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Resumo

Neutrinos solares são produzidos nos processos de fusão termonuclear que
alimentam o Sol. Os primeiros experimentos para sua detecção indicavam um fluxo de
neutrinos solares menor do que o previsto pelos modelos padrão solares, no que veio a ser
conhecido como o problema do neutrino solar (Solar Neutrino Problem — SNP).
Experimentos posteriores eventualmente estabeleceram o modelo de oscilação de sabor com
ângulo de mistura grande e com a conversão de sabor ressonante de
Mikheyev-Smirnov-Wolfenstein (LMA-MSW, na sigla em inglês) como a solução para o SNP.
A solução LMA-MSW estabelece, acima de qualquer dúvida razoável, a natureza massiva dos
neutrinos, o que torna possível que os neutrinos decaiam em outras partículas. Neste trabalho,
investigamos o decaimento de neutrinos como um efeito secundário na propagação de
neutrinos solares a fim de extrair novos limites para o tempo de vida dos neutrinos usando os
dados experimentais mais recentes.



Abstract

Solar neutrinos are produced in the thermonuclear fusion processes that power the
Sun. Early experiments indicated a solar neutrino flux lower than the predicted by the Solar
Standard Models, which came to be known as the Solar Neutrino Problem (SNP). Later solar
neutrino experiments eventually established the Neutrino Flavor Oscillation model with Large
Mixing Angle and Mikheyev-Smirnov-Wolfenstein Resonant Flavor Conversion (LMA-MSW)
as the solution to the SNP. The LMA-MSW solution establishes beyond reasonable doubt the
massive nature of neutrinos, which makes it possible for neutrinos to decay into other particles.
In this work, we investigate neutrino decay as a sub-leading effect in the propagation of solar
neutrinos to extract new limits to neutrino lifetime using the most recent experimental data.
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Introduction

From the discovery of sunspots — which hinted at the possibility of an imperfect
sky — to the Solar Neutrino Problem — which led to the discovery of neutrino oscillations
and the massive nature of neutrinos —, the Sun has been a constant source of new phenomena
challenging the scientific knowledge of each generation. Moreover, the Sun has also been a
laboratory for testing new theories, such as the observation of solar eclipses in the early 20th
Century, which provided early evidence in favour of Einstein’s General Relativity. Similarly,
neutrinos have consistently confronted the status quo since they were proposed by Wolfgang
Pauli in 1930 [1] to explain the continuous energy spectrum of electrons produced in the beta
decay. The neutrino oscillation phenomenon, for example, is currently one of the most
significant deviations from the Standard Model, establishing neutrinos as massive particles.
Being massive, it becomes possible for neutrinos to decay into other particles.

In Chapter One, we present an introductory discussion on the properties of the Sun,
the models built from observational data and used to described its inner structure and energy
generation through thermonuclear fusion processes, and the consequent production of solar
neutrinos. In Chapter Two, neutrino oscillations are described, both in vacuum and in matter,
and applied in the propagation of solar neutrinos from production to detection. In Chapter
Three, neutrino decay models are presented and the formalism necessary to account for both
neutrino oscillations and decay as a secondary effect on the propagation of solar neutrinos
is discussed. In Chapter Four, we investigate the solar neutrino invisible decay, in which
daughter particles are not detectable/detected by an experiment. The formalism is presented
and its consequences to the solar neutrino flux are analysed. From this analysis, we extract new
lower limits to neutrino lifetime in this decay scenario. Finally, in Chapter Five, we investigate
the solar neutrino visible decay, in which at least one of the daughter particles is in principle
detectable, is discussed. The formalism is presented and its consequences to the solar neutrino
flux are analysed. From this analysis, we extract new lower limits to neutrino lifetime in this
decay scenario.
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Chapter 1

The Sun and Solar Neutrinos

The Sun is a Main Sequence star — in the Hertzsprung-Russell diagram1 — of
spectral type G [2]. It has a radius of around 7×105 km and a mass of 2×1030 kg, concentrating
about 99.9% of the total mass of the Solar System. The Sun rotates around the galactic center
at a 10kpc radius2 and at speeds of approximately 250km · s−1.

The Sun was formed from the gravitational collapse of a cloud of gas and dust
around 4.6 billion years ago. During the collapse, the gas in the cloud heats up until
temperature and pressure in its innermost region are enough to initiate thermonuclear fusion
reactions, transforming hydrogen into helium. The energy release allows the outwards pressure
of the hot gas to balance the inwards force of gravity. The gas reach hydrostatic equilibrium,
the collapse stops and the star is born.

In this Chapter, the properties of the Sun are discussed, alongside models
constructed from observational data and used to described its inner structure and energy
generation through thermonuclear fusion processes. The production of the so-called solar
neutrinos by such reactions is also discussed.

1.1 Solar Standard Models and Solar Structure

The Sun can be probed through a variety of methods, from the astronomical
observation of surface properties and phenomena to the measurement of its normal modes of
oscillation — known as helioseismology — some of which can provide information about
deep regions within the star.

Mathematical models of the Sun can be constructed from observational data to
describe the solar structure and evolution. A Standard Solar Model (SSM) is based on
observational parameters such as the solar age, mass, radius and surface luminosity (given in

1The Hertzsprung-Russell diagram is a luminosity versus surface temperature diagram. In this diagram, most
stars fall under a narrow region called the Main Sequence [2]. The Main Sequence of this diagram is where a star
spends most of its lifetime while its main energy source is the fusion of hydrogen into helium.

2One parsec (pc) is equivalent to 3.26 light-years or 3.09×1013 km. It is defined as the distance for an
astrophysical object to have an annual parallax of one arcsecond.
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Table 1.1) as well as the cross sections governing the nuclear reaction rates. Other input
parameters are [3]:

� Chemical Abundance: The abundance of different chemical elements affects the energy
transport in the Sun and hence its temperature and density profiles. Since only the
surface chemical abundances are measurable, two assumptions are made regarding this
parameters: (a) the Sun is chemically homogeneous when it enter the Main Sequence
and (b) the current surface composition reflects the initial abundances of all elements up
to carbon.

� Radiative Opacities: Since the energy transport in the innermost regions of the Sun
happens mainly through radiation, the opacity of the solar matter to the propagation of
photons is an important input parameter which influences, for instance, the temperature
profile of the star. The radiative opacities are calculated both from (a) the assumed
chemical abundances in the solar matter and (b) from modeling the interactions between
atoms and radiation.

� Equation of State: The behavior of the solar matter and the relation between its pressure,
temperature, density, and other properties must take into account several effects including,
for example, (a) radiation pressure and (b) electron degeneracy.

Besides the input parameters, some other approximations and assumptions are made
in the SSMs:

� Hydrostatic Equilibrium: The Sun is assumed to be in hydrostatic equilibrium, that is, the
inwards force of gravity is balanced by the outwards pressure of the hot gas.

� Energy Generation: The main process responsible for the energy generation in the Sun
are thermonuclear fusion reactions.

� Energy Transport: Energy produced in the interior of the Sun is transported outwards
either by radiation or convection.

� Changes in Abundance: The chemical abundances in the Sun are supposed to change
only due to nuclear reactions in regions in which there are no convective movement of the
solar matter.

The SSM is finally obtained after simulating the solar environment and evolution
using the inputs and assumptions above. The final product are the physical quantities that
define the model [3]: (a) temperature, (b) density, (c) pressure and (d) the integrated luminosity
of the Sun. The profile for the first three is shown in Figure 1.1. Additionally, the SSM also
provides the spectra of acoustic oscillations of the surface of the Sun — which can be verified
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Table 1.1: Solar parameters [4], some of which are input parameters used in the SSM while others result
from the BS05(OP) [5] SSM.

Parameter Value Unit

Age 4.57×109 years

Mass 1.988×1030 kg

Equatorial Radius 6.957×108 m

Surface Luminosity 3.828×1026 W

Surface Effective Temperature 5772 K

Core Density ρc 152.9 g · cm−3

Core Temperature Tc 1.567×107 K

Core Pressure Pc 2.357×1017 dyn · cm−2
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Figure 1.1: Physical quantities — temperature, density, and pressure — of the Sun which are results
from the BS05(OP) [5] SSM. ρc, Tc and Pc are the values of these quantities in the solar core and are
given in Table 1.1.
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by helioseismological studies — and the fluxes of neutrinos produced in the fusion reactions,
which can me measured in solar neutrino experiments.

From astronomical and helioseismological data, as well from the SSM simulations,
the structure of the Sun can be divided in a variety of regions, among which the following can
be highlighted:

� Core (0 ≤ r ≤ 0.25R�): The innermost region of the Sun and where the thermonuclear
fusion reactions take place. At its centre, temperature and density reaches around
1.6×107 K and 150g · cm−3 respectively.

� Radiative Zone (0.25R� < r ≤ 0.7R�): In this region the energy produced in the core
is transported to the outer regions in the form of radiation diffusion, with photons being
continuously absorbed and re-emitted by atoms in the medium.

� Convective Zone (0.7R� < r ≤ R�): In this region the energy is transported to the solar
surface in the form of heat by convection of the hot gas.

� Photosphere: The region where the visible light observed from the Sun is produced. This
region thickness is of the order of 104 km, and it has an effective temperature3 of around
6×103 K and a density of 2×10−4 kg ·m−3 [6].

Above the Photosphere, the Chromosphere extends to a few thousand kilometers,
and the Corona extends up to 2 solar radii above the solar surface. Both regions are less dense
but hotter than the Photosphere below. The heating of those regions are supposed to be due to
variable magnetic fields originated in the photosphere which transport and accelerate particles
to the upper regions [2].

1.2 Fusion Processes and Neutrino Fluxes

The Sun is powered by the energy released by thermonuclear fusion reactions of
light elements that happen in its core. The energy release comes from the difference in mass
between the reacting and product nuclei, since the total mass of a nucleus is less than the sum
of the masses of its constituents [7]:

m(A,Z) = Zmp +(A−Z)mn−B(A,Z) , (1.1)

where Z is the atomic number, A is the atomic mass, B is the binding energy of the nucleus, mp

and mn are the masses of protons and neutrons respectively. The overall result of the nuclear

3Effective temperature is the temperature a black body of the same size would have to be to emit the same
luminosity as the Sun.
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fusion processes in the Sun is the reaction 4p→ 4He+2e++2νe + γ and the energy released

Q = 4mp−2me−m4He ≈ 26MeV (1.2)

is carried out by photons and in a small part by neutrinos, which are also a by-product of the
nuclear fusion reactions. There are two main sets of reactions that happen in Main Sequence
Stars, such as the Sun: the Proton-Proton (pp) chain and the Carbon-Nitrogen-Oxygen (CNO)
cycle.

The complete set of reactions of the pp chain is depicted in Figure 1.2. The main
reaction branch of the pp chain is

p+p→ 2H+ e++νe

⇓
2H+p→ 3He+ γ

⇓
3He+ 3He→ 4He+2p.

The energy release rate in this process is roughly Qpp ∝ T 4, defined by the time-scale of the first
and slowest reaction of the chain which is almost 1010 years [8].

The CNO cycle also transforms four hydrogen atoms into one helium atom,
releasing energy in the form of photons and neutrinos, using the 12C atom as a catalyst of the
process. The complete set of reactions of the CNO cycle is pictured in Figure 1.3. The three
neutrino producing reactions are

13N→ 13C+ e++νe ,

15O→ 15N+ e++νe and
17F→ 17O+ e++νe .

The energy release rate in the CNO cycle is QCNO ∝ T 16 [8]. Although the energy release rate
in the CNO cycle is higher, it is not the main process happening inside the Sun. The dominant
process is dependent on the temperature in the core of the star and hence on its mass. In more
massive stars, with hotter cores, the electrons have higher kinetic energy which enables them to
win over the coulombian repulsion from heavier nuclei. As such, in less massive stars such as
the Sun, the dominant process is the pp chain.
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Figure 1.2: Set of reactions of the pp chain of stellar thermonuclear fusion reactions. Neutrino producing
reactions are labeled In this process, the pp, hep and 8B neutrinos that are emitted in continuous spectra
while the pep and 7Be neutrinos are emitted in monochromatic spectra. Neutrino fluxes are plotted in
Figure 1.4 for the BS05(OP) [5] SSM.
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Figure 1.3: Set of reactions of the CNO cycle of stellar thermonuclear fusion reactions. Neutrino
producing reactions are labeled All neutrinos fluxes in this process — 13N, 15O, 17F — are produced
in continuous spectra. Neutrino fluxes are plotted in Figure 1.4 for the BS05(OP) [5] SSM.
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Electron neutrinos are a by-product of the thermonuclear fusion reactions that power
the Sun as it can be seen in Figures 1.2 and 1.3. Such neutrinos are produced in very particular
spectra, both continuous and monochromatic, and are named after the reaction in which they are
produced. In the pp chain, the pp, hep and 8B neutrinos are emitted in continuous spectra while
the pep and 7Be are monochromatic. In the CNO cycle, all neutrinos fluxes — called 13N, 15O,
17F — are produced in continuous spectra. All fluxes are shown in Figure 1.4. Table 1.2 shows
the neutrino producing reactions from the pp chain and CNO cycle, the produced neutrinos’
average and maximum energies as well as the fluxes calculated in the BS05(OP) SSM. Due
to the temperature dependency of each reaction, different fractions of each neutrino flux are
produced at a different depths within the solar core, as shown in Figure 1.5.

The neutrinos produced in the solar core propagate outwards, leaving the Sun and
traveling through the interplanetary media until they reach Earth where they can be detected.
Photons are continually scattered in electromagnetic processes in the solar medium,
consequently losing the information of their initial state and taking upwards of 105 years to
reach the surface of the Sun [9]. Neutrinos, on the other hand, do the same in around 2s due to
their low interaction cross sections with the solar matter, bringing information directly from
the inner regions of the Sun. As such, solar neutrinos were historically regarded as a potential
evidence for the solar fusion reactions, driving the interest in their detection, which was finally
achieved in the 1970s with the results from the Homestake [10] experiment. However, as it
will be discussed in the Chapter 2, the detection of solar neutrinos brought to light several new
questions to the understanding of the Sun and of neutrinos themselves.

Table 1.2: Reactions from the pp chain and CNO cycle that produce the solar neutrino fluxes, including
the neutrino’s average and maximum energies [7] as well as the fluxes reported by the BS05(OP) [5]
SSM.

Reaction

Average
Neutrino Energy

[MeV]

Maximum
Neutrino Energy

[MeV]

Predicted
Neutrino Flux
[cm−2 · s−1]

pp p+p→ 2H+ e++νe 0.2668 0.423 5.99×1010

pep p+ e−+p→ 2H+νe 1.445 1.445 1.42×108

hep 3He+p→ 4He+ e++νe 9.628 18.778 7.93×103

7Be e−+ 7Be→ 7Li+νe 0.3855(0.8631) 0.3855(0.8631) 4.84×109

8B 8B→ 2 4He+ e++νe 6.735 ∼ 15 5.69×106

13N 13N→ 13C+ e++νe 0.7063 1.1982 3.07×108

15O 15O→ 15N+ e++νe 0.9964 1.7317 2.33×108

17F 17F→ 17O+ e++νe 0.9977 1.7364 5.84×106
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Figure 1.4: Energy spectra of solar neutrinos produced in the pp chain (left) and in the CNO cycle (right)
for the BS05(OP) [5] SSM.
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Figure 1.5: Distributions for the fraction of each neutrino flux produced at a given radius in the pp
chain (left) and in the CNO cycle (right) for the BS05(OP) [5] SSM. Remarkably, the 13N profile has
two peaks: the first for where the reactions are approximately in steady state and the second for residual
12C+ p→13 N+ γ at radii where the temperature is too low for the subsequent reactions [11].
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Chapter 2

Solar Neutrino Oscillations

As seen in Chapter 1, solar neutrinos are produced in the thermonuclear fusion
processes that power the Sun. In such reactions, four protons are converted into Helium through
several intermediate steps, some of which generate neutrinos in very particular spectra — both
continuous and monochromatic. The early experiments detecting these neutrinos indicated a
lower flux than the predicted by the SSMs. This deficit became known as the Solar Neutrino
Problem (SNP).

The solution to the SNP was sought in both solar and particle physics, leading to
several models aiming to accurately describe the available data. Over the years, results from
neutrino experiments eventually established the Neutrino Flavor Oscillation model with Large
Mixing Angle and Mikheyev-Smirnov-Wolfenstein Resonant Flavor Conversion (LMA-MSW)
as the solution to the SNP.

In this Chapter, an overview of the experiments designed for the detection of solar
neutrinos is presented, the neutrino oscillation phenomenon is described, both in vacuum and
in matter, and it is applied in the propagation of solar neutrinos from production to detection.

2.1 Neutrino Experiments and the Solar Neutrino Problem

The Homestake [10] chlorine neutrino experiment was the first to detect solar
neutrinos and also the first to hint at the SNP. This experiment was proposed and built in the
1960s and early results [12] already indicated a neutrino flux of about one-third the predicted
by SSMs. The Homestake detection signature was based on the inverse β decay reaction
νe +

37Cl→ 37Ar+ e−, which has a threshold of 0.814MeV. Because of that, the experiment
was sensitive to the higher energy 7Be line, the pep line, and the 8B spectrum, which was the
main contribution to the detected flux. In this kind of experiment, the solar neutrino flux is
measured by extracting and counting the Argon atoms that are produced in the reaction. The
average solar neutrino rate measured by Homestake between March 1970 and February 1994
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was [10]
Rexp

HS = 2.56±0.16(stat.)±0.16(syst.)SNU1 , (2.1)

whereas the predicted rate for Homestake at that time, by Bahcall and Pinsonneault [10, 13],
was R37Cl = 9.3+1.2

−1.4 SNU.
The same principle of the Homestake experiment was applied in other experiments

but using the the reaction νe +
71Ga→ 71Ge+ e−. Such is the case of GALLEX [14] and its

successor GNO [15], and SAGE [16] experiments. The 0.233MeV threshold for the reaction
makes these experiments sensitive to all of the solar neutrino spectra. The average solar neutrino
rate measured by GALLEX and GNO between May 1991 and April 2003 was [15]

Rexp
GG = 69.3±4.1(stat.)±3.6(syst.)SNU , (2.2)

while for the SAGE experiment, the average solar neutrino rate between January 1990 and
December 2007 was [16]

Rexp
SG = 65.4+3.1

−3.0 (stat.)+2.6
−2.8 (syst.)SNU , (2.3)

whereas the predicted rate for the Gallium experiments would be [7] R71Ga = 118.88SNU in
the BSB05(AGS05) SSM [11].

Another class of experiments are the Water Cherenkov detectors. In this kind of
experiment, neutrinos are detected through the measurement of Cherenkov light emitted by
electrons traversing a medium with speeds above the local speed of light. These electrons are
either elastically scattered (ν +e−→ ν +e−) or inelastically produced (ν +X→Y +e−) by the
incoming neutrinos. Due to the characteristics of the Cherenkov light, this kind of experiment
is sensitive to both direction and energy of the incoming neutrinos.

The Kamioka Nucleon Decay Experiment — Kamiokande — experiment is a water
Cherenkov detector that was first designed for the detection of proton decay (Kamiokande-
I) [17] and started operating in 1983. Later, in 1986, it was upgraded and optimized to observe
8B solar neutrinos (Kamiokande-II) [18,19], operating from January, 1987, to April, 1990. The
last phase (Kamiokande-III) operated from December 1990 and February 1995. The average
flux of 8B neutrinos measured in phases II and III are [20]

Φ
8B
KDE = [2.80±0.19(syst.)±0.33(stat.)]×106 cm−2 · s−1 , (2.4)

with the corresponding number of 390+35
−33 neutrino events, which is about half the expected at

the time, by Bahcall and Pinsonneault [20, 21], at 785 neutrino events.
The Super-Kamiokande (SK) experiment is a water Cherenkov detector built as a

successor to the the Kamiokande experiment. The SK experiment started operating in April

1A Solar Neutrino Unit (1 SNU) corresponds to 10−36 events per target atom per second.
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1996, divided in four phases. SK-I [22] collected data from April 1996 to July 2001. SK-
II [23] ran from December 2002 to October 2005. Next, SK-III [24] ran from October 2006 to
August 2008. Finally, SK-IV [25] started collecting data in September 2008 and ran until May
2018 [26]. The measured flux combining all phases, up to February 2014, was

Φ
SK
8B = [2.345±0.014(syst.)±0.036(stat.)]×106 cm−2 · s−1 . (2.5)

Refurbishment work started in June 2018 for the addition of Gadolinium (Gd) into the detector
to improve neutrino detection [27]. On January 2019, data for this fifth phase (SK-V) started
being collected [26].

Another experiment in this category is the Sudbury Neutrino Observatory (SNO)
experiment. SNO is a heavy-water (D2O) Cherenkov detector also designed to measure the 8B
solar neutrinos through three different methods:

(i) the elastic scattering να + e− → να + e− as used in the regular water Cherenkov
experiments, where να represents any neutrino flavor;

(ii) the charged current reaction νe +D→ p+ p+ e−, which is used to measure the energy
spectrum of electron neutrinos by measuring the kinetic energy of the product electrons;

(iii) and the neutral current reaction να +D→ p+n+να , which measures the energy spectrum
of neutrinos from the detection of the product neutrons.

This last reaction is essential for verifying the neutrino oscillation solution to the SNP because
it is equally sensitive to all active neutrino flavors. As such, three different phases were planned
for the SNO experiment, based on ways of improving the detection of the neutrons from these
NC reactions in (iii).

The first phase [28] was based on the capture of the neutrons by the deuterium
n+D→ 3He+ γ and which operated from November 1999, to May 2001. The second
phase [29] was based on the neutron captured on chlorine atoms from NaCl added to the heavy
water tank, which led to a statistical improvement to the measurement of NC reactions. This
phase ran from July 2001, and August 2003. Finally, the third phase [30, 31] consisted in the
inclusion in the heavy water tank of a grid of proportional 3He counters, which also measured
the neutron capture on helium. This last phase operated between November 2004 and
November 2006. The results from this latter phase for each detection method are

Φ
8B,ES
SNO = [1.77+0.09

−0.10 (syst.)+0.24
−0.21 (stat.)]×106 cm−2 · s−1 , (2.6)

Φ
8B,CC
SNO = [1.67+0.07

−0.08 (syst.)+0.05
−0.04 (stat.)]×106 cm−2 · s−1 , (2.7)

Φ
8B,NC
SNO = [5.54+0.36

−0.34 (syst.)+0.33
−0.31 (stat.)]×106 cm−2 · s−1 . (2.8)
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From the combined analysis of the three phases [32] the flux of solar neutrinos of all flavors is

Φ
8B
SNO = [5.25+0.11

−0.13 (syst.)±0.16(stat.)]×106 cm−2 · s−1 , (2.9)

which is compatible with SSM predictions. These results demonstrated that neutrinos indeed
undergo flavor change between production and detection. As recognition for their discoveries,
the SK and SNO Collaborations were awarded the 2015 Nobel Prize in Physics in the name of
Takaaki Kajita (SK) and Arthur B. McDonald (SNO) [33].

Another class of neutrino experiments are the liquid scintillator experiments. In
such experiments, a neutrino incident on the detector may elastically scatter off an electron in
the medium. The charged particle traverse the matter exciting atoms and molecules on their
path. Upon de-excitation, the atoms emit electromagnetic radiation. If not reabsorbed by the
material, the radiation can be detected and provide information on the charged particle and,
consequently, on the neutrino. This method allows the detection of low energy solar neutrinos
similarly to the radiochemical methods while also allowing for spectral measurements and real-
time detection which is possible with Water Cherenkov experiments [34].

One such experiment is Borexino [35], which started collecting data in May 2007
with the main goal of measuring the 7Be solar neutrino line. By the end of its first phase [36], the
experiment managed not only that [37], but also directly measured the pp [38] and pep [39, 40]
neutrinos. Most recently, the collaboration reported the detection of neutrinos from the CNO
cycle [41].

2.2 Neutrino Oscillations

During the investigation into the SNP, several models were created in both solar and
particle physics with the objective to accurately describe the available data. Since the depletion
of the neutrino flux was inconsistent across experiments, unknown errors could be affecting
their results. Additionally, the understanding of the solar structure and neutrino production
could be incomplete, demanding the modification of the solar models.

The phenomenon of neutrino oscillations was first proposed by Bruno
Pontecorvo [42–44] in 1957, in analogy to the oscillations in the K0K̄0 system [45–48],
originally describing the oscillation between the electron neutrino - the only known neutrino
flavour at the time - and the corresponding antineutrino. In 1962, with the discovery of the
muon neutrino, Ziro Maki, Masami Nakagawa and Shoichi Sakata extended the oscillation
model to two active neutrino flavours [49]. The standard neutrino oscillation theory was
developed in the following years [50, 51].
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2.2.1 Neutrino Oscillations in Vacuum

A neutrino of flavour να is, by definition, the neutrino produced in charged current
weak interactions, either on the interaction of a lepton lα or alongside an antilepton l̄α . Charged
leptons are distinguished through their masses. However, since neutrinos are relativistic, they
are distinguished through the detection of the associated charged lepton.

Thus, if neutrinos are massive and there are mass eigenstates ν1, ν2, ν3... which are
non-degenerate — that is, m1 6= m2 6= m3 6= ... — it is possible to write a flavour eigenstate να

as a mixture, a linear combination of mass eigenstates [7]:

|να 〉= ∑
k

U∗αk |νk 〉 . (2.10)

From the precise measurement of the so-called invisible decay width of the Z boson,
the number of neutrino flavors lighter than mZ/2 participating in weak interactions is restricted
to three [52]. By taking into account only these three species — denoted νe, νµ and ντ — the
coefficients U∗

αk in Equation (2.10) are the elements of a 3×3 matrix, called Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) mixing matrix, which can be parametrized by three mixing angles
and CP-violating phases, one for Dirac neutrinos and three for Majorana neutrinos. The PMNS
mixing matrix U can be written as

U = R23 R13 R12 DM , (2.11)

where the matrices Rij are given by

R12 =


c12 s12 0

−s12 c12 0

0 0 1

 , R13 =


c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13

 , R23 =


1 0 0

0 c23 s23

0 −s23 c23

 ,

with si j = sinθi j and ci j = cosθi j, where θi j are mixing angles and δ is the CP violation phase,
also called Dirac phase. Additionally, the matrix DM is given by

DM =


eiη1 0 0

0 eiη2 0

0 0 1

 ,

where η1,η2 are called the Majorana phases and they do not contribute to neutrino oscillations
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— see Equation (2.28). Hence, neglecting the Majorana phases, Equation (2.11) becomes

U =


c12c13 s12c13 s13e−iδ

−s12c23− c12s23s13eiδ c12c23− s12s23s13eiδ s23c13

s12s23− c12c23s13eiδ −c12s23− s12c23s13eiδ c23c13

 . (2.12)

The mass eigenstates in Equation (2.10) are the eigenstates of the Hamiltonian:

H |νk 〉= Ek |νk 〉 , with Ek =
√
|~p|2 +m2

k . (2.13)

And the evolution of the eigenstates is obtained from Schrödinger’s equation as

|νk(t)〉= e−iEkt |νk 〉 . (2.14)

Thus
|να(t)〉= ∑

k
U∗αk |νk(t)〉= ∑

k
U∗αk e−iEkt |νk 〉 . (2.15)

From the unitarity of the mixing matrix U, one obtains the inverse transformation to
Equation (2.10):

|νk 〉= ∑
β

Uβk
∣∣νβ

〉
, (2.16)

from which one can write:

|να(t)〉= ∑
β

∑
k

U∗αk e−iEktUβk
∣∣νβ

〉
, (2.17)

that is, a neutrino produced in a flavour eigenstate |να 〉, since it is a linear combination of mass
eigenstates, is described as a superposition of flavour eigenstates at a time t after its production.
The transition amplitude between states is given by

Aνα→νβ
=
〈

νβ |να(t)〉= ∑
k

U∗αkUβk e−iEkt . (2.18)

Thus, the probability that a neutrino produced in a flavour eigenstate να be detected in a flavor
eigenstate νβ , at a time t after its production, is

Pνα→νβ
(t) = |Aνα→νβ

|2 = ∑
j
∑
k

U∗αkUβkUα jU∗β j e−i(Ek−E j)t . (2.19)

Since neutrinos are ultra-relativistic, one can make the approximation

Ek =
(
|~pk |2 +m2

k

)1/2
≈ E +

m2
k

2E
, (2.20)
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where |~pk | = E is the neutrino energy neglecting the mass contribution [7]. Hence

Ek−E j ≈
1

2E

(
m2

k−m2
j
)
=

∆m2
k j

2E
, (2.21)

where ∆m2
k j is called the mass-squared difference between mass eigenstates k and j. In addition,

if L is the distance traversed by the neutrinos between production and detection, one can write
L≈ t. Thus

Pνα→νβ
(L,E) = ∑

k, j
U∗αkUβkUα jU∗β j exp

(
−i

∆m2
k j

2E
L

)
. (2.22)

Equation (2.22) can be rewritten as

Pνα→νβ
(L,E) = ∑

k
|Uαk|2|Uβk|2 +2Re

[
∑
k

∑
j<k

U∗αkUβkUα jU∗β j exp

(
−2πi

L
Losc

k j

)]
, (2.23)

where Losc
k j = 4π E/∆m2

k j is the distance at which the phase generated by the mass-squared
difference ∆m2

k j becomes equal to 2π .
The same procedure can be followed for antineutrinos starting with

| ν̄α 〉= ∑Uαk | ν̄k 〉 , (2.24)

for which it is found that

Pν̄α→ν̄β
(L,E) = ∑

k
|Uαk|2|Uβk|2 +2Re

[
∑
k

∑
j<k

UαkU∗βkU
∗
α jUβ j exp

(
−2πi

L
Losc

k j

)]
. (2.25)

From Equations (2.13) and (2.20), we consider the evolution of two mass
eigenstates ν1 and ν2 [53]:

i
d
dx

(
ν1

ν2

)
= H

(
ν1

ν2

)
=

(
E1 0

0 E2

)(
ν1

ν2

)
=

[
E I+

1
2E

M
](

ν1

ν2

)
, (2.26)

with M = diag(m2
1,m

2
2) = m2

1I+diag(0,∆m2
21). The quantities EI and m2

1I result in overall
phases which are not observable and can be rotated out by a change of base, resulting in

i
dνM

dx
=

1
2E

MνM . (2.27)

Now, multiplying both sides by U and using U† U = I, it is finally obtained that

i
dνF

dx
=

1
2E

UMU†
νF , (2.28)
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from which
Hvac =

1
2E

UMU† , (2.29)

is identified as the Hamiltonian governing the evolution of neutrinos in the flavor basis and the
consequent flavor oscillations in vacuum. For antineutrinos, the Hamiltonian is obtained by
complex conjugation:

Hvac =
1

2E
(UMU†)∗ . (2.30)

In the absence of CP violation, the vacuum Hamiltonian for neutrinos and antineutrinos are the
same. For three neutrino flavors, the mass-squared difference matrix M is written as

M = diag(0,∆m2
21,∆m2

31) . (2.31)

As it can been seen, neutrino oscillations are not sensitive to the absolute scale of neutrino
masses, but only to the squared-mass differences such as ∆m2

21 and ∆m2
31 which have been

measured by a variety of neutrino oscillation experiments.

2.2.2 Neutrino Oscillations in Matter

When propagating in matter, neutrinos are subject to an effective potential due to
weak charged (CC) and neutral current (NC) coherent forward elastic scatterings with particles
in the medium, equivalent to an index of refraction which modifies their mixing [7].

For an electron neutrino propagating in a medium subject to coherent forward elastic
CC scatterings, the potential VCC is given by [7]

VCC =
√

2GFNe , (2.32)

where GF is the Fermi constant and Ne is the electron number density.
In astrophysical environments with low temperature and density, such as the Sun

and the Earth, matter is composed of neutrons, protons, and electrons. Electrical neutrality
implies an equal number density of protons and electrons, and, consequently, the NC potentials
os protons and electrons cancel each other. Hence, only neutrons contribute to the potential VNC

which is given by [7]

VNC =−1
2

√
2GFNn , (2.33)

where Nn is the neutron number density in the medium.
When taking into account this so-called matter effect to the neutrino oscillations,

the oscillation Hamiltonian for three neutrino flavors is modified by

V = diag(VCC +VNC,VNC,VNC) . (2.34)

The term VNC generates a phase common to all flavours which can be rotated out by a phase
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shift and hence

V = diag(VCC, 0, 0) . (2.35)

The Hamiltonian for neutrino oscillations in matter is finally given on the flavour basis as

Hosc =
1

2E
UMU† +V . (2.36)

In two neutrino families and for a constant matter potential, the evolution of the flavour
eigenstates can be written from Equation (2.36):

i
d
dx

(
νe

νµ

)
=

1
2E

(
−∆m2 sin2

θ +2EVCC ∆m2 sinθ cosθ

∆m2 sinθ cosθ ∆m2 cos2 θ

)(
νe

νµ

)
, (2.37)

which can be rewritten as

i
d
dx

(
νe

νµ

)
=

1
4E

(
−∆m2 cos2θ +2EVCC ∆m2 sin2θ

∆m2 sin2θ ∆m2 cos2θ −2EVCC

)(
νe

νµ

)
(2.38)

The diagonalization of the Hamiltonian above lead to an effective Hamiltonian in the mass basis
given by

HM =
1

4E
diag

(
−∆m2

M, ∆m2
M
)
, (2.39)

where:
∆m2

M =
[(

∆m2 cos2θ −2EVCC
)2

+
(
∆m2 sin2θ

)2
]1/2

, (2.40)

is the effective mass-squared difference, and the effective mixing matrix in matter:

UM =

(
cosθM sinθM

−sinθM cosθM

)
, (2.41)

with

cosθM =
∆m2 cos2θ −2EVCC

∆m2
M

and sinθM =
∆m2 sin2θ

∆m2
M

, (2.42)

and hence
tan2θM =

tan2θ(
1− 2EVCC

∆m2 cos2θ

) . (2.43)

From Equation (2.43), it can be seen that there is a resonance for which the mixing angle
becomes maximal (θM = π/4) when VCC = ∆m2 cos2θ/(4E), that is, for

Ne =
∆m2 cos2θ

2
√

2EGF
. (2.44)
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This phenomenon is called the Mikheyev-Smirnov-Wolfenstein (MSW) effect [54–56]. For the
most general case of a non-monochromatic neutrino spectrum and a continuously varying matter
density (and for a given value of mass-squared difference), there will be sets of continuous
values of neutrino energies and matter densities for which the resonance condition is satisfied.
In such environments, there might exist transition between the effective mass eigenstates. This
effect is measured, in two neutrino families, by an adiabaticity parameter defined as

γ =
(∆m2

M)2

sin2θM|dVCC/dx|
. (2.45)

If γ� 1 throughout the neutrino trajectory, the evolution is adiabatic, that is, transitions between
effective mass eigenstates are negligible. In the LMA parameter region, for the Sun and other
environments with smoothly varying densities, neutrino evolution is adiabatic and the survival
probability can be written as [7]:

Pee =
1
2

(
1+ cos2θ

(0)
M cos2θ

)
(2.46)

where θ
(0)
M is the effective mixing angle at the point neutrino production and given by

Equation (2.43) and θ is the mixing angle at the point of detection, assumed here to be in
vacuum.

2.3 Oscillation Probabilities in the Sun and on Earth

Electron neutrinos are produced in the solar core from nuclear fusion reactions.
They are produced in effective mass eigenstates governed by the matter potential at their point
of production, and propagate outwards through the solar matter undergoing adiabatic
transitions. Next, they propagate in interplanetary medium and are detected on Earth, either
promptly "during the day" or after traversing a segment of the Earth’s mantle and core "during
the night" being subject to matter effects. The evolution of neutrino states are schematically
represented in Figure 2.1. The survival and transition probabilities for solar neutrinos are
discussed in this section.

The transition amplitude Aνe→να
= Aeα for an electron neutrino produced in the Sun

to be detected on Earth as a neutrino of flavor α can be written as

Aeα = ∑
i

A�ei Avac
ii A⊕iα , (2.47)

where A�ei is the transition amplitude of an electron neutrino produced in the solar core to be in a
νi state in the solar surface, Avac

ii is the propagation amplitude between Sun and Earth surfaces,
and A⊕ie is the transition amplitude of a νi to be in a νe state upon detection on Earth.

From Equations (2.14) and (2.20), the vacuum propagation amplitude of a i mass
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eigenstate is given as

Avac
ii = exp(−iEkL) = exp(−iEt)exp

(
−i

m2
i

2E
L
)
, (2.48)

where L is the distance from the surface of the Sun to the surface of the Earth.
The transition probability P(νe→ να) = Peα is given as Peα = |Aeα |2, which, from

Equation (2.47), is given in the context of two neutrino families as

Peα = |A�e1|
2 |A⊕1α

|2 + |A�e2|
2 |A⊕2α

|2 +Re
[

A�e1 A⊕1α
A∗�e2 A∗⊕2α

exp
(
−i

∆m2
21

2E
L
)]

. (2.49)

In the LMA-MSW parameter region, the oscillation length losc = 4πE/∆m2
21 is

much shorter than the propagation length L and the phase in Equation (2.49) oscillates very
rapidly. As such, the integration over finite neutrino energy bins during detection [57] leads to
the averaging of oscillations equivalent to the an incoherent mixture of ν1 and ν2 eigenstates.
Even for a fixed neutrino energy, the large size of the production region when compared to the
oscillation length and the lack of knowledge about the neutrino production point leads to the
averaging of oscillations [57]. Thus, one can simply write the incoherent sum of probabilities:

Peα = P�e1 P⊕1α
+P�e2 P⊕2α

, (2.50)

where P�ei = |A�ei|2 and P⊕iα = |A⊕iα |2 from Equation (2.47), with P�ei the probability of the
produced νe be found as a νi at the surface of the Sun, P⊕iα the probability of a νi be detected as
a να on Earth. Unitarity implies that ∑

i
P�ei = 1 and ∑

α

P⊕iα = 1.

2.3.1 Oscillations in Three Neutrino Families

In the context of three neutrino families, the survival and conversion probabilities
can be written, as in the previous case averaging over fast oscillations, as

Peα = ∑
i

P�ei P⊕iα . (2.51)

Due to the nature of the interactions of each neutrino flavor in matter, neutrino
experiments can usually only differentiate between electronic and non-electronic flavors.
Hence, it is useful to simplify the expression above as follows. The evolution equation for the
flavor states in three families is given as

i
dν

dt
=

1
2E

[
UMU† +V

]
ν , (2.52)

where ν =
(
νe,νµ ,ντ

)
is a column matrix of the neutrino flavor states, U is the PMNS mixing

matrix, M2 is the mass-squared difference matrix and V is the matrix describing matter effects.
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Figure 2.1: Schematic representation of the propagation of solar neutrinos from production to detection.
Electron neutrinos are produced in the solar core from nuclear fusion reactions. They are produced
in effective mass eigenstates governed by the matter potential at their point of production, and
propagate outwards through the solar matter undergoing adiabatic transitions. Next, they propagate in
interplanetary medium and are detected on Earth, either promptly "during the day" or after traversing a
segment of the Earth’s mantle and core "during the night" being subject to matter effects. Figure based
on figures presented in Reference [58].
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Now, a rotation in the basis can be made by multiplying both sides by R†
13R†

23 on
the left, and using the relation R23R13R†

13R†
23 = I:

i
dν ′

dt
=

1
2E

[
R12 MR†

12 +R†
13R†

23VR23R13

]
ν
′ , (2.53)

where the primed states are defined as

ν
′
e = c13νe− s13s23νµ − s13c23ντ , (2.54)

ν
′
µ = c23νµ − s23ντ , (2.55)

ν
′
τ = s13νe− c13s23νµ − c13c23ντ , (2.56)

and the evolution equations become

i
dν ′

dt
=

1
2E


∆m2

21s2
12 +2EVCCc2

13 ∆m2
21s12c12 2EVCCs13c13

∆m2
21s12c12 ∆m2

21c2
12 0

2EVCCs13c13 0 ∆m2
31 +2EVCCs2

13

ν
′ . (2.57)

Now, for solar neutrino energies, it holds that |∆m2
31|>> 2EVCCs13c13, for values of the matter

potential VCC both in the Sun and on Earth. In other words, matter effects on the evolution of
the ν ′τ eigenstate can be neglected and the evolution of this third family in the primed basis is
decoupled, as represented in Figure 2.1.

Thus, let S′ be the time-dependent matrix describing the evolution of the primed
states such that 

ν ′e(t)

ν ′µ(t)

ν ′τ(t)

=


S′ee S′eµ 0

S′µe S′µµ 0

0 0 S′ττ




ν ′e(0)

ν ′µ(0)

ν ′τ(0)

 , (2.58)

which we can transform back into the unprimed basis by another rotation:

S = R23R13


S′ee S′eµ 0

S′µe S′µµ 0

0 0 S′ττ

R†
13R†

23 . (2.59)

Then, the survival and transition probabilities for an electron neutrino is then given by

Pee = |〈νe(t)|S |νe(0)〉|2 = |See|2 , (2.60)

Peµ +Peτ = |〈νµ(t)|S |νe(0)〉|2 + |〈ντ(t)|S |νe(0)〉|2 = |Seµ |2 + |Seτ |2 . (2.61)
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From Equation (2.59):

See = c2
13S′ee + s2

13S′ττ , (2.62)

Seµ =−s13s23c13S′ee + c13c23S′eµ + s13s23c13S′ττ , (2.63)

Seτ =−c13c23s13S′ee− c13s23S′eµ + c13c23s13S′ττ , (2.64)

and hence

Pee = c4
13|S′ee|2 + c13s13(S

′∗
eeS′ττ +S′eeS

′∗
ττ)+ s4

13|S′ττ |2 . (2.65)

Since the evolution of the ν ′τ state is decoupled, |S′ττ |2 = 1. Also, by the same reasoning from
Equation (2.50), we neglect the interference effects in the second term of the equation above.
Hence, the survival and transition probabilities become

Pee = c4
13 P′ee + s4

13 , (2.66)

Pe(µ+τ) = c2
13s2

13 P′ee + c2
13 P′eµ + c2

13s2
13 . (2.67)

On both, the primed probabilities are the probabilities for two neutrino families as shown on
Equation (2.50). Finally, from Equations (2.66) and (2.67), the sum of probabilities over
detected flavor is ∑

α

Peα = 1, and the probability is conserved.

2.3.2 Neutrino Oscillations in the Sun

Due to the adiabatic evolution of neutrino flavor eigenstates in the Sun, survival
and transition probabilities depend only on the effective mixing angle at the point neutrino
production and detection. The effective mixing angles are calculated from Equation (2.42).
They are governed by the solar matter potential which depends on the electron number density
at the point of production. The electron number density from the BS05(OP) [5] SSM is shown
in Figure 2.2.

In two neutrino families, the probability of the produced νe be found as a νi at the
surface of the Sun, P�ei , is given by P�ei = |(UM)ei|

2, where UM is defined in Equation (2.41), and
hence

P�e1 = cos2
θ
(0)
M and P�e2 = sin2

θ
(0)
M . (2.68)

where θ
(0)
M is the effective mixing angle at the point neutrino production.

As seen in Figure 1.5, due to the temperature dependency of the reactions in each
neutrino production channel, fractions of each solar neutrino flux are produced at different
regions within the Sun. Hence, each fraction is subject to different matter potentials and are
produced with different effective mixing angles. However, since the neutrino oscillation length
is much smaller than both the production region and total propagation lengths, it is possible
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Figure 2.2: Electron (left) and sterile scatterer (right) number density from the BS05(OP) [5] SSM.
Such number densities can be approximated by the exponential functions: Ni(r) = Ni(0) exp(−r/r0)
with r0 = R�/10.54, Ne(0) = 245NA/cm3 and Ns(0) = 223NA/cm3, where R� is the Solar
radius. Tables for the number densities as functions of the solar radius can be found at the website
http://www.sns.ias.edu/ jnb/
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Figure 2.3: Probability for a 8B νe produced in the solar core, subject to matter potential corresponding
to the average potential in the production region, to be found in the solar surface as ν1 and ν2 as described
by Equation (2.68). In the LMA-MSW solution, a 10MeV νe will be produced almost as a pure ν2 and,
due to the adiabatic crossing of the resonance region, it will still reach the surface as ν2. Best-fit values
for the global fit neutrino oscillation parameters [59] as shown on Table 2.1 are used.

http://www.sns.ias.edu/~jnb/
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to average over the production region by assuming all neutrinos are produced subject to the
average matter potential in the production region of each channel.

Figure 2.3 shows the probabilities P�e1 and P�e2 for 8B neutrinos subject to potential
corresponding to the average potential in the production region of this channel. As it can be
seen, In the LMA-MSW solution, a 10MeV νe will be produced almost as a pure ν2 and, due
to the adiabatic crossing of the resonance region, it will still reach the surface as ν2.

2.3.3 Neutrino Regeneration on Earth

Solar neutrinos can be detected on Earth either promptly "during the day" or after
traversing a segment of the Earth’s mantle and core "during the night" being subject to matter
effects.

During the day, arriving neutrinos cross a negligible amount of matter. Their
propagation and detection on Earth can be approximated as happening in the vacuum. As such:

P⊕1e = cos2
θ12 and P⊕2e = sin2

θ12 . (2.69)

During the night, however, arriving neutrinos may cross large slices of the Earth’s matter and
core. This may cause an asymmetry between the neutrino flux arriving during day and night.
For two neutrino families, the day survival probability is given by

PD
ee = P�e1 c2

12 +P�e2 s2
12 , (2.70)

and night survival probability is written as

PN
ee = P�e1 P⊕1e +P�e2 P⊕2e . (2.71)

Since P�e1 +P�e2 = 1 and P⊕1e +P⊕2e = 1, the Equations (2.70) and (2.71) can be rewritten as

PD
ee = P�e1

(
c2

12− s2
12
)
+ s2

12 , (2.72)

and
PN

ee = P⊕2e +
(
1−2P⊕2e

)
P�e1 . (2.73)

Hence, by isolating P�e1 in Equation (2.72) and replacing in Equation (2.71):

(
c2

12− s2
12
)

PN
ee = PD

ee− s2
12 +P⊕2e

(
1−2PD

ee
)
, (2.74)

and the transition probability is given by Peµ = 1−Pee.
Now, for three neutrino families, the survival probabilities are given by

PD
ee = s4

13 +
(
P�e1 c2

12 +P�e2 s2
12
)

c4
13 , (2.75)
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Figure 2.4: Earth’s density (upper solid line) and electron number density (lower solid line) profiles as a
function of radius r. Earth’s density profile ρ is given in Reference [60]. Electron number density [7] is
given as Ne = NA(ρ/g)〈Z/A〉 with 〈Z/A〉 = 0.475(0.495) in the core (mantle) for r ≤ (>) 3480km.
The dotted line is a step approximation to the density profile with ρ = 11.5(4.5)g · cm−3 in the core
(mantle).
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Figure 2.5: Day and Night (SNO latitude) probabilities for ν1 and ν2 to be detected on Earth as a νe.
Solar neutrinos will cross either only Earth’s atmosphere (during the day) or Earth’s interior (during the
night). Thus, due to Earth’s matter potential, there may be a day-night asymmetry in the solar neutrino
fluxes. Best-fit values for the global fit neutrino oscillation parameters [59] as shown on Table 2.1 are
used.
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and
PN

ee = s4
13 +

(
P�e1 P⊕1e +P�e2 P⊕2e

)
c4

13 . (2.76)

By writing P′ee =
(
Pee− s4

13
)
/c4

13 and using Equation (2.74):

(
c2

12− s2
12
)

PN
ee = PD

ee− s2
12 P′+P⊕2e

(
P′−2PD

ee
)
, (2.77)

where P′ = c4
13 +2s4

13, and the transition probability is given by Pe(µ+τ) = 1−Pee.
From Equations (2.74) and (2.77), it can be seen that the net effect of Earth’s matter

potential will depend on the values of the day probability and θ12 mixing angle. If the day
probability is small and cos2 θ < sin2

θ , the night probability is greater than the day probability,
that is, there is a regeneration of the electron neutrino flux, as shown in Figure 2.4.

2.4 Neutrino Oscillation Parameters

Over the years, results from solar neutrino experiments eventually established the
Neutrino Flavor Oscillation model with Large Mixing Angle and
Mikheyev-Smirnov-Wolfenstein Resonant Flavor Conversion (LMA-MSW) as the best
solution to the SNP. In combination with the measurement of the other oscillation parameters
by experiments designed for atmospheric [61], reactor [62] and long-baseline [63] neutrinos
established the scenario of three massive light neutrinos that mix [64]. A global fit to neutrino
oscillation parameters [59] is shown on Table 2.1.

Table 2.1: Three-flavor oscillation parameters from Reference [59] fit to global data, including SK
atmospheric data. In the Normal Hierarchy ∆m2

3l = ∆m2
31 > 0 and in the Inverted Hierarchy

∆m2
3l = ∆m2

32 < 0.

Parameter Normal Hierarchy Inverted Hierarchy

Best-fit ±1σ 3σ Range Best-fit ±1σ 3σ Range

sin2
θ12 0.310+0.013

−0.012 0.275→ 0.350 0.310+0.013
−0.012 0.275→ 0.350

sin2
θ23 0.563+0.018

−0.024 0.433→ 0.609 0.565+0.017
−0.022 0.436→ 0.610

sin2
θ13 0.02237+0.00066

−0.00065 0.02044→ 0.02435 0.02259+0.00065
−0.00065 0.02064→ 0.02457

δCP/
◦ 221+39

−28 144→ 357 282+23
−25 205→ 348

∆m2
21

10−5 eV2 7.39+0.21
−0.20 6.79→ 8.01 7.39+0.21

−0.20 6.79→ 8.01

∆m2
3l

10−3 eV2 +2.528+0.029
−0.031 +2.436→+2.618 −2.510+0.030

−0.031 −2.601→−2.419
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As seen in Section 2.2.1, neutrino oscillations are sensitive only to the
squared-mass differences, and not to the mass eigenstates’ absolute masses [7]. Oscillation
experiments show that neutrino oscillations are governed by at least two independent
mass-squared differences denoted ∆m2

sol and ∆m2
atm, respectively defining the dominant

oscillation lengths for solar and atmospheric neutrinos, with ∆m2
sol << ∆m2

atm. Additionally,
matter effects in the Sun implies that ∆m2

sol > 0 while the sign of ∆m2
atm is currently unknown.

∆m2
atm is measured from neutrino oscillations in vacuum which is sensitive only to the absolute

value of the mass-squared difference. In the context of three-neutrino families, there are two
independent mass-squared differences, since:

∆m2
32 +∆m2

21 = ∆m2
31 . (2.78)

As such, there are two possible solutions for the absolute scale of neutrino masses.
In the so-called "normal" ordering or hierarchy (NH), the smallest mass-squared

difference measured by neutrino experiments is chosen to correspond to the mass-squared
difference between the two lightest mass eigenstates — arbitrarily labeled ν1 and ν2, whereas
the heaviest mass eigenstate is labeled ν3 — and as such [65]:

∆m2
21�

(
∆m2

31 ≈ ∆m2
32 > 0

)
. (2.79)

On the other hand, in the "inverted" ordering or hierarchy (IH), the smallest mass-
squared difference measured by neutrino experiments is chosen to correspond to the mass-
squared difference between the two heaviest mass eigenstates — labeled ν2 and ν1, whereas the

Figure 2.6: Schematic representation of both neutrino mass orderings allowed by the mass-squared
differences ∆m2

sol and ∆m2
atm. The size of colored bars represent the probability of finding a να neutrino

in the mass eigenstate νi. Best-fit values for the global fit neutrino oscillation parameters [59] as shown
on Table 2.1 are used.
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lightest mass eigenstate is labeled ν3 — which implies [65]:

∆m2
21�−

(
∆m2

32 ≈ ∆m2
31 < 0

)
. (2.80)

Figure 2.6 shows a schematic representation of both neutrino mass orderings
allowed by the mass-squared differences ∆m2

sol and ∆m2
atm. In Figure 2.6, the size of colored

bars represent the probability of finding a να neutrino in the mass eigenstate νi. Best-fit values
for the global fit neutrino oscillation parameters [59] as shown on Table 2.1 are used.
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Chapter 3

Neutrino Decay

Besides neutrino flavour oscillations, presented in Chapter 2, many other models
were proposed over the years as solutions to the Solar Neutrino Problem: (i) active neutrino
states could be mixed with sterile neutrino states, with parameter values as to reduce the flux of
electron neutrinos produced in the Sun [66]; (ii) particles not directly linked to the neutrinos
could change their production in the Sun by modifying the thermal transport in the solar
core [67]; (iii) neutrinos could be subject to flavour non-diagonal interactions with matter such
as να +N→ νβ +X , which would modify the detected neutrino flux [68]; (iv) if neutrinos are
massive, they are allowed to decay modifying the solar neutrino fluxes between production and
detection [69]; massive neutrinos might have a magnetic dipole moment through which they
interact with magnetic fields in the Sun and change into other helicities and flavours [70];
among others.

The neutrino oscillation phenomenon currently establishes the massive nature of
neutrinos beyond reasonable doubt. As such, it is possible for neutrinos to decay into other
particles. Hence, neutrino decay has been studied in a variety of circumstances, including:
nucleonsynthesis in the early universe and the formation of structures [71, 72], high energy
astrophysical phenomena such as Gamma Ray Bursts and Active Galactic Nuclei [73–78],
Supernova explosions [79–85], and in the Sun [86–100].

In the latter case, although ruled out as a leading process in the SNP, it is still
possible to investigate neutrino decay as sub-leading effects in the propagation of solar neutrinos
to extract new limits to neutrino lifetime using the most recent experimental data.

3.1 Neutrino Decay Model

If neutrinos are massive, and the masses are non-degenerate, it is possible for a
heavier neutrino to decay into a lighter neutrino with the emission of a photon, ν → ν ′+ γ , in
what is called a radiative neutrino decay (see Reference [101] and references therein). Such
decays are constrained using the cosmic microwave background spectral data and lower bounds
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to the lifetime are obtained [102] as τ > 1019 s, which is too constrained to be of interest here.
On the other hand, non-radiative neutrino decays [86], i.e., ν → ν ′+X , which arise

from new, non-standard physics, can also be studied. Such decays can be separated into two
types: visible and invisible. Invisible decays [80, 82, 85, 92, 103–106] are those in which the
products are invisible states, that is, states that either are in principle not detectable or will not
be detected by the experiment in question such as the decay into sterile neutrinos plus scalar
particles. On the other hand, visible decays [83, 84, 107–111] are those in which the products
are visible states, that is, at least one of the daughter particles is in principle detectable, e.g., the
decay of a mass eigenstate into at least one lighter active mass-eigenstate.

From the analysis of different neutrino experimental data, its is possible to extract
bounds to the lifetime of each neutrino species in a variety of phenomena. For example, from
the detection of neutrinos from Supernova 1987A, a bound to ν1 lifetime can be set [79] at
τ1/m1 ≥ 105 s · eV−1.

From solar neutrino data, the current bound to ν2 lifetime for invisible decays was
obtained by the SNO collaboration [112] in an analysis including all three phases of 8B solar
neutrino data, combined with data from other solar neutrino experiments, resulting in τ2 /m2 ≥
1.02×10−3 s · eV−1, at 99% C.L. . On the other hand, in the context of visible decays [103]
of solar neutrinos, the bound to ν2 lifetime was τ2/m2 ≥ 1.1×10−3 (6.7×10−2)s · eV−1 at
90% C.L. corresponding to the hierarchical (quasi-degenerate) scenario for neutrino masses.

Limits to neutrino lifetime can also be investigated for high energy neutrinos [113,
114]. For example, the first detection of a Glashow resonance candidate in IceCube, originated
from high-energy cosmic neutrinos, was used [114] to place new lower limits on the lifetimes
τ1/m1 ≥ 2.91×10−3 s · eV−1 and τ2/m2 ≥ 1.26×10−3 s · eV−1 at 90% C.L..

The lifetime of the ν3 eigenstate in the context of invisible decays, from the
combined accelerator and atmospheric neutrino data, is τ3/m3 ≥ 2.9×10−10 s · eV−1 at
90% C.L. [111]. Similarly, an analysis of the long-baseline experiments MINOS and T2K
gives a combined limit of τ3/m3 ≥ 2.8×10−12 s · eV−1 at 90% C.L. [115]. For visible
decays, from the analysis of data from the reactor experiments KamLAND and JUNO
(simulated) [116], the limit was obtained at τ3/m3 ≥ 1.0×10−10 s · eV−1 at 90% C.L. for the
normal hierarchy.

Albeit necessary for decay, there is still no consensus regarding the mechanism
for generating neutrino masses. One of the possibilities is that neutrino mass arise from a new
coupling to a scalar singlet know as Majoron [117–119]. As a consequence, the coupling makes
it possible for a neutrino to decay into a lighter neutrino alongside the emission of a Majoron
— νi → ν j +X . Hence, for an interaction Lagrangian with Yukawa scalar and pseudoscalar
couplings, this process is described by [120]

Lint = ∑
i

∑
j

i 6= j

(gs)i jν̄ jνiX + i(gp)i jν̄ jγ5νiX +h.c. , (3.1)
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where i, j = 1,2,3 are respectively mother and daughter mass eigenstates, while (gs)i j and
(gp)i j are respectively the scalar and pseudo-scalar coupling constants. The decay width Γ will
be given by

dΓ =
1

2Ei
|M |2 (2π)4

δ
(4)(pi−p j−pX)

d3 p j

(2π)3
1
E j

d3 pX

(2π)3
1

EX
, (3.2)

where pi = (Ei,~pi), p j = (E j,~p j), pX = (EX ,~pX) are respectively νi, ν j and X four-momenta,
with E2

i = |~pi|2 +m2
i , E2

j = |~p j|2 +m2
j and E2

X = |~pX |2 +m2
X . In the neutrino decay analysis

present in this thesis, we suppose a massless Majoron, that is, mX = 0.
The amplitudes M for each decay process are obtained from the adequate Feynman

diagrams and are given in the Laboratory frame by

∣∣∣M (
ν

r
i → ν

r
j

)∣∣∣2 = (gs)
2
i j

4
(A+2)+

(gp)
2
i j

4
(A−2) , (3.3)∣∣∣M (

ν
r
i → ν

r′
j

)∣∣∣2 = (gs)
2
i j +(gp)

2
i j

4

(
1

xi j
+ xi j−A

)
, (3.4)

where r,r′ denote helicity states.
In this work, neutrinos are assumed to be Majorana particles, that is, neutrinos

and antineutrinos are identical and can only be distinguished by their, respectively, left and
right-handed helicities. Weak interactions couple to chiral left-handed neutrinos and chiral
right-handed antineutrinos, which, for relativistic neutrinos are approximated as equal to left
and right helicity states up to terms of order m/E. Hence, both left-handed and right-handed
Majorana neutrinos are detectable.

On the other hand, in the case neutrinos and antineutrinos are Dirac particles, the
decay products of the respective helicity-flipping channels do not participate in weak
interactions and, consequently, are not observable.

Hence, M (νr
i → νr

j ) describes helicity-conserving decays, such as νi→ ν j +X ,
while M (νr

i → νr′
j ) describes helicity-violating decays, such as νi→ ν̄ j +X . In the

expressions below, we write M (νr
i → νs

j) = M rs
i j , where s can denote either of the helicity

states. Additionally

A =
1

xi j

Ei

E j
+ xi j

E j

Ei
, with xi j =

mi

m j
> 1 . (3.5)

Hence, the differential decay width is given by

dΓrs
i j

dE j
=

mim j

4πE2
i

(
1− m2

i

E2
i

)∣∣M rs
i j
∣∣2 , (3.6)

with the kinematics condition

Ei−E j = |~pi−~p j|=
(
|~pi|2 + |~p j|2−2|~pi||~p j|cosθ

)1/2
, (3.7)
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which leads to the condition on the angle between in and out states

cosθ =
2EiE j− (m2

i +m2
f )

2|~pi||~p j|
=

2EiE j− (m2
i +m2

j)

2
(
E2

i −m2
i
)1/2

(
E2

j −m2
j

)1/2 , (3.8)

which implies the bound to the energy of the outgoing particle

Ei

2

(
1+

1
x2

i j

)
− |~pi|

2

(
1− 1

x2
i j

)
≤ E j ≤

Ei

2

(
1+

1
x2

i j

)
+
|~pi|
2

(
1− 1

x2
i j

)
. (3.9)

For ultra-relativistic neutrinos, the bounds become

Ei

x2 ≤ E j ≤ Ei , (3.10)

and the differential decay width reduces to

dΓrs
i j

dE j
=

mim j

4πE2
i

∣∣M rs
i j
∣∣2 , (3.11)

which yield the partial decay widths

Γ
rr
i j =

mim j

16πEi

[
(gs)

2
i j

(
xi j

2
+2+

2
xi j

lnxi j−
2

x2
i j
− 1

2x3
i j

)
+

+ (gp)
2
i j

(
xi j

2
−2+

2
xi j

lnxi j +
2

x2
i j
− 1

2x3
i j

)]
, (3.12)

Γ
rr′
i j =

mim j

16πEi

[
(gs)

2
i j +(gp)

2
i j
](xi j

2
− 2

xi j
lnxi j−

1
2x3

i j

)
. (3.13)

Now, for notation convenience, we write the decay widths as functions of g2
i j = (gs)

2
i j +(gp)

2
i j

and h2
i j = (gs)

2
i j− (gp)

2
i j. The differential decay widths are rewritten as

dΓrr
i j

dE j
=

mim j

16πE2
i

[
g2

i j

(
1

xi j

Ei

E j
+ xi j

E j

Ei

)
+2h2

i j

]
, (3.14)

dΓrr′
i j

dE j
=

mim j

16πE2
i

g2
i j

[
1

xi j
+ xi j−

(
1

xi j

Ei

E j
+ xi j

E j

Ei

)]
. (3.15)

Additionally, since mim j = m2
i (xi j)

−1, we also write for convenience δi j = (xi j)
−1 and the
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expressions further simplify to

dΓrr
i j

dE j
=

m2
i

16πE2
i

[
g2

i j

(
E j

Ei
+δ

2
i j

Ei

E j

)
+2δi jh2

i j

]
, (3.16)

dΓrr′
i j

dE j
=

m2
i

16πE2
i

g2
i j

[
1−

E j

Ei
+δ

2
i j

(
1− Ei

E j

)]
, (3.17)

and similarly, the partial decay widths become

Γ
rr
i j =

m2
i

32πEi

[
g2

i j
(
1−4δ

2
i j lnδi j−δ

4
i j
)
+4h2

i jδi j
(
1−δ

2
i j
)]

, (3.18)

Γ
rr′
i j =

m2
i

32πEi

[
g2

i j
(
1+4δ

2
i j lnδi j−δ

4
i j
)]

. (3.19)

Finally, the total decay width Γr
i for an mass eigenstate i of helicity r is related to

its decay rate αr
i and its rest-frame lifetime τi by

mi

τi
= α

r
i = ∑

k,s
α

rs
ik = Ei ∑

k,s
Γ

rs
ik = EiΓ

r
i . (3.20)

In the following sections, we shall only consider the decay of a single heavier mass

eigenstate νi into neutrinos and antineutrinos of a lighter mass eigenstate, ν j and ν̄ j.

Hence, the notation in Equations (3.16) and (3.17) above can be simplified to

dΓrr
i j

dE j
=

m2
i

16πE2
i

[
g2
(

E j

Ei
+δ

2 Ei

E j

)
+2δh2

]
, (3.21)

dΓrr′
i j

dE j
=

m2
i

16πE2
i

g2
[

1−
E j

Ei
+δ

2
(

1− Ei

E j

)]
, (3.22)

and from Equations (3.18) and (3.19)

Γ
rr
i j =

m2
i

32πEi

[
g2 (1−4δ

2 lnδ −δ
4)+4h2

δ
(
1−δ

2)] , (3.23)

Γ
rr′
i j =

m2
i

32πEi

[
g2 (1+4δ

2 lnδ −δ
4)] . (3.24)

Finally, from Equation (3.20), the total decay width is written as Γr
i = Γrr

i j +Γrr′
i j . As such

Γ
r
i =

m2
i

16πEi

[
g2 (1−δ

4)+2h2
δ
(
1−δ

2)] . (3.25)

Now, notice that in general the decay widths, and consequently the decay rates,
depend on the interaction coupling constants and neutrino masses, which are unknown
parameters. Hence, it would be useful to reduce the number of such unknown
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parameters [121]. From Equations (3.20) and (3.25), it is possible to write

α
r
i =

m2
i

16π

(
1−δ

2)[(1+δ )2 g2
s +(1−δ )2 g2

p

]
. (3.26)

Solving Equation (3.26) for each coupling constants and substituting one at a time in
Equations (3.21) and (3.22), the differential decay widths become

dΓrr
i j

dE j
=

αr
i

E2
i

f1−
αr

i

E2
i

f2

(
f1∓

m2
i g2

s(p)

8παr
i

f3

)(
1+δ

2−
E j

Ei
−δ

2 Ei

E j

)
, (3.27)

dΓrr′
i j

dE j
=

αr
i

E2
i

f2

(
f1∓

m2
i g2

s(p)

8παr
i

f3

)(
1+δ

2−
E j

Ei
−δ

2 Ei

E j

)
, (3.28)

with f1,s(p) =
1

(1−δ 2)
, f2,s(p) =

1

(1∓δ )2 and f3,s(p) = 2δ , and where the upper (lower) sign

corresponds to gs (gp). As such, since δ = m j/mi =
√

1−∆m2
i j/m2

i , by fixing the value of one
coupling constant, the differential decay widths are completely determined by the decay rate αi

and the neutrino mass mi.
Finally, we can divide the differential decay widths above by the total decay width

Γr
i , which, from Equation (3.20), is also written Γr

i = αr
i /Ei. Hence, we obtain a weighted

differential decay width

wrr
i j =

1
Γr

i

dΓrr
i j

dE j
=

f1

Ei
− f2

Ei

(
f1∓

m2
i g2

s(p)

8παi
f3

)(
1+δ

2−
E j

Ei
−δ

2 Ei

E j

)
, (3.29)

wrr′
i j =

1
Γr

i

dΓrr′
i j

dE j
=

f2

Ei

(
f1∓

m2
i g2

s(p)

8παi
f3

)(
1+δ

2−
E j

Ei
−δ

2 Ei

E j

)
, (3.30)

which appears in the discussion in the next sections.
Now, we explicitly present three cases for the weighted differential decay widths

originating from:

� a scalar interaction (gp = 0),

� a pseudo-scalar interaction (gs = 0), and

� an interaction with g2
s = g2

p, which we call a democratic interaction.

First, for the scalar interaction, Equations (3.29) and (3.30) become

wrr
i j =

1
(1−δ 2)

1
Ei
− 1

(1−δ 2)(1+δ )2
1
Ei

(
1+δ

2−
E j

Ei
−δ

2 Ei

E j

)
, (3.31)

wrr′
i j =

1

(1−δ 2)(1+δ )2
1
Ei

(
1+δ

2−
E j

Ei
−δ

2 Ei

E j

)
. (3.32)
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Next, for the pseudo-scalar interaction, Equations (3.29) and (3.30) become

wrr
i j =

1
(1−δ 2)

1
Ei
− 1

(1−δ 2)(1−δ )2
1
Ei

(
1+δ

2−
E j

Ei
−δ

2 Ei

E j

)
, (3.33)

wrr′
i j =

1

(1−δ 2)(1−δ )2
1
Ei

(
1+δ

2−
E j

Ei
−δ

2 Ei

E j

)
. (3.34)

Finally, for the democratic interaction, from Equation (3.26):

α
r
i =

m2
i

8π

(
1−δ

4)g2
s =

m2
i

8π

(
1−δ

4)g2
p , (3.35)

for which the weighted differential decay rates given in Equations (3.29) and (3.30) become

wrr
i j =

1
(1−δ 2)

1
Ei
− 1

(1−δ 4)

1
Ei

(
1+δ

2−
E j

Ei
−δ

2 Ei

E j

)
, (3.36)

wrr′
i j =

1
(1−δ 4)

1
Ei

(
1+δ

2−
E j

Ei
−δ

2 Ei

E j

)
. (3.37)

From Equations (3.31) – (3.37), for some combinations of Ei, E j and δ , wrs
i j may be

null. For the chirality changing decay, for all three cases defined above, wrr′
i j = 0 for Ei = E j

and Ei = E j/δ 2 which corresponds to the integration limits on Equation (3.10). On the other
hand, the chirality conserving wrr

i j = 0 is null only for the pseudo-scalar decay with Ei = E j/δ .
These behaviors are shown in Figure 3.1 for δ = 0.05 and δ = 0.95.

Notice that, by integrating the equations above within the limits defined in
Equation (3.10), one obtains the branching fraction Brrs

i j for each decay channel, shown in
Figure 3.2. First, for the scalar interaction:

Brrr
i j =

1+δ 2

2(1+δ )2 −
2δ 2 lnδ

(1+δ )2(1−δ 2)
+

2δ

(1+δ )2 , (3.38)

Brrr′
i j =

1+δ 2

2(1+δ )2 +
2δ 2 lnδ

(1+δ )2(1−δ 2)
. (3.39)

Next, for the pseudo-scalar interaction:

Brrr
i j =

1+δ 2

2(1−δ )2 −
2δ 2 lnδ

(1−δ )2(1−δ 2)
+

2δ

(1−δ )2 , (3.40)

Brrr′
i j =

1+δ 2

2(1−δ )2 +
2δ 2 lnδ

(1−δ )2(1−δ 2)
. (3.41)
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Finally, for the democratic interaction:

Brrr
i j =

1
2
− 2δ 2 lnδ

(1−δ 4)
, (3.42)

Brrr′
i j =

1
2
+

2δ 2 lnδ

(1−δ 4)
. (3.43)

As it can be seen from Figures 3.1 and 3.2, as δ → 0, that is, if neutrino masses
are hierarchical with mi >> m j or m j = 0, the decays become independent of the coupling
constants. In addition, chirality conserving and changing decays become equally probable.
On the other hand, as δ → 1, that is, if the neutrino masses are quasi-degenerate with mi ≈
m j, the chirality changing decays become suppressed, except for the case of the pseudo-scalar
interaction. To understand this behavior as mi ≈ m j, we take Equations (3.23) and (3.24) and
expand δ keeping the lowest order in ∆m2

i j/m2
i :

Γ
rr
i j =

m2
i

32πEi

8g2
s

(
∆m2

i j

m2
i

)
+

1
6

g2
p

(
∆m2

i j

m2
i

)3
 , (3.44)

Γ
rr′
i j =

m2
i

32πEi

(g2
s +g2

p
) 1

3

(
∆m2

i j

m2
i

)3
 . (3.45)

As demonstrated by Equations (3.44) and (3.44), the decay is in general
dominated by chirality-conserving fraction due to the order of dependency on ∆m2

i j/m2
i ,

explaining the behavior of scalar and democratic interactions. However, for the case of a
pseudo-scalar interaction, even though the decay is highly suppressed, the chirality-conserving
and chirality-changing fractions are of comparable orders. In this context, we can approximate
the branching fractions defined in Equations (3.38) – (3.43) keeping the lowest order terms in
∆m2

i j/m2
i . First, for the scalar interaction:

Brrr
i j = 1− 1

24

(
∆m2

i j

m2
i

)2

and Brrr′
i j =

1
24

(
∆m2

i j

m2
i

)2

. (3.46)

Next, for the pseudo-scalar interaction:

Brrr
i j =

1
3
+

1
120

(
∆m2

i j

m2
i

)2

and Brrr′
i j =

2
3
− 1

120

(
∆m2

i j

m2
i

)2

. (3.47)

Finally, for the democratic interaction:

Brrr
i j = 1− 1

12

(
∆m2

i j

m2
i

)2

and Brrr′
i j =

1
12

(
∆m2

i j

m2
i

)2

. (3.48)
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Figure 3.1: Normalized differential decay widths for the decay of a 10MeV neutrino or antineutrino
for both chirality conserving (blue curves) and changing (red curves) decays as functions of the ratio
between daughter and mother neutrino energies E j/Ei, for scalar (continuous curves), pseudo-scalar
(dotted curves), and democratic (dashed curves) interactions, as defined in Equations (3.31) – (3.37).
Left: δ = 0.05. Right: δ = 0.95.
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The consequences of such hierarchical and quasi-degenerate decay scenarios are
discussed in later sections included into the effect of neutrino oscillations.

3.2 Neutrino Oscillations with Decay

A model independent combined formalism for obtaining survival and transition
probabilities including both neutrino oscillations and decay is presented by Reference [120]
and summarized below. For this combined treatment, it is first necessary to introduce three
operators — for propagation, appearance and disappearance — in terms of creation and
annihilation operators usually noted â† and â.

The Propagation Operator describes the propagation of states of energy Ei for a
distance l along a baseline L. The operator is defined as

E (l) = ∑
i

exp(−iEil)(âr
i )

†âr
i . (3.49)

The Disappearance Operator describes the amplitude of undecayed mass eigenstates
of energy Ei and chirality r to remain undecayed after propagating a distance l along a baseline
L. The operator is defined as

D−(l) = ∑
i

exp
(
−αr

i l
2Ei

)
(âr

i )
†âr

i . (3.50)

The Appearance Operator describes the destruction of states i with energy Ei and
chirality r, and creation of states j with chirality s between a distance l and l + dl along a
baseline L. The operator is defined as

D+(l) = ∑
i

∑
j

i 6= j

(
αrs

i j

Ei
ηi j

)1/2

exp(iξ )(âs
j)

†âr
i . (3.51)

In the expressions above, αrs
i j is the decay rate for the i→ j decay channel as defined previously,

ξ is a random phase that accounts for the phase shift caused by additional not measured particles
produced in the decay, and ηrs

i j describes the fraction of decay products that arrive at the detector
given by

η
rs
i j (l,L,D) =

1
Γrs

i j

∫ Emax

Emin

∫ 1

(cosθ)D

∣∣∣∣ dΓrs
i j

d cosθdE j
(Ei,E j)

∣∣∣∣dE j d cosθ , (3.52)

where the integration limits correspond to the energy range covered by the detector and the
decay angle within which the decay products can reach the detector.

The Sun is a radially symmetric neutrino source and the neutrino production area in
the core is observed from Earth within a small angle θsun ≈ 10−3. Consequently, if the decay
angle is smaller than the observation angle, the daughter neutrino can reach the detector. From
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Equation (3.8), it can be seen that, for ultra-relativistic neutrinos, the decay is forwardly peaked.
As such, it is reasonable to suppose that every neutrino within the energy range of interest reach
the detector. Hence, ηrs

i j can be approximated as independent of distance l along a baseline L,
as well as the detector area perpendicular to the beam direction D. In this context:

dηrs
i j

dE j
=

1
Γrs

i j

dΓrs
i j

dE j
(Ei,E j) , (3.53)

equals the normalized energy distribution of the decay products, describing the fraction of
daughter neutrinos that reach the detector with energy between E j and E j + dE j after being
produced from the decay of a neutrino of energy Ei.

With the operators defined above, one can now calculate the transition probabilities
between neutrino eigenstates i and j for a variety of situations. A simple case is the survival
probability upon decay neglecting propagation effects:

Prr
ii = | 〈νr

i |D−(L) |νr
i 〉 |2 =

∣∣∣∣∣〈νr
i |
[
∑

j
exp
(
−

αr
j L

2E j

)
(âr

j)
†âr

j

]
|νr

i 〉

∣∣∣∣∣
2

, (3.54)

which wields
Psurv

i = Prr
ii = exp

(
−αr

i
Ei

L
)
. (3.55)

On the other hand, the appearance probability for a stable mass eigenstate ν j

produced from the decay of a unstable mass eigenstate νi on its propagation in a given baseline
L is given by

Prs
i j =

L∫
0

dl
∣∣〈ν

s
j
∣∣D+D− |νr

i 〉
∣∣2 ,

=

L∫
0

dl

∣∣∣∣∣〈ν
s
j
∣∣[∑

m,n
m 6=n

(
αrs

mn
Em

η
rs
mn

)1/2

(âs
n)

†âr
m

][
∑
k

exp
(
−

αr
k l

2Ek

)
(âr

k)
†âr

k

]
|νr

i 〉

∣∣∣∣∣
2

.

(3.56)

Hence

Prs
i j =

L∫
0

dl
(

αrs
i j

Ei
η

rs
i j

)
exp
(
−αr

i l
Ei

)
= η

rs
i j

(
αrs

i j

αr
i

)(
1− exp

(
−αr

i L
Ei

))
. (3.57)

where it was supposed that ηrs
i j is a constant in l. If νr

i → νs
j is the only possible decay channel

and we suppose for the moment ηrs
i j = 1, that is, every daughter neutrino can reach the detector,

it follows that the appearance/conversion probability is

Pconv
i = Prs

i j = 1− exp
(
−αr

i L
Ei

)
. (3.58)
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Now, consider the general transition probability, now including propagation,
between neutrino eigenstates i and j with n intermediate decays —
νi→ ν

(1)
k → ...→ ν

(n−1)
l → ν j — denoted P(n)

i j . For n = 0, the transition probability is given
by

P(0)
i j = |

〈
ν

s
j
∣∣E (L)D−(L) |νr

i 〉 |2 . (3.59)

P(0)
i j describes only the disappearance of the initial particle and there is not the appearance of

new particles, that is, there are no decay products to be detected. As such, P(0)
i j can be identified

as the transition probability for invisible decays, that is, P(0)
i j = Pinv

i j .
Now, considering the transition between flavor eigenstates να and νβ along a

baseline L, the survival and transition probabilities are given by

Pinv
αβ

= |
〈

ν
s
β

∣∣∣E (L)D−(L) |νr
α 〉 |2 , (3.60)

which, from Equation (2.10), the probability becomes

Pinv
αβ

=

∣∣∣∣∣∑i
∑

j

(
U r

αi

)∗(
U r

β j

)〈
ν

s
j
∣∣E (L)D−(L) |νr

i 〉

∣∣∣∣∣
2

. (3.61)

From Equations (3.49) and (3.50), the probability is given by

Pinv
αβ

=

∣∣∣∣∣∑i

(
U r

αi

)∗(
U r

β i

)
exp
(
−iEil−

αr
i l

2Ei

)∣∣∣∣∣
2

. (3.62)

From Equation (2.20) Ek ≈ E +m2
k/2E, where E = |~pk | is the neutrino energy neglecting the

mass contribution [7]. Similarly, we can also approximate:

1
Ek

=
(
|~pk |2 +m2

k

)−1/2
≈ 1

E

(
1−

m2
k

2E

)
≈ 1

E
. (3.63)

As such, the exponent in Equation (3.62) can be written as

∆k(l) =−iEkl−
αr

k l
2Ek
≈−iEα l− i

m2
k l

2Eα

−
αr

k l
2Eα

=−iEα l−
m̃2

k l
2Eα

. (3.64)

The first term does not contribute to the probability upon expansion of the modulus in
Equation (3.62), hence we can write

Pinv
αβ

=

∣∣∣∣∣∑i

(
U r

αi

)∗(
U r

β i

)
exp
(
− m̃2

i l
2Eα

)∣∣∣∣∣
2

. (3.65)
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For n > 0, on the other hand, the transition probabilities are given by

P(n)
i j =

L∫
0

dl1...
L∫

ln−1

dln

∣∣∣∣∣〈ν
s
j
∣∣E (L− l)D−(L− l)

[
n

∏
i=1

D+(li)E (li)D−(li)

]
|νr

i 〉

∣∣∣∣∣
2

, (3.66)

with l =
n

∑
i=1

li. In general, if the decay mean free path is of the same order of magnitude as

the baseline L, one can consider only one appearance step and neglect n > 1 and the only
decay of interest is νi→ ν j. If the decay mean free path is much shorter than the baseline L,
more intermediate decays may need to be taken into account, e.g., νi→ νk→ ν j, as eventually
allowed by decay model under scrutiny.

Since we assume that only one neutrino mass eigenstate is unstable (see

Section 3.1), only one intermediate decay is possible, that is, n≤ 1, and we don’t need to make

assumptions regarding the decay mean free path at the moment. Hence, the transition and
survival probabilities for visible decays can be approximated as

Pvis
i j = P(0)

i j +P(1)
i j , (3.67)

with:

P(1)
i j =

L∫
0

dl
∣∣〈ν

s
j
∣∣E (L− l)D−(L− l)D+(l,L)E (l)D−(l) |νr

i 〉
∣∣2 . (3.68)

As before, the transition between flavor eigenstates να and νβ along a baseline L, the appearance
term is given by

P(1)
αβ

=

L∫
0

dl

∣∣∣∣∣∑i
∑

j

(
U r

αi

)∗(
U r

β j

)〈
ν

s
j
∣∣E (L− l)D−(L− l)D+(l,L)E (l)D−(l) |νr

i 〉

∣∣∣∣∣
2

, (3.69)

which, from Equations (3.49), (3.50), (3.51), and (3.64) becomes

P(1)
αβ

=

L∫
0

dl

∣∣∣∣∣ ∑
i, j; i6= j

(
U r

αi

)∗(
U r

β i

)(αrs
i j

Eα

η
rs
i j

)1/2

exp

[
− m̃2

i
2Eα

l−
m̃2

j

2Eβ

(L− l)

]∣∣∣∣∣
2

. (3.70)

Next, to account for the energy shift in the neutrino spectrum due to visible decay,
the probabilities are written as

dPrs
αβ

dEβ

=

∣∣∣∣∣∑i

(
U r

αi

)∗(
U r

β i

)
exp
(
− m̃2

i l
2Eα

)∣∣∣∣∣
2

δ
(
Ei−E j

)
δrs+

+

L∫
0

dl

∣∣∣∣∣ ∑
i, j; i6= j

(
U r

αi

)∗(
U s

β j

)(αrs
i j

Eα

dηrs
i j

dEβ

)1/2

exp

[
− m̃2

i
2Eα

l−
m̃2

j

2Eβ

(L− l)

]∣∣∣∣∣
2

.

(3.71)
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Finally, the neutrino flux arriving at the detector, either in invisible or visible decays,
is given by

φ
s
β
(Eβ ) =

∫
dEα φ

r
α(Eα)

dPrs
αβ

dEβ

(Eα ,Eβ ) , (3.72)

that is, since a mother neutrino of energy Eα may decay producing a daughter neutrino of energy
Eβ , the daughter neutrino flux arriving at the detector is in general not equal the mother neutrino
flux.

In the following sections, the consequences of this formalism will be examined in
the context of solar neutrinos for both invisible and visible decays.
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Chapter 4

Invisible Decay of Solar Neutrinos

As stated in Chapter 3, invisible decays [80,82,85,92,103–106] are those in which
the products are invisible states, that is, states that either are in principle not detectable or will
not be detected by the experiment in question such as the decay into sterile neutrinos plus scalar
particles.

Our results presented in this Section were published [122] at Physics Letters B,
volume 761, October 10th, 2016, pages 70–73 included in Appendix B. Additionally, this work
was presented by O. L. G. Peres at the 38th International Conference on High Energy Physics
(ICHEP 2016) and published [123] as a contribution to the conference proceedings at
Proceedings of Science, volume 282, April 19th, 2017, page 464.

4.1 Formalism

As shown in Figure 4.1, established limits before this work (see Section 3.1) on the
neutrino lifetime imply that neutrinos do not substantially decay either inside the Sun or Earth.
As such, we can take into consideration that neutrino decay only in vacuum on their way from
Sun to Earth, and Equation (3.65) can be rewritten as

Pinvis
eβ

=

∣∣∣∣∣∑i
A�eiA

⊕
iβ exp

(
−i

miL
2Eα

)
exp
(
−αr

i L
2Eα

)∣∣∣∣∣
2

, (4.1)

where A�ei is the transition amplitude of an electron neutrino produced in the solar core to be in
a νi state in the solar surface, and A⊕iβ is the transition amplitude of a νi to be in a νβ state upon
detection on Earth. In addition, by expanding the expression above and neglecting interference
terms, as done in Chapter 2, it is possible to rewrite it as the incoherent sum of probabilities:

Pinvis
eβ

= ∑
i

P�ei Psurv
i P⊕iβ , (4.2)
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where P�ei =
∣∣A�ei

∣∣2 is the probability of the produced νe be found as a νi at the surface of the
Sun, P⊕iβ =

∣∣A⊕iβ ∣∣2 is the probability of a νi be detected as a νβ on Earth, and Psurv
i is the decay

survival probability of an eigenstate i upon propagating the Sun-Earth distance

Psurv
i = Prr

ii = exp
(
−αr

i
Eα

L
)
. (4.3)

as given by Equation (3.55) and shown in Figure 4.1.
As previously seen in Figure 2.3, in the LMA-MSW solution, a 10MeV νe will be

produced almost as a pure ν2 and, due to the adiabatic crossing of the resonance region, it will
still reach the solar surface as ν2. As such, the most interesting scenario for the invisible decay

of solar neutrinos is to assume the mass eigenstate ν2 is unstable and decays into invisible

states. Hence, the survival and transition probabilities for two neutrino families is given by

P′ee = P�e1 P⊕1e +P�e2 Psurv
2 P⊕2e , (4.4)

P′eµ = P�e1 P⊕1µ
+P�e2 Psurv

2 P⊕2µ
. (4.5)

Figure 4.2 shows the day survival probability as defined in Equation (4.4)for electron neutrinos
produced in the Sun and detected on Earth for different values of τ2/m2 with the Earth-Sun
distance set to 1 A.U.

In the context of neutrino invisible decay it is also useful to separate the neutrino
fluxes for three neutrino families into electronic and non-electronic flavors. Following the
discussion presented in Section 2.3.1, we can approximate the probabilities as

Pee = c4
13 P′ee + s4

13 , (4.6)

for the electron neutrino survival probability, and

Pe(µ+τ) = c2
13 P′eµ + s2

13c2
13 P′ee + s2

13c2
13 . (4.7)

for the transition probability. On both survival and transition probabilities, the primed
probabilities are the two-family probabilities on Equations (4.4) and (4.5).

Due to decay, either in two or three neutrino families, it no longer holds that the
sum of probabilities is equal to unity, that is

∑
β=e,µ,τ

Peβ = 1− c2
13 P�e2 (1−Psurv

2 ) . (4.8)

This non-unitary evolution is discussed in more detail in Reference [124].
Another consequence of this scenario is that, for appreciable values of τ2/m2, the

solar neutrino data can be explained by a combination of standard three neutrino MSW
oscillation and decay, leading to a degenerescence between neutrino parameters, specially
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Figure 4.1: Survival Probability Psurv
i = Prr

ii as a function of the neutrino energy Eν as given by
Equation (3.55), for selected values of the lifetime τi/mi, for propagation over the solar radius distance.
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Figure 4.2: Day Survival Probabilities for electron neutrinos produced in the Sun and detected on Earth
for different values of τ2/m2 with the Earth-Sun distance set to 1 A.U.. Best-fit values for the global fit
neutrino oscillation parameters [59] as shown on Table 2.1 are used.
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∆m2
21 and τ2/m2 [99]. As such, solar neutrino data can be used to set lower limits to τ2/m2.

4.2 Solar Neutrino Analysis with Decay

For the invisible decay analysis, the author of this thesis modified a code written in
Fortran and used for solar neutrino analysis (e.g. in References [125–127]) to account for solar
neutrino decay.

In this code, the neutrino survival probabilities as shown in Equations (4.6) and (4.7)
are numerically calculated under the assumption of adiabatic evolution inside the Sun. Next, the
expected event rate is computed for each relevant experiment and compared to their data. The
data included in the analysis are the Homestake total rate [10], GALLEX and GNO combined
total rate [128], SAGE total rate [16], SuperKamiokande I full energy and zenith spectrum [22],
SNO combined analysis [32] and Borexino 192-day low-energy data [37].

Finally, the χ2 statistical analysis was performed using a χ2 function built from the
relevant parameters

χ
2
� = χ

2
�(tan2

θ12,∆m2
21,sin2

θ13,τ2/m2) , (4.9)

and the allowed regions are shown in Figure 4.3.
Complementary information can be added from the reactor experiments KamLAND

(KL) [62] and Daya Bay (DB) [129], since these experiments give precise constraints on ∆m2
21

and sin2
θ13 from their detection of ν̄e oscillations. For the currently allowed values of τ2/m2,

P22 ∼ 1 for the typical baselines of L/Eν ∼ 10−10 s · eV−1 and ∼ 10−12 s · eV−1 of KamLAND
and Daya Bay respectively. In this case, the relevant neutrino probability is the standard three
neutrino expression:

P(ν̄e→ ν̄e) = 1− c4
13S2

12 sin2
∆21− S2

13 sin2
∆m2

ee , (4.10)

where Si j = sin2θi j, ∆i j = ∆m2
i j/4Eν and ∆m2

i j ≡ m2
i −m2

j , and an effective mass square
difference is defined as sin2

∆m2
ee ≡ c2

12 sin2
∆31 + s2

12 sin2
∆32. Hence, decay can be neglected

in the context of these experiments and their standard neutrino analysis for three neutrinos can
also be used for decay scenario. In other words:

χ
2
decay; KL / DB = χ

2
no decay; KL / DB , (4.11)

and their data can be included as reported in the analysis.
For the KamLAND experiment, a χ2

KL function for the standard three neutrino
scenario used in Reference [62] is available in table format as a function of tan2 θ12, ∆m2

21 and
sin2

θ13. For the Daya Bay experiment, the χ2
DB function is available in table format provided

in the supplementary material from Reference [129] as a function of ∆m2
ee and sin2(2θ13). The
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(1)

(2)

(3)

(a) (b)

Figure 4.3: Left: Allowed parameter regions for the standard oscillation parameters (∆m2
21, θ12 and θ13)

without decay. Right: Allowed parameter regions for the standard oscillation parameters (∆m2
21, θ12 and

θ13) including decay. The hollow curves represent the analysis with only solar neutrino data and the filled
curves represent the combined analysis of solar, KamLAND and Daya Bay data. The dotted, dashed and
continuous line represent respectively 90% C.L., 99% C.L. and 99.9% C.L.. Plots (1a) through (3b) were
made for this thesis.
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(a) (b)

(c)

Figure 4.4: Allowed parameter regions for the standard oscillation parameters (∆m2
21, θ12 and θ13) and

the decay parameter τ2/m2. The hollow curves represent the analysis with only solar neutrino data and
the filled curves represent the combined analysis of solar, KamLAND and Daya Bay data. The dotted,
dashed and continuous line represent respectively 90% C.L., 99% C.L. and 99.9% C.L.. Plots (a) and (b)
were made for this thesis, plot (c) was published alongside our results in [122].
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combined χ2 function for solar, KamLAND and Daya Bay data is written as

χ
2 = χ

2
�
(
tan2

θ12,∆m2
21,sin2

θ13,τ2/m2
)
+

+χ
2
KL
(
tan2

θ12,∆m2
21,sin2

θ13
)
+χ

2
DB
(
∆m2

ee,sin2
θ13
)
,

(4.12)

where ∆m2
ee was defined before and over which we can promptly marginalize the χ2. From

Equation (4.12), we find the allowed regions for independent parameters tan2 θ12, sin2
θ13,

∆m2
21, and τ2/m2 as shown in Figures 4.3 and 4.4.

By marginalizing over the first two, we obtain the allowed region for the mass
squared difference ∆m2

21 and the decay parameter τ2/m2 as shown in Figure 4.4, where the
hollow (filled) regions show the results for the solar neutrino (combined) analysis.

The degenerescence between ∆m2
21 and τ2/m2 is evident in the hollow regions of

Figure 4.4, where higher values for ∆m2
21 are allowed alongside lower values for τ2/m2 and

lower values for ∆m2
21 are allowed alongside higher values for τ2/m2.

High values of ∆m2
21 are ruled out in the standard neutrino scenario because it leads

to spectral distortions that are disfavored by the solar neutrino data. On the other hand, high
values of ∆m2

21 could become a viable solution at the cost of having lower values of τ2/m2.
The inclusion of KamLAND and Daya Bay data break this degenerescence due to their precise
independent measurement of ∆m2

21 and sin2
θ13 respectively. Thus, from the complementary

data, it is possible to precisely isolate the contribution of the decay parameter τ2/m2. The

90% C.L.

99% C.L.

99.9% C.L.

Solar

Solar + KL + DB

10-4 10-3 10-2
0.

5.

10.

τ2 / m2 [s · eV-1]

Δ
χ
²

Figure 4.5: ∆χ2 for ν2 lifetime τ2/m2. The dashed (continuous) curve shows the solar (combined)
neutrino data analysis. Plot published alongside our results in [122].
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complete marginalization over the standard parameters results in the curve shown in Figure 4.5
of ∆χ2 as a function of τ2/m2. From it, we can extract a lower limit to the ν2 eigenstate lifetime

τ2 /m2 ≥ 7.7×10−4 s · eV−1 , at 99% C.L. , (4.13)

which corresponds to an upper bound to the decay parameter α2 ≤ 8.5×10−13 eV2.

4.3 Seasonal Effect due to Decay

One interesting consequence of the decay scenario that had not been previously
discussed in the literature is the effect of neutrino decay in the seasonal variation of solar
neutrino flux. In the absence of decay, the neutrino flux arriving on Earth is given by

φ
⊕
ν =

φ�ν
4πr2 , (4.14)

where r = r(t) is the time-dependent Earth-Sun distance. The ratio between maximum (at
perihelion) and minimum (at aphelion) fluxes is

R0 =
(1+ ε0)

2

(1− ε0)2 , (4.15)

where ε0 = 0.0167 is the eccentricity of Earth’s orbit.
The inclusion of decay modifies the ratio between maximum and minimum neutrino

fluxes and, consequently, also the measured eccentricity ε as given by

R = R0
N(rper)

N(raph)
=

(1+ ε)2

(1− ε)2 , (4.16)

where raph (rper) is the aphelion (perihelion) distance and N is the number of events calculated
from the convolution of the adequate probabilities and cross sections for each experiment.

From Equations (4.6) and (4.7), it follows that N(rper) > N(raph) holds also for the
decay scenario due to P22 dependence on the orbital distance. This implies that R > R0 for all
energies and thus, for any neutrino decay scenario, an enhancement in the seasonal variation
of the solar neutrino flux would be expected. The measurement of an eccentricity ε > ε0 is a
hint in the direction of the neutrino decay scenario. In fact, some experiments have measured
Earth’s orbital eccentricity to be different than the standard value albeit still compatible with ε0

as shown in Table 4.1.
Figure 4.6 shows the dependence of the neutrino eccentricity ε with the neutrino

lifetime τ2/m2 as it would be measured by SuperKamiokande (SK), SNO and Borexino (BOR)
experiments. As it can be seen, the higher energy 8B solar neutrinos (measured by SK and
SNO) would have a greater seasonal variation due to decay than the lower energy 7Be solar
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Table 4.1: Experimental best-fit values and errors for Earth’s orbital eccentricity ε for different solar
neutrino experiments. We also show the ratio between the fitted values and Earth’s eccentricity ε0.

Experiment εexp±σexp
(
εexp±σexp

)
/ε0

Borexino [36] 0.0398±0.0102 2.38±0.61

SuperKamiokande-I [130] 0.0252±0.0072 1.51±0.43

SNO Phase I [131] 0.0143±0.0086 0.86±0.51
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Figure 4.6: Left: Experimental values for ε/ε0. Black lines are the best-fit values and darker (lighter)
shades are the 1σ (2σ ) ranges as shown in Table 4.1. Right: Dependence of the orbital eccentricity ε

with the neutrino lifetime τ2/m2 as it would be measured by different experiments — the 7Be line in
Borexino (BOR), and the 8B spectrum in SuperKamiokande (SK) and SNO. Plots published alongside
our results in [122].

neutrinos (measured by Borexino).
Due to the MSW effect, the ν2 content in the neutrino flux leaving the Sun is

energy dependent. At higher energies, there are more ν2 neutrinos available for decay during
the propagation to Earth. On the other hand, for lower energy neutrinos, there are fewer ν2

leaving the sun and thus fewer ν2 available for decay. For this reason, the seasonal variation
for higher energy neutrinos would be bigger than for lower energy neutrinos and,
consequently, also the measured eccentricity. From Figure 4.6, it can be seen that due to the
decay survival probability in Equation (3.2), the lower (higher) the energy of the neutrinos, the
bigger (smaller) is the lifetime for which the enhancement in the eccentricity is maximum.
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We can now include the eccentricity data in the analysis as a penalty function added
to the χ2 for each experiment:

χ
2
seasonal =

(εexp− ε)2

(σexp)2 . (4.17)

The marginalization of the combined ∆χ2 results in a slightly lower value

τ2 /m2 ≥ 7.2×10−4 s · eV−1 , at 99% C.L. (4.18)

for the decay parameter due to the fact that the current eccentricity measurements and errors will
favor lower, already excluded, lifetimes, for which the enhancement in the seasonal variation
(and hence the measured eccentricity) is higher.

4.4 Results

Our result for ν2 neutrino lifetime at τ2 /m2 ≥ 7.2×10−4 s · eV−1, at 99% C.L.
can be compared to previous results available. Our result is almost one order higher than the
previously established bound in Reference [99] at τ2/m2 ≥ 8.7×10−5 s · eV−1 at 99% C.L.
and it is similar to but more constrained than the bound reported in Reference [132].

Our results were published [122] at Physics Letters B, volume 761, October 10th,
2016, pages 70–73 included in Appendix B. Additionally, this work was presented by O. L. G.
Peres at the 38th International Conference on High Energy Physics (ICHEP 2016) and
published [123] at Proceedings of Science, volume 282, April 19th, 2017, page 464.

Later, the SNO collaboration performed a new analysis [112] including all three
phases of 8B solar neutrino data taken by the Sudbury Neutrino Observatory (SNO) which,
combined with data from other solar neutrino experiments, resulted in an improved limit for ν2

neutrino lifetime at τ2 /m2 ≥ 1.02×10−3 s · eV−1, at 99% C.L.. Table 4.2 compares our result
to the lower limits to τ2/m2 presented in the literature.

Table 4.2: Lower limits to τ2/m2 [s · eV−1] in the literature compared to our results.

Analysis τ2/m2 [s · eV−1]

Bandyopadhyay et al. [99] 8.7×10−5 at 99% C.L.

Berryman et al. [132] 7.1×10−4 at 2σ C.L.

Picoreti et al. (this work) [122] 7.2×10−4 at 99% C.L.

Aharmim et al. (SNO Collaboration) [112] 1.02×10−3 at 99% C.L.
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Chapter 5

Visible Decay of Solar Neutrinos

As stated in Chapter 3, visible decays [83, 84, 107–111] are those in which the
products are visible states, that is, at least one of the daughter particles is in principle detectable,
e.g., the decay of a mass eigenstate into at least one lighter active mass-eigenstate. For the
analysis of this decay scenario, one is also interested in the daughter particle and how it affects
the final neutrino fluxes.

The work described in this Section is original, not yet submitted to publication. This
is the first time that an analysis is made in visible decay scenario properly including a neutrino
decay model.

5.1 Formalism

In the context of three neutrino families, the set of decay channels available for each
neutrino mass eigenstate is schematically shown in Figure 5.1 for both mass hierarchies.

As discussed before, from Figure 2.3, in the LMA-MSW solution, a 10MeV νe will
be produced almost as a pure ν2 and, due to the adiabatic crossing of the resonance region,
it will still reach the solar surface as ν2. Hence, due to the smallness of ν3 content in the
electron neutrino (see Section 2.3.1 and Figure 2.6) and to the smallness of ν1 content in the
solar electron neutrinos in energy range under consideration, the most interesting scenario for
the visible decay of solar neutrinos is to assume the mass eigenstate ν2 is unstable decaying into
lighter neutrinos. From Figure 5.1, the possible decay channels for ν2 are

� ν2→ ν1/ν̄1 in the normal hierarchy, and

� ν2→ ν1/ν̄1 and ν2→ ν3/ν̄3 in the inverted hierarchy.

Each of the decay channels above available for the ν2 eigenstate will be analyzed

in the context of solar neutrino decay so that lifetime limits to ν2 can be extracted for each mass

hierarchy.
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Figure 5.1: Schematics of the possible neutrino decay channels in the context of three neutrino families
and for both the normal and inverted hierarchies. Highlighted arrows show the decay channels available
for the ν2 eigenstate which are investigated in the following sections in the context of solar neutrino
decay so that lifetime limits to ν2 can be extracted for each mass hierarchy.

For solar neutrinos, by the same considerations made for the invisible decay
scenario, Equation (3.71) can be rewritten as

dPrs
αβ

dEβ
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(5.1)

which, using Equation (3.53), becomes
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(5.2)

The first term is treated in Chapter 4. Now, we focus on the second term integrand:

dP
dl

=
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A�eiA
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(dΓrs
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2

. (5.3)

Consider that only one single mass eigenstate νi is unstable, with allowed decay
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channels into ν j and ν̄ j. As such, the expression above becomes

dP
dl

=
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2

, (5.4)

from which it follows that

dP
dl

=
∣∣A�ei

∣∣2∣∣A⊕s
jβ

∣∣2(dΓrs
i j

dEβ

)
e−Γi l = P�ei P⊕s
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(dΓrs
i j
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Consequently:

L∫
0

dl
dP
dl

= P�ei
(
1− e−Γi L)( 1

Γi

dΓrs
i j

dEβ

)
P⊕s

jβ = P�ei Pconv
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i jP
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where Pconv
i = 1−Psurv

i is as defined in Equation (3.58). Hence:

dPrs
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dEα
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(
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P�ekPsurv
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)
δ
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)
δrs +P�ei Pconv
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i jP
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Finally, the neutrino flux of each flavor arriving at the detector is given by

φ
s
β
(Eβ ) = φ

s, invis
β

(Eβ )δrs +
∫

dEα φ
r
α(Eα)P�ei Pconv

i wrs
i jP
⊕s
jβ , (5.8)

with integration limits
[
Eβ ,Eβ/δ 2] as obtained from Equation (3.6). As before, P�ek =

∣∣A�ek

∣∣2 is
the probability of the produced νe be found as a νk at the surface of the Sun, P⊕kβ

=
∣∣A⊕kβ

∣∣2 is
the probability of a νk be detected as a νβ on Earth, and Pconv

i is the transition probability of an
eigenstate i into an eigenstate j upon propagating the Sun-Earth distance L as given in
Equation (3.58). Additionally, the weighted differential decay width wrs

i j is given in
Equations (3.29) and (3.30) for a generic interaction and in Equations (3.31) – (3.37) for three
particular cases for the coupling constants. In later sections, the probabilities P⊕s

1β
are assumed

as the day probabilities, that is

P⊕1e = cos2
θ12 , P⊕1µ

= sin2
θ12 , P⊕1̄ē = cos2

θ12 , and P⊕1̄µ̄
= sin2

θ12 . (5.9)

5.2 Neutrino Mass Hierarchies and Decay Channels

As presented in Section 3.1, the weighted differential decay width wrs
i j depend on

the quantity δ = m j/mi. In the absence of any other information regarding the absolute values
of neutrinos masses, there are two possible simplified scenarios:

� either m j = 0 or mi >> m j, that is, the neutrino masses are hierarchical and δ → 0;
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� mi ≈ m j, that is, the neutrino masses are quasi-degenerate and δ → 1.

In the hierarchical scenario, as discussed before, the decay become independent of
the coupling constants. As such, from Equations (3.31) - (3.37), we are left with the weighted
differential decay width:

wrs
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1
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(
Eβ

Eα

)
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1
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Eα

)
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. (5.10)

On the other hand, in the quasi-degenerate scenario, according to Equation (3.10),
as δ → 1, Eβ ≈ Eα . In other words, the energy shift upon decay is very small and the daughter
neutrino is detected with approximately the same energy bin as the parent neutrino would have
been detected. Hence, in this scenario, we can approximate ηrs

i j as

dηrs
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= δ
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)
. (5.11)

By replacing Equation (5.11) in Equation (5.1) it becomes
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As before, considering that only one single mass eigenstate νi is unstable, with allowed decay
channels into ν j and ν̄ j, the second term integrand becomes

dP
dl

= P�ei P⊕s
jβ Γ

rs
i je
−Γi l , (5.13)

and consequently:
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Hence, the neutrino flux of each flavor arriving at the detector is given by
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where, as before, P�ek is the probability of the produced νe be found as a νk at the surface of the
Sun, P⊕kβ

is the probability of a νk be detected as a νβ on Earth, and Pconv
i is the transition

probability of an eigenstate i into an eigenstate j upon propagating the Sun-Earth distance L.
Finally, the branching fractions Brrs

i j are given in Equations (3.46) – (3.48) for the three
particular cases for the coupling constants in the quasi-degenerate scenario. As it can be seen
from Equations (3.46) – (3.48), in the quasi-degenerate scenario, as δ → 1, only the pure
pseudo-scalar case will produce non-vanishing antineutrino fluxes.

Now, for analysing the more general case of 0 < δ < 1, it is necessary to take into
account the best currently available information on the neutrino masses, which is limited to the
mass-squared differences and to constraints to the sum of neutrino masses:

∑mi = m1 +m2 +m3 . (5.17)

The sum of neutrino masses can be written as a function of the lightest mass eigenstate and the
mass-squared differences. As such, for the normal hierarchy (NH):

(
∑mi

)NH
= m1 +

√
m2

1 +∆m2
21 +

√
m2

1 +∆m2
31 , (5.18)

and for the inverted hierarchy (IH):

(
∑mi

)IH
=
√

m2
3− (∆m2

32 +∆m2
21)+

√
m2

3−∆m2
32 +m3 . (5.19)

Neutrino oscillations imply that neutrino masses are non-degenerate and at least two
of the mass eigenstates are massive. Hence, by supposing that the lightest mass eigenstate’s
mass in each hierarchy is null, it is possible to obtain a lower bound to the sum of neutrino
masses. As such, for the normal hierarchy (NH):

(
∑mi

)NH
min ≥

√
∆m2

21 +
√

∆m2
31 ≈ 0.06eV , (5.20)

and for the inverted hierarchy (IH):

(
∑mi

)IH
min ≥

√
−∆m2

32−∆m2
21 +

√
−∆m2

32 ≈ 0.1eV , (5.21)

with the mass-squared differences taken at their best-fit values [59], as shown on Table 2.1.
On the other hand, upper bounds to the sum of neutrino masses can be obtained

from the analysis of cosmological data. Massive neutrinos thermally produced during the Big
Bang — forming today the so-called cosmological neutrino background (CνB) — are expected
to impact the anisotropies in the cosmological microwave background (CMB) and large-scale
structure formation [133]. Consequently, the 2018 results from the Planck Collaboration [134]
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set a cosmological upper bound to the sum of neutrino masses at

(
∑mi

)
max ≤ 0.12eV , at 95% C.L. . (5.22)

It has been recently argued [135, 136] that this cosmological upper bound may be
relaxed if neutrinos are unstable. However, to avoid conflict with well know cosmological
parameters, the neutrino lifetime must be such that CνB neutrinos decay well after they become
already non-relativistic. This requires lifetimes much larger than the current limits established
from neutrino experiments. As such, we take the upper bound in Equation (5.22) as reported.

Now, using the upper and lower limits to the sum of neutrino masses and the mass-
squared differences at their best-fit values [59], it is possible to calculate upper and lower limits
to δ for each decay channel and each mass hierarchy under analysis.

First, consider the decay channel ν2 → ν1/ν̄1 in the normal hierarchy, for which
δ NH

21 = m1/m2. In this hierarchy, since ν1 is the lightest mass eigenstate, assuming m1 = 0 leads
to the lower limit δ NH

21 ≥ 0. On the other hand, the upper limit to δ NH
21 is obtained by solving the

system: 
m1 +m2 +m3 = (∑mi)max

m2
2−m2

1 = ∆m2
21

m2
3−m2

1 = ∆m2
31

(5.23)

for m1, m2 and m3, with the mass-squared differences taken at their best-fit values [59], from
which we obtain an upper limit δ NH

21 ≤ 0.96. Hence, for the decay channel ν2→ ν1/ν̄1 in the
normal hierarchy:

0≤ δ
NH
21 ≤ 0.96 . (5.24)

For comparison, Planck’s previous upper bound [137] at ∑mi < 0.23eV (at 95% C.L.) implies
that δ ≈ 0.99. Hence, as the limit on the sum of neutrino masses gets tighter, δ ≈ 1 becomes
prohibited, and lower values of delta are favored.

Next, consider the decay channel ν2→ ν1/ν̄1 in the inverted hierarchy, for which
δ IH

21 = m1/m2. In this decay channel, both m1 and m2 mass eigenstates are massive, but with a

small mass squared difference. By making m3 = 0, we have that m1 =
√
−∆m2

32−∆m2
21 and

m2 =
√
−∆m2

32. Hence, the lower limit to δ IH
21 is

δ
IH
21 ≥

√
∆m2

32 +∆m2
21

∆m2
32

≈ 0.985 , (5.25)

with the mass-squared differences taken at their best-fit values [59]. On the other hand, the
upper limit to δ IH

21 is obtained by solving a system similar to Equation (5.23), with the adequate
substitutions for the mass-squared differences, from which we obtain an upper limit
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δ IH
21 ≤ 0.987. Hence, for the decay channel ν2→ ν1/ν̄1 in the inverted hierarchy:

0.985≤ δ
IH
21 ≤ 0.987 . (5.26)

Finally, consider the decay channel ν2→ ν3/ν̄3 in the inverted hierarchy, for which
δ IH

23 = m3/m2. In this hierarchy, since ν3 is the lightest mass eigenstate, assuming m3 = 0
leads to the lower limit δ IH

23 ≥ 0. On the other hand, the upper limit to δ IH
23 is obtained by

solving a system similar to Equation (5.23), with the adequate substitutions for the mass-squared
differences, from which we obtain an upper limit δ IH

23 ≤ 0.3. Hence, for the decay channel
ν2→ ν3/ν̄3 in the inverted hierarchy:

0≤ δ
IH
23 ≤ 0.3 . (5.27)

The range of allowed values of δ for each decay channel and each mass hierarchy
will help us determine the lower limits to neutrino lifetime in the following sections.

5.3 Neutrino Fluxes Produced on Decay in Three Neutrino
Families

In the context of neutrino visible decay it is also useful to separate the neutrino and
antineutrino fluxes for three neutrino families into electronic and non-electronic flavors.

First, we can write the evolution equation for the flavor states in a general form:

i
d
dt

(
ν

ν̄

)
=
[
U
(
M2− iD

)
U† +V

]( ν

ν̄

)
, (5.28)

where each of the underlined matrices are given by A = diag(Aν ,Aν̄) except for D. As before,
U is the PMNS mixing matrix, M2 is the mass-squared difference matrix and V is the matrix
describing matter effects.

The matrix D describes the coupling between neutrinos and antineutrinos due to
decay, and is given in general as

D =

(
Drr Dr′r

Drr′ Dr′r′

)
, (5.29)
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where each submatrix Drs describes νr→ νs and are given in three neutrino families as

Drs =


drs

11 drs
21 drs

31

drs
12 drs

22 drs
32

drs
13 drs

23 drs
33

 , (5.30)

where each element Drs
ji = drs

i j describes νr
i → νs

j . Hence, elements dss
ii describe the survival

of νs
i neutrino mass eigenstates, while all other elements describe conversions between mass

eigenstates. Additionally, in the decay model under consideration, transitions νr
i → νr′

i are not
allowed and the matrices Dr′r and Drr′ diagonal elements are null, while elements drs

i j are null if
mi ≤ m j.

As before, a rotation in the basis can be made by multiplying both sides by R†
13R†

23

on the left, and using the relation R23R13R†
13R†

23 = I in Equation (5.28). Hence, it can be
rewritten as

i
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)
=
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13 R†

23 VR23 R13
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)
. (5.31)

Now, it is necessary evaluate how each mass hierarchy, and consequently how each decay
channel, affects the evolution of neutrino states.

5.3.1 Normal Hierarchy

First, we consider the decay channel ν2/ν̄2 → ν1/ν̄1 in the normal hierarchy. As
such, the elements of matrix D are given by

Dνν =


0 d21 0

0 d22 0

0 0 0

 , Dνν̄ =


0 d21̄ 0

0 0 0

0 0 0

 , (5.32)

and similarly for Dν̄ν and Dν̄ ν̄ . As such, from Equation (5.31), the rotated matrix
D′ = R12 DR†

12 becomes

D′ =



d′ee d′µe 0 d′ēe d′
µ̄e 0

d′eµ d′µµ 0 d′ēµ d′
µ̄µ

0

0 0 0 0 0 0

d′eē d′µ ē 0 d′ēē d′
µ̄ ē 0

d′eµ̄
d′

µµ̄
0 d′ēµ̄

d′
µ̄ µ̄

0

0 0 0 0 0 0


, (5.33)
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where the diagonal submatrices’ elements contain terms describing mass-eigenstates’ survival
and the conversion, while the antidiagonal submatrices’ elements only contain terms describing
mass-eigenstates’ conversion.

Hence, from Equation (5.31), the time-dependent matrix S′ describing the evolution
of the primed states, under the same assumptions used for Equation (2.58), is given by

ν ′e(t)

ν ′µ(t)

ν ′τ(t)
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ν̄ ′µ(t)
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=
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0

0 0 S′ττ 0 0 0

S′eē S′µ ē 0 S′ēē S′
µ̄ ē 0

S′eµ̄
S′

µµ̄
0 S′ēµ̄

S′
µ̄ µ̄

0

0 0 0 0 0 S′
τ̄ τ̄





ν ′e(0)

ν ′µ(0)

ν ′τ(0)

ν̄ ′e(0)

ν̄ ′µ(0)

ν̄ ′τ(0)


, (5.34)

which we can transform back into the unprimed basis by the transformation:

S = R23 R13 S′R†
13 R†

23 . (5.35)

The survival and transition probabilities into neutrinos are

Pee = |〈νe(t)|S |νe(0)〉|2 = |See|2 , (5.36)

Peµ +Peτ = |〈νµ(t)|S |νe(0)〉|2 + |〈ντ(t)|S |νe(0)〉|2 = |Seµ |2 + |Seτ |2 , (5.37)

while the transition probabilities into antineutrinos are given by

Peē = |〈ν̄e(t)|S |νe(0)〉|2 = |Seē|2 , (5.38)

Peµ̄ +Peτ̄ = |〈ν̄µ(t)|S |νe(0)〉|2 + |〈ν̄τ(t)|S |νe(0)〉|2 = |Seµ̄ |2 + |Seτ̄ |2 . (5.39)

From Equation (5.35), we have:

See = c2
13S′ee + s2

13S′ττ , (5.40)

Seµ =−c13s13s23S′ee + c13c23S′eµ + c13s13s23S′ττ , (5.41)

Seτ =−c13c23s13S′ee− c13s23S′eµ + c13s13c23S′ττ , (5.42)

Seē = c2
13S′eē , (5.43)

Seµ̄ =−c13s13s23S′eē + c13c23S′eµ̄ , (5.44)

Seτ̄ =−c13s13c23S′eē− c13s23S′eµ̄ . (5.45)

Once more neglecting the interference effects in Equations (5.36) to (5.39), and making
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|S′ττ |2 = 1, the survival and transition probabilities become

Pee = c4
13 P′ee + s4

13 , (5.46)

Pe(µ+τ) = c2
13 P′eµ + s2

13c2
13 P′ee + s2

13c2
13 , (5.47)

Peē = c4
13 P′eē , (5.48)

Pe(µ̄+τ̄) = c2
13 P′eµ̄ + s2

13c2
13 P′eē , (5.49)

where the primed probabilities are the survival and transition probabilities for two neutrino
families. Now, to account for the energy shift in the neutrino spectrum due to visible decay, the
probabilities are written as

dPee

dEβ

= c4
13

dP′ee
dEβ

+ s4
13δ
(
Eα −Eβ

)
, (5.50)

dPe(µ+τ)

dEβ

= c2
13

dP′eµ

dEβ

+ s2
13c2

13
dP′ee
dEβ

+ s2
13c2

13δ
(
Eα −Eβ

)
, (5.51)

dPeē

dEβ

= c4
13

dP′eē
dEβ

, (5.52)

dPe(µ̄+τ̄)

dEβ

= c2
13

dP′eµ̄

dEβ

+ s2
13c2

13
dP′eē
dEβ

, (5.53)

where the primed probabilities are the survival and transition probabilities for two neutrino
families as defined on Equation (5.7). Hence, the solar neutrino and antineutrino fluxes arriving
in the detector are finally given by Equation (3.72):

Φβ (Eβ ) =
∫

dEα φ
0
e (Eα)

dPαβ

dEβ

(Eα ,Eβ ) , (3.72)

which finally yields the three-family neutrino fluxes in the visible decay scenario for the decay
channel ν2/ν̄2→ ν1/ν̄1 in the normal hierarchy as

Φe = c4
13 φe + s4

13 φ
0
e , (5.54)

Φ(µ+τ) = c2
13 φµ + s2

13c2
13 φe + s2

13c2
13 φ

0
e , (5.55)

Φē = c4
13 φē , (5.56)

Φ(µ̄+τ̄) = c2
13 φµ̄ + s2

13c2
13 φē , (5.57)

where φe, φē, φµ , and φµ̄ are the two-family oscillated neutrino fluxes modified by the visible
decay as given by Equation (5.8), while φ 0

e is the unoscillated neutrino flux.
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5.3.2 Inverted Hierarchy

The evolution of neutrinos and antineutrinos in the inverted hierarchy for the decay
channel ν2/ν̄2 → ν1/ν̄1 is the same as in the normal hierarchy. Hence,
Equations (5.54) to (5.57) obtained above are also valid for this case.

Now, for the decay channel ν2/ν̄2→ ν3/ν̄3, the elements of matrix D are given by

Dνν =


0 0 0

0 d22 0

0 d23 0

 , Dνν̄ =


0 0 0

0 0 0

0 d23̄ 0

 , (5.58)

and similarly for Dν̄ν and Dν̄ ν̄ . As such, from Equation (5.31), the rotated matrix
D′ = R12 DR†

12 becomes

D′ =



d′ee d′µe 0 0 0 0

d′eµ d′µµ 0 0 0 0

d′eτ d′µτ 0 d′ēτ d′
µ̄τ

0

0 0 0 d′ēē d′
µ̄ ē 0

0 0 0 d′ēµ̄
d′

µ̄ µ̄
0

d′eτ̄
d′

µτ̄
0 d′ēτ̄

d′
µ̄ τ̄

0


, (5.59)

where, once more, the diagonal submatrices’ elements contain terms describing
mass-eigenstates’ survival and conversion, while the antidiagonal submatrices’ elements only
contain terms describing mass-eigenstates’ conversion. In this case, however, the elements
d′ rs

ατ , highlighted above in gray, contain only terms describing mass-eigenstates’ conversion
upon decay, while the other elements contain only terms describing mass-eigenstates’ survival.

As such, from Equation (5.31), the time dependent matrix S′ describing the
evolution of the primed states, under the same assumptions used for Equation (2.58), is given
by 

ν ′e(t)

ν ′µ(t)

ν ′τ(t)

ν̄ ′e(t)

ν̄ ′µ(t)

ν̄ ′τ(t)


=



S′ee S′µe 0 0 0 0

S′eµ S′µµ 0 0 0 0

S′eτ S′µτ S′ττ S′ēτ S′
µ̄τ

0

0 0 0 S′ēē S′
µ̄ ē 0

0 0 0 S′ēµ̄
S′

µ̄ µ̄
0

S′eτ̄
S′

µτ̄
0 S′ēτ̄

S′
µ̄ τ̄

S′
τ̄ τ̄





ν ′e(0)

ν ′µ(0)

ν ′τ(0)

ν̄ ′e(0)

ν̄ ′µ(0)

ν̄ ′τ(0)


, (5.60)

where the elements S′eτ and S′µτ , highlighted above in gray, are the amplitudes for production
of the eigenstate ν ′sτ = νs

3 upon decay, while the other elements are the amplitudes for the
two-flavor oscillation and survival from decay, i.e., the invisible decay amplitudes. S′ is again
transformed back into the unprimed basis by the transformation in Equation (5.35), from which
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we have:

See = c2
13S′ee + s13c13S′eτ + s2

13S′ττ , (5.61)

Seµ =−c13s13s23S′ee + c13c23S′eµ + c2
13s23S′eτ + c13s13s23S′ττ , (5.62)

Seτ =−c13s13c23S′ee− c13s23S′eµ + c2
13c23S′eτ + c13s13c23S′ττ , (5.63)

Seē = c13s13S′eτ̄ , (5.64)

Seµ̄ = c2
13s23S′eτ̄ , (5.65)

Seτ̄ = c2
13c23S′eτ̄ . (5.66)

The survival and transition probabilities into neutrinos are given as in
Equations (5.36) to (5.39):

Pee = c4
13 P′ee + s4

13 + c2
13s2

13 Pe3 , (5.67)

Pe(µ+τ) = c2
13s2

13 P′ee + c2
13 P′eµ + c2

13s2
13 + c4

13 Pe3 , (5.68)

Peē = c2
13s2

13 Pe3̄ , (5.69)

Pe(µ̄+τ̄) = c4
13Pe3̄ . (5.70)

where Pe3 = |S′eτ |2 and Pe3̄ = |S′eτ̄
|2 are the probabilities for the production of ν3 and ν̄3 upon

the decay of the ν2 mass-eigenstate content in the νe solar neutrinos. The primed probabilities
are the survival and transition probabilities for the invisible decay of the ν2 in two neutrino
families, following the discussion above regarding the amplitudes, and are given in
Equations (4.4) and (4.5), Consequently:.

Pee = Pinv
ee + c2

13s2
13 Pe3 , (5.71)

Pe(µ+τ) = Pinv
e(µ+τ)+ c4

13 Pe3 , (5.72)

Peē = c2
13s2

13 Pe3̄ , (5.73)

Pe(µ̄+τ̄) = c4
13Pe3̄ . (5.74)

Now, to account for the energy shift in the neutrino spectrum due to visible decay, the
probabilities are written as

dPee

dEβ

= Pinv
ee δ

(
Eα −Eβ

)
+ c2

13s2
13

dP′e3
dEβ

, (5.75)

dPe(µ+τ)

dEα

= Pinv
e(µ+τ)δ

(
Eα −Eβ

)
+ c4

13
dP′e3
dEβ

, (5.76)

dPeē

dEα

= c2
13s2

13
dP′e3
dEβ

, (5.77)

dPe(µ̄+τ̄)

dEβ

= c4
13

dP′e3
dEβ

. (5.78)
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where Pinv
ee and Pinv

e(µ+τ) are the three-family survival and transition probabilities in the invisible
decay scenario as given by Equations (4.6) and (4.7), and dP′e3/dEβ from Equation (5.7) as

dP′e3
dEβ

= P�e2P23wrs
23 . (5.79)

where P�e2 is the probability of the produced νe be found as a ν2 at the surface of the Sun, P23 is
the transition probability of the eigenstate ν2 into an eigenstate ν3 upon propagating the
Sun-Earth distance L, and wrs

23 is the weighted differential decay width given in
Equations (3.29) and (3.30). Hence, the solar neutrino and antineutrino fluxes arriving in the
detector are finally given by Equation (3.72):

Φβ (Eβ ) =
∫

dEα φ
0
e (Eα)

dPαβ

dEβ

(Eα ,Eβ ) , (3.72)

which finally yields the three-family neutrino fluxes in the visible decay scenario for the decay
channel ν2/ν̄2→ ν3/ν̄3 in the inverted hierarchy as

Φe = Φ
inv
e + c2

13s2
13 φ3 , (5.80)

Φ(µ+τ) = Φ
inv
(µ+τ)+ c4

13 φ3 , (5.81)

Φē = c2
13s2

13 φ3̄ , (5.82)

Φ(µ̄+τ̄) = c4
13 φ3̄ , (5.83)

where Φinv
e and Φinv

(µ+τ) are the three-family invisible decay fluxes and φ3 and φ3̄ are given by

φ
s
3(Eβ ) =

∫
dEα φ

0
e P�e2P23wrs

23 . (5.84)

Figures 5.2 – 5.5 show neutrino and antineutrino fluxes produced in the visible
decay of the 8B solar neutrinos for selected values of τ2/m2 and δ , and for each case of the
coupling constants, in the context of three neutrino families.

Figure 5.2 accounts for the hierarchical mass scenario, that is, δ = 0, for the decay
channel ν2 → ν1/ν̄1 (in both normal and inverted hierarchy) and for the decay channel ν2 →
ν3/ν̄3 (in the inverted hierarchy).

Figures 5.3 – 5.5 accounts for values of δ close to the upper limit allowed in each
decay channel and mass hierarchy, as discussed in Section 5.2. Figures 5.3 and 5.4 show the
results for the decay channel ν2→ ν1/ν̄1 (in both normal and inverted hierarchy). Figure 5.5
shows the results for the decay channel ν2→ ν3/ν̄3 (in the inverted hierarchy).

As it can be seen in Figures 5.2 and 5.5, for small values of δ , daughter neutrinos
can be produced in a much lower energy than their mother particle, which, combined with the
overall suppression of decay at higher energies, causes very few antineutrinos to be produced at
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higher energies.
On the other hand, as it can be seen in Figures 5.3 and 5.4, for δ ≈ 1, daughter

neutrinos are produced at roughly the same energy as their mother particle. As such, neutrino
and antineutrino fluxes follow a similar shape. For increasing values of δ , the behavior of the
antineutrino fluxes depends on the dominant coupling constant, as discussed in Section 3.1.

At any case, increasing the neutrino lifetime leads to the smaller antineutrino
production. In the next sections, these theoretical antineutrino fluxes obtained above are

compared to experimental upper limits to antineutrinos of solar origin in order to set limits to

the neutrino lifetime.

Hierarchical mass scenario, ν2→ ν1/ν̄1, normal and inverted hierarchies
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Hierarchical mass scenario, ν2→ ν3/ν̄3, inverted hierarchy
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Figure 5.2: Expected normalized neutrino and antineutrino energy spectra resultant from the visible
decay of the 8B solar neutrinos in the hierarchical mass scenario, for the decay channel ν2→ ν1/ν̄1 in
both normal and inverted hierarchies and ν2 → ν3/ν̄3 in the inverted hierarchy for different values of
the neutrino lifetime τ2/m2, in the context of three neutrino families. Blue and red curves represent νe

and νµ+τ neutrinos respectively, while solid lines neutrinos and dotted lines represent antineutrinos. The
black dotted line represents the unoscillated 8B neutrino flux. Best-fit values for the global fit neutrino
oscillation parameters [59] as shown on Table 2.1 are used.
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(a) Scalar case, ν2→ ν1/ν̄1, normal and inverted hierarchies
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(b) Democratic case, ν2→ ν1/ν̄1, normal and inverted hierarchies
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(c) Pseudo-scalar case, ν2→ ν1/ν̄1, normal and inverted hierarchies
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Figure 5.3: Expected normalized neutrino and antineutrino energy spectra resultant from the visible
decay of the 8B neutrinos produced in the Sun, for the decay channel ν2 → ν1/ν̄1 in both normal
and inverted hierarchy, for τ2/m2 = 1×10−4 s · eV−1 and δ = 0.960 (left), 0.990 (center) and 0.999
(right), for each of the coupling constant cases, in the context of three neutrino families. Blue and red
curves represent νe and νµ+τ neutrinos respectively, while solid lines neutrinos and dotted lines represent
antineutrinos. The black dotted line represents the unoscillated 8B neutrino flux. Best-fit values for the
global fit neutrino oscillation parameters [59] as shown on Table 2.1 are used.
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(a) Scalar case, ν2→ ν1/ν̄1, normal and inverted hierarchies
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(b) Democratic case, ν2→ ν1/ν̄1, normal and inverted hierarchies
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(c) Pseudo-scalar Case, ν2→ ν1/ν̄1, normal and inverted hierarchies
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Figure 5.4: Expected normalized neutrino and antineutrino energy spectra resultant from the visible
decay of the 8B neutrinos produced in the Sun, for the decay channel ν2 → ν1/ν̄1 in both normal and
inverted hierarchy, for δ = 0.96 and τ2/m2 = 1×10−4 s · eV−1 (left), 1×10−3 s · eV−1 (center) and
1×10−2 s · eV−1 (right), for each of the coupling constant cases, in the context of three neutrino families.
Blue and red curves represent νe and νµ+τ neutrinos respectively, while solid lines neutrinos and dotted
lines represent antineutrinos. The black dotted line represents the unoscillated 8B neutrino flux. Best-fit
values for the global fit neutrino oscillation parameters [59] as shown on Table 2.1 are used.
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(a) Scalar case, ν2→ ν3/ν̄3, inverted hierarchy
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(b) Democratic case, ν2→ ν3/ν̄3, inverted hierarchy
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(c) Pseudo-scalar case, ν2→ ν3/ν̄3, inverted hierarchy
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Figure 5.5: Expected normalized neutrino and antineutrino energy spectra resultant from the
visible decay of the 8B neutrinos produced in the Sun, for the decay channel ν2 → ν3/ν̄3 in the
inverted hierarchy, for δ = 0.3 and τ2/m2 = 1×10−4 s · eV−1 (left), 1×10−3 s · eV−1 (center) and
1×10−2 s · eV−1 (right), for each of the coupling constant cases, in the context of three neutrino families.
Blue and red curves represent νe and νµ+τ neutrinos respectively, while solid lines neutrinos and dotted
lines represent antineutrinos. The black dotted line represents the unoscillated 8B neutrino flux. Best-fit
values for the global fit neutrino oscillation parameters [59] as shown on Table 2.1 are used.
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5.4 Experimental Limits to Solar Antineutrinos

Solar neutrino experiments can probe and set upper limits to antineutrinos
originating in the Sun.

In water Cherenkov experiments neutrinos are detected through the Cherenkov
light emitted by elastically scattered electrons (ν + e−→ ν + e−). Similarly, liquid
scintillation experiments also detect neutrinos through elastically scattered electrons. However,
these electrons excite atoms and molecules on their path, which produce radiation upon
de-excitation providing the signal for measuring the neutrino’s energy and direction.

In either case, antineutrinos may also be detected by the Inverse Beta Decay (IBD)
process (ν̄e + p→ e++n). The positron in this reaction deposits its energy in the medium and
is promptly annihilated into two photons, while the neutron is captured by a proton in the
medium producing a delayed 2.2MeV photon. The detection of both signals in a delayed
coincidence is the signal for this antineutrino interaction [103, 138–141]. As such, other
antineutrino sources are backgrounds for this reaction, such as antineutrinos produced by the
decay of Earth’s radioactive isotopes, part of the so-called geo-neutrinos, up to 3.26MeV;
antineutrinos produced by the decay of radioactive isotopes used in nuclear reactors, up to
≈ 10MeV; and atmospheric neutrinos, for energies above 10 MeV. Another important
background source are cosmic-ray muons, which produce neutrons or radioactive isotopes by
spallation in the detector volume mimicking the signals of interest.

The SuperKamiokande (SK) experiment analyzed 1496 days of data from its first
phase and reported [138] no excess of events corresponding to electron antineutrinos. With that,
it was possible to set an upper limit to the flux of electron antineutrinos coming from the Sun
at 90% C.L. at 0.8% of the SSM neutrino flux for the energy range 8 – 20MeV. Additionally,
the collaboration reported model-independent limits for the energy range 10 – 17MeV shown
in Figure 5.6.

Next, the KamLAND experiment [103] reported an upper limit of
Qν̄e < 3.7×102 cm−2 · s−1 at 90% C.L. for antineutrinos originating in the conversion of 8B
solar neutrinos, in the 8.3 – 14.8MeV energy range, and based on data a 0.28 kton-year
exposure of the detector which found no candidate events.

Meanwhile, the Borexino [140] experiment has also analyzed 736 days of data
looking for antineutrinos of solar origin and set an upper limit of Qν̄e < 760cm−2 · s−1 (at
90% C.L.) for Eν̄e > 1.8MeV. In addition, model-independent limits were provided for the
energy range 1.8 – 17.8MeV, as shown in Figure 5.6.

Later, the KamLAND collaboration reported [139], for a 4.53 kton-year exposure,
an upper limit on the probability of 8B solar neutrinos converting into ν̄e at Pνe→ν̄e = 5.3×10−5

at 90% CL. Assuming an unoscillated 8B neutrino flux of Q8B = 5.94×106 cm−2 · s−1, the
collaboration reports an upper limit to solar electron antineutrino flux at Qν̄e < 93cm−2 · s−1

at 90% C.L., for energies above the experiment’s energy threshold Eνe > 8.3MeV. For this
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analysis, the collaboration also provides the model-independent limits for the energy range
8.3 – 18.3MeV shown in Figure 5.6.

Recently, another report from the SK collaboration [142] using 960 days of data
from SK-IV placed an upper limit for antineutrinos coming from the Sun at 0.042% at 90% C.L.
of the SSM neutrino flux for Eν̄e > 13.3MeV, which is 20 times more stringent than their
previous SK result, but less stringent than the KamLAND limit [139] because of the higher
neutrino energy threshold. Model-independent limits are also provided for the energy range
13.3 – 17.3MeV and shown in Figure 5.6.

Finally, the most recent Borexino collaboration report [141] set new limits for solar
electron antineutrinos at Qν̄e < 138cm−2 · s−1 at 90% C.L. for the energy range > 7.8MeV.
This energy range corresponds to 36% of the 8B neutrino flux. As such, a limit for the energy
range > 1.8MeV is reported at Qν̄e < 384cm−2 · s−1 at 90% C.L., again assuming an
undistorted 8B neutrinos energy spectrum. The collaboration also reports model-independent
limits for the energy range 1.8 – 16.8MeV as shown in Figure 5.6.

The reported experimental limits to the solar electron antineutrino flux are
summarized at Table 5.1. For comparison, we also include an early limit reported by the SNO
collaboration [104] looked into positrons produced by the charged current interaction of
antineutrinos with deuterium, which also produces two neutrons in coincidence. Two
candidate events were found and, supposing that both are of solar origin, the collaboration
could set an upper limit of Qν̄e < 3.4×104 cm−2 · s−1 at 90% C.L. in the energy range
4.0 – 14.8MeV.

Table 5.1: Experimental limits at 90% C.L. to electron antineutrino fluxes of solar origin as reported
by different experiments, as described in the text. Included in this table are upper limits to the
neutrino lifetime also investigated in some of the references. *Regarding the reported lifetime, top value
corresponds to hierarchical scenario and bottom value corresponds to the quasi-degenerate scenario.

Experiment Ref.
Total

φν̄e(
8B)

[cm−2 · s−1]

Energy
Range
[MeV]

Report
Lifetime
[s · eV−1]

SuperKamiokande, 2002 [138] < 4.0×104 8 – 20 —

*SNO, 2004 [104] < 3.4×104 4 – 14.8 > 4.4×10−5

> 4.0×10−3

*KamLAND, 2003 [103] < 370 8.3 – 14.8 > 1.1×10−3

> 6.7×10−2

Borexino, 2010 [140] < 760 > 1.8 —

KamLAND, 2011 [139] < 93 > 8.3 —

SuperKamiokande, 2013 [142] < 2.1×103 > 13.3 —

Borexino, 2019 [141] < 138 > 7.8 —
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Figure 5.6: Model-independent upper limits to electron antineutrino fluxes reported by the
Borexino [140, 141], SuperKamiokande [138, 142] and KamLAND [139] experiments. Figure made
for this thesis based on plot by Reference [141].

By comparing the aforementioned solar electron antineutrino experimental limits
to the theoretical fluxes expected in the context of solar neutrino decays, it is possible to set
reliable limits to the neutrino lifetime in the context of each visible decay scenario as presented
in the following sections. This part is original and not yet published.

5.5 Model Dependent Analysis

The number of antineutrinos detected in a given experiment is defined as

N = T ·np · ε ·
∫

dEνΦ(Eν)σ(Eν) , (5.85)

where T is the experiment’s data collection time, np is the number of target protons in the
experiment’s fiducial volume, ε is the detection efficiency, and σ is the cross section for the
inverse beta decay reaction. Equation (5.85) can be rewritten as

N = T ·np · ε ·

(∫
dEνΦ(Eν)σ(Eν)

)
(∫

dEνΦ(Eν)

) (∫
dEνΦ(Eν)

)
, (5.86)
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and hence
N = T ·np · ε · σ̄ ·Q , (5.87)

where σ̄ is defined as the averaged cross section weighted over the incident antineutrino flux in
the energy range of interest and Q is the total incident flux given in units of cm−2 · s−1. Thus,
upon detection of events compatible with antineutrinos arriving from the Sun, the total incident
antineutrino flux Qexp can be calculated from the number of events Nexp as

Qexp =
Nexp

T ·np · ε · σ̄
. (5.88)

In the experimental results reported in Section 5.4, the limits to Qexp assume that
the solar antineutrino flux follows the unoscillated 8B neutrino flux modified by an energy-
independent transition probability, i.e., they assume a model for the incoming antineutrino flux
such that

φ
naive
ē (Eν) = aφ

0
e (Eν) , (5.89)

where φ 0
e is the unoscillated 8B solar neutrino flux and a is the energy-independent transition

probability. Consequently, the averaged cross section weighted over φ naive
ē is given by

σ̄naive =

(∫
dEνφ

0
e (Eν)σ(Eν)

)
(∫

dEνφ
0
e (Eν)

) . (5.90)

Consequently, the total incident antineutrino flux Qnaive
exp obtained and reported by the

experiments is given by

Qnaive
exp =

Nexp

T ·np · ε · σ̄naive
. (5.91)

However, as it is clear from Figures 5.2 – 5.5, the transition probabilities in the
decay scenario are not energy-independent. As such, antineutrinos fluxes produced on decay
may be very different from the original unoscillated 8B solar neutrino flux φ 0

e .
Now, let Qdecay

th be the theoretical total antineutrino flux expected from the decay of
solar neutrinos, such that

Qdecay
th =

∫
dEνΦ

decay
ē (Eν) , (5.92)

where Φ
decay
ē is the antineutrino flux produced in the decay of 8B solar neutrinos, as given in

Equations (5.8), (5.56) and (5.82). The averaged cross section σ̄decay weighted over Φ
decay
ē is:

σ̄decay =

(∫
dEνΦ

decay
ē (Eν)σ(Eν)

)
(∫

dEνΦ
decay
ē (Eν)

) , (5.93)
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which is in general different from σ̄naive. Hence, before we can compare Qdecay
th to Qnaive

exp , the
reported experimental limits must be rescaled taking into account the energy-dependent
transition probabilities of the decay scenarios. Since Ndecay

exp = Nnaive
exp , that is, the number of

events detected by the experiment must be the same across models, and supposing the
detection efficiency ε is independent of the shape of the incident flux, we can estimate the
rescaled experimental flux limit Qdecay

exp as

Qdecay
exp =

σ̄naive

σ̄decay
Qnaive

exp , (5.94)

where σ̄naive is weighted over the unoscillated 8B solar neutrino spectrum φ 0
e and σ̄decay is

weighted over the antineutrino fluxes produced in the decay of 8B solar neutrinos Φ
decay
ē .

Finally, by enforcing Qdecay
th less or equal to the rescaled experimental Qdecay

exp , that is

Qdecay
th ≤ Qdecay

exp , (5.95)

in the adequate energy range, we can extract lower limits to the neutrino lifetime in the context
of different neutrino visible decay scenarios.

In the following sections, we calculate the antineutrino fluxes produced on decay
Φ

decay
ē as given by Equations (5.8), (5.56) and (5.82). Next, we calculate Qdecay

th as defined
in Equation (5.92) and compare it to Qdecay

exp as discussed above. For calculating Φ
decay
ē ,

we assume the unoscillated total 8B solar neutrino flux at production to be the best-fit value
determined by Reference [143], from a global analysis of the solar and terrestrial neutrino data
in the framework of three-neutrino mixing, given by

Q8B = 5.16(1+0.025)
(1−0.017)×106 cm−2 · s−1 , (5.96)

which is consistent with both high and low metallicity solar standard models [144].

5.5.1 Antineutrino Inverse Beta Decay Cross Section

The cross section for the inverse beta decay of antineutrinos (ν̄e + p→ e++ n) is
calculated in Reference [145]. The differential cross section at tree-level in the weak interaction,
averaged over initial polarization and summed over final polarizations, is given by

dσ

dEe
= mp

GF

π
cos2

θc
|M 2|

(s−m2
p)

2 , (5.97)

where GF is the Fermi coupling constant, θc is the Cabbibo angle and M is the matrix element
of the interaction, given by

|M 2|= A(t)− (s−u)B(t)+(s−u)2C(t) , (5.98)
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with the Mandelstam variables s, u and t given in the rest frame of the target proton as

s = 2mpEν +m2
p , (5.99)

s−u = 2mp (Eν +Ee)−m2
e , (5.100)

t = m2
n−m2

p−2mp (Eν −Ee) , (5.101)

where mp, mn, me, are the masses of protons, neutrons, and electrons respectively. From the
expansion of |M 2| in powers of ε =Eν/mp, the expressions for A(t), B(t) and C(t) up to second
order in ε (which is accurate enough up to supernova neutrino energies [145]) are given by

A≈M2( f 2
1 −g2

1)(t−m2
e)−M2

∆
2( f 2

1 +g2
1)−2m2

eM∆g1( f1 + f2) , (5.102)

B≈ t g1( f1 + f2) , (5.103)

C ≈
(

f 2
1 +g2

1
)
/4 , (5.104)

where M = (mp +mn)/2 and ∆ = mn−mp. In this order of the expansion, the adimensional
form factors fi,gi are constants approximated as f1 ≈ 1, f2 ≈ ξ and g1 ≈ λ , where
λ = gA/gV = −1.270 ± 0.003 is the ratio of the axial vector to the vector coupling
constant and ξ = κp−κn = 3.706, which is the difference between the anomalous magnetic
moments of proton and neutron. The threshold energy Ethr for this reaction is

Ethr =
(mn +me)

2−m2
p

2mp
≈ 1.806MeV , (5.105)

and the allowed values of Ee for a given value of Eν are between the limits:

Emax/min = Eν −
1

2mp

(
m2

n−m2
p−m2

e
)
− 1

mp
ECM

ν

(
ECM

e ± pCM
e

)
, (5.106)

where the center-of-mass quantities ECM
ν , ECM

e and pCM
e are given as

ECM
ν =

1
2
√

s
(s−m2

p) , (5.107)

ECM
e =

1
2
√

s
(s−m2

n +m2
e) , (5.108)

pCM
e =

1
2
√

s

√
s− (mn−me)2

√
s− (mn +me)2 . (5.109)

Finally, the total cross section is obtained with the integration:

σ(Eν) = Θ(Eν −Ethr)
∫ Emax

Emin

dEe
dσ(Eν ,Ee)

dEe
. (5.110)
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5.5.2 Model Dependent Analysis in the Normal Hierarchy

First, we investigate how upper limits to the total incident solar electron antineutrino
fluxes defined for different energy ranges affect the bound we obtain for the neutrino lifetime.
In this analysis, we focus on the decay channel ν2→ ν1/ν̄1 in the normal hierarchy. However,
the general conclusions also apply to the other decay channels in the inverted hierarchy.

Here, we use the upper limits reported by the Borexino [141] collaboration,
henceforward referenced simply as Borexino in text and as "BOR" in equations. Recalling
Section 5.4, Borexino reports the upper limit

Q7.8
BOR < 138cm−2 · s−1 , at 90% C.L., for Eνe > 7.8MeV , (5.111)

which covers the energy range corresponding to 36% of the 8B neutrino flux. As such, by
extending Q7.8

BOR to the whole energy spectrum covered by the experiment, > 1.8MeV, another
limit is reported at

Q1.8
BOR < 384cm−2 · s−1 , at 90% C.L., for Eνe > 1.8MeV . (5.112)

Below, we compare the bounds obtained for the neutrino lifetime for both solar electron
antineutrino fluxes presented above.

Figure 5.7 shows the lower limits obtained to τ2/m2 as a function of δ = m1/m2

for each of the coupling constant cases in the context of the model-dependent 90% C.L. upper
limits to antineutrino fluxes Q1.8

BOR and Q7.8
BOR defined above.

As expected from Figure 3.2, at δ = 0, corresponding to the hierarchical scenario
of neutrino masses, the different coupling constants cases reduce to one single bound to the
neutrino lifetime as seen in Figure 5.7:(

τ2

m2

)NH

2→1
> 6.6×10−3 s · eV−1 , at 90% C.L., for Q7.8

BOR , (5.113)(
τ2

m2

)NH

2→1
> 2.6×10−2 s · eV−1 , at 90% C.L., for Q1.8

BOR . (5.114)

As it can be seen, there is a substantial difference between the lifetime obtained for Q1.8
BOR and

Q7.8
BOR. This is explained by the fact that, in the hierarchical scenario, daughter neutrinos can

be produced in a much lower energy than their mother particle, as it can be seen in Figure 5.2.
As such, limits to antineutrino fluxes covering lower energies will produce stronger bounds to
neutrino lifetime than equivalent limits covering only higher energies.

On the other hand, as δ grows, the different cases for the coupling constants diverge
into separate limits, with the stronger limit always set by the purely pseudoscalar case. For
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Figure 5.7: Lower limits to τ2/m2 at 90% C.L. on the decay channel ν2→ ν1/ν̄1 in the normal hierarchy
as a function of δ = m1/m2 for each of the coupling constant cases in the context of the model-dependent
90% C.L. upper limits to antineutrino fluxes reported by Borexino, Q1.8

BOR and Q7.8
BOR. Curves correspond

to Qdecay
th = Qdecay

exp . Best-fit values for the global fit neutrino oscillation parameters [59] as shown on
Table 2.1 are used. This plot is an original work made for this thesis.

instance, for δ = 0.96:(
τ2

m2

)NH

2→1
> 2.3×10−1 s · eV−1 , at 90% C.L., for Q7.8

BOR , (5.115)(
τ2

m2

)NH

2→1
> 2.7×10−1 s · eV−1 , at 90% C.L., for Q1.8

BOR . (5.116)

As it can be seen, there is much a smaller difference between the lifetime obtained for Q1.8
BOR and

Q7.8
BOR. This is explained by the fact that, for higher values of δ , daughter neutrinos are produced

at roughly the same energy as their mother particle, as it can be seen in Figures 5.3 and 5.4. As
such, the energy range covered by the antineutrino flux limits will have a much smaller influence
on the bounds to neutrino lifetime.

Although Q1.8
BOR yields stronger limits to τ2/m2 than Q7.8

BOR, since Q1.8
BOR is obtained

by extending Q7.8
BOR to the whole energy spectrum covered by the experiment, we consider

Q7.8
BOR to be the more adequate value to be taken and further compared to other experimental

limits to the total incident solar electron antineutrino fluxes. This choice is further justified by
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comparing the model dependent analysis below with the model independent analysis presented
in Section 5.6.

Now, we analyze to bound to neutrino lifetime obtained from the upper limit at
90% C.L. to the total incident solar electron antineutrino fluxes as reported by the
KamLAND [139] collaboration, henceforward referenced simply as KamLAND in text and as
"KL" in equations.

Recalling Section 5.4, KamLAND sets the upper limit on the probability of 8B
solar neutrinos converting into ν̄e at Pνe→ν̄e = 5.3× 10−5 at 90% CL. The collaboration
assumes an unoscillated 8B neutrino flux of Q8B = 5.94×106 cm−2 · s−1, and reports
Qν̄e < 93cm−2 · s−1 at 90% C.L. to the upper limit to solar electron antineutrino flux for
energies above the experiment’s energy threshold Eνe > 8.3MeV. However, for our choice of
Q8B = 5.16×106 cm−2 · s−1 in Equation (5.96), the limit is recalculated to:

Q8.3
KL < 81cm−2 · s−1 , at 90% C.L., for Eνe > 8.3MeV , (5.117)

which we use in the analysis below. For comparison, we use Q7.8
BOR, discussed previously, which

covers an energy range similar to Q8.3
KL.

Figure 5.8 shows the lower limits obtained to τ2/m2 as a function of δ for each
of the coupling constant cases in the context of the model-dependent 90% C.L. upper limits
Q7.8

BOR and Q8.3
KL. For comparison, we also present the invisible decay limit 1.92×10−3 s · eV−1

at 90% C.L. as reported by the SNO Collaboration [112]. In Table 5.2 lower limits to τ2/m2 are
shown for selected values of δ .

As before, at δ = 0 the different coupling constants cases reduce to one single
lifetime limit for each of the antineutrino flux experimental limits:(

τ2

m2

)NH

2→1
> 6.6×10−3 s · eV−1 , at 90% C.L., for Q7.8

BOR, (5.118)(
τ2

m2

)NH

2→1
> 7.5×10−3 s · eV−1 , at 90% C.L., for Q8.3

KL. (5.119)

For higher values of δ , the strongest lifetime limit is as expected set by the purely pseudoscalar
case. Again, for δ = 0.96:(

τ2

m2

)NH

2→1
> 2.3×10−1 s · eV−1 , at 90% C.L., for Q7.8

BOR, (5.120)(
τ2

m2

)NH

2→1
> 3.1×10−1 s · eV−1 , at 90% C.L., for Q8.3

KL. (5.121)

As it can be seen, for either value of δ , the stronger is upper limit to the total incident solar
electron antineutrino flux in a given energy range, the stronger is the bound obtained for the
neutrino lifetime.
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Figure 5.8: Lower limits to τ2/m2 at 90% C.L. as function of δ = m1/m2 for each of the coupling
constant cases in the context of the model-dependent 90% C.L. upper limits to antineutrino fluxes
reported by Borexino and KamLAND. Top: decay channel ν2 → ν1/ν̄1 in the normal and inverted
hierarchies. Bottom: decay channel ν2→ ν3/ν̄3 in inverted hierarchy. In both plots, the dotted black line
represents the 90% C.L. lower limit to τ2/m2 in the context of invisible decays as reported by the SNO
Collaboration [112]. Curves correspond to Qdecay

th = Qdecay
exp . Best-fit values for the global fit neutrino

oscillation parameters [59] as shown on Table 2.1 are used.
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Table 5.2: Selected lower limit values to τ2/m2 [s · eV−1] at 90% C.L. for different values of δ = m1/m2
for each of the coupling constant cases in the context of the model-dependent 90% C.L. upper limits to
antineutrino fluxes reported by Borexino and KamLAND. Highlighted lifetimes are discussed in the text.

(a) ν2→ ν1/ν̄1, normal and inverted hierarchies

Borexino KamLAND

δ
Scalar

Coupling
Democratic

Coupling
Pseudoscalar

Coupling
Scalar

Coupling
Democratic

Coupling
Pseudoscalar

Coupling

0 6.6×10−3 6.6×10−3 6.6×10−3 7.5×10−3 7.5×10−3 7.5×10−3

0.3 3.8×10−3 5.9×10−3 1.3×10−2 4.4×10−3 6.8×10−3 1.5×10−2

0.7 1.8×10−3 3.4×10−3 5.7×10−2 2.1×10−3 4.1×10−3 6.7×10−2

0.9 4.4×10−4 9.1×10−3 1.7×10−1 5.9×10−4 1.2×10−3 2.2×10−1

0.96 6.6×10−5 1.6×10−4 2.3×10−1 1.1×10−4 2.3×10−4 3.1×10−1

0.99 < 10−8 < 10−8 2.6×10−1 < 10−8 < 10−8 3.5×10−1

(b) ν2→ ν3/ν̄3, inverted hierarchy

Borexino KamLAND

δ
Scalar

Coupling
Democratic

Coupling
Pseudoscalar

Coupling
Scalar

Coupling
Democratic

Coupling
Pseudoscalar

Coupling

0 1.9×10−4 1.9×10−4 1.9×10−4 2.3×10−4 2.3×10−4 2.3×10−4

0.3 1.0×10−4 1.7×10−4 4.1×10−4 1.2×10−4 2.0×10−4 4.8×10−4

0.7 3.1×10−5 9.0×10−5 1.9×10−3 4.4×10−5 1.1×10−4 2.2×10−3

0.9 < 10−8 < 10−8 5.6×10−3 < 10−8 < 10−8 7.3×10−3

0.96 < 10−8 < 10−8 7.5×10−3 < 10−8 < 10−8 1.0×10−2

0.99 < 10−8 < 10−8 8.5×10−3 < 10−8 < 10−8 1.2×10−2
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5.5.3 Model Dependent Analysis in the Inverted Hierarchy

Figure 5.8 shows the lower limits obtained to τ2/m2 as a function of δ for each of the
coupling constant cases in the context of the model-dependent 90% C.L. upper limits Q7.8

BOR and
Q8.3

KL. For comparison, we also present the invisible decay limit τ2/m2 > 1.92×10−3 s · eV−1

at 90% C.L. as reported by the SNO Collaboration [112]. In Table 5.2 lower limits to τ2/m2 are
shown for selected values of δ .

For the decay channel ν2 → ν1/ν̄1 in the inverted hierarchy, the electron
antineutrino flux follows the same expression as in the normal hierarchy, as discussed in
Section 5.3. The difference comes from allowed values of δ , as discussed in Section 5.2,
which is 0.985≤ δ ≤ 0.987. In this range, only the pseudoscalar case leads to a stronger lower
limit to τ2/m2 lifetime when compared to the invisible decay limit. For δ = 0.987, this limit is(

τ2

m2

)IH

2→1
> 2.5×10−1 s · eV−1 , at 90% C.L., for Q7.8

BOR, (5.122)(
τ2

m2

)IH

2→1
> 3.5×10−1 s · eV−1 , at 90% C.L., for Q8.3

KL. (5.123)

On the other hand, for the decay channel ν2 → ν3/ν̄3, the limits to τ2/m2 are
substantially weaker than the limits obtained for the decay channel ν2 → ν1/ν̄1 in either
hierarchy. Additionally, since the allowed values for δ in this case are 0 ≤ δ ≤ 0.3, all
obtained limits are also weaker than the invisible decay limit. For comparison, the
pseudoscalar case provides the strongest limit, which, for δ = 0.3, is(

τ2

m2

)IH

2→3
> 4.1×10−4 s · eV−1 , at 90% C.L., for Q7.8

BOR, (5.124)(
τ2

m2

)IH

2→3
> 4.8×10−4 s · eV−1 , at 90% C.L., for Q8.3

KL. (5.125)

5.6 Model Independent Analysis

In addition to the previous analysis, it is possible to compare the theoretical fluxes
expected in the context of solar neutrino decay to the model-independent limits reported by
Borexino and KamLAND, shown in Figure 5.6. The bin-per-bin analysis is performed using
the χ2 function defined in [139]:

χ
2 = ∑

i

v2
i

(ui/
√

2.71)2
, (5.126)

where vi is the expected antineutrino flux for each bin, ui is the experiment’s upper limit for
each bin, and

√
2.71 is the conversion factor of limits from 90% C.L. to 1σ C.L., corresponding

to ∆χ2
90%C.L./∆χ2

1σ
.
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Figure 5.9: Lower limits to τ2/m2 as function of δ = m1/m2 for each of the coupling constant cases in
the context of the model-independent 90% C.L. upper limits to antineutrino fluxes reported by Borexino
and KamLAND. Top: decay channel ν2→ ν1/ν̄1 in the normal and inverted hierarchies. Bottom: decay
channel ν2 → ν3/ν̄3 in inverted hierarchy. Curves correspond to ∆χ2 = 2.71, or 90% C.L.. In both
plots, the dotted black line represents the 90% C.L. lower limit to τ2/m2 in the context of invisible
decays as reported by the SNO Collaboration [112]. Best-fit values for the global fit neutrino oscillation
parameters [59] as shown on Table 2.1 are used. These plots are original works made for this thesis.
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Table 5.3: Selected lower limit values to τ2/m2 [s · eV−1] at 90% C.L. for different values of δ = m1/m2
for each of the coupling constant cases in the context of the model-independent 90% C.L. upper limits to
antineutrino fluxes reported by Borexino and KamLAND.

(a) ν2→ ν1/ν̄1, normal and inverted hierarchies

Borexino KamLAND

δ
Scalar

Coupling
Democratic
Coupling

Pseudoscalar
Coupling

Scalar
Coupling

Democratic
Coupling

Pseudoscalar
Coupling

0 8.9×10−3 8.9×10−3 8.9×10−3 8.7×10−3 8.7×10−3 8.7×10−3

0.3 5.0×10−3 7.8×10−3 1.7×10−2 5.0×10−3 7.8×10−3 1.7×10−2

0.7 1.7×10−3 3.4×10−3 5.6×10−2 2.3×10−3 4.6×10−3 7.6×10−2

0.9 2.8×10−4 5.8×10−4 1.1×10−1 5.7×10−4 1.2×10−3 2.2×10−1

0.96 1.0×10−5 7.8×10−5 1.3×10−1 9.3×10−5 2.1×10−4 2.9×10−1

0.99 < 10−8 < 10−8 1.4×10−1 < 10−8 < 10−8 3.3×10−1

(b) ν2→ ν3/ν̄3, inverted hierarchy

Borexino KamLAND

δ
Scalar

Coupling
Democratic

Coupling
Pseudoscalar

Coupling
Scalar

Coupling
Democratic

Coupling
Pseudoscalar

Coupling

0 2.7×10−4 2.7×10−4 2.7×10−4 2.7×10−4 2.7×10−4 2.7×10−4

0.3 1.4×10−4 2.3×10−4 5.5×10−4 1.4×10−4 2.4×10−4 5.6×10−4

0.7 1.9×10−5 8.1×10−5 1.8×10−3 5.2×10−5 1.3×10−4 2.5×10−3

0.9 < 10−8 < 10−8 3.6×10−3 < 10−8 < 10−8 7.1×10−3

0.96 < 10−8 < 10−8 4.3×10−3 < 10−8 < 10−8 9.5×10−3

0.99 < 10−8 < 10−8 4.8×10−3 < 10−8 < 10−8 1.1×10−2
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Figure 5.9 shows the lower limits obtained to τ2/m2 as a function of δ for each of
the coupling constant cases in the context of the model-independent 90% C.L. upper limits
reported by Borexino and KamLAND. Again, we present the invisible decay limit
τ2/m2 > 1.92×10−3 s · eV−1 at 90% C.L. as reported by the SNO Collaboration [112] for
comparison. In Table 5.3 lower limits to τ2/m2 are shown for selected values of δ . In
Figure 5.9, the labels Q7.8

BOR and Q8.3
KL are used to denote the model-independent limits only as

means to facilitate the comparison between model -dependent and -independent analyses.
As it can be seen in Figure 5.10, the results are fairly similar to those obtained

for the model-dependent limits, qualitatively and quantitatively, for both decay channels and
hierarchies. In general, for small values of δ the model-independent analysis leads to better
limits to the lifetime, while for large values of δ the model-dependent analysis leads to better
limits to the lifetime.
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Figure 5.10: Comparison between model-dependent and -independent lower limits to τ2/m2 in the scalar
and pseudo-scalar cases as a function of δ = m1/m2. Top: ν2→ ν1/ν̄1. Bottom: ν2→ ν3/ν̄3. Best-fit
values for the global fit neutrino oscillation parameters [59] as shown on Table 2.1 are used. These plots
are original works made for this thesis.
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5.7 Comparison to Current Lifetime Limits

As shown in Table 5.1, the latest limits to the τ2/m2 lifetime in the context of the
visible decay of solar neutrinos are reported by the KamLAND collaboration [103]:(

τ2

m2

)
KL

> 1.1×10−3 s · eV−1 , at 90% C.L., (5.127)

in the hierarchical scenario (δ = 0), and(
τ2

m2

)
KL

> 6.7×10−2 s · eV−1 , at 90% C.L., (5.128)

in the quasi-degenerate scenario (δ → 1), for the decay channel ν2 → ν1/ν̄1 in the normal
hierarchy.

Among the results presented in the previous sections, we conservatively choose
the model-dependent analysis results to the τ2/m2 lifetime, which are overall slightly weaker
than the model-independent results. However, we choose the results obtained from KamLAND
stronger antineutrino flux limit Q8.3

KL. As such, we have:(
τ2

m2

)NH

2→1
> 7.5×10−3 s · eV−1 , at 90% C.L., for δ = 0, (5.129)

in any coupling constant case, and(
τ2

m2

)NH

2→1
> 3.1×10−1 s · eV−1 , at 90% C.L., for δ = 0.96, (5.130)

in the pseudoscalar case. As it can be seen, our analysis represent a fivefold improvement
upon the previously reported limit due to the use of most recent KamLAND [139] results. Our
analysis for the visible decay also presents stronger limits to the τ2/m2 lifetime than the invisible
decay limit τ2/m2 > 1.92×10−3 s · eV−1 at 90% C.L..

Additionally, we have investigated limits to the τ2/m2 lifetime in the inverted
hierarchy for both decay channels ν2 → ν1/ν̄1 and ν2 → ν3/ν̄3, which have not been
previously discussed in the literature. For the decay channel ν2 → ν1/ν̄1 in the inverted
hierarchy, since the allowed values for δ are very constrained, a slightly stronger limit is set at(

τ2

m2

)IH

2→1
> 3.5×10−1 s · eV−1 , at 90% C.L., for δ = 0.987, (5.131)

in the pseudoscalar case. Finally, for the decay channel ν2→ ν3/ν̄3, as discussed before, the
limits to τ2/m2 are substantially weaker than those in the decay channel ν2→ ν1/ν̄1 in either
hierarchy, and, for all allowed values of δ , those limits are also weaker than the invisible decay
limit.
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Conclusion

Solar neutrinos are produced in the thermonuclear fusion processes that power the
Sun. Early experiments detected a solar neutrino flux lower than the predicted by the Solar
Standard Models, a deficit known as the Solar Neutrino Problem (SNP). Over the years, results
from neutrino experiments eventually established the Neutrino Flavor Oscillation model with
Large Mixing Angle and Mikheyev-Smirnov-Wolfenstein Resonant Flavor Conversion (LMA-
MSW) as the best solution to the SNP, establishing beyond reasonable doubt the massive nature
of neutrinos. Being massive, it is possible for neutrinos to decay into other particles. Hence,
although previously ruled out as a leading process in the SNP, we analysed neutrino decay as a
sub-leading effect in the propagation of solar neutrinos to extract new limits to neutrino lifetime
in a range of decay scenarios using the most recent experimental data.

From the combined analysis of data of solar neutrino experiments and KamLAND
and Daya Bay data, we have obtained [122] a new upper bound to the ν2 eigenstate lifetime
τ2/m2 ≥ 7.2×10−4 s · eV−1 at 99% C.L. in the context of the invisible decay scenario,
improving in almost one order the previous established bound [99]. We have also shown how
decay can enhance the seasonal variation of solar neutrino fluxes and how it affects the
measurement of Earth’s orbital eccentricity using neutrinos.

Additionally, from the most recent limits on antineutrinos fluxes originating in the
Sun, we obtained new limits to ν2 eigenstate lifetime τ2/m2 in the context of neutrino visible
decays. As such, we set the limits at τ2/m2 > 7.5×10−3 s · eV−1 at 90% C.L., for δ = 0
corresponding to the hierarchical scenario of neutrino masses; and at
τ2/m2 > 3.1×10−1 s · eV−1 at 90% C.L., for δ = 0.96 corresponding to the current
cosmological limit to the sum of neutrino masses. Our limits are an improvement upon
previous limits in the context of visible [103] and invisible decays [112]. This is an original
result and not yet published.



104

Bibliography

1. Pauli, W. Offener Brief an die Gruppe der Radioaktiven bei der Gauvereins-Tagung zu
Tübingen — Open letter to the group of radioactive people at the Gauverein meeting in
Tübingen (1930). https://cds.cern.ch/record/83282.

2. Longair, M. S. High Energy Astrophysics (Cambridge University Press, 2011).

3. Bahcall, J. N. Neutrino Astrophysics (Cambridge University Press, 1989).

4. Zyla, P. et al. Review of Particle Physics. PTEP 2020, 083C01 (2020).
doi:10.1093/ptep/ptaa104.

5. Bahcall, J. N., Serenelli, A. M. & Basu, S. New solar opacities, abundances,
helioseismology, and neutrino fluxes. Astrophys. J. 621, L85–L88 (2005).
doi:10.1086/428929. arXiv:astro-ph/0412440.

6. Tayler, R. J. The Sun as a star (Cambridge University Press, 1997).

7. Giunti, C. & Kim, C. W. Fundamentals of Neutrino Physics and Astrophysics (Oxford
University Press, 2007).

8. Prialnik, D. An Introduction to the Theory of Stellar Structure and Evolution - Second

Edition (Cambridge University Press, 2010).

9. Mitalas, R. & Sills, K. R. On the Photon Diffusion Time Scale for the Sun. The

Astrophysical Journal 401, 759 (1992). doi:10.1086/172103.

10. Cleveland, B. T. et al. Measurement of the solar electron neutrino flux with the Homestake
chlorine detector. Astrophys. J. 496, 505–526 (1998). doi:10.1086/305343.

11. Bahcall, J. N., Serenelli, A. M. & Basu, S. 10,000 standard solar models: a Monte Carlo
simulation. Astrophys. J. Suppl. 165, 400–431 (2006). doi:10.1086/504043. arXiv:astro-
ph/0511337.

12. Davis, R., Jr., Harmer, D. S. & Hoffman, K. C. Search for neutrinos from the sun. Phys.

Rev. Lett. 20, 1205–1209 (1968). doi:10.1103/PhysRevLett.20.1205.

"https://cds.cern.ch/record/83282"
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1086/428929
http://arxiv.org/abs/arXiv:astro-ph/0412440
https://doi.org/10.1086/172103
https://doi.org/10.1086/305343
https://doi.org/10.1086/504043
http://arxiv.org/abs/arXiv:astro-ph/0511337
http://arxiv.org/abs/arXiv:astro-ph/0511337
https://doi.org/10.1103/PhysRevLett.20.1205


105

13. Bahcall, J. N. & Pinsonneault, M. H. Solar models with helium and heavy element
diffusion. Rev. Mod. Phys. 67, 781–808 (1995). doi:10.1103/RevModPhys.67.781.
arXiv:hep-ph/9505425.

14. Hampel, W. et al. GALLEX solar neutrino observations: Results for GALLEX IV. Phys.

Lett. B447, 127–133 (1999). doi:10.1016/S0370-2693(98)01579-2.

15. Altmann, M. et al. Complete results for five years of GNO solar neutrino observations.
Phys. Lett. B616, 174–190 (2005). doi:10.1016/j.physletb.2005.04.068. arXiv:hep-
ex/0504037.

16. Abdurashitov, J. N. et al. Measurement of the solar neutrino capture rate with gallium
metal. III: Results for the 2002–2007 data-taking period. Phys. Rev. C80, 015807 (2009).
doi:10.1103/PhysRevC.80.015807. arXiv:0901.2200.

17. Arisaka, K. et al. KAMIOKA nucleon decay experiments; status and performance. AIP

Conf. Proc. 114, 54–76 (1984). doi:10.1063/1.34507.

18. Hirata, K. S. et al. Observation of 8B solar neutrinos in the Kamiokande-II detector. Phys.

Rev. Lett. 63, 16 (1989). doi:10.1103/PhysRevLett.63.16.

19. Hirata, K. S. et al. Results from one thousand days of real time directional solar neutrino
data. Phys. Rev. Lett. 65, 1297–1300 (1990). doi:10.1103/PhysRevLett.65.1297.

20. Fukuda, Y. et al. Solar neutrino data covering solar cycle 22. Phys. Rev. Lett. 77, 1683–
1686 (1996). doi:10.1103/PhysRevLett.77.1683.

21. Bahcall, J. N. & Pinsonneault, M. H. Standard solar models, with and without
helium diffusion and the solar neutrino problem. Rev. Mod. Phys. 64, 885–926 (1992).
doi:10.1103/RevModPhys.64.885.

22. Hosaka, J. et al. Solar neutrino measurements in Super-Kamiokande-I. Phys. Rev. D73,
112001 (2006). doi:10.1103/PhysRevD.73.112001. arXiv:hep-ex/0508053.

23. Cravens, J. P. et al. Solar neutrino measurements in Super-Kamiokande-II. Phys. Rev. D

78, 032002 (2008). doi:10.1103/PhysRevD.78.032002. arXiv:0803.4312.

24. Abe, K. et al. Solar neutrino results in Super-Kamiokande-III. Phys. Rev. D83, 052010
(2011). doi:10.1103/PhysRevD.83.052010. arXiv:1010.0118.

25. Abe, K. et al. Solar neutrino measurements in Super-Kamiokande-IV. Phys. Rev. D94,
052010 (2016). doi:10.1103/PhysRevD.94.052010. arXiv:1606.07538.

26. Nakano, Y. Latest result of solar neutrino analysis in Super-Kamiokande. J. Phys. Conf.

Ser. 1468, 012189 (2020). doi:10.1088/1742-6596/1468/1/012189.

https://doi.org/10.1103/RevModPhys.67.781
http://arxiv.org/abs/arXiv:hep-ph/9505425
https://doi.org/10.1016/S0370-2693(98)01579-2
https://doi.org/10.1016/j.physletb.2005.04.068
http://arxiv.org/abs/arXiv:hep-ex/0504037
http://arxiv.org/abs/arXiv:hep-ex/0504037
https://doi.org/10.1103/PhysRevC.80.015807
http://arxiv.org/abs/arXiv:0901.2200
https://doi.org/10.1063/1.34507
https://doi.org/10.1103/PhysRevLett.63.16
https://doi.org/10.1103/PhysRevLett.65.1297
https://doi.org/10.1103/PhysRevLett.77.1683
https://doi.org/10.1103/RevModPhys.64.885
https://doi.org/10.1103/PhysRevD.73.112001
http://arxiv.org/abs/arXiv:hep-ex/0508053
https://doi.org/10.1103/PhysRevD.78.032002
http://arxiv.org/abs/arXiv:0803.4312
https://doi.org/10.1103/PhysRevD.83.052010
http://arxiv.org/abs/arXiv:1010.0118
https://doi.org/10.1103/PhysRevD.94.052010
http://arxiv.org/abs/arXiv:1606.07538
https://doi.org/10.1088/1742-6596/1468/1/012189


106

27. Marti-Magro, L. SuperK-Gd: The Gd future of Super-Kamiokande. PoS ICRC2019, 957
(2020). doi:10.22323/1.358.0957.

28. Ahmad, Q. R. et al. Measurement of the rate of νe+d→ p+ p+e− interactions produced
by 8B solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 87, 071301
(2001). doi:10.1103/PhysRevLett.87.071301. arXiv:nucl-ex/0106015.

29. Aharmim, B. et al. Electron energy spectra, fluxes, and day-night asymmetries
of 8B solar neutrinos from measurements with NaCl dissolved in the heavy-water
detector at the Sudbury Neutrino Observatory. Phys. Rev. C72, 055502 (2005).
doi:10.1103/PhysRevC.72.055502. arXiv:nucl-ex/0502021.

30. Aharmim, B. et al. An independent measurement of the total active 8B solar neutrino flux
using an array of 3He proportional counters at the Sudbury Neutrino Observatory. Phys.

Rev. Lett. 101, 111301 (2008). doi:10.1103/PhysRevLett.101.111301. arXiv:0806.0989.

31. Aharmim, B. et al. Measurement of the νe and total 8B solar neutrino fluxes with
the Sudbury Neutrino Observatory phase-III data set. Phys. Rev. C87, 015502 (2013).
doi:10.1103/PhysRevC.87.015502. arXiv:1107.2901.

32. Aharmim, B. et al. Combined analysis of all three phases of solar neutrino
data from the Sudbury Neutrino Observatory. Phys. Rev. C88, 025501 (2013).
doi:10.1103/PhysRevC.88.025501. arXiv:1109.0763.

33. NobelPrize.org. The 2015 Nobel Prize in Physics - Press Release (Nobel Media AB 2020,
2020). https://www.nobelprize.org/prizes/physics/2015/press-release/.

34. Alimonti, G. et al. The Borexino detector at the Laboratori Nazionali del Gran
Sasso. Nucl. Instrum. Meth. A600, 568–593 (2009). doi:10.1016/j.nima.2008.11.076.
arXiv:0806.2400.

35. Alimonti, G. et al. Science and technology of BOREXINO: A real time detector for
low-energy solar neutrinos. Astropart. Phys. 16, 205–234 (2002). doi:10.1016/S0927-
6505(01)00110-4. arXiv:hep-ex/0012030.

36. Bellini, G. et al. Final results of borexino phase-I on low-energy solar neutrino
spectroscopy. Phys. Rev. D 89, 112007 (2014). doi:10.1103/PhysRevD.89.112007.
arXiv:1308.0443.

37. Arpesella, C. et al. Direct measurement of the 7Be solar neutrino flux
with 192 days of Borexino data. Phys. Rev. Lett. 101, 091302 (2008).
doi:10.1103/PhysRevLett.101.091302. arXiv:0805.3843.

38. Bellini, G. et al. Neutrinos from the primary proton–proton fusion process in the Sun.
Nature 512, 383–386 (2014). doi:10.1038/nature13702.

https://doi.org/10.22323/1.358.0957
https://doi.org/10.1103/PhysRevLett.87.071301
http://arxiv.org/abs/arXiv:nucl-ex/0106015
https://doi.org/10.1103/PhysRevC.72.055502
http://arxiv.org/abs/arXiv:nucl-ex/0502021
https://doi.org/10.1103/PhysRevLett.101.111301
http://arxiv.org/abs/arXiv:0806.0989
https://doi.org/10.1103/PhysRevC.87.015502
http://arxiv.org/abs/arXiv:1107.2901
https://doi.org/10.1103/PhysRevC.88.025501
http://arxiv.org/abs/arXiv:1109.0763
https://www.nobelprize.org/prizes/physics/2015/press-release/
https://doi.org/10.1016/j.nima.2008.11.076
http://arxiv.org/abs/arXiv:0806.2400
https://doi.org/10.1016/S0927-6505(01)00110-4
https://doi.org/10.1016/S0927-6505(01)00110-4
http://arxiv.org/abs/arXiv:hep-ex/0012030
https://doi.org/10.1103/PhysRevD.89.112007
http://arxiv.org/abs/arXiv:1308.0443
https://doi.org/10.1103/PhysRevLett.101.091302
http://arxiv.org/abs/arXiv:0805.3843
https://doi.org/10.1038/nature13702


107

39. Bellini, G. et al. First evidence of pep solar neutrinos by direct detection in
Borexino. Phys. Rev. Lett. 108, 051302 (2012). doi:10.1103/PhysRevLett.108.051302.
arXiv:1110.3230.

40. Agostini, M. et al. First Simultaneous Precision Spectroscopy of pp, 7Be, and
pep Solar Neutrinos with Borexino Phase-II. Phys. Rev. D 100, 082004 (2019).
doi:10.1103/PhysRevD.100.082004. arXiv:1707.09279.

41. Agostini, M. et al. Experimental evidence of neutrinos produced in the CNO fusion
cycle in the Sun. Nature 587, 577–582 (2020). doi:10.1038/s41586-020-2934-0.
arXiv:2006.15115.

42. Pontecorvo, B. Mesonium and anti-mesonium. Sov. Phys. JETP 6, 429 (1957). [Zh. Eksp.
Teor. Fiz.33,549(1957)].

43. Pontecorvo, B. Inverse beta processes and nonconservation of lepton charge. Sov. Phys.

JETP 7, 172–173 (1958).

44. Bilenky, S. M. Bruno Pontecorvo and Neutrino Oscillations. Adv. High Energy Phys.

2013, 873236 (2013). doi:10.1155/2013/873236.

45. Gell-Mann, M. & Pais, A. Behavior of neutral particles under charge conjugation. Phys.

Rev. 97, 1387–1389 (1955). doi:10.1103/PhysRev.97.1387.

46. Lande, K., Booth, E. T., Impeduglia, J., Lederman, L. M. & Chinowsky, W.
Observation of long-lived neutral particles. Phys. Rev. 103, 1901–1904 (1956).
doi:10.1103/PhysRev.103.1901.

47. Lande, K., Lederman, L. M. & Chinowsky, W. Report on long-lived K0 mesons. Phys.

Rev. 105, 1925–1927 (1957). doi:10.1103/PhysRev.105.1925.2.

48. Muller, F. et al. Regeneration and mass difference of neutral K mesons. Phys. Rev. Lett.

4, 418–421 (1960). doi:10.1103/PhysRevLett.4.418.

49. Maki, Z., Nakagawa, M. & Sakata, S. Remarks on the unified model of elementary
particles. Prog. Theor. Phys. 28, 870–880 (1962). doi:10.1143/PTP.28.870.

50. Gribov, V. & Pontecorvo, B. Neutrino astronomy and lepton charge. Physics Letters B

28, 493–496 (1969). doi:10.1016/0370-2693(69)90525-5.

51. Bilenky, S. M. & Pontecorvo, B. Lepton Mixing and Neutrino Oscillations. Phys. Rept.

41, 225–261 (1978). doi:10.1016/0370-1573(78)90095-9.

52. Schael, S. et al. Precision electroweak measurements on the Z resonance. Phys. Rept.

427, 257–454 (2006). doi:10.1016/j.physrep.2005.12.006. arXiv:hep-ex/0509008.

https://doi.org/10.1103/PhysRevLett.108.051302
http://arxiv.org/abs/arXiv:1110.3230
https://doi.org/10.1103/PhysRevD.100.082004
http://arxiv.org/abs/arXiv:1707.09279
https://doi.org/10.1038/s41586-020-2934-0
http://arxiv.org/abs/arXiv:2006.15115
https://doi.org/10.1155/2013/873236
https://doi.org/10.1103/PhysRev.97.1387
https://doi.org/10.1103/PhysRev.103.1901
https://doi.org/10.1103/PhysRev.105.1925.2
https://doi.org/10.1103/PhysRevLett.4.418
https://doi.org/10.1143/PTP.28.870
https://doi.org/10.1016/0370-2693(69)90525-5
https://doi.org/10.1016/0370-1573(78)90095-9
https://doi.org/10.1016/j.physrep.2005.12.006
http://arxiv.org/abs/arXiv:hep-ex/0509008


108

53. Kim, C. & Pevsner, A. Neutrinos in physics and astrophysics (Harwood Academic, 1993).

54. Wolfenstein, L. Oscillations among three neutrino types and CP violation. Phys. Rev.

D18, 958–960 (1978). doi:10.1103/PhysRevD.18.958.

55. Wolfenstein, L. Neutrino oscillations in matter. Phys. Rev. D 17, 2369–2374 (1978).
doi:10.1103/PhysRevD.17.2369.

56. Mikheev, S. P. & Smirnov, A. Y. Resonant amplification of neutrino oscillations
in matter and solar-neutrino spectroscopy. Nuovo Cimento C 9, 17–26 (1986).
doi:10.1007/BF02508049.

57. Dighe, A. S., Liu, Q. Y. & Smirnov, A. Y. Coherence and the day-night asymmetry in the
solar neutrino flux (1999). arXiv:hep-ph/9903329.

58. Meyer, M. & Zuber, K. Solar Neutrinos (World Scientific, 2019).

59. Esteban, I., Gonzalez-Garcia, M. C., Hernandez-Cabezudo, A., Maltoni, M. & Schwetz,
T. Global analysis of three-flavour neutrino oscillations: synergies and tensions
in the determination of θ23, δCP, and the mass ordering. JHEP 01, 106 (2019).
doi:10.1007/JHEP01(2019)106. arXiv:1811.05487.

60. Dziewonski, A. & Anderson, D. Preliminary reference earth model. Phys. Earth Planet.

Interiors 25, 297–356 (1981). doi:10.1016/0031-9201(81)90046-7.

61. Wendell, R. et al. Atmospheric neutrino oscillation analysis with sub-leading
effects in Super-Kamiokande I, II, and III. Phys. Rev. D81, 092004 (2010).
doi:10.1103/PhysRevD.81.092004. arXiv:1002.3471.

62. Gando, A. et al. Constraints on θ13 from a three-flavor oscillation analysis
of reactor antineutrinos at KamLAND. Phys. Rev. D83, 052002 (2011).
doi:10.1103/PhysRevD.83.052002. arXiv:1009.4771.

63. Adamson, P. et al. Combined analysis of νµ disappearance and νµ → νe appearance in
MINOS using accelerator and atmospheric neutrinos. Phys. Rev. Lett. 112, 191801 (2014).
doi:10.1103/PhysRevLett.112.191801. arXiv:1403.0867.

64. Gonzalez-Garcia, M. C. & Nir, Y. Neutrino masses and mixing: Evidence and
implications. Rev. Mod. Phys. 75, 345–402 (2003). doi:10.1103/RevModPhys.75.345.
arXiv:hep-ph/0202058.

65. Gonzalez-Garcia, M. C., Maltoni, M. & Schwetz, T. Updated fit to three neutrino mixing:
status of leptonic CP violation. JHEP 11, 052 (2014). doi:10.1007/JHEP11(2014)052.
arXiv:1409.5439.

https://doi.org/10.1103/PhysRevD.18.958
https://doi.org/10.1103/PhysRevD.17.2369
https://doi.org/10.1007/BF02508049
http://arxiv.org/abs/arXiv:hep-ph/9903329
https://doi.org/10.1007/JHEP01(2019)106
http://arxiv.org/abs/arXiv:1811.05487
https://doi.org/10.1016/0031-9201(81)90046-7
https://doi.org/10.1103/PhysRevD.81.092004
http://arxiv.org/abs/arXiv:1002.3471
https://doi.org/10.1103/PhysRevD.83.052002
http://arxiv.org/abs/arXiv:1009.4771
https://doi.org/10.1103/PhysRevLett.112.191801
http://arxiv.org/abs/arXiv:1403.0867
https://doi.org/10.1103/RevModPhys.75.345
http://arxiv.org/abs/arXiv:hep-ph/0202058
https://doi.org/10.1007/JHEP11(2014)052
http://arxiv.org/abs/arXiv:1409.5439


109

66. Giunti, C., Gonzalez-Garcia, M. C. & Pena-Garay, C. Four-neutrino oscillation
solutions of the solar neutrino problem. Phys. Rev. D62, 013005 (2000).
doi:10.1103/PhysRevD.62.013005. arXiv:hep-ph/0001101.

67. Spergel, D. N. & Press, W. H. Effect of hypothetical, weakly interacting, massive
particles on energy transport in the solar interior. Astrophys. J. 294, 663–673 (1985).
doi:10.1086/163336.

68. Roulet, E. MSW effect with flavor changing neutrino interactions. Phys. Rev. D44, R935–
R938 (1991). doi:10.1103/PhysRevD.44.R935.

69. Bahcall, J. N., Cabibbo, N. & Yahil, A. Are neutrinos stable particles? Phys. Rev. Lett.

28, 316–318 (1972). doi:10.1103/PhysRevLett.28.316.

70. Cisneros, A. Effect of neutrino magnetic moment on solar neutrino observations.
Astrophys. Space Sci. 10, 87–92 (1971). doi:10.1007/BF00654607.

71. Dodelson, S., Gyuk, G. & Turner, M. S. Primordial nucleosynthesis with a decaying
tau-neutrino. Phys. Rev. D49, 5068–5079 (1994). doi:10.1103/PhysRevD.49.5068.
arXiv:astro-ph/9312062.

72. White, M. J., Gelmini, G. & Silk, J. Structure formation with decaying neutrinos. Phys.

Rev. D51, 2669–2676 (1995). doi:10.1103/PhysRevD.51.2669. arXiv:astro-ph/9411098.

73. Beacom, J. F., Bell, N. F., Hooper, D., Pakvasa, S. & Weiler, T. J. Decay
of high-energy astrophysical neutrinos. Phys. Rev. Lett. 90, 181301 (2003).
doi:10.1103/PhysRevLett.90.181301. arXiv:hep-ph/0211305.

74. Beacom, J. F., Bell, N. F., Hooper, D., Pakvasa, S. & Weiler, T. J. Measuring
flavor ratios of high-energy astrophysical neutrinos. Phys. Rev. D68, 093005
(2003). [Erratum: Phys. Rev.D72,019901(2005)]. doi:10.1103/PhysRevD.68.093005,
10.1103/PhysRevD.72.019901. arXiv:hep-ph/0307025.

75. Maltoni, M. & Winter, W. Testing neutrino oscillations plus decay with
neutrino telescopes. JHEP 0807, 064 (2008). doi:10.1088/1126-6708/2008/07/064.
arXiv:0803.2050.

76. Baerwald, P., Bustamante, M. & Winter, W. Neutrino decays over cosmological distances
and the implications for neutrino telescopes. JCAP 1210, 020 (2012). doi:10.1088/1475-
7516/2012/10/020. arXiv:1208.4600.

77. Dorame, L., , O. G. & Valle, J. W. F. Invisible decays of ultra-high energy neutrinos.
Frontiers in Physics 1, 25 (2013). doi:10.3389/fphy.2013.00025. arXiv:1303.4891.

https://doi.org/10.1103/PhysRevD.62.013005
http://arxiv.org/abs/arXiv:hep-ph/0001101
https://doi.org/10.1086/163336
https://doi.org/10.1103/PhysRevD.44.R935
https://doi.org/10.1103/PhysRevLett.28.316
https://doi.org/10.1007/BF00654607
https://doi.org/10.1103/PhysRevD.49.5068
http://arxiv.org/abs/arXiv:astro-ph/9312062
https://doi.org/10.1103/PhysRevD.51.2669
http://arxiv.org/abs/arXiv:astro-ph/9411098
https://doi.org/10.1103/PhysRevLett.90.181301
http://arxiv.org/abs/arXiv:hep-ph/0211305
https://doi.org/10.1103/PhysRevD.68.093005, 10.1103/PhysRevD.72.019901
https://doi.org/10.1103/PhysRevD.68.093005, 10.1103/PhysRevD.72.019901
http://arxiv.org/abs/arXiv:hep-ph/0307025
https://doi.org/10.1088/1126-6708/2008/07/064
http://arxiv.org/abs/arXiv:0803.2050
https://doi.org/10.1088/1475-7516/2012/10/020
https://doi.org/10.1088/1475-7516/2012/10/020
http://arxiv.org/abs/arXiv:1208.4600
https://doi.org/10.3389/fphy.2013.00025
http://arxiv.org/abs/arXiv:1303.4891


110

78. Pagliaroli, G., Palladino, A., Vissani, F. & Villante, F. Testing neutrino decay scenarios
with icecube data. Phys. Rev. D92, 113008 (2015). arXiv:1506.02624.

79. Frieman, J. A., Haber, H. E. & Freese, K. Neutrino mixing, decays and supernova
SN1987A. Phys. Lett. B200, 115 (1988). doi:10.1016/0370-2693(88)91120-3.

80. Berezhiani, Z. G. & Smirnov, A. Y. Matter induced neutrino decay and supernova
SN1987A. Phys. Lett. B220, 279–284 (1989). doi:10.1016/0370-2693(89)90052-X.

81. Jaffe, A. H. & Turner, M. S. Gamma-rays and the decay of neutrinos from sn1987a. Phys.

Rev. D55, 7951–7959 (1997). doi:10.1103/PhysRevD.55.7951. arXiv:astro-ph/9601104.

82. Lindner, M., Ohlsson, T. & Winter, W. Decays of supernova neutrinos. Nucl. Phys. B622,
429–456 (2002). doi:10.1016/S0550-3213(01)00603-4. arXiv:astro-ph/0105309.

83. Ando, S. Decaying neutrinos and implications from the supernova relic neutrino
observation. Phys. Lett. B570, 11 (2003). doi:10.1016/j.physletb.2003.07.009. arXiv:hep-
ph/0307169.

84. Fogli, G., Lisi, E., Mirizzi, A. & Montanino, D. Three generation flavor
transitions and decays of supernova relic neutrinos. Phys. Rev. D70, 013001 (2004).
doi:10.1103/PhysRevD.70.013001. arXiv:hep-ph/0401227.

85. Ando, S. Appearance of neutronization peak and decaying supernova neutrinos. Phys.

Rev. D70, 033004 (2004). doi:10.1103/PhysRevD.70.033004. arXiv:hep-ph/0405200.

86. Zatsepin, G. T. & Smirnov, A. Yu. Neutrino decay in gauge theories. Yad. Fiz. 28, 1569–
1579 (1978).

87. Schechter, J. & Valle, J. W. F. Neutrino masses in SU(2) x U(1) theories. Phys. Rev. D22,
2227 (1980). doi:10.1103/PhysRevD.22.2227.

88. Bahcall, J. N., Petcov, S. T., Toshev, S. & Valle, J. W. F. Tests of neutrino stability. Phys.

Lett. B181, 369–374 (1986). doi:10.1016/0370-2693(86)90065-1.

89. Berezhiani, Z. G. & Vysotsky, M. I. Neutrino decay in matter. Phys. Lett. B199, 281
(1987). doi:10.1016/0370-2693(87)91375-X.

90. Acker, A., Pakvasa, S. & Pantaleone, J. T. The Solar neutrino problem: Some old solutions
revisited. Phys. Rev. D43, 1754–1758 (1991). doi:10.1103/PhysRevD.43.1754.

91. Acker, A., Pakvasa, S. & Pantaleone, J. T. Decaying Dirac neutrinos. Phys. Rev. D45, 1–4
(1992). doi:10.1103/PhysRevD.45.1.

92. Berezhiani, Z. G., Fiorentini, G., Moretti, M. & Rossi, A. Fast neutrino decay and solar
neutrino detectors. Z. Phys. C54, 581–586 (1992). doi:10.1007/BF01559483.

http://arxiv.org/abs/arXiv:1506.02624
https://doi.org/10.1016/0370-2693(88)91120-3
https://doi.org/10.1016/0370-2693(89)90052-X
https://doi.org/10.1103/PhysRevD.55.7951
http://arxiv.org/abs/arXiv:astro-ph/9601104
https://doi.org/10.1016/S0550-3213(01)00603-4
http://arxiv.org/abs/arXiv:astro-ph/0105309
https://doi.org/10.1016/j.physletb.2003.07.009
http://arxiv.org/abs/arXiv:hep-ph/0307169
http://arxiv.org/abs/arXiv:hep-ph/0307169
https://doi.org/10.1103/PhysRevD.70.013001
http://arxiv.org/abs/arXiv:hep-ph/0401227
https://doi.org/10.1103/PhysRevD.70.033004
http://arxiv.org/abs/arXiv:hep-ph/0405200
https://doi.org/10.1103/PhysRevD.22.2227
https://doi.org/10.1016/0370-2693(86)90065-1
https://doi.org/10.1016/0370-2693(87)91375-X
https://doi.org/10.1103/PhysRevD.43.1754
https://doi.org/10.1103/PhysRevD.45.1
https://doi.org/10.1007/BF01559483


111

93. Berezhiani, Z. G., Fiorentini, G., Rossi, A. & Moretti, M. Neutrino decay solution of the
solar neutrino problem revisited. JETP Lett. 55, 151–156 (1992). [Pisma Zh. Eksp. Teor.
Fiz.55,159(1992)].

94. Acker, A., Joshipura, A. & Pakvasa, S. A Neutrino decay model, solar anti-neutrinos
and atmospheric neutrinos. Phys. Lett. B285, 371–375 (1992). doi:10.1016/0370-
2693(92)91520-J.

95. Acker, A. & Pakvasa, S. Solar neutrino decay. Phys. Lett. B320, 320–322 (1994).
doi:10.1016/0370-2693(94)90663-7. arXiv:hep-ph/9310207.

96. Choubey, S., Goswami, S. & Majumdar, D. Status of the neutrino decay solution
to the solar neutrino problem. Phys. Lett. B484, 73–78 (2000). doi:10.1016/S0370-
2693(00)00608-0. arXiv:hep-ph/0004193.

97. Joshipura, A. S., Masso, E. & Mohanty, S. Constraints on decay plus oscillation
solutions of the solar neutrino problem. Phys. Rev. D66, 113008 (2002).
doi:10.1103/PhysRevD.66.113008. arXiv:hep-ph/0203181.

98. Beacom, J. F. & Bell, N. F. Do solar neutrinos decay? Phys. Rev. D65, 113009 (2002).
doi:10.1103/PhysRevD.65.113009. arXiv:hep-ph/0204111.

99. Bandyopadhyay, A., Choubey, S. & Goswami, S. Neutrino decay confronts the SNO
data. Phys. Lett. B555, 33–42 (2003). doi:10.1016/S0370-2693(03)00044-3. arXiv:hep-
ph/0204173.

100. Pakvasa, S. & Valle, J. W. F. Neutrino properties before and after KamLAND. Proc.

Indian Natl. Sci. Acad. A70, 189–222 (2004). arXiv:hep-ph/0301061.

101. Giunti, C. & Studenikin, A. Neutrino electromagnetic interactions: a window to
new physics. Rev. Mod. Phys. 87, 531 (2015). doi:10.1103/RevModPhys.87.531.
arXiv:1403.6344.

102. Mirizzi, A., Montanino, D. & Serpico, P. D. Revisiting cosmological bounds on radiative
neutrino lifetime. Phys. Rev. D76, 053007 (2007). doi:10.1103/PhysRevD.76.053007.
arXiv:0705.4667.

103. Eguchi, K. et al. A high sensitivity search for anti-nu(e)’s from the sun and other sources
at KamLAND. Phys. Rev. Lett. 92, 071301 (2004). doi:10.1103/PhysRevLett.92.071301.
arXiv:hep-ex/0310047.

104. Aharmim, B. et al. Electron antineutrino search at the Sudbury Neutrino Observatory.
Phys. Rev. D70, 093014 (2004). doi:10.1103/PhysRevD.70.093014. arXiv:hep-
ex/0407029.

https://doi.org/10.1016/0370-2693(92)91520-J
https://doi.org/10.1016/0370-2693(92)91520-J
https://doi.org/10.1016/0370-2693(94)90663-7
http://arxiv.org/abs/arXiv:hep-ph/9310207
https://doi.org/10.1016/S0370-2693(00)00608-0
https://doi.org/10.1016/S0370-2693(00)00608-0
http://arxiv.org/abs/arXiv:hep-ph/0004193
https://doi.org/10.1103/PhysRevD.66.113008
http://arxiv.org/abs/arXiv:hep-ph/0203181
https://doi.org/10.1103/PhysRevD.65.113009
http://arxiv.org/abs/arXiv:hep-ph/0204111
https://doi.org/10.1016/S0370-2693(03)00044-3
http://arxiv.org/abs/arXiv:hep-ph/0204173
http://arxiv.org/abs/arXiv:hep-ph/0204173
http://arxiv.org/abs/arXiv:hep-ph/0301061
https://doi.org/10.1103/RevModPhys.87.531
http://arxiv.org/abs/arXiv:1403.6344
https://doi.org/10.1103/PhysRevD.76.053007
http://arxiv.org/abs/arXiv:0705.4667
https://doi.org/10.1103/PhysRevLett.92.071301
http://arxiv.org/abs/arXiv:hep-ex/0310047
https://doi.org/10.1103/PhysRevD.70.093014
http://arxiv.org/abs/arXiv:hep-ex/0407029
http://arxiv.org/abs/arXiv:hep-ex/0407029


112

105. Das, C. R. & Pulido, J. Improving LMA predictions with non-standard
interactions: Neutrino decay in solar matter? Phys. Rev. D83, 053009 (2011).
doi:10.1103/PhysRevD.83.053009. arXiv:1007.2167.

106. Raghavan, R. S., He, X.-G. & Pakvasa, S. MSW catalyzed neutrino decay. Phys. Rev.

D38, 1317–1320 (1988). doi:10.1103/PhysRevD.38.1317.

107. Palomares-Ruiz, S., Pascoli, S. & Schwetz, T. Explaining lsnd by a decaying sterile
neutrino. JHEP 0509, 048 (2005). doi:10.1088/1126-6708/2005/09/048. arXiv:hep-
ph/0505216.

108. Adamson, P. et al. Search for sterile neutrino mixing in the MINOS long baseline
experiment. Phys. Rev. D81, 052004 (2010). doi:10.1103/PhysRevD.81.052004.
arXiv:1001.0336.

109. Barger, V. D., Learned, J. G., Pakvasa, S. & Weiler, T. J. Neutrino decay as an
explanation of atmospheric neutrino observations. Phys. Rev. Lett. 82, 2640–2643 (1999).
doi:10.1103/PhysRevLett.82.2640. arXiv:astro-ph/9810121.

110. Bandyopadhyay, A., Choubey, S. & Goswami, S. MSW mediated neutrino
decay and the solar neutrino problem. Phys. Rev. D63, 113019 (2001).
doi:10.1103/PhysRevD.63.113019. arXiv:hep-ph/0101273.

111. Gonzalez-Garcia, M. & Maltoni, M. Status of oscillation plus decay of atmospheric and
long-baseline neutrinos. Phys. Lett. B663, 405–409 (2008). arXiv:0802.3699.

112. Aharmim, B. et al. Constraints on neutrino lifetime from the Sudbury Neutrino
Observatory. Phys. Rev. D99, 032013 (2019). doi:10.1103/PhysRevD.99.032013.
arXiv:1812.01088.

113. Abdullahi, A. & Denton, P. B. Visible Decay of Astrophysical Neutrinos at IceCube. Phys.

Rev. D 102, 023018 (2020). doi:10.1103/PhysRevD.102.023018. arXiv:2005.07200.

114. Bustamante, M. New limits on neutrino decay from the Glashow resonance of high-energy
cosmic neutrinos (2020). arXiv:2004.06844.

115. Gomes, R. A., Gomes, A. L. G. & Peres, O. L. G. Constraints on neutrino decay lifetime
using accelerator neutrino and anti-neutrino disappearance data. Phys. Lett. B740, 345–
352 (2015). arXiv:1407.5640.

116. Porto-Silva, Y. P., Prakash, S., Peres, O. L. G., Nunokawa, H. & Minakata, H.
Constraining visible neutrino decay at KamLAND and JUNO. Eur. Phys. J. C 80, 999
(2020). doi:10.1140/epjc/s10052-020-08573-9. arXiv:2002.12134.

117. Coloma, P. & Peres, O. L. G. Visible neutrino decay at DUNE (2017). arXiv:1705.03599.

https://doi.org/10.1103/PhysRevD.83.053009
http://arxiv.org/abs/arXiv:1007.2167
https://doi.org/10.1103/PhysRevD.38.1317
https://doi.org/10.1088/1126-6708/2005/09/048
http://arxiv.org/abs/arXiv:hep-ph/0505216
http://arxiv.org/abs/arXiv:hep-ph/0505216
https://doi.org/10.1103/PhysRevD.81.052004
http://arxiv.org/abs/arXiv:1001.0336
https://doi.org/10.1103/PhysRevLett.82.2640
http://arxiv.org/abs/arXiv:astro-ph/9810121
https://doi.org/10.1103/PhysRevD.63.113019
http://arxiv.org/abs/arXiv:hep-ph/0101273
http://arxiv.org/abs/arXiv:0802.3699
https://doi.org/10.1103/PhysRevD.99.032013
http://arxiv.org/abs/arXiv:1812.01088
https://doi.org/10.1103/PhysRevD.102.023018
http://arxiv.org/abs/arXiv:2005.07200
http://arxiv.org/abs/arXiv:2004.06844
http://arxiv.org/abs/arXiv:1407.5640
https://doi.org/10.1140/epjc/s10052-020-08573-9
http://arxiv.org/abs/arXiv:2002.12134
http://arxiv.org/abs/arXiv:1705.03599


113

118. Chikashige, Y., Mohapatra, R. N. & Peccei, R. D. Are there real goldstone
bosons associated with broken lepton number? Phys. Lett. 98B, 265–268 (1981).
doi:10.1016/0370-2693(81)90011-3.

119. Gelmini, G. B. & Roncadelli, M. Left-handed neutrino mass scale and spontaneously
broken lepton number. Phys. Lett. 99B, 411–415 (1981). doi:10.1016/0370-
2693(81)90559-1.

120. Lindner, M., Ohlsson, T. & Winter, W. A Combined treatment of neutrino decay
and neutrino oscillations. Nucl. Phys. B607, 326–354 (2001). doi:10.1016/S0550-
3213(01)00237-1. arXiv:hep-ph/0103170.

121. Gago, A. M., Gomes, R. A., Gomes, A. L. G., Jones-Perez, J. & Peres, O. L. G. Visible
neutrino decay in the light of appearance and disappearance long baseline experiments.
JHEP 11, 022 (2017). doi:10.1007/JHEP11(2017)022. arXiv:1705.03074.

122. Picoreti, R., Guzzo, M. M., de Holanda, P. C. & Peres, O. L. G. Neutrino
decay and solar neutrino seasonal effect. Phys. Lett. B761, 70–73 (2016).
doi:10.1016/j.physletb.2016.08.007. arXiv:1506.08158.

123. Picoreti, R., Guzzo, M., de Holanda, P. & Peres, O. Neutrino decay and Solar Neutrino
Seasonal effect. PoS ICHEP2016, 464 (2017). doi:10.22323/1.282.0464.

124. Berryman, J. M., de Gouvêa, A., Hernández, D. & Oliviera, R. L. N. Non-
Unitary neutrino propagation from neutrino decay. Phys. Lett. B742, 74–79 (2015).
doi:10.1016/j.physletb.2015.01.002. arXiv:1407.6631.

125. de Holanda, P. C. & Smirnov, A. Y. LMA MSW solution of the solar neutrino problem
and first KamLAND results. JCAP 02, 001 (2003). doi:10.1088/1475-7516/2003/02/001.
arXiv:hep-ph/0212270.

126. de Holanda, P. C. & Smirnov, A. Y. Solar neutrinos: Global analysis with day and night
spectra from SNO. Phys. Rev. D 66, 113005 (2002). doi:10.1103/PhysRevD.66.113005.
arXiv:hep-ph/0205241.

127. de Holanda, P. C. & Smirnov, A. Y. Solar neutrinos: The SNO salt
phase results and physics of conversion. Astropart. Phys. 21, 287–301 (2004).
doi:10.1016/j.astropartphys.2004.01.007. arXiv:hep-ph/0309299.

128. Kaether, F., Hampel, W., Heusser, G., Kiko, J. & Kirsten, T. Reanalysis of the
GALLEX solar neutrino flux and source experiments. Phys. Lett. B685, 47–54 (2010).
doi:10.1016/j.physletb.2010.01.030. arXiv:1001.2731.

https://doi.org/10.1016/0370-2693(81)90011-3
https://doi.org/10.1016/0370-2693(81)90559-1
https://doi.org/10.1016/0370-2693(81)90559-1
https://doi.org/10.1016/S0550-3213(01)00237-1
https://doi.org/10.1016/S0550-3213(01)00237-1
http://arxiv.org/abs/arXiv:hep-ph/0103170
https://doi.org/10.1007/JHEP11(2017)022
http://arxiv.org/abs/arXiv:1705.03074
https://doi.org/10.1016/j.physletb.2016.08.007
http://arxiv.org/abs/arXiv:1506.08158
https://doi.org/10.22323/1.282.0464
https://doi.org/10.1016/j.physletb.2015.01.002
http://arxiv.org/abs/arXiv:1407.6631
https://doi.org/10.1088/1475-7516/2003/02/001
http://arxiv.org/abs/arXiv:hep-ph/0212270
https://doi.org/10.1103/PhysRevD.66.113005
http://arxiv.org/abs/arXiv:hep-ph/0205241
https://doi.org/10.1016/j.astropartphys.2004.01.007
http://arxiv.org/abs/arXiv:hep-ph/0309299
https://doi.org/10.1016/j.physletb.2010.01.030
http://arxiv.org/abs/arXiv:1001.2731


114

129. An, F. P. et al. Spectral measurement of electron antineutrino oscillation
amplitude and frequency at Daya Bay. Phys. Rev. Lett. 112, 061801 (2014).
doi:10.1103/PhysRevLett.112.061801. arXiv:1310.6732.

130. Smy, M. B. et al. Precise measurement of the solar neutrino day/night and
seasonal variation in Super-Kamiokande-I. Phys. Rev. D69, 011104 (2004).
doi:10.1103/PhysRevD.69.011104. arXiv:hep-ex/0309011.

131. Aharmim, B. et al. A Search for periodicities in the 8B solar neutrino flux
measured by the Sudbury neutrino observatory. Phys. Rev. D72, 052010 (2005).
doi:10.1103/PhysRevD.72.052010. arXiv:hep-ex/0507079.

132. Berryman, J. M., de Gouvea, A. & Hernandez, D. Solar neutrinos and the decaying
neutrino hypothesis. Phys. Rev. D92, 073003 (2015). doi:10.1103/PhysRevD.92.073003.
arXiv:1411.0308.

133. Lesgourgues, J. & Pastor, S. Massive neutrinos and cosmology. Phys. Rept. 429, 307–379
(2006). doi:10.1016/j.physrep.2006.04.001. arXiv:astro-ph/0603494.

134. Aghanim, N. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys.

641, A6 (2020). doi:10.1051/0004-6361/201833910. arXiv:1807.06209.

135. Chacko, Z., Dev, A., Du, P., Poulin, V. & Tsai, Y. Cosmological Limits on the
Neutrino Mass and Lifetime. JHEP 04, 020 (2020). doi:10.1007/JHEP04(2020)020.
arXiv:1909.05275.

136. Escudero, M., Lopez-Pavon, J., Rius, N. & Sandner, S. Relaxing Cosmological
Neutrino Mass Bounds with Unstable Neutrinos. JHEP 12, 119 (2020).
doi:10.1007/JHEP12(2020)119. arXiv:2007.04994.

137. Ade, P. A. R. et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys.

594, A13 (2016). doi:10.1051/0004-6361/201525830. arXiv:1502.01589.

138. Gando, Y. et al. Search for anti-nu(e) from the sun at Super-Kamiokande I. Phys. Rev.

Lett. 90, 171302 (2003). doi:10.1103/PhysRevLett.90.171302. arXiv:hep-ex/0212067.

139. Gando, A. et al. A study of extraterrestrial antineutrino sources with the KamLAND
detector. Astrophys. J. 745, 193 (2012). doi:10.1088/0004-637X/745/2/193.
arXiv:1105.3516.

140. Bellini, G. et al. Study of solar and other unknown anti-neutrino fluxes with Borexino
at LNGS. Phys. Lett. B696, 191–196 (2011). doi:10.1016/j.physletb.2010.12.030.
arXiv:1010.0029.

https://doi.org/10.1103/PhysRevLett.112.061801
http://arxiv.org/abs/arXiv:1310.6732
https://doi.org/10.1103/PhysRevD.69.011104
http://arxiv.org/abs/arXiv:hep-ex/0309011
https://doi.org/10.1103/PhysRevD.72.052010
http://arxiv.org/abs/arXiv:hep-ex/0507079
https://doi.org/10.1103/PhysRevD.92.073003
http://arxiv.org/abs/arXiv:1411.0308
https://doi.org/10.1016/j.physrep.2006.04.001
http://arxiv.org/abs/arXiv:astro-ph/0603494
https://doi.org/10.1051/0004-6361/201833910
http://arxiv.org/abs/arXiv:1807.06209
https://doi.org/10.1007/JHEP04(2020)020
http://arxiv.org/abs/arXiv:1909.05275
https://doi.org/10.1007/JHEP12(2020)119
http://arxiv.org/abs/arXiv:2007.04994
https://doi.org/10.1051/0004-6361/201525830
http://arxiv.org/abs/arXiv:1502.01589
https://doi.org/10.1103/PhysRevLett.90.171302
http://arxiv.org/abs/arXiv:hep-ex/0212067
https://doi.org/10.1088/0004-637X/745/2/193
http://arxiv.org/abs/arXiv:1105.3516
https://doi.org/10.1016/j.physletb.2010.12.030
http://arxiv.org/abs/arXiv:1010.0029


115

141. Agostini, M. et al. Search for low-energy neutrinos from astrophysical
sources with Borexino. Astropart. Phys. 125, 102509 (2021).
doi:10.1016/j.astropartphys.2020.102509. arXiv:1909.02422.

142. Zhang, H. et al. Supernova relic neutrino search with neutron
tagging at Super-Kamiokande-IV. Astropart. Phys. 60, 41–46 (2015).
doi:10.1016/j.astropartphys.2014.05.004. arXiv:1311.3738.

143. Bergstrom, J. et al. Updated determination of the solar neutrino fluxes from solar neutrino
data. JHEP 03, 132 (2016). doi:10.1007/JHEP03(2016)132. arXiv:1601.00972.

144. Vinyoles, N. et al. A new Generation of Standard Solar Models. Astrophys. J. 835, 202
(2017). doi:10.3847/1538-4357/835/2/202. arXiv:1611.09867.

145. Strumia, A. & Vissani, F. Precise quasielastic neutrino/nucleon cross-section. Phys. Lett.

B564, 42–54 (2003). doi:10.1016/S0370-2693(03)00616-6. arXiv:astro-ph/0302055.

146. Viaux, N. et al. Particle-physics constraints from the globular cluster M5: Neutrino Dipole
Moments. Astron. Astrophys. 558, A12 (2013). doi:10.1051/0004-6361/201322004.
arXiv:1308.4627.

147. Pehlivan, Y., Balantekin, A. B. & Kajino, T. Neutrino Magnetic Moment, CP
Violation and Flavor Oscillations in Matter. Phys. Rev. D90, 065011 (2014).
doi:10.1103/PhysRevD.90.065011. arXiv:1406.5489.

148. de Gouvea, A. & Shalgar, S. Effect of Transition Magnetic Moments on Collective
Supernova Neutrino Oscillations. JCAP 1210, 027 (2012). doi:10.1088/1475-
7516/2012/10/027. arXiv:1207.0516.

149. de Gouvea, A. & Shalgar, S. Transition Magnetic Moments and Collective
Neutrino Oscillations:Three-Flavor Effects and Detectability. JCAP 1304, 018 (2013).
doi:10.1088/1475-7516/2013/04/018. arXiv:1301.5637.

150. Miller Bertolami, M. M. Limits on the neutrino magnetic dipole moment from
the luminosity function of hot white dwarfs. Astron. Astrophys. 562, A123 (2014).
doi:10.1051/0004-6361/201322641. arXiv:1407.1404.

151. Córsico, A. H., Althaus, L. G., Miller Bertolami, M. M., Kepler, S. O. & García-Berro, E.
Constraining the neutrino magnetic dipole moment from white dwarf pulsations. JCAP

1408, 054 (2014). doi:10.1088/1475-7516/2014/08/054. arXiv:1406.6034.

152. Barranco, J., Miranda, O. G., Moura, C. A. & Parada, A. A reduction in the
UHE neutrino flux due to neutrino spin precession. Phys. Lett. B718, 26–29 (2012).
doi:10.1016/j.physletb.2012.10.024. arXiv:1205.4285.

https://doi.org/10.1016/j.astropartphys.2020.102509
http://arxiv.org/abs/arXiv:1909.02422
https://doi.org/10.1016/j.astropartphys.2014.05.004
http://arxiv.org/abs/arXiv:1311.3738
https://doi.org/10.1007/JHEP03(2016)132
http://arxiv.org/abs/arXiv:1601.00972
https://doi.org/10.3847/1538-4357/835/2/202
http://arxiv.org/abs/arXiv:1611.09867
https://doi.org/10.1016/S0370-2693(03)00616-6
http://arxiv.org/abs/arXiv:astro-ph/0302055
https://doi.org/10.1051/0004-6361/201322004
http://arxiv.org/abs/arXiv:1308.4627
https://doi.org/10.1103/PhysRevD.90.065011
http://arxiv.org/abs/arXiv:1406.5489
https://doi.org/10.1088/1475-7516/2012/10/027
https://doi.org/10.1088/1475-7516/2012/10/027
http://arxiv.org/abs/arXiv:1207.0516
https://doi.org/10.1088/1475-7516/2013/04/018
http://arxiv.org/abs/arXiv:1301.5637
https://doi.org/10.1051/0004-6361/201322641
http://arxiv.org/abs/arXiv:1407.1404
https://doi.org/10.1088/1475-7516/2014/08/054
http://arxiv.org/abs/arXiv:1406.6034
https://doi.org/10.1016/j.physletb.2012.10.024
http://arxiv.org/abs/arXiv:1205.4285


116

153. Voloshin, M. B. & Vysotsky, M. I. Neutrino Magnetic Moment and Time Variation of
Solar Neutrino Flux. Sov. J. Nucl. Phys. 44, 544 (1986). [Yad. Fiz.44,845(1986)].

154. Okun, L. B., Voloshin, M. B. & Vysotsky, M. I. Neutrino Electrodynamics and Possible
Effects for Solar Neutrinos. Sov. Phys. JETP 64, 446–452 (1986). [Zh. Eksp. Teor.
Fiz.91,754(1986)].

155. Barbieri, R. & Fiorentini, G. The Solar Neutrino Puzzle and the Neutrino (L)→ Neutrino
(R) Conversion Hypothesis. Nucl. Phys. B304, 909–920 (1988). doi:10.1016/0550-
3213(88)90661-X.

156. Schechter, J. & Valle, J. W. F. Majorana Neutrinos and Magnetic Fields. Phys. Rev. D24,
1883–1889 (1981). doi:10.1103/PhysRevD.25.283.

157. Lim, C.-S. & Marciano, W. J. Resonant Spin - Flavor Precession of Solar and Supernova
Neutrinos. Phys. Rev. D37, 1368–1373 (1988). doi:10.1103/PhysRevD.37.1368.

158. Akhmedov, E. K. Resonant Amplification of Neutrino Spin Rotation in Matter and
the Solar Neutrino Problem. Phys. Lett. B213, 64–68 (1988). doi:10.1016/0370-
2693(88)91048-9.

159. Pulido, J. Resonant and nonresonant spin-flip flavor precession of soalr neutrinos. Phys.

Rev. D41, 2956 (1990). doi:10.1103/PhysRevD.41.2956.

160. Balantekin, A. B., Hatchell, P. J. & Loreti, F. Matter Enhanced Spin Flavor Precession
of Solar Neutrinos With Transition Magnetic Moments. Phys. Rev. D41, 3583 (1990).
doi:10.1103/PhysRevD.41.3583.

161. Akhmedov, E. K. & Pulido, J. Solar neutrino oscillations and bounds on neutrino magnetic
moment and solar magnetic field. Phys. Lett. B553, 7–17 (2003). doi:10.1016/S0370-
2693(02)03182-9. arXiv:hep-ph/0209192.

162. Chauhan, B. C., Pulido, J. & Torrente-Lujan, E. KamLAND, solar anti-neutrinos and the
solar magnetic field. Phys. Rev. D68, 033015 (2003). doi:10.1103/PhysRevD.68.033015.
arXiv:hep-ph/0304297.

163. Balantekin, A. B. & Volpe, C. Does the neutrino magnetic moment have an impact on solar
physics? Phys. Rev. D72, 033008 (2005). doi:10.1103/PhysRevD.72.033008. arXiv:hep-
ph/0411148.

164. Torrente-Lujan, E. KamLAND bounds on solar anti-neutrinos and neutrino transition
magnetic moments. JHEP 04, 054 (2003). doi:10.1088/1126-6708/2003/04/054.
arXiv:hep-ph/0302082.

https://doi.org/10.1016/0550-3213(88)90661-X
https://doi.org/10.1016/0550-3213(88)90661-X
https://doi.org/10.1103/PhysRevD.25.283
https://doi.org/10.1103/PhysRevD.37.1368
https://doi.org/10.1016/0370-2693(88)91048-9
https://doi.org/10.1016/0370-2693(88)91048-9
https://doi.org/10.1103/PhysRevD.41.2956
https://doi.org/10.1103/PhysRevD.41.3583
https://doi.org/10.1016/S0370-2693(02)03182-9
https://doi.org/10.1016/S0370-2693(02)03182-9
http://arxiv.org/abs/arXiv:hep-ph/0209192
https://doi.org/10.1103/PhysRevD.68.033015
http://arxiv.org/abs/arXiv:hep-ph/0304297
https://doi.org/10.1103/PhysRevD.72.033008
http://arxiv.org/abs/arXiv:hep-ph/0411148
http://arxiv.org/abs/arXiv:hep-ph/0411148
https://doi.org/10.1088/1126-6708/2003/04/054
http://arxiv.org/abs/arXiv:hep-ph/0302082


117

165. Miranda, O. G., Rashba, T. I., Rez, A. I. & Valle, J. W. F. Constraining the neutrino
magnetic moment with anti-neutrinos from the sun. Phys. Rev. Lett. 93, 051304 (2004).
doi:10.1103/PhysRevLett.93.051304. arXiv:hep-ph/0311014.

166. Miranda, O. G., Rashba, T. I., Rez, A. I. & Valle, J. W. F. Enhanced solar
anti-neutrino flux in random magnetic fields. Phys. Rev. D70, 113002 (2004).
doi:10.1103/PhysRevD.70.113002. arXiv:hep-ph/0406066.

167. Dicke, R. H. A Magnetic Core in the Sun - the Solar Rotator. Solar Physics 78, 3–16
(1982). doi:10.1007/BF00151138.

168. Semikoz, V. & Torrente-Lujan, E. Neutrino conversions in solar random magnetic fields.
Nucl. Phys. B556, 353–372 (1999). doi:10.1016/S0550-3213(99)00352-1. arXiv:hep-
ph/9809376.

169. Friedland, A. Do solar neutrinos probe neutrino electromagnetic properties? (2005).
arXiv:hep-ph/0505165.

170. Fan, Y. Magnetic fields in the solar convection zone. Living Reviews in Solar Physics 1,
1 (2004). doi:10.12942/lrsp-2004-1.

171. Brun, A. S., Miesch, M. S. & Toomre, J. Global-Scale Turbulent Convection and
Magnetic Dynamo Action in the Solar Envelope. Astrophys. J. 614, 1073 (2004).
doi:10.1086/423835. arXiv:astro-ph/0610073.

172. Zwicky, F. Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110–
127 (1933). [Gen. Rel. Grav.41,207(2009)]. doi:10.1007/s10714-008-0707-4.

173. Rubin, V. C. & Ford, W. K., Jr. Rotation of the Andromeda Nebula from a Spectroscopic
Survey of Emission Regions. Astrophys. J. 159, 379–403 (1970). doi:10.1086/150317.

174. Rubin, V. C., Thonnard, N. & Ford, W. K., Jr. Rotational properties of 21 SC galaxies
with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R
= 122 kpc/. Astrophys. J. 238, 471 (1980). doi:10.1086/158003.

175. Refregier, A. Weak gravitational lensing by large scale structure. Ann. Rev.

Astron. Astrophys. 41, 645–668 (2003). doi:10.1146/annurev.astro.41.111302.102207.
arXiv:astro-ph/0307212.

176. Clowe, D. et al. A direct empirical proof of the existence of dark matter. Astrophys. J.

648, L109–L113 (2006). doi:10.1086/508162. arXiv:astro-ph/0608407.

177. Asztalos, S. J., Rosenberg, L. J., van Bibber, K., Sikivie, P. & Zioutas, K. Searches for
astrophysical and cosmological axions. Ann. Rev. Nucl. Part. Sci. 56, 293–326 (2006).
doi:10.1146/annurev.nucl.56.080805.140513.

https://doi.org/10.1103/PhysRevLett.93.051304
http://arxiv.org/abs/arXiv:hep-ph/0311014
https://doi.org/10.1103/PhysRevD.70.113002
http://arxiv.org/abs/arXiv:hep-ph/0406066
https://doi.org/10.1007/BF00151138
https://doi.org/10.1016/S0550-3213(99)00352-1
http://arxiv.org/abs/arXiv:hep-ph/9809376
http://arxiv.org/abs/arXiv:hep-ph/9809376
http://arxiv.org/abs/arXiv:hep-ph/0505165
https://doi.org/10.12942/lrsp-2004-1
https://doi.org/10.1086/423835
http://arxiv.org/abs/arXiv:astro-ph/0610073
https://doi.org/10.1007/s10714-008-0707-4
https://doi.org/10.1086/150317
https://doi.org/10.1086/158003
https://doi.org/10.1146/annurev.astro.41.111302.102207
http://arxiv.org/abs/arXiv:astro-ph/0307212
https://doi.org/10.1086/508162
http://arxiv.org/abs/arXiv:astro-ph/0608407
https://doi.org/10.1146/annurev.nucl.56.080805.140513


118

178. Dodelson, S. & Widrow, L. M. Sterile-neutrinos as dark matter. Phys. Rev. Lett. 72, 17–20
(1994). doi:10.1103/PhysRevLett.72.17. arXiv:hep-ph/9303287.

179. Feng, J. L. Dark Matter Candidates from Particle Physics and Methods of Detection. Ann.

Rev. Astron. Astrophys. 48, 495–545 (2010). doi:10.1146/annurev-astro-082708-101659.
arXiv:1003.0904.

180. Jungman, G., Kamionkowski, M. & Griest, K. Supersymmetric dark matter. Phys. Rept.

267, 195–373 (1996). doi:10.1016/0370-1573(95)00058-5. arXiv:hep-ph/9506380.

181. Gildener, E. Gauge Symmetry Hierarchies. Phys. Rev. D14, 1667 (1976).
doi:10.1103/PhysRevD.14.1667.

182. Weinberg, S. Gauge Hierarchies. Phys. Lett. 82B, 387–391 (1979). doi:10.1016/0370-
2693(79)90248-X.

183. Goodman, J. et al. Constraints on Dark Matter from Colliders. Phys. Rev. D82, 116010
(2010). doi:10.1103/PhysRevD.82.116010. arXiv:1008.1783.

184. Akerib, D. S. et al. First results from the cryogenic dark matter search
in the Soudan Underground Lab. Phys. Rev. Lett. 93, 211301 (2004).
doi:10.1103/PhysRevLett.93.211301. arXiv:astro-ph/0405033.

185. Ahmed, Z. et al. Search for Weakly Interacting Massive Particles with the First
Five-Tower Data from the Cryogenic Dark Matter Search at the Soudan Underground
Laboratory. Phys. Rev. Lett. 102, 011301 (2009). doi:10.1103/PhysRevLett.102.011301.
arXiv:0802.3530.

186. Ahmed, Z. et al. Dark Matter Search Results from the CDMS II Experiment. Science 327,
1619–1621 (2010). doi:10.1126/science.1186112. arXiv:0912.3592.

187. Agnese, R. et al. Search for Low-Mass Weakly Interacting Massive Particles with
SuperCDMS. Phys. Rev. Lett. 112, 241302 (2014). doi:10.1103/PhysRevLett.112.241302.
arXiv:1402.7137.

188. Angle, J. et al. First Results from the XENON10 Dark Matter Experiment
at the Gran Sasso National Laboratory. Phys. Rev. Lett. 100, 021303 (2008).
doi:10.1103/PhysRevLett.100.021303. arXiv:0706.0039.

189. Aprile, E. et al. The XENON100 Dark Matter Experiment. Astropart. Phys. 35, 573–590
(2012). doi:10.1016/j.astropartphys.2012.01.003. arXiv:1107.2155.

190. Aprile, E. et al. XENON100 Dark Matter Results from a Combination of 477 Live Days.
Phys. Rev. D94, 122001 (2016). doi:10.1103/PhysRevD.94.122001. arXiv:1609.06154.

https://doi.org/10.1103/PhysRevLett.72.17
http://arxiv.org/abs/arXiv:hep-ph/9303287
https://doi.org/10.1146/annurev-astro-082708-101659
http://arxiv.org/abs/arXiv:1003.0904
https://doi.org/10.1016/0370-1573(95)00058-5
http://arxiv.org/abs/arXiv:hep-ph/9506380
https://doi.org/10.1103/PhysRevD.14.1667
https://doi.org/10.1016/0370-2693(79)90248-X
https://doi.org/10.1016/0370-2693(79)90248-X
https://doi.org/10.1103/PhysRevD.82.116010
http://arxiv.org/abs/arXiv:1008.1783
https://doi.org/10.1103/PhysRevLett.93.211301
http://arxiv.org/abs/arXiv:astro-ph/0405033
https://doi.org/10.1103/PhysRevLett.102.011301
http://arxiv.org/abs/arXiv:0802.3530
https://doi.org/10.1126/science.1186112
http://arxiv.org/abs/arXiv:0912.3592
https://doi.org/10.1103/PhysRevLett.112.241302
http://arxiv.org/abs/arXiv:1402.7137
https://doi.org/10.1103/PhysRevLett.100.021303
http://arxiv.org/abs/arXiv:0706.0039
https://doi.org/10.1016/j.astropartphys.2012.01.003
http://arxiv.org/abs/arXiv:1107.2155
https://doi.org/10.1103/PhysRevD.94.122001
http://arxiv.org/abs/arXiv:1609.06154


119

191. Aprile, E. The XENON1T Dark Matter Search Experiment. Springer Proc. Phys. 148,
93–96 (2013). doi:10.1007/978-94-007-7241-0_14. arXiv:1206.6288.

192. Aprile, E. et al. First Dark Matter Search Results from the XENON1T Experiment. Phys.

Rev. Lett. 119, 181301 (2017). doi:10.1103/PhysRevLett.119.181301. arXiv:1705.06655.

193. Hooper, D. Particle Dark Matter. In Proceedings of Theoretical Advanced Study Institute

in Elementary Particle Physics on The dawn of the LHC era (TASI 2008): Boulder, USA,

June 2-27, 2008, 709–764 (2010). arXiv:0901.4090.

194. Gaisser, T. K. Cosmic rays and particle physics (Cambridge University Press, 1991).

195. Malkov, M. & Drury, L. O. Nonlinear theory of diffusive acceleration of particles by
shock waves. Rept. Prog. Phys. 64, 429–481 (2001). doi:10.1088/0034-4885/64/4/201.

196. Strong, A. W., Moskalenko, I. V. & Ptuskin, V. S. Cosmic-ray propagation
and interactions in the Galaxy. Ann. Rev. Nucl. Part. Sci. 57, 285–327 (2007).
doi:10.1146/annurev.nucl.57.090506.123011. arXiv:astro-ph/0701517.

197. Potgieter, M. Solar Modulation of Cosmic Rays. Living Rev. Solar Phys. 10, 3 (2013).
doi:10.12942/lrsp-2013-3. arXiv:1306.4421.

198. Adriani, O. et al. PAMELA Measurements of Cosmic-ray Proton and Helium Spectra.
Science 332, 69–72 (2011). doi:10.1126/science.1199172. arXiv:1103.4055.

199. Yoon, Y. S. et al. Proton and Helium Spectra from the CREAM-III Flight. Astrophys. J.

839, 5 (2017). doi:10.3847/1538-4357/aa68e4. arXiv:1704.02512.

200. Antoni, T. et al. KASCADE measurements of energy spectra for elemental groups
of cosmic rays: Results and open problems. Astropart. Phys. 24, 1–25 (2005).
doi:10.1016/j.astropartphys.2005.04.001. arXiv:astro-ph/0505413.

201. Aab, A. et al. The Pierre Auger Cosmic Ray Observatory. Nucl. Instrum. Meth. A798,
172–213 (2015). doi:10.1016/j.nima.2015.06.058. arXiv:1502.01323.

202. Moskalenko, I. V., Karakula, S. & Tkaczyk, W. The Sun as the source of VHE neutrinos.
Astron. Astrophys. 248, L5–L6 (1991).

203. Seckel, D., Stanev, T. & Gaisser, T. K. Signatures of cosmic-ray interactions on the solar
surface. Astrophys. J. 382, 652–666 (1991). doi:10.1086/170753.

204. Moskalenko, I. V. & Karakula, S. Very high-energy neutrinos from the sun. J. Phys. G19,
1399–1406 (1993). doi:10.1088/0954-3899/19/9/019.

https://doi.org/10.1007/978-94-007-7241-0\T1\textunderscore 14
http://arxiv.org/abs/arXiv:1206.6288
https://doi.org/10.1103/PhysRevLett.119.181301
http://arxiv.org/abs/arXiv:1705.06655
http://arxiv.org/abs/arXiv:0901.4090
https://doi.org/10.1088/0034-4885/64/4/201
https://doi.org/10.1146/annurev.nucl.57.090506.123011
http://arxiv.org/abs/arXiv:astro-ph/0701517
https://doi.org/10.12942/lrsp-2013-3
http://arxiv.org/abs/arXiv:1306.4421
https://doi.org/10.1126/science.1199172
http://arxiv.org/abs/arXiv:1103.4055
https://doi.org/10.3847/1538-4357/aa68e4
http://arxiv.org/abs/arXiv:1704.02512
https://doi.org/10.1016/j.astropartphys.2005.04.001
http://arxiv.org/abs/arXiv:astro-ph/0505413
https://doi.org/10.1016/j.nima.2015.06.058
http://arxiv.org/abs/arXiv:1502.01323
https://doi.org/10.1086/170753
https://doi.org/10.1088/0954-3899/19/9/019


120

205. Ingelman, G. & Thunman, M. High-energy neutrino production by cosmic ray interactions
in the sun. Phys. Rev. D54, 4385–4392 (1996). doi:10.1103/PhysRevD.54.4385.
arXiv:hep-ph/9604288.

206. Hettlage, C., Mannheim, K. & Learned, J. G. The Sun as a high-energy neutrino source.
Astropart. Phys. 13, 45–50 (2000). doi:10.1016/S0927-6505(99)00120-6. arXiv:astro-
ph/9910208.

207. Fogli, G. L., Lisi, E., Mirizzi, A., Montanino, D. & Serpico, P. D.
Oscillations of solar atmosphere neutrinos. Phys. Rev. D74, 093004 (2006).
doi:10.1103/PhysRevD.74.093004. arXiv:hep-ph/0608321.

208. Argüelles, C. A., de Wasseige, G., Fedynitch, A. & Jones, B. J. P. Solar Atmospheric
Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches. JCAP

1707, 024 (2017). doi:10.1088/1475-7516/2017/07/024. arXiv:1703.07798.

209. Ng, K. C. Y., Beacom, J. F., Peter, A. H. G. & Rott, C. Solar Atmospheric Neutrinos:
A New Neutrino Floor for Dark Matter Searches. Phys. Rev. D96, 103006 (2017).
doi:10.1103/PhysRevD.96.103006. arXiv:1703.10280.

210. Edsjo, J., Elevant, J., Enberg, R. & Niblaeus, C. Neutrinos from cosmic ray
interactions in the Sun. JCAP 1706, 033 (2017). doi:10.1088/1475-7516/2017/06/033.
arXiv:1704.02892.

211. Masip, M. High energy neutrinos from the Sun. Astropart. Phys. 97, 63–68 (2018).
doi:10.1016/j.astropartphys.2017.11.003. arXiv:1706.01290.

212. Lipari, P. Lepton spectra in the earth’s atmosphere. Astropart. Phys. 1, 195–227 (1993).
doi:10.1016/0927-6505(93)90022-6.

https://doi.org/10.1103/PhysRevD.54.4385
http://arxiv.org/abs/arXiv:hep-ph/9604288
https://doi.org/10.1016/S0927-6505(99)00120-6
http://arxiv.org/abs/arXiv:astro-ph/9910208
http://arxiv.org/abs/arXiv:astro-ph/9910208
https://doi.org/10.1103/PhysRevD.74.093004
http://arxiv.org/abs/arXiv:hep-ph/0608321
https://doi.org/10.1088/1475-7516/2017/07/024
http://arxiv.org/abs/arXiv:1703.07798
https://doi.org/10.1103/PhysRevD.96.103006
http://arxiv.org/abs/arXiv:1703.10280
https://doi.org/10.1088/1475-7516/2017/06/033
http://arxiv.org/abs/arXiv:1704.02892
https://doi.org/10.1016/j.astropartphys.2017.11.003
http://arxiv.org/abs/arXiv:1706.01290
https://doi.org/10.1016/0927-6505(93)90022-6


121

Appendix A

Unfinished Work

Besides solar neutrino decay, three other phenomena were studied: i) the interaction
of neutrinos with solar magnetic fields through a hypothetical non-zero transition magnetic
moment as a secondary effect on solar neutrino propagation; ii) the production of neutrinos
from the annihilation of dark matter inside the Sun and their oscillation into a sterile flavor;
and iii) neutrino production by cosmic rays interacting in the solar matter as background for
detecting neutrinos from dark matter annihilations.

A.1 Solar Neutrino Spin-Flavor Precession

The massive nature of neutrinos also opens a door for these particles to have non-
zero electric and/or magnetic moments. The consequences of a hypothetical neutrino magnetic
moment have been investigated for a variety of astrophysical phenomena: in the formation
of stars in globular clusters [146], in dense astrophysical environments [147] such as type-II
supernovae [148,149], in the luminosity and pulsation of white dwarf stars [150,151], and even
in ultra-high energy neutrino source such as gamma-ray bursts (GRB) and active galactic nuclei
(AGN) [152].

In fact, shortly after the publication of the first Homestake results [12], one of the
first models proposed to explain the SNP relied on the coupling of the neutrino magnetic
moment to solar magnetic fields [70]. In this model, the interaction with the magnetic fields
would lead to the spin-precession of left-handed neutrinos into right-handed neutrinos.
Right-handed neutrinos do not participate in weak interactions and hence would not be
detected if neutrinos were Dirac particles [153–155]. On the other hand [156], if neutrinos
were Majorana particles, transition between neutrinos of a given family into antineutrinos of
the other families — e.g., νe → ν̄µ/ν̄τ — would also be possible. Soon it would be
noted [157–160] that the combined effect of interactions with matter and magnetic fields
would give rise to resonant transitions, similarly to the MSW effect, later called the Resonant
Spin-Flavor Precession.
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The interaction of neutrinos with the solar magnetic field can, in principle, happen
both in the radiative zone [161–163] and in the convective zone [164–166]. The radiative zone
lacks internal motions that would give rise to large scale magnetic fields, which, if present, are
supposed to be smooth and frozen into the stationary plasma [167]. In the convective zone, on
the other hand, the convective movement of the solar plasma give rise to turbulent magnetic
fields, which, in turn, cause the plethora of phenomena in the surface of the Sun, such as
sunspots. While the mean magnetic field over the solar disc is of the order of 1G, it can be
three orders of magnitude higher in the sunspots. Magnetohydrodynamics models explains
these magnetic fields as being produced by a dynamo mechanism at the bottom of the
convective zone. [168–171].

Even though this phenomenon is currently ruled-out as a primary effect, the spin-
flavor precession can still be investigated as a non-leading effect on the propagation of solar
neutrinos. Since this phenomenon would lead to the production of antineutrinos, its possible
to set upper limits to the neutrino magnetic moment by comparing the expected fluxes to solar
electron antineutrino flux limits.

A.2 Neutrinos from Dark Matter Annihilation

Dark matter, a cold non-barionic kind of matter, is an essential ingredient in the
current cosmological standard model. The existence of this exotic kind of matter was first
evidenced at the measurement of the anomalous rotation curves of galaxies [172–174]. As new
phenomena, such as gravitational lensing [175, 176] and others were discovered, the
gravitational and cosmological data in favour dark matter became overwhelming. However,
such data do not provide information on the nature and properties of the particles that
constitute dark matter. Over the years, several models have been proposed as candidates for
dark matter, such as weakly interacting massive particles (WIMPs), axions [177] and sterile
neutrinos [178], among others [179].

WIMPs are supposed to have masses along the GeV to TeV range and tree-level
interactions with W± and Z0 bosons and are found in a variety of particle physics models, such
as Supersymmetry [180]. WIMPs are one of the most studied candidates for a Dark Matter
particles because of the so-called “WIMP Miracle": during the evolution of the early Universe,
stable WIMPS are naturally produced with the appropriate relic density to account for the
gravitational effect of dark matter, while also providing a solution to the Gauge Hierarchy
Problem, the discrepancy between the Higgs boson mass and the Planck mass scale [181, 182].

WIMPS, for their weakly interacting nature, provide several opportunities for their
detection. Besides the production expected in particle colliders [183], there are two other
possible methods for their detection in astrophysical environments. While orbiting around the
Milky Way, Sun and Earth are constantly moving through the galactic dark matter halo. Dark
matter particles have a small probability of weakly interacting with ordinary matter. Hence, the



123

elastic scattering of nuclei by dark matter particles can be used as a probe and constrain their
properties such as their mass and interaction cross-sections. This is called a direct detection
and several experiments have been design for this purpose such as CDMS [184–187],
XENON [188–192] and others.

On the other hand, the indirect detection of dark matter particles relies on the
detection of ordinary matter produced by the annihilation of dark matter particles, including
photons, neutrinos, and charged particles. For the annihilation to occur, it is necessary that the
DM particles accumulate in high density regions. For example, dark matter particles traversing
the Sun will eventually interact with ordinary matter, losing enough energy to be
gravitationally trapped. As the dark matter density rises in the core, annihilation rate also rises.
Annihilation products are mostly all absorbed except for neutrinos that can propagate outwards
and be detected on Earth. As such, neutrinos are a particularly interesting probe for the indirect
detection of dark matter.

Neutrinos can be generated in a variety of DM annihilation channels depending on
the WIMP model. Heavy quarks, tau leptons, gauge bosons, Higgs bosons generate neutrinos
in a continuous spectrum upon decay, whereas direct DM annihilation into neutrinos is also
possible and generate monochromatic spectra [193]. Once they are produced in the annihilation
of DM particles, they propagate outwards through the solar matter and interplanetary space
before arriving on Earth, where they could be detected.

As such, the detection of such neutrinos could provide information on the specifics
of the DM model, e.g., the particle’s mass or their annihilation cross-section, or their non-
detection could be a problem for WIMP models. However, these DM neutrinos could also, in
principle, not be detected because they oscillate into sterile species.

Preliminary results from this work were presented at the 33rd Brazilian National
Meeting on Particles and Fields (XXXIII Encontro Nacional de Física de Partículas e Campos),
August 27th–31st, 2012.

A.3 Solar Atmosphere Neutrinos

Cosmic Rays (CR) are charged particles — mainly protons — produced and
accelerated in astrophysical phenomena [194]. Most of these particles have their origin in the
Milky Way and are accelerated by shock waves produced by the expansion of supernova
remnants [195], propagating during millions of years in the interstellar medium under
influence of the galactic magnetic fields [196] before escaping the Galaxy. The incidence of
this particles in the solar system is approximately isotropic and, at low energies, are modulated
by the solar activity [197] due to their interaction with the solar winds and magnetic fields.

The measurement of the spectrum of cosmic rays incident upon Earth’s upper
atmosphere is possible by direct methods up energies of the order of TeV [198, 199]. At higher
energies, the lower CR flux requires the spectrum to be inferred by the measurement of the
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so-called air-showers — cascades of particles produced in the CR interaction with the atoms in
the atmosphere — by ground experiments [200, 201]. Atmospheric neutrinos [] are produced
in these cosmic ray interactions from weakly decaying mesons.

Similarly, the incidence of cosmic rays in the Sun and their interaction with the solar
matter will also produce neutrinos [202–207], often called Solar Atmosphere Neutrinos (SAν).
These high energy neutrinos are considered to be a fixed background for the indirect detection
of dark matter, setting a “Sensitivity Floor" [208–211] for neutrino telescopes.

We aimed at finding an semi-analytical approximation for the transport of CR
particles in the solar matter analogous to the typical analytical approximation describing the
CR transport on Earth’s atmosphere and the production of atmospheric neutrinos [194, 212].

Preliminary results from this work were presented at the 35th Brazilian National
Meeting on Particles and Fields (XXXV Encontro Nacional de Física de Partículas e Campos),
August 15th–19th, 2014. This work was idealized and partially performed under supervision of
Dr. Julia Tjus during the sandwich PhD period at Ruhr-Universität Bochum, Germany.



125

Appendix B

Published Work

The results presented in Chapter 4 were published [122] and included in the
following pages.
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propagation between production and detection. Using current oscillation data, we
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1. Introduction

Beyond any reasonable doubt, it is now established that neu-
trinos have non-zero, non-degenerate masses. Thus, it would be 
possible — if not mandatory — for them to decay into other parti-
cles.

Although neutrino decay is now ruled out as a leading pro-
cess [1] in the so-called Solar Neutrino Problem (SNP) — the differ-
ence between the expected solar neutrino flux produced in nuclear 
fusion processes in the Sun and the detected flux on Earth — one 
can investigate this phenomenon as a sub-leading effect in the 
propagation of solar neutrinos and set limits to their lifetime using 
the most recent experimental data.

Solar neutrinos are produced in the nuclear fusion processes 
that power the Sun. In such processes, Hydrogen nuclei are con-
verted into Helium through several intermediate reactions, some 
of which produce neutrinos in very particular spectra — both con-
tinuous and monochromatic.

Over the years, several experiments were developed for the 
detection of solar neutrinos at different energy ranges. From the 
pioneer Homestake [2] chlorine experiment — which first hinted at 
the SNP — through the gallium experiments GALLEX [3], SAGE [4]
and GNO [5] to the water Cherenkov detectors Kamiokande, Su-
perKamiokande [6] and SNO [7]. Most recently, the Borexino [8]
experiment measured the so called 7Be neutrino line.

The LMA-MSW solution — Large Mixing Angle flavor oscillation 
with Mikheyev–Smirnov–Wolfenstein (MSW) resonant flavor con-
version — established the scenario of three massive light neutrinos 
that mix [9] in combination with the measurement of the other 

* Corresponding author.
E-mail address: picoreti@ifi.unicamp.br (R. Picoreti).

oscillation parameters by experiments designed for atmospheric, 
reactor and long-baseline neutrinos. With such precise measure-
ments of the standard oscillation parameters, it is possible to in-
vestigate new phenomena such as the neutrino decay scenario: 
ν ′ → ν + X .

For solar neutrinos, the decay of the mass-eigenstate ν2 into the 
lighter state ν1 is disfavored by the data and the current bound 
to ν2 lifetime for invisible non-radiative decays [1] is τ2/m2 ≥
8.7 × 10−5 s . eV−1 at 99% C.L. Most recently, Ref. [10] argues for 
τ2 / m2 ≥ 7.1 × 10−4 s . eV−1 at 2σ .

Similarly, from the combined accelerator and atmospheric neu-
trino data the lifetime of the ν3 eigenstate is τ3/m3 ≥ 2.9 ×
10−10 s . eV−1 at 90% C.L. [11] and an analysis of the long-
baseline experiments MINOS and T2K gives a combined limit of 
τ3/m3 ≥ 2.8 × 10−12 s .eV−1 at 90% C.L. [12].

In this work, we consider the decay scenario in which all the fi-
nal products are invisible. We combine the available solar neutrino 
data with KamLAND [13] and Daya Bay [14] data. For both exper-
iments the effect of neutrino decay is minimum, allowing us to 
constrain the standard neutrino mixing parameters independently 
of the decay parameter τ2/m2 and leading us to obtain a robust 
bound on ν2 lifetime. Additionally, we show how seasonal varia-
tions in the solar neutrino data, which are enhanced by neutrino 
decay, can give some interesting information about neutrino life-
time.

2. Formalism

After production in the solar core, neutrinos propagate out-
wards undergoing flavor oscillation and resonant flavor transition 
due to the solar matter potential. After emerging from the Sun, 
they travel across the interplanetary medium until they reach the 

http://dx.doi.org/10.1016/j.physletb.2016.08.007
0370-2693/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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Earth’s surface where they can be detected either promptly or af-
ter traversing Earth’s matter — on which they may also be subject 
to matter effects.

The transition amplitude for an electron neutrino produced in 
the Sun to be detected on Earth as a neutrino of flavor α, νe → να , 
for the standard case of neutrino oscillations with MSW effect, can 
be written as [15]

Aeα =
∑

A�
ei Avac

ii A⊕
iα , (1)

where A�
ei is the transition amplitude of an electron neutrino pro-

duced in the solar core to be in a νi mass-eigenstate in the solar 
surface, Avac

ii is the transition amplitude for the propagation be-
tween Sun and Earth surfaces, and A⊕

iα is the transition amplitude 
of a νi to be in a να state upon detection on Earth.

The transition probability is given as P (νe → να) = |Aeα |2. In 
the LMA parameter region one can neglect coherence effects [16]
and simply write the incoherent sum of probabilities:

P (νe → να) =
∑

i

P �
ei P ⊕

iα , (2)

where P�
ei = |A�

ei |2 is the probability of the produced νe to be 
found as a νi at the surface of the Sun, and P⊕

iα = |A⊕
iα |2 is the 

probability of a νi to be detected as a να on Earth.
Considering the current limits to their lifetime, neutrinos do not 

decay inside the Sun and it is sufficient to consider their decay on 
their way to Earth. The survival probability for the invisible decay 
of a neutrino mass-eigenstate i, with energy Eν , after propagating 
a distance L, is

P surv
i = exp

[
−

(
αi

Eν

)
L

]
, with αi = mi

τi
, (3)

where mi is the eigenstate mass, τi is the eigenstate lifetime and 
L is the Sun–Earth distance.

For the assumption that only the ν2 mass-eigenstate is unsta-
ble, the electron neutrino survival probability including decay and 
oscillation for three neutrino families is

P (νe → νe) = c4
13

[
P �

e1 P ⊕
1e + P �

e2

(
P surv

2

)
P ⊕

2e

]
+ s4

13 , (4)

where si j = sin θi j and ci j = cos θi j and P surv
i is given in Eq. (3)

and P �
ei and P ⊕

ie are the probabilities in Eq. (2). One interesting 
consequence of this scenario is that the sum over all probabilities 
is not equal to 1, as explicitly we have

∑
α=e, μ, τ

P (νe → να) = 1 − c2
13 P �

e2

(
1 − P surv

2

)
. (5)

This non-unitary evolution was discussed in Ref. [17].
Another important consequence is that, for appreciable values 

of τ2/m2, the solar neutrino data can be explained by a combina-
tion of standard three neutrino MSW oscillation and decay, which 
leads to a degenerescence between neutrino parameters, specially 
�m2

21 and τ2/m2 [1].

3. Analysis and results

For the analysis of ν2 decay over the Earth–Sun distance and 
how it affects the expected rate for each solar neutrino exper-
iment, we calculate the neutrino survival probabilities as shown 
in Eq. (4) and Eq. (5), numerically, under the assumption of adia-
batic evolution inside the Sun [18]. Then, we compute the expected 
event rate for each relevant experiment and compare it to their 
data.

We include Homestake total rate [2], GALLEX and GNO com-
bined total rate [19], SAGE total rate [4], SuperKamiokande I 
full energy and zenith spectrum [20], SNO combined analy-
sis [7] and Borexino 192-day low-energy data [21]. Then, we 
build a χ2 function as a function of the relevant parameters 
χ2� = χ2�(tan2 θ12,�m2

21, sin2 θ13, τ2/m2).
We can add complementary information from the reactor ex-

periments KamLAND [13] and Daya Bay [14] and their detection of 
ν̄e oscillations. One important point that led us toward this anal-
ysis is the fact that these experiments give precise constraints on 
�m2

21 and sin2 θ13. KamLAND and Daya Bay have typical baselines 
of L/Eν ∼ 10−10 s . eV−1 and ∼ 10−12 s . eV−1 respectively. For the 
currently allowed values of τ2/m2, one has that P surv

i ∼ 1, which 
implies that, in the context of these experiments, decay can be ne-
glected and the relevant neutrino probability is the standard three 
neutrino expression

P (ν̄e → ν̄e) = 1 − c4
13 S2

12 sin2 �21 − S2
13 sin2 �m2

ee , (6)

where Sij = sin 2θi j , �i j = �m2
i j/4Eν and �m2

i j ≡ m2
i − m2

j , and 
we define an effective mass square difference sin2 �m2

ee ≡
c2

12 sin2 �31 + s2
12 sin2 �32.

This implies that the standard neutrino analysis for three neu-
trinos of KamLAND and Daya Bay experiments can also be used for 
decay scenario. In other words, we can identify χ2

decay = χ2
no decay

in our analysis for both experiments.
For the KamLAND experiment, a χ2

KL function for the standard 
three neutrino scenario used in Ref. [13] is available in table for-
mat as a function of tan2 θ12, �m2

21 and sin2 θ13. For the Daya Bay 
experiment, the χ2

DB function is available in table format provided 
in the supplementary material from Ref. [14] as a function of �m2

ee

and sin2 θ13.
Then, we write the combined χ2 function for solar, KamLAND 

and Daya Bay data as

χ2 = χ2�(tan2 θ12,�m2
21, sin2 θ13, τ2/m2) +

+ χ2
KL(tan2 θ12,�m2

21, sin2 θ13) +
+ χ2

DB(�m2
ee, sin2 θ13) , (7)

Fig. 1. Allowed regions for the decay parameter τ2/m2 and the mass squared differ-
ence �m2

21. The hollow curves represent the analysis with only solar neutrino data 
and the filled curves represent the combined analysis of solar, KamLAND and Daya 
Bay data. The dotted, dashed and continuous lines represent respectively 90% C.L., 
99% C.L. and 99.9% C.L.
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Fig. 2. �χ2 for ν2 lifetime τ2/m2. The dashed (continuous) curve shows the solar 
(combined) neutrino data analysis.

where �m2
ee was defined before and over which we can promptly 

marginalize the χ2. From Eq. (7), we find the allowed regions for 
independent parameters tan2 θ12, sin2 θ13, �m2

21, and τ2/m2. By 
marginalizing over the first two, we obtain the allowed region for 
the mass squared difference �m2

21 and the decay parameter τ2/m2
as shown in Fig. 1, where the hollow (filled) regions show the re-
sults for the solar neutrino (combined) analysis.

The degenerescence between �m2
21 and τ2/m2 is evident in the 

hollow regions of Fig. 1, where higher values for �m2
21 are allowed 

alongside lower values for τ2/m2 and lower values for �m2
21 are 

allowed alongside higher values for τ2/m2.
High values of �m2

21 are ruled out in the standard neutrino 
scenario because it leads to spectral distortions that are disfavored 
by the solar neutrino data. On the other hand, high values of �m2

21
could become a viable solution at the cost of having lower values 
of τ2/m2. The inclusion of KamLAND and Daya Bay data breaks this 
degenerescence due to their precise independent measurement of 
�m2

21 and sin2 θ13 respectively.
We can now precisely isolate the contribution of the decay pa-

rameter τ2/m2. The complete marginalization over the standard 
parameters results in the curve shown in Fig. 2 of �χ2 as a func-
tion of τ2/m2. From it, we can extract a lower limit to the ν2
eigenstate lifetime

τ2 /m2 ≥ 7.7 × 10−4 s .eV−1, at 99% C.L. , (8)

which corresponds to an upper bound to the decay parameter α2 ≤
8.5 × 10−13 eV2.

4. Seasonal effect

One interesting consequence of the decay scenario that has 
not been discussed recently is its effect in the seasonal varia-
tion of solar neutrino flux. In the absence of decay, the neu-
trino flux arriving on Earth is given by φ⊕

ν = φ�
ν /(4πr2), where 

r = r(t) is the time-dependent Earth–Sun distance. The ratio be-
tween maximum (at perihelion) and minimum (at aphelion) fluxes 
is R0 = (1 + ε0)

2/(1 − ε0)
2, where ε0 = 0.0167 is the eccentricity 

of Earth’s orbit.
The inclusion of decay modifies the ratio between maximum 

and minimum neutrino fluxes and hence also the measured eccen-
tricity ε as given by

Table 1
Experimental best-fit values and errors for Earth’s orbital eccentricity ε for different 
solar neutrino experiments. We also show the ratio between the fitted values and 
Earth’s eccentricity ε0.

Experiment εexp ± σexp
(
εexp ± σexp

)
/ε0

Borexino [8] 0.0398 ± 0.0102 2.38 ± 0.61
SK-I [22] 0.0252 ± 0.0072 1.51 ± 0.43
SNO Phase I [23] 0.0143 ± 0.0086 0.86 ± 0.51

Fig. 3. Left: Experimental values for ε/ε0. Black lines are the best-fit values and 
darker (lighter) shades are the 1σ (2σ ) ranges as shown in Table 1. Right: Depen-
dence of the orbital eccentricity ε with the neutrino lifetime τ2/m2 as it would be 
measured by different experiments — the 7Be line in Borexino (BOR), and the 8B 
spectrum in Super-Kamiokande (SK) and SNO.

R = R0
N(rper)

N(raph)
= (1 + ε)2

(1 − ε)2
, (9)

where raph (rper) is the aphelion (perihelion) distance and N is the 
number of events calculated from the convolution of the adequate 
probabilities and cross sections for each experiment.

From Eq. (4) and Eq. (5), we know that N(rper) > N(raph) holds 
also for the decay scenario due to P surv

2 dependence on the orbital 
distance. This implies that R > R0 for all energies and thus, for any 
neutrino decay scenario, an enhancement in the seasonal variation 
of the solar neutrino flux would be expected.

Thus, the measurement of an eccentricity ε > ε0 is a hint in the 
direction of the neutrino decay scenario. In fact, some experiments 
have measured Earth’s orbital eccentricity to be different than the 
standard value albeit still compatible with ε0 as shown in Table 1.

Fig. 3 shows the dependence of the neutrino eccentricity ε
with the neutrino lifetime τ2/m2 as it would be measured by Su-
perKamiokande (SK), SNO and Borexino (BOR) experiments. As it 
can be seen, the higher energy 8B solar neutrinos (measured by 
SK and SNO) would have a greater seasonal variation due to decay 
than the lower energy 7Be solar neutrinos (measured by Borexino).

Due to the MSW effect, the ν2 content in the neutrino flux 
leaving the Sun is energy dependent. At higher energies, there are 
more ν2 neutrinos available for decay during the propagation to 
Earth. On the other hand, for lower energy neutrinos, there are 
fewer ν2 leaving the sun and thus fewer ν2 available for decay. 
For this reason, the seasonal variation for higher energy neutri-
nos would be bigger than for lower energy neutrinos and, con-
sequently, also the measured eccentricity. Also from Fig. 3, it can 
be seen that due to the decay survival probability in Eq. (3), the 
lower (higher) the energy of the neutrinos, the bigger (smaller) is 
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the lifetime for which the enhancement in the eccentricity is max-
imum.

We can now include the eccentricity data in the analysis 
as a penalty function added to the χ2 for each experiment: 
χ2

seasonal = (εexp − ε)2/(σexp)2. The marginalization of the com-
bined �χ2 results in a slightly lower value

τ2 /m2 ≥ 7.2 × 10−4 s .eV−1, at 99% C.L. (10)

for the decay parameter. This is due to the fact that the seasonal 
variation data favor non-zero values for the lifetime while the solar 
data analysis favors a no-decay scenario. The combination of both 
samples results in the lower value for the neutrino lifetime.

5. Conclusion

We know that neutrinos oscillate with non-zero mass differ-
ences and mixing angles. Can neutrinos decay? The answer is neg-
ative from the combined analysis of data of solar neutrino exper-
iments and KamLAND and Daya Bay data. From our analysis, we 
have obtained a new upper bound to the ν2 eigenstate lifetime 
τ2 / m2 ≥ 7.2 × 10−4 s . eV−1 at 99% C.L. which is almost one or-
der higher than the previous established bound [1] at τ2/m2 ≥
8.7 × 10−5 s . eV−1 at 99% C.L. Also, for comparison with Ref. [10], 
our result at 2σ is τ2 / m2 ≥ 1.1 × 10−3 s . eV−1 which is a similar 
but more constrained result.

Also, we have shown how decay can enhance the seasonal vari-
ation of solar neutrino fluxes and how it affects the measurement 
of Earth’s orbital eccentricity. Current data is not good enough 
to improve the constraints to neutrino lifetime. Although future 
experiments could certainly improve on the measurement of so-
lar neutrino fluxes and thus better constrain neutrino lifetime, 
the analysis of existing data from later phases of, e.g., Super-
Kamiokande and SNO for its seasonal variation could, in principle, 
already improve such constraints. We urge those experimental col-
laborations [22,23] to redo their analysis with more of the available 
data.
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