a non-modal sentence, the result
follows from the common base language L0

L. The boolean case is also straightforward.
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Let ϕ = �ψ. Suppose that M, w |= �ψ. Then, for all y ∈ W , M, w |= ψ. By
Definition 5.3.7, for each world xi ∈ W , vωi is the metalinguistic counterpart of vxi

, where
vωi is induced by v0

i of L0
L. By induction hypothesis, vωi (r(ψ)) = 1 for all models vωi of LωL .

So, we have that vni (r(ψ)) = 1 for all models vωi of LnL . Then, vn+1
i (V al(r(ψ))) = 1 for all

models vωi of LωL . Therefore, vωi (V al(r(ψ))) = 1.
Q.E.D.

Already in the propositional level, we can see how the paradoxes showed in Theorem
5.2.1 and Theorem 5.2.3 are avoided using Skyrms’s metalinguistic models. Both theorems
made essential use of Diagonalization Lemma to obtain the sentences:

(A) ϕ↔ ¬V al(pϕq)

(B) ϕ↔ (V al(pϕq)→ ⊥)

In an arithmetical theory like PAV al the biconditionals A and B express, in last in-
stance, a numerical equality between the codes of the formulas connected by the connective
↔. For example, formula B means that there is a provable numerical equality between the
number which corresponds to ϕ and the number which corresponds to (V al(pϕq)→ ⊥).
And, again, this is only possible because PA proves Diagonalization Lemma.

On the other hand, in a metalinguistic model the lines of Definition 5.3.3 where L0 =
L0

PA, the model v0
PA will induce a hierarchy of models vn+1

PA of Ln+1
PA , where the valid

sentences ϕ of LnPA will have their corresponding sentence names ϕ and vn+1
PA (V al(ϕ)) =

1.12 Since the sentence names are introduced as primitive objects, having no internal
structure, it is not immediate that the following biconditionals are provable:

(A’) ϕ↔ ¬V al(ϕ)

(B’) ϕ↔ (V al(ϕ)→ ⊥)

As Schweizer (1992) observes, the predicate V al was defined to have only sentence
names as its arguments, but not arithmetical codes of sentences. This syntactical re-
striction precludes sentences like V al(pϕq). One could argue, however, that PAV al is still
powerful enough to formalize a sentence like A. Fortunately, this sentence will be harmless
since, by hypothesis, sentence names where distinguished from arithmetical names. Since
Tr is a valid schema of PAV al and (A) is also provable in PAV al, one obtains:

`PAV al V al(ϕ)→ ¬V al(pϕq)

But this is not a contradiction. Last, but not least, the following equality is not a theorem
of PAV al. Then:

12Roughly speaking, this is basically Schweizer (1992)’s construction.
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0PAV al ϕ = pϕq

This equality is not provable because sentence names do not have internal structure. In
Schweizer’s words, they are not descriptive. For these reasons, one could not expect
the possibility of diagonalizing on the predicate V al. Because it is not immediate that
Diagonalization Lemma can be applied to predicate V al due to its formation clauses, we
should not expect a proof à la Solovay that S5 is the logic of validity predicate of PAV al

because Solovay’s proof makes essential use of this lemma.
In what concerns Skyrms’s results, Otte (1982) observes that if it were possible to

represent a quotation function, call it q, which gives a sentence name ϕ for every ϕ, then
it would be possible to prove a variation of Diagonalization Lemma such as the following:

Lemma 5.3.9. Let T be a theory extending PA with the predicate V al(·) in the lines of
Definition 5.3.1. For any formula A(x) of T with a free variable x there is a sentence C
such that `T C ↔ A(C).

Given Lemma 5.3.9, Montague’s theorem would be provable again. But Skyrms’s re-
sults (and Schweizer’s) only works because his metalanguage is severely restricted in such
a way that ϕ only occurs in the predicate V al. That is, it is not obvious at all that
Lemma 5.3.9 is provable in T because of the severe restrictions that Skyrms’s metalan-
guage suffers.13

Now it is important to observe that Skyrms’s proposal of taking S5 as the resulting
modal logic makes sense only in the hierarchical approach, because in a non-hierarchical
approach, S5 cannot be taken as the logic of validity. If we consider, for example, the fist-
order logic taken solely and directly as the object of investigation, axiom 5 surely does
not make sense since first-order logic does not have a decision procedure to determine
formulas of the form ♦ϕ, since this logic is undecidable. The properties K and T clearly
hold with respect to the interpretation of V al. The case of axiom 4 is debatable, as we
will see below. Thus, in a more general perspective, the modal logic which captures the
validity predicate is weaker than S5.

Following Skyrms and Schweizer proposals, we obtain a modal theory which is con-
sistent with PA. Then, this implies that the validity predicate is not inconsistent with
arithmetic, but with arithmetization of syntax because of Diagonalization Lemma (Lemma
4.1.2). The same reasoning applies to other predicates. Since it is not obvious to apply
Diagonalization Lemma to modal predicates due to the primitiveness of sentence names,
we have a consistent way to talk about validity in an arithmetical theory.

13As Hazen (1984) observes, even if q were representable and Lemma 5.3.9 were provable, it would
still be possible to maintain the core of Skyrms’s construction by assuming that the validity predicate is
contextually definable. That is, given a language LL of type n, the validity predicate can only be defined
in a language LL of type n+ 1.
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5.4 Ketland’s approach and Lemmon’s modal system

The strategy for blocking Theorem 5.2.1 presented in Section 5.3 basically consists in
extending the language of L with sentence names for the validity predicate. In this section,
we present a different move proposed by Ketland (2012), which explores a more restrict
definition of validity, while maintaining arithmetical names as names for sentences. In his
characterization of such predicate, Ketland considers the schemas (Val-K) and (Val-T) as
axioms for the predicate V al with the following introduction rule of this predicate:

(V al-Nec”) Given a logical derivation of ϕ, infer V al(pϕq).

Ketland considers as logical derivation a derivation which uses only the logical axioms
of the formal system. For example, the logical axioms of first-order logic are exactly the
axioms of Definition 2.2.4. Since FOL is complete, every (logically) provable formula is
logically valid. In this sense, the predicate Val can be introduced only in the conclusions
ϕ of a derivation. So, given a logical derivation 〈ϕ1, ..., ϕn, ψ〉, we can conclude that
〈ϕ1, ..., ϕn, ψ, V al(pψq)〉 since ψ is derivable (i.e. valid). In his aforementioned paper, the
formal system which formalizes V al is called V-logic (hereafter VL) defined as follows:

Definition 5.4.1. VL is obtained by extending PA with predicate V al satisfying (V al-K),
(V al-T) and (V al-Nec”).

As an example of how predicate V al works, consider the following theorem:

Theorem 5.4.2. `VL V al(p(ϕ ∧ ¬¬ϕ)q)→ (V al(pϕq) ∧ V al(p¬¬ϕq))

Proof. Consider the following derivation:

1. `FOL (ϕ ∧ ¬¬ϕ)→ ϕ FOL
2. `FOL (ϕ ∧ ¬¬ϕ)→ ¬¬ϕ FOL
3. `VL V al(p(ϕ ∧ ¬¬ϕ)→ ϕq) Nec” 1
4. `VL V al(p(ϕ ∧ ¬¬ϕ)→ ¬¬ϕq) Nec” 2
5. `VL V al(p(ϕ ∧ ¬¬ϕ)→ ϕq)→ (V al(p(ϕ ∧ ¬¬ϕ)q)→ V al(pϕq)) K
6. `VL V al(p(ϕ ∧ ¬¬ϕ)→ ¬¬ϕq)→ (V al(p(ϕ ∧ ¬¬ϕ)q)→ V al(p¬¬ϕq)) K
7. `VL V al(p(ϕ ∧ ¬¬ϕ)q)→ V al(pϕq) MP 3,5
8. `VL V al(p(ϕ ∧ ¬¬ϕ)q)→ V al(p¬¬ϕq) MP 4,6
9. `VL V al(p(ϕ ∧ ¬¬ϕ)q)→ (V al(pϕq) ∧ V al(p¬¬ϕq)) FOL 8,9

This concludes the proof. Q.E.D.

As one can check we used two different subscripts in Theorem 5.4.2 in the provability
relation ` to stress that we can only apply the rule V al-Nec” to formulas provable in
FOL. The logical proof ends already in the step 2. From step 3 to set 9, we have a proof
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in V-logic, which is a first-order theory, where its characteristic axioms are non-logical
axioms. That is, they are not logically valid.

Given the intuitions concerning this proposed predicate, Ketland argues that VL is
consistent.14 According to him, logical validity is not susceptible to the inconsistency
proved by the Theorem 5.2.1 because its proof is not a logical proof, but a proof which
uses arithmetical resources of PA, such as the Diagonalization Lemma. In this case, we
cannot apply the introduction rule of V al in the step 13 of the proof of Theorem 5.2.1. The
same argument applies to the Theorem 5.2.3 since it makes essential use of Diagonalization
Lemma. Then, we cannot apply the rule of introduction of logical validity in the step 9
of Theorem 5.2.3. So, if V al is only applicable to logical proofs, it does not give rise to
the inconsistency proved by Beall & Murzi and to the paradox proved by validity Curry.
As a consequence, assertions concerning logical validity are not logically valid themselves
in the sense of being provable in the basic logical system. According to Cook (2014), the
reason why the axioms of VL are not logically valid lies in the fact that the theory VL
itself dos not validate the substitutivity of equivalents, as the following example shows:

0VL V al(pV al(pϕq)↔ V al(p¬¬ϕq)q) (5.3)

To see that this is not valid, consider the following demonstration:

Theorem 5.4.3. `VL V al(pϕq)↔ V al(p¬¬ϕq)

Proof. Consider the following formal derivation:

1. `FOL ϕ→ ¬¬ϕ FOL
2. `FOL ¬¬ϕ→ ϕ FOL
3. `VL V al(pϕ→ ¬¬ϕq) Nec”,1
4. `VL V al(p¬¬ϕ→ ϕq) Nec”, 2
5. `VL V al(pϕ→ ¬¬ϕq)→ (V al(pϕq)→ V al(p¬¬ϕq)) K
6. `VL V al(p¬¬ϕ→ ϕq)→ (V al(p¬¬ϕq)→ V al(pϕq)) K
7. `VL V al(pϕq)→ V al(p¬¬ϕq) MP 3,5
8. `VL V al(p¬¬ϕq)→ V al(pϕq) MP 4,6
9. `VL V al(pϕq)↔ V al(p¬¬ϕq) FOL 7,8

This concludes the proof. Q.E.D.

Since the rule V al-Nec” can be applied only formulas proved by FOL, we cannot apply
it to the step 9. Then, 5.3 is not a valid formula in VL. Since ϕ and ¬¬ϕ are equivalent
formulas, we would expect the same with respect to V al(pϕq) and V al(p¬¬ϕq). But, as
we see, the substitutivity fails for V al. In last instance, for failing the substitutivity of
equivalents, Cook argues that validity is not a logical notion.

From the axioms of Val we have the following consequences:
14If PA is consistent, of course.
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Proposition 5.4.4. The following statements are true with respect to the predicate V al:

(A) `VL ϕ→ ¬V al(p¬ϕq)

(B) `VL V al(pϕq)→ ¬V al(p¬ϕq)

(C)) `VL ¬V al(p¬>q)

(D) `VL V al(p>q)

(E) `VL ¬V al(p¬(ϕ ∧ ψ)q)→ (¬V al(p¬ϕq) ∧ ¬V al(p¬ψq))

(F) `VL ¬V al(p¬(ϕ ∨ ψ)q)↔ (¬V al(p¬ϕq) ∨ ¬V al(p¬ψq))

(G) `VL V al(p¬ϕq)→ ¬V al(pϕq)

(H) `VL (V al(p¬ϕq) ∧ ¬V al(p¬ψq))→ (¬V al(pϕq) ∧ ¬V al(p¬ψq))

Where ¬V al(p¬ϕq) is a statement of consistency. It is important here to point that the
item (C) of Theorem 5.4.4 does not establish that PA is consistent. What (C) establishes
is that the logic of PA does not prove contradictions. That is, FOL is consistent. Consider
the following theorem:

Theorem 5.4.5. `VL ¬V al(p0 = s(0)q)

Proof. Let take s(0) = 1. Then, consider the following demonstration:

1. `VL V al(p0 = 1q)→ 0 = 1 T
2. `VL 0 6= 1→ ¬V al(p0 = 1q) FOL 1
3. `VL 0 6= 1 PA3
4. `VL ¬V al(p0 = 1q) MP 2,3
This concludes the proof. Q.E.D.

What Theorem 5.4.5 shows is that the logic of PA does not prove contradictions. But
this does not mean that PA proves its own consistency. We can say that this predicate
of validity expresses a weaker notion of provability, which is restricted to the first order
calculus, whereas ProvPA comprehends a stronger notion of provability which, by its turns,
comprehends the whole theory of PA. This observation reinforces our claim that validity
and provability, and so consistency, are local notions. The fact that PA is able to express
more than one notion of provability is due to its strong expressiveness.

Ketland’s results shows that we do not need to any appeal to our intuitions about naïve
validity to evaluate whether a predicate of logical validity is good or not. In the case of
the predicate of logical validity, the response is immediate: if V al correctly captures the
deductive principles of FOL, then the predicate is a good one. If not, it is not an adequate
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predicate. Indeed, this can be generalized to all logical systems: let T V alL be a validity
theory whose logical base system is L. The predicate V al of validity is adequate for a
logic L if the following biconditional is true:

`TV al
L

V al(pϕq) iff `L ϕ. (5.4)

Since the rule Val-Nec” is applicable only in case of logical derivations, then it cannot
to be applied to V al(pψq). Such restriction, according to Ketland (2012), breaks the
analogy of the predicate V al with the modal operator �. But it is important to note that
Ketland is taking into consideration the operator � of normal modal logics. So, if we
consider non-normal modal logics, it may be possible to establish a connection with his
approach to logical validity. There is a non-normal modal logic, which is at least sound,
but not complete, with respect to Ketland’s approach of the predicate V al. This modal
logic is one of the Lemmon (1957)’s systems, and it is called S0.5. The soundness and the
non-completeness of S0.5 with respect to Ketland’s validity predicate will be discussed in
the next section.

In what follows, we will present a validity theory for FOL inspired in the methods of
Schweizer (1993) and Stern (2014). We will directly deal with FOL instead of dealing with
first-order PA because we want to provide a validity theory for pure FOL. Their method
enjoy sufficient generality to provide such theory for FOL. Further, we discuss how the
results presented below could be adapted to provide a characterization results for VL.
First we will present Lemmon (1957)’s non-normal modal logic S0.5, whose modality �
interprets “it is tautologous by truth tables that”. After presenting S0.5, we presenting
its first-order extension QS0.5 and so we prove that QS0.5 captures first-order validity
predicate.

5.4.1 The modal logic S0.5

Now we will present the modal system S0.5, whose modality �means that it is tautologous
(by truth-tables) that. Its axiom system is presented as follows:

Definition 5.4.6. (LEMMON, 1959) The system S0.5 has the following axiom system:

(CPL) All propositional tautologies;

(K) �(ϕ→ ψ)→ (�ϕ→ �ψ);

(T) �ϕ→ ϕ;

(MP) From ` ϕ and ` ϕ→ ψ we can infer ` ψ;

(N’) If ` ϕ is and ϕ is a tautology, then we infer ` �ϕ.
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As we can see, this system is a non-normal counterpart of the normal modal system
KT. The rule N’ can only be applied in the case that ϕ is a classical tautology. The
modality ♦ can be defined as usual:

♦ϕ := ¬�¬ϕ

According to Hughes & Cresswell (1968), S0.5 is the weakest modal logic to prove the
equivalences

�ϕ↔ ¬♦¬ϕ (5.5)

♦ϕ↔ ¬�¬ϕ (5.6)

But, since rule N’ is restricted to (CPL) tautologies, we cannot apply rule N’ to the
formulas 5.5 and 5.6. This makes sense in the informal reading of � and ♦, because
it is possible to evaluate whether a formula ϕ is a tautology/consistent by using this
method, while it is not possible to evaluate by truth tables the statement “ϕ is a tautol-
ogy/consistent.” As we will see below, this restriction of N’ to propositional tautologies
shows some oddities of S0.5 with respect to the other modal logics.

The following Theorem easily follows from the axioms of S0.5. It will be useful in the
next section.

Theorem 5.4.7. The following items are provable in S0.5:

(A) If ` ϕ→ ψ and ϕ→ ψ is a tautology, we obtain ` �ϕ→ �ψ;

(B) �(ϕ→ (ψ ∧ ¬ψ)) ` �¬ϕ;

(C) �(ϕ→ ψ),�(ψ → γ) ` �(ϕ→ γ);

(D) ` �(ϕ ∧ ψ)↔ (�ϕ ∧�ψ)

(E) ` �(ϕ1 ∧ . . . ∧ ϕn)↔ (�ϕ1 ∧ . . . ∧�ϕn) (n ≥ 2)

Proof. For (A), consider the following derivation:

1. ` ϕ→ ψ Hyp.
2. ` �(ϕ→ ψ) N’ 1
3. ` �(ϕ→ ψ)→ (�ϕ→ �ψ) N’ 1
4. ` (�ϕ→ �ψ) MP 2,3

For (B):



CHAPTER 5. NECESSITY AS VALIDITY 114

1. ` (ϕ→ (ψ ∧ ¬ψ))→ ¬ϕ CPL
2. ` �((ϕ→ (ψ ∧ ¬ψ))→ ¬ϕ) N’ 1
3. ` �((ϕ→ (ψ ∧ ¬ψ))→ ¬ϕ)→ (�(ϕ→ (ψ ∧ ¬ψ))→ �¬ϕ) K
4. ` �(ϕ→ (ψ ∧ ¬ψ))→ �¬ϕ MP 2,3
5. ` �(ϕ→ (ψ ∧ ¬ψ)) Hyp.
6. ` �¬ϕ MP 4,5

For (C):

1. ` (ϕ→ ψ)→ ((ψ → γ)→ (ϕ→ γ)) CPL
2. ` �((ϕ→ ψ)→ ((ψ → γ)→ (ϕ→ γ))) N’ 1
3. ` �((ϕ→ ψ)→ ((ψ → γ)→ (ϕ→ γ)))→ ...
... (�(ϕ→ ψ)→ �((ψ → γ)→ (ϕ→ γ))) cont K
4. ` �(ϕ→ ψ)→ �((ψ → γ)→ (ϕ→ γ)) MP 2,3
5. ` �(ϕ→ ψ) Hyp.
6. ` �((ψ → γ)→ (ϕ→ γ)) MP 4,5
7. ` �((ψ → γ)→ (ϕ→ γ))→ (�(ψ → γ)→ �(ϕ→ γ)) K
8. ` �(ψ → γ)→ �(ϕ→ γ) MP 6,7
9. ` �(ψ → γ) Hyp.
10. ` �(ϕ→ γ) MP 8,9

The deduction for(D) is exactly the same as in Theorems 4.6.14 and 4.6.15
The proof of (E) runs by induction on n. When n = 2, the result follows by Theorem

5.4.7 (C). by induction hypothesis, we have:

1. ` �(ϕ1 ∧ . . . ∧ ϕk)→ (�ϕ1 ∧ . . . ∧�ϕk) I.H.
2. ` �ϕk+1 → �ϕk+1 CPL
3. ` (�(ϕ1 ∧ . . . ∧ ϕk) ∧�ϕk+1)→ ((�ϕ1 ∧ . . . ∧�ϕk) ∧�ϕk+1) CPL 1,2
4. ` �((ϕ1 ∧ . . . ∧ ϕk) ∧ ϕk+1)→ (�(ϕ1 ∧ . . . ∧ ϕk) ∧�ϕk+1) Th. 5.4.7 (D)
5. ` �((ϕ1 ∧ . . . ∧ ϕk) ∧ ϕk+1)→ �(ϕ1 ∧ . . . ϕk) CPL 4
6. ` �((ϕ1 ∧ . . . ∧ ϕk) ∧ ϕk+1)→ �ϕk+1 CPL 4
7. ` �((ϕ1 ∧ . . . ∧ ϕk) ∧ ϕk+1)→ (�ϕ1 ∧ . . .�ϕk) CPL 1,5
8. ` �((ϕ1 ∧ . . . ∧ ϕk) ∧ ϕk+1)→ ((�ϕ1 ∧ . . .�ϕk) ∧�ϕk+1) CPL 6,7
9. ` ((�ϕ1 ∧ . . .�ϕk) ∧�ϕk+1)→ (�ϕ1 ∧ . . .�ϕk ∧�ϕk+1) CPL
10. ` �((ϕ1 ∧ . . . ∧ ϕk) ∧ ϕk+1)→ (�ϕ1 ∧ . . .�ϕk ∧�ϕk+1) CPL 8,9
11. ` (ϕ1 ∧ . . . ∧ ϕk+1)→ ((ϕ1 ∧ . . . ∧ ϕk) ∧ ϕk+1) CPL
12. ` �(ϕ1 ∧ . . . ∧ ϕk+1)→ �((ϕ1 ∧ . . . ∧ ϕk) ∧ ϕk+1) Th. 5.4.7 (A), 11
13. ` �(ϕ1 ∧ . . . ∧ ϕk ∧ ϕk+1)→ (�ϕ1 ∧ . . . ∧�ϕk ∧�ϕk+1) CPL 10 ,12

The converse derivation is similar. Q.E.D.
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The item (A) of Theorem 5.4.7 is called (RK’). The semantic interpretation for S0.5
is given by the following definition:

Definition 5.4.8 ((LEMMON, 1959), (HUGHES; CRESSWELL, 1996)). An S0.5-frame
is a triple F = 〈W,R,N〉, where W is a set of worlds, N is the set of normal worlds such
that N ⊆ W and N 6= W , and R is a reflexive relation over N such that for every y ∈ W
there is x ∈ N such that xRy. A model M = 〈F, V 〉 based on F is a structure where
V : V ar → ℘(W ) is a valuation. The interpretation of the basic Boolean connectives are
the same as in Definition 2.3.1. The difference lies in the definition of the modal operator
�:

4” For any w ∈ W , M, w |= �ϕ if w ∈ N and for every y ∈ W such that wRy,
M, y |= ϕ. If w /∈ N ,M, w |= �ϕ orM, w 2 �ϕ.

The definitions of truth in a model and validity are defined in terms of worlds w ∈ N .

As Definition 5.4.8 shows, modal formulas are arbitrarily evaluated in non-normal
worlds. For this reason, �ϕ and ¬♦¬ϕ are not equivalent in all worlds.

Theorem 5.4.9. In S0.5 the following schemas are not valid:

(A) �(�ϕ↔ ¬♦¬ϕ);

(B) �(♦ϕ↔ ¬�¬ϕ);

(C) ♦(�ϕ↔ ¬♦¬ϕ);

(D) ♦(♦ϕ↔ ¬�¬ϕ).

Proof. For (A) consider a modelM = 〈W,N,R, v〉 such thatW = {w, y}, N = {w}, R =
{(w,w), (w, y)}, vy(�ϕ) = 1 and vy(♦¬ϕ) = 1. By definition of negation, vy(¬♦¬ϕ) = 0.
So, we obtain vy(�ϕ↔ ¬♦¬ϕ) = 0. Therefore, vy(�(�ϕ↔ ¬♦¬ϕ)) = 0. The reasoning
is the same for the remaining cases. This concludes the proof. Q.E.D.

Now we will prove that S0.5 is sound with respect to its Kripke semantics of Definition
5.4.8.

Theorem 5.4.10. If ` ϕ, then |= ϕ.

Proof. We will show that the axioms of S0.5 are valid and that its inference rules preserve
validity. Since it is a well known fact that CPL is sound with respect to the boolean
clauses of Definition 5.4.8, we will focus in the modal axioms and inference rules.

I) Axiom �(ϕ→ ψ)→ (�ϕ→ �ψ).
Suppose thatM, w |= �(ϕ→ ψ) andM, w |= �ϕ for every modelM = 〈W,N,R, v〉,

for every w ∈ N . Then, for all y ∈ W such that wRy,M, y |= ϕ→ ψ andM, y |= ϕ. By
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a semantic version of modus ponens, we obtainM, y |= ψ, for all y ∈ W such that wRy.
Then,M, w |= �ψ. Therefore,M, w |= �(ϕ→ ψ)→ (�ϕ→ ψ).

II) Axiom �ϕ→ ϕ.
Suppose thatM, w |= �ϕ for every modelM = 〈W,N,R, v〉, for every w ∈ N . Since

R is reflexive, we obtainM, w |= ϕ. Therefore,M, w |= �ϕ→ ϕ.
III) Rule N’.
Suppose that ϕ is a tautology. Then for every model M = 〈W,N,R, v〉, for every

y ∈ W , M, y |= ϕ. Then so is for every y ∈ W such that wRy, for w ∈ W . Therefore,
M, w |= �ϕ.

This concludes the proof. Q.E.D.

The canonical model for S0.5 is defined in the same way as in Definition 5.4.12.15 We
prove now the completeness of S0.5.

First, consider the following definition:

Definition 5.4.11. (HUGHES; CRESSWELL, 1996) Let Γ ⊆ For(L�♦S0.5) be a set of
formulas of S0.5. We say that Γ is CPL-consistent if there is no {ϕ1, . . . , γn} ⊆ Γ such
that ` ¬(ϕ1 ∧ . . . ∧ γn), and each ϕi ∈ Γ, 1 ≤ i ≤ n is a substitution instance of a
CPL-tautology.

Definition 5.4.12. The canonical modelM = 〈W,N,R, V 〉 of S0.5 is defined as follows:

A.i w ∈ N is a maximal consistent set of S0.5-formulas;

A.ii every w ∈ W (w /∈ N) is a maximal CPL-consistent set of S0.5-formulas.

B The accessibility relation R ⊆ N ×W is defined as follows:

B.i Let w, y ∈ W . For w ∈ N : if �ϕ ∈ w, then we let wRy iff λ(w) ⊆ y (where
λ(w) = {ϕ|�ϕ ∈ w};

B.ii For w /∈ N : �ϕ ∈ w or �ϕ /∈ w.

C M, w |= p iff p ∈ w.

Proposition 5.4.13. Let w ∈ N be a maximal consistent set of S0.5 such that ¬�ψ ∈ w.
Then, λ(w) ∪ {¬ψ} is (CPL)-consistent.

Proof. If λ(w) ∪ {¬ψ} is CPL-inconsistent, then there are γ1, ..., γn ∈ λ(w) such that
¬(γ1 ∧ . . . ∧ γn ∧ ¬ψ) is an instance of a CPL tautology:

15Cresswell (1966) proved that S0.5 is sound and complete with respect to S0.5-models. The proof
given by Cresswell is slightly different than the proof given here. In this paper, he proposes a semantics
where there is only one non-normal world and there is no accessibility relation.
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(1) ` ¬(γ1 ∧ . . . ∧ γn ∧ ¬ψ) Def. 5.4.11.
(2) ` (γ1 ∧ . . . ∧ γn)→ ψ CPL (1)
(3) ` �((γ1 ∧ . . . ∧ γn)→ ψ) N’ (2)
(4) ` �((γ1 ∧ . . . ∧ γn)→ ψ)→ (�(γ1 ∧ . . . ∧ γn)→ �ψ) K
(5) ` �(γ1 ∧ . . . ∧ γn)→ �ψ MP (3),(4)
(6) ` (�γ1 ∧ . . . ∧�γn)→ �(γ1 ∧ . . . ∧ γn) Theorem 5.4.7 (E)
(7) ` (�γ1 ∧ . . . ∧�γn)→ �ψ CPL (5),(6)
(8) ` ¬(�γ1 ∧ . . . ∧�γn ∧ ¬�ψ) CPL (7)

Then, the set {�γ1, . . . ,�γn,¬�ψ} is S0.5-inconsistent, which contradicts the consis-
tency of w. Therefore, λ(w) ∪ {¬ψ} is CPL-consistent. Q.E.D.

Lemma 5.4.14. Let M be the canonical model for S0.5. Then, for every w ∈ W and
every formula ϕ of S0.5:

M, w |= ϕ iff ϕ ∈ w.

Proof. The boolean cases are straightforward. So, we will consider only the case ϕ = �ψ.
If w ∈ N and �ψ ∈ w, then ψ ∈ y, for every y ∈ W such that λ(w) ⊆ y. By definition,
wRy, for all y. Then, by induction hypothesis, we obtainM, y |= ψ. Moreover,M, w |= ψ

since �ψ → ψ ∈ w. Then,M, w |= �ψ.
Conversely, suppose that ¬�ψ ∈ w for w ∈ N . Then, by Proposition 5.4.13, λ(w) ∪

{γ1, . . . , γn,¬ψ} is (CPL-) consistent. So, by the Lindenbaum Lemma, λ(w) ∪ {¬ψ} ⊆ y

where y is a maximal (CPL-) consistent set. Thus, we obtain, ¬ψ ∈ y. So, ψ /∈ y. By
definition, wRy for some y ∈ W . Then, by induction hypothesis, M, y 2 ψ. Then,
M, w 2 �ψ. Therefore,M, w |= ¬�ψ. This concludes the proof.

For w /∈ N , it is arbitrary, once formulas of the form �ψ behaves like propositional
variables in worlds w /∈ N . Q.E.D.

Cresswell (1966) presents the following semantic interpretation for S0.5:

Definition 5.4.15. An S0.5-model is a structure 〈w∗,W, V 〉, where W 6= ∅ is a set
of worlds, w∗ ∈ W is a distinguished world. V : V ar → ℘(W ) is a valuation. The
interpretation of the basic Boolean connectives are the same as in Definition 2.3.1. The
difference lies in the definition of the modal operator �:

4∗ For w∗ M, w∗ |= �ϕ iff for every y ∈ W , M, y |= ϕ. For w 6= w∗, M, w |= �ϕ or
M, w 2 �ϕ, arbitrarily.

The definitions of truth in a model and validity are defined in terms of the world w∗.
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The characterization results for S0.5 with respect to the semantic definition of Defini-
tion 5.4.15 can be found in Cresswell’s paper.16 Such definition will be helpful.

According to the intended meaning of � and ♦, �ϕ/♦ϕ is true iff ϕ is a tautol-
ogy/logically consistent (by truth-tables). But once we apply � or ♦ to ϕ, �ϕ/♦ϕ is no
more tautological/logically consistent by the truth-table method. That is �ϕ and ♦ϕ are
not tautological and logically consistent according to the truth-tables. That is why we
cannot allow validities of the form � . . .�ϕ. Then, in order to block such valid iterations
of modalities, we adopted the division of the set W into normal worlds and non-normal
worlds. Before proving the adequacy of the informal interpretation of �, we will argue
that S0.5 modal axioms are at least (informally) sound with respect to their informal
interpretation.

Argument 5.4.16. S0.5 modal axioms are informally sound with respect to their informal
interpretation.

�(ϕ → ψ) → (�ϕ → �ψ): The axiom K says that tautologousness (by truth-tables) is
preserved by modus ponens. In fact, if ϕ → ψ and ϕ are tautologies (by truth-tables),
then ψ is a tautology because classical implication is truth-reserving under modus ponens.

�ϕ → ϕ: The axiom T says that tautological formulas are actually true. In fact, if ϕ is
true in all assignments, then ϕ is true. Note that this axiom holds for theories which are
sound/non-trivial. If Th is a theory which contains arithmetic, then T cannot be valid
in the interpretation on the pain of contradicting Theorem 4.1.4. The same argument
holds for the axiom �ϕ → ♦ϕ. In the case of CPL, which is sound and complete, if ϕ
is a tautology, then ϕ is satisfiable/consistent. That is, there is at least one line of the
truth-table where ϕ receives 1.

If ϕ is a CPL-tautology, then ` �ϕ. This case is straightforward. If ϕ is a tautology, then
ϕ is a tautology by truth-table method.

This is reinforced by the following proposition:

Proposition 5.4.17. �ϕ is S0.5-valid iff ϕ is a CPL-tautology.

Proof. Suppose that �ϕ is S0.5-valid. Then, for every modelM = 〈W,N,R, v〉 and every
w ∈ N , it is the case thatM, w |= �ϕ. So, for every y ∈ W such that wRy,M, y |= ϕ.
We know that every y ∈ W−N are maximal consistent set of CPL-formulas. Clearly, only
tautologies are invariant over maximal consistent sets of CPL-formulas. Hence, it is also
the case thatM, w |= ϕ. Therefore, ϕ is a tautology. The converse is immediate. Q.E.D.

In light of Proposition 5.4.17 and Argument 5.4.16, one could say that S0.5 is the logic
of CPL-tautologies. However, there are some objections against such interpretation. Since

16In Pietruszczak (2009) one finds several completeness results for non-normal modal logics character-
ized by slight modifications of semantics. There, Pietruszczak also deals with S0.5.
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CPL is a decidable system, S0.5 should also work as the logic of non-tautologies of CPL,
in the sense that for every pi ∈ V , ¬�pi should be a theorem. Moreover, he defends that
formulas like ¬��pi should be valid under such informal interpretation. None of them
are theorems of S0.5. Then, according to Routley (1968), this constitutes a semantical
incompleteness of S0.5 with respect to this informal interpretation of �.

Following Routley’s objection, Urquhart (2010) presents the following definition:

Definition 5.4.18. (URQUHART, 2010) Let LPA be the language of arithmetic and ρ a
realization which assigns to sentence letters sentences of LPA. We associate each modal
sentence α a sentence αρ as follows:

pρ = φ(p), where p is a sentential letter
⊥ρ = 0 = 1
(α→ β)ρ = αρ → βρ

(�α)ρ = Taut(pαρq)
He argues that S0.5 axioms are sound with respect to translation ρ. However, S0.5

is not complete because ¬��p is provable in any realization ρ. But it is not a S0.5-
theorem. This establishes, as Routley (1968) argues, a semantical incompleteness of S0.5
with respect to interpretation ρ. As a consequence, S0.5 may not completely capture
Ketland’s validity predicate by similar reasons. Then, S0.5 is at most sound with respect
to Taut(pαρq).

We note that if we extend S0.5 with formulas like ¬�pi and ¬��pi, we should give
up the rule of uniform substitution. If the resulting system contains uniform substitution,
then it is trivial. Just substitute pi by any tautology. Then one obtains ¬�>. Then by
the necessitation rule of S0.5, one obtains �>. Then, we obtain a contradiction.17

So in what sense does S0.5 capture the tautology predicate? In Chapter 6, we will
prove that even if p is not a tautology, it is true in some subsets V of valuations of CPL. Of
course, it is not true in all subsets V . Then, in some V , ¬�p is false, whereas ¬�p is true
in some V ′. Then, ¬�p will not be valid under such scenario. Based on such intuition, we
can say that S0.5 captures tautologicity when we consider subsets of classical valuations.
In such chapter we will prove this result not only for CPL, but for all of its many-valued
fragments.

In the next section, we will show that the first-order extension of S0.5, called QS0.5,
captures the predicate of validity in a first-order setting. In a certain sense, we can argue
that S0.5 captures the minimal properties of validity predicate because we are assuming
few things about the basic theory.18 To be specific, we want to discuss the status of
Barcan Formula with respect to the validity interpretation of �.

17In Urquhart (2010), one can find a logical system, called TS which contains validities of the form
¬��pi as well as ¬�pi. But, different from S0.5, TS is not finitely axiomatizable.

18S0.5 is at least sound with respect to the validity theory for FOL. Under this interpretation, ¬�p
could not be valid since in FOL with identity there are atomic formulas which are valid, such as x = x.
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5.5 Validity interpretation of Quantified S0.5: QS0.5
In this section, we introduce the first-order extension of S0.5, which we call QS0.5 in the
following definition.19

Definition 5.5.1. The system QS0.5 has the following axiom system:

(FOL) CPL, Ax4, Ax5 and inference rules of FOL;

(S0.5) All theorems of S0.5;

(BF) ∀xi�ϕ→ �∀xiϕ

(NFOL) If ` ϕ and ϕ is FOL-provable, then we infer ` �ϕ.

After presenting the models for QS0.5 we justify the absence of the axioms of identity
in the logic QS0.5. In what follows we present the semantics for QS0.5, where we deal only
with constant domains.20 That is, the domain remain fixed in all worlds of the structure.

Definition 5.5.2. An interpretation for QS0.5 is a structure M = 〈W,N,R,D, (·)M〉
where W 6= ∅ is a set of worlds, N ⊆ W , is a set of normal worlds R is a reflexive
relation such that for every w ∈ N there is a y ∈ W such that wRy, D 6= ∅ is the domain
of the structure. (·)M is an assignment defined as in Definition 2.2.6, with the following
modification: if P n

k is a n-ary predicate, then (P n
k )M = {(s1, . . . , sn, w) | s1, . . . , sn ∈

D and w ∈ W}. Let s ∈ Seq be a sequence of objects and s∗ be a function defined in
Definition 2.2.7. The notion of satisfiability of ϕ in M in a world w ∈ W is defined as
follows:

1. If ϕ is P n
k (t1, . . . tn), then M, w |=s P

n
k (t1, . . . tn) iff (s∗(t1), . . . , s∗(tn)) ∈ (P n

k )M;

2. If ϕ is ¬ψ, then M, w |=s ¬ψ iff M, w 2s ψ;

3. If ϕ is ψ → γ, then M, w |=s ψ → γ iff M, w 2s ψ or M, w |=s γ;

4. If ϕ is ∀xjψ, then M, w |=s ∀xjψ iff every sequence s′ ∈ Seq that differs from s in
at most the i-th component is such that M |=s′ ψ.

5. If w ∈ N , then:

(a) For any w ∈ W , M, w |=s �ϕ iff for every y ∈ W such that wRy, M, y |=s ϕ.

6. If w /∈ N , then:

(a) M, w |=s �ϕ iff (s∗(t1, . . . , tn), w) ∈ (ϕ)M.
19In Priest (2008a), one finds a presentation of QS0.5 by means of a tableaux system. Here we present

this logic with a hilbertian proof system.
20The choice of constant domains is a matter of simplicity.
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We say that ϕ is true in M (|=M ϕ) (or M is a model of ϕ) iff every sequence
s ∈ Seq satisfies ϕ in every w ∈ N . The notion of logical validity and logical consequence
are defined as in Definition 2.2.6.

There are important remarks things to say about Definitions 5.5.1 and 5.5.2. In
Definition 5.4.8 the semantic clause for �ϕ in non-normal worlds says that the value of
the modal formulas in such worlds is arbitrary. Such strategy could be directly adapted
to the first-order case. But, as Priest (2008a) notes, this would significantly affect the
behaviour of the quantifiers in non-normal worlds. Consider, for example, a non-normal
world where formulas �Pm

n (t1, . . . , ck, . . . tm) and �Pm
n (t′1, . . . , cj, . . . t′m) occur. Moreover

suppose that (ti)M = (t′i)M, 1 ≤ i ≤ n. If the values of modal formulas in non-normal
worlds were arbitrary, then �Pm

n (t1, . . . , ck, . . . tm) and �Pm
n (t′1, . . . , cj, . . . t′m) would have

different values. Then it was necessary to treat modal formulas like atomic formulas in
such worlds.

As a title of example of how modalities work in non-normal worlds, consider the
following formula:

�(�F (x1)↔ �¬¬F (x1)) (5.7)

To see that the formula 5.7 is not valid, consider the modelM = 〈W,N,R,D(·)M〉 such
that W = {w0, w1}, N = {w0}, R = {(w0, w0), (w0, w1)}, D = {d1, d2}, (�F (x1), w1)M =
{d1} and (�¬¬F (x1), w1)M = {d2}. Now, consider s∗ : Term → D such that s∗(x1) =
d1 and s∗(xk) = d2, for k ≥ 2. Then, M, w1 |=s �F (x1) and M, w1 2s �¬¬F (x1).
Therefore,M, w0 2s �(�F (x1)↔ �¬¬F (x1)).

Second, the logic QS0.5 was not presented with identity predicate, because such pred-
icate brings some undesired consequences in the logical theory. The usual way to define
the satisfiability for formulas of the form t1 = t2 is the following way:

(=) If ϕ is t1 = t2, then M, w |=s t1 = t2 iff s∗(t1) = s∗(t2)

Thus, if s∗(t1) = s∗(t2), then M, w |=s t1 = t2 for all worlds w ∈ W . As a consequence,
the following formulas would be valid:

x = y → �x = y (5.8)

x 6= y → �x 6= y (5.9)

Then, 5.8 says that all identities are valid and 5.9 all non-identities are valid. Those
formulas are clearly non-valid according to the interpretation we are proposing for QS0.5.
That being said, we will drop the identity relation to avoid such complications.

Last, but not least, we discuss our choice for constant domains (CD) and we justify
the validity of Barcan Formula (BF) in the present interpretation. The axiom (BF) is
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one of the most controversial among the modal axioms in quantified modal logic. Its
validity is immediate once one accepts the CD approach to quantified modal logic. The
main issue with (BF) is its alleged counter-intuitiveness. For example, under the temporal
interpretation of the modalities � and ♦. Consider the dual of (BF), (BF♦):

♦∃xiϕ(xi)→ ∃xi♦ϕ(xi)

In the temporal reading of modalities, ♦ is interpreted as “it was the case that”.
Let ϕ(xi) mean “xi writes Dom Casmurro”. Under such interpretation the antecedent
is true, because it was the case that Machado de Assis wrote Dom Casmurro. But the
consequence is false, because Machado de Assis is not among us any more. In other
readings of modalities in quantified modal logic, such as the ontological, there is still
dispute about its validity. The defenders of CD approach are called possibilists and the
defenders of the variable domains approaches are called actualists. Possibilism is the claim
that the domain contains all the possible objects. In this case, the same domain is shared
by all possible worlds. Actualism is the claim that each world has its own domain.21

In general, actualists deny the general validity of (BF), because they reject the idea
that the same object exists across all worlds.22 So, the most direct strategy taken by
actualist is the adoption of variable domains (VD). It is a well known fact that (BF) is
not valid in models of VD. On the other hand, such a device brings its own problems, such
as possible counterexamples to ∀xiϕ → ϕ(t) (Ax4 ). There are ways to overcome such
obstacles, such as the existence predicates E(x), which postulate the existence of objects
in the domain, as well as the adoption of free logics as the basic logic. So it is possible to
regain a version of (Ax4 ) with the formula (∀xiϕ ∧ E(t))→ ϕ(t).

According to Cresswell (1991), the CD approach has advantages over the VD, because
it keeps intact the functioning of the quantifiers, whereas the VD approach must adopt
strategies to recover (Ax4 ). Moreover, it is possible to translate modal system which
adopt VD in systems which adopts CD. But the converse it is not always possible. Thus,
because of the simplicity and the technical advantages, we adopted CD approach to QS0.5.

The Theorems 4.4.9 and 4.4.12 show that KGL completely capture PA predicate Prov.
So it is natural to ask whether such results can be extended to the first-order case. As
Montagna (1984) and Boolos (1995, Chapter 17) show, this is not the case. Montagna
proves that first-order KGL, call it QKGL, is not arithmetically complete, because there
are arithmetical sentences which are not QKGL theorems. Moreover, as Boolos argues,
the formula (BF) is not true in theories which contain PA. Let τ be a translation from
QKGL into PA, and ϕτ be the formula ¬Prf(x,⊥), then ∀x�ϕ is true, whereas �∀xϕ is
false. Then, (BF) is not arithmetically sound. On the other hand, the converse of (BF):

(CBF) �∀xϕ→ ∀x�ϕ
21We invite the reader to consult Garson (2013) for a detailed discussion of both approaches.
22Lewis (1968)’s Counterpart Theory is a strong defence of the actualist approach to modalities.



CHAPTER 5. NECESSITY AS VALIDITY 123

is valid under translation τ . So, it is clear that the inadequacy of (BF) with respect to the
arithmetical provability is given by the example presented in the last paragraph. On the
other hand, we will argue that (BF) captures some aspects of logical validity if we look for
weak validity predicates. In other words, even if (BF) is incompatible with arithmetical
provability, (BF) may capture a weaker notion of first-order validity.

5.5.1 Validity interpretation for QS0.5

In the Section 5.3 we presented Skyrms’s result that S5 is the logic of validity in a hi-
erarchical setting. Now, inspired in Schweizer (1992) and Stern (2014) methods we will
provide a validity interpretation for the logic QS0.5. Now we will show in what sense(BF)
is compatible with such interpretation of modalities.

So, the resulting systematization will be the metalinguistic models for FOL, where we
have a validity predicate for names for formulas. We will show that the non-normal modal
logic QS0.5 captures the general principles of the predicate of logical validity.

The language LV alFOL of the validity theory for FOL, which we will call FOLV al, is defined
as follows:

Definition 5.5.3. The language LV alFOL is defined as the smallest set such that:

(1) Terms of LV alFOL:

(1.a) if t is a term of LFOL, then t is a term of LV alFOL;

(1.b) if ϕ is a formula of LFOL, then ϕ is an individual constant of LV alFOL.

(2) Formulas of LV alFOL:

(2.a) if ϕ is a formula of LFOL, then ϕ is a formula of LV alFOL;

(2.b) if ϕ is a formula name of ϕ, then V al(ϕ) is a formula of LV alFOL.

Since validity is a predicate of formulas, clause (2.b) blocks cases V al(t), where t 6= ϕ,
for all ϕ ∈ LFOL.

Definition 5.5.4. W is a non-empty set of first-order models Ai = 〈D0, (·)Ai〉 such that:

1. Every Ai ∈ W shares the same domain D0;

2. If c is a constant of LFOL, then (c)Ai = (c)Aj , for every Ai,Ai ∈ W;

3. If fkn is a function term of LFOL, then (fkn)Ai = (fkn)Aj , for every Ai,Ai ∈ W.

Definition 5.5.5. (SCHWEIZER, 1993) Let ϕ(xi) be the formula name of ϕ(xi). We
say that xi is metalinguistically free in ϕ(xi) if xi occurs free in ϕ(xi).
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It is important to observe that ϕ(xi) is always a closed term, even if ϕ(xi) is a open
formula.

Definition 5.5.6. A model for LV alFOL is a structure 〈A+
0 ,W〉 where W is a set of first-

order models A defined as in Definition 5.5.4. The model A+
0 = 〈D+

0 , (·)A
+
0 〉 is defined as

follows:

(1) D+
0 = {ϕ| ϕ ∈ For(LFOL)} ∪D0, where D0 is a non empty set of objects defined as

in Definition 2.2.6 shared by all Ai ∈ W;

(2) (cj)A
+
i is a fixed element of D0 − {ϕ| ϕ ∈ For(LFOL)} such that (cj)A

+
i = (cj)Ai, for

all Ai ∈ W;

(3) (P k
n )A+

0 is a set of k-tuples in Dn
0 − {ϕ| ϕ ∈ For(LFOL)};

(4) (fkn)A+
0 is a k-ary operation in D0−{ϕ| ϕ ∈ For(LFOL)} such that (fkn)A+

i = (fkn)Ai,
for all Ai ∈ W;

(5) (ϕ)A+
0 = ϕ

(6) (V al)A+
0 = {ϕ| ϕ ∈ For(LFOL) & ∀A∗j ∈ W ,A∗j |= ϕ}.

Definition 5.5.7. Let s ∈ Seq+ be a sequence of objects in D+
0 . The function (s+)∗ :

Term→ D+
0 is defined as follows:

1. If t ∈ Term is a variable xi, let (s+)∗(xi) = si, for si ∈ D0 − {ϕ| ϕ ∈ For(LFOL)};

2. If t ∈ Term is a constant ci, then (s+)∗(ci) = (ci)A
+
0 ;

3. (s+)∗(ϕ) = (ϕ)A+
i .

Definition 5.5.8. Let s ∈ Seq be a sequence of objects in D+ and ϕ a formula of LV alFOL

the notion of satisfiability of ϕ in A+ is defined as follows:

1. If ϕ is atomic, then A+
0 |=s+ P k

n (t1, . . . tn) iff ((s+)∗(t1), . . . , (s+)∗(tn)) ∈ (P k
n )A+

0 ;

2. If ϕ is ¬ψ, then A+
0 |=s+ ¬ψ iff A+

0 2s+ ψ;

3. If ϕ is ψ → γ, then A+
0 |=s+ ϕ→ ψ iff A+

0 2s+ ψ or A+
0 |=s+ ϕ;

4. If ϕ is ∀xiψ, then A+
0 |=s+ ∀xiψ iff A+

0 |=s+ ψ, for every sequence s′+ which differs
from s+ in the ith element;

5. If ϕ is V al(ψ), then A+
0 |=s+ V al(ψ) iff A+

0 |=s+ ψ and (s+)∗(ϕ) ∈ (V al)A+
i .

A formula ϕ is true in 〈A+
0 ,W〉 if A+

0 |=s+ ϕ, for every s+. ϕ is valid if it is true in
every 〈A+

0 ,W〉.
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As we can see, Definitions 5.5.6 and 5.5.8 leave the satisfiability of first-order formulas
untouched. The functions (·)A+

0 and (s+)∗ were defined in order to preserve the interpre-
tation of the pure first-order language in the models A+

0 . So, the pure first-order axioms
remain valid according to the models A+

0 . Second, the model A+
0 was defined in such a

way that it has the same domain of the set of models W . In this sense, A+
0 is the validity

theory of the models Ai ∈ W . That is, A+
0 captures the general principles about predicate

V al in every set W of first-order models.
From the Definitions 5.5.6 and 5.5.8, we obtain the following validities:

Theorem 5.5.9. The following schemata are true for any models 〈A+
0 ,W〉 of LV alFOL:

1. V al(ϕ→ ψ)→ (V al(ϕ)→ V al(ψ));

2. V al(ϕ)→ ϕ;

3. ∀xiV al(ϕ)→ V al(∀xiϕ);

4. If ϕ is a FOL validity, then V al(ϕ) is valid.

Proof. 2. Suppose that A+
0 |= V al(ϕ). Then, for every s+ ∈ Seq+, A+

0 |=s+ V al(ϕ). By
definition, we obtain A+

0 |=s+ ψ and (s+)∗ ∈ (V al)A+
i . Therefore, A+

0 |= ψ.
3. Suppose that A+

0 |= ∀xiV al(ϕ). Then, for every s+ ∈ Seq+, A+
0 |=s+ ∀xiV al(ϕ).

So, A+
0 |=s+ V al(ϕ) for every sequence s′+ ∈ Seq+ which differs from s+ in the ith

element. By definition, for every s′+ ∈ Seq+, A+
0 |=s′+ ϕ and (s′+)∗(ϕ) ∈ (V al)A+

0 . Since,
(s′+)∗(ϕ) = (ϕ)A+

0 , then (ϕ)A+
0 ∈ (V al)A+

0 . Then, for every A ∈ W , A |= ϕ. So, we have
that A |= ∀xiϕ. By definition, (∀xiϕ)A+

0 ∈ (V al)A+
0 and A+

0 |=s+ V al(∀xiϕ), for every
s+ ∈ Seq+. Therefore, A+

0 |= V al(∀xiϕ).
4. Suppose that ϕ is a FOL validity. Then, for every first-order A, A |= ϕ, including the
models A ∈ W which share the same domain. So, (ϕ)A+

0 ∈ (V al)A+
0 . Moreover, the truth

of ϕ is regulated by the recursive clauses of Definition 2.2.8. Then, ϕ is also true in A+
0 ,

whose recursive clauses for the operators are the same as in first-order models. Therefore,
A+

0 |= V al(ϕ). Q.E.D.

Consider now the translation t : L�FOL → LV alFOL defined as follows:

r(P k
n (t1, . . . , tn)) = P k

n (t1, . . . , tn)
r(¬ϕ) = ¬r(ϕ)
r(ϕ→ ψ) = r(ϕ)→ r(ψ)
r(�ϕ) = V al(r(ϕ))

The translation r considered here has one restriction: r is defined for formulas without
iterations of modalities. Such restriction is harmless because QS0.5 has no valid formulas
with iterated modalities, by the same reason that S0.5 does not have such theorems. This
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restriction is necessary to the present case because the predicate can only be applied to
ϕ, where ϕ is a first-order formula.

For the two following lemmas, remember that the assignment function s+ was defined
in such a way that it behaves as s with respect to the objects in domain D0. That is, if
t is a term of LFOL, then (s+)∗(t) is not a formula name. It is an object in the first order
domain.

Lemma 5.5.10. For every model 〈A+
0 ,W〉 for LV alFOL, there is a modelM = 〈W,N,R,D, (·)M〉

such that for every A ∈ W ∪ {A+
0 } there is a world w ∈ W such that:

M, w |=s ϕ iff A |=s′ r(ϕ) (5.10)

For all s ∈ Seq and all s ∈ {Seq, Seq+}.

Proof. Given 〈A+
0 ,W〉 we define M = 〈W,N,R,D, (·)M〉 as follows:

• W − N is the collection of worlds wi such that for every Ai ∈ W , M, w |=s

P k
n (t1, . . . , tn) iff Ai |=s P

k
n (t1, . . . , tn);

• N = {w0} is the normal worlds such that M, w0 |=s P k
n (t1, . . . , tn) iff A+

0 |=s

P k
n (t1, . . . , tn);

• R = {(w0, wi) | wi ∈ W} ∪ {(w0, w0)};

• D is the domain of objects shared by all Ai ∈ W ;

• (·)A+
0 is defined over D as usual.

The proof of 5.10 runs by induction on ϕ. When ϕ is atomic, the result follows by
definition. We will focus when ϕ = �ψ. Since the satisfiability of modal formulas in
non-normal worlds is arbitrary, we will focus on the case where w is a normal world.

M, w0 |=s �ψ iff for all y ∈ W such that w0Ry M, w0 |=s ψ and M, y |=s ψ iff by
I.H. A+

0 |=s+ r(ψ) and Ai |=s r(ψ) for all Ai ∈ W iff A+
0 |=s+ r(ψ) and Ai |= r(ψ) for all

Ai ∈ W iff A+
0 |=s+ r(ψ) and (r(ψ))A+

0 ∈ (V al)A+
0 iff A+

0 |=s+ V al(r(ψ)).
Q.E.D.

Lemma 5.5.11. For every model M = 〈W,N,R,D, (·)M〉 there is a model 〈A+
0 ,W〉 such

that for every wi ∈ W there is A ∈ W ∪ {A+
0 } such that for all ϕ ∈ For(LV alFOL)

Ai |= ϕ iff M, wi |= r−1(ϕ). (5.11)

For all s ∈ Seq and all s ∈ {Seq, Seq+}.

Proof. Given M = 〈W,N,R,D, (·)M〉 we define the model 〈A+
0 ,W〉 as follows:
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• W is the set of all models Ai in the lines of Definition 5.5.4 such that, for wi ∈ W−N ,
Ai |=s P

k
n (t1, . . . , tk) iff M, wi |=s P

k
n (t1, . . . , tk);

• A+
0 is a models of LV alFOL such that A+

0 |=s+ P k
n (t1, . . . , tk) iff M, w0 |=s P

k
n (t1, . . . , tk).

The proof of 5.11 runs by induction on ϕ. When ϕ is atomic, the result follows by
definition. We will focus in the model A+

0 because the satisfiability of formulas V al(ψ) is
not defined in models Ai.
ϕ = V al(ψ)

A+
0 |=s+ V al(ψ) iff A+

0 |=s+ ψ and (ψ)A+
0 ∈ (V al)A+

0 iff for all Ai ∈ W ,Ai |= ψ iff for
every sequence s Ai |=s ψ iff by I.H. M, w0 |=s ψ and M, wi |=s ψ for all wi ∈ W such
that w0Rwi iff M, w0 |=s �ψ iff M, w0 |=s r

−1(�ψ). This concludes the proof.
Q.E.D.

5.5.2 Characterization results

The results proved in this section follows the general strategy of Mendelson (2009) and
Hughes & Cresswell (1996). As we discussed in the beginning of the Section 5.5, it is
necessary to treat modal formulas as predicates in non-normal worlds in order to preserve
the behaviour of the quantifiers. In order to show that the semantic definitions given in
Definition 5.5.2 does not affect the quantifiers, we prove the following results:

Proposition 5.5.12. If the variables of a term t occur in the list xi1 , . . . , xin, and if s and
s′ have the same components in ith1, . . . , ithn places of the sequence, then s∗(t) = s′∗(t).

Proof. The proof runs by complexity of the terms.

t is a variable xij , where 1 ≤ j ≤ n. By assumption s and s′ have the same components
in ith1, . . . , ithn places. Then s∗(xij ) = si = s′i = s′∗(xij ).

If t is a constant xij , the result is immediate.

If t is a function term of the form fkm(xi1 , . . . , xin), then:

s∗(fkm(xi1 , . . . , xin)) = (fkm)M(s∗(xi1), . . . , s∗(xin))
= (fkm)M(s′∗(xi1), . . . , s′∗(xin))
= s′∗(fkm(xi1 , . . . , xin))

This concludes the proof. Q.E.D.

Lemma 5.5.13. If the variables of ϕ occurr in the list xi1 , . . . , xin and if the sequences s
and s′ have the same components in ith1, . . . , ithn places of the sequence, then

M, w |=s ϕ iff M, w |=s′ ϕ. (5.12)

For all ϕ ∈ L�FOL, for all w ∈ W .
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Proof. If ϕ = P k
m(xi1 , . . . , xin), then:

M, w |=s P k
m(xi1 , . . . , xin) iff (s∗(xi1), . . . , s∗(xin), w) ∈ (P k

m)M iff (Proposition 5.5.12)
(s′∗(xi1), . . . , s′∗(xin), w) ∈ (P k

m)M iff M, w |=s′ P
k
m(xi1 , . . . , xin).

If ϕ = ∀xjψ, then:

M, w |=s ∀xjψ iff M, w |=s′′ ψ for every s′′ ∈ Seq which differs from s in at most in the
ith component iff (by IH) M, w |=s′′ ψ for every s′′ ∈ Seq which differs from s′ in at most
in the ith component iff M, w |=s′ ∀xjψ.

If ϕ = �ψ and w ∈ N , then:

M, w |=s �ψ iff M, y |=s ψ for every y ∈ W such that wRy iff M, y |=s′ ψ for every y ∈ W
such that wRy iff M, w |=s′ �ψ.

If w /∈ N , then:

M, w |=s �ψ iff (s∗(xi1), . . . , s∗(xin), w) ∈ (ψ)M iff (by I.H.) (s′∗(xi1), . . . , s′∗(xin), w) ∈
(ψ)M iff M, w |=s′ �ψ. Q.E.D.

Definition 5.5.14. Let t be a term and ϕ be a formula. We say that t is free for xi in ϕ
if no free occurrence of xi in ϕ lies within the scope of any quantifier ∀xj, where xj is a
variable in t.

Lemma 5.5.15. If t and u are terms, s ∈ Seq, t′ results from t by replacing all occurrences
of xi by u, and s′ results from s by replacing the ith component of s by s∗, then s∗(t′) =
s′∗(t).

Proof. The proof runs by induction in the complexity of terms. If t is a constant, then it
is not free and the result is trivial.

If t is a variable xi, then s∗(u/xi) = s′i and s′∗(xi) = s′i. Therefore, s∗(u) = s′∗(xi).

If t is a variable xj, for j 6= i. Therefore, s∗(xj) = s′∗(xj).

If t is a fnk (t1, . . . , tn), then:

s∗(fnk (t′1, . . . , t′i, . . . , t′n) = (fnk )M(s∗(t′1), . . . , s∗(t′i), . . . , s∗(t′n)) Def.
= (fnk )M(s′∗(t1), . . . , s∗(u), s′∗(tn)) I.H.
= s′∗(fkn(t1, . . . , ti, . . . , tn)) Def.

This concludes the proof. Q.E.D.

Lemma 5.5.16. Let t be free for xi in ϕ(xi). ThenM, w |=s ϕ(t), where s = (s1, . . . , si, . . .)
iff M, w |=s′ ϕ(t), where s′ is obtained from s by substituting s∗(t) for si in the ith-place,
for all w ∈ W , for all formulas.
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Proof. The proof goes by induction on the complexity of formulas.

ϕ(t) is P n
k (t1, . . . , t, . . . , tn). Then:

M, w |=s P
n
k (t1, . . . , t, . . . , tn) iff (s∗(t1), . . . , s∗(t), . . . , s∗(tn)) ∈ (P n

k )M iff (by Lemma
5.5.15) s∗(t1), . . . , s∗(t), si/s∗(tn) ∈ (P n

k )M iff M, w |=s P
n
k (t1, . . . , xi, . . . , tn).

The case of boolean connectives is straightforward. We focus on the modal and on the
quantifiers.

ϕ(t) is �ψ(t). Then we have two cases to analyse: when w ∈ N and w /∈ W . When
w /∈ W , the verification is similar to the atomic case since in modal formulas are evaluated
as atomic formulas. Then we will focus in the case where w ∈ N .
M, w |=s �ψ(t) iff for every y ∈ W , wRy, M, y |=s ψ(t) iff (by I.H.) M, y |=s′ ψ(t) iff
M, w |=s′ �ψ(t).

ϕ(t) is ∀xiψ(t). Then, we have two cases: when xi = t and xi 6= t. In the first case, the
result is trivial because t would not be free.

Consider the case where xi 6= t. Suppose thatM, w |=s ∀xiψ(t), thenM, w |=s′′ ψ(t)
for every sequence s′′ which differs from s in the ith place. For each s′′ we obtain a sequence
s′′′ by substituting s′′∗(t) by si. Since t does not contain xi, by Lemma 5.5.13, we obtain
s′′∗(t) = s′′′∗(t). By induction, M, w |=s ψ(t). Then we obtain that M, w |=s ∀xiψ(si),
because the sequences also satisfy ψ(xi). The converse is similar.

Q.E.D.

Again, we see that this modified version of Lemma 5.5.16 guarantees the validity of
(Ax4). So, the models for QS0.5 keep intact the behaviour of the quantifiers. We now
prove that QS0.5 is sound with respect to its semantic definition given in Definition 5.5.2.

Theorem 5.5.17. If `QS0.5 ϕ then |=QS0.5 ϕ.

Proof. Here we will deal only with Barcan Formula, since the validity of the axioms K, T
and the rule N’ was proved in Theorem 5.4.10 and the validity of non-modal FOL axioms
are sound with-respect to the non-modal clauses of Definition 5.4.8.

Suppose thatM, w |=s ∀xi�ϕ, for every modelM, for every w ∈ N and every sequence
s. Then, M, w |=s′ �ϕ for every sequence s′ which differs from s in the ith element of
the sequence. By the semantic definition of �, M, y |=s′ ϕ for all y ∈ W such that
wRy, for all s′. So we obtain M, y |=s ∀xiϕ, for all y ∈ W such that wRy. Therefore,
M, w |=s �∀xiϕ. Q.E.D.

Definition 5.5.18. If xi and xj are distinct, then ϕ(xi) and ϕ(xj) are said to be similar
iff xj is free for xi in ϕ(xi) and ϕ(xi) does not have free occurrences of xj.
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Theorem 5.5.19. If ϕ(xi) and ϕ(xj) are similar, then ` ∀xiϕ(xi)↔ ∀xjϕ(xj).

Proof. Consider the following derivation.

1. ` ∀xjϕ(xj)→ ϕ(xi) Ax4
2. ` ∀xi(∀xjϕ(xj)→ ϕ(xi)) Gen 1
3. ` ∀xi(∀xjϕ(xj)→ ϕ(xi))→ (∀xjϕ(xj)→ ∀xiϕ(xi)) Ax5
4. ` ∀xjϕ(xj)→ ∀xiϕ(xi) MP 2,3
5. ` ∀xiϕ(xj)→ ϕ(xj) Ax4
6. ` ∀xj(∀xiϕ(xj)→ ϕ(xj)) Gen 5
7. ` ∀xj(∀xjϕ(xi)→ ϕ(xj))→ (∀xiϕ(xi)→ ∀xjϕ(xj)) Ax5
8. ` ∀xiϕ(xi)→ ∀xjϕ(xj) MP 6,7
9. ` ∀xjϕ(xj)↔ ∀xiϕ(xi) CPL 5,8

This concludes the proof. Q.E.D.

We now state a theorem which will be useful further.

Theorem 5.5.20. The following formulas are FOL-theorems:

(A) ` ∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ);

(B) ` ∀x(ϕ ∧ ψ)→ (∀xψ ∧ ϕ);

(C) ` ∀x(ϕ ∧ ψ)→ (∀xϕ ∧ ∀xψ);

(D) ` ∀xϕ↔ ¬∃xϕ

Proof. (A) Suppose that the variable xi occurs free in ϕ. Then, we have the following
derivation:
1. ` ∀xi(ϕ→ ψ)→ (ϕ→ ∀xiψ) Ax5
2. ` ∀xiϕ→ ϕ Ax4
3. ` (∀xiϕ→ ϕ)→ ((ϕ→ ∀xiψ)→ (∀xiϕ→ ∀xiψ)) CPL
4. ` (ϕ→ ∀xiψ)→ (∀xiϕ→ ∀xiψ) MP 2,3
5. ` ∀xi(ϕ→ ψ)→ (∀xiϕ→ ∀xiψ) CPL 1,4

For (B), consider the following derivation:

1. ` (ϕ ∧ ψ)→ ϕ CPL
2. ` (ϕ ∧ ψ)→ ψ CPL
3. ` ∀xi((ϕ ∧ ψ)→ ϕ) Gen 1
4. ` ∀xi((ϕ ∧ ψ)→ ψ) Gen 2
5. ` ∀xi((ϕ ∧ ψ)→ ϕ)→ (∀xi(ϕ ∧ ψ)→ ∀xiϕ) Th. 5.5.20 (A)
6. ` ∀xi((ϕ ∧ ψ)→ ψ)→ (∀xi(ϕ ∧ ψ)→ ∀xiψ) Th. 5.5.20 (A)
7. ` ∀xi(ϕ ∧ ψ)→ ∀xiϕ MP 3,5
8. ` ∀xi(ϕ ∧ ψ)→ ∀xiψ MP 4,6
9. ` ∀xi(ϕ ∧ ψ)→ (∀xiϕ ∧ ∀xiψ) CPL 7,8
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For (C), consider the following derivation:

1. ` ∀xi(ϕ ∧ ψ)→ (∀xiϕ ∧ ∀xiψ) Thm 5.5.20
2. ` ∀xi(ϕ ∧ ψ)→ ∀xiϕ CPL 1
3. ` ∀xi(ϕ ∧ ψ)→ ∀xiψ CPL 1
4. ` ∀xiϕ→ ϕ Ax4
5. ` ∀xi(ϕ ∧ ψ)→ ϕ CPL 2,4
6. ` ∀xi(ϕ ∧ ψ)→ (∀xiψ ∧ ϕ) CPL 3,5

(D) is left for the reader. This concludes the proof. Q.E.D.

Definition 5.5.21. A closed term t is a term without variables A theory T is a scapegoat
theory if, for any ϕ(x) that has x as its only free variable, there is a closed term t such
that

∃x¬ϕ(x)→ ¬ϕ(t).

So its proof in QS0.5 is exactly the same as in the (non-modal) quantificational case.
Our proof is based on Mendelson (2009)’s proof, but the only difference is that we do
not rely on Deduction Theorem, because its original formulation does not hold in general
for modal logics. Instead, we use Hughes & Cresswell’s (1996) definition of consistency
4.5.17.

Lemma 5.5.22. Every consistent theory T has a consistent extension T ′ such that T ′ is
a scapegoat theory and T ′ contains denumerably many closed items.

Proof. First, we add the denumerable set {b1, b2 . . .} of individual constants to the lan-
guage of QS0.5. The resulting theory is called QS0.50 with the extended language L+

QS0.5,
which has all the axioms of QS0.5, which now also involve the new constants.

Fact 5.5.23. QS0.50 is consistent.

Proof of the Fact 5.5.23. Suppose that QS0.50 is inconsistent. Then there are γ1, . . . , γn

of QS0.50 such that

`QS0.50 ¬(γ1 ∧ . . . ∧ γn) (5.13)

In the proof 5.13 we replace the occurrence of individual constants bi ∈ {b1, . . .} by
a variable which does not occur in the proof. The resulting proof will be a proof in
the original QS0.5, which we know to be consistent. Contradiction. Then, QS0.50 is
consistent. End of the proof of Fact 5.5.23.

Let ψ1(xi1), ψ2(xi2), . . . , ψk(xik), . . . be an enumeration of all formulas of QS0.5+ which
have one free variable. Such enumeration is possible because the language QS0.50 is
enumerable. Let now bi1 , bi2 , . . . , bik , . . . be a sequence of such new individual constants
such that each bik does not occur in the formulas ψk(xik) and each bik differs from each
other. Consider the formula
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(Sk) ∃xik¬ψk(xik)→ ¬ψ(bik)

Now we define the theories QS0.5n as follows:

QS0.5n = QS0.5n−1 ∪ {∃xin¬ψn(xin)→ ¬ψ(bin)}

QS0.5ω = ⋃
n∈ω QS0.5n. To prove that QS0.5ω is consistent, we prove by induction on

n that each QS0.5n is consistent. When n = 0, we have that QS0.50 is consistent by Fact
5.5.23.

Suppose that QS0.5n−1 is consistent and that QS0.5n. Then, by Definition 4.5.17 there
are formulas γ1, . . . , γm of QS0.5n−1 such that:

1. ` ¬(γ1 ∧ . . . ∧ γm ∧ (∃xin¬ψk(xin)→ ¬ψ(bin))) Def. 4.5.17
2. ` (γ1 ∧ . . . ∧ γm)→ ¬(∃xin¬ψk(xin)→ ¬ψ(bin)) CPL 1
3. ` (γ1 ∧ . . . ∧ γm)→ (∃xin¬ψk(xin) ∧ ¬¬ψ(bin)) CPL 2
4. ` (γ1 ∧ . . . ∧ γm)→ ∃xin¬ψk(xin) CPL 3
5. ` (γ1 ∧ . . . ∧ γm)→ ¬¬ψ(bin) CPL 3
6. ` ¬¬ψ(bin)→ ψ(bin) CPL
7. ` (γ1 ∧ . . . ∧ γm)→ ψ(bin) CPL 5,6
8. ` ∀xin(γ1 ∧ . . . ∧ γm)→ ψ(xin) Gen 7

Since γ1 ∧ . . . ∧ γm do not have free occurrences of xin , then

9. ` ∀xin(γ1 ∧ . . . ∧ γm)→ ψ(xin)→ ((γ1 ∧ . . . ∧ γm)→ ∀xijψ(xij )) Ax 5
10. ` (γ1 ∧ . . . ∧ γm)→ ∀xijψ(xij ) MP 8,9
11. ` ∀xij (xij )↔ ∀xinψ(xin) Th. 5.5.19
12. ` ¬(γ1 ∧ . . . ∧ γm) CPL 4,10

Which contradicts the consistency pf QS0.5n−1. Then, QS0.5n is consistent. Since we
are considering an arbitrary n, then every QS0.5n is consistent. Therefore, QS0.5ω is
consistent. Q.E.D.

Definition 5.5.24. Let w ⊆ For(LQS0.5) be a set of QS0.5 formulas. We say that w is
FOL-consistent if there is no {ϕ1, . . . , ϕn} ⊆ w such that ` ¬(ϕ1 ∧ . . . ∧ ϕn) and each
ϕi ∈ w is a substitution instance of a FOL-validity.

Definition 5.5.25. The canonical model for QS0.5 in the extended language L+
QS0.5 is a

structure of the form 〈W,N,R,D, (·)M〉 where:

1. N is the set of normal worlds where each w ∈ N is a maximal consistent set of
formulas of L+

QS0.5 and w is a scapegoat theory;

2. Each y ∈ W −N is a maximal FOL-consistent set of formulas and y is a scapegoat
theory;
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3. R is an accessibility relation defined in normal worlds defined as for propositional
S0.5;

4. D is the set of closed terms of L+
QS0.5;

5. The interpretation function (·)M is defined as follows:

(a) if t is a constant ci, then (ci)M = ci;

(b) if t is fnk (t1, . . . , tn) and t1, . . . , tn are closed terms, then (fnk (t1, . . . , tn))M =
fnk (t1, . . . , tn).

6. Let P n
k be a n-ary predicate and t1, . . . , tn closed terms, then ((t1)M, . . . , (tn)M) ∈

(P n
k )M iff P n

k (t1, . . . , tn) ∈ w.

7. if w ∈ W −N then:

(a) M, w |= �ψ iff ((t1)M, . . . , (tn)M) ∈ (ψ)M;

(b) M, w |= ♦ψ iff ((t1)M, . . . , (tn)M) ∈ (ψ)M.

Theorem 5.5.26. Let w ∈ N . If w is a maximal consistent set of formulas of modal
predicate logic and w is a scapegoat theory, and ϕ is a formula such that �ϕ /∈ w, then
there is a FOL-consistent set y which is a scapegoat theory such that λ(w) ∪ {¬ϕ} ⊆ y.

Proof. First we define the sequence of formulas ϕ0, ϕ1, . . ., where ϕ0 = ¬ψ. Given ϕn we
define ϕn+1 as follows:

ϕn+1 := ϕn ∧ (∃xin¬ψn(xin)→ ¬ψ(bin))

Where bin is the first individual constant such that

λ(w) ∪ {ϕn+1} (5.14)

is consistent. Since w is a scapegoat theory, bin is not new in λ(w). Even so, we can
show that for every n there is such bin . When n = 0, we have λ(w)∪ {¬ψ} which follows
as in the propositional case. We now prove that λ(w) ∪ {ϕn} is consistent, for every n.
For the inductive case, suppose that there is no such bin . Then for every bin there is a
{β1, . . . , βm} ⊆ λ(w) such that:

1. ` ¬(β1 ∧ . . . ∧ βm ∧ ϕn ∧ (∃xin¬ψ(xin)→ ¬ψ(bin))) Def. 4.5.17
2. ` (β1 ∧ . . . ∧ βm ∧ ϕn)→ ¬(∃xin¬ψ(xin)→ ¬ψ(bin)) CPL 1
3. ` ¬(∃xin¬ψ(xin)→ ¬ψ(bin))→ (∃xin¬ψn(xin) ∧ ¬¬ψ(bin)) CPL
4. ` (β1 ∧ . . . ∧ βm ∧ ϕn)→ (∃xin¬ψ(xin) ∧ ¬¬ψ(bin)) CPL 2,3
5. ` (β1 ∧ . . . ∧ βm)→ (ϕn → (∃xin¬ψ(xin) ∧ ¬¬ψ(bin)) CPL 4
6. ` �(β1 ∧ . . . ∧ βm)→ �(ϕn → (∃xin¬ψ(xin) ∧ ¬¬ψ(bin)) RK ′ 5
7. ` �(β1 ∧ . . . ∧ βm)→ (�β1 ∧ . . . ∧�βm) Th 5.4.7 (E)
8. ` (�β1 ∧ . . . ∧�βm)→ �(ϕn → (∃xin¬ψ(xin) ∧ ¬¬ψ(bin)) CPL 6,7
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Since β1, . . . , βm ∈ λ(w), then �β1 ∧ . . .�βm ∈ w. Then, we have: Q.E.D.

9. ` �(ϕn → (∃xin¬ψ(xin) ∧ ¬¬ψ(bin)) MP

Let xj be a variable which does not occur in ϕn, ∃xin¬ψ(xin) and ψ(bin). By Gen:

10. ` ∀xj�(ϕn → (∃xin¬ψ(xin) ∧ ¬¬ψ(xj)))
11. ` ∀xj�(ϕn → (∃xin¬ψ(xin) ∧ ¬¬ψ(xj)))→ �∀xj(ϕn → (∃xin¬ψ(xin) ∧ ¬¬ψ(xj)))
12. ` �∀xj(ϕn → (∃xin¬ψ(xin) ∧ ¬¬ψ(xj)))

Where step 11 is an instance of (BF) and 12 is obtained by MP from 10 and 11. Since
xj does not occur in ϕn, then we have the following instance of (Ax5 )

13. ` ∀xj(ϕn → (∃xin¬ψ(xin) ∧ ¬¬ψ(xj)))→ (ϕn → ∀xj(∃xin¬ψ(xin) ∧ ¬¬ψ(xj)))

Since the formula of step 13 is a substitution instance of a QS0.5-axiom, then it is
FOL-valid (in the language LQS0.5). Then we can apply the rule RK’ to this formula. So:

14. ` �∀xj(ϕn → (∃xin¬ψ(xin) ∧ ¬¬ψ(xj)))→ �(ϕn → ∀xj(∃xin¬ψ(xin) ∧ ¬¬ψ(xj)))

15. ` �(ϕn → ∀xj(∃xin¬ψ(xin) ∧ ¬¬ψ(xj))) MP 12,14
16. ` ∀xj(∃xin¬ψ(xin) ∧ ¬¬ψ(xj))→ (∃xin¬ψ(xin) ∧ ∀xj¬¬ψ(xj)) Th 5.5.20 (C)

Because ¬¬ψ(xj) and ¬¬ψ(xin) are similar, we obtain:

17. ` ∀xj¬¬ψ(xj)↔ ∀xin¬¬ψ(xin) Thm 5.5.19
18. ` ∀xj(∃xin¬ψ(xin) ∧ ¬¬ψ(xj))→ ∃xin¬ψ(xin) CPL 16
19. ` ∀xj(∃xin¬ψ(xin) ∧ ¬¬ψ(xj))→ ∀xj¬¬ψ(xj) CPL 16
20. ` ∀xj(∃xin¬ψ(xin) ∧ ¬¬ψ(xj))→ ∀xin¬¬ψ(xin) CPL 17, 19
21. ` ∀xj(∃xin¬ψ(xin) ∧ ¬¬ψ(xj))→ (∀xin¬¬ψ(xin) ∧ ∃xin¬ψ(xin)) CPL 19, 20
22. ` �(∀xj(∃xin¬ψ(xin) ∧ ¬¬ψ(xj))→ (∀xin¬¬ψ(xin) ∧ ∃xin¬ψ(xin))) NFOL 21
23. ` �(ϕn → (∀xin¬¬ψ(xin) ∧ ∃xin¬ψ(xin))) Th 5.4.7 (C)
24. ` �¬ϕn Th 5.4.7 23

Which contradicts the consistency of w. Then λ(w)∪{ϕn+1} is consistent. Now, let y
be the union of all λ(w) and ϕn, for every n. Since, for every n, λ(w)∪{ϕn} is consistent.
For every i and j, if i ≥ j, then ` ϕi → ϕj. Then their union is consistent. Then the
result follows.

Lemma 5.5.27. For any scapegoat theory w ∈ W , any sentence ϕ of L+
QS0.5:
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M, w |= ϕ iff ϕ ∈ w

Proof. The proof runs by induction on ϕ. When ϕ is atomic the result follows by Definition
5.5.25. The boolean cases are simple. Thus, we will concentrate in the cases where
ϕ = ∀xjψ and ϕ = �ψ

ϕ = ∀xjψ. We have to cases to analuse: when (A) ψ is closed and (B) the case where ψ
is open.

A. Suppose that ∀xjψ ∈ w. By Ax4, ∀xjψ → ψ ∈ w. Then, by MP, ψ ∈ w. By I.H.,
M, w |= ψ. Since ψ is closed, then every sequence s satifies ψ. Then, M, w |= ∀xjψ.

Suppose now that ∀xjψ /∈ w. Since w is maximal consistent, we obtain ¬∀xjψ ∈ w.
By Theorem 5.5.20 (E), we have ¬∀xiψ ↔ ∃xj¬ψ ∈ w. Then we have that ∃xj¬ψ ∈ w.
Because w is a scapegoat theory, ¬ψ ∈ w. Because w is consistent, ψ /∈ w. By I.H.,
M, w 2 ψ. Therefore, M, w 2 ∀xjψ.

B. If ψ is open, then the variable xj is free in ψ, since ϕ is a sentence. Suppose that
M, w |= ∀xjψ and consider that ∀xjψ /∈ w. Because w is complete, we have ¬∀xjψ ∈ w.
By Theorem 5.5.20 (E), we have ¬∀xiψ ↔ ∃xj¬ψ ∈ w. Then, ∃xj¬ψ ∈ w. Because
w is a scapegoat theory, ¬ψ ∈ w. Since M, w |= ∀xjψ, we obtain M, w |= ψ because
M, w |= ∀xjψ → ψ. By I.H., ψ ∈ w. Contradiction. Then if M, w |= ∀xjψ, then
∀xjψ ∈ w.

Suppose that ∀xjψ ∈ w and M, w 2 ∀xjψ. By definition, there is a s ∈ Seq such
that the ith element does not satisfy ψ. M, w 2s ψ. By substituting s∗(t) by si in
the sequence s, where t is a closed term, we obtain a sequence s′ such that by Lemma
5.5.16, M, w 2s′ ψ. Since ∀xjψ ∈ w and ∀xjψ → ψ ∈ w, then ψ ∈ w. By I.H, ψ /∈ w,
contradicting the consistency w. Therefore, if ∀xjψ ∈ w, thenM, w |= ∀xjψ.

ϕ = �ψ. If w ∈ N , then suppose that �ψ ∈ w and λ(w) ⊆ y. By �ψ → ψ ∈ w, we
obtain ψ ∈ w. Since λ(w) ⊆ y, for all y ∈ W , we have that ψ ∈ y. By I.H., M, w |= ψ

and M, y |= ψ such that wRy. Then, M, w |= �ψ.
Suppose that �ψ /∈ w. By maximality of w, ¬�ψ ∈ w. Then, by Lemma 5.5.26 there

is a FOL-consistent set y which is a scapegoat theory such that λ(w) ∪ {¬ψ} ⊆ y. Then
¬ψ ∈ y and ψ /∈ y. By I.H. M, w 2 ψ for wRy. Therefore, M, w 2 �ψ.

If w /∈ W , the result is given by Definition 5.5.25. This concludes the proof. Q.E.D.

It is clear that the canonical model M of QS0.5 is denumerable, because the language
LQS0.5 is itself denumerable and L+

QS0.5 is obtained by adding to LQS0.5 a denumerable set
{b1, b2, . . .} of constants. The next proposition is a direct consequence of Lindenbaum
Lemma and Lemmas 5.5.22, 5.5.26 and 5.5.27.

Proposition 5.5.28. Every consistent theory T has a model.
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The proof of Proposition 5.5.28 can be consulted in (MENDELSON, 2009, pp. 88,
Proposition 2.17).

Theorem 5.5.29. If ϕ is logically valid, then ` ϕ.

Proof. Suppose that 0 ϕ. Then by Proposition 4.5.16 (1), ϕ /∈ w, where w is a maximal
consistent set of sentences. Since w is a scapegoat theory in the extended language L+

QS0.5,
then by Proposition 5.5.28, M, w 2 ϕ, where M is a denumerable model. Q.E.D.
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Chapter 6

Logical validity for non-classical
logics

This work concentrates in describing the concept of consistency by means of modal logics.
But it is clear that we are dealing with this concept being defined in the classical setting.
Thus, one might wonder whether these properties that logical consistency exhibits would
remain we changed logic. More precisely: what are the properties that logical validity and
logical consistency have in a non-classical logics? We think that looking some fragments
of classical logic may shed light into this question. Since they are fragments of classical
logic, some principles of logical validity and logical consistency may fail in these logics.
But, if some principles remain, then we have reason to think that this remaining one
constitutes the core of logical validity. As a methodological choice, we now analyze the
case of a very popular family of non-classical logics: the many-valued logics (MVLs).

The last few years witnessed a growing interest in MVL in the philosophical literature.
Their applications in the analysis of semantical paradoxes (e.g, Priest (1979), da Ré et al
(2018)) and in the study of rationality (e.g., Belnap (1977), Kubyshkina & Zaitsev (2016),
Bezerra (2020)) show how interesting those logics can be for clarifying some philosophical
problems. Such applications, even if indirectly, respond to a very common objection
against these logics, which is about the interpretation of the intermediate values.

Despite its philosophical interest, those logics were challenged due to their metatheo-
retical bivalence. As Suszko (1977) observes, the concepts of tautology and logical conse-
quence only take into account whether a value t is designated (truth-like) or non-designated
(false-like). In other words, it is the bipartition of the set of truth values that is prepon-
derant in the analysis of the concepts of tautology and logical consequence, not the many
truth values that a MVL can have.

In this Chapter we extend the analysis done in Chapter 5 to MVLs. Those modalities �
and ♦ are intended to respectively interpret the concepts of “it is logically valid that” and
“it is logically consistent that” can be called suszkian modalities, because they only take
into account designatedness of the truth-values at issue. By analysing those modalities in
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a wide family of logics, we can know what are the most general properties those concepts
may have in a modal framework.

First, we introduce the family of many-valued modal logics LS0.5, which results from
the addition of S0.5 modalities to the MVL L’s, and then its characterization results.
These logics follow the same intuition as S0.5. Then, we introduce a stronger modality to
logics L, still bivalent, which intends to capture a more hierarchical notion of validity, such
as investigated by Skyrms (1978). This family of logics will be denoted by LS5, because
they are extended with the modality of classical S5. Second, we discuss whether validity
theories based on MVLs which use Gödel naming device are consistent. Third, we show
how the modalities � and ♦ allow us to talk about anti-validities and logical consistency.
Fourth, we show that these modalities allow us to define recovery operators from a modal
point of view. Fifth, we explore a validity theory based on the Strict Tolerant Logic. Last,
we show characterization results for the logics of the families LS0.5 and LS5.

Before moving on, we state our minimal requirement about the logics we will deal with
in this Chapter:

Assumption 6.0.1. (RESCHER, 1969) A n-valued connective ckm
m is called normal if

its operation okm
m agrees with the two values ones when only the truth-values 1 and 0 are

involved. A logic L is normal if its connectives are normal.1

Then, the logics to be investigated here a normal in the sense of Assumption 6.0.1.2

This assumption guarantees that when we have only classical values, the logic is classical
propositional logic (CPL).

6.1 The modal logics LS0.5

Here, since we are dealing with a large family of systems, the language L will have the
subscript of the corresponding logic L. Consider the following definition:

Definition 6.1.1. Given a language LL, we define its modal extension by L�♦L = LL ∪
{�,♦}.

Definition 6.1.2. Fix an n-valued normal logic L, with corresponding language LL and
matrix ML = 〈Vn, ok1

1 , . . . , o
km
m , DL〉. An ML-modal model is a structure of the formML =

〈W,N,R, v〉 where W is a set of worlds, N ⊆ W is a set of normal worlds, R is a
reflexive relation on N such that for every y ∈ W there is x ∈ N such that xRy, and v
is an assignment such that for every w ∈ W , vw(p) ∈ Vn. The function v is recursively
extended in the standard way:

1This concept does not coincide with normality of modal logics.
2We warn the reader that this sense of normality differs from normality in modal logics.
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1 vw(ckm
m (ϕ1, . . . , ϕk)) = ckm

m (vw(ϕ1), . . . , vw(ϕk)).

Now the interpretation of the modal operators runs as follows:

2.1 For any w ∈ W , vw(�ϕ) = 1 if w ∈ N and for all y ∈ W such that wRy, vy(ϕ) ∈ DL;
otherwise vw(�ϕ) = 0;

2.2 If w /∈ N , the value of vw(�ϕ) is arbitrary in Vn;

3.1 For any w ∈ W , vw(♦ϕ) = 1 if w ∈ N and for some y ∈ W such that wRy,
vy(ϕ) ∈ DL; otherwise vw(♦ϕ) = 0;

3.2 If w /∈ N , the value vw(♦ϕ) is arbitrary in Vn.

A formula ϕ ∈ For(L�♦L ) is true in a ML-modal model M iff for every w ∈ N

vw(ϕ) ∈ DL. A formula ϕ ∈ For(L�♦L ) is ML-valid iff it is true in every ML-modal model.

Definition 6.1.3. The Suszkian modal counterpart of L, that we indicate by LS0.5, is the
modal logic in the language L�♦L that consists of all ML-valid formulas.

Definition 6.1.4. We denote the family of n-valued logics LS0.5 as LS0.5.

As we argued in the Subsection 5.4.1, once we apply � or ♦ to ϕ, �ϕ/♦ϕ is no
more tautological/logically consistent by the truth-table method. Then we cannot allow
validities of the form � . . .�ϕ. So, to block such valid iterations of modalities, it was
necessary to adopt the division of the set W into normal worlds and non-normal worlds.

Note that our construction differs from Priest (2008b). There he takes the normal
operators � and ♦ and change the basic logic. Moreover, he allows formulas �ϕ and
♦ϕ to receive intermediate values.3 Our definition, on the other hand, Definition 6.1.2
imposes that these formulas can only be true or false in worlds w ∈ N , i.e., worlds
which determine the validity in models.4 In a metatheoretical point of view, our proposal
makes sense because a formula is designated or not.5 They are, in some sense, two-valued
(SUSZKO, 1977). In this sense, one may call � and ♦ of suszkian modalities.

Allowing �ϕ and ♦ϕ to receive intermediate values in normal worlds would give us
principles which are not valid in our proposed interpretation for � and ♦. Let us consider

3The logics investigated here can be seen as non-normal counterparts of the modal many-valued logics
investigated by Priest (2008b).

4One can note that the modal operator � in logics LS0.5 similarly works as a recovery operator, in the
sense of Carnielli et al (2019) and Coniglio & Peron (2013). We will concentrante on this issue in Section
6.5.

5Schotch et al (1978) introduce a study of non-classically based modal logic based, where they consider
the three-valued logic Ł3. In this work, they provide an axiomatization in the class of all models for Ł3M2,
which is obtained by extending Ł3 to the modal language where formulas �ϕ only receives classical values.
They suggest that this logic captures the idea that the modal discourse is essentially two-valued.
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such possibility of allowing intermediate values in a concrete example to see why it deviates
from our proposal. Suppose for a moment that the clauses 2.1 and 3.1 of Definition 6.1.2
were defined for w ∈ N as follows. Let Glb be the greatest lower bound and Lub be the
lowest upper bound. :

2.1’ vw(�ϕ) = Glb{vy(ϕ) | wRy}

3.1’ vw(�ϕ) = Lub{vy(ϕ) | wRy}

Consider now the logic LP ((ASENJO, 1966), (PRIEST, 1979)), defined as follows:

Definition 6.1.5. LP is characterized by the matrixMLP = ({1, 1
2 , 0},¬,∨,{1,

1
2}) whose

operations have the following truth-tables:

∨ 1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

¬
1 0
1
2

1
2

0 1

The connective → can be defined as ϕ → ψ := ¬ϕ ∨ ψ. Then, → has the following
truth-table:

→ 1 1
2 0

1 1 1
2 0

1
2 1 1

2
1
2

0 1 1 1

Consider now that the MLP-modal model for LPS0.5 is a structure M = 〈W,N,R, v〉
where the modal operators are defined according to the clauses 2.1’ and 3.1’. Then the
reader can easily check that the principle K is valid in the modelsM according to these
models. The problem is that, as we will see in the Proposition 6.1.24, the definitions of
� and ♦ given by the clauses 2.1’ and 3.1’ say that validity is preserved under modus
ponens. But the implication connective of LP does not validate such rule, as the following
proposition shows:

Proposition 6.1.6. ϕ, ϕ→ ψ 2LP ψ.

Proof. Consider a LP valuation v ∈ semLP such that v(p) = 1
2 and v(q) = 0. By the

truth-table of →, we obtain v(p → q) = 1
2 . Then, such valuation shows that modus

ponens is not truth-preserving in LP. Q.E.D.



CHAPTER 6. LOGICAL VALIDITY FOR NON-CLASSICAL LOGICS 141

If � is taken to interpret logical validity, then the clauses 2.1’ and 3.1’ cannot be taken
to define the meaning of � and ♦. These two latter clauses go in the contrary direction to
Proposition 6.1.6. Then, we claim that a faithful modal interpretation of logical validity
in many-valued logics must be defined like in Definition 6.1.2.

It is easy to see that when n = 2, LS0.5 is just S0.5, whose soundness and completeness
were proved in Chapter 5. Here we will provide a tableaux proof system for the logics
LS0.5 ∈ LS0.5, by adapting Carnielli (1987)’s labelled tableaux for many-valued logics to
modal many-valued logics.

Notation 6.1.7. We denote a truth-value m
n−1 , for 0 ≤ m ≤ n− 1, by tm.

Definition 6.1.8. Let ϕ be a formula and [tm] be a label, for tm ∈ Vn and i ∈ N. A
signed formula has the form [tm]ϕ, i.

Definition 6.1.9. Let [tm]ϕ be a signed formula and i ∈ N. Given [tm]ϕ, i, we construct
a tree (a tableau) for [tm]ϕ, i as follows:

(i) [tm]ϕ, i is the root/initial node of the tree;

(ii) We expand the root of the tree into branches b by applying the rule for [tm]ϕ, i. Every
such b contains signed formulas resulting from the application of the rule for [tm]ϕ, i,
and possibly krl, where r is a rule and k, l ∈ N, in the case that ϕ is a modal formula.

(iii) The endpoints of the tree are nodes which contains formulas for which there is no
rule to be applied.

The Definition 6.1.9 can be extended for sets of formulas Γ in the obvious way.

Definition 6.1.10. Let T be a tableau and b be a branch of T . We say that b is complete
if every rule which can be applied is applied. T is complete if its branches are complete.

Definition 6.1.11. Let T be a tableau and b be a branch of T . We say that b closes (i)
if there is a formula ϕ such that [tm]ϕ, j and [tl]ϕ, j with m 6= l occurring in b; (ii) if
[tm]�ϕ, 0 or [tm]♦ϕ, 0 for 0 < m < n− 1 occurs in b.

Let j ∈ N and 0 ≤ r, s ≤ n− 1. The general rule of boolean connectives, the (ckn-rule)
is defined as follows:

[tm]ckm
m (ϕ1, . . . , ϕk), j∨

{
s∧
r

[tr]ϕ, j | tr ∈ Vn, j ∈ N, vj(ckm
m (tr1, . . . , tsk)) = tm}

The notations ∨ and ∧ mean, respectively, the expansion into different branches and
the expansion into a single branch; vj is a homomorphism from the language LL of L to
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the matrix ML. This homomorphism must be required in ckn-rule in order to maintain the
correspondence between the semantics of L and its proof system.

[tn−1]�ϕ, 0∨
{[tm]ϕ, j | tm ∈ D ⊂ Vn, 0 ≤ b < m ≤ n− 1}

(0rj)

where b is the greatest element of the set of non-designated values.

[t0]�ϕ, 0∨
{[tm]ϕ, j | tm ∈ Vn −D, 0 ≤ m < r ≤ n− 1}

(0rj, j new)

where r is the least designated value.

[tn−1]♦ϕ, 0∨
{[tm]ϕ, j | tm ∈ D ⊂ Vn, 0 ≤ b < m ≤ n− 1}

(0rj, j new)

[t0]♦ϕ, 0∨
{[tm]ϕ, j | tm ∈ Vn −D, 0 ≤ m < r ≤ n− 1}

(0rj)

The rule r obbeys the following constraint:

.

0r0
(rule ρ)

In the usual labelled tableaux for non-modal propositional logics, the endpoints are
only inhabited by atomic formulas. But in our tableaux, there are modal formulas which
inhabit the endpoints and there is no rule to be applied to these formulas, specially
formulas of the form [tm]Mϕ, i (M ∈ {�,♦}), for i > 0. We will give an example of this
when we present the logic ŁS0.5

3 (Example 6.1.13). Now we define the notion of proof.

Definition 6.1.12. Σ `LS0.5 ϕ if every tableaux T ’s satisfying the following four conditions
close:

1. For each σi ∈ Σ, [tm]σi, 0, where tm ∈ D ⊂ Vn;

2. If σi ∈ Σ and σi = �ψ, then [tn−1]�ψ, 0;

3. If σi ∈ Σ and σi = ♦ψ, then [tn−1]♦ψ, 0;
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4. [tj]ϕ, 0, where tj ∈ Vn \D.

To illustrate the above definitions and rules consider the following example:

Example 6.1.13. The modal three-valued Łukasiewicz logic ŁS0.5
3 is characterized by the

structure M = 〈W,R, v〉 whose connectives ¬ and → of MŁ3 = 〈{1, 1
2 , 0},¬,→, {1}〉 are

interpreted by the following truth-tables:

¬
1 0
1
2

1
2

0 1

→ 1 1
2 0

1 1 1
2 0

1
2 1 1 1

2

0 1 1 1

Based on the general tableau rules we presented above, the following rules define the
deductive system for Ł3:

[1]¬ϕ,i

[0]ϕ,i

[1
2 ]¬ϕ,i

[1
2 ]ϕ,i

[0]¬ϕ,i

[1]ϕ,i

[1]ϕ→ ψ,i

[1]ϕ,i
[1]ψ,i

[1
2 ]ϕ,i

[1]ψ,i
[1

2 ]ϕ,i
[1

2 ]ψ,i
[0]ϕ,i
[1]ψ,i

[0]ϕ,i
[1

2 ]ψ,i
[0]ϕ,i
[0]ψ,i

[1
2 ]ϕ→ ψ,i

[1]ϕ,i
[1

2 ]ψ,i
[1

2 ]ϕ,i
[0]ψ,i

[0]ϕ→ ψ,i

[1]ϕ,i
[0]ψ,i

[1]�ϕ,0

0ri
[1]ϕ,i

[1]♦ϕ,0

0ri (i new)
[1]ϕ,i
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[0]�ϕ,0

0ri (i new)

[0]ϕ,i [1
2 ]ϕ,i

[0]♦ϕ,0

0ri (i new)

[0]ϕ,i [1
2 ]ϕ,i

To see how the tableaux for ŁS0.5
3 work, consider the following examples:

Theorem 6.1.14. `ŁS0.5
3

ϕ→ (ψ → ϕ).

Proof. Consider the following tableaux:

[0]ϕ→ (ψ → ϕ),0

[1]ϕ,0
[0]ψ → ϕ,0

[1]ψ,0
[0]ϕ,0
x

[1
2 ]ϕ→ (ψ → ϕ),0

[1]ϕ,0
[1

2 ]ψ → ϕ,0

[1]ψ,0
[1

2 ]ϕ,0
x

[1]ψ,0
[0]ϕ,0
x

[1
2 ]ϕ,0

[0]ψ → ϕ,0
[1]ψ,0
[0]ϕ,0
x

Since all tableaux close, then `ŁS0.5
3

ϕ→ (ψ → ϕ). This concludes the proof. Q.E.D.

Now, consider following definition:

ϕ ∨ ψ := (ϕ→ ψ)→ ψ

Then:

Theorem 6.1.15. 0ŁS0.5
3

ϕ ∨ ¬ϕ.

Proof. Consider the following tableaux:

[0]ϕ ∨ ¬ϕ,0

[0]ϕ,0
[0]¬ϕ,0
[1]ϕ,0
x

[1
2 ]ϕ ∨ ¬ϕ,0

[0]ϕ,0
[1

2 ]¬ϕ,0
[1

2 ]ϕ,0
x

[1
2 ]ϕ,0

[0]¬ϕ,0
[1]ϕ,0
x

[1
2 ]ϕ,0

[1
2 ]¬ϕ,0
[1

2 ]ϕ,0
?
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Since there is at least one open tableau for ϕ∨¬ϕ, then 0ŁS0.5
3

ϕ∨¬ϕ. This concludes
the proof. Q.E.D.

To give a concrete example of endpoints inhabited by modal formulas, consider the
following application of the rule for [1]�ϕ, 0:

[1]�¬(�p→ �¬p),0

0r1
[1]¬(�p→ �¬p),1

[0]�p→ �¬p,1
[1]�p,1

[0]�¬p,1

Since there is no rule available for [1]�p,1 or [1]�¬p,1, the verification stops and the
branch is open. So the endpoints of the tableaux for ŁS0.5

3 in general will contain other
formulas than atomic ones for which no rule can be applied.

The characterization results for the logics in LS0.5 will be proved in the subsection
6.7.1.

6.1.1 LS0.5 and (tauto)logical validity

In this subsection, we will define a theory of validity and consistency for L. The validity
theory for a logic L is obtained by adding to the language of L sentence names ϕ, in the
sense of Skyrms (1978), for each ϕ ∈ For(LL) and sentence predicates of validity V al and
consistency Con.

Definition 6.1.16. The set For(LV CL ) is defined as follows:

1. For(LV CL ) ⊆ For(LV CL )

2. if ϕ ∈ For(LL) and ϕ is a sentence name of ϕ, then V al(ϕ) ∈ For(LV CL ) and
Con(ϕ) ∈ For(LV CL ).

Consider the following definition:

Definition 6.1.17. Let ϕ ∈ For(LV CL ). We say that ϕ is a quasi-atomic formula if ϕ
has one of the following forms:

1. ϕ = p ∈ V;

2. ϕ = V al(ψ);

3. ϕ = Con(ψ);
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The set of quasi-atomic formulas is denoted by Vq.

Such definition will be important when we present the translation from LV CL to the
modal language L�♦L .

Definition 6.1.18. Let v ∈ semL be a valuation for a logic L as defined in Definition
2.1.1. Given v we extend it to the homomorphism v∗ : Vq → Vn as follows:

1’ v∗(ckm
m (ϕ1, . . . , ϕk)) = okm

m (v∗(ϕ1), . . . , v∗(ϕk)).

The set of all valuations v∗ : Vq → Vn is called sem∗LV C
L

.

The valuation v∗ behaves like v ∈ semL excepting that it takes formulas V al(ϕ) and
Con(ϕ) as atomic propositions. Now we define the models for the language LV CL as follows:

Definition 6.1.19. A model for LV CL is a structure MV C
L = 〈v+

0 ,A∗〉, where ML is a
matrix for L, A∗ is a set of valuations v∗i ∈ semV C

L and v+
0 : V → Vn is an assignment

recursively extended as follows:

1. v+
0 (ckm

m (ϕ1, . . . , ϕk)) = okm
m (v+

0 (ϕ1), . . . , v+
0 (ϕk))

2. v+
0 (V al(ϕ)) = 1 if v+

0 (ϕ) ∈ DL and for all v∗i ∈ A∗, vi(ϕ) ∈ DL;
otherwise, v+

0 (V al(ϕ)) = 0;

3. v+
0 (Con(ϕ)) = 1 if v+

0 (ϕ) ∈ DL or for some v∗i ∈ A∗, v∗i (ϕ) ∈ DL;
otherwise, v+

0 (Con(ϕ)) = 0;

A formula ϕ ∈ For(LV CL ) is true in MV C
L iff v+

0 (ϕ) ∈ D. A formula ϕ ∈ For(LV CL ) is
valid if it is true in every model MV C

L .

Remember that the sentence names ϕ introduced above are not Gödel codes pϕq.
While the latter are defined within an arithmetical theory, the former are introduced as
primitive objects in LV C . Of course there will be cases where pϕq and ϕ will be present
in the same theory. Those cases are theories Th whose their basic logic is strong enough
to validate, for example, arithmetical axioms. Many logics L do not enjoy this inferential
power to be a basis for a first-order arithmetical theory. For this reason, we prefer to
uniformly introduce ϕ instead of considering the possibility to define arithmetical codes
for the syntax.67 Consider the following translation:

6In paraconsistent set theory there is an interesting parallel, naïve set theory based on LP is not able
to prove Cantor’s Theorem due to its weak implication connective (PRIEST, 2006). Then, in order to
build a naïve set theory based on LP strong enough to prove Cantor’s Theorem, it is necessary to extend
LP with a strong conditional. In Weber (2012), one can check on proposal in this direction.

7There is also the possibility of obtaining such naming device by restricting the valuations in order
to validate the self-referential biconditionals. Pailos (2020) adopts such procedure to propose a validity
theory based on LP. Our approach here is simpler, since we are adopting such naming devices as primitive
objects in the language.
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Definition 6.1.20. Let t : L�♦L → LV CL be a function defined as follows:

t(p) = p

t(ckm(ϕ1, . . . , ϕk)) = ckm(t(ϕ1), . . . , t(ϕk))
t(�ϕ) = V al(t(ϕ))
t(♦ϕ) = Con(t(ϕ))

Fact 6.1.21. The t-translation is an injective function, whose inverse t−1 is also injective.

Given translation t, we now discuss the reason to use valuations v∗ ∈ sem∗LV C
L

instead of
valuations v ∈ semL in Definition 6.1.19. Let us consider again the logic S0.5 (Definitions
5.4.6 and 5.4.8). It is easy to check that the following formula is a S0.5-theorem:

�(�ϕ ∨ ¬�ϕ) (6.1)

Even if formulas of the form �ϕ receive arbitrary values in non-normal worlds, the
formula 6.1 is valid due to its form. The formula �ϕ ∨ ¬�ϕ is a substitution instance of
a CPL-tautology. On the other hand, if we use valuations v instead of v∗, the following
formula would not be valid:

V al(V al(ϕ) ∨ ¬V al(ϕ)) (6.2)

Since LCPL does not contain any predicate, the valuations v do not assign truth-values
to formulas V al(ϕ). Then, the formula 6.2 would not be valid in models of Definition
6.1.19. As a consequence, the Definition 6.1.19 would not be captured by S0.5. The use
of valuations v∗ give an account of cases like formula 6.2. The valuations v∗ preserve the
tautologies validated by L-valuations v ∈ semL. Now we will prove that the logics LS0.5

capture the predicates V al and Con of LV CL given translation t.

Lemma 6.1.22. For every model MV C
L = 〈v+

0 ,A∗L〉 for LV CL there is M = 〈W,N,R, v〉
for LS0.5 such that, for every v ∈ A∗L ∪ {v+

0 } there is a x ∈ W , so that the following holds:

vx(ϕ) = v(t(ϕ))

For all ϕ ∈ For(L�♦L ).

Proof. Given a model MV C
L = 〈v+

0 ,A∗L〉 we defineM = 〈W,N,R, v〉 as follows:

• W is the collection of words wi such that vwi
(p) = v∗i (p), for v∗i ∈ A∗L

• N = {w+
0 } is the set of normal worlds such that v+

0 (p) = v+
0 (p),

• R = {(w+
0 , wi)| wi ∈ W} ∪ {(w+

0 , w
+
0 )}.
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The proof of vwi
(ϕ) = vi(t(ϕ)) follows from the fact that both valuations are homo-

morphisms.
For vw+

0
(ϕ) = v+

0 (t(ϕ)) we proceed by induction. We only deal with the modal cases.
So, vw+

0
(�ϕ) = 1 iff for every vwi

∈ W , vwi
(ϕ) ∈ DL and vw+

0
(ϕ) ∈ DL iff (by inductive

hypothesis) for every v∗i ∈ A∗L, v∗i (t(ϕ)) ∈ DL and v+
0 (t(ϕ)) ∈ DL iff v+

0 (V al(t(ϕ)) = 1;
otherwise we get 0. The case of ♦ψ equally depends on the definitions and the inductive
hypothesis.

Q.E.D.

Lemma 6.1.23. For everyM = 〈W,N,R, v〉 for LS0.5 there is MV C
L = 〈v+

0 ,A∗L〉 for LV CL

such that, for every w ∈ W there is a v ∈ A∗L ∪ {v+
0 } the following holds:

vx(ϕ) = vw(t−1(ϕ))

For all ϕ ∈ For(LV C).

Proof. LetM = 〈W,N,R, v〉 be a ML-modal model for LS0.5. Without loss of generality
we can assume that N 6= ∅; otherwise there are no modal formulas that are valid inM
and, thus, the proof is trivial. Given a w∗0 ∈ N , we know that w∗0Rwi, for all wi ∈ W , by
Definition 6.1.2. Notice that the normal words display the same set of modal validities,
since they are all connected with all non-normal worlds. Then fix, w∗0 a world in N .

We now define a model MV C
L = 〈v+

0 , V 〉 as follows:

• A∗L is a collection of valuations v∗x ∈ sem∗LV C , for x ∈ W −N ,

• v+
0 is a valuation of the language LV CL such that v+

0 (p) = vw∗0 (p) in the lines of
Definition 6.1.19.

Thus, consider the case v = w∗0 and when ϕ = V al(ψ). We proceed by induction.
Then, v∗0(V al(ψ)) = 1 iff v+

0 (ψ)) ∈ DL and vx(ψ)) ∈ DL for every v∗x ∈ A∗L iff, by
Inductive Hypothesis, vx(ψ)) ∈ DL for every x ∈ W iff vw∗0 (�ψ) = 1, which, by definition
of the t-translation, is equivalent to say vw∗0 (t−1(V al(ψ)) = 1. The case of Con(ψ) is
similar. Q.E.D.

Because LS0.5 comprehends a wide class of many-valued logics, the majority of the
characteristic modal principles are not valid in this family of logics, since we have to
take into consideration the idiosyncrasies of each system LS0.5. The following propositions
illustrate this point:

Proposition 6.1.24. The axiom K is not valid in LPS0.5.
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Proof. Let MLP = ({1, 1
2 , 0},¬,∨, {1,

1
2}) be the matrix presented in Definition 6.1.5. Let

M = 〈W,N,R, v〉 be a MLP-modal model for LPS0.5 such that W = {w, y}, N = {w},
R = {(w,w), (w, y)} and v an assignment such that vw(p) = vy(p) = 1

2 and vw(q) =
vy(q) = 0. Then, vw(p→ q) = vy(p→ q) = 1

2 . Since p and p→ q takes a designated value
in every world of W , then vw(�p) = vw(�(p→ q)) = 1. On the other hand, vw(�q) = 0.
Therefore, vw(�(p→ q)→ (�p→ �q)) = 0. Q.E.D.

Proposition 6.1.25. Nec is not valid in K3
S0.5.

Proof. The matrix of the logic K3, Kleene (1938), is obtained from
MLP = ({1, 1

2 , 0},¬,∨, {1,
1
2}) by taking only 1 as designated value. The matrix of MK3 of

K3
S0.5 has no boolean operation o2

k such that o2
m(1

2 ,
1
2) ∈ {1, 0}. Since 1

2 /∈ D, then there
is no tautology in K3

S0.5. Then K3
S0.5 has no theorem of the form �ϕ. Q.E.D.

Proposition 6.1.26. The axiom T is not valid in RM3
S0.5.

Proof. Let MRM3 = ({1, 1
2 , 0},¬,∨, {1,

1
2}) be the matrix of the logic RM3 (Anderson &

Belnap (1975)) whose operations have the following truth-tables:

→ 1 1
2 0

1 1 0 0
1
2 1 1

2 0
0 1 1 1

∧ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

¬
1 0
1
2

1
2

0 1

Let M = 〈W,N,R, v〉 be aMRM3-modal model such that W = {w, y}, N = {w},
R = {(w,w), (w, y)} and v an assignment such that vw(p) = vy(p) = 1

2 . By definition of
�, we obtain vw(�p) = 1. By the definition of →, we obtain vw(�p→ p) = 0. Q.E.D.

Consider now the following definition:

Definition 6.1.27. (RESCHER, 1969) A truth-value r is called infectious if, whenever it
is an input of a truth-function, r is an output, for every truth-function of a given matrix.
A logic L is called infectious if its characteristic matrix has at least one infectious value.8

Proposition 6.1.28. �(ϕ ∧ ψ)→ (�ϕ ∧�ψ) and ♦(ϕ ∧ ψ)→ (♦ϕ ∧ ♦ψ) are not valid
in logics LS0.5 which have infectious designated values.

Proof. Let MH3 = ({1, 1
2 , 0},¬,`,∨, {1,

1
2}) be the matrix of H3 (Halldén (1949)) whose

operations have the following truth-tables:

∧ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2

1
2

0 0 1
2 0

¬
1 0
1
2

1
2

0 1

`
1 1
1
2 0
0 1

8We refer the reader to Szmuc (2016) for a systematic treatment of these logics.
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The connective → can be defined as ϕ → ψ := ¬ϕ ∨ ψ. Then, → has the following
truth-table:

→ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2

1
2

0 1 1
2 1

Consider now the {¬,∨,→}-fragment of H3, usually called Paraconsistent Weak Kleene
Logic (PWK).9

Let MPWK be a matrix for an infectious logic L and letM = 〈W,N,R, v〉 be a MH3-
modal model for H3

S0.5 such that W = {w, y}, N = {w}, R = {(w,w), (w, y)} and v

an assignment such that vw(p) = vy(p) = 1
2 , and vw(q) = vy(q) = 0. So vw(p ∧ q) =

vy(p ∧ q) = 1
2 . By truth-definition of �, we obtain vw(�(p ∧ q)) = vw(�p) = 1 and

vw(�q) = 0. Then, ww(�p ∧�q) = 0. Therefore, vw(�(ϕ ∧ ψ) → (�ϕ ∧�ψ)) = 0. The
case of ♦(ϕ ∧ ψ)→ (♦ϕ ∧ ♦ψ) is similar.

Q.E.D.

Definition 6.1.29. (RÉ; SZMUC, 2021) A truth-value r is called immune if, whenever
it is an input of a truth-function along with a truth-value r′, r′ is the output.

Proposition 6.1.30. (�ϕ ∧ �ψ) → �(ϕ ∧ ψ) is not valid in immune logics which the
intermediate values taken as designated values.

Proof. Let L be a logic characterized by the matrixML = ({1, 1
2 , 0},¬,∧,→, {1,

1
2}) whose

operations have the following truth-tables:

→ 1 1
2 0

1 1 0 0
1
2 1 1

2 0
0 1 1 1

∧ 1 1
2 0

1 1 0 0
1
2 0 1

2 0
0 0 0 0

¬
1 0
1
2

1
2

0 1

M = 〈W,N,R, v〉 be a ML-modal model for LS0.5 such that R = {(w,w), (w, y)} and
v an assignment such that vw(p) = vy(p) = 1, and vw(q) = vy(q) = 1

2 . By definition of �,
vw(�p) = 1 and vw(�p) = 1. So, vw(�p ∧ �q) = 1 On the other hand, vw(p ∧ q) = 0.
Then vw(�(p ∧ q)) = 0. Therefore, vw((�p ∧�q)→ �(p ∧ q)) = 0. Q.E.D.

Proposition 6.1.31. The substitutivity of equivalents is not valid in logics LS0.5.

Proof. In the Chapter 5 we proved that S0.5 does not validate substitutivity of equivalents.
Since S0.5 is stronger than each LS0.5 ∈ LS0.5, then no logic LS0.5 ∈ LS0.5 satisfy such
rule. Q.E.D.

Proposition 6.1.32. ♦ϕ↔ ¬�¬ϕ is not generally valid in logics LS0.5.
9The reader can find a systematic study of PWK in Bonzio et al. (2017).
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Proof. Let LPS0.5 be the logic presented in Proposition 6.1.24. W = {w, y}, N = {w},
R = {(w,w), (w, y)} and v an assignment such that vw(p) = vy(p) = 1

2 . Then, vw(�¬p) =
vw(♦p) = 1. By applying the negation, we obtain vw(¬�¬p) = 0. Therefore , vw(♦p →
¬�¬p) = 0. Q.E.D.

The Proposition 6.1.31 and Proposition 6.1.32 justify the introduction of both modal
operators as primitive. From a philosophical point of view it could be defended that
logical validity and logical consistency are somewhat independent. That is, weakening
the logic those concepts may show to be independent each other.10

Definition 6.1.2 covers a myriad of many-valued modal systems LS0.5s. So an axioma-
tization à la Hilbert of the most general modal principles which all systems LS0.5 ∈ LS0.5

satisfy would constitute an import result about validity and consistency of logics L. But,
as Propositions 6.1.24 - 6.1.32 show, many modal principles interact with the truth-
functional connectives and these latter significantly vary according to the logic L. So, it
is not immediate for us how to obtain such a general axiomatization.

Proposition 6.1.33. The following principles hold for any LS0.5 ∈ LS0.5.

1. |=LS0.5 �ϕ→ ♦ϕ;

2. �ϕ |=LS0.5 ϕ;

3. ϕ |=LS0.5 ♦ϕ;

4. �ϕ→ �ψ,�ϕ |=LS0.5 �ψ

5. If ψ is a L-tautological consequence of ϕ, then �ϕ |=LS0.5 �ψ.

Proof. 1. Suppose that every M for LS0.5 is such that vw(�ϕ) = 1, for every w ∈ N .
Then, for every y ∈ W , such that wRy, vy(ϕ) ∈ DL. Then, since R is reflexive over N ,
vw(ϕ) ∈ DL. So there is y ∈ W such that vy(ϕ) ∈ DL. Therefore, vw(♦ϕ) = 1. By
Assumption 6.0.1, we obtain vw(�ϕ→ ♦ϕ) = 1.

2. SupposeM for LS0.5 is such that vw(�ϕ) = 1, for every w ∈ N . Then, for every y ∈ W ,
such that wRy, vy(ϕ) ∈ DL. Then, since R is reflexive over N , we obtain vw(ϕ) ∈ D.

3. Same reasoning as 2.

4. This follows from normality assumption, since the reasoning only involves the classical
values 1 and 0.

10Some concepts which are identical in classical logic become different each other in non-classical logics.
Paraconsistent logics are good examples for this. By invalidating the inference ϕ,¬ϕ ` ψ, they show that
inconsistency and triviality are not identical concepts.
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5. Suppose that ψ is a tautological consequence of ϕ in LS0.5. Then, for all w ∈ N ,
vw(ϕ) ∈ DL implies vw(ϕ) ∈ DL. Since ψ is a tautological consequence of ϕ, it is also the
case in worlds y ∈ W −N . By definition of models for LS0.5, every y ∈ W is accessed by
a normal world w ∈ N . Then, vw(�ϕ) = 1 implies vw(�ψ) = 1. Q.E.D.

Proposition 6.1.33 shows that the operators � and ♦ fulfill the minimal requirements
of their “intended interpretations”. Items (2) and (3) are quite general since they do not
involve operators other than � and ♦. That is, their validity do not depend on other
operators, such as ¬, →, ∧, and ∨. The item (1), on the other hand, shows that logical
validity and logical consistency are connected by means of implication. Since �ϕ and ♦ϕ
can only either true (1) or false (0), then → has as arguments only classical values. By
our Assumption 6.0.1, �ϕ → ♦ϕ is valid in all logics in the family LS0.5. Then axiom D
is one of the most general principle which connects � and ♦ by means of truth-functional
connectives.

6.2 The modal logics LS5

The modalities investigated in §6.1 are considerably weak. As one can see, imposing other
properties in accessibility relation will not make any difference since R is defined only for
normal worlds and the non-normal worlds assign arbitrary values to modal formulas. In
this present section we will deal with stronger modalities which are intended to capture
a stronger notion of modalities. Then we will extend Skyrm’s result (SKYRMS, 1978) in
proving that these modalities capture a strong notion of logical validity.

Definition 6.2.1. Fix an n-valued normal logic L, with corresponding language LL and
matrix ML = 〈Vn, o1

1, . . . , o
k
m, DL〉. An ML-standard modal model is a structure of the form

M = 〈W,R, v〉, where W 6= ∅ is a set of worlds, R ⊆ W ×W is an equivalence relation,
v is an assignment, and vw is recursively defined as follows:

1 The boolean cases are defined as in Definition 6.1.2;

2 vw(�ϕ) = 1 iff for all y ∈ W , wRy implies vy(ϕ) ∈ DL; otherwise vw(�ϕ) = 0

3 vw(♦ϕ) = 1 iff there is y ∈ W , wRy and vy(ϕ) ∈ DL; otherwise vw(♦ϕ) = 0

A formula ϕ ∈ For(L�♦L ) is true in a ML-standard modal model iff for every w ∈ W
vw(ϕ) ∈ DL. ϕ is valid iff it is true in every ML-standard modal model.

Definition 6.2.2. The standard Suszkian modal counterpart of L, that we indicate by
LS5, is the modal logic in the language L�♦L that consists of all valid formulas in the
ML-standard modal model.

Definition 6.2.3. We denote the family of many-valued logics LS5 as LS5.
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Now, since modal formulas are now evaluated in all worlds, the possibility of iterations
of modalities is regained. Note that Definition 6.2.1 still gives classical values to modal
formulas. Again, always being designated or not is the only thing that matters to evaluate
the validity (or non-validity) of a formula.

The proof system for the logics LS5 ∈ LS5 is a modification of the proof system pre-
sented in last section. Now we present the definitions and rules where there are modifi-
cations.

Definition 6.2.4. Let T be a tableau and b be a branch of T . We say that b closes (i)
if there is a formula ϕ such that [tm]ϕ, j and [tl]ϕ, j with m 6= l occurring in b; (ii) if
[tm]�ϕ, i or [tm]♦ϕ, i for 0 < m < n− 1 occurs in b.

The modal rules suffer the following modification: [tn−1]�ϕ, [tn−1]♦ϕ, [t0]�ϕ and
[t0]♦ϕ are now defined for every node i. Moreover, the following rules are added:

irj jrk

irk
(rule τ)

irj

jri
(rule σ)

The characterization results for the logics in LS0.5 will be proved in the subsection
6.7.2.

6.2.1 LS5 and hierarchical validity

Now we will prove that the logics LS5 capture the concept of logical validity in a hierar-
chical framework. The hierarchical language relative to L takes LL as the base language,
which we denote by L0

L for convenience. Informally, given L0
L, we construct a hierarchy of

increasingly stronger languages L1
L,L2

L, . . . ,LiL, . . ., where each LiL, for i > 0, contains the
formulas ϕ of the languages LkL, 0 ≤ k < i, as well as sentence names ϕ for each ϕ and
the predicate V al. Informally, given the base language L0

L, we construct a hierarchy of
increasingly stronger languages L1

L,L2
L, . . . ,LkL, . . ., where each LkL (0 < k ≤ n) is expres-

sively stronger than its predecessors in the hierarchy, and Lk contains validity predicates
and sentence names ϕ which describe the valid formulas of the weaker languages in the
hierarchy. Taking the union of all the LkL’s, we obtain LωL . More formally

Definition 6.2.5. Let L0
L be a propositional language defined as in Chapter 2. From L0

L

we define inductively the languages LnL, for n ∈ N.

1. For(LnL) ⊆ For(Ln+1
L );
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2. If ϕ ∈ For(LnL), then Ln+1
L contains ϕ and V al(ϕ), Con(ϕ) ∈ For(Ln+1

L );

LωL = ⋃
n∈ω LnL.

The models for LωL are defined as follows. Let v ∈ semL, call it v0 be a valuation of a
logic L with language L0

L. Each v0 induces, inductively, a model vn for the hierarchy LnL .
Then, a model v0 for L0

L induces a model vω for LωL . Formally:

Definition 6.2.6. Fix an n-valued normal logic L, with corresponding language LL and
matrix ML = 〈Vn, o1

1, . . . , o
k
m, DL〉. The models vn for the language LnL are induced by a

model v0 of L0
L as follows:

(1) The models v0
i of L0

L are valuations vi ∈ semL defined in Definition 2.1.1.

(2) The models vn+1
i of Ln+1

L induced by a model v0
i of L0

L is the smallest extension of
vni of LnL such that:

(2.1) If ϕ ∈ LnL and ϕ = ckm(ϕ1, . . . , ϕk), then:

(2.1.1) vn+1
i (ckm

m (ϕ1, . . . , ϕk)) = (okm
m (vn+1

i (ϕ1), . . . , vn+1
i (ϕk))).

(2.2) If ϕ ∈ LnL, then:

(2.2.1) vn+1
i (V al(ϕ)) = 1 if vnj (ϕ) ∈ DL for all models vnj of LnL;

otherwise vn+1(V al(ϕ)) = 0;

(2.2.2) vn+1
i (Con(ϕ)) = 1 if vnj (ϕ) ∈ DL for some model vnj of LnL;

otherwise vn+1
i (Con(ϕ)) = 0;

Now, the model vωi of LωL induced by a v0
i is the union of all vni induced by v0

i of L0
L.

ϕ ∈ For(LωL ) is true in a model vωi of LωL if vωi (ϕ) ∈ DL. ϕ ∈ For(LωL ) is valid if ϕ is
true in every model vωi of LωL .

S5 is characterized by models M = 〈W,R, v〉 where R is an equivalence relation.
Since every world w ∈ W is related to every other world in its equivalence relation, we
can define the models for S5 as pairsM = 〈W, v〉 by dropping R. Then, truth for modal
formulas is defined as follows:

(�-S5) vw(�ϕ) = 1 iff vy(ϕ) = 1 for every y ∈ W ;

(♦-S5) vw(�ϕ) = 1 iff vy(ϕ) = 1 for some y ∈ W .

Consequently, as Hughes & Cresswell (1996) observe, every formula�ϕ is true through-
out M or it is false throughout M due to the extensionality of the model. Since the
metatheory of the logics LS5 ∈ LS5 is classical set-theory, such logics can also be character-
ized by modelsM = 〈W, v〉. Then the two clauses above suffer the obvious modifications:
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(�-S5) vw(�ϕ) = 1 iff vy(ϕ) ∈ D for every y ∈ W ;

(♦-S5) vw(�ϕ) = 1 iff vy(ϕ) ∈ D for some y ∈ W .

The following results to be proved will make use of these latter models.

Notation 6.2.7. AL is a set of models vωi of LωL such that each vωi is induced by v0
i of L0

L.

Now, consider the translation t : L�♦L → LωL as defined as in Definition 5.3.4 with the
obvious modifications to language LωL . Then:

Lemma 6.2.8. Let AL be a set of models vωi of LωL which are induced by v0
i of L0

L. For
every set AL of models vωi of LωL we define a model M = 〈W, v〉 for LS5 such that for all
vωi ∈ AL there is xi ∈ W

vxi
(ϕ) = vωi (t(ϕ)).

For all ϕ ∈ For(L�♦L ).

Proof. Given the set AL of models vω of LωL induced by v0 of L0
L we define a model

M = 〈W, v〉 for LS5 as follows:

(•) W is a collection of worlds xi (i ∈ N) such that vxi
(p) = vωi (p), where each vωi ∈ AL

is induced by v0
i of L0

L according to Definition 6.2.6.

We proceed by induction to prove that vxi
(ϕ) = vωi (t(ϕ)). The cases of boolean

connectives are straightforward. We will focus on the case where ϕ = �ψ. So, vxi
(�ψ) =

1 iff for all xj ∈ W such that vxj
(ψ) ∈ DL. By construction, each model vωj of LωL

correspond to the valuation v of M on xj ∈ W in the lines of (•). By I.H., we obtain
that vωj (t(ψ)) ∈ DL. Particularly, vωi (t(ψ)) ∈ DL. Then vni (t(ψ)) ∈ DL, where n ∈ ω and
vni of LnL is also induced by v0

i of L0
L iff vn+1

i (V al(t(ψ))) = 1 iff vωi (V al(t(ψ))) = 1, by the
definition of vωi . Q.E.D.

Lemma 6.2.9. For every modelM = 〈W, v〉 for LS5 we define a set AL of models vωi of
LωL induced by v0

i of L0
L such that for all xj ∈ W there is vωi ∈ AL:

vxi
(ϕ) = vωi (t−1(ϕ)).

For all ϕ ∈ For(LωL ).

Proof. Let M = 〈W, v〉 be a model for LS5. Take a world xi ∈ W . Now we define the
models vωi ∈ AL of LωL as follows:

(•′) v0
i ∈ semL is defined as the restriction of vxi

of M to atomic propositions. Then,
vxi

(p) = v0
i (p). Since v0

i induces vωi according to Definition 6.2.6, we obtain vxi
(p) =

vωi (p).
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Now we proceed by induction to prove vxi
(ϕ) = vωi (t−1(ϕ)). The boolean connectives

are straightforward. We focus on the case where ϕ = V al(ψ). So, consider vωi (V al(ψ) =
1. By definition, vn+1

i (V al(ψ) = 1 for a model vn+1
i of the language Lk+1

L , the first
metalanguage where ψ appears. Then vn+1

i (V al(ψ) = 1 iff vnj (ψ) ∈ DL for all models
vnj of the language LnL iff vωj (ψ) ∈ DL for each vωj of LωL extending vnj iff by induction
hypothesis vwj

(ψ) ∈ DL for all wj ∈ W iff vwj
(�ψ) = 1 iff vωi (t−1(�ψ)).

Q.E.D.

It is to be noted that many non-valid principles in logics LS0.5 are still non valid in LS5

and the reason is the same: many of these principles depends on the particularities of the
system. That is, if a logic LS5 ∈ LS5 has an implication like → of RM3, then the principle
T will not be valid in RM3

V al. It is clear that when n = 2, LS5 = S5.

Proposition 6.2.10. The following principles hold for every LS5 ∈ LS5:

(1) - (4) of Proposition 6.1.33;

(5) �ϕ |=LS5 ��ϕ;

(6) ϕ |=LS5 �♦ϕ;

(7) If ψ is a logical consequence of ϕ, Then �ϕ |=LS5 �ψ.

Proof. 5. Suppose that there is a ML-standard modal model M = 〈W,R, v〉 such that
vw(�ϕ) ∈ D and vw(��ϕ) /∈ D for some w ∈ W . By truth-definitions, we know that
vw(�ϕ) = 1 and vw(��ϕ) = 0. So, there is a y ∈ W such that wRy and vy(�ϕ) /∈ D.
Again, vy(�ϕ) = 0. Then there is a z ∈ W such that yRz, vz(ϕ) = 0. Since R is transi-
tive, we obtain wRz, which implies that vw(�ϕ) = 0, a contradiction.

6. Suppose that there is aML-standard modal modelM = 〈W,R, v〉 such that vw(ϕ) ∈ D
and vw(�♦ϕ) /∈ D, for some w ∈ W . The truth definitions for modal operators imply
that vw(ϕ) = 1 and vw(�♦ϕ) = 0. Then, there is y ∈ W such that wRy, vy(♦ϕ) /∈ D.
Again, vy(♦ϕ) = 0. For all z ∈ W such that yRz, vz(ϕ) /∈ D. Since R is symmetric, we
obtain a contradiction.

7. The argument is similar to (3), but it holds for all w ∈ W .
Q.E.D.
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6.3 Some remarks on validity paradoxes: a thought
experiment

As we saw in the Chapter 5, Montague’s theorem (5.2.1) poses a problem for the predicate
approach to modalities. It means that we cannot have a predicate of validity satisfying
its intuitive properties without risk of triviality. To avoid Montague’s result as well as
validity Curry (Theorem 5.2.3), the following strategies are commonly adopted:

1. Restriction of some principles of validity: Ketland (2012);

2. Gödel numbers are not privileged names of validity predicate: Skyrms (1978) and
Schweizer (1992);

3. Weakening the basic logic: Weber (2014), Shapiro (2015) and Barrio et al (2016).

In this Section, we will explore the third route. As we argued before, the pursuit of
non-classical logic was highly motivated by problems which do not seem to be adequately
solved by employing classical logic. In the case of paradoxes/inconsistencies, such logics
were proposed in order to block the steps in the proof which give rise to the paradoxes.
For example, if one adopts a theory ThL which has a non-contractive conditional, the
proof of Theorem 5.2.3 will not work in ThL, at least not directly. Of course, there may
be alternative proofs of the problematic result. Then non-classical logics show themselves
as good tools for philosophical analysis.

On the other hand, all the results of the Subsections 6.1.1 and 6.2.1 were proved by
means of the device of sentence names, which blocks self-reference in all validity theories
based on many-valued logics. If the introduction of names is a solution already in the
classical case, there seems to be no good reason to consider non-classical logics. We said
in the beginning of this chapter that our aim is to establish what are the most general
principles of validity in this class of logics. Since arithmetization of language may not be
available to every arithmetical theory based on many-valued logics, the use of sentence
names is totally instrumental.

If one wants to take a non-classical as an alternative to classical logic, such devices may
not be enough. By adopting a logic as an alternative to the classical logic, it is reasonable
to require that his/her basic logic has sufficient inferential power to do arithmetization
of syntax when the arithmetical language is taken into consideration. Of course, such
attitude itself excludes the majority of MVLs, because many of them are remarkably
weak. Such is the case, for example, with LP. As we saw in the Proposition 6.1.24, modus
ponens fails in this logic. Without such rule, it is quite difficult, or even impossible, to
do (first-order) mathematics by taking LP as a basic logic. That is why LP-supporters
extend this logic with a strong conditional.11 In the context of truth-theories, Picollo

11See footnotes of 6.1.1.
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(2020) shows that some “multilations” of classical logic can significantly affect the way
we do mathematics. In her work, she shows that truth theories based on LP◦, which
is LP enriched with the consistency operator, does not validate certain instances of the
axiom of induction.12 Her result shows that it is far from being obvious that the move to
non-classical logics can be done without serious costs.

In what follows, we explore the validity predicate, which we will call V al∗, which
has Gödel numbers instead of sentence names as arguments. In doing so, we restrict
the range of many-valued logics we will look at, since only the logics which are strong
enough for arithmetization will be taken into consideration. We will take for granted
the arithmetization of the language, because we are interested only in the possibility of
obtaining names pϕq for each ϕ.

6.3.1 The thought experiment: changing ϕ to pϕq

Let ThV alL be a theory in the arithmetical language which extends LV al. Moreover, suppose
that ThV alL is capable to talk about its own syntax. The question is: when L is weaker
than classical FOL, is ThV alL trivial?

First, by a reasoning close to what we did in Section 5.4, we can define a realization
from the language L�♦ of LS5 to ThV alL in such a way that:

r(p)∗′ = ϕ ∈ Sent(LV al1 )
r(ckm(ϕ1, . . . , ϕk)) = ckm(r(ϕ1), . . . , r(ϕk))
r(�ϕ) = V al(r(ϕ))
r(♦ϕ) = Con(r(ϕ))

In this present section we only deal with logics LS5 ∈ LS5. The reason behind this
choice is simple: the validity and consistency predicates interpreted by the modalities of
LS0.5 are to weak to give rise to paradoxes even if we consider Gödel codes instead of
sentence names, as discussed in Section 5.4.

If, on the other hand, if ThV alL is an arithmetical theory, then ThV alL can formalize a
predicate V al∗ such that its arguments are Gödel numbers. The question is: is ThV al∗L

consistent?
Suppose that a realization r′ is defined like r except in the last two clauses, where we

have:

r′(�ϕ) = V al∗(pr′(ϕ)q)
r′(♦ϕ) = Con∗(pr′(ϕ)q)

To ease our analysis, we present the following definitions:

Definition 6.3.1. ThV al∗L is Montague-trivial if ThV alL proves Theorem 5.2.1.
12It can be showed that LP◦ is a LFI.
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Definition 6.3.2. ThV al∗L is Curry-trivial if ThV al∗L proves Theorem 5.2.3.

Now we will analyse some examples to show that some important theories ThV alL are
trivial.

Łukasiewicz logic and the revenge problem

Definition 6.3.3. The modal three-valued Łukasiewicz logic ŁS5
3 is characterized by the

structureM = (W,R, v) where MŁ3 was given in Example 6.1.13.

The connectives ∧, ∨ and ↔ are defined as follows:

ϕ ∨ ψ := (ϕ→ ψ)→ ψ

ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ)
ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)

They are interpreted by the following truth-tables:

∨ 1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

∧ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

↔ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2

1
2

0 0 1
2 1

By analysing Theorem 5.2.1, one sees that the following propositional inference rules
are needed to carry out the proof of this theorem.

1. ϕ→ ψ, ψ → γ `T ϕ→ γ;

2. ϕ→ ψ, ϕ→ ¬ψ `T ¬ϕ

By the semantics for ŁS5
3 , we can show that reductio rule is not valid. To invalidate

reductio, just consider a two world structure M = 〈W,R,MŁ3 , v〉 such that vw(ϕ) =
vy(ϕ) = 1

2 and {(w, y), (y, w), (w, y), (w,w), (y, y)} ⊆ R. So, since this rule does not hold,
we can only say that the proof given in Theorem 5.2.1 does not work for ŁS5

3 .
However, this is not enough to say that the theory ThV al∗Ł3 is immune to Montague’s the-

orem. As Haack (1978) observes, many non-classical solutions to inconsistencies and para-
doxes faces the revenge paradoxes. Revenge paradoxes can be understood as a strength-
ening of an already existing paradox in order to cover a larger class of logics. In the case
of ThV al∗Ł3 , we can prove a strengthened paradox in two ways: the first goes by defining a
classicality connective in the basic logic and the second goes by defining the connective
of classical negation in the basic logic Ł3.13

13In the study of theories of truth, MVLs were proposed to overcome the logical paradoxes, such as
the liar paradox. Such logics are not, in general, immune to revenge paradoxes, as Haack argues. There
are, of course, promising proposals of truth-theories based on such logics which are able to deal with
paradoxes, such as Cobreros et al (2012). On the other hand, if we consider theories T based on MVL
which are expressive enough to talk about its own syntax, it is possible to prove a more general version
of Tarski’s indefinability theorem (1956). Ketland (2003) proves that theories like T cannot express its
truth degrees predicate. It means that such theories cannot express their own semantic concepts.
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In the first case, we define the following connective of classicality:

?ϕ := (¬(¬ϕ→ ϕ)→ ¬(ϕ→ ¬ϕ))→ ¬(ϕ→ ¬ϕ)

Whose corresponding operation has the following truth-table:

?

1 1
1
2 0
0 1

Given ? we can recover the classicality of the formulas. For every formula of ϕ ∈
For(LŁ3) of Ł3, we can recover classical inferences by setting ?ϕ ∧ ϕ. Inspired in the
recovery project of the proponents of paraconsistent logics, we now state a version of
Costa (1974) Derivability Adjustment Theorem.

Theorem 6.3.4. For every Γ ⊆ For(L), for every ϕ ∈ For(L),

Γ |=CPL ϕ iff Γ, {?p1, . . . ? pn} |=Ł3 ϕ (6.3)

where {p1, . . . , pn} is the set of propositional variables which occur in Γ ∪ {ϕ}.

Since Theorem 6.3.4 establishes that ϕ inferentially behaves like classical logic, we
apply the Diagonalization Lemma (Lemma 4.1.2) to obtain the sentence:

(?ϕ ∧ ϕ)↔ ¬V al∗(p?ϕ ∧ ϕq) (6.4)

Its modal translation is:

(?ϕ ∧ ϕ)↔ ¬�(?ϕ ∧ ϕ) (6.5)

Then we prove that ThV al∗Ł3 is Montague-trivial.

Theorem 6.3.5. ThV al∗Ł3 is Montague-trivial.

Proof. By a self-reference procedure we obtain the sentence (?ϕ ∧ ϕ) ↔ ¬�(?ϕ ∧ ϕ).
Since Ł3 recovers classical logic, we can prove a (modal) version of Theorem 5.2.1 by
substituting the occurrences of ϕ by ?ϕ∧ϕ. To ease the reading, we abbreviate by fixing
ϕc = ?ϕ ∧ ϕ. We now present a metaproof in ŁS5

3 .14

14We say metaproof because the proof system we presented was a tableau system. In this proof we
deal with an axiomatic-like reasoning.
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1. ϕc ↔ ¬�(ϕc) Diagonalization
2. ϕc → ¬�(ϕc) Ł3, 1
3. �(ϕc)→ ϕc T
4. ¬¬�(ϕc)→ ¬ϕc Ł3, 2
5. �(ϕc)→ ¬¬�(ϕc) Ł3

6. �(ϕc)→ ¬ϕc Ł3 5, 4
7. ¬�(ϕc) Ł3 3, 6
8. ¬�(ϕc)→ ϕc Ł3, 1
9. ¬ϕc → ¬¬�(ϕc) Ł3, 8
10. ¬ϕc → ¬�(ϕc) Ł3, 3
11. ¬¬ϕc Ł3 9, 10
12. ¬¬ϕc → ϕc Ł3

13. ϕc MP 11, 12
14. �(ϕc) Nec, 11

This concludes the proof. Q.E.D.

The second strategy is to define a classical negation in the logic Ł3. The definition
goes as follows:

∼ ϕ := ϕ→ ¬ϕ

Whose corresponding operation has the following truth-table:

∼
1 0
1
2 1
0 1

With the negation ∼ we can prove another version of Theorem 6.3.5 using ∼ instead
¬ and ϕ instead of ?ϕ ∧ ϕ.

From the truth conditions of the implication connective of Ł3 it is easy to see that
contraction is not a valid rule. Consider a two world structureM = 〈W,R, v〉 such that
W = {x, y} and R = {(w, y), (y, w), (w, y), (w,w), (y, y)} such that vw(p) = vy(p) = 1

2

and vw(q) = vy(q) = 0. Then, from the truth-tables of the operation →, we obtain that:

ϕ→ (ϕ→ ψ) 2ŁS5
3
ϕ→ ψ (6.6)

Again, because of the revenge problem, we cannot say that the failure of 6.6 blocks
validity-Curry in Th∗Ł3 . The logic Ł3 is expressively strong enough to define an implication
connective which validates contraction. Consider the following definition:
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ϕ A ψ := ϕ→ (ϕ→ ψ)

which is characterized by the following truth-table:

A 1 1
2 0

1 1 1
2 1

1
2 1 1 1
0 1 1 1

The connective A is contractive. Moreover, we can show the following facts about A:

Proposition 6.3.6. The following items hold for A:

1. |=ŁS5
3
ϕ A (ψ A ϕ);

2. |=ŁS5
3

(ϕ A ψ) A ((ψ A γ) A (ϕ A ψ));

3. ϕ A (ϕ A ψ) |=ŁS5
3
ϕ A ψ;

4. (EPSTEIN, 1990) Γ |=Ł3 ϕ A ψ iff Γ ∪ {ϕ} |=Ł3 ψ.

Proposition 6.3.6 shows that A satisfies some minimal constraints that an operator
should satisfy to be called a conditional connective. That being said, it is possible to
prove an analogous result to Theorem 5.2.3. only by replacing → by A. Then,

Theorem 6.3.7. ThV al∗Ł3 is Curry-trivial.

Proof. Replace → by A in the proof of Theorem 5.2.3. Q.E.D.

The logic of paradox: LP

The versions of the liar paradox shows that predicates, such as truth predicate Tr and
the validity predicate V al cannot live in harmony with laws like the principle of non-
contradiction and principle of explosion. Then, the classical strategy was to adopt a
stratified hierarchy of languages in order to talk about such semantic concepts without
the risk of inconsistencies. However, Priest (1979) argues that such strategies of blocking
the occurrence of paradoxical sentences do not constitute a solution. For him, a legitimate
solution is to show that the conclusion of the paradoxical result does not follow from the
premisses.

The logic he proposes to deal with semantical paradoxes is the logic LP, which was
defined in Definition 6.1.5. This logic is sometimes taken to be a basis for inconsistent
theories due to its weak deductive power. However, such weakness is object of critics.15

As showed in Proposition 6.1.24, the implication connective of→ does not validate modus
15Picollo (2020) is a clear example of critic.
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ponens. This failure motivates logicians as well as philosophers, including Priest (2006)
himself, to search for stronger logics with a stronger implication.

At the same time, however, the search for strong conditionals must be aware of Curry
paradox, because it does depend only on the properties of implication (plus arithmetic,
of course). Then this required conditional must be contractive. In the case of validity, for
example, a possible route is to accept that the conditional which governs the predicate
V al∗ is the original LP’s conditional because it does not have modus ponens. Then, it is
not obvious how to prove that the validity theory extending the logic LP is trivial. Such
strategy was suggested by Goodship (1996).

Recall the definition of LP given by matrices presented in Definition 6.1.5. Then:

Definition 6.3.8. The modal logic LPS5 is characterized by the structureM = 〈W,R, v〉
where MLP was given in Definition 6.1.5.

The logic LPS5 are remarkably weak, as the proposition bellow shows:

Proposition 6.3.9. (PRIEST, 1979) In LP, the following inferences are not valid:

1. ϕ→ ψ, ϕ→ ¬ψ 2LP ¬ϕ;

2. ϕ→ ψ,¬ψ 2LP ¬ϕ;

3. (ϕ→ ψ) ∧ ϕ 2LP ψ

4. (ϕ→ ψ), ϕ 2LP ψ

5. ϕ→ ψ, ψ → γ 2LP ϕ→ γ

In the proof of Theorem 5.2.1, it was used several propositional inferences which are
not valid in LPS5, such as reductio rule and modus ponens. But, as Proposition 6.3.9
shows, the inferences of the items 1, 2 and 4 are not truth-preserving in LP. This means
that the modal version of the proof of Theorem 5.2.1 does not work for LPS5, and so it
does not work for ThV al∗LP . Of course, this does show that ThV al∗LP is not trivial. It has been
argued that theories such as ThV al∗LP do not suffer the revenge problem due to the weak
deductive power of LP. This by itself brings a dilemma: theories based on LP are not
trivial, but LP is not able to be a basis for a strong and expressive mathematical theory.

As a title of example, in the case of naïve set theory based of LP, call it STLP, Restall
(1992) argues that the absence of modus ponens and transitivity of implication are really
obstacles if one wants to adopts STLP. Such theory validates all the axioms of ZF, ex-
cepting foundation, but they inferentially differ due to the weak conditional connective.
Another problem with comes with the deductive weakness of→ of LP lies in the definition
of =. The symbol is usually defined in set theory as follows:
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x = y := ∀z(z ∈ x↔ z ∈ y) (6.7)

From the axioms of classical FOL it is possible to prove that from x = y one obtains
ϕ(x) ↔ ϕ(y). But this does not work in LP because the transitivity of implication fails.
Let a be a set such that x ∈ a↔ ϕ(x) and y ∈ a↔ ϕ(y). If we have x ∈ a↔ y ∈ a, we
should derive ϕ(x)↔ ϕ(y). But, since the implication connective of LP is not transitive,
then we cannot perform such inference.16

This last problem is essentially attached to the choice of the basic logic. If the possi-
bility of constructing a expressive mathematical theory is a desideratum, then one has to
search for another logic stronger than LP.17

6.4 Tautologies, anti-tautologies and logical contin-
gencies

In the debate about the metatheoretical concepts of truth, validity, and consistency in
classical logic, many concepts extensionally collapse, such as contradiction and triviality,
and contradiction and anti-tautology. In non-classical logics, such concepts may not be
equivalent in such a way that it is necessary to give a more detailed analysis of these
concepts, even within classical metatheory.

In the philosophical debate about non-classical logic’s legitimacy, it is often claimed
the need for a non-classical metatheory for such logics. Such logics are often objected
due to their classical metatheory. That is, if one wants to adopt a non-classical logics
as a basis for foundational theories (such as Set Theory), then he/she cannot rely on
a classical metatheory for his/her preferred logic. Rosenblatt (2021) argues that if one
wants to provide a validity theory based on a non-classical logic, he/she must introduce
the predicate which captures the invalidities of the theory. That is, such theory must
have a predicate which shows the invalidity of an inference of ϕ from Γ if this inference
is in fact invalid. In his paper, Rosenblatt also defends the construction of non-classical
metatheories for non-classical logics. But he adopts a proof-theoretical perspective, in the
sense that the meaning of the logical constants are given by their sequent rules.

In this Section, we will introduce modalities that capture the concepts of anti-tautologies
and contradictions. Such modalities will be bivalent because we are still in a classical

16Check Restall (1992) for details.
17This issue of the choice of basic logic for strong mathematical theories is discussed in Badia et al

(2020). There, they discuss the deductive strength a propositional logic should have in order to prove
independence results, like Rosser’s Undecidability Theorem. Of course, if a logic L is a fragment of classical
logic, then the arithmetical theory based on L is trivially undecidable since classical PA is undecidable.
But one should want to prove such a result in the arithmetic based on L. Then, in order to do so,
such logic must satisfy some inference rules to perform the proof, such as transitivity, weakening, modus
ponens, De Morgan. We invite the reader to check Badia et al. (2020).
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metatheory. Although we recognize the importance of the debate about non-classical
metatheories, we also think that we can provide an analysis of the metatheory of non-
classical logics in a classical framework by introducing concepts such as invalidities, taken
as primitives. Such analysis shed light on how such predicates should behave in a non-
classical framework. We will focus on the logic ŁS0.5

3 , and then we will present some
properties that such modalities have. Last, we will discuss how these modalities behave
in other non-classical logics.18

Definition 6.4.1. Let ϕ be a formula of L. Then:

1. ϕ is a logical contingency if there are valuations vi, vj ∈ semL such that vi(ϕ) ∈ DL

and vj(ϕ) /∈ DL;

2. ϕ is a logical falsity if for every vi ∈ semL, vi(ϕ) = 0;

3. ϕ is a non-theorem if ϕ is either a logical contingency or a logical falsity.

The fact that non-theorems are, in a way, neglected in formal logic studies is not
exclusive to this work. There is a long tradition in logic that has given priority to the
investigation of validity, as they understand that the objective of logic is primarily to
study valid inferences. On the other hand, as Goranko (1994) notes, the study of non-
valid inferences was of fundamental importance already in the works of Aristotle. The
study of non-valid inferences gave rise to the Refutation systems, which intends to capture
non-validities in a given formal systems.19 Here, we will use the formal interpretation of
modalities given in this Chapter to study anti-tautologies and the non-theorems. We will
focus on the logic ŁS0.5

3 (Example 6.1.13.)
In ŁS0.5

3 , �ϕ receives 1 in normal worlds w whenever ϕ receives 1 in the worlds acces-
sible to w. So consider the following definition:

Definition 6.4.2. LetM = (W,N,R, v) be MŁ3-modal model and w ∈ N :

1. vw(�ϕ) = 1 iff for all y ∈ W such that wRy, vy(ϕ) = 0;

2. vw(�ϕ) = 1 iff for some y ∈ W such that wRy, vy(ϕ) = 0;

3. vw(�ϕ) = 1 iff for all y ∈ W such that wRy, vy(ϕ) ∈ {0, 1
2};

4. vw(	ϕ) = 1 iff for some y ∈ W such that wRy, vy(ϕ) ∈ {0, 1
2}.

Such operators are defined in ŁS0.5
3 as follows:

18The arguments for ŁS0.5
3 are similar.

19We invite the reader to consult Wybraniec-Skardowska (2018) for a historical overview about refu-
tation systems. In the aforementioned paper, Goranko provides refutation systems for modal logics like
KGL, S4 and S4Grz. Here we will not investigate such approach to formal systems.
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�ϕ := �¬ϕ
on ϕ := ¬♦¬ϕ
�ϕ := ¬ on ϕ

�ϕ := ¬♦ϕ
	ϕ := ¬�ϕ

In CPL all anti-tautologies are equivalent, because the only non-designated value is
0.20

This is not the case with non-modal ŁS0.5
3 , as the formulas below show:

p ∧ ¬p (6.8)

¬(p→ p) (6.9)

By analysing the truth conditions of these formulas, we obtain that formula (6.8)
always receive 0 or 1

2 , whereas formula (6.9) always receive 0. Therefore:

2Ł3 (p ∧ ¬p)→ ¬(p→ p) (6.10)

Such non equivalences justify the study of modalities of Definition 6.4.2. Since the
substituvity of equivalents is not valid in ŁS0.5

3 , we will consider for a moment the modal
logic ŁS0.5

3 with these modal operators taken as primitive, even if ŁS0.5
3 is able to define each

one of these operators. By the definition of �, �ϕ means that “ϕ is an anti-tautology”.21.
So, as a consequence we have that:

If `Ł3 ϕ, then `ŁS0.5
3
�ϕ. (6.11)

Note that schema 6.11 does not hold for the operator � because of the non-designated
value 1

2 . Thus, while � captures the concept of anti-tautology, � captures the concept of
logical falsity. The tableau rules are straightforward:

20Such collapse happens if we consider the standard truth-table semantics for CPL. But if we consider
alternative semantics for this logic it may be the case that not all contradictions (or not all tautologies)
are equivalent to each other. Piazza & Pulcini (2020) provide a many-valued semantics for CPL based on
a (trivial) sequent calculus for Kleene’s four valued logic. In such (proof-theoretic) semantics for classical
logic, there are non-equivalent contradictions since they can get different truth-values. We invite the
reader to read their paper for technical details.

21Such distinction resembles Malinowski (1990)’s distinction between designated and anti-designated
values. In his work, he defines a matrix of the form ({1, 1

2 , 0},¬,→, {1}, {0}), where {1} is the set of
designated values and {0} is the set of anti-designated values. In his work, he proves that Ł3 characterized
by such structure cannot be reduced by a two-valued model
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[1]�ϕ,0

0ri
[0]ϕ,i

[1]�ϕ,0

0ri (i new)
[0]ϕ,i

[1]� ϕ,0

0ri

[0]ϕ,i [1
2 ]ϕ,i

[1]� ϕ,0

0ri (i new)

[0]ϕ,i [1
2 ]ϕ,i

[0]�ϕ,0

0ri (i new)

[1]ϕ,i [1
2 ]ϕ,i

[0]�ϕ,0

0ri

[1]ϕ,i [1
2 ]ϕ,i

[0]� ϕ,0

0ri (i new)
[1]ϕ,i

[0]	 ϕ,0

0ri
[1]ϕ,i

Theorem 6.4.3. The following formulas are provable in ŁS0.5
3 :

1. 2 �ϕ↔ �ϕ;

2. ` �ϕ→ �ϕ;

3. ` �ϕ→ ¬ϕ;

4. ` �ϕ→ �ϕ;

5. ` �ϕ→ �ϕ;

6. ` �ϕ→ �ϕ;

7. ` �ϕ→ 	ϕ;

8. ` �(ϕ→ ψ)→ (�ψ → �ϕ);

9. ` �(ϕ ∨ ψ)→ (�ψ ∧�ϕ);

10. ` �(ϕ ∨ ψ)→ (�ψ ∧�ϕ).

All items of Theorem 6.4.3 are easily provable by means of the above tableaux rules.
The list is not exhaustive, but it shows some interesting properties of the operators of
Definition 6.4.2. They state obvious facts about the semantic conditions of ŁS0.5

3 operators.
For example, 8 says that if ϕ → ψ and ψ are logical falsities, i.e. always false, then ϕ

is a tautology. The difference between � and � may not seem to be meaningful, but it
shows that classical logic collapses many metalogical concepts. Thus, when we look to
non-classical logic, we should keep in mind that such collapses may disappear. In the case
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of Ł3, we saw that logical falsities and anti-tautologies do not collapse. Of course, there
are some paracomplete logics, like K3 (Example 6.1.25) which the classical collapse still
holds because every formula ϕ receive the value 1

2 in at least one valuation v ∈ semK3 . In
the dual case, in some paraconsistent logics some tautologies are not equivalent. Consider
the following definition:

Definition 6.4.4. The logic RM3
◦ is obtained by extending the language of RM3 (Defini-

tion 6.1.26) with the connective ◦, defined as in Definition 3.1.10.22

It is clear that any iteration of ◦ results in a tautology. Then it is easy to check that
the following holds.

Theorem 6.4.5. 2RM3
◦ ◦ ◦ p→ ¬(p ∧ ¬p).

Proof. Consider a valuation v ∈ semRM3
◦ such that v(p) = 1

2 . Then, v(◦ ◦ p) = 1 and
v(¬(p ∧ ¬p)) = 1

2 . Therefore, v(◦ ◦ p→ ¬(p ∧ ¬p)) = 0. Q.E.D.

Thus, by an analogous reasoning that we used in the case of ŁS0.5
3 , one should introduce

different modalities which capture two different concepts of tautologies: one for formulas
which only receives the value 1 and for formulas which receives both 1 and 1

2 . We said that
the search for the general properties of predicates of logical validity and logical consistency
were our guiding intuition in the study of MVLs. From a logical pluralist perspective, such
logics deserve to be investigated as well as any other logics we take as our preferred one.
Of course, MVLs do not need to be faced as rivals of classical logic. As we argued in
Bezerra & Venturi (2021), different formal systems may be seen as preserving different
informal notions of validity.

6.4.1 The logical contingencies

In the Chapter 5, we discussed an aspect of incompleteness with respect to the intended
interpretation of S0.5. Even if �ϕ is true in S0.5 if and only if ϕ is a CPL-tautology, there
are some formulas that should be valid in S0.5 that are not, as ¬�pi, for pi atomic. Then
we argued that S0.5 captures a specific sense of tautology, when we only consider subsets
of classical valuations. It is clear that it also happens with all logics LS0.5.

Since the logics LS0.5 capture tautologicity when we consider subsets of valuations of L,
it turns out that such modal logics do not give a complete account of logical contingencies,
because they do not validate formulas like ♦pi ∧ ♦¬pi, which says that “it is contingent
that pi”. We cannot require that S0.5 as well as its many-valued fragments mirror all the
metatheoretical concepts at once, given that such concepts are too broad to be captured by

22Note that RM3
◦ and LFI1 are equivalent sytems. From the connectives of LFI1 it is possible to define

the connective →RM3◦ as (ϕ →LFI1 ψ) ∧ (¬ψ → ¬ϕ). Reciprocally, from the connectives of RM3
◦, we

define the connective →LFI1 as (ϕ→RM3◦ ψ) ∨RM3◦ ψ.
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a modal theory. Indeed this is a general flaw that most modal approaches to contingency
suffer. For example, in the pioneering work of Montgomery & Routley (1966) about
contingency and non-contingency modalities for normal modal logics, such formulas are
not theorems.

This shows that such metalogical predicates cannot be totally reduced to modalities,
even if modal operators capture relevant aspects of such predicates within a decidable
formal system. That is, modal logics provide nice tools in the analysis of such predicates
mainly due to their simple semantic structure and their associate proof theories. As Field
(1991) argues, the analysis of metalogical notions through modal logics does not imply
that such notions are essentially modal, but it shows that their general properties can be
studied in modal systems, because they validate familiar modal principles.

6.5 Recovery project

The idea of recovering classical inferences in non-classical logics matches well in the con-
temporary debate of Logical Pluralism. In such a point of view, a logician is not forced
to give up all classical reasoning when she/he adopts a logic different from classical logic.
The possibility of representing classical inferences in a non-classical framework suggests
that classical logic is adequate to represent certain forms of reasoning.

Even in a non-pluralist point of view, there is sometimes the need for recapturing
classical reasoning in non-classical logics. As Priest (2006) recognizes, there are situations
where Disjunctive Syllogism is valid. However, as Antunes (2020) argues, Priest’s proposal
is not adequate, at least directly, to recover classical inferences because of the weak
expressiveness of his proposed logic.

In the logical literature, we can find different ways of representing classical inferences in
non-classical logics. One of the most known recovery strategies comes from Intuitionistic
Logic. Kolmogorov (1992), Gödel (1986c) and Glivenko (1929) translations of Intuition-
istic Logic into Classical Logic provide a way of representing Classical Logic by means of
double negation.

The development of paraconsistent logics, mainly leaded by the Brazilian (Costa
(1974)) and Belgian (Batens (2000)) schools of paraconsistency, inaugurated a trend in
the logical literature of introducing an operator in the object language, which is able to
recover classical inferences once some ‘consistent assumptions’ are made.

The introduction of such connectives was vastly investigated in the field of non-classical
logics. In paraconsistent logics (Carnielli et al (2007)), such connectives recover the
explosive character of propositions. In the case of paracomplete logics (Marcos (2005b)),
they recover the determinedness of propositions. And in the paranormal case (Omori
(2020)), they recover both explosiveness and determinedness. Because these connective
are able to recover commonly lost properties in non-classical logics, they are called recovery
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operators. In sum, recovery operators are devices to recover inferences which we lose
when depart from classical logic. It is not uncommon to see they being understood as
incorporating metatheoretical concepts in the object language of the logic.

Such operators were vastly investigated from a technical point of view.23. Although
the point of introducing such connectives is somewhat clear, their informal interpretation
is still an open problem. For example, Ferguson (2018) argues that, in LFIs, “the notion
of consistency too broad to draw decisive conclusions with respect to the validity of many
theses involving the consistency connective.” We will briefly discuss their relation with
the modalities � and ♦ of the logics LS0.5 and LS5 discussed in Sections 6.1.1 and 6.2.1. So,
the following discussion concentrates only in many-valued logics L which have recovery
operators.24

The Argument 3.1.11 establishes that ◦ fails in capturing its informal interpretation
of consistency.25 There is a mismatch between the connective ◦ of LFI1 and its intended
interpretation. In the light of the results of Sections 6.1.1 and 6.2.1, we know for example,
that the modalities and ♦ of logics LFI1S0.5 and LFI1S5 capture well-justified notions of
metatheoretical consistency. The principles validated by ♦ in both logics have significant
differences from the principles validated by ◦.

On the other hand, it is clear that ◦ echoes some intuitions about consistency. Even if
such connective validates some counter-intuitive principles about consistency, ◦ is a nice
device to label formulas which behaves like in classical logic. We think that the best
interpretation for LFI1’s ◦ goes in direction of Omori’s classicality interpretation. That
is, ◦ϕ is interpreted as “ϕ has a classical value.” This interpretation is more general than
consistency, because a formula can be false under all interpretations. In this sense ϕ
has a classical value but it is not consistent. On the other hand, ϕ can be semantically
consistent without receiving a classical value.

It is immediate that this interpretation makes sense of LFI1-axioms. Particularly, it
gives a nice interpretation for the theorems:

1. `LFI1 ◦⊥

2. `LFI1 (◦ϕ ∧ ◦ψ)→ ◦(ϕ ∧ ψ)

We will leave the question of whether this interpretation applies to other LFIs open.
The reason to leave this question open is simple: the meaning of the connectives is local.
That is, we have to analyse at least the inferential behavior of ◦ in the particular logic L
before fixing an informal interpretation. That is, we have to analyse how ◦ behaves before
`L (and |=L). For example, it is difficult to defend that the connective ◦ in the logic mbC

23We refer the reader to check Corbalán (2012) for a wide investigation of such connectives.
24Many MVLs have neither available recovery nor expressive connectives to define such operators. But,

as Caleiro et al (2015) show, it is always possible to extend them with recovery operators.
25Subsection 3.1.4 of the Chapter 3.
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since the only axiom and inference schema which involve ◦ are ◦ϕ→ (ϕ→ (¬ϕ→ ψ)) and
◦ϕ, ϕ,¬ϕ `mbC ψ. They alone are not sufficient to characterize the meaning of consistency
and that of classicality.

The reasoning raised in the last paragraph applies to all logical systems. In order to
assert that a connective ♣ has a particular informal interpretation, one should first look
at the axioms or the inferential principles which govern ♣. Without such interpretation
exercise, any discussion on the meaning of ♣ will be a pointless verbal dispute. Modal
logics are paradigmatic cases. There are modal logics which are difficult to fix informal
interpretation. The axioms and rules which govern the basic logic K are too wide in such a
way that they are compatible with several interpretations. The axiom K and the rule Nec
are compatible with provability, alethic, epistemic, deontic and temporal interpretations
of the modalities � and ♦. But, the logic K itself is too general to be interpreted. On the
other hand, there are modal systems which are interpreted in more than one way. Such
is the case with the modal logic S4.2, which has at least two informal interpretations:
epistemic (Stalnaker (2006)) and set-theoretical (Hamkins & Löwe (2008)).

Returning to our main point, we can say that LFI1’s ◦ can be interpreted as “having
a classical value”’ because the axioms and rules which govern the behaviour of ◦ “allow”
such interpretation. Now we will discuss that the modalities � and ♦ can also serve to
study such recovering operators. In what follows, we will analyse these operators in two
logics: ŁS5

3 and LPS5.

6.5.1 � and ♦ and recovery operators

Because of the bivalence of the modalities investigated, we argue that � and ♦ can
starting points to the investigation of recovery operators. By looking at the truth-table
of the connectives ? and ◦ we know that v(?p) = 1 whenever v(p) ∈ {1, 0}. We will apply
the same idea to the case of modalities to be investigated in this Subsection.

The logic ŁS5
3

The logic ŁS5
3 is defined in Definition 6.3.3. Based on the intuition given by the connective

?, we define the connective of non-contingency as follows:

∆ϕ := �ϕ ∨�¬ϕ

Therefore, the truth condition of ∆ϕ is given by the following clause:

vw(∆ϕ) = 1 iff (for every y ∈ W such that wRy, vy(ϕ) = 1) or (for every z ∈ W such
that wRz, vz(ϕ) = 0); otherwise, vw(∆ϕ) = 0.

The connective ∆ was introduced by Montgomery & Routley (1966) and investigated
by Cresswell (1988) and Humberstone (1995). By the semantic condition of ∆, ∆ϕ receives
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the truth-value 1 if and only if ϕ receives 1 or 0 in all worlds y and z accessible to w.
Thus, ∆ϕ reflects the intuitions of the truth-functional connective ?. With the connective
∆ in hands, we now prove that it is possible to recover inferences of S5 under certain
assumptions.

Notation 6.5.1. Let t be a truth-value and v be a valuation. v[Γ] = t means v(γ) = t,
for every γ ∈ Γ.

Theorem 6.5.2. For every Γ ⊆ For(L�♦Ł3 ), for every ϕ ∈ For(L�♦Ł3 ),

Γ |=S5 ϕ iff Γ, {∆p1, . . . ,∆pn} |=ŁS5
3
ϕ (6.12)

where {p1, . . . pn} is the set of propositional variables which occur in Γ ∪ {ϕ}.

Proof. Suppose that Γ |=S5 ϕ and that {p1, . . . , pn} is the set of propositional vari-
ables which occur in Γ ∪ {ϕ}. By definition of |=S5, for every MCPL-standard model
M = 〈W,R, v〉, for every w ∈ W , vw[Γ] = 1 implies vw(ϕ) = 1. Also, we clearly
have that vw(pi) ∈ {1, 0} for pi ∈ {p1, . . . pn}. Now, turning to MŁ3-standard models
N = 〈W ′, R′, v′〉, we have the following cases:

(1) for all y ∈ W ′, v′y(pi) = 1, for pi ∈ {p1, . . . , pn};

(2) for all y ∈ W ′, v′y(pi) = 0, for pi ∈ {p1, . . . , pn};

(3) for some z, x, u ∈ W ′, v′x(pi) = 1, v′u(pi) = 0 and v′z(pi) = 1
2 ;

(4) for all y ∈ W ′, v′y(pi) = 1
2 for all pi ∈ {p1, . . . , pn}.

By the cases (1) and (2), vw(∆pi) = 1 and then the result follows because all propo-
sitional variables have only classical values in all worlds y ∈ W . The cases (3) and (4)
are also immediate because vw(∆pi) = 0 for some (respec., for all) pi ∈ {p1, . . . , pn}.
Therefore, Γ, {∆p1, . . . ,∆pn} |=ŁS5

3
ϕ.

Conversely, suppose that Γ, {∆p1, . . . ,∆pn} |=ŁS5
3
ϕ. Then, for every MŁ3-standard

model N = 〈W ′, R′, v′〉, for every w ∈ W , vw[Γ] = 1 and vw(∆pi) = 1, for pi ∈
{p1, . . . , pn}, imply vw(ϕ) = 1. By the semantic definition of ∆, we have the following
possibilities:

1. all variables pi ∈ {p1, . . . , pn} receive 1 in every y ∈ W ′ such that wR′y;

2. all variables pi ∈ {p1, . . . , pn} receive 0 in every y ∈ W ′ such that wR′y.

Since these propositional variables only receive classical values, we obtain Γ |=S5 ϕ.
Q.E.D.
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A similar result with respect to the logic ŁS0.5
3 can be similarly stated. First, consider

the following definition.

Definition 6.5.3. Let ϕ ∈ For(L�♦Ł3 ) be a ŁS0.5
3 formula. The modal degree of ϕ, md(ϕ),

is defined as follows:

1. if ϕ = p, then md(p) = 0;

2. if ϕ = ¬ψ, then md(¬ψ) = md(ψ);

3. if ϕ = ψ → γ, then md(ψ → γ) = max(md(ψ),md(γ));

4. if ϕ = �ψ, then md(�ψ) = md(ψ) + 1;

5. if ϕ = ♦ψ, then md(♦ψ) = md(ψ) + 1.

Theorem 6.5.4. For every Γ ⊆ For(L�♦Ł3 ) such that md(γ) ≤ 1, for every γ ∈ Γ, and
for every ϕ ∈ For(L�♦Ł3 ) such that md(ϕ) ≤ 1,

Γ |=S0.5 ϕ iff Γ, {�p1 ∨�¬p1, . . . ,�pn ∨�¬pn} |=ŁS0.5
3

ϕ (6.13)

where {p1, . . . , pn} is the set of propositional variables which occur in Γ ∪ {ϕ}.

Proof. Suppose that Γ |=S0.5 ϕ and that {p1, . . . , pn} is the set of propositional variables
which occur in Γ ∪ {ϕ}. By definition of |=S0.5, for every MCPL-modal model M =
〈W,N,R, v〉, for every w ∈ N , vw[Γ] = 1 implies vw(ϕ) = 1. Also, we clearly have
that vw(pi) ∈ {1, 0} for pi ∈ {p1, . . . pn}. Now, turning to MŁ3-modal models N =
〈W ′, N ′, R′, v′〉, we have the following cases:

(1) for all y ∈ W ′, v′y(pi) = 1, for pi ∈ {p1, . . . , pn};

(2) for all y ∈ W ′, v′y(pi) = 0, for pi ∈ {p1, . . . , pn};

(3) for some z, x, u ∈ W ′, v′x(pi) = 1, v′u(pi) = 0 and v′z(pi) = 1
2 .

(4) for all y ∈ W ′, v′y(pi) = 1
2 for all pi ∈ {p1, . . . , pn}.

By hypothesis, md(γ) ≤ 1, for all γ ∈ Γ, and md(ϕ) ≤ 1. We will analyse the cases
where md(γ) = md(ϕ) = 0 and md(γ) = md(ϕ) = 1. The other cases follow a similar
reasoning.

If, for every γ ∈ Γ, md(γ) = md(ϕ) = 0, then only truth-functional operators occur on
these formulas and propositional variables. So, by the cases (1) and (2), v′w(�p∨�¬p) = 1
and then the result follows because all propositional variables have only one classical value
in all y ∈ W . The cases (3) and (4) are also immediate, because v′w(�pk ∨�¬pk) = 0, for
some (respec., for all) pk ∈ {p1, . . . , pn}. Then, Γ, {�p1∨�¬p1, . . . ,�pn∨�¬pn} |=ŁS0.5

3
ϕ.
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If for every γ ∈ Γ, md(γ) = md(ϕ) = 1, then for every γ ∈ Γ there is at least one
ψ = Mσ such that ψ ∈ Sb(γ), where M ∈ {�,♦} and σ is non-modal, and ϕ has at least
one θ = Mτ such that θ ∈ Sb(ϕ), and τ is non-modal. Given that md(σ) = md(τ) = 0,
the values of σ and θ in all worlds y ∈ W ′ accessible to w are uniquely determined by
truth-functional operators and propositional variables of the set {p1, . . . , pn} which occur
in σ and τ . In the case that the propositional variables pi ∈ {p1, . . . , pn} only receive
classical values, then every γ ∈ Γ and ϕ only receive classical values. By the cases (1)
and (2), we have that vw(�pi ∨�¬pi) = 1 and then the result follows, since we supposed
that Γ |=S0.5 ϕ. In the case (3), vw(�pi ∨ �¬pi) = 0, for some pi ∈ {p1, . . . , pn} and the
result trivially follows. In the case that all propositional variables pi receive the value
1
2 at worlds y ∈ W ′, the result also follows because vw(�pi ∨ �¬pi) = 0. Therefore,
Γ, {�p1 ∨�¬p1, . . . ,�pn ∨�¬pn} |=ŁS0.5

3
ϕ.

Conversely, suppose that Γ, {�p1 ∨�¬p1, . . . ,�pn ∨�¬pn} |=ŁS0.5
3

ϕ. Then, for every
MŁ3-modal modelN = 〈W ′, N ′, R′, v′〉, for every w ∈ N ′, v′w[Γ] = 1, and v′w(�pi∨�¬pi) =
1 for pi ∈ {p1, . . . , pn}, imply v′w(ϕ) = 1. By the semantic definition of �, we have the
following possibilities:

1. all variables pi ∈ {p1, . . . , pn} receive 1 in every y ∈ W ′ such that wR′y;

2. all variables pi ∈ {p1, . . . , pn} receive 0 in every y ∈ W ′ such that wR′y;

Given that md(γ) ≤ 1, for all γ ∈ Γ, and md(ϕ) ≤ 1, all subformulas Mσ and Mτ

of the formulas γ and ϕ, respectively, are such that σ and τ have modal degree 0. This
means that the values of σ and τ in all worlds y ∈ W ′ are determined by the occurrences
of truth-functional operators and by the values of the propositional variables of the set
pi ∈ {p1, . . . , pn}. Then so is γ, for every γ, and ϕ. Since these propositional variables
only receive classical values, we obtain that Γ |=S0.5 ϕ.

Q.E.D.

First, Theorem 6.5.4 does not generalise to any modal degree. To see why Theorem
6.5.4 does not work for formulas with modal degree greater than 1, consider the following
formula

�(�p ∨ ¬�p) (6.14)

This formula is valid in classical S0.5, but it is not valid in ŁS0.5
3 . According to Theorem

6.5.4, the formula 6.14 would be recoverable as follows:

�p ∨�¬p |=ŁS0.5
3
�(�p ∨ ¬�p) (6.15)

However, the inference 6.15 is not valid. Consider the MŁ3-modal model M =
〈W,N,R, v〉, where W = {w, y}, N = {w}, R = {(w,w), (w, y)}, vw(p) = vy(p) = 1
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and vy(�p) = 1
2 . Then, vw(�p) = 1, and so vw(�p ∨ �¬p) = 1. On the other hand,

vy(�p ∨ ¬�p) = 1
2 . So, we obtain vw(�(�p ∨ ¬�p)) = 0. Therefore, �p ∨ �¬p 2ŁS0.5

3

�(�p ∨ ¬�p).
The failure of substitutivity of equivalents is the reason to not introduce ∆ in Theorem

6.5.4. Now, if one asks for a general result, encompassing all LS0.5 ∈ LS0.5 and LS5 ∈ LS5,
he or she should provide a ∆-like modality which gives only classical values to the formulas
in the scope of ∆-like in all the accessible worlds. This problem becomes apparent when
we deal with logics which have more than one designated value. And now we turn to this
problem.

The logic LPS5

The logic LPS5 was defined in Definition 6.3.8. Different from ŁS5
3 , we cannot use � in

order to define ∆ in LPS5 because the truth condition of � includes cases where a formula
can receive the value 1

2 since it is a designated value. In ŁS5
3 it is simpler because 1 is

the only designated value. Then it is necessary to find a way to define a modality like ∆
which only takes 1 or 0 in each world w ∈ W . Consider the following definition:

�ϕ := ¬♦¬ϕ

As a consequence, the truth condition of �ϕ is given by the following clause:

vw(�ϕ) = 1 iff for every y ∈ W such that wRy, vy(ϕ) = 1; otherwise, vw(�ϕ) = 0

Then we define:

Nϕ := �ϕ ∨�¬ϕ

vw(Nϕ) = 1 iff (for every y ∈ W such that wRy, vy(ϕ) = 1) or (for every z ∈ W such
that wRz, vz(ϕ) = 0); otherwise, vw(Nϕ) = 0.

With the connective N in hands, we now prove a similar result we proved for ŁS5
3 .

Theorem 6.5.5. For every Γ ⊆ For(L�♦Ł3 ), for every ϕ ∈ For(L�♦Ł3 ),

Γ |=S5 ϕ iff Γ, {∆p1, . . . ,∆pn} |=LPS5 ϕ (6.16)

where {p1, . . . pn} is the set of propositional variables which occur in Γ ∪ {ϕ}.

The proof of Theorem 6.5.5 is similar to the proof of Theorem 6.5.2.
Now, if one asks for a general result, encompassing all LS0.5 and LS5, he or she should

provide a �-like modality which gives the value 1 at w if ϕ receives the value 1 in all
accessible worlds to w. That is, such operator, call it �∗ should behave as follows:

A) For logics LS0.5 ∈ LS0.5:
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• For any w ∈ W , vw(�∗ϕ) = 1 if w ∈ N and for all y ∈ W such that wRy, vy(ϕ) = 1;
otherwise vw(�ϕ) = 0;

B) For logics LS0.5 ∈ LS5:

• vw(�∗ϕ) = 1 if for all y ∈ W such that wRy, vy(ϕ) = 1; otherwise vw(�ϕ) = 0;

Such modalities behave like the Rosser & Turquette (1952) J-connectives , which are
truth-functional connectives able to identify the values on the truth-table in the family
of finite-valued Łukasiewicz logics Łn. For example: v(J(ϕ)) = 1 iff v(ϕ) = 1; othewise
v(J(ϕ)) = 0. The same reasoning applies to the other truth-values. With modalities �∗

in hand it is possible to define modalities like ∆. Then it is possible to prove such recovery
results. But this goes beyond the interest of this paper.

By Suszko’s reduction result, we could have worked with the bivalent counterpart of
each many-valued logic L. For example, we could have used the bivaluation semantics
which characterizes the logic Ł3 and define modal structures for ŁS0.5

3 and ŁS5
3 upon such

bivalent semantics.2627 The reason for presenting here a matricial semantics for Ł3 instead
of a bivalent semantics stems from the fact that matrix semantics are more user-friendly
than bivalent semantics. Moreover, not every many-valued semantics can be directly
characterized by a bivalent semantics because many of them do not have expressive power
enough to define a recovery operator in order to distinguish the intermediate values from
a bivalent perspective. Such thing happen with many logics which have more than three
values. In these cases, we have to extend the basic language of these logics with a recovery
operator.28 This shows how recovery operators and reductive results à la Suszko interact
each other.

In the beginning of this Chapter, we said that the modalities � and ♦ of the logics
LS0.5’s and LS5’s can be called suszkian modalities because they only receive truth and
falsity. This reflects the classicality of the metatheory of MVLs. The validity of this
formula in LPS5 is not adequate for our present interpretation for �. From the metathe-
oretical point of view, a formula ϕ is valid/consistent or non-valid/consistent. There
are no intermediate values in those metatheoretical statements if we maintain a classical
metatheory.

Because of the bivalent character of the modalities it was possible to show that they are
able to define modalities such as ∆ which work as recovery operators, allowing to recover
inferences of classical S5. In what concerns reductive results by means of modalities
instead of truth-functional connectives like ? is beyond our interest in the present work.

26We refer the reader to check Malinowski (1993) for a bivalent semantics for Ł3.
27Rosenblatt (2015) undertook such enterprise of in truth-theories based on non-classical logics.
28The problem of bivalent reduction of MVLs with weak expressive power is discussed in Caleiro et al

(2005).
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Our main point in this section was to show that metatheoretical concepts, such as validity
and consistency, once introduced in the object language, are capable to recover inferences
in modal logic based on classical logic.

Last, but not least, we turn to the relation between the modalities investigated here
and the meaning of recovery operators. It is not difficult to find in the literature arguments
defending that recovery operators, such as ?, internalize metalogical concepts in the object
language of the logic. In the case of Ł3 it is said that ? internalize a form of decidability.
But it is clear that ? and ∆ differ in meaning, as the following validities show:

1. |=ŁS5
3

(?(ϕ ∨ ψ) ∧ (ϕ ∨ ψ))→ ((?ϕ ∧ ϕ) ∨ (?ψ ∧ ψ))

2. 2ŁS5
3

(∆(ϕ ∨ ψ) ∧ (ϕ ∨ ψ))→ ((∆ϕ ∧ ϕ) ∨ (∆ψ ∧ ψ))

As a consequence, ? does not have the same interpretation as ∆. Since the results
of this chapter show that � and ♦, and then ∆, have a well justified interpretation of
validity and consistency (and then decidability), we cannot say the same with respect
to ?. That is, it is not obvious that ? incorporates a metalogical notion in the object
language of logic. This same argument can be applied to the LFIs since ◦ is interpreted
as consistency. As we argued in Chapter 3, the informal interpretation of ◦ does not do
justice to the behaviour of ♦.

6.6 A brief look to Strictly Tolerant Logic

All the logics we investigated in this chapter are tarskian structural logics in the sense of
Definition 2.1.3. In this Section, we will investigate a many-valued logic widely discussed
in the last few years, the Strictly Tolerant Logic (ST), formulated by Cobreros et al (2012).
Here we will concentrate on the propositional fragment of ST and on the semantical
presentation of it given by Barrio et al (2020a, 2020b).

Definition 6.6.1. The logic ST has the language LST is characterized by the matrix
MST = 〈{1, 1

2 , 0},¬,∨, {1}, {1,
1
2}〉 whose operations have the same truth tables of LP

(Definition 6.1.5).
Let semST be the set of all valuations v of ST. We say that v is a model for ϕ if v

assigns 1 or 1
2 to ϕ. ϕ is a tautology of ST if every valuation v ∈ semST is a model for

ϕ. The relation |=ST⊆ ℘(For(LST))× For(LST) is defined as follows:

Γ |=ST ϕ iff: if v(γ) = 1, for each γ ∈ Γ, then v(ϕ) ∈ {1, 1
2}. (6.17)

The logic ST has some peculiarities which are important to remark. First, as we can see
in Definition 6.6.1, the matrix MST has two sets of designated values. We can understand
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{1} as the set of designated valued of premises and {1, 1
2} the set of designated values

of conclusions. Second, the relation |=ST is not transitive, as the following proposition
shows:

Proposition 6.6.2. |=ST is not transitive. That is, it does not satisfy

If ϕ |=ST ψ and ψ |=ST γ, then ϕ |=ST γ. (6.18)

Proof. To invalidate the above schema, let ϕ = p, ψ = q and γ = r such that v(p) = 1,
v(q) = 1

2 and v(r) = 0. By 6.17 of Definition 6.6.1, we obtain p |=ST q and q |=ST r, but
p 2ST r. Then, 6.18 is not valid. Q.E.D.

By invalidating transitivity of consequence relation ST is not a tarskian logic, in the
sense of Definition 2.1.3.

Surprisingly, ST is too close to CPL. In fact, by having the same truth-tables as LP,
ST has the same tautologies as CPL. Also, because of the definition of |=ST, ST behaves
inferentially like CPL. On the other hand, we cannot say that ST and CPL are the same
system because, ST is non-transitive and it is able to be a basis for a naïve theory of
truth, whereas classical logic is not.

The difference between ST and CPL lies in the validation of rules which validates
other rules. As Barrio et al (2016) define, a metarule is a rule which establishes that if
a certain rule is valid, then so is another rule. The transitivity is a clear example: given
ϕ |=CPL ψ and ψ |=CPL γ, we obtain ϕ |=CPL γ. But it does not happen with ST because
the consequence relation of ST is not transitive. Then, although ST and CPL have the
same tautologies and the same inference relations, they differ on the metarules. As Barrio
et al (2015) prove, a metarule is valid ST if and only if the corresponding inference rule is
valid in LP. For example, consider the rule of explosion and its corresponding metarule:

1. ϕ,¬ϕ |= ψ;

2. |= ϕ and |= ¬ϕ, then |= ψ.

As we know, 1 is invalid in LP. Just consider a valuation v ∈ semLP such that v(ϕ) = 1
2

and v(ψ) = 0. By definition of consequence in ST, 1 is a valid rule. But, in using the
same counterexample of LP we invalidate 2 in ST. The metarule of modus ponens is also
invalid in ST:

3 |= ϕ and |= ϕ→ ψ, then 2 ψ.

Further we will provide a proof system for ST. Now we will analyse this logic from
the point of view of the modalities we introduced in this chapter. We will see that,
although CPL and ST coincide in inferences and tautologies, their modal expansions are
very different.
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6.6.1 The modal logic STS5

The logic STS5 has the language L�♦ST and it is semantic characterized as follows:

Definition 6.6.3. The logic ST is characterized by the structure M = 〈W,R,MST, v〉,
where W 6= ∅ is a set of worlds, R is an equivalence relation, MST is a matrix defined as
in Definition 6.6.1 and vw is recursively defined as follows:

1 The boolean cases are defined as in Definition 6.6.1;

2 vw(�ϕ) = 1 iff for all y ∈ W , wRy implies vy(ϕ) ∈ {1, 1
2}; otherwise vw(�ϕ) = 0

3 vw(♦ϕ) = 1 iff there is y ∈ W , wRy and vy(ϕ) ∈ {1, 1
2}; otherwise vw(♦ϕ) = 0

A formula ϕ ∈ For(L�♦) is true in a STS5-model M iff for every w ∈ W vw(ϕ) ∈
{1, 1

2}. ϕ is valid iff it is true in every STS5-model. The relation Γ |=STS5 ϕ is defined as
in Definition 6.6.1.

As we said before, although ST and CPL are close, their modal extensions, S5 and
ST are remarkably different. By taking the counterexample of Proposition 6.1.24, we can
show that:

Proposition 6.6.4. �(ϕ→ ψ)→ (�ϕ→ �ψ) is not valid in STS5.

Although STS5 validates explosion rule, it does not validate the modal validity explo-
sion rule

Proposition 6.6.5. �ϕ,�¬ϕ |= ψ is not valid in STS5.

The proposition below show STS5 and LPS5 are really different each other. The prin-
ciple in question can be called validity detachment.29

Proposition 6.6.6. ϕ,�(ϕ→ ψ) |= ψ is valid in STS5 but invalid in LPS5.

The reason why STS5 validates validity detachment is simple: we only consider the
case where ϕ takes 1 because of the definition of consequence relation of STS5.

Definition 6.6.7. Let LST be the language of ST and MST = 〈{1, 1
2 , 0},¬,→, {1,

1
2}〉 be

a matrix for LST. The models vni for the language LnST are induced by a model v0
i of L0

ST

as follows:

(1) The models v0
i of L0

ST are valuations vi ∈ semST defined in Definition 6.6.1.
29In the literature about the predicate of validity, it is usual to use a binary predicate V al(pϕq, pψq)

to mean that the inference from ϕ to ψ is valid. The way that validity detachment is usually stated is
ϕ, V al(pϕq, pψq)⇒ ψ, where ⇒ is the deducibility relation in sequent calculus (Murzi (2014)). Here, we
formalize V al(pϕq, pψq) as �(ϕ→ ψ) because we are working on unary modalities.
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(2) The models vn+1
i of Ln+1

ST induced by a model v0
i of L0

ST is the smallest extension of
vni of LnST such that:

(2.1) If ϕ ∈ LnST and ϕ = ckm
m (ψ1, . . . , ψk) for ckm

m ∈ {¬,→}, then:

(2.1.1) vn+1
i (¬ϕ) = 1− vn+1

i (ϕ);

(2.1.2) vn+1
i (ϕ→ ψ) = max(vn+1

i (¬ϕ), vn+1
i (ψ)).

(2.2) If ϕ ∈ LnST, then:

(2.2.1) vn+1
i (V al(ϕ)) = 1 if vnj (ϕ) ∈ {1, 1

2} for all models vnj of LnST;
otherwise vn+1(V al(ϕ)) = 0;

(2.2.2) vn+1
i (Con(ϕ)) = 1 if vnj (ϕ) ∈ {1, 1

2} for some model vnj of LnST;
otherwise vn+1

i (Con(ϕ)) = 0;

Now, the model vωi of LωST induced by a v0
i is the union of all vni induced by v0

i of L0
ST.

ϕ ∈ For(LωST) is true in a model vωi of LωST if vωi (ϕ) ∈ {1, 1
2}. ϕ ∈ For(L

ω
ST) is valid if

ϕ is true in every model vωi of LωST. The notion of logical consequence is defined as in
Definition 6.6.1.

Lemma 6.6.8. Let AST be a set of models vωi of LωST which are induced by v0
i of L0

ST. For
every set AST of models vωi of LωST we define a modelM = 〈W, v〉 for STS5 such that for
all vωi ∈ AST there is xi ∈ W

vxi
(ϕ) = vωi (t(ϕ)).

For all ϕ ∈ For(L�♦ST ).

The proof of Lemma 6.6.8 is similar to the proof of Lemma 6.2.8.

Lemma 6.6.9. For every modelM = 〈W, v〉 for LS5 we define a set AST of models vωi of
LωL induced by v0

i of L0
L such that for all xj ∈ W there is vωi ∈ AST:

vxi
(ϕ) = vωi (t−1(ϕ)).

For all ϕ ∈ For(LωST).

The proof of Lemma 6.6.9 is similar to the proof of Lemma 6.2.9.
Lemmas 6.6.8 and 6.6.9 imply:

Theorem 6.6.10. For every ϕ ∈ For(L�♦ST ):

1. |=STS5 ϕ iff t(ϕ) is valid in models M∗
ST

2. Let t(Γ) = {t(γ | γ ∈ Γ}. Then, Γ |=STS5 ϕ iff t(Γ) |=Lω
ST
t(ϕ).
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In the debate about the internalization of the predicate of validity, there is the question
of whether the validity predicate captures all metainferences of the theory. If a validity
theory of a logic L is not capable to capture all of its metainferences, then we may ask
whether the validity predicate of such theory is adequate for L. In our approach, such
adequacy is guaranteed by the Theorem 6.6.10.

A tableau system for STS5

In the same line of the logics LS5 ∈ LS5, we provide a proof system for STS5. The tableau
rules are stated as follows:

[1]¬ϕ,i

[0]ϕ,i

[1
2 ]¬ϕ,i

[1
2 ]ϕ,i

[0]¬ϕ,i

[1]ϕ,i

[1]ϕ→ ψ,i

[1]ϕ,i
[1]ψ,i

[1
2 ]ϕ,i

[1]ψ,i
[0]ϕ,i
[1]ψ,i

[0]ϕ,i
[1

2 ]ψ,i
[0]ϕ,i
[0]ψ,i

[1
2 ]ϕ→ ψ,i

[1]ϕ,i
[1

2 ]ψ,i
[1

2 ]ϕ,i
[1

2 ]ψ,i
[1

2 ]ϕ,i
[0]ψ,i

[0]ϕ→ ψ,i

[1]ϕ,i
[0]ψ,i

[1]�ϕ,i

irj

[1]ϕ,i [1
2 ]ϕ,j

[1]♦ϕ,i

irj (i new)

[1]ϕ,i [1
2 ]ϕ,j

[0]�ϕ,i

irj (i new)
[0]ϕ,i

[0]♦ϕ,i

irj

[0]ϕ,i
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The definitions of closed branch and closed tableau runs as in Definition 6.2.4. Now
we define the notion of proof for the tableaux of STS5:

Definition 6.6.11. Σ `STS5 ϕ if there is a closed tableau T ’s such that:

1. For each σi ∈ Σ, [1]σi, 0;

2. [0]ϕ, 0.

Theorem 6.6.12. If Σ `STS5 ϕ, then Σ |=STS5 ϕ.

Proof. Suppose that Σ 2 STS5ϕ. Then there is a modelM = 〈W,R, v〉 for STS5 such that
for some w ∈ W , vw(σi) = 1, for all σi ∈ Σ, and vw(ϕ) = 0. Let T be a tableau with the
premisses σ ∈ Σ and the conclusion ϕ. Suppose that the function f : N → W showsM
to be faithful to a branch b of T . The premisses of σ ∈ Σ begin with (i) [1]σi, 0 and (ii)
[0]ϕ, 0. By Lemma 6.7.8 applying the rules to (i) and to (ii), we extend b with at least
one extension b’ such thatM is faithful to b’. SinceM is faithful to b’, then the whole
branch b remains open. Therefore Σ 0STS5 ϕ. Q.E.D.

Theorem 6.6.13. If Σ |=STS0.5 ϕ, then Σ `STS0.5 ϕ.

Proof. Suppose that Σ 0LS0.5 ϕ. Then there is an open branch b which contains in its
initial list premisses [1]σ, 0, for σi ∈ Σ and [0]ϕ, 0. Let M = 〈W,R, v〉 be the induced
interpretation by b. So, if [1]σi, 0 and [0]ϕ, 0 occur on b, then, by Lemma 6.7.10, vwi

(σk) =
1 and vwi

(ϕ) = 0. Therefore Σ 2LS0.5 ϕ. Q.E.D.

6.7 Soundness and completeness for LS0.5 and LS5

In this section we provide the characterization results for the family of modal logics LS0.5

and for LS5. The following proofs and definitions follows Priest (2008b).

6.7.1 The logics LS0.5 ∈ LS0.5

Definition 6.7.1. LetM = 〈W,N,R, v〉 be a ML-modal model for LS0.5 and b any branch
of a tableau T . ThenM is faithful to b iff there is a map h : N→ W such that: N = {0}
and for all i > 0: (i) if [tm]�ϕ, i is on b, then vh(i)(�ϕ) = tm. For every node of b, if
[tm]ϕ, i is on b, vh(i)(ϕ) = tm.

Lemma 6.7.2. Let b be any branch andM = 〈W,N,R, v〉 be a ML-modal model for LS0.5.
If M is faithful to b, and a rule is applied to it, then it produces at least one extension,
b′, such thatM is faithful to b′.
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Proof. The proof runs by case-by-case checking.

1. Boolean connectives.
Suppose that [tm]ckn(ϕ1, . . . , ϕk), i occurs in b, where i ∈ N and 0 ≤ m ≤ n − 1. Ap-

plying ckn − rule to it, the branch b is extended with at least one b′ such that ∧s
r[tr]ϕj, i

occurs in b′, for 1 ≤ j ≤ k. That is, [tr]ϕ1, i & . . .&[ts]ϕk, i occur in b′. By hypothesis,
M is faithful to b, then vh(i)(ϕ1) = tr & . . .& vh(i)(ϕk) = ts. Since ckn is interpreted as the
operation okn of the matrix ML, then vh(i)(ϕ1, . . . , ϕk) = tm.

2. Modal connectives. Suppose that [1]�ϕ, 0 occurs in b. Applying the corresponding rule
to it, we extend b with at least one a branch b′ such that 0rj and [tm]ϕ, j occur in b′, and
0 ≤ k < m ≤ n−1 where k is the greatest non-designated value. SinceM is faithful to b,
vh(0)(�ϕ) = 1. h(0) ∈ N and, then, it is a normal world. If 0rj, for all j, then h(0)Rh(j).
Then, vh(j)(ϕ) = tm such that tm ∈ D. Therefore,M is faithful to b′.

Suppose that [0]�ϕ, 0 occurs in b. Applying the corresponding rule to it, we extend
b with at least one a branch b′ such that 0rj and [tm]ϕ, j, j being new, occur in b′, and
0 ≤ m < k ≤ n − 1, where k is the least designated value. Since M is faithful to b,
vf(h)(�ϕ) = 0. h(0) ∈ N and, then, it is a normal world. Then w0Ry, for some y ∈ W .
Consider a slight variation of h, call it h′, which only differs to h in h′(j) = y. Since h
and h′ only differ in j, M is also faithful to b with respect to h′. Then h′(i)Rh′(j) and
vh′(j)(ϕ) = tm, tm /∈ D.

The argument for [1]♦ϕ, 0 and [0]♦ϕ, 0 is respectively similar to [0]�ϕ, 0 and [1]�ϕ, 0.
The cases i > 0 are immediate from Definition 6.7.1. Now we analyse the rule ρ.

Suppose that 0rj occurs on b. By applying rule ρ, we extend b with b′ where 0r0 occurs
on b′. Since M is faithful to b, h(0)Rh(j). Since R is reflexive over N ⊆ W , we obtain
h(0)Rh(0). Therefore,M is faithful to b′. Q.E.D.

Theorem 6.7.3. If Σ `LS0.5 ϕ, then Σ |=LS0.5 ϕ.

Proof. Suppose that Σ 2 ϕ. Then there is a modelM = 〈W,N,R, v〉 such that for some
w ∈ N ,M, w |= σ, for all σ ∈ Σ, andM, w 2 ϕ. Let T be a tableau with the premisses
σ ∈ Σ and the conclusion ϕ. Suppose that the function f : N→ W showsM to be faithful
to a branch b of T . The premisses of σ ∈ Σ begin with (i) [tm]σ, 0, for 0 ≤ k < m ≤ n− 1
and [tj]ϕ, 0, where 0 ≤ j < r ≤ n − 1. By Lemma 6.7.2 applying the rules to (i) and to
(ii), we extend b with at least one extension b’ such thatM is faithful to b’. SinceM is
faithful to b’, then the whole branch b remains open. Therefore Σ 0 ϕ. Q.E.D.

Definition 6.7.4. Let b an open branch of a tableau. The interpretationM = 〈W,N,R,
v〉 induced by b is defined as: W = {wi| i occurs on b}; wiRwj iff irj occurs on b; if [tm]p
occurs on b, vwi

(p) = tm (0 ≤ m ≤ n− 1). w0 = 0 w0 ∈ N and for all i > 0: if [tm]�ϕ, i
occurs on b, vwi

(�ϕ) = tm (0 ≤ m ≤ n− 1).
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Lemma 6.7.5. Let b be any open complete branch of a tableau. LetM = 〈W,w0, R,ML, v〉
be the interpretation induced by b. Then,

For every node, [tm]ϕ, i, vwi
(ϕ) = tm (0 ≤ m ≤ n− 1)

Proof. The proof is by induction on ϕ. The atomic case is immediate from Definition 6.7.4.

ϕ = ckn(ψ1, . . . , ψk)

If [tm]ckn(ψ1, . . . , ψk), i is on b, then
∧s
r[tr]ϕ1≤r≤k, i occurs on at least an extension of b, b′.

By I.H., vwi
(ϕ1) = ts (0 ≤ s ≤ n − 1) & . . . & vwi

(ϕk) = tr. The rule ckn − rule requires
the correspondence between the boolean connectives and the operators of the matrix ML.
Then, vwi

(ck(ψ1, . . . , ψk)) = tm.

ϕ = �ψ. When i = 0, we have:

If [1]�ψ, 0 occurs on b, then w0 = 0. By applying the correspondent rule, we extend b

with b′ where 0rj, for every j ∈ N, and [tm]ψ occur, for 0 ≤ b < m ≤ n− 1. Moreover 0rj
iff w0Rwj, for all wj ∈ W . By I.H., vwj

(ψ) ∈ D ⊂ Vn. Therefore, vw0(�ψ) = 1.

If [0]�ψ, 0 occurs on b, then w0 = 0. By applying the correspondent rule, we extend b

with b′ where 0rj, for a new j ∈ N, and [tm]ψ occur, for 0 ≤ m < k ≤ n−1. Moreover 0rj
iff w0Rwj, for some wj ∈ W . Suppose there is a wj′ 6= wj. If, by I.H., vwj′

(ψ) ∈ Vn −D,
then, vw0(�ψ) = 0.

If [1]♦ψ, 0 occurs on b, then 0 ∈ N . By applying the correspondent rule, we extend b with
b′ where 0rj, for a new j ∈ N, and [ m

n−1 ]ψ occur, for 0 ≤ m < k ≤ n − 1. Moreover 0rj
iff w0Rwj, for some wj ∈ W . Suppose there is a wj′ 6= wj. If, by I.H., vwj′

(ψ) ∈ D, then,
vw0(♦ψ) = 1.

The case [0]♦ψ, 0 is similar to [1]�ψ, 0. When i > 0, [tm]�ψ, i and [tm]♦ψ, i are
arbitrary.

For the rule ρ: suppose that 0Rj occurs on b. Then, by rule ρ, 0r0. By definition of
R, w0Rw0. This concludes the proof.

Q.E.D.

Theorem 6.7.6. If Σ |=LS0.5 ϕ, then Σ `LS0.5 ϕ.

Proof. Suppose that Σ 0LS0.5 ϕ. Then there is an open branch b which contains in its
initial list premisses [tm]σ, 0, where 0 ≤ k < m ≤ n − 1, such that σk ∈ Σ and [tj]ϕ, 0,
where 0 ≤ j < k ≤ n − 1. Let M = 〈W,w0, R,ML, v〉 be the induced interpretation by
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b. So, if [tm]σ, 0 and tjϕ, 0 occur on b, then vwi
(σk) = tm and vwi

(ϕ) = tj. Therefore
Σ 2LS0.5 ϕ. Q.E.D.

6.7.2 The logics LS5 ∈ LS5

Definition 6.7.7. Let M = 〈W,R, v〉 be a ML-standard modal model for LS5 and b be
any branch of a tableau T . Then M is faithful to b iff there is a map h : N → W such
that h(i) = wi. For every node of b, if tmϕ, i is on b, then vh(i)(ϕ) = tm.

Lemma 6.7.8. Let b be any branch of a tableau,M = 〈W,R, , v〉 be a ML-standard modal
model for LS5. If M is faithful to b and a rule is applied to it, then it produces at least
one extension b′.

Proof. The proof of Lemma 6.7.8 is similar to the proof of Lemma 6.7.2. We will only
analyse the case of the rules τ and σ. For τ , suppose that irj and jrk. Applying the rule
τ , we extend b with b′ where irk occur in b′. SinceM is faithful to b, we obtain h(i)Rh(j)
and h(j)Rh(k). Since R is transitive, we obtain h(i)Rh(k). Therefore, M is faithful to
b′. Q.E.D.

Definition 6.7.9. Let b an open branch of a tableau. The interpretation induced by b is
defined as W = {wi| i occurs on b}; wiRwj iff irj is on b; if [tm]p, i occurs on b, then
vwi

(p) = tm.

Lemma 6.7.10. Let b be any open complete branch of a tableau. Let M = 〈W,R, v〉 be
the interpretation induced by b. Then, for every node and 0 ≤ m ≤ n−1, if [tm]ϕ, i occurs
on b, then vwi

(ϕ) = tm.

Proof. The proof is similar to Lemma 6.7.5. We will only analyse the rules τ and σ. The
rule ρ was previously analysed. For the rule τ , suppose that irj and irk are on b. Then,
we obtain wiRwj and wjRwk. By the rule τ , we obtain irk. By definition of R, wiRwk.

For the rule σ, suppose that irj is on b. Then wiRwj. By the rule ρ, we obtain jri.
By definition of R, wjRwi. This concludes the proof.

Q.E.D.

By similar arguments given in Theorem 6.7.3 and Theorem 6.7.6, we can prove sound-
ness and completeness for logics LS5.
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Chapter 7

Final considerations

In this Thesis, we investigated some formalizations of the formal concepts of validity and
consistency in order to know their general properties from a modal point of view. As
the squeezing arguments show, even if model-theoretical and proof-theoretical validities
capture important aspects of their informal counterpart, they fail to capture intuitive, or
even pre-theoretic validity. That is, these formal notions have an important regulative
role in our inferential practice, but they do not exhaust the totality of intuitive validity.
The informal notions themselves present in the squeezing arguments are significantly
theorized to be called intuitive. For example, Kreisel’s informal notion V al, is a purely
formal concept, in such a way that outside mathematical reasoning, one could legitimately
say that V al is not our intuitive/pre-theoretic notion of validity. By its turn, intuitive
validity is very difficult to grasp due to its high generality, to the point that it is legitimate
to raise suspicions about its existence.1

The informal notions of validity present in squeezing arguments (Chapter 3) capture
only a small fragment of natural language which is formalizable in logical systems. So,
different inferential aspects of natural language are captured by different informal notions
of validity. This means that these informal notions also share the local character that their
formal counterparts have. In this sense, the informal notions investigated in Chapter 3
do not capture intuitive validity. Even so, they improve our understanding of deductive
inferences, in such a way that they are useful in the analysis of ordinary reasoning. That
is, because they are conceptually sharpened, they provide a better understanding of our
inferential practice. In the case of FOL, its corresponding informal notions give the general
principles of truth preserving reasoning. In the case of intuitionistic logic, its correspond-
ing informal notions give the general principles of constructive reasoning. In the same
way that the informal notions of logical validity provide a better understanding of our
inferential practice, the formal notions of logical validity provide a better understanding
of informal validity because they explain their corresponding informal notions within a

1As Halbach (2020) does in his paper.
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well structured linguistic framework.
As we highlighted before, we are dealing with a strictly deductive notion of validity. In

this Thesis, we did not deal with a notion of validity which involves inductive inferences.
As we argued, a notion of validity which includes inductive inferences does not validate at
least the principle Val-T because inductive inferences are not truth-preserving in general.
Of course, the fact that they are neither deductive not truth-preserving is not a problem
for such kind of reasoning. It would be a huge mistake to misjudge inductive inferences,
which are widely present in scientific reasoning. Our choice for the deductive notion
of validity was purely guided by theoretical preferences. The axiomatization of a wider
notion of validity constitutes an interesting research program and it will be pursued in a
further work.

“Which modal logic is the right one?” This is the title of Burgess (1999)’s paper,
where he discuss the validity/provability interpretation of modal logics. When validity
is understood as provability, Solovay’s original result already responds to this question,
because KGL captures the provability predicate ProvPA. But, with the development of
the investigations about provability interpretation of modal logics, logicians established
several à la Solovay results. For example, Goldblatt (1978) proves, S4Grz is the modal
logic of true provability of PA. Artëmov & Straßen (1992) prove that their logic of proofs
captures the explicit provability predicate ∃yPrPA(y, x) of PA. Although inconsistent with
KGL, Kurahashi (2018) proves KD captures a non-standard Rosser provability predicate.
More alternatively, if we consider Skyrm’s naming devices instead of Gödel numbers, we
have that S4 captures the provability predicate Pr whose arguments are the sentence
names of Section 5.3. So, such results show that Burgess’s question needs to be more
precise, as the following questions illustrate:

• What is the modal logic which captures the provability predicate ProvPA?

• What is the modal logic which captures the predicate of true provability of PA?

• What is the modal logic which captures Rosser provability predicate?

• What is the modal logic which captures the provability predicate whose arguments
are sentence names?

If we consider weaker predicates as well as weaker base theories, such as logical validity
as defined in in Section 5.5 and in Chapter 6, we obtain different modal systems. Thus,
we have a plethora of modal logics capturing notions of logical validity. That is, each
modal logic LS0.5 captures their local notion of logical validity and logical consistency. On
the other hand, if we consider a hierarchical notion of logical validity, by using Skyrms
(1978)’s formalism, we can prove that each LS5 capture their corresponding local notion
of hierarchical validity.
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Now if one asks about a more general notion of logical validity, not essentially tied
to a particular formal system, we have good reasons to believe that S4 is at least sound
with respect to this broader notion of validity, which is also taken as informal provability,
as we argued in Chapter 4. But, as we know, the corresponding predicate cannot be
representable in the arithmetical theories extending Q if we use the standard naming
devices. In face of his incompleteness results, Gödel (1986a) himself defends that S4 is
adequate to stand for informal provability.

It is important to observe the role of intuitions in the axiomatization of the local no-
tion of logical validity and in the axiomatization of the notion of informal provability. In
the case of informal provability, the role of intuitions is remarkably strong. The fact that
informal provability encompasses epistemological elements and that it is intuitively plau-
sible to include analytical inferences in informal provability witness the role of intuitions
in this case. This is totally different with logical validity and hierarchical validity, which
heavily depends on the deductive capabilities of the logical system in question. The logics
LS0.5 and LS5 testify our claim.

The arithmetical completeness theorems for provability logics and the results proved
for the logics LS0.5 and LS5 assure that each logic captures well grounded notions of va-
lidity. This does not happen with the informal provability interpretation of S4, since
the acceptance of a principle about informal provability will depend on what one counts
as an intuitive principle about informal provability. For example, as Leitgeb (2009), if
statements about unprovability should be taken as axioms of informal provability, then
the logic of informal provability is stronger than S4.2 This means that the absence of
a completeness theorem with respect to the validity/provability interpretation makes it
harder to assert that a modal logic really captures informal provability, because it will
ultimately depend on the theoretical inclinations one has. For example, if one does not
accept that statements about unprovability should be taken as axioms, then S4 is the
correct logic of informal provability. In general, if one wants to know whether a modal
logic L captures our intuitions about informal provability, he/she should argue that the
axioms at issue are plausible under such reading, or she/he should present a proof that
L captures a formal validity/provability predicate.3 That is, there is no general receipt.
One has to analyse logic by logic.

Our general characterization results for LS0.5 and LS5 are restricted to many-valued
2The discussion about the inclusion of statements about unprovability in informal provability is philo-

sophically interesting. In the aforementioned discussion about a system which captures the non-valid
inferences of a logical systems, there are some reasons to not include such rules about rejected proposi-
tions. For example, as Goranko (1994) observes, accepted arguments always yield true conclusions from
true premises, whereas we cannot say anything in general about the rejected ones. As a consequence, any
schematic approach to rejected arguments may be faced as useless. On the other hand, the philosophical
reasons to include such rules may show the relations of some metatheoretical concepts of the formal
system.

3Of course, there will be modal systems which do not have adequate formal/informal provability
interpretation„ such as Lewis’s strict implication system S1.
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logics Ls whose consequence relations are Tarskian structural in the sense of Definition
2.1.3 and whose connectives are normal in the sense of Assumption 6.0.1. So, the most
direct extension of the results presented in Chapter 6 would be (1) logics which are not
Tarskian; and (2) logics which do not have normal connectives. As an example of the
first, we take Malinowski (1990)’s q-consequence relations, which are defined according
to the matrices of the form Mq = (Vn, o1, . . . on, D

+, D−), where D+ is the usual set
of designated values and D− is the set of anti-designated values. In these matrices, it
may be the case that D+ ∪ D− ⊂ Vn. Given the matrices Mq, one defines the relation
|=q

L⊆ ℘(For(LL))× For(LL) as follows:

Γ |=q
L ϕ iff: if v(γ) /∈ D−, for each γ ∈ Γ, then v(γ) ∈ D+ (7.1)

Malinowski (1990) applies such matrix to the logic Ł3, obtaining Łq3. In his paper,
Malinowski shows that |=q

Ł3 is not reflexive. Because it is not reflexive, it is not immediate
that the metatheory of the logics Lq are bivalent. As a consequence, the validity theory
for the logics Lq must be adapted, as we did in the case of STT. The extension of our
results for non-Tarskian consequence relations allows a wider understanding of the validity
predicates, and it will be pursued in a future work.

The results proved in this thesis were also restricted for logics which have a complete
deductive system. So, for example, it was enough to introduce only one (logical) validity
predicate in the validity theory of S0.5, instead of also introducing a logical provability
predicate Pr, because we would have that V al(ϕ)↔ Prov(ϕ). In the case that we have
a logic L whose deductive system does not capture all the model-theoretical validities, we
would have the following schemas:

(Sound) Prov(ϕ)→ V al(ϕ)

But the converse would not be valid since L is not complete. Here we will discuss two
examples, one simple and one more complex. Given the tableaux of Chapter 6, it is quite
simple to produce an (non-modal) incomplete logical system. Let L be the logic whose
matrix ML = 〈{1, 1

2 , 0},¬,→, {1}〉 where ¬ and → are interpreted in the same way as in
Ł3 (Example 6.1.13). The following rules define the deductive system for L:

[1]¬ϕ

[0]ϕ

[1
2 ]¬ϕ

[1
2 ]ϕ

[0]¬ϕ

[1]ϕ
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[1]ϕ→ ψ

[1]ϕ
[1]ψ

[1
2 ]ϕ

[1]ψ
[1

2 ]ϕ
[1

2 ]ψ
[0]ϕ
[1]ψ

[0]ϕ
[1

2 ]ψ
[0]ϕ
[0]ψ

[0]ϕ→ ψ

[1]ϕ
[0]ψ

The definitions of closed branch and proof are similar to Definitions 6.1.11 and 6.1.12,
excepting that we are not considering the indexes which stand for the worlds. Given
semantic definitions for the truth-functional operators of L, it is immediate that ϕ →
(ψ → ϕ) is a tautology of L. Hence, V al(ϕ→ (ψ → ϕ)) is true in the language LV alL

according to the formalism of Definition 6.1.19. On the other hand, ϕ→ (ψ → ϕ) is not
provable, as the following tableaux show:

[0]ϕ→ (ψ → ϕ)

[1]ϕ
[0]ψ → ϕ

[1]ψ
[0]ϕ
x

[1
2 ]ϕ→ (ψ → ϕ)

?

Since we do not have the rule for [1
2 ]ϕ → ψ, the tableau does not close. Let Prov

be a provability predicate which extends LV alL such that Prov(ϕ) is true whenever ϕ is
provable in L. Since ϕ → (ψ → ϕ) is a theorem of L, then Prov(ϕ→ (ψ → ϕ)) is false.
Therefore, V al(ϕ)→ Prov(ϕ) is not valid.

In this case, the solution is immediate because we can extend L with the rule for
[1

2 ]ϕ → ψ, and thus we obtain a complete system, which collapses with Ł3. There are
more complicated cases where the logic is inherently incomplete, such as the case of SOL.
As we discussed in Chapter 3, full SOL does not have a complete deductive system and the
reason for this is that its set of theorems is not recursively enumerable. In this case, no
matter how we extend the axiomatic system of full SOL we will not obtain a completeness
theorem for this logic, due to the high expressivity of SOL’s language. It is necessary
to adopt a weaker semantics, Henkin’s general semantics, in order to obtain a complete
deductive system for SOL. Given the lack of completeness theorem for full SOL, if 0SOL ϕ

we do not know whether ϕ is really non-valid or that the deductive system is not capable
to prove ϕ. So, the axiomatization of V al in the language LV alSOL is left as an open problem.4

4As a side note, observe that the lack of a complete deductive system for SOL does not prevent
some limitative results for the predicate of validity Val in the second-order language of arithmetic. For
example, let PA� be Peano Arithmetic extended with a predicate � whose arguments are Gödel numbers
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Last, we turn to the proof system adopted in Chapter 6. Labelled tableau systems
is the most straightforward strategies in order to define a proof systems for the logics
LS0.5 and LS5. Their simplicity, both operational and metalogical, were the main reason to
adopt them for the logics at issue. But, one could argue that such proof systems are not
interesting in a proof-theoretical perspective, because it does not allow a direct comparison
with alternative approaches, such as Hilbert systems allow. A general axiomatization
for the logics LS0.5 and LS5 would constitute an interesting result about the predicates
V al and Con of logics L. On the other hand, given the multiplicity of logical systems
covered by LS0.5 and LS5 and the fact that the interpretation of the truth-functional
connectives significantly varies according to the logic, it is not immediate for us how to
obtain such a general result. Of course, the axiomatization of some important modal
many-valued systems, such as ŁS0.5

3 (ŁS5
3 ), K3

S0.5 (resp., K3
S5) and LPS0.5 (resp., LPS5)

constitute interesting results about these families of modal systems.5 But this will be
investigated in a future work.

of formulas. Halbach et al (2003) provide limitative results for PA� by means of purely model-theoretical
arguments. We speculate that the same procedure can be applied to the case of PA� in the language of
SOL.

5The logic K3 is not usually presented by means of axiomatic systems because this logic has no
tautologies. But, by adapting Shramko (2021)’s results to K3, it is still possible to provide a Hilbert-style
axiomatization of this logic where the set of premises Γ is non-empty. That is, it is possible to reproduce
a natural deduction proof system with such Hilbert axiomatization by providing only deduction rules for
each connective of the language. So the relation Γ `K3 ϕ will be such that Γ is never empty, given that
K3 has no theorems.
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