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RESUMO 

A utilização de medidores inteligentes de energia com funcionalidades além da simples 

medição de consumo está se tornando cada dia mais comum pelo mundo todo. Como resultado, 

medições de consumo no lado da carga estão disponíveis em diferentes frequências de amostragem. 

Diversos métodos foram propostos para inferir características de uso de equipamentos eletroele-

trônicos domésticos a partir de medições de potência. Entretanto, muitas técnicas são baseadas em 

métodos que requerem alto custo computacional. Ainda, frequentemente necessitam de informa-

ções fornecidas por parte dos habitantes da residência. Neste trabalho é proposta uma técnica para 

detecção de padrões de utilização de equipamentos utilizando algoritmos de baixo custo computa-

cional e que não requerem nenhuma informação dos moradores. Os padrões de utilização são iden-

tificados a partir do comportamento do status do sistema, representados por um grande conjunto 

de vetores binários contendo o status de cada um dos dispositivos monitorados, através de algorit-

mos de redução de dimensionalidade e clusterização. Os algoritmos de Análise de Componentes 

Principais, k-means e a determinação do número ótimo de clusters pelo método “elbow” são utili-

zados para definição dos clusters, e o conceito de árvore geradora mínima é utilizado para visuali-

zação dos resultados. Em paralelo, Mapas Auto-organizáveis são utilizados para criar um classifi-

cador de status. A metodologia foi aplicada em dois bancos de dados públicos com medições reais 

de residências de dois países diferentes: Reino Unido (UK-DALE) e Estados Unidos (REDD), 

mostrando diferentes padrões de utilização. As técnicas de clusterização possibilitam a gestão pelo 

lado da demanda, enquanto o classificador pode ser utilizado como detector de mal funcionamento 

de equipamentos apenas pela análise do status do Sistema.  

 

Palavras-chave: reconhecimento de padrões de utilização; data mining; redução de 

dimensionalidade; k-means; Análise de Componentes Principais; Mapas Auto Organizáveis; clas-

sificadores. 

  



ABSTRACT 

Smart meters with automatic meter reading functionalities are becoming popular across 

the world. As a result, load measurements at various sampling frequencies are now available. Sev-

eral methods have been proposed to infer device usage characteristics from household load meas-

urements. However, many techniques are based on highly intensive computations that incur heavy 

computational costs; moreover, they often rely on private household information. In this work, we 

propose a technique for the detection of appliance utilization patterns using low-computational cost 

algorithms that do not require any information about households. Appliance utilization patterns are 

identified only from the system status behavior, represented by large system status datasets, by 

using dimensionality reduction and clustering algorithms. Principal component analysis, k-means, 

and the elbow method are used to define the clusters, and the minimum spanning tree is used to 

visualize the results that show the appearance of utilization patterns. Self-organizing maps are used 

to create a system status classifier. We applied our techniques to two public datasets from two 

different countries, the United Kingdom (UK-DALE) and the US (REDD), with different usage 

patterns. The proposed clustering techniques enable effective demand-side management, while the 

system status classifier can detect appliance malfunctions only through system status analyses. 

 

Keywords: usage patterns recognition; data mining; dimensionality reduction; k-

means; Principal Component Analysis; Self Organizing Maps; classifiers. 
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1. INTRODUCTION      

Today, the infrastructure of generation, transmission, distribution and consumption of 

electricity is facing a remarkable change The transitions to low carbon, decentralized and heavily 

electrified energy, which requires (i) smarter grids that can deal with the intermittency of renewable 

energy sources (especially solar and wind), (ii) a reliable and robust transmission system that can 

deliver the energy at the main load centers, and (iii) mechanism capable of supplying the demand 

peaks (see My Electric Avenue Projetc - 1-myelectricavenue-i2ev-projectsummaryreport.pdf 

(eatechnology.com)). Besides, the distributed energy resources are now available in low voltage 

distribution networks (because it is now feasible to connect to the grid sources as small as a rooftop 

solar panel even for small-scale consumers). At the same time, advances in demand-side manage-

ment, automation technologies and the Internet of Things (IoT) opens the possibility for the con-

sumers to make decisions about their own energy use.  

In this sense, the emergence of the neologism “prosumer”, related to an agent that can 

both produce and consume energy (see EcoGrid EU - 

http://www.ecogrid.dk/src/EcoGridEU%20%20A%20prototype%20for%20euro-

pean%20smart%20grids%20160121.pdf?dl=0), is another evidence of structural changes in energy 

markets. The low voltage prosumers concept comes with the microgrids reality. The control de-

vices (smart grid) can deal with the system constraints and demand to combine comfort (mainly 

related to air conditioning and heating, but not limited to them) and the benefits of mi-

crogrids/nanogrids (which may lead to a potential reduction in energy costs).  
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Figure 1.1: Micro grid example. Adapted from 1-myelectricavenue-i2ev-projectsummaryreport.pdf (eatechnol-

ogy.com) 

The use of microgrids (MG) is remarkably expanding because it allows for exploiting 

a wider range of renewable energy sources. The MG system can share heat and electrical energy 

with a higher reliability, cost, and green-house emission reduction. As a result, the system flexibil-

ity is increased, together with peak shaving possibilities, as described in Hosseini, Agbossou, Kel-

ouwani and Cardenas (2017). But the uncertainties of this kind of energy source is operationally 

challenging, and thus, proper management is now of greater importance. The control system must 

deal with the constraints and uncertainties of this kind of energy source, while managing loads to 

guarantee the voltage stability and load supply, either if the microgrid is connected to the main grid 

or if it operates as an islanded system. In this scenario, the existence of storage devices and a 

demand response program is very important to achieve a technically feasible solution and the ex-

pected cost reduction.  

Another important point is related to the demand response motivation. Industrial in-

stallation has a little flexibility. A specific industrial process defined by itself which load should be 



25 
 

turned on at each time, leaving limited room for load modulation according to the energy tariff and 

the peak periods. The possibility for reducing energy consumption comes from equipment retrofit 

with better energy efficiency. Residential users represent a great flexibility potential that can result 

in a better use of wind and solar energy, contributing to energy decarbonization. The load shift 

potential also can reduce the load peak and relieve the pressure for increasing generation, trans-

mission and distribution capacity as load demand continues to increase, as described in Rajamand 

(2020).  

When the energy policy focuses on residential installations, an important factor to con-

sider is related to the user’s motivation and engagement to cooperate with its potential flexibility, 

as aborded in Parrish, Heptonstall, Gross ans Sovacool (2020) and EPRI, 2011. A better under-

standing of the people’s engagement with demand response can be of great help to propose more 

effective measures. The advertisement programs can be more targeted to customers that have 

greater flexibility potential, and the results can be achieved faster if the consumers are open to 

participate in demand response programs, as shown in Rajamand (2020). In Hui, Ding, Shi, Li, 

Song and Yan (2020), the consumer engagement is studied, and the three main points represented 

in Figure 1.2 shall be observed when developing a demand response program more focused on 

specific groups of users.      

 

Figure 1.2: Stages of Consumer engagement in Demand Response - Hui, Ding, Shi, Li, Song and Yan (2020). 

The demand response can be performed by a residential energy management system, 

as shown in US Department of Energy (2015), but the definition of constraints is a task closely 

related not only to the microgrid, but also to the household needs and priorities. This requires input 

information to an optimization algorithm such as load classification, daily tariff information, and 
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several use and shift constraints. An efficient House Energy Management System (HEMS) is an 

interesting demand response service to be offered to the users.  

Still in the context of residential loads, the concept of smart city is a good example of 

the reality in the energy field today. The number of electric devices in everyday use is constantly 

increasing from cloud storage that requires a fast and constant internet connection to electrical 

vehicles that need to be charged without impairments. In Iqbal, Malik, Muhammad, Qureshi, Ab-

bassi and Christi (2021), the authors say that the advance of internet technology together with the 

Internet of Things (IoT) enabled by 5G technology opens a wide range of possibilities and chal-

lenges that must be addressed. The intermittency of renewable energy sources must be incorporated 

to the design of future smart cities and smart grids so that the system flexibility could be increased 

as much as possible by employing such cutting-edge information and communication technologies 

(ICT).  

 

Figure 1.3: smart city and its challenges representation. Adapted from Iqbal, Malik, Muhammad, Qureshi, Abbassi 

and Christi (2021). 
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Load monitoring and demand side load management play an important role in this sce-

nario. According to Greening, Greene and Difiglio (2000), in 2015 buildings in the United States 

were responsible for 38% of primary energy consumption and 76% of electricity use, and this 

number can be reduced to less than 50% with a building energy management system. Figure 1.4 

shows the historical and projection of buildings energy use in the US.  

 

Figure 1.4: building energy consumption in the United States. Numbers after 2006 are projections. Adapted from 

Vassileva and Campillo (2014). 

However, to develop an energy management system with good performance it is first 

necessary to understand the loads’ behavior and the energy profile of households. The concept of 

Non-Intrusive Load Monitoring (NILM) was introduced in Hart (1992), and since then it has been 

extensively studied resulting in more effective algorithms. Several load characteristics and compu-

tational resources have been used to identify load usage without the expensive and invasive plug 

monitoring system. In Batra, Parson, Berges, Singh and Rogers (2014), the authors provide a his-

torical review of NILM evolution. Despite the different goals and computational methods used to 

identify residential loads, which makes it difficult to measure (and thus monitor) their efficiency, 

a better understanding of the buildings’ (either commercial or residential) load use allows the di-

agnosis and control of different loads connected to the grid. This can help the customers to be aware 

of their individual appliances’ energy consumption and provide an important information source 

to define public policies and tariffs, among other advantages. 
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The high interest for demand side studies was supported by the availability of several 

public datasets with monitoring information of real households. The information available is used 

to develop and measure the efficiency of several NILM algorithms. In Batra, Parson, Berges, Singh 

and Rogers (2014), the authors present a comprehensive review of 42 NILM datasets through com-

parison tables. Figure 1.5 shows the number of citations for all datasets compared (some of them 

are real, others are synthetic, that means that the data is simulated). 

 

Figure 1.5: citations for both real and synthetic datasets. Adapted from Batra, Parson, Berges, Singh and Rogers 

(2014). 

 Regarding residential installations (either buildings or houses), the use of the appli-

ances is directly affected by the daily and weekly routine of people who live in the house. This 
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way, school schedule, eating habits, laundry necessities, and other personal preferences contribute 

to the appliances’ use pattern. With movement restrictions imposed in most countries due to the 

COVID-19 pandemic, many of these patterns have changed drastically. Many households that did 

not have a printer or computer screen before now have them among the most used appliances. Most 

meals are now prepared at home, changing the kitchen utilities profile. The appliances’ use can 

also play an important role in psychological and physical health, as many physical exercise pro-

grams are guided through the internet, for example, and the friend’s meetings also demand a set of 

appliances.  

Regarding residential demand control or even load shifting, instead of the remarkable 

concern about the impact of energy consumption, most do not want to change the laundry routine 

or cooking habits to shift the daily demand peak, for example. Personal routines in general are not 

easy to change, especially when it refers to what people do inside their own houses. Of course, new 

appliances are of great help in the energy consumption reduction, but it is not enough. The in-

creased quantity of electronic devices and the importance that the constant availability pushes the 

consumption faster than the new technologies can reduce it (this phenomenon is called in the liter-

ature as “rebound effect”). On the other hand, old concepts can be deceiving. With the current 

appliances’ profile, finding the appliance that has the higher load modulating potential, or that 

better contributes to the energy efficiency improvement, is not an easy task. An individualized 

codesign of effective strategies is important to adapt personal habits.  

From this perspective, use patterns studies are very important. Also, it must be fast and 

dynamic. With the advance of disaggregation algorithms , as shown in Batra, Parson, Berges, Singh 

and Rogers (2014), and Internet of Things (IoT), the system status can be obtained in a non-intru-

sive way, only using as input the information of aggregate power demand taken by the smart meter. 

System status behavior feedback could be offered either from the energy service providers itself, 

or from a consulting company, all with the customers’ agreement.  

With a detailed pattern utilization detection, it is possible to have a better understanding 

of the consumers’ habits, and thus, the service provider can compose a specific feedback letter 

(attached to the energy bill), or a mobile phone application, with suggestions to improve the resi-

dence’s energy efficiency if agreed beforehand. This might be an additional motivation factor so 

more people would agree to have the residence monitored. With better information, the methods 

can be more effective, and the programs can reach more houses, and so on. 
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The present work follows this line by focusing on the detection of different appliances’ 

utilization patterns using two steps strategies: first, using only linear and non-parametric algorithms 

(PCA, and k-means clustering and Minimum Spanning Tree methods), the existence of appliance 

clusters will be investigated, and a methodology for defining the groups of appliances inside each 

group is established. Second, using nonlinear methods, specifically Self Organizing Maps (SOM), 

the possibility of using the trained map as a status classifier is explored. 

In specific terms, we start from a relatively large set of system states (the larger, the 

better) and use an established dimensionality reduction method, followed by clustering algorithms 

to find utilization patterns. These patterns are represented by groups of appliances statistically re-

lated (meaning that they used at the same time). The appliances inside each group do not neces-

sarily have to be used in combination (e.g., video game and TV); they are rather statistically related 

indicating that they are frequently used at the same time.  

It is important to say that the formulations chosen are well established and require a 

small quantity of parameters (in the first step, no parametrization at all), and none of them is related 

to the household’s habits, profession, or other personal information. This way. Our main contribu-

tion here is the proposed methodology for utilization patterns detection on residential installations 

with a low computational cost and that does not require personal habits information of the occu-

pants.  

The main contributions of this thesis are:  

• A proposed methodology for utilization patterns detection using well-established 

formulations that require a small quantity of parameters at low computational cost.  

• The method is noninvasive because it does not require any personal information 

about the households.  

• The Self Organizing Maps opens a wide range of analysis opportunities for the 

system status, starting from malfunction and fault detection.  

The contributions described above were already published in the following works: 

(1) Villar, F.; da Silva, L.C.P.; Nardelli, P.H.J.; Hazini, H. Detection of Appliance Utiliza-

tion Patterns via Dimensionality Reduction. In Proceedings of the 2019 IEEE PES In-

novative Smart Grid Technologies Conference-Latin America (ISGT Latin America), 

Gramado, Brazil, 15–18 September 2019; pp. 1–6. 
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(2) VILLAR, Fernanda Spada et al. Noninvasive Detection of Appliance Utilization Pat-

terns in Residential Electricity Demand. Energies, v. 14, n. 6, p. 1563, 2021. 

The thesis is organized as follows:  

● Chapter 1 (Introduction) explains the scenario and the central question. 

● Chapter 2 (Related Work) lists methods and results already achieved by other au-

thors.  

● Chapter 3 (Methodology) details the methods used. 

● Chapter 4 (PCA Results) shows the results for the Principal Component Analysis 

(PCA) method. 

● Chapter 5 (SOM results) shows the results for the Self-Organizing Maps (SOM) 

method. 

● Chapter 6 (Discussion) discusses the results obtained in Chapters 4, 5 and 6. 

● Chapter 7 (Conclusion) gives the conclusion to the central question proposed in 

Chapter 1. 

● Chapter 8 (References) lists the references.  
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2. THEORETICAL BACKGROUND 

Since the 2000s, different researchers have focused on methods to better understand 

residential demand of the electricity grid to manage it accordingly. People’s behavior and the fac-

tors that motivate them to act in one or other direction directly influences the electricity used. The 

interest in user behavior is not exclusive to the energy field. Goldstein, Cialdini and Griskevicius 

(2008) proposed two experiments to study guest’s motivation in cooperating with an environmental 

program of water use reduction by reuse of towels. The guests were asked to participate in an 

environmental program by reusing the bath towel for 2 days or more during their stay. Two exper-

iments were made, each of them using 2 types of signs to present the program, with different mo-

tivational sentences. The first 2 sentences were: “Help save the environment” and “join you fellow 

guests in helping to save the environment”, the second one also informing that 75% of the hotel 

guests reused the towels during the stay. The result was: 33% adhered to the program with the first 

sign, and 44% with the second sign. The second experiment used the sentences: “Help save the 

environment”, “Join your fellow guests in helping to save the environment”, “Join your fellow 

citizens in helping to save the environment” and “join the men and women who are helping to save 

the environment”. The idea was to evaluate how the identification with similar groups influences 

the motivation to participate in the program. This work shows: a) how users’ behavior attracts the 

interest of researchers, and b) that good feedback is very important if you want to influence some-

one’s behavior.  

2.1 INTRUSIVE AND NONINTRUSIVE LOAD MONITORING (ILM AND NILM) 

When researchers start to be interested in user’s behavior, the concept of privacy also 

becomes very important. On one hand, a good prediction of resources’ necessity (among them 

energy) requires a deep understanding of users’ behavior, and to make a more intelligent use of 

energy, some changes in the behavior must occur. But on the other side, the sensation of being 

observed can make people uncomfortable, especially when they are observed in their private mo-

ments. In this context, Hart (1992) introduces the concept of Nonintrusive Load Monitoring 
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(NILM), with the proposal of replacing the several individual plug monitors installed in the houses 

monitored by a computational routine that can identify the individual appliances using the total 

aggregated power measurements. The work uses the representation of the residential appliances as 

finite-state machines with 2, 3 or 4 states (see Figure 2.1).          

 

Figure 2.1: Finite state machines models: (a) 500W two states appliance, (b) three states appliance (defrost refriger-

ator), (c) four state appliance (electrical heater) and (d) three states appliance (clothes dryer). Adapted from Hart 

(1992). 

 

 

The concept of nonintrusive signatures is also used to help in the appliance identifica-

tion process, like the steady state real and reactive power and power factor. By the time this work 

was published, the computational effort to perform the NILM was a limiting factor, as was lower 

data transmission rates and hardware limitations to make the intrusive load monitoring (ILM) first 

to then use it as ground truth to test NILM performance. But with the advance of computational 

capacities, either data storing, transmitting, and processing, put NILM as a relevant topic in energy 

research. Figure 2.2 shows how many times Hart (1992) was used as a reference for scientific 

works from 1993 to 2020.    
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Figure 2.2: How many times Hart (1992) was referenced in other scientific works from 1993 to 2020. 

 In Armel, Gupta, Shrimali and Albert (2013), the energy saving potential from res-

idences is the focus, and which actions can be made to help consumers to achieve these savings. 

According to it, information about the use of specific appliances can bring benefits not only to the 

final user, who would have a smaller energy bill, but also to the utility and policy sector, as well as 

research and development. Figure 2.3, adapted from Batra, Dutta and Singh (2013), shows the 

energy saving potential related to different types of user feedback. The conclusion is that the more 

detailed, fast, and personalized the feedback, the higher the energy saving potential. But to make 

such a feedback feasible, a large research on specific appliance information and user’s behavior 

must be performed. 
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Figure 2.3: Energy saving potentials according to the type of user’s feedback. Adapted from Batra, Dutta and Singh 

(2013). 

Studies in these two fields were published since then, and the measurements of several 

load monitoring programs were published as public datasets, with information that could be used 

to improve the NILM algorithms.  

In Klemenjak and Goldsborough (2016), an overview of the importance of NILM is 

given, starting from a vocabulary review (types of load modeling, signatures, smart meters). The 

term “appliance signature” is reviewed, and defined as “measurable parameters, which provide 

device-specific information extracted from physical quantities”. The signatures are divided into 

two main groups:  

1. Steady-state signatures: features extracted from appliances during its steady state 

use (means that the features cannot be seen during the transient moment between 

one state and another - “on” to “off” in a “on-off” appliance model). Typical steady 

state signatures are a) real and reactive power, b) V-I features; c) V-I trajectory; d) 

harmonics.  

Real and reactive power is the feature that requires less computational effort to be de-

tected (requires only measurements of the fundamental frequency) but is the most deceiving sig-

nature. The overlapping of more than one appliance can result in a wrong detection. Following this 

line, harmonics signature requires a high sampling frequency (the higher, the larger the harmonics 
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profile can be observed), and thus dealing with large data sets storage and transmission but results 

in a more assertive detection.     

2. Transient-state signatures: the transient signature of an appliance is strongly related 

to the components that it is composed of. For example, the turn-on current peak of 

an electrical motor is very different from a heater because of the capacitive and 

inductive components of the first one. Not only the shape, but also the duration of 

the transient in voltage and current can make an appliance detection much more 

assertive.  

3. Ambient appliance features: more than power, voltage or current, some other char-

acteristics can help to identify an appliance. Some external information can be of 

great help for NILM, as for example a light sensor to help differentiate a light from 

another appliance that has the same real power. Even Electromagnetic field detec-

tors (EMF) were already used to contribute to the NILM algorithm.  This additional 

information can improve the algorithm performance but requires more computa-

tional capacity for dealing with more sensors and types of variables. Also, the in-

stallation of some of these sensors can make the load monitoring more intrusive. 

An overview of learning approaches is algo given. The algorithms are divided in 2 main 

types: supervised and unsupervised learning. Supervised methods start from a dataset with a set of 

possible load signatures, and then an optimization or pattern recognition step performs the dis-

aggregation to define the system status (the status of every appliance monitored). With them, it is 

possible to use a large set of signatures but requires a large storage and transmission capacity and 

a good processing unit to identify the system status changes. Another disadvantage is that if there 

is a new appliance in the system, the process must be reprogrammed to include a new signature.  

Unsupervised methods can operate without previous information about the system and 

the loads. They are a promising alternative, because supervised routines require a long period of 

supervised learning, which can make its implementation in many houses unfeasible. Some exam-

ples of unsupervised learning are Hidden Markov Models – HMM -, Factorial Hidden Markov 

Models – FHMM, both using probabilistic analysis, and some artificial neural networks (ANN) 

methods, such as single or multilayer perceptron and Self Organizing Maps (SOM).   
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2.2 PUBLIC DATASETS WITH LOAD MONITORING INFORMATION 

To make a high performance NILM method, it is necessary a dataset with intrusive 

monitoring information to be used as reference (called “ground truth”) for the tests. With the de-

velopment of cloud storage, several projects made their datasets public to be used as reference for 

disaggregation research. In Iqbal et. Al., (2020) a comparison between 42 of these datasets can be 

found. Some of the datasets analyzed are described below. 

● The first and widely used public dataset is REDD, published in Kolter and Johnson 

(2011) with aggregated and disaggregated information of six real houses in the 

United States. Data collected includes high frequency (15kHz) sampling of mains 

current and voltage, and low frequency (0.5Hz) data of the individual appliances.  

● Smart* dataset, published in Barker, Mishra, Irwin, Cecchet, Shenoy and Albrecht 

(2012), contains electricity data from 3 houses for a period of 3 to 4 months, and 

Smart* (pronounced as smart star) recorded non continuous information from 7 

houses for a period of 3 years. 

● United Kingdom domestic appliance-level electricity dataset (UK-DALE), pub-

lished in Kelly and Knottenbelt (2014) monitors 5 real houses in the United King-

dom at 10 Hz sampling frequency for periods of more than 1 month. 

● Commercial building energy dataset (COMBED), published in Batra, Parson, 

Berges, Singh and Rogers(2014), is the first dataset related to commercial buildings. 

The samplings are made in a single building in India with a sampling period of more 

than 1 minute.  

● Electrical-end-user dataset (EEUD), published by Anand Krishnan, Tyler Byers, 

Vincent Smart in 2021 by New Zeland Energy Efficiency and Conservation Au-

thority,  provides annual measurements for 23 Canadian houses at one-minute res-

olution.  

The different characteristics of each dataset indicate which is the most suitable option 

for a specific type of algorithm. For instance, the larger the sampling frequency, the wider the range 

of transient state signatures that can be used in the NILM algorithm. But in every case, the scholars 

must deal with common problems, such as sampling “blackouts” (large periods with no measure 
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due to a smart meter or smart plug malfunction) and noise. Figure 2.4 shows a scatter plot of both 

real or synthetic NILM public datasets with releasing year and type of information (high frequency 

sampling, low frequency sampling or both). The availability of these large number of public da-

tasets, with a large range of characteristics, such as type of building monitored (residential, com-

mercial, university), number of houses and individual appliances monitored, sampling frequency 

and period of samplings recorded, is fundamental for the intense improvement in the disaggrega-

tion algorithms in the past years. Also, they make the methodologies replicable for other datasets.    

 

 

Figure 2.4: Both real and synthetic NILM datasets, organized by year and sampling frequency rate. Adapted from 

Batra, Parson, Berges, Singh and Rogers(2014). 

In Pereira and Nunes (2018) a performance evaluation of NILM regarding datasets, 

metrics and tools is described. The comparisons are made over a set of 26 public datasets, and 

characteristics such as year of release, country, number of monitored households, data continuity 

(or not), type of smart meter used, time resolution, and others are listed in tables. The work also 

summarizes the performance metrics used during the more than 20 years of NILM development. 

The metrics are mostly based on event detection capacity. Some metrics examples are failed detec-

tions – FD, and detection error rate – DER, detection Accuracy – DeA, disaggregation accuracy – 

DiA, and overall accuracy – OA. Despite the lack of uniform performance metrics to measure the 

algorithm’s efficiency evaluation, energy disaggregation is becoming more and more feasible. The 

association of improving methods, tested and replicable using the public datasets, easy access to 
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data sampling, transmitting, and storing devices, and the development of IoT for residential appli-

ances places energy disaggregation as an important tool that can contribute significantly to make 

the energy system more reliable, competitive, flexible, and sustainable, as indicated in Chapter 1. 

 The availability of this number and variety of load monitoring datasets makes some 

actual discussions about the best way to investigate one or other phenomenon possible, as for ex-

ample in Tome et. at (2021), where the sampling parameters are defined based on event detection. 

The proposal is very actual, and the methodology was tested in several public datasets, which 

makes the contributions even more interesting and opens the possibility of several future works.  

 

2.3  ENERGY MANAGEMENT SYSTEM AND DEMAND RESPONSE 

 

The combination of Appliances Load Monitoring (ALM) with the possibility of inte-

grating small renewable energy sources to the grid (for example solar panels as small as a residen-

tial rooftop) makes the smart grid concept a key for smart energy consumption in the near future. 

To achieve the energy saving strategies, the residential installations saving potential cannot be ig-

nored.   Abubakar et al. (2017) give an overview of NILM associated with a home energy manage-

ment system (HEMS). HEMS can indeed provide mutual satisfaction between customers by real-

izing their comfort preferences and the utility by assisting energy saving strategies. A deep under-

standing of appliances usage, given by NILM, can improve the HEMS capacity of both attend the 

households comfort preferences and make a smarter use of energy, even allowing a better integra-

tion of fluctuating energy resources. Load modulation together with the demand response projects 

can add flexibility to operate the smart grid.  

 If the energy service operators can have enough information to classify the customers 

and apply more targeted demand side response programs, the chance of getting a better result is 

expected to be higher.  

In an empirical study, Ayres, Raseman and Shih (2013) analyzed field experiments that 

took place with approximately 75,000 households. The energy company randomly assigned a sub-

set of these households to periodically receive mailed reports comparing their energy use with 
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neighbors. The households that received the letters showed significant energy use reduction com-

pared to the ones that did not receive the feedback letter.  

Cao, Beckel and Staake (2013) took a different approach and used the Irish CER Da-

taset, with readings for more than 4000 residential customers for 18 months over 30-minute inter-

vals to classify customers based on demand peak position using k-means algorithm. The results 

allow the identification of the more demanding profiles, making the feedback programs more tar-

geted. The methodology starts with a pre-processing step that verifies the inputs and discharges the 

invalid entries. Then the data is split in two subsets: summer and winter. After that, the authors 

used three clustering methods (hierarchical clustering, k-means and Self Organizing Maps associ-

ated with k-means) with different input parameters (mainly different distances definition), and at 

least the clusters quality is compared. The preprocessing step used here is very close to the one 

used in the work that is the object of this thesis. Both methods start with a cleaning step, with the 

objective of verifying the quality of the input data. The authors also used Principal Component 

Analysis (PCA) to reduce the data dimensionality, and k-means and Self Organizing Maps (SOM) 

as clustering methodologies. The main difference between this work and the one presented in this 

thesis is that the first one is clustering load curves, this is, consumers. The second one is clustering 

system status, or individual appliances.     

Beckel, Sadamori, Staake and Santini (2014) reported an improvement of the previous 

work by inferring the household characteristics such as number of occupants and information re-

lated to the occupancy using smart meter data by adding a step for classification and regression. 

Some of the characteristics inferred were the number of appliances, number of bedrooms, type of 

cooking facility, floor area, and even the yearly household income.  The main input data is the 

aggregated kW measurements from the smart meter. After a feature extraction step, a list of several 

input information is given to the classifier. The classifier results in assigning eighteen households 

characteristics that can be used to make the demand response programs more targeted. This work 

is very interesting because it can perform a real classification of the residences, and the information 

can be used to make specific demand response programs to several groups. The inconvenience of 

the method relies on the fact that the features selected for the classifier training were extracted from 

previous interviews performed with the households. In this way, its success depends on the people 

answering the form correctly. Also, it is possible that many may find the questionnaire invasive, 
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and do not agree to participate, or they can simply lie because they do not want their personal 

information revealed. Figure 2.5 shows the steps sequence of the methodology proposed.  

 

 

Figure 2.5: House and Household characteristics estimation. Adapted from Beckel, Sadamori, Staake and Santini 

(2014). 

Vassileva and Campillo (2014) studied the impact of targeted user feedback. The focus 

was a specific class of users, namely low-income households, located in Sweden. The objective is 

to identify specific shared characteristics, interests, and preferences for energy visualization that 

can be used for keeping consumers interested in energy efficiency for a long period. The group 

studied approximately 2500 households, divided into two groups. After a questionnaire-based sur-

vey, the program evaluated aspects like: 

● Preferred methods of electricity visualization (letter, web, mail, SMS, Apps or 

IHD). 

● Main reasons for saving energy (Environment, money, or both). 

● Factors influencing the consumer’s willingness to purchase specific appliances (en-

ergy efficiency or price). 

The questionnaires also asked questions regarding the household daily habits, like fill-

ing the dishwasher and washing machine before using it and trying to avoid standby mode. Despite 

the inconvenience of asking a lot of people to answer a questionnaire, in this work it was possible 

to show in numbers that being motivated to save energy, either because of the environment or to 

save money in the energy bill, is not enough. The average population is not specialist in energy 

efficiency, and thus needs help to make the correct decision in respect to such an aim. One good 
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way to provide this help is personalized feedback regarding the use of electricity and some sugges-

tions to make a more intelligent use of it. Figure 2.6 shows the results of one of the questionnaires 

distributed.  

 

Figure 2.6: Example of questionnaire questions used by Vassileva and Campillo (2014), and its answers. Adapted 

from Vassileva and Campillo (2014). 

2.4 TARGETED STUDIES  

The availability of several public datasets with load management information, either 

aggregated, disaggregated, high and low frequency sampling, fundamental frequency and harmon-

ics, individual appliance information, behavior questionnaires and others open the possibility to 

use data mining techniques to extract a huge set of information from the data collected. Comparing 

the actual scenario with the one in 1992 when Hart et.al introduces the NILM concept, the fast 

improvement of data storage and transmission capacities, the spread of Internet of Things (IoT), 

faster and cheaper data processing and the consolidation of machine learning algorithms places the 

challenges in different places. Now the scientific community faces a huge set of real world load 

monitoring samples, and we know that there is a lot of useful and interesting information in it. The 

question is how to extract it.   
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For example, several studies refer to smart campus facilities improvement using IoT 

and data mining tools.  Yorio et. al (2018) uses IoT to improve the campus transit system with 

focus also in data security. The actual scenario in smart campus projects is described in Yang et. al 

(2018) and Muhamad et. al (2017), with projects that use IoT and data security to simulate smart 

cities facilities.   

For residential installations, Chen, Chu, Tsao and Tsai (2013) propose a nonintrusive 

method to find the main activity performed inside the house based on the total power consumption. 

A classifier was trained to detect household characteristics like family size (number of people), age 

and employment (or retirement) status, among other characteristics only by monitoring the total 

real power consumption. The method achieved accuracy of more than 80%.  Cao, Beckel and 

Staake (2013) two clustering techniques were used to study usage patterns and classify customers 

based on the demand daily peak position. The techniques used were k-means and Self Organizing 

Maps (SOM). 

Pätäri and Sinkkonnen (2014) brings a discussion regarding the assertiveness of the 

energy saving goals proposed from the Energy Service Companies. The need for energy efficiency 

improvement brings good business opportunities, but the work shows that the energy service com-

panies have failed to implement effective energy performance contracts. Some of the reasons, ac-

cording to the authors, are lack of knowledge about energy saving programs from the customer 

side, and a load model that is not as good as it could be, and the conclusions include a closer relation 

between the energy supplier and consumer, which can be achieved by a detailed and targeted feed-

back letter. 

The question that comes at this moment is: what is the best way to prepare a good 

feedback letter? First, it is necessary to have a deep understanding of the consumer’s profile, but 

this is not a simple task. For example, a program for reduce the use of energy by optimizing the 

use of electrical heating needs a good model of electrical heating usage, or to make a peak shav-

ing/load modulation with targets on the most consuming loads (air conditioning/ space heater, iron-

ing, electrical stove/oven), the usage patterns of this equipment must be studied. Also, the research-

ers must use methods as non-intrusive as possible. To add a novel contribution in this field requires 

an approach that involves not only the most consuming appliances, but able to observe all the 

residential appliances together.  
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The work presented in this thesis focuses on the observation of the dynamic behavior 

of all the residential appliances together, through the system status monitoring. Despite of the sim-

ple concept of “system status”, that is defined as “a binary vector containing the status of each 

individual appliance monitored (0 for “off” and 1 for “on”), the curse of dimensionality makes hard 

to visualize even a small system status dynamic in its raw state. At this point the methodologies of 

dimensionality reduction become important, as it will be described in the following chapters.  

The methodology goal is to identify groups of appliances that are often used at the same 

moment, but not necessarily because they are used for the same (or similar) purpose (for example 

TV and video game, or oven and cooktop). In other words, we look for groups of appliances that 

are statistically related. Figure 2.7 explains the main steps of the work. 

 

Figure 2.7: flowchart explaining the idea of this work. 

This work is part of the state of art in the demand side studies of electrical energy use 

and brings a novel contribution with a method for noninvasive load patterns recognition, using 

algorithms of clustering and dimensionality reduction either method that has been consolidated for 

decades, such as Principal Component Analysis and k-means clustering, and actual algorithms for 

clustering and classification such as Self Organizing Maps. 

  



45 
 

3. METHODOLOGY  

The main goal of this work is the definition of an algorithm that identifies utilization 

patterns in a fixed group of appliances. The focus is residential installations, and the definition of 

the appliances that are at the same group will not be guided by the type of appliance (for example 

toaster and mixer), but in a statistical analysis of a large set of system status. The information 

contained in these utilization patterns can be of great value for the development of more target and 

effective energy saving strategies. For example, the energy supplier companies can classify the 

customers according to the energy saving potential and suggest some small behavior changes (ac-

cording to the groups) resulting in a more intelligent use of electricity.    

The main analysis starts from a large set of vectors representing the status of each mon-

itored appliance (system status). This way, each position of the binary vector states if the specific 

device is on (“1”) or off (“0”).  

During the development of this work particularly, the system status vectors were ob-

tained from an intrusive monitoring system, this means that one monitoring device was installed to 

follow each specific appliance (or plug). This is a limitation factor for the system size: in a house 

with 20 devices, it is necessary to have 20 monitors, including installing, synchronizing, collecting 

data and dealing with malfunctioning.  
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Figure 3.1: Representation of how the information is organized and the work main steps 

Note that the intrusive scenario is important to test the proposed solution. It is expected 

that this framework will be used in practical scenarios as a combination of the pattern recognition, 

and a fast and effective disaggregation algorithm. The patterns recognition methodology is well 

developed in this work, but the association with a fast and assertive disaggregation algorithm is 

mandatory for the application to became feasible in a daily basis. Only this way it will be possible 

to collect and process data from residences in a non-intrusive way, this is, without the inconven-

ience of having a person inside the house to install the monitoring devices and avoiding the hard-

ware costs.  
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Figure 3.2: Combination of disaggregation algorithm with utilization patterns detection 

3.1 DATA DESCRIPTION 

The datasets selected in this study are the UK-DALE (Kelly and Knottenbelt, 2014) 

and REDD (Kolter and Johnson, 2011). The UK-DALE dataset contains measurements from five 

different households in the United Kingdom with 6-second granularity for periods of more than a 

month. The measurements contain the individual consumption of 52, 18, 4, 5 and 24 individual 

channels (each channel can be one single appliance or a group of them). 

The REDD dataset contains measurements from 6 different households in the United 

States with 3-second granularity, with monitoring periods from 2.7 to 25 days. The monitoring 

periods are not the best for detecting utilization patterns (2.7 days can measure unfortunately some 

holiday, for example, and even 25 days does not take different seasons in the year), but on the other 

hand this dataset records a good quantity of individual channels (18, 9, 20, 18, 24, 15), each of then 

representing one individual appliance. 
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Table 3.1: Number of individual channels and time monitored for every house in UK-DALE dataset 

HOUSE INDIVIDUAL CHAN-

NELS 

TIME MONITORED 

 

UK-DALE HOUSE 1 52 more than 4 years 

UK-DALE HOUSE 2 18 193 days 

UK-DALE HOUSE 3 4 35 days 

UK-DALE HOUSE 4 5 151 days 

UK-DALE HOUSE 5 24 122 days 

REDD HOUSE 1 18 25 days 

REDD HOUSE 2 9 11 days 

REDD HOUSE 3 20 14 days 

REDD HOUSE 4 18 19 days 

REDD HOUSE 5 24 2.7 days 

REDD HOUSE 6 15 13 days 

 

The results recorded from these two datasets contain aggregated information (total real 

power measurement from the entire house) and disaggregated (real power from each individual 

channel). UK-DALE dataset has also some information about the appliances (called metadata), 

including appliances description, manufacturer, model, and a suggestion of “on power”. For indi-

vidual channels there are also some files called “button press”, that indicate the moment when the 

specific appliance was turned on. However, this information is not complete, and the preprocessing 

step was necessary to create the binary vectors representing the system status. REDD dataset has 

also some additional sampling in a higher sampling rate for houses 3 and 5, but this information 

was not used for this work. 

The information in Table 1 leads to a system state domain of high dimension: R52, R18, 

R4, R5 and R24 and R18, R9, R20, R24 and R15, respectively for UK-DALE and REDD. Considering 

one sample every 6 seconds for UK-DALE, the set of system status in one month has more than 

400,000 measurements. For REDD, with one sample every 3 seconds, the set of system status has 

28,800 measurements for each monitored day. In addition, if each system status is represented by 

a binary vector that indicates each appliance’s status (i.e., on or off, or 1 or 0), the number of 

possible statuses for each house is 252, 218, 24, 25 and 224 for UK-DALE and 218, 29, 220, 224 
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and 215. These numbers make traditional statistical analysis limited. To address this problem, per-

forming the dimensionality reduction is a key step to make the problem more tractable to extract 

information. Once the system status is in R2 or R3, the distances between the points (appliances) 

become visible in a chart, and a clustering step (linear with k-means and nonlinear with SOM) will 

define the groups of appliances whose use are related to each other. 

3.2 PRE-PROCESSING 

As described in the previous section, the results recorded from these two datasets con-

tain aggregated information and real power sampling from each individual channel. In this work, 

the first task is to transform the real power values from the individual channels into a binary vector 

representing the whole system status, one for each sample. The pre-processing step was responsible 

for performing this task. 

Figures 3 and 4 show the intermediate results for 2 appliances in UK-DALE House 1. 

For every individual channel it was determined a limit of real power above which the device status 

was considered “on”. The possibility of improving the recognition algorithm using disaggregation 

techniques, such as appliance signatures (transients during switch on and off) and machine cycles 

is known, but at this moment the focus is on dimensionality reduction and clustering. Figure 3.3 

shows the proposed approach with its main steps. 
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Figure 3.3: correspondence between kW sampling and system status for gas boiler, House 1, UK-DALE. 

 

 

Figure 3.4: correspondence between kW sampling and system status for freezer, House 1, UK-DALE. 

The next step is to compile the individual channels status into a single system status. 

This is a very simple task if the timestamp of every sample for all channels are the same. Unfortu-

nately, this does not happen in every house. Often it encountered a lapse of measurement in some 

channel, from 1 missing sample to several minutes. It is also possible that some channels have no 
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missing sample, but a delay of 1 second during some periods. If some individual channels contained 

a quantity of samples too different from the others in the household (less than 25% of average for 

the installation), the channel was removed. Finally, the system status was recorded as binary vec-

tors in a text file. The time stamp and the total power in kW are still present in the output file 

generated by the pre-processing algorithm (see Figure 3.5 for an example).  

 

 

 

Figure 3.5: the pre-processing step transforms the real power measurements from individual channels into a binary 

vector containing each appliance status. The output file also keeps the time stamp and the system aggregated real 

power instantaneous demand. 

 

Figure 3.6: Project flowchart. 
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3.3 PRINCIPAL COMPONENT ANALYSIS (PCA) 

Principal Component Analysis (PCA) is a linear and non-parametric method that pro-

jects high dimension data into specific directions that lead to variance maximization, and noise and 

redundancy minimization. 

The central question of PCA is: How to define a matrix P that multiplies by the sam-

ple’s matrix X to return a matrix Y that captures core features of a given phenomenon? Mathemat-

ically, we have: Y = PX, where X is the mxn matrix of samples, with m being related to individual 

appliances and n the sample in time; P is the linear transformation matrix; Y is the resulting pro-

jection of data X. The multiplication of the samples matrix X per the linear transformation matrix 

P results simply in a rotation and re-scaling of X. Considering (a) pi as the line vector of matrix P 

for i = 1, . . . ,m, and (b) xj as the column vector (samples) of matrix X for j = 1, . . . , n, then each 

line of the resulting matrix Y can be written as:  

yi = [pix1 pix2 . . . pixm] 

which is the projection of the columns of X in the directions represented by each pi. 

 

The next question is: which are the directions that best represent the interesting data in 

X? Now if the direction that contains the largest data variance is the one that keeps the better portion 

of information, the question can be written as: which rotation in the orthonormal basis used to 

express the measurements in X will result in data with largest variance? Let us define here the 

covariance matrix CX as: 

CX = [(n - 1)XXT]-1, 

where (n-1)-1 is a normalizing term. 

The matrix CX is symmetric and contains the variance of the measurement types of X 

on the diagonal, and the off-diagonal terms contain the covariances between them. As the variance 

expresses the amount of signal contained, and the covariance measures the redundancy between 

two measurement types, the objective of PCA is to find the matrix P such that the covariance matrix 

of Y = PX is diagonal (maximize variance and minimize covariance). 

A very simple algorithm for PCA is described by Jonathon Shlens (2015) as:  

● Find a normalized direction vector in the m-dimensional space along which the variance of 

X is maximized. This is p1. 
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●  Find other direction vector in the m-dimensional space, orthonormal to p1, that also max-

imizes the variance of X. This is p2. 

● Repeat the procedure, finding vectors that are orthonormal to all the previously selected, 

until m directions were found. 

The main method outputs are the projection direction pi (as many directions as the 

original dataset dimension), called Principal Component (PC), and the variance associated with 

each PC. It is an established and simple method for extracting relevant data from noisy or confusing 

data sets (which can be large or not). The main contribution of PCA in this work is the capacity of 

resume redundancy (with the sampling frequency considered, it is expected that each appliance 

remains in the same status for several samples) in a simple, linear, and fast algorithm. 

The main advantages of PCA are: 

● The method does not require any parametrization; that means that no additional information 

of the phenomenon is required. 

● Requires a small computational effort. 

● The variances associated to each projection direction pi can be interpreted as a measure of 

“how principal the component is”; the method lists the components ordered from the largest 

variance to the lowest. 

● As the method is nonparametric, it is impossible to set it in the wrong way and miss an 

important result. The method does not show any hidden information nor suggests any con-

clusions, instead it reduces redundancy and shows the data from an angle where the infor-

mation is easier to visualize. In our case specifically, we are not looking for any specific 

cluster, only for a way of visualizing the system status set in a 2D or 3D projection, so it 

will be possible to analyze the data in a simple plot. 

The right quantity of principal components necessary to represent the phenomena with-

out significant loss of information is not the same from one problem to another, but it is always 

related to the total variance accumulated from the PCs. One way to choose how many PCs are 

enough to represent the dataset is to plot the total variance accumulated for every set of PCs. The 

method, called "the elbow method", applied to this perspective, states that the point where the curve 

has its elbow (if it has one) is the ideal number of PCs that represent the dataset without significant 

loss of information (variance). If, for example, the curve has no elbow, it means that all the PCs 

are equally important and the PCA is not a good tool to perform dimensionality reduction. 
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Figure 7 shows the variance curve for the UK DALE dataset, HOUSE 2. From the 6th 

PC on, the PCs have an insignificant contribution to the dataset’s variance. This means that the 

information they carry, if ignored, has a small impact on the information captured. 

 

Figure 3.7: Variance contribution for each Principal Component, HOUSE 2, UK-DALE 

If the first 3 PCs together add a high percentage of the total variance, and the total 

variance curve shows one inflection point at the 3rd PC, this means that the 3D projection of the 

original data is enough for capturing the data behavior. 

For more details about the method and its mathematical formulation, refer to Jonathon 

Shlens (2005).  

About how to apply PCA to perform the dimensionality reduction in our problem: the 

UK-DALE dataset is composed of five measurement sets of houses in the United Kingdom with 

52, 18, 4, 5 and 24 individual channels. The data is collected every 6 seconds for a period of more 

than 4 years, 193 days, 35 days, 151 days and 122 days, respectively. 

At each measured instant, the system status is a point in: R52, R18, R4, R5 and R24. For 

the REDD, the consumption information of 6 houses is taken in a 3-second frequency, with 18, 9, 

20, 18, 24 and 15 appliances monitored. After the pre-processing, the system status dataset is rec-

orded in a text file, with the system status in the lines. At this sampling frequency, it is easy to see 

that the set of system status is very redundant since every specific status stays unchanged for several 

samples.  
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As the samples are made in real houses (instead of generated from a simulator), the 

presence of noise in the data is certain. Noisy measurements may be eliminated when the real power 

value of the individual channels is mapped into a bit status (0 for off and 1 for on). Considering 

also that there are 14,400 samples a day (if the meters don’t fail at any moment), we have to deal 

with over 504,000 samples for a 35-day set. Even for the smaller house (with 4 individual chan-

nels), it is unfeasible to identify the behavior patterns in the raw data. 

Referring to the method explanation above, the matrix X contains the individual appli-

ances in the columns, and the status in the lines. In this way, the dimensionality reduction will not 

lead to loss of reference in the appliances (see Figure 8). 

Simulations were made using MATLAB R2016a over the preprocessing output files, 

and the results are described in Chapter 4, and discussed in Chapter 6. 

 

 

Figure 3.8: Illustration of matrix X for redundancy reduction 
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3.4 K-MEANS 

After PCA is performed the dimensionality reduction, the projection over the first three 

principal components (or more, according to the elbow method and the total variance curve) are 

used to define clusters. For the simulations it was used MATLAB R2016a, and the cluster defini-

tions were made according to k-means method Jain and Dubes (1988). There are several clustering 

algorithms available, and there isn’t any restrictions to use other technique to perform this task. 

The exploration of other clustering algorithms is described as a possibility of future work.  

To define the best configuration of clusters (the ideal number of clusters - k), it was 

also used the elbow method. Varying the number of clusters from 1 to m (1 cluster means all the 

appliances together while m clusters mean one cluster to each appliance), every time one new clus-

ter is created, the percentage of variance explained, i.e., the ratio of the between-clusters variance 

to the total variance, is quantified. There is a value of k from which the addition of one more cluster 

does not increase much of the variance explained. The selection of k comes directly from it. 

 

Figure 3.9: Variance Explained according to the number of clusters (k), for REDD, House 1. The best k is 4. 
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Table 3.2: Clusters for REDD House 1, k=4. 

CLUSTER INDEX CHANNELS 

1 
5-KITCHEN OUTLETS 1 

6-KITCHEN OUTLETS 2 

2 

1-OVEN 1 

2-OVEN 2 

3-REFRIGERATOR 

4-DISHWASHER 

8-WASHER DRYER 1 

9-MICROWAVE 

10-BATHROOM GFI 

11-ELECTRIC HEAT 

12-STOVE 

13-KITCHEN OUTLETS 1 

14-KITCHEN OUTLETS 2 

17-WASHER DRYER 2 

18-WASHER DRYER 3 

3 7-LIGHTING 

4 
15-LIGHTING 2 

16-LIGHTING 3 

 

3.5 3D VISUALIZATION AND THE MINIMUM SPANNING TREE 

The result for this part of the work is to show graphically the agglomerations between 

the appliances. This visualization is impossible from the original data because of the high dimen-

sion of the system status.  

One way of visualizing the clusters is to plot the data projection over the Principal 

Components. This work can be done with one, two or three Principal Components and still use a 

simple plot chart to make the results visible (a 3D plot). However, at this point the nature of the 

variance curve is not known, and it is possible that the elbow method suggests more than 3 PCs to 
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visualize the system status dynamics with minimum loss of information. In this case, another vis-

ualization tool is used: the Minimum Spanning Tree. 

Considering each one of the appliances as a node from a graph, independently from the 

data dimension, the Euclidian distance between the nodes can be calculated. The Minimal Spanning 

Tree (MST) is a tool that gives the shortest path between any two nodes (appliances) of a connected 

set. This representation allows one to see a result from any dimension in a 2D figure without any 

loss of information. Also, the plotting scale can be manipulated to fit all the data in one single 

figure. The method used to generate the MSP was PRIM. Figures 3.10 shows an example of a MST 

generated from Matlab R2016a. The figures shown in Chapter 4 were made using software Autocad 

2021.  

 

 

Figure 3.10: MST as output from Matlab R2016a. To make visualization easier, the figures shown in Chapter 4 were 

made using software Autocad 2021. 

3.6 SELF ORGANIZING MAPS 

A Self Organizing Map (SOM) is a tool from the set of unsupervised learning algo-

rithms in machine learning, described in details by Haykin (2008). It consists basically in a grid of 

neurons that are connected to each other by a specific topography, usually in R1 (linear), R2 or R3. 
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The training of a SOM starts with a predefined number of neurons (in this case the neuron model 

is simply a vector in Rn, being n the dimension of the system status. 

The dimensionality reduction occurs in the neurons’ connections: they are arranged in 

a linear or bidimensional way. During the training, the neurons move toward the samples, reflecting 

agglomerations of similar data that can be observed after the training is finished through the con-

nection’s length. 

  The training of a SOM uses the concepts of competitive learning and winner neuron 

– see Haykin (2008). This way, when some sample is presented to map, the neurons will compete 

to decide which one best represents that specific data. In our case, the neuron closest (according to 

Euclidean distance) to the sample will be the winner and will move towards the sample (see figure 

3.10). Previous parametrization of the method states if the winner neurons move alone, or if it also 

takes the neighbors. In our case, both the winning neurons and the neighbors moved. 

One iteration of the training is completed when every sample of system status is pre-

sented to the map, and the neurons have moved according to them. After many iterations (hun-

dreds), the neurons’ structure will show agglomerations that reflect sample correlations. 
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Figure 3.11: 2D hexagonal geometry and the winner neuron concept. During each training iteration, the winning 

neuron moves toward the sample and moves to the first neighborhood. The dimensionality reduction occurs because 

each neuron, a vector in Rn, is connected t 

 

After training, the initially uniformly distributed neuron’s structure presents agglomer-

ations that indicate quantitatively a natural classification of the samples set. Referring to Figure 

3.10, some neurons moved and became very close to each other, other connections became larger. 

The agglomerations exist and suggest some classification between the samples, but in most cases, 

a detailed analysis of the distances distribution to define the groups is needed.  
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Figure 3.12: Initial hexagonal SOM after training. When looking at the distances between the neurons, the agglom-

erations became visible. 

 

In this case, Python was employed to apply the SOM algorithm through the library 

SimpSOM. As a machine learning tool, the results depend on the size of the map, the shape (con-

nections between the neurons) and the number of training epochs. Other factors also can influence 

the result, but these ones are the most important.  

To be able to compare the results, the training parameters were the same for all houses 

and datasets:  

• 3D grid with 40x40 neurons. 

• hexagonal connections. 

• 30.000 epochs of training. 
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4. RESULTS – PRE PROCESSING, PCA AND K-MEANS  

The methodology described in Chapter 3 was applied to two public datasets selected: 

UK-DALE and REDD. In UK-DALE there are two houses with a small number of individual chan-

nels (Houses 3 and 4 with 4 and 5 individual channels respectively), but the period monitored is 

longer than in the REDD Houses. This means that we can expect as a result utilization patterns 

closer to reality than in REDD. Another difference between the datasets is the sampling frequency: 

UK-DALE has one sample every 6 seconds, while REDD has one sample every 3 seconds. 

The first step of the preprocessing routine was to analyze if the channels in each house 

are compatible in sample quantity. During the sampling period, some individual channels can ex-

perience one or more outage periods due to sampling device malfunction or any other reason that 

leads to loss of data. The main goal of this first step was to identify channels that have a sampling 

quantity too different from the other channels in the same house and discharge it. If the outage 

period is not significant, the last appliance status (on or off) is assumed to be unchanged during the 

period.  

   The results are:  

● In UK-DALE House 1, channels 22 (hoover), 39 (hair dryer), 40 (straighteners) and 

41(iron) were excluded. 

● In UK-DALE House 5, channels 11 (PS4) and 25 (vacuum cleaner) were excluded. 

● In REDD, it was not necessary to exclude any individual channel due to sampling 

blackouts.  

The exact quantity of samples in each individual channel for both datasets is summa-

rized in Tables A.1 to A.11 in Appendix A.  

But even after these eliminations, the sample quantity is still very different from one 

channel to another inside each house, and from one house to another. To make the results compa-

rable, it was considered for every house in UK-DALE only first 504,000 samples (corresponding 

to 35 days of continuous sampling). For the REDD dataset, the number of days considered in each 

house is listed in Table 4.1.   
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Table 4.1: Number of samples (continuous days) considered for each House in REDD dataset. 

HOUSE FROM REDD DATASET SAMPLING DAYS SAMPLES 

HOUSE 1 25 720,000 

HOUSE 2 11 316,800 

HOUSE 3 14 403,200 

HOUSE 4 18.5 532,800 

HOUSE 5 2 57,600 

HOUSE 6 13 374,400 

 

The next two steps of the processing were to transform real power demand into a binary 

status, and then make the synchronization of the channels. The binary status of each individual 

channel was determined based on a threshold value of real power consumption above which the 

device is considered on. Each channel has its own “on/off” limit, that was determined graphically. 

 The synchronization step was necessary to deal with periods of sampling gaps. For 

that, the main channel time stamp was the reference, and in case of a gap, the last status (“on” or 

“off”) was maintained until the real status was back. Finally, the system status was recorded in a 

txt file, containing timestamp, House’s aggregate power, and the status for every individual chan-

nel, as shown in Figure 4.1 
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Figure 4.1: Example of output file after preprocessing step. The files contain: time stamp, total house’s real power, 

and the binary status of each individual channel. 

1.1 PRINCIPAL COMPONENT ANALYSIS   

The Principal Component Analysis was made using software Matlab R16a. The code 

for House 6 in REDD is shown in Figure 4.2.  
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Figure 4.2: code used in Matlab R2016a to process PCA. 

  

PCA outputs in software Matlab are: 

● Coeff: directions pi (for data projection). 

● Score: original data projected over the directions pi.  

● Latent: contains the variance of each Principal Component. 

● Explained: contains the total variance cumulated, in percentage, as each Principal Compo-

nent is considered. It starts with the percentage variance of the first PC. The second position 

is the percentage variance of the first and second PCs together, until they reach 100% (all 

PCs are included). 

The outputs “tsquared” and “mu" were not used, and for this reason are not described 

above. 

It is important to note that the reference data for the PCA algorithm is not the system 

status set matrix, but the transposed. This means that the PCA looks for redundancy not among the 

system status, but among the appliances behavior. This way, if the behavior of two appliances are 

very similar, the appliances will be points close to each other in the results. 

The results shown refer to the “clean” version of the system status set. This means that 

the samples that had all the appliances as “off” were removed.  

In the following pages, it is shown, for House 4 in UK-DALE dataset, the following 

figures: 
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1. Variance behavior: the bars represent the variance of each PC, and the red line the accumu-

lated variance, in %. The behavior of this red curve determines if the PCA is a good tool 

for dimensionality reduction or not. 

2. PCA 1D: this picture shows the data protection (appliances behavior) over the first Principal 

Component. The relation between appliances is already visible. 

3. PCA2D: shows the data projection over the first PC in x-axis, and over the second PC in y-

axis. Now some appliance agglomerations from PCA1D can appear separated (or not). 

4. PCA3D: shows a 3D plot with the data projection over the first, second and third PC in the 

x, y and z-axis. These pictures show the most information captured from the first 3 PCs and 

is the farthest we can go without any other visualization routine/analysis. 

 

 

Figure 4.3: Variance for each PC and cumulated for UK-DALE, House 4. 
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Figure 4.4: Data Projection over First Principal Component - UK-DALE, House 4 

 

Figure 4.5: Data Projection over First and Second Principal Components - UK-DALE, House 4 
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Figure 4.6: Data Projection over First, Second and Third Principal Components - UK-DALE, House 4 

 

The same figures for UK-DALE and REDD datasets are shown in Appendix 2. 

1.2 MINIMUM SPANNING TREE AND K-MEANS 

The PCA results in the previous Section showed that the relation between some appli-

ances do exist. However, even with the 3D plot, it is impossible to make a deep analysis of the 

groups. At this point the Minimum Spanning Tree toll makes the results visualization easier. For 

that it was used software MATLAB R2016a, and the code is shown in Figure 4.7. 
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Figure 4.7: Matlab R2016a code for generating the MST for UK-DALE, House 1 

Figures 4.8 show the MST result for REDD, House 1. The results for all UK-DALE 

and REDD Houses are shown in appendix 3. In all cases, the appliances with distance smaller than 

1 was considered as a single point. The figures were generated with software AutoCAD 2021. 
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Figure 4.8: MST for REDD, House 1, including the distances between nodes. The appliances with distances smaller 

than 1 were considered as a single node. 

1.3 K-MEANS RESULTS FOR PCA 3D 

The k-means method was used to determine the quantity and composition of the appli-

ance’s clusters. The programming was made in software Matlab R2016a, and the code is shown in 

Figure 4.9.  
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Figure 4.9: Code used in Matlab for k-means. 

The function “best_kmeans” is an iterative routine that returns in “K” the best number 

of clusters also according to the elbow method in the variance explained curve.  

The function “kmeans(X,k)” returns the “k” clusters in the “idx” vector. The outputs 

include: 

● Idx: performs k-means clustering to partition the observations of the data matrix X into 

k clusters and returns a vector (idx) containing cluster indices of each observation. Rows 

of X correspond to points and columns correspond to variables. By default, kmeans uses 

the squared Euclidean distance measure and the k-means++ algorithm for cluster center 

initialization.  

● C: returns the k cluster centroid locations in the matrix C. 

● Sum: returns the within-cluster sums of point-to-centroid distances in the vector sum. 

● D: returns distances from each point to every centroid in matrix D. 

Appendix C shows k-means results in tables, and the variance curves used to determine 

the best k. The pictures ahead show the same results using the MST representation.   
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4.1.1.1  

 

Figure 4.10: MST with k-means results represented over the MST for UK-DALE, House 1, with k=6. 

House 1 has the largest number of individual channels monitored in the UK-DALE 

dataset. The existence of one large cluster with more than 50% of the appliances indicates a good 

modulating opportunity. The single node that represents 10 appliances together (kitchen lamp, sub-

woofer living room, DAB radio living room, Samsung charger, bedroom lamp, coffee machine, 

kitchen radio, gas oven, baby monitor TX, and LED printer) seems to represent the morning or 
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evening demand peak. Another very interesting node is the one that gathers kettle and soldering 

iron. These two appliances are not related at all, and still appear as “frequently used at the same 

time”. If we focus on the appliances with more significant rated power, one modulation opportunity 

that is easy to achieve is regarding the washing machine and the dishwasher. These two appear at 

the sabe cluster, and both are appliances that can be programmed to work during the night, for 

example.    

 

Figure 4.11: MST with k-means results represented over the MST for UK-DALE, House 2, with k=3. 

The clusters in UK-DALE House 2 show the classic habit of using all the kitchen ap-

pliances at the same time (Rice cooker, microwave, kettle, toaster, cooker), but also reveals a good 

opportunity of modulation recommendation regarding the washing machine and dishwasher.   An-

other interesting data that can be inferred from the results is that, at least during the monitored 

period, there are a minimum of 3 people inside the house: one to use the Playstation, one to use the 

running machine, and other one to operate the kitchen appliances. The two smaller clusters join the 

appliances that have their purpose related, so it is logical that they are in the same cluster: server, 

modem and router, and laptop, monitor and speakers.  
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Figure 4.12: MST with k-means results represented over the MST for UK-DALE, House 3, with k=3. 

The result for UK-DALE House 3 is not interesting because the information available 

is about only 4 individual channels.  

 

Figure 4.13: MST with k-means results represented over the MST for UK-DALE, House 4, with k=3. 

UK-DALE House 4 also has too few appliances monitored to bring an interesting dis-

cussion. But even with so few appliances, this user could improve its energy efficiency by using 

the washing machine during the night, or at least not together with the microwave and beadmaker. 
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Figure 4.14: MST with k-means results represented over the MST for UK-DALE, House 5, with k=4. 

For House 5 in UK-DALE, the interesting results are in the nodes with more than 1 

appliance: stereo speakers’ bedroom + hairdryer + PS4 + steam iron + Nespresso pixie + toaster, 

and network attached storage + core2 server + atom PC + home theater AMP + Sky HD Box. Here 

also it can be inferred that there are at least 3 people in the house, because it is impossible to use 

the hairdryer, PS$ and Steam iron at the same time. The dishwasher and washer dryer represent a 

load modulation opportunity in almost every house. 
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Figure 4.15: MST with k-means results represented over the MST for REDD, House 1, with k=4 

 

 

Figure 4.16: MST with k-means results represented over the MST for REDD, House 2, with k=5 
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Figure 4.17: MST with k-means results represented over the MST for REDD, House 3, with k=5 

 

 

Figure 4.18: MST with k-means results represented over the MST for REDD, House 4, with k=5 
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Figure 4.19: MST with k-means results represented over the MST for REDD, House 5, with k=4 

 

 

Figure 4.20: MST with k-means results represented over the MST for REDD, House 6, with k=3 
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5. SELF ORGANZING MAPS RESULTS 

The methodology described in Chapter 3 was also applied to the 2 datasets selected 

(UK-DALE and REDD). The simulations were made with SimpSOM Library in Python language, 

using Google Collaboratory to run the code.  

The package proposes a hexagonal grid of neurons, closed. This means that the edges 

of the figures presented below are connected to each other, the right edge is connected to the left 

edge, and the upper and lower edges as well. To make the results comparable, for all the 5 houses 

in UK-DALE and the 6 houses in REDD were used to train a 40x40 grid for 50,000 epochs. The 

results shown below represent the distances between the neurons and its neighbors after the training 

in a color scale. The neuron agglomerations are represented by dark regions.  

The results presented in this work represent one way of revealing the clusters existence 

in residential systems. The SOM methodology provides a wide range for exploration, by varying 

the grid configuration, such as:   

• Shapes: can be linear, square, cilindrical, spherical, and other;  

• the grid size is analogous to pixels in a figure: the most, the better, but the largest the 

grid, the most computer consuming is the training; 

• and the number of training epochs: it is expected that, by increasing the training epochs 

quantity, the results visualization would became more clear (the colours in the pictures 

would be lighter or darker).   

The exploration of these parameters variation and the impact in the results is described 

of one possibility of future work. 

The code used to train the grid for UK-DALE House 5 is shown in Figure 5.1. 

The Self Organizing Maps after training are shown in Figures 5.2 to 5.12. The distance 

between the neurons is shown in a color scale, from dark blue to yellow. The closer the neurons, 

the darker the regions, this is, the dark blue regions represent neuron agglomerations. On the other 

hand, yellow lines represent walls separating one agglomeration from another, or light green re-

gions represent an area of low neuron density (transition between one cluster to another).  
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Figure 5.1: Code used to train the 40x40 hexagonal grid to UK-DALE, House 5. 

5.1 SOM RESULTS FOR UK-DALE 

Figures 5.2 to 5.12 show the SOM after training with the distance between the neurons 

in a color scale. Some of the agglomerations were pointed with red circles to make it easier to the 

reader to follow the discussions.   
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Figure 5.2: Flat view of trained 40x40 hexagonal SOM, after 50,000 epochs training, for UK-DALE, House 1. 

The SOM maps results shown in this kind of figure are more qualitative than quantita-

tive. For example, in Figure 5.2, the agglomerations are visible: two of them very clear (remem-

bering that the map is closed, this is, the right border is connected to the left border, and the same 

happens to the upper and lower borders), and a couple more visible, but hard to decide if it is three 

clusters’ or one. The result shows some similarity with the shown in Figure 4.10, with the PCA + 

k-means result. One cluster gathers most of the house appliances, and some other peripheral clus-

ters. The distances between the clusters shown in Figure 4.10 also show that they are not very far 

from one another.   
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Figure 5.3: Flat view of trained 40x40 hexagonal SOM, after 50,000 epochs training, for UK-DALE, House 2. 

When it comes to Figure 5.3, the clusters (neuron agglomerations) are more evident, 

but it is still hard to state if a light green region is part of a one cluster or a limit between them. The 

PCA and k-means result showed 3 clusters (see Figure 4.11), and if we focus on the yellow / light 

green lines in Figure 5.3 as divisions, it suggests 3 or 4 clusters.  

 

 



83 
 

 

Figure 5.4: Flat view of trained 40x40 hexagonal SOM, after 50,000 epochs training, for UK-DALE, House 3. 

 

 

Figure 5.5: Flat view of trained 40x40 hexagonal SOM, after 50,000 epochs training, for UK-DALE, House 4. 
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Figures 5.4 and 5.5, as refer to Houses 3 and 5 from UK-DALE, with 4 and 5 individual 

channels respectively, make the results analysis possibilities too limited, and for this reason are not 

explored.   

 

 

Figure 5.6: Flat view of trained 40x40 hexagonal SOM, after 50,000 epochs training, for UK-DALE, House 5. 

Figure 5.6 shows some agglomerations very clearly. The yellow / light green lines in 

the center of the figure suggest an X shape, separating the neurons in 4 main clusters.  
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5.2 REDD RESULTS 

 

Figure 5.7: Flat view of trained 40x40 hexagonal SOM, after 50,000 epochs training, for REDD, House 1. 

 

Figure 5.8: Flat view of trained 40x40 hexagonal SOM, after 50,000 epochs training, for REDD, House 2. 
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The same line of analysis was followed when looking at the Figures 5.7 to 5.12, from 

the REDD dataset. Comparing Figure 5.7 to Figure 4.15, in the last it is shown 4 clusters with a 

large distance between them (the separating branch lengths are 346, 545 and 550). In a similar way, 

the light areas between the dark regions in Figure 5.7 seems to be more distinguished than in other 

Figures.  

But the SOM results analysis must not be only a comparison between one linear method 

and one nonlinear. The loss of reference in the appliances resulting from the dimensionality reduc-

tion allows Figures 5.2 to 5.12 to show some other aspects from the system dynamic, like the clas-

sification of the system status as usual or unusual. 

Every time a system status is presented to the map during the training, not only the 

winner neuron moves toward the sample, but the neighbors also. This means that if a common 

status is presented to the trained map, the winning neuron must be one from one dark region. The 

opposite is also true: if a non-usual status is presented to the trained grid, the winning neuron will 

be from a light region. This concept is the starting point to use the trained SOM as system status 

classifier.     

 

 

Figure 5.9: Flat view of trained 40x40 hexagonal SOM, after 50,000 epochs training, for REDD, House 3. 
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Figure 5.10: Flat view of trained 40x40 hexagonal SOM, after 50,000 epochs training, for REDD, House 4. 

 

 

Figure 5.11: Flat view of trained 40x40 hexagonal SOM, after 50,000 epochs training, for REDD, House 5. 
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Figure 5.12: Flat view of trained 40x40 hexagonal SOM, after 50,000 epochs training, for REDD, House 6. 

6. DISCUSSION 

This work used two different methods of dimensionality reduction to find a natural 

association between appliances in residential installations. The algorithms were applied in data sets 

with measurements of actual residences with individual channels from 4 to 52, with monitoring 

periods from less than three days to more than one month. The data sets selected are the UK-DALE 

and the REDD datasets. 

6.1 PCA AND K-MEANS FOR UK-DALE AND REDD DATASETS 

In the case of the clusters shown in Figure 9, for the UK-DALE dataset, House 1, the 

larger group with all the appliances with a significant rated power (soldering iron, dishwasher, and 

washing machine) indicates a good potential for load modulation. The appliances represented as a 

single point also provide very interesting results, for example, the soldering iron + kettle, and can 

be used as a guide for detailed user feedback. 
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From the clustering results, it is also possible to infer the minimum number of people 

living in the house. Looking at the type of appliances in the same group, for example, it would be 

very unlikely that a single person would use several kitchen appliances and the soldering iron at 

the same time, and thus, there should be at least two people in the house at the same time. Following 

the same logic, observation of the lights suggests that there are people in the office and the living 

room during the busy periods. 

In the case of the clusters in the UK-DALE dataset, House 2 (see Figure 11), some of 

the clusters are obvious, like “modem+server+router”, but the washing machine together with the 

PlayStation and the other kitchen appliances reveal some habits of the household population that 

can be exploited. Furthermore, it can be inferred from this result that there are probably three people 

in the house at that specific moment: one in the kitchen, one using the running machine, and one 

playing a video game. 

In the case of the clusters for the UK-DALE dataset, House 5 (see Figure 13), the group 

with the office appliances (desktop+sky HD box+core2 server and others) makes a lot of sense, but 

the group with the kitchen appliances together with the hair dryer, steam iron, and washer dryer 

suggests that the house has a good load modulation potential. In this case, feedback from the energy 

supplier to the final user suggesting paying more attention to the use of these appliances together 

could be advisable. Regarding the number of occupants in the house, it seems that there are at least 

two people present during the busiest moment, one using the kitchen and the other playing a video 

game (PS4). 

In the case of the clusters for the REDD dataset, House 1 (see Figure 14 ), the larger 

group includes almost all the appliances monitored. This means that everything is always used 

together, despite one lighting circuit (maybe this was always off during the monitoring period) and 

two circuits of kitchen outlets. House 1 in this data set is an interesting one, because it seems to 

have three washer dryers. The washer dryer and the dish washer are used together, also with the 

main appliances such as the stove, microwave, and oven. 

In House 2, also for the REDD dataset, (see Figure 15), one interesting point about this 

result is that the refrigerator represents a single cluster, probably because of its very particular 

“on/off” cycles. Furthermore, this family probably either does not have the habit of cooking (the 

stove is insulated from the kitchen appliances, but the microwave is very close), or the cooker was 

broken for the entire monitoring period. 
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The linear approach (PCA and k-means) was very efficient in revealing the existence 

of appliance clusters. Because of the method’s linearity, the reference in the appliances was not 

lost during the dimensionality reduction, and the final result is a number of groups for each house, 

containing appliances that are often used together. The final information can be of great use for the 

energy suppliers in order to suggest small changes in the consumers’ behavior that can improve the 

energy efficiency of the residence. 

Nevertheless, the main contribution of this method is not only the definition of appli-

ance clusters and the range of analysis options that it brings, but also that the method does not 

require any information other than a large set of system statuses. If associated with an efficient 

disaggregation algorithm, the method can extract useful information about the occupants’ behavior 

by using only the smart meter information. 

6.2 SELF ORGANIZING MAPS FOR THE UK-DALE AND REDD DATASETS 

The method of SOM was used as the nonlinear tool to perform the dimensionality re-

duction and to reveal patterns at the same time. Different from PCA and k-means, the SOM results 

depend on the map size, geometry, and other parameters involving the training itself. The same 

configuration was used for the nine houses that were analysed in order to obtain comparable results. 

Agglomerations of neurons are visible in the grid from the distances between neurons 

and their neighbours. In our case, this distance is represented by a colour scale: dark blue means 

closer neurons while light yellow means further ones. In this way, the dark regions in Figures 20a 

to 21f indicate clusters. For example, in Figure 21e (REDD House 5), three main clusters are vis-

ually clear, but in Figure 21c, the map shows agglomerations that could be either interpreted as part 

of one big cluster, or of several small ones. Therefore, the actual number of clusters might not be 

visually defined in many cases. 

Despite this fact, the results of SOM can be considered by following at least two dif-

ferent lines of interpretation. First, if the intention is to compare the linear and nonlinear methods 

for the same kind of results (finding appliance clusters that are statistically related), another step 

would be necessary to identify which appliances are included in each of the clusters revealed. This, 

however, would not add much to the conclusions, as the results from PCA are already reliable. 
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The second line, which is also the main contribution of SOM to this work, follows the 

fact that the neurons in the dark regions represent system statuses that are very usual, and those in 

the light regions represent statuses that are not usual. Thus, the trained SOM can be used as a 

classifier of “usual” or “not usual” system status. If the training is carried out with a sufficiently 

large set of system statuses that do not contain any malfunctions, the classification can be extended 

to the “healthy” or “fault or malfunction” statuses.  

One very important difference between the SOM and PCA methods is that with PCA, 

as the method is nonparametric, the interpretation of the results is straightforward. After PCA re-

duces the data dimensionality, k-means and the elbow method show the best cluster configuration. 

On the other hand, this method requires some user inputs, mainly to decide how many PCs will be 

considered, and the best number of clusters. These can be interpreted as parameters for the whole 

formulation.  

With SOM, first, the grid parameters must be chosen carefully. If the grid is defined to 

be too small, or there are not enough training epochs, the clusters may not become visible. How-

ever, once the parameters are chosen, the result is obtained in only one step: the grid training. 

Interpretation of the results is not as straightforward as in PCA and k-means, but this gives the 

reader more liberty to discuss the results in a nonbinary way. For example, in Figures 20a to 21f, 

the agglomerations are visible, but the number of clusters can be hard to determine exactly. 
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7. CONCLUSION AND FUTURE WORK 

7.1 CONCLUSION 

In this paper, we have proposed a technique for the detection of appliance utilization 

patterns.  These patterns are identified from only the system status behavior, which is represented 

by large system status datasets, by using dimensionality reduction and clustering algorithms. PCA, 

k-means, and the elbow method are used to define the clusters, and the minimum spanning tree is 

used to visualize the results and show the appearance of utilization patterns. The SOM technique 

is used to create a system status classifier. Thus, the proposed methodology uses low-computational 

cost algorithms that do not require any information about households. 

To demonstrate the effectiveness of the proposed techniques, we applied them to two 

public datasets from two different countries with different usage patterns, the United Kingdom 

(UK-DALE) and the US (REDD). The techniques were very effective in revealing usage patterns 

of appliances with no need for any personal information of the households.  

Using the proposed clustering techniques, system operators can implement effective 

demand-side management. Further, the system status classifier can be used to detect appliance 

malfunctions through system status analyses alone. In the future, we will improve the methodology 

by incorporating a good performance disaggregation algorithm so that the system status set could 

be obtained from only the smart meter information. Further, we will improve the classifier formu-

lation, giving each neuron a label, and using the classifier as a real-time monitor. We will try to 

develop and analyze different classifiers that function seasonally (winter, spring, summer, or au-

tumn), or produce different maps for weekdays and weekends. 
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7.2 FUTURE WORK 

As future work, it can be suggested: 

• Apply the methodology described to other public datasets, not only the ones already 

published before year 2021, but also to other ones that are being created at this mo-

ment. The new datasets, as result of new load monitoring programs, shall have better 

information quantity and quality compared to the ones already available. This way, 

it is expected that soon it will be possible to apply the methodology for data col-

lected for longer periods, and that can be subdivided according week days and week-

ends, season of the year, and other information that can lead to a deeper understand-

ing of load usage in residences. 

• Apply other clustering methodologies to the data already used and other datasets 

and compare the results. The clusters definition is the most valuable information to 

create good feedback letters to the final energy users, and thus is the key to transform 

this work into a practical application.  

• Explore the parameters variation of Self Organizing Maps in the maps results: grid 

geometry, grid size and training epochs quantity.  

• Continue developing the idea of using the trained SOM to work as a system status 

classifier. For that, the SOM training must be longer (more epochs) and with a larger 

set of information. The results will be very interesting and possible of large discus-

sions. As the methodology is parametric, it is also possible to train maps with dif-

ferent sizes (number of neurons) and geometries to compare the results. 

• Develop user feedback letters containing specific information about the residence 

usage profile and study the impact of this information in the households change of 

habits.  

• Associate the patterns recognition methodology with a high-performance disaggre-

gation algorithm. This step is also very important to transform this work into a prac-

tical application. 
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8. APENDIX A – DATASETS 

Table 8.1: Number of samples in each individual channel, and the correspondent label for House 1, UK-DALE da-

taset. In this house, channels 22, 39, 40 and 41 were eliminated for having too few samples compared to the other 

channels. 

INDIVIDUAL CHANNEL LABEL 

– HOUSE 1 
SAMPLES 

INDIVIDUAL CHANNEL LABEL – 

HOUSE 1 
SAMPLES 

CH1 - main channel 21,837,636 CH28 - Subwoofer living room 18,645,123 

CH2 - boiler 21,281,331 CH29 - Living room lamp tv 18,651,142 

CH3 - Solar thermal pump 21,281,208 CH30 – DAB radio living room 677,711 

CH4 - laptop 4,539,118 CH31 - Kitchen lamp 2 11,355,561 

CH5 - Washing machine 19,555,935 CH32 - Kitchen phones & stereo 18,497,094 

CH6 - dishwasher 19,819,392 CH33 - Utilityrm lamp 17,439,431 

CH7 - TV 19,763,329 CH34 - Samsung charger 17,003,826 

CH8 - Kitchen lights 21,449,386 CH35 - Bedroom d lamp 17,934,605 

CH9 - HTPC 19,543,268 CH36 - Coffee machine 17,304,547 

CH10 - kettle 18,881,051 CH37 - Kitchen radio 18,506,920 

CH11 - toaster 19,404,267 CH38 - Bedroom chargers 12,207,918 

CH12 - fridge 19,381,298 CH39 - Hair dryer 181,497 

CH13 - microwave 19,406,625 CH40 - Straighteners 45,239 

CH14 - Lcd office 4,143,648 CH41 - Iron 7,160 

CH15 - Hifi office 4,157,704 CH42 - Gas oven 18,185,875 

CH16 - breadmaker 13,351,860 CH43 - Data logger pc 18,621,408 

CH17 - Amp livingroom 19,547,699 CH44 - Childs table lamp 18,327,970 

CH18 - Adsl router 19,116,542 CH45 - Childs ds lamp 18,004,938 

CH19 - Livingroom s lamp 18,609,054 CH46 - Baby monitor tx 17,820,706 

CH20 - Soldering iron 617,699 CH47 - Battery charger 13,333,663 

CH21 - gigE_&_USBhub 3,602,216 CH48 - Office lamp 1 18,179,281 

CH22 - Hoover 134,467 CH49 - Office lamp 2 17,649,667 

CH23 - Kitchen dt lamp 10,670,426 CH50 - Office lamp 3 3,323,283 

CH24 - Bedroom ds lamp 16,218,474 CH51 - Office PC 3,391,394 

CH25 - Lightning circuit 20,785,844 CH52 - Office fan 2,632,277 

CH26 - Livingroom s lamp 2 18,618,217 CH53 - LED printer 2,977,937 

CH27 - iPad charger 12,253,298   
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Table 8.2: Number of samples in each individual channel, and the correspondent label for House 2, UK-DALE da-

taset. In this house, it is not necessary to eliminate any channel. 

INDIVIDUAL CHANNEL 

LABEL – HOUSE 2 

SAMPLES INDIVIDUAL CHANNEL 

LABEL – HOUSE 2 

SAMPLES 

CH1 - main channel 2,780,373 CH11 - laptop 2,804,685 

CH2 - monitor 2,805,646 CH12 - washing machine 1,686,220 

CH3 - speakers 2,801,065 CH13 - dish     washer 1,687,175 

CH4 - server 2,806,036 CH14 - fridge 1,687,285 

CH5 - router 2,795,349 CH15 - microwave 1,685,519 

CH6 - server hdd 2,094,586 CH16 - toaster 1,685,322 

CH7 - kettle 2,094,523 CH17 - playstation 1,686,903 

CH8 - rice cooker 2,080,995 CH18 - modem 1,677,592 

CH9 - running machine 2,089,140 CH19 - cooker 1,679,203 

CH10 - laptop2 1,878,770   

   

Table 8.3: Number of samples in each individual channel, and the correspondent label for House 3, UK-DALE da-

taset. In this house, it is not necessary to eliminate any channel. 

INDIVIDUAL CHANNEL LABEL – HOUSE 3 SAMPLES 

CH1 - main channel 512,327 

CH2 – kettle 515,845 

CH3 – electric heater 517,434 

CH4 – laptop 517,595 

CH5 - projector 517,957 

 

Table 8.4: Number of samples in each individual channel, and the correspondent label for House 4, UK-DALE da-

taset. In this house, it is not necessary to eliminate any channel. 

INDIVIDUAL CHANNEL LABEL – HOUSE 4 SAMPLES 

CH1 - main channel 2,186,446 

CH2 – tv / dvd / digibox / lamp 2,156,167 

CH3 – kettle / radio 2,171,770 

CH4 – gas boiler 2,198,131 

CH5 - freezer 2,194,864 

CH6 – washing machine / microwave / breadmaker 2,180,830 
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Table 8.5: Number of samples in each individual channel, and the correspondent label for House 5, UK-DALE da-

taset. In this house, channels 11 and, 25 are not included for having too few samples compared to the other chan-

nels. 

INDIVIDUAL CHANNEL LABEL – HOUSE 5 SAMPLES INDIVIDUAL CHANNEL 

LABEL – HOUSE 5 

SAMPLES 

CH1 - main channel 1,763,101 CH14 – atom pc 985,998 

CH2 – stereo speakers bedroom 984,881 CH15 – toaster 985,856 

CH3 – i7 desktop 1,845,649 CH16 – home theatre amp 984,488 

CH4 – hairdryer 1,854,414 CH17 – sky hd box 975,359 

CH5 – primary tv 1,840,507 CH18 – kettle 985,855 

CH6 – 24 inch lcd bedroom 1,857,061 CH19 – fridge freezer 1,842,971 

CH7 – treadmill 1,851,917 CH20 – oven 1,842,883 

CH8 – network attached storage 985,653 CH21 – electric hob 1,842,782 

CH9 – core 2 server 1,848,688 CH22 - dishwasher 1,859,593 

CH10 – 24 inch lcd 985,784 CH23 – microwave 1,859,545 

CH11 – PS4 10,215 CH24 – washer dryer 1,859,562 

CH12 – steam iron 985,779 CH25 – vacuum cleaner 79,850 

CH13 – nespresso pixie 985,600   

 

Table 8.6: Number of samples in each individual channel, and the correspondent label for House 1, REDD dataset. 

INDIVIDUAL CHANNEL LA-

BEL – HOUSE 1 

SAMPLES INDIVIDUAL CHANNEL 

LABEL – HOUSE 1 

SAMPLES 

CH1 - main channel 1 1,561,660 CH11 – microwave 745,878 

CH2 – main channel 2 1,561,660 CH12 – bathroom gfi 745,878 

CH3 – oven 1 745,878 CH13 – electric heat 745,878 

CH4 – oven 2 745,878 CH14 – stove 745,878 

CH5 – refrigerator 745,878 CH15 – kitchen outlets 745,878 

CH6 – dishwasher 745,878 CH16 – kitchen outlets 745,878 

CH7 – kitchen outlets 745,878 CH17 – lighting 745,878 

CH8 – kitchen outlets 745,878 CH18 – lighting 745,878 

CH9 – lighting 745,878 CH19 - washer dryer 745,878 

CH10 – washer dryer 745,878 CH20 – washer dryer 745,878 
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Table 8.7: Number of samples in each individual channel, and the correspondent label for House 2, REDD dataset. 

INDIVIDUAL CHANNEL LA-

BEL – HOUSE 2 

SAMPLES INDIVIDUAL CHANNEL 

LABEL – HOUSE 2 

SAMPLES 

CH1 - main channel 1 1,198,534 CH7 – washer dryer 318,759 

CH2 – main channel 2 1,198,534 CH8 – kitchen outlets 2 318,759 

CH3 – kitchen outlets 1 318,759 CH9 – refrigerator 318,759 

CH4 – lighting 318,759 CH10 – dishwasher 318,759 

CH5 – stove 318,759 CH11 – disposal 318,759 

CH6 – microwave 318,759   

 

Table 8.8: Number of samples in each individual channel, and the correspondent label for House 3, REDD dataset. 

INDIVIDUAL CHANNEL LABEL – HOUSE 3 SAMPLES 
INDIVIDUAL CHANNEL 

LABEL – HOUSE 3 
SAMPLES 

CH1 - main channel 1 1,427,284 CH12 – outlets unknown 3 404,107 

CH2 – main channel 2 1,427,284 CH13 – washer dryer 1 404,107 

CH3 – outlets unknown 1 404,107 CH14 – washer dryer 2 404,107 

CH4 – outlets unknown 2 404,107 CH15 – lighting 3 404,107 

CH5 – lighting 1 404,107 CH16 – microwave 404,107 

CH6 – electronics 404,107 CH17 – lighting 4 404,107 

CH7 – refrigerator 404,107 CH18 – smoke alarms 404,107 

CH8 – disposal 404,107 CH19 – lighting 5 404,107 

CH9 – dishwasher 404,107 CH20 – bathroom gfi 404,107 

CH10 – furance 404,107 CH21 – kitchen outlets 1 404,107 

CH11 - lighting 2 404,107 CH22 – kitchen outlets 2 404,107 
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Table 8.9: Number of samples in each individual channel, and the correspondent label for House 4, REDD dataset. 

INDIVIDUAL CHANNEL LABEL – HOUSE 4 SAMPLES INDIVIDUAL CHANNEL 

LABEL – HOUSE 4 

SAMPLES 

CH1 - main channel 1 1,679,839 CH11 – miscellaneous 570,363 

CH2 – main channel 2 1,679,839 CH12 – smoke alarms 570,363 

CH3 – lighting 1 570,363 CH13 – lighting 2 570,363 

CH4 – furance 570,363 CH14 – kitchen outlets 2 570,363 

CH5 – kitchen outlets 1 570,363 CH15 – dishwasher 570,363 

CH6 – outlets unknown 570,363 CH16 – bathrrom gfi 1 570,363 

CH7 – washer dryer 570,363 CH17 – bathrrom gfi 2 570,363 

CH8 – stove 570,363 CH18 – lighting 3 570,363 

CH9 – air conditioning 1 570,363 CH19 – lighting 4 570,363 

CH10 – air conditioning 2 570,363 CH20 – air conditioning 3 570,363 

 

Table 8.10: Number of samples in each individual channel, and the correspondent label for House 5, REDD dataset. 

INDIVIDUAL CHANNEL LABEL – HOUSE 5 SAMPLES INDIVIDUAL CHANNEL 

LABEL – HOUSE 5 

SAMPLES 

CH1 - main channel 1 302,122 CH14 – lighting 2 80,417 

CH2 – main channel 2 302,122 CH15 – outlets unknown 3 80,417 

CH3 – microwave 80,417 CH16 – bathrrom gfi 80,417 

CH4 – lighting 1 80,417 CH17 – lighting 3 80,417 

CH5 – outlets unknown 1 80,417 CH18 – refrigerator 80,417 

CH6 – furance 80,417 CH19 – lighting 4 80,417 

CH7 – outlets unknown 2 80,417 CH20 – dishwasher 80,417 

CH8 – washer dryer 1 80,417 CH21 – disposal 80,417 

CH9 – washer dryer 2 80,417 CH22 – electronics 80,417 

CH10 – subpanel 1 80,417 CH23 – lighting 4 80,417 

CH11 – subpanel 2 80,417 CH24 – kitchen outlets 1 80,417 

CH12 – electric heat 1 80,417 CH25 - kitchen outlets 2 80,417 

CH13 – electric heat 2 80,417 CH26 – outdoor outlets 80,417 

 

 

Table 8.11: Number of samples in each individual channel, and the correspondent label for House 6, REDD dataset. 
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INDIVIDUAL CHANNEL LA-

BEL – HOUSE 6 

SAMPLES INDIVIDUAL CHANNEL 

LABEL – HOUSE 6 

SAMPLES 

CH1 - main channel 1 887,457 CH10 – outlets unknown 1 376,968 

CH2 – main channel 2 887,457 CH11 – outlets unknown 2 376,968 

CH3 – kitchen outlets 376,968 CH12 – electric heat 376,968 

CH4 – washer dryer 376,968 CH13 – kitchen outlets 2 376,968 

CH5 – stove 376,968 CH14 – lighting 376,968 

CH6 – electronics 376,968 CH15 – air conditioning 1 376,968 

CH7 – bathroom gfi 376,968 CH16 – air conditioning 2 376,968 

CH8 – refrigerator 376,968 CH17 – air conditioning 3 376,968 

CH9 - dishwasher 376,968   
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9. APENDIX B – PRINCIPAL COMPONENT ANALISYS RESULTS 

9.1 UK-DALE, HOUSE 1 

 

Figure 9.1: Lattent (individual variance of each PC) and total variance accumulated for UK-DALE, House 1 

 

Figure 9.2: Data Projection over First Principal Component - UK-DALE, House 1 
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Figure 9.3: Data Projection over First and Second Principal Components - UK-DALE, House 1 

 

 

Figure 9.4: Data Projection over First, Second and Third Principal Components - UK-DALE, House12 
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9.2 UK-DALE, HOUSE 2 

 

Figure 9.5: Variance for each PC and cummulated for UK-DALE, House 2 

 

 

Figure 9.6: Data Projection over First Principal Component - UK-DALE, House 2 
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Figure 9.7: Data Projection over First and Second Principal Components - UK-DALE, House 2 

 

 

Figure 9.8: Data Projection over First, Second and Third Principal Components - UK-DALE, House 2 
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9.3 UK-DALE, HOUSE 3 

 

Figure 9.9: Variance for each PC and cummulated for UK-DALE, House 3 

 

 

Figure 9.10: Data Projection over First Principal Component - UK-DALE, House 3 
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Figure 9.11: Data Projection over First and Second Principal Components - UK-DALE, House 3 

 

Figure 9.12: Data Projection over First, Second and Third Principal Components - UK-DALE, House 3 
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9.4 UK-DALE, HOUSE 4 

 

Figure 9.13: Variance for each PC and cummulated for UK-DALE, House 4 

 

 

Figure 9.14: Data Projection over First Principal Component - UK-DALE, House 4 
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Figure 9.15: Data Projection over First and Second Principal Components - UK-DALE, House 4 

 

Figure 9.16: Data Projection over First, Second and Third Principal Components - UK-DALE, House 
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9.5 UK-DALE, HOUSE 5 

 

Figure 9.17: Variance for each PC and cummulated for UK-DALE, House 5 

 

Figure 9.18: Data Projection over First Principal Component - UK-DALE, House 5 
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Figure 9.19: Data Projection over First and Second Principal Components - UK-DALE, House 5 

 

Figure 9.20: Data Projection over First, Second and Third Principal Components - UK-DALE, House 5 
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9.6 REDD, HOUSE 1 

 

Figure 9.21: Variance for each PC and cummulated for REDD, House 1 

 

 

Figure 9.22: Data Projection over First Principal Component - REDD, House 1 

0 2 4 6 8 10 12 14 16 18

PRINCIPAL COMPONENT

0

20

40

60

80

100

120
% PCs VARIANCE AND CUMULATED % - REDD HOUSE 1  

-200 -100 0 100 200 300 400 500 600 700

1st PRINCIPAL COMPONENT

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
PCA 1D

1-oven 1

2-oven 2

3-refrigerator

4-dishwasher

5-kitchen outlets 1

6-kitchen outlets 2

7-lighting 1

8-washer dryer 1

9-microwave

10-bathroon gfi

11-electric heat

12-stove

13-kitchen outlets 3

14-kitchen outlets 4

15-lighting 2

16-lighting 3

17-washer dryer 2

18-washer dryer 3



120 
 

 

Figure 9.23: Data Projection over First and Second Principal Components - REDD, House 1 

 

 

Figure 9.24: Data Projection over First, Second and Third Principal Components - REDD, House 1 
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9.7 REDD, HOUSE 2 

 

Figure 9.25: Variance for each PC and cummulated for REDD, House 2 

 

 

Figure 9.26: Data Projection over First Principal Component - REDD, House 2 
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Figure 9.27: Data Projection over First and Second Principal Components - REDD, House 2 

 

Figure 9.28: Data Projection over First, Second and Third Principal Components - REDD, House 2 
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9.8 REDD, HOUSE 3 

 

Figure 9.29: Variance for each PC and cummulated for REDD, House 3 

 

 

Figure 9.30: Data Projection over First Principal Component - REDD, House 3 
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Figure 9.31: Data Projection over First and Second Principal Components - REDD, House 3 

 

 

Figure 9.32: Data Projection over First, Second and Third Principal Components - REDD, House 3 

 

-200 -100 0 100 200 300 400 500

1st PRINCIPAL COMPONENT

-150

-100

-50

0

50

100

150
PCA 2D

1-outlets unknown 1

2-outlets unknown 2

3-lighting 1

4-electronics

5-refrigerator

6-disposal

7-dishwaser

8-furance

9-lighting 2

10-outlets unknown 3

11-washer dryer 1

12-washer dryer 2

13-lighting 3

14-microwave

15-lighting 4

16-smoke alarms

17-lighting 5

18-bathroom gfi

19-kitchen outlets 1

20-kitchen outlets 2

-150

150

-100

-50

100

0

500
50

50

400

100

PCA 3D

300

2nd PRINCIPAL COMPONENT

0

150

200

1st PRINCIPAL COMPONENT

200

-50 100
0-100

-100
-150 -200

1-outlets unknown 1

2-outlets unknown 2

3-lighting 1

4-electronics

5-refrigerator

6-disposal

7-dishwaser

8-furance

9-lighting 2

10-outlets unknown 3

11-washer dryer 1

12-washer dryer 2

13-lighting 3

14-microwave

15-lighting 4

16-smoke alarms

17-lighting 5

18-bathroom gfi

19-kitchen outlets 1

20-kitchen outlets 2



125 
 

9.9 REDD, HOUSE 4 

 

Figure 9.33: Variance for each PC and acummulated for REDD, House 4 

 

 

Figure 9.34: Data Projection over First Principal Component - REDD, House 4 
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Figure 9.35: Data Projection over First and Second Principal Components - REDD, House 4 

 

 

Figure 9.36: Data Projection over First, Second and Third Principal Components - REDD, House 4 
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9.10 REDD, HOUSE 5 

 

Figure 9.37: Variance for each PC and cummulated for REDD, House 5 

 

 

Figure 9.38: Data Projection over First Principal Component - REDD, House 5 
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Figure 9.39: Data Projection over First and Second Principal Components - REDD, House 5 

 

 

Figure 9.40: Data Projection over First, Second and Third Principal Components - REDD, House 5 
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9.11 REDD, HOUSE 6 

 

Figure 9.41: Variance for each PC and cummulated for REDD, House 6 

 

 

Figure 9.42: Data Projection over First Principal Component - REDD, House 6 
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Figure 9.43: Data Projection over First and Second Principal Components - REDD, House 6 

 

 

Figure 9.44: Data Projection over First, Second and Third Principal Components - REDD, House 6 
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10. APENDIX C – K-MEANS RESULTS 

 

Figure 10.1: Variance Explained according to the number of clusters (k), for UK-DALE, House 1. The best k is 6. 
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Table 10.1: Clusters for UK-DALE House 1, k=6. The groups with “+”are considered as a single point 

CLUSTER INDEX CHANNELS 

1 
1-BOILER  

32-UTILITYRM LAMP 

2 

2-SOLAR THERMAL PUMP 

 4-WASHING MACHINE 

5-DISHWASHER 

6-TV 

7-KITCHEN LIGHTS 

9-KETTLE + 19-SOLDERING IRON 

10-TOASTER 

12-MICROWAVE 

15-BREADMAKER 

16-AMP LIVING ROOM 

18-LIVINGROOMS LAMP 

22-KITCHEN DT LAMP + 27-SUBWOOFER LIVINGROOM + 29-DAB RADIO 

LIVINGROOM + 33-SAMSUNG CHARGERS +  34- BEDROOM D LAMP + 35- 

COFFEE MACHINE + 36 – KITCHEN RADIO + 41- GAS OVEN + 45- BABY 

MONITOR TX + 52-LED PRINTER 

23-BEDROOM DS LAMP 

24-LIGHTING CIRCUIT 

25-LIVINGROOM LAMP 2 

26-IPAD CHARGER 

28-LIVINGROOM LAMP TV 

31-KITCHEN PHONE AND STEREO 

36-BEDROOM CHARGERS 

37- BEDROOM CHARGERS 

43-CHILDS TABLE LAMP 

44- CHILDS DS LAMP 

46-BATTERY CHARGER 

47-OFFICE LAMP 2 

48-OFFICE LAMP 2 

50-OFFICE PC 

51-OFFICE FAN 

14-HIFI OFFICE 
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13-LCD OFFICE 

3 

3-LAPTOP  

17-ADSL ROUTER 

 20-GIGE and USBHUB 

4 
13- LCD OFFICE 

14- HIFI OFFICE 

5 

8-HTPC 

11-FRIDGE 

30-KITCHEN LAMP 2  

49-OFFICE LAMP 3 

6 42-DATA LOGGER PC 

 

 

Figure 10.2: Variance Explained according to the number of clusters (k), for UK-DALE, House 2. The best k is 3. 
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Table 10.2: Clusters for UK-DALE House 2, k=3. The groups with “+”are considered as a single point. 

CLUSTER INDEX CHANNELS 

1 

1 - LAPTOP 

 2-MONITOR 

3-SPEAKERS 

2 
17-MODEM 

4-SERVER + 5-ROUTER 

3 

6-SERVER HDD + 7-KETTLE + 15-

TOASTER 

8-RICE COOKER 

9-RUNNING MACHINE 

10-LAPTOP 2 

11-WASHING MACHINE 

12-DISHWASHER 

13-FRIDGE 

14-MICROWAVE 

16-PLAYSTATION 

18-COOKER 

 

 

Figure 10.3: Variance Explained according to the number of clusters (k), for UK-DALE, House 3. The best k is 3. 
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Table 10.3: Clusters for UK-DALE House 3, k=3. 

CLUSTER INDEX CHANNELS 

1 
1 - KETTLE 

 2-ELECTRIC HEATER 

2 3-LAPTOP 

3 4-PROJECTOR 

 

 

 

Figure 10.4: Variance Explained according to the number of clusters (k), for UK-DALE, House 4. The best k is 5. 

Table 10.4: Clusters for UK-DALE House 4, k=3 

CLUSTER INDEX CHANNELS 

1 

1 – TV/DVD/DIGIBOX/LAMP 

 2-KETTLE/RADIO 
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2 5-WASHING MACHINE/MICROWAVE/BREADMAKER  

3 4-FREEZER 
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Figure 10.5: Variance Explained according to the number of clusters (k), for UK-DALE, House 5. The best k is 4. 

Table 10.5: Clusters for UK-DALE House 5, k=4. The groups with “+”are considered as a single point 

CLUSTER INDEX CHANNELS 

1 

1 – STEREO SPEAKERS BEDROOM + 2-HAIRDRYER + 

10- PS4 + 11- STEAM IROM + 12-NESPRESSO PIXIE + 

14- TOASTER  

17- KETTLE + 20- ELECTRIC HUB 

6- TREADMILL 

19- OVEN 

21- DISHWASHER 

23- WASHER DRYER 

5- 24 INCH LCD BEDROOM 

4- PRIMARY TV 

2 

2-i7 DESKTOP 

7- NETWORK ATTACHED STORAGE + 8-CORE2 

SERVER + 13-ATOM PC + 15-HOME THEATER AMP + 

16 – SKY HD BOX 

3 22- MICROWAVE 

4 
18- FRIDGE FREEZER 

19- 24 INCH LCD 
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Figure 10.6: Variance Explained according to the number of clusters (k), for REDD, House 1. The best k is 4. 

Table 10.6: Clusters for REDD House 1, k=4. 

CLUSTER INDEX CHANNELS 

1 
5-KITCHEN OUTLETS 1 

6-KITCHEN OUTLETS 2 

2 

1-OVEN 1 

2-OVEN 2 

3-REFRIGERATOR 

4-DISHWASHER 

8-WASHER DRYER 1 

9-MICROWAVE 

10-BATHROOM GFI 

11-ELECTRIC HEAT 

12-STOVE 

13-KITCHEN OUTLETS 1 

14-KITCHEN OUTLETS 2 

17-WASHER DRYER 2 

18-WASHER DRYER 3 

3 7-LIGHTING 

4 
15-LIGHTING 2 

16-LIGHTING 3 
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Figure 10.7: Variance Explained according to the number of clusters (k), for REDD, House 2. The best k is 5. 

 

Table 10.7: Clusters for REDD House 2, k=5. 

CLUSTER INDEX CHANNELS 

1 

4-MICROWAVE 

5-WASHER DRYER 

6-KITCHEN OUTLETS 

8-DISHWASHER 

9-DISPOSAL 

2 3-STOVE 

3 1-KITCHEN OUTLETS 

4 2-LIGHTING 

5 7-REFRIGERATOR 
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Figure 10.8: Variance Explained according to the number of clusters (k), for REDD, House 3. The best k is 5. 

Table 10.8: Clusters for REDD House 3, k=5. 

CLUSTER INDEX CHANNELS 

1 

9-LIGHTING 5 

10-OUTLETS UNKNOWN 

 13-LIGHTING 2 

 15-LIGHTING  3 

17- LIGHTING 4 

19-KITCHEN OUTLETS 1 

20-KITCHEN OUTLETS 2 

2 

2-OUTLETS UNKNOWN 

3-LIGHTING 1 

6-DISPOSAL 

7-DISHWASHER 

8-FURANCE 

11-WASHER DRYER 1 

 12-WASHER DRYER 2 

 14-MICROWAVE 

 18-BATHROOM GFI 

3 
4-ELECTRONICS 

16-SMOKE ALARMS 

4 5-REFRIGERATOR 

5 1-OUTLETS UNKNOWN 
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Figure 10.9: Variance Explained according to the number of clusters (k), for REDD, House 4. The best k is 5. 

Table 10.9: Clusters for REDD House 4, k=5. The groups with “+”are considered as a single point. 

CLUSTER INDEX CHANNELS 

1 14-BATHROOM GFI 

2 

1-LIGHTING 1 

3-KITCHEN OUTLETS 

10-SMOKE ALARMS 

 16-LIGHTING 3 

3 
2-FURANCE 

11-LIGHTING 2 

4 

4-OUTLETS UNKNOWN 

5-WASHER DRYER 

6-STOVE 

7-AIR CONDITIONING 

8-AIR CONDITIONING 

9-MISCELLANEOUS + 15-BATHROOM GFI 

13-DISHWASHER 

17-LIGHTING 4 

18-AIR CONDITIONING 

5 12-KITCHEN OUTLETS 
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Figure 10.10: Variance Explained according to the number of clusters (k), for REDD, House 5. The best k is 4. 
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Table 10.10: Clusters for REDD House 5, k=4. . The groups with “+”are considered as a single point. 

CLUSTER INDEX CHANNELS 

1 

1-MICROWAVE 

2-LIGHTING 1 

3-OUTLETS UNKNOWN 1 

7-WASHER DRYER 

9-SUBPANEL 

10-ELECTRIC HEAT 1 

11-ELECTRIC HEAT 2 + 14-BATHROOM GFI + 15-

LIGHTING 3 

13-OUTLETS UNKNOWN 2 

17-LIGHTING 4 

18-DISHWASHER 

19-DISPOSAL 

20-ELECTRONICS 

21-LIGHTING 5 

22-KITCHEN OUTLETS 1 + 24-OUTDOOR OUTLETS 

23-KITCHEN OUTLETS 2 

2 12-LIGHTING 2 

3 

4-FURANCE 

5-OUTLETS UNKNOWN 

6-WASHER DRYER 

8-SUBPANEL 

4 16-REFRIGERATOR 
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Figure 10.11: Variance Explained according to the number of clusters (k), for REDD, House 6. The best k is 3. 

 

Table 10.11: Clusters for REDD House 6, k=3. 

CLUSTER INDEX CHANNELS 

1 

3-STOVE 

4-ELECTRONICS 

7-DISHWASHER 

8-OUTLETS UNKNOWN 

9-OUTLETS UNKNOWN 

13-AIR CONDITIONING 

14-AIR CONDITIONING 2 

15-AIR CONDITIONING 3 

2 

1-KITCHEN OUTLETS + 2-WASHER 

DRYER + 10-ELECTRIC HEAT + 12-

LIGHTING 

5-BATHROOM GFI 

11-KITCHEN OUTLETS 

3 6-REFRIGERATOR 
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11. APPENDIX D – MINIMUM SPANNING TREE RESULTS  
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Figure 11.1: MST for UK-DALE, House 1, including the distances between nodes. The appliances with distances 

smaller than 1 was considered as a single node. 

 

 

Figure 11.2: MST for UK-DALE, House 2, includding the distances between nodes. The appliances with distances 

smaller than 1 was considered as a single node. 

 

 

Figure 11.3: MST for UK-DALE, House 3, including the distances between nodes. 
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Figure 11.4: MST for UK-DALE, House 4, including the distances between nodes. 

 

Figure 11.5: MST for UK-DALE, House 5, including the distances between nodes. The appliances with distances 

smaller than 1 was considered as a single node. 
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Figure 11.6: MST for REDD, House 1, including the distances between nodes. The appliances with distances smaller 

than 1 was considered as a single node. 

 

Figure 11.7: MST for REDD, House 2, including the distances between nodes. 
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Figure 11.8: MST for REDD, House 3, including the distances between nodes. 

 

 

Figure 11.9: MST for REDD, House 4, including the distances between nodes. 
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Figure 11.10: MST for REDD, House 5, including the distances between nodes. The appliances with distances 

smaller than 1 was considered as a single node. 

 

Figure 11.11: MST for REDD, House 6, including the distances between nodes. The appliances with distances 

smaller than 1 was considered as a single node. 
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12. APPENDIX E – K-MEANS VISUALIZATION OVER THE MST 

 

Figure 12.1: MST with k-means results represented over the MST for UK-DALE, House 1, with k=6. 
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Figure 12.2: MST with k-means results represented over the MST for UK-DALE, House 2, with k=3. 

 

 

Figure 12.3: MST with k-means results represented over the MST for UK-DALE, House 3, with k=3. 
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Figure 12.4: MST with k-means results represented over the MST for UK-DALE, House 5, with k=3. 

 

 

Figure 12.5: MST with k-means results represented over the MST for UK-DALE, House 5, with k=4. 
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Figure 12.6: MST with k-means results represented over the MST for REDD, House 1, with k=4 

 

 

Figure 12.7: MST with k-means results represented over the MST for REDD, House 2, with k=5 
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Figure 12.8: MST with k-means results represented over the MST for REDD, House 3, with k=5 

 

 

Figure 12.9: MST with k-means results represented over the MST for REDD, House 4, with k=5 
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Figure 12.10: MST with k-means results represented over the MST for REDD, House 5, with k=4 

 

 

Figure 12.11: MST with k-means results represented over the MST for REDD, House 6, with k=3 


