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Resumo
O objetivo deste trabalho é estudar variedades tóricas generalizadas, explorando a relação
entre orbifolds e quasifolds tóricos, de um lado, e grupóides de Lie, do outro. Nós apresen-
tamos uma construção geral que usa o framework matemático das variedades LVMB para
relacionar simultaneamente variedades, orbifold e quasifold tóricos, a grupóides de Lie.
Como uma aplicação de nossa construção associamos a grupóides de Lie uma família de
variedades que incluem o CP d e alguns de seus variantes orbifold e quasifold. Em outra
aplicação, nós associamos a grupóides de Lie a uma família de variedades que incluem
superfícies de Hirzebruch e alguns de seus variantes orbifold e quasifold.

Palavras-chave: quasifolds, orbifolds, variedades tóricas, variedades LVMB, grupóides
de Lie.



Abstract
The aim of this work is to study generalized toric varieties, by exploring the relationship
between toric orbifolds and quasifolds, on one side, and Lie groupoids, on the other. We
present a general construction that uses the mathematical framework of LVMB manifolds
to relate simultaneously toric varieties, orbifolds and quasifolds, to Lie groupoids. As an
application of our construction we associate to Lie groupoids a family of varieties that
include CP d and some of its orbifold and quasifold variants. As another application, we
associate to Lie grupoids a family of varieties that include Hirzerbruch surfaces and some
of its orbifold and quasifold variants.

Keywords: quasifolds, orbifolds, toric varieties, LVMB manifolds, Lie groupoids.
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Introduction

Orbifolds were first introduced by Satake (SATAKE, 1957; SATAKE, 1956) as
a generalization of the notion of manifold. While a manifold is locally modelled by open
subsets of Euclidean spaces, orbifolds are modelled by the quotient space of such open
sets by a finite group action.

More recently, (MOERDIJK; PRONK, 1997; MOERDIJK; PRONK, 1999) a
close relation was established between orbifolds and certain kinds of Lie groupoids. More
specifically, given an orbifold it is possible to construct a proper effective Lie groupoid.
Conversely, a proper effective groupoid yields an effective orbifold (See Section 1.4 for
more details).

Subsequently, quasifolds were introduced by Prato (PRATO, 2001) as a general-
ization to orbifolds. A motivation to this was the correspondence via the convexity theorem
of Guillemin-Sternberg and Atiyah (GUILLEMIN; STERNBERG, 1982; ATIYAH, 1982),
and results of Delzant (DELZANT, 1988), between toric varieties and certain polytopes.
This correspondence was extended by (LERMAN; TOLMAN, 1997) to the case of toric
orbifolds. Then (PRATO, 2001; BATTAGLIA; PRATO, 2001) extended it to the case of
toric quasifolds.

Toric orbifolds and quasifolds can be considered generalized toric varieties. A re-
cent interest in this type of space comes from mirror symmetry: (AUROUX; KATZARKOV;
ORLOV, 2008) proves mirror symmetry for weighted projective planes, which are exam-
ples of toric orbifolds, and also for its noncommutative deformations; (KATZARKOV et
al., 2021) proposes noncommutative toric varieties as stacks, relating them with LVMB
manifolds. For another perspective of toric stacks, see (HOFFMAN; SJAMAAR, 2018).

The main conceptual difference between orbifolds and quasifolds is that the
linear finite group action is being replaced by a not necessarily linear action by a discrete
group. Another main difference between orbifolds and quasifolds is that quasifolds are
usually not Hausdorff. We can see that, up to technical details, the definition of a quasifold
generalizes the definition of orbifold. However chart compatibility conditions for quasifolds
are more involved than the ones for orbifolds. Although the definition is apparently similar
to chart compatibility of manifolds, the requirement that chart domains and also the chart
intersections be simply connected implies, in case this is not true, that we must pass to the
universal cover and lift the transition maps. This causes practical issues. Another technical
difficulty is that the use of discrete group action imposes the absence, in general, of a
slice theorem, as is the case for finite actions. As a consequence, a more straightforward
generalization of the relationship, as mentioned above, between Lie groupoids and orbifolds,
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to a relationship between Lie groupoids and quasifolds is made more difficult.

One of the main contributions of this Thesis is to explore the relationship
between quasifolds and Lie groupoids. We sought a mathematical framework that would
allows us to relate simultaneously toric varieties, orbifolds and quasifolds, to Lie groupoids,
and bypass these technical issues. In order to achieve that, we work with LVMB manifolds.

LVMB manifolds are a family of complex, compact foliated manifolds, originally
introduced by Lopes de Medrano and Verjovsky (MEDRANO; VERJOVSKY, 1997) and
then further generalized by (MEERSSEMAN, 2000) and (BOSIO, 2001). Just like toric
varieties, orbifolds and quasifolds can be constructed starting from the combinatorial
data that determines their associated polytope, LVMB manifolds can also be constructed
from the same data. The work of Battaglia and Zaffran (BATTAGLIA; ZAFFRAN, 2017;
BATTAGLIA; ZAFFRAN, 2015) shows how these two types of spaces are linked (see
Chapter 2).

In order to relate a toric quasifold with a Lie groupoid, we prove our main
result:

Theorem 1. Consider a triangulated vector configuration (V, T ). Using this initial data,
we can construct an LVMB manifold N and a group HF acting on it such that the orbits
of the action yield a foliation F . There are submanifolds Ni of N such that each leaf of the
foliation intersects at least of the Ni, and such that the pullback G of the action groupoid
HF × N via the "inclusion"

�
Ni → N is a Lie groupoid.

From (V, T ), we can classically obtain a toric variety, orbifold or quasifold. We
expect to be able to recover this generalized toric variety from the Lie groupoid G of the
main theorem. With this method, we can put parameters on the combinatorial data and
associate a whole family of toric varieties, orbifolds, quasifolds to a corresponding family
of Lie groupoids.

We also present direct proofs of two applications of this Theorem.

Theorem 2. Let

v1 := (1, 0, . . . , 0),
v2 := (0, 1, 0, . . . , 0),

...
vd := (0, . . . , 0, 1),

vd+1 := (−α1, . . . , −αd)

be vectors in Rd. Let Δ ⊂ Rd be the fan made out of each proper subset of {v1, . . . , vd+1},
with α1, ..., αd ∈ R>0.
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For each choice of parameters α1, ..., αd ∈ R>0, we construct a Lie groupoid
associated to Δ.

We note that for α1 = ... = αd = 1, this is the fan associated to CP d, and
by varying the parameters α1, ..., αd ∈ R>0, we can classically obtain toric orbifold and
quasifold variants of CP d.

As another application, we prove:

Theorem 3. Let

v1 := (1, 0),
v2 := (0, 1),
v3 := (0, −1),
v4 := (−1, a)

be vectors in R2, with a > 0.

Let Δ ⊂ R2 be the fan whose higher-dimensional cones are generated by
(v1, v2), (v2, v4), (v3, v4), (v1, v3).

For each choice of a > 0, we construct a Lie groupoid associated to Δ.

We note that for a = n ∈ Z a positive integer, this is the fan associated to the
classic Hirzebruch surfaces. Fn, and by varying the parameter a ∈ R>0, we can classically
obtain a family of toric varieties, orbifolds and quasifolds that contain the Hirzebruch
surfaces. This family was studied by (BATTAGLIA; PRATO; ZAFFRAN, 2019), in the
context of LVMB manifolds.

Now we present a brief description of the contents of this document.

In chapter 1 we talk about smooth toric varieties and we illustrate how they
can be constructed from combinatorial objects known as Delzand polytopes. We then
mention how this process was generalized, yielding toric orbifolds (LERMAN; TOLMAN,
1997) and toric quasifolds (PRATO, 2001; BATTAGLIA; PRATO, 2001).

We talk about orbifolds, and discuss some of the differences in the statements
of the classical definition of orbifolds in the literature. We also expand on some classical
proofs, and cite explicitly many of the prerequisite knowledge necessary to understand
them. We hope this will be useful to the reader starting to study orbifolds. We also discuss
some of the differences between the definition of orbifolds and quasifolds. Finally we touch
on how orbifolds and Lie groupoids have been related.

In chapter 2, we describe LVMB manifolds, and mention how the leaf space
of these manifold relate to toric varities, orbifolds and quasifolds. We prove the main
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Theorem. We exhibit a family of LVMB manifolds associated to n-dimensional complex
projective space (and some of its orbifold and quasifold variants) We also exhibit a family
of LVMB manifolds related to a family of spaces that contains the Hirzebruch surfaces
(and some of its orbifold and quasifold variants). We apply the main Theorem to these
two cases, but also present direct proofs.

In the appendix, we collect some basic results that were used, such as the
theory of Gale duals, theory of tubes and slices for compact Lie group actions, and some
basic manifold theory results. We also collect definitions related to Lie groupoids.
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1 Smooth Toric Varieties, Orbifolds and
Quasifolds, and Lie groupoids

1.1 Smooth Toric Varieties, Toric Orbifolds and Quasifolds
Toric varieties are objects that can be constructed from combinatorial infor-

mation and can be studied from the perspective of algebraic geometry or differential
geometry.

Definition 1. (COX; LITTLE; SCHENCK, 2011, p.106) A toric variety is an irre-
ducible variety X containing a torus TN � (C∗)n as a Zarisky open subset such that the
action of TN on itself extends to an algebraic action of TN on X.

The toric varieties that appear in this work are projective and compact. Fur-
thermore, they will be either toric manifolds, or toric orbifolds.

Definition 2. (SILVA, 2001) A toric manifold is a compact connected symplectic
manifold (M, ω) equipped with an effective hamiltonian action of a torus T of dimension
equal to half the dimension of the manifold, and with a choice of a corresponding moment
map µ.

A reference for toric varieties in algebraic geometry is (COX; LITTLE; SCHENCK,
2011), Chapters 1 to 3 are relevant to this work. In the context of differential geometry, toric
manifolds can be constructed, on one hand, from a procedure due to Delzant (DELZANT,
1988), starting from the geometric-combinatorial information of a Delzant polytope.

Definition 3. A Delzant polytope in Rn is a polytope that is

• simple, that is, each vertex of the polytope is adjacent to exactly n edges;

• rational, that is, the edges that meet at at vertex p are of the form p + tui, with
t ≥ 0, where ui ∈ Zn;

• smooth, that is, for each vertex, the corresponding vectors ui, . . . , un can be chosen
to compose a basis for Zn.

Theorem 4 (Delzant - Existence). (DELZANT, 1988) Given a Delzant polytope P, it is
possible to construct a toric manifold P .
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Theorem 5 (Delzant - Uniqueness). (DELZANT, 1988) Let (M1, µ1), (M2, µ2) be 2n-
dimensional toric manifolds (with Tn acting on them) such that µ1(M1) = µ2(M2). Then
there exists a Tn-equivariant symplectic diffeomorphism F : M1 → M2 such that

µ1 = µ2 ◦ F

On the other hand, if we restrict the hypothesis of the following Convexity
theorem to a toric manifold, the image of the momentum map will be a Delzant polytope.

Theorem 6. (GUILLEMIN; STERNBERG, 1982; ATIYAH, 1982) Let (M, ω) be a
compact connected symplectic manifold, and let Tm be an m-torus. Suppose that ψ :
Tm × M → M is a Hamiltonian action with momentum map µ : M → Rm. Then:

1. the levels of µ are connected;

2. the image of µ is convex;

3. the image of µ is the convex hull of the images of the fixed points of the action. More
specifically, the image of µ is a convex polytope.

The two theorems above, as written, are taken from (SILVA, 2003; SILVA,
2001), where they are discussed.

Now we will show how to construct a smooth toric variety from a Delzant
polytope, following the exposition of (GUILLEMIN, 1994).

Let P ⊂ Rn be a Delzant polytope. It follows from its definition that P is
n-dimensional. We will need the description of P as an intersection of closed half-spaces,
which is possible for every polytope (ZIEGLER, 1995):

P = ∩d
i=1{x ∈ Rn | �x, ui� ≥ λi}, (1.1)

where �·, ·� is the standard inner product in Rn, ui ∈ Rn, λi ∈ R, and such that Fi = P ∩Hi

is a facet of P , where
Hi = {x ∈ Rn | �x, ui� = λi}

is the supporting hyperplane of Fi.

Now, it is a property of Delzant polytopes that, in the description above, the
vectors ui can be taken to be in Zn, and such that they are primitive (this means that
there is no positive integer ki different that one such that 1

ki

ui is also in Zn). Let us make
this choice.

Let B = (e1, . . . , ed) be the standard basis for Rd, and define the map

π : Zd → Zn, (1.2)
ei �→ ui (1.3)
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and its unique extension
π : Rd → Rn. (1.4)

which exists because Zd is a free abelian group with basis B.

Since P is smooth, these maps are surjective.

Let Ti = Ri

Zi
, with i = d, n, and with the group quotient given by the standard

action (i.e., by translation).

Consider the induced quotient map π̃ : Td → Tn defined by the commutative
diagram

Rd Rn

Td Tn

ρd

π

ρn

π̃

where ρi is the canonical projection. Since ρn ◦ π is a homomorphism and Zd ⊆ Ker(ρn ◦ π)
(it is here that we use that ui ∈ Z), the induced map π̃ that makes the diagram commutative
is well-defined and a homomorphism. Is is smooth, because ρn ◦ π is smooth, and πd is a
smooth submersion. It is surjective because ρn ◦ π is surjective.

From now on, we rename π̃ to π.

Let us denote the kernel of π : Td → Tn by N . Since this map is surjective,
there is a short exact sequence

0 → N → Td → Tn → 0.

Consider Cd as a symplectic manifold, with the usual symplectic form

i

2

d�

i=1
dzi ∧ dz̄i.

Td acts on Cd by the multiplication maping

eiθz = (eiθ1z1, . . . , eiθdzd)

and this action is Hamiltonian with moment map

J : Cd → Rd, (1.5)

z �→ 1
2(|z1|2, . . . , |zd|2) + c, (1.6)

where c ∈ (Rd)∗ is an arbitrary constant. We will fix c = λ = (λ1, . . . , λd) with the λi as
in (1.1).

By restricting the action of Td on Cd to N , we get a Hamiltonian action of N

on Cd whose moment map is the following: let ι : N → T d be the inclusion map and let
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n = Lie(N) be the Lie algebra of N . Let us denote by the same symbol the map ι : n → Rd,
given by the derivative of the inclusion map at the identity element. Let ι∗ : (Rd)∗ → n∗

be the transpose of ι. The moment map for the action of N on Cd is ι∗ ◦ J

It can be shown (GUILLEMIN, 1994) that

Theorem 7. (ι∗ ◦ J)−1(0) is a compact subset of Cd and N acts freely on this set.

Symplectic reduction then gives us that

XP := (ι∗ ◦ J)−1(0)
N

is a compact symplectic manifold. This manifold is the smooth toric variety associated to
the Delzant polytope P .

Example 1. Let P be the interval [−1, 1] ⊂ R. Then XP = CP 1.

P is Delzant:

• as can be seen, there is 1 edge meeting in each vertex;

• for the vertex (−1), the edge is of the form (−1) + tv1, where v1 = 1 ∈ Z1 � (Z1)∗,
and t ∈ [0, ∞);

• for the vertex (1), the edge is of the form (1) + tv1, where v1 = −1 ∈ Z1 � (Z1)∗,
and t ∈ [0, ∞);

• For each vertex, v1 is a basis for Z1.

By definition, XP = (ι∗ ◦ J)−1(0)/N .

First, we will describe (ι∗ ◦ J)−1(0).

Step 1: we write down the supporting hyperplanes for the 0-dimensional faces
F of P , which are the vertices (−1) and (1). That is, we need λi ∈ R, ui ∈ Z1 such that
�ui, x� = λi, for every x ∈ Fi and such that

P = ∩2
i=1{x ∈ R | �x, ui� ≥ λi}.

We also want ui primitive.

For F1 = (−1), we have u1 = 1 and λ1 = −1. Note that for x = −1, �1, −1� =
−1 = λ1, and for x ∈ [−1, 1], �1, x� = x ≥ −1.

For F2 = (1), we have u2 = −1 and λ2 = −1. Note that for x = 1, �−1, 1� =
−1 = λ2, and for x ∈ [−1, 1], �−1, x� = −x ≥ −1.
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Step 2: Let e1, e2 be the standard basis vectors for R2. Define

π : Z2 → Z,

e1 �→ u1, e2 �→ u2,

and consider its unique extension π : R2 → R, and the induced quotient map

π : T2 → T,

[x, y] �→ [x − y].

Step 3: Let N = Ker π We have the exact sequence

0 → N �→ T2 → T → 0

Note that

[x1, x2] ∈ N ⇐⇒ π([x1, x2]) = 0
⇐⇒ [x1 − x2] = 0
⇐⇒ x1 − x2 ∈ Z.

Thus N = {[x, x] | x ∈ R}.

Step 4: If we write n = Lie(N) = {(x, x)} | x ∈ R, then the exponential
map exp : n → N is just the restriction of the exponential map exp = ρ2 : R2 → T. Let
ι : N → T2 be the inclusion. Then the induced map ι : n → R2 is also the inclusion.

We need to compute ι∗ : (R2)∗ → (n)∗. Fixing the bases {e1, e2} for R2 and
{(1, 1)} for n, we use the definition of the transposition map, to see that both (e1)∗ and
(e2)∗ are sent by ι∗ to (1, 1)∗. Now we will use these bases to identify (R2)∗ � R2 and
(n)∗ � R.

Recall from the general case that the standard action of T2 on C2 is Hamiltonian
with moment map

J : C2 → R2,

z �→ 1
2(|z1|2 + λ1, |z2|2 + λ2).

Then using the identification above, we have

(ι∗ ◦ J)(z) = 1
2(|z1|2 + λ1 + |z2|2 + λ2).

Step 5: An investigation of the quotient (ι∗ ◦ J)−1(0)/N , shows that it is a
closed disc on C, with the border identified, and so, can be identified with CP 1.
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1.1.1 Toric Orbifolds and Quasifolds
If the smoothness condition in Definition 3 is relaxed, then through a general-

ization of Delzant’s procedure carried out in (LERMAN; TOLMAN, 1997), we obtain a
toric orbifold (see Section 1.2 for the definition of orbifold).

A symplectic orbifold is an orbifold equipped with a differential form ω where
the representative ω̃ in each chart (Ũ , G, φ)} is a symplectic form on Ũ . The definitions
of group action, hamiltonian action, momentum map and toric orbifold are analogous to
the definitions in the category of smooth manifolds. Analogous results to the convexity
theorem and Delzant’s classification have also been proved in (LERMAN; TOLMAN,
1997).

Now, if the rationality condition in Definition 3 is relaxed, then through a
generalization of Delzant’s procedure carried out in (PRATO, 2001), the geometric object
obtained is a toric quasifold (See 1.3 for a definition of quasifolds). Just like for toric
orbifolds, (PRATO, 2001) has proved analogous results to the convexity and Delzant
classification theorems.

It is important to mention that a classification of toric quasifolds via polytopes
has also been achieved by (PRATO, 2001). In a subsequent work (BATTAGLIA; PRATO,
2001), another construction for quasifolds in presented, in which they are endowed with a
complex structure, compatible with the symplectic one.

1.2 Orbifolds
In this section we collect some of the basic results on orbifolds that are relevant

for us. We provide more details to proofs in the literature and also the prerequisite material
necessary to understand those proofs.

Orbifolds were originally introduced by Satake (SATAKE, 1956; SATAKE,
1957) (see the introduction of (ADEM; LEIDA; RUAN, 2007) for an account of the history
of orbifolds in algebraic and differential geometry). We follow the material as presented
in (ADEM; LEIDA; RUAN, 2007; MOERDIJK; PRONK, 1997), which is adapted from
(SATAKE, 1957). We point out what are the adaptations.

Definition 4. Let X be a topological space, and fix n ≥ 0. An n-dimensional orbifold
chart on X is a triple (Ũ , G, φ), where Ũ ⊂ Rn is a connected open subset, G is a
finite group acting smoothly on Ũ , and φ : Ũ → X is G-invariant map which induces a
homeomorphism of Ũ/G onto an open subset U ⊂ X, where Ũ/G has the quotient topology.

Remark 1. The definition of an orbifold chart in (MOERDIJK; PRONK, 1997; ADEM;
LEIDA; RUAN, 2007) states, instead of a smooth group action G on Ũ , that G is a finite
group G of smooth automorphisms of Ũ .
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Because of this subtle difference, the induced group action of G on Ũ is
automatically effective.

In this text, effectivity of the action will be added explicitly.

The definition of an orbifold chart in (SATAKE, 1957), is the same as in
(MOERDIJK; PRONK, 1997; ADEM; LEIDA; RUAN, 2007) but with the added hypothesis
that the finite group of smooth automophisms G has a set of fixed points of dimension
≤ m − 2.

(SATAKE, 1957) uses this hypothesis to prove a foundational lemma, as we
will see. (MOERDIJK; PRONK, 1997) removed this hypothesis, as they were able to prove
the same Lemma without it.

Remark 2. Let φ̃ be the induced map, and π the canonical quotient map. Then the
following diagram is commutative.

Ũ

Ũ/G U

π φ

φ̃

Recall that π is the quotient map of a continuous action of a topological group,
and so it is open (Lemma 29).

Since φ̃ and π are continuous, surjective, and open and φ = φ̃ ◦ π, then so is φ

(Theorem 19).

On the other hand, if we assume that the G-invariant map φ is continuous, and
open, then U := φ(Ũ) ⊂ X is open, and the induced map φ̃ is continuous (Theorem 20),
bijective and open. Thus φ̃ is a homeomorphism.

Definition 5. (MOERDIJK; PRONK, 1997)(ADEM; LEIDA; RUAN, 2007, p. 2) Let X

be a topological space, and fix n ≥ 0. An embedding λ : (Ũ , G, φ) �→ (Ṽ , H, ψ) between
two n-dimensional orbifold charts is a smooth embedding λ : Ũ �→ Ṽ with ψ ◦ λ = φ.

Remark 3. Let λ : (Ũ , G, φ) �→ (Ṽ , H, ψ) be an embedding. By Proposition 8, λ : Ũ �→
λ(Ũ) is a diffeomorphism.

Since Ũ , Ṽ are both n-dimensional manifolds and λ : Ũ �→ Ṽ is a smooth
embedding, then (Proposition 9) λ : Ũ �→ Ṽ is a local diffeomorphism. In particular, it is
an open map and λ(Ũ) ⊂ Ṽ is open in Ṽ , and thus in Rn.

Definition 6. (MOERDIJK; PRONK, 1997)(ADEM; LEIDA; RUAN, 2007, p. 2) Let X

be a topological space, and fix n ≥ 0.

1. An orbifold atlas on X is a family U = {(Ũi, Gi, φi)}i∈I of orbifold charts, such
that X =

�

i∈I

φi(Ũi) and such that each two charts are locally compatible: given
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any two charts (Ũ , G, φ) with U = φ(Ũ) ⊂ X and (Ṽ , H, ψ) with V = ψ(Ṽ ) ⊂ X,
and a point x ∈ U ∩ V , there exists an open neighborhood W ⊂ U ∩ V of x and a
chart (W̃ , K, µ) for W such that there are embeddings (W̃ , K, µ) �→ (Ũ , G, φ) and
(W̃ , K, µ) �→ (Ṽ , H, ψ).

2. An atlas U refines, or is a refinement of, another atlas V if for every chart in U
there exists an embedding into some chart of V. Two orbifold atlases are equivalent
if they have a common refinement.

Definition 7. (ADEM; LEIDA; RUAN, 2007, p. 2) An effective orbifold X of dimen-
sion n is a paracompact Hausdorff space X equipped with an equivalence class [U ] of an
n-dimensional orbifold atlas U = {(Ũi, Gi, φi)}i∈I , such that the action of Gi on Ũi is
effective for every i ∈ I.

Note that the notion of compatibility for orbifold charts is more subtle than
the one for manifolds. Instead of asking for smoothness of a change of charts, composing
the two partially overlaping chart maps, what is required is a refinement common to
both charts. Note however that the existence of this refinement, plus the following lemma
ensures that a suitable restriction of one chart embedds into the other.

Lemma 1. (MOERDIJK; PRONK, 1997, p.4) (ADEM; LEIDA; RUAN, 2007, p.3) Let
(Ũ , G, φ) and (Ṽ , H, ψ) be two charts for the same orbifold structure on M . Suppose Ũ is
simply connected, and φ(Ũ) ⊂ ψ(Ṽ ). Then there exists an embedding (Ũ , G, φ) → (Ṽ , H, ψ)

For the notations in the next Lemma, refer to the appendix section on group
actions.

Lemma 2. Let (Ũ , G, φ) be an orbifold chart.

1. (MOERDIJK; PRONK, 1997, p.4) Let g ∈ G, and suppose the action of g on Ũ is
not trivial. Then the set Sg of non-fixed points of g is open and dense in Ũ .

2. (ADEM; LEIDA; RUAN, 2007, p. 2) If the action is effective, it will act freely on a
dense open subset, namely, the set S of nonfixed points of the chart.

3. The set Z of fixed points of the chart is a finite union of closed submanifolds.

Proof. (1) follows from Lemma 27 applied to g, which is a nontrivial automorphism on
the connected manifold Ũ (Since G is finite, g is of finite order).

If the action is effective, then for any g �= 1, its action on Ũ is not trivial, and
we can apply (1). We then observe that G is finite and that a finite intersection of open
and dense subsets is open and dense (Lemma 26). Finally we apply Lemma 28.
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Let us prove (3). First we note that

Z = {x ∈ x | gx = x for some g �= 1 ∈ G}
=

�

{1}�=H≤G

ŨH .

Since G is finite, so are its subgroups, of which there are finitely many. Now we observe
that, by restriction the G-action on Ũ , to each H, we can apply Proposition 14, and
conclude that each ŨH is closed submanifold of Ũ .

Lemma 3. (MOERDIJK; PRONK, 1997)(ADEM; LEIDA; RUAN, 2007, p. 2) Suppose
λ, µ : (Ũ , G, φ) �→ (Ṽ , H, ψ) are two embeddings of orbifold charts. Then, there is a unique
h ∈ H such that µ = h · λ

Proof. For the benefit of the reader, we will fill in the details of the proof in (SATAKE,
1956), which works for the case where the set of fixed points in each chart has dimension
≤ m − 2. The general case is found in the Appendix of (MOERDIJK; PRONK, 1997).

We will apply Theorem 18 to show that the set S of non-fixed points of G� in
λ(Ũ) is connected.

Let Z be the set of fixed points. It is a finite union of closed submanifolds
(Lemma 2, (3))

First let us suppose Z is already a closed submanifold.

Let a, b ∈ S, and let f : [0, 1] → λ(Ũ) be a smooth curve connecting a and b,
with f(0) = a and f(1) = b.

In the notation of Theorem 18, X = [0, 1] and C = {0, 1}. Since C ⊂ S,
and S ∩ Z = ∅, the conditions for f are trivially satisfied. Applying the theorem, we
get a smooth map g : X → λ(Ũ) homotopic to f , such that g � Z, ∂g � Z, and on a
neighborhood of C we have g = f .

Since Z has dimension ≤ m−2, and X has dimension 1, transversality between
g and Z implies that g(X) ∩ Z = ∅. Therefore S is path-connected, and as a manifold,
also connected.

Now let us deal with the case where Z = Z1 ∪ · · · ∪ Zr is a disjoint union of
closed submanifolds of different dimensions. We define S1 := λ(Ũ) \ Z1, and we apply
the argument above to Z1 and S1. Inductively, Sn = Sn−1 \ Zn−1. Sn is always open, and
therefore a manifold, because there are only finitely many Zi. At the last step SN is S,
the set of nonfixed points of G�.

We have learned the remainder of this proof from Prof. Elisa Prato (PRATO,
2018). It is the proof of her Orange Lemma, with minor adaptations to the orbifold case.
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We will show now that λ−1(S) = µ−1(S). Let x ∈ Ũ such that λ(x) ∈ S. By
definition of orbifold embedding

ψ(λ(x)) = φ(x) = ψ(µ(x)), (1.7)

which implies there is some h ∈ H such that

hλ(x) = µ(x). (1.8)

Since S is H-invariant (Lemma 28), x ∈ µ−1(S). The other inclusion is analogous.

Since an orbifold embedding is a diffeomorphism onto its image (Remark
3), and S is connected (as seen above), and open and dense (Lemma 2), then so is
Ũ � := λ−1(S) = µ−1(S). We define the continuous mapping

F : Ũ � → S × S,

u �→ (λ(u), µ(u)).

We also define, for each h ∈ H, the set

Ṽh := {v, h · v | v ∈ S}

This set is the image of the connected set S by the continuous map S → S × S, id × h,
and is hence also connected. We will see now that if Vh ∩ Vh� �= ∅, then h = h�. Suppose
(v, hv) = (v, h�v) ∈ Vh ∩ Vh� . It follows that (h−1h�)v = v. It is at this point in the proof
that we use that the action is free on the set S on nonfixed points (Lemma 28). We then
conclude that h = h�.

Because of (1.7) and (1.8), F (Ũ �) ⊂ ∪h∈H Ṽh. Since F is continuous, Ũ � is
connected, and the Ṽh are connected and disjoint, there exists a unique h ∈ H such
that F (Ũ �) ⊂ Ṽh. Therefore λ(u) = hµ(u), for every u ∈ Ũ �. Since Ũ � is dense on Ũ , by
continuity this equality holds on Ũ .

Definition 8. (ADEM; LEIDA; RUAN, 2007, p. 4) Let G be a compact lie group, M a
smooth manifold and Ψ : G × M → M an effective, almost free, smooth action. An orbifold
given as the quotient space of this action is called an effective quotient orbifold. The
atlas is constructed using the existence of slices for compact Lie group actions.

For the benefit of the reader, we will provide the details of the atlas construction
cited above.

Construction 1 (Effective quotient orbifold). Let G be a compact lie group, M a smooth
manifold and Ψ : G × M → M an effective, almost free, smooth action.

We will give an orbifold atlas to the topological space X defined by the orbit
space of this action

X := M/G
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We denote by π : M → M/G the canonical projection of the orbit space.

By Corollary 1 and Proposition 15, X is Hausdorff. We also note that X is
paracompact.

Let x ∈ X. Let m ∈ M such that π(m) = x. We will build an orbifold chart
for X at x.

Since G is a compact Lie group, this G-action is locally smooth (Lemma 35
and Remark 16). This means there is a linear tube (Definition 36)

ϕ : G ×Gx Rk → M

around the orbit P := G · m such that ϕ[g, 0] = gm. In particular, there is an orthogonal
action of Gx on Rk for some k. For each g ∈ Gx, its action on Rk is linear, therefore
smooth.

By definition of a tube (Definition 34), ϕ is a G-equivariant embedding onto
an open neighborhood of Û of P . This implies

dim G ×Gx Rk = dim M

and since
dim G ×Gx Rk = dim G + dimRk − dim Gx

and dim Gx = 0 (because the action is almost free, thus Gx is finite) we have

dimRk = dim M − dim G (1.9)

Therefore the dimension k does not depend on the choice of x.

Now, let ϕ̂ be the restriction of ϕ to the codomain Û .

We will use the embedding (Lemma 34)

ie : Rk → G ×Gx Rk, a �→ [e, a]

The map of the orbifold chart for x ∈ X will be the composition

Rk G ×Gx Rk Û M M/G
ie ϕ̂ π (1.10)

Let h ∈ Gx, a ∈ Rk. We observe that

Φ : π(ϕ(ie(ha))) = π(ϕ[e, ha]) = π(ϕ[eh−1, a])
= π(h−1ϕ[e, a]) = π(ϕ[e, a]) = π(ϕ(ie(a)))

which shows that the composition Φ (1.10) is Gx-invariant.
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Now we will descend to the orbit spaces

Rk G ×Gx Rk Û M

Rk/Gx (G ×Gx Rk)/G Û/G M/G = X

ie

q

ϕ̂

π

∼
α

∼
β

where Proposition 16 justifies that the morphism

α : Gxa �→ G[e, a]

is a homeomorphism. We can also see that the first square in the diagram is commutative.

Since ϕ̂ is a G-equivariant homeomorphism we can define a homeomorphism β,
also, the diagram commutes (Lemma 30).

Finally we note that Û is a saturated open set on M with respect to the action,
which implies Um := π(Û) = Û/G is an open subset of X (because X has the quotient
topology).

And since
ϕ̂(ie(0)) = ϕ̂([e, 0]) = m

and π(m) = x, then x ∈ U .

Therefore, given m ∈ M , we have produced a connected open subset of
Ũm := Rk, and a finite group Gx of smooth automorphisms of Ũm (because Ψ is almost
free). Moreover, we have a Gx-equivariant map φm := Φ : Ũm → X which, as we have
seen above, induces a homeomorphism of Ũm/Gx onto an open subset Um ⊂ X. This is a
k-dimensional orbifold chart (Ũm, Gx, φm) at x ∈ X, as intended. We have also observed
that k does not depend on x.

From this chart, we will also construct other charts, in order to have an orbifold
atlas.

Let W � ⊂ Um ⊂ X be a a connected open subset of Um. Let W̃ be a connected
component of φ−1

m (W �) (the process below is to be repeated for every connected component).
Let H be a subgroup of Gx that keeps W stable, that is hW ⊂ W , for all h ∈ H.

Now we define W := (β ◦ α)(q(W̃ )) ⊂ W � and we restrict the homeomorphism
β ◦ α to

(β ◦ α)|q(W̃ ) : q(W̃ ) → W. (1.11)

This restriction is still a homemorphism. Let Ŵ = π−1(W ). By commutativity of the
diagram,
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W̃ Rk G ×Gx Rk Û M

W̃/H Rk/Gx (G ×Gx Rk)/G Û/G M/G = X

ie

q

ϕ̂

π

∼
α

∼
β

φm(W̃ ) = β ◦ α ◦ (W̃ ) = W . Then we can also restrict φm to W̃ → W . This restriction is
H-invariant and descends to the homeomorphism (1.11).

We consider the collection U of orbifold charts tha contains

U1 = {(Ũm, Gx, φm)}m∈M

and all the orbifold charts constructed via the procedure above. What remains to be shown
is that U defines an orbifold atlas.

We cite the following result, which shows that every orbifold is isomorphic to a
quotient orbifold. As we will see in the next section, this is not true for quasifolds.

Theorem 8. (ADEM; LEIDA; RUAN, 2007, p. 12) For any given orbifold X , its
frame bundle Fr(X ) is a smooth manifold with a smooth, effective, and almost free O(n)-
action. The original orbifold X is naturally isomorphic to the resulting quotient orbifold
Fr(X )/O(n).

1.3 Quasifolds
In this section, we follow (PRATO, 2001), the paper where Prato defined the

notion of quasifold as a generalization of the notion of orbifold. Our main purpose here is
to highlight some of the differences in the definitions of orbifold and quasifold.

(PRATO, 2001) starts by defining the local model for a quasifold, which will
be a component of the quasifold chart (the other component being a map).

Definition 9. (PRATO, 2001, p.963) Let Ũ be a connected, simply-connected manifold
of dimension k and let Γ be a discrete group acting smoothly on the manifold Ũ so that
the set of points, Ũ0, where the action is free, is connected and dense. Consider the space
of orbits, Ũ/Γ, of the action of the group Γ on the manifold Ũ , endowed with the quotient
topology, and the canonical projection p : Ũ → Ũ/Γ. A model of dimension k is a triple
(Ũ/Γ, p, Ũ).

Remark 4. The fundamental difference between a quasifold and an orbifold is that the
group acting on the model space is no longer finite, but discrete. Since a finite group is
implicitly considered to be equipped with the discrete topology, this is a straighforward
generalization. We will now discuss differences that are more technical in nature.
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The first of such differences between a quasifold model and the equivalent
model in our definition of orbifold chart, is that here Ũ is a manifold, whereas in the
orbifold definition, Ũ is an open subset of some Rn. But we could have also considered Ũ

to be a manifold in the orbifold case as well, and obtain an equivalent definition (See the
last remark in Section 1 of (SATAKE, 1957)).

The second difference is that Ũ is not only connected, as in the orbifold case,
but also simply-connected. This choice is made to simplify subsequent definitions, such as
smooth quasifold maps and diffeomorphism. Remark 1.2 in (PRATO, 2001) explains how
you can start from an object that is a quasifold model except for the simply-connectedness,
and "lift" it to a equivalent model, in a precise sense, but also satisfying this topological
condition.

The third difference is the requirement of the existence of a set of points Ũ0

connected and dense, where the action is free. We recall that the orbifold definition in
(SATAKE, 1957) required that the set of fixed points of the action had dimension ≤ 2. In
the proof of Lemma 3, we show how this condition implies that the complement of the set
of fixed points is connected, open, dense, and the action restricted to this complement
is free. We have also seen in the same proof the necessity of such a connected, dense set
where the action is free. However the fact that the group is finite is used to obtain this
result, which may not be true in the infinite case. Hence this may be the reason for this
difference in the definitions.

Definition 10. A smooth mapping of the models (Ũ/Γ, p, Ũ) and (Ṽ /Δ, q, Ṽ ) is a
mapping f : Ũ/Γ → Ṽ /Δ with the property that there exists a smooth mapping f̃ : Ũ → Ṽ

such that q◦f̃ = f◦p. We say that f̃ is a lift of f . A smooth mapping is a diffeomorphism
of models if it is bijective and if the lift f̃ is a diffeomorphism.

The next lemma is the quasifold analogous of Lemma 3.

Lemma 4. (PRATO, 2001, p.983). [Orange Lemma] Let Ũ/Γ and Ṽ /Δ be two models,
and let f : Ũ/Γ → Ṽ /Δ be a diffeomorphism of models. For any two lifts, f̃ and f̄ , of the
diffeomorphism f there exists a unique element δ ∈ Δ such that f̄ = δf̃ .

Proof. See (PRATO, 2001, p.983). For a bit more details, see the last part of the proof in
Lemma 3.

Definition 11. (PRATO, 2001, p.964) [Quasifold] A dimension k quasifold structure
on a topological space M is the assignment of an atlas, or collection of charts, A =
{Uα, φα, Ũα/Γα | α ∈ A} having the following properties:

1. The collection {Uα | α ∈ A} is a cover of M
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2. For each index α ∈ A, the set Uα is open, the space Ũα/Γα defines a model, where
the set Ũα is an open, connected, and simply connected subset of the space Rk, and
the mapping φα is a homeomorphism of the space Ũα/Γα onto the set Uα.

3. For all indices α, β ∈ A such that Uα∩Uβ �= ∅, the sets φ−1
α (Uα∩Uβ) and φ−1

β (Uα∩Uβ)
define models and the mapping

gαβ = φ−1
β φα : φ−1

α (Uα ∩ Uβ) → φ−1
β (Uα ∩ Uβ)

is a diffeomorphism of models. We then say that the mapping gαβ is a change of
charts and that the corresponding charts are compatible.

4. The atlas A is maximal, that is: if the triple (U, φ, Ũ/Γ) satisfies property 2, and
is compatible with all the charts in A, then (Ũ , φ, Ũ/Γ) belongs to A

A space M with a quasifold structure is a quasifold.

Remark 5. Apart from the differences in the local models already mentioned, the difference
between a quasifold atlas and an orbifold one is in the notion of compatibility of charts.
In the quasifold case, this involves a smoothness requirement for the change of charts. In
the orbifold case, this involves a common refinement to charts that partially overlap (see
however Lemma 1, and the preceding comment).

We will mention two more important differences between orbifolds and quasi-
folds. One is that while every orbifold is isomorphic to a global orbifold (Theorem 8), the
same cannot be said about quasifolds ((BATTAGLIA; PRATO, 2010) presents a quasifold
that cannot be isomorphic to a quotient of a manifold modulo a smooth discrete group
action). The other is that while the underlying topological space of an orbifold is Hausdorff
by definition, the underlying space of a quasifold may not be.

Example 2. Fix α ∈ R \ Q. Consider R2 � C with the action

Z × C → C,

(k, z) �→ e2πikαz

This action is free on C \ {0}, but the isotropy subgroup on z = 0 is Z.

The quasifold is the quotient space of this action.

Already in this simple example we see that the action of Z on C is not proper,
since the isotropy subgroup at z = 0 is not compact.
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1.4 Lie Groupoids and Orbifolds
Orbifolds can be related with a particular kind of Lie groupoid. In this section

we will describe this relation, defining just the necessary material on Lie groupoids, in
particular we do not define Lie groupoid morphisms in the text. Our main sources were
(ADEM; LEIDA; RUAN, 2007; MOERDIJK; MRcUN, 2003; MACKENZIE, 2005).

Definition 12. (ADEM; LEIDA; RUAN, 2007, p. 17) A Lie groupoid is a topological
groupoid G where G0 and G1 are smooth manifolds, and such that the structure maps
s, t, m, u, i are smooth. Furthermore s, t : G1 → G0 must be submersions. We assume G0

and G1 to be Hausdorff.

See the Appendix, for a more detailed definition.

Note however that (MOERDIJK; MRcUN, 2003) do not require G1 to be
Hausdorff.

Definition 13. (ADEM; LEIDA; RUAN, 2007, p. 17) Let G be a Lie groupoid. Let
x ∈ G0.

• The isotropy or local group at x,

Gx := s−1(x) ∩ t−1(x),

is the set of all arrows from x to itself.

• The orbit of x is the set t(s−1(x)) of targets of arrows out of x.

• The orbit space |G| of G is the quotient space of G0 under the equivalence relation

x ∼ y ⇐⇒ x and y are in the same orbit.

Unless mention of the contrary, we equip |G| with the quotient topology given by this
equivalence relation.

We will see later that the isotropy groups Gx are Lie groups.

Definition 14. (ADEM; LEIDA; RUAN, 2007, p. 17) Let X be a topological space and G
a Lie groupoid. G is a groupoid presentation of X if the orbit space of G is X: |G| = X.

Remark 6. In Definition 13 note that:

• x and y are in the same orbit if and only if there is an arrow connecting them, that
is, iff there exists g ∈ G1 such that s(g) = x and t(g) = y. This follows quickly from
the fact that every arrow in a groupoid is invertible.
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• x ∼ y is an equivalence relation because of the previous point and: of the existence
of identity arrows (reflexivity), every arrow is invertible (symmetry), arrows compose
(transitivity).

Lemma 5. Let G be a Lie groupoid. Let X := |G| be the orbit space and π : G0 → X be
the quotient map, where X is equipped with the quotient topology. Then π is an open map.

Proof. Let U ⊂ G0 be a set. We will show first that

π−1(π(U)) = s(t−1(U)).

Let y ∈ π−1(π(U)). Then there exists x ∈ U such that π(y) = π(x). By Remark 6, there is
an arrow f : y → x. Then f ∈ t−1(U) and y = s(f) ∈ s(t−1(U)).

Now let y ∈ s(t−1(U)). Then there is x ∈ U and f : y → x. Then π(y) = π(x)
so y ∈ π−1(π(U)).

Now we also assume that U is open. Since t is continuous and s is an open map,
s(t−1(U)) is open (s is an open map because it is a smooth submersion, see Proposition
10).

Since X is equipped with the quotient topology, a subset V ⊂ X is open if and
only if π−1(V ) is open.

It follows from the above that π(U) is open. Therefore, π is an open map.

In the following we prove some results on the existence of local bisections on
Lie groupoids. They will be used to show that the isotropy groups are Lie groups.

Definition 15 (Local Bisections). (MACKENZIE, 2005, p. 25) Let G be a Lie groupoid.
For U ⊂ G0 open, a local bisection of G on U is a map σ : U → G1 which is a right
inverse to s and for which t ◦ σ : U → (t ◦ σ)(U) is a diffeomorphism from U to the open
set (t ◦ σ)(U) in G0.

Definition 16. (MACKENZIE, 2005, p. 22,25) Let G be a Lie groupoid, U ⊂ G0 open,
and σ : U → G1 a local bisection. Let V := (t ◦ σ)(U), which is an open subset of G0, by
definition. The map

Lσ : t−1(U) → t−1(V ),
g �→ m((σ ◦ t(g)), g)

is the local left-translation induced by σ.
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Remark 7. In the context of the previous definition, We will show that the local left-
translation induced by σ is a diffeomorphism.

First we will check that this map is well-defined. Since σ is the right inverse of
s we have

s(σ ◦ t(g)) = t(g)

which is necessary for the multiplication in Lσ to be possible. Also, given g ∈ t−1(U), we
see that

t(Lσ(g)) = t((σ ◦ t(g))g) = t((σ ◦ t(g))) ∈ (t ◦ σ)(U) = V,

and hence Lσ(t−1(U)) ⊂ t−1(V ).

Now we will see that it is smooth because it is a composition of smooth maps:

• t|t−1(U) : t−1(U) → U ,

• σ : U → G1,

• (σ ◦ t) : t−1(U) → G1,

• ι : t−1(U) → G1 (inclusion),

• (σ ◦ t) × ι : t−1(U) → G1 × G1.

We have seen above that the image of the smooth map (σ ◦ t) × ι is contained in G(2),
which is an embedded submanifold. Because of that (See Proposition 12) the restriction

J := (σ ◦ t) × ι : t−1(U) → G(2)

is also smooth. Hence Lσ = m ◦ J : t−1(U) → G1 is smooth. We have seen that the image
of Lσ is contained in t−1(V ), which is an open, thus embedded, submanifold of G1, and
therefore the restriction Lσ : t−1(U) → t−1(V ) is also smooth.

The inverse to Lσ is the map

(Lσ)−1 : t−1(V ) → t−1(U),
h �→ (σ ◦ (t ◦ σ)−1(t(h)))−1h.

First we will check that this map is well-defined.

s(σ ◦ (t ◦ σ)−1(t(h)))−1 = t(σ ◦ (t ◦ σ)−1(t(h))) = t(h)

which is necessary for the multiplication in (Lσ)−1 to be possible. Also, we see that

t((Lσ)−1(g)) = t((σ ◦ (t ◦ σ)−1(t(h)))−1h)
= t((σ ◦ (t ◦ σ)−1(t(h)))−1)
= s((σ ◦ (t ◦ σ)−1(t(h))))
= (t ◦ σ)−1(t(h)) ∈ U
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The smoothness is verified analogously to the previous case.

Finally we can check that these maps are inverse to each other.

It will be useful to consider the following restriction of Lσ : t−1(U) → t−1(V )
to

Lσ : t−1(U) ∩ s−1(x) → t−1(V ) ∩ s−1(x)

where we suppose that t−1(U) ∩ s−1(x) �= ∅. Since s(Lσ(g)) = s((σ ◦ t(g))g) = s(g), the
codomain is correct. Since we are restricting the domain and codomain to submanifolds,
the restriction is still smooth (that the submanifold is embedded is important to the
codomain restriction, see Propositions 11, 12).

Analogously, we see that

(Lσ)−1 : t−1(V ) ∩ s−1(x) → t−1(U) ∩ s−1(x)

is the restriction of (Lσ)−1. In particular it is smooth.

Therefore Lσ : t−1(U) ∩ s−1(x) → t−1(V ) ∩ s−1(x) is also a diffeomorphism.

Lemma 6 (Existence of Local Bisections). (MACKENZIE, 2005, p. 26) Let G be a Lie
groupoid, and let g ∈ G1. There exists a local bisection σ with σ ◦ s(g) = g

Proof. (MACKENZIE, 2005, p. 26) For the benefit of the reader we fill in the details of
the proof. Suppose dim G1 = s and dim G0 = r. By definition of Lie groupoids, s, t are
submersions, which implies s ≥ r and

dim Ker s∗g = s − r = dim Ker t∗g .

By Lemma 24, there exists a linear subspace I ⊂ TgG1 such that

I ⊕ Ker s∗g = I ⊕ Ker t∗g = TgG1.

Let us apply the Rank Theorem (Theorem 16) to s : G1 → G0. Thus we have
the commutative diagram

U V

Ũ Ṽ

s

ϕ ψ

s̃

with Ũ := ϕ(U), Ṽ := ψ(V ) and

s̃(x1, . . . , xr, xr+1, . . . , xs) �→ (x1, . . . , xr)

Now we take the derivative of ψ ◦ s = s̃ ◦ ϕ at g:

TgG1 Ts(g)G0

Rs Rr

s∗g

ϕ∗g ψ∗s(g)

P
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where P := Ds̃(ϕ(g)). Since s̃ is linear, then

P : Rs → Rr

P̃ (x1, . . . , xr, xr+1, . . . , xs) �→ (x1, . . . , xr)

In particular, P |Ũ = s̃.

Since ϕ : U → Ũ is a diffeomorphism ϕ∗g : TgG1 → Rs is a linear isomorphism.
It follows that

Rs = ϕ∗g(TgG1)
= ϕ∗g(I ⊕ Ker s∗g)
= ϕ∗g(I) ⊕ ϕ∗g(Ker s∗g)

Let V := ϕ∗g(I). Since P = ψ∗s(g) ◦ s∗g ◦ (ϕ∗g)−1 and ψ∗s(g) , ϕ∗g are isomorphisms, then
Ker P = ϕ∗g(Ker s∗g). Then we have Rs = V ⊕ Ker P .

By Lemma 25, there is a linear map

L : Rr → Rs

such that P ◦ L(u) = u and L(Rr) = V .

L is linear, therefore continuous, and so L−1(Ũ) is an open subset of Rr. Define
V̂ := Ṽ ∩ L−1(Ũ) (this intersection is nonempty because both components contain 0), and
define σ̃ : V̂ → Ũ by σ̃ := L|V̂ . Finally, on ψ−1(V̂ ) we define σ := ϕ−1 ◦ σ̃ ◦ ψ.

First we will note that σ(s(g)) = g.

σ(s(g)) = ϕ−1 ◦ σ̃ ◦ ψ(s(g)) = ϕ−1 ◦ σ̃(0)
because (V, ψ) is a chart centered at s(g),

= ϕ−1(0) = g

because (U, ϕ) is a chart centered at g.

Now we will see that σ is a right inverse to s. Let m ∈ ψ−1(V̂ ). Then

s ◦ σ(m) = s ◦ ϕ−1 ◦ σ̃ ◦ ψ(m)
= ψ−1 ◦ ψ ◦ s ◦ ϕ−1 ◦ σ̃ ◦ ψ(m)
= ψ−1 ◦ s̃ ◦ ϕ ◦ ϕ−1 ◦ σ̃ ◦ ψ(m)
= ψ−1 ◦ s̃ ◦ σ̃ ◦ ψ(m)
= ψ−1 ◦ P ◦ L ◦ ψ(m)
= ψ−1 ◦ ψ(m) = m
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Let us compute (t ◦ σ)∗s(g)(Ts(g)G0)

(t ◦ σ)∗s(g)(Ts(g)G0) = (t ◦ ϕ−1 ◦ σ̃ ◦ ψ)∗s(g)(Ts(g)G0)
= (t ◦ ϕ−1 ◦ σ̃)∗0(Rr)
= (t ◦ ϕ−1)∗0 ◦ L(Rr)

because σ̃ = L is linear, so it is its own derivative
= (t ◦ ϕ−1)∗0(V )
= (t)∗g(I)
= (t)∗g(I ⊕ Ker t∗g)
= (t)∗g(TgG1) = Tt(g)M,

where in the last equality we used that t is a submersion.

Therefore (t ◦ σ)∗s(g) is surjective. Since the dimension of the domain (Ts(g)G0)
equals the dimension of the codomain (Tt(g)G0), (t ◦ σ)∗s(g) is also injective. Therefore, an
isomorphism. By the inverse mapping theorem, we can restrict the open set ψ−1(V̂ ) on
which σ is defined to some W , so that t ◦ σ|W is a diffeomorphism onto its image, which is
an open set in G0.

The local bisection is the σ|W .

Proposition 1. (MACKENZIE, 2005, p. 26) Let G be a Lie groupoid, and let x ∈ G0.
The restriction of t to the source fiber s−1(x) has constant rank.

Proof. (MACKENZIE, 2005, p. 26) For the benefit of the reader, we fill some of the details
of the proof. For readability, let us denote t|s−1(x) : s−1(x) → G0 by tx.

Let g, h ∈ s−1(x). Then j := gh−1 is defined and by Lemma 6, there exists a
local bisection σ : U → G1 such that σ ◦ s(j) = j.

Let V := (t ◦ σ)(U). Note that t−1(U) ∩ s−1(x) �= ∅. By Remark 7, there exists
a smooth diffeomorphism

Lσ : t−1(U) ∩ s−1(x) → t−1(V ) ∩ s−1(x)
g �→ (σ ◦ t(g))g

Note that t(h) = s(gh−1) = s(j) ∈ U, h = j−1g and that

Lσ(h) = (σ ◦ t(h))h
= (σ ◦ t(j−1g))h
= (σ ◦ t(j−1))h
= (σ ◦ s(j))h
= jh = g

(1.12)
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The following diagram is commutative:

t−1(U) ∩ s−1(x) t−1(V ) ∩ s−1(x) s−1 G0

s−1(x) U V

G0

Lσ

b

a tx

tU
x

tx

t◦σ

d

c

We observe that

• the c, d are inclusions of open subsets into the manifold s−1(x), thus, their derivatives
are isomorphisms. In particular, (tU

x )∗ = (tx)∗d
−1
∗ .

• a, b are inclusions of open subsets into the manifold s−1(x), thus, their derivatives
are isomorphisms.

• t ◦ σ and Lσ are diffeomorphisms.

From the commutative diagram we have

c ◦ (t ◦ σ) ◦ tU
x ◦ b = tx ◦ a ◦ (Lσ)

From (1.12) and Taking the derivative at h, we have

c∗(t ◦ σ)∗t(h)(t
U
x )∗h

b∗h
= (tx)∗ga∗g(Lσ)∗h

From the observations above, we conclude that the ranks of tx at g and h are equal.

Definition 17. (ADEM; LEIDA; RUAN, 2007, p. 18) Let G be a Lie groupoid.

• G is proper if (s, t) : G1 → G0 × G0 is a proper map.

• G is a foliation groupoid if each isotropy group Gx is discrete subgroup of G1.

• G is étale if s and t are local diffeomorphisms. If G is an étale groupoid, we define
its dimension dim G := dim G1 = dim G0.

Lemma 7. (ADEM; LEIDA; RUAN, 2007, p. 18) Let G be an étale Lie groupoid. Then
G is a foliation groupoid.

Proof. Let x ∈ G0. By definition Gx = s−1(x) ∩ t−1(x). Let g ∈ Gx. Then s(g) = x. Since
G is étale, s : G1 → G0 is a local diffeomorphism. It follows that there exist an open subset
U ⊂ G1 such that U ∩ s−1(x) = {g}. Thus U ∩ Gx = {g}. Therefore Gx is discrete.
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Proposition 2. (ADEM; LEIDA; RUAN, 2007, p. 18) Let G be a Lie groupoid. Then
every isotropy group is a Lie group.

If G is also proper, every isotropy group is a compact Lie group. In particular,
if G is a proper foliation groupoid, then all of its isotropy groups are finite.

Proof. (ADEM; LEIDA; RUAN, 2007, p. 18) By definition, Gx = s−1(x) ∩ t−1(x) ⊂ G1.
By Proposition 1, the restriction of t : G1 → G0 to s−1(x) has constant rank.

By the Constant Rank Level Set Theorem (Theorem 17), Gx is a properly
embedded submanifold of G1.

Now, suppose G is also proper, that is, the map

(s, t) : G1 → G0 × G0

is a proper map. By definition of a proper map, preimage of compact is compact. Since
Gx = (s, t)−1(x, x), Gx is a compact Lie group.

If G is also a foliation groupoid, Gx is also discrete. A compact discrete Lie
group is finite.

The next definition is analogous to Definition 33.

Definition 18. Let G be a Lie groupoid. The orbit relation of this groupoid is the set

O = (s, t)(G1) = {(s(g), t(g)) ∈ G0 × G0 | g ∈ G1}

The next Lemma is analogous to Lemma 32.

Lemma 8 (Characterization of Orbit Relation). Let G be a Lie groupoid. Let X := |G| be
the orbit space and π : G0 → X be the quotient map. Let O be the orbit relation of this
action. Then

O = {(q, p) ∈ G0 × G0 | π(q) = π(p)}

Proof. Note that π(q) = π(p) if and only if there is an arrow connecting p and q (Remark
6).

Lemma 9. Let G be a proper Lie groupoid. Let X := |G| be the orbit space and π : G0 → X

be the quotient map, where X is equipped with the quotient topology. Then X is Hausdorff.

Proof. This proof is analogous to the one in Proposition 15.

Since (s, t) : G1 → G0 × G0 is a proper continuous map, it is closed (Theorem
15). Thus the orbit relation O = (s, t)(G1) is a closed subset of G0 × G0.

Also note that π is an open map, by Lemma 5.

Then using Lemma 8 and Proposition 7, we have that X is Hausdorff.
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Definition 19 (Orbifold groupoids). (ADEM; LEIDA; RUAN, 2007, p. 19) An orbifold
groupoid is a proper étale Lie groupoid.

We will also need the following proposition on Lie groupoids, for next chapter:

Proposition 3. (LERMAN, 2010, p. 324) Let G be a Lie groupoid and f : N → G0 a
smooth map. Consider the fiber product

N ×f,G0,s G1 = {(x, g) ∈ (N × G1) | f(x) = s(g)}

If the map
N ×f,G0,s G1 → G0, (x, g) �→ t(g)

is a submersion, then the pullback groupoid f ∗G is a Lie groupoid and the functor f̃ :
f ∗G → G is a smooth functor.

1.4.1 From Orbifolds to Lie groupoids
We will describe three ways to construct a Lie groupoid from an orbifold.

Construction 2 (Lie groupoid from Orbifold - I). (PRONK, 1995) (TOMMASINI, 2012,
p. 768)

This construction is presented in (PRONK, 1995), for real orbifolds, and
generalized by (TOMMASINI, 2012) for the case of complex orbifolds. We will describe
how the space of objects and space of arrows of the groupoid are defined, starting from an
orbifold, and refer to (TOMMASINI, 2012, p. 768) for a detailed demonstration of why
this yields a Lie groupoid.

Let U = {(Ũi, Gi, φi)}i∈I be an orbifold atlas of dimension n on a paracompact
and second countable Hausdorff topological space X.

First we define the space of objects G0 of our future Lie groupoid G.

G0 :=
�

i∈I

Ũi

with the topology of the disjoint union.

Now, given p ∈ Ũi, q ∈ Ũj, suppose there is a chart Ũk that is a common
refinement to both charts, with the embeddings µ : Ũk → Ũi, λ : Ũk → Ũj . We declare that
there is an arrow p → q, if p ∈ µ(Ũk) and q ∈ λ(Ũk).

The other way to construct a Lie groupoid from an orbifold uses pseudogroups.

Definition 20. (MOERDIJK; MRcUN, 2003, p. 138) Let M be a smooth manifold. A
(local) transition on M is a diffeomorphism f : U → U � between two open subsets of
M . We will denote the set of all transitions on M by C∞

M . A pseudogroup on M is a
subset P of transitions on M such that:
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• idU ∈ P , for any open U ⊂ M ,

• if f, f � ∈ P , then f � ◦ f |f−1(dom(f �)) ∈ P , and f−1 ∈ P ,

• if f is a transition on M and (Ui) is an open cover of dom(f) such that f |Ui
∈ P

for any i, then f ∈ P .

Example 3 (Trivial example of pseudogroup). (MOERDIJK; MRcUN, 2003, p. 138) The
collection C∞

M of all transitions on M is a pseudogroup on M .

Construction 3 (From pseudogroups to effective groupoids). (MOERDIJK; MRcUN,
2003, p. 138)(HAEFLIGER, 1971, p. 136) Let M be a smooth manifold, and P a pseu-
dogroup on M . We will associate an effective groupoid Γ(P ) over M as follows: for any
x, y ∈ M let

Γ(P )(x, y) := {germx f | f ∈ P, x ∈ dom(f), f(x) = y}

The multiplication in Γ(P ) is given by the composition of transitions.

The classical sheaf topology on the space of arrows Γ(P )1 is the one generated
by the subsets

Uf = {germx f | for every x ∈ U}

for every (f : U → U �) ∈ P

With the classical sheaf topology Γ(P )1 becomes a smooth manifold (which may
neither be Hausdorff nor second countable). Also, Γ(P ) becomes an effective groupoid.

Construction 4 (Lie groupoid from Orbifold - II). (MOERDIJK; MRcUN, 2003, p. 141)
Let Q be an orbifold and U = {(Ui, Gi, ϕi)}i∈I be an orbifold atlas of Q. Put U =

�

i∈I

Ui

and ϕ = ϕi : U → Q. Now let Ψ(U) be the pseudogroup on U of all transition f on U for
which ϕ ◦ f = ϕ|dom(f)

We define the effective groupoid Γ(U) to be the effective groupoid associated
to the pseudogroup Ψ(U),

Γ(U) = Γ(Ψ(U))

Proposition 4. (MOERDIJK; MRcUN, 2003, p. 141) Let U be an orbifold atlas of an
orbifold Q.

• Γ(U) is a proper effective groupoid.

• If U is an orbifold atlas of an orbifold Q and U � is an orbifold atlas of an orbifold Q�,
then Γ(U) and Γ(U �) are weakly equivalent if and only if Q and Q� are isomorphic.

Proof. (MOERDIJK; MRcUN, 2003, p. 141)
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Finally, the third way associates the orbifold to the transformation groupoid of
the frame bundle (see Theorem 8).

1.4.2 From Lie groupoids to Orbifolds

Proposition 5. (ADEM; LEIDA; RUAN, 2007, p. 21) Let G be a proper, effective, étale
groupoid. Then its orbit space X = |G| can be given the structure of an effective orbifold,
explicitly constructed from the groupoid G

Proof. (MOERDIJK; PRONK, 1997, p. 15)(ADEM; LEIDA; RUAN, 2007, p. 21) We will
explain some points of the proof, and refer the reader to the sources.

Let π : G0 → X denote the quotient map associated to the equivalent relation
of Definition 13 and Remark 6.

By Lemma 5, π is an open map.

By Lemma 9, X is Hausdorff.

Since G is étale, it is foliation (Lemma 7). By Proposition 2, Gx is a finite
group.
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2 LVMB Manifolds

In this chapter we discuss a family of complex manifolds that are related to toric
varieties, orbifolds and quasifolds, called LVMB manifolds (MEDRANO; VERJOVSKY,
1997; MEERSSEMAN, 2000; BOSIO, 2001). They are a family of complex, compacted
foliated manifolds that are in general non-Kahler, and are constructed from combinatorial
data, much like toric varieties and the generalizations seen above. The construction will
be described in the next section, in the context of an example.

The combinatorial data used to construct LVMB manifolds is a triangulated
vector configuration (Definition 22). The precise way LVMB manifolds relate to toric
varieties, orbifolds and quasifolds was worked out by Battaglia and Zaffran (BATTAGLIA;
ZAFFRAN, 2017; BATTAGLIA; ZAFFRAN, 2015). They show that a triangulation vector
configuration encodes essentially the same information as a simple polytope (note for
example the similarity in the definition of a triangulation and the definition of a fan of a
polytope). They also prove the following:

Theorem 9. (BATTAGLIA; ZAFFRAN, 2017) Let (V, T ) be a triangulated vector
configuration and N the associated LVMB manifold, with foliation F . If (V, T ) encodes
the information for the construction of a toric variety, orbifold, or quasifold, then the leaf
space N/F is biholomorphic to X.

2.1 Construction of LVMB manifolds
In this section we follow closely (BATTAGLIA; ZAFFRAN, 2017).

First we define the terms related to the data that will be used to construct the
LVMB manifolds.

Definition 21.

1. A configuration of points Λ = (Λ1, . . . , Λn) in the affine space Cm is just a finite
ordered list with repetitions allowed, such that the affine hull of Λ is the whole space:

Aff(Λ) = Cm.

2. Each point Λj defines a real row vector

ΛR
j := [− Re(Λj) − − Im(Λj)−] ∈ R2m.

3. A basis is a subset τ ∗ of {1, . . . , n}, of cardinality 2m + 1, such that the interior
C̊α of the convex hull Conv({ΛR

j }j∈τ∗) is non empty.
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4. A virtual chamber T ∗ of the configuration Λ is a collection of bases {τ ∗
α}α satisfying

Bosio’s conditions (BOSIO, 2001)

• C̊α ∩ C̊β �= ∅, for every α, β;

• for every τ ∗
α ∈ T ∗ and every i �∈ τ ∗

α, there exists j ∈ T ∗ such that (τ ∗
α\{j})∪{i} ∈

T ∗

5. An LVMB datum {Λ, T ∗} is a configuration Λ = (Λ1, . . . , Λn) in Cm, with n ≥
2m + 1, and a virtual chamber of Λ.

Now we fix an LVMB datum {Λ, T ∗}, and use it to define both a space, and
an action on this space. The quotient of this action will be, by definition, the LVMB
manifold N associated to this datum.

For each τ ∗ ∈ T ∗, define

Uτ∗ := {[z1 : · · · : zn] ∈ CPn−1 | ∀j ∈ τ ∗, zj �= 0}, (2.1)
U(T ∗) :=

�

τ∗∈T ∗
Uτ∗ (2.2)

Consider the matrix



−Λ1−
...

−Λn−


 ∈ Cn×m

and define the subspace h ⊂ Cn as the span of the m columns of this matrix.

Lemma 10. (BATTAGLIA; ZAFFRAN, 2017) the subspace h defined above has dimension
m.

Consider the action of (C∗)n on CPn−1 by componentwise multiplication, and
restrict this action to the subgroup exp(h), where

exp : Cn → (C∗)n, (z1, . . . , zn) �→ (e2πiz1 , . . . , e2πizn)

This restricted action is free and proper on U(T ∗) (BOSIO, 2001), therefore the quotient

N := U(T ∗)
exp(h)

is a complex manifold, called the LVMB manifold associated to the given initial data.

For convenience, let us give an explicit description of this action in terms of the
configuration Λ. Let {w1, . . . , wm} be the columns of the matrix above. Then for ξ ∈ h,

ξ = (ξ1, . . . , ξn) =
m�

j=1
ujwj, with u = (u1, . . . , um) ∈ Cm and for [z] ∈ U(T ∗),

exp(ξ) · [z] = [e2πiξ1z1 : · · · : e2πiξnzn]
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Let {e1, . . . , en} be the standard basis for Cn, and let �, � be the Hermitian inner product
of Cn. Note that

ξk = �
m�

j=1
ujwj, ek� =

m�

j=1
uj�wj, ek� = �u, Λk�.

We then define another action

Ψ : Cm × U(T ) → U(T ),
(u, [z1, . . . , zn]) �→ [e2πiΛ1(u)z1 : · · · : e2πiΛn(u)zn],

(2.3)

where Λj(u) is the dot product in Cm (the one without conjugation). We denote the group
of this action as H. This action is is essentially the same as the previous one, and thus it
induces the same quotient manifold (the LVMB manifold).

2.1.1 Alternative initial data
We can also give the initial data for the construction of an LVMB manifold in

the form of a triangulated vector configuration.

Definition 22. (BATTAGLIA; ZAFFRAN, 2015, p. 11790)

Let E be a R- vector space of dimension d.

A vector configuration V = (v1, . . . , vn) is a finite, ordered list of vectors in
E, allowing repetitions, and such that SpanR(V ) = E.

Let τ ⊂ {1, . . . , n}. The cone over τ is the cone

cone(τ) =
�

j∈τ

R≥0vj.

By convention, cone(∅) = {0E}.

τ is a simplex if the vectors of V indexed by τ are linearly independent. A
simplicial cone is a cone over a simplex.

A triangulation T of a configuration V is a collection of simplices such that:

• if τ ∈ T and τ � ⊂ τ , then τ � ∈ T .

• for all τ, τ � ∈ T , cone(τ) ∩ cone(τ �) = cone(τ ∩ τ �);

• ∪τ∈T cone(τ) ⊃ cone(V )

Definition 23. (BATTAGLIA; ZAFFRAN, 2015, p. 11792) A triangulated vector
configuration (TVC) is a pair (V, T ), where V is a vector configuration and T is a
triangulation of V . We will also assume that the TVC is odd, that is

n − d = 2m + 1, with m a positive integer (2.4)
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and that it is balanced, that is
n�

i=1
vi = 0.

To see why these extra conditions are necessary, and how a TVC is equivalent
to an LVMB datum, check (BATTAGLIA; ZAFFRAN, 2015).

From a triangulation T in a TVC, we recover a virtual chamber (Definition
22). Let {Eα}α be the set of maximal simplices of T . Then

T ∗ := {τ ∗
α := {1, . . . , n} \ Eα}α

is a virtual chamber.

Remark 8. We can then rewrite equation (2.1) as

Uα := {[z1 : · · · : zn] ∈ CPn−1 | ∀j �∈ Eα, zj �= 0}. (2.5)

We will denote the image of Uα in N by Nα.

We note some straightforward consequences of the definition of a TVC.

Remark 9.

1. Suppose E is a vector space of dimension d ≥ 1 (which is any interesting case).
Condition (2.4) implies that

n = 2m + 1 + d ≥ 4

2. Since a triangulation is a collection of simplices, and a simplex is a index set of
linearly independent vectors, a simplex (in particular, a maximal simplex Eα) must
have at most d elements, where d is the dimension of the ambient space.

Lemma 11. At least one maximal simplex in the triangulation has d elements.

Proof. In a triangulation, the following holds

∪Eα cone(Eα) = ∪τ∈T cone(τ) ⊃ cone(V ) = E. (2.6)

Note that it is enough to consider the union of cones over maximal simplices Eα.

Suppose every maximal simplex in the triangulation has less than d elements.
Then SpanR(Eα) is a proper subset of E (therefore, closed and with empty interior). Since
the vector configuration has only finitely many vectors, the collection of simplices in the
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triangulation is finite. By Baire’s theorem applied to E, as a a finite dimensional real vector
space, a finite union of closed subsets of empty interior has empty interior. Therefore,

∪Eα spanR(Eα) �⊃ E.

Since
∪Eα cone(Eα) ⊂ ∪Eα spanR(Eα)

we conclude
∪Eα cone(Eα) �⊃ E,

which contradicts equation (2.6).

Lemma 12. Let T � be the set of maximal simplices with d elements. Then

∪E∈T � cone(E) ⊃ cone(V ) = E. (2.7)

Proof. Let τ ∈ T be a simplex. Then cone(τ) is closed. Since there are only finitely many
simplices in a triangulation,

∪E∈T � cone(E) (2.8)

is closed, and
M = E \ ∪E∈T � cone(E) (2.9)

is open. Again, let τ ∈ T , and suppose τ has less than d elements. Since the vectors
indexed by τ and E has dimension d, SpanR(τ) is a proper and closed subspace of E.
Therefore, it has empty interior. Define

Sτ := SpanR(τ) ∩ M,

and suppose it does not have empty interior in M . Since M is open in E, it does not have
empty interior in E, thus neither does SpanR(τ), contradiction. Therefore Sτ has empty
interior in M . Define

Fτ := coneR(τ) ∩ M,

which is closed in M , because coneR(τ) is closed in E. Since Fτ ⊂ Sτ , Fτ also has empty
interior in M .

In a triangulation, the following holds

∪τ∈T cone(τ) ⊃ cone(V ) = E. (2.10)

Let T �� be the set of maximal simplices with less than d elements, and note that it is
enough to consider the union of cones over maximal simplices,

(∪E∈T � cone(τ)) ∪ (∪τ∈T �� cone(τ)) ⊃ cone(V ) = E. (2.11)
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Suppose M �= ∅. Then M is a non-empty open subset of E, which is a real finite-dimensional
vector space and

M = ∪τ∈T ��Fτ .

Thus, M is a finite union of closed subsets with empty interior. By Baire’s Theorem, M

has empty interior, which is a contradiction. Therefore M = ∅. Alternatively,

∪E∈T � cone(E) ⊃ cone(V ) = E. (2.12)

Lemma 13. Every maximal simplex of a triangulation is full-dimensional

Proof. This is (LOERA; RAMBAU; SANTOS, 2010, Lemma 2.3.4(i)), but we need to use
Lemma 12 to ensure that the space is covered by full-dimensional simplexes.

Let Rel(V ) be the relation space of V , that is,

Rel(V ) = {a ∈ Rn |
n�

i=1
aivi = 0}.

Now we choose a basis for Rel(V ), and write down a matrix M whose columns
are the vectors of this basis.

Writing

M =




Λ̂R
1
...

Λ̂R
n


 =




1 ΛR
1

... ...
1 ΛR

n




and
ΛR

j = (a1
j , . . . , a2m

j ) ∈ R2m,

we define

Λj = (a1
j + iam+1

j , . . . , am
j + ia2m

j ) ∈ Cm.

The list (Λ1, . . . , Λn) is the configuration of points used in the construction of
the LVMB manifold (see Section 2.1).

Lemma 14. (BATTAGLIA; ZAFFRAN, 2015, p.11794) Let Eα be a maximal simplex. It
follows that the vectors ΛR

j − ΛR
n with j ∈ Ec

α \ {n} (from the Gale duality construction)
are a basis of R2m.
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Proof. Adapted from (BATTAGLIA; ZAFFRAN, 2015, p.11794).

Lemma 22 shows that the construction above yields a Gale Transform where
the rows of M are the elements of the transform.

Then Lemma 23 yields that for each maximal simplex (of indices) Eα, {Λ̂R
j |

j ∈ Ec
α} is a simplex (of vectors), that is, a linear basis of R2m+1.

Note that every Λ̂R
j has the first component 1 (in the standard basis). Then

via the projection onto R2m where the first component is dropped out, {ΛR
j | j ∈ E c

α} is an
affine basis of R2n.

It follows from a characterization of affine independence that that the vectors
ΛR

j − ΛR
n with j ∈ E c

α \ {n} are a basis of R2m.

2.2 Foliation of an LVMB manifold and its leaf space
We will also define the action

Φ : C2m × U(T ) → U(T ),
(t, [z1, . . . , zn]) �→ [e2πiΛR

1 (t)z1 : · · · : e2πiΛR
n(t)zn],

(2.13)

where ΛR
j (t) is the dot product in C2m (the one without conjugation).

Lemma 15. (BATTAGLIA; ZAFFRAN, 2015) Let [z] ∈ U(T ). The isotropy at [z] is a
closed Z-module Lz ⊂ R2m ⊂ C2m of rank at most 2m.

The actions Φ and Ψ commute (both are just componentwise multiplication,
which is commutative), so Φ descends to N . We also denote by Φ this induced action.

Let

HF = {t ∈ C2m | t =

v

0


 , v ∈ Cm}

Also from the theory, the restriction of Φ to HF induces a smooth foliation F
of dim m on N .

Φ : HF × N → N,

(t, [z1, . . . , zn]) �→ [e2πiΛR
1 (t)z1 : · · · : e2πiΛR

n(t)zn],
(2.14)

2.3 Motivation for choice of slices
The remark below is extracted from the proof of a Lemma in (BATTAGLIA;

ZAFFRAN, 2015, p. 11803). It serves as a motivation for our choice of "slices" in our
construction.
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Definition 24. (BATTAGLIA; ZAFFRAN, 2015, p. 11803). Let (V, T ) be a balanced
and odd triangulation vector configuration in a vector space of dimension d. Let τ be a
subset of a maximal simplex Eα of T . We define an F-saturated open subset of N , denoted
Nα,τ , to be Nα if τ is empty (Remark 8), and as the image in N of

Uα,τ := Uα \ {[z1 : · · · : zn] | for all j ∈ τ, zj = 0}

when τ is nonempty.

Remark 10. Let (V, T ) be a balanced and odd triangulation vector configuration in a
vector space of dimension d. Let τ be a subset of a maximal simplex Eα of T . Let r := #τ .

Suppose that r > 0 and assume for simplicity that Eα = {1, . . . , d} and
τ = {1, . . . , r}.

We recall from the definition of a TVC that n − d = 2m + 1. By Lemma 14,
{ΛR

j − ΛR
n}j=d+1,...,n−1 is an R-basis of R2m. It is then a C-basis for C2m.

We will show that the following map is surjective.

g : (Cr \ {0} × Cd−r) × C2m → Uα,τ

((z1, . . . , zd), t) �→ Φ(t, [z1 : · · · : zd : 1 : · · · : 1� �� �
2m+1

]).

First we note that the domain of g is set so that zi �= 0, for i = 1, . . . , d, because
[0 : . . . , 0 : zd1 : · · · : zn] �∈ Uα,τ . Thus the map is well-defined. Now we check surjectivity:

Φ(t, [z1 : · · · : zd : 1 : · · · : 1� �� �
2m+1

])

= [e2πiΛR
1 (t)z1 : · · · :e2πiΛR

d (t)zd : e2πiΛR
d+1(t) : · · · : e2πiΛR

n(t)]
= [e2πi(ΛR

1 −ΛR
n)(t)z1 : · · · :e2πi(ΛR

d −ΛR
n)(t)zd :

e2πi(ΛR
d+1−ΛR

n)(t) : · · · : e2πi(ΛR
n−1−ΛR

n)(t) : 1]

Let [w1 : · · · : w2m : 1] be an arbitrary element of Uα,τ . By our fixed choice of α

and τ , and the definition of this subset, wj �= 0, j = d + 1, . . . , n.

By surjectivity of the exponential Cm → C∗, for every wj, j ∈ (d + 1, . . . , n− 1),
there is a uj such that euj = wj. Because row rank equals column ran, in a matrix, and
and the observation that {ΛR

j − ΛR
n}j=d+1,...,n−1 is a C-basis for C2m, there is t ∈ C2m such

that
[2πi(ΛR

d+1 − ΛR
n)(t), . . . , 2πi(ΛR

n−1 − ΛR
n)(t)] = [ud+1, . . . , un−1]

Finally, we set
zj = wj

e2πi(ΛR
j −ΛR

n)(t) , j = 1, . . . , d.
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This shows the surjectivity of g. This map induces a homeomorphism

(Cr \ {0} × Cd−r) × C2m/Γ � Uα,τ

where Γ is the isotropy subgroup in Lemma 15.

2.4 Constructing a Lie groupoids from LVMB data
We are interested in constructing Lie groupoids out of LVMB manifolds, in

a way that is connected to how Lie groupoids can be built out of orbifolds. Theorem 9
motivates us to first consider the transformation groupoid HF � N . (LERMAN, 2010)
mentions the following result. Let G be a Lie group acting in a free and proper manner
on a manifold M . Let Σ be a slice for this action and let U =

�
Σ be a disjoint union

of slices such that every orbit of the action intersects at least one the slices. Then the
pullback of the action groupoid G � M by the "inclusion" f :

�
Σ → M is a Lie groupoid.

This construction relies on the existence of slices, because the action is proper, and on
certain properties of slices.

In our case, the action of HF on N is neither free nor proper, so we cannot rely
on this result. Instead we have to be more constructive, and consider particular cases.

The general procedure is:

1. First we consider the action groupoid G := HF × N .

2. Then we look for submanifolds Ni, on N such that each orbit of the HF action
intersects at least one of the Ni. To stay close to the result above, we use submanifolds
with the same dimension a slice would have.

3. We consider the "inclusion" f :
�

Ni → N and the pullback groupoid f ∗G.

4. We want f ∗G to be a Lie groupoid. From the theory of Lie groupoids, it is sufficient
to check that the map

α :
�

Ni ×f,G0,s G1 → G0, (x, g) �→ t(g)

is a submersion, with G1 = HF × N , for each Ni and G0 = N .

It would be interesting if the submanifolds Ni were slices for the HF action.
However, we know that this cannot happen for the quasifold case.

Our choice for the submanifold Ni are motivated by the remark in the previous
section.We will take the submanifolds Ni of the constructions to be the images Nα of the
open subsets Uα by the projection map U(T ) → N . The surjective of the map g, shows
that condition 2 for the choice of submanifolds in our construction is satisfied.



Chapter 2. LVMB Manifolds 49

Now, let us note that
�

Ni ×f,G0,s G1 = {(ni, (u, z)) ∈
�

Ni × G1 | ni = f(ni) = s(u, z) = z}
�

�
Ni × HF .

Using this identification the map α becomes

α :
�

Ni × HF . → G0, (si, u) �→ Φ(u, si)

Since
�

Ni is a disjoint union of manifolds, it is enough to show that each restriction
Ni × HF → N is a submersion. Also, we note that this map decomposes into

Ni × HF → Ni �→ N

where the last inclusion is already a smooth submersion since Ni is an open subset of N .

Thus we wil show that each αi : Ni × HF → Ni, (si, u) �→ Φ(u, si) is a
submersion.

We write
(αi)∗(s,u)(ξ, η) = R∗uη + L∗sξ

where

R : HF → Ni, u� �→ Φ(u�, s) L : Ni → Ni, s� �→ Φ(u, s�)

Note that R is the orbit map of the action Φ. Therefore is has constant rank 2m, because
every orbit has real dimension 2m (see section 2.3 of (BATTAGLIA; ZAFFRAN, 2015)).

The following diagram is commutative,

Ui Ui

Ni Ni

where π is the restriction of the quotient map U(T ) → N and

T : [z1 : · · · : zn] �→ [e2πiΛR
1 (t)z1 : · · · : e2πiΛR

n(t)zn],

The first row has constant rank 2(n − 1), since it is just coordinatewise multi-
plication in a open subset of CP n. The projection π is a smooth submersion. Therefore L

also has constant rank 2(n − 1).

By dimensionality, (αi)∗(s,u) is surjective.

With this we have proven the following:
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Theorem 10. Consider a triangulated vector configuration (V, T ). Using this initial data,
we can construct an LVMB manifold N and a group HF acting on it such that the orbits
of the action yield a foliation F . There are submanifolds Ni of N such that each leaf of
the foliation intersects at least of the Ni, and such that the pullback of the action groupoid
HF × N via the "inclusion"

�
Ni → N is a Lie groupoid.

In the remainder of this chapter we will give direct proofs of the following two
applications of Theorem 10.

Theorem 11. Let

v1 := (1, 0),
v2 := (0, 1),
v3 := (0, −1),
v4 := (−1, a)

be vectors in R2, with a > 0.

Let Δ ⊂ R2 be the fan whose higher-dimensional cones are generated by
(v1, v2), (v2, v4), (v3, v4), (v1, v3).

For each choice of a > 0, we construct a Lie groupoid associated to Δ.

Remark 11. We note that for a = n ∈ Z a positive integer, this is the fan associated
to the classic Hirzebruch surfaces. Fn, and by varying the parameter a ∈ R>0, we can
classically obtain a family of toric varieties, orbifolds and quasifolds that contain the
Hirzebruch surfaces.

Theorem 12. Let

v1 := (1, 0, . . . , 0),
v2 := (0, 1, 0, . . . , 0),

...
vd := (0, . . . , 0, 1),

vd+1 := (−α1, . . . , −αd)

be vectors in Rd. Let Δ ⊂ Rd be the fan made out of each proper subset of {v1, . . . , vd+1},
with α1, ..., αd ∈ R>0.

For each choice of parameters α1, ..., αd ∈ R>0, we construct a Lie groupoid
associated to Δ.

Remark 12. We note that for α1 = ... = αd = 1, this is the fan associated to CP d, and
by varying the parameters α1, ..., αd ∈ R>0, we can classically obtain toric orbifold and
quasifold variants of CP d.
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2.5 Examples of LVMB manifolds

2.5.1 Hirzebruch surfaces in a one-parameter family
The triangulated vector configuration in this example is from (BATTAGLIA;

PRATO; ZAFFRAN, 2019).

2.5.1.1 The fan of a generalized Hirzebruch surface

Let

v1 := (1, 0),
v2 := (0, 1),
v3 := (0, −1),
v4 := (−1, a)

be vectors in R2, with a > 0. Let Δ ⊂ R2 be the fan whose higher dimensional cones are
generated by (v1, v2), (v2, v4), (v3, v4), (v1, v3). For a = n ∈ Z a positive integer, this is the
fan associated to the classical Hirzebruch surface Fn.

2.5.1.2 The triangulated configuration associated to the fan

Following the notation of (BATTAGLIA; ZAFFRAN, 2017), Section 1.2,
we fix Prato’s datum (Δ, {v1, v2, v3, v4}, Q), where Q = SpanZ(v1, v2, v3, v4) ⊂ R2 is a
(quasi)lattice, and the other objects are from the previous section. If a ∈ Z then Q is a
lattice.

We want to associate Prato’s datum to a triangulated vector configuration
{V, T }. V = (v1, . . . , vn) is a vector configuration in R2 such that

• The first 3 vectors are v1, v2, v3 as above;

• Q = SpanZ(v1, . . . , vn);

•
n�

i=1
vi = 0;

• n − d = 2m + 1, m ∈ N, with d = 2.

To satisfy the above, let n = 5, with v5 = −v1 − v2 − v3 − v4 = (0, −a). Note
that m = 1.

And T corresponds to the fan cones. Thus the maximal simplices of T are

{E12 = {12}, E24 = {24}, E34 = {34}, E14 = {14}, }.
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2.5.1.3 The dual configuration

Recall that

Rel(V ) = {a ∈ R5 |
5�

i=1
aivi = 0}

= Ker{T : R5 → R2, (a1, . . . , a5) �→
5�

i=1
aivi = 0}

Since Im T = R2 then dim Ker T = 3.

We need to choose a M matrix whose columns give a basis for Rel V . One such
matrix (from (BATTAGLIA; PRATO; ZAFFRAN, 2019, p. 8) is

M =




1 0 1
1 1 0
1 1 a

1 0 1
1 0 0




.

Writing

M =




Λ̂R
1
...

Λ̂R
5


 =




1 ΛR
1

... ...
1 ΛR

5




and
ΛR

j = (a1
j , a2

j) ∈ R2,

we define
Λj = a1

j + ia2
j ∈ C.

Then
Λ = (Λ1, . . . , Λ5) = (i, 1, 1 + ia, i, 0).

2.5.1.4 Virtual chamber and U(T )

The virtual chamber is

E = {{E c
12 = {345}}, {E c

24 = {135}}, {E c
34 = {125}}, {E c

13 = {245}}}.

The corresponding open subsets are

U12 = {[z] ∈ CP 4 | z3 �= 0, z4 �= 0, z5 �= 0},

U24 = {[z] ∈ CP 4 | z1 �= 0, z3 �= 0, z5 �= 0},

U34 = {[z] ∈ CP 4 | z1 �= 0, z2 �= 0, z5 �= 0}
U13 = {[z] ∈ CP 4 | z2 �= 0, z4 �= 0, z5 �= 0}.
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Then
U(T ) = U12 ∪ U24 ∪ U34 ∪ U13

2.5.1.5 The C-action and N

We have

Ψ : C × U(T ) → U(T ),
(u, [z1 : · · · : z5]) �→ [e−2πuz1 : e2πiuz2 : e2πi(1+ia)uz3 : e−2πuz4 : z5].

We denote C in this action by H. The LVMB manifold N is the quotient.

N = U(T )
H

.

2.5.1.6 The foliation action

We will apply (2.13) to our particular case, and obtain

Φ : C2 × U(T ) → U(T ),
(t, [z1, . . . , z5]) �→ [e2πit2z1 : e2πit1z2 : e2πi(t1+at2)z3 : e2πit2z4 : z5],

where t = (t1, t2).

Identifying HF ∼= C, we have the particular case of (2.14)

Φ : C × N → N,

(v, [z1, . . . , z5]) �→ [z1 : e2πivz2 : e2πivz3 : z4 : z5],

2.5.2 The projective line CP d and variants
For the construction of the LVMB associated to CP 1 and orbifold and quasifold

variants, see (BATTAGLIA; ZAFFRAN, 2015).

2.5.2.1 The fan of CP d

Let

v1 := (1, 0, . . . , 0),
v2 := (0, 1, 0, . . . , 0),

...
vd := (0, . . . , 0, 1),

vd+1 := (−α1, . . . , −αd)

be vectors in Rd. Let Δ ⊂ Rd be the fan composed of every proper subset of {v1, . . . , vd+1}.
For α1 = · · · = αd = 1, this is the fan associated to CP d (See (COX; LITTLE; SCHENCK,
2011, p.86, Exercise 2.3.7)).
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2.5.2.2 The triangulated configuration associated to the fan

Following the notation of (BATTAGLIA; ZAFFRAN, 2017), Section 1.2,
we fix Prato’s datum (Δ, {v1, . . . , vd+1}, Q), where Q = SpanZ(v1, . . . , vd+1) ⊂ Rd is a
(quasi)lattice, and the other objects are from the previous section. If α1, . . . , αd ∈ Z then
Q is a lattice.

We want to associate Prato’s datum to a triangulated vector configuration
{V, T }. V = (v1, . . . , vn) is a vector configuration in Rd such that

• The first d + 1 vectors are v1, . . . , vd+1 as above;

• Q = SpanZ(v1, . . . , vn);

•
n�

i=1
vi = 0;

• n − d = 2m + 1, m ∈ N, with d = l.

To satisfy the above, let m = 1, and then n = d + 3, with vd+2 =
d+1�

i=1
−vi, and

vd+3 = 0.

And T corresponds to the fan cones. Thus the maximal simplices of T are

{Ei = {12 . . . (i − 1)̂i(i + 1) . . . (d + 1)}

for i = 1, . . . d + 1

2.5.2.3 The dual configuration

Recall that

Rel(V ) = {a ∈ Rd+3 |
d+3�

i=1
aivi = 0}

= Ker{T : Rd+3 → Rd, (a1, . . . , ad+3) �→
d+3�

i=1
aivi = 0}

Since Im T = Rd then dim Ker T = 3.

We need to choose a M matrix whose columns give a basis for Rel V . One such
matrix is

M =




1 α1 0
... ... ...
1 αd 0
1 1 0
1 0 0
1 0 1




.



Chapter 2. LVMB Manifolds 55

Writing

M =




Λ̂R
1
...

Λ̂R
d+3


 =




1 ΛR
1

... ...
1 ΛR

d+3




and
ΛR

j = (a1
j , a2

j) ∈ R2,

we define
Λj = a1

j + ia2
j ∈ C.

Then
Λ = (Λ1, . . . , Λd+3) = (α1, . . . , αd, 1, 0, i).

2.5.2.4 Virtual chamber and U(T )

The virtual chamber is

E = {{E c
i = {i(d + 2)(d + 3)}} | i = 1, . . . , d + 1, }.

The corresponding open subsets are

Ui = {[z] ∈ CP d+2 | zi �= 0, zd+2 �= 0, zd+3 �= 0},

for i = 1, . . . d + 1. Then

U(T ) =
d+1�

i=1
Ui

2.5.2.5 The C-action and N

We have

Ψ : C × U(T ) → U(T ),
(u, [z1 : · · · : zd+3]) �→ [e2πiα1uz1 : · · · : e2πiαduzd : e2πiuzd+1 : zd+2 : e−2πuzd+3].

We denote C in this action by H. The LVMB manifold N is the quotient

N = U(T )
H

.

2.5.2.6 The foliation action

We will apply (2.13) to our particular case, and obtain

Φ : C2 × U(T ) → U(T ),
(t, [z1, . . . , zd+3]) �→ [e2πiα1t1z1 : · · · : e2πiαdt1zd : e2πit1zd+1 : zd+2 : e2πit2zd+3],
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where t = (t1, t2).

Identifying HF ∼= C, we have the particular case of (2.14)

Φ : C × N → N,

(v, [z1, . . . , zd+3]) �→ [e2πiα1vz1 : · · · : e2πiαdvzd : e2πivzd+1 : zd+2 : zd+3],

2.6 Charts for LVMB manifolds
In this section, we compute charts for the LVMB manifolds that we described

above. These charts will be useful to verify that certain maps that we use are indeed
embeddings.

2.6.1 Hirzebruch surfaces in a one-parameter family
2.6.1.1 Derivative of the action

We will need to compute (Ψp)∗e where

Ψ : C × U(T ) → U(T ),
(u, [z1 : · · · : z5]) �→ [e−2πuz1 : e2πiuz2 : e2πi(1+ia)uz3 : e−2πuz4 : z5].

and p = [z] ∈ U(T ). Because z5 �= 0, we will use the following chart of CP 4:

ϕ : U → C4 (2.15)

[z1 : · · · : z5] �→ (z1

z5
,
z2

z5
, . . . ,

z4

z5
). (2.16)

where U = {[z1 : · · · : z5] ∈ CP 4 | z5 �= 0}.

In this chart

(Ψp)(u) =
�

e−2πu z1

z5
, e2πiu z2

z5
, e2πi(1+ia)u z3

z5
, e−2πu z4

z5

�
.

Then

∂(Ψp)
∂u

(u) =
�

(−2π)e−2πu z1

z5
, (2πi)e2πiu z2

z5
, (2πi(1 + ia))e2πi(1+ia)u z3

z5
, (−2π)e−2πu z4

z5

�
. (2.17)

since p = [z] ∈ U(T ), z5 �= 0, we can set z5 = 1.

We evaluate the derivative at u = 0 = e ∈ C.

∂(Ψp)
∂u

(0) = ((−2π)z1, (2πi)z2, (2πi(1 + ia))z3, (−2π)z4) .
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We write u = a + ib, zj = xj + iyj, then
∂(Ψp)

∂u
(0) = (2π(−x1 − iy1), 2π(−y2 + ix2)

2π((−ax3 − y3) + i(x3 − ay3)), 2π(−x4 − iy4), ).

We note that Ψp is holomorphic. In particular ∂(Ψp)
∂u

= ∂(Ψp)
∂a

, ∂ Re(Ψp)
∂a

= ∂ Im(Ψp)
∂b

and
∂ Re(Ψp)

∂b
= −∂ Im(Ψp)

∂a
.

Hence, the real Jacobian of Ψp at u = 0, with respect to the basis
�

∂

∂a
,

∂

∂b

�

and
�

∂

∂x1
,

∂

∂x2
,

∂

∂x3
,

∂

∂x5
,

∂

∂y1
,

∂

∂y2
,

∂

∂y3
,

∂

∂y5
,

�
is

(Ψp)∗e = −2π




x1 −y1

y2 x2

ax3 + y3 x3 − ay3

x4 −y4

y1 x1

−x2 y2

−x3 + ay3 ax3 + y3

y4 x4




In the following, we will refer to the columns of this matrix as w1, w2 respectively.

2.6.1.2 Checking weak slice condition

We will check now that the following embedded submanifold satisfies (A.5).
Let

ιS : C3 \ {0} → U(T ), (2.18)
(z1, z2, z3) �→ [z1 : z2 : z3 : 1 : 1]. (2.19)

Let q = (z1, z2, z3) and p = ιS(q). In the chart (2.15),

ιS(z1, z2, z3) = (z1, z2, z3, 1) = (x1, x2, x3, 1, y1, y2, y30)

where zk = xk + iyk. Then

(ιS)∗p =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0




.



Chapter 2. LVMB Manifolds 58

Let us denote the columns of this matrix by e1, e2, e3, e5, e6, e7, using the standard notation
for the canonical basis of R8.

We will see that {e1, e2, e3, e5, e6, e7, w1, w2, are linearly independent. Suppose

α1e1 + α2e2 + α3e3 + α5e5 + α6e6 + α7e7 + β1w1 + β2w2 = 0

In particular

β1x5 + (−β2y5) = 0,

β1y5 + β2x5 = 0.

Since z4 = 1 + i0, x4 = 1 and y4 = 0. Thus β1 = β2 = 0, and it follows that αi = 0.

Thus, S = ιS(C3 \ {0}) satisfies (A.5), so there exists a chart U around
[z1 : z2 : 1 : 1] where S ∩ U is a weak slice. From the discussion following Lemma 37, we
can take this U to be a sufficiently small coordinate ball (i.e. the image of a ball in C3

by the chart (2.15)). And since S is an embedded submanifold, this means we can just
restrict the domain of ιS to some S̃ = Bz1 × Bz2 × Bz3 , where Bk ⊆ C are sufficiently
small open balls centered at zk. Then we rename S = ιS(S̃). Also, if US = π(S) ⊆ N , and
ϕS : US → S, ϕS = (π|S)−1, then ϕS is a chart for N .

2.6.2 The projective line CP d and variants
2.6.2.1 Derivative of the action

We will need to compute (Ψp)∗e where

Ψ : C × U(T ) → U(T ),
(u, [z1 : · · · : zd+3]) �→ [e2πiα1uz1 : . . . |e2πiαduzd : e2πiuzd+1 : zd+2 : e−2πuzd+3].

and p = [z] ∈ U(T ). Because zd+2 �= 0, we will use the following chart of CP d+2:

ϕ : U → Cd+2 (2.20)

[z1 : · · · : zd+3] �→ ( z1

zd+2
,

z2

zd+2
, . . . ,

zd+3

zd+2
). (2.21)

where U = {[z1 : · · · : zd+3] ∈ CP d+2 | zd+2 �= 0}.

In this chart

(Ψp)(u) =
�

e2πiα1u z1

zd+2
, . . . , e2πiαdu zd

zd+2
, e2πiu zd+1

zd+2
, e−2πu zd+3

zd+2

�
.

Then

∂(Ψp)
∂u

(u) =
�

(2πiα1)e2πiα1u z1

zd+2
, . . . , (2πiαd)e2πiαdu zd

zd+2
, (2πi)e2πiu zd+1

zd+2
, (−2π)e−2πu zd+3

zd+2

�
.
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since p = [z] ∈ U(T ), zd+2 �= 0, we can set zd+2 = 1.

We evaluate the derivative at u = 0 = e ∈ C.

∂(Ψp)
∂u

(0) = ((2πiα1)z1, . . . , (2πiαd)zd, (2πi)zd+1, (−2π)zd+3) .

We write u = a + ib, zj = xj + iyj, then

∂(Ψp)
∂u

(0) = (2πα1(−y1 + ix1), . . . , 2παd(−yd + ixd), 2π(−yd+1 + ixd+1), 2π(−xd+3 − iyd+3), ) .

We note that Ψp is holomorphic. In particular ∂(Ψp)
∂u

= ∂(Ψp)
∂a

, ∂ Re(Ψp)
∂a

= ∂ Im(Ψp)
∂b

and
∂ Re(Ψp)

∂b
= −∂ Im(Ψp)

∂a
.

Hence, the real Jacobian of Ψp at u = 0, with respect to the basis
�

∂

∂a
,

∂

∂b

�

and
�

∂

∂x1
, . . . ,

∂

∂xd

,
∂

∂xd+1
,

∂

∂xd+3
,

∂

∂y1
, . . . ,

∂

∂yd

,
∂

∂yd+1
,

∂

∂yd+3
,

�
is

(Ψp)∗e = −2π




α1y1 α1x1
... ...

αdyd αdxd

yd+1 xd+1

xd+3 −yd+3

−α1x1 α1y1
... ...

−αdxd αdyd

−xd+1 yd+1

yd+3 xd+3




In the following, we will refer to the columns of this matrix as w1, w2 respectively.

2.6.2.2 Checking weak slice condition

We will check now that the following embedded submanifold satisfies (A.5).
Let

ιS : Cd+1 \ {0} → U(T ), (2.22)
(z1, . . . , zd+1) �→ [z1 : · · · : zd+1 : 1 : 1]. (2.23)

Let q = (z1, . . . , zd+1) and p = ιS(q). In the chart (2.20),

ιS(z1, . . . , , zd+1) = (z1, . . . , zd+1, 1) = (x1, . . . , , xd+1, 1, y1, . . . , yd+10)
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where zk = xk + iyk. Then

(ιS)∗p =




1 0 0 0 0 0
0 . . . 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 . . . 0
0 0 0 0 0 1
0 0 0 0 0 0




.

Let us denote the columns of this matrix by e1, . . . , ed+1, ed+3, . . . , e2d+1, using the standard
notation for the canonical basis of R2d+2.

We will see that e1, . . . , ed+1, ed+3, . . . , e2d+1, w1, w2, are linearly independent.
Suppose

α1e1 + · · · + αd+1ed+1 + αd+3ed+3 + · · · + α2d+1e2d+1 + β1w1 + β2w2 = 0

In particular

β1xd+3 + (−β2y5) = 0,

β1yd+3 + β2x5 = 0.

Since zd+3 = 1 + i0, xd+3 = 1 and yd+3 = 0. Thus β1 = β2 = 0, and it follows that αi = 0.

Thus, S = ιS(Cd+1 \ {0}) satisfies (A.5), so there exists a chart U around
[z1 : · · · : zd : 1 : 1] where S ∩ U is a weak slice. From the discussion following Lemma 37,
we can take this U to be a sufficiently small coordinate ball (i.e. the image of a ball in C3

by the chart (2.20)). And since S is an embedded submanifold, this means we can just
restrict the domain of ιS to some S̃ = Bz1 × · · · × Bzd+1 , where Bk ⊆ C are sufficiently
small open balls centered at zk. Then we rename S = ιS(S̃). Also, if US = π(S) ⊆ N , and
ϕS : US → S, ϕS = (π|S)−1, then ϕS is a chart for N .

2.7 Embedded submanifolds for LVMB manifolds
In this section we exhibit some submanifolds that appear in our construction.

The choice of these submanifolds is motivated by Remark 10.

2.7.1 Hirzebruch surfaces in a one-parameter family

Lemma 16. The map

i : C2 → N,

(z1, z2) �→ [z1, z2, 1, 1, 1],
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is locally a smooth embedding.

Proof. We will use the chart ι−1
S ◦ ϕS at (z1, z2, 1, 1, 1), where S = ιS(S̃), S̃ = (Bz1 × Bz2 ×

B1) \ {0} ⊆ C2 and the maps are as in Subsection 2.6.1.2.

Since ι−1
S ◦ ϕS ◦ i(z1, z2) = (z1, z2, 1) is an embedding, we have the result.

2.7.2 The projective line CP d and variants
We will show

Lemma 17. The map

i : Cd → N,

(z1, . . . , zd) �→ [z1, . . . , zd, 1, 1, 1],

is locally a smooth embedding.

Proof. We will use the chart ι−1
S ◦ ϕS at (z1, . . . , zd, 1, 1, 1), where S = ιS(S̃), S̃ = (Bz1 ×

· · · × Bzd
× B1) \ {0} ⊆ Cd and the maps are as in Subsection 2.6.2.2.

Since ι−1
S ◦ ϕS ◦ i(z1, . . . , zd) = (z1, . . . , zd, 1) is an embedding, we have the

result.

2.8 Finishing proof of applications

2.8.1 Hirzebruch surfaces in a one-parameter family
In this section, we complete the proof of the following theorem:

Theorem 13. Let

v1 := (1, 0),
v2 := (0, 1),
v3 := (0, −1),
v4 := (−1, a)

be vectors in R2, with a > 0.

Let Δ ⊂ R2 be the fan whose higher-dimensional cones are generated by
(v1, v2), (v2, v4), (v3, v4), (v1, v3).

For each choice of a > 0, we construct a Lie groupoid associated to Δ.
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We start with

i : U ⊂ C2 → N1 ⊆ N, (z1, z3) �→ (z1, 1, z3, 1, 1) (2.24)

which is an embedding on N (See Lemma 16). with U an open neighborhood of a fixed
(z̃1, z̃3) ∈ C2.

In order to prove that the pullback of this action groupoid by the inclusion
f : N1 → N is a Lie groupoid, we will show that the map

α : N1 ×f,G0,s G1 → G0, (x, g) �→ t(g)

is a submersion, with G1 = HF × N and G0 = N .

Since s : G1 → G0 is a submersion, then Na ×f,G0,s G1, is an embedded
submanifold.

Now let (p, q) ∈ N1 ×G0 G1, with q = (u0, n0) and p = [z1, 1, z3, 1, 1] ∈ N1, and

[z, 1, z3, 1, 1] = f(p) = s(q) = n0

We want to check if α∗(p,q) is surjective. For that, let (ξ, η) ∈ T(p,q)(N1 ×G0 G1).

First, we note that (ξ, η) ∈ TpN1 × TqG1 such that f∗p(ξ) = s∗qη. Then

α∗(p,q)(ξ, η) = d

dt

����
0
(α ◦ γ)(t),

Where γ : I → N1 ×G0 G1 is a, yet to be specified, curve satisfying

γ(0) = (p, q),
γ̇(0) = (ξ, η),
γ(t) = (γ1(t), γ2(t)) such that f(γ1(t)) = s(γ2(t))

γ2 : I → G1 = C × N, t �→ (u(t), n(t))

With that we have

γ1(t) = f(γ1(t)) = s(γ2(t)) = n(t),

and
α ◦ γ(t) = α(γ1(t), γ2(t)) = t(γ2(t)) = Φ(u(t), n(t)) = Φ(u(t), γ1(t))

We need γ1 : I → N1 with γ1(0) = p = [z1, 1, z3, 1, 1] and γ̇1(0) = ξ.

Let us consider γ1(t) = i(z1 + tv1, z3 + tv3) where i is the embedding (2.25) and
i∗(z1,z3)(v1, v3) = ξ.

We also need γ2(t) = (u(t), n(t)) such that γ2(0) = q = (u0, n(0)) ∈ G1 = C×N

and γ̇2(0) = η
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We also need to satisfy γ1(t) = n(t), for every t ∈ I . In particular p = γ1(0) =
n(0).

We also need f∗p(ξ) = s∗qη. On one hand, we have that η ∈ TqG1 = Tq(C×N) =
Tu(0)C × TpN . Thus η = (η1, η2), and since

s : C × N → N,

(u, n) �→ n,

is a projection, then s∗q(η1, η2) = η2.

On the other hand, f∗pξ = ξ, because f is an embedding. Thus η2 = ξ. Therefore
n(t) and η2 are already determined by previous choices. Let us consider u(t) = u0 + tη1,
with η1 ∈ C.

α ◦ γ(t)
= Φ(u(t), γ1(t))
= Φ(u0 + tη1, i(z1 + tv1, z3 + tv3))
= Φ(u0 + tη1, [z1 + tv1, 1, z3 + tv3, 1, 1])
= [z1 + tv1, e2πi(u0+tη1), e2πi(u0+tη1)(z3 + tv3), 1, 1]

At t = 0:
α ◦ γ(0) = [z1, e2πiu0 , e2πiu0z3, 1, 1] = [w1, w2, w3, 1, 1]

Consider the chart (US2 , ϕS2) at [w1, w2, w3, 1, 1] given by the slice S2 = ιS(S̃2)
(on U(T ), with S̃2 = Ba,2 × Bb,2 × Bc,2, where Ba,2 is centered at w1 and Bb,2 is centered at
w2 and Bc,2 is centered at w3. Note that w2 �= 0, so this chart exists (end of section 2.6.1).

By continuity, for t ∈ I sufficiently close to 0,

((z1 + tv1), e2πi(u0+tη1), e2πi(u0+tη1)(z3 + tv3)) ∈ S̃2,

and in this case α ◦ γ(t) ∈ US2 , so

ϕS2([(z1 + tv1), e2πi(u0+tη1), e2πi(u0+tη1)(z3 + tv3), 1, 1])
[(z1 + tv1) : e2πi(u0+tη1) : e2πi(u0+tη1)(z3 + tv3) : 1 : 1]
∈ U(T ) ⊂ CP 4.

Using the embedding ϕ−1 := ιS Subsection 2.6.1.2, with codomain restricted to
S̃2

ϕ ◦ ϕS2 ◦ α ◦ γ(t) = (z1 + tv1, e2πi(u0+tη1), e2πi(u0+tη1)(z3 + tv3)).
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Then,

(ϕ ◦ ϕS2)∗α∗(p,q)(ξ, η)

= d

dt

����
0
(ϕ ◦ ϕS2 ◦ α ◦ γ)(t)

=
�
v1, e2πiu0(2πiη1), e2πiu0(2πiη1z3 + v3),

�

For m1, m2, m3 ∈ C, choose

η1 = m2

2πie2πiβu0
, v1 = m1, v3 = m3

e2πiu0
− 2πiη1z3.

Which shows that α∗(p,q) is surjective.

If we now consider the embeddings

i : U ⊂ C2 → N2 ⊆ N, (z1, z2) �→ (z1, z2, 1, 1, 1), (2.25)
i : U ⊂ C2 → N3 ⊆ N, (z2, z4) �→ (1, z2, 1, z4, 1), (2.26)
i : U ⊂ C2 → N4 ⊆ N, (z2, z4) �→ (1, 1, z3, z4, 1) (2.27)

the computation is analogous.

2.8.2 The projective line CP d and variants
In this section, we complete the proof of the following theorem:

Theorem 14. Let

v1 := (1, 0, . . . , 0),
v2 := (0, 1, 0, . . . , 0),

...
vd := (0, . . . , 0, 1),

vd+1 := (−α1, . . . , −αd)

be vectors in Rd. Let Δ ⊂ Rd be the fan made out of each proper subset of {v1, . . . , vd+1},
with α1, ..., αd ∈ R>0.

For each choice of parameters α1, ..., αd ∈ R>0, we construct a Lie groupoid
associated to Δ.

We start with

i : U ⊂ Cd → N1 ⊆ N, (z1, z3, . . . , zd+1) �→ (z1, 1, z3, . . . , zd+1, 1, 1) (2.28)

which is an embedding on N (See Lemma 17). with U an open neighborhood of a fixed
(z̃1, z̃d, . . . , z̃d+1) ∈ Cd.
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In order to prove that the pullback of this action groupoid by the inclusion
f : N1 → N is a Lie groupoid, we will show that the map

α : N1 ×f,G0,s G1 → G0, (x, g) �→ t(g)

is a submersion, with G1 = HF × N and G0 = N .

Since s : G1 → G0 is a submersion, then Na ×f,G0,s G1, is an embedded
submanifold.

Now let (p, q) ∈ N1 ×G0 G1, with q = (u0, n0) and p = [z1, 1, z3, . . . , zd+1, 1, 1] ∈
N1, and

[z, 1, z3, . . . , zd+1, 1, 1] = f(p) = s(q) = n0

We want to check if α∗(p,q) is surjective. For that, let (ξ, η) ∈ T(p,q)(N1 ×G0 G1).

First, we note that (ξ, η) ∈ TpN1 × TqG1 such that f∗p(ξ) = s∗qη. Then

α∗(p,q)(ξ, η) = d

dt

����
0
(α ◦ γ)(t),

Where γ : I → N1 ×G0 G1 is a, yet to be specified, curve satisfying

γ(0) = (p, q),
γ̇(0) = (ξ, η),
γ(t) = (γ1(t), γ2(t)) such that f(γ1(t)) = s(γ2(t))

γ2 : I → G1 = C × N, t �→ (u(t), n(t))

With that we have

γ1(t) = f(γ1(t)) = s(γ2(t)) = n(t),

and
α ◦ γ(t) = α(γ1(t), γ2(t)) = t(γ2(t)) = Φ(u(t), n(t)) = Φ(u(t), γ1(t))

We need γ1 : I → N1 with γ1(0) = p = [z1, 1, z3, . . . , zd+1, 1, 1] and γ̇1(0) = ξ.

Let us consider γ1(t) = i(z1 + tv1, z3 + tv3, . . . , zd+1 + tvd+1) where i is the
embedding (2.25) and i∗(z1,z3,...,zd+1)(v1, v3, . . . , vd+1) = ξ.

We also need γ2(t) = (u(t), n(t)) such that γ2(0) = q = (u0, n(0)) ∈ G1 = C×N

and γ̇2(0) = η

We also need to satisfy γ1(t) = n(t), for every t ∈ I . In particular p = γ1(0) =
n(0).
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We also need f∗p(ξ) = s∗qη. On one hand, we have that η ∈ TqG1 = Tq(C×N) =
Tu(0)C × TpN . Thus η = (η1, η2), and since

s : C × N → N,

(u, n) �→ n,

is a projection, then s∗q(η1, η2) = η2.

On the other hand, f∗pξ = ξ, because f is an embedding. Thus η2 = ξ. Therefore
n(t) and η2 are already determined by previous choices. Let us consider u(t) = u0 + tη1,
with η1 ∈ C.

α ◦ γ(t)
= Φ(u(t), γ1(t))
= Φ(u0 + tη1, i(z1 + tv1, z3 + tv3, . . . , zd+1 + tvd+1))
= Φ(u0 + tη1, [z1 + tv1, 1, z3 + tv3, . . . , zd+1 + tvd+1, 1, 1])
= [e2πiα1(u0+tη1)(z1 + tv1), e2πiα2(u0+tη1), e2πiα3(u0+tη1)(z3 + tv3),
. . . , e2πi(u0+tη1)(zd+1 + tvd+1), 1, 1]

At t = 0:

α ◦ γ(0) = [e2πiα1u0z1, e2πiα2u0 , e2πiα3u0z3, . . . , e2πiu0zd+1, 1, 1]
= [w1, w2, . . . , wd+1, 1, 1]

Consider the chart (US2 , ϕS2) at [w1, w2, . . . , wd+1, 1, 1] given by the slice S2 =
ιS(S̃2) (on U(T ), with S̃2 = Ba1,2 × Ba2,2 × · · · × Bad+1,2, where Bai,2 is centered at wi.
Note that w2 �= 0, so this chart exists (end of section 2.6.2).

By continuity, for t ∈ I sufficiently close to 0,

(e2πiα1(u0+tη1)(z1 + tv1), e2πiα2(u0+tη1), e2πiα3(u0+tη1)(z3 + tv3),
. . . , e2πi(u0+tη1)(zd+1 + tvd+1)) ∈ S̃2,

and in this case α ◦ γ(t) ∈ US2 , so

ϕS2([e2πiα1(u0+tη1)(z1 + tv1), e2πiα2(u0+tη1), . . . e2πi(u0+tη1)(zd+1 + tvd+1), 1, 1])
= [e2πiα1(u0+tη1)(z1 + tv1) : e2πiα2(u0+tη1) : · · · : e2πi(u0+tη1)(zd+1 + tvd+1) : 1 : 1]
∈ U(T ) ⊂ CP d.

Using the embedding ϕ−1 := ιS Subsection 2.6.2.2, with codomain restricted to
S̃2

ϕ ◦ ϕS2 ◦ α ◦ γ(t) = (e2πiα1(u0+tη1)(z1 + tv1), e2πiα2(u0+tη1), e2πiα3(u0+tη1)(z3 + tv3)
. . . , e2πi(u0+tη1)(zd+1 + tvd+1)).
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Then,

(ϕ ◦ ϕS2)∗α∗(p,q)(ξ, η)

= d

dt

����
0
(ϕ ◦ ϕS2 ◦ α ◦ γ)(t)

= (e2πiα1u0(2πiα1η1z1 + v1), e2πiα2u0(2πiα2η1), e2πiα3u0(2πiα3η1z3 + v3),
. . . , e2πiu0(2πiη1zd+1 + vd+1))

For m1, . . . , md+1 ∈ C, choose

η1 = m2

2πiα2e2πiα2u0
, vl = ml

e2πiαlu0
− 2πiαlη1zl, vd+1 = md+1

e2πiu0
− 2πiη1zd+1.

for l = 1, 3, . . . , d. This shows that α∗(p,q) is surjective.

If we now consider the embeddings

i : U ⊂ Cd → Nl ⊆ N, (z1, . . . , �zl, . . . , zd+1) �→ (z1, . . . , 1, . . . , zd+1, 1, 1) (2.29)

the computation is analogous.
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APPENDIX A – Prerequisites

In this chapter we present some aspects of the theory of Gale duality that
appears in the study of LVMB manifolds. We also recall some facts about topology, the
theory of manifolds, Lie groups and Lie groupoids that we will need.

A.1 Linear algebra and Gale Duality
Our source for Gale duality is (LOERA; RAMBAU; SANTOS, 2010).

Definition 25 (Vector configuration). (LOERA; RAMBAU; SANTOS, 2010, p.77) Let
V be a finite-dimensional real vector space. A vector configuration in V is a finite set
A = (vj ∈ V | v ∈ J) of labeled vectors. J is the label set.

The vectors are labeled just to ensure that vectors of V can be repeated.

A vector subconfiguration, or just a subconfiguration, of A is any subset
of A, indexed by a subset of J .

A vector (sub)configuration is independent if it does not have repeated vectors
and its vectors are linearly independent. It is dependent otherwise.

The rank of a vector (sub)configuration is its rank as a set of vectors of V .

(The source works with V = Rm, but for convenience we keep V arbitrary).

Definition 26. (LOERA; RAMBAU; SANTOS, 2010, p.79) A subconfiguration of a
vector configuration A is full-dimensional, or maximal, if it has the same rank as A.

Definition 27. (LOERA; RAMBAU; SANTOS, 2010, p. 160) [Linear evaluations and
dependencies of a vector configuration] Let A = (v1, . . . , vn) ⊂ V be a vector configuration
of rank k. We will define two maps:

ξA : Rn → V, [a1, . . . , an] =
n�

i=1
aiei �→

n�

i=1
aivi

ηA : V ∗ → Rn, f �→ [f(v1), . . . , f(vn)] =
n�

i=1
f(vi)ei

where (ei) is the standard basis for Rn.

The elements of Rel(A) := Ker ξA are the linear dependences of A. The
elements of Ev(A) := Im ηA. are the linear evaluations of A.

The next lemma shows that the maps ξA and ηA are, up to an isomorphism,
adjoint to each other.
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Lemma 18. Let σ : Rn → (Rn)∗ be the linear isomorphism defined by the choice of the
standard basis (ei) for Rn, which sends each ei to its dual e∗

i ∈ (Rn)∗. Then the adjoint
(ξA)∗ : V ∗ → (Rn)∗ of ξA satisfies

(ξA)∗ = σ ◦ ηA : V ∗ → Rn → (Rn)∗

Proof. We need to show that

[(σ ◦ ηA)(f)](x) = f(ξA(x))

for every f ∈ V ∗ and x ∈ Rn.

[(σ ◦ ηA)(f)](x) = [(σ(
n�

i=1
f(vi)ei)](

n�

j=1
xjej)

= [
n�

i=1
f(vi)e∗

i ](
n�

j=1
xjej)

=
n�

i=1
f(vi)xi

= f(
n�

i=1
vixi)

= f(ξA(
n�

i=1
xiei))

= f(ξA(x))

Lemma 19. (LOERA; RAMBAU; SANTOS, 2010, p. 160) Let A = (v1, . . . , vn) ⊂ V be
a vector configuration of rank k. The space of linear evaluations Ev(A) and the space of
linear dependences Rel(A) of A form two orthogonal complementary linear subspaces of
Rn of dimension k and n − k, respectively.

Proof. By the Lemma above,

(Rel(A))0 = (Ker ξA)0 = Im ξ∗
A

Applying σ−1 to both sides of the equation yields

σ−1((Rel(A))0) = Im ηA = Ev(A)

Because of the relation between the orthogonal complemente of a linear subspace and its
annihilator in the dual vector space,

Rel(A))⊥ = Ev(A)

Since dim Rel(A) = dim Ker ξA = n − k, dim Ev(A) = dim Rel(A))⊥ = k
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Lemma 20. (LOERA; RAMBAU; SANTOS, 2010, p. 160) Let A ∈ Rm×n be a vector
configuration of rank k. Linear dependences and linear evaluations of A form two orthogonal
complementary linear subspaces of Rn, of rank n − k and k respectively.

Definition 28. (LOERA; RAMBAU; SANTOS, 2010, p. 160) A Gale transform of a
configuration A is a configuration B such that the linear dependences of A are the linear
evaluations on B and vice versa, that is

Rel(A) = Ev(B)
Rel(B) = Ev(A)

We write B ∈ Gale(A).

Remark 13. Both the set of linear evaluations and the set of linear dependences of a
vector configuration of n elements are subsets of Rn. Let B be a Gale transform of A. Then
the linear dependences of A are the linear evaluations on B. In particular A and B have
the same cardinality. In particular the label set of both are the same, up to isomorphism,
and will be identified.

Lemma 21 (Characterization of Gale Duality). Let AB be vector configurations with n

elements each. The two equalities

Rel(A) = Ev(B)
Rel(B) = Ev(A)

are equivalent.

Proof. Suppose Rel(B) = Ev(A). Then

Ev(B) = Rel(B)⊥ = Ev(A)⊥ = Rel(A)⊥⊥ = Rel(A)

where the first and third equalities are from Lemma 19. The other case is analogous.

Remark 14. Let A a vector configuration with n elements, of rank k Let B be a Gale
transform of A, thus also with n elements (Remark 13). By Lemma 19, the space of linear
dependences of A has rank n − k. This is also the space of linear evaluations of B. Thus
B has rank n − k, also by Lemma 19.

Lemma 22. (LOERA; RAMBAU; SANTOS, 2010, p. 160) Every configuration A has
at least one Gale transform.
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Proof. We will show that the configuration presented in (LOERA; RAMBAU; SANTOS,
2010, p. 160) is a Gale transform of A.

Suppose A = (v1, . . . , vn) ⊂ V . Also suppose that A has rank k Let Rel(V ) be
the relation space of V , that is,

Rel(V ) = {a ∈ Rn |
n�

i=1
aivi = 0}

= Ker{T : Rn → B, (a1, . . . , an) �→
n�

i=1
aivi}.

Now we choose a basis for Rel(V ), and write down a matrix M whose columns are the
vectors of this basis. (In the source, (LOERA; RAMBAU; SANTOS, 2010, p. 160) used
the convention that the rows of M are the vectors of this basis. We however follow the
opposite convention, from (BATTAGLIA; ZAFFRAN, 2015)).

Since Im T = rank A = k then dim Ker T = n − k. The rows of M are the
elements of a our candidate for the Gale transform B = (w1, . . . , wn) ⊂ Rn−k of A. We
note that rank B = n − k. The columns of M will be denoted by (c1, . . . , cn−k).

We will show first that every linear dependence of A is a linear evaluation on
B. Since linear evaluations form a subspace of Rn (Lemma 19), we will show this for the
basis (c1, . . . , cn−k) of Rel(V ). Let (es) be the standard basis for Rn−k and (e∗

s) the dual
basis on (Rn−k)∗. For cj(ej)∗ : Rn−k → R satisfies

(ej)∗(wi) = (cj)i

which shows that cj is a linear evaluation of B. Therefore every linear dependence of A is
a linear evaluation on B.

Since rank B = n − k, the space of linear evaluations has dimension n − k

(Lemma 19). As mentioned above, this is also the dimension of the space Rel(V ) of linear
dependences of A. By dimensionality the inclusion above is an equality.

Therefore the space of linear dependence of A is the space of linear evaluations
on B.

By Lemma 21, we have the result.

Lemma 23. (LOERA; RAMBAU; SANTOS, 2010, p. 161) Let B ∈ Gale(A). We assume
the label set of A and B are the same (Remark 13).

The (label set of) independent subconfigurations of A are the complements of
the (label set of ) full-dimensional subconfigurations of B, and vice versa.

In particular, the (label set of) full-dimensional independent subconfigurations of
A are the complements of the (label set of ) independent full-dimensional subconfigurations
of B, and vice versa.
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Proof. Proof in (LOERA; RAMBAU; SANTOS, 2010, p. 161) relies on previous discussion
and results (in the source). Let us see a direct proof.

Let us suppose A = (v1, . . . , vn) ⊂ V, B = (w1, . . . , wn) ⊂ W . Without loss of
generality, let A� = (v1, . . . , vs) be an independent subconfiguration of A, that is, v1, . . . , vs

are linearly independent. We want to show that B� = (ws+1, . . . , wn) s a full-dimensional
configuration of B, that is, B and B� have the same rank. Since B� is a subset of B this
means that any vector generated by B is also generated by B �

Let w =
n�

i=1
biwi. We want to show that there exists b̃ ∈ Rn such that w

n�

i=1
b̃iwi,

with b̃i = 0, for 1 ≤ i ≤ s. By contradiction, suppose that for every b̃ ∈ Rn, with b̃i = 0,
for 1 ≤ i ≤ s, we have w �=

n�

i=1
b̃iwi. Then

n�

i=1
(bi − b̃i)wi �= 0

In particular for b̃i = bi, s + 1 ≤ i ≤ n,
s�

i=1
biwi �= 0.

Thus, by definition, (b1, . . . , bs, 0, . . . , 0) is not a linear dependence of B, and by definition
of Gale transform, it is not a linear evaluation of A.

Since the vectors A are LI, they can be extended to a basis for V . We define
a linear functional f : V → R that evaluates to bi on vi and to zero on the other
elements of this basis. But this shows that (b1, . . . , bs, 0, . . . , 0) is a linear evaluation of A.
Contradiction.

Since the definition of Gale transform is symmetrical the same proof works for
the vice-versa, with A and B interchanged.

Lemma 24. Let V be a finite-dimensional vector space. Let X, Y be two subspaces of V

of same dimension. There exists a subspace I ⊂ V such that

V = X ⊕ I = Y ⊕ I

Proof. If X = Y we complete any basis for X and get the result. Thus, let us assume
X �= Y .

Let BX = (x1 . . . , xr) be a basis for X and let BY = (y1 . . . , yr) be a basis for Y .
Note that since X �= Y , and dim X = dim Y , X �= {0}, i.e. r ≥ 1. W.L.O.G we consider
x1 �∈ Y .

For the same reason, X �= V . Let ũ ∈ V \ X. Then (x1 . . . , xr, ũ) is LI.

Case (y1 . . . , yr, ũ) is LI. Set u := ũ.
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Then (x1 . . . , xr, u) and (y1 . . . , yr, u) are LI.

Otherwise, u ∈ Y and we set u := ũ + x1.

We will show than (x1 . . . , xr, u) and (y1 . . . , yr, u) are LI.

Suppose
r�

i=1
aixi + b(ũ + x1) = 0

Then
(a1 + b)x1 +

r�

i=2
aixi + bũ = 0

Since (x1 . . . , xr, ũ) is LI, all the coefficients in the sum above are zero.

Now, suppose
r�

i=1
aiyi + b(ũ + x1) = 0

Then
bx1 = −

r�

i=1
aiyi + bũ ∈ Y

Since x1 �∈ Y , b = 0. Since BY = (y1 . . . , yr) are LI, the coefficients ai = 0.

In both cases we end up with lists (x1 . . . , xr, u) and (y1 . . . , yr, u), which are
are LI. Then we set u1 := u

We repeat the procedure to X � = Span(x1 . . . , xr, u) and Y � = Span(y1 . . . , yr, u),
first verifying if X � �= Y �. Otherwise we consider the bases BX� = (x1 . . . , xr, u) and
BY � = (y1 . . . , yr, u). After finite s steps, X � = V , and I = Span(u1, . . . , us).

Lemma 25. Let P : Rs → Rr, s ≥ r the linear map

(x1, . . . , xr, xr+1, . . . , xs) �→ (x1, . . . , xr)

and let (e1, . . . , es) and (e1, . . . , er) be the canonical basis for Rs and Rr. Then

1. Ker P = Span(er+1, . . . , es)

2. Let V be a subspace of Rs such that V ⊕ Ker P . There exists a linear section
σ : Rr → Rs of P , such that σ(Rr) = V .

Proof. The first item comes from Span(er+1, . . . , es) ⊂ Ker P and dim Ker P = s − r =
dim Span(er+1, . . . , es).

Let (v1, . . . , vr) be a basis for V . With respect to the canonical basis of Rs, we
have

v1 = a1
1e1 + · · · + a1

rer + a1
r+1er+1 + · · · + a1

ses

...
vr = a1

re1 + · · · + ar
rer + ar

r+1er+1 + · · · + ar
ses

(A.1)
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Recall that there are elementary operations we can apply to (A.1) such that we still have
a basis for V , namely, we can replace

vi � αvi, with α ∈ R \ {0}
vi � vi + vj

vi, vj � vj, vi

These are the operations of Gauss elimination method, which we will apply to (A.1). But
before that we note the following: since Rs = V ⊕Ker P = V ⊕Span(er+1, . . . , es), then for
every vector ei, 1 ≤ i ≤ r we must have an element of the basis with a nonzero component
in the "direction" of ei.

Then, by Gauss method

ṽ1 = e1 + 0e2 · · · + 0er + b1
r+1er+1 + · · · + b1

ses

...
ṽr = 0e1 + 0e2 · · · + 1er + br

r+1er+1 + · · · + br
ses

(A.2)

we get another basis for V . Note that we have used the operation of interchanging rows so
that ṽi has a nonzero component in the direction of ei.

Finally, we define
σ : Rr → Rs, ei �→ ṽi

which satisfies the hypotheses.

A.2 Topology
We collect here some results on topology used in the text. Our main reference

is (LEE, 2012).

Lemma 26. A finite union of open and dense subsets is open and dense.

Proof. Let D1, . . . , Dn be open and dense subsets of X. The intersection ∩Di is open
because finite. Let V ⊂ X be open and non-empty. We will show that

V ∩ D1 ∩ · · · ∩ Dn �= ∅

Since V is open and D1 is dense, V ∩ D1 �= ∅. Since V and D1 are open, V ∩ D1 is open.
We repeat the argument for (V ∩ D1) ∩ D2, and so on, finitely many times.

Proposition 6. (LEE, 2011, p. 54) A continuous injective map that is either open or
closed is a topological embedding.

Proof. See (LEE, 2011, p. 54).
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Theorem 15 (Proper Continuous Maps Are Closed). (LEE, 2012, p. 611) Let X be
a topological space, Y be a locally compact Hausdorff space, and F : X → Y a proper
continuous map. Then F is closed.

Proof. (LEE, 2012, p. 611)

Proposition 7. (LEE, 2012, p. 696) Suppose q : X → Y is an open quotient map. Y is
Hausdorff if and only if the set

R = {(x1, x2) | q(x1) = q(x2)}

is closed in X × X.

A.3 Manifold theory
We collect here some results on manifolds used in the main text. Our main

reference is (LEE, 2012).

Proposition 8 (Images of Embeddings as Submanifolds). (LEE, 2012, p. 99) Let M be
a smooth manifold with or without boundary, N a smooth manifold, and F : N → M a
smooth embedding. Let S = F (N). With the subspace topology, S is a topological manifold,
and it has a unique smooth structure making it into an embedded submanifold of M with
the property that F is a diffeomorphism onto its image.

Proof. (LEE, 2012, p. 99)

Proposition 9. (LEE, 2012, p. 80) Let M and N be smooth manifolds without boundary,
and F : M → N a map.

1. F is a local diffeomorphism if and only if it is both a smooth immersion and a smooth
submersion.

2. if dim M = dim N and F is either a smooth immersion or a smooth submersion,
then it is a local diffeomorphism.

Proof. See (LEE, 2012, p. 80). It is a straightforward application of the inverse function
theorem for manifolds.

Theorem 16 (Rank Theorem). (LEE, 2012, p. 81) Let M and N be smooth manifolds of
dimension m and n, respectively. Let F : M → N be a smooth map with constant rank r.
For each p ∈ M there exists smooth charts (U, ϕ) for M centered at p and (V, ψ) centered
at F (p) such that F (U) ⊂ V , in which F has a coordinate representation F̂ = ψ ◦ F ◦ ϕ−1

of the form
F̂ (x1, . . . , xr, xr+1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0)
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In particular, if F is a smooth submersion, this becomes

F̂ (x1, . . . , xn, xn+1, . . . , xm) = (x1, . . . , xn)

and if F is a smooth immersion, it is

F̂ (x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0).

(In the source, a chart ϕ centered at p means that ϕ(p) = 0.)

Proof. (LEE, 2012, p. 81)

Proposition 10. (LEE, 2012, p. 85) Let M and N be smooth manifolds, and suppose
that π : M → N is a smooth submersion. Then π is an open map, and if it is surjective it
is a quotient map.

Proof. (LEE, 2012, p. 85)

Theorem 17 (Constant-Rank Level Set Theorem). (LEE, 2012, p. 105) Let M and N

be smooth manifolds, and let Φ : M → N be a smooth map with constant rank r. Each
level set of Φ is a properly embedded submanifold of codimension r in M

Proof. (LEE, 2012, p. 105)

Proposition 11. (LEE, 2012, p. 112) If M and N are smooth manifolds with or without
boundary, F : M → N is a smooth map, and S ⊂ M is an immersed or embedded
submanifold, F |S : S → N is smooth.

Proof. See (LEE, 2012, p. 112)

Proposition 12. (LEE, 2012, p. 113) Let M be a smooth manifolds and S ⊂ M be an
embedded submanifold. Then every smooth map F : N → M whose image is contained in
S is also smooth as a map from N to S.

Proof. See (LEE, 2012, p. 113)

Theorem 18 (Extension theorem). (GUILLEMIN; POLLACK, 2010, p.70) Let Z be a
closed submanifold of Y , both without boundary, and C a closed submanifold of X. Let
f : X → Y be a smooth map with f � Z on C and ∂f � Z on C ∩ ∂X. Then there exists
a smooth map g : X → Y homotopic to f , such that g � Z, ∂g � Z, and on a neighborhood
of C we have g = f .
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A.4 Riemannian Isometries
In this section, we cite a result on Riemannian geometry that is used to study

the set of non-fixed points of an orbifold chart. For the definition of the set of non-fixed
points of an action, see the next section.

Definition 29. (PETERSEN, 2016, p.3) A Riemannian isometry between Rieman-
nian manifolds (M, gM ) and (N, gN ) is a diffeomorphism F : M → N such that F ∗gN = gM ,
that is,

gN(DF (v), DF (w)) = gM(v, w)

for all tangent vectors v, w ∈ TpM and all p ∈ M .

Definition 30. (PETERSEN, 2016, p.196) A map F : (M, gM) → (N, gN) is a local
Riemannian isometry if for each p ∈ M the differential DFp : TpM → TF (p)N is a
linear isometry.

Proposition 13 (Uniqueness of Riemannian Isometries). (PETERSEN, 2016, p.197) Let
F, G : (M, gM) → (N, gN) be two local Riemannian isometries. Suppose M is connected,
and suppose there is p ∈ M such that F (p) = G(p), and DFp = DGp. Then F = G.

Proof. See (PETERSEN, 2016, p.197).

Lemma 27. Let M be a connected manifold, Let σ : M → M be a nontrivial automorphism
of finite order (that is, (σ)n = idM for some n ∈ N). Then every open subset of U contains
a point not fixed by σ. Equivalently, the set of non-fixed points of σ is dense in M .

Proof. Let G be group of automorphisms of M generated by σ. It is a finite group since σ

has finite order.

We can equip M with a G-invariant metric. Let h be a metric on M . A
G-invariant metric hG is

hG(u, v) = 1
|G|

�

g∈G

g∗h

Since σ ∈ G, then with respect to hG, σ is an isometry.

Suppose there is an open set U ⊂ M such that σ|U = idU . Let p ∈ U . It follows
that σ∗p = id∗p . By the Uniqueness of Riemannian Isometries applied to σ and id : M → M

(Proposition 13), σ = id. A contradiction, since σ is nontrivial by hypothesis.

A.5 Topological and Lie group actions
We collect here some results concerning topological and Lie group actions. Our

main sources were (LEE, 2012; BREDON, 1972; DIECK, 1987). We have also benefited
greatly from (MOLITOR, 2016), especially on proper actions of Lie groups and slices.
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We will need to make some definitions regarding fixed and nonfixed points of a
group action. This will be applied in particular to orbifold charts.

Definition 31. (DIECK, 1987, p. 4). Let G be a topological group and X a left G-space.
Let H be a subgroup of G. Then

XH = {x ∈ X | Gx = H},

X(H) = {x ∈ X | Gx ∼ H},

XH = {x ∈ X | hx = x for all h ∈ H} = {x ∈ X | H ⊂ Gx},

where Gx ∼ H means that these subgroups are conjugate.

Remark 15. Let G be a group acting on a space X.

1. x ∈ X is a fixed point of the action if there is g ∈ G, with g �= 1 such that g · x = x

2. Conversely x is a nonfixed point if it is not a fixed point that is

gx �= x for all g �= 1 ⇐⇒ gx = x implies g = 1

3. If gx �= x, for some g ∈ G we say that x is not fixed g

4. Let g ∈ G. We denote by

Sg := {x ∈ X | g · x �= x}

the set of points of X not fixed by g.

5. The set of nonfixed points of the action is then

S =
�

g∈G,g �=1
Sg

= {x ∈ X | gx �= x for every g ∈ G, g �= 1}
= {x ∈ X | gx = x =⇒ g = 1}.

The last equality shows that this set is the set of points where the action is free.

6. The set of fixed points of the action is

Z := {x ∈ x | gx = x for some g �= 1 ∈ G}
=

�

{1}�=H≤G

XH

7. Note that X = Z ∪ S form a disjoint union.

Lemma 28. The set of nonfixed points S of an action is invariant, and it is the largest
subset of X, where the restriction of the action of G is free.



APPENDIX A. Prerequisites 83

Proof. The second claim is straightforward. Let us prove invariance. Let x ∈ S, g ∈ G, g �= 1.
We will show that gx ∈ S. Suppose not. Then, for some h ∈ G, h �= 1 Let h(gx) = gx.
This implies g−1hgx = x. Since x ∈ S, g−1hg = 1, which implies h = 1. Contradiction.

Theorem 19. (LEE, 2011, p.71) [Characteristic Property of the Quotient Topology] Let
X and Y be topological spaces and q : X → Y be a quotient map. Let Z be a topological
space. A map f : Y → Z is continuous if and only if the composite map f ◦ q is continuous.

Proof. See (LEE, 2011, p.71). Just follow the definition of quotient topology.

Theorem 20 (Passing to the quotient). (LEE, 2011, p.72) Let q : X → Y be a quotient
map, Z a topological space and f : X → Z is a continuous map that is constant on the
fibers of q (i.e. if q(x) = q(x�), then f(x) = f(x�)). Then there exists a unique continuous
map f̃ : Y → Z such that f = f̃ ◦ q:

X

Y Z

q
f

f̃

Proof. See (LEE, 2011, p.72). Continuity follows from the Characteristic Property (Theo-
rem 19).

Lemma 29. (LEE, 2012, p. 541) . For any continuous action of a topological group G

on a topological space M , the quotient map π : M → M/G is an open map.

Proof. See (LEE, 2012, p. 541).

Lemma 30 (Passing to the quotient). Let G be a group acting continuously on topological
spaces X and Y . Let F : X → Y be a G-equivariant continuous map. Then there is a
unique continuous map F̃ : X/G → Y/G such that the diagram commutes

X Y

X/G Y/G

F

q p

F̃

where p, q are the respective quotient maps.

If F is a homeomorphism, then so is F̃ .

Proof. p◦F is continuous and constant on the fibers (because F is G-equivariant). Therefore,
we can pass to the quotient and obtain F̃ with the required properties (Theorem 20).

Is F is a homemorphism, the analogous argument gives us �F −1.
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The argument again applied to the identity of X, and then Y , plus unicity
shows

�F −1 = (F̃ )−1

Lemma 31 (Passing to the quotient II). Let G, H be groups acting continuously on
topological spaces X and Y , respectively. Let ξ : G → H be a homomorphism.

Let F : X → Y be a ξ-equivariant continuous map (i.e. F (gx) = ξ(g)F (x).
Then there is a unique continuous map F̃ : X/G → Y/G such that the diagram commutes

X Y

X/G Y/H

F

q p

F̃

where p, q are the respective quotient maps.

If F is a homeomorphism, and ξ is an isomorphism, then F̃ is a homeomor-
phism.

In particular, for H = G and ξ = idG, we have Lemma 30.

Proof. p ◦ F is continuous and constant on the fibers (because F is ξ-equivariant):

p ◦ F (gx) = p(ξ(g)F (x)) = p(F (x)).

Therefore, we can pass to the quotient and obtain F̃ with the required properties (Theorem
20).

Is F is a homemorphism, the analogous argument gives us �F −1.

The argument again applied to the identity of X, and then Y , plus unicity
shows

�F −1 = (F̃ )−1

Proposition 14. (DIECK, 1987, p. 42). Let G be a compact Lie group and M a differen-
tiable G-manifold. Let G be any isotropy group of M . Then M(H) = {x ∈ M | (Gx) ∼ (H)}
is a submanifold of M (which may have components of different dimensions). In particular,
MG is always a closed submanifold.

Proof. (DIECK, 1987, p. 42).

Definition 32. (LEE, 2012, p. 542) Let Ψ : G × M → M be a continuous left action of
a Lie group G on a manifold M . This action is a proper action if the map

G × M → M × M, (g, p) �→ (Ψ(g, p), p)
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is a proper map.

Corollary 1. (LEE, 2012, p. 544) Every continuous action by a compact Lie group on a
manifold is proper.

Proof. See (LEE, 2012, p. 544).

Definition 33. (LEE, 2012, p. 543) Let Ψ : G × M → M be a continuous left action of
a Lie group G on a manifold M . The orbit relation of this action is the set

O = Θ(G × M) = {(Ψ(g, p), p) ∈ M × M | p ∈ M, g ∈ G}

where
Θ : G × M → M × M, (g, p) �→ (Ψ(g, p), p)

This is called the orbit relation because (q, p) ∈ O if and only if p, q are in the same G-orbit.

Lemma 32 (Characterization of Orbit Relation). Let Ψ : G × M → M be a continuous
left action of a Lie group G on a manifold M . Let π : M → M/G be the quotient map,
and let O be the orbit relation of this action. Then

O = {(q, p) ∈ M × M | π(q) = π(p)}

Proof. Note that π(q) = π(p) if and only if q, p are in the same orbit.

Proposition 15. (LEE, 2012, p. 543) Let Ψ : G × M → M be a continuous, proper, left
action of a Lie group G on a manifold M . Then the orbit space is Hausdorff.

Proof. (LEE, 2012, p. 543) Let Θ : G × M → M × M be the proper map Θ(g, p) =
(Ψ(g, p), p), and let π : M → M/G be the quotient map, and O the orbit relation of the
action.

Since Θ is a proper continuous map, it is closed (Theorem 15). Thus O is a
closed subset of M × M .

Also note that π is an open map, by Lemma 29.

Then using Lemma 32 and Proposition 7, we have that M/G is Hausdorff.

A.5.1 Tubes and Slices
In this section we cite the relevant results and definitions about existence of

tubes and slices for compact and proper group actions.
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Construction 5 (Twisted Product). (BREDON, 1972, p.46) Let H be a compact subgroup
of G and let H act on a space A. We will define the following action of H on G × A:

H × (G × A) → (G × A),
(h, (g, a)) �→ (gh−1, ha),

We will denote the orbit space of this H-action by

G ×H A (A.3)

and the H-orbit of (g, a) will be denoted by [g, a].

Lemma 33. (BREDON, 1972, p.46) Let H be a compact subgroup of G and let H act on
a space A. The twisted product G ×H A has the following G-action

g�[g, a] = [g�g, a]

Proof. We will apply Lemma 30 to the continuous map

F : G × (G × A) → (G × A),
(g�, (g, a)) �→ (g�g, a)

F is H equivariant because, for h ∈ H.

g�(gh−1, ha) = (g�gh−1, ha) = (g�g, a) = g�(g, a)

Lemma 34. (BREDON, 1972, p.46) The map

ie : A → G ×H A,

a �→ [e, a]

is a topological embedding (H does not have to be compact for ie to be an embedding, but
compactness of H is used to guarantee that the twisted product is Hausdorff).

Proof. See (BREDON, 1972, p.46).

ie is closed since it is the composition

A → G × A → G ×H A

of closed maps.

The projection map A → G × A → G ×H A is a closed map because G × A is
an H-space, and H is compact (Theorem in (BREDON, 1972, p. 38)).
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The source shows that ie is injective, continuous and closed. By Proposition 6,
it is a topological embedding.

Alternative argument that works for H not necessarily compact: ie is open since
it is the composition

A → G × A → G ×H A

of open maps (Lemma 29 for the quotient map).

The source shows that ie is injective, continuous. Since it is also open, by
Proposition 6, it is a topological embedding.

Definition 34. (BREDON, 1972, p. 82) Let X be a G-space, G compact Lie group. Let
P be an orbit of type G/H. A tube about P (or a tube around P or a G-tube about
(around) P ) is a G-equivariant embedding

ϕ : G ×H A → X

onto an open neighborhood of P in X, where A is some space on which H acts.

Proposition 16. (BREDON, 1972, p. 81) Let G is a compact group, H is a closed
subgroup, and A is a left H-space. (In particular, H is also compact). The inclusion
ie : A → G ×H A induces a homeomorphism

A/H → (G ×H A)/G,

H(a) �→ G[e, a]

Proof. (BREDON, 1972, p. 81)

Definition 35. (BREDON, 1972, p. 82) Let x ∈ X, a G-space. Let x ∈ S ⊂ X be such
that Gx(S) = S. Then S is called a slice at x, if the map

G ×Gx S → X,

taking [g, s] �→ g(s), is a tube around G(x).

Theorem 21. (BREDON, 1972, p. 82) Let X be a G-space, let x ∈ S ⊂ X, and denote
H := Gx. Then the following statements are equivalent:

1. There is a tube ϕ : G ×H A → X around G(x) such that ϕ[e, A] = S

2. S is a slice at x.

Proof. (BREDON, 1972, p. 83) (1) implies (2) because A can be replaced with S.
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Definition 36. (BREDON, 1972, p. 170) Let M be a G-space, G compact Lie group. Let
P be an orbit of type G/H and let V be a euclidean space on which H operates orthogonally.
A linear tube about (around) P in M is a tube of the form

ϕ : G ×H V → M

Definition 37. (BREDON, 1972, p. 171) A G-space M is locally smooth if there exists
a linear tube about each orbit.

Lemma 35. (BREDON, 1972, p. 308) A smooth action of a compact Lie group is locally
smooth.

Proof. (BREDON, 1972, p. 308)

Remark 16. About Lemma 35, (DIECK, 1987, p. 40) states it more strongly, that for
m ∈ M , we can take H = Gm and ϕ[g, 0] = gm. Also, while (BREDON, 1972) considers
the tube as a topological embedding, in the result stated in (DIECK, 1987) the tube is
also a smooth embedding onto an open subset (thus a diffeomorphism onto its image).

A.5.2 Proper Lie group actions
The source for this section is (MOLITOR, 2016).

We fix a free and proper action Φ : G × M → M of a Lie group G on a
manifold M .

Lemma 36. Given p ∈ M , there exists an embedded submanifold S ⊆ M containing p

such that

TqS ⊕ (Φq)∗eg = TqM (A.4)

for every q ∈ S.

Lemma 37. Shrinking S if necessary, the map Φ|G×S : G × S → M is a diffeomorphism
onto an open subset of M .

Looking at the proof of these two lemmas, we see that it is enough to start
with an embedded submanifold S � of M containing p and such that

TpS � ⊕ (Φp)∗eg = TpM. (A.5)

and restrict S � enough. That is, we intersect S � with a sufficiently small coordinate open
set U of M . Let us call S := S � ∩ U . By Lemma 36, Ψ(G × S) is an open embedded
submanifold of M , which is also G-invariant.

Then, we write US = π(S) ⊆ N , and ϕS : US → S, ϕS = (π|S)−1. (US, ϕS) is a
chart for N at π(p) ∈ N .



APPENDIX A. Prerequisites 89

Lemma 38. Let Φ : G × M → M be a free and proper Lie group action with quotient
map π : M → G\M . Then for every G-invariant embedded submanifold N of M , the set
π(N) is an embedded submanifold of G\M .

A.6 Lie groupoids
We collect here the definitions need from the theory of Lie groupoid. Our main

sources were (ADEM; LEIDA; RUAN, 2007) and (LERMAN, 2010).

Definition 38. (ADEM; LEIDA; RUAN, 2007, p. 17) A groupoid is a pair of sets
(G0, G1) equipped with five structure maps, listed below. G0 is called the space of objects,
and G1 is called the space of arrows.

1. The source map s : G1 → G0 assigns to each arrow g ∈ G1 its source s(g).

2. The target map t : G1 → G0 assigns to each arrow g ∈ G1 its target t(g). If
s(g) = x and t(g) = y we denote g : x → y.

3. The composition map m : G1 ×s t G1 → G0, where

G(2) := G1 ×s t G1 = {(h, g) ∈ G1 × G1 | s(h) = t(g)}.

We denote m(h, g) = hg, and require associativity whenever this operation is defined.
We also require that s(hg) = s(g) and t(hg) = t(h).

4. The unit (or identity) map u : G0 → G1 satisfying

s(u(x)) = x = t(u(x)), g(u(x)) = g = u(y)g

for all x, y ∈ G0 and g : x → y.

5. The inverse map i : G1 → G1, (g : x → y) �→ (g−1 : y → x) satisfying

g−1g = u(x) gg−1 = u(y).

When G0 and G1 are topological spaces and the structure maps are continuous we have a
topological groupoid.

Definition 39. (ADEM; LEIDA; RUAN, 2007, p. 17) A Lie groupoid is a topological
groupoid G where G0 and G1 are smooth manifolds, and such that the structure maps
s, t, m, u, i are smooth. Furthermore s, t : G1 → G0 must be submersions.
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Definition 40 (Pull-back of a groupoid). (LERMAN, 2010, p. 324) The pull-back of
a groupoid G by a map f : N → G0 is the groupoid f ∗G with the space of objects N , the
space of arrows:

(f ∗G)1 := (N × N) ×G0×G0 G1

= {(x, y, g) ∈ N × N × G1 | s(g) = f(x), t(g) = f(y)}

that is, (f ∗G)1 is the pullback in the category of Sets of the diagram

G1

N × N G0 × G0

(s,t)
f×f

The source and target maps of the pullback groupoid are

s(x, y, g) = x t(x, y, g) = y

and multiplication is given by

(y, z, h)(x, y, g) = (x, z, hg)


