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Resumo

O problema essencial das teorias de conjuntos não clássicas é a falta de modelos
naturais. Em particular, não temos modelos que sejam matematicamente expressivos.
Nesta tese, pretendemos abordar este problema para várias classes de teorias de
conjuntos não clássicas. Nós fornecemos modelos de teorias de conjuntos
paraconsistentes e paracompletos na forma de modelos com valores algébricos. Mais
especificamente, construímos uma classe de modelos paraconsistentes do fragmento livre
de negação de ZF e construímos uma classe de modelos não clássicos de ZF que não são
paraconsistentes nem paracompletos. Em seguida, exploramos duas extensões diferentes
deste trabalho: (1) expandindo a linguagem da álgebra subjacente com diferentes
operadores e (2) modificando a interpretação da pertinência e igualdade do conjunto em
nossos modelos de valores algébricos. Isso dá origem a várias classes de modelos
paraconsistentes da teoria dos conjuntos e a uma classe de modelos paracompletos da
teoria dos conjuntos. Além disso, mostramos que esses modelos não satisfazem as
mesmas sentenças da linguagem da teoria dos conjuntos e que podemos construir um
modelo paraconsistente de ZFC baseado na Lógica do Paradoxo de Priest. Acreditamos
que isso sugere que as teorias de conjuntos não clássicas e, em particular, as teorias de
conjuntos paraconsistentes podem capturar uma quantidade razoável de matemática
clássica.
Palavras-chave: Modelos algébricos da teoria dos conjuntos, Fundamentos da
matemática, Teorias dos conjuntos não clássicas e Lógicas não clássicas.



Abstract

The essential weakness of non-classical set theories is their lack of natural models. In
particular, we lack models that are mathematically expressive. In this thesis, we aim to
tackle this problem for several classes of non-classical set theories. We provide models
of paraconsistent and paracomplete set theories in the form of algebra-valued models.
More especifically, we construct a class of paraconsistent models of the negation-free
fragment of ZF and we build a class of non-classical models of ZF which are neither
paraconsistent nor paracomplete. Then, we explore two different extensions of this work:
(1) expanding the language of the underlying algebra with different operators and (2)
modifying the interpretation of set membership and equality in our algebra-valued models.
This gives rise to a several classes of paraconsistent models of set theory and to a class
paracomplete models of set theory. Moreover, we show that these models are different from
each other and that we can construct paraconsistent model of ZFC based on Priest’s Logic
of Paradox. We believe that this suggests that non-classical set theories and, in particular,
paraconsistent set theories can capture a reasonable amount of standard mathematics.

Keywords: Algebra-valued models of Set Theory, Foundation of Mathematics, Non-
classical Set Theories and Non-classical logics.
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Chapter 1

Introduction

In this thesis, we try to convince the reader that we can construct interesting

models of non-classical set theories, in particular, paraconsistent set theories. However, we

will also construct non-classical models of set theory which are not only paraconsistent but

also paracomplete, as well as, non-classical models which are neither paraconsistent nor

paracomplete. And most importantly, we will propose new model constructions which can

be extended (in principle) to any non-classical logic with algebraic semantics. Moreover,

we show that the resulting models are mathematically expressive enough to carry out a

reasonable amount of classical set theory and that they are coherent with respect to their

philosophical motivation.

In general, we believe that most non-classical set theories suffer from a lack of

natural models or have models which are very weak. Consider, for instance, Quine’s New

Foundation or Restall’s LP-set theory. Both set theories, New Foundation and LP-set

theory, are without a doubt, interesting and well-motivated set theories, however, New

Foundation has no natural model at all (PRIEST, 2006, p. 31) and the best that LP-set

theory (à la Restall) can do is a single-element model (THOMAS, 2014, Section 3 &

4). Thus, these set theories are usually considered pointless (at least for mathematical

practice).

Now, let us consider the case of intutionistic and constructive set theory. We

argue that both of these set theories have gained legitimacy within the community of

(classical) set theorists and logician mainly due to the model-theoretic advances for

these set theories. In particular, we claim that it is precisely because of the existence of

mathematically expressive models that these set theories seem appealing.
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For instance, it is a well-known fact that it is consistent with intutionistic set

theory that the real numbers are subcountable (we say that a set X is subcountable if it

is the range of a function defined on a subset of the natural numbers) and uncountable,

at the same time. However, this fact is simply due to the failure of a syntactic rule and

remains simply a “strange” and meaningless derivation from a particular axiom system.

But does there exist also a model where this strange fact really occurs ? We want to

see it! And indeed, it has been shown that we can construct a Heyting-valued model of

intutionistic set theory where the real numbers are subcountable and uncountable (BELL,

2014, p. 81). Thus, we have now gained an intuitive representation of this fact.

We believe that the situation is analogous with paraconsistent set theories.

Until we manage to construct models for these set theories they remain simply abstract

curiosities. In particular, to convince the classical set-theorist we need to construct models

of paraconsistent set theories that are mathematically expressive. This constitutes the

main goal of this thesis. So, on one side, we want to get models that resemble closely

the cumulative hierarchy and, on the other side, we want models that validate some large

fragment of ZF and its theorems. Thus, the project that we pursue in this thesis is a

model-theoretic one.

We want to make two remarks on the importance of this project. First of all,

we are showing how close paraconsistent set theories can get to classical set theory. We

will show that the dividing line between classical and paraconsistent set theory is much

finer than expected. Thus, we propose a new view on paraconsistent set theory. On the

other hand, we will show that once that we assume that ZF is consistent we can do as much

in paraconsistent ZF as in classical ZF. This result suggests that ZF is compatible with

different logical environments and that non of these environments should be prioritized

above another one. So, we endorse a pluralism with respect to the logical axioms that

compose ZF. This renders evidence to the claim that ZF is not intrinsically classical.

Moreover, we believe that this last point is a novel contribution to the philosophy of set

theory.

Our main result is to have used algebra-valued model constructions to show

that we can obtain infinitely many models of paraconsistent set theory which validate the

negation-free fragment of ZF. Moreover, it was shown in (TARAFDER, 2021) that these

models can reproduce cardinal and ordinal arithmetic in the same fashion just as classical
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models of set theory. Thus, we know that these models are mathematically expressive.

Besides, we argue that our models are coherent to their underlying conception of set: the

iterative conception of set. Moreover, we also show that we can modify the underlying

algebraic structures of our models in such a way that we obtain infinitely many new

models of paraconsistent and paracomplete set theory.

These results were improved recently in (JOCKWICH-MARTINEZ;

TARAFDER; VENTURI, 2021c) where we show that the same algebraic structures that

we explored in this thesis can give rise to paraconsistent models of full ZF. Thus,

providing for the first time paraconsistent models of ZF where the ZF axioms hold

consistently. Moreover, a possible criticism against our models could consist in arguing

that the underlying algebraic structures of our models are too simple for mathematical

practice. However, in (JOCKWICH-MARTINEZ; TARAFDER; VENTURI, 2021b) we

demonstrate that we can construct paraconsistent models of full ZF based on a much

wider class of algebras. Finally, in (TARAFDER; VENTURI, 2021) the authors provide

the first applications of our models to the forcing method, therefore, also enriching

classical set theory.

This thesis is structured as follows. In Chapter 2, we give all the basic

definitions that we use throughout the thesis. We introduce some algebraic notions and

some basic set theory. Then we review the topic of Boolean-valued models and the

generalization of Boolean-valued models to non-classical contexts, which is due to

(LÖWE; TARAFDER, 2015).

In Chapter 3, we give an overview of paraconsistent set theories that we can

find in the literature. We present the five main proposals for developing a paraconsistent

set theory: (1) the material approach, (2) the relevant approach, (3) the model-theoretic

approach, (4) the da Costa approach, and (5) LFI-set theories. We argue that all of

these approaches are unfeasible and that they all have considerable drawbacks.

Moreover, we distinguish between two general approaches to paraconsistent set theory;

the naïve paraconsistent set theory and the iterative paraconsistent set theory. Notice

that the concept of an iterative paraconsistent set theory constitutes a novelty and has

been introduced in (JOCKWICH-MARTINEZ; TARAFDER; VENTURI, 2021a). We

argue that the iterative approach to paraconsistent set theory seems to be more

promising than the naïve approach.
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In Chapter 4, we try to extend the validity of the results of (LÖWE;

TARAFDER, 2015) to a whole class of algebras. In particular, we explore two different

classes of lattices suitable for this task: join complemented lattices and meet

complemented lattices. We show that we can find a large class of meet complemented

lattices that give rise to paraconsistent models of set theory, if we choose a suitable

negation. In case that we choose an intutionistic negation for this class of lattices we

manage to construct models of ZF, whose internal logic is neither classical, nor

intuitionistic, nor paraconsistent. We apply these models to give an independence proof

of Foundation from ZF.

In Chapter 5, we expand the underlying algebraic structures of our

paraconsistent models of set theory with different unary operators which interpret the

negation symbol in the language of set theory. As a result, we show that we can obtain

infinitely many non-∈-elementarily equivalent models of set theory. So, we get different

models of paraconsistent set theory. Moreover, we point out that there exists a trade-off

between the regularity properties that a negation fulfills and the expressivity of our

language. Finally, we give a philosophical account of negation, inspired by the algebraic

framework we work in.

In Chapter 6, we explore two different ways of twisting algebra-valued models

which give rise to more paraconsistent models of set theory, and also to paracomplete

models of set theory. The first one consists in expanding totally-ordered Heyting algebras

with a particular unary operator. We obtain a class of paraconsistent models of set theory

which are non-∈-elementarily equivalent from all the paraconsistent models introduced

previously. Moreover, we also get an infinite class of paracomplete models of set theory.

The second one consists in modifying the interpretation map for membership and identity.

So, we propose a new interpretation map for algebra-valued models. This interpretation

map allows us to construct a model of ZFC that has as internal logic Priest’s logic of

Paradox. To end, we explore the mathematical tractability of the new interpretation

map.

In Chapter 7, we summarize our main results and state some directions for

future research.
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Chapter 2

Technical Preliminaries

2.1 Basic Set Theory

The main axiom system used in this dissertation is the classical

Zermelo-Fraenkel (ZF) axiom system, in the language of set theory L∈, which is

displayed in Figure 2.1. In the schemes, ϕ is a formula with n + 2 free variables. This

formulation follows closely (BELL, 2005). Moreover, this definition of ZF is equivalent

to intutionistic ZF, i.e., IZF and is chosen to simplify the task of checking the validity of

the axioms in algebra-valued models. Additionally, we will denote with ZF−, ZF minus

the Foundation axiom scheme (Foundationϕ) and with ZFC, ZF plus the Axiom of Choice

(AC) .

Moreover, we will use the following abbreviations to state AC:

(i) z = {x} =df. ∃y(y ∈ z) ∧ ∀y(y ∈ z → y = x),

(ii) z = {x, y} =df. ∃s(z ∈ z ∧ s = x)∧ ∃t(t ∈ z ∧ t = y)∧ ∀w(w ∈ z → w = x∨w = y),

(iii) Pair(z; x, y) =df. ∃s
(
s ∈ z ∧ (s = {x})

)
∧ ∃t

(
t ∈ z ∧ (t = {x, y})

)
∧

∀w
(
w ∈ z → (w = {x}) ∨ (w = {x, y})

)
,

(iv) Func(f) =df. ∀x
(
x ∈ f → ∃s∃tPair(x; s, t)

)
∧

∀x∀y∀s∀t∀w∀v
(
(x ∈ f ∧ y ∈ f ∧ Pair(x;w, s) ∧ Pair(y; v, t) ∧ w = v)→ s = t

)
,

(v) Dom(f ; x) =df. ∀y
(
y ∈ x→ ∃w∃z

(
w ∈ f ∧ Pair(w; y, z)

))
∧

∀w
(
w ∈ f → ∃y∃zPair(w; y, z) ∧ z ∈ x

)
.
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∀x∀y
(
∀z(z ∈ x↔ z ∈ y)→ x = y

)
(Extensionality)

∀x∀y∃z∀w
(
w ∈ z ↔ (w = x ∨ w = y)

)
(Pairing)

∃x
(
∃y(∀z ¬(z ∈ y) ∧ y ∈ x) ∧ ∀w(w ∈ x→ ∃u(u ∈ x ∧ w ∈ u))

)
(Infinity)

∀x∃y∀z
(
z ∈ y ↔ ∃w(w ∈ x ∧ z ∈ w)

)
(Union)

∀x∃y∀z
(
z ∈ y ↔ ∀w(w ∈ z → w ∈ x)

)
(Power Set)

∀p0 · · · ∀pn∀x∃y∀z
(
z ∈ y ↔ (z ∈ x ∧ ϕ(z, p0, . . . , pn))

)
(Separationϕ)

∀p0 · · · ∀pn−1∀x
(
∀y(y ∈ x→ ∃zϕ(y, z, p0, . . . , pn−1)) (Collectionϕ)

→ ∃w∀v(v ∈ x→ ∃u(u ∈ w ∧ ϕ(v, u, p0, . . . , pn−1)))
)

∀p0 · · · ∀pn∀x
(
(∀y(y ∈ x→ ϕ(y, p0, . . . , pn))→ ϕ(x, p0, . . . , pn)) (Foundationϕ)

→ ∀zϕ(z, p0, . . . , pn)
)

∀u
(
¬(u = ∅)→ ∃f

(
Func(f) ∧ Dom(f ;u) ∧ ∀x

(
x ∈ u ∧ ¬(x = ∅) (AC)

→ ∃z∃y(Pair(z; x, y) ∧ z ∈ f ∧ y ∈ x)
)))

Figure 2.1: The axioms of ZFC.

2.2 Algebraic Considerations

We use the following basic algebraic definitions.

Definition 2.2.1. We call a poset 〈A;≤〉 a meet semilattice if every two elements x, y ∈

A have an infimum, denoted by x ∧ y. If there also exists a supremum, x ∨ y, for any

two elements x, y ∈ A, then 〈A;≤〉 is a lattice. We say that 〈A;≤〉 is a bounded lattice

if it is a lattice that has a greatest element 1 and a least element 0. A lattice 〈A;≤〉 is

complete if the supremum ∨
X and the infimum ∧

X exist for every X ⊆ A. A lattice is

called distributive if it satisfies the distributivity law, that is, x∧ (y∨z) = (x∧y)∨ (x∧z)

for all x, y, z in its universe.

We are now in a position to define Boolean algebras and Heyting algebras.

Definition 2.2.2. The structure 〈A,∧,∨,⇒,∗ ,1,0〉 is said to be a Boolean algebra B if

(i) 〈A,∧,∨,1,0〉 is a bounded distributive lattice,

(ii) for every element a ∈ A, a ∧ a∗ = 0 and a ∨ a∗ = 1 and

(ii) for any two elements a, b ∈ A, a⇒ b = (a∗ ∨ b).
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Notice that, by definition any Boolean algebra is also a Heyting algebra.

Definition 2.2.3. The structure 〈A,∧,∨,⇒,∗ ,1,0〉 is said to be a Heyting algebra H if

(i) 〈A,∧,∨,1,0〉 is a bounded distributive lattice,

(ii) for any pair of elements a, b ∈ A, the set {x ∈ A : x∧ a ≤ b} has a largest element,

which is a⇒ b and

(iii) the unary operation ∗ is defined, for every a ∈ A, as a∗ = (a⇒ 0).

Moreover, we will also use the notion of filter and ideal.

Definition 2.2.4. We say that a set G ⊆ A, where A is the universe of the bounded

distributive lattice 〈A;∧,∨,1,0〉, is a filter on A if

(i) 1 ∈ G, but 0 /∈ G,

(ii) if x ∈ G and x ≤ y, then y ∈ G, and

(iii) for any x, y ∈ G, x ∧ y ∈ G.

Definition 2.2.5. We say that a set I ⊆ A, where A is the universe of the bounded

distributive lattice 〈A;∧,∨,1,0〉, is an ideal on A if

(i) 0 ∈ I, but 1 /∈ I,

(ii) if y ∈ I and y ≤ x, then y ∈ I, and

(iii) for any x, y ∈ I, x ∨ y ∈ I.

Finally, we use the following notation. Let A = 〈A;∧,∨,1,0〉 be any bounded

distributive lattice. Then, Pos(A) = {x ∈ A : x 6= 0} and Neg(A) = {x ∈ A : x 6= 1}.

2.3 Boolean-valued Models of Set Theory

Boolean-valued models were introduced by Dana Scott, Robert M. Solovay,

and Petr Vopenka and represent an algebraic presentation of the forcing method. Forcing

was invented by Paul Cohen (COHEN, 1963) and is now considered the cornerstone of

contemporary set theory. It is a tool for producing relative consistency results that have
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been used to prove the independence of the Continuum Hypothesis, i.e., the assertion that

2ℵ0 = ℵ1, from the axioms of ZFC.

The intuitive idea behind Boolean-valued models is to replace every set x of the

cumulative hierarchy V with its characteristic function cx, i.e., the function cx which has

the Boolean algebra 2 = {0,1} as range such that x ⊆ dom(cx) and for every y ∈ dom(cx)

we have:

cx(y) = 1 if y ∈ x

= 0, otherwise.

Furthermore, identifying each x ∈ V with cx, we can think of V as a class of

two-valued functions. The problem with this procedure is that cx fails to be homogeneous

since the domain of cx is in general not a set of two-valued functions. To fix this problem,

(BELL, 2005) proposes the following definition by transfinite recursion.

V(2)
α = {x : x is a function and ran(x) ⊆ 2

and there is ξ < α with dom(x) ⊆ V(2)
ξ } and

V(2) = {x : ∃α(x ∈ V(2)
α )}.

We shall call V(2) the universe of two-valued homogeneous functions or simply

the universe of two-valued sets. Moreover, we observe that each two-valued set is a two-

valued function whose domain is also a set of two-valued functions.

Now, we can generalize this procedure, so cx takes values in any complete

Boolean algebra B, which gives rise to the universe of B-valued sets. Given a complete

Boolean algebra B, a Boolean-valued model is defined by transfinite recursion:

V(B)
α = {x : x is a function and ran(x) ⊆ B

and there is ξ < α with dom(x) ⊆ V(B)
ξ } and

V(B) = {x : ∃α(x ∈ V(B)
α }.

Extending the language of set theory L∈ with constants for every element

of V(B) (which we call B-names), we can define a new language LB∈, that allows one to

talk about the Boolean-valued universe V(B) by means of what are called B-sentences
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(where with B-sentences and B-formulas we shall mean LB∈-sentences and LB∈-formulas

respectively). Moreover, it is possible to define a B-evaluation function J·KB that assigns

to every B-sentence σ its Boolean truth value JσKB ∈ A, where A is the universe of a

complete Boolean algebra B.1 Hence, whenever JσKB = 1B, then we say that σ is valid in

V(B).

Notice that the definition of the B-evaluation function cannot be fully defined

within the language of set theory, because, the collection of all ordered pairs 〈σ, JσKB〉 is

not a definable class in ZFC. Thus, we can think of this function as being defined meta

linguistically.

The interpretations of the basic notions of equality and membership are defined

by recursion on a particular well-founded relation. So, define for x, y, u, v ∈ V(B)

〈x, y〉 < 〈u, v〉 iff either (x ∈ dom(u) and y = v) or
(
x = u and y ∈ dom(u)

)
.

Then < is a well-founded relation on the class V(B)×V(B) = {〈x, y〉 : x ∈ V(B)∧ y ∈ V(B)}.

If we now fix for u, v ∈ V(B):

G(〈u, v〉) = 〈Ju ∈ vKB, Jv ∈ uKB, Ju = vKB, Jv = uKB〉,

then J· ∈ ·KB and J· = ·KB may be written for some class function F ,

G(〈u, v〉) = F (u, v,G : {〈x, y〉 : 〈x, y〉 < 〈u, v〉}).

This constitutes a definition of G by recursion on <, and from G we can obtain the value

of J· = ·KB and J· ∈ ·KB. Given a complete Boolean algebra B and u, v ∈ V(B),

Ju ∈ vKB =
∨

x∈dom(v)

(
v(x) ∧ Jx = uKB

)
,

Ju = vKB =
∧

x∈dom(u)

(
u(x)⇒ Jx ∈ vKB

)
∧

∧
y∈dom(v)

(
v(y)⇒ Jy ∈ uKB

)
.

Notice that the above cases of the evaluation function are inter-defined by

simultaneous recursion on the hierarchy of B-names. Moreover, the logical connectives
10B and 1B, the smallest and largest elements of a Boolean algebra B, respectively, may be interpreted

as falsehood and truth. The other elements of the algebra have the intuitive meaning of intermediate
truth values.
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and the quantifiers are interpreted by recursion on the complexity of ϕ,

J¬ϕKB = (JϕKB)∗,

Jϕ ∧ ψKB = JϕKB ∧B JψKB,

Jϕ ∨ ψKB = JϕKB ∨B JψKB,

Jϕ→ ψKB = JϕKB ⇒B JψKB,

J∃xϕ(x)KB =
∨

u∈V (B)

Jϕ(u)KB, and

J∀xϕ(x)KB =
∧

u∈V (B)

Jϕ(u)KB,

where on the left-hand side of the equality logical connectives are displayed, while on the

right-hand side the operations of the complete Boolean algebra B.

The interest of these construction lays in the fact that, all axioms of ZFC are

valid in V(B), i.e., if σ is an axiom of ZFC, then JσKB = 1B. On the other hand, if

JσKB < 1B, we can say that σ is not consistent with ZFC. From now on, for the sake of

readability, we will drop the superscript B from the evaluation map J·KB (as well as the

subscript from elements of the universe of B), whenever it is clear from the context to

which algebra we are referring.

Moreover, notice that:

Theorem 2.3.1. (BELL, 2005, Thm. 1.17). All the axioms of the first-order predicate

calculus with equality are true in V(B), and all its rules of inference are valid in V(B). In

particular, we have:

(i) Ju = uK = 1,

(ii) u(x) ≤ Jx ∈ uK for every x ∈ dom(u),

(iii) Ju = vK = Jv = uK,

(iv) Ju = vK ∧ Jv = wK ≤ Ju = wK,

(v) Ju = vK ∧ Jv ∈ wK ≤ Ju ∈ wK,

(vi) Ju = vK ∧ Ju ∈ vK ≤ Ju ∈ wK,

(vii) Ju = vK ∧ Jϕ(u)K ≤ Jϕ(v)K, for any B-formula.
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Furthermore, the following theorem specifies the laws governing the assignment

of Boolean values to bounded quantifiers, where we abbreviate as usual ∃x
(
x ∈ u∧ϕ(x)

)
as ∃x ∈ u ϕ(x) and ∀x

(
x ∈ u → ϕ(x)

)
as ∀x ∈ u ϕ(x). As will be shown later bounded

quantifiers will play an essential role in the construction of algebra-valued models for set

theory. In particular, all the ZFC axioms contain bounded quantifiers and any ∆0-formula

does only contain bounded quantifiers.

Theorem 2.3.2. (BELL, 2005, Thm. 1.18). For any B-formula ϕ(x) with one free

variable x, and all u ∈ V(B),

J∃x ∈ u ϕ(x)K =
∨

x∈dom(u)
(u(x) ∧ Jϕ(x)K) and

J∀x ∈ u ϕ(x)K =
∧

x∈dom(u)
(u(x)⇒ Jϕ(x)K).

Furthermore, we can show that V(2) is isomorphic to the standard universe V.

For this we will need the notion of canonical name.

Definition 2.3.3. (BELL, 2005, Def. 1.22). For each x ∈ V we define

x̌ = {〈y̌, 1〉 : y ∈ x}.

Notice that for every x ∈ V we have x̌ ∈ V(2) ⊆ V(B). In particular, we can

think of x̌ as a natural representative for each set x ∈ V. Then, we have the following

theorem where item (iii), (iv) and (v) indeed show that V(2) is isomorphic to the standard

universe V. In particular, item (v) shows that that V and V(2) validate the same sentences

in the languages of set theory.

Theorem 2.3.4. (BELL, 2005, Thm. 1.23) .

(i) For any x ∈ V, for each u ∈ V(B) we have

Ju ∈ x̌K =
∨
y∈x

(
Ju = y̌K

)
.

(ii) For any x, y ∈ V,

x ∈ y ↔ V(2) |= x̌ ∈ y̌ and x = y ↔ V(2) |= x̌ = y̌.
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(iii) The map x 7→ x̌ is a one-one from V into V(2).

(iv) For each u ∈ V(2) there is a unique x ∈ V such that V(B) |= u = x̌

(v) For any formula ϕ(x1, ..., xn) and x1, ..., xn ∈ V,

ϕ(x1, ..., xn)↔ V(2) |= ϕ(x̌1, ...., x̌n)

and for any ∆0-formula ψ(x1, ..., xn) then

ψ(x1, ..., xn)↔ V(B) |= ψ(x̌1, ...., x̌n).

Notice that item (v) of Theorem 2.3.4 is quiet useful since we know that any

∆0-formula will be valid in any Boolean-valued model. For instance, the formula Ord(x),

which can be read as x is an ordinal, is a ∆0-formula and then due to item (v) of Theorem

2.3.4 we get that JOrd(α̌)K = 1 for any ordinal α.

Furthermore, as we already pointed out we have the following well-known

result.

Theorem 2.3.5. (BELL, 2005, Thm. 1.33) Let 〈A;∧,∨,⇒,∗ ,0,1〉 be any complete

Boolean algebra B , then V(B) |= ZFC.

Notice that we can define analogously for every Heyting algebra H, the

Heyting-valued model V(H) and we have a similar result concerning the validity of IZF.

This result was originally proved by (GRAYSON, 1977).

Theorem 2.3.6. (GRAYSON, 1977, p. 410) Let 〈A;∧,∨,⇒,∗ ,0,1〉 be any complete

Heyting algebra H, then we have V(H) |= IZF.

Remember that the particular choice of the ZF axiom system that we use

throughout this thesis is equivalent in strength to IZF, So we can also resume the two

previous theorems in the following way.

Theorem 2.3.7. (BELL, 2005, Section 8) Let 〈A;∧,∨,⇒,∗ ,0,1〉 be any complete

Heyting algebra H, then we have V(H) |= ZF.

In the following section we will study further generalizations of these results.
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2.4 Generalized algebra-valued Models of Set Theory

There exist several approaches to replacing Heyting algebras with different

lattices to build non-classical models of set theory. In particular, this idea was

implemented by (TITANI; KOZAWA, 2003), (TITANI, 1999), (TAKEUTI; TITANI,

1992) and (OZAWA, 2007) who replaced complete Heyting algebras H by lattices of a

certain kind that allowed them to construct models of quantum and fuzzy set theory. In

this thesis, our focus will be mainly on other non-classical set theories, such as

paraconsistent and paracomplete set theories.

A first step in the construction of algebra-valued models for paraconsistent

set theory has been undertaken in (LÖWE; TARAFDER, 2015), where the authors

individuated a specific class of algebras suited for this purpose, which are called

deductive reasonable implication algebras (DRI-algebras henceforth).

Definition 2.4.1. The structure 〈A,∧,∨,⇒,1,0〉 is said to be a deductive reasonable

implication algebra if 〈A,∧,∨,1,0〉 is a bounded distributive lattice and the binary

operation ⇒ satisfies the following properties: for any a, b, c in A,

(a ∧ b) ≤ c implies a ≤ (b⇒ c), (P1)

b ≤ c implies (a⇒ b) ≤ (a⇒ c), (P2)

b ≤ c implies (c⇒ a) ≤ (b⇒ a), (P3)

((a ∧ b)⇒ c = a⇒ (b⇒ c). (P4)

Remark 2.4.2. Notice that the properties (P1-P4) only depend on the meet and the

implication. Therefore, we will slightly abuse notation calling DRI-algebras also the

structures 〈A;∧,⇒,∗ ,0〉 where 〈A;∧,0〉 is a semilattice and for every a in A, there

exists its meet complement a∗ = max{b ∈ A : a ∧ b = 0} and for every a, b, c in A, the

binary operation ⇒ satisfies properties (P1-P4).

However, a further schema of conditions is required in order to validate the

axioms of ZF, i.e.,

J∀x ∈ u ϕ(x)K =
∧

x∈dom(u)
(u(x) ⇒ Jϕ(x)K), (BQϕ)
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Table 2.1: Operations for L3

⇒ 1 1
2 0

1 1 1
2 0

1
2 1 1 1

2

0 1 1 1

∨ 1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

∧ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

where ϕ ∈ LA∈. We will refer to this property as the bounded quantification property and

in the case that we only allow negation-free formulas (NFF) as instances of this schema

we refer to it as the NFF-bounded quantification property. This property, together with

(P1-P4), is sufficient to show the validity of ZF in a DRI-algebra-valued model.

Moreover, we have the following result for formulas that contain bounded

existential quantifiers.

Lemma 2.4.3. (LÖWE; TARAFDER, 2015, Prop. 3.2) Let A = 〈A;∧,∨,⇒,1,0〉 be a

DRI-algebra, ϕ(x) an A-formula with one free variable x, and u ∈ V(A), then

J∃x ∈ u ϕ(x)K ≥
∨

x∈dom(u)
(u(x) ∧ Jϕ(x)K).

The situation is different for formulas that contain bounded universal

quantifiers. In particular, we can show that there exist DRI-algebras for which neither

the NFF-bounded quantification property nor the bounded quantification hold.

Consider, for instance, the DRI-algebra L3 (depicted in Table 1.1), the formula

ϕ(x) =df. (p0 = x), and the L3-names

p0 = {〈∅,0〉}, p 1
2

= {〈∅, 1
2〉}, p1 = {〈∅,1〉} and u = {p 1

2
,
1
2}.

Then we can calculate readily:

1
2 = J∀x ∈ u ϕ(x)K <

∧
x∈dom(u)

(u(x) ⇒ Jϕ(x)K) = 1.
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Finally, as in the case of Boolean-valued models we can define a consequence

relation that induces a notion of validity in DRI-valued models. Let A = 〈A;∧,∨,⇒,1,0〉

be a DRI-algebra. We say that a formula ϕ ∈ LA∈ is F -valid if JϕK ∈ F . We will use the

notation V(A) |=F ϕ.

The crux of the approach of (LÖWE; TARAFDER, 2015) was to show that

any DRI-algebra-valued model that satisfies the NFF-bounded quantification property is

a model of NFF-ZF.

Theorem 2.4.4. (LÖWE; TARAFDER, 2015, Thms. 3 and 4) Let A = 〈A;∧,∨,⇒,1,0〉

be a DRI-algebra such that V(A) satisfies the NFF-bounded quantification property, and let

F be any filter on A. Then Extensionality, Pairing, Infinity, Union and NFF-Replacement,

Power set and NFF-Separation are F -valid in V(A); in fact, they all get the value 1.

In particular, (LÖWE; TARAFDER, 2015) found a three-valued DRI-algebra,

called PS3 (depicted in Table 2.2), for which the NFF-bounded quantification property

holds in V(PS3).

Theorem 2.4.5. (LÖWE; TARAFDER, 2015, Theorem 9). The DRI-algebra-valued

model V(PS3) has the NFF-bounded quantification property.

Therefore, by Theorem 2.4.4 we get immediately that V(PS3) is a model of

NFF-ZF− and it is proved separately that Foundation is valid, as well, in V(PS3). Thus,

V(PS3) |=F NFF-ZF. Then (LÖWE; TARAFDER, 2015) showed that it is possible to add

the unary operator ∗ to the signature of PS3 and to obtain the algebra, (PS3,
∗ ). Moreover,

the propositional logic associated to (PS3,
∗ ) modulo the filter Pos(PS3,∗) is paraconsistent

(see Definition 3.3.1).

Theorem 2.4.6. (LÖWE; TARAFDER, 2015, Theorem 10). There exists a sentence

ϕ ∈ L∈ such that V(PS3,∗) |=Pos(PS3,∗) ϕ and V(PS3,∗) |=Pos(PS3,∗) ¬ϕ.

The resulting model V(PS3,∗) modulo the filter Pos(PS3,∗) is the first example

of an algebra-valued model that validates NFF-ZF and ϕ ∧ ¬ϕ for some ϕ ∈ L∈ without

trivializing our model, i.e., there exists a ψ ∈ L∈ such that V(PS3,∗) 2Pos(PS3,∗) ψ. In other

words, V(PS3,∗) modulo the filter Pos(PS3,∗) is a model of a paraconsistent set theory.
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Table 2.2: Operations for (PS3,∗ )

⇒ 1 1
2 0

1 1 1 0
1
2 1 1 0

0 1 1 1

∨ 1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

∧ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

x x∗

1 0
1
2

1
2

0 1

2.5 The Propositional Logic of (A, F ) and (V(A), F )

In this section, we will briefly talk about the propositional logic that

corresponds to the complete bounded distributive lattice A = 〈A;∧,∨,⇒,∗ ,1,0〉

modulo a filter F and the underlying propositional logic of the respective A-valued

model V(A) modulo a filter F . The relations between these two kinds of logics have been

first studied in (LÖWE; PASSMANN; TARAFDER, 2021).

We denote by LProp a propositional language with countably many

propositional letters. Given a complete bounded distributive lattice

A = 〈A;∧,∨,⇒,∗ ,1,0〉, by an A-assignment we mean an homomorphism ι : LProp → A.

We define the propositional logic of (A, F ) as follows.

Definition 2.5.1. Let A = 〈A;∧,∨,⇒,∗ ,1,0〉 be a complete bounded distributive lattice

and F a filter on A, the propositional logic L(A, F ) is defined as

L(A, F ) = {ϕ ∈ LProp : ι(ϕ) ∈ F for all assignments ι}.

This definition allows us to introduce the consequence relation |=(F, A), where

ψ |=(F, A) ϕ if and only if for every A-assignment ι we have, if ι(ψ) ∈ F , then ι(ϕ) ∈ F .

Notice that for the sake of readability we will simply write ϕ |=F ψ. Moreover, we can also

define the the propositional logic of (V(A), F ), by treating sentences in the language of set

theory as propositional variables. Let Sent∈ be the class of sentences in the language L∈.

By an ∈-translation we mean an homomorphism T : LProp → Sent∈.

Definition 2.5.2. (LÖWE; PASSMANN; TARAFDER, 2021). Given a complete

bounded distributive lattice A = 〈A;∧,∨,⇒,∗ ,1,0〉 and F a filter on A, the

propositional logic of L(V(A), F ) is defined as
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L(V(A), F ) = {ϕ ∈ LProp : JT(ϕ)K ∈ F for all S-translations T}.

Furthermore, (PASSMANN, 2018) introduced the concepts of loyalty and

faithfulness, which are used in (LÖWE; PASSMANN; TARAFDER, 2021) to study the

relation between these two kinds of logics. In particular, we say that a model V(A) is

loyal to (A, F ), if the propositional logic of V(A) modulo a filter F matches the

propositional logic associated to (A, F ), whereas V(A) is faithful to A, if every element

a ∈ A is the truth value of at least one sentence in the language of set theory. Let us

introduce the following definition.

Definition 2.5.3. (LÖWE; PASSMANN; TARAFDER, 2021) An A-valued model V(A)

is called loyal to (A, F ) if

L(A, F ) = L(V(A), F )

and faithfull to A if for every a ∈ A there exists a ϕ ∈ Sent∈ such that JϕKA = a.

Furthermore, notice that faithfulness implies loyality.

Lemma 2.5.4. (LÖWE; PASSMANN; TARAFDER, 2021, Lemma 2.1). Let

A = 〈A;∧,∨,⇒,∗ ,1,0〉 be a complete bounded distributive lattice and let V(A) be the

respective A-valued model. Then if V(A) is faithfull to A, then it is loyal to (A, F ) for

any filter F .

Moreover, we want also to be able to distinguish two algebra-valued models. In

particular, we will say that two algebra-valued models are non-∈-elementarily equivalent

with each other in the case that there exists a sentence in the language of set theory that

is valid in one model, however, fails in the other.

Definition 2.5.5. Let A1 = 〈A1;∧,∨,⇒,∗ ,1,0〉 and A2 = 〈A2;∧,∨,⇒,∗ ,1,0〉 be two

complete bounded distributive lattices. Then we say that V(A1) and V(A2) are non-∈-

elementarily equivalent with respect to a filter F1 on A1 and a filter F2 on A2, and write

(V(A1), F1) 6≡∈ (V(A2), F2)

whenever V(A1) 2F1 ϕ and V(A2) �F2 ϕ, for some ϕ ∈ Sent∈.
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2.6 Classical and Intuitionistic Propositional Logic

In this section, we will specify the set of axioms that we will use to identify

classical and intuitionistic propositional logic.

Definition 2.6.1. Classical propositional logic (CPL) is defined over LProp by the

following axiom schemes and rules.

Axiom schemes:

(i) ϕ→ (ψ → ϕ),

(ii)
(
ϕ→ (ψ → χ)

)
→
(
(ϕ→ ψ)→ (ϕ→ χ)

)
,

(iii) ϕ→ (ϕ ∨ χ),

(iv) ϕ→ (χ ∨ ϕ),

(v) (ϕ→ χ)→
(
(ψ → χ)→

(
(ϕ ∨ ψ)→ χ

))
,

(vi) (ϕ ∧ ψ)→ ϕ,

(vii) (ϕ ∧ ψ)→ ψ,

(viii) ϕ→
(
ψ → (ϕ ∧ ψ)

)
,

(ix) ¬¬ϕ→ ϕ.

Inference rule:

ϕ ϕ→ ψ (MP).
ψ

Notice that we can characterize intuitionistic propositional logic (IPL) with the

same list of axiom schemes and inference rules, if we replace double negation elimination

(¬¬ϕ→ ϕ) for ¬ϕ→ (ϕ→ ψ) and add the schema (ϕ→ ψ)→
(
(ϕ→ ¬ψ)→ ¬ϕ

)
.
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Chapter 3

A Taxonomy of Paraconsistent Set

Theories

Summary

In this chapter we present an overview of paraconsistent set theories that we

can find in the literature. We start by giving a historic introduction to naïve set theory.

In particular, we present the pathological sets that gave rise to the inconsistency of naïve

set theory and show how they have motivated paraconsistent set theories. We go on

to distinguish two possible approaches to paraconsistent set theory; naïve paraconsistent

set theory and iterative paraconsistent set theory. Whereas the first approach is widely

known, the second approach constitutes a novelty that has only been studied recently.

Unlike the first approach, the latter opts for developing paraconsistent set theory taking

ZF as logical axioms instead of Comprehension and Extensionality.

3.1 Cantor’s Paradise
Quando malsucedidos, os melhores

projetos parecem estúpidos!

(DOSTOIÉVSKI, 2016)

The birth of set theory can be traced back to the early work of Georg Cantor

in the field of functional analysis, in particular, to the study of trigonometric series and

their representations. In (CANTOR et al., 1932, pp. 92-102), he begins to study infinite
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sets of discontinuities, which lead him to develop his account of the real numbers in terms

of Cauchy-sequences but also to introduce one of the first cornerstones of set theory, the

ordinals.

Then two years later, Cantor publishes (CANTOR et al., 1932, pp. 115-

118), where he unfolds the second fundamental notion of set theory, cardinality. More

specifically, he proves that there exists no bijection between the set of natural numbers

and the set of real numbers. We can grasp the infinite! In one of the most beautiful and

intellectually deepest turn of events in modern history, Cantor creates a mathematical

theory able to capture hierarchies in the infinite.

The two underlying (non-logical) axioms of this theory, also known as naïve

set theory, are Extensionality, which states that two sets are identical if they have the same

members, i.e.,

∀x∀y
(
∀z(z ∈ x↔ z ∈ y)→ (x = y)

)
(Extensionality)

and Unrestricted Comprehension, which reflects the intuition that every well-defined

formula of the language of set theory constitutes a set, so if y does not occur free in ϕ,

then

∃y∀x
(
x ∈ y ↔ ϕ(x)

)
. (Unrestricted Comprehension)

3.2 Trouble in Heaven

Even though the axiom schemes of naïve set theory might seem very

appealing, given their intuitiveness and elegant presentation, we have that naïve set

theory is inconsistent.

Among the many inconsistencies (or pathological sets) that do arise from naïve

set theory we have, for instance, the Russell set, i.e., the set of non-self membered sets

(FREGE, 1979, p. 133), the universal set, i.e., the set of sets (ZERMELO, 1932, pp.

448-449) and the set of (von Neumann) ordinals (BURALI-FORTI, 1897).

Each of these sets highlights some “problematic” aspect of naïve set theory. In

the case of the Russell set, we have a tension between the ∈-relation and unrestricted set

formation and in the case of the universal set we have a similar conflict between the open-
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endedness of the set-theoretic universe and the sets we can instantiate by unrestricted

comprehension. Similar considerations hold for the set of (von Neumann) ordinals.

Notice that the following proofs are carried out within ZF and are thus

announced as theorems of ZF. Moreover, the next proof was discovered by Russell and

communicated to Frege in a letter that we can find in (FREGE, 1979, p. 130).

Theorem 3.2.1. (FREGE, 1979). There is no Russell set.

Proof. Suppose there exists the Russel Set, call it R. Now, suppose R ∈ R. Then by

definition of R, R /∈ R, a contradiction. So, R /∈ R. Then, again by definition of R,

R ∈ R, a contradiction. So, R does not exist.

The following proof was first discovered by Cantor and then promptly

communicated to Dedekind in (ZERMELO, 1932, p. 448). However, we give the

following proof by Zermelo.

Definition 3.2.2. A set X is transitive, if for all x ∈ X and for all y ∈ x we have

y ∈ X.

Theorem 3.2.3. (ZERMELO, 1932). There is no universal set.

Proof. Suppose there exists the universal set, say U . Then we construct the power set

P (U) of U . Applying Cantor’s theorem it follows that |U | < |P (U)|. But U was supposed

to be the set of all sets, so P (U) is an element of U . Hence, P (U) ⊆ U since U is transitive.

Therefore, |P (U)| ≤ |U |, which delivers us the desired contradiction.

The next set that we introduce is a little bit more complex, since it relies on the

definition of (von Neumann) ordinals. Therefore, we will introduce some basic definitions

regarding order types in set theory, which will allow us to state this set within ZF.

Definition 3.2.4. A partial ordering of a set X is a binary relation ≤ on X such that

for any x ∈ X, x ≤ x, (reflexivity)

for any x, y, z ∈ X, if x ≤ y and y ≤ z then x ≤ z, (transitivity)

for any x, y ∈ X, if x ≤ y and y ≤ x then y = x. (antisymmetry)
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Definition 3.2.5. A poset (X,≤) consists of a set X with a partial ordering ≤ on X.

A poset (X,≤) is said to be well-founded if for any non-empty x ⊆ X, x has a minimal

element k, i.e., k ∈ x and for all y ∈ X, if y < k then y /∈ x. A totally ordered set

(X,≤) is a poset such that

for any x, y ∈ X (x ≤ y or y ≤ x). (connectedness)

Definition 3.2.6. A well-ordered set (X,≤) is a totally ordered and well-founded poset.

Definition 3.2.7. A strict ordering of a set X is a binary relation < such that < is

transitive, antisymmetric and

for any x ∈ X (x ≮ x). (irreflexivity)

Definition 3.2.8. A von Neumann ordinal α is a transitive set which is strictly well-

ordered by ∈.

Theorem 3.2.9. (BURALI-FORTI, 1897). There is no set of (von Neumann) ordinals.

Proof. Suppose there exists the set of ordinals and denote it by Ω. We want to show that

Ω is transitive and well-ordered by ∈. For any α ∈ Ω, every γ < α is contained in Ω

given that each γ < α is an ordinal itself. So Ω is transitive. But we also know that Ω is

well-ordered by ∈, since every α ∈ Ω is well-ordered by ∈. Thus; Ω is an ordinal and so

Ω ∈ Ω. But by the definition of strict well-order, Ω /∈ Ω, a contradiction.

Despite being pathological sets, in the sense that these sets witness the

inconsistency of naïve set theory, they might be insightful for studying models of set

theory. This concerns, in particular, non-classical models of set theory, where we can

accommodate these sets.

However, it is always a mistake to think of anything in mathematics as a mere

pathology, for there are no such things in mathematics. (...) One should think

of the paradoxes as supernatural creatures, oracles, minor demons, etc. (or

perhaps the Aleph in the eponymous story by Borges)-on whom one should

keep a weather eye in case they make prophecies or by some other means

inadvertently divulge information from another world not normally obtainable

otherwise. (FORSTER, 1995)
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3.3 Naïve and Iterative Paraconsistent Set Theory

Naïve paraconsistent set theory is the attempt of maintaining some pathological

sets or inconsistencies, within a non-trivial set theory. The crux of this proposal is to

weaken the logical axioms of naïve set theory and to keep the non-logical axioms. This

theoretical move is in direct opposition to the more orthodox strategy of the iterative

conception of set, which proposes to restrict the non-logical axioms of naïve set theory

(specifically Unrestricted Comprehension) and to maintain the same logical axioms, i.e.,

classical logic.

• Naïve paraconsistent set theory: The logical axioms of naïve set theory are wrong.

• The iterative conception of set: The non-logical axioms of naïve set theory are wrong

and the logical axioms are classical.

For a seminal exposition of the iterative conception of sets, consider (BOOLOS, 1971)

and (BOOLOS, 1989).

Let us turn to the first view point. The main claim of the paraconsistent

logician is that the logical axioms of set theory are not classical, but paraconsistent.

Moreover, we say that a logic is paraconsistent, if the existence of a contradiction does

not trivialize our logic. Formally:

Definition 3.3.1. A propositional logic L is paraconsistent, if the law of explosion fails

for some formulas ϕ, ψ in our language, i.e.,

there exist ϕ, ψ ∈ LProp such that (ϕ ∧ ¬ϕ) 0 ψ. (ECQ)

The original motivation of this proposal goes along the following lines; the

cost of removing pathological sets of our universe and maintaining the underlying logic is

higher than the cost of weakening our underlying logic and accepting them.

Notice, however, that we are not necessarily bounded to the naïve conception

of set in order to pursue a paraconsistent set theory. We propose that we can also

build paraconsistent set theories grounded on the iterative conception. Therefore, we can

identify two classes of paraconsistent set theories:

• Naïve paraconsistent set theory: The true non-logical axioms of paraconsistent set

theory are Extensionality and Unrestricted Comprehension.
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• Iterative paraconsistent set theory: The true non-logical axioms of paraconsistent

set theory are ZF-like.

So, even though both classes of paraconsistent set theories agree on the fact

that the underlying logic of set theory should be paraconsistent, they disagree concerning

the right non-logical axioms of set theory (which again will make them differ in their

respective choice of underlying logic). Furthermore, this last choice is heavily restrained

by two criteria: non-triviality and logical strength. In more intuitive terms, we neither

want that our set theory proves too much, nor too little.

In the case of naïve paraconsistent set theory, we are worried about the fact

that Unrestricted Comprehension without ECQ, can still generate a trivial system. In

particular, this concerns Curry’s paradox and its set-theoretical variations.

Theorem 3.3.2. Let T be a theory which validates Unrestricted Comprehension, MP and

Contraction. Then T ` ϕ, for any ϕ.

Proof. Let ϕ be any formula.

1. ∃y∀x
(
x ∈ y ↔ (x ∈ x→ ϕ)

)
(Unrestricted Comprehension)

2. ∀x
(
x ∈ a↔ (x ∈ x→ ϕ)

)
(Supposition)

3. a ∈ a↔ (a ∈ a→ ϕ)

4. a ∈ a→ (a ∈ a→ ϕ) (Simplification)

5. a ∈ a→ ϕ (Contraction)

6. a ∈ a (MP 3,5)

7. ϕ (MP 5,6)

8. ϕ (∃ elim. 1,2-7)

Notice that we still get the Curry paradox if we just have Unrestricted

Comprehension, MP and the modus ponens axiom (MPA), i.e.,

(
ϕ ∧ (ϕ→ ψ)

)
→ ψ. (MPA)
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The fact that Unrestricted Comprehension together with this minimal set of

logical axioms trivializes our set theory rules out already many paraconsistent calculi,

such as W (the logic of relevant entailment) and R (the logic of relevant implication), for

the construction of a naïve paraconsistent set theory.

Furthermore, in the case of iterative paraconsistent set theory, this constraint

is usually given for granted, since we have adopted ZF-like axioms, which block out the

paradoxes and ensure thus non-triviality.

The second constraint, i.e., logical strength, applies equally to both strategies.

Any non-classical set theory should be able to reproduce a reasonable amount of standard

set theory. But how much is enough? It seems difficult to give an exact cut-off point here

since set-theoretical strength is an inherently vague notion within set theory. However,

we believe that we can not talk about sets without models, and secondly, the final word

on how much is enough should belong to set-theoretical practice. Thus, we emphasize

specifically the model-theoretic properties of a set theory. As a consequence, it is an

imperative requirement for any (naïve or iterative) paraconsistent set theory to have a

natural model, which is equipped with a rich ontology. That is, it should have an ontology

which allows the existence of objects such as singletons, pairs, non-identical sets, linear

orders, ordinals, etc.

So despite not having an exact cut-off point for this criteria, we can still make

the request for a natural model where we can carry out basic set-theoretical arguments.

However, the ideal scenario would consist in having a fully-fledged set-theoretical model

that allows us to carry out contemporary set-theoretical techniques such as forcing and

where we can accommodate as many sets as possible.

“We might not require everything; we might be prepared to write off various

results concerning large cardinality, or peculiar consequences of the Axiom of

Choice. But if we lose too much, set theory is voided of both its use and

interest.” (PRIEST, 2006, p. 248)

Similarly, (INCURVATI, 2020, p. 104) goes on:

“If it is too weak, set theory is deprived of the role, with which it has

traditionally been conferred, of giving a foundation for mathematics and of
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providing a tool for understanding the infinite. We need to preserve at least

certain crucial results of set theory.”

Notice that in the case of the naïve paraconsistent strategy there exists a

clear tension between these two desiderata. The first criterion demands that we should

choose a logic that is relatively weak concerning its conditional since we either lose MP

or Contraction, which are arguably both fundamental properties that we would like to

attribute to a conditional. Now, the second criterion, on the other hand, pressures us to

focus on calculi which are as close as possible to classical logic, so they remain sufficiently

expressive. Hence, the first criterion pushes us away from classicality, whereas the second

one demands us to get closer to it.

Moreover, given the granted non-triviality of set theories following the iterative

paraconsistent strategy, these do not face the same dilemma. Though, they seem to

evidence a similar trade-off between non-classicality and logical strength, when it comes

to the treatment of identity. In particular, in (almost) all the algebra-valued models for

paraconsistent set theories that we will develop in the following chapters we have instances

of Leibniz’s law of indiscernibility of identicals (LL) and Separation that will fail. This issue

has been discussed extensively in (JOCKWICH-MARTINEZ; TARAFDER; VENTURI,

2021a).

In the following sections of this chapter, we review the naïve and iterative

paraconsistent set theories that we can find in the literature. We start by giving an

overview of the different approaches following the naïve paraconsistent strategy. As

already mentioned, due to the scope of the Curry paradox we have to weaken the

implication of our language, so we can either block MP (material approach) or

Contraction and MPA (relevant approach). Moreover, we also review a third approach;

the model-theoretic approach. The crux of this approach is, roughly speaking, to show

that there exists a set-theoretic model that validates both ZF and

Unrestricted Comprehension and that contains some large fragment of the cumulative

hierarchy as consistent inner model. We will follow the discussion in (INCURVATI,

2020) and argue that all these approaches face philosophical and technical objections.

Then, we will consider a fourth approach, the da-Costa approach, which does

not fit in as nicely as the other approaches in the dichotomy described above. The reason

is the following. Instead of using the non-logical axioms of naïve set theory, this approach
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consists of combining a modified version of Stratified Comprehension and Extensionality

with the logical axioms of some particular paraconsistent logic (the C-systems). We will

argue that this approach is unfeasible, as well, given that it is not coherent with its

motivation.

Finally, we have the iterative paraconsistent strategy. The heart of this

approach consists of constructing set theories where the non-logical axioms are ZF-like

axiom systems and the logical axioms are those of a paraconsistent logic. In particular,

the set theory developed in (LÖWE; TARAFDER, 2015) is a paradigmatic example of

this approach (see Chapter 2.4). This is due to the reason that the mentioned set theory

takes NFF-ZF as non-logical axioms and L
(
(PS3,

∗ ), Pos(PS3,∗)
)

as logical axioms.

Moreover, the only existing paraconsistent set theories that we could find in the

literature that follow this approach are LFI-set theories, i.e., ZF-like set theories where

the logical axioms are determined by a logic of formal inconsistency (LFI).

We will show, however, that this class of set theories also face philosophical

objections and point out diverse difficulties that one encounters when constructing

algebra-valued models for these set theories (see Chapter 4.5).

Notice that all the models of paraconsistent set theory, presented in the latter

chapters, follow the iterative paraconsistent strategy and are constructed in the form of

algebra-valued models.

We summarize:

Naïve paraconsistent strategy:

• The material approach: The underlying logic of a paraconsistent set theory should

interpret → as material conditional.

• The relevant approach: The underlying logic of a paraconsistent set theory should

interpret → as relevant conditional.

• The model-theoretic approach: There exist models that validates both ZFC and the

non-logical axioms of of naïve set theory. These models are constructed via two

possible equivalence relations: the type-lift and the Hamkins-type-lift. In the case

of the type-lift, we start with a model of ZF with two inaccessible cardinals, say, κ1

and κ2. While everything is preserved below Vκ1 , on the other hand, everything is
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collapsed between Vκ1 and Vκ2 . The resulting object of such a collapse, call it a, is

what witnesses the paraconsistency of the model. Instead, the standard hierarchy

below κ1 is responsible for the validity of ZF in a cumulative hierarchy.

• The da-Costa approach: The logical axioms of naïve paraconsistent set theory should

be provided by a C-system, combined with (a modified version of) the non-logical

axioms of New Foundation (NF).

Iterative paraconsistent strategy:

• The non-logical axioms of a paraconsistent set theory should be ZF-like and the

logical axioms are given by a paraconsistent logic. In particular, we will explore

LFI-set theories.

3.4 The Material Approach

Following the material approach, the underlying logic of a naïve paraconsistent

set theory should invalidate MP and define the materical conditional as follows:

ϕ→ ψ =df. ¬ϕ ∨ ψ.

Notice that the biconditional ↔ is defined as usual.

Moreover, Graham Priest has proposed to apply the three-valued logic LP

for this enterprise. (PRIEST, 2006, p. 248). The truth values of LP are 1 (true), 0

(false) and 1
2 (both true and false), where 1 are 1

2 act as designated values. We will

use D to denote this set, so D = {1, 1
2}. The truth tables of the logical connectives of

LP are depicted in Table 2.1. Furthermore, let Var be an infinite set of countably many

propositional variables and Rn a set of relation symbols, where n indicates the arity. Then

we can define a model for LP as M = 〈D, I〉 where D is a domain of objects and I an

interpretation function.

Furthermore, we say that a function S : Var → D is a variable assignment

for M and S[x/a] denotes the same variable assignment where we uniformly substitute

x with a. Then, given a model M = 〈D, I〉 and a variable assignment S, we define an
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Table 3.1: Operations for LP

→ 1 1
2 0

1 1 1
2 0

1
2 1 1

2
1
2

0 1 1 1

∨ 1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

∧ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

x ¬x

1 0
1
2

1
2

0 1

evaluation function vMS as follows. If ϕ is an atomic formula, then

vMS
(
R〈x1, ..., xn〉

)
= I

(
R〈x1, ..., xn〉

)
.

If ϕ is a formula of the form ¬ψ, χ∧ψ, χ∨ψ, χ→ ψ, then vMS assigns truth values to ϕ

according to Table 3.1. Furthermore, if ϕ is of the form ∀xψ(x) we have

vMS
(
∀xψ(x)

)
= min{vMS

(
S[x/d]ψ(x)

)
}d∈D,

where 0 < 1
2 < 1. Finally, to conclude the presentation of the semantics of LP, we define

a consequence relation. As usual, this relation is given in terms of the preservation of

designated truth values. Morevoer, we say that a evaluation function satisfies a sentence

ϕ, if vMS (ϕ) ∈ D. So, let Σ be a set of sentences and ϕ a sentence. Then,

Σ |= ϕ iff for everyM and S, whenever vMS satisfies Σ, then vMS satisfies ϕ.

Now, we are in the position to state the most salient logical properties of LP.

Let (TB) denote the inference rule known as transitivity of the biconditional and (DS) the

inference rule, known as disjunctive syllogism:

¬ϕ ϕ ∨ ψ (DS).
ψ

Notice that ECQ, DS and TB fail within LP. For the failure of ECQ and DS, simply

consider a valuation vMS and two sentences ϕ, ψ such that vMS (ϕ) = 1
2 and vMS (ψ) = 0.

Moreover, for the failure of TB, consider a valuation vMS and three sentences ϕ, ψ, χ such

that we have vMS (ϕ) = 1, vMS (ψ) = 1
2 , and v

M
S (χ) = 0.
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So far we had a quick look at LP. Moreover, we can add a binary predicate

= to LP, where x = y receives value 1 or 1
2 in the case that x = y in our meta-theory.

The result is first-order LP with identity (LP=). We say that a modelM has a standard

identity if for any x, y ∈ Var we have I(x = y) ∈ {1,0}. Otherwise, we say thatM has

a glutty identity, i.e., there exist x, y ∈ Var such that I(x = y) = 1
2 . This means that

in the latter case there will also exist identity statements within the language, which are

mapped to the intermediate value 1
2 .

Now, we will present two naïve set theories. The first one takes LP= as logical

axioms and the non-logical axioms are those of naïve set theory. We will denote this set

theory as NLP=.

Definition 3.4.1. The theory NLP= consists of the axioms and inference rules of LP=

for the language L∈ extended by Extensionality and Unrestricted Comprehension.

The second naïve set theory is a variation of NLP= and is due to (RESTALL,

1992b). The main modification is that identity is not added to the language, x = y will

be used as an abbreviation of the formula ∀z(x ∈ z ↔ y ∈ z). We will denote this set

theory as NLP. Notice that the logical axioms of NLP are those of LP and the non-logical

axioms are those of naïve set theory.

Definition 3.4.2. The theory NLP consists of the axioms and inference rules of LP for

the language L∈ extended by Extensionality and Unrestricted Comprehension.

The following result shows that NLP is mathematically expressive.

Theorem 3.4.3. (RESTALL, 1992a, Lemma 3) NLP |= ZF−.

We also know that NLP is non-trivial given that Foundation fails within NLP.

Moreover, due to the failure of TB, many standard proofs of set theory, such as the one

of Cantor’s theorem, do not go through anymore. Though this does not exclude the

possibility of giving an alternative proof for Cantor’s theorem1 within NLP, it highlights
1We denote by | a | the cardinality of a and by P (a) the power set of a. Suppose towards contradiction

that we have a surjective function from a to P (a). So we can define

b = {x ∈ a | x /∈ f(x)} = f(c)

for some c ∈ a. Then c ∈ b ↔ c ∈ f(c) ↔ c /∈ b. But since TB fails, this does not give rise to any
contradiction.
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that the choice of a material conditional comes with a price. NLP seems to be proof-

theoretically poor!

A more serious drawback of NLP is the treatment of identity. The original

proposal of (RESTALL, 1992b) uses the Russell Set R as witness for the statement that

there exist at least two different elements in NLP. This forces us to have a glutty identity

in all models for NLP since the formulas R = R and R 6= R always receive value 1
2 .

Moreover, (WEIR, 2004, p. 393) has shown that, if equality is introduced as primitive

as suggested by (PRIEST, 2006), then there exist models of NLP= that do not grant the

existence of two different elements anymore, i.e., the formula ∃x∃y(x 6= y) receives value

0 in these models. Therefore, NLP is committed exclusively to models where we have a

glutty identity, if we want to be able to express the existence of two different elements.

This move entails two problems. On one side, it seems ad-hoc to only allow

models of NLP with a glutty identity. Why should we a piori exclude any model of NLP

with a standard identity ? This seems to enter in conflict with our intuition that in our

(classical) meta-theory we use a standard identity (WEIR, 2004, cfr. p. 397). On the

other side, Leibniz law of indiscernibility of identicals fails in NLP. More specifically, this

means that the following formula

∀x∀y
(
(x = y ∧ ϕ(x))→ ϕ(y)

)
(LL)

fails in NLP. This principle states that identical objects share the same properties, which is

the uncontroversial side of the Law of Leibniz and constitutes a widely accepted property

of identity. This is of course also a desirable property for technical reasons since it allows

us to build quotient models (where we have a standard identity) out of our algebra-

valued models. Thus, we have philosophical and technical motivations for accepting this

principle.

Theorem 3.4.4. LL fails within NLP.

Proof. Let ϕ(u) = u ∈ w and consider a variable assignment S such that S(u) = a

and S(z) = b. Furthermore, let vMS (u ∈ w) = 1
2 for any S[w/x] and vMS (v ∈ w) = 0,

when S(w) = c. Let S(w) = c, then given that vMS (u ∈ w) = 1
2 for any S[w/x], it

follows that vMS
(
∀w(u ∈ w ↔ z ∈ w))

)
. So, vMS (u = z) = 1

2 . Therefore, we have

vMS
(
u = z ∧ ϕ(u)

)
∈ D, however, vMS

(
ϕ(z)

)
/∈ D.
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Consider (INCURVATI, 2020, pp. 108-109) and (WEIR, 2004, pp. 397-398)

for a similar discussion on the status of LL in NLP. Even though there exist arguments

supporting the failure of LL in a paraconsistent setting, this seems to point towards a

trade-off between the intuitiveness of Unrestricted Comprehension and the one of LL.

Dialetheists claim that we should stick to the Naïve Comprehension Schema

because of its intuitiveness. But to do this, we are asked to reject another

principle which is hardly less intuitive than the Comprehension Schema itself.

As a result, the initial appeal of a paraconsistent set theory based on the naïve

conception seems seriously diminished. (INCURVATI, 2020, p. 109)

Now, we will address the drawbacks of NLP=. Broadly speaking, it is model-

theoretically very weak. As (THOMAS, 2014, Theorem 3.4.) has shown, it is not possible

to define basic set-theoretic objects such as singletons, cartesian pairs or ascending linear

orders in NLP=. A set-theoretic model without natural numbers or transfinite ordinals

seems to reflect inadequately the set theoretic universe, besides being much to weak for

set-theoretic practice. Thus, NLP= does not fulfill the requisite that any non-classical set

theory should allow us to develop a reasonable amount of classical set theory.

Let us now consider some variations of LP, which might offer semantically

richer set-theories. The model-theoretic weakness of NLP= is mainly due to the

unrestricted occurrence of gluts. So let us introduce a cousin of LP, minimally

inconsistent LP (LPm), which manages to restrain the occurrence of gluts. The essential

idea behind LPm is to introduce an ordering over the interpretations of LP= depending

on the number of atomic formulas that receive value 1
2 in each interpretation. Then LPm

corresponds to those interpretations which are minimal with respect to this ordering.

Following the presentation of (THOMAS, 2014, p. 3), we define models for LPm as

follows.

Definition 3.4.5. Let M = 〈D, I〉 be a model for LP= and let R〈x1, ..., xn〉 be an n-ary

relation symbol and x1, ..., xn ∈ D , then we define:

M! = {R〈x1, ..., xn〉 : I
(
R〈x1, ..., xn〉

)
= 1

2}.
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We haveM≺M′ iffM! ⊂M′!. Let T be a theory, then we denote withM an LPm model

of T iff M, S |= T for some variable assignment S and for all models M ′, if M ′ ≺ M ,

then we have M ′, S ′ 2 T for every variable assignment S ′.

Then we can define a consequence relation for the logic LPm as follows:

Definition 3.4.6. Moreover, we say that T |= ϕ iff for all LPm models M of T and all

variable assignments S, ifM, S |= T, thenM, S |= ϕ.

Notice that every model of LP= is also an LPm-model, but not the other way

around, since LPm will also have classical models in the absence of inconsistent premises

(PRIEST, 2006, p. 226, Fact 1). In particular, we will have models of LPm with a standard

identity. So we might get, as intended, a richer ontology. Then we can define the naïve

set theory that takes as logical axioms LPm as follows.

Definition 3.4.7. The theory NLPm consists of the axioms and inference rules of LPm

for the language L∈ extended by Extensionality and Unrestricted Comprehension.

Let us remark a particular feature of LPm. Namely, if a theory based on LP= is

non-trivial, then so is the same theory based on LPm (PRIEST, 2006, p. 227). Moreover,

Restall’s proof of the non-triviality of NLP carries over to NLP=. Thus, NLPm is non-

trivial. Nevertheless, it is model-theoretically still very weak. In particular, (THOMAS,

2014, Lemma 4.4) has shown that any NLPm-model, with more than one element in its

domain and a standard identity, is not a model of Unrestricted Comprehension anymore.

Therefore, the only model of NLPm consists of single element, which is glutty with respect

to its own membership relation. As a consequence, we have that every element is glutty

with respect to every membership relation. In other words, applying the terminology of

(INCURVATI, 2020) the only model of NLPm is almost trivial, i.e., the formula

∀x∀y(x ∈ y ∧ x /∈ y) (AT)

holds in NLPm. Again, this clashes not only with our intuition that there exist elements in

our meta-theory for which membership behaves standard but also with our intuition that

there should exist more than a single element in our set-theoretic universe. In conclusion,

the one element NLPm-model is untenable.
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Furthermore, the three other variations of NLPm; NLP≡, NLP⊆ and NLP⊇,

introduced by (CRABBÉ, 2011) face similar problems. NLP⊆ has as in the case of NLPm,

only a one-element model (THOMAS, 2014, Theorem 4.5), whereas NLP⊇ and NLP≡
suffer from the same weakness as NLP=, i.e. we are unable to define singletons, cartesian

pairs or ascending linear orders. Thus, we have exhausted the resources of the material

strategy and showed that each set theory following this paradigm fails to deliver what it

promises. As (INCURVATI, 2020) suggests, we might have to change strategy.

“I conclude that the prospects for developing a naive set theory by pursuing

the material strategy look rather dim, and those for developing it on the basis of LP and

cognate systems even dimmer.” (INCURVATI, 2020, p. 111)

3.5 The Relevant Approach

Let us now turn to the relevant approach. The general procedure of this

approach is similar to the material approach; first we introduce a family of non-classical

logics which are based on a weak conditional (in this case a relevant one) and then

we use these logics to interpret the non-logical axioms of naïve set theory. Thus, a naïve

paraconsistent set theory based on the relevant approach consists of the non-logical axioms

of naïve set theory and the logical axioms of a relevant logic. Moreover, given the Curry-

Paradox this strategy is bounded to a relevant conditional, for which Contraction and

MPA fails.

The intuitive idea behind a relevant conditional is that its antecedent and

consequent have to be “on the same topic”, i.e., a conditional is relevant in the case that,

whenever ϕ → ψ is valid, then ϕ and ψ share at least one propositional variable. This

constraint is also known as the variable sharing principle (BRADY, 2006, p. 5).

Now, we will give a sketch of the Routley star semantics. In particular, we

will use Kripke frames with impossible worlds, where the accessibility relation is given in

terms of a ternary relation between worlds. The choice of a ternary accessibility relation is

due to the reason that the semantic interpretation of the strict conditional, where we have

a binary accessibility relation, validates vacuously ϕ → (ψ → ψ), where the antecedent

and consequent are completely disconnected.
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Notice that the set of worlds of our frames is partitioned, into possible worlds

and impossible ones, where classical tautologies such as ϕ → ϕ may fail. Now, the

truth of a formula ϕ → ψ at a possible world w, requires the preservation of truth at

all worlds it accesses, including impossible ones. Notice that we can explain the failure

of Contraction along these lines. Simply consider a possible world w which accesses an

impossible world v, where MP fails and so ϕ and ϕ→ ψ hold there, and ψ fails. Then we

have that the premise of Contraction (i.e., ϕ → (ϕ → ψ)) holds at w, but its conclusion

(i.e., ϕ → ψ) does not. In general, the Routley star semantics allows us to successfully

invalidate irrelevant formulas.

Definition 3.5.1. A Routley star interpretation is a structure 〈W,N,R, ∗, v〉, where W

is a set of worlds, N ⊆ W (the set of possible worlds), R ⊆ (W ×W ×W ), ∗ is a unary

function on W , and v assigns a truth value to every propositional variable at every world.

(i) vw(¬ϕ) = 1 iff vw∗(ϕ) = 0,

(ii) vw(ϕ → ψ) (where w is an impossible world) iff for all u, v ∈ W such that Rwuv,

if vu(ϕ) = 1, then vv(ϕ) = 1.

Notice, that ϕ → ψ is evaluated as usually in the case that w is a possible

world. Moreover, the unary function ∗ is known as the Routley Star and was introduced

originally by (ROUTLEY; ROUTLEY, 1972). The intuitive idea is that every world w

will have a twin world w∗ assigned and that ¬ϕ holds at w if and only if ϕ does not hold

at w∗. So the relevant negation will not be evaluated at w itself, but at its twin world

w∗. Normally, it is assumed that the Routley Star satisfies the following constraints

w = w∗∗ and R(w,w1, w2)→ R(w,w∗2, w∗1), to ensure that the relevant negation has more

inferential features, such as double negation introduction (DNI) and contraposition (CP).

Next, we can show that the relevant negation give rise to a paraconsistent

logic. Consider a Routley star interpretation where

W = {u,w}, vu(p) = 1, vu(q) = 0, vw(p) = 0 and u∗ = w.

Then p holds at world u, as well as, ¬p holds at world u (since vu∗(p) = 0). However, q

does not hold at u, so ECQ fails.

We will analyze two naïve paraconsistent set theories that follow the relevant

approach. Notice that there may exist other interesting relevant set theories (BRADY,
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2006, Chapter 5), however, we argue that the criticism that will be put forward against

the intensional character of the relevant conditional in these set theories can be extended

to all relevant systems. Thus, these two set theories will serve us as paradigmatic cases

to cover entirely the relevant approach.

We begin by presenting the relevant set theory NDKQ which was proposed

initially by (ROUTLEY, 1979). First, we will cover the logical axioms of this set theory.

More specifically, NDKQ is build upon the first-order relevant logic DKQ. We go on to

present an Hilbert-axioms system for DKQ following (ISTRE; MCKUBRE-JORDENS,

2019).

Definition 3.5.2. DKQ is defined over LFol by the following axiom schemes and

inferences rules.
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Axiom schemes:

ϕ→ ϕ (Ax1)(
(ϕ→ ψ) ∧ (ψ → γ)

)
→ (ϕ→ γ) (Ax2)

ψ → (ϕ ∨ ψ) (Ax3)

ϕ→ (ϕ ∨ ψ) (Ax4)

(ϕ ∧ ψ)→ ϕ (Ax5)

(ϕ ∧ ψ)→ ψ (Ax6)(
(ϕ→ ψ) ∧ (χ→ ψ)

)
→
(
(ϕ ∨ χ)→ ψ

)
(Ax7)(

(ϕ→ ψ) ∧ (ϕ→ γ)
)
→
(
ϕ→ (ψ ∧ γ)

)
(Ax8)(

ϕ ∧ (ψ ∨ γ)
)
→
(
(ϕ ∧ ψ) ∨ (ϕ ∧ γ)

)
(Ax9)

¬¬ϕ→ ϕ (Ax10)

(ϕ→ ¬ψ)→ (ψ → ¬ϕ) (Ax11)

ϕ ∨ ¬ϕ (Ax12)

∀xϕ→ ϕ[y/x], where y is free for x in ϕ. (Ax13)

∀x
(
ϕ→ ψ

)
→
(
ϕ→ ∀xψ

)
, where x is not free in ϕ. (Ax14)

∀x(ϕ ∨ ψ)→ (ϕ ∨ ∀xψ), where x is not free in ϕ. (Ax15)

∀x
(
ϕ→ ψ

)
→
(
∃xϕ→ ψ

)
, where x is not free in ψ. (Ax16)

ϕ[y/x]→ ∃xϕ, where x is not free in ϕ. (AX17)

(ϕ ∧ ∃xψ)→ ∃x(ϕ ∧ ψ) where x is not free in ϕ. (AX18)
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Inference rules:

ϕ ϕ→ ψ (R1)
ψ

ϕ, ψ (R2)
ϕ ∧ ψ

ϕ→ ψ, χ→ γ (R3)(ψ → χ)→ (ϕ→ γ)

x = y (R4)
ϕ(x)→ ϕ(y)

ϕ (R5)∀xϕ

Meta-inference rules:

ϕ ` ψ (MR1)
ϕ ∨ χ ` ψ ∨ χ

ϕ ` ψ (MR2)∃xϕ ` ∃xψ

Additionally, it is imposed that the meta-rules can not be applied on formulas

of the form ϕ ` ψ if universal quantifier bounds a free variable in ϕ (BRADY, 2006). Now,

we can define the set theory NDKQ, which takes DKQ as logical axioms and the axioms of

naïve set theory as non-logical axioms. However, Unrestricted Comprehension is modified

slightly, since now the set that is being defined {x : ϕ(x)} may occur freely within ϕ(x).

In particular, we will use the following variation of Unrestricted Comprehension,

∃y∀x
(
x ∈ y ↔ ϕ(x)

)
, where y can occur free in ϕ(x). (Modified Comprehension)

Then, we define:
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Definition 3.5.3. The Theory NDKQ consists of the axioms and inference rules of DKQ

for the language L∈ extended by Extensionality and Modified Comprehension.

As a consequence of Modified Comprehension, NDKQ allows us to instantiate

besides the Russel Set, also non-well-founded sets, as for example, the set that instantiates

the formula ∃y∀x(x ∈ y ↔ x /∈ y). More importantly, (BRADY, 1989) showed that NDKQ

is non-trivial.

There exist many problems with NDKQ. The authors of (ISTRE; MCKUBRE-

JORDENS, 2019), for instance, have criticized the failure of weakening and the deduction

theorem. Another problem concerns the existence of certain sets within NDKQ . From the

usual definition of the empty set as {x : x 6= x} we can not deduce that the empty set is a

subset of every set. This would constitute a case of irrelevance since we can not prove in

general (x 6= x)→ ϕ in the underlying logic (BERTO, 2007, p. 250). Dual considerations

hold for the universal set V, which seems to suggest that the meaning of the subset

relation is quiet different from the usual one in set theory. Moreover, (ROUTLEY, 1979)

has proposed alternative definitions of ∅ and V which avoid this problem, however, if we

accept these surrogates we end up with various sets that can be interpreted as ∅ and V

and (DUNN, 1988) has shown that if we force the uniqueness of these sets then we end

up with classical logic.

To sum up NDKQ seems to be an ideal case of a naïve paraconsistent set theory

since we do not only have inconsistent but non-well founded sets in our universe. However,

it remains unclear how much of standard set theory may be carried out in this framework

as pointed out in (ISTRE; MCKUBRE-JORDENS, 2019, Section 17.5) and (PRIEST,

2006, p. 253). To overcome this problem, (WEBER, 2012) has proposed to extend the

logical axioms of NDKQ with the Counterexample rule. The result is the logic DLQ.

Definition 3.5.4. We obtain the logic DLQ, by adding to DKQ the following inference

rule;

ϕ,¬ψ Counterexample Rule.
¬(ϕ⇒ ψ)

Then we can define:

Definition 3.5.5. The Theory NDLQ consists of the axioms and inference rules of DLQ

for the language L∈ extended by Extensionality and Modified Comprehension.
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Given that NDLQ is an extension of NDKQ, the proof of non-triviality of

NDKQ, by (BRADY, 1989), carries over to NDLQ. Furthermore, NDLQ has very strong

model-theoretic properties and seems to be the most promising candidate of the relevant

approach (INCURVATI, 2020, cfr., p. 117). First, we examine whether this set theory

enables us to carry out a reasonable amount of standard set theory, and then we

consider the possible disadvantages.

It was shown in (WEBER, 2012) and (WEBER, 2010), that it is possible to

define ordinals in NDLQ and that the collection of all ordinals is a set. This set can be

well-ordered. So it follows that there exists a choice function for every non-empty set,

that is, NDLQ proves AC. Then cardinals are defined using AC and the von Neumann

cardinal assignment, which basically consists in taking particular ordinals as cardinals

(WEBER, 2012, p. 278). Furthermore, it is shown that essential results of standard

cardinal arithmetic, such as the Cantor-Schröder-Bernstein Theorem, the Pigeonhole

principle and Cantors Theorem, all hold. Thus, it is possible to develop basic cardinal

and ordinal arithmetic within NDLQ. Moreover, (WEBER, 2012, Theorem 6.6) has

proved that the Continuum hypothesis fails in NDLQ and that NDLQ is compatible with

the existence of large cardinals such as Inaccessible, Mahlo and Measurable cardinals.

This renders evidence for the claim that NDLQ is indeed sufficiently strong

for mathematical practice. Hence, NDLQ is non-trivial and is expressive enough to carry

out a reasonable amount of standard set theory. Nevertheless, we will point out two

disadvantages of this set theory.

Notice that we obtain ¬(ϕ → ϕ), if we apply this rule to the premises ϕ,¬ϕ.

Thus, the Counterexample Rule has quiet unintuitive consequences in the context of

dialetheias. So as in the case of LP-set theories and LL; here we have a similar trade-off

between the intuitiveness of Unrestricted Comprehension and the logical properties of the

relevant conditional. On one hand, we are keeping Unrestricted Comprehension because of

its intuitive character and on the other hand, we are forced to accept very unintuitive

consequences.

Moreover, (WEBER, 2010) has argued that the logical axioms of NDLQ are

justified, given that DLQ is the strongest possible logic that does not trivialize our set

theory in presence of Unrestricted Comprehension. But then we have a problem of

demarcation, since there exist various logical calculi which give rise to set theories that
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are proof-theoretically equally strong, however, they invalidate different logical

principles (FIELD; LEDERMAN; ØGAARD, 2017). Which logical axioms should we

then choose for our set theory ?

What we end up with is a number of different logics, each of which enables

us to prove certain results, and for none of which we seem to have a good

motivation: any attractions of the paraconsistent solution to the set-theoretic

paradoxes seem seriously undermined. (INCURVATI, 2020, p. 119)

Secondly, as pointed out by (INCURVATI, 2020, Ibid.) there exists a more

fundamental problem with the inhabitant of the models of NDLQ. As in the case of

NDKQ, we have duplicates of the empty set, i.e., the empty set can not be defined uniquely

(PRIEST, 2006, p. 253). But it gets even worse, we have duplicates for every set in our

universe (WEBER, 2010, p. 88). To be precise, let ϕ be any true sentence. Then the

left-to-right conditional of

x ∈ y ↔ (x ∈ y ∧ ϕ)

is generally relevantly not valid. So, even though y and {x : x ∈ y ∧ ϕ} have the same

members we can not conclude that y = {x : x ∈ y ∧ ϕ}, due to the relevant conditional.

This problem undermines seriously the concept of set in relevant set theories. Although

Extensionality holds, that does not guarantee that sets are extensional entities in NDLQ,

which is arguably the most essential property of a set, as stated in the following lines:

But a theory that did not affirm that the objects with which it dealt were

identical if they had the same members would only by charity be called a

theory of sets alone. (BOOLOS, 1971, p. 27)

In view of this Priest proposes two possible solution attempts. The first one is to replace

the biconditional in Extensionality by the material biconditional. But this strategy is

unfeasible. Let ϕ(x) be a formula which receives value 1
2 under a particular interpretation

function. Then, given the particular semantics of the material biconditional, we have for

any set y,

∀x
(
x ∈ y ↔ ϕ(x)

)
.
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By Extensionality, we conclude that there exists only a single set in our universe, i.e.,

the set y = {x : ϕ(x)}. This picture seems not to capture adequately the set-theoretic

universe, since we would like to have more than a single set in our universe. Notice that

we do not have this problem in the case of the material approach, since the conditional

that acts in Extensionality is the material one, and thus fails to detach. So we do no get

the identity between y and {x : ϕ(x)}.

The second proposal by Priest consists in replacing the biconditional in

Extensionality by an enthymematic biconditional 
. Let τ be a logical constant which

can be thought of as the conjunction of all logical truths. Indeed, τ validates the

following inference rules:

,
τ

ϕ .
τ ⇒ ϕ

Then we can define the enthymematic conditional as follows;

ϕ ⇁ ψ =df. (τ ∧ ϕ)⇒ ψ.

Moreover, the enthymematic biconditional 
 is defined as usual. The idea is then to

reformulate Extensionality as ∀x
(
x ∈ y 
 x ∈ z

)
⇒ y = z. It is easy to see that this

proposal solves the problem of duplication. For let ϕ be any truth. Then by definition of

the enthymematic conditional we have x ∈ y ⇁ (x ∈ y ∧ ϕ) and obviously (x ∈ y ∧ ϕ) ⇁

x ∈ y. Hence we can conclude that y = {x : x ∈ y ∧ ϕ}. Nevertheless, (WEBER, 2010,

Section 6) has shown that this formulation of Extensionality leads to triviality.

As in the case of the material approach, we have exhausted the resources of

the relevant approach. Moreover, we conclude that this approach to naïve paraconsistent

set theory is unfeasible as well. To sum up:

(...) the relevant strategy, at least as developed by Weber, enables the

paraconsistent set theorist to make some progress over the material strategy,

since NDLQ has the resources to carry out some reasonable amount of set

theory. However, the theory has a background logic which is poorly

motivated. And, on pain of triviality, the current attempts to provide it with
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a genuine principle of extensionality fail, so that it cannot be regarded as a

set theory. (INCURVATI, 2020, pp. 120-121)

3.6 The Model-theoretic Approach

Let us now explore the model-theoretic approach to naïve paraconsistent set

theory. The model-theoretic approach of Priest can be found in (PRIEST, 2006, Section

18.4) and (PRIEST, 2017, Section 11). The main idea is to build a model of NLP= and

ZF (which contains a large fragment of the cumulative hierarchy). As a consequence, we

can regard the axioms of ZF and all the theorems that we can derive classically from ZF

as true within a paraconsistent framework.

We follow closely the exposition of (INCURVATI, 2020, Chapter 4.5). Let

M = 〈D, I〉 be a model , where v is a valuation under I and ∼ an equivalence relation

on D, such that for any d ∈ D , [d] is the equivalence class induced by ∼.

Definition 3.6.1. We say that M∼ = 〈D∼, I∼〉 is the collapsed model of M = 〈D, I〉,

when D∼ = {[d] : d ∈ D} and I∼ is fixed as follows:

(i) If c is a constant which denotes d inM, then c denotes [d] inM∼.

(ii) If f is an n-place function symbol which denotes d inM when taking as arguments

terms denoting d1, ..., dn, then f denotes [d] inM∼ when taking as arguments terms

denoting [d1], ..., [dn].

(iii) If P is an n-place predicate, we let a1, ..., an be in P’s positive (negative) extension

inM∼ iff ∃x1 ∈ a1, ...,∃xn ∈ an an such that 〈x1, ..., xn〉 is in the positive (negative)

extension of P inM.

We say that M∼ is a collapsed model of M, because in the collapsed model

M∼ we are dealing “only” with the equivalence classes that we obtained from the original

model M. Next, we have the following lemma which guarantees that the value of a

formula in a given model propagates through to the collapsed model. Notice, however,

that a formula might get mapped to an additional value.

Lemma 3.6.2. (PRIEST, 2006, Lemma 4) For every formula ϕ in the language of M,

we have v(ϕ) ⊆ v∼(ϕ).
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Priest has presented two different equivalence relation, which succeed in

collapsing a model of ZF into a model of NLP= + ZF. The first one is known as the

type-lift and consists in dividing the set-theoretic universe into two layers. The intuitive

idea is that every set below a fixed ordinal is preserved as usual and every set above this

ordinal is collapsed to a single glutty object [a] which is designated by a such that x ∈ a

receives value 1
2 for any x (where x refers to x in M and [x] in M∼). Then, by the

semantics of the material biconditional it follows that ∀x
(
x ∈ a↔ ϕ(x)

)
receives values

1
2 and thus Unrestricted Comprehension will hold in our collapsed model. So, let

M = 〈D, I〉 be a model of ZF, α an ordinal inM and a be Vα (the sets of rank less then

α). Then we define the following equivalence relation ∼ on D:

(
x and y are in a and x = y (inM)

)
or
(
x and y are not in a (inM)

)
.

As desired, this equivalence relation leaves every set of rank less than α alone

and collapses the rest to the equivalence class [a] which is designated by a. In particular,

every equivalence class in our collapsed model is an element of a.

Lemma 3.6.3. (PRIEST, 2006) For any b ∈ D∼ we have v∼(b ∈ a) = 1
2 .

Thus, using a as witness for the existential quantifier within Unrestricted

Comprehension, it follows thatM∼ is a model of Unrestricted Comprehension. Moreover,

since ZF holds in the original model, by applying Lemma 3.6.2 we get that M∼ is a

model of ZF and NLP= .

Now, suppose that the original modelM besides being a model of ZF, contains

two inaccessible cardinals κ1 and κ2 such that κ2 > κ1 and fix α = κ2. Then, our collapsed

modelM∼ is a model of ZF and NLP= and contains the cumulative hierarchy up to κ1 as

inner model. Formally:

Theorem 3.6.4. (PRIEST, 2017). Suppose thatM is a classical model of ZF containing

two inaccessible cardinals κ1 and κ2. Then there exists a collapsed modelM∼ = 〈D∼, I∼〉

such that:

(i) M∼ |= ZF + NLP= and

(ii) M∼ contains a modelM′, whereM′ is a classical model of ZF.
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A remarkable feature of the model-theoretic approach is the fact that we do

not only get the validity of ZF but also all the theorems of ZF. For Priest, this suggests

that we can embrace the theorems of ZF from a non-classical perspective.

Since the universe of sets is a model of ZF (as well as naïve set theory),

these hold in it. We may therefore establish things in ZF in the standard

classical way, knowing that they are perfectly acceptable from a paraconsistent

perspective. (PRIEST, 2006, p. 257)

Nevertheless, we can raise the following two objections against the type-lift:

(1) M∼ is constructed by leaving alone only a proper fragment of the original model.

(2) A single set a is the witness for all the instances of Unrestricted Comprehension.

To avoid these problems, Priest has used a second construction proposed in (PRIEST,

2017, p. 101), known as the Hamkins-type lift. Rather than partitioning the universe,

this construction uses a covering that preserves the set-theoretic universe but adds some

inconsistent sets to it. Without going too much into technical details, this construction

has one salient advantage over the first construction. If the original model has cardinality

κ then the collapsed model (by the partition) is of cardinality less or equal to κ, but by

the covering we obtain models of cardinality less or equal to 2κ. So potentially we might

get models which reflect more accurately the set-theoretic universe.

Moreover, the Hamkins type-lift fixes partially problem (1), given that the

partition construction is produced by leaving alone the entire original model.

Furthermore, using the type-lift we obtain models where different sets witness different

instances of Unrestricted Comprehension, thus providing more discriminating models.

Thus, this construction also provides a solution to problem (2).

But we have a decisive drawback in the case of the Hamkins-type lift: as in

the case of NLP, we are forced to define identity, sinceM∼ does not necessarily interpret

“ = ” as the identity relation. So, this construction faces the same criticism as NLP: we

lose LL.

The first is that in the collapsed model the denotation of = may not be the

identity relation. However, as far as constructing models of set theory goes, we
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can ignore this, since we do not need to assume that the language contains the

identity predicate. We can just define x = y as ∀z(z ∈ x ↔ z ∈ y) ∧ ∀z(x ∈

z ↔ y ∈ z). In ZF this delivers the substitutivity of identicals. In naïve set

theory, as we are understanding it here, it does not. So identity will behave

in an unusual way in such a theory. But since the name of the game at this

point is recapturing the theorems of ZF, this does not matter. (PRIEST, 2017,

p. 102)

But then again, if we can ignore the loss of such intuitive principles in favor of fruitful

derivations, why should we not simply choose to start with (classical) ZF in the first place

? It seems therefore that this particular argument by Priest supports more the (classical)

iterative conception of set rather than the naïve paraconsistent strategy.

However, there exists a deeper problem that affects both equivalence

relations proposed by Priest. It concerns the philosophical plausibility of his

model-theoretic approach in general. As noticed by (MEADOWS, 2015), if the purpose

of Priests model-theoretic strategy is to justify the axioms and theorems of ZF, then we

have a vicious circle, since the collapsed models are carried out within ZF itself.

Nevertheless, Priest argues that the criticism put forward by (MEADOWS, 2015) gets

off on the wrong foot since the model-theoretic approach is not intended to justify ZF

but to show that it is possible to have a model of both ZF and NLP=.

Unfortunately, this argument presupposes that ZF is consistent, which seems to

be an assumption that is unavailable for advocates of the naïve paraconsistent approach.

As we have already seen any argument that appeals to the fruitfulness of this assumption

seems to point away from the motivation of naïve paraconsistent set theory.

On the other hand, we could argue that this assumption is grounded on the

belief that we have an intuitive model of ZF within the cumulative hierarchy.

Unfortunately, this argument seems to presuppose that the existence of such a model

implies syntactic consistency, however, in a paraconsistent setting this is not the case.

Actually, this fact constitutes one of the main motivations of Priest’s model-theoretic

approach. Moreover, as noticed in (PRIEST, 2006, p. 98), the axioms of ZF are not

consistently true, since both Separationϕ and its negation hold. So, even the validity of

the ZF axioms in the collapsed models, can not support the assumption that ZF is

consistent.
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Finally, we conclude that the model-theoretic approach is also unsatisfactory,

as stated as follows:

(...) the model-theoretic strategy, consisted in arguing that the universe of

sets models the ZF axioms and properly extends the cumulative hierarchy of

sets. I argued that this strategy has several problems, chief among which is

the fact that it ultimately needs to assume that the cumulative hierarchy is

a consistent domain. I argued, however, that the dialetheist does not seem

to have any reason to believe that the cumulative hierarchy is a consistent

domain. (INCURVATI, 2020, p. 127)

3.7 The da Costa approach

In this section, we introduce another family of naïve paraconsistent set theories:

the NFn- set theories or simply da Costa set theories. These set theories are obtained by

combining the non-logical axioms of New Foundation (NF) with the first-order logic C=
n

which was introduced by da Costa in (COSTA, 1986) and (COSTA, 1974). Let us first

discuss the logical axioms.

The philosophical motivation of the C-systems is to preserve as much as

possible from classical propositional logic and to obtain a paraconsistent logic by

modifying adequately the negation. The C-systems were intended to offer a logical

framework for inconsistent theories in which “there are good theorems, whose negation

are not provable and bad theorems whose negation are provable.” (COSTA, 1986,

p. 498) Furthermore, da Costa proposed the following maxims that each of his

paraconsistent calculi should satisfy:

(1) The law of non-contradiction, i.e., ¬(ϕ ∧ ¬ϕ) is not a valid scheme.

(2) There is a set of formulas Γ and formulas ϕ and ψ such that Γ ∪ {ϕ,¬ϕ} 0 ψ.

(3) It must be simple to extend the calculi Cn to its corresponding first-order calculi

C∗n.

(4) The calculi Cn should validate as many rules and theorems as possible of CPL (C0)

without violating (1) and (2).
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Having these criteria in mind, we will start to build up the C-systems as

introduced in (MARCOS, n.d.) and start with an axiomatic presentation of Cmin, the

minimal paraconsistent logic:

Definition 3.7.1. Cmin is defined over LProp by the following axiom schemes and

inferences rules.

Axiom schemes:

ϕ→ (ψ → ϕ) (Min1)(
ϕ→ (ψ → χ)

)
→
(
(ϕ→ ψ)→ (ϕ→ χ)

)
(Min2)

ϕ→
(
ψ → (ϕ ∧ ψ)

)
(Min3)

(ϕ ∧ ψ)→ ϕ (Min4)

(ϕ ∧ ψ)→ ψ (Min5)

ϕ→ (ϕ ∨ ψ) (Min6)

ψ → (ϕ ∨ ψ) (Min7)(
(ϕ→ ψ)→ (ψ → χ)

)
→
(
(ϕ ∨ ψ)→ χ)

)
(Min8)

ϕ ∨ (ϕ→ ψ) (Min9)

ϕ ∨ ¬ϕ (Min10)

¬¬ϕ→ ϕ (Min11)

Inference rule:

ϕ ϕ→ ψ (MP).
ψ

Notice that because of Min1, the logic Cmin and all its extensions are

incompatible with the relevant approach. This is, in particular, due to the reason that

Min1 does not satisfy the variable sharing property (see section 3.5). Also Cmin is

maximally consistent with respect to classical propositional logic. Moreover, the

deduction theorem holds, so we can obtain the rest of C-systems and LFI’s (see section

3.8) by adding new inferences rules.

Following (MARCOS, n.d., p. 50) we extend our language by adding the unary

operators “ • ” and “ ◦ ”, which respectively represent the metalinguistic property of



63

inconsistency and consistency. We denote this extended propositional language by L{•,◦}Prop.

Then we can define the basic logic of inconsistency (bC) as follows:

Definition 3.7.2. We obtain the logic bC which is defined over the language L{•,◦}Prop, by

adding to Cmin the following inference rule;

◦ϕ, ϕ,¬ϕ (gentle law of explosion).
ψ

The gentle law of explosion can be intuitively read as if ϕ is consistent and

contradictory, then it explodes. The motivation behind this rule is maxim (4.) of da

Costa’s criteria, which suggests that the law of explosion should hold at least for the

consistent fragment of each C-system. Additionally, using the consistency operator we

can define a strong negation ∼ ϕ =df. ¬ϕ ∧ ◦ϕ that behaves as the classical negation in

all C-systems.

Notice that CP does not hold for da Costa’s weak negation, see (MARCOS,

n.d., Thrm. 3.20), because of Min1 which coupled with CP, restores the law of explosion,

i.e., ϕ → (¬ϕ → ψ). Now, we can advance to some extensions of bC, namely bbC and

bbbC by adding inferences rules that ensure us that • and ◦ become duals.

Definition 3.7.3. We obtain the logic bbC, by adding to bC the following inference rules;

•¬ϕ (bbC1),◦ϕ

◦¬ϕ (bbC2).•ϕ

Moreover, we have:

Definition 3.7.4. We obtain the logic bbbC, by adding to bbC the following inference

rules;

•ϕ (bbbC1),◦¬ϕ

◦ϕ (bbbC2).•¬ϕ

In bbbC we have ϕ ∧ ¬ϕ ` •ϕ but not the other way other around, i.e.,

•ϕ ` ϕ ∧ ¬ϕ does not hold. Thus we can add precisely this desiderata as an inference

rule and define a logic, where a contradiction matches the notion of inconsistency.
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Definition 3.7.5. We obtain the logic Ci, by adding to bbbC the following inference rules;

•ϕ (Ci).ϕ ∧ ¬ϕ

At this point, we are able to prove that •ϕ a` ϕ∧¬ϕ, but on the other hand,

◦ϕ a` ¬(ϕ∧¬ϕ) does not hold. Nevertheless, we can again add precisely this desiderata

as inference rule and define the following logic:

Definition 3.7.6. We obtain the logic Cil, by adding to Ci the following inference rules;

¬(ϕ ∧ ¬ϕ) (cl).◦ϕ

Notice that no extension of Cil can have ¬(ϕ∧¬ϕ) as a theorem since cl would

render a consistent system. From this logic on, we get da Costa’s C - systems. These

form an n-ary hierarchy (0 ≤ n ≤ ω) of propositional calculi Cn (where C0 corresponds to

the negation-free fragment of classical propositional logic), first-order calculi C∗n and first-

order calculi with identity C=
n . The intuitive idea behind these calculi is that consistency

propagates from atomic formulas to more complex formulas.

Thus we define C1 as follows:

Definition 3.7.7. We obtain the logic C1, by adding to Cil the following inference rules;

◦ϕ ∧ ◦ψ (∧◦),
◦(ϕ ∧ ψ)

◦ϕ ∨ ◦ψ (∨◦),
◦(ϕ ∨ ψ)

◦ϕ→ ◦ψ (→◦).
◦(ϕ→ ψ)

Each of da Costa’s systems has the same axioms, however, each system modifies

the meaning of the formula ◦ϕ. In the case of C1 we have already seen that ◦ϕ abbreviates

the formula ¬(ϕ ∧ ¬ϕ). Then, in the case of C2, ◦ϕ abbreviates the formula ◦ϕ ∧ ◦ ◦ ϕ,

and for C3, ◦ϕ abbreviates ◦ϕ ∧ ◦ ◦ ϕ ∧ ◦ ◦ ◦ϕ and so on. The seminal intuition here

is that we have to add more and more premises to each calculi in order to guarantee
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consistency (MARCOS, n.d., p. 76). Furthermore, each system Cn+1 is strictly weaker

than the calculus Cn, which makes Cω the weakest calculus of the hierarchy.

Now, we will turn our attention to Quine’s set theory NF, as introduced in

(MENDELSON, 2015, pp. 300-303). For the original exposition of Quine, consider

(QUINE, 1937). Quine’s main motivation behind NF, was to provide an alternative way

of dealing with the pathological sets of naïve set theory. His proposal: a type theory

without types.

First of all, notice that x = y abbreviates the formula ∀z(x ∈ z ↔ y ∈ z) in

NF. Next, we go on to define the notion of stratification.

Definition 3.7.8. A well formed formula ϕ is said to be stratified if we can assign integers

to the variables of ϕ such that:

(i) All occurrences of the same free variable are assigned the same integer.

(ii) All occurrences of a variable bound by the same quantifier are assigned the same

integer.

(iii) Any subformula of the form x ∈ y of ϕ, is such that the number assigned to y is the

successor of that assigned to x.

Notice that the formula x ∈ x is not stratified, since x would have to receive

an integer n and n + 1 at the same time, contradicting condition (i) of Definition 3.7.8.

As a consequence, the Russel-set does not exist in NF. On the other hand, the formula

∃y(x ∈ y) ∧ ∃y(y ∈ x) is stratified given the assignment: ∃y2(x1 ∈ y2) ∧ ∃y0(y0 ∈ x1).

Now, we can define Stratified Comprehension as follows.

Definition 3.7.9. For any stratified formula ϕ(x), we have

∃y∀x
(
x ∈ y ↔ ϕ(x)

)
. (Stratified Comprehension)

Definition 3.7.10. The Theory NF consists of the axioms and inference rules of

classical first-order logic (without identity) for the language L∈ extended by

Extensionality and Stratified Comprehension.

A particular nice property of NF at the meta-theoretic level is the fact that

it is finitely axiomatizable, as proven by (HAILPERIN, 1944). Furthermore, NF is a set

theory with an universal set.
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Lemma 3.7.11. V ∈ V holds in NF.

Proof. We obtain V by instantiating the formula (∃x)(∀y)(y ∈ x ↔ y = y). Then by

definition of V we get by Stratified Comprehension that ∀x(x ∈ V ↔ x = x). Furthermore,

given that V = V , we conclude V ∈ V .

Interestingly, NF is not a paraconsistent set theory given that all the remaining

pathological sets and set-theoretical paradoxes of naïve paraconsistent set theory that we

introduced in Chapter 3.2 are blocked (FORSTER, 1974, p. 24). For instance, Cantor’s

paradox does not go through due to the fact that we are unable to prove Cantor’s theorem.

Let us have a closer look at the original proof and why it fails within NF.

The original proof of Cantor’s theorem consists in showing by reductio that

there exists no surjection f : X → P (X). In particular, we need to construct the diagonal

set {x ∈ X : x /∈ f(x)}, however, this object is a set only in the case that the formula

x ∈ X ∧ x /∈ f(x) ∧ f : X → P (X) is stratified. At the same time, this formula depends

on the formula ∃y
(
y ∈ P (X) ∧ 〈y, x〉 ∈ f ∧ f : X → P (X)

)
being stratified. Notice

that due to 〈y, x〉 ∈ f we get that x and y will be given the same type, however, due

to f : X → P (X) and, in particular, due to the the subformulas x ∈ X and y ⊆ X,

y will receive one type higher than x. Again, as in the case of NLP there could exist

an alternative proof, nevertheless, until now there has not been found any successful

proof-strategy.

Although we do not have Cantor’s theorem in its original form, NF can still

prove some weaker analog: the cardinality of singleton subsets of a set is smaller than the

cardinality of its subsets. In particular, let S(A) abbreviate {x | ∃u(u ∈ A ∧ x = {u})}.

Then, we can show in NF that for any set A we have

| S(A) | < | V | .

So, | S(V) | < | V |, which means that V is not equinumerous to the set of singletons of

its elements.

Another remarkable fact about NF is that we can derive large parts of standard

set theory and mathematics from it (ROSSER, 1953). On the “bad” side we have that NF

disproves AC, the domain of application of Cantor’s theorem is considerably reduced and

mathematical induction holds only for stratified properties. Finally, in a recent surprising
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turn of events, (HOLMES, 2015) claims to have proven that NF is consistent. Another

interesting feature of NF is that a considerable part of category theory can be carried out

within NF as demonstrated by (MACLANE, 1971).

Now, in order to obtain the NFn-hierarchy, we take as non-logical axioms

Extensionality and a slightly modified version of Stratified Comprehension and as logical

axioms we choose one of da Costa’s C-systems. Moreover, we say that a formula ϕ is

normal, if ϕ is stratified or, if ϕ unstratified and neither the strong negation nor the

conditional occur in it. Thus, the crux of da Costa’s approach is that Modified Stratified

Comprehension is restricted to normal formulas.

Definition 3.7.12. For any normal formula ϕ(x),

∃y∀x
(
x ∈ y ↔ ϕ(x)

)
. (Modified Stratified Comprehension)

Then we define NFn where n ≥ 1 as follows:

Definition 3.7.13. The Theory NFn where n ≥ 1 consists of the axioms and inference

rules of C=
n for the language L∈ extended by Extensionality and Modified Stratified

Comprehension.

It has been shown that each NFn set theory is a paraconsistent set theory. The

only exception is NF0 which is Quine’s original NF.

Theorem 3.7.14. (COSTA, 1986, Thm. 7). NFn where n ≥ 1 is paraconsistent.

Furthermore, assuming that NF is consistent we can show that each NFn set

theory is non-trivial.

Theorem 3.7.15. (COSTA, 1986, Thm. 9). If NF is consistent, NFn where n ≥ 1 is

non-trivial.

Let us now address a major drawback of these set theories. We argue that

they are unfaithful to their philosophical motivation. As already pointed out: the guiding

idea behind a naïve paraconsistent set theory is that the correct non-logical axioms of

set theory are Unrestricted Comprehension and Extensionality. In particular, this implies

that our comprehension schema should be able to instantiate as many sets as possible.

Nevertheless, in each NFn set theory we have to restrict the formulas occurring in Stratified
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Comprehension to normal formulas, i.e., implication and strong negation-free formulas.

Notice that only in the case of NF0 we are allowing Stratified Comprehension to instantiate

every stratified formula, however, NF0 is not a paraconsistent set theory. Now, in the case

that we do not apply this restriction, then every NFn set theory, where n > 1, is trivial

via a variation of the Curry-paradox (COSTA, 1974, p. 507, Remark 4 ). Hence, we are

forced to give up on a considerable amount of instances of the comprehension schema in

NFn in order to grant the non-triviality of these set theories. This seems to go against

our desiderata that we want to accommodate as many sets as possible in our set-theoretic

universe. More importantly, there exists no convincing reason of why a set-theorist should

embrace Stratified Comprehension restricted to normal formulas instead of Separation and

the classical iterative conception of set. We conclude that this approach is unfeasible as

well.

There should be more sets around than are dreamt of in a consistentist’s

philosophy. Therefore, the fact that such set-theoretic constructions can not

avoid all the limitations of set building speaks against them. (BERTO, 2007,

p. 248)

3.8 LFI - Set Theories

The LFIs form a family of paraconsistent logics that extend Da Costa’s

C-systems. These logics where first introduced by João Marcos in his doctoral thesis

(MARCOS, n.d.).2 Formally, we define these logics as those which satisfy the following

two conditions:

1. There is a set of formulas Γ and formulas ϕ and ψ such that Γ ∪ {ϕ,¬ϕ} 0 ψ.

2. Given a formula ϕ, there is a set of formulas ◦(ϕ), uniquely determined by ϕ, such

that for any set of formulas Γ and for any formula ψ, Γ ∪ ◦(ϕ) ∪ {ϕ,¬ϕ} ` ψ.

Principle (1.) implies that LFIs are paraconsistent logics and (2.) imposes that negation

has only to be explosive with respect to consistent formulas (which is exactly the idea

behind the gentle law of explosion introduced in the previous section). The weakest LFI

is called mbC and consists of positive classical propositional logic (CPL+), to which a
2For a state-of-the-art presentation of LFIs consider (CARNIELLI; CONIGLIO, 2016a).
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paraconsistent negation ¬ and a consistency operator ◦ are added. We will denote this

expanded language as L{◦,¬}Prop .

Moreover, the classical negation can be defined within mbC as

∼ ϕ =df. ϕ→ (◦ϕ ∧ ϕ ∧ ¬ϕ).

Also notice that mbC constitutes a conservative extension of CPL+, since every theorem

of CPL+ can be recovered in mbC.

Definition 3.8.1. The logic mbC is defined over L{◦,¬}Prop and is axiomatized by the following

axiom schemes and inference rules.

Axiom schemes:

ϕ→ (ψ → ϕ) (Ax1)(
ϕ→ (ψ → γ)

)
→
(
(ϕ→ ψ)→ (ϕ→ γ)

)
(Ax2)

ϕ→
(
ψ → (ϕ ∧ ψ)

)
(Ax3)

(ϕ ∧ ψ)→ ϕ (Ax4)

(ϕ ∧ ψ)→ ψ (Ax5)

ϕ→ (ϕ ∨ ψ) (Ax6)

ψ → (ϕ ∨ ψ) (Ax7)

(ϕ→ γ)→
(
(ψ → γ)→ ((ϕ ∨ ψ)→ γ)

)
(Ax8)

ϕ ∨ ¬ϕ (Ax9)

◦ ϕ→
(
ϕ→ (¬ϕ→ ψ)

)
(Ax10)

Inference rule:

ϕ ϕ→ ψ (MP)
ψ

It is noticeable that the axioms schemes (Ax1−Ax9) plus the inference rule MP,

defined over the same language constitute CPL+. It follows that the only axiom scheme

that differentiates mbC from CPL+ is (Ax10), which is meant to capture the content of

principle (2). Thus, (Ax10) characterizes primarily mbC as an LFI.
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Next, we present Qmbc≈, which is the first-order logic with identity of mbC.

Then, let L≈Fol denote the first-order language with identity that extends the propositional

language L{◦,¬}Prop .

Definition 3.8.2. We obtain the logic Qmbc≈ which is defined over L≈Fol, by adding to

mbC the following axiom schemes and inference rules.

Axiom schemes:

ϕ[x/t]→ ∃xϕ, if t is a term free for x in ϕ. (Ax11)

∀xϕ→ ϕ[x/t], if t is a term free for x in ϕ. (Ax12)

ϕ→ ψ, whenever ϕ is a variant of ψ. (Ax13)

∀x(x ≈ x) (Ax14)

∀x∀y
(
(x ≈ y)→ (ϕ→ ϕ[x/y])

)
, if y is a variable free for x in ϕ. (Ax15)

Inference rules:

ϕ→ ψ , if x is not free in ϕ. (∀In)
ϕ→ ∀xψ

ϕ→ ψ , if x is not free in ψ (∃In)∃xϕ→ ψ

The first iterative paraconsistent set theory (based on a LFI) that we would

like to introduce here is ZFmbC (see Definition 3.8.3). Moreover, the logical axioms of

ZFmbC are given by Qmbc≈ and the non-logical axioms of ZFmbC are ZF-like axioms.

Now, let us have a look at the non-logical axioms of ZFmbC. Observe that

within the axiom of infinity ∅∗ stands for the strong empty set which is defined as ∅∗ =df.

{x : ∼ (x ≈ x)}. For the replacement schema let ϕ(x, y) be a formula with two free

variables. Then FUNϕ denotes the following formula:

FUNϕ =df. ∀x∀y∀z
(
ϕ(x, y) ∧ ϕ(x, z)→ (y ≈ z)

)
.

Moreover, let L∗∈ denote the language of set theory which contains, besides the

equality predicate ≈ and binary predicate ∈, a further unary predicate C, which stands

for the consistency of sets.
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Definition 3.8.3. The theory ZFmbC consists of the axiom schemes and inference rules

of Qmbc≈ for the language L∗∈ extended by the following set-theoretic schemes:

∀x∀y
(
∀z(z ∈ y ↔ z ∈ x)→ (x = y)

)
(Extensionality)

∀x∃y∀z
(
z ∈ y ↔ ∀w ∈ z(w ∈ x)

)
(Power Set)

FUNϕ → ∃b∀y
(
y ∈ b ∧ ∃x(x ∈ a ∧ ϕ(x, y))

)
(Replacementϕ)

∀x∃y∀z
(
z ∈ y ↔ ∃w ∈ x(z ∈ x)

)
(Union)

∀x∀y∃z∀w
(
w ∈ x↔ (w ≈ x ∨ w ≈ y)

)
(Pairing)

∃w
(
(∅∗ ∈ w) ∧ ∀x(x ∈ w → x ∪ {x} ∈ w)

)
(Infinity)

∀x∃y∀z
(
(z ∈ y)↔ ((z ∈ x) ∧ ϕ(x))

)
(Separationϕ)

C(x)→
(
∃y(y ∈ x)→ ∃y

(
(y ∈ x)∧ ∼ ∃z(z ∈ x ∧ z ∈ y)

))
(Weak regularity)

(x 6≈ y)↔ ∃z
(
(z ∈ x) ∧ (z ∈ y)

)
∨ ∃z

(
(z ∈ y) ∧ (z ∈ x)

)
(Unextensionality)

∀x
(
x ∈ y →

(
C(x)→ C(y)

))
(Con0)

∀x
(
C(x)→ ◦(x = x)

)
(Con1)

∀x
(
¬ ◦ (x = x)→ ¬C(x)

)
(Con2)

Notice that in ZFmbC we have a classical negation, ∼ and a paraconsistent

negation ¬ at disposal (since we have these two negations in the underlying logic

Qmbc≈). Moreover, the first six axioms of Definition 3.8.3 together with Foundationϕ
constitute the standard ZF axiom system. The non-standard axioms of ZFmbC are thus

Weak regularity, Unextensionality, and the axioms governing the consistency predicate.

Moreover, in (CARNIELLI; CONIGLIO, 2016b) it is proved that ZFmbC is non-trivial

provided that ZF is consistent.

Notice that ZFmbC is too weak to define inconsistent sets or the

inconsistency operator. However, the main motivation behind LFI-set theories is (1.) to

have inconsistent sets, as well as, consistent sets in our ontology and (b) the ability to

talk about consistent and inconsistent formulas via operators in the object language.

Thus, to overcome this weakness, we can consider extensions of ZFmbC, defined by

taking stronger LFIs and appropriate axioms for the consistency predicate. The first set

theory that is strong enough to support both (a) and (b), is based on the logic mCi.
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Definition 3.8.4. The theory ZFmCi is obtained from ZFmbC by adding the following

axiom schemes, for n ≥ 0 :

¬ ◦ ϕ→ (ϕ ∧ ¬ϕ) (ci)

¬n+2 ◦ ϕ→ ¬n ◦ ϕ (¬n)

∀x(¬C(x)→ ¬ ◦ (x ≈ x) (Con3)

∀x(¬C(x)→ ¬ ◦ (x ∈ x) (Con4)

The first two axioms (ci) and (¬n) transform the underlying logic mbC into the

stronger logic mCi, in which the inconsistency operator can be defined as •ϕ =df. ¬ ◦ ϕ

and inconsistent sets as the dual of consistents sets, so I(x) =df. ¬ C(x).

Finally, we have two more extensions of mCi which are strong enough to satisfy

(a) and (b).

Definition 3.8.5. The theory ZFCi is obtained from ZFmCi by adding the following axiom

schema:

¬¬ϕ→ ϕ (cf)

And secondly, we have:

Definition 3.8.6. The theory ZFCil is obtained from ZFCi by adding the following axiom

schemes:

¬(ϕ ∧ ¬ϕ)→ ◦ϕ, (cl)

∀x(¬(x ≈ x) ∧ (x 6≈ x))→ C(x) (Con5)

∀x((¬(x ∈ x) ∧ (x /∈ x))→ C(x)). (Con6)

A quick word on the motivation of the consistency and inconsistency predicate.

The possibility to distinguish between inconsistent and consistent sets is intended to

capture the intuition of Cantor, that also inconsistent totalities may exist. The authors of

(CARNIELLI; CONIGLIO, 2016a), go one and cite Cantor’s well-known argument, where
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he uses inconsistent totalities in an ad-absurdum proof, to show that the collection of

cardinals is totally ordered, see (NILSON; MESCHKOWSKI, 1991, p. 410). Nevertheless,

this motivation seems unsatisfactory, since it does not follow from Cantors argument that

also inconsistent sets exist.

Thus, one feasible interpretation of inconsistent sets could be in term of proper

classes and consistent sets in terms of sets. But these seems problematic, as well, since

this enters in conflict with axiom con0 which says that consistency is a property that is

preserved ∈-upwards. So even proper classes would become consistent sets and the whole

proper class/set distinction would dissolve. We will address this issue in the context of

algebra-valued models in Chapter 4.5 (pp. 105-106).

Nevertheless, we believe that this objection against the consistency and

inconsistency predicate is not enough to discard LFI-set theories. Especially, since we

are dealing with iterative paraconsistent set theories the deciding criteria should be the

existence of natural models with a rich ontology. Thus, we will try to construct

algebra-valued models for LFI-set theories



74

Chapter 4

A Class of Models for Non-classical

Set Theories

Summary

In this chapter, our main goal was to find a wider class of DRI-algebras that

give rise to non-classical models of set theory. First, we show that join complemented

lattices equipped with a suitable binary operation ⇒ are indeed DRI-algebras, however,

these join complemented lattice-valued models fail to be expressive enough for the

construction of set-theoretic models. Then, we show that meet complemented meet

semilattices equipped with a binary operation ⇒ are as well DRI-algebras and each of

this meet complemented lattice-valued models validates the negation-free fragment of

ZF. Then, we show that each totally ordered meet complemented lattice equipped with

the same binary operation ⇒ allows us to build algebra-valued models of full ZF, whose

internal logic is neither paraconistent, nor intuitionistic, nor classical. We apply these

models to give an independence proof of Foundation from ZF. Finally, we attempt to

build algebra-valued models for LFI-set theories and point out that we face several

philosophical and technical difficulties.

4.1 A Wider Class of DRI-algebras

In this section, we define two classes of DRI-algebras. While the first does not

give rise to models of NFF-ZF, the second one does. The former attempt constitutes a
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negative result. However, on the one hand, it helps in understanding better the class of

DRI-algebras, and, on the other hand, it justifies the introduction of the latter.

4.2 Join Complemented Lattices

We are searching for DRI-algebras A = 〈A,∧,∨,⇒,∗ ,1,0〉 such that A is

not a Heyting algebra and V(A) |=F ZF for some filter F on A. The first class that we

will consider here that of lattices expanded with the join complement. These algebras

are the duals of meet complemented lattices (GOODMAN, 1981). As the latter do not

always verify the equality x ∨ x∗p = 1, for every element x, where x∗p indicates the meet

complement of x, the former do not verify x∧x∗d = 0, where x∗d is the join complement of

x. Consequently, the join complement would provide a paraconsistent negation. Moreover,

in this section, we will consider lattices expanded with join complements.

Definition 4.2.1. We call a structure 〈A,∧,∨,∗d ,1,0〉 a join complemented lattice, if

(i) 〈A,∧,∨,1,0〉 is a complete bounded distributive lattice and

(ii) the unary operator ∗d is defined for every x ∈ A as x∗d = min{y ∈ A : x ∨ y = 1}.

For matters of space, we will not give a detailed presentation of join

complemented lattices. For more details see (URBAS, 1996) and (GOODMAN, 1981).

However, we now state the main properties of the join complement, i.e.,

x ∨ x∗d = 1 (DI)

if x ∨ y = 1, then x∗d ≤ y. (DE)

It will also be useful to bear in mind the following two lemmas.

Lemma 4.2.2. Let 〈A,∧,∨,∗d ,1,0〉 be a join complemented lattice and x, y ∈ A. If

y ≤ x, then x∗d ≤ y∗d.

Proof. Since y∨y∗d = 1 and y ≤ x, we get x∨y∗d = 1. Therefore, by (DE), x∗d ≤ y∗d .

Lemma 4.2.3. Let 〈A,∧,∨,∗d ,1,0〉 be a join complemented lattice. For any x, y ∈ A

we have:

(x ∧ y)∗d = x∗d ∨ y∗d (DM∧)
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Table 4.1: Operations for A3

⇒a 1 1
2 0

1 1 1
2 0

1
2 1 1 1

0 1 1 1

∨ 1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

∧ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

x x∗

1 0
1
2 1

0 1

Proof. As x∧y ≤ x, then, using Lemma 4.2.2, x∗d ≤ (x∧y)∗d . Analogously, y∗d ≤ (x∧y)∗d .

So, x∗d ∨ y∗d ≤ (x ∧ y)∗d . For the other inequality, note that, using (DI) and (DE) we

have both (x∗d ∨ y∗d)∗d ≤ y. So, (x∗d ∨ y∗d)∗d ≤ x ∧ y. Then, using Lemma 4.2.2, we get

(x∧ y)∗d ≤ (x∗d ∨ y∗d)∗d∗d ≤ x∗d ∨ y∗d , where the last inequality follows from the fact that

x∗d∗d ≤ x.

4.2.1 The ⇒a-operator

Notice that so far we have no conditional in the language of our join

complemented lattices. Thus, we will now define a binary operator ⇒a for our join

complemented lattices that mimics the definition of the material conditional.

Definition 4.2.4. We call a structure 〈A,∧,∨,⇒a,
∗d ,1,0〉 an implicative join

complemented lattice, if

(i) 〈A,∧,∨,∗d ,1,0〉 is a join complemented lattice and

(ii) the binary operation ⇒a is defined for any x, y ∈ A as

x⇒a y =df. x
∗d ∨ y.

We have depicted the operations of the three-element implicative join

complemented lattice, which we will call A3, in Table 3.1 above. Next, we show that

every implicative join complemented lattice is a DRI-algebra.

Theorem 4.2.5. Every implicative join complemented lattice 〈A,∧,∨,⇒a,
∗d ,1,0〉 is a

DRI-algebra.
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Proof. (P1). Suppose x ∧ y ≤ z. Then, by ∨-monotonicity, y∗d ∨ (x ∧ y) ≤ y∗d ∨ z. By

distributivity, it follows that (y∗d ∨ x) ∧ (y∗d ∨ y) ≤ y∗d ∨ z. Finally, as y∗d ∨ y = 1 and

x ≤ y∗d ∨ x, it follows that x ≤ y∗d ∨ z. That is, P1 holds.

(P2). Suppose y ≤ z. Then, by ∨-monotonicity, x∗d ∨ y ≤ x∗d ∨ z. That is, P2 holds.

(P3). Suppose y ≤ z. Then, by ∗d-antimonotonicity, z∗d ≤ y∗d . So, by ∨-monotonicity,

z∗d ∨ x ≤ y∗d ∨ x. That is, P3 holds.

(P4). In order to see that P4 holds, on the one hand, by (DM∧), we have that (x∧y)∗d∨

z ≤ (x∗d ∨ y∗d) ∨ z. So, by ∨-associativity, it follows that (x ∧ y)∗d ∨ z ≤ x∗d ∨ (y∗d ∨ z).

On the other hand, as x ∧ y ≤ x, by ∗d-antimonotonicity, we have that x∗d ≤ (x ∧ y)∗d .

Analogously, we get y∗d ≤ (x∧y)∗d . Then, x∗d∨(y∗d∨z) ≤ (x∧y)∗d∨z. So, P4 holds.

Although Theorem 4.2.5 shows that any implicative join complemented lattice

A is a DRI-algebra, to demonstrate that we can build lattice-valued models of set theory

on top of these structures we still need to check that the BQϕ property, for negation free

ϕ in V(A). That is,

J∀x ∈ u ϕ(x)K =
∧

x∈dom(u)
(u(x) ⇒a Jϕ(x)K),

should hold for any ϕ ∈ NFF-LA∈. Unfortunately, this is not the case, since we will prove

that there exists a negation-free formula ϕ ∈ LA∈ for BQϕ fails.

Lemma 4.2.6. Let A = 〈A,∧,∨,⇒a,
∗d ,1,0〉 be an implicative join complemented lattice

with more than two elements and let V(A) be the corresponding A-valued model. Then,

for any u, v, w ∈ V(A) the following claims do not hold:

(i) Ju = vK ∧ Jv = wK ≤ Ju = wK,

(ii) Ju = vK ∧ Ju ∈ wK ≤ Jv ∈ wK,

(iii)
(
Ju = vK⇒a Ju ∈ wK

)
=
(
Ju = vK⇒a Jv ∈ wK

)
.

Proof. (i) Consider A3 (see Table 3.1) and the elements p0, p 1
2
, p1 ∈ V(A3) defined as

p0 = {〈∅,0〉}, p 1
2

= {〈∅, 1
2〉}, and p1 = {〈∅,1〉}. Then, we have

(
Jp0 = p 1

2
K ∧ Jp 1

2
= p1K

)
= 1

2 > Jp0 = p1K = 0.
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(ii) Consider again A3 and the elements p0, p 1
2
, p1 ∈ V(A3) and additionally let u =

{〈p0,
1
2〉}. Then,

Jp 1
2
∈ uK = (u(p0) ∧ Jp0 = p 1

2
K) = 1

2

and

Jp1 ∈ uK = (u(p0) ∧ Jp0 = p1K) = 0.

Hence,
(
Jp 1

2
= p1K ∧ Jp 1

2
∈ uK

)
= 1

2 > Jp1 ∈ uK = 0.

(iii) Consider A3 and the elements p0, p 1
2
, p1 ∈ V(A3) and let v = {〈p1,1〉}. Then,

Jp 1
2
∈ vK = (v(p1) ∧ Jp 1

2
= p1K) = 1

2 .

Hence,

Jp0 = p 1
2
K⇒a Jp0 ∈ vK = 0

and

Jp0 = p 1
2
K⇒a Jp 1

2
∈ vK = 1

2 .

Therefore,
(
Jp0 = p 1

2
K⇒a Jp 1

2
∈ vK

)
6=
(
Jp0 = p 1

2
K⇒a Jp0 ∈ vK

)
.

This gives us immediately the following result.

Theorem 4.2.7. Let A = 〈A,∧,∨,⇒a,
∗d ,1,0〉 be an implicative join complemented

lattice with more than two elements. Then BQϕ does not hold in V(A).

Proof. We use p0, v, p 1
2
∈ VA3 (where v is defined as in the previous Lemma) and the

formula ϕ(x) = (x ∈ v). Define the name u = {〈p 1
2
,1〉}. Then,

∧
x∈dom(u)

(u(x)⇒a Jϕ(x)K)

= (u(p 1
2
)⇒a Jϕ(p 1

2
)K)

= (1⇒a
1
2)

= 1
2 .
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However, on the other hand,

∧
x∈V(A3)

( ∨
y∈dom(u)

(u(y) ∧ Jy = xK)⇒a Jϕ(x)K
)

≤ (u(p 1
2
) ∧ Jp0 = p 1

2
K)⇒a Jϕ(p0)K

= (1⇒a 0)

= 0.

This concludes our proof.

Theorem 4.2.7 shows that taking an implicative join complemented lattice of

the form A = 〈A,∧,∨,⇒a,
∗d ,1,0〉 is unfortunately not enough to validate the negation-

free fragment of ZF.

4.2.2 The ⇒b-operator

Before giving up on this approach, we can consider another class of implicative

join complemented lattices which we obtain by defining another binary operation on join

complemented lattices.

Definition 4.2.8. We call a structure 〈A,∧,∨,⇒b,
∗d ,1,0〉 an implicative join

complemented lattice, if

(i) 〈A,∧,∨,∗d ,1,0〉 is a join complemented lattice and

(ii) the binary operation ⇒b is defined for any x, y ∈ A as

x⇒b y =df. (x ∧ y∗d)∗d .

Lemma 4.2.9. Every implicative join complemented lattice 〈A,∧,∨,⇒b,
∗d ,1,0〉 satisfies

P2-P4.

Proof. (P2). Suppose y ≤ z. By ∗d-antimonotonicity, it follows that z∗d ≤ y∗d . Then,

by ∧-monotonicity, we get x ∧ z∗d ≤ x ∧ y∗d . Again by ∗d-antimonotonicity we conclude

(x ∧ y∗d)∗d ≤ (x ∧ z∗d)∗d . Therefore, x⇒b y ≤ x⇒b z. So, P2 holds.

(P3). Suppose y ≤ z. By ∧-monotonicity it follows that y ∧ x∗d ≤ z ∧ x∗d . Now, by
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∗d-antimonotonicity, we conclude (z ∧ x∗d)∗d ≤ (y ∧ x∗d)∗d . Therefore z ⇒b x ≤ y ⇒b x.

So, P3 holds.

(P4). We have to show that
(
(x ∧ y) ∧ z∗d

)∗d =
(
x ∧ (y ∧ z∗d)∗d∗d

)∗d . Now, on one

hand, using (DM∧), the left-hand side equals (x∧ y)∗d ∨ z∗d∗d , which, using (DM∧) again,

equals (x∗d ∨ y∗d) ∨ z∗d∗d . On the other hand, also using (DM∧), the right-hand side

equals x∗d ∨ (y ∧ z∗d)∗d∗d∗d , which, given that ∗d∗d∗d =∗d and using (DM∧) again, yields

x∗d ∨ (y∗d ∨ z∗d∗d). Using ∨-associativity, we reach our goal. So, P4 holds.

However, property P1 does not hold for the implicative join complemented

lattices 〈A,∧,∨,⇒b,
∗d ,1,0〉 with more than two elements. Indeed, consider the three-

element join complemented lattice A3 = 〈A,∧,∨,⇒b,
∗d ,1,0〉. Let y = 1 and x = z = 1

2 .

Then,

(x ∧ y) = z = 1
2 ,

thus verifying the antecedent of P1. However, y = z∗d = (y ∧ z∗d) = 1 and so,

(y ∧ z∗d)∗d = 0,

contradicting the consequent of P1. Thus, every implicative join complemented lattices

〈A,∧,∨,⇒b,
∗d ,1,0〉 with more than two elements is not a DRI-algebra.

4.3 Meet Complemented Lattices

In this section, we explore a second class of lattices for the construction of

algebra-valued models of set theory. We will show that every meet complemented

semilattice that is equipped with a particular binary operation ⇒ is indeed a

DRI-algebra.

Definition 4.3.1. We call a structure 〈A,∧,∗p ,0〉 a meet complemented meet semilattice,

if

(i) 〈A,∧,0〉 is a meet semilattice and

(ii) the unary operation ∗p is defined for any x ∈ A as

x∗p = max{y ∈ A : (x ∧ y) = 0}.



81

Moreover, the main properties of the meet complement that we will be using

are the following:

(x ∧ x∗p) = 0, (PI)

if (x ∧ y) = 0, then y ≤ x∗p . (PE)

Then we can show that the meet complement has further properties:

Lemma 4.3.2. Let 〈A,∧,∗p ,0〉 be a meet complemented meet semilattice. Then for any

x, y ∈ A we have:

(i) x ≤ x∗p∗p,

(ii) if x ≤ y, then y∗p ≤ x∗H ,

(iii) x∗p∗p∗p = x∗p,

(iv) (x ∧ y)∗p ∧ x ≤ y∗x,

(v) (x ∧ y)∗p∗p = x∗p∗p ∧ y∗p∗p.

Proof. (i) By (PI) and ∧-commutativity we get (x∗p∧x) = 0. Then using (PE), x ≤ x∗p∗p .

(ii) From x ≤ y we get (x ∧ y) = x. Then using (PI) and a property of ∧ we get

x ∧ (y ∧ y∗p) = 0, which using ∧-associativity implies (x ∧ y) ∧ y∗p = 0. So x ∧ y∗p = 0.

Then by (PE), y∗p ≤ x∗p .

(iii) By part (i) we get x∗p ≤ x∗p∗p∗p . Now, by part (i) and part (ii) we get x∗p∗p∗p ≤ x∗p .

(iv) By (PI) we have (x ∧ y) ∧ (x ∧ y)∗p = 0, which, using ∧-commutativity and ∧-

associativity, implies y ∧
(
(x ∧ y)∗p ∧ x

)
= 0. Our goal follows using (PE).

(v) Applying part (ii) twice to x ∧ y ≤ x we get (x ∧ y)∗p∗p ≤ x∗p∗p . Analogously

(x ∧ y)∗p∗p ≤ y∗p∗p . So, (x ∧ y)∗p∗p ≤ y∗p∗p ∧ x∗p∗p . For the other inequality proceed as

follows :

(1) y ∧ (x ∧ y)∗p ≤ x∗p (by part (iv))

(2) x∗p∗p ∧ y ∧ (x ∧ y)∗p ≤ x∗p (by (1) and a property of ∧)

(3) x∗p∗p ∧ y ∧ (x ∧ y)∗p ≤ x∗p∗p (by a property of ∧)

(4) x∗p∗p ∧ y ∧ (x ∧ y)∗p = 0 (by (2) and (3))

(5) y ∧ (x∗p∗p ∧ (x ∧ y)∗p) = 0 (from (4) by properties of ∧)
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(6) x∗p∗p ∧ (x ∧ y)∗p ≤ y∗p (from (5) by (PE))

(7) y∗p∗p ∧ x∗p∗p ∧ (x ∧ y)∗p ≤ y∗p (from (6) by a property of ∧)

(8) y∗p∗p ∧ x∗p∗p ∧ (x ∧ y)∗p ≤ y∗p∗p (by a property of ∧)

(9) y∗p∗p ∧ x∗p∗p ∧ (x ∧ y)∗p = 0 (by (7) and (8))

(10) (x ∧ y)∗p ∧ (y∗p∗p ∧ x∗p∗p) = 0 (from (8) and properties of ∧)

(11) y∗p∗p ∧ x∗p∗p ≤ (x ∧ y)∗p∗p (from (10) and (PE)).

Now, we can define the binary operation ⇒t within our meet complemented

meet semilattices. We will call the resulting structures implicative meet complemented

semilattices.

Definition 4.3.3. We call a structure 〈A,∧,⇒t,
∗p ,0〉 an implicative meet complemented

meet semilattice, if

(i) 〈A,∧,∗p ,0〉 is a meet complemented meet semilattice and

(ii) the binary operation ⇒t is defined for any x, y ∈ A as

x⇒t y =df. (x ∧ y∗p)∗p .

We go on to show that every implicative meet complemented meet semilattice

is a DRI-algebra.

Theorem 4.3.4. Any implicative meet complemented meet semilattice 〈A,∧,⇒t,
∗p ,0〉 is

a DRI-algebra.

Proof. (P1.) Assume x ∧ y ≤ z, that is, (x ∧ y) ∧ z = x ∧ y. By ∧-monotonicity it

follows that
(
(x ∧ y) ∧ z

)
∧ z∗p = (x ∧ y) ∧ z∗p , whose left-hand side equals 0. Then,

x ∧ (y ∧ z∗p) = 0, which implies x ≤ (y ∧ z∗p)∗p . So, P1 holds.

(P2.) Suppose y ≤ z. By Lemma 4.3.2(ii), it follows that z∗p ≤ y∗p , which, using ∧-

monotonicity, implies x ∧ z∗p ≤ x ∧ y∗p . Using Lemma 4.3.2(ii) again, it follows that

(x ∧ y∗p)∗p ≤ (x ∧ z∗p)∗p . So, P2 holds.

(P3.) Assume y ≤ z. Using ∧-monotonicity, it follows that y ∧ x∗p ≤ z ∧ x∗p , which, by

Lemma 4.3.2(ii), implies (z ∧ x∗p)∗p ≤ (y ∧ x∗p)∗p . So, P3 holds.
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(P4.) For P4 we have

(
(x ∧ y) ∧ z∗p

)∗p ≤ (x ∧ (y ∧ z∗p)∗p∗p
)∗p

if and only if (
(x ∧ y) ∧ z∗p

)∗p ∧ (x ∧ (y ∧ z∗p)∗p∗p
)

= 0

if and only if (by Lemma 4.3.2(iii) and Lemma 4.3.2(v))

(
(x ∧ y) ∧ z∗p

)∗p ∧ (x ∧ (y∗p∗p ∧ z∗p)
)

= 0.

Now, the left-hand side of this equation is dominated by y∗p and y∗p∗p at the same time

and we are done. On the other hand, as y ≤ y∗p∗p , by ∧-monotonicity, it follows that

(x ∧ y) ∧ z∗p ≤ (x ∧ y∗p∗p) ∧ z∗p ,

if and only if (by Lemma 4.3.2(iii) and Lemma 4.3.2(v))

(x ∧ y) ∧ z∗p ≤ x ∧ (y ∧ z∗p)∗p∗p .

Finally, using Lemma 4.3.2(ii), it follows that

(
x ∧ (y ∧ ¬z)∗p∗p

)∗p ≤ ((x ∧ y) ∧ z∗p
)∗p
.

Then, P4 holds.

Notice that the property of being a DRI-algebra depends only on the binary

operation ⇒ and the meet ∧, so we can generalize the result of Theorem 4.3.4 to any

complete bounded distributive lattices that is equipped with the binary operation ⇒t.

As before, to construct lattice-valued models of NFF-ZF, we still need to check that the

property BQϕ holds for negation-free ϕ. We show in the next section that this is indeed

the case for any totally ordered implicative meet complemented lattice.
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4.4 Totally Ordered Lattice-valued Models

Definition 4.4.1. A poset 〈A;≤〉 is totally ordered (or a chain) iff for all x, y ∈ A it

holds that either x ≤ y or y ≤ x.

Definition 4.4.2. By a totally ordered implicative meet complemented lattice and well

ordered implicative meet complemented lattice we mean a complete bounded distributive

implicative meet complemented lattice whose underlying poset is totally ordered and a

complete bounded distributive implicative meet complemented lattice whose underlying

poset is well ordered, respectively.

(i) By T we indicate the class of totally ordered implicative meet complemented lattices

of the form T = 〈A,∧,∨,∗p ,⇒t,0,1〉. By an implicative meet complemented T -

lattice we mean a member of T .

(ii) ByW we indicate the class of well ordered implicative meet complemented lattices of

the form T = 〈A,∧,∨,∗p ,⇒t,0,1〉. By an implicative meet complementedW-lattice

we mean a member of W.

(iii) By WF we indicate the class of well ordered implicative meet complemented lattices

of the form T = 〈A,∧,∨,∗p ,⇒t,0,1〉, where the underlying poset is of finite size.

By an implicative meet complemented WF -lattice we mean a member of WF .

Notice that even though we have the meet complement in the signature of each

meet complemented T -lattice, we have not fixed a negation yet. This will be done only

later. Moreover, due to Theorem 4.3.4, we know that every meet complemented T -lattice

is a DRI-algebra.

We now show that each implicative meet complemented lattice that belongs

to (i) of Definition 4.4.2 generates a T-valued model of NFF-ZF− and that each meet

complemented lattice of (ii) of Definition 4.4.2 generates a T-valued model of NFF-ZF.

Lemma 4.4.3. Let 〈A,∧,⇒t,
∗p ,0〉 be an implicative meet complemented meet semilattice

and take any pair x, y ∈ A. Then, we have:

(i) x∗p = 1 iff x = 0,

(ii) x∗p = 0 or x∗p = 1,
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(iii) x∗p = 0 iff x 6= 0,

(iv) (x⇒t y) = 0 iff x 6= 0 and y = 0,

(v) (x⇒t y) = 1 or (x⇒t y) = 0.

Proof. (i) Suppose x∗p = 1. Then, 0 = (x ∧ x∗p) = (x ∧ 1) = x. For the other direction,

it is clear that 1∗p = 0.

(ii) We either have x ≤ x∗p or x∗p ≤ x. In the first case, we have 0 = (x ∧ x∗p) = x, and

so, x∗p = 1. In the second case, we have 0 = (x ∧ x∗p) = x∗p , i.e., x∗p = 0.

(iii) Suppose x∗p = 0 and x = 0, a contradiction, as 0∗p = 1. For the other direction,

suppose x 6= 0. Now, suppose x∗p = 1. Then, 0 = (x ∧ x∗p) = x, a contradiction. So,

x∗p 6= 1. Using part (ii), it follows that x∗p = 0.

(iv) Suppose x⇒t y = 0, i.e., (x∧y∗p)∗p = 0. Firstly, suppose x = 0. Then, (x∧y∗p)∗p =

1, a contradiction. So, x 6= 0. Secondly, it similarly follows that y∗p 6= 0. Then, using

part (ii), y∗p = 1. So, 0 = (y ∧ y∗p) = (y ∧ 1) = y, i.e., y = 0, as desired. For the other

direction, suppose x 6= 0 and y = 0. Then, using part (iii), x 6= 0 implies that x∗p = 0.

On the other hand, y = 0 implies that (x ∧ y∗p) = x. Hence, (x ∧ y∗p)∗p = 0.

(v) This follows directly from the definition of ⇒t and part (ii).

Corollary 4.4.4. For any T ∈ T and for any x, y ∈ V(T) the following holds:

(i) Jϕ(x)→ ψ(y)K = 0 if and only if Jϕ(x)K 6= 0 and Jψ(y)K = 0.

(ii) Jϕ(x)→ ψ(y)K = 0 or Jϕ(x)→ ψ(y)K = 1,

(iii) Jx = yK = 0 or Jx = yK = 1.

Notice that the T-value of atomic formulas of the form (u ∈ v) can range

over all elements of the universe of T. This is due to the fact that Ju ∈ vK is equal to∨
x∈dom(u)

u(x) ∧ Jx = vK, where the value of u(x) can be any possible element of T. For

instance, if u is an T-name, then v = {〈u, a〉} (where a ∈ T) is also an T-name and

Ju ∈ vK = a.

Now, hereafter we follow very closely the proof strategy of (LÖWE;

TARAFDER, 2015). Although the proofs of Lemma 4.4.5 (including Claim 4.7), Lemma

5.4.3, Theorem 4.4.7, Theorem 4.4.9 and Theorem 4.4.10 are essentially the same, in this

case, the conclusion holds for a whole class of DRI-algebras and not only for PS3. What
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allows this generalization is the abstract definition of ⇒t, which, in the three-element

case, coincides with the implication of PS3.

Lemma 4.4.5. Let T ∈ T . Then, for any three elements u, v, w ∈ V(T), we have:

(i) Ju = vK ∧ Jv = wK ≤ Ju = wK,

(ii) Ju = vK ∧ Ju ∈ wK ≤ Jv ∈ wK.

Proof. (i) Consider any T and apply induction on w. Assume that for all z ∈ dom(w) we

have:

Ju = vK ∧ Jv = xK ≤ Ju = zK.

Due to Corollary 4.4.4(iii), it is enough to consider the case Ju = wK = 0. Therefore,

suppose:

Ju = wK =
∧

x∈dom(u)
(u(x)⇒t Jx ∈ wK) ∧

∧
z∈dom(w)

(w(z)⇒t Jz ∈ uK) = 0.

Given that T is totally ordered, one of the conjuncts must get value 0. So, we do the

following case distinction:

Case 1. Suppose ∧
x∈dom(u)

(u(x) ⇒t Jx ∈ wK) = 0. Then, by Lemma 4.3.2(v) there exists

a x0 such that
(
u(x0)⇒t Jx0 ∈ wK

)
= 0. By Corollary 4.4.4(i), this can only be the case

if u(x0) 6= 0 and Jx0 ∈ wK = 0.

Claim 4.7 For any y0 ∈ dom(v) with v(y0) 6= 0 we have that either Jy0 ∈ wK = 0 or

Jx0 = y0K = 0.

Proof. If Jy0 ∈ wK = ∨
z∈dom(w)

(w(z) ∧ Jy0 = zK) 6= 0, then there exists a z0 ∈ dom(w) such

that w(z0) 6= 0 and Jy0 = zK 6= 0. Since w(z0) 6= 0,

Jx0 ∈ wK =
∨

z∈dom(w)
(w(z) ∧ Jx0 = zK) = 0

yields Jx0 = z0K = 0. Now, by induction hypothesis Jx0 = y0K ∧ Jy0 = z0K ≤ Jx0 = z0K.

Hence, Jx0 = y0K = 0.
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Using Claim 4.7, either there is some y0 ∈ dom(v) with v(y0) 6= 0 and Jy0 ∈ wK = 0, but

then (v(y0)⇒t Jy0 ∈ wK) = 0 (by Corollary 4.4.4(i)), thus:

Jv = wK =
∧

y∈dom(v)
(v(y)⇒t Jy ∈ wK) ∧

∧
z∈dom(w)

(w(z)⇒t Jz ∈ vK) = 0

or for all such y0 we have Jx0 = y0K = 0, so

Jx0 ∈ vK =
∨

y∈dom(v)
(v(y) ∧ Jx0 = yK) = 0

and therefore (u(x0)⇒t Jx0 ∈ vK) = 0 (by Corollary 4.4.4(i)), hence

Ju = vK =
∧

x∈dom(u)
(u(x)⇒t Jx ∈ vK) ∧

∧
y∈dom(v)

(v(y)⇒t Jy ∈ uK) = 0.

Case 2. Suppose ∧
z∈dom(w)

(w(z)⇒t Jz ∈ uK) = 0. This case is proved analogously.

(ii) This claim follows immediately from (i):

Ju = vK ∧ Ju ∈ wK = Ju = vK ∧
∨

z∈dom(w)
(w(z) ∧ Jz = uK)

=
∨

z∈dom(w)
w(z) ∧ (Jz = uK ∧ Ju = vK)

≤
∨

z∈dom(w)
w(z) ∧ (Jz = vK)

= Jv ∈ wK

Lemma 4.4.6. Let T ∈ T . Then, for any three elements u, v, w ∈ V(T), we have

(i) (Ju = vK⇒t Ju = wK) = (Ju = vK⇒t Jv = wK),

(ii) (Ju = vK⇒t Ju ∈ wK) = (Ju = vK⇒t Jv ∈ wK),

(iii) (Ju = vK⇒t Jw ∈ uK) = (Ju = vK⇒t Jw ∈ vK).

Proof. (i) By part (i) of the previous lemma, we have that

Ju = vK ∧ Ju = wK ≤ Jv = wK.
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By applying P2, we get

Ju = vK⇒t (Ju = vK ∧ Ju = wK) ≤ Ju = vK⇒t Jv = wK.

Since, for every T ∈ T , it holds that x ⇒ (x ∧ y) = x ⇒ y (use P2), it immediately

follows that

Ju = vK⇒t Ju = wK ≤ Ju = vK⇒t Jv = wK.

We establish the other direction by symmetry.

(ii) Similar proof but uses part (ii), instead of part (i) of the previous lemma.

(iii) Given Corollary 4.4.4(iii), we may assume Ju = vK = 1 and Jw ∈ uK = 0. So,

(′) Jw ∈ uK =
∨

x∈dom(u)
(u(x) ∧ Jw = xK) = 0

and

(′′) Ju = vK =
∧

x∈dom(u)
(u(x)⇒t Jx ∈ vK) ∧

∧
y∈dom(v)

(v(y)⇒t Jy ∈ uK) = 1.

If for all y ∈ dom(v) we have v(y) = 0, then Jw ∈ vK = 0 and the desiderata follows.

Thus, let us assume that there exists some y0 such that v(y0) 6= 0. Then, using (′′) and

v(y0) 6= 0, it follows that

Jy0 ∈ uK =
∨

x∈dom(u)
(u(x) ∧ Jy0 = xK) 6= 0.

Thus, there exists x0 ∈ dom(u) such that u(x0) 6= 0 6= Jy0 = x0K, which implies that

Jw = x0K = 0 via our first assumption (′). Then, due to part (i), we get

Jw = y0K ∧ Jy0 = x0K ≤ Jw = x0K,

so Jw = y0K = 0. Finally, this gives us

Jw ∈ vK =
∨

y0∈dom(v)
(v(y0) ∧ Jy0 = wK) = 0.

Theorem 4.4.7. Let ϕ ∈ NFF-LT∈ and let T ∈ T . Then, for every u, v ∈ V(T), we have
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(Ju = vK⇒t Jϕ(u)K) = (Ju = vK⇒t Jϕ(v)K).

Proof. By induction on the complexity of ϕ. Atomic cases are provided by Lemma 5.4.3.

For the inductive steps it is enough to consider the two cases JϕK = 0 and JϕK 6= 0. Due

to Corollary 4.4.4(iii) we assume Ju = vK 6= 0, otherwise the desiderata follows trivially.

Case 1. ϕ = ψ ∧ χ.

(i) Let Jψ(u) ∧ χ(u)K = 0. Since any meet complemented T -lattice is totally ordered,

we assume Jψ(u)K = 0. By induction hypothesis, we get

(Ju = vK⇒t Jψ(u)K) = (Ju = vK⇒t Jψ(v)K).

Thus, by Corollary 4.4.4(i) the left-hand side of our equation will receive value 0

and therefore Jψ(v)K = 0. Then, we obtain immediately that

(Ju = vK⇒t Jψ(u) ∧ χ(u)K) = (Ju = vK⇒t Jψ(v) ∧ χ(v)K).

(ii) Now let Jψ(u) ∧ χ(u)K 6= 0. Thus, Jψ(u)K 6= 0 and Jχ(u)K 6= 0. By induction

hypothesis we get (Ju = vK ⇒t Jψ(u)K) = (Ju = vK ⇒t Jψ(v)K) and as well we have

(Ju = vK⇒t Jχ(u)K) = (Ju = vK⇒t Jχ(v)K). Then, we immediately have that both

Ju = vK ⇒t Jψ(u) ∧ χ(u)K and Ju = vK ⇒t Jψ(v) ∧ χ(v)K get value 1, since the

consequent of our implication does not receive value 0.

Case 2. ϕ = ψ ∨ χ.

(i) Let Jψ(u) ∨ χ(u)K = 0. Therefore, Jψ(u)K = 0 and Jχ(u)K = 0. By induction

hypothesis we have (Ju = vK ⇒t Jψ(u)K) = (Ju = vK ⇒t Jψ(v)K) and we get that

(Ju = vK ⇒t Jχ(u)K) = (Ju = vK ⇒t Jχ(v)K). By Corollary 4.4.4(i) we get 0 on

both sides of these equations. Hence, Jψ(v)K = 0 and Jχ(v)K = 0. From this we can

conclude that Jψ(v) ∨ χ(v)K = 0 and thus

(Ju = vK⇒t Jψ(u) ∨ χ(u)K) = (Ju = vK⇒t Jψ(v) ∨ χ(v)K).

(ii) Let Jψ(u) ∨ χ(u)K 6= 0. Assume that Jψ(u)K 6= 0. By induction hypothesis we get

(Ju = vK ⇒t Jψ(u)K) = (Ju = vK ⇒t Jψ(v)K). Since both sides of this equation
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receive value 1, it follows that Jψ(v)K 6= 0. Thus Jψ(v) ∨ χ(v)K 6= 0 and therefore

(Ju = vK⇒t Jψ(u) ∨ χ(u)K) = (Ju = vK⇒t Jψ(v) ∨ χ(v)K).

Case 3. ϕ = ψ → χ.

(i) Let Jψ(u) → χ(u)K = 0. Then by Corollary 4.4.4(i) this can only be the case if

Jψ(u)K 6= 0 and Jχ(u)K = 0. By induction hypothesis we get

(Ju = vK⇒t Jψ(u)K) = (Ju = vK⇒t Jψ(v)K)

and (Ju = vK ⇒t Jχ(u)K) = (Ju = vK ⇒t Jχ(v)K). Given that the first equation

receives value 1 and the second equation receives value 0, we know that Jψ(v)K 6= 0

and Jχ(v)K = 0. By Corollary 4.4.4(i) we have that Jψ(v)→ χ(v)K = 0. Finally, we

get

(Ju = vK⇒t Jψ(u)→ χ(u)K) = (Ju = vK⇒t Jψ(v)→ χ(v)K).

(ii) Let Jψ(u) → χ(u)K 6= 0. This can only be the case if either (1) Jψ(u)K 6= 0

and Jχ(u)K 6= 0, or (2) the antecedent receives value 0, i.e., Jψ(u)K = 0. For (1)

we get via our induction hypothesis that Jψ(v)K 6= 0 and Jχ(v)K 6= 0. Hence,

Jψ(v)→ χ(v)K 6= 0 and therefore

(Ju = vK⇒t Jψ(u)→ χ(u)K) = (Ju = vK⇒t Jψ(v)→ χ(v)K).

Similarly for (2) we get Jψ(v)K = 0. Thus, Jψ(v) → χ(v)K 6= 0. The desiderata

follows immediately.

Case 4. ϕ = ∃xϕ(x, u). Suppose that ϕ is of the form J∃xϕ(x, u)K and notice that

J∃xϕ(x, u)K =
∨

z∈V(T)

Jϕ(z, u)K.

By induction hypothesis, for all z ∈ V(T) we have

(Ju = vK⇒t Jϕ(z, u)K) = (Ju = vK⇒t Jϕ(z, v)K).
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If there is a z ∈ V(T) such that Jϕ(z, u)K 6= 0, then ∨
z∈V(T)

Jϕ(z, u)K 6= 0. Therefore we

have (Ju = vK⇒t Jϕ(z, u)K) = 1 and (Ju = vK⇒t
∨

z∈V(T)
Jϕ(z, u)K) = 1. But by Inductive

Hypothesis we get that (Ju = vK ⇒t Jϕ(z, v)K) = 1, which implies Jϕ(z, v)K 6= 0. Thus∨
z∈V(T)

Jϕ(z, v)K 6= 0 and therefore

(Ju = vK⇒t

∨
z∈V(T)

Jϕ(z, v)K) = 1.

On the other hand, if for all z ∈ V(T) we have Jϕ(z, u)K = 0, then by the inductive

hypothesis we get (Ju = vK ⇒t Jϕ(z, u)K) = 0 = (Ju = vK ⇒t Jϕ(z, v)K). But this means

that for all z ∈ V(T) we have Jϕ(z, v)K = 0. Therefore we get that

(Ju = vK⇒t

∨
z∈V(T)

Jϕ(z, u)K) = 0 = (Ju = vK⇒t

∨
z∈V(T)

Jϕ(z, v)K).

In conclusion,

(Ju = vK⇒t

∨
z∈V(T)

Jϕ(z, u)K) = (Ju = vK⇒t

∨
z∈V(T)

Jϕ(z, v)K).

Case 5. ϕ = ∀uϕ(u). Similar to the previous case.

Lemma 4.4.8. Let T ∈ T and take any pair x, y ∈ T. Then, we have:

(
∨
i∈I
xi)⇒t y =

∧
i∈I

(xi ⇒t y). (†)

Proof. For one inequality, it is enough to prove that

(
(
∨
i∈I
xi) ∧ y∗p

)∗p ≤ (xi ∧ y∗p)∗p ,

for any i ∈ I. In fact, we have xi∧ y∗p ≤ (∨i∈I xi)∧ y∗p . For the other inequality, for each
i ∈ I we have

(xi ∧ y∗p)∗p ∧
∨
i∈I

(xi ∧ y∗p) ≤ (xi ∧ y∗p)∗p ∧ xi,

by Lemma 4.3.2(iv)
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(xi ∧ y∗p)∗p ∧ xi ≤ y∗p∗p .

On the other hand, clearly

(xi ∧ y∗p)∗p ∧
∨
i∈I

(xi ∧ y∗p) ≤ y∗p .

The desiderata follows immediately.

Theorem 4.4.9. If T ∈ T , then V(T) satisfies BQϕ, for ϕ a negation-free formula.

Proof. We want to show that for any u ∈ V(T) we have:

J∀x(x ∈ u)→ ϕ(x)K =
∧

x∈dom(u)
(u(x)⇒t Jϕ(x)K).

Notice that,

J∀x(x ∈ u)→ ϕ(x)K =
∧

y∈V(T)

(Jy ∈ uK⇒t Jϕ(y)K)

=
∧

y∈V(T)

(
∨

x∈dom(u)
(u(x) ∧ Jy = xK)⇒t Jϕ(y)K)

=
∧

y∈V(T)

∧
x∈dom(u)

(
(u(x) ∧ Jx = yK)⇒t Jϕ(y)K

)
(†)

=
∧

y∈V(T)

∧
x∈dom(u)

(
u(x)⇒t (Jx = yK⇒t Jϕ(y)K)

)
(P4)

=
∧

y∈V(T)

∧
x∈dom(u)

(
u(x)⇒t (Jx = yK⇒t Jϕ(x)K)

)
(Theorem 4.4.7)

=
∧

y∈V(T)

∧
x∈dom(u)

(
(u(x) ∧ Jx = yK)⇒t Jϕ(x)K

)
. (P4)

Moreover,

∧
x∈dom(u)

(u(x)⇒t Jϕ(x)K) =
∧

y∈V(T)

∧
x∈dom(u)

(u(x)⇒t Jϕ(x)K)

≤
∧

y∈V(T)

∧
x∈dom(u)

(u(x) ∧ Jx = yK)⇒t Jϕ(x)K.
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For other direction take any x ∈ dom(u) and use Lemma 4.4.5 to obtain

∧
y∈V(T)

(u(x) ∧ Jx = yK)⇒t Jϕ(x)K ≤ (u(x) ∧ Jx = xK)⇒t Jϕ(x)K

= u(x)⇒t ϕ(x),

and hence,

∧
y∈V(T)

∧
x∈dom(u)

(u(x) ∧ Jx = yK)⇒t Jϕ(x)K ≤
∧

x∈dom(u)
(u(x)⇒t Jϕ(x)K).

Corollary 4.4.10. Let T ∈ T and let F be a filter on T. Then, V(T) |=F NFF-ZF−.

Proof. Every T ∈ T is a DRI-algebra and every V(T) satisfies BQϕ for every negation-free

formula ϕ. Now we apply Theorem 2.4.4 we immediately obtain the desiderata.

In the following proof of Theorem 4.4.11, is the only place where we use

essentially the well-order of T. All the remaining results hold for any implicative meet

complemented T -lattice.

Theorem 4.4.11. If T ∈ W, then the NFF-Foundationϕ holds in V(T).

Proof. We want to show that for every negation-free formula ϕ we have that

J∀x
(
(∀y ∈ xϕ(y))→ ϕ(x)

)
→ ∀xϕ(x)K = 1.

Consider the following two cases.

(i) Let Jϕ(x)K 6= 0 for every x ∈ V(T). Then since T is well-ordered we have J∀xϕ(x)K 6= 0.

Which, given Lemma 4.4.3(iii), implies that J
(
∀xϕ(x)

)∗p
K = 0. Therefore, we readily

calculate that J
(
∀x
(
(∀y ∈ xϕ(y))→ ϕ(x)

)
∧
(
(∀xϕ(x)

)∗p)∗p
K = 1.

(ii) Let Jϕ(x)K = 0 for some x ∈ V(T). Then take a minimal u ∈ V(T) such that Jϕ(u)K = 0

and such that for any y ∈ dom(u), Jϕ(y)K 6= 0. Since there exists a x ∈ V(T) such that

Jϕ(x)K = 0 we get J∀xϕ(x)K = 0. Moreover, Corollary 4.4.4(i) implies that

J∀x
(
(∀y ∈ xϕ(y))→ ϕ(x)

)
K ≤ J(∀y ∈ u ϕ(y))→ ϕ(u)K = 0.
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Hence,

J∀x
(
(∀y ∈ xϕ(y))→ ϕ(x)

)
→ ∀xϕ(x)K = 1.

Corollary 4.4.12. Let T ∈ W and let F be any filter on T. Then, V(T) |=F NFF-ZF.

4.4.1 Adding a Negation

In this section, we extend the results of (LÖWE; TARAFDER, 2015) showing

how to give an abstract definition not only of the implication but also of the negation of

(PS3, ∗). Since the aim of (LÖWE; TARAFDER, 2015) was to construct a paraconsistent

model of a sufficiently large fragment of ZF, we now define a negation that coincides with

that of (PS3, ∗), when considered in the context of the three-element bicomplemented

WF -lattice (see Definition 4.4.13), but that will also give rise to paraconsistent models of

NFF-ZF, when evaluated in bicomplemented WF -lattices.

Towards this goal, we expand the language of an implicative meet

complemented WF -lattice to a richer language containing a new operator. This will not

change the structures which interpret this new language, since the construction of our

models depends only on the base set of T, and not on its logical operations. So, any

expansion of the logical operation will give the same universe of names.

The construction of the following paraconsistent negation takes place in a

bicomplemented setting since both the meet complement ∗p and the join complement ∗d

are needed.

Definition 4.4.13. We call a structure 〈A,∧,∨,⇒t,
∗p ,∗d ,0,1, 〉 a bicomplemented

implicative WF -lattice if

(i) 〈A,∧,∨,⇒t,
∗p ,0,1, 〉 is an implicative WF -lattice and

(ii) the unary operator ∗d is defined for every x ∈ A as

x∗d = min{y ∈ A : x ∨ y = 1}.

Definition 4.4.14. We call a structure 〈A,∧,∨,⇒t,
∗p ,∗d ,∗r 0,1, 〉 a reflexive

bicomplemented implicative WF -lattice if
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(i) 〈A,∧,∨,⇒t,
∗p ,∗d ,0,1, 〉 is a bicomplemented implicative WF -lattice

(ii) the unary operation ∗r is defined for every x ∈ A as

x∗r = x∗d ∧ (x ∨ x∗p).

We will denote by (T,∗r ) a reflexive bicomplemented implicative WF -lattice, where we

interpret ∗r as negation.

Lemma 4.4.15. Let (T,∗r ) be a reflexive bicomplemented implicativeWF -lattice and take

any x ∈ T. Then the following holds:

(i) x∗r = 0 iff x = 1,

(ii) x∗r = 1 iff x = 0,

(iii) x∗r = x when 1 6= x 6= 0.

Proof. (i) For the first direction, suppose x∗r = 0 = x∗d ∧ (x∨x∗p). Hence, x∗d = 0 and so

x = 1. For the other direction, let x = 1. Then x∗r = 1∗d ∧ (1 ∨ 1∗p) = 0, since 1∗d = 0.

(ii) Let x∗r = 1 = x∗d ∧ (x ∨ x∗p). Hence, both x∗d = 1 and (x ∨ x∗p) = 1. From

(x ∨ x∗p) = 1 we get that x is either 0 or 1, but if x = 1, then x∗d = 0. Thus x = 0. For

the other side, let x = 0. Then x∗r = 0∗d ∧ (0 ∨ 0∗p) = (1 ∧ 1) = 1.

(iii) Let 1 6= x 6= 0. So x∗r = x∗d ∧ (x ∨ x∗p) = (1 ∧ x) = x.

Moreover, in this section we will use ∗r and ⇒t to interpret negation and

implication, respectively, when evaluating (T,∗r )-sentences in V(T,∗r ). Slightly abusing

notation we will use the symbol ∗r for both the syntactic negation and the algebraic

operator which will interpret it.

We now show that every reflexive bicomplemented implicative WF -lattice

with strictly more then two elements can engender a paraconsistent consequence

relation. Interestingly, the same sentence that was used to show this property in

(LÖWE; TARAFDER, 2015) works here. This suggests that the implication ⇒t and the

negation ∗r are the correct generalizations of the corresponding operations of (PS3,
∗ ).

Corollary 4.4.16. Let T ∈ WF and let F be any filter on T. Then, we have V(T,∗r ) |=F

NFF-ZF.
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Theorem 4.4.17. For any T ∈ WF with more than two elements there exists a sentence

σ ∈ L∈ and a filter F , such that V(T,∗r ) |=F σ and V(T,∗r ) |=F ¬σ.

Proof. Take any T with strictly more than two elements and consider the following three

T-names u, v, w ∈ V(T,∗r ) such that dom(u) = dom(v) = {w}, where u(w) = 1 and

v(w) = a (where a is the co-atom of T). Then we can define the sentence

σ = ∃xyz(x = y ∧ z ∈ x ∧ z /∈ y)

The three names we just defined witness that:

∨
u,v,w∈V(T,∗r )

(Ju = vK ∧ Jw ∈ uK ∧ Jw /∈ vK) ≥ a.

Furthermore, for any u, v, w ∈ V(T,∗r ), we have that if Ju = vK = 1 = Jw ∈ uK, then

Jw ∈ vK 6= 0. Suppose Ju = vK = 1 = Jw ∈ uK, so for every x ∈ dom(u) we have

u(x) = 1 = Jx = wK. Now, since Ju = vK = 1 and u(x) = 1, then Jx ∈ vK 6= 1. That is,

for every x ∈ dom(u),

Jx ∈ vK =
∨

y∈dom(v)
(v(y) ∧ Jx = yK) 6= 0.

So for every y ∈ dom(v) we have v(y) 6= 0 and Jx = yK 6= 0. Therefore, by Lemma

4.4.15(i) we get Jx = wK ∧ Jx = yK ≤ Jy = wK 6= 0, for each y ∈ dom(v). Hence, also

Jw ∈ vK 6= 0. Consequently, there are no u, v, w ∈ V(T,∗r ) such that

(
Ju = vK ∧ Jw ∈ uK ∧ Jw /∈ vK

)
= 1.

Therefore 1 > JσK > 0. Then, by Lemma 4.4.15(iii) we get JσK = JσK∗r = J¬σK. Hence,

V(T,∗r ) |=Pos(T) σ and V(T,∗r ) |=Pos(T) ¬σ.

Therefore, every reflexive bicomplemented implicative WF -lattice, with more

than two elements can give rise to a paraconsistent model of NFF-ZF. Furthermore,

the interest in bicomplemented (T,∗r )-lattices does not only rely upon the possibility of

generalizing (PS3,
∗ ), but also in explaining the relation of (PS3,

∗ ) with the classical case.

Indeed, the two-element bicomplemented (T,∗r )-lattice coincides with the two-element

Boolean algebra.
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4.4.2 Non-classical Models of ZF

In this section we build lattice-valued models of full ZF, where the internal

logic of this structure is neither classical nor intuitionistic. In other words, we generalise

Theorem 2.3.7.

We will denote by (T,∗p ) an implicative meet complemented T -lattice, where

we interpret ∗p as negation. Now, we construct T-valued models where the meet

complement ∗p and ⇒t are interpreted as negation and implication, respectively when

evaluating (T,∗p )-sentences in V(T,∗p ). As before, notice that the change of

interpretation for negation does not change the underlying structure V(T). We now show

that every V(T,∗p ) can indeed be a model of full ZF−. To do so, we need to show that

BQϕ holds for every ϕ ∈ L∈.

Lemma 4.4.18. Let ϕ ∈ LT∈ and let T ∈ T . Then, for any three elements u, v, w ∈

V(T,∗p ), we have

(Ju = vK⇒t Jϕ(u)K) = (Ju = vK⇒t Jϕ(v)K).

Proof. The atomic cases and the steps ∧, ∨, →, ∃, ∀ are dealt with in Theorem 4.4.7.

We only need to deal with the case ¬. Given Corollary 4.4.4 (iii), we will assume that

Ju = vK = 1. We have two cases:

(i) Let J¬ϕ(u)K = Jϕ(u)K∗p = 1. Then, by definition of ∗p , Jϕ(u)K = 0. Thus, we have

(Ju = vK⇒t Jϕ(u)K) = 0. By inductive hypothesis

(Ju = vK⇒t Jϕ(u)K) = (Ju = vK⇒t Jϕ(v)K)

holds and therefore Jϕ(v)K = 0. Consequently, Jϕ(u)K∗p = J¬ϕ(v)K = 1 and then

Ju = vK⇒t J¬ϕ(v)K) = 1 = (Ju = vK⇒t J¬ϕ(u)K).

(ii) Let J¬ϕ(u)K = Jϕ(u)K∗p = 0, then Jϕ(u)K 6= 0. This implies (Ju = vK⇒t Jϕ(u)K) 6= 0.

As before, the only way to match the induction hypothesis is by assuming that we have

Jϕ(v)K 6= 0. Consequently, Jϕ(u)K∗p = J¬ϕ(v)K = 0 and then

(Ju = vK⇒t J¬ϕ(v)K) = 0 = (Ju = vK⇒t J¬ϕ(u)K).
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Therefore we get the following.

Theorem 4.4.19. Let ϕ ∈ L(T,∗p )
∈ and let T ∈ T , then V(T,∗p ) satisfies BQϕ.

Proof. Similar to the proof of Theorem 4.4.9 (we simply use Theorem 4.2 instead of

Theorem 3.6).

Moreover, essentially the same proofs of (BELL, 2005) show that ZF− holds

in any (T,∗p )-valued model that is build on an implicative meet complemented lattice

belonging to class (i) of Definition 4.4.2, and that ZF holds in any (T,∗p )-valued model that

is build on an implicative meet complemented lattice belonging to class (ii) of Definition

4.4.2.

Theorem 4.4.20. Let T ∈ T , then V(T,∗p ) validates ZF−.

Proof. Given that every implicative meet complemented T -lattice is a DRI-algebra and

that any V(T,∗p ) satisfies BQϕ for ϕ ∈ L(T,∗p )
∈ , we apply Theorem 2.4.4. Thus every V(T,∗p )

is a model of NFF-ZF. Furthermore, in order to show that full ZF− holds, we need to

prove that Separationϕ and Collectionϕ hold. Notice that this time we are also considering

schemata, where ϕ(x) is a formula that contains negation.

Separationϕ: We want to show that J∀z
(
z ∈ y ↔

(
z ∈ x∧ ϕ(z)

))
K = 1 where ϕ ∈ L(T,∗p )

∈ .

Let x ∈ V(T,∗p ) and define y by setting dom(x) = dom(y) and for any z ∈ V(T,∗p ) let

y(z) =
(
x(z) ∧ Jϕ(z)K

)
. First we want to show that J∀z

(
z ∈ y →

(
z ∈ x ∧ ϕ(z)

))
K = 1 .

Using BQϕ we get the following equation:

J∀z
(
z ∈ y →

(
z ∈ x ∧ ϕ(z)

))
K =

∧
z∈dom(y)

(
y(z)⇒t (Jz ∈ xK ∧ Jϕ(z)K)

)
.

Then due to y(z) =
(
x(z) ∧ Jϕ(z)K

)
and given that for every u ∈ V(T,¬) we have that

u(x) ≤ Jx ∈ uK for any x ∈ dom(u), we get:

∧
z∈dom(y)

(
(x(z) ∧ Jϕ(z)K)⇒t (Jz ∈ xK ∧ Jϕ(z)K)

)
≤

∧
z∈dom(y)

(
(Jz ∈ xK ∧ Jϕ(z)K)⇒t (Jz ∈ xK ∧ Jϕ(z)K)

)
= 1.
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We now need to show J∀z ∈ x (ϕ(z)→ z ∈ y)K = 1. Using BQϕ we get:

J∀z ∈ x (ϕ(z)→ z ∈ y)K =
∧

z∈dom(x)

(
x(z)⇒t (Jϕ(z)K⇒t Jz ∈ yK)

)
.

Now, if x(z) = 0 or Jϕ(z)K = 0 we are done, so assume x(z) 6= 0 and Jϕ(z)K 6= 0.

Remember that for every z ∈ V(T,∗p ), y(z) =
(
x(z) ∧ Jϕ(z)K

)
, thus 0 6= y(z) ≤ Jz ∈ yK.

Hence, Jϕ(z)→ z ∈ yK = 1 and therefore:

∧
z∈dom(x)

(
x(z)⇒t (Jϕ(z)K⇒t Jz ∈ yK)

)
= 1.

Collectionϕ: We want to show that

J∀u
(
∀x ∈ u∃yϕ(x, y)→ ∃v∀x ∈ u∃y ∈ vϕ(x, y)

)
K = 1,

where ϕ ∈ L(T,∗p )
∈ . Let u ∈ V(T,∗p ). Applying BQϕ we get the following equality:

J∀x ∈ u∃yϕ(x, y)K =
∧

x∈dom(u)

(
u(x)⇒t

∨
y∈V(T,∗p )

Jϕ(x, y)K
)
. (1)

We know that A is a set, so A ∈ V. Moreover, for any x ∈ dom(u) we can define Ax

where Ax = {Jϕ(x, y)K : y ∈ V(T,¬)} ⊆ A. Thus Ax ∈ V. Hence, for every a ∈ Ax there

exists an ordinal α such that Jϕ(x, y)K = a and y ∈ V(T,∗p )
α . Furthermore, we can use the

Replacement axiom in V to obtain a map x 7→ αx, with domain dom(u) and range a set

of ordinals such that, for each x ∈ dom(u):

∨
y∈V(T,∗p )

Jϕ(x, y)K =
∨

y∈V(T,∗p )
αx

Jϕ(x, y)K (2)

Now we use Union in V to define α = ⋃{αx : x ∈ dom(u)}. Then by (2) we get:

∧
x∈dom(u)

(
u(x)⇒t

∨
y∈V(T,∗p )

Jϕ(x, y)K
)

=
∧

x∈dom(u)

(
u(x)⇒t

∨
y∈V(T,∗p )

αx

Jϕ(x, y)K
)

≤
∧

x∈dom(u)

(
u(x)⇒t

∨
y∈V(T,∗p )

α

Jϕ(x, y)K
)

(3)
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We define v as dom(v) = V(T,∗p )
α and for every y ∈ dom(v), v(y) = 1. Now we claim that

∨
y∈V(T,∗p )

α

Jϕ(x, y)K ≤ J∃y ∈ vϕ(x, y)K.

Indeed, since v(y) = 1 and given that the bounded quantification property gives us an

inequality in the case of the existential quantifier, we have the following:

∨
y∈V(T,∗p )

α

Jϕ(x, y))K =
∨

y∈dom(v)
(v(y) ∧ Jϕ(x, y))K)

≤ J∃y ∈ vϕ(x, y)K.

And since a⇒t b ≤ a⇒t c, whenever b ≤ c, then by (1) and (3) we have:

J∀x ∈ u∃yϕ(x, y)K ≤
∧

x∈dom(u)

(
u(x)⇒t J∃y ∈ vϕ(x, y)K

)
= J∀u ∈ x∃y ∈ vϕ(x, y)K.

Theorem 4.4.21. Let T ∈ W and let F be any filter on T. Then, V(T,∗p ) |=F ZF.

Proof. As corollary of Theorem 4.4.20 we have already that for any T ∈ W , V(T,∗p ) |= ZF−.

Thus we only need to show that Foundationϕ holds. But this proof is exactly the same as

of Theorem 4.4.11. Only this time we are considering any ϕ ∈ L(T,∗p )
∈ .

4.4.3 The Logics of V(T,∗p)

In this section, we show that the internal logic of (T,∗p )-valued models is

neither classical nor intuitionistic when we use the filter {1}.

Theorem 4.4.22. The internal logic of the structure V(T,∗p ), given the filter {1} is neither

classical, i.e., L(V(T,∗p ), {1}) 6= CPL, nor intuitionistic; i.e, L(V(T,∗p ), {1}) 6= IPL.

Proof. Fix an arbitrary V(T,∗p ). Consider the following sentence:

ϕ = ∃y∀x
(
(y ∈ x) ∨ (y /∈ x)

)
.



101

We show that ∀x
(
(y ∈ x)∨(y /∈ x)

)
always gets as value the minimal positive element of A.

Let u and v be two elements of V(T,∗p ). Now, if Ju ∈ vK = 0, then J(u ∈ v)∨ (u /∈ v)K = 1.

Otherwise Ju ∈ vK = a, with a 6= 0, but then J(u ∈ v) ∨ (u /∈ v)K = a. Now notice

that, given a ū ∈ V(T,∗p ) and a ā ∈ A different from 0, we can always find a v̄ ∈ V(T,∗p )

such that Jū ∈ v̄K = ā; namely v̄ = {〈ū, ā〉}. Therefore, the minimal value that we

obtain by choosing different elements v ∈ V(T,∗p ), in the formula
(
u ∈ v ∨ u /∈ v

)
, is

the atom of A: i.e., the second least element of A, that we may call b. Consequently,

J∀v
(
u ∈ v ∨ u /∈ v

)
K = b. Notice that the above argument does not depend on the the

choice of u and so JϕK = b. Thus, if A has at least three elements, then Jϕ ∨ ¬ϕK /∈ {1}

and so the Law of Excluded Middle (LEM) fails in V(T,∗p ).

In order to show that also intuitionistic logic fails we proof that MP does not

hold. Let ψ = ∃x(x = x) and notice that Jψ → ϕK = 1 and JψK = 1. However, as we

have shown JϕK = b. Therefore, MP fails.

On the other hand, if we choose the filter Pos(T) on T, then we can show that

L(V(T,∗p ), Pos(T)) is classical.

Theorem 4.4.23. L(V(T,∗p ), Pos(T)) = CPL.

Proof. It can be easily checked that (T,∗p )/Pos(T) is the two-valued Boolean algebra

2 = {0, 1}. So, L
(
(T,∗p ), Pos(T)

)
= L({0, 1}, 1). Furthermore, given that for any

Boolean algebra B and filter F we have L(B, F ) = L(V(B), F ), it follows immediately

that L(V(T,∗p ), Pos(T)) = CPL.

Even if we do not have an axiomatisation of L(V(T,∗p ), Pos(T)) we know that

it is not much different from intuitionistic logic.

Theorem 4.4.24. The propositional logic L(V(T,∗p ), {1}) validates all axioms of IPL.

Proof. For this proof we assume that the (T,∗p )-value of the antecedent of each axiom is

not equal to 0. So if ϕ is such an antecedent, then we suppose JϕK 6= 0. Otherwise, the

desiderata follows trivially.

(i) ϕ → (ψ → ϕ). Suppose JϕK 6= 0, then by Corollary 4.4.4(i),(ii) we get immediately

that Jϕ→ (ψ → ϕ)K = 1.



102

(ii)
(
ϕ → (ψ → χ)

)
→

(
(ϕ → ψ) → (ϕ → χ)

)
. Suppose we have Jϕ → (ψ → χ)K 6= 0,

then we have two cases. Either JϕK = 0 or JϕK 6= 0. In the first case we get by Corollary

4.4.4(i),(ii) that Jϕ → ψK 6= 0, as well as Jϕ → χK 6= 0. Thus we calculate readily

J
(
ϕ → (ψ → χ)

)
→

(
(ϕ → ψ) → (ϕ → χ)

)
K = 1. In the second case given the initial

assumption we have Jψ → χK 6= 0, so it is not the case that JψK 6= 0 and JχK = 0, so by

Corollary 4.4.4(i),(ii) J
(
ϕ→ (ψ → χ)

)
→
(
(ϕ→ ψ)→ (ϕ→ χ)

)
K = 1.

(iii) ϕ→ (ϕ∨χ). Suppose JϕK 6= 0, then Jϕ∨χK 6= 0. Therefore, by Corollary 4.4.4(i),(ii)

we have Jϕ→ (ϕ ∨ χ)K = 1.

(iv) χ→ (ϕ ∨ χ). Similar to proof of item (iii).

(v) (ϕ → χ) →
(
(ψ → χ) → (ϕ ∨ ψ → χ)

)
. Suppose Jϕ → χK 6= 0 and Jψ → χK 6= 0.

Now, if Jϕ ∨ ψK = 0, then we are done. So let Jϕ ∨ ψK 6= 0. We know that JϕK 6= 0

and JψK 6= 0, so in order to match our initial assumption we need to have JχK 6= 0. By

Corollary 4.4.4(i),(ii) we get J(ϕ→ χ)→
(
(ψ → χ)→ (ϕ ∨ ψ → χ)

)
K = 1.

(vi) (ϕ ∧ ψ)→ ϕ. Suppose Jϕ ∧ ψK 6= 0 then JϕK 6= 0, so by Corollary 4.4.4(i),(ii) we get

J(ϕ ∧ ψ)→ ϕK = 1.

(vii) (ϕ ∧ ψ)→ ψ. Similar to proof of item (vi).

(viii) ϕ →
(
ψ → (ϕ ∧ ψ)

)
. Suppose JϕK 6= 0 and JψK 6= 0, then Jϕ ∧ ψK 6= 0. Then by

Corollary 4.4.4(i),(ii) we get Jϕ→
(
ψ → (ϕ ∧ ψ)

)
K = 1.

(ix) ¬ϕ→ (ϕ→ ψ). Suppose J¬ϕK = JϕK∗p 6= 0. Then we have JϕK = 0, so by Corollary

4.4.4(i),(ii) we have Jϕ→ ψK = 1 and therefore we get J¬ϕ→ (ϕ→ ψ)K = 1.

(x) (ϕ→ ψ)→
(
(ϕ→ ¬ψ)→ ¬ϕ

)
. Suppose Jϕ→ ψK 6= 0 and Jϕ→ ¬ψK 6= 0. We know

that either JψK = 0 or J¬ψK = 0, so in order to match our initial assumption we need to

have JϕK = 0. Therefore, JϕK∗p = J¬ϕK = 1 and we are done.

4.4.4 A Non-well-founded Model of ZF

We now offer an application of (T,∗p )-valued models. Remember that by ZF−

we denote ZF minus Foundationϕ. Then by Theorem 4.4.21 we know that for any V(T,∗p )

(where T ∈ W) and for any filter F on T we have

V(T,∗p ) |=F ZF− + Foundationϕ.
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We now show that we can also construct models of the negation of Foundationϕ. To do so

we consider an implicative meet complemented (T,∗p )-lattice where the underlying base

set is non-well founded. Specifically, we will consider

T(ω+1)∗ ∪ (ω+1) ∈ T ,

where (ω + 1)∗ is an ordered set whose order is the reverse of that of ω + 1. Thus we

define the set ((ω + 1)∗ ∪ (ω + 1), <) as an order-isomorphic copy of Z with a top and

bottom element added. Before starting, notice that V(T(ω+1)∗ ∪ (ω+1),
∗p ) is a model of ZF−

by Theorem 4.4.20. Indeed, all results of the paper, except Theorem 4.4.11 which depends

on well-foundedness, hold for any implicative meet complemented T -lattice.

ω + 1

n

2

1

0

1

2

n

(ω + 1)∗

Figure 1. T(ω+1)∗ ∪ (ω+1).

Theorem 4.4.25. Fix T(ω+1)∗ ∪ (ω+1) and let F be any filter on T(ω+1)∗ ∪ (ω+1). Then we

have V(T(ω+1)∗ ∪ (ω+1),
∗p ) |=F ZF− + ¬ Foundationϕ.

Proof. It is enough to show that there is a formula for which the Foundation schema does

not hold. Let ϕ(x) := ∃y(y ∈ x ∨ y /∈ x). Notice that ϕ(x) never gets value zero for any

x ∈ V(T(ω+1)∗ ∪ (ω+1),¬). Indeed, let u and v be two elements of V(T(ω+1)∗ ∪ (ω+1),
∗p ). Now, if

Ju ∈ vK = 0, then J(u ∈ v) ∨ (u /∈ v)K = 1. Otherwise Ju ∈ vK = a, with a 6= 0, but then

J(u ∈ v) ∨ (u /∈ v)K = a. Thus Jϕ(u)K 6= 0, for all u ∈ V(T(ω+1)∗ ∪ (ω+1),
∗p ).
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Now, consider the name xa = {〈∅, a〉}, for a ∈ T(ω+1)∗ ∪ (ω+1). Then, for every a ∈

T(ω+1)∗ ∪ (ω+1), there is an u such that Jϕ(u)K = a. This means that the values of Jϕ(x)K

are unbounded in (ω + 1)∗. This implies the following equality

J∀xϕ(x)K =
∧

u∈V(T(ω+1)∗ ∪ (ω+1),
∗p )

Jϕ(u)K = 0.

Moreover, since Jϕ(u)K 6= 0 for all names u’s, we get that J∀x
(
∀y ∈ xϕ(y)→ ϕ(x)

)
K = 1.

Hence,

J∀x
(
∀y ∈ xϕ(y)→ ϕ(x)

)
K⇒t J∀xϕ(x)K

= J∀x
(
∀y ∈ xϕ(y)→ ϕ(x)

)
→ ∀xϕ(x)K

= 0.

4.5 Algebra-valued Models for LFI-Set Theories

In this section, we will show that the iterative paraconsistent set theories

ZFmbC, ZFmCi, ZFCi, and ZFCil are not valid in any (T,∗r )-valued model. This result is

counterintuitive since the three-element reflexive bicomplemented implicative WF -lattice

(or simply three-element (T,∗r )-lattice) is nothing else than (PS3,
∗ ), which is an LFI

when we expand its signature with the consistency operator ◦, as noted in (CONIGLIO;

SILVESTRINI, 2014). Moreover, we will show that we have problems in interpreting the

ZF-like axioms of LFI-set theories and that we have even more problems when it comes

to the axioms that govern the consistency predicate. Finally, we conclude that it seems

unfeasible to construct algebra-valued models for LFI-set theories, at least, as they are

presented in (CARNIELLI; CONIGLIO, 2016a).

4.5.1 The ZF-like Axioms of LFI-Set Theories

To check whether the axioms of an LFI-set theory are valid in (T,∗r )-valued

models, we first need to specify the semantic interpretation of the ◦-operator (see Chapter

3.7 and Chapter 3.8).
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Table 4.2: The ◦-operator in the three-element (T,∗r )-lattice

ϕ ◦ϕ

1 1
1
2 0

0 1

Now, given that we can define this operator in terms of other logical

connectives, we can extend the evaluation map J·K with the following clause

J◦ϕK = J(ϕ→ ⊥) ∨ (¬ϕ→ ⊥)K,

which allows us to evaluate formulas of the form of ◦ϕ in (T,∗r )-valued models. Notice

that the formula on the right-hand side of the equality is a formula in the language

of set theory and thus ¬ denotes the syntactic negation of the language of set theory.

Intuitively, this semantic interpretation of the consistency operator says that the formula

ϕ is consistent if either ϕ or its negation is false. In the three-element (T,∗r )-lattice, this

gives rise to Table 3.2.

We now check the validity of the axioms of ZFmbC in (T,∗r )-valued models.

By Corollary 4.4.16 we know that NFF-ZF is valid in any (T,∗r )-valued model. Therefore,

any (T,∗r )-valued model verifies Union, Extensionality, Power set, Separationϕ, Foundationϕ,

and Replacementϕ, where ϕ is negation-free formula.

On the other hand, Infinity and Weak regularity, as presented in (CARNIELLI;

CONIGLIO, 2016a), are not valid in any (T,∗r )-valued model. Nonetheless, by a suitable

modification, we can obtain their validity, without distorting the spirit of ZFmbC. The

issue with Infinity consists in the use of the strong empty set ∅∗ which cannot be defined

in (T,∗r )-valued models. In (CARNIELLI; CONIGLIO, 2016a), the authors define the

strong empty set using Separationϕ and Extensionality and the fact that

ZFmbC `
(
(x ∈ a) ∧ ∼ (x = x)

)
⇔ ∼ (x = x).
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However, this can not be done in (T,∗r )-valued models, since the formula that

defines the strong empty set is not a negation-free instance of Separationϕ. But this is

not dramatic, since we can use a different, negation-free, formulation of Infinity that suits

better an algebra-valued model treatment of set theory: 1

∃x
(
∃y(∀z(z ∈ y → ⊥) ∧ y ∈ x) ∧ ∀w(w ∈ x→ ∃u(u ∈ x ∧ (w ∈ u)))

)
.

Moreover, Weak regularity states that only consistent sets can not be elements

of themselves. So according to this view there exist inconsistent sets in our set-theoretic

universe, which are ill-founded. However, notice that NFF-Foundationϕ is valid in (T,∗r )-

valued models and thus we can easily show that Jx ∈ xK = 0, for any x ∈ V(T,∗r ).

Therefore, every set that inhabits V(T,∗r ) is well-founded. This seems to suggest, on

one hand, that non-well-foundedness is not a property of inconsistent sets in (T,∗r )-

valued models and on the other, that we should discard Weak regularity in favor of NFF-

Foundationϕ. Notice that, even though we need to adjust Weak regularity and Infinity, we

can until this point interpret all the ZF axioms of ZFmbC in (T,∗r )-valued models. For

what concerns Unextensionality this is unfortunately not the case.

Theorem 4.5.1. Let (T,∗r ) be a reflexive bicomplemented implicative WF -lattice with

more than two elements and F any filter, then V(T,∗r ) 2F Unextensionality.

Proof. Fix any (T,∗r )-valued model, where A has more than two elements. Then consider

the following names as witnesses: u = {〈∅, a〉}, v = {〈u, 1〉}, w = {〈u, a〉}, where a 6= 1,0.

Now, we simply calculate JUnextensionalityK as follows:

JUnextensionalityK

= J∃z
(
(z ∈ x) ∧ (z 6∈ y)

)
∨ ∃z

(
(z ∈ y) ∧ (z /∈ x)

)
↔ (x 6≈ y)K

≤ J∃z
(
(z ∈ x) ∧ (z /∈ y)

)
∨ ∃z

(
(z ∈ y) ∧ (z /∈ x)

)
→ (x 6≈ y)K

=
(
(1 ∧ 1

2) ∨ (0 ∧ 1
2)
)
⇒t 0

= 1
2 ⇒t 0

= 0 /∈ F.

1This definition of the axiom of infinity was already proposed in (BELL, 2005) and is displayed in
Figure 2.1.
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Notice that, since JUnextensionalityK = 0, these arguments hold for any choice

of filter. This is already troubling, but a possible strategy would consist of biting the bullet

and just to eliminate this axiom (even though this axiom was given a particular emphasis

in the motivation of LFI-set theories). However, we will show that the fundamental issue

with LFI-set theories lays much deeper; it concerns the interpretation of inconsistent sets.

4.5.2 The C-axioms of LFI-Set Theories

In (CARNIELLI; CONIGLIO, 2016b) the definition of inconsistency is given

in terms of the violation of the basic logical operations of set theory: equality and

membership.

¬C(x) =df. (x ∈ x) (i)

¬C(x) =df. ¬ ◦ (x ∈ x) (ii)

¬C(x) =df. (x 6≈ x) (iii)

¬C(x) =df. ¬ ◦ (x 6≈ x) (iv)

We now show that these definitions cannot capture the notion of inconsistency

in any (T,∗r )-valued model.

Lemma 4.5.2. Let (T,∗r ) be any reflexive bicomplemented implicative WF -lattice. Then,

for any x ∈ V(T,∗r ) we have:

(i) Jx ∈ xK = 0,

(ii) J¬ ◦ (x ∈ x)K = 0,

(iii) Jx 6≈ xK = 0,

(iv) J¬ ◦ (x 6≈ x)K = 0.

Proof. (i) Notice that Foundationϕ, for ϕ negation-free, yields Jx ∈ xK = 0. This

establishes (i).

(ii) From (i) it follows that J◦(x ∈ x)K = 1. Then by Lemma 4.4.15 we have
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J¬ ◦ (x ∈ x)K = 0, establishing (ii).

(iii) We know that for every x ∈ V(T,∗r ) we have Jx ≈ xK = 1, thus Jx 6≈ xK = 0. So (iii)

holds as well.

(iv) Furthermore, given that Jx 6≈ xK ∈ {1,0} it follows that J◦(x 6≈ x)K = 1. Finally,

given Lemma 4.4.15 we can conclude J¬ ◦ (x 6≈ x)K = 0, which settles (iv).

This proposition shows clearly that none of the above interpretations of

inconsistency can ever be realized in any (T,∗r )-valued model. Notice that this does not

imply that it is not possible to define inconsistent sets in (T,∗r )-valued models in

general. There might be other ways to capture these ideal objects, but again, this would

transcend the core ideas and tools of LFI-set theories as conceived in (CARNIELLI;

CONIGLIO, 2016b).2

Nevertheless, the failure of the characteristic axioms of these LFI-set theories,

i.e., the C-axioms, together with the impossibility to define inconsistency in the way

proposed in (CARNIELLI; CONIGLIO, 2016b), leaves us with two options. Either we

assume that, for all x ∈ V(T,∗r ) we have J¬C(x)K = 0, therefore assuming that every set

is consistent, or we can try to modify the interpretation of the consistency predicate in

order to provide examples of inconsistent sets in (T,∗r )-valued models. We argue that

both strategies are unfeasible.

Let us make explicit the two horns of this dilemma:

Horn 1: The first strategy consists in eliminating inconsistent totalities from the picture.

This option is, as a matter of fact, not very far from Cantor’s ideas. Indeed in several

letters to Hilbert and Jourdain (NILSON; MESCHKOWSKI, 1991, pp. 425–435), Cantor

identified sets and consistent totalities, arguing that the universe of set was the collection

of all totalities that did not lead to any contradiction. On this basis we can therefore

postulate an axiom, that we can call Cantorian Axiom, that expresses this intuition.

C(x)↔ Set(x) (Cantorian Axiom)

2On a possible fix. (1) Try to find some LFI that can be represented as a complete bounded distributive
lattice A = 〈A,∧,∨,⇒,∗ , 1, 0〉, such that Ju = uK = a, where a 6= {0, 1}, for some u ∈ V(A,∗). Then if a is
a designated element and given a suitable choice of negation; we will get J¬(x = x)K = a. Nevertheless, it
is unclear whether the respective structure is still a model of set theory. (2) Try to use a non-well founded
algebra A as underlying algebra, something order-isomorphic to Q, then we could get Ju /∈ uK 6= 0 for
some u ∈ V(A,∗). A particularly interesting solution would consist of constructing an algebra-valued
model where both (1) and (2) are realized.
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Now, if we extend ZFmbC with the Cantorian Axiom we obtain that all (T,∗r )-valued

models validate ZFmbC + Cantorian Axiom and all its extensions. Indeed these LFI-

set theories would all collapse to ZF, since we have just removed all inconsistent sets.

However, this move would totally trivialize the main motivation of using a consistency

predicate in dealing with an inconsistent set theory, as clearly expressed in (CARNIELLI;

CONIGLIO, 2016a, p. 366):

The main idea is to assume that not only sentences can be taken to be

consistent or inconsistent, but also that sets themselves can be thought to be

consistent or inconsistent. We establish the basis for new paraconsistent

set-theories (such as ZFmbC and ZFCil) under this perspective and establish

their non-triviality, provided that ZF is consistent.

Horn 2: On the other hand, we could try to modify the interpretation of the

(in)consistency predicate, in order to have at least one set x ∈ V(T,∗r ) such that

J¬C(x)K ≥ a, where a 6= 1 and a is a designated element. So suppose that there exists

at least one inconsistent set in our ontology. However, also this strategy is doomed to

fail, since no (T,∗r )-valued model, would be able to validate ZFmCi, or ZFCi, or ZFCil.

Lemma 4.5.3. Let (T,∗r ) be any reflexive bicomplemented implicative WF -lattice and

F any filter on T such that a ∈ F . Suppose that there exists a x ∈ V(T,∗r ) such that

J¬C(x)K ≥ a. Then, we have J¬C(x)→ ¬ ◦ (x ≈ x)K = 0.

Proof. We know that for any x ∈ V(T,∗r ) we have Jx ≈ xK = 1 and thus J◦(x ≈ x)K = 1.

Therefore by Lemma 4.4.15 we get J¬ ◦ (x ≈ x)K = 0. Then;

J¬C(u)→ ¬ ◦ (u ≈ u)K

= (a⇒t 0)

= 0 /∈ F.

Notice that in this case, we would validate vacuously all the axioms of ZFmbC

that govern the consistency predicate, with exception of con0. This is because either

¬C(x) occurs in the consequent of an axiom, so that the antecedent is always false, as it
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is the case with con2, or C(x) occurs in the antecedent, so that the consequent will be

trivially true, as in con1.

Besides the formal problems that arise from accepting the existence of

inconsistent totalities, there is also a deeper conceptual issue. A charitable

interpretation of the inconsistency predicate—that seems faithful to the history of set

theory—would consist of equating inconsistent objects and proper classes. However, at a

closer look, the axioms of ZFmbC force us to discard this possibility, since the axiom

con0 would imply that the universal class is a set and not a proper class. Indeed, it says

that the property of being a set is propagated ∈-upward, which clearly cannot be the

case since all elements of V are, by definitions, sets.

We can therefore conclude, from Horn 1 and Horn 2, that LFI-set theories

are not valid in any (T,∗r )-valued model. This is even more belittling, considering that

the internal logic of V(PS3,∗) is an LFI. Not only we need to give up the characteristic

axiom Unextensionality, but Horn 2, together with the charitable interpretation of

inconsistent totalities as classes, shows that not even the ZFmbC-axioms that govern the

C-predicate can hold in any (T,∗r )-valued model. We believe that the fact that

inconsistent totalities do not find a place in these LFI-set theories is a serious betrayal of

their original motivation, which therefore suggest a fresh new start. The failure of this

attempt leaves open the challenging problem of making inconsistent totalities

compatible with an iterative paraconsistent set theory.



111

Chapter 5

On Negation for Non-classical Set

Theories

Summary

In this chapter, we will apply algebra-valued models to enrich the philosophical

debate on what constitutes a negation and evaluate whether it is possible to ground

negation on more fundamental notions. In particular, we present a case study for the

debate between the American and the Australian plans, analyzing a crucial aspect of

negation: expressivity within a theory. We discuss the case of non-classical set theories,

presenting four different negations and testing their expressivity within algebra-valued

models for iterative paraconsistent set theories. Finally, we give a minimal account of

negation, inspired by the algebraic framework we work in. We will propose minimal

regularity properties for negation and argue that the essential intuition behind negation

is the linguistic ability to tell things apart. Moreover, we conclude by pointing out that

logical properties, such as paraconsistency, might not be predicated only to negation and

that, thus, both plans fall short in what they have set out to accomplish.

5.1 Playing with Negation

One of the main issues with the models of non-classical set theory, introduced in

Chapter 4.4, is that it is hard to show that these models are non-∈-elementarily equivalent

with each other, at least, in the case of (T,∗p )-valued and (T,∗r )-valued models. Thus,
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even though we have found an infinite class of non-classical models of set theory, we are

unable to show that we have different models.

One possible way of tackling this problem is to increase the complexity of our

language by twisting the negation. In particular, we will treat the unary operator in

the signature of our lattices (that is used to interpret the negation of the language of set

theory) as a further parameter. So, in principle, any unary function on an implicative meet

complemented WF -lattice that fulfills some minimal constraints is a suitable candidate

for negation. In more simple words, we will play around with negation.

This chapter is structured as follows. First, we will summarize briefly the

current philosophical debate on whether it is possible to ground negation on more

fundamental notions. Thus we present two views that have been put forward; the

American Plan, which we can find in (DE; OMORI, 2018), (WANSING, 2008), (DUNN,

1999) and Australian Plan, advocated by (BERTO; RESTALL, 2019), (RESTALL,

2013), (MEYER; MARTIN, 1986), (BERTO, 2015). Moreover, we complement this

presentation with a formal account of each of these plans in the context of

algebra-valued models of set theory.

Secondly, we introduce four different unary operators defined within the

structure of implicative meet complemented WF -lattice and discuss whether these

operators can be considered genuine negations. This analysis will show that the more we

relax the requirements on the regular behavior of these negations, the more

non-elementarily equivalent models we will find. In other terms, we will find an inverse

proportionality between the number of conditions we impose on negation and the

number of incompatible sentences we can express using such a negation. Finally, we

present our own minimal account of negation, the algebraic account of negation, and

conclude that both the American and Australian Plan fall short in capturing certain

aspects of negation.

5.2 The Australian Plan

Among the supporters of the Australian Plan we find authors such as Berto,

Meyer, Martin and Restall, (BERTO; RESTALL, 2019), (RESTALL, 2013), (MEYER;

MARTIN, 1986), (BERTO, 2015), who present the basic tenants of this viewpoint as:
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1. Negation is a device meant to capture a notion of exclusion, and

2. negation has a modal character grounded on the concept of incompatibility.

Usually, we can find the following characterization of negation by generalized

Kripke semantics; a sentence ¬ϕ is said to be true at a world w if all worlds v that are

compatible with w (here compatibility is understood in terms of the accessibility relation)

do not validate ϕ.

Moreover, the authors of (BERTO; RESTALL, 2019) have put forward two

criteria that a genuine negation has to satisfy: contraposition (CP) and double negation

introduction (DNI). We believe that it is important to make a distinction between the

algebraic version of these rules —independent from any choice of truth and falsity—and

their logical version— given in terms of a consequence relation. Take for instance the

following passage from (LÖWE; PASSMANN; TARAFDER, 2021, p. 8).

When twisting the negation, we need to pay attention to the fact that not

every unary function on an implication algebra is a sensible negation. In his

survey of varieties of negation, Dunn (1995) lists Hazen’s subminimal negation

as the bottom of his Kite of Negations: only the rule of contraposition, i.e.,

a ≤ b implies ¬b ≤ ¬a, is required. In the following, we shall use this as a

necessary requirement to be a reasonable candidate for negation.

On this account, given a lattice A = 〈A,∧,∨,⇒,∗ ,0,1〉, an operation ∗ counts

as a legitimate negation, if CP holds in A and not necessarily in L(A, F ). Hence, we can

evaluate CP and DNI algebraically.

Definition 5.2.1. Let A = 〈A,∧,∨,⇒,∗ ,0,1〉 be a complete bounded distributive lattice.

Then we say that CP and DNI hold in A if for any x, y ∈ A the following holds:

(i) x ≤ y implies y∗ ≤ x∗ and

(ii) x ≤ x∗∗.

This gives us the following definition.

Definition 5.2.2. Let A = 〈A,∧,∨,⇒,∗ ,0,1〉 be a complete bounded distributive lattice.

We say that an algebraic operator ∗, interpreting the negation in the language of set theory

in an A-valued model V(A) satisfies the Australian Plan algebraically whenever CP and

DNI hold in A.
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Table 5.1: Operations for K3

⇒ 1 1
2 0

1 1 1
2 0

1
2 1 1

2
1
2

0 1 1 1

∨ 1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

∧ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

x x∗

1 0
1
2

1
2

0 1

This definition has two main motivations. Firstly, the account of (BERTO;

RESTALL, 2019) can be formulated entirely in algebraic terms, see (DUNN, 1999, pp. 30-

34), and secondly, the ≤-relation offers a purely syntactical perspective on the inferential

features of a logic obtained from an algebra.

Nonetheless, since (BERTO; RESTALL, 2019) is concerned with defining

regularity properties for negation within a logical calculus, we can interpret CP and DNI

also logically.

Definition 5.2.3. Let A = 〈A,∧,∨,⇒,∗ ,0,1〉 be a complete bounded distributive lattice

and F a filter on A. We say that CP and DNI hold in L(A, F ) if for any ϕ, ψ ∈ LProp the

following holds:

(i) ϕ |=F ψ implies ¬ψ |=F ¬ϕ and

(ii) ϕ |=F ¬¬ϕ.

Definition 5.2.4. Let A = 〈A,∧,∨,⇒,∗ ,0,1〉 be a complete bounded distributive lattice.

We say that an algebraic operator ∗, interpreting the negation in the language of set theory

in an A-valued model V(A) satisfies the Australian Plan logically whenever CP and DNI

hold in L(A, F ).

Indeed, there exist very basic examples which show that the two mentioned

forms of evaluating inferential rules may have incompatible results. For instance, consider

the following complete bounded distributive lattice K3 (see Table 4.1). The operations of

Table 4.1 can be associated both to the connectives of Kleene’s logic (K3), as well as, to

the connectives of LP (compare to Table 2.1). Indeed, if we consider the filter {1} on K3,

then L(K3, {1}) = K3, but if we consider the filter {1, 1
2}, then L(K3, {1, 1

2}) = LP.
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Moreover, K3 admits a proper negation for the Australian Plan, via the

Routley star semantics (DE; OMORI, 2018, p.14). Indeed, we can obtain the Routley

star semantics for K3 by adding a further condition to the Routley star semantics for

First Degree Entailment (FDE).1

On the other hand, the supporters of the Australian Plan maintain that LP

has no negation since CP fails. However, since LP is obtainable from K3 by taking also the

intermediate value of K3 to be designated, we have a case that evidences the relativity of

the conditions proposed by the Australian Plan. Indeed, the choice of an appropriate filter

on a given lattice can engender a logic with a proper “Australian” negation, i.e., K3, while

it is also possible to choose another filter which makes the same negation unacceptable,

i.e., LP.

This line of criticism was already raised by the American Plan, as the next

quotation shows.

Berto’s account of negation seems therefore sensitive to which values are taken

as designated. We find it curious that one and the same operator should and

should not count as a negation depending on which values are taken to be

truth-like, a curiosity that does not arise on our account. (DE; OMORI, 2018,

p. 297).

We can summarize this situation, using the notation introduced in this section

in the following way.

Corollary 5.2.5. The interpretation of the negation ¬ from the logic L
(
K3, {1}

)
satisfies

the Australian Plan logically in V(K3).

Corollary 5.2.6. The interpretation of the negation ¬ from the logic L
(
(K3, {1, 1

2}
)
does

not satisfy the Australian Plan logically in V(K3).

5.3 The American Plan

The advocates of the American Plan, like Wansing, Omori, and De (DE;

OMORI, 2018), (WANSING, 2008), (DUNN, 1999) give a non-modal account of

negation. They interpret negation in terms of an intuitive switch operator between truth
1For more details see Chapter 8 of (PRIEST, 2008).
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and falsity. Concretely, one can say that a logical connective ¬ is a negation if and only

if ¬ is a contradictory-forming operator: i.e., for any formula ϕ we have that

(1) ϕ is true iff ¬ϕ is false and

(2) ϕ is false iff ¬ϕ is true.

On this account, negation is grounded on the primitive sui generis notions of

truth and falsity. Now, notice that there are several legitimate relations between these two

notions. For instance, if they are both exhaustive and exclusive, then only the Boolean

negation will be considered a genuine negation (SLATER, 1995). However, given that

we can make the assumption that truth and falsity are not exclusive, a paraconsistent

negation can also be considered a contradictory-forming operator.

Let us now turn our attention to the regularity properties of the American

Plan. Also here we need to adapt the criteria for being a negation to an algebraic context.

In doing so we will slightly improve these criteria, spelling out necessary and sufficient

conditions. What motivates the following definition is the consideration that filters and

ideals give algebraic representations of truth and falsity.

Definition 5.3.1. Let A = 〈A,∧,∨,⇒,∗ ,0,1〉 be a complete bounded distributive lattice,

F a filter on A, I an ideal on A, and let ι be an evaluation function from LProp into A.

We say that a negation ¬ is a contradictory-forming operator in L(A, F ) if there exist an

ideal I ⊆ A such that for any assignment ι and every formula ϕ ∈ LProp we have

(1) ι(¬ϕ) ∈ F iff ι(ϕ) ∈ I and (2) ι(¬ϕ) ∈ I iff ι(ϕ) ∈ F .

Notice that we are not imposing any restriction on the exclusivity or

exhaustivity of F and I. Then, for example, we can evaluate the criteria of the

American Plan with respect to a paraconsistent negation just by assuming that

G ∩ I 6= ∅. Moreover, Definition 5.3.1 offers sufficient conditions that perfectly match

the necessary ones we find in the literature (where ML denotes the following inference

rule: for some formulas ϕ, ψ we have ϕ 2 ¬ϕ and ¬ψ 2 ψ).

Corollary 5.3.2. If ¬ is a contradictory-forming operator in L(A, F ), then DNI, DNE,

De Morgan laws and ML hold in L(A, F ).

Definition 5.3.3. Let A = 〈A,∧,∨,⇒,∗ ,0,1〉 be a complete bounded distributive lattice.

We say that an algebraic operator ∗, interpreting the negation in the language of set theory
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in an A-valued model V(A), satisfies the American Plan whenever it is a contradictory-

forming operator in L(A, F ).

A final comment on the algebraic rendering we offered of the conditions of the

American Plan. Being a contradictory-forming operator an American negation depends

chiefly on the choice of a filter and on that of an ideal. This causes no harm for a supporter

of the American Plan, since the notion of negation is rooted on the primitive notions of

truth and falsity, which, in turn, are formalized by filters and ideals.

5.4 The Reflexive Operator

The first connective we will study is what we call the reflexive operator. This

operator is not only definable as an equational class for the algebras under consideration,

but the resulting set-theoretical models also extend the minimal Boolean-valued model

V(2) and the (PS3,
∗ )-valued model V(PS3,∗). We will show that although this connective is

not acceptable for the followers of the Australian Plan, however, it constitutes a genuine

negation from an American perspective.

We introduced the reflexive operator ∗r for the first time in Definition 4.4.14

in the context of relexive bicomplemented implicative WF -lattices. Moreover, by (Tn,∗r )

we will denote the reflexive bicomplemented implicative WF -lattice (whose universe has

n-many elements) and where we interpret ∗r as negation.

Lemma 5.4.1. We have that V(T2,∗r ) = V(B2), where B2 is the two-valued Boolean algebra,

while when n = 3 we get that V(T3,∗r ) = V(PS3,∗).

By Theorem 4.4.12 and Theorem 4.4.17, we know that (Tn,∗r )-valued models

are an infinite class of paraconsistent models of set theory that extend V(B2) and V(PS3,∗).

However, it is still an open question whether we can prove that the (Tn,∗r )-valued models

are non-∈-elementarily equivalent with each other. We now evaluate whether the reflexive

operator is suitable for either the Australian or the American Plan.

Lemma 5.4.2. DNI holds for any (Tn,∗r ), but CP fails for any (Tn,∗r ) with n ≥ 4.

Proof. The first part follows directly from Lemma 4.4.15 and for the second part consider

the algebra (T4,
∗r ) where A = {1, 2, 3,0} such that 0 ≤ 3 ≤ 2 ≤ 1, then 3 ≤ 2 but

2∗r � 3∗r .
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Lemma 5.4.3. DNI holds for any L
(
(Tn,∗r ), Pos(Tn)

)
, but CP fails for any

L
(
(Tn,∗r ), Pos(Tn)

)
with n ≥ 3.

Proof. Consider L
(
(T3,

∗r ), Pos(T3)
)
where A = {1, 2,0} such that 0 ≤ 2 ≤ 1 and the

assignment ι such that ι(ψ) = 2 and ι(ϕ) = 1, where ϕ, ψ ∈ LProp. Then ϕ |=Pos(T3) ψ,

but ¬ψ 2Pos(T3) ¬ϕ.

Corollary 5.4.4. When the operator ∗r interprets the negation of the language of set

theory in V(Tn,∗r ), then it does not satisfy the Australian Plan algebraically, for n ≥ 4.

Moreover, when ∗r interprets the negation of the language of set theory in V(Tn,∗r ), then

it does not satisfy the Australian Plan logically, for n ≥ 3.

Thus, the choice between evaluating CP algebraically or logically does make a

difference in the case of (T3,
∗r ).

Lemma 5.4.5. ∗r is a contradictory-forming operator in L
(
(Tn,∗r ), Pos(Tn)

)
with n ≥ 2.

Proof. Fix (Tn,∗r ), where {0,1, . . . , n−1} such that 0 < n−1 < n−2 < . . . < 2 < 1, with

n ≥ 2. In the case of n = 2, we get the Boolean negation, since L
(
(T2,

∗r ), Pos(T2)
)

= CPL.

Clearly, ∗r satisfies Definition 5.3.1 in the case of (T2,
∗r ).

So, consider n > 2. Then define the filter F = PosTn and the ideal I = NegTn .

Clearly, G∩ I 6= ∅. For (1) suppose there exists an assignment ι such that ι(¬ϕ) ∈ G, so

either ι(¬ϕ) = 1 or ι(¬ϕ) = x such that x 6= 1. By Lemma 4.4.15 we get immediately that

ι(ϕ) ∈ I. The other side follows by symmetry. For (2) suppose we have an assignment ι

such that ι(¬ϕ) ∈ I. So, either ι(∼ϕ) = 0 or ι(∼ϕ) = x such that x 6= 0, analogous to

(1) we get in both cases that ι(ϕ) ∈ F . By symmetry we complete the proof.

Corollary 5.4.6. When the operator ∗r interprets the negation of the language of set

theory in V(Tn,∗r ), then it satisfies the American Plan, whenever n ≥ 3.

5.5 The Symmetric Operator

The second connective we introduce is what we call the symmetric operator
∗s , which behaves as the negation in a finite Łukasiweicz logic. The n-valued Łukasiweicz

logic can be semantically defined as L(LVn, {1}) where we have LVn = 〈A,∧,∨,∗ ,⇒〉,

where A = {0, 1
n
, ..., n−1

n
,1} is a total order and for any x ∈ A we have x∗ = 1 − x. It



119

Figure 5.1: Lattice (T4,∗s )

1

2

3

0

is easy to check that ∗s and ∗ are extensionally equivalent. Intuitively, the ∗s-operator

switches elements which are opposite with respect to the order of the lattice.

Definition 5.5.1. Let A = 〈A,∧,∨,⇒,∗ ,0,1〉 be a complete bounded distributive lattice.

Then, A ⊕ > stands for A with a new top element, above all others, and ⊥ ⊕ A stands

for A with a new bottom element, below all others.

Definition 5.5.2. We define the symmetric operator ∗s for implicative meet complemented

WF -lattices where the underlying universe is {0,1, . . . , n−1} such that 0 < n−1 < n−2 <

. . . < 2 < 1, inductively as follows:

(i) Case n even. If n = 2, then 0∗s = 1 and 1∗s = 0. If n ≥ 2, the ∗s-operator is

defined in Tn+2 as follows. Using that Tn+2 isomorphic to ⊥ ⊕ Tn ⊕ >, we extend

the definition of ∗s in Tn by setting ⊥∗s = > and >∗s = ⊥.

(ii) Case n odd. If n = 3, so T3 = {0, 2,1} with (0 < 2 < 1), then 0∗s = 1, 2∗s = 2 and

1∗s = 0. If n ≥ 3, the ∗s-operator is defined in Tn+2 as follows. Using that Tn+2

isomorphic to ⊥⊕ Tn ⊕>, we extend the definition of ∗s in Tn by setting ⊥∗s = >

and >∗s = ⊥.

By (Tn,∗s ) we will denote the implicative meet complemented WF -lattice

(whose universe has n many elements) and where we interpret ∗s as negation. Notice

that in any (Tn,∗s )-valued model we have J¬ϕK = JϕK∗s , i.e., ∗s is interpreted as negation

when evaluating (Tn,∗s )-sentences in V(Tn,∗s ).

Theorem 5.5.3. For any (Tn,∗s )-lattice with n > 2, there is a formula ϕ ∈ L∈ and a

filter F , such that V(Tn,∗s ) |=G ϕ and V(Tn,∗s ) |=F ¬ϕ.
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Proof. Fix (Tn,∗s ) with n > 2 and consider the sentence ϕ defined in the proof of Theorem

4.4.17 and the filter Pos(Tn).

This theorem shows that every (Tn,∗s )-lattice, with more than two elements,

gives rise to a paraconsistent model of NFF-ZF.

Lemma 5.5.4. We have that V(T2,∗s ) = V(B2), where B2 is the two-valued Boolean algebra,

while when n = 3 we get that V(T3,∗s ) = V(PS3,∗).

Lemma 5.5.5. DNI and CP hold for any (Tn,∗s ).

Corollary 5.5.6. When the operator ∗s interprets the negation of the language of set

theory in V(Tn,∗s ), then it satisfies the Australian Plan algebraically.

Lemma 5.5.7. DNI holds for any L
(
(Tn,2), Posn), but CP fails for any

L
(
(Tn,∗s ), Pos(Tn)

)
with n ≥ 3.

Proof. Similar to the proof of Lemma 5.4.3.

Corollary 5.5.8. When the operator ∗s interprets the negation of the language of set

theory in V(Tn,∗s ), then it does not satisfy the Australian Plan logically, for n ≥ 3.

We can conclude that, from the perspective of the Australian Plan, the

operator ∗s is indeed a negation in every (Tn,∗s )-valued model, if we choose to interpret

DNI and CP algebraically. On the other hand, if we interpret these rules logically, the

operator ∗s fails to be a legitimate negation.

Lemma 5.5.9. ∗s is a contradictory-forming operator in L
(
(Tn,∗s ), Pos(Tn)

)
.

Proof. Fix any (Tn,∗s ). Then define the filter F = Pos(Tn) and the ideal I = Neg(Tn).

For (1) suppose we have an ι such that ι(¬ϕ) ∈ F . So, either ι(¬ϕ) = 1 or ι(¬ϕ) = x

such that x 6= 0. By Definition 5.5.2, in both cases ι(ϕ) ∈ I. Thus, ι(ϕ) ∈ I. The other

side follows by symmetry. For (2) suppose we have an ι such that ι(¬ϕ) ∈ I so either

ι(¬ϕ) = 0 or ι(¬ϕ) = x such that x 6= 1, analogous to (1) we get in both cases that

ι(ϕ) ∈ F . By symmetry we complete the proof.

Corollary 5.5.10. When the operator ∗s interprets the negation of the language of set

theory in V(Tn,∗s ), then it satisfies the American Plan.
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Thus, the American and Australian Plan disagree again, but they could be

reconciled if we choose the right interpretation of the conditions of the Australian Plan.

Moreover, on the model-theoretic side, the ∗s-operator is more expressive than the ∗r -

operator, in the context of T-lattices.

Theorem 5.5.11. The model V(T4,∗s ) is faithful to (T4,
∗s ) and hence loyal to

(
(T4,

∗s ), F
)
,

for any filter F .

Proof. Fix (T4,
∗s ) and let σ = ∃xy(x ∈ y ∧ x /∈ y). We use the names u, v ∈ V(T4,∗s ),

where u = {〈∅,1〉} and v = {〈〈∅,1〉, 2〉}, to witness that the sentence σ receives value 3 in

V(T4,∗s ). So JσK = (2∧2∗s) = 3. Then, by symmetry of the negation, J¬σK = JσK∗s = 2.

Theorem 5.5.12. The model V(T6,∗s ) is faithful to (T6,
∗s ) and hence loyal to

(
(T6,

∗s ), F
)
,

for any filter F .

Proof. Fix (T6,
∗s ). Then, it is easy to calculate that JσK = 4 and J¬σK = JσK∗s = 3,

whereas JϕK = 2, while J¬ϕK = JϕK∗s = 5.

These results suggest that the ∗s-operator is expressive enough to match the

logical expressivity of the logic of a (Tn,∗s )-lattice with that of the set theory based on it.

But we can do better, showing that we are able to obtain non-∈-elementarily equivalent

models of set theory.

Theorem 5.5.13. There are filters F1 and F2 such that

(V(T6,∗s ), F1) 6≡∈ (V(PS3,∗), F2).

Proof. Consider again the sentence ϕ as in the proof of Theorem 4.4.17 and let F2 =

Pos(T3). Notice that V(PS3,∗) �F2 ¬ϕ. On the other hand, if we fix V(T6,∗s ) and consider

the filter F1 = {4, 3, 2,1}, then JϕK∗s = 5. Thus, V(T6,∗s ) 2F1 ¬ϕ.

Notice that V(T6,∗s ) coupled with the filter F1 = {4, 3, 2,1} is still

paraconsistent, since both JσK ∈ F1 and J¬σK = JσK∗s ∈ F1. Hence, V(T6,∗s ) is a

paraconsistent model of set theory that validates NFF-ZF, which is non-∈-elementarily

equivalent from V(PS3,∗).

This shows that we have succeeded (at least to some degree) in finding

non-∈-elementarily equivalent models of paraconsistent set theory, by twisting the unary
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operator, that interprets negation, in the signature of implicative meet complemented

WF -lattices. Furthermore, in the next section, we will show that we can go a step

further and produce an entire hierarchy of non-∈-elementarily equivalent models of

paraconsistent set theory.

5.6 The Predecessor

In this section, we introduce the ∗e-operator which we call predecessor. This

operator is similar to that of a n-valued Post algebra. A n-valued Post algebra is a

complete bounded distributive lattice A = 〈{0,1, . . . , n − 1},∧,∨,∗ ,⇒,0,1〉 where

{0,1, . . . , n − 1} is a total order with 0 < n − 1 < n − 2 < . . . < 2 < 1 and 1∗ = 2,

2∗ = 3, ... , (n− 1)∗ = 0, 0∗ = 1. See (BURRIS; SANKAPPANAVAR, 1981, p. 29), for

further technical details.

Definition 5.6.1. We can define the predecessor ∗e for any implicative meet

complemented WF -lattice where the underlying universe is {0,1, . . . , n − 1} such that

0 < n − 1 < n − 2 < . . . < 2 < 1, recursively as follows. Let 0∗e = 1, 1∗e = 0 and for

any x ∈ WF such that 0 6= x 6= 1 we define x∗e to be the predecessor of x in the total

order of WF .

By (Tn,∗e ) we will denote the implicative meet complemented WF -lattice

(whose universe has n many elements) and where we interpret ∗e as negation. Notice

that in any (Tn,∗e )-valued model we have J¬ϕK = JϕK∗e , i.e., ∗e is interpreted as

negation when evaluating (Tn,∗e )-sentences in V(Tn,∗e ).

Even though V(T2,∗e ) = V(B2), where B2, is the two-valued Boolean algebra, it

is hard to consider the ∗e-operator as a proper negation. We will show that almost every

regularity property (of both plans) fails for the ∗e-operator.

Lemma 5.6.2. DNI and CP fail for any (Tn,∗e ), with n ≥ 4.

Proof. Fix any (Tn,∗e ) with n ≥ 4. In order to see that DNI fails, just notice that

2 � 2∗e∗e . For the failure of CP, let x and y be 2 and 3, respectively. We get y ≤ x,

however, x∗e � y∗e .

Corollary 5.6.3. When the operator ∗e interprets the negation of the language of set

theory in V(Tn,∗e), then it does not satisfy the Australian Plan algebraically, for n ≥ 4.
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Figure 5.2: Lattice (T6,∗e )
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Lemma 5.6.4. DNI and CP fail for any L
(
(Tn,∗e ), Pos(Tn)

)
with n ≥ 4.

Proof. Fix any (Tn,∗e ) with n ≥ 4 . Consider an assignment ι such that ι(ϕ) = n − 2

and ι(ψ) = n− 1. Then ψ |=Pos(Tn) ϕ, however, ¬ϕ 2Pos(Tn) ¬ψ. Thus CP fails. Moreover,

consider the same assignment ι, so ι(ϕ) = n− 2, then ϕ 2P os(Tn)¬¬ϕ. Hence, DNI fails

as well.

Corollary 5.6.5. When the operator ∗e interprets the negation of the language of set

theory in V(Tn,∗e ), then it does not satisfy the Australian Plan logically, for n ≥ 4.

This time the logical and algebraic interpretation of the Australian Plan

coincide in rejecting the predecessor as a negation for any (Tn,∗e )-valued model with

n ≥ 4. Only (T3,
∗e ) and (T2,

∗e ) have a legitimate negation on the Australian Plan.

But also the American Plan agrees in rejecting the operator ∗e as a genuine

negation for any (Tn,∗e )-valued model with n > 3, due to the failure of DNI and one of the

de Morgan laws: ¬ϕ ∨ ¬ψ |=Pos(Tn) ¬(ϕ ∧ ψ). Furthermore, if we suppose that truth and

falsity are not exclusive, then the operator ∗e fails to satisfy the conditions of Definition

5.3.1, even when n = 3.

Lemma 5.6.6. ∗e is not a contradictory-forming operator in L
(
(Tn,∗e ), Pos(Tn)

)
, with

n ≥ 3, whenever we represent falsity by an ideal I such that I ∩ Pos(Tn) 6= ∅.

Proof. Fix a L
(
(Tn,∗e ), Pos(Tn)

)
and define the filter F = Pos(Tn). Moreover, let I be

such that Pos(Tn) ∩ I 6= ∅. We will show that there exists an assignment ι and a formula
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ϕ ∈ LProp such that (1) of Definition 5.3.1 does not hold. Indeed, consider a formula

ϕ ∈ LProp and an assignment ι such that ι(ϕ) = n− 1, so ι(¬ϕ) = 0, by definition of the
∗e-operator. But then ι(ϕ) ∈ I, which implies ι(¬ϕ) /∈ F .

However, the American and the Australian Plan can find here a common

ground, if we assume that truth and falsity are both exclusive and exhaustive. Indeed,

in this case, the ∗e-operator becomes a contradictory-forming operator in

L
(
(T3,

∗e ), Pos(T3)
)
. But this is not the case anymore for any L

(
(Tn,∗e ), Pos(Tn)

)
with

n ≥ 4, since ∗e would fail to satisfy (2) of Definition 5.3.1. Therefore, ∗e is acceptable for

the American Plan, when it interprets a negation in V(T2,∗e ) and V(T3,∗e ).

Although the ∗e-operator can hardly satisfy any of the conditions imposed by

both plans, it allows us, however, to obtain infinitely many non-∈-elementarily equivalent

models of NFF-ZF.

Theorem 5.6.7. Any (Tn,∗e )-valued model with n ≥ 4 is non-∈-elementarily equivalent

from each other.

Proof. Take any V(Tn,∗e ) and V(Tm,∗e ) withm > n > 3. Now, consider again ϕ as defined in

the proof of Theorem 4.4.17 and let ∗ek stand for a sequence of k-many symbols ∗e . The same

convention can be set up for the negation of the language of set theory: by ¬k we mean a

sequence of k-many symbols ¬. Then we can calculate that (JϕK∗en−3)(Tn,∗e ) = 0, however,

(JϕK∗en−3)(Tm,∗e ) 6= 0. Hence, V(Tn,∗e ) 2Pos(Tn) ¬n−3ϕ and V(Tm,∗e ) �Pos(Tm) ¬n−3ϕ.

We now show that every (Tn,∗e )-valued model with more than four elements is

a paraconsistent model of set theory. We will use the following abbreviation: ⊥ =df. x 6= x.

Notice that the formula ⊥ does not have parameters and is thus a legitimate formula in

the language of set theory L∈.

Theorem 5.6.8. For any (Tn,∗e ) with n ≥ 4, there exists a ϕ ∈ L∈ and a filter F , such

that V(Tn,∗e ) |=F ϕ and V(Tn,∗e ) |=F ¬ϕ.

Proof. Fix any (Tn,∗e ) with n ≥ 4. Then we can define the following sentence in the

language of set theory;

γ = ∃x∃y
(
(x ∈ y ∨ x /∈ y) ∧ ¬(x ∈ y → ⊥∨ x /∈ y → ⊥)

)
.
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It is readily shown that JγK = 2, where 2 is the co-atom of (Tn,∗e ). Consider an arbitrary

name u and v = {〈u, 2〉} as witnesses. Then:

JγK ≥ (2 ∨ 3) ∧ (2⇒t 0 ∨ 3⇒t 0)∗e

= 2 ∧ (0 ∨ 0)∗e

= 2.

Suppose towards contradiction that JγK = 1. Hence, we there exist two u, v ∈ V(Tn,∗e )

such that Ju ∈ v ∨ u /∈ vK = 1 = J¬(u ∈ v → ⊥∨ u /∈ v → ⊥)K. So either Ju ∈ vK = 1 or

Ju /∈ vK = 1. Suppose the former, thus Ju /∈ vK = 0. Then;

J(x ∈ y ∨ x /∈ y) ∧ ¬(x ∈ y → ⊥∨ x /∈ y → ⊥)K

= (1 ∨ 0) ∧ (1⇒t 0 ∨ 0⇒t 0)∗e

= 1 ∧ (0 ∨ 1)∗e

= 0.

Therefore, there are no u, v ∈ V(Tn,∗e ) such that

J(u ∈ v ∨ u /∈ v)K = 1 = J¬(u ∈ v → ⊥∨ u /∈ v → ⊥)K.

The second case follows by an analogous argument. Hence, JγK(Tn,∗e ) 6= 1. We may

conclude JγK = 2. Moreover, JγK∗e equals 3, and thus JγK∗e 6= 0. Hence, V(Tn,∗e ) |=Pos(Tn) ϕ

and V(Tn,∗e ) |=Pos(Tn) ¬ϕ.

Theorem 5.6.8 and Theorem 5.6.7 show that every (Tn,∗e )-valued model, with

more than three elements, is a paraconsistent model of NFF-ZF and that each of these

models is non-∈-elementarily equivalent from each other.

In the case of V(T3,∗e ) we do not obtain a paraconsistent consequence relation

since the corresponding propositional logic is some fragment of IPL. Actually,

L(V(T3,∗e ), {1}) = L(V(T3,
∗p ), {1}). So as shown in Chapter 4.4.3 we know that all the

axioms of IPL hold in L(V(T3,∗e ), {1}), but MP fails. Moreover, by Theorem 4.4.23, we

know that the corresponding propositional logic of V(T3,∗e ), given the positive filter on

T3, is classical i.e., L(V(T3,∗e ), Pos(T3)) = CPL.
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Theorem 5.6.9. The model V(Tn,∗e ) with n ≥ 2 is faithful to (Tn,∗e ) and hence loyal to(
(Tn,∗e ), F

)
, for any filter F .

Proof. Let n = 2. Then it is easy to see that (T2,
∗e )/Pos(T2) is the two-valued Boolean

algebra. Hence, V(T2,∗e ) is trivially faithfull to (T2,
∗e ).

Let n > 2. Fix a (Tn,∗e ). We know that JExtensionalityK = 1 and similarly we get

JExtensionalityK∗e = 0. So, we are done if we can find a sentence ϕ ∈ L∈ such that JϕK = 2,

since we can access the remaining elements of the universe of (Tn,∗e ) by negating this

sentence iteratively. We use the same sentence γ of the proof of Theorem 5.6.8. Clearly,

JγK = 2. Moreover, for every a ∈ A such that a 6= 1, 2,0 we have that JγK∗ek = a, for some

k < (n− 2).

This result shows that indeed every (Tn,∗e )-valued model is faithful to (Tn,∗e )

and that the corresponding propositional logic of the set-theoretic models matches the

logic of the underlying lattices. So from a model-theoretic perspective, the ∗e-operator

performs ideally.

Nevertheless, we would not associate the ∗e-operator intuitively with a

negation-like operator since almost every regularity property is violated.2 But we believe

that precisely for this reason, the ∗e-operator is capable of providing enough complexity

to our language so that we can define an entire hierarchy of non-∈-elementarily

equivalent models for non-classical set theories. In conclusion, it seems that the

complexity of the ∗e-operator stems from the fact that; by applying the predecessor to

the co-atom of (Tn,∗e ) can access every element in the universe of the lattice. We want

to explore this fact even further in the following section, by introducing an operator that

behaves complementary to the predecessor.

5.7 The Successor

In this section, we introduce the ∗c-operator, which we call successor. This

negation is defined as the complement of the predecessor. So, intuitively speaking, instead

of bringing a sentence closer to falsity (the bottom element of a lattice) by repeatedly
2To be fair with the intuitiveness of the predecessor. In the case of the two-element and three-element

(T,∗e )-lattice it seems that the ∗e -operator behaves as a genuine negation, given that ∗e imitates the
behavior of the classical negation in the two-element lattice and the meet-complement in the case of the
three-element lattice.
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Figure 5.3: Lattice (T5,∗c ).
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negating a sentence, this operator does the inverse, i.e., by negating a sentence we bring

it closer to truth (top element of the lattice).

Definition 5.7.1. We can define the successor ∗c for any implicative meet complemented

WF -lattice where the underlying universe is {0,1, . . . , n−1} such that 0 < n−1 < n−2 <

. . . < 2 < 1, recursively as follows. Let 0∗c = 1, 1∗c = 0 and for any x ∈ WF such that

0 6= x 6= 1 we define x∗c to be the successor of x in the total order of WF .

By (Tn,∗c ) we will denote the implicative meet complemented WF -lattice

(whose universe has n many elements) and where we interpret ∗c as negation. Notice tha

in any (Tn,∗c )-valued model we have J¬ϕK = JϕK∗c , i.e., ∗c is interpreted as negation

when evaluating (Tn,∗c )-sentences in V(Tn,∗c ).

Notice that V(T2,∗c ) = V(B2), where B2, is the two-valued Boolean algebra. As

in the case of the ∗e-operator it is hard to consider the ∗c-operator as a proper negation.

We will show that every regularity property of both plans fails for this operator.

Lemma 5.7.2. DNI fails for any (Tn,∗c ), with n ≥ 3 and CP fails for any (Tn,∗c ), with

n ≥ 4.

Proof. Fix any (Tn,∗c ) with n ≥ 3. In order to see that DNI fails, just notice that 2 � 2∗c∗c ,

since 2∗c∗c = 0. For the failure of CP, let x and y be 2 and 3, respectively. We get y ≤ x,

however, x∗c � y∗c .

Corollary 5.7.3. When the operator ∗c interprets the negation of the language of set

theory in V(Tn,∗c ), then it does not satisfy the Australian Plan algebraically, for n ≥ 3.
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Lemma 5.7.4. DNI and CP fail for any L
(
(Tn,∗c ), Pos(Tn)

)
, with n ≥ 3.

Proof. Fix any (Tn,∗c ) with n ≥ 3. In order to see that DNI fails, consider an assignment

ι such that ι(ϕ) = 2. Then ϕ 2Pos(Tn) ¬¬ϕ. For the failure of CP, take an assignment ι

such that ι(ϕ) = 1 and ι(ψ) = 2. Then, applying Definition 5.7.1 we have ϕ |=Pos(Tn) ψ,

however, ¬ψ 2Pos(Tn) ¬ϕ.

Corollary 5.7.5. When the operator ∗c interprets the negation of the language of set

theory in V(Tn,∗c ), then it does not satisfy the Australian Plan logically, for n ≥ 3.

The successor, unsurprisingly, does neither satisfy the logical nor the

algebraic interpretation of the Australian Plan. Both interpretations coincide in

rejecting the successor as a negation for any (Tn,∗c )-valued model with n ≥ 3. Only the

(T2,
∗c )-valued model (which is the two-valued Boolean valued model) has a legitimate

negation on the Australian and American Plan. Moreover, the American Plan agrees in

rejecting the ∗c-operator as legitimate negation in any (Tn,∗c )-valued model with n ≥ 3,

even supposing that truth and falsity are not exclusive.

Lemma 5.7.6. ∗c is not a contradictory-forming operator in L
(
(Tn,∗c ), F

)
, with n ≥ 3,

whenever we represent falsity by an ideal I and truth by a filter F such that I ∩ F 6= ∅.

Proof. Fix a L
(
(Tn,∗c ), F

)
where I and F are such that I ∩ F 6= ∅. We will show that

there exists an assignment ι and a formula ϕ ∈ LProp such that (2) of Definition 5.3.1 does

not hold. Indeed, consider a formula ϕ ∈ LProp and an assignment ι such that ι(ϕ) = 2, so

ι(¬ϕ) = 1, by definition of the ∗c-operator. Notice that we have ι(ϕ) ∈ F , since otherwise

F ∩ I = ∅. But then ι(¬ϕ) ∈ F , which implies ι(¬ϕ) /∈ I.

This time, the American and the Australian Plan match perfectly. Both plans

accept the ∗c-operator as legitimate negation in the case of V(T2,∗c ) and reject the ∗c-

operator in the case of the remaining (Tn,∗c )-valued models.

We go on to show that the ∗c-operator allows us to obtain infinitely many

paraconsistent models of NFF-ZF.

Theorem 5.7.7. For any (Tn,∗c ) with n ≥ 3, there exists a ϕ ∈ L∈ and a filter F , such

that V(Tn,∗c ) |=F ϕ and V(Tn,∗c ) |=F ¬ϕ.
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Proof. Fix a (Tn,∗c ) with n ≥ 3. Consider the sentence σ of the proof of Theorem 5.5.11.

We can readily calculate that JσK = 2. Hence, J¬σK = JσK∗c = 1, by the Definition 5.7.1.

Therefore, V(Tn,∗c ) |=Pos(Tn) σ and V(Tn,∗c ) |=Pos(Tn) ¬σ.

Furthermore, we can show that any (Tn,∗c )-valued model is non-∈-elementarily

equivalent from each other. For the following proof we will use the following sentences;

τ0 = ∃xy
(
x ∈ y ∧ x /∈ y ∧ ¬(x /∈ y)

)
,

τ1 = ∃xy
(
x ∈ y ∧ x /∈ y ∧ ¬(x /∈ y) ∧ ¬¬(x /∈ y)

)
,

τ2 = ∃xy
(
x ∈ y ∧ x /∈ y ∧ ¬(x /∈ y) ∧ ¬¬(x /∈ y) ∧ ¬¬¬(x /∈ y)

)
,

...

Notice that we can resume these sentences in the form of the schema of

sentences τn as follows;

τn = ∃xy
(
x ∈ y ∧ x /∈ y ∧ ... ∧ ¬n+1(x /∈ y)

)
.

Theorem 5.7.8. There are filters F1 and F2 such that

(V(Tn,∗c ), F1) 6≡∈ (V(Tm,∗c ), F2),

where m > n ≥ 2.

Proof. Suppose n = 2 and consider the sentence σ of the proof of Theorem 5.5.11. Then

JσK(Tn,∗c ) = 0, however, for any V(Tm,∗c ) with m > 2, we have JσK(Tm,∗c ) = 2. So,

V(Tm,∗c ) |=Pos(Tm) σ, however, we get V(T2,∗c ) 2Pos(T2) σ. So we know that V(T2,∗c ) is non-

∈-elementairly equivalent from each V(Tm,∗c ) where m > 2. Now, suppose n > 2. Then we

can readily calculate that Jτn−3K(Tn,∗c ) = 0 and Jτn−3K(Tm,∗c ) 6= 0. Hence, V(Tn,∗c ) 2Pos(Tn)

τn−3, however, V(Tm,∗c ) �Pos(Tm) τn−3.

Theorem 5.7.7 and Theorem 5.7.8 show that every (Tn,∗c )-valued model, with

more than two elements, is a paraconsistent model of NFF-ZF and that each of these

models is non-∈-elementarily equivalent from each other. Moreover, we can show, as well,

that each (Tn,∗c )-valued model is non-∈-elementarily equivalent from each (Tn,∗x )-valued
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model of the same cardinality, where ∗x is a placeholder for any of the first three operators

introduced in this chapter, i.e., ∗x ∈ {∗r ,∗e ,∗s }.

Theorem 5.7.9. There are filters F1 and F2 such that

(V(Tn,∗c ), F1) 6≡∈ (V(Tn,∗x ), F2),

where n > 2.

Proof. Case 1: let n = 3. Consider the positive filter on T3 and the sentence σ (defined

in Theorem 5.5.11). Then we have JσK(T3,∗c ) 6= 0 and JσK(T3,∗e ) = 0. Now, consider the

sentence ¬¬σ. Then we get J¬¬σK(T3,∗c ) = 0, however, J¬¬σK(T3,∗s ) = J¬¬σK(T3,∗r ) 6= 0.

Case 2: let n > 3 and consider the positive filter on Tn. Then we calculate

Jτn−4K(Tn,∗c ) = n− 1
(
where n− 1 is the atom of (Tn,∗c )

)
and Jτn−4K(Tn,∗e ) = 0. Now we

will address the remaining negations. By Theorem 5.7.8 we know that Jτn−3K(Tn,∗c ) = 0.

Furthermore, we readily calculate that Jτn−3K(Tn,∗s ) = Jτn−3K(Tn,∗r ) 6= 0. The desiderata

follows immediately.

We conclude this section by pointing out that, as in the case of the predecessor,

we have a perfect match between the propositional logic of each set-theoretical model with

the propositional logic of the underlying lattice.

Theorem 5.7.10. The model V(Tn,∗c ) with n ≥ 2 is faithful to (Tn,∗c ) and hence loyal to(
(Tn,∗c ), F

)
, for any filter F .

Proof. Notice that for any (Tn,∗c )-valued model we have JExtensionalityK = 1 and

JExtensionalityK∗c = 0. Let n = 3. Then we are done, since for sentence σ (defined in

Theorem 5.5.11), we have JσK = 2. So let n > 3. Then we can readily calculate that

Jτn−4K = n − 1. Now, for any a ∈ A/{1,0, n − 1} we have Jτn−4K∗ck = a, for some

k < (n− 2).

5.8 A Minimal Account of Negation

In this section, we will give a summary of the previous section. We have

depicted the main results of the previous section in Table 4.2. Moreovoer, we have shown

that the ∗r -operator is not a negation according to the Australian Plan, while it is for the
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Table 5.2: Operators and their respective regularity properties

Operators American
Plan

Australian
Plan (algebra)

Australian
Plan (logic)

Reflexive (∗r) X × (for n ≥ 3) × (for n ≥ 4)

Symmetric (∗s) X × (for n ≥ 3) X

Predecessor
(∗e)

× (for n ≥ 4) × (for n ≥ 4) × (for n ≥ 4)

Successor (∗c) × (for n ≥ 3) × (for n ≥ 3) × (for n ≥ 3)

American Plan. Regarding the ∗s-operator, both plans agree in considering it a negation

(at least if we consider the logical version of the Australian Plan). Finally, the ∗e-operator

and ∗c-operator are not a negation for neither the American nor the Australian Plan.

On the other hand, ∗e and ∗c , were the only operators that allowed us to obtain

enough expressive power to be able to distinguish infinitely many paraconsistent models

of NFF-ZF. Moreover, Theorem 5.5.13, Theorem 5.6.7 and Theorem 5.7.8 offer the first

examples of independence proofs within ZF-like paraconsistent set theory. Indeed, we

have been able to show that there are two paraconsistent models of the form V(A) and

V(B), each validating the negation-free fragment of ZF, and a formula ϕ ∈ L∈ such that

V(A) �F ϕ and V(B) 2F ϕ, for some filter F . For a much more sophisticated and state-of-

the-art elaboration of this topic, i.e., independence proofs in the context of paraconsistent

models of set theory, consider (TARAFDER; VENTURI, 2021).

Let us now turn to our own account of negation, inspired by the algebraic

framework discussed. Firstly, we have noticed a trade-off between expressivity of the

language and regularity properties that our operators satisfy, which makes it difficult to

pin down objective criteria for being a negation. Secondly, we claim that a negation, at

least in the algebraic context, is simply a unary operator defined on a lattice, which has

the ability to separate the elements which belong to the universe of a given lattice. Thus

more generally, a negation tells apart points in a relational structure.

On this account, negation is a device which linguistically allows us to

distinguish semantic situations from each other, without committing to their validity.
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This notion is of course weaker than the idea of negation as a switch operator between

truth and falsity (like the American Plan), since the separation offered by negation

might not commit to any change in truth-value. Moreover, this notion is also weaker

than a conception of negation as a ruling out operator (like the Australian Plan), since,

again, if telling things apart does not commit us to their validity, then we can separate

semantic facts linguistically, without excluding any of them. From this perspective, it is

then easy to see that ∗r cannot be considered a negation, while ∗s , ∗e and ∗c in principle,

can.

The ability to tell things apart is a minimal requirement on negation that may

offer a common ground for both plans. Indeed, they both base their analysis of negation on

more primitive concepts, which express the difficulty of considering together things that

are told apart from negation. On the American side we find contradictoriness, logical

in nature, while on the Australian side incompatibility, that, in turn can be understood

epistemically or metaphysically. It is interesting to notice that, as it is the case for both

plans, also this minimal requirement yields a classical negation when restricted to the

classical case. In this context, this means that when we consider the two-element algebra,

the ability to tell things apart forces us to switch the two elements of the algebra: i.e.,

truth and falsity. We call this the minimality priniciple.

So, let A = 〈A,∧,∨,⇒,∗ ,0,1〉 be a complete bounded distributive lattice.

We say that ∗ satisfies the minimality priniciple, if

0∗ = 1 and 1∗ = 0.

This leads us to the following definition which is the core of our algebraic

account of negation:

Definition 5.8.1. Let A = 〈A,∧,∨,⇒,∗ ,0,1〉 be a complete bounded distributive lattice.

We say that ∗ is a legitimate negation on the algebraic account, if

(i) ∗ satisfies the minimality priniciple and

(ii) for any a ∈ A there exists some b ∈ A such that a∗ = b where a 6= b.

Furthermore, we believe that it might be useful to distinguish between a strict

formulation of the algebraic account and a tolerant formulation of the algebraic account.
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Where the strict formulation is equivalent to Definition 5.8.1 and the tolerant formulation

considers the minimality priniciple the only requirement that a unary operator has to satisfy

to be considered a legitimate negation. So on the tolerant account, we can consider the

reflexive operator ∗r a negation, whereas, on the strict account we can not.

The algebraic account, therefore, is meant to offer a more fundamental take

on negation. But the broader the look is, the less precise the criteria we can propose are;

and indeed, the only negation that we can discard in this chapter is the reflexive one (at

least from the perspective of the strict formulation of the algebraic account). However,

on the positive side, we believe that the algebraic account and in general the algebraic

perspective can offer a more fine-grained analysis of logical properties; as it has been the

case in refining the conditions imposed by both plans.

One may object that an algebraic context, however, is too wide to be able

to capture essential features of the logical vocabulary. In other terms, the relativity

engendered by the plethora of algebraic structures at disposal gets to the point where no

regularity properties can be ascribed anymore to a logical constant. We believe that this is

not the case. On the contrary, in purely algebraic terms we can offer a general distinction

between different kinds of negation; for example between a classical-like negation and

a intuitionistic-like negation. The former is expressed by a negation that is cyclical:

not only does it form loops between truth-values, but it also allows us to come back to

every element of the loop; while the latter is a negation that does not have this cyclical

property. The classicality is given here by the exhaustiveness of a negation, and therefore

an intuitionistic negation is just one which allows the logical space not to be uniformly

covered by the act of negation. As an example, notice that the ∗s-operator is a classical-like

negation, while the ∗e-operator and the ∗c is an intuitionistic-like negation.

Because of the minimal requirements we impose on negation, our perspective

is quite comprehensive. For this reason, there exist very interesting connections with our

account of negation and logical pluralism. Consider (JOCKWICH MARTINEZ;

VENTURI, 2021, Section 4.3) for a more detailed discussion of this topic.

Now, a word on why we believe that both plans fall short in describing what

a negation really is. Take for instance, the case of paraconsistency, which is supposed to

be an important case study for both plans. Indeed, it seems difficult to express a form of

paraconsistency by structural properties of negation and this is, we believe, an intrinsic
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difficulty of both the American and Australian Plan: the need to account, through

negation, for logical phenomena which, unfortunately, are hardly expressible without

resorting to inferential aspects of a logical system. This observation is not surprising,

since the main tenant of paraconsistency is the refutation of ECQ, which does not

involve only negation but also implication and the consequence relation.

But does the invalidity of (ϕ ∧ ¬ϕ)→ ψ depend necessarily on the properties

of the negation involved? We believe not. Indeed, it is possible to construct an example

where L0 is a logic in the same signature of CPL, with all connectives defined as in CPL

except implication, which behaves like ⊥: for all formulas ϕ and ψ, ϕ → ψ is always

false. By definition L0 is paraconsistent, but there is no formula ϕ such that ϕ ∧ ¬ϕ

is true. But then, how is it possible to capture the paraconsistency of the logic L0 in

terms of specific properties of the negation? We believe that this is impossible because

in L0 the negation is the classical negation. In other terms, the stronger claim that we

are supporting here – suggested by an algebraic viewpoint – is that paraconsistency is a

logical property which can not be predicated only of negation but of a logical system in its

entirety. Therefore a paraconsistent setting might not offer the right logical environment

where to test properties meant to capture the nature of negation.
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Chapter 6

An Extended Class of Models for

Non-classical Set Theories

Summary

In this chapter, we will present two new methods of constructing algebra-valued

models for non-classical set theories. On the one hand, we show that we can expand the

signature of well-known DRI-algebras with some unary operator and that these algebras

give rise to non-classical models of set theory. In particular, we will use totally-ordered

Heyting algebras and expand these algebras with the reflexive operator. We show that

the resulting algebras give rise to paraconsistent and paracomplete models of set theory.

On the other hand, we show that we can construct algebra-valued for non-classical set

theories by modifying the interpretation map for membership and identity. In particular,

we will build an LP-model of ZFC. Finally, we explore the mathematical tractability of

the modified interpretation map.

6.1 Totally-ordered Heyting-valued Models

In this section, we explore a broader class of models for non-classical set

theories. In particular, we build algebra-valued models for non-classical set theories

which are paraconsistent, paracomplete or both. Our constructions will be based on the

class of totally ordered complete bounded distributive lattices of the form

A = 〈A,∧,∨,⇒h,0,1〉 where A is of finite size and where we interpret the binary



136

operator ⇒h as an Heyting conditional. We will refer to the class of such lattices as

Heyting-implication lattices.

The crux of this approach is that we know that these lattices are DRI-algebras

(remember that the properties that characterize a DRI-algebra depend only on the binary

operator ⇒ and the meet ∧) and that the respective algebra-valued models V(A) will

satisfy BQϕ for any ϕ ∈ NFF-ZF (given that these lattices are a subclass of Heyting

algebras). Then we can expand these lattices with a unary operator that gives rise to a

non-classical logic and consequently we build non-classical models of set theory.

We define these lattices as follows:

Definition 6.1.1. We call a structure 〈A,∧,∨,⇒h,0,1〉 a Heyting-implication lattice if

(i) 〈A,∧,∨,0,1) is a complete bounded distributive lattice,

(ii) A is totally ordered and finite,

(iii) the binary operator ⇒h is defined for any a, b ∈ A as:

a⇒h b =


1, if a ≤ b;

b, if a > b.

It follows immediately that;

Theorem 6.1.2. Let A be a Heyting-implication lattice. Then we have V(A) |=D NFF-ZF

for any filter D.

Proof. It is easy to check that every Heyting-implication lattice A is a DRI-algebra and

it is a fact that BQϕ holds for every negation-free formula ϕ . The desiderata follows

immediately by application of Theorem 2.4.4.

Now, we go on to expand the signature of Heyting-implication lattices with a

unary operator ∗ that we will be interpreted as negation when we construct algebra-valued

models on top. Of course, we are free in principle to explore different unary operator to

construct different non-classical models of set theory. However, having in mind Chapter

5.8, the only requirement that we make on our choice of the unary operator ∗ is that it has

to satisfy the minimality principle. Moreover, we will show that any Heyting-implication
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lattice that is expanded with the ∗r -operator gives rise to paraconsistent and paracomplete

logics (depending on the set of designated values) and thus to models of non-classical set

theory.

6.1.1 Models of Paraconsistent Set Theory

In this subsection, we will construct models of paraconsistent set theory on

top of Heyting-implication lattices. In particular, we will expand our Heyting-implication

lattices with the ∗r -operator. Moreover, we refer to these expanded lattices as reflexive

Heyting-implication lattices.

Definition 6.1.3. We call a structure 〈A;∧,∨,⇒h,
∗r ,0,1〉 a reflexive

Heyting-implication lattice, if:

(i) 〈A;∧,∨,⇒h,0,1〉 is a Heyting-implication lattice,

(ii) the algebraic operator ∗r is defined as follows:

a∗r =



0, if a = 1;

a, if a ∈ A \ {1,0};

1, if a = 0.

By (A,∗r ) we will denote a reflexive Heyting-implication lattice where we

interpret ∗r as negation. Notice, that the reflexive Heyting-implication-negation lattice

(A,∗r ) with two elements modulo the top filter coincides with the two-valued Boolean

algebra. So;

Lemma 6.1.4. Let (A2,
∗r ) be the reflexive Heyting-implication lattice with two elements.

Then we have L
(
(A2,

∗r ), {1}
)

= L
(
V(A2,∗r ), {1}

)
= CPL.

Proof. This follows immediately from the fact that (A2,
∗r )/{1} is the two-valued Boolean

algebra 2 = {0,1}.

We go on to show that every reflexive Heyting-implication lattice (A,∗r ), with

more than two elements in its universe, is indeed a non-classical model of set theory.
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Remember that by Lemma 6.1.2 we already know that every V(A,∗r ) is a model of NFF-

ZF.

Theorem 6.1.5. Let (A,∗r ) be a reflexive Heyting-implication lattice with more than two

elements. Then there exists a sentence ϕ ∈ L∈ and a filter F , such that V(A,∗r ) |=F ϕ and

V(A,∗r ) |=F ¬ϕ.

Proof. Fix any (A,∗r ) with more than two elements. Now take the A-names u, v ∈ V(A,∗r )

such that u = {〈v, a〉}, where v is arbitrary and a is the co-atom of A. Then we use the

sentence

ϕ = ∃xy(x ∈ y ∧ x /∈ y)

and the positive filter Pos(A). The two names we just defined witness that:

∨
u,v∈V(A,∼)

(Jv ∈ uK ∧ Jv /∈ uK) ≥ a.

We go on to show that JϕK < 1. Suppose Ju ∈ vK = 1, then by Definition 6.1.3 we have

Ju /∈ vK = Ju ∈ vK∗r = 0. Similarly, if Ju /∈ vK = 1 we get Ju ∈ vK = 0. Therefore, JϕK < 1

and thus JϕK = a. By Definition 6.1.3 we get J¬ϕK = JϕK∗r = a. Hence, V(A,∗r ) |=Pos(A) ϕ

and V(A,∗r ) |=Pos(A) ¬ϕ.

In fact, this theorem witnesses that ECQ fails in every (A,∗r )-valued model

modulo the positive filter, where (A,∗r ) has more than two elements, since we know that

we can always find sentences in the language of set theory that will receive value 0 in our

algebra-valued model. Thus, putting together Lemma 6.1.2 and Theorem 6.1.5, we know

that the mentioned (A,∗r )-valued models modulo the positive filter are paraconsistent

models of set theory that validate NFF-ZF.

Moreover, we can easily show that neither L
(
(A,∗r ), Pos(A)

)
nor

L
(
(V(A,∗r ), Pos(A)

)
are paracomplete.

Lemma 6.1.6. Let (A,∗r ) be a reflexive Heyting-implication lattice. Then we have that

LEM ∈ L
(
(A,∗r ), Pos(A)

)
and LEM ∈ L

(
V(A,∗r ), Pos(A)

)
.

Proof. Consider an ι-assignment and a formula ϕ ∈ LProp such that ι(ϕ) = 0 or ι(ϕ) = 1.

Then we get immediately that ι(ϕ ∨¬ϕ) = 1 ∈ Pos(A). Otherwise, take an ι-assignment
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and a formula ϕ ∈ LProp such that ι(ϕ) = a where a ∈ A \ {1,0}, then we have that

ι(¬ϕ) = a and thus ι(ϕ ∨ ¬ϕ) = a ∈ Pos(A). Therefore, for any assignment ι we have

ι(ϕ ∨ ¬ϕ) ∈ Pos(A). So;

LEM ∈ L
(
(A,∗r ), Pos(A)

)
Then we use the fact that we have

L(A, F ) ⊆ L(V(A), F ), (‡)

for any complete bounded distributive lattice A = 〈A,∧,∨,⇒,∗ ,0,1〉 and filter F on A.

Thus;

LEM ∈ L
(
V(A,∗r ), Pos(A)

)
.

6.1.2 Models of Paracomplete Set Theory

In this subsection, we will show how to build models of paracomplete set theory

based on reflexive Heyting-implication lattices (A,∗r ) if we choose a filter F on A which

is not the positive filter. So we will pick a filter F on A such that there exists an element

a in the universe of A such that a 6= 0 and a /∈ F .

Lemma 6.1.7. Let (A,∗r ) be a complemented Heyting-implication lattice and F a filter

on A such that F ⊂ Pos(A). Then LEM /∈ L
(
(A,∗r ), F

)
.

Proof. Consider an ι-assignment and formula ϕ ∈ LProp such that ι(ϕ) = a where a is

the atom of A. Then we have ι(ϕ ∨ ¬ϕ) = a. Since we know that F is a proper subset

of Pos(A), it follows immediately that a /∈ F and thus ι(ϕ ∨ ¬ϕ) /∈ F .

Let us now turn to the propositional logic of the respective set-theoretical

models. We will show that we get models that are paracomplete and that the respective

logic of these models is different from IPL given to the validity of DNE.

Lemma 6.1.8. Let (A,∗r ) be a reflexive Heyting-implication lattice with more than two

elements and F a filter on A such that F ⊂ Pos(A). Then LEM /∈ L
(
V(A,∗r ), F

)
.

Proof. Fix a (A,∗r ) with more than two elements and consider the sentence

ϕ = ∀x∀y(x ∈ y ∨ x /∈ y).
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Notice that for any u, v ∈ V(A,∗r ) we have Ju ∈ v∨u /∈ vK 6= 0. Moreover, let a be the atom

of the universe of (A,∗r ) and let v = {〈u, a〉} where u is an arbitrary (A,∗r )-name. Then we

have Ju ∈ vK = a and Ju /∈ vK = Ju ∈ vK∗r = a. Therefore, Ju ∈ v ∨ u /∈ vK = a /∈ F .

Then, we can show that:

Lemma 6.1.9. Let (A,∗r ) be a reflexive Heyting-implication lattice with more than two

elements and F a filter on A such that F ⊂ Pos(A). Then we have:

L
(
(A,∗r ), F

)
6= IPL and L

(
V(A,∗r ), F

)
6= IPL.

Proof. Consider any ι-assignment and a formula ϕ ∈ LProp such that ι(¬¬ϕ) = a where

a ∈ F . In the case that a = 1 we get ι(ϕ) = 1 and if a 6= 1, we get ι(ϕ) = a ∈ F .

Therefore;

DNE ∈ L
(
(A,∗r ), F

)
.

So our first desiderata holds. Then by (‡);

DNE ∈ L
(
V(A,∗r ), F

)
.

This establishes our second desiderata.

Notice that we can show that every A-valued model modulo the top filter is

not paraconsistent and that the axiom schema (ϕ → ψ) →
(
(ϕ → ¬ψ) → ¬ϕ

)
of IPL

does not hold for any A-valued model where A has more than three elements.

Lemma 6.1.10. Let (A,∗r ) be a reflexive Heyting-implication lattice with more than two

elements. Then we have

ECQ ∈ L
(
(A,∗r ), {1}

)
and ECQ ∈ L

(
V(A,∗r ), {1}

)
.

Proof. Consider any ι-assignment and a formula ϕ ∈ LProp such that ι(ϕ) ∈ {1,0}, then

we get ι(ϕ ∧ ¬ϕ) = 0 /∈ {1} and the desiderata follows vacuously. On the other hand,

suppose that ι(ϕ) = a ∈ A \ {1,0}, then ι(ϕ ∧ ¬ϕ) = a /∈ {1} and again the desiderata

follows vacuously. Thus;

ECQ ∈ L
(
(A,∗r ), {1}

)
.
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Then by (‡):

ECQ ∈ L
(
V(A,∗r ), {1}

)
.

.

Moreover, we have:

Lemma 6.1.11. Let (A,∗r ) be a reflexive Heyting-implication lattice with more than three

elements. Then we have (ϕ→ ψ)→
(
(ϕ→ ¬ψ)→ ¬ϕ

)
/∈ L

(
V(A,∗r ), {1}

)
.

Proof. Fix any (A,∗r ) be a reflexive Heyting-implication lattice with more than three

elements and consider the sentence ϕ ∈ L∈ of Theorem 6.1.8. We immediately get that

JϕK = a where a is the atom of A. Now, consider the sentence ψ = ∃x∃y(x ∈ y ∧ x ∈ y),

then we get JψK = b where b is the co-atom of A.

J(ϕ→ ψ)→
(
(ϕ→ ¬ψ)→ ¬ϕ

)
K = (a⇒ b)⇒

(
(a⇒ b)⇒ a

)
= 1⇒ (1⇒ a)

= (1⇒ a)

/∈ {1}.

It is interesting to notice that Theorem 6.1.9 shows that we have theorems in

L
(
V(A,∗r ), {1}

)
which are not theorems of IPL and Theorem 6.1.11, on the other hand,

shows that there exist theorems in IPL that do not hold L
(
V(A,∗r ), {1}

)
.

6.1.3 Models of Paraconsistent and Paracomplete Set Theory

In this subsection, we show that we can also build models of paraconsistent

and paracomplete set theory on top of reflexive Heyting-implication algebras, if we choose

a suitable filter. In particular, we show that for any filter F on A which contains the co-

atom of A and where F is a proper subset of the positive filter, then L
(
V(A,∗r ), F

)
is

paraconsistent and paracomplete. Formally:
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Lemma 6.1.12. Let (A,∗r ) be a reflexive Heyting-implication lattice with more then three

elements and let F be a filter such that {1} ⊂ F ⊂ Pos(A). Then

ECQ /∈ L
(
V(A,∗r ), F

)
and LEM /∈ L

(
V(A,∗r ), F

)
.

Proof. Due to Lemma 6.1.5 we know that JϕK = J∃x∃y(x ∈ y ∧ x /∈ y)K = a where a is

the co-atom of A. Thus Jϕ ∧ ¬ϕK = a ∈ F . We know that a ∈ F given that {1} is a

proper subset of F . Then let ψ = ∀x∀y(x = y) and consider the A-names {〈∅,0〉} and

{〈∅,1〉}. We readily calculate J{〈∅,1} = {〈∅,0〉}K = 0 and thus JψK = 0. Thus;

ECQ /∈ L
(
V(A,∗r ), F

)
.

The second desiderata follows immediately by Lemma 6.1.8.

Thus, we have found a class of algebras that gives rise to non-classical models

of paraconsistent and paracomplete set theory. We go on to show that these models are

non-∈-elementarily equivalent from (T,∗r )-valued models and (T,∗p )-valued models that

we introduced in Chapter 4.4. In particular, we compare the propositional logic associated

to these models with the logic of the totally ordered lattice-valued models.

Theorem 6.1.13. Let V(A,∗r ) be any (A,∗r )-valued model where (A,∗r ) has more than two

elements and V(T,∗) be any (T,∗ )-valued model where (T,∗ ) has more than two elements

and ∗ ∈ {∗r ,∗p }. Moreover, let F1 be a filter on A and F2 a filter on T, then

(V(A,∗r ), F1) 6≡∈ (V(T,∗), F2).

Proof. Consider the following sentence:

χ = ∃xy
(
x = y ∧ x 6= y

)
.

Fix any (T,∗ ) with more than two elements and let us evaluate this sentence in V(T,∗).

Notice that for any u, v ∈ V(T,∗) we have either Ju = vK(T,∗) = 1 or Ju = vK(T,∗) = 0. Thus,

for any u, v ∈ V(T,∗) we have Ju = v∧u 6= vK(T,∗) = 0 and hence JχK(T,∗) = 0 /∈ F2, for any

filter F2 on T. Therefore, V(T,∗) 2F2 χ. Now, fix any (A,∗r ) with more than two elements

and consider {〈∅,1〉} and {〈∅, a〉} where a is the co-atom of (A,∗r ). Let F1 = {1, a}.
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Then, we calculate readily;

J{〈∅,1〉} = {〈∅, a〉}K = (1⇒ a) ∧ (a⇒ 1)

= a

∈ F1.

Therefore, V(A,∗r ) |=F1 χ.

Now we will show that we can find (A,∗r )-valued models which are

non-∈-elementarily equivalent from each other. Moreover, we make use of the following

abbreviation:

δ(ϕ) =df.

(
(ϕ→ ⊥) ∨ (¬ϕ→ ⊥)

)
where ⊥ abbreviates ∃x(x 6= x) and ϕ is any formula in the language of set theory.

Similarly, we will use the abbreviation :

ε(ϕ) =df. ¬
(
(ϕ→ ⊥) ∨ (¬ϕ→ ⊥)

)
.

Intuitively, the idea behind these schemata is that they allow us to “fix” the truth values

of certain formulas. For instance; δ(ϕ) will only be true if ϕ receives a classical value,

i.e., JϕK ∈ {1,0} and δ(ϕ) will only be false if ϕ receives a non-classical value, i.e.,

JϕK ∈ A \ {1,0}. Exactly the opposite is the case for ε(ϕ). Formally;

Lemma 6.1.14. Let V(A,∗r ) be any (A,∗r )-valued model where (A,∗r ) has more than two

elements and ϕ ∈ L∈. Then:

(i) Jδ(ϕ)K = 1 iff JϕK ∈ {1,0} and Jδ(ϕ)K = 0 iff JϕK ∈ A \ {1,0},

(ii) Jε(ϕ)K = 1 iff JϕK ∈ A \ {1,0} and Jε(ϕ)K = 0 iff JϕK ∈ {1,0}.

Proof. (i) For the first conjunct we notice:

Jδ(ϕ)K = 1 iff Jϕ→ ⊥K = 1 or J¬ϕ→ ⊥K = 1.

Moreover,

Jϕ→ ⊥K = 1 iff JϕK = 0 and J¬ϕ→ ⊥K = 1 iff JϕK = 1.
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For the second conjunct we notice:

Jδ(ϕ)K = 0 iff Jϕ→ ⊥K = 0 and J¬ϕ→ ⊥K = 0.

However, this can only be the case, if JϕK = a ∈ A \ {1,0} since

(a⇒ J⊥K) = 0 and (a∗r ⇒ J⊥K) = 0.

(ii) Follows immediately by item (i) and Definition 6.1.3(ii).

Then we can show that we have non-∈-elementarily equivalent models of set

theory. Moreover, we will need two more formulas which were first introduced in a slightly

different presentation in (TARAFDER, 2015). The first formula Nat0 is only satisfied by

0-like elements and is meant to define the natural number 0 in V(A,∗r ). The second

formula Nat1, on the other, hand is meant to define the natural number 1 in V(A,∗r ),

i.e., the element that contains only a 0-like element in its domain. Moreover, due to the

second conjunct of this formula, we know that only 1-like elements with a non-classical

range will satisfy this formula, i.e., only names of the form {〈x, a〉} where x is a 0-like

element and a ∈ A \ {1,0} will satisfy this formula.

Nat0(x) =df. ∀y∀z(x = y → z /∈ y)

and

Nat1(x) =df. ∃z
(

Nat0(z) ∧ ε(z ∈ x) ∧ ∀y
(
y ∈ x→ (y = z)

))
.

Then we can show that:

Lemma 6.1.15. Let (A3,
∗r ) and (A4,

∗r ) be reflexive Heyting-implication lattices.

Moreover, let F1 be a filter on A3 and F2 a filter on A4, then we have

(V(A3,∗r ), F1) 6≡∈ (V(A4,∗r ), F2).

Proof. Consider the following sentence:

γ =df. ∃x1∃x2
(

Nat1(x1) ∧ Nat1(x2) ∧ (x1 6= x2)
)
.
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Notice that only 1-like names of the form {〈x, a〉} where x is a 0-like element and a ∈

A \ {1,0} satisfy the first two conjuncts. Nevertheless, in the case of (A3,
∗r ) we only can

define one such 1-like name, i.e., u = {〈x, a〉} where a ∈ A and 0 < a < 1. Therefore

Ju 6= uK = 0 and thus JγK = 0 /∈ F1 for any filter F1 on A3. Now, consider (A4,
∗r )

and fix F2 = Pos(A4). In this case we can define two 1-like name, i.e., u = {〈x, a〉} and

v = {〈x, b〉} where a, b ∈ A and 0 < a < b < 1. Then;

JNat1(u) ∧ Nat1(v) ∧ (u 6= v)K = (a ∧ b ∧ a)

= a

∈ F2.

Notice that we can use the sentence γ and the same proof strategy to show

that V(A3,∗r ) is non-∈-elementarily equivalent from any other V(An,∗r ) where n > 3. Now,

we can generalize this procedure and use the following schema of sentences to show that

the remaining (A,∗r )-valued models are non-∈-elementarily equivalent with each other.

Given a natural number n ≥ 3, let γn be the following sentence in the language of set

theory:

γn =∃x1, ...,∃xn
(

Nat1(x1) ∧ ... ∧ Nat1(xn) ∧
(
(x1 6= x2 ∧ .... ∧ x1 6= xn)

∧ (x2 6= x3 ∧ .... ∧ x2 6= xn) ∧ ... ∧ (xn−1 6= xn)
))
.

Theorem 6.1.16. Let (An,∗r ) and (Am,∗r ) be two arbitrary Heyting-implication-negation

lattices, where n,m ≥ 4 and n 6= m. Moreover, let F1 be a filter on An and F2 a filter on

Am, then we have

(V(An,∗r ), F1) 6≡∈ (V(Am,∗r ), F2).

Proof. Fix two arbitrary (An,∗r ) and (Am,∗r ) where 4 ≤ n < m. Notice that to validate

γn−3 we need (n−1)-many 1-like elements which are all different from each other, however,

we only have (n − 2)-many different 1-like elements available in V(Am,∗r ). Thus, we can

readily calculate that V(An,∗r ) 2F1 γn−3 and V(Am,∗r ) |=F2 γn−3 where F2 = Pos(Am).

Furthermore, we conclude this section by showing that all the models that we

explored in this section are faithful.
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Theorem 6.1.17. The model V(An,∗r ) is faithful to A and hence loyal to
(
(An,∗r ), F

)
,

for any filter F .

Proof. Fix an arbitrary V(An,∗r ). We know that JExtensionalityK = 1 and

J¬ExtensionalityK = JExtensionalityK∗r = 0. Moreover, we also know that for the sentence

ϕ of Theorem 6.1.5 we have JϕK = d where d is the co-atom of An. So without loss of

generality suppose that n ≤ 4 and consider the sentence γn−3. We calculate readily that

Jγn−3J= a where a is the atom of An. In the case that the sentence γn−3 is the sentence

γ1 we are done. If not, we use the sentence γn−4 to show that Jγn−4J= b where b is the

successor of a in the total order of An and repeat this procedure until we reach the

sentence γ1. Thus for every a ∈ An \ {1,0, d} there exists a γn such that JγnK = a.

In conclusion, we have shown that (A,∗r )-valued models have several

advantages over (T,∗r )-valued models and (T,∗p )-valued models. It boils down to the

choice of the binary operation ⇒ that will interpret the conditional in the language of

set theory. The binary operation ⇒h of Heyting-implication lattices is much more

expressive than the ⇒t-operator in the case of the T-lattices. In particular, the

⇒h-operator allows us to differentiate all the elements of the universe of our lattices. As

a consequence of this, we get, as shown by Theorem 6.1.16 and Theorem 6.1.17 that

every A -valued model is non-∈-elementarily equivalent from each other and every VA is

faithful to A. So we have found an infinite class of non-∈-elementarily equivalent models

of non-classical set theories where we have a perfect match between the propositional

logic of reflexive Heyting-implication lattices and the propositional logic of the set

theories build on top of them.

6.2 Algebra-valued models for LP-Set Theory

In this section, we build algebra-valued models of set theory based on Priest’s

Logic of Paradox. We show that we can build a non-classical model of ZF which has as

underlying logic Priest’s Logic of Paradox and validates Leibniz’s law of indiscernibility

of identicals. This is achieved by modifying the interpretation map for ∈ and = in our

algebra-valued model.
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6.2.1 The model V(LP)

Let us consider the lattice LP = (A;∧,∨,⇒,∗ , 1,0), where the algebraic

operations of LP correspond extensionally to the truth tables of the logical connectives

of LP (depicted in Table 3.1). Furthermore, we take our universe to be A = {1, 1
2 ,0},

where 0 < 1
2 < 1 and the filter F = {1, 1

2} acts as the set of designated values. Then we

can define the LP-valued universe as follows:

Definition 6.2.1. We define by transfinite recursion the set-theoretic universe V(LP).

V(LP)
α = {x ; x is a function and ran(x) ⊆ A

and there is ξ < α with dom(x) ⊆ V(LP)
ξ )} and

V(LP) = {x ; ∃α(x ∈ V(LP)
α )}.

Let LLP be the extended language of L∈, which we obtain by adding constant

symbols for every element in V(LP). Moreover, to increase the readability, the name

corresponding to each u ∈ V(LP) will be denoted by the symbol u in the extended language

LLP. A mapping J·K is recursively defined from the collection of all closed well-formed

formulas in LLP to the complete bounded distributive lattice LP as follows (cf. Bell

2005).

Definition 6.2.2. For any pair of elements u, v ∈ V(LP),

Ju ∈ vK =
∨

x∈dom(v)

(
v(x) ∧ Jx = uK

)
,

Ju = vK =
∧

x∈dom(u)

(
u(x)⇒ Jx ∈ vK

)
∧

∧
y∈dom(v)

(
v(y)⇒ Jy ∈ uK

)
.

Then, we can extend the map J.KLP to non-atomic formulas: for any two closed well-formed

formulas ϕ and ψ,

Jϕ ∧ ψK = JϕK ∧ JψK,

Jϕ ∨ ψK = JϕK ∨ JψK,

Jϕ→ ψK = JϕK⇒ JψK,

J¬ϕK = JϕK∗,
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J∀xϕ(x)K =
∧

u∈V(LP)

Jϕ(u)K, and

J∃xϕ(x)K =
∨

u∈V(LP)

Jϕ(u)K.

Definition 6.2.3. A formula ϕ is said to be valid in V(LP), which is denoted by

V(LP) |=F ϕ, whenever JϕK ∈ F .

We show in the following lemma, that due to the ⇒ operation of LP, the

algebra-valued model V(LP, J·K) is too weak to validate certain set-theoretic properties

which hold in the case of Boolean and Heyting-valued models. As a consequence, we

lose some properties which would be helpful in further calculations and many standard

arguments that we use generally in algebra-valued models break down. To worsen the

situation many calculations are blocked in V(LP, J·K), given the failure of the transitivity

of the conditional and the lack of modus ponens.

Lemma 6.2.4. For any u, v, w ∈ V(LP, J·K) the following claims do not hold in general:

(i) V(LP, J·K) |=F u = v ∧ v = w implies V(LP, J·K) |=F u = w,

(ii) V(LP, J·K) |=F u = v ∧ u ∈ w implies V(LP, J·K) |=F v ∈ w,

(iii) V(LP, J·K) |=F u = v ∧ w ∈ u implies V(LP, J·K) |=F w ∈ v.

Proof. (i) Consider the elements u, v, w ∈ V(LP) defined as p0 = {〈∅,0〉}, p 1
2

= {〈∅, 1
2〉},

and p1 = {〈∅,1〉}. Then we calculate readily

(
Jp0 = p 1

2
K ∧ Jp 1

2
= p1K

)
∈ F,

however, Jp0 = p1K = 0.

(ii) Consider the LP name z = {〈p1,1〉}. Then we calculate

(
Jp0 = p 1

2
K ∧ Jp 1

2
∈ zK

)
∈ F

and Jp0 ∈ zK = 0.
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(iii) Consider the LP-names r = {〈p0,
1
2〉} and q = {〈p0,0〉}. Then we have

(
Jr = qK ∧ Jp0 ∈ rK

)
∈ F

and Jp0 ∈ qK = 0.

In particular, we get:

Corollary 6.2.5. For any u, v ∈ V(LP, J·K) and any formula ϕ(x) in LLP having one free

variable x it is generally not the case that, if
(
Ju = vK∧Jϕ(u)K

)
∈ F then Jϕ(v)K ∈ F .

Therefore, we can raise the first line of criticism against the algebra-valued

model V(LP, J·K). In particular, Corollary 6.2.5 shows that the Leibniz’s law of

indiscernibility of identicals fails within V(LP, J·K). On the one side, since we can not

build equivalence classes we are unable to define natural numbers and other basic kinds

of sets in V(LP, J·K). So we are also unable to quotient down our algebra-valued model

and to build a model of set theory with a proper notion of identity. On the other side,

we have a conceptual problem given that we are dealing with an uncontroversial and

widely accepted property of equality (INCURVATI, 2020, pp. 108–109). It is not clear

why we should abandon such an intuitive principle regarding equality within a

paraconsistent set theory.

Thus, we believe that the failure of Leibniz’s law of indiscernibility of

identicals constitutes a serious challenge for the algebra-valued model V(LP, J·K). Notice

that (RESTALL, 1992a) has shown that Leibniz’s law of indiscernibility of identicals

fails, as well, in NLP.

We go on to show that in V(LP, J·K) we have non-well-founded sets.

Lemma 6.2.6. V(LP, J·K) |=F ∃x(x ∈ x).

Proof. Consider the LP-name p 1
2
(as defined in Lemma 6.2.4). Then we can readily

calculate that

Jp 1
2
∈ p 1

2
K =

(
p 1

2
(∅) ∧ J∅ = p 1

2
K
)

=
(1

2 ∧
1
2
)

= 1
2 ∈ F.
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We go on to point out the second issue of V(LP, J·K). We will need the definition

of 1
2 -like elements (these names are constituted just as canonical names with the only

difference that the range of these names is 1
2 instead of 1): for any x ∈ V let

x
◦ = {〈y◦ , 1

2〉 : y ∈ x}.

It is easily observable that every 1
2 -like element u◦ is a non-well-founded set in V(LP, J·K),

i.e., Ju◦ ∈ u
◦K 6= 0. We believe that the existence of these sets is not problematic by

itself, however, it seems unsatisfactory that every 1
2 -like element is identical in V(LP, J·K).

In other words, every 1
2 -like element collapses to a single element from the perspective of

our algebra-valued model.

Lemma 6.2.7. For any u◦ , v◦ ∈ V(LP, J·K) we have Ju◦ = v
◦K ∈ F .

Proof. Fix any two 1
2 -like LP-names u◦ and v◦ . Then:

Ju
◦ = v

◦
K =

(
(1
2 ⇒

1
2) ∧ (1

2 ⇒
1
2)
)

= 1
2 ∈ F.

The situation is even worse since not only is every 1
2 -like element identical

in our algebra-valued model, but every 1
2 -like element is, as well, identical to any 0-like

element. We call an LP-name u a 0-like element whenever u = ∅ or for any x ∈ dom(u)

we have u(x) = 0, i.e. we can think of 0-like elements as representatives of the empty set

∅ in V(LP, J·K). Thus every 1
2 -like and 0-like element collapses to a single element from the

perspective of our model, i.e., the empty set ∅. Hence, we believe that in the case that

of V(LP, J·K) we have a case of an excessive duplication of LP-names.

Moreover, it was observed by (WEIR, 2004, pp. 393-395) that in the case of

NLP= we have also problems regarding identity. More specifically, there exists an NLP=-

model where the formula ∃x∃y(x 6= y) does not hold. In the case of NLP, on the other

hand, it is possible to find two sets x and y such that x 6= y holds (RESTALL, 1992a,

Theorem 7). However, NLP is still unable to prove that there exist two sets x and y such
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that x = y does not hold. This is due to fact that in Restall’s NLP-model every formula

receives value 1
2 . The moral that we can draw from this, is that a non-classical notion of

identity is problematic for V(LP, J·K), (the models of) NLP and (the models of) NLP=.

Finally, we conclude that the algebra-valued model V(LP, J·K) does not seem

very fruitful. On one side, it is unclear how much set theory we can derive since various

basic set-theoretic properties are blocked and due to the lack of basic inferential features

of ⇒. This carries over to J· = ·K, i.e., the interpretation of identity in V(LP, J·K) since

J· = ·K is interpreted as the conjunction of conditional statements. As a consequence,

Leibniz’s law of indiscernibility of identicals fails in V(LP, J·K) and every 1
2 -like and 0-like

element collapses

6.2.2 The Model V(LP, J·KIN )

It has been claimed by (PRIEST, 2006) that the key problem of a set theory

based on LP is the weak conditional. His solution consisted of supplying LP with a

stronger conditional or modifying the consequence relation. This gave rise to many

variations of LP such as multiple conclusion LP originally introduced in (BEALL, 2011)

or minimally inconsistent LP originally introduced in (PRIEST, 1991). We want to

explore another possibility of constructing an LP-set theory without distorting the spirit

of LP. So, we will build an LP-valued model where we retain the conditional, however,

we modify the interpretation map of the algebra-valued model. In particular, we

propose to define a new interpretation map, denoted by J·KIN , which does not allow for

glutty identity statements anymore.

Definition 6.2.8. For any pair of elements u, v ∈ V(LP);

Ju ∈ vKIN =
∨

x∈dom(v)

(
v(x) ∧ Jx = uKIN

)
,

Ju = vKIN = 0 iff

there exists a x ∈ dom(u) such that u(x) > Jx ∈ vKIN ,

or there exists a y ∈ dom(v) such that v(y) > Jy ∈ uKIN .

Otherwise; Ju = vKIN = 1.
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Then, we extend the map J·KIN to non-atomic formulas as in definition 6.2.2.

Definition 6.2.9. Let V(LP) be the universe of LP-valued functions. Then we denote with

V(LP, J·KIN ) the LP-valued model that we obtain by using J·KIN as interpretation map.

Definition 6.2.10. A formula ϕ ∈ LLP is said to be valid in V(LP, J·KIN ) given a designated

set D, whenever JϕKIN ∈ F . We denote this fact by V(LP, J·KIN ) |=F ϕ.

Notice that for any u, v ∈ V(LP) we have either

Ju = vKIN = 1 or Ju = vKIN = 0.

In other words, the range of the modified interpretation map of identity is {0,1}, whereas

the modified interpretation map of membership can range, as in the case of the usual

interpretation map, over all the elements of the universe of LP. For instance, if u is

an LP-name, then v = {〈u, a〉} (where a ∈ LP) is also an LP-name and Ju ∈ vK = a.

Moreover, every time we want to prove that Ju = vKIN ∈ F it is enough to show that for

any x ∈ dom(u) it is the case that u(x) ≤ Jx ∈ uKIN and similarly for the elements of the

domain of v.

Theorem 6.2.11. Consider any two elements u, v ∈ V(LP). Then, Ju = vKIN ∈ F if and

only if both of the following hold:

(i) if u(x) = 1 then there exists a y ∈ dom(v) such that v(y) = 1 and Jx = yKIN ∈ F ,

and vice-versa; and

(ii) if u(x) = 1
2 then there exists a y ∈ dom(v) such that v(y) ≥ 1

2 and Jx = yKIN ∈ F ,

and vice-versa.

Proof. Let us consider two elements u, v ∈ V(LP) such that Ju = vKIN ∈ F .

For (i), suppose there exists an element u(x) = 1. We want to show that

Jx ∈ vKIN = 1. Suppose otherwise, so either Jx ∈ vKIN = 0 or Jx ∈ vKIN = 1
2 . In both

cases we have a x ∈ dom(u) such that u(x) > Jx ∈ vKIN , so by Definition 6.2.8 we get

Ju = vKIN = 0. Thus in both cases we are contradicting our initial assumption. Hence,

we must have Jx ∈ vKIN = 1, i.e., there exists a y ∈ dom(v) such that v(y) = 1 such that

Jx = yKIN = 1. Similarly, if there exists a y ∈ dom(v) such that v(y) = 1 then there also

exists a x ∈ dom(u) such that u(x) = 1 and Jx = yKIN ∈ F , otherwise Ju = vKIN = 0,
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and hence our assumption fails.

For (ii), let there be a x ∈ dom(u) such that u(x) = 1
2 . If there is no

y ∈ dom(v) such that v(y) ∈ {1, 1
2} and Jx = yKIN ∈ F we must have Jx ∈ vKIN = 0. So

there exists a x ∈ dom(u) such that u(x) > Jx ∈ vKIN . Then by Definition 6.2.8 we get

Ju = vKIN = 0, which contradicts our initial assumption. It follows immediately that

there exists a y ∈ dom(v) such that v(y) ∈ {1, 1
2} and Jx = yKIN ∈ F . Similarly, if there

exists y ∈ dom(v) such that v(y) = 1
2 and there does not exist any x ∈ dom(u), then

Ju = vKIN = 0, leads to a contradiction.

Conversely, let (i) and (ii) hold. Suppose that u(x) = 1. By (i) we have

Jx ∈ vKIN = 1, so u(x) ≤ Jx ∈ vKIN . Similarly, if u(x) = 1
2 we get by (ii) that

Jx ∈ vKIN ∈ {1, 1
2}, so again we have u(x) ≤ Jx ∈ vKIN . We proceed analogously for the

elements of the domain of v. This leads to the fact that, Ju = vKIN ∈ F .

Lemma 6.2.12. For any u, v, w ∈ V(LP) the following hold:

(i) V(LP, J·KIN ) |=F u = u,

(ii) for any x ∈ dom(u), u(x) ∈ F implies V(LP, J·KIN ) |=F x ∈ u,

(iii) V(LP, J·KIN ) |=F u = v ∧ v = w implies V(LP, J·KIN ) |=F u = w.

Proof. (i) Consider any x ∈ dom(u) such that u(x) ∈ F . Suppose u(x) = 1, then by

(i) of Theorem 6.2.11 we have Jx ∈ uKIN = 1. Hence, u(x) ≤ Jx ∈ uKIN . Similarly, if

u(x) = 1
2 then by (ii) of Theorem 6.2.11 we get Jx ∈ uKIN ∈ {1, 1

2}. This means that for

any x ∈ dom(u) we have u(x) ≤ Jx ∈ uKIN . We may conclude Ju = uKIN ∈ F for any

u ∈ V(LP).

(ii) Let u(x) ∈ F , so we have Jx ∈ uKIN ≥ (u(x) ∧ Jx = xKIN) ∈ F , since Jx = xKIN ∈ F

by item (i).

(iii) By induction on the domain of w. Assume that for all z ∈ dom(w) we have:

(
Ju = vKIN ∧ Jv = zKIN

)
∈ F implies Ju = zKIN ∈ F.

Take any x ∈ dom(u) such that u(x) ∈ F . We want to show that u(x) ≤ Jx ∈ wKIN . If

u(x) = 1, then since Ju = vKIN ∈ F by item (i) of Theorem 6.2.11 we have Jx ∈ vKIN = 1,
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i.e., there exists a y ∈ dom(v) such that v(y) = 1 and Jx = yKIN ∈ F . Now, since

Jv = wKIN ∈ F and v(y) = 1 we can apply the same argument again, so Jy ∈ wKIN = 1,

i.e., there exists a z ∈ dom(w) such that w(z) = 1 and Jz = yKIN ∈ F . Then by induction

hypothesis:
(
Jx = yKIN ∧ Jy = zKIN

)
∈ F implies Jx = zKIN ∈ F . Hence, there exists

a z ∈ dom(w) such that w(z) = 1 and Jx = zKIN ∈ F , i.e., Jx ∈ wKIN = 1. We can

proceed similar for any z ∈ dom(w) such that w(z) = 1. Moreover, if u(x) = 1
2 we simply

apply (ii) of Theorem 6.2.11 instead of (i) and proceed similarly as in the previous case.

Likewise, for any z ∈ dom(w) such that w(z) = 1
2 we can show that w(z) ≤ Jz ∈ uKIN .

Hence, for any x ∈ dom(u) we have u(x) ≤ Jx ∈ wKIN and for any z ∈ dom(w) we have

w(z) ≤ Jz ∈ uKIN . Hence, we may conclude Ju = wKIN ∈ F .

Lemma 6.2.13. For any u, v ∈ V(LP) and any formula ϕ(x) ∈ LLP, if Ju = vKIN ∈ F

then the following hold:

(i) if Jϕ(u)KIN = 1 then Jϕ(v)KIN = 1,

(ii) if Jϕ(u)KIN = 1
2 then Jϕ(v)KIN = 1

2 .

Proof. By induction on the complexity of ϕ.

Base case (I). (i) Let ϕ(x) := w = x, where w ∈ V(LP). If Ju = wKIN = 1, then by

Lemma 6.2.12(iii) we have that Jv = wKIN = 1. (ii) Follows vacuously, since we have

either Ju = vKIN = 1 or Ju = vKIN = 0 for every u, v ∈ V(LP).

Base case (II). (i) Let ϕ(x) := w ∈ x, where w ∈ V(LP). Suppose Jϕ(u)KIN = 1. Then,

there exists a p ∈ dom(u) such that u(p) = 1 and Jp = wKIN = 1. Since Ju = vKIN ∈ F , by

item (i) of Theorem 6.2.11, there exists q ∈ dom(v) satisfying v(q) = 1 and Jp = qKIN ∈ F .

By Lemma 6.2.12(iii), Jq = wKIN ∈ F , i.e., Jq = wKIN = 1. So there exists a q ∈ dom(v)

such that v(q) = 1 and Jq = wKIN = 1, i.e., Jw ∈ vKIN = 1. Hence Jϕ(v)KIN = 1.

(ii) Now suppose Jϕ(u)KIN = 1
2 . Then, there exists p ∈ dom(u) such that u(p) = 1

2 and

Jp = wKIN ∈ F . At the same time there does also not exist any s ∈ dom(u) such that

u(s) = 1 and Js = wKIN ∈ F . Since, it is given that Ju = vKIN ∈ F , Theorem 6.2.11

ensures the existence of q ∈ dom(v) satisfying v(q) = 1
2 and Jp = qKIN ∈ F , in addition,

there does not exist any t ∈ dom(v) such that v(t) = 1 and Jt = wKIN ∈ F . By Lemma

6.2.12 (iii), we have Jq = wKIN ∈ F . Hence Jϕ(v)KIN = 1
2 .
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Base case (III). Let ϕ(x) := x ∈ w, where w ∈ V(LP). (i) Let Jϕ(u)KIN = 1, i.e.,

∨
z∈dom(w)

(w(z) ∧ Ju = zKIN) = 1

So there exists a z1 ∈ dom(w) such that w(z1) = 1 = Jz1 = uKIN . Thus, we have that

Ju = vKIN ∧ Jz1 = uKIN ∈ F and by Lemma 3.5(iii), Jz1 = vKIN ∈ F . So there exists a

z1 ∈ dom(w) such that w(z1) = 1 = Jz1 = vKIN , i.e., Jv ∈ wKIN = 1. (ii) Now, suppose;

Jϕ(u)KIN = 1
2 , i.e.,

∨
z∈dom(w)

(w(z) ∧ Ju = zKIN) = 1
2

This can only be the case if;

1. There exists z1 ∈ dom(w) such that w(z1) = 1
2 and Jz1 = uKIN = 1.

2. For any z ∈ dom(w), if w(z) = 1 then Jz = uKIN = 0.

By Lemma 6.2.12(iii) we have Jz1 = vKIN ∈ F . So there exists a z1 ∈ dom(w) such that

w(z1) = 1
2 and Jz1 = vKIN ∈ F , i.e., Jv ∈ wKIN ∈ F . We shall now prove that we have

Jv ∈ wKIN < 1. Suppose otherwise, so there exists a z2 ∈ dom(w) such that w(z2) = 1 =

Jz2 = vKIN . Since Ju = vKIN = 1 by Lemma 6.2.12(iii), we have Jz2 = uKIN = 1. So

there exists a z ∈ dom(w) such that w(z) = 1 and Jz = uKIN = 1.This contradicts that

Ju ∈ wKIN = 1
2 . Hence we get, Jv ∈ wKIN = 1

2 .

Induction step:

Case (I). Let ϕ(x) := ψ(x) ∧ γ(x). (i) If Jϕ(u)KIN = 1 then both of Jψ(u)KIN and

Jγ(u)KIN get value 1. By the induction hypothesis, Jψ(v)KIN and Jγ(v)KIN are 1, as well.

Hence Jϕ(v)KIN = 1. (ii) Now, if Jϕ(u)KIN = 1
2 holds, then we have Jψ(u)KIN = 1

2 or

Jγ(u)KIN = 1
2 . Again, by the induction hypothesis it can be concluded that Jϕ(v)KIN = 1

2 .

Similarly, Case II, Case III and Case IV can also be proved.

Case (II). Let ϕ(x) := ψ(x) ∨ γ(x).

Case (III). Let ϕ(x) := ψ(x)→ γ(x).
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Case (IV). Let ϕ(x) := ¬ ψ(x).

Case (V). Let ϕ(x) := ∃y ψ(y, x). (i) Suppose Jϕ(u)KIN = 1. So there exists p ∈ V(LP)

such that Jψ(p, u)KIN = 1. Therefore, Jψ(p, v)KIN = 1, by the induction hypothesis.

Hence Jϕ(v)KIN = 1. (ii) Let Jϕ(u)KIN = 1
2 . Then, there exists p ∈ V(LP) such that

Jψ(p, u)KIN = 1
2 and there does not exist any q ∈ V(LP) such that Jψ(q, u)KIN = 1. The

induction hypothesis ensures that Jψ(p, v)KIN = 1
2 and Jψ(q, u)KIN 6= 1, for all q ∈ V(LP).

Finally, Jϕ(v)KIN = 1
2 .

Case (VI). Let ϕ(x) := ∀y ψ(y, x). By an immediate application of the induction

hypothesis, both (i) and (ii) can be proved in this case also.

Hence, we obtain as corollary the validity of Leibniz’s law of indiscernibility of

identicals in V(LP, J·KIN ).

Corollary 6.2.14. For any u, v ∈ V(LP) and any formula ϕ(x) in LLP having one free

variable x, if
(
Ju = vKIN ∧ Jϕ(u)KIN

)
∈ F then Jϕ(v)KIN ∈ F .

Lemma 6.2.15. For any u ∈ V(LP), and a formula ϕ(x), having one free variable x, in

LLP,

J∀x
(
x ∈ u→ ϕ(x)

)
KIN =

∧
x∈dom(u)

(
u(x)⇒ Jϕ(x)KIN

)
. (BQϕ)

Proof. By the definition of the assignment function J·KIN ,

J∀x
(
x ∈ u→ ϕ(x)

)
KIN

=
∧

y∈V(LP)

Jy ∈ u→ ϕ(y)KIN

=
∧

y∈V(LP)

( ∨
x∈dom(u)

(u(x) ∧ Jy = xKIN)⇒ Jϕ(y)KIN
)

=
∧

y∈V(LP)

∧
x∈dom(u)

(
(u(x) ∧ Jx = yKIN)⇒ Jϕ(y)KIN

)
, by (†)

=
∧

y∈V(LP)

∧
x∈dom(u)

(
u(x)⇒ (Jx = yKIN ⇒ Jϕ(y)KIN)

)
, by (P4)

=
∧

y∈V(LP)

∧
x∈dom(u)

(
u(x)⇒ (Jx = yKIN ⇒ Jϕ(x)KIN)

)
, by Corollary 6.2.14

=
∧

y∈V(LP)

∧
x∈dom(u)

(
(u(x) ∧ Jx = yKIN)⇒ Jϕ(x)KIN

)
, by (P4).
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Moreover, by (P3) we conclude that,

∧
x∈dom(u)

(
u(x)⇒ Jϕ(x)KIN

)
=

∧
y∈V(LP)

∧
x∈dom(u)

(
u(x)⇒ Jϕ(x)KIN

)

≤
∧

y∈V(LP)

∧
x∈dom(u)

(
(u(x) ∧ Jx = yKIN)⇒ Jϕ(x)KIN

)
.

On the other hand, for any x ∈ dom(u),

∧
y∈V(LP)

(
(u(x) ∧ Jx = yKIN)⇒ Jϕ(x)KIN

)
≤ (u(x) ∧ Jx = xKIN)⇒ Jϕ(x)KIN

= u(x)⇒ ϕ(x), using Lemma 6.2.12(ii),

which implies,

∧
y∈V(LP)

∧
x∈dom(u)

(
(u(x) ∧ Jx = yKIN)⇒ Jϕ(x)KIN

)
≤

∧
x∈dom(u)

(
u(x)⇒ ϕ(x)

)
.

Hence,

∧
y∈V(LP)

∧
x∈dom(u)

(
(u(x) ∧ Jx = yKIN)⇒ Jϕ(x)KIN

)
=

∧
x∈dom(u)

(
u(x)⇒ ϕ(x)

)
,

and as a conclusion,

J∀x
(
x ∈ u→ ϕ(x)

)
KIN =

∧
x∈dom(u)

(
u(x)⇒ ϕ(x)

)
.

We will use the following definitions to show the validity of choice in our model.

Moreover, this proof follows closely the proof of choice in (TARAFDER, 2021). However,

here we are considering another interpretation map and algebraic structure.

Definition 6.2.16. Let u ∈ V(LP, J·KIN ). Then we can define the subset dompos(u) of

dom(u) as

dompos(u) = {x ∈ dom(u) : u(x) 6= 0}.
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Definition 6.2.17. We define dompos(u)/ ∼ as the partition of dompos(u) by ∼ where for

any u, v ∈ V(LP, J·KIN )

u ∼ v iff V(LP, J·KIN ) |=F u = v.

It is easy to check that ∼ is indeed an equivalence relation. Moreover, we

denote with [x] = {v ∈ V(LP, J·KIN ) : V(LP, J·KIN ) |=F x = v} the elements of dompos(u)/ ∼

where x ∈ V(LP, J·KIN ). Now, we are in a position to show that ZFC holds in V(LP, J·KIN ).

Moreover, notice that the following proof is a modification of the proof of Theorem 3.13

of (JOCKWICH-MARTINEZ; TARAFDER; VENTURI, 2021c).

Theorem 6.2.18. V(LP, J·KIN ) |=F ZF.

Proof. Extensionality: We want to show that for any x, y ∈ V(LP) we have

J∀z(z ∈ x↔ z ∈ y)⇒ x = yKIN

= J∀z(z ∈ x↔ z ∈ y)KIN ⇒ Jx = yKIN

∈ F.

Suppose that J∀z(z ∈ x ↔ z ∈ y)KIN ≤ 1
2 , then due to the definition of the ⇒ operator

in LP we have JExtensionalityKIN ∈ F . So let J∀z(z ∈ x↔ z ∈ y)KIN = 1, i.e.,

∧
z∈dom(x)

J(x(z)→ z ∈ y)KIN ∧
∧

z∈dom(y)
J(y(z)→ z ∈ x)KIN = 1

Notice however that this can only be the case when for every z ∈ dom(x) we have that

x(z) ≤ Jz ∈ yKIN and that for every for every z ∈ dom(y) we have y(z) ≤ Jz ∈ xKIN .

Then by Definition 6.2.8 we get Jx = yKIN = 1. Therefore, JExtensionalityKIN ∈ F .

Pairing: We show that for any two x, y ∈ V(LP) there exists a z ∈ V(LP) such that

J∀w
(
w ∈ z → (w = x ∨ w = y)

)
KIN ∧ J∀w

(
(w = x ∨ w = y)→ w ∈ z

)
KIN ∈ F.

We begin by showing that,

J∀w
(
w ∈ z → (w = x ∨ w = y)

)
KIN ∈ F.
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Fix two arbitrary x, y ∈ V(LP). Let z be such that dom(z) = {x, y} and ran(z) = {1}.

By applying BQϕ we get:

J∀w
(
w ∈ z → (w = x ∨ w = y)

)
KIN =

∧
w∈dom(z)

(
z(w)⇒ J(w = x ∨ w = y)KIN

)
.

Now take any w ∈ dom(z) such that z(w) ∈ F , then due to the construction of z we have

Jw0 = x ∨ w0 = yKIN = 1. Therefore,

J∀w
(
w ∈ z → (w = x ∨ w = y)

)
KIN ∈ F.

Now we will show that this is also the case for the second conjunct of Pairing,

i.e., we show,

J∀w
(
(w = x ∨ w = y)→ w ∈ z

)
KIN =

∧
w∈V(LP)

(
J(w = x ∨ w = y)KIN ⇒ Jw ∈ zKIN

)
∈ F.

Take any w0 ∈ V(LP) and suppose that Jw0 = x ∨ w0 = yKIN ∈ F . Then, by the

construction of z, we get immediately that Jw0 ∈ zKIN ∈ F . Therefore,

J∀w
(
(w = x ∨ w = y)→ w ∈ z

)
KIN ∈ F.

Combining the previous results we conclude that that JPairingKIN ∈ F .

Infinity: Define for each x ∈ V, where V is the ground model, x̌ = {〈y̌, 1〉 : y ∈

x}. For any x ∈ V, it can be observed that x̌ ∈ V(LP). It is enough to show that,

J∀z¬(z ∈ ∅)KIN ∧ J∅ ∈ ω̌KIN ∧ J∀w
(
w ∈ ω̌ → ∃u(u ∈ ω̌ ∧ w ∈ u)

)
KIN ∈ F,

where ∅ is the empty function in V(LP) and ω is the collection of all natural numbers in

V. The image of the first two conjuncts of Infinity is clearly in F under the interpretation

map J·KIN . We show that,

J∀w
(
w ∈ ω̌ → ∃u(u ∈ ω̌ ∧ w ∈ u)

)
KIN ∈ F.

By applying BQϕ we have:
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J∀w
(
w ∈ ω̌ → ∃u(u ∈ ω̌ ∧ w ∈ u)

)
KIN =

∧
w∈dom(ω̌)

(
ω̌(w)⇒ J∃u(u ∈ ω̌ ∧ w ∈ u)KIN

)
.

Now take any w̌0 ∈ dom(ω̌). By the definition of ω̌, we have ω̌(w̌0) = 1. Therefore, w̌0 ∈ ω

holds in V. Now due to Infinity in V we know that there exists a u0 ∈ V (the successor

of w0) such that u0 ∈ ω and w0 ∈ u0 holds in V. Thus ǔ0 ∈ V(LP). We can check readily

that Jǔ0 ∈ ω̌KIN = 1 and Jw0 ∈ u0KIN = 1. Therefore, J∃u(u ∈ ω̌ ∧ w̌0 ∈ u)KIN ∈ F .

Furthermore, since the choice of w̌0 was arbitrary we have

J∀w
(
w ∈ ω̌ → ∃u(u ∈ ω̌ ∧ w ∈ u)

)
KIN ∈ F.

Union: We have to prove, for any u ∈ V(LP), there exists an element v ∈ V(LP)

such that J∀x
(
x ∈ v ↔ ∃y(y ∈ u ∧ x ∈ y)

)
KIN ∈ F . Indeed, it is sufficient to show that,

J∀x
(
x ∈ v → ∃y(y ∈ u ∧ x ∈ y)

)
KIN ∧ J∀x

(
∃y(y ∈ u ∧ x ∈ y)→ x ∈ v

)
KIN ∈ F.

Take any u ∈ V(LP) and define v ∈ V(LP), as follows:

dom(v) =
⋃
{dom(y) | y ∈ dom(u)} and v(x) = J∃y(y ∈ u ∧ x ∈ y)KIN , for x ∈ dom(v).

We first prove that,

J∀x
(
x ∈ v → ∃y(y ∈ u ∧ x ∈ y)

)
KIN ∈ F,

By using BQϕ, we have

J∀x
(
x ∈ v → ∃y(y ∈ u ∧ x ∈ y)

)
KIN

=
∧

x∈dom(v)

(
v(x)⇒ J∃y(y ∈ u ∧ x ∈ y)KIN

)
=

∧
x∈dom(v)

(
J∃y(y ∈ u ∧ x ∈ y)KIN ⇒ J∃y(y ∈ u ∧ x ∈ y)KIN

)
∈ F, since a⇒ a ∈ F , for any element a ∈ LP.
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We shall now show that J∀x
(
∃y(y ∈ u ∧ x ∈ y) → x ∈ v

)
KIN ∈ F . Let

x0 ∈ V(LP) be an element such that J∃y(y ∈ u ∧ x0 ∈ y)KIN ∈ F . The proof will be

completed if it can be derived that Jx0 ∈ vKIN ∈ F as well. By definition, J∃y(y ∈ u∧x0 ∈

y)KIN ∈ F implies that, there exists y0 ∈ V(LP) such that Jy0 ∈ u ∧ x0 ∈ y0KIN ∈ F .

Now, Jy0 ∈ uKIN ∈ F guarantees an element y1 ∈ dom(u) such that u(y1) ∈ F and

Jy1 = y0KIN ∈ F . So, we have, Jy1 = y0 ∧ x0 ∈ y0KIN ∈ F and by using Lemma 6.2.12(v)

it can be concluded that Jx0 ∈ y1KIN ∈ F . Hence, there exists x1 ∈ dom(y1) satisfying

y1(x1) ∈ F and Jx0 = x1KIN ∈ F . Since, by our assumption, u(y1) ∈ F and y1(x1) ∈ F ,

applying Lemma 6.2.12(ii) both Jy1 ∈ uKIN ∈ F and Jx1 ∈ y1KIN ∈ F hold. Hence,

Jy1 ∈ u ∧ x1 ∈ y1KIN ∈ F , which leads to the fact that J∃y(y ∈ u ∧ x1 ∈ y)KIN ∈ F , i.e.,

v(x1) ∈ F . So, we have derived that, Jx0 = x1KIN , v(x1) ∈ F . Hence, Jx0 ∈ vKIN ∈ F .

Therefore, we can conclude JUnionKIN ∈ F .

Power Set: We have to prove that for any x ∈ V(LP) there exists a y ∈ V(LP)

such that J∀z
(
z ∈ y ↔ ∀w(w ∈ z → w ∈ x)

)
KIN ∈ F . It is enough to show that

J∀z
(
z ∈ y → ∀w(w ∈ z → w ∈ x)

)
KIN ∧ J∀z

(
∀w(w ∈ z → w ∈ x)→ z ∈ y

)
KIN ∈ F.

We begin by showing that,

J∀z
(
z ∈ y → ∀w(w ∈ z → w ∈ x)

)
KIN ∈ F.

Take any x ∈ V(LP) and define y such that

dom(y) = LPdom(x) and for any z ∈ dom(y), y(z) = J∀w(w ∈ z → w ∈ x)KIN .
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We may apply BQϕ on the first conjunct of Power Set,

J∀z(z ∈ y → ∀w(w ∈ z → w ∈ x))KIN

=
∧

z∈dom(y)

(
y(z)⇒ J∀w(w ∈ z → w ∈ x)KIN

)
=

∧
z∈dom(y)

(
J∀w(w ∈ z → w ∈ x)KIN ⇒ J∀w(w ∈ z → w ∈ x)KIN

)
∈ F, since a⇒ a ∈ F , for any element a ∈ LP.

For the second conjunct of Power Set, fix an arbitrary z ∈ V(LP). Then,

J∀w(w ∈ z → w ∈ x)KIN ⇒ Jz ∈ yKIN

=
∧

w∈dom(z)

(
z(w)⇒ Jw ∈ xKIN

)
⇒

∨
q∈dom(y)

(
y(q) ∧ Jz = qKIN

)
, by BQϕ

=
∧

w∈dom(z)

(
z(w)⇒ Jw ∈ xKIN

)
⇒

∨
q∈dom(y)

( ∧
p∈dom(q)

(
q(p)⇒ Jp ∈ xKIN

)
∧

∧
w∈dom(z)

(
z(w)⇒ Jw ∈ qKIN

)
∧

∧
p∈dom(q)

(
q(p)⇒ Jp ∈ zKIN

))
.

Let us assume that, ∧
w∈dom(z)

(
z(w)⇒ Jw ∈ xKIN

)
∈ F.

Then it is enough to show that there exists a q′ ∈ dom(y) for which,

∧
p∈dom(q′)

(
q′(p)⇒ Jp ∈ xKIN

)
∧

∧
w∈dom(z)

(
z(w)⇒ Jw ∈ q′KIN

)
∧

∧
p∈dom(q′)

(
q′(p)⇒ Jp ∈ zKIN

)
∈ F.

Notice that, for any q ∈ dom(y), we have dom(q) = dom(x). Fix q′ ∈ dom(y) such that

q′(p) = x(p) ∧ Jp ∈ zKIN , for any p ∈ dom(q′). The third conjunct follows immediately

and the first one by the Lemma 6.2.12(ii). For the second conjunct, suppose w ∈ dom(z)

is such that z(w) ∈ F . By our assumption, Jw ∈ xKIN ∈ F , i.e.,

∨
p∈dom(x)

(x(p) ∧ Jp = wKIN) ∈ F.
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Hence, there exists p′ ∈ dom(x) such that (x(p′)∧ Jp′ = wKIN) ∈ F . Now, we notice that,

Jp′ ∈ zKIN ≥ z(w) ∧ Jp′ = wKIN ∈ F , by our assumptions. Hence, we get the following,

Jw ∈ q′KIN =
∨

p∈dom(q′)
(q′(p) ∧ Jp = wKIN)

≥ q′(p′) ∧ Jp′ = wKIN , since p′ ∈ dom(q′) as well

= x(p′) ∧ Jp′ ∈ zKIN ∧ Jp′ = wKIN

∈ F.

Hence, ∧w∈dom(z)

(
z(w)⇒ Jw ∈ q′KIN

)
∈ F .

Combining all the above results we conclude that JPower SetKIN ∈ F .

Separation: Let ϕ(x) be any formula in LLP, where x is the only free variable.

We want to show that for any x ∈ V(LP) there exists a y ∈ V(LP) such that

J∀z
(
z ∈ y ↔ (z ∈ x ∧ ϕ(z))

)
KIN ∈ F.

It is sufficient to show that:

J∀z
(
z ∈ y → (z ∈ x ∧ ϕ(z))

)
KIN ∧ J∀z

(
(z ∈ x ∧ ϕ(z))→ z ∈ y

)
KIN ∈ F.

For any x ∈ V(LP) define y ∈ V(LP) as follows:

dom(y) = dom(x) and for any z ∈ dom(y) let y(z) = x(z) ∧ Jϕ(z)KIN .

We first prove that,

J∀z
(
z ∈ y → (z ∈ x ∧ ϕ(z))

)
KIN ∈ F.

By using BQϕ , we have
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J∀z
(
z ∈ y → (z ∈ x ∧ ϕ(z))

)
KIN

=
∧

z∈dom(y)

(
y(z)⇒ Jz ∈ x ∧ ϕ(z)KIN

)
=

∧
z∈dom(y)

(
(x(z) ∧ Jϕ(z)KIN)⇒ (Jz ∈ xKIN ∧ Jϕ(z)KIN)

)
∈ F, by Lemma 6.2.12(ii).

Now we show that the second conjunct of Separation holds as well. Since, for

any a, b, c in LP, (a ∧ b)⇒ c = a⇒ (b⇒ c), we have

∧
z∈V(LP)

J(z ∈ x ∧ ϕ(z))→ z ∈ yKIN =
∧

z∈V(LP)

(
Jz ∈ xKIN ⇒ (Jϕ(z)KIN ⇒ Jz ∈ yKIN)

)
= J∀z

(
z ∈ x→ (ϕ(z)→ z ∈ y)

)
KIN

=
∧

z∈dom(x)

(
x(z)⇒ J(ϕ(z)⇒ z ∈ y)KIN

)
.

For any z0 ∈ dom(x), suppose x(z0), Jϕ(z0)KIN ∈ D. Then by construction of y we have

y(z0) ∈ F and by lemma 6.2.12(ii) Jz0 ∈ yKIN ∈ F . Therefore, we can conclude that for

any z0 ∈ dom(x),
(
x(z0)⇒ J(ϕ(z0)⇒ z0 ∈ y)KIN)

)
∈ F . Hence,

J∀z
(
(z ∈ x ∧ ϕ(z))→ (z ∈ y)

)
KIN ∈ F.

Since the images of both the conjuncts of Separation are in F under the

interpretation map J·KIN , we conclude that JSeparationKIN ∈ F .

Collection: Let ϕ(x, y) be any formula in the language of set theory with two

free variables. We want to proof that for every u ∈ V(LP) we have

J∀x
(
x ∈ u→ ∃yϕ(x, y)

)
→ ∃v∀x

(
x ∈ u→ ∃y(y ∈ v ∧ ϕ(x, y))

)
KIN ∈ F.

Take any u ∈ V(LP) and assume the antecedent holds, so J∀x
(
x ∈ u→ ∃yϕ(x, y)

)
KIN ∈ F .

In particular, by using BQϕ, we have;

J∀x
(
x ∈ u→ ∃yϕ(x, y)

)
KIN =

∧
x∈dom(u)

(
u(x)⇒

∨
y∈V(LP)

Jϕ(x, y)KIN
)
∈ F. (1)
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Now we will show that there exists a v ∈ V(LP) such that

J∀x
(
x ∈ u→ ∃y(y ∈ v ∧ ϕ(x, y))

)
KIN ∈ F,

We know that LP is a set, so LP ∈ V. Thus, we may apply Collection in V so

that for any x ∈ dom(u) we obtain an ordinal αx such that

∨
y∈V(LP)

Jϕ(x, y)KIN =
∨

y∈V(LP)
αx

Jϕ(x, y)KIN .

So we have ∧
x∈dom(u)

(
u(x)⇒

∨
y∈V(LP)

αx

Jϕ(x, y)KIN
)
∈ F. (2)

We apply the union axiom in V to define α = ⋃{αx : x ∈ dom(u)}. We define the element

v ∈ V(LP) as dom(v) = V(LP)
α and for every y ∈ dom(v), v(y) = 1. We move on to show,

∧
x∈dom(u)

(
u(x)⇒ J∃y

(
y ∈ v ∧ ϕ(x, y)

)
KIN

)
∈ F.

Take any x0 ∈ dom(u) such that u(x0) ∈ F . By (2) we have y0 ∈ V(T)
αx0

such that

Jϕ(x0, y0)KIN ∈ F . By our construction y0 ∈ dom(v) and v(y0) = 1. Then, it follows by

Lemma 6.2.12(ii) that Jy0 ∈ vKIN ∈ F . Therefore, Jy0 ∈ v ∧ ϕ(x0, y0)KIN ∈ F and thus,

J∃y
(
y ∈ v ∧ ϕ(x0, y)

)
KIN ∈ F.

Since the choice of x0 is arbitrary we have,

J∀x
(
x ∈ u→ ∃y(y ∈ v ∧ ϕ(x, y))

)
KIN ∈ F.

Therefore, we conclude that JCollectionKIN ∈ F .

Foundation: We want to show that

J∀x
(
∀y(y ∈ x→ ϕ(y))→ ϕ(x)

)
→ ∀xϕ(x)KIN ∈ F.

Thus take any x ∈ V(LP) and consider the following two cases:
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(i) Let Jϕ(x)KIN ∈ F for every x ∈ V(LP), which implies J∀xϕ(x)KIN ∈ F . Therefore, we

get immediately that

J∀x
(
(∀y(y ∈ x→ ϕ(y)))→ ϕ(x)

)
→ ∀xϕ(x)KIN ∈ F.

(ii) Let Jϕ(x)KIN /∈ F for some x ∈ V(LP). Then, take a minimal u ∈ V(LP) such that

Jϕ(u)KIN /∈ F and for any v ∈ dom(u), Jϕ(v)KIN ∈ F . For this u, we claim that

J∀y(y ∈ u→ ϕ(y))KIN ∈ F.

Using BQϕ and our assumption, it is immediate that J∀y(y ∈ u → ϕ(y))KIN ∈ F . Now

we have two cases:

J∀y(y ∈ u→ ϕ(y))KIN = 1
2 or J∀y(y ∈ u→ ϕ(y))KIN = 1.

Then we have either

J∀y(y ∈ u→ ϕ(y))→ ϕ(u)KIN = 1
2 or J∀y(y ∈ u→ ϕ(y))→ ϕ(u)KIN = 0.

Thus

J∀x
(
∀y(y ∈ x→ ϕ(y))→ ϕ(x)

)
KIN ≤

1
2 .

Hence, the antecedent of Foundation receives a value less or equal to 1
2 . Thus

we have JFoundationKIN ∈ F .

Choice: Fix an arbitrary non-empty u ∈ V(LP, J·KIN ), i.e.,

V(LP, J·KIN ) |=F ¬(u = ∅).

In particular, this means dompos(u) 6= ∅. Now, take any [x] ∈ dompos(u)/ ∼ and consider

the following two cases.

Case (I): Suppose that [x] does not contain any 0-like element. Fix an element s[x] ∈ [x].

By our assumption, we know that dompos(s[x]) 6= ∅. Moreover, choose a t[x] ∈ dompos(s[x]).

Then we define three elements p[x], q[x], w[x] ∈ V(LP, J·KIN ) such that

p[x] = {〈s[x],1〉}, q[x] = {〈s[x],1〉, 〈t[x],1〉} and w[x] = {〈p[x],1〉, 〈q[x],1〉}.
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Case (II): Suppose that [x] is the class of 0-like elements in dompos(u). Let us arbitrarily

fix any two 0-like elements s, t ∈ V(LP, J·KIN ). Following the same construction as in Case

I, we define three elements p[x], q[x], w[x] ∈ V(LP, J·KIN ) such that

p[x] = {〈s[x],1〉}, q[x] = {〈s[x],1〉, 〈t[x],1〉} and w[x] = {〈p[x],1〉, 〈q[x],1〉}.

Then consider an element f such that

f = {〈w[x],1〉 : [x] ∈ dom(u)/ ∼}.

The existence of f in V follows by the fact that Choice holds in V. Then, by the

construction f ∈ V(LP, J·KIN ). Furthermore, it can be shown readily that

V(LP, J·KIN ) |=F Func(f) ∧ Dom(f ; u).

We are done if we prove that

∀x
(
x ∈ u ∧ ¬(x = ∅)→ ∃z∃y(Pair(z; x, y) ∧ z ∈ f ∧ y ∈ x)

)
.

Consider any v ∈ V(LP, J·KIN ) such that

V(LP, J·KIN ) |=F v ∈ u ∧ ¬(v = ∅).

Then there exists an element x ∈ dompos(u) such that V(LP, J·KIN ) |=F v = x, and x

is not 0-like. Consider the equivalence class [x] containing x in dompos(u)/ ∼. By the

construction of f , there exists w[x] ∈ dom(f) which is of the form {〈p[x],1〉, 〈q[x],1〉},

where

p[x] = {〈s[x],1〉}, q[x] = {〈s[x],1〉, 〈t[x],1〉}, s[x] ∈ [x] and t[x] ∈ dompos(s[x]).

Since s[x] ∈ [x], we get that V(LP, J·KIN ) |=F s[x] = x, which implies V(LP, J·KIN ) |=F s[x] = v.

Hence, we can derive that

V(LP, J·KIN ) |=F Pair(w[x]; v, t[x]) ∧ w[x] ∈ f ∧ t[x] ∈ v.
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Thus, we can finally conclude that JChoiceK ∈ F .

Moreover, we can go on to show that the model V(LP, J·KIN ) modulo the filter

F is paraconsistent.

Lemma 6.2.19. There exists a formula ϕ ∈ Sent∈ such that V(LP, J·KIN ) |=F ϕ ∧ ¬ϕ.

Proof. Consider the following sentence: ϕ := ∃x∃y(x ∈ y ∧ x /∈ y). Now, simply consider

the LP-name u = {〈v, 1
2〉} where v is an arbitrary LP-name. We readily calculate that

Ju ∈ vKIN = 1
2 , as well as Ju /∈ vKIN = Ju ∈ vK∗IN = 1

2
∗ = 1

2 . Hence,

JϕKIN = 1
2 = 1

2
∗

= J¬ϕKIN ∈ F,

which completes the proof.

Then, we can readily show that:

Lemma 6.2.20. For any u ∈ V(LP) we have Ju ∈ uKIN = 0 and thus we have that

J∃y∀x(x ∈ y)KIN = 0.

Proof. Suppose we have a minimal counterexample to the claim. So there exists a u such

that Ju ∈ uKIN 6= 0 (†) , however, for every x ∈ dom(u) we have Jx ∈ xKIN = 0. Due to

(†) we know that there exists a x0 ∈ dom(u) such that u(x0) 6= 0 and Ju = x0KIN 6= 0.

In particular, Ju = x0KIN = 1, so for every x ∈ dom(u) we have u(x) ≤ Jx ∈ x0KIN .

Moreover, given that u(x0) 6= 0 we have Jx0 ∈ x0KIN 6= 0 which delivers us the desired

contradiction. Hence, for any u ∈ V(LP) we have Ju ∈ uKIN = 0 and thus we have that

J∃y∀x(x ∈ y)KIN = 0.

This allows us to show that Comprehension fails in V(LP, J·KIN ).

Lemma 6.2.21. V(LP, J·KIN ) 2F Comprehensionϕ.

Proof. Consider ϕ =df. y /∈ y. Due to Lemma 6.2.20, for every

u ∈ V(LP, J·KIN ), we have Ju ∈ uKIN = 0 and thus Ju /∈ uKIN = Ju ∈ uK∗IN = 1. Then we

get:

Ju ∈ u↔ u /∈ uKIN =
(
(0⇒ 1) ∧ (1⇒ 0)

)
= 0.
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6.2.3 The logics of V(LP, J·KIN )

We go on to show that the model V(LP, J·KIN ) is indeed faithful to the lattice LP.

Theorem 6.2.22. The model V(LP, J·KIN ) is faithful to LP and hence loyal to (LP, F ), for

any filter F .

Proof. We know that the sentence ∀x(x = x) receives value 1, i.e., J∀x(x = x)KIN = 1 and

hence we have J¬∀x(x = x)KIN = 0. So we are done in the case that we can find a sentence

ϕ ∈ Sent∈ such that JϕKIN = 1
2 . Simply consider sentence ϕ of Lemma 6.2.19.

Moreover, it is a well-known fact that the propositional logic associated to the

lattice LP modulo the filter F = {1, 1
2}) is LP and that the propositional logic associated

to the same lattice given the set of designated values that contains only the top element,

i.e., {1}, is Kleene’s Logic K3. Thus we get:

Corollary 6.2.23. L
(
V(LP, J·KIN ), {1, 1

2}
)

= LP.

Corollary 6.2.24. L
(
V(LP, J·KIN ), {1}

)
= K3.

It is easy to notice that Theorem 6.2.11, Lemma 6.2.12, Lemma 6.2.13,

Corollary 3.6 and Lemma 6.2.15 are still valid in V(LP, J·KIN ) given the top filter.

Introspection of the relevant proofs shows that exactly the same calculations work for

this case. The validity of ZF, however, does not extend to this model due to the failure

of Extensionality.

Theorem 6.2.25. V(LP, J·KIN ) 2{1} Extensionality
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Proof. Consider the LP-names p 1
2
and p1. Then we calculate readily:

JExtensionalityKIN

= J∀x∀y
(
∀z(z ∈ x↔ z ∈ y)→ x = y

)
KIN .

=
∧

u∈V(LP)

∧
v∈V(LP)

(
J∀z(z ∈ u↔ z ∈ v)KIN ⇒ Ju = vKIN

)
=

∧
u∈V(LP)

∧
v∈V(LP)

(( ∧
x∈dom(u)

(u(x)⇒ Jx ∈ vKIN) ∧
∧

y∈dom(v)
(v(y)⇒ Jy ∈ uKIN)

)
⇒ Ju = vKIN

)
≤
(
(p1(∅)⇒ J∅ ∈ p 1

2
KIN) ∧ (p 1

2
(∅)⇒ J∅ ∈ p1KIN)

)
⇒ Ju = vKIN

=
(
(1⇒ 1

2) ∧ (1
2 ⇒ 1)

)
⇒ 0

= 1
2

/∈ {1}.

The failure of Extensionality shows that if we choose a more classical set of

designated values, i.e., {1}, on V(LP, J·KIN ) we end up with a model which is properly

speaking not a model of set theory anymore. What do we learn from this? On the one

hand, it shows that the choice of the set of designated values is relevant, unlike in the case

of Boolean-valued models and the standard interpretation map J·K. Thus, even though

the J·KIN -interpretation map allowed us to build a non-classical model of ZFC based on

LP, it comes with a price: we are bounded to one particular choice of designated values.

Moreover, given that Extensionality is a sentence in the language of set theory we can show

that V(LP, J·K) and V(LP, J·KIN ) are non-∈-elementarily equivalent with each other.

Corollary 6.2.26. We have

(V(LP, J·KIN ), {1, 1
2}) 6≡∈ (V(LP, J·KIN ), {1}).

Moreover, we can show as well that V(LP, J·KIN ) modulo the positive filter is

non-∈-elementarily equivalent with each (T,∗ )-valued model (where ∗ ∈ {∗p ,∗r ,∗s ,∗c ,∗e })

and each (A,∗r )-valued model.
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Theorem 6.2.27. Let (T,∗ ) be an implicative meet complemented (or bicomplemented)

WF -lattice where ∗ ∈ {∗p ,∗r ,∗s ,∗c ,∗e } with more than two elements and (A,∗r ) be any

reflexive Heyting-implication lattice with more than two elements. Moreover, let F1 be a

filter on T and F2 a filter on A. Then we have;

(V(T,∗), F1) 6≡∈ (V(LP, J·KIN ), Pos(LP)) 6≡∈ (V(A,∗r ), F2).

Proof. Consider the following sentence ψ = ∀w
(
∃x∃y(x ∈ y ∧ x /∈ y) → (w 6= w)

)
. We

know by Lemma 6.2.12(i) that J∀w(w = w)KLPIN = 1. Thus we get

J¬∀x(x = x)KLPIN =
(
J∀x(x = x)KLPIN

)∗
= 1∗ = 0.

Moreover, due to Lemma 6.2.19 we get

JψKLPIN = (1
2 ⇒ 0) = 1

2 ∈ Pos(LP).

Then, we calculate readily:

J¬∀w(w = w)K(T,∗) = J¬∀w(w = w)K(A,∗r ) = 0

and we know that

J∃x∃y(x ∈ y ∧ x /∈ y)K(T,∗) = J∃xy(x ∈ y ∧ x /∈ y)K(A,∗r ) = a,

where a is the co-atom of the universe of T and A. We conclude

JψK(T,∗) = JψK(A,∗r ) = (a⇒ 0) = 0.

This is not the case for the three-valued (A,∗e )-lattice since J∃x∃y(x ∈ y∧x /∈ y)K(A3,∗e ) =

0. However, for this model we can use the sentence

ψ′ = ∀w
(
∀x∀y(x ∈ y ∨ x /∈ y)→ (w 6= w)

)
.

We calculate readily that Jψ′K(A3,∗e ) = 0, however, Jψ′KLPIN ∈ Pos(LP).
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Similarly, we can show as well that V(LP, J·KIN ) modulo the top filter is non-

∈-elementarily equivalent with each (T,∗ )-valued model (where ∗ ∈ {∗p ,∗r ,∗s ,∗c ,∗e }) and

each (A,∗r )-valued model.

Theorem 6.2.28. Let (T,∗ ) be an implicative meet complemented (or bicomplemented)

WF -lattice where ∗ ∈ {∗p ,∗r ,∗s ,∗c ,∗e } with more than two elements and (A,∗r ) be any

reflexive Heyting-implication lattice with more than two elements. Moreover, let F1 be a

filter on T and F2 a filter on A. Then we have;

(V(T,∗), F1) 6≡∈ (V(LP, J·KIN ), {1}) 6≡∈ (V(A,∗r ), F2).

Proof. Consider the sentence σ := ψ → ψ, where ψ = ∃x∃y(x ∈ y ∧ x /∈ y). We calculate

readily that V(LP, J·KIN ) 2{1} σ. However, we have V(T,∗) |={1} σ and V(A,∗r ) |={1} σ.

We have shown that we can build an algebra-valued model that validates ZFC,

which has as internal logic LP and which preserves all the intuitive properties we would like

to attribute to identity. Moreover, we observe that we have two fundamental differences

in our model construction.

(a) V(LP, J·KIN ) is not a model of NLP,

(b) V(LP, J·KIN ) does not allow us to derive all the theorems of ZFC.

Notice that (a) is due to Lemma 6.2.21. Without going into technical details we

believe that it might be possible to extend our algebra-valued model with class functions

that might be used to interpret the universal set. Nevertheless, it is unclear how exactly

our underlying model V has to look like. What we can say here is that V should be a

model of a class theory, so we can talk about class-functions in our extended algebra-

valued model and that the resulting model should avoid that a single set becomes the

whiteness of all the instances of Comprehension.

Moreover, (b) is a drawback compared to Priest’s model construction since it

is unclear how many theorems of ZFC we can derive in our model. At the same time, this

is also a distinctive feature of our approach, i.e., the possibility of determining the set of

valid theorems of ZFC within a non-classical model of ZFC. We leave this task for future

work. However, we believe that V(LP, J·KIN ) is an excellent candidate for this enterprise
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due to the validity of Leibniz’s law of indiscernibility of identicals. So we can actually

build a quotient model out of V(LP, J·KIN ) where we have a reasonable ontology.

Finally, instead of arguing that one model construction is preferable over

another one, we simply acknowledge that two different games are played. Whereas

Priest is concerned in showing that we can make sense of the classical theorems of ZFC

from a paraconsistent perspective, we are concerned in finding out how much set theory

we can obtain in a paraconsistent model of ZFC. It seems that a moral that we can draw

from this is that we can not have the whole cake. There exists a trade-off between the

validity of ZFC (and its theorems) and desirable model-theoretic properties. In the case

of Priest we get the validity of ZFC and all the theorems of ZFC, however, we lose

model-theoretic properties. In our case, we get a model of the theory axioms of ZFC and

all the desirable model-theoretic properties, but we do not get all the theorems of ZFC.
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Chapter 7

Conclusions

In this thesis, we have demonstrated that it is possible to build many

different non-classical models of set theory applying algebra-valued model constructions.

In particular, we have shown that we can construct models of NFF-ZF, ZF, and ZFC that

are compatible with non-classical logics, including paraconsistent logics, paracomplete

logics, and logics that are both paraconsistent and paracomplete. Moreover, we have

also shown that these models are mathematically expressive.

7.1 What we have done

Now, we state the main results of this thesis. In Chapter 3, we gave an overview

of paraconsistent set theories that we can find in the literature. We divided these into two

classes: naïve and iterative paraconsistent set theories. This new conceptual distinction

allowed us to rethink the notion and extent of paraconsistent set theories. In particular, we

showed that we can pursue paraconsistent set theories outside of a dialethist framework.

Moreover, we argued that a big advantage for paraconsistent set theories constructed on

algebra-valued models is that these models resemble closely the cumulative hierarchy. So,

from a classical perspective these models provide the best approach to paraconsistent set

theories.

In Chapter 4, we searched for DRI-algebras that give rise to paraconsistent

models of set theory. This was done in two steps. Firstly, we searched for implicative

complete bounded distributive lattice A = 〈A,∧,∨,⇒,0,1〉 and showed that these

lattices are DRI-algebras. Then, we checked that the corresponding algebra-valued



175

model validates BQϕ for negation-free formulas. So, we get that V(A) |=F NFF-ZF for

any filter F on A. Secondly, we would expand the language of our lattices with a

suitable unary operator ∗ that will be interpreted as the negation in the language of set

theory. As a result, we were able to generalize V(PS3,∗) to the class of (T,∗r )-valued

models. The novelty displayed here consisted in giving an abstract algebraic definition

for the ⇒ operator and ∗ operator of (PS3,
∗ ) which allowed us to obtain infinitely many

paraconsistent models of set theory.

To sum up,

(1) Consider an implicative complete bounded distributive lattice

A = 〈A,∧,∨,⇒,0,1〉.

(2) Check if A is a DRI-algebra.

(3) Check if V(A) |=F BQϕ, where ϕ ∈ NFF-LA∈ and F is a filter on A.

(4) Expand the signature of A with an unary operator ∗ that we interpret as negation

in V(A,∗) such that for some sentence ϕ ∈ L∈ we have V(A,∗) |=F ϕ ∧ ¬ϕ, for some

filter F on A.

Moreover, we showed that by a suitable choice of ∗ we can build also non-

classical models of ZF, i.e., (T,∗p )-valued models. Interestingly, the propositional logic of

V(T,∗p )/{1} is neither intuitionistic, nor classical, nor paraconsistent. These models were

the first algebra-valued models of full ZF that were built on algebras that are not Heyting.

Furthermore, we applied these models to give an independence proof of Foundation from

ZF.

In Chapter 5, we showed that we can find infinitely many non-∈-elementarily

equivalent models of paraconsistent set theory. In particular, these models offer the first

examples of independence results for non-classical set theories built using algebra-valued

models. We have been able to show that there exist paraconsistent algebra-valued models

V(A1) and V(A2), each validating NFF-ZF, and a formula ϕ ∈ L∈ such that V(A1) �F ϕ and

V(A2) 2F ϕ, for some filter F . Moreover, we also found two new classes of paraconsistent

set theories which are faithful to their underlying lattice. We achieved this result, by

expanding the signature of implicative meet complemented WF -lattices with different

unary operations ∗ that interpret the negation in the language of set theory.
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Again, to sum up,

(1) Expand the signature of T = 〈A,∧,∨,⇒t,
∗p ,0,1〉 with an unary operator ∗ that

we interpret as negation in V(T,∗) such that for some sentence ϕ ∈ L∈ we have

V(T,∗) |=F ϕ ∧ ¬ϕ, for some filter F on T.

(2) Define a set of sentences Γ in the language of set theory such that for each (Tn,∗ ) and

(Tm,∗ ), where n,m ∈ N and n 6= m, there exists a ϕ ∈ Γ such that V(Tn,∗) |=F1 ϕ

and V(Tm,∗) 2F2 ϕ, for some filter F1 on Tn and some filter F2 on Tm.

In chapter 6, we proposed two new strategies to build non-classical models

of set theory. The first strategy gave rise to models of NFF-ZF that are paraconsistent,

paracomplete, or both paraconsistent and paracomplete. In particular, we showed that

each of these models is non-∈-elementarily equivalent from each other and faithful to its

underlying lattice. The second strategy allowed us to construct a model of ZFC which

validates Leibniz’s law of indiscernibility of identicals and has as internal logic Priest’s

logic of paradox.

We begin by describing the first strategy. Our starting point were the lattices

A = 〈A,∧,∨,⇒h,0,1〉 where the binary operation ⇒h is a Heyting condtional.

Moreovoer, the base set A is finite and totally-ordered. Then we expanded the signature

of A with the unary operator ∗r and observed that depending on our choice of the filter

F on A we obtain non-classical models of set theory with very different logical

properties. In particular, we showed that:

1. The propositional logic of V(A,∗r )/{1} is paracomplete but different from

intuitionistic logic.

2. The propositional logic of V(A,∗r )/F where F is any filter that extends the top

element is paraconsistent.

3. The propositional logic of V(A,∗r )/F where F is any filter that extends the top

element and which does not contain the co-atom of A is both paraconsistent and

paracomplete.

As before, we can summarize as follows:
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(1) Consider the lattices A = 〈A,∧,∨,⇒h,0,1〉 where the binary operation ⇒h is a

Heyting condtional and A is totally ordered and finite. Expand the signature of A

with the ∗r -operator that we interpret as negation in V(A,∗r ) and choose a suitable

filter F on A.

(2) Define a set of sentences Γ in the language of set theory such that for each (An,∗r )

and (Am,∗r ) there exists a ϕ ∈ Γ such that V(An,∗r ) |=F1 ϕ and V(Am,∗r ) 2F2 ϕ, for

some filter F1 on An and some filter F2 on Am.

Let us now describe the second strategy. The crux of the second strategy

consisted in modifying adequately the interpretation of set-membership and identity in

our algebra-valued model. We called the resulting the modified interpretation map

J·KIN . This made it possible to build an algebra-valued model based on the lattice LP

(defined on p. 145), i.e., V(LP, J·KIN ). This model was particularly intestersting given that

V(LP, J·KIN ) |=Pos(LP) ZFC and because the propositional logic of V(LP, J·KIN )/Pos(LP) is

Priest’s logic of paradox. Finally, we showed that V(LP, J·KIN ) is non-∈-elementarily

equivalent from all the models introduced previously in this thesis.

7.2 On Pluralism

In this section, we want to highlight one important philosophical implication

of this thesis. In particular, we want to discuss the relation between our results and

set-theoretic pluralism. Set-theoretic pluralism is the view (opposed to set-theoretic

universalism) that there exists more than one intended model of the universe of sets and

that each of these models exists independently of the others., i.e., they have the same

ontological status. In some of these models, certain set-theoretic statements such as the

continuum hypothesis will hold and in some others, they will be false. The collection of

these models is called the pluriverse of sets.

We claim that the pluriverse is much wider than assumed given that ZFC and

ZF can also be realized by non-classical models of set theory. In particular, we showed

that there exist paraconsistent models of ZFC and ZF. Moreover, these models bear a

great resemblance to the cumulative hierarchy and are as Boolean-valued models simply a

collection of functions. So, from the perspective of V, there exists absolutely no difference

between a Boolean-valued model and our paraconsistent models of set theory.
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Notice also that our models fit neatly into Priest’s perspectivalism:

Thus, one might have a universe of predicatively definable sets; a universe of

sets with the set theoretic axioms of ZFC, but the underlying logic of which is

intuitionist logic; or a set-theory based on the intuitionistic notion of a spread;

or a fuzzy set-theory based on, say, Lukasiewicz continuum-valued logic; or a

set theory based on a relevant logic; or one based on quantum logic. (PRIEST,

2020, p. 11)

We believe that, in principle, we can build a model of full ZF (or some

classically equivalent axiom system) based on any non-classical logic with algebraic

semantics. However, we need to find the right interpretation of set membership and

identity for our algebra-valued models. This is a non-trivial task since there exists a

trade-off between the strength of the notion of identity within our models and the

validity of Extensionality. Notice, however, that we need that the binary operation ⇒

and unary operator ∗ which will interpret the implication and negation in the language

of set theory, respectively, satisfy some minimal constraints to pull through the proof of

the ZF axioms.

Thus, we have the following hypothesis:

Hypothesis: It is possible to tailor an interpretation map J·KX for any non-classical logic

that is representable as a lattice of the form A = 〈A;∧,∨,⇒,∗ ,0,1〉 and that full fills

some minimal inferential features, such that V(A, J·KX) |=F ZF for some filter F on A and

where the underlying logic of V(A, J·KX) modulo F is non-classical.

Thus, we think (similarly as Priest) that we should generalize the pluriverse

consisting of classical models of ZFC and ZF to a pluriverse containing models of ZFC and

ZF based on all kinds of non-classical logics. Moreover, all these non-classical models are

based on the iterative conception of set and mimic the cumulative hierarchy. Therefore,

we believe that the iterative conception of set is compatible with many (if not all) logical

environments. So, nowadays the iterative conception might be associated exclusively to

classical set theory, however, we have shown that this seems to be a contingency. Finally,

we argue that set-theoretic pluralism does reach even deeper as assumed: we are not only

faced with the choice between classical models of ZFC and ZF, but also with the choice

of the right non-logical axioms that compose ZFC and ZF.
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7.3 What still has to be done

We conclude by pointing out some directions for future research. Especially,

Chapter 6 offers two new roads that could be explored and lead to further

generalizations. The first road is intended to extend our model constructions to

complete bounded distributive lattices where the underlying universe is not

totally-ordered. The starting point is to consider any complete bounded distributive

lattice (with an atom and co-atom) equipped with a Boolean conditional. Then, we

could expand these lattices with diverse unary operators ∗ and explore the resulting

algebra-valued models. This method could give rise to some new classes of non-classical

models of set theory. Moreover, the second road that we outlined in Chapter 6 is to

consider the interpretation map J·K as a new constraint in the construction of

algebra-valued model.

Moreover, the following questions have remained unanswered:

1. Determine the class of complete bounded distributive lattices A such that

L
(
V(A), Pos(A)

)
= LPS3.

2. Determine the class of DRI-algebras A such that we have V(A) |=F BQϕ for some

filter F on A.

3. Does there exist a complete bounded lattice A such that V(A, J·K) |=F ZFC where A

is not a Boolean Algebra, J·K is the standard interpretation map and F is any filter

on A ?

4. Does there exist a unary opertor ∗ that satisfies either the American or the Australian

Plan (algebraically or logically) and that allows us to show that every (T,∗ )-valued

model is non-∈-elementarily equivalent ?

5. Which are the propositional logics that correspond to V(T,∗c )/F where F is any filter

on A ?

6. Which are the propositional logics that correspond to V(T,∗e )/F where F is any filter

on A ?

7. Elaborate the minimal account of negation in more detail. Which further types of

negations can we distinguish on behalf of this account ?
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8. Build quotient models on top of reflexive Heyting-implication lattice-valued models.

Are these models full/well-defined?

9. Which are the propositional logics that correspond to V(A,∗r )/F where F is any

filter on A ?

10. Is V(LP, J·K) a model of NLP or NLP=?

11. Does any complete De Morgan algebra give rise to models of ZFC under the J·KIN -

interpretation map?

12. Does any complete Heyting algebra give rise to models of ZFC under the J·KIN -

interpretation map?

We hope that these questions open the door for new and exciting philosophical discussions.
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