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Abstract

This thesis is in the context of autonomous airships. Airships are advantageous platforms for
long duration missions because the lifting gas sustain part of the vehicle weight, reducing en-
ergy consumption. Also, airships are platforms with low degree of intrusion in the environment,
which is an important characteristic for environmental monitoring applications. This thesis is
placed in the context of the project DRONI. This project aims to develop an autonomous airship
for the enviromental monitoring in the Mamirauá reserve in Amazon rainforest. Airships are
known to have a nonlinear dynamics with many uncertain parameters. The identification of such
parameters require complex testing, such as wind tunnel tests. This thesis proposes Incremental
Controllers (ICs) as a solution for the control loop in order to overcome the modeling lack. ICs
reduce the sensitivity to model uncertainties by adding the dependency of derivative measuring,
which increases the sensitivity to measurement noise and delay. Furthermore, actuator redun-
dancy and saturation are issues when designing ICs for airships. Therefore, in this thesis, we
discuss how to design ICs presenting solutions for the design issues mentioned before. Never-
theless, the control and guidance loops require access to linear and angular velocities. Mean-
while, the guidance must have access to positions, attitude, and incident wind in the airship
body. These information can be retrieved by inertial sensors (such as gyroscope, accelerometer
and magnetometer), GPS, and barometer. Thus, a comparison between different filtering strate-
gies is presented in order to define which technique provides better feedback for the control
and guidance loops. Also, the wind estimation problem is addressed. Traditional model-based
estimators are presented, then a data-driven strategy is proposed. The results obtained led us
to propose a novel estimation strategy that performs a fusion between both model-based and
data-driven approaches resulting in a hybrid version of a wind estimator. Finally, the guidance
problem is addressed. A modified version of the so-called Line-of-sight strategy is presented.
This strategy receives adaptations for considering the kinematic restrictions of the airship and
the varying behavior when transitioning between hovering and cruise flights. As a final result,
we obtained a closed loop system addressing Guidance, Control and Estimation problems. As
demonstrated in simulation results, this final control architecture is capable of covering all flight
phases of a complete mission, namely: cruise, hovering, vertical take-off and landing.

Keywords: Robots - Control systems; Flight - Control; Auto-guided vehicle systems; Kalman
Filtering; Neural Networks;



Resumo

Esta tese está contextualizada no âmbito de dirigíveis autônomos. Os dirigíveis são platafor-
mas vantajosas para aplicações de longa duração devido sua capacidade de sustentar parte de seu
próprio peso, reduzindo o consumo de energia. Além disso, os dirigíveis são plataformas com
baixo grau de intrusão, o que é uma característica muito importante para aplicações de mon-
itoramento ambiental. Esta tese está contextualizada dentro do projeto DRONI. Este projeto
visa desenvolver um dirigível autônomo para monitoramento ambiental da reserva de Mami-
rauá na floresta Amazônica. Os dirigíveis são conhecidos por sua dinâmica não-linear com
várias incertezas paramétricas. Esta tese propõe Controladores Incrementais (ICs) como uma
solução para a malha de controle a fim de contornar os erros paramétricos de modelagem. Os
controladores incrementais reduzem a sensibilidade do sistema à erros de modelagem adicio-
nando a dependência de medição das derivadas dos estados. Consequentemente, ICs aumentam
a sensibilidade do sistema aos ruídos e atrasos de medida. Adicionalmente, redundância en-
tre atuadores e saturação devem ser levados em conta ao projetar ICs. Portanto, nesta tese,
discutimos como projetar ICs apresentando soluções para estes problemas. No entanto, as mal-
has de controle e guiamento necessitam de informações tais como velocidade linear e angular,
posição geográfica e orientação. Estas informações podem ser extraídas através de sensores
inerciais (tais como girocópio, acelerômetro e magnetômetro), GPS e barômetro. Portanto,
uma comparação entre diferentes técnicas de filtragem é apresentada com o objetivo de definir
qual técnica melhor se encaixa às malhas de controle e guiamento. Além disso, o problema de
estimação do vento é tratado. As técnicas tradionais baseadas em modelo são apresentadas e
discutidas. Então, uma estratégia inovadora baseada em dados é proposta. Os resultados obti-
dos nos levaram a propor uma estratégia invadora resultado da fusão entre a técnica baseada
em modelo e a técnica baseada em dados, resultando em um técnica híbrida de estimação de
vento. Finalmente, o problema de guiamento é tratado. Uma versão modificada da estratégia
Line-of-sight é apresentada. Esta estratégia recebeu adaptações para considerar as restrições
cinemáticas do dirigível e seu comportamento variante no tempo quando em transição entre
voo pairado e voo cruzeiro. Como resultado final, obtivemos um sistema em malha fechada
composto por Guiamento, Controle e Estimação. Como demonstrado nos resultados de simu-
lação, a arquitetura de controle proposta é capaz de cobrir todas as fases de voo do dirigível em
uma missão completa, nomeadamente: voo cruzeiro, voo pairado, decolagem e aterrissagem
vertical.

Palavras-chave: Robôs - Sistemas de controle; Voo - Controle; Sistemas de veículos auto-
guiados; Filtragem de Kalman; Redes Neurais;
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Nomenclature

Variables

α the angle of attack

β the side slipe angle

Λ, λ Input scaling gain (matrix, scalar)

Ω = [p q r]T the three-dimensional airship angular velocity in body frame (roll, pitch and yaw
angular velocities)

Ωw the angular velocity of the wind

Φ = [φ θ ψ]T the three-dimensional airship angular position in the NED frame (roll, pitch
and yaw angles)

ξ the airship vector of kinematic states

ag the gravitational acceleration

Mv the virtual mass

Sa the rotation matrix from the wind frame to the body frame

δi the normalized voltage applied to the i-th thruster

w, w State derivative (vector, scalar)

ωi the angular velocity of rotation of the i-th propeller

ρ the air density

τm the mechanic time constant

τe the electric time constant

Fa the aerodynamic forces and moments

Fg the gravity forces and moments

Fk the kinematic forces and moments



Fp the wind-induced forces and moments

Fw the wind-induced forces and moments

I3 the identity matrix of third order

J the inertia matrix of the airship

JB the inertia matrix of the buoyancy air

Jv the virtual inertia matrix

Ma the apparent mass of the airship

Ni the normalized vector of orientation in 3-axis of the i-th propeller

Oc the vector of distance between CG and CB

Oc× the skew matrix which translates the Center of Gravity (CG) components to CB

OCTi the distance vector between propeller and CB

P = [PN PE PD]
T the three-dimensional airship cartesian position in the NED frame

R the rotation matrix for transforming velocities from NED frame to body frame

S the rotation matrix from the body frame to the NED frame

V = [u v w]T the three-dimensional airship linear velocity in body frame

Va the airspeed

Vw the wind speed

x the airship vector of dynamic states in body frame

y, y System output (vector, scalar)

ζ , ωn Damping ratio, natural frequency

CPi the propulsion coefficient of the i-th propeller

CTi the thrust coefficient of the i-th propeller

f (x,ξ ,d,u) the dynamic equations of the airship model

Fi the force generated by the i-th propeller

Ii the current in the i-th thruster



Jm the moment of inertia of the rotor

kt the coefficient of momentum

m the scalar mass

mB the buoyancy mass

Mi the momentum generated by the i-th propeller

rprop the propeller radius

Vt the true airspeed

Vmax the maximum voltage of the battery

Subindexes

(·)i i-th component of a vector

Acronyms

ALOS Adaptive Line-of-sight

CB Center of buoyancy

CG Center of gravity

DRONI Robotic Airship with Innovative Conception

EKF Extended Kalman Filter

EKF Unscented Kalman Filter

ENU East-North-Upper

GPS Global Positioning System

IBKS Incremental Backstepping

ILOS Integral Line-of-sight

INDI Incremental Nonlinear Dynamic Inversion

ISDM Mamirauá Institute of Sustainable Development

ISG Input Scale Gain

ISM Incremental Sliding Modes



KF Kalman Filter

LOS Line-of-sight

LPF Low-pass filter

MIMO Multiple Inputs and Multiple Outputs

NAW Natural Anti-Windup

NED North-East-Down

NED North-East-Down

RMS Root Mean Square

ROS Robotic Operating System

RS Reference shapping

SB(A/I)LOS Sensor Based (Adaptive/Integral) Line-of-sight

SOD Second-order Differentiator

UAV Unmanned Aerial Vehicle

VPC Vertical Position Control

VTOL Vertical Take-off and Landing

WOF Washout Filter

ZOH Zero-Order Hold
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1 INTRODUCTION

Airships with autonomous operation capacity are the focus of a worldwide investigation. A less
common aerial vehicle, airships are particularly suited to scenarios that demand long endurance,
high payload, and low operational risks, such as surveillance and environmental monitoring [Liu
et al., 2009]. Airships are advantageous platforms for long duration missions because they sus-
tain part of its weight, reducing energy consumption [Elfes et al., 2003]. Also, airships are
platforms with a low degree of intrusion in the environment, since they emit less sound noise
than other UAVs, which is an important characteristic for environmental monitoring applica-
tions. Relevant works have shown many useful tasks for airships, such as: flight data acquisition
[Kungl et al., 2004], terrain mapping [Hygounenc et al., 2004], vision surveillance [Moutinho
et al., 2007] and deep space exploration [Elfes et al., 2004].

Unmanned Airships typically are equipped with two combustion rotors. However due to
the increasing advances in battery, the combustion rotors are being switched by electrical ro-
tors. At the same time, the multirotors (which are sustained by rotative wings) are being widely
studied around the world. Although they present overactuation and high maneuverability, the
multirotors are characterized by the short flight time capacity. Considering the multirotors ad-
vantages and the airships advantage, a novel configuration vehicle was proposed by the project
DRONI - Robotic Airship with Innovative Conception. This project is conducted by “Centro
de Tecnologia da Informação Renato Archer” (CTI) in partnership with several institutions –
UNICAMP, UFAM, ITA, IST, USP-São Carlos, and IDSM. This partnership between Brazilian
and Portuguese institutions (UNICAMP, CTI, and IST) was first established in 1997 with the
Project AURORA [Elfes et al., 1998]. It was maintained during the project DIVA [Moutinho
et al., 2007] and now it also includes other universities (UFAM, USP-São Carlos, and ITA) in
project DRONI (see Figure 1.1).

Figure 1.1. Projects AURORA, DIVA e DRONI
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1.1 Background in Autonomous Airships

Aiming at the design of an autonomous airship, aerial platform positioning and path-tracking
should be assured by a control and navigation system. In the field of robotics, autonomous navi-
gation involves four basic topics: Path planning, Guidance, Control, and Data Acquisition. This
separation is advantageous since it modularizes the platform allowing to switch the guidance
strategy without losing performance and stability guarantees given by the control loop or esti-
mation loop, for example. Also, the tuning is easier, once the tests can be done with a modular
procedure.

The Path Planner is responsible for generating a trajectory for the Guidance loop. Nor-
mally, the Guidance aims to minimize the pose error (in other words, position and orientation).
While, the Control level aims to correct velocity and/or acceleration errors. The Data Acquisi-
tion includes subjects of sensing, filtering, and estimation, which aims to extract the necessary
information about the vehicle motion for closing the control and guidance loops.

In Figure 1.2 is shown a general block diagram in a cascaded structure which represents the
overall navigation system of a robot, where x is the vector of linear and angular velocities in
body frame, ξ is the vector of linear and angular positions in the global frame, u is the control
input for the airship, and d is the disturbance vector and the subscript .d is used for commanded
signals.

∑ ∑Guidance Control Airship

Estimator Sensors

+

ξ d
+

xd u
d

x, ξ

y

−

ξ̂
−

x̂

Figure 1.2. General block diagram of the navigation system.

For each of the blocks in Figure 1.2, a section is written presenting the studies and developed
solutions in the context of autonomous airships.

1.1.1 Guidance Strategies

The Guidance is the intermediary level of control responsible to provide velocity and attitude
references to the control level. In robotics, a path is defined as a sequence of poses (position and
orientation) in the map frame. However in the context of Unmanned Aerial Vehicles (UAVs),
the guidance is divided into two steps: position tracking and attitude control as shown in Figure
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1.3. Normally, linear control strategies such as Linear Quadratic Regulator (LQR) [Moutinho
et al., 2016] and Proportional-Derivative-Integral (PID) [Azinheira et al., 2000] are adopted for
these steps.

Guidance loop

∑ ∑
Position
control

Attitude
control

Pd Φd xd

P Φ

Figure 1.3. General block diagram of the guidance loop of an Autonomous Airship

There exist two basic approaches for the completion of a path, namely: path tracking and
path following as defined by [Tsourdos et al., 2010]. In the path tracking approach, the path
is parameterized by the time. In other words, each pose has a time compromise. It works
as if there existed a virtual vehicle moving along the path which is the reference for the real
vehicle. In path following, the vehicle must follow the trajectory, however without a temporal
compromise of execution as shown in [Moutinho et al., 2016].

Future
Pose

Futureerror

Actual
Pose

L
oo

ka
he

ad
di

st
an

ce

Planned
Path

Future
Reference

Figure 1.4. Line-of-sight strategy applied to an UAV

Almost 20 years ago Line-of-sight (LOS) was introduced by [Lekkas and Fossen, 2003,
Rysdyk, 2003]. This strategy complements Path following/tracking tasks by considering future
position errors, however, without the temporal compromise. The idea is that a future position
error can be reduced by acting before it occurs. As an example, consider a vehicle laterally
underactuated such as a missile. Considering that the target moves (e.g. by doing an accentuated
curve), the projectile must initialize a correction immediately to achieve the final goal. This
solution was used in [Fossen et al., 2015] by inserting weights for the actual pose error and the
future pose error through the regulation of a lookahead parameter as illustrated by Figure 1.4.
This strategy is interesting for laterally underactuated vehicles as is the case of airships.
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Similar to LOS, [Park et al., 2004] proposed the L1 approach. This strategy introduces
some kinetic terms to be compensated, such as centripetal acceleration. Thus, the guidance
level generates smoother references to the control level and more compatible with the vehicle
dynamics.

Another way of computing smooth errors is the Vector Fields technique proposed by [Goncalves
et al., 2010]. This approach uses the gradient of the path to generating smooth velocity refer-
ences for the control level. This strategy was proved to be stable and also it was tested in
real vehicles such as: fixed-wing aircraft models, quadrotors and holonomic terrain vehicles
[Gonçalves et al., 2010, Avellar et al., 2013]. While quadrotors are over-actuated and fixed
wings are always flying with high airspeed, airships are slower and underactuated. Thus, in the
context of airships, it is challenging due to its actuator restrictions. Also, wind drag and the
uncertain lateral modeling are challenge issues when designing Vector Fields for airships.

In Chapter 7, a careful review in LOS guidance is presented. Then, an improvement is
proposed in order to perform hovering flight. A comparison is established between the many
variations of LOS theory through simulations in the nonlinear model of the NOAMAY airship.

1.1.2 Airship Control

A reliable navigation system and a robust controller are key factors for the success of monitoring
and surveillance tasks. In this context, several control strategies have been proposed. Previous
techniques used only the yaw rate to go-to-waypoint missions [Azinheira et al., 2000]. Then,
nonlinear control techniques were proposed aiming at the accomplishment of path-following
tasks, such as: Backstepping [Hygounenc and Soueres, 2002]; Sliding Modes [Paiva et al.,
2009]; and Dynamic Inversion [Moutinho and Azinheira, 2006]. However, these strategies
require the identification of aerodynamic and inertial parameters, which are usually uncertain.
Additionally, control allocation is an issue for these strategies, because the theory behind them
consider actuation directly through forces and moments [Vieira, 2019].

Thus, Adaptive Control Laws (ACL) have been proposed to handle model uncertainties. In
[Acosta and Joshi, 2007], an adaptive version of the Nonlinear Dynamic Inversion was proposed
followed by works such as [Wu et al., 2012], which propose ACL for trajectory tracking using
models derived from the vehicle equations of motion.

Even though ACL increases the robustness of the controllers, they still depend on the identi-
fication of aerodynamic and inertial parameters, which requires expensive experimentation. For
the airship example, the identification process uses wind tunnel tests with the entire envelope.

Also, Hovering and VTOL flight phases require specific control design. A few works ad-
dress this problem. For instance, in [Gobiha and Sinha, 2018] the authors overcome the hover-
ing problem assuming it is a cruise flight under a small corridor around the desired position. In
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[Zheng et al., 2014], an observer was designed to estimate the wind attitude in order to compen-
sate for the disturbance into the outer-loop of a cascade baseline controller. In [Azinheira et al.,
2006], the hovering controller was designed using Backstepping considering nonlinearities such
as the actuator saturation. In [Daskiran et al., 2017], a Reinforcement learning technique was
introduced to overcome the problems of underactuated and uncertain dynamics during hovering
flight.

Another common issue is an abrupt, although continuous, transition between the two flight
phases, namely: cruise and hovering. Each phase requires a different use of actuators. The most
common solution is to switch between two controllers, one for each phase.

Incremental controllers are promising techniques to cover a complete mission, composed
by: cruise, hovering, Vertical Take-Off, and Landing (VTOL) flight phases. They use solely the
modeling of input-dependent parameters of the system. The dynamics of the system states are
approximated by the value of the feedback states and their derivatives at each sample time. As
shown by [Wang et al., 2018], the Incremental Nonlinear Dynamic Inversion (INDI) is tolerant
of external disturbances and model uncertainties. As a sensor-based approach (in contrast to
model-based ones), the method assumes that all needed states and derivatives are measured at
a sufficiently high sampling rate. Also, the control action needs to be fast when compared to
the system dynamics. Related works on aerial vehicles have shown promising results using
INDI to control different platforms, such as: helicopters [Simplício et al., 2013], unmanned
tiltrotors [Francesco and Mattei, 2016], and quadrotors [Smeur et al., 2016]. In 2015, INDI was
introduced in the scenario of airships [Azinheira et al., 2015], addressing only the lateral control
in cruise flight, where the underactuation and the longitudinal coupling in the lateral motion are
negligible.

In Chapter 3, the incremental controllers are introduced presenting the theory behind In-
cremental Dynamics and generic formulations of INDI. Furthermore, solutions for mitigating
INDI design issues are proposed. Numerical examples and closed-loop analysis highlight the
benefits and drawbacks of the proposed solutions. Finally, simulations in the airship model take
place showing the performance and robustness of the control loop.

1.1.3 Filtering and Estimation

Airships are known to be nonlinear and underactuated systems. Thus, autonomous navigation
is a difficult task to accomplish. State estimation techniques are crucial to the development
of guidance and control techniques. Non-linear control strategies such as Sliding-modes as
proposed by [Vieira et al., 2017] and INDI proposed by [Azinheira et al., 2015] require the
knowledge of velocities and accelerations. Meanwhile, guidance requires information about
attitude, position, and airspeed as stated by [Moutinho et al., 2016].
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The solution for this problem relies on filtering, estimation, and sensor fusion methods.
Several algorithms have been developed to address this issue. A traditional algorithm is the
Kalman Filter, which can be applied to linear systems. While, its extensions such as the Ex-
tended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are switched to nonlinear
systems.

In [Kim et al., 2006], it is shown that such approaches are also useful for treating infor-
mation redundancies that are common in sensor fusion problems. Nevertheless, [Oh, 2010]
compensates sensor dynamics (such as bias) by adding some modifications to the algorithm.

The choice of an estimation technique plays a crucial role in any autonomous navigation
system. Aerospace systems are critical and usually do not tolerate failure. As a consequence,
they demand comparative studies, in simulation environment, before embedding the chosen
technique(s) on the platform. As an example, in [Giannitrapani et al., 2011], the authors pre-
sented a performance comparison between EKF and UKF addressing the spacecraft localization
problem in a simulation environment.

This topic will be also addressed in this thesis. In Chapter 5, we present a comparison
between EKF, UKF, and Low-pass Filter (LPF) for estimating pose and velocity of NOAMAY.
We consider IMU, GPS, Pitot Tube, Barometer, and Thermometer as available sensors.

1.1.4 The Wind Estimation Problem

Outdoor airships commonly have a guidance control to track a trajectory. The first idea is that
the attitude reference shall be coincident with the reference trajectory attitude. However, there
are two situations when this is not desirable: in the presence of wind disturbances (an almost
certainty when flying outdoors) and if the objective is ground-hover (since the desired attitude
is arbitrarily defined).

An aircraft of conventional shape must fly against the apparent wind to have low drag. This
is also true for airships, especially due to of the lateral underactuation [Moutinho et al., 2016].
Therefore, in the presence of wind, the airship must try to align itself with the relative airspeed,
thus reducing the sideslip angle. This implies that guidance control also depends on information
about wind velocity and attitude. However, measuring such elements is not a trivial task.

The most common solution is to estimate the wind velocity to extract the necessary infor-
mation about the vehicle motion. Model-based techniques are the most used strategies in the
literature. As an example, in [Perry et al., 2008], it is proposed an approach for estimating the
angle of attack and sideslip angle by the kinematic equations of motion of an aerobatic UAV.
With the same kinematic equations, in [Cho et al., 2011] an Extended Kalman Filter (EKF) is
proposed for estimating the wind heading and velocity using an aircraft with a single GPS and
Pitot tube. In [Johansen et al., 2015] a wind velocity observer also based in the kinematics is
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proposed for small UAVs with experimental results. Similarly, in [Shen et al., 2015] it is also
proposed an EKF for wind velocity estimation, however applied to a Stationary stratospheric
airship in a simulation environment. Then in [Rhudy et al., 2017] four Model-based solutions
are presented considering an aircraft with four different possible configurations of sensors.

Machine Learning has become popular in the field of robotics. The impressive growth of
computational resources and increasing acquired data over the years have increased the poten-
tial of these Data-driven techniques. These strategies were already introduced in applications
such as control of aircraft [Chaturvedi et al., 2002] and air data estimation for a Micro-UAV
[Samy et al., 2010]. The wind estimation problem is addressed in [Allison et al., 2019] using
a quadrotor with a Machine-Learning approach. However, a Data-driven online estimation of
wind velocity for robotic airships is still a challenge.

In Chapter 6, this problem is addressed. As a result, three alternative versions of wind
velocity estimation using Model-based and Data-driven techniques are presented.

1.2 Motivation

The main objective of the project DRONI is to develop an autonomous airship capable of per-
form monitoring tasks in the Mamirauá Sustainable Development Reserve (www.mamiraua.
org.br) in the Amazon Rainforest. The Mamirauá Institute of Sustainable Development (ISDM),
is located in the center of the Amazon Rainforest at a distance of 500 km from Manaus. It con-
tains several research spots to provide support to the researchers who conduct research works
related to the understanding of the Amazon biome. Such researches depend on a systematic data
collecting method. Thus, they demands a platform with high maneuverability, long-duration
flight capability, and easy usability.

The airship developed during project DRONI was named as Noamay [de Oliveira, 2018]. It
is instrumented with an inertial sensor known as XSens 700 MTi-G which includes: gyroscope,
accelerometer, magnetometer, GPS, Barometer, and Thermometer [Rueda et al., 2017]. Also,
it is equipped with a Camera located at the gondola, and a Pitot Tube located at the airship
nose. The airship is composed by a hull with 11m length, and 2.48m diameter equipped with: 4
vectored propellers with independent thrusters, and tail surfaces (rudder, elevator, and aileron).
In March 2018, Noamay performed its first remote controlled flight (see Figure 1.5).

Nowadays the DRONI project is in the phase of research and development of automatic
controllers to cover all flight phases, namely: cruise and hovering flight; Vertical Take-off and
Landing (VTOL). Hovering flight is the condition where the airship performs a stationary flight
in relation to a fixed reference in the ground. Meanwhile, cruise flight is the flight phase where
the airship performs a moving flight.
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Figure 1.5. Robotic airship performing its first flight

A common issue is the abrupt although continuous transition between the flight phases.
Each phase requires different controllers as shown in [Azinheira et al., 2006]. The lateral un-
deractuation in hovering flight was the main cause for proposing this strategy. In the hovering
scenario, the lateral and longitudinal motion are coupled. Meanwhile in cruise flight both mo-
tions can be decoupled as shown in [Khoury, 2012].

The Noamay is a particular case of an airship with overactuation in the longitudinal (and
vertical) motion due to its propellers redundancy. There are many possible choices of inputs to
achieve a target velocity in the body frame. However, such inputs must be carefully chosen by
considering parameters such as: energy efficiency and flight performance.

Airships are known to have a nonlinear dynamics with many uncertain parameters. The
identification of such parameters requires complex testing, such as wind tunnel tests. Also, tun-
nel tests are not sufficient to identify aerodynamic parameters of the lateral motion of airships.
Additionally climate conditions and altitude are issues in the modeling task. Therefore, these
tests are uncertain, expensive and insufficient for modeling all dynamic behavior of an airship.
Thus, it is difficult to design controllers with techniques that depend of the knowledge of the
model. This thesis proposes Incremental Controllers (ICs) as a solution for the control loop in
order to overcome this modeling lack.

1.3 Objectives

As a general objective, this thesis aims to develop a control architecture for the navigation
system of a robotic airship using incremental controllers capable of covering all flight phases
(VTOL, cruise and hovering flight) and transitioning between them without a complex switch-
ing scheme.

Apolo Silva Marton



CHAPTER 1. INTRODUCTION 28

1.3.1 Specific Objectives and Contributions

This thesis has four main specific objectives:

• Understand the INDI theory and how it can be applied to the airship;

• Provide solutions for INDI design issues;

• Design INDI for decoupled lateral and logitudinal motions of the Noamay airship;

• Explore solutions for estimation and filtering of the data provided by the available sensors,
in order to feedback the guidance and control loops;

• Estimate wind velocity and direction in order to provide wind velocity and direction for
the guidance loop;

• Investigate and choose a guidance technique in the literature;

• Propose improvements for the chosen guidance technique in order to compensate wind
drag when transitioning between cruise and hovering flight.

1.4 Thesis Organization

ICs reduce the sensitivity to model uncertainties by adding the dependency of derivative measur-
ing, which increases the sensitivity to measurement noise and delay. Such characteristics could
be introduce instability to the systems. Also, Noamay presents actuator redundancy which may
lead to excessive energy consumption. Additionally, all actuators includes saturations which
may cause a loss of performance in the control loop. Therefore, Chapter 3 presents a survey
on ICs as well as a tutorial of how to design ICs presenting solutions for the design issues. Fi-
nally, in Chapter 4, the INDI control is designed for the Noamay airship lateral and longitudinal
motions separately, presenting preliminary simulation results.

Much information about the airship motion is necessary for feedback on the control and
guidance loops. The control must have access mainly about the airship linear and angular
velocities. Meanwhile, the guidance must have access to positions, attitude, and incident wind
in the airship body. Thus, in Chapter 5 a comparison between different filtering strategies
is presented in order to define which technique provides better feedback for the control and
guidance loops.

Also, the wind estimation problem is addressed in Chapter 6. Traditional model-based
estimators are presented, then a data-driven strategy is proposed. The results obtained led us
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to propose a novel estimation strategy that performs a fusion between both model-based and
data-driven approaches resulting in a hybrid version of a wind estimator.

Finally, the guidance problem is addressed in Chapter 7, which presents a modified ver-
sion of the so-called Line-of-sight strategy. This strategy receives adaptations for considering
the kinematic restrictions of the airship and the varying behavior when transitioning between
hovering and cruise flights.

1.5 Publications

During the doctoral program, the Ph.D. candidate has published two Conference papers and two
Journal papers.

The first conference paper was published as a co-author in “Simpósio Brasileiro de Au-
tomação Inteligente” (SBAI) with the title “Controle de um Dirigível Robótico Autônomo de
Propulsão Quádrupla utilizando Modos Deslizantes” [Vieira et al., 2017]. The paper addresses
the problem of path tracking control for a robotic airship with quadruple propulsion in cruise
flight. The paper presents the design of a sliding mode MIMO controller. To evaluate the con-
trollers performance, a real scenario was simulated in which there is a path to be tracked in wind
presence.

The second was published in the “Simpósio Brasileiro de Automação Inteligente - 2019”
(SBAI - 2019) with the title “Comparative study for Robotic Airship State estimation with LPF,
EKF and UKF” [Marton et al., 2019]. The paper presents a comparative study between three
approaches of pose and velocity estimation for a robotic airship. The first approach is composed
of multiples second-order Low-pass filters applied to GPS and IMU measured data. The second
approach consists of the sensor fusion between GPS, IMU, Barometer, and Thermometer with
an Extended Kalman Filter (EKF) based in the kinematic equations of motion for a six degrees
of freedom (6-DOF) vehicle. Finally, the same 6-DOF equations of motion and sensors are used
for the design of an Unscented Kalman Filter (UKF) as a third estimation approach. As result,
we obtain greater precision with EKF with a minor advantage over the UKF.

Then in February 2020, a regular paper was published in “Journal of the Brazilian Society of
Mechanical Sciences and Engineering” with the title: “Hybrid Model-Based and Data-Driven
Wind Velocity Estimator for an Autonomous Robotic Airship” [Marton et al., 2020]. The paper
presents three alternative versions for the estimation of wind velocity. Firstly, an Extended
Kalman Filter is designed as a model-based approach. Then a Neural Network is designed as a
data-driven approach. Finally, a hybrid estimator is proposed by performing a fusion between
the previously designed estimators: model-based and data-driven. All approaches consider only
Global Positioning System (GPS), Inertial Measurement Unit (IMU) and a one dimensional
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Pitot tube as available sensors. Simulations in a realistic nonlinear model of the airship suggest
that the cooperation between these two techniques increases the estimation performance.

Also, one other paper was accepted for publication [Cordeiro et al., 2021], which address the
Lateral model of Noamay using INDI for the control loop. It provides a solution for mitigating
noise and delay in the measurements using Input Scale Gain (ISG) and Second-Differentiator
(SOD) with INDI. Firstly, a simple Single-input Single-output (SISO) model is used to evaluate
the influence of the design parameters in the closed-loop response and stability. Then, the
combined SOD and ISG approach is illustrated in a more complex case application where INDI
is used to control the lateral motion of an autonomous airship, which results corroborate the
ISG as an asset to increase the maximum allowed delay in the feedback loop.
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2 AIRSHIP DESIGN AND MODELING

Airship dynamics have been extensively studied in the last two decades. Most of the research
works consider the Newton-Euler equations to derive the dynamic model. The dynamic equa-
tions derive from the gravitational, kinematic, propulsion, wind, and aerodynamic forces. There
are many works focused in airship modeling that we can cite here, such as [Elfes et al., 2002,
Mueller et al., 2004, Moutinho et al., 2016, Li, 2008].

Dynamic models of airships are mostly nonlinear and become even more complex when
analyzing outdoor airships because of aerodynamics. Aerodynamic parameters are normally
estimated through tests of wind tunnel [Jones and Delaurier, 1983] or in experimental flights
[Patino et al., 2005].

Even though this thesis does not address the modeling problem, in order to present control
solutions for Noamay, some concepts about airship design and modeling shall be clarified.

2.1 Fundamentals of Airship Design

Airships are unique aerial vehicles which are quite different from conventional fixed-wing air-
crafts. Usually, most of the airship lift is generated by a lifting gas, such as hydrogen or helium.
As a consequence, airships are generally designed with an ellipsoid shape which is an inefficient
producer of aerodynamic lift.

The airship lifting force is generated by a density difference between the volume of lifting
gas (inside the envelope) and ambient air. Such vertical force is a result of the Archimedes
principle. About 2300 years ago, Archimedes postulated and later proved that buoyant force
depends only on the body volume and the density difference between the submerged body and
its surrounding fluid (liquid or gas) [Carichner and Nicolai, 2013]. This force is located at
the Center of Buoyancy (CB), which is typically approximately equal to the Center of Volume
(CV). In aircraft design, the efforts are concentrated on maintaining a proper CG location that
results in good performance and handling. For airship design, the CB is an additional design
parameter that must be positioned carefully. Generally, the CB is placed slightly aft of the CG
so that there is a slight nose-down moment from the lifting gas as shown in Figure 2.1.

In history, there are two main concepts of airship structural design, namely: rigid and non-

rigid. Although these are the most commons, there is an intermediate concept named as semi-
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CB

CG

Gravity
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Buoyant
Force

Air

Lifting
Gas

Figure 2.1. Buoyant and Gravity forces
acting on an airship

Figure 2.2. Comparison of structural con-
cepts for body of revolution
airship [Carichner and Nico-
lai, 2013].

rigid as shown by [Carichner and Nicolai, 2013], however, it still has not proven to be com-
mercially viable. As a result, there are very few successful semi-rigid designs. Unlike the rigid
design the non-rigid and semi-rigid designs use a flexible bag called ballonet inside the main en-
velope as shown in Figure 2.2. The main objective of the ballonet is to prevent any variation of
the differential pressure. In nonrigid designs, the interior gas may change its density in response
from a temperature variation (e.g. due to climate or altitude changes). As a consequence, the
differential pressure across the envelope is also changed.

In rigid designs, this variation is negligible since the lifting gas is allocated in bags attached
to the rigid structure and it has sufficient volume to operate at its maximum altitude. The
envelope of a rigid structure has only aerodynamic purposes.

In the last 20 years, the technological advancements have improved the design of airships
by introducing the concept of hybrid airships. These airships are extremely different from
conventional ships and airships of 80 years ago. Most notably in ships, the buoyancy principle,
postulated by Archimedes, is vastly used for the transportation of goods around the world. The
main idea is that, the static or buoyant lift (due to gas) is always “on”. Meanwhile, dynamic lift
(due to aerodynamics and thrust vectored) can be turned “on” and “off” when it is convenient.
Thus, hybrid airships are designed to use both lifting sources such as the Airlander from Figure
2.3 and the Hybrid Airship from Figure 2.4 projected by the Lockheed Martin company.

This combination of buoyancy and aerodynamic lift makes hybrid designs superior when
transporting goods. A conventional airship is near “neutrally buoyant” and it becomes dramati-
cally light when offloading. A hybrid airship is designed to be partially buoyant, in other words,
i.e. somewhat “heavier than air”. Such characteristic allied to its shape causes an increase of
the aerodynamic lift. Such ability of lift modulation allows a significant increase operational
flexibility. Moreover, it permits the offloading of larger payloads without losing its controllabil-

Apolo Silva Marton



CHAPTER 2. AIRSHIP DESIGN AND MODELING 33

Figure 2.3. Photograph of HAV 304 Air-
lander produced by Hybrid Air
Vehicles company

Figure 2.4. Conceptual image of the
Hybrid Airship project from
Lockheed Martin company

ity. In contrast, surveillance missions where the vehicle is preferable to stay in static positions
are more difficult for the hybrid design, since it has to compensate its heaviness with thrusters.

The tail surfaces of airships are another major contributor to airship behavior. They are
surfaces similar to wings that generate aerodynamic forces through their flexible edge control
surfaces. Because the airship needs to move both up and down through aerodynamic forces
generated by those surfaces, the tails will normally be symmetric airfoil sections. These aero-
dynamic forces are responsible for producing stabilizing moments in order to move along a
desired path and compensate for the drag provoked by external disturbances.

Optimizing aerodynamic performance for an airship is a complicated task. It involves a
trade-off between several variables with a multi-objective function including endurance, range,
speed, altitude, etc. Usually, the optimization processes are similar to the fixed-wing aircrafts
with some additional variables such as the size of ballonets, amount of buoyancy ratio, body
cross-section, shape, envelope material properties, and volume.

Another parameter of concern is known as virtual mass (or added mass). Generally, the
virtual mass phenomenon is poorly understood because it is not significant enough to impact
airplane performance. Consequently, it is not included in the optimizing task when designing
fixed-wing aircrafts. However, the weighting mass is always present for any object which is
moving through a fluid. Basically, a body in a fluid behaves as though it has more mass than
it actually does. Such behavior varies with the motion nature (accelerating, decelerating, or
turning). Thus, a significant effect on the dynamics may be experienced by vehicles that have a
mass similar to the displaced external fluid (such as airships).

2.2 Aspects about the Motion and Design of Noamay Airship

The Noamay airship has a nonrigid body filled with helium gas without a ballonet. Additionally,
it is equipped with four vectoring propellers with independent thrusters and tail surfaces (see
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figure 2.5). It combines aerodynamics, buoyancy, and the traditional quadrotor maneuverability
characteristics.

Figure 2.5. Conceptual view in perspective of the Noamay airship

Noamay is in cruise flight when the aerodynamic forces sustain mostly of its apparent mass.
Normally, it occurs when flying in high longitudinal speed relative to ground (or ground speed),
generally over 3m/s. In such condition, the vectoring capability of thrusters let the flying task
much easier. Also, lateral underactuation is not an issue, since the tail surfaces have high
authority over the dynamics.

In contrast to cruise, when in VTOL or hovering flight (less than 3m/s of ground speed), the
thrusters are the main source of actuation. The tail surfaces may not have sufficient authority.
Thus, the thrusters are responsible for sustaining the apparent mass and for doing maneuvers by
applying differential rotation between propellers, similar to a conventional quadrotor.

However, considering external disturbances (such as wind) and the huge lateral area of the
envelope, forces and momentums generated by thrusters may be insufficient for controlling the
yaw rate. To perform hovering and VTOL tasks, the cooperation with wind is essential. Under
wind, the airship may have a higher or lower relative speed to the air (or airspeed) which will
virtually influence in the vehicle stability.

When the wind direction is against the airship nose, it has a higher airspeed. Consequently,
the tail surfaces have higher authority. In such a condition, the drag can be compensated through
the thrusters and tail surfaces letting the airship dynamics stable.

2.3 Airship Modeling and Simulation

The main tool to validate the proposed control and estimation approaches is a dynamical real-
istic non-linear model of an airship. This tool is a result of the research group efforts since the
project AURORA [Elfes et al., 2002] which was improved during the project DIVA [Moutinho
et al., 2016] and DRONI [Rueda et al., 2017]. Such a nonlinear model can be expressed in a
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state-space form as following:

ξ̇ = g(ξ ,x,d), (2.1a)

ẋ = f (ξ ,x,d,u), (2.1b)

where:

• the kinematic states ξ = [PT ΦT ]T include the cartesian position P = [PN PE PD]
T and

angular position Φ = [φ θ ψ]T in the North-East-Down (NED) frame (SI units);

• the dynamic states x = [VT ΩT ]T include the linear speed V = [u v w]T and angular
speed Ω = [p q r]T in the body frame (SI units);

• the input vector u = [δe δa δr δ0 δq µ0]
T include: δe,δa and δr which are elevator, aileron

and rudder deflection; δ0 as the normalized thrusters voltage; δq as the differential voltage
between the front-back thrusters; µ0 as the common vectoring angle of the propellers (SI
units);

• and, finally, the disturbance vector d that include wind velocities and gust parameters (see
[McLean, 1990]).

Note that, although the propellers have independent vectoring, here we use the same angle
for of all them through a single control input µ0. Also, the thrusters are independent, however,
we use two control inputs (δ0 and δq), such that, when combined, produce input signals for each
thruster. Further details will be given in the next subsections.

CB/CVq
v

p u

r

w

Tail
Surfaces

Propeller

Pitot tube

Gondola

µ0

µ0

µ0

µ0

Figure 2.6. DRONI airship body diagram

The dynamics are based on the Newton-Euler equations including five components of forces
and moments, namely:

• Fw – the wind-induced forces and moments;
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• Fa – the aerodynamic forces and moments;

• Fp – the propulsion forces and moments;

• Fk – the kinematic forces and moments;

• Fg – the gravity forces and moments.

Therefore, the linear and angular accelerations are given by:

f (x,ξ ,d,u) = M−1
a

(
Fw +Fa +Fp +Fk +Fg

)
, (2.2)

where Ma is the apparent mass matrix. These equations are referenced in the body frame cen-
tered in the Center of Buoyancy (CB) that is approximately equivalent to the Center of Volume
(CV) as shown in Fig. 2.6. Moreover, some nonlinear effects are included in the simulation en-
vironment, such as: atmospheric pressure variation, temperature variation, lifting gas pressure
variation, Coriolis effect and actuator nonlinearities (saturation, hysteresis, quantizer, delay and
rate limiter).

When the displaced fluid mass is not negligible, as is the case for airships or balloons, the
equations of motion are more usually derived from the Lagrangian approach (see [Lamb, 1918]
and [Thomasson, 2000]). In the next subsections, a brief description of the apparent mass and
each force component modeled in simulation is presented. More modeling details about the
simulation environment can be found in works of [Moutinho, 2007, Arias, 2014, Moutinho
et al., 2016, Vieira, 2019, Marton et al., 2019].

2.3.1 Apparent Mass

The apparent mass of airships is a combination between both, scalar (centered at the Center of
Gravity) and buoyancy (centered at CB) mass and inertia elements. It can be mathematically
modeled as:

Ma =

[
mI3 +Mv −mOc×

mOc× J+Jv

]
, (2.3)

where m is the airship scalar mass, I3 is the identity matrix of third order, Oc× is a skew matrix
which translates the Center of Gravity (CG) components to CB, Mv is the virtual mass, J is the
inertia matrix of the airship and Jv is the virtual inertia matrix.

As discussed before, the virtual mass is a point of concern when modeling airships. It can
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be modeled as a combination of inertial coefficients as below:

Mv =




Xu̇ 0 0
0 Yv̇ 0
0 0 Zẇ


 , Jv =




L ṗ 0 0
0 Mq̇ 0
0 0 Nṙ


 , (2.4)

where Xu̇,Yv̇,Zẇ and L ṗ,Mq̇,Nṙ are virtual mass and inertia terms [Lamb, 1918].

2.3.2 Gravitational forces

The gravitational forces are given by a relation between the airship scalar mass, buoyancy mass
and gravitational acceleration as below:

Fg =

[
(m−mB)Sag

mOc×Sag

]
, (2.5)

where mB is the buoyancy mass, ag = [0 0 ag]
T is the gravitational acceleration and S is a

rotation matrix from NED frame to the body frame, given by:

S =




cosψ cosθ sinψ cosθ −sinθ
cosψ sinθ sinφ − sinψ cosφ sinψ sinθ sinφ + cosψ cosφ cosθ sinφ
cosψ sinθ cosφ + sinψ sinφ sinψ sinθ cosφ − cosψ sinφ cosθ cosφ


 . (2.6)

2.3.3 Kinematic forces

The kinematic forces appear as a consequence when deriving the momentum equations. The
resultant equation is composed of inertial and centrifugal components, as shown below:

Fk =

[
−mΩ× (Ω×Oc)−Ω× (mI3 +Mv)V
−Ω× (J+Jv)Ω−Ω× (Oc×mV)

]
, (2.7)

where Oc is the vector between CG and CB.
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2.3.4 Wind-induced Forces

The wind-induced forces appear as an external disturbance in the system caused by the introduc-
tion of a moving fluid in momentum equations [Azinheira et al., 2008]. They can be determined
as follows:

Fw =

[
(mBI3 +Mv)V̇w +Ω× (mBI3 +Mv)Vw

(JB +Jv)Ω̇w +Ω× (JB +Jv)Ωw

]
(2.8)

where JB is the inertia matrix of the buoyancy air and Ωw is the angular velocity of the wind.

2.3.5 Propulsion forces

The propulsion forces are mainly based on propellers characteristics and brushless motors dy-
namics. In [Moutinho, 2007], propulsion forces are modeled for a two-rotor airship and in
[Arias, 2014] a quadrotor airship was modeled. The resultant propulsion force for Noamay can
be described as below:

Fp =
4

∑
i=1

[
FiNi

MiNi +OCTi×
(
FiNi

)
]
, (2.9)

where Fi is the force generated by the i-th propeller, OCTi is the distance vector between pro-
peller and CB, Mi is the momentum generated by the i-th propeller and Ni is the normalized
vector of orientation in 3-axis of the i-th propeller. In Figure 2.7 are shown the propellers
numbering adopted here.

Figure 2.7. Diagram of Noamay with: (a) upper view showing the propellers numbering and
(b) side view showing the vectoring

The force and momentum generated by each propeller are given by a nonlinear functions of
its rotation and the propeller characteristics as shown in [Arias, 2014]. They can be described
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as:
Fi =

4
π2 ρr4

propω2
i CTi, (2.10)

and
Mi = (−1)i+1 4

π3 ρr5
propω2

i CPi, (2.11)

where ρ is the air density, rprop is the propeller radius, CPi is the propulsion coefficient of the
i-th propeller and CTi is the thrust coefficient of the i-th propeller. The coefficients CPi and CTi

were experimentally estimated as shown in [Arias, 2014].
The rotation of the propellers are given by the dynamics of a brushless motor as follows:

[
İi

ω̇i

]
=




1
τeRm

(
δiVmax−RmIi− keωi

)

1
Jm

(
ktIi−|Mi|

)
− 1

τm
ωi


 (2.12)

where Ii is current in the i-th thruster, ωi is the velocity of rotation of the i-th propeller, τe is
the electric time constant, Rm is the electric resistance, ke is the electromotive force coefficient,
Jm is the moment of inertia of the rotor, τm is the mechanical time constant, kt is the torque
coefficient, δi is the normalized voltage applied to the i-th thruster and Vmax is the voltage of the
battery.

The input signal for the thrusters is established through δi. This control input is a result
of combining the two previously mentioned control inputs δ0 and δq. The common thrust δ0

increases all δi while δq increases front thrusters voltage (δ1 and δ4) and decreases the back
thrusters voltage (δ2 and δ3), as follows:




δ1

δ2

δ3

δ4



=




1 1
1 −1
1 −1
1 1




[
δ0

δq

]
. (2.13)

2.3.6 Aerodynamic forces

Aerodynamic forces appears as a result of the combination of relative to air velocity (airspeed)
with coefficients extracted from wind tunnel tests [Cortés et al., 2003]. The linear airspeed (Va)
is given by the difference between ground speed (V) and wind velocity incident (Vw) in the
body, as described below:

Va = V−Vw, (2.14)
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where Va = [ua va wa]
T is the airspeed and Vw = [uw vw ww]

T is the wind speed incident in the
body frame.

Another important definition is the true airspeed (Vt). The true airspeed corresponds to the
euclidean norm of the airspeed, in other words:

Vt =
√

u2
a + v2

a +w2
a (2.15)

Along with this definition, the concept of sideslip (β ) and attack (α) angles can be intro-
duced. The angles β and α are given by the difference between the orientation of the airspeed
Va and the airship X-Y-Z axis as shown in Figure 2.8.

X
Z

Y
~Va

α
β

CB

Figure 2.8. Sideslip angle (β ) and angle of attack (α).

Therefore, we can define β and α by the following statements:

β = sin−1 va

Vt
, (2.16a)

α = tan−1 wa

ua
. (2.16b)

Thus, the rotation matrix which transforms from the wind frame to the body frame is given
by:

Sa =




cosα 0 sinα
0 1 0

sinα 0 cosα







cosβ −sinβ 0
sinβ cosβ 0

0 0 1


 (2.17)

Now we can define the aerodynamic forces and moments as below:

Fa =




FarSa[−Cd CY −Cl]
T

Mar[−CL CM −CN ]
T


+Dar



[0 − Cnr

lt
r − Cmq

lt
q]T

[Cl p p Cmqq Cnrr]T


 , (2.18)

where: Cd , CY , Cl , CL, CM and CN are aerodynamic coefficients of the body, which are com-
posed by characteristics of the airship body and deflection of the tail surfaces (see [Fossen,
2013]); Cnr, Cmr, Cl p, and Cmq are damping coefficients; lt is the tail fin momentum; and Far,
Mar, and Dar are aerodynamic force, moment and damping references, respectively, which are
nonlinear equations of true airspeed, atmospheric pressure, air density and dimensions of the
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airship including its tail surfaces. A more detailed description can be verified in [Cortés et al.,
2003, Moutinho, 2007, Azinheira et al., 2008, Arias, 2014].

2.3.7 Kinematic equations of motion

In the simulation environment, the kinematics modeling considers quaternions for the modeling
of angular positions as shown by [Azinheira et al., 2009]. Modeling in quaternions is more
advantageous since it avoids the gimbal lock issue. However, for control purposes, we use
Euler angles. Finally, the kinematic states (position and orientation) are updated through (2.1a),
which is given by: [

Ṗ
Φ̇

]
=

[
ST 03×3

03×3 R

][
V
Ω

]
, (2.19)

where,

R =




1 sinφ tanθ cosφ tanθ
0 cosφ −sinφ
0 sinφ/cosθ cosφ/cosθ


 . (2.20)

2.4 Conclusion

In this chapter we presented insights about airship design and modeling. The aspects presented
were essential for the design of an innovative four-propelled airship named Noamay. The airship
nonlinear model was presented, based on both dynamics and kinematics analysis. The model
introduced considers all forces that act upon it, namely, aerodynamics, gravity, propulsion,
kinematics and wind.

The airship is controlled by the action of four vectored propellers and control surfaces. It
was seen, however, that these actuators authority or influence is not constant. In fact, it varies
as function of the airspeed. This indicates that the action of the different actuators shall depend
not only on the goal mission which may include, for instance, groundspeed tracking, but also
on the wind disturbances present since they have influence in the resulting airspeed. All this
information and knowledge is essential to the next chapters, where the control of the airship
will be addressed.
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3 INCREMENTAL CONTROLLERS

Researchers studied Non-linear Dynamics Inversion (NDI) as a promising approach to unify
the control scheme of an Unmanned Aerial Vehicles (UAV) during the different phases of a
standard flight plan [Lane and Stengel, 1988, Benallegue et al., 2006, Voos, 2009].

To cancel model nonlinearites, NDI controllers require a complete and precise model of the
system. However, in real-world systems, realistic dynamic models with accurate parameters are
almost impossible to be obtained. Firstly presented in [Smith, 1998], the ID was used for de-
signing a simplified version of Nonlinear Dynamic Inversion. Later this strategy was named as
Incremental Nonlinear Dynamic Inversion (INDI) [Sieberling et al., 2010]. Since then, several
works use Incremental Dynamics (ID) for designing nonlinear control laws. As some examples,
in [Acquatella et al., 2013], the authors use ID for designing Incremental Backstepping (IBKS).
In [Wang et al., 2019a], ID is used for design the Incremental Sliding-Mode (ISM) control law.

3.1 Incremental dynamics

This section summarizes the mathematical tools that support the incremental dynamics general
formulation presented by [Sieberling et al., 2010]. Consider a control affine nonlinear system
in state space representation:

ẋ = f (x)+g(x)u, (3.1a)

y = h(x). (3.1b)

where x ∈ Rn is the vector of state variables, u ∈ Rm is the vector of control inputs, y ∈ Rl is
the output vector, and f , g, h are real analytic Lipschitz continuous functions.

The system dynamics (3.1a) can be approximated by its Taylor series expansion around
x = x0 and u = u0:

ẋ = ẋ0 +A0(x−x0)+B0(u−u0)+O((t− t0)2), (3.2)

where (x, ẋ,u) and (x0, ẋ0,u0) are respectively the state, the state derivative, and input at current
time t and some previous time t0 < t, O((t− t0)2) includes the higher order terms of the Taylor

Apolo Silva Marton



CHAPTER 3. INCREMENTAL CONTROLLERS 43

expansion, and

A0 =
∂

∂x
[ f (x)+g(x)u0]

∣∣∣∣∣
x0

, B0 = g(x0), (3.3)

are state-dependent matrices that capture the linear system dynamics relationship with the state
and input variables, respectively.

Let us consider the following assumptions:

Assumption 3.1 The time interval ts = t − t0 elapsed between x0 and x is sufficiently small,
such that we can assume x0 ≈ x, considering that state changes are due to
integration and, therefore, slower.

Then the system dynamics (3.2) can be approximated by the so-called incremental dynamics
formulation:

ẋ≈ ẋ0 +B0(u−u0), (3.4)

yielding the current state derivative from the knowledge of its value at the previous time step
and of the input increment ∆u = u−u0.

Incremental controllers such as IBKS [Acquatella et al., 2013], ISM [Wang et al., 2019a] and
INDI [Azinheira et al., 2015] are sensor-based controllers, taking advantage of the simplified
dynamics (3.4), where the use of state dependent dynamics is replaced by the measurement of
the previous time derivative ẋ0.

3.2 Incremental Nonlinear Dynamic Inversion

INDI is the equivalent of the well known NDI control applied to the incremental dynamics (3.4).
Let us impose a desired dynamics ν ∈ Rn. Then, the incremental dynamic inversion results

in the following control law:
u = u0 +B+

0 (ν− ẋ0), (3.5)

where B0B+
0 = In is the identity matrix of order n.

Note that if the inversion is perfect then, replacing the control law in the incremental dy-
namic equation gives

ẋ≈ ẋ0 +B0∆u = ẋ0 +B0B+
0 (ν− ẋ0) = ν (3.6)

which shows that:

• the system modes are decoupled, which allows the design of independent linear con-
trollers for each of them.
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• the state derivative tracks the dynamics imposed by ν ;

• the previous state derivatives, and consequently their nonlinearities, are canceled (NDI is
also called feedback linearization);

Taking advantage of the above, we can define ν as a pseudo-control signal, which is usually
taken as a linear state feedback. Imposing a linear dynamics, the feedback gain places the closed
loop poles, designing the desired response. As it is common sense in cascade control, a Time
Scale Separation Principle (TSSP) must be respected, and the INDI loop must converge faster
than the linear control loop. In addition, the implementation of incremental controller considers
the following assumptions:

Assumption 3.2 The (3.4) system is output controllable, and any internal dynamics are intrin-
sically stable in closed-loop.

Assumption 3.3 States are sampled at a sufficiently high frequency when compared with sys-
tem dynamics.

Assumption 3.4 Fast control action in comparison to the system modes.

Assumption 3.5 The control signals and state references are measurable, continuous and bounded.
Additionally, accurate information on the state derivatives and actuator vari-
ables is available.

Assumption 3.6 The input matrix B0 has known coefficient signals, and it is non-singular
around the region of interest.

Note that Assumption 3.3 and Assumption 3.4 are consequence of Assumption 3.1 presented
before.

Since all assumptions of Incremental controllers are satisfied we can define the INDI control
law (3.5) for the system in (3.1a). The equivalent block diagram of a sensor based INDI control
approach is shown in Figure 3.1, where z−1 represents a delay of one sample time.

Linear
controller

∑ ∑B+
0

z−1

f (x)+g(x)u

z−1

∫

INDI
xd

u0

+

ν u
−

ẋ0

ẋ

x

Figure 3.1. INDI closed loop block diagram
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3.3 Advantages on Applying Incremental Controllers

The most common control approaches are said to be model based, for their design being strongly
dependent on the system dynamics model. This aspect requires the definition of an accurate
mathematical representation, as well as a careful system identification process. Nevertheless,
the resulting model will still be subject to noise, disturbances and remaining model uncertain-
ties. Moreover the inverse dynamics assumes affine relationship with inputs.

The approach based on the incremental dynamics on its hand requires only the identification
of the input matrix, neglecting the parameters that depend exclusively on the internal states and
it is expected to be robust to model uncertainties. Furthermore, the incremental formulation is
very simple and intuitive, supported on well established mathematical fundamentals, with only
a few parameters to set-up.

On the other hand, restrictions on the use of incremental controllers arise out of Assumption

3.1 to Assumption 3.6. Initially, as a consequence of the model simplifications, all the needed
information about the system states is obtained from measurements. Thus, to ensure quality in
the measurements, the feedback states and state derivatives are to be updated at a sufficiently
high sampling rate, with good quality sensors. Furthermore, Assumption 3.4 implies that input
control signal must have dominance on the system dynamics, demanding fast actuation when
compared with system modes. These assumptions are satisfied in the most of UAVs since the
control actuation has the greater influence over the dynamics.

3.4 Mitigating Incremental Controllers Design Issues

As stated in the previous section, despite its clear advantages, INDI controllers assumptions
impose the measurement, at each sample time, of the states derivatives and a fast actuation to
ensure the dominance of the control inputs over the system states. Solutions to mitigate the
impact of these two restrictive aspects of INDI are presented in the sequence while preserving
the afore mentioned advantages of the approach, namely its robustness to model uncertainty
and design simplicity.
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3.4.1 Actuator Saturation

Actuator saturation is a relevant design issue since the conception of control systems. This
problem is a focus of study in many works from several different areas of control systems. In
the context of airships, some works address this issue for the control design such as in [Zheng
et al., 2016] and [Zheng and Xie, 2017].

In fact, actuator saturation is an issue of concern for incremental controllers. When the input
saturation is achieved, the integral terms accumulates a significant error during the rise causing
an effect known as integral windup.

The solution for this problem is well known in the literature as anti-windup. It is a solution
addressed to controllers with integrative components. There are plenty of works presenting such
solution as well as its advantages, drawbacks and analysis under measurement noise such as in
[da Silva et al., 2018]. Thus, it can be considered as a standard solution.

In this work, a Natural Anti-Windup (NAW) strategy was introduced. Consider that: ū is
saturated input; umax is the upper limit of the actuator; and umin is the lower limit of the actuator.
After compute the new input u by the INDI control law (3.5), the input to be applied is corrected
as shown below:

ū =





if u> umax then umax

if u< umin then umin

if umax ≥ u≥ umin then u

(3.7)

Note that ū will always respect the actuator saturations. As a result, the controller will stop
the incrementing behavior when the saturation is achieved. Consequently, it recovers faster
after achieving actuator saturation. In further block diagrams this component is represented as
a saturation node as shown in Figure 3.2.

u ū

Figure 3.2. Saturation node

Numerical Example

As an example consider the following linear system with one input and one state:

ẋ = x+8u1 (3.8)

where x is the state, −0.5≤ u1 ≤ 0.5 is input.
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By applying INDI, we obtain the following control law:

u1 =
1
b0

(ν− ẋ0) (3.9)

where ν = k(xd − x) is a desired dynamics of first order and b0 = 8. The block diagram from
Figure 3.3 illustrates the closed loop system, where z−1 represents a delay of one sample time
ts = 0.01 seconds, u1 is the input signal generated by the INDI control law, ū1 is the saturated
control signal and k = 20s−1.

k∑ ∑ ∑1
b0

z−1

System

z−1

∫

INDI
NAW

+

xd
+

ν u1 ū1

−
ẋ0−

ẋ

x

Figure 3.3. Numerical Example: Block diagram of the closed loop system of INDI+NAW

Figures 3.4 and 3.5 show the results for a step in xd using NAW denominated case (a) (or
“INDI+NAW”) and without NAW denominated case (b) (or “INDI”). For sake of comparison
consider the following cost function:

Ju =
∫ t f

0
u2

1(t)dt (3.10)

where t f = 10 seconds is the final time of simulation.

0 2 4 6 8 10

0

1

Time (s)

x

INDI+NAW INDI xd

Figure 3.4. Numerical example: com-
parison of tracking perfor-
mance between INDI and
INDI+NAW

0 2 4 6 8 10
−0.5

0

0.5

Time (s)

u 1

INDI+NAW INDI

Figure 3.5. Numerical example: compar-
ison of input signals between
INDI and INDI+NAW

The tracking performance is similar for both cases, however the control signals are different
with higher energy consumption for the case (b) with Ju = 4.4876, while case (a) spent Ju =

1.7466 in total energy. Moreover, note that the tracking performance is better in case (a) due
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to the fact that the input signal recovers faster from a saturated condition in instants t = 3s and
t = 6s which impacts in the tracking performance by avoiding overshoots.

3.4.2 Input Redundancy Treatment

Once the input matrix B0 from (3.5) can be not square but full row rank, thus input redundancy
may occur. Therefore, there are various solutions of inputs ue that achieve a given equilibrium
point xe. A common issue is that the redundant inputs can cancel each other when the system
achieves a stationary state condition which results in more energy consumption.

As an example consider a simplified vehicle dynamics with a single state variable x given
by the longitudinal velocity and two inputs u1 and u2. This system dynamics can be represented
by the following mathematical modeling:

ẋ = f (x)+g1(x)u1 +g2(x)u2. (3.11)

Both control inputs u1 and u2 have influence over the vehicle velocity dynamics. Now
consider an equilibrium point xe > 0, thus ẋe = 0 and the following can be stated:

[
b1 −b2

][u1

u2

]
=− f (xe), (3.12)

where b1 = g1(xe) and b2 =−g2(xe) are positive constants.
In the problem above, there are many choices for u1 and u2 that achieve a given constant

longitudinal velocity xe. However, this choice will impact in the energy consumption. The ideal
solution is to use the minimal control effort in order to save energy.

One solution for this problem is to perform a filtering in the commanded redundant input
which is less important for maintaining in the equilibrium point. As a result we obtain a system
dynamics described in the following form:

ẋ = f (x)+g1(x)u1 +g2(x)û2, (3.13a)

˙̂u2 =
−1
τ

û2 +u2. (3.13b)

where û2 is the filtered commanded input for the brake. By imposing this dynamics, u2 will
naturally converge to zero and u1 will also reduce, once u2 is no longer canceling it. Note that
u2 is still useful for the transient state condition when the vehicle needs to slowdown fast. This
strategy is commonly referenced in the literature as Washout Filter (WOF). This control tool
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was a focus of study of [Hassouneh et al., 2004] showing its benefits and drawbacks.
The solution can be extended for systems with Multiple Inputs and Multiple Outputs (MIMO).

Consider the following generalized MIMO system dynamics:

ẋ = f (x)+g(x)u, (3.14)

where x ∈ Rn, u ∈ Rm and m≥ n.
Thus, applying the WOF to the redundant inputs we obtain the following extended dynam-

ics: [
ẋ
˙̂us

]
=

[
In gs(x)

0l×n Ts

][
f (x)
ûs

]
+

[
gm(x) 0n×l

0l×n Il

][
um

us

]
(3.15)

where: l = m− n, x ∈ Rn is the vector of states; um ∈ Rn is the vector of main actuators;
us ∈ Rl is the vector of secondary (or redundant) actuators; ûs ∈ Rl is the vector of filtered
input signals, f (x) is the function of state dynamics; gm(x) is a function which describes the
influence of um in the state dynamics; gs(x) is a function which describes the influence of us

in the state dynamics; Tr = diag([−1/τ1;−1/τ2;−1/τ3; · · · ;−1/τl]) is a diagonal matrix with
positive constants τ1, · · · ,τl chosen by the designer; In is the identity matrix of order n; and 0n×l

is a matrix full of zeros with n lines and l columns.
The vector of redundant actuators can be chosen by analyzing the input function g(x)

through a systematic procedure. First, the designer must linearize g(x) in a chosen point x0,
obtaining the following:

B0 =
∂
∂x

g(x)
∣∣∣
x0
. (3.16)

By analyzing the matrix B0 ∈ Rn×m, the designer must identify the linearly dependent
columns, which indicates the redundant inputs. After identifying the redundant actuators, the
designer must choose and separate between main (um) and secondary (us) actuators, by also
defining the functions gm(x) and gs(x). Then the extended dynamics (3.15) can be applied.
This solution can be represented by a block diagram in a cascaded form as shown in Figure 3.6,
where û = [um ûs]

T and g(x) = [gm(x) gs(x)].

WOF f (x)+g(x)ûu û ẋ

Figure 3.6. Washout Filter Block Diagram

Numerical Example

As an example consider the following linear system with two redundant inputs:

ẋ = x+0.2u1−0.8u2 (3.17)
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where x is the state, u1 is the first input and u2 is the second input.
By applying INDI, we obtain the following control law:

u = u0 +B+
0 (ν− ẋ0) (3.18)

where u = [u1 u2]
T , B0 = [0.2 − 0.8], u0 is the previous input and ν = k(xd− x) is a desired

dynamics of first order. The block diagram in Figure 3.7 illustrates the closed loop system,
where z−1 represents a delay of one sample time ts = 0.01 seconds, û = [u1 û2]

T is the control
signal filtered by the WOF, k = 20s−1 is a linear gain and τ = 5 seconds is the time constant of
the WOF.

k∑ ∑ ∑B+
0

z−1

System

z−1

WOF
∫

INDI

+

xd

u0

+

ν u û
−

ẋ0−

ẋ

x

Figure 3.7. Numerical Example: Block diagram of the closed loop system of INDI+WOF

Figures 3.8 and 3.9 show the results for a step in xd using WOF denominated case (a) (or
“INDI+WOF”) and without WOF denominated case (b) (or “INDI”). For sake of comparison
consider the following cost function:

Ju =
∫ t f

0
u2

1(t)+u2
2(t)dt (3.19)

where t f = 15 seconds is the final time of simulation.
The tracking performance is similar for both cases, however the control signals are different

with higher energy consumption for the case (a) with Ju = 17.82, while case (b) spent Ju = 12.93
in total energy. Moreover, note that in both cases the control inputs returns to zero, thus the
WOF is not advantageous for this specific system which do not contains actuator saturation.

However, vehicle dynamics commonly have actuator saturation. Thus, including the satura-
tion limits in the system inputs given by −0.5 ≤ u1 ≤ 0.5 and −0.5 ≤ u2 ≤ 0.5, we obtain the
simulation results shown in Figures 3.11 and 3.12. Two simulation results are depicted in these
figures: (a) INDI is applied using NAW and WOF as depicted in the block diagram from Figure
3.10, where ˆ̄u is the resultant saturated and filtered input signal; and (b) only INDI with NAW
is used, as depicted in block diagram from Figure 3.3.

In Figure 3.12, the saturation is achieved in both control inputs for both cases (a) and (b).
In case (b) the commanded signals u1 and u2 converge to values different from zero after the
transient state (t > 6 seconds). Consequently the system has higher energy consumption in
case (b) with Ju = 17.85. In case (a) the energy consumption is reduced in comparison to the
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Figure 3.8. Numerical example: comparison of tracking performance between INDI+WOF and
INDI
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−2
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Time (s)

(a) INDI+WOF

0 2 4 6 8 10 12 14
−2

0

2

Time (s)

(b) INDI

u1 u2

Figure 3.9. Numerical example: comparison of input signals between INDI+WOF and INDI

previous simulation, achieving Ju = 5.74. The tracking performance shown in Figure 3.11 is
nearly the same presenting insignificant differences in comparison to the previous simulation.
Therefore, the WOF appears as a simple and advantageous solution for systems with redundant
actuation which have actuator saturation, such as aerial vehicles i.e. multirotor drones, aircrafts
and airships.

k∑ ∑ ∑B+
0

z−1

System

z−1

WOF
∫

INDI

+

xd

u0

+

ν u û ˆ̄u
−

ẋ0−

ẋ

x

Figure 3.10. Numerical Example: Block diagram of the closed loop system of
INDI+NAW+WOF
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Figure 3.11. Numerical example: comparison of tracking performance between
INDI+NAW+WOF and INDI+NAW
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Figure 3.12. Numerical example: comparison of input signals between INDI+NAW+WOF and
INDI+NAW

3.4.3 The Second-order Differentiator and the Estimation of Derivatives

Standard control techniques use state feedback for control strategies. In the past years, sig-
nificant effort was applied to create sensors to measure usual states, such as positions and ve-
locities. However, incremental controllers would require measurements of the state derivative,
demanding new sensors which often did not exist yet (such as derivative of angular rates). As
alternative, the state derivative may be estimated by a second order differentiator.

Assuming that the states are measured, we may derive them to obtain ẋ. However, directly
applying a discrete derivative is unadvised since this technique is strongly sensitive to measure-
ment noise. To overcome this, a Second-Order Differentiator is proposed here.

Let us denote the state derivative as w = ẋ. The SOD is designed as a band-pass filter
in which the state derivative estimation ŵ is obtained by filtering the state measurement y as
follows:

ŵ(s) =
[

ω2
n s

s2 +2ζ ωns+ω2
n

]
y(s) . (3.20)
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The SOD can be seen as a combination of a typical second-order low-pass filter with unitary
dc-gain, and one derivative operator. This approach has two main objectives: a) the second-
order low-pass filter attenuates high-frequency noise in the measurement y, and b) the derivative
operator provides the estimated state derivative ŵ for lower frequencies.

The filter can be designed for each required state derivative: the natural frequency ωn defines
the passband mid-frequency, while the damping ratio ζ is use to set the passband size.

3.4.4 Input Scaling Gain

A disadvantage of using the SOD is the lag produced by the second-order filter, creating a
delayed estimation. Thus, the controller has to be robust to delays, which is a known issue for
incremental controllers [Koschorke et al., 2013, van ’t Veld et al., 2018, Wang et al., 2019b].
We propose the use of the Input Scaling Gain as a solution to increase the controller robustness
to delays in the feedback loop.

The ISG was first presented by [Azinheira et al., 2015] as a scalar factor. Now we general-
ized it to a diagonal matrix Λ ∈ Rn×n. The ISG is used to scale down the difference (ν − ẋ0),
reducing the bandwidth of the closed-loop system. Each diagonal component λii is in the inter-
val ]0, 1]. The modified INDI control law is given as:

u = u0 +B+
0 Λ(ν− ẋ0) , (3.21)

Note that with Λ = In we have the traditional INDI control law (3.5).
Substituting (3.21) in the closed loop Incremental Dynamics (3.4) results in:

ẋ = ẋ0 +Λ(ν− ẋ0) . (3.22)

Considering the discrete implementation, where the time interval between t0 and t is ∆t = Ts,
we can rewrite (3.22) as:

∆ẋ
∆t

=
∆ẋ
Ts

=
1
Ts

Λ(ν− ẋ0) , (3.23)

Assuming a fast sampling rate (small ∆t), and denoting ẋ as w, (3.23) approximates to:

ẇ' 1
Ts

Λ(ν−w0) . (3.24)

Considering t0 = t−Ts, (3.24) can be rewritten as:

ẇ(t) =
1
Ts

Λ [ν(t)−w(t−Ts)] . (3.25)
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Applying Laplace transform to (3.25), provides the transfer function between the state
derivative and the pseudo-control as:

L

{
ẇ(t)+

1
Ts

Λw(t−Ts)

}
=

1
Ts

ΛL {ν(t)}⇔

⇔ TsΛ−1sw(s)+ e−sTsw(s) = ν(s)⇔

⇔ w(s) =
(
TsΛ−1s+ e−sTsI

)−1 ν(s) = diag

{
1

Ts
λii

s+ e−sTs

}
ν(s) . (3.26)

Note that:

• for small sampling time, the approximation e−sTs ' 1 is accurate and (3.26) results in a
first order low-pass filter: the ISG will filter high-frequency disturbances in the pseudo-
control ν , specially any noise appearing in the outer-loop controller;

• as a trade-off, the ISG reduces the bandwidth of the dynamics imposed by the outer-loop
controller, which may lead to a loss of performance;

• since Λ is a diagonal matrix, the ISG will define an independent filter for each component
of ν where the filter applied to the component νi has a time constant Ts

λii
.

3.4.5 Combining ISG and SOD: Closed-Loop Analysis

To better understand the impact of the SOD+ISG solution in the closed-loop system, a classical
continuous-time analysis is considered, providing us well-known tools to assess stability prop-
erties and delays in the system. The analysis is done using the structure illustrated by the block
diagram of Fig. 3.13.

Outer-loop
Controller

+ − g−1
0 λ ZOH g0 +

+

e−sTs e−sd

e−sTs

ω2
ns

s2+2ζωns+ω
2
n

1
s

xd
ν z ∆uc ∆u ∆w w y=x

w0

ŵ

ŵ0

x

INDI Loop Inc. Dynnamics (5) System (15)

Figure 3.13. Continuous representation of the INDI controller applied to a first-order SISO
system.
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To analyze INDI using a continuous approach, the discrete sample delays z−1 (see Fig. 3.1)
are replaced by time delays e−sTs . Additionally, to emulate the discrete behavior of the INDI
formulation, a Zero-Order Hold (ZOH) is included in the control loop. An extra delay d is
included in order to assess the effects of other delays (such as communication delays) in the
INDI feedback loop.

For the sake of simplicity, the INDI controller is applied to a first-order single-input-single-
output (SISO) system, but this analysis can be extended to high-order multiple-input-multiple-
output (MIMO) systems since the ISG is independent for each component zi of the INDI-loop
error z = ν−w0, and the SOD is also independent for each state xi.

Analytical formulation

The system to be controlled is defined as:

{
ẋ = ẋ0 +g(x0)∆u
y = x , (3.27)

where its dynamics is described using ID formulation (3.4), and its output is the state itself.
In this section we only analyze the local behavior of the system, where the control effective-

ness function g(x0) is approximated by a constant g0.
The transfer function H1(s) relating the state derivative w with the input increment ∆u is

obtained through the incremental dynamics formulation (3.4) as:

H1(s) =
w(s)
∆u(s)

= g0

(
1

1− e−sTs

)
, (3.28)

and, therefore, the transfer function H2(s) of the system (3.27) is:

H2(s) =
y(s)

∆u(s)
=

1
s

H1(s) . (3.29)

The main goal of the INDI controller, presented in result (3.6), is that the state derivative w

should track a desired pseudo-control ν . Thus, the transfer function from ν to w, denoted here
as H3(s), should be computed. According to the block diagram of Fig. 3.13, H3(s) is given by:

H3(s) =
w(s)

ν(s)
=

g−1
0 λZ(s)H1(s)

1+g−1
0 λZ(s)H2(s)

ω2
n s

s2+2ζ ωns+ω2
n
e−s(Ts+d)

=
g−1

0 λZ(s)H1(s)
(
s2 +2ζ ωns+ω2

n
)

s2 +2ζ ωns+ω2
n +g−1

0 λω2
n e−s(Ts+d)Z(s)H2(s)s

, (3.30)

where Z(s) = 1−e−sTs

sTs
is the ZOH transfer function.
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Substituting (3.28), (3.29), and Z(s) into (3.30) provides the transfer function of w in respect
to ν as:

H3(s) =
λ
Ts

(
s2 +2ζ ωns+ω2

n
)

s3 +2ζ ωns2 +ω2
n s+ λ

Ts
ω2

n e−s(Ts+d)
. (3.31)

Note that (3.31) is a linear time-invariant delayed system whose stability can be assessed
using methods such as presented in [Walton and Marshall, 1987] and [Olgac and Sipahi, 2002].
However, since (3.31) is clearly a retarded dynamics system and the polynomial associated with
the delay in the characteristic equation has zero order, a simpler Padé approximation provides
an accurate stability analysis of the system.

Given the fast sampling required by incremental controllers, delays in the system are ex-
pected to be small. Thus, a first-order Padé approximation is proposed, in which the exponential
delay terms can be approximated as:

e−sT ≈ 1− sT/2
1+ sT/2

. (3.32)

The Padé approximation (3.32) can be used in (3.30), providing H3(s) as:

H3(s) =
λ
Ts

(
1+ s (Ts+d)

2

)(
s2 +2ζ ωns+ω2

n
)

(Ts+d)
2 s4 +(ζ ωn(Ts +d)+1)s3 +

(
2ζ ωn +

(Ts+d)
2 ω2

n

)
s2 +

(
(2−λ )Ts−λd

2Ts
ω2

n

)
s+ λ

Ts
ω2

n

.

(3.33)
We may conclude from (3.33) that:

• the transfer function has a unitary dc-gain. Therefore, as desired by the INDI strategy, w

perfectly tracks a constant pseudo control ν ;

• H3(s) will only be stable if all terms of its denominator are greater than zero, which will
only be achieved if (2−λ )Ts−λd > 0;

• although the INDI approach requires fast sampling frequencies, reducing the sampling
time also reduces the maximum allowed delay in the feedback loop;

• The ISG is not only useful to attenuate noise in the pseudo control ν , as discussed in
Section 3.4.4, but it is also important to minimize the effects of additional delays in the
INDI loop. By instance, without the ISG (λ = 1), the extra delay cannot exceed Ts, and
an extra one-sample delay in the feedback already makes the INDI loop unstable.

Numerical analysis

A numerical example is used to analyze the impact of the ISG and the differentiator solutions in
the INDI loop. A sampling frequency of 50 Hertz is assumed. In a first moment, no extra delay
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in the feedback loop is considered (d = 0). The differentiator damping ratio is set to 2. Figs.
3.14 and 3.15 show, respectively, the step response and the Bode plots of H3(s), comparing three
scenarios: a) Different values of ISG with no differentiator (ideal state derivative measurement);
b) different natural frequencies of the SOD without ISG; and c) different differentiators with an
ISG of 0.5. Since the results emulate the discrete system, the Bode plots are presented until the
Nyquist frequency ( fs/2).
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Figure 3.14. Step response of the INDI loop with no extra delay in the state derivative feed-
back, comparing: (a) ISG values with ideal state feedback; (b) SOD frequencies
without ISG; (b) SOD frequencies with ISG of 0.5.

Note from Fig. 3.14 that if no differentiator is required, the step response is similar to a
second-order system. Actually, as shown in (3.26), the INDI loop is described by a first-order
system with one-sample time delay, being the later responsible for the second-order behavior.
The ISG can be used to shape the second-order closed-loop behavior: reducing λ will reduce the
natural frequency and increase the damping ratio of the system (see Fig. 3.15a). Consequently,
reducing the ISG, we do reduce the overshoot of the step response, but also increase the settling
time, as shown in Fig. 3.14a.

When the SOD is required, the filter introduces an extra delay in the feedback loop, inversely
proportional to its natural frequency, creating even more overshoot and oscillation in the step
response (see Fig. 3.14b). Applying an ISG of 0.5, we can see in Fig. 3.14c that the overshoot
and the oscillation are reduced. As a drawback, the rising time increases since the low-pass
behavior slows down the system response. Note from the Bode plot in Fig. 3.15c that the ISG
is able to increase the system damping, reducing resonance peaks.

Both Figs. 3.14 and 3.15 corroborate that the delay has a critical impact in the INDI loop
response, and that the ISG is an interesting tool to mitigate its effect. To further investigate the
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Figure 3.15. Bode plots of the INDI loop with no extra delay in the state derivative feedback,
comparing: (a) ISG values with ideal state feedback; (b) SOD frequencies without
ISG; (b) SOD frequencies with ISG of 0.5.

role of the delay in the INDI loop, let us analyze the scenario in which there is an extra delay in
the INDI feedback loop. Figs. 3.16 and 3.17 show step results and Bode plots when d is larger
than Ts. In these figures, the scenarios considered are: a) Different values of ISG considering
measured state derivative; b) Different values of ISG for a differentiator with natural frequency
equal to 15/Ts; and c) differentiators with different frequencies for an ISG of 0.5.

The step response shows that, without the ISG, extra delays larger than Ts produce an unsta-
ble response, and the closed-loop system is unstable even with ideal measurement of the state
derivative (see Fig. 3.16a).

When using a differentiator designed with ωnTs = 15, the extra delay added by the filter
makes the system unstable even for an ISG of 0.8, while an ISG of 0.5 is enough to stabilize the
system for different frequencies of the differentiator.

From these results, the solution using the ISG and the differentiator appears to be an inter-
esting solution for cases in which there is no measurement of the state derivatives since the ISG
can mitigate the effects of the delay generated by the differentiator. Additionally, it can also be
used to mitigate other delays in the measurements.

If the additional delay is known, we may evaluate the required ISG and differentiator to
guarantee the local stability of the INDI controller using the Rooth-Hurwitz criteria. Fig. 3.18
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Figure 3.16. Step response of the INDI loop with d = 1.1Ts (22 ms), comparing: (a) ISG
values with ideal state feedback; (b) ISG values with ωnTs = 15 in the SOD; (c)
SOD frequencies with ISG of 0.5.

shows the maximum delay allowed for different values of ωn and λ . The figure illustrates the
two important contributions of this work:

1. The ISG might be used to make the system stable when using the SOD: without extra
delay and ISG (d = 0, λ = 1), the system will only be stable if ωnTs is greater than,
approximately, two. If the ISG is included (λ < 1), the minimun frequency required by
the SOD can be reduced if necessary. However, low values of λ and ωn may lead to a
feeble closed-loop performance.

2. The ISG enhances the tolerance to delays in the feedback loop: Fig. 3.18 shows that
reducing the ISG increases significantly the maximum delay allowed in the feedback
loop.

Note that the maximum allowed delay and the minimum required frequency of the SOD
are functions of the sampling time. Therefore, although the INDI requires fast sampling rate,
the selection of Ts has to take into account the maximum absolute delay in the feedback loop,
especially if a differentiator is required.
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Figure 3.17. Bode plot of the INDI loop with d = 1.1Ts (22 ms), comparing: (a) ISG values
with ideal state feedback; (b) ISG values with ωnTs = 15 in the SOD; (c) SOD
frequencies with ISG of 0.5.
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Figure 3.18. Maximum allowed extra delay as a function of the SOD+ISG parameters.
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3.5 Conclusion

In this chapter, the Incremental Dynamics (ID) was presented as a promising solution for air-
ship control. ID has a intrinsically robustness to model uncertainties which is an important
characteristic, mainly because airships are nonlinear systems with many aerodynamic uncer-
tainties. However, some design issues are highlighted, such as: (1) actuator redundancy and
saturation; (2) measurement noise and delay sensitivity. In order to mitigate (1), we propose the
combination of Washout Filter (WOF) and Natural Anti Wind-up (NAW). To mitigate (2), the
combination of Input Scale Gain and Second-order Differentiator (SOD) is presented. Through
numerical examples, and closed loop analysis, we showed that, the proposed solutions increase
incremental controllers performance and robustness to measurement errors.
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4 DESIGN OF INDI CONTROLLER FOR ROBOTIC AIR-

SHIP

In this chapter, we propose the design of INDI for the tracking of the lateral and longitudinal
motions in a decoupled form for the Noamay airship.

A less common UAV platform, airships are particularly suited to scenarios that demands
long endurance, high payload and low operational risk, such as surveillance and environmental
monitoring [Liu et al., 2009].

The complex aerodynamics due to the voluminous envelope (helium container) and its
lighter-than-air characteristics makes airship models highly uncertain, mainly because of the
lateral dynamics which is difficult to be modeled in wind tunnel tests. Thus, incremental ap-
proaches appear as particularly suited for such systems since most of the aerodynamic parame-
ters disappear in the ID formulation.

When in aerodynamic flight (forward speed, with non-vanishing airspeed), the longitudinal
and lateral dynamics of the airship may be considered as decoupled. In the first section, we
derive the control for the lateral motion, assuming that longitudinal and vertical states, such as
forward speed and altitude, are properly regulated. Then, in the following section, we assume
that the lateral motion is properly controlled to design a controller for regulating the longitudinal
and vertical motions.

4.1 Lateral control

As shown by [Moutinho et al., 2016], it is usual in aeronautics to separate airship dynamics into
two motions: the motion in the vertical plane (or longitudinal motion); and motion in horizontal
plane (or lateral/directional motion). The airship lateral model has the state xh = [φ ψ β p r]T

and the input uh = [δa δr]
T , where: φ and ψ are, respectively, the roll and yaw Euler attitude

angles; β is the sideslip angle; p and r are the roll and yaw rates respectively; and δa and δr are,
respectively, the aileron and rudder deflection angles.

During aerodynamic flight, the aileron and rudder surfaces normally have small deflections,
and the airship lateral motion can be modeled as an affine nonlinear model like (3.1a): ẋh =

f(xh)+G(xh)uh.
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Let us separate the state xh into two state vectors ξ h = Cξh
xh = [φ ψ β ]T and x̄h = Cxhxh =

[p q]T , being Cξh
and Cxh matrices to select the correspondent states. Thus, we can split the

model dynamics into:

{
ξ̇ h = Cξh

ẋh = Cξh
f(xh)+Cξh

G(xh)uh = fξh
(ξ h, x̄h)+Gξh

(ξ h, x̄h)uh

˙̄xh = Cxh ẋh = Cxhf(xh)+CxhG(xh)uh = fxh(ξ h, x̄h)+Gxh(ξ h, x̄h)uh
. (4.1)

For a simpler notation, function variables will be omitted in the remainder of this section.
The dynamics of the attitude angles φ and ψ do not vary instantaneously with the surfaces

deflection (kinematic states). Assuming that the influence of the rudder in the sideslip angle
dynamics is negligible regarding the influence of the yaw rate, the control effectiveness matrix
Gξh

is equal to zero. Then, the airship dynamics model (4.1) resumes to:

{
ξ̇ h = fξh

˙̄xh = fxh +Gxhuh
, (4.2)

where x̄h and ξ h are defined, respectively, as the internal and external dynamics states of the
system.

Since the internal dynamics are Input-to-State Stable [Khalil, 2000], the INDI strategy can
be applied to control only the external dynamics of system (4.2), making the entire system stable
[Wang et al., 2019b].

To apply the INDI strategy to the external dynamics of (4.2), G+
xh

is required (Assumption

3.6). The selection matrix Cxh = [02×3 I2] has dimension 2×5 and the airship control effective-
ness function Gh results in a matrix with dimension 5×2, thus, Gxh is a 2×2 matrix. Given the
dynamics properties of the vehicle, Gxh has full rank and the G+

xh
required by the INDI approach

is unique and it is equal to G−1
xh

.
Therefore, (3.21) is used to apply the INDI strategy with the ISG+SOD and the following

control law is achieved:
uh = uh0 +G−1

xh
Λh (νh− ŵxh0) , (4.3)

where ŵxh0 is the estimated derivative of x̄h obtained with the SOD. Fig. 4.1 presents the block
diagram of the applied control.

∑

z−1

G−1
xh

Λh ∑

Airship

INDI

SOD Cxh

−

ŵxh0

uh0

+

νh

uh ūh

x, ξ

Longitudinal
control

u

Figure 4.1. INDI strategy for tracking the lateral motion of an airship.
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4.1.1 Outer-loop Controller

Once the INDI control loop acts to cancel the nonlinearities of the airship, the outer-loop can
be used to impose a desired linear dynamics for the airship lateral attitude state χh = [φ ψ]T .

The outer-loop controller must track the desired attitude χhd
. The main goal of the controller

is to impose dynamics constrains for the closed-loop attitude of the airship through a pseudo-
control law νh = wxhd

= [ṗd ṙd]
T .

Let us consider the desired closed-loop response as a second-order system. Therefore, the
transfer functions of the lateral attitude angles of the airship in respect to their desired values
are designed as:

φ(s)
φd(s)

=
ω2

p

s2 +2ωps+ω2
p
, (4.4a)

ψ(s)
ψd(s)

=
ω2

r
s2 +2ωrs+ω2

r
. (4.4b)

where ωp and ωr are, respectively, the desired roll and yaw closed-loop bandwidths.
Considering φ̇ ≈ p and ψ̇ ≈ r, the pseudo-control can be obtained from (4.4) as:

νh =−K1xh +K2χhd

=−
[

ω2
p 0 0 2ωp 0

0 ω2
r 0 0 2ωr

]
xh +

[
ω2

p 0
0 ω2

r

]
χd

=

[
−ω2

p(φ −φd)−2ωp p

−ω2
r (ψ−ψd)−2ωrr

]
(4.5)

We can apply the pseudo-control provided in (4.5) into the INDI control law (4.3) in order
to track the desired attitude χhd

respecting the dynamics constrains designed as (4.4).

4.1.2 Preliminary results

In this section, simulations in the airship nonlinear model are performed in order to evaluate the
INDI loop performance in different scenarios. Also the advantages of using ISG and SOD are
highlighted. Three scenarios are considered:

1. Ideal feedback or “Nominal case” – supposes that the full state vector xh and its deriva-
tives are measurable without noise or delay;
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2. Noisy feedback or “Noisy case” – supposes that only velocities and attitude are measur-
able with noise;

3. Delayed and noisy feedback or “Real case” – supposes that only velocities and attitude
are measurable with noise and delay;

In all scenarios, a “Reference” signal is applied to the yaw angle. This signal is composed
by a step of 30◦ applied at instant t = 3s. In addition, the Outer-loop control gains are the same
for all scenarios and given by ωp = 2.3rad/s and ωr = 2.3rad/s.

Nominal case

The Fig. 4.2 shows results for the Nominal case. These results shows that INDI successfully
tracks the yaw reference with approximately 3 seconds of rise time and without overshoot.
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Figure 4.2. Simulations in the nonlinear model with ideal feedback using INDI.

Noisy case

Considering the Noisy case, we use SOD for feedback the INDI loop as proposed before. Also,
it was introduced noise with standard deviation (σRMS

1) given by Tab. 4.1, as specified by the
datasheet of the sensor Xsens Mti-G 700. The simulation results for this scenario are shown in
Fig. 4.2.

By the results in Figure 4.3, we can verify that with ωn = 50rad/s we obtain the best track-
ing results. With a higher natural frequency ωn = 150rad/s , the noise is not efficiently attenu-
ated, as a result high frequency oscillations appears. However, with a lower natural frequency
ωn = 25rad/s , the roll angle becomes oscillatory after the reference step. It occurs due to the
introduction of measurement delay caused by SOD. In this case, ISG can be used in order to
solve this specific issue.

1The noise power is given by (σRMS)
2/(sample frequency)
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Table 4.1. Sensor noise specification

State σRMS

φ (rad) 5.2·10−3

ψ (rad) 1.75·10−2

p,r (rad/s) 3.49·10−4
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Figure 4.3. Simulation in the nonlinear model with measurement noise using INDI+SOD.

Real case

Now consider the third scenario, where it is introduced measurement delay with Td = 5Ts. In
this scenario, we are able to check the importance of ISG in the INDI-loop while tracking a
desired attitude with noisy and delayed measurements. Simulation results can be checked in
Fig. 4.4, where Λ = diag([λ , λ ]), λ = 1, 0.3, 0.1 and ωn = 100rad/s . Note that λ = 1 is
equivalent to removing ISG of the INDI-loop.

Considering λ = 1, high frequency oscillations appears in all states. However, such oscilla-
tions are attenuated as λ is decreased.

In the simulation with λ = 0.1, it is obtained low oscillation in all states and performance in
an acceptable margin. Although, the high frequency oscillations in all states behavior disappear,
it also increases the overshoot in ψ . Thus the designer shall be aware of the trade-off between
robustness to measurement uncertainties (noise and delay) and tracking performance.

By previous simulations in Noisy and Real cases, we can note that the roll mode is the most
sensitive mode to measurement errors. Thus, in order to increase its robustness a lower ISG
must be set. However, since yaw and roll modes are decoupled by the Outer-loop controller, a
higher ISG can be set to the yaw mode, in order to increase yaw tracking performance.

As a final simulation, different values are given for each diagonal component of the ISG
matrix. The simulation results are depicted in Fig. 4.5 by setting Λ = diag([0.1, 0.4]). Also in
this figure, the Real and Nominal cases are compared. As a result, the Real and Nominal cases
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Figure 4.4. Simulation in the nonlinear model with measurement noise and delay, using
INDI+SOD+ISG.

have similar performance with minimal differences due to some measurement noise. These
results shows that the proposed control loop combined with SOD and ISG may stabilize the
system dynamics and maintain performance even under measurement noise and uncertain model
parameters.
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Figure 4.5. Simulation in the nonlinear model. Comparison between Nominal and Real (with
measurement noise and delay using INDI+SOD+ISG) cases.
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4.2 Longitudinal control

For the longitudinal model, we also decouple the longitudinal motion from the lateral motion.
The states with most significant influence over the longitudinal motion (vertical plane) are given
by xv = [u w q θ ]T and PD. Therefore, the decoupled airship longitudinal dynamics is given by:

ṖD = gv(PD,xv,d), (4.6a)

ẋv = fv(xv,PD,uv,d), (4.6b)

where uv = [δe δ0 δq µ0] is the input vector. Note that the vertical position PD has influence over
the dynamic states in xv. It occurs due to the temperature variation of the atmosphere which is
a function of altitude. This will impact in the internal gas volume and pressure, as consequence
certain parameters of the vehicle dynamics may change during the flight.

For a hovering objective with respect to the ground or a ground target, the wind disturbance
appears both: as a positive factor, which will help to control the airship due to the increased
tail authority; and a drawback, producing a mostly horizontal force that needs to be balanced
by airship actuators. In such conditions, aligning the airship with wind is a common strategy
to reduce the lateral drag and increase the tail surfaces authority. Although the tail surfaces
authority is quite limited, their contribution is important to establish the transition between
different flight phases.

When an airship is flying with low airspeed, the thrusters develop an important task by sta-
bilizing the vertical position. In contrast, with high airspeed, they are important for controlling
airship longitudinal speed, since the vertical position can be controlled efficiently by the pitch
angle and elevator due to aerodynamic forces. Such characteristics shall be wisely used when
designing a longitudinal controller.

In the literature, there are a few strategies which address transition between different flight
phases, such as: by switching between controllers specifically designed for each flight phase
[Azinheira et al., 2006]; assuming that the airship dynamic model is well known and designing a
coupled controller [Moutinho et al., 2016]; or performing an optimization in control inputs also
using the dynamical model [Zhu et al., 2015]. Here we design a single decoupled longitudinal
controller for all flight phases. It is commanded by a higher level controller which performs a
quadratic optimization in the commanded signals based in airship kinematics only.

The control architecture adopted in this work is composed by a higher level which is tra-
jectory planning (pilot application) and three control levels: (1) a low-level controller (INDI),
which generates the input signals for the actuators in order to track a given pseudo-control
signal (νv); (2) an Outer-loop controller which tracks desired velocities and pitch angle and
commands the pseudo-control signal νv; and (3) a Vertical Position Control (VPC) which com-
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mands a desired pitch (θd) and vertical velocity (wd) based in the vertical position (PD) and
given longitudinal velocity command (ud). This structure can be represented by the block dia-
gram shown in Figure 4.6.

∑ ∑ ∑
Vertical Pos.

Control
Linear

controller INDI Airship

Sensors and
Estimators

+

PDd

ud

+

xvd νv uv
d

x, ξ
−

ẋv0

−

PD

−
xv

Figure 4.6. Closed loop system

4.2.1 INDI controller design

Considering that the proposed INDI control solution requires the velocity states only, lets con-
sider the reduced state vector xv = [u w q]T = Cvxv instead of full state xv.

Using the Incremental dynamics approach from Chapter 3 in the dynamic equation 4.6b, the
following incremental model is obtained:

ẋv = ẋv0 +Bv(uv−uv0). (4.7)

However, to design a INDI control law (3.5) the matrix Bv should be inverted and here
it is a 3x4 matrix: we have redundant actuation and then a control allocation must be used
[Oppenheimer et al., 2006]. Normally, pseudo-inverse is used as solution for control allocation
purposes. However, since the airship has actuators with different ranges and units, we use the
weighted pseudo-inverse presented by [Bacon et al., 2001] as below:

B+
v = W−1BT

v (BvW−1BT
v )
−1 (4.8)

where W ∈Rm×m is a diagonal weighting matrix. This solution reduces some nonlinear behav-
iors of the actuators, such as saturations and rate limits. As a result, the INDI control law will
be given by:

uv = uv0 +B+
v Λ(νv− ẋv0) (4.9)

where Λ = diag([λu, λw, λq]) is the Input Scale Gain (ISG) presented previously in Chapter 3,
uv0 is the previous input applied to the system and ẋv0 is the vector of state derivatives which
shall be measured or estimated.

This control law, requires the tuning of W and determination of Bv to compute B+
v . There is

a simple procedure for tuning the weighting matrix W. It is based in the actuators range. As an
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example consider the elevator control signal δe. This specific actuator saturates at−0.44rad and
+0.44rad (±25◦). Thus, its corresponding weight is chosen as 1

0.88 , since the range of actuation
is 0.88rad. This procedure was followed to each control input resulting in the diagonal matrix
W = diag([1/0.88; 1/0.9; 1/0.9; 1/2.6]) with appropriate units.

In addition, the input matrix Bv of the linearized system must be computed. In real appli-
cations, wind tunnel tests are required for identifying some input dependent coefficients. The
advantage of using INDI also is seen in that procedure, since only the input dynamics is required
to be identified. It reduces significantly the cost and time of parametric identification tasks.

In this work a set of input matrices is computed by a preprocessing algorithm based in the
Newton-Rapson linearization for constant altitude h = −PD, pitch angle θ and a given true
airspeed Vt . Trim conditions were computed for fixed altitude h = 50m, θ = 0 and varying true
airspeed between 0m/s ≤ Vt ≤ 10m/s with steps of 2m/s. Then, the matrix Bv is scheduled
during the flight accordingly to the measured true airspeed (see Appendix A, for the set of
matrices and schedule algorithm). Although, the input matrix varies with altitude and pitch
angle, INDI has sufficient tolerance for such parametric variation. In this sense, Sec. 4.2.4
presents simulation results in order to verify the parametric robustness of INDI to variations in
the aerodynamic coefficients.

The resultant input for the airship is given by ˆ̄uv = [δ̄e δ̄0
ˆ̄δq µ̄0]

T as shown in the block
diagram from Figure 4.7, while the lateral control is designed as shown in [Azinheira et al.,
2015].

∑

z−1

B+
v ∑

Airship
WOF

INDI
uv0

+

ν
uv ûv ˆ̄uv

x, ξ
−

ẋv0 Lateral
control

u

Figure 4.7. Resultant INDI loop

4.2.2 Outer-loop Control

Once the INDI control loop acts to cancel the nonlinearities of the airship, the outer-loop can be
used to impose a desired linear dynamics for the airship longitudinal states xv. The outer-loop
controller must track the desired attitude and velocities xvd .

For this control level, any technique can be used. In our application we use a pole placement.
Thus, the pseudo-control signal is composed by a regulation term plus a feed-forward term ẋvd ,
which corresponds to the derivatives of the reference signal xvd . Therefore, the following linear
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control law can be stated:

νv = Kv(xvd −xv)+ ẋvd , where Kv =




ku 0 0 0
0 kw 0 0
0 0 2kq k2

q


 , (4.10)

with constants ku,kw,kq > 0 chosen by the designer.
The command derivative ẋvd can be obtained through a Second-order Differentiator (simi-

larly to the approach shown by [Farrell et al., 2009]) or analytically based in the reference path.
In further simulations it will be given through derivation of the commanded signal xvd . The
resultant Linear Control loop block diagram is shown in Figure 4.8.

xvd
∑ ∑Kv ∑

ẋvd

+ +

νv
+−

xv

−

ẋv0

Figure 4.8. Linear Control loop

4.2.3 Vertical Position Control

The vertical Position dynamics (4.6a) can be approximated to the following kinematic equation:

ṖD = wcos(θ)−usin(θ), (4.11)

Through (4.11), it can be seen that there are many possible choices for pitch angle (θ )
and vertical velocity in body-frame (w) that accomplish a vertical velocity in Earth-fixed frame
(ṖD). In contrast, this choice will impact directly in the performance VPC loop. The aerody-
namic forces can be used through the pitch regulation to control altitude and reduce the energy
consumption of the actuators.

Considering that the longitudinal velocity u, vertical velocity w and pitch angle θ are well
controlled by the inner loop, define a control input uvpc = [wd θd]

T such that:

ṖD = [1 −ud]uvpc. (4.12)

Also consider the vertical position error given by P̃D = PD−PDd , thus the following control
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law tracks the reference signal PDd :

uvpc = [1 −ud]
+ (ṖDd − kPDP̃D

)
(4.13)

where + denotes the pseudo-inverse and kPD > 0 is a scalar constant chosen by the designer.
The proof follows from the choice of a Lyapunov function. Consider the following Lypunov

candidate Vvpc(P̃D) =
1
2 P̃2

D which is positive definite. The derivative V̇vpc is given by:

V̇vpc = P̃D
˙̃PD (4.14)

which can be expanded to:

V̇vpc = P̃D
(
[1 −ud]uvpc− ṖDd

)
(4.15)

Finally, by substituting (4.13) in (4.15):

V̇vpc =−kPDP̃2
D (4.16)

which is clearly negative definite for all P̃D ∈ R.
The resultant control law can be considered as a quadratic optimization procedure, since the

pseudo-inverse in 4.13 has more than one solution. Thus the following optimization algorithm
can be defined:

min θd ,wd
1
2uT

vpcWrsuvpc

subject to Krsuvpc =VDd

where VDd = ṖDd − kPDP̃D, Krs = [1 −ud] and Wrs ∈ Rm×m is a diagonal positive definite
weighting matrix. The matrix Wrs will regulate the resultant value of θd and wd . Normally,
a higher weight shall be given for θd in comparison to wd due to scale differences.

In addition, we need to consider that NOAMAY can not achieve an arbitrary pitch angle,
thus some constraints must be added. Define θmax and θmin as the upper and lower limits for
commanded pitch angle, respectively, thus the following quadratic optimization can be defined:

min θd ,wd
1
2uT

vpcWrsuvpc

subject to Krsuvpc =VDd

θd ≤ θmax

θd ≥ θmin

This optimization is performed in real time along the mission to determine the inputs for
the Linear control loop. Note that, the commanded pitch angle will be θd = 0 as long ud = 0.
This choice is convenient since, at low longitudinal speed also the airspeed will be low, thus
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aerodynamic forces in vertical plane will be negligible in comparison to the resultant propulsion
forces.

In this thesis, this optimization algorithm will be referenced as Reference Shaping (RS).
There are some works in the literature that also use RS to solve similar optimization issues, i.e.
[Ann et al., 2017]. The resulting block diagram of VPC loop is shown in Figure 4.9, where
xvd = [ud wd qd θd]

T .

∑ ∑∑kPD RS

Vertical Pos. Control

+PDd

+

ṖDd

+ VDd xvd
+−

PD

−

xv

ud

Figure 4.9. Vertical Position Control loop

4.2.4 Preliminary Results

This section will verify whether the proposed airship controller is tolerant to uncertainties in
the aerodynamic parameters of the model. We want to evaluate the performance and robustness
of the proposed control loop in the three flight phases, namely: VTOL, hovering and cruise
flight. Firstly, we evaluate the overall performance in a nominal condition, then we introduce
uncertainties in the aerodynamic parameters in order to establish a comparison with the nominal
behavior.

The simulations performed are composed by a single scenario with three predefined flight
phases: (1) vertical take-off, (2) cruise flight and (3) vertical landing. Also, hovering flight
is performed during the transition of these phases. A description of the flight phases is given
below:

1. Vertical take-off:

The airship starts at the altitude of 5 meters from ground, then a slope rate of P̈Dd =

−0.1m/s2 in the desired vertical speed ṖDd is given until achieves −1m/s, meanwhile
the longitudinal desired speed stays as ud = 0m/s. As a result, the airship performs a
vertical take-off during 20 seconds, then ṖDd returns to zero after another slope rate with
the opposite signal.

2. Cruise flight:

For the second phase, references of vertical and longitudinal velocities are given to the
RS module. The desired speeds are signals with slope rate of u̇d = 0.5m/s2 and P̈Dd =
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−0.1m/s2, until they achieve ṖDd =−0.5m/s and ud = 5m/s. Then they remain constant
during about 10 seconds, finally a slope rate with opposite signal is applied, until the
commanded velocities achieves zero (ṖDd = 0m/s and ud = 0m/s).

3. Vertical landing:

For this phase, a vertical landing is performed, setting a slope rate of 0.1m/s2 in the
commanded vertical velocity ṖDd until it achieves ṖDd = 1m/s. Then, it remains constant
during about 15 seconds. Finally, a slope rate of −0.1m/s2 is applied to that signal until
ṖDd achieves zero.

Also, wind with speed of |Vw| = 3m/s was introduced in this scenario against the airship
nose during all mission. The trajectory shown in Figure 4.10 illustrates the described scenario.
The constants and gains used in further simulations are depicted in Table 4.2.

The simulation without uncertainties in the model will be referred as “Nominal”. The
Nominal simulation performed is available for visualization as a video at https://youtu.
be/ZJNylNzZuGY. The selected parameters have major influence in the longitudinal motion.
Also, most of them are highly uncertain in real applications. The weighting mass or heaviness,
which is the difference between the weight and buoyancy forces, was also considered, since it
affects the flight envelope. The parameters are written below:

• Cδ0 , Cl0 - drag and lift coefficient

• Cdi , CLα - aerodynamic force derivative coefficient;

• CM0 - pitch moment coefficient;

• CMα , CMβα - aerodynamic torque derivative coefficient;

• CMδe
, CLδe

- aerodynamics input coefficient derivatives;

Table 4.2. Constants and Gains

Name Value Name Value Name Value
ku 1.3 s−1 kq 2.6 s−1 λu 0.2
kw 1.3 s−1 kPD 0.1 s−1 λw 0.2
τq 4.46 s ts 0.0625 s λq 0.2

Figure 4.10. Planned trajectory
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Table 4.3. Tolerance tests on model parameters (RMS values of the errors).

ũ (m/s) w̃ (m/s) q̃ (◦/s) θ̃ (◦)
Nominal 0.03 0.04 0.26 0.45

Cδ0

−80% 0.09 0.04 0.63 1.42
+80% 0.03 0.04 0.28 0.41

Cl0
−80% 0.04 0.04 0.52 0.84
+80% 0.03 0.04 0.51 0.80

Cδi

−80% 0.04 0.04 0.52 0.84
+80% 0.03 0.04 0.51 0.81

Clα
−80% 0.03 0.04 0.35 0.58
+80% 0.06 0.04 0.56 1.03

CM0

−80% 0.03 0.04 0.51 0.81
+80% 0.04 0.04 0.52 0.84

CMα
−80% 0.03 0.04 0.45 0.71
+80% 0.04 0.04 0.59 1.00

ũ (m/s) w̃ (m/s) q̃ (◦/s) θ̃ (◦)
Nominal 0.03 0.04 0.26 0.45

Clδe

−80% 0.03 0.04 0.29 0.47
+80% 0.08 0.04 0.60 1.19

CMδe

−80% 0.13 0.05 0.64 1.80
+80% 0.03 0.04 0.34 0.48

CMβα
−80% 0.04 0.04 0.51 0.82
+80% 0.04 0.04 0.51 0.82

cmq
−80% 0.02 0.04 0.38 0.39
+80% 0.05 0.04 0.46 0.91

mw
−80% 0.28 0.07 0.64 1.65
+80% 0.15 0.08 0.41 1.02

• cmq - aerodynamic damping coefficient of the pitch rate;

• mw - weighting mass which is the difference between the weight and buoyancy forces.

In simulations with±50% uncertainties in the absolute value of those parameters, the airship
achieved similar performance to the Nominal with negligible RMS errors. Therefore, it was
increased until ±80% and the RMS values can be compared in Table 4.3. The first row of
Table 4.3 shows the RMS error in the Nominal conditions of the selected variables given by:
longitudinal velocity ũ = u− ud , vertical velocity w̃ = w−wd , pitch rate q̃ = q− qd and pitch
angle θ̃ = θ − θd . In bold letter we can see the most significant values in comparison to the
Nominal.

Through the obtained results, it is possible to verify that the most sensitive model parameters
are mw, Cδ0 , Clδe

and CMδe
. The parameters mw and Cδ0 have influence over the longitudinal and

vertical performance. Therefore, lower values on those parameters will change the dynamics
to have faster response once the damping is lower. Thus, in that case, the difference xv− xv0

is not negligible as considered by assumption Assumption 3.1 in Chapter 3. Meanwhile Clδe

and CMδe
have influence over the elevator efficiency. Thus, reducing its efficiency also goes

against assumption Assumption 3.1, which assume that the state dynamics is slower than the
input dynamics.

In addition, it was performed a simulation considering the worst case of each parameter with
±40% and ±60% inaccuracy. As shown in Figure 4.12 the vectoring angle (µ0) and the total
thrust (δ0) achieve saturation in the transition between phases (2) and (3) when the controller
is trying to reduce the longitudinal and vertical velocities at the same time. It results in a worst
performance in the pitch angle tracking as depicted in Figure 4.11, since the elevator has less
authority than expected.

Despite the poor identification, the proposed control strategy achieved quiet efficiently per-
formance in terms of RMS error values. In any case, the control design approach may be con-
sidered as promising, and, among the list selected, these four parameters are in fact the model
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Figure 4.11. Simulation of the Airship nonlinear model with inaccuracy in the identification:
commanded (Reference) and actual values for both cases (40% and %60 of model
inaccuracy)
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Figure 4.12. Simulation of the Airship nonlinear model with inaccuracy in the identification:
control inputs for both cases (40% and %60 of model inaccuracy)

parameters for which a more careful identification or determination should take place, though
the required precision should merely remain inside a say 50% margin.
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4.3 Conclusion

In this Chapter, we presented how to design INDI for lateral and longitudinal motions of the
airship Noamay. For the lateral motion it was used ISG and SOD as solutions for mitigating the
high frequency perturbations introduced by the outer-loop and measurement errors. Also NAW
was used in order to avoid over shoot in the lateral modes. For the longitudinal motion it was
added WOF due to the redundancy between two elevator and rotors.

Additionally, we presented the Reference Shaping (RS) methodology in order to provide
smooth transitioning between cruise and hovering flight. Through this quadratic optimization
it is possible to provide a dynamical filtering of the commands such that the demanded signals
are within the capabilities of the vehicle kinematics.

The proposed control loop was tested by performing VTOL and cruise flight. The results ob-
tained demonstrates its efficiency to stabilize the system and track the desired ground velocities
with the performance characteristics imposed by the commanded signals.

Robustness tests showed that the proposed control approach is insensitive to model uncer-
tainties within the expected range found in reality. This property is relevant since the accurate
identification of airship models is costly and extremely difficult. Therefore, the proposed ap-
proach may be the basis for controlling an autonomous airship. A simplified model of the plat-
form has shown to be sufficient to compute the necessary linearized input matrix and efficiently
control the vehicle.

All tests were performed in a realistic simulator however, it still have its limitations, such
as the modeling of lateral drag which is very uncertain. Thus those approaches developed here
should be tested and validated in experimental flights of the Noamay airships.

Apolo Silva Marton



CHAPTER 5. FILTERING AND ESTIMATION 78

5 FILTERING AND ESTIMATION

Airships are known to be extremely nonlinear and under-actuated systems. Thus, automatic
control, guidance and navigation are difficult tasks to accomplish. Good state estimation tech-
niques are crucial to the development of guidance and control techniques. Initial techniques
used only the yaw rate to go-to-waypoint missions as described by [Azinheira et al., 2000].
However, more sophisticated control strategies such as Sliding-modes as proposed by [Vieira
et al., 2017] and Dynamic Inversion proposed by [Azinheira et al., 2015] require the knowl-
edge of velocities and accelerations. Meanwhile, guidance requires information about attitude,
position and airspeed as stated by [Moutinho et al., 2016].

The solution for this problem relies in filtering, estimation and sensor fusion methods. Seve-
ral algorithms have been developed addressing this issue. A traditional algorithm is the Kalman
Filter, which can be applied to linear systems. For nonlinear systems, extensions such as the
Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) exist.

[Kim et al., 2006] showed that such approaches are also useful for treating information re-
dundancies that are common in sensor fusion problems. Nevertheless, [Oh, 2010] compensates
sensor dynamics (such as drifting) by adding some modifications to the algorithm. In [Zanoni
and de Barros, 2014], the EKF is applied for the fusion of the sample data from different sensors,
and in [Zaki et al., 2019], angular acceleration is estimated through a cascaded filter structure.

The choice of an estimation technique plays a crucial role in any autonomous navigation
system. Aerospace systems are critical and, usually, do not tolerate failure. As a consequence,
it demands comparative studies in simulation environment before embedding the chosen tech-
nique(s) in the platform. As an example, in [Giannitrapani et al., 2011], the authors presented a
performance comparison between EKF and UKF addressing the spacecraft localization problem
in simulation environment.

This chapter presents a comparative study evaluating three solutions for state estimation of
NOAMAY. As mentioned before in Chapter 1, NOAMAY is instrumented with a pitot tube and
a Xsens Mti-G 700 which contains: accelerometer, gyroscopes, GPS, barometer and thermome-
ter.

In the next section a summary of the sensors modeling take place considering the manufac-
turer specifications of each device, such as bias and sample frequency. Finally, two classical
approaches are compared to a baseline approach that consists of a second-order filter in discrete
time. Results obtained in simulation are presented. Then, the performance difference between
the three approaches is highlighted. The algorithms were developed in C/C++ using the Robotic
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Operating System (ROS) developed by [Quigley et al., 2009], aiming future tests in the actual
platform.

5.1 Sensors modeling

The robotic airship is instrumented with many sensors and an infrastructure of communication
[Rueda et al., 2017]. We can highlight the following sensors: a Pitot Tube, responsible for
measuring airspeed (Vpitot); and a Xsens Mti-G 700 which is composed by a set of sensors
providing the following information:

• absolute position in the world PNED (m) measured by GPS;

• absolute orientation in the world Φ (rad), as result of a sensor fusion between Gyroscope
and Magnetometer;

• inertial linear velocity (Vg) in three-axis (m/s), estimated by the GPS;

• inertial angular velocity (Ω) in three-axis (rad/s), estimated by the IMU;

• inertial acceleration in three-axis (a= [ax ay az]
T ) (m/s2), measured by the Accelerometer;

• atmospheric pressure Ph (hPa), measured by the barometer;

• and temperature Th (K), measured by the thermometer.

Each sensor has sample frequency specified as in the Table 5.2. Also, each sensor has a
generic modeling of a first order Gauss Markov error as shown by [Meyer et al., 2012]. The
general sensor modeling is given by:

y = ŷ+b+wy (5.1a)

ḃ =−1
τ

b+wb (5.1b)

where b is the sensor bias, wb is a Gaussian noise for updating bias, wy is a Gaussian noise
for the measure as specified by the manufacturer in Table 5.1, ŷ is the true simulated value
and y is the sensor output. The bias is not present in all sensors. For the sensors in which it
is modeled, the σRMS

1 is specified in Table 5.3. Accelerometer, Barometer and Thermometer
require specific modeling that is evaluated in the subsections below.

1The noise power is given by (σRMS)
2/(sample frequency)
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5.1.1 Pose measurement

For the case of pose measurement a coordinate transformation is applied to the data (with trans-
lational and rotational components). The GPS output is modeled as following:

Pgpsk = Sxsens(PNEDk +Pxsens)+ϕ posk
, (5.2)

where: Sxsens is the rotational matrix from the CB angular pose to the Xsens angular pose;
and Pxsens is the Xsens position in the body frame; ϕ posk

is a position Gaussian noise vector at
instant k; and Pgpsk is the sampled position given by the GPS at instant k.

The orientation output is modeled as following:

Φimuk = Φxsens +Φk +ϕorik , (5.3)

where: Φk is the orientation given in simulation at instant k; Φxsens is the Xsens angular pose
in the body frame; ϕorik is an orientation Gaussian noise vector at instant k; and Φimuk is the
sampled angular position given by the IMU at instant k.

5.1.2 Velocity measurement

For the case of velocity measurement a coordinate transformation is also applied to the data
(with rotational components).

The linear velocity output is modeled as following:

Vgpsk = Sxsens(Vgk +Ωk× ~Oxsens)+ϕvelk
, (5.4)

where: Ωk is the angular velocity given in simulation at instant k; ~Oxsens is the position vector
from the CB to the Xsens position; Sxsens is the rotational matrix from the CB angular pose to

Table 5.1. Sensor noise specification (wy)

Data σRMS Data σRMS
φ ,θ (rad) 5.2·10−3 a (m/s2) 4·10−3

ψ (rad) 0.1 PN ,PE (m) 2.5
PD (m) 5 Vpitot (m/s) 0.002

Ω (rad/s) 3.49·10−4 Vg (m/s) 0.4
Ph (hPa) 0.01 Th (K) 1.0
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Table 5.2. Sample frequency specification

Sensor Frequency Sampled data
IMU 100 Hz Φ, Ω, a
GPS 4 Hz Vg, PNED

Barometer 50 Hz Ph
Thermometer 1 Hz Th

Table 5.3. Sensor bias specification (wb)

Sensor σRMS
Gyroscope (◦/s) 1.3·10−4

Accelerometer (m/s2) 2.3·10−5

Barometer (hPa) 1.4·10−5

the Xsens angular pose; and Pxsens is the Xsens position in the body frame; ϕvelk
is a position

Gaussian noise vector at instant k; and Pgpsk is the sampled position given by the GPS at instant
k.

The angular velocity output is modeled as following:

Ωimuk = SxsensΩk +ϕratek
, (5.5)

where: ϕratek
is an angular velocity Gaussian noise vector at instant k; and Ωimuk is the sampled

angular velocity given by the IMU at instant k.

5.1.3 Acceleration measurement

Before using the generic modeling (5.1), the accelerometer has some extra components of accel-
eration, namely: centripetal acceleration (ac) and gravitational acceleration (ag), thus resulting
in the following model:

a = V̇g + Ω̇× ~Oxsens−SΦag +ac, (5.6)

where ~Oxsens is the vector from the CB to the sensor location, SΦ is the rotation matrix from CB
to the NED frame and ac = Ω× (Ω× ~Oxsens).
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5.1.4 Static pressure measurement

For simulating the static pressure at the current altitude, we use the International Standard At-
mosphere (ISA) model as defined by the International Civil Aviation Organization (ICAO), as
shown below:

Ph = P0

(
Th

Th−0.0065PD

)5.257

(5.7)

where Ph is the static pressure at the given altitude, Th is temperature in Kelvin, PD is the altitude
(in meters) in NED frame and P0 is the pressure at zero altitude (at the sea level P0 = 101.325
hPa). Then, the barometer is modeled with the generic sensor model (5.1).

5.1.5 Temperature measurement

The temperature in simulation is modeled with a constant rate with the altitude as follows:

Th = T0 +0.0065PD (5.8)

where T0 is the temperature at zero altitude. Note that PD is negative since z-axis points down,
thus the temperature tends to fall as the airship goes up. Then, the thermometer is modeled with
the generic sensor model (5.1).

5.2 Filtering and Estimation

In this section, we present three different strategies for filtering sensor data. The first one is a
simple second-order filter that serves as a baseline for comparison purposes. This is followed
by an EKF and UKF solutions. From now on we use “.̂” notation for estimated states and “.0”
for previous measurements.
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Table 5.4. Configuration for Low-pass filter

State Sensor ω f (rad/s) ζ
PNED, Vg GPS 3.33 0.96

Φ, Ω IMU 10 0.96

5.2.1 Low-pass filter

The most simple approach is a second-order Low-pass filter (LPF). It can be defined as the
following transfer function:

χ(s)
Y (s)

=
ω2

f

s2 +2ω f ζ s+ω2
f

(5.9)

where χ(s) is the estimated state at frequency domain, Y (s) is the sensor measure at frequency
domain, ω f is the cut-off frequency given by the designer and ζ is the damping coefficient given
by the designer.

For each estimated state, the chosen sensor, cut-off frequency and damping coefficients are
given in the Table 5.4. The cut-off frequency was chosen considering that in GPS measures
we have higher errors, thus a lower bandwidth is necessary. Meanwhile, the IMU has lower
errors, thus the cut-off frequency can be higher. The choice was based in several simulations
until acceptable RMS error was obtained.

5.2.2 Extended Kalman Filter

The EKF algorithm is well known in literature and can be found in many works. In this thesis
we use a package2 for ROS developed by [Moore and Stouch, 2014]. This package (known
as robot_localization) provides the EKF algorithm implementation in C/C++ for a generic
robot with 6-DOF (omnidirectional). In the configuration parameters, it is possible to set the
states of interest, such as position, attitude, velocity, angular rate and linear acceleration.

The filter implementation is able to receive input from different sensors. Each sensor pro-
vides information about a subset of state variables. In this work, we are interested in estimating
the whole state vector (PNED,Φ,Vg,Ω,a). Thus, the sensors are used in measurement update
stage as described in Table 5.5 , where 1 is true and 0 is false. From this table, it is possi-
ble to observe that only one redundancy is present, between the GPS and Barometer measured
vertical speed (w). Also, note that Barometer does not measure altitude, it measures the static
pressure. Thus, with the measured pressure and measured temperature, it was computed a mea-

2Available in https://wiki.ros.org/robot_localization
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Table 5.5. Configuration for measurement update stage

Data\Sensor GPS IMU Barometer
PNED 1 0 0

Φ 0 1 0
u, v 1 0 0
w 1 0 1
Ω 0 1 0
a 0 1 0

Table 5.6. Process covariance matrix

State Weight State Weight
Φ (rad) 0.01 a (m/s2) 0.1

Ω (rad/s) 0.1 u,v (m/s) 0.05
PN (m) 0.001 PE (m) 0.001
PD (m) 0.01 w (m/s) 0.001

sured altitude PD through (5.7). Then the resulting altitude is used as input for the estimators.

Another requirement imposed by the robot_localization package, is to set all sensor in-
formation in the East-North-Upper (ENU) frame. However, our sensors are modeled to retrieve
data in NED frame. Therefore, this data is converted from NED to ENU frame. For the specific
case of acceleration it was used a cascaded scheme where the acceleration data is corrected by
removing the centripetal acceleration as in (5.10) based in the previous filtered angular velocity
resulting in the block diagram shown in Figure 5.1.

ˆ̇Vg = a− Ω̂0× (Ω̂0× ~Oxsens) (5.10)

Sensors Accel. Correction EKF

z−1

ξ ,x,ẋ

y

Ω̂Ω̂0

a
ˆ̇Vg ξ̂ ,x̂

Figure 5.1. Cascaded acceleration correction

The covariance matrix of the process is a 15×15 matrix and it is chosen as a diagonal matrix
with the weights described in Table 5.6. These values were chosen based in several simulations
performed. It is known that the airship does not have fast response in the states, therefore the
process covariance is presumed to be small.
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5.2.3 Unscented Kalman Filter

The Unscented Kalman Filter has the same measurement update stage as in the EKF. Neverthe-
less, UKF addresses the approximation issues of the EKF. Therefore, in the time update stage,
it is elaborated an Unscented transformation in order to calculate the statistics of a random
variable which undergoes a nonlinear transformation as shown by [Wan and Merwe].

Our UKF implementation uses the same ROS package (robot_localization). The pack-
age also contains the UKF algorithm for a robot with 6-DOF based in the kinematic equations.
Therefore, the same data conversions and configuration parameters used for EKF were applied.
Other configuration and implementation details are available in a GitHub repository3.

5.3 Estimation Results

In order to establish a comparison between the three approaches, a simulation was performed
using ideal state feedback for a controller developed by [Azinheira et al., 2015]. All three
estimators are working at approximately 32Hz. Also, wind flowing from the North to South
with 0◦ of incidence is considered along the path. The simulation is performed in Simulink
and then visualized in RViz as illustrated in Figure 5.3. The estimation results are available for
visualization as video in youtu.be/VL5dvCyOZwY (LPF), youtu.be/jaATwV0rG30 (EKF) and
youtu.be/B26xaKtAyWo (UKF).

Data set /droni_sensors Estimator

Accel. Correction /odometry

y

ξ̂ ,x̂
Ω̂

ˆ̇Vg

Figure 5.2. ROS communication flow
chart

Figure 5.3. Simulation visualization
example

The resulting data set (state values, derivatives and sensors outputs) is stored in a file4 in
ROS message format (.bag). Such data set includes sensor messages (published in the topic
“/droni_sensors”) and the ground truth data (published in the topic “/droni_states”).
Then the estimators are evaluated in open loop as shown in the block diagram from Figure
5.2. In this Figure, the estimator is a ROS node running independently from other estimators,

3https://github.com/leve-fem/airship_estimator.git
4Available in https://bit.ly/2VRNCUk
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receiving the measured data through the ROS topic “/droni_sensors” and publishing the re-
sulting estimation in the ROS topic “/odometry”. Also, there is a node for each estimator
responsible for the Acceleration correction presented previously in (5.10).

An important implementation detail is that we first regulated the covariance matrices for the
UKF and then just applied the same configuration for the EKF. The estimated trajectories are
shown in Figure 5.4. In order to establish a comparison, the Figure 5.6 shows two intervals of
the estimated trajectory along the ground truth, obtained from the simulation (GT).
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Figure 5.4. Estimated trajectory
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Figure 5.6. Estimated position (a) at high ground speed and (b) low ground speed

In the interval (a), EKF and LPF position estimation is smoother than the UKF, whilst the
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LPF has lower absolute error. However, in the interval (b) EKF is smoother and also has a
lower absolute error. Thus, EKF appears to be smoother and also has less error when consid-
ering the whole mission. It can be confirmed by the RMS of position errors shown in Table
5.7 (in bold the lowest RMS values). The euler angles are not shown in this table, because
Xsens already provides a good estimation resulting from a sensor fusion between gyroscope
and magnetometer, thus the graphical difference as the RMS error are negligible.

Table 5.7. RMS of estimation error

State LPF EKF UKF
PN (m) 3.1329 2.4118 3.3654
PE (m) 3.3633 2.6114 3.3945
PD (m) 3.8960 2.0282 2.1521
u (m/s) 0.4215 0.3186 0.3724
v (m/s) 0.4713 0.2948 0.4267
w (m/s) 0.3071 0.2871 0.2915
p (rad/s) 0.0644 0.0685 0.0664
q (rad/s) 0.0355 0.0359 0.0366
r (rad/s) 0.0373 0.0305 0.0304

The most relevant states for the control loop are longitudinal (u), vertical (w) and angular
velocities (Ω). For the first interval shown before, the estimation of vertical velocity, longitu-
dinal velocity, and angular in z-axis (r) in Figure 5.5. By these figures, we can conclude that
LPF provides good filtering. However, it inserts a significant delay. On the other hand, UKF
provides a faster response with a higher error. Meanwhile, EKF has a time response on par with
the UKF while maintaining lower error levels. Thus, for the airship model, the EKF shows a
better performance in comparison to the two other estimation approaches.

5.4 Conclusion

The presented approaches have shown an acceptable filtering and estimation of the whole state
vector, with sufficient precision to facilitate the control techniques developed by the group. The
EKF and UKF have shown similar estimation performance. However, the EKF presented a
slightly better performance.

It is important to highlight that (as we explained before) we have chosen the covariance
parameters for the UKF searching for the best results possible. Then the same parameters
were applied to EKF, without any additional optimization. Consequently, we initially expected
to achieve a better performance with UKF. However, from the results presented in the previous
sections, one can observe that the EKF clearly had a better performance. It suggests that, for this
specific platform and under the same conditions, the EKF may be a more suitable choice. These
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are interesting results, since in [Giannitrapani et al., 2011] the UKF presented a slightly better
performance in terms of average localization accuracy for their specific case of a spacecraft
model.

The algorithms were developed in C/C++ using ROS in order to embed the estimator in the
platform in future works. Also, error tolerance analyses and closed-loop simulations will take
place in future works.
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6 WIND VELOCITY ESTIMATORS

This chapter addresses the problem of wind velocity estimation. Firstly, it is presented an
alternative version of a Model-based wind velocity estimator using EKF. This technique is sim-
ilar to the solution presented in [Cho et al., 2011], however taking the kinematic equations of
an airship. Then, a Data-driven approach of estimation using Neural Network (NN) is pro-
posed. Finally, a hybrid version that uses both Model-based and Data driven techniques is
proposed. The main tool to validate the proposed solutions is the realistic nonlinear model in
Simulink/MATLAB presented in Chapter 2.

6.1 Kinematic Equations of motion

In this section we find three equations which are correlated with the Pitot probe measurement,
wind speed (Vw), airship groundspeed (Vg) and orientation (Φ).

Let the airship motion be represented by its inertial velocity Vg. Similarly, the wind is
described by an inertial velocity Vw. The airship relative air velocity is called airspeed (Va) and
it is given by:

Va = Vg−Vw, (6.1)

where Vw = [uw vw ww]
T and Va = [ua va wa]

T .
The Euclidean norm of the airspeed is called true airspeed (Vt) and it is given by:

Vt = ||Va||2 =
√

u2
a + v2

a +w2
a. (6.2)

Other important definitions are the sideslip angle β and angle of attack α . The sideslip angle
is a relative orientation between the vertical plane of the vehicle and the vector Va. Moreover,
the angle of attack α is given by the angle between the vector Va and the horizontal plane of
the vehicle, as shown in Figure 6.1.

Threfore, we can define β and α by the following statements:

β = sin−1 va

Vt
, (6.3)
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Figure 6.1. Sideslip angle (β ) and angle of attack (α).

α = tan−1 wa

ua
. (6.4)

Thus, an equivalent formula is given by:

wa = ua
sinα
cosα

and va =Vt sinβ . (6.5)

Finally, we obtain:

Vt =
ua

cosα cosβ
. (6.6)

The Pitot tube is located in the airship nose, thus it will be measuring the longitudinal
dynamic pressure ∆P in the body frame. Also, it has a correlation with the airspeed as shown
below:

∆P = η
(
ua
)2
, (6.7)

where η is the calibrating factor that is correlated with the air density and pitot efficiency. Now
consider the following variable transformation:

Vpitot =
√

∆P, (6.8)

Thus, Vpitot is correlated with the true airspeed through the following statement:

Vt =
Vpitot√

η cosα cosβ
. (6.9)

Because there are uncertainties in η and the angles α and β are unmeasurable with the actual
available sensors, those values will be estimated together as a scale factor c f given by:

c f =
√

η cosα cosβ , (6.10)

therefore (6.9) becomes:

Vt =
1
c f

Vpitot . (6.11)
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Now, consider that the rotation of vector Vg from the body frame to the NED frame is given
by VNED = [VN VE VD]

T . Also, consider that such rotation applied to vector Vw is given by
VNEDw. Thus, the airspeed in NED frame is given by:

VNEDa = VNED−VNEDw = ST
ΦVa. (6.12)

It is known that a rotational operation does not change the vector modulus, thus the follow-
ing statement is valid, considering the wind strictly horizontal:

V 2
pitot = c2

f
(
(VN−VNw)

2 +(VE −VEw)
2 +(VD)

2). (6.13)

Supposing that, the airship starts from an initial condition where α and β are negligible
(α ≈ β ≈ 0) we have ua =Vt and va = wa = 0. Therefore in the global frame we have:

VNa = ua cosψ cosθ , (6.14)

VEa = ua sinψ cosθ , (6.15)

where ψ and θ are the yaw and pitch angles, respectively. Since we have (6.1), then:

VN =
Vpitot

c f
cosψ cosθ +VNw , (6.16)

VE =
Vpitot

c f
sinψ cosθ +VEw . (6.17)

The values of Vpitot , VN and VE are measurable by the Pitot tube and GPS, therefore (6.13),
(6.16) and (6.17) can be used as observation equations, while c f , VNw and VEw are estimated
states in the EKF. Note that, the Euler angles (φ , θ and ψ) can be measured by the IMU.
Although these equations are linear dependent, we are introducing redundant information of
different sensors by adding IMU combined with GPS measurements, which may lead to faster
convergence and better filtering of noise.

6.2 Extended Kalman Filter

In this section we propose an EKF in order to estimate the incident wind in the airship body.
Assuming that the wind is strictly horizontal the main goal is to obtain an estimation of the
wind velocity in the horizontal plane (North-East) and the Pitot probe scale factor. One main
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benefit is expected from this method. The estimator presented in [Cho et al., 2011], uses only
one measurement update equation which is similar to (6.13). By introducing (6.16) and (6.17)
in the measurement update stage we expect to have a better performance than using only (6.13).

There is no given model to determine the wind behavior. Thus, we assume that the wind is
constant with a Gaussian input with significant covariance. In addition, as long as we do not
have a sideslip sensor, thus the uncertain and time varying factor c f will be estimated, which
leads us to the following reduced system model:

χk+1 = Fχk +νk, (6.18a)

zk = h(χk)+υk (6.18b)

where: χk = [VNwk VEwk c f k]
T is the state vector in the instant t = kts; zk = [V 2

pitotk VNk VEk ]
T is

the system output in the instant t = kts; ts is the sample time in seconds; h(χk) is the output
function, which can be computed through (6.13), (6.16) and (6.17);

F =




1 0 0
0 1 0
0 0 1


 ;

νk ∼ N(0,Q) is the process noise with Gaussian distribution and covariance Q; and, finally,
υk ∼ N(0,R) is the measurement noise also with Gaussian distribution and covariance R.

Given the model described in (6.18a), we can update the state and covariance matrix (P) as
follows:

χk|k−1 = Fχk−1, (6.19)

Pk|k−1 = FPk−1FT +Q. (6.20)

For the accomplishment of the EKF final stage we obtain the Jacobian matrix of h(χk)

evaluated in the measured values of Vpitot , VNED, Φ and χk|k−1 which is given by:

Hk =

[
∂h(χ)
∂VNw

,
∂h(χ)
∂VEw

,
∂h(χ)

∂c f

]∣∣∣∣∣
χk|k−1

,

where:

∂h(χ)
∂VNw

= [−2ĉ2
f V̂Nw(VN−V̂Nw) 1 0]T ,

∂h(χ)
∂VEw

= [−2ĉ2
f V̂Ew(VE −V̂Ew) 0 1]T and
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∂h(χ)
∂c f

=




2ĉ f
(
(VN−V̂Nw)

2 +(VE −V̂Ew)
2 +(VD)

2)

−Vpitot

ĉ2
f

cosψ cosθ

−Vpitot

ĉ2
f

sinψ cosθ


 .

Finally, the standard algorithm of EKF can be applied as follows:

ỹk = zk−h(χk|k−1),

Ck = HkPk|k−1HT
k +R,

Kk = Pk|k−1HT
k C−1

k ,

χk = χk|k−1 +Kkỹk,

Pk = (I−KkHk)Pk|k−1,

where P is the covariance matrix, C is the covariance error, ỹ is the measurement error, K is the
Kalman gain and I is the identity matrix with appropriate dimensions.

6.3 Neural Network

This section proposes a Neural Network (NN) to estimate the wind speed in NED frame and
the Pitot probe scale factor c f . The main benefit expected from this method is the NN intrinsic
property of creating a mapping from input parameters to the output. Because the NN is trained
by measured data, it is able to detect abrupt variation in the wind velocity. However, it is also
expected to be very sensitive to measurement errors.

As the analytical model (6.18a)–(6.18b) shows, the model output is composed by (6.13),
(6.16) and (6.17), which are nonlinear equations in the model states, vehicle velocity, orientation
and Pitot pressure. In order to avoid complex nonlinearities, the measured data is remapped into
8 inputs given by:

znn =




V 2
pitot

V 2
D

VN

VE

V 2
E

V 2
N

Vpitot cosψ cosθ
Vpitot sinψ cosθ




.
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Meanwhile the output vector χnn of the NN contains the estimated wind velocities in the
horizontal plane and the scale factor c f as shown below:

χnn =




VNw

VEw

c f


 .

The NN was designed in the MATLAB Neural Network ToolboxT M. It is a three-layer
fitting NN, which has three nonlinear hidden layers containing 24 neurons each and three linear
outputs. The activation function of the nonlinear neurons is sigmoidal. The resulting flow chart
is shown in Figure 6.2.

znn

Hidden
Layers

VNw

VEw

cf

Figure 6.2. Neural Network flow chart.

The training dataset is composed by simulations in variations of the two trajectories shown
in Figure 6.3. The trajectories (a) and (b) are rotated of {0, 45, 90, 135, 180, 225, 270, 315}
degrees around origin generating 16 scenarios (see Figure C.1) in which the airship performs
curves and straight lines in different directions. For each scenario simulations were performed
with wind speed at |~Vw| = {0, 1, 2, 3, 4, 5}m/s and heading φw ={0, 22.5, 45, 67.5, 90, 112.5,
135, 157.5, 180, 202.5, 225, 247.5, 270, 292.5, 315, 337.5} degrees, where φw = tan−1 (VEw

VNw

)
.

Hence, a total of 1281 simulations were performed. In all simulations the airship performs a
typical cruise flight at 7m/s airspeed and constant altitude of 50 meters.
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Figure 6.3. Training missions: (a) first path and (b) second path.

The stored dataset has approximately 375 MB. Training phase and further evaluations were
carried out on a desktop architecture which features a four-core 4.00 GHz Intel Core i7-6700K
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Processor, NVIDIA GeForce GTX 950, 32GB of RAM and Ubuntu 16 LTSOS. The system
took 22 minutes and 17 seconds to train the afore-mentioned dataset.

Training was achieved using Matlab Neural Network Toolbox. The Scaled Conjugate Gra-
dient (SCG) algorithm is used with 5000 epochs of training iterations using 70% of the collected
data randomly taken as the training set, 15% used for validation set and 15% as the test set. The
performance evaluation is made by Mean Squared Error (MSE).

The residual error of the trained NN is shown in Figure 6.4. Note that, about 80% of the
total data is distributed around zero, in which 60% was taken as training data, 10% as validation
data and about 10% as test data.
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Figure 6.4. Error histogram of the NN dataset

The correlation coefficient (R-value), which is a linear regression between the NN predicted
values and the targets, and best MSE are shown in Table 6.1. Values of R closer to 1 indicate
better agreement between targets and predicted values. Note that both R-value and MSE are
close for Training, Validation and Test dataset, which indicates that the NN is not overfitting the
data.

Table 6.1. Correlation coefficient R-value and MSE.

Dataset R-value MSE
Training 0.99731 0.0206

Validation 0.99732 0.0205
Test 0.99720 0.0205
Total 0.99729 0.0205

In order to avoid high frequency oscillations in the estimation, a low-pass filter was intro-
duced for filtering the input values Vg, Φ and Vpitot . The low-pass filter can be expressed by the
following Laplace transfer function:

Y (s)
Z(s)

=
1

τs+1
(6.21)

where τ is the time constant (here we use τ = 1.5 seconds), Z(s) is the Laplace transform of
the input and Y (s) is the Laplace transform of the filter output. After filtering the measured
sensor data, the input vector znn is computed and passed by the trained NN as shown in the
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block diagram from Figure 6.5. Finally, the estimated wind velocity χnn is given to the airship
navigation system.

NN block

1
τs+1

Input
reshaping NN

Airship
Navigation System

Sensors Data

znn χnn

Figure 6.5. Resulting block diagram of the NN approach

6.4 Hybrid estimator

Here we propose a hybrid estimator that performs a fusion between both estimators, namely:
from the EKF designed in Sect. 6.2 and NN designed in Sect. 6.3. This fusion is performed by
changing the measure update stage of the EKF approach. The NN output χnn is added to the
measurement vector of the EKF as a redundant measure. Thus, resulting in the new measure-
ment vector zhk , updating function hhk(χk) and its respective Jacobian Hhk shown below:

zhk =

[
zk

χnn

]
, hhk(χk) =

[
h(χk)

χk

]
and Hhk =

[
H
I3

]
,

where I3 is the identity matrix of third order. Then the EKF standard algorithm is used by
updating the dimensions of the matrices Ck, Kk and R. The resulting estimator has a cascaded
form as illustrated in Figure 6.6.

Hybrid

NN EKF
Airship

Navigation Systemχnn χ̂k

Sensors data

Figure 6.6. Hybrid estimator with cascaded form.

It is important to highlight that the NN used here is the same NN previously designed and
trained in Sect. 6.3.
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6.5 Simulation results

In this section two simulations are performed in order to evaluate all the three approaches pre-
sented before and establish a comparison with the traditional model-based approach proposed
by [Cho et al., 2011].

During simulation the airship is well controlled with ideal feedback, meanwhile the estima-
tors evaluated are receiving noisy data from the modeled sensors as shown in the block diagram
from Figure 6.7. The sensors are modeled in the simulation environment with sample frequency
as specified in Table 6.3. Also, each sensor has a generic modeling including a Gaussian noise
as specified by the manufacturer in Table 6.2. The generic sensor modeling is shown in Figure
6.8, where wz is a Gaussian noise, ẑ is the true simulated value and z is the sensor output. All
estimators use the same sample frequency of 16Hz (ts = 62.5 ms).

Airship
Model

Controller

Sensor
Model

NN

EKF

Cho2011

Hybrid

Sensors
data

Figure 6.7. Block diagram of simulation

Airship
Model

∑
Estimator

ẑ

wz

z

Figure 6.8. Block diagram of a generic
sensor modeling.

Table 6.2. Sensor noise standard deviation

Data σ(wy)

φ ,θ (rad) 5.2·10−3

ψ (rad) 0.1
Vg (m/s) 0.4

Vpitot (m/s) 6.04·10−4

Table 6.3. Sample frequency specification

Sensor Frequency Sampled data
IMU 100 Hz Φ
GPS 4 Hz Vg

Pitot tube 18 Hz Vpitot

An online repository1 is available containing all approaches presented here. The algorithms
are implemented in C/C++ and Python inside the Robot Operating System (ROS) [Quigley
et al., 2009]. Also, in this same repository a link to the dataset used for the NN training task
and the simulations performed are available for future researches.

1https://github.com/leve-fem/airship_estimator
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6.5.1 First scenario

The first scenario considers wind with absolute value |~Vw| = 2m/s and heading ψw = π
2 rad

(blowing from East to West). Then in the instant t = 160s the wind is intensified to |~Vw|= 3m/s

and its heading is changed to ψw = π (blowing from South to North).
The airship is controlled to follow the trajectory shown in Figure 6.9. Five instants are

highlighted with gray background in order to establish further comparisons with the results
in Figure 6.10. Moreover, results using the estimator proposed by [Cho et al., 2011] were
introduced as “Cho2011” in order to establish a comparison. The covariance matrices used in
the Model-based approaches can be found in Appendix.
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Figure 6.9. Simulation trajectory.

In Figure 6.10 is possible to note that, the “Cho2011” estimator has to acquire information
about the motion in all directions before it converges to the correct values. After the instant
(I), all estimators converges to values within of an acceptable error. It is important to note
that, the NN has some high frequency oscillations at the trajectory curves, which deteriorate
the performance. When the airship is following a straight line the designed NN has a good
estimation, although sometimes with a bias from the real value.

Also in Figure 6.10, we can note that when the wind velocity has a significant variation in
the instant (III), the two Model-based approaches (“EKF” and “Cho2011”) do not converge
immediately because both depend on information (given by the Pitot tube) about the other
directions to converge to the correct wind velocity. Meanwhile the NN clearly has an instantly
reaction to these variations. Even though the NN converges for a biased value, such information
was sufficient to correct the estimation of the Hybrid approach before the instants (IV) and (V).
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In these final instants, the Model-based estimators finally converges for values within a range
of acceptable error.
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Figure 6.10. First scenario of simulation in the airship nonlinear model with realistic sensor
noise: wind velocity estimation in North-East frame.

In Table 6.4 are shown the RMS values of the estimation errors ṼNw = V̂Nw−VNw and ṼEw =

V̂Ew −VEw and the percentage in relation to the approach presented by [Cho et al., 2011]. By
the RMS values we can observe that the NN had a better estimation of VEw in comparison to
the Model-based approaches. However, for the component VNw , the Model-based approaches
presented a better performance. Meanwhile the “Hybrid” which has the information of both
approaches had the best performance in the estimation of VEw and acceptable estimation in the
VNw component.

Table 6.4. RMS value of the estimation error.

ṼNw (m/s) ṼEw (m/s)

Cho2011 1.01 1.74
EKF 0.58 (-42.6%) 1.42 (-18.3%)
NN 1.19 (+17.8%) 1.25 (-27.0%)
Hybrid 0.74 (-26.7%) 0.71 (-59.2%)

Figure 6.11 shows the histograms of computational time necessary for each method. Al-
though NN and Hybrid approaches have higher computational time (100 ∼ 160 microseconds),
they are able of running at almost 1000Hz. Meanwhile, both Model-based approaches (EKF
and Cho2011) are able of running at more than 1000Hz with a computational time between 25
and 35 microseconds. Note that the proposed approach by [Cho et al., 2011] has lowest compu-
tational cost, since the EKF proposed here has two additional measurement update equations.
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Figure 6.11. Computational time histogram

6.5.2 Second scenario

In a second simulation in the same trajectory of the previous simulation, it is considered a differ-
ent variation in the wind velocity. Initially the wind has absolute value |~Vw|= 2m/s and heading
ψw = 0 (blowing from North to South), then in the instant t = 160s the wind is intensified to
|~Vw|= 3m/s and its heading is changed to ψw = π

2 rad (blowing from East to West). The results
are shown in Figure 6.12 and resultant RMS error is shown in Tab. 6.5.

Table 6.5. RMS value of the estimation error in second simulation.

ṼNw (m/s) ṼEw (m/s)

Cho2011 0.71 0.52
EKF 0.52 (-26.5%) 0.38 (-26.9%)
NN 1.01 (+42.2%) 1.21 (+132.7%)
Hybrid 0.46 (-35.2%) 0.52 (0%)

In this second simulation, the airship starts with the nose against the wind, thus a few sec-
onds of simulation are sufficient to the Model-based approaches estimate correctly the wind
velocity components. Note that as the airship do curves in the scenario in instants (I) and
(II), NN and Cho2011 approaches present some estimation errors, while the EKF and Hybrid
maintain the estimation near the true value. As expected, adding 6.16 and 6.17 as additional
measurement update equations to the EKF, results in better filtering and convergence.

In the overall simulation, Model-based approaches had better performance. It occurs be-
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Figure 6.12. Second scenario of simulation in the airship nonlinear model with realistic sensor
noise: wind velocity estimation in North-East frame.

cause the observability is not degraded during the wind transition at instant t = 160 seconds.
After the instant (III), the airship is traveling to the East, thus the wind is against its nose.
Therefore, the Pitot tube is able to capture the relative speed perfectly. By Table 6.5 we can also
note that the EKF presented similar estimation performance for both wind components (VNw

and VEw), differently from the previous simulation. Clearly, in this scenario, the NN is not too
advantageous. It presented the higher RMS errors.

6.6 Conclusion

In this chapter we presented Model-based and Data-driven approaches for estimation of wind
velocity for a robotic airship. The Model-based approach uses only kinematic equations of
motion of the airship for the design of an EKF. The Data-driven proposed approach is composed
by a NN trained with a dataset containing 1281 simulations in different conditions. Also, a novel
Hybrid approach is proposed, by performing a fusion between the designed Model-based and
Data-driven approaches with a cascaded structure.

A high-fidelity and realistic airship dynamic model for Matlab/Simulink platform was used
in the simulations. Two simulation scenarios were presented. In the first, the wind variation
is not detected properly by the model-based approaches, thus the Data-driven is advantageous
in this scenario. In the second, the Model-based are more precise in the estimation, and the
Data-driven performance was the same or worse.
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The performance results obtained showed that the proposed EKF has a slightly better per-
formance in comparison to the strategy found in the literature. It occurs because of the two
additional measurement update equations that we introduced. Although, the performance was
improved, EKF still has the same drawbacks when in situations of low observability. On the
other hand, the NN presents higher sensitivity to wind variations in such situations, however
with biased estimations and high frequency oscillations due to sensor noise and non-trained
situations. The NN approach is independent of any mathematical model, however, requires a
sufficient and representative database.

The Hybrid approach maintains satisfactory performance in the two simulation scenarios
presented. This approach combines the advantages of both estimators (model-based and data-
driven) and mitigates the drawbacks, once it has the information about the model and about
previous missions (training dataset). However, it requires a representative dataset as well as a
mathematical modeling.

As a general result, we can conclude that the cooperation between both approaches (Model-
based and Data-driven) can be highly effective for solving estimation problems with observation
deficiency. For the specific problem of wind estimation we obtained satisfactory results with
the Hybrid approach. However, since the proposed methods are only analyzed theoretically and
validated via simulation, an actual benchmark or field test is needed in the subsequent work to
verify the proposed approaches. Future efforts will be made to validate these results outside of
a simulation environment.

In Chapter 7 more simulations will be presented however closing this estimation loop with
the Guidance and Control loops in order to verify the overall performance in closed-loop.
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7 GUIDANCE

As mentioned before, the problem of trajectory tracking for autonomous aerial vehicles is nor-
mally separated into two main loops: the Guidance (outer loop) and Control (inner loop). The
Guidance is the loop responsible for generating velocity commands based in the reference tra-
jectory, while the inner loop (or Control) is responsible for stabilizing the vehicle motion and
tracking the velocity commanded by the Guidance.

In the literature, we can find strategies which combine both loops such as receding horizon
[Keviczky and Balas, 2003], differential flatness [Murray, 1996, Rathinam and Murray, 2002]
and neural network based adaptive controls [Johnson et al., 2002]. In the context of autonomous
airships, it is even more popular with the growing use of Backstepping [Zheng and Xie, 2017]
and Sliding-modes [Vieira et al., 2017]. However these complex control techniques require
much model information which makes difficult to use them in practice.

Separating the Guidance loop from the control loop is advantageous, since it allows the
designer to choose a more suitable inner loop controller for the target vehicle. Also, it allows
the reuse of designed guidance or control techniques in further projects requiring only to tune
some parameters.

In this chapter we present the Line-of-Sight (LOS) strategy as a possible solution for the
Guidance loop of an autonomous airship. This technique was initially designed for heavier-
than-air aerial vehicles [Rysdyk, 2003] and marine vehicles [Lekkas and Fossen, 2003]. Mainly
because of the non measured disturbances it received several improvements. In order to com-
pensate wind forces, [Fossen et al., 2015] introduced an adaptive term with an integrative dy-
namics to the LOS guidance law, named Adaptive Line-of-Sight (ALOS). For the same problem,
[Caharija et al., 2016] presented a similar approach also with this adaptive term. This strategy
is now known as Integral Line-of-Sight (ILOS).

In this chapter, we present the formulations of traditional LOS, ALOS and ILOS. Then we
analyze it for the case of an autonomous robotic airship. As a final result we obtain a Sensor-
Based Integral Line-of-Sight (SBILOS) guidance formulation capable of covering a complete
flight mission.
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Figure 7.1. Reference trajectory as a sequence of poses.

7.1 Trajectory tracking formulation

Firstly, define pose as a vector composed by a position and orientation vectors in NED frame
ξ = [PT ,ΦT ]T . Now, consider a path P as a set of n ∈ Z+ poses P :=

{
ξ p1

, ξ p2
, · · · , ξ pn

}

linked by straight lines as illustrated in Figure 7.1. During a flight mission, the airship refer-
ence pose ξ d = ξ pk

∈P given to the Guidance loop is switched sequentially (k = 1, 2, ..., n)
according to a predefined rule. There are two traditional concepts for trajectory tracking:

• Path tracking – when each reference pose ξ pk
has a temporal compromise for accom-

plishment, such that it is associated to a time instant t = ktp, where tp is a constant time
period in SI units. In other words, the reference pose is switched sequentially for the next
pose after a period of time tp;

• Path following – when there is no temporal compromise for achieving the reference pose
ξ pk

, thus the switch between reference is due to an error tolerance.

Therefore, considering a given path P , we will design a single guidance law in order to
minimize the pose error ξ̃ = ξ − ξ d , where ξ d ∈P , for the path following problem in cruise
and hovering flight under wind disturbances.

7.2 Line-of-Sight formulation

In 2003, [Rysdyk, 2003] presented the LOS guidance law as a promising solution for laterally
underactuated UAVs. The LOS is based on minimizing the future position error through the
commanded heading. Basically, it define a virtual reference pose ξ d = [PT

d ΦT
d ]

T which is lo-
cated at a distance ∆los from the true reference ξ p = [PT

p ΦT
p ]

T , as illustrated in Figure 7.2. The
commanded heading is then defined by the guidance law given by:

ψd = ψp−ψlos (7.1a)
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ψlos = tan−1
(

ey

∆los

)
(7.1b)

ψd

ψp ud

ud

ξ d

ξ p

ξ

∆los

exey

Path

Figure 7.2. Line-of-sight formulation theory in North-East frame.

The position errors e = [ex ey ez]
T are computed as below:

e = SΦp(P−Pp) (7.2)

where SΦp is the rotation matrix from the NED frame to the ξp pose frame given the path
orientation Φp = [0 0 ψp]

T .
Now, consider the following kinematic model:

Ṗ = ST
ΦV (7.3)

where V = [u v w]T is the vehicle groundspeed in the body frame and SΦ is the rotation matrix
from NED to body frame.

The LOS algorithms for path following are usually employed at a kinematic level where the
goal is to prescribe a desired value for the heading angle ψ to the vehicle. Consequently, the
following assumptions are employed:

Assumption 5.1 The airship autopilot tracks a constant longitudinal velocity u = ud > 0.
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Assumption 5.2 The heading autopilot tracks the desired yaw angle perfectly such that ψ =

ψd .

Assumption 5.3 The reference poses are linked by straight lines, and the adjacent poses are
sufficiently near of each other such that the path can be considered continuous.

In the path following approach, the longitudinal error ex is not defined, in other words,
ex = 0. Considering the position error defined in (7.2), the following simplified dynamics can
be derived:

ėy = ud sin(ψd−ψp), (7.4)

whereψd is a commanded yaw angle.
Consider the following Lyapunov candidate:

Vlos =
1
2

e2
y , (7.5)

thus its derivative is given by:

V̇los = ey

(
ud sin(ψd−ψp)

)
, (7.6)

Applying the LOS control law 7.1, we obtain:

V̇los =−ud
e2

y√
∆2

los + e2
y

. (7.7)

We conclude that, as long as ud > 0, the above derivative is negative definite for all ey ∈
R. Therefore, the origin ey = 0 is a globally asymptotically stable equilibrium point of the
closed-loop system. In other words, the lateral position error will remain close enough but also
eventually converge to the equilibrium.

7.2.1 Adaptive Line-of-Sight

The traditional LOS guidance law presented is valid only for the specific scenario where the
vehicle longitudinal velocity is much higher than external disturbances (e.g. missiles and su-
personic aircrafts). When that is not true (e.g. submarines and airships), the kinematic model is
changed. In this case, Adaptive Line-of-Sight (ALOS) was presented by [Fossen et al., 2015].
The ALOS guidance law is defined as:

ψd = ψp−ψalos (7.8a)
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ψalos = tan−1
(

ey

∆los
+ϖβ

)
(7.8b)

ϖ̇β = γlos
ud∆losey√

(ey +∆losϖβ )
2 +∆2

los

(7.8c)

where γlos > 0 is a constant gain chosen by the designer. Supposing that the vehicle is moving
forward with constant longitudinal speed, this guidance law was proved to be globally expo-
nentially stable.

For the proof, consider the groundspeed as the sum of relative airspeed and the wind speed,
as shown below:

V = Va +Vw, (7.9)

where Va = [ua va wa]
T is the airspeed and Vw = [uw vw ww]

T is the wind speed in the airship
body frame.

Considering (7.3), (7.9) and Assumption 5.1 to Assumption 5.3, we can state the following:

Ṗ = ST
Φ(Va +Vw) (7.10)

Considering that the vehicle is at constant altitude without angle of attack (α = 0), under
strictly horizontal wind, we may use the definition of true airspeed Vt given in (2.15) and sideslip
angle β in (2.16a) to obtain the following:

Ṗ = ST
Φ







ua

va

wa


+




uw

vw

ww





= ST

Φ




Vt cos(β )
Vt sin(β )

0


+




VNw

VEW

0


 . (7.11)

where VNw and VEw are the wind velocity components in North-East frame.
Considering that Pp and SΦp are constant and deriving (7.2), we obtain:

ė = SΦp


ST

Φ




Vt cos(β )
Vt sin(β )

0


+




VNw

VEw

0





 . (7.12)

Considering that Assumption 5.1, Assumption 5.2 and Assumption 5.3 are valid, we obtain
the following simplified error dynamics:

[
ėx

ėy

]
=

[
Vt cos(β +ψd−ψp)−Vw cos(ψp−ψw)

Vt sin(β +ψd−ψp)+Vw sin(ψp−ψw)

]
, (7.13)

where Vw = ||Vw||2 and ψw = tan−1 VEw
VNw

.
For the path following case, we can ignore the longitudinal error ex assuming that there is
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a longitudinal controller maintaining constant true airspeed Vt . Also, we ignored the error ez,
assuming there is vertical position controller which maintain a constant altitude.

Finally, we can simplify the model (7.13) to the following:

ėy =Vt sin(β +ψd−ψp)+Vw sin(ψp−ψw) (7.14)

Consider the following assumption:

Assumption 5.4 The sideslip angle β is small and constant during path following such that
β̇ = 0.

Thus, the lateral error dynamics becomes:

ėy =Vtβ cos(ψd−ψp)+Vt sin(ψd−ψp)+Vw sin(ψp−ψw) (7.15)

Thus we may design a control law for ψd , such that, the error ey remain close enough of the
origin:

ψd = ψp− tan−1
(

ey

∆los
+ϖβ

)
(7.16)

where ϖβ is a control law to be designed later. The resulting dynamics in closed-loop is now
given by:

ėy =Vt
∆los(β −ϖβ )− ey√
(ey +∆losϖβ )

2 +∆2
los

+Vwey sin(ψw−ψp) (7.17)

Therefore consider the previous presented Lyapunov candidate Vlos given by (7.5). Consid-
ering the simplified dynamics (7.17), the resultant derivative is given by:

V̇los =−W (ey,ϖβ )+
Vtey∆losβ̃√

(ey +∆losϖβ )
2 +∆2

los

+ eyVw sin(ψp−ψw) (7.18)

where W (ey,ϖβ )=
Vte2

y√
(ey+∆losϖβ )

2+∆2
los

> 0 ∀ ey, ϖ ∈R and β̃ = β−ϖβ is the sideslip estimation

error.
We choose the following dynamic equation for ϖ̇β :

ϖ̇β = γ
Vt∆losey√

∆2
los +(ey +∆ϖβ )

2
(7.19)

where γ > 0 is constant chosen by the designer.
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Define an augmented Lyapunov function given by:

Valos = V̇los +
1
2γ

β̃ 2 (7.20)

Note that ˙̃β =−ϖ̇β , therefore the derivative V̇alos is given by:

V̇alos =−W (ey,ϖβ )+
Vtey∆losβ̃√

(ey +∆losϖβ )
2 +∆2

los

+ eyVw sin(ψp−ψw)−
1
γ

β̃ ˙̃β (7.21)

which results in:
V̇alos =−W (ey,ϖβ )+Vwy (7.22)

where Vwy =Vwey sin(ψp−ψw). At this point, we can note two main concerns of using line-of-
sight for airships:

Assumption 5.5 The airship must move forward with airspeed ua >Vmax where Vmax = ||Vw||2.
The airship is naturally lateral underactuated, thus in order to maintain the
stability and control effectiveness it is preferable to have airspeed greater than
the incident wind in the airship body;

Assumption 5.6 When objective is ground hover the reference orientation shall be ψp = ψw +

π in order to have zero influence from wind velocity (sin(π) = 0) in the lateral
error. Hovering flight is performed at ud = 0. Therefore, the airship nose
must be aligned against to the wind to accomplish previous mentioned remark
ua ≥Vmax. In other words, performing hovering flight under lateral wind is a
complicated task which may cause instability;

Also, three main advantages are raised:

Remark 5.1 As long as, the above restrictions are fully respected, the lateral error is
asymptotically stable;

Remark 5.2 The control law may cover a complete flight mission (i.e. ground hover, cruise
flight, vertical take-off and landing).

Remark 5.3 NOAMAY airship is equipped with a Pitot tube which provides the longitu-
dinal dynamical pressure which has a quadratic relation with ua. Thus it is
possible to design a longitudinal controller to maintain ua >Vmax as required
by Assumption 5.5

Therefore, considering the Lyapunov candidate (7.20), the ALOS is globally exponentially
stable if the Assumptions 5.1 to 5.6 are satisfied.
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7.2.2 Integral Line-of-Sight

The Integral Line-of-Sight (ILOS) was firstly proposed by [Caharija et al., 2016]. In his work,
Caharija considers both two-dimensional model of a marine surface vessel and a three-dimensional
model of a underwater autonomous vehicle. The ILOS guidance law for two dimensional model
is given by:

ψd = ψp−ψilos (7.23a)

ψilos = tan−1
(

ey +σloseyint

∆los

)
(7.23b)

ėyint =
∆losey

(ey +σloseyint )
2 +∆2

los
(7.23c)

where σlos > 0 is a constant gain chosen by the designer.
[Caharija et al., 2016], demonstrated that ILOS guidance law was globally asymptotically

stable for marine vehicles if the Assumptions 5.1 to 5.6 are satisfied. In his formulation, the
following model was considered:




ėx

ėy

v̇a


=




uad cos(ψd−ψp)− va sin(ψd−ψp)+uw

uad sin(ψd−ψp)+ va cos(ψd−ψp)+ vw

X(uad)ψ̇d +Y (uad)va +wv


 (7.24)

where va is the sway velocity of the vehicle, wv = κv(γw)sin(ψw−ψd +ψp) represents the
external disturbance and γw = ψd−ψp−ψw−π . The detailed surge and yaw dynamics are not
considered, and hence uad and ψd are the control inputs of (7.24). The functions X(uad) and
Y (uad) satisfy the following assumptions:

Assumption 5.7 The functions X(uad) and Y (uad) are continuous and bounded for bounded
arguments.

Assumption 5.8 Y (uad) is such that |Y (uad)| is strictly increasing for uad > 0 and satisfies
Y (uad)≤−Y min < 0,∀uad ∈ [−Vmax,Vt ], where Y min is a positive constant.

[Caharija et al., 2016] provides a Lyapunov closed loop analysis which yields explicit
bounds on the guidance law gains to guarantee uniform global asymptotic stability (UGAS)
and uniform local exponential stability (ULES). The demonstration considers same assump-
tions as ALOS and does not add any different details from the previous one. Therefore, it was
not included in this work. We recommend the reader to see the entire proof in [Caharija et al.,
2016].

Apolo Silva Marton



CHAPTER 7. GUIDANCE 111

7.2.3 Sensor-based Line-of-sight

Taking advantage of the wind estimator designed in Chapter 6, we will provide a Sensor-based
solution for Line-of-sight. This solution cancels the drag caused by the term Vwy present in the
lateral error dynamics (7.13).

The afore mentioned Line-of-sight strategies (i.e. ALOS and ILOS), were proposed using
slightly different models for the same kind of marine vehicle. Both, [Fossen et al., 2015] and
[Caharija et al., 2016] obtained an adaptive term to cancel the external disturbances however
considering strong assumptions.

In this new solution we will use solely the traditional LOS control law (7.1). Then, we apply
Reference Shaping in ψp considering the estimation provided by the wind estimator designed
in Chapter 6.

Wind Based Reference Shaping

Considering that Vp = [ud 0 0]T is the reference velocity vector in the path frame, thus we can
obtain the yaw reference ψap as below:

1. Obtain the wind velocity VNEDw in North-East-Down (NED) frame through an estimator
(see Chapter 6):

VNEDw = ST
Φw




Vw

0
0


 , (7.25)

where Φw = [0 0 ψw]
T is the wind heading and Vw is the magnitude.

2. Rotate the vector Vp to the NED frame:

VNEDp = ST
Φp

Vp. (7.26)

3. Obtain the reference airspeed in NED frame:

VNEDap
= VNEDp−VNEDw. (7.27)

4. Compute the new heading reference:

ψap = tan−1

(
VEap

VNap

)
. (7.28)
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Considering that Assumption 5.1, Assumption 5.2 and Assumption 5.3 are valid, define the
Sensor Based LOS guidance law (or SBLOS) given by:

ψd = ψap−ψlos, (7.29)

where ψlos is given by (7.1). The guidance approaches ALOS and ILOS already consider the
external disturbances in their formulations. However, since this strategy does not interfere in
the stability proofs, we can also add it to ALOS (7.8) and ILOS (7.23). Therefore, in further
simulations we will introduce this solution in order to verify the improvement of guidance
performance.

Remark 5.4 Note that, if the objective is ground hover (or hovering flight), the desired
ground speed shall be ud = 0. As a consequence we obtain ψap = ψw + π ,
which is the ideal heading as discussed earlier in Assumption 5.6.

7.3 Simulation Results

In this section we establish a comparison between six approaches of guidance derived from the
traditional Line-of-sight control law. Simulations are performed in a scenario where the airship
must follow a path with constant airspeed of ua = 5m/s and altitude h = 50m. Also wind is
considered during all the mission with Vw = 3m/s, ψw = 150◦ and turbulence with σ = 1m/s

modeled as demonstrated by [McLean, 1990].
The final control architecture including the Wind Based Reference Shaping (WRSB) for the

commanded heading is exemplified in the block diagram of Figure 7.3. In this block diagram,
we included the lateral and longitudinal controllers designed in Sec. 4.1 and 4.2, respectively.
The INDI controller guarantees the tracking of attitude, linear velocities and angular rates. In
addition, the VPC designed in Sec. 4.2.3 assures the tracking of altitude. Also, we added two
Proportional-Derivative (PD) controllers for the tracking of longitudinal and vertical positions
given by:

[
ud

VDd

]
=

[
up− kplon(ex)− kdlon(ur−up)

wp− kpvert (ez)− kdvert (wr−wp)

]
(7.30)

where:
Vr = SΦpST

ΦV, V = [u v w]T , Vr = [ur vr wr]
T ;

kplon , kdlon , kpvert and kdvert are constant gains; up and wp are the feedforward term for longitudinal
and vertical ground speed, respectively; ud and VDd are the commanded longitudinal and vertical
ground speeds. The constants and gains are depicted in Tables 7.1 and 4.2.In addition, we
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designed Second-order differentiators (or SOD proposed in Sec. 3.4.3) in order to obtain the
state derivatives for the INDI based controllers. The natural frequency and damping ratio is
the same for all SODs and given by ωn = 100rad/s and ζ = 2.0s−1. Also, the Input Scale
Gain (proposed in 3.4.4) is applied for both Longitudinal and Lateral controllers. For the lateral
motion, we use ISG given by Λh = diag([0.1, 0.4]), and for the longitudinal motion we use
Λv = diag([0.2, 0.2, 0.2]).

ControlGuidance

Filtering and
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WBRS

(A/I)LOS ∑

+

ψap

−
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νh =

[
−ω2

pφ −2ωp p
−ω2

r (ψ−ψd)−2ωrr
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Figure 7.3. Block diagram of the overall closed loop system for simulation.

A total of six simulations were performed. For each simulation a different yaw command ψd

is given, switching between: LOS given by (7.1), ALOS given by (7.8), ILOS given by (7.23)
and the sensor-based versions of each of then given by (7.29) (nominated SBLOS, SBALOS
and SBILOS, respectively). The resulting trajectory of each guidance approach is shown in
Figure 7.4. The tracking errors are shown in Figure 7.5.

In order to establish a performance comparison, we use σ (a/i)los
RMS to denote the RMS of

lateral error calculated for each guidance approach. During cruise flight (see Figure 7.5), the
best performance was obtained by SBILOS with σ sbilos

RMS = 1.51m, with minor differences to
SBLOS (σ sblos

RMS = 1.76m) and SBALOS (σ sbalos
RMS = 1.98m). In another hand, ILOS obtained the

worst performance, presenting σ ilos
RMS = 5.4m followed by LOS with σ los

RMS = 5.28m and ALOS
with σalos

RMS = 3.25m.

Table 7.1. Constants and Gains for (A/I)LOS

Name Value Name Value Name Value
∆los 10 m kplon 0.01 s−1 kpvert 0.2 s−1

γlos 0.001 kdlon 0.1 kdvert 0.2
σlos 6.0 m/s ωp 2.3rad/s ωr 2.3rad/s
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Figure 7.4. Resulting trajectory of simulation of each approach.
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Figure 7.5. Resulting tracking error of each approach.

In hovering flight (see Figure 7.6), we note that the traditional approaches from literature are
not able to maintain zero lateral error as shown in Figure 7.7. This occurs, because the adaptive
dynamics are too slow to cancel the heading difference between airship and wind. Even though,
the sideslip angle is maintained near null (as shown in Figure 7.9), ALOS and ILOS do not
cancels the lateral velocity caused by the wind drag. Meanwhile, the approaches SB(A/I)LOS
changes the commanded heading (see Figure 7.8) reducing the drag effect and thus maintaining
the airship stable at the reference position.

Table 7.2 presents a performance comparison of RMS of the lateral error obtained by each
guidance approach. By this table we can note that, the information about the wind heading can
significantly increase the guidance performance. The most advantageous strategy is SBILOS,
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Figure 7.6. Resulting trajectory of simulation of each approach in Hovering flight.

in contrast, ILOS obtained the higher RMS errors.

Table 7.2. RMS of the lateral error when in hovering flight

Guidance law σRMS (m) Guidance σRMS (m)
LOS 30.09 SBLOS 0.9554

ALOS 23.89 SBALOS 2.24
ILOS 39.90 SBILOS 0.84

7.4 Conclusion

We presented a review of three guidance solutions commonly used in the literature for later-
ally underactuated vehicles. The first one is the so called Line-of-sight developed by [Rysdyk,
2003]. Taking advantage of the theory behind this approach, [Fossen et al., 2015] and [Caharija
et al., 2016] proposed new guidance control laws called Adaptive Line-of-sight and Integral
Line-of-sight. Although they obtained similar control laws using Lyapunov proofs, the perfor-
mance obtained in simulation was slightly different. ALOS presented better performance than
ILOS, for the NOAMAY airship case. However, we demonstrate by both Lyapunov analysis
and simulation results, that (A/I)LOS can be unstable when dealing with the hovering flight
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Figure 7.7. Resulting tracking error of each approach in hovering flight.
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problem.
Considering this scenario, we proposed the Sensor-based Line-of-Sight (SBLOS) strategy

for dealing with both problems of hovering and cruise flight without the need of a complex
switching scheme. We propose to add the information provided by the Hybrid Wind Estimator
designed in Chapter 6, in order to reshape the reference heading. As a result, the drag caused
by the wind is canceled. Closed-loop simulations demonstrated the efficacy of SB(A/I)LOS for
the NOAMAY airship model.

Therefore, we conclude that the information about incident wind in airship body (provided
by the Hybrid Wind Estimator from Chapter 6) can significantly increase guidance performance.
In addition, the proposed solution removes the need of switching controllers when changing the
objective between cruise and hovering flight.

Apolo Silva Marton



CHAPTER 8. FINAL CONSIDERATIONS 117

8 FINAL CONSIDERATIONS

In this thesis we aimed to develop a control architecture for the navigation system of a robotic
airship using incremental controllers capable of covering all flight phases (VTOL, cruise and
hovering flight) and transitioning between them without a complex switching scheme. As stated
before, the accomplishment of trajectory tracking/following tasks depends on three main topics:
Guidance, Control and Estimation.

In Chapter 3, the Incremental Dynamics (ID) was presented as a promising solution for
airship control. ID has an intrinsic robustness to model uncertainties which is an important
characteristic, mainly because airships are nonlinear systems with many aerodynamic uncer-
tainties. However, some design issues are highlighted, such as: (1) actuator redundancy and
saturation; (2) measurement noise and delay sensitivity. In order to mitigate (1), we propose the
combination of Washout Filter (WOF) and Natural Anti Wind-up (NAW). To mitigate (2), the
combination of Input Scale Gain and Second-order Differentiator (SOD) is presented. Through
numerical examples, and closed loop analysis, we showed that, the proposed solutions increase
incremental controllers performance and robustness to measurement errors.

The control design of INDI presented in Chapter 4, for tracking desired linear velocities and
angular rates (as proposed in this thesis) is also an important contribution to the development
of autonomous airships. It considers nonlinearities in the model while providing robustness in
the presence of parameter uncertainties. The Longitudinal guidance loop is mainly based on
Incremental Dynamics and employs a RS methodology to provide a dynamical filtering of the
commands such that the demanded signals are within the capabilities of the vehicle.

The proposed control loop was tested by performing simulations with different flight phases.
The obtained results demonstrate their efficiency to stabilize the system and track the desired
ground velocities with the performance characteristics imposed by the commanded signals.

Robustness tests showed that the proposed control approach is insensitive to model uncer-
tainties within the expected range found in reality. This property is relevant since the accu-
rate identification of airship models is costly and extremely difficult. Therefore, the proposed
approach may be the basis for controlling an autonomous airship. A simplified model of the
platform has shown to be a sufficiently good approximation to compute the necessary linearized
input matrix and efficiently control the vehicle.

In Chapter 5, we provide a comparison between estimation and filtering techniques. Three
approaches were addressed: Low-pass Filter (LPF), Extended Kalman Filter (EKF), and Un-
scented Kalman Filter (UKF). Also, we present the modeling of sensors based in the speci-
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fication of the actual sensors equipped in NOAMAY airship. For the comparison, we have
chosen the covariance parameters for the UKF searching for the best results possible. Then the
same parameters were applied to EKF, without any additional optimization. Consequently, we
initially expected to achieve a better performance with UKF. However, from the results pre-
sented in Chapter 5, one can observe that the EKF clearly had a better performance. It suggests
that, for this specific platform and under the same conditions, the EKF may be a more suitable
choice. These are interesting results, since in [Giannitrapani et al., 2011] the UKF presented a
slightly better performance in terms of average localization accuracy for their specific case of a
spacecraft model.

In Chapter 6, the wind estimation problem was addressed. We presented Model-based and
Data-driven approaches for estimation of wind velocity for a robotic airship. The Model-based
approach uses only kinematic equations of motion for the design of an EKF. The Data-driven
proposed approach is composed by a Neural Network (NN) trained with a large dataset with
several simulations in different conditions. Also, a novel Hybrid approach is proposed, by
performing a fusion between the designed Model-based and Data-driven approaches through a
cascaded structure.

Simulation results obtained showed that the proposed EKF has a slightly better performance
in comparison to strategies found in the literature [Cho et al., 2011]. It occurs because of the
two additional measurement update equations that we included. Meanwhile, the NN presented
better sensitivity to wind variations, however with biased estimations. As a consequence the
Hybrid approach had the better performance, once it had the information of both approaches.
These results show that the cooperation between Model-based and Data-driven can be highly
effective for solving estimation problems.

Finally, the Guidance problem was addressed in Chapter 7. The chapter presents a careful
review on Line-of-sight (LOS). LOS is usually applied to laterally underactuated vehicles. The
works found in literature, mainly address the situation where the vehicle is at constant longitu-
dinal movement. Then, we addressed the problem of hovering flight and proposed a solution.
As a result we obtained the Sensor-based Line-of-sight. This novel solution uses the informa-
tion about wind velocity (provided by a wind estimator) to compute a new heading reference.
Simulation results showed that with SBLOS the airship is capable of switching between cruise
and hovering flight without the need of a complex switching strategy.

As a final result, we obtained a closed loop system addressing Guidance, Control and Esti-
mation problems which was depicted in Figure 7.3. As demonstrated in simulation results, this
final control architecture is capable of covering all flight phases of a complete mission, namely:
cruise, hovering, vertical take-off and landing.
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8.1 Future Works

As future works, the wind estimator could be improved to a three dimensional (3D) estima-
tor. Such estimative could be used for the choice of pitch angles in the VPC loop. Also, the
optimization proposed for the VPC loop could be also improved by considering the vehicle
airspeed instead of the pure kinematics of ground speed. These two improvements may help
to save battery energy when in cruise flight, since the aerodynamics could sustain part of the
vehicle weight by increasing the angle of attack.

Another topic of interest of this thesis, is the development of INDI for the coupled model of
the airship (namely lateral and longitudinal). In this thesis we only address the design of INDI
controllers for the decoupled model, in other words, we design two INDI loops: one for the
lateral motion; and another for the longitudinal motion. Thu, the design of a coupled strategy
should be investigated, and consequently a comparison between these two strategies could be
established. Additionally, Incremental Backstepping and Incremental Sliding modes should be
investigated and compared with the INDI proposed approach.

Also, LOS is not the most recent technique in the literature. Although it is an advantageous
strategy for guidance of laterally underactuted vehicles, it could be improved, by considering
the 3D space. Additionally, this technique could be compared with other solutions such as
Vector Fields and L1 Adaptive Control.
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A INPUT MATRICES FOR INCREMENTAL CONTROLLERS

The set of input matrix Bv j used during simulation are given below, where j∈ J= {0,2,4,6,8,10}m/s
is the corresponding true airspeed:

Bv0 =




0.0484 0.0145 −0.9883 −1.0439
−0.0499 −1.9149 0.0021 −0.0115
−0.0762 0.0050 1.5685 −0.2571


 , Bv2 =




0.5061 0.2220 −0.9935 −1.0187
−0.4785 −1.9250 0.0021 −0.0760
−0.7377 0.0561 1.5767 −0.2508




Bv4 =




1.4817 0.6578 −0.8613 −0.7123
−1.2855 −1.6690 0.0018 −0.1587
−2.0089 0.1632 1.3669 −0.1753


 , Bv6 =




2.5861 0.7457 −0.8289 −0.6671
−2.5126 −1.6066 0.0017 −0.1838
−3.8591 0.1848 1.3155 −0.1641




Bv8 =




4.4470 2.1247 −0.1571 0.0292
−4.1120 −0.3046 0.0003 −0.2412
−6.3595 0.5234 0.2494 0.0074


 , Bv10 =




6.3148 2.5174 −0.1118 0.0517
−6.1387 −0.2165 0.0002 −0.3112
−9.4277 0.6201 0.1774 0.0130




Considering this given set of input matrices, the index of the actual chosen matrix i =

{1,2,3,4,5,6}, the vector of available airspeeds J and the measured airspeed by the pitot tube
Vpitot , the input matrix Bv is computed by the Algorithm 1.
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Algorithm 1: Algorithm for updating input matrix used in the INDI control loop
Result: Chosen matrix Bv and corresponding index in the set i
Data: Measured airspeed Vpitot , last index i, vector J and the set of matrices Bv j

iprevious←max(i−1,1)
inext ←min(i+1,6)
∆actual ← |Vpitot−J[i])|
∆previous← |Vpitot−J[iprevious]|
∆next ← |Vpitot−J[inext ]|
if ∆previous < ∆next then

∆closest ← ∆previous
iclosest ← iprevious

else
∆closest ← ∆next
iclosest ← inext

end
k← J[iclosest ]
j← J[i]
cactual ← ∆actual/(∆actual +∆closest)
cclosest ← ∆closest/(∆actual +∆closest)
Bv← cactual ·Bv j + cclosest ·Bvk

if ∆actual > ∆previous then
i← iprevious

end
if ∆actual > ∆next then

i← inext
end
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B COVARIANCE MATRICES FOR MODEL BASED WIND

ESTIMATORS

The covariance matrices used for each Model-based approach are shown below:

Cho2011 :

R =
[
163.84

]
,

Q = diag
([

10−3 10−4 5 ·10−6
])
.

EKF :

R = diag
([

40.96 40.96 40.96
])

,

Q = diag
([

10−4 10−4 5 ·10−7
])
.

Hybrid :

R = diag
([

10.24 10.24 10.24 10.24 10.24 10.24
])

,

Q = diag
([

10−4 10−4 5 ·10−7
])
.
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C TRAINING TRAJECTORIES FOR WIND ESTIMATORS
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Figure C.1. Simulation trajectories used for the NN training task
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