
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Vinícius Loti de Lima

Integer Programming Based Methods Applied to

Cutting, Packing, and Scheduling

Métodos Baseados em Programação Inteira Aplicados

em Corte, Empacotamento e Escalonamento

CAMPINAS

2021

Vinícius Loti de Lima

Integer Programming Based Methods Applied to Cutting,
Packing, and Scheduling

Métodos Baseados em Programação Inteira Aplicados em Corte,
Empacotamento e Escalonamento

Tese apresentada ao Instituto de Computação
da Universidade Estadual de Campinas como
parte dos requisitos para a obtenção do título
de Doutor em Ciência da Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
ful�llment of the requirements for the degree of
Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Flávio Keidi Miyazawa
Co-supervisor/Coorientador: Prof. Dr. Thiago Alves de Queiroz

Este exemplar corresponde à versão �nal da
Tese defendida por Vinícius Loti de Lima e
orientada pelo Prof. Dr. Flávio Keidi
Miyazawa.

CAMPINAS

2021

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Vinícius Loti de Lima

Integer Programming Based Methods Applied to Cutting,
Packing, and Scheduling

Métodos Baseados em Programação Inteira Aplicados em Corte,
Empacotamento e Escalonamento

Banca Examinadora:

• Prof. Dr. Flávio Keidi Miyazawa
IC/UNICAMP

• Prof. Dr. Eduardo Uchoa Barboza
TEP/UFF

• Profa. Dra. Luciana Salete Buriol
INF/UFRGS

• Prof. Dr. Marco Lübbecke
RWTH AACHEN UNIVERSITY

• Prof. Dr. Stefan Irnich
JGU - Johannes Gutenberg-Universität Mainz

• Profa. Dra. Yoshiko Wakabayashi
IME/USP

• Prof. Dr. Jean-François Côté
FSA/Ulaval

• Prof. Dr. Pedro Augusto Munari Junior
DEP/UFSCar

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 14 de dezembro de 2021

Agradecimentos

Como um adepto do conceito de originação dependente, acredito na contribuição de to-
dos os eventos do universo para a formação deste trabalho. Naturalmente, algumas pes-
soas me remetem a in�uências bastante diretas e gostaria de destacá-las. Em particular,
agradeço às pessoas mais importantes para mim: meus pais. Agradeço ao meu orientador,
Flávio, que é para mim uma grande inspiração, não só pro�ssional, mas também pessoal.
Agradeço ao meu amigo e coorientador Thiago, que me introduziu ao tema desta tese.
Agradeço a todos os meus coautores, em particular, ao Manuel Iori e ao José Valério de
Carvalho, que contribuíram de uma forma imensa para minha formação como pesquisador.
Agradeço a todos que me deram algum suporte ou passaram pela minha vida ao longo dos
anos. Finalmente, agradeço à FAPESP, pelo apoio �nanceiro (processo 2017/11831-1).

Resumo

Esta tese foca em otimização combinatória, um dos grandes campos em otimização. Esse
campo consiste de problemas de decisão, nos quais é dado um conjunto discreto potenci-
almente enorme de soluções possíveis e deve-se encontrar uma única solução que otimize
uma dada função objetivo. Esses problemas têm um grande número de aplicações no
mundo real, principalmente em logística industrial e em cadeia de suprimentos.

Primeiro, estudamos formulações de �uxo em redes que podem ser aplicadas a pro-
blemas gerais de otimização combinatória. Apresentamos um survey discutindo as fun-
damentações teóricas e as principais aplicações bem-sucedidas dos chamados modelos de
�uxo em arcos pseudo-polinomiais. Em seguida, propomos novos métodos exatos para
resolver tais modelos, envolvendo geração de colunas, regras de branching especializadas
e estratégias de �xação de variáveis. Aplicamos os métodos de solução propostos a pro-
blemas bem estudados da literatura de corte, empacotamento e escalonamento, incluindo,
por exemplo, os clássicos bin packing problem e cutting stock problem. Nossos experimen-
tos computacionais mostram a e�cácia dos métodos propostos, resolvendo na otimalidade
um grande número de instâncias benchmark em aberto, de vários problemas.

A segunda parte desta tese dá atenção especial à área de corte e empacotamento bidi-
mensional, que está entre as áreas mais estudadas em otimização combinatória. Apresen-
tamos uma revisão das referências mais relevantes que surgiram nas últimas duas décadas
e propomos uma biblioteca online para organizar sistematicamente os materiais mais re-
levantes sobre tais problemas. Essas contribuições podem facilitar pesquisas futuras na
área ativa de corte e empacotamento bidimensional.

Nossa última contribuição diz respeito a um problema do mundo real surgido de uma
empresa italiana de produção de carne. O problema é composto por um grande conjunto
de decisões complexas, envolvendo a alocação diária de mão de obra e o escalonamento de
pedidos na empresa. Para resolver esse problema, propomos uma heurística construtiva
de três fases, implementada em um framework multi-start. Nosso algoritmo supera em
média as decisões tomadas pela estratégia anterior da empresa.

Abstract

This thesis focuses on combinatorial optimization, one of the major optimization �elds.
This �eld consists of decision problems, in which we are given a potentially huge discrete
set of possible solutions, and we must �nd a single solution that optimizes an objective
function. Such problems have an extensive number of real world applications, mainly in
industrial logistics and supply chain.

First, we study network �ow formulations that can be applied to general combinato-
rial optimization problems. We present a survey discussing theoretical foundations and
main successful applications of the so-called pseudo-polynomial arc �ow models. Then,
we propose novel exact solution methods to solve such models, involving column gener-
ation, specialized branching rules, and variable �xing strategies. We apply the proposed
solution methods to well-studied cutting, packing, and scheduling problems from the lit-
erature, including, for instance, the classical bin packing and cutting stock problems. Our
computational experiments show the e�ectiveness of the proposed methods by solving to
proven optimality an extensive number of open benchmark instances of several problems.

The second part of this thesis give special attention to the area of two-dimensional
cutting and packing problems, which is among the most studied areas in combinatorial op-
timization. We survey the most relevant references that appeared in the last two decades
and propose an online library to systematically arrange the most relevant materials re-
garding such problems. These contributions can facilitate future research in the active
area of two-dimensional cutting and packing.

Our last contribution concerns a real world problem arising from an Italian meat-
producing company. The problem consists of a large set of complex decisions, involving
the daily workforce allocation and scheduling of orders in the company. To solve this
problem, we propose a three-phase constructive heuristic, which is embedded in a multi-
start framework. Our algorithm outperforms in average the decisions made by the former
strategy of the company.

Contents

1 Introduction 11
1.1 Preliminaries . 12
1.2 Contents of this Thesis . 12

1.2.1 First Part . 13
1.2.2 Second Part . 14
1.2.3 Third Part . 15

2 Arc Flow Formulations Based on Dynamic Programming: Theoretical
Foundations and Applications 17
2.1 Introduction . 17
2.2 Network Flow Formulations and Dynamic Programming 20

2.2.1 Dynamic Programming and Arc Flow Formulations 22
2.2.2 Example on the Knapsack Problem 23
2.2.3 Example on the Elementary Shortest Path Problem with Resource

Constraints . 25
2.3 Dantzig-Wolfe Decomposition and Network Flow Formulations 27

2.3.1 Example on the Cutting Stock Problem 29
2.3.2 Example on the Capacitated Vehicle Routing Problem 32

2.4 State-Space Relaxation on Arc Flow Formulations 34
2.4.1 Example on the State Space for the Cutting Stock Problem 35
2.4.2 Example on the State Space for the Capacitated Vehicle Routing

Problem . 36
2.5 Dual Insight . 38

2.5.1 On the Dual Space of Network Flow Formulations 38
2.5.2 Example on the Cutting Stock Problem 40

2.6 General Solution Methods . 42
2.7 Successful Applications of Pseudo-Polynomial Arc Flow Models 45

2.7.1 Cutting and Packing Problems . 45
2.7.2 Scheduling Problems . 47
2.7.3 Routing Problems . 49
2.7.4 Miscellaneous . 50

2.8 Conclusion and Future Research Directions 51

3 Exact Solution of Network Flow Models with Strong Relaxations 53
3.1 Introduction . 53
3.2 Network Flow and Dantzig-Wolfe Decompositions: Preliminaries 55
3.3 An Overview of the Solution Framework 57
3.4 On the Solution of the Linear Relaxation 58

3.4.1 A Dual Correspondence . 59
3.4.2 Computing the Minimum Reduced Cost of Arcs 60
3.4.3 Path-Based Pricing in Arc Flow . 61
3.4.4 Column(-and-Row) Generation Algorithm 61
3.4.5 Dealing with Dual Infeasibility . 62

3.5 Variable-Fixing Based on Reduced Costs 63
3.5.1 Sub-Optimal Dual Solutions in Variable-Fixing 64
3.5.2 Variable-Fixing Strategies . 64

3.6 Branching Scheme . 66
3.6.1 Proposed Branching Scheme . 66
3.6.2 Lifting the Right-Branch Constraint 67

3.7 Applications to Cutting and Packing Problems 67
3.7.1 Cutting Stock Problem . 67
3.7.2 Two-Stage Guillotine Cutting Stock Problem 69
3.7.3 Skiving Stock Problem . 70
3.7.4 Ordered Open-End Bin Packing Problem 70

3.8 Computational Experiments . 71
3.8.1 Experiments on the Cutting Stock Problem 71
3.8.2 Experiments on the Two-Staged Cutting Stock Problem 75
3.8.3 Experiments on the Skiving Stock Problem 76
3.8.4 Experiments on the Ordered Open-End Bin Packing Problem . . . 76

3.9 Conclusions . 77

4 A Branching Scheme for a Class of Parallel Machine Scheduling 79
4.1 Introduction . 79
4.2 Preliminaries . 80

4.2.1 General Arc Flow Formulations . 80
4.2.2 Application to the P ||

∑
wjCj . 81

4.3 Solution of the Linear Relaxation . 82
4.3.1 Reduced-Cost Variable-Fixing . 83
4.3.2 Dealing with Dual Infeasibility . 84

4.4 Overall Algorithm . 85
4.4.1 First-Phase Branching . 86
4.4.2 Second-Phase Branching . 87

4.5 Computational Results . 87
4.6 Conclusions . 89

5 Exact Solution Techniques for Two-dimensional Cutting and Packing 90
5.1 Introduction . 90
5.2 Problems and De�nitions . 94

5.2.1 Problems . 94
5.2.2 Typologies . 96
5.2.3 Complexity . 97
5.2.4 Variants . 97

5.3 Sets of Points and Preprocessing Techniques 99
5.3.1 Sets of Points . 99
5.3.2 Preprocessing Techniques . 100

5.4 Relaxations . 101
5.4.1 Continuous Relaxation . 102

5.4.2 Combinatorial Bounds . 102
5.4.3 Linear Relaxation and Column Generation 102
5.4.4 Dual Feasible Functions . 103
5.4.5 Contiguous One-Dimensional Relaxations 104
5.4.6 State Space Relaxations . 105

5.5 Heuristics . 105
5.5.1 Approximation and On-line Algorithms 105
5.5.2 Constructive Heuristics, Local Search, and Metaheuristics 106
5.5.3 Set covering based heuristics . 107

5.6 Exact Methods based on Integer Linear Programming Models 107
5.6.1 Polynomial Models . 107
5.6.2 Pseudo-polynomial Models . 108
5.6.3 Exponential Models . 108

5.7 Exact Methods based on Implicit Enumeration 110
5.7.1 Branch-and-Bound . 110
5.7.2 Graph-Based Approaches . 112
5.7.3 Constraint Programming . 113

5.8 Open Problems . 114
5.9 Conclusions and Future Research Directions 115

6 2DPackLib: A Two-dimensional Cutting and Packing Library 118
6.1 Introduction . 118
6.2 Classi�cation . 120
6.3 Surveys and typologies . 121
6.4 Benchmarks . 122

6.4.1 Benchmarks originally proposed for the 2D-SPP 122
6.4.2 Benchmarks proposed for the 2D-BPP and 2D-CSP 123
6.4.3 Benchmarks proposed for the 2D-KP 123
6.4.4 Benchmarks proposed for the 2D-OPP 124

6.5 Bibliographies and additional tools . 125
6.6 Conclusions . 125

7 Integrated Workforce Scheduling and Flexible Flow Shop Problem in
the Meat Industry 126
7.1 Introduction . 126
7.2 Problem De�nition . 127
7.3 Proposed Heuristic . 128
7.4 Computational Experiments . 130
7.5 Concluding Remarks . 132

8 Conclusions 133

Bibliography 136

11

Chapter 1

Introduction

This thesis focuses on combinatorial optimization problems. These are decisions problems,

in which we are given a (potentially huge) discrete set of possible solutions, and we must

�nd a single solution that optimizes an objective function. The list of applications of such

problems is extensive, and a large interest in their study is related to logistics and supply

chain applications. These include, for instance, cutting and packing, scheduling, routing,

lot-sizing, facility location, train timetabling, workforce allocation, and airline network

design problems.

A direct way of solving a combinatorial optimization problem (i.e., �nding an optimal

solution) is by a complete inspection of the set of solutions. However, this is generally

non-practical, since in real-world problems the set of solutions is often prohibitively huge.

It is not hard to �nd real-world examples in which it would take centuries of computational

time to explore all possible solutions. For that, the combinatorial optimization literature

is mainly concerned with the development of methods to �nd an optimal solution while

avoiding to explore the full set of solutions. The literature divides solution methods into

two categories: exact methods and heuristics. Exact methods are guaranteed to return

an optimal solution (if enough time is allowed for their complete execution). The success

of these methods depends on techniques to eliminate large subsets of solutions that are

guaranteed to be sub-optimal, without the need to fully explore them. Nonetheless, in

the worst case, exact methods still have to explore all solutions, so they are often non-

practical. Heuristics are methods that do not always return an optimal solution. Their

main interest is in quickly �nding a good-quality solution, so as to terminate the search

within a practical time. In this way, this kind of method is usually preferred in a real-world

scenario. In general, exact methods and heuristics are related. On the one hand, exact

methods can be adapted to work as heuristics in practice by imposing a computational

time limit on their search. On the other hand, heuristics are often explored as a way to

accelerate the search within exact methods.

The main contributions of this thesis are related to new solution methods to solve

combinatorial optimization problems in practice. We propose exact methods that can

be applied to a large class of problems in the literature, and we also develop a heuristic

to solve a problem arising from a real-world application. We also propose surveys that

extensively review the literature on two well-studied areas, namely pseudo-polynomial arc

�ow models and two-dimensional cutting and packing problems.

12

1.1 Preliminaries

In the remainder of this thesis, we assume that the reader is familiar with the basic theory

of Linear Programming (LP), Mixed-Integer Linear Programming (MILP), algorithmic

complexity, and other optimization concepts that can be found in classical books (see,

e.g., Garey and Johnson [144] and Nemhauser and Wolsey [250]). In the following, we

brie�y discuss some related concepts to contextualize and motivate the contents of this

thesis. All such concepts are discussed in detail in the following chapters.

A network �ow formulation aims at �nding a minimum-cost �ow in a network while

satisfying side constraints (see, e.g., Ahuja et al. [1]). The list of applications of network

�ow formulations is extensive, including vehicle routing, telecommunication network plan-

ning, train timetabling, cutting, packing, scheduling, and project management. Network

�ow formulations modeled by MILP can derive an arc �ow model, in which decision vari-

ables correspond to the �ow on individual arcs of the network.

The LP relaxation plays a key role in the solution of a MILP model. These models

are generally solved by branch-and-bound, and the bound at each node is obtained from

such relaxation. Consequently, having a strong LP relaxation is important to improve

pruning, and, hence, to guarantee a practical limit in the number of branch-and-bound

nodes explored. In addition, strong LP relaxations usually imply that optimal fractional

solutions are a good approximation of an optimal integer solution. Hence, rounding MILP

heuristics usually work well in strong models.

Dantzig-Wolfe reformulation is one of the most successful ways to derive MILP mod-

els with strong relaxations (see, e.g., Vanderbeck and Savelsbergh [324]). The models

resulting from the reformulation have an exponential number of variables and are usually

solved by sophisticated methods, as, e.g., branch-and-cut-and-price. Nonetheless, such

models can be reformulated as an arc �ow model with same relaxation strength and often

of pseudo-polynomial size.

The majority of the methodological contributions of this thesis is related to the solution

of such pseudo-polynomial arc �ow models with strong LP relaxations. One of the most

popular ways to solve such models is by general MILP solvers. The potential of such

solvers has increased consistently in the last decades, and they usually represent the best

alternative to solve small- or medium-sized models. However, hard instances of many

practical problems usually derive pseudo-polynomial arc �ow models that are too large

to be e�ciently solved by such solvers. This gives rise to one of the main concerns of this

thesis: "how to develop solution methods to e�ciently solve large arc �ow models with

strong relaxations, while still taking advantage of the continuously increasing potential of

general MILP solvers?".

1.2 Contents of this Thesis

This thesis is composed of a collection of six articles, which were written to be submitted to

international indexed journals or conferences. These articles are presented in the following

chapters. Each of the six following chapters presents a single article, and chapter 8 presents

our concluding remarks. For a better organization of the thesis, we group the six articles

13

into three di�erent parts, which are described in the following.

1.2.1 First Part

The �rst part reviews and proposes exact methods for pseudo-polynomial arc �ow formu-

lations.

Chapter 2 reviews over 100 references related to arc �ow models, focusing on models

of pseudo-polynomial size. These models have become popular in the last two decades,

and, to the best of our knowledge, this is the �rst survey that systematically reviews

their theoretical foundations and main successful applications. This chapter results from

joint work with Cláudio Alves, François Clautiaux, Manuel Iori, and José M. Valério de

Carvalho, and an article has been published as an invited review by the European Journal

of Operational Research [101]. In the following, we provide its abstract.

Abstract. Network �ow formulations are among the most successful tools to

solve optimization problems. Such formulations correspond to determining

an optimal �ow in a network. One particular class of network �ow formula-

tions is the arc �ow, where variables represent �ows on individual arcs of the

network. For NP-hard problems, polynomial-sized arc �ow models typically

provide weak linear relaxations and may have too much symmetry to be ef-

�cient in practice. Instead, arc �ow models with a pseudo-polynomial size

usually provide strong relaxations and are e�cient in practice. The interest

in pseudo-polynomial arc �ow formulations has grown considerably in the last

twenty years, in which they have been used to solve many open instances of

hard problems. A remarkable advantage of pseudo-polynomial arc �ow models

is the possibility to solve practical-sized instances directly by a Mixed Integer

Linear Programming solver, avoiding the implementation of complex methods

based on column generation.

In this survey, we present theoretical foundations of pseudo-polynomial arc

�ow formulations, by showing a relation between their network and Dynamic

Programming (DP). This relation allows a better understanding of the strength

of these formulations, through a link with models obtained by Dantzig-Wolfe

decomposition. The relation with DP also allows a new perspective to relate

state-space relaxation methods for DP with arc �ow models. We also present

a dual point of view to contrast the linear relaxation of arc �ow models with

that of models based on paths and cycles. To conclude, we review the main

solution methods and applications of arc �ow models based on DP in several

domains such as cutting, packing, scheduling, and routing.

Chapter 3 continues the study on pseudo-polynomial arc �ow models by proposing an

exact solution framework, which is tailored to be e�cient in solving models with strong LP

relaxations. The major contributions of this chapter have a practical nature, but we also

propose a number of theoretical results. The proposed framework successfully improves

the state-of-the-art of a number of well-studied problems. This chapter results from joint

work with Manuel Iori and Flávio K. Miyazawa. A preliminary version of this chapter

14

has been presented at the 22nd Conference on Integer Programming and Combinatorial

Optimization (IPCO XXII). A full article derived from this chapter is currently under

review by an international indexed journal. In the following, we provide its abstract.

Abstract. We address the solution of Mixed Integer Linear Programming

(MILP) models with strong relaxations that are derived from Dantzig-Wolfe

decompositions and allow a pseudo-polynomial pricing algorithm. We exploit

their network-�ow characterization and provide a framework based on column

generation, reduced-cost variable-�xing, and a highly asymmetric branching

scheme that allows us to take advantage of the potential of the current MILP

solvers. We apply our framework to a variety of cutting and packing problems

from the literature. The e�ciency of the framework is proved by extensive

computational experiments, in which a signi�cant number of open instances

could be solved to proven optimality for the �rst time.

Chapter 4 is still concerned with the proposal of new exact methods for pseudo-

polynomial arc �ow models with strong relaxations. However, the main motivation of

this chapter is applications on parallel machine scheduling problems with the objective

of minimizing weighted completion times. For that, the chapter presents novel solution

methods for general arc �ow models, but also a new branching scheme tailored for this

class of scheduling problems. This chapter results from joint work with Manuel Iori,

Flávio K. Miyazawa, Roberto Roberti, and José M. Valério de Carvalho. The chapter

presents a preliminary report from a project that is still under development. An ongoing

part of the project is related to the investigation of strengthening of arc �ow models with

weak linear relaxations. Once the project is �nished, a full article will be submitted to

an international indexed journal. In the following, we provide the abstract of the report.

Abstract. State-of-the-art for many scheduling problems consists of network

�ow formulations, in particular arc �ow models. These are Mixed Integer

Linear Programming models that aim at �nding a minimum-cost �ow in a

network, while satisfying side constraints. This paper proposes general solu-

tion methods for such models, motivated by applications on identical parallel

machine scheduling problems with the objective to minimize weighted comple-

tion times. The proposals include a general branching scheme and a method

to deal with dual infeasibility inherent from the limited precision of general

Linear Programming solvers. Extensive computational experiments show that

the overall algorithm can solve all open benchmark instances to proven opti-

mality.

1.2.2 Second Part

The second part of the thesis is devoted to two-dimensional cutting and packing problems.

It contains an extensive literature review and an introduction to a new online library.

Chapter 5 reviews over 180 references related to solution methods for orthogonal

two-dimensional cutting and packing problems. To the best of our knowledge, the last

15

extensive review on the same class of problems was presented almost two decades ago, and

since then, the literature on this area has grown considerably. This chapter results from

joint work with Manuel Iori, Silvano Martello, Flávio K. Miyazawa and Michele Monaci.

A resulting article has been published as an invited review by the European Journal of

Operational Research [175]. In the following, we provide its abstract.

Abstract. We survey the main formulations and solution methods for two-

dimensional orthogonal cutting and packing problems, where both items and

bins are rectangles. We focus on exact methods and relaxations for the four

main problems from the literature: �nding a packing with minimum height,

packing the items into the minimum number of bins, �nding a packing of

maximum value, and determining the existence of a feasible packing.

Chapter 6 introduces an online library to facilitate research on two-dimensional

cutting and packing problems. The library is available at http://or.dei.unibo.it/

library/2dpacklib. This chapter results from joint work with Manuel Iori, Silvano

Martello, and Michele Monaci. A resulting article has been published in Optimization

Letters [176]. In the following, we provide its abstract.

Abstract. Two-dimensional cutting and packing problems model a large num-

ber of relevant industrial applications.The literature on practical algorithms

for such problems is very large. We introduce the 2DPackLib, a library on

two-dimensional orthogonal cutting and packing problems. The library makes

available, in a uni�ed format, 25 benchmarks from the literature for a total

of over 3000 instances, provides direct links to surveys and typologies, and

includes a list of relevant links.

1.2.3 Third Part

The third and last part of the thesis consists of a single chapter and is concerned with a

problem arising from a collaboration with an Italian meat-producing company.

Chapter 7 studies a real-world problem related to daily workforce and order schedul-

ing. This problem consists of a large set of decision variables and complex constraints.

For a practical solution of the problem, we developed an algorithm based on a two-phase

constructive heuristic embedded within a random multi-start framework. This chapter

results from joint work with Beatrice Bolsi, Thiago A. de Queiroz, and Manuel Iori and

an article has been presented in the Advances in Production Management Systems 2021

Conference [43]. In the following paragraph, we provide its abstract. We are currently

working on an extended version of this work, and the resulting article will be submitted

to an international indexed journal.

Abstract. We address a problem from a meat company, in which orders are

produced in two stages, consisting of preparing meats on benches and allocat-

ing them to conveyors to be packed in disposable trays. In an environment

where machines are unrelated, the company has to take daily decisions on the

http://or.dei.unibo.it/library/2dpacklib
http://or.dei.unibo.it/library/2dpacklib

16

number and start time of working periods, the number of workers and their

allocation to machines, and the scheduling of activities to satisfy the required

orders. The objective of the problem is to minimize, in a lexicographic way,

the number of unscheduled activities, the weighted tardiness, and the total

production cost. To solve the problem, we propose a multi-start random con-

structive heuristic, which tests di�erent combinations of number of workers

in the machines and for each combination produces many di�erent schedules

of the orders. The results of our computational experiments over realistic in-

stances show that the heuristic is e�ective and can support the company on

its daily decisions.

17

Chapter 2

Arc Flow Formulations Based on

Dynamic Programming: Theoretical

Foundations and Applications

2.1 Introduction

Optimization problems can assume di�erent characterizations, each allowing the reduction

of the original problem to other optimization problems, leading to, possibly, di�erent

solution methods. One of such characterizations is based on a network, that is, a directed

graph with costs on the arcs, and is the base of the well-known network �ow problems

(see, e.g., Ahuja et al. [1]). A network �ow problem is an optimization problem that

requires to determine an optimal �ow on a network, by satisfying �ow conservation on

each node and possible additional side constraints on the �ow on the arcs. The list of

real-life problems that can be solved as network �ow problems is extensive, including not

only direct applications (i.e., the network is an input of the problem), as vehicle routing,

telecommunication network planning, and train scheduling (see, e.g., Gouveia et al. [154],

Minoux [242], and Cacchiani and Toth [61]), but also indirect ones (i.e., the network must

be constructed), as cutting and packing, scheduling, and project management (see, e.g.,

Delorme and Iori [107], Kramer et al. [198], and Riedler et al. [278]).

In general, any formulation that corresponds to solving a network �ow problem is

called network �ow formulation. Following Ahuja et al. [1], the two main classes of

network �ow formulations are the path (and cycles) �ow formulations and the arc �ow

formulations. Path (and cycles) �ow formulations (called path �ow formulations for short

in the following) have variables corresponding to �ow on paths and cycles of the network,

and are frequently associated with set-covering, set-packing, or set-partitioning models.

In contrast, arc �ow formulations have variables corresponding to �ow on individual arcs

of the network. The Flow Decomposition Theorem by Ahuja et al. [1] guarantees that

the two formulations produce equivalent models when based on the same network, in the

sense that any solution of one model can be mapped into a solution of the other model.

Arc �ow formulations have a linear number of variables with respect to the number of

arcs in the network. Often, such formulations can be used to solve medium-sized instances

18

directly by a commercial Mixed Integer Linear Programming (MILP) solver, avoiding the

implementation of complex methods. On the other hand, path �ow formulations may have

a much larger number of variables, as the number of paths and cycles can be exponential

with respect to the number of arcs of the network. Such exponential path �ow formulations

are typically solved by sophisticated methods based on column generation and branch-

and-price algorithms (see, e.g., Desaulniers et al. [112] and Sadykov and Vanderbeck

[290]).

Many NP-hard problems can be formulated as compact (i.e., polynomial-sized) mod-

els. Although their size is favorable, these models are usually associated with weak linear

relaxations and very symmetrical solution spaces, leading to an overly extensive enumer-

ation on branch-and-bound algorithms. To overcome such ine�ciency, one may rely on

the Dantzig-Wolfe (DW) decomposition (see Dantzig and Wolfe [100]), which can lead to

models with stronger linear relaxations and less symmetry. The models resulting from

DW decomposition usually have exponentially more variables than the original model

and are solved by column generation. When the associated pricing problem is solved by

Dynamic Programming (DP), the model can be seen as a path �ow formulation, where

each variable corresponds to a path in the network inherent from the DP problem. From

this observation, one can devise an equivalent arc �ow model based on the DP network.

Originated by a DW decomposition, the resulting arc �ow model will, possibly, have a

strong linear relaxation and a less symmetrical solution space, compared to the original

polynomial-sized model.

To obtain strong models by a DW decomposition, one may have to pay the price

of having an increased complexity on the pricing problem, as such complexity usually

becomes pseudo-polynomial or exponential. When the size of the DP network from the

pricing problem is pseudo-polynomial, the resulting arc �ow model can still be used in

practice to solve medium-sized instances by means of a MILP solver. On the other hand,

when the DP network is too large (possibly exponential), one can obtain smaller (yet still

strong) pseudo-polynomial arc �ow models relying on a state-space relaxation of the DP.

Di�erent state-space relaxations lead to arc �ow models with di�erent sizes and di�erent

strength, allowing a �exible possibility to balance size and strength of arc �ow models.

Seminal works and previous surveys

To the best of our knowledge, Ford and Fulkerson [134] were the �rst to propose a pseudo-

polynomial arc �ow model, which was based on a time-expanded network and was used

to solve the maximal dynamic �ow problem. Already in the sixties, Shapiro [295] studied

the relation between DP and Integer Programming, by modeling the knapsack problem

as a pseudo-polynomial network �ow problem. More than ten years later, Wolsey [337]

proposed a general methodology to build packing and covering models from the set of

feasible solutions of DP problems. As an application, he introduced a pseudo-polynomial

arc �ow model based on a DP network of the knapsack problem for the cutting stock

problem (CSP), a strongly NP-hard problem. Due to the context, Wolsey [337] did

not present computational experiments for the model, and such formulations did not get

much attention for decades. It was more than twenty years later that Valério de Carvalho

19

[314] independently proposed this model, used it to solve to (integer) optimality open

instances in the CSP literature, and showed that it is equivalent to the Gilmore-Gomory

model [149, 150], a path �ow model obtained from a DW decomposition.

Since the work by Valério de Carvalho [314], the popularity of pseudo-polynomial arc

�ow formulations based on DP has grown considerably, and several di�erent applications

to NP-hard problems have appeared in the literature. Large instances have been solved

for the �rst time to proven optimality by arc �ow models in several cutting, packing, and

scheduling problems. In addition, arc �ow formulations have e�ectively modeled complex

problems involving, for instance, multiple-stage cutting processes or the presence of setups.

Some previous surveys considered arc �ow models on speci�c applications (see, e.g.,

Valério de Carvalho [315] and Delorme et al. [109] for bin packing and cutting stock

problems, and Cattaruzza et al. [70] for vehicle routing problems with multiple trips).

Skutella [300] presented a survey on problems based on dynamic �ow, which is also

called "�ows over time". One of the main formulations for this class of problems is the arc

�ow model based on time-expanded networks, introduced by Ford and Fulkerson [134],

which is derived from DP graphs of pseudo-polynomial size. A generalization of such

networks is the layered graph approach which considers, for instance, capacity-indexed

networks for vehicle routing problems. Modeling techniques and e�cient solution methods

for pseudo-polynomial arc �ow formulations based on layered graphs were surveyed by

Gouveia et al. [154]. Other surveys, such as that by Sadykov and Vanderbeck [290],

focused instead on how arc �ow formulations can be used to devise e�ective branch-and-

price algorithms. Conforti et al. [89] and Lancia and Sera�ni [203] studied techniques

to transform large extended formulations into compact ones. In the case of network �ow

formulations, this occurs when path �ow models are transformed into equivalent arc �ow

models with (possibly exponentially) fewer variables.

Contents

In this survey, we extend the previous studies to provide a base for some reasons behind

the (primal) strength of pseudo-polynomial arc �ow formulations. Based on the Flow

Decomposition Theorem, we show how DW decomposition can derive arc �ow models

with a strong linear relaxation. We also discuss how the state-space relaxation method

may allow one to obtain a balance between strength and complexity when constructing arc

�ow models. This relation between state-space relaxation and arc �ow formulations can

implicitly relate di�erent arc �ow models in the literature (see Section 2.4). We provide

a dual insight that may explain arc �ow models' practical computational e�ciency over

their equivalent path �ow models, which is the richer description of the dual space. The

relevance is that a better description of the dual space leads to less primal degeneracy,

which is headwind for Linear Programming (LP) simplex (vertex) algorithms used in

branch-and-bound techniques. We also discuss the main solution methods to solve large-

scale arc �ow models and present the main applications studied in the literature.

The remainder of this paper is organized as follows. Section 3.2 presents the theoretical

foundations of network �ow formulations and DP. The relationship between arc �ow

models with a strong relaxation and DW decomposition is presented in Section 2.3. In

20

Section 2.4, we present a discussion on how the state-space relaxation can be used to obtain

smaller arc �ow models. In Section 2.5, we show how arc �ow formulations present a more

detailed dual space than path �ow formulations, which leads to a better convergence of

the LP solution. The state-of-the-art methods to solve large-scale arc �ow models and the

main applications are shown in Sections 2.6 and 3.7, respectively. Finally, our concluding

thoughts are presented in Section 2.8.

2.2 Network Flow Formulations and Dynamic Program-

ming

A network N is composed of a directed graph G = (V ,A), where V is the set of nodes

(vertices) and A ⊆ V × V is the set of arcs, and of a cost function c : A → R that

maps each arc (u, v) to a cost c(u, v). In addition, a network has two special nodes in

V , called source (vsource) and sink (vsink), such that no arcs in A enters vsource or leaves

vsink. Depending on the context, we may denote the set of nodes and the set of arcs of a

network N as V(N) and A(N), respectively.

A �ow in a network is a function f : A → R+ that satis�es the �ow conservation

constraints:∑
(u,v)∈A

f((u, v)) =
∑

(v,w)∈A

f((v, w)), ∀v ∈ V \ {vsource, vsink}, (2.1)

i.e., the �ow entering a node is equal to the �ow leaving it, except for vsource and vsink,

where there is only outgoing and incoming �ow, respectively. By the �ow conservation

constraints, the �ow leaving vsource is equal to the �ow entering vsink.

De�nition 1. A network �ow problem is an optimization problem which requires to de-

termine a �ow f that satis�es side constraints and optimizes
∑

(u,v)∈A c(u, v)f((u, v)). In

addition, any formulation that corresponds to solving a network �ow problem is referred

to as a network �ow formulation.

A path in a graph is a sequence of arcs which joins a sequence of nodes. A cycle is a

path in which the �rst and the last nodes are the same. We denote by P the set of all

paths from vsource to vsink, and by A(p) the set of arcs of a path p ∈ P . The cost of a

path p ∈ P is given by c̃p =
∑

(u,v)∈A(p) c(u, v). In practice, the solution of network �ow

problems can be given as a set of paths and cycles with a positive �ow or as the �ow on

each arc of the network. Following Ahuja et al. [1], this gives rise to two di�erent classes

of network �ow formulations: path �ow formulations and arc �ow formulations.

De�nition 2. Path �ow formulations are network �ow formulations where decision vari-

ables correspond to the non-negative �ow on each path and each cycle of the network.

Path �ow formulations are also referred to in the literature as path-based formulations.

In path �ow formulations, the �ow conservation is implicitly imposed on the variables.

Since |P(N)| can be exponential with respect to |A(N)|, path �ow formulations usually

have a huge number of variables. Nonetheless, such formulations have been successfully

21

solved in the literature by column generation based algorithms (see, e.g., Pessoa and

Uchoa [269]).

De�nition 3. Arc �ow formulations are network �ow formulations where decision vari-

ables correspond to the non-negative �ow on each arc of the network.

In contrast to path �ow formulations, arc �ow formulations impose the �ow conser-

vation explicitly as linear constraints. For instance, let variable ϕ(u,v) ∈ R+, for each arc

(u, v) ∈ A, represent the �ow on arc (u, v), and let variable z ∈ R+ represent the total

�ow on the network. Flow conservation constraints can be formulated as:

∑
(u,v)∈A

ϕ(u,v) −
∑

(v,w)∈A

ϕ(v,w) =


−z, if v = vsource,

z, if v = vsink,

0, otherwise,

∀v ∈ V . (2.2)

The underlying matrix from (2.2) is totally unimodular (see, e.g., Nemhauser and

Wolsey [250]), which is an interesting property, as LP models with a totally unimodular

constraint matrix have the integrality property, i.e., every vertex of the corresponding

polytope is integer, implying the existence of an integer optimal solution if the right-hand

side of the constraints is integer.

Although �ow conservation constraints (2.2) must be explicitly included, di�erently

from path �ow formulations, arc �ow formulations have a polynomial number of vari-

ables with respect to network size. An important result that relates these two classes of

formulations is the following:

Theorem 1 (Flow Decomposition Theorem (Ahuja et al. [1])). Every path and cycle �ow

has a unique representation as non-negative arc �ows. Conversely, every non-negative arc

�ow can be represented as a path and cycle �ow (though not necessarily uniquely) with

the following two properties:

(a) Every directed path with a positive �ow connects the source to the sink;

(b) At most |V| + |A| paths and cycles have nonzero �ow; out of these, at most |A|
cycles have nonzero �ow.

Theorem 1 proves the equivalence between arc �ow and path �ow formulations: an

arc �ow solution can be transformed into positive �ow on a set of paths and cycles, and

a solution of path �ow formulations can be decomposed into �ow on individual arcs.

Consequently, arc �ow and path �ow formulations based on the same network produce

the same linear relaxation bounds for integer problems.

A fundamental network �ow problem is the longest path problem (LPP): �nd a longest

path, i.e., a unitary �ow of maximum cost, from vsource to vsink. When the network does

not have cycles of negative cost, a longest path can be found in polynomial time with

respect to the network size. In particular, when the network is acyclic, a longest path can

be found in O(|A|) by a topological ordering of the nodes (see, e.g., Ahuja et al. [1]). The

LPP often appears in solution methods for more complex network �ow problems. Such

problems have, for instance, side constraints characterized by generalized upper and lower

22

bounds on the �ow on subsets of arcs (see, e.g., Clautiaux et al. [83]). In the remainder of

this section, we formally de�ne Dynamic Programming and its relation to acyclic network

�ow formulations and the LPP.

2.2.1 Dynamic Programming and Arc Flow Formulations

(Discrete) Dynamic Programming (DP) is a well-known method, proposed in the �fties

(see, e.g., Bellman [23]), to solve combinatorial optimization problems that can be de-

composed into a sequence of decisions, often represented by stages, each corresponding

to a decision step. DP models are de�ned by a state space S, where each state s ∈ S
is characterized by a set of entities. Each state is de�ned, for instance, by the subset of

clients already visited in routing problems (see, e.g., Desrochers et al. [114]) or by the

level of usage of a given resource in, e.g., cutting, packing or scheduling problems (see,

e.g., Christo�des and Hadjiconstantinou [75]).

A key aspect in DP modeling is the fact that the description of a state s ∈ S should

be su�cient to recognize the admissible decisions for s, which is coined as the no-memory

property of DP. Then, when stages are considered, problems are divided into a sequence

of sub-problems, so that the solution of a sub-problem depends only on the sub-problems

from the previous stage. Nowadays, some authors changed the perspective of DP from

the stage-dependent description to a table-�lling method, as described by, e.g., Ahuja et

al. [1].

A DP model can be represented by a recursive function, in which the value of a state

is only based on the values of the precedent states and the cost (contribution) of the

decisions leading to that state. Formally, for each state s ∈ S, let ∆(s) be the set of

precedent states, and c(r, s) ∈ R be the cost required to move from r ∈ ∆(s) to s. The

state space S contains two special states, s0 and s∗, representing the initial condition of

the recursion and the optimal solution of the problem, respectively. No state precedes

s0 (∆(s0) = ∅) and s∗ does not precede any other state (s∗ /∈ ∆(s),∀s ∈ S). The DP

recursion we consider is given by:

fDP(s) =

{
max{r∈∆(s)}{fDP(r) + c(r, s)}, if s 6= s0,

0, if s = s0,
∀s ∈ S. (2.3)

A priori, the DP recursion (2.3) denotes a maximization problem, but it can easily be

considered as a minimization problem by inverting the sign of all decision costs. Based

on recursion (2.3), a DP model can be de�ned on a directed acyclic graph (DAG), where

vertices and arcs correspond to states and decisions, respectively. In this characterization,

the DP solution is given by a longest path, that is, a path from s0 to s∗ with maximum

total cost (pro�t). In some cases, the description of the recursion produces states that

are not in any solution from the initial state to the goal state, and such states can be

disregarded.

The previous characterization of DP is a classical de�nition, and one of the most

used by the integer programming literature. Nevertheless, other de�nitions of DP were

proposed. For instance, Martin et al. [231] de�ned DP over a directed acyclic hypergraph,

23

to obtain a better polyhedral characterization of a class of combinatorial optimization

problems. This generalization was later used to solve network �ow problems (see, e.g.,

Clautiaux et al. [86]).

Following our DP de�nition, the DAG from a DP model produces the dynamic pro-

gramming network NDP. Each node is associated with a state, that is, V(NDP) ≡ S,
where states s0 and s

∗ correspond to nodes vsource and vsink, respectively. The set of arcs

is de�ned by A(NDP) = {(r, s) | s ∈ S, r ∈ ∆(s)}, and the cost c(r, s) of an arc (r, s) ∈ A
is equivalent to the decision cost c(r, s) for moving from state r to state s.

The fact that DP can be seen as a LPP in the DP network provides a generic recipe

to transform a DP model into the arc �ow model given by:

max
∑

(u,v)∈A(NDP)

c(u, v)ϕ(u,v), (2.4)

s.t.:
∑

(u,v)∈A(NDP)

ϕ(u,v) −
∑

(v,w)∈A(NDP)

ϕ(v,w) =


−1, if v = vsource,

1, if v = vsink,

0, otherwise,

∀v ∈ V(NDP),

(2.5)

ϕ(u,v) ∈ {0, 1}, ∀(u, v) ∈ A(NDP).

(2.6)

Model (2.4)�(2.6) considers �ow conservation constraints with a unitary �ow (z = 1)

and side constraints impose that the �ow on each arc is binary. The objective function

is to maximize the cost of the selected path, given by the sum of the contributions of the

state decisions. As this model has only �ow conservation constraints, it has the integrality

property, because, as previously discussed, its underlying matrix is totally unimodular.

This property is linked with the fact that the LPP on a DAG can be solved in linear time

with respect to the number of arcs (see, e.g., Bellman [23]).

In strongly NP-hard problems, DP often provides pseudo-polynomial algorithms to

solve sub-problems that determine partial plans. Examples of such sub-problems are:

�nding a single cutting/packing pattern on cutting and packing problems (see, e.g., Valério

de Carvalho [315]); obtaining a schedule in a single machine in scheduling problems (see,

e.g., Kramer et al. [198]); determining a route of a single vehicle on vehicle routing

problems (see, e.g., Pessoa and Uchoa [269]).

The DP network from the sub-problems (partial plans) may be used to derive arc �ow

models to solve the main problem (global plan). If the global plan is a strongly NP-hard
problem (which is often the case), these models do not have the integrality property,

unless P = NP , but they usually provide strong relaxations. We provide examples of DP

networks of two problems that are often associated with partial plans.

2.2.2 Example on the Knapsack Problem

Let us consider an example on the knapsack problem (KP): given a knapsack with capacity

W ∈ Z+ and a set I = {1, 2, . . . , n} of items, each item i ∈ I with a weight wi ∈ Z+, a

24

pro�t pi ∈ Z+, and a maximum number of copies di ∈ Z+, determine the number xi (with

0 ≤ xi ≤ di) of copies of each item i ∈ I in the solution, so that
∑

i∈I wixi ≤ W and∑
i∈I pixi is maximum (see, e.g., Martello and Toth [226]). The optimal solution value

fKP(i,W ′) of a knapsack sub-problem that considers the items {1, 2, . . . , i} and a partial

capacity W ′ can be recursively computed by:

fKP(i,W ′) =

{
maxl∈{0,1,...,min{di,bW ′/wic}}{fKP(i− 1,W ′ − wil) + pil}, if i > 0 and W ′ > 0,

0, otherwise.

(2.7)

The optimal KP solution value is given by OPT (I,W) = max{0<W ′≤W} fKP(|I|,W ′)

and it is associated with a DP model where the state space S is a subset of {(i,W ′) |
i ∈ I,W ′ ∈ {0, 1, . . . ,W}} ∪ {s∗}, each partial set of items corresponds to a stage, the

initial condition state is s0 = (0, 0), and the goal is represented by a dummy state s∗,

so that the precedent states in ∆(s∗) are related to the recursion of OPT (I,W). The

set of precedent states of each state (i,W ′) ∈ S \ {s∗}, where i > 0, is ∆((i,W ′)) =

{(i− 1,W ′−wil) | wil ≤ W ′, l ∈ {0, 1, . . . , di}}, and the decision cost for reaching (i,W ′)

from a precedent state (i− 1,W ′ −wil) ∈ ∆((i,W ′)) is c((i− 1,W ′ − wil), (i,W ′)) = pil.

The set of precedent states of s∗ is ∆(s∗) = {(|I|,W ′) | W ′ ∈ {0, 1, . . . ,W}} and the cost

to move from a precedent state (|I|,W ′) ∈ ∆(s∗) to s∗ is c((|I|,W ′), s∗) = 0.

Let NKP be a DP network for the KP. The set of nodes V(NKP) ≡ S corresponds

to the set of states, where vsource and vsink are associated with s0 and s∗, respectively.

The set of arcs is A(NKP) = ∪{i∈I,l∈{0,1,...,min{di,bW ′/wic}}Ail ∪ AS. For each i ∈ I, the set
Ail = {((i − 1,W ′ − wil), (i,W ′)) | (i,W ′) ∈ S, (i − 1,W ′ − wil) ∈ ∆((i,W ′))} contains
the arcs corresponding to the decision of choosing l copies of i in the solution, and these

arcs have pro�t pil. The set AS = {((n,W ′), vsink) | (n,W ′) ∈ S} contains arcs, called
loss arcs, that link the nodes from the last stage to vsink, and their pro�t is 0.

1, 0

2, 0

3, 0

1, 1

2, 1

3, 1

1, 2

2, 2

3, 2

1, 3

2, 3

3, 3

1, 4

2, 4

3, 4

1, 5

2, 5

3, 5

1, 6

2, 6

3, 6

1, 7

2, 7

3, 7

1, 8

2, 8

3, 8

0 , 0

s∗

8

5 5

4 44

Figure 2.1: Example of network NKP for the knapsack problem.

As an example, Figure 2.1 shows the network for a KP with capacity W = 8, and

three items having w1 = 4, w2 = 3, w3 = 2, p1 = 8, p2 = 5, p3 = 4, and d1 = d2 = d3 = 1.

25

There is a node s∗ representing vsink, a node (i,W ′) for each state, and vsource = (0, 0).

Arcs AS are depicted as dotted links, and for every item i ∈ I, the arcs in Ai1 and Ai0 are
depicted as full and dashed links, respectively. The arcs that do not belong to any path

from (0, 0) to s∗ are disregarded. By de�nition, the only non-zero pro�t arcs are the ones

from Ai1, and their pro�ts are shown in the �gure. The bold arcs are from the longest

path, i.e., the optimal solution, which contains items 1 and 2 and has total pro�t 13.

The network NDP can be used in the generic recipe previously discussed, to derive an

arc �ow model for the KP with O(|I|W) nodes and arcs. Although the resulting arc �ow

model has pseudo-polynomial size and has the integrality property, solving it with LP

algorithms is usually not as fast as solving the problem by DP. However, the LP model

can be a base for interesting results. For instance, Boyd [51] extended this model to solve

the knapsack separation problem, which is a generic tool to generate cutting planes for

MILP formulations.

2.2.3 Example on the Elementary Shortest Path Problem with

Resource Constraints

The elementary shortest path problem with resource constraints (ESPPRC) is linked with

determining the best route of a single vehicle in vehicle routing problems (see, e.g., Irnich

and Desaulniers [182]). In the ESPPRC there is a resource capacity and a directed graph.

Each vertex is associated with a resource consumption and each arc is associated with

a cost. The objective is to �nd a path with minimum cost such that: (i) each vertex

is visited at most once (elementary constraint); and (ii) the total resource consumption

from the vertices in the path does not exceed the resource capacity (resource constraint).

In the context of vehicle routing, the vertices are given by I = {0, 1, . . . , n}, where
0 represents the depot and the other n vertices represent the clients. The solution must

start and �nish at the depot. Generally, the ESPPRC might consider a set of resources,

but in this example we are concerned only with a single resource W , which is associated

with the load capacity of a vehicle. Let e(i,j) ∈ R be the cost of arc (i, j) ∈ I × I and

wi ∈ R+ be the resource consumption of i ∈ I.
Given a set of clients S ⊆ I \{0} that satis�es the resource constraint (i.e.,

∑
j∈S wj ≤

W), we denote by fESPPRC(S, i) the cost of a path of minimum cost from the depot

0 to a client i ∈ S that visits every client in S exactly once. A client j ∈ S \ {i} that
precedes i in an optimal path related to fESPPRC(S, i) is one that minimizes the sum

of the cost e(j,i) from j to i and the cost fESPPRC(S \ {i}, j) of a path of minimum cost

that visits every client in S \ {i} exactly once and �nishes in j ∈ S \ {i}. This relation

can be mapped into the following recursion:

fESPPRC(S, i) =

{
minj∈S\{i}{fESPPRC(S \ {i}, j) + e(j,i)}, if S 6= ∅ and i > 0,

0, otherwise.

(2.8)

The optimal ESPPRC solution value is given by OPT (I, e, r) = min{fESPPRC(S, i)+

e(i,0) | S ⊆ I, i ∈ S,
∑

j∈S wj ≤ W}. The recursion can be transformed into a max-

26

imization problem, by inverting the sign of each e(i,j), resulting in a DP model. The

state space S is a subset of {(S, i) | S ⊆ I, i ∈ S,
∑

j∈S wj ≤ W} ∪ {s∗}, where the

initial state is s0 = (∅, 0) and the goal state s∗ has precedent states related to the re-

cursion of OPT (I, e, r). For each state (S, i) ∈ S \ {s∗}, the set of precedent states

is ∆((S, i)) = {(S \ {i}, j) | j ∈ S \ {i}}, and the decision cost to move from state

(S \ {i}, j) ∈ ∆((S, i)) to (S, i) is c((S \ {i}, j), (S, i)) = e(j,i). The set of precedent

states of s∗ is ∆(s∗) = S \ {s∗}, and the cost to move from state (S, i) ∈ ∆(s∗) to s∗ is

c((S, i), s∗) = e(i,0).

Let NESPPRC be the DP network for the ESPPRC obtained from the state space S
presented above. The set of nodes V(NESPPRC) ≡ S corresponds to the state space,

where vsource and vsink are associated with (∅, 0) and OPT (I, e, r), respectively. The set

of arcs A(NESPPRC) = ∪i∈IAi contains arcs Ai = {((S \ {i}, j), (S, i)) ∈ V ×V} related
to the decision of visiting client i ∈ I \{0}, and arcs A0 = {((S, j), vsink) ∈ V×V} related
to the decision of returning to the depot.

{}, 0

{1}, 1 {2}, 2 {3}, 3 {4}, 4

{1,2}, 2 {1,3}, 3 {1,4}, 4 {1,2}, 1 {2,3}, 3 {1,3}, 1 {2,3}, 2 {1,4}, 1

{1,2,3}, 3 {1,2,3}, 2 {1,2,3}, 1

s∗

-5 -3 1 -2

6 2 -2 -7 -1 2 -5 -2

-1 -52 26 -7

Figure 2.2: Example of network NESPPRC for the elementary shortest path problem
with resource constraints.

Figure 2.2 illustrates the network for an example with W = 6 and 4 clients, with

w1 = 1, w2 = 2, w3 = 2, and w4 = 5. In this example, the costs are the following:

c(0,1) = −5, c(0,2) = −3, c(0,3) = 1, c(0,4) = −2, c(1,0) = 0, c(1,2) = 6, c(1,3) = 2, c(1,4) = −3,

c(2,0) = 0, c(2,1) = −7, c(2,3) = −1, c(2,4) = 5, c(3,0) = 0, c(3,1) = 2, c(3,2) = −5, c(3,4) = 5,

c(4,0) = 0, c(4,1) = −2, c(4,2) = 5, c(4,3) = 5. On each arc, we present its associated cost,

except for the arcs that enter s∗, which for the sake of conciseness we consider their cost to

be 0 and present such arcs as dotted lines. The arcs of the optimal solution are highlighted

in bold, and they correspond to visit the sequence of clients 3, 2, and 1, and returning to

the depot. The optimal solution has value −11.

The network NESPPRC can be the base of an arc �ow model for the ESPPRC,

27

following the generic recipe previously presented. However, the number of subsets S ⊆ I

such that
∑

j∈S wj ≤ W is exponential, implying that the state space presented for

the ESPPRC is also exponential. Consequently, the corresponding arc �ow model has an

exponential number of variables and constraints, and it is not practical to solve it directly.

Practical techniques that can be used to overcome this inconvenience are described in

Section 2.4. In particular, Section 2.4.2 presents a network of pseudo-polynomial size for

a version of the ESPPRC where the elementary constraints are partially relaxed.

2.3 Dantzig-Wolfe Decomposition and Network Flow

Formulations

Several challenging problems admit compact MILP models that, although having a rea-

sonable (polynomial) size, are usually associated with weak linear relaxations. In such

cases, reformulation methods can obtain models with stronger linear relaxation. One

of such methods is the well-known Dantzig-Wolfe (DW) decomposition (see Dantzig and

Wolfe [100]), which has been successfully used in many applications. The resulting models

may be stronger, but they usually have an exponential number of variables, and complex

methods are required to solve them in practice. In the following, we show how models

obtained from DW decomposition can be the base to derive equivalent arc �ow models

with smaller (and possibly practical) size.

First, we show how the DW decomposition can be applied to Linear Programming

(LP) models. Let us express the feasible solution region of the LP model as:

XLP = {x ∈ Rn
+ | Ax ≥ b, x ∈ X}, (2.9)

where A ∈ Rm×n, b ∈ Rm, and X is a bounded convex polytope of a set of constraints.

According to the Minkowski's Theorem, any point in X can be represented as a convex

combination of the vertices (extreme points) of X (for the general case of an unbounded

polytope, it is also necessary to consider a non-negative linear combination of the extreme

rays of the polytope, see, e.g., Nemhauser and Wolsey [250]). Then, by de�ning Q(X) as

the set of vertices of X, it follows:

X = {x ∈ Rn
+ | x =

∑
q∈Q(X)

qλq,
∑

q∈Q(X)

λq = 1, λq ≥ 0,∀q ∈ Q(X)}. (2.10)

By substituting x as in (2.10) in (2.9), the feasible region in the space of the variables

of the reformulated model becomes:

XLPDW = {λ ∈ R|Q(X)|
+ |

∑
q∈Q(X)

(Aq)λq ≥ b,
∑

q∈Q(X)

λq = 1}. (2.11)

The reformulated problem, calledDW model, has a variable associated with each vertex

of X, and a new set of constraints, usually referred to as convexity constraints (see, e.g.,

Lübbecke and Desrosiers [218]). The DW model is just another way of expressing the

same solution space. Therefore, the decomposition applied to LP models preserves the

28

optimal solution value.

However, in the context of MILP, to obtain linear models stronger than the original

linear relaxation, the integrality constraints must be implicitly considered in the refor-

mulated variables. A possibility is to impose the integrality constraints just in the set

X, reformulating over the vertices of Conv{x ∈ X and integer}, the convex hull of the

integer points in X (see, e.g., Nemhauser and Wolsey [250]), to optimize over the set:

XDW = {x ∈ Rn
+|Ax ≥ b, x ∈ Conv{x ∈ X and integer}}. (2.12)

Note indeed that XDW ⊆ XLP , and the relation can be strict when the set X does not

have the integrality property. When that happens, the reformulated model is stronger.

The strength of a model can have a strong impact on the search for the optimal integer

solution. Typically the length of the search is smaller with stronger models, leading to

smaller computational times. For further details, the reader is referred to Nemhauser and

Wolsey [250], which discusses at length the importance of deriving stronger models in the

context of MILP.

A typical issue from the DW decomposition is that the resulting model may have an

exponential number of variables. This issue is usually addressed by relying on the column

generation method, a technique to solve LP models with a large number of variables

(see, e.g., Lübbecke and Desrosiers [218]). The method solves a restricted version of the

LP model with only a subset of variables by iteratively solving a pricing problem. The

pricing generates non-basic variables (columns) that are candidates to improve the current

restricted model. If no such variable exists, then the current basis of the restricted model

is optimal for the original model, and the method halts. Column generation algorithms

are complex, but it pays o� to solve models resulting from a DW decomposition, because

they may be stronger when the setX does not have the integrality property and integrality

is enforced in the pricing problem.

When the pricing problem of a DW model can be solved by DP, each column of the

model can be associated with a path in the DP network, and the model can be seen as a

path �ow formulation. In such cases, the coe�cients of a column are given as contributions

from the arcs of the corresponding path. In addition, due to the no-memory property of

the DP, for each column, the contribution `k(u,v) ∈ R of an arc (u, v) to a row coe�cient

k ∈ C, where C is the set of constraints, is independent of other arcs. Then, given a

DP network N , and dk ∈ R, for every constraint k ∈ C, we obtain a general path �ow

formulation:

min
∑

p∈P(N)

c̃pλp, (2.13)

s.t.:
∑

p∈P(N)

∑
(u,v)∈A(p)

`k(u,v)λp ≥ dk, ∀k ∈ C, (2.14)

λp ∈ Z+, ∀p ∈ P(N). (2.15)

The objective function (2.13) minimizes the total cost from the paths in the solution,

and (2.14) is a set of general linear constraints. As discussed previously, due to the �ow

29

decomposition theorem, the path �ow formulation (2.13)�(2.15) can be reformulated as

the following arc �ow formulation:

min
∑

(u,v)∈A(N)

c(u, v)ϕ(u,v), (2.16)

s.t.:
∑

(u,v)∈A(N)

ϕ(u,v) −
∑

(v,w)∈A(N)

ϕ(v,w) =


−z, if v = vsource,

z, if v = vsink,

0, otherwise,

∀v ∈ V(N), (2.17)

∑
(u,v)∈A(N)

`k(u,v)ϕ(u,v) ≥ dk, ∀k ∈ C, (2.18)

z ≥ 0, (2.19)

ϕ(u,v) ∈ Z+, ∀(u, v) ∈ A(N). (2.20)

The objective function (2.16) minimizes the total cost from the arcs in the solution,

(2.17) are the �ow conservation constraints, and (2.18) are general linear constraints,

adapted from (2.14).

DW decomposition can generate path �ow formulations that are usually associated

with strong linear relaxations, and equivalent arc �ow formulations can be derived from

the DP network of the underlying pricing problem. As pointed before, to obtain stronger

relaxations, one should reformulate over the convex hull of the integer points in a polytope

that does not have the integrality property. Although a stronger linear relaxation is

obtained, this kind of reformulation leads to pricing problems that are NP-hard.
On the other hand, for arc �ow models, the price to pay to obtain a stronger relaxation

(i.e., to obtain a set equivalent to XDW) is to use a set of constraints that de�nes a DP

network with a pseudo-polynomial or an exponential number of arcs.

Usually, arc �ow models of practical size can be derived when the resulting pric-

ing problem has pseudo-polynomial complexity. However, when the pricing problem is

strongly NP-hard, the resulting arc �ow model is generally too large to be solved in

practice. When the pricing problem from path �ow formulations is too di�cult in prac-

tice, one may rely on relaxation methods. We show in Section 2.4 one of such relaxation

methods, which can be used to derive smaller networks and obtain arc �ow formulations

that are still strong and have practical size. In the next sections, we present two examples

of arc �ow formulations derived from DW decomposition, with pseudo-polynomial and

exponential size, respectively.

2.3.1 Example on the Cutting Stock Problem

We present an example of an arc �ow model derived from a DW decomposition for the

Cutting Stock Problem (CSP). In the CSP, a roll of width W and a set I = {1, 2, . . . , n}
of items are given, such that each item i ∈ I has a positive demand di and a width wi.

The objective is to cut the demand of all items from the minimum number of rolls.

Given an upper bound K on the minimum number of rolls, following Martello and

30

Toth [226], the CSP can be formulated as:

min
K∑
j=1

yj, (2.21)

s.t.:
n∑
i=1

wixij ≤ Wyj, j = 1, 2, . . . , K, (2.22)

K∑
j=1

xij ≥ di, ∀i ∈ I, (2.23)

yj ∈ {0, 1}, j = 1, 2, . . . , K, (2.24)

xij ∈ Z+, ∀i ∈ I, j = 1, 2, ..., K. (2.25)

Each roll j = 1, 2, . . . , K is associated with a binary variable yj that is equal to 1 if

and only if roll j is used in the solution. The integer variable xij represent the number of

copies of item i ∈ I that is cut from roll j. The objective function (2.21) minimizes the

number of rolls cut in the solution. Constraints (2.22) ensure that the size of each roll is

satis�ed and that no item is cut from an unused roll, whereas constraints (2.23) ensure

that the demand of each item is satis�ed.

According to Martello and Toth [226], the optimal solution value of the linear re-

laxation of (2.21)�(2.25) is equivalent to the continuous lower bound that is obtained

from the minimum length required to cut all of the demand from a stock with unlimited

width, i.e.,
∑

i∈I widi/W . This bound is known to be weak in practice, and its worst-

case performance ratio asymptotically tends to 1/2. To obtain a stronger bound, a DW

decomposition can be applied to the model above (see, e.g., Vance [320]).

Constraints (2.22) correspond to K identical fractional knapsack polytopes. When

integrality constraints (2.24) and (2.25) are taken into account, the K identical polytopes

correspond to K identical sets PCSP of integer knapsack solutions. A DW decomposi-

tion that includes constraints (2.22), (2.24), and (2.25) in the sub-problem results in the

following set-covering model:

min
∑

p∈PCSP

λp, (2.26)

s.t.:
∑

p∈PCSP

aipλp ≥ di, ∀i ∈ I, (2.27)

λp ∈ Z+, ∀p ∈ PCSP . (2.28)

In the CSP, the integer knapsack solutions from PCSP are called cutting patterns (or

just patterns, for short, in the following), and each of them represents the cutting of

a single piece of stock. The objective function (2.26) minimizes the number of cutting

patterns. Constraints (2.27) ensure that the demand of each item is satis�ed, where aip
is the number of copies of item i in pattern p.

In cutting and packing problems, a proper pattern is a pattern that respects the max-

imum number of copies of the items, whereas a non-proper pattern does not. The set-

covering model by Gilmore and Gomory [149, 150] for the CSP is similar to (2.26)�(2.28),

31

but it includes non-proper patterns that are obtained from the polytope of an unbounded

knapsack problem (UKP), a variant of the KP where each item has an unlimited number

of copies. The linear relaxation of (2.26)�(2.28), often referred to as proper relaxation

(see, e.g., Kartak et al. [190]), is stronger than the linear relaxation of the model by

Gilmore and Gomory [149, 150], but the optimal solution values of the corresponding

MILP models are equal.

The linear relaxation of (2.26)�(2.28) is strong and often the number of rolls in the

optimal solution is the rounded up optimal solution value from this relaxation. In fact,

there is a conjecture related to the strength of this relaxation (see, e.g., Caprara et al.

[64] and Kartak et al. [190]):

Conjecture 1 (Modi�ed Integer Round-Up Property (MIRUP)). The di�erence between

the optimal solution value of the CSP and the rounded-up solution value of the linear

relaxation of (2.26)�(2.28) is at most one.

The pricing problem of the set-covering model is a KP (where each item has di copies),

which, as shown in Section 2.2.2, can be solved by DP, implying on the existence of a

DP network NKP. As every column from the set-covering model can be represented as a

path in NKP, this network can be the base of an arc �ow model for the CSP:

min z, (2.29)

s.t.:
∑

(u,v)∈A(NKP)

ϕ(u,v) −
∑

(v,w)∈A(NKP)

ϕ(v,w) =


−z, if v = vsource,

z, if v = vsink,

0, otherwise,

∀v ∈ V(NKP),

(2.30)∑
(u,v)∈Ai(NKP)

`i(u,v)ϕ(u,v) ≥ di, ∀i ∈ I,

(2.31)

z ∈ Z+, (2.32)

ϕ(u,v) ∈ Z+, ∀(u, v) ∈ A(NKP).

(2.33)

The objective function (2.29) minimizes the total �ow. Constraints (2.30) impose the

�ow conservation and constraints (2.31) are related to the demand of each item. Following

the de�nitions in Section 2.2.2, we further de�ne Ai(NKP) = ∪l∈{0,1,...,di}Ail(NKP), for

each i ∈ I, and the contribution `i(u,v) of arc (u, v) ∈ Ai(NDP) is the number of copies

of i associated with (u, v). The arc �ow model (2.29)�(2.33), corresponds to the arc �ow

model proposed by Cambazard and O'Sullivan [62], under the name DP-�ow, for the bin

packing problem (BPP), a particular case of the CSP where di = 1 for every i ∈ I. The
DP-�ow is equivalent to the set-covering model (2.26)�(2.28) (see, e.g., Delorme and Iori

[107]), and it follows the proper relaxation.

In this example, we started from a model that is associated with a weak linear re-

laxation. A DW decomposition resulted in a model with a stronger relaxation, but with

the drawback of having a potentially exponential number of variables. Then, we showed

32

how the DP network related to the pricing problem of the exponential model derives an

equivalent pseudo-polynomial network �ow model. Practical successful applications of

this idea are shown in Section 3.7.

2.3.2 Example on the Capacitated Vehicle Routing Problem

In the capacitated vehicle routing problem (CVRP), we are given a set K of identical

vehicles and a set I = {0, 1, . . . , n} of vertices where vertex 0 corresponds to a depot, and

vertices 1, . . . , n correspond to n clients. Each vehicle has a load capacity W , each client

i ∈ I \ {0} has a non-negative demand wi, and each pair of vertices i, j ∈ I is associated

with a cost c(i, j). The CVRP aims at determining a routing plan with the minimum

total cost, such that: (i) exactly |K| routes are considered; (ii) each route starts and ends

at the depot; (iii) each client is visited exactly once; and (iv) the total demand from the

clients of a route does not exceed the load capacity W .

In this example, we apply a DW decomposition on a compact arc �ow model for the

CVRP, obtaining a set partitioning model that derives an equivalent arc �ow model of

exponential size.

Let I∗ = {I \ {0}} ∪ {0+, 0−} be the set of clients with two additional vertices 0+

and 0−, which are copies of the depot, each corresponding to the source and the sink

of a route, respectively. Two additional sets of arcs, {(0+, j) | j ∈ {I \ {0}}} and

{(i, 0−) | i ∈ {I \ {0}}}, are considered. The following compact arc �ow model, also

known as three-index (vehicle-�ow) formulation (see, e.g., Irnich et al. [184]), solves the

CVRP:

min
∑
k∈K

∑
i∈I∗

∑
j∈I∗\{i}

c(i, j)φk(i,j), (2.34)

s.t.:
∑

j∈I∗\{i}

φk(i,j) −
∑

j∈I∗\{i}

φk(j,i) =


−1, if i = 0+,

1, if i = 0−,

0, otherwise,

∀k ∈ K, i ∈ I∗, (2.35)

∑
k∈K

∑
j∈I∗\{i}

φk(i,j) = 1, ∀i ∈ I \ {0}, (2.36)

ωik − ωjk +Wφk(i,j) ≤ W − wj, ∀i, j ∈ I∗, i 6= j, k ∈ K, (2.37)

ωik ≤ W, ∀i ∈ I∗, k ∈ K, (2.38)

φk(i,j) ∈ {0, 1}, ∀i, j ∈ I∗, k ∈ K, (2.39)

ωik ≥ 0, ∀i ∈ I∗, k ∈ K. (2.40)

Model (2.34)�(2.40) considers a copy of the original graph for each vehicle k ∈ K.

The binary variable φk(i,j) is equal to 1 if and only if vehicle k moves from client i to

client j, and the variable ωik indicates the accumulated demand already distributed by

the vehicle k when arriving at client i. The objective function (2.34) minimizes the

total cost of the routes. Constraints (2.35) guarantee the conservation of a unitary �ow

(representing a single route) for each of the |K| vehicles. Constraints (2.36) guarantee that
each client is visited exactly once. Constraints (2.37) and (2.38) model the propagation

33

of the accumulated demand of the load capacity of each vehicle, and they are also used

to ensure that the route of each vehicle is a single connected component (path).

Although model (2.34)�(2.40) has a polynomial number of variables, it has a large

number of symmetries that makes it ine�cient in practice (see, e.g., Irnich et al. [184]).

Each possible route can be attributed to any vehicle, so each solution (routing plan) has

|K|! equivalent permutations. Next, we present a DW decomposition that eliminates this

symmetry.

Flow conservation constraints (2.35) correspond to |K| identical polytopes, each con-

taining all paths from 0+ to 0−, whose vertices are always integer. By including constraints

(2.37) and (2.38), each of the |K| resulting polytopes contains all paths from 0+ to 0−

satisfying the load capacity, but the integrality property is lost. Let us consider the DW

decomposition over the set PCV RP of vertices of the convex hull of constraints (2.35),

(2.37), (2.38), and (2.40), that represent the set of integer paths that satisfy the load

capacity. The resulting DW model is:

min
∑

p∈PCV RP

c̃pλp, (2.41)

s.t.:
∑

p∈PCV RP

apiλp = 1, ∀i ∈ I \ {0}, (2.42)∑
p∈PCV RP

λp = |K|, (2.43)

λp ∈ {0, 1}, ∀p ∈ PCV RP . (2.44)

The set partitioning model (2.41)�(2.44) provides a strong lower bound and it is among

the most successful formulations to solve the CVRP in practice (see, e.g., Pessoa and

Uchoa [269] and Pecin et al. [260]). This model associates with each path p ∈ PCV RP
a variable λp. The binary coe�cient aip is equal to 1 if and only if client i ∈ I \ {0} is
visited in p. The objective function (2.41) minimizes the total cost, where the cost c̃p of

a path p is the sum of the costs of the arcs in A(p). Constraints (2.42) guarantee that

each client is visited by exactly one route. As each variable represents a unique path, the

symmetry from the model (2.34)�(2.40) is eliminated.

The pricing problem associated with model (2.41)�(2.44) is equivalent to the ESPPRC.

In Section 2.2.3, we presented the exponential DP network NESPPRC for the ESPPRC.

Based on this network, and recalling that Ai(NESPPRC) is the set of arcs that visit i ∈ I,

34

we can reformulate the set partitioning model into the following arc �ow model:

min
∑

(u,v)∈A(NESPPRC)

c(u, v)ϕ(u,v), (2.45)

s.t.:
∑

(u,v)∈A(NESPPRC)

ϕ(u,v) −
∑

(v,w)∈A(NESPPRC)

ϕ(v,w) =


−|K|, if v = vsource,

|K|, if v = vsink,

0, otherwise,

∀v ∈ V(NESPPRC),

(2.46)∑
(u,v)∈Ai(NESPPRC)

ϕ(u,v) = 1, ∀i ∈ I \ {0},

(2.47)

ϕ(u,v) ∈ {0, 1}, ∀(u, v) ∈ A(NESPPRC).

(2.48)

The objective function (2.45) minimizes the total cost of the routing plan. Constraints

(2.46) impose the �ow conservation, and constraints (2.47) imply that each client is visited

exactly once.

As network NESPPRC is possibly exponential, the arc �ow model (2.45)�(2.48) may

be too large to be used in practice. Nonetheless, this model is presented so as to provide

an example in Section 2.4.2 on how a relaxation for the pricing problem of (2.41)�(2.44)

derives a pseudo-polynomial arc �ow model for the CVRP.

2.4 State-Space Relaxation on Arc Flow Formulations

Dynamic programming is often an e�cient tool to solve hard problems. However, when

the number of states from a DP model is very large, it is not practical to solve it by enu-

merating all states, and more sophisticated methods are needed. From that observation,

Christo�des et al. [76] proposed a general relaxation procedure for DP, called state-space

relaxation, which aggregates subsets of states in order to obtain a smaller state space

which provides a bound for the original problem. Such relaxation can be embedded in ex-

act solution methods to �nd the optimal solution for the original state space by (partially)

disaggregating the relaxed state space during the search for feasible solutions. Since a

state space may allow many di�erent relaxations, it is desirable to determine relaxations

that provide a good balance between number of states and strength of the relaxation.

Formally, a state-space relaxation consists of a mapping function g : S → G between

two state spaces, where |G| < |S|. For every s ∈ S and r ∈ ∆(s), function g must

guarantee that g(r) ∈ ∆(g(s)), and the decision cost of going from g(r) to g(s) is de�ned

as c̄(g(r),g(s)) = max{p,q∈S}{c(p, q) | g(p) = g(r), g(q) = g(s)}. The DP recursion of the

35

resulting state-space relaxation is given by:

fSSR(g(s)) =

{
max{p∈∆(g(s))}(fSSR(p) + c̄(p,g(s))), if s 6= s0,

0, if s = s0,
∀s ∈ S. (2.49)

As a relaxation, recursion (2.49) guarantees that fSSR(g(s)) ≥ fDP(s), i.e., it pro-

duces an upper bound for the original recursion fDP. In the context of arc �ow formula-

tions induced by DP, the size of the LP formulation is strictly related to the size of the

state space. In this case, smaller arc �ow formulations can be obtained from state-space

relaxations. Solutions obtained with the state-space relaxation may be unfeasible for the

original problem. However, there are many cases in which arc �ow formulations based on

networks from state-space relaxations are guaranteed to produce optimal integer solutions

that are feasible for the original problem. The main drawback of state-space relaxations

is that they lead to arc �ow formulations with weaker linear relaxation. This weakness

occurs as the relaxation can pro�t from paths that are not feasible in the original net-

work, generating, for instance, non-proper patterns in cutting and packing problems or

non-elementary routes in vehicle routing problems. However, in many cases, the reduction

on the size of the model pays o� the loss in the linear relaxation strength.

Strong pseudo-polynomial arc �ow formulations can be obtained from state-space re-

laxations of both pseudo-polynomial and exponential state spaces. Motivated by vehicle

routing problems, Gouveia et al. [154] studied modeling and solution methods of a class

of pseudo-polynomial arc �ow formulations obtained from state-space relaxation of expo-

nential state-spaces, named by the authors as layered graph formulations.

Next, we present two examples of pseudo-polynomial arc �ow formulations obtained

from state-space relaxations over a pseudo-polynomial and an exponential state space.

2.4.1 Example on the State Space for the Cutting Stock Problem

In Section 2.2.2, we presented recursion (2.7) to solve the KP. This recursion produces

network NKP, which has O(|I|W) nodes and O(|I|W) arcs. Then, in Section 2.3.1,

network NKP was the base of arc �ow model (2.29)�(2.33) for the CSP, i.e., the DP-Flow

model of Cambazard and O'Sullivan [62].

LetNKP-SSR be the network of a state-space relaxation ofNKP based on the mapping

function g((i,W ′)) = (W ′), for every state (i,W ′) ∈ V(NKP). This mapping function

disregards the dimension related to the partial set of items and merges states representing

the same partial capacities, into a single state. Network NKP-SSR is smaller than NKP,
with O(W) nodes, but it may contain paths that violate the maximum number of copies

of each item. Then, an arc �ow model for the KP, based on NKP-SSR, needs additional
side constraints to impose limits on the number of copies of items, while in NKP, such
constraints are implicitly imposed by the con�guration of the network.

In the CSP, as each demand constraint (2.31) imposes only a minimum and not a

maximum number of items, there is no problem in considering a network that has paths

representing cutting patterns with more copies of a single item than the required one.

Hence, the arc �ow model obtained by substituting NKP by NKP-SSR on model (2.29)�

36

(2.33) still solves the CSP, because unnecessary items copies, if any, can be removed from

the solution without a�ecting its cost. The resulting model is equivalent to the arc �ow

model for the CSP proposed by Valério de Carvalho [314].

The model with NKP-SSR is smaller than the original model, with O(|I| + W) con-

straints instead of O(|I|W), but its linear relaxation is weaker. Nonetheless, NKP-SSR
was obtained by Valério de Carvalho [314] after reducing the DP network of the UKP,

implying the graph of NKP-SSR is a subgraph of the underlying graph from a DP for

the UKP. This implies that the linear relaxation of the model with NKP-SSR is at least

as strong as the relaxation of the model by Gilmore and Gomory [149, 150], whose sub-

problem is the UKP. Thus, the resulting linear relaxation still follows the MIRUP conjec-

ture, implying that it is still strong. In practice, the arc �ow model by Valério de Carvalho

[314], which is associated with NKP-SSR, is preferable than the model by Cambazard

and O'Sullivan [62], which is associated with NKP, as its linear relaxation is still strong

and it is substantially smaller.

0 1 2 3 4 5 6 7 8

S

8

5 5

4 4 4

Figure 2.3: Example of network NKP-SSR obtained from a state-space relaxation of
NKP.

To exemplify, Figure 2.3 shows the network NKP-SSR obtained from the example of

Figure 2.1. We conclude that state-space relaxation can be considered to reduce the size

of pseudo-polynomial arc �ow formulations and obtain models with a linear relaxation

that is still strong. This modeling technique to derive smaller, but yet e�cient, pseudo-

polynomial models from the relaxation of pseudo-polynomial state spaces has been mainly

used, even without mentioning it, to model one- and two-dimensional cutting and packing

problems and scheduling problems (see Section 3.7).

2.4.2 Example on the State Space for the Capacitated Vehicle

Routing Problem

In Section 2.3.2, we presented a DW decomposition for the CVRP that resulted in the

path �ow model (2.41)�(2.44), which is known to have a strong linear relaxation. Then, we

presented the corresponding arc �ow model (2.45)�(2.48), which is based on the network

NESPPRC for the ESPPRC and has exponential size. In the following, we present a

state-space relaxation for NESPPRC that leads to a pseudo-polynomial arc �ow model

for the CVRP.

A pseudo-polynomial state space NESPPRC-SSR can be obtained from a state-space

relaxation of NESPPRC based on the mapping function g((S, i)) = (
∑

j∈S rj, i), for every

state (S, i) ∈ NESPPRC. This mapping function (originally proposed by Christo�des et

37

al. [76]) merges states with the same total load from the visited clients into a single state.

The resulting network NESPPRC-SSR, which has O(|I|W) nodes and O(|I|2W) arcs,

preserves the resource constraints of the ESPPRC, but it may consider non-elementary

paths (clients may be visited more than once).

In the exponential arc �ow model (2.45)�(2.48) for the CVRP, the side constraints

guarantee that clients are visited exactly once. Hence, by changing network NESPPRC
by NESPPRC-SSR in model (2.45)�(2.48), the resulting model still solves the CVRP and

has pseudo-polynomial size. This resulting model is often referred to as capacity-indexed

formulation (see, e.g., Pessoa and Uchoa [269]), and it has been studied as a layered graph

formulation by Gouveia et al. [154].

0, 0

1, 1 2, 2 2, 3 5, 4

3, 2 3, 3 6, 4 3, 1 4, 3 4, 2 6, 1

5, 3 5, 2 5, 1

s∗

-5 -3 1 -2

6 2 -2 -7 -1 2 -5 -2

-1 -5
2

26 -7

Figure 2.4: Example of network NESPPRC-SSR obtained from a state-space relaxation
of NESPPRC.

Figure 2.4 illustrates the networkNESPPRC-SSR obtained from the state-space relax-

ation of the network from Figure 2.2. It can be noticed that nodes ({1, 2}, 1) and ({1, 3}, 1)

have been aggregated into a single node (3, 1). As a result, NESPPRC-SSR has one node

and one arc less than NESPPRC. This is a minimal example of a reduction provided

by NESPPRC-SSR that could be presented within the limits of this paper. However,

due to the contrast of the exponential size of NESPPRC and the pseudo-polynomial size

of NESPPRC-SSR, there are many practical instances where the state-space relaxation

provides a huge reduction on the size of the network.

This example shows how state-space relaxation derives pseudo-polynomial arc �ow

models from a network of exponential size. This kind of modeling technique is often used

in vehicle routing problems, as the combinatorial structure of such problems usually leads

to exponential state spaces in DW decompositions (see, e.g., Righini and Salani [284]).

38

2.5 Dual Insight

Research has shown that controlling the values of the dual-variables when using the primal

simplex algorithm may improve computational times substantially. This happens, for

instance, by modifying the model adding extra primal variables (corresponding to extra

dual constraints) that must take null values at the end of the solution process. The use

of this strategy may help in reducing di�culties related with instability of dual variables,

primal degeneracy and long-tail e�ects, which are known to occur in column generation.

Other than the considerably smaller size, the use of more dual information is another

advantage of the arc �ow formulations over path �ow formulations. Dual constraints (i.e.,

dual optimality conditions) of path �ow formulations are non-negative combinations of

dual constraints of arc-�ow formulations. From a primal point of view, this competitive

advantage can be interpreted as resulting from the possible recombination of basic vari-

ables to generate di�erent paths in column generation algorithms (see, e.g., Sadykov and

Vanderbeck [290]).

2.5.1 On the Dual Space of Network Flow Formulations

Many state-of-the-art algorithms to solve LP models are based on iteratively pivoting from

one vertex of the LP polytope to a better neighboring vertex until an optimal solution is

found. An issue that may be critical for the computational time is degeneracy. A solution

is degenerate when there are basic variables with a null value; in such cases, there may be

degenerate pivots that lead to the same degenerate vertex, with no change in the primal

solution, nor improvement in the objective function. Hard combinatorial optimization

problems are often associated with highly degenerate models, and stalling, which is a

sequence of degenerate pivots, occurs in practice (see, e.g., Bazaraa et al. [17]). In fact,

in a degenerate pivot, there is no change in the primal solution, but the new set of basic

variables yields a change in the dual solution, leading to an alternative dual solution,

often with a high oscillation of the values of the dual variables.

This instability often happens with master problems of DW reformulations, which

may have a huge number of dual solutions associated to each primal solution. Several

strategies showed that controlling the dual-variable values in the primal simplex algo-

rithm may make the column generation procedure more e�cient. For instance, du Merle

et al. [117] introduced a stabilization procedure, combining a perturbation method and a

penalty method, that amounts to penalizing dual variables when they lie outside a pre-

de�ned box. Wentges [336] searches dual solutions in the neighborhood of the best dual

solution found so far, thus reducing instability. Other strategies include aggregating pri-

mal constraints (aggregation may change dynamically along the solution process), which

enables transferring degeneracy to a complementary problem that is able to select a more

central dual solution, as in [121, 120]. Further improvements aim at identifying a set

of non-basic variables that are pivoted together into the basis, avoiding degeneracy and

strictly decreasing the objective function value, by solving a problem, coined as comple-

mentary problem, in [50]. For other strategies and insights on overcoming instability in

combinatorial optimization algorithms, the reader is referred to, e.g., Lemaréchal [205].

39

Another strategy to deal with primal degeneracy and instability is to develop strong

models with a more restricted dual space. When comparing di�erent LP models for the

same problem with the same primal strength, the one with a tighter description of the

dual space eliminates alternative dual solutions, potentially reducing degeneracy. This

concept has been used in column generation algorithms by adding dual cuts that preserve

all dual optimal solutions or even at least just one dual optimal solution, leading to

signi�cant speed-ups and reductions in the number of degenerate pivots (see, e.g., Valério

de Carvalho [316], Lübbecke and Desrosiers [218], and Ben Amor et al. [29]).

LP solvers rely on the dual solution to prove optimality, and each dual constraint is

an optimality condition. In the following, we show that arc �ow formulations provide

a tighter description of the dual space than their corresponding path �ow formulations,

with a richer description of the optimality conditions of the LP models. For instance,

consider the dual of the linear relaxation of the path �ow formulation (2.13)�(2.15), given

by:

max
∑
k∈C

dkβk, (2.50)

s.t.:
∑
k∈C

∑
(u,v)∈A(p)

`k(u,v)βk ≤ c̃p, ∀p ∈ P(N), (2.51)

βk ≥ 0, ∀k ∈ C, (2.52)

where dual variable βk correspond to the constraints (2.14). Now, consider the dual of

the linear relaxation of the corresponding arc �ow formulation (2.16)�(2.20), given by:

max
∑
k∈C

dkβk, (2.53)

s.t.: αv − αu +
∑
k∈C

`k(u,v)βk ≤ c(u, v), ∀(u, v) ∈ A(N), (2.54)

αsource − αsink ≤ 0, (2.55)

αv ∈ R, ∀v ∈ V(N), (2.56)

βk ≥ 0, ∀k ∈ C. (2.57)

Each dual variable αv corresponds to the �ow conservation of node v ∈ V(N), and each

dual variable βk corresponds to the side constraint k ∈ C. For a given path p ∈ P(N), by

performing a non-negative linear combination of the dual constraints (2.54) of every arc

on A(p), we obtain:∑
(u,v)∈A(p)

(αv − αu) +
∑

(u,v)∈A(p)

∑
k∈C

`k(u,v)βk ≤
∑

(u,v)∈A(p)

c(u, v) = c̃p. (2.58)

Note that, each node v ∈ p, except vsource and vsink, is the head of an arc (u, v) ∈ A(p)

and the tail of an arc (v, w) ∈ A(p), producing in the �rst summation, respectively, the

40

terms αv and −αv that cancel each other. Then, (2.58) can be rewritten as:

(αsink − αsource) +
∑
k∈C

∑
(u,v)∈A(p)

`k(u,v)βk ≤ c̃p, (2.59)

which is the dual constraint from (2.51) for the path p, with an additional term

(αsink − αsource). From (2.55), we know that this term is always non-negative, implying

a tighter constraint. Thus, we conclude that every dual constraint of the path �ow

formulation is a redundant dual constraint for the arc �ow formulation, implying that the

arc �ow formulation provides a tighter dual space than the path �ow formulation.

Generally, when the linear relaxation of either path �ow or arc �ow models is solved by

simplex algorithms, the basis at each iteration is associated with a set of paths forming

a primal-feasible solution. This set of paths is unique in the case of path �ow, but

not necessarily unique in the case of arc �ow. If a same set of paths is considered to

form the basis of an arc �ow and of a path �ow model, the basis of the former will be

larger, due to the additional �ow conservation constraints and the fact that each path is

decomposed in a set of arcs in this model. But, in fact, the arc �ow basis can be seen

as obtained from a disaggregation of the path �ow basis, which directly implies more

optimality conditions. This guarantees a better description of the dual space, which, as

already discussed, provides a number of practical bene�ts.

Concluding, in practice, each simplex iteration of an arc �ow model can be more

expensive when compared to a path �ow model (due to the larger basis), but the number

of pricing iterations needed to reach proven optimality can be substantially smaller, which

in many cases is a signi�cant advantage.

2.5.2 Example on the Cutting Stock Problem

We present a numerical example to compare the dual of the classical arc �ow model

from Valério de Carvalho [314] (see Section 2.4.1) to solve the CSP and the dual of its

corresponding path �ow model. The dual of the linear relaxation of this arc �ow model

is given by:

max
∑
i∈I

βi, (2.60)

s.t.: − αv + αv+wi
+ βi ≤ 0, ∀i ∈ I, (v, v + wi) ∈ Ai(NKP-SSR), (2.61)

αsource − αsink ≤ 1, (2.62)

αv ≥ 0, ∀v ∈ V(NKP-SSR), (2.63)

βi ≥ 0, ∀i ∈ I. (2.64)

Variables αv are related to the �ow conservation constraints of each v ∈ V(NKP-SSR),

and variables βi are related to the demand constraint of each i ∈ I. Constraints (2.61)

are related to the arc variables, and constraint (2.62) is related to the �ow variable. The

41

dual of the linear relaxation corresponding path �ow model is given by:

max
∑
i∈I

βi, (2.65)

s.t.:
∑
i∈I

aipβi ≤ 1, ∀p ∈ P(NKP-SSR), (2.66)

βi ≥ 0, ∀i ∈ I. (2.67)

The variables βi are related to the demand constraints of each i ∈ I, and constraints

(2.66) are related to each path (cutting pattern) p of NKP-SSR, where aip is an integer

coe�cient representing the number of times item i is cut from pattern p.

Consider again the example from Figure 2.3, with bin capacity 8 and three items having

w1 = 4, w2 = 3, w3 = 2, and d1 = d2 = d3 = 1. Tables 2.1 and 2.2 present, respectively,

model (2.60)�(2.64) and (2.65)�(2.67) for this example. In the dual of the linear relaxation

of the arc �ow model, vsource and vsink are represented by 0 and S, respectively. In this

example, the path �ow model is relatively smaller than the arc �ow model, which is

not common for practical instances, as the former may have exponentially more primal

variables. However, our goal here is only to exemplify how the dual constraints (optimality

conditions) of the path �ow model are redundant dual constraints for the arc �ow model.

This can be observed as each dual constraint of the path �ow model related to a pattern

can be obtained by a non-negative linear sum of the dual constraints of the arc �ow model

related to the arcs that form this pattern. In particular: pattern {1, 2} can be formed by

arcs (0, 4), (4, 7), (7, S) and (S, 0); pattern {1, 3} by arcs (0, 4), (4, 6), (6, S) and (S, 0);

pattern {2, 3} by arcs (0, 3), (3, 5), (5, S) and (S, 0); pattern {1} by arcs (0, 4), (4, S) and

(S, 0); pattern {2} by arcs (0, 3), (3, S) and (S, 0); pattern {3} by arcs (0, 2), (2, S) and

(S, 0).

42

Table 2.1: Example of a dual arc �ow formulation for the CSP.

α0 α1 α2 α3 α4 α5 α6 α7 α8 αS β1 β2 β3

arc (0, 4) -1 1 1 ≤ 0

(0, 3) -1 1 1 ≤ 0

(4, 7) -1 1 1 ≤ 0

(0, 2) -1 1 1 ≤ 0

(3, 5) -1 1 1 ≤ 0

(4, 6) -1 1 1 ≤ 0

(0, S) -1 1 ≤ 0

(2, S) -1 1 ≤ 0

(3, S) -1 1 ≤ 0

(4, S) -1 1 ≤ 0

(5, S) -1 1 ≤ 0

(6, S) -1 1 ≤ 0

(7, S) -1 1 ≤ 0

�ow (S, 0) 1 -1 ≤ 1

max 1 1 1

Table 2.2: Example of a dual path formulation for the CSP.

β1 β2 β3

patterns {1, 2} 1 1 ≤ 1

{2, 3} 1 1 ≤ 1

{1, 3} 1 1 ≤ 1

{1} 1 ≤ 1

{2} 1 ≤ 1

{3} 1 ≤ 1

max 1 1 1

2.6 General Solution Methods

As previously discussed, an advantage of arc �ow formulations over their equivalent path

�ow formulations is that they can be much smaller and often can be solved directly by a

MILP solver (which is not practical for path �ow models). However, pseudo-polynomial

arc �ow models can still be too large, depending on the size of the parameters of an

instance. In such cases, one has to rely on more sophisticated methods to solve these

models. An advantage of arc �ow models derived from DW decompositions is that, since

their networks are based on the underlying pricing problem, it is not always necessary

to load the full network in the computer memory. Instead, one can use the structure of

the pricing problem to derive methods based on column generation or iterative aggrega-

tion/disaggregation to solve the problem to integer optimality while avoiding to generate

43

the full network. Such methods can lead to an increase in practical e�ciency and avoid

memory over�ow when solving instances associated with huge networks.

Column Generation

The column generation method (introduced in Section 2.3) solves the linear relaxation of

models with a large number of variables, and is a popular tool to solve path �ow models.

The method was proposed by Ford and Fulkerson [135] to solve a path �ow model for

a maximal multi-commodity network �ow problem and three years later generalized by

Dantzig and Wolfe [100] to solve the models resulting from DW-decompositions. Gilmore

and Gomory [149, 150] solved a path �ow model for the CSP by a column generation

algorithm and were the �rst to show the practical e�ciency of the method. Since then,

column generation has been the base of several methods to solve path �ow models. For

references on column generation algorithms not strictly related to arc �ow formulations,

we refer the interested reader to the survey by Lübbecke and Desrosiers [218] and the

book by Desaulniers et al. [112].

Column generation was applied to solve an arc �ow model for the �rst time by Valério

de Carvalho [314], who proposed a column-and-row generation algorithm. In the con-

text of arc �ow models, column-and-row generation iteratively generates arcs to enter

the simplex base, while the �ow conservation constraints (rows) are restricted to nodes

where there exists at least one incoming and one outgoing arc in the restricted prob-

lem. Sadykov and Vanderbeck [290] studied the column-and-row generation method and

experimentally compared the solution of path �ow models by column generation, with

the solution of equivalent arc �ow models by column-and-row generation, and observed a

faster convergence of the latter, which follows the discussion in Section 2.5.

In column generation algorithms (and lagrangian relaxations where only �ow con-

servation constraints are left in the master) to solve arc �ow models, an LPP on the

underlying network is iteratively solved, and its computational e�ciency is strictly re-

lated to the network size. In this context, when the network is too large, one may rely on

dynamic graph generation methods to solve the LPP, as proposed by, e.g., Fischer and

Helmberg [131], to solve LPPs that arise as sub-problems from arc �ow models based on

large-scale time-expanded networks.

Iterative Aggregation/Disaggregation Method

Several authors have studied state-space relaxation techniques to reduce the size of arc

�ow formulations (see, e.g., Macedo et al. [221], Clautiaux et al. [83], Voge and Clautiaux

[327], Boland et al. [40], Boland and Savelsbergh [42], and Riedler et al. [279]). These

techniques are equivalent to applying a surrogate relaxation to the �ow conservation

constraints related to subsets of nodes. Theoretically, this only reduces the number of

constraints. Practically speaking, after an aggregation, many arcs (variables) associated

with the same decision become equivalent in the reduced network and can be merged.

From an initial relaxation, these methods use iterative techniques in which the relaxation is

re�ned, typically by splitting nodes that have been aggregated, until the solution produced

44

by the relaxation is feasible for the original problem, or its value is equal to a known primal

bound.

Macedo et al. [221] were the �rst to use these techniques in pseudo-polynomial arc

�ow models. The authors used two aggregations: one produces a relaxation, the other

a heuristic solution. These results were later generalized by Voge and Clautiaux [327]

and Clautiaux et al. [83], who studied the di�culty of the di�erent sub-problems and

the performance ratio obtained by an aggregated model. More e�cient re�ning strategies

are studied in Riedler et al. [279]. The authors show that their path-based techniques

are more e�ective and underline the importance of heuristic methods in the algorithm.

In early works, the elements to be aggregated were decided beforehand. In Boland and

Savelsbergh [42], the authors introduced the paradigm of dynamic discretization discovery,

in which the discretization is constructed on the �y, producing a better relaxation, by using

information from the network construction process.

Such aggregation techniques have been generalized to �ows in hypergraphs by Benki-

rane et al. [32] to solve a joint rolling-stock and train selection problem for the French

railway company. The authors show that even for hypergraphs, one can safely use reduced-

cost �ltering on aggregated variables. Another type of relaxation is used in [249] to deal

with problems where several constraints can be reformulated as network-�ow constraints.

In their model, a network is created for each constraint, and the �ow conservation con-

straints of all networks but one are relaxed in a Lagrangian way.

Graph Reduction Methods

An important element of e�cient solution methods for arc �ow models is to determine arcs

that can be removed from the network without losing optimality. Removing redundant

arcs is important, as a smaller network may lead to a reduction in symmetry, a tighter

relaxation, and a smaller branch-and-bound tree. Many techniques to reduce the number

of arcs are problem-dependent, usually based on dominance criteria of the underlying DP,

and we discuss some of them in Section 3.7, under speci�c applications. Nonetheless,

general reduction techniques have been used to enhance arc �ow models, as, for instance,

the reduced-cost variable-�xing method (see, e.g., Pessoa et al. [265] and Kramer et al.

[199]).

Given a MILP minimization model, the reduced-cost variable-�xing method performs

a domain propagation based on a dual-feasible solution of the corresponding linear relax-

ation and an upper bound value zub corresponding to an available feasible solution. The

idea is that, given the objective value zlb of the dual-feasible solution, any integer variable

with a reduced cost greater than or equal to zub − zlb can be removed from the model.

Irnich et al. [183] proposed an e�cient reduced-cost variable �xing algorithm for elimi-

nating arcs in network �ow models that computes a bound on the reduced cost of the arcs

in arc �ow models based on a dual solution of the linear relaxation of its equivalent path

�ow model. This method was later extended by Desaulniers et al. [113] to determine and

e�ciently handle pairs of sequential arcs that cannot be in the same path in an optimal

solution. The impact of di�erent dual solutions in reduced-cost variable-�xing for network

�ow models has been recently discussed by de Lima et al. [104].

45

2.7 Successful Applications of Pseudo-Polynomial Arc

Flow Models

In this section, we discuss the main applications of arc �ow models, and discuss problem-

dependent solution methods and reduction criteria.

2.7.1 Cutting and Packing Problems

Arc �ow models have been used in a variety of cutting and packing problems, both in one

and multiple dimensions.

One-dimensional Problems

The classical arc �ow model for the CSP in [314] has a node for each partial stock size,

the arcs relate the items with cut positions (item arcs) or represent loss stock (loss arcs),

and the combination of arcs into paths represents cutting patterns. To solve this model to

integer optimality, Valério de Carvalho [314] proposed a branch-and-price algorithm based

on column-and-row generation. To accelerate the column generation's convergence, the

pricing problem generates paths (instead of single arcs). Valério de Carvalho [314] proved

that the arc �ow model is equivalent to the path (set-covering) model by Gilmore and

Gomory [149, 150], whereas Martinovic et al. [235] and Delorme and Iori [107] proved that

the arc �ow model is equivalent to the one-cut model by Rao [276] and Dyckho� [118].

The one-cut is a pseudo-polynomial model where variables represent cutting operations

on the roll.

To reduce the number of arcs, Valério de Carvalho [314] constructs the graph con-

sidering that items of a single roll can always be ordered by non-increasing width. The

resulting graph independently follows the state-space relaxation discussed in Section 2.4.1.

To obtain even smaller networks, Côté and Iori [93] proposed the meet-in-the-middle tech-

nique: each path representing a cutting pattern can be transformed into an equivalent one

by left aligning the items whose left border is at the left of a given threshold parameter

t, and right aligning the remaining items. Recently, de Lima et al. [104] proposed a new

way to reduce the graph in [314] by considering a maximum waste for each roll. They

developed a branch-and-price framework in which the branching produces a series of small

arc �ow models which are solved one at a time by a general purpose MILP solver.

Cambazard and O'Sullivan [62] proposed the DP-�ow, an arc �ow model for the CSP

(already introduced in Section 2.3.1) based on the DP network of the KP. Di�erently

from the classical arc �ow model for the CSP, which considers a node for each partial

stock size, the DP-�ow considers a node for each pair of items and partial stock size.

The network has a level for each item, and each feasible path visits the level of each item

exactly once. Although this modeling technique can substantially increase the number of

nodes, it allows one to consider only proper patterns. On the other hand, the classical arc

�ow model is smaller, but it cannot distinguish between proper and non-proper patterns,

so its relaxation can be weaker than the one of the DP-�ow.

A generalization of the classical arc �ow model for the CSP was proposed by Brandão

46

and Pedroso [54]. This generalization can model related problems, such as the vector

BPP, the BPP with con�icts, the cardinality constrained BPP and CSP, and the graph

coloring problem. The resulting network may be signi�cantly large, but several techniques

(referred to as graph compression) are proposed to reduce the network size. To break

symmetry, the authors proposed a modeling technique similar to the graph construction

of the DP-�ow, considering an extra dimension, related to the items, on the nodes.

Delorme and Iori [107] proposed the re�ect formulation, a pseudo-polynomial model

for the CSP that considers nodes and arcs only from half of the stock size. In practice,

this formulation is signi�cantly smaller than the classical arc �ow model. Besides, the

re�ect formulation has been proven to be as strong as the classical arc �ow model without

reduction criteria. Other than the CSP, Delorme and Iori [107] extended the re�ect formu-

lation to solve the variable-sized BPP and the BPP with item fragmentation. Dell'Amico

et al. [105] adapted the re�ect formulation to solve a feasibility problem in a Benders'

decomposition algorithm for the multiple knapsack problem.

Alves and Valério de Carvalho [9] presented a branch-and-price-and-cut algorithm

for the multiple length CSP that solves the Gilmore and Gomory [150] machine balance

model, which is a path �ow formulation, using the original arc �ow model to generate

attractive columns in a single subproblem and the variables of the arc �ow model to

implement a branching scheme, by expressing the branching constraints in terms of the

Gilmore and Gomory model variables. The equivalence of the path and arc �ow models

ensures a correct transferral of dual information. Valid dual inequalities are used to

stabilize and accelerate the search in the entire branch-and-bound tree.

Recently, arc �ow models were proposed for the skiving stock problem (SSP), which is

strongly related to the dual BPP. In the SSP, we are given a set of items, each having

a length and a maximum number of copies, to be combined into the maximum number

of larger items of minimum length W . Martinovic and Scheithauer [233] proposed an

arc �ow model for the SPP where nodes represent the length sum of combinations of

items, arcs represent the positioning of the items in a combination, and paths represent

a combination of items. This model, which is similar to the classical arc �ow model for

the CSP, cannot distinguish between proper and non-proper patterns. Martinovic and

Scheithauer [234] proposed an arc �ow model that considers only proper patterns, which,

similarly to the DP-�ow model, considers a node for each pair of items and possible length

sum, and the network has a level for each item. Martinovic et al. [232] proposed two arc

�ow models for the SSP: one considers reversed loss arcs, which lead to a reduction of the

worst-case number of nodes from 2W to W , and the other is based on the re�ect model

for the CSP.

Multi-dimensional Problems

Macedo et al. [220] extended the classical arc �ow model to minimize the number of

bins in the two-stage two-dimensional guillotine CSP. Their model has a one-dimensional

arc �ow graph for the �rst stage cuts (which cut the bins to obtain strips), and a one-

dimensional arc �ow graph for each possible strip size to determine the second stage cuts

(which produce the items from the strips, possibly admitting a �nal trim loss cut). To

47

reduce symmetry, the �ow in the second stage graph of a given strip size is equal to the

sum of the �ows for that strip size in the �rst stage graph. Note that these strips may

belong to the same bin or di�erent bins. Procedures to reduce the size of the graph and

a new family of cutting planes based on the height of the items were proposed. The arc

�ow model in Macedo et al. [220] was later adapted by Mrad [246] to solve the two-stage

two-dimensional guillotine strip packing problem.

Nesello et al. [251] proposed an arc �ow model, similar to the one by Macedo et

al. [220], to solve a three-stage two-dimensional strip packing problem where a limit

is imposed on the number of shelves and setup times between items must be taken into

account. Delorme et al. [110] adapted the classical arc �ow model for the CSP to solve the

one-dimensional contiguous bin packing problem, which often appears as a sub-problem in

two-dimensional cutting and packing solution methods. The authors used it to solve the

sub-problem of a Benders' decomposition algorithm for the two-dimensional strip packing

with item rotations and for the pallet loading problem.

Clautiaux et al. [86] solved the four-stage two-dimensional guillotine bounded knap-

sack problem with a network �ow model based on a directed acyclic hypergraph. They

compared the e�ciency of several algorithms based on this representation, including a

MILP model and an iterative state-space relaxation based on the corresponding DP.

2.7.2 Scheduling Problems

In the scheduling �eld, both time-indexed (see, e.g., Sousa and Wolsey [302]) and path

�ow (see, e.g., van den Akker et al. [318]) formulations have been widely used to solve a

variety of optimization problems. In a closely related context, polynomial arc �ow models

have been proposed more than three decades ago by Eppen and Martin [123] to solve

a lot-sizing problem. However, pseudo-polynomial arc �ow formulations have only been

adopted for scheduling problems during the last decade. It is worth mentioning that time-

indexed formulations can be used to derive arc �ow models of the same strength, which are

associated to a sparser constraint matrix. The equivalence between time-indexed and arc

�ow formulations has been shown in di�erent contexts starting from Valério de Carvalho

[315], who proved such equivalence by a unimodular transformation, in the context of the

CSP.

Pessoa et al. [265] developed a branch-and-cut-and-price algorithm for the problem of

minimizing weighted tardiness on identical parallel machines (denoted as P ||
∑
wjTj in

the three-�eld classi�cation of Graham et al. [156]). Their algorithm is based on an arc-

time-indexed formulation and is improved with a number of combinatorial techniques,

including variable �xing by reduced costs, extended capacity cuts, dual stabilization,

and the direct solution of the formulation by a MILP solver if the �xing procedure had

consistently reduced the number of variables. The method in Pessoa et al. [265] was later

extended by Bulhões et al. [55], who proposed a branch-and-cut-and-price algorithm to

solve a path �ow formulation for parallel machine scheduling in which the branching is

based on the variables of the arc �ow model.

Lancia et al. [202] developed a branch-and-price algorithm for the job shop problem

with a general min-sum objective function. Their algorithm is based on the solution of

48

an arc �ow model in which a path has to be chosen for each job (which is composed of

multiple operations). The model was strengthened by clique inequalities.

Ratli et al. [277] presented a comprehensive list of mathematical models for scheduling

jobs on a single machine by minimizing weighted earliness and tardiness. The problem,

denoted as 1||
∑
αjEj +

∑
βjTj, is relevant in the context of just-in-time production. In

computational tests on random instances, the arc �ow model achieved the lowest opti-

mality gaps.

Mrad and Souayah [248] presented a direct extension of the arc �ow formulation by

Valério de Carvalho [314] to the problem of scheduling jobs on identical parallel machines

with the objective of minimizing the makespan (P ||Cmax).

Kramer et al. [197] considered again the problem of scheduling jobs on identical

parallel machines, but focused on the minimization of the weighted sum of the completion

times (P ||
∑
wjCj). They presented an arc �ow model, and then enhanced it by grouping

jobs having the same weight and processing time and creating time windows for each group

by considering job priorities. A computational comparison showed that the enhanced

arc �ow performed very well compared to other time-indexed, convex integer quadratic

programming, and path �ow models.

Kramer et al. [198] extended the work in [197] to deal with the case of family setup

times (P |si|
∑
wjCj). The authors proposed three di�erent arc �ow models. In the most

e�cient one, the network is divided into a set of layers, one layer per family. Arcs within

the same layer considered only the processing time of a job, whereas arcs connecting two

layers considered both setup and processing times. Computational results showed that

setup times worsen the linear relaxation value of the arc �ow models, which outperformed

a path �ow model only on a handful of instances.

A further generalization of [197] was provided in [196], who considered the case of re-

lease dates (P |rj|
∑
wjCj) and obtained stricter time windows for the jobs. The resulting

arc �ow model obtained better results than a branch-and-price based on the path �ow

formulation on instances having jobs of small and moderate processing time.

We also mention that interesting integrations between scheduling and other combinato-

rial problems have been tackled in the literature. Cappanera and Scutellà [63] considered

a joint assignment, scheduling, and routing problem arising in home care optimization.

An arc �ow model was used for the generation of patterns, which represent feasible com-

binations of the three decision levels of the problem. Cire et al. [79] proposed an arc

�ow formulation for a rotation assignment and scheduling problem arising in the context

of clinical rotations. They demonstrate that the network model was computationally

superior to a classical MILP model on a real-world set of instances.

Braga et al. [53] compared two formulations for a combined cutting stock and schedul-

ing problem: a compact formulation strengthened with knapsack inequalities and an arc

�ow formulation. Using a revised version of the latter formulation based on aggregated

time periods, they derived a heuristic solution procedure that proved to be e�ective for

the solution of medium size instances. Rietz et al. [280] proposed and analyzed an arc

�ow formulation for a combined cutting stock and scheduling problem on parallel ma-

chines. Di�erent strategies to simplify the formulation by reducing the number of arcs

were presented.

49

Trindade et al. [308] solved scheduling problems with batch processing machines. In

such problems, the jobs are grouped into batches to be scheduled in machines, where

the batches have a capacity to be respected by the size of its grouped items. The author

proposed arc �ow models where nodes represent a discretization of the capacity of a batch

and arcs represent either a scheduled job in a batch or an unused capacity.

2.7.3 Routing Problems

In routing problems, the input is usually based on a network, where clients and depots

are given as nodes and arcs are related to transportation between the nodes (see, e.g.,

Toth and Vigo [306]). For such problems, arc �ow models based on the input network

lead to compact models that are small but may have weak relaxations and too much

symmetry to be solved in practice. Examples of such compact models are the classical

MTZ model by Miller et al. [241] for the traveling salesman problem (TSP) and the

three-index formulation (see Section 2.3.2) for the CVRP. In many routing problems, the

ability to avoid non-elementary routes is an important aspect to determine the strength of

a relaxation. For this reason, the best solution methods for many variants, especially the

ones with multiple vehicles, are usually based on path �ow formulations (see, e.g., Pessoa

and Uchoa [269] and Pessoa et al. [263]), as they can handle non-elementary routes more

easily than arc �ow formulations. However, pseudo-polynomial arc �ow formulations have

still been used to solve open problems of a number of variants, and to enhance state-of-

the-art methods based on path �ow formulations.

Pseudo-polynomial arc �ow formulations for vehicle routing problems were �rst intro-

duced by Godinho et al. [152] and Pessoa et al. [261], which, inspired by the early work

by Picard and Queyranne [266] for single machine scheduling with minimum tardiness,

proposed the capacity-indexed formulation for the CVRP. The capacity-indexed formu-

lation, which follows the network from the state-space relaxation in Section 2.4.2, has a

node (i, q) for each pair of client (or depot) i and partial capacity q, where the partial

capacities group the nodes into levels (layers). Then, each path arriving at a node (i, q)

represents a route that �nishes in client i and has total load q.

The capacity-indexed formulation is based on a network where paths may be associated

with non-elementary routes (which weakens its linear relaxation), and may be too large to

be solved in practice (see, e.g., Pessoa et al. [261]). The main interest in this formulation

is that its variables can be used to de�ne cutting planes (e.g., the extended capacity cuts)

to strengthen path �ow formulations for vehicle routing problems (see, e.g., Pessoa and

Uchoa [269]). According to Uchoa [310], cutting planes based on the capacity-indexed

formulation have been successfully used in other vehicle routing problems, and even in

parallel machine scheduling problems.

Macedo et al. [221] proposed an iterative aggregation/disaggregation algorithm to

solve an arc �ow formulation for the vehicle routing problem with time windows and

multiple routes. In the underlying network, each node corresponds to a time instant, and

each arc corresponds to a possible subtour. Aggregation based on rounding procedures

was used to make the routes with non-integer travel times �t the model's graph. Whenever

an infeasible solution was found, the nodes involved in the infeasibility were disaggregated,

50

and the resulting model was solved again.

Braga et al. [52] proposed an arc �ow formulation for the multi-trip inventory routing

problem where vehicles can perform more than a single route per time period. Following

Macedo et al. [221], nodes and arcs of the underlying network correspond to, respectively,

time instants and routes that may be assigned to a vehicle.

Algorithms based on iterative aggregation/disaggregation were later proposed to solve

time-expanded arc �ow formulations for the TSP with time windows (TSPTW). The

network of time-expanded formulations has a node (i, t) for each client i and time instant

t. Each path from the source to a node (i, t) represents a path arriving at client i at time t.

Boland et al. [41] and Riedler et al. [279] proposed iterative aggregation/disaggregation

algorithms to solve a time-expanded model for the TSPTW, starting with a reduced

network that is su�cient to produce a bound for the problem and is iteratively re�ned to

�nd an optimal solution. The method in Boland et al. [41] was later extended by Vu et

al. [328] to solve the generalization where travel times are time-dependent. This kind of

approach was also used by Boland et al. [40] to solve a continuous-time service network

design problem without the need to approximate the solution by a discretization of the

time-horizon.

2.7.4 Miscellaneous

Earth Observation Satellite scheduling requires to determine the pictures to be taken by

a set of satellites in a given time period, so as to satisfy side constraints and optimize

an objective function. Pseudo-polynomial arc �ow models have been proposed to solve

such problems by Gabrel and Murat [142] and Wang et al. [331]. In these models, the

nodes are related to a discretization of the time horizon, and the arcs are related to the

decisions on the pictures to be taken.

Kramer et al. [199] solved the dynamic berth allocation problem, which aims at

allocating vessels into quays that are divided into berths, while optimizing an objective

function based on the service time of each vessel. The authors proposed an arc �ow model

where nodes are associated with time instants and arcs are related to vessels serving.

Problem-dependent reduction criteria and a reduced-cost variable-�xing algorithm were

proposed to improve the solution time.

In the capacitated p-center problem, a set of customers must be attributed to capac-

itated facility locations, minimizing the maximum distance between each client and its

facility. To solve this problem, Kramer et al. [200] proposed an arc �ow model where the

underlying graph has a component for each location, in which nodes correspond to partial

�lling of the facility capacity, and arcs correspond to customers and unused capacity.

Ramos et al. [275] described an arc �ow formulation for the multi-trip production,

inventory, distribution, and routing problem with time windows. Nodes and arcs represent

time instants and vehicle routes, respectively.

Train timetabling problems require to determine a periodic timetable for a set of trains

that satis�es operational constraints and optimizes an objective function (see, e.g., Cac-

chiani and Toth [61]). The input for such problems is based on a graph where nodes

represent stations and arcs represent tracks. Train timetabling problems have been suc-

51

cessfully solved by arc �ow models based on time-expanded networks by Caprara et al.

[65] and Fischer and Helmberg [131].

Recently, van Hoeve [319] proposed an arc �ow model to solve the graph coloring

problem, which asks to partition a graph into the minimum number of independent sets.

The proposed arc �ow model is based on decision diagrams, which are closely related to

DP (see, e.g., Hooker [170]) and result in acyclic graphs. The resulting network in van

Hoeve [319] is equivalent to a DP network to solve the maximum independent set problem,

which is usually the pricing problem of path (set-partitioning) formulations for the graph

coloring problem (see, e.g., Gualandi and Malucelli [159]). An iterative re�nement method

is proposed by the authors to deal with the exponential size of the model.

2.8 Conclusion and Future Research Directions

In this survey, we reviewed over one hundred papers related to arc �ow formulations.

Many of these papers present arc �ow models having pseudo-polynomial size and a strong

linear relaxation. The number of applications of pseudo-polynomial arc �ow formulations

has grown considerably since the work by Valério de Carvalho [314], making them a valid

alternative to path �ow formulations. For many combinatorial optimization problems,

path �ow formulations are still the best alternative, because they can embed di�cult

constraints in the subproblem solved to build the paths. However, arc �ow formulations

have many positive aspects, among which we highlight that: they are powerful modeling

tools that allow one to model complex issues from real systems; pseudo-polynomial arc

�ow models are often related to DW decompositions, providing strong linear relaxations;

di�erently from path �ow formulations, they provide models that usually have a number

of variables which allows practical solutions directly by general MILP solvers, avoiding

complex implementations; compared to equivalent path �ow formulations, they have a

richer description of the dual space, leading to a faster convergence of simplex-based

methods; pseudo-polynomial arc �ow models can be derived from state-space relaxations

from the underlying DP network from path �ow models.

This survey is a contribution to a systematic study of arc �ow formulations, but we

would like to point out that there are many open questions and research lines to be

pursued. Some of them are the following.

One of the advantages of arc �ow formulations is that they provide a tighter descrip-

tion of the dual feasible space keeping the primal strength. Besides the methodologies

presented in this paper, are there any general hints on how to do both primal and dual

strengthening in arc �ow models? For example, in extended formulations, using new sets

of variables may strengthen the primal model and, as new (primal) variables are dual

cuts, there is also a richer description of the dual feasible space.

Models presented in this survey explore solution spaces that are convex combinations

of �ows, each corresponding to an s− t path, which is a sequence of arcs and vertices. Are

there other types of structures (e.g., involving sequences of operations) that also lead to

models with strong bounds? In fact, there are pseudo-polynomial models that, instead of

using a sequence of arcs to form a path (which is an extremal solution), use a sequence of

52

operations to form a solution that is extremal. Examples are Dyckho� [118] for the CSP,

and Silva et al. [297] and Furini et al. [141] for the two-dimensional CSP with guillotine

cuts. In these cases, one-cut operations are/have to be combined to form a cutting pattern

(the extremal solution).

There are pseudo-polynomial models that do not provide LP lower bounds as strong

as those of column generation (e.g., position indexed models for two-dimensional non-

guillotine CSP). Is there any structural (extremal) property, in these cases, that can be

explored and may lead to models with stronger bounds?

Several solution methods for large-scale arc �ow models, like the ones presented in

Section 2.6, are general and can be applied to any arc �ow model based on DP. A soft-

ware/library containing such general tools to solve general large-scale arc �ow models

would be an interesting contribution to the optimization and operations research commu-

nity.

53

Chapter 3

Exact Solution of Network Flow

Models with Strong Relaxations

3.1 Introduction

Mixed Integer Linear Programming (MILP) is one of the most popular mathematical

programming tools to solve optimization problems. Dantzig-Wolfe (DW) decomposition

[100] has been extensively used to enhance the strength of MILP models in many applica-

tions, by reformulating an original compact model into a so-called Dantzig-Wolfe Master

(DWM) problem where variables represent integer solutions of polyhedra induced by a set

of constraints from the compact model. A signi�cant importance of models with stronger

linear relaxation is to avoid an excessive enumeration in branch-and-bound trees. More-

over, as the polyhedron of their linear relaxation is closer to the convex hull of the integer

solutions, their optimal fractional solutions may provide good hints on how to derive

good-quality integer solutions.

Models derived from DW decomposition may be stronger than the original compact

models, but they usually require an exponential number of variables. Consequently, their

linear relaxation is typically solved by column generation (CG), a method where a re-

stricted set of variables is initially considered and new variables are iteratively generated

by solving a pricing problem (see, e.g., [218]). The exact solution of a DWM usually relies

on sophisticated branch(-and-cut)-and-price (B&P) algorithms, in which CG (and primal

cuts) is embedded within branch-and-bound. These algorithms are state-of-the-art for

many problems, but they are complex to implement, and their e�ciency usually relies on

problem-speci�c techniques.

The relation between integer solutions of bounded polyhedra with paths in acyclic

networks allows us to associate a discrete pricing problem with an acyclic decision network

in which each path is associated with a DWM variable (see, e.g., [321]). Hence, the DWM

can be seen as a path �ow model (where variables correspond to the �ow on each path

of the network). The interest in such representation is that it allows us to derive an

arc �ow model (where variables correspond to the �ow on each arc) having the same

linear relaxation value but exponentially fewer variables. In particular, any DWM of

exponential size that allows a pseudo-polynomial pricing algorithm can be transformed

54

into an equivalent arc �ow model of pseudo-polynomial size.

To the best of our knowledge, Valério de Carvalho [314] was the �rst to solve a pseudo-

polynomial arc �ow model in practice, over two decades ago, by developing a B&P for

the cutting stock problem (CSP). Still, the popularity of such models increased only in

the last decade, following the consistent improvements in general MILP solvers. The fact

that pseudo-polynomial arc �ow models have the same strength, and a much smaller size,

than their equivalent path �ow models has allowed their solution by general MILP solvers

to be an e�cient alternative to sophisticated B&P algorithms in many applications (see,

e.g., [101]). However, large-scale instances often produce huge networks, which become a

strong limitation in the e�ciency of the MILP solver. In addition, in cases where the linear

relaxation is not very strong, specialized B&P algorithms are still a better alternative than

the solution of an arc �ow model by a MILP solver. Further research in this area is thus

highly envisaged.

In this paper, we propose a general framework, which we call network �ow framework

(NF-F), to address the issue raised by huge networks in the solution of arc �ow models,

while exploiting the potential of CG and general MILP solvers. We focus on arc �ow

models of pseudo-polynomial size with very strong linear relaxation, where: either (i)

�nding an optimal solution is hard, but proving optimality is easy; or (ii) �nding an

optimal solution is easy, but proving optimality is hard. Both cases happen, for instance,

in the classical pattern-based formulation for the CSP [149, 150], which is a path �ow

model derived by a DW decomposition, in which the optimal integer solution value is

conjectured to be either dzlbe (case (i)) or dzlbe + 1 (case (ii)), where zlb is the optimal

dual bound (see, e.g., [64]).

NF-F is e�ective in solving case (i) instances thanks to an innovative and highly

asymmetric branching scheme in which a series of small-sized arc �ow models are solved

by a general MILP solver, in the spirit of the classical local branching [132]. These

models are expected to be su�ciently small to be quickly solved, but large enough to

likely contain an optimal solution. In instances of case (ii), once an optimal solution

is at hand, optimality is typically proven by completely exploring a branch-and-bound

tree. This process is usually accelerated by the use of primal cuts to strengthen the

relaxation. However, in many cases, the most e�ective cuts are problem-dependent and

usually produce a heavy impact on the pricing problem, while the huge number of arcs may

still be an unaddressed major issue. NF-F does not exploit the use of general primal cuts

but rather focuses on the use of reduced-cost variable-�xing (RCVF) procedures, which

are usually very e�ective for instances of case (ii). We particularly exploit the impact

of sub-optimal dual solutions in variable-�xing with a two-fold interest: providing an

increased reduction in the network size and possibly strengthening the linear relaxation.

We also provide speci�c contributions regarding the linear relaxation solution of arc

�ow and path �ow models, as: a formalization of a dual correspondence between these

models; a non-trivial CG algorithm that generates multiple paths and can be used to

solve the relaxation of both models; and a generalization of a method to deal with

dual-infeasibility in CG due to the limited precision of most Linear Programming (LP)

solvers. We provide applications to cutting and packing (C&P) problems that allow

pseudo-polynomial models with very strong relaxation, namely, the CSP, the two-stage

55

guillotine CSP, the skiving stock problem, and the ordered open-end bin packing problem.

For all such problems, we performed extensive computational experiments that prove the

outstanding performance of NF-F.

The remainder of this paper is organized as follows. Section 3.2 presents a brief

review on network �ow models derived from DW decompositions. Section 3.3 provides

an overview of NF-F. Sections 4.3, 3.5, and 3.6 present the details of the techniques that

we use to solve the linear relaxation, apply RCVF, and perform branching, respectively.

Section 3.7 discusses the applications to a number of C&P problems. The outcome of the

computational experiments is discussed in Section 7.4, where we also contrast our results

with those obtained by state-of-the-art algorithms. Finally, Section 7.5 gives conclusions

and future research directions. A preliminary version of this work appeared in [104].

3.2 Network Flow and Dantzig-Wolfe Decompositions:

Preliminaries

Due to a well-known relation between integer solutions of polyhedra with paths in acyclic

networks (see, e.g., [321]), a DWM can be directly represented as a path �ow model.

Then, based on the �ow decomposition theorem by Ahuja et al. [1], we can derive an arc

�ow model of the same strength (i.e., same linear relaxation value). This section brie�y

reviews path �ow and arc �ow models derived from DW decompositions.

A network N is a directed graph with a set of nodes V and a set of arcs A ⊆ V × V .
Two special nodes in V are the source v+ and the sink v−, for which no arcs in A enters

v+ or leaves v−. The set of all paths from v+ to v− is given by P , and the set of all arcs

of a path p ∈ P is given by Ap. The set of all paths in P that contain an arc (u, v) ∈ A
is given by P(u,v).

We assume that N is acyclic, as we are only concerned with decision networks under-

lying pricing problems from DW decompositions. In this context, V and A represent, re-

spectively, the states and decisions of a pricing algorithm. Each arc/decision (u, v) ∈ A is

associated with a cost c(u,v) ∈ Z and a contribution a(u,v) ∈ Zm to the constraints induced

by the problem. Each path p ∈ P in the pricing network represents a DWM variable with

cost cp =
∑

(u,v)∈Ap
c(u,v) and constraint coe�cients given by column ap =

∑
(u,v)∈Ap

a(u,v).

Then, the DWM can be formulated as a path �ow model:

min
∑
p∈P

cpλp, (3.1)

s.t.:
∑
p∈P

apλp ≥ b, (3.2)

λp ∈ Z+, ∀p ∈ P , (3.3)

where b ∈ Zm and each variable λp ∈ Z+ represents the �ow on path p ∈ P . The following
general arc �ow model is equivalent to (4.6)�(4.8):

56

min
∑

(u,v)∈A

c(u,v)ϕ(u,v), (3.4)

s.t.: FN ,ϕ(v) =


−z, if v = v+,

z, if v = v−,

0, otherwise,

∀v ∈ V , (3.5)

∑
(u,v)∈A

a(u,v)ϕ(u,v) ≥ b, (3.6)

ϕ(u,v) ∈ Z+, ∀(u, v) ∈ A, (3.7)

z ∈ Z, (3.8)

where FN ,ϕ(v) =
∑

(u,v)∈A ϕ(u,v)−
∑

(v,w)∈A ϕ(v,w). Each variable ϕ(u,v) corresponds to the

�ow on arc (u, v) ∈ A and variable z gives the total �ow.

The �ow decomposition theorem by Ahuja et al. [1] guarantees a one-to-many cor-

respondence that preserves the objective value, between the primal space of the linear

relaxation of path �ow and arc �ow models that are based on the same network. In this

way, formulations (4.6)�(4.8) and (3.4)�(4.4) have the same primal strength. This allows

us to handle primal solutions of both path �ow and arc �ow models equivalently. In

Section 4.3, we also formalize a correspondence between the dual space of such models.

Examples of equivalent arc �ow and path �ow models derived from DW decompositions

include the arc �ow model in [314] and the pattern-based formulation in [149, 150] for

the CSP. In the context of the capacitated vehicle routing problem, equivalent models are

the q-route formulation by Christo�des et al. [76] and the capacity-indexed formulation

(see, e.g., [138, 261]). Although path �ow and arc �ow models based on the same network

solve the same problem and have equally strong relaxations, each formulation may be

preferable under certain speci�c aspects, which we contrast in the following.

Overall Solution. The solution of path �ow models typically relies on B&P due to the

exponential number of variables. State-of-the-art B&P algorithms are usually specialized

and contain problem-speci�c features (with the recent exception of [264], which solves a

variety of problems). Arc �ow models too can be solved by B&P, but, due to their much

smaller size, they may be solved in practice by MILP solvers, which is the most popular

approach for these models. Few authors explore the correspondence between path �ow

and arc �ow models by combining them into a unique solution method. For instance,

Pessoa et al. [265] proposed a B&P algorithm based on a path �ow model that solves

the problem at the root node as an arc �ow model by a MILP solver if the network is

su�ciently small.

Dealing with Exponential Networks. In many strongly NP-hard problems, the

pricing only admits a decision network of exponential size (unless P = NP). Path �ow

models usually address the exponential nature of the network implicitly in specialized pric-

ing algorithms that consider dominance and reduction criteria. On the other hand, practi-

cal solutions for arc �ow models are limited to networks of at most pseudo-polynomial size.

However, pseudo-polynomial arc �ow models can be derived from exponential networks

57

by relying on a state-space relaxation of the pricing (see, e.g., [101]).

Linear Relaxation Solution. The LP relaxation of path �ow models is usually

solved by CG. For arc �ow, the LP relaxation of small- and medium-sized models may be

e�ciently solved by simplex/barrier algorithms. Still, larger models must rely on column-

and-row generation (as in [314]). The basis of a path �ow model is smaller as it does

not consider �ow conservation constraints. Thus, at each iteration, the restricted master

problem is solved faster. In contrast, an arc �ow basis is larger but less degenerate, so

CG usually converges within fewer pricing iterations (see, e.g., [101, 290]).

Branching and Cutting Planes. It is well known that additional constraints based

on arc �ow variables are robust, i.e., they do not impact on the pricing structure. In

contrast, additional constraints based on path �ow variables are often non-robust and

may heavily impact the pricing. In the context of network �ow, this impact may cause

an expansion of the network, increasing its complexity. Some authors solve path �ow

models by using robust branching and cutting planes based on arc �ow variables (see,

e.g., [9, 310]). However, many state-of-the-art B&P algorithms for path �ow models still

use non-robust branching constraints and cuts, since the improvement in terms of strength

may pay o� the increased pricing complexity. Then, a clear disadvantage of solving arc

�ow models with weak relaxations directly by a MILP solver is that they must rely solely

on branching and cutting planes for general MILP, which may not be competitive when

compared to the state-of-the-art for the equivalent path �ow models.

To summarize, path �ow better addresses networks of exponential size and is also

better suited for methods that rely on non-robust branching and/or cutting planes. On

the other hand, arc �ow is usually a good alternative to address problems with pseudo-

polynomial networks and when the use of non-robust branching or cutting planes is not

crucial, and their reduced size often allows the solution by MILP solvers.

3.3 An Overview of the Solution Framework

In this section, we provide an overview of NF-F. A depictive example is given in Figure

4.1. The input of NF-F is a network N , an upper bound zub on the optimal integer

solution value, the coe�cients c(u,v) and a(u,v) for each arc (u, v) ∈ A, and b. The input

is �rst used to build a path �ow model of type (4.6)�(4.8). The LP relaxation of the

model is solved by the CG algorithm of Section 4.3. To remove arcs that do not improve

the current incumbent, we use three RCVF strategies, each based on a di�erent search

for dual solutions (described in Section 3.5). These strategies are e�ective in those cases

where the optimal solution is at hand and the challenge is to prove optimality. The �rst

strategy is a traditional one based on the dual solution obtained at the end of the CG for

the original LP relaxation. The second and third strategies are more expensive and are

based on dual solutions obtained by solving specialized path �ow and arc �ow LP models.

At the root node, we apply the �rst and second strategies after solving the LP relaxation.

NF-F uses the branching scheme of Section 3.6, which is particularly e�ective when

the incumbent is still not optimal. The tree is limited to K levels. At each level, the

left branch is obtained by a large elimination of arcs and is directly solved as an arc �ow

58

CG

+

RCVF

Level 1

Arc Flow

+

MILP solver

∑
F∈B ΦF = 0

CG

+

RCVF

Level 2

Arc Flow

+

MILP solver

∑
F∈B ΦF = 0

CG

+

RCVF

Level K − 1

Arc Flow

+

MILP solver

∑
F∈B ΦF = 0

Arc Flow

+

MILP solver

Level K

∑
F∈B ΦF ≥ 1

∑
F∈B ΦF ≥ 1

Figure 3.1: Example of a branching tree with K levels.

model by a MILP solver. Although the aim is to provide relatively easier problems in the

left branch, in some cases these problems can be small but still hard enough and consume

most of the overall time limit. However, no additional stopping criterion is used to deal

with such cases. In the right branch, the linear relaxation with an additional branching

constraint is solved, followed by the application of the �rst RCVF strategy. The right

branch is branched again in the �rst K − 1 levels or solved as an arc �ow model by a

MILP solver in the last level. In this last node, we apply the third (and most expensive)

RCVF strategy before invoking the MILP solver. The tree is explored by breadth-�rst

search, by prioritizing left branches, and no parallelism is implemented.

3.4 On the Solution of the Linear Relaxation

In hard instances of strongly NP-hard problems, the network underlying a DWM is

usually huge, and e�cient methods for the associated network �ow models typically relies

on CG algorithms. In such algorithms, the LP relaxation with a restricted set of columns,

called restricted master problem (RMP), is iteratively solved. At each iteration, an oracle

solves the pricing problem to generate non-basic columns with negative reduced cost.

The algorithm halts if no such column can be found. For a deeper discussion, see, e.g.,

[112, 218].

This section describes the solution of the LP relaxation of path �ow and arc �ow

models in NF-F. We use column(-and-row) generation, and the dual plays a key role. For

59

that, consider the dual LP relaxation of (4.6)�(4.8):

max bᵀβ, (3.9)

s.t.: ap
ᵀβ ≤ cp, ∀p ∈ P , (3.10)

β ∈ Rm
+ , (3.11)

where β are the dual variables associated with constraints (4.7). The following is the dual

LP relaxation of (3.4)�(4.4):

max bᵀβ, (3.12)

s.t.: − αu + αv + a(u,v)
ᵀβ ≤ c(u,v), ∀(u, v) ∈ A, (3.13)

αv+ − αv− ≤ 0, (3.14)

αu ∈ R, ∀u ∈ V , (3.15)

β ∈ Rm
+ , (3.16)

where α and β are the dual variables associated with �ow conservation constraints (3.5)

and side constraints (4.3), respectively.

3.4.1 A Dual Correspondence

Recently, de Lima et al. [101] showed how arc �ow models provide a richer description

of the dual space when compared to path �ow models, which results in less degeneracy

in the LP solution. The proof is based on the fact that dual constraints of a path �ow

model can be obtained by aggregating dual constraints of the equivalent arc �ow model.

Here, we further exploit this fact to present a correspondence between the dual space of

these models.

Lemma 1. Given a feasible solution
〈
α, β

〉
of (4.9)�(4.13), it holds that β is also feasible

for (4.16)�(4.18).

Proof. The proof follows by showing that β satis�es constraints (4.17), i.e., aᵀpβ ≤ cp, for

all p ∈ P . Since
〈
α, β

〉
is dual-feasible for the arc �ow model, then by constraints (4.10)

it holds that αv−αu +a(u,v)
ᵀβ ≤ c(u,v), for every arc (u, v) ∈ A, and by constraints (4.11)

it holds that αv+ − αv− ≤ 0. Then, it follows that, for each p ∈ P , cp =
∑

(u,v)∈Ap
c(u,v) ≥∑

(u,v)∈Ap
(αv − αu + a(u,v)

ᵀβ) = αv− − αv+ +
∑

(u,v)∈Ap
a(u,v)

ᵀβ ≥
∑

(u,v)∈Ap
a(u,v)

ᵀβ =

ap
ᵀβ .

Lemma 2. Given a feasible solution β of (4.16)�(4.18), there exist α ∈ R|V| such that〈
α, β

〉
is feasible for (4.9)�(4.13).

Proof. Let α be de�ned by the following recursion:

αv =

{
min{αu + (c(u,v) − a(u,v)

ᵀβ) : (u, v) ∈ A}, if v 6= v+,

0, if v = v+.
(3.17)

60

In this de�nition, αv represents the cost of a shortest path from v+ to v, where the cost of

each arc (u, v) ∈ A is given by (c(u,v)−a(u,v)
ᵀβ). The proof follows by showing that α and

β satisfy the dual constraints (4.10) and (4.11). Constraints (4.10) are satis�ed, for every

arc (u, v) ∈ A, because, by the de�nition of αv, it holds that αv ≤ αu + (c(u,v)− a(u,v)
ᵀβ),

which directly implies that αv − αu + a(u,v)
ᵀβ ≤ c(u,v). To show that constraint (4.11)

is satis�ed, we �rst highlight that, since αv− corresponds to the cost of a shortest path

from v+ to v−, then αv− = min{cp − apᵀβ : p ∈ P}. Since β is dual-feasible for the path

�ow model, then it follows by constraints (4.17) that cp − ap
ᵀβ ≥ 0, for every p ∈ P ,

which directly implies that αv− ≥ 0. Then, since αv+ = 0 and αv− ≥ 0, it follows that

αv+ − αv− ≤ 0.

By combining Lemmas 1 and 2, the following result is derived:

Theorem 2 (Dual Correspondence). There is a one-to-many correspondence between

the solution space of (4.16)�(4.18) and (4.9)�(4.13), respectively, in which variables β

preserve the same solution on both sides of the mapping.

Theorem 2 guarantees that dual solutions β of either an arc �ow or a path �ow model

may be used without distinction in the methods presented next.

3.4.2 Computing the Minimum Reduced Cost of Arcs

Let us de�ne the minimum reduced cost of an arc as follows:

De�nition 4. Given a dual solution β ∈ Rm
+ , the minimum reduced cost of an arc

(u, v) ∈ A is the minimum reduced cost of a path among all paths that contain (u, v), and

is given by c(u,v) = min{cp − apᵀβ : p ∈ P(u,v)}.

The minimum reduced costs of the arcs are used in the oracle presented in Section 3.4.4

and in the RCVF strategies presented in Section 3.5. Irnich et al. [183] showed how to

e�ciently compute c(u,v), for all (u, v) ∈ A, by bidirectional Dynamic Programming (DP).

First, one has to compute the values c+
v and c−v , for each node v ∈ V , which represent

the minimum reduced cost associated with all paths from v+ to v and from v to v−,

respectively. The fact that N is acyclic allows one to compute c+
v and c−v , for each v ∈ V ,

by means of the following recursions:

c+
v =

{
min{c+

u + (c(u,v) − a(u,v)
ᵀβ) : (u, v) ∈ A}, if v 6= v+,

0, if v = v+,

c−v =

{
min{c−w + (c(v,w) − a(v,w)

ᵀβ) : (v, w) ∈ A}, if v 6= v−,

0, if v = v−.

E�cient implementations of a labelling DP algorithm based on the two recursions

allows us to simultaneously compute c+
v and c−v , for all v ∈ V , in O(A) time complexity.

Then, the minimum reduced cost of an arc (u, v) is simply given by c(u,v) = c+
u + (c(u,v) −

a(u,v)
ᵀβ)+c−v . The recursive structure also allows us to e�ciently retrieve a path associated

with c(u,v) after the execution of the DP algorithm.

61

3.4.3 Path-Based Pricing in Arc Flow

In CG algorithms for (4.6)�(4.8), given a dual solution β, the pricing problem

min{cp − apᵀβ : p ∈ P} (3.18)

can be solved as a shortest path problem on N , with arc costs c(u,v)−a(u,v)
ᵀβ, for (u, v) ∈

A. As networks from a DWM are acyclic, a shortest path can be found in O(|A|) by

a topological ordering of the nodes (see, e.g., [1]). In arc �ow models, to search for a

negative reduced cost variable, one can solve

min{c(u,v) − (−αu + αv + a(u,v)
ᵀβ) : (u, v) ∈ A}, (3.19)

which generates a single arc. In practice, however, generating complete paths (each to be

decomposed in a set of arcs) may signi�cantly improve convergence time (see [314]). In

what follows, we formalize the correctness of this approach.

Proposition 1. Let α ∈ R|V| and β ∈ Rm
+ be a solution of (4.9)�(4.13), possibly infeasible

but satisfying (4.11). Then, any path p ∈ P with negative reduced cost contains at least

one arc (u, v) ∈ Ap with negative reduced cost.

Proof. Let p ∈ P be a path with reduced cost cp − ap
ᵀβ < 0. We prove that at least

one arc in Ap has negative reduced cost by showing that the sum of the reduced costs of

arcs in Ap, given by
∑

(u,v)∈Ap
(c(u,v) − (−αu + αv + a(u,v)

ᵀβ)), is negative. By properly

canceling α terms from intermediate nodes in p, the sum of reduced costs is equal to∑
(u,v)∈Ap

(c(u,v) − a(u,v)
ᵀβ) + (αv+ − αv−) = (cp − aᵀpβ) + (αv+ − αv−). Since we suppose

that cp − apᵀβ < 0 and, by (4.11), (αv+ − αv−) < 0, it follows that the sum of reduced

costs of arcs in Ap is negative, and, therefore, at least one arc in Ap has negative reduced
cost.

Proposition 1 ensures that in the solution of an arc �ow model relaxation by CG, if the

pricing problem is solved as (3.18) and all arcs in the resulting path are introduced in the

RMP, then the CG algorithm only halts when all paths in P have non-negative reduced

cost. Hence, the β solution at the end of the CG algorithm is feasible for (4.16)�(4.18),

and, by relying on Theorem 2, there exists an α, computed by (3.17), such that
〈
α, β

〉
is

feasible for (4.9)�(4.13).

3.4.4 Column(-and-Row) Generation Algorithm

NF-F adopts a CG algorithm for path �ow models and a column-and-row generation

algorithm for arc �ow models. For path �ow, all rows are included in the RMP from the

beginning. For arc �ow, instead, we generate �ow conservation constraints on demand,

as proposed in [314], by adding a constraint (3.5) only when the corresponding vertex v

�rst appears as head or tail of an arc associated with an RMP variable.

Both algorithms include in the initial RMP base arti�cial variables with su�ciently

high objective cost, so as to avoid infeasibility. In addition, they reuse the optimal basis

of previous LP relaxations, when available.

62

In many problems, generating a single column per pricing iteration may lead to a slow

convergence of the algorithm. In network �ow models, it may be preferable to generate

multiple paths at each iteration. Therefore, we implemented an oracle that generates

multiple paths with negative reduced cost (if any exists), and, by relying on the discussion

in Section 3.4.3, can be used to solve the pricing of both path �ow and arc �ow models.

The oracle that we developed begins by computing c(u,v), for each (u, v) ∈ A, by using

the method described in Section 3.4.2. Then, for each row k = 1, . . . ,m in (4.7) or in (4.3),

the algorithm selects an arc (u, v) with minimum c(u,v) among the arcs that cover k (i.e.,

that have non-zero coe�cient on row k), and, by using the DP structure, it generates a

path in P(u,v) of minimum reduced cost. At the end, the oracle has generated, for each row

k, a path of minimum reduced cost that covers k. For instance, the algorithm generates

the columns of minimum reduced cost, such that each item (in packing problems) or

each client (in routing problems) is covered by at least one of such columns. Notice that

di�erent rows may lead to the same column, so repeated columns are discarded. The

overall algorithm has O(mζ + |A|) time complexity, where ζ is the maximum length of

a path, and it is preferable to use it when the matrix of (4.7) is sparse, so that more

di�erent columns are generated.

3.4.5 Dealing with Dual Infeasibility

To apply RCVF (Section 3.5) and to prune nodes by a dual bound in the search of

an integer optimal solution, a dual-feasible solution is needed. Most state-of-the-art LP

solvers work within the limited precision of �oating-point arithmetic and produce solutions

that are feasible within a small margin of error. In particular, the LP solver that we use

(Gurobi 9.1.1) assumes a dual solution of a minimization problem to be feasible if its

minimum reduced cost is greater than −ε, where ε is at minimum 10−9. Then, when the

minimum reduced cost lies between −10−9 and 0, the dual solution is still infeasible but

cannot be improved by CG because the solver may not include new columns in the RMP

base. This issue could be solved with the use of an LP solver with exact precision, but at

the cost of a signi�cant e�ciency loss. Instead, we implemented a method that attempts

transforming a dual-infeasible solution (with a minimum reduced cost between −10−9 and

0) into a feasible one.

A constraint in (4.7) is de�ned as a covering constraint if all of its left-hand-side

coe�cients are non-negative and as a packing constraint if all of its left-hand-side coe�-

cients are non-positive. The following result shows how to e�ciently derive dual-feasible

solutions for a large class of models:

Proposition 2. Consider a path �ow model (4.6)-(4.8) where the �rst 1, . . . ,m′ con-

straints are covering constraints and the last m′ + 1, . . . ,m constraints are packing con-

straints. Let ε > 0, and β ∈ Rm
+ be an (infeasible) dual solution with minimum re-

duced cost of a path between −ε and 0. If cp is a multiple of ε, for each p ∈ P, then,
β
′
= (εbε−1β1c, . . . , εbε−1βm′c, εdε−1βm′+1e, . . . , εdε−1βme) is a dual-feasible solution.

Proof. Let p ∈ P be an arbitrary path and cp(β) and cp(β
′
) be the reduced cost of p

associated with the dual solutions β and β
′
, respectively. We prove that β

′
is dual-

feasible by showing that cp(β
′
) ≥ 0. By considering that apk ≥ 0 and β

′
k ≤ βk, for each

63

k = 1, . . . ,m′, and that apk ≤ 0 and β
′
k ≥ βk, for each k = m′ + 1, . . . ,m, it is easy

to check that cp(β
′
) ≥ cp(β), which directly implies that cp(β

′
) > −ε, since cp(β) > −ε.

Now, considering that cp is a multiple of ε and that apk is integer, for all k = 1, . . . ,m,

we have that cp(β
′
) is also a multiple of ε. Finally, the fact that cp(β

′
) is a multiple of ε

and is strictly greater than −ε implies that cp(β
′
) ≥ 0.

Proposition 2 is a generalization of the technique by Held et al. [164] to obtain safe

dual-bounds for the vertex coloring problem. We consider ε = 10−9, which is always a

divisor of the integer coe�cients cp. Hence, in our algorithm, the proposition can always

be applied to models where constraints are only of covering and/or packing type. By

relying on Theorem 2, Proposition 2 can also be applied in the case of arc �ow models.

When (4.7) has additional constraints which are not covering nor packing, Proposition

2 cannot be applied, and we use a heuristic to try to obtain a dual-feasible solution by

treating these additional constraints as if they were of covering type, and then applying

the proposition to obtain β′. In theory, the heuristic procedure may fail to obtain a

dual-feasible solution, and in such a case NF-F would continue the optimization without

the ability to perform RCVF or prune the current node by dual bound. In practice, in

our computational experiments the only model which did not follow the hypothesis of

Proposition 2 is the model for the two-stage guillotine cutting stock problem (Section

3.7.2), but for this problem the heuristic procedure was always su�cient to provide a

dual-feasible solution at the end of the CG.

3.5 Variable-Fixing Based on Reduced Costs

Reduced-cost variable-�xing is a well-known technique used to �lter the domain of integer

variables in general MILP models (see, e.g., [160] and page 389 of [250]). Irnich et al. [183]

showed how the dual solution of a path �ow model can be used in an RCVF algorithm to

remove arcs. The overall idea is:

Variable-Fixing Algorithm. Given a primal bound zub and a dual-feasible solution β

of objective value zlb = bᵀβ, �rst compute the minimum reduced cost c(u,v) associated with

each arc (u, v) ∈ A (e.g., as described in Section 3.4.2), and then remove from N every

arc (u, v) ∈ A such that c(u,v) > zub − zlb − 1.

An equivalent approach has been implemented by Bergman et al. [36] in the general

context of Lagrangian bounds for multivalued decision diagrams.

Di�erent dual solutions may correspond to di�erent reduced costs, and this directly

a�ects the e�ectiveness of the RCVF. For instance, let θ(u,v) = c(u,v)−(−αu+αv+a(u,v)
ᵀβ)

denote the reduced cost of (u, v) ∈ A in model (4.9)�(4.13). A dual solution which allows

the removal of (u, v) by RCVF is one that satis�es bᵀβ + θ(u,v) ≥ zub. If such a solution

exists, it can be obtained by solving the dual arc �ow model with a modi�ed objective:

max{bᵀβ + θ(u,v) : (4.9), (4.10), (4.11), (4.12), (4.13)}. (3.20)

However, optimizing a model tailored for each arc can be very time consuming in practice.

In the general context of non-convex mixed-integer nonlinear programming, a similar

64

concern has been addressed in optimization-based bound tightening (see, e.g., [151]). In

the particular context of MILP, Bajgiran et al. [13] proposed a method to maximize

the number of variables �xed by RCVF, by solving a single MILP model derived from

an extension of the dual linear relaxation of the original model. This MILP model has

an additional binary variable for each original variable, indicating whether the resulting

dual solution is able to eliminate the associated original variable by RCVF. In our case,

this method is generally impractical, because we are concerned with models with a huge

number of variables that must rely on CG.

Here, we propose two strategies to search for dual solutions that may improve the

RCVF e�ectiveness, motivated by:

Remark 1. The removal of arcs with a positive primal value in the current optimal basis

leads to a basis-violation, which strengthens the linear relaxation.

In practice, this strengthening usually increases the e�ectiveness of further variable-

�xing. However, as shown in the following section, such arc-removal by RCVF can only

be obtained by relying on sub-optimal dual solutions.

3.5.1 Sub-Optimal Dual Solutions in Variable-Fixing

Sub-optimal dual solutions often produce a greater e�ectiveness in RCVF. This counter-

intuitive fact was already observed almost two decades ago, for instance, by Sellmann

[293] in the context of constraint programming-based Lagrangian relaxations. Here we

extend this observation by the following:

Proposition 3. Let (u, v) ∈ A be any arc with ϕ(u,v) > 0 in a given primal-optimal

solution ϕ. Then, there does not exist any dual-optimal solution β such that (u, v) can be

removed by the variable-�xing algorithm based on β and a primal bound zub ≥ dbᵀβe+1.

Proof. We assume that zub ≥ dbᵀβe+1, since in the trivial case in which zub = dbᵀβe,
optimality is already proven. By the classical complementary slackness theorem, it follows

that if ϕ and β are, respectively, primal-optimal and dual-optimal solutions, then, either

ϕ(u,v) = 0, or c(u,v) = 0. Then, by supposing that ϕ(u,v) > 0, we have that c(u,v) = 0.

Consequently, bᵀβ+c(u,v) = bᵀβ≤ dbᵀβe≤ zub − 1, which implies that (u, v) cannot be

removed by the variable-�xing algorithm based on β and zub.

By disregarding the trivial case in which zub = dbᵀβe, Proposition 3 ensures that, to

remove arcs with a positive primal value in the current optimal basis, we need a dual

solution that is sub-optimal. A generalization of Proposition 3 to the case of general

MILP models (not restricted to network �ow) is straightforward.

3.5.2 Variable-Fixing Strategies

In this section, we present the three RCVF strategies adopted in NF-F. In a preliminary

version of this paper [104], we used a di�erent strategy to obtain alternative dual solutions.

This strategy is not presented here, because in our experiments it was always outperformed

by the second and third strategies presented below. The three adopted strategies di�er

65

mainly in the way in which a dual solution is computed. In all strategies, each dual

solution obtained is used as input to the variable-�xing algorithm.

First strategy. The traditional strategy based on a dual solution obtained at the

end of CG for the original linear relaxation.

Second strategy. We obtain dual solutions by solving a dual path �ow model in

which, motivated by Proposition 3, the solution is allowed to be sub-optimal and the

reduced-cost of paths with positive value on a primal-optimal solution are included in the

objective. For that, we �rst consider the primal-optimal solution λ in terms of path �ow

variables. Then, the dual path �ow model to be solved is given by:

max bᵀβ +
∑

p∈P:λp>0

θp, (3.21)

s.t.: ap
ᵀβ + θp = cp, ∀p ∈ P , λp > 0, (3.22)

ap
ᵀβ ≤ cp, ∀p ∈ P , λp = 0, (3.23)

bᵀβ ≥ zlb − ε, (3.24)

β ∈ Rm
+ , (3.25)

θp ∈ R+, ∀p ∈ P , λp > 0, (3.26)

in which each θp explicitly models the reduced cost of variable λp, with λp > 0. Constraints

(3.24) allow the resulting dual solution to be sub-optimal for the original linear relaxation,

but limited by a given ε > 0. Model (3.21)�(3.26) is solved by row generation (i.e., CG of

its primal), by considering the primal variables associated with (3.22) and (3.24) already

in the initial RMP. Notice that, when the variable-�xing successfully removes a basic arc,

model (3.21)�(3.26) possibly provides a di�erent dual solution if solved again. Then, we

iteratively solve (3.21)�(3.24) and use the resulting dual solution in the variable-�xing

algorithm, until no more arcs are removed.

Third strategy. This is a re�nement (motivated by Remark 1) of the expensive

method that solves a model (3.20) tailored for each arc. It considers the primal-optimal

solution ϕ in terms of arc �ow variables and solves a restricted sequence of models (3.20),

each tailored for an arc (u, v) ∈ A, in which 0 < ϕ(u,v) < 1. Since we expect an arc

(u, v) with ϕ(u,v) closer to 0 to be more likely to be removed by variable-�xing, we follow

a non-decreasing order of ϕ(u,v) to build the sequence of models to be solved. Each model

is solved by column-and-row generation, producing a dual-feasible solution, which in turn

is used as input to the variable-�xing algorithm. Although we solve only a restricted

set of dual models, this strategy can still be expensive, and stopping criteria should be

considered. In NF-F, the strategy halts once the remaining number of arcs is smaller than

50m (where m is the number of side constraints). Despite the high computational cost,

this strategy can be very e�ective for cases in which the incumbent solution is optimal

and the challenge is to prove optimality. Hence, we only use it on the most expensive

node in our branch-and-price tree, i.e., the right branch of the last level.

66

3.6 Branching Scheme

A major issue in B&P is that e�cient branching schemes are not always robust. A

number of works propose general branching schemes that minimize the impact on the

pricing problem and at the same time help convergence to optimality (see, e.g., [323]).

However, not many B&P schemes exploit the network �ow representation of a DWM (as

done, e.g., in [9]). In general, any constraint
∑

(u,v)∈A a
′
(u,v)ϕ(u,v) ≥ b′ based on a linear

combination of arc �ow variables impacts on a pricing solved as a shortest path problem

by simply incrementing a′(u,v)
ᵀβ′ to the cost of each arc (u, v) ∈ A, where β′ is the dual

solution related to the constraint. A consequent result is that branching rules based solely

on arc �ow variables are robust.

Based on the primal correspondence given by the �ow decomposition theorem, any arc

�ow variable ϕ(u,v) can be represented as a sum
∑

p∈P(u,v)
λp of variables from the equivalent

path �ow model. Consequently, any arc �ow constraint
∑

(u,v)∈A a
′
(u,v)ϕ(u,v) ≥ b′ can be

directly represented as a path �ow constraint
∑

(u,v)∈A a
′
(u,v)

∑
p∈P(u,v)

λp ≥ b′. On the

other hand, it is not always possible to rewrite a linear constraint based on path �ow

variables in terms of arc �ow variables. This further motivates branching rules based on

arc �ow variables, as the resulting branching constraints can be easily handled by both

path �ow and arc �ow models.

3.6.1 Proposed Branching Scheme

The branching scheme we propose is based on sets of arcs and exploits the potential of a

general MILP solver in �nding optimal solutions of small/medium-sized models. Initially,

arcs that share mutual characteristics are grouped into subsets. It then considers arcs in

all subsets having null �ow in the optimal linear solution of a model, and either eliminates

all of them or forces at least one of them to be in the solution.

We de�ne an arc family F ⊂ 2A as an arbitrary set of mutually disjoint subsets of A.
For each F ∈ F , let variable ΦF =

∑
(u,v)∈F ϕ(u,v) represent the aggregated sum of arc

�ow variables associated with arcs in F . Given a primal solution ϕ in terms of arc �ow

variables, we represent as ΦF =
∑

(u,v)∈F ϕ(u,v) the cumulated sum of the solution values

of arcs in F .

The variable selection considers all variables related to the set of arcs B = {(u, v) ∈
F ∈ F : ΦF = 0}, which are used to create two branches. In the left branch, we implicitly

consider the branching constraint ∑
(u,v)∈B

ϕ(u,v) = 0 (3.27)

by removing all arcs in B from N . In the right branch we add the constraint∑
(u,v)∈B

ϕ(u,v) ≥ 1 (3.28)

to the model, implying that at least one arc in B must be in the solution. Depending on

the de�nition of F , the left branch is expected to lead to a great reduction in the size

67

of the network, while keeping variables that should provide good feasible solutions. The

reduced problem may be solved by an alternative method. In particular, we conclude this

branch by solving the residual arc �ow model by a MILP solver. The domain reduction

in the right branch may be weaker, but the branching constraint may behave as a cutting

plane, hopefully improving the optimal dual bound. In fact, although no arcs are explicitly

removed from the network in the right branch, the strengthening in the relaxation may

improve the e�ectiveness of RCVF.

In Section 3.7, we present the arc families used in our applications to C&P problems.

Further examples for other applications can be found in [104].

3.6.2 Lifting the Right-Branch Constraint

Constraint (3.28) imposes that at least one arc in B must be in the solution. The network

structure can be exploited to determine redundant arcs in B that can be in a solution only

if other arcs in B are also in the solution. The use of any of such redundant arcs implies

that the left-hand side of constraint (3.28) is at least 2. Thus, even if a redundant arc is

removed from B the set of integer solutions that are feasible w.r.t. (3.28) does not change.

On the other hand, such removal may violate fractional solutions, and this strengthens

the relaxation of the resulting model.

Once a redundant arc is removed from B, the list of remaining redundant arcs must

be updated, since some redundant arcs may become non-redundant. In this way, a greedy

removal of redundant arcs is not necessarily optimal w.r.t the number of arcs removed

from B. For that, we implemented a heuristic DP approach with O(|A|) time complex-

ity to maximize the number of redundant arcs removed. The algorithm iterates over a

topological ordering of V . At the iteration of node u∗, it computes whether there exists

any path from v+ to u∗ that does not have an arc in B. If true, it proceeds to the next

iteration, otherwise, it sets B ← B \ {(u∗, v) ∈ B}. To further remove redundant arcs

from B, we also apply the algorithm in the reversed network, obtained by inverting the

direction of the arcs.

3.7 Applications to Cutting and Packing Problems

We apply NF-F to four C&P problems that allow pseudo-polynomial arc �ow models with

strong relaxations. In the �rst three applications, we considered network �ow models from

the literature, which for conciseness are not explicitly reported here. However, since the

arc �ow model for the fourth application is new, we give its coe�cients to model (4.6)�

(4.8) and (3.4)�(4.5).

3.7.1 Cutting Stock Problem

In the CSP, we are given an unlimited number of stock rolls of length W ∈ Z+ and a

set I of items, each i ∈ I associated with a width wi ∈ Z+ and a demand di ∈ Z+.

The objective is to cut the minimum number of stock rolls to obtain all demands. An

68

equivalent problem is the bin packing problem (BPP), where di = 1, for all i ∈ I. We

refer to [109] for a recent survey.

The classical pattern-based model in [149, 150] is a path �ow model derived from a

DW decomposition of the textbook CSP model (see, e.g., [226]). The underlying network

of the model in [149, 150] is a DP network of an unbounded knapsack problem. The

equivalent arc �ow model was �rst solved in [314]. The network of this model discretizes

the stock roll into W unitary positions, and each node in V ⊆ {v : v = 0, . . . ,W} is

associated with a position, where v+ = 0 and v− = W . Each item i ∈ I has a set

Ai ⊆ {(v, v + wi) : v ∈ V , v ≤ W − wi} of arcs, where each arc (v, v + wi) ∈ Ai
represents the cut of item i starting from v in a stock roll. An additional set of arcs

A− = {(v, v−) : v ∈ V} represents waste portions of a stock roll. The overall set of arcs

is A = ∪i∈IAi ∪ A−.
A subset relation is used in the de�nition of V and Ai (i ∈ I) since not all positions

are necessary to solve the model exactly. Indeed, [314] proposed reduction criteria to

remove redundant arcs by considering that items can always be cut following a non-

increasing width ordering. Later, Côté and Iori [93] proposed the meet-in-the-middle

(MIM) patterns, which allowed to produce signi�cantly smaller networks. Based on the

following remark, we developed a technique that further reduces the network from [314]

and may lead to smaller networks than the ones resulting from the MIM patterns.

Remark 2. Given a CSP instance, let W ∈ Z+ be a value ensuring that there exists an

optimal solution where the maximum waste of a single stock roll is at most W . Then, all

arcs contained only in paths associated with cutting patterns with a waste larger than W

can be removed from the network.

A straightforward way to computeW considers that in any CSP solution with K stock

rolls the maximum waste on each roll is at most KW −
∑

i∈I widi. All arcs that only

lead to cutting patterns with a waste larger than W are computed by a back propagation

in the network, similarly to the method by Trick [307] to propagate knapsack networks

in constraint programming. The computation of the waste-limited network is given in

Algorithm 1. By considering items ordered by non-increasing wi, lines 1 to 7 create the

standard network in [314], and lines 8 to 15 impose the reduction from Remark 2.

We consider two general classes of arc families. The �rst arc family

Fak = {Fn = {(u, v) ∈ A : u ∈ {nk, . . . , nk + (n− 1)}} : n = 0, . . . , dW/ke − 1}

considers the sets of nodes sequentially partitioned in dW/ke − 1 parts of up to k nodes

each. Then, each set Fn represents the n-th part, and it contains all arcs whose tail lies

in such part. In general, larger values of k provide a conservative reduction in the left

branch. The second arc family

F bk = {Fin = {(u, v) ∈ Ai : u ∈ {nW/k, . . . , (n+ 1)W/k − 1}} : n = 0, . . . , k − 1}

considers the set of arcs of each item partitioned into k parts, following an increasing

order of the nodes. Each set Fin contains each arc in Ai whose tail lies in the n-th part.

For instance, when k = 2, F b2 represents a partition of the arcs of each item into two

69

Algorithm 1: WasteLimitedNetworkCSP

Input: W , I, and W
1 V+ ← {0}
2 for i = 1, . . . , |I| do
3 for copy = 1, . . . , di do
4 for v ∈ V+ in decreasing order do
5 if v + wi ≤ W then
6 Ai ← Ai ∪ {(v, v + wi)}
7 V+ ← V+ ∪ {v + wi}
8 V− ← {W −W, . . . ,W}
9 for i = |I|, . . . , 1 do
10 S ← {}
11 for copy = 1, . . . , di do
12 for (v, v + wi) ∈ Ai in increasing order of v do
13 if v + wi ∈ V− then
14 V− ← V− ∪ {v}
15 S ← S ∪ {(v, v + wi)}
16 Ai ← S

17 V ← {v : (v, v + wi) ∈ Ai or (v − wi, v) ∈ Ai, i ∈ I} ∪ {0,W}
18 A− ← {(v,W) : v ≥ W −W, v ∈ V}
19 return V, Ai (for all i ∈ I) and A−

parts, each representing either the �rst half or the second half of a stock roll. If k = W ,

then each part contains up to a single arc. For this family, larger values of k generate

in the left branch problems that are smaller, but also less likely to contain good integer

solutions.

3.7.2 Two-Stage Guillotine Cutting Stock Problem

In the two-stage guillotine cutting stock problem (2GCSP), we are given an unlimited

number of two-dimensional stock sheet with width W and height H, and a set I of two-

dimensional items. Each item i ∈ I has width wi, height hi, and demand di. The aim is

to cut all items from the minimum number of stock sheets, by using two-stage guillotine

cuts. The �rst and second cut stages consist of, respectively, horizontal and vertical cuts

parallel to the edges of the stock sheet. To separate items from waste, a third trimming

stage is allowed.

The state-of-the-art exact method for the 2GCSP is the arc �ow model in [93], which

corresponds to the model proposed by Macedo et al. [220] enhanced by the use of the

MIM patterns. Let H∗ = {hi : i ∈ I} be the set of all di�erent item heights. The arc

�ow model has a graph (V1,A1) representing �rst-stage cut decisions, in which V1 ⊆ {v :

v = 0, . . . , H} and A1 ⊆ {(v, v + h) : v ∈ V1, h ∈ H∗}. There is also a graph (V2
h,A2

h)

representing second-stage cut decisions in each strip of height h ∈ H∗ cut in the �rst stage,
in which V2

h ⊆ {v : v = 0, . . . ,W} and A2
h ⊆ {(v, v + wi) : v = 0, . . . ,W, i ∈ I, hi ≤ h}.

There are also source arcs connecting v+ to 0 in V1 and V2
h (for each h ∈ H∗) and sink

arcs connecting each node in V1 and V2
h (for each h ∈ H∗) to v−. A full description of the

70

model is reported in [93].

In our experiments for the 2GCSP, we solve the arc �ow model in [93] with NF-F by

setting K = 10 and using the arc family:

F ={Fv = {(v, v + h) ∈ A1
h : h ∈ H∗} : v ∈ V1}

∪ {Fv = {(v, v + wi) ∈ A2
h : h ∈ H∗, i ∈ I, hi ≤ h} : v ∈ ∪h∈H∗V2

h},

where the �rst and second parts correspond to all arcs related to speci�c �rst-stage and

second-stage cut positions, respectively.

Since the arc �ow model for the 2GCSP does not follow the hypothesis of Proposition 2,

we must rely on the heuristic method in Section 3.4.5 to convert dual-infeasible solutions

into feasible ones, which may fail. We attested that this heuristic conversion always

succeeded in the solution of the LP relaxation in all nodes of the branching tree. However,

it did not always succeed for the (many) dual-infeasible solutions obtained in the second

and third variable-�xing strategies, which were consequently deactivated.

3.7.3 Skiving Stock Problem

In the skiving stock problem (SSP), we are given the minimum width W of a large object

and a set I of items, where each item i ∈ I has a width wi and a maximum number of

copies bi. The objective is to recompose the items into the maximum number of large

objects.

The state-of-the-art exact method for the SSP is the re�ect formulation in [232]. In our

experiments, we solve the pseudo-polynomial arc �ow model in [233]. The network of this

model uses a set V ⊆ {v : v = 0, . . . ,W ′} of nodes to represent integer linear combinations
of the given item widths, whereW ′ ≥ W is a su�ciently large value, v+ = 0, and v− = W ′.

A set Ai ⊆ {(v, v +wi) : v ∈ V , v ≤ W ′ −wi} of arcs is associated with each i ∈ I, where
each arc (v, v + wi) ∈ Ai represents the inclusion of an item i from positions v to v + wi
of a large object. There is also a set of sink arcs A− ⊆ {(v, v−) : v ∈ V , v ≥ W}, where
each (v, v−) represents the �nal composition of a large object with total width v in the

solution. The overall set of arcs is A = ∪i∈IAi ∪ A−.
In our experiments, the arc �ow model is solved by NF-F based on an arc family

equivalent to F b20 (Section 3.7.1) and with K = 10.

3.7.4 Ordered Open-End Bin Packing Problem

In the ordered open-end bin packing problem (OOEBPP), we are given an unlimited

number of copies of a one-dimensional bin with capacityW and a sequence I = (1, . . . ,m)

of one-dimensional items, where each item i ∈ I has weight wi. The aim is to pack all

items into the minimum number of bins, by allowing the last item (and only the last item)

of the sequence in each bin to exceed the bin capacity.

The state-of-the-art exact method for the OOEBPP is a B&P algorithm for a set-

covering formulation (hence a path �ow model) by Ceselli and Righini [71]. We use the

model in [71] to derive an equivalent arc �ow model where the network is based on a

71

pseudo-polynomial pricing algorithm. This network is similar to the one of the DP-�ow

model for the CSP (see, e.g., [109]), which is based on the classical DP recursion for

the knapsack problem. The set of nodes is given by V ⊆ {(i,W ′) : i = 1, . . . ,m,W ′ =

0, . . . ,W − 1} ∪ {v−}, where v+ = (1, 0). Each item i = 1, . . . ,m − 1 has a set Ai ⊆
{((i,W ′), (i+ 1,W ′+wi)) : W ′ = 0, . . . ,W −wi−1} of arcs representing its selection as a

non-last item in a bin, and a setAdi ⊆ {((i,W ′), (i+1,W ′)) : W ′ = 0, . . . ,W−1} of dummy

arcs representing the decision of not taking i item in a path. Each item i = 1, . . . ,m is

associated with a set A−i ⊆ {((i,W ′), v−) : W ′ = 0, . . . ,W − 1}, of sink arcs representing

the decision of taking i as the last item in a bin. For the last item (i = m) in the input,

we de�ne Am = Adm = ∅. The full set of arcs is given by A = ∪i∈I(Ai ∪ Adi ∪ A−i).

An advantage of this network is that it explicitly models the ordering of the items in all

feasible paths.

In the resulting arc �ow model, the objective function minimizes the number of arcs

reaching the sink node, i.e., the number of paths (bins) used. In this way, c(u,v) is 1,

if (u, v) ∈ ∪i∈IA−i , and 0, otherwise. The side constraints guarantee that each item is

included in at least one path (bin). Thus, for all i ∈ I, bi = 1 and ai(u,v) = 1, for all

(u, v) ∈ Ai ∪ A−i , and 0, otherwise.

In our experiments, we solve this model by NF-F, using K = 10 levels and the simple

arc family F = {F(u,v) = {(u, v)} : (u, v) ∈ A}, which partitions A into individual arcs.

3.8 Computational Experiments

This section discusses the results of our computational experiments. The algorithms

were coded in C++ and the LP and MILP models were solved by Gurobi 9.1.1. The

experiments were run on a computer with an Intel Xeon E3-1245 v5 at 3.50GHz and 32GB

RAM, with a single-thread limit. First, based on the CSP, we evaluate the performance

of the NF-F components. Then, we also compare our results with those obtained by the

state-of-the-art algorithms on each problem.

3.8.1 Experiments on the Cutting Stock Problem

For the CSP, we consider the benchmark used to test the most recent exact methods, avail-

able at the BPPLIB [111]. They include classes Falkenauer, Hard, Scholl, Schwerin, and

Waescher, which are all well-solved by state-of-the-art methods, and classes AI and ANI

from [109], which contain several open instances. Classes AI and ANI are both composed

of 250 instances, divided into 5 groups of 50 instances having the same number of items.

Instances in AI have optimal solution value equal to the optimal dual bound zlb of the

pattern-based model, whereas instances in ANI have optimal solution value equal to zlb+1.

Comparison of variable-�xing strategies. We propose four algorithms to evaluate

the RCVF e�ectiveness. They consist in applying (or not) the RCVF strategies from

Section 3.5 to some extent, and then solving the residual problem as an arc �ow model

by the MILP solver: in No RCVF, no variable-�xing is applied; RCVF 1 uses the �rst

strategy; RCVF 1+2 uses the �rst and second strategies in sequence; and RCVF 1+2+3

72

Table 3.1: Comparison of RCVF strategies for the CSP (time limit 600s)

No RCVF RCVF 1 RCVF 1+2 RCVF 1+2+3

Class # ins time opt rd. % time opt rd. % time opt rd. % time opt

AI200 50 29.9 50 35.2 16.3 50 61.8 14.4 50 66.6 22.7 50
AI400 50 410.6 27 41.5 242.8 36 78.5 171.1 38 84.7 141.8 41
AI600 50 600.0 0 30.8 543.7 7 68.5 350.4 25 78.3 254.6 33
AI800 50 600.0 0 29.2 593.5 2 74.0 371.3 24 83.6 301.4 35
AI1000 50 600.0 0 31.4 589.7 1 66.0 480.5 14 73.8 433.3 24

ANI200 50 53.9 50 61.1 13.0 50 96.9 2.0 50 97.9 1.4 50
ANI400 50 546.0 11 47.0 203.5 39 94.9 47.7 47 99.7 7.5 50
ANI600 50 600.0 0 29.4 583.8 4 84.7 204.4 34 99.8 36.9 50
ANI800 50 600.0 0 31.6 600.0 0 80.0 328.0 26 98.0 154.0 47
ANI1000 50 600.0 0 35.9 600.0 0 79.7 428.7 20 88.1 357.9 31

Falkenauer T 80 0.3 80 4.4 0.2 80 4.5 0.3 80 8.7 0.4 80
Falkenauer U 80 0.2 80 3.2 0.2 80 3.4 0.3 80 3.4 0.3 80
Hard 28 60.6 28 65.2 30.0 28 69.5 27.7 28 69.8 28.9 28
Random 3840 1.9 3838 15.9 2.2 3838 16.9 2.3 3838 17.0 15.0 3823
Scholl 1210 12.7 1195 12.9 20.7 1191 13.8 21.1 1190 13.8 45.5 1160
Schwerin 200 3.5 200 3.5 3.3 200 3.5 3.3 200 3.6 5.8 200
Waescher 17 298.0 14 17.4 305.1 14 17.7 306.1 14 17.7 362.2 14

Overall 5955 295.1 5573 29.1 255.8 5620 53.8 162.3 5758 59.1 127.6 5796

uses all strategies in sequence. A time limit of 600 seconds per instance is imposed. Table

3.1 gives average running times (time) in seconds, numbers of instances optimally solved

(opt), and average percentages of arcs removed (rd. %).

Classes Falkenauer, Hard, and Schwerin are well-solved by all algorithms. The number

of instances solved in class Waescher remains unchanged for all algorithms. Random and

Scholl are the only classes in which applying the more expensive strategies worsens the

number of instances solved. However, most of the instances in these classes fall in the

case in which zopt = dzlbe, in which RCVF is not very helpful. However, by analyzing the

subset of instances in these two classes in which zopt = dzlbe + 1, we noticed that RCVF

led to a good average improvement.

For the hardest classes (AI and ANI), it is always worth to apply more expensive

RCVF strategies, because the number of solved instances increases consistently. Already

with the �rst strategy, a substantial reduction in the network size is observed. A larger

improvement is obtained when the second and third strategies are used, especially for

the ANI instances. These instances particularly bene�t from RCVF, because at the be-

ginning of all algorithms we already have the optimal solution (easily found by simple

heuristics) and the challenge is just to prove optimality. Then, the use of sub-optimal

dual solutions consistently strengthens the LP relaxation, and optimality of 134 out of

250 ANI instances is proven even before invoking the MILP solver. Clearly, this did not

occurr in any AI instance. The average ratio of basic arcs removed per iteration for AI

and ANI is, respectively, 10.1 and 56.5 in the second strategy, and 5.7 and 8.4 in the

73

third strategy. Overall, the results prove that applying the three strategies leads to better

results on average.

Analysis of the heuristic behavior of the arc families. To analyze whether the

branching scheme of Section 3.6 is a good approach to quickly �nd optimal solutions, we

solve a single left branch for six di�erent arc families: Fa1 , Fa5 , Fa10, F b5 , F b10, and F b50. For

each family, we solve the linear relaxation (no RCVF is applied) and a single left branch,

to obtain a feasible solution. Then, optimality is determined by comparing the solution

value with the dual bound. For the sake of conciseness we do not report extended results.

The best balance between number of instances solved to proven optimality and com-

putational time is given by Fa1 . With this family, the number of AI instances with 200,

400, 600, 800, and 1000 items solved to proven optimality by this procedure is respectively

48, 34, 32, 28, and 16, with average computational time being, respectively, 0.6, 7.9, 68.9,

121.5, and 237.9 seconds. By comparing these results with column `No RCVF' in Table

3.1, it is clear that the branching improves the MILP solver in quickly �nding an optimal

solution. All next experiments on the CSP are based on arc family Fa1 .

Comparison of di�erent networks. To evaluate the e�ectiveness of the new waste-

limited network, we provide a comparison with network based on the MIM patterns [93].

For that, we solved the models derived from both networks by NF-F, with a time limit

of 600 seconds per instance. Table 3.2 presents the results, giving average number of arcs

(# arcs), average time (time), and number of proven optimal solutions (opt).

In the AI and ANI classes, the waste-limited network performs better than the MIM,

mainly because goal solutions (of value dzlbe) of instances in these classes do not allow any

waste, which greatly bene�ts the reduction based on Remark 2. The remaining classes are

all well-solved by using both networks, except for Waescher, in which three instances are

always unsolved, and Scholl, in which the MIM performs better. Since there is no overall

dominance among the networks, in the next experiments we compute both networks a

priori and use smallest one.

Comparison with the state-of-the-art. We compare the results obtained by NF-F

with: the enhanced solution of the re�ect formulation (a pseudo-polynomial CSP arc �ow

model) by Delorme and Iori [108], solved with an Intel Xeon at 3.10 GHz and 8 GB RAM;

the branch-and-cut-and-price algorithm by Wei et al. [333], solved with an Intel Xeon

E5-1603 at 2.80-GHz and 8 GB RAM; and the branch-and-cut-and-price algorithm for

general network �ow problems with resource constraints by Pessoa et al. [264], solved

with an Intel Xeon E5-2680 at 2.50 GHz with 128 GB RAM shared by 8 copies of the

algorithm running in parallel. All experiments considered a time limit of 3600 seconds

per instance. To compare the performance of each CPU, we provide their single-thread

passmark indicators (STPI) (available at www.passmark.com), where higher values are

associated with better performance. The computer used in the experiments of [108],

[264], [333], and the present work have STPI 2132, 1763, 1635, and 1739, respectively.

The results are presented in Table 3.3. Under columns `Arc Flow' and `NF-F', we

report the results of the arc �ow model solved, respectively, directly by Gurobi and by

www.passmark.com

74

Table 3.2: Comparison of di�erent networks (time limit 600s)

MIM Waste-limited network

Class # ins # arcs time opt # arcs time opt

AI200 50 85507.8 10.4 50 59745.4 2.0 50
AI400 50 671348.2 169.8 48 507569.6 25.2 50
AI600 50 2128423.7 327.0 37 1670828.2 118.1 48
AI800 50 6004603.6 475.4 23 4789367.9 271.2 41
AI1000 50 15134832.1 596.8 2 11949055.6 513.7 18

ANI200 50 83947.6 32.2 49 59289.7 3.0 50
ANI400 50 668211.3 278.1 44 503879.3 24.9 50
ANI600 50 2121692.8 487.5 17 1663330.5 105.1 49
ANI800 50 5990194.7 590.1 4 4772556.4 291.8 43
ANI1000 50 15104071.5 600.0 0 11915143.1 507.9 21

Falkenauer T 80 4840.1 0.3 80 1285.8 0.3 80
Falkenauer U 80 1513.8 0.1 80 2906.6 0.1 80
Hard 28 22219.4 23.7 27 27066.5 24.8 27
Random 3840 4238.4 0.6 3840 9833.7 0.9 3840
Scholl 1210 11384.0 1.3 1210 26426.9 12.9 1193
Schwerin 200 5560.4 0.2 200 11928.4 1.0 200
Waescher 17 101141.2 211.9 14 121536.2 334.9 14

Overall 5955 2831984.1 223.8 5725 2240691.2 131.6 5854

Table 3.3: Comparison with the state-of-the-art for the CSP (time limit 3600s)

DI [108] WLBL [333] PSUV [264] Arc Flow NF-F

Class # ins time opt time opt time opt time opt time opt

AI200 50 8.5 50 4.2 50 52.3 50 21.5 50 2.0 50
AI400 50 1205.0 40 398.1 46 491.4 47 904.2 44 25.2 50
AI600 50 - - 1759.6 27 1454.1 35 3326.9 9 192.4 49
AI800 50 - - 2766.3 15 2804.7 28 3600.0 0 566.5 46
AI1000 50 - - 3546.1 2 - - 3600.0 0 1577.1 36

ANI200 50 49.3 50 13.9 50 16.7 50 16.3 50 3.0 50
ANI400 50 2703.9 17 436.2 47 96.0 50 1252.5 42 24.9 50
ANI600 50 - - 3602.7 0 3512.5 3 3473.5 6 140.7 50
ANI800 50 - - 3605.9 0 3600.0 0 3600.0 0 393.2 49
ANI1000 50 - - 3637.7 0 - - 3600.0 0 1302.5 43

Falkenauer T 80 1.0 80 1.9 80 16.0 80 0.8 80 0.3 80
Falkenauer U 80 0.1 80 3.8 80 - - 0.1 80 0.1 80
Hard 28 4.2 28 41.5 28 17.0 28 39.9 28 23.6 28
Random 3840 - - 6.2 3840 - - 1.4 3840 0.9 3840
Scholl 1210 6.6 1210 5.0 1210 - - 8.2 1210 1.4 1210
Schwerin 200 0.2 200 0.3 200 - - 1.3 200 0.2 200
Waescher 17 41.3 17 8.7 17 - - 1510.0 17 161.2 17

75

Table 3.4: Comparison with the state-of-the-art for the 2GCSP (time limit 7200s)

MMH [247] MAV [220] SAV [297] CI [93]∗ NF-F

Class # ins time opt time opt time opt time opt time opt

A 43 277.2 42 377.9 43 735 41 1.9 43 0.3 43
A-r 43 1014.2 37 - - - - 606.9 40 59.7 43
APT 20 - - - - 3642.6 12 729.6 18 472.4 18
APT-r 20 - - - - - - 1599.4 16 1557.4 16

∗: results of our reimplementation of the arc �ow model in [93]

NF-F. For the AI and ANI classes, the best previous results were obtained by Pessoa et al.

[264], who optimally solved 263 out of 500 instances. NF-F raised the number of proven

optima to 473, and it could solve for the �rst time many ANI instances with 800 and

1000 items, mainly due to the new RCVF strategies. The LP relaxation strengthening

obtained by these strategies allowed some of these instances to be solved already at the

root node. The new branching scheme helped �nding an optimal solution for several hard

AI instances within a reasonably short computational time. For the remaining classes,

the method by Wei et al. [333] already performed well. Our method could improve

the average solution time of all classes with the exception of Waescher, because of a few

instances that required a large computational time in the solution of speci�c left branches.

3.8.2 Experiments on the Two-Staged Cutting Stock Problem

For the 2GCSP, we compare NF-F with the most recent exact methods for the problem,

namely: the B&P by Mrad et al. [247]; and the pseudo-polynomial MILP models by

Macedo et al. [220], Silva et al. [297], and Côté and Iori [93]. The best published results

are the ones by the arc �ow model in [93], which is also the model that we solve with NF-

F. The experiments were based on benchmark classes A and APT, and their respective

variants A-r and APT-r in which items and stock sheets are rotated by 90 degrees. These

instances can be downloaded from the 2DPackLib (http://or.dei.unibo.it/library/

2dpacklib).

Table 3.4 reports, for each algorithm and each class, the average time and the number

of instances solved to proven optimality. The algorithm in [247] was solved on a Pentium

IV at 2.2 GHz with 4 GB RAM (STPI 562), and the models in [220, 297] were solved

on an Intel Core Duo at 1.87 GHz with 2 GB RAM (STPI 675). We also compare NF-F

with the arc �ow model solved directly by Gurobi, which is the approach in [93]. Thus,

column CI does not report the results in [93], but rather the updated (and improved)

results obtained by solving their model by the current version of Gurobi in our computer.

All results consider a time limit of 7200 seconds per instance.

Although not all previous publications addressed all classes, we can see that the arc

�ow model in [93] dominates on average the previous works. NF-F provides the best results

overall: It uses a smaller average time, mainly due to the e�ectiveness of the branching

scheme, and solves all instances in class A-r for the �rst time. The six remaining open

instances in classes APT and APT-r have an absolute gap of just one stock sheet.

http://or.dei.unibo.it/library/2dpacklib
http://or.dei.unibo.it/library/2dpacklib

76

3.8.3 Experiments on the Skiving Stock Problem

For the SSP, we compare NF-F with the re�ect formulation in [232] and with a reimple-

mentation of the arc �ow model in [233] executed with the latest version of Gurobi on our

computer. The results in [232] were obtained by an AMD A10-5800K with 16 GB RAM

(STPI 1493). Our experiments are based on the three benchmark classes A1, composed

of 1260 easy instances, A2, composed of 1050 hard instances, and B, composed of 160

hard instances. The arc �ow model at the basis of NF-F is the one in [233].

Table 3.5 gives average times and numbers of instances optimally solved. For class A1,

all methods could solve all instances very quickly. For class A2, all methods could solve

all instances with up to 100 items, but NF-F was quicker. For instances with 250 and 500

items, NF-F could not improve the solution of the arc �ow model as a (general) MILP.

The reason is that for some instances there are left branches whose resulting problems,

although consistently smaller, are very hard to solve. We believe that the source of such

di�culties is often an excessive restriction on the number of optimal solutions remaining

in these branches. For class B, NF-F improved upon the other methods and optimally

solved all instances for the �rst time. It consistently decreased the average time w.r.t.

the direct solution of the arc �ow as a MILP, showing that the branching scheme is very

e�ective for all instances in this class.

3.8.4 Experiments on the Ordered Open-End Bin Packing Prob-

lem

For the OOEBPP, we solve the arc �ow model derived from the set covering formulation

in [71], either directly by Gurobi or by NF-F. We compare our results also with the ones

obtained by the B&P in [71], which were obtained by a Pentium IV 1.6 GHz with 512

MB of RAM (STPI 562).

The �rst test is based on the benchmark used in [71], which are available at the

2DPackLib. The results are reported in Table 3.6. Ceselli and Righini [71] did not

solve instances GCUT5-13. Their B&P already performed very well and left just one

open instance. The arc �ow model solved either directly by Gurobi or by NF-F could

close all instances (the latter approach used a slightly smaller time). Since the available

benchmarks for the OOEBPP appear to be very easy for current solvers, we propose a

second set of experiments based on new randomly generated instances that we derived

from the CSP class Random. We consider all instances with 50, 100, and 200 items.

Table 3.5: Comparison with the state-of-the-art for the SSP (time limit 3600s)

MDISS [232] MS [233]∗ NF-F

Class # ins time opt time opt time opt

A1 1260 0.1 1260 0.1 1260 0.1 1260
A2 1050 250.9 1011 183.4 1030 148.7 1024
B 160 970.7 126 1354.5 136 61.4 160

∗: results of our reimplementation of the arc �ow model in [233]

77

Table 3.6: Comparison with the state-of-the-art for the OOEBPP (time limit 3600s)

CR [71] Arc Flow NF-F

Class # ins time opt time opt time opt

GCUT1-4 4 0.6 4 0.1 4 0.0 4
GCUT5-13 9 - - 1.3 9 0.1 9
NGCUT 12 0.1 12 0.0 12 0.0 12
CGCUT 3 0.1 3 0.3 3 0.4 3
BENG 10 0.1 10 0.3 10 0.1 10
HT 9 0.1 9 0.0 9 0.0 9
CLASS 500 8.7 499 11.3 500 3.7 500

Overall 547 1.6 537 1.9 547 0.6 547

Random50 480 - - 1.7 480 1.3 480
Random100 480 - - 73.4 479 38.7 479
Random200 480 - - 863.3 426 168.9 466

Overall 1440 - - 312.8 1385 69.6 1425

The ordering of the items required by the OOEBPP is obtained by sorting the original

items by weights randomly generated from a uniform distribution. The results for these

instances are also presented in Table 3.6. Overall, NF-F performs better than arc �ow

both in terms of average time and number of instances solved. The arc �ow solution as a

MILP left 55 open instances, but with NF-F this number decreased to 15, while using a

consistently smaller computing time.

3.9 Conclusions

We proposed a framework for the exact solution of network �ow models. It is tailored to

e�ciently solve pseudo-polynomial arc �ow models that have very strong relaxation but

also a huge number of arcs. Its main practical components include a general column(-

and-row) generation algorithm for network �ow models, RCVF strategies that explore

alternative and possibly sub-optimal dual solutions, and a highly asymmetric branching

scheme that exploits the potential of MILP solvers. The correctness of the LP-based

methods and of the RCVF strategies are supported by a number of theoretical results.

We performed extensive computational experiments on well-studied C&P problems,

in which we solved a large number of instances to proven optimality for the �rst time.

The new RCVF strategies closed many hard instances already at the root node. The new

branching scheme helped �nding optimal solutions for many hard instances within short

computational time, largely improving the results by state-of-the-art algorithms on all

problems addressed.

Although we focus on network �ow, an extension to more general DWM characteriza-

tions is also envisaged. The core of the proposed RCVF strategies and branching scheme

lies in the ability to e�ciently forbid pricing decisions (which in our case are given as

arcs in a network). By having this ability in a general pricing algorithm, one can extend

78

such techniques to solve a DWM without relying on a network �ow characterization. In

this case, the restricted problem given in the left branch would be solved by alternative

methods (as, e.g., specialized combinatorial algorithms) instead than as an arc �ow model.

Other than the C&P problems presented in this paper, we also tested the solution of

a number of other problems by our framework in preliminary experiments. This revealed

some interesting drawbacks that we would like to address in future research:

(i) Iterative aggregation/disaggregation is a state-of-the-art technique to deal with the

huge number of arcs in pseudo-polynomial arc �ow models for a couple of prob-

lems, as, e.g., the time-dependent traveling salesman problem with time windows

(see [328]). In some of these problems, hard instances often produce networks so

huge that cannot even �t in the computer memory. This is a critical issue for our

framework, because the full network is required in input. We believe that embed-

ding aggregation/disaggregation techniques within the framework is an interesting

research direction that may improve the solution of such problems;

(ii) Our branching scheme is tailored to be e�ective on models with very strong relax-

ations, but we tested models with weaker relaxations derived, for instance, from

vehicle routing and scheduling problems. As expected, the results were not com-

petitive with the state-of-the-art. The left branch generates small arc �ow models,

but their weak linear relaxations usually does not allow an e�cient solution by a

general MILP solver. In addition, the number of right-branch constraints required

to signi�cantly raise the bound is often unpractical. Then, to better address such

models, we aim at investigating e�ective primal cuts tailored for general arc �ow

models.

79

Chapter 4

A Branching Scheme for a Class of

Parallel Machine Scheduling

4.1 Introduction

This paper addresses a parallel machine scheduling problem with the objective of mini-

mizing weighted completion times. In this problem, we are given a set J of jobs to be

scheduled on a setM of identical parallel machines. Each job j ∈ J has a processing time

pj and a penalty weight wj, and it must be assigned to and processed by a unique machine

without preemption. Each machine processes at most one job at a time. By denoting Cj
as the completion time of a job j in a solution, the objective is to �nd a feasible schedule

that minimizes
∑

j∈J wjCj. Following the three-�eld classi�cation of Graham et al. [155],

this problem is denoted as P ||
∑
wjCj.

To the best of our knowledge, the state-of-the-art for the P ||
∑
wjCj is the arc �ow

model by Kramer et al. [197]. The authors propose an enhanced arc �ow model, based

on problem-speci�c properties, which can solve many more hard instances to proven op-

timality when compared with the previous state-of-the-art methods. The enhancement is

based on �nding and removing redundant arcs from the network, to reduce the number

of variables, and grouping equivalent jobs into demands, to reduces the number of con-

straints. This model has a very strong linear relaxation, and the optimal integer solution

value of benchmark instances is usually equal to the round-up optimal solution value of

the linear relaxation. Hence, the main di�culty is usually to �nd an optimal integer solu-

tion, but proving its optimality is generally easy. The method by Kramer et al. [197] �nds

an initial incumbent by means of a non-trivial iterated local search based metaheuristic,

and their overall method solves 502 out of 560 benchmark instances to proven optimality.

In this paper, we propose an improved solution method of the enhanced model of

Kramer et al. [197], that can solve all benchmark instances to proven optimality. The

solution is based on a three-phase branching scheme. The �rst phase consists of reduced-

cost based branching (RCBB). This branching scheme selects a large set of variables,

whose reduced costs make them unlikely to be part of any optimal solutions. In the left

branch, these variables are removed from the model, leading to a small restricted model

that likely holds an optimal solution; in the right branch, a linear constraint imposes that

80

at least one of such variables is in the solution.

The second phase of branching is specialized to parallel machine scheduling problems.

It �rst identi�es, for each job, the minimum time interval that contains all occurrences

of the job in the current fractional solution. Then, the left branch imposes that each job

must be within its respective interval; this is done by removing a (hopefully large) set of

arcs from the model. The right branch adds a linear constraint to the model imposing

that at least one of the jobs must be outside of its respective time interval. The restricted

problem resulting from the left branch is usually small and holds an optimal solution

for the original problem. In this way, the third phase of the branching scheme solves

this restricted problem directly by a general MILP solver. As shown by our extensive

computational experiments, the overall scheme usually allows us to quickly �nd an optimal

integer solution, even without relying on an initial good quality solution.

The remaining of this paper is organized as follows. Section 4.2 brie�y reviews general

arc �ow formulations and the application to the P ||
∑
wjCj. Section 4.3 provides details

on the solution of the linear relaxation; discusses a variable �xing algorithm; and presents

a method to transform dual infeasible solutions into feasible ones. The overall algorithm

is discussed in Section 4.4, and Section 4.5 discusses the results of our computational

experiments. Finally, Section 7.5 contains our conclusions and future research directions.

4.2 Preliminaries

In this section, we formally de�ne a general arc �ow formulation and present an application

to the P ||
∑
wjCj.

4.2.1 General Arc Flow Formulations

A network N is composed of a set V of nodes, and a set A ⊆ V ×V of arcs. The node set

contains a source node v+ ∈ V and a sink node v− ∈ V , such that no arcs enter v+ or leave

v−. Following de Lima et al. [104], we assume that N is acyclic, a property that allows us

to derive e�cient LP-based algorithms later discussed in Section 4.3.1. This assumption

encompasses a large class of resource constrained network �ow models, usually derived

from Dantzig-Wolfe decompositions.

In an arc �ow model, we are given a vector b ∈ Rm of right-hand-side coe�cients and,

for each arc (u, v) ∈ A, we are given an objective coe�cient c(u,v) ∈ R and a side-constraint

81

matrix column a(u,v) ∈ Rm. The following is a general arc �ow model:

min
∑

(u,v)∈A

c(u,v)ϕ(u,v), (4.1)

s.t.:
∑

(u,v)∈A

ϕ(u,v) −
∑

(v,w)∈A

ϕ(v,w) =


z, if v = v+,

−z, if v = v−,

0, otherwise,

∀v ∈ V, (4.2)

∑
(u,v)∈A

a(u,v)ϕ(u,v) ≥ b, (4.3)

ϕ(u,v) ∈ Z+, ∀(u, v) ∈ A (4.4)

z ∈ Z+. (4.5)

For each arc (u, v) ∈ A, the integer variable ϕ(u,v) represents the �ow on (u, v). Con-

straints (4.2) are �ow conservation constraints, and (4.3) are general side constraints on

the network �ow.

Let P represent the set of all paths in N from the source to the sink and Ap ⊆ A
be the set of all arcs in p ∈ P . For each path p ∈ P , let cp =

∑
(u,v)∈Ap

c(u,v) and

ap =
∑

(u,v)∈Ap
a(u,v). By the �ow conservation theorem by Ahuja et al. [1], the LP

relaxation of (4.1)�(4.5) is equivalent to the LP relaxation of the following path �ow

model (see, e.g., de Lima et al. [101]):

min
∑
p∈P

cpλp, (4.6)

s.t.:
∑
p∈P

apλp ≥ b, (4.7)

λp ∈ Z+, ∀p ∈ P , (4.8)

where λp represents the �ow on each path p ∈ P . The �ow conservation theorem proves

the existence of a one-to-one primal correspondence between the LP relaxation of both

models that preserves objective value.

4.2.2 Application to the P ||
∑
wjCj

Next, we provide a brief review of the arc �ow model for the P ||
∑
wjCj proposed by

Kramer et al. [197]. The arc �ow model is equivalent to the time indexed formulation

by Sousa and Wolsey [302], and each node is associated with a time instant, i.e., V ⊆
{0, ..., T}, where T represents an upper bound on the makespan of any optimal solution.

Moreover, v+ = 0 and v− = T . There is a set Aj ⊆ {(t, t + pj) : t ∈ V} of arcs

associated with each job j. Each arc (t, t + pj) ∈ Aj is associated with the decision of

processing job j starting at time instant t and �nishing at t+ pj. Moreover, there is a set

A− ⊆ {(t, v−) : t ∈ V} of sink arcs, which represent the decisions of stopping a machine

to operate. The overall set of arcs is given by A = ∪j∈JAj ∪ A−.
The model has a side constraint (4.3) associated with each job, enforcing that at least

82

one arc associated with the respective job is in the solution. Then, we de�ne b = (1, 1, ..., 1)

and m = |J |. For each arc (t, t+ pj) ∈ Aj, its objective function coe�cient is wj(t+ pj),

and its side-constraint column has coe�cient 1 at the j-th position and 0 in the remaining

positions. Each arc (t, v−) ∈ A− has null objective coe�cient and column.

In the P ||
∑
wjCj, the schedule of each machine in an optimal solution follows the

weighted shortest processing time rule - that is, the sequence of jobs in a single machine

is sorted according to non-increasing wj/pj. This allows a great reduction in the initial

network size, by following the classical algorithm by Valério de Carvalho [314] to create a

reduced network for the cutting stock problem.

The above de�nitions are enough to build the standard model for the P ||
∑
wjCj.

Now we brie�y discuss the enhancements by Kramer et al. [197] that allow to reduce

the number of variables and constraints of the standard model without loss of optimality.

The �rst enhancement provides a computation of T (based on the procedure by van den

Akker et al. [317]) and also an earlier instant at which each machine could �nish operating.

The second enhancement computes a time window for each job j, based on two sets of

jobs which can be demonstrated to always be processed, respectively, before or after j

in an optimal solution. The last enhancement consists of grouping equivalent jobs (i.e.,

jobs with the same processing time and weight) into demands, by combining their side

constraints.

4.3 Solution of the Linear Relaxation

Since the arc �ow model for the P ||
∑
wjCj has pseudo-polynomial size, large instances

usually derive models with a huge number of variables. Their linear relaxation could be

solved by column-and-row generation, as discussed by de Lima et al. [103]. However,

we found that the linear relaxation of this formulation is highly degenerate, and that the

barrier algorithm implemented in state-of-the-art MILP solvers provides a better average

performance than all column generation algorithms we implemented in preliminary exper-

iments. Due to the high degeneracy, column generation for the path �ow model provides

the worst performance. Arc �ow models are less degenerate and converge within a smaller

number of iterations, but since they have a larger basis, each column generation iteration

is more expensive (see, e.g., de Lima et al. [101]). Regarding column generation for the

arc �ow model, we implemented algorithms that generate either single or multiple paths,

each to be decomposed into a set of arcs to be inserted in the restricted master problem.

We also implemented in-out separation strategies (see, e.g., Ben-Ameur and Neto [28]),

which did not provide a substantial increase in computational performance. Hence, our

algorithm simply uses the barrier algorithm of a general MILP solver to solve the LP

relaxation of each arc �ow model.

In the remainder of this section, we are mainly concerned with the dual solution of

83

the LP relaxation of an arc �ow model. For that, consider the dual LP model:

max bᵀβ, (4.9)

s.t.: − αu + αv + a(u,v)
ᵀβ ≤ c(u,v), ∀(u, v) ∈ A, (4.10)

αv+ − αv− ≤ 0, (4.11)

αu ∈ R, ∀u ∈ V , (4.12)

β ∈ Rm
+ , (4.13)

where α and β are the dual variables associated with (4.2) and (4.3), respectively. The dual

constraints (4.10) and (4.11) are associated with primal variables ϕ and z, respectively.

4.3.1 Reduced-Cost Variable-Fixing

This section brie�y reviews the reduced-cost variable-�xing (RCVF) method proposed by

Irnich et al. [183] and recently applied to general arc �ow models by de Lima et al. [103].

For that, we de�ne P(u,v) ⊆ P as the set of all paths that contain (u, v) ∈ A. To improve

the RCVF e�ectiveness, we use a technique to compute the minimum reduced cost of all

arcs (u, v), given a �xed β solution, but allowing α to be variable. For that, we exploit

the reduced cost of paths p ∈ P(u,v), which can be de�ned solely in terms of β variables.

Let us de�ne the minimum reduced cost of an arc as follows:

De�nition 5. Given a partial dual solution β ∈ Rm
+ , the minimum reduced cost of an arc

(u, v) ∈ A is the minimum reduced cost of any path that contains (u, v), and is given by

c(u,v) = min{cp − aᵀpβ : p ∈ P(u,v)}.

The minimum reduced cost of all arcs can be computed by bidirectional dynamic

programming by solving the following recursions:

c+
v =

{
min{c+

u + (c(u,v) − a(u,v)
ᵀβ) : (u, v) ∈ A}, if v 6= v+,

0, if v = v+,
(4.14)

c−v =

{
min{c−w + (c(v,w) − a(v,w)

ᵀβ) : (v, w) ∈ A}, if v 6= v−,

0, if v = v−.
(4.15)

Then, the minimum reduced cost of an arc (u, v) is given by c(u,v) = c+
u + (c(u,v) −

a(u,v)
ᵀβ) + c−v . For details, see Irnich et al. [183] and de Lima et al. [103].

After computing the minimum reduced costs of all arcs, we can proceed with reduced-

cost variable-�xing to remove arcs from the model without loss of optimality. The overall

idea is the following. Suppose we have a incumbent integer solution of objective value zub.

Since the objective function is integer, to improve the incumbent we are only interested in

�nding solutions with objective value at most zub−1. Then, given a (partial) dual-feasible

solution β of objective value zlb = bᵀβ, every arc (u, v) ∈ A with c(u,v) > (zub − 1) − zlb
can be removed from the model, since they do not improve the incumbent solution.

84

4.3.2 Dealing with Dual Infeasibility

To safely perform RCVF, we need a feasible dual solution. However, since the most

e�cient LP solvers work under the limited precision of �oating-point arithmetic, the dual

solution returned by the solver may be feasible only within such precision. For instance,

the solver we use (Gurobi 9.1.1) has minimum dual feasibility tolerance of 10−9. Recently,

de Lima et al. [103] applied a generalization of the method by Held et al. [164] to transform

a dual infeasible solution into a feasible one. This method is valid for formulations where

the row of each side constraint has only coe�cients of the same sign. By considering a

tolerance of 10−9, the maximum expected loss in the dual objective of the resulting dual

solution is 10−9
∑m

i=1 bi, but this resulting solution is not guaranteed to be in a face of the

dual polytope.

In preliminary experiments, we noticed that using the default (10−6) instead of the

minimum (10−9) feasibility tolerance of Gurobi makes a signi�cant di�erence in compu-

tational e�ciency when solving the LP arc �ow model for the P ||
∑
wjCj. For that, we

decided to use the default tolerance. Motivated to �nd a dual solution that minimizes the

impact on the dual objective, we derived a method that �nds a solution that is guaranteed

to be in the face of the dual polytope. This method can be used in any formulation (not

restricted to any special structure).

Let us consider the dual LP relaxation of the path �ow model (4.6)�(4.8):

max bᵀβ, (4.16)

s.t.: aᵀpβ ≤ cp, ∀p ∈ P , (4.17)

β ∈ Rm
+ , (4.18)

where β are the dual variables associated with primal constraints (4.7). The primal LP

path �ow model has an exponential number of variables and is usually solved by column

generation, which translates to row generation of the dual model (4.16)�(4.18). For that,

the dual model is initialized with a restricted subset of constraints, and a separation

problem is solved iteratively to identify non-basic constraints that are violated by the

current dual solution β. In a path �ow formulation, the separation can be to determine

a shortest path on N , and can be formulated as in (4.14).

De Lima et al. [103] prove a one-to-many correspondence between the solution of space

of (4.10)�(4.13) and (4.17)�(4.18) that preserves the solution values of β. In particular,

any dual-feasible solution β of the dual path �ow model can be transformed into a dual-

feasible solution for the arc �ow model by maintaining the same β and computing α as in

(4.14), by setting αv := c+
v . Then, given a dual-infeasible solution 〈α, β〉 of the arc-�ow

model, we exploit formulation (4.16)�(4.18) to transform β into a dual-feasible solution

and then use (4.14) to recompute a feasible solution for α.

Let βin and βout represent, respectively, an interior and exterior point of the dual

polytope. Naturally, βin is any dual-feasible solution, and in problems where cp ≥ 0,

for all p ∈ P , as in the case of the P ||
∑
wjCj, we have that (0, 0, . . . , 0) is one such

solution. We consider βout as the dual-infeasible solution at hand. Notice that for any

µ ∈ [0, 1], the solution βµ = µβin + (1 − µ)βout lies in a line segment connecting βin and

85

βout. In particular, since βin is an interior point and βout is an exterior point, there exists

µ such that βµ represents a point in face of the polytope, which is also the dual-feasible

solution in the segment that maximizes the dual objective. Our method aims at �nding

such µ. This discussion is highly related with the in-out separation method for stabilized

column generation (see, e.g, Ben-Ameur and Neto [28] and Pessoa et al. [262]) and the

ray projection by Porumbel [271].

We start with µ := µ0 = 1, which gives βµ0 = βout. Then, we iteratively compute µt

as follows. At iteration t, we use the separation algorithm to compute the dual constraint

that is most violated by βµt . Suppose this constraint is associated with path pt ∈ P , i.e.:

aᵀptβ ≤ cpt .

We want to compute µt+1 such that this violated constraint is tightly satis�ed by βµt+1 .

For this, we substitute β in the violated constraint by βµt+1 , deriving:

aᵀptβin + µt+1aᵀpt(βout − βin) ≤ cpt .

Since the �rst term aᵀptβin is already less than or equal to cpt , we can suppose that a
ᵀ
pt(βout−

βin) is non-negative, otherwise the constraint is satis�ed for any µ, a contradiction. In

this way, the inequality can be rewritten as:

µt+1 ≤ cpt − aptβin
apt(βout − βin)

For that, we de�ne µt+1 :=
cpt−aptβin

apt (βout−βin)
. At any iteration t, if no violated constraint can

be found, then we know that βµt is a dual-feasible solution that lies in the polytope face

associated with path pt. In addition, it is easy to see that µt ≥ µt+1, which guarantees

the convergence of the algorithm.

At the end of the algorithm, we have derived a dual solution βµ that is feasible and is

a point in a face of the polytope of (4.17)�(4.18). As previously mentioned, this solution

can be easily converted to a dual-feasible solution of the LP arc �ow model with the same

objective value.

4.4 Overall Algorithm

This section presents the proposed algorithm to solve the arc �ow model for the P ||
∑
wjCj.

It consists of the three-phase branch-and-bound that is now described in detail. In the

�rst two phases, we construct a large set B ⊂ A of arcs in a way that we expect that

by removing B from the current model the resulting model could be quickly solved by

a MILP solver while still returning good quality solutions. The construction of B is ex-

plained in the next sections. Then, in the �rst two phases, the left branch removes B
from the model, whereas in the right branch a linear constraint

∑
(u,v)∈B ϕ(u,v) ≥ 1 is

added to impose that at least one arc in B is in the solution. The third phase consists of

simply solving the current arc �ow model directly by a MILP solver. Figure 4.1 provides

a graphical example of the branching tree.

86

The linear relaxation on the �rst- and second-phase nodes are solved by a general LP

solver. Whenever the solver returns an infeasible dual solution, we use the method in

Section 4.3.2 to obtain a dual-feasible solution. The dual-feasible solution is then used to

perform RCVF in its respective node.

First

Phase

Second

Phase

Third

Phase

∑
(u,v)∈B2

ϕ(u,v) = 0

Second

Phase

Third

Phase

Second

Phase

Third

Phase

Third

Phase

∑
(u,v)∈B2

ϕ(u,v) ≥ 1

∑
(u,v)∈B1

ϕ(u,v) = 0

First

Phase

Second

Phase

First

Phase

∑
(u,v)∈B1

ϕ(u,v) ≥ 1

Figure 4.1: Example of a branching tree with a limit of Πb = 3 consecutive second-phase
branches.

4.4.1 First-Phase Branching

The �rst phase consists of RCBB, which can be applied to general MILP models. It may

be useful for models with a strong relaxation, where the absolute integrality gap is likely

to be of at most a known value Π ∈ Z+. For instance, in the P ||
∑
wjCj, the optimal

integer solution value is usually equal to the rounded-up optimal solution value of the

linear relaxation. In this case, we know that the absolute integrality gap is usually at

most Π = 1.

This branching rule receives in input a dual solution and the minimum reduced cost

c̄(u,v) of each arc (u, v) ∈ A. Then, we de�ne B = {(u, v) ∈ A : c̄(u,v) ≥ Π} and proceed by

creating a left branch where all arcs in B are removed from the model, and a right branch

where the linear constraint
∑

(u,v)∈B ϕ(u,v) ≥ 1 is included. The left branch generates a

second-phase node and the right branch generates another �rst-phase node.

Note that this branching scheme does not require a primal solution but rather only

a dual solution. Di�erently from branching based on a primal solution, it is not clear

whether a vertex dual solution would lead to a better branching e�ectiveness, when com-

pared to a non-vertex solution. In this way, if the LP is solved by a barrier algorithm,

the crossover step can be disabled to reduce computational time without clear loss of

87

branching e�ectiveness.

4.4.2 Second-Phase Branching

The second phase aims at further reducing the size of the model resulting from the �rst-

phase branching. First, let us provide some formal de�nitions. Given a fractional primal

solution ϕ̄, we de�ne Lj = {(t, t + pj) ∈ Aj : ϕ̄(t,t+pj) > 0} as the set of arcs of job j

with positive value. Then, for each job j, we de�ne a time interval [t−j , t
+
j], where t−j =

arg mint{(t, t+pj) ∈ Lj} and t+j = arg maxt{(t, t+pj) ∈ Lj}. Since the P ||
∑
wjCj has a

very strong linear relaxation, these intervals are tight, and for the benchmark instances,

there is often an optimal integer solution where all jobs start to be processed within their

corresponding interval. We construct B = {(t, t + pj) ∈ Aj : t /∈ [t−j , t
+
j], j ∈ J } and

proceed by creating a left branch where all arcs in B are removed from the model, and

a right branch that includes the linear constraint
∑

(u,v)∈B ϕ(u,v) ≥ 1. The left branch

generates a third-phase node, and the right branch generates another second-phase node.

To avoid an excessive number of second-phase right branches, after Πb = 3 consecutive

such branches, the resulting node is solved as a third-phase node.

This branching rule can also be applied to general time-indexed formulations for non-

preemptive scheduling problems.

4.5 Computational Results

We performed computational experiments to compare the e�ciency of our algorithm with

the state-of-the-art. The latter consists of solving the arc �ow model directly by a general

MILP solver. The proposed algorithms were coded in C++, and the LP and MILP models

were solved by Gurobi 9.1.1. The experiments were run by using a single thread on a

computer with an Intel Xeon E3-1245 v5 at 3.50GHz and 32GB RAM.

We considered the most di�cult benchmark set solved by Kramer et al. [197]. In

this set, |J | ∈ {30, 100, 400, 700, 1000} and |M| ∈ {2, 4, 6, 8, 16, 30}. The job processing

times were obtained from a uniform distribution U [1, pmax], where pmax ∈ {20, 100}, and
the penalty weights were drawn according to a uniform distribution U [1, 20]. For each

combination of |J |, |M|, and pmax, except when |J | = 30 and |M| ∈ {16, 30}, 10
instances were created. There is a total of 560 instances.

For a comparison, we solved the arc �ow model for each instance in two ways: directly

by Gurobi (reported as `Arc Flow') and by the branch-and-bound algorithm proposed

here (reported as `Our Solver'). In both cases, an initial incumbent solution is computed

by a single iteration of a simple greedy heuristic. For each instance, we considered a time

limit of 3600 seconds. Table 4.1 presents the overall results for both solution methods.

For each class (de�ned by |J | and |M|), we report the average time (`time'), the number

of instances solved to proven optimality (`opt') and for our solver, the number of times

we invoked the MILP solver, i.e., the number of third-phase nodes visited (`# MILP').

Table 4.1 shows that all instances with pmax = 20 could be solved to proven optimality

by both methods. However, our solver is always faster and could reduce the computa-

tional time by more than half for most classes. Our solver could solve all instances with

88

Table 4.1: Overall results (time limit 3600s)

pmax = 20 pmax = 100

Arc Flow Our Solver Arc Flow Our Solver

|J | |M| time opt # MILP time # opt time opt # MILP time # opt

30

2 0.0 10 0.6 0.0 10 0.1 10 1.8 0.1 10

4 0.0 10 1.4 0.0 10 0.1 10 1.4 0.1 10

6 0.0 10 1 0.0 10 0.1 10 2.2 0.1 10

8 0.0 10 1.1 0.0 10 0.1 10 1.9 0.0 10

100

2 0.2 10 2.2 0.2 10 1.6 10 1.2 0.9 10

4 0.2 10 1.6 0.1 10 8.5 10 4.8 1.3 10

6 0.1 10 1.6 0.1 10 4.0 10 2.9 0.8 10

8 0.1 10 1.5 0.1 10 1.8 10 3.6 0.5 10

16 0.1 10 1.2 0.0 10 0.5 10 1.8 0.2 10

30 0.0 10 1 0.0 10 0.2 10 1.2 0.1 10

400

2 8.3 10 3.1 3.0 10 199.7 10 4.1 42.3 10

4 6.5 10 2.3 1.3 10 1374.0 7 3.5 31.3 10

6 4.8 10 2.2 1.2 10 725.0 9 3.2 15.8 10

8 2.9 10 1.6 0.7 10 527.4 10 2.7 26.3 10

16 0.8 10 1.2 0.3 10 243.7 10 3.2 18.4 10

30 0.4 10 1.3 0.2 10 33.9 10 1.6 2.2 10

700

2 18.0 10 1.9 6.6 10 1523.9 8 5 135.9 10

4 18.1 10 2.9 5.7 10 2707.4 5 2.9 132.5 10

6 12.7 10 1.3 2.2 10 2553.6 6 2 82.5 10

8 11.8 10 1.3 1.7 10 2891.4 5 1.3 93.8 10

16 3.9 10 1.2 0.8 10 1873.8 7 1.4 30.6 10

30 1.0 10 1 0.4 10 1510.0 10 1.4 12.9 10

1000

2 17.7 10 0.2 8.4 10 2640.9 7 5 641.0 10

4 24.8 10 1.9 5.7 10 3610.0 0 2.7 564.3 10

6 20.4 10 1.3 5.1 10 3607.2 0 2.2 414.2 10

8 29.0 10 1.1 2.7 10 3605.3 0 1 115.0 10

16 11.6 10 1.4 1.4 10 3313.6 6 1.1 84.2 10

30 3.7 10 1.1 0.7 10 2680.1 7 1.1 49.7 10

Overall: 7.0 280 1.5 1.7 280 1272.8 217 2.4 89.2 280

pmax = 100 to proven optimality, whereas the direct solution by Gurobi left many instances

unsolved. For many classes, the computational time decreased drastically by the use of

our solver. In fact, the average number of times we have to solve a MILP sub-problem is

relatively small for all classes, which explains the fast computational performance.

Finally, Table 4.2 compares our results with the results obtained by Kramer et al.

[197]. Their experiments were performed by using a single thread on a computer with an

Intel Xeon E5530 at 2.40 gigahertz and 20GB RAM. Recall that the method by Kramer et

al. [197] also solves the same arc �ow model directly by Gurobi, but they use in input an

incumbent solution obtained by a sophisticated iterated local search based metaheuristic,

which can make a signi�cant di�erence when compared with our basic greedy heuristic.

89

Table 4.2: Results summarized by time limit.

time limit Kramer et al. [197] Arc Flow Our Solver

300 440 421 541
600 449 434 552
900 458 441 553
1200 460 452 554
1500 472 456 559
1800 480 465 559
2100 486 473 559
2400 490 482 560
2700 493 486 560
3000 496 490 560
3300 499 495 560
3600 502 497 560

This table presents the total number of instances solved to proven optimality by each

method, under di�erent time limits. As expected, the results by Kramer et al. [197] are

always better than `Arc Flow', since it makes use of a more sophisticated initial heuristic.

However, already under 300 seconds, our solver could solve more instances to proven

optimality than the basic solution by Gurobi under 3600 seconds by both [197] and Arc

Flow. Under 1500 seconds, our solver left only one instance unsolved, which was then

solved under 2400 seconds.

4.6 Conclusions

In this paper, we proposed a general branching scheme for arc �ow models for parallel

machine scheduling problems. The branching scheme, which is tailored to be e�cient

with models with strong relaxations, was applied to an arc �ow model for the classical

P ||
∑
wjCj. The proposed algorithm could solve all hard benchmark instances to proven

optimality, closing 58 open instances.

In future research, we aim at applying the proposed scheme to other parallel machine

scheduling problems that are associated with arc �ow or time-indexed models with strong

relaxations. Also, we believe that investigating new general primal cuts for arc �ow models

can be an interesting research direction to successfully use the proposed scheme to address

models with weak LP relaxation.

90

Chapter 5

Exact Solution Techniques for

Two-dimensional Cutting and Packing

5.1 Introduction

The number of publications on cutting and packing problems has been increasing consid-

erably in recent years. In cutting problems, we are given a set of standardized stock units

to be cut into smaller items so as to ful�ll a given demand, while in packing problems a

set of items has to be packed into one or more containers. These two classes of problems

are strongly correlated, as packing an item into a container may be equivalent to cutting

an item from a stock unit, and hence the same solution methods are often adopted. In

the following, we will denote as bins both the stock units and the containers. In certain

applications the unique container is a strip of (theoretically) in�nite height.

Cutting and packing problems have been widely studied in the literature both for

their theoretical interest and their many practical applications, in which they appear in

a number of di�erent variants. Some problems consider one-dimensional items and bins,

whereas other problems refer to higher dimensions, like, e.g., the (three-dimensional)

container loading problem (see Bortfeldt and Wäscher [45]). Items and bins may have

rectangular or general (convex or non-convex) shape. Several practical constraints may

also be part of the problems, as cargo stability in container loading problems or the need

of producing guillotine patterns in cutting problems. In certain applications, cutting and

packing problems are combined with other problems, for example in the integrated lot-

sizing and cutting stock problems studied by Melega, Araujo, and Jans [237] or in the

routing problems with loading constraints considered by Iori and Martello [177]. Packing

problems also appear in many other �elds, such as telecommunications (Lodi et al. [211],

Martello [223]), newspapers paging (Strecker and Hennig [303]), production (Nesello et

al. [252]), scheduling (Kwon and Lee [201]), and maritime logistics (Xu and Lee [338]).

Most cutting and packing problems are NP-hard and very challenging in practice. For

this reason, sophisticated solution methods are needed for their solution, motivating the

frequent literature updating of this area of research.

91

Books and surveys

Several surveys have been dedicated to solution methods for cutting and packing

problems. Speci�cally, referring to surveys published in the last two decades:

• One-dimensional cutting and packing. Valério de Carvalho [312] reviews linear pro-

gramming models for one-dimensional bin packing and cutting stock problems. Ap-

proximation algorithms for packing problems generally belong to two main cate-

gories: (i) on-line algorithms sequentially pack the items in the order encountered

on input, without knowledge of items not yet packed; (ii) o�-line algorithms have

complete information about the item set, and may perform preprocessing, reorder-

ing, grouping, etc. before packing. Approximation results (for both on-line and

o�-line algorithms) have been reviewed by Co�man et al. [88] (Sections 3 and 4,

respectively). A recent survey on mathematical models and exact algorithms for

one-dimensional packing problems was presented by Delorme, Iori, and Martello

[109], who also set up a library, the BPPLIB [111], of computer codes and bench-

mark instances (see http://or.dei.unibo.it/library/bpplib). The books by

Martello and Toth [226] and Kellerer, Pferschy, and Pisinger [191] present a com-

prehensive treatment on the knapsack problem and its variants but do not consider

the corresponding two-dimensional versions;

• Two-dimensional rectangular shape cutting and packing. After the classical 2002

surveys by Lodi, Martello, and Vigo [214] and Lodi, Martello, and Monaci [210], a

partial updating was presented by the same authors in 2014 [212]. The following

results appeared in the last decade. A survey on guillotine packing was produced by

Ntene and van Vuuren [253]. Silva, Oliveira, and Wäscher [299] reviewed exact and

heuristic algorithms for a particular problem (pallet loading) in which all items are

identical, including a thorough analysis of benchmark instances and methodologies

adopted in the literature for numerical experiments. Oliveira et al. [254] presented

a review of heuristic algorithms for the strip packing problem. Christensen et al.

[74] proposed a survey on approximation and on-line algorithms, also including a

list of open problems in this area. Recently, Russo et al. [287] presented a survey

on relaxations for two-dimensional cutting problems with guillotine constraints and

a categorization of the resulting bounds, while Bezerra et al. [39] reviewed models

for the two-dimensional level strip packing problem;

• Two-dimensional irregular shape cutting and packing. To the best of our knowledge,

the �rst survey dedicated to the packing of irregular shapes into rectangular contain-

ers was presented in the Nineties by Dowsland and Dowsland [116]. More recently,

two tutorials by Bennell and Oliveira [33, 34] reviewed the main geometric method-

ologies and algorithmic approaches for the heuristic solution of these problems. The

latest survey on this area, presented by Leao et al. [204] in 2020, provides an ex-

tensive review of mathematical models for packing irregular shaped objects both in

rectangular and irregular containers;

• Multi-dimensional cutting and packing. In 1990, Dyckho� [119] proposed a typology

of cutting and packing problems (in one, two and three dimensions). About twenty

http://or.dei.unibo.it/library/bpplib

92

years later, a successful improved typology was proposed by Wäscher, Hauβner, and

Schumann [332]. More recently, Bortfeldt and Wäscher [45] considered the (three-

dimensional) container loading problem and reviewed modeling approaches, as well

as exact and heuristic algorithms. A recent survey on multi-dimensional packing

problems was presented by Crainic, Perboli, and Tadei [94];

• Integrated variants. Reviews of algorithms for integrated routing and packing prob-

lems (with two- and three-dimensional packing constraints) have been presented by

Iori and Martello [177, 178] and Pollaris et al. [270]. Melega, de Araujo, and Jans

[237] recently reviewed integrated lot-sizing and cutting stock problems.

The constant interest in cutting and packing problems is shown by:

• the trend of number of publications in the last 20 years according to the major

databases. A search for titles of papers including speci�c keywords (like two-

dimensional cutting/packing/ knapsack, guillotine, strip packing, two-stage cutting)

gave a total 1410, 774, and 575 publications (according to Scholar, Scopus, and WoS,

respectively). The historical trend is shown in Figure 5.1;

• a number of special issues devoted to this area by international journals like, e.g.,

INFOR (see Martello [222]), European Journal of Operational Research (see Oliveira

and Wäscher [255]), International Journal of Production Economics (see Bennell,

Oliveira, and Wäscher [35]);

• the recent comprehensive book by Scheithauer [292] dedicated to cutting and pack-

ing optimization;

• the visual application for two-dimensional packing problems made available by Costa

et al. [90];

• the working group on cutting and packing (ESICUP) of the Association of European

Operational Research Societies (EURO), see https://www.euro-online.org/web/

ewg/25/.

Solution Techniques for Two-dimensional Cutting and Packing

Manuel Iori(1), Vińıcius Loti de Lima(2), Silvano Martello(3), Flávio Keidi Miyazawa(2),
Michele Monaci(3)

(1) DISMI, University of Modena and Reggio Emilia (Italy)
(2) Institute of Computing, University of Campinas (Brazil)
(3) DEI ”Guglielmo Marconi”, University of Bologna (Italy)

Abstract

We survey the main formulations and solution methods for two-dimensional orthogonal cut-
ting and packing problems, where both items and bins are rectangles. We focus on exact
methods and relaxations for the four main problems from the literature: finding a packing with
minimum height, packing the items into the minimum number of bins, finding a packing of
maximum value, and determining the existence of a feasible packing.

Keywords: Two-dimensional rectangle cutting and packing; Exact methods; Relaxations.

1 Introduction

The number of publications on cutting and packing problems has been increasing considerably in
recent years. In cutting problems, we are given a set of standardized stock units to be cut into
smaller items so as to fulfill a given demand, while in packing problems a set of items has to be
packed into one or more containers. These two classes of problems are strongly correlated, as
packing an item into a container may be equivalent to cutting an item from a stock unit, and hence
the same solution methods are often adopted. In the following, we will denote as bins both the stock
units and the containers. In certain applications the unique container is a strip of (theoretically)
infinite height.

2000 2010 2020

0

20

40

60

80

100

120

* * * *
*

*

*
* *

* *
* *

*

*
*

*

* * *
ut

ut ut

ut

ut
ut

ut
ut

ut

ut ut
ut

ut
ut

ut

ut
ut

ut
ut

ut

b b b
b

b
b

b
b b

b b
b

b

b

b

b

b b
b

b

* * Scopusut ut Google Scholar b b Web of Science

1

Figure 5.1: Trend of number of publications on two-dimensional cutting and packing.

https://www.euro-online.org/web/ewg/25/
https://www.euro-online.org/web/ewg/25/

93

Contents

In this paper, we propose an extensive review of cutting and packing problems of two-

dimensional rectangular items. We concentrate in particular on orthogonal cutting and

packing, i.e., on the case in which the items must be cut/packed with their edges parallel

to those of the bin. Some authors include the term �geometric� in the problem names.

The main problems that we address are:

• the two-dimensional strip packing problem: �nd a packing of minimum height into

a single bin with �xed width;

• the two-dimensional bin packing problem: determine the minimum number of bins

needed to pack the items;

• the two-dimensional knapsack problem: �nd a packing of maximum value into a

single bin;

• the two-dimensional orthogonal packing problem: �nd a feasible item packing (if

any) into a single bin.

We also consider some generalizations of these problems, such as the cutting stock

problem, as well as relevant variants, e.g., the case in which the items can be rotated by

90 degrees or guillotine cuts are required. We review the main relaxation methods, along

with the main heuristics and exact methods.

The literature often considers formulations for two-dimensional cutting and packing

problems which are based on a set of points where an item may be packed or cut. We

will discuss the main methods for generating such sets of points. Another contribution of

our work is the review of preprocessing methods for cutting and packing problems, i.e.,

methods that are considerably fast, if compared to the overall solution time, and may

reduce the size of the instances, thus simplifying their resolution.

The remainder of this survey is organized as follows. Section 5.2 formally introduces

the basic problems we address and the main variants considered in the literature. Sec-

tion 5.3 reviews the principal techniques that can be used, in a preprocessing phase, to

simplify a problem instance. Section 5.4 discusses relaxation methods that provide valid

bounds and, in some cases, are the starting point to derive a heuristic solution. Section

5.5 brie�y mentions the main heuristic techniques that are frequently embedded into exact

approaches (although the scope of this survey is not to extensively review the huge liter-

ature on this topic). Section 5.6 examines mathematical models that explicitly require a

MILP solver, by classifying them according to their size (polynomial, pseudo-polynomial,

or exponential). Section 5.7 reviews enumeration schemes that do not explicitly make use

of a solver (branch-and-bound, graph-based approaches, and constraint programming).

Section 5.8 provides pointers to relevant unsolved or challenging instances. Finally, Sec-

tion 7.5 discusses the state-of-the-art for each problem and presents some conclusions and

future research directions.

94

5.2 Problems and De�nitions

In this section, we present a formal de�nition of the main problems and variants we

consider. Given a bin and a set of items, a packing consists of a placement of the items

such that the items lie completely inside the bin and there is no overlapping between any

pair of items.

We are mainly interested in two-dimensional packing problems, in which the bins and

the items are rectangles. Only orthogonal packings will be considered, i.e., we require

that all edges of all items are parallel to the edges of the bin. Unless otherwise speci�ed,

we assume that the items have �xed orientation: as most of the literature considers this

case, we will only address as a variant the case in which the items can be rotated by 90

degrees.

A rectangular two-dimensional bin B is de�ned by its width W ∈ Z+ and height

H ∈ Z+. We denote by I a set of rectangular two-dimensional items. Each item i ∈ I
has width wi ∈ Z+ and height hi ∈ Z+, such that 0 < wi ≤ W and 0 < hi ≤ H. Unless

otherwise speci�ed, copies of identical items are treated as distinct items. A packing of I
into B can be represented by a function F : I → Z2

+ that maps each item i ∈ I to a pair

F(i) = (xi, yi) representing the relative coordinates of the bottom-left corner of the item

with respect to the bottom-left corner of the bin. F is a feasible packing if

xi ∈ {0, ...,W − wi} and yi ∈ {0, ..., H − hi} (i ∈ I) (5.1)

[xi, xi + wi) ∩ [xj, xj + wj) = ∅ or [yi, yi + hi) ∩ [yj, yj + hj) = ∅ (i, j ∈ I, i 6= j). (5.2)

In other words, the bin is seen on a Cartesian plane with its edges parallel to the x and

y axes and its bottom-left corner on the origin. A packing de�nes, for every item i, the

coordinates (xi, yi) where its bottom-left corner is placed. Constraints (6.1) impose that

each item is entirely inside the bin, while constraints (6.2) forbid overlapping between any

pair of items.

5.2.1 Problems

In this section, we de�ne the main two-dimensional orthogonal packing problems we con-

sider. As mentioned in Section 6.1, some typologies have been proposed in the literature

to classify the great variety of possible packing problems. As we will mainly deal with the

four problems de�ned below, we preferred to use the simple names we provide. For the

sake of completeness, their de�nition is followed, in Section 5.2.2, by the corresponding

notation in the main typologies. A simple visual example of a set I containing 10 items

is given in Figure 5.2(a), and then used to clarify the main problem variants below.

Two-Dimensional Strip Packing Problem

We are given a single bin B having �xed width W and in�nite height, usually called a

strip. The Two-Dimensional Strip Packing Problem (2D-SPP) asks for a feasible packing

of I into B such that the height at which the strip is used (i.e., the height of the topmost

95

1

23
4

5
6

7
8

9

10

(a)

1
2

3
4

5

6

7

8

9

10

(b)

6 7

8

5

4 1

9
3

2

10

(c)

1

2

3

4

5

6

7

10

(d)

Figure 5.2: (a) set of items; (b) an optimal 2D-SPP solution; (c) an optimal 2D-BPP
solution; (d) an optimal 2D-KP solution (in case items pro�ts correspond to their areas).

edge of an item) is minimized. Figure 5.2(b) shows a minimum height arrangement of the

items of Figure 5.2(a) into a strip.

Two-Dimensional Bin Packing Problem

In this case we have an unlimited number of identical �nite bins B having width W and

height H. The Two-Dimensional Bin Packing Problem (2D-BPP) requires to determine a

partition of I into the minimum number of subsets, such that each subset can be feasibly

packed into a bin. A generalization of the problem is the Two-Dimensional Cutting Stock

Problem (2D-CSP), in which one is asked to pack a given number di (demand) of each

96

item i ∈ I. Both problems generalize their one-dimensional version, the well-known (one-

dimensional) Bin Packing Problem (1D-BPP) and Cutting Stock Problem (1D-CSP), in

which the items are segments of size wi (i ∈ I) and the bins are segments of size W

(capacity). An extensive literature exists on these problems, see [109] for a recent survey.

Figure 5.2(c) shows an optimal 2D-BPP solution, in which the items of Figure 5.2(a) are

packed into two separate bins.

Two-Dimensional Knapsack Problem

The problems listed so far ask for a feasible packing of all items of I. Assume now that

every item i ∈ I has an associated value (pro�t) vi ∈ Z+. The Two-Dimensional Knapsack

Problem (2D-KP) requires to determine a subset of items I ′ ⊆ I such that: (i) there exists
a feasible packing of I ′ into a single bin B; and (ii) the corresponding total pro�t,

∑
i∈I′ vi,

is maximized. A special case of the 2D-KP, the Two-Dimensional Rectangular Packing

Problem, arises when the pro�t of each item is equal to its area (i.e., vi = wihi ∀ i ∈ I).
An example of an optimal two-dimensional rectangular packing problem solution for the

items of Figure 5.2(a) is given in Figure 5.2(d).

Two-Dimensional Orthogonal Packing Problem

While the above problems are in optimization version, the Two-Dimensional Orthogonal

Packing Problem (2D-OPP) is to decide if there exists a feasible packing of a given set I
of items into a single bin B. Although this problem is in decision version, i.e., it just asks

for a `yes/no' answer, in practical applications one is generally requested to also produce

the speci�c packing, if any. The 2D-OPP appears as a subproblem in the optimization

version of a number of packing problems.

5.2.2 Typologies

As previously mentioned, a number of typologies have been introduced in the literature.

As the reader could encounter the same problems considered in the present survey but

identi�ed in a di�erent way, we next provide the notations adopted by the most common

typologies from the literature.

According to the typology proposed by Dyckho� [119] in 1990, the 2D-BPP, the 2D-

CSP and the 2D-KP are denoted as 2/V/I/M, 2/V/I/R, and 2/B/O/, respectively. The

2D-SPP and the 2D-OPP have not been formally de�ned in this typology.

In 1999 Lodi, Martello, and Vigo [213] used a three-�eld typology (later extended by

Martello, Monaci, and Vigo [225]). The 2D-SPP, the 2D-BPP, and the 2D-KP are denoted

as 2SP|O|F, 2BP|O|F, and 2KP|O|F, respectively, while the 2D-OPP is not classi�ed.

The second �eld of this notation also covers the variant (see below) in which orthogonal

rotation of the items is allowed (`R' instead of `O'), while the third �eld can handle the

variant in which guillotine cuts are required (`G' instead of `F').

More recently (2007), Wäscher, Hauβner, and Schumann [332] proposed a successful

typology, partially based on Dyckho�'s original ideas. According to it, the 2D-SPP is

denoted as the �(Two-dimensional) Open Dimension Problem� (ODP), the 2D-BPP as

97

the �Single Bin Size Bin Packing Problem� (SBSBPP), and the 2D-CSP as the �Single

Stock Size Cutting Stock Problem� (SSSCSP). The 2D-KP is denoted either as the �Single

Knapsack Problem� (SKP), or as the �Single Large Object Placement Problem� (SLOPP)

in the generalization in which each item i ∈ I is available in di copies. The 2D-OPP is

not explicitly classi�ed in [332], but it can be interpreted as the recognition version of the

2D-BPP.

5.2.3 Complexity

The one-dimensional version of the 2D-KP is the well-known knapsack problem (1D-

KP) in which each item has a weight wi and the bin (knapsack) has capacity W . The

1D-KP can be solved in pseudo-polynomial time through dynamic programming (see,

e.g., Martello and Toth [226] or Kellerer, Pferschy, and Pisinger [191]). Instead, none of

the above two-dimensional problems admits a pseudo-polynomial time algorithm, unless

P = NP . Recall indeed that the 1D-BPP is strongly NP-hard (see Garey and Johnson

[144]). Given an instance of the 1D-BPP, de�ne two-dimensional items having width wi
and height hi = 1 (i ∈ I). Then:

• the solution of a 2D-SPP instance with strip width W solves the 1D-BPP instance;

• the solution of a 2D-BPP instance with bins of width W and height 1 solves the

1D-BPP instance;

• associate a pro�t vi = 1 to each item i ∈ I. The minimum value H̄ for which the

optimal solution of a 2D-KP instance with a bin of widthW and height H̄ has value

n gives the optimal 1D-BPP solution value;

• the solution of a 2D-OPP instance with a bin of width W and height k answers the

decision version of the 1D-BPP: can the items of I be packed into k bins?

It follows that the existence of a polynomial-time algorithm for any of the four problems

above would imply a polynomial-time algorithm for the 1D-BPP, i.e., the 2D-SPP, the 2D-

BPP, and the 2D-KP are strongly NP-hard, and the 2D-OPP is strongly NP-complete.

5.2.4 Variants

Motivated by practical applications, a number of variants of two-dimensional packing

problems have been considered in the literature (see, e.g., Lodi, Martello, and Vigo [213],

Pisinger and Sigurd [267], and Wäscher, Hauβner, and Schumann [332]).

Orthogonal Rotation

While in the basic problems the items have �xed orientation, relevant variants allow item

rotation by 90 degrees. For example, while in the cutting of corrugated or decorated

stock units rotation is forbidden, when the surfaces are uniform it may be feasible to

rotate the items in order to produce better (more dense) packings. Note however that

this also leads to more complex problems as it increases the number of decisions to be

98

taken, and hence the corresponding models usually involve a higher number of variables

and constraints. Indeed, in most approaches, item rotation is typically handled either by

adding, for each item, a �rotate-or-not� binary decision (like, e.g., in Jakobs [185]), or by

creating a companion (rotated) copy of each item and forbidding that both are selected

(like, e.g., in Lodi and Monaci [217]).

Guillotine Cuts

Normally, automatic cutting machines can only produce the items through a sequence

of guillotine cuts, i.e., edge-to-edge cuts parallel to the edges of the bin. Imposing such

constraint may lead to worse solutions as not all item sets allow guillotine patterns in a bin

(see Figure 5.3(a)). Frequently, the machines are restricted to only alternate horizontal

and vertical cuts, possibly with a hard limit k on the number of cuts per bin (k-staged

problems). In most applications k is two or three, possibly allowing an extra cut (called

trimming) to separate an item from waste (see Figure 5.3(b) and (c)). When k = 2, the

problem is frequently called level packing, as it can be seen as the problem of packing the

items side-by-side on horizontal shelves having width equal to that of the bin/strip and

height coinciding with the tallest packed item (see again Figure 5.3(b)). When k = 3,

Puchinger and Raidl [272] distinguish between the case where the latter condition holds

(restricted case) and the one where the height of a shelf is not necessarily given by its

highest item (unrestricted case). The presence of guillotine constraints consistently a�ects

the combinatorial structure of the problem, and hence the solution techniques. Indeed, for

such cases, it is common to adopt techniques based on column generation and/or dynamic

programming, that would not be suitable for standard non-guillotine problems.

Variable-Sized Bins

The bin packing and cutting stock problems consider an unlimited number of identical

bins. The variable-sized generalization of these problems deals instead with di�erent types

of bins, each having a speci�c size (width and height), cost, and availability. The problem

is then to pack all the items at minimum cost. The addition of variable sizes is usually

handled in the solution techniques by considering, e.g., the di�erent sizes of the bins

when creating new nodes in enumerative approaches, or when pricing variables in branch-

(a) (b) (c)

Figure 5.3: (a) non-guillotine pattern; (b) 2-staged guillotine pattern with trimming; (c)
3-staged guillotine pattern with trimming.

99

and-price methods (as, e.g., in Pisinger and Sigurd [267]). This comes at the cost of an

additional computational e�ort, and indeed, from a practical point of view, the solution

of variable-sized problems is typically more challenging.

Loading and Unloading Constraints

Loading and/or unloading constraints often arise in applications where goods pertaining

to di�erent customers have to be loaded into the same bin, which represents, e.g., the

loading area of a truck (see, e.g., Gendreau et al. [145]). In these cases, the vehicles have

a loading/unloading orientation, and the sequence of visit to the customers must be such

that each item may be moved in/out without moving any other item. These constraints

can be directly included in mathematical models where the variables indicate the position

of the items (see Section 5.6.2) as the packing of an item restricts the range of positions

that can be taken by other items (as, e.g., in Côté, Gendreau and Potvin [92]). They

can also be imposed within branch-and-bound algorithms, where additional fathoming

criteria can be devised to reduce the number of decision nodes (as, e.g., in Iori, Salazar

González and Vigo [180]).

The �rst two variants were already discussed in the Sixties by Gilmore and Gomory

[148]. In the Eighties, Friesen and Langston [137] introduced (for the one-dimensional

case) the variable-size variant. The studies on loading and unloading constraints started

in the Noughties, see Gendreau et al. [145].

5.3 Sets of Points and Preprocessing Techniques

We start this section by reviewing techniques based on sets of points, that can be used

in both Integer Linear Programming (ILP) models and solution methods reviewed in the

following sections. We then examine some preprocessing techniques, used to decrease the

size of a given instance.

5.3.1 Sets of Points

Several authors in the literature use sets of points to represent the possible positions where

an item can be packed. According to the de�nitions given in Section 5.2, packing an item

at a point p = (x, y) means to allocate the item into the bin with its bottom-left corner

in the position identi�ed by p.

As we assume that items and bins have integer sizes, only considering integer point

coordinates does not a�ect optimality. Trivial sets of points for an item i are thus given

by coordinate sets Xi = {0, . . . ,W − wi} for the x-axis and Yi = {0, . . . , H − hi} for the
y-axis.

It is clear that the smaller the number of points the smaller the search domain. We

review in the following the main techniques that have been proposed in the literature for

generating reduced sets of points by preserving optimality.

100

Already in the Seventies, Herz [166] and Christo�des and Whitlock [77] independently

observed that any feasible packing pattern can be transformed into an equivalent one

(normal pattern) in which the items are shifted to the bottom and left as much as possible.

In a normal pattern, the left and bottom edges of each item touch another item or the

bin. This leads to the de�nition of the set of �normal� x-coordinates

N x = {x |x < W, x =
∑
i∈I

wiζi, ζi ∈ {0, 1}(i ∈ I)}, (5.3)

de�ning the only x-coordinates at which an item can be packed. A similar de�nition holds

for the set N y of normal y-coordinates.

Boschetti, Hadjiconstantinou, and Mingozzi [46] proposed to separately compute a set

of normal patterns for each item k ∈ I by excluding those patterns that include k itself.

The resulting set N x
k (k ∈ I) is obtained from (5.3) by replacing I with I\{k}. (Similarly

for N y
k .)

Terno, Lindemann, and Scheithauer [304] proposed the use of reduced raster points,

obtained by removing redundant positions from the set of normal patterns. The idea is

that, given two coordinates p, q ∈ N x (p < q), if every possible combination of items that

can be packed to the right of p can also be packed to the right of q, then p can be removed

from N x.

Recently, Côté and Iori [93] proposed a new set of patterns called meet-in-the-middle,

generated by �rst de�ning a threshold t ∈ {1, 2, . . . ,W} and then left-aligning patterns

that are to the left of t and right-aligning those that are to its right. The resulting set of

patterns is proved to be never larger than N x, and in practice is usually much smaller.

The fact that normal patterns preserve optimality was proved in the seminal paper by

Herz [166]. Proofs were later provided for other types of patterns like, e.g., in Côté and

Iori [93]. All such proofs show that any solution in which the items are packed without

restrictions in the continuous two-dimensional space can be transformed, through simple

translations, into a better or equivalent solution in which the items are packed according

to the patterns. The same arguments apply to problem variants like, e.g., those involving

guillotine cuts or several item copies or item rotation.

5.3.2 Preprocessing Techniques

Two main approaches for preprocessing the instances by preserving optimality can be

found in the literature: methods that �x some decisions and methods that modify the

input parameters. These techniques are useful for improving bounds based on the area

of the items or of the bins. We describe in the following one method of the former type

and two of the latter. Although developed for speci�c problems, the methods of the latter

type can be directly used for all problems. The extension of methods of the former type

is instead not straightforward.

All methods will be presented referring to widths. Those developed for problems on

bins can be identically applied using heights instead of widths, while the same does not

hold for problems on strips. The sequence of presentation follows the order in which it is

advisable to execute these methods in order to e�ectively reduce the given instance.

101

Packing a Subset of Items

This reduction was originally proposed by Martello, Monaci, and Vigo [225] for the 2D-

SPP. Suppose that the items are sorted by non-increasing width. The method can be

applied if w1 > W/2. Let B = { i ∈ I | wi = w1 }. Observe that these items cannot

be packed side-by-side, so we can pile them aligned to the left edge of the strip. Now

de�ne the set of those items that can be packed side-by-side with an item of B, namely

S = { j | wj ≤ W − w1 }. If there exists a feasible packing of all the items of S into

the empty right part of the strip, with overall height not greater than
∑

i∈B hi, then this

packing can be optimally �xed on the bottom of the strip, and the process can be iterated

on the reduced instance. When the required packing is not found, the method �nds the

�rst item ` 6∈ B. If w` > W/2, the current set B is updated by adding the items of width

w`, the current set S is updated accordingly, and a new attempt is performed.

This reduction was later used within other solution methods for the 2D-SPP (see,

e.g., Alvarez-Valdes, Parreño, and Tamarit [7], Boschetti and Montaletti [49] and Côté,

Dell'Amico, and Iori [91]) and extended to other packing problems, among which the

2D-BPP (see, e.g., Carlier, Clautiaux, and Moukrim [82]).

Shrinking the Size of the Bin

Alvarez-Valdes, Parreño, and Tamarit [7] proposed to solve a (one-dimensional) subset-

sum problem (�nd a subset of a set of given integers whose sum is closest to, without

exceeding, a pre�xed threshold) to determine the maximum value W≤ W such that there

exists a sum of item widths equal to W . If W < W then the width of the bin/strip can

be reduced to W .

Lifting the Size of the Items

A similar approach had been used by Boschetti, Hadjiconstantinou, and Mingozzi [46] to

increase item widths. They proposed to solve, for each item i ∈ I, a subset-sum problem

to determine the maximum value W i ≤ W − wi such that there exists a set of items in

I \{i} with total width equal toW i. If wi+W i < W then the width of i can be increased

by W −W i. Carlier, Clautiaux, and Moukrim [82] de�ned similar methods for updating

the size of the items by removing small items and increasing the width of large items.

5.4 Relaxations

Several relaxation methods for two-dimensional packing problems have been proposed in

the literature. They are used within exact algorithms and, in some cases, as a base to

construct a heuristic solution. Obviously, relaxations provide lower bounds for the 2D-

SPP and the 2D-BPP and upper bounds for the 2D-KP. As the 2D-OPP is a decision

problem, relaxations can be used to prove that the required packing does not exist.

102

5.4.1 Continuous Relaxation

Splitting each item i into wi×hi unit squares produces the most immediate relaxation for

all considered problems. For the 2D-OPP, the 2D-SPP and the 2D-BPP, the continuous

lower bound is then ⌈∑
i∈I

wihi
WH

⌉
(5.4)

(computed with H = 1 for the 2D-SPP). For the 2D-KP, the continuous upper bound

is obtained, following Dantzig [99] by: (i) sorting the items by non-increasing ratios

vi/(wihi); (ii) �nding the �rst item s such that
∑s

i=1wihi > WH and de�ning c =

WH −
∑s−1

i=1 wihi; (iii) computing the upper bound as⌊
s−1∑
i=1

vi +
c

wshs
vs

⌋
. (5.5)

E�cient implementations allow all these bounds to be computed in linear time. Because

of its simplicity, the continuous relaxation has been used in almost all works on two-

dimensional packing problems.

5.4.2 Combinatorial Bounds

Martello and Vigo [228] extended to the 2D-BPP some lower bounds proposed by Martello

and Toth [227] for the 1D-BPP and by Dell'Amico and Martello [106] for the P ||Cmax,

a parallel machine scheduling problem that is strictly related to the 1D-BPP. The idea

is to identify, for a given parameter p: (i) two item sets, say J1(p) and J2(p), such that

no two items of J1(p) ∪ J2(p) may be packed into the same bin; (ii) a third set, J3(p), of

items that cannot be packed into a bin used for an item of J1(p). A valid lower bound is

then L(p) = |J1(p) ∪ J2(p)|+ L23(p), where L23(p) denotes a lower bound on the number

of additional bins needed for the items of J3(p). It is shown that the overall lower bound,

maxp{L(p)} can be computed in O(n2) time.

Boschetti and Mingozzi [47, 48] improved these bounds and extended them to the

variant in which orthogonal rotation of the items is allowed. Similarly, relaxations for

the 2D-KP can be obtained from induced 1D-KP instances where each item has a weight

equal to its area and the knapsack has capacity WH.

Although combinatorial bounds have a low computational cost, they can be quite

e�ective, especially in branch-and-bound approaches (see, e.g., Martello, Monaci, and

Vigo [225] and Alvarez-Valdes, Parreño and Tamarit [7]).

5.4.3 Linear Relaxation and Column Generation

Already in 1965, the seminal paper by Gilmore and Gomory [148] introduced a column

generation algorithm for two-dimensional packing problems. The algorithm is based on

the linear relaxation of a mathematical formulation (the so-called set covering model)

that they had developed for the 1D-CSP (see Section 5.2.1). The model has a variable for

each possible combination of items that �ts into a single bin (pattern). Since the resulting

103

Linear Program (LP) has a huge (exponential) number of columns (variables), the Column

Generation method starts with a restricted model that only includes a subset of columns

and iteratively adds columns that may improve the current solution. This relaxation has

been used in branch-and-price algorithms for the 2D-BPP and related variants (see, e.g.,

Pisinger and Sigurd [267, 268]), and in problems involving guillotine cuts (see, e.g., Belov

and Scheithauer [27], Bettinelli, Ceselli, and Righini [38], and Cintra et al. [78]).

5.4.4 Dual Feasible Functions

Dual feasible functions were originally introduced by Johnson [187] for a normalized ver-

sion of the 1D-BPP in which the bin capacity is 1 and the item sizes wi are values in

[0, 1].

A function f : [0, 1]→ [0, 1] is a Dual Feasible Function (DFF), if for any �nite set S

of non-negative real numbers, it holds that:∑
x∈S

x ≤ 1 =⇒
∑
x∈S

f(x) ≤ 1. (5.6)

Three classes of DFFs were proposed by Fekete and Schepers [125]. The survey by Clau-

tiaux, Alves, and Valério de Carvalho [80] describes relevant (superadditive and maxi-

mal) DFFs that can be used in packing contexts. Rietz, Alves, and Valério de Carvalho

[281, 282, 283], analyzed a number of properties of DFFs (maximality, extremality, worst-

case performance) and studied the best parameter tuning for a speci�c function.

Dual feasible functions can be extended to consider discrete domains and used to

derive relaxations for higher-dimensional cutting and packing problems (see Fekete and

Schepers [127]). For the 2-dimensional case, let f and g be two DFFs. Applying f to

the item widths and g to the item heights of an instance of any two-dimensional packing

problem, we obtain a new instance whose relaxations are valid for the original instance.

Carlier, Clautiaux, and Moukrim [82] proposed DFF-based lower bounds for the 2D-

BPP and introduced DFFs depending on the sizes of items and bins (data-dependent

DFFs). Caprara and Monaci [67] solved a bilinear programming problem to determine

DFFs that provide the best bound for a given two-dimensional instance.

Fekete and Schepers [127] extended the concept of DFF to that of conservative scale.

A conservative scale is a set of modi�ed item sizes w̃ (resp. h̃) such that any subset I ′ of
items satisfying

∑
i∈I′ wi ≤ W (resp.

∑
i∈I′ hi ≤ H) also satis�es

∑
i∈I′ w̃i ≤ W (resp.∑

i∈I′ h̃i ≤ H). Note that a conservative scale is instance dependent while dual feasible

functions have general validity. The relationship between (data-dependent) dual feasible

functions and conservative scales has been deeply investigated by Belov et al. [25].

Recently, Serairi and Haouari [294] presented a theoretical and experimental study of

the most important polynomial-time lower bounding procedures for the 2D-BPP. Among

the algorithms they tested, the one by Carlier, Clautiaux, and Moukrim [82] turned out

to provide the tightest values.

For a comprehensive study on the use of dual feasible functions for integer program-

ming and combinatorial optimization problems the reader is referred to the recent book

by Alves et al. [8]. Due to their computational e�ciency, dual-feasible functions are often

104

1
1
1
1
1
1

2
2
3
3
3
3

3
3
3

4
4

4
4
5
5

5
5
5

5

6
6
6
6 7

(a)

1

2

3

4

5
6

7

(b)

Figure 5.4: (a) contiguous relaxation of items 1-7; (b) two-dimensional packing obtained
from (a).

implemented in branch-and-bound algorithms (see, e.g., Clautiaux, Carlier, and Moukrin

[82], and Alvarez-Valdes, Parreño and Tamarit [7]).

5.4.5 Contiguous One-Dimensional Relaxations

In order to obtain a relaxation of the 2D-SPP, Martello, Monaci, and Vigo [225] intro-

duced the One-dimensional Contiguous Bin Packing Problem (1D-CBPP). The idea is to

horizontally �cut� each item i ∈ I into hi unit-height slices of width wi and to solve a

1D-BPP problem with capacity W : the resulting number of one-dimensional bins is then

a lower bound on the height of any 2D-SPP solution. To tighten the bound, the 1D-CBPP

additionally imposes contiguity: all slices obtained from an item i must be packed into

hi consecutive one-dimensional bins (see Figure 5.4(a)). Although the 1D-CBPP is a re-

laxation of the 2D-SPP, it remains strongly NP-hard and hence it can only be optimally

solved through enumeration. A branch-and-bound algorithm was presented in [225] for

its exact solution and the resulting lower bound was used in an enumerative algorithm

for the 2D-SPP. Later, Alvarez-Valdes, Parreño, and Tamarit [7] proposed an ILP model

for the 1D-CBPP, and used a commercial software to solve it within a branch-and-bound

algorithm for the 2D-SPP.

Belov et al. [24] used the 1D-CBPP as a relaxation of the 2D-OPP. They proposed

an alternative ILP model for the 1D-CBPP and a weaker relaxation in which, instead of

requiring contiguity, it is imposed that each one-dimensional bin can contain at most one

slice from each item (bar relaxation). Friedow and Scheithauer [136] solved the 1D-CBPP

with a cutting plane approach based on column generation for the bar relaxation. A

branch-and-bound algorithm for the 1D-CBPP was later proposed by Mesyagutov et al.

[240].

Côté, Dell'Amico, and Iori [91] proposed an algorithm for the 2D-SPP based on Ben-

ders' decomposition (see Section 5.6.3 below) of an ILP model. The resulting master

problem, obtained by �transposing� the instance and vertically cutting the items into

105

unit-width bars, is a parallel processor scheduling problem with contiguity constraints.

The slave problem, which is still strongly NP-hard, determines whether the solution

provided by the master can be transformed into a feasible packing (see Figure 5.4(b)).

Delorme, Iori, and Martello [110] applied a similar decomposition to solve the 2D-SPP

with orthogonal rotations. They proposed an ILP model for the 1D-CBPP based on the

classical arc-�ow formulation of the 1D-CSP (see Valério de Carvalho [314]).

5.4.6 State Space Relaxations

The state space relaxation, originally developed by Christo�des, Mingozzi, and Toth [76]

for routing problems, modi�es the state space of a dynamic programming recursion so

that its optimal solution is a valid bound for the original problem. This relaxation has

been used for the (strongly NP-hard) guillotine 2D-KP, for which a state space relaxation

can disregard the constraint on the maximum number of copies of each item. The relaxed

problem (known in the literature as the unconstrained two-dimensional guillotine knapsack

problem) can be solved in pseudo-polynomial time through dynamic programming (see,

e.g., Gilmore and Gomory [148], Beasley [18], Cintra et al. [78] and Russo et al. [289]).

Christo�des and Hadjiconstantinou [75] strengthened the state space relaxation by

associating a non-negative integer multiplier with each item and adopted a subgradient-

like procedure to determine good multipliers. Improvements were proposed by Morabito

and Pureza [245] and by Velasco and Uchoa [325].

5.5 Heuristics

There is a huge literature on approximation algorithms and heuristics for two-dimensional

packing problems, and a thorough review of these methods is outside the scope of this

survey. To get an idea of the vastity of this area, it is enough to consider that Ortmann

and van Vuuren [258] computationally compared a total of 252 heuristics and variants for

two-dimensional strip packing problems. As heuristics are frequently used within exact

algorithms (e.g., to initialize the incumbent solution), we provide in the following some

pointers to a number of relevant results.

5.5.1 Approximation and On-line Algorithms

Concerning approximation and on-line algorithms, we refer the reader to the recent (2017)

comprehensive survey by Christensen et al. [74], that gives theoretical insight on fast

solution methods characterized by relevant theoretical properties for multi-dimensional

packing problems. We only mention here recent relevant works that appeared after the

publication of such survey.

Gálvez et al. [143] proposed a polynomial-time 1.89-approximation algorithm for the

2D-KP with orthogonal rotations, breaking the previous 2-approximation barrier.

Yu, Mao, and Xiao [341, 343] studied the on-line 2D-SPP, presenting new lower and

upper bounds with guaranteed worst-case performance. In [342] they presented an upper

bound for the special case of the 2D-SPP with square items. Further improvements were

106

presented by Han et al. [163] for the 2D-SPP and by Balogh et al. [16] for the special

case of the 2D-BPP in which items are squares.

For the 2D-SPP, Henning et al. [165] studied pseudo-polynomial approximation algo-

rithms with respect to the width of the strip, i.e., algorithms whose time complexity is a

polynomial function of the strip width. They proved that there cannot exist a pseudo-

polynomial algorithm with a ratio better than 5/4 unless P = NP . Jansen and Rau [186]

closed the gap between inapproximability result and best known algorithm by presenting

an algorithm with approximation ratio 5/4 + ε.

5.5.2 Constructive Heuristics, Local Search, and Metaheuristics

A huge number of constructive heuristics for two-dimensional cutting and packing prob-

lems can be found in the literature. The reader is referred to Lodi et al. [212] for classical

results in this area. We only mention here two strategies that have been the basis of many

solution approaches. The classical bottom-left algorithm, proposed in 1980 by Baker, Co�-

man, and Rivest [14], packs one item at a time in the lowest possible position, left justi�ed.

Another classical result (the best-�t approach), proposed by Burke, Kendall, and Whitwell

[60], selects and packs an item that better �ts the lowest available area. (See Chazelle

[72] and Imahori and Yagiura [174] for e�cient implementations of these methods.)

Local search approaches explore the neighborhood of a given solution. Several methods

for two-dimensional packing problems are based on �xing part of the solution, unpacking

the other items, and completing the solution according to some strategy. For example,

Alvarez-Valdes, Parreño, and Tamarit [5] create �holes� in the current packing and try

to use them when completing the solution. Other approaches pack items according to

an input sequence, and perform changes in such sequence to obtain alternative solutions

(see, e.g., Burke, Hyde, and Kendall [59] and Wei et al. [335]).

Constructive heuristics and local search are the base of many e�cient metaheuristic

algorithms. We brie�y review in the following some results for the two main metaheuristic

approaches.

Single-solution Metaheuristics

Alvarez-Valdés, Parajón, and Tamarit [3] proposed a GRASP and a Tabu search for the

2D-KP with guillotine constraints. Alvarez-Valdes, Parreño, and Tamarit [5, 6] presented

a Tabu search algorithm for the 2D-KP and a GRASP for the 2D-SPP. Wei et al. [334]

proposed an e�ective Tabu search for the two-dimensional rectangular packing problem

(see Section 5.2.1), both with and without orthogonal rotation. They also embedded it

in a binary search approach to solve the corresponding versions of the 2D-SPP.

Some of the metaheuristics proposed in the literature also work for the three-dimensional

generalization of the 2D-BPP, in which items and bins are three-dimensional boxes. For

both dimensions, Parreño et al. [259] presented a combination of GRASP and vari-

able neighborhood search, while Lodi, Martello, and Vigo [216] implemented a uni�ed C

computer code based on Tabu search (available at http://or.dei.unibo.it/research_

pages/ORcodes/TSpack.html).

http://or.dei.unibo.it/research_pages/ORcodes/TSpack.html
http://or.dei.unibo.it/research_pages/ORcodes/TSpack.html

107

Tabu search heuristics for routing problems with two- and three-dimensional load-

ing/unloading constraints have been proposed by Gendreau et al. [145, 146]

Population-Based Metaheuristics

Concerning the 2D-SPP, Iori, Martello, and Monaci [179] developed a hybrid Tabu search-

genetic algorithm. Di�erent genetic approaches were presented by Burke et al. [58],

Matayoshi [236], and Borgulya [44].

Genetic algorithms for the 2D-KP were proposed by Hadjiconstantinou and Iori [162]

and by Kierkosz and Luczak [193]. Gonçalves and Resende [153] presented a biased

random key genetic algorithm for the 2D-BPP and its three-dimensional generalization.

5.5.3 Set covering based heuristics

Monaci and Toth [243] developed algorithms for the 2D-BPP based on the set-covering

formulation (see Section 5.4.3) induced by a heuristic generation of the patterns.

Cintra et al. [78] proposed dynamic programming algorithms for the guillotine 2D-KP,

both in the k-staged and in the non-staged versions. They then used these algorithms in

a column generation heuristic for the corresponding versions of the 2D-CSP and the 2D-

SPP. Other heuristics based on column generation for the 2-staged 2D-CSP were presented

by Furini et al. [140], by Cui and Zhao [95] and by Cui, Zhou and Cui [96].

For the 3-staged 2D-CSP, a set covering based heuristic was presented by Vanderbeck

[322].

5.6 Exact Methods based on Integer Linear Program-

ming Models

In this section we review solution approaches that are based on ILP and Mixed Integer

Linear Programming (MILP) formulations and hence require the use of a solver. The

models may be classi�ed on the basis of their size: polynomial, pseudo-polynomial, or

exponential.

5.6.1 Polynomial Models

A mathematical mixed-integer model for a general three-dimensional bin packing problem,

involving a polynomial number of variables and constraints, was presented by Chen, Lee,

and Shen [73]. (This obviously implies a polynomial model for the two-dimensional classi-

cal problems.) The model in [73], that is based on the enumeration of all possible relative

placements of each pair of items, can be seen as an extension to the three-dimensional

case of the modeling technique proposed by Onodera, Taniguchi, and Tamaru [257] for a

two-dimensional block placement problem.

Polynomial formulations for 2-staged guillotine packing were proposed by Lodi and

Monaci [217] for the 2D-KP and by Lodi, Martello, and Vigo [215] for the 2D-BPP and

the 2D-SPP. These models were later extended to the 3-staged case of the 2D-BPP by

108

Puchinger and Raidl [272] and to the 2-staged 2D-CSP with variable-sized bins by Furini

and Malaguti [139].

5.6.2 Pseudo-polynomial Models

While polynomial models associate variables to the items, pseudo-polynomial models

include variables associated with the positions into the bins where the items can be packed.

Beasley [20] proposed an ILP model for the 2D-KP, based on a discretization of

the packing area through a pseudo-polynomial number of two-dimensional coordinates

(see Section 5.3.1) where the bottom-left corner of an item can be packed. A pseudo-

polynomial number of constraints imposes that no unit square is covered by more than

one item. This formulation was later used for the solution of other two-dimensional pack-

ing problems. Alvarez-Valdes, Parreño, and Tamarit [4] adapted the formulation to the

special case of the two-dimensional rectangular packing problem (see Section 5.2.1) with

orthogonal rotations in which all items are identical (Pallet Loading Problem). de Queiroz

and Miyazawa [274] adapted the model to a variant of the 2D-SPP in which the items

have to be arranged to form a physically stable packing satisfying a prede�ned item un-

loading order. Martello and Monaci [224] used a similar model to solve the problems

of orthogonally packing a set of rectangles (with or without allowing rotations) into the

smallest square.

Valério de Carvalho [314] presented an arc-�ow model for the solution of the 1D-CSP.

The model is based on a digraph with a pseudo-polynomial number of vertices, in which

paths correspond to feasible packings of a bin and a �ow provides an overall problem

solution. This formulation was extended to the 2-staged guillotine 2D-CSP by Macedo,

Alves, and Valério de Carvalho [219] and to the 2-staged guillotine 2D-SPP by Mrad [246].

Another pseudo-polynomial formulation of the 1D-CSP that was further extended to

two-dimensional problems is the one-cut model, independently obtained by Rao [276]

and Dyckho� [118]. The model is based on variables that describe the feasible cuts that

split a bin (or a residual of a bin) into an item and a residual (or another item). Silva,

Alvelos, and Valério de Carvalho [296] extended this model to the 2-staged and the 3-

staged guillotine 2D-CSP, while Furini, Malaguti, and Thomopulos [141] used it for the

non-staged guillotine 2D-SPP, 2D-CSP, and 2D-KP.

Another family of pseudo-polynomial models derives from time representations of

scheduling problems where disjunctive constraints determine the relative positions be-

tween each pair of items. Following this methodology, Castro and Oliveira [69] developed

ILP models for the 2D-SPP, and showed how to extend them to the 2D-BPP and to the

2D-KP. Castro and Grossmann [68] proposed further improvements for the 2D-SPP.

5.6.3 Exponential Models

Most exponential models for two-dimensional packing problems are based either on for-

mulations that associate variables with feasible patterns (see Section 5.4.3), which have

an exponential number of variables (columns), or on Benders' decomposition (see below),

which produces an exponential number of constraints (rows). The models of the former

109

type can be either set covering/set partitioning models (for bin packing or cutting stock

problems) or set packing models (for knapsack problems).

Branch(-and-cut)-and-price

Models based on the set covering formulation are usually implemented through column

generation (see Section 5.4.3) for solving the associated linear program relaxation. Em-

bedding the linear program into an enumerative scheme allows one to obtain an optimal

integer solution through branch-and-price or branch-and-cut-and-price (when cuts are

added at the decision nodes).

To the best of our knowledge, Belov and Scheithauer [27] were the �rst to propose

a branch-and-cut-and-price algorithm (based on a set-packing formulation) for a two-

dimensional problem, namely the 2-staged guillotine 2D-KP.

Puchinger and Raidl [272] solved the 3-staged guillotine 2D-BPP with a branch-and-

price algorithm with special techniques (column generation stabilization) to accelerate the

convergence of the method, as previously suggested by Valério de Carvalho [313] and Ben

Amor, Desrosiers, and Valério de Carvalho [10].

Pisinger and Sigurd [267, 268] proposed branch-and-price algorithms for 2D-BPPs with

variable-sized and �xed-sized bins. In these algorithms (which are, from a computational

point of view, the current state-of-the-art), the columns are generated through decom-

position into a one-dimensional knapsack problem and a 2D-OPP, which are then solved

by constraint programming. Bettinelli, Ceselli, and Righini [38] developed a branch-and-

price approach to the level (2-staged) 2D-SPP in which the pricing problem consists of

a penalized one-dimensional knapsack problem. Furini and Malaguti [139] and Mrad,

Meftahi and Haouari [247] solved the 2-staged guillotine 2D-CSP, respectively with and

without variable-sized bins, through branch-and-price algorithms.

Benders' Decomposition

Already in 1962, Benders [30] proposed a method to decompose an MILP model having

a special block structure into an MILP master problem and an LP slave problem. At each

iteration, the slave receives the current master solution and either proves its optimality or

generates a cut (Benders' cut) that is added to the master. The approach is also referred

to as row generation.

Geo�rion [147] generalized the Benders' decomposition to the case in which the sub-

problem too is an MILP. The latter decomposition was used by Caprara and Monaci [66]

and by Baldacci and Boschetti [15] to solve the 2D-KP: in both approaches the mas-

ter is an ILP based on the one-dimensional knapsack problem while the slave solves an

associated 2D-OPP.

Hooker and Ottosson [169] de�ned the logic-based Benders' decomposition for general

MILP problems: in this approach both the master and the slave are MILPs, but the

latter is solved through logical deduction methods, such as constraint programming. This

decomposition was successfully applied by Pisinger and Sigurd [267, 268] to the 2D-KP

and by de Queiroz et al. [273] to a special 2D-KP that includes pairs of items that cannot

both be in the solution (2D-KP with con�ict graphs).

110

Although Benders' decomposition has been successfully applied to cutting and packing

problems, the resulting cuts in the master problem may be weak. Codato and Fischetti

[87] de�ned stronger combinatorial Benders' cuts for general integer problems. Côté,

Dell'Amico, and Iori [91] and Delorme, Iori, and Martello [110] adopted such cuts for the

solution of the 2D-SPP without and with item rotation, respectively. In their logic-based

Benders' decomposition, the master problem is a parallel processor scheduling problem

with contiguity constraints (see Section 5.4.5) that produces the x-coordinate of each

item, while the slave checks whether feasible y-coordinates exist. In the negative case,

heuristic methods look for a minimal infeasible set of items that produces a combinatorial

Benders' cut. A similar decomposition, with standard Benders' cuts, was used by Côté,

Gendreau, and Potvin [92] for the 2D-OPP with unloading constraints.

Recently, Martin et al. [229] proposed a Benders' decomposition algorithm to solve the

guillotine 2D-KP. In their decomposition, the master problem is modeled using the pseudo-

polynomial model by Beasley [13], whereas the slave checks the guillotine restriction.

5.7 Exact Methods based on Implicit Enumeration

The algorithms reviewed in this section consist of enumeration schemes that do not ex-

plicitly make use of MILP models and hence do not require the use of a solver.

5.7.1 Branch-and-Bound

Several enumeration algorithms were derived from the bottom-left strategy proposed by

Baker, Co�man, and Rivest [14] (see Section 5.5.2), which produces an approximate

solution by placing one item at a time, in the lowest possible feasible position, left justi�ed.

Hadjiconstantinou and Christo�des [161] developed a tree-search exact algorithm for the

2D-KP that packs the next item in every possible position such that the item's left and

bottom edges touch either the bin or edges of other items (left-most downward strategy).

Martello and Vigo [228] adopted this strategy in a branch-and-bound algorithm for the

2D-OPP, and embedded it in a two-level enumeration algorithm for the 2D-BPP.

This strategy later evolved into two classes of implicit enumeration schemes, namely

the staircase placement and the niche placement. Both strategies enumerate the possible

packing of the items with their bottom-left corner in particular positions (corner points),

induced by the current (partial) packing, whose de�nition depends on the speci�c strategy.

Staircase Placement

The staircase placement makes use of the envelope (see Figure 5.5 (a)), de�ned as the

monotone (right-down) staircase-like boundary, that: (i) separates the area where previ-

ously packed items are placed from the area available for the remaining items, and (ii) is

composed by segments touching at least one edge of a packed item or the bin. The corner

points are those in which the slope of the envelope changes from vertical to horizontal.

These concepts were originally introduced by Scheithauer [291].

111

1
2

3

4

5

•

•

•

•

(a)

1
2

3
4

5

•

(b)

Figure 5.5: corner points of (a) staircase placement; (b) niche placement.

Martello, Monaci, and Vigo [225] proposed a branch-and-bound algorithm for the

2D-SPP which is based on the staircase placement and on a strategy that avoids the

enumeration of symmetric solutions. The method was later modi�ed by Iori, Salazar

González, and Vigo [181] to solve the 2D-OPP with loading/unloading constraints. Other

branch-and-bound algorithms based on the staircase placement were proposed by Alvarez-

Valdes, Parreño, and Tamarit [7] for the 2D-SPP, by Clautiaux, Carlier, and Moukrim

[81] for the 2D-OPP, and by Bekrar et al. [22] for the 2D-SPP with guillotine constraint.

The latter algorithm makes use of a method by Messaoud, Chu, and Espinouse [238] to

detect non-guillotine patterns in polynomial time.

Recently, Xu and Lee [338] studied the continuous berth allocation problem, in which

incoming vessels need to be assigned a time and a berth location on a quay. Each vessel

can be interpreted as a rectangle with given width (the space it occupies in the berth)

and height (the time it consumes): the problem is to �pack� the vessels into a strip of

given width (the total space available at the berth) so as to minimize the total weighted

completion times of the activities on the vessels. They solved the problem with a branch-

and-bound algorithm that uses a staircase branching rule and obtains at each node a valid

lower bound by invoking a model reformulation.

Niche Placement

The niche placement uses the skyline structure (see Figure 5.5 (b)), a boundary composed

by orthogonal line segments separating the area of previously packed items from the area

that is available for the remaining items. At each iteration, the niche is the lowest and (in

case of ties) leftmost horizontal segment: the left extreme of the niche is the only corner

point considered for packing the next item.

A complete branching is obtained by creating at most n+1 nodes as follows. The �rst

n (at most) nodes are created by packing an item in the niche (obviously disregarding

those that would lead to overlapping). Then, a last node in which no item is packed in

the niche is also created. In such node, the niche is closed, so that at the next iteration

a new niche will be considered.

The niche placement was used by Boschetti and Montaletti [49] in a branch-and-bound

112

algorithm for the 2D-SPP and by Lesh et al. [206] for the 2D-SPP with perfect packing

(a packing in which no wasted space is allowed). Kenmochi et al. [192] proposed two

branch-and-bound algorithms, respectively adopting niche and staircase placement, for

the 2D-SPP with perfect packing, with or without orthogonal rotation. They additionally

derived algorithms for the general 2D-SPP. Improvements of the latter algorithms were

presented by Arahori, Imamichi, and Nagamochi [12].

Other Enumeration Schemes

Certain solution methods for the 2D-KP are based on an enumeration of candidate subsets

of items combined with an inner solution method that checks whether the current subset

can be feasibly packed. This method has been used by Caprara and Monaci [66] for the

2D-KP and by Fekete, Schepers, and van der Veen [128] for knapsack problems with an

arbitrary number of dimensions.

Christo�des and Whitlock [77] and Christo�des and Hadjiconstantinou [75] introduced

enumerative approaches for the 2D-KP with guillotine constraints. Their algorithms are

based on a tree-search approach where branchings correspond to cuts on a rectangle and

bounds are obtained by solving relaxations through dynamic programming. Dolatabadi,

Lodi, and Monaci [115] improved this enumeration scheme, obtaining a branch-and-bound

and a branch-and-cut algorithm. Another search strategy that has been extensively used

for problems with guillotine constraints is the bottom-up approach (see, e.g., Viswanathan

and Bagchi [326], Hi� [167], Cung, Hi�, and Le Cun [97], and Fleszar [133]). It is based on

enumerating all feasible patterns obtained through builds: a build is a rectangle produced

by the (horizontal or vertical) combination of a pair of items or other builds. The bottom-

up approach also inspired the development of MILP formulations for guillotine problems

(see, e.g., Martin, Morabito, and Munari [230]).

A special case of 2-staged guillotine cutting patterns are the checkerboard patterns.

While the guillotine constraint allows each cut to separate a bin into two pieces, which

can then be treated as new (smaller) bins, the checkerboard constraint imposes that

the solution be obtained through a set of horizontal cuts and a set of vertical cuts, all

performed on the original bin. Yanasse and Katsurayama [339, 340] presented enumerative

algorithms for the 2D-KP with checkerboard patterns.

Clautiaux et al. [86] proposed label setting algorithms for the four-staged guillotine

2D-KP. They presented reduction procedures, �ltering rules based on a Lagrangian relax-

ation, and a state space relaxation.

5.7.2 Graph-Based Approaches

Morabito and Arenales [244] proposed an exact algorithm for the guillotine 2D-KP based

on AND/OR graphs. In an AND/OR-graph representation, the nodes correspond to

rectangles, the arcs correspond to cuts, and cutting patterns are represented as complete

paths in the graph.

Fekete and Schepers [126] proposed a graph-theoretical characterization of the packing

of a set of items into a bin. Their representation makes use of two interval graphs, as-

sociated with the horizontal and vertical dimensions, respectively: each item corresponds

113

to a vertex, and two vertices are connected by an edge if and only if the projections of

the corresponding items on the horizontal/vertical axis overlap. Theoretical properties

allow one to detect the feasibility of a packing. This interval graph model easily extends

to packings in higher dimensions.

Based on the interval graph representation, Fekete, Schepers, and van der Veen [128]

proposed a branch-and-bound algorithm for higher-dimensional orthogonal packing prob-

lems. The algorithm was later improved by Belov and Rohling [26] through LP bounds

based on the bar relaxation (see Section 5.4.5). In order to avoid the enumeration of

symmetrical interval graphs and unnecessarily enumerated packing classes (as observed

by Ferreira and Oliveira [130]), Joncour and Pêcher [188] proposed to adopt the so-called

consecutive ones matrices to enumerate relevant interval graphs. Further improvements

for the 2-dimensional case were proposed by Joncour, Pêcher, and Valicov [189].

Clautiaux, Jougler, and Moukrim [85] presented a graph-theoretical model for the 2D-

OPP with guillotine constraints. The model is based on an arc-colored directed graph,

which can be replaced by an uncolored undirected multigraph, and can be used for solving

the problem through constraint programming.

5.7.3 Constraint Programming

As previously mentioned (see Section 5.6.3), Pisinger and Sigurd [267, 268] used a con-

straint programming formulation to solve 2D-OPP instances arising as subproblems in

their decomposition approaches for the 2D-BPP (with �xed-sized or variable-sized bins).

The main constraints are related to the relative positioning of each pair of items. This

strategy was later adopted for other two-dimensional packing problems, e.g., by Korf, Mof-

�tt, and Pollack [195] for the problem of orthogonally packing a set of two-dimensional

items into a rectangle having minimum area, and by de Queiroz et al. [273] for a variant

of the 2D-KP (see Section 5.6.3).

Clautiaux et al. [84] proposed a constraint-based scheduling model for the 2D-OPP,

and solved it through constraint programming and e�ective propagation techniques. The

approach was improved by Mesyagutov, Scheithauer, and Belov [239] in their algorithms

for the 2D-SPP and the 2D-OPP, by embedding LP-based pruning rules into the constraint

propagation process.

Soh et al. [301] solved the 2D-OPP by iteratively reducing it to satis�ability testing

(SAT) problems, which look for a feasible assignment of a set of boolean variables. The

approach extends to the solution of the 2D-SPP. Grandcolas and Pinto [157] proposed

a SAT encoding of the interval graph model by Fekete and Schepers [126] for higher

dimensional problems, and compared its e�ciency with that of other SAT encodings.

Delorme, Iori, and Martello [110] proposed, for the 2D-CSP, a constraint programming

formulation based on non-overlapping intervals to determine whether a solution of the con-

tiguous one-dimensional relaxation (see Section 5.4.5) produces a feasible two-dimensional

packing.

114

5.8 Open Problems

Our study shows that considerable improvements in the exact solution of two-dimensional

cutting and packing problems emerged in the last decades, typically allowing to determine

an optimal solution even for large-size instances. However, the inherent hardness of this

class of problems is witnessed by the existence of unsolved instances with relatively few

items. In the following, we provide a list of the main benchmarks that are still unsolved

to proven optimality, not only for the main problems addressed in this survey, but also

for other relevant problem variants:

• for the 2D-SPP, speci�c instances with 20 items cannot be solved to proven opti-

mality even by recent and sophisticated algorithms (see, e.g., Côté, Dell'Amico, and

Iori [91]). Among the 500 instances of the so called 10 classes benchmark (proposed

a long time ago by Berkey and Wang [37] and Martello and Vigo [228] for the 2D-

BPP), only 322 are solved to proven optimality. A number of instances with 40

items are still open for the 2D-SPP with guillotine cuts (see, e.g., Mrad [142]);

• the 2D-SPP with item rotation is even more di�cult from a computational per-

spective: among the above mentioned 500 instances, just 176 could be solved to

optimality, and in particular 56 instances with only 20 items are still open (see, e.g.,

Delorme, Iori, and Martello [110]);

• the work by Delorme, Iori, and Martello [110] also presents extensive computational

results for the pallet loading problem (a 2D-OPP variant in which all items have the

same dimensions and rotation of 90 degrees is allowed) and the rectangle packing

problem (a 2D-SPP variant in which items must be packed, without rotation, in a

square of minimum area, see Martello and Monaci [224]). For the former problem, a

few dozen instances remain unsolved (see http://lagrange.ime.usp.br/~lobato/

packing/cover3.php for an up-to-date list). For the latter problem, more than 200

instances are unsolved, 50 of these (set RND_R15 in [224]) involving just 15 items;

• after more than 20 years, many 2D-BPP instances of the 10 classes benchmark

(see [37], [228]) with n ≥ 60 are still unsolved, and the same holds even for some

instances with n = 40 (see Pisinger and Sigurd [268]). For all such instances the

di�erence between the best upper and lower bounds is one bin;

• Pisinger and Sigurd [267] created 500 instances of the 2D-BPP with variable bin sizes

and costs, by modifying the 10 classes above. They could only solve 164 of them,

leaving as open problems 29 instances with 20 items, and 62 with 40 items. All

instances are available at https://www.computational-logistics.org/orlib/

topic/2D%20Variable-sized%20Bin%20Packing/index.html#intro~ ;

• a very di�cult 2D-KP instance with only 32 items, proposed 35 years ago by Beasley

[20], is still open (see Caprara and Monaci [66] and Baldacci and Boschetti [15]).

For the 2D-KP with guillotine constraints, several instances with either 25 or 50

items, recently proposed by Velasco and Uchoa [325], are open;

http://lagrange.ime.usp.br/~lobato/packing/cover3.php
http://lagrange.ime.usp.br/~lobato/packing/cover3.php
https://www.computational-logistics.org/orlib/topic/2D%20Variable-sized%20Bin%20Packing/index.html#intro~
https://www.computational-logistics.org/orlib/topic/2D%20Variable-sized%20Bin%20Packing/index.html#intro~

115

• for the 2D-OPP, two di�cult sets of instances have been created by Mesyagutov,

Scheithauer, and Belov [239], and can be downloaded at http://www.math.tu-

dresden.de/~capad/TESTS/OPP/12_cp2_data.zip. The zip�le includes, among

others, 1080 instances (Gleb_lpcs and Gleb_opp_gen) with 20 items and bin width

equal to either 100 or 1000, 18 of them being still unsolved. Other sets, known as C,

N, and T (available at https://www.euro-online.org/websites/esicup/data-

sets/#1535972088188-55fb7640-4228), contain 91 instances with about 70 items

and bin width at most 200: only 39 of them have been solved to optimality (see

Côté and Iori [93]);

• for the 2D-OPP with unloading constraints, Côté, Gendreau, and Potvin [92] gen-

erated 6 classes containing in total 3282 instances, with 26 items per instance on

average: only 2179 of them have been solved to proven optimality. The instances

can be downloaded from https://w1.cirrelt.ca/~cotejean/ (see 2OPP-UL).

Most of the above instances can also be downloaded from Internet repositories like, e.g.,

the well-known OR Library http://people.brunel.ac.uk/~mastjjb/jeb/info.html

by John Beasley [19] or the library of the OR group of the University of Bologna http:

//or.dei.unibo.it/library. In addition, a generator of instances for two-dimensional

rectangular cutting and packing problems, proposed by Silva, Oliveira, and Wäscher [298],

can be downloaded from https://sites.google.com/gcloud.fe.up.pt/cutting-and-

packing-tools.

5.9 Conclusions and Future Research Directions

We reviewed over 180 papers related to two-dimensional orthogonal cutting and packing

problems. The literature in this �eld has grown considerably in recent years, as also

shown by the fact that about half of our references appeared in the last ten years, and

just 20% were published before 2000. We described the main preprocessing and relaxation

methods and brie�y examined heuristic and approximation algorithms. We discussed

mathematical models and reviewed the most e�ective implicit enumeration approaches.

Finally, we provided an extensive list of instances for which the optimal solution is still

unknown.

To facilitate future research, we provide in Table 5.1 a summary of the publications

from the last 20 years on exact methods for 2D problems. The table presents the main

problems, variants and techniques studied by each paper. The problems are divided into

the four main categories discussed in Section 5.2 (column BPP gives both references to 2D-

BPP and 2D-CSP). The variants are given in the columns OR (orthogonal rotation), GL

(guillotine cuts), VS (variable-sized bins), LU (loading/unloading constraints) and OTH

(other variants). The main techniques are shown in columns MILP, B&B (branch-and-

bound), B&P (branch(-and-cut)-and-price), BD (Benders' decomposition), GB (graph-

based), CP (constraint programming), and REL (relaxations).

Some statistics on the recent exact methods can be drawn from the references in

the table: 20 papers studied the 2D-SPP, 17 studied the 2D-BPP and/or the 2D-CSP, 14

http://www.math.tu-dresden.de/~capad/TESTS/OPP/12_cp2_data.zip
http://www.math.tu-dresden.de/~capad/TESTS/OPP/12_cp2_data.zip
https://www.euro-online.org/websites/esicup/data-sets/#1535972088188-55fb7640-4228
https://www.euro-online.org/websites/esicup/data-sets/#1535972088188-55fb7640-4228
https://w1.cirrelt.ca/~cotejean/
http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://or.dei.unibo.it/library
http://or.dei.unibo.it/library
https://sites.google.com/gcloud.fe.up.pt/cutting-and-packing-tools
https://sites.google.com/gcloud.fe.up.pt/cutting-and-packing-tools

116

studied the 2D-KP, and 19 studied the 2D-OPP. The most studied variant is the guillotine

case. The most popular solution methods are MILP and branch-and-bound (both with

14 references). Note, however, that the number of papers on Benders' decomposition is

relatively high although the use of this technique for cutting and packing problems is

quite recent.

We also provide the reader some hints of what we consider promising future research

directions:

• Constraint Programming, either as a stand-alone algorithm or as a sub-problem in

decomposition methods, recently led to consistent improvements in computational

results on 2D problems. Further research on this type of methodology is envisaged,

as we see the potential to obtain further improvements;

• the use of Benders' decompositions (with or without Constraint Programming) for

solving 2D problems is quite recent. For some of the classical problems, these de-

compositions represent the state-of-the-art, as they could solve to proven optimality

several open instances. Such techniques are easily adaptable to many other problem

variants, as one can consider embedding the additional features either in the master

or in the slave. We thus envisage further research on this decomposition to solve

new problem variants;

• current research trends appear to be intensive for 2D problems with additional

constraints, like loading/unloading, stability, fragility, etc.;

• most of the techniques we presented can be generalized to the case of three or more

dimensions, although this is not always straightforward. The amount of research

on three-dimensional cutting and packing problems has been so far quite limited,

in spite of their large number of applications. Interesting research directions can be

explored for these problems, starting from the 2D ones.

We hope that this review will encourage researchers to pursue investigations in these

fascinating topics where there is still room for improving the algorithmic approaches.

117

Table 5.1: Summary of papers with exact methods and relaxations from the last 20 years.

2D Problems Variants Techniques

Reference

S
P
P

B
P
P

K
P

O
P
P

O
R

G
L

V
S

L
U

O
T
H

M
IL
P

B
&
B

B
&
P

B
D

G
B

C
P

R
E
L

Alvarez-Valdes, Parreño, and Tamarit [7] X X
Arahori, Imamichi, and Nagamochi[12] X X X
Baldacci and Boschetti [15] X X
Bekrar et al. [22] X X X X X
Belov et al. [24] X X
Belov et al. [25] X X
Belov and Rohling [26] X X X
Belov and Scheithauer [27] X X X
Bettinelli, Ceselli, and Righini [38] X X X
Boschetti, Hadjiconstantinou, and Mingozzi [46] X X X
Boschetti and Mingozzi [47] X X
Boschetti and Mingozzi [48] X X X
Boschetti and Montaletti [49] X X X
Caprara and Monaci [66] X X
Caprara and Monaci [67] X X
Carlier, Clautiaux, and Moukrim [82] X X
Castro and Grossmann [68] X X
Castro and Oliveira [69] X X X X
Cintra et al. [78] X X X X X X
Clautiaux, Carlier, and Moukrim [82] X X X
Clautiaux et al.[84] X X
Clautiaux, Jouglet, and Moukrim [85] X X X
Clautiaux et al. [86] X X X X
Côté, Dell'Amico, and Iori [91] X X X
Côté, Gendreau, and Potvin [92] X X X
Delorme, Iori, and Martello [110] X X X
Dolatabadi, Lodi, and Monaci [115] X X X X
Fekete and Schepers [126] X X
Fekete and Schepers [127] X X
Fekete, Schepers, and Veen [128] X X X
Fleszar [133] X X X X
Friedow and Scheithauer [136] X X
Furini and Malaguti [139] X X X X X
Furini, Malaguti, and Thomopulos [141] X X X X X
Grandcolas and Pinto [157] X X
Iori, Salazar-Gonzalez, and Vigo [180] X X X
Joncour and Pêcher [188] X X
Joncour, Pêcher, and Valicov [189] X X
Kenmochi et al. [192] X X X
Lesh et al. [206] X X
Lodi, Martello, and Vigo [215] X X X X X
Lodi and Monaci [217] X X X
Macedo, Alves, and Valério de Carvalho [219] X X X
Martello, Monaci, and Vigo [225] X X X
Martin et al. [229] X X X
Martin, Morabito, and Munari [230] X X X
Matayoshi [236]
Melega, de Araujo, and Jans [237]
Messaoud et al. [238] X X X X X
Mesyagutov, Scheithauer, and Belov [239] X X X X
Mesyagutov et al. [240] X
Mrad [246] X X X
Pisinger and Sigurd [267] X X X
Pisinger and Sigurd [268] X X
Puchinger and Raidl [272] X X X X
Queiroz et al. [273] X X X
Queiroz and Miyazawa [274] X X X X
Serairi and Haouari [294] X X
Silva, Alvelos, and Valério de Carvalho [296] X X X
Soh et al. [301] X X
Velasco and Uchoa [325] X X X
Yanasse and Katsurayama [339] X X X

118

Chapter 6

2DPackLib: A Two-dimensional

Cutting and Packing Library

6.1 Introduction

Cutting and packing is a major �eld in optimization. Two-dimensional (rectangular)

cutting and packing problems model indeed a large number of relevant industrial appli-

cations. In the former class of problems a set of rectangular items must be cut from a

set of rectangular stock units, whereas in the latter a set of rectangular items must be

packed into a set of rectangular containers. It is thus clear that the two problems are

strongly related, in the sense that cutting an item from a stock unit is practically equiv-

alent to packing an item into a container. In the following, we use the terms cutting and

packing interchangeably and we refer to both stock units and containers as bins. Typi-

cal cutting applications derive from industrial productions involving steel, wood or glass,

where the aim is to reduce waste material. Typical packing applications include optimal

use of spaces in warehouses or in packaging processes. According to speci�c applications,

two-dimensional cutting and packing problems may require to optimize di�erent objective

functions, and to satisfy specialized side constraints.

In the following, we deal with the most studied variants of these problems, where the

edges of the items must be parallel to those of the bin in which they are packed (orthog-

onal rectangular cutting and packing). Let B = (W,H) be a rectangular bin of width

W ∈ Z+ and height H ∈ Z+, and I be a set of rectangular items, where each item i ∈ I
has width wi ∈ Z+ and height hi ∈ Z+ (with wi ≤ W and hi ≤ H). A packing of I ′ ⊆ I
into B can be described as a function F : I ′ → Z2

+ that maps each item i ∈ I ′ to a pair

of coordinates F(i) = (xi, yi), such that

xi ∈ {0, ...,W − wi} and yi ∈ {0, ..., H − hi} (i ∈ I ′), (6.1)

[xi, xi+wi) ∩ [xj, xj+wj) = ∅ or [yi, yi+hi) ∩ [yj, yj + hj) = ∅ (i, j∈I ′, i 6=j). (6.2)

In this representation, the bin is located on a Cartesian plane with its edges parallel to

the axes and its bottom-left corner on the origin. The coordinates F(i) = (xi, yi) represent

the position where the bottom-left corner of each i ∈ I ′ is placed. Constraints (6.1) impose

119

that each item is entirely inside the bin, while constraints (6.2) forbid overlapping between

pairs of items. Constraints (6.1) and (6.2) impose that items have �xed orientation (i.e.,

cannot be rotated), but they can be adapted to consider the popular variant (discussed

in Section 6.2) where items can be rotated by 90 degrees.

Iori et al. [175] recently presented a survey on the main exact solution methods for

the most popular two-dimensional orthogonal cutting and packing problems. The huge

number of algorithms proposed for these problems has involved, along the years, the

adoption of many benchmarks for evaluating their performance. The survey provides

a precise classi�cation of the di�erent problem variants. Concerning benchmarks and

computational experiments, some issues must be considered:

• the number of benchmarks in the literature is huge, and even instances proposed in

the Seventies are still used to evaluate new methods;

• there is no clear correspondence between tested variants and adopted benchmarks

as, due to similarity among some of the variants, the same benchmarks have been

adopted for di�erent variants;

• many benchmarks are available in di�erent speci�c libraries, where they are provided

in di�erent formats, not always clearly detailed;

• some benchmarks were originally published in personal web pages which no longer

exist.

Besides the classi�cation of variants and benchmarks, the authors implemented a stan-

dardization of the benchmarks and a uni�ed format for the instances, as well as an analysis

of the matching variants-benchmarks. We now collected these results and other useful in-

struments (visual tools, links to surveys, bibliographies) in a publicly available web page,

the 2DPackLib.

Web-based libraries for combinatorial optimization problems have become a popular

instrument for researchers wanting to study speci�c �elds and to test their �ndings on

reliable benchmarks. The seminal instruments of this kind, realized 30 years ago, are still

very active: the OR-Library, developed in 1990 by Beasley [19] (see people.brunel.

ac.uk/~mastjjb/jeb/info.html), mostly devoted to a number of combinatorial opti-

mization problems, and the QAPLIB, implemented in 1991 by Burkard et al. [56, 57] for

the Quadratic Assignment Problem (see https://coral.ise.lehigh.edu/data-sets/

qaplib/). In the following decade, Applegate et al. [11] presented a famous, rich web

page (see http://www.math.uwaterloo.ca/tsp/) for the Traveling Salesman Problem.

In the last ten years, new libraries have been implemented for Mixed Integer Programming

(the MIPLIB by Koch et al. [194], see http://miplib.zib.de/), for Vehicle Routing (the

VRPH by Groër et al. [158], see http://sites.google.com/site/vrphlibrary/, and the

CVRPLIB by Uchoa et al. [311], see http://vrp.atd-lab.inf.puc-rio.br/), and for Bin

Packing (the BPPLIB by Delorme et al. [111], see http://or.dei.unibo.it/library/

bpplib).

The purpose of this paper is to present the contents of the 2DPackLib and to pro-

vide systematized relationships and links that should hopefully assist researchers in the

development and testing of new solution approaches.

people.brunel.ac.uk/~mastjjb/jeb/info.html
people.brunel.ac.uk/~mastjjb/jeb/info.html
https://coral.ise.lehigh.edu/data-sets/qaplib/
https://coral.ise.lehigh.edu/data-sets/qaplib/
http://www.math.uwaterloo.ca/tsp/
http://miplib.zib.de/
http://sites.google.com/site/vrphlibrary/
http://vrp.atd-lab.inf.puc-rio.br/
http://or.dei.unibo.it/library/bpplib
http://or.dei.unibo.it/library/bpplib

120

The library is available at http://or.dei.unibo.it/library/2dpacklib. In the

next sections, we describe its contents, namely:

• synthetic classi�cation of problems and variants;

• pointers to surveys and typologies;

• standardized benchmarks and their matching with problems and variants;

• bibliographies and additional tools.

6.2 Classi�cation

Using the basic de�nitions provided in Section 6.1, the 2DPackLib classi�es the main

two-dimensional orthogonal cutting and packing problems as follows:

• Two-Dimensional Strip Packing Problem (2D-SPP): given a set I of items and a

width W , determine the minimum H value such that there exists a packing of I
into a bin B = (W,H). In this problem, there is a unique container, called strip,

having a �xed width and an in�nite height;

• Two-Dimensional Cutting Stock Problem (2D-CSP): given an unlimited number of

identical bins and a set I of items, where each item is associated with a demand

di ∈ Z+ (the minimum number of copies to be packed), determine the minimum

number of bins needed to pack all demands. The Two-Dimensional Bin Packing

Problem (2D-BPP) is the special case in which di = 1, for all i ∈ I;

• Two-Dimensional Knapsack Problem (2D-KP): given a bin B and a set I of items,

where each item i ∈ I is associated with a pro�t pi, determine a subset I ′ ⊆ I that

can be packed into B and such that
∑

i∈I′ pi is a maximum. In the 2D-KP, each

item i ∈ I may be associated with a maximum number of copies bi. This version

of the problem is known as the constrained 2D-KP, whereas in the unconstrained

version of the problem an unlimited number of copies of each item is available;

• Two-Dimensional Orthogonal Packing Problem (2D-OPP): given a bin B and a set

I of items, determine whether there exists a packing of I into B.

Many variants of these problems have been studied in the literature, the most popular

ones being:

• guillotine cuts: in each bin, cuts are restricted to be edge-to-edge and parallel to

the edges of the bin. A cut splits a bin into two rectangles, which in turn can be

waste, items, or bins to be recursively cut again;

• orthogonal rotations: items are allowed to be rotated by 90 degrees, as opposed to

having �xed orientation;

http://or.dei.unibo.it/library/2dpacklib

121

• variable-sized bins: this variant arises when, instead of an unlimited number of

identical bins, one is given a set of bin types, each having a speci�c size (width

and height), cost, and availability. Typically, this variant is studied for problems

2D-CSP and 2D-BPP;

• loading and unloading constraints: a packing is associated with a loading/unloading

item sequence and must be such that each item can be loaded/unloaded with no

need to physically repositioning other items.

These problems are strongly NP-hard (the 2D-OPP, strongly NP-complete) and very

di�cult to solve in practice. The combinations problem-variant produce a high number

of speci�c issues, and many of them have been investigated in the literature. (The survey

[175] examines over 180 related references.)

6.3 Surveys and typologies

In 1990, Dyckho� [119] proposed the �rst typology for classifying cutting and packing

problems. Other typologies were later developed by Lodi et al. [213] (further extended by

Martello et al. [225]) and Wäscher et al. [332]. Table 6.1 provides the classi�cation of the

optimization problems considered in the 2DPackLib according to the di�erent typologies.

Table 6.1: Problem classi�cations according to classical typologies.

Dyckho� [119] Lodi et al. [213] Wäscher et al. [332]

2D-SPP - 2SP|O|F ODP

2D-BPP 2/V/I/M 2BP|O|F SBSBPP

2D-CSP 2/V/I/R 2BP|O|F SSSCSP

2D-KP 2/B/O 2KP|O|F SLOPP

In the Noughties, surveys on two-dimensional packing problems were presented by

Lodi et al. [210, 214], while Ntene and van Vuuren [253] produced a specialized review

and comparison of guillotine heuristics for the 2D-SPP.

In the following decade, a survey on general two-dimensional packing problems was

proposed by Alvarez-Valdes et al. [2]. Surveys on speci�c problems, variants, and method-

ologies were produced by Lodi et al. [212] (2D-BPP and 2D-SPP), Silva et al. [299] (pallet

loading problem, a variant of the 2D-BPP in which one has to pack, with orthogonal ro-

tations, the maximum number of identical items into a single bin), Oliveira et al. [254]

(2D-SPP), Christensen et al. [74] (approximation and online algorithms), and Russo et

al. [288](upper bounds for problems with guillotine cuts).

Finally, in the last two years, Bezerra et al. [39] proposed a survey on a special case of

the 2D-SPP, while Iori et al. [175] reviewed exact algorithms for two-dimensional cutting

and packing problems.

The 2DPackLib provides direct pointers to the PDF �les of all surveys mentioned

above (journal subscriptions may be requested).

122

6.4 Benchmarks

This is the most relevant section of the 2DPackLib. Many benchmarks have been proposed

to evaluate the computational performances of algorithms for di�erent variants of two-

dimensional cutting and packing problems. Unfortunately the literature has a number of

drawbacks: unclear correspondence between variants and benchmarks, non-uniform data

formats, sometimes hard to understand, unavailability of benchmarks included in dead

personal web pages.

In order to facilitate future computational studies, we converted the main benchmark

sets to a standard format that comprises the four main 2D cutting and packing problems

with identical bins. For that, let W and H be, respectively, the width and height of the

bin, and wi, hi, di, bi, and pi the width, height, demand, maximum number of copies, and

pro�t of each item i ∈ I = {1, ...,m}. The instances are in the following format:

• m

• W H

• for each item i (i = 1, ...,m): i wi hi di bi pi

The width and height of the items appear in all problems. The demands appear in the

2D-CSP and, sometimes, in variants of the 2D-SPP and the 2D-OPP. The maximum

number of copies of items is usually considered in the constrained 2D-KP and variants.

The pro�t is considered in the 2D-KP only.

The format can obviously be used for the variants that include guillotine cuts and

orthogonal rotations as well, but not for the cases of loading/unloading constraints and

variable-sized bins. However, very few benchmarks have been proposed for these two cases,

and a more general format for handling them would be considerably more complex for the

most commonly used benchmarks. The library provides however pointers to benchmarks

for a number of variants and related problems that do not fall in our format.

The benchmark sets can be downloaded, in the uni�ed format, from the 2DPackLib as

Zip �les. Since most benchmarks have been adopted for di�erent problem variants, the

library also provides, for each benchmark, an up-to-date list of recently published results

on di�erent problems. The next sections provide a synthetic description of the benchmark

sets.

6.4.1 Benchmarks originally proposed for the 2D-SPP

• N and T: two benchmarks, composed by 35 instances each, proposed by Hopper

and Turton [171]. The number of items ranges between 17 and 199 and the strip

width is always equal to 200;

• C: 21 instances proposed by Hopper and Turton [172], in which the number of items

ranges between 16 and 197, and the width of the strip ranges between 20 and 160.

The instances are generated so that the optimal solution is known in advance. A

subset of 9 instancs from this benchmark has been referred to as "HT" by some

authors;

123

• BKW: 13 instances proposed by Burke et al. [60], in which the number of items

ranges between 10 and 3152, and the width of the strip ranges between 40 and 640.

These instances, that are also referred to as "n" by some authors, were generated

so that an optimal solution consists of a perfect packing that can be produced by

guillotine cuts;

• ZDF: 16 instances produced by Leung and Zhang [207] by combining other instances
from the literature. The number of items ranges between 580 and 75 032, and the

width of the strips ranges between 100 and 9000.

The �les provided for 2D-SPP instances also report a value for H, which is either

the optimal height or −1. The �rst case only occurs for benchmarks where the optimal

solution was already produced by the generation process.

6.4.2 Benchmarks proposed for the 2D-BPP and 2D-CSP

• BENG: ten instances introduced by Bengtsson [31] by generating both the size of

the items and the dimensions of the bins according to a uniform distribution. The

number of items ranges between 20 and 200, whereas the largest bin is (40, 25).

• CLASS: this benchmark includes 500 instances, divided into 10 classes, and was

introduced by Berkey and Wang [37] (classes 1 to 6) and by Martello and Vigo [228]

(classes 7 to 10). Each class includes instances of di�erent sizes, namely it has 10

instances for each value of the number of items in {20, 40, 60, 80, 100}. The bins

are identical for all instances in each class, and they vary from (10, 10) in class 1 to

(300, 300) in class 6;

• A: 43 instances introduced by Macedo et al. [220] for the 2D-CSP with guillotine

cuts. In these instances, that are derived from the furniture industry, the number of

items ranges between 13 and 809 and the bins are either (2750, 1220), (2550, 2100),

or (2470, 2080).

6.4.3 Benchmarks proposed for the 2D-KP

• CGCUT: three small instances generated by Christo�des and Whitlock [77]. The

dimensions and pro�ts of the items were generated following a uniform distribution.

Some authors refer to this set as "ChW";

• WANG: three small instances obtained by Wang [329] by modifying the bin and

the maximum number of copies of one instance from CGCUT, and by considering

the pro�t of each item equal to its area;

• NGCUT: 12 small instances generated by Beasley [20]. The dimensions and pro�ts

of the items were generated following a uniform distribution;

• GCUT: 13 instances proposed by Beasley [18]. The �rst 12 instances are associated

with each combination of numbers of items in the set {10, 20, 30, 50} and bins in

124

the set {(250, 250), (500, 500), (1000, 1000)}. The dimensions of the items were

generated following a uniform distribution. The last instance corresponds to a real-

world problem with 32 items and bin (3000, 3000). In all instances, pro�ts coincide

with item areas;

• OF: two small instances generated by Oliveira and Ferreira [256], where item di-

mensions follow a beta distribution and pro�ts coincide with item areas;

• OKP: �ve instances generated by Fekete and Schepers [129] in the same manner

as the NGCUT set. The number of items ranges between 15 and 33 and the width

and height of the bins is 100;

• CU and CW: 22 instances generated by Fayard et al. [124]. The number of items

ranges between 25 and 60 and the largest bin is (992, 970). CU has 11 unweighted

instances (i.e., with item pro�ts given by their area), whereas CW has 11 weighted

instances, where pro�ts are randomly generated;

• LU, LW, LX: three groups of 5 large-scale instances each, proposed by Hi� [168]

and Russo et al. [289]. The number of items ranges between 100 and 550 and the

largest bin is (45 237, 35 983);

• APT: 40 instances proposed by Alvarez-Valdés et al. [3]. The range of number of

items and dimensions of the bin follows the policies adopted for CU and CW, but

the instances also contain some smaller items to increase their di�culty;

• NGCUTFS: 630 instances generated by Beasley [21] in the same manner as the

OKP set, but with the number of items ranging between 40 and 1000;

• MP: 450 instances proposed by Morabito and Pureza [245]. The number of items is

in {10, 20, 30, 40, 50} and the width and height of the bins is 100. This set is divided

into three classes of 150 instances and each class is characterized by di�erent ranges

used to create the item dimensions;

• VU: 80 instances proposed by Velasco and Uchoa [325]. The number of items is 50,

and the bins have dimensions ranging between 100 and 400. The items are relatively

small compared to the bin, a feature often associated with hard instances.

6.4.4 Benchmarks proposed for the 2D-OPP

• CJCM: 42 instances proposed by Clautiaux et al. [84]. The number of items ranges

between 10 and 23 and the width and height of the bins is 20;

• MSB: 1080 instances proposed by Mesyagutov et al. [239], divided into two classes.

The �rst class has 630 instances, each with 20 items and width and height of the

bins equal to 1000. The second has 450 instances, each with number of items in

{10, 15, 20, 25, 30} and width and height of the bins equal to 100.

125

6.5 Bibliographies and additional tools

The 2DPackLib includes

• TwoBinPack, an open source software to interactively solve rectangular cutting and

packing problems, developed by Costa et al. [90], an application useful to practi-

tioners and developers thanks to its visual tools;

• the BibTeX �le containing almost 200 references, mostly appeared in the last ten

years, from the survey by Iori et al. [175];

• a list of links related to two-dimensional cutting and packing, such as working

groups, library pages, and the instance generator developed by Silva et al. [298].

6.6 Conclusions

We presented the 2DPackLib, a library dedicated to two-dimensional orthogonal cutting

and packing problems that provides pointers to surveys and typologies, benchmarks, an

interactive visual tool, a BibTeX �le of almost 200 references, and a list of relevant links.

The benchmarks (comprising over 3000 instances) are standardized to provide a uni�ed

format for all the instances. This addresses previous issues on benchmarks with di�erent

formats, not always clearly detailed.

We are con�dent that the 2DPackLib will facilitate future research in the active area

of two-dimensional cutting and packing problems.

126

Chapter 7

Integrated Workforce Scheduling and

Flexible Flow Shop Problem in the

Meat Industry

7.1 Introduction

Production scheduling is one of the most common classes of problems faced by companies

seeking to optimize their manufacturing system. In those problems, a set of jobs has to be

scheduled in a set of machines while satisfying a set of practical constraints and optimizing

a given objective. In this paper, we study a scheduling problem faced daily by a meat

producing company. The company receives daily a set of orders to be produced in a single

day. Each order is associated with a due date and is produced by following up to two

stages: in the �rst stage, the meat is processed (cut) on a given bench, and in the second

stage it is sent to a conveyor to be packed into disposable trays. Benches and conveyors are

seen as heterogeneous parallel machines, and their productivity depends on the number

of workers operating each. Hence, the company needs to derive a new production plan

every day, comprising the number of workers to operate each machine and the scheduling

of operations composing the �nal orders. The scheduling problem faced by the company

(which has a number of operational constraints that are formally discussed in Section 7.2)

is a generalization of the well-known two-stage �exible (or hybrid) �ow shop problem (see,

e.g., [122]). The overall problem considers, in lexicographic way, the minimization of the

number of unscheduled orders, the weighted tardiness, and the production costs.

The literature on �exible �ow shop problems is broad. For surveys on general �exible

�ow shop variants, we refer the reader to [209], [286], and [305]. Concerning two-stage

variants, in [309], the authors investigate the in�uence of repetitive scheduling in an envi-

ronment with a single machine in the �rst stage and multiple lines in the second stage. In

[285], we �nd an application related to a sterilization plant, aiming at reducing the num-

ber of tardy jobs and the makespan, while respecting sequence-independent setup times

and jobs processed in parallel batches. The work of [208] handles a system with unrelated

parallel machines on each stage and task tail group constraints, aiming at minimizing the

total tardiness. The authors propose a new scheduling rule able to outperform twelve

127

dispatching rules from the literature. In [173], the authors study environments composed

of a single machine either in the �rst or in the second stage and propose several solution

procedures for such problems. The work of [330] deals with a problem in the glass-ceramic

industry, whose objective is to minimize the makespan and energy consumption. Besides

an integer linear programming model, they propose constructive, tabu search, and ant

colony optimization algorithms.

In this paper, we propose a multi-start random heuristic to solve the integrated work-

force scheduling and two-stage �exible �ow shop problem faced by the company. The

heuristic iteratively tests di�erent combinations for the number of workers, and, for each

combination, it generates the production schedule by following a constructive heuristic.

At each iteration, it assigns orders to benches and conveyors by following a list of prior-

ities. By means of extensive computational experiments based on realistic instances, we

can show that the heuristic is e�ective in �nding good-quality solutions and can provide

a quick support to the company on its daily decisions.

The remaining of the paper is organized as follows. Section 7.2 provides a formal

description of the problem. Section 7.3 presents the proposed solution method. Section

7.4 provides the results of the computational experiments. Finally, Section 7.5 presents

concluding remarks and some directions for future research.

7.2 Problem De�nition

In this section, we present a detailed description of the problem. The company receives a

set O of orders to be scheduled in a workday, by following several operational constraints.

Each order is expected to be produced before its due date, which corresponds to the time

in which it has to be shipped to its �nal destination. Then, the problem is to determine

the workforce and production schedule of a workday.

A workday.

A workday is de�ned over a time horizon of 24 hours, and may have up to two disjoint

working periods. The two periods are subject to time-related constraints, such as mini-

mum and maximum start time, end time, and duration. Moreover, there is a minimum

and a maximum number of workers that can be hired for each period. Thus, a �rst set

of decisions involves the number of working periods, as well as their start time, end time,

and hired workers.

A period in a workday.

After deciding the duration and number of workers for each period, production-related

decisions must be made. The production in each period is composed by two stages. Each

stage has a set of heterogeneous parallel machines whose speed is variable. We assume

workers have the same e�ciency and the speed of each machine is proportional to the

number of workers operating it. In addition, workers cannot be reallocated to di�erent

machines during a period. Thus, another decision is to determine the number of workers

operating each machine during the period.

128

In our case study, �rst-stage machines are benches on which the meat is prepared,

whereas second-stage machines are conveyors where the products are distributed to be

packed into disposable trays that �nally receive a stamp with the product information.

Details on the production in a period.

The last set of decisions considers the scheduling of the orders in each period. Each order

inO is associated with: a �nal product identi�cation code; a due date; a type of disposable

tray (referred to as the order family); a type of stamp; a net weight; a raw product type,

which has a productivity measure on each machine of the �rst and second stage where it

can be processed. In addition, some orders have to be processed in a single stage, whereas

others have to be processed (sequentially) on both stages. For orders that have to be

processed in both stages, the product quality is preserved by imposing a maximum waiting

time (e.g., 60 minutes or so) for the bu�er between the two stages. We assume the bu�er

has unlimited size. All machines have setup times: �rst-stage and second-stage machines

must undergo setups whenever the raw product is changed and whenever di�erent tray

or stamp types are required, respectively. Another machine-related constraint imposes a

�xed transportation time between the �rst and second stage.

Summarizing, the decisions of the overall problem involve the distribution of the work-

ing periods, the number of workers on each period, the number of workers operating each

machine in each period, and the production scheduling. The quality of a solution is mea-

sured by three objectives to be minimized according to a lexicographic order: (1) the

total number of unscheduled orders; (2) the total weighted tardiness; and, (3) the total

production cost. Although machine setups are not formally included in the objective,

they are highly disliked by the company and it is always preferable to keep their number

as small as possible.

7.3 Proposed Heuristic

To solve the problem under consideration, we propose a multi-start random heuristic.

First, let us describe function schedule(O, L), which schedules orders in O to a period

that is already set (i.e., its time window is already �xed and workers are already allocated

to machines). The list L has a priority coe�cient lo for each order o ∈ O. The orders are
iteratively scheduled by choosing the best order to be scheduled at each iteration based on

the priority list in use, which considers, for instance, the creation of setups, the due dates,

the coe�cients, the size of the gaps created between productions. Whenever necessary,

the sequence in O is used to break ties. Orders with early due dates that are processed

in a single stage only are always chosen to be scheduled �rst. Whenever we are about

to schedule orders that are processed in both stages, we �rst choose the second-stage

machine with earliest available time, then we choose the best order to be scheduled in

that machine following one of the priority lists, and, �nally, we choose the best �rst-stage

machine to schedule the chosen order, also based on a priority list.

The function schedule is used within a constructive heuristic for the integrated prob-

lem. The overall structure of this heuristic is presented in Algorithm 2. The algorithm

129

creates several combinations of �rst- and second-period schedules by testing di�erent com-

binations of number of workers and by iteratively updating the list of priority coe�cients.

The algorithm begins by testing di�erent combinations of number of workers for the �rst

period, and for each combination, the workers are allocated to machines by means of a

function that consider a balance of the workload. After creating the schedule for the �rst

working period, the heuristic follows by testing di�erent possible schedules of the remain-

ing orders in the second period. Again, for the second period all possible combinations of

number of workers are tested and the workload based function is used again to allocate

the workers to the machines. Then, di�erent schedules for the second working period is

created for each combination of workers. During the process of creating a schedule for a

period, after �xing the number of workers for any of the two periods, we produce up to

Πlist di�erent schedules, which are iteratively obtained by updating the list L and calling

the function schedule. Recall that L is used in the internal of schedule as an order-

priority quanti�er. In this way, L is updated in order to avoid tardiness, by increasing

the priority coe�cients of tardy orders in the current schedule.

Finally, our multi-start random heuristic is obtained by running Algorithm 2 for Πshu�e

iterations. In each of these iterations, we perform a reshu�e of the order sequence in O.
Recall that the sequence in O is used in a tie-breaking process in the internal of the

schedule function, and, thus, it is expected to produce an impact in the �nal solution.

Algorithm 2: Heuristic for the integrated problem

1: L← (0, 0, ..., 0) ∈ Z|O|. // list of priority coe�cients associated with O
2: for all combinations of number of workers of stage one and two of the �rst working period do
3: Assign workers to machines of the �rst working period by considering a workload balance
4: for i← 1, . . . ,Πlist do
5: t1 ← schedule(O, L)
6: O′ ← O minus the orders scheduled in the working period t1
7: L′ ← L updated for the orders in O′

8: for all combinations of number of workers of stage one and two of the second working period
do

9: Assign workers to machines of the second working period by considering a workload balance
10: for j ← 1, . . . ,Πlist do
11: t2 ← schedule(O′, L′)
12: Update the best solution if its (lexicographic) objective function is worse than that of the

current solution (t1, t2)
13: if there is tardiness in the working period t2 then
14: Increase the coe�cient of priority in L′ of the orders with tardiness
15: else
16: Break the loop
17: end if
18: end for
19: if there is tardiness in the working period t1 then
20: Increase the coe�cient of priority in L of the orders with tardiness
21: else
22: Break the loop
23: end if
24: end for
25: end for
26: end for

130

7.4 Computational Experiments

We implemented the multi-start random heuristic algorithm presented in Section 7.3 in

C++. The algorithm was tested on 12 realistic instances, each representing one day of

production at the company. Some randomization was applied to all instances in order

to meet the company's privacy requirements. The tests were executed on a MacBook

Air with an Intel Core i7 1.2 GHz quad-core processor. The goal of the experiments is

to analyze the impact of di�erent parameters in the performance of the heuristic. The

parameters under consideration are:

(i) the range of workers available for each working period;

(ii) the number Πshu�e of random shu�es of the sequence O;

(iii) the number Πlist of iterations related to the update of the priority coe�cients of the

orders to try to prevent tardiness.

For each parameter con�guration, we evaluate the three objectives of the problem plus

the number of setups in the second stage.

We present in Table 7.1 the results related to parameter (i), which is the number of

workers hired in each working period. We consider three con�gurations: L, meaning the

Lowest �xed number of workers we may have; H, meaning the Highest �xed number of

workers; and, R, meaning a Range/variable number of workers from L to H. These results

were obtained with Πshu�e = 25 and Πlist = 5, that are values de�ned after preliminary

trial and error tests. By observing the results, we can note that the higher is the number

of workers, the better is the solution. However, the best results are obtained when the

heuristic has a range of workers (situation R) to decide on. For all instances, con�gu-

rations R and H have provided the same number of unscheduled orders and weighted

tardiness (except for I11, where R is better), but with R the production cost is always

equal or smaller. The number of setups in stage two is small and comparable among all

con�gurations. The average computational time in seconds for L, H and R is 9.2, 8.7

and 1666.3, respectively, so R requires a consistently larger amount of time to achieve the

improved solutions.

As better solutions are obtained with con�guration R, the following results consider

only this con�guration. In Table 7.2, we present the results we obtained when evaluating

parameter (ii), the number of Πshu�e iterations. We attempted three values, namely 1,

25, and 100. When Πshu�e is set to 1, the heuristic looses its multi start characteristic.

Hence, we expect to have better solutions as Πshu�e increases, because we may change the

sequence in which orders are scheduled. In these experiments, we have set Πlist = 5.

Observing Table 7.2, the heuristic returns better solutions when more iterations are

available. This means that restarting with possible di�erent orders has a positive impact

on the �nal solution even if the order sequence is the last criterion in the list of priorities.

With 25 and 100 iterations, the heuristic is able to obtain the same number of unsched-

uled orders for all instances, although better weighted tardiness and production costs are

achieved with 100 iterations for 3 instances (see I06, I09, and I11). The number of setups

is relatively small and within the target value indicated the company (which is 3). The

131

Table 7.1: Results for di�erent (i) values of works in each working period.

Inst.
Unsch. Jobs Weight. Tardiness Prod. Cost N. Setups

L H R L H R L H R L H R

I01 2 0 0 68795 0 0 192 223 206 2 2 2
I02 2 0 0 1182 0 0 280 314 301 2 2 2
I03 0 0 0 7811 0 0 317 326 319 2 2 2
I04 0 0 0 209663 31738 31653 210 244 240 2 1 2
I05 3 0 0 25212 2414 2414 229 270 266 2 2 2
I06 13 1 1 156181 37174 37174 241 272 272 1 1 1
I07 3 0 0 26965 0 0 259 285 285 1 2 2
I08 0 0 0 0 0 0 91 95 92 1 2 2
I09 0 0 0 124397 46 46 291 344 344 2 2 2
I10 3 0 0 48977 0 0 318 332 328 1 2 2
I11 12 2 2 252213 255366 76081 329 380 373 1 1 1
I12 15 2 2 119295 197832 197832 340 395 395 1 1 1

average computational time in seconds for Πshu�e=1, 25, and 100 is 0.4, 7.6 and 30.8,

respectively, so all three con�gurations are fast.

Table 7.2: Results for di�erent (ii) numbers of Πshu�e iterations.

Inst.
Unsch. Jobs Weight. Tardiness Prod. Cost N. Setups

1 25 100 1 25 100 1 25 100 1 25 100

I01 0 0 0 525 0 0 213 206 206 1 2 2
I02 1 0 0 1118 0 0 304 301 301 1 2 2
I03 0 0 0 91 0 0 334 319 319 1 2 2
I04 0 0 0 51765 31653 31653 238 240 240 2 2 2
I05 0 0 0 18895 2414 2414 268 266 266 2 2 2
I06 4 1 1 117886 37174 16019 283 272 277 1 1 2
I07 0 0 0 244 0 0 295 285 285 2 2 2
I08 0 0 0 0 0 0 92 92 92 2 2 2
I09 0 0 0 1348 46 36 332 344 316 2 2 2
I10 0 0 0 0 0 0 347 328 328 1 2 2
I11 2 2 2 76081 76081 40502 373 373 371 1 1 1
I12 3 2 2 99445 197832 197832 399 395 395 1 1 1

Finally, we present in Table 7.3 the results for parameter (iii), the Πlist number of

iterations to change the order coe�cient of priority. For these results, we selected con-

�guration R and Πshu�e = 100, and tested Πlist equal to 1, 5, and 20. Overall, we have

conclusions similar to the previous ones, meaning that higher values of Πlist can provide

better solutions, especially if comparing the weighted tardiness and the production cost.

The average computational time in seconds for Πlist=1, 5, 20 is 4.7, 30.8 and 177.1, re-

spectively, which is again fast and compatible with a real-world use of the algorithm by a

decision maker.

132

Table 7.3: Results for di�erent (iii) numbers of Πlist iterations.

Inst.
Unsch. Jobs Weight. Tardiness Prod. Cost N. Setups

1 5 20 1 5 20 1 5 20 1 5 20

I01 0 0 0 22069 0 0 211 206 206 1 2 2
I02 0 0 0 308 0 0 313 301 301 1 2 2
I03 0 0 0 100883 0 0 327 319 318 1 2 2
I04 0 0 0 117752 31653 31650 222 240 241 2 2 2
I05 0 0 0 23168 2414 2411 265 266 264 1 2 1
I06 2 1 1 83453 16019 9137 285 277 275 1 2 2
I07 0 0 0 162 0 0 287 286 286 2 2 2
I08 0 0 0 0 0 0 92 92 92 2 2 2
I09 0 0 0 99604 36 0 302 316 292 2 2 1
I10 0 0 0 13829 0 0 321 328 328 0 2 2
I11 2 2 2 90988 40502 11029 365 371 366 1 1 1
I12 3 2 2 99445 197832 197832 399 395 395 1 1 1

7.5 Concluding Remarks

We have proposed a multi-start random heuristic for a complex integrated workforce

scheduling and two-stage �exible �ow shop problem from a meat production system.

The heuristic schedules orders by following a list of priorities and considering di�erent

workers on machines in order to reach solutions with all orders scheduled, no tardiness,

and the smallest possible production cost. The computational experiments have indicated

that better solutions can be achieved when allowing more shu�es in the vector of orders

(Πshu�e), more iterations to handle the orders with tardiness (Πlist), and allowing the

heuristic to decide on the number of works to set in each working period.

In future research, we are interested in studying how dynamic changes in assignments

of workers to machines may a�ect productivity. Another direction is related to the ex-

tension of the proposed heuristic to include a local search step and possibly a tabu list

in order to escape from local optima solutions. Finally, the proposed algorithm has been

recently deployed to the company and, as attested by the company, has been producing

satisfactory results. We are currently working with the company to provide, as future re-

search, an extensive comparison regarding the impact of the algorithm on their production

system.

133

Chapter 8

Conclusions

This thesis studied solution methods for a number of combinatorial optimization problems.

It proposes a collection of six articles: three of them are concerned with novel solution

methods for problems from the literature and for a real-world problem; two of them

present an extensive literature review on well-studied areas; and the last one introduces

an online library.

The �rst part of this thesis studied pseudo-polynomial arc �ow models. Chapter 2

reviewed over 100 references and presented theoretical foundations, modeling techniques,

insights behind the strength of such models, general solution methods for large models,

and main successful applications. Chapter 3 proposed a number of innovative solution

methods to solve large pseudo-polynomial arc �ow models with strong relaxations. Our

column generation algorithm, which generates multiple paths in each pricing iteration,

has provided satisfactory practical performance. Our reduced-cost variable-�xing strate-

gies could drastically reduce the model size in several di�cult instances. In addition,

the use of sub-optimal dual solutions allowed to strengthen the model through variable

�xing, solving many di�cult instances already at the root node. Finally, our innovative

branching scheme, which exploits the potential of general MILP solvers, has shown to be

a good approach to quickly �nd optimal or near-optimal solutions. The correctness of

the LP-based methods and a motivation of the variable �xing strategies are supported by

several theoretical results. The proposed methods compose an exact solution framework,

which solves a large number of open instances of the cutting stock problem, the two-staged

cutting stock problem, the ordered open-end bin packing problem, and the skiving stock

problem. In all these problems, �nding a near-optimal solution is already easy by means

of simple greedy heuristics. Thus, reduced-cost variable-�xing is very e�ective already

at the root node. In Chapter 4, we studied a parallel machine scheduling problem with

the objective of minimizing weighted completion times. This problem is associated with

a strong LP relaxation, but �nding a near-optimal solution is generally not trivial. For

that, we implemented a reduced-cost-based branching rule, which simulates the e�ective-

ness of reduced-cost variable-�xing based on a near-optimal solution, without the need to

have such a solution already at hand. This chapter also proposed other solution methods,

which were combined into a three-phase branching scheme to solve the scheduling prob-

lem. The overall algorithm could solve all open instances to proven optimality. We believe

that the new proposals are promising to solve arc �ow models with strong relaxations for

134

many other di�cult problems. We are currently investigating cutting planes for general

arc �ow models. We believe that the proposal of strong cutting planes for such models

can be a promising direction to strengthen arc �ow models with weak LP relaxations and

successfully solve such models in practice employing the methods proposed here. Another

future research direction is the combination of the proposed methods with iterative ag-

gregation/disaggregation techniques, to address problems that derive huge networks that

cannot �t in the computer memory.

The second part of this thesis gives special attention to two-dimensional cutting and

packing problems. Chapter 5 surveyed over 180 references related to such problems,

focusing mainly on exact methods and relaxations. We noticed that the literature on such

problems has grown substantially in the last two decades. Thus, our survey is a signi�cant

update of the last extensive review concerning the same problems, proposed almost two

decades ago. We noticed that in the last years there was an increase in popularity in

Constraint Programming and Benders' Decomposition in the solution of two-dimensional

cutting and packing. We believe that, although the literature on such problems has been

growing considerably, there is still room for improving the state-of-the-art methods and

extending the solution techniques to address three-dimensional problems. In Chapter 6,

we introduce the 2DPackLib, an online library dedicated to two-dimensional cutting and

packing problems. The library systematically arranges relevant research material related

to such problems. In particular, the 2DPackLib provides a uni�ed format for the main

benchmark sets (comprising over 3000 instances). This addresses previous issues related

to benchmarks that were originally published in personal web pages which no longer exist

or benchmarks that are available in formats that are not clearly detailed. We are con�dent

that all such contributions will facilitate research on the active area of two-dimensional

cutting and packing.

In the third and last part of this thesis, Chapter 7 studied a real-world problem

consisting of workforce scheduling and �exible �ow shop arising from a meat producing

company. This problem is very complex from a practical point of view, consisting of a large

number of decision variables and constraints. To solve the problem, we proposed a two-

phase constructive heuristic, which in the �rst phase determines the workforce allocation,

and in the second phase schedule the orders to the machines. To improve the optimization,

the constructive heuristic was embedded into a randommulti-start framework. As attested

by the company, the proposed algorithm has been producing satisfactory results. We

are currently working with the company to provide, as future research, an extensive

comparison regarding the impact of the algorithm on their production system. We are

also investigating an extension of the algorithm by embedding the constructive heuristic

within a metaheuristic framework (e.g., variable neighborhood search).

Related projects done in parallel with this thesis

We worked on a few projects in parallel to the development of this thesis. We have been

working on the solution of an integrated lot sizing and two-dimensional cutting stock

problem under demand uncertainty. We propose a two-stage stochastic model and a

robust optimization model. The linear relaxation of the models are solved by column

135

generation, and integer solutions are obtained by a rolling horizon heuristic combined

with a restricted master heuristic. This project is joint work with Eduardo Curcio, Flávio

K. Miyazawa, Elsa Silva, and Pedro Amorim. A full article derived from this project is

currently under review by an international indexed journal [98]. We believe that the non-

deterministic nature of the studied problem diverges from the main focus of this thesis.

For this reason, we did not include the resulting article as a chapter here.

We also worked on a new set of patterns for the bin packing problem. These patterns

can be used to derive reduced networks in arc �ow models. The proposed set of patterns

derives, in average, networks that are 40% smaller, when compared to the state-of-the-art

(i.e., the meet-in-the-middle patterns [93]). This project is joint work with Thiago A. de

Queiroz, Manuel Iori, and Flávio K. Miyazawa. A preliminary report has been presented

at the LI Simpósio Brasileiro de Pesquisa Operacional [102]. The report presents only the

results of preliminary experiments, in which we compare the size of the networks resulting

from di�erent patterns, but do not compare the solution of the corresponding arc �ow

models. An interesting research direction is related to the use of the set of patterns in

[102] to improve the waste-limited network for the bin packing problem, presented in

Chapter 3.

Acknowledgements

We would like to thank the São Paulo Research Foundation (FAPESP) for the �nancial

support (process number 2017/11831-1).

136

Bibliography

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network �ows: theory, algorithms, and

applications. Prentice-Hall, 1993.

[2] R. Alvarez-Valdes, M.A. Carravilla, and J.F. Oliveira. Cutting and packing. In

R. Martí, P.M. Pardalos, and M.G.C. Resende, editors, Handbook of Heuristics,

pages 931�977. Springer, 2018.

[3] R. Alvarez-Valdés, A. Parajón, and J. M. Tamarit. A tabu search algorithm for

large-scale guillotine (un)constrained two-dimensional cutting problems. Computers

& Operations Research, 29(7):925�947, 2002.

[4] R. Alvarez-Valdes, F. Parreño, and J. M. Tamarit. A branch-and-cut algorithm for

the pallet loading problem. Computers & Operations Research, 32(11):3007�3029,

2005.

[5] R. Alvarez-Valdes, F. Parreño, and J. M. Tamarit. A tabu search algorithm for a

two-dimensional non-guillotine cutting problem. European Journal of Operational

Research, 183(3):1167�1182, 2007.

[6] R. Alvarez-Valdes, F. Parreño, and J. M. Tamarit. Reactive GRASP for the strip-

packing problem. Computers & Operations Research, 35(4):1065�1083, 2008.

[7] R. Alvarez-Valdes, F. Parreño, and J. M. Tamarit. A branch and bound algorithm

for the strip packing problem. OR Spectrum, 31(2):431�459, 2009.

[8] C. Alves, F. Clautiaux, J. M. Valério de Carvalho, and J. Rietz. Dual-Feasible

Functions for Integer Programming and Combinatorial Optimization. Springer In-

ternational Publishing, Cham, 2016.

[9] C. Alves and J.M. Valério de Carvalho. A stabilized branch-and-price-and-cut al-

gorithm for the multiple length cutting stock problem. Computers & Operations

Research, 35(4):1315�1328, 2008.

[10] H. Ben Amor, J. Desrosiers, and J. M. Valério de Carvalho. Dual-optimal inequali-

ties for stabilized column generation. Operations Research, 54(3):454�463, 2006.

[11] D.L. Applegate, R.E. Bixby, V. Chvatal, and W.J. Cook. The Traveling Salesman

Problem - A Computational Study. Princeton University Press, Princeton, NJ, 2006.

137

[12] Y. Arahori, T. Imamichi, and H. Nagamochi. An exact strip packing algorithm

based on canonical forms. Computers & Operations Research, 39(12):2991�3011,

2012.

[13] O.S. Bajgiran, A.A. Cire, and L.-M. Rousseau. A �rst look at picking dual variables

for maximizing reduced cost �xing. In D. Salvagnin and M. Lombardi, editors,

Integration of AI and OR Techniques in Constraint Programming, pages 221�228.

Springer International Publishing, 2017.

[14] B. S. Baker, E. G. Co�man, Jr., and R. L. Rivest. Orthogonal packing in two

dimensions. SIAM Journal on Computing, 9(4):846�855, 1980.

[15] R. Baldacci and M. A. Boschetti. A cutting-plane approach for the two-dimensional

orthogonal non-guillotine cutting problem. European Journal of Operational Re-

search, 183(3):1136�1149, 2007.

[16] J. Balogh, J. Békési, G. Dósa, L. Epstein, and A. Levin. Lower bounds for several

online variants of bin packing. In Approximation and Online Algorithms - 15th Inter-

national Workshop, WAOA 2017, Revised Selected Papers, pages 102�117. Springer

Verlag, 2018.

[17] M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali. Linear programming and network �ows.

John Wiley & Sons, 2011.

[18] J. E. Beasley. Algorithms for unconstrained two-dimensional guillotine cutting.

Journal of the Operational Research Society, 36(4):297�306, 1985.

[19] J. E. Beasley. Or-library: distributing test problems by electronic mail. Journal of

the Operational Research Society, 41(11):1069�1072, 1990.

[20] J.E. Beasley. An exact two-dimensional non-guillotine cutting tree search procedure.

Operations Research, 33(1):49�64, 1985.

[21] J.E. Beasley. A population heuristic for constrained two-dimensional non-guillotine

cutting. European Journal of Operational Research, 156(3):601�627, 2004.

[22] A. Bekrar, I. Kacem, C. Chu, and C. Sad�. An improved heuristic and an exact al-

gorithm for the 2D strip and bin packing problem. International Journal of Product

Development, 10(1-3):217�240, 2010.

[23] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[24] G. Belov, V. M. Kartak, H. Rohling, and G. Scheithauer. One-dimensional relax-

ations and LP bounds for orthogonal packing. ITOR, 16(6):745�766, 2009.

[25] G. Belov, V. M. Kartak, H. Rohling, and G. Scheithauer. Conservative scales in

packing problems. OR Spectrum, 35(2):505�542, 2013.

[26] G. Belov and H. Rohling. LP bounds in an interval-graph algorithm for orthogonal-

packing feasibility. Operations Research, 61(2):483�497, 2013.

138

[27] G. Belov and G. Scheithauer. A branch-and-cut-and-price algorithm for one-

dimensional stock cutting and two-dimensional two-stage cutting. European Journal

of Operational Research, 171(1):85�106, 2006.

[28] J. Ben-Ameur, W.and Neto. Acceleration of cutting-plane and column generation

algorithms: Applications to network design. Networks, 49(1):3�17, 2007.

[29] H. Ben Amor, J. Desrosiers, and J.M. Valério de Carvalho. Dual-optimal inequalities

for stabilized column generation. Operations Research, 54(3):454�463, 2006.

[30] J. F. Benders. Partitioning procedures for solving mixed variables programming

problems. Numerische Mathematik, 4(1):238�252, 1962.

[31] B. E. Bengtsson. Packing rectangular pieces � a heuristic approach. The Computer

Journal, 25:353�357, 1982.

[32] M. Benkirane, F. Clautiaux, J. Damay, and B. Detienne. A Hypergraph Model for

the Rolling Stock Rotation Planning and Train Selection. working paper or preprint,

December 2019.

[33] J. A. Bennell and J. F. Oliveira. The geometry of nesting problems: A tutorial.

European Journal of Operational Research, 184(2):397�415, 2008.

[34] J. A. Bennell and J. F. Oliveira. A tutorial in irregular shape packing problems.

Journal of the Operational Research Society, 60(supp 1):S93�S105, 2009.

[35] J. A. Bennell, J. F. Oliveira, and G. Wäscher. Cutting and packing. International

Journal of Production Economics, 145(2):449�450, 2013.

[36] D. Bergman, A.A. Cire, and W.J. van Hoeve. Lagrangian bounds from decision

diagrams. Constraints, 20:346�361, 2015.

[37] J. O. Berkey and P. Y. Wang. Two dimensional �nite bin packing algorithms.

Journal of the Operational Research Society, 38:423�429, 1987.

[38] A. Bettinelli, A. Ceselli, and G. Righini. A branch-and-price algorithm for the

two-dimensional level strip packing problem. 4OR, 6(4):361�374, 2008.

[39] V. M. R. Bezerra, A. A. S. Leao, J. F. Oliveira, and M. O. Santos. Models for

the two-dimensional level strip packing problem - a review and a computational

evaluation. Journal of the Operational Research Society, 71(4):606�627, 2020.

[40] N. Boland, M. Hewitt, L. Marshall, and M. Savelsbergh. The continuous-time

service network design problem. Operations Research, 65(5):1303�1321, 2017.

[41] N. Boland, M. Hewitt, D.M. Vu, and M. Savelsbergh. Solving the traveling sales-

man problem with time windows through dynamically generated time-expanded

networks. In D. Salvagnin and M. Lombardi, editors, CPAIOR: Integration of AI

and OR Techniques in Constraint Programming, pages 254�262. Springer Interna-

tional Publishing, 2017.

139

[42] N.L. Boland and M.W.P. Savelsbergh. Perspectives on integer programming for

time-dependent models. TOP, 27:147�173, 2019.

[43] B. Bolsi, V.L. de Lima, T.A. de Queiroz, and M. Iori. Integrated workforce schedul-

ing and �exible �ow shop problem in the meat industry. In A. Dolgui, A. Bernard,

D. Lemoine, G. von Cieminski, and D. Romero, editors, Advances in Production

Management Systems. Arti�cial Intelligence for Sustainable and Resilient Produc-

tion Systems, pages 594�602. Springer International Publishing, 2021.

[44] I. Borgulya. A parallel hyper-heuristic approach for the two-dimensional rectangular

strip-packing problem. Journal of computing and information technology, 22(4):251�

265, 2014.

[45] A. Bortfeldt and G. Wäscher. Constraints in container loading � A state-of-the-art

review. European Journal of Operational Research, 229(1):1�20, 2013.

[46] M. A. Boschetti, E. Hadjiconstantinou, and A. Mingozzi. New upper bounds for

the two-dimensional othogonal non guillotine cutting stock problem. IMA Journal

of Management Mathematics, 13(2):95�119, 2002.

[47] M. A. Boschetti and A. Mingozzi. The two-dimensional �nite bin packing problem.

Part I: New lower bounds for the oriented case. 4OR, 1(1):27�42, 2003.

[48] M. A. Boschetti and A. Mingozzi. The two-dimensional �nite bin packing problem.

Part II: New lower and upper bounds. 4OR, 1(2):135�147, 2003.

[49] M. A. Boschetti and L. Montaletti. An exact algorithm for the two-dimensional

strip-packing problem. Operations Research, 58(6):1774�1791, 2010.

[50] H. Bouarab, I. El Hallaoui, A. Metrane, and F. Soumis. Dynamic constraint and

variable aggregation in column generation. European Journal of Operational Re-

search, 262(3):835�850, 2017.

[51] E.A. Boyd. A pseudopolynomial network �ow formulation for exact knapsack sep-

aration. Networks, 22(5):503�514, 1992.

[52] N. Braga, C. Alves, and R. Macedo. Exact solution of the multi-trip inventory

routing problem using a pseudo-polynomial model. In 6th International Conference

on Operations Research and Enterprise Systems, volume 2, pages 250�257, 2017.

[53] N. Braga, C. Alves, R. Macedo, and J. Valério de Carvalho. Combined cutting

stock and scheduling: a matheuristic approach. International Journal of Innovative

Computing and Applications, 7(3):135�146, 2016.

[54] F. Brandão and J.P. Pedroso. Bin packing and related problems: General arc-�ow

formulation with graph compression. Computers & Operations Research, 69:56�67,

2015.

140

[55] T. Bulhões, R. Sadykov, A. Subramanian, and E. Uchoa. On the exact solution

of a large class of parallel machine scheduling problems. Journal of Scheduling,

23:411�429, 2020.

[56] R.E. Burkard, S.E Karisch, and F. Rendl. QAPLIB� a quadratic assignment prob-

lem library. European Journal of Operational Research, 55(1):115�119, 1991.

[57] R.E. Burkard, S.E. Karisch, and F. Rendl. QAPLIB - a quadratic assignment

problem library. Journal of Global Optimization, 10:391�403, 1997.

[58] E. K. Burke, M. Hyde, G. Kendall, and J. Woodward. A genetic programming hyper-

heuristic approach for evolving 2-D strip packing heuristics. IEEE Transactions on

Evolutionary Computation, 14(6):942�958, 2010.

[59] E. K. Burke, M. R. Hyde, and G. Kendall. A squeaky wheel optimisation

methodology for two-dimensional strip packing. Computers & Operations Research,

38(7):1035�1044, 2011.

[60] E. K. Burke, G. Kendall, and G. Whitwell. A new placement heuristic for the

orthogonal stock-cutting problem. Operations Research, 52(4):655�671, 2004.

[61] V. Cacchiani and P. Toth. Nominal and robust train timetabling problems. European

Journal of Operational Research, 219(3):727�737, 2012.

[62] H. Cambazard and B. O'Sullivan. Propagating the bin packing constraint using

linear programming. In D. Cohen, editor, Principles and Practice of Constraint

Programming, pages 129�136. Springer Berlin Heidelberg, 2010.

[63] P. Cappanera and M.G. Scutellà. Joint assignment, scheduling, and routing mod-

els to home care optimization: a pattern-based approach. Transportation Science,

49(4):830�852, 2015.

[64] A. Caprara, M. Dell'Amico, J.C. Díaz-Díaz, M. Iori, and R. Rizzi. Friendly bin

packing instances without integer round-up property. Mathematical Programming,

150:5�17, 2015.

[65] A. Caprara, M. Fischetti, and P. Toth. Modeling and solving the train timetabling

problem. Operations Research, 50(5):851�861, 2002.

[66] A. Caprara and M. Monaci. On the two-dimensional knapsack problem. Operations

Research Letters, 32(1):5�14, 2004.

[67] A. Caprara and M. Monaci. Bidimensional packing by bilinear programming. Math-

ematical Programming, 118(1):75�108, 2009.

[68] P. M. Castro and I. E. Grossmann. From time representation in scheduling to the

solution of strip packing problems. Computers & Chemical Engineering, 44:45�57,

2012.

141

[69] P. M. Castro and J. F. Oliveira. Scheduling inspired models for two-dimensional

packing problems. European Journal of Operational Research, 215(1):45�56, 2011.

[70] D. Cattaruzza, N. Absi, and D. Feillet. Vehicle routing problems with multiple

trips. 4OR, 14(3):223�259, 2016.

[71] A. Ceselli and G. Righini. An optimization algorithm for the ordered open-end

bin-packing problem. Operations Research, 56(2):425�436, 2008.

[72] B. Chazelle. The bottomn-left bin-packing heuristic: An e�cient implementation.

IEEE Transactions on Computers, C-32(8):697�707, 1983.

[73] C. S. Chen, S. M. Lee, and Q. S. Shen. An analytical model for the container loading

problem. European Journal of Operational Research, 80(1):68�76, 1995.

[74] H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali. Approximation and online

algorithms for multidimensional bin packing: A survey. Computer Science Review,

24:63�79, 2017.

[75] N. Christo�des and E. Hadjiconstantinou. An exact algorithm for orthogonal 2-D

cutting problems using guillotine cuts. European Journal of Operational Research,

83(1):21�38, 1995.

[76] N. Christo�des, A. Mingozzi, and P. Toth. State-space relaxation procedures for

the computation of bounds to routing problems. Networks, 11(2):145�164, 1981.

[77] N. Christo�des and C. Whitlock. An algorithm for two-dimensional cutting prob-

lems. Operations Research, 25(1):30�44, 1977.

[78] G. F. Cintra, F. K. Miyazawa, Y. Wakabayashi, and E. C. Xavier. Algorithms for

two-dimensional cutting stock and strip packing problems using dynamic program-

ming and column generation. European Journal of Operational Research, 191(1):61�

85, 2008.

[79] A.A. Cire, A. Diamant, T. Yunes, and A. Carrasco. A network-based formulation for

scheduling clinical rotations. Production and Operations Management, 28(5):1186�

1205, 2019.

[80] F. Clautiaux, C. Alves, and J. M. Valério de Carvalho. A survey of dual-feasible

and superadditive functions. Annals of Operations Research, 179(1):317�342, 2010.

[81] F. Clautiaux, J. Carlier, and A. Moukrim. A new exact method for the two-

dimensional orthogonal packing problem. European Journal of Operational Re-

search, 183(3):1196�1211, 2007.

[82] F. Clautiaux, J. Carlier, and A. Moukrim. New reduction procedures and lower

bounds for the two-dimensional bin packing problem with �xed orientation. Com-

puters & Operations Research, 34(8):2223�2250, 2007.

142

[83] F. Clautiaux, S. Hana�, R. Macedo, M.-E. Voge, and C. Alves. Iterative aggregation

and disaggregation algorithm for pseudo-polynomial network �ow models with side

constraints. European Journal of Operational Research, 258(2):467�477, 2017.

[84] F. Clautiaux, A. Jouglet, J. Carlier, and A. Moukrim. A new constraint program-

ming approach for the orthogonal packing problem. Computers & Operations Re-

search, 35(3):944�959, 2008.

[85] F. Clautiaux, A. Jouglet, and A. Moukrim. A new graph-theoretical model for

k-dimensional guillotine-cutting problems. In Catherine C. McGeoch, editor, Ex-

perimental Algorithms, pages 43�54, Berlin, Heidelberg, 2008. Springer Berlin Hei-

delberg.

[86] F. Clautiaux, R. Sadykov, F. Vanderbeck, and Q. Viaud. Combining dynamic pro-

gramming with �ltering to solve a four-stage two-dimensional guillotine-cut bounded

knapsack problem. Discrete Optimization, 29:18�44, 2018.

[87] G. Codato and M. Fischetti. Combinatorial Benders' cuts for mixed-integer linear

programming. Operations Research, 54(4):756�766, 2006.

[88] E. G. Co�man Jr., J. Csirik, G. Galambos, S. Martello, and D. Vigo. Bin Packing

Approximation Algorithms: Survey and Classi�cation, pages 455�531. Springer New

York, New York, NY, 2013.

[89] M. Conforti, G. Cornuéjols, and G. Zambelli. Extended formulations in combina-

torial optimization. 4OR, 8:1�48, 2010.

[90] G. Costa, M. Delorme, M. Iori, E. Malaguti, and S. Martello. Training software for

orthogonal packing problems. Computers & Industrial Engineering, 111:139�147,

2017.

[91] J.-F. Côté, M. Dell'Amico, and M. Iori. Combinatorial Benders' cuts for the strip

packing problem. Operations Research, 62(3):643�661, 2014.

[92] J.-F. Côté, M. Gendreau, and J.-Y. Potvin. An exact algorithm for the two-

dimensional orthogonal packing problem with unloading constraints. Operations

Research, 62(5):1126�1141, 2014.

[93] J.-F. Côté and M. Iori. The meet-in-the-middle principle for cutting and packing

problems. INFORMS Journal on Computing, 30(4):646�661, 2018.

[94] T. G. Crainic, G. Perboli, and R. Tadei. Recent advances in multi-dimensional

packing problems. In Constantin Volosencu, editor, New Technologies - Trends,

Innovations and Research. IntechOpen, Rijeka, 2012.

[95] Y. Cui and Z. Zhao. Heuristic for the rectangular two-dimensional single stock size

cutting stock problem with two-staged patterns. European Journal of Operational

Research, 231(2):288�298, 2013.

143

[96] Y.-P. Cui, Y. Zhou, and Y. Cui. Triple-solution approach for the strip packing prob-

lem with two-staged patterns. Journal of Combinatorial Optimization, 34(2):588�

604, 2017.

[97] V.-D. Cung, M. Hi�, and B. Le Cun. Constrained two-dimensional cutting stock

problems a best-�rst branch-and-bound algorithm. International Transactions in

Operational Research, 7(3):185�210, 2000.

[98] E. Curcio, V.L. de Lima, F.K. Miyazawa, E. Silva, and P. Amorim. The integrated

lot-sizing and cutting stock problem under demand uncertainty. Submited, pages

1�35, 2021.

[99] G. B. Dantzig. Discrete variable extremum problems. Operations Research,

5(2):266�277, 1957.

[100] G.B. Dantzig and P. Wolfe. The decomposition algorithm for linear programs.

Econometrica, 29(4):767�778, 1961.

[101] V.L. de Lima, C. Alves, F. Clautiaux, M. Iori, and J.M. Valério de Carvalho. Arc

�ow formulations based on dynamic programming: Theoretical foundations and

applications. European Journal of Operational Research, 296(1):3�21, 2022.

[102] V.L. de Lima, T.A. de Queiroz, M. Iori, and F.K. Miyazawa. Improved sets of points

for the bin packing problem. In LI Simpósio Brasileiro de Pesquisa Operacional.

Galoá, 2019.

[103] V.L. de Lima, M. Iori, and F.K. Miyazawa. Exact solution of network �ow models

with strong relaxations. https://arxiv.org/abs/2105.14961, 2021.

[104] V.L. de Lima, M. Iori, and F.K. Miyazawa. New exact techniques applied to a

class of network �ow formulations. In M. Singh and D.P. Williamson, editors,

Integer Programming and Combinatorial Optimization, pages 178�192, Cham, 2021.

Springer International Publishing.

[105] M. Dell'Amico, M. Delorme, M. Iori, and S. Martello. Mathematical models and

decomposition methods for the multiple knapsack problem. European Journal of

Operational Research, 274(3):886�899, 2019.

[106] M. Dell'Amico and S. Martello. Optimal scheduling of tasks on identical parallel

processors. ORSA Journal on Computing, 7(2):191�200, 1995.

[107] M. Delorme and M. Iori. Enhanced pseudo-polynomial formulations for bin packing

and cutting stock problems. INFORMS Journal on Computing, 32(1):101�119, 2020.

[108] M. Delorme and M. Iori. Enhanced pseudo-polynomial formulations for bin packing

and cutting stock problems. INFORMS Journal on Computing, 32(1):101�119, 2020.

[109] M. Delorme, M. Iori, and S. Martello. Bin packing and cutting stock problems:

Mathematical models and exact algorithms. European Journal of Operational Re-

search, 255(1):1�20, 2016.

144

[110] M. Delorme, M. Iori, and S. Martello. Logic based Benders' decomposition for

orthogonal stock cutting problems. Computers & Operations Research, 78:290�298,

2017.

[111] M. Delorme, M. Iori, and S. Martello. BPPLIB: a library for bin packing and cutting

stock problems. Optimization Letters, 12(2):235�250, 2018.

[112] G. Desaulniers, J. Desrosiers, and M.M. Solomon. Column Generation. Springer

Science & Business Media, 2006.

[113] G. Desaulniers, T. Gschwind, and S. Irnich. Variable �xing for two-arc sequences

in branch-price-and-cut algorithms on path-based models. Transportation Science,

54(5):1153�1438, 2020.

[114] M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for the

vehicle routing problem with time windows. Operations Research, 40(2):342�354,

1992.

[115] M. Dolatabadi, A. Lodi, and M. Monaci. Exact algorithms for the two-dimensional

guillotine knapsack. Computers & Operations Research, 39(1):48�53, 2012.

[116] K. A. Dowsland and W. B. Dowsland. Solution approaches to irregular nesting

problems. European Journal of Operational Research, 84:506�521, 1995.

[117] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column gener-

ation. Discrete Mathematics, 194(1):229�237, 1999.

[118] H. Dyckho�. A new linear programming approach to the cutting stock problem.

Operations Research, 29(6):1092�1104, 1981.

[119] H. Dyckho�. A typology of cutting and packing problems. European Journal of

Operational Research, 44(2):145�159, 1990.

[120] I. Elhallaoui, A. Metrane, G. Desaulniers, and F. Soumis. An improved primal sim-

plex algorithm for degenerate linear programs. INFORMS Journal on Computing,

23(4):569�577, 2011.

[121] I. Elhallaoui, D. Villeneuve, F. Soumis, and G. Desaulniers. Dynamic aggregation of

set-partitioning constraints in column generation. Operations Research, 53(4):632�

645, 2005.

[122] Hamilton Emmons and George Vairaktarakis. The Hybrid Flow Shop, pages 161�

187. Springer US, Boston, MA, 2013.

[123] G.D. Eppen and R.K. Martin. Solving multi-item capacitated lot-sizing problems

using variable rede�nition. Operations Research, 35(6):832�848, 1987.

[124] D. Fayard, M. Hi�, and V. Zissimopoulos. An e�cient approach for large-scale two-

dimensional guillotine cutting stock problems. Journal of the Operational Research

Society, 49(12):1270�1277, 1998.

145

[125] S. P. Fekete and J. Schepers. New classes of fast lower bounds for bin packing

problems. Mathematical Programming, 91(1):11�31, 2001.

[126] S. P. Fekete and J. Schepers. A combinatorial characterization of higher-dimensional

orthogonal packing. Mathematics of Operations Research, 29(2):353�368, 2004.

[127] S. P. Fekete and J. Schepers. A general framework for bounds for higher-dimensional

orthogonal packing problems. Mathematical Methods of Operations Research,

60(2):311�329, 2004.

[128] S. P. Fekete, J. Schepers, and J. C. van der Veen. An exact algorithm for higher-

dimensional orthogonal packing. Operations Research, 55(3):569�587, 2007.

[129] S.P. Fekete and J. Schepers. A new exact algorithm for general orthogonal d-

dimensional knapsack problems. In R. Burkard and G. Woeginger, editors, Algo-

rithms � ESA, volume 1284, pages 144�156. Springer, 1997.

[130] E. P. Ferreira and J. F. Oliveira. Fekete and Schepers' graph-based algorithm

for the two-dimensional orthogonal packing problem revisited. In Bortfeldt A.,

Homberger J., Kopfer H., Pankratz G., and Strangmeier R., editors, Intelligent

Decision Support, pages 15�31. Gabler, Wiesbaden, 2008.

[131] F. Fischer and C. Helmberg. Dynamic graph generation for the shortest path prob-

lem in time expanded networks. Mathematical Programming, 143:257�297, 2014.

[132] M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23�47,

2003.

[133] K. Fleszar. An exact algorithm for the two-dimensional stage-unrestricted guillotine

cutting/packing decision problem. INFORMS Journal on Computing, 28(4):703�

720, 2016.

[134] L.R., Jr. Ford and D.R. Fulkerson. Constructing maximal dynamic �ows from static

�ows. Operations Research, 6(3):419�433, 1958.

[135] L.R, Jr. Ford and D.R. Fulkerson. A suggested computation for maximal multi-

commodity network �ows. Management Science, 5(1):97�101, 1958.

[136] I. Friedow and G. Scheithauer. Using contiguous 2D-feasible 1D cutting patterns

for the 2D strip packing problem. In Operations Research Proceedings 2015, pages

71�77. Springer International Publishing, 2017.

[137] D. K. Friesen and M. A. Langston. Variable sized bin packing. SIAM journal on

computing, 15(1):222�230, 1986.

[138] R. Fukasawa, H. Longo, J. Lysgaard, M.P. De Aragão, M. Reis, E. Uchoa, and

R.F. Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing

problem. Mathematical programming, 106(3):491�511, 2006.

146

[139] F. Furini and E. Malaguti. Models for the two-dimensional two-stage cutting stock

problem with multiple stock size. Computers & Operations Research, 40(8):1953�

1962, 2013.

[140] F. Furini, E. Malaguti, R. M. Durán, A. Persiani, and P. Toth. A column generation

heuristic for the two-dimensional two-staged guillotine cutting stock problem with

multiple stock size. European Journal of Operational Research, 218(1):251�260,

2012.

[141] F. Furini, E. Malaguti, and D. Thomopoulos. Modeling two-dimensional guillo-

tine cutting problems via integer programming. INFORMS Journal on Computing,

28(4):736�751, 2016.

[142] V. Gabrel and C. Murat. Mathematical programming for earth observation satellite

mission planning. In T.A. Ciriani, G. Fasano, S. Gliozzi, and R. Tadei, editors,

Operations Research in Space and Air, pages 103�122. Springer US, 2003.

[143] W. Gálvez, F. Grandoni, S. Heydrich, S. Ingala, A. Khan, and A. Wiese. Approxi-

mating geometric knapsack via l-packings. In 2017 IEEE 58th Annual Symposium

on Foundations of Computer Science (FOCS), pages 260�271, 2017.

[144] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Company, San Francisco, 1979.

[145] M. Gendreau, M. Iori, G. Laporte, and S. Martello. A tabu search algorithm for

a routing and container loading problem. Transportation Science, 40(3):342�350,

2006.

[146] M. Gendreau, M. Iori, G. Laporte, and S. Martello. A tabu search heuristic for

the vehicle routing problem with two-dimensional loading constraints. Networks,

51(1):4�18, 2008.

[147] A. M. Geo�rion. Generalized Benders decomposition. Journal of Optimization

Theory and Applications, 10(4):237�260, 1972.

[148] P. C. Gilmore and R. E. Gomory. Multistage cutting stock problems of two and

more dimensions. Operations Research, 13(1):94�120, 1965.

[149] P.C. Gilmore and R.E. Gomory. A linear programming approach to the cutting-

stock problem. Operations Research, 9(6):849�859, 1961.

[150] P.C. Gilmore and R.E. Gomory. A linear programming approach to the cutting

stock problem - part II. Operations Research, 11(6):863�888, 1963.

[151] A.M. Gleixner, T. Berthold, B. Müller, and S. Weltge. Three enhancements for

optimization-based bound tightening. Journal of Global Optimization, 67(4):731�

757, 2017.

147

[152] M.T. Godinho, L. Gouveia, T. Magnanti, P. Pesneau, and J. Pires. On time-

dependent models for unit demand vehicle routing problems. In International Net-

work Optimization Conference (INOC), 2007.

[153] J. F. Gonçalves and M. G. C. Resende. A biased random key genetic algorithm for

2D and 3D bin packing problems. International Journal of Production Economics,

145(2):500�510, 2013.

[154] L. Gouveia, M. Leitner, and M. Ruthmair. Layered graph approaches for com-

binatorial optimization problems. Computers & Operations Research, 102:22�38,

2019.

[155] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.R. Kan. Optimization and

approximation in deterministic sequencing and scheduling: a survey. Annals of

Discrete Mathematics, 5:287�326, 1979.

[156] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization

and approximation in deterministic sequencing and scheduling: a survey. In P.L.

Hammer, E.L. Johnson, and B.H. Korte, editors, Discrete Optimization II, volume 5

of Annals of Discrete Mathematics, pages 287�326. Elsevier, 1979.

[157] S. Grandcolas and C. Pinto. A sat encoding for multi-dimensional packing problems.

In Andrea Lodi, Michela Milano, and Paolo Toth, editors, Integration of AI and OR

Techniques in Constraint Programming for Combinatorial Optimization Problems,

pages 141�146, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[158] C. Groër, B. Golden, and E. Wasil. A library of local search heuristics for the vehicle

routing problem. Mathematical Programming Computation, 2:79�101, 2010.

[159] S. Gualandi and F. Malucelli. Exact solution of graph coloring problems via con-

straint programming and column generation. INFORMS Journal on Computing,

24(1):81�100, 2012.

[160] A. Hadjar, O. Marcotte, and F. Soumis. A branch-and-cut algorithm for the multiple

depot vehicle scheduling problem. Operations Research, 54(1):130�149, 2006.

[161] E. Hadjiconstantinou and N. Christo�des. An exact algorithm for general, orthogo-

nal, two-dimensional knapsack problems. European Journal of Operational Research,

83(1):39�56, 1995.

[162] E. Hadjiconstantinou and M. Iori. A hybrid genetic algorithm for the two-

dimensional single large object placement problem. European Journal of Operational

Research, 183(3):1150�1166, 2007.

[163] X. Han, K. Iwama, D. Ye, and G. Zhang. Approximate strip packing: Revisited.

Information and Computation, 249:110�120, 2016.

148

[164] S. Held, W. Cook, and E.C. Sewell. Maximum-weight stable sets and safe lower

bounds for graph coloring. Mathematical Programming Computation, 4:363�381,

2012.

[165] S. Henning, K. Jansen, M. Rau, and L. Schmarje. Complexity and inapproximability

results for parallel task scheduling and strip packing. Theory of Computing Systems,

64:120�140, 2020.

[166] J.C. Herz. Recursive computational procedure for two-dimensional stock cutting.

IBM Journal of Research and Development, 16:462�469, 1972.

[167] M. Hi�. An improvement of Viswanathan and Bagchi's exact algorithm for

constrained two-dimensional cutting stock. Computers & Operations Research,

24(8):727�736, 1997.

[168] M. Hi�. Exact algorithms for large-scale unconstrained two and three staged cutting

problems. Combinatorial Optimization and Applications, 18:63�88, 2001.

[169] J. N. Hooker and G. Ottosson. Logic-based Benders decomposition. Mathematical

Programming, 96(1):33�60, 2003.

[170] J.N. Hooker. Decision diagrams and dynamic programming. In International Con-

ference on AI and OR Techniques in Constraint Programming for Combinatorial

Optimization Problems, pages 94�110. Springer, 2013.

[171] E. Hopper and B. Turton. Problem generators for rectangular packing problems.

Stud. Inform. Univ., 2:123�136, 2002.

[172] E. Hopper and B.C.H. Turton. An empirical investigation of meta-heuristic and

heuristic algorithms for a 2D packing problem. European Journal of Operational

Research, 128(1):34�57, 2001.

[173] F.J. Hwang and B.M.T. Lin. Survey and extensions of manufacturing models in

two-stage �exible �ow shops with dedicated machines. Computers & Operations

Research, 98:103�112, 2018.

[174] S. Imahori and M. Yagiura. The best-�t heuristic for the rectangular strip pack-

ing problem: An e�cient implementation and the worst-case approximation ratio.

Computers & Operations Research, 37(2):325�333, 2010.

[175] M. Iori, V.L. de Lima, S. Martello, F.K. Miyazawa, and M. Monaci. Exact so-

lution techniques for two-dimensional cutting and packing. European Journal of

Operational Research, 289(2):399�415, 2021.

[176] M. Iori, V.L. de Lima, S. Martello, and M. Monaci. 2DPackLib: A two-dimensional

cutting and packing library. Optimization Letters, 2021 (forthcoming).

[177] M. Iori and S. Martello. Routing problems with loading constraints. TOP, 18(1):4�

27, 2010.

149

[178] M. Iori and S. Martello. An annotated bibliography of combined routing and loading

problems. Yugoslav Journal of Operations Research, 23(3):311�326, 2013.

[179] M. Iori, S. Martello, and M. Monaci. Metaheuristic Algorithms for the Strip Packing

Problem, pages 159�179. Springer US, 2003.

[180] M. Iori, J. J. Salazar González, and D. Vigo. An exact approach for the vehicle

routing problem with two-dimensional loading constraints. Transportation Science,

41:253�264, 2007.

[181] M. Iori, J.-J. Salazar-González, and D. Vigo. An exact approach for the vehicle

routing problem with two-dimensional loading constraints. Transportation Science,

41(2):253�264, 2007.

[182] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints.

In G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors, Column Generation,

pages 33�65. Springer US, Boston, MA, 2005.

[183] S. Irnich, G. Desaulniers, J. Desrosiers, and A. Hadjar. Path-reduced costs for elimi-

nating arcs in routing and scheduling. INFORMS Journal on Computing, 22(2):297�

313, 2010.

[184] S. Irnich, P. Toth, and D. Vigo. The family of vehicle routing problems. In P. Toth

and D. Vigo, editors, Vehicle Routing: Problems, Methods, and Applications, chap-

ter 1, pages 1�33. SIAM, 2nd edition, 2014.

[185] S. Jakobs. On genetic algorithms for the packing of polygons. European Journal of

Operational Research, 88(1):165�181, 1996.

[186] K. Jansen and M. Rau. Closing the gap for pseudo-polynomial strip packing. 2019.

(presented at ESA 2019, Munich). http://arxiv.org/abs/1712.04922.

[187] D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge,

MA, 1973.

[188] C. Joncour and A. Pêcher. Consecutive ones matrices for multi-dimensional or-

thogonal packing problems. Electronic Notes in Discrete Mathematics, 36:327�334,

2010.

[189] C. Joncour, A. Pêcher, and P. Valicov. MPQ-trees for the orthogonal packing

problem. Electronic Notes in Discrete Mathematics, 11:423�429, 2012.

[190] V.M. Kartak, A.V. Ripatti, G. Scheithauer, and S. Kurz. Minimal proper non-

IRUP instances of the one-dimensional cutting stock problem. Discrete Applied

Mathematics, 187:120�129, 2015.

[191] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin,

Germany, 2004.

http://arxiv.org/abs/1712.04922

150

[192] M. Kenmochi, T. Imamichi, K. Nonobe, M. Yagiura, and H. Nagamochi. Exact al-

gorithms for the two-dimensional strip packing problem with and without rotations.

European Journal of Operational Research, 198(1):73�83, 2009.

[193] I. Kierkosz and M. Luczak. A hybrid evolutionary algorithm for the two-dimensional

packing problem. Central European Journal of Operations Research, 22(4):729�753,

2014.

[194] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R.E. Bixby,

E. Danna, G. Gamrath, A.M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann,

T. Ralphs, D. Salvagnin, D.E. Ste�y, and K. Wolter. MIPLIB 2010. Mathematical

Programming Computation, 3:103, 2011.

[195] R. E. Korf, M. D. Mo�tt, and M. E. Pollack. Optimal rectangle packing. Annals

of Operations Research, 179(1):261�295, 2010.

[196] A. Kramer, M. Dell'Amico, D. Feillet, and M. Iori. Scheduling jobs with release

dates on identical parallel machines by minimizing the total weighted completion

time. Computers & Operations Research, 123 article 105018, 2020.

[197] A. Kramer, M. Dell'Amico, and M. Iori. Enhanced arc-�ow formulations to mini-

mize weighted completion time on identical parallel machines. European Journal of

Operational Research, 275(1):67�79, 2019.

[198] A. Kramer, M. Iori, and P. Lacomme. Mathematical formulations for scheduling jobs

on identical parallel machines with family setup times and total weighted comple-

tion time minimization. European Journal of Operational Research, 289(3):825�840,

2021.

[199] A. Kramer, E. Lalla-Ruiz, M. Iori, and S. Voÿ. Novel formulations and model-

ing enhancements for the dynamic berth allocation problem. European Journal of

Operational Research, 278(1):170�185, 2019.

[200] R. Kramer, M. Iori, and T. Vidal. Mathematical models and search algorithms for

the capacitated-center problem. INFORMS Journal on Computing, 32(2):444�460,

2020.

[201] B. Kwon and G. M. Lee. Spatial scheduling for large assembly blocks in shipbuilding.

Computers & Industrial Engineering, 89:203�212, 2015.

[202] G. Lancia, F. Rinaldi, and P. Sera�ni. A time-indexed LP-based approach for min-

sum job-shop problems. Annals of Operations Research, 186:175�198, 2011.

[203] G. Lancia and P. Sera�ni. Deriving compact extended formulations via LP-based

separation techniques. 4OR, 12(3):201�234, 2014.

[204] A. A. S. Leao, F. M. B. Toledo, J. F. Oliveira, M. A. Carravilla, and R. Alvarez-

Valdés. Irregular packing problems: A review of mathematical models. European

Journal of Operational Research, 282(3):803�822, 2020.

151

[205] C. Lemaréchal. Lagrangian relaxation. In M. Jünger and D. Naddef, editors, Compu-

tational Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions,

pages 112�156. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[206] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher. Exhaustive approaches to

2D rectangular perfect packings. Information Processing Letters, 90(1):7�14, 2004.

[207] S.C.H. Leung and D.Zhang. A fast layer-based heuristic for non-guillotine strip

packing. Expert Systems with Applications, 38(10):13032�13042, 2011.

[208] Z.-T. Li, Q.-X. Chen, N. Mao, X. Wang, and J. Liu. Scheduling rules for two-stage

�exible �ow shop scheduling problem subject to tail group constraint. International

Journal of Production Economics, 146(2):667�678, 2013.

[209] R. Linn and W. Zhang. Hybrid �ow shop scheduling: A survey. Computers &

Industrial Engineering, 37(1):57�61, 1999.

[210] A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems: A survey.

European Journal of Operational Research, 141(2):241�252, 2002.

[211] A. Lodi, S. Martello, M. Monaci, C. Cicconetti, L. Lenzini, E. Mingozzi, C. Eklund,

and J. Moilanen. E�cient two-dimensional packing algorithms for mobile WiMAX.

Management Science, 57(12):2130�2144, 2011.

[212] A. Lodi, S. Martello, M. Monaci, and D. Vigo. Two-dimensional bin packing prob-

lems. In V. Th. Paschos, editor, Paradigms of Combinatorial Optimization: Prob-

lems and New Approaches, pages 107�129. John Wiley & Sons, Ltd, Hoboken, NJ,

USA, 2014.

[213] A. Lodi, S. Martello, and D. Vigo. Heuristic and metaheuristic approaches for a

class of two-dimensional bin packing problems. INFORMS Journal on Computing,

11(4):345�357, 1999.

[214] A. Lodi, S. Martello, and D. Vigo. Recent advances on two-dimensional bin packing

problems. Discrete Applied Mathematics, 123(1):379�396, 2002.

[215] A. Lodi, S. Martello, and D. Vigo. Models and bounds for two-dimensional level

packing problems. Journal of Combinatorial Optimization, 8(3):363�379, 2004.

[216] A. Lodi, S. Martello, and D. Vigo. TSpack: a uni�ed tabu search code for multi-

dimensional bin packing problems. Annals of Operations Research, 131(1-4):203�

213, 2004.

[217] A. Lodi and M. Monaci. Integer linear programming models for 2-staged two-

dimensional knapsack problems. Mathematical Programming, 94(2):257�278, 2003.

[218] M.E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations

Research, 53(6):1007�1023, 2005.

152

[219] R. Macedo, C. Alves, and J. M. Valério de Carvalho. Arc-�ow model for the two-

dimensional guillotine cutting stock problem. Computers & Operations Research,

37(6):991�1001, 2010.

[220] R. Macedo, C. Alves, and J.M. Valério de Carvalho. Arc-�ow model for the two-

dimensional guillotine cutting stock problem. Computers & Operations Research,

37(6):991�1001, 2010.

[221] R. Macedo, C. Alves, J.M. Valério de Carvalho, F. Clautiaux, and S. Hana�. Solving

exactly the vehicle routing problem with time windows and multiple routes using a

pseudo-polynomial model. European Journal of Operational Research, 214(3):536�

545, 2011.

[222] S. Martello. Knapsack, packing and cutting. INFOR, 32(4):217�218, 1994.

[223] S. Martello. Two-dimensional packing problems in telecommunications. Pesquisa

Operacional, 34(1):31�38, 2014.

[224] S. Martello and M. Monaci. Models and algorithms for packing rectangles into the

smallest square. Computers & Operations Research, 63:161�171, 2015.

[225] S. Martello, M. Monaci, and D. Vigo. An exact approach to the strip-packing

problem. INFORMS Journal on Computing, 15(3):310�319, 2003.

[226] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implemen-

tations. John Wiley & Sons, Inc., 1990.

[227] S. Martello and P. Toth. Lower bounds and reduction procedures for the bin packing

problem. Discrete Applied Mathematics, 28(1):59�70, 1990.

[228] S. Martello and D. Vigo. Exact solution of the two-dimensional �nite bin packing

problem. Management Science, 44(3):388�399, 1998.

[229] M. Martin, E. G. Birgin, R. D. Lobato, R. Morabito, and P. Munari. Models

for the two-dimensional rectangular single large placement problem with guillotine

cuts and constrained pattern. International Transactions in Operational Research,

27(2):767�793, 2020.

[230] M. Martin, R. Morabito, and P. Munari. A bottom-up packing approach for mod-

eling the constrained two-dimensional guillotine placement problem. Computers &

Operations Research, 115:104851, 2020.

[231] R.K. Martin, R.L. Rardin, and B.A. Campbell. Polyhedral characterization of dis-

crete dynamic programming. Operations Research, 38(1):127�138, 1990.

[232] J. Martinovic, M. Delorme, M. Iori, G. Scheithauer, and N. Strasdat. Improved

�ow-based formulations for the skiving stock problem. Computers & Operations

Research, 113 article 104770, 2020.

153

[233] J. Martinovic and G. Scheithauer. Integer linear programming models for the skiving

stock problem. European Journal of Operational Research, 251(2):356�368, 2016.

[234] J. Martinovic and G. Scheithauer. The proper relaxation and the proper gap of the

skiving stock problem. Mathematical Methods of Operations Research, 84(3):527�

548, 2016.

[235] J. Martinovic, G. Scheithauer, and J.M. Valério de Carvalho. A comparative study

of the arc�ow model and the one-cut model for one-dimensional cutting stock prob-

lems. European Journal of Operational Research, 266(2):458�471, 2018.

[236] M. Matayoshi. The 2D strip packing problem: A new approach with veri�cation

by EA. In 2010 IEEE International Conference on Systems, Man and Cybernetics,

pages 2492�2499, 2010.

[237] G. M. Melega, S. A. Araujo, and R. Jans. Classi�cation and literature review of

integrated lot-sizing and cutting stock problems. European Journal of Operational

Research, 271(1):1�19, 2018.

[238] S. B. Messaoud, C. Chu, and M.-L. Espinouse. Characterization and modelling of

guillotine constraints. European Journal of Operational Research, 191(1):112�126,

2008.

[239] M. Mesyagutov, G. Scheithauer, and G. Belov. LP bounds in various constraint pro-

gramming approaches for orthogonal packing. Computers & Operations Research,

39(10):2425�2438, 2012.

[240] M. A. Mesyagutov, E. A. Mukhacheva, G. N. Belov, and G. Scheithauer. Packing of

one-dimensional bins with contiguous selection of identical items: An exact method

of optimal solution. Automation and Remote Control, 72(1):141�159, 2011.

[241] C.E. Miller, A.W. Tucker, and R.A. Zemlin. Integer programming formulation of

traveling salesman problems. Journal of the ACM, 7(4):326�329, 1960.

[242] M. Minoux. Multicommodity network �ow models and algorithms in telecommuni-

cations. In M.G.C. Resende and P.M. Pardalos, editors, Handbook of Optimization

in Telecommunications, pages 163�184. Springer US, 2006.

[243] M. Monaci and P. Toth. A set-covering-based heuristic approach for bin-packing

problems. INFORMS Journal on Computing, 18(1):71�85, 2006.

[244] R. Morabito and M. N. Arenales. Staged and constrained two-dimensional guillotine

cutting problems: An AND/OR-graph approach. European Journal of Operational

Research, 94(3):548�560, 1996.

[245] R. Morabito and V. A. Pureza. Heuristic approach based on dynamic program-

ming and and/or-graph search for the constrained two-dimensional guillotine cut-

ting problem. Annals of Operations Research, 179:297�315, 2010.

154

[246] M. Mrad. An arc �ow-based optimization approach for the two-stage guillotine

strip cutting problem. Journal of the Operational Research Society, 66(11):1850�

1859, 2015.

[247] M. Mrad, I. Meftahi, and M. Haouari. A branch-and-price algorithm for the two-

stage guillotine cutting stock problem. Journal of the Operational Research Society,

64(5):629�637, 2013.

[248] M. Mrad and N. Souayah. An arc-�ow model for the makespan minimization prob-

lem on identical parallel machines. IEEE Access, 6:5300�5307, 2018.

[249] S. Nadarajah and A.A. Cire. Network-based approximate linear programming for

discrete optimization. SSRN Electronic Journal, 2017.

[250] G. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley &

Sons, 1988.

[251] V. Nesello, M. Delorme, M. Iori, and A. Subramanian. Mathematical models and

decomposition algorithms for makespan minimization in plastic rolls production.

Journal of the Operational Research Society, 69(3):326�339, 2018.

[252] V. Nesello, M. Delorme, M. Iori, and A. Subramanian. Mathematical models and

decomposition algorithms for makespan minimization in plastic rolls production.

Journal of the Operational Research Society, 69(3):326�339, 2018.

[253] N. Ntene and J. H. van Vuuren. A survey and comparison of guillotine heuristics for

the 2D oriented o�ine strip packing problem. Discrete Optimization, 6(2):174�188,

2009.

[254] J. F. Oliveira, A. Neuenfeldt Júnior, E. Silva, and M. A. Carravilla. A survey

on heuristics for the two-dimensional rectangular strip packing problem. Pesquisa

Operacional, 36(2):197�226, 2016.

[255] J. F. Oliveira and G. Wäscher. Cutting and packing. European Journal of Opera-

tional Research, 183(3):1106�1108, 2007.

[256] J.F. Oliveira and J.S. Ferreira. An improved version of Wang's algorithm for

two-dimensional cutting problems. European Journal of Operational Research,

44(2):256�266, 1990.

[257] H. Onodera, Y. Taniguchi, and K. Tamaru. Branch-and-bound placement for build-

ing block layout. In 28th ACM/IEEE Design Automation Conference, pages 433�

439, 1991.

[258] F. G. Ortmann and J. H. van Vuuren. Modi�ed strip packing heuristics for the

rectangular variable-sized bin packing problem. ORiON, 26(1):21�44, 2010.

[259] F. Parreño, R. Alvarez-Valdes, J. F. Oliveira, and J. M. Tamarit. A hybrid

GRASP/VND algorithm for two- and three-dimensional bin packing. Annals of

Operations Research, 179(1):203�220, 2010.

155

[260] D. Pecin, A. Pessoa, M. Poggi, and E. Uchoa. Improved branch-cut-and-price for

capacitated vehicle routing. Mathematical Programming Computation, 9:61�100,

2017.

[261] A. Pessoa, M.P. de Aragão, and E. Uchoa. Robust branch-cut-and-price algorithms

for vehicle routing problems. In B. Golden, S. Raghavan, and E. Wasil, editors, The

Vehicle Routing Problem: Latest Advances and New Challenges, pages 297�325.

Springer US, 2008.

[262] A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. Automation and combi-

nation of linear-programming based stabilization techniques in column generation.

INFORMS Journal on Computing, 30(2):339�360, 2018.

[263] A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. A generic exact solver for

vehicle routing and related problems. In A. Lodi and V. Nagarajan, editors, Integer

Programming and Combinatorial Optimization, pages 354�369. Springer Interna-

tional Publishing, 2019.

[264] A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. A generic exact solver for

vehicle routing and related problems. Mathematical Programming, 183:483�523,

2020.

[265] A. Pessoa, E. Uchoa, M.P. de Aragão, and R. Rodrigues. Exact algorithm over an

arc-time-indexed formulation for parallel machine scheduling problems. Mathemat-

ical Programming Computation, 2:259�290, 2010.

[266] J.-C. Picard and M. Queyranne. The time-dependent traveling salesman problem

and its application to the tardiness problem in one-machine scheduling. Operations

Research, 26(1):86�110, 1978.

[267] D. Pisinger and M. Sigurd. The two-dimensional bin packing problem with variable

bin sizes and costs. Discrete Optimization, 2(2):154�167, 2005.

[268] D. Pisinger and M. Sigurd. Using decomposition techniques and constraint program-

ming for solving the two-dimensional bin-packing problem. INFORMS Journal on

Computing, 19(1):36�51, 2007.

[269] M. Poggi and E. Uchoa. New exact algorithms for the capacitated vehicle routing

problem. In P. Toth and D. Vigo, editors, Vehicle Routing: Problems, Methods, and

Applications, chapter 3, pages 59�86. SIAM, 2nd edition, 2014.

[270] H. Pollaris, K. Braekers, A. Caris, G. K. Janssens, and S. Limbourg. Vehicle rout-

ing problems with loading constraints: State-of-the-art and future directions. OR

Spectrum, 37(2):297�330, 2015.

[271] D. Porumbel. Ray projection for optimizing polytopes with prohibitively many

constraints in set-covering column generation. Mathematical Programming, 155(1-

2):147�197, 2016.

156

[272] J. Puchinger and G. R. Raidl. Models and algorithms for three-stage two-

dimensional bin packing. European Journal of Operational Research, 183(3):1304�

1327, 2007.

[273] T. A. de Queiroz, P. H. D. B. Hokama, R. C. S. Schouery, and F. K. Miyazawa.

Two-dimensional disjunctively constrained knapsack problem: Heuristic and exact

approaches. Computers & Industrial Engineering, 105:313�328, 2017.

[274] T. A. de Queiroz and F. K. Miyazawa. Order and static stability into the strip

packing problem. Annals of Operations Research, 223(1):137�154, 2014.

[275] B. Ramos, C. Alves, and J. Valério de Carvalho. An arc �ow formulation to the mul-

titrip production, inventory, distribution, and routing problem with time windows.

International Transactions in Operational Research, 2020, forthcoming.

[276] M.R. Rao. On the cutting stock problem. Journal of the Computer Society of India,

7:35�39, 1976.

[277] M. Ratli, R. Benmansour, R. Macedo, S. Hana�, and C. Wilbaut. Mathematical

programming and heuristics for scheduling problems with early and tardy penalties.

In B. Jarboui, P. Siarry, and J. Teghem, editors, Metaheuristics for Production

Scheduling, chapter 8, pages 183�223. John Wiley & Sons, Ltd, 2013.

[278] M. Riedler, T. Jatschka, J. Maschler, and G.R. Raidl. An iterative time-bucket

re�nement algorithm for a high-resolution resource-constrained project scheduling

problem. International Transactions in Operational Research, 27(1):573�613, 2020.

[279] M. Riedler, M. Ruthmair, and G.R. Raidl. Strategies for iteratively re�ning layered

graph models. In M.J. Blesa Aguilera, C. Blum, H. Gambini Santos, P. Pinacho-

Davidson, and J. Godoy del Campo, editors, Hybrid Metaheuristics, pages 46�62.

Springer International Publishing, 2019.

[280] J. Rietz, C. Alves, N. Braga, and J.M. Valério de Carvalho. An exact approach

based on a new pseudo-polynomial network �ow model for integrated planning and

scheduling. Computers & Operations Research, 76:183�194, 2016.

[281] J. Rietz, C. Alves, and J. M. Valério de Carvalho. Theoretical investigations on

maximal dual feasible functions. Operations Research Letters, 38(3):174�178, 2010.

[282] J. Rietz, C. Alves, and J. M. Valério de Carvalho. Worst-case analysis of maximal

dual feasible functions. Optimization Letters, 6(8):1�19, December 2011.

[283] J. Rietz, C. Alves, and J. M. Valério de Carvalho. On the extremality of maximal

dual feasible functions. Operations Research Letters, 40(1):25�30, 2012.

[284] G. Righini and M. Salani. New dynamic programming algorithms for the resource

constrained elementary shortest path problem. Networks, 51(3):155�170, 2008.

157

[285] A. Rossi, A. Puppato, and M. Lanzetta. Heuristics for scheduling a two-stage hybrid

�ow shop with parallel batching machines: application at a hospital sterilisation

plant. International Journal of Production Research, 51(8):2363�2376, 2013.

[286] R. Ruiz and J.A. Vázquez-Rodríguez. The hybrid �ow shop scheduling problem.

European Journal of Operational Research, 205(1):1�18, 2010.

[287] M. Russo, M. Boccia, A. Sforza, and C. Sterle. Constrained two-dimensional guillo-

tine cutting problem: upper-bound review and categorization. International Trans-

actions in Operational Research, 27(2):794�834, 2020.

[288] M. Russo, M. Boccia, A. Sforza, and C. Sterle. Constrained two-dimensional guillo-

tine cutting problem: upper-bound review and categorization. International Trans-

actions in Operational Research, 27(2):794�834, 2020.

[289] M. Russo, A. Sforza, and C. Sterle. An exact dynamic programming algorithm for

large-scale unconstrained two-dimensional guillotine cutting problems. Computers

& Operations Research, 50:97�114, 2014.

[290] R. Sadykov and F. Vanderbeck. Column generation for extended formulations.

EURO Journal on Computational Optimization, 1:81�115, 2013.

[291] G. Scheithauer. Equivalence and dominance for problems of optimal packing of

rectangles. Ricerca Operativa, 83:3�34, 1997.

[292] G. Scheithauer. Introduction to Cutting and Packing Optimization. Springer Inter-

national Publishing, 2018.

[293] M. Sellmann. Theoretical foundations of cp-based lagrangian relaxation. In M. Wal-

lace, editor, Principles and Practice of Constraint Programming, pages 634�647,

Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[294] M. Serairi and M. Haouari. A theoretical and experimental study of fast lower

bounds for the two-dimensional bin packing problem. RAIRO-Operations Research,

52(2):391�414, 2018.

[295] J.F. Shapiro. Dynamic programming algorithms for the integer programming

problem-I: The integer programming problem viewed as a knapsack type problem.

Operations Research, 16(1):103�121, 1968.

[296] E. Silva, F. Alvelos, and J. M. Valério de Carvalho. An integer programming model

for two- and three-stage two-dimensional cutting stock problems. European Journal

of Operational Research, 205(3):699�708, 2010.

[297] E. Silva, F. Alvelos, and J.M. Valério de Carvalho. An integer programming model

for two- and three-stage two-dimensional cutting stock problems. European Journal

of Operational Research, 205(3):699�708, 2010.

158

[298] E. Silva, J. F. Oliveira, and G. Wäscher. 2DCPackGen: A problem generator for

two-dimensional rectangular cutting and packing problems. European Journal of

Operational Research, 237(3):846�856, 2014.

[299] E. Silva, J. F. Oliveira, and G. Wäscher. The pallet loading problem: a review

of solution methods and computational experiments. International Transactions in

Operational Research, 23(1-2):147�172, 2016.

[300] M. Skutella. An introduction to network �ows over time. In W. Cook, L. Lovász,

and J. Vygen, editors, Research Trends in Combinatorial Optimization: Bonn 2008,

pages 451�482. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[301] T. Soh, K. Inoue, N. Tamura, M. Banbara, and H. Nabeshima. A sat-based method

for solving the two-dimensional strip packing problem. Fundamenta Informaticae,

102(3-4):467�487, 2010.

[302] J.P. Sousa and L.A. Wolsey. A time indexed formulation of non-preemptive single

machine scheduling problems. Mathematical Programming, 54(1):353�367, 1992.

[303] T. Strecker and L. Hennig. Automatic layouting of personalized newspaper pages.

In B. Fleischmann, K.-H. Borgwardt, R. Klein, and A. Tuma, editors, Operations

Research Proceedings 2008, pages 469�474, Berlin, Heidelberg, 2009. Springer Berlin

Heidelberg.

[304] J. Terno, R. Lindemann, and G. Scheithauer. Zuschnittprobleme and ihre praktische

lösung. Technical report, Verlag Harry Deutsch, Thun und FrankfurtMain, 1987.

[305] Ying-Tai Loong Tian-Soon Lee. A review of scheduling problem and resolution

methods in �exible �ow shop. International Journal of Industrial Engineering Com-

putations, 10(1):67�88, 2019.

[306] P. Toth and D. Vigo. Vehicle Routing: Problems, Methods, and Applications. SIAM,

2nd edition, 2014.

[307] M.A. Trick. A dynamic programming approach for consistency and propagation for

knapsack constraints. Annals of Operations Research, 118(1-4):73�84, 2003.

[308] R.S. Trindade, O.C.B. de Araújo, and M. Fampa. Arc-�ow approach for parallel

batch processing machine scheduling with non-identical job sizes. In M. Baïou,

B. Gendron, O. Günlük, and A.R. Mahjoub, editors, Combinatorial Optimization,

pages 179�190. Springer International Publishing, 2020.

[309] H. Tsubone, M. Suzuki, T. Uetake, and M. Ohba. A comparison between basic

cyclic scheduling and variable cyclic scheduling in a two-stage hybrid �ow shop.

Decision Sciences, 31(1):197�222, 2000.

[310] E. Uchoa. Cuts over extended formulations by �ow discretization. In A.R. Mahjoub,

editor, Progress in Combinatorial Optimization, chapter 8, pages 255�282. Wiley,

2012.

159

[311] E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, and A. Subramanian. New

benchmark instances for the capacitated vehicle routing problem. European Journal

of Operational Research, 257(3):845�858, 2017.

[312] J. M. Valério de Carvalho. LP models for bin packing and cutting stock problems.

European Journal of Operational Research, 141(2):253�273, 2002.

[313] J. M. Valério de Carvalho. Using extra dual cuts to accelerate column generation.

INFORMS Journal on Computing, 17(2):175�182, 2005.

[314] J.M. Valério de Carvalho. Exact solution of bin-packing problems using column gen-

eration and branch-and-bound. Annals of Operations Research, 86:629�659, 1999.

[315] J.M. Valério de Carvalho. LP models for bin packing and cutting stock problems.

European Journal of Operational Research, 141(2):253�273, 2002.

[316] J.M. Valério de Carvalho. Using extra dual cuts to accelerate column generation.

INFORMS Journal on Computing, 17(2):175�182, 2005.

[317] J.M. van den Akker, J.A. Hoogeveen, and S.L. van de Velde. Parallel machine

scheduling by column generation. Operations Research, 47(6):862�872, 1999.

[318] J.M. van den Akker, C.A.J. Hurkens, and M.W.P. Savelsbergh. Time-indexed for-

mulations for machine scheduling problems: Column generation. INFORMS Journal

on Computing, 12(2):111�124, 2000.

[319] W.-J. van Hoeve. Graph coloring lower bounds from decision diagrams. In D. Bien-

stock and G. Zambelli, editors, Integer Programming and Combinatorial Optimiza-

tion, pages 405�418. Springer International Publishing, 2020.

[320] P.H. Vance. Branch-and-price algorithms for the one-dimensional cutting stock

problem. Computational Optimization and Applications, 9(3):211�228, 1998.

[321] F. Vanderbeck. On dantzig-wolfe decomposition in integer programming and ways to

perform branching in a branch-and-price algorithm. Operations Research, 48(1):111�

128, 2000.

[322] F. Vanderbeck. A nested decomposition approach to a three-stage two-dimensional

cutting-stock problem. Management Science, 47(6):864�879, 2001.

[323] F. Vanderbeck. Branching in branch-and-price: a generic scheme. Mathematical

Programming, 130:249�294, 2011.

[324] F. Vanderbeck and M.W.P. Savelsbergh. A generic view of dantzig�wolfe decompo-

sition in mixed integer programming. Operations Research Letters, 34(3):296�306,

2006.

[325] A. S. Velasco and E. Uchoa. Improved state space relaxation for constrained two-

dimensional guillotine cutting problems. European Journal of Operational Research,

272(1):106�120, 2019.

160

[326] K. V. Viswanathan and A. Bagchi. Best-�rst search methods for constrained two-

dimensional cutting stock problems. Operations Research, 41(4):768�776, 1993.

[327] M.-E. Voge and F. Clautiaux. Theoretical investigation of aggregation in pseudo-

polynomial network-�ow models. In A.R. Mahjoub, V. Markakis, I. Milis, and

V.T. Paschos, editors, Combinatorial Optimization, pages 213�224. Springer Berlin

Heidelberg, 2012.

[328] D.M. Vu, M. Hewitt, N. Boland, and M. Savelsbergh. Dynamic discretization discov-

ery for solving the time-dependent traveling salesman problem with time windows.

Transportation Science, 54(3):703�720, 2020.

[329] P.Y. Wang. Two algorithms for constrained two-dimensional cutting stock problems.

Operations Research, 31(3):573�586, 1983.

[330] Shijin Wang, Xiaodong Wang, Feng Chu, and Jianbo Yu. An energy-e�cient two-

stage hybrid �ow shop scheduling problem in a glass production. International

Journal of Production Research, 58(8):2283�2314, 2020.

[331] X. Wang, G. Wu, L. Xing, and W. Pedrycz. Agile earth observation satellite schedul-

ing over 20 years: Formulations, methods, and future directions. IEEE Systems

Journal, 2020, forthcoming.

[332] G. Wäscher, H. Hauβner, and H. Schumann. An improved typology of cutting and

packing problems. European Journal of Operational Research, 183(3):1109�1130,

2007.

[333] L. Wei, Z. Luo, R. Baldacci, and A. Lim. A new branch-and-price-and-cut algo-

rithm for one-dimensional bin-packing problems. INFORMS Journal on Computing,

32(2):428�443, 2020.

[334] L. Wei, W.-C. Oon, W. Zhu, and A. Lim. A skyline heuristic for the 2D rectangular

packing and strip packing problems. European Journal of Operational Research,

215(2):337�346, 2011.

[335] L. Wei, H. Qin, B. Cheang, and X. Xu. An e�cient intelligent search algorithm for

the two-dimensional rectangular strip packing problem. International Transactions

in Operational Research, 23(1-2):65�92, 2016.

[336] P. Wentges. Weighted dantzig�wolfe decomposition for linear mixed-integer pro-

gramming. International Transactions in Operational Research, 4(2):151�162, 1997.

[337] L.A. Wolsey. Valid inequalities, covering problems and discrete dynamic programs.

Annals of Discrete Mathematics, 1:527�538, 1977.

[338] Z. Xu and C.-Y. Lee. New lower bound and exact method for the continuous berth

allocation problem. Operations Research, 66(3):778�798, 2018.

161

[339] H. H. Yanasse and D. M. Katsurayama. Checkerboard pattern: proposals for its

generation. International Transactions in Operational Research, 12(1):21�45, 2005.

[340] H. H. Yanasse and D. M. Katsurayama. An enumeration scheme to gener-

ate constrained exact checkerboard patterns. Computers & Operations Research,

35(6):2114�2128, 2008.

[341] G. Yu, Y. Mao, and J. Xiao. A new lower bound for online strip packing. European

Journal of Operational Research, 250(3):754�759, 2016.

[342] G. Yu, Y. Mao, and J. Xiao. A new upper bound for the online square packing

problem in a strip. Journal of Combinatorial Optimization, 33(4):1411�1420, 2017.

[343] G. Yu, Y. Mao, and J. Xiao. New upper bounds for online strip packing. Discrete

Optimization, 23:20�32, 2017.

	Introduction
	Preliminaries
	Contents of this Thesis
	First Part
	Second Part
	Third Part

	Arc Flow Formulations Based on Dynamic Programming: Theoretical Foundations and Applications
	Introduction
	Network Flow Formulations and Dynamic Programming
	Dynamic Programming and Arc Flow Formulations
	Example on the Knapsack Problem
	Example on the Elementary Shortest Path Problem with Resource Constraints

	Dantzig-Wolfe Decomposition and Network Flow Formulations
	Example on the Cutting Stock Problem
	Example on the Capacitated Vehicle Routing Problem

	State-Space Relaxation on Arc Flow Formulations
	Example on the State Space for the Cutting Stock Problem
	Example on the State Space for the Capacitated Vehicle Routing Problem

	Dual Insight
	On the Dual Space of Network Flow Formulations
	Example on the Cutting Stock Problem

	General Solution Methods
	Successful Applications of Pseudo-Polynomial Arc Flow Models
	Cutting and Packing Problems
	Scheduling Problems
	Routing Problems
	Miscellaneous

	Conclusion and Future Research Directions

	Exact Solution of Network Flow Models with Strong Relaxations
	Introduction
	Network Flow and Dantzig-Wolfe Decompositions: Preliminaries
	An Overview of the Solution Framework
	On the Solution of the Linear Relaxation
	A Dual Correspondence
	Computing the Minimum Reduced Cost of Arcs
	Path-Based Pricing in Arc Flow
	Column(-and-Row) Generation Algorithm
	Dealing with Dual Infeasibility

	Variable-Fixing Based on Reduced Costs
	Sub-Optimal Dual Solutions in Variable-Fixing
	Variable-Fixing Strategies

	Branching Scheme
	Proposed Branching Scheme
	Lifting the Right-Branch Constraint

	Applications to Cutting and Packing Problems
	Cutting Stock Problem
	Two-Stage Guillotine Cutting Stock Problem
	Skiving Stock Problem
	Ordered Open-End Bin Packing Problem

	Computational Experiments
	Experiments on the Cutting Stock Problem
	Experiments on the Two-Staged Cutting Stock Problem
	Experiments on the Skiving Stock Problem
	Experiments on the Ordered Open-End Bin Packing Problem

	Conclusions

	A Branching Scheme for a Class of Parallel Machine Scheduling
	Introduction
	Preliminaries
	General Arc Flow Formulations
	Application to the P||wjCj

	Solution of the Linear Relaxation
	Reduced-Cost Variable-Fixing
	Dealing with Dual Infeasibility

	Overall Algorithm
	First-Phase Branching
	Second-Phase Branching

	Computational Results
	Conclusions

	Exact Solution Techniques for Two-dimensional Cutting and Packing
	Introduction
	Problems and Definitions
	Problems
	Typologies
	Complexity
	Variants

	Sets of Points and Preprocessing Techniques
	Sets of Points
	Preprocessing Techniques

	Relaxations
	Continuous Relaxation
	Combinatorial Bounds
	Linear Relaxation and Column Generation
	Dual Feasible Functions
	Contiguous One-Dimensional Relaxations
	State Space Relaxations

	Heuristics
	Approximation and On-line Algorithms
	Constructive Heuristics, Local Search, and Metaheuristics
	Set covering based heuristics

	Exact Methods based on Integer Linear Programming Models
	Polynomial Models
	Pseudo-polynomial Models
	Exponential Models

	Exact Methods based on Implicit Enumeration
	Branch-and-Bound
	Graph-Based Approaches
	Constraint Programming

	Open Problems
	Conclusions and Future Research Directions

	2DPackLib: A Two-dimensional Cutting and Packing Library
	Introduction
	Classification
	Surveys and typologies
	Benchmarks
	Benchmarks originally proposed for the 2D-SPP
	Benchmarks proposed for the 2D-BPP and 2D-CSP
	Benchmarks proposed for the 2D-KP
	Benchmarks proposed for the 2D-OPP

	Bibliographies and additional tools
	Conclusions

	Integrated Workforce Scheduling and Flexible Flow Shop Problem in the Meat Industry
	Introduction
	Problem Definition
	Proposed Heuristic
	Computational Experiments
	Concluding Remarks

	Conclusions
	Bibliography

