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RESUMO 

 

A presente dissertação expõe a pesquisa que culminou na proposição de um método para 
síntese da animação de transições entre sinais de um avatar sinalizante da Língua de Sinais 
Brasileira (Libras). Nos últimos anos, tem sido cada vez mais incentivada e presente no dia 
a dia a acessibilidade em materiais multimídia (filmes, televisão, internet, etc.) fruto da 
demanda de uma parcela considerável da população que se sente mais confortável 
comunicando-se em língua de sinais. Uma forma de melhorar a acessibilidade de conteúdo 
multimídia em língua de sinais é a apresentação do conteúdo por meio de janela de língua 
de sinais. Nessa janela é exibido o vídeo de um apresentador real ou virtual. Um 
apresentador virtual de língua de sinais (avatar sinalizante) deve, assim como um intérprete 
humano, transmitir informação em língua de sinais de forma inteligível. Uma abordagem 
para se atingir essa meta é a concatenação de animações de sinais armazenadas em uma 
base de dados. Tal concatenação, objeto desta pesquisa, deve ser feito de tal forma que 
não prejudique a legibilidade, buscando movimentos suaves e naturais para o avatar. 
Pesquisa inicial realizada no âmbito desse trabalho de mestrado buscava uma solução no 
campo da animação procedural baseada em regras cinemáticas derivadas da Lei de 
Donders, porém como não há consenso em trabalhos acadêmicos de biomecânica humana 
para tal a solução adotada foi um sistema de animação híbrido entre baseado em dados 
(data-driven) e procedural. Esta solução foi possível criando-se um banco de dados de 
conjuntos de curvas de animação de transições entre sinais gravadas de intérpretes com 
equipamento de captura de movimento. Estas curvas de animação para serem 
armazenadas e manipuladas foram ajustadas em segmentos de curvas paramétricas. No 
presente trabalho foram exploradas a formulação de curvas de Hermite e de B-Splines, a 
primeira através de método próprio e a segunda utilizando-se de algoritmo proposto por 
Paul Dierckx que utiliza o gradiente conjugado para ajustar, por meio de processo de 
minimização, o conjunto de nós e coeficientes aos dados. Associado a estas curvas de 
animação estão conjuntos de parâmetros que descrevem os momentos anteriores e 
posteriores à transição utilizando Transformada Discreta de Cossenos (DCT) das curvas 
de animação dos sinais. Esses parâmetros são utilizados para encontrar o conjunto de 
curvas de animação de transição mais próximo ao intervalo que se quer sintetizar, utilizando 
distância mínima quadrática. Por fim, é apresentado um comparativo entre diferentes 
curvas utilizadas para sintetizar animações entre sinais de Libras utilizando como parâmetro 
o erro quadrático médio (RMSE) entre as animações geradas e o sinal original. 
 

Palavras-Chave: Animação por Computador, Avatares, Ajuste de Curva. 

  



 

ABSTRACT 

 

This dissertation presents the research which culminated in a method for inter-signs 
transition animation for a virtual Brazilian Sign Language (Libras) interpreter. In recent years, 
accessible multimedia material (films, television, internet, etc.) has been increasingly 
promoted and has become more present in our daily life, due to the demand of a population 
that feels more comfortable communicating in sign language. One way to improve the 
accessibility of multimedia content is to use an overlaid sign language window, presenting 
the content. This window displays the video of a real or virtual presenter. A virtual sign 
language presenter (signing avatar) must, like a human presenter, transmit information in 
sign language intelligibly. An approach to reach this goal is to concatenate animations of 
signs stored in a database. Such concatenation, which is this research’s objective, must be 
made in a way as to not impact legibility, seeking natural and smooth movements. An initial 
research activity sought a procedural animation solution based on kinematic rules following 
a Donders Law’s type of model, but since there was no consensus in human bio-mechanic 
academic studies for it the adopted solution was a hybrid data-driven and procedural 
animation system. This solution was possible by creating a database of animation curves 
recorded from sign language interpreters using motion capture (mocap). These animation 
curves, to be stored and manipulated, were fitted into parametric curve segments. In the 
present work, the formulation of Hermite and B-Spline curves were explored, the first using 
a method developed  by the researchers and the latter using an algorithm proposed by Paul 
Dierckz using the conjugated gradient to adjust, through a minimization process,  the knots 
and the coefficients of the B-Spline. Associated with these animation curves are parameter 
sets describing the moments prior and after transitions using Discrete Cosine 
Transformation (DCT) in the signs’ animation curves. These parameters are used to find the 
closest transition animation curves to the transition to be synthesized, using minimum 
square distance. It is also presented a comparison between curves used to synthesize 
animations between Libras signs using as parameter Root Mean Square Error (RMSE) 
between the generated animations and the original signal. 
 

Keywords: Avatars, Computer Animation, Curve Fitting. 
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1 INTRODUCTION 

  

 According to the Instituto Brasileiro de Geografia e Estatistica (Brazilian Institute of 

Geography and Statistics), IBGE (2012), the most recent Brazilian census shows that 9,71 

million citizens can be considered having some sort of auditory deficiency of which 2,14 

million (approximately 1.12% of the total population) are deaf or possess severe auditory 

deficiency. The government has shown concern on how to better integrate these citizens 

with new educational approaches. he existence of a great educational gap in the education 

of individuals with severe auditory deficiency or completely deaf in relation to those that 

present no auditory deficiency is widely documented (SOBEL, 2006). This is attributed to 

the language used to educate, in our case Portuguese, which is not the language used in 

their daily life, the Brazilian Sign Language (Libras). This means that both in oral and written 

communication those citizens have to deal with additional challenges, similar to a Brazilian 

student trying to learn calculus with a Russian textbook. 

 The government has also put forth the normative instruction (instrução normativa) 

116, on December 18th 2014, by the Brazilian National Movie Agency (ANCINE). In its first 

paragraph, it instructs that henceforth all productions made with public resources should 

include a Libras translation. This creates a big demand for the production of audiovisual 

Libras content, which a signing avatar could supply. 

 These welcome initiatives put a high demand for Portuguese – Libras interpreters. A 

possible solution to meet demands when interpreters are not available is the use of a 3D 

signing avatar.  The avatar can provide students with self-sufficient means and 

independence to learn and study at home, especially in early school years. Audiovisual 

content creators that need to adequate their production to the ANCINE normative instruction 

and have no means to hire a Libras interpreter can also benefit from a signing avatar, 

especially when dealing with interactive media. 

 Signing avatars have been the subject of extensive research as can be seen in 

MOREIRA et al (2011), AMARAL et MARTINO (2012), and SOARES et al (2017). This 

dissertation inserts itself in this collective endeavor by proposing a new method for 

transitioning arms’ movements between Brazilian Sign Language signs. This method shows 

its relevance when we consider generating real-time sign sentences, whereupon the 3D 

avatar has a database of signs and needs to concatenate between them to create new 
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sentences, and this process needs to be done in a way as to create an animation that will 

look natural to facilitate understanding. 

 In summary, the goal is to present a method that synthesizes a natural-looking and 

smooth transition between two Libras signs, which would increase intelligibility and make 

the movement of the signing avatar seem more natural. 

 To achieve this goal, extensive research into computer animation has been done in 

order to understand how real-life arm movement is created and how this movement can be 

translated into digital information that can be manipulated for the signing avatar goal. An 

initial attempt was to find a model that could predict all arm movement, such as Minimum 

Work or Minimum Torque Change, but upon reviewing the literature on the bio-mechanics 

of arm movement this approach did not seem easily achievable. However, this literature 

review suggested us an approach whereupon we could synthesize new movement based 

on already existing similar movement (i.e. similar initial and final arm poses). For that, we 

decided to use motion capture (mocap) to create a database of real-life interpreters signing 

sentences in Libras and use the animation curves from these mocap movements to 

synthesize new transitions between signs. 

 To implement the method, we had to understand some questions pertinent to our 

research: how previous work in computer animation and in mechanics of arm movement 

can guide the proposition of a method to synthesize new movement, how to store and 

manipulate animation curves, and how to use preexisting animation to synthesize new ones. 

These questions are explored in the next chapters, organized as follows. 

 Chapter 2 presents the literature review aimed at finding models to human arm 

movement in real life, defining the propositions used in the method. The chapter also 

presents a review of animation and computer animation in context with this research, 

defining terms and concepts used in the later chapters. 

 Chapter 3 presents the methodology developed based on the propositions discussed 

in Chapter 2. 

 Chapter 4 shows the results obtained by applying the method described in Chapter 

3 to a 3D Libras signing avatar. The chapter also presents a quantitative comparison based 

on the errors between the animation curves synthesized by the method and the original 

mocap animation. 

 Chapter 5 presents conclusions reached upon analyzing the data from the previous 
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chapter and suggestions on how improvements can be made to the method presented, and 

further research is also discussed. 

 Partial results of the research have been published in the papers DE MARTINO et al. 

(2016) and ANGARE et al. (2015). 
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2 OVERVIEW OF CHARACTER ANIMATION 

 

 In this chapter, we review the main published works that establish the theoretical and 

practical foundation of this dissertation. The chapter presents the underlining concepts for 

the choices made in the method proposed. The chapter is divided into two sections: 

Section 2.1 Animation: defining some of the major concepts of animation 

contextualized in our work, a more detailed text about these concepts is presented in 

Appendix D; we invite the more interested reader to venture into its pages since for 

academic brevity and focus we could not expand on the topic in this chapter; 

Section 2.2  Bio-Mechanics of Arm Movement: discusses relevant research 

focusing theoretical aspects of arm movement modeling and propositions that 

constitute the foundations of the method proposed, answering the question presented 

in Section 2.1 

 

2.1 ANIMATION 

 

 Research has been conducted towards the creation of a signing avatar, and the 

majority of work uses solutions already provided by software to transition between signs, 

recurring to the use of simple curves interpolation. GONCALVES, TODT et GARCIA (2015) 

and MURTAGH (2011) both use Blender, an open-source free-to-use 3D software available 

online, to interpolate the movement between Brazilian and Irish signs, respectively, in a 

virtual avatar. FERREIRA (2017) also presented an approach for a virtual avatar in 

Portuguese Sign Language, but the specifics of how the avatar transitions from sign to sign 

is overlooked and can only be inferred to be done by simple curve interpolation. 

 The previously mentioned research works reflect the low focus current research on 

signing avatars has on character animation. Our research proposes then to improve upon 

signing avatar animation, with a method for improving the smoothness of the movements of 

the signing avatar and thus increase intelligibility. 

 It is important to understand where in the animation pipeline the proposed method is 

inserted. For that, we can refer to a general outline of a 3D animation pipeline as described 

by PARENT (2012) and shown in Figure 2.1. 
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Figure 2. 1. 3D Computer Animation Pipeline. 

 
Image from PARENT (2012). 

 

 To implement our method we use a virtual avatar that has been designed (Art), 

Modeled, Shaded, set up in layout with the set, and is lighted to a final camera render. All 

these steps shown in Figure 2.1 are important to develop an animation piece, but our method 

will deal with only the synthesis of movement (Animation), that is the creation of animation 

curves comprised of a sequence of floating-point numbers that describe a virtual skeleton’s 

joints’ angles in a time range. 

 To understand how computers synthesize animation generally (i.e. what is usually 

done in most animated films nowadays) and in the context of the virtual characters we can 

make a parallel with the traditional hand-drawn process described by THOMAS, F. et 

JOHNSTON, O. (1995) and SHAMUS, C. (1990), summarized in Figure 2.2. 
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Figure 2. 2. Diagram showing the movement creation pipeline in a cel system studio. The 
animation department (central blocks) receives layout, which is the background and the 

different layers and rough positions of characters, from the Layout Department (left block) 
and delivers the drawn frames for the movie for the Ink and Paint Department (right block) 

which is responsible for transferring the drawings to cel and coloring them. Inside the 
animation department, we can see the different animation professionals (animators, 

assistant animator, and inbetweener) and what they are responsible for (key poses, break 
down poses, and in-betweens, respectively). 

 
Image from the author. 

 

 While most computer animation software will try to fill the role of the inbetweener, 

creating the intermediate positions between different key poses, we propose in our method 

to go a step further and fill the role of the assistant animator as well (see Appendix D for 

details). For that, we don’t intend to simply interpolate between poses, but to use previously 

learned motions to create a more complex animation, as Frank Thomas and Ollie Johnston 

would put it, to decide how the avatar will move. 

 One way of gaining this knowledge is to use as a basis animation derived from real-

life movement, which is a form of improving animation that can trace its roots to the 

beginning of XXth century animation with Fleischer’s rotoscope (FLEISCHER, M. 1917). 

 This mocap basis is not a solution by itself, so we refer back to PARENT (2012) on 

his taxonomy of 3D Computer Animation, which presents us with 3 different categories of 

animation to synthesize motion: 

 Artistic Animation is the animation most commonly used when generating 

animation for film and television. In this type of animation the user (animator) 

defines specific positions of the character in time, commonly referred to as 

keyframes, and the system is usually only responsible for interpolating 

between these positions; 

 Data-Driven Animation is where real-life information guides the generation of 

an animated virtual object. The most common technique in this category is the 

mocap, and one great work that inspired the method here presented is 

PULLEN et BREGLER (2002) discussed in more detail in Appendix D; 

 Procedural Animation is usually the most computationally complex category 
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and it encompasses those types of animation that synthesize movement 

based on mathematical models. There are several types of animation in this 

category, some of which are clothes and hair simulation, crowds, and rag-doll 

systems. 

 Understanding the animation pipeline, specifically how animation curves enable a 

virtual character to move is the first step towards building a solution to the problem of 3D 

signing avatars' movements. Knowing how different methods create movement in virtual 

environments, as proposed by PARENT (2012), enable us to have a first glimpse into the 

direction our method can take. Will it be a more artistic approach where the animator will 

have more direct control; or perhaps a data-driven where animation from mocap is used to 

synthesize the transition between signs such as PULLEN et BREGLER (2002) proposed; or 

even a procedural method based on mathematical models for movements? 

 To better answer this, one needs to look into real life and what has been researched 

regarding arm movement, which is the topic for the next section. 

 

2.2 BIO-MECHANICS OF ARM MOVEMENT 

  

An understanding of the mechanics of human arm movement is required to represent 

it in three-dimensional animation. In the context of this dissertation, a study has been made 

to attain such understanding. The study focused only on research on perceived motion 

discarding references to neurological synapses, muscle response, etc. Presented here are 

some previous works done mostly in human motor and kinetics. As previously mentioned, 

our solution is data-driven, but that was not our first approach, which was a procedural type 

of animation, since a lot of research into human arm bio-mechanics had shown there was 

some underlying set of rules that could mathematically model its animation. We present here 

initially some of these works and will later show the works that have shown the strongest 

arguments towards a data-driven approach in opposition to a procedural one. 

 Before dwelling on the actual arm movement, it is noteworthy to point out the work in 

DONDERS (1864) since it is widely cited in the works presented below. Donders was a XIXth 

century physician that studied the human eye. One of his questions was how the human eye 

moves. He decomposed this movement into imaginary horizontal and vertical axis which he 

called the horizontal and vertical retinal meridians (Figure 2.3). The horizontal meridian is 
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an imaginary line that crosses the eye from its center and it's parallel to a line that goes from 

ear to ear. This meridian represents the rotation of the eye going up (towards the forehead) 

and down (towards the chin). The vertical meridian is an imaginary line that crosses the eye 

from its center and it's parallel to a line that goes from the top the head to the mid point 

between the feet, this meridian represents the rotation of the eye going from one ear to the 

other. In his paper, the author states what is known as Donders' Law: 

 

... to each position of the line of sight belongs a definite orientation of the horizontal 
and vertical retinal meridians relative to the coordinates of space (DONDERS, 1864) 

 

Figure 2. 3. Eye rotation axis. 

 
Image from the author. 

 

 That is, for every direction of the eye, although it is roughly a sphere and has three 

degrees of freedom, the rotations around the horizontal and vertical meridians are always 

the same, that is the angle in each of these axes have the same value, independent of the 

initial gaze orientation. This means that whatever the direction the eye is looking, the angle 
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around the horizontal and vertical meridians are always the same. We can explain this with 

an example where different rotations can result in the same final result: a die rotating. 

Imagine we're seeing the die as in Figure 2.4 with the sides 1 up, 5 on our right, and 4 on 

our left, we'll call this configuration (a). If we rotate it 180 degrees clockwise on its y-axis we 

have the configuration (b), where side 6 was adjacent to side 4 and it's now up and side 3 

that was adjacent with side 1 is now left. We now rotate it again, but on its x-axis and have 

the configuration (c) showing the side 2 that was adjacent with side 6 on our right and side 

1 that was adjacent with side 5 on top. This same result can be obtained from configuration 

(a) with an 180-degree rotation on its z-axis. So a final configuration (c) can be the result of 

2 different rotations! Donders showed that is not the case for the human eye, a final eye 

globe rotation can only be done by a definite rotation in the horizontal and vertical meridian 

axis. 

 

Figure 2. 4. Rotations of a die. We can go from an initial configuration (a) to a final 
configuration (c) by rotating 180º on y (configuration b) and then 180º on x, or by rotating 

180º on z. 

 
Image from the author. 

 

 One of the explanations for Donders’ Law is the fact that the eye has a very restricted 

rotation on its anteroposterior axis, commonly known as the line of sight (Figure 2.3) 

(CYBERSIGHT, 2016), and thus the eye globe can be thought as having almost only 2 DOF. 

If we go back to our die example from Figure 2.4 we can have an analogy saying that if it 

was an eye globe it cannot rotate on its z-axis (which works as the anteroposterior axis in 

the human eye), and if we restrict rotations on positive numbers and less than 360 degrees 

we can only have configuration (c) with the 180 degrees rotations in y and x. Rotation around 
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the anteroposterior axis is used to adjust to the tilting of the head (LUDWIG et CZYZ, 2019). 

 Donders' Law was held true and further elaborated in various works like EWART et 

al (2016) and MAROTTA, J. J., MENDENDORP, W. P. et CRAWFORD, J. D (2013) out of 

this dissertation's scope and it was taken as an indicator in arm movement research of an 

underlying and defining rule that could predict exactly what rotations would be needed to 

achieve certain motion goals, i.e. there is a law that states exactly how an arm movement is 

created based on its final position. For this dissertation, this would indicate that a pure 

procedural animation with an underlying mathematical model could perfectly describe arm 

movement, since as with Donders' Law for the eye orientation it would be possible to devise 

a function that maps final arm position to rotations of shoulder, elbow, and wrist. As can be 

seen in the next pages, various researches have been done that show this function is not 

as straightforward as one might like, there are too many exceptions to a straightforward 

mathematical function to arm movement. 

 In the work by GOTTLIEB et al (1997), it was analyzed what the linear 

correspondence between elbow and shoulder torques in reaching arm movement was. Two 

movement sets were created: the first one (CO) with the initial hand position fixed and six 

subjects instructed to reach 12 small targets (cotton balls with 2 cm. diameter) in the 

parasagittal plane equally spaced in a circle or ellipse centered on the initial hand position 

similar to the hour markers in a clock (Figure 2.5), the second movement set (CX) was 

similar but initial hand position was outside the targets circle and the circle or ellipse diameter 

was increased from 40 cm to about 50 to 80 cm1, using only three subjects. 

  

 
1 Although in the work it is not clear if the 50 to 80 cm corresponds to radius or diameter, it is assumed the 
latter. 
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Figure 2. 5. Experiments from GOTTLIEB et al. (1997). “A: center-out movements: subjects 
moved from an initial location out in front of the shoulder to a series of 12 targets, located 

at the hours of a clock and 20 cm from its center. Parasagittal target plane was aligned with 
the arm. Heavy lines show the arm segments at the initial position when the subject 

prepared to move. Thin lines show average finger paths to the 12 targets by subject T. 
Markers are drawn at 50-ms intervals. Angle variables for Eq. 2 are defined here. B: 

centercrossing (CX) movements: subjects started from different initial locations, elliptically 
arranged around a center near shoulder height. They moved to targets located at the 

opposite side of the ellipse. Six of the 12 movements directions are illustrated, the end 
points of the movements are identified by the numbers. Other 6 movements were made in 
the opposite directions. Heavy lines show the arm segments at the initial position of the 1 
o’clock movement. Thin lines are the finger paths of individual movements.” (GOTTLIEB et 

al. (1997)) 

 
Images from GOTTLIEB et al. (1997). 
 

 The movement was captured using "... electro-optical motion measurement system 

(OPTOTRAK-3010) recorded at 200 samples / seconds the locations of four markers 

attached to the shoulder, elbow, wrist, and index fingertip", and applied to a virtual skeleton 

with five degrees of freedom including shoulder, elbow and wrist.  bi-dimensional model was 

used to calculate the torques, but still it is odd that the paper cites 5 degrees of freedom 

since a standard 3D model would have 7 DOF (3 for shoulder, 1 for elbow and 3 for wrist) 

and a 2D model would have only 3 DOF. Nonetheless, the authors analyzed the shoulder 

and animation curves using Newtonian equations and statistic data to estimate arm 



24 

 

segments mass. The authors concluded that there is a linear relationship between shoulder 

and elbow torque, as can be seen in Figure 2.6. Furthermore, they propose a linear 

relationship between those torques (Equation 2.1), with a constant Kd varying systematically 

with movement direction. 

 

Figure 2. 6. Results from GOTTLIEB et al. (1997). Shoulder and elbow torque computed in 
the first (left) and second (right) movement set proposed by GOTTLIEB et al, 1997. The 

linear relationship can be seen in the graph's shape similarities. 

 
Images from GOTTLIEB et al. (1997). 

 

 The authors point out an interesting analysis that when performing similar movements 

(in the first set corresponding to reaching targets with 10 to 20 cm distance) one can see 

"...fairly linear relations between joint angles and of course the hand path itself is fairly 

straight", but that does not hold when analyzing movements too different, i.e. targets too far 

apart. 

 DESMURGET, GRÉA et PRABLANC (1998) conducted an experiment where 

participants were asked to reach for targets positioned in a space in front of them. Initial 

configuration was vastly changed compared to GOTTLIEB et al (1997) and a new question 
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was raised: does final hand orientation (i.e. wrist rotation) change other joints' rotations? If 

so, are they unique? The experiment consisted of nine right-handed participants, without 

any motor or neurological impediment, comfortably seated in a chair with their shoulder 

immobilized, preventing torso and clavicle interference, asked to reach targets in front of 

them. The apparatus used as targets consisted of self-illuminated cylinders that could be 

freely rotated, and when the experiment began lights were turned off making the room 

completely dark with only the cylinder's self-illumination visible. Movements were made 

varying the cylinder's position (3 configurations: front, right and front-right diagonal), 

orientation (3 configurations: 60º and 20º counter clockwise and 20º clock-wise), and initial 

hand position (3 possibilities: waist height, 35 cm above the waist and 20 cm right, and 60 

cm above the waist and 35 cm right). Three interesting results are relevant from this 

experiment: 

1. The authors have shown that variations of initial configuration produced 

different shoulder and elbow angles, that is "[...] posture reached by the arm 

was not the same for the different starting points". 

2. Applying Principal Component Analysis (PCA) with all individuals' data it was 

verified that 8 out of 9 subjects the main factors clustered together indicate 

that "postural variations exhibited by these subjects presented a high degree 

of similarity". In the discussion, it is stated that "Beyond the previous 

observations, it is noteworthy that the behavior of the motor system was not 

random, but quantitatively deterministic both between and within subjects. 

Modifying the object configuration and/or the hand initial location had a similar 

effect from subject to subject." 

3. Another result presented is that "... the position and orientation of the hand in 

space are unlikely to be controlled through separate independent neural 

pathways" - meaning that wrist rotations influence shoulder' and elbow's 

rotations. 

 These three results - influence of initial configuration; similarity in movements 

between and within subjects; and influence of hand orientation on arm posture - could be 

seen consistently in most of the works presented in this section, and thus were taken into 

consideration when devising the approach proposed (Chapter 3). 

 MAROTTA, MENDEDORP et CRAWFORD (2003) conducted two experiments 
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investigating the parallel visuomotor processing theory of grasping - the idea that movement 

is split and processed in parallel in three independent components: transport of the arm, 

orientation of the hand, and grasp - and Donder's Law applied to grasping movement, stating 

that the final configuration of the arm system is independent from its initial state, suggesting 

that arm torsion is uniquely dependent on final arm position relative to the body. The first 

experiment involved six subjects and investigated the contribution of upper and lower arm 

to grasp orientation, requiring subjects to reach for a rectangular target block that rotated 

from 0º to 90º; the second experiment investigated upper and lower arm torsion contribution 

and their interaction with Donders’ Law, presenting eight subjects with a "...wider range of 

grasping space by requiring subjects to reach out and grasp target blocks that were 

presented in one of three orientations (horizontal, three-quarter, and vertical) at nine 

different positions in the vertical presentation board", Figure 2.7. Both experiments were 

conducted with right-handed subjects with no motor or visual disabilities or impediments. 
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Figure 2. 7. Experiments from MAROTTA, MENDENDORP et CRAWFORD (2003). Position of 
targets for the first (A) and second (B) experiments. 

 
Image from MAROTTA, MENDENDORP et CRAWFORD (2003). 

 

 As a result, it was evident that arm movement and hand orientation were created in 

a holistic manner, that is, change in the hand's orientation and space position is the result 

of simultaneous torsion and rotations in shoulder, elbow, and wrist, and not created by 

parallel processing. Parallel visuomotor processing theories of gasping are stated by the 
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authors as: 

 

One way the brain could deal with the complexity of a reaching and grasping 
movement is to split the total movement plan into parallel functional modules, each 
involving a small number of degrees of freedom (Arbib 1981; Arbib et al. 1985; 
Gentilucci et al. 1991; Jeannerod 1981, 1992; Jeannerod and Biguer 1982; 
Paulignan et al. 1991a,b; Stelmach et al. 1994). According to this theory, prehension 
movements directed to visual stimuli can be partitioned into three independent 
components: the transport of the arm, the orientation of the hand, and the grasp 
(Arbib 1981; Jeannerod 1988). The transport component involves proximal joints and 
muscle groups, while the grasping component involves distal joints and muscles 
(Arbib 1990; Jeannerod 1984; Jeannerod and Decety 1990; Lacquaniti and 
Soechting 1982; Stelmach et al. 1994). […] Within the initial acceleration of the arm 
transport, the hand’s posture and orientation [grasp] are adapted according to the 
task. Hand shaping, determined by visual assessment of object dimensions, will also 
be assumed during the acceleration phase in anticipation of contact. (MAROTTA, 
MENDECORP et CRAWFORD, 2003) 

 

 Regarding Donders' Law, MAROTTA, MENDENDORP et CRAWFORD (2003) also 

state "... rather than beginning with Donders' Law and then calling the torsional shifts we 

observed violations of Donders' Law, is to consider that there are more general laws 

governing arm kinematics that only provide Donders' Law under restricted task 

circumstances, like a constant set of grasp orientations". 

 These experiments provide two insights into human arm movement: first, movement 

is processed in a holistic manner and as such should not be synthesized in computers as 

set of independent constrains (for instance, using Inverse Kinematics to position hand in 

space and then rotating wrist to reach desired hand orientation); and second that there are 

some rules (Donders' Law) that do hold true when analyzing movements very similar, but 

they do not satisfactorily model general arm movement. 

 ADMIRAAL, KUSTERS et GIELEN (2004) present a larger experiment aiming to 

analyze a broad range of arm movements, from pointing to gasping with different velocities 

and accuracy, and compare such movements with predictions using minimum-work model, 

minimum-torque-change model, and Donders’ Law. As with the previous experiments, right-

handed subjects with no visual or motor impediments participated, and a similar number of 

participants were used: 6 in pointing and 9 in reaching experiments, compared to 6 and 3 

subjects in GOTTLIEB et al (1997), 9 in DESMURGET, GRÉA et PRABLANC (1998) and 6 

and 8 in MAROTTA, MENDEDORP et CRAWFORD (2003). The first experiment, pointing, 

used stereoscopic projection to create 5 virtual yellow sphere targets with 1.5 cm diameter, 

laid out with one in the center of a virtual square and the remaining 4 in its vertices. Subjects 
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were asked to start and end two movements on the central target, first going clockwise in 

order on the square's vertices targets and second performing the same movement but in a 

counter-clockwise path, each consisting of 8 cycles (repetitions). After each movement 

(counter and clockwise), participants were asked to point to random targets. The second 

experiment asked participants to point the tip of the index finger on targets that appeared in 

the 3D space (as opposed to the previous experiment where the targets were positioned on 

a 2D surface distant 100 cm) and hold it there until the target disappeared. Contrary to the 

first experiment, in the second experiment subjects' arms did not stretch in all the targets 

(shoulder, wrist, and elbow forming a straight line). 

 For the first experiment, pointing, the minimum-torque and minimum-torque-change 

models estimated very closely the 3D path done by subject's index fingertip. 

 Donders’ Law was not verified on the first experiment, since doing the same 

movement and reaching the same position, arm torsion was not the same, which would be 

expected. Torsion also deviated from the other methods estimations even though they did 

predict an increase in arm torsion with each cycle, contrary to the same value established 

by Donders’ Law. 

 When participants were asked to change the way they pointed to targets, increasing 

accuracy or requested to be as fast as possible, it was seen an increase or decrease in arm 

torsion, again not corresponding to the proposed models (Donders’ Law, Minimum-work and 

Minimum-torque-change models). 

 As in the works of DESMURGET, GRÉA et PRABLANC (1998) one can see (Figure 

2.8) the same change in arm torsion depending on initial and final arm configuration, which 

would indicate, again, that although models did not predict every aspect of the movement 

(predicted trajectory on the pointing experiment, but not arm torsion), there are underlying 

rules that the motor system follow between and within subjects. 
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Figure 2. 8. Results from ADMIRAAL, KUSTER et GIELEN (2004). Humeral axis-rotation 
measured in subjects as a function of initial and final target. Different symbol corresponds 
to different subject. It is possible to see the effects of different initial and final targets are 

consistent in all individuals, for instance on graph C that represents final target 3 the 
torsion reduces about 10 degrees for all subjects when they start movement from target 4 

instead of 2. 

 
Image from ADMIRAAL, KUSTERS et GIELEN (2004). 

 

 The previous work was questioned by EWART et al. (2016), where a similar 

experiment was conducted using real targets instead of virtual reality. Eight right-handed 

subjects with no previous history of neurological or muscular disorders were asked to point 

(first experiment) or reach (second experiment) six different cylindrical targets departing 

from five or seven (number varies from subject to subject) initial hand positions. Differences 

in how movement was to be performed were also introduced as the previous work: 

comfortable movement, quick reach (fast), or grasp (accurate). Authors point out in the 

conclusion that: 
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“Taken together our findings and aforesaid considerations suggest that a Donders' 

like law for the arm should be stated in three parts, as follows. At each spatial location 

relative to the body to which one points, there corresponds closely related postures 

of the arm independent of movement speed, or starting arm position. At each spatial 

location relative to the body at which an object with a given orientation is grasped, 

there corresponds closely related postures of the arm, regardless of the arm's 

starting position. Physiological variability is intrinsic to the rule, the postures will vary 

movement to movement by a few degrees. Hermens and Gielen (2004) tested the 

predictions of various posture-based and trajectory-based models of motor planning 

and control. While they claimed that their experimental results differed significantly 

from the predictions of all models considered, notwithstanding they acknowledged 

that "Of the models considered, Donders' law best predicts the experimental data” 

(EWART et al, 2016) 

 

 What the authors suggest thus contradicts the works previously mentioned, 

specifically in that there is only one configuration and movement possible for a final hand 

position, independent on the initial arm configuration, even though they do acknowledge 

variations, but not due to movement speed, but to "the variability of central neural activity". 

 It is important though to notice the results in Figure 2.9, where even the most "well-

behaved" motion does vary significantly, especially in the grasping motion where variations 

seem to be on the order of 20º. 
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Figure 2. 9. Results from EWART et al. (2016). Variations of arm angles for two individuals 
reaching 5 different targets from 7 different initial hand positions 

 
Image from EWART et al (2016). 

 

 Another problem in this experiment is that, since it was not their goal, researchers do 

not propose any actual model, instead they just refer to some general Donders' Law like 

rules. 
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 Having reached an understanding that a straightforward mathematical model to 

create a procedural animation technique for our method is not possible at the moment, we 

decided on a hybrid data-driven / procedural method, which is proposed in the next chapter. 

 

2.3 FINAL REMARKS 

  

This chapter presented an overview of concepts and previous works that provided 

the base for the research to the method for inter-sign animation in Libras. It is divided into 2 

2 sections, Animation, and Bio-Mechanics of Arm Movement. 

 In Animation we presented the animation production pipeline, in which it is defined 

the role of the animator, responsible for creating the main or key poses of the animation; the 

assistant animator or break down man, responsible for roughing out the poses made by the 

animator and creating the break down poses; and the inbetweeners, responsible for creating 

the intermediate drawings between poses and break downs. The latter task, because it 

requires less skill and is almost a mechanical process, has been replaced more and more 

often by software, and it is this dissertation's goal to present a computer method to replace 

the work of the assistant and inbetweener for arm movement in Libras. 

 Animation can be created in a multitude of ways. PARENT (2012) presents a 

taxonomy, dividing this process into 3 types: Artistic, Data-Driven, and Procedural. 

 To select the appropriate type of animation to use in this project we sought to 

understand how the arm moves. As a first approach to this method, we have sought a 

procedural animation  approach based on mathematical models describing arm movement. 

However, after studying the different models presented in previous researches, we realized 

that no known model provides a general extensive model to synthesize the broad 

movements required in sign language. 

 Works presented in Section 2.2, although initially intended to provide a model such 

as the minimum-torque to guide a procedural animation for inter-sign movement, presented 

a plethora of models and views towards modeling human arm movement, on which there is 

not even a consensus on whether there is a general universal model. But they did provide 

some of the propositions used to create the method proposed, which are: Similarity of 

movement (all experiments point out that similar final and, in most cases initial, arm 

configuration produce the same movement), initial configuration interference (although not 
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a consensus, initial configuration of the arm including its rotations and velocity do appear to 

change the movement and even final configuration of the arm), and wrist interference (wrist 

rotations are not isolated and should be taken into account to synthesize whole arm 

animation). 

 Thus, instead of pursuing a global model with procedural animation, our method uses 

data-driven animation, based on similarity of movement, to retrieve an already existing 

animation similar to that intended to be synthesized. To retrieve this animation, initial 

configuration and wrist interference are taken into account. 

 While theoretical basis was covered in this chapter, the next one discusses the 

methodology used for developing the inter-sign approach to generate the animation of 

signing avatars, the focus of this dissertation. 

 

  



35 

 

3 METHODOLOGY 

  

As presented in the introduction of this dissertation, the main objective of this 

research is to develop a method for transitioning arms' movements between two different 

Brazilian Sign Language (Libras) signs. The goal is to present a method to create natural 

and smooth transitions, which would increase intelligibility and make the movement seem 

more natural in a signing avatar. 

 A first question was raised: what type of computer animation is better suited for this 

method? In the previous Chapter we present the different animation types defined by 

PARENT (2012). In that chapter, we also argue that, although procedural animation seemed 

to be an appropriate approach to animate arm movement during signing, previous work 

review related to arm movement revealed that there is still no robust and generic model, as 

pointed out by EWART et al (2016), that would adequately represent the dynamics of arm 

movement during signing. 

 Although we could not find a robust and generic model to describe all arm 

movements, we gained knowledge from previous researches to guide us on the 

development of the proposed method. The main idea behind our method is to use segments 

of mocap animation to transition between signs, in a fashion inspired by PULLEN et 

BREGLER (2002). This idea is aligned with the 3 propositions from Section 2.2: similarity of 

movement, initial configuration interference, and wrist interference. When looking for a 

similar mocap movement for the transition between signs we use the initial and final 

configuration of the avatar's arm and wrist, thus we abide by the propositions: the movement 

to be used to transition will consider the initial configuration of arm; wrist configuration will 

interfere on the movement, and transitions that start and end in similar configurations will 

present a similar movement. 

 To recapitulate, what we need is a method that receives as input two Libras signs 

and outputs a movement transitioning between these signs. 

 Our first step was to create a database of existing transitions, similar to what PULLEN 

et BREGLER (2002) used as the basis to synthesize animation. Our database is composed 

of mocap data of 4 Libras interpreters signing four sentences each. The sentences were 

specially designed to have a wide range of arm movement between signs. Mocap data was 

transferred to a virtual avatar and cleaned. Segmentation was done, indicating beginning 
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and end of signs and transitions between them. For each transition between signs we stored 

7 animation curves – 3 for shoulder's rotation in x, y, and z, 1 for elbow rotation in x, and 3 

for wrist's rotation in x, y, and z – as Hermite and as B-Spline curves (more details on curve 

fitting is found in Appendix B), so we can compare performance between those two curve 

representations. This transition curve database is used to retrieve a similar transition that 

will serve as a basis to synthesize the new transition animation. 

 This similarity is based on how the arm finishes the sign we want to transition from 

(first sign) and how the arm starts the sign we want to transition to (second sign), in 

accordance with the propositions shown in Chapter 2. To mathematically model these 

similarities, parameters were extracted from the mocap animations. These parameters are 

obtained by using Discrete Cosine Transformations (DCT) on N final frames of the first sign's 

animation curves and N starting frames of the second sign's animation curves. More 

information about the DCT process can be found in Section 3.5. These DCTs were stored 

for each mocap transition in a separate parameter database, which is used to compare 

with the signs we want to transition. 

 These two steps, construction of curves database and parameters database, were 

processed offline and thus did not encumber the system with unnecessary calculations. 

 Having a database of existing mocap transitions and an associated parameters 

database, the method can now use them to find a similar transition to the one desired 

between signs and use it to create a movement connecting such consecutive signs. To 

achieve this, our method establishes 3 steps which are outlined here and discussed in detail 

in the next sections: 

1. Parameter Extraction: to find a similar transition in the mocap database, we 

need to first extract the parameters from the signs we want to transition. To 

conform with the proposition that similar initial and final arm configuration 

(joints' positions and rotations) create a similar movement, that is the path that 

arm makes when going from the same initial and final position tend to be 

similar across different humans, we need to compare the transitions we have 

in the database with the transition information we have from the signs (i.e. 

animation curves). As with the parameters extracted from the mocap 

transitions, we also use the first sign's last N frames and the second sign's 

initial N frames to create a DCT of the animation curves. More details in 
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Section 3.5. 

2. Transitions Search: having the signs animation curves' DCT (comparison 

parameter) we use it to find a similar transition in the curves database, that is, 

a mocap transition that has a similar DCT to the signs we want to transition. 

This is done by Euclidean distance between the input parameters and all the 

transitions in the database, with the closest being chosen. More details in 

Section 3.6; 

3. Curves Processing: Apply the similar transition animation curves found in the 

database in the interval between the input signs, adjusting them to the signing 

arms positions and maintaining the animation's speed and acceleration, that 

is maintaining C2 continuity on the animation curves. More detail in Section 

3.7. 

 Each step is performed by different modules that have specific functionalities. Figure 

3.1 presents the method overview with these modules in mind, how they interact with each 

other and with data from input and the curves and parameters databases. The modules and 

interactions between them are described below. 

 

Figure 3. 1. Method overview. The animation interface passes through a sequence of frames 
describing disconnected signs which are processed by the parameter extractor in order to 
get descriptors which are used to find a closely related curve in the descriptor database by 
a transitions search module; once the closely similar curve is found, its id is then passed 

on to the curves processor which, having received also the signs frames from the 
animation interface in order to produce smooth concatenations, obtains the curve from the 

database and then returns the respective transitions frames for the final animation. 

 

Image from the author. 
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 The input comes from the animation interface that requests for transitions between 

signs; this could be software controlling the signing avatar or a user in a 3D program. In our 

case, we used a 3D software that had a virtual avatar signing Libras sentences from mocap 

sessions but with the interval between each sign being cut off. Whichever the animation 

interface, the main point is that it already has a set of animation curves describing a virtual 

skeleton's movement that comprises two consecutive signs, and those are used to feed the 

system. These animation curves are presented as vectors of consecutive floating-point 

numbers, one vector for each animation curve and each number indicating the animation 

curve's value (that is, joint rotation) in the specified time in frames. 

 The parameter extractor analyzes frame data (i.e. animation curves of the first and 

second signs) and retrieves the DCT parameters that describe the curves in a more 

meaningful way for the system to compare them with the mocap curves parameters stored 

in the parameters database. This is necessary since a direct comparison of animation 

curves' values will require a great amount of comparisons and not necessarily take into 

account important characteristics such as speed and acceleration. A curve transformation 

(DCT) was thus used so these parameters, velocity and acceleration, could be incorporated. 

To create this descriptor database several mocap sessions were performed following a 

protocol comprised of simple sentences with wide range of motion, these were created with 

the aid of LIBRAS interpreters and are further detailed in Section 3.1. 

 It is also important to point out again the separation between parameter and 

animation curve database; since all searches are based on parameters it's possible to 

select between different curves implementations (Hermite and B-Spline) when applying the 

desired transition. That means that the method searches for the closest transition parameter 

in the parameters database and with that can decide to use the implemented Hermite or 

spline representation of animation curves for the mocap transition. 

 A transition search is done, comparing parameters from the initial and final arm 

configuration of signs to the mocap transition parameters database in order to find the 

closest match, i.e. a mocap transition that had similar initial and final arm configuration the 

signs we want to animate. This conforms to previous researches shown in Section 2.2 by 

which, even though there doesn't seem to be a universal model for arm movement, initial 

and final configuration of the arm will lead to very similar movement (the 3 propositions). 

The proposed method also differs here from the work of PULLEN et BREGLER (2002) in 
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that we compare the seven animation curves of the arm (shoulder x, y and z rotation, elbow 

x rotation, and wrist x, y and z rotation) while they just used one animation curve to find a 

similar mocap animation in their database. 

 Having found the transition that has the closest parameters to the interval between 

signs we want to animate, it is necessary to insert the animation curves from the mocap 

database in the frame range between the first and last signs (interval to be animated). To 

better manipulate these animation curves they were stored as parametric curves in the 

curves database, more specific B-Spline and concatenated Hermite curves. To fit the mocap 

animation into Hermite curves a new algorithm is proposed by us, and for B-Spline curve 

fitting it was used the algorithm proposed by DIERCKX (1993) (see Appendix A for details). 

These curves are inserted between signs by manipulating knots (B-Spline curves) and curve 

points and tangents (Hermite curves), and this is described in Section 3.7. With the mocap 

curves applied in the frame range between signs we successfully animate a transition 

between Libras signs with an animation that is based on real-life interpreters, thus providing 

a natural movement to the signing avatar. 

 As stated before, the method proposed can also be divided into 2 different stages: 

offline and online processing. Offline processing is all the work done to create the curves 

and parameters database. Online processing is when a transition is required to concatenate 

two signs, and the system is in use by a user requesting to animate an avatar between two 

signs. 

 Finally, we applied this method to a set of Libras sentences by excluding manually 

the original inter-sign transition frames and using different curve models to synthesize a new 

movement. The new interpolated animation curves are compared to the original mocap data 

using RMSE. Details on these evaluations can be found in Chapter 4. 

 

3.1 DEVISING MOTION CAPTURE MOVEMENT 

  

The method proposed is based on a richly populated bank of transition movements. 

With this in mind, four different sentences were proposed to be signaled which would 

encompass a broad arrange of arm movement for transitions and at the same time had a 

meaning by themselves. These sentences were: 

1. Hello, my name is Machado, I'm going home. Would you like to eat with me? 



40 

 

(Portuguese version: Olá, meu nome é Machado, vou para casa. Você quer 

comer comigo?) 

2. The yellow painting is very beautiful. Who did it? (Portuguese version: O 

quadro amarelo é muito bonito. Quem pintou?) 

3. I drove fast to my home to check the oven. (Portuguese version: Dirigi rápido 

para minha casa para verificar o forno.) 

4. On Mondays, I love eating fried pastry at the farmer's market. (Portuguese 

version: Às segundas, adoro comer pastel na feira.) 

 A fifth, more complex and long sentence was devised but, after signaling by a first 

interpreter, it was deemed too complex to arrive at a consensus on how it should be signed 

by the other interpreters. This was an unforeseen problem and is discussed further in 

Chapter 5. 

 The four sentences used were devised using the ACESSA BRASIL (2017) system 

and the advice of one of the interpreters. Before capturing, a consensus on the signs used 

to each sentence was reached between interpreters having in mind standardized signaling 

and although those signs were carried out on the motion capture sessions, there were minor 

deviations on order, which can be accounted for personal traits of each interpreter. Instead 

of forcing the interpreters to follow a strict sign order, it was deemed more profitable for the 

project to have a wider range of transitions. 

 

3.2 MOTION CAPTURE SESSION AND CLEAN UP 

 

 Motion capture took place in two sessions in the motion capture laboratory at Centro 

de Tecnologia da Informação Renato Archer (CTI), using 8 Vicon infrared cameras at 120 

frames per second. On each interpreter, there were positioned 51 reflexive markers on the 

hips and up (Figure 3.2), that is, excluding legs since they are not used to sign. Markers 

were positioned at fingertips but due to low accuracy on the capture system they could not 

be used, so instead fingers animations were created manually (see next chapter). Each 

interpreter also signed a Consent to Use of Image and Captured Material for scientific 

purposes, available in Appendix C. Sessions were also recorded with a standard mini DV 

recorder, generating video references at 30 frames per second and 720 x 480 pixels in 

resolution. 
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Figure 3. 2. Motion capture session at CTI facility. 2 infrared cameras can be seen on both 
sides of the interpreter, who is wearing the standard black clothes with the reflective 

markers (grey spheres). 

 
Image from the author. 

 

 Each infrared camera captures a bi-dimensional grayscale image at a rate of 120 

samples per second, with each bright spot being one of the reflective markers. The 8 images 

generated are then processed using Vicon software to estimate each three-dimensional 

position. 

 With each marker position in 3D space, it is possible to discern a virtual skeleton to 

allow the deformation of a polygonal mesh in a process called solving motion. Again it was 

used Vicon's software and default skeleton to achieve this. This process, however, needs to 

be supervised since two common errors arise: 

1. bad labeling: each marker, in order to be used to estimate a joint's position 

and rotation, needs to be identified by a unique label. Sometimes the system 

does not assign the correct label and so it is up to the motion capture 

technician to identify this error and correct it. 

2. gaps: when there is no sufficient information about a specific marker in one or 

more cameras the system cannot estimate its position in space, creating gaps 
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in which there is no marker present as shown in Figure 3.3. These have to be 

addressed since a lack of marker in a single frame can create a noise that 

could make a movement seem unnatural. To correct this the software offers 

basically two tools: a spline and a rigid body interpolator. The first one creates 

a smooth transition in the gap but can produce unrealistic or unnatural results, 

the second one takes into account marker distance between itself and 

neighboring markers that move together in a rigid body fashion, such as in the 

head or the markers located in the forearm. This is a time-consuming and very 

important part of the process, and sometimes when there are too many gaps 

movement cannot be reconstructed and so the captured data is lost. 

 

Figure 3. 3. Vicon's Blade software interface (cropped) in which we can see the markers 
(blue and white spheres) on the left and the graphical representation of its position in three-
dimensional coordinates (left) on the graph editor. Each black dot on the graph represents a 
keyframe, that is, a position in space estimated in that particular frame by the system. A gap 

is present from frames 1409 to 1506, represented by a continuous curve. 

 
Image from the author, generated in Vicon Blade. 

 

 Processing the markers' 2D images into 3D positions uses computer vision 

algorithms and was taken from the system provided by Vicon. If the reader is interested, a 

survey recommended on the topic is presented in MOESLUND, HILTON et KRÜGER 

(2006). 

 After this process the virtual skeleton is animated with the signs, that is, for each 

joint's DOF an animation curve describing the change of rotation values (in degrees) is 
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attached. For each interpreter's sentence a skeleton was exported to an fbx file which was 

used on the next stage to apply to a 3D model and create the transitions and sign labeling. 

 

3.3 SENTENCE SEGMENTATION 

  

The skeleton provided by the Vicon system lacks two important features: finger 

animation and sign segmentation. 

 For the first feature, finger animation, a supplementary skeleton chain was created in 

each hand, including proximal, middle and distal virtual phalanges for the five fingers2 and 

a control attached to the wrist joint by which the animator could control the joints' rotations 

(hyper-extension / flexion and adduction / abduction) in a 1 to 1 connection as described in 

O'HAILEY (2013). The software used for this process was Autodesk Maya. 

 For the second feature, sign segmentation, a manual approach was chosen over 

automatic systems such as the one presented in STARNER et PENTLAND (1998) since to 

use them it would be necessary a training phase for the machine learning requiring already 

segmented signed sentences. This approach consists of playing the mocap animation with 

the virtual character and noting down in which frames the signs started and ended, with this 

process being validated by the Mini DV video references described in the previous section 

and later with one of the interpreters. 

 The manual approach uses Python scripts to create an XML sentence 

segmentation file for each interpreter, indicating segments of each sentence with signs' 

and transitions' start and end information. XML  was used for its wide adoption, including its 

use in sign language projects (AMARAL, 2012), and its human-readability (JONES et 

DRAKE, 2002). The latter has an advantage of smaller files, but that is not an issue since 

sentences are not as long as to create big files. Using Autodesk Maya's timeline and script 

editor it was possible to iterate through each sentence and determine each of the segments. 

An example of this XML file can be seen below in Code 3.1. 

 The first, root, element in the XML file is the interpreter's name used mainly to identify 

uniquely each sentence for the human operator, since it is not used in the system in any 

manner whatsoever. Each root element has a sentence attached to itself, in this project 

ranging from 1 to 4, but could be indefinitely expanded. In each sentence there are the 

 
2 The thumbs' virtual skeleton had also only three joints, namely the metacarpal, proximal and distal phalange. 
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segments needed for the project, each corresponding to a child element, which has the word 

being signed or the transition number as its ID; these elements include integer attributes 

start and end indicating start and end frame as a closed interval (e.g. [0, 235]), an integer 

attribute pos indicating the position of the element in the sentence's segments sequence, 

and a boolean attribute word indicating if the segment is a word (or, more correctly, a sign) in 

which case it is true. 

 

Code 3. 1. Code for the XML file segmenting sentences for each interpreter. Note that in 
each sentence there is an Intro (first element) and an End (last element) elements which are 

the interpreter's movement going to and reaching the T position. 
<Daniele> 
  <frase1> 
    <Intro end="235" pos="1" start="0" word="False"/> 
    <TRANSITION1 end="292" pos="2" start="236" word="False"/> 
    <Ola end="355" pos="3" start="293" word="True"/> 
    <TRANSITION2 end="424" pos="4" start="356" word="False"/> 
    <meu_Nome end="473" pos="5" start="425" word="True"/> 
    <TRANSITION3 end="550" pos="6" start="478" word="False"/> 
    <machado end="663" pos="7" start="551" word="True"/> 
    <TRANSITION4 end="705" pos="8" start="664" word="False"/> 
    <vou end="760" pos="9" start="706" word="True"/> 
    <TRANSITION5 end="814" pos="10" start="761" word="False"/> 
    <casa end="915" pos="11" start="815" word="True"/> 
    <TRANSITION6 end="950" pos="12" start="916" word="False"/> 
    <voce end="964" pos="13" start="951" word="True"/> 
    <TRANSITION7 end="1016" pos="14" start="965" word="False"/> 
    <comer end="1066" pos="15" start="1017" word="True"/> 
    <TRANSITION8 end="1120" pos="16" start="1067" word="False"/> 
    <comigo end="1300" pos="17" start="1121" word="True"/> 
    <TRANSITION9 end="1406" pos="18" start="1301" word="False"/> 
    <End end="1610" pos="19" start="1407" word="False"/> 
  </frase1> 
  <frase2> 
    <Intro end="216" pos="1" start="0" word="False"/> 
    <TRANSITION1 end="303" pos="2" start="217" word="False"/> 
    <Quadro end="365" pos="3" start="304" word="True"/> 
    <TRANSITION2 end="424" pos="4" start="366" word="False"/> 
    <amarelo end="473" pos="5" start="425" word="True"/> 
    <TRANSITION3 end="508" pos="6" start="474" word="False"/> 
    <bonito end="624" pos="7" start="509" word="True"/> 
    <TRANSITION4 end="661" pos="8" start="624" word="False"/> 
    <muito end="676" pos="9" start="662" word="True"/> 
    <TRANSITION5 end="704" pos="10" start="677" word="False"/> 
    <pintou end="793" pos="11" start="705" word="True"/> 
    <TRANSITION6 end="818" pos="12" start="794" word="False"/> 
    <quem end="843" pos="13" start="819" word="True"/> 
    <TRANSITION7 end="882" pos="14" start="844" word="False"/> 
    <End end="1179" pos="15" start="883" word="False"/> 
  </frase2> 
  <frase3> 
    <Intro end="250" pos="1" start="0" word="False"/> 
    <TRANSITION1 end="320" pos="2" start="251" word="False"/> 
    <Dirigi end="346" pos="3" start="321" word="True"/> 
    <TRANSITION2 end="376" pos="4" start="347" word="False"/> 
    <muito end="400" pos="5" start="377" word="True"/> 
    <TRANSITION3 end="443" pos="6" start="401" word="False"/> 
    <rapido end="498" pos="7" start="444" word="True"/> 
    <TRANSITION4 end="546" pos="8" start="499" word="False"/> 
    <ate end="611" pos="9" start="547" word="True"/> 
    <TRANSITION5 end="640" pos="10" start="612" word="False"/> 
    <casa end="676" pos="11" start="641" word="True"/> 
    <TRANSITION6 end="705" pos="12" start="677" word="False"/> 
    <ver end="731" pos="13" start="706" word="True"/> 
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    <TRANSITION7 end="755" pos="14" start="732" word="False"/> 
    <forno end="958" pos="15" start="756" word="True"/> 
    <TRANSITION8 end="1055" pos="16" start="959" word="False"/> 
    <End end="1433" pos="17" start="1056" word="False"/> 
  </frase3> 
  <frase4> 
    <Intro end="229" pos="1" start="0" word="False"/> 
    <TRANSITION1 end="272" pos="2" start="230" word="False"/> 
    <Segundas end="381" pos="3" start="273" word="True"/> 
    <TRANSITION2 end="436" pos="4" start="382" word="False"/> 
    <adoro end="497" pos="5" start="437" word="True"/> 
    <TRANSITION3 end="538" pos="6" start="498" word="False"/> 
    <comer end="568" pos="7" start="539" word="True"/> 
    <TRANSITION4 end="619" pos="8" start="569" word="False"/> 
    <pastel end="755" pos="9" start="620" word="True"/> 
    <TRANSITION5 end="803" pos="10" start="756" word="False"/> 
    <feira end="954" pos="11" start="804" word="True"/> 
    <TRANSITION6 end="1079" pos="12" start="955" word="False"/> 
    <End end="1246" pos="13" start="1080" word="False"/> 
  </frase4> 
</Daniele> 

 

 This sentence segmentation file structure was successfully used in the project, but 

its structure deviates greatly from what would be considered a good XML file structure. This 

issue is addressed in Chapter 5. 

 Joints rotations on each frame for all animations were also exported in an XML DOF 

rotations file (Code 3.2) with the root element indicating the total length of the animation; 

children element were the joints for left and right arm, namely Humerus, Elbow and Wrist; 

and the leaf nodes were each joints degree of freedom, containing the rotation values for 

each frame as a floating-point number. 

 

Code 3. 2. Code for the XML DOF rotations file. This file structure is used to store the 
rotation information for each arm's 7 animation curves. These animation curves are stored 
as a floating-point vector inside each attribute element, represented here for simplicity as 

[…]. 
<Daniele end="1623" start="0"> 
  <R_Humerus> 
    <R_Humerus.rotateX> […] </R_Humerus.rotateX> 
    <R_Humerus.rotateY> […] </R_Humerus.rotateY> 
    <R_Humerus.rotateZ> […] </R_Humerus.rotateZ> 
  </R_Humerus> 
  <R_Elbow> 
    <R_Elbow.rotateX> […] </R_Elbow.rotateX> 
  </R_Elbow> 
  <R_Wrist> 
    <R_Wrist.rotateX> […] </R_Wrist.rotateX> 
    <R_Wrist.rotateY> […] </R_Wrist.rotateY> 
    <R_Wrist.rotateZ> […] </R_Wrist.rotateZ> 
  </R_Wrist> 
  <L_Humerus> 
    <L_Humerus.rotateX> […] </L_Humerus.rotateX> 
    <L_Humerus.rotateY> […] </L_Humerus.rotateY> 
    <L_Humerus.rotateZ> […] </L_Humerus.rotateZ> 
  </L_Humerus> 
  <L_Elbow> 
    <L_Elbow.rotateX> […] </L_Elbow.rotateX> 
  </L_Elbow> 
  <L_Wrist> 
    <L_Wrist.rotateX> […] </L_Wrist.rotateX> 
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    <L_Wrist.rotateY> […] </L_Wrist.rotateY> 
    <L_Wrist.rotateZ> […] </L_Wrist.rotateZ> 
  </L_Wrist> 
</Daniele> 

 

 The two XML files, sentence segmentation and DOF rotations, were used on the next 

steps to create parametric curves and parameters files for each transition as shown next. 

 

3.4 CURVE FITTING 

  

Transition curve information contained in the XML DOF files is a discrete sequence 

of floating-point values that, together with sentence segmentation files can provide a 

somewhat satisfactory transition as it was used in PULLEN et BREGLER (2002) and in LEE 

et al (2002), but it does have significant disadvantages compared to parametric curve 

descriptions: 

 larger files since it needs to store each rotation value for each frame in the 

transitions, which are sometimes more than a hundred frames long; 

 interpolation problems occurring when the desired curve length is not the 

same as the original, requiring discrete signal scaling interpolation similar to 

algorithms used in 2D image processing; 

 noise in motion capture signal is very frequent and a parametric 

representation can work as a filter, producing smoother curves; 

 concatenation on curve's boundaries, which would require some sort of curve 

fitting to create a smooth transition between signs and transitions; 

 Parametric curve representation was thus used instead, which was stored in the 

curves XML files in the curves database as presented later in this section in Code 3.3.A and 

Code 3.3.B. 

 A first attempt towards parametric representation was to use polynomial fitting; that 

is, adjusting the n data points [xi, yi], with xi being the frame and yi the animation curve's 

rotation value, to a function of the type: 

 𝑓(𝑥) = 𝑦ത = ∑ 𝑎௝ . 𝑥௝௞
௝ୀ଴  (3.1) 

 where k is the degree of the polynomial (0 is a constant value) and the ai terms are 

the series of coefficients that shape the curve. 

 A residue Q denotes the difference between the approximated function and the given 
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DOF rotation value yi. It can be calculated in various ways and the most common being the 

quadratic residue, denoted as: 

 𝑄 = ∑ (𝑦௜ − ∑ 𝑎௝ . 𝑥௜
௝௞

௝ୀ଴ )ଶ௡
௜ୀଵ  (3.2) 

 A best fit will minimize this residue. Which means: 

𝜕𝑄

𝜕𝑎௝
= 0; 𝑓𝑜𝑟𝑗 = 1,2, . . , 𝑛 

 To solve Equation 3.2 for its minimum, it can be rewritten in matrix form (RUGGIERO 

et LOPES, 2010) as: 

 𝑎 = (𝑋்𝑋)ିଵ. 𝑋் . 𝑦 (3.3) 

 where 

 

 This is known as the least squares fit. 

 MATLAB was used to apply this method on the DOF curves, generating the curves 

shown in the images below. 

 

Figure 3. 4. Polynomial fitting of two different transition DOF curves. 

 

Image generated in MATLAB. 
  

It is clear that by increasing the curve's degree we get a better approximation with the 
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data (as can be seen with the decreasing RMSE values as we increase curve degree in 

Figure 3.5), this can also be seen in Figure 3.4. Although increasing curve degree does 

approximate better, it is not a good choice, and that can be seen from the example in Figure 

3.4.B, where a curve with degree 6 is far from a good fit, presenting inflections that do not 

show the real behavior of the animation curve (its velocity and acceleration) specially visible 

in the vicinity of frames 3 and 50. Also, the boundaries of the function (frames 0 and 52) are 

still far off from the original curve both in value and in slope, which would create problems 

on the join points between the transition and the sign curves. 

 

Figure 3. 5. Root mean square error (RMSE) of polynomial fitting functions in MATLAB 

applied to 8 transitions of a DOF. RMSE in MATLAB is defined asRMSE=√(ට
𝑸

𝒏ି𝒎
) where n are 

the number of samples (frames, in this context) and m is the number of fitted coefficients 
(curve degree, in this context). It is noteworthy to see that there is a great decrease in RMSE 

from degree 3 to 5, indicating that a complex curve is necessary on most cases. 

 
Image generated in MATLAB. 

  

Since polynomial fitting did show a poor choice, two other curve types were used to 

fit the data into models: polynomial B-Spline and piece-wise cubic Hermite spline curve. 
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 B-Spline fitting was done using the algorithm presented in DIERCKX (1993) which is 

similar to the polynomial fitting using least squares fit. Hermite fitting was done by an 

algorithm devised for this project. Since these curve fitting are complex, they are discussed 

in depth in Appendix A. 

 Both curve fitting algorithms produced similar curves, which were stored in Hermite 

and Spline XML files, shown below. 

 

Code 3. 3. XML file for transition animated curves using Hermite Curves. Numbers have 
been truncated to facilitate reading. 

<transition id="da01011" type="hermite"> 
  <info fps="120" time_units="frames"/> 
  <description> 
    <object name="R_Humerus"> 
      <attribute delta_time="56" delta_value="58.01" name="rotateX" value0="-1.78"> 
        <segment index="1" p0="[0,0]" p1="[1,1]" t0="[1.61,1.52]" t1="[2.72,4.92]"/> 
      </attribute> 
      <attribute delta_time="56" delta_value="29.63" name="rotateY" value0="-25.07"> 
        <segment index="1" p0="[0,1]" p1="[0.78,0]" t0="[0.59,-1.89]" t1="[0.039,0.01]"/> 
        <segment index="2" p0="[0.78,0]" p1="[1,0.18]" t0="[0.011,0.01]" t1="[0.21,0.41]"/> 
      </attribute> 
      <attribute delta_time="56" delta_value="49.04" name="rotateZ" value0="38.13"> 
        <segment index="1" p0="[0,0.89]" p1="[0.29,0.99]" t0="[0.39,0.38]" t1="[0.15,-0.01]"/> 
        <segment index="2" p0="[0.28,0.99]" p1="[1,0]" t0="[1.19,-0.02]" t1="[0.86,-1.08]"/> 
      </attribute> 
    </object> 
    <object name="R_Elbow"> 
      <attribute delta_time="56" delta_value="67.75" name="rotateX" value0="32.63"> 
        <segment index="1" p0="[0,0.06]" p1="[0.16,0]" t0="[0.21,-0.18]" t1="[0.01,0.01]"/> 
        <segment index="2" p0="[0.16,0]" p1="[1,0.99]" t0="[0.97,0.020]" t1="[1.44,-0.21]"/> 
      </attribute> 
    </object> 
    <object name="R_Wrist"> 
      <attribute delta_time="56" delta_value="31.95" name="rotateX" value0="80.05"> 
        <segment index="1" p0="[0,0]" p1="[0.51,1]" t0="[0.026,0.056]" t1="[0.02,-0.01]"/> 
        <segment index="2" p0="[0.51,1]" p1="[0.94,0.55]" t0="[0.02,-0.01]" t1="[0.28,-0.0]"/> 
        <segment index="3" p0="[0.94,0.55]" p1="[1,0.56]" t0="[0.13,-0.01]" t1="[0.21,-0.1]"/> 
      </attribute> 
      <attribute delta_time="56" delta_value="9.72" name="rotateY" value0="36.83"> 
        <segment index="1" p0="[0,0.38]" p1="[0.1,0.01]" t0="[0.36,-0.80]" t1="[0.15,-0.06]"/> 
        <segment index="2" p0="[0.1,0.01]" p1="[0.5,0.98]" t0="[0.44,-0.19]" t1="[0.5,0.08]"/> 
        <segment index="3" p0="[0.5,0.98]" p1="[0.7,0.63]" t0="[0.32,0.05]" t1="[0.28,0.01]"/> 
        <segment index="4" p0="[0.7,0.63]" p1="[1,0.36]" t0="[0.46,0.017]" t1="[0.55,-0.44]"/> 
      </attribute> 
      <attribute delta_time="56" delta_value="46.31" name="rotateZ" value0="-18.23"> 
        <segment index="1" p0="[0,0.8]" p1="[0.25,0.99]" t0="[0.21,0.5]" t1="[0.02,0.01]"/> 
        <segment index="2" p0="[0.25,0.99]" p1="[1,0]" t0="[0.68,0.02]" t1="[2.05,-1.65]"/> 
      </attribute> 
    </object> 
  </description> 
</transition> 

 

Code 3. 4. XML file for transition animated curves using B-Spline curves. Numbers have 
been truncated to facilitate reading. 

<transition id="da01011" type="spline"> 
  <info fps="120" time_units="frame"/> 
  <description> 
    <object name="R_Humerus"> 
      <attribute delta_time="57" delta_value="58.0172" name="rotateX" value0="-1.7817"> 
        <g>6</g> 
        <coef> 
          [-1.7424, 0.43291, -0.20011, 6.6217, 1.986, 18.9936, 34.9427, 48.0801, 53.9813, 56.0629] 
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        </coef> 
        <knots>[0, 0, 0, 0, 0.08318, 0.18719, 0.55111, 0.70267, 0.81888, 0.9149, 1, 1, 1, 1]</knots> 
      </attribute> 
      <attribute delta_time="57" delta_value="29.6394" name="rotateY" value0="4.5603"> 
        <g>7</g> 
        <coef> 
          [4.5235, 0.98408, -4.6605, -13.8159, -17.7027, -25.9618, -24.1599, -22.8483, -21.036, -20.5641, -19.5233] 
        </coef> 
        <knots> 
          [0, 0, 0, 0, 0.12219, 0.27525, 0.52061, 0.80666, 0.85118, 0.91288, 0.97822, 1, 1, 1, 1] 
        </knots> 
      </attribute> 
      <attribute delta_time="57" delta_value="49.0459" name="rotateZ" value0="81.6425"> 
        <g>6</g> 
        <coef> 
          [81.5332, 85.8763, 87.8579, 85.8724, 70.6242, 54.3305, 46.8823, 40.0148, 39.0731, 38.1365] 
        </coef> 
        <knots> 
          [0, 0, 0, 0, 0.25281, 0.4778, 0.77339, 0.80172, 0.85982, 0.97273, 1, 1, 1, 1] 
        </knots> 
      </attribute> 
    </object> 
    <object name="R_Elbow"> 
      <attribute delta_time="57" delta_value="67.7594" name="rotateX" value0="37.0639"> 
        <g>6</g> 
        <coef> 
          [37.0859, 35.5741, 32.8384, 31.8923, 37.5239, 52.3981, 88.9373, 101.7003, 100.0563, 99.7765] 
        </coef> 
        <knots> 
          [0, 0, 0, 0, 0.070083, 0.23474, 0.32213, 0.3576, 0.62896, 0.90912, 1, 1, 1, 1] 
        </knots> 
      </attribute> 
    </object> 
    <object name="R_Wrist"> 
      <attribute delta_time="57" delta_value="31.9551" name="rotateX" value0="80.0529"> 
        <g>7</g> 
        <coef> 
          [80.0159, 83.6454, 80.3447, 99.0212, 108.132, 112.7727, 107.4681, 104.0151, 98.6388, 98.2509, 98.5793] 
        </coef> 
        <knots> 
          [0, 0, 0, 0, 0.12002, 0.36672, 0.4488, 0.52244, 0.53399, 0.76284, 0.89119, 1, 1, 1, 1] 
        </knots> 
      </attribute> 
      <attribute delta_time="57" delta_value="9.7216" name="rotateY" value0="40.613"> 
        <g>7</g> 
        <coef> 
          [40.6638, 40.2077, 35.2122, 38.7542, 39.9383, 47.5721, 47.6438, 42.9002, 43.9283, 40.8801, 40.3503] 
        </coef> 
        <knots> 
         [0, 0, 0, 0, 0.13708, 0.24378, 0.34221, 0.34353, 0.62954, 0.69192, 0.69976, 1, 1, 1, 1] 
        </knots> 
      </attribute> 
      <attribute delta_time="57" delta_value="46.3108" name="rotateZ" value0="18.9881"> 
        <g>6</g> 
        <coef> 
          [19.2777, 24.8688, 26.1465, 29.6811, 18.2527, 13.2059, -6.1011, -12.1528, -17.7031, -17.7755] 
        </coef> 
        <knots> 
          [0, 0, 0, 0, 0.17639, 0.34221, 0.39279, 0.50308, 0.60209, 0.81994, 1, 1, 1, 1] 
        </knots> 
      </attribute> 
    </object> 
  </description> 
</transition> 

  

As stated before, the XML transition curves files were devised prioritizing human 

readability, therefore the elements and their attributes are straightforward with their 

nomenclature and use: 
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 transition is the root element and contains the primary key id for each 

transition and the curve type indicating whether the curves described within 

the file are B-Spline or Hermite curves; 

 info element presents basic information about the curves units in time (frames, 

seconds, milliseconds...) and value (degrees, radians, meters...), which could 

be used if the database was populated with animation curves created with 

different units. Since we controlled all data stored we made sure that they all 

used the same units (frames and degrees) so this element was not used in the 

current implementation; 

 description contains all object's attributes animation curves information in its 

children elements, with their direct elements being each joint (R_Humerus, 

R_Elbow, R_Wrist...) and, in turn, their own direct elements being each DOF / 

attribute (rotate x, y, and z for humerus and wrist joints and rotate x for elbow); 

 attribute elements, as stated above, hold each joint’s individual animation 

curve (1 for each DOF), as well as information on the original curves values, 

such as initial value (value0) and the difference between the maximum and 

minimum values in the range (delta_value); 

 segment (Hermite curves) elements hold each Hermite curve segment’s 

information about its points (p0, p1) and its tangents (t0, t1) in a 2-dimensional 

point. These are the values presented in Hermite formulation in Equation A.2; 

 g (B-Spline curves) indicates each curve’s number of sub-intervals as shown 

in Section A.2; 

 coef and knots (B-Spline curves) are the coefficient and knots vectors as 

defined in Section A.2; 

 These XML files were stored in the Curves Database to be retrieved when needed. 

 The next step to the method was to find the best match in the curves database for 

the segment being concatenated. For that, it was used the propositions presented in Chapter 

2. What was needed next was a way to describe the curves in a manner as to allow them to 

be compared and thus used to concatenate similar movements. 
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3.5 PARAMETERS EXTRACTION 

 

 Following the propositions raised by previous research in bio-mechanics of arm 

movement (Section 2.2), to correctly describe a curve and be able to compare it with other 

arm movements we need the 7 DOFs of the shoulder, elbow, and wrist joints. We also need 

to take into account not only the final DOFs values but also their initial values as well as 

velocity and acceleration (initial configuration interference). 

 A first approach was to calculate the rotation, velocity, and acceleration of each 7 

DOFs from the start and end position, arriving at a total of 42 parameters for each arm's 

transition. Since arm movement is represented as a discrete sequence of rotation values, it 

is possible to obtain the parameters easily as a means of values, for rotations, or means of 

difference of values, for velocity and acceleration for the required amount of frames (window 

of reference) from before and after the transition. This approach though is very prone to 

noise and, as the window of reference grows, the values become less descriptive of the 

curves as they become more of an average of rotation, velocity and acceleration that in 

themselves can't describe the shapes of curves. 

 The approach used was to consider the segments of the rotational curve as a sign 

and operate on frequency. To operate in such domain a transformation is in order, and it 

was chosen the Discrete Cosine Transformation, DCT, over others (such as Discrete Fourier 

Transformation, DFT, and Fast Fourier Transformation, FFT, which are the other most 

common transformations used in electronic signal processing) for its simplicity, and thus 

faster computation than Fourier Transformation. 

 Discrete Cosine Transformation used is the DCT-II (SALOMON et MOTTA, 2010): 

 𝑋௞ = ∑ 𝑥௡. cos ቂ
గ

ே
. ቀ𝑛 +

ଵ

ଶ
ቁ . 𝑘ቃ          𝑘 = 0, . . . , 𝑁 − 1.ேିଵ

௡ୀ଴  (3.4) 

 where xn is the n-th rotation value in the segment of size N. 

 To comply with results from MATLAB processing, the term xn was multiplied by 1/√(N-

1) if n = 0 and by √2/√(N-1) if n ≠ 0, resulting in: 

 𝑋௞ = ∑ .
௫೙

√୒ିଵ
. cos [

గ

ே
ேିଵ
௡ୀ଴ . ቀ𝑛 +

ଵ

ଶ
ቁ . 𝑘]    𝑘 = 0, … , 𝑁 − 1;     𝑤 =

ଵ ௜௙ ௡ି଴

√ଶ ௜௙ ௡ஷ଴
 (3.5) 

 The choice of N was based on the following criteria: N could not be too small (lower 

boundary), that it should be close to the amount of Xk used as parameters to compare 

curves, avoiding errors produced by noise and it could not be too big (upper boundary) as 
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to describe a sign curve and not just the immediate end and beginning. 

 The lower boundary for N can be determined by the amount of coefficients N intended 

to be used as parameters. Since we want to determine position, velocity, and acceleration 

we need at least 3 components of the original mocap signal, since with only 1 sample we 

can determine position, with 2 samples we can determine velocity dividing the position by 

time and with 3 samples we can again divide both velocities to get acceleration. This will 

indicate: 

 𝑁 ≥ 3  

 For the higher boundary it was necessary to look at the duration of the signs. This is 

very particular for each interpreter, taking each more or less time to sign, so it was chosen 

the lowest sign duration average (52,59 frames at 120 fps, which amounts to about 0,43 

seconds). Considering that this range has, at least, the end of the previous transition and 

beginning of the next we can divide it by 2 and have an estimation of: 

 𝑁 ≤ 26  

 Since N has to be an integer, it was rounded down. 

 It is noteworthy to point out that to devise the lowest sign duration average mentioned 

previously we took into account some signs that were very fast, last than 10 frames. This is 

further discussed in Section 5.2.4. 

 Having defined a range of possible values for N tests were done to determine a good 

number, which was defined as 10. 

 The last variable needed was k, which is the number of DCT coefficients to be used 

as the parameters to describe the transition's beginning and end. X0 is needed for it contains 

the average of N rotation values before and after the transition, higher frequencies are not 

interesting since they store mostly noise information from mocap. A look at the DCT basis 

function (Figure 3.6) reveals an interesting property: X1 will store information on how, on 

average, the rotation value changes over time, and X2 will store information on whether there 

is a change within the range but not on the boundary (beginning and end). The highest 

frequencies, especially for a lower N as has been used in the algorithm, will not yield 

significant data to compare curves. Thus, k was chosen as 2, that is 3 components of the 

DCT on the segments. 
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Figure 3. 6. DCT basis functions. 

 
Image adapted from HERRERA et RUIZ (2014). 

 

 Transitions are thus described as a vector of 42 parameters: for each of the 7 DOFs 

(X, Y and Z shoulder rotation, X elbow rotation, and X, Y and Z wrist rotations) there are 6 

DCT bases (X0, X1 and X2 for the 10 frames prior to the transition an X0, X1 and X2 for the 

10 frames after the transition). 

 For each transition, an XML file is created containing the curve parameters (we used 

the word descriptors in the XML file so as to not create confusion with a curve descriptor 

such as knot counts, degrees, etc.). These files are stored in the Parameters Database and 

used in the Transitions Search. 

 

Code 3. 5. Example of an XML transition parameter file. Values have been truncated. 
<TransitionDescriptor fps="120" id="da01011" rotations="degrees" time="frames"> 
  <R_Humerus.rotateX in_dct00="-9.82" in_dct01="-0.79" in_dct02="0.33" out_dct00="99.52" out_dct01="-1.71" out_dct02="-
0.032"/> 
  <R_Humerus.rotateY in_dct00="28.95" in_dct01="1.67" in_dct02="-0.034" out_dct00="-32.79" out_dct01="-0.86" 
out_dct02="0.047"/> 
  <R_Humerus.rotateZ in_dct00="125.96" in_dct01="-1.70" in_dct02="0.03" out_dct00="65.35" out_dct01="0.53" 
out_dct02="0.054"/> 
  <R_Elbow.rotateX in_dct00="82.30" in_dct01="1.47" in_dct02="-0.03" out_dct00="172.15" out_dct01="0.53" 
out_dct02="0.027"/> 
  <R_Wrist.rotateX in_dct00="133.79" in_dct01="0.35" in_dct02="0.46" out_dct00="170.99" out_dct01="-0.53" out_dct02="-
0.41"/> 
  <R_Wrist.rotateY in_dct00="73.75" in_dct01="0.44" in_dct02="0.18" out_dct00="69.37" out_dct01="0.37" 
out_dct02="0.14"/> 
  <R_Wrist.rotateZ in_dct00="22.96" in_dct01="-0.07" in_dct02="0.72" out_dct00="-31.01" out_dct01="-0.20" out_dct02="-
0.45"/> 
</TransitionDescriptor> 

 

 When the user requires a new transition between two signs, that are given as a set 

of discrete DOF animation curves, parameters are extracted using the DCT as shown in the 

previous section and compared to those in the parameters database. 
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 The comparison is made by a weighted Euclidian distance, d, as shown in the 

Equation 3.6 below. 

 𝑑 = ∑ 𝑤௜. ට𝑥௜
ଶ − 𝑦௜

ଶସଵ
௜ୀ଴  (3.6) 

 Xi is the vector containing the parameters for a curve in the parameters database; Yi 

is the vector containing the parameters from the desired gap (that is, the DCT from the first 

sign's N last rotation values and the second sign's N first rotation values); and wi is a vector 

containing the weight of each parameter. 

 wi is an important element for the distance measurement since it normalizes the 

values from the DCT elements. This is needed because the DCT has a much higher value 

on the 0 component (direct signal) than on the other 1 and 2 components (alternating 

signals), as can be seen from the example in Code 3.4. 

 For each transition in the parameters database, we get a value of d, the smallest one 

is then chosen, indicating the closest transition to the gap desired. The final step thus is 

taken, that is, to concatenate the two signs with the transition stored in the transitions 

database. 

 

3.6 CURVE PROCESSING 

 

 Curve processing is divided into two stages: curve adjustment, which is adjusting 

both the transition curves' values (rotation degree) and time (transition duration); and join 

point adjustment, that is to smooth out the values on the transition boundaries (join points) 

with the signs. Since signs are very specific and should not be tampered with as to avoid a 

misinterpretation, the method does not modify the signs' curves like the concatenation 

presented in PULLEN and BREGLER (2002). 

 Since curve processing is significantly different from B-Spline and Hermite, they were 

treated and will be shown next separately. 

 

3.6.1 Transition Curves Adjustment 

 

 Curve adjustment is the process of fitting the first transition animation curve value (y0) 

to the last value from the first sign animation curve (v0) and the last transition animation 

curve value (yN) to the first value from the second sign animation curve (v1). Also, if 
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determined by the user a specific time value for the transition, it needs to scale in time 

accordingly. 

Hermite 

 The transformation for the Hermite spline can be decomposed on its x (time) and y 

(rotation value) components as a scale in x and a skewing in y as so: 

 𝑥′ = 𝑥. 𝑡 (3.7) 

 𝑦′ = (𝑦 − 𝑦଴). 𝛥𝑌 + (𝛥𝑣 − (𝑦ே − 𝑦଴). 𝛥𝑌). 𝑥 + 𝑣଴ (3.8) 

 Where: 

 x' is the new time value; 

 x is the old time value (normalized in the range 0 to 1); 

 t is the total amount of time for the transition, given by the user; 

 y' is the new rotation value; 

 y is the old rotation value (normalized in the range 0 to 1 from minimum to 

maximum); 

 𝛥𝑦 = 𝑦ே − 𝑦଴; 

 𝛥𝑣 = 𝑣ଵ − 𝑣଴; 

 𝛥𝑌is the total amount of rotation in the animation curve (stored in the XML file 

as the attribute delta_value as can be seen in Code 3.3.B), multiplying any 

value in the transition curves (yi) by it will yield the original transition rotation 

value, since the values stored are normalized; 

 For each tangent defined as the vector [tx,ty] the transformation is given as: 

 𝑡௫′ = 𝑡௫. 𝑡 (3.9) 

 𝑡௬′ = 𝑡௬. 𝛥𝑌 + (𝛥𝑣 − (𝑦௡ − 𝑦଴). 𝛥𝑌). 𝑥       (3.10) 

B-Spline 

 The same idea of skewing over scaling is applied on the B-Spline curve. An 

inconvenient from the B-Spline used compared to the Hermite curve is that to apply the skew 

we need the x (time) component of each given spline component as can be seen on the 

Equation 3.8, and for B-Splines the information given is only a vector of knots (t), a vector 

of coefficients (c) and the curve order (k). 

 This inconvenience can be addressed if we look on the formulation of the B-Spline 

(DIERCKX, 1993): 
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 𝑠(𝑥) = ∑ 𝑐௜. 𝑁௜,௞(𝑥)௡
௜ୀଵ   

 For each basis spline N we assign a multiplying coefficient c that can be interpreted 

as the weight for that basis on the overall curve, similar to the control points when the B-

Spline represents a curve of dimension 2 or greater. In Figure 3.7 it is possible to see the 

basis splines, and the peaks of each are the points in x that the curve exert greatest 

influence, notably on the edges we have N1,3 and N4,3 with weight of 1 indicating that the B-

Spline curve will pass through these initial and end points, since the knot vector repeats k 

times the first and last values generating a closed curve. 

 

Figure 3. 7. Basis splines for a B-Spline curve with a knot vector t = [0 0 0 0.5 1 1 1]. 

Image generated in MATLAB. 
 

For periodic knot vectors it would be easy to find a general formula for the basis 

function peaks. But since the algorithm used in spline fitting (DIERCKX, 1993) changes the 

knot vectors, the peaks must be found by another way. Each basis function peak can be 
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obtained by finding its derivative's zero function, which is given as: 

 
ௗே೔,ೖ(௫)

ௗ௫
= 𝑁௜,௞′(𝑥) =

௞

௧೔శೖି௧೔
. 𝑁௜,௞ିଵ(𝑥) −

௞

௧೔శೖశభି௧೔శభ
. 𝑁௜ାଵ,௞ିଵ(𝑥) (3.11) 

 Thus, for each coefficient ci it is possible to get its relative x coordinate when Ni,k' = 

0. 

 A final remark is that Ni,k' can be zero not only when max(Ni,k), but also when Ni,k = 0, 

that is outside the basis function influence under the vector x, so the range for search of  Ni,k' 

= 0 has to be contained where  Ni,k > 0. 

 To find the root of Ni,k' within the range established, it was used the bisection method 

as proposed by RUGGIERO et LOPES, 2010. 

 Therefore, to join the B-Spline transition curves with the signs' curves it was used a 

function analog to the Hermite skewing presented in Equation 3.8 applied to the coefficient 

vector, which is: 

 𝑐௜′ = (𝑐௜ − 𝑐଴) + (𝛥𝑣 − (𝑐ே − 𝑐଴)). 𝑥௜ + 𝑣଴ (3.12) 

 xi is the normalized x (that is, in the range 0 to 1) found in the maximum value of the 

corresponding i-th basis function for ci. 

 

3.6.2 Join Point Adjustment 

 

 Join point is the boundary frames between the curves (first sign to transition and 

transition to second sign). To smooth out these values and maintain the rotation values from 

the sign, only operations on transition curves are acceptable. Again, for each curve, the 

method varies, but it is the same idea of maintaining tangent continuity at the boundaries. 

 Since noise is present in the motion capture signs, instead of using the direct tangent 

which would be given by the difference between 2 consecutive frames before and after a 

transition that has a length of N frames, a small range was established, and the tangent was 

calculated as a means from the W closest frames, as such: 

 tan௜௡ = ∑ tan௜ − tan௜ାଵ
଴
௜ୀିௐ  (3.13) 

 tan௢௨௧ = ∑ tan௜ − tan௜ାଵ
ேାௐ
௜ୀே  (3.14) 

 Where: 

 N is the transition size (time, in frames); 

 W is the window, number of frames to be considered; 

 tan are the tangent values;  
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Hermite 

 Hermite adjustment is done by modifying the first tangent of the first segment and 

applying the same inclination as to tanin, and applying the same inclination as tanout to the 

second tangent of the last segment. 

 Therefore, it is easier to manipulate tangents in a polar coordinate system. The 

vectors are represented by an angle θ and a module r instead of x and y components, and 

the transformation from the Cartesian to polar coordinate system is given by: 

 
𝒓ୀඥ𝒙𝟐ା𝒚²

𝜽ୀ𝒕𝒂𝒏ష𝟏ቀ
𝒚

𝒙
ቁ
 (3.15) 

 A first approach would simply modify the values of θ on the transition curves to match 

the sign's initial and final tangent. This can cause steep changes in rotation values which 

are not natural (Figure 3.8). To address this issue, it is necessary to also change the 

transition tangents' modules based on the difference of angle with the signs' tangents. 
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Figure 3. 8. Hermite tangents adjustments. Original animation curve from motion capture 
data (A). Hermite transition curves have been applied to the range [390, 463] without any 

join point adjustment (B), resulting in a discontinuing curve especially visible on the 
rotation Y (green curve) on the frame 463. Join point adjustment is later applied, first with 

only the tangent angle (C) and later with the diminishing tangent module (D) given by 
Equation 3.16. 

A 
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B 

C 
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D 

Images generated in Autodesk Maya. 

 

 The formula used was hence: 

 𝑟′ = 𝑟.
(గି௱ఏ)

గ
𝜃′ = 𝜃¯ (3.16) 

 Where: 

 r' is the new transition tangent module; 

 r is the tangent module from the transition curve's tangents; 

 Δθ is the difference between the sign and the transition curve angle, that is θ 

- θ; 

 θ' is the new transition tangent angle; 

 θ is the angle from the sign animation curve; 

B-Spline 

 For the B-Spline curves, the adjustment made is on the coefficients c, namely on the 

second (c2) and on the second to last coefficients (cN-1). 

 The tangents tanin and tanout provide the rate by which the rotation values (y) change 

over time (x), and this can be used to align c2 and cN-1 with the signs' tangents, therefore 
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maintaining continuity on the join points. To estimate the value of x for the coefficients, the 

same method of derivative of basis functions from the previous section was used. 

 𝑐ଶ′ = 𝑐ଵ′ + 𝜃 . 𝑡. 𝑥ଶ𝑐ேିଵ′ = 𝑐ே′ − 𝜃௢௨௧ . 𝑡. 𝑥ேିଵ (3.17) 

 

3.7 FINAL REMARKS 

 

 The method proposed can be seen as a mixture between data-driven and procedural 

animation. While it does use data from motion capture to create transitions between signs, 

it does so by selecting the best transition in the set according to the propositions discussed 

in Chapter 2. 

 Transitions used, after captured from interpreters and segmented, were stored as 

Hermite or B-Spline curves in order to better manipulate them. This also became an 

interesting tool to compare the performance of different curve types, which will be shown in 

the results in the next chapter. 

 The selection of transition to be used between signs was done by comparing the DCT 

of the frames before and after the transition, that is the last frames for the first sign and the 

first frames for the second sign, resulting in a selection that not only takes into consideration 

the arms initial and final posture (joint rotations) but also the movement before and after. 

 Joining the animation curves from transitions and signs was a challenge on its own 

when dealing with the B-Spline curve. Since the algorithm proposed to fit the curve treated 

it as 1-dimensional the skewing applied along the curve had to use the derivative of basis 

functions to find the appropriate amount of distortion to apply to coefficients proportionally 

to their "x" value. 

 The last step was then to compare the results of the method proposed, which can be 

seen in the next chapter. 
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4 RESULTS AND DISCUSSIONS 

 

 In the previous chapters we have shown how this project started with research into 

digital animation and human arm movement models, trying to find a procedural animation 

(PARENT, 2012) model that would enable us to synthesize arm movement between signs 

in Libras avatars. Several works on Bio-Mechanics of Arm Movement such as MAROTTA, 

MENDENDORP et CRAWFORD (2003), and ADMIRAAL et al (2004) showed us that, 

although a universal model doesn't seem to exist which could support such procedural 

animation approach, some underlying rules helped us develop the method, providing us the 

3 propositions adopted. We've then presented the model we used for transitioning between 

signs, which consists of a data-driven animation system, using previous mocap interpreters 

inter-sign transitions to synthesize new movement. A reminder of the different steps used in 

the method can be seen in the figure below which is a reproduction of Figure 4.1. 

 

Figure 4. 1. Method overview. 

 

Image from the author 
 

 The method proposed was implemented as a series of MATLAB and Python / 

Autodesk Maya programs with results that are shown here. 

 This chapter will be divided into 2 sections: 4.1. Method Application, where it is shown 

and discussed how the proposed method was used to synthesize new transition animation; 

and 4.2. Results, where the results of these synthesized animation curves are shown. 
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4.1 METHOD APPLICATION 

 

 This section presents the steps done to synthesize inter-sign transition movement. 

As the details and discussions about implementations have been addressed in previous 

chapters, here we will focus on how we applied the method to real data, pointing out issues 

when they arose. A more detailed discussion into these issues and how we envision they 

can be dealt with in the future is presented on Section 5.2. 

 Using Autodesk Maya and its Python API we loaded up each individual mocap 

sentence. These, of course, had the inter-sign transitions animations, so the first step to run 

our method was to delete the animation curves' keyframes on the intervals defined in the 

XML sentence segmentation files, leaving us with a signing virtual avatar with signs in place 

but with arms jumping from one sign to the other. 

 To find the closest match, the XML database containing the transition parameters is 

loaded and, for each transition in the sentence, we exclude it from the search to force the 

method to find a different transition than the current one (since the closest match to any 

transition is the transition itself). 

 Having found the closest match to the transition to be interpolated, we used both 

Hermite and B-Spline curve models stored in the XML curves database to transition from 

one sign to the next. 

 B-Spline curve model, being based on the work of DIERCKX (1993) didn't pose many 

problems besides the interpretation of the algorithm and implementation under the tools 

used in this project as shown in Appendix A.2. 

 Hermite curve-fitting as shown in Appendix A.1 was a more challenging task, but it 

provided us with an algorithm that was both very solid (there were no curves that had a too 

high RMSE value as compared to the B-Spline fitting that had a very high RMSE in some 

animation curves as the case in the Right Wrist’s rotation X in interpreter KA’s first sentence 

transition 9 shown in Appendix B) and fast (DIERCKX algorithm would take minutes to 

process the transitions in a sentence while Hermite curve fitting could process them in a 

matter of seconds in the same machine, both inside MATLAB). There are some things we 

would like to improve in the algorithm, for sure, and we show here how we can do that. 

 Determination of Δy to select the best splicing points from Equation A.5 could be 

improved. The equation is copied below: 
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 𝛥𝑦 =
[௠௔௫(௫)ି௠௜௡(௫)]

ଵ଴଴
 (4.2) 

 This produces good, but in some animation curves that had too much noise and a 

small amplitude it did produce a very noisy Hermite curve as can be seen in Figure 4.1. 

Another solution could be to use a defined number for all curves based on the context of 

human arm joints in sign language animation, that is with a large set of mocap data we could 

retrieve what are the minimal rotation values that usually occur on a cleaned animation curve 

and use that to create a new Δy to filter out noise values. 

 

Figure 4. 2. Example of a bad splicing point selection due to high frequency and low 
animation curve amplitude. This case suggests a different method to determine Δy. 

 

Image generated in MATLAB. 
 

 Another point that we found some difficulties was the tangent determination process. 

We determined tangent inclination by an average of close points' inclination (in lieu of just 

the curve derivative between the splicing point and its direct neighbors) due to the high noise 

encountered in the mocap data. A first approach though was with only local inclination (direct 

neighbors), that is, for a splicing point at frame i between Hermite curves k and k+1, was 

tried using the following formula: 

 
𝒕𝟏

𝒌ୀ𝒚𝒊ି𝒚𝒊ష𝟏

𝒕𝟎
𝒌శ𝟏ୀ𝒚𝒊శ𝟏ି𝒚𝒊

 (4.2) 
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 This yielded poor tangent inclinations due to noise in mocap data, thus it was used a 

range of points inclination as shown in Equation A.6. For the intermediate tangents, those 

that are in the splicing points, these produced good results, but the same cannot be said for 

the first tangent in the first curve,𝑡଴
଴, and the second tangent in the last curve, 𝑡ଵ

௄(K is the last 

Hermite curve segment in the animation curve). 

 An approach that could be attempted is to have the next step of the algorithm, tangent 

weight determination, also look for a better inclination whereas now the algorithm created 

only searches for a better tangent weight; this means creating independent k0 and k1 factors 

for the x and y coordinates of the tangents. 

 Having the curves adjusted into Hermite or B-Spline models, the next step was to 

create an algorithm that would join the transition's animation curves with the signs' animation 

curves. 

 Our first approach to match transition animation curves to those of the signs to be 

concatenated was to scale the animation curves so as the first value matches the first sign's 

last value and the last value matches the second sign's first value, as in the equation below: 

 𝑦′ =
௬ି௬బ

௱௬
. 𝛥𝑣 + 𝑣଴ (4.3) 

 This approach though created big distortions in the transition curves as can be seen 

in Figure 4.2. The problems arise when Δy (difference between initial and final transition 

values) is very small, causing the transition animation curve's values (y'0, y'1, … , y'n) to be 

too high. 
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Figure 4. 3. Difference between skewing and scaling in three animation curves for x, y and z 
rotations of a joint. (A) shows the original motion capture animation curves. (B) we deleted 

the curves values on intervals [1044,1092] and [1151,121] and applied the method with 
Hermite curves using skewing to match initial and final transition values. If instead it was 
used scale, the resulting curve can be seen on (C), and with the y (rotation values) axis 
scaled up (D) it is possible to see a valley around -9000 degrees. Images generated in 

Autodesk Maya. 

 

 

Image generated in Autodesk Maya. 
 

 Another important factor to notice if using the scale formula is that as Δy approaches 

0 numerical errors are prone to increase to the point of, if Δy = 0, a zero division error occurs. 

 For these reasons we used the skewing presented on Equations 3.7 to 3.10 in 

Section 3.7.1 on the transition animation curves instead of scaling them, successfully 

avoiding issues with too low Δy. 

 Having found a closer transition in the database based on the parameters proximity,  

interpolation between signs was done using both Hermite and B-Spline curves (stored in the 

curves database) as well as simple linear interpolation and what we called simple Hermite, 

which consisted of a Hermite curve with tangents half the length of the transition range and 

orientations following the end of first sign's animation curve and beginning of second sign's 
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animation curve, in the same fashion as explained with the Hermite curve fitting shown in 

Appendix A.1. 

 For each animation curve (shoulder rotation in x, y, and z; elbow rotation in x; and 

wrist rotation in x, y, and z) we calculated the RMSE between the original mocap values and 

the four different curves (linear, simple Hermite, Hermite, and B-Spline). Below we present 

a table that shows RMSE results for an interpreter's sentence with 6 intervals as well as the 

animation curves graphs for elbow rotation in x, y, and z with original (mocap) data and the 

interpolation curves before mentioned. The results are presented and discussed in the next 

section. 
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4.2 RESULTS 

 

 We successfully applied the method to 3 sets (1 for each interpreter) of the same 4 

sentences that were recorded in the mocap studio at CTI as presented in Section 3.2. 

Although our initial goal was to apply the method on all the sentences of the 4 interpreters 

recorded we only applied the method to 3, since the first interpreter recorded had a very 

different sign structure than the others. This was an unexpected setback that we learned as 

we conducted the experiments, since it was our (mis) understanding that sign language had 

a fairly regular structure that would result in similar, if not equal, translations from spoken 

language. We were lucky to be able to detect this on our second interpreter recording 

session and thus we've managed to create the same translation with the latest three 

interpreters. On top of that, the virtual skeleton used for the first interpreter was not the same 

as the others, requiring an animation re-targeting to conform with the skeleton used in the 

other three (that were the same), which was not viable due to time constraints. 

 The animation transitions recorded for the first interpreter were kept in the animation 

curves and parameters database and could be used to synthesize the transitions of the other 

three interpreters. With this, we managed to populate the database with erroneous data that 

was later used (below) to validate our method, since if a lot of transitions were selected from 

this first interpreter data that would indicate the transition search part of the method didn’t 

have enough significance. 
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Table 4. 1. Transitions selected by the method. Interval ID columns identify the transition to 
be synthesized and Matched ID columns refers to the transition selected by the method. In 
red are highlighted transitions selected from the first interpreter (DA) and in light blue are 
highlighted transitions that have been successfully selected from a similar transition from 

another interpreter. 

 

 

 Table 4.1 shows some errors (highlighted in red) in which the method found as a 

closer transition to another one from the first interpreter (da). There were 3 occurrences of 

such an error in the 88 transitions (3.41%), this is much less than the expected 25% 

occurrences that would happen if we selected at random a transition from the database (the 

whole transitions database have a bit over a quarter of transitions originated from the first 

interpreter, 30 out of the total 118). On the other hand, the light blue transitions, which are 
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the expected selection of the same transition from a different interpreter, represent 12.5% 

of all the transitions, which is much higher than the expected 2.28% (2 in 88) occurrences if 

transitions were selected at random. 

 Another noteworthy result is seen in Table 4.2. This table shows transitions that were 

selected from the same interpreter. The method matched 56 out of the 88 occurrences 

(63.64%) with a transition from the same interpreter, and this is much higher than the 

expected 25%, if we count the first interpreter's transitions, or 33%, if we count only the last 

three interpreters that had the same movement and virtual skeleton. 

 

Table 4. 2. Transitions selected by the same interpreter. Same transitions from the previous 
table, but now those that are selected from the same interpreter are highlighted. 
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 These two tables can be interpreted as a result of the propositions exposed in 

Chapter 2, and in particular similarity of movement. Table 4.2 results show that the 

peculiarities of a single individual's movement seem to override a more general model, since 

instead of selecting a transition of a similar movement from another interpreter, the method 

has selected as a closer transition another movement from the same person. But, interesting 

to note, the remaining 32 transitions that were not chosen from the same person were in a 

great number (11, or more than 33%) chosen from the same movement but from another 

interpreter, which does contribute to confirm the first proposition. 
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Table 4. 3. RMSEs for a Libras sentence with 6 transitions. Under TRANSITION X it's shown 
the transition's id stored in the system (for instance, the first one, ka0401, corresponds to 

the interpreter ka's fourth sentence, and first transition) and below it, under transition 
selected, which transition was selected in the database (for instance, to the ka0401 the 

system selected as the closest match ro04011, which corresponds to the interpreter ro's 
fourth sentence, first transition, and right arm). The four rightmost columns show the RMSE 

on each animation curve between the original mocap value and the interpolated linear, 
simple Hermite, Hermite, and Spline. 
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Figure 4. 4. Animation curves for interpreter ka's fourth sentence shoulder rotation (x-axis 
is represented in red, y-axis in green, and z-axis in blue). Highlighted in yellow are the areas 

corresponding to the transition segment that was interpolated by the method. (a) is the 
original data, (b) the linear, (c) simple Hermite, (d) Hermite and (e) Spline curves 

interpolation. 

 

(a) Original 

 

(b) linear 
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(c) simple Hermite 

 

(d) Hermite 
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(e) Spline 

Images generated in Autodesk Maya. 
 

 Figure 4.3 shows some of the features the proposed method can synthesize that 

wouldn't be possible in a simple curve interpolation solution. Focusing on the elbow's y 

rotation (green curve) for the second transition we can see that linear interpolation is not a 

satisfactory model because it produces a sharp change in C2 continuity, which is usually 

perceived as a very unnatural movement; simple Hermite curve interpolation produces a 

smooth transition but doesn't have some of the details that Hermite and Spline transitions 

derived from other mocap animation has, such as the peak inside the transition that is 

present in the original data as well. 

 This sentence (ka04, or fourth sentence of the ka interpreter) is presented here 

because it contains in its fourth transition an error in the closest match step, since it selected 

as the closest match another transition from the first interpreter (da), which as mentioned 

before shouldn't have happened since the interpreter motion and virtual skeleton were very 

different from the other three. We can see this fourth transition (identified as ka0404) has a 

better visual result with a simple Hermite curve (Figure 4.3.c), since Hermite and Spline 

curves (Figures 4.3.d and Figures 4.3.e, respectively) present some characteristics that are 

not similar at all with the original data and are even the opposite with a peak on the x (red) 

curve while in original we have a valley. Interestingly, though, this is not shown in the RMSE 
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results; we can deduce that the best RMSE linear result for transition ka0404 (Table 4.3) is 

due to the fact that the original transition animation curves have a complex shape (i.e. 

multiple changes in first and second derivative), and a linear interpolation curve, being a 

rough average (weighted average) between the initial and final values, would bear a lower 

RMSE. 

 Analyzing just the RMSE we can see in Table 4.3 that the average values for the 

different curve types are not very different, but when we count the number of occurrences 

for each curve as best RMSE we can see that simple Hermite curves are by far the lowest 

in score (therefore better fit) with 59 transitions having lowest RMSEs as simple Hermite; 

followed by the method's Hermite curve using mocap transition information with 16; and in 

last linear and spline curves appear almost tied, with 7 and 6, respectively. 

 RMSE results could be complemented with a more subjective evaluation, where 

people fluent in Libras would be able to score the different animation curves transitions. This 

was envisioned in the project, but due to time constraints, it had to be left behind. We can, 

though, see some of the animation curves' graphs, like the one shown in Figure 4.3, and 

reach some conclusion. 

 What seems to be the big advantage of the simple Hermite model is that it produces 

a smoother, less complex (i.e. presence of peaks and valleys), curve than the others, and 

since transitions between sign languages in our mocap database are usually fast this 

Hermite model fits better with expected animation curves shapes. When we have more 

complex animation curves shapes, Hermite and spline curves are the best interpolation 

models, especially when they are originated from the same movement (have the same initial 

and final signs), as can be seen in the first and second transitions in Figure 4.3 that show 

more complex animation curves in the original mocap data and thus have the Hermite (first 

transition) and spline (second transition) yielding the best RMSE. 

 A way of applying this knowledge gained with the results and analysis of the proposed 

method is if we take inspiration from the work of PULLEN and BREGLER (2002). There 

could be a transition animation curve decomposition into higher and lower frequency bands 

and, when using it to interpolate between signs, combine a Hermite curve model in the low 

frequency with a mocap-based high frequency band to give the texturing PULLEN and 

BREGLER (2002) referred to. 
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Table 4. 4. Average RMSEs by transitions. This table is a summary of the average RMSE 
found when interpolating the transitions between signs using the 4 different curve types. 
The full RMSE for one interpreter’s 4 sentences transitions (that is, with each animation 

curve RMSE)  can be found in Appendix B. 

. 

 

 This chapter has shown some of the issues we've encountered while researching and 

developing the method presented. We've shown that we've navigated through a plethora of 

subjects in computer science, ranging from data structure in animation curves and 

parameters database to curve decomposition in DCT form and complex curve fitting 

algorithms for the Hermite and B-Spline curves. As expected, no mastery can be achieved 

at this level and with so many different and complex subjects, and as a result a lot of the 

work could be improved, especially within the Hermite curve fitting algorithm. 

 Nonetheless, the results yielded by the method have given us hope that there is 

something very promising that we've manage to scratch. Putting aside the low RMSEs from 

the Hermite and B-Spline curve fitting algorithms implemented, we've shown that the three 

propositions raised from previous research on human arm movement in Chapter 2 (similarity 

of movement, initial configuration interference and wrist interference) held true when our 

method found the closest transition curves match in the same interpreter (63.64% of the 

occurrences) or another interpreter doing the same movement (12.5%). RMSE results, 

though, seem to suggest that a simpler approach (simple Hermite curve model) is usually 

better since the transition time between signs are small enough that high frequency details 
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in Hermite and Spline curve fitting were basically noise. This is not true when we have a 

more complex original animation curve like the first and second transitions in Figure 4.3 

where our method successfully matched a transition animation curve set from another 

interpreter doing the same movement. This could imply that a more complex method, mixing 

high and low frequency bands like PULLEN and BREGLER (2002) used in their work could 

yield more accurate results. 

 This will be further talked about in the next and final chapter, where we conclude our 

work, giving a brief review of what has been done and propose further works based on what 

has been researched and implemented. 
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5 CONCLUSION AND FURTHER WORK 

 

 In this chapter we discuss the results and to which degree they have answered the 

questions on how to develop a method for transitioning between signs in Libras in the next 

sections (5.1.1.Similarity of Movement, 5.1.2.Curve Models and 5.1.3.B-Spline versus 

Hermite). In Section 5.2 we present further work envisioned in this research. 

 

5.1.1 Similarity of Movement 

 

 Chapter 2 has presented previous works on the biomechanics of arm movement and 

thus gave us the 3 propositions that guided our method: 

 Similarity of Movement 

 Initial Configuration Interference 

 Wrist Interference 

 These suggest that similar arm configuration – that is, an arm that starts and ends 

movement with very similar position, velocity, and acceleration – will create similar 

movement. 

 One way to verify this hypothesis is to look at the correspondences the method found 

when searching for the closest match between the signs to be concatenated and the 

transitions stored in the databases. This information is given in Tables 4.1 and 4.2 and can 

be summarized as: 

• 11 (12.5%)  transitions selected from the expected similar transition – 

same sentence and same transition. If selected at random, the expected 

percentage would be 1.69%. 

• 56 (63.64%) transitions selected from the same interpreter. If selected at 

random, the expected percentage would be 24.58%. 

• 3 (3.41%) transitions selected from the corrupted data set (as explained 

in Section 4.2). If selected at random, the expected percentage would be 

25.42%. 

 These numbers reveal that the transitions search algorithm performed as expected, 

since the numbers of similar and same interpreter transitions correspondences were much 

higher than if made by a random selection. Similarly, the correspondence to the corrupted 
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data set was as well much lower than if made by a random selection. 

 Besides supporting the 3 propositions before-mentioned, this also can be seen as 

indicative of the validity of using DCT as parameters to compare similar arms configurations. 

 Another conclusion we can assert is that an interpreter’s own personal way of moving 

in a certain sense overrides what the authors have pointed out in Chapter 2 as a more 

general rule of arm movement, and we can see that by the fact that in 63.64% of the cases 

the transitions selected were those from the same interpreter while only in 12.5% the 

transitions selected were those expected (same transition in the same sentence but from 

another interpreter). This means that although the movement done could be predicted by 

the same model, the way an interpreter moves – i.e. positions its arms after the end of the 

first sign and at the beginning of the second one – has more similarities between one’s own 

movement, even if for a different target, than those of different interpreters aiming towards 

the same target. 

 

5.1.2 Curve Models 

  

In Chapter 4 we have shown the results of applying different animation curves to 

synthesize transition animation between signs in terms of the RMSE between the generated 

curves and the original mocap data. 

 We can synthesize this information in the following Table: 

 

Table 5. 1. Statistics for different curve types. The average RMSE column presents the 
average RMSE for all the animation curves in all transitions. The number of Lowest RMSE 
column indicates in how many of the 88 transitions the respective curve type scored the 

lowest RMSE. 
Curve Type Average RMSE Number of Lowest RMSE 

Linear 8,06 7 

sHermite 6,84 57 

Hermite 8,41 17 

B-Spline 12,67 7 

 

 The first conclusion we can assert from the data presented is that a better general fit, 

that is the lowest RMSE considering all animation curves in all transitions, is the simple 

Hermite (sHermite) curve, and that could be a result of the short transition time, averaging 
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65.318 frames or 0.54 seconds. We can speculate that in such a short time frame the best 

results are simpler curves that maintain C2 curve continuity. 

 Linear and Hermite curves have a very similar Average RMSE score, but we can see 

from the boxplot in Figure 5.1 below that the Linear curve has a bigger deviation again 

probably due to the short transition times. 

 

Figure 5. 1. Boxplot of RMSE values for each curve type (A) with zoom in the range 0-30 (B). 
Outliers are represented as the white circles and the crosses represent average RMSE 

values. 

 

 

 A last observation to be made with these data is that B-Spline curves presented 2 

outliers with very high values (that can be seen in Figure 5.1.A) and this is due to the 

coefficients generated by the fitting algorithm (Appendix A) with one example presented in 

Code 5.1. 

 

Code 5. 1. B-Spline coefficients from one of the transition animation curves that caused 
high RMSE results (outliers). The problematic coefficients are highlighted in red. 

[17.2778, -178277.7668, 34585.2352, -6149.7985, 22.2879, 14.6077, 16.6538, 17.6752, 23.5036, 25.4611, 24.9802] 
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5.1.3 B-Spline versus Hermite 

 

 As we have shown in the previous section, there is a big difference in performance 

on our method using B-Spline and Hermite curve models, namely the RMSE on Hermite 

curves are lower and there were no outliers. 

 One explanation for this is the fact that the B-Spline curves were much more complex, 

presenting a larger number of control points (coefficients and knot vector) if compared to 

Hermite’s (points and tangents). Below is an example of one of the curves (X rotation in 

humerus joint): 

 For B-Spline fitting we have 10 coefficients (-1.7424, 0.43291, -0.20011, 6.6217, 

1.986, 18.9936, 34.9427, 48.0801, 53.9813, 56.0629) and 6 middle knot values (0, 0, 0, 0, 

0.08318, 0.18719, 0.55111, 0.70267, 0.81888, 0.9149, 1, 1, 1, 1) with a total of 16 values to 

define the curve, while for Hermite fitting the same curve is represented by only 8 values: 

p0=[0,0], p1=[1,1], t0=[1.6124,1.5229] and t1=[2.721,4.9222]. This higher number of 

descriptors for the B-Spline representation was consistent throughout the curves in the 

database. 

 B-Spline algorithm gave more precise fitting results, with consistent lower RMSE in 

comparison to the Hermite fitting algorithm, but also that came with the cost of speed. 

Running the same Matlab R2015 in a lapotop computer (2.1 GHz i7-3621QM processor, 8 

GB RAM) each sentence would take an average of about 30 minutes to complete the 

Hermite fitting, while B-Spline fitting for the same sentences would take 4 times more, 

sometimes even needing 3 hours to complete the process. 

 

5.2 FURTHER WORK 

 

 Previous section has shown in short how we developed the method to synthesize 

inter-sign arm movement in a virtual Libras interpreter. We have applied our method to gaps 

between mocap signs and analyzed the results in detail in Chapter 4. 

 In this final section, we present some ideas to push the work here presented forward, 

in ways that either due to time or limited scope of this project we couldn't have worked on. 
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5.2.1 XML files 

 

 Mocap data was stored in simple XML files (Chapter 3) so as to be easily available 

for the method to retrieve animation curves and transition parameters. For that, we also 

designed XML files storing sentence segmentation (i.e. frames ranges in mocap animation 

that correspond to signs and transitions) in a structure that could be both easy to navigate 

in the API provided to read XML files as well as be readable by humans. 

 The XML sentence segmentation file described in Chapter 3 presents a workable but 

not well-formed file and thus does not conform to the XML syntax rules (RAY, 2003). To 

address this issue, the main modification that we would envision in a further version of this 

project is for each element to have a name that is used for all the elements of such type. 

This would be the case for all the elements in the XML sentence segmentation files, including 

the root element. The proposed alterations are as followed: 

• Root element: the element name should clarify that this is a segmentation file, 

having attributes describing the version, interpreter's name, and possibly 

creation date, resulting in a structure like <sseg date="01-02-2013" interpreter="name" 

version="1.0"> . 

• Sentence element: should be translated to the English word sentence instead 

of the Portuguese frase and contain the number as an attribute, not as its 

name, resulting in a structure like <sentence number="1">. 

• Segment element: its name should be the same for all elements, the 

identification of each segment should be expressed in a new attribute, type, 

the position attribute should also be renamed to a more precise word, order, 

and the word attribute could be taken off since it can be implied by the new 

attribute, resulting in a structure like <segment end="100" order="1" start="1" type="sign">. 

• Additionally, it should be interesting to include a reference to the file(s) 

containing the animation, as an additional element child of the root element. 

 

5.2.2 Hermite Curves Fitting 

 

 We have presented in Appendix A the method by which we fitted Hermite curves into 

the mocap animation curves by: 
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1. splitting them into their peaks and valleys; 

2. evaluating the tangent inclination on them by averaging the tangents around 

those splitting points; 

3. and lastly using a brute force method for finding the best tangent (or weight) 

computing the Hermite curve value's RMSE for different tangent weights and selecting that 

with lower value. 

 This method presents a fast and satisfactory way of finding the tangents for the 

Hermite curve segments, but another approach would be to develop the method proposed 

in the B-Spline fitting algorithm by DIERCKX (1993). 

 The Hermite curve formula can be written as: 

𝑝(𝑥) = (2𝑥ଷ − 3𝑥ଶ + 1)𝑝଴ + (𝑥ଷ − 2𝑥ଶ + 𝑥)𝑡଴ + (−2𝑥ଷ + 3𝑥ଶ)𝑝ଵ + (𝑥ଷ − 𝑥ଶ)𝑡ଵ; 𝑥 ∈ [0,1] (5.2) 

 And we can use the formulation presented in the B-Spline fitting algorithm section 

with a Hermite curve representation instead of a B-Spline, therefore we would try to find r in 

the equation: 

 𝑟 = 𝑚𝑖𝑛 ∑ (𝑦௜ − 𝑝(𝑥௜))ଶ௡
௜ୀଵ     (5.3) 

 This would need to be written in the matrix form and solution yielded by using the 

pseudo-inverse method as with the B-Spline curve fitting. 

 

5.2.3 Subjective Evaluation 

 

 We've presented in Chapter 4 the method's results by comparing the synthesized 

transition animation curves with the original mocap animation curves using RMSE. This 

provides a numerical value to compare and evaluate the different curve models used (linear, 

simple Hermite, Hermite, and B-Spline). 

 In future works, it would be interesting to evaluate in a more subjective approach as 

well. We envision this to be done by having deaf or Libras proficient individuals compare 

two different videos of different animation curves models. The videos would be randomly 

selected from the set of transitions created with the method as well as the original mocap 

animation. 

 Besides evaluating how natural the different transition animations are perceived we 

could also ask participants to write down what are the words being signed by the virtual 

avatar, enabling us to evaluate the animation's intelligibility. 
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Figure 5. 2. Wireframe for the proposed animation curves models subjective evaluation. 
Question 1 would have the participants compare between two different animation curves 

transitions of the same two signs and decide which, if any, is better and Question 2 can be 
used to evaluate the intelligibility of the model. 

 
Image from the author. 
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5.2.4 Parameters Extraction and Best Match 

 

 In Section 3.5 it is shown how we established the transition animation parameter as 

DCT coefficients from the end of the first sign and the beginning of the second, using the 

DCT-II formulation by SALOMON et MOTTA (2010), which is: 

 𝑋௞ = ∑ 𝑥௡. cos[
గ

ே
. (𝑛 +

ଵ

ଶ
). 𝑘]𝑘 = 0, . . . , 𝑁 − 1.ேିଵ

௡ୀ଴  (5.4) 

 Regarding the definition of the N discrete rotation values used to extract the 

parameters from the DCT, a higher boundary could be expected to be used as the lowest 

sign duration, instead of the average length of mocap signs. There are some signs that, 

during segmentation, were considered as an instantaneous position (there is no movement, 

and the sign is just a static pose) having a duration of less than 10 frames (with the quicker 

one lasting only 6 frames), which is too short and prone to noise errors. One such sign is 

"house", which is configured as the two hands with fingers extended in front of the body 

rotated at about 45 degrees and index, middle, and ring finger touching their respective from 

the opposite hand (Figure 5.2). In this case, the readability of the sign is accomplished not 

only on the sign itself but on the transitions. When integrating this method with a virtual 

avatar pipeline, this limitation has to be addressed either by decreasing the value of N when 

extracting parameters or specifying a minimum duration of signs which should be equal to 

or greater than N.  
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Figure 5. 3. Interpreter signing "house". 

 
Image from the author. 

 

 For each mocap transition, we stored a parameter in the parameters database as 

exposed in the aforementioned section which is an XML file in the form presented in Code 

5.2.  

 

Code 5. 2. Example of an XML transition parameter file. Values have been truncated. 
<TransitionDescriptor fps="120" id="ka01011" rotations="degrees" time="frames"> 
  <R_Humerus.rotateX in_dct00="-3.88" in_dct01="0.29" in_dct02="0.12" out_dct00="92.00" out_dct01="-1.09" 
out_dct02="0.27"/> 
  <R_Humerus.rotateY in_dct00="23.06" in_dct01="-0.12" in_dct02="0.07" out_dct00="-114.60" out_dct01="-0.57" 
out_dct02="0.32"/> 
  <R_Humerus.rotateZ in_dct00="-1.84" in_dct01="-0.027" in_dct02="0.003" out_dct00="13.64" out_dct01="0.413" 
out_dct02="-0.11"/> 
  <R_Elbow.rotateX in_dct00="4.07" in_dct01="-0.14" in_dct02="-0.10" out_dct00="136.05945014" out_dct01="0.53" 
out_dct02="-0.06"/> 
  <R_Wrist.rotateX in_dct00="-19.98" in_dct01="-0.33" in_dct02="0.087" out_dct00="138.63" out_dct01="-1.71" out_dct02="-
1.54"/> 
  <R_Wrist.rotateY in_dct00="-41.80" in_dct01="-0.72" in_dct02="0.03" out_dct00="-128.60" out_dct01="-0.17" 
out_dct02="0.05"/> 
  <R_Wrist.rotateZ in_dct00="-32.72" in_dct01="0.33" in_dct02="-0.05" out_dct00="-192.63" out_dct01="1.67" 
out_dct02="1.73"/> 
</TransitionDescriptor> 

  

We can see in the above example that the first DCT bands (in_dct00 and out_dct00) 

are orders of magnitude bigger than the other bands, like in right wrist's rotate X we have -

19.9859413413 in the in_dct00 band while the value for in_dct02 is 0.0870298131567. In 

practical terms, this means that the first DCT bands will overwhelm the values of the other 

bands when calculating transitions distances. 
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 Principal Component Analysis (PCA) could help improve the method in 2 important 

ways: balancing the DCT bands and improving transitions matching. 

 To balance the DCT bands, PCA suggests a variance scaling on each vector of the 

parameters of the transition. This means for each of the parameters (in_dct00, in_dct01, 

in_dct02, out_dct00, out_dct01 and out_dct02) we would normalize their values as: 

 𝑑𝑐𝑡′ =
ௗ௖௧ିௗ௖௧¯

ௌ
 (5.5) 

 Where: 

• dct is the parameter value before normalization 

• dct is the mean value of the parameter in the database 

• S is the standard deviation for the DCT band in the database 

 Improvement in transition matching can be possible by decreasing the number of 

parameters to be compared. With the current implementation, we have 42 parameters (6 

DCT bands for each of the 7 animation curves in the shoulder, elbow, and wrist joints), this 

creates a very low density and sparse distribution of data, for we are dealing with a 42 

dimensions point cloud, each point being a transition. 

 If we reduce the parameters dimensionality by using just the most significant PCA 

components we can have a more meaningful Euclidian distance comparison to match the 

desired mocap transition, that is, avoiding the curse of dimensionality for distance functions 

as exposed in MARIMONT et SHAPIRO, 1979. 

 

5.2.5 Other Applications 

 

 The method presented in this project addresses the issue of synthesizing inter-sign 

arm transitions in a 3D virtual Libras interpreter, a very specific problem. But it is our belief 

that this same method can be generalized to different virtual joint chains and in other 

situations besides inter-sign transitions. 

 Virtual interpreter arms are a linked chain of virtual joints (shoulder, wrist and elbow) 

that behave as a unit towards one goal, i.e. going from the end of a sign position to the 

beginning of the next sign's, as exposed by the researches presented in Section 2.2. We 

believe that the same method presented here can also be applied to other virtual joint chains, 

such as legs and torso animation, since the method has no hard requirement or design into 

the number of joints and its DOFs. Animation curve fitting and processing are done on an 
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individual basis, so adding or subtracting animation curves won't affect these processes, 

and Parameters Extractions can be easily adapted with more or fewer parameters. 

 Transitions database is populated with inter-sign arm movement, but we believe that 

it could be populated with different animations in order to produce a different movement. 

This could lead to other applications of the method, such as in computer games where a 

character would need to switch between fighting animations.  
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APPENDIX A – OVERVIEW OF CURVE FITTING 

  

As mentioned in Section 3.2, motion capture data is presented as discrete animation 

curves, consisting of floating-point vectors representing rotations of shoulder, elbow, and 

wrist in a time range. It can be represented as a vector as follow: 

 𝑌௞ = [𝑦଴,
௞𝑦ଵ,

௞𝑦ଶ,
௞ . . . , 𝑦௡ିଵ

௞ ]; (A. 1) 

 Where Yk is the k-th animation curve containing y individual values in a time range of 

n frames. In this project's context, k = [0, 1, 2, …, 6] since we have 7 animation curves for 

the 3 arm joints (3 DOFs in the shoulder, 1 DOF in the elbow, and 3 DOFs in the wrist). 

Since each animation curve is fitted independently the k index will be dismissed in further 

data vector representations. 

 As explained in Chapter 3, the storage and manipulation of animation curves as 

discreet values has a lot of drawbacks that led to the implementation of curve fitting methods. 

 Curve fitting is the process by which a mathematical model is used to approximate a 

data set. Given a data of y' we want to find a mathematical function f(x) = y such as to 

minimize the error (or distance) between y' and y, that is: 

 𝑚𝑖𝑛|𝑓(𝑥) − 𝑦′|∀𝑥 (A.2) 

 Since we are dealing with a 2-variables function, the mathematical function used is a 

curve. 

 Two curve types fitting, Hermite and B-Spline, were implemented and the results 

compared. Since the curve fitting methods are very different, they will be shown and 

explained in the next sections separately. 

 

A.1 HERMITE CURVE FITTING 

 

 Hermite curves are polynomials defined by their start point (p0), end point (p1), initial 

tangent (t0) and final tangent (t1), as we can see in some examples in Figure A.1. The 

polynomial can have any degree but one of the most commonly used is the 3rd degree 

polynomial, which was also used in the method here described since for each DOF the first 

derivative represents velocity and second derivative acceleration, thus higher degree 

polynomials would have a higher complexity with no direct analogy to the real-life data 

represented by the curves. 
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Figure A. 1. Hermite curves example. These Hermite curves have the same initial and final 
point values, p0 = [0,0] and p1 = [1,1], but with different tangent values. Top left: t0 = [1,0], t1 

= [1,0]; Top right: t0 = [0,1], t1 = [0,1]; Bottom left: t0 = [1,0], t1 = [0,1]; Bottom right: t0 = 
[0,1], t1 = [1,0]. Images generated in MATLAB. 

 

 

Image generated in MATLAB 
 

 A third-degree Hermite curve can be interpolated as follow: 

𝑝(𝑡) = (2. 𝑡ଷ − 3. 𝑡ଶ + 1). 𝑝଴ + (𝑡ଷ − 2. 𝑡ଶ + 𝑡). 𝑡଴ + (−2. 𝑡ଷ + 3. 𝑡ଶ). 𝑝ଵ + (𝑡ଷ − 𝑡ଶ). 𝑡ଵ; 𝑡 ∈

[0,1](A.3) 

 A Hermite curve describes only a segment of the total animation curve, so to fit the 

animation curve mocap data it was used several segments connected by their end points, 

that is: 

 ൜
𝒑𝟏

𝒏ୀ𝒑𝟎
𝒏శ𝟏

𝒕𝟏
𝒏ୀ𝒕𝟎

𝒏శ𝟏 ൠ (A.4) 

 The conditions expressed in Equation A.3 state that the end point (p1) of the nth 

segment must be equal to the first point (p0) of the n+1 segment, and the last tangent (t1) of 

the nth segment should also be equal to the first tangent (t0) on the n+1 segment, thus 

preserving a geometric continuity of G2 (although the conditions presented in the equation 

do imply a C2 parametric continuity, the algorithm changes the tangents sizes in further steps 
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as shown in Section A.1.2, thus providing only geometric continuity G2 between segments). 

 The curve fitting method proposed is based on the idea that each animation curve 

can be spliced on the local minima and maxima, that is where f''(x) = 0. After finding these 

initial splicing point candidates, a final selection is based on their distance in order to not 

splice on a too-small segment or have sign noise influence on the splicing, this will give p0 

and p1 for each Hermite segment. 

 Splicing the animation curve into smaller Hermite curves yields to the next step where 

tangents (t0 and t1) are defined. To find the best tangents they are treated in 2 steps, first 

defining its inclination (tangent) and second its length. 

 Tangents inclinations are determined by the average inclination on the data points 

near each splicing point. 

 Tangents weights (or sizes) are determined by comparing the different tangent sizes 

on each Hermite curve and finding the best fit to the mocap data using RMSE. 

 Finally, an XML file is created to be used in later steps of the method proposed 

(Section 3.4). 

 These steps will be further explained next. 

 

A.1.1 Curve Splicing 

 

 The first step to fit a Hermite Curve on the motion capture data is to splice it into 

segments which will be then fitted individually. A good set of splicing points is thus 

fundamental to achieve an overall good curve fitting. To select this best set first it is 

necessary to find candidate points, which are those where the second derivative of the 

animation curve is 0. Since the motion capture data is comprised of discrete values, these 

first candidate points are defined as: 

 𝒙 ∋ 𝑖 ⇔ (𝑦𝑖 − 𝑦𝑖−1). (𝑦𝑖+1 − 𝑦𝑖) ≤ 0 (A.5) 

 There are two situations that require refining on the selection of splicing points: 

• A "plateau" on the signal (that is, the value on the animation curve remains 

constant); 

• An agglomeration of consecutive prospective splicing points, probably due to 

a very high-frequency noise; 
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 Figure A. 2. complications when selecting splicing points. A plateau of relatively 
equal values on the animation curve (left) and agglomeration of consecutive splicing points 

due to high-frequency noise (right). Images generated in MATLAB. 
 

 

 

 

 

 

 

Images generated in MATLAB. 
 

These situations can be dealt with by defining local errors in time (Δx) and value (Δy): 

• Δy is used in the plateau scenario. This defines the minimum (rotation) value 

of adjacent points for them to be considered equal. It is an error range when dealing with 

motion capture data that may either present noise or too small rotation values on joints that 

can be considered the same value. After the initial set of splicing points candidates are 

defined, the algorithm goes through each candidate's vicinity and, if the neighbor(s) values 

are within the current's plus or minus Δy they are put into a temporary set of neighboring 

points (V). After finding all the points in the neighboring points set, the algorithm takes only 

its first and last points and introduces them back to the candidate splicing points set (𝑋෠). It 

is noteworthy to point out that intermediate plateaus, that is ranges of curve points within Δy 

but without any peaks, have been present as shown in Figure A.2 but they were successfully 

spliced using the method here proposed due to noise presence, which created peaks where 

might have not. This Δy is given by the following equation: 

 𝛥𝑦 =
[௠௔௫(௫)ି௠௜௡(௫)]

ଵ଴଴
 (A.6) 

• Δx is used in the agglomeration scenario. This defines the minimum distance 

between splicing points. After the initial set of splicing points candidates are defined and the 

plateau scenario is dealt with, the algorithm goes through all of the splicing points 

sequentially and in the case where the distance between two or more adjacent points are 

less than  Δx, those points are taken from the set and a new one is introduced. The new 
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point's x coordinate is the mean value between the subtracted points. 

 Since there are a lot of noises in the mocap animation curves tangent inclinations 

could not be considered as simply the vector given by the splicing point subtracted from its 

neighbors. The first approach to tangent inclination determination was to just compute the 

average inclination of N near points to the splicing points as in the following formulas: 

𝒕𝟏ୀ
∑ (𝒚𝒋ష𝒚𝒋ష𝟏)𝒊

𝒋స𝒊స𝑵

𝑵

𝒕𝟎ୀ
∑ (𝒚𝒋శ𝟏ష𝒚𝒋)𝒊శ𝑵

𝒋స𝒊

𝑵

 (A.7) 

 Where N is the number of closest points used to calculate the inclination. 

 This approach did not produce good results, since a small N would allow noise to 

create a bad tangent and a big N would average too many points resulting in an inclination 

that wouldn't reflect the inclination of a continuous curve. 

 The solution used was to use a filter that smooths out the curve and at the same time 

maintains the overall shape with its first and second derivatives. The 1-dimensional kernel 

(SOLOMON, 2010) used for this was [0.1538    0.1923    0.3077    0.1923    0.1538]. Results 

of using this filter in the mocap curve can be seen in Figure A.3. 

 

Figure A. 3. Intermediate plateau. An intermediate plateau around frame 275 which has been 
correctly spliced due to noise in the mocap data. Image generated in MATLAB. 

 
Image generated in MATLAB. 
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A.1.2 Tangent Weight Determination 

 

 From the previous step tangent's direction is already taken from the mocap data. 

What is left to determine is their weight (or size). To do so the algorithm does a brute force 

comparison between different initial and final tangent sizes for each Hermite curve by 

multiplying the unitized tangents with a factor k0 and k1, thus transforming Equation A.2 into: 

𝑝(𝑡) = (2. 𝑡ଷ − 3. 𝑡ଶ + 1). 𝑝଴ + (𝑡ଷ − 2. 𝑡ଶ + 𝑡). 𝑡଴. 𝑘଴ + (−2. 𝑡ଷ + 3. 𝑡ଶ). 𝑝ଵ + (𝑡ଷ − 𝑡ଶ). 𝑡ଵ. 𝑘ଵ𝑡 ∈

[0,1] (A.8) 

 The factors k0 and k1 are defined by the user, for transition curve fitting it was used 

100 equally spaced values ranging from 0 to 5 times the curve's length (frames), for each 

tangent's multiplying factor. 

 Determining the best fit was done by comparing RMSE. This needs special attention 

because Equation A.7 yields the Hermite curve value for a given parameter t and it was 

desirable to have a function that yields a y (rotation value) for each x (frame) in the Hermite 

curve. Seeing as the equation is independent for x and y coordinates, first, it is solved for t 

with x given. Starting with Equation A.2 for x: 

𝑥 = (2. 𝑡ଷ − 3. 𝑡ଶ + 1). 𝑝଴ + (𝑡ଷ − 2. 𝑡ଶ + 𝑡). 𝑡଴. 𝑘଴ + (−2. 𝑡ଷ + 3. 𝑡ଶ). 𝑝ଵ + (𝑡ଷ − 𝑡ଶ). 𝑡ଵ. 𝑘ଵ(A.9) 

 This can be rewritten as to put t in evidence in a polynomial form: 

𝒕𝟑. (2. 𝑝଴ + 𝑡଴. 𝑘଴ − 2. 𝑝ଵ + 𝑡ଵ. 𝑘ଵ) 

+𝒕𝟐. (−3. 𝑝଴ − 2. 𝑡଴. 𝑘଴ + 3. 𝑝ଵ − 𝑡ଵ. 𝑘ଵ) 

+𝒕. (𝑡଴. 𝑘଴) 

−𝑥 = 0 (A.10) 

 Which in turn can be written as: 

𝒕𝟑. 𝐴 + 𝒕𝟐. 𝐵 + 𝒕. 𝐶 + 𝐷 = 0 (A.11) 

 Equation A.10 is solved by using MATLAB's roots algorithm, which finds eigenvalues 

of the matrix A.11 that correspond to the polynomial's roots (THE MATHWORKS INC, 2017). 

 (A.12) 

 The roots found are not necessarily valid roots, so a criterion is used in which the 

only selected roots should be real, no imaginary roots should be accounted - since the 

interpolation curve requires and exist only for real numbers - and within the closed interval 
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[0,1] - since the Hermite curve used is not defined outside this range. If there are more than 

1 real root found, this means the Hermite curve is not a function (i.e. for a given x / frame 

value there are more than 1 y / rotation value), thus it can't be used as an animation curve. 

 With t given, y is calculated using the Hermite curve polynomial presented in Equation 

A.2 and thus an RMSE is given by finding the difference between this y and the original 

mocap data. 

 The algorithm then compares RMSEs of all given combinations of k0 and k1, selecting 

the lowest score as the final values for the tangents. 

 An example of the different parts of the Hermite fitting algorithm is presented in Figure 

A.4. 
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Figure A. 4. Steps for Hermite curve fitting. Part 1 (top left) finds one splicing point, dividing 
the curve into two segments. On each point, including the extremities at frames 611 and 
640, tangent inclinations are determined as well. For each segment we assign ranges of 
tangent weights k0 and k1 (top right and bottom left) and compare RMSE between the 

Hermite curve and original mocap data, giving the results shown. The lowest error value 
then determines the best fit, that is, the best values for k0 and k1 in Equation A.8. The 

jagged limits on the extremes of k0 and k1 ranges are due to non-existing solutions for the 
polynomial A.10. The bottom right image is the final Hermite curve comprised of two 
segments compared to original mocap data. The Hermite curve is composed by the 

concatenation of 2 segments given by p0=[0, 0], p1=[0.71429, 1], t0=[0.59406, 1.3619], 
t1=[0.22277, 0.016178] for the first segment and p0=[0.71429, 1], p1=[1, 0.8969], t0=[0.11139, 

0.008089], t1=[0.23868,-0.1248] for the second segment. Note that these values are 
normalized. 

  

  
Images generated in MATLAB. 

 

A.2 B-SPLINE CURVE FITTING 

 

 A spline is a curve defined in parts by polynomial functions. Spline curves precede 

computer graphics as they were made using weights, also called “ducks” (Figure A.5), and 

a bendable ruler to draw precise curves for engineering and design, most notably on 

shipbuilding. 
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Figure A. 5. Spline weights. Also called “ducks”, the spline weights were used for drawing 
curves before computer aided design. 

 
Image from TOWNSEND (2015). 

  

A spline is a real function in the form: 

 𝑠: [𝑎, 𝑏] → ℝ (A.13) 

and has a set of knots tj, j = 1, 2, … , (2k + g – 1). Where k is the order of the spline 

(degree of polynomial + 1) and g is the number of sub-intervals with knots given by: 

 [𝑡௜, 𝑡𝑖+1], 𝑖 = 0, . . . , 𝑘 − 1 (A.14) 

 These knots can be thought of as a digital counterpart to the ducks. 

 B-Splines are a special type of splines constructed by linear combination of different 

curves called basis splines, thus the name of the curve. 

 Using the de Cox-Boor formulation by ADAMS and ROGERS (1990) a B-spline curve 

is defined as: 

 𝑠(𝑥) = ∑ 𝑐௜. 𝑁௜,௞(𝑥)𝑥௠௜௡ < 𝑥 < 𝑥௠௔௫ , 2 ≤ 𝑘 ≤ 𝑛 + 1௡ାଵ
௜ୀଵ  (A.15) 

 The spline basis functions are the Ni,k(x) that can be defined as: 

𝑓𝑜𝑟 𝑘 = 1: 
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𝑁௜,ଵ = ൜
1,      𝑖𝑓 𝑡௜ ≤ 𝑥 < 𝑡௜ାଵ

0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (A.16) 

𝑓𝑜𝑟 𝑘 > 1: 

𝑁௜,௞(𝑥) = 𝑤௜,௞(𝑥). 𝑁௜,௞ିଵ + ൫1 − 𝑤௜ାଵ,௞൯. 𝑁௜ାଵ,௞ିଵ       (A.17) 

 and w is given by: 

𝑤௜,௞ = {

௫ି௧భ

௧೔శೖషభି௧೔
, 𝑖𝑓𝑡௜ ≠ 𝑡௜ା௞ିଵ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
            (A.18) 

 

A.2.1 Approximation of B-Spline with Fixed Knot Vector 

 

 The B-Spline method presented here is explained in detail in DIERCKX (1993), thus 

only the main concepts and what was adapted from it to the problem of fitting animation 

curves will be presented in this work. 

 For the B-Splines 3 parameters were necessary to be determined on each fit: 

• Spline order (k) 

• Quantity and position of knot vector (t) 

• B-Spline coefficients from Equation A.14 (c) 

 The most common spline order according to DIERCKX (1993) is k = 4 resulting in 

cubic splines of continuity C2, physically that means angle (C0), velocity (C1) and 

acceleration (C2) are maintained between segments. 

 To compare the fitted B-spline with original curve values, the same criteria as in the 

Hermite curve fitting was used, that is, Minimum Square Distance between the B-spline 

curve in the x coordinates correlated to the n mocap animation curve rotational values in the 

vector y: 

 𝑟 = 𝑚𝑖𝑛 ∑ (𝑦௜ − 𝑠(𝑥௜))ଶ௡
௜ୀଵ  (A.19) 

 Equation A.18 can be expanded with Equation A.14 as: 

 𝑟 = 𝑚𝑖𝑛 ∑ (𝑦௜ − ∑ 𝑐௝ . 𝑁௝,௞(𝑥௜)
௡
௝ୀଵ )ଶ௡

௜ୀଵ  (A.20) 

 This can be written in matrix form as: 

 𝑟 = 𝑚𝑖𝑛(𝑦 − 𝐸. 𝑐)்(𝑦 − 𝐸. 𝑐) = 𝑚𝑖𝑛||𝑦 − 𝐸. 𝑐||ଶ (A.21) 

 where: 
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 Solution for Equation A.20 (that is, minimization of squared Euclidean norm of y-E.c) 

can be found using the pseudo-inverse method on the equation: 

 𝐸. 𝑐 = 𝑦 (A.22) 

 

A.2.2 Approximation of B-Spline with Variable Knot Vector 

  

It is shown in DIERCKX (1993) that knot quantity and position can affect greatly the 

fitting curve result. Too few knots are not enough for a high-frequency curve representation 

and a high density of knots is required where a curve has a high frequency. DIERCKX (1993) 

also points out that it is important to avoid coincidental or too proximal knots so as to avoid 

unnecessary clustering and noisy curves. To accommodate these requirements,  a penalty 

function P(t) is used in Equation A.18 creating the new function to be minimized as: 

 𝑣(𝑡) = 𝑟(𝑡) + 𝑝. 𝑃(𝑡) (A.23) 

 P(t) is given by: 

 𝑃(𝑡) = ∑
ଵ

(௧೔శభି௧೔)
, 𝑝 = 𝑒ଵ.

௥(௧భ)

௉(௧೐)

௞ା௚ିଵ
௜ୀ௞  (A.24) 

 where 

• t1 is the initial knot configuration, 

• te is the equidistant knot distribution, 

• e1 is a factor reflecting the desired precision for the approximation. 

 Since the knots divide the interval [a,b] equidistant distribution of knots is given by: 

 𝑃(𝑡௘) =
௚మ

(௕ି௔)
 (A.25) 

 The problem is now to minimize the non-linear function v(t) varying the knot vector. 

This can be accomplished using the Fletcher and Reeves algorithm. This algorithm, also 

called conjugated gradient, requires an initial knot vector, which is obtained using the 

method in the next section. 
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A.2.3 Initial knot vector 

 

 Fletcher and Reeves algorithm will try to minimize the function v(t), which is not 

convex, therefore the minimum found is not guaranteed to be global and could just be a local 

minimum to the neighborhood of t1 (initial knot vector). Hence why it is extremely important 

to start with a good t1. 

 The proposed method by DIERCKX (1993) defines a good initial number of knots and 

their positions. This is achieved by (1) establishing an initial equidistant 3-knots vector and 

(2) adding knots in the intervals with greater error. This method is as follow: 

1. Initialize t1: 

 𝑡ଵ = ൥
𝑡ଵ

𝑡ଶ

𝑡ଷ

൩ (A.26) 

 with: 

 𝑡ଵ = 𝑎,       𝑡ଶ =
௔ା௕

ଶ,
,      𝑡ଷ = 𝑏 (A.27) 

2. For g = 1, 2, …, gmax : 

I. Apply the algorithm presented in Section A.2.1 using tg as the initial knot vector. 

This will determine t* as the optimal knot position, yielding the respective spline 

sg(x). 

II. For i = 1, 2, …, g calculate the error found between each knot3: 

         𝑟ప෥ =
∑ (𝑦𝑟−𝑠𝑔(𝑥𝑟))

2𝑗+𝑚
𝑟=𝑗

m−𝑚𝑖
    (A.28) 

with t*i ≤ xj < xj+1 < … ≤ t*i+1; t*1 = a, t*g+2 = b; and m – mi defines the range (in 

frames, in our case) of the knots distance in the curve. 

III. If all 𝑟௜are smaller than an approximation error defined by the user, stop and give 

the current knot vector, t*, as the final knot vector. If not, define a new knot vector 

tg+1 by inserting a new knot in the current vector. Determine the new knot location, 

l, associated with the greater 𝑟௜as such: 

 
3 It is important to point out that although the author suggests the use of a weight wr for each curve point yr the 
algorithm implemented didn't use it. The reason being the equal importance of each sample yr (animation curve 
value) for each frame xr . Thus the suggested formula wr(yr – sg(xr)) has been substituted by the simple 
difference between the sampled animation curve value and its B-Spline value in the form yr – sg(xr). 
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         𝑟̃௜ = 𝑚𝑎𝑥{𝑟ప෥}, 𝑖 = 1, . . . , 𝑔 (A.29) 

Insert the new knot between the knots t*l and t*l+1. The new knot vector is given by: 

         𝑡௚ାଵ = ൞

𝑡௜
∗, 𝑖 = 1, … 𝑙

(௧೗
∗ା௧(೗శభ)

∗ )

ଶ
, 𝑖 = 𝑙

𝑡௜ିଵ
∗ , 𝑖 = 𝑙 + 2, … , 𝑔 + 2

 (A.30) 

 

A.2.4 Fletcher and Reeves Algorithm (Conjugated Gradient) 

  

As stated in the previous section, Fletcher and Reeves algorithm tries to find a local 

minimum of a function, and for that it uses an initial guess which in our case is the t1 starting 

knot vector. The process to get this initial knot vector, shown in the previous section, can be 

summed up by starting with an initial 3 knots equidistant vector and inserting new knots in 

the curve, whereupon the approximation is worse between already existing knots. 

 Given the initial knot vector, the algorithm will iterate on knot vectors subtracting then 

the  gradients of the minimum function (Equation A.30), that is the search direction vector, 

to arrive at a local minimum. The algorithm can be described as follow: 

1. Calculate initial search direction: 

 𝑑ଵ = −𝛻𝑣(𝑡ଵ) (A.31) 

2. For i = 1, 2, …, g – 1 

(a) Minimize 

 𝑧(𝑎) = 𝑣. (𝑡௜ + 𝑎. 𝑑௜) (A.32) 

 obtaining a*.4 

(b) Consider 𝑡௜ାଵ = 𝑡௜ − 𝑎 ∗. 𝑑௜. 

(c) End algorithm if 

 
|௩(௧೔శభ)ି௩(௧೔)|

௩(௧೔)
< 𝑒ଵ and 

‖௧೔శభି௧೔‖

‖௧೔‖
< 𝑒ଶ (A.33) 

(d) Update search direction as: 

 𝑑௜ାଵ = −𝛻𝑣(𝑡௜ାଵ) +
‖ఇ௩(௧೔శభ)‖మ

‖ఇ௩(௧೔)‖మ
. 𝑑௜ (A.34) 

3. Make 𝑡ଵ = 𝑡௡ା௞and go back to step 1. 

 
4 The algorithm to obtain a* can be found in DIERCKX (1993). 
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 The values used in Equation A.32 to determine if the error between the current 

iteration and the last (e1) or the relative distance between consecutive knot vectors (e2) were 

suggested in DIERCKX (1993) with values of 0.0005, but in the implementation for animation 

curves, it was shown that these values were too low, resulting in the algorithm not finishing 

its run or creating numerical errors, thus they were increased to 0.05,still yielding good 

results. 

 The algorithm to get the value of a* can be seen DIERCKX (1993). Although not 

shown, in the algorithm proposed by DIERCKX (1993), a* more often than not yielded 

unexpected results (for instance, a* was attributed the value of ‘Infinite,’ caused probably by 

a division by 0, or attributed an imaginary number which is not expected for this problem 

that uses only real numbers for joint rotations, and so on), so one criterion for the algorithm 

to stop was to check these results. If any occurred, then the current knot vector (ti) was 

given as the solution. 

 An example of the B-Spline curve fitting with increased internal knots counts (g) and 

its associated errors (RMSE) is presented in Figure A.6. 
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Figure A. 6. B-Spline fitting example. B-Spline fitting for the same data fitted in Hermite 
curve in Figure A.4. Top shows the different curves generated with different internal knots 

counts, as shown on the algorithm in the previous section. Bottom shows the different 
errors (RMSE) in each generated curve; this is interesting because it shows that although 
there was an increase in error from 5 to 6 internal knots (going from 0.016917 to 0.017144) 

that did not meet all the error conditions for termination as stated in Equation A.32. The 
spline has the coefficient vector c = [0.2969, 2.6276, 4.562, 13.6126, 16.0703, 18.5043, 

21.3737, 32.8331, 31.6995, 29.8174, 28.7695] and the knot vector k = [0, 0, 0, 0, 0.093192, 
0.14641, 0.30449, 0.36942, 0.36963, 0.62235, 0.78464, 1, 1, 1, 1]. 

 

 

Images generated in MATLAB. 
 

A.3 FINAL REMARKS 

 

 As presented in Chapter 3, mocap data representing DOFs rotation values (Y) used 

for inbetweening different signs were needed to be stored in a way that could be later 

manipulated. This manipulation involves mainly 2 operations: stretching both time and 

rotation values to adjust for the new signs to be inbetweened, and tangent adjustment in the 

connecting points in order to create a smooth flow of movement between signs and transition 

animation curves (Section 3.7). 
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 Two different curve types were used, comparing how well they would fit the purpose 

of the system: Hermite and B-Spline. Both used cubic polynomials at their basis, since this 

provides a simple curve and yet can guarantee C2 which in DOFs animation curves would 

guarantee position, velocity, and acceleration continuity. 

 Cubic Hermite curve was defined in Equation A.2 as: 

𝑝(𝑡) = (2. 𝑡ଷ − 3. 𝑡ଶ + 1). 𝑝଴ + (𝑡ଷ − 2. 𝑡ଶ + 𝑡). 𝑡଴ + (−2. 𝑡ଷ + 3. 𝑡ଶ). 𝑝ଵ + (𝑡ଷ − 𝑡ଶ). 𝑡ଵ; 𝑡 ∈ [0,1] 

 Where p0 is the initial point with t0 tangent, and p1 the final point with t1 tangent. 

 This of course defines only a third-degree polynomial curve, and thus is very limited. 

For complex DOF curves (defined as having multiple maximum and minimum points with 

different slopes between them) we need to segment the data curve Y and create multiple 

Hermite curves segments. Thus, in broad view, the Hermite curve fitting algorithm used can 

be stated as: 

1. Determine the splicing points. Done by first selecting curve peaks (maximum and 

minimum values) and then filtering out candidate points that are either too close in 

time (high-frequency noise) or too close in value (plateaus) and discarding those that 

reside within a certain range; 

2. Determine the tangents angle for each segment, which is obtained by averaging 

the closest points inclination (in this case means the average angle difference in the 

animation curves). 

3. Determine the tangents length (k0 and k1), since these are the only 2 values needed 

for each segment. The Hermite curve equation becomes: 

𝑝(𝑡) = (2. 𝑡ଷ − 3. 𝑡ଶ + 1). 𝑝଴ + (𝑡ଷ − 2. 𝑡ଶ + 𝑡). 𝑡଴. 𝑘଴ + (−2. 𝑡ଷ + 3. 𝑡ଶ). 𝑝ଵ + (𝑡ଷ − 𝑡ଶ). 𝑡ଵ. 𝑘ଵ 

This is solved by minimizing RMSE for each DOF rotation value (Yi) on each 

time/frame (x) to its corresponding point in Hermite (p(t(x))), remembering that Hermite curve 

definition is given under a parameter t and not on actual frame x. 

Each tangent length is then equally divided in n samples between a minimum and 

maximum value and the Hermite segment's RMSE is calculated for each n times n curve 

possibilities. The one yielding the less RMSE is then used as the final value. 

 B-Spline curve fitting was based on the algorithm proposed by DIERCKX (1993). 

Given the definition of a B-Spline as in Equation A.14: 

 𝑠(𝑥) = ∑ 𝑐௜. 𝑁௜,௞(𝑥)𝑥௠௜௡ < 𝑥 < 𝑥௠௔௫ , 2 ≤ 𝑘 ≤ 𝑛 + 1௡ାଵ
௜ୀଵ  
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 ci is the weight of each Ni,k(x) basis function. To calculate each basis function it's 

necessary to establish a knot set tj. Thus the algorithm aims to find these two vectors, ci and 

tj, by guessing an initial estimate and doing a gradient search to find the lowest local value 

of the residue function r that compares the spline value with the original mocap data: 

 𝑟 = 𝑚𝑖𝑛 ∑௡
௜ୀଵ (𝑦௜ − 𝑠(𝑥௜))ଶ 

 Finding the two vectors is achieved by first transforming the previous formula in the 

matrix form r = min || y – E.c ||2. This can be solved using the pseudo-inverse method in the 

equation y = E.c. This equation requires a known knot vector. 

 To solve the equation with unknown knot vectors DIERCKX (1993) proposes adding 

a new penalty function p.P(t) which helps unclutter knots, transforming the equation to: 

 𝑣(𝑡) = 𝑟(𝑡) + 𝑝. 𝑃(𝑡) 

 An initial knot estimation is required for the solving algorithm, and this is obtained by, 

starting with 3 equidistant knots in the interval, adding knots within intervals between knots 

that have the greatest error until a minimum error in the curve fitting equation is obtained. 

 The Fletcher and Reeves algorithm is then used with this initial knot vector. This is 

an iterative algorithm which, in broad view, solves the problem by: 

1. Calculating an initial search direction, which is the gradient on v(t) for the initial 

knot estimation. 

2. Minimize the equation v(t) but with the knot vector increased towards the 

gradient direction, creating a new knot vector in the direction searched. 

3. If the approximation is within an error range defined by the user, then return 

the new knot vector. 

4. At the end, Hermite and B-Spline curve fitting produced good results in terms 

of low RMSE. These were then used to concatenate Libras signs as explained 

in Chapter 3. Results obtained were then compared and further discussion is 

presented in chapters 4 and 5. 
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APPENDIX B – TRANSITION CURVES RMSE COMPARISON 

 

 In this appendix we present the RMSE charts comparing RMSE between the four 

different curve models: linear, simple Hermite (sHermite), Hermite and B-Spline (spline). For 

each joint's attribute (i.e. shoulder rotation x, y and z; elbow rotation x; and wrist rotation x, 

y and z) it's presented its RMSE with the lowest highlighted in gray and the lowest average 

highlighted in blue. 

 We also present in red under transition 9 wrist rotation x a highlight in red indicating 

a value far greater than expected, and this was due to the use of a spline model that, when 

shortening the animation curve's length, created some abnormal behavior (only in 1 other 

animation curve this happened again). 

 It's presented here only the RMSE tables for 1 interpreter, the proposed method was 

also applied, and the results recorded and analyzed as explained in Chapter 5. 
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APPENDIX C - CONSENT TO USE OF IMAGE AND CAPTURED MATERIAL 

 

Pelo presente instrumento particular, eu, 

_______________________________________________________________________, 

de nacionalidade __________________, R.G. n.________________________, profissão 

_________________ e residente à 

________________________________________________________________________

_________________ na cidade de ______________ - ___ AUTORIZO de forma gratuita e 

sem qualquer ônus, ao pesquisador Leandro Martin Guertzenstein Angare, a captação de 

materiais gravados (fotos e/ou vídeos) e capturados utilizando técnicas de captura de 

movimento (motion capture) para o projeto de mestrado (CNPq Processo 160941/2013-0) 

da Faculdade de Engenharia Elétrica e de Computação (FEEC) da Universidade Estadual 

de Campinas (UNICAMP). Ao mesmo tempo libero a utilização de tais materiais para 

artigos, palestras, congressos, paineis e outros materiais para fins científicos e 

educacionais em território nacional e no exterior. 

 

 

Campinas, __ de ________ de 2014. 

 

 

______________________________________ 

Declarante 

 

 

______________________________________ 

Pesquisador responsável pelo projeto 
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APPENDIX D – ANIMATION 

  

In this appendix we present a more in-depth exploration into the topics raised in 

Chapter 2. This appendix is divided into 2 sections: Section D.1 which discuss the 

foundations of terms in traditional animation and Section D.2 with a more focused discussion 

on the computer animation field. 

 

D.1 ANIMATION 

 

 Animation is the illusion of life, quoting the title of the illustrious book by THOMAS 

and JOHNSTON (1995). Moreover, Norman McLaren, a famous Canadian animator, stated 

that "animation is not the art of drawings that move but the art of movements that are drawn" 

(SÁENZ VALIENTE, 2011, p. 30). In a broader sense, animation is change, variation of an 

attribute in time; this attribute could be a character's pose resulting in movement, or could 

be a blush in such character's face, resulting in an apparent shy reaction to the audience. 

For the purpose of this research, animation will be restricted to change in position and 

orientation, i.e. movement, although the principles and ideas presented in the text could 

apply to other types of changes. In our context, an animator is the professional who is tasked 

with imbuing life in materials as varied as sand, puppets, paper drawings or computer-

generated images, that is perceived as (illusion of) movement. 

 This section explores some significant aspects of animation history and techniques, 

focusing on how the illusion of movement was developed and what is the usual process to 

create it, relating these topics with the developments described in this dissertation. For a 

more comprehensive study on this we refer to the works of BENDAZZI (1995) and BECK 

(2004). 

 It is considered that movement representation dates as far back as the prehistoric 

cave painting of Altamira where a bison is depicted with eight legs (MACHADO, 2007). 

Supposedly the intent of the painter was to represent in a single image a running movement. 

Since then, throughout millenniums, Men has tried to devise a way to represent, register, 

and visually transmit the sensation of movement, but real breakthroughs began with the 

invention of optical toys: 
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[...] in 1825, a famous English physician, John A. Paris, created the prototype of 
optical toys, the thaumatrope: a disc with a complementary image on each side, and 
strings attached at each end of its horizontal axis. When the disc is spun on the 
strings, the two complementary images appear to merge. In 1832, the Belgian 
scientist Joseph Plateau invented the prototype of optical toys, the phenakistiscope. 
This was a device made of a pivot and a cardboard disc, along the edges of which 
successive images of an object in motion had been drawn. By focusing on one 
drawing while viewing the rotating disk through a slit, one had the illusion that the 
drawing moved. (BENDAZZI, 1995, p. 3) 

  

These two optical toys illustrate fundamental animation and cinematic concepts: 

persistence of vision and phi phenomenon. Persistence of vision theory states that when 

light reaches the eyes the image it creates persists for some moment in the retina. This can 

be seen in the classic thaumatrope with one side of a disc a drawing of a bird and the other 

a cage, when this disc is spun it merges both images because the speed by which images 

change is fast enough so the bird image persists within the retina when the new image 

(cage) is presented, thus creating the illusion of a trapped bird (Figure D.1). Max Wertheimer 

developed this theory further, stating that we perceive continuous motion when shown fast 

successions of static movement images (frames). He named it the Phi phenomenon and 

MACHADO explains it as so: 

 

Today we could say that the eye, as a rule, does not distinguish between a directly 
perceived movement and an apparent, artificial or mechanically produced 
movement, as it was demonstrated by Wertheimer in his pioneer study about the phi 
phenomenon. (MACHADO, 2007, p. 22) 

 

 Persistence of vision and the phi phenomenon aren't sufficient to explain the illusion 

of movement we have in a film. Imagine a multifaceted object such as a cube, where in each 

face there is a depiction of an instant (or frame) of a jump. If the multifaceted object was 

spun on its axis there would be no movement perceived, only a blur of probably 

indistinguishable forms. A pause is needed between images. That is what the slit on the 

phenakistoscope (Figure D.2) is for. When strobes of images displaying a minimal variation 

of a stimulus are shown to a human brain, those stimuli are merged together not only in 

space as in the thaumatrope but also in time, creating the illusion of movement. That is the 

Beta phenomenon. 

 It is noteworthy to digress on the time discrete nature of movement. Although for over 

a century the predominant form of space representation for images was continuous in the 

form of analog film stock frames, time representation was discrete since its conception. In 
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computer animation, both space and time are discrete in their final results but are stored 

and manipulated as continuous parameters. 

Figure D. 1. Thaumatrope with drawing of bird and cage. When fast flipped the two images 
are perceived as one due to the Phi effect. 

 
Image from U. S. NATIONAL PARK SERVICE (2022). 

 

Figure D. 2. Phenakistoscope with a horse galloping. When spun and viewed through the 
slits in front of a mirror the various images of a horse gallop are perceived by our brain as 

one continuous movement. 

 
Image from JOBSON, C. (2015). 
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 Movement reproduction and perception were solid concepts by the birth of the 20th 

century and new animation tools were developed almost yearly, as is the case of the 1910 

Earl Hurd invention of celluloid animation which originated the layer system used in image 

and video editing software. Artistic aspects of animation were also thriving with studies of 

human and animal motion, and one invention made a remarkable contribution to generating 

natural movement for artificial characters. In 1917, Max Fleischer, a renowned animator who 

contributed to series such as Out of the Inkwell and Superman, under the patent US 

1242674 A, disclosed to the world the Rotoscope (Figure D.3). 

 

An object of my invention is to provide a method by which improved cartoon films 
may be produced, depicting the figures or other objects in a life-like manner, 
characteristic of the regular animated photo pictures. 
 
In producing cartoon films by my improved method, scenes are enacted by the aid 
of living actors depicting the subjects to be displayed by the cartoons, and, through 
the instrumentality of a moving picture camera, pictures of the enacted scenes are 
taken, and from these pictures, line pictures or cartoons of the characters or objects 
to be portrayed are made. The series of cartoons are then photographically 
reproduced on a film or equivalent medium, and the photographs of the cartoons 
thus obtained are projected on a screen and displayed in the usual manner by any 
approved moving picture machine.  (FLEISCHER, 1917) 
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Figure D. 3. Rotoscope. Max Fleischer’s diagram for the US patent. 

 
Public domain image. 

 

 Rotoscoping has been extensively used since its invention. The goal, to achieve life-

like movement to artificial characters, was so successful that even Disney studios used 

rotoscoping to create complicated movements such as the dance sequence in Snow White 

and the Seven Dwarfs. A modern version of rotoscoping is the motion capture system, which 

also allows life-like movement for virtual characters using real actors as basis. This life-like 

movement is particularly needed when dealing with sign language, since small modifications 

in a sign might change its meaning. Motion capture of signing interpreters is explained in 



127 

 

Section 3.2. 

 Animated film-making has also undergone significant changes, going from a “one 

man does all craft” to a production line industry with specialized jobs involving technicians 

and artists. Although there isn't only a single animation studio organization, there are some 

key elements common to most of them, such as a director, producer, writer, storyboard 

artist, and animator. According to SHAMUS, C. 1990 and THOMAS, F et JOHNSTON, O. 

1995, in a studio that still uses traditional cel animation, there are three professionals (Figure 

D.4) directly involved in the creation of movement: 

• The Animator, responsible for creating the main or key poses of the character (also 

called keyframes). The animator is a highly experienced professional, skilled in acting theory 

and draftsmanship.  The animator defines what a character does by creating the key 

moments of a movement. For instance,  to outline a character reaching for a glass of water 

on top of a table, the animator can define a first key pose of the arm near the torso and a 

final key pose of the arm grasping the cup. 

• The Assistant Animator or Break Down Man, working under the animator's 

supervision, is responsible for roughing out the poses made by the animator and creating 

the breakdown poses between key poses to help the inbetweener's work (explained below). 

The assistant animator defines how a character acts in its action. For instance, in the 

previous reaching example, there are several arcs the hand can perform, it could go up as 

in a very aggressive manner or could go in a downward arc with a more sneaky acting. 

• The Inbetweener works under the assistant animator's and the animator's 

supervisions. Usually, the Inbetweener is not very experienced in animation although 

drawing skills are necessary. The inbetweening executed by this professional is a repetitive 

and laborious activity aimed at creating the drawings between the key and break down 

poses made by the animator and assistant animator, respectively. The Inbetweener does 

not need to have a deep understanding of the movement since this movement has been 

created by the animator and further refined with the extreme poses by the assistant 

animator. 
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Figure D. 4. Animation department diagram. The animation department (central blocks) 
receives layout, which is the background and the different layers and rough positions of 
characters, from the Layout Deparment (left block) and delivers the drawn frames for the 
movie for the Ink and Paint Department (right block) which is responsible for transferring 
the drawings to cel and coloring them. Inside the animation department, we can see the 

different animation professionals (animators, assistant animator and inbetweener) and what 
they are responsible for (key poses, break down poses, and in-betweens, respectively). 

 
Image from the author. 

 

 Computers aid in animation in almost every aspect of the endeavor, substituting 

typewriters for script writers to composing the final movie in what would be a very expensive 

analog film compositing and revelation process. For movement creation, most pipelines rely 

solely on animators for character posing, but inbetweening can be easily automatically 

executed by a computer, especially in 3D computer animation, as the activity can be reduced 

to a mathematical interpolation process. The Assistant Animator's task still needs human 

interference, since most of the time the associated activity requires previous experience not 

available in any simple mathematical interpolation. The method proposed in this document 

intends to replace the assistant animator’s activity by extending interpolation algorithms with 

complex curves learned from motion capture data. 

 

D.2 COMPUTER ANIMATION 

 

 To understand where this research fits into the development of a computer animation 

avatar we will go over some of the basic principles and methodologies in the area. 

 As with many other human activities, computers play nowadays an important role in 

animation as a tool not only for decreasing production time and cost but also, as a new 

media, providing artists with a new way of exploring artificial movement as pointed by 

DARLEY (2011) in his analysis of the Pixar short movie Red's Dream (1987). 

 In his analysis, Andy Darley states that: 

[T]he new technique of digital imaging does not produce these new forms of image 
[...] all by itself. What is being attempted with this new means involves particular 
kinds of contact with already established aesthetic conventions and forms. 
(DARLEY, 2011). 
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 It is interesting to note that the same studio, Pixar, has released a short animated 

movie (Piper, 2016) in which the same "continued refinement of a particular tradition of 

cinematic realism" (DARLEY, 2011) can be seen. A somewhat opposite view is defended in 

MANOVICH (1991), wherein the author portrays the role of a "professional 

designer/animator" in terms of their compliance with realistic renderings of images and 

movements. 

 Computer Animation history is more than 60 years old with its first development being 

done by research laboratories and individuals in the 1960s, and it has evolved from 

rudimentary black and white renders of a hand (CATMULL et PARKE, 1972) to the almost 

indistinguishable to life images popular in today's movies. 

 History and aesthetics of computer animation are extensive and interesting topics but 

will not be further explored in this text for the sake of brevity and focus on the project's 

subject of animation synthesis. Instead, this section explores the technical aspects of 

animation used as base to this project, focusing on the basic of computer animation pipeline 

to virtual agents and the different methods of animation synthesis. We will also refer to 

computer animation herein as three-dimensional computer-generated motion, excluding 

two-dimensional animations and manipulations of other attributes not related to the 

deformation of a virtual model by means of translation or rotation of internal controllers, i.e. 

joints of a virtual skeleton. 

 A traditional computer animation project consists of three main stages: Pre-

Production, Production, and Post-Production (BEAN, 2012), each stage dealing with 

different issues and preparing the necessary material for the next stage. 

 In the Pre-Production stage, the story and the visual elements (scripts, storyboards, 

characters, locations, and prop designs) are created, these elements are drawings and 

writings which draft the main concepts of the animation guide the production in later stages. 

This stage usually does not yet involve any final product that would be seen by users or 

audiences, but instead focuses on developing ideas so that the next stage will have a clear 

path for the development. 

 In the Production stage, the bulk of work is done. This involves the creation of virtual 

characters, scenarios, and animations and rendering the 3D information into 2D images. 

Usually, the characters are polygonal meshes with textures applied to them to give greater 

detail and realism associated with a virtual skeleton and control system, known as rig, that 
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enables the animation of such characters. Also, combining the animated characters and 

scenarios, artists use virtual lights to render each shot and create sequences of 2D images. 

 In the Post-Production stage, sequences of 2D images are edited together, combined 

with audio and enhanced with special effects and color correction to generate the final 

movie. 

 When dealing with interactive 3D graphics and not movie production the post-

production stage is usually non-existent or limited to adjustments in camera placement and 

on-camera effects, since the final product is real-time generation of an animation controlled 

by the user. For the generation of interactive avatars, one usually does not work with scripts 

and, therefore, the pre-production stage is predominantly focused on developing the visual 

for the models. Production, therefore, concentrates almost the entirety of the workload. 

 Usually, the production stage is subdivided into sub-stages, called departments by 

PARENT (2012), shown in Figure D.5. BEAN (2012) proposes a more streamlined linear 

pipeline comprised of the following sub-stages: Layout, Research & Development, 

Modeling, Texturing, Rigging/Setup, Animation, 3D Visual Effects, Lighting Rendering. 

Animation pipelines are not fixed and usually change from company to company and even 

from project to project but, as it is possible to see with the examples provided in PARENT 

(2012) and BEAN (2012), there are some sub-stages that recur and are important for this 

dissertation. Below, we elaborate further on these sub-stages and show some of them in 

our avatar (Figure D.6). 
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Figure D. 5. 3D Computer Animation Pipeline. 

 
Image from PARENT (2012) 

 

• Modeling: This is where the shape of virtual objects is created. These virtual objects 

are usually comprised of thousands of three-dimensional polygons. The model, also called 

"mesh", is used to represent the shape of the object in a 3D environment. There are several 

approaches to represent the geometry of virtual objects, such as polygons and NURBS 

(Non-Uniform Rational B-Splines), but the former is much more usual, especially because 

most rendering engines (both real-time and offline) work exclusively with polygons. A 3D 

polygonal mesh can be defined as a series of vertices, which are points with 3 coordinates 

(x, y, z), usually represented as a vector in the form v = [x, y, z]. A mesh consists of a series 

of vertices, vi that are linked together by straight lines called edges, e. Each vertex can be 

associated with one or more edges, but edges have only two vertices, one in its beginning, 

v0, and one in its end, v1, and can be represented as e = [v0, v1]. Both are usually not 

rendered into the final image. What is visible for the final user/audience are polygons, f, 

which are defined by a close loop of edges. Since edges are well defined as 2 consecutive 

vertices, a polygon is usually just represented as a vector of n vertices, and the edges are 

inferred by 2 consecutive vertices as such f = [v0, v1, …, vn]. This vector also presents an 

order by which the loop is closed, and determines the polygon's normal, which is a 3-

dimensional vector perpendicular to the polygon that is used to control the interaction of the 
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polygon with virtual light rays. Operations on 3D meshes are usually done on vertices, and 

their changes are passed on to the respective edges and polygons. Although in theory each 

vertex of each polygon can be animated, this process would demand a lot of time from 

animators. 

• Texturing (Shading): Textures are usually applied to the model's mesh to create a 

variety of effects. In general, textures are two-dimensional images that can contain color 

information (such as the shades of a character's skin); three-dimensional deformations 

known as bumps, normal or displacement maps (such as the fine details on a character's 

face as pores and wrinkles); reflection maps (which can be seen as the different oily parts 

of a human face, usually making a forehead more shiny/reflective than the rest); and many 

other attributes. 

• Rigging / Setup: Since it is not feasible to animate each vertex, a virtual skeleton is 

created mimicking a real human skeleton in this stage. It can be a straightforward skeleton 

(which is the case in this project), that consists of only virtual joints connected to the 

polygonal mesh, or can be a more complicated structure simulating muscles and tendons. 

In this sub-stage controls are also added to facilitate the animator's job, providing an intuitive 

interface. 

• Animation: In this stage, the movement is created. The virtual skeleton has, for each 

of its joints, different attributes that can be transformed, usually the joint's rotations on x, y, 

and z angles. Each of these attributes is denominated a degree of freedom (DOF) and varies 

from 1 to 3. A joint with 1 degree of freedom can only rotate on one axis, such as the human 

elbow. A joint with 3 degrees of freedom can rotate on three axes, such as the human neck 

that can make the head rotate up/down, left/right, and tilt sideways. 
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Figure D. 6. Examples of different sub-stages of a 3D animation production stage - modeled 
mesh (top left) with polygon edges in blue; textured model (top right); rigged character 
(bottom left) with the skeleton joints shown inside the polygonal mesh and the hands' 

controls as circles on the wrists; and animated/posed/signaling character (bottom right). 
Model derived from MAKEHUMAN (2016). 

 
Images generated in Autodesk Maya. 

 

 In order to animate three-dimensional models' joints, its values must change over 

time. An animation curve is responsible for storing information on how each DOF changes 

its values (y) over time (x), it is a function of (usually) a joint's angle value given at a specific 

time: f(x) = y. It is important to note that the property of a function is that for each given value 

of x (time or frame) there is only 1 value of y (rotation or attribute value). To create an 

animation curve we have several techniques which can be grouped, according to PARENT 

(2012), into three different categories: Artistic, Data-Driven, and Procedural animation. 

Artistic Animation is where an artist is responsible for creating the exact poses of each object 

and guide the system on how to transition between those poses, it's the standard technique 

used in most computer animation films; Data-Driven Animation is when real-world data is 



134 

 

the input to the movement, such as in motion capture; and Procedural Animation is where a 

mathematical model is created and the user is responsible on feeding different values to it, 

such as in rigid bodies simulations. These categories are further detailed in the next sections 

D.2.1.Artistic Animation, D.2.2 Data-driven Animation and D.2.3.Procedural Animation. 

 

D.2.1 Artistic Animation 

 

 This type of animation relies heavily on the animator's skills. While technically simple, 

it requires a keen perception of animation principles since the task to create the poses relies 

solely on the animator's talent and the computer is only used as a tool to create intermediate 

frames between these poses, substituting the assistant animator in the pipeline (Section 

D.1). 

 In each animation frame, the animator poses the model by changing its controllers' 

attributes and creating keyframes. It is important to emphasize the difference of keyframe 

definition in this context from the key pose definition used in traditional animation. In digital 

animation keyframes denote an instance in time where one or more attributes' values have 

been fixed. In traditional animation, a keyframe is defined as a specific drawing (or key pose) 

that defines the action. This traditional animation keyframe (henceforth in this work's context 

called key pose) in digital animation requires the animator to specify the controller's 

attributes values with a keyframe in the digital environment. In a single frame, a key pose 

usually contains multiple keyframes, one for each animation curve of a controller's attribute. 

 A single keyframe, k, can be thought of as a two-dimensional point in an animation 

curve, describing an attribute's value, y, in a specific time (frame), x, yielding a 

representation in the form k = [y, x]. From the previous section, an animation curve can be 

defined as a function f(x) = y that maps an attribute's value y to a unique time value x, as 

such a keyframe works as a direct mapping of the function f. Usually, an animation 

comprises of a series of keyframes, and thus a compact form to store and present keyframes 

is a list of values, Y = [y0, y1, … , yn] with its associated list of time, X = [x0, x1, … , xn]. 

 Information between keyframes needs to be filled out. While in traditional animation 

this would be done by the animation assistant or the inbetweener, in digital animation this 

can be done manually with the animator changing the values of each animation curve frame 

by frame or, most commonly, by the software interpolating the values between each digital 
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keyframe. This interpolation requires a mathematical curve model that can range from linear 

interpolation to complex spline curves where usually user interfaces are provided to the 

animator enabling him to increase or decrease acceleration between keyframes 

(O'ROURKE, 1998). The Hermite curve is an example of a curve that can provide 

parameters for the user to change keyframes' tangents, and it is further explored in Chapter 

3 and Appendix A. 

 QIANG and XINGFEN (2012) propose a new approach to the interpolation process. 

Instead of using spline curves directly on the keyframes, a velocity curve is extracted from 

the curve's parametric representation. From analyzing the first and second derivatives 

(velocity and acceleration, respectively) intermediate keyframes are created, resulting in 

more complex interpolations than those possible with other curves. 

 Artistic computer animation system has had significantly less advances compared to 

other fields (modeling, rendering, etc.) or computer animation categories (shown below), 

patent in the fact that almost 20 years later modern software animation system still use the 

same methods proposed in O'ROURKE (1998). 

 An exception to it lies in the search for a yet to be found good general interpolation 

approach to 2D shape animation. Examples of this are the works of MELIKHOV et al (2004), 

WHITED et al (2010), and OLIVEIRA (2016). 

 

D.2.2 Data-driven Animation 

 

 While artistic animation relies heavily on the animator operating the system, data-

driven animation is created by capturing information from the real world and applying it to 

computer graphics. Most research on this field dwells on the problem of retrieving 

information, such as on passive motion capture systems estimation of three-dimensional 

joint rotations based on a set of bi-dimensional image sequences, thus these are questions 

closely akin to computer vision and not within this dissertation's scope - computer graphics. 

That said, there are some interesting works that use data-driven models to generate or 

augment existing animations. 

 PULLEN and BREGLER (2002) propose a method that combines the flexibility of 

artistic animation with the nuances and naturalness of data-driven animation from motion 

capture. The method's goal is to use a user-created small keyframe set that defines key 
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poses on a virtual skeleton and uses motion capture to augment the animation and create 

more natural movement. This is done by applying high-frequency noise from a set of banked 

motion capture data to the user-created key poses. When the virtual skeleton transitions 

from one key pose to another it does so with a very simple curve interpolation, resulting in 

a mechanic movement that lacks nuances found in real life. The high-frequency noise from 

motion capture is intended to bring these nuances in the movement. They call this process 

texturing. Their proposed method is divided into 4 steps: 

1. Frequency Analysis: both user-created key poses and motion capture data are 

decomposed into frequency bands using Laplacian Pyramid decomposition. This is a 

process usually used in image processing described in BURT et ADELSON (1983) 

by which the signal g0 with size 2N +1 is sub-sampled in gi signals with sizes 2N-i + 1 

and each one has an associated band li that is the difference between gi-1 and an 

expanded g0, i.e. li = gi-1 – EXPANDED(gi). This expansion does not produce gi-1, but 

instead produces a lower resolution of gi-1 because it has been sub-sampled. 

Therefore, on each band li we have the high-frequency difference between the signal 

gi and its predecessor gi-1. 

2. Matching: a low-frequency band from the Laplacian Pyramid decomposition of a 

joint's angle is selected and broken down into fragments (in their work the authors 

used the left hip x angle). "The results are not highly dependent upon which frequency 

band is chosen, as long as it is low enough to provide information about the overall 

motion" (PULLEN et BREGLER, 2002). This low-frequency choice means that for a 

chosen joint angle animation curve we have both in the user-created and motion 

capture data a similar “overall” movement.  The fragmentation is done both in the 

user-created and motion capture bands of the same joint angle. The point where the 

sign of the first derivative of each band changes is used to break down the band into 

fragments. This first derivative sign change can be roughly thought of as the change 

in orientation of the chosen joint angle. Now, for each fragment from the user-created 

band, we find K closer segments from the motion capture data. 

3. Path Finding: since the motion has been segmented to combine them back a cost 

matrix based on the motion captured segments proximity is used to find the best 

closest matches between segments. As the authors point out: 
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For each join between fragments, we create a cost matrix, the i, jth component of 
which gives the cost for joining fragment i with fragment j. A score of zero is given if 
the fragments were consecutive in the original data, and one if they were not. We 
find all of the possible combinations of fragments that go through the points of zero 
cost. 
This technique is easiest to explain using an example, which is diagrammed in 
[Figure D.7]. Suppose we had 4 fragments of synthetic data to match, and saved 3 
nearest matches. In the illustration we show that for fragment 1 of the keyframed 
[user-created] data, the best matches were to fragments 4, 1, and 3 of the real data, 
and for fragment 2 of the keyframed [user-created] data the closest matches were 
to fragments 5, 7,and 2 of the real data [motion capture], and so on. We have drawn 
lines between fragments to indicate paths of zero cost. Here there are three best 
choices. One is fragment 4, 5, 6, and 2 from the real data. In this case we choose 
fragment 2 of the real data to match the fourth fragment of keyframed data rather 
than 8 or 5 because it was originally the closest match. A second possible path would 
be 4, 5, 4, and 5,and a third would be 1, 2, 4, 5. All three would yield two instances 
of zero cost. (PULLEN et BREGLER, 2002) 

 

Figure D. 7. Cost matrix image from PULLEN et BREGLER (2002). to find the best fragments 
of motion capture (Matching Data) to user-created (Keyframed) animation. Here K = 3. Blue 

lines indicate cost zero, that is the segments were consecutive. 

 
Image from PULLEN et BREGLER (2002). 

 

4. Joining: since fragments' first and final values can not be guaranteed to coincide with 

those from their neighboring fragments, a joint algorithm is used. The mean value 

between the first segment's final value and the next segment's first value is used to 

skew each segment. “To achieve this warping, we define two lines, one that passes 

through the old endpoints, and one that passes through the new endpoints. We 

subtract the line that passes through the old endpoints and add the line that passes 

through the new endpoints to yield the shifted fragment” (PULLEN et BREGLER, 
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2002). Since this joining does not guarantee continuity between segments a 

smoothing on the join points is produced using a smoothing quadratic function on the 

data around the join points, the equations for this smoothing function are presented 

in their work. 

 JAIN et al (2009) propose a method in which motion capture data is used to create 

key poses based on an animator's drawing. They propose this system to speed up the 

process of creating a pose in a 3D character. Instead of the animator having to change each 

joint's rotation to achieve a desired key pose he simply draws the pose and an assistant 

helps translate it to a virtual environment. The system's input is a series of drawings that are 

annotated by assistants with virtual markers correlated to an already modeled and rigged 

3D character. With this, the assistant indicates to the system where are specific points of 

the 3D character in the drawing (for instance, where is the left humerus in the drawing). Also, 

the assistants provide an estimated virtual camera position and orientation. These are used 

to create pose descriptors that retrieve a closed match motion capture pose. This is 

achieved by estimating the joints rotations and angles in three-dimensional space (based 

on the annotations and camera information provided by the assistant). Besides unburdening 

the animator with the process of creating the pose in the 3D environment, the assistant also 

needs only to provide information on 8 joints (left and right humerus, radius, femur and tibia) 

of the total 21 used to create the whole skeleton, that is, the system manages to not only 

estimate the position and rotation of the joints given by the assistant but also pose the whole 

set of 21 joints of the virtual character in the pose the animator intended with their drawings. 

 It is interesting to note that both methods use only a small set of information - just 

one frequency band on the first and just 8 joints for pose descriptors on the second - to 

retrieve motion capture data and generate a full, complex movement. 

 

D.2.3 Procedural Animations 

 

 In terms of user control, this type of animation can be seen as an intermediate 

between artistic and data-driven animation creating movement automatically but still 

enabling the animator to modify parameters that significantly alter the final result. Procedural 

animation can require a lot of processing power to create animation curves. It uses 

mathematical models that simulate real-world situations, and with increasing model 
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complexity, such as movement affected by friction and air turbulence, the number of 

variables and constraints represented as mathematical functions needed to be evaluated 

for each frame requires more processing power. 

 As discussed in PARENT (2012), procedural animation is widely used to simulate 

physical phenomenons - cloth, water, soft and rigid bodies. This section focuses on the use 

of procedural animation on virtual humans. 

 Before artistic animation became the standard in the entertainment industry a lot of 

research was done aiming at systems that could animate characters based solely on the 

mathematical formulation of its movements. 

 COHEN (1992), and later LIU et al (1994), propose a model to "provide the ability to 

interactively design the motion of simulated creatures which appears correct, and satisfies 

goals and objectives set by the user" (COHEN, 1994). This model presents the user the 

possibility to create a set of constraints on DOFs as a function of time, similar to a keyframe, 

which then is processed spanning the entire length of the animation as cubic B-Spline curves 

which should satisfy such constraints. To solve the problem, a combination of Lagrange's 

method and Newton's method is used. The solution is then presented to the user who can 

then interactively change the animation by creating, deleting, or modifying constraints. To 

test the system, COHEN (1992) used three situations: 

• a three-linked arm and ball, in which a stationary arm with DOFs in shoulders, elbow 

and wrist has to throw a ball (point mass representation) forward, to calculate this animation 

physical constrain (gravity and friction) is applied to the ball, initial and final position 

constrains to the hand and minimization of the arm's torque throughout the entire animation 

are considered, in a first iteration of the system it did not produce the expected movement, 

but with new user constrains the desired effect was created; 

• a basketball player, which was similar to the previous example, but the arm (shoulder) 

now could move in space; 

• acrobat, a very simple model of a character with just the foot and waist movable was 

required to jump forward similarly to the Pixar's Luxo Jr. animation. 

 Although this method requires a somewhat complex understanding of mathematics 

and physics not usually mastered by animators (the last example took 158 constrains), it 

does provide an interesting approach to motion synthesis in which combinations of artistic 

and procedural animations are used. 
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 KIM, CORDIER et MAGNENAT-THALMANN (2000) created a virtual hand that, using 

a neural network, played the violin according to correct physical constraints and positions 

following recommended violin pedagogy. A score containing each string touch's start time, 

end time, and intensity is used as input to the neural network, which has been previously 

trained with correct fingering, and a best-first search is used to determine first the active 

fingers (those that are touching the strings of the violin), then wrist state and later passive 

finger (those that are not contributing to produce the desired note). "The advantage of this 

fingering determination method over the rule-based method is adaptability to different 

factors, ability to consider global effect, and scalability to polyphony." (KIM, CORDIER et 

MAGNENAT-THALMANN, 2000) This adaptability is an interesting asset that was 

considered when designing the method presented in this dissertation (Chapter 3). 


