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RESUMO

A cana-de-açúcar (Saccharum spp.) é a cultura mais importante para a produção de

açúcar e etanol de primeira geração. As cultivares modernas de cana-de-açúcar são alta-

mente poliplóides e heterozigotas, apresentando vários alelos diferentes em cada locus, e esse

alto nível de complexidade genética cria desafios durante os programas de melhoramento

convencional e molecular. Reconhecendo a dificuldade de melhorar o teor de sacarose por

meios convencionais, recursos substanciais têm sido direcionados para a compreensão das

bases fisiológicas, celulares, bioquímicas e moleculares da produção e acúmulo de açúcar na

cana-de-açúcar. O acúmulo de sacarose é descrito como regulado por uma rede de genes

modulados durante a maturação do colmo. Nesse contexto, experimentos de RNA-Seq rep-

resentam uma poderosa ferramenta para estudos de expressão gênica, permitindo obter o

perfil do transcriptoma. Usando este tipo de dados, redes de coexpressão gênica podem

ser construídas e auxiliar na identificação de genes com padrões de expressão semelhantes

biologicamente relevantes para um fenótipo específico. Este projeto teve como objetivo

modelar redes de coexpressão para diferentes variedades e tecidos de cana-de-açúcar, a fim

de obter uma melhor compreensão da interação gênica envolvida no metabolismo da sac-

arose da cana-de-açúcar. Usamos uma rede global de coexpressão modelada com dados de

RNA-Seq de dezenove diferentes genótipos de cana-de-açúcar e diferentes tecidos (raízes,

folhas e colmos). Além disso, uma rede de coexpressão gênica ponderada foi modelada e

módulos potencialmente funcionais foram identificados por meio de uma abordagem com-

pleta de agrupamento hierárquico. Dentro da estrutura da rede, pudemos identificar 153

grupos diferentes, que foram contrastados com os genes diferencialmente expressos identi-

ficados. Por meio de análises de enriquecimento, pudemos estabelecer um total de 1.484

genes relacionados ao metabolismo da sacarose correspondentes a quatro módulos de rede

diferentes. Além do metabolismo do amido e da sacarose, as vias do metabolismo da frutose

e da manose também foram enriquecidas para este grupo de genes e dois módulos de rede

adicionais foram selecionados. Esse grupo coeso apresentou interações gênicas relevantes

avaliadas por meio de categorias de Gene Ontology, como resposta ao estresse; processo

metabólico de carboidratos; processo metabólico de carboidratos celulares; organização da



parede celular; processo metabólico do polissacarídeo celular; resposta a estímulos e pro-

cessos metabólicos de polissacarídeos, representando uma importante fonte de dados para

o entendimento da dinâmica das atividades genéticas no acúmulo de açúcar. Além disso,

realizamos análises de DGE dentro dos seis módulos finais selecionados, mostrando 105

genes regulados positivamente em genótipos com maior teor de sacarose e 78 genes regu-

lados negativamente, englobando diferentes perfis funcionais avaliados através das enzimas

associadas. Por fim, para acessar as especificidades funcionais das redes de Saccharum

spontaneum, Saccharum officinarum e da cultivar híbrida SP80-3280, realizamos análises

de inferências biológicas para conexões hub e comuns entre esses três genótipos. Nossos

resultados mostraram o potencial de reunir um grande número de transcritos com expressão

diferencial significativa em categorias de sacarose e auxiliar na compreensão da dinâmica

das atividades metabólicas e genéticas em escala global sobre o metabolismo da sacarose

em cana-de-açúcar.

Palavras-chave: Redes de coexpressão, RNA-Seq, Metabolismo de Sacarose , Ontologia

genética.



Abstract

Sugarcane (Saccharum spp.) is the most important crop for sugar and first-generation

ethanol production. Modern sugarcane cultivars are highly polyploid and heterozygous,

presenting several different alleles at each locus, and this high level of genetic complex-

ity creates challenges during conventional and molecular breeding programs. Recognizing

the difficulty of sucrose content improvement through conventional means, substantial re-

sources have been directed to understanding the physiological, cellular, biochemical and

molecular basis of sugar production and accumulation in sugarcane. Sucrose accumulation

is described as regulated by a network of genes modulated during culm maturation. In this

context, RNA-Seq experiments represent a powerful tool for gene expression studies, allow-

ing the transcriptome profile to be obtained. Using this type of data, gene coexpression

networks can be constructed and assist the identification of genes with similar expression

patterns biologically relevant to a specific phenotype. This project aimed at modelling co-

expression networks for different sugarcane varieties and tissues in order to obtain a better

comprehension of the gene interaction involved in sugarcane sucrose metabolism. We used

a global coexpression network modeled with RNA-Seq data from nineteen different sugar-

cane genotypes and different tissues (roots, leaves and culms). Additionally, a weighted

gene coexpression network was modeled and potentially functional modules were identified

through a complete hierarchical clustering approach. Inside the network structure, we could

identify 153 different groups, which were contrasted with the differentially expressed genes

identified. Through enrichment analyses, we could establish a total of 1,484 genes related to

sucrose metabolism corresponding to four different network modules. In addition to starch

and sucrose metabolism, fructose and mannose metabolism pathways were also enriched for

this group of genes and two additional network modules were selected. This cohesive group

presented relevant gene interactions assessed through Gene Ontology categories, such as re-

sponse to stress; carbohydrate metabolic process; cellular carbohydrate metabolic process;

cell wall organization; cellular polysaccharide metabolic process; response to stimulus and

polysaccharide metabolic process, representing an important source of data for understand-

ing the dynamics of genetic activities on sugar accumulation. Furthermore, we performed



DGE analyses inside the six final selected modules, showing 105 genes up regulated in geno-

types with higher sucrose content and 78 genes as down regulated, encompassing different

functional profiles assessed through the associated enzymes. Lastly, in order to access func-

tional specificities of networks of Saccharum spontaneum, Saccharum officinarum and the

SP80-3280 hybrid cultivar, we performed biological inferences analysis for hub and common

connections between these three genotypes. Our results showed the potential of assembling

a large number of transcripts with significant differential expression in sucrose categories

and assisting the comprehension of the dynamics of metabolic and genetic activities on a

global scale on sucrose metabolism on sugarcane.

Keywords: coexpression networks, RNA-Seq, sucrose metabolism, Gene Ontology cate-

gories.
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1 Introduction

Sugarcane is a major sugar crop, being the source about 80% of the global sugar production

(Chen et al., 2019a). Besides, this species is one of the best options for the generation of

bioenergy (Silva et al., 2007), due to its capability to store sucrose as a primary energy

source, instead of more complex compounds (Silva et al., 2007). For 2021/2022, it is esti-

mated that the Brazilian production will reach 628.1 million tons; this represents a reduction

of 4% compared with previous years productions, partially due to the COVID-19 pandemic,

which forced companies to make modifications in their routines and suspend contracts and

and visits to farms (CONAB, 2021).

Current sugarcane cultivars are derived from interspecific crosses between Saccharum

officinarum (a species with high sugar production) and Saccharum spontaneum (a species

highly tolerant to biotic and abiotic stresses), and consecutive backcrosses with S. offici-

narum (Cuadrado et al., 2004). This process of sugarcane breeding caused the formation of

a highly complex and polyploid genome (Palhares et al., 2012), with a size of approximately

10 Gb (Piperidis et al., 2010), frequent occurrence of aneuploidies, and great cytogenetic

complexity (Daniels and Roach, 1987). The challenge of studying the sugarcane genome

forces us to find more precise and specific tools to understand the genetic interactions and

metabolic processes for sucrose accumulation. The S. spontaneum genome has been recently

sequenced (Zhang et al., 2018) and provided a larger comprehension of sugarcane’s genomic

organization. However, additional strategies are necessary to unravel the specific processes

of genetic interactions. Sugarcane transcriptome experiments, for instance, can increase the

sets of sequence information and assist the process of deciphering genes interactions.

Sucrose content is the most important commercial trait for sugarcane and a priority

characteristic for all sugarcane improvement programs (Jackson, 2005). However, the pro-

cesses of the transport and metabolism of this carbohydrate are still not fully understood. In

sugarcane, it has been described that the stems are the principal sink tissues that store very

high concentrations of sugars within the parenchyma cells (Patrick et al., 2013; Bihmidine

et al., 2013, 2015a). Sucrose transporters (SUTs) load sucrose into the phloem of leaf minor
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veins and also function to retrieve sucrose from the apoplasm during transport (Slewinski

and Braun, 2010; Baker et al., 2016; Julius et al., 2017). Moreover, SUTs are potentially

responsible for sucrose efflux into the cell wall space from phloem parenchyma cells and the

bundle sheath (Jung et al., 2015). There are many unknown mechanisms related to this

general process, and novel strategies must be employed so that it is fully understood.

Different methodologies have been applied to understand this cascade of reactions, such

as the identification of genes through in silico methods (Zinkgraf et al., 2017; Zhang et al.,

2018; Gomathi et al., 2018). However, despite extensive efforts, the improvement of sucrose

content through plant breeding programs remains very slow globally (Vicentini et al., 2015).

Sucrose synthesis and accumulation in sugarcane is highly complex and may involve a large

network of interactions operating at different levels (biochemical, molecular and genetic)

of organization. Different studies based on gene interactions aimed at understanding the

dynamics of gene and metabolic activities associated with sucrose accumulation (Mattiello

et al., 2015; Ferreira et al., 2016; Thirugnanasambandam et al., 2018b; Chen et al., 2019a)

and the most promising strategies have been based on RNA-Seq (Cardoso-Silva et al., 2014;

Ma et al., 2020).

RNA-Seq experiments allow the transcriptome profile of an organism to be obtained and

are a starting point for the identification of new and rare transcripts. There are several ad-

vantages on using RNA-Seq, including the more precise measurement of transcript levels and

their isoforms (Marguerat and Bähler, 2010). The great volume and the complexity of data

generated by RNA-Seq experiments requires scalable, fast and mathematically principled

analysis tools, such as gene coexpression networks, which can capture biologically important

patterns in gene expression data, enabling functional analyses of genes and interpretation of

genetic variants (Saha et al., 2017). Computational methods provide powerful approaches

for understanding complex biological systems (Ficklin and Feltus, 2011a) and biological net-

works can assist on unravelling the inherent structure of molecular interactions, what can

lead to the discovery of driver genes and meaningful pathways (Mall et al., 2017a).

A network is a graph that can be used to model how members of a discrete set can be
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related to another one according to some relationship (Ferlic and Tracy, 2016). Correlation

networks have increasingly been used in bioinformatics applications and have been found

useful for describing the pairwise relationships among gene transcripts (Zhou et al., 2002). A

common method used to model these networks is the Weighted Correlation Network Analysis

(WGCNA), which can be used together with different approaches, e.g. finding modules of

highly correlated genes, identifying intramodular hub genes, relating modules to one another,

externalizing sample traits, and calculating module membership measures (Langfelder and

Horvath, 2008a). The detection of community structure is a widely accepted approach

for investigating the principles governing biological systems (Mall et al., 2017a). These

communities, also known as modules, have been shown to comprise groups of biomolecules

that physically interact, are functionally cohesive, co-regulated or correspond to similar

biological pathways (Mitra et al., 2013a). The notion of communities means that nodes

within one module are densely connected to each other and sparsely connected to nodes

outside that community (Mall et al., 2017a). Defining appropriate methods to assess and

detect communities in coexpression networks is essential and allows a specific treatment on

RNA-Seq data.

In this context, this project aimed at identifying a large number of genes involved in the

metabolism of sucrose by analyzing sugarcane transcripts through coexpression networks.

A global network was constructed, and a subsequent selection of modules containing a

great number of genes related to sucrose metabolism was performed. Additionally, DGE

analyses were carried out for all the genotypes under analysis based on their contrasting

sugar content. Likewise, specific networks were constructed for representative genotypes and

hybrids cultivars. We observed that, through different in silico strategies, we could access

novel genes involved in these processes, which may assist sugarcane breeding programs

through molecular strategies.
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2 Bibliographic Review

2.1 Sugarcane

Sugarcane species (Saccharum spp) have China and India as center of origin and New Guinea

as the center of diversity (James, 2004). In the colonial period, sugarcane was introduced in

Brazil and thenceforth, the cultivation of sugarcane has had prominent importance on the

Brazilian economy (Figueiredo, 2008). Because of favorable climate factors in this country,

its cultivation expanded rapidly to the Northeast and Southeast of the country, and today

Brazil is the principal producer of sugarcane in the world (CONAB, 2021).

Sugarcane comprises a group of polyploid species belonging to to tribe Andropogoneae,

family Poaceae, known as the Saccharum complex. The genus Saccharum is composed by

six species: S. officinarum (2n = 80), Saccharum barberi (2n = 81-124), Saccharum robus-

tum (2n = 60-250), S. spontaneum (2n = 40-128), Saccharum sinense (2n = 111-120) and

Saccharum edule (2n = 60-80). This variability in the number of chromosomes strongly in-

fluences hybridization within the genus; modern sugarcane derived from interspecific crosses

between S. officinarum and S. spontaneum followed by successive backcrosses with S. offic-

inarum (Cuadrado et al., 2004). This process, historically known as “nobilization”, resulted

in modern sugarcane being highly polyploid and aneuploid (Palhares et al., 2012), het-

erozygous, with a genome of approximately 10 Gb (Piperidis et al., 2010), with 40-50% of

repetitions, and variable ploidy among different loci. This process further deepened the

genetic complexity of these species (Daniels and Roach, 1987; Garsmeur et al., 2018) as

schematized on Figure 1.
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Figure 1: Schematic representation of the genome of a typical modern sugarcane cultivar

(Garsmeur et al., 2018).

However, these crosses, performed by genetic improvement programs, resulted in these

modern varieties acquiring interesting agronomic characteristics such as a high weight of

plants and canes, high sucrose content, the ability of the stalks to drop old leaves, high

fiber content, disease resistance and, not less importantly, a high adaptability to different

climates (James, 2004). Plant breeding programs use these agronomic characteristics to

obtain optimal commercial hybrid cultivars, which normally takes a long time - between 10

and 12 years. Sugarcane has an enormous economic importance because of their primordial

derivatives products such as sugar and ethanol (James, 2004; Palhares et al., 2012). In

Brazil, the sugarcane industry is one of the sectors with the greatest generation of direct

and indirect jobs, and represents an important percentage of the agricultural PIB of the

country, as observed on Figure 2. It is estimated that 628.1 million tons of sugarcane will

be harvested during the 2021/2022 harvest (CONAB, 2021).
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Figure 2: Schematic representation of the big sugarcane manufacturing and economic

importance for Brazil, in which each circle represents the basic pyramid of sugarcane derived

products and the economic relationship between them (CONAB, 2021).

Thus, understanding this huge economic importance, sugarcane breeding programs look

for approaches that can reduce the time to obtain more productive cultivars, betting on

efficient molecular techniques capable of predicting genotypes of modern cultivars in shorter

periods and and at cheaper rates. Sugarcane breeding programs have special attention on

sugar content and consider it a valuable resource, based on the fact that high-sugar cultivars

allow the increase of productivity and consequently of profit (Jackson, 2005).

2.2 Sucrose

Sugarcane stores great amounts of sucrose - the most abundant disaccharide on the world,

used as a food sweetener since 2000 BC (Patrick et al., 2013). Furthermore, sucrose is the

main photo-assimilate of photosynthesis in plants. As a carbohydrate that is transported

at long distances (Julius et al., 2017), sucrose is vital for the normal functioning of plants’s

energy machinery; for that reason, a plant without sucrose is not conceivable (Salerno and

Curatti, 2003).

In plants, sucrose metabolism is composed by its synthesis, transport and storage. Leaves

are photosynthetic regions, where sucrose is synthesized, and from which it needs to be trans-
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ported to non-photosynthetic regions, such as the culm and roots. This is possible thanks to

sugar transporters, which transfer sucrose through phloem tissues. After transport, sucrose

is stored in mature culms (Slewinski and Braun, 2010; Bihmidine et al., 2015a). In the source

tissues, the loading of sucrose into the phloem can involve two ways: the symplasmic and

apoplasmic pathways (Patrick et al., 2013). On the symplasmic pathway, sucrose migrates

through sieve tubes and phloem parenchyma to enter parenchyma cells by interconnecting

plasmodesmata, where it is stored. A main characteristic of this mechanism is the presence

of the apoplasmic barrier, which divides vascular bundles from sugar-storage cells and al-

lows osmotic potentials of their separate apoplasms to be independently regulated (Patrick

et al., 2013; Julius et al., 2017). On the apoplasmic pathway, sucrose amounts are larger

and the presence of transporters is fundamental, as these show specific membrane affinity

by easily moving sucrose across all organelles membranes to reach to the vacuoles (Patrick

et al., 2013; Bihmidine et al., 2015a).

2.3 Genes and Enzymes Related to Sugarcane Sucrose Accumula-

tion

The metabolic pathways of sucrose and starch are closely related; while sucrose is metab-

olized, transported and accumulated in the presence of solar energy, starch is metabolized

in the absence of light energy (Kanehisa and Goto, 2000). Both these carbohydrates, which

have glucose in their composition, are degraded and are used as oxidizable substrate for mi-

tochondrial respiration, which is necessary for several plant developmental processes (Douce

and Day, 1985). Starch metabolism is determined by the amount of degradative enzyme ac-

tivity and the accessibility of the particulate substrate as pyrophosphate, which is essential

for sucrose cleavage; thus, sucrose can be synthesised from starch on temporal circumstances

controlled by circadian rhythm (Zhu et al., 2017).

In sugarcane, photoassimilates need to be transported to sink organs, where they are

stored in the parenchymal cells in form of sucrose (Wang et al., 2017; Moore, 1995; Rae et al.,

2005a; Chen et al., 2012). Several studies indicate that two types of sucrose unloading exist
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in plants (Moore, 1995; Patrick et al., 2013; Wang et al., 2017) (Fig. 3): (a) the symplastic,

and (b) the apoplasmatic unloading. In (a), when the sucrose transporters are available

in sieve tubes, sucrose with molecules of water and energy enzymes migrate to phloem

parenchyma, where sucrose moves to parenchymal cells (Moore and Cosgrove, 1991; Wel-

baum and Meinzer, 1990) and goes inside the vacuole by the activity of proton symporters

and aquaporines (Moore and Cosgrove, 1991; Welbaum and Meinzer, 1990; Carpaneto et al.,

2005; Bihmidine et al., 2015b). A main characteristic of this symplastic unloading is the

presence of an apoplasmic barrier that divides vascular bundles, generating differences on

the pressure in cells (Patrick et al., 2013). On the other hand, in (b), the unloading happens

when there is enough sucrose in the sink organs (Carpaneto et al., 2005; Wang et al., 2017;

Patrick et al., 2013), it migrates to the plasma membrane that contain available invertases

that hydrolyses the sucrose into hexoses (Chen et al., 2012, 2015; Patrick et al., 2013). Such

activities could explain why sucrose is present in immature internodes and has a greater

presence of enzyme activities in this tissue (Verma et al., 2011; Bindon and Botha, 2002).

Thus, the sink organ determines, together with several enzymes, the content and abundance

of sucrose in the stems (Smith and Stitt, 2007; McCormick et al., 2006a).

Sucrose metabolism is a complex physiological process controlled by a wide range of

genes in different plant tissues (Wang et al., 2017). In general, the sucrose synthesized in

the leaves will be transported by the phloem to the heterotrophic organs of the sink to supply

energy for the growth and development of the plant (McCormick et al., 2006b). Therefore,

sugar transporters represent an important element in plants’ energy supply, regulating the

transport, compartmentalization and storage of sucrose. These proteins can be divided

into monosaccharide transporters, SUTs, and hexose and sucrose transporters (SWEETs),

being predominantly expressed in mature leaves of sugarcane for exporting sucrose and

in internodes for accumulating it (Rae et al., 2005b). Several sugar transporters, such as

ShSUT1, ShPST2a, ShPST2b and ShSUT4, have already been demonstrated as having

differential expression in plant tissues (Casu et al., 2015a), showing the need of evaluating

these biological processes across different parts of plants for unravelling the entire cascade

of metabolic reactions.
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Figure 3: Schematic representation of sucrose storage and transport in sugarcane, separated
into: (a) the symplastic, and (b) the apoplasmatic pathways.

In addition, SNrk1 kinase has been described as a regulatory gene for sucrose accumu-

lation, inactivating several key metabolic enzymes and activating transcription of sucrose

synthase and α-amylase (Polge and Thomas, 2007). Together with this kinase, the tran-

scription factor bZIP11 is a transcriptional repressor in response to sucrose (Rahmani et al.,

2009a). Enzymes of sucrose metabolism also play an important role in controlling the sucrose

content in sugarcane stalks (Rae et al., 2005b). Likewise, sucrose synthase, which works

by catalyzing the cleavage reaction of sucrose, degrades sucrose in the presence of UDP

into UDP-glucose and fructose (Vargas and Salerno, 2010a). Another interesting group of

proteins that are related to sucrose metabolism are invertases, which hydrolyses sucrose

into glucose and fructose, and sucrose phosphate phosphatases, encoded by multiple gene
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families (Lutfiyya et al., 2007).

Even though several genes were already described as part of accumulation sucrose pro-

cesses in sugarcane, the entire set of biochemical reactions and related proteins is not fully

understood. There is still a lack of knowledge into these biological mechanisms, which we

intend to assess through RNA-Seq-based strategies.

2.4 RNA-Seq Experiments

In recent years, RNA sequencing through high-throughput, next-generation technologies

(RNA-Seq) has proven to be a powerful tool for whole transcriptome profiling with en-

hanced sensitivity for the discovery of new transcripts and the examination of allele-specific

expression profiles (Serin et al., 2016). RNA-Seq data is generally employed in order to

provide comprehensive transcriptome resources (Cardoso-Silva et al., 2014; Vicentini et al.,

2015). Through the library preparation process, it is possible to determine how closely

cDNA sequence data reflect the original RNA population (Marguerat and Bähler, 2010).

The most straightforward approach for library preparation is to synthesize double-stranded

cDNA, to which adapters can be ligated for multiplexing (Cardoso-Silva et al., 2014).

The generation of reliable RNA-Seq data for biological inferences relies heavily on proper

alignments of the sequencing reads to a coding genomic region obtained using a reference

genome or assembled transcripts. Thus, it is necessary to perform several steps of quality

filtering and quality control on all the obtained reads (Marguerat and Bähler, 2010; Gomathi

et al., 2018) in order to produce reliable correspondences (Cardoso-Silva et al., 2014). The

countable, almost digital, nature of RNA-Seq data makes them particularly attractive for

the quantitative analysis of transcript expression levels (Gomathi et al., 2018).

Besides this quantitative aspect, RNA-Seq studies enable researchers to refine transcript

annotations, providing for instance accurate maps of transcript start and end sites (Mar-

guerat and Bähler, 2010). The annotation process of a transcript is the description of the

related gene or protein in relation to its function performed in an organism, with evidence of

sequence homology with previously annotated sequences and known functions (Koonin and
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Galperin, 2003). These comparisons are performed using different biological databases, e.g.

GenBank (Benson et al., 2000), KEGG (Kanehisa and Goto, 2000), UniProt (Consortium,

2016), Ensembl (Cunningham et al., 2014), Phytozome (Goodstein et al., 2011), PLAZA

(Proost et al., 2014), and STRING (Szklarczyk et al., 2016). Such analyses are essentially

the most commonly used methods for performing sequence annotations, but there are al-

ternatives based on domain fusion, expression patterns between orthologs, and gene groups

(Koonin and Galperin, 2003).

2.5 Gene coexpression Networks

Different computational methodologies can provide deeper insights into complex biological

systems (Ficklin and Feltus, 2011a). In cases of grass species with poorly resolved, polyploid

genomes such as sugarcane, genomic resources are not as far progressed as in other crops.

A current efficient strategy is the modelling of such systems through complex networks,

which are a set of elements organized in the form of nodes and connected through edges

representing their relationship through some similarity or dissimilarity metric (Newman,

2003).

A large number of real systems can be converted to complex networks using mapping

procedures (e.g. correlation measures) and are present in different areas of knowledge (Costa

et al., 2011; Strogatz, 2001). There are several types of networks for modelling biological

interactions, with metabolites, enzymes, proteins, and genes as vertices, connected based

on some specific interaction (Costa et al., 2011). Complex networks have several factors

that make their understanding difficult, such as the structure in which it is modeled, its

evolution, its diversity of connections and nodes, and its dynamic complexity (Strogatz,

2001). However, massive analyses have been performed in different domains of knowledge

(Boccaletti et al., 2006) and improved their comprehension, especially on its topology, or-

ganization, properties and possible applications to different areas. In the case of metabolic

networks, for example, there are several associations that have been made between network

topology and related biological functions (Jeong et al., 2000).
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One method for identifying interacting gene sets is the construction of a gene coexpres-

sion network, modelled through the discovery of nonrandom gene-gene expression depen-

dencies measured across multiple transcript perturbations (Ficklin and Feltus, 2011a). In

these networks, there is a tendency of transcripts with similar expression patterns to be

grouped into the same module, assisting the comprehension of related biological categories.

In the case where the dependency is determined via correlation metrics, a correlation matrix

can be easily used to represent expression similarities and model a network. Computational

methods are then applied to circumscribe groups of network nodes that are highly connected

(Langfelder and Horvath, 2008a) as observed on Figure 3.

Figure 4: Workflow of a coexpression network analysis (Van Dam et al., 2018).

2.6 Complex Networks Analyses

Considering the process of modelling biological networks, different approaches may be ap-

plied in order to extract relevant information. Even though their comprehension represents

a difficult task due to their dynamic complexity (Strogatz, 2001), this type of modeling

enables the application of several techniques based on Graph Theory (Boccaletti et al.,

2006). One of the most common methods in such structures to infer novel relationships
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is the identification of association groups through community detection algorithms such as

Louvain (Blondel et al., 2008) and Infomap (Rosvall and Bergstrom, 2007). These modules

of a network are groups of vertices that share properties or perform a common function

in the context of the network (Fortunato, 2010). With real applications, they can provide

insights into the subset organization characteristics of a network and inferences about the

hierarchical organization of these communities (Fortunato, 2010; Zhang et al., 2018). For

example, the Louvain algorithm has been used to identify functional modules in coexpres-

sion networks for inferring gene relevance in SI-NETsSmall intestinal neuroendocrine tumors

(Drozdov et al., 2011).

2.7 Biological Inferences through Coexpression Networks

Different methodologies for inferring novel gene relationships through coexpression networks

have already been employed in several plant species, such as Arabidopsis thaliana (Feltus

et al., 2013), Populus trichocarpa (Huang et al., 2020), Zea mays (Ficklin and Feltus, 2011a),

Chamaemelum mobile (Tai et al., 2020), Cicer arietinum (Yadav et al., 2019), Oryza sativa

(Childs et al., 2011), Bombyx mandarina (Zhou et al., 2020), and also humans (Liao et al.,

2020a). The most common strategy applied for studying these biological systems is the con-

struction of a coexpression network, usually employing a WGCNA methodology (Horvath,

2011), followed by an identification of functional modules in the network. The definition of

these groups is generally based on a hierarchical clustering approach together with a cut-

off point in the estimated dendrogram with the Dynamic Tree Cut algorithm (Langfelder

et al., 2013). However, other methodologies have already been employed in more complex

scenarios, such as the Infomap algorithm for detecting communities in breast cancer datasets

(de Anda-Jáuregui et al., 2019) and the Link Communities method for clustering gene as-

sociations in cancer data (Ficklin et al., 2017). Besides, the hierarchical clustering strategy

does not have the capability of identifying precise groups, being complemented by other

approaches (Borin et al., 2018; Di et al., 2019; Zhong et al., 2020), such as the MCODE

algorithm (Bader and Hogue, 2003).
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The detection of cohesive clusters inside a network indicates the presence of genes with

substantial coexpression (Uygun et al., 2016), representing a method for investigating the

structure of molecular interactions (Mall et al., 2017a) and for identifying genes present in

the same or associated metabolic pathways (Mitra et al., 2013a). Therefore, this identifi-

cation of modules have been suggested as an effective method for inferring novel biological

relationships among transcripts (Zhang and Yin, 2020) and can be used together with differ-

ential expression results, expanding the findings of a small set of genes to functional modules

with associated topologies and connections (Poehlman et al., 2019).

The use of module detection inside a coexpression network can maximize the obtained

information from gene expression datasets (Uygun et al., 2016). Besides, by using multiple

and different statistical approaches for modelling this system, such analyses can allow the

recognition of regulatory relationships (Saha et al., 2017). Even though the most used

approach for defining these modules is hierarchical clustering, the introduction and use of

more techniques, such as community detection methods, can increase the sensitivity and

accuracy of the search for associated genes (Poehlman et al., 2019; Liao et al., 2020a; Huang

et al., 2020; Tai et al., 2020).

Various metabolic pathways have already been studied with such methodologies, e.g.

the metabolism of riboflavin, phenylpropanoid, biosynthesis of amino acids, isoflavonoids

and indole alkaloid (Yadav et al., 2019); pathways related to response to stress (Fait et al.,

2020); lipid biosynthesis (Poehlman et al., 2019); plant-pathogen interactions and the cir-

cadian rhythm (Tai et al., 2020); pathways related to the cell cycle (Liao et al., 2020a);

photosynthesis (Zhang and Yin, 2020); and light reactions (Ficklin and Feltus, 2011a). All

of these biological reactions could be complemented by coexpression network methodolo-

gies and module identification. Diverse important groups could be identified and several

inferences could be performed. While investigating lipid biosynthesis metabolic pathways,

for example, (Poehlman et al., 2019) found a set of genes probably related to lipid mod-

ulation through coexpression networks. (Tai et al., 2020) could identify modules related

to plant-pathogen interactions, detecting sets of genes strongly related to circadian rhythm
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pathway.

Recognizing the big challenge represented by sugarcane’s genetic complexity, we used

interdisciplinary approaches based on RNA-Seq and coexpression networks to access genes

related to sucrose metabolism. With this, we seek to elucidate the sugarcane genetic net-

works controlling sucrose metabolism pathways.

3 Objectives

3.1 Main

Building coexpression networks as a tool to unravel potential genes and expression patterns

related to sucrose metabolism of sugarcane.

3.2 Specific

• Building a global coexpression network for all experiments;

• Identifying communities in the networks containing key genes already associated with

sucrose metabolic pathways and studying the role of the other genes found in these

communities into these biological categories;

• Selecting modules related to sucrose categories for all varieties and species of sugarcane

used in this work;

• Performing differential expression analyses among sugarcane cultivars and tissues

based on sugar contrasting content;

• Performing an enrichment GO terms and pathway enrichment analyzed for selected

modules related to sucrose metabolism;

• Performing additional differential gene expression analyses inside final selected mod-

ules;
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• Identifying hubs and common connections for specific networks in order to analyze

inferences.
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4 Article

Gene coexpression networks provide deeper insights into

sucrose accumulation in sugarcane cultivars
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Abstract

Sugarcane is the most important crop for sugar and first-generation ethanol production,

with the sucrose obtained from this plant being a fundamental alimentary and economic

resource worldwide. This photoassimilate, a result of the photosynthesis, is transported

through the phloem from source to sink organs to be stored in the parenchyma of the

stems. Its metabolism and transport are regulated by a network of genes modulated during

culm maturation, but the mechanisms involved in this process are not yet fully understood.

Here, we constructed a global coexpression network using RNA-Seq data from different

sugarcane genotypes and tissues. Additionally, a weighted gene coexpression network was

modeled and potentially functional modules were identified through a complete hierarchical

clustering approach. Inside the network structure, we could identify 153 different groups,

which were contrasted with the differentially expressed genes identified. Through enrich-

ment analyses and gene annotations, we could establish a total of 1,484 genes related to

sucrose metabolism corresponding to 6 different network modules. This cohesive group pre-

sented relevant gene interactions with important biological processes, including response to

stress, carbohydrate metabolic process, cellular carbohydrate metabolic process, cell wall

organization, cellular polysaccharide metabolic process, and response to stimulus, repre-

senting an important source of data for understanding the dynamics of genetic activities

on sugar accumulation. Through biological network strategies, our findings show the po-

tential of coexpression networks to unravel new promising targets for additional studies on

sugarcane sucrose metabolism and molecular breeding.

Introduction

Sugarcane is a worldwide important species for sugar and ethanol production, representing

one of the main bioenergy sources available today (Chen et al., 2019b). Despite its impor-

tance, the comprehension of the genetic control mechanisms of sucrose accumulation remains

slow and provides an incomplete and imperfect picture (Patrick et al., 2013; Cardoso-Silva
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et al., 2014; Wang et al., 2017). This fact is mainly explained by the singular high genomic

complexity of this crop, generated through its breeding process (Palhares et al., 2012). Mod-

ern sugarcane cultivars are a result of interspecific crosses between Saccharum officinarum

(a species with high sugar production) and Saccharum spontaneum (a species highly tolerant

to biotic and abiotic stresses), and consecutive backcrosses with S. officinarum (Cuadrado

et al., 2004; Zhang et al., 2018). This hybridization caused the formation of a highly poly-

ploid and aneuploid genome, with a size of approximately 10 Gb and abundant in repetitive

elements, such as transposons, which can represent about 50% of all sugarcane sequences

(D’Hont and Glaszmann, 2001; Piperidis et al., 2010; Mancini et al., 2018; Sforça et al.,

2019).

Sucrose is one of the most representative sugars, because of its multiple activity on

plants, including growth, development processes, cell division, cell differentiation and the

accumulation of important metabolites (Chen et al., 2019b; Lastdrager et al., 2014; Mirajkar

et al., 2016). In sugarcane, this carbohydrate is synthesized in the leaves, reaching the sink

organs through the phloem for storage; its metabolism is regulated by a network of genes

induced during culm maturation (Moore, 1995). The most important regulation reactions

for sucrose metabolism in sugarcane have been described as performed by sucrose synthase

(SS), sucrose phosphate synthase (SPS), soluble acid (SAI), neutral invertases (NI), sucrose

transporters (SUTs), SWEET and diverse transcriptional factors (Rae et al., 2005a; Chen

et al., 2012; Rahmani et al., 2009b; Mirajkar et al., 2016), where different levels of sucrose

concentration represent an important factor in the development of mature and immature

internodes in the culms of sugarcane (Bindon and Botha, 2002; Thirugnanasambandam

et al., 2017).

One of the most common approaches for assisting the comprehension of sugarcane genes

impacting sucrose metabolism is the use of RNA sequencing (RNA-Seq). In addition to

providing the transcriptome profile of this crop (Marguerat and Bähler, 2010), these ex-

periments have enabled the identification of new and rare transcripts directly or indirectly

related to sucrose metabolism (Thirugnanasambandam et al., 2017; Kasirajan et al., 2018;
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Chen et al., 2019b). In order to take advantage of the great volume of complex data that

RNA-Seq experiments offer, network-based methodologies offer ways of integrating these

data in a scalable and dynamic approach (Grabherr et al., 2011; Ferreira et al., 2016).

Gene coexpression networks are graph structures used to model how members of a gene

set can be related to others, using nonrandom gene-gene expression dependencies measured

across multiple transcriptome perturbations (Strogatz, 2001; Newman, 2003; Ficklin and

Feltus, 2011b; Ferlic and Tracy, 2016). In such a network, there is a tendency of transcripts

with similar expression patterns to be grouped in a coexpressed network module (Langfelder

et al., 2008; Mall et al., 2017b), comprising groups of genes that are functionally cohesive, co-

regulated or correspond to similar biological pathways (Mitra et al., 2013b). Such network

categorization into groups of highly connected network nodes can enable the identification

of novel gene associations (Langfelder et al., 2008; Zhang et al., 2018; Poehlman et al., 2019)

which, in sugarcane, has shown promising results (Ferreira et al., 2016; Hosaka et al., 2021).

In this context, this study aims to identify a large number of key genes involved on sucrose

metabolism and accumulation through RNA-Seq based gene coexpression networks. Firstly,

we modeled a global weighted gene coexpression network using multiple RNA-Seq experi-

ments encompassing three different tissues across nineteen contrasting sugarcane genotypes.

Through differential expression analyses and bioinformatic approaches for categorizing su-

crose related genes, we could assess coexpressed network modules with putative associa-

tion with these processes. These groups of genes were used for novel inferences on such

metabolic mechanisms by coupling known biological categories with novel associations, as-

sessed through complex network approaches.

5 Material and Methods

5.1 Plant Material and Sequencing

This study comprises four independent RNA-Seq experiments (Exp1 to Exp4), which include

root (Exp1), leaf (Exp2) and culm (Exp3 and Exp4) samples. For Exp1, several hybrid
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cultivars (RB92579, RB855113, RB855536, SP79-1011, and SP80-3280) were planted in a

greenhouse with three replicates. Plants were grown for 95 days and root samples were

collected avoiding tiller roots, as described by Aono et al. (2021). For Exp2, in addition

to hybrids (SP80-3280, RB72454, RB855156, TUC71-7 and US85-1008), S. officinarum

(White Transparent and Criolla Rayada), S. spontaneum (IN84-58, IN84-88, Krakatau and

SES205A), and Saccharum robustum (IJ76-318) genotypes were used. The middle section of

top visible dewlap leaves were sampled from six-month-old sugarcane plants in the field in

three replicates, as described by Correr et al. (2020). Exp3 included hybrids (F36-819, SP80-

3280 and R570) and a S. spontaneum genotype (IN84-58). Culm samples from internode

1 were collected in four different time points, corresponding to 6-, 8-, 10- and 12-month-

old plants in the field with three replicates (Hosaka et al., 2021). In Exp4, we used hybrid

cultivars (SP80-3280 and IACSP93-3046), a S. spontaneum (Krakatau) and a S. officinarum

genotype (Badilla De Java). Culm samples were collected from the internodes 3 and 8 of

plants in the field in three replicates (Aono et al., 2021). For all experiments, total RNA

was extracted from tissues with the RNeasy Plant Mini Kit (Qiagen, Valencia, CA, United

States), quantified and and used for the preparation of cDNA libraries using the TruSeq

Stranded mRNA Kit (Illumina, San Diego, USA), which were sequenced on an Illumina

HiSeq 2500 platform.

5.2 Bioinformatics

RNA-Seq data quality was evaluated with FastQC (Wingett and Andrews, 2018) and clean

sequence reads were obtained by removing adapter sequences and reads with low quality

(Phred score below 20, reads shorter than 75 bp), and cutting the first 12 bases using

Trimmomatic v.0.39 software (Bolger et al., 2014). SortMeRNA (Kopylova et al., 2012) was

also used for removing residual rRNA. For gene quantification, we used S. spontaneum DNA

coding sequences (CDS) (Zhang et al., 2018) and the Salmon v.1.1.0 software (Patro et al.,

2015). CDS sequences were annotated with Phytozome v.13 database (Goodstein et al.,

2012) considering only species from the Poaceae family and retrieving Gene Ontology (GO)
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terms (Consortium, 2006) and KEGG pathways (Kanehisa and Goto, 2000).

5.3 Differential Expression Analyses

To identify differentially expressed genes (DEGs), we retrieved gene quantifications from

the Salmon output using the tximport package (Soneson et al., 2015) in R software (R

Core Team, 2021). Only the quantifications of the longest form of each CDS were used,

considering a minimum quantity of 1 count per million. With the edgeR package (Robin-

son et al., 2010), DEGs were identified in each experiment by comparing genotypes with

contrasting characteristics on sugar accumulation (Supplementary Table 1). For differential

expression, we used a gene length corrected trimmed mean of M-values (TMMs) normaliza-

tion (Smid et al., 2018), and considered an adjusted p-value of 0.05 according to the false

discovery rate (FDR) correction together with a minimum absolute fold-change of 1.5. To

evaluate enriched GO terms in groups of DEGs, we used the R package topGO (Alexa and

Rahnenführer, 2009) with a Fisher’s test (p-value of 0.01).

5.4 Global Weighted Gene Coexpression Network

We modeled a global weighted gene coexpression network (GWGCN) with the WGCNA

R package (Langfelder and Horvath, 2008b). For building a scale-free GWGCN, we used

pairwise Pearson correlations on transcripts per million (TPM) values from Salmon output

considering a power function in order to fit a scale-free independence. For that, we estimated

a soft threshold power value with a generated scale-free topology model fit R2 > 0.8 and

the largest mean connectivity possible. Genes with zero variance across quantifications were

excluded using the WGCNA package. We defined the functional modules using an average

linkage hierarchical clustering with euclidean distances together with an adaptive branch

pruning implemented in cutreeDynamic R package (Langfelder et al., 2008).

Selected modules were analysed for enriched GO terms in the same way as DEG analyses,

and for enriched KEGG pathways, we used a Fisher’s test (p-value of 0.05) implemented in
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R software (Team et al., 2013). For graphical inspections, we used the ggplot2 R package

(Wickham, 2011).

5.5 Gene Coexpression Networks’ Comparisons

Using the genes from the modules selected, we calculated pairwise Pearson correlations to

estimate intra-modular co-expression, discarding correlations with an absolute coefficient

below 0.8. All these measures were used for modeling specific networks for genotypes of S.

spontaneum, S. officinarum and the SP80-3280 hybrid cultivar, which was present on all

experiments. We employed a highest reciprocal rank (HRR) approach (Mutwil et al., 2010)

for retrieving the strongest edges limited to 30 connections. The obtained network had its

connections codified as 1/5 (top 10), 1/15 (top 20), and 1/30 (top 30).

We used R statistical software for network modeling together with igraph package (Csardi

et al., 2006). For each network, we evaluated network hubs considering Kleinberg’s hub

centrality score (Kleinberg et al., 2011) and compared networks’ connections through igraph.

6 Results

6.1 Bioinformatics

Following the pipeline established for filtering the RNA-Seq data across the 234 samples,

and quantifying the 35,519 S. spontaneum CDSs, we could generate a large reservoir of

sugarcane expression data, encompassing a wide range of different genotypes and tissues.

All of these CDSs were aligned against the Phytozome database, and we could find positive

correspondences on 21,828 sequences (Supplementary Table 2).

To perform the DGE analyses, we separated the raw gene count data according to the

experiments performed, normalizing the subsets by TMMs and identifying DEGs for each

condition considering the filters established (Supplementary Table 3). Comparing genotypes

with contrasting phenotypes on sugar accumulation led to the retrieval of different num-
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bers of DEGs, ranging from 34 in Exp2 (IN84-58 vs RB72454) to 3,723 in Exp3 (IN84-58

vs F36-819 on time point 4). For each one of the comparisons established, we selected

the enriched GO terms (Supplementary Table 2) and evaluated the presence of the fol-

lowing terms: (i) carbohydrate biosynthetic process; (ii) trehalose biosynthetic process;

(iii) trehalose metabolic process; (iv) disaccharide biosynthetic process; (v) oligosaccharide

biosynthetic process; (vi) polysaccharide metabolic process; (vii) monosaccharide metabolic

process; (viii) cellular polysaccharide biosynthetic process; and (ix) carbohydrate derivative

biosynthetic process. As these terms represent the major categories associated with sucrose

metabolism, differential expression results obtained on genotypes without any of these terms

were discarded, leading to the retention of 18 and removal of 17 comparisons (Supplementary

Table 3). All comparisons from Exp1 were discarded. From Exp2, we discarded SES205A

vs RB72454, IN84-58 vs White Transparent, and IN84-58 vs RB72454; from Exp3 IN84-58

vs SP80-3280 on time point 2, SP80-3280 vs R570 on time point 2, IN84-58 vs F36-819 on

time point 2, SP80-3280 vs R570 on time point 4, and F36-819 vs R570 on time point 4; and

from Exp4 Krakatau vs SP80-3280 on internodes 3 and 8, Krakatau vs IACSP93-3046 on

internodes 3 and 8, BadilaDeJava vs Krakatau on internode 3, and Krakatau vs SP80-3280

on internode 3.

6.2 GWGCN

Quantifications with zero variance were excluded from the initial dataset; consequently,

the GWGCN was modeled with 34,085 genes. In order to fit the network into a scale-free

topology, we selected a soft threshold power of 7 (R2 ∼= 0.81 and mean connectivity of about

164) and calculated the topological overlap-based dissimilarity matrix, which was used for

estimating putative functional modules within the network structure (Supplementary Table

4). We defined 153 groups with sizes ranging from 53 to 4,182 genes, which had a mean size

of 223.

The functional modules in the network putatively associated with sucrose accumulation

were selected based on the presence of DEGs within the network structure. From each
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differential expression comparison, we selected the network groups containing these DEGs.

However, only the groups enriched for the GO terms indicated as associated with sucrose

metabolism (see section above) were selected. From this approach, we could establish 13

groups containing DEGs obtained across the 18 retained differential expression analyses and

also identify important GO terms enriched (Supplementary Tables 5-6).

In order to restrict the quantity of genes observed and supply narrow associations into

sucrose-associated processes, we performed an additional step of restricting the set of 13

modules to only four (3, 87, 17 and 93). The other nine groups were excluded because they

only contained DEGs from the comparisons enriched in sucrose-related GO terms of one ex-

periment; by contrast, the remaining four groups had DEGs related to comparisons enriched

in at least two experiments. Finally, for each WGCNA module we tested the enrichment

of the following KEGG pathways: (i) starch and sucrose metabolism and (ii) fructose and

mannose metabolism. As only three modules were enriched for these pathways (76, 84 and

93), we included these groups in the modules selected through the filters established for

differential expression analyses.

Ultimately, we generated a final set of genes composed of 1,689 elements and separated

into six different modules: 3 (801 genes), 17 (337), 76 (155), 84 (144), 87 (128), and 93 (124).

The mean proportion of DEGs in each group was 40%, with DEGs spread according to the

three experiments performed (Supplementary Table 7). This final set was then selected to

supply novel insights into sugarcane sucrose accumulation processes.

6.3 Functional Modules’ Characterization

We performed a functional characterization using the final set of six modules selected

(Supplementary Table 8). We found a great quantity of genes encoding transporters re-

lated with sucrose metabolism (21 genes), including sucrose transporter 2, sugar trans-

porter 1, sugar transporter protein 7, monosaccharide transporter 5, monosaccharide trans-

porter 1, a nucleotide-sugar transporter family protein, and a major facilitator super-

family protein. Likewise, we found several proteins involved in sucrose metabolism, e.g.,
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trehalose-phosphatase synthase, glucose-6-phosphate, sucrose synthase, sucrose phosphate

synthase, carbohydrate binding protein, glucan endo-1,3-beta-glucosidase, beta glucosidase,

a nucleotide-diphospho-sugar transferase family protein, sugar isomerase, phosphofructoki-

nase, and glucose-6-phosphate dehydrogenase.

Regarding the gene ontology categories, we observed important categories on sugar accu-

mulation present among the genes of the selected groups, including the metabolic processes

of carbohydrates, glucose and sucrose, the biosynthetic process of cellulose, and sucrose and

sugar transport (Figure 5C). Some of these terms were also enriched when compared to

the entire set of GO terms within the transcriptome (Supplementary Table 9), with the

most pronounced terms being the response to oxidative stress, oxidation-reduction process,

response to stress, carbohydrate metabolic process, and cell wall biogenesis.

By selecting the KEGG pathways related to at least five genes (Fig. 5A) of these groups,

we found starch and sucrose metabolism, glycolysis/gluconeogenesis, fructose and mannose

metabolism, and amino sugar and nucleotide sugar metabolism among the identified path-

ways. Interestingly, the most pronounced pathway was phenylpropanoid biosynthesis. By

organizing these enzymes into categories (kinases, sugar enzymes, transcription factors, and

transporters), it is also possible to notice their presence in almost all the GWGCN modules

selected (Fig. 5B).

Considering all the genes within this group, we could evaluate their expression as up-

and down-regulated taking into account the differential expression analyses performed (Sup-

plementary Table 10). Although several genes did not present a uniform behavior among

the tests established, we could identify 105 genes as up-regulated in genotypes with higher

sucrose content and 78 genes as down-regulated, encompassing different functional profiles

assessed through the associated enzymes.

6.4 Gene Coexpression Networks’ Comparisons

In order to assess the functional specificities on S. spontaneum, S. officinarum and the SP80-

3280 hybrid network of genes, we created individual networks for each genotype considering
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Figure 5: Functional profile of genes within the groups selected as associated with sucrose
accumulation in the global weighted gene coexpression network modeled: (A) Quantity of
genes associated with KEGG metabolic pathways (minimum quantity of five to be included);
(B) Quantity of genes per group (G) classified according to the established categories; and
(C) Gene Ontology (GO) terms found for the genes selected and summarized into a treemap.

the selected group of genes established as associated with sucrose accumulation (Fig. 6). We

could observe a distinct profile on the network topologies, with S. officinarum corresponding

to a cohesive group of gene interactions. Interestingly, the S. spontaneum and SP80-3280

networks were characterized by sparse node connections, except for a few specific subgroups

of genes.

Such differences can be corroborated with the hub scores calculated for each network

(Supplementary Tables 11-13). For S. spontaneum, we could find only one gene densely
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Figure 6: Gene coexpression networks modeled with the groups of genes associated with
sucrose accumulation for (A) Saccharum spontaneum; (B) Saccharum officinarum; and (C)
sugarcane hybrid SP80-3280. In (I) node colors are selected based on hub scores calculated
(Supplementary Tables 11-13); and in (II) according to up- and down-regulated conditions
found (Supplementary Table 10).

connected (hub score larger than 0.8), contrasted to seven in S. officinarum and two in SP80-

3280. Evaluating the connections in common among the three networks, 16 connections were

found in common between S. officinarum and S. spontaneum (Supplementary Table 14),

35 between SP80-3280 and S. spontaneum, and 10 between SP80-3280 and S. officinarum

(Supplementary Table 15).

7 Discussion

Modern sugarcane cultivars are known by their complex genome (Cuadrado et al., 2004;

Mancini et al., 2018; Souza et al., 2019) embracing a variable number of chromosomes

(Cuadrado et al., 2004; Piperidis et al., 2010; Zhang et al., 2018), a considerable high genome

size (Sforça et al., 2019), and the common presence of duplicated regions (Palhares et al.,

2012; Mancini et al., 2018). This singular crop complexity forces sugarcane researchers to

employ many multidisciplinary efforts to understand the molecular basis of complex traits
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(Wang et al., 2017; Chen et al., 2019b). These approaches take advantage of comparing

sugarcane genotypes with contrast regarding relevant characteristics (Wang et al., 2017;

Chen et al., 2019b), e.g., the ability to store high levels of sucrose in culm tissues (Casu

et al., 2015b; Pereira et al., 2017; Thirugnanasambandam et al., 2017), elevated fiber content

(Vicentini et al., 2015; Kasirajan et al., 2018), and biotic/abiotic stress tolerance (Schaker

et al., 2016; Selvarajan et al., 2018; Wu et al., 2018). Although all these characteristics

are important for sugarcane production, the major interest in this crop is its sugar content,

which needs to be increased for reaching the worldwide demand (Patrick et al., 2013; Pereira-

Santana et al., 2017; Chen et al., 2019b; FAO, 2020). In this sense, our work was developed

for providing molecular resources associated with sucrose metabolism, providing insights

into specific sugarcane mechanisms for storing sugar.

Despite the economic importance of the sugar produced by sugarcane, the molecular

genetic mechanisms that comprise the metabolism of sucrose are not fully understood, and

the establishment of specific targets for molecular breeding is hindered. Therefore, there

is a need to find scalable, dynamic and interdisciplinary approaches that could be applied

in an efficient way into sugarcane research (Watt et al., 2005). For that, we opted to

use RNA-Seq-based gene coexpression networks with a wide variety of relevant sugarcane

genotypes, embracing several commercial cultivars and diverse accessions of interest for

breeding and research. From such structures, functional inferences could be performed

based on gene relationships measured through correlation metrics (Langfelder et al., 2008;

Ballouz et al., 2015; Ferreira et al., 2016). Although the annotation process can indicate sets

of genes related to their putative molecular functions (Marguerat and Bähler, 2010; Koonin

and Galperin, 2013), several sugarcane sequences could not be fully characterized in our

dataset, and the identification of network modules represents a powerful tool for depicting

novel gene relationships and inferring unknown gene roles (Ferreira et al., 2016; Zhang et al.,

2018; Poehlman et al., 2019).

Differential expression analyses between contrasting sugarcane genotypes have already

provided important inferences for specific sugarcane traits (Correr et al., 2020; Hosaka et al.,
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2021). Using such an approach, we performed several comparisons among genotypes and

tissues with contrasting sugar accumulation, forming a set of DEGs with high potential to be

involved in sucrose metabolism, which were then evaluated considering the network structure

and the functional modules established. By using different filtering criteria, we formed a

conservative group of genes with potential participation in sucrose-related mechanisms. In

addition to being functionally enriched for sucrose related categories, this set of modules

was used as a predictable structure for complementing our comprehension into the multiple

processes related to sucrose storage, metabolism and transport.

7.1 Sugarcane Sucrose Metabolism

Even though sucrose is present in all plant tissues and cell environments, this carbohydrate

is more abundant in specific tissues, specially in sink and source tissues (Casu et al., 2015b;

Thirugnanasambandam et al., 2017; Verma et al., 2019). From the complex set of molecular

mechanisms related to sucrose metabolism, two main sets of metabolic reactions can be

established, based on enzymatic interactions and final sugar products of each group (Fig.

7). The metabolic reactions in first group (a) involve invertases, leading to the synthesis of

fructose and glucose; the reactions in second group (b) involve sucrose synthases, which lead

to the synthesis of fructose and UDP-glucose. The importance of the enzymes in (a) and (b)

is fundamental in the metabolism of sucrose, and, as expected, we could find a significant

subset of these proteins in the modules selected.

In (a), there is a primordial group of enzymes known as invertases (Vargas and Salerno,

2010b; Verma et al., 2019) such as the beta-fructofuranosidase, which hydrolyzes sucrose

into fructose and glucose (Wan et al., 2018). We only found the incidence of an invertase in

one of the selected modules (module 3). Although this associated gene was not differentially

expressed, its inclusion on the module corroborates the multiple roles of the selected group

of genes found by the GO terms identified (Mirajkar et al., 2016), potentially indicating

processes related to partition and storage of sucrose (Wang et al., 2019).

Fructose derived from invertase reactions can be phosphorylated by enzymes such as
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Figure 7: Metabolic reactions associated with sucrose metabolism and separated into (a)
and (b) according to the enzyme activities.

fructokinase and hexokinase. These kinases act as signals for the activation of a big en-

ergy complex, encompassing the fructokinase-like 1 (FL1), phosphofructokinase (FKR) and

fructose-1,6-bisphosphatase (FBP) enzymes (Wang et al., 2019; Stein and Granot, 2018).

This important complex is part of many biological processes, including the generation of

precursor metabolites and energy process, carbohydrate catabolic and metabolic processes,

organic substance biosynthesis and the small molecule metabolism, which were part of the

criteria for selecting the functional modules enriched for categories associated with sucrose

metabolism. The presence of a phosphofructokinase was observed in the selected modules

as an up-regulated DEG, being enriched on genotypes with high sugar content, which is

in accordance with its regulation aspect on gluconeogenesis (Wang et al., 2019; Stein and
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Granot, 2018).

Furthermore, fructose-6-phosphate by a reversible isomerization by glucose-6-phosphate

isomerase can produce a glucose-6-phosphate (Stein and Granot, 2018), which is essen-

tial for the carbohydrate catabolic and biosynthesis, carbohydrate phosphorylation, hex-

ose catabolic, and ATP biosynthetic processes, possessing a primordial molecular func-

tion of glucose binding and acting as an activator of other pathways. Additionally, the

glucose-6-phosphate together with UDP-glucose and trehalose-6-phosphate synthase syn-

thesize trehalose-6-phosphate, an enzyme with a vital function on maintaining the sucrose

concentration in a homeostatic way throughout the plant (Hu et al., 2020), coordinating

the synthesis of sucrose on source organs and regulating its content on sink organs (Ponnu

et al., 2011; Figueroa and Lunn, 2016; Fichtner and Lunn, 2021; Wu and Birch, 2010).

Trehalose-phosphate phosphatase is further dephosphorylated into trehalose, forming a su-

crose signaling complex also linked with growth and plant development (Ponnu et al., 2011;

Lunn et al., 2014). Interestingly, we found gene representations of this enzyme throughout

the module established, being DEGs with a more pronounced expression in low-sugar, high-

fiber genotypes. This can be seen as a negative or inhibition mechanism with fundamental

roles in the sucrose accumulation (Figueroa and Lunn, 2016; Fichtner and Lunn, 2021).

Futhermore, trehalose 6-phosphate acts as an inhibitor of sucrose-non-fermenting-1-

related protein kinase 1 (SnRK1), a central integrator of energy signaling (Nukarinen et al.,

2016; Wurzinger et al., 2018; Li et al., 2017). SnRK1 is indicated as an activator of su-

crose synthase (SUS) breakage activity while down-regulating sucrose phosphate synthase

(Wu and Birch, 2010; Figueroa and Lunn, 2016). Although we did not find SnRK1 on the

modules selected, it was found on other network modules (4, 6 and 55), indicating a joint

mechanism of repression that still need to be investigated for further studies.

In (b) (Fig. 7), there is a primordial group of enzymes, including sucrose synthase (SUS),

a key enzyme on the synthesis and breakdown of sucrose in sugarcane, with functional in-

fluence in sucrose utilization to support growth (Verma et al., 2011; Thirugnanasambandam

et al., 2019). We could find SUS-related genes in the selected groups (module 3). Inter-
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estingly, we did not observe differential expression of SUS genes on the sugar-contrasting

genotypes, which corroborates previous reports indicating these gene’s moderate expression

levels (Thirugnanasambandam et al., 2019). The SUS sucrolytic activity, cleaving the UDP-

glucose and fructose-6-phosphate enzymes, has a reversible behavior because SUS keeps the

glycosidic link catalyzed by the sucrose phosphate synthase (SPS) (Anur et al., 2020; Verma

et al., 2019; ElSayed et al., 2017; Patrick et al., 2013; Stein and Granot, 2018; Verma et al.,

2011; Kurniah et al., 2021). SPS is mainly reported as involved in the synthesis of sucrose

on leaves and capable of controlling sucrose content (Verma et al., 2011; Anur et al., 2020;

Kurniah et al., 2021). We observed this enzyme on module 17, but it was not diferentially

expressed, which might be a result of its multiple role on several simultaneous sucrose pro-

cesses, including accumulation, transport, and synthesis. For that reason, there are several

patterns of expression for the same enzyme at the entire plant, which are influenced by

other biological processes, such as the circadian rhythm and the light assimilation process

on each cultivar (Anur et al., 2020; Ma et al., 2020).

All sucrose enzymes described on (b) interact to form UTP-glucose-1-phosphate uridy-

lyltransferase, which catalyzes the interconversion of glucose and fructose, acting as a signal

for the production of other nucleotide-sugars and being a primordial glycosyl contributor

for polysaccharides biosynthesis (Hosaka et al., 2021; Wang et al., 2019). This enzyme was

found in other groups of the network (10, 35, 115), indicating a putative functional con-

nection of these modules that should be a target for further investigations. Additionally,

another important enzyme in (b) is beta glucosidase, which is involved in the conversion of

glucose into cellulose (Cao et al., 2015). This enzyme was found among the selected modules

and according to its retrieved GO terms, it may act as a signal for the beginning of cell

wall polysaccharide metabolic process, cellular glucan metabolic process and carbohydrate

metabolic process. However, this enzyme was not found among the DEGs, which could

be explained by its expression profile, which is closely related to specific tissue expression

and extremely important for sucrose accumulation in sugarcane (Qin et al., 2021; Li et al.,

2017).
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All these enzymes described in (a) and (b) sets had an indisputable affinity with several

types of sugar, including sucrose, glucose and fructose (Zhang et al., 2020; ElSayed et al.,

2017). This set of proteins represent the known elements into sucrose metabolism in sugar-

cane and, as expected, could be almost entirely reconstructed by the modules selected in this

work, clearly corroborating the importance of the set of genes established throughout the

manuscript. Additionally, the final products of these enzymatic reactions described above

are transported to the entire plant in order to support several vital processes, which was also

identified as key elements in the module selection through the definition of monosaccharide,

sucrose, and sugar transporters. These transportes are essential for sucrose transport and

control in sugarcane (Chen et al., 2015; Zhang et al., 2020; Khan, Chen, Zeng, Qin, Guo,

Mahmood, Yang, Liang, Song, Xing, et al., Khan et al.; Correr et al., 2020), having high

affinity with organelle membranes, such as vacuolar membrane, and are integral components

of plasma membranes, ratifying the associated GO terms found for these transporters, in-

cluding proton transmembrane transport, proton-exporting ATPase, sucrose metabolic pro-

cess, sucrose transports, and phosphorylative mechanism activity (Rae et al., 2005a; Zhang

et al., 2020; ElSayed et al., 2017).

A high abundance of transporters is generally linked to the developmental stages on

tissues differentiation of sugarcane (Perlo et al., 2020), which is in agreement with the great

amount of transporters observed in the selected modules, which were most up-regulated

for high-sugar content genotypes. This abundance of transporters corroborates the prop-

agation of this intense enzymatic activity across the network. Additionally, some types

of transporters showed notable distribution on the selected modules, including phosphate

transporter, potassium and sodium symporters, and cationic amino acid transporters. These

transporters are responsible by crucial ion homeostasis processes on sugarcane, and previ-

ous studies have already indicated an association between the differential accumulation of

Na+ and K+ ions in contrasting sugarcane genotypes (Brindha et al., 2021). The transport

protein particle (TRAPP) was also observed within the selected groups, being fundamental

for exocytosis, endocytosis, and protein sorting, and associated to GTPases that may be in-

volved on the operation of plant membrane traffic (Kalde et al., 2019). This is in agreement
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with some of the GO terms found (vesicle-mediated transport and small GTPase mediated

signal transduction), and also directly linked to the sucrose metabolism GO category. From

that, we may speculate that TRAPP might be involved in the transmembrane transport of

several compounds in sugarcane, including sucrose.

7.2 Novel Inferences

The selected modules related to sucrose metabolism are the axis of our approach. In addition

to the described direct relationship of these genes into the sucrose metabolic mechanisms,

we also observed a large set of genes encoding enzymes that are part of diverse biological

processes in plants, which could be closely related to sugar accumulation process in modern

sugarcane cultivars. In a few of the selected modules (76 and 17), we identified DEGs that

encode proteins containing pentatricopeptide repeat (PPR) and tetratricopeptide repeat

(TPR), which have been described to influence transcription, transport, folding, control cycle

control and organelle RNA edit in other plants (Sun et al., 2018; Wei and Han, 2017). These

regulation proteins have direct effects on plant development and photosynthesis (Barkan

and Small, 2014), and their inclusion in the established groups may indicate a different

source of sucrose regulation in sugarcane, with high potential to be a valuable source for

biotechnological studies.

A noteworthy group of genes involved in plant defense was observed on some modules

(84, 3 and 17), which included: a mitogen-activated protein kinase, which is crucial for

establishing disease resistance (Bi et al., 2018); an AAA-type ATPase family protein, which

are involved on specific defense-related programmed cell death in rice (Fekih et al., 2015);

a target of rapamycin, involved in early pathogen recognition pathway in sugarcane (Oloriz

et al., 2021); a GTP-binding family protein strongly involved in plant defense in Arabidopsis

(Maruta et al., 2021); and a NBS-LRR protein, involved in response to disease resistance in

plants, being capable to identify compounds secreted by pathogens during infection (Singh

and Singh, 2018). Interestingly, these genes encoding such proteins did not present an up-

regulation in expression in S. spontaneum genotypes. It is clearly observed that sugarcane
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has a very complex defense system, directly influenced by the sucrose associated pathways

and which needs deeper investigations for unravelling how wild and modern sugarcane geno-

types have different mechanisms for dealing with such combined processes.

Other important groups of genes involved in plant development were observed on mod-

ules 76 and 3, and especially on module 84 (Supplementary Table 8). This is the case

of a Gibberellin 2-oxidase 8, which plays a direct role in determining the levels of bioac-

tive gibberellins, hormones related to plant growth and development (Bai et al., 2014; Hu

et al., 2017); and a U2 snRNP auxiliary factor, which is fundamental for the splicing of

key flowering genes in Arabidopsis (Wang et al., 2020). Other examples include: (i) the

Regulator of Chromatin Condensation 1 (RCC1) family protein, which shows an opposite

response to abcisic acid related to early seeding growth in Arabidopsis (Ji et al., 2019); an

ethylene-responsive element binding factor related to a fundamental role in plant growth,

development, metabolism, and responses to biotic and abiotic stresses (Chen et al., 2019b; Li

et al., 2020); and a senescence-associated gene described as induced under abiotic stress con-

ditions (Carrillo-Bermejo et al., 2020). Being so tightly associated with sucrose metabolic

processes, these enzymes might represent important factors linking sucrose metabolism to

developmental processes long known to interfere with sugar storage in sugarcane, including

growth, flowering, abiotic stresses (such as cold) and senescence (Yoon et al., 2021).

Finally, a diferentially expressed WRKY DNA-binding protein has fundamental roles

of developmental and physiological processes in S. spontaneum (Li et al., 2020), probably

regulating the abundance of sucrose (Rushton et al., 2010), and PLATZ transcription factor

family protein was also described as a positively regulator of starch synthesis (Li et al.,

2021). From the different genes found as belonging to these groups established, we could

not only provide groups of genes corresponding to and controlling this metabolic route, but

also elucidate different regulation mechanisms affecting other sugarcane characteristics.

Additionally, we identified up and down-regulated genes associated with sucrose metabolism

inside the selected modules. Leucine-rich repeat (LRR) protein genes were found up-

regulated on at least two experiments from different tissues. This corroborates previous
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indications that these proteins are associated with the synthesis of sucrose in several sugar-

cane tissues and genotypes (Vicentini et al., 2009). Also, we observed calmodulin domain

protein gene as up-regulated on genotypes with higher sugar accumulation; these proteins are

sensors of calcium and were reported to interlink calcium and sugar signaling in plants. In

mutant wheat lines, for instance, it showed important correlation with water-soluble carbo-

hydrate as sucrose-1-fructosyltransferase (Kalaipandian et al., 2019). Additionally, calcium

proteins are involved in drought tolerance pathways in sugarcane (Selvi et al., 2021).

Furthermore, MYB family transcription factor genes were up-regulated. These tran-

scription factors are involved in sugar and hormone-regulated alfa-amylase gene expression,

also encoding a monosaccharide transporter on rice (Zhang et al., 2010). In Arabidopsis,

it was observed that a mutant MYB gene showed an increased expression of a hexokinase

gene, which is related to the response to glucose (Chen et al., 2017); this suggests that

the mutant gene was expressed in the anther tapetal cells and in sugar-transporting vascu-

lar tissues (Zhang et al., 2010). Additionally, glucosyltransferases were observed to be up-

and down-regulated in relation to sucrose metabolism. They are known to transfer sugar

and several acceptor molecules; a mutant, overexpressed glucosyltransferase gene increased

glucose tolerance on Arabidopsis (Yan et al., 2010). Lastly, we observed an up-regulated

glucan endo-1,3-beta-glucosidase on module 3 with their GO terms enrichment for sucrose

metabolism, it was previously associated with response to drought stress in wheat, show-

ing major expression on the leaves and roots of tolerant genotypes (Faghani et al., 2015).

As expected of differentially expressed genes, all of them are strongly related with sucrose

metabolism according to the inferences. This means that these genes could act as mark-

ers for the sucrose pathway in sugarcane, because of their interactions that are associated.

While most of these genes were not known to act directly in this metabolic pathway, our

inferences allowed us to identify their links to sucrose metabolism.

While accessing functional specificities of the networks modeled, we observed that two

hubs in the S. officinarum network showed major cohesive behavior (Supplementary Table

12). One of them is a bZIP transcription factor previously reported to be specifically
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repressed by sucrose on a reversible way (Kang et al., 2010; Thalor et al., 2012) and named

as a sugar sensing and signaling system led by sucrose in Arabidopsis (Rook et al., 1998). The

other one is CPR5, responsible for the positive modulation of growth under stress conditions

and acting as an inhibitor of bZIP (Meng et al., 2017). However, in the SP80-3280 network,

we observed only one hub (Supplementary Table 11), which encodes a basic helix-loop-helix

(bHLH), part of the family of transcription factors that may have different roles in plant cell,

tissue development and plant metabolism (Heim et al., 2003). Also, basic helix-loop-helix

(bHLH) were reported to act as regulators in the control of ethylene synthesis in sugarcane,

with its abundance being influenced by photoperiods and ripening (Alessio et al., 2018).

Furthermore, Basic helix-loop-helix (bHLH) proteins were a key piece to show the direct

link between the phenylpropanoid metabolism and sucrose. In Solanum tuberosum under on

a treatment induced by sucrose, bHLH showed higher expression and was correlated with a

greater presence of enzymes involved in the metabolism of sucrose, such as invertases and

sucrose synthases (Payyavula et al., 2013).The relationship between these both pathways

could explain why we observed large amount of genes on phenylpropanoid pathway on

selected groups (Fig. 5A). Furthermore, hubs were used to access genes densely connected

by the inferences; with this, we identified some links between sucrose metabolism and other

pathways, helping us to understand what is happening on network structure. Using the

highest hub score and annotations, we identified interesting genes described above. These

functional specifies complement the novel inferences described on first part, because specific

relationships were visualized, such as the case of SP80-3280 network supporting the fact

that sucrose metabolism at plant is a connected network of reactions.

Additionally, common connections were found between the S. spontaneum and S. offici-

narum networks. Some of them showed biological significance, such as a connection between

Ribosomal protein S4 and Ribosomal protein L6, both of which have important roles in the

translation of key proteins involved in chloroplast development, photosynthesis and response

to salt stress tolerance in rice (Qiu et al., 2018; Moin et al., 2021). Another connection can

be established between the ribosomal protein S9 and quiescin-sulfhydryl oxidase 1. The

latter was described as a novel regulator of ion homeostasis on a mechanism that consists
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in the activation of root systems loading K+ into xylem on mutant Arabidopsis (Alejandro

et al., 2007). Interesting common connections were also found between the SP80-3280, S.

spontaneum and S. officinarum networks. This is the case of the UDP-glucosyl transferase

72B3 with major facilitator superfamily proteins, which are involved in the transport sugar

and several acceptor molecules (Deepak et al., 2010) and in loading sucrose into the phloem

and sink tissues on sugarcane (Reinders et al., 2006). Likewise, another interesting con-

nection between ribosomal protein L6 with hydroxyproline-rich glycoprotein family both

involved on abiotic and biotic stress response, such as salt stress tolerance (Moin et al.,

2021), plant defense reactions, root elongation zone on roots and cell wall extensibility regu-

lation in rice (Lucob-Agustin et al., 2020). These common connections between all networks

helped us more than we expected because we identified one connection that is strongly in-

volved in sucrose metabolism. Although this connection has not been described previously

for sugarcane, this shows the efficiency and flexibility of computational methods such as

coexpression networks to elucidate more relationship at sugarcane that could be important

to be investigated by additional studies.

Interestingly, we found many genes that had no known annotation or lack inferences for

other species and were not studied yet. This is unfortunately expected for species such as

sugarcane, which do not have a complete reference genome due to its high genetic complex-

ity. Consequently, this situation was evidenced when we analyzed the six selected modules

which are enriched and associated with sucrose metabolism, as previously described. In de-

tail, in hubs and common connections analyzed (Supplementary Tables 11,12,13,14,15), we

observed several genes with all troubles described above but, according to network structure,

could have provided important information about the links between sucrose metabolism and

other pathways. We believe that these genes might belong specifically to sugarcane; addi-

tionally, we understand that a complete annotation of sugarcane could represent a valuable

resource of information on gene structure, function, and regulatory networks related to

sucrose metabolism, allowing the identification of specific sugar-controlling regions in the

sugarcane genome (Barnabas et al., 2015; Thirugnanasambandam et al., 2018a).
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8 Summary of results

8.1 Bioinformatics

• Using the S. spontaneum CDSs as a reference, gene expression was quantified in all

samples and genes were aligned against the Phytozome database.

• These data were used to perform DGE analyses between phenotypes constrating on

sugar accumulation.

8.2 GWGCN

• A global coexpression network was modelled with 34,085 genes, followed by the selec-

tion of modules related to sucrose categories for all varieties and species of sugarcane

used in this work.

• On these selected modules, we identified key genes already associated with sucrose

metabolic pathways. Studying the role of these genes, we reduced the number of

modules based on GO terms, KEGG pathways enrichment, and DEG analyses.

8.3 Functional Modules’ Characterization

• We found a great quantity of genes encoding transporters related with sucrose metabolism.

• The gene ontology categories showed important categories associated with sugar ac-

cumulation; inside the modules, we evaluated these genes based on their differential

expression.

8.4 Gene Coexpression Networks’ Comparisons

• Individual networks were modelled in order to assess the functional specificities of S.

spontaneum, S. officinarum and the SP80-3280 hybrid. Additionally, we evaluated

hubs with high scores and common connections between networks.
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9 Conclusions

We provided novel cues into genetic associations with sugarcane sugar accumulation. Through

coexpression networks and DEGs obtained with comparisons between genotypes with con-

trasting agronomic characteristics, we could identify a rich set of sucrose-related genes. We

could also model the genotype-specific dynamic responses to sucrose metabolism, with an

additional degree of gene enrichment to understand the molecular mechanisms involved in

the metabolic pathways related to sucrose metabolism. Thus, with WGCNA, we were able

to identify important modules and hub genes. Through these modules, we obtained infor-

mation about biological pathways related to sucrose accumulation that could be strongly

linked with genomics regions controlling this process.

10 Perspectives

These modules showed genes that could be treated as sugar markers, that could be employed

to manage agronomic characteristics in sugarcane cultivars. We may suggest this based on

studies that applied this approach to identify biomarkers associated with various processes

in other species, such as the development of cancer and other diseases in humans (Liao et al.,

2020b; Shi et al., 2020; Niu et al., 2019). Further research should be performed to study these

genes related to sucrose metabolism separately, in order to better understand their specific

genetic mechanisms on sucrose metabolism pathways (synthesis, transport, and storage).

Due to the genetic complexity of sugarcane, it is difficult to obtain biological annotations

and inferences, and there is a large amount of information still undeciphered. Despite the

efforts of development of new computational methods to supply these deficiencies, more

traditional approaches that allow more precise identification of the chromosomal regions

related to sucrose metabolism, such as quantitative trait loci (QTL) mapping (Kugler et al.,

2013; Springer et al., 2019) and genome-wide association studies (GWAS), are also valuable.

QTL mapping can identify larger QTL regions containing potential candidate genes, which

can be narrowed down with GWAS. These approaches can be complemented with output
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data of gene expression networks in order to avoid potential false-positive errors and support

the validation of their results, helping to establish a global approach for studying sucrose

metabolism in sugarcane.
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