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Resumo
O objetivo desta dissertação é estudar a teoria abstrata de problemas de moduli
em Geometria Algébrica, descrevendo a Teoria Geométrica dos Invariantes (ou GIT,
sigla em inglês) de David Mumford como uma abordagem geral para construção de
espaços de moduli nesse contexto. Começamos com as definições de problemas de
moduli e espaços de moduli usando linguagem categórica, com exemplos, e depois
desenvolvemos a Teoria Geométrica dos Invariantes nos capítulos 2 e 3, sobre um
corpo de característica zero. Finalmente, no último capítulo, aplicamos as ferramentas
desenvolvidas para revisar a construção do espaço de moduli de fibrados vetoriais
(semi)estáveis sobre curvas algébricas projetivas suaves.

Assumimos conhecimentos básicos da Teoria de Esquemas para os primeiros 3 capí-
tulos, e no último também precisamos usar as ferramentas da álgebra homológica e
cohomologia de feixes. A exposição segue as referências clássicas para o assunto, em
especial as notas de aula da Prof. Victoria Hoskins (veja (HOSKINS, 2015)).

Palavras-chave: Espaços de moduli; Geometria Algébrica; Teoria Geométrica dos
Invariantes; Álgebra Homológica;



Abstract
The purpose of this dissertation is to study the abstract theory of moduli problems in
Algebraic Geometry, describing David Mumford’s Geometric Invariant Theory (or GIT)
as a general framework for building moduli spaces in this context. We start by defining
moduli problems and spaces using categorical language, with various examples, and
then study GIT in chapters 2 and 3, over a field of characteristic zero. Afterwards, in
the last chapter, we apply the developed tools to review the construction of the moduli
space of (semi)stable vector bundles over smooth projective algebraic curves.

We assume basic knowledge of scheme theory for most of the first three chapters, and
in the fourth we also need to use tools from homological algebra and sheaf cohomology.
The exposition follows the classical references for the subject, specially Prof. Victoria
Hoskins’ lecture notes (see (HOSKINS, 2015)).

Keywords: moduli spaces; algebraic geometry; geometric invariant theory; homological
algebra;
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Introduction

Classification problems have always been a major part of mathematics,
and moduli problems and spaces arise as a geometric realization of classification.
Informally, given any problem of classification, a moduli space for this problem is a
geometric space of the equivalence classes of the object. This usually gives a nice way
of understanding properties of the object which is being classified, as it is displayed in
a lot of modern mathematical achievements.

The usage of the word moduli in the context of classification, a Latin word
which is the plural of modulus (or measure, parameter), starts with Riemann’s work
in the XIX century on Riemann surfaces. Riemann stated and calculated, in several
different ways, that the number of moduli (or number of parameters) for a Riemann
surface of genus p ≥ 2 is given by 3p− 3. In Riemann’s work, the word has a vague idea
of minimum number of coordinates, although there were no proper definitions for
dimension or manifolds at the time. Throughout the XX century, the notion of moduli
spaces evolved, and the formalization of these notions today uses categorical language.
For more about the early history of moduli problems, we refer the interested reader to
(A’CAMPO; JI; PAPADOPOULOS, 2016).

The objective of this dissertation is to study Geometric Invariant Theory,
or GIT, a framework for constructing moduli spaces using algebraic group actions
on schemes developed by David Mumford in (MUMFORD; FOGARTY; KIRWAN,
1994), and then study some applications, with a particular focus on the construction
of the moduli space of vector bundles over smooth projective curves. We are heavily
influenced by Victoria Hoskins’s lecture notes (see (HOSKINS, 2015)) and by Peter
Newstead textbook (see (NEWSTEAD, 2012)), among other classical references such as
David Mumford’s book (MUMFORD; FOGARTY; KIRWAN, 1994).

In the first chapter, we use category theory to properly define the concept of
moduli problems, focusing our study on the category C = Schk of finite type k−schemes,
over an algebraically closed field k.

In the second chapter, we start the study of Algebraic Invariant Theory.
Assuming basic knowledge about Algebraic Geometry (for example (HARTSHORNE,
1977), Chapter I I) and introducing the language of algebraic group actions, we study
the following problem, known as the Hilbert Fourteenth Problem: starting with a
k−scheme X and an algebraic group action of an algebraic group G, when does the
k−algebra of G−invariant regular functions over X is finitely generated?

In the third chapter, we develop Mumford’s Geometric Invariant Theory,
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using the finitely generated k−algebra of invariants to construct quotients for the
algebraic G action on X, when G is reductive and X is either affine or projective over k.
To build a well-defined quotient space in the affine case, we need to restrict the study
of the G−action to the open set of points with closed orbits and finite dimensional
stabilizers (called stable points). In the projective case, which locally resembles the
affine one, we first study the case when X is embedded in an ambient space, and then
use invertible sheaves to generalize this condition. At the end of this chapter, we study
some useful criteria to recognize stable (and semistable) points in applications.

In the fourth chapter, we focus our study into the moduli problem of vector
bundles over smooth curves. To get a bounded moduli problem, we study the slope
stability of vector bundles over curves. This is an important construction for modern
research topics in algebraic geometry, and it is the basis for both the generalization
for vector bundles over varieties with arbitrary dimensions and also for more abstract
theories such as Bridgeland stability conditions on arbitrary triangulated categories.
This is the heaviest chapter of this dissertation in terms of prerequisites, as we use
tools from homological algebra and sheaf cohomology.

In the appendix, we recollect some basic definitions and theorems of alge-
braic geometry and category theory needed for this dissertation.
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1 Moduli Problems

In this chapter, we review some category theory to define and study basic
properties of abstract moduli problems.

1.1 Yoneda’s lemma
We assume the reader is familiar with category theory. For some definitions,

see the appendix A. If C,D are categories, we denote by Fun(C,D) the category of
(covariant) functors between C and D, and by Cop the opposite category to C.

Definition 1.1.1. Let us fix a locally small category C. The functor of points of an
object X ∈ C is a contravariant functor:

hX ≐HomC(−, X) ∶ C → Sets

Y ↦HomC(Y, X)

Y
f
Ð→ Z ↦ f ∗ ∶HomC(Z, X)→HomC(Y, X),

where, whenever g ∈HomC(Z, X), we have the commutative triangle:

Z X

Y

g

f ∗g≐g○ f
f

Moreover, any morphism f ∶ X → Y induces a natural transformation between functors
h f ∶ hX → hY, which is given, over each object Z ∈ C, by:

h f ,Z ∶ hX(Z)→ hY(Z)
g ↦ f ○ g.

Thus, we can view the correspondence X ↦ hX as a covariant functor:

h ∶ Sch→ Fun(Cop, Sets)
X ↦ hX

X
f
Ð→ Y ↦ hX

h fÐ→ hY

To prove that h f is a natural transformation, we only need to check functori-

ality: if B
g
Ð→ A is a morphism in C, the diagram
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hX(A) hY(A)

hX(B) hY(B)

h f ,A

g∗ g∗

h f ,B

commutes, since whenever α ∈ hX(A), we can write:

g∗ ○ h f ,A(α) = g∗( f ○ α) = ( f ○ α) ○ g,

and, on the other hand

h f ,B ○ g∗(α) = h f ,B(α ○ g) = f ○ (α ○ g).

Definition 1.1.2. A functor F ∈ Fun(Cop, Sets) is representable if there is an object X in
C such that F ≃ hX.

Example 1.1. In the category of finite type schemes over k, C = Schk, we could consider
the functor of regular functions:

O ∶ Schk → Sets

X ↦ O(X) = Γ(X,OX)

X
f
Ð→ Y ↦ O(Y)

f ∗
Ð→ O(X)

which is representable by the object A1
k.

Remark 1.1.3. We can also consider the dual notion, of whether or not a covariant
functor F ∈ Fun(C, Sets) is representable by an object X in C, i.e., when we have an
isomorphism F ≃ Hom(X,−). For C = Vectk the category of vector spaces over k, we
could fix a pair of vector spaces V, W and consider:

Bil(V ×W,−) ∶ Vect→ Sets

A ↦ Bil(V ×W, A) = { bilinear maps V ×W → A}

A TÐ→ B ↦ Bil(V ×W, A) T∗Ð→ Bil(V ×W, B).

By the universal property of the tensor product, we have an isomorphism:

Bil(V ×W, Z) ≃HomVect(V ⊗W, Z).

Thus, in this case, the object V ⊗W represents the covariant functor Bil(V ×W,−).

As most of the categorical phenomena we are interested in this dissertation
are of contravariant nature, we show Yoneda’s lemma for this case.
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Theorem 1.1.4 (Yoneda’s lemma). For any object C ∈ C and any contravariant functor
F ∈ Fun(Cop, Sets), there is a bijection:

HomFun(hC, F) ≃ F(C)
η ↦ ηC(IdC).

Proof. First, to see this is surjective, let us fix s ∈ F(C) any element. We define a natural
transformation η = η(s) ∶ hC → F by setting, whenever C′ is another object of C, the
morphism

ηC′ ∶ hC(C′)→ F(C′)

C′
f
Ð→ C ↦ F( f )(s).

This procedure defines a natural transformation since it is compatible with morphisms
in C, i.e., whenever X, Y are objects in C and ϕ ∶ X → Y is a morphism in C, we can
consider the following diagram:

hC(Y) F(Y)

hC(X) F(X)

ηY

ϕ∗ F(ϕ)
ηX

which commutes because, whenever f ∶ Y → C ∈ hC(Y), we can write:

(ηX ○ ϕ∗)( f ) = ηX( f ○ ϕ) = F( f ○ ϕ)(s),

and on the other hand

(F(ϕ) ○ ηY)( f ) = F(ϕ)(F( f (s))) = F( f ○ ϕ)(s),

as F is contravariant.

To prove injectivity, we show that if η, η′ ∈ HomFun(hC, F) are two natural
transformations such that ηC(IdC) = η′C(IdC), then η = η′. As η and η′ are natural
transformations, we have two commutative diagrams:

hC(C) F(C) hC(C) F(C)

hC(C′) F(C′) hC(C′) F(C′)

hC(g)

ηC

F(g)

η′C

hC(g) F(g)
ηC′

η′C′

whenever g ∶ C′ → C is a morphism in C. Thus, we can write:

(F(g) ○ ηC)(IdC) = (ηC′ ○ hC(g))(IdC) = ηC′(g)
(F(g) ○ η′C)(IdC) = (η′C′ ○ hC(g))(IdC) = η′C′(g),
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and
ηC′(g) = F(g) ○ ηC(IdC) = F(g) ○ η′C(IdC) = η′C′(g),

concluding ηC′ = η′C′ for each object C′ in C.

Remark 1.1.5. As one would expect, there is also a dual analogue for the Yoneda’s
lemma, where we consider the covariant functors hC ≐ Hom(C,−) and there is a
bijection

HomFun(hC, F) ≃ F(C)

whenever F ∈ Fun(C, Sets) is a functor. For more, see for example (RIEHL, 2016).

Corollary 1.1.5.1. The functor h ∶ C → Fun(Cop, Sets) is fully faithfull.

Proof. By definition, h is fully faithfull if, for every pair C, C′ of objects in C, the induced
morphism:

HomC(C, C′)→HomFun(hC, hC′)
f ↦ h f

is bijective. This follows from Yoneda’s lemma taking F = hC′ .

Since h is fully faithfull, we usually refer to it as Yoneda’s embedding.

1.2 Moduli Problems in Algebraic Geometry
In this section, we follow definitions as given in (BALAJI; NATIONALBIB-

LIOTHEK, 2010) and (HOSKINS, 2015).

A moduli problem consists informally of a classification problem. We define
a naive moduli problem as a pair (A,≃) consisting of a collection of objects A of a
category and an equivalence relation ≃ on A. Throughout this text, we are mostly
interested in moduli problems in Algebraic Geometry using basic scheme theory, so
we will work over the category of finite type schemes over k.

Our aim is to find an algebraic space (e.g., a scheme) M whose k−points are
in bijection with the set of equivalence classes A/ ≃. In this case, we say M is a naive
moduli space for this naive moduli problem.

Definition 1.2.1. Let (A,≃) be a naive moduli problem. An extended moduli problem
for A is a contravariant functor F ∈ Fun(Schop

k , Sets) satisfying:

• F(Spec k) = A;

• For each object T ∈ Schk, the set F(T) is given an equivalence relation ≃T such
that ≃Spec k coincides with ≃ on F(Spec k) = A;
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• For each morphism ϕ ∶ T1 → T2, the corresponding map of sets

F(ϕ) ∶ F(T2)→ F(T1)

takes ≃2 −equivalent objects in F(T2) to ≃1 −equivalent objects in F(T1).

For each object T, the elements of F(T) are called the families of objects
of A parametrized by the space T. For each morphism ϕ ∶ T1 → T2, the corresponding
morphism F(ϕ) is also called pullback of ϕ, and denoted F(ϕ) = ϕ∗. The functor F is
also called the functor of families of objects associated to the naive moduli problem
(A,≃). For a family F of objects of A over S and a point s ∶ Spec k → S, we write
Fs ≐ s∗F to denote the corresponding family over Spec k.

Any extended moduli problem F defines a moduli functorM by passing
to equivalence classes:

M(S) ≐ F(S)/ ≃S

M( f ∶ T → S) ≐ F( f ) = f ∗ ∶M(S)→M(T).

Although we use the name (and notation) of pullbacks to denote the image of the
functors F andM on arrows, the appropriate notion of pullback of families for a given
moduli problemM should be clear from context.

A scheme M ∈ Schk is called a fine moduli space for a moduli functorM
if the scheme M represents the functor M, i.e., HomSchk

(−, M) ≃M. In this case, it
follows that (A/ ≃) ≃M(Spec k) ≃Hom(Spec k, M), so M is a naive moduli space.

If we denote the natural isomorphism by η ∶HomSchk
(−, M) ≃Ð→M, there is a

distinguished element U ≐ (ηM)(IdM) ∈M(M), which is called the universal family
over M. For any scheme S ∈ Schk, we have

HomSchk
(S, M) ≃M(S),

and thus for any family [F] ∈M(S), there is a corresponding morphism f ∶ S → M,
which satisfies f ∗U ≃S F , as IdM ○ f = f .

Example 1.2. Let V be a k−vector space of dimension n + 1. We will define a family
of lines through the origin in V over a scheme S to be a line bundle L over S which
is a subbundle of the trivial bundle V × S over S. We say that two such families are
equivalent if they are equal, and denote the corresponding moduli functor byM.

The candidate of the universal family in this case is the tautological bundle
over the projective space Pn, the line subbundle of V ×Pn which over each point
assigns the corresponding line in the affine space An+1 = V. This can be identified with
the sheaf OPn(−1).
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If f ∶ S → Pn is a morphism of schemes, the line bundle f ∗OPn(1) is
generated by the pullback global sections f ∗(x0), . . . , f ∗(xn), and this determines a
surjection

On+1
S ↠ f ∗OPn(1).

When dealing with locally free sheaves, the pullback commutes with dualizing, so

f ∗OPn(−1) ≃ ( f ∗OPn(1))∨,

and the surjection induces a dual inclusion

L ≐ f ∗OPn(−1)↪ (On+1
S )∨ ≃ On+1

S

which determines a family of lines through the origin in V over S, by definition.

Conversely, let L ⊂ V × S be a family of lines through V over S. Then, dual
to the inclusion, there is a surjection q ∶ V∨ × S↠ L∨, and as the vector bundle V∨ × S is
generated by global sections σ0, . . . , σn corresponding to the dual basis for the standard
basis on V, we conclude the dual line bundle L∨ is generated by global sections
q ○ σ0, . . . , q ○ σn, which induce a unique morphism

f ∶ S → Pn

s ↦ [q ○ σ0(s) ∶ . . . ∶ q ○ σn(s)]

such that f ∗OPn(−1) corresponds to L ⊂ V × S. Hence, we have constructed a bijection
Hom(−, Pn) ≃M and the projective space Pn is the fine moduli space for this functor,
with universal family OPn(−1).

Theorem 1.2.2. Consider the moduli problem of d−dimensional linear subspaces in a fixed
vector space V =An, where a family over S is a rank d vector subbundle E of V × S, and the
equivalence relation is given by equality. We denote the associated functor as G(d, n). This
functor is representable by the Grassmanian variety Gr(d, n).

Proof. Let T ⊂ V × Gr(d, n) be the tautological vector bundle over Gr(d, n), which
assigns to each point the corresponding linear subspace of V,E ⊂ V × S be a family over
S and {Uα}α∈Λ be an open cover of S which trivializes E , i.e., such that

E ∣Uα
≃Ad ×Uα.

This determines morphisms

E ∣Uα
≃Ad ×Uα →An ×Uα ≃ V × S∣Uα

whenever α ∈ Λ, which are in turn determined by n × d matrices with coefficients in
O(Uα), of rank d. That is, a morphism Uα → Md

n×d(k), where Md
n×d(k) is the variety of
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n × d matrices of rank d over k. Taking wedge product of the d−rows in this matrix
defines a mapping

fα ∶ Uα → P(
d
⋀(V)).

To show that these morphisms obtained locally can be glued to a global morphism

f ∶ S → P(
d
⋀(V)), we only need to show that they agree on the intersections, i.e.,

whenever α, β ∈ Λ,
fα∣Uα∩Uβ

= fβ∣Uα∩Uβ
,

but this follows from the compatibility condition of local trivializations for vector
bundles.

Via the classical construction of the Grassmanian as a projective variety (see,
for example, (REID; SHAFAREVICH, 2013)), this map has image Gr(d, n). Moreover,
we also have f ∗T = E , since locally fα corresponds to the inclusion of E as Ad ⊂ An

over each open set Uα. Moreover, we get an isomorphism

ηS ∶ Gr(d, n)→Hom(S, Gr(d, n))
E ↦ fE ,

which is functorial, so Gr(d, n) is the fine moduli space for the moduli problem
G(d, n).

Example 1.3. Let us consider the naive moduli problem given by classifying locally
free sheaves over a fixed scheme X up to isomorphism. This can be extended in two
different ways. The natural notion for a family over S is a locally free sheaf F over
X × S, which is flat over S. We could consider the equivalence relation ∼S of families
over S as just isomorphism of locally free sheaves, but we could also consider a more
flexible one, where we only ask

F ∼S G ⇐⇒ F ≃ G ⊗π∗SL

for a line bundle L over S. Since line bundles are locally trivial, this means F ∼S G if
and only if there is a cover {Si}i∈I of S such that

F ∣X×Si
≃ G∣X×Si

.

We revisit this example in Chapter 4, after developing the GIT theory, to study this
moduli problem when X is a smooth projective curve over k.

Example 1.4. Let S be a Noetherian scheme and X be a finite type scheme over S. If
we denote by SchS the category of locally Noetherian schemes over S, we define the
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contravariant functor:

HilbX/S ∶ SchS → Sets

T ↦ SubX/S(T){Y ⊂ X ×T T ∶ Y is flat over T}

T
f
Ð→ P ↦ (Id×S f )∗ ∶ SubX/S(P)→ SubX/S(T),

called the Hilbert Functor. We could also stratify this functor into the disjoint union

HilbX/S(T) ≐
∞
⊔
i=0

Subi
X/S(T)

where Subi
X/S(T) ⊂ SubX/S(T) denotes the subset of fixed dimension i flat families.

This functor is representable, and the corresponding scheme is called Hilbert scheme
(for a construction, see (FANTECHI; GOTTSCHE; ILLUSIE, 2005)).

Unfortunately, there are many natural moduli problems which do not admit
a fine moduli space. We list some pathologies which usually prevent a moduli problem
from admitting a fine moduli space:

1. Moduli problems which jump in families, in the sense that we can construct
a family F over A1 such that Fs ∼ Fs′ for all s, s′ ∈ A1 ∖ {0}, but F0 ≁ Fs for
s ∈A1 ∖ {0}.

2. Moduli problems which are unbounded, in the sense that there is no family over
a scheme S which parametrizes all objects in the moduli problem.

3. The existence of automorphisms, and although this is an important one, we do
not treat in here. For an example, see the case of elliptic curves, in (HARRIS;
MORRISON, 1998), Chapter I. This is the phenomena that eventually lead Mum-
ford to define Algebraic Stacks (see more on (OLSSON, 2016)), as a more general
algebro-geometric space and an alternative for the existence of a fine moduli
space.

For an example of the first behaviour, we let n ≥ 1 be an integer and consider
the set

A(n) = {(V, ϕ) ∶ V ∈ Vectk, dim V = n, ϕ ∈ End(V)},

with the following equivalence relation:

(V, ϕ) ∼ (V′, ϕ′) ⇐⇒ ∃ h ∶ V → V′ isomorphism such that h ○ ϕ = ϕ′ ○ h.

To extend this naive moduli problem, let us fix a k−scheme S ∈ Schk. A family over
S for the extended moduli problem will be a rank n vector bundle F over S, with an
endomorphism ϕ ∶ F → F. Then the equivalence relation will be

(F, ϕ) ∼S (G, ϕ′) ⇐⇒ ∃ h ∶ F → G isomorphism such that h ○ ϕ = ϕ′ ○ h.
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We denote this extended moduli problem by Endn.

Let us consider the case n = 2 and the family corresponding to the locally
free sheaf O⊕2

A1 over A1 and we fix the endomorphism ϕ defined on fibers as

ϕs ≐
⎛
⎝

1 s
0 1

⎞
⎠

,

whenever s ∈A1. For s, t ≠ 0, these matrices are similar and so ϕt ∼ ϕs. However, ϕ0 ≁ ϕ1,
as this matrices have different Jordan normal forms.

For an example of the second kind of pathological behaviour, let us consider
the moduli problem of classifying vector bundles over P1 of fixed rank 2 and degree 0.
We claim that there is no family F over a Noetherian scheme S with the property that
for any rank 2 and degree zero vector bundle E on P1, there is a k−point s ∈ S such
that Fs ≃ E .

Let us suppose such family F over S exists. Whenever n ∈ N, we can
consider the rank 2 degree zero vector bundle corresponding to the locally free sheaf

E(n) = OP1(n)⊕OP1(−n).

As will be shown in the Grothendieck’s theorem (see 4.3.13), every rank 2 degree zero
vector bundle over P1 is of this form. Furthermore, we can compute the dimension

dim Γ(P1,E(n)) = dimk(k[x0, x1]n⊕ k[x0, x1]−n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2 if n = 0,

n + 1 if n ≥ 1.

Consider the subschemes

Sn ≐ {s ∈ S ∶ dim Γ(P1,Fs) ≥ n} ⊂ S,

which are closed by the semi-continuity theorem (see (HARTSHORNE, 1977), III
Theorem 12.8 ). So there is a descending chain of closed subschemes

. . . ⊊ S4 ⊊ S3 ⊊ S2 = S,

which does not stabilize, since E(n) ∈ Sn+1 ∖ Sn+2 whenever n ≥ 1. This contradicts the
fact that S is a Noetherian scheme.

As demonstrated by these examples, not always we have a fine moduli
space for a moduli problem. We can relax this definition, to get a weaker version of a
moduli space.

Definition 1.2.3. A coarse moduli space for a moduli functorM is a scheme M and a
natural transformation η ∶M→ hM such that



Chapter 1. Moduli Problems 21

• The map ηSpec k ∶M(Spec k)→ hM(Spec k) is bijective.

• For any scheme N and natural transformation ν ∶M → hN, there is a unique
morphism of schemes f ∶ M → N such that ν = h f ○ η, so the diagram

M hM

hN

η

ν
h f

commutes.

Proposition 1.2.4. Let (M, η) be a coarse moduli space for a moduli problemM. Then
(M, η) is a fine moduli space if and only if

1. There is a family U over M such that ηM(U) = IdM and,

2. If F ,G are families over S, we have

F ∼S G ⇐⇒ ηS(F) = ηS(G).

Proof. If (M, η) is a fine moduli space, properties 1 and 2 hold. Now, suppose (M, η) is
a coarse moduli space forM and it satisfies properties 1 and 2. We need to prove that
the natural transformation η is an isomorphism of functors, and to do this it suffices to
verify that, whenever N is an object in Schk, the map

ηN ∶M(N)→ hM(N) =Hom(N, M)

is bijective. To see it is surjective, given any f ∈ Hom(N, M), we can consider the
morphism

M(M)
M( f )
ÐÐÐ→M(N),

and using 1, there is a natural choice of family M( f )(U) ∈ M(N). We claim that
ηN(M( f )(U)) = f . Since η is a natural transformation, the diagram

M(M) hM(M)

M(N) hM(N)

ηM

M( f ) f ∗

ηN

commutes, so f ∗ ○ ηM(U) = ηN ○M( f )(U) = ηN(F( f )), and thus

f ∗ ○ ηM(U) = f ∗(IdM) = f ,

as we wanted to show. Injectivity follows from property 2, asM(N) is given by the set
of equivalence classes with respect to ∼N.
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We can also formalize the jump phenomena observed before using coarse
moduli spaces, in the next proposition.

Proposition 1.2.5. LetM be a moduli problem and suppose there exists a family F
over A1 such that Fs ∼ F1 for all s ≠ 0 but F0 ≁ F1. Then, for any scheme M and natural
transformation η ∶M→ hM, the map

ηA1(F) ∶A1 → M

is constant. In particular, there is no coarse moduli space for this moduli problem.

Proof. Let f ≐ ηA1(F) ∶A1 → M. For any k−point

Spec k sÐ→A1 f
Ð→ M

we have f ○ s = ηSpec k(Fs). Since Fs ∼S F1 whenever s ≠ 0, the function f ∣
A1∖{0} is

constant, and we denote by
Spec k mÐ→ M

the closed point corresponding to this image. By continuity, it follows that:

A1 ∖ {0} ⊂ f −1(m)⇒A1 =A1 ∖ {0} ⊂ f −1(m),

since f −1(m) is closed, and thus f is constant.

In particular, the morphism

ηSpec k ∶M(Spec k)→ hM(Spec k) = M(k)

cannot be a bijection, since F0 ≁ F1 but they correspond to the same closed point
m ∈ M(k).

Even when a moduli problemM admits a fine moduli space, which is the
best case scenario, its representation as a k−scheme is not always easy to understand.
When dealing with various moduli problems in the next chapters, we will follow the
following general strategy:

1. Given a particular naive moduli problem (A,∼), we search for a space of param-
eters P, which for us will be a k−scheme with a surjective map of sets

P(k)↠ A/ ∼ .

2. We search for an algebraic group G which acts algebraically on P and corresponds
to the equivalence relation ∼ in k−points, i.e., two k−points p, q ∈ P(k) lie in the
same G−orbit if and only if they correspond to isomorphic families in A. This
induces a bijection

P(k)/G ≃Ð→ A/ ∼ .
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3. We take the quotient in the category of schemes, when G and P satisfy some
hypothesis, using Geometric Invariant Theory (GIT), a method developed by
David Mumford which will be explained in the next chapters.

Having a easy description for the moduli space as an scheme helps to find,
not only the answers to a lot of questions concerning the classification of said objects,
but also the right answers to ask.

The objective of the next two chapters is to study Mumford’s GIT theory as
a framework of systematic construction for fine moduli spaces as schemes.
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2 Algebraic Invariant Theory

Introduction
Let X be an algebraic variety inside some affine space An over k and we

let G = GL(n) be the general linear group of dimension n over k, which acts by linear
automorphisms on X, induced by the embedding of X into An.

This action also induces an action of G on the ring of regular functions O(X)
given by change of coordinates. More explicitely, given any T ∈ GL(n) and regular
function f ∈ O(X), we define T ⋅ f ≐ f ○ T and

O(X)G ≐ { f ∈ O(X) ∶ T ⋅ f = f ∀T ∈ GL(n)}

is called the fixed subalgebra for this G-action over X. This is also called the algebra
of invariants of O(X) for this action, and a possible question is the following:

Conjecture 2.1. Is O(X)G finitely generated over k?

Hilbert showed that this is the case when X =An. In 1900, in the famous
paper "Mathematical Problems" (HILBERT, 1902), Hilbert cites a generalization of this
for any algebraic subgroup of the general linear group and for any affine algebraic
variety:

Conjecture 2.2 (Hilbert’s Fourteenth Problem). If X ⊂ An is an affine variety and
G ⊂ GL(n) is an affine algebraic subgroup acting by linear change of coordinates, is
the algebra O(X)G finitely generated over k?

Since O(X) is a finitely generated k−algebra, by hypothesis, there is a
surjection on top of the diagram

k[x1, . . . , xn] O(X)

k[x1, . . . , xn]G O(X)G
,

which induces a surjection at the bottom whenever G satisfies some additional hypoth-
esis (namely, the group G has to be reductive, see 2.5.4). The vertical arrows making
this commute, which exist given these hypothesis, are called Reynolds operators.

In general, however, the above conjecture is false, and Masayoshi Nagata
gave a counterexample in (NAGATA, 1965). For a survey of modern counterexamples
for this problem, see (FREUDENBURG, 2001).
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In this chapter, we review all the background in algebraic groups, their
algebraic actions and representations, eventually finding sufficient conditions for G
(namely, we ask G to be a linearly reductive group over k) to get a positive answer
for 2.2, in 2.5.4. We follow the exposition of (HOSKINS, 2015), and usually refer to
(MILNE, 2012) and (MILNE, 2017) for technical facts about algebraic group theory.

In this Schk, we denote by S × S = S ×k S the fiber product, since this is the
product in the slice category over the object Spec k. We also use Grp to denote the
category of groups, and Sets the category of sets. Given a k−scheme X, we denote by
X(k) = hX(Spec k) = Hom(Spec k, X) its set of k−points. Whenever f ∶ A → B is a map
of sets, then we denote by Im f the set f (A) ⊂ B.

2.1 Algebraic Groups

Definition 2.1.1. An algebraic group (over k) is a k−scheme G together with morphisms
m ∶ G ×G → G, i ∶ G → G and e ∶ Spec k → G such that the following diagrams in Schk

G ×G ×G G ×G

G ×G G

(IdG,m)

(m,IdG) m

m

(2.1)

G G ×G G

Spec k G Spec k

(IdG,i)

m

(i,IdG)

e e

(2.2)

Spec k ×G G ×G G × Spec k

G

≃

(e,IdG)

m
≃

(IdG,e)

(2.3)

commute, where the isomorphisms in (2.3) are given by the projections.

Remark 2.1.2. This construction can done in any category C with binary products and
terminal object, and in this more general context it is called a group object (see, for
example, (FANTECHI; GOTTSCHE; ILLUSIE, 2005), 2.2). In the category of sets, for
example, the group objects are the usual groups, and if we consider the category of
manifolds with smooth mappings, the group objects are Lie groups.
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To see that these axioms in fact correspond with a group structure, we have
the following universal property of group objects, using Yoneda’s Lemma and the
language of representable functors.

Lemma 2.1.3. Let G be an algebraic group and hG = HomSchk
(−, G) ∶ Schk → Sets the

functor of points of G. There is a unique functor HG ∶ Sch→ Grp such that the diagram

Schk Sets

Grp

hG

FG f orget
(2.4)

commutes.

Proof. Let G = (G, m, i, e) denote the structure morphisms of the algebraic group and
S be any k−scheme. We define a group structure on the set hG(S) =HomSchk

(S, G) as
follows: if f , g ∈ hG(S),

f + g ≐ m ○ ( f , g)
− f ≐ i ○ f

0 ≐ e ○ str

where str ∶ S → Spec k is the structural morphism and ( f , g) denotes the product arrow
from G ×G to S × S. To see that (hG,+) is a group with the structure mentioned above,
we note that:

1. The operation + is associative, since given f , g, h ∈ hG(S) we can write

( f + g)+ h = m ○ ( f + g, h)
= m ○ (m ○ ( f , g), h)
= (m ○ (m, IdG))( f , g, h) (using 2.1)
= (m ○ (IdG, m))( f , g, h)
= m ○ ( f , g + h)
= f + (g + h).

2. 0 is the neutral element, since if f ∈ hG(S) we have

f + 0 = m ○ ( f , e ○ str)
= m ○ (IdG, e)( f , str) (using 2.3)
= f .
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3. The element − f is the inverse of f ∈ hG(S) with respect with +, since

f + (− f ) = m ○ ( f ,− f )
= m ○ ( f , i ○ f )
= m ○ (IdG, i)( f ) (using 2.2)
= e ○ strG ○ f

and because Spec k is the terminal object, the two arrows

strG ○ f ∶ S → Spec k and str ∶ S → Spec k

must coincide, implying f + (− f ) = e ○ strG ○ f = e ○ strS = 0.

Let HG(S) ≐ (hG(S),+). Given any morphism ϕ ∈Homk(S, T), we have the pullback

ϕ∗ ∶ hG(T)→ hG(S)
f ↦ f ○ ϕ,

which induces a group morphism between (hG(T),+) and (hG(S),+), since whenever
f , g ∈ hG(T),

ϕ∗( f + g) = ( f + g) ○ ϕ

= m ○ ( f , g) ○ ϕ

= m ○ ( f ○ ϕ, g ○ ϕ)
= f ○ ϕ + g ○ ϕ = ϕ∗( f )+ ϕ∗(g),

and we can again use the property of the terminal object to conclude that the arrows
strT ○ϕ and strS ∶ S → Spec k coincide, and this means that ϕ∗(0T) = e ○ strT ○ϕ = e ○ strS =
0S. Thus, HG defines a functor between Schk and Grp satisfying the diagram (2.4).

Definition 2.1.4. Let G = (G, mG, iG, eG) and H = (H, mH, iH, eH) be algebraic groups. A
morphism of k−schemes ϕ ∶ G → H is a morphism of algebraic groups if the following
diagrams commute:

G ×G H ×H

G H

(ϕ,ϕ)

mG mH

ϕ

G H

Spec k

ϕ

eG eH

G H

G H

ϕ

iG iH

ϕ

We will denote by AlgGrpk the category of algebraic groups and morphisms
of algebraic groups.
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Proposition 2.1.5. The functor

AlgGrp→ RepFun(Schop
k , Grp)

G ↦HG

is an equivalence of categories, where RepFun(Schop
k , Grp) denotes the full subcategory

of Fun(Schop
k , Grp) of contravariant representable functors.

Proof. Let F ∶ Schk → Grp be a contravariant representable functor. By definition, there
must be a k−scheme X such that F ≃ hX. Let’s prove that X admits an algebraic group
structure such that F ≃HX, which shows the functor G ↦HG is essentially surjective.
This is enough, since by Yoneda’s lemma this correspondence is also fully faithfull,
and these properties imply the functor establishes an equivalence between categories
(see (RIEHL, 2016), Theorem 1.5.9).

Again by Yoneda’s lemma, hX × hX ≃ hX×X and if we can find natural
transformations m ∶ hX × hX → hX, i ∶ hX → hX and e ∶ h(Spec k) → hX commuting the
diagrams in 2.1.1 at level of objects, we are done. Given any k−scheme S, there are
operations mS, iS, eS in hX(S), defined in the proof of the universal property of algebraic
groups (2.1.3), so that mS and iS define morphisms satisfying 2.1 and 2.2. Moreover,
since hSpec k(S) ≃ (0,+), using the universal property of Spec k, and the map

(0,+) eSÐ→ hX(S)

induces a unique map
hSpec k(S)→ hX(S)

which must satisfy diagram 2.3, proving the statement.

Definition 2.1.6. An algebraic group G is called an affine algebraic group if G is an
affine scheme.

Since there is an equivalence of categories

AffSchk ≃ Algk

X ↦ O(X)
Spec A ←[ A,

where AffSchk and Algk denote the category of affine k−schemes and the category of
k−algebras of finite type, respectively, if we restrict this to the subcategory of affine
algebraic groups AffAlgGrpk inside AlgGrpk, we should expect to get a corresponding
algebraic object on Algk via this equivalence.
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Definition 2.1.7. A k−algebra A together with k−algebra morphisms m∗ ∶ A⊗ A → A,
i∗ ∶ A → A and e∗ ∶ A → k such that the following diagrams commute:

A⊗ A⊗ A A⊗ A

A⊗ A A

IdA⊗m∗

m∗⊗IdA m∗

m∗

A A⊗ A A

k A k

IdA⊗i∗ i∗⊗IdA

m∗

e∗ e∗

k⊗ A A⊗ A A⊗ k

A

e∗⊗IdA IdA⊗e∗

≃ ≃m∗

is called a Hopf algebra. Given two Hopf algebras (A, m∗A, i∗A, e∗A) and (B, m∗B, i∗B, e∗B), a
morphism of k−algebras ϕ ∶ A → B is a morphism of Hopf algebras if the following
diagrams commute:

A × A B × B

A B

(ϕ,ϕ)

ϕ

m∗A m∗B

A B

k

ϕ

e∗A
e∗B

A B

A B

ϕ

i∗A i∗B

ϕ

The category of Hopf Algebras over k will be denoted by HopfAlgk.

This definition is dual to the definition of algebraic group, and the correct
one so that we have the result:

Theorem 2.1.8. The following

HopfAlgk ≃ AffAlgGrpk

A ↦ Spec A

(OG(G), m∗, i∗, e∗)←[ (G, m, i, e)

is an equivalence of categories.

Proof. By definition, HopfAlgk and AffAlgGrpk are subcategories of Algk and AlgGrpk,
respectively, which satisfy exactly dual diagrams, so we can just use the equivalence
given by Spec and the definition of each object to conclude.

We can use this equivalence of categories to produce interesting examples
of group schemes:
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1. The additive group Ga ≐ Spec k[t]. To see that this is an affine algebraic group,
we can give k[t] a Hopf algebra structure by defining:

m∗ ∶ k[t]→ k[t]⊗ k[t]
t ↦ t⊗ 1+ 1⊗ t

i∗ ∶ k[t]→ k[t]
t ↦ −t

e∗ ∶ k[t]→ k

t ↦ 0

These morphisms satisfy the diagrams on (2.1.7), and the name comes from the
following universal property: if (A,+, ⋅) is a k−algebra, we have

hG(Spec A) =Homk(Spec A, Spec k[t]) =Homk(k[t], A) = (A,+),

since the map

ϕ ∶ A →Homk(k[t], A)
a ↦ ϕa ∶ t ↦ a

is a bijection such that ϕa+b = ϕa +ϕb and ϕ0 = 0. This means that the representable
functor hGa ∶ AffSchk → Grp can be interpreted (via equivalence of categories) as
the functor Algk → Grp that associates the additive group of a k−algebra.

Geometrically, since Spec k[t] ≃A1
k and A1

k(k) ≃ k, we could also define the usual
operation

m ∶ k × k → k

(a, b)↦ a + b

and this indeed induces an algebraic group structure in A1
k since it defines a

morphism of algebraic varieties satisfying the diagrams in 2.1.1. We note that

m∗(t)(a, b) = t ○m(a, b) = a + b = (t⊗ 1+ 1⊗ t)(a, b)
i∗(t)(a) = t ○ i(a) = −a = (−t)(a)
e∗(t)(a) = t ○ e(a) = t ○ 0 = 0 = 0 ○ (a)

for each pair (a, b) ∈A1
k(k)×A1

k(k), and thus (m∗, i∗, e∗) induce the same Hopf
algebra structure associated to the algebraic group (A1

k,+).
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2. The multiplicative group Gm ≐ Spec k[t, t−1]. We can give k[t, t−1] a Hopf algebra
structure by defining

m∗ ∶ k[t, t−1]→ k[t]⊗ k[t, t−1]
t ↦ t⊗ t

i∗ ∶ k[t, t−1]→ k[t, t−1]
t ↦ t−1

e∗ ∶ k[t, t−1]→ k

t ↦ 1

This defines a Hopf algebra, and again the name comes from a universal property:
if (A,+, ⋅) is a k−algebra, we have

hGm(Spec A) =Homk(Spec A, Spec k[t, t−1]) =Homk(k[t, t−1], A) = (A×, ⋅).

Moreover, since Spec k[t, t−1] ≃ A1 ∖ {0} and (A1
k ∖ {0})(k) = k ∖ {0}, we could

also define the usual operation

m ∶ (k ∖ {0})× (k ∖ {0})→ (k ∖ {0})
(a, b)↦ a ⋅ b

and, this induces the same Hopf algebra structure as defined before.

3. General Linear Group. Let

A ≐ k[T11, . . . , Tnn]
(det(Tij)− 1)

Note that Spec A can be viewed as the affine scheme corresponding to GLn(k) ⊂
An2

k , and we can define the operations:

m∗ ∶ A⊗ A → A

Tij ↦
n
∑
l=1

Til ⊗ Tl j

i∗ ∶ A → A

Tij ↦ aij, where A = (Tij)−1

e∗ ∶ A → k

Tij ↦ det Tij

This defines a Hopf algebra, and if R is a k−algebra the associated representable
functor will satisfy

hGLn(k)(Spec R) ≃Homk(A, R) = GLn(R).
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Using this last example, we can produce all the classical algebraic matrix sub-
groups of GLn(R), such as the special linear group SLn(R), the orthogonal group
SOn(R) and the symplectic group Spn(R). For more examples, see (MILNE,
2012).

Definition 2.1.9. Let G be an affine algebraic group over k. We define the charac-
ter group of G as the group X∗(G) ≐ Hom(G, Gm), with pointwise induced group
structure. The cocharacter group of G is defined by the group X∗(G) =Hom(Gm, G).

In the following, we compute some examples of character groups.

Lemma 2.1.10. X∗(Gm) = X∗(Gm) ≃Z.

Proof. Let

θ ∶Z→ X∗(Gm)
n ↦ θ(n) ∶ t ↦ tn.

First, we need to show that this is well defined, i.e., that the function θ(n) is a morphism
of algebraic groups. To do this, we consider its dual in the category of Hopf algebras,
given explicitly by the map

θ(n)∗ ∶ k[t, t−1]→ k[t, t−1]
t ↦ tn.

To see this is a morphism of Hopf algebras, we need to check the compatibility
between θ(n)∗ and the operations m∗, i∗ and e∗ defined on O(Gm). But this follows
from associativity, by

m∗(t)n = (t⊗ t)n = tn ⊗ tn = m∗(tn),
(e∗(t))n = (1)n = 1n = e∗(tn),
i∗(t)n = (t−1)n = (tn)−1 = i∗(tn).

The map θ itself defines a morphism of groups. Furthermore, if the function θ(n) is
the neutral element in the group X∗(Gm), then we must have n = 0, so θ is injective.

To show surjectivity, we let ϕ ∈ End(Gm) be any element. Since ϕ∗ ∶ O(G)→
O(G) is a morphism of Hopf algebras, ϕ is completely determined by its value on t.
We write

ϕ∗(t) = ∑
∣i∣<m

aiti

for a general element of k[t, t−1] and show ϕ must be in the image of θ using the
condition that ϕ commutes with m∗ and e∗. First, the equation m∗(ϕ∗(t)) = ϕ∗(m∗(t))
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can be rewritten as:

ϕ∗(t)⊗ ϕ∗(t) = ∑
∣i∣,∣j∣<m

aiajti ⊗ tj = ∑
∣i∣<m

aiti ⊗ ti

and this already implies

∑
∣i∣<m
(a2

i − ai)ti ⊗ ti + ∑
i≠j,∣i∣,∣j∣<m

aiajti ⊗ tj = 0

which means that aiaj = 0 whenever i ≠ j, so that at most one of the coefficients satisfies
an ≠ 0.

On the other hand, if we use e∗(t) = e∗ ○ ϕ∗(t), we get

1 = ∑
∣i∣<m

aie∗(ti) = ∑
∣i∣<m

ai

and conclude that at least one coefficient must be non-zero, and the sum of all
coefficients must be one. With the previous observation, we get an = 1 and in this case
ϕ = θ(n).

Definition 2.1.11. An affine algebraic group T over k is a torus if T ≃ Gn
m for some

n > 0.

Note that, if T ≃ Gn
m is a torus, we can use the universal property of products

to deduce:
X∗(T) =Hom(T, Gm) ≃

n
∏
i=1

Hom(Gm, Gm) ≃
n
∏
i=1

Z.

Proposition 2.1.12. X∗(GLn(C)) =Hom(GLn(C), Gm(C)) ≃Z.

Proof. If X ∈ X∗(GLn(C), because Gm is an abelian group, then

X ([g, h]) = X (gh − hg) = 1

whenever g, h ∈ GLn(C). By basic group theory (see 6.7, Lemma 1 in (JACOBSON,
2009)), we can compute the commutators

[GLn(C), GLn(C)] = [SLn(C), SLn(C)] = SLn(C),

so X must factor by the quotient in the commutative diagram

GLn(C) Gm(C)

GLn(C)/SLn(C)

X

π
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Moreover, we have GLn(C)/SLn(C) ≃ Gm(C), since det ∶ GLn(C)→ Gm(C) is a surjec-
tive map which factors through the quotient, by the isomorphism theorem.

By the universal property of quotients, we have an isomorphism

Hom(GLn(C), Gm(C)) ≃Hom(Gm, Gm) ≃Z,

and using the determinant map we get an explicit isomorphism:

Z→ X∗(GLn(C))

n ↦ Xn ∶ g ↦
1

(det g)n .

2.2 Algebraic Group Actions

Definition 2.2.1. An algebraic action of an affine algebraic group G over k on a
k−scheme X is a morphism of k−schemes σ ∶ G × X → X such that the following
diagrams commute

Spec k ×X G ×X

X

(e,IdX)

≃ σ

G ×G ×X G ×X

G ×X X

(IdG,σ)

(mG,IdX) σ

σ

Let σX ∶ G × X → X and σY ∶ G ×Y → Y be algebraic actions of G on the
k−schemes X and Y. We say that a morphism f ∶ X → Y is G−equivariant if the
diagram

G ×X G ×Y

X Y

(IdG, f )

σX σY

f

commutes. If Y is given the trivial action σY = πY, then we say f is a
G−invariant morphism.

When X is affine, an algebraic action σ ∶ G ×X → X induces a coaction in the
k−algebras:

σ∗ ∶ O(X)→ O(G ×X) ≃ O(G)⊗O(X)
f ↦∑

i
hi ⊗ fi.
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More concretely, using the isomorphism O(G ×X) ≃ O(G)⊗O(X) we can
write

σ∗( f )(g, x) = f ○ σ(g, x) =∑
i

hi(g) ⋅ fi(x)

whenever g ∈ G and x ∈ X, so fixing g ∈ G defines a mapping

G → Autk(O(X))
g ↦ ϕg

given by
ϕg( f ) ≐∑

i
hi(g) fi,

whenever σ∗( f ) =∑ hi ⊗ fi. In other words, this is the action

(g ⋅ f )(x) = f (g ⋅ x),

which uses the action σ as a change of coordinates for morphisms f ∈ O(X).

Lemma 2.2.2. Let G be an affine algebraic group over k acting algebraically on an affine
k−scheme X, and let G act on O(X) as change of coordinates, as above. For any finite
dimensional vector subspace W of O(X), there is a finite dimensional G−invariant
vector subspace V of O(X) which contains W.

Proof. Since W is finite dimensional, we let { f1, . . . , fr} be a basis of W and define

V ≐ span{g ⋅ fi ∶ g ∈ G, i = 1, . . . , r} ⊂ O(X).

By definition, V is G−invariant and W ⊂ V. All we need to prove is that V is finite
dimensional. To do this, whenever i = 1, . . . , r, let

σ∗( fi) =
ni

∑
j=1

aij ⊗ bij

with aij ∈ O(G) and bij ∈ O(X). Using this notation, the action has the form

g ⋅ fi =
ni

∑
j=1

aij(g)bij.

Let W′ be the vector space generated by the set {bij ∶ i = 1, . . . , r, j = 1, . . . , ni}. Since W′

is finite dimensional over k and

g ⋅ fi =
ni

∑
j=1

aij(g)bij ∈W′

whenever g ∈ G, then V ⊂W′ and this means that V is also finite dimensional.
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Definition 2.2.3. We say that an algebraic action of an affine algebraic group G over k
on a k−algebra is rational if every element of A is contained in a finite dimensional
G−invariant linear subspace of A.

By the previous lemma, the induced action of G on the k−algebra O(X) is
rational, whenever G acts algebraically on X. This is a key observation, and using this
fact we can prove the following characterization of affine algebraic groups of finite
type over k:

Theorem 2.2.4. Any affine algebraic group of finite type over k is a linear algebraic group,
i.e., a closed algebraic subgroup of GLN(k) for some N > 0.

Proof. Since G is of finite type over k, O(G) is finitely generated over k. Let W denote
the vector space generated by a finite choice of generators of O(G) as a k−algebra. The
vector space W will be finite dimensional and since the action of G on O(G) is rational,
there is a finite dimensional vector space V which is G−invariant, W ⊂ V and it is the
vector space with smallest dimension which satisfies these two properties.

Let { f1, . . . , fn} be a basis of V, and m∗ ∶ O(G) → O(G)⊗O(G) the dual of
the multiplication. Since V is G−invariant, m∗( fi) ∈ O(G)⊗V and hence we can write:

m∗( fi) =
n
∑
j=1

aij ⊗ f j

for aij ∈ O(G). The coefficients define the following k−algebra morphism:

ρ∗ ∶ O(Mn(k))→ O(G)
xij ↦ aij,

which corresponds to a map of k−schemes ρ ∶ G → Mn(k). To prove that ρ is a closed
embedding, we only need to show that the associated map ρ∗ of k−algebras is surjective.

Using the structure of algebraic group of G = (G, m, i, e), we can write:

fi = (IdO(G) ⊗ e∗) ○m∗( fi)

= (IdO(G) ⊗ e∗)
n
∑
j=1

aij ⊗ f j =
n
∑
j=1

e∗( f j)aij,

which means that { f1, . . . , fn} ⊂ Im ρ∗, and thus V ⊂ Im ρ∗. Since ρ∗ is also a k−algebra
morphism, so its image must be a k−algebra containing every generator of O(G),
which means ρ∗ is surjective.

Note that the k−scheme Mn(k) is just the affine space An2

k , and the multipli-
cation of matrices is a morphism mn ∶ Mn(k)×Mn(k)→ Mn(k), since each coordinate is
polynomial on the coefficients. This means that we can consider Mn(k) as an algebraic
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semigroup over k with this operation, and only this, since not every matrix has an
inverse under multiplication.

We show ρ is a morphism of algebraic semigroups using the corresponding
diagram in the category of k−algebras:

O(Mn(k)) O(Mn(k))⊗O(Mn(k))

O(G) O(G)⊗O(G)

m∗n

ρ∗ ρ∗⊗ρ∗

m∗

To see this commutes, we must show that for each xij ∈ O(Mn(k)), the expressions

ρ∗ ⊗ ρ∗ ○m∗n(xij) = ρ∗ ⊗ ρ∗ (∑
k

xik ⊗ xkj) =∑
k

aik ⊗ akj

and m∗ ○ ρ∗(xij) = m∗(aij) coincide. Consider the dual of the associativity diagram (2.1)
of the group G, given by m ○ (IdG, m) = m ○ (m, IdG), applied on the element fi ∈ O(G).
On the left side, we get:

(IdO(G) ⊗m∗) ○m∗( fi) = (IdO(G) ⊗m∗)
⎛
⎝

n
∑
j=1

aij ⊗ f j
⎞
⎠

=
n
∑
j=1

aij ⊗ (
n
∑
k=1

ajk ⊗ fk)

=
n
∑

j,k=1
aij ⊗ ajk ⊗ fk,

and on the right side:

m∗ ⊗ IdO(G)
⎛
⎝

n
∑
j=1

aij ⊗ f j
⎞
⎠
=

n
∑
j=1

m∗(aij)⊗ f j.

Since the set { f1, . . . fn} is linear independent in O(G), comparing the coeffi-
cients on both sides yields the equality

m∗(aij) =∑
j,k

aij ⊗ ajk

whenever i, j = 1, . . . , n, what we wanted to prove.

Since G is a group, every element has an inverse and we conclude that the
image of ρ must be contained in the group GLn(k) inside Mn(k).

The naive set-theoretical formulations of orbit and stabilizer have natural
adaptations to algebraic geometry. To define them, we recall some useful notions.
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Definition 2.2.5 ((EISENBUD; HARRIS; HARRIS, 2000), p. 26). A subset of X is locally
closed if it is an open subscheme of a closed subscheme of X.

This is the natural way of algebraic geometry to construct schemes or, more
generally, locally ringed spaces, as subspaces of already defined ones. If (X,OX) is
any locally ringed space and F ⊂ X is an open subset of a closed subset of X, we can
consider the induced sheaf OX∣F, since restriction to both open and closed subsets are
well defined.

Another useful way of constructing morphisms of schemes is to consider
base changes: if

X′ X

S′ S

B(π)

B( f ) f

π

is a pull-back diagram in Schk, then we call B( f ) the base change of the arrow f by
π and B(π) the base change of the arrow B(π) by f . For more on how base changes
behave in algebraic geometry, see (LIU; ERNE, 2006), Chapter 3.

Definition 2.2.6 ((LIU; ERNE, 2006), 3.13). We say a map f ∶ X → Y of schemes is closed
if f is closed as a map of topological spaces. Moreover, we say that f is universally
closed if every base change of f is closed.

Theorem 2.2.7 (see (LIU; ERNE, 2006), Prop 3.16). If

X′ X

S′ S

B(π)

B( f ) f

π

is a pull-back in Schk and f is a closed immersion, then B( f ) is a closed immersion. In
particular, closed immersions are universally closed.

Definition 2.2.8. Let σ ∶ G ×X → X be an algebraic action of an affine algebraic group
G on a scheme X. Let x ∶ Spec k → X be a k−point. We define:

1. The orbit G ⋅ x of x is the (set-theoretic) image of the map σx = σ(−, x) ∶ G → X.
This is usually just a set, but in the next lemma we prove G ⋅ x admits a locally
closed structure inside X.

2. The stabilizer Gx of x is the fiber product in Schk of σx and x, as in the diagram
below:
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Gx G

Spec k X

i

σx

x

where, since x is a closed immersion and i is a base change of x, i is also a closed
immersion of Gx into G, so that Gx is a closed subscheme of X.

Theorem 2.2.9. The orbits of closed points are locally closed subsets of X, hence can be
identified with the corresponding reduced locally closed subschemes.

Moreover, the boundary of an orbit G ⋅ x∖G ⋅ x is a union of orbits of stricly smaller
dimension. In particular, each orbit closure contains a closed orbit (of minimal dimension).

Proof. Let x ∈ X(k). The orbit G ⋅ x is the image of the morphism σx, and by a theorem
of Chevalley ((HARTSHORNE, 1977), II Exercise 3.19 ) it is constructible, i.e., there
exists a dense open set U of the closure G ⋅ x such that U ⊂ G ⋅ x. Since G acts transitively
on G ⋅ x through σx, every point of G ⋅ x is contained by a translation of U, and all the
translations are again inside G ⋅ x, so this implies that G ⋅ x is an open set inside the
closed set G ⋅ x.

This implies that G ⋅ x is a locally closed subset, and hence we can have the
corresponding reduced scheme associated with G, Gred, acting on the reduced scheme
associated with G ⋅ x, which is transitive on k−points. In particular, the dimension of
G ⋅ x is the same at every point, by the transitivity of the action.

To show that the boundary of the orbit is G−invariant, let

y ∈ G ⋅ x ∖G ⋅ x

be a point at the boundary, g ∈ G and V any open set around the point g ⋅ y. Since G
acts on X by algebraic automorphisms, in particular G acts continuously such that we
can take the open neighbourhood g−1V around the point g−1(gy) = y. Because y ∈ G ⋅ x,
there exists a point

z = h ⋅ x ∈ g−1V ∩G ⋅ x.

This means that
gz = gh ⋅ x ∈ V ∩G ⋅ x,

in particular V ∩G ⋅ x ≠ ∅, so that g ⋅ y ∈ G ⋅ x. Because y ∉ G ⋅ x, we could not have
g ⋅ y ∈ G ⋅ x, so that g ⋅ y ∈ G ⋅ x ∖G ⋅ x.

In particular, we can write the boundary G ⋅ x ∖G ⋅ x as a union of disjoint
orbits, which are also finite since X is affine, hence quasi-compact.
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Since G ⋅ x is locally closed and the boundary G ⋅ x ∖G ⋅ x is the complement
of a dense open subset, the boundary is closed and of strictly lower dimension than
G ⋅ x. Indeed, if the complement G ⋅ x ∖G ⋅ x is irreducible, we are done because non-
trivial irreducible subsets have strictly smaller dimension. If not, let F ⊂ G ⋅ x be a
closed irreducible set such that G ⋅ x ⊂ F. Then F ∩G ⋅ x is an open dense set subset of
F, and this means F = G ⋅ x, so that dim G ⋅ x < dim F = dim G ⋅ x.

This means that orbits of minimal dimension are closed (if not, there would
be orbits on the boundary with even smaller dimension) and we conclude each orbit
closure contains a closed orbit.

An algebraic action of an affine algebraic group G on X is closed if all
G−orbits are closed on X. To illustrate the previous theorem, we propose the following
examples:

Example 2.1. Let Gm = Spec k[t, t−1] act on A2
k by the rule

t ⋅ (x, y) ≐ (tx, t−1y)

whenever (x, y) ∈A2
k(k) and t ∈ Gm(k). The orbits of this action are:

• Conics {(x, y) ∶ x ⋅ y = α}, whenever α ∈A1 ∖ {0} and the origin, which are closed
orbits.

• The punctured x−axis and y−axis, which are not closed.

Note that the puncture axes contain the origin in their closure, with strictly smaller
dimension, and the corresponding coaction morphism can be written as

σ∗ ∶ k[x, y]→ k[t, t−1]⊗ k[x, y]
x ↦ t⊗ x

y ↦ t−1 ⊗ y.

Example 2.2. Let G = Gm act on X =An+1
k via

t ⋅ (x0, . . . , xn) ≐ (tx0, . . . , txn).

Note that there are no closed orbits for this action, but if we consider the restriction to
the open set An+1

k ∖ {0}, we get an action which is algebraic, closed and the orbits are
the punctured lines at the origin

l(x0,...,xn)(k) = {t ⋅ (x0, . . . , xn) ∈An+1(k) ∶ t ∈ k ∖ {0}}.

The open subscheme X =An+1 ∖ {0} is famously not affine and moreover

O(X) = O(An+1 ∖ {0}) ≃ k[x0, . . . , xn].
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Computing the G−invariant functions, we get

O(X)G ≃ { f ∈ k[x0, . . . , xn] ∶ f (x0, . . . , xn) = f (t ⋅ x0, . . . , t ⋅ xn) ∀t ∈ k ∖ {0}} ≃ k

In this case, the topological quotient X/G should coincide with the projective n−space
over k, and as we know the only global regular functions over the projective space are
the constant ones. We discuss this example in more detail in the next chapter.

There are also other schemes which can be defined in this context, and the
following lemma again uses the technique of base change to produce them.

Lemma 2.2.10. Let G be an affine algebraic group over k acting algebraically on a
k−scheme X.

(i) If Y and Z are subschemes of X, with Z closed, then the set

{g ∈ G ∶ gY ⊂ Z}

is closed.

(ii) If X is a variety (i.e., separable over k), for any subgroup H ≤ G its fixed point
locus

XH ≐ {x ∈ X ∶ Hx = x}

is closed.

Proof. (i) We fix y ∈ Y and consider the fiber product

G ×X Z G

Z X

π1

σy

i

where i ∶ Z → X denotes the closed immersion. Since π1 is a base change of i, this
means that π1 is also a closed immersion, hence the image

π1(G ×X Z) = {g ∈ G ∶ σy(g) ∈ Z}

is a closed set in G. Moreover,

{g ∈ G ∶ gY ⊂ Z} = ⋂
y∈Y

Gy(Z),

and thus this set is also closed.
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(ii) Given h ∈ H, we have an automorphism σh = σ(h,−) ∈ Aut(X), and as before, we
can consider the fiber product

P Y

X ×X X ×X

∆X

(σh,IdX)

and by construction the set P(k) coincides with the graph of σh, so the inclusion
Gr(σh) ⊂ X × X is a base change of the diagonal morphism ∆X. Since X is
separable over k, the diagonal ∆X ⊂ X ×X is a closed immersion, so σh is also a
closed immersion and because

XH = {x ∈ X ∶ σ(H, x) = {x}}
= ⋂

h∈H
{x ∈ X ∶ σ(h, x) = x}

= ⋂
h∈H

π−1
1 (Gr(σh)∩∆X),

the claim follows.

The following can be thought as an orbit-stabilizer type theorem in our
algebro-geometric context.

Proposition 2.2.11. Let G be an affine algebraic group acting algebraically on an affine
k−scheme X. For x ∈ X(k), we have

dim G = dim(Gx)+dim(G ⋅ x)

Proof. Since the dimension is a topological invariant of a scheme, we can assume G and
X are reduced. The orbit G ⋅ x can be seen as a locally closed subscheme of X according
to the previous theorem, which is reduced by definition. We can use a theorem (B.0.12,
in appendix B) to conclude that there is an open dense subset U of G ⋅ x such that the
restriction σx ∶ σ−1

x (U)→ U is flat.

If g ∈ G, we can consider the base change

G G

G ⋅ x G ⋅ x

σx

m(g,−)

σx

σg
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and writing it over the open set U, we get that the morphism σx ∶ σ−1
x (σg(U))→ σg(U)

is also flat, where σg is the automorphism induced by the action of G onto G ⋅ x, since
flatness is also stable by base change (see B.0.10 in appendix B). This action is also
transitive, what means that the open sets {σg(U) ∶ g ∈ G} cover the set G ⋅ x, and hence
the map σx is itself flat.

By definition, Gx = σ−1
x (x) and we can use the formula in appendix B.0.11 to

compute dimensions of fibers of flat morphisms and conclude

dim Gx = dim G −dim G ⋅ x.

Proposition 2.2.12. Let G be an affine algebraic group over k acting algebraically on
a k−scheme X by a morphism σ ∶ G × X → X. Then the dimension of the stabilizer
subgroup (resp. orbit) viewed as a function X →N is upper semi-continuous (resp.
lower semi-continuous), which means that whenever n ∈N, the sets

{x ∈ X ∶ dim Gx ≥ n} and {x ∈ X ∶ dim(G ⋅ x) ≤ n}

are closed in X.

Proof. Consider the morphism Γ ≐ (πX, σ) ∶ G ×X → X ×X and the fiber product P in
the corresponding diagram

P X

G ×X X ×X.

φ

∆X

Γ

Then the k−points of the fiber product P consist precisely of pairs (g, x) such that
g ∈ Gx, and if p = (g, x) ∈ P we denote the fiber over p by Pφ(p) = φ−1(φ(p)).

By a theorem of Chevalley (see (GROTHENDIECK, 1964), 13.1.3), the func-
tion which assigns the dimension of the fiber at each point is upper semi-continuous.
This implies the first claim, and the second follows from the previous result.

2.3 Representations of Algebraic Groups
We give an overview of Representation Theory of Algebraic Groups. For

most of this section, the reference is (MILNE, 2017).

Definition 2.3.1. A linear representation of an algebraic group G over k is a morphism
of algebraic groups ρ ∶ G → GL(V) over k, where V is a k−vector space. Since this is
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equivalent to consider an action of G on the vector space V by k−linear automorphisms,
linear representations can be seen as G−modules. If W ⊂ V is a subspace, then it
induces a subrepresentation ν ∶ G → GL(W) of ρ by restriction, whenever W is a
ρ(G)−invariant subspace.

Dually, if (A, m∗, i∗, e∗) is any k−Hopf algebra and there is a morphism

ρ∗ ∶ V → V ⊗ A,

then the pair (V, ρ∗) is called a (right) A- comodule whenever it satisfies:

(IdV ⊗ m∗) ○ ρ∗ = (ρ∗ ⊗ IdA) ○ ρ∗,

(IdV ⊗ e∗) ○ ρ∗ = IdV .

These two conditions are satisfied whenever ρ∗ comes from a linear representation,
and this is precisely the dual version of a G-module.

Let ρ ∶ G → GL(V) be a G−module, with the associated O(G)−co-module
ρ∗ ∶ V → O(G)⊗k V. Then a subspace V′ ⊂ V is G−invariant if and only if ρ∗(V′) ⊂
O(G)⊗k V′. In this case, the pair (V′, ρ∗∣V′) is also a O(G)−comodule, which is called
a O(G)−subcomodule of (V, ρ∗). A comodule (V, ρ∗) is called irreducible if it’s only
subcomodules are the trivial ones (V′ = (0) or V′ = V). Dually, the representation
ρ ∶ G → GL(V) is irreducible if, whenever V′ ⊂ V induces a subrepresentation, we
conclude V′ = (0) of V′ = V.

A linear representation of G is faithfull if the corresponding morphism
ρ ∶ G → GL(V) is injective.

If ρ ∶ G → GL(V) and η ∶ G → GL(W) are linear representations of G, a linear
map ϕ ∶ V →W is a morphism of representations whenever the diagram

V W

V W

ϕ

ρ(g) η(g)
ϕ

commutes for every g ∈ G. This notion defines a category of linear representations of
G, which we will denote by Rep(G). We also denote HomG ≐HomRep(G).

Proposition 2.3.2. The category Rep(G) is additive and it has kernels.

Proof. Let us first define the additive structure on Rep(G). If ρ ∶ G → GL(V) and
η ∶ G → GL(W) are two representation, the hom-set is defined by

HomRep(G)(ρ, η) = {ϕ ∈HomVectk(V, W) ∶ η(g) ○ ϕ = ϕ ○ ρ(g) ∀ g ∈ G},
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and thus it forms a subgroup of the additive group HomVectk(V, W), as the category
Vectk is additive. The compatibility with the composition in Rep(G) follows from
the compatibility in Vectk. If T ∈ HomG(V, W), note that ker T ⊂ V is a G−invariant
subspace, since T(g ⋅ x) = g ⋅ T(x) whenever x ∈ V, and g ⋅ 0 = 0 for every g ∈ G.

Proposition 2.3.3. For a finite dimensional linear representation of a torus ρ ∶ T →
GL(V), there is a weight space decomposition, a direct sum

V ≃ ⊕
α∈X∗(T)

Vα

where each subspace Vα ≐ {v ∈ V ∶ t ⋅ v = α(t)v ∀t ∈ T} is called a weight space of weight
α. Moreover, whenever Vα ≠ 0, we call α a weight for this action of T.

Proof. First, let T ≃ Gm. We can consider the induced map of algebras

ρ∗ ∶ V → V ⊗O(Gm) ≃ V ⊗ k[t, t−1]

which gives V a co-module structure such that the diagram

V V ⊗ k[t, t−1]

V ⊗ k[t, t−1] V ⊗ k[t, t−1]⊗ k[t, t−1]

ρ∗

ρ∗

IdV ⊗m∗

ρ∗⊗IdV

commutes. For any m ∈Z, let Vm ≐ {v ∈ V ∶ ρ∗(v) = v⊗ tm}. This is trivially a subrepre-
sentation of (V, ρ∗). Given v ∈ V, we can write ρ∗(v) in coordinates:

ρ∗(v) = ∑
m∈Z

fm(v)⊗ tm

where fm ∶ V → V is k−linear, and since ρ∗ also compatible with e∗ via (IdV ⊗e∗) ○ ρ∗ =
IdV , we can rewrite this as

∑
m∈Z

fm(v)⊗ 1m = ∑
m∈Z

fm(v) = v.

Moreover, using compatibility with m∗, we have

∑
m∈Z

ρ∗( fm(v)⊗ tm) = (ρ∗ ⊗ Idk[t,t−1])(ρ∗(v)) = (IdV ⊗m∗)(ρ∗(v))

= ∑
m∈Z

fm(v)⊗ tm ⊗ tm,

and because {tm ∶ m ∈ Z} is a linear independent set in k[t, t−1], this means that
ρ∗( fm(v)) = fm(v)⊗ tm, which implies each coordinate fm(v) of v lies inside Vm. Thus,
we get that

v = ∑
m∈Z

fm(v)
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and this already gives V as the sum of subspaces Vα, since X∗(T) ≃Z. Finally, to see
that this is a direct sum, note that whenever m, n ∈Z:

∑
m∈Z

fm(v)⊗ tm ⊗ tm = ∑
m∈Z

ρ∗( fm(v))⊗ tm = ∑
m,n∈Z

fn( fm(v))⊗ tn ⊗ tm,

and we can compare coefficients again, concluding that fn ○ fm = 0 whenever m ≠ n and
fn ○ fn = fn.

For a general torus T ≃ Gn
m, if ρ ∶ T → GL(V) is a representation, by the

universal property of products there are induced representations ρi ∶ Gm → GL(V)
commuting

T GL(V)

Ti ≃ Gm

πi

ρ

ρi
,

where πi ∶ T → Gm is the i−th projection. By the claim for Ti ≃ Gm, we can conclude that

V ≃
n
⊕
i=1
⊕

mi∈Z
Vmi ≃ ⊕

α∈X∗(T)
Vα,

since X∗(T) ≃Zn.

This result will be important, as we will see, to diagonalize (and characterize)
torus actions on our applications.

Another important result on representation theory is the following, which
describes irreducible representations over algebraically closed fields.

Theorem 2.3.4 (Schur’s Lemma). Let ρ ∶ G → GL(V) a representation of an algebraic group
G. If V is irreducible and k is algebraically closed, then EndG(V) ≃ k.

Proof. Let T ∈ EndG(V). Since k is algebraically closed, T has an eigenvector, say
T(v) = λv, λ ∈ k, so that L ≐ T − λI ∶ V → V is another G-morphism, with non-zero
kernel. Because every kernel of G−morphisms is also a representation of G and V is
irreducible, ker L must be equal to V, implying that T = λI and EndG(V) ≃ k.

2.4 Reductive Groups
In this section, we review some of the theory of unipotent and reductive

groups, following (MILNE, 2017) and (MILNE, 2012). Consider the following interpre-
tation of the Jordan normal form for the group G = GLn(k).
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Theorem 2.4.1 (Jordan-Chevalley Decomposition). Every matrix g ∈ GLn(k) has a unique
decomposition of the form:

g = gss ⋅ gu = gu ⋅ gss

where gss is semisimple (diagonalizable, if k is algebraically closed) and gu is unipotent (that is,
gu − In is nilpotent).

Proof. The existence follows using the Jordan normal form, choosing a basis where g
is written in Jordan’ s canonical form, just let gu be the matrix obtained by dividing all
entries of each Jordan block by its diagonal element (non-zero since g ∈ GLn(k)) and
let gss the matrix containing only the diagonal elements of g. Then

g = gss ⋅ gu = gu ⋅ gss.

For the proof of uniqueness and even more modern interpretations (such as the
Tannaka Duality) of Jordan’s canonical form, we refer the reader to (MILNE, 2012),
Chapter 9.

We describe an analogous decomposition in the general case when G is an
affine algebraic group.

Definition 2.4.2. Let G be an affine algebraic group over k. An element g ∈ G is
semisimple if there exists a faithfull linear representation ρ ∶ G → GLn(k) such that
ρ(g) is semisimple. Analogously, we say that an element g ∈ G is unipotent if there
exists a faithfull linear representation ρ ∶ G → GLn(k) such that ρ(g) is unipotent.

Theorem 2.4.3 ((MILNE, 2017), Prop. 9.14). Let G be an affine algebraic group over k. For
every g ∈ G(k), there exists a unique semisimple element gss and a unique unipotent element
gu such that

g = gss ⋅ gu = gu ⋅ gss.

Furthermore, this decomposition is functorial with respect with group morphisms. In particular,
if g ∈ G(k) is semisimple (resp. unipotent), then for all representations ρ ∶ G → GLn the element
ρ(g) is semisimple (resp. unipotent).

The proof of this works whenever k is a perfect field, and can be found in
(MILNE, 2017).

Definition 2.4.4. An affine algebraic group over k is unipotent if every non-trivial
linear representation has a non-zero G−invariant vector.

Proposition 2.4.5. Let G be an affine algebraic group. The following are equivalent:

(i) G is unipotent.
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(ii) Every linear representation ρ ∶ G → GL(V) admits a basis such that ρ(G) is
contained in the group of upper triangular matrices with diagonal entries equal
to one, or the unitary group Un.

(iii) G is isomorphic to a subgroup of the unitary group Un.

Proof. (i) ⇒ (ii) We proceed by induction on the dimension of V. If dim V = 1, the
claim is trivial. If dim V = n, as G is unipotent, the fixed vector subspace VG ⊂ V is
non-zero, so we can choose a basis {e1, . . . , em} of VG and the quotient V/VG is of
strictly smaller dimension.

By the induction hypothesis, this induced representation has image in the
unitary group. More explicitly, there is a basis {em+1,⋯, en} such that

ρ(G) ⊂Un−m ⊂ GL(V/VG).

Thus, we can choose representatives forming a basis {e1,⋯, en}, such that

ρ(G) ⊂ Im ⊕Un−m ⊂Un,

since the space VG is fixed.

(ii)⇒ (iii) By 2.2.4, every affine algebraic group G admits a faithfull rep-
resentation G → GL(V), and (ii) gives an isomorphism between G and a subgroup
ρ(G) ⊂Un.

(iii)⇒ (i) This follows from the verification that unitary groups (and their
subgroups) are unipotent, and for this we refer to (MILNE, 2012), Chapter XV, Theorem
2.4.

Remark 2.4.6. If G is a unipotent affine algebraic group, then every element g ∈ G(k)
is unipotent. The converse is true if G is smooth (see (MILNE, 2017), Chapter XV,
Corollary 2.6)

Definition 2.4.7. An affine algebraic group G is reductive if G is smooth and every
smooth unipotent normal algebraic subgroup H ⊂ G is trivial.

Example 2.3. (i) Every smooth simple affine algebraic group over k is reductive, as
simple groups don’t have non-trivial normal subgroups.

(ii) Every compact connected Lie group has a complexification, which is a complex
reductive algebraic group. Furthermore, the converse is also true: every complex
reductive algebraic group arises in this way, moreover there is an equivalence
between the categories of complex compact connected Lie groups and of algebraic
reductive groups over C (see, for example, section 4.5 in (LEE, 2001)).
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Definition 2.4.8. Let G be an affine algebraic group.

(a) G is linearly reductive if every finite dimensional linear representation G →
GL(V) decomposes as a direct sum of irreducible ones.

(b) G is geometrically reductive if, for every finite dimensional linear representa-
tion ρ ∶ G → GL(V) and every non-zero G−invariant vector v ∈ V, there is a
G−invariant non-constant homogeneous polynomial f ∈ O(V) such that f (v) ≠ 0.

As we saw in 2.3.3, any algebraic torus T is linearly reductive. The groups
SL(V) and GL(V) are all linearly reductive over char k = 0. For a proof of this using
Lie algebras, see for example (MUKAI et al., 2003). In the proof of 2.3.3, we also proved
implicitly that the (finite) product of linearly reductive groups is also linearly reductive.

Proposition 2.4.9. For an affine algebraic group G, the following statements are equiv-
alent:

(i) G is linearly reductive.

(ii) For any finite dimensional linear representation ρ ∶ G → GL(V) any G−invariant
subspace V′ ⊂ V admits a G−stable complement, i.e., there exists a subrepresenta-
tion V′′ ⊂ V such that V = V′ ⊕V′′.

(iii) For any surjection of finite dimensional G−representations ϕ ∶ V →W, the induced
map ϕG ∶ VG →WG is surjective.

(iv) For any finite dimensional linear representation ρ ∶ G → GL(V) and every non-
zero G−invariant point v ∈ V, there exists a G−invariant linear form f ∶ V → k
such that f (v) ≠ 0.

(v) For any finite dimensional linear representation ρ ∶ G → GL(V) and any surjective
G−invariant linear form f ∶ V → k, there exists v ∈ VG such that f (v) ≠ 0.

Proof. (i) ⇒ (ii) Given ρ ∶ G → GL(V) and V′ ⊂ V a G−invariant space, since G is
linearly reductive, we can consider a decomposition:

V =⊕
α∈Λ

Vα

of V into irreducible representations Vα. Since V′ ⊂ V is G−invariant, we can consider
the induced representation of ρ in V′, which induces a decomposition

V′ =⊕
α∈Λ

V′α
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such that V′α ⊂ Vα whenever α ∈ Λ. Thus, to get a G−stable complement of V′, we just
complete basis of V′α to Vα whenever α ∈ Λ, such that

V =⊕
α∈Λ

V′α ⊕V
′′
α ,

and set V′′ ≐⊕
α

V′′α .

To see (ii)⇒ (iii), let ϕ ∶ (V, ρ)→ (W, η) be a surjection of G−representations
and V′ ≐ ker(ϕ) ⊂ V. Now, by (ii), V′ has a G−stable complement V′′, which must be
isomorphic to W by the first isomorphism theorem.

Since V′ and V′′ are G−invariant, we have VG = (V′)G ⊕ (V′′)G, so the
induced map ϕG ∶ VG → (V′′)G ≃WG is surjective.

(iii) ⇒ (iv) Any non-zero G−invariant vector determines a G−invariant
form ϕ ∶ V∨ → k, since

VG ≃HomG(k, V) ≃HomG(V∨, k),

if we let G act trivially on k. Also, we can use the fact V is finite dimensional, to
have V ≃ V∨ and get an induced morphism f ≐ ϕG ∶ VG → k which is also surjective,
implying the existence of a non-zero vector v ∈ VG such that f (v) ≠ 0.

The equivalence (iv) ⇐⇒ (v) follows from the previous duality observa-
tion.

(v) ⇒ (i) Since dim V = 1 implies that V is already irreducible, we let
dim V = n > 1 and proceed by induction.

Suppose that {0} ≠ V′ ⊊ V is a G−invariant proper subset which is also
minimal in dimension. Unless V is already irreducible, in which case we are done,
there is such V′. If we take a basis {e1,⋯, ek} to be a basis of V′, and complete it to a
basis {e1,⋯, en} for V, we can define a linear functional

f ≐ e∗1 +⋯+ e∗k ∈ V∨

Since this is surjective and G−invariant, there must be a G−invariant vector v0 where
f (v0) ≠ 0, by hypothesis. In such case, we can consider the complement V′′ such that

V = ⟨v0⟩⊕V′′.

Since dim V′′ < dim V, we can apply the induction hypothesis to conclude.

Example 2.4. As an example of a group which is not linearly reductive, let G = Ga and
consider the representation

Ga → GL2(k)

t ↦
⎛
⎝

1 t
0 1

⎞
⎠

.
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In this case, the projection

π ∶ V = k2 → k =W

(x, y)↦ x

is a surjective morphism of G−representations, taking G to act trivially on k, but the
restriction to invariant subspaces

{(0, b) ∶ b ∈ k} = VG πG

Ð→WG = k

is not surjective.

Theorem 2.4.10. Every finite group is linearly reductive over k whenever char k does not
divide ∣G∣.

Proof. Using 2.4.9 we prove that, whenever ρ ∶ G → GL(V) is a finite dimensional linear
representation, every G−invariant subspace V′ ⊂ V admits a G−stable complement. Let
W be any complement for V′, such that V = V′ ⊕W, and denote the corresponding
projection by π ∶ V → V′. We define

R ≐ 1
∣G∣ ∑g∈G

ρ(g) ○π ○ ρ(g)−1,

which is a well-defined k−linear endomorphism of V by our hypothesis on char k. We
claim that R∣V′ = IdV′ . Indeed, if v ∈ V′,

R(v) = 1
∣G∣ ∑g∈G

ρ(g) ○π(ρ(g)−1(v)) = 1
∣G∣ ∑g∈G

ρ(g) ○ ρ(g)−1(v) = v,

since V′ is G−invariant. Moreover, if h ∈ G,

ρ(h) ○ R ○ ρ(h)−1 = ρ(h) ○
⎛
⎝

1
∣G∣ ∑g∈G

ρ(g) ○π ○ ρ−1(h)
⎞
⎠
○ ρ(h)−1

= 1
∣G∣ ∑g∈G

ρ(h)ρ(g)πρ(g)−1ρ(h)−1

= 1
∣G∣ ∑g∈G

ρ(hg)πρ(hg)−1

= R,

which means that the diagram

V VG

V VG

R

ρ(h) ρ(h)

R
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commutes. These two properties will be generalized in 2.5.1, but in this case this implies
that R is a G−invariant morphism. Now, let V′′ ≐ ker R, and note that V = V′ +V′′,
since if v ∈ V we can write v = R(v)+ v − R(v), as

R(v − R(v)) = R(v)− R(R(v)) = R(v)− R(v) = 0.

Furthermore, V′ ∩V′′ = ∅, since R∣V′ = IdV′ and V′′ = ker R, and V′′ is a G−invariant
space, since it is a kernel of a G−invariant morphism.

For more on the relation between these conditions, we have the following
theorem, which proof is beyond the objectives of this dissertation.

Theorem 2.4.11. 1. Every linearly reductive group is geometrically reductive.

2. If char k = 0, every reductive group is linearly reductive.

3. A smooth affine algebraic group is reductive if and only if it is geometrically reductive.

In particular, for smooth affine group schemes, we have

linearly reductive ⇒ geometrically reductive ⇐⇒ reductive

and all three notions coincide in characteristic zero.

Proof. (i) follows from 2.4.9. For (ii), we refer to ((MUKAI et al., 2003), Chapter 4),
and the proof uses lie algebras and lie groups over k = C. For (iii), ⇒ was proved by
Nagata in (NAGATA, 1963), and the converse by Haboush in (HABOUSH, 1975).

Since we are focused in the case when char k = 0, we prove that linearly
reductive groups solve Hilbert’s fourteenth problem 2.2 in the next section, following
(HOSKINS, 2015).

2.5 Hilbert fourteenth problem
Given a finite dimensional representation of a linearly reductive group

ρ ∶ G → GL(V), we can write V = VG ⊕W, where W is the direct sum of non-trivial
irreducible subrepresentations of V. This gives a canonical G−complement of VG, and
a corresponding projection V → VG.

Definition 2.5.1. Let G be a group acting on a k−algebra A. A linear map RA ∶ A → AG

is a Reynolds Operator if its a projection onto AG, and for a ∈ AG and b ∈ A, we have

RA(ab) = aRA(b)
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Next, we prove that we can construct a Reynolds operator for a finitely
generated k−algebra as a colimit of the Reynolds operators in finite-dimensional vector
spaces, which exist trivially since G is linearly reductive.

Lemma 2.5.2. Let G be a linearly reductive group acting rationally on a finitely
generated k−algebra. Then there exists a Reynolds operator RA ∶ A → AG.

Proof. Since A is finitely generated over k, it has a countable basis over k as a vector
space, which we denote by {an}n∈N. Since the action of G is rational, we can let An be
the finite-dimensional G−invariant subset of A containing a1,⋯, an, whenever n ≥ 1,
such that

A = ⋃
n≥1

An,

and each An is G−invariant. Since G is linearly reductive and each An is a finite-
dimensional G−representation, we can decompose

An = AG
n ⊕ A′n,

where A′n is the direct sum of non-trivial irreducible representations of An. We let
Rn ∶ An → AG

n be the canonical projection onto the direct factor AG
n .

Note that, since for m > n there is a commuting square

An AG
n

Am AG
m

Rn

Rm

where the vertical maps are inclusion, the map RA ∶ A → AG, given by RA(x) = Rn(x)
for x ∈ An, is well defined and it is a projection onto AG.

We only need to check that, for any a ∈ AG and b ∈ A, we have RA(ab) =
aRA(b). We can fix n large enough so that a, b ∈ An and m ≥ n such that the multiplica-
tion a(An) ⊂ Am. We denote by

la ∶ An → Am

b ↦ a ⋅ b.

and A′n =W1 ⊕ . . .⊕Wr the irreducible non-trivial representations of An. Since G acts
by morphisms of algebras and a ∈ AG, we have la(AG

n ) ⊂ AG
m. By Schur’s lemma 2.3.4,

the image of each irreducible component la(Wi) is either zero or isomorphic to Wi.
Writing An = AG

n ⊕ A′n, we have la(Wi) ⊂ A′m.

Thus la(A′n) ⊂ A′m, and if b = bG + b′ for bG ∈ AG
n and b′ ∈ A′n, then

ab = la(b) = la(bG)+ la(b′),
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where la(bG) = abG ∈ AG
m and la(b′) = ab′ ∈ A′m. Hence

RA(ab) = abG = aRA(b),

as we wanted to prove.

Corollary 2.5.2.1. Let A, B be k−algebras in which a linearly reductive group G acts
rationally, and denote the corresponding Reynolds operators by RA ∶ A → AG and
RB ∶ B → BG. Then any G−equivariant morphism h ∶ A → B satisfies the diagram:

A AG

B BG

h

RA

hG

RB

Proof. As we saw in the last proof, we write A = AG ⊕ A′ and B = BG ⊕ B′, and since h
is G−equivariant, h takes AG to BG and A′ to B′, by Shur’s lemma. Thus, if a = aG + a′

is a decomposition of a ∈ A,

(RB ○ h)(a) = RB(h(aG)+ h(a′)) = h(aG) = (h ○ RA)(a).

Finally, to solve Hilbert’s Fourteenth problem in this context, we need
to prove that the Reynolds operator R ∶ A → AG preserves the finite-generality of
k−algebras.

Lemma 2.5.3. Let A be a k−algebra with a rational G−action and suppose that A has
a Reynolds operator RA ∶ A → AG. Then, for any ideal I ⊂ AG, we have I ⋅ A ∩ AG = I.
More generally, this means that whenever {Ij}j∈J is a family of ideals in AG, we have

⎛
⎝∑j∈J

Ij A
⎞
⎠
∩ AG =

⎛
⎝∑j∈J

Ij
⎞
⎠

.

In particular, if A is Noetherian, so is AG.

Proof. Of course we have I ⊂ IA ∩ AG. Let x ∈ I ⋅ A ∩ AG. Since x ∈ I ⋅ A, we can write

x =
n
∑
l=1

ilxl

with il ∈ I and xl ∈ A. Since x ∈ AG and RA is a Reynolds operator,

x = RA(x) =∑
l=1

ilRA(xl) ∈ I.
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For the statement about a family of ideals {Ij}j∈J , we note:

⎛
⎝∑j∈J

Ij ⋅ A
⎞
⎠
∩ AG = ⟨⋃

j∈J
Ij ⋅ A⟩∩ AG

= ⟨⋃
j∈J

Ij ⋅ A ∩ AG⟩

= ⟨⋃
j∈J

Ij⟩ =∑
j∈J

Ij.

Theorem 2.5.4. Let G be a linearly reductive group acting rationally on a finitely generated
k−algebra. Then AG is finitely generated.

Proof. Since A is finitely generated and the action of G is rational, there is a finite
dimensional k−linear subspace V ⊂ A which contains the generators of A and it is
G−invariant. Thus, there is a surjective morphism

k[x1, . . . , xn] ≃ O(V∨)↠ A

which is G−equivariant, since V has a G−action induced by A. Since G is linearly
reductive, both algebra admit a Reynolds operator and, moreover, they commute with
this surjection. Therefore, we get an induced surjection

O(V)G ↠ AG

and so, to prove that A is finitely generated, it suffices to assume that A = k[x1, . . . , xn] =
O(V) and the action of G on V = kn is linear.

In this case, since k[x1, . . . , xn] is graded and the action is linear, the invariant
ring k[x1, . . . , xn]G is also graded. Since A is Noetherian, by Hilbert’s basis theorem,
AG is Noetherian by the previous lemma. Hence, the ideal

AG
+ =⊕

d>0
k[x0, . . . , xn]Gd

is finitely generated. Since AG is a graded, it is finitely generated by its positive part
AG
+ , hence AG is finitely generated over k.

Via 2.4.11, if char k = 0 we also conclude

Theorem 2.5.5 (Nagata). Let G be a geometrically reductive group acting rationally on a
finitely generated k−algebra A. Then the G−invariant subalgebra AG is finitely generated.
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3 Geometric Invariant Theory

Introduction
In this chapter, we study Mumford’s Geometric Invariant Theory, a theory

which provides a construction of moduli spaces using the theorems from Algebraic
Invariant Theory studied in the previous chapter. We continue using the same notation
as before, following (HOSKINS, 2015) notes.

3.1 Categorical Quotients
In this section, we model possible well behaved notions of quotients for

G−actions in the category Schk, and prove some equivalences between them.

Definition 3.1.1. A categorical quotient for an action σ ∶ G ×X → X is a G−invariant
morphism φ ∶ X → Y which is universal in the following sense: for each G−invariant
morphism f ∶ X → Z there is a unique morphism h ∶ Y → Z satisfying the commutative
diagram

X Y

Z

f

φ

h

Moreover, if φ−1(y) is a single orbit whenever y ∈ Y(k), we say that φ is an orbit space.
Since φ is constant on orbits, φ is constant on orbits closures, and thus the quotient is
an orbit space if and only if the G−action is closed.

The following lemma indicates how categorical quotients can be glued over
open coverings:

Lemma 3.1.2. Let G be an algebraic group over k acting algebraically on two k−schemes
X, Y, φ ∶ X → Y be a G−invariant morphism and {Ui}i∈I be an open cover of Y such that
φi ≐ φ∣Vi

∶ Vi → Ui is a categorical quotient, where Vi ≐ φ−1(Ui). Then φ is a categorical
quotient.

Proof. Let f ∶ X → Z be a G−invariant morphism. By the universal property of categori-
cal quotients, whenever i ∈ I there is a unique morphism hi such that
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Vi Ui

Z

f ∣
Vi

φi

hi

commutes. Moreover, if i, j ∈ I, both morphisms hij ≐ hi∣Ui∩Uj
and hji ≐ hj∣Ui∩Uj

satisfy a
similar diagram,

Vi ∩Vj Ui ∩Uj

Z,

f ∣
Vi∩Vj

φi

which in particular means that hij = hji over Ui ∩Uj. Since HomSchk
(−, Z) is a sheaf of

sets over Y and sheaves satisfy the gluing lemma, there is a unique morphism h ∶ Y → Z
satisfying the desired diagram.

Definition 3.1.3. Let G be an affine algebraic group over k acting algebraically on a
k−scheme X. A morphism φ ∶ X → Y will be called a good quotient if it satisfies the
following properties:

1. φ is G−invariant;

2. φ is surjective;

3. If U ⊂ Y is an open set, the induced morphism

OY(U)→ OX(φ−1(U))

is an isomorphism onto the subalgebra OX(φ−1(U))G;

4. If W ⊂ X is a G−invariant closed subset, φ(W) ⊂ Y is closed;

5. If W1, W2 ⊂ X are disjoint G−invariant closed subsets, φ(W1)∩ φ(W2) = ∅;

6. φ is an affine map, i.e., the preimage of affine open sets is affine.

If φ−1(y) is a single orbit for each y ∈ Y, we say that φ is a geometric
quotient.

Note that, if φ ∶ X → Y is a good quotient, then for every U ⊂ Y open set,
the restriction φ∣

φ−1(U) ∶ φ
1(U) → U is a good quotient. Similarly, if φ is a geometric

quotient, every restriction onto an open set is as geometric quotient.



Chapter 3. Geometric Invariant Theory 58

Remark 3.1.4. Assuming (2), the conditions (4) and (5) are equivalent to the following:
(5′) If W1, W2 ⊂ X are disjoint G−invariant closed subsets, then the closures of φ(W1)
and φ(W2) are disjoint.

Proposition 3.1.5. Let G be an affine algebraic group over k acting algebraically on a
k−scheme X and a morphism φ ∶ X → Y satisfying the properties (1), (3), (4), (5) in the
definition of good quotient. Then φ is a categorical quotient.

Proof. Since (1) states that φ is a G−invariant morphism, we only need to prove that φ

satisfies the universal property of categorical quotients. To do this, let f ∶ X → Z be a
G−invariant morphism.

Since Z is of finite type over k, we can consider a finite affine open cover
U1, . . . , Un of Z. We denote Wi ≐ X ∖ f −1(Ui). As f is continuous, and each subset
Wi ⊂W is closed, and thus G−invariant since f is G−invariant. Using (4), we see that
the sets φ(Wi) ⊂ Y are closed. Let Vi ≐ Y ∖ φ(Wi) denote the open complement. By
construction, φ−1(Vi) ⊂ f −1(Ui), and as the open sets U1, . . . , Un cover Z,

n
⋂
i=1

Wi = ∅.

We claim that the open sets V1, . . . , Vn cover Y. To see this, suppose by
contradiction that

n
⋂
i=1

φ(Wi) ≠ ∅.

Because Y is of finite type over k, there is a closed point p ∈ Y(k) in this intersection,
and we denote by W ⊂ X the closed G−orbit in f −1(p). On the other hand, since (5)
holds, we must have W ∩Wi ≠ ∅ for each i, since p ∈ φ(W)∩ φ(Wi).

Since W is a single orbit and each Wi is G−invariant, we must have W ⊂Wi

and thus
W ⊂

n
⋂
i=1

Wi

which contradicts the fact that this intersection is empty.

Since f is G−invariant, the induced morphism

OZ(Ui)→ OX( f −1(Ui))

has image in OX( f −1(Ui))G. By (4), we also have a corresponding isomorphism

OY(Vi)
∼Ð→ OX(φ−1(Vi))G

and because φ−1(Vi) ⊂ f −1(Ui), we also have the restriction morphism of the sheaf OX,
which respects the action of G, and thus the diagram
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OZ(Ui) OY(Vi)

OX( f −1(Ui))G OX(φ−1(Vi))G

f ∗

h∗i

φ∗

where h∗i ∶ OZ(Ui) → OY(Vi) is the (unique) morphism of k−algebras that makes
the diagram commute. Since Ui is affine, h∗i corresponds to a morphism of schemes
hi ∶ Vi → Ui. By construction, we have

f ∣
φ−1(Vi)

= hi ○ φ∣
φ−1(Vi)

,

and hi = hj on intersections Vi ∩Vj by uniqueness of h∗i . Therefore, we can glue the
morphisms hi to obtain a unique morphism h ∶ Y → Z such that f = h ○ φ.

Proposition 3.1.6. Let G be an affine algebraic group acting on a scheme X and let
φ ∶ X → Y be a good quotient. Then:

(a) G ⋅ x1 ∩G ⋅ x2 ≠ ∅ if and only if φ(x1) = φ(x2)

(b) For each y ∈ Y, the preimage φ−1(y) contains a unique closed orbit. In particular,
if the action is closed, then φ is a geometric quotient.

Proof. (a). As φ is constant in orbit closures, if G ⋅ x1 ∩G ⋅ x2 ≠ ∅ we get φ(x1) = φ(x2).
For the converse, by (5), if G ⋅ x1 ∩G ⋅ x2 = ∅, φ(G ⋅ x1)∩ φ(G ⋅ x2) = ∅, and in particular
φ(x1) ≠ φ(x2).

(b). Suppose that W1 and W2 are two distinct closed orbits in φ−1(y). This
contradicts (5), since φ(W1) = φ(W2) = {y}.

Lemma 3.1.7. If φ ∶ X → Y is G−invariant and there is an open cover {Ui}i∈I of Y such
that φi ≐ φ∣Vi

∶ Vi → Ui is a good quotient, then φ is a good quotient.

Proof. By hypothesis, φ already satisfies (1). Since each φi is surjective and {Ui}i∈I
covers Y, φ also must satisfy (2).

For the condition (3), whenever i ∈ I we have the diagram

OY(Ui) OX(φ−1
i (Ui))

OX(φ−1
i (Ui))G,

φ∗i



Chapter 3. Geometric Invariant Theory 60

and since φ∗ is the gluing φ∗i , φ∗ also satisfies this factorization over any open set U.

If W ⊂ X is a G−invariant subset which is closed, we can consider the
intersection

W ∩Vi ⊂ X

which will satisfy φi(W ∩Vi) = φ(W ∩Vi) and because φi is a good quotient, φi(W ∩Vi) ⊂
Y is a closed set. Moreover,

φ(W) = φ(W ∩⋃
i∈I

Vi) = φ(⋃
i∈I

W ∩Vi) =⋃
i∈I

φi(W ∩Vi),

which can be rewritten into a finite union because X is quasi-compact, and thus this is
closed in Y. This proves condition (4).

Condition (5) can also be proved using the same method since, given
W1, W2 ⊂ X closed disjoint G−invariant sets, we can write

φ(W1)∩ φ(W2) = φ(W1 ∩ (⋃
i∈I

Vi))∩ φ(W2 ∩ (⋃
i∈I

Vi))

= φ(⋃
i∈I

W1 ∩Vi)∩ φ(⋃
i∈I

W2 ∩Vi)

=⋃
i∈I

φi(W1 ∩Vi)∩ φi(W2 ∩Vi),

which must be the empty set because

φi(W1 ∩Vi)∩ φi(W2 ∩Vi) = ∅

whenever i ∈ I. Finally, by definition affine maps are local on target and it follows again
that φ must also be affine, so φ satisfies (6).

Definition 3.1.8. LetM be a moduli problem, associated to a functor of families F as
in 1.2.1. A family F over a scheme S has the local universal property if, for any other
family G over a scheme T and for any k−point t ∈ T(k), there exists a neighbourhood
U of t in T and a morphism f ∶ U → S such that

G∣U ∼U f ∗F ≐M( f )(F)

Proposition 3.1.9. For a moduli problemM, let F be a family with the local universal
property over a scheme S. Furthermore, suppose that there is an algebraic group G
acting on S such that two s, t ∈ S(k) lie in the same orbit if and only if Fs ∼ Ft. Then:

1. Any coarse moduli space is a categorical quotient of the G−action on S.

2. A categorical quotient of the G−action on S is a coarse moduli space if and only
if it is an orbit space.
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Proof. We first claim that, for any scheme M, the existence of a family with the universal
local property over S induces a bijection

Φ ∶HomFun(M, hM)→HomG(S, M)
η ↦ ηS(F).

To see that the map Φ is well defined, note that the corresponding morphism ηS(F)
is G−invariant, since the G−action on S agrees with the equivalence relation inM(S).
Furthermore, we can define an explicit inverse

Ψ ∶HomG(S, M)→HomFun(M, hM)
f ↦ Ψ( f ),

where, whenever T ∈ Schk, we define the morphism Ψ( f )T ∶M(T) → Hom(T, M) as
follows: given any family G ∈M(T), we can cover T by open subsets {Ui}i∈I which
have associated morphisms hi ∶ Ui → S such that h∗i F ∼Ui G∣Ui

, by the local universal
property. For u ∈ Ui ∩Uj, we can write

Fhi(u) ∼ (h
∗
i F)u ∼ Gu ∼ (h∗j F)u ∼ Fhj(u),

so the points hi(u), hj(u) ∈ S must lie in the same G−orbit. Since f ∈HomG(S, M), the
compositions

Ui
hiÐ→ S

f
Ð→ M

are compatible over the covering {Ui}i∈I , so we can glue them to get an element
in Hom(T, M). The gluing does not depend on the choice of open covering, so the
morphism Ψ( f )T is well defined.

To show Ψ is well defined, we only need to show that Ψ( f ) is a natural
transformation. Given any morphism of schemes g ∶ Z → T and any element G ∈M(T),
if {Ui}i∈I is an open cover of T which satisfies

h∗i F ∼Ui G∣Ui

whenever i ∈ I, then the familyM(G) satisfies

M(hi ○ g) ≐ (hi ○ g)∗F = g∗(h∗i F) ∼Ui G∣Ui
,

and as the operation hi ↦ hi ○ g corresponds to the usual pullback in Sets, the diagram

M(T) Hom(T, M)

M(Z) Hom(Z, M)

Ψ( f )T

M(g) g∗

Ψ( f )Z
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commutes. Whenever f ∈HomG(S, M), if we set η ≐ Ψ( f ), then Φ(η) = ηS(F), which
by definition can be taken to be the composition

S
IdSÐÐ→ S

f
Ð→ M,

and this implies (Φ ○Ψ)( f ) = f .

On the other hand, if we start with a natural transformation η ∶M → hM

and denote by f ≐ ηS(F), when applying η′ ≐ Ψ( f ) over an object T to an element
G ∈M(T), this corresponds to the gluing of maps

Ui
hiÐ→ S

f
Ð→ M

over an open covering {Ui}i∈I over T which trivializes F . We have

f ∗(F) = ηS( f )(F) ∼Ui G∣Ui
,

whenever i ∈ I, so if we compute η′ over S, we get

η′S(F) = ηS(F) = f ,

so (Ψ ○Φ)( f ) = f .

Using the bijection Φ, if the pair (M, η ∶ M → hM) is a coarse moduli
space, then the family ηS(F) ∶ S → M is G−invariant and it is universal amongst all
G−invariant morphisms from S. This means in particular that the map ηS(F) is a
categorical quotient for the G−action on S.

Furthermore, a categorical quotient ηS(F) ∈HomG(S, M) is an orbit space if
and only if the G−action is closed, which in turn happens if and only if the associated
morphism

ηSpec k ∶M(Spec k)→ M(k)

is bijective, so 2 follows.

3.2 Affine Geometric Invariant Theory

Definition 3.2.1. Let G be an affine reductive group over k acting algebraically on an
affine k−scheme X. We saw that this induces an action of G on O(X), which is finitely
generated. By Nagata’s theorem, the subalgebra O(X)G is finitely generated. We define
the affine GIT quotient as the morphism

φ ∶ X → X//G

associated to the inclusion O(X)G ↪ O(X), where X//G ≐ SpecO(X)G. In the case
when the GIT quotient is also a geometric quotient, we write X/G, as it is an orbit
space.
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For the rest of this section, we build up to prove that the GIT quotient is a
good quotient, in the sense of 3.1.6.

Lemma 3.2.2. Let G be a geometrically reductive group acting on an affine k−scheme
X. If W1 and W2 are disjoint G−invariant closed subsets of X, then there is an invariant
function f ∈ O(X) which separates W1 and W2, i.e.,

f ∣W1
= 0 and f ∣W2

= 1.

Proof. As Wi are disjoint closed sets,

I(∅) = I(W1 ∩W2) = I(W1)+ I(W2),

so the corresponding ideals are coprime. Thus, we can write 1 = f1+ f2, where fi ∈ I(Wi),
and this means f1∣W1

= 0 and f1∣W2
= 1. Since the G−action is rational on O(X)

(by 2.2.2), the function f1 is contained in a finite dimensional G−invariant linear
subspace V ⊂ O(X). We can choose V to have minimal dimension with respect to this
property. Let {h1, . . . , hn} ⊂ V be a basis, and we define a morphism h ∶ X → An by
h(x) ≐ (h1(x), . . . , hn(x)).

By the minimality of dim V, each function hi is a linear combination of
translates of f1, so we have:

hi =
ni

∑
l=1

cilgil ⋅ f1

where gil ∈ G and cil ∈ k. Then, for x ∈ X,

hi(x) =
n
∑
l=1

cil f1(gil ⋅ x)

and as the closed subsets Wi are G−invariant, it follows that

h∣W1
= 0 and h∣W2

≡ v ∈An ∖ {0},

where

v =∑
l=1
(

n
∑
i=1

cil) el.

We can write the functions g ⋅ hi ∈ V as g ⋅ hi =
n
∑
j=1

aij(g)hj, defining a repre-

sentation G → GLn given by g ↦ (aij(g))i,j such that h is a G−equivariant morphism,
considering the G-action on X and the G−action on An via the representation. There-
fore {v} = h(W2) is a non-zero G−invariant vector.

Since G is geometrically reductive, there exists a non-constant homogeneous
polynomial P ∈ k[x1, . . . , xn]G such that P(v) ≠ 0 and P(0) = 0. Thus

f ≐ 1
P(v) ⋅ (P ○ h) ∶ X → k

is the desired invariant function, since f ∣W1
= 0 e f ∣W2

= 1.
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Lemma 3.2.3. Let G be an affine group acting on an affine scheme X. If f ∈ O(X)G,
then we can induce the action of G into the open set X f = X ∖V( f ) such that

O(X f )G = (O(X)G) f

Proof. Since f is G−invariant, both the zero-set V( f ) = {x ∈ X ∶ f (x) = 0} and X f are
G−invariant sets. Moreover, since O(X f ) ≃ O(X) f , we can write:

O(X f )G ≃ {
h
f i ∶

h
f i (g ⋅ x) =

h
f i (x) ∀g ∈ G, h ∈ O(X), i ≥ 0}

= { h
f i ∶ h(g ⋅ x) = h(x) ∀g ∈ G, h ∈ O(X), i ≥ 0}

= (O(X)G) f .

Lemma 3.2.4. If f ∶ X → Y is a morphism of k−schemes which is surjective on closed
points, then f is surjective.

Proof. To prove this, we need to use again Chevalley’s theorem ((HARTSHORNE, 1977),
Exercise II 3.19), to conclude that the image of f is a constructible set, and so it is
locally closed.

If we suppose that f is not surjective, then the complement of the image
E ⊂ Y is also a constructible set with no closed points, i.e., E ∩Y(k) = ∅. We show this
leads to a contradiction.

Since Y is noetherian and E is locally closed, we can write

E =
n
⋃
i=1

Fi ∩Ui,

where Fi ⊂ Y are closed and Ui ⊂ Y are open whenever i = 1, . . . , n. Since E is non-empty,
we can choose an index i such that Fi ∩Ui ≠ ∅. Moreover, since Y is noetherian, we can
find an affine cover of the open set Ui, and choose an affine open set V ⊂ Y such that

Fi ∩V ⊂ Fi ∩Ui ⊂ E

and Fi ∩V ≠ ∅. However, since V is an affine scheme and Fi ∩V ⊂ V is a closed subset,
by the Hilbert Nullstellensatz theorem Fi ∩V ≠ ∅ implies that Fi ∩V contains a closed
point of V, which must be a k−point and thus a closed point of Y, contradicting
E ∩Y(k) = ∅.

Theorem 3.2.5. Let G be a reductive group acting on an affine scheme X. Then the affine G.I.T.
quotient φ ∶ X → X//G is a good quotient, and it is an affine scheme.
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Proof. We will present here the proof for char k = 0, and by (2.4.11) we can assume that
G is linearly reductive.

By definition, X//G is affine and φ is induced by O(X)G → O(X), so φ is
G−invariant and affine. To prove surjectivity, take y ∈ Y(k), let my be the maximal ideal
in O(Y) = O(X)G corresponding to y and choose generators f1, . . . , fm of my. Since G
is linearly reductive, by (2.5.3) we have

(
m
∑
i=1

fiO(X))∩O(X)G =
m
∑
i=1

fiO(X)G ≠ O(X)G.

since f1, . . . , fm are generators of a maximal ideal. Since

m
∑
i=1

fi ⋅O(X) ≠ O(X),

there is a maximal ideal mx ⊂ O(X) containing this ideal, so mx corresponds to a closed
point x ∈ X(k). In particular, fi(x) = 0 for each i = 1, . . . m, and so φ(x) = y. Therefore,
every closed point of Y is in the image of φ and, by the previous lemma, φ is surjective.

The set {U = Yf ∶ f ∈ O(X)G} forms a basis of Y, so that to prove the third
property of good quotients it suffices to consider open sets of the form Yf . We know
that OY(Yf ) = (O(X)G) f is the localization, and by 3.2.3,

OX(φ−1(Yf ))G = O(X f )G = (O(X) f )G = (O(X)G) f = OY(Yf ),

which proves the third property.

By (3.1.4), as we already know that φ is surjective, to prove that φ is a good
quotient we only need to prove the equivalent condition (5)′. By the previous lemma, if
W1, W2 ⊂ X are disjoint G−invariant closed sets, there exists a regular invariant function
f ∈ O(X)G such that f (W1) = 0 and f (W2) = 1. Since O(X)G = O(Y), we can view f as
a regular function on Y with f (φ(W1)) = 0 and f (φ(W2)) = 1. Then it follows that the
closures

φ(W1)∩ φ(W2) = ∅,

which concludes the proof.

The last theorem enable us to translate the proposition (3.1.6) in the context
of reductive groups:

Remark 3.2.6. Let G be a reductive group over k acting algebraically on an affine
k−scheme X, with GIT quotient φ ∶ G → X//G. Then

φ(x) = φ(x′) ⇐⇒ G ⋅ x ∩G ⋅ x′ ≠ ∅.

Furthermore, the preimage of each point y ∈ Y contains a closed orbit. In particular, if
the action of G is closed, φ is a geometric quotient.
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As we saw before, the action of a reductive group G on a scheme X does
not always generate a geometric quotient, since the action is not necessarily closed.
Sometimes, however, if we remove the "bad points", as seen in the example 2.2, we get a
closed action. We generalize this notion, following (MUMFORD; FOGARTY; KIRWAN,
1994).

Definition 3.2.7. We say that x ∈ X is stable if its orbit is closed in X and dim Gx = 0
(or equivalently, dim G ⋅ x = dim G). We denote by Xs ⊂ X the set of stable points.

These are the best behaved points of X with respect to our action since,
besides the orbits being closed, the points also have a non-degenerate orbit, in the sense
that dim G ⋅ x = dim G.

Theorem 3.2.8. Let G be a reductive group acting on an affine scheme X and let φ ∶ X → X//G
be the associated affine GIT quotient. Then Xs ⊂ X is an open G−invariant subset, Ys ≐ φ(Xs)
is an open subset of Y such that Xs = φ−1(Ys). Moreover, the restriction φ ∶ Xs → Ys is a
geometric quotient.

Proof. Let us prove that, whenever x ∈ Xs, there is a neighbourhood of x inside Xs. As
we saw in (2.2.12), the dimension of the stabilizer is a upper semi-continuous function,
hence the set:

X+ ≐ {x ∈ X ∶ dim Gx ≥ 1}

is a closed set. It is also a G−invariant set, because

x ∈ X+ ⇐⇒ dim G ⋅ x < dim G,

by (2.2.11). Since x ∈ Xs, the closed invariant sets X+ and G ⋅ x are disjoint in X, and by
(3.2.2) there is f ∈ O(X)G such that

f (X+) = 0 and f (G ⋅ x) = 1.

Then x ∈ X f and we only need to prove that X f ⊂ Xs.

Since f (X+) = 0, for all x ∈ X f we must have dim Gx = 0. Suppose there is a
point z ∈ X f with a non-closed orbit. Then there is a point w ∈ G ⋅ z ∖G ⋅ z, and as f is
G−invariant, its constant on orbits, and thus its constant on the closure of orbits, so
w ∈ X f . On the other hand, since the dimension of orbits of boundary points is strictly
smaller of the dimension of the orbit, and hence dim G ⋅w < dim G ⋅ z = dim G. Using
(2.2.11) we get dim Gw > 0, a contradiction with w ∈ X f . This means that the set Xs is
open.

Because φ(X f ) = Yf is open in Y and X f = φ−1(Yf ) , it follows that Ys ⊂ Y is
open and Xs = φ−1(Ys). Thus φ is a good quotient, and because the action of G on Xs

is closed, φ is also a geometric quotient.
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Note that the requirement of dim Gx = 0 in the definition is used to ensure
that the set Xs is an open set, so we can restrict φ to a good quotient.

For the rest of the section, we shall study some examples of affine geometric
quotients.

Example 3.1. The permutation groups G = Sn have a natural algebraic group structure
over k induced by the inclusion Sn ⊂ GLn(k) as permutation matrices. Moreover, this
induces an action of G into X =An

k which is trivially closed and moreover every point
is stable. The induced action on polynomials O(X) = k[x1, . . . , xn] is given by

σ ⋅ f (x1, . . . , xn) ≐ f (xσ(1), . . . , xσ(n)), ∀σ ∈ Sn ∀ f ∈ k[x0, . . . , xn],

so the ring of invariants O(X)G is the ring of symmetric polynomials. We will prove
that

O(X)G = k[x1, . . . , xn]G = k[s1, . . . , sn],

where si = si(x1, . . . , xn) are the elementary symmetric polynomials, given explicitly
by the identity

n
∏
i=1
(X − xi) =

n
∑
i=1
(−1)isi(x1, . . . , xn)Xn−i,

which gives

si = ∑
1≤j1≤...≤n

xj1 ⋅ (⋯) ⋅ xji .

Note that each si ∈ O(X)G. To show O(X)G = k[s1, . . . , sn], we use the lexicographic
order (following (SMITH, 1995), although this is known since Isaac Newton) on
monomials

xa1
1 . . . xan

n ≤ xb1
1 . . . xbn

n ,

whenever the first nonzero difference bi − ai is positive.

We proceed by induction over the lexicographic order. Let f ∈ k[x1, . . . , xn]
be a symmetric polynomial. Since the action of G = Sn preserves degree, it carries
homogeneous polynomials to homogeneous polynomials, so we can assume f is
homogeneous. Let

m = xa1
1 ⋅ (⋯) ⋅ x

an
n

be the largest monomial appearing with nonzero coefficient in f . If ai+1 > ai, we can use
the fact that f is symmetric to choose the transposition σ = (i i + 1) which interchanges
i with i + 1 to act on f , and since f is symmetric, this leads to the monomial

xa1
1 ⋅ (⋯) ⋅ x

ai+1
i ⋅ xai

i+1 ⋅ (⋯) ⋅ x
an
n

also appearing in f , with the same coefficient as m, but since this is a larger using the
lexicographic order, this leads to a contradiction. So we proved that ai+1 ≤ ai for all i.
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On the other hand, the product sa1−a2
1 ⋅ sa2−a3

2 ⋅ (⋯) ⋅ san
n also contains the monomial m as

highest monomial, by the choice of indexes. So

f − asa1−a2
1 ⋅ sa2−a3

2 ⋅ (⋯) ⋅ san
n

is again a symmetric polynomial, which is lower than f in the lexicographical order.
Rearranging the resulting equality expresses f as a polynomial in the elementary
symmetric polynomials, as we wanted.

Theorem 3.2.9. The terms s1, . . . , sn are algebraically independent over k, i.e., k[s1, . . . , sn] ≃
k[x1, . . . , xn] and thus

An
k /Sn ≃An.

Proof. Suppose that f ∈ k[x1, . . . , xn] is a polynomial such that

f (s1, . . . , sn) = 0.

We can write f as a sum of monomials, so that each term is of the form

xa1−a2
1 ⋅ xa2−a3

2 ⋅ (⋯) ⋅ xan
n

for integers an ≤ ⋯ ≤ a1. If f ≠ 0, let axa1−a2
1 ⋅ xa2−a3

2 ⋅ (⋯) ⋅ xan
n be the largest monomial in

the lexicographical order among all possibilities for (a1, . . . , an) in f such that a ≠ 0.
Then f (s1, . . . , sn) as a polynomial in x1, . . . , xn would have

axa1
1 ⋅ (⋯) ⋅ x

an
n

as its largest monomial lexicographic order, and therefore a = 0, which is a contradiction.
Thus f must be the zero polynomial, and s1, . . . , sn are algebraically independent.

Example 3.2. Consider G = GLn(k) acting on the space of n × n matrices Mn(k) by
conjugation. This conjugation can be viewed as a change of basis on the vector space
kn, so that all the invariants that are preserved by change of basis (or, in other words,
that are about the operator itself, not about its matrix representation) are invariant
over this action.

If A ∈ Mn(k), since the characteristic polynomial cA does not depend on the
basis, it will be well defined for each conjugacy class of the action. Thus, each term of
the polynomial cA gives an invariant function of A.

Let n = 2 and O(M2(k)) = k[x1, x2, x3, x4] be the coordinate ring of the
space of matrices. In this case, we have the following description for the characteristic
polynomial

cA(x) = x2 − tr(A)x +det(A)

and we can use the theory of Jordan Normal Forms to describe the orbits using the
roots of cA, as follows:
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(a) Matrices with characteristic polynomial having distinct roots α, β ∈ k can be
represented as diagonal matrices with Jordan form given by

A =
⎛
⎝

α 0
0 β

⎞
⎠

We shall prove that the orbits of this type are closed, for every α, β ∈ k. Every
matrix in the orbit B ∈ GL2(k) ⋅ A satisfies f (B) = 0 and g(B) = 0, where f , g ∈
k[x1, x2, x3, x4] are given by

f (X) = det(X)−det(A) and g(X) = tr(X)− tr(A),

since f and g are GL2(k)−invariant. Because these conditions are also sufficient
to prescribe the characteristic polynomial of a matrix X ∈ V( f , g), and we have
the equality

GL2(k) ⋅ A = V( f , g) ⊂ M2(k),

thus the orbit is closed. Note that

k[x1, x2, x3, x4]
( f , g) ≃ k[x1, x2, x3, x4]

(det(X), tr(X)) ,

and since tr(X) = x1 + x4 and det(X) = x1x4 − x2x3,

k[x1, x2, x3, x4]
(det(X), tr(X)) ≃

k[x1, x2, x3, x4]
(x1 + x4, x1x4 − x2x3)

≃ k[x1, x2, x3]
(x2

1 + x2x3)
,

and thus the orbits are all isomorphic to V(x2
1 + x2x3), an algebraic surface on

k3 which is singular at the origin, but smooth everywhere else. Furthermore, by
2.2.11, dim GX = 2 whenever X ∈ M2(k) is a matrix of this type.

(b) Matrices with characteristic polynomial having only one (double) root α ∈ k, and
minimal polynomial given by (x − α)2. These matrices are not diagonalizable,
since their Jordan form is given by

A =
⎛
⎝

α 1
0 α

⎞
⎠

In this case, the orbit is also 2−dimensional, with corresponding polynomials
being the trace and determinant conditions as seen in (a). But, because the matrix

B =
⎛
⎝

α 0
0 α

⎞
⎠

has the same trace and determinant as the matrices in the orbit GL2(k) ⋅ A, even
though B ∉ GL2(k) ⋅A. This means that these orbits are not closed, namely because
of the limit point

lim
t→0

A(t) = lim
t→0

⎛
⎝

α t
0 α

⎞
⎠
= B
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(c) Matrices with repeated root α for which the minimal polynomial is (x − α). These
matrices have Jordan form given by

A =
⎛
⎝

α 0
0 α

⎞
⎠

Since they are multiples of the identity, they commute with all matrices, and
hence the orbit GL2(k) ⋅ A = {A} is closed and zero dimensional, so that dim GA =
4 = dim G = 4.

We note that every orbit of the type (b) contains a type (c) orbit in its
closure, and so will be identified in the quotient. From our discussion, the functions
det and tr are G−invariant, and so:

k[tr, det] ⊂ O(M2(k))GL2 .

These are indeed the only generators for the k−algebra of G−invariant
functions, and to see this from our discussion about the closed orbits and Jordan
forms, every G−invariant function on M2(k) is completely determined by its values
on the diagonal matrices D2(k) ⊂ M2(k). Hence, the ring of GL2 −invariants on M2(k)
is contained in the ring O(D2(k)) ≃ k[x1, x4]. In fact, using the GL2(k)−action we can
permute the diagonal entries, so that

O(M2)GL2 ⊂ k[x1, x4]S2 = k[x1 + x4, x1x4],

as the symmetric polynomials can be generated by the elementary symmetric poly-
nomials. These polynomials correspond to the trace of determinant of these diagonal
matrices, and thus there are no additional invariants, so that k[tr, det] = O(M2)GL2 and
the affine GIT quotient is given by:

φ = (tr, det) ∶ M2(k)→A2.

Since the 2−dimensional subgroup of G given by multiples of identity fixes every point,
there are no stable points for this action.

For the general case, we have a similar theorem

Theorem 3.2.10 ((CONCINI; PROCESI, 2017), Theorem 1.3-1.4). The ring of invariants

O(Mn(k))GLn(k) ≃ k[x1, . . . , xm]Sm

where m = n2, and moreover the restriction of the action to the diagonal matrices gives the
isomorphism.
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Example 3.3. Let X = Spec R[x]. The ring R[x] is a P.I.D., since it is an Euclidean
Domain, and thus every maximal ideal is uniquely determined by a irreducible
polynomial as generator. Thus, we have two kinds of points:

Spec R[x] = {(x − α) ∶ α ∈R}∪ {(x2 + bx + c) ∶ b, c ∈R, b2 − 4c < 0},

where the first kind corresponds to the usual points on the real line R. The second kind,
however, is a more interesting point: it corresponds to a pair of complex conjugated
numbers, glued together, so this should correspond to a orbit of the action of the
(absolute) Galois group of the real numbers, which in this case is the group Gal(C/R) =
{z ↦ z, z ↦ z} ≃Z2.

Indeed, whenever the algebraic closure of a field is a finite extension (in this
case [C =R ∶R] = 2), the associated absolute Galois group is a finite group, which has
trivially a closed action and zero-dimensional stabilizer. In a sense, this gives a trivial
example of good and geometric GIT quotient, which coincides with the mapping

Spec C→ Spec R = Spec CGal(C/R)

In this case, this looks like a covering map from C to R, where we fold C in half over
the real line, and glue together the opposite (conjugate) points, which of course leaves
the line R fixed.

More generally:

Theorem 3.2.11. Let K/F be a finite Galois extension. Then the corresponding morphism

Spec K → Spec F ≃ Spec KG,

where G = Gal(K/F) is the corresponding good quotient of the Galois group over K.

The proof given in the particular case works in this case similarly, and
these kinds of maps always look like a covering map away from a ramified locus. The
analogue in the category of schemes are called étale morphisms, and the previous
theorem gives a family of examples of them. Moreover, if we are working over k = C

with algebraic varieties, the conditions imply the implicit function theorem, so f is a
local isomorphism. For more on étale morphisms, see for example (LIU; ERNE, 2006).

Remark 3.2.12. An important local GIT result, Luna’s slice theorem, uses étale mor-
phisms to describe the germ of a GIT quotient. We refer the reader to (DRéZET, 2004),
and we only use this on chapter 4 to conclude the smoothness of the moduli space of
vector bundles over a smooth curve.
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3.3 Projective Geometric Invariant Theory
Sometimes, the space of parameters P for a moduli problem is not affine.

For example, the fine moduli space for the grassmanian functor G(d, n) (see 1.2.2) is a
naturally a projective variety, via the Plücker embedding.

In this section, we extend the construction of GIT quotients for projective
schemes. First, we fix an embedding X ⊂ Pn onto the projective space, with a given
G−action on X which extends to a G−action on Pn using a fixed linear representation
G → GLn+1.

Afterwards, we generalize this, using the fact that every projective scheme
over k has a very ample line bundle associated to a specific embedding in the projective
space. Using this fixed ample line bundle, we can study the proccess of linearization
of the G−action to reduce to the previous case.

3.3.1 Linear actions

Definition 3.3.1. Let X be a projective k−scheme with an algebraic action of a reductive
group G over k. A linear G-equivariant projective embedding of X is a choice of linear
representation of G → GLn+1(k) together with a G−equivariant projective embedding
X ⊂ Pn with respect to the induced G−action on Pn.

We shall refer to a linear G−equivariant projective embedding simply as a
linear action of the algebraic group G on the projective k−scheme X ⊂ Pn.

Let G and X as above and I(X) be the homogeneous ideal of k[x0, . . . , xn]
associated with the embedding of X ⊂ Pn, such that X = Proj R(X) where R(X) =
k[x0, . . . , xn]/I(X).

The action of G as a subgroup of GLn+1 induces an action on An+1, and
since the embedding X ⊂ Pn is G−equivariant, there is also an induced action of G on
the affine cone X̃ ⊂An+1 over X.

The k−algebras k[x0, . . . , xn] and R(X) are graded by homogeneous degree,
and as the G−action on An+1 is linear, it preserves these graded pieces, giving the
G−invariant k−algebras also an induced graded structure

A(X)G =⊕
r≥0

k[x0, . . . , xn]Gr and R(X)G =⊕
r≥0

R(X)Gr .

By Nagata’s theorem (2.5.5), the k−algebra R(X)G is also finitely generated. The
inclusion R(X)G → R(X) induces a rational morphism

X ≃ Proj R(X)⇢ Proj R(X)G,
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which is well defined as a regular function away from the closed subset V(R(X)G+ ) ⊂ X,
where R(X)G+ =⊕

r>0
R(X)Gr is the irrelevant ideal of R(X)G.

Definition 3.3.2. For a linear action of a reductive group G on a closed subscheme
X ⊂ Pn, we define the nullcone N as the closed subscheme of X defined by the
homogeneous ideal R(X)G+ in R(X). We define the semistable set Xss ≐ X ∖N, i.e., a
point x ∈ X is semistable whenever there is a r > 0 and f ∈ R(X)Gr such that f (x) ≠ 0.
Note that Xss is open by construction, and we call the restriction

Xss → X//G ≐ Proj(R(X)G)

the GIT quotient of this action.

Theorem 3.3.3. For a linear action of a reductive group G on a projective k−scheme X ⊂ Pn, the
GIT quotient φ ∶ Xss → X//G is good quotient of the G−action on the subset Xss. Furthermore,
X//G is a projective scheme.

Proof. First, let us prove that X//G = Proj R(X)G is projective over k. If R(X)G is finitely
generated by R(X)G1 as a k−algebra, then this follows from basic scheme theory (see,
for example, (HARTSHORNE, 1977) II 5.16 (b)).

If not, since R(X)G is finitely generated as a k−algebra, we can consider
the corresponding sheaf F over X and applying the Serre Twisting sheaf theorem
((HARTSHORNE, 1977), II, 5.17), there is a number d ≥ 0 such that the twist F(d) is
generated by global sections, and translating this back into algebra means exactly that
the d-twisted graded module

(R(X)G)(d) =⊕
l≥0

R(X)Gd+l

is generated by the submodule ((R(X)G)(d)1 . Since X//G = Proj R(X)G ≃ Proj(R(X)G)(d)

(see (HARTSHORNE, 1977) II Exercise 5.13), it follows that X//G is a projective
k−scheme.

Let φ ∶ Xss → Y ≐ X//G denote the projective GIT quotient. Since the set

{Yf ∶ f ∈ O(X)G}

is a basis for Y, for f ⊂ R(X)G+ ⊂ R(X)+, we can consider the open affine subset X f ⊂ X
and, by construction of φ, we have φ−1(Yf ) = X f . Let X̃ f and Ỹf denote the affine cones
over X f and Yf , respectively. Then

O(Yf ) ≃ O(Ỹf )0 ≃ ((R(X)G) f )0 ≃ ((R(X) f )0)G ≃ (O(X̃ f )0)G ≃ O(X f )G,

where we use again that the G−action respects the grading. Thus, the corresponding
morphism of affine schemes given by:

φ∣X f
≐ φ f ∶ X f → Yf ≃ SpecO(X f )G
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and this is an affine GIT quotient, which is also a good quotient by (3.2.5). The
morphism φ ∶ Xss → Y is thus obtained by gluing the good quotients φ f , and by 3.1.7 φ

is also a good quotient.

Definition 3.3.4. Consider a linear action of a reductive group G on a closed subscheme
X ⊂ Pn. Then we say that a point x ∈ X is stable if dim Gx = 0 and there is a G−invariant
homogeneous polynomial f ∈ R(X)G+ such that x ∈ X f and the action of G on X f is
closed. Conversely, we say that x is unstable if it is not semistable.

We denote Xs ⊂ X the set of stable points, and Xus = X ∖ Xss the set of
unstable points.

Lemma 3.3.5. The sets Xs and Xss are open subsets of X.

Proof. By construction, Xss is an open set, and whenever x ∈ Xs there is a polynomial
f ∈ R(X)G+ such that the action of G on X f is closed. If we denote this set by { fi ∶ i ∈ I},
where I can be taken as finite, since X is quasi-compact, and we can define the open
set

Xc ≐⋃
i∈I

X fi
,

and by definition Xs ⊂ Xc, so that we only need to prove that Xs is open in Xc.

Since the function x ↦ dim Gx is an upper semi-continuous function on X,
the set of points with zero dimension is an open set, hence Xs is open in Xc.

Theorem 3.3.6. For a linear action of a reductive group G on a closed subscheme X ⊂ Pn,
let φ ∶ Xss → X//G denote the projective GIT quotient. Then there exists an open subscheme
Ys ⊂ Y such that φ−1(Ys) = Xs and such that φ restricts to a geometric quotient φ ∶ Xs → Ys.

Proof. Using the same notation as before, we can define

Yc ≐⋃
i∈I

Yfi
,

so Xc = φ−1(Yc) and the restriction φc ∶ Xc → Yc is constructed by gluing φ f ∶ X f → Yf

such that the G−action is closed on X f .

Since each φ f is a good quotient and the action on X f is closed, φ f is also a
geometric quotient, and the gluing φc is also a geometric quotient.

By definition, Xs ⊂ Xc consists of points with zero dimensional stabilizers,
and we set Ys ≐ φ(Xs) ⊂ Yc. As φc is a geometric quotient and Xs is a G−invariant
subset of X, φ−1(Ys) = Xs, so Yc ∖Ys = φ(Xc ∖ Xs). Since Xc ∖ Xs is closed, by the
property (4) of good quotients, the set φ(Xc ∖Xs) = Yc ∖Ys is closed in Y, so Ys is open
in Y and the geometric quotient φc restricts to a geometric quotient φ ∶ Xs → Ys.
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Example 3.4. Consider the linear action of the multiplicative group G = Gm on the
k−scheme X = Pn determined by

t ⋅ [x0 ∶ ⋯ ∶ xn] = [t−1x0 ∶ tx1 ∶ ⋯ ∶ txn],

whenever t ∈ Gm and [x0 ∶ . . . ∶ xn] ∈ Pn using homogeneous coordinates. In this
case, R(X) = k[x0, . . . , xn] and it is easy to see that the functions x0x1, . . . , x0xn are
G−invariant. Moreover, we claim these functions generate the ring of invariants. Indeed,
given any f ∈ R(X) we can write

f = ∑
m=(m0,...,mn)

a(m)xm0
0 ⋯xmn

n

and, for t ∈ Gm,
t ⋅ f = ∑

m=(m0,...,mn)
a(m)tm0−∑n

i=1 mi xm0
0 ⋯xmn

n .

Hence, f is G−invariant if and only if the coefficients a(m) = 0 whenever

m0 −
n
∑
i=1
≠ 0.

If m satisfies m0 =
n
∑
i=1

, we can rewrite

xm0
0 ⋅ x

m1
1 ⋯xmn

n = (x0x1)m1⋯(x0xn)mn ,

thus f ∈ k[x0x1, . . . , x0xn] and

R(X)G = k[x0x1, . . . , x0xn] ≃ k[y0, . . . , yn−1].

Taking the projective spectrum, we obtain the projective GIT quotient X//G = Pn−1.
This choice of generators for R(X)G allows us to write the rational morphism explicitly

φ ∶ Pn ⇢ Pn−1

[x0 ∶ ⋯ ∶ xn]↦ [x0x1 ∶ ⋯ ∶ x0xn]

and its clear from this description that the nullcone is

N = {[x0 ∶ ⋯ ∶ xn] ∈ Pn ∶ x0 = 0 or (x1,⋯, xn) = 0} ⊂ V(x0x1, . . . , x0xn) ⊂ Pn.

Moreover,

Xss =
n
⋃
i=1

Xx0xi = {[x0 ∶ ⋯ ∶ xn] ∈ Pn ∶ x0 ≠ 0 or (x1,⋯, xn) ≠ 0} ≃An−1 ∖ {0},

identifying V(x0) with the corresponding affine chart. Therefore the corresponding
map

φ ∶An−1 ∖ {0}⇢ Pn−1
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is a good quotient for the action on Xss. Since the preimage of each point on X//G is
a single orbit, this is also a geometric quotient. Moreover, every semistable point is
stable, as the orbit of a point can be written as

Gm ⋅ [x0 ∶ . . . ∶ xn] = V(x0x1 − x1x0,⋯, x0xn − xnx0) ⊂ Pn,

so they correspond to closed sets in An−1 ∖ {0} and have zero dimensional stabilizers.

Before we continue studying the projective quotients, we will need the
following algebraic lemma to prove the next proposition:

Lemma 3.3.7. Let G be a geometrically reductive group acting rationally on a finitely
generated k−algebra A. For a G−invariant ideal I ⊂ A and a ∈ (A/I)G, there is a positive
integer r > 0 such that

ar ∈ AG

I ∩ AG

Proof. Let b ∈ A such that a = b ∈ (A/I)G ⊂ A/I. We can also suppose a ≠ 0, otherwise
the claim is trivial. If a ≠ 0, then b ∉ I and, since the action of G on A is rational, there
is a finite dimensional G−invariant vector space V containing b, which can be spanned
by translates of the element b by the group action G.

As a is G−invariant, the condition g ⋅ a = a lifts to the condition that

g ⋅ b = b − x,

for some x ∈ I, which implies g ⋅ b − b ∈ V ∩ I whenever g ∈ G. Since b ∉ I, we get
dim(V) = dim(V ∩ I)+ 1, so every element in V can be uniquely described as λb + b′,
where λ ∈ k and b′ ∈ I.

Let l ∶ V → k be the projection onto the line spanned by b. Because b is a
G−invariant element, l must also be G−invariant.

In terms of the dual representation, the G−invariant projection l corre-
sponds to a G−invariant vector l∨, and because G is geometrically reductive there is a
G−invariant homogeneous function F ∈ O(V∨)G of positive degree such that f (l∨) ≠ 0.

We can choose a basis {b = v1, v2, v3, . . . , vn} such that l is the corresponding
first vector in the dual basis in V∨. Using these coordinates, we can write

F(x1, . . . , xn) = λxr
1 + f (x1, . . . , xn)

for λ ≠ 0, r ≥ 0 so f is a polynomial which does not have a factor xr
1. We define the

morphism of k−algebras defined by

φ ∶ k[x1, . . . , xn] = O(V∨)→ A

xi ↦ vi,
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so
φ(F) = λφ(x1)r + φ ○ f (x1, . . . , xn)

where φ ○ f ∈ I, and thus
φ(F)− λbr ∈ I,

which implies
φ(F)− λar = 0 ∈ A/I,

thus ar ∈ AG/(I ∩ AG).

Lemma 3.3.8. Let G be a reductive group acting on X ⊂ Pn. A k−point x ∈ X(k) is stable
if and only if x is semistable, the orbit G ⋅ x is closed in Xss and the stabilizer Gx is zero
dimensional.

Proof. Suppose x is stable and x′ ∈ G ⋅ x ∩Xss. Then φ(x′) = φ(x) and so

x′ ∈ φ−1(φ(x)) ⊂ φ−1(Ys) ⊂ Xs.

As G acts on Xs with zero dimensional stabilizer, this action must be closed as the
boundary of the orbit is a union of orbits of strictly lower dimension. Therefore,
x′ ∈ G ⋅ x and so the orbit is closed in Xss.

Conversely, suppose that x ∈ Xss with closed orbit in Xss and zero dimen-
sional stabilizer. As x is semistable, there is a homogeneous polynomial f ∈ R(X)G+
such that x ∈ X f . Since f is G−invariant, X f is also G−invariant and G ⋅ x ⊂ X f . As G ⋅ x
is closed in X, it is also closed in the affine open set X f . By the upper semi-continuity
of the dimension of stabilizers, the G−invariant set

Z = {z ∈ X f ∶ dim Gz > 0}

is closed in X f . Since dim Gx = 0, Z is disjoint from G ⋅ x, and both are G−invariant
closed sets in the affine scheme X f . By (3.2.2), there is a G−invariant function h ∈
O(X f )G such that h(Z) = 0 and h(G ⋅ x) = 1.

We now use the Lemma 3.3.7 to conclude. The k−algebra O(X f ) = O(X̃ f )0
is a quotient of A = ((k[x0, . . . , xn]) f )0 by a homogeneous ideal I, so that h ∈ (A/I)G

and there exists r > 0 such that

hr = h′

f s ∈
AG

I ∩ AG =
((k[x0, . . .], xn) f )0

I
,

for h′ homogeneous polynomial and s > 0. Note that h′ is a G−invariant homogeneous
polynomial and x ∈ Xh′ f , since

(h′ ⋅ f )(x) = (h ⋅ f s−1)(x) ≠ 0

and Z is disjoint from Xh′ f , because h′ f = h f s−1 in X f and h(Z) = 0. Then x has a
closed orbit in Xh′ f , and the action of G is closed in Xh′ f since dim Gy = 0 whenever
y ∈ Xh′ f .
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Definition 3.3.9. Let G be a reductive group acting linearly on X ⊂ Pn. A k−point
x ∈ X(k) is said to be polystable if it is semistable and its orbit is closed in Xss. We say
that two polystable points x, y are equivalent (and write x ≃S y) if G ⋅ x ∩G ⋅ y ≠ ∅.

By the previous lemma, every stable point is polystable.

Lemma 3.3.10. Let G be a reductive group acting linearly on X ⊂ Pn and let x ∈ X(k)
a semistable k−point. Then its orbit closure G ⋅ x contains a unique polystable orbit.
Moreover, if x is semistable but not stable, then this unique polystable orbit is also not
stable.

Proof. Each orbit closure G ⋅ x contains a orbit which is closed, by 2.2.9, and by definition
this will be a polystable orbit. Also, if φ ∶ Xss → X//G is the projective GIT quotient, φ

is constant in orbit closures and by 3.1.6 the preimage of a k−point under φ contains a
unique closed orbit, hence the uniqueness of the polystable orbit.

For the second statement, if the orbit G ⋅ x is not closed, then the closed orbit
in G ⋅ x has dimension strictly less than G ⋅ x and so cannot be stable. If dim Gx > 0, this
implies that dim G ⋅ x < dim G, and the dimension of the polystable orbit will also be
strictly less than dim G, so it cannot be stable.

Corollary 3.3.10.1. Let G be a reductive group acting linearly on X ⊂ Pn. For two
semistable points x, x′ ∈ Xss, we have φ(x) = φ(x′) if and only if G ⋅ x ∩G ⋅ x′ ≠ ∅ and,
by definition, this means that φ(x) = φ(x′) if and only if x ≃S x′. Moreover, there is a
bijection of sets:

X//G(k) ≃ Xps(k)/G(k) ≃ Xss/ ≃S,

where Xps is the set of polystable k−points.

Proof. The first claim follows from the fact that φ is a good quotient, by 3.1.6. For
the second one, note that for every k−point in X//G, the preimage by φ contains
exactly one polystable orbit, and thus the first bijection holds, since every point in the
polystable orbit is a polystable k−point. The first and last sets are also bijective, since
the preimage of two k−points is equal if and only if they are S−equivalent.

As commented at the start of this section, an abstract projective space X
does not come with a pre-specified embedding in a projective space. However, every
very ample line bundle determines an embedding of X into a projective space.

Let us remember the notion of pullback of vector bundle: If π ∶ L → X is a
vector bundle and σ ∶ B → X is a morphism, we can define set:

σ∗(L) ≐ {(b, l) ∈ B × L ∶ σ(b) = π(l)}
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with the corresponding closed subscheme structure. This also coincides with the
categorical fiber product of these two arrows over the base X.

3.3.2 Linearizations and the general case

Let X be a projective k−scheme with an algebraic action of an algebraic
group G over k, denoted by σ ∶ G ×X → X.

First, we analyze what happens when our projective scheme X is embedded
in Pn. In this case, there is a corresponding ample line bundle, obtained as a pullback
L = i∗OPn(1) where i ∶ X ↪ Pn denotes the embedding. If we denote by R(X) the
graded k−algebra such that Proj R(X) = X ⊂ Pn, then

R(X) = k[x0, . . . , xn]
I(X) ≃⊕

r≥0

k[x0, . . . , xn]r
Ir(X)

≃⊕
r≥0

H0(X, L⊗r).

If the G-action is linear, then G respects the grading and induces an action on each
piece H0(X, L⊗r), which in turn induces an action of G in L such that the projection
π ∶ L → X is a G−equivariant map.

In the general case, if L is any line bundle over X, we can define the same
k−algebra

R(X, L) ≐⊕
r≥0

H0(X, L⊗r),

and if L is ample, this is generated by degree one elements and we recover the previous
case. For more on how the line bundles determine embeddings onto the projective
space, see (HARTSHORNE, 1977), chapter II.7.

Definition 3.3.11. A linearization of the G−action on X is an invertible sheaf L on X
with an isomorphism of invertible sheaves over G ×X:

Φ ∶ σ∗L ≃Ð→ π∗XL

which satisfies the following cocycle condition:

(m × IdX)∗Φ = π∗23Φ ○ (IdG ×σ)∗Φ

where π23 ∶ G ×G ×X → G ×X is the projection onto the second and third factors and
m denotes the group multiplication. The cocycle condition can be translated as the
commutativity of the following diagram of sheaves over G ×G ×X:

[σ ○ (IdG × σ)]∗L)] [πX ○ (IdG × σ))]∗L

[σ ○π23]∗L [πX ○π23]∗L

[σ ○ (m × IdX)]∗L [πX ○ (m × IdX)]∗L

(IdG×σ)∗Φ

π∗23Φ

(m×IdX)∗Φ
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where the equalities hold by the properties of pullbacks and algebraic group actions.

To see how this definition implies the existence of a G−action on L, we fix a
k−point α ∈ G(k) and denote by Tα the restriction of σ to {α}×X → X. Restricting the
isomorphism Φ to {α}×X, we get an isomorphism

Φα ≐ Φ∣{α}×X ∶ T
∗
αL

≃Ð→ (πX∣{α}×X)
∗
L ≃Ð→ L.

Then, if we fix α, β ∈ G(k) and consider the cocycle condition restricted to the set
{α}× {β}×X ⊂ G ×G ×X, we get a commutative diagram

T∗αβL T∗βL

T∗αβL L

T∗β Φα

π∗23Φαβ=Φβ

Φαβ

, as (IdG ×σ)∗Φ restricts to T∗β Φα and (m × IdX)∗Φ restricts to Φ∗αβ. Thus Φαβ =
Φβ ○ T∗β Φα, and in particular we conclude that the procedure is compatible with
the multiplication of the group.

Another way to interpret the definition of linearization is to use the language
of vector bundles. Let π ∶ L → X be the line bundle associated with the invertible sheaf
L. The isomorphism Φ corresponds to an isomorphism of line bundles over G ×X:

(G ×X)×X L
ϕ
←Ð
≃
(G ×X)×X L

where the first is the fiber product over X via σ ∶ G ×X → X and the second is the fiber
product via πX ∶ G ×X → X. These are, by definition, the pullbacks:

σ∗L L

G ×X X

f2

f1 π

σ

and

π∗X L L

G ×X X

p2

p1 π

πX

We note the product G × L is also a line bundle over G ×X, with a projection (IdG ×π) ∶
G × L → G ×X, since whenever (g, x) ∈ G ×X, (IdG ×π)−1(g, x) = {g} × Lx ≃ Lx has a
natural linear structure and, for each point x ∈ X, if U is the trivializing neighbourhood
for the line bundle π ∶ L → X around x, then

(IdG ×π)−1 = IdG ×π−1 ∶ G ×U ≃Ð→ G ×U ×A1

is a trivialization for G × L over G ×X. Forming the pullback diagram
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G × L L

G ×X X,

πL

IdG×π π

πX

by the universal property of the fiber product, there is a unique morphism

h ∶ G × L → π∗X(L)

such that p2 ○ h = πL and p1 ○ h = IdG ×π. On each fiber (g, x) ∈ G ×X, the morphism h
restricts to hg,x ∶ {g}× Lx → π∗X(L) such that

p2 ○ hg,x({g}× Lx) = πL({g}× Lx) = Lx = π−1(x)

and since the definition of the fiber π∗(L)(g,x) = p−1
1 (g, x) = p−1

2 ○ π−1(x), then the
restriction of h respect the fibers: hg,x ∶ {g} × Lx → π∗(L)(g,x). Hence we have the
following diagram:

{g}× L (π∗X(L))(g,x)

Lx

h(g,x)

πL p2

By construction, the restriction πL ∶ {g}× Lx → Lx is an isomorphism, so h(g,x) = πL ○ p2

is also an isomorphism. This implies that h is an isomorphism of line bundles. Since
the pullback is defined up to isomorphism, we can just identify π∗X L with the line
bundle G × L over G ×X, so we also write ϕ ∶ G × L → σ∗L for the identification.

Our goal now is, given a G−linearization of a line bundle L over a scheme
X, induce a G−action on L. Using the notation above, follows the commutativity of the
diagram

G × L σ∗(L) L

G ×X X

Φ

IdG×π
f1

f2

π

σ

Thus, if we define the action morphism as Σ ≐ Φ ○ f2, the following square commutes:

G × L L

G ×X X

IdG×π

Σ

π

σ
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Looking at the fibers over (g, x) and σ(g, x), respectively, implies Σ is a bundle isomor-
phism between the line bundles G × L over G ×X and L over X. Using this notation,
the cocycle condition translates into the commutative cube

G ×G × L G × L

G × L L

G ×G ×X G ×X

G ×X X,

IdG ×Σ

m×IdL

IdG × IdG ×π

Σ

Σ

π
m×IdX

IdG×σ σ

σ

which implies that Σ is exactly the lifting of the action σ to L via the projection π,
and it also makes it G−equivariant. Moreover, these are equivalent conditions (see
(MUMFORD; FOGARTY; KIRWAN, 1994)).

Proposition 3.3.12. If G is an affine algebraic group over k acting on a k−scheme X
and π1 ∶ L1 → X, π2 ∶ L2 → X are two linearizations for an action σ ∶ G ×X → X, then
the tensor product

π1 ⊗π2 ∶ L1 ⊗ L2 → X

also defines a linearization for this action.

Proof. Since L1 and L2 are linearizations by hypothesis, there are respective bundle
isomorphisms

G × L1 ≃ σ∗L1 and G × L2 ≃ σ∗L2.

The tensor product L1 ⊗ L2 → X is again a line bundle, with corresponding morphism
denoted by π1 ⊗π2, and the tensor operation commutes with taking pullbacks:

σ∗(L1 ⊗ L2) ≃ σ∗L1 ⊗ σ∗L2

over G × X, so the space G ×k (L1 ⊗ L2) is a line bundle, over G × X, via the map
1G × (π1 ⊗π2), commuting the diagram:

G × (L1 ⊗ L2) L1 ⊗ L2

G ×X X

πL1⊗L2

IdG×(π1⊗π2) π1⊗π2

πX
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where whenever (g, x) ∈ G ×X,

IdG × (π1 ⊗π2)−1(g, x) = {g}× L1,x ⊗ L2,x

which will be send isomorphically to (L1⊗L2)x by πX. Then G×(L1⊗L2) ≃ π∗X(L1⊗L2),
and we get a chain of bundle isomorphisms over G ×X

G × (L1 ⊗ L2) ≃ π∗X(L1 ⊗ L2)
≃ π∗X(L1)⊗π∗X(L1)
≃ (G × L1)⊗ (G × L2)
≃ σ∗(L1)⊗ σ∗(L2)
≃ σ∗(L1 ⊗ L2)

and this gives a natural G−linearization of L1 ⊗ L2.

Remark 3.3.13. More concretely, we can translate this argument in terms of the
G−actions Σ1 ∶ G × L1 → L1 and Σ2 ∶ G × L2 → L2 induced by these linearizations.
If Φ1 and Φ2 are the fixed isomorphisms between G × L1 ≃ σ∗(L1) and G × L2 ≃ σ∗(L2),
then

G × (L1 ⊗ L2) ≃ (G × L1)⊗ (G × L2)
Φ1⊗Φ2ÐÐÐÐ→
≃

σ∗(L1)⊗ σ∗(L2) ≃ σ∗(L1 ⊗ L2).

Then the corresponding action Σ commuting the diagram

G × (L1 ⊗ L2) L1 ⊗ L2

G ×X X

Σ

IdG×(π1⊗π2) π1⊗π2

σ

is the composition of the isomorphism Φ = Φ1⊗Φ2 with the projection f ∶ σ∗(L1⊗ L2)→
L1 ⊗ L2, which via the isomorphism σ∗(L1)⊗ σ∗(L2) ≃ σ∗(L1 ⊗ L2) corresponds to the
tensor product of the maps f1 ∶ σ∗(L1)→ L1 and f2 ∶ σ∗(L2)→ L2.

This means we could also define the tensor product of the actions as the
tensor product of two morphisms

Σ1 ⊗Σ2 = Φ1 ⊗Φ2 ○ f1 ⊗ f2.

Proposition 3.3.14. If G is an affine algebraic group over k acting algebraically on a
k−scheme X via σ ∶ G ×X → X and π ∶ L → X is a linearization for this action, then the
dual line bundle

π∨ ∶ L∨ → X

also has an induced linearization for the same action.
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Proof. Let L be a a line bundle together with a linearization

G × L ≃ σ∗(L).

Since taking pullbacks commutes with the dual operation for locally free sheaves of
finite rank, we have

σ∗(L∨) ≃ σ∗(L)∨ and π∗X(L∨) ≃ π∗X(L)∨,

so the line bundle G × L∨ is isomorphic to π∗X(L∨), and the dual line bundle has a
natural induced G−linearization via

π∗X(L∨) ≃ π∗X(L)∨ ≃ σ∗(L)∨ ≃ σ∗(L∨).

Remark 3.3.15. The last propositions imply the set all of possible G−linearizations
forms a group under the operation of tensor product. We can also consider the notion
of an isomorphism of linearizations, meaning an isomorphism of line bundles which is
G−equivariant with respect to the corresponding G−actions. This defines a subgroup of
the Picard group of the projective variety X, which we will denote by PicG(X) ⊂ Pic(X).

Example 3.5. In this example, we explore the relationship between G−linearizations
and characters of the algebraic group G.

1. Let X = Spec k, with the trivial G-action. There is only one line bundle L =A1 → X
over k, the trivial one, but there are many possible linearizations. If X ∈ X∗(G) =
Hom(G, Gm(k)) is a character, we can define a G−action on A1 by

G ×A1 →A1

(g, a)↦ X (g) ⋅ a.

Conversely, every linearization is given by a linear action of G on A1, that is,
a group morphism X ∶ G → GL1(k) ≃ Gm(k). Seeing the product of characters
as a tensor product of representations, we see that this actually implies the
isomorphism of groups X∗(G) ≃ Pic(X)G.

2. More generally, for any k−scheme X with an algebraic action of an affine algebraic
group G over k and a character X ∶ G → Gm, we can construct a linearization on
the trivial line bundle L = X ×A1 → X using the morphism

G × (A1 ×X)→A1 ×X

(g, (x, a))↦ (g ⋅ x,X (g) ⋅ a)
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3. Not every linearization on a trivial bundle comes from a character. For example,
consider the finite group G ≐ {±1} acting on X =A1 ∖ {0} via the rule

(1) ⋅ x = x

(−1) ⋅ x = x−1.

In this case, the linearization on X ×A1 given by the action

G ×X ×A1 → X ×A1

(1) ⋅ (x, z) = (x, z)
(−1) ⋅ (x, z) = (x−1, x ⋅ z)

cannot be isomorphic to a linearization given by a character, as over the fixed
points 1 and −1 on X the action of the element −1 ∈ G on fibers is given by the
maps z ↦ z and z ↦ −z, respectively.

Lemma 3.3.16. Let G be an affine algebraic group over k acting on a k−scheme X via
σ ∶ G ×X → X and let Σ ∶ G × L → L be the corresponding linearization of the action on
a line bundle L over X, as constructed above. Then this induces a linear representation:

G → GL(H0(X, L))

Proof. Note that, via the pullback of σ, we can define a (linear) co-module structure
φ ∶ H0(X, L)→ O(G)⊗k H0(X, L), by the composition:

H0(X, L) σ∗Ð→ H0(G ×X, σ∗L) ≃ H0(G ×X, G × L) ≃ H0(G,O(G))⊗k H0(X, L)

where the last isomorphism follows from the Künneth formula ( see C.2.4) and the
middle isomorphism is induced by the linearization G × L ≃ σ∗L. This is equivalent to
giving a representation G → GL(H0(X, L)), for if s ∈ H0(X, L) and φ(s) =∑

i
fi ⊗ si, we

define the corresponding linear transformation

φg ∶ H0(X, L)→ H0(X, L)
s ↦∑

i
fi(g) ⋅ si.

Thus, we get a linear representation

G → GL(H0(X, L))
g ↦ φg,

as we wanted.
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Just to see that this machinery is indeed a generalization of the case X ⊂ Pn,
let us recover this case using this representation. If X is a projective k−scheme with a
fixed very ample linearization L, then the evaluation map

H0(X, L)⊗kOX → L,

given over an open set U ⊂ X as the morphism of OX(U)−modules

H0(X, L)⊗kOX(U)→ L(U)
s⊗ t ↦ t ⋅ s∣U,

is a G−equivariant surjective map, so it induces a G−equivariant closed embedding

X → P(H0(X, L)∗)

such that L is isomorphic to the pullback of Serre’s twisting sheaf O(1) over this
projective space (as in (HARTSHORNE, 1977), II.7).

Note that this is an embedding of X on a projective space such that the
action of G on X comes from a linear action of G on H0(X, L)∗, so this generalizes the
setting of G acting linearly on a closed subscheme X ⊂ Pn.

Now, we are ready to construct a GIT quotient in this context. Let G be a
reductive group acting on a projective scheme X and let L be a fixed linearization of
the G−action on X. Then consider the graded finitely generated k−algebra:

R ≐ R(X, L) ≐⊕
r≥0

H0(X, L⊗r).

Since each line bundle L⊗r has an induced linearization, there is an induced action of
G on each space of sections H0(X, L⊗r), so it amounts to an action of G on the graded
algebra which preserves graded pieces. We denote by

RG =⊕
r≥0

H0(X, L⊗r)G

the corresponding graded algebra of G−invariant sections. Note that this is the same
setting as in the proof of (3.3.6), and arguing as before we see that RG is a finitely
generated k−algebra and Proj RG is projective over the zero-sections RG

0 = kG = k.

Definition 3.3.17. In this context, a point x ∈ X is said to be:

• semistable with respect to L if there is an invariant section σ ∈ H0(X, L⊗r)G for
some r > 0 such that σ(x) ≠ 0.

• stable with respect to L if dim G ⋅ x = dim G, there is an invariant section σ ∈
H0(X, L⊗r)G for some r > 0 such that σ(x) ≠ 0 and the action of G on

Xσ ≐ {x ∈ X ∶ σ(x) ≠ 0}

is closed and so Xσ is an affine open set.



Chapter 3. Geometric Invariant Theory 87

We let Xss(L) and Xs(L) denote the open sets of semistable and stable
points in X, respectively. We define the projective GIT quotient with respect to L to
be the morphism

Xss(L)→ X//LG ≐ Proj R(X, L)G

associated with the inclusion R(X, L)G ↪ R(X, L).

When we are in the particular case of a linear action of G on i ∶ X ⊂ Pn, the
action can be naturally linearized using the line bundle L ≐ i∗(OPn(1)), so that

H0(X, L⊗r)G = H0(X, i∗(OPn(r)))G = R(X)Gr ,

whenever r ≥ 0, using the notation in (3.3.1). Using this, the definitions of (semi)stable
reduce to the previous ones.

Theorem 3.3.18. Let G be a reductive group acting on a projective scheme X and L be an
ample linearization of this action. Then the GIT quotient

φ ∶ Xss(L)→ X//LG

is a good quotient and X//LG is a projective scheme with a natural ample line bundle L′ such
that φ∗(L′) = L⊗n for some n > 0. Furthermore, there is an open set Ys ⊂ X//LG such that
φ−1(Ys) = Xs(L) and φ ∶ Xs(L)→ Ys is a geometric quotient.

Proof. As L is ample, for each σ ∈ R(X, L)G+ , the open set Xσ is affine and the above
GIT can be obtained by gluing affine GIT quotient, just as in the proof of (3.3.6).

Theorem 3.3.19. Let G a reductive group acting on a quasi-projective scheme X and L
be a linearization of this action. Then there is a quasi-projective scheme X//LG and a good
quotient φ ∶ Xss(L)→ X//LG of the G−action on Xss(L). Furthermore, there is an open subset
Ys ⊂ X//LG such that φ−1(Ys) = Xs(L) and φ ∶ Xs(L)→ Ys is a geometric quotient.

Remark 3.3.20. As we saw in this section, whenever X is a projective k−scheme and
G is a reductive group over k acting algebraically, whenever we fix a linearization L
for this action, we can construct a GIT-quotient X//LG, which is again a projective
k−scheme.

When studying a concrete moduli functor M, as explained in Chapter 1,
if X is a k−scheme which can be considered as a space of parameters forM in Schk,
such that the G−action induces the same equivalence relation, the space X//LG could
be considered as a fine moduli space for the moduli problemM.

Analyzing how the geometry of the quotient X//LG changes when we
vary linearizations inside PicG(X) for an algebraic G−action on X is a subject called
variation of GIT, or VGIT (see more about this aspect in (LAZA, 2012)).
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3.3.3 Functoriality

In this section, we study the following general situation: if there is a re-
ductive group G over k acting on two k−schemes X and Y, there is a G−equivariant
morphism f ∶ X → Y and a linearization L of this G−action over Y, what is the relation
between the sets Xs( f ∗L) and f −1(Ys(L))? To answer this, we use Reynolds operators.

Proposition 3.3.21. In the context mentioned above, if moreover the morphism f is
quasi-affine, then f −1(Ys(L)) ⊂ Xs( f ∗L).

Proof. Let x ∈ f −1(Ys(L)). By definition, this means that there exists a G−invariant
section σ ∈ H0(Y, Lr) such that Yσ is affine, f (x) ∈ Yσ and the stabilizers of points of Yσ

are 0-dimensional.

Since f is G−equivariant, the pullback s ≐ f ∗σ ∈ H0(X, f ∗Lr) is G−invariant,
x ∈ Xs and all stabilizers are 0−dimensional. We only need to prove that Xs is an affine
open set, to get x ∈ Xs( f ∗L).

Note that, since f is quasi-affine and Xs = f −1(Yσ), Xs is quasi-affine, and
if we denote by R = Γ(X,OX) and X̃ = Spec R, we have the following commutative
diagram:

Xs X̃

Yσ

I

f f̃

where I is an open immersion and f̃ is the unique extension of the map f to X̃ = I(Xs).
Moreover, using the dual action of G on R induced by the action on X, we can induce
a G−action on X̃ such that f̃ is G−equivariant. It follows that the orbit G ⋅ I(x) is closed,
as G ⋅ x is closed in Xs, and we have two disjoint closed G−invariant sets:

Z1 = X̃ ∖ I(X) and Z2 = G ⋅ I(x).

By 3.2.2, there is f ∈ R G−invariant such that f (Z1) = 0 and f (x) = 1. This
means that X̃ f ⊂ Xs and X̃ f is affine. By (HARTSHORNE, 1977) (II Lemma 5.14), there
is an integer k such that the local section sk ⋅ f of the vector bundle f ∗Lrk over Xs

extends to a global section s′ ∈ H0(X, f ∗Lrk). To get a G−invariant section, we project
via the Reynolds operator. Let E be such operator on H0(X, f ∗Lrk), which exists by
2.5.1. Then E(s′) is G−invariant and E(s′) still restricts to the invariant section f ks over
the invariant open set Xs.

Furthermore, the section s ⋅ Es′ is 0 both outside Xs and at points of Xs

where f = 0 and thus Xs⋅Es′ is an affine neighbourhood of x contained in Xs, which
implies x ∈ Xs( f ∗L).
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The next question is: when does the equality between these two sets hold?
This is answered by the following proposition:

Proposition 3.3.22. Assume f is finite, X is proper over k and L is ample over Y. Then

f −1(Ys(L)) = Xs( f ∗L)

Proof. Since L is an ample linearization over Y, there is an embedding i ∶ Y → Pn, a
linear action of G on Pn such that I is G−equivariant and L ≃ i∗(O(1)). Since the sets
of stable points will be the same, we only need to prove the linear action case for Pn.

Let us suppose then Y = Pn, L = O(1), R = k[x0, . . . , xn], S denote homoge-
neous coordinate ring of X and f ∶ X → Pn the G−equivariant morphism.

The morphism f induces a graded R−algebra structure on S, and since f is
finite, S is a finite R−module. The actions of G on X and on Pn and the linearizations of
f ∗(O(1)) and O(1) define dual actions of G on R and S, compatible with the R−module
structure of S induced by f .

Now let E and F be the Reynolds operators on R and S, respectively, and let
x be a stable point of X. Then there is an invariant section s ∈ H0(X, f ∗(OPn(n)) = Sn

such that s(x) ≠ 0, the action of G is closed in Xs and the stabilizer of x is 0-dimensional.
Since S is a finite R−module, there is an equation of integral dependence:

sm + a1sm−1 +⋯+ am = 0

where ai are homogeneous elements of R and ai denotes their image inside S. Applying
the Reynolds operator F, we obtain:

0 = F(sm + a1sm−1 +⋯+ am)
= sm + F(a1)sm−1 +⋯+ F(am)
= sm + Ea1 ⋅ sm−1 +⋯+ Eam.

Since s(x) ≠ 0, it follows that for some i, Eai( f (x)) ≠ 0. Therefore, f (x) ∈ Pn
Eai

. But this
implies that:

x ∈ X f ∗(Eai) = f −1(Pn
Eai
).

Since the orbit of x in X f ∗Eai
is closed and f is proper, the orbit of the k−point f (x) is

closed in Pn
Eai

. Since f is finite, the dimension of orbits coincide, so the stabilizer of
f (x) is also 0−dimensional, and therefore f (x) is stable. This proves the inclusion:

Xs( f ∗O(1)) ⊂ f −1((Pn)s(O(1)),

and the other inclusion holds by the previous proposition.
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Note that, in the proofs of the previous propositions, we also proved the
corresponding assertions for the semistable points.

This gives an interesting simplification: if G acts algebraically on X and L
is a linearization of this action, there is an induced immersion X ↪ Pn and we can
compute the set of (semi)stable points of the linear action over Pn.

3.4 Criteria for (semi)stability
In this section, our goal is to give some criteria to better understand the sets

of stable and semistable points. We can simplify our situation by supposing that we
have a linear action of a reductive algebraic group G on a closed subscheme X ⊂ Pn.

In this context, as G acts via a linear representation G → GLn+1(k), the action
of G lifts to the affine cone X̃ ⊂An+1. Let R(X) = O(X̃) denote the graded coordinate
ring of X. Looking at the corresponding G−action on the affine cone will give us the
first criterion:

Proposition 3.4.1. Let x ∈ X(k) and choose a lift x̃ ∈ X̃(k) of x. Then:

1. x is semistable if and only if 0 ∉ G ⋅ x̃.

2. x is stable if and only if dim Gx̃ = 0 and G ⋅ x̃ is closed in X̃.

Proof. First, if x is semistable, there is a G−invariant homogeneous polynomial f ∈
R(X)G such that f (x) ≠ 0. We can consider f to be a polynomial over the lift X̃, so that
f (x̃) ≠ 0.

Since f is G−invariant as a function on X̃, f will be constant in the orbit
closure G ⋅ x̃, and non-zero. But as f is homogeneous, f (0) = 0 and then f separates
the closed subschemes {0} and G ⋅ x̃, thus they are disjoint in X̃.

For the converse, suppose that G ⋅ x̃ and 0 are disjoint. Then, as these are both
G−invariant closed subsets of X̃ and G is reductive, by (3.2.2) there is a G−invariant
polynomial f ∈ O(X̃)G which separates these subsets, such that

f (G ⋅ x̃) = 1 and f (0) = 0.

If we decompose f = f0 + . . . + fr into homogeneous polynomials fi of positive degree,
as the G−action is linear, each piece fi will be G−invariant such that there is at least
one that does not vanish on G ⋅ x̃. Hence, we can choose such f = fi ∈ R(X)G so x must
be a semistable point since f (x) ≠ 0.

For the second statement, if x is a stable point, then dim Gx = 0 and there
is a G−invariant homogeneous polynomial f ∈ R(X)G such that x ∈ X f and G ⋅ x is
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closed in X f . Since the action is linear, of course we have Gx̃ ⊂ Gx and we conclude
that dim Gx̃ = 0.

We can again view f as a function on X̃ and consider the closed subscheme:

Z = {z ∈ X̃ ∶ f (z) = f (x̃)}

on X̃. If we prove that G ⋅ x̃ ⊂ Z is closed, we are done. The projection π ∶ X̃ ∖ {0} →
X restricts to a surjective finite morphism π ∶ Z → X f , since f is a homogeneous
polynomial. The preimage of the closed orbit G ⋅ x in X f under π is closed and
G−invariant. As π is finite, it follows that the preimage π−1(G ⋅ x) is a finite number of
G−orbits, which must all have dimension equal to dim G ⋅ x = dim G, so they are closed
in the preimage, hence G ⋅ x̃ is closed.

Conversely, suppose that dim Gx̃ = 0 and G ⋅ x̃ is closed in X̃. Then 0 ∉ G ⋅ x̃ =
G ⋅ x̃, and x is a semistable point of X by the first part of the proposition. Thus, there is
a non-constant homogeneous G−invariant polynomial f such that f (x) ≠ 0. As above,
we consider the finite surjective morphism:

π ∶ Z → X f .

As finite morphisms are closed, π(G ⋅ x̃) = G ⋅ x will be a closed subset of X f and
dim Gx = 0. Since this holds for all f such that f (x) ≠ 0, it follows that G ⋅ x is closed in
Xss =⋃

f
X f . Hence x is stable, since Xss is an open set of X.

To study the next criterion of stability, we will need to use one-parameter
subgroups.

Definition 3.4.2. A one-parameter subgroup (over k) of G is a non-trivial morphism
of algebraic groups λ ∶ Gm → G over k.

Fix x ∈ X(k) and a one-parameter subgroup λ ∶ Gm → G. Then we let

λx ∶ Gm → X

t ↦ λ(t) ⋅ x

There is a natural embedding Gm = A1 ∖ {0} → P1 given by t ↦ [1 ∶ t]. Since X
is projective, it is proper over Spec k and by the valuative criterion for properness
((HARTSHORNE, 1977) II 4.7), the morphism λx ∶ Gm → X extends uniquely to a
morphism λ̂x ∶ P1 → X such that the diagram commutes:

Gm X

P1 Spec k.

λx

λ̂x
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We can use this extension to define the limit points

lim
t→0

λx(t) ≐ λ̂x([1 ∶ 0]) and lim
t→∞

λx(t) ≐ λ̂x([0 ∶ 1]).

Using the usual change of coordinates of P1 given by [1 ∶ t] = [1/t ∶ 1] and the fact that
λ is a group morphism, it follows that these concepts are dual:

lim
t→∞

λ(t) ⋅ x = λ̂x([0 ∶ 1]) = lim
t→0

λ(t−1) ⋅ x = lim
t→0

λ(t)−1 ⋅ x,

and we could also consider the inverse one-parameter subgroup λ−1 ∶ Gm → G.

Proposition 3.4.3. If λ ∶ Gm → G is a one-parameter subgroup and x ∈ X(k), then the
limit point

y = lim
t→0

λ(t) ⋅ x

must be fixed by the subgroup λ(Gm).

Proof. Fix an element s ∈ Gm. We have

λ(s) ⋅ λ̂x([1 ∶ t]) = λ(st) ⋅ x = λx([1 ∶ st])

whenever t ∈ Gm. We can consider the following diagram:

Gm X

P1 Spec k

λ′x

λ̂′x

where λ′x(t) ≐ λ(st) ⋅ x and λ̂′x([1 ∶ t]) = λ̂x([1 ∶ s ⋅ t]) whenever t ∈ Gm. Thus

λ(s) ⋅ λ̂x([1 ∶ t]) = λ̂′x([1 ∶ t])

whenever t ≠ 0, and as the set {[1 ∶ t] ∈ P1 ∶ t ≠ 0} is a dense open set in P1, it follows
that λ(s) ⋅ λ̂x([1 ∶ 0]) = λ̂′x([1 ∶ 0]).

Looking at the affine space A1 ↪ P1 via t ↦ [1 ∶ t], the equality

λ̂′x([1 ∶ t]) = λ̂x([1 ∶ s ⋅ t])

holds for a dense open subset of A1, so

λ̂′x([1 ∶ 0]) = λ̂x([1 ∶ s ⋅ 0]) = λ̂x([1 ∶ 0])

and the result follows.
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Remark 3.4.4. Moreover, on each fiber over y of O(1) ≐ OPn(1)∣X, the group λ(Gm)
must act by a character t ↦ tr of Gm (see 2.3.3), for r ∈Z, as it restricts to a linear action
in the trivial line bundle over a point {y} ≃ Spec k, as in 3.5.

Definition 3.4.5. Using the previous remark, we define the Hilbert-Mumford weight
of an action of the one-parameter subgroup λ on x ∈ X(k) to be

µO(1)(x, λ) = r

where r is the weight of λ(Gm) on the fiber O(1)y over y ≐ lim
t→0

λ(t) ⋅ x

We can translate this definition to the affine cone over the projective variety
X, denoted by X̃, as follows. Fix any non-zero lift x̃ ∈ X̃ of x ∈ X. We can consider the
corresponding morphism

λx̃ ≐ λ(−) ∶ Gm → X̃,

which may no longer extend to P1, as X̃ may not be proper over k. If it extends to zero,
or infinity, we will use the same limit notation as above.

The action of λ(Gm) is linear on An+1, and this means (see 2.3.3) that we can
choose a basis e0, . . . , en of kn+1 such that λ(t) ⋅ ei = tri ei for ri ∈Z. We call the integers
ri the λ−weights for this action on An+1. For x ∈ X(k), we can choose a lift x̃ ∈ X̃ and
write it with respect to this basis as

x̃ =
n
∑
i=0

xiei.

Applying the diagonalization, we get:

λ(t) ⋅ x̃ =
n
∑
i=0

tri xiei.

Proposition 3.4.6. In the context above, the set {ri ∶ xi ≠ 0} does not depend on the
choice of non-zero lift x̃.

Proof. Let x̃ and x̃′ be two possible lifts over x in An+1. Writing both using the diago-
nalization coordinates

x̃ =
n
∑
i=0

xiei , x̃′ =
n
∑
i=0

x′iei,

this means that x̃ = αx̃′, for a non-zero element α ∈ k, so that

λ(t) ⋅ x̃ =
n
∑
i=0

tri xiei =
n
∑
i=0

tri(αx′i)ei = αλ(t) ⋅ x̃′,

and the claim follows.
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Definition 3.4.7. We define the weight of a point x with respect to a one-parameter
subgroup λ of G to be

µ(x, λ) ≐ −min{ri ∶ xi ≠ 0}.

Proposition 3.4.8. The weight of x with respect to a one-parameter subgroup λ satisfies
the following properties:

1. µ(x, λ) is the unique integer µ ∈Z such that lim
t→0

tµλ(t) ⋅ x̃ exists and is non-zero.

2. µ(x, λn) = nµ(x, λ) for n ≥ 1.

3. For all g ∈ G, µ(g ⋅ x, gλg−1) = µ(x, λ).

4. µ(x, λ) = µ(y, λ), where y = lim
t→0

λ(t) ⋅ x.

Proof. 1. Using the diagonalization coordinates as before, if µ ∈Z, we can write

tµλ(t) ⋅ x̃ = tµ ⋅ (
n
∑
i=0

tri xiei) =
n
∑
i=0

tri+µxiei

whenever t ∈ Gm. Note that, if there exists at least one ri such µ < −ri, µ + ri < 0
and this means that λx̃ cannot be extended to 0. On the other hand, if µ > −ri for
all i = 0,⋯, n, all coordinates will have positive powers of t and this only can be
the case if the limit is zero. It follows that µ = µ(x, λ) is the only integer with this
property.

2. Using coordinates, its easy to see that:

λn(t) ⋅ x̃ =
n
∑
i=0

tnri xiei

and µ(x, λn) = nµ(x, λ) follows.

3. Note that
(gλg−1)(t) ⋅ gx̃ =

n
∑
i=0

tri ⋅ xig(ei).

Using the first property, the claim follows, as g acts on An+1 by change of basis
inside GLn+1(k).

4. Let x̃ be a non-zero lifting of x on the affine cone. Using the same coordinates, by
1, we have a non-zero limit

ỹ = lim
t→0

tµ(x,λ)λ(t) ⋅ x̃ = (y0, . . . , yn)

where yi = xi if ri = −µ(x, λ) and yi = 0 otherwise. Therefore

λ(t) ⋅ ỹ = t−µ(x,λ)ỹ,

and µ(x, λ) = µ(y, λ).
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Proposition 3.4.9. If λ is a one-parameter subgroup of G and X ⊂ Pn, then we have

µ(x, λ) = µO(1)(x, λ),

where in the right is the Hilbert-Mumford weight associated to the line bundle L = O(1)
over Pn.

Proof. Let ỹ be a point over y = lim
t→0

λ(t) ⋅ x, so that the λ(t) ⋅ ỹ = t−µ(x,λ)ỹ, as seen in

the previous proposition. Using the dual bundle of L = O(1), denoted by O(−1) and
corresponding to the projection An+1 ∖ {0}→ Pn, we see that −µ(x, λ) is the weight of
the associated λ(Gm)−action the fiber O(−1)y.

Thus the dual action of λ over O(1) is given by the weight µ(x, λ), which
coincides with the Hilbert Mumford weight by definition.

We can deduce the following lemma, from the properties of the weight
proved in 3.4.8.

Lemma 3.4.10. Let λ be a one-parameter subgroup of G and x ∈ X(k). We diagonalize
the λ(Gm)−action on the affine cone as above and let x̃ = (x0, . . . , xn) be a non-zero lift
of x in these coordinates.

(i) µ(x, λ) < 0 ⇐⇒ x̃ = ∑
ri>0

xiei ⇐⇒ lim
t→0

λ(t) ⋅ x̃ = 0.

(ii) µ(x, λ) = 0 ⇐⇒ x̃ = ∑
ri≥0

xiei and there exists ri = 0 such that xi ≠ 0 ⇐⇒

lim
t→0

λ(t) ⋅ x̃ = 0 exists and is non-zero.

(iii) µ(x, λ) > 0 ⇐⇒ x̃ =∑
ri

xiei and there exists ri < 0 such that xi ≠ 0 ⇐⇒ lim
t→0

λ(t) ⋅

x̃ = 0 does not exist.

We can also use the duality

lim
t→0

λ−1(t) ⋅ x̃ = lim
t→∞

λ(t) ⋅ x̃

to get the corresponding assertions for this case:

(i) µ(x, λ−1) < 0 ⇐⇒ x̃ = ∑
ri>0

xiei ⇐⇒ lim
t→∞

λ(t) ⋅ x̃ = 0.

(ii) µ(x, λ−1) = 0 ⇐⇒ x̃ = ∑
ri≥0

xiei and there exists ri = 0 such that xi ≠ 0 ⇐⇒

lim
t→∞

λ(t) ⋅ x̃ = 0 exists and is non-zero.

(iii) µ(x, λ−1) > 0 ⇐⇒ x̃ = ∑
ri

xiei and there exists ri < 0 such that xi ≠ 0 ⇐⇒

lim
t→∞

λ(t) ⋅ x̃ = 0 does not exist.
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Locally, any limit point in the closure of the orbit can be identified as a limit
of a one-parameter subgroup, by the next theorem.

Theorem 3.4.11. Let G be a reductive group acting on An, z ∈An be a closed point. If 0 lies
in the orbit of z, then there is a one-parameter subgroup of G

λ ∶ Gm → G

such that lim
t→0

λ(t) ⋅ z = 0.

Proof. Step 1. There is an irreducible curve C1 ⊂ G ⋅ z which contains 0 in its closure
inside An.

Consider an embedding An ⊂ Pn, let p ∈ Pn denote the point corresponding
to 0 inside Pn and let Y denote the closure of the orbit G ⋅ z inside Pn.

If Y is already a curve, then the claim is trivial, since we only need to remove
the points in the boundary Z ≐ Y ∖G ⋅ z to get an irreducible curve inside G ⋅ z which
contains 0 in its closure inside An.

Now, suppose d ≐ dim Y > 1 and n > 1. Since hyperplanes in Pn are given as
zero-sets of homogeneous degree one polynomials, we can consider the space

H ≐ P(k[x0, . . . , xn]1)

parametrizing hyperplanes inside Pn, and the subset Hp of hyperplanes containing the
point p, which corresponds to a closed condition and thus it is a closed codimension
one subspace inside this space. Moreover, we can define a set

H0 ≐ {(H1, . . . , Hd−1) ∈
d−1
∏
i=1
Hp ∶ dim Y ∩

d−1
⋂
i=1

Hi = 1 and Y ∩
d−1
⋂
i=1

Hi ∩Y/Z ≠ ∅}

which is open, since both conditions are open, and non-empty, of dimension (n− 1)(d−
1) > 0. Hence we can construct the desired curve C1 as

C1 ≐
d−1
⋂
i=1

Hi ∩Y ∩G ⋅ z

for any choice of (H1, . . . , Hd−1) ∈ H0.

Step 2. There is a smooth projective curve C over k, a rational map p ∶ C ⇢ G
and a k−point c0 ∈ C such that

lim
c→c0

p(c) ⋅ z = 0.

To build this curve, we consider the action morphism

σz ∶ G →An

g ↦ σ(g, z),

and show that there is a curve C2 ⊂ G dominating C1 ⊂ G ⋅ z under the action morphism
σz ∶ G → G ⋅ z, so the diagram
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C2 C1

G G ⋅ zσz

commutes.

Let η be the generic point of C1. We can pick the geometric point η over
η which corresponds to a choice of an algebraically closed finite field extension of
k(C1) ⊂ k(C1), so we denote by σ−1

z (C1)η and σ−1
z (C1)η the base changes of C1 of the

preimage of k(C1) and k(C1), respectively.

By the first step, there is a curve C′2 ⊂ σ−1
z (C1)η, as this is a closed point over

k(C1). The curve C′2 maps to a curve C2 ⊂ σ−1
z (C1)η under the finite map

σ−1
z (C1)η → σ−1

z (C1)η,

so, by construction, C2 is a curve in σ−1
z (C1) ⊂ G which dominates C1 under σz. Now,

let C be a projective completion of the normalization of C2, with the normalization
map

C ⇢ C̃2 → C2.

Then the desired rational map p ∶ C ⇢ G is induced by the composition

C ⇢ C̃2 → C2 → G.

As the morphism C̃2 → C1 is a composition of dominant maps, it is also dominant and
it can be extended to their smooth projective completions. Moreover, by construction
0 ∈ C1 and thus there is a preimage c0 ∈ C of zero under this extension, so

lim
c→c0

p(c) ⋅ z = lim
c→c0

σz(p(c)) = 0,

using the base change.

Step 3. Since C is a smooth proper curve over k, the completion of the
local ring OC,c0 is isomorphic to the formal power series ring k[[t]], whose field of
fractions we denote by k((t)). As the rational map p ∶ C ⇢ G is defined in a punctured
neighbourhood of c0, it induces a morphism

q ∶ K ≐ Spec k((t)) ≃ Spec Frac ÔC,c0 → Spec FracOC,c0 → G,

satisfying
lim
t→0
[q(t) ⋅ z] = 0.

Furthermore, if R ≐ Spec k[[t]] and K ≐ Spec k((t)), then there is a natural morphism
K → R, induced by the localization, which induces an inclusion of groups

G(R) =Hom(R, G)→Hom(K, G) = G(K),
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and the inclusion k ⊂ R induces a morphism G(R) → G(k) given by taking the
specialization as t → 0.

Let ρ ∶ K → Gm be induced by

k[s, s−1]↦ k((t))
s ↦ t,

so that we have the map

Hom(Gm, G)→ G(K)
λ ↦ λ ○ ρ

which takes a one-parameter subgroup λ of G to the element ⟨λ⟩ ≐ λ ○ ρ, called the
Laurent series expansion of λ.

Now, by Iwahori’s theorem (see (MUMFORD; FOGARTY; KIRWAN, 1994),
2.1), every double coset of the group G(K) with respect to the subgroup G(R) is
represented by a point of the type ⟨λ⟩ for some one-parameter subgroup λ ∶ Gm → G.

Step 4. Applying Iwahori’s theorem for the morphism q ∈ G(K) constructed
in Step 3, there are two elements l1, l2 ∈ G(R) and a one-parameter subgroup λ such
that

l1 ⋅ q = ⟨λ⟩ ⋅ l2,

and λ must be non-trivial since q cannot be written as a R−valued point of G. Let
gi ≐ li(0), so we can write

0 = g1 ⋅ 0 = lim
t→0

l1(t) ⋅ lim
q→0
(q(t) ⋅ z) = lim

t→0
[(⟨λ⟩ ⋅ l2(t)) ⋅ z] .

Since l2 ∈ G(R) and g2 = lim
t→0

l2(0),

l2(t) ⋅ z = g2 ⋅ z + ε(t)

where ε(t) ∈ k[t] is a polynomial involving only strictly positive powers of t. Using the
weight-space decomposition (2.3.3) of the action of λ on V =An, we write

g2 ⋅ z + ε(t) = ∑
r∈Z
[(g2 ⋅ z)r + (ε(t))r],

and since lim
t→0
[(⟨λ⟩ ⋅ l2)(t) ⋅ z] = 0, it follows that

0 = lim
t→0
[(⟨λ⟩ ⋅ l2)(t) ⋅ z] = lim

t→0
(∑

r∈Z
artr(g2 ⋅ z)r + artr(ε(t))) ,

where almost all ai = 0, so (g2 ⋅ z)r = 0 for all r ≤ 0. Hence

lim
t→0
(⟨λ⟩ ⋅ g2 ⋅ z) = 0,

and the constructed one-parameter subgroup λ′ ≐ g−1
2 λg2 satisfies lim λ′(t) ⋅ z = 0, as

we wanted.
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Proposition 3.4.12. Let G be a reductive group over k acting linearly on a projective
scheme X ⊂ Pn and let x ∈ X(k). Then

1. x is semistable ⇒ µ(x, λ) ≥ 0 for every one-parameter subgroup λ.

2. x is stable ⇒ µ(x, λ) > 0 for every one-parameter subgroup λ.

Proof. Since the limit points for the action are in the closure of the orbit Gm ⋅ x, this
follows from 3.4.10, by the topological criterion given in 3.4.1. If x is semistable, we
cannot have 0 ∈ G ⋅ x, and this would be the case only if µ(x, λ) < 0 for the one-parameter
subgroup λ constructed in the previous theorem.

Moreover, if x is stable and µ(x, λ) = 0, the orbit G ⋅ x̃ is closed and the limit
y = lim

t→0
λ(t) ⋅ x̃ will be inside the boundary of G ⋅ x̃ = G ⋅ x̃, but as y is a fixed point for

λ(Gm), it will satisfy dim Gy ≥ dim Gm = 1, and this contradicts the stability of x.

Lemma 3.4.13. Fix x ∈ X and let λ some one-parameter subgroup of G. The function

µ●(x, λ) ∶ PicG(X)→Z

L ↦ µL(x, λ)

defines a morphism of groups.

Proof. To see this, let L1, L2 ∈ PicG(X) be two linearizations for the G−action on X. As
seen in 3.3.12, the tensor product L1 ⊗ L2 admits a natural linearization, and using the
explicit description in 3.3.13, we get that the linearization is the tensor product of the
linearizations and thus, if

µL1(x, λ) = r1 and µL2(x, λ) = r2,

then µL1⊗L2(x, λ) = r1 ⋅ r2, since the action of λ on fibers of L1 ⊗ L2 is given as a product
of the actions in L1 and L2.

We can use the Hilbert-Mumford weight to characterize the stable and
semistable points, by the following theorem:

Theorem 3.4.14. [Hilbert-Mumford criterion] Let G be a reductive group acting on a proper
k−scheme X. Let L be a ample linearization. Then, if x ∈ X(k),

x ∈ Xss(L) ⇐⇒ µL(x, λ) ≥ 0 for every one-parameter subgroup λ

and
x ∈ Xs(L) ⇐⇒ µL(x, λ) > 0 for every one-parameter subgroup λ
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Proof. As L is ample, there is n > 0 such that L⊗n is very ample. Then, by 3.4.13, we
have

µL⊗n(x, λ) = n ⋅ µ(x, λ),

so it suffices to prove the statement when L is very ample. In this case, then L induces
a G−equivariant embedding i ∶ X ↪ Pn such that i∗OPn(1), and

µL(x, λ) = µ
O(1)∣

X(x, λ) = µ(x, λ),

so we can use 3.4.12 for direct implications. For converse implications, if every one-
parameter subgroup λ satisfies µL(x, λ) ≥ 0, we can use the theorem 3.4.11 to conclude
that x has to be semistable, since it implies 0 ∉ G ⋅ x.

Moreover, if every one-parameter subgroup λ satisfies µL(x, λ) > 0, then
there is no limit point and thus the orbit must be closed, since any point in the closure
G ⋅ x is a local limit of one-parameter subgroups, by 3.4.11.

This numerical criterion will be very useful for verifying (semi)stability
conditions in examples.

3.5 Applications
In this section, we comment how to apply the methods of GIT to some

classical examples of moduli spaces. In the next chapter, we study more closely a
specific example, the construction of a moduli space for vector bundles over smooth
algebraic curves.

Example 3.6 (Grassmanian). Let G(r, n) be the grassmanian variety of r-dimensional
linear subspaces in the affine space An. The reductive group SLn(k) acts naturally on
G(r, n) via its linear representation in the affine n−space.

Given W ∈ G(r, n), we can choose a basis (v1,⋯, vr) of W to define its
Plucker embedding:

P ∶ G(k, n)→ P(
k
⋀(An))

W = ⟨v1, . . . , vr⟩↦ [v1 ∧⋯∧ vr].

Taking the standard basis of kn, we can write:

v1 ∧ . . . ∧ vr = ∑
0≤i1<⋯<ir≤n

pi1,⋯,ir ei1 ∧⋯∧ eir

where the coefficients pi1,⋯,ir can be taken as the projective coordinates of G(r, n) ⊂

PN ≐ P(
k
⋀(An)) via the embedding. It is sometimes convenient to represent W also
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by a r × n matrix (associated to the projection onto W)

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

a11 a12 ⋯ ⋯ a1n

⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯
ar1 ar2 ⋯ ⋯ arn

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

so the Plucker coordinates pi1,⋯,ir are the maximal minors Ai1,⋯,ir of this matrix, formed
by choosing the columns Ai1 ,⋯, Air .

Using this representation, two matrices A, A′ represent the same subspace
if and only if there is a change of coordinates C ∈ GL(r) such that A′ = CA. Note also
that the matrix A is of maximal rank, since it’s rows are linearly independent, hence
we can view elements of G(r, n) as r × n matrices of rank r, up to the action of GL(r).

Let us consider the space of all r × n matrices as the affine space Arn and
let L =Arn ×A1 be the trivial line bundle. We can define a GLr(k)−linearization of L
explicitly as the action:

C ⋅ (A, t)↦ (CA, det C ⋅ t),

where C ∈ GL(r), A ∈Arn and t ∈A1 = k.

We can also consider the functions pi0,⋯,ir as invariant sections of this bundle,
and this means matrices A ∈Arn of maximal rank are semistable points with respect
to this linearization, since there will be a GL(r)−invariant section of L which doesn’t
vanish at A, and as the group GL(r) acts freely on the open subset {pi1,⋯,ir ≠ 0}, these
are stable points. Thus we can view G(r, n) as an open subvariety of the geometric
quotient:

G(r, n) ≃ (Arn)s(L)/GL(r).

Example 3.7. In this example, we consider the classification of projective hypersurfaces
of a fixed degree d ≥ 1 inside the projective space Pn, up to a projective change of
coordinates.

Note that we can determine any homogeneous polynomial f ∈ k[x0,⋯, xn]d
completely by a choice of N ≐ (n + d

d
) parameters, up to multiplication by k×, so we

can consider the parameter space of this moduli problem as the projective space

Yn,d ≐ PN−1
k .

Any one-parameter subgroup of SL(n + 1) is conjugated to a one-parameter
subgroup of the form

λ(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

tr0

tr1

⋯
trn

⎞
⎟⎟⎟⎟⎟⎟
⎠
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where ri are integers such that ∑
i

ri = 0, and r0 ≥ r1 ≥ ⋯ ≥ rn. Then the action of λ

is diagonal with respect to the basis of the affine cone AN over Yd,n given by the
monomials

xI = xi0
0⋯xin

n ,

for I = (i0,⋯, in) a tuple of non-negative integers which add up to d. Thus, the weight
of each monomial xI for the action λ is given as

µ(xI , λ) = −
n
∑
j=0

rjij.

Now, if F =∑
I

aI xI ∈ k[x0, . . . , xn]∖ {0} is a homogeneous degree d polyno-

mial, where I = (i0, . . . , in) are tuples of non-negative integers which add up to d, we
let pF ∈ Yd,n be the corresponding equivalence class. Then, we compute

µ(pF, λ) = −min
⎧⎪⎪⎨⎪⎪⎩
−∑

j=0
rjij ∶ I = (i0, . . . , in) and aI ≠ 0

⎫⎪⎪⎬⎪⎪⎭

=max
⎧⎪⎪⎨⎪⎪⎩
∑
j=0

rjij ∶ I = (i0, . . . , in) and aI ≠ 0
⎫⎪⎪⎬⎪⎪⎭

.

The resultant polynomial of a collection of polynomials is a function in the
coefficients of these polynomials which vanishes if and only if these polynomials have
a common root. For a polynomial F ∈ k[x0,⋯, xn]d, we define the discriminant ∆(F) of
F to be the resultant of the set

S = { ∂F
∂xi
∶ 0 ≤ i ≤ n} .

Then, ∆ is a homogeneous polynomial in O(Yn,d), and is non-zero at F if and only if F
defines a smooth hypersurface.

We also know that F defines a smooth variety if and only if g∗F defines
a smooth variety, whenever g is a projective change of coordinates. This means in
particular that ∆ ∈ O(Yn,d)SL(n+1). If d = 1, Y1,n ≃ Pn and the only SLn+1 −invariant
homogeneous polynomials are the constant functions, and this also implies that there
are no semistable points for the action of SLn+1.

Since ∆(F) ≠ 0 if F is smooth, we have the following:

Proposition 3.5.1. For d > 1, every smooth degree d hypersurface in Pn is semistable
for the action of SLn+1 on Yd,n.

For more on the moduli space of hypersurfaces using GIT, we refer the
reader to (HOSKINS, 2015) and (DOLGACHEV, 1994).
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4 Vector Bundles over a curve

Introduction
In this chapter, we develop the moduli space of µ−(semi)stable vector

bundles over a curve, following (HOSKINS, 2015) and (NEWSTEAD, 2012).

We assume familiarity with basic homological algebra of sheaves, and
denote by VectBun(X) the category of vector bundles over a scheme X, by Loc(X)
the category of locally free sheaves over X and by Coh(X) the category of coherent
sheaves over X. We also use the anti-equivalence between the categories VectBun(X)
and Loc(X) (see, for example, (HARTSHORNE, 1977), Exercise 5.18).

After a review of the basic theory of coherent sheaves over smooth algebraic
curves (4.1 and 4.2), we study the concept of slope and µ−(semi)stability of a vector
bundle (4.3), to introduce the associated moduli problem in 4.4. Afterwards, we use
Grothendieck’s Quot scheme (see 4.5) as a parameter space, and outline the GIT
construction for the moduli space of µ-(semi)stable vector bundles.

4.1 Coherent sheaves over curves
Throughout this section, we use basic constructions in algebraic geometry

and homological algebra (see (HARTSHORNE, 1977), Chapter I I and I I I).

Let X be a smooth projective curve over k. If F is a coherent sheaf over
X, its Euler characteristic is given by X (F) = h0(X,F) − h1(X,F). The genus of X
is by definition the natural number g ≐ h1(X,OX). As we are working with smooth
projective curves, the following groups are isomorphic

Pic(X) ≃ Cl(X) ≃ CaCl(X),

where we denote by Pic(X) the Picard group of X, by Cl(X) the group of classes of
Weil divisors and by CaCl(X) the group of classes of Cartier divisors. We define the
support of F as the set

suppF ≐ {x ∈ X ∶ Fx ≠ 0}.

Definition 4.1.1. Let K0(X) be the free group generated by coherent sheaves [E] on X,
subjected to the relations

[E]− [F]+ [G] = 0

whenever there is a short exact sequence of coherent sheaves

0→ E → F → G → 0.
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The group K0(X) is called the Grothendieck Group associated to X.

Theorem 4.1.2 ((HARTSHORNE, 1977), III, Exercise 6.9). If F is a coherent sheaf on X,
then F admits a finite locally free resolution, i.e., there is an exact sequence

0→ En → ⋯→ E1 → E0 → F → 0,

where each sheaf Ei is a locally free sheaf.

We use the existence of finite locally free resolutions to extend the usual
notions for locally free sheaves of rank, denoted by rk, the determinant bundle, denoted
by det, to a morphism of groups (det, rk) ∶ K0(X)→ Pic(X)⊕Z. Whenever E is a locally
free sheaf over X, we send the class [E] to the well-defined pair (detE , rk E). Using the
previous theorem, whenever F is a coherent sheaf, we can consider a finite locally free
resolution of F and use the relations defining the group K0(X).

Definition 4.1.3. If D is a divisor on X, the degree of the corresponding invertible
sheaf is defined as deg(OX(D)) ≐ deg D. If E is a locally free sheaf over X, we set
degE ≐ deg(detE), which is well defined since detE ∈ Pic(X). If F is a coherent sheaf
over X, we set deg(F) ≐ deg(det[F]) using the map det as defined over K0(X). Since
we define this using the relations inside the group K0(X), the degree deg is also
additive on exact sequences of coherent sheaves.

If D is an effective Weil divisor on X, we can write

D =
n
∑
i=1

ni ⋅ xi

for finite points xi ∈ X. Then, we can consider the corresponding closed (possibly
non-reduced) subscheme of X given by the union of each point xi with its multiplicity
ni, denoted D ⊂ X. We use divisors over X to study some examples of coherent sheaves
over X which are not locally free.

Example 4.1. Given any point x ∈ X, we can consider the divisor D = −x and let kx be
the skyscraper sheaf given as

kx(U) ≐
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k, x ∈ U

0, otherwise.

whenever U ⊂ X is open. Note that the sections of the corresponding invertible sheaf
OX(−x) are sections of OX which vanish at x. Furthermore, we can form the following
exact sequence:

0→ OX(−x)→ OX → kx → 0,
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and this is a finite locally free resolution of the coherent sheaf kx, so we can compute

deg(OX(−x)) = deg(D) = −1

and deg(OX) = 0, thus deg(kx) = 1. Since H0(X, kx) = Γ(X, kx) = k and H1(X, kx) ≃ 0,
by the dimension of supp kx, we also have X (kx) = 1.

Example 4.2. Given any invertible sheaf L over X, and x ∈ X, we can tensor the previous
exact sequence by L and get

0→ L(−x)→ L→ kx → 0,

where L(−x) is the sheaf of sections of L vanishing at x. Since the Euler characteristic
is additive on exact sequences, in this case we get

X (L) = X (L(−x))+X (kx) = X (L(−x))+ 1.

Example 4.3. If D = n ⋅ x, for n ≥ 0, we can consider the sheaf kD given by:

kD(U) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

kn, x ∈ U

0, otherwise.

This coherent sheaf will also satisfy the exact sequence:

0→ OX → OX(n ⋅ x)→ kD → 0,

where the corresponding morphism:

OX → OX(n ⋅ x)

is given by multiplication by the factor (t− x)n. Taking stalks, we get the exact sequence:

0→ OX,x → OX,x → OX,x/mn
x → 0,

where the last vector space is n-dimensional over k. Note that, for any divisor D ≥ 0,
we can define kD as the cokernel:

0→ OX → OX(D)→ kD → 0.

If D = nkx1 +⋯nkxk, locally in each stalk x = xk we have a map x ↦ xnk , and the resulting
sheaf kD will also be a skyscraper sheaf, with global sections given by

H1(X, kD) = kn1 ⊕⋯⊕ knk = kdeg D.

Theorem 4.1.4 (Riemann Roch, version I). Let L = OX(D) be an invertible sheaf on X.
Then

X (OX(D)) = X (OX)+deg D.
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Proof. We can generically write D as a formal sum

x1 +⋯+ xn − y1 −⋯− ym

where xi, yi ∈ X. We will prove the theorem by induction on l = n+m. If l = 0, D = 0 and
the statement is trivial.

Let us suppose that we proved this for l = n +m. If

D = x1 +⋯+ xn − y1 −⋯− ym + xn+1,

by the induction hypothesis the divisor D − xn+1 satisfies:

X (OX(D − xn+1)) = X (OX)+deg(D − xn+1) = X (OX)+deg(D)− 1,

and on the other hand, if L = OX(D), we get

X (OX(D − xn+1)) = X (L(−xn+1)) = X (L)− 1,

by the formula of the previous examples. Thus

X (OX(D))− 1 = X (OX)+deg(D)− 1.

The other possibility is D = x1 +⋯+ xn − y1 −⋯− ym − ym+1. In this case, we can argue
similarly, letting E = x1 + ⋯ + xn − y1 − ⋯ − ym, so that D = E − ym+1 and OX(D) =
OX(E − ym+1). Moreover, by the induction hypothesis, we can write

X (OX(E)) = X (OX)+deg(E).

On the other hand,

X (OX(E)) = X (OX(E − ym+1)+ 1⇒ X (OX(D)) = X (OX(E))− 1

and deg(D) = deg(E)− 1, so X (OX(D)) = X (OX)+deg(D), as we wanted to show.

The sheaf of differentials ωX = Ω1
X over X is called the canonical sheaf over

X.

Theorem 4.1.5 (Serre duality for Curves). Let X be a smooth projective curve of genus and
E a locally free sheaf. There exists a natural perfect pairing:

H0(X,E∨ ⊗ωX)×H1(X,E)→ k.

Hence, H0(X,E∨ ⊗ωX) = H1(X,E)∨ and h0(X,E∨ ⊗ωX) = h1(X,E).

For a proof of the Serre duality, see for example ((HARTSHORNE, 1977) III
Theorem 7.6).
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Remark 4.1.6. We will also need a more homological formulation of Serre duality for
Grothendieck’s classification of vector bundles over P1. There are natural isomorphisms

Ext1(F ,G)∨ ≃ Ext0(G,F ⊗ωX) =Hom(G,F ⊗ωX)

whenever F and G are locally free sheaves over X. The previous version of Serre duality
follows from this one, as the functor Hom(OX,−) is naturally isomorphic to Γ(X,−).

Theorem 4.1.7 (Riemann-Roch, version II). Let X be a smooth projective curve of genus g
and L be a degree d invertible sheaf on X. Then:

h0(X,L)− h0(X,L∨ ⊗ωX) = d + 1− g.

Proof. First, we can compute:

X (OX) = h0(X,OX)− h1(X,OX) = 1− g.

Then, by Serre duality and the previous version of Riemann-Roch, it follows that:

h0(X,L)− h0(X,L∨ ⊗ωX) = X (L) = d +X (OX) = d + 1− g.

Example 4.4. As an immediate application of the Riemann-Roch theorem, we compute
the degree of the canonical bundle on a curve X of genus g:

h0(X, ωX)− h1(X, ωX) = g − 1 = deg ωX + 1− g.

Thus, deg ωX = 2g − 2.

Example 4.5. If g = 1, then deg ωX = 0, and whenever D is an effective divisor over
X, we can write h0(OX(D)) = deg(D) + h0(OX(−D), but as deg D > 0, we conclude
h0(OX(−D)) = 0, and hence h0(OX(D)) = deg D.

Proposition 4.1.8. Let E be a locally free sheaf of rank r over X and D an effective
divisor with r ⋅deg(D) > h1(E). Then the vector bundle E(D) admits a global section.

Proof. Consider the following exact sequence:

0→ OX → OX(D)→ kD → 0,

where kD is the torsion sheaf defined in 4.1. We can tensor this by the sheaf E , to get
the exact sequence

0→ E → E(D)→ kD ⊗ E → 0.
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Taking the long exact sequence in cohomology, we get

0→ H0(X,E)→ H0(X,E(D))→ H0(X, kD ⊗ E)→
→ H1(X,E)→ H1(X,E(D))→ H1(X, kD ⊗ E)→ 0.

Using the description of the sheaf kD, we have that H0(X,E ⊗ kD) ≃ kr⋅deg D, and
H1(X,E ⊗ kD) = 0. Thus, the above is an exact sequence, and we can use it to compute
the Euler characteristic

0 = h0(E)− h0(E(D))+ r ⋅deg(D)− h1(E)+ h1(E(D))
= X (E)−X (E(D))+ r ⋅deg(D).

To show E(D) admits a global section, we only need to verify that h0(E(D)) > 0. Using
the hypothesis, we write X (E(D)) −X (E) = r ⋅ deg(D) > h1(E), so that h0(E(D)) >
h1(E(D))+ h0(E) ≥ 0, and we are done.

Remark 4.1.9. Using the previous proposition, we conclude the locally free E has an
invertible subsheaf L ⊂ E , obtained by tensoring the morphism in Hom(OX,E(D))
corresponding to the global section via the natural isomorphism Hom(OX,−) ≃ Γ(X,−).

Proposition 4.1.10. If L is an invertible sheaf on X with degL > 2g − 2, then h1(L) = 0.

Proof. Since deg(ωX) = 2g − 2 ≥ 0 and the degree defines a morphism between Pic(X)
and Z, then

deg(L∨ ⊗ωX) = deg(L∨)+deg(ωX) < −(2g − 2)+ (2g − 2) = 0,

so the line bundle L∨ ⊗ωX will not have any global sections over the integral scheme
X (see, for example (LIU; ERNE, 2006), Chapter 7, 3.25 (b)), and h0(L∨ ⊗ωX) = 0, so by
Serre duality it follows that h1(L) = 0.

Since h1(L) = 0, such L is generated by its global sections. In particular, if an
invertible sheaf L on a curve X has sufficiently high degree (depending on the genus)
we can compute the dimension of the space of global sections of L easily using the
Riemann-Roch theorem:

h0(L) = deg(L)+ 1− g.

Using this and the previous results, we get the following corollary:

Corollary 4.1.10.1. If L ⊂ E is an invertible subsheaf of a locally free sheaf of rank r,
then the quantity deg(L) is bounded above.

Proof. Suppose, on the contrary, there is an invertible sheaf L of degree large enough
so deg(L) > 2g − 2 and r ⋅deg(L) > h1(E).
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Then, by the previous results, we have the cohomology conditions h0(E) > 0
and h1(L) = 0, so h0(L) = deg(L)+ 1− g. Rearranging, we get

deg(L) = h0(L)− 1+ g ≤ h0(E)− 1+ g,

so there is an upper bound which does not depend on L, a contradiction on our
hypothesis.

Theorem 4.1.11. Let E be a locally free sheaf of rank r over X. Then, there is a short exact
sequence of locally free sheaves over X:

0→ L→ E → F → 0

such that L is an invertible sheaf and F has rank r − 1.

Proof. Let L ⊂ E be an invertible sheaf of maximal degree in E , and consider the
quotient sheaf F ≐ E/L. There is an effective divisor D such that L(D) ⊂ E(D) is
generated by its global sections, since h1(L(D)) will eventually be zero by 4.1.10. Thus,
we can consider the stalks in

F(D)x =
E(D)x
L(D)x

locally as sections of E(D)x without the fixed generating section L(D)x, which implies
that F(D)x is a free OX,x−module. Tensoring back by the locally free sheaf OX(−D),
we get that F is locally free.

4.2 Vector bundles and torsion sheaves
The category of locally free sheaves over a scheme X is usually not an

abelian category. This can be seen when we try to take (co)kernels of morphisms in
this category. For an example, see the cokernel kD of a morphism between locally free
sheaves in 4.1, which is not locally free.

The objective of this section is to manage this problem using the fact that we
are over a smooth algebraic curve X over an algebraically closed field k. The solution
(see 4.2.8) involves operations on arrows between categories

R = K, I ∶ Coh(X)→ Loc(X)

so the diagram

Loc(X) Loc(X)

Coh(X) Coh(X)(co)kernel
R
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commutes, where the downwards vertical arrows denote the inclusion Loc(X) ↪
Coh(X) as a full subcategory, so the operations K, I behave like kernels and cokernels,
respectively. To better understand the inclusion Loc(X)↪ Coh(X) in this context, we
appeal to the algebra of the corresponding modules.

Definition 4.2.1. If A is a ring, an A−module M is said to be torsion-free if, for every
m ∈ M and r ∈ A regular, m ⋅ r ≠ 0.

Note that, if A is a domain, then we must have m ⋅ r ≠ 0 whenever m ∈ M, for
M to be a torsion-free module over A. Moreover, when A is a principal ideal domain,
we can use a stronger classification result:

Theorem 4.2.2 ((JACOBSON, 2009), 3.8). If M is a finitely generated module over a principal
ideal domain A, then there is a unique decreasing sequence of proper ideals:

(dn) ⊂ (dn−1) ⊂ ⋯ ⊂ (d1)

such that
M ≃ A

(d1)
⊕⋯⊕ A

(dn)
.

The largest free submodule of M is represented in this composition by
choosing factors with di = 0. Since A is a principal ideal domain, there exists t ∈ A such
that A/(t) is the torsion submodule of M, and we can write

M ≃ A/(t)⊕ F,

where F is a free module over A. Moreover, we say that a module M is torsion if M is
isomorphic to its torsion submodule.

We can also interpret this theorem in our geometric context, since when X
is an irreducible smooth projective curve, O(X) is a P.I.D., as every prime ideal must
be maximal by the dimension condition.

Proposition 4.2.3. If X is a smooth irreducible projective curve, then

1. Any torsion-free sheaf over X is locally free.

2. Any subsheaf of a locally free sheaf over X is locally free.

Proof. The proof of (1) follows locally from the algebraic discussion above. Moreover,
a subsheaf of a locally free sheaf over X cannot have a torsion part, and thus will also
be locally free.
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Since we can take a torsion submodule of a general module M, if F is a
sheaf, we define the torsion-subsheaf of F to be the corresponding subsheaf, which
we denote by T(F), and when T(F) ≃ F , we say F is a torsion sheaf.

If F is a locally free sheaf over X, with an associated vector bundle F
and E ⊂ F is a subsheaf, then the inclusion of stalks Ex → Fx is injective whenever
x ∈ X. However, the map on the fibers of the associated vector bundles Ex → Fx is not
necessarily injective, as Ex is obtained by tensoring Ex with the residue field k(x) ≃ k,
which may not be an exact functor.

Proposition 4.2.4. If E ⊂ F are two locally free sheaves over X such that the quotient
G ≐ F/E is torsion free over k, then E is a subbundle of F.

Proof. Since G is torsion free, it is locally free and thus we can take G as the associated
vector bundle. We have the following short exact sequence on stalks:

0→ Ex → Fx → Gx → 0,

which can be tensored with the residue field to recover the fibers of the associated
vector bundles, and we have the associated long exact sequence

⋯→ Tor1
OX,x
(k,Gx)→ Ex → Fx → Gx → 0.

By hypothesis, Gx is torsion-free over k, which means Tor1
OX,x
(k,Gx) = 0 and thus the

sequence
0→ Ex → Fx → Gx → 0

is exact whenever x ∈ X, so that E is a subbundle of F.

Proposition 4.2.5. Let T be a torsion coherent sheaf over X. Then T has finite support,
and we set l(T ) ≐ ∣ suppT ∣, counted with multiplicity, the length of T .

Proof. As freeness of coherent sheaves is local, we conclude that T must be trivial
on an open dense subset of X. Thus, suppT is a closed subset of X, and this means
suppT is finite, as X is Noetherian.

Definition 4.2.6. For a coherent sheaf E over a projective scheme Y with a fixed ample
invertible sheaf L, the Hilbert polynomial of E with respect to L is a polynomial
P(E ,L) ∈Q[t] such that for l ∈N sufficiently large,

P(E ,L)(l) = X (E ⊗L⊗l) =∑
i≥0
(−1)i dim Hi(Y,E ⊗L⊗l).

By Serre’s vanishing cohomology theorem (see (HARTSHORNE, 1977), III,
Theorem 5.2), for sufficiently large l ∈ N, all higher cohomology groups of E ⊗L⊗l
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vanish. Hence, for l sufficiently large, P(E ,L)(l) = h0(Y,E ⊗L⊗l). There is also a more
explicit form of the Hilbert polynomial, related to the degree of coherent sheaves
(compare (HARDER; DIEDERICH, 2011), p. 157). If we denote by d ≐ dim suppF , we
can write

X (Y,F(r)) = degF
d(F) rd(F) + c1rd(F)−1 + . . . + cd(F),

where ci are rational coefficients varying with F . In particular, when T is a torsion
sheaf on a curve X, then we get equalities X (X,T ) = h0(T ) = deg(T ).

Remark 4.2.7. For a proof of the existence of the Hilbert polynomial in the general
case, see for example (HUYBRECHTS; LEHN, 2010).

Definition 4.2.8. Let E ⊂ F be locally free sheaves, and E and F denote the correspond-
ing vector bundles. Then the vector subbundle of F generically generated by E is a
vector bundle E of F which is the vector bundle associated to the locally free sheaf:

E ≐ π−1(T(F/E)),

where π ∶ F → F/E denotes the quotient, and this can be done since the sheaf

F
E /T (

F
E )

is, by definition, torsion-free. This gives E as a subbundle of F.

As we discussed in 4.2.3, the sheaf F/E splits in a direct sum of its torsion
part T = T(F/E) and its torsion-free part, which we denote by Q. We can form a
diagram with exact rows

T

0 E F F/E 0

0 E ′ F Q 0

0

π

q

q○π

where E ′ ≐ ker(q ○π) coincides with E , by our construction. Since q is an epimorphism
and in the middle we have an equality, by the Snake lemma there is a monomorphism
E → E completing the diagram, i.e., such that its cokernel is T . Thus, we got the
following exact sequence:

0→ E → E → T → 0,
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and this means that X (E) = X (E)+X (T ). On the other hand, as T is a torsion sheaf,
it has dimension zero and h1(T ) = 0, thus X (E) = X (E)+ h0(T ), and since dim X = 1,
h0(T ) gives the number of points in the support of T , counted with multiplicity, so
l(T ) = h0(T ).

Remark 4.2.9. When D is a divisor over X and L ≐ OX(−D) ⊂ OX and the associated
vector bundles denoted by L′ ⊂ L, then the vector subbundle of L generically generated
by L′ is L′ = L.

Definition 4.2.10. Let f ∶ E → F be a morphism of vector bundles. We define

1. The vector subbundle K( f ) of E, which is generically generated by the kernel
ker f and satisfies rk K( f ) = rk ker f and deg K( f ) ≥ deg ker f .

2. The vector subbundle I( f ) of F, which is generically generated by the image Im f
and satisfies rk I( f ) = rk Im f and deg I( f ) ≥ deg Im f .

For the rest of the section, we derive another Riemann-Roch formula, for
locally free sheaves over X, which will be useful for the next sections.

Theorem 4.2.11. If E and F are locally free sheaves over X, then

deg(E ⊗F) = rkE degF + rkF degE .

Proof. We proceed by induction on the rank of E . If rkE = 1, we can write E = OX(D)
for a divisor D over X. When D is effective, we have the short exact sequence:

0→ OX → OX(D)→ kD → 0,

as in 4.1, so tensoring with F , we get the exact sequence

0→ F → F(D)→ F ⊗ kD → 0,

which can also be regarded as a finite locally free resolution for the torsion sheaf
F ⊗ kD, so deg(F(D)) = deg(F ⊗ kD)+deg(F). On the other hand, F ⊗ kD is a torsion
sheaf, thus deg(F ⊗ kD) = dim H0(X,F ⊗ kD) = rkF ⋅deg D. If D is a general divisor,
we can write D = D1 −D2 where Di are effective so that:

deg(F ⊗OX(D1 −D2)) = deg(F(−D2))+ rkF ⋅deg D1,

but on the other hand

degF = deg(F(−D2)⊗OX(D2)) = deg(F(−D2))+ rkF ⋅deg(D2).

Rearranging, we conclude that

deg(F ⊗OX(D)) = deg(F)+ rkF ⋅ (deg(D1)−deg(D2)) = deg(F)+ rkF ⋅deg(D)
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This concludes the case rkE = 1. Now, we suppose that we proved the theorem for all
locally free sheaves E ,F where rkE = n − 1, and then we can do the same trick again,
choosing a line bundle L ⊂ E such that

0→ L→ E → E/L→ 0

is an exact sequence of locally free sheaves and rkE/L = n − 1. Tensoring this sequence
with the locally free sheaf F give us:

deg(F ⊗ E) = deg(F ⊗L)+deg(F ⊗ E/L)

and we can apply the induction hypothesis to get the final result.

Corollary 4.2.11.1 (Riemann-Roch, III). Let X be a smooth projective curve of genus g
and F be a locally free sheaf over X. Then

X (F) = deg(F)+ rk(F)(1− g).

Proof. We prove this by induction on rkF using the previous theorem. If F is an
invertible sheaf, this is the previous form of the Riemann-Roch theorem in 4.1.7. We
can then use the same argument of the existence of an invertible sheaf inside F to
getX (F) = X (L)+X (F/L) and applying the induction hypothesis, we conclude

X (F) = X (L)+X (F/L)
= deg(L)+ (1− g)+deg(F/L)+ (rk(F)− 1)(1− g)
= deg(F)+ rk(F)(1− g),

by the previous theorem.

Remark 4.2.12. When X is a smooth curve and we are dealing with locally free sheaves,
we can use the Riemann-Roch theorem to compute the Hilbert polynomial. We fix
L = OX(1) an ample invertible sheaf, and whenever E is a locally free sheaf over X of
rank n and degree d, the twist E(m) has rank n and degree nm + d, so we conclude

X (E(m)) = d +mn + n(1− g)

whenever m ∈Z. Thus E has Hilbert polynomial P(t) = nt + d + n(1− g).

4.3 Stability and slope
In this section, we study of the category of vector bundles, following

(HOSKINS, 2015), (NEWSTEAD, 2012) and (HUYBRECHTS; LEHN, 2010). The concept
of µ−stability introduces a partitioning of this category in a suitable way, so the moduli
problem of fixed µ−semistable vector bundles is bounded and it admits a moduli space.
As before, we work over a smooth projective curve X over k, and denote its genus by g.
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Definition 4.3.1. The slope of a coherent sheaf E over X is defined as the ratio

µ(E) ≐ degE
rkE ∈Q.

In particular, whenever E is locally free, and E is the corresponding vector bundle over
X, we use the same definition.

Since the degree and the rank are additive on exact sequences of coherent
sheaves, the slope is also additive, and whenever

0→ E → F → G → 0

is an exact sequence of vector bundles, we conclude that

(a) if two of the vector bundles E, F, G have the same slope, then all three have the
same slope;

(b) µ(E) < µ(F) ⇐⇒ µ(F) < µ(G);

(c) µ(E) > µ(F) ⇐⇒ µ(F) > µ(G).

Definition 4.3.2. A vector bundle E is µ−stable (resp. µ−semistable) if every proper
non-zero (usually called non-trivial) vector subbundle S ⊂ E satisfies:

µ(S) < µ(E) (resp. µ(S) ≤ µ(E)).

A vector bundle E is µ−polystable if it can be written as a direct sum of µ−stable
vector bundles of same slope.

Remark 4.3.3. Using the properties of the slope whenever there is an exact sequence of
vector bundles, we could also rephrase µ−semistability as follows: a vector bundle E is
µ−semistable whenever every quotient bundle F satisfies µ(F) ≥ µ(E). Indeed, using
4.2.4, we conclude that there must be a non-trivial subbundle H ⊂ E such that

0→ H → E → F → 0

is exact, so µ(H) ≤ µ(E).

Remark 4.3.4. As observed in 4.2.3, every non-trivial subsheaf F of a locally free sheaf
E over X is also locally free, and in particular corresponds to a non-trivial subbundle
of the associated vector bundles F ⊂ E, we could also define µ−(semi)stability in terms
of locally free sheaves.

We shall prove later that, whenever we fix suitable pairs (d, n) for degree
and rank, respectively, the notion of µ−stability coincides with stability with respect to
the GIT problem related to constructing the moduli space of vector bundles over X.



Chapter 4. Vector Bundles over a curve 116

Proposition 4.3.5. Let L be a line bundle, and E be a vector bundle over X. Then L is
µ−(semi)stable, and whenever E is µ−(semi)stable, the tensor product E⊗ L is µ-stable.

Proof. If L is a line bundle, it is trivially µ−semistable. For the second statement, let
F′ ⊂ E⊗ L be a proper non-trivial subbundle. Then F ≐ F′ ⊗ L−1 is a vector subbundle
of E such that F′ = F⊗ L. By the µ−(semi)stability of E, we have µ(F′)(≤)µ(E). On the
other hand, using the formula 4.2.11, we can write

µ(F⊗ L) = deg(F⊗ L)
rk F⊗ L

= deg(F)+deg L ⋅ rk F
rk F

= µ(F)+deg(L)

so that

µ(F′) = µ(F)+deg(L)(≤) < µ(E)+deg(L) = deg(E⊗ L)
rk E

= µ(E⊗ L)

and the claim follows.

Lemma 4.3.6. Let f ∶ E → F be a non-zero morphism of vector bundles over X. Then:

(a) If E and F are µ−semistable, µ(E) ≤ µ(F).

(b) If E and F are µ-stable of the same slope, then f is an isomorphism.

(c) If E is µ-stable and F is µ−semistable, µ(E) < µ(F).

Proof. Let G1 ≐ K( f ) ⊂ E and G2 ≐ I( f ) ⊂ F subbundles generically generated by ker f
and by Im f , respectively, as in 4.2.10. We can write

rk E = rk(K( f ))+ rk(I( f )) = rk G1 + rk G2,

and because of the induced exact sequence of coherent sheaves

0→ ker f → E → Im f → 0,

we get

deg(E) = deg(ker f )+deg(Im( f ))
≤ deg G1 +deg G2.

Furthermore, if E and F are µ−semistable, then µ(G1) ≤ µ(E) and µ(G2) ≤ µ(F), which
means

deg(E) ≤ deg(G1)+deg(G2)
≤ rk(G1) ⋅ µ(E)+ rk(G2) ⋅ µ(F).
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To see how this implies (a), lets suppose that µ(E) > µ(F). Then

deg(E) ≤ rk(G1)µ(E)+ rk(G2)µ(F)
< rk(G1)µ(E)+ rk(G2)µ(E) = deg(E),

which is a contradiction. For (b), we suppose µ(E) = µ(F), to get

deg(E) ≤ rk(G1)µ(E)+ rk(G2)µ(E) = µ(E) ⋅ (rk G1 + rk G2) = deg(E),

and equality occurs if and only if ker f = 0 and Im f = F2, so the claim follows.

To prove (c), we proceed as in (a), but in this case as E is µ−stable we have
the strict inequality µ(G1) < µ(E), so

deg(E) < deg(G1)+deg(G2)
< rk(G1)µ(E)+ rk G2µ(F).

If we suppose µ(F) ≤ µ(E), then we arrive at a similar contradiction

deg(E) < rk(G1)µ(E)+ rk(G2)µ(E) < deg(E),

so µ(E) < µ(F).

Proposition 4.3.7. If F is a µ−semistable vector bundle over X such that µ(F) < 0, then
H0(X, F) = 0.

Proof. We denote by F the corresponding locally free sheaf over X, and suppose that
H0(X,F) ≠ 0. Then, the existence of a non-zero global section s ∈ H0(X,F) implies the
existence of a non-zero morphism

OX → F ,

given by the evaluation of this global section. Arguing by dimension, this must be
an injection, which gives a non-zero invertible subsheaf L ⊂ F , with zero slope. On
the other hand, as µ(F) < 0, and F , we get µ(L) = 0 > µ(F), contradicting the
µ−semistability of F .

Proposition 4.3.8. If there is an exact sequence of vector bundles over X of the form

0→ E → F → G → 0

where E and G are µ−semistable vector bundles of same slope, then F must be
µ−semistable of the same slope.
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Proof. The slope of F must coincide with µ ≐ µ(E) = µ(G), by the additivity of the
slope function. To show F is µ−semistable, let F′ ⊂ F be a non-trivial subbundle of F.
We let E′ ≐ E ∩ F′, considering E as a subsheaf of F, and denote by G′ the image of F′

inside G.

Using the exactness of the sequence, if E′ = 0, then F′ can be identified with
a subbundle of G, and if G′ = 0, then F′ is contained in E′. In either case, we conclude
µ(F′) ≤ µ.

Furthermore, as E and G are µ−semistable, µ(E′) ≤ µ and µ(G′) ≤ µ, and we
can form the following exact sequence

0→ E′ → F′ → G′ → 0,

so µ(F′) ≤ µ, and the µ−semistability of F follows.

Proposition 4.3.9. Every stable bundle E satisfies Hom(E, E) ≃ k.

Proof. To see this, if E is stable and h ∶ E → E is any morphism, we can choose any
point x ∈ X and λ ∈ k an eigenvalue of the linear map hx ∶ Ex → Ex.

By construction the map h−λ ⋅ IdE is not an isomorphism, so by the previous
proposition it must be the zero morphism, and in particular h = λ ⋅ IdE .

Definition 4.3.10. Whenever µ ∈ Q, we denote by C(µ) the category of µ−semistable
vector bundles of slope µ.

Proposition 4.3.11. Whenever µ ∈Q, C(µ) is an abelian category.

Proof. First, using 4.3.8, we conclude that C(µ) is an additive subcategory of the
additive category of vector bundles. Thus, it remains to prove that every map admits
a kernel and a cokernel. We let f ∶ E → F be a morphism between semistable vector
bundles of slope µ. If we consider the image of f in the category of coherent sheaves,
it needs to be a non-trivial subsheaf of F , the associated sheaf to F. As F is locally
free, then the image of f is also locally free, and thus f needs to have constant rank, so
kernels and cokernels are vector bundles. By the additivity of the slope, we conclude
µ(ker f ) = µ(coker f ) = µ.

Furthermore, as ker f ⊂ E is a subbundle, if it had another non-trivial
subbundle H ⊂ ker f such that µ(H) > µ(ker f ), then H would contradict the µ−semi-
stability of E, and thus ker f must be µ−semistable. Similarly, the vector bundle coker f
must be µ−semistable, since if not there would exist a locally-free quotient of coker f
with slope strictly less then µ, but this would also contradict the semistability of F.

Proposition 4.3.12. If the degree d and the rank n are coprime, then the concepts of
µ−semistability and µ−stability are equivalent.
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Proof. We proceed by induction on the rank n. Since every line bundle is trivially
µ−semistable and µ−stable, the case n = 1 follows trivially. Now, let us suppose that,
whenever k ≤ n and d ∈ Z, if (n, d) = 1, then the concepts of µ−semistability and
µ−stability coincide.

Let E be a µ−semistable vector bundle of rank n+1 and degree d, so that n+1
and d are coprime. If E is not µ−stable, then there is a non-trivial subbundle F ⊂ E with
µ(F) = µ(E). If there is any non-trivial subbundle H of F with µ(H) > µ(F), H would
be a non-trivial subbundle of E with µ(H) > µ(E), contradicting the µ−semistability.
Thus, F is also µ−semistable.

As µ(F) = µ(E) ∈ Q ∖Z, we conclude deg(F) and rk F are also coprime.
Thus, by the induction hypothesis we conclude F is µ−stable.

As we proved in 4.3.11, the category C(µ) is abelian, the cokernel must be a
µ−semistable vector bundle Q with same slope, and we have the exact sequence:

0→ F → E → Q → 0.

Denoting by vF, vE and by vQ the vectors of integer entries corresponding to the image
of the pair function (rk, deg) for each vector bundle E, F, Q, respectively, there must
be positive integers λ, µ > 1 such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

λvF = vE = vF + vQ

µvQ = vE = vF + vQ,

as their slopes coincide and the functions (rk, deg) are additive on exact sequences.
Thus, we conclude

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(λ − 1)vF = vQ

(µ − 1)vQ = vF,

so we must have
µ − 1 = 1

λ − 1
,

contradicting the hypothesis that λ, µ are integers greater than one.

In the case when the genus of X is zero, we have a simple description of all
vector bundles over X, due to Grothendieck.

Theorem 4.3.13 (Grothendieck’s Theorem). Let E be a locally free sheaf of rank r over P1.
There exists a uniquely determined decreasing sequence of integers

ar ≤ ⋯ ≤ a1

such that
E ≃ O(a1)⊕⋯⊕O(ar).
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Proof. We proceed by induction on the rank r. If r = 1, then E is invertible and since
Pic(P1) ≃Z, E ≃ O(a) for some integer a ∈Z. Now, we assume the theorem holds for
all locally free sheaves of rank strictly less than r, and let E be a vector bundle of rank
r.

By 4.1.11, there is an invertible subsheaf O(a) ⊂ E such that the associated
cokernel F ≐ E/O(a) is also locally free, of rank r − 1. Let a1 ∈Z the largest integer with
this property (since the degree of such line bundles is bounded 4.1.10.1, this is well
defined). By the induction hypothesis, there is a decomposition

E
O(a1)

≃ O(a2)⊕⋯⊕O(ar),

where ar ≤ ⋯ ≤ a2, and we have an exact sequence of locally free sheaves

0→ O(ai)→ E →
r
⊕
i=2
O(ai)→ 0.

Tensoring with the line bundle O(−a1 − 1), we get

0→ O(−1)→ E(−a1 − 1)→
r
⊕
i=2
O(ai − a1 − 1)→ 0.

Arguing by contradiction, if the sheaf E(−a1 −1) had a global section, this would induce
a non-trivial morphism O(1+ a1)→ E , namely the tensor product by this fixed global
section. Thus, this gives a line bundle of larger degree inside E , contradicting the
maximality hypothesis on the integer a1 ∈ Z. Hence, this vector bundle cannot have
global sections, and H0(X,E(−1− a1)) = 0.

By basic sheaf projective cohomology (see C.2.1), H1(X,O(−1)) = 0, and
considering the long exact sequence in cohomology we get

0 = H0(X,E(−a1 − 1))→ H0(X,
r
⊕
i=2
O(ai − a1 − 1))→ H1(X,O(−1)) = 0,

so that
H0(X,

r
⊕
i=2
O(ai − a1 − 1)) ≃

r
⊕
i=2

H0(X,O(ai − a1 − 1)) = 0.

This implies that the degree of each of these line bundles is negative, that is, ai < a1 + 1,
so that a1 ≥ a2 ≥ ⋯ ≥ ar.

To conclude, it only remains to show that the exact sequence splits. As in
this case we have ωX ≃ O(−2), we can apply the Serre duality (4.1.6) in the following
way:

Ext1(⊕
i≥2
O(ai),O(a1))∨ ≃Hom(O(a1),⊕

i≥2
O(ai − 2))

≃⊕
i≥2

Hom(O(a1),O(ai − 2)) = 0,
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since a1 ≥ ai > ai − 2. This implies the splitting, by the properties of the group Ext1 (see
C.1.7), and thus the existence part of the theorem.

Until now, we showed that there are finite dimensional vector spaces Va

such that
E ≃⊕

a∈Z
Va ⊗kO(a)

and almost all Va are zero. Thus, to show the uniqueness of this decomposition, we
only need to prove that E completely determines the dimensions of each vector space
Va. To show this, we define a filtration of E in the following way: for every integer
b ∈Z, let

H0(P1,E(b))⊗O(−b)→ E

be the evaluation map, and Eb be its image. By the vanishing theorems over P1, we
know that the sheaf E(b) has no global sections for negative values of b, and is globally
generated for large values of b, so we can construct a finite decreasing filtration:

0 = E−1 ⊊ E0 ⊊ E1 ⊊ ⋯ ⊊ EN = E

where
Eb ≃ ⊕

a≥−b
Va ⊗kO(a)

and this means that the dimension of Va amounts exactly to the rank of the quotient

dim(Va) = rk( E−a

E−a−1
) ,

since this will be the only term added in the corresponding direct sums.

In the following example, we produce two examples of rank 2 vector bundles
over a curve of genus g = 1 which do not split into sums of line bundles.

Example 4.6. Let us consider the case when g = 1, and fix any point x ∈ X. As in 4.1,
we consider the exact sequence

0→ OX(−x)→ OX → kx → 0

of coherent sheaves over X, which induces a long exact sequence in cohomology

0→ H0(X,OX(−x))→ H0(X,OX)→ H0(X, kx)→
→ H1(X,OX(−x))→ H1(X,OX)→ H1(X, kx) = 0

and filling the gaps, as g = 1 we get H1(X,OX) ≃ k, and can write the exact sequence

0→ H0(X,OX(−x)) = 0→ k → k → H1(X,OX(−x))→ k → 0,
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where the first equality is due to the fact that negative degree line bundles do not
admit global sections over a curve. By exactness, we conclude the first non-zero map is
an isomorphism, and moreover we completely determine the maps:

0→ k ≃Ð→ k 0Ð→ H1(X,OX(−x)) ≃Ð→ k → 0,

so in particular H1(X,OX(−x)) ≃ k. Using the duality formula for locally free sheaves
(see C.1.9.1), we conclude:

Ext1(OX(x),OX) ≃ Ext1(OX,O(−x)) ≃ H1(X,O(−x)) ≃ k,

as the functors Hom(OX,−) and Γ(X,−) are naturally isomorphic. Moreover,

Ext1(OX,OX) ≃ H1(X,OX) ≃ k,

as h1(X,OX) = g = 1.

The non-triviality of the groups Ext1(OX,OX) and Ext1(OX(x),OX) indi-
cates the existence of two non-split exact sequences (see C.1.7), say

0→ OX → V0 → OX → 0,

0→ OX → V1 → OX(x)→ 0,

and as both groups are isomorphic to k, the sheaves V0 and V1 are uniquely determined
up to isomorphism. We also observe that both sheaves V0 and V1 are locally free, since
if we fix a point x ∈ X and consider the associated long exact sequence in stalks over x,
we get an exact fragment:

0 = Tor1
OX,x
(k,OX)→ Tor1

OX,x
(k, V0x)→ Tor1

OX,x
(k,OX) = 0,

concluding V0 must be torsion-free over k, and analogously V1 is also torsion-free over
k.

Using the additivity of the rank and degree on exact sequences, we conclude
V0 and V1 have rank 2, and deg(V1) = 1, deg(V0) = 0. Moreover, by 4.3.8, we get that
V0 is a µ−semistable, and µ(V0) = µ(OX) = 0. Furthermore, as we have an injection
OX ↪ V0, the vector bundle V0 is not µ−stable.

Let us prove that V1 is µ−stable. If not, then there is a line bundle L ↪ V1

with µ(V1) ≤ µ(L), but as we computed µ(V1), and as rk L = 1, we must have that
µ(L) ∈ Z, so µ(L) ≥ 1. Let us consider the induced morphism ϕ ∶ L → O(x) in the
diagram

L

0 OX V1 OX(x) 0.

ϕ
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If µ(L) > 1, then ϕ is zero, by 4.3.6, so the morphism ϕ must factor through the kernel
OX, which is a contradiction by the same reasoning. On the other hand, if µ(L) = 1,
then ϕ must be an isomorphism, and in particular it induces a splitting for this exact
sequence, contradicting our assumptions.

Example 4.7. Following the previous example, whenever g ≥ 1, we conclude

Ext1(OX,OX) ≃ H1(X,OX) ≃ kg,

so there is at least one non-split sequence of the form

0→ OX → V0 → OX → 0,

and with the same reasoning we conclude that V0 must be a µ−semistable, not µ−stable,
rank 2 vector bundle over X.

For the rest of this section, we introduce some filtrations of vector bundles
which will be used in the construction of the moduli space. For proofs, we refer the
reader to (HUYBRECHTS; LEHN, 2010).

Definition 4.3.14. Let E be a vector bundle over X. A Harder-Narasimhan filtration of
E is a chain of subbundles

0 = E(0) ⊊ E(1) ⊊ ⋯ ⊊ E(s) = E

where the quotients Ei ≐ E(i)/E(i−1) are µ−semistable vector bundles, with slopes

µ(Es) < µ(Es−1) < ⋯ < µ(E1).

Theorem 4.3.15 (see (HUYBRECHTS; LEHN, 2010), Theorem 1.3.4). Let E be a vector
bundle. Then E admits a unique Harder-Narasimhan filtration.

Definition 4.3.16. Let X be a smooth projective curve and let E be a µ−semistable
vector bundle of rank d. A Jordan-Hölder filtration of E is a chain of subbundles

0 = E(0) ⊊ E(1) ⊊ . . . ⊊ E(l) = E

where the quotients Ei = E(i)/E(i−1) are µ−stable vector bundles with same slope as E.

Using the properties of µ−semistability, we see that in particular the sub-
bundles E(i) are also µ−stable, with same slope µ.

Proposition 4.3.17 (see (HUYBRECHTS; LEHN, 2010), Proposition 1.5.2). Let E be a
µ−semistable vector bundle over X. Then E admits a Jordan-Hölder filtration.

Unlike Harder-Narasimhan filtrations, Jordan-Hölder filtrations are not
unique.
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4.4 Study of the moduli functor
To describe the moduli functor for the classification problem of µ−(semi)-

stable vector bundles, we fix discrete invariants (n, d) for rank and degree, and consider
the functor of families F(s)s(d, n) ∶ Sch→ Sets, which takes a k−scheme S to the set of
all flat coherent sheaves E ∈ Coh(X × S) such that Es is locally free and µ−semistable
over X, with µ(Es) = d/n, whenever s ∈ S.

In this context, we will say two families E and F over S are equivalent if
and only if there is an invertible sheaf L over S and an isomorphism E ≃ F ⊗π∗SL,
where πS ∶ X × S → S is the projection.

We denote the moduli functor associated to the functor of families F(s)s(d, n)
byM(s)s(d, n).

Proposition 4.4.1. If there is a semistable vector bundle over X with invariants
(n, d) which is not polystable, then the moduli problem of semistable vector bun-
dlesMss(n, d) does not admit a coarse moduli space.

Proof. The existence of a semistable sheaf F on X which is not polystable is equivalent
to the existence of a non-split short exact sequence

0→ F ′ → F → F ′′ → 0,

where F ′ and F ′′ are semistable vector bundles with the same slope as F . This
corresponds to a non-zero element of the group Ext1

X(F ′′,F ′) (see C.1.7).

If we denote this extension as v ≠ 0, since Ext1(F ′′,F ′) is a k−vector space,
we could consider the line passing through v and the origin, which in turn corresponds
to a family of sheaves E ∈ Coh(X ×A1), such that E1 ≃ v and E0 ≃ F ′′ ⊕F ′, as the latter
corresponds to the origin in Ext1(F ′′,F ′). Furthermore, scalar multiplication does not
change extension classes inside Ext1(F ′′,F ′), so Et ≃ E1 ≃ F whenever t ≠ 0.

Note that E is a family for the moduli problemM(s)s(d, n) which exhibits
the jump phenomenon (described in 1.2.5), and thus we conclude there is not a coarse
moduli space.

When the notions of µ−semistability and µ−stability coincide (see 4.3.12),
this behaviour does not occur, and we are able to construct a coarse moduli space for
the case when n and d are coprime. To do this using GIT, we need to find a scheme R of
parameters, in which each point corresponds to an isomorphism class of µ−semistable
vector bundles with fixed invariants (n, d) over X.

We can assume that the degree of the µ−semistable vector bundle is suf-
ficiently large, as tensoring with line bundles does not change the µ−(semi)stability.
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More explicitly, there is a natural isomorphism between the moduli functors:

−⊗L ∶Mss(n, d)→Mss(n, d + ne)

whenever deg(L) = e. In particular, we assume d > n(2g − 1), which is a choice justified
by the following proposition.

Lemma 4.4.2. Let F be a locally free sheaf over X of rank n and degree d > n(2g− 1). If
the associated vector bundle F is µ−semistable, then the following statements hold:

(a) H1(X,F) = 0;

(b) The sheaf F is generated by its global sections, i.e., the evaluation map

evF ∶ H0(X,F)⊗OX → F

is surjective.

Proof. (a). If H1(X,F) ≠ 0, by Serre duality (4.1.5), there is a non-zero morphism of
sheaves f ∶ F → ωX. Let K( f ) ⊂ F be the vector subbundle generically generated by the
kernel of f , which is a vector subbundle of rank n − 1 satisfying

deg K( f ) ≥ deg ker f ≥ degF −deg ωX = d − (2g − 2),

by the existence of the exact sequence

0→ K( f )→ F → ωX → 0.

Using the µ−semistability of F , we have

d − (2g − 2)
n − 1

≤ µ(K) ≤ µ(F) = d
n

,

so d ≤ n(2g − 2), contradicting our assumption on the degree of the sheaf F .

(b). Let x ∈ X and Fx denote the fiber of F at this point. As in 4.1, we can
consider the exact sequence

0→ O(−x)→ OX → kx → 0.

Tensoring with F , we get
0→ F(−x)→ F → Fx → 0,

where Fx = F ⊗ kx is the skyscraper sheaf with support at x with stalk Fx. To show
F is generated by global sections, we only need to show that the induced map
H0(X,F)→ H0(X, Fx) = Fx is surjective, whenever x ∈ X. To prove this, we use the long
exact sequence in cohomology associated with the previous short exact sequence

0→ H0(X,F(−x))→ H0(X,F)→ H0(X, Fx)→ H1(X,F(−x))→ ⋯
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and we only need to show that H1(X,F(−x)) = 0. Since this is a twist by a line bundle,
this does not change the µ−stability, and then F(−x) is also µ−semistable, of degree

deg(F ⊗O(−x)) = d − n ⋅ 1 > n(2g − 2),

and by (a) we have H1(X,F(−x)) = 0.

Let F be a locally free sheaf over X of rank n and degree d satisfying (a)
and (b) on the above lemma. By Riemann-Roch (4.2.11.1),

X (F) = d + n(1− g) = dim H0(X,F),

that is, the dimension of the 0th cohomology is fixed and equal to N ≐ d + n(1 − g).
Therefore, we can fix an isomorphism H0(X,F) ≃ kN and combine this with the
evaluation map, to produce a surjection:

qF ∶ ON
X = kN ⊗OX → F

from a fixed trivial vector bundle over X. This is the same as choosing a global basis
of generators. Motivated by this construction, in the next section we study the Quot
scheme, the moduli space of such surjections.

4.5 Quot scheme
For this section, let Y be any projective scheme and F a coherent sheaf

on Y. One can study the moduli problem of classifying quotients of the sheaf F .
More precisely, we consider surjective morphisms q ∶ F ↠ E up to the equivalence
relationship:

(F
q
Ð→ E) ≃ (F

q′
Ð→ E ′) ⇐⇒ ker q = ker q′

Equivalently, using the snake lemma, q ≃ q′ if and only if there is a sheaf isomorphism
ϕ ∶ E → E ′ commuting the diagram

F E

F E ′

q

ϕ

q′

Definition 4.5.1. Let F be a coherent sheaf on Y. For any scheme S, we let FS ≐ π∗YF
denote the pullback of F to Y × S via the projection πY ∶ Y × S → Y. A family of
quotients of F over Y is a surjective OY×S−linear morphism of sheaves over Y × S,
denoted by qS ∶ FS ↠ E such that E is flat over S. Two families qS ∶ FS → E and
q′S ∶ S → E ′ are equivalent if ker qS = ker q′S.
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Since flatness is preserved under base change, we can also pullback families.
The moduli functor associated to this functor of families is called the Quot functor,
and denoted by

QY(F) ∶ Sch→ Set .

Note that we can view this as the moduli problem of classifying subsheaves
of F up to equality. We can also fix invariants and restrict the corresponding moduli
functor.

Definition 4.5.2. For a fixed ample line bundle L on Y, we have a decomposition

QY(F) = ⊔
p∈Q[t]

Qp,L
Y (F)

into Hilbert polynomials p ∈Q[t] taken with respect to L.

If Y = X is a curve, we can also decompose by degree and rank:

QX(F) = ⊔
(n,d)
Q(n,d)

X (F).

Theorem 4.5.3 (Grothendieck). Let Y be a projective scheme and L an ample invertible sheaf
on Y. Then for any coherent sheaf F over Y and any polynomial p ∈Q[t], the functor Qp,L

Y (F)
is represented by a projective scheme Quotp,L

Y (F).

Remark 4.5.4. The full proof of this theorem needs a lot of machinery from algebraic
geometry, and can be seen in (FANTECHI; GOTTSCHE; ILLUSIE, 2005). We will sketch
some aspects of this construction in this section.

Definition 4.5.5. A Hilbert scheme is a Quot scheme of the form Quotp
Y(OY), and

represents the moduli functor that sends a scheme S to the set of all closed subschemes
Z ⊂ Y × S that are proper and flat over S with the given Hilbert polynomial p ∈Q[t].

We develop Mumford’s theory of m−regularity of coherent sheaves, follow-
ing (FANTECHI; GOTTSCHE; ILLUSIE, 2005), Chapter 2.

Definition 4.5.6. Let F be a coherent sheaf over Pn
k . Given m ∈Z, we say F is m−regular

if Hi(Pn,F(m − i)) = 0 whenever i ≥ 0.

Proposition 4.5.7. If H = Z(l) ⊂ Pn is a hyperplane not containing any associated
points of F , then we have an exact sequence

0→ F(m − i − 1) αÐ→ F(m − i)→ FH(m − i)→ 0,

where α is given locally by the tensor product with the linear section l, whenever i ≥ 0.
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Proof. By hypothesis, as H does not contain any associated points of F , the map α is
injective, so taking the cokernel on the abelian category Coh(X) give us the desired
exact sequence.

Remark 4.5.8. Note that the sheaf FH(m − i) restricts to the hyperplane H ≃ Pn−1 as a
coherent sheaf over Pn−1.

Proposition 4.5.9. If F is m−regular over Pn and H ⊂ Pn is a hyperplane which does
not contain any associated points for F , then the restriction of FH to H ≃ Pn−1 is also
m−regular.

Proof. This follows considering the long exact sequence in cohomology associated to
the exact sequence of the previous proposition. We have

⋯→ Hi(Pn,F(m − i))→ Hi(Pn,FH(m − i)) δÐ→ Hi+1(Pn,F(m − i − 1))→ ⋯,

and since F is m−regular, the cohomology groups of the left and the right vanish,
implying Hi(Pn,FH(m − i)) = 0, whenever i ≥ 0.

Lemma 4.5.10. Let F be a m−regular sheaf on Pn. Then:

(a) Hi(Pn,F(r)) = 0 whenever i ≥ 0 and r ≥ m − i.

(b) The canonical map

H0(Pn,OPn(1))⊗H0(Pn,F(r))→ H0(Pn,F(r + 1))

is surjective whenever r ≥ m.

(c) The sheaf F(r) is generated by global sections and all its higher cohomology
groups vanish for r ≥ m.

Proof. We proceed by induction on n. The case n = 0 is trivial for (a), (b) and (c) as

P0
k = Proj k[x0] ≃ Spec k.

Since k is algebraically closed, it is infinite and there must be a hyperplane H ⊂ Pn

which does not intersects any associated point of F , since there are only finitely many
of these, as F is coherent over Pn.

By the previous proposition, the restriction of FH is also m−regular over
H ≃ Pn−1, and by induction hypothesis we prove it satisfies (a), (b) and (c).

To see (a) when r = m − i, Hi(Pn,F(r)) = 0 by definition of m−regularity.
Now, we consider an induction on r ≥ m − i + 1. Using the exact sequence

Hi(Pn,F(r − 1))→ Hi(Pn,F(r))→ Hi(H,FH(r))
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and the vanishing of cohomology groups Hi(Pn,F(r − 1)) = 0 and Hi(H,FH(r)) = 0 by
induction hypothesis on r − 1 and n − 1, respectively, we have Hi(Pn,F(r)) = 0.

To see (b), consider the commutative diagram

H0(Pn,F(r))⊗H0(Pn,OPn(1)) H0(H,FH(r))⊗H0(H,OH(1))

H0(Pn,F(r)) H0(Pn,F(r + 1)) H0(H,FH(r + 1))

µ

σ

τ

α νr+1

where σ and νr+1 are the morphisms induced by restriction maps, and the vertical
maps are induced by the product. Since F is m−regular, by (a), H1(Pn,F(r − 1)) = 0
whenever r ≥ m, so the restriction map

νr ∶ H0(Pn,F(r))→ H0(H,FH(r))

is surjective whenever r ≥ m. The restriction morphism

ρ ∶ H0(Pn,OPn(1))→ H0(H,OH(1))

is also surjective, so that the tensor product σ = νr ⊗ ρ is surjective.

By the induction hypothesis on n − 1, τ is a surjective map, so that τ ○ σ

is surjective, and using the diagram we get that the map νr+1 ○ µ is surjective, which
implies H0(Pn,F(r + 1)) = Im(µ) + ker(νr+1). Since the bottom row is exact, we have
H0(Pn,F(r + 1)) = Im(µ)+ Im(α), but α is locally the tensor product of global sections
of F(r) by the linear section l, so that Im(α) ⊂ Im(µ) and thus H0(Pn,F(r+1)) = Im(µ),
as we wanted to show.

Finally, to see (c), we can iterate (b) so that the morphism

H0(Pn,OPn(p))⊗H0(Pn,F(r))→ H0(Pn,F(r + p))

is surjective whenever r ≥ m and p ≥ 0. As we know, for p sufficiently large the sheaf
F(r + p) is generated by its global sections, so that the evaluation morphism

H0(X,F(r + p))⊗OX → F(r + p)

is surjective, and since tensoring with OX is exact, we get a surjection

H0(Pn,F(r)⊗OX(p))⊗OX → F(r)⊗OX(p)

and tensoring back we get that F(r) is also generated by global sections whenever
r ≥ m.

The higher vanishing condition follows from (b).
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Theorem 4.5.11 (Mumford). For integers p, n ≥ 0 there is a polynomial Fp,n ∈Z[t0, . . . , tn]
such that, for any subsheaf

F ⊂
p

⊕
i=1
OPn

over Pn, if the Hilbert polynomial of F is written as

X (F(r)) =
n
∑
i=0

ai(
r
i
),

then F is Fp,n(a0, . . . , an)−regular.

Proof. As before, we proceed by induction on n. Let n ≥ 1, and H ⊂ Pn be a hyperplane
which does not contain any of the finitely many associated points of the cokernel sheaf

E ≐
p

⊕
i=1
OPn/F ,

so the Tor sheaf vanishes Tor1(OH,E) = 0. Therefore, as the restriction to H can be seen
as a base-change, the short exact sequence

0→ F →
p

⊕
i=1
OPn → E → 0

restricts to a short exact sequence

0→ FH →
p

⊕
i=1
OH → EH → 0

over H. This shows that FH is isomorphic to a subsheaf of
p

⊕
i=1
OPn−1 (under H ≃ Pn−1),

which is a basic step for the induction.

If F is non-zero, it is torsion-free and thus we can consider the exact
sequence

0→ F(−1) αÐ→ F → FH → 0

where α is locally given by the multiplication by the linear section generating H. From
the associated long exact sequence in cohomology, we get

X (FH(r)) = X (F(r))−X (F(r − 1))

and we can write explicitly

X (FH(r)) =
n
∑
i=0

ai(
r
i
)−

n
∑
i=0

ai(
r − 1

i
) =

n
∑
i=0

ai(
r − 1
i − 1
)

so that

X (FH(r)) =
n
∑
i=0

ai(
r − 1
i − 1
) =

n−1
∑
j=0

bj(
r
j
),
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where b0, . . . , bn−1 have integral expressions over a0, . . . , an.

By the induction hypothesis, there is a polynomial Fp,n−1(t0, . . . , tn−1) such
that FH is m0−regular, where m0 = Fp,n−1(b0, . . . , bn−1). Thus, we can change coordinates
to get a polynomial G ∈ Z[t0, . . . , tn] such that m0 = G(a0, . . . , an). For m ≥ m0, we get
the long exact sequence

0→ H0(F(m − 1))→ H0(F(m)) νmÐ→ H0(FH(m))→ H1(F(m − 1))→ ⋯

which, by the vanishing conditions for m0−regular sheaves in 4.5.10, induces isomor-
phisms

Hi(F(m − 1)) ≃Ð→ Hi(F(m)),

whenever i ≥ 2. Furthermore, as we also have Hi(F(m)) = 0 for sufficiently large m,
these isomorphisms show that Hi(F(m)) = 0 whenever i ≥ 2 and m ≥ m0 − 2. The sur-
jections H1(F(m − 1))↠ H1(F(m)) show that the function h1(F(m)) is monotonically
decreasing for m ≥ m0 − 2. Note that h1(F(m − 1)) ≥ h1(F(m)) for m ≥ m0, and equality
holds if and only if the restriction

νm ∶ H0(F(m))→ H0(FH(m))

is surjective. As the restriction FH is also m−regular, it follows from the proof of (c)
in 4.5.10 that the restrictions νj ∶ H0(F(j))→ H0(FH(j)) are surjective whenever j ≥ m,
so that h1(F(j − 1)) = h1(F(j)) for all j ≥ m, but on the other hand h1(F(j)) = 0 for
sufficiently large j and thus we get that the function h1(F(m)) is strictly decreasing for
m ≥ m0, until it reaches zero. This implies that H1(F(m)) = 0 for m ≥ m0 + h1(F(m0)).

To prove the theorem, we only need to find a bound for the quantity

h1(F(m0)) which does not depend on the sheaf F . For this, we use that F ⊂
p

⊕
i=1
OPn

and get

h0(F(r)) ≤ p ⋅ h0(OPn(r)) = p ⋅ (n + r
n
),

using the usual description for sections of OPn(r) as homogeneous degree r polynomi-
als. Since h1(F(m)) = 0 for all i ≥ 2 and m ≥ m0 − 2, we now get

h1(F(m0)) = h0(F(m0))−X (F(m0)) = p(n +m0

n
)−

n
∑
i=0

ai(
m0

i
)

using our previous formulas, and therefore we can find a polynomial P ∈Z[t0, . . . , tn]
such that h1(F(m0)) ≤ P(a0, . . . , an), setting m0 = G(a0, . . . , an), and therefore P does
not depend on the sheaf F or on the field k. Moreover, since h1(F(m0)) ≥ 0, as it is the
dimension of a k−vector space, we get

P(a0, . . . , an) ≥ 0

and that H1(F(m)) = 0 for m ≥ G(a0, . . . , an)+ P(a0, . . . , an), which together with previ-
ous observations means that F is Pp,n(a0, . . . , an)−regular, where Pp,n = G + P.
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Now, we give an overview of the steps of the construction of the Quot
scheme as given in (FANTECHI; GOTTSCHE; ILLUSIE, 2005):

• Using base-change theorems, the problem is reduced to proving that the functor
QΦ,O(1)

Pn (Op
Pn) is representable, whenever n, p ≥ 0.

• By 4.5.11, we can consider an injective natural transformation of functors:

QΦ,O(1)
Pn (Op

Pn)→ G(V, Φ(m)),

where V ≐ kp ⊗H0(OPn) and m depends only on the Hilbert polynomial Φ, since
in this case every sheaf is m−regular. The strategy for the rest of the proof is to
show that this injective natural transformation corresponds to an embedding of
the corresponding representing schemes.

• Using flatness, there is a stratification of the functor Q such that each piece is
locally closed inside the grassmanian.

• Using a valuative criterion for properness, these subsets are proved to be projec-
tive varieties inside the grassmanian.

• There is a universal family U over Q ×X, and a universal quotient

qQ ∶ OQ×X ↠ U

so that the quot scheme is a fine moduli space for this moduli problem. Fur-
thermore, this universal family is the pullback of the universal family over the
grassmanian variety.

The following proposition uses homological algebra to describe the local
behaviour of the Quot scheme Q.

Proposition 4.5.12. For any k−point q ∶ ON
X → F of the quot scheme Q, we have

1. TqQ ≃Hom(K,F), where K ≐ ker q.

2. If Ext1(K,F) = 0, then Q is smooth in a neighbourhood of q.

Proof. For a proof, see for example (HUYBRECHTS; LEHN, 2010), propositions 2.2.7
and 2.2.8.
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4.6 The GIT setup
Now that we have outlined the construction of the Quot scheme, we are

ready to start applying the GIT theory for the construction of the moduli space of
µ−semistable vector bundles.

As in 1.2.1, we fix X smooth connected projective curve of genus g ≥ 2,
discrete invariants for rank n degree d > n(2g − 1), so by 4.4.2 we can choose an
identification

H0(X,E) ≃ kN,

where N ≐ d + n(1− g) by Riemann-Roch, so the evaluation map

H0(X,E)⊗OX → E

determines a quotient sheaf q ∶ ON
X ↠ E ∈ Q(k). As we will see, the idea of our GIT

setup is to study how GLN acts as change of coordinates of the vector space of global
sections H0(X,E).

Theorem 4.6.1 ((HUYBRECHTS; LEHN, 2010), 2.3.1). The following properties of coherent
sheaves are open in the Quot scheme Q:

• The set of all equivalence classes of µ−(semi)stable sheaves;

• The set of all equivalence classes of quotients q such that the induced map H0(q) is an
isomorphism.

Let Rs(s) ⊂ Q be the open set corresponding to these two properties. As the
Quot scheme Q is a fine moduli space, it parametrizes a universal quotient, which we
denote by

qQ ∶ ON
Q×X → U ,

and we can consider the restriction of this family to the open subset R(s)s ⊂ Q, denoted
by

q(s)s ∶ OR(s)s×X → U(s)s.

The strategy of this section is to use this family to conclude that there is a quotient
of R(s)s by a GLN −action which is a coarse moduli space for the moduli problem of
µ−(semi)stable locally free sheaves over X with invariants (n, d).

Lemma 4.6.2. The universal quotient sheaf U(s)s over R(s)s ×X is a family over R(s)s

for the moduli problem of µ−semistable locally free sheaves over X with invariants
(n, d) with the local universal property (3.1.8).
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Proof. Let F ∈ Coh(X × S) be a family over a scheme S of µ-(semi)stable locally free
sheaves over X with fixed invariants (n, d). By our choice of degree d, for every s ∈ S,
we can assume the locally free µ−semistable sheaf Fs is globally generated and has
vanishing first cohomology. Therefore, by the semi-continuity theorem, C.2.3, the sheaf
πS∗F is also locally free over S, of rank N = d + n(1− g), since this is the dimension of
the first cohomology group of Fs via the Riemann-Roch theorem.

For each s ∈ S, we need to show that there is an open neighbourhood U ⊂ S
of s ∈ S and a morphism f ∶ S → R(s)s such that

F ∣U ≃ f ∗U(s)s.

We choose a neighbourhood U of s over which πS∗F is trivial. Thus, we have an
isomorphism:

ρ ∶ ON
U ≃ πS∗F ∣U.

Now, consider the pullback of ρ by the projection πU ∶ U ×X → U, and the surjective
map of evaluation

qU ≐ ON
U×X

π∗U○ρÐÐÐ→ π∗UπS∗F ∣U ↠ F ∣U
By construction, qU is surjective, and by the universality of U with respect to surjections,
qU determines a unique morphism f ∈Hom(U, Q) commuting

ON
U×X F ∣U

ON
U×X f ∗U

qU

≃
f ∗qQ

In particular, F ∣U ≃ f ∗U , and by construction the morphism f ∶ U → Q factors via the
open subset R(s)s, as we wanted to show.

Note that the family U(s)s over R(s)s is not universal, as the morphism f
described in the previous proof is not unique: if we take S = Spec k and E ∈ Loc(X),
then different choices of basis on H0(X,E) will give rise to different points on R(s)s.
However, any choices of isomorphisms are related by a change of basis on the vector
space H0(X,E). This is the hint to build the GIT quotient for this moduli problem.

Lemma 4.6.3. The natural action of GLN on Q that acts as change of coordinates on
closed points via

g ⋅ (ON
X

q
Ð→ E)z→ (ON

X
g−1

ÐÐ→ ON
X

q
Ð→ E)

can be extended to an algebraic action σ ∶ GLN ×Q → Q such that the orbits in the open
set R(s)s are in bijective correspondence with the isomorphism classes of µ-(semi)stable
locally free sheaves on X with invariants (n, d).
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Proof. To construct this action, we first construct a family over GLN ×Q of quotients of
ON

X with invariants (n, d). The inverse map of the group i ∶ GLN → GLN determines a
universal inversion

τ ∶ kN ⊗OGLN → kN ⊗OGLN ,

which is an isomorphism of sheaves over GLN. Let qQ ∶ kN ⊗OQ×X → U denote the
universal quotient morphism over Q ×X. If we denote the projections by

πGLN ∶ GLN ×Q ×X → GLN , πQ×X ∶ GLN ×Q ×X → Q ×X

we consider the composition of pullbacks

kN ⊗OGLN ×Q×X
π∗GLN

(τ)
ÐÐÐÐÐ→ kN ⊗OGLN ×Q×X

π∗Q×X(qQ)ÐÐÐÐÐ→ π∗Q×XU .

By definition, the resulting π∗GLN
(τ) ○π∗Q×X(qQ) is a family of quotients of ON

X over the
scheme GLN ×Q with fixed invariants (n, d), since these are preserved by pullbacks.
Using the universality of U , this determines a morphism

σ ∶ GLN ×Q → Q

such that the pullback of the universal family is the expected one. We just need to
prove that the subschemes in R(s)s are preserved by this action, to be able to restrict to
a map σ ∶ GLN ×R(s)s → R(s)s.

To see this, let qE ∶ ON
X ↠ E and qF ∶ ON

X ↠ F be the corresponding
surjections of two k−points in R(s)s. If there exists an element g ∈ GLN(k) such that
g ⋅ qE = qF , then we can fit these into a commutative square

ON
X E

ON
X F

qE

g≃
qF

so g induces an isomorphism between the sheaves E and F .

Conversely, if E ≃ F , then there is an induced isomorphism ϕ ∶ H0(E) ≃
H0(F), so that we complete the corresponding diagram in cohomology

kN = H0(ON
X ) H0(E)

kN = H0(ON
X ) H0(F)

H0(qE)

H0(ϕ)
H0(qF)

with an automorphism, so there is a change of coordinates g ∈ GLN(k) such that
g ⋅ qE = qF .
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We will build the moduli space for semistable vector bundles by considering
the GIT quotient corresponding to this action of GLN on R(s)s. We should also restrict
our action for SLN, as diagonal matrices inside GLN act trivially on the Quot scheme.

As sketched in the construction of the Quot scheme (4.5), for a sufficiently
large integer m, there is a closed immersion

Q = Quot(n,d)
X (ON

X )→ Gr(H0(ON
X (m)), M)→ P ≐ P(

M
⋀H0(ON

X (m))∨),

where M = mn + d + n(1− g), and the latter map is the Plücker embedding. We let Lm

denote the pullback of OP(1) to the Quot scheme via this closed immersion. There is a
natural linear action of SLN on the vector space:

H0(ON
X (m)) ≃ kN ⊗H0(OX(m)),

which induces a linear action of SLN on the projective space P. Hence, the invertible
sheaf Lm admits a linearization of the SLN action on Q, given by the pullback of this
action.

We can also describe the sheaf Lm using the universal quotient sheaf over
Q, if we denote the projections πX ∶ Q ×X → X , πQ ∶ Q ×X → Q, using the formula

Lm = det(πQ∗(U ⊗π∗XOX(m))),

where U is the universal quotient sheaf over Q ×X. Moreover, the universal quotient
sheaf U admits a SLN −linearization. We denote by σ ∶ SLN ×Q → Q the group action,
the projections by

pQ×X ∶ SLN ×Q ×X → Q ×X , pSLN ∶ SLN ×Q ×X → SLN

and write qQ ∶ kN ⊗OQ×X → U for the universal quotient morphism over Q ×X. By
construction, there are two equivalent families of quotient sheaves over SLN ×Q, given
respectively as

kN ⊗OSLN ×Q×X
(σ×IdX)∗qQÐÐÐÐÐÐ→ (σ × IdX)∗(U)

and the composition

kN ⊗OSLN ×Q×X
p∗SLN

τ

ÐÐÐ→ kN ⊗OSLN ×Q×X
p∗Q×XqQÐÐÐÐ→ p∗Q×XU .

Hence, there is an isomorphism between the pullbacks

Φ ∶ (σ × IdX)∗U
≃Ð→ (pQ×X)∗U

satisfying the cocycle condition defining a linearization of the SLN-action on U (com-
pare 3.3.11). For m sufficiently large, Lm is ample and admits a SLN −linearization, as
the construction commutes with base change.
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Hence, at any k−point q ∶ OX ↠ F in Q, the fiber of the associated line
bundle Lm is naturally isomorphic to an alternating tensor product of exterior products
of the cohomology groups of F(m):

Lm,q ≃ det(H∗(X,F(m))) =⊗
i≥0

det Hi(X,F(m))⊗(−1)i .

By the m−regularity, we have Hi(X,F(m)) = 0 for all i > 0 for all points q ∶ ON
X → F in

Q, so for m sufficiently large the fiber at q can be given as Lm,q ≃ det H0(X,F(m)). We
will use this explicit description to apply the Hilbert-Mumford numerical criterion for
stability with respect to this linearization in the next section.

4.7 Analysis of stability
In this section, we prove the equivalence between the µ−(semi)stability of

vector bundles and the GIT stability for the GIT problem described in the previous
section, using the Hilbert-Mumford numerical criterion (3.4.14).

Let q ∶ ON
X ↠ F be a closed point in the Quot scheme Q and λ ∶ Gm → SLN

be a one-parameter subgroup. Then the action of λ(t) ⋅ q is given by the composition

ON
X

λ−1(t)ÐÐÐ→ ON
X

q
Ð→ F .

We can decompose the space V ≐ kN into weight spaces for the action of λ:

V =⊕
r∈Z

Vr

where Vr = {v ∈ V ∶ λ−1(t)v = trv}, and these are zero except for finitely many weights
r, satisfying

∑
r∈Z

r ⋅dim Vr = 0.

There is an induced ascending filtration of V given by

V≤r ≐⊕
s≤r

Vs,

which induces an ascending filtration of F , given by:

F≤r ≐ q(V≤r ⊗OX)

and q restricts to surjections qr ∶ Vr ⊗OX ↠ Fr ≐ F≤r/F≤r−1, fitting into the commuting
diagram

0 V≤r−1 ⊗OX V≤r ⊗OX Vr ⊗OX 0

0 F≤r−1 F≤r Fr 0

q q qr
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with exact rows.

Lemma 4.7.1. In these conditions, we have

lim
t→0

λ(t) ⋅ q =⊕
r∈Z

qr ∶⊕
r∈Z

Vr ⊗OX ≃ ON
X ↠ F

Proof. Since the Quot scheme Q is projective, the limit exists and it is unique. Thus, to
show this lemma we only need to construct a family of quotient sheaves of ON

X over
A1 = Spec k[t], a surjection φ ∶ ON

X×A1 ↠ E such that

φt ≐ φ∣X×{t} =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λ(t) ⋅ q , t ≠ 0

⊕
r∈Z

qr , t = 0.

To to this, we use the equivalence between the categories of quasi-coherent sheaves
over A1 and k[t]−modules. First, let

M ≐⊕
r∈Z
(V≤r ⊗k tr ⋅ k) ,

which has a k[t]−module structure defined by the action

k[t]×M → M

(t, v≤r ⊗ tr)↦ v≤r ⊗ tr+1 ∈ V≤r+1 ⊗ tr+1 ⋅ k.

Since V is finite-dimensional, there is an integer R ∈ Z such that V≤r = 0 for r ≤ R,
and we could consider M as a k[t]−submodule of V ⊗k tR ⋅ k[t], which implies that the
corresponding sheaf is coherent over A1. Using this, the one-parameter subgroup λ

induces a sheaf morphism over A1 that can be translated to a map of k[t]−modulesγ ∶
V ⊗k k[t]→ M defined as a k−linear map on generators by the rule

γ(v⊗ ts) = γ(∑
r∈Z

vr ⊗ ts) ≐ ∑
r∈Z

vr ⊗ tr+s,

whenever s ≥ 0. By construction, we have γ∣Vr
= tr ⋅ IdVr . On the other hand, we can

define a morphism α ∶ M → V ⊗k k[t] on generators by setting

α(∑
r∈Z

v≤r ⊗ artr) ≐ ∑
r∈Z

vs≤rtr = ∑
r∈Z

vs≤r ⊗ tr−s

so that it is well defined since r − s ≥ 0 whenever vs ∈ Vs ⊂ V≤r. Note that, if s ≥ 0,

(α ○γ)(v⊗ ts) = α(∑
r∈Z

vr ⊗ tr+s) = ∑
r∈Z

vr ⊗ tr+s−r = v⊗ ts,

and, for r ∈Z so Vr ≠ 0, we can write

(γ ○ α)(v≤r ⊗ tr) = (γ ○ α)(vs≤r ⊗ tr) = γ(vs≤r ⊗ tr−s) = vs≤r ⊗ tr−s+s = v≤r ⊗ tr,
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so α ○ γ = IdV⊗kk[t] and γ ○ α = IdM. Using the previous computations, we go back to
the category of quasi-coherent sheaves over X ×A1 using the equivalence with the
category of OX ⊗k k[t]−modules. Using the filtration of F , we define:

E ≐⊕
r∈Z
F≤r ⊗ tr ⋅ k ⊂ F ⊗ tRk[t],

for R as above, so the action of t is identical to the action of t on M. Furthermore, we
have the inclusion again, by the same reasoning. In particular, E is a coherent sheaf
on X ×A1. The surjective morphism q ∶ ON

X ↠ F induces a surjective morphism of
coherent sheaves over X ×A1:

qA1 ∶⊕
r∈Z

V≤r ⊗k trk↠ E ,

and we can define the family as φ ≐ qA1 ○π∗
A1(γ̃), where πA1 ∶ X ×A1 → A1 is the

projection, and the morphism γ̃ is the induced map by γ between quasi-coherent
sheaves over A1.

Now, considering values t ≠ 0 corresponds to inverting the variable t of
k[t]−modules. In this case, we have the commutative diagram:

ON
X ⊗k k[t, t−1] ON

X ⊗k k[t, t−1]

E ⊗k k[t, t−1] F ⊗ k[t, t−1]

π∗∣
A1∖{0}

(γ̃)

φ∣
A1∖{0}

q⊗Idk[t,t−1]

≃

and since γ̃ corresponds to the action of λ−1 by construction, we have [φt] = [λ(t) ⋅ q]
whenever t ≠ 0. If we denote by i the inclusion of the origin inside the affine line A1,
the composition i∗ ○ i∗ kills the action of t on the corresponding k[t]−modules. More
explicitly,

i∗i∗(E) = E/t ⋅ E = (⊕
r≥R
F≤r ⊗k tr ⋅ k) /(⊕

r≥R
F≤r ⊗k tr+1 ⋅ k) =⊕

r∈Z
Fr ⊗k tr ⋅ k,

with the trivial action by t. Hence, the stalk of the sheaf E over 0 ∈ A1 is E0 =⊕
r∈Z
Fr,

which completes the proof.

Lemma 4.7.2. Using previous notation, we have:

µLm(q, λ) = −∑
r∈Z

r ⋅ P(Fr, m) = ∑
r∈Z

r ⋅ (P(F≤r, m)− dim V≤r

N
⋅ P(F , m)) .

Proof. By definition, the Hilbert-Mumford weight is the opposite of the weight of the
action of λ on the fiber of the line bundle Lm over the fixed point q′ ≐ lim

t→0
λ(t) ⋅ q. As
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we observed before, the fiber over the limit point is given by

Lm,q′ =⊗
r∈Z

det H∗(X,Fr(m)),

where H∗(X,Fr(m)) denotes the complex defining cohomology groups Hi(X,Fr(m))
for i = 1, 2. The virtual dimension of H∗(X,Fr(m)) is the alternating sums of the
dimensions of the cohomology groups of Fr(m), and thus it coincides with the Hilbert
polynomial P(Fr, m).

Since λ acts with weight r on each subsheaf Fr, it also acts with weight r on
the corresponding k−vector space Hi(X,Fr(m)). Therefore, the weight of λ acting on
the line bundle det H∗(X,Fr(m)) coincides with r ⋅ P(Fr, m). The first equality follows
from this, and the definition of Hilbert-Mumford weight.

For the second equality, by construction we have that dim Vr = dim V≤r −
dim V≤r−1, and considering the long exact sequence in cohomology associated the
cokernel exact sequence

0→ F≤r → F≤r+1 → Fr → 0

implies the identity for Hilbert polynomials P(Fr, m) = P(F≤r, m)− P(F≤r−1, m). On the
other hand, since we are acting by G = SLN, if we write r1 < ⋯ < rn = R for the weights,
we have

∑
r∈Z

r dim Vr = 0⇒ −R = 1
N
⋅ (

n−1
∑
i=1
(ri − ri+1)dim V≤ri) ,

where N = dim V = dim V≤R. Using the same trick, we write

−∑
r∈Z

r ⋅ P(Fr) = −(
n−1
∑
r=1
(ri − ri+1)P(F≤ri)− rnP(F≤rn))

= −(
n−1
∑
r=1
(ri − ri+1)P(F≤ri)+ R ⋅ P(F)) ,

so

µ(q, λ) =
n−1
∑
r=1
(ri+1 − ri)P(F≤ri)+ (ri − ri+1)dim V≤ri

N
⋅ P(F)

= ∑
r∈Z

r ⋅ (P(F≤r)− dim V≤r

N
P(F)) ,

as we wanted to prove.

Remark 4.7.3. We note that the number of distinct weights for the action of λ−1 on
V = kN corresponds to the number of jumps in the Harder-Narasimhan filtration of
the sheaf F . If we suppose that there are only two weights, r1 < r2 for λ, we can get a
filtration by a single subsheaf:

0 = F≤r1−1 ⊊ F ′ ≐ F≤r1 = ⋯ = F≤r2−1 ⊊ F≤r2 = F .
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Let V′ ≐ V≤r1 . Then

µLm(q, λ) = (r2 − r1) (P(F ′, m)− dim V′

dim V
⋅ P(F , m)) ,

where r2 − r1 > 0.

Proposition 4.7.4. Let q ∶ ON
X ↠ F be a k−point in Q. Then q ∈ Q(s)s(Lm) if and only if

for all subspaces 0 ≠ V′ ⊊ V = kN, we have an inequality:

dim V′

P(F ′, m)(≤) <
dim V

P(F , m)

where F ′ ≐ q(V′ ⊗OX) ⊂ F .

Proof. Suppose the inequality holds for all such subspaces V′ ⊂ V. For any one-
parameter subgroup λ ∶ Gm → GLN, there are finitely many weights r1 < ⋯ < rs for the
action of λ−1 on V = kN, which induces subspaces V(i) = V≤ri ⊂ V and corresponding
subsheaves F(i) = F≤ri = q(V(i) ⊗OX) ⊂ F . Furthermore, by definition, we have F≤n =
F(i) for all ri ≤ n < ri+1. Therefore, we can apply the previous formula to compute

µLm(q, λ) =
s−1
∑
i=1
(ri+1 − ri)(P(F(i), m)− dim V(i)

dim V
⋅ P(F , m)) ,

but using the inequality of the hypothesis, we get:

P(F i, m)− dim V(i)

dim V
⋅ P(F , m) ≥ 0.

The same proof holds to the strictly stable case, where the inequality we get in the end
is strict, so

µLm(q, λ)(≥)0

and by the Hilbert-Mumford numerical criterion q ∈ Q(s)s(Lm).

Conversely, arguing by contradiction, if there is a subspace 0 ⊊ V′ ⊊ V for
which the inequality does not hold (or, in the strictly stable case, holds with equality),
then we can define a one-parameter subgroup λ ∶ Gm → GLN with two weights r1 > r2,
such that V(1) = V′ and V(2) = V. In this case, we can write:

µLm(q, λ) = (r2 − r1) (P(F ′, m)− dim V′

dim V
⋅ P(F , m)) ,

so µLm(q, λ) < 0 (or µLm(q, λ) = 0, in the strictly stable case), and q is unstable for the
SLN −action with respect to the linearization Lm, by the Hilbert-Mumford criterion.

Corollary 4.7.4.1. There is an integer M ∈Z such that, whenever m ≥ M and q ∶ ON
X → F

corresponds to a closed point in Q, the following are equivalent:
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1. q is (semi)stable for the action of GLN on Q with respect to the ample line bundle
Lm.

2. For all subsheaves F ′ ⊂ F with V′ ≐ H0(q)−1(H0(F ′)) ≠ 0, we have rkF ′ > 0 and

dim V′

rkF ′ (≤) <
dim V
rkF ,

in particular, F is µ−semistable as defined in 4.3.1.

4.8 Le Potier criterion
In this section, we prove the following result:

Theorem 4.8.1 (Le Potier criterion). If F is a locally free sheaf of sufficiently large degree
d = degF , then

1. F is semistable if and only if whenever F ′ ⊂ F is a non-trivial subsheaf, then

h0(X,F ′)
rkF ′ ≤ h0(X,F)

rkF

2. F is stable if and only if whenever F ′ ⊂ F is a non-trivial subsheaf, then

h0(X,F ′)
rkF ′ < h0(X,F)

rkF

For sufficiently large m, the corresponding Hilbert polynomials P(F ′, m)
and P(F , m) are constant, because both sheaves will be generated by their global
sections, and thus h1(F ′(m)) = h1(F(m)) = 0. In this case, we can multiply by the
denominators and apply the Riemann-Roch theorem 4.2.11.1 to obtain an equivalent
inequality:

(dim V′ rkF)m +dim V′(degF + rkF(1− g))
≤

(dim V rkF ′)m +dim V(degF ′ + rkF ′(1− g))

Since this is an inequality of polynomials of same degree in the variable
m, it holds if and only if there is a corresponding inequality of their leading terms. If
rkF ′ ≠ 0, then the leading term of the polynomial P(F ′) is rkF ′, and otherwise the
Hilbert polynomial of F ′ is constant.

Therefore, there is an upper bound M > 0 (depending on both F and F ′)
such that whenever m ≥ M we have

rkF ′ > 0 and
dim V′

rkF ′ (≤)
dim V
rkF > 0 ⇐⇒ dim V′

P(F ′, m)(≤)
dim V

P(F , m) .
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Moreover, as the subspaces 0 ≠ V′ ⊊ V = kN form a bounded family (parametrized by
a product of Grassmannians) and the quotients q ∶ ON

X → F form a bounded family
(parametrized by the quot scheme), the family of sheaves such that

F ′ ≐ q(V′ ⊗F)

is also bounded.

Proposition 4.8.2. Let n ≥ 0, d ∈ Z be fixed integers such that d > n2(2g − 2). Then a
locally free sheaf F of rank n and degree d is (semi)stable if, for all F ′ ⊂ F we have

h0(X,F ′)
rkF ′ (≤)

X (F)
rkF .

Proof. First, let us suppose F is not semistable, so there is a non-trivial locally free
subsheaf F ′ ⊂ F such that µ(F ′) > µ(F). We can suppose that F ′ is semistable since, if
not, there must be another non-trivial locally free subsheaf F ′′ ⊂ F ′ with µ(F ′′) > µ(F ′),
and we could replace F ′ by F ′′.

Then

degF ′ > d
n

rkF ′ > d
n
> n(2g − 2) > rkF ′(2g − 2),

so by 4.4.2 we have H1(X,F ′) = 0. However, applying the Riemann-Roch theorem, we
can write

h0(X,F ′)
rkF ′ = µ(F ′)+ (1− g) > µ(F)+ (1− g) = X (F)

rkF ,

contradicting the hypothesis.

Furthermore, if the sheaf F is semistable and the strict inequality holds, we
can choose a non-trivial locally free subsheaf F ′ ⊂ F such that µ(F ′) = µ(F) to get an
analogous contradiction.

Lemma 4.8.3 (Le Potier bounds). For any semistable locally free sheaf F of rank n and
slope µ = µ(F), we have

h0(X,F)
n

≤max{µ + 1, 0}

Proof. If µ < 0, then H0(X,F) = 0, by 4.3.7. For µ ≥ 0, we proceed by induction on
d = deg(F). If we assume the lemma holds for any degree less than d, we can consider
the exact sequence of coherent sheaves (as in 4.1)

0→ F(−x)→ F → Fx → 0

where x ∈ X is any point. Applying cohomology, we get the long exact sequence and
then h0(X,F) ≤ h0(X,F(−x)) + n. Since µ(F) = µ(F(−x)) + 1, the result follows by
applying the inductive hypothesis to F(−x).
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The following corollary follows from applying the Le Potier bounds to the
Harder-Narasimhan filtration of a locally free sheaf.

Corollary 4.8.3.1. Let F be a locally free sheaf of rank n and slope µ with a Harder-
Narasimhan filtration

0 = F(0) ⊊ F(1) ⊊ ⋯ ⊊ F(s) = F ,

i.e., Fi ≐ F(i)/F(i−1) are semistable and

µmax(F) ≐ µ(F1) > ⋯ > µ(Fs) ≐ µmin(F).

Then

h0(X,F)
n

≤
s
∑
i=1

rkFi
n

max{µ(Fi)+ 1, 0}

≤ (1− 1
n
)max{µ + 1, 0}+ max{µmin(F)+ 1, 0}

r

Proposition 4.8.4. Let n ≥ 1, d ∈ Z fixed such that d > gn2 + n(2g − 2). Let F be a
semistable locally free sheaf over X with rank r and degree d. Then, for all non-zero
subsheaves 0 ≠ F ′ ⊊ F , we have

h0(X,F ′)
rkF ′ ≤ X (F)

rkF

and, if equality holds, then h1(X,F ′) = 0 and µ(F ′) = µ(F).

Proof. Let µ = d/n denote the slope of F . Then, by hypothesis, µ − gn > 2g − 2 and thus
there is at least one rational constant C satisfying µ− gn > C > 2g− 2. Now, let F ′ ⊂ F be
any subsheaf and consider the Harder-Narasimhan filtration in F ′, given by a choice
of quotients which we denote by {F ′i }i∈I , for a finite set I. From the previous corollary,
we have the bound

h0(X,F ′)
rkF ′ ≤ (1− 1

n
)max{µ + 1, 0}+ max{µmin(F)+ 1, 0}

n

We divide the proof into two cases, depending on the value µmin(F ′) ∈Q.

First, if µmin(F ′) ≤ C, then we use the inequality defining C to get

h0(X,F ′)
rkF ′ ≤ (1− 1

n
) (µ + 1)+ (C + 1)

n

< µ + 1+ g = X (F)
rkF ,

using the Riemann-Roch theorem. On the other hand, if µmin(F ′) ≤ C, whenever i ∈ I
we have

µ(F ′i ) ≥ µmin(F ′) > C > 2g − 2.
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Thus
degF ′i > rkF ′i (2g − 2)

and, as each F ′i is semistable, we conclude that H1(X,F ′i ) = 0, using 4.4.2. Furthermore,
we have

H1(X,F ′) ≃⊕
i∈I

H1(X,F ′i ) = 0.

By the semistability of F , we have µ(F ′) ≤ µ(F). Now, using the Riemann-Roch
theorem (4.2.11.1) and the fact that H1(X,F ′) = 0, we can write

h0(X,F ′)
rkF ′ = µ(F ′)+ 1− g ≤ µ(F)+ 1− g = X (F)

rkF ,

with equality only if µ(F ′) = µ(F).

4.9 Construction of the moduli space

Theorem 4.9.1. Let n, d be fixed integers such that

d >max{n2(2g − 2), gn2 + n(2g − 2)}.

Then there exists a natural number M > 0 such that, for all m ≥ M, we have

Qss(Lm) = Rss and Qs(Lm) = Rs.

Proof. We choose the natural M as required so the notions for (semi)stability and
µ−(semi)stability coincide, using 4.7.4.1. Since these subschemes are all open, it suffices
to check equality on k−points.

First, let q ∶ ON
X → F be a k−point in Rss, so F is locally free and H0(q) is

an isomorphism. Using 4.7.4.1, we let F ′ ⊂ F be a proper non-trivial subsheaf, with
rkF ′ > 0, and let V′ ≐ H0(q)−1(H0(X,F ′)). As H0(q) is an isomorphism, we have
dim V′ = h0(X,F), and using the previous simplifications, we have either

1. h0(X,F ′) < rkF ′ ⋅ X (F)
rkF , or

2. h1(X,F ′) = 0 and µ(F′) = µ(F).

In the first case, we can write

dim V′

rkF ′ =
h0(X,F ′)

rkF ′ < X (F)
rkF =

dim V
rkF ,

and in the second case, since dim V′ = h0(X,F ′) = P(F ′), we have

dim V′

rkF ′ =
X (F ′)
rkF ′ =

X (F)
rkF =

dim V
rkF
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so that q must be semistable, using 4.7.4.1.

Furthermore, if F is a stable locally free sheaf, then q is stable (in the sense
of GIT) in Q, since the second behaviour will not occur in this case, and we get the
strict inequality. Hence, we have inclusions R(s)s(k) ⊂ Q(s)s(Lm)(k).

Let q ∶ ON
X → F be a k−point of Q(s)s(Lm). Then, whenever F ′ ⊂ F is a proper

non-trivial subsheaf such that V′ ≐ H0(q)−1(H0(X,F ′)) is nonzero, we have rkF ′ > 0
and an inequality

dim V′

rkF ′ (≤)
dim V
rkF ,

by 4.7.4.1. If we prove that H0(q) is an isomorphism and F is locally free, we get the
desired inclusion.

First, if we denote by K ⊂ V the kernel of the morphism H0(q), then
F ′ ≐ q(K⊗OX) and this means F ′ has rank zero, so if K is non-trivial q would not be
GIT semistable.

Moreover, if we prove H1(X,F) = 0, then

dim H0(X,F) = X (F) = N = dim V

and so we conclude H0(q) is an isomorphism. If we suppose H1(X,F) ≠ 0, by Serre
duality we get a non-zero morphismϕ ∶ F → ωX whose image F ′′ ≐ Im ϕ ⊂ ωX is an
invertible sheaf. Using the equivalence between kernels and cokernels in the category
Coh(X), we can equivalently rephrase the GIT (semi)stability of q in terms of quotient
sheaves F ↠ F ′′ satisfying

dim V
n
≤ dim V′′

rkF ′′ ,

where V′′ is the image of the induced composition

V
H0(q)
ÐÐÐ→ H0(X,F)→ H0(X,F ′′).

Moreover, as V′′ ⊂ H0(X,F ′′) ⊂ H0(X, ωX), we get dim V′′ ≤ g, so that by GIT semista-
bility we have

d
n
+ (1− g) ≤ g,

which contradicts the choice of d. Thus H1(X,F) = 0, and H0(q) is an isomorphism.

If F ′ ⊂ F is a torsion subsheaf, then rkF ′ = 0 and since every torsion sheaf
admits a section, H0(X,F ′) ≠ 0 and this contradicts GIT semistability, thus the sheaf F
must be torsion free, and thus locally free over the curve X.

Theorem 4.9.2. There is a coarse moduli space Ms(n, d) for the moduli problem of µ-stable
vector bundles of rank n and degree d over X, which has a natural projective completion
Mss(n, d) whose k−points parametrize polystable vector bundles of rank n and degree d.
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Proof. As pointed out before, we can suppose d is large enough (as in the previous
theorem), because we can tensor with line bundles until we reach this degree, and this
gives an isomorphism. We linearize the action of SLN on the Quot scheme Q in the
invertible sheaf Lm with m large enough, as before. Then, Q(s)s(Lm) = R(s)s and there
is a GIT projective quotient

π ∶ Rss → Qss(Lm)→ Q//Lm SLN,

and the latter is by definition Mss(n, d). Moreover, using GIT theory, π restricts to a
geometric quotient

πs ∶ Rs → Qs(Lm)→ Qs//Lm SLN ≐ Ms(d, n)

As we saw in 4.6.2, R(s)s parametrizes the family U(s)s which has the local universal
property, and by 4.6.3 such that two k−points in R(s)s lie in the same orbit if and only
the corresponding vector bundles are isomorphic.

Via the criterion given in 3.1.9, since πs is both a categorical quotient and an
orbit space, Ms(d, n) is a coarse moduli space for stable vector bundles on X of rank n
and degree d.

To finish the proof, we only need to show that the orbit of a k−point
q ∶ OX → F in Rss is closed if and only if the sheaf F is polystable.

If F is not polystable, then there must be a non-split short exact sequence

0→ F ′ → F → F ′′ → 0,

where F ′ and F ′′ are semistable and µ(F ′) = µ(F ′′) = µ(F). In this case, as in the proof
of 4.4.1 we can find a 1−PS λ such that

lim
t→0

λ(t) ⋅ [q] = [ON
X ↠ F ′′ ⊕F ′],

which shows that the orbit is not closed.

On the other hand, if F is a polystable sheaf, so we can write

F =
l
⊕
i=1
Fni

i ,

for non-isomorphic stable vector bundles Fi with same slope as F , using a Jordan-
Hölder filtration (4.3.16). For any k−point q′ ∶ ON

X ↠ F ′ in the closure of the orbit of q,
using 3.4.11, there must be a one-parameter subgroup λ ∶ Gm → SLN such that

lim
t→0

λ(t) ⋅ q = q′.
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This corresponds to a family E ∈ Coh(X ×A1) of semistable locally free
sheaves such that Et ≃ Ft for t ≠ 0, by flatness, and E0 = F ′. Since the sheaves Fi are all
stable of same slope, we can use 4.3.6, to conclude that

Hom(Fi,Fj) ≃
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k, if i = j

0, else,

so dim Hom(Fi,F) = dim Hom(Fi,Fni
i ) = ni. Since E is flat over A1, the dimension

function is upper semi-continuous and dim Hom(Fi,F ′) ≐ mi ≥ ni. Also by flatness, it
follows that the Hilbert polynomial of fibers must be constant, so µ(F ′) = µ(F). Now,
we consider the natural evaluation maps

ei ∶Hom(Fi,F ′)⊗Fi → F ′

which apply morphisms to local sections of each Fi. Since deg Hom(Fi,F ′) = 0 and

µ(Hom(Fi,F ′)⊗Fi) =
rk Hom(Fi,F ′) ⋅degFi

rk Hom(Fi,F ′) ⋅ rkFi
= µ(Fi),

each evaluation map must be injective, as it is a non-zero morphism between µ−stable
vector bundles of same slope. On the other hand, as Fi ≄ Fj, the sum

l
∑
i=1
Fmi

i ⊂ F
′

is direct, so by comparing ranks we get mi = ni whenever i = 1, . . . , l and

F ′ ≃
l
⊕
i=1
Fni

i = F .

In particular, any point in the closure of the orbit of q is inside the orbit, and thus the
orbits of polystable sheaves are closed.

Theorem 4.9.3. The moduli space Ms(d, n) of stable vector bundles is a smooth quasi-projective
variety of dimension n2(g − 1)+ 1.

Proof. Using the local description of the Quot scheme given in 4.5.12, for q ∈ Rs, we
denote by K ≐ ker q and apply the functor Hom(−,F) to the short exact sequence

0→ K → ON
X → F → 0,

to obtain a long exact sequence

⋯→Hom(K,F)→ Ext1(F ,F)→ Ext1(ON
X ,F)→ Ext1(K,F)→ 0.

As the hom-functor HomOX(OX,−) and the functor of global sections ΓOX(X,−) coin-
cide, we have the isomorphism between derived functors Ext1(ON

X ,F) ≃ H1(X,F)N.



Chapter 4. Vector Bundles over a curve 149

On the other hand, by our assumption on the degree, H1(X,F)N = 0, and by the exact
sequence Ext1(K,F) = 0, so Q is smooth in a neighbourhood of every point q.

To compute the dimension, we consider the same long exact sequence

0→Hom(F ,F)→Hom(ON
X ,F)→Hom(K,F)→ Ext1(F ,F)→ 0,

and we conclude dim Hom(F ,F) = 1, as every stable sheaf is simple, and that
dim Hom(ON

X ,F) = N2, since Ext1(ON
X ,F) = 0. Moreover,

Ext1(F ,F) ≃ Ext1(OX,F∨ ⊗F) ≃ H1(X,F∨ ⊗F),

which has dimension n2(g − 1)+ 1 by the Riemann-Roch formula. Hence, we conclude

dim Rss = dim TqQ = dim Hom(K,F) = n2(g − 1)+ 1+N2 − 1 = n2(g − 1)+N2.

Since SLN acts with finite global stabilizer on the smooth quasi-projective
variety Rs and the quotient Rs → Ms(d, n) is a geometric quotient, it follows from
Luna’s Slice theorem (see (DRéZET, 2004)) that the moduli space Ms(d, n) is smooth.
Furthermore, we can compute the dimension using the formula

dim Ms(d, n) = dim Rs −dim SLN = dim Rs − (N2 − 1) = n2(g − 1)+ 1.

The next proposition and corollary assures that the space Ms(d, n) is a fine
moduli space for the moduli problem of vector bundles over a curve when (n, d) = 1.
For proofs, see (NEWSTEAD, 2012).

Proposition 4.9.4. Let S be a k−scheme. If E1 and E2 are two families of vector bundles
over S ×X such that, whenever s ∈ S, the fiber (E1)s is stable over X and (E1)s ≃ (E2)s,
then E1 and E2 are equivalent families for the moduli problem of vector bundles over a
curve, as defined in 4.4.

Proof. See (NEWSTEAD, 2012), Lemma 5.10.

Corollary 4.9.4.1. If there is a family U over Ms(d, n) × X such that, whenever s ∈
Ms(d, n), Us is the stable vector bundle corresponding to the point s, then Ms(d, n) is
a fine moduli space for the moduli problem of stable vector bundles of rank n and
degree d over X.

Proof. This follows from the previous proposition and the characterization 1.2.4 for
fine moduli spaces.
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For the construction of such family when (n, d) = 1, we refer the reader to
(NEWSTEAD, 2012), Lemma 5.11.

Remark 4.9.5. The behaviour of the moduli functor when g = 1 is somewhat different,
and it is studied in detail in (TU, 1993). The moduli space of stable vector bundles of
coprime (n, d) over X is in fact isomorphic to the curve X, and the moduli space for
semistable vector bundles can be described as a symmetric product over X.

Remark 4.9.6. For explicit descriptions of the moduli space Ms(d, n) when n = 2 and
d = 0, 1 when g = 2, see (NARASIMHAN; RAMANAN, 1969). In (NARASIMHAN;
SESHADRI, 1965), M. S. Narasimhan and C. S. Seshadri use representation theory to
describe the stable vector bundles over curves with genus g ≥ 2.

For the case when X is an algebraic variety of higher dimension, we refer
the reader to (HUYBRECHTS; LEHN, 2010).
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APPENDIX A – Category Theory

In this appendix, we review some of the category theory necessary for this
dissertation.

A.1 Category Theory
For the categorical introduction, we will follow (RIEHL, 2016).

Definition A.1.1. A category C consists of:

• A collection of objects Ob(C).

• A collection of morphisms HomC(A, B) whenever A, B are objects in C, which
satisfy:

1. Each morphism f has a specified domain A = dom(f) ∈ C and codomain
B = codom( f ) ∈ C objects, and in notation we usually write them

A
f
Ð→ B,

whenever f ∈HomC(A, B).

2. For any pair of morphisms f , g with the compatibility condition

codom( f ) = dom(g),

we can consider the composite morphism, which we denote by g ○ f ∈
HomC(A, B), which we usually represent as:

A
f
Ð→ B

g
Ð→ C.

3. Each object A ∈ C comes with a morphism IdA ∈ C, which satisfies the rules
of composition

A
IdAÐÐ→ B

f
Ð→ C, B

g
Ð→ A

IdAÐÐ→ A,

i.e., f ○ IdA = f and IdA ○g whenever f , g are compatible as described in the
diagram.

4. The composition operation is also associative.

For formal reasons, the word collection cannot be replaced by the word set
always, and there is a lot of work that goes into studying formalisms inside category
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theory. Since we are using category theory as a tool and as a unifying language, we
refer to (RIEHL, 2016) for more comments on this. A small category C is a category
where both collections of objects and morphisms are sets, and we say a category is
locally small if, whenever A, B are objects in C, the collection HomC(A, B) is a set.

Definition A.1.2. A (covariant) functor F from a category C to a category D is a
transformation F ∶ C → D which consists of the following information:

• An object F(A) ∈ Ob(D) for each object A ∈ C;

• For each pair A, B ∈ Ob(C), there is also a mapping

HomC(A, B)→HomD(F(A), F(B)),

usually also denoted by F, which satisfies:

1. F(IdA) = IdF(A) for A ∈ Ob(C).
2. F preserves commuting diagrams. More explicitly, we only need to ask the

following condition: that F takes the (trivially) commuting diagram

A B

C

f

g○ f
g

in C into the following diagram D

F(A) F(B)

F(C)

F( f )

F(g○ f )
F(g)

such that it also commutes in D, i.e., F(g ○ f ) = F(g) ○ F( f ).

Example A.1. Let S be a set. A preorder ≤ on S is a binary relation that is reflexive and
transitive, i.e., it satisfies:

• x ≤ x whenever x ∈ X;

• If x ≤ y and y ≤ z, then x ≤ z whenever x, y, z ∈ S.

The pair (S,≤) is called a partially ordered set, usually abbreviated as poset.

If (S,≤) is a poset, we define the induced category of (S,≤) by the category
C defined as below:

Ob(C) ≐ S

HomC(x, y) ≐
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{∗}, if x ≤ y

∅, otherwise,
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where {∗} denotes the set of one element. Since S is a set, the category C is a small
category.

Definition A.1.3. Given any category C, we can consider the formal procedure of
inverting all arrows in it. This gives rise to the definition of dual category Cop defined
as

Ob(Cop) ≐ Ob(C)
HomCop(A, B) ≐HomC(B, A)

and, whenever

A
f
Ð→ B

g
Ð→ C

is a diagram in C, we have the composition

C
gop

ÐÐ→ B
f op

ÐÐ→ C.

In this case, a (covariant) functor F ∶ Cop → D can also be viewed as a functor which
acts on the category C in a contravariant manner, and by this we mean that it inverts
all the diagrams which commutes in C. This is also referred as a contravariant functor
F ∶ C → D.

Definition A.1.4. If F, G ∶ C → D are functors, then a natural transformation η ∶ F → G is
a family of morphisms {ηA ∶ F(A)→ G(A) ∶ A ∈ C0} in D such that, whenever f ∶ A → B
is a morphism in C the diagram:

F(A) G(A)

F(B) G(B)

ηA

F( f ) G( f )

ηB

commutes.

Definition A.1.5. Given a category C and a small category I and a functor F ∶ I → C, we
can define a cone over F with summit c ∈ Ob(C) as a natural transformation

λ ∶ c(J)⇒ F

whose domain is the constant functor c = c(J) defined by

c(J) ∶ J → C
j ↦ c

(i → j)↦ Idc .

More explicitly, we have a family of morphisms (λj ∶ c → Fj)i∈J which commutes the
diagram
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c

Fj Fk

λj λk

F( f )

in C whenever f ∶ j → k is a morphism in J.

Dually, a cone under F with nadir c is a natural transformation λ ∶ F ⇒ c
which components (λj ∶ Fj → c)j∈J commute the dual diagram

Fj Fk

c

F( f )

λj λk

A limit of F is an object lim F ∈ C with a cone above F given by λ ∶ lim F⇒ F which is
universal among the cones above F, i.e., whenever η ∶ c → F is a cone above F, then
there is a unique morphism in C such that the diagram

lim F F

c

λ

η

commutes in the category of functors of C. Dually, a colimit of F is an object colim F ∈ C
with a cone below F given by λ ∶ F ⇒ colim F which is universal among the cones
below F in the sense that whenever η ∶ F⇒ c is a cone below F.

In practice, the category I can be chosen for each particular problem we are
studying in C.

Example A.2. A terminal object in a category C is a limit indexed by an empty category.
Dually, a initial object in C is a colimit indexed by an empty category. When these two
exist and are isomorphic, we say C has a zero object, and denote it by 0.

This is the case, for example, in the category of R−modules, where R is a
commutative ring.

Example A.3. An equalizer in a category C is a limit of a diagram indexed by the
parallel pair, the category with 2 objects and 2 parallel, non-identity morphisms:

● ●

For example, the kernel of a morphism T ∶ V → W of R−modules is the equalizer
between T and the zero morphism between V and W.

Dually, a coequalizer is a colimit of a diagram indexed by the parallel pair.
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For more examples and definitions for (co)limits, see (RIEHL, 2016), Chapter
3.

Definition A.1.6. An ajunction consists of a pair of functors F ∶ C → D and G ∶ D → C
with an isomorphism

HomD(F(C), D) ≃HomC(C, G(D))

whenever C is an object of C and D, which is natural in both variables. In this case, F
is called left adjoint to G and G is called right adjoint to F.

Adjoint functors are a neat way of relating two categories, and they usually
are useful since they preserve the universal objects.

Theorem A.1.7 (see (RIEHL, 2016), 4.5). Right adjoint functors preserve limits. Dually, left
adjoint functors preserve colimits.

A.2 Abelian Categories
For definitions, we follow the appendix A.4 on (WEIBEL, 1995).

Definition A.2.1. A category A is an Ab−category if every hom-set HomA(A, B) in
A is given a structure of an abelian group in such a way that composition distributes
over addition.

More explicitly, whenever A, B, C, Z are objects in A, and there are diagrams:

A B C
f ′

f g
, Z A Bh

f ′

f
,

then g( f + f ′) = g f + g f ′ and h( f + f ′) = h f + h f ′. Note that, whenever A, B are objects,
there is a zero arrow 0 ∈HomA(A, B), the identity of the abelian group structure.

An Ab−category A is called additive if it has a zero object and it has binary
products. In and additive category, whenever f ∈HomA(A, B), then the kernel of f is
the equalizer of f and the zero map. Dually, the cokernel of f is the coequalizer of f
and the zero map.

An additive category A is abelian if it satisfies:

1. Every map has a kernel and a cokernel.

2. Every monomorphism in A is the kernel of its cokernel, and

3. Every epimorphism in A is the cokernel of its kernel.
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APPENDIX B – Sheaves and Schemes

Definition B.0.1. Let (X, τ) be a topological space, where we denote by τ its topology,
i.e., the set of all open sets of X. Since τ admits a preorder induced by the inclusion,
we can consider (τ,⊂) as a category. A presheaf is a functor

F ∶ (τop,≤)→ C,

where C is a concrete category.

Definition B.0.2. A sheaf of sets C = Sets over a topological space (X, τ) is a presheaf
F ∶ (τop,≤) → Sets which satisfies the following gluing condition: given any open
covering {Ui}i∈I of X and any collection of sections si ∈ F(Ui), whenever i ∈ I, such
that whenever i, j ∈ I,

si∣Ui∩Uj
= sj∣Ui∩Uj

,

then there is a unique section s ∈ F(U) such that si = s∣Ui
.

More generally, if C is any concrete category, we ask the same condition,
since in this case the restriction maps are also morphisms in C. There is also an
equivalent categorical definition:

Proposition B.0.3. A presheaf of sets F ∶ τop → Sets is a sheaf if and only if it preserves
colimits, sending them to limits in Sets.

For proofs and more comments on this relation, see (RIEHL, 2016), chapter
3.

Theorem B.0.4 (Gluing lemma). [] Let {Ui}i∈I be an open cover of a topological space X such
that, for each i ∈ I, there is a sheaf Fi over Ui and, for each i, j ∈ I, there is also an isomorphism
of sheaves

θij ∶ Fj∣Ui∩Uj
→ Fi∣Ui∩Uj

satisfying the conditions below, which are called gluing conditions:

(i) θii = Id
Fi∣

Ui∩Uj

(ii) For all i, j, k ∈ I, the restrictions to Ui ∩Uj ∩Uk satisfy

θik = θij ○ θjk.

Then there is a unique sheaf F over X and isomorphisms ηi ∶ F ∣Ui
→ Fi such that

ηi ○ η−1
j = θij.
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Definition B.0.5. Let X, Y be schemes, and f ∶ U → Y, g ∶ V → Y be scheme morphisms
defined on open dense sets U, V ⊂ X. We can define the following equivalence relation:

f ≃ g ⇐⇒ f ∣W = g∣W
where W ⊂ U ∩V is an open dense set of X. A rational function h ∶ X ⇢ Y is an
equivalence class of this relation.

Definition B.0.6. (HARTSHORNE, 1977) A subset A ⊂ X is locally closed if its a closed
subspace of an open subset of X. Explicitly, there exists U ⊂ X open and F ⊂ X closed
such that A = U ∩ F.

Note that, if A ⊂ X is a subset such that A ⊂ A is an open set in A, then
there exists an open set U ⊂ X such that A = A ∩U, and this means that A is locally
closed. This can be used as an alternative definition, since these facts are equivalent.

Note that, if X is a scheme, a locally closed subspace A can always be seen
as an closed subset of the open subscheme X ∖ ∂A.

Definition B.0.7. (EISENBUD; HARRIS; HARRIS, 2000) Let (X,OX) be a scheme.

1. For each x ∈ X, we define the (algebraic) dimension of X at x as the krull
dimension of the local ring OX,x, and denote it by dim(X, x). This way we define
the (algebraic) dimension of X to be:

dim X = sup
x∈X

dim(X, x)

2. For each x ∈ X, we define the Zariski cotangent space to X at x to be mX,x/m2
X,x,

as a vector space over k(x).

3. For each x ∈ X, we say that X is nonsingular (or regular) at x if

dim(X, x) = dimk(x)
mX,x

m2
X,x

4. We define the topological dimension of X to be:

dim X = sup{l ∶ ∃F0 ⊊ ⋯ ⊊ Fl = X s.t. Fi are closed irreducible sets}

Definition B.0.8. (HARTSHORNE, 1977) Let A be a ring and M be a A−module. We
say that M is flat over A if the functor ModA →ModM given by N ↦ M⊗A N is an
exact functor. Since the functor −⊗A M is right-exact, M is a flat module over A if and
only if the functor −⊗A M preserves injections.

Let f ∶ X → Y be a morphism of schemes, F an OX−module and y = f (x) ∈
Y. We can induce a structure of OY,y−module in Fx, simply by using the induced
morphism

f #
x ∶ OY,y → OX,x.
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We say that F is flat over Y at y if Fx is flat over OY,y, and say X is flat over Y if OX is
flat over Y.

Example B.1. 1. (Free Modules) Let M = ⊕e∈E Ae. If f ∶ N → N′ is an A−module
morphism, the map

f ⊗ Id ∶ N ⊗A (⊕
e∈E

Ae)→ N′ ⊗A (⊕
e∈E

Ae)

is isomorphic to
⊕ f ∶⊕

e∈E
Ne →⊕

e∈E
N′e.

Since the injectivity of f implies the injectivity of ⊕ f , this means that M is a flat
module over A.

2. If k is a field, every k−module is free over k, and this means that every k−algebra
is flat over k.

Lemma B.0.9. 1. If B is a flat A−algebra and C is a flat B−algebra, then C is a flat
A−algebra.

2. If M is a flat A−algebra and B is an A−algebra, M⊗A B is flat over B.

3. M is flat over A if and only if Mp is flat over Ap for each p ∈ Spec A.

4. Let 0 → M′ → M → M′′ → 0 be an exact sequence of A−modules. If M′ and M′′

are flat, M is flat. If M and M′′ are flat, M′ is flat.

This lemma has a version on the category of schemes:

Lemma B.0.10. [(LIU; ERNE, 2006), 4.3.1, Prop 3.3] The following are true:

(a) Open immersions are flat.

(b) Flat morphisms are stable by base change.

(c) The composition of two flat morphisms is flat.

(d) The morphism A → B is flat if and only if the induced Spec B → Spec A is flat.

Proposition B.0.11. Let f ∶ X → Y be a flat morphism of schemes of finite type over k.
For any x ∈ X, y = f (x), we have the formula:

dimx Xy = dimx X −dimy Y,

where Xy ≐ X ×Y Spec k(y) is the preimage.
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Theorem B.0.12. [(GROTHENDIECK, 1966), 11.1.1] Let Y be a locally noetherian scheme,
f ∶ X → Y a morphism of finite type and F an coherent OX−module. Then the set:

U ≐ {x ∈ X ∶ Fx is flat over Y at y = f (x)}

is an open dense subset of X.

Lemma B.0.13. Let f ∶ (X,OX) → (Y,OY) be a morphism of schemes and L be an
OY−module that is locally free of finite rank. Then

f ∗(L)∨ ≃ f ∗(L∨).

Proof. By definition, we have the canonical isomorphism:

L⊗OY L∨
≃Ð→ OY.

Since the pullbacks commute with tensor products, we can pullback this isomorphism
to an isomorphism

f ∗(L)⊗OX f ∗(L∨) ≃ f ∗(L⊗OY L∨)→ f ∗OX ≃ OY.

And this means that f ∗(L∨) is the dual of f ∗(L).

Lemma B.0.14. Let f ∶ (X,OX)→ (Y,OY) be a morphism of ringed spaces and E, F be
two locally free OY−modules of finite rank. Then there is an isomorphism:

f ∗HomY(E, F) ≃HomX( f ∗E, f ∗F)

Proof. It suffices to construct a map

HomY(E, F)→ f∗HomX( f ∗E, f ∗F)

and use the adjunction of f∗ and f ∗. Let U ⊂ Y be open. Then

f∗HomX(E, F)(U) =HomX ( f ∗E∣ f−1(U), f ∗F∣ f−1(U)) .

We know that f ∗∣ f−1(U) is a functor from sheaves of OU modules to sheaves of O f−1(U)
modules. Since

f ∗E∣ f−1(U) = f ∗∣ f−1(U) (E∣ f−1(U), )

from the functoriality, we get a morphism:

Hom(E∣U, F∣U)→Hom ( f ∗∣ f−1(U) (E∣ f−1(U)) , f ∗∣ f−1(U) (F∣ f−1(U)))

→Hom( f ∗E∣ f−1(U), f ∗F∣ f−1(U)).

As every operation respects restrictions, this will induce a map of sheaves

HomY(E, F)→ f∗HomX( f ∗E, f ∗F).
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Via the adjunction, we get the corresponding map

f ∗HomY(E, F)→HomX( f ∗E, f ∗F).

To prove that this map is an isomorphism of sheaves, we fix a point y ∈ X and look at
the corresponding morphism of stalks. We have a bijection (see (GÖRTZ; WEDHORN,
2010), Chapter 7, Proposition 7.27)

HomY(E, F)y ≃HomOY,y(Ey, Fy).

Therefore, taking stalks, if f (x) = y:

HomOY,y(Ey, Fy)⊗OY,y OX,x →HomOX,x(Ey ⊗OY,y OX,x, Fy ⊗OY,y OX,x)

and this is an isomorphism by the corresponding result on base change of
modules.
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APPENDIX C – Homological algebra

C.1 Exact and Derived Functors
In this appendix, we review some useful constructions and examples of

derived functors.

Definition C.1.1. Let F ∶ A → B be a left exact functor between abelian categories. A
cohomological δ-functor is a collection of functors Fi ∶ A→ B such that, whenever we
have a short exact sequence on A

0→ A → B → C → 0

there is a corresponding long exact sequence on B:

0→ F(A)→ F(B)→ F(C)→ F1(A)→ F1(B)→ F1(C)→ ⋯

such that this procedure is functorial in the category of short exact sequences over A.

We can consider a category of such δ−functors of F, where each morphism
between δ−functors of F: ϕ ∶ (Sn)n∈N → (Tn)n∈N is a family of natural transformations
ϕ = (ϕn ∶ Sn → Tn)n∈N such that, for every short sequence

0→ A → B → C → 0

in A, following diagram commutes:

⋯ Sn(A) Sn(B) Sn(C) Sn+1(A) ⋯

⋯ Tn(A) Tn(B) Tn(C) Tn+1(A) ⋯

δn−1
S

ϕn(A) ϕn(B)

δn
S

ϕn(C) ϕn+1(A)

δn−1
T δn

T

on the category of long exact sequences of elements of B.

The terminal object of the category of δ−functors of F is usually written as
(RiF)i≥0 and each RiF is called the i-th right-derived functor

Of course, we could do all of this dually when F is a right-exact functor,
with a collection called homological δ-functor, and the corresponding i-th left-derived
functors denoted by LiF.

We now list some derived functors that exist and some properties of them.
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Definition C.1.2 (Sheaf Cohomology). Let X be a topological space. Let Sh(X) be the
category of sheaves of abelian groups on X, and Ab the category of abelian groups.
We can consider the global sections functor:

Γ(X, ⋅) ∶ Sh(X)→ Ab .

This is a left-exact functor, and we denote the i − th right derived functor of Γ(X, ⋅) by
Hi(X, ⋅), and these are called the i-th sheaf cohomology functor.

We have the equivalent manner of defining sheaf cohomology on ringed
spaces:

Theorem C.1.3. Let (X,OX) be a ringed space. Then the derived functors of Γ(X, ⋅) ∶
Mod(OX)→ Ab coincide with the Cech cohomology functors Hi(X, ⋅).

For more results on Cech Cohomology, see C.2.

Definition C.1.4 (Torsion of modules). Let M be an R−module. Then the functor
M⊗− is right-exact, and it has left-derived functors, which are usually denoted by
TorR

i (M,−) and are called Tor functors. Since the tensor product is commutative, we
can regard Tor as a functor of two variables, and they both carry short exact sequences
to corresponding long exact sequences.

It follows immediately by the definition that we have Tor1(M, M) = 0.

Proposition C.1.5. If x ∈ R is a non-zero divisor, then we have

Tor1(R/(x), M) = {m ∈ M ∶ xm = 0},

which is called the tersion submodule of M for x ∈ R.

Proof. This follows from the derived functor property: If we consider the following
exact sequence of R−modules:

0→ (x)→ R → R/(x)→ 0.

Since −⊗M is right exact, we get the long sequence

Tor1(M, M)→ Tor1(R/(x)⊗M, M)→ (x)⊗M → M → R/(x)⊗M → 0,

and since Tor1(M, M) = 0, we have the exact sequence:

0→ Tor1(R/(x)⊗M, M)→ (x)⊗M → M → R/(x)⊗M → 0.
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Since the first must be a monomorphism, it means that we can see it as a submodule
of (x)⊗M. Following the rest of the sequence, since the mapping M → R/(x)⊗M is
given by m ↦ 1⊗m, it follows easily that

Tor1(R/(x)⊗M, M) = {m ∈ M ∶ xm = 0}.

Definition C.1.6 (Ext functors). Let A be an abelian category. The functor Hom(M,−) is
left-exact, and it has right-derived functors, which are usually denoted by Exti(M, N). If
now we want to regard Hom(−, N), we get the same object Exti(M, N) (see (ROTMAN,
2008), Theorem 7.8).

An extension of A by C is an exact sequence in A of the form:

0→ A → B → C → 0.

We say that an exact sequence of this form is split if B ≃ A⊕C, where A⊕C denote
the coproduct on A.

Theorem C.1.7. If Ext1(C, A) = 0, then every extension of A by C is split.

Proof. Let

0→ A iÐ→ B → C → 0

be any extension of A by C. Applying Hom(−, A) gives the exactness of

0→Hom(C, A)→Hom(B, A) i∗Ð→Hom(A, A)→ Ext1(C, A) = 0,

which means that i∗ is an epimorphism. In particular, this implies that there exists an
element g ∈Hom(B, A) such that 1A = i∗(g) = g ○ i.

The procedure in the previous proof defines a map

{Extensions of C by A}→ Ext1(C, A),

taking any extension 0→ A → B → C → 0 to the image of the identity IdA ∈Hom(A, A)
by the connecting morphism δ in the long exact sequence

0→Hom(C, A)→Hom(B, A)→Hom(A, A) δÐ→ Ext1(C, A)→ ⋯

Theorem C.1.8 ((WEIBEL, 1995), Theorem 3.4.3). There is a bijection

{Extensions of C by A}→ Ext1(C, A),

induced by the previous map.
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Theorem C.1.9 ((HARTSHORNE, 1977), III, Prop. 6.7). Let L be a locally free sheaf of finite
rank, L∨ =Hom(L,OX) be its dual. Then for any F ,G ∈Mod(X) we have

Exti(F ⊗L,G) ≃ Exti(F ,L∨ ⊗G).

Corollary C.1.9.1. For E ,F locally free sheaves over X of finite rank, then:

Exti(E ,F) ≃ Exti(OX,E∨ ⊗F) ≃ Hi(X,E∨ ⊗F).

C.2 Sheaf Cohomology
We compile here the needed results on sheaf cohomology. For proofs and

more details, we refer the reader to (HARTSHORNE, 1977). Fix k field.

Lemma C.2.1 (Cohomology of projective spaces). [(HARTSHORNE, 1977), III, 5.1] Let
X = Proj k[x0, . . . , xd]. Then, for any n ∈Z, we have:

(a) H0(X,OX(n)) = k[x0, . . . , xd]n, that is, the homogeneous polynomials of degree n.

(b) Hp(X,OX(n)) = 0 if p ≠ 0, p ≠ d.

(c) Hd(X,OX(n)) ≃ H0(X,OX(−n − d − 1))∨. In particular, Hd(X,OX(−n − d − 1) = 0 if
n ≥ −d.

Theorem C.2.2 (Serre’s Vanishing Theorem). [(HARTSHORNE, 1977), III, 5.2] Let X be a
projective scheme over k and let F be a coherent sheaf on X. Then:

(a) For each i ≥ 0, Hi(X,F) has finite dimension,

(b) There is an integer n0, depending on F , such that for i > 0 and n ≥ n0, Hi(X,F(n)) = 0.

Theorem C.2.3 ((HARTSHORNE, 1977), III, 12.11). Let f ∶ X → Y be a projective morphism
of noetherian schemes, let F be a coherent sheaf on X that is flat over Y and y ∈ Y be a point.
Then:

(a) If the natural map:
φi(y) ∶ Ri f∗(F)⊗ k(y)→ Hi(Xy,Fy)

is surjective, then it is an isomorphism, and the same is true for all y′ in a neighbourhood
of y.

(b) Assume that φi(y) is surjective. Then

(i) φi−1(y) is also surjective;

(ii) Ri f∗(F) is locally free in a neighbourhood of y.
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Theorem C.2.4 (Kunneth Formula). Let k be a field, X and Y noetherian k−schemes. If F is
a quasi-coherent OX−module and G is a OY−module, then we have a canonical isomorphism:

Hn(X ×Y, π∗XF ⊗π∗YG) ≃ ⊕
p+q=n

Hp(X,F)⊗k Hq(Y,G).
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