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Tese apresentada à Faculdade de Engen-
haria Mecânica da Universidade Estad-
ual de Campinas como parte dos requi-
sitos exigidos para obtenção do t́ıtulo de
Doutor em Engenharia Mecânica, na Área
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Abstract

In the context of road vehicles, loss of stability may have critical safety implications.

From this fact, we raise the need of studying vehicle stability for secure and reliable

maneuvers execution. Simply determining whether the car, in a particular maneuver, is

stable does not offer a comprehensive portrait of how far the system is from the stability

boundary. By finding the region of attraction around the equilibrium point of the vehicular

system, on the other hand, we can determine the direction and dimension of disturbances

that will cause the vehicle to cross into the unstable region.

Within this field, this dissertation focuses upon ground vehicle stability analysis through

the region of attraction (RoA) estimation. This region is defined by the set of initial con-

ditions for which the system trajectories converge to the equilibrium. With the aid of

sum-of-squares (SOS) programming techniques, Lyapunov functions, whose level sets are

inner-bounds of the RoA, are found. The optimization approach is explored algorithmi-

cally and areas of local stability analysis and control synthesis are covered. A discussion

around the decision variables to obtain larger inner bounds on the RoA is provided.

For local stability analysis, we present the SOS program that estimates the region

of attraction for polynomial systems. The tire forces are approximated using both poly-

nomial and rational functions and the lateral dynamics of a nonlinear vehicle model is

written as a set of polynomial ordinary differential equations. The RoA is then estimated

for the vehicle under various constant speed cornering and straight-line forward motion.

For controller synthesis, we present the SOS program that searches for a state feedback

polynomial control law with input saturation for the objective of not only estimating, but

also expanding the RoA. One major difficulty in this design is that the SOS general-

izations assume affine-input systems, in which the vehicle model does not belong. The

issue is addressed using the first-order Taylor expansion. A detailed discussion of such

approximation is regarded.

The controller developed in this dissertation is evaluated in a scaled vehicle platform.

To show that this vehicle is a valid and reliable test-bed platform whose lateral dynamics

are similar to those of a full-sized vehicle, a thorough dynamic characterization is per-

formed. With a persistent agreement between the theoretical and measured responses,

the SOS-based analyses are confidently performed.

The SOS optimization-based methods in this dissertation complement the existing

nonlinear analysis and design methods in the context of ground vehicles.

Keywords: Semidefinite programming; Vehicles - Dynamics; Nonlinear systems; Elec-

tric vehicles.



Resumo

No contexto de véıculos terrestres, a perda de estabilidade pode ter implicações cŕıticas

de segurança. Desse fato, levantamos a necessidade de estudar a estabilidade do véıculo

para a execução de manobras de forma confiável e assegurada. O simples fato de de-

terminar, em uma manobra em particular, se o véıculo é estável não oferece um retrato

abrangente de quão longe o sistema está do limite de estabilidade. Por outro lado, se

conseguirmos determinar a região de atração em torno do ponto de equiĺıbrio do sistema,

podemos estabelecer a direção e a dimensão dos distúrbios que farão o véıculo cruzar para

a região instável.

Dentro desta linha de racioćınio, esta dissertação é focada na análise de estabilidade

de véıculos terrestres por meio da estimativa da região de atração (RoA). Essa região

é definida pelo conjunto de condições iniciais para as quais as trajetórias do sistema

convergem para o equiĺıbrio. Através das técnicas de programação de soma de quadra-

dos (SOS), é posśıvel buscar por funções de Lyapunov cujas curvas de ńıveis são aprox-

imações internas, ou estimativas, da RoA. Esta abordagem, que resulta em um problema

de otimização convexo, é explorada algoritmicamente, permitindo cobrir a análise de es-

tabilidade do sistema e a śıntese de controle. Uma discussão sobre as variáveis de decisão

para obter estimativas mais representativas da RoA é fornecida.

Para a análise de estabilidade local, apresenta-se o programa baseado em decom-

posições por SOS que estima a região de atração para sistemas polinomiais. As forças do

pneu são aproximadas usando duas funções, polinomiais e racionais, e a dinâmica lateral

de um modelo de véıculo não linear é escrita como um conjunto de equações diferenciais

ordinárias polinomiais. A RoA é então estimada para o véıculo considerando-se diferentes

condições iniciais. Assume-se velocidade constante em movimentos de curva e em linha

reta.

Para a śıntese do controlador, apresenta-se o programa SOS que busca uma lei de

controle polinomial de realimentação em espaço de estados com inclusão de restrições de

saturação das entradas. O objetivo passa a ser o de não só estimar mas também expandir a

RoA. Uma grande dificuldade neste projeto consiste nas generalizações SOS que assumem

exclusivamente sistemas afins na entrada, aos quais o modelo do véıculo não pertence. O

problema é abordado usando a expansão de Taylor de primeira ordem. Uma discussão

detalhada de tal aproximação é considerada.

O controlador desenvolvido nesta dissertação é avaliado em uma plataforma de véıculo

em escala. Para mostrar que este véıculo é de fato uma plataforma de teste válida e

confiável, cuja dinâmica do movimento lateral é semelhante à de um véıculo de tamanho

real, é realizada uma caracterização completa. Com um alinhamento persistente entre as



respostas teóricas e medidas, as análises baseadas em SOS são realizadas no protótipo.

Resultados sistemáticos são obtidos.

Os métodos baseados em otimização por SOS presentes nesta tese complementam as

ferramentas de análise não linear e métodos de projeto existentes para o contexto de

véıculos terrestres.

Palavras-chave: Programação semidefinida; Véıculos - Dinâmica; Sistemas não-

lineares; Véıculos elétricos.
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Functions and special math operators

(·) Steady-state values

(̂·) Estimated quantities

deg(·) Degree of a polynomial function
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1 Introduction

The constant technological advances in automotive, sensor, electronics, and computer

industries are empowering the development of more efficient and modern road vehicles.

The existent versatile tools range from driverless cars to the widespread use of assistive

technologies.

By efficient vehicles, we mean all improvements, advantages, and benefits that arise

as an effect of vehicle automatization. A decrease in the effect of the human factor on the

process of driving is expected to improve road safety and facilitate the achievement of more

efficient transport services. Some of the everyday life advantages of using autonomous

technologies are reduction of the number and severity of road traffic accidents; reduction of

time-consuming driving tasks; use of renewable energy and reduction of local air pollution;

comfort; performance; and autonomy.

The following sections will consider the primary levels of ground vehicle control to

highlight and direct the central theory aspects of the present thesis.

1.1 Context

In conformity with SAE J3016 [SAE International, 2018], which is a recognized document

that describes and regularize the process of vehicle driving automation, the overall act of

driving can be divided into three types of driver effort, as depicted in Figure 1.1. They

are the strategic, tactical, and operational levels.

Strategic Tactical Operational

- Path planning

- Path tracking

- Traffic flow

- Arrival predictions

- Estimators

- Scene recognition

- Collision avoidance

- Maneuvering

- Vehicle control

- Envelope Control

- Stabilization

Figure 1.1. Overall act of driving layout.

The Strategic level encompasses motion planning tasks. Commonly, strategies within

this layer are responsible to design the reference path. Despite the theoretical and tech-
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nological advancements in this field, there are still many challenges identified as optimal

route planning. Combining safety, real-time traffic conditions, traffic flow, number of in-

tersections across the path, reduction of fuel consumption, and environmental pollution

are some of the actual demanding tasks [Mac et al., 2016, Guo et al., 2019].

Moreover, with the deployment of fully electric vehicle technology, the mobility is

expected to become more dependent and subordinate to critical infrastructures, incorpo-

rating range constraints, restrictions of autonomy, and the need for inclusion of waypoints,

such as charging facilities, across the path [Gambuti et al., 2015].

The Tactical level comprises the act of navigation to achieve the objective. It mainly

includes activities related to perception and recognition in order to make decisions such

as executing a lane change, overtaking, breaking, and defining speed limits.

Nowadays, driving systems mainly rely on neural networks and machine learning tech-

niques to detect, recognize, and extract the surrounding environment information [Lin

et al., 2018, You et al., 2018, Chen et al., 2018]. These intelligent-based approaches

revealed adequate and promising methods to make empirical decisions and judgments,

especially when accuracy and correctness are required in subjective scenarios [Li et al.,

2018].

Finally, the Operational level involves innate vehicle actions. They encompass steering,

speeding, braking, performing yaw balance, or any other source of actuation existing in

the vehicle.

Many control structures are common in existing commercial technologies known for

their functional, practical, and efficient driving assistance. With different concepts and

purposes, they appear in several solutions such as emergency braking, adaptive cruise

control, collision mitigation brake system, electronic stability program, electronic stability

control among others [Yue et al., 2018].

The research described in this thesis is particularly concerned and concentrated on the

operational vehicle level. Essentially, we cover the vehicle control structure. Moreover, we

specialize in a Lyapunov-based method for analyzing, estimating, and enhancing stability

using a control structure.

1.2 Vehicle Control

It is worth mentioning that, although separated, linkages among the three discussed lay-

ers should be frequent. For instance, it is natural that a low-level controller demands

non-measurable signals that must be obtained from an estimator or extracted from a

scene recognition. Depending on the application’s complexity, this crossing information

is essential to feed the controller with the references, or even the strategy can merge the

layers into a single structure. A strict categorization, therefore, may be fuzzy.
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Focusing on the operational level, within the vehicular control field, we grouped the

research topics into different categories according to their objectives. Figure 1.2 provides

the state-of-the-art overview in vehicle control.

Vehicular control

Stability analysis Stabilization Envelope control

Eq.
points

Phase
plane

ABS
Torque
vectoring

ESP
Linear
control

Nonlinear
control

Normal
operation

Limits of
handling

Steady state
condition

Figure 1.2. Layout of the operational vehicle control theory.

At the top level, the vehicle is separated into three main categories. The following

sections discuss some of the present technologies and subjects of researches relevant to

the design of vehicle controllers.

1.2.1 Stability analysis

The analysis of solutions of differential equations and the trajectories of dynamical systems

is a standard topic of the control theory. From such analysis, one can describe and predict

the behavior of initial conditions.

From a dynamical systems standpoint, the analysis begins investigating the equilib-

rium points. At this specific topic of interest, the concept of linearization naturally arises.

In [True, 1999], it was shown that the linearized vehicle system is able to give valuable

information and easy to perceive local properties of the nonlinear problem. In a similar

fashion, [Sun et al., 2013] reported a method based on eigenvalue analysis of a linear

vehicle model. However, the contributions of these analyses are strongly limited. The

eigenvalues and the corresponding eigenvectors provide directions and capture the vehi-

cle behaviors near the neighborhood of the equilibrium points. It should not be used to

represent the system otherwise.

When it comes to phase portraits, on the other hand, they are a powerful visual

medium that provides graphical insight into the system dynamics. For this reason,

this topic is where the majority of vehicle stability analysis concentrates. As shown

in [Hindiyeh and Christian Gerdes, 2014], given a set of control inputs and a two-state

single-track model, the effect of changing parameters and the resulting range of possible

trajectories are verified through a set of phase portrait plots. In [Hindiyeh, 2013], a bi-

furcation analysis is developed for a three-state bicycle model, including the longitudinal
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dynamics and the effect of combined forces on tires. It was shown that the friction ellipse

and saturation constraints are crucial to define the unstable equilibrium points. Four

years later, [Cordeiro et al., 2017] extended the analysis to a four-wheel vehicle model,

including the vertical forces distribution.

A closed-loop response analysis is proposed in [Beal and Boyd, 2019]. The coupled

effects of longitudinal and lateral forces generated by the tires as a result of control

actions are verified in three-dimensional phase portraits. The overall stability is discussed

following the Lyapunov conditions statements.

Along similar lines, [Bobier-Tiu et al., 2018a] proposes a superimposition of phase

portraits to design a control strategy. The phase planes are computed with the extremes

of a steering angle control input and, as the main result, the largest range of feasible and

stable closed-loop trajectories was identified.

1.2.2 Vehicle stabilization

The second category is the vehicle stabilization approaches. Within this division, one

finds most of the existing commercial technologies in production vehicles. They are the

well-known anti-lock brake system (ABS), torque vectoring (TV), and electronic stability

program (ESP) which are known for assisting the drivers during maneuvers. These types

of systems do not take any path information or dynamical analyses into account and focus

only on vehicle stabilization.

The ABS stabilize the vehicle by adjusting the braking force in order to prevent

excessive slide. The adjustment is made according to the available tire-road adhesion

conditions [Aly et al., 2011]. The ESP stabilizes a vehicle by providing unequal braking

torques. It creates a yaw motion that enables the vehicle to follow de desired driver’s

intention. A detailed explanation of how ESP operates and its proven importance by

largely reducing accidents can be found in [Høye, 2011, Lutz et al., 2017]

Unlike ESP and ABS, that focus on controlling longitudinal inputs through the brake,

the TV can provide yaw balance without degenerating the longitudinal motion. This

methodology emerged with the ascension of electric vehicles. With two or more indepen-

dent electric driven-wheels, the control possibilities are numerous [Ataei et al., 2019].

To optimally distribute the torque between wheels, several strategies formulated on

different concepts have been proposed. They are mainly based or designed on the available

friction, information about the friction ellipse, to avoid power loss, aiming improvement on

the energy efficiency, or to increase handling performance [Smith et al., 2018, Chatzikomis

et al., 2019, Yuan et al., 2018].
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1.2.3 Envelope control

The envelope control usually uses a model-based controller to track the vehicle states into

a desired point or region. A wide variety of control techniques have been explored for

automotive and envelope control, ranging from classical linear techniques to more complex

nonlinear methods.

The most popular actuating layout for vehicles is front-wheel steering, front-wheel

drive, and brakes with a predefined brake-pressure proportion between the front and rear

axles. The majority of works focus on operating these inputs in order to automatize

the vehicle motion or automatize the act of driving. The first control applications we

can find in the literature are those based on linearized models, especially in steady-state

conditions. Due to its relative simplicity, lower computational resources demand, and the

existence of a well-developed linear control theory, the expressive use of linear models is

evident. For instance, the steering angle control problem to maintain the vehicle in the

desired yaw rate was solved using a linear quadratic regulator (LQR) controller in [Park

et al., 2001], pole placement in [Ackermann, 1990], PID controller in [Li et al., 2009], and

the H2 optimal controller [Rong-hui et al., 2007].

As new technologies become available and with the immersion of electric vehicles

into the academy, naturally, these approaches soon advanced to more sophisticated and

complex methodologies. To incorporate the nonlinear vehicle behavior under different

operating conditions, nonlinear control strategies have been explored based on different

structures such as in a model predictive control [Yuan et al., 2016], bifurcation analysis

[Rossa and Mastinu, 2018], sliding modes control [Tota et al., 2018] and backstepping

control [Depature et al., 2017].

A more recent trend in vehicle control is based on drifting. The inspiration behind

this methodology is that it can drive a vehicle along a given path while utilizing the

tire saturation without losing control, i.e., at the limits of handling. The implication for

that is, with a full understanding of the friction limits, the closed-loop formulation can

provide steering and throttle commands that drive the vehicle safely in a situation where

other approaches would result in loss of control [Kegelman et al., 2016]. Exploring the

new allowable window of operating conditions that would otherwise be infeasible have

appeared recently in the literature [Kapania et al., 2016, Laurense et al., 2017, Goh et al.,

2019].

1.3 Motivation

Numerous researches have been focused on and undertaken to improve the act of driving.

As a consequence, considerable attention and efforts have been given to the development
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of control strategies. As new technologies are being applied to vehicles, sensing and

actuators’ capabilities are getting better and accessible. This authority enables many

new applications that will further improve safety, performance, and comfort [Lefèvre

et al., 2015].

Within this field, despite all advantages that recent technologies incorporate to vehicle

stability, progress on these systems naturally depends on our ability to understand the

vehicle nonlinear behavior, especially under the influence of concurrent inputs, such as

wheel torque allocation and steering angle commands.

Implementing controllers for such structures, individually or in some combinations,

can result in actuator redundancy or in challenging problems of control allocation. Often,

these dependencies may cause a lack of transparency or impairment of the overall vehicle

motion [Johansen and Fossen, 2013]. In fact, it is generally difficult to produce a perceptive

understanding of the vehicle response under a more complex control structure, moreover,

predicting the combined effect of distinct inputs remains a challenge [Ataei et al., 2018].

A number of works are dedicated to improving vehicle handling and motion stability

[Wang and Chen, 2018, Kati et al., 2018, Galluppi et al., 2019]. However, most of them

are based on linearized models and a large majority of existing methods are not concerned

about providing stability certificates.

In the current thesis, these exact questions are studied. The stability analysis and

the control design synthesis are evaluated under an optimization problem. By means of

Lyapunov’s theorem along with the sum-of-squares programming advancements, stability

certificates can be provided.

The analysis is mainly based on the region of attraction (RoA). Estimating and further

enlarging the region of attraction is an important subject of study. The RoA is a safe

subset of the state space in which the equilibrium point is stable. In other words, it

describes the boundary on how far from equilibrium the vehicle can reach where stability

is assured. Such characteristics respond if an unintentional spin is still safe or will lead to

divergence. For instance, vehicle stability can be ensured by limiting the vehicle’s motion

to a portion of the state space, however, knowing these exact portions and limits is far

from trivial.

The sum-of-squares programming framework explored in this thesis is also extended

to a state feedback control problem. Now, we wish not only to estimate but also to design

a control law that better expands the RoA while accounting for input saturation.

1.3.1 Sum-of-squares programming

Due to recent advances in polynomial optimization, based on sum-of-squares (SOS) re-

laxations, significant research has been performed on the development of Lyapunov-based

analysis tools tractable by convex optimization [Parrilo, 2003]. The SOS technique effec-
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tiveness has been extensively explored for computing efficient solutions to various complex

problems, such as regions of attraction [Tacchi et al., 2018]; reachability sets [Jones and

Peet, 2019]; reach-avoid sets [Landry et al., 2018]; and nonlinear control synthesis [Singh

et al., 2020].

Regarding the local asymptotic stability problem, a challenging question is to establish

suitable estimates for the region of attraction. A common way of obtaining RoA estimates

is searching for an inner approximation given by the largest level set of a Lyapunov

function (LF) such that the stability conditions hold. In the case of polynomial systems,

several approaches have been recently proposed to deal with such a problem.

One subject of interest is the RoA computation for systems subject to modeling un-

certainties. In [Topcu et al., 2010], an SOS-based algorithm combined with a branch-

and-bound strategy was proposed. The system was described by vector fields affinely

dependent on polynomial functions of the uncertain parameters. In [Iannelli et al., 2019b]

the local stability analysis problem of uncertain systems is formulated by defining an

augmented system comprising the polynomial and linear time-invariant system. An alter-

native solution for the dependence of the LF on the uncertain parameters is proposed in

[Wang et al., 2020a]. The approach begins with an inner RoA estimation that is further

improved by iterative computations of a parameter-dependent function.

Under the assumption of nominal vector fields, the problem of finding the RoA inner

estimate has received considerably more attention. The technique usually leads to bilinear

matrix inequality constraints and iteration schemes are employed [Jarvis-Wloszek et al.,

2005, Papachristodoulou, 2005, Tan and Packard, 2008, Chesi, 2011b]. The problem of

computing inner bounds on the RoA is presented in [Topcu et al., 2008]. The approach

is intended to find the best possible estimate for the RoA using the largest level set of

an LF. A variant of the algorithm is proposed in [Iannelli et al., 2019a], which aims to

reduce the conservatism obtained using the invariant sets. The computational efforts and

improvement on the level set estimates are reported.

The significance of these results, in conjunction with the availability of publicly avail-

able tools designed to convert the SOS relaxations into linear matrix inequalities, pro-

moted the stability analysis and RoA estimation across disparate engineering fields, such

as in-flight control [Chakraborty et al., 2011, Cunis et al., 2020], switched systems [Zheng

et al., 2018], robotic systems [Ahmadi and Majumdar, 2019], and power systems [Izumi

et al., 2020]. It is noteworthy, with certain restricted assumptions, the SOS approach has

also been applied for non-polynomial dynamical systems [Pitarch et al., 2014, Chen et al.,

2015, Wang et al., 2020b].
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1.3.2 Region of attraction analysis for nonlinear vehicle dynamics

Within the vehicle stability field, early works have mainly relied on linear systems the-

ory to guarantee local stability. Lyapunov’s second method was first used in [Johnson

and Huston, 1984] with a linearized vehicle model. The RoA estimate was then found

manually by calculating the largest level set of the candidate function that fits within the

region. Since then, Lyapunov-based methods were used aiming for more accurate and

representative estimates of the RoA [Sadri and Wu, 2012, Németh et al., 2016].

In [Németh et al., 2014, 2016], the authors applied the SOS technique to the lateral

stabilization problem of vehicle systems. A variant of the bicycle model is written and a

two-stated slip angle dynamics is obtained. The tire forces are approximated by a 10th or-

der polynomial function and the lateral stability is verified for given peak-bounded control

input. In [Tamba and Nazaruddin, 2018], an improvement is proposed for the polyno-

mial tire force approximation and the estimated RoA is demonstrated for a second-order

LF. The result appears conservative with similar representativeness of a neighborhood

analysis, i.e., through the system linearization at the equilibrium.

A generalization is proposed in [Drummond et al., 2018] for refinement on the Lya-

punov function candidates. The work deals with rational LF, which leads to tractable

numerical solutions of polynomial Lyapunov inequalities. A simplified vehicle model is

used for the relaxed RoA estimation and the results show some important conservatism.

In [Masouleh and Limebeer, 2016], the tire forces are approximated by a third-order

polynomial function and the lateral vehicle model is written in terms of lateral veloc-

ity and yaw rate. A further improvement of this work is proposed in [Masouleh and

Limebeer, 2017] where a rational polynomial approximation is developed. The rational

representation allows for a better vehicle model approximation and an overall model accu-

racy is achieved. Additionally, the influences of different vehicle parameters and driving

conditions on stability are presented.

Drawbacks of these approaches are the narrow range of validity, associated with the

vehicle model, and the conservativeness in the estimation, due to inner approximation.

Furthermore, the potential of the sum-of-squares programming for the control synthesis

problem was not explored.

1.4 Scope and Objectives of the Work

For road vehicles, loss of stability may have critical safety implications. It is important

to study the vehicle stability for secure and reliable maneuvers accomplishment. Simply

determining whether the car, in a certain maneuver, is stable does not offer a complete

portrait of how far the system is from the stability boundary. By finding the region of
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attraction around the equilibrium point of the nonlinear system, we can determine the

direction and dimension of the external disturbance that will cause the vehicle to cross

into the unstable region.

In this context, the purpose of this thesis is to take advantage of such SOS pro-

gramming advancements to investigate ground vehicles, mainly driven through stability

analysis and control synthesis. Three specific objectives are listed:

• Address the region of attraction estimation of a nonlinear single-track vehicle model

using the sum-of-squares programming. This includes writing the model as polyno-

mial vector fields that must capture the nonlinearities inherent to the model.

• Address the SOS control synthesis. Explicitly synthesize a polynomial state feedback

controller with input saturation to enlarge the provable region of attraction.

• Experimentally validates the SOS-based controller. This includes an experimental

characterization of a scaled vehicle platform whose dynamics are similar to those of

a full-sized vehicle.

1.5 Thesis Outline

The remainder of this thesis is arranged as follows.

Chapter 2: Vehicle Modeling

The focus of Chapter 2 is on modeling the vehicle dynamics’ main aspects. It includes

the fundamental equations of motion and tire models as well as statements of important

simplifications, approximations, and linearizations.

Specifically, the chapter describes a modified version of the “bicycle” model: a two-

state model of the lateral dynamics that incorporates the rear-drive force, resulting in

a yaw moment input. An investigation is carried out to show that the proposed model

indeed captures the relevant aspects of the vehicle motion and, therefore, meets the desired

requirements.

Chapter 3: Mathematical Preliminaries

Chapter 3 gives a brief background on polynomials theory, introduces the important

properties and concepts, and provides the mathematical preliminaries that will attain

the needs for the work development. Central to the thesis is the Positivstellensatz, a

theorem in real algebraic geometry that forms the pillars for the sum-of-squares theory.

The theorem is exploited for the SOS program synthesis in the later chapter.

Chapter 4: Local Stability and Controller Synthesis

Chapter 4 shows the essential relationship between the existence of certain polynomials

and convex optimization. The problem of certifying local stability is presented by means

of Lyapunov’s theorem along with the Positivstellensatz identity. To solve the resulting
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SOS restrictions, we must apply the block coordinate descent method, resulting in an

iterative procedure.

The algorithm shows how to search for Lyapunov functions to demonstrate local

asymptotic stability and estimate the region of attraction. The approach is then extended

to the control synthesis problem where the main objective is to expand the regions with

a state feedback controller.

An important aspect of the SOS design tool is that the system must be written in an

input-affine form. A workaround of this issue is discussed and some examples are provided

for better understanding.

Chapter 5: RoA Estimation and State Feedback

Chapter 5 addresses the lateral stabilization problem of a nonlinear single-track vehicle

model. The tire forces are approximated using rational functions that are shown to capture

the tire’s nonlinearities significantly better than polynomial functions.

The objective is to estimate the largest state-space region such that the closed-loop

vehicle lateral stability can be guaranteed. The sum-of-squares programming technique

is applied to find these maximum invariant sets while accounting for steering and yaw

moment input saturations. The algorithm allows the region of attraction to be approx-

imated by a level set of a Lyapunov function and the computation of polynomial state

feedback control laws. The method is applied for both straight-line motion and corner-

ing maneuver. Finally, a Monte-Carlo analysis is presented to show that the proposed

SOS-based methodology can be used as a valid analysis and design tool considering a real

vehicle application.

Chapter 6: Experimental Evaluation

Chapter 6 describes the use of 1:5-scale vehicle prototyping in evaluating state-of-the-

art algorithms, particularly to demonstrate and facilitate application in advanced vehicle

control and sensing systems. This test-bed platform, whose lateral dynamics are similar

to those of a full-sized vehicle, is used to validate the polynomial controller.

Preliminarily, an identification process is proposed to determine the unknown model

parameters necessary to correctly describe the vehicle behavior. The mathematical model,

validated through a series of matching experiments, is then used for further analysis and

control purposes. The SOS control design is employed to synthesize polynomials control

laws that are verified experimentally.

For each presented characterization, a wide set of experiments were carried out us-

ing the scaled vehicle platform. A persistent agreement between expected (simulated)

and achieved (measured) lateral response was obtained. The results demonstrate a sys-

tematic consistency regarding the platform test-bed and the behavior described by the

mathematical model, as well as the predictions made through the SOS technique.

Chapter 7: Conclusion

Chapter 7 provides a summary of the thesis. The key characteristics of the region of
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attraction estimation and control synthesis are exposed. The dissertation concludes by

presenting future possible research directions, including improvements of the proposed

vehicle model and the inclusion of performance criteria into the synthesis problem.
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2 Vehicle Modeling

2.1 Introduction

A vehicle is a complex system bringing together a large number of mechanical and elec-

tronic elements. Broadly speaking, its motion dynamics can be divided into two subsys-

tems. The first is the vehicle body motion described by the rigid body dynamics and

kinematics. The second is given by the tire-ground iteration, which is the primary source

of forces that moves the vehicle.

Depending on the required application, different vehicle models can be used. For a

simulator design, modeling efforts are concentrated on reproducing as precisely as possible

the behavior of individual vehicle components, comprehending vertical, translational, and

rotational movements. For control, sensing, and estimation, a relatively simple three-

state planar or even the reduced bicycle model can capture the desired motion. Besides,

the model can be largely simplified by linearizing the vehicle around an arbitrary point,

neglecting nonlinearities, allowing applications through the vastly and well-established

tools of linear control theory [Rajamani, 2011].

Regardless of the model fidelity used for analysis, in practice, the relative complexity

of the selected model should facilitate simple analysis techniques such as phase portraits,

numerical integration and stability of equilibrium points. A major aspect presented in this

chapter is the proper selection and approximation of the ordinary differential equations

(ODEs) into a suitable model that must be written as polynomial vector fields. Ideally,

the system should achieve an appropriate balance between intuitive simplicity and model

fidelity.

2.2 Planar Model

The analysis and control design in this thesis rely on variants of a relatively simple planar

vehicle model. We begin presenting the four-wheel planar model, depicted in Figure 2.1.

Usually, there are two versions of the bicycle model in literature, with two and three

states. The state vector is described in terms of the vehicle’s longitudinal velocity u,

lateral velocity v, and yaw rate r, this later is the rotational velocity around the z-axis.
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Moreover, all of them are specified at the center of gravity (CG)
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Figure 2.1. Four-wheel planar vehicle model.

By inspection of Figure 2.1, the lateral and longitudinal equations of motion are de-

rived by analyzing the balance between forces and moments (Newton-Euler equations) in

x, y and z-axis.

m(u̇− rv) = Fxrl + Fxrr − Fyfl sin δfl − Fyfr sin δfr,

m(v̇ + ru) = Fyrl + Fyrr + Fyfl cos δfl + Fyfr cos δfr,

Iz ṙ = a(Fyfl cos δfl + Fyfr cos δfr)− b(Fyrl + Fyrr) + c(Fxrr − Fxrl),
(2.1)

where m is the vehicle mass, Fyij and Fxij are lateral and longitudinal forces. Subscripts

i ∈ {f, r} denotes front and rear wheels and j ∈ {l, r} left and right quantities. Iz is the

vehicle’s yaw inertia and δij is the tire steering angle. Distances a and b are measured

from CG to front and rear axles, respectively, and c is half the distance between wheels

on the same axle.

The four-wheel planar model incorporates rolling and pitching motion of the chassis.

Since this dissertation is focused primarily on analyzing deviations around a steady-state

cornering of the vehicle, the effects of load transfer, induced by those motions, can be

neglected. As discussed in subsequent sections, this simplification brings simplicity and

facilitate further developments while keeping model fidelity [Rajamani, 2011, Liu, 2013].

Also observe that this work is focused upon a vehicle with rear-wheel drive. To include

the drive forces, that will be used for control design, we propose a model adaptation. We

follow a modified version of the traditional bicycle model that incorporates the differential

torque control at the rear axle.

From Figure 2.2, it is clear how we integrate the differential torque into the bicycle

model. It should worth mentioning that the differential torque can only be achieved if we
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Figure 2.2. Modified bicycle model. In (a) the rear tire is expanded to show the

independent longitudinal force inputs and (b) the bicycle model with an equivalent rear

axle and a yaw moment input term.

are able to control the torques at each of the rear wheels individually, which is typically

the case of electric vehicles driven by independent electric motors.

The problem of optimally distributing the torque between wheels is commonly denoted

in literature by torque vectoring [Xu et al., 2019]. Differential torque control is intriguing

from a vehicle control standpoint because it enables an additional way to generate a yaw

moment. Moreover, different architectures also provide a range of control combinations,

such as torque allocation between axles (front and rear), between wheels of the same axle

(left and right), or a combination among them.

For the rear-wheel-drive layout depicted in Figure 2.2, the total yaw moment amount

Mz generated by the independent rear drive wheels is

Mz = c(Fxrr − Fxrl). (2.2)

In a similar form, the resulting longitudinal and lateral forces are given by the sum of

the respective tire forces in the same axle

Fxi =
(
Fxir + Fxil),

Fyi = (Fyir + Fyil), i ∈ {f, r}.
(2.3)

In summary, the proposed bicycle model assumes a single tire at each axle with twice

the force capability of the individual tires and a yaw moment input term that arises as
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the result of the differential drive forces.

The bicycle equations of motion is derived by considering the lumped axles. Substi-

tuting (2.3) and (2.2) into (2.1), we have

m(u̇− rv) = Fxr − Fyf sin δ,

m(v̇ + ru) = Fyf cos δ + Fyr,

Iz ṙ = aFyf cos δ − bFyr +Mz.

(2.4)

To analyze the lateral vehicle stability, we may simplify the dynamical model (2.4)

considering a rectilinear uniform movement. A constant longitudinal velocity u0 implies in

u̇ = 0, resulting in the decoupling of longitudinal and lateral dynamics. The corresponding

lateral model is then
m(v̇ + ru0) = Fyf + Fyr,

Iz ṙ = aFyf − bFyr +Mz.
(2.5)

The lateral forces play an important role in this work. The above discussion presents

the tire’s fundamentals, modeling, and simulation.

2.3 Tire Fundamentals

The response and performance of a vehicle are mainly influenced by the mechanical force

and moment generating characteristics of the tires. Therefore, an adequate model is an

essential component when it comes to vehicle stability analysis.

In the literature, one can find modeling approaches that concentrate their efforts to

capture the more complex aspects of the tire, which include methodologies based upon

finite element analysis [Patel et al., 2015, Ballo et al., 2018]. For control purposes, however,

these techniques are prohibitively complex due to the computational cost, development

time, and an excessively large number of required parameters. Instead, variants of a

relatively simple Brush tire and Pacejka model are used in an endeavor to capture the

most important aspects of tire behavior.

In these models, the lateral force generated by the tire is essentially dictated by a

combination of two factors: the force demanded from the tire when cornering and the

total force available from friction.

Lateral force can only be generated in a situation where there is sufficient force avail-

able from friction to feed the needs. Two main components usually govern the force

available from friction, vertical load Fzi and available friction coefficient µi. The product

µiFzi delivers the maximum available force that the tire can reach.

The force demanded when cornering is the result (prominently) of the tire slip angle

αi. The slip angle αi is characterized by the absolute speed components of the wheel,
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computed at the local wheel coordinate system or wheel frame. From Figures 2.1 and 2.2,

one can see αi is the angle between the longitudinal uw and lateral vw velocity components

of the absolute wheel velocity,

αi = arctan
vw
uw
. (2.6)

In Figure 2.3 we illustrate our discussion by plotting the lateral forces for two analytical

models, the Pacejka and Brush tire models [Pacejka, 2012] and their linear approximation.
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Figure 2.3. Corresponding lateral tire characteristic curve for Pacejka and Brush models.

The results are shown for three values of friction coefficient µ. In (a) vertical load Fz is

2 kN and in (b) 4 kN.

The slip angles are a response of the steered wheels that translate to a lateral deflection

at the tire’s rubber elements in the contact patch (between tire and road). This generates

a reaction force that increases linearly from zero to its maximum value, µiFzi. Beyond

the maximum value, the tire is said to be saturated. In this case, increasing the slip angle

does no lead to an increase in lateral forces.

Slip angle can be analytically determined by considering the planar motion kinematics,

αi is exactly written as

αf = arctan

(
cos δ(v + ar)− sin δu0

cos δu0 + sin δ(v + ar)

)
,

αr = arctan

(
v − br
u0

)
.

(2.7)

Given that we are supposing constant longitudinal speed u0 and since u0 >> v, we

may assume sufficient small values of αi such that the approximation arctan(αi) ≈ αi is
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valid [Rajamani, 2011]. The expression is then rewritten as

αf =
v + ar

u0

− δ,

αr =
v − br
u0

.
(2.8)

Observe that this assumption is just a simplification of (2.7), the tire forces nonlinearities

are still taken into account through the tire models.

For the purposes of this dissertation, we will concentrate our attention on two an-

alytical models that are briefly described: the Brush tire model and the Pacejka tire

model.

2.3.1 Brush tire model

The Brush model assumes a rigid carcass surrounded by deformable and flexible brushes

composed of elastic particles. The deflection of these elements along with the length of

the contact patch produce a reactive force per unit of length available from friction.

There are multiple variants of brush tire models in the literature that show different

substructures defining the interaction between the brushes and the road. Here we follow

the model presented in [Pacejka, 2012, Ch. 3].

The analytical approximation that describes the nonlinear relationship between the

tire force and slip angle is

Fyi =

−Cα tanαi

(
1− Cα

3µiFzi
| tanαi|+

C2
α

27µ2
iF

2
zi

tan2 αi

)
|αi| ≤ αsli ,

−µiFzisign(αi) |αi| > αsli ,

(2.9)

with αslidefined as

αsli = arctan

(
3µiFzi
Cα

)
.

where Cα is the tire cornering stiffness, a measure of the tire ability to resist deformation,

and αsli is the slip angle threshold needed to reach the full sliding condition.

2.3.2 Pacejka tire model

The most common empirical model is the Pacejka tire model, also known as the so-called

Magic tire formula, developed by Hans Pacejka [Pacejka, 2012, Ch. 4]. It is a data-

driven empirical model, based on a trigonometric formula, which is capable of matching

experimental data effectively. It provides coefficients which have clear relationships of
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the curves to be fitted, such as typical shape and peak magnitude. The magic formula is

written as

Fyi(αi) = D sin(C arctan(B(1− E)αi + E arctan(Bαi))), (2.10)

where constants B, C, D and E are the semi-empirical parameters. B corresponds to the

stiffness factor that adjusts the initial derivative, C limits the sine function, defining the

curve shape, D is the maximum value the force can reach, and factor E is introduced to

control the curvature at the peak value. These parameters must be set to fit the measured

data on the tire model.

2.4 Four-Wheel and Bicycle Model Analysis

In the last sections, we discussed the mathematical manipulations used to write the bi-

cycle model. Here we show and compare both, four-wheel planar and bicycle models, in

order to discuss the impact of these approximations. Moreover, we highlight their main

characteristics.

The Pacejka model is a relatively more complex model, however, it is recognized as

capable of presenting an excellent approximation for experimental forces data. On the

other hand, the Brush model is simpler and depends only on the tire Cα parameter, in

contrast to the four Pacejka parameters.

When experimentally working with a vehicle application, the parameter that can be

estimated with moderate effort is exactly Cα. Therefore, in practice, the knowledge of

this single parameter allows the straightforward employment of the Brush model.

For these reasons, we use the Pacejka model for simulation purposes with the sole

objective of bringing greater representability of the vehicle’s response in a simulation

environment. The Brush model, on the other hand, will be used for analysis and control

design.

2.4.1 Review and comparison

With the four-wheel planar motion, the load transfer effect for a steady-state maneuver

can be determined as a function of the vehicle states. Changes in wheel loads, resulting

from lateral acceleration, are formulated by applying force and momentum analysis. The

vertical force distribution, derived from the two-dimensional roll and pitch dynamics, is

illustrated in Figure 2.4.

With a rigid body assumption, the vertical forces distribution of a four-wheel planar
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Figure 2.4. Two-dimensional vertical force distribution considering a steady-state con-

dition.
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where hg = hg −
mg

4ks
, in which hg is the distance from the vehicle extremity to the

ground with the suspension length in rest (nominal suspension length). The centripetal

acceleration is defined as ay = (
√
u2

0 + v2) r and g is the gravitational acceleration.

The first equation of (2.11) ensures the balance between vertical forces and lateral

acceleration. The second equation ensures the four wheels are in a vertical equilibrium.

Third and fourth equations provide zero moment balance between front and rear wheels,

or equivalently, zero longitudinal acceleration due to the constant longitudinal velocity.

For the bicycle model, load transfer is considerably simplified. Roll motion is neglected,

resulting in static vertical forces. The lumped front and rear vertical forces are

Fzf = bm g/(a+ b),

Fzr = amg/(a+ b).
(2.12)

The complete vehicle model is assembled substituting the vertical forces and the tire

models into (2.5), to create the bicycle model, or into (2.1) to assemble the four-wheel

planar model.

In Figure 2.5, we present the trajectories achieved using both models. The figure

depicts the existence of three equilibrium conditions and a local stable region. It goes

without saying that in this comparison, despite all the linearizations and simplifications

necessary to assemble the bicycle model, it presents a proper alignment between the bi-

cycle and the four-wheel model response. In Figure 2.5a, we show a straight running

scenario, i.e., the steering angle is set to zero. In this case, lateral acceleration is con-
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siderably diminished, reducing the effect of load transfer, which results in well-aligned

trajectories. On the other hand, for a cornering maneuver with a constant steering angle,

shown in Figure (2.5b), one can note a slight disparity among the trajectories where the

differences mainly arise across the unstable region. Despite these discrepancies, the equi-

librium points of the two systems are equivalent and the trajectories of the stable region

are coincident.
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Figure 2.5. Phase portrait of the approximated bicycle model (dashed lines) and the

complete planar vehicle model (solid lines). The vehicle is set at constant longitudinal

velocity u0 of 10 m/s. Green stars and black dots are equilibrium points of the bicycle and

planar models, respectively. In (a) steering angle is set to 0 degrees and in (b) steering

angle is set to -5 degrees.

As we are interested in estimating the region of attraction around the stable equilib-

rium point, we can confidently use the bicycle model without losing meaningful behavior

properties. The bicycle model, in terms of accuracy and representation, correctly describes

the trajectories of the system.

2.5 Linear model

Finally, we can describe the vehicle motion in its simplest version. At low levels of lateral

excitation, a linear tire model efficiently describes the behavior of the forces (see Figure

2.3). This fact results in a useful mathematical description to develop a linearized version

of the bicycle model [Rajamani, 2011]. It assumes a direct relationship between the tire

slip angle and its lateral force

Fyf = 2Cααf ,

Fyr = 2Cααr.
(2.13)

For the nonlinearities induced by the steering angle δ, the small-angle approximation

cos δ ≈ 1 is used, a reasonable assumption within the context of the vehicle in the study.
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For a steering angle range of |δ| ≤ 22o, the approximation on cos δ induces a relative error

less than 7.85%.

The substitution of slip angles (2.8) into the linear tire force equations (2.13) and then

into (2.4) yields the differential equations

v̇ =
−4Cα
mu0︸ ︷︷ ︸
a11

v +

(
2Cα(b− a)

mu0

− u0

)
︸ ︷︷ ︸

a12

r +
2Cα
m︸︷︷︸
b11

δ

ṙ =
2Cα(b− a)

Izu0︸ ︷︷ ︸
a21

v +
−2Cα(a2 + b2)

Izu0︸ ︷︷ ︸
a22

r +
2Cαa

Iz︸ ︷︷ ︸
b21

δ +
1

Iz︸︷︷︸
b22

Mz

(2.14)

where aij and bij are the A and B matrices elements of the generalized form

ẋ = Ax+Bu, (2.15)

where x = [v, r]T and u = [δ, Mz]
T . Note that, just as before, longitudinal velocity u0 is

not a vehicle state, but rather a model parameter. Matrices A and B are therefore

A =


−4Cα
mu0

2Cα(b− a)

mu0

− u0

2Cα(b− a)

Izu0

−2Cα(a2 + b2)

Izu0

 , B =


2Cα
m

0

2Cαa

Iz

1

Iz

 .

For a more detailed and comprehensive analysis of the lateral vehicle model and its

linearization, see [Rajamani, 2011, Chapter 2].

In the context of this thesis, the linearized system is used to provide the quadratic

Lyapunov function candidates (V0) derived from the linearized vehicle model associated

with the Lyapunov equation. Besides that, (2.15) is used to compute the LQR gains used

for initial candidates K0.

2.6 Final Remarks

In the current chapter, different dynamic models for vehicles are presented in a variety

of complexity levels. Two steady-state tire forces models have been discussed: the brush

model and the Pacejka Magic Formula. Most remarkably, the chapter shows the nonlinear

single-track bicycle model response matches those achieved with the more complex four-

wheel model.
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3 Mathematical Preliminaries

In this chapter, we present the mathematical background and preliminaries that are the

heart of the theory employed in this thesis. We first recall the standard representation

of polynomials, sum-of-squares polynomials, and monomial basis. The chapter proceeds

by introducing the Positivestelensatz, a central theorem in real algebraic geometry that

provides an important identity that will be explored in later chapters.

We then briefly describe the SOSTOOLS, a software that facilitates the search for a

sum of squares decomposition given a polynomial structure or constraints.

3.1 Background on Polynomials

One of the most important mathematical objects in this thesis is the polynomial. We

will define the set of multivariate polynomials in n variables and with real coefficients as

R[x1, . . . , xn] = R[x]. Let us start with the fundamental definitions.

Definition 1 Let x = (x1, . . . , xn) and α = (α1, . . . , αn) with x ∈ Rn and α ∈ Nn. A

monomial in n variables is a function that maps mα(x) : Rn → R and defined as mα(x)

= xα = xα1xα2 . . . xαn. The degree of a monomial is identified as deg(mα) =
∑n

i=1 αi.

For a general pair of n variables with degree d = deg(mα), the monomial list will be

a vector with
(
n+d
d

)
elements. As an example, with n = 2 and d = 2, the vector of all

monomials is [1, x1, x2, x2
1, x1x2, x2

2]T .

Definition 2 A polynomial in (x1, . . . , xn) is defined as a linear combination of a finite

set of monomials {mαj(x)}kj=1 with real coefficients {cj}kj=1 ∈ R. A polynomial f ∈ R[x]

is written as

f(x) =
k∑
j=1

cjmαj(x). (3.1)

The degree of f(x), denoted by deg(f(x)), is defined as the maximum degree of the

monomials in it. Or, equivalently, deg(f(x))=maxjdeg(mαj) associated with the non-zero

cj.
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A concept over polynomials that will play a central role in this work is the notion of

the sum-of-squares. Its importance relies on the fact that an explicit expression of f as a

sum of squares is a certificate of positivity for f .

3.1.1 Sum-of-squares polynomials

As the name might suggest, a polynomial is SOS if it can be represented as sums of

squares of other polynomials. If a polynomial in n variables can be written as a sum of

squares components of real polynomials, then clearly it must take only nonnegative values

in Rn. In fact, the SOS decomposition gives an immediate verification of the polynomial

positivity on Rn. Its simple and basic definition is stated as follows.

Definition 3 (Sum of squares polynomial) We denote by Σn ⊂ R[x], x ∈ Rn, the set

of polynomials that can be decomposed as the sum of square (SOS) of polynomials. A

polynomial p ∈ R[x] admits a sum of squares decomposition if there exists polynomials fi,

i = {1, . . . , N} such that

Σn =

{
p(x) ∈ R[x]

∣∣∣ p(x) =
N∑
i=1

f 2
i (x), fi(x) ∈ R[x], i = {1, . . . , N}

}
. (3.2)

From (3.2) it is clear that, given any p ∈ Σn, then p ≥ 0 on Rn and must always be

of even degree. It is also known that p is a sum of squares if and only if there exists a

positive semidefinite matrix Q and a finite vector of monomials Z(x) such that

p(x) = Z(x)TQZ(x). (3.3)

This representation is utilized to express a sufficient condition for the positive semidef-

initeness of any SOS polynomial in terms of the so-called Gram matrix Q. Polynomial

p(x) being an SOS is equivalent to Q ≥ 0.

Searching for the equivalence between p and Q was proposed in [Powers and Wörmann,

1998]. The problem was written as one of testing emptiness of a semi-algebraic set and the

verification was cast as an instance of the quantifier elimination procedure. Years later,

Parrilo [Parrilo, 2003] demonstrated that searching for the existence of Q for a given p

can be formulated as a convex problem using semidefinite programming.

3.2 Positivstellensatz

Having introduced SOS polynomials, we now can make the algebraic definitions that are

necessary to present one of the fundamental theorems of real algebraic geometry. The
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Positivstellensatz, firstly presented in [Stengle, 1974], provides an equivalence relation

between the emptiness of a semi-algebraic set, composed by a finite set of polynomial

equalities and inequalities, to an algebraic relationship. We begin with a few definitions

that are used in the theorem.

Definition 4 Given polynomials {g1, . . . , gt} ∈ R[x], the Multiplicative Monoid gen-

erated by the gi is the set of all finite or countably infinites products of gi, including 1,

defined to be the empty product. It is denoted as M(g1, . . . , gt).

For the sake of example:

M(φ) = 1,

M(g1) = {gk11

∣∣∣ k1 ∈ Z+},

M(g1, g2) = {gk11 g
k2
2

∣∣∣ k1, k2 ∈ Z+}.

Definition 5 Given polynomials {f1, . . . , fs} ∈ R[x], the smallest algebraic Cone gen-

erated by the fj is the set

C(f1, . . . , fs) =

{
q0 +

2s−1∑
i=1

bi qi

∣∣∣ bi ∈M(f1, . . . , fs), qi ∈ Σn

}
.

For the sake of example:

C(f1) = {q0 + f1q1

∣∣∣ q0, q1 ∈ Σn},

C(f1, f2) = {q0 + f1q1 + f2q2 + f1f2q3

∣∣∣ q0, . . . , q3 ∈ Σn}.

Definition 6 Given polynomials {h1, . . . , hu} ∈ R[x], the Ideal generated by the hi is

the set

I(h1, . . . , hu) =

{
u∑
i=1

hipi

∣∣∣ pi ∈ Σn

}
.

With these definitions we can proceed by stating the Positivstellensatz theorem

Theorem 1 [Bochnak et al., 1998, Theorem 4.4.2] Given polynomials {f1, . . . , fs}, {g1, . . . , gt}
and {h1, . . . , hu}, then the following properties are equivalent:

(i) The set 
x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣
f1 ≥ 0, . . . , fs ≥ 0

g1 6= 0, . . . , gt 6= 0

h1 = 0, . . . , hu = 0


(3.4)
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is empty.

(ii) There exist polynomials f ∈ C(f1 . . . fs), g ∈ M(g1 . . . gt) and h ∈ I(h1 . . . hu) such

that

f + g2 + h = 0. (3.5)

The Positivstellensatz states that, for a system of real polynomial equalities and in-

equalities, either there exists a solution or a certain polynomial identity that does not

satisfy (3.5), certifying that no solution exists. From here on, for simplicity, we will also

refer to the Positivstellensatz theorem as P-satz.

These realizations have opened the way for algorithmic analysis of nonlinear sys-

tems. The construction of an equivalent semidefinite program for computing the SOS

decomposition has been subject of study in subsequent years since Parrilo’s work [Parrilo,

2000, Jarvis-Wloszek, 2003, Jarvis-Wloszek et al., 2003, Anderson and Papachristodoulou,

2015].

The significance of these results allowed the development of frameworks and toolboxes

that automate the conversion between SOS decompositions into semidefinite programming

(SDP). This theoretical to practical improvement arose quite naturally out of the need

for a parser responsible for the conversion between SOS conditions to the corresponding

semidefinite program. As one may suppose, writing out the SDPs explicitly can become

a complex and ungrateful task when the polynomials involved are of high orders.

In order to achieve this particular conversion, a number of software packages were

created. Between the relevant ones, we can mention the SOSTOOLS [Papachristodoulou

et al., 2013], Drake [Tedrake and the Drake Development Team, 2019], SOSOPT [Seiler,

2013], SMRSOFT [Chesi, 2011a] and YALMIP [Lofberg, 2009]. Throughout this work,

SOSTOOLS will be used to formulate and solve all sum-of-squares programs.

Before following on, an important mention is regarded about the notation applied in

this chapter and those which follows from here on. As the reader may have noticed, we

often omit the polynomials arguments, i.e., polynomials f(x) and p(x) were also simply

written as f and p, respectively. It makes the expressions apparently simple and readable.

We hope this abuse of notation will not confuse the reader.
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4 Local Stability and Controller Synthesis

4.1 Introduction

In this chapter, we will build on the methodology firstly introduced in [Parrilo, 2000],

followed by the work of [Jarvis-Wloszek, 2003, Jarvis-Wloszek et al., 2003], and show

how non-negativity conditions for polynomials can be relaxed to assume a sum-of-squares

decomposition. Most importantly, how it is achieved algorithmically using semidefinite

programming. The SOS programs, algorithms, and theorems stated here form the pillars

of the theory that will attain the needs for the thesis.

The principle of sum-of-squares polynomials and relaxations, presented in Chapter 3,

is central to the understanding of this section. It relies on the idea that testing non-

negativeness of polynomials can be written as a sequence of problems with sum-of-squares

decomposition, implemented via SDP.

Let us begin with the system

ẋ = f(x), (4.1)

where x ∈ Rn is the state variables, f : D → Rn is a vector of polynomial state functions

with D ⊂ Rn. Without loss of generality, it is assumed that the equilibrium point of

interest x̄ ∈ D is at the origin of Rn, therefore, f(x̄) = 0.

Using a Lyapunov function along with SOS relaxations, we can characterize the stabil-

ity of (4.1) by checking the non-negativity of a Lyapunov function, written explicitly as a

polynomial function. In other words, it is possible to pose the theoretic Lyapunov stabil-

ity arguments as a problem that searches for SOS polynomials that, if feasible, certificates

the origin is a stable equilibrium of the system.

Here, we are interested in systems with non-global stability. In many instances, local

stability analysis may be required. In practice, when dealing with physical models, such

as in the robotic field, global asymptotic stability is hardly verified. Due to the nature of

these systems, it is more likely to see a domain of attraction locally arranged around the

equilibrium point.
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4.2 Local Stability

Using the stability definitions, local asymptotic stability is verified through the existence

of a Lyapunov function [Khalil, 2002, Theorem 4.1]. The conditions are stated in the

following theorem:

Theorem 2 Let D ⊂ Rn be a domain containing the equilibrium point x = 0 of the

system (4.1). Let V : D → R be a continuously differentiable function such that

V (0) = 0,

V (x) > 0 on D\{0},

and

V̇ (x) =
∂V

∂x
f(x) < 0 on D\{0},

then the system (4.1) is asymptotically stable around x = 0. Moreover, any bounded

region and strictly contained in D, i.e., Ωγ = {x ∈ D
∣∣ V (x) ≤ γ}, describes a positively

invariant region that is an estimate of the region of attraction.

The algorithm presented below works to find the largest region Ωγ, defined by a level

set of the Lyapunov function, which in line with the Theorem 2 is invariant and contained

in the region of attraction. The larger the region is, the more one can confidently claim

the representativeness of the estimate.

This central idea of inner estimation originally firstly appeared in the context of the

construction of Lyapunov functions using sum-of-squares in [Papachristodoulou and Pra-

jna, 2002] and of a state feedback controller design in [Jarvis-Wloszek et al., 2003, Jarvis-

Wloszek, 2003]. The mathematical manipulations and a slightly modified version of the

expanding interior algorithm are discussed as follows.

4.3 Expanding Interior Algorithm

As the algorithm’s name may suggest, this method obtains inner bounds approximations

of the region of attraction. To fit the assumptions of Theorem 2 into an SOS program,

we must restrict our search over polynomials, i.e., V (x) ∈ R[x]. Moreover, we define

the region Sβ, parameterized in β, that will be contained in a level set of the Lyapunov

function

Sβ = {x ∈ D
∣∣ s(x) ≤ β}, (4.2)
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where s(x) is a given positive definite polynomial and β ≥ 0. A representative region

of attraction can be estimated if we could maximize β subject to the constraint that

all points in Sβ converge to origin. Additionally, we benefit from the level sets of the

Lyapunov function to constitute the estimated RoA. Following Theorem 2, this invariant

region is defined as

Ωγ = {x ∈ D
∣∣ V (x) ≤ γ}. (4.3)

Then, imposing that Sβ must be contained in Ωγ, results in the following set contain-

ment constraint

{x ∈ D
∣∣ s(x) ≤ β} ⊆ {x ∈ D

∣∣ V (x) ≤ γ}. (4.4)

Additionally, for the third theorem’s assumption, we must ensure that V̇ (x) is negative

definite in D. The requirement of Theorem 2 for asymptotic stability becomes

{x ∈ D
∣∣ V (x) ≤ γ} ⊆ {x ∈ D

∣∣ V̇ (x) < 0}. (4.5)

If one find a V (x) that satisfies the aforementioned conditions and for γ > 0 such

that x ∈ D, then the origin of (4.1) is asymptotically stable. Furthermore, the invariant

set we can demonstrate that converges to the origin is the level set γ of V (x) that is

contained in D. Therefore, region Ωγ, defined in (4.3), is then our estimative of the region

of attraction.

In order to find the largest estimate of the region of attraction, we must maximize

β for a fixed s(x) which indirectly forces region Ωγ to grow as well. Note that this is

enforced by restriction (4.4). With this approach, the level set β of s(x) gives the shape

of the region over we check the Lyapunov statements. For this reason, s(x) is also referred

to as the shaping function.

To accommodate these assumptions into a suitable SOS programming framework,

it is necessary to formulate the above semi-algebraic sets and set containments into a

computationally tractable SDP problem. The standard approach firstly invokes the Pos-

itivstellensatz theorem and manages to consider polynomial systems and then restrict

the set of candidate Lyapunov functions to be polynomials [Jarvis-Wloszek et al., 2003,

Jarvis-Wloszek, 2003].

As discussed in Section 3.2, the P-satz provides the basis of sufficient conditions to

verify that a given semi-algebraic set is empty. Therefore, we can reformulate restrictions

(4.2)-(4.5) as one of testing emptiness of a given set. By doing so, the problem is rewritten
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as
max

V (x)∈R[x], V (0)=0
β

s.t.

{x ∈ D
∣∣ V (x) ≤ 0, x 6= 0} = φ,

{x ∈ D
∣∣ s(x) ≤ β, V (x) ≥ γ, V (x) 6= γ} = φ,

{x ∈ D
∣∣ V (x) ≤ γ, V̇ (x) ≥ 0, x 6= 0} = φ.

(4.6)

If we could find any V (x) such that the subsets (4.6) are indeed empty, then the

Lyapunov theorem holds. Observe that the P-satz conditions are only valid for sets defined

by polynomial functions, i.e., for semi-algebraic sets, which is not the case of (4.6) due

to the x 6= 0 term. To circumvent this issue, it is used positive definite polynomials

ϕ1 , ϕ2 ∈ Σn that replaces x 6= 0 with ϕi(x) 6= 0. Rearranging the terms and using

polynomials ϕi(x), problem (4.6) takes the form

max
V (x)∈R[x], V (0)=0

β

s.t.

{x ∈ D
∣∣ − V (x) ≥ 0, ϕ1(x) 6= 0} = φ,

{x ∈ D
∣∣ β − s(x) ≥ 0, V (x)− γ ≥ 0, V (x) 6= γ} = φ,

{x ∈ D
∣∣ γ − V (x) ≥ 0, V̇ (x) ≥ 0, ϕ2(x) 6= 0} = φ.

(4.7)

Which are in a suitable form to apply the P-satz. Remember that the inequality

and inequation conditions become the cone and monoid generated by their arguments,

respectively. Therefore, (4.7) is rewritten as

max
V (x)∈R[x], V (0)=0,
k1, k2, k3 ∈ Z+,
q0,...,q9 ∈ Σn.

β

s.t.

q0 − V q1︸ ︷︷ ︸
C(−V )

+ ϕ2k1
1︸︷︷︸

M(ϕ1)

= 0,

q2 + (β − s)q3 + (V − γ)q4 + (β − s)(V − γ)q5︸ ︷︷ ︸
C(β−s,V−γ)

+ (V − γ)2k2︸ ︷︷ ︸
M(V−γ)

= 0,

q6 + (γ − V )q7 + V̇ q8 + (γ − V )V̇ q9︸ ︷︷ ︸
C(γ−V, V̇ )

+ ϕ2k3
2︸︷︷︸

M(ϕ2)

= 0,

(4.8)

where the underbraces highlight the cone and monoid terms. These constraints, however,

are yet not tractable by SDP. This general form is nonconvex and must be simplified.

Following [Jarvis-Wloszek et al., 2003], polynomials q’s and constants k’s should be
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specified appropriately. To begin, the simplest choice of k is to define k1 = k2 = k3 = 1. It

keeps the problem’s overall degree low and considerably facilitates further simplifications.

Additionally, the product of SOS polynomials yields an SOS polynomial. This fortunate

equivalence allows us to substitute q0 for q0 ϕ1 and q6, . . . , q8 for q6 ϕ2, . . . , q8 ϕ2.

For the fist restriction we take q1 = ϕ1 and further factor out the ϕ1 term. Within the

second equation, the concern is due to (V − γ)2 term, which is quadratic in the decision

variables of V . The exponent can be removed by factoring out (V − γ). To do so, we

must pick q2 = q3 = 0. Similarly, third restriction is quadratic due to V V̇ . Chose q9 = 0

and, by factoring ϕ2 out, the three achieved restrictions are

q0 − V + ϕ1 = 0,

q4 + (β − s)q5 + (V − γ) = 0,

q6 + (γ − V )q7 + V̇ q8 + ϕ2 = 0.

(4.9)

Note that the identity V − ϕ1 = q0 is equivalent to V − ϕ1 ∈ Σn. That is if we could

find any representation of V − ϕ1 such that it can be written as an arbitrary sum-of-

squares polynomial (in this case, represented by q0), then, the first restriction of (4.9) is

satisfied. Extending this discussion to second and third conditions, the task of finding

the maximum β, originally formulated in (4.6), is written as the following sum-of-squares

program

max
V (x) ∈ R[x],

q5, q7, q8 ∈ Σn.

β

s.t.

V − ϕ1 ∈ Σn,(
(s− β)q5 − (V − γ)

)
∈ Σn,(

(V − γ)q7 − ϕ2 − V̇ q8

)
∈ Σn.

(4.10)

The optimization problem guarantees that V (x) is positive definite (first restriction)

and that V̇ (x) is negative definite (third restriction). If a solution exists, the stability

properties of Theorem 2 holds, testifying asymptotically stability of the origin of system

(4.1).

For concreteness, the above method obtains inner bounds of the region of attraction

given by the level sets of functions V (x) and s(x). The most representative RoA estimate

we can obtain is the largest level set γ of V (x) which is obtained through the maximization

of β such that Sβ ⊆ Ωγ (second restriction of 4.10).

An illustration of the discussed set containment regions is presented in Figure 4.1. By

expanding Sβ, we indirectly force Ωγ to increase as well. Over the iterations, region Ωγ
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can change in shape and pattern. On the other hand, Sβ is defined by the fixed shaping

function s(x) and the alignment of this function will dictate the directions in which Sβ
will enlarge. A poor choice of s(x) may precociously hit the stability boundary, which

makes it more difficult for the algorithm to approximate the RoA with reasonable levels

of accuracy, limiting its expansion.

Ωγ

Sβ

D

Figure 4.1. Illustration of the containment regions. The pink area stands for the true

RoA. The blue area indicates the inner estimate and the green area is the region defined

by the shaping function s(x), strictly contained in Ωγ.

Before solving the optimization problem, one can note that the constraints of problem

(4.10) are bilinear in the decision variables due to the products of β q5, (V − γ) q7

and V̇ q8. This issue can be tractable by decomposing the optimization into sub-steps

of convex problems with an iterative bounding procedure. It is an application of the

block-coordinate descent method [Shen et al., 2017] that relies on fixing some of the

decision polynomials and handle restrictions separately through an iterative algorithm.

The algorithm is stated as follows.

Algorithm 1 Iterative bounding procedure

Let i be the iteration index and begin with i = 1. Specify the desired degrees that will

be considered for the SOS polynomials: deg(V), deg(q5), deg(q7), deg(q8), deg(ϕ1), and

deg(ϕ2).

Designate polynomials ϕk to be ϕk = εk
n∑
j=1

x
deg(ϕk)
i with k ∈ {1, 2} and for sufficient

small εk >0. Pick an arbitrary SOS polynomial to be the shaping function s and, starting

from an initial Lyapunov function candidate V (i=0) = V0, proceed to Gamma step.

(i) Gamma step
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Set V = V (i−1) and solve the linesearch on γ:

max
q7, q8∈Σn.

γ

s.t.(
(V − γ)q7 − ϕ2 − V̇ q8

)
∈ Σn.

(4.11)

Set γ(i) = γ, q
(i)
7 = q7, q

(i)
8 = q8 and proceed to Beta-step.

(ii) Beta step

Set V = V (i−1), γ = γ(i−1) and solve the linesearch on β:

max
q5∈Σn.

β

s.t.(
(s− β)q5 − (V − γ)

)
∈ Σn.

(4.12)

Set β(i) = β, q
(i)
5 = q5 and continue to Lyapunov function step.

(iii) Lyapunov function step

Set γ = γ(i), β = β(i), q5 = q
(i)
5 , q7 = q

(i)
7 and q8 = q

(i)
8 and solve problem (4.10)

to find V . Set V (i) = V and check if β no longer improves, i.e., if β(i)-β(i−1) ≤
tolerance, conclude the iterations, otherwise increment i and return to γ-Step.

Remarks and Properties of Algorithm 1

A question that the reader may pose at this point, is the real need of the region Sβ
since without the set containment Sβ ⊆ Ωγ we could still be searching for a V (x) while

maximizing γ subject to the Lyapunov conditions. However, in this case, seeking to find

the largest domain Ωγ = {x ∈ D
∣∣ V (x) ≤ γ} would be translated to a problem that,

starting from a feasible point, scales V (x) to increase γ such that the stability criterion

holds. Increasing γ would not necessarily lead to an expansion of the RoA, but rather a

rate tradeoff between γ and V.

For this reason, the variable sized region Sβ, defined by the fixed-function s(x), is

included. Maximizing β, on the other hand, indeed increase region s(x) < β and, since it

is contained in Ωγ, forces V (x) ≤ γ to increase as well, not simply scaling itself.

Algorithm 1 also requires an initial Lyapunov function V0(x). The preferred and

simplest choice is the quadratic Lyapunov function V0 = xTPx derived from the linearized
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system. This does not preclude the choice of any other candidate function.

Additionally, for polynomials p0, p1 ∈ Σn, in order to satisfy p0 − p1 ≥ 0, the degree

of p0 must be equal or higher the degree of p1. From Program (4.10), the following degree

bounds are recognized

deg(V) ≥ deg(ϕ1),

deg(q5) + deg(s) ≥ deg(V),

deg(q7) ≥ deg(f) + deg(q8)− 1,

deg(V ) + deg(q7) ≥ deg(ϕ2).

(4.13)

Finally, for polynomials ϕk defined as

ϕk = εk

n∑
j=1

x
deg(ϕk)
i , k ∈ {1, 2}, (4.14)

it is desirable small values for coefficients εk. Otherwise, the program will be excessively

conservative to impose positive and negative definiteness constraints over V and V̇ , re-

spectively.

4.3.1 Numerical example

The discussion made above is verified through an academic example. Given the third

order polynomial system

ẋ1 = x2,

ẋ2 = −(1− x2
1)x1 − x2,

(4.15)

we desire to estimate its RoA.

For the sake of this example, let us search for a second order Lyapunov function.

From (4.13) and choosing the smallest degrees combination, we pick deg(q8)=0 and

deg(q5)=deg(q7)=2. Polynomials ϕ1 and ϕ2 are chosen to be 10−6xTx. Moreover, Al-

gorithm 1 is solved considering two orthogonally arranged shaping functions

s1(x) = 1.34x2
1 + 1.22x1x2 + 0.74x2

2,

s2(x) = 1.34x2
1 − 1.22x1x2 + 0.74x2

2.
(4.16)

The quadratic Lyapunov function candidate V0 = xTPx is derived from the lineariza-

tion of (4.15).

The results are shown in Figure 4.2. The system has one equilibrium point at the

origin and the thin blue and orange lines are the systems stable and unstable trajectories,

respectively. One can note s1(x) was chosen to have level sets that more closely align

with the actual region of attraction, the opposite is verified for s2(x).
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By choosing s1(x) as the shape function, the algorithm took 14 iterations to reach the

stop criterion. On the other hand, by taking s2(x), four iterations were sufficient to Sβ
reach the boundary. With this deliberately poor choice, the algorithm tries to expand the

region over areas where the level sets cannot follow, limiting its enlargement.

−1 0 1

−2

0

2

x1

x
2

(a)

−1 0 1

−2

0

2

x1
x
2

(b)

V (x) s(x)

Figure 4.2. Phase portrait is shown in the background with initial conditions denoted

by black dots. The estimated regions Ωγ and Sβ are shown by the ellipses. The regions

are obtained by picking (a) s1(x) and (b) s2(x).

4.4 Expanding the RoA with State Feedback

Now that we are able to estimate the region of attraction of a polynomial system, we

move forward to the problem of designing controllers for enlarging the RoA.

Consider the system

ẋ = f(x) + g(x)u (4.17)

where x ∈ Rn is the state variables, u ∈ Rm is the control input vector, f : D → Rn is

a vector of polynomial state functions, g : D → Rn×m is a matrix of polynomial control

functions affine in u, with D ⊂ Rn. Without loss of generality, it is assumed that the

equilibrium point of interest x̄ ∈ D is at the origin of Rn.

Allowing input u to be generated by a polynomial K(x), i.e., u = K(x) with K(x) ∈
R[x] and K(0) = 0, the system (4.17) becomes

ẋ = f(x) + g(x)K(x) (4.18)

and the optimization (4.10) can be extended to a problem that, besides V (x), searches

for some as of yet unknown K(x) candidate.
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4.4.1 Expanding interior state feedback design

The state feedback controller design works in similar form of Program (4.10) and Algo-

rithm 1. We follow the steps of the expanding interior algorithm development, presented

in Section 4.3.

Again we restrict our search over polynomials and describe the invariant semi-algebraic

sets as
Sβ = {x ∈ D

∣∣ s(x) ≤ β},
Ωγ = {x ∈ D

∣∣ V (x) ≤ γ}.
(4.19)

such that Sβ ⊆ Ωγ. From the Lyapunov theorem and considering the closed-loop system

(4.18), we now must satisfy

{x ∈ D
∣∣ V (x) ≤ γ} ⊆ {x ∈ D

∣∣ ∂V (x)

∂x

(
f(x) + g(x)K(x)

)
< 0}. (4.20)

Similarly, if we can find V and K that satisfy the stability statements, then (4.18)

is asymptotically stable. Moreover, the largest RoA we can show that converges to the

origin is the level set γ of V (x) contained in D.

Reformulating these semi-algebraic sets into a problem of testing emptiness, invoking

P-satz, and by making similar considerations discussed in the previous section, we find

the following SOS program

max
V (x) ∈ R[x],

K(x) ∈ R[x],

q5, q7, q8 ∈ Σn.

β

s.t.

V − ϕ1 ∈ Σn,(
(s− β)q5 − (V − γ)

)
∈ Σn,(

(V − γ)q7 − ϕ2 −
∂V

∂x

(
f + gK

)
q8

)
∈ Σn.

(4.21)

The optimization problem guarantees that V (x) is positive definite and V̇ (x) is neg-

ative definite over the closed-loop system. We can now state the algorithm to design a

controller to enlarge the RoA estimate.

Once more, the constraints are bilinear in the decision variables. The workaround

for this issue is to break (4.21) into sub-steps of convex problems. Although similar to

Algorithm 1, we must include one new step that is responsible for designing the control

law K(x). The algorithm is detailed as follows.
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Algorithm 2 Iterative bounding procedure - state feedback

Let i be the iteration index and begin with i = 1. Specify the desired degrees that will be

considered for the SOS polynomials: deg(V), deg(K), deg(q5), deg(q7), deg(q8), deg(ϕ1),

and deg(ϕ2).

Designate polynomials ϕk to be ϕk = εk
n∑
j=1

x
dϕk
i with k ∈ {1, 2} and for sufficient small

εk >0. Pick an arbitrary positive polynomial to be the shaping function s and, starting

from an initial Lyapunov function candidate V (i=0) = V0 and SOS polynomial q
(i=0)
8 = 1,

proceed to Control design step.

(i) Control design step

Set V = V (i−1), q8 = q
(i−1)
8 and solve the linesearch on γ to obtain K:

max
q7, q8∈Σn.

γ

s.t.(
(V − γ)q7 − ϕ2 −

∂V

∂x

(
f + gK

)
q8

)
∈ Σn.

(4.22)

Set K(i) = K and proceed to Gamma step.

(ii) Gamma step

Set V = V (i−1), K = K(i−1) and solve the linesearch on γ:

max
q7, q8∈Σn.

γ

s.t.(
(V − γ)q7 − ϕ2 −

∂V

∂x

(
f + gK

)
q8

)
∈ Σn.

(4.23)

Set γ(i) = γ, q
(i)
7 = q7, q

(i)
8 = q8 and proceed to Beta step.

(iii) Beta step

Set V = V (i−1), γ = γ(i−1) and solve the linesearch on β:

max
q5∈Σn.

β

s.t.(
(s− β)q5 − (V − γ)

)
∈ Σn.

(4.24)



Chapter 4. Local Stability and Controller Synthesis 57

Set β(i) = β, q
(i)
5 = q5 and continue to the Lyapunov function step.

(iv) Lyapunov function step

Set K = K(i), γ = γ(i), β = β(i), q5 = q
(i)
5 , q7 = q

(i)
7 and q8 = q

(i)
8 and search for a

V such that (4.21) holds. Set V (i) = V and check if β no longer improves, i.e., if

β(i)-β(i−1) ≤ tolerance, conclude the iterations, otherwise increment i and return to

Control design step.

Remarks and Properties of Algorithm 2

To ensure that Algorithm 2 starts from a feasible point, the linearization of the system

must be controllable. Since we begin with the quadratic Lyapunov function V0(x) derived

from the same linearization, then the control design step will stabilize the nonlinear system

near to the origin.

Note that, unlike function V , K does not have non-negativity constraints. We only

need to ensure that K(0) = 0, therefore, K must have no constant terms. Additionally,

it is possible to search for polynomial control laws of arbitrary degree.

Concerning to positivity and feasibility of Program (4.21), the degrees restrictions that

polynomials V , K, q′s and ϕ’s must hold are

deg(V ) ≥ deg(ϕ1),

deg(q5) + deg(s) ≥ deg(V),

deg(q7) ≥ max
(

deg(f), deg(gK)
)

+ deg(q8)− 1,

deg(V ) + deg(q7) ≥ deg(ϕ2).

(4.25)

4.4.2 Input saturation

Expanding the region of attraction with state feedback is a problem that resumes syn-

thesizing a state feedback controller u = K(x) with K(x) ∈ R[x]. This control law is

responsible for enlarging the invariant set Ωγ such that the origin is an asymptotically

stable equilibrium point of the closed-loop system.

If we decide to project a state feedback control law for systems where the actuator

saturations are known, then it is desirable to include upper and lower bounds restrictions

in the control design process. Otherwise, we would be generating stability certificates

over areas where the trajectories of the system could not flow due to limitations on the

actuator.

Therefore, one wishes to design state feedback controller such that ulb ≤ K(x) ≤ uub
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holds. By taking into account these restrictions, the two set containments are obtained

{x ∈ D
∣∣V (x) ≤ γ} ⊆ {x ∈ D

∣∣K(x) ≤ uub},
{x ∈ D

∣∣V (x) ≤ γ} ⊆ {x ∈ D
∣∣K(x) ≥ ulb}.

(4.26)

Rewriting these semi-algebraic sets into a problem of testing emptiness, we have

{x ∈ D
∣∣ V (x) ≤ γ, K(x) ≥ uub, K(x) 6= uub} = φ,

{x ∈ D
∣∣ V (x) ≤ γ, K(x) ≤ ulb, K(x) 6= ulb} = φ.

(4.27)

By invoking P-satz, the restrictions become

q10 + (γ − V )q11 + (K − uub)q12 + (γ − V )(K − uub)q13︸ ︷︷ ︸
C(γ−V,K−uub)

+ (K − uub)2k4︸ ︷︷ ︸
M(K−uub)

= 0,

q14 + (γ − V )q15 + (−K + ulb)q16 + (γ − V )(−K + ulb)q17︸ ︷︷ ︸
C(γ−V,−K+ulb)

+ (K − ulb)2k5︸ ︷︷ ︸
M(K−ulb)

= 0.
(4.28)

Choosing k4 = k5 = 1, q10 = q11 = q14 = q15 = 0, and factoring out the (±K ∓ u{ub,lb})
terms, we obtain the SOS restrictions

(
(uub −K) + (V − γ)q13

)
∈ Σn,(

(K − ulb) + (V − γ)q17

)
∈ Σn,

q13, q17 ∈ Σn.

(4.29)

which now can be included in Program (4.21). More specifically, it must be incorporated

in Algorithm 2 through the control design (i) , gamma (ii) and Lyapunov function (iv)

steps.

By the same reasons discussed earlier, when it comes to the polynomials degrees

choices, we must be careful to ensure

deg(V ) + deg(q13) ≥ deg(K),

deg(V ) + deg(q17) ≥ deg(K).

4.5 Non-Affine in Control Nonlinear Systems

The state feedback control synthesis given above assumes that the control signals enter

affinely in the closed-loop state-space equations, while in practice this may not the be

case.

The control problem for general non-affine nonlinear systems inspired researchers for
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decades. One main challenge lies in obtaining the inverse of the nonlinear function to

employ feedback equivalence. For example, to stabilize ẋ = x − u2 one can choose u =√
(a+ 1)x, but soon encounter imaginary values whenever x < 0. Multiple solutions,

some of which are not feasible in a physical plant, are the additional difficulties of such

systems [Narang, 2012]. In order to consider non-affine in control systems for use in the

SOS theory, we consider numerical approximations that provide constructive forms for

the control variable.

The simplest approach that approximates ẋ = f(x, u) to an affine in control system is

to evaluate a linearization around a steady input ū. To this approach, we refer “input lin-

earization” (IL). Correspondingly, we can also linearize the closed-loop system under the

coefficients of a steady control law K(x). To this approach, we refer “control linearization”

(CL). Although sounding similar, these methodologies differ in their characteristics. The

following discussion shows how we achieve these linearizations and their main aspects.

4.5.1 Input linearization (IL)

Given the nonlinear system

ẋ = f(x) + g(x, u), (4.30)

we wish to linearize g over a steady input ū. The linear behavior of the control actuation

around ū is achieved by its first-order approximation

g(x, u) ≈ g(x, ū) +
∂g(x, u)

∂u

∣∣∣∣∣
u=ū

(u− ū). (4.31)

Hence, substituting (4.31) into (4.30) we have

ẋ ≈ f(x) + g(x, ū)− ∂g(x, u)

∂u

∣∣∣∣∣
u=ū

ū︸ ︷︷ ︸
f̄IL(x)

+
∂g(x, u)

∂u

∣∣∣∣∣
u=ū︸ ︷︷ ︸

ḡIL(x)

u, (4.32)

expressed in the general affine input form as

ẋ ≈ f̄IL(x) + ḡIL(x)u. (4.33)

The main shortcoming associated with this linearization is well-known: the validity

of this approach is restricted to a narrow region around the operating input ū. The

resulting ḡIL(x)u term does not consider any information about the control law structure,

but rather the constant steady input. Since we know that K(x) is a polynomial function

by design and also computed iteratively, we can expand the idea by linearizing the closed-



Chapter 4. Local Stability and Controller Synthesis 60

loop system over the control gain coefficients.

4.5.2 Control linearization (CL)

Given a polynomial control law function K(x), the first order approximation of the closed-

loop control vector function over the coefficients of K(x) is

g(x,K(x)) ≈ g(x,K(x)) +
∂g(x, u)

∂u

∣∣∣∣∣
u=K(x)

(K(x)−K(x)). (4.34)

Substituting (4.34) into (4.30), we have

ẋ ≈ f(x) + g(x,K(x))− ∂g(x, u)

∂u

∣∣∣∣∣
u=K(x)

K(x)︸ ︷︷ ︸
f̄CL(x)

+
∂g(x, u)

∂u

∣∣∣∣∣
u=K(x)︸ ︷︷ ︸

ḡCL(x)

K(x), (4.35)

that is rewritten in the general input-affine form

ẋ ≈ f̄CL(x) + ḡCL(x)u, (4.36)

with u = K(x). Note that the chain partial derivative ∂g(x,u)
∂u

in (4.35) is evaluated at

K(x). We are analyzing the systems’ closed-loop behavior along its trajectories. For

instance, if the nonlinear system is already an input affine system, then (4.36) falls on

a particular case of (4.33). To highlight the differences between both linearizations, we

show a discussion under an example.

4.5.3 Illustrative example

Given a two dimensional non affine in control system

ẋ = f(x) + u2, (4.37)

with x = [x1 x2]T . The problem of synthesizing an SOS first order state feedback control

law u = K(x), i.e., K(x) = k1x1 +k2x2, is summarized in finding coefficients ki, i ∈ {1, 2},
such that (4.22) holds. For simplicity, a first-order polynomial K(x) was selected, however,

without loss of generality, it can be extended to a polynomial of arbitrary degree.

The closed loop system (4.37) would take the form

ẋ = f(x) + (k1x1 + k2x2)2,
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which, for the control synthesis problem, is nonlinear in the decision variables ki. Following

the input linearization, the behavior of (4.37) around ū is

ẋ ≈ f(x) + ū2 − 2ū︸ ︷︷ ︸
f̄IL(x)

+ 2ū︸︷︷︸
ḡIL(x)

u, (4.38)

which is now affine in control and searching for arguments ki of the control law u =

K(x) = k1x1 + k2x2 is now a convex problem. The main remark about IL is that, by

using system (4.38), any estimated region of attraction may degrade when the level sets

of K(x) deviate from ū. We are assuming the linearization is valid through the entire

estimated RoA, not only near the neighborhood of ū.

On the other hand, manipulating (4.37) around a steady control law K(x) = k̄1x1 +

k̄2x2 and following the CL approach, we have

ẋ ≈ f̄CL(x) + 2(k̄1x1 + k̄2x2)︸ ︷︷ ︸
ḡCL(x)

(x1k1 + x2k2), (4.39)

where f̄CL(x) is the input-independent term.

Now, the system is linearized around the stable system, that is, around the trajecto-

ries within the domain stabilized by the control law K(x), in contrast with the former,

linearized specifically around the point ū.

This characteristic can be explicitly seen by inspecting the control vector functions

ḡIL(x) and ḡCL(x). The first becomes a constant, while the second is a function of x with

behavior defined by constants k̄i.

An interesting characteristic about CL is that it allows us to synthesize a new control

law while enforcing small variations for the coefficients of K(x). This is an attempt to

keep the linearization reliable since the closed-loop system will be near the system to

which it was approximated. It is achieved by considering conditions

ζi − (ki − k̄i) ≥ 0,

ζi + (ki − k̄i) ≥ 0,
(4.40)

where ζi are positive values. These restrictions ensure |ki − k̄i| ≤ ζi and, with sufficient

small ζi, the distortions due linearization should be mitigated.

For each iteration of Algorithm 2, we search for K(x) in which coefficients are near

K(x). With this iterative approach, the region of attraction is expanded by synthesizing

a new control law that moves small steps towards the optimum controller. Additionally,

each suboptimal K(x) obtained from iteration t is used as the steady K(x) of iteration

t + 1. Obviously, the algorithm requires an initial candidate K0(x). To illustrate the
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current discussion, we present a theoretical application example.

4.6 Theoretical Example

Numerical example. Let us consider a two dimensional fifth order nonlinear ODE

ẋ1 =− 2x1 + x2 + x3
1 + x5

2 − u3,

ẋ2 =− x1 − x2 + x2
1x

5
2 + u/4,

(4.41)

where |u| ≤ 5. The equilibrium point is at the origin and eigenvalues of the open-loop

linearized system are -1.5±0.866i, therefore, (4.41) is locally stable.

Following the degrees bounds recognized in (4.25), we choose

deg(ϕ1) = deg(V),

deg(q5) = max{deg(V)− deg(s), 2},
deg(q8) = 2,

deg(q7) = deg(g) + deg(q7) + deg(K)− 1,

deg(ϕ2) = deg(q8),

deg(q13) = deg(q17) = 2.

(4.42)

To enhance the estimation, we search for V of degrees 2, 4, 6, and 8. As discussed

in [Masouleh and Limebeer, 2017], searching for higher-order functions can improve our

representation of the RoA. Moreover, we set s(x) = xTx and constants ε1 and ε2 are

chosen to be 10−6 and 10−8, respectively.

4.6.1 Estimating the RoA

We now solve Algorithm 1 with the objective to estimate the RoA for an open-loop

scenario, i.e., with u = 0. The result is shown in Figure 4.3. Phase plane is shown in the

background with trajectories starting from black dots and the estimated RoAs are shown

as a sub-level set of Lyapunov functions with degrees varying from 2 up to 8.

By construction, higher-order polynomials contain the lower ones. Therefore, increas-

ing the Lyapunov function order should lead to a more representative estimation of the

true RoA. Quantitatively, these improvements can be measured by the RoAs surfaces

area. The computed areas are 5.81, 6.48, 6.97, and 7.05 achieved with functions of order

2, 4, 6, and 8, respectively. This motivates the use of high order functions to improve the

estimation.
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Figure 4.3. In the background is shown the phase portrait of the open-loop response with

initial conditions denoted by black dots. The estimated RoAs for Lyapunov Functions of

degrees 2, 4, 6, and 8.

4.6.2 Expanding the RoA

We can now look to find state feedback controllers that expand the RoA. Since system

(4.15) is non-affine in control, a numerical approximation must be evaluated. We follow

the steps proposed in Section 4.6 and evaluate the IL and CL approaches. The lin-

earizations are performed around ū = 0 and K0(x) = 0.39x1 − 2.54x2, which is an LQR

gain computed using the classical Ricatti equation [Chen, 1998]. We choose Q=diag(1.5,

3) and R = 0.1, where Q and R are with SI units. The input saturation is included

(|u| = |K(x)| ≤ 5), ζi is specified as 0.25, and we search for a first order polynomial

control law.

Note that, performing the IL method, the linearization will result in the static control

input vector gIL(x) = [0 1/4]T . It does not incorporate any information about the x1

dynamics. On the other hand, by evaluating the CL approximation, the algorithm begins

with gCL(x) = [−3K2
0 1/4]T . One should note that gCL is changed iteratively as new

values of K are obtained.

The estimated RoAs are presented in Figure 4.4, where the phase plane of the open-

loop system is shown in the background. With the IL method, the controller mainly

expands the RoA towards x2 direction, whereas the CL approach combines information

of both axis and the estimated RoA is efficiently enlarged.

Table 4.1 shows the RoAs estimated area. In agreement with Figure 4.4, the regions

computed through the CL approximation are considerably larger if compared to the re-

sults achieved using the IL. Also, as discussed earlier, we obtain a more representative

estimation of the actual RoA as we increase the Lyapunov function order.
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Figure 4.4. The estimated RoAs of the closed-loop system are demonstrated using

Lyapunov functions of orders 2, 4, 6 and 8, computed evaluating (a) IL and (b) CL

linearizations, respectively.

Table 4.1. RoA’s estimated area under a state feedback controller for different degrees

of V.

deg(V)

Method 2 4 6 8

IL 8.2472 9.8072 10.3758 10.6230

CL 9.1516 12.1425 12.9978 13.7323

4.7 Final Remarks

In this chapter, we presented the state feedback control synthesis problem using SOS

relaxations introduced in [Jarvis-Wloszek et al., 2003, Jarvis-Wloszek et al., 2005] and

developed a method to design polynomial controllers for a class of non-affine nonlinear

systems. The main idea behind this approach is to use first-order approximations that

provide constructive forms for the control variable. We have seen how the synthesis and

stability analysis problems can be solved algorithmically.

The following publication was produced presenting the results of this chapter (Ribeiro,

Fioravanti, Moutinho & de Paiva 2020a):

• A. M. Ribeiro, A. R. Fioravanti, A. Moutinho and E. C. de Paiva. Control Design

Based on Sum-of-Squares Programming for Non-affine in Input Systems. In IEEE

6th International Conference on Control Science and Systems Engineering (ICC-

SSE), Beijing, China, July 17-19, 2020.

https://doi.org/10.1109/ICCSSE50399.2020.9171951
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5 RoA Estimation and State Feedback

5.1 Introduction

In this chapter, we will investigate how the analysis questions for the vehicle nonlinear

system described by ordinary differential equations can be answered using sums-of-squares

(SOS) relaxations. Our immediate goal is to attain vehicle stability analysis and controller

synthesis while accounting for input saturation using SOS programming.

To begin, one should recall that the SOS theory can only be applied to systems de-

scribed by polynomial functions. Therefore, to assemble the vehicle lateral dynamics, we

must guarantee that all functions involved are polynomials in their arguments. Unfortu-

nately, none of the tire models (2.9)-(2.10) fall in this class of functions. The solution that

overcomes this issue is to replace the non-polynomial functions with polynomial models

that reasonably approximates the desired system behavior. In the forthcoming sections,

compositions of polynomial and rational polynomial functions are explored as reasonable

approximations for evaluation of the SOS programming.

5.2 Polynomial Approximation

The first and simplest function that can replace the nonlinear tire models is

Fyi(αi) =

q∑
j=0

pijα
j = pi0 + pi1αi + pi2α

2
i + · · ·+ piqα

q
i (5.1)

where q is the polynomial order, pij are the polynomial coefficients and αi are the tire slip

angles:

αf =
v + ar

u0

− δ, αr =
v − br
u0

. (5.2)

Given the data points computed from the nonlinear tire function, the coefficients pij

are found using the least-squares algorithm in order to produce the best fit. Although

polynomial models have a simple form, the fitting is inevitably sensitive to data.

As shown in Figure 5.1, the fitting error decreases as the polynomial order increases.

We cannot, nonetheless, overly increase the polynomial degree to reduce the errors since
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it potentially leads to unstable models or requires a prohibitive computational effort,

restricting their use with SOS decompositions.
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Figure 5.1. Tire forces approximation. The Pacejka data points are shown as black

circles along with 5th, 7th, and 9th order polynomial fits.

Furthermore, observe that αi are written in terms of states x and input δ. As a

consequence, approximation (5.1) necessarily contains elements with exponents of order

q and terms with arguments δ, δ2 . . . δq will appear. This makes the polynomial model

non-affine in the input δ.

5.2.1 Region of attraction estimation

We will now focus our attention on estimating the RoA around the stable equilibrium

point. The system is assembled using a 7th order polynomial tire model (5.1), which is

substituted into (2.8) and (2.5). This results in two polynomial ODEs that describe the

lateral dynamics with states x = [v, r]T and input u = [δ,Mz].

All the necessary model structural parameters are default vehicle parameters avail-

able in the literature [Cordeiro, 2017]. In the following and forthcoming results, the

corresponding parameters listed in Table 5.1 are used.

The stability analysis is performed using the iterative bounding procedure described in

Algorithm 1. This algorithm requires an initial Lyapunov function candidate at the first

iteration. Following the suggestion made in the majority of works focused on estimating

the RoA using SOS constraints, an easy and good choice is the quadratic Lyapunov func-

tion Vlin = xTPx derived from the linearized vehicle model associated with the Lyapunov

equation [Tamba and Nazaruddin, 2018, Iannelli et al., 2019a].

Based on the author’s experience, the solution to an SOS optimization problem can

have several numerical difficulties. To avoid these potential adversities, the degrees of

polynomials q5, q7, and q8, are chosen to be as small as possible, such that the degrees
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Table 5.1. Vehicle and tire model main physical parameters.

Symbol Parameter name Value Unit

m Vehicle mass 1500 kg

Iz Yaw inertia 1350 kg
m2

a Distance from CG to front wheels 1.5 m

b Distance from CG to rear wheels 2 m

c Half of wheelbase distance 0.9 m

rw Wheel radius 0.25 m

Cα Tire cornering stiffness 55 kN

Cσ Tire longitudinal stiffness 120 kN

δmax Steering saturation 20 deg

Mzmax Differential moment saturation 1200 N

bounds (4.25) are recognized, therefore, we pick

deg(ϕ1) = deg(V),

deg(q5) = max{deg(V)− deg(s), 2},
deg(q8) = 2,

deg(q7) = deg(f) + deg(q8)− 1,

deg(ϕ2) = deg(q7).

Polynomials ϕk are defined with constants εk of magnitudes 10−6 and the Lyapunov

function degree is selected to vary from 2 to 8. Now, remains the choice of shaping

function s(x). This function gives dimensional scaling and reflects the influence of certain

directions in the state space. As its name suggests, the importance relies on the fact that

s(x) provides the shape and patterns of the regions over which we will be verifying the

Lyapunov conditions. To understand these characteristics, we evaluate Algorithm 1 for

two intuitive positive functions: s(x) = xTx and s(x) = Vlin.

Straight Running Maneuver

As a first application, we estimate the region of attraction for a straight running maneuver.

Steering angle δ is set to 0 degree with constant longitudinal speed u0 = 10 m/s. RoA

estimates for different Lyapunov function degrees are shown in Figure 5.2. Phase portrait

is shown in the background along with the equilibrium points, denoted by black dots.

The conservativeness of the results in Figure 5.2a is attributed to the shaping function.
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Figure 5.2. In background we present phase plane for the vehicle model assemble with

polynomial approximation for the straight running maneuver. RoA estimates are shown

using (a) s(x) = xTx and (b) s(x) = Vlin.

In this case, the RoA estimates are not enlarging in all directions. On the other hand,

when using s(x) = Vlin, we are providing a function locally aligned with the RoA and

thus might be used to obtain a better estimate, as depicted in Figure 5.2b.

Cornering maneuver

As a second verification, we consider a constant cornering maneuver. The steering angle

is set to 5 degrees with constant longitudinal velocity u0 = 10 m/s. As shown in Figure

5.3, the phase plane is no longer symmetric and the equilibrium point xeq is not at the

origin. The system must be shifted to the origin via a change of variables. Given the

nonzero equilibrium point xeq 6= 0 and considering x̄ = x− xeq, the derivative of x̄ is

˙̄x = ẋ = f(x) + g(x)u = f(x̄+ xeq) + g(x̄+ xeq)u, (5.3)

which can now be used to formulate the SOS problem.

The non-symmetry of the system trajectories makes it more difficult for the algorithm

to approximate the RoA with the prior levels of accuracy. This is due to s(x) hitting

the stability boundary close to the equilibrium, thereby inhibiting the enlargement of the

estimated RoA.

This characteristic can be graphically seen by plotting the shaping function level sets.

From Figure 5.4, we can see clearly that region Sβ (red) is contained in region Ωγ (blue),

imposed by the set containment

{x ∈ D
∣∣ s(x) ≤ β} ⊆ {x ∈ D

∣∣ V (x) ≤ γ}.
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Figure 5.3. RoA estimates for a constant cornering maneuver using s(x) = V lin.

Note that the level set β of s(x) has no room for enhancement. In both cases, the

stability boundary was reached and the effectiveness of the estimation is defined by the

shaping function alignment.
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Figure 5.4. Influence of s(x) on the RoA estimate. V (x) is a 4th order polynomial

function. In (a) s(x) = xTx and (b) s(x) = Vlin.

In an attempt to find a more representative estimation, we follow the suggestion

presented in [Masouleh and Limebeer, 2017]. A Lyapunov function of lower degree shall

be used as the shaping function for higher-order searches, in this case, s(x) is bootstrapped

with the previous Lyapunov function. For example, s(x) is defined as our best second-

order V (x), obtained from previous runs, when searching for a fourth-order V (x), and so

on. The idea comes from the fact that as the degree of the Lyapunov function is increased,

region Ωγ better aligns with the gradient and, therefore, is a suitable s(x) candidate for

new searches. The solution comes with the drawback of systematically increasing the

order of SOS polynomials and the fact that it must be run multiple times.

This approach will be employed for the remaining analysis in this work. The improve-
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ment in doing so can be seen in Figure 5.5. In contrast with the results in Figure 5.3, the

largest region’s area we can show that are stable went from 14.95 to 21.04.
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Figure 5.5. RoA estimate for the case where function s(x) is defined as the previous

Lyapunov function.

Interestingly, when we boost s(x) to be our best V (x), we search for a region that

contains the previous one. Therefore, we should expect better estimations for each new

run, a characteristic that motivates increasing the degree of the Lyapunov function being

sought. This is confirmed by analyzing the estimated RoA’s areas for each of the discussed

methods, as shown in Table 5.2.

Table 5.2. Rising area of the estimated RoA as increasing the order of polynomial V(x).

deg(V)

s(x) 2 4 6 8

Vlin 11.5631 14.9534 13.0326 12.8980

Bootstrapped 11.6949 16.3942 18.6345 21.0372

5.2.2 Expanding the RoA with state feedback and input saturation

Now that the RoA can be estimated properly, we wish to design a state feedback controller

that expands these regions. For the application, it is crucial to account for input saturation

inherent to the vehicle under study.

As we mentioned before, the polynomial tire model approximation makes the resulting

system non-affine in the input δ. Closer inspection of model

v̇ =
Fyf + Fyr

m
− ru0,

ṙ =
aFyf − bFyr +Mz

Iz
,

(5.4)
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one can see that input Mz only affects ṙ. Recall that x = [v, r]T , u = [δ,Mz], and lateral

forces Fyi are functions of x and δ (Fyi(v, r, δ)). The above system is rewritten in a general

form

ẋ = f(x) + g1(x, δ) +

[
0

1
/
Iz

]
︸ ︷︷ ︸
g2(x)

Mz, (5.5)

where g2(x) is explicitly obtained. The definition of g1(x), on the other hand, requires

some abstraction. Due to the 7th order polynomial (5.1), the control actuation has

elements of the form

g1(x, δ) = g11(x)δ + g12(x)δ2 + ...+ g17(x)δ7. (5.6)

As addressed in Chapter 4, to use the tools provided by Algorithm 2, g1(x, δ) must be

affine in δ. For this reason, (5.6) is reduced here to its first order approximation

g1(x, δ) ≈ g1(x, δ̄) +
∂g1

∂δ

∣∣∣∣∣
x,δ̄

(δ − δ̄). (5.7)

Hence, substituting (5.7) into (5.5)

ẋ = f(x) + g1(x, δ̄)− ∂g1

∂δ

∣∣∣∣∣
x,δ̄

δ̄︸ ︷︷ ︸
f̄(x)

+
∂g1

∂δ

∣∣∣∣∣
x,δ̄︸ ︷︷ ︸

ḡ1(x)

δ + g2(x)Mz, (5.8)

which can be written as

ẋ = f̄(x) + ḡ1(x)δ + g2(x)Mz, (5.9)

where ẋ is affine in δ and Mz and thus, the iterative bounding procedure can be applied.

Now we can search for control laws K1(x) and K2(x) that expand the region of attraction

of the vehicle system.

We will now focus our attention on expanding the RoA with state feedback and input

saturation. In an attempt to get better estimates, as discussed above, s(x) is bootstrapped

by the previous Lyapunov function. Again, the steering angle is set to 5 degrees with a

constant longitudinal velocity of u0 = 10m/s. The controller saturation bounds are

|δ| ≤ 20 degrees and |Mz| ≤ 1200 Nm.

Parameters initialization of Algorithm 2 are kept the same with a slight modification:

deg(q7) = deg(g) + deg(K) + deg(q8)− 1,

deg(q{13,17}) = max{deg(K)− deg(V ), 2}.
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For the same reasons that motivate the search over high order Lyapunov Function,

we also search for control functions of degrees up to 4 in an attempt to obtain better

results. Figure 5.6 shows the RoA estimates for certain combinations of K and V . It

is straightforward to see that RoA estimates are indeed increased with a state feedback

controller. The RoA surpasses the upper stability boundary, also comprehending the

saddle point, indicating that the covered portion is now stabilized by the control law.

Most importantly, satisfying the input saturation constraints.
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Figure 5.6. Estimated RoA of the controlled system for a constant cornering maneuver.

In the background, we show the phase plane of the open-loop system. RoA is estimated

by considering control laws K of (a) first-, (b) second-, (c) third-, and (d) fourth-orders.

Increasing the controller degree slightly expands the RoA estimates. In fact, the

higher-order polynomial controller contains the lower ones, thus RoA is indeed expected

to increase as far as numerical ill-conditioning arises. For these simulations, searching

for a Lyapunov function of order 8 resulted in numerical failure. The rationale for this

failure is that, by growing the order of K and V , high degree monomials are used in the

SOS program, as consequence, the number of variables increases and the order of the
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polynomial coefficients become vastly different.

Table 4.1 shows the area of the RoA estimates as a metric of comparison. It follows

that the area increases as we increase the order of polynomials Ki(x) and V (x). As

expected, increasing the Lyapunov function order gives a more representative estimative

of the RoA and, similarly, increasing K(x) order also potentially leads to improvements

since we widen the search space.

The discussion is confirmed in the Table 4.1. The results are, however, marginally

improving. Moreover, for deg(K) = 4, the estimation started to be compromised, noticed

by the decrease in RoA estimation.

Table 5.3. Area of the estimated RoA under a polynomial state feedback controller of

arbitrary degree.

deg(V)

deg(K) 2 4 6

1 22.5626 24.2682 26.0119

2 23.2137 27.4919 25.7333

3 23.3177 27.8489 30.2255

4 22.7976 25.0768 27.7607

In practice, the preferred controller would be chosen according to its ability to expand

the region of attraction. Clearly, the larger the RoA’s area, the larger the set of initial

conditions for which the controller will asymptotically stabilize the system. Addition-

ally, one concern at the control design stage is the numerical conditioning of the control

gains. The computed gains are shown in Table 5.4, occasional numerical bad-scaling or

ill-conditioning are not observed.

Variables v̄ and r̄ are expressed in their respective coordinate system, i.e., v̄ = v− veq
and r̄ = r − req. Note that the coefficients of K1 and K2 are related to their respective

inputs that considerably differ in order of magnitude. K1(x) is with respect to input

δ, expressed in radians, and K2(x) with respect to Mz, given in kNm. Furthermore,

the polynomial’s coefficients of odd exponents have significantly smaller values than their

even pairs. This is comprehensible, since they always make a positive contribution to the

control effort, regardless of the error.

5.2.3 SOS vs LQR control performance

We now wish to compare the control synthesis using SOS decomposition with other known

control design techniques. Among the optimal controllers in control theory, the linear

quadratic regulator is a well-known design approach that provides practical feedback
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Table 5.4. Polynomial control gains Ki of degrees varying from 1 to 4 obtained with

the sixth-order Lyapunov Functions. K1 and K2 are the state feedback control gains of

inputs δ and Mz, respectively.

First-order

K1(x) = −0.038v̄ + 0.099r̄

K2(x) = 154.39v̄ − 839.35r̄

Second-order

K1(x) = 1.69× 10−3v̄2 − 0.04v̄r̄ + 0.06r̄2 − 0.01v̄ + 0.03r̄

K2(x) = −5.24v̄2 + 84.43v̄r̄ − 172.28r̄2 + 101.14v̄ − 814.33r̄

Third-order

K1(x) = 0.006v̄2r̄ − 0.03v̄r̄2 + 0.07r̄3 − 0.04v̄r̄ + 0.07r̄2 − 0.003v̄ − 0.04r̄

K2(x) = −1.39v̄3 + 2.09v̄2r̄ + 36.29v̄r̄2 − 75.80r̄3 − 4.55v̄2 + 70.89v̄r̄ − 218.28r̄2+

+134.05v̄ − 637.57r̄

Fourth-order

K1(x) = −2× 10−4v̄4 + 2.6× 10−4v̄3r̄ + 0.01v̄2r̄2 − 0.05v̄r̄3 + 0.07r̄4 − 1.9× 10−4v̄3+

+0.01v̄2r̄ − 0.06v̄r̄2 + 0.13r̄3 + 3.1× 10−3v̄2 − 0.02v̄r̄ − 0.02r̄2 − 0.01v̄ + 0.11r̄

K2(x) = 0.1v̄4 − 0.96v̄3r̄ − 6.5v̄2r̄2 + 73v̄r̄3 − 111.4r̄4 − 0.25v̄3 − 6.54v̄2r̄ + 73.59v̄r̄2−
−220.30r̄3 − 7.94v̄2 + 87.12v̄r̄ − 184.51r̄2 + 82.47v̄ − 395.69r̄

gains. We use the linear system (2.15) (see Chapter 2, Section 2.5)

Control gain is calculated by K = R−1BTP where P can be found by solving the

continuous-time algebraic Riccati equation. The quadratic components, Q and R, that

establish a compromise between control effort and performance, are chosen to be

Q =

5 0

0 50

 , R =

1× 103 0

0 4× 10−3

 , (5.10)

where Q and R are with the international system units.

Given the control gain, we can evaluate Algorithm 1. In this case, we are not syn-

thesizing a control law, but rather, estimating the region of attraction of the closed-loop

system. We must nonetheless include at the algorithm’s steps (i) and (iii) the input

saturation constraints.

Figure 5.7 shows the estimated RoA for the system under the LQR control. Comparing

to Figure 5.6, the region is very similar in shape and alignment, but not in size. The

estimated RoA clearly comprehends the upper saddle point and surpasses the boundary

of the open-loop plant, however, due to the fixed controller law, the algorithm quickly

converges.

The areas of the estimated RoAs are shown in Table 5.5. As expected, the region

enlarges as we increase the Lyapunov function order. Comparing with the areas of Table
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Figure 5.7. Estimated region of attraction for the system under the LQR control. In

the background are shown the phase plane of the open-loop plant. Lyapunov functions

are shown for different degrees.

5.3, the estimated RoA under an LQR control gain is remarkably lower.

Table 5.5. Area of the estimated RoAs for the system under the LQR control.

deg(V) 2 4 6

Area 16.3337 17.6150 18.7786

5.3 Rational Polynomial Approximation

Although polynomial models have a simple form, the fitting is sensitive to the data cho-

sen. Any polynomial is radially unbounded, consequently, the approximation deteriorates

outside the data range. Moreover, the fitting error decreases as the order of the poly-

nomial is increased. However, overly increasing the polynomial order inevitably leads to

unstable models, restricting their use. Following the suggestion made in [Masouleh and

Limebeer, 2017], a constructive tire force approximation is achieved utilizing the class of

rational polynomial functions. Therefore, we choose

Fyi(α) =
FN
yi

FD
yi

=
pi1αi + pi2α

2
i + pi3α

3
i

qi1 + qi2α2
i + α4

i

, (5.11)

where coefficients pij and qij are found with the least-squares algorithm. FN
yi

and FD
yi

are

the numerator and denominator terms with i ∈ {f, r}. For small values of αi the rational

function reduces approximately to its linear model (pi1αi/qi1) and, for higher αi values,

the function scales to the horizontal asymptotes, coinciding to the force saturation. A

comparison between the rational function (5.11) and a 7th-order polynomial model (5.1)
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are shown in Figure 5.8. The fitting errors are evident.
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Figure 5.8. Pacejka’s nonlinear tire force and its polynomial approximations using the

linear, rational, and polynomial models.

To validate the rational approximation and justify its usage, we compare the phase

plane of the resulting models. The trajectories of the bicycle model using the magic

formula tire (solid lines) and its polynomial approximation (dashed lines) are shown in

Figure 5.9. Left and right plots present the trajectory of the system assembled with the

7th-order polynomial approximation (5.1) and the rational model (5.11), respectively.

Note that the approximation deviates the equilibrium points. In particular, the poly-

nomial approximation causes the stable region to appear larger than it really is and errors

in the trajectory are strongly noticeable. On the other hand, the rational model approx-

imation shows a satisfactory trajectory agreement. We can, therefore, make use of the

rational approximation to estimate the RoA expecting more accurate and reliable results.

The system of rational polynomial ordinary differential equations are obtained by

substituting the rational polynomial approximation (5.11) into (2.5). Again, the two

complete equations describe the lateral dynamics with states x = [v, r]T and inputs

u = [δ, Mz]
T , which takes the form

v̇ =

FN
yf

FD
yf

+
FN
yr

FD
yr

−mru0

m
,

ṙ =

a
FN
yf

FD
yf

− bF
N
yr

FD
yr

+Mz

Iz
.

(5.12)
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Figure 5.9. Phase portrait for the bicycle model using the magic formula tire (solid

lines) and the approximated polynomial tire (dashed lines). Black dots and green stars

are equilibrium points of the real and approximated model, respectively. On the left, the

system is assembled with a 7th order polynomial tire force approximation, and on right

with the rational polynomial approximation.

Rearranging the terms, (5.12) can be expressed as

v̇ =

(
FN
yf
FD
yr + FN

yrF
D
yf
−mr u0 F

D
yf
FD
yr

)
Iz

d(x, u)
, (5.13)

ṙ =

(
aFN

yf
FD
yr − bFN

yrF
D
yf

+MzF
D
yf
FD
yr

)
m

d(x, u)
(5.14)

with d(x, u) being the common denominator

d(x, u) = FD
yf
FD
yr mIz. (5.15)

It is important to note that FN
yf

and FD
yf

are functions of states x and input δ. This

increases considerably the complexity of our algorithm. With a closer inspection of (5.14),

we see a product of inputs in the Mz F
D
yf
FD
yr term (product of δ and Mz). In addition,

due to the polynomial approximation (5.11), lateral forces FN
yf

and FD
yf

necessarily contain

elements with exponents of third and fourth orders. This makes the resulting model non-

affine in the input δ. Its general representation is

ẋ =
fn(x) + gn(x, u)

d(x, u)
(5.16)

where fn : D → Rn is a vector of polynomial state functions, gn : D → Rn is a vector

of polynomial control functions and d : D → R the polynomial denominator function.

Along the same lines as before, an approximation in order to make the system affine in u
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is necessary.

Given the rational state space representation (5.16), the input-affine approximation is

achieved by a linearization over a given input ū = K(x). It captures the linear behavior

of the control actuation gn(x, u) around the stable system, i.e., around the trajectories

within the domain stabilized by the control law K(x). Likewise, the denominator d(x, u)

has nonlinear inputs elements and must be approximated to an input-affine function.

With u = K(x) and for a given input ū = K(x), the first-order approximation of elements

gn(x, u) and d(x, u) are

gn(x,K(x)) ≈ g(x,K(x)) +
∂g(x, u)

∂u

∣∣∣∣∣
u=K(x)

(K(x)−K(x)),

d(x,K(x)) ≈ d(x,K(x)) +
∂d(x, u)

∂u

∣∣∣∣∣
u=K(x)

(K(x)−K(x)).

(5.17)

The partial derivatives are evaluated at the known control K(x), and K(x) is the yet

unknown polynomial state feedback control law we wish to find. For instance, (5.17) is

linear in the arguments of K(x) and searching for the coefficients of this control law is

now a convex problem.

By applying Algorithm 2, the region of attraction is expanded iteratively. At each

iteration, the algorithm searches for a new K(x) such that the solution moves towards

the optimum β, in Program (4.21). Furthermore, each sub-optimal K(x) obtained from

iteration k is used as K(x) of iteration k+ 1. The algorithm requires an initial candidate

K0(x).

Substituting (5.17) into (5.16), reorganizing the corresponding terms and for our par-

ticular case of two inputs, u1 = K1(x) and u2 = K2(x)), the state space representation

can be written as

ẋ ≈ f̄n(x) + gn1(x)K1 + gn2(x)K1K2

df (x) + dg(x)K1

(5.18)

where f̄n(x) is the input-independent term, gn1(x) and gn2(x) are the control input vectors,

df (x) is the input-independent denominator term, and dg(x) the control input denomina-

tor term.

Extending the SOS non-negativeness conditions for rational functions have been shown

appropriate in practical computations, as in [Masouleh and Limebeer, 2017, Drummond

et al., 2018]. When the system of interest is of the form (5.18), SOS restriction (4.22)

takes the form(
− ∂V

∂x

( f̄n + gn1K1 + gn2K1K2(
df + dgK1

) )
q8 − ϕ2 + (V − γ)q7

)
∈ Σn. (5.19)
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By multiplying (5.19) for the non-zero denominator
(
df + dgK1

)
, we achieve the re-

striction (
− ∂V

∂x

(
f̄n + gn1K1 + gn2K1K2

)
q8 −

(
df + dgK1

)
ϕ2+

+
(
df + dgK1

)
(V − γ)q7

)
∈ Σn,

(5.20)

that can be now tractable using Algorithm 2.

Note that, due to K1K2 term, there is still the product of the decision variables. The

Control design step (i) of Algorithm 2 must be decomposed into two sub-steps, (i.1 ) and

(i.2). We must hold fixed K1 while searching for K2 and vice versa. Therefore, instead

(i) we now have (i.1) and (i.2):

(i.1) K1-Step: Maximize γ with V , K2 and q2 fixed to obtain K1 such that (5.20) holds;

(i.2) K2-Step: Maximize γ with V , K1 and q2 fixed to obtain K2 such that (5.20) holds;

set K
(i)
1 = K1, K

(i)
2 = K2 and proceed to the Algorithm’s Gamma step (ii).

As before, input saturation restrictions should be included accordingly. The remaining

steps proceeds normally.

5.3.1 RoA estimation and state feddback design

The vehicle model is assembled using the rational model and the RoA estimation and

its expansion through state feedback are shown for two scenarios. First, the equilibrium

point is located at the origin, representing a straight running scenario, and second, the

analysis is developed for a constant cornering maneuver.

Straight running scenario

As a first application, we estimate the RoA for a straight running condition. Steering angle

is set to 0 degree with constant longitudinal speed u0 = 10 m/s. The results are shown

in Figure 5.10, where the phase portrait of the polynomial vehicle model is shown in the

background along with the equilibrium points, denoted by black dots. Moreover, regions

Ωγ, which are our estimates of the region of attraction, are shown for four Lyapunov

functions with different degrees.

Consistent with the results presented above, the RoA estimates become more represen-

tative as we increase the degree of V (x). Given all the manipulations necessary to handle

the class of rational polynomial models, Figure 5.10 is a strong indicator of correctness.

Now we wish to design a state feedback controller that expands the aforementioned

regions. The RoA estimates for the closed-loop system are presented in Figure 5.11. It is

straightforward to verify that the RoA estimations are increased with the state feedback
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Figure 5.10. RoA estimates for a straight running scenario (δ = 0) with constant

longitudinal speed u0 = 10 m/s. Lyapunov functions are shown for different degrees. In

the background, we show the phase plane of the open-loop system, with blue and orange

lines representing the stable and unstable trajectories, respectively.

controller. The RoA surpasses the stability boundary, also comprehending the saddle

points, indicating that the covered portion is now stabilized by the control law. Most

importantly, satisfying the input saturation constraints.

Although we have imposed a steering saturation constraint of 20 degrees, the maximum

and minimum values of the steering commands achievable with points inside the RoA are

7.56 and -7.56 degrees, respectively. Beyond a certain value, the force generated by the

tire is friction-limited (see Figure 5.8), meaning that increasing the steering angle not

necessarily leads to an increase in the lateral response.

For the RoA computation, searching for an 8th order Lyapunov function resulted in

numerical failure. The rationale for this failure is that, by growing the order of V , high

degree monomials are used in the SOS program, as consequence, the number of variables

increases and the order of the polynomial coefficients becomes vastly different, resulting

in numerical ill-conditioning problems.

To numerically quantify these improvements, we report in Table 5.6 the RoA surfaces

area. The progress we obtain advancing in the search of V (x) of higher orders is evident.

Moreover, as expected, the surface area is considerably larger for the closed-loop scenario.

Table 5.6. Estimated RoA areas (m rad/s2) for the open-loop and closed-loop scenarios

of the straight running maneuver. NP: Numerical Problems.

deg(V)

Case study 2 4 6 8

open-loop 11.4173 12.0566 13.9910 15.8461

closed-loop 21.8949 29.9276 31.2915 NP
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Figure 5.11. Estimated RoA of the controlled system for a straight running maneuver.

In the background, we show the phase plane of the open-loop system. The estimated

RoA under a control law K(x) overcomes unstable paths around the saddle points. Fur-

thermore, the input saturation bounds recognized in Table 6.1 are used in the control

design.

Cornering maneuver

As a second verification, we consider a constant cornering maneuver. The steering angle

is set to -5 degrees with constant longitudinal velocity u0 = 10 m/s. As shown in Figure

5.12, the phase plane is no longer symmetric and the equilibrium point is not at the

origin, which means that the system must be shifted to the origin via a change of variables

x̄ = x− xeq.
From Figure 5.12, one can note the estimated RoAs are remarkably smaller when

compared to those obtained for the straight running maneuver. As the equilibrium is now

displaced from the origin and more close to the stability boundary, the enlargement of

the estimated region Ωγ is compromised. The shift of the Sβ region closer to the stability

boundary makes it more difficult for the algorithm to approximate the RoA with the prior

levels of accuracy, limiting its expansion.

We now design a state feedback that expands the RoA. Again, we search for a first-

order polynomial control law u = K(x̄) with K(x̄) ∈ R[x] while accounting for input

saturation.

The estimated RoAs for the closed-loop system are shown in Figure 5.13. As one

might expect and in agreement with the previous results, better estimations are obtained

for higher-order V (x). For the same reasons discussed previously, designing a control law

K(x̄) while searching for an 8th order Lyapunov function resulted in numerical failure.

Furthermore, the maximum and minimum values of the steering commands achievable

with points inside the RoA are 11.64 and -9.79 degrees, respectively. The values are

no longer symmetric simply because the feasible region for the cornering maneuver is

asymmetric about the equilibrium.
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Figure 5.12. RoA estimates for the open-loop maneuver. The vehicle steering angle

δ̄ is set to -5 degrees with constant longitudinal speed u0 = 10 m/s. The regions are

estimated varying the degree of V from 2 to 8.
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Figure 5.13. RoA estimates for the closed-loop maneuver. Phase plane is shown in

the background. The regions are estimated varying the degree of V (x) for a left-turn

maneuver while synthesizing a first-order control law K(x). Steering angle is set to -5

degrees with constant longitudinal speed u0 = 10 m/s.

The progress we obtain as advancing in the search of V (x̄) and using the polynomial

control law is shown in Table 5.7. Due to the asymmetric phase plane, the estimated RoA

surface area is considerably smaller when compared to the straight running maneuver.

Table 5.7. Estimated RoA areas (m rad/s2) for the open-loop and closed-loop scenarios

of the constant cornering maneuver. NP: Numerical Problems.

deg(V)

Case study 2 4 6 8

open-loop 5.9247 7.1092 8.2808 9.0824

closed-loop 11.1227 17.5590 21.2290 NP
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All the analyses were performed on a 4.00 GHz desktop PC with 32 GB RAM. The

algorithm is iterative and the analysis and synthesis problems feature three and five steps,

respectively. Table 5.8 summarizes the computational statistics for each of the above

simulations. The computational times, given in seconds, are the total amount of time

required to reach the stopping criterion.

Table 5.8. Computational statistics of Algorithms 1 and 2 for the open- and closed-loop

analysis, respectively. NP: Numerical Problems.

Computational time (seconds)

Maneuver Case study deg(V)=2 deg(V)=4 deg(V)=6 deg(V)=8

Straight
open-loop 43.98 116.00 259.52 315.96

closed-loop 286.40 363.14 584.57 NP

Cornering
open-loop 91.55 209.56 280.36 374.95

closed-loop 353.54 595.78 1090.87 NP

5.3.2 Control performance evaluation

As mentioned, the SOS control design procedure is performed iteratively. At each itera-

tion, the coefficients weights of K(x̄) are found in order to optimize the given criterion.

As mentioned, in practice, the preferred controller would be chosen according to its

ability to expand the region of attraction. Thereby, we choose the control gain that

produces the largest area, in this case, obtained with the sixth-order Lyapunov function

(see Table 5.7). The control gain of the latest iteration is

K(x̄) =

[
K1(x̄)

K2(x̄)

]
=

[
0.0598 v̄ − 0.0827 r̄

79.7875 v̄ − 91.0377 r̄

]
. (5.21)

The control gain performance is verified via simulation. The overall structure is pre-

sented in the block diagram of Figure 5.14 where K(x̄) is the polynomial state feedback

gain coupled with the feedforward value. Note that the control law is written in terms or

the variable x̄.

veq , req

δ̄, Mz

Equilibrium point

−
+ K(x̄)

x̄
+

+ Vehicle

v , r

Figure 5.14. State feedback and feedforward tracking controller diagram.
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Under the set of conditions and approximations made for synthesis purposes regard-

ing the bicycle model, the predictions given in Section 5.3.1 are now validated through a

higher-fidelity model. It includes the steering, powertrain, and suspension systems and

uses the Pacejka tire model for the tire-ground interaction forces. The physical vehicle pa-

rameters are listed in Table 5.1. All values were extracted from [Cordeiro, 2017, Ribeiro,

2016] where the complete vehicle modeling and data validation are given. The simula-

tor dynamics is formulated as a 32-states model. The vehicle is configured to simulate

an independent rear-wheel drive vehicle, providing references of the vehicle states and

measured signals.

The performance of the proposed controller is examined through a transition between

equilibrium points. The vehicle starts from the origin and is set on an equilibrium point

corresponding to a steering angle δ = −20o and u0 = 8 m/s. At instant t=5 seconds,

we change the desired point. The new reference is the stable equilibrium of Figure 5.13,

achieved with δ = −5o degrees and u0 = 10 m/s. In summary, the vehicle slightly

accelerates with a decrease in steering angle.

The maneuver is evaluated under open and closed-loop scenarios. For the latter, the

control law (5.21) is used to stabilize the system. The resulting response is discussed by

highlighting three main stages, as displayed in Figures 5.15 and 5.16.

During stage (I) the vehicle is at equilibrium point xeq = [−0.9 − 0.67]T . At 5 s

the desired equilibrium point is changed. The longitudinal velocity reference u0 is set

from 8 to 10 m/s, which creates a small acceleration. Moreover, δ̄ is set to -5o. The

desired equilibrium corresponds to the stable point (black dot) localized at the center of

the phase-plane of Figure 5.15.
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Figure 5.15. State trajectories (starting from the origin, shown as green stars) of the

open and closed-loop scenarios. Phase plane are shown in the background for δ = −5o and

u0 = 10 m/s. Equilibrium points are denoted by black dots. On the right, the closed-loop

trajectories are shown with the input saturation bounds recognized in Table 6.1.

The transient response is exhibited in stage (II). As the vehicle increases longitudinal
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speed, lateral and angular velocities, v and r, slightly increase and decrease, respectively

(see Figure 5.16). For the open-loop scenario, these deviations are sufficient to cross

the stability boundary, as shown in Figure 5.15. On the other hand, for the closed-loop

scenario, the state trajectory is still inside the domain of attraction of the closed-loop

system, therefore, it is ensured that the vehicle will reach the desired equilibrium point.

Finally, stage (III) shows the maneuver completion. The open-loop response diverges

and severely loses longitudinal speed. This is the reason for the poor agreement of the

actual trajectory (red dots) with the one expected in the phase plane. In contrast, the

closed-loop scenario converges to the desired equilibrium point and we can see a good

agreement between the expected and the achieved trajectories. Figure 5.16 displays these

responses over time.
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Figure 5.16. Vehicle lateral v and angular r velocities response of the open and closed-

loop systems. The main stages are highlighted in three intervals and trajectory indicated

by dots diverges.

The control efforts are shown in Figure 5.17. It should be mentioned that the yaw

moment command must be transformed into torque references for the electric motors.

This is achieved by approximating

Tl = Tl0 + ∆Fx,l rw,

Tr = Tr0 + ∆Fx,r rw,
(5.22)

while satisfying the corrective yaw moment balance

Mz =
c

2
(∆Fx,l −∆Fx,r). (5.23)

where Tl and Tr are the torque references for the left and right wheels, respectively, rw is

the wheel radius, and c is the wheel track. Tl0 and Tr0 are the torque values that generate

the traction forces to sustain the vehicle in the desired forward velocity. Since we consider
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constant longitudinal speed, we use a low-level PI controller that determines whether to

increase or decrease the Tl0 and Tr0 , according to variations on the longitudinal speed.

∆Fx,l and ∆Fx,r are the amounts of change in the longitudinal forces necessary in order

to generate the corrective yaw moment Mz.

The technique that optimally distributes the torque between the wheels is commonly

denoted in literature by torque vectoring [Ataei et al., 2019]. The strategies are formulated

based on different concepts, such as the available friction, information about the friction

ellipse, to avoid power loss, aiming to increase energy efficiency or increasing the handling

performance [Smith et al., 2018, Chatzikomis et al., 2019, Yuan et al., 2018]. To simplify

the torque allocation, we choose a symmetric distribution, i.e., ∆Fx,l = −∆Fx,r, corre-

sponding to a force demand evenly distributed between wheels. With this assumption,

(5.23) has one solution and torques Tl and Tr are straightforwardly obtained.

It can be observed in Figure 5.17 that, due to the equal torque distribution enforced

by the low-level controller, the yaw moment is zero for the open-loop response. On the

other hand, the yaw moment of the controlled vehicle does not return to zero. Because

of the difference between the expected and achieved equilibrium point, a nonzero value is

computed by the control law.
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Figure 5.17. Comparison between the feedforward and the applied inputs by the pro-

posed controller.

Although the expected equilibrium point was xeq = [−0.33, −0.24]T , the reached point

was x = [−0.37, −0.24]T . This difference is attributed due to the discrepancies between

the approximated rational polynomial and the complete nonlinear model. Despite that,

the controller was capable to stabilize the vehicle in the proposed scenario.

To illustrate the vehicle spatial response, we show in Figure 5.18 the performed trajec-

tory for both scenarios. The transition between equilibrium points occurs at instant t=5

s and, at t=5.5 s the open-loop response crosses the stability boundary and the vehicle

diverges.

The simulation results for this maneuver show that the obtained controller can prop-
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Figure 5.18. Vehicle trajectory and orientation.

erly provide handling improvement by applying a steering angle correction and an ad-

ditional torque between the left and right wheels to achieve the yaw moment balance.

Most importantly is that these results are a verification of the aforementioned region of

attraction analysis. With the proposed closed-loop maneuver, the vehicle states remain

inside the estimated RoA and, despite all the model simplifications proposed in this work,

the stability certificate was valid, even when evaluated in a complete and representative

vehicle model.

5.3.3 Effect of model dissimilarity

While the lumped tire model used throughout this work reflects the effect of lateral weight

transfer upon the net lateral force capability at the front and rear wheels, it does not

capture the effect of load transfer upon the individual wheels at an axle. Although the

previous section showed a practical application where the vehicle stability was safeguarded

by a stability certificate, obtained with the RoA estimation, special care should be taken

due to implications of model dissimilarities.

Numerous studies about vehicle dynamics and stability [Wang and Chen, 2018, Kati

et al., 2018, Galluppi et al., 2019, Németh et al., 2014, 2016, Tamba and Nazaruddin, 2018,

Drummond et al., 2018, Masouleh and Limebeer, 2016, 2017] have hinted at the impor-

tance of design simplification for the development and application of their methodology,

but to date, to the best of our knowledge, none have performed any rigorous analysis of

this factor. The simplification should be warranted only if the final design outcome does

not degrade substantially. Hence, there is a need to quantify the impact of the proposed

approximations on the overall system performance.

The main shortcomings of the simplified bicycle model are well known: load transfer

effects are neglected. The load transfer has a significant impact on tire behavior and thus,

on vehicle stability. To determine the impact of these unmodeled effects in our analysis,

we present a statistical validation of the predictions made in Section 5.3.1 using a higher
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fidelity model. A Monte-Carlo analysis of initial conditions is employed to generate points

inside and outside the predicted RoA.

Figure 5.19 shows the vehicle response for the straight running scenario, acquired

from the higher fidelity model, and the largest estimated RoA, obtained using the bicycle

model. Blue and orange dots are the initial conditions of the converging and diverging

trajectories, respectively. It is noteworthy that all initial conditions inside the RoA should

always converge to the origin, nonetheless, due to the divergence between the simplified

and more elaborated model, some disparity among the predictions is observed.
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Figure 5.19. Vehicle response for the straight running scenario. The results are shown for

the open-loop (left) and closed-loop (right) systems. Blue and orange dots are the initial

conditions of the converging and diverging trajectories, respectively. The estimated RoA

is the largest level set obtained in Section 5.3.1.

One can note in Figure 5.19, the diverging points within the RoA are located at the

upper and lower boundaries of the level set curve. In fact, during the transient state tra-

jectory, the vehicle expects varying levels of lateral acceleration, which tends to be larger

as the distance between the initial condition and the equilibrium point increases. Since

lateral acceleration strongly influences the vehicle’s roll dynamics and therefore, the load

transfer, divergences are more likely to occur when higher values of lateral acceleration

are observed.

Table 5.9 reports on the statistical results of the converging and diverging trajectories.

We can notice that the number of diverging results for the closed-loop scenario is consid-

erably larger than the open-loop. With the bicycle model, we ignore the load transfer,

regardless of the steering pattern incorporated by the closed-loop dynamics. This result

is supported by the findings in [Liu et al., 1997], which showed that the factors associated

with the steering angle had a great impact on the rollover analysis.

With respect to the cornering maneuver, where non-zero lateral accelerations are in-

trinsically observed, the number of divergent occurrences should be higher. As shown
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in Figure 5.20, this is true for the closed-loop system. For the same reasons discussed

above, the resulting steering pattern confers meaningful behavior properties that are not

accounted for in the simplified model.

−4 −2 0 2 4

−2

0

2

v (m/s)

r
(r
a
d
/
s)

−4 −2 0 2 4

−2

0

2

v (m/s)

r
(r
a
d
/
s)

converging diverging estimated RoA

Figure 5.20. Results of the cornering maneuver for the open-loop (left) and closed-loop

(right) system. Blue and orange dots are the initial conditions of the converging and

diverging trajectories, respectively. The estimated RoA is the largest level set obtained

in section 5.3.1.

However, for the open-loop cornering maneuver, an important characteristic is ob-

served. Surprisingly, the RoA matches with the nonlinear vehicle behavior. The reason

is that the estimated RoA, due to the conservatism in the overall estimation, did not hit

the upper boundary of the stability region, where are located the highest values of lateral

acceleration.

Table 5.9. A Monte-Carlo analysis of initial conditions inside the predicted ROA.

Maneuver Case study

No of points inside

the RoA

Converging

trajectories (%)

Diverging

trajectories (%)

Straight
open-loop 1274 96.39 3.61

closed-loop 2071 93.95 6.05

Cornering
open-loop 642 100 0.00

closed-loop 2114 91.34 8.66

This characteristic leads to a second important reflection that is the number of stable

occurrences that we were not able to estimate. Given the range plot of Figures 5.19

and 5.20, we report the number of stable trajectories and their portion covered by the

estimation in Table 5.10.

By computing the invariant set around an equilibrium using the method discussed in

this paper, an inner region of attraction is established. The best possible estimate for the
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Table 5.10. A Monte-Carlo analysis of initial conditions located outside the predicted

region of attraction.

Maneuver Case study No of stable trajectories Estimated portion (%)

Straight
open-loop 1981 61.99

closed-loop 2300 84.39

Cornering
open-loop 1843 34.83

closed-loop 3485 56.01

RoA using the Lyapunov function is given by the largest level curve of V. The size of the

invariant set, however, may not be as representative as we might wish.

Because the feasible region for the cornering maneuver is asymmetric about the equi-

librium, the region of attraction is inevitably more restrained when compared to the

straight running motion. Moreover, any region calculated using a function that is sym-

metric about the equilibrium, such as an ellipsoid, ends up being rather conservative.

Intuitively, this motivated our search over high order Lyapunov functions. In addition,

for the synthesis problem, by restricting the range of operation for the controller, im-

posed by the input saturation constraints, we force an infeasible region that also limits

the stability statements that can be made using the LF.

Despite the aforementioned negative effects associated with the load transfer behavior,

the SOS-based controller is, indeed, able to obtain a large region of convergence around the

desired equilibrium. This property is presented in Table 5.11 which shows the stabilized

region achieved with the control law. These results are a strong indication that the

proposed sum-of-squares methodology can be used as a valid analysis and design tool.

Table 5.11. Open-loop and closed-loop stable region of Figures 5.19 and 5.20.

Maneuver Case study Stable area (% of total)

Straight
open-loop 40.20

closed-loop 52.61

Cornering
open-loop 40.75

closed-loop 63.05

Regarding the disparity observed between the discussed models, two refinements to

the design may enhance the fidelity of the analysis: the incorporation of the load transfer

effects and the inclusion of longitudinal dynamics. With a three-state and four-wheel

planar model, the wheels can be modeled individually and the coupling between the tire

lateral and longitudinal forces considered. Nonetheless, the feasibility of the problem

relies upon the resulting model being polynomial in its arguments. Moreover, the SOS

polynomials will be a function of three arguments, which considerably elevates the problem

complexity. Complexity, numerical conditioning, and an increase in the overall degree of
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the vector field are notorious problems in SOS applications.

5.4 Final Remarks

In this chapter, we have shown how the sum-of-squares technique can be used in the sta-

bility analysis of a nonlinear vehicle system. The methodology, based on the construction

of appropriate Lyapunov function certificates, is carried out using the tools provided by

the SOS technique. Furthermore, estimating the region of attraction and designing a

nonlinear state feedback control were explored algorithmically.

The ordinary differential equations of the well-known bicycle dynamics model are

approximated by a rational polynomial vector field and two concomitant inputs are con-

sidered in the control design process, the steering angle, and yaw moment balance. The

resulting model falls on a class of non-affine in the input system transforming the con-

trol design into a nonconvex problem. To circumvent this issue, we proposed an affine

linearization, allowing the use of the SOS decomposition.

Two main subjects are approached in this work, the region of attraction estimation and

its expansion through a nonlinear state feedback controller. Additionally, the proposed

technique is capable of including the input saturation limits associated with the system

actuator dynamics. The obtained control gains are validated under a simulation environ-

ment. Open and closed-loop scenarios are proposed to highlight the stability boundary

of a vehicle system.

Concerning the model fidelity and validity, the efforts presented in this chapter were

concentrated on the tire rational polynomial representation, which resulted in a suitable

approximation. However, in particular, it was shown that the vehicle load transfer, es-

pecially resulting from the steering pattern, figures prominently in the vehicle stability.

Because of this characteristic, a small divergence between the discussed models is reported.

The following publications were produced presenting the results of this chapter (Ribeiro,

Fioravanti, Moutinho & de Paiva 2020b) and (Ribeiro, Fioravanti, Moutinho & de Paiva

2020c):

• A. M. Ribeiro, A. R. Fioravanti, A. Moutinho and E. C. d. Paiva. Sum-of-squares

approach for ground vehicle lateral control under tire saturation forces. In 21th

IFAC World Congress, Berlim, Germany, July 11-17, 2020.

https://doi.org/10.1016/j.ifacol.2020.12.1398

• A. M. Ribeiro, A. R. Fioravanti, A. Moutinho and E. C. d. Paiva. Nonlinear

state-feedback design for vehicle lateral control using sum-of-squares programming.

Vehicle System Dynamics, 2020.

https://doi.org/10.1080/00423114.2020.1844905
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6 Experimental Evaluation

6.1 Introduction

Car-like robots have shortened the path of building, testing, validating, and scaling algo-

rithms for large scale cars. They account for nonholonomic constraints, imposed by the

steering and propulsion systems, in agreement with today’s conventional automotive vehi-

cle basis, and are able to incorporate the complexity, uncertainties, and sensing capability

introduced by real environments.

The car-like vehicle must follow certain restricted navigation laws, invariant of the

path. Historically, this limited maneuverability motivated strategies that meet a variety

of constraints, most remarkably, we mention the curvature restriction. In [Dubins, 1957] it

was proposed a path planning algorithm that generates a minimal length trajectory that

incorporates an average curvature restriction. Since then, the smoothness of a path has

been considered as a challenging problem due to the nonholonomic constraint. In [Villagra

et al., 2012] the shortest path is designed with bounded continuous curvature and bounded

curvature derivative and [Liang et al., 2005] incorporated considerations of curvature

constraint using cubic spirals segments to generate feasible trajectories. For smoothing

the discontinuity between two geometric segments, the clothoid was used to generate a

continuous-curvature path [Gim et al., 2017], also subjected to velocity constraints in

[Frego et al., 2016].

Due to cost concerns, these strategies are often firstly presented for scaled vehicles.

Moreover, for simplicity, most of the available strategies designed for car-like robots are

mainly based on kinematics analysis. In many instances this may be a reasonable choice,

however, for applications that require sufficient longitudinal velocity and experience a

fairly lateral excitation, a dynamic analysis is necessary [Khalifa et al., 2019].

Towards this end, control strategies for car-like robots based on the vehicle dynamics

naturally appeared in the literature [Ozcan and Ankarali, 2019, Hwang, 2016, Chen and

Zhu, 2017]. This characteristic has led to an important reflection: the matching of the

well-known dynamic response of a full-sized vehicle with the scaled car-like robot. Such

concern was raised in [Polley et al., 2006] that provided insights and understanding of

realistic nonlinear tire behavior for smaller vehicles. The authors concluded that the

shapes of the force curves are qualitatively similar between scaled and full-sized tires. In
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[Lapapong et al., 2009], a broadly dynamic similitude analysis is discussed and a close

equivalence is observed for a wide range of input frequencies. The scaled car-like vehicle

response matches the predictions from planar and non-planar dynamic models.

Scaled car-like vehicles can be used as valid and credible platforms. However, in

practice, there are variables and coefficients present in the dynamical model which are

difficult to measure or require dedicated facilities to be identified, often not easily available.

The solution may be the use of estimation and identification schemes. Within this context,

this work presents a comprehensive validation of a scaled car-like vehicle and thorough

experimental testing. We present a parameter identification strategy, a stability analysis,

and a model-based path following control that validates the vehicle as a reliable and valid

vehicle platform for further studies.

The remaining sections of this Chapter are organized as follows. In Section 6.2, the

motivations and characterization of the vehicle in the study are presented. Section 6.3

introduces the vehicle dynamic mathematical model. Section 6.4 shows the parameter

identification method and an extensive validation which compares the agreement between

numerical simulations with experimental data. In Section 6.5 the steady-state analysis is

carried out and the vehicle equilibrium condition is identified. In Section 6.6 the SOS-

based controller is verified experimentally, the identified parameters are used to assemble

the vehicle dynamics and the steady conditions are used as the desired references.

6.2 Motivations

A four-wheeled 1:5-scale vehicle is used for the validation experiment. The platform,

shown in Figure 6.1a, is based on an adapted HPI Baja 5B SS chassis with an independent

rear-wheel drive and a steering system that follows the Ackermann geometry. It uses the

ROS meta operating system as middleware and is equipped with a collection of commercial

sensors such as encoders, global positioning system (GPS), inertial measurement unit

(IMU), camera, light detection and ranging (LIDAR), and others. See [Nogueira et al.,

2018] for a complete vehicle description and architecture exposition.

The major upgrades of the off-the-shelf chassis are the steering system geometry, given

in Figure 6.1b, and the electric and independent rear-wheel drive, shown in Figure 6.1c.

Scaled driving platforms are largely employed in diverse theoretical fields as a useful

complement to existing methods for testing proposed strategies. The motivation for using

scaled vehicles is that it considerably simplifies the experimental validation task while

keeping the same level of sensing capabilities of a full-sized vehicle. Recent progress and

many publications are found detailing scaled test-beds for path planning [Berntorp et al.,

2019, Pinto et al., 2019], filtering and estimation [Antunes et al., 2019], dynamic response

analysis [Lapapong et al., 2009, Koz lowski, 2019], rollover prevention [Katzourakis et al.,
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(a)
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Figure 6.1. (a) Four-wheeled 1:5-scale platform. (b) Ackermann steering geometry. (c)

The independent rear-wheel drive.

2010, Treetipsounthorn and Phanomchoeng, 2018], and for control validation in general

[Yamaguchi et al., 2015, Karaman et al., 2017, Goswami et al., 2018, Bulsara et al., 2020].

A notorious platform is described in the AutoRally project [Goldfain et al., 2019]. It is an

open-source, 1:5-scale vehicle test-bed, conceived for development in autonomous vehicle

technologies.

Although these vehicles are designed and intended for different purposes, they all

share common essential headlines: time, cost, and safety considerations to facilitate rou-

tine testing and experimentation. The vehicle depicted in Figure 6.1 also follows these

considerations. The platform is large enough to effectively capture vertical dynamics and

all their side effects, such as weight transfer, and to accommodate a range of sensors,

allowing the validation of state-of-the-art algorithms.

From a practical point of view, elaborate strategies usually require the knowledge of

parameters that have to be estimated. Regarding lateral vehicle dynamics, two meaningful

fundamental and yet hard to know coefficients are the tire cornering stiffness and yaw

moment inertia.

To validate and justify the scaled vehicle in the discussion, a model-based identifica-

tion, analysis, and control schemes are proposed as a means of characterization of the

scaled vehicle. In the next section, we review the vehicle modeling and follow to the

proposed strategies used for identification and control.
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6.3 Vehicle Modeling

The vehicle motion can be described by mathematical models with different levels of

complexity and realism. For the purposes of this work, we will analyze the vehicle lateral

motion and a proper balance between model fidelity and simplicity can be achieved using

the nonlinear single-track model, also known as the bicycle model, depicted in Figure 6.2.

A brief review of this model, presented in detail by Chapter 2, is given here.

The model assumes a single tire at each axle with twice the force capability of the

individual tires. Additionally, it considers pure planar motion, neglecting roll and pitch

dynamics.

αr
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Fxr
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Fyf

v
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Figure 6.2. Diagram of the bicycle model.

The equations of motion are derived by analyzing the balance between forces and

moments. From Figure 6.2, the lateral equations of motion are

m(v̇ + ru0) = Fyf cos δ + Fyr,

Iz ṙ = aFyf cos δ − bFyr,
(6.1)

where m is the vehicle mass, Iz is the yaw moment of inertia, and Fyi are the lateral

forces with subscript i ∈ {f, r} denoting front and rear wheels. Constants a and b are

the distances from the center of gravity to front and rear axles, respectively, δ is the front

tire steering angle and αi are the tire slip angles. Finally, v, r, and u0 are the vehicle

lateral, angular, and longitudinal speeds. Observe that the decoupling between lateral

and longitudinal motions is achieved considering a constant speed u0 [Rajamani, 2011].

The main nonlinearity about (6.1) arises from the tire forces behavior. In this paper,

we choose the brush tire model due to its simple and clear formulation. It has fewer

parameters compared to the traditional Pacejka’s model while maintaining the ability to

capture the tire saturation [Pacejka, 2012].

The brush model is mainly dependent on the slip angle αi. Tire slip is defined as

the angle between the direction of motion and the wheel heading. From Figure 6.2 and
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considering the kinematics motion we have

αf =
v + ar

u0

− δ,

αr =
v − br
u0

.
(6.2)

Following [Rajamani, 2011], the brush lateral tire force model is expressed as:

Fyi =

{
−µiFzisign(αi), if |αi| > αsli ,

−2Cασy
{

1− |θyσy|+ 1
3
(θyσy)

2
}
, o/w.

(6.3)

where αsli is the slip angle threshold needed to reach the full sliding condition, defined as

αsli = tan−1

(
3µiFzi
2Cα

)
, (6.4)

and

θy =
2Cα

3µiFzi
,

σy = tanαi.

(6.5)

Coefficients µi are the available friction coefficient, Fzi are the vertical forces, and Cα

is the tire cornering stiffness coefficient. The factor 2Cα in (6.3)-(6.5) accounts for the fact

that we assume a lumped axle with twice the capacity of a single tire, i.e., the equivalence

between the bicycle and the four-wheel planar model. Moreover, due to vehicle symmetry,

we have equal front and rear cornering stiffness, therefore, Cαf = Cαr = Cα.

For the vertical forces, the static load transfer is assumed as:

Fzf = bmg/(a+ b),

Fzr = amg/(a+ b),
(6.6)

where g is the gravitational acceleration.

Substituting from (6.2), (6.3), and (6.6) into (6.1), we assemble the two complete

equations describing the lateral dynamics. The states are x = [v, r]T and input u = δ.

For a comprehensive analysis of the lateral vehicle model see [Rajamani, 2011, Chapter 2].

6.4 Parameter Identification

As seen in (6.1) and (6.3), the vehicle lateral behavior is strongly dependent on two

fundamental parameters: tire cornering stiffness Cα and inertia Iz. This section details

the offline estimation performed with the platform.
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If a sufficiently large and representative dataset composed of measurements of states

v and r is available, we can use data-based concepts to compare the model to data and

estimate the desired parameters. This methodology can be seen as a problem of fitting

experimental data to a nonlinear deterministic function.

The problem consists of finding the decision variables xp = [Cα, Iz]
T that solve

x∗p = argmin
Cα, Iz

(λ1ev,rms + λ2er,rms + λ3Ca + λ4Iz) (6.7)

s.t. Cα > 0,

Iz > 0,

where x∗p = [Ĉα, Îz]
T is the optimum value that minimizes the objective function. Errors

ev,rms and er,rms are the states v and r root mean squared (rms) errors between the sim-

ulated and measured values. The design parameters λ1, . . . , λ4 define the set of weighting

factors that indicates the importance of the residuals and the regularization.

If experimental data were free of error, coefficients Cα and Iz could be obtained

straightforwardly by measuring the states at two points and solving the deterministic

nonlinear model (6.1). For most practical applications this characteristic does not hold

and a dataset collection should alternatively be used.

6.4.1 Data collection

Problem (6.7), as well as data analysis procedures in general, is heavily dependent on the

dataset accuracy. It is imperative that the data accurately capture the process model

[Rhinehart, 2016]. Additionally, when estimating parameters, one should ensure that the

implicit assumptions on the distribution of the noise terms are reasonable. Here, the

noises are independent and random disturbances with zero mean, or equivalently, white

noise.

To yield meaningful information about the vehicle lateral response, we must gather

a data set with a representative level of excitation. Towards this end, we use the swept

sine wave as input, also known as chirp signal. It is a persistently exciting signal used to

disturb the system over a specified range of frequencies [Honório et al., 2018].

In order to have a comprehensive and representative data set, a number of tests must

be performed. The test consists of applying constant a longitudinal speed while employing

the time-varying steer input. The process is repeated for several steering angle amplitudes

and for different longitudinal speeds.

The dataset used in this work contains signals obtained varying the steer sine input

amplitude from 10 to 25 degrees, with starting and ending frequencies of 1 and 6 Hz,

respectively, and by setting three constant longitudinal speeds, 0.25, 0.6, and 1 m/s. A
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total of 13658 measurements are gathered with a frequency of 10 Hz.

6.4.2 Experimental setup

For the experimental data discussed above and for the analyzes presented hereinafter,

three class of sensors are used: simple motor encoders, the Xsens MTI-G-710 IMU unit,

and the LIDAR Hokuyo UTM-30LX scanning laser.

The steering angle and longitudinal velocity are measured by encoders, with proper

values calculated considering the mechanical gear and transmission ratio. Angular veloc-

ity r is straightforwardly measured by the gyroscopes in the IMU and the vehicle pose

(position and orientation) is obtained using the LIDAR sensor along with a simultane-

ous localization and mapping (SLAM) algorithm, publicly available through the Hector

mapping package [Kohlbrecher et al., 2011].

From these measurements, we estimate the lateral velocity v using an Extended

Kalman Filter, proposed in [Moore and Stouch, 2015]. The filter considers a planar move-

ment and combines the wheel odometry information, the IMU’s linear acceleration and

angular velocity measurements, and the vehicle pose, outputted by the SLAM algorithm.

6.4.3 Experimental identification

The tests were performed on an unpolished ceramic tile surface with empirically estimated

friction coefficient µi ≈ 0.4. The vehicle physical parameters required in this work are

listed in table 6.1.

Table 6.1. List of the vehicle’s physical parameters.

Symbol Parameter name Value

m Vehicle mass 17.11 kg

a Distance from CG to front axle 0.30 m

b Distance from CG to rear axle 0.27 m

µi Friction coefficient 0.4

The steering angle follows the chirp signal in an open-loop command. The experiment

is repeated a number of times, varying the wave amplitude and longitudinal speed. A

small fraction of the executed input, used for validation, is shown in Figure 6.3. The wave

starts with an initial frequency of 1 Hz and ends with 6 Hz.

Note that the imperfections of the sine wave are due to the experimental setup nature.

The steering angle is transmitted through a DC motor equipped with a low-level position

controller. Therefore, it follows the steering system dynamics.
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Figure 6.3. Steering angle following the swept sine. The first half-wave period is dis-

carded due to initial measurement noises.

The proposed optimization problem is then solved via Matlab/Simulink in an off-

board computer. There are many available algorithms that can be employed to solve

the nonlinear constrained multivariable function (6.7), we have chosen an interior-point

method using the builtin “fmincon” function from Matlab.

The weighting factors are chosen with respect to the magnitude of the corresponding

residuals. Following an empirically trial and error approach, we designated λ1 = 3,

λ2 = 1, λ3 = 1 × 10−7 and λ4 = 2 × 10−3, expressed each in such SI unit to make cost

(6.7) dimensionless. The optimum estimated parameters obtained are

Ĉα = 94.75 N,

Îz = 1.64 kg/m2.
(6.8)

Naturally, to validate the estimation, we compare the system’s simulated and measured

responses. The simulation is carried out using the identified values Ĉα and Îz along with

the vehicle model, described in Section 6.3.

6.4.4 Validation

We first analyze the identified model considering the open-loop swept sine input of Figure

6.3. The vehicle is set with a constant longitudinal velocity of 0.25 m/s. The results are

shown in Figure 6.4.

It is notable the strong agreement between the measured and simulated vehicle states.

The major discrepancy is observed in the lateral velocity v, mostly noticed during the

transient responses when excited by high frequencies. Despite that, the states are in phase

and the response time between both signals is consistent.

Now we wish to compare the estimated response with a practical maneuver. The

experiment is conducted with a constant longitudinal speed of 0.4 m/s and setting the

desired yaw rates with magnitudes of 0.2 and -0.2 rad/s. This results in a maneuver

where two constant curvature radius are achieved with opposite directions. The performed

trajectory and the commanded steering angle are shown in Figure 6.5.
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Figure 6.4. Comparison between lateral (a) and angular (b) velocities for the sinusoidal

steering angle input.
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Figure 6.5. Trajectory of the proposed maneuver (a) and commanded steering angle

(b).

The vehicle lateral states are shown in Figure 6.6. Note that v cannot be measured

directly. As discussed, it must be filtered and the signal-noise ratio is associated with the

noise exposure of our measurements. Despite unfavorable noise in v, the level of accuracy

required to define whether the simulated response agrees with the estimated v is sufficient

and satisfactory.
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Figure 6.6. In (a) lateral velocity and (b) angular velocity.
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6.4.5 Systematic investigation

To be able to confidently claim that the model properly represents the vehicle lateral mo-

tion, a comparison is presented in a systematic format. A standardized set of experiments

is performed to confirm that the values obtained by simulating the vehicle match those

acquired from the real evaluation.

From Figure 6.7, each experiment is conducted with a constant longitudinal speed,

ranging from 0.3 to 0.7 m/s, and with four levels of steering angle excitation, -5, -10,

-15, and -20 degrees. The steering pattern is time-dependent and the changes occur at

successive 10 seconds time intervals.

In comparing the model to data, the results in Figure 6.7 provide a clear overview of

accuracy. The results are systematic, sustained, repeatable, and show consistent deviation

between measured and simulated signals. We can, therefore, confidently use the model

for further analysis and control purposes.

Note that, for each 10-second interval, the vehicle operates in a steady-state condition,

characterized by the constant regime. For the noisy data, the equilibrium condition

can be quantified through the signal average of the corresponding segment. Thereby,

the simulated and measured steady condition for each interval, as well as their absolute

deviation (error), are reported in Table 6.2.

Table 6.2. Simulated (sim.) and real equilibrium points as well as their absolute differ-

ence (error) for each 10 seconds segment (T1 to T4) of the scenarios presented in Figure

6.7.

u0

(m/s)

T1

(0 to 10 s)

T2

(10 to 20 s)

T3

(20 to 30 s)

T4

(30 to 40 s)

state sim. real error sim. real error sim. real error sim. real error

0.3
v -0.012 -0.006 0.006 -0.023 -0.017 0.006 -0.036 -0.034 0.002 -0.053 -0.041 0.012

r -0.044 -0.046 0.002 -0.087 -0.082 0.005 -0.135 -0.133 0.002 -0.200 -0.191 0.009

0.4
v -0.015 -0.008 0.008 -0.033 -0.021 0.012 -0.048 -0.045 0.003 -0.072 -0.071 0.001

r -0.058 -0.057 0.001 -0.126 -0.121 0.005 -0.183 -0.194 0.011 -0.272 -0.266 0.007

0.5
v -0.019 -0.015 0.004 -0.040 -0.033 0.007 -0.063 -0.055 0.008 -0.088 -0.081 0.007

r -0.073 -0.075 0.003 -0.155 -0.153 0.001 -0.242 -0.253 0.011 -0.340 -0.339 0.001

0.6
v -0.024 -0.010 0.015 -0.044 -0.044 0.001 -0.067 -0.081 0.014 -0.112 -0.112 0.000

r -0.096 -0.094 0.002 -0.174 -0.179 0.005 -0.262 -0.260 0.002 -0.439 -0.426 0.013

0.7
v -0.029 -0.018 0.012 -0.051 -0.042 0.009 -0.077 -0.087 0.010 -0.120 -0.119 0.001

r -0.118 -0.115 0.003 -0.205 -0.197 0.007 -0.309 -0.303 0.006 -0.480 -0.473 0.007
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Figure 6.7. Set of experiments. The steering angle pattern is time-dependent fixed to

the corresponding values: -5, -10, -15, and -20 degrees. Longitudinal velocity is (a) 0.3

m/s, (b) 0.4 m/s, (c) 0.5 m/s, (d) 0.6 m/s, and (e) 0.7 m/s.
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6.5 Stability Analysis

The findings presented in the preceding section lead to an important reflection on the

vehicle equilibrium analysis: the steady-state conditions. For a given input, the steady-

state conditions are related to the vehicle equilibrium points.

Given the nonlinear system (6.1) and its general form ẋ = f(x, u), the system’s equi-

librium condition occurs at xeq and the corresponding input values ueq such that the state

derivatives of the system are all zero, that is, f(xeq, ueq) = 0.

The bicycle model has only the steering angle as input. From a modeling standpoint,

this control input cannot accelerate the vehicle in an arbitrary direction of the state space,

meaning that the system is underactuated. Thus, in accordance with the mathematical

model, steady-state conditions are only possible at certain locations in the state space

[Khalil, 2002].

The study of these achievable equilibrium conditions reveals properties that have clear

implications for stability and control designs. They provide physical understanding into

nonlinear system dynamics and exhibit stability properties that have been used for dif-

ferent control purposes, such as for drift equilibria control [Voser et al., 2010, Cordeiro,

2017], basis of observers [Cordeiro et al., 2017], augmenting a vehicle’s open-loop dynamics

through steering and braking [Bobier-Tiu et al., 2018b], and for estimating and enlarging

the domain of attraction [Masouleh and Limebeer, 2017, Ribeiro et al., 2020].

Assuming that our vehicle model, using the estimated parameters, correctly describes

the vehicle behavior, we can search for the vehicle’s equilibrium points (EP). The equi-

librium points of the bicycle model are characterized by zero lateral and angular accel-

erations. Thus, with v̇ = ṙ = 0, the differential equations given in (6.1) are reduced to:

v̇ =
Fyf cos δeq + Fyr

m
− requ0 = fv(veq, req, δeq) = 0, (6.9)

ṙ =
aFyf cos δeq − bFyr

Iz
= fr(veq, req, δeq) = 0. (6.10)

Note that the lateral forces Fyi are also functions of the desired quantities veq, req, δeq

and u0. Constraining the values of δeq and u0, the system of equations (6.9) and (6.10)

becomes a system of two equations and two unknowns, veq and req, that can be obtained

numerically.

A gradient-based algorithm is used to search for the desired points. The numerical

procedure consists of executing the optimization algorithm from different starting points,

using a uniform distribution.

By repeating the search for a wide range of steering angle values, it is possible to obtain

the steady-state points for a driving condition. Figure 6.8 shows the EP as a function of
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the steering angle that varies from -20 to +20 degrees with an increment of 1 degree. The

results are also shown for three levels of longitudinal velocity.
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Figure 6.8. Equilibrium points considering longitudinal velocities u0 of (a) 0.4 m/s, (b)

1.0 m/s, and (c) 2.5 m/s.

An eigenvalue analysis of the system’s linearization is employed to verify the stability
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condition for each equilibrium point. It is evident that the bicycle model exhibits two

distinct classes of equilibria, stable and unstable ones. The family of EP shown as orange

triangles presents comparatively large values of lateral velocity veq. For these points, the

vehicle is said to be drifting. This is characterized by saturated tire forces, implying in

an unstable equilibrium point.

In contrast, the stable EP, shown as blue stars, is evidenced by a small veq and the

appearance of a linear relationship between δeq with quantities veq and req. They cor-

respond to a typical cornering performed in daily driving conditions. In this case, the

vehicle is turning in the same direction as it is steered. In a drift condition, the handling

characteristic known as countersteering is observed, recognized when the vehicle is steered

to the opposite direction of the turn [Edelmann and Plöchl, 2009]. In agreement with the

findings of [Ono et al., 1998], the unstable points are a result of a bifurcation in the system

dynamics, heavily dependent on the tire force saturation.

Also, from Figure 6.8, no unstable points are verified for low longitudinal velocities.

On the other hand, with u0 = 2.5 m/s, no stable points are verified for absolute δeq greater

than 12o. This means that, for δeq > 120, the steady condition can only be achieved with

drift.

In recent literature, the motivation of understanding and controlling the vehicle in

drifting consists of exploring the new allowable window of operating conditions that would

otherwise be infeasible [Hindiyeh, 2013]. Within this work, however, as a first validation of

the scaled vehicle architecture, the most important behavior aspects and control properties

will be investigated under a stable regime, i.e., considering only the stable equilibrium

points as viable conditions.

6.5.1 Sensitivity analysis of the stable equilibrium points

When performing a maneuver, the vehicle can experience variations in longitudinal veloc-

ity. Moreover, the available friction coefficient may differ from the expected value or even

change during the journey. These are two important parameters that confer meaningful

behavior properties in the vehicle steady-state response.

To identify the parameter whose variation has the most impact on the vehicle lateral

states, we perform a sensitivity analysis. Particularly, this characterization will be focused

on the stable equilibrium points (blue segments) of Figure 6.8b, achieved with longitudinal

velocity u0 = 1 m/s.

Figures 6.9a and 6.9b show the effect of varying the model parameters u0 and µi,

respectively. For each one, a variation of ± 20 % from their nominal values are considered.

Lateral states v and r increase noticeably as the magnitude of u0 increases. The op-

posite is also true, when longitudinal velocity decreases, a decrement in lateral excitation

is detected. On the other hand, we can see that fluctuations around the available µi do



Chapter 6. Experimental Evaluation 106

−20 −10 0 10 20

−0.1

0

0.1

δ (deg)

v
(m

/s
)

0.11

0.12

0.13

0.14

−20 −10 0 10 20

−0.5

0

0.5

δ (deg)

r
(r
a
d
/
s)

0.5

0.6

0.7

u0 − 20% u0 u0 + 20%

(a)

−20 −10 0 10 20

−0.1

0

0.1

δ (deg)

v
(m

/s
)

0.12

0.13

0.14

−20 −10 0 10 20

−0.5

0

0.5

δ (deg)

r
(r
ad

/s
)

0.54

0.57

0.6

0.63

µi − 20% µi µi + 20%

(b)

Figure 6.9. Effect of changing the standard deviation of (a) longitudinal velocity and

(b) friction coefficient.

not lead to a significant variation in the EP. The reason is that the stable points are

characterized by handling regimes such that tire force saturation has not been attained,

the tire mainly operates in its linear region.

According to the tire force model (6.3), µi act on the threshold needed to reach the

saturation condition. For the stable EP, the maximum achievable tire lateral force has not

yet been reached. This allows an error margin in µi without affecting the operation of the

stable points, which explains the insensitivity to small variations in friction. In contrast,

when analyzing the unstable points, these properties are not verified [Voser et al., 2010].

The above discussion indicates that designs responsible to maintain the vehicle near

its stable equilibrium point may not degrade substantially when the exact knowledge of

surface conditions is not available. On the other hand, it is more important to correctly

measure the longitudinal speed so that predictions of the theoretical model precisely
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coincide with the measured response.

6.6 Experimental Validation

Now that the vehicle characterization is complete, we move forward to the SOS approach.

This section, therefore, is devoted to the SOS control experimental analysis using the

vehicle platform to validate the control design. The validation is proposed through a

closed-loop scheme that considers four transitions among stable equilibrium points. For

each of them, a control law is computed using the SOS theory. To simplify the design

and the experimental evaluation, we consider only the steering angle input.

The polynomial vehicle model is assembled using the rational polynomial approxima-

tion. The RoA estimation and control synthesis are performed as described in Chapter

5. All vehicle parameters necessary for the analysis are listed in Table 6.3.

Table 6.3. List of physical parameters.

Symbol Parameter name Value

m Vehicle mass 17.11 kg

a Distance from CG to front axle 0.30 m

b Distance from CG to rear axle 0.27 m

µi Friction coefficient 0.4

Cα Cornering stiffness 94.75 N

Iz Yaw moment of inertia 1.64 kg/m2

δmax Maximum steering angle 23 deg

By evaluating Algorithm 1 and 2, we achieve the results presented in Figures 6.10 and

6.11, respectively. The estimated RoA of the vehicle in study is presented for a series of

conditions. In these cases, longitudinal velocity is u0 = 1.5 m/s and the steering angle is

set at three levels of excitation: 0, -5, and -10 degrees.

The results are similar to those presented in the previous chapter. Some characteristics

are clearly analogous: the phase portrait have a similar format; the estimation is improved

for high-order Lyapunov functions; and, as we increase the steering angle, the estimation

accuracy is reduced due to the asymmetric gradient. Moreover, the closed-loop analysis

shows that the control law indeed expands the RoA, stabilizing a small portion of the

plane. From these figures we confirm that the model is assembled correctly and the

synthesis is evaluated properly.

As mentioned, for the experimental evaluation, we consider four transitions among

equilibrium points. For this purpose, we arbitrarily chose the points presented in Table 6.4.
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Figure 6.10. Estimated RoA. Steering angle is set to (a) δ = 0, (b) δ = −5, and (c)

δ = −10 degrees.

Observe that, for each selected pair u0 and δeq, there is a single computed value of veq and

req that characterize the stable EP. The experiment is divided into four time-dependent

segments, T1,. . . ,T4, individually associated to veq and req that are the instantaneous

goal point.

Table 6.4. Theoretical stable equilibrium points calculated from the bicycle model.

Segment u0 (m/s) δeq (deg) veq (m/s) req (rad/s)

T1 0.6 -12.00 -0.0554 -0.2212

T2 1.2 -17.50 -0.1240 -0.6528

T3 0.4 -15.00 -0.0481 -0.1840

T4 0.9 -13.50 -0.0846 -0.3750

For each segment Ti, a respective control law must be computed. For a more elaborate

and comprehensive validation, we designed first- and third-orders polynomial controllers.
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Figure 6.11. Estimated RoA of the closed-loop system. Steering angle is set to (a)

δ = 0, (b) δ = −5, and (c) δ = −10 degrees.

The first-order computed gains are

K1,T1 = 0.0563v̄ + 0.1577r̄,

K1,T2 = 0.0761v̄ + 0.1652r̄,

K1,T3 = 0.0578v̄ + 0.1009r̄,

K1,T4 = 0.0350v̄ + 0.1221r̄,

(6.11)

and third-order controllers

K3,T1 = 0.0150v̄3 − 0.0435v̄2r̄ − 0.0005v̄2 + 0.1637v̄r̄2 + 0.0070v̄r̄ + 0.2476v̄+

+0.0084r̄3 − 0.0040r̄2 + 0.1574r̄,

K3,T2 = 0.0115v̄3 − 0.0417v̄2r̄ − 0.0003v̄2 + 0.0891v̄r̄2 + 0.0126v̄r̄ + 0.2181v̄+ (6.12)

+0.0052r̄3 − 0.0001r̄2 + 0.2246r̄,

K3,T3 = 0.0128v̄3 − 0.0478v̄2r̄ − 0.0036v̄2 + 0.1197v̄r̄2 + 0.0095v̄r̄ + 0.2605v̄−
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−0.0023r̄3 − 0.0006r̄2 + 0.2552r̄,

K3,T4 = 0.0798v̄3 − 0.0825v̄2r̄ − 0.0010v̄2 + 0.1089v̄r̄2 + 0.0101v̄r̄ + 0.2623v̄+

+0.0061r̄3 − 0.0045r̄2 + 0.3730r̄.

Each segment Ti is associated to a control law, where K1,Ti and K3,Ti are the first- and

third-order polynomials, respectively. Variables v̄ and r̄ are expressed in their respective

coordinate system, i.e., v̄ = v − veq and r̄ = r− req. For the experimental evaluation, the

transition among controllers is deliberately driven by time.

Interestingly, the coefficients of the quadratic terms in (6.12) are noticeably smaller

than their first- and third-order pairs. Quadratic terms always produce a positive con-

tribution to the control effort, therefore, it is intuitive to reduce the importance of such

terms due to the asymmetry that it generate. This is also the reason that we did not

search for a second-order polynomial controller.

As it can be seen in Figure 6.12, the experimental evaluation results in a maneuver

with four radii of curvature. This is obviously true since the desired equilibrium conditions

of each segment are appropriately distinct. Although the references are the same for both

controllers, a slight difference is noted in the performed trajectory. For the third-order

controllers (Figure 6.12b), the radius of curvature is slightly greater, which resulted in

steeper curves.
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Figure 6.12. Performed trajectory. The results are obtained using (a) first- and (b)

third-orders controllers. Green and red marks are the initial and ending positions.

In Figure 6.13, we show the measured longitudinal velocity. The response properly

follows the desired values, which are listed in Table 6.4. Longitudinal velocity is impelled

by the motor’s drive that regulates the wheels velocity. It is not related to the SOS

controller, therefore, much the same response is expected between them. Also note that

segments T1 to T4 are discriminated over time.

The desired and measured lateral response, v and r, are shown in Figure 6.14. The
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Figure 6.13. Measured longitudinal velocity for the closed-loop maneuver using (a) first-

and (b) third-orders controllers.

accordance and also errors between the reference and measured response are evident.
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Figure 6.14. Desired and achieved equilibrium conditions. Left and right figures are

obtained using the first and third order controllers, respectively.

Finally, in Figure 6.15 we show the commanded steering angle. A strong actuation is

observed for the third-order controller, which is the reason for the steeper curves discussed

above. For controllers K3,T i, in addition to the contribution from the elements of second

and third orders, their linear coefficients are also remarkably greater than the coefficients

of K1,T i. This is the reason for the noisy signal as well as the large effort observed between
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transitions.
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Figure 6.15. Commanded steering angle using the (a) first- and (b) third-order con-

trollers.

The above discussion is evident by examining Figure 6.16. The continuous curves are

the level sets of the third-order controller. Similarly, dashed lines stand for the level sets

of the first-order controller. The figure shows the values of v̄ and r̄ necessary to provide

a given input.

Take, for example, the 15 degrees steering correction (brown curve). The perturbations

x̄ necessary to provide a steering angle correction of 15 degrees are considerably smaller

for K3 than K1. This shows that controller K3 can provide high commanded values with

relatively small errors.

In Figure 6.16 we have shown the control curves of segment T1, nonetheless, similar

S-shaped curves are also observed for segments T2 to T4.

−1.5 −1 −0.5 0 0.5 1 1.5
−4

−2

0

2

4

v̄ (m/s)

r̄
(r

ad
/s

)

-15o

-10o

-05o

0o

05o

10o

15o

Figure 6.16. Level sets of the polynomial control law. Dashed and continuous lines

stand for the first- and third-orders controllers, respectively.

The expected and obtained steady-state values are presented in Table 2. The achieved

values are computed through the average of the signals of each segment. We consider only
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the stationary regime by discarding the transient response from the calculation.

Table 6.5. Expected and reached values using the first- and third-order controllers.

States

Segment Values delta (deg) v (m/s) r (rad/s)

T1

Expected -12.00 -0.0554 -0.2212

Reached K1 -11.86 -0.0573 -0.2386

Reached K3 -11.68 -0.0618 -0.2386

T2

Expected -17.50 -0.1240 -0.6528

Reached K1 -17.04 -0.1441 -0.6821

Reached K3 -16.78 -0.1381 -0.6950

T3

Expected -15.00 -0.0481 -0.1840

Reached K1 -14.78 -0.0491 -0.1914

Reached K3 -14.74 -0.0481 -0.1840

T4

Expected -13.50 -0.0846 -0.3750

Reached K1 -13.28 -0.0903 -0.4042

Reached K3 -12.88 -0.0921 -0.3989

Although we did not force the vehicle to reach the limits of stability, we were able to

show that the control design based on the sum-of-squares programming is a valid tool.

It is clear that the complexity of the resultant control law grows with the polynomial

order, which may result in abstract mathematical quantities, as in (6.12). The third-

order polynomial is a counter-intuitive control function that progressed correctly in the

proposed experiment.

6.7 Final Remarks

This section illustrates the use of a car-like 1:5-scale vehicle as a valid and reliable test-

bed platform whose lateral dynamics are similar to those of a full-sized vehicle. The

validation scheme is proposed by way of three model-based essential concepts, comprising

an identification process, a stability analysis step, and an SOS control design.

The control validation is proposed through a closed-loop maneuver that considers four

transitions among stable equilibrium points. The results show that the proposed SOS-

based methodology can be used as a valid analysis and design tool for a real vehicle

application.

The following publications were produced presenting the results of this chapter (Ribeiro,

Fioravanti & de Paiva 2020) and (Ribeiro, Koyama, Moutinho, de Paiva & Fioravanti

2020):



Chapter 6. Experimental Evaluation 114

• A. M. Ribeiro, A. R. Fioravanti, A. Moutinho and E. C. d. Paiva. Model-Based

Approach for Cornering Stiffness and Yaw Moment of Inertia Estimation of a Scaled

Electric Vehicle. In XXIII Congresso Brasileiro de Automática (CBA 2020), Santa

Maria - Brazil, November 23-26, 2020.

https://doi.org/10.48011/asba.v2i1.1007

• A. M. Ribeiro, A. R. Fioravanti, A. Moutinho and E. C. d. Paiva. A comprehensive

experimental validation of a scaled car-like vehicle: Lateral dynamics identification,

stability analysis, and control application. Control Engineering Practice. Volume

116, 2021.

https://doi.org/10.1016/j.conengprac.2021.104924
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7 Conclusion

In this thesis, we have shown how the sum-of-squares technique can be used to analyze

the vehicle nonlinear system algorithmically. We investigated the region of attraction

estimation and its further enlargement through a state feedback design while accounting

for input saturation. Then, we explored a scaled electric vehicle which was used for

experimental validation of the discussed tools.

Before closing, we will give a summary of the main results and developments pre-

sented in the previous chapters and discuss briefly recommendations for future research

directions.

7.1 Summary

In this thesis, we have seen the following results:

• In Chapter 3, we reviewed the background material needed for problem formulation

in the subsequent chapters. A brief outline of polynomial definitions, sum-of-squares

polynomials, and the Positivstellensatz theorem are presented.

• In Chapter 4, we presented how the sum-of-squares and semidefinite programming

were used for the analysis of nonlinear systems. In particular, we explored the region

of attraction estimation and how it can be expanded through state feedback with

input saturation. Our first results were brought with the SOS-based control design

analysis for the class of non-affine in the input system. A Taylor approximation was

proposed and the inclusion of a new step into the iterative algorithm is discussed.

We finished by giving some examples for a better understanding.

• In Chapter 2, we inspected the existing tire and vehicle models used throughout

this dissertation. It included multiple approaches to tire force modeling as well as

three versions of the vehicle planar model.

• In Chapter 5, we considered the region of attraction estimation of the lateral dynam-

ics of a nonlinear single-track vehicle model. The tire forces were approximated using

rational functions that are shown to capture the nonlinearities of more complex tire

curves remarkably better than polynomial functions. The chapter also addressed the
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stabilization problem, the objective was to estimate the largest state-space region

such that stability and input saturation can be guaranteed. The algorithm allows

the region of attraction to be approximated by a level set of a Lyapunov function and

the computation of polynomial state feedback control laws. It is shown that SOS

programming techniques can be used to approximate the stability region without

resorting to numerical integration. To conclude, a Monte-Carlo analysis is presented

to show that the proposed SOS-based methodology can be used as a valid analysis

and design tool.

• In Chapter 6, thorough characterization of a scaled electric vehicle is presented

through identification, stability analysis, and SOS-based control design schemes.

The estimation of unknown parameters was performed based on the analysis of

the signal produced at the output of the platform when exciting the system by

a given input signal. The obtained results led to a second important reflection

that highlights meaningful vehicle behavior properties. The analysis section is then

presented showing the characterization of the vehicle’s operating conditions. Stable

equilibrium points were classified and chosen as the desirable conditions for a given

maneuver. Finally, the control scheme incorporated the above characteristics into

its design. The SOS theory was employed to synthesize polynomial control laws

that were experimentally validated using the vehicle platform. For each presented

characterization, a wide set of experiments were carried out using the scaled vehicle

platform. In all of them, a persistent agreement between expected and achieved

response was obtained.

7.2 Future Research Directions

We would now like to mention a few pointers for future research. The SOS-based anal-

ysis and controller designed and successfully implemented in this dissertation provides a

fundamental understanding of vehicle stability by means of Lyapunov’s theorem. From

this foundation, there are multiple guidelines for future research. Some of these directions

continue to focus upon the region of attraction estimation for a more refined model, while

others involve the control design enhancement and an in-depth experimental validation.

7.2.1 Inclusion of longitudinal and vertical dynamics and weight transfer

It was observed in Section 5.3.3 that load-transfer effects confer meaningful behavior prop-

erties that are important factors for stability. Nonetheless, the bicycle model employed in

the study assumes lumped tires that reflect the effect of lateral weight transfer upon the

net lateral force capability at the front and rear wheels. It does not capture the effect of
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load transfer upon the individual wheels at an axle.

For a more precise investigation, these effects should be incorporated into the analysis

through a model refinement. With a three-stated and four-wheel planar model, the wheels

can be modeled individually and the coupling between the tire lateral and longitudinal

forces can be considered. Nonetheless, analysis feasibility relies upon the resulting model

being polynomial in its arguments.

The central effect of this improvement would be upon the force capability of each

wheel. The yaw moment and steering angle authorities are only available through the

attainable force at each wheel, which is better described by the improved model. Besides

that, the bicycle model assumes a constant longitudinal velocity. In a more complete

model, longitudinal speed should be written as an additional state such that the effect of

variations around the trimmed condition is alleviated.

7.2.2 Regulation in unstable equilibrium conditions

The vehicle equilibrium conditions are characterized by one stable equilibrium point and a

pair of unstable equilibria. The feature of strictly controlling the vehicle in these unstable

points, i.e., intentionally drifting, considerably increases the range of allowable operating

conditions that, otherwise, would not be possible.

The sum-of-squares programming technique could be extended to this closed-loop

stabilization problem. It is often difficult to produce a perceptive understanding of the

vehicle response under a control structure, such as predicting the combined effect of

distinct inputs.

By using the SOS approach, it may be possible to produce closed-loop dynamics that

are viable to manipulate. It should be possible to account for multiple inputs and, most

importantly, estimate and expand the region of the state space that the drift controller is

feasible.

7.2.3 Performance requirements

The performances of the control systems are not explicitly incorporated into the SOS

control design. From a practical point of view, it is possible to obtain a balance between

inputs by adjusting the saturation limits of the respective control signal. However, the

author understands that these parameters must follow the physical limitations of the plant

in the study.

One can consider an objective function that makes, for example, a compromise between

state error and control energy efficiency, such as in the classic LQR. By means of additional

steps into Algorithm 2 in Chapter 4, it should be possible to consider such performance

criteria. It is worth mentioning that this is non-standard in the SOS-based synthesis
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problem and would require a detailed and careful analysis.

7.2.4 Experimental validation

Although an experimental validation was presented in Chapter 6, the analysis did not

take the vehicle to the limits of handling. One should run experiments that manage the

vehicle to a region near the stability boundary. This scenario would test, and also attest,

the stable region predicted by the theoretical analysis. Therefore, we highlight the need

for more exhaustively experimental validation.
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