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Resumo

Os invólucros cilíndricos são frequentemente aplicados como elementos estruturais em
engenharia e têm sido usados para muitas aplicações devido à sua favorável relação entre
rigidez e peso. Mais recentemente, eles têm sido usados como novos materiais compostos
periódicos conhecidos como Cristais Fonônicos, que são um arranjo periódico de células
unitárias construídas como uma combinação de camadas com alta variação de impedância. A
periodicidade gera espalhamento de onda de Bragg que produz bandas de parada ou bandas
proibidas onde as ondas não se propagam. Este atributo nos permite buscar soluções novas e
eficientes para o controle de ruídos e vibrações em estruturas. O objetivo desta tese é propor
um novo elemento espectral baseado no modelo analítico de uma casca cilíndrica fechada
com fluido interno, e aplicá-la ao cálculo da propagação de ondas em Cristais Fonônicos. Para
atingir esse objetivo, o método do Elemento Espectral de Onda é aplicado para calcular as
bandas proibidas em um Cristal Fonônico de casca cilíndrica cheia de fluido cujas propriedades
elásticas variam periodicamente. A motivação é desenvolver uma nova formulação de um
elemento espectral de casca cilíndrica preenchida com fluido é preciso e eficiente para
modelar a interação fluido-estrutura em uma estrutura desse tipo. A formulação é verificada
quanto ao seu desempenho e eficiência no cálculo de estruturas do tipo casca em geral, e
em estruturas periódicas do tipo Cristais Ponônicos elásticos em particular. Nesse sentido, as
bandas proibidas geradas pelo efeito de espalhamento de Bragg e as bandas de atenuação das
respostas forçadas são calculadas para Cristais Fonônicos modelados com o elemento espectral
de casca cilíndrica proposto. O modelo de elemento espectral envolve resolver as equações
de movimento no domínio da frequência e usa as soluções para derivar a matriz de rigidez
dinâmica formulada de forma análoga ao método dos elementos finitos. Respostas livres e
forçadas para cascas cilíndricas homogêneas são investigadas e os resultados são verificados
com o método dos elementos finitos. Exemplos simulados usando estruturas convencionais e
Cristais Fonônicos modelados com o elemento espectral de casca cilíndrica proposto (com e
sem fluido interno) são apresentados e os resultados mostrados como diagramas de dispersão
e respostas de deslocamento, os quais demonstram mesma precisão dos métodos comparados,
tais como o método dos elementos finitos, mas com eficiência computacional bem superior.

Palavras-chave: Cristais Fonônicos, Metamateriais, Bandas proibidas, Elemento espectral, Cas-
cas Cilíndricas.



Abstract

Cylindrical shells are frequently applied as structural elements in engineering, and have been
used for many applications due to their favorable stiffness to weight ratio. More recently they
have been used as new periodic composite materials known as Phononic Crystals, which are
a periodic arrangement of unit cells built as a combination of layers with high impedance
variation. Periodicity generates Bragg wave scattering that produces stop bands or Band Gaps
where waves do not propagate. This attribute allows us to search for new and efficient solutions
to control noise and vibration in structures. The aim of this thesis is to propose a new spectral
element based on the analytical model of a closed cylindrical shell with internal fluid, and
apply it to calculate the wave propagation in Phononic Crystals. To reach this goal, the Wave
Spectral Element method is applied to compute band gaps in a fluid-filled cylindrical shell
phononic crystal whose elastic properties vary periodically. The motivation is to demonstrate
that the Fluid-Filled Cylindrical Shell Spectral Element is accurate and efficient for modeling
fluid-structure interaction in a cylindrical shell with internal fluid. The formulation is verified
and its performance and efficiency in calculating periodic structures and elastic Phononic
Crystals are evaluated. In this sense, the Band Gaps generated by the Bragg scattering effect
and the attenuation bands of forced responses are calculated for Phononic Crystals modeled
with the proposed cylindrical shell spectral element. The Spectral Element model involves
solving the governing equations of motion in the frequency domain and uses the solutions
to derive the dynamic stiffness matrix formulated in a way analogous to the Finite Element
method. Free and forced responses for homogeneous cylindrical shells are investigated and
the results are verified with the finite element method. Simulated examples using conventional
structures and Phononic Crystals modeled with the proposed cylindrical shell spectral element
(with and without internal fluid) are presented and the results are shown as dispersion diagrams
and displacement responses, which demonstrate the same accuracy as compared methods, such
as the finite element method, but with much higher computational efficiency.

Keywords: Phononic Crystals, Metamaterials, Band gaps, Spectral Element, Cylindrical shell.
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1 INTRODUCTION

1.1 Motivation

Understanding the dynamic behavior of a structure is fundamental. The interest may be
either at the design stage or during operation. In the first case, understanding the dynamic re-
sponse of a system is important for the purpose of design and optimization. In the second case,
during operation, it can assist in monitoring and controlling structural integrity.

Regarding the type of analysis, analytical, numerical, or experimental studies can be per-
formed. Although experimental tests may provide the best reproduction of the behavior of the
system, they are usually expensive and can only be carried out in the final stages of the project,
when the main characteristics of the equipment have already been defined. At the design stage
of the development of real engineering systems, a fast and cheap numerical analysis is sought
for predicting the dynamic behavior. This motivates the development of reliable and efficient
numerical tools.

Due to their excellent structural and mechanical properties, cylindrical shells have been
used frequently as structural elements in mechanical, civil, petrochemical, machinery, aerospace
and naval engineering. This comes from the fact that shells can be used for large span structures
with a good stiffness to weight ratio. Cylindrical shells are subjected to various complex loading
and boundary conditions which can lead to structural failure; therefore, a good understanding
of the dynamic behavior of shell elements is very important to guarantee a safe and inexpensive
design.

In the context of structural dynamic analysis the thin are cylindrical shell is a complex
fluid-structure interaction (FSI) problem. Therefore, the monitoring and detection of damage,
vibratory and acoustic behavior of shells is very important. Current industrial equipment are
usually under the FSI condition, such as pressure vessels (Fig.1.1a1), submarines (Fig.1.1b2),
gas and oil pipelines (Fig.1.1c3), petrochemical containers (Fig.1.1d4), aircraft (Fig.1.1e5) and
spacecraft shells (Fig.1.1f 6).

Under certain loading conditions, vibration and even fracture of the shell can cause
serious accidents. So it is critical to find an appropriate design method by studying the dynamic
responses and vibration mechanism of thin cylindrical shells under the FSI condition.

1available on https://en.wikipedia.org/wiki/Pressure_vessel on may 2𝑡ℎ, 2021.
2available on https://www.militaryaerospace.com/sensors/article/14072957/

submarines-missiles-undersea-warfare on may 2𝑡ℎ, 2021.
3available on https://www.paint.org/coatingstech-magazine/articles/

new-coating-could-prevent-gas-and-oil-pipeline-clogging/ on may 2𝑡ℎ, 2021.
4available on https://www.istockphoto.com/br/fotos/fuel-storage-tank on may 2𝑡ℎ,

2021.
5available on https://moneyinc.com/embraer-190/ on may 2𝑡ℎ, 2021.
6available on https://en.wikipedia.org/wiki/Apollo_command_and_service_module

on may 2𝑡ℎ, 2021.

https://en.wikipedia.org/wiki/Pressure_vessel
https://www.militaryaerospace.com/sensors/article/14072957/submarines-missiles-undersea-warfare
https://www.militaryaerospace.com/sensors/article/14072957/submarines-missiles-undersea-warfare
https://www.paint.org/coatingstech-magazine/articles/new-coating-could-prevent-gas-and-oil-pipeline-clogging/
https://www.paint.org/coatingstech-magazine/articles/new-coating-could-prevent-gas-and-oil-pipeline-clogging/
https://www.istockphoto.com/br/fotos/fuel-storage-tank
https://moneyinc.com/embraer-190/
https://en.wikipedia.org/wiki/Apollo_command_and_service_module
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(a) (b) (c)

(d) (e) (f)

Figure 1.1: Industrial equipment and components that can be modeled as thin cylindrical shells:
(a) pressure vessel, (b) submarine, (c) oil pipelines, (d) petrochemical containers, (e) aircraft,
(f) service module of spacecraft.

When studying structural behaviors, the Finite Element (FE) method is one of the main
tools for evaluating engineering problems. It has been implemented in several commercial com-
putational packages. In general, this method is based on a domain discretization by finite ele-
ments that use approximated shape functions to describe the displacement field. Convergence
is dictated by mesh refinement, which require many elements with smaller sizes (Zienkiewicz,
1977). It is well known that good, precise results using wave propagation analysis by FE re-
quire a discretization finer than six elements/wavelength. Thus, for analysis at high frequencies,
complex computational models must become very large. DeLanghe and Sas (1996) affirm that
although the FE method is effective at low frequencies for the prediction of structure-borne
noise and structural vibration, it is less effective at high frequencies, even with the increased
capacity of current computers and improvements in the FE method.

Presented by Doyle (1997), the Spectral Element (SE) method is the exact analytical
solution in the frequency domain of the wave equation formulated in displacement. This solution
is built in order to use the same matrix concept used in the assembly of the FE model. Because it
is the exact solution of the differential equation in the frequency domain, a spectral element can
be seen as an infinite number of finite elements. In this way, a geometrically uniform structural
element can be represented using a single spectral element, which significantly reduces the total
number of degrees of freedom when compared to other methods. Thus, the SE method is an
interesting approach to evaluate the behavior of fluid-filled cylindrical shells.

Wave propagation in periodic structures has been studied by researchers for a long time. In
the engineering field it started in the 1970s with Mead (1996), who authored many papers on this
subject. Recently, works are directed towards trying to understand the behavior of propagation
of elastic waves in periodic structures (Galán and Abascal, 2002; Castaings et al., 2002; Lee
and Staszewski, 2007; Santos et al., 2008; Mencik and Ichchou, 2008; Rodrigues et al., 2019;
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Sales et al., 2020; Gonçalves et al., 2021).
In recent decades, a lot of research has been done about Metamaterials and Phononic

Crystals (PCs). PC and band gap phenomena started to be analyzed in the 1990s, and one of the
seminal works was written by Sigalas and Economou (1992). One of the first papers to name this
type of periodic structure Phononic Crystals was published by Kushwaha et al. (1993), in which
the authors presented the first full calculation of a PC band structure. Since then, new approaches
have been appearing that use periodicity together with analytical and numerical modeling to
calculate complex structures at low computational cost. This, as well as other methods, has been
the focus of a large number of research papers on different types of periodic structures in the
Vibroacoustic Laboratory of DMC-FEM-UNICAMP (Silva, 2015; Miranda Jr and Dos Santos,
2017; Goto et al., 2020; Rosa et al., 2019; Beli et al., 2019; Dal Poggetto and Serpa, 2021;
Pereira Flavio and Dos Santos, 2021).

As a new type of artificial material, metamaterials exhibit unusual properties and prom-
ising applications in the area of engineering when compared with natural materials. Acoustic
metamaterials and PCs have some extraordinary physical properties, such as negative effective
parameters, band gaps, negative refraction, etc., properties normally nonexistent in natural ma-
terials. These special properties have attracted the attention of researchers, and great progress
has been made in engineering applications (Deymier, 2013; Liu et al., 2020). In 1995, Fran-
cisco Meseguer and collaborators experimentally determined the aural filtering properties of
a perfectly real but fortuitous phononic crystal in a minimalist sculpture by Eusebio Sempere
(Fig.1.2a7), standing in a park in Madrid, Spain. Figure 1.2b8 depicts a manufactured granular
metamaterial in blue (a tailorable auxetic and vibration control metamaterial) and pantographic
metamaterial in white (an ultra-light, ultra-deformable, ultra-resilient material).

(a) (b)

Figure 1.2: Examples of phononic crystals and metamaterials (a) Eusebio Sempere’s sculpture
(b) Auxetic metamaterials.

7available on https://phys.org/news/2019-10-acoustic-insulation-enables-corners.
html on may 2𝑡ℎ, 2021.

8available on https://www.eurekalert.org/multimedia/pub/183312.php on may 2𝑡ℎ, 2021.

https://phys.org/news/2019-10-acoustic-insulation-enables-corners.html
https://phys.org/news/2019-10-acoustic-insulation-enables-corners.html
https://www.eurekalert.org/multimedia/pub/183312.php


22

Phononic Crystals are artificial materials with a periodic arrangement of unit-cells built as
a combination of layers with high impedance variation. Figure 1.3 shows an example of a closed
circular cylindrical shell phononic crystal, made with five unit-cells comprising three layers
of elastic materials ordered as steel-polyacetal-steel. The unit-cells are distributed periodically
along its length, and a unit-cell detail is also shown in Fig. 1.3. As a consequence of periodicity,
these structures may exhibit frequency band gaps where waves do not propagate. Based on this
feature, PCs can be proposed as an efficient solution for noise and structural vibration control.

Figure 1.3: Circular cylindrical shell phononic crystal scheme and a three layers unit-cell [steel
(gray)+polyacetal (black)+steel (gray)] detail.

The Wave Spectral Element (WSE) method considers the dynamic stiffness matrix ob-
tained by the Spectral Element (SE) method to model a periodic structural member. Then, the
spectral dynamic stiffness matrix is transformed in a transfer matrix, where the Floquet-Bloch
theorem is applied to end up with a transfer matrix eigenproblem. The eigenvalues produce
wavenumbers and the corresponding eigenvectors are the wave modes, which travel toward the
right and left along the periodic structure. WSE and other analytical and numerical methods
have been applied to different types of structural phononic crystals and periodic structures such
as rods, beams, plates and shells (Silva and Arruda, 2012; Nobrega et al., 2016; Pereira Flavio
and Dos Santos, 2017; Sousa et al., 2017).

In this thesis a new spectral element based on the analytical model of a closed circular
cylindrical shell with internal fluid is proposed, and it is applied to calculate wave propagation
in phononic crystals. To reach this goal, the WSE method is applied to compute band gaps in a
fluid-filled cylindrical shell phononic crystal with elastic properties that vary periodically (Fig.
1.3). The motivation is to demonstrate that the Fluid-filled Cylindrical Shell Spectral Element
(FCSSE) is accurate and efficient for modeling fluid-structure interaction (FSI) in a cylindrical
shell with internal fluid. First, the dynamic stiffness matrix of a FCSSE is formulated by SE.
Then, the governing equations time derivatives are transformed using spectral decomposition,
while the circumferential coordinate is expanded in a Fourier series. A four degree of freedom
(DOFs) fluid-filled cylindrical shell spectral element model is formulated and presented. The
SE and WSE methods are computationally implemented and evaluated. A comparative study
between the FCSSE and the analytical solution (AS) of a circular cylindrical shell as proposed
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by Leissa (1973) is presented. Results show good agreement when compared with other meth-
ods and those from the literature.

1.2 Literature review

This section presents a review of the works found in the literature considered most relevant
to the area of research addressed and to the development of the work.

1.2.1 Spectral element

The spectral element method is based on the analytical solution of the displacement wave
equation, written in the frequency domain (Doyle, 1997; Lee, 2009). The element is tailored
in the same concept as the finite element (FE) method, but the interpolation function is the
exact (or approximated) solution of the wave equation. Built-up structures with geometrically
uniform members can be modeled by a single spectral element, which significantly reduces the
total number of DOFs as compared to approximated approaches.

Lee (2009) comments that the classic FE has been the most popular in many areas of
engineering and science, as it is one of the most convenient and easy to use computational
methods. Though the FEM is applicable to most geometries, boundary conditions and material
variations, it can be extremely expensive and it is often impracticable to work out solutions to
the large scale finite element models using a desktop computer. On the other hand, the spectral
element method (SE) is a frequency domain solution method in which the spectral element
equation is solved by using the fast Fourier Transform (FFT). In SE, the exact dynamic stiffness
matrix, known as the spectral element matrix, is formulated in the frequency domain by using
wave solutions for the governing differential equations. Accordingly, the SE will provide exact
frequency domain solutions while using only one element. However, it is not always easy to
derive the exact shape functions for any structure.

Many papers take advantage of the SE formulation to create other methods. For example,
Lee (2000) introduces a general approach to spectral element formulation for one-dimensional
structures, in which the spectral element matrix is computed numerically directly from the trans-
fer matrix, which is formulated from the state vector equation of motion of a structure. Next,
by combining the promising features of the SE (i.e., high accuracy) and the well-known trans-
fer matrix method (i.e. high analysis efficiency for one-dimensional structures), a new solution
approach named the Spectral Transfer Matrix Method (STMM) is created. As an application, a
beam with periodic supports and a plane lattice structure with several beam-like periodic lattice
substructures are simulated.

However, there are still some drawbacks, such as difficulties to model non-uniform mem-
bers and models without closed-form solutions. For example, the vibration problem of a rectan-
gular plate, can be solved in closed-form only for a few combinations of boundary conditions.
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To overcome these problems, some spectral elements have been developed using approxima-
tions with superposition and Fourier series expansion.

Casimir et al. (2005) showed a procedure for building the dynamic stiffness matrix of
a Kirchhoff rectangular plate element with free edge boundary conditions, while Gorman’s
method of boundary condition decomposition and Levy’s series are both used to obtain the
solution of the elementary problem. Later Casimir et al. (2007) demonstrated a procedure for
calculating the dynamic stiffness matrix of tubular shells with free edge boundary conditions.
The shell element takes rotatory inertia, transverse shear deformation and non-axisymmetric
loadings into account. It is interesting to note that in his work, Casimir comments that the
Dynamic Stiffness Method can also be called the Continuous Element Method (CEM).

Campos and Arruda (2008) presents a spectral element for thin plates that can be used
to model beam-reinforced plates with arbitrary boundary conditions, as well as a detailed de-
scription on how to obtain all the terms needed to implement it. The results obtained proved to
be appealing and its accuracy makes it a potential tool for structural analysis in mid and high-
frequency ranges. The authors emphasize the need to use symbolic computation to obtain the
expressions contained in the matrices of displacements and forces.

Nefovska-Danilovic and Petronijević (2015) describe the development of the dynamic
stiffness matrix for an isotropic rectangular plate with arbitrary boundary conditions undergo-
ing in-plane free vibration. Gorman’s superposition method is exploited to obtain the solution
of the governing equations of motion. The obtained results are in good agreement with the exact
solutions for some special cases as well as with finite element solutions. As expected, model-
ing of plates undergoing in-plane vibration using the dynamic stiffness method demonstrates
high precision, accuracy, and a low memory requirement in comparison with the finite element
method.

Kolarevic et al. (2015) presented the dynamic stiffness matrix of the completely free rect-
angular Mindlin plate element. The system of three coupled equations of motion is transformed
into two uncoupled equations which introduce a boundary layer function. The natural frequen-
cies of individual plates and plate assemblies with arbitrary boundary conditions are calculated
and validated. High efficiency and accuracy of the results are demonstrated.

The dynamic stiffness matrix for simple structural elements such as rods, beams and plates
have been studied since the beginning of the past decade. However, more complex structures
such as thin shells, thick shells and cylindrical shells have only recently received attention.
Therefore, works that present the dynamic stiffness matrix of a shell are only found now. The
main reason that postponed the formulation of the SE of these structures is the complexities of
equations that describe these structures.

Thinh and Nguyen (2016) presented a theoretical investigation on the free vibration of
circular cylindrical shells partially filled with fluid. A precise analytical model using the Dy-
namic Stiffness Method (DSM) or Continuous Elements (CEM) based on the Reissner–Mindlin
theory and non-viscous incompressible fluid equations has been proposed for the structures.
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A closed circular cylindrical shell spectral element was developed by Kolarević et al.

(2016). The dynamic stiffness matrix is formulated on the base of exact solution for free vi-
bration of a circular cylindrical shell according to the Flügge thin shell theory. The matrix is
frequency-dependent and, besides the stiffness, includes inertia and damping effects. Only the
natural frequencies and mode shapes of a circular cylindrical shell were calculated in the paper.
This work is one of the main references of this thesis.

Harbaouia et al. (2018) present a spectral element based on the dynamic stiffness matrix
of a prestressed cylindrical shell. The dynamic stiffness matrix is built using first-order shear
deformation theory and natural frequencies are processed easily. Vibration analyses are per-
formed with numerical examples to determine the performance of this approach and the effect
prestressing has on frequency response functions.

1.2.2 Fluid-structure interaction

When a structural component vibrates in a viscous fluid, the presence of the fluid gives
rise to a fluid reaction force which can be interpreted as an added mass and a damping contri-
bution to the dynamic response of the component. Chen et al. (1976) presents an analytical and
experimental study of a cylindrical rod vibrating in a viscous fluid that is enclosed by a rigid,
concentric cylindrical shell. A closed-form solution for the added mass and damping coefficient
is obtained and a series of experiments with cantilevered rods vibrating in various viscous fluids
is performed.

One of the pioneer works considering fluid-structure coupling in a cylindrical shell was
published in the 1980s by Fuller and Fahy (1982). The dispersion behaviour and energy dis-
tribution of free waves in thin walled cylindrical elastic shells filled with fluid are investig-
ated. Dispersion curves are presented for a range of parameters and the behaviour of individual
branches is explained. A non-dimensional equation which determines the distribution of vibra-
tional energy between the shell wall and the contained fluid is derived and its variation with
frequency and material parameters is studied. The work stands out for being one of the first to
use the Bessel function to represent the fluid loading in the shell.

In the mid 1980s, Fahy and Gardonio consolidated many works about this subject in a
book (Fahy and Gardonio, 1985). They investigated dispersion behavior and energy distribution
of waves using the analytical model of a thin-walled elastic cylindrical shell filled with fluid,
and included the fluid-structure coupling effects.

Another noteworthy work is the theoretical analysis developed by Gonçalves and Batista
(1987) for the free vibration of simply-supported vertical cylindrical shells partially filled with
or submerged in a fluid. The fluid is taken as non-viscous and compressible and the coupling
between the deformable shell and this acoustic medium is taken into account. The Rayleigh-Ritz
technique is used to obtain an approximate solution which coincides with the exact solution for
the cases of an empty shell or a shell completely in contact with fluid.
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Sinha et al. (1992) presented an analysis of axisymmetric waves propagating along fluid-
loaded cylindrical shells within the framework of linear elasticity and classical perfect-slip
boundary conditions at the solid-fluid interface. Numerical solutions are obtained for various
axisymmetric eigenmodes for a cylindrical shell in vacuum. Numerical results are obtained for
both the radiating and non-radiating eigenmodes. The results are presented for the dispersion
curves as well as the displacement and stress amplitude component distributions along the radial
direction for various propagating modes of the system.

Jeong and Lee (1996) presents an analytical method for free vibration of a partially liquid-
filled circular cylindrical shell with various classical boundary conditions is developed by means
of the Stokes’ transformation and Fourier series expansion. The liquid-shell coupled system is
divided into two regions for convenient formulation. One is the empty shell region in which
the shell equations are formulated without the liquid effect, while the other is the wetted shell
region in which the shell equations are formulated with consideration of the liquid dynamic
effect.

Subsequently, Jeong and Lee (1998) presented an analytical method for hydroelastic vi-
bration of a partially liquid-filled cylindrical shell with arbitrary classical boundary conditions
using the Fast Fourier Transform (FFT). To demonstrate the validity and accuracy of the ana-
lytical method, the finite element analyses were performed for partially liquid-filled circular
cylindrical shells with clamped—free and clamped—clamped boundary conditions.

In the early 2000s, Zhang (2002) presented an extension of the wave propagation ap-
proach to coupled frequency analysis of finite cylindrical shells submerged in a dense acoustic
medium. A finite cylindrical shell enclosed with plate end-caps is modeled for coupled fre-
quency analysis.

Qatu (2002) has presented a review of most of the recent research done in the field of
dynamic response of homogeneous shells with special attention to free vibrations. The paper
reviews the literature focusing on various aspects of research. The first aspect of research re-
ceiving interest here is the shell theory being used. Shell theories include thin and thick shell
theories, shallow and deep theories, linear and nonlinear theories. Most theories are classified
based on the thickness ratio of the shell being treated, the shallowness ratio, and the magnitude
of displacement. It is reported that another aspect of research receiving interest are interactions
between fluids, piezoelectric shells and acoustic radiation.

Chen et al. (2004) derived a state equation with variable coefficients in a unified mat-
rix form based on the three-dimensional fundamental equations of anisotropic elasticity. The
free vibration of simply supported, fluid-filled cylindrically orthotropic functionally graded cyl-
indrical shells with arbitrary thickness was studied. Numerical examples are presented and com-
pared with existing results in the literature.

Considering plane wave approximation, Gautier et al. (2007) investigated the interaction
between the wall vibrations of a stretched elastic cylindrical membrane and the inner acoustic
field. The first of these, called Korteweg’s wave, propagates mainly within the fluid and corres-
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ponds to the acoustic plane wave which is closely coupled to the wall vibrations. The two other
waves mostly propagate within the structure and correspond to coupled longitudinal/flexural
motions. One corresponds to predominant longitudinal motions in the membrane and the other
exists only when tension is applied to the membrane and is similar to a string bending wave.

Using the Wave Finite Element (WFE) method, Mencik and Ichchou (2007) presented
a general formulation which addresses the problem of wave propagation in elastodynamic cyl-
indrical shells filled with acoustic fluid. The formulation is based on a finite element description
of periodic systems. It leads to a general spectral problem, with eigenvalues and eigenvectors
that are related to the free propagating wave properties. The formulation incorporates many
simplified elastodynamic models of an analytical nature. Here, the formulation is stated for a
fluid–structure-guided medium.

Many other works were published in this area. Larbi and Deü (2011) present a three-
dimensional exact mixed state-space solution for the free vibration analysis of simply-supported
arbitrarily thick laminated piezoceramic hollow cylinders completely filled with fluid.

Farshidianfar and Oliazadeh (2012) investigated the free vibration of circular cylindrical
shells with simply supported boundary conditions which has been studied using different
thin shell theories: Donnell-Mushtari, Love-Timoshenko, Amold-Warburton, Houghton-Johns,
Flugge-Byme-Lur’ye, Reissner—Naghdi—Berry, Sanders, Vlasov, Kennard-Simplified and
Soedel. Then, in order to check the accuracy of the theories, a comparison was carried out
with experimental results.

1.2.3 Phononic crystals

A lot of research on phononic crystals and metamaterials has been done in recent decades.
From an engineering point of view, analyzing and understanding these systems remains an open
challenge. Hussein et al. (2014) defines a phononic medium as a material or structural system
that usually exhibits some form of periodicity, which can be in constituent material phases, or
internal geometry, or even boundary conditions.

Phononic crystals - PCs produce band gaps, which are generated by the Bragg scattering
effect (destructive wave interference) along the structure. For a 1D periodic structure with a unit-
cell length of 𝑑, band gaps would appear around frequencies governed by the Bragg condition,
𝑑 = 𝑛(𝜆/2), (𝑛 = 1,2,...) where 𝜆 is the wavelength.

In the early 1990s, one of the first papers to name this type of periodic structure as
phononic crystals was published by Kushwaha et al. (1993). They present the first full band-
structure calculations for periodic, elastic composites. For transverse polarization of the vibra-
tions, we obtain a phononic band gap which extends throughout the Brillouin zone.

Research on forbidden bands in PCs and acoustic metamaterials mainly focuses on the
calculation of elastic wave forbidden bands (Liu et al., 2020). At present, there are several
mature methods for calculating forbidden bands, such as the transfer matrix method (Munjal,
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1993; Sigalas and Soukoulis, 1995), the plane wave expansion method (Kushwaha et al., 1993,
1994; Wu et al., 2002; Hsu and Wu, 2006), the finite difference time domain method (Sigalas
and Garcıa, 2000; Shi et al., 2004), and the multiple scattering method.

The transfer matrix method (Munjal, 1993; Sigalas and Soukoulis, 1995) is a method
of converting the wave equation into the form of a transfer matrix equation and solving the
eigenvalues. This method starts with the basic equations including state parameters to obtain
the transfer equation of a flat solid medium, then obtains the boundary conditions according to
the characteristics of the surrounding medium and the intermediate medium, and finally obtains
the solution of the system. This method is mainly used for the calculation of band gaps of
phononic crystal and acoustic metamaterials in a one-dimensional model. Because the transfer
matrix is generally small and is an analytical solution, its calculation effort is small.

The plane wave expansion method (Kushwaha et al., 1993, 1994; Wu et al., 2002) is the
earliest used method in the theoretical analysis of phononic crystals and acoustic metamaterials.
In this method, the physical quantities such as displacements and elastic constants in the wave
equation are expanded by a Fourier transform in the form of a superposition of plane waves in
the inverse lattice space, and then the wave equation is solved to obtain the dispersion relation-
ship between the characteristic frequency and the wave vector, that is, the band structure.

Phononic crystal studies have been focused on bulk waves and more recently have been
extended to elastic waves in plates. They explore the plane wave expansion (PWE) method with
the plate theory (Hsu and Wu, 2006). The main issue when using the PWE method is that the
structural model is assumed to be infinite (no boundary conditions), which brings difficulties to
its use in some applied engineering problems.

The finite difference time domain method (Sigalas and Garcıa, 2000; Shi et al., 2004)
discretizes partial differential equations by discretizing time and space, transforms the partial
differential equations into differential equations. This method can simulate a variety of com-
plex periodic structures, and can accurately simulate the non-uniformity, anisotropy, nonlinear
problems, and dispersion characteristics of the medium. At the same time, the method can cal-
culate the characteristics of the band structure in the periodic structure and the transmission and
reflection in the finite structure.

Even with the existing methods for the study of PCs, researchers continue to develop new
techniques with fast calculation and good convergence to lay the foundation for the follow-up
research.

Nascimento (2009) combined SEM with FEM, resulting in a semi-analytical method
called WSEM. This method was still restricted to simple structures, such that for modeling
complex structures it required cumbersome analytical formulations. However, this problem
was circumvented by Silva (2015), who built spectral finite elements from a finite element
model of a slice of a structural waveguide with an arbitrary cross section and, potentially,
of arbitrary order. This method was called the Wave Spectral Finite Element Method (WSFEM).
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Within the WFE framework, the FE model of a small slice of a whole system is considered
and a transfer matrix relation is expressed to link the kinematic quantities between the right and
left boundaries of this slice. By considering Bloch’s theorem, the so called wave modes of the
periodic system can be computed, which involves assessing the eigenvalues and eigenvectors of
the transfer matrix of the slice (Mencik and Ichchou, 2005). The proposed strategy considerably
reduces the computational time when compared to the FE method.

1.3 Objectives

The main objective of this thesis is to propose new spectral elements based on the
analytical model of a closed circular cylindrical shell with internal fluid, and to use these new
spectral elements to investigate phononic crystals in cylindrical shells. In this sense, the specific
objectives of this thesis are listed as the following.

∙ Formulate the Fluid-filled Cylindrical Shell Spectral Element - FCSSE.

∙ Implement SE for cylindrical shells and fluid-filled cylindrical shells.

∙ Evaluate the proposed SE by calculating the natural frequencies and comparing them
with the FE.

∙ Calculate the forced responses for the cylindrical shell modeled by SE and validate the
results found with those obtained by the FE model.

∙ Implement and validate the WSE method by calculating the dispersion diagrams and
comparing the results found with the analytical results.

∙ Compute and investigate band gaps and attenuation effects in phononic crystal cylindrical
shells with and without internal fluid.
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1.4 Outline of the thesis

This thesis is organized as follows.

In Chapter 2, the formulations of closed circular Cylindrical Shell Spectral Element -
CSSE, Fluid-filled Cylindrical Shell Spectral Element - FCSSE, and Wave Spectral Element -
WSE are presented.

In Chapter 3, the numerical results obtained with the computational implementation of
the cylindrical shell model are evaluated. The computational implementation of the CSSE is
verified using the Analytical Solution and FE method. In addition, WSE is used to evaluate the
dynamic behavior of the cylindrical shell phononic crystal. Simulated results are presented in
the frequency domain as dispersion diagrams, displacement responses and operating deflection
shapes (ODS).

In Chapter 4 the numerical results obtained with the computational implementation
of the fluid-filled closed circular cylindrical shell models are evaluated. The computational
implementation of the FCSSE is verified using the Analytical Solution and FE method. WSE is
used to evaluate a fluid-filled spectral circular cylindrical PC. Simulated results are presented
in the frequency domain as a dispersion diagram, displacement responses and ODS.

Finally, in Chapter 5, general conclusions regarding the work are drawn. Then, the
original contributions of this work are highlighted. At the end, a list of publications that were
developed throughout the thesis is presented.
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2 THEORETICAL MODELS

In this chapter, the formulation of the closed circular Cylindrical Shell Spectral Element
- CSSE, Fluid-filled Cylindrical Shell Spectral Element - FCSSE, and Wave Spectral Element -
WSE are presented. the thin shell theory is shown in detail. Also, the equation for a single point
excitation force of the structure is presented.

2.1 Cylindrical Shell Spectral Element - CSSE

This section is limited to the study of thin circular cylindrical shells, not including the
effects of initial stress, anisotropy, variable thickness, shear deformation, rotary inertia, large
deflections, or nonhomogeneity. Nevertheless, the standard or classical theories of thin shells are
governed by eighth order systems of differential equations which take many forms, depending
upon the assumptions made.

For this first SE the effect of an eventual filling of the cylindrical shell with an internal
fluid is disregard, that is, the behavior of cylindrical shell is comparable in vacuo.

2.1.1 Thin Circular Cylindrical Shell Theory

The cylindrical geometry (thickness ℎ, radius 𝑎, length 𝐿) and coordinate system (dis-
placements 𝑢, 𝑣 and 𝑤 of the mid surface in 𝑥, 𝜙 and 𝑧 directions, respectively) for a closed
circular cylindrical shell are shown in Figure 2.1.

Figure 2.1: Geometry and coordinates system of a thin circular cylindrical shell.

Further, the length coordinate 𝑥 is replaced by a nondimensional length 𝑠 defined by.

𝑠 =
𝑥

𝑎
. (2.1)
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The homogeneous equations of motion for thin circular cylindrical shells can be written
in matrix form as

ℒ u = 0, (2.2)

where u is the displacement vector

u =

⎧⎪⎨⎪⎩
𝑢(𝑥,𝜙,𝑡)

𝑣(𝑥,𝜙,𝑡)

𝑤(𝑥,𝜙,𝑡)

⎫⎪⎬⎪⎭ , (2.3)

where 𝑢(𝑥,𝜙,𝑡), 𝑣(𝑥,𝜙,𝑡) and 𝑤(𝑥,𝜙,𝑡) denote displacement components in the position
axial (𝑥), angular position (𝜙) and time (𝑡), respectively, and ℒ is a matrix differential operator.

Differential eighth order systems of equations are commonly used to model the vibrational
behavior of circular cylindrical shells. In this case the ℒ operator in Equation (2.2) can be
treated as the sum of two operators

ℒ = ℒ𝐷−𝑀 + 𝑘𝜚ℒ𝑀𝑂𝐷, (2.4)

where, ℒ𝐷−𝑀 is the differential operator according to the Donnell-Mushtari theory, ℒ𝑀𝑂𝐷 is a
“modifying” operator which alters the Donnell-Mushtari operator to yield another shell theory,
and 𝑘𝜚 is the nondimensional thickness parameter defined by

𝑘𝜚 =
h2

12𝑎2
. (2.5)

Thus, each eighth order shell theory for circular cylindrical shells differs from the
Donnell-Mushtari theory by an operator ℒ𝑀𝑂𝐷 which is multiplied by the constant 𝑘𝜚, which
is very small for small ℎ/𝑎 ratios.

Leissa (1973), presents the Donnell-Mushtari operator as
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ℒ𝐷−𝑀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[︂
𝜕2

𝜕𝑠2
+

(1− 𝜈)

2

𝜕2

𝜕𝜙2

(1 + 𝜈)

2

𝜕2

𝜕𝑠𝜕𝜙
𝜈
𝜕

𝜕𝑠

−𝜌 (1− 𝜈2)𝑎2

𝐸

𝜕2

𝜕𝑡2

]︂
(1 + 𝜈)

2

𝜕2

𝜕𝑠𝜕𝜙

[︂
(1− 𝜈)

2

𝜕2

𝜕𝑠2
+
𝜕𝑠2

𝜕𝜙2

𝜕

𝜕𝜙

−𝜌 (1− 𝜈2)𝑎2

𝐸

𝜕2

𝜕𝑡2

]︂

𝜈
𝜕

𝜕𝑠

𝜕

𝜕𝜙

[︁
1 + k∇4

+𝜌
(1− 𝜈2)𝑎2

𝐸

𝜕2

𝜕𝑡2

]︂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.6)

where, ∇4 = ∇2∇2 and

∇2 =
𝜕2

𝜕𝑠2
+

𝜕2

𝜕𝜙2
. (2.7)

Leissa (1973) also shows several shell models depending on the ℒ𝑀𝑂𝐷 operator. The
model adopted in this thesis is the Flügge shell. The Flügge theory is based on Kirchhoff-
Love hypothesis for thin elastic shells. The modification operator L𝑀𝑂𝐷 for Flügge’s circular
cylindrical shell theory takes the form

ℒ𝑀𝑂𝐷 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1− 𝜈)

2

𝜕2

𝜕𝜙2
0 − 𝜕3

𝜕𝑠3
+

(1− 𝜈)

2

𝜕3

𝜕𝑠𝜕𝜙2

0
3(1− 𝜈)

2

𝜕2

𝜕𝑠2
−(3− 𝜈)

2

𝜕3

𝜕𝑠2𝜕𝜙

− 𝜕3

𝜕𝑠3
+

(1− 𝜈)

2

𝜕3

𝜕𝑠𝜕𝜙2
−(3− 𝜈)

2

𝜕3

𝜕𝑠2𝜕𝜙
1 + 2

𝜕2

𝜕𝜙2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.8)

Therefore, to obtain the Flügge’s cylindrical shell differential equation, Equation (2.7) and
(2.8) must be replaced in Equation (2.4). Based on the Flügge thin shell theory (Leissa (1973),
Kolarević et al. (2016)) the ℒ operator equations for a closed circular cylindrical shell can be
written in a matrix form as:
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ℒ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕2𝑥 + 𝑎1𝜕
2
𝜙 + 𝑎2𝜕

2
𝑡 𝑎3𝜕𝑥𝜕𝜙 𝑎4𝜕𝑥 + 𝑎5𝜕

3
𝑥 + 𝑎6𝜕𝑥𝜕

2
𝜙

𝑎3𝜕𝑥𝜕𝜙 a7𝜕
2
𝜙 + 𝑎8𝜕

2
𝑥 + 𝑎2𝜕

2
𝑡 a7𝜕𝜙 + 𝑎9𝜕

2
𝑥𝜕𝜙

𝑎4𝜕𝑥 + 𝑎5𝜕
3
𝑥 + 𝑎6𝜕𝑥𝜕

2
𝜙 a7𝜕𝜙 + 𝑎9𝜕

2
𝑥𝜕𝜙

𝑘
(︀
𝜕4𝑥 + 2𝑎7𝜕

2
𝑥𝜕

2
𝜙 + 𝑎7

2𝜕4𝜙
)︀

+ 𝑎7 − 𝑎2𝜕
2
𝑡 + 2𝑎10𝜕

2
𝜙 + 𝑎10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(2.9)

where, 𝜕𝑥 = 𝜕/𝜕𝑥, 𝜕𝜙 = 𝜕/𝜕𝜙, 𝜕𝑡 = 𝜕/𝜕𝑡, 𝑘 = ℎ2/12 and 𝑎𝑖(𝑖 = 1 . . . 10) coefficients are:

𝑎1 =
1− 𝜈

2𝑎2
(︀
1 + 𝐾

𝐷𝑎2

)︀
, 𝑎2 =

𝜌ℎ

𝐷
, 𝑎3 =

1 + 𝜈

2𝑎
, 𝑎4 =

𝜈

𝑎
, 𝑎5 =

𝐾

𝐷𝑎
,

𝑎6 =
1− 𝜈

2𝑎3
𝐾

𝐷
, 𝑎7 =

1

𝑎2
, 𝑎8 =

1− 𝜈

2

(︀
1 + 3𝐾

𝐷𝑎2

)︀
, 𝑎9 =

3− 𝜈

2

𝐾

𝐷𝑎2
, 𝑎10 =

𝐾

𝐷𝑎4
,

where, 𝜈 is the Poisson’s ratio, 𝐾 = 𝐸ℎ3/12(1−𝜈2) is the flexural stiffness, 𝐷 = 𝐸ℎ/(1−𝜈2)

is the stiffness in the mid surface of shell, 𝜌 is the mass density and 𝐸 is the Young’s modulus.

2.1.2 General solution

By using the separation of variables, the general solution of Equation (2.2) can be obtained
with:

𝑢 (𝑥,𝜙,𝑡) = �̂� (𝑥,𝜙) 𝑒𝑖𝜔𝑡, 𝑣 (𝑥,𝜙,𝑡) = 𝑣 (𝑥,𝜙) 𝑒𝑖𝜔𝑡, 𝑤 (𝑥,𝜙,𝑡) = �̂� (𝑥,𝜙) 𝑒𝑖𝜔𝑡, (2.10)

where, 𝜔 is the circular frequency and �̂�, 𝑣, and �̂� are the spectral amplitudes of dis-
placement components. Substituting Equation (2.10) into Equation (2.2) the differential
equation of circular cylindrical shell in the frequency domain is obtained as:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕2
𝑥 + 𝑎1𝜕

2
𝜙 − 𝑎2𝜔

2 𝑎3𝜕𝑥𝜕𝜙 𝑎4𝜕𝑥 + 𝑎5𝜕
3
𝑥 + 𝑎6𝜕𝑥𝜕

2
𝜙

𝑎3𝜕𝑥𝜕𝜙 a7𝜕
2
𝜙 + 𝑎8𝜕

2
𝑥 − 𝑎2𝜔

2 a7𝜕𝜙 + 𝑎9𝜕
2
𝑥𝜕𝜙

𝑎4𝜕𝑥 + 𝑎5𝜕
3
𝑥 + 𝑎6𝜕𝑥𝜕

2
𝜙 a7𝜕𝜙 + 𝑎9𝜕

2
𝑥𝜕𝜙

𝑘
(︀
𝜕4
𝑥 + 2𝑎7𝜕

2
𝑥𝜕

2
𝜙 + 𝑎7

2𝜕4
𝜙

)︀
+ 𝑎7 + 𝑎2𝜔

2 + 2𝑎10𝜕
2
𝜙 + 𝑎10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�̂� (𝑥,𝜙)

𝑣 (𝑥,𝜙)

�̂� (𝑥,𝜙)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

(2.11)

For a closed circular cylindrical shell, the displacement components �̂� , 𝑣 and �̂� should
satisfy periodicity in the circumferential direction. Therefore, the solution of Equation (2.11)
can be expanded in an infinite Fourier series as:

�̂�(𝑥,𝜙) =
∞∑︁

𝑚=0

𝑈𝑚(𝑥) cos(𝑚𝜙) +
∞∑︁

𝑚=1

�̄�𝑚(𝑥) sin(𝑚𝜙),

𝑣(𝑥,𝜙) =
∞∑︁

𝑚=0

𝑉𝑚(𝑥) sin(𝑚𝜙) +
∞∑︁

𝑚=1

𝑉𝑚(𝑥) cos(𝑚𝜙), (2.12)

�̂�(𝑥,𝜙) =
∞∑︁

𝑚=0

𝑊𝑚(𝑥) cos(𝑚𝜙) +
∞∑︁

𝑚=1

�̄�𝑚(𝑥) sin(𝑚𝜙),

where, 𝑚 ∈ Z. Let’s consider the case where the boundary conditions do not depend on
𝜙. Then, the solutions for the different harmonics are uncoupled and instead of taking the solu-
tion in the form of summations, only the solutions for the 𝑚-th harmonic will be considered.
The solution for the asymmetric vibration (𝑚 ≥ 1) will be presented, while the solution for
the axisymmetric vibration (𝑚 = 0) will not be considered. The solution procedure for the 1st
terms of Equation (2.12) will be presented, while the solution for the 2nd terms can be obtained
in the same way. Notice that the natural frequencies obtained with the 1st and 2nd terms of
Equation (2.12) are the same, which means that for the closed circular cylindrical shell all
the natural frequencies are duplicated. By substituting the 1st terms of Equation (2.12) in the
Equation (2.11) it has:

⎡⎢⎢⎢⎢⎢⎢⎣
𝐶1𝜕

2
𝑥 + 𝐶2 𝐶3𝜕𝑥 𝐶4𝜕

3
𝑥 + 𝐶5𝜕𝑥

−𝐶3𝜕𝑥 𝐶6𝜕
2
𝑥 + 𝐶7 𝐶8𝜕

2
𝑥 + 𝐶9

𝐶4𝜕
3
𝑥 + 𝐶5𝜕𝑥 −𝐶8𝜕

2
𝑥 − 𝐶9 𝐶10𝜕

4
𝑥 + 𝐶11𝜕

2
𝑥 + 𝐶12

⎤⎥⎥⎥⎥⎥⎥⎦
⎧⎪⎨⎪⎩

�̂� (𝑥)

𝑣 (𝑥)

�̂� (𝑥)

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
0

0

0

⎫⎪⎬⎪⎭ , (2.13)
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where,

𝐶1,𝑚 = 1, 𝐶2,𝑚 = −𝑚2𝑎1 − 𝑤2𝑎2, 𝐶3,𝑚 = −𝑚𝑎3,

𝐶4,𝑚 = −𝑎5, 𝐶5,𝑚 = 𝑎4 −𝑚2𝑎6, 𝐶6,𝑚 = 𝑎8,

𝐶7,𝑚 = −𝑚2𝑎7 − 𝑤2𝑎2, 𝐶8,𝑚 = −𝑚𝑎9, 𝐶9,𝑚 = −𝑚𝑎7,

𝐶10,𝑚 = 𝑘, 𝐶11,𝑚 = −2𝑘𝑚2𝑎7,
𝐶12,𝑚 = −𝑎7 + 𝑤2𝑎2

+ 𝑘(𝑚4𝑎27 − 2𝑚2𝑎7 + 𝑎47)

. (2.14)

By expanding the determinant of the matrix of Equation (2.13), an 8-th order differential
equation is obtained as:

(𝜕8𝑥 + 𝑎1,𝑚𝜕
6
𝑥 + 𝑎2,𝑚𝜕

4
𝑥 + 𝑎3,𝑚𝜕

2
𝑥 + 𝑎4,𝑚𝜕𝑥)Ψ = 0, (2.15)

where, Ψ = 𝑈𝑚 or 𝑉𝑚 or 𝑊𝑚, and:

𝑎1,𝑚 =
𝑐10𝑐

2
3 + 2𝑐3𝑐4𝑐8 − 𝑐7𝑐

2
4 − 2𝑐5𝑐6𝑐4 + 𝑐1𝑐

2
8 + 𝑐1𝑐6𝑐11 + 𝑐1𝑐7𝑐10 + 𝑐2𝑐6𝑐10

𝑐1𝑐6𝑐10 − 𝑐6𝑐24
,

𝑎2,𝑚 =
𝑐6(𝑐1𝑐12 − 𝑐25) + 𝑐11(𝑐

2
3 + 𝑐1𝑐7 + 𝑐2𝑐6) + 2(𝑐8(𝑐3𝑐5 + 𝑐1𝑐9) + 𝑐4(𝑐9𝑐3 − 𝑐7𝑐5)) + 𝑐2(𝑐

2
8 + 𝑐7𝑐10)

𝑐1𝑐6𝑐10 − 𝑐6𝑐24
,

𝑎3𝑚 =
𝑐12𝑐

2
3 + 2𝑐3𝑐5𝑐9 − 𝑐7𝑐

2
5 + 𝑐1𝑐

2
9 + 2𝑐2𝑐8𝑐9 + 𝑐1𝑐7𝑐12 + 𝑐2𝑐6𝑐12 + 𝑐2𝑐7𝑐11
𝑐1𝑐6𝑐10 − 𝑐6𝑐24

,

𝑎4,𝑚 =
𝑐2𝑐

2
9 + 𝑐2𝑐7𝑐12

𝑐1𝑐6𝑐10 − 𝑐6𝑐24
.

Assuming the solution of the Equation (2.15) in the form Ψ = 𝑒𝑟𝑥 the corresponding
characteristic equation is obtained as:

𝑟8 + 𝑎1,𝑚𝑟
6 + 𝑎2,𝑚𝑟𝑥

4 + 𝑎3,𝑚𝑟
2 + 𝑎4,𝑚𝑟 = 0, (2.16)

whose roots are 𝑟𝑖,𝑚(𝑖 = 1, . . . ,8). The solutions for unknown functions can be written as:

𝑈𝑚(𝑥) =
∞∑︁
𝑖=1

𝐴𝑖,𝑚𝑒
𝑟𝑖,𝑚𝑥, 𝑉𝑚(𝑥) =

∞∑︁
𝑖=1

𝐵𝑖,𝑚𝑒
𝑟𝑖,𝑚𝑥, 𝑊𝑚(𝑥) =

∞∑︁
𝑖=1

𝐶𝑖,𝑚𝑒
𝑟𝑖,𝑚𝑥. (2.17)
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where, from a total of 24 integration constants only 8 are independent. The integration constants
𝐴𝑖,𝑚, and 𝐵𝑖,𝑚, can be expressed in terms of 𝐶𝑖,𝑚 by doing

𝐴𝑖,𝑚 = 𝛿𝑖,𝑚𝐶𝑖,𝑚 and 𝐵𝑖,𝑚 = 𝛾𝑖,𝑚𝐶𝑖,𝑚. (2.18)

where 𝛿𝑖,𝑚, and 𝛾𝑖,𝑚, are coefficients that represent the ratio of amplitudes of axial-radial and
tangential-radial displacements, respectively, given by:

𝛿𝑖,𝑚 =
(𝑐9 + 𝑐8𝑟

2
𝑖 )

2 + (𝑐7 + 𝑐6𝑟
2
𝑖 )(𝑐12 + 𝑐11𝑟

2
𝑖 + 𝑐10𝑟

4
𝑖 )

𝑟𝑖(𝑐5 + 𝑐4𝑟2𝑖 )(𝑐7 + 𝑐6𝑟2𝑖 )− 𝑐3𝑟𝑖(𝑐9 + 𝑐8𝑟2𝑖 )
, (2.19)

𝛾𝑖,𝑚 =
(𝑐12𝑐3 + 𝑐5𝑐9 + (𝑐11𝑐3 + 𝑐5𝑐8 + 𝑐4𝑐9)(𝑟

2
𝑖 ) + (𝑐10𝑐3 + 𝑐4𝑐8)𝑟

4
𝑖 )

(𝑐5𝑐7 − 𝑐3𝑐9 + (𝑐5𝑐6 + 𝑐4𝑐7 − 𝑐3𝑐8)(𝑟2𝑖 ) + 𝑐4𝑐6𝑟4𝑖 )
. (2.20)

Substituting Equations (2.17) and (2.18) in Equations (2.12), keeping only the 1st terms
and truncating the summation index as 𝑚 = 1, . . . ,𝑀 the displacement components can be
written as:

�̂�(𝑥,𝜙) =
𝑀∑︁

𝑚=1

(︃
8∑︁

𝑖=1

𝛿𝑖,𝑚𝐶𝑖,𝑚𝑒
𝑟𝑖,𝑚𝑥

)︃
cos (𝑚𝜙) ,

𝑣(𝑥,𝜙) =
𝑀∑︁

𝑚=1

(︃
8∑︁

𝑖=1

𝛾𝑖,𝑚𝐶𝑖,𝑚𝑒
𝑟𝑖,𝑚𝑥

)︃
sin (𝑚𝜙) , (2.21)

�̂�(𝑥,𝜙) =
𝑀∑︁

𝑚=1

(︃
8∑︁

𝑖=1

𝐶𝑖,𝑚𝑒
𝑟𝑖,𝑚𝑥

)︃
cos (𝑚𝜙) .

2.1.3 Spectral Dynamic Stiffness Matrix

Figure 2.2 shows the schemes of two-edge circular cylindrical shell spectral element of
length 𝐿 including the displacements (left) and loads (right).

Figure 2.2: Two-edge circular cylindrical shell spectral element with components of the dis-
placement (left) and the load (right) vectors.
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The internal forces and moments in terms of displacements can be written as (Leissa,
1973):

𝑁𝑥 = 𝐷

[︂
𝜕𝑢

𝜕𝑥
+
𝜈

𝑎

(︂
𝑤 +

𝜕𝑣

𝜕𝜙

)︂]︂
− 𝐾

𝑎

𝜕2𝑤

𝜕𝑥2
, (2.22)

𝑁𝜙 = 𝐷

[︂
1

𝑎

(︂
𝑤 +

𝜕𝑣

𝜕𝜙

)︂
+ 𝜈

𝜕𝑢

𝜕𝑥

]︂
+
𝐾

𝑎3

(︂
𝜕2𝑤

𝜕𝜙2
+ 𝑤

)︂
, (2.23)

𝑁𝑥𝜙 =
𝐷(1− 𝜈)

2

(︂
1

𝑎

𝜕𝑢

𝜕𝜙
+
𝜕𝑣

𝜕𝑥

)︂
+𝐾

(1− 𝜈)

2𝑎2

(︂
𝜕𝑣

𝜕𝑥
− 𝜕2𝑤

𝜕𝑥𝜕𝜙

)︂
, (2.24)

𝑁𝜙𝑥 =
𝐷(1− 𝜈)

2

(︂
1

𝑎

𝜕𝑢

𝜕𝜙
+
𝜕𝑣

𝜕𝑥

)︂
+𝐾

(1− 𝜈)

2𝑎2

(︂
1

𝑎

𝜕𝑢

𝜕𝜙
+

𝜕2𝑤

𝜕𝑥𝜕𝜙

)︂
, (2.25)

𝑀𝑥 = −𝐾
[︂
𝜕2𝑤

𝜕𝑥2
+
𝜈

𝑎2

(︂
𝜕2𝑤

𝜕𝜙2
− 𝜕𝑣

𝜕𝜙

)︂
− 1

𝑎

𝜕𝑢

𝜕𝑥

]︂
, (2.26)

𝑀𝜙 = −𝐾
[︂
1

𝑎2

(︂
𝜕2𝑤

𝜕𝜙2
+ 𝑤

)︂
+ 𝜈

𝜕2𝑤

𝜕𝑥2

]︂
, (2.27)

𝑀𝑥𝜙 = −𝐾(1− 𝜈)

𝑎

(︂
𝜕2𝑤

𝜕𝑥𝜕𝜙
− 𝜕𝑣

𝜕𝑥

)︂
, (2.28)

𝑀𝜙𝑥 = −𝐾(1− 𝜈)

2𝑎

(︂
2
𝜕2𝑤

𝜕𝑥𝜕𝜙
− 𝜕𝑣

𝜕𝑥
+

1

𝑎

𝜕2𝑢

𝜕𝜙

)︂
, (2.29)

𝑄𝑥 =
𝜕𝑀𝑥

𝜕𝑥
+

1

𝑎

𝜕𝑀𝜙𝑥

𝜕𝜙
, (2.30)

𝑄𝜙 =
1

𝑎

𝜕𝑀𝜙

𝜕𝜙
+
𝜕𝑀𝑥𝜙

𝜕𝑥
. (2.31)

By defining the displacement vector 𝑞 containing the displacements and rotations at the
element edge 𝑥 = 0 and 𝑥 = 𝐿 it has:

q̂ = [�̂�1 𝑣1 �̂�1 𝜓𝜙1 �̂�2 𝑣2 �̂�2 𝜓𝜙2]
𝑇 , (2.32)

where,
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�̂�1 = �̂�(0,𝜙) = 𝑈𝑚(0)cos(𝑚𝜙), �̂�2 = �̂�(𝐿,𝜙) = 𝑈𝑚(𝐿)cos(𝑚𝜙),

𝑣1 = 𝑣(0,𝜙) = 𝑣(0,𝜙) = 𝑉𝑚(0)sin(𝑚𝜙), 𝑣2 = 𝑣(𝐿,𝜙) = 𝑣(𝐿,𝜙) = 𝑉𝑚(𝐿)sin(𝑚𝜙),

�̂�1 = �̂�(0,𝜙) = �̂�(0,𝜙) = 𝑊𝑚(0)cos(𝑚𝜙), �̂�(𝐿,𝜙) = �̂�(𝐿,𝜙) = 𝑊𝑚(𝐿)cos(𝑚𝜙),

𝜓𝜙1 = 𝜓𝜙(0,𝜙) = 𝜓𝜙(0,𝜙) = Ψ𝑚(0)cos(𝑚𝜙), 𝜓𝜙2(𝐿,𝜙) = 𝜓𝜙(𝐿,𝜙) = Ψ𝑚(𝐿)cos(𝑚𝜙),

𝜓𝜙(𝑥,𝜙) =
𝜕�̂�(𝑥,𝜙)

𝜕𝑥
.

(2.33)
Similarly for the load vector,

Q̂ = [�̂�𝑥1 �̂�𝑥𝜙1 �̂�𝑥1 �̂�𝑥1 �̂�𝑥2 �̂�𝑥𝜙2 �̂�𝑥2 �̂�𝑥2]
𝑇 , (2.34)

where, �̂�𝑥1 = −�̂�𝑥(0,𝜙) , �̂�𝑥𝜙1 = −�̂�𝑥𝜙(0,𝜙), �̂�𝑥1 = −�̂�𝑥(0,𝜙) , �̂�𝑥1 = −�̂�𝑥(0,𝜙),
�̂�𝑥2 = �̂�𝑥(𝐿,𝜙) , �̂�𝑥𝜙2 = �̂�𝑥𝜙(𝐿,𝜙) , �̂�𝑥2 = �̂�𝑥(𝐿,𝜙) and �̂�𝑥2 = �̂�𝑥(𝐿,𝜙), with the nodal
forces and moments given by Equations (2.22) to (2.31)

�̂�𝑥(𝑖,𝑚)(𝑥,𝜙) =
(𝐷𝜈(1 +𝑚𝛾𝑖,𝑚) + 𝑎𝐷𝑟𝑖,𝑚𝛿𝑖,𝑚 −𝐾𝑟2𝑖,𝑚

𝑎
(2.35)

�̂�𝑥𝜙(𝑖,𝑚)(𝑥,𝜙) =
(1− 𝜈)[−𝑎𝐷𝛿𝑖,𝑚𝑚+ 𝑎2𝐷𝛾𝑖,𝑚𝑟𝑖,𝑚 + 3𝐾𝑟𝑖,𝑚(𝛾𝑖,𝑚 +𝑚)]

2𝑎2
(2.36)

�̂�𝑥(𝑖,𝑚)(𝑥,𝜙) =
𝐾[(1− 𝜈)𝛿𝑖,𝑚𝑚

2 + 2𝑎2𝑟2𝑖,𝑚(𝛿𝑖,𝑚 − 𝑎𝑟𝑖,𝑚)]

2𝑎3
+

𝐾𝑚𝑟𝑖,𝑚[(3− 𝜈)𝛾𝑖,𝑚 + 2𝑚(2− 𝜈)]

2𝑎2

(2.37)

�̂�𝑥(𝑖,𝑚)(𝑥,𝜙) =
𝐾[𝑚𝜈(𝛾𝑖,𝑚 +𝑚) + 𝑎𝑟𝑖,𝑚𝛿𝑖,𝑚 − 𝑎2𝑟2𝑖,𝑚]

𝑎2
(2.38)

The new displacement and load vector, namely q̂𝑚, that contain the amplitudes of dis-
placements, and Q̂𝑚 that include the amplitudes of forces and moments, both on the element
edges 1 (𝑥 = 0) and 2 (𝑥 = 𝐿) for the 𝑚-th harmonic are:

q̂𝑚 = [𝑈𝑚(0) 𝑉𝑚(0) 𝑊𝑚(0) Ψ𝜙𝑚(0) 𝑈𝑚(𝐿) 𝑉𝑚(𝐿) 𝑊𝑚(𝐿) Ψ𝜙𝑚(𝐿)]
𝑇 , (2.39)

Q̂𝑚 = [−�̂�𝑥𝑚(0) − �̂�𝑥𝜙𝑚(0) − �̂�𝑥𝑚(0) − �̂�𝑥𝑚(0)

+�̂�𝑥𝑚(𝐿) + �̂�𝑥𝜙𝑚(𝐿) + �̂�𝑥𝑚(𝐿) + �̂�𝑥𝑚(𝐿)]
𝑇 .

(2.40)

The vector q̂𝑚 is related to the vector of integration constants C𝑚 by the matrix D𝑚 ,
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while the vectors Q̂𝑚 and C𝑚 are related through the matrix F𝑚 , as follows:

q̂𝑚 = D𝑚C𝑚, (2.41)

Q̂𝑚 = F𝑚C𝑚, (2.42)

where, the vector of integration constants C𝑚 and the matrices D𝑚 and F𝑚 are:

C𝑚 = [𝐶1,𝑚 𝐶2,𝑚 𝐶3,𝑚 𝐶4,𝑚 𝐶5,𝑚 𝐶6,𝑚 𝐶7,𝑚 𝐶8,𝑚]
𝑇 , (2.43)

D𝑚 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿1,𝑚 · · · 𝛿8,𝑚

𝛾𝑖,𝑚 · · · 𝛾𝑖,𝑚

1 · · · 1

−𝑟1,𝑚 · · · −𝑟8,𝑚
𝛿1,𝑚𝑒

𝑟𝑖,𝑚𝐿 · · · 𝛿8,𝑚𝑒
𝑟8,𝑚𝐿

𝛾𝑖,𝑚𝑒
𝑟𝑖,𝑚𝐿 · · · 𝛾𝑖,𝑚𝑒

𝑟𝑖,𝑚𝐿

𝑒𝑟𝑖,𝑚𝐿 · · · 𝑒𝑟𝑖,𝑚𝐿

−𝑟1,𝑚𝑒𝑟𝑖,𝑚𝐿 · · · −𝑟8,𝑚𝑒𝑟𝑖,𝑚𝐿

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.44)

F𝑚 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−�̂�𝑥(1,𝑚) · · · −�̂�𝑥(8,𝑚)

−�̂�𝑥𝜙(1,𝑚) · · · −�̂�𝑥𝜙(8,𝑚)

−�̂�𝑥(1,𝑚) · · · −�̂�𝑥(8,𝑚)

−�̂�𝑥(1,𝑚) · · · −�̂�𝑥(8m)

�̂�𝑥(1,𝑚)𝑒
𝑟𝑖,𝑚𝐿 · · · �̂�𝑥(8,𝑚)𝑒

𝑟8,𝑚𝐿

�̂�𝑥𝜙(1,𝑚)𝑒
𝑟𝑖,𝑚𝐿 · · · �̂�𝑥𝜙(8,𝑚)𝑒

𝑟8,𝑚𝐿

�̂�𝑥(1,𝑚)𝑒
𝑟𝑖,𝑚𝐿 · · · �̂�𝑥(8,𝑚)𝑒

𝑟8,𝑚𝐿

�̂�𝑥(1,𝑚)𝑒
𝑟𝑖,𝑚𝐿 · · · �̂�𝑥(8m)𝑒

𝑟8,𝑚𝐿

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.45)

If vector C𝑚 is expressed from the Equation (2.41) as a function of q̂𝑚 and replaced in
the Equation (2.42), the relation between vectors Q̂𝑚 and q̂𝑚 is obtained as:

Q̂𝑚 = K𝑆𝑚q̂𝑚, (2.46)

where, K𝑆𝑚 = F𝑚(D𝑚)
−1 is the dynamic stiffness matrix of the Cylindrical Shell Spectral

Element - CSSE for the 𝑚-th harmonic.
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2.2 Point load

In an attempt to apply point load on a shell element care must be taken due the fact that
the DOFs of SE model are distributed along the entire edge of the element. Figure 2.3 shows
a CSSE scheme, where the shell is modeled with a single element with two edges and at each
edge the degrees of freedom 𝑢 , 𝑣, 𝑤 and 𝜓. A force is projected in the radial direction at point
A (𝑥 = 0 and 𝜙 = 𝜙1) with amplitude 𝐹 . Thus, the focus is to evaluate the displacement caused
by loading 𝐹 at any position of the cylindrical shell, for example at point B (𝑥 = 𝐿 and 𝜙 = 𝜙2).

Figure 2.3: CSSE with the point load.

The problem presented is written in the spectral form as:

K𝑆𝑚

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̂�1𝑚(0,𝜙)

𝑣1𝑚(0,𝜙)

�̂�1𝑚(0,𝜙)

𝜓1𝑚(0,𝜙)

�̂�2𝑚(𝐿,𝜙)

𝑣2𝑚(𝐿,𝜙)

�̂�2𝑚(𝐿,𝜙)

𝜓2𝑚(𝐿,𝜙)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

𝐹𝑚(0,𝜙)

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.47)

where K𝑆𝑚 is the dynamic stiffness matrix (Eq. 2.46) and 𝐹𝑚(0,𝜙) is a loading vector
projected in the radial direction along the entire edge of the cylindrical shell.

Lee and Lee (1999) showed a point force loading for a spectral plate element. The force
must be projected on the basis of cosine function in terms of the harmonic 𝑚 related to the 𝑤
direction. This representation takes into account the position of the concentrated driving force,
𝜙1. Adapting for the case of a CSSE developed in this thesis the form of 𝐹𝑚(0,𝜙) is given by,
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𝐹𝑚(0,𝜙) = 2
𝐹

𝐿𝑥

cos (𝑚𝜙1) (2.48)

where, 𝐹 is magnitude of the point load in the direction 𝑤, 𝐿𝑥 = 2𝜋, circumference of
cylindrical shell.

Finally, as the load is projected across the edge, the displacement represents the behavior
of the entire edge. Therefore, to find the displacement at point B is necessary to use Eq. 2.21,
thus the radial displacement in �̂�2(𝐿,𝜙2) is

�̂�2(𝐿,𝜙2) =
𝑀∑︁

𝑚=1

�̂�2𝑚(𝐿,𝜙)cos (𝑚𝜙2) (2.49)

To evaluate the behavior of the fluid-filled closed cylindrical shell when subjected to a
point force, follows the same strategy presented in this section.

2.3 Fluid-filled Cylindrical Shell Spectral Element - FCSSE

In this section, a thin circular cylindrical shell filled with a compressible fluid is formu-
lated. The vibroacoustic coupling between the inner fluid and the closed cylindrical shell is the
main focus of the work. The effect of external fluid is disregarded. The structure is assumed
to be linear and elastic-dissipative, while the fluid is assumed to be homogeneous, barotropic,
compressible and inviscid.

2.3.1 Fluid-Structure Theory

The cylindrical geometry (thickness ℎ, radius 𝑎, length 𝐿) and coordinate system (dis-
placements 𝑢, 𝑣 and 𝑤 of the mid surface in 𝑥, 𝜙 and 𝑧 directions, respectively) for a closed
circular cylindrical shell are shown in Figure 2.2.
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Figure 2.4: Geometry and coordinates system of a fluid-filled circular cylindrical thin shell.

Based on the Flügge thin shell theory Leissa (1973), the governing differential equations
a fluid-filled closed circular cylindrical shell can be written in matrix form as (Gautier et al.,
2007):

ℒ u = 𝐹𝑓 , (2.50)

where, ℒ is operator equations for a closed circular cylindrical shell (Eq. 2.9), u is the displace-
ment vector (Eq. 2.3) and the force vector is:

𝐹𝑓 =

{︂
0 0 − 𝑝

𝜌𝑆𝑐2𝑆ℎ

}︂𝑇

, (2.51)

where, 𝑝 is the internal pressure, 𝑐𝑆 =
√︀
𝐸/𝜌𝑆(1− 𝜈2) is the structure wave speed, 𝐸

is the Young’s modulus, 𝜌𝑆 is the structure mass density, 𝜈 is the Poisson’s rate.
The governing wave propagation equation for the fluid may be written as (Fahy and Gar-

donio, 1985):

∇2𝑝 =
1

𝑐2𝐹

𝜕2𝑝

𝜕𝑡2
+ 𝑓𝑣 , (2.52)

where 𝑐𝐹 is the fluid speed of sound, 𝑝 is the acoustic pressure and 𝑓𝑣 are the volume forces that
is proportional to the acceleration and mass of the fluid inside the cylindrical shell. Equation
(2.52) may be written in cylindrical coordinates (𝑟,𝜙, 𝑥) as (Zhang, 2002),

1

𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕𝑝

𝜕𝑟

)︂
+

1

𝑟2
𝜕2𝑝

𝜕𝜙2
+
𝜕2𝑝

𝜕𝑥2
=

1

𝑐2𝐹

𝜕2𝑝

𝜕𝑡2
+ 𝑓𝑣 , (2.53)

where, 𝑟 represents the radial distance, 𝜙 the azimuth angle and 𝑧 is the length. For the cyl-
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indrical shell, the radial distance is constant( 𝑟 = 𝑎), then one has,

1

𝑎2
𝜕2𝑝

𝜕𝜙2
+
𝜕2𝑝

𝜕𝑥2
=

1

𝑐2𝐹

𝜕2𝑝

𝜕𝑡2
+ 𝑓𝑣 , (2.54)

Assuming linear approximations and wave propagation, the pressure 𝑝 inside the shell
satisfies the wave equation (Fahy and Gardonio, 1985; Gautier et al., 2005),

1

𝑎2
𝜕2𝑝

𝜕𝜙2
+
𝜕2𝑝

𝜕𝑥2
− 1

𝑐2𝐹

𝜕2𝑝

𝜕𝑡2
=

2𝜌𝐹
𝑎

𝜕2𝑤

𝜕𝑡2
, (2.55)

where, 𝜌𝐹 is the fluid mass density. In Equation (2.55) the right hand-side represents an acoustic
source describing the vibration of shell wall effect on the internal pressure field.

Equations (2.50) and (2.55) give a set of four linear second order differential coupled
equations, as a function of four variables 𝑝, 𝑢, 𝑣, and 𝑤 , which can be written in a matrix form
as: ⎡⎢⎢⎢⎢⎢⎢⎢⎣

(︂
1

𝑎2
𝜕2𝜙 + 𝜕2𝑥 −

1

𝑐2𝐹
𝜕2𝑡

)︂
0 0

2𝜌𝐹
𝑎
𝜕2𝑡

0

0
1

𝜌𝑆𝑐2𝑆ℎ

ℒ[3×3]

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑝(𝑥,𝜙,𝑡)

𝑢(𝑥,𝜙,𝑡)

𝑣(𝑥,𝜙,𝑡)

𝑤(𝑥,𝜙,𝑡)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0

0

0

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.56)

2.3.2 General solution

By using the separation of variables, the general solution can be considered as:

𝑝 (𝑥,𝜙,𝑡) = 𝑝 (𝑥,𝜙) 𝑒𝑖𝜔𝑡, 𝑢 (𝑥,𝜙,𝑡) = �̂� (𝑥,𝜙) 𝑒𝑖𝜔𝑡,

𝑣 (𝑥,𝜙,𝑡) = 𝑣 (𝑥,𝜙) 𝑒𝑖𝜔𝑡, 𝑤 (𝑥,𝜙,𝑡) = �̂� (𝑥,𝜙) 𝑒𝑖𝜔𝑡,
(2.57)

where, 𝜔 is the circular frequency and 𝑝, �̂�, 𝑣, and �̂� are the spectral amplitude of pressure and
displacement components. For a closed circular cylindrical shell, displacement and pressure
needs to satisfy periodicity in the circumferential direction.
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Then, the solution of Eq. (2.56) is assumed as an infinite Fourier series as:

𝑝(𝑥,𝜙) =
∞∑︁

𝑚=0

𝑃𝑚(𝑥) cos(𝑚𝜙) +
∞∑︁

𝑚=1

𝑃𝑚(𝑥) sin(𝑚𝜙),

�̂�(𝑥,𝜙) =
∞∑︁

𝑚=0

𝑈𝑚(𝑥) cos(𝑚𝜙) +
∞∑︁

𝑚=1

�̄�𝑚(𝑥) sin(𝑚𝜙),

𝑣(𝑥,𝜙) =
∞∑︁

𝑚=1

𝑉𝑚(𝑥) sin(𝑚𝜙) +
∞∑︁

𝑚=0

𝑉𝑚(𝑥) cos(𝑚𝜙), (2.58)

�̂�(𝑥,𝜙) =
∞∑︁

𝑚=0

𝑊𝑚(𝑥) cos(𝑚𝜙) +
∞∑︁

𝑚=1

�̄�𝑚(𝑥) sin(𝑚𝜙),

where 𝑚 ∈ Z. Considering that boundary conditions are independent of 𝜙, the solutions for
different harmonics are uncoupled and only the𝑚-th harmonic can be considered. Here only the
solution for the asymmetric vibration (𝑚 ≥ 1) is presented, while the axisymmetric vibration
solution (𝑚 = 0) will not be considered. The solution procedure for the 1st terms of Eq.(2.58)
is presented, while for the 2nd terms it can be obtained in a similar way. Natural frequencies
obtained with the 1st and 2nd terms of Eq. (2.58) are the same, which means that for the closed
circular cylindrical shell all the natural frequencies are duplicated. By substituting the 1st terms
of Eq.(2.58) in the Eq.(2.56) it has:

ℒ𝑓 ū = {0} , (2.59)

where

ℒ𝑓 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑐13,𝑚 + 𝜕2𝑥 0 0 𝑐14,𝑚

0 𝑐1,𝑚𝜕
2
𝑥 + 𝑐2,𝑚 𝑐3,𝑚𝜕𝑥 𝑐4,𝑚𝜕

3
𝑥 + 𝑐5,𝑚𝜕𝑥

0 −𝑐3,𝑚𝜕𝑥 𝑐6,𝑚𝜕
2
𝑥 + 𝑐7,𝑚 𝑐8,𝑚𝜕

2
𝑥 + 𝑐9,𝑚

𝑐15,𝑚 𝑐4,𝑚𝜕
3
𝑥 + 𝑐5,𝑚𝜕𝑥 −𝑐8,𝑚𝜕2𝑥 − 𝑐9,𝑚 𝑐10,𝑚𝜕

4
𝑥 + 𝑐11,𝑚𝜕

2
𝑥

+ 𝑐12,𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (2.60)

ū(𝑥) = {𝑃𝑚(𝑥) 𝑈𝑚(𝑥) 𝑉𝑚(𝑥) 𝑊𝑚(𝑥)}𝑇 , (2.61)

where, ℒ𝑓 is a matrix with the differential operators and coefficients 𝑐𝑖,𝑚(𝑖 = 1 . . . 15). For the
sake of conciseness, the coefficients are
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𝑐1,𝑚 = 1, 𝑐2,𝑚 = −𝑚2𝑎1 − 𝑤2𝑎2, 𝑐3,𝑚 = −𝑚𝑎3,

𝑐4,𝑚 = −𝑎5, 𝑐5,𝑚 = 𝑎4 −𝑚2𝑎6, 𝑐6,𝑚 = 𝑎8,

𝑐7,𝑚 = −𝑚2𝑎7 − 𝑤2𝑎2, 𝑐8,𝑚 = −𝑚𝑎9, 𝑐9,𝑚 = −𝑚𝑎7,

𝑐10,𝑚 = 𝑘, 𝑐11,𝑚 = −2𝑘𝑚2𝑎7,
𝑐12,𝑚 = −𝑎7 + 𝑤2𝑎2

+ 𝑘(𝑚4𝑎27 − 2𝑚2𝑎7 + 𝑎47),

𝑐13,𝑚 = 𝑚2/𝑎2 − 𝜔2/𝑐2𝐹 , 𝑐14,𝑚 = 2𝜌𝐹𝜔
2/𝑎, 𝑐15,𝑚 = 1/𝜌𝑆𝑐

2
𝑆ℎ.

(2.62)

By expanding the determinant of ℒ𝑓 (Eq. 2.60), a 10-th order differential equation is
obtained as:

(b1,𝑚𝜕
10
𝑥 + b2,𝑚𝜕

8
𝑥 + b3,𝑚𝜕

6
𝑥 + b4,𝑚𝜕

4
𝑥 + b5,𝑚𝜕

2
𝑥 + b6,𝑚𝜕𝑥)Ψ = 0, (2.63)

where, Ψ = 𝑈𝑚 or 𝑉𝑚 or 𝑊𝑚 or 𝑃𝑚, and the coefficients b𝑖,𝑚(𝑖 = 1, . . . ,6) are shown in 2.64.
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b1,𝑚 = −𝑐6,𝑚(−𝑐24,𝑚 + 𝑐1,𝑚𝑐10,𝑚),

b2,𝑚 = (𝑐7,𝑚 − 𝑐6,𝑚𝑐13,𝑚)𝑐
2
4,𝑚 + (2𝑐5,𝑚𝑐6,𝑚 − 2𝑐3,𝑚𝑐8,𝑚)𝑐4,𝑚

−𝑐10,𝑚(𝑐23,𝑚 + 𝑐2,𝑚𝑐6,𝑚)− 𝑐1,𝑚(𝑐
2
8,𝑚 + 𝑐6,𝑚𝑐11,𝑚 + 𝑐10,𝑚(𝑐7,𝑚 − 𝑐6,𝑚𝑐13,𝑚)),

b3,𝑚 = 𝑐25,𝑚𝑐6,𝑚 − 𝑐2,𝑚𝑐
2
8,𝑚 − 𝑐23,𝑚𝑐11,𝑚 − 𝑐1,𝑚(−𝑐13,𝑚𝑐28,𝑚 + 2𝑐9,𝑚𝑐8,𝑚

+𝑐6,𝑚𝑐12,𝑚 + 𝑐7,𝑚𝑐11,𝑚 − 𝑐6,𝑚𝑐11,𝑚𝑐13,𝑚) + 𝑐10,𝑚(𝑐13,𝑚𝑐
2
3,𝑚 − 𝑐2,𝑚𝑐7,𝑚

+𝑐1,𝑚𝑐7,𝑚𝑐13,𝑚 + 𝑐2,𝑚𝑐6,𝑚𝑐13,𝑚)− 2𝑐3,𝑚𝑐4,𝑚𝑐9,𝑚 − 2𝑐3,𝑚𝑐5,𝑚𝑐8,𝑚

+2𝑐4,𝑚𝑐5,𝑚𝑐7,𝑚 − 𝑐2,𝑚𝑐6,𝑚𝑐11,𝑚 − 𝑐24,𝑚𝑐7,𝑚𝑐13,𝑚 + 2𝑐3,𝑚𝑐4,𝑚𝑐8,𝑚𝑐13,𝑚

−2𝑐4,𝑚𝑐5,𝑚𝑐6,𝑚𝑐13,𝑚,

b4,𝑚 = 𝑐25,𝑚𝑐7,𝑚 − 𝑐23,𝑚𝑐12,𝑚 − 𝑐1,𝑚(𝑐
2
9,𝑚 − 2𝑐8,𝑚𝑐13,𝑚𝑐9,𝑚 + 𝑐7,𝑚𝑐12,𝑚

−𝑐6,𝑚𝑐12,𝑚𝑐13,𝑚 + 𝑐6,𝑚𝑐14,𝑚𝑐15,𝑚) + 𝑐11,𝑚(𝑐13,𝑚𝑐
2
3,𝑚 − 𝑐2,𝑚𝑐7,𝑚

+𝑐1,𝑚𝑐7,𝑚𝑐13,𝑚 + 𝑐2,𝑚𝑐6,𝑚𝑐13,𝑚)− 2𝑐3,𝑚𝑐5,𝑚𝑐9,𝑚 − 2𝑐2,𝑚𝑐8,𝑚𝑐9,𝑚

−𝑐2,𝑚𝑐6,𝑚𝑐12,𝑚 + 𝑐2,𝑚𝑐
2
8,𝑚𝑐13,𝑚 − 𝑐25,𝑚𝑐6,𝑚𝑐13,𝑚 + 2𝑐3,𝑚𝑐4,𝑚𝑐9,𝑚𝑐13,𝑚

+2𝑐3,𝑚𝑐5,𝑚𝑐8,𝑚𝑐13,𝑚 − 2𝑐4,𝑚𝑐5,𝑚𝑐7,𝑚𝑐13,𝑚 + 𝑐2,𝑚𝑐7,𝑚𝑐10,𝑚𝑐13,𝑚,

b5,𝑚 = 𝑐12,𝑚(𝑐13,𝑚𝑐
2
3,𝑚 − 𝑐2,𝑚𝑐7,𝑚 + 𝑐1,𝑚𝑐7,𝑚𝑐13,𝑚 + 𝑐2,𝑚𝑐6,𝑚𝑐13,𝑚)

−𝑐2,𝑚𝑐29,𝑚 + 𝑐1,𝑚𝑐
2
9,𝑚𝑐13,𝑚 − 𝑐25,𝑚𝑐7,𝑚𝑐13,𝑚 − 𝑐23,𝑚𝑐14,𝑚𝑐15,𝑚

+2𝑐3,𝑚𝑐5,𝑚𝑐9,𝑚𝑐13,𝑚 + 2𝑐2,𝑚𝑐8,𝑚𝑐9,𝑚𝑐13,𝑚 + 𝑐2,𝑚𝑐7,𝑚𝑐11,𝑚𝑐13,𝑚

−𝑐1,𝑚𝑐7,𝑚𝑐14,𝑚𝑐15,𝑚 − 𝑐2,𝑚𝑐6,𝑚𝑐14,𝑚𝑐15,𝑚,

b6,𝑚 = 𝑐2,𝑚(𝑐13,𝑚𝑐
2
9,𝑚 + 𝑐7,𝑚𝑐12,𝑚𝑐13,𝑚 − 𝑐7,𝑚𝑐14,𝑚𝑐15,𝑚).

(2.64)

By assuming the solution of Equation (2.71) in the form Ψ = 𝑒𝑠𝑥 the corresponding
characteristic equation is obtained as:

b1,𝑚𝑠
10 + b2,𝑚𝑠

8 + b3,𝑚𝑠
6 + b4,𝑚𝑠

4 + b5,𝑚𝑠
2 + b6,𝑚 = 0, (2.65)

whose roots, 𝑠𝑖,𝑚(𝑖 = 1, . . . ,10), are obtained using roots function of MATLAB software.
The solutions for unknown functions can be written as:

𝑃𝑚(𝑥) =
10∑︁
𝑖=1

𝐸𝑖,𝑚𝑒
𝑠𝑖,𝑚𝑥, 𝑈𝑚(𝑥) =

10∑︁
𝑖=1

𝐴𝑖,𝑚𝑒
𝑠𝑖,𝑚𝑥,

𝑉𝑚(𝑥) =
10∑︁
𝑖=1

𝐵𝑖,𝑚𝑒
𝑠𝑖,𝑚𝑥, 𝑊𝑚(𝑥) =

10∑︁
𝑖=1

𝐶𝑖,𝑚𝑒
𝑠𝑖,𝑚𝑥,

(2.66)

where from a total of 40 integration constants only 10 are independent. The integration constants
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𝐸𝑖,𝑚, 𝐴𝑖,𝑚, and 𝐵𝑖,𝑚, can be expressed in terms of 𝐶𝑖,𝑚 by doing

𝐸𝑖,𝑚 = 𝛼𝑖,𝑚𝐶𝑖,𝑚, 𝐴𝑖,𝑚 = 𝛿𝑖,𝑚𝐶𝑖,𝑚; 𝐵𝑖,𝑚 = 𝛾𝑖,𝑚𝐶𝑖,𝑚, (2.67)

where 𝛼𝑖,𝑚, is the pressure amplitude ratio coefficients, and 𝛿𝑖,𝑚, and 𝛾𝑖,𝑚, are the amplitude
ratios of axial-radial and tangential-radial displacement, respectively. The amplitude ratio coef-
ficients are shown in 2.68 to 2.70.

𝛼𝑖,𝑚 = − 𝑐14,𝑚
−𝑠2𝑖 + 𝑐13,𝑚

, (2.68)

𝛿𝑖,𝑚 =

𝑐9,𝑚 + 𝑐8,𝑚𝑠
2
𝑖 +

⎡⎢⎢⎣ (𝑐6,𝑚𝑠2𝑖+𝑐7,𝑚)

⎛⎝𝑘𝑐1−
𝑐14,𝑚𝑐15,𝑚
−𝑠2𝑖 + 𝑐13,𝑚

⎞⎠
𝑘𝑐2

⎤⎥⎥⎦
𝑐3,𝑚𝑠𝑖 −

(𝑐4,𝑚𝑠
3
𝑖 + 𝑐5,𝑚𝑠𝑖)(𝑐6,𝑚𝑠

2
𝑖 + 𝑐7,𝑚)

𝑘𝑐2

, (2.69)

𝛾𝑖,𝑚 =

⎡⎢⎢⎢⎢⎢⎢⎣𝑘𝑐1 +
(𝑐4,𝑚𝑠

3
𝑖 + 𝑐5,𝑚𝑠𝑖)(𝑘𝑐2 +

(𝑐6,𝑚𝑠
2
𝑖 + 𝑐7,𝑚)

(︂
𝑘𝑐1 −

𝑐14,𝑚𝑐15,𝑚
−𝑠2𝑖 + 𝑐13,𝑚

)︂
𝑘𝑐2

)

𝑐3,𝑚𝑠𝑖 −
(𝑐4,𝑚𝑠

3
𝑖 + 𝑐5,𝑚𝑠𝑖)(𝑐6,𝑚𝑠

2
𝑖 + 𝑐7,𝑚)

𝑘𝑐2

− 𝑐14,𝑚𝑐15,𝑚
−𝑠2𝑖 + 𝑐13,𝑚

⎤⎥⎥⎥⎥⎥⎥⎦
𝑘𝑐2

,

(2.70)
where 𝑘𝑐1 = 𝑐12,𝑚 + 𝑐11,𝑚𝑠

2
𝑖 + 𝑐10,𝑚𝑠

4
𝑖 , 𝑘𝑐2 = 𝑐8,𝑚𝑠

2
𝑖 + 𝑐9,𝑚.

Substituting Equations (2.66) and (2.67) in Equation (2.58), keeping only the 1st terms
and truncating the summation index as 𝑚 = 1, . . . ,𝑀 the displacement components can be
written as:

𝑝(𝑥,𝜙) =
𝑀∑︁

𝑚=1

(︃
10∑︁
𝑖=1

𝛼𝑖,𝑚𝐶𝑖,𝑚𝑒
𝑠𝑖,𝑚𝑥

)︃
cos (𝑚𝜙) ,

�̂�(𝑥,𝜙) =
𝑀∑︁

𝑚=1

(︃
10∑︁
𝑖=1

𝛿𝑖,𝑚𝐶𝑖,𝑚𝑒
𝑠𝑖,𝑚𝑥

)︃
cos (𝑚𝜙) ,

𝑣(𝑥,𝜙) =
𝑀∑︁

𝑚=1

(︃
10∑︁
𝑖=1

𝛾𝑖,𝑚𝐶𝑖,𝑚𝑒
𝑠𝑖,𝑚𝑥

)︃
sin (𝑚𝜙) , (2.71)

�̂�(𝑥,𝜙) =
𝑀∑︁

𝑚=1

(︃
10∑︁
𝑖=1

𝐶𝑖,𝑚𝑒
𝑠𝑖,𝑚𝑥

)︃
cos (𝑚𝜙) .
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2.3.3 Spectral Dynamic Stiffness Matrix

Figure 2.5 shows the schemes of two-edge fluid-filled circular cylindrical shell spectral
element of length 𝐿 including the displacements and pressure (left), and loads (right).

Figure 2.5: two-edge fluid-filled cylindrical shell spectral element with components of displace-
ment and pressure (left), and the load (right) vectors.

The displacements and pressure at the element ends 𝑥 = 0 and 𝑥 = 𝐿 is defined by:

q = {𝑝1 𝑢1 𝑣1 𝑤1 𝜓𝜙1 𝑝2 𝑢2 𝑣2 𝑤2 𝜓𝜙2}𝑇 , (2.72)

where

𝑝1 = 𝑝(0,𝜙) = 𝑃𝑚(0)cos(𝑚𝜙), 𝑝2 = 𝑝(𝐿,𝜙) = 𝑃𝑚(𝐿)cos(𝑚𝜙),

𝑢1 = 𝑢(0,𝜙) = 𝑈𝑚(0)cos(𝑚𝜙), 𝑢2 = 𝑢(𝐿,𝜙) = 𝑈𝑚(𝐿)cos(𝑚𝜙),

𝑣1 = 𝑣(0,𝜙) = 𝑉𝑚(0)sin(𝑚𝜙), 𝑣2 = 𝑣(𝐿,𝜙) = 𝑉𝑚(𝐿)sin(𝑚𝜙),

𝑤1 = 𝑤(0,𝜙) = 𝑊𝑚(0)cos(𝑚𝜙), 𝑤2 = 𝑤(𝐿,𝜙) = 𝑊𝑚(𝐿)cos(𝑚𝜙),

𝜓𝜙1 = 𝜓𝜙(0,𝜙) = Ψ𝑚(0)cos(𝑚𝜙), 𝜓𝜙2 = 𝜓𝜙2(𝐿,𝜙) = Ψ𝑚(𝐿)cos(𝑚𝜙),

(2.73)

and 𝜓𝜙(𝑥,𝜙) = 𝜕𝑤(𝑥,𝜙)/𝜕𝑥. Similarly, the load vector is given by,

Q = {𝑃𝑥1 𝑁𝑥1 𝑁𝑥𝜙1 𝑄𝑥1 𝑀𝑥1 𝑃𝑥2 𝑁𝑥2 𝑁𝑥𝜙2 𝑄𝑥2 𝑀𝑥2}𝑇 , (2.74)

with 𝑃𝑥1 = 𝑃𝑥(0,𝜙), 𝑁𝑥1 = −𝑁𝑥(0,𝜙), 𝑁𝑥𝜙1 = −𝑁𝑥𝜙(0,𝜙), 𝑄𝑥1 = −𝑄𝑥(0,𝜙), 𝑀𝑥1 =

−𝑀𝑥(0,𝜙), 𝑃𝑥2 = 𝑃𝑥(𝐿,𝜙), 𝑁𝑥2 = 𝑁𝑥(𝐿,𝜙), 𝑁𝑥𝜙2 = 𝑁𝑥𝜙(𝐿,𝜙), 𝑄𝑥2 = 𝑄𝑥(𝐿,𝜙), and 𝑀𝑥2 =

𝑀𝑥(𝐿,𝜙) where the load amplitudes are given by:

𝑁𝑥(𝑖,𝑚)(𝑥,𝜙) =
(𝐷𝜈(1 +𝑚𝛾𝑖,𝑚) + 𝑎𝐷𝑠𝑖,𝑚𝛿𝑖,𝑚 −𝐾𝑠2𝑖,𝑚

𝑎
, (2.75)

𝑁𝑥𝜙(𝑖,𝑚)(𝑥,𝜙) =
(1− 𝜈)[−𝑎𝐷𝛿𝑖,𝑚𝑚+ 𝑎2𝐷𝛾𝑖,𝑚𝑠𝑖,𝑚 + 3𝐾𝑠𝑖,𝑚(𝛾𝑖,𝑚 +𝑚)]

2𝑎2
, (2.76)
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𝑄𝑥(𝑖,𝑚)(𝑥,𝜙) =
𝐾[(1− 𝜈)𝛿𝑖,𝑚𝑚

2 + 2𝑎2𝑠2𝑖,𝑚(𝛿𝑖,𝑚 − 𝑎𝑠𝑖,𝑚)]

2𝑎3

+
𝐾𝑚𝑠𝑖,𝑚[(3− 𝜈)𝛾𝑖,𝑚 + 2𝑚(2− 𝜈)]

2𝑎2
,

(2.77)

𝑀𝑥(𝑖,𝑚)(𝑥,𝜙) =
𝐾[𝑚𝜈(𝛾𝑖,𝑚 +𝑚) + 𝑎𝑠𝑖,𝑚𝛿𝑖,𝑚 − 𝑎2𝑠2𝑖,𝑚]

𝑎2
, (2.78)

𝑃𝑥(𝑖,𝑚)(𝑥,𝜙) = 𝛼𝑖,𝑚𝑠𝑖,𝑚. (2.79)

The new displacements and pressure amplitudes vector, and the load vector that include
the load amplitudes, both on the boundaries 𝑥 = 0 and 𝑥 = 𝐿 for the 𝑚-th harmonic are:

q𝑚 = {𝑃𝑚(0) 𝑈𝑚(0) 𝑉𝑚(0) 𝑊𝑚(0) Ψ𝜙𝑚(0)

𝑃𝑚(𝐿) 𝑈𝑚(𝐿) 𝑉𝑚(𝐿) 𝑊𝑚(𝐿) Ψ𝜙𝑚(𝐿)}𝑇 ,
(2.80)

Q𝑚 = {−𝑃𝑥𝑚(0) −𝑁𝑥𝑚(0) −𝑁𝑥𝜙𝑚(0) −𝑄𝑥𝑚(0) −𝑀𝑥𝑚(0)

+𝑃𝑥𝑚(𝐿) +𝑁𝑥𝑚(𝐿) +𝑁𝑥𝜙𝑚(𝐿) +𝑄𝑥𝑚(𝐿) +𝑀𝑥𝑚(𝐿)}𝑇 ,
(2.81)

By arranging the vectors q𝑚 and Q𝑚 in a matrix form it has:

q𝑚 = D𝑚C𝑚, (2.82)

Q𝑚 = F𝑚C𝑚, (2.83)

where, C𝑚 = 𝐶𝑖,𝑚, 𝑖 = 1, . . . ,10 is the integration constant vector and D𝑚 is the coefficient
matrix that relates the displacements and pressure with the integration constant vector, while
F𝑚 is the coefficient matrix that relates loads with the integration constant vector. Matrices D𝑚

and F𝑚 are shown in Eqs. (2.84) and (2.85).

D𝑚 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼1,𝑚 · · · 𝛼10,𝑚

𝛿1,𝑚 · · · 𝛿10,𝑚

𝛾𝑖,𝑚 · · · 𝛾10,𝑚

1 · · · 1

−𝑠1,𝑚 · · · −𝑠10,𝑚
𝛼1,𝑚𝑒

𝑠1,𝑚𝐿 · · · 𝛼10,𝑚𝑒
𝑠10,𝑚𝐿

𝛿1,𝑚𝑒
𝑠1,𝑚𝐿 · · · 𝛿10,𝑚𝑒

𝑠10,𝑚𝐿

𝛾1,𝑚𝑒
𝑠1,𝑚𝐿 · · · 𝛾10,𝑚𝑒

𝑠10,𝑚𝐿

𝑒𝑠1,𝑚𝐿 · · · 𝑒𝑠10,𝑚𝐿

−𝑠1,𝑚𝑒𝑠1,𝑚𝐿 · · · −𝑠10,𝑚𝑒𝑠10,𝑚𝐿

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.84)
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F𝑚 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑃𝑥(1,𝑚) · · · −𝑃 𝑥(10,𝑚)

−�̂�𝑥(1,𝑚) · · · −�̂�𝑥(10,𝑚)

−�̂�𝑥𝜙(1,𝑚) · · · −�̂�𝑥𝜙(10,𝑚)

−�̂�𝑥(1,𝑚) · · · −�̂�𝑥(10,𝑚)

−�̂�𝑥(1,𝑚) · · · −�̂�𝑥(10m)

𝑃𝑥(1,𝑚)𝑒
𝑠1,𝑚𝐿 · · · 𝑃𝑥(10,𝑚)𝑒

𝑠10,𝑚𝐿

�̂�𝑥(1,𝑚)𝑒
𝑠1,𝑚𝐿 · · · �̂�𝑥(10,𝑚)𝑒

𝑠10,𝑚𝐿

�̂�𝑥𝜙(1,𝑚)𝑒
𝑠1,𝑚𝐿 · · · �̂�𝑥𝜙(10,𝑚)𝑒

𝑠8,𝑚𝐿

�̂�𝑥(1,𝑚)𝑒
𝑠1,𝑚𝐿 · · · �̂�𝑥(10,𝑚)𝑒

𝑠10,𝑚𝐿

�̂�𝑥(1,𝑚)𝑒
𝑠1,𝑚𝐿 · · · �̂�𝑥(10m)𝑒

𝑠10,𝑚𝐿

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.85)

By rewriting Eq. (2.82) as C𝑚 = D−1
𝑚 q𝑚 and substituting in the Eq.(2.83) one has,

Q𝑚 = F𝑚D
−1
𝑚⏟  ⏞  

K𝐹𝑚

q𝑚, (2.86)

where, K𝐹𝑚 is the dynamic stiffness matrix of the Fluid-filled Cylindrical Shell Spectral Ele-
ment - FCSSE for the 𝑚-th harmonic.

2.4 Wave Spectral Element - WSE

In this section, the Wave Spectral Element - WSE method is presented to study wave
propagation and phononic crystal in periodic cylindrical shells. In WSE, the dynamic stiffness
matrix of a small slice of the structure modeled by the spectral element method is used for the
application of periodicity conditions in the propagation of a wave through the shell.

Periodicity conditions results in an eigenproblem, from where the dispersion diagram
(wavenumber x frequency) and forced responses (FRF’s) can be obtained. In Goto et al. (2020)
work is used WSE to evaluate band gap in bars, in Mencik and Ichchou (2007) work is used
WFE to evaluate the cylindrical shell. This thesis stands out because it is the first one that uses
the WSE for cylindrical shell with and without filling of internal fluid.

2.4.1 Periodic Structure Modelling

Consider an elastic circular cylindrical shell in which the structure is discretized into
several slices of length 𝑑 , consider a slice 𝑘 (𝑘 = 1,..., 𝑁 ) , as sketched in Fig. 2.6.

The circular cylindrical shell model is formulated with the SE method, presented in sec-
tion 2.1, the equilibrium equation for the finite circular cylindrical shell by SE is given by Eq.
(2.46). For the case Fluid-filled Cylindrical Shell Spectral Element, presented in section 2.3 the
equilibrium equation by SE is given by Eq. (2.86). Renaming the spectral dynamic stiffness
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Figure 2.6: Circular cylindrical shell discretized in 𝑁 slices.

element matrix as K𝑆𝐸𝑚.
Within the framework of the WSE method, only one substructure is modeled by means

of spectral elements (see Figure 2.7). Here, the left and right boundaries of the substructure are
built in the same way, i.e., by means of the same number of degrees of freedom (DOFs)

Figure 2.7: Substructure (𝑘) slices.

From a slice (𝑘), the dynamic stiffness matrix D is obtained through the matrices of that
slice calculated by SE, such as:

Dq̂ = Q̂, (2.87)
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where, D = K𝑆𝐸𝑚, q̂ is the displacement vector, Q̂ is the force vector. Eq. (2.87) can be
expressed in terms of the state vectors on the left (𝑙) and right (𝑟) sides of the slice as:[︃

D𝑙𝑙 D𝑙𝑟

D𝑟𝑙 D𝑟𝑟

]︃{︃
q̂𝑙

q̂𝑟

}︃
=

{︃
Q̂𝑙

Q̂𝑟

}︃
, (2.88)

which can be rearranged in a state-space formulation to give:{︃
q̂𝑟

−Q̂𝑟

}︃
⏟  ⏞  

p𝑟

=

{︃
−D−1

𝑙𝑟 D𝑙𝑙 −D−1
𝑙𝑟

D𝑟𝑙 −D𝑟𝑟D
−1
𝑙𝑟 D𝑙𝑙 −D−1

𝑟𝑟 D𝑙𝑟

}︃
⏟  ⏞  

T

{︃
q̂𝑙

Q̂𝑙

}︃
⏟  ⏞  ,

p𝑙

(2.89)

where, T is the transfer matrix that relates the left state vector p𝑙 with the right state
vector p𝑟 of the circular cylindrical shell. Which can be written in compact form as, for every
slice (𝑘):

p(k̄)
𝑟 = Tp

(k̄)
𝑙 . (2.90)

The continuity conditions between two subsequent slices, (𝑘) and (𝑘+1), it is known that
p̂
(𝑘)
𝑟 = p̂

(𝑘+1)
𝑙 and Q̂

(𝑘)
𝑟 = Q̂

(𝑘+1)
𝑙 , matricially, is:{︃

q̂
(𝑘)
𝑟

−Q̂
(𝑘)
𝑟

}︃
⏟  ⏞  

p
(𝑘)
𝑟

=

{︃
q̂
(𝑘+1)
𝑙

Q̂
(𝑘+1)
𝑙

}︃
⏟  ⏞  ,
p
(𝑘+1)
𝑙

(2.91)

and replacing Eq. (2.91) in Eq. (2.90), results in:

p
(k̄+1)
𝑙 = Tp

(k̄)
𝑙 . (2.92)

From the Bloch-Floquet Theorem (Mead, 1970), one can write the periodicity relation-
ships between consecutive slices:

q
(k̄+1)
𝑙 = 𝑒𝜇q

(k̄)
𝑙 ,

Q
(k̄+1)
𝑙 = −𝑒𝜇Q(k̄)

𝑙 , (2.93)

replacing Eq. (2.93) in Eq. (2.92) and rearranging, it is found

T

{︃
q̂
(𝑘)
𝑙

Q̂
(𝑘)
𝑙

}︃
= 𝑒𝜇

{︃
q̂
(𝑘)
𝑙

Q̂
(𝑘)
𝑙

}︃
. (2.94)

For wave propagation in an infinite periodic system, Floquet-Bloch’s theorem produces
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an eigenvalue problem given by
Tp𝑙 = 𝑒𝜇p𝑙, (2.95)

where, 𝑒𝜇 is the eigenvalue, p𝑙 is the eigenvector, 𝜇 = −𝑖𝑘𝑑 is the attenuation constant, where
𝑑 is the unit-cell length, 𝑘 is the wavenumber and 𝑖 is the imaginary unit. This solution provides
the wavenumbers and corresponding wave modes propagating inside the structure.
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3 CYLINDRICAL SHELL SIMULATED RESULTS

In this chapter, the numerical results obtained with the computational implementation of
the cylindrical shell model shown in Section 2.1 are evaluated. The computational implementa-
tion of the in vacuo closed circular Cylindrical Shell Spectral Element - CSSE is verified using
some numerical examples. In addition, WSE is used to evaluate the dynamic behavior of the
cylindrical shell phononic crystal. Simulated results are presented in the frequency domain as
dispersion diagrams and displacement responses and displacement interpolated over the entire
cylindrical shell .

3.1 Spectral element verification

To verify the implementation of the SE method, an in vacuo circular cylindrical shell is
evaluated. First, the natural frequencies analysis using the SE method, implemented in MAT-
LAB code. Then, forced response for the cylindrical shell with a single point and two opposite
point excitation are evaluated. A comparison between the two types of loads is performed.
Finally, an interpolation is performed between the edges of the CSSE, thus obtaining the Oper-
ating Deflection Shapes (ODS) throughout the structure. These results are compared with those
calculated by the FE method with the commercial software ANSYS.

3.1.1 Natural frequencies

In this example, a simple circular cylindrical shell of radius 𝑎 = 1.0 m, thickness ℎ =

0.01 m and length 𝐿 = 20.0 m under Clamped-Clamped (C-C) and Free-Free (F-F) boundary
conditions is calculated using the proposed SE element model and verified by the FE model.
The natural frequencies are calculated over a frequency band of 𝐷𝐶 − 50.0 Hz. It is included
a structural damping as a complex Young’s modulus, 𝐸𝑐 = 𝐸(1 + 𝑖𝜂). Table 3.1 shows the
material properties used.

Table 3.1: Cylindrical Shell Material Properties.

Material Properties Value
Young’s modulus (𝐸) 210 GPa
Density (𝜌𝑆) 7850 kg/m3

Poisson’s ratio (𝜈) 0.30
Loss factor (𝜂) 0.005

Since the dynamic stiffness matrix 𝐾𝑆𝑚 (from Eq. (2.46) ) is a transcendent matrix the
natural frequencies are obtained from the peaks of its inverse given by 𝜅𝑚 = 1/log(|𝐾𝑆𝑚|) are
sought (Kolarević et al. (2016)).

Figure 3.1 shows the plots of 𝜅𝑚 versus frequency with𝑚 = 1,...,5, for cases F-F and C-C.
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(a) C-C (b) F-F

Figure 3.1: Plot 𝜅𝑚 versus frequency using in vacuo CSSE model with 𝑚 = 1,...,5, under CC
and FF boundary conditions.

Each peak in the Figure 3.1 indicates a natural frequency and is associated with a mode
shape (𝑚,𝑛), where 𝑚 and 𝑛 are integer number that indicate the number of half waves in the
radial and longitudinal directions, respectively. For example, in the Figure 3.1(a), the C-C case
is shown where the first natural frequency appears at the value of 12.03 Hz and is associated
with mode 𝑚 = 2, thus this mode of vibration is called (𝑚,𝑛) = (2,1). The natural frequencies
related to 𝑚 = 5 do not appear in this frequency range. The results for the F-F case (Fig. 3.1(b))
are similar to the C-C case.

These results of the CSSE are compared with those calculated by the FE method in the
commercial software ANSYS, using element type SHELL63 (6 DOFs/node) which is discret-
ized with 12,400 elements and 12,462 nodes. Meanwhile, the proposed CSSE model is discret-
ized with 2 elements and 3 edges. Figure 3.2 shows the cylindrical shell meshed by FE and SE
methods.

(a) FE Mesh (b) SE Mesh

Figure 3.2: In vacuo cylindrical shell example meshed by: (a) FE method with a mesh detail
zoom and (b) SE method.
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The FE modal analyses are performed using C-C and F-F boundary conditions. The results
are shown in Table 3.2 and 3.3, including the mode number, natural frequencies calculated by FE
and SE and percent error between SE and FE. It can be seen that for both boundary conditions,
the natural frequency relative errors between FE and SE are very small, with the highest value
of 0.11 % for C-C and 0.73 % for F-F. Of course, these values are dependent on the FE model
discretization, and errors even lower can be reached by using finer meshing.

Table 3.2: Natural Frequency of a Clamped-Clamped cylindrical shell

n m = 1 m = 2 m = 3 m = 4

FE SE Error FE SE Error FE SE Error FE SE Error
[Hz] [Hz] [%] [Hz] [Hz] [%] [Hz] [Hz] [%] [Hz] [Hz] [%]

1 28.27 28.30 0.11 11.99 12.00 0.08 19.57 19.56 0.05 36.44 36.42 0.05
2 - - - 27.14 27.16 0.07 23.09 23.09 0.00 37.29 37.25 0.11
3 - - - 49.57 49.59 0.04 31.46 31.47 0.03 39.59 39.59 0.00
4 - - - - - - 44.48 44.49 0.02 44.14 44.14 0.00

Table 3.3: Natural Frequency of a Free-Free cylindrical shell

n m = 1 m = 2 m = 3 m = 4

FE SE Error FE SE Error FE SE Error FE SE Error
[Hz] [Hz] [%] [Hz] [Hz] [%] [Hz] [Hz] [%] [Hz] [Hz] [%]

0 - - - 6.69 6.69 0.00 18.91 18.91 0.00 36.26 36.26 0.00
1 30.64 30.62 0.07 12.25 12.26 0.00 19.69 19.67 0.10 37.51 37.40 0.29
2 - - - 28.24 28.26 0.07 23.40 23,40 0.00 39.65 39.94 0.73
3 - - - - - - 32.16 32.17 0.03 44.73 44.71 0.04
4 - - - - - - 45.83 45.85 0.04 - - -

3.1.2 Dynamic responses to a single point excitation force

Forced responses for the in vacuo cylindrical shell modeled by SE are performed and the
results are compared with those obtained by the FE model. A C-C homogeneous cylindrical
shell with same material property as in the former case (Table 3.1), but with geometry, 𝐿 = 14

m, ℎ = 0.005 m, 𝑎 = 0.5 m.
The FE model is calcualted by ANSYS, meshed using SHELL63 element type (6 DOF-

s/node) with 47,161 elements and 47,059 nodes. As compared with the example of Section
3.1.1, the mesh is refined to minimize the difference between FE and SE results. Figure 3.3(a)

shows the cylindrical shell FE mesh with the excitation and response points. Figure 3.3(b) shows
the CSSE mesh with 4 elements and 5 edges.

One radial point force of magnitude 𝐹 = 100 N is applied at point A, which is located 4.2

m from the right-end of the cylindrical shell. The total displacements are obtained at points A,
B and C, which are located from the right-end of the shell at 4.2, 7.0 and 12.6 m, respectively.
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(a) FE Mesh (b) SE Mesh

Figure 3.3: In vacuo cylindrical shell FE and SE mesh including the one-point loading (point
A) and response (points A, B and C).

Figure 3.4 shows the displacement responses at points A, B and C for a frequency range
from 0 up to 100 Hz. For all the response points, it can be seen good agreement between the
total displacement curves calculated by SE and FE.

In terms of CPU time, the SE method (MATLAB) takes around 350 𝑠 and the FE method
(ANSYS) 14,400 𝑠 to compute the forced responses of the cylindrical shell. This yields CPU
time savings around 97.6 % regarding FE solution. The results made to evidence the relevance
of the proposed method in terms of accuracy and CPU time saving. Highlight, neither method
is optimized to maximize performance. Simulations were made using a processor Intel Core𝑇𝑀

i7-6700.

3.1.3 Dynamic responses to two opposite point excitation forces

Forced response for the cylindrical shell with two opposite point excitation forces is evalu-
ated using the same C-C boundary conditions, geometry and material properties as the example
of Section 3.1.2. The comparison is made between the results obtained by the FE and SE. Two
radial point forces of magnitude 𝐹 = 100 N in opposite directions are applied at point A,
which is located 4.2 m from the right-end of the shell. The total displacements are obtained at
points A, B and C, which are located from the right-end of the shell at 4.2, 7.0 and 12.6 m, re-
spectively. The FE model is meshed using SHELL63 element type (6 DOFs/node) with 47,161
elements and 47,059 nodes. The SE mesh using with 4 elements and 5 edges. Figure 3.5 shows
the cylindrical shell FE and SE with the excitation and response points.
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Figure 3.4: Forced responses of an cylindrical shell by FE and SE with excitation force at point
A and total displacement responses at points A, B and C.

(a) FE Mesh (b) SE Mesh

Figure 3.5: In vacuo cylindrical shell FE and SE mesh including the two opposite point forces
(point A) and response (points A, B and C).

Due to the DOFs of CSSE are distributed along the element edges, the forced response is
not possible to obtain straight away for all types of excitation. Therefore, for the two opposite
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point excitation forces the superposition approach must be used. In order to obtain it, first the
response for one force is calculated, next the response for the other force is calculated, and
both responses are added to obtain the two excitation forces response. This approach allows
any amount of point excitation to be evaluated with the cylindrical shell model presented in this
thesis.

Figure 3.6 shows the displacement responses at points A, B and C for a frequency range
from 0 up to 100 Hz. For all the response points, it can be seen good agreement between the
total displacement curves calculated by SE and FE, thus validating the CSSE model proposed
in this thesis. In terms of CPU time, the SE method (MATLAB) takes around 392 𝑠 and the
FE method (ANSYS) 14,400 𝑠 to compute the forced responses of the cylindrical shell. This
yields CPU time savings around 97.3 % regarding FE solution. The results made to highlight
the relevance of the proposed method in terms of accuracy and CPU time saving. Simulations
were made using a processor Intel Core𝑇𝑀 i7-6700.

!htb

Figure 3.6: Forced responses of an in vacuo cylindrical shell by FE and SE an with excitation
Two-point loading at A and total displacement responses at points A, B and C.
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3.1.4 Single and two point excitation force comparison

Figure 3.7 shows the forced response of CSSE for with a single and two opposite point
excitation forces.

For all displacement responses (points A, B and C) it can be seen that there are more
resonance peaks with single than the two point excitation.

These behaviors can be explained by observing that two point excitation works as a filter
that does not stimulate the cylindrical shell for odd vibrating modes (𝑚 = 1 and 3), therefore,
only the even vibration modes have their natural frequencies stimulated in this type of loads.

Figure 3.7: Forced responses of an in vacuo cylindrical shell by SE with One-point and Two-
point loading at point A and total displacement responses at points A, B and C.

The strategy of applying two radial forces is an interesting tool since the cylindrical shell
is a structure with many wave propagation modes. Thus, later in this work, when the band
gap phenomenon will be studied, filtering some propagation modes will be relevant for the
observation of the phenomenon of vibration attenuation.
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3.1.5 CSSE interpolated results

In order to obtain the displacement results along the whole structure, an interpolation
between de edges of CSSE must be performed. By taken the displacement results calculated
in the edges, and substituting them in the Eq. (2.21), the integration constants 𝐴𝑖,𝑚, 𝐵𝑖,𝑚, and
𝐶𝑖,𝑚 are found. Thus, the spectral amplitude of displacement components �̂�(𝑥,𝜙), 𝑣(𝑥,𝜙), and
�̂�(𝑥,𝜙) can be calculated for any special position in the cylindrical shell between the edges.

To evaluate the interpolated results cylindrical shell of the Section 3.1.3, case excitation
and response at point A, is used to calculate by FE and SE, the interpolated displacements at the
angle 𝜙 = 0∘, along the entire length of the structure (𝐿 = 14 m) (Fig. 3.8) with a discretization
of Δ𝑥 = 0.1 m.

Figure 3.8: Spatial position of the interpolation line (blue line) in the cylindrical shell model.

Figures 3.9 to 3.14 show the interpolated dimensionless displacement amplitude versus
cylindrical shell length, for several frequency values with F-F and C-C boundary condition. For
all results, a good agreement between FE and SE methods are observed.
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Figure 3.9: Cylindrical shell interpolated dimensionless displacement amplitude at f = 10 Hz
with F-F and C-C boundary conditions.

Figure 3.10: Cylindrical shell interpolated dimensionless displacement amplitude at f = 16 Hz
with F-F and C-C boundary conditions.

Figure 3.11: Cylindrical shell interpolated dimensionless displacement amplitude at f = 30 Hz
with F-F and C-C boundary conditions.
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Figure 3.12: Cylindrical shell interpolated dimensionless displacement amplitude at f = 44 Hz
with F-F and C-C boundary conditions.

Figure 3.13: Cylindrical shell interpolated dimensionless displacement amplitude at f = 81.5 Hz
with F-F and C-C boundary conditions.

Figure 3.14: Cylindrical shell interpolated dimensionless displacement amplitude at f = 100 Hz
with F-F and C-C boundary conditions.
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In order to obtain the Operating Deflection Shapes (ODS) for the cylindrical shell, the
procedure applied for one line (𝐿 = 14 m at 𝜙 = 0∘ with Δ𝑥 = 0.1 m discretization at 𝑥
direction) is extended to several lines around the cylindrical shell circle (with discretization
Δ𝑥 = 0.1 m at 𝑥 direction and Δ𝜙 = 𝜋/20 at the circle direction).

Figures 3.15 to 3.18 show the cylindrical shell ODS’s with C-C boundary conditions
calculated by FE and SE method at the frequencies f = 30, 44, 85.1 and 100 Hz. It can be
emphasized the zero displacement at the structure ends due to the C-C boundary conditions.

(a) FE model (b) SE model

Figure 3.15: Cylindrical shell ODS at frequency 30 Hz with C-C boundary conditions.

(a) FE model (b) SE model

Figure 3.16: Cylindrical shell ODS at frequency 44 Hz with C-C boundary conditions.

(a) FE model (b) SE model

Figure 3.17: Cylindrical shell ODS at frequency 81.5 Hz with C-C boundary conditions.
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(a) FE model (b) SE model

Figure 3.18: Cylindrical shell ODS at frequency 100 Hz with C-C boundary conditions.

Figures 3.19 to 3.22 show the cylindrical shell ODS’s with F-F boundary conditions cal-
culated by FE and SE method at the frequencies f = 30, 44, 85.1 and 100 Hz. However, for this
case, due the F-F boundary conditions, displacements at the structure ends are noticed.

(a) FE model (b) SE model

Figure 3.19: Cylindrical shell ODS at frequency 30 Hz with F-F boundary conditions.

(a) FE model (b) SE model

Figure 3.20: Cylindrical shell ODS at frequency 44 Hz with F-F boundary conditions.
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(a) FE model (b) SE model

Figure 3.21: Cylindrical shell ODS at frequency 81.5 Hz with F-F boundary conditions.

(a) FE model (b) SE model

Figure 3.22: Cylindrical shell ODS at frequency 100 Hz with F-F boundary conditions.
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3.2 Wave Spectral Element verification

An evaluation of the Wave Spectral Element-WSE method is made for a periodic structure
using a slice of length 𝑑 = 0.2 m of an in vacuo homogeneous circular cylindrical shell, with
the same geometry and material properties as in the section 3.1.1. Dispersion diagrams are
calculated and compared with those obtained by Analytical Solution (AS) as reported by Fuller
and Fahy (1982). The dispersion curves for the cylindrical shell are obtained from de Equation
(2.95) by plotting a set of functions 𝑘(Ω), where Ω = 𝜔𝑎/𝑐𝑆 is the non-dimensional frequency.

Figure 3.23 shows the dispersion diagrams calculated by WSE and AS for 𝑚 = 0, . . . , 3

harmonic modes, each including four wave propagation mode branches (𝑏 = 1, . . . ,4). At low
frequency, both diagrams present the branch 𝑏 = 1, which are purely real wavenumbers and
correspond to a beam type shell motion or the longitudinal elastic mode.

(a) (b)

(c) (d)

Figure 3.23: Dispersion diagram calculated by AS and WSE methods for the harmonic modes:
(a) 𝑚 = 0; (b) 𝑚 = 1; (c) 𝑚 = 2 and (d) 𝑚 = 3.

The branch 𝑏 = 2 corresponds to the ring elastic mode, for 𝑚 = 0 (Figure 3.23a) the
branch is purely real, for the other cases, 𝑚 = 1, 2 and 3, it presents cut on frequencies Ω2 ≈
0.6 (Figure 3.23b) and Ω2 ≈ 1.4 (Figure 3.23c) and Ω2 ≈ 1.8 (Figure 3.23d).
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The branch 𝑏 = 3 is predominantly a torsional shell motion. At low frequency it is a
non-propagating mode (𝑘 is pure imaginary) with cut on frequencies,Ω3 ≈ 1.0 (Figure 3.23a)
and Ω3 ≈ 1.3 (Figure 3.23b) and Ω3 ≈ 2.2 (Figure 3.23c) and Ω3 ≈ 3.2 (Figure 3.23d), and
after these the waves become propagating (𝑘 is pure real).

Finally, at low frequencies the branch 𝑏 = 4 presents complex wavenumbers where real
and imaginary parts have the same absolute magnitude until before the cut on frequencies
Ω4 ≈ 1.0 (Figure 3.23a) and Ω4 ≈ 1.1 (Figure 3.23b). Ω4 ≈ 1.2 (Figure 3.23c) and Ω4 ≈ 1.3
(Figure 3.23d). After these, the real part goes to zero and the imaginary part decreases as the
frequency increases. Complex wave modes occur in combinations of ±(ℜ ± 𝑖ℑ), and the pair
that represents wave motion in the shell axial direction produces an attenuated standing wave.
Then, the complex branches would represent evanescent motion.

Relate to the methods (WSE and AS), a very good agreement between both at low fre-
quency bands can be seen, but as the frequency bands increase they start to become discordant.
This comes from differences in the shell models, where the WSE cylindrical shell model is
based on Flügge’s shell theory, while the AS model is formulated using the Donnell-Musthari
model.
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3.3 Phononic crystal example

An example of an in vacuo closed circular cylindrical shell phononic crystal (PC) is eval-
uated (Fig. 3.24). The WSE is applied to calculate the dispersion diagrams and the SE is used to
obtain the forced responses. The unit-cell is made with three layers of two elastic materials com-
bined as: steel(20%)-polyacetal(60%)-steel(20%). Table 3.4 shows the PC material properties
and geometric parameters.

Table 3.4: Phononic Crystal Material Properties & Geometry

Property/Geometry Steel Polyacetal
Young’s modulus (𝐸) 193 GPa 3.3 GPa
Density (𝜌𝑆) 8030 kg/m3 1418 kg/m3

Poisson’s ratio (𝜈) 0.27 0.35
Loss factor (𝜂) 0.001 0.001
Radius (𝑎) 0.05 m 0.05 m
Thickness (ℎ) 0.0025 m 0.0025 m
Unit-cell length (𝑑) 0.01 m 0.03

The total displacement response is calculated over a frequency band of 𝐷𝐶 − 16.0 kHz,
for a Clamped-Clamped cylindrical shell PC build up with𝑁 = 20 unit-cells as shown in Figure
3.24. The PC is excited by two opposite radial point forces of magnitude 𝐹 = 100 N at point A
and the displacement response is obtained at point C.

Figure 3.24: Cylindrical shell phononic crystal including 𝑁 = 20 unit-cells, with force excita-
tion (point A) and response (point C) positions.

The wavenumbers are calculated and the dispersion diagrams are obtained for the wave
modes 𝑚 = 2, 4, 6 and 8. The total displacement response at point C and dispersion diagrams
are shown in Figure 3.25.

In the dispersion curve 𝑘(𝜔), band gaps are identified as a frequency bands where the real
part of the wavenumber is the Bragg limit or zero (ℜ{𝑘} = 𝜋/𝑑 = 62.83 m−1 or ℜ{𝑘} = 0), and
the imaginary part is different from zero (ℑ{𝑘} ≠ 0). Under these conditions, the waves become
evanescent (non-propagating) and a band gap is identified. Otherwise, the wave is propagating
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Figure 3.25: Total displacement response at point C and excitation at point A (top), and dis-
persion diagram for the wave modes 𝑚 =2(�), 4(�), 6(�) and 8(�) (bottom), for the in vacuo
cylindrical shell phononic crystal.

and a pass band is obtained. Figure 3.25 (bottom) shows that at least one or two complete band
gaps can be easily identified for each wave modes in the analyzed frequency band. For example,
the dispersion curve of mode 𝑚 = 4 (black curve) two complete band gaps 3.2-6.0 kHz and
6.6-13.7 kHz can be identified in the analyzed frequency band. Note that the complete band
gap 6.6-13.7 kHz in the dispersion curve 𝑚 = 4 (Figs. 3.25 bottom), does not necessarily mean
attenuation in the PC displacement response over this entire band (Figs. 3.25 top). Actually the
attenuation occurs in the bands 6.6-7.4 kHz and 8.5-12.9 kHz (gray shaded), while very low
or unnoticeable attenuation is observed in the band 7.4-8.5 kHz. Such behavior comes from
the contribution of other wave modes in the analyzed frequency band. The frequency band
7.4-8.5 kHz in the displacement response (Fig. 3.25 (top)) corresponds to a pass band (yellow
shade) in the dispersion diagram (Fig 3.25 (bottom)), where it can be seen that in addition to
the evanescent mode (𝑚 = 4) there is another evanescent mode (𝑚 = 2), and two propagating
modes (𝑚 = 6 and 8). The presence of propagating modes reduce the destructive interference
effect (Bragg effect), and consequently reduces the PC response attenuation.

Based on the previous evaluation, gray shaded areas in the imaginary part of dispersion
diagram emphasize the frequency bands (2.1-2.8 kHz; 3.2-5.9 kHz; 6.6-7.4 kHz; 8.5-12.9 kHz)
that contains only evanescent waves (complete or partial band gaps), which will be named here-
after as effective band gaps, and correspond to the frequency bands attenuated in the PC dis-
placement response. Otherwise, yellow shaded areas in the real part of the dispersion diagram
indicate the frequency bands (2.8-3.2, 5.8-6.6, 7.4-8.5 kHz and 12.9-15.5 kHz) where evanes-
cent and propagating waves coexist, are called pass bands, and correspond tho the frequency
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bands with low or unnoticeable attenuation in the PC displacement response.
It must be noticed that for complex structures, like cylindrical shell, which may contain

many propagation wave modes, the number of wave modes included in the calculation of the
dispersion diagrams and forced responses is an important design parameter to predict the PC
performance.

Therefore, in order to promote the understanding, the curves are presented mode by mode
revealing the mechanism of band gaps formation shown in Figures 3.26 to 3.29. Thus Figure
3.26 shows dispersion curve only for the 𝑚 = 2 mode, thus illustrating the appearance of band
gaps, the first from 2.2 kHz to 6.3 kHz and the second from 6.7 kHz to over 16 kHz.

Figure 3.26: Dispersion curve only for the 𝑚 =2(�) mode.

Figure 3.27 shows dispersion curves for 𝑚 = 2 and 𝑚 = 4. The 𝑚 = 4 mode becomes
propagating at 2.8 kHz, so the propagating part of 𝑚 = 4 destroys the band gaps initially found,
then the amount of band gaps increases to four. The first from 2.1 kHz to 2.8 kHz, the second
from 3.2 kHz to 6.0 kHz, the third from 6.6 kHz to 13.7 kHz and the fourth goes from 14.0 kHz
to over 16 kHz.

Figure 3.27: Dispersion curves for 𝑚 =2(�) and 4(�) mode.

In the Figure 3.28 the 𝑚 = 6 is added, this mode becomes propagating at 5.9 kHz and
reaches the Bragg limit at 6.6 kHz, it again becomes a propagating mode at 7.4 kHz up to 8.5
kHz, splitting the existing band gap in two in this frequency range. Lastly, the 𝑚 = 6 mode is
propagated between the frequencies from 13.9 kHz to 15.3 kHz. Considering only the 𝑚 = 2,
4 and 6 modes, five band gaps are formed. The first from 2.1 kHz to 2.8 kHz, the second from
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3.2 kHz to 5.9 kHz, the third from 6.6 kHz to 7.4 kHz, the fourth from 8.5 kHz to 13.7 kHz and
the fifth goes from 15.3 kHz to over 16.0 kHz.

Figure 3.28: Dispersion curves for 𝑚 =2(�), 4(�) and 6(�) mode.

Finally, 𝑚 = 8 is added, Figure 3.29, this mode becomes propagating at 8.0 kHz and
quickly reaches the Bragg limit in 8.1 kHz. It returns to a propagation mode at 12.9 kHz up
to 14.1 kHz. The first, second and third band gaps are not affected by the mode 𝑚 = 8 while
the fourth band gap has an acting range reduced from 8.6-13.7 kHz to 8.6-12.9 kHz. After
that value, neither a band gap is observed until the frequency of 16.0 kHz. Other modes of
propagation appear before 16 kHz, however they do not affect the constitution of band gaps
already enumerated

Figure 3.29: Dispersion curves for 𝑚 =2(�), 4(�), 6(�) and 8(�) mode.

Figure 3.30 shows the ODS of the cylindrical shell phononic crystal studied at the fre-
quency of 2000 Hz. At this frequency, the structure does not experience attenuation of vibration
along its length.
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Figure 3.30: ODS of the cylindrical shell phononic crystal at the frequency 2000 Hz

Figure 3.31 shows the behavior of the cylindrical shell phononic crystal at the frequency
of 2322 Hz. This frequency, the structure is found in the band gap region, but not at the deepest
point of the band gap. Therefore, there is a clear attenuation of the vibration structure as it is
observed points further away from the loading application places.

Figure 3.31: ODS of the cylindrical shell phononic crystal at the frequency 2322Hz

Figure 3.32 shows the behavior of cylindrical shell phononic crystal at the frequency of
2642 Hz. This is close to the deepest points in the band gap. Thus, displacements are only
observed close to the excitation point of the structure.
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Figure 3.32: ODS of the cylindrical shell phononic crystal at the frequency 2642 Hz

Finally, Figure 3.33 shows the behavior of the cylindrical shell phononic crystal at 3200
Hz. At this frequency, the structure left the first band gap completely and is in a no region
with attenuation. Thus, the structure shows a uniform vibration behavior throughout the entire
cylindrical shell.

Figure 3.33: ODS of the cylindrical shell phononic crystal at the frequency 3200 Hz
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4 FLUID-FILLED CYLINDRICAL SHELL SIMULATED RESULTS

In this chapter, the numerical results obtained with the computational implementation of
the fluid-filled closed circular cylindrical shell models shown in Section 2.3 are evaluated. The
computational implementation of the Fluid-filled circular Cylindrical Shell Spectral Element -
FCSSE is verified using numerical examples. In addition, WSE is used to evaluate a fluid-filled
spectral circular cylindrical phononic crystal (steel + polyacetal + steel + internal water). Sim-
ulated results are presented in the frequency domain as dispersion diagrams and displacement
responses and displacement interpolated over the entire cylindrical shell.

4.1 Spectral element verification

To verify the implementation of the SE method, a circular cylindrical shell with internal
fluid is evaluated, the example fluids are water and air. Then, the natural frequencies analysis
using the SE method, implemented in MATLAB code. Next, dynamic responses to a single
point excitation force are evaluated. Finally, an interpolation is performed between the edges
of the FCSSE. thus obtaining the Operating Deflection Shapes (ODS) throughout the structure.
These results are compared with those calculated by the FE method in the commercial software
ANSYS.

4.1.1 Natural frequencies

In this example, a simple circular cylindrical shell of radius 𝑎 = 1.0 m, thickness ℎ = 0.01

m and length 𝐿 = 20.0 m under Clamped-Clamped (C-C) and Free-Free (F-F) boundary con-
ditions is calculated using the proposed SE element model and verified by the FE model. The
natural frequencies are calculated over a frequency band of 𝐷𝐶 − 50.0 Hz. The natural fre-
quencies are evaluated for the cylindrical shell when the fluid inside is water or air. A theoret-
ical modal analysis using the SE method, implemented in MATLAB code, is performed. It is
included a structural damping as a complex Young’s modulus, 𝐸𝑐 = 𝐸(1+ 𝑖𝜂). Table 4.1 shows
the material and fluid properties used.

Table 4.1: Cylindrical Shell Material and Fluids Properties.

Material Properties Stell Water Air
Density (𝜌𝑆) 7850 kg/m3 1000 kg/m3 1.2754 kg/m3

Sound speed (𝑐) - 1500 m/s 343.37 m/s
Young’s modulus (𝐸) 210 GPa - -
Poisson’s ratio (𝜈) 0.30 - -
Loss factor (𝜂) 0.005 - -

Since the dynamic stiffness matrix 𝐾𝐹𝑚 (from Eq. (2.86)) is a transcendent matrix, mat-
rix. To obtain the natural frequencies the peaks of 𝜅𝑚 = 1/log(|𝐾𝐹𝑚|) are sought (Kolarević
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et al. (2016)).
Figure 4.1 shows the plots of 𝜅𝑚 versus frequency with 𝑚 = 1,...,5, for the cases F-F and

C-C, when the internal fluid of the cylindrical shell are water and air.

(a) Water, C-C (b) Water, F-F

(c) Air, C-C (d) Air, F-F

Figure 4.1: Plot 𝜅𝑚 versus frequency using FCSSE model with 𝑚 = 1,...,5, under CC and FF
boundary conditions and internal fluid water.

Each peak in Figure 4.1 represents a natural frequency and associated with a mode shape
(𝑚,𝑛), where 𝑚 and 𝑛 are integer numbers that indicate the number of half waves in the direc-
tions radial and longitudinal, respectively. For the C-C and internal fluid water, Figure 4.1(a),
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the first natural frequency appears at the value of 4.88 Hz and is associated with mode 𝑚 = 2,
so this mode of vibration is called (𝑚,𝑛) = (2,1). The results for the F-F case (Fig. 4.1(b)) are
similar to the C-C case. All natural frequencies calculated on the 𝐷𝐶 − 50.0 frequency band
for the cylindrical shell with internal fluid water are shown in Tables 4.2 and 4.3. Figure 4.1(c)
and 4.1(d) shows the cases C-C and F-F, when the internal fluid of the cylindrical shell is air.
For C-C boundary conditions, Figure 4.1(c), the first natural frequency appears at the value of
11.96 Hz and is associated with mode 𝑚 = 2, so this mode of vibration is called (𝑚,𝑛) = (2,1).
The results for the F-F case (Fig. 4.1(d)) are similar to the C-C case. All natural frequencies
calculated on the 𝐷𝐶 − 50.0 frequency band for the cylindrical shell with internal fluid are
shown in Tables 4.4 and 4.5.

These results of the FCSSE are compared with those calculated by the FE method in the
commercial software ANSYS, using element type SHELL63 (6 DOFs/node) for the structure
and element type FLUID30 for the fluid. The fluid-filled circular cylindrical shell is discretized
with 4,560 structural elements and 53,936 fluid elements with a total of 56,669 nodes. Figure
4.2(a) shows the fluid (blue) and the structure (gray) FE mesh. Meanwhile, the proposed FCSSE
model is used with only 2 elements and 3 edges, Figure 4.2(b). The modal analyses were per-
formed using C-C and F-F boundary conditions in the cylindrical shell-ends. Figure 4.2 shows
the the cylindrical shell meshed by FE and SE methods.

(a) FE Mesh (b) SE Mesh

Figure 4.2: Fluid-filled circular cylindrical shell: (a) FE method with a mesh detail zoom and
(b) SE method.

Tables 4.2 and 4.3 show the results for the circular cylindrical shell filled with water
as internal fluid. The tables also show the C-C and F-F boundary conditions including mode
number, natural frequencies calculated by FE and SE and the percentage relative error. It can be
seen that for both boundary conditions the natural frequency relative errors between FE and SE
are very small, with the highest value of 3.53 % for C-C and 3.08 % for F-F. Of course, these
values are dependent on the FE model discretization and errors even lower can be reached by
using finer meshing.

Tables 4.4 and 4.5 show the results for the circular cylindrical shell filled with air as in-
ternal fluid. The tables also show, the C-C and F-F boundary conditions including mode number,
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Table 4.2: Natural Frequency C-C circular cylindrical shell filled with water as internal fluid.

n m = 1 m = 2 m = 3 m = 4 m = 5

FE SE Error FE SE Error FE SE Error FE SE Error FE SE Error
[Hz] [Hz] [%] [Hz] [Hz] [%] [Hz] [Hz] [%] [Hz] [Hz] [%] [Hz] [Hz] [%]

1 10.52 10.59 0.63 4.88 4.88 0.02 8.96 8.92 0.42 18.35 18.22 0.74 31.94 31.61 1.04
2 25.87 26.40 2.03 11.12 11.15 0.30 10.61 10.58 0.26 18.81 18.70 0.59 32.17 31.87 0.94
3 45.21 46.86 3.53 20.46 20.63 0.84 14.52 14.49 0.23 20.03 19.89 0.70 33.68 33.37 0.94
4 - - - 32.13 32.63 1.55 20.66 20.66 0.00 22.43 22.30 0.56 35.33 35.00 0.93
5 - - - - - - 28.60 28.67 0.24 26.23 26.09 0.54 37.79 37.44 0.93
6 - - - - - - 37.99 38.20 0.54 31.46 31.29 0.54 41.18 40.73 1.10
7 - - - - - - - - - 37.97 37.75 0.59 - - -

Table 4.3: Natural Frequency F-F circular cylindrical shell filled with water as internal fluid.

n m = 1 m = 2 m = 3 m = 4 m = 5

FE SE Error FE SE Error FE SE Error FE SE Error FE SE Error
[Hz] [Hz] [%] [Hz] [Hz] [%] [Hz] [Hz] [%] [Hz] [Hz] [%] [Hz] [Hz] [%]

0 11.714 12.09 0.37 2.71 2.71 0.12 8.64 8.62 0.32 18.25 18.14 0.62 31.86 31.56 0.98
1 30.046 31.85 1.80 5.00 5.04 0.61 9.03 9.01 0.25 18.43 18.30 0.75 32.03 31.98 0.17
2 - - - 11.65 11.81 1.32 10.78 10.79 0.06 18.96 18.86 0.57 32.34 32.64 0.91
3 - - - 21.78 22.26 2.12 14.90 14.96 0.35 20.28 20.20 0.40 34.04 33.7 1.02
4 - - - 34.60 35.71 3.08 21.39 21.53 0.63 22.81 22.73 0.35 35.80 35.47 0.93
5 - - - - - - 29.83 30.14 1.01 26.81 26.74 0.26 - - -
6 - - - - - - 39.85 40.43 1.41 32.3 32.25 0.16 - - -

natural frequencies calculated by FE and SE and the percentage relative error. It can be seen that
for both boundary conditions the natural frequency relative errors between FE and SE are very
small, all errors are smaller than 1 %.

Table 4.4: Natural Frequency C-C circular cylindrical shell filled with air as internal fluid.

n m = 1 m = 2 m = 3 m = 4

FE SE Error FE SE Error FE SE Error FE SE Error
[Hz] [Hz] [%] [Hz] [Hz] [%] [Hz] [Hz] [%] [Hz] [Hz] [%]

1 28.18 28.15 0.11 11.96 11.96 0.03 19.48 19.51 0.15 36.21 36.34 0.35
2 - - - 27.09 27.07 0.07 23.01 23.04 0.12 37.06 37.21 0.40
3 - - - 49.50 49.40 0.21 31.40 31.39 0.03 39.38 39.46 0.22
4 - - - - - - 43.95 44.39 0.98 44.46 44.06 0.91

Table 4.5: Natural Frequency F-F circular cylindrical shell filled with air as internal fluid.

n m = 1 m = 2 m = 3 m = 4

FE SE Error FE SE Error FE SE Error FE SE Error
[Hz] [Hz] [%] [Hz] [Hz] [%] [Hz] [Hz] [%] [Hz] [Hz] [%]

0 30.50 30.49 0.03 6.60 6.67 1.06 18.82 18.87 0.24 36.04 36.19 0.42
1 - - - 12.21 12.21 0.00 19.61 19.62 0.04 36.36 36.44 0.22
2 - - - 28.17 28.17 0.01 23.33 23.34 0.03 37.33 37.40 0.19
3 - - - - - - 32.10 32.13 0.09 39.80 39.90 0.24
4 - - - - - - 45.79 45.74 0.12 44.60 44.63 0.06

When comparing the results for the shell internal fluid water versus the shell internal fluid
air, it is observed that for the water, more natural frequencies are absorbed than the air, that
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is, by increasing the density of fluid, the appearance of natural frequencies are increasing. For
example, in the case mode 𝑚 = 1, C-C boundary conditions and calculated over a frequency
band of 𝐷𝐶 − 50.0 Hz, air has only a value of 28.15 Hz, Table 4.4, while water has three
natural frequencies 10.59, 20.40 and 46.86 Hz, Table 4.2.

Another analysis can be made when comparing shell internal fluid air, Table 4.4 and
4.5, versus in vacuo closed circular cylindrical shell, Tables 3.2 and 3.3, the values of natural
frequencies diverge less than 1 Hz. Therefore, the results that are found when studying the shell
with air are close to the shell in vacuo. Wherefore, in this thesis, the next results presented
consider only water as the internal fluid of the cylindrical shell

4.1.2 Dynamic responses to a single point excitation force

Forced responses for the fluid-filled cylindrical shell modeled by SE are executed and the
results are compared with those obtained by the FE model. A C-C homogeneous cylindrical
shell structure with the geometry 𝐿 = 10 m, ℎ = 0.02 m, 𝑎 = 0.5 m and the same material
properties presented in the Table 4.1 is used. The fluid inside the shell is water. A radial point
force of magnitude 𝐹 = 100 N is applied at the point 𝑂, located at 3.0 m from the right-end
of the shell. Total displacements are evaluated at 7.0 m from the right-end at the points A= 0∘,
B= 30∘ and C= 90∘ and D= 180∘. Figure 4.3

The FE model is meshed using element type SHELL63 (6 DOFs/node) and element type
FLUID30 (3 DOFs/node). The fluid-filled circular cylindrical shell is discretized with 12,800
structural elements and 128,000 fluid elements with a total of 135,273 nodes. Figure 4.3(a)

shows the fluid (blue) and the structure (gray) FE mesh for the fluid-filled cylindrical shell,
including also excitation and response points. Meanwhile, the SE mesh using with 3 elements
and 4 edge, Figure 4.3(b).

(a) FE Mesh (b) SE Mesh

Figure 4.3: Fluid-filled circular cylindrical shell, including force excitation (point O) and re-
sponse (points A, B, C and D):(a) FE method with a mesh detail zoom and (b) SE method.

Figure 4.4 shows the total displacement of the C-C fluid filled cylindrical shell with ex-
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citation at point O and responses at the points A, B, C and D, for a frequency range 𝐷𝐶 − 50

Hz. For all displacement response evaluated it can be observed that the SE and FE methods
have good agreement. Simulations were made using the same processor Intel Core𝑇𝑀 i7-6700.
The CPU time for the SE method (MATLAB) takes around 400 𝑠 and the FE method (ANSYS)
97,200 𝑠 to compute the forced responses of the fluid-filled cylindrical shell. This yields CPU
time savings around 99.6 % regarding FE solution. The results made to highlight the relevance
of the proposed method in terms of accuracy and CPU time saving.

Figure 4.4: Total displacement response calculated by FE and SE methods at the points A, B, C
and D and excitation at point O.

4.1.3 FCSSE interpolated results

Similar the section 3.1.5, In order to obtain the displacement results along the whole
structure, an interpolation between de edges of FCSSE must be performed. By taken the dis-
placement results calculated in the edges, and substituting them in the Eq.2.71, the integration
constants 𝑃𝑖,𝑚, 𝐴𝑖,𝑚, 𝐵𝑖,𝑚, and 𝐶𝑖,𝑚 are found. Thus, the spectral amplitude of displacement
components 𝑝(𝑥,𝜙), �̂�(𝑥,𝜙), 𝑣(𝑥,𝜙), and �̂�(𝑥,𝜙) can be calculated for any special position in
the cylindrical shell between the edges.

To evaluate the interpolated results cylindrical shell of the Section 4.1.2, case excitation
and response at point A, is used to calculate by FE and SE, the interpolated displacements at the
angle 𝜙 = 0∘, along the entire length of the structure (𝐿 = 10 m) (Fig. 4.5) with a discretization
of Δ𝑥 = 0.1 m.
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Figure 4.5: Spatial position of the interpolation line (blue line) in the cylindrical shell mode.

Figures 4.6 to 4.9 show the interpolated dimensionless displacement amplitude versus
cylindrical shell length, for several frequency values with F-F and C-C boundary condition. For
all results, a good agreement between FE and SE methods are observed.

Figure 4.6: Cylindrical shell interpolated dimensionless displacement amplitude at f = 18 Hz
with F-F and C-C boundary conditions.
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Figure 4.7: Cylindrical shell interpolated dimensionless displacement amplitude at f = 30 Hz
with F-F and C-C boundary conditions.

Figure 4.8: Cylindrical shell interpolated dimensionless displacement amplitude at f = 52 Hz
with F-F and C-C boundary conditions.

Figure 4.9: CCSSE line interpolated normalized displacement at f = 100 Hz with F-F and C-C
boundary conditions.
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In order to obtain the Operating Deflection Shapes (ODS) for the cylindrical shell, the
procedure applied for one line (𝐿 = 10 m at 𝜙 = 0∘ with Δ𝑥 = 0.1 m discretization at 𝑥
direction) is extended to several lines around the cylindrical shell circle (with discretization
Δ𝑥 = 0.1 m at 𝑥 direction and Δ𝜙 = 𝜋/20 at the circle direction).

Figures 4.10 to 4.13 show the cylindrical shell ODS’s with C-C boundary conditions cal-
culated by FE and SE method at the frequencies f = 30, 52, 64 and 70 Hz. It can be emphasized
the zero displacement at the structure ends due to the C-C boundary conditions.

(a) FE model (b) SE model

Figure 4.10: Cylindrical shell ODS at frequency 30 Hz with C-C boundary conditions.

(a) FE model (b) SE model

Figure 4.11: Cylindrical shell ODS at frequency 52 Hz with C-C boundary conditions.

(a) FE model (b) SE model

Figure 4.12: Cylindrical shell ODS at frequency 64 Hz with C-C boundary conditions.
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(a) FE model (b) SE model

Figure 4.13: Cylindrical shell ODS at frequency 70 Hz with C-C boundary conditions.

Figures 4.14 to 4.17 show the cylindrical shell ODS’s with F-F boundary conditions cal-
culated by FE and SE method at the frequencies f = 30, 52, 64 and 70 Hz. However, for this
case, due the F-F boundary conditions, displacements at the structure ends are noticed.

(a) FE model
(b) SE model

Figure 4.14: Cylindrical shell ODS at frequency 30 Hz with F-F boundary conditions.

(a) FE model (b) SE model

Figure 4.15: Cylindrical shell ODS at frequency 52 Hz with F-F boundary conditions.
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(a) FE model (b) SE model

Figure 4.16: Cylindrical shell ODS at frequency 64 Hz with F-F boundary conditions.

(a) FE model
(b) SE model

Figure 4.17: Cylindrical shell ODS at frequency 70 Hz with F-F boundary conditions.

4.2 Wave Spectral Element verification

Another evaluation of the Wave Spectral Element - WSE approach is made using a unit-
cell with 𝑑 = 0.2 m of an homogeneous fluid-filled cylindrical shell, with the same geometry
and material properties as in the case 4.1.1. Dispersion diagrams are calculated and compared
with those obtained by Analytical Solution (AS) as reported by Fuller and Fahy (1982). The
dispersion curves for the cylindrical shell are obtained from de Equation (2.95) by plotting a set
of functions 𝑘(Ω), where Ω = 𝜔𝑎/𝑐𝑆 is the non-dimensional frequency.

Figure 4.18 shows the dispersion diagrams calculated by WSE and AS for the 𝑚 =

1, . . . , 4 harmonic modes. For WSE each harmonic mode includes five branches of the wave
propagation mode (𝑏 = 1, . . . , 5). Meanwhile, the AS has infinite branches for each wave
propagation mode. Thus, the branches that are found in the two models are compared. A dis-
cussion of these additional branches is presented in the works Fuller (1981) and Mencik and
Ichchou (2007). At low frequency, both diagrams present the branch 𝑏 = 1, which are purely
real wavenumbers and corresponds to a beam type shell motion or the longitudinal elastic mode.

The branch 𝑏 = 2 corresponds to the ring elastic mode, 𝑚 = 1, 2 , 3 and 4, it presents cut
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(a) (b)

(c) (d)

Figure 4.18: Dispersion diagram calculated by AS and WSE methods for the harmonic modes:
(a) 𝑚 = 1; (b) 𝑚 = 2; (c) 𝑚 = 3 and (d) 𝑚 = 4.

on frequencies Ω2 ≈ 0.5 (Figure 4.18a) and Ω2 ≈ 1.0 (Figure 4.18b), Ω2 ≈ 1.4 (Figure 4.18c

and Ω2 ≈ 1.7 (Figure 4.18d).
The branch 𝑏 = 3 is predominantly a torsional shell motion. At low frequency it is a non-

propagating mode (𝑘 is pure imaginary) with cut on frequencies, Ω3 ≈ 0.6 (Figure 4.18a) and
Ω3 ≈ 1.2 (Figure 4.18b) and Ω3 ≈ 1.8 (Figure 4.18c) and Ω3 ≈ 2.3 (Figure 4.18d), and after
these the waves become propagating (𝑘 is pure real).

Finally, at low frequencies the branch 𝑏 = 4 presents complex wavenumbers where real
and imaginary parts have the same absolute magnitude until before the cut on frequencies Ω4 ≈
1.0 (Figure 4.18a) and Ω4 ≈ 1.1 (Figure 4.18b). Ω4 ≈ 1.2 (Figure 4.18c) and Ω4 ≈ 1.3 (Figure
4.18d). After these, the real part goes to zero and the imaginary part decreases as the frequency
increases. Complex wave modes occur in combinations of ±(ℜ± 𝑖ℑ), and the pair that repres-
ents wave motion in the shell axial direction produces an attenuated standing wave. Then, the
complex branches would represent evanescent motion.

The branch 𝑏 = 5, at low frequency it is a non-propagating mode (𝑘 is pure imaginary)
with cut on frequencies,Ω3 ≈ 1.5 (Figure 4.18a) and Ω3 ≈ 2.8 (Figure 4.18b) and Ω3 ≈ 3.1
(Figure 4.18c) and Ω3 ≈ 4.2 (Figure 4.18d), and after these the waves become propagating (𝑘
is pure real).

Figure 4.18 shows that WSE presents good approximation to the AS for some wave modes
manly at low frequency bands. However, as the frequency band increase at few wave modes
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WSE approaches to the AS, while at other not. At low frequencies the AS model presents many
non-propagating wave modes (ℑ𝑘 ̸= 0), while these modes only become propagating as the
frequency becomes higher (ℜ𝑘 ̸= 0). Also, the AS model presents much more wave modes
than the WSE model, which prevents a comparison with all AS modes presented in the figure.

4.3 Phononic crystal example

An example of an fluid-filled cylindrical shell phononic crystal (PC) is evaluated includ-
ing water as internal fluid. The WSE is applied to calculate the dispersion diagrams and the SE
is used to obtain the forced responses. The unit-cell is made with three layers of two elastic ma-
terials combined as: steel(20%)-polyacetal (60%)-steel(20%) + internal water. Table 4.6 shows
the PC material properties and geometric parameters. The geometric parameters and material
properties are the same as shown in Section 3.3.

Table 4.6: Phononic Crystal Material Properties & Geometry

Property/Geometry Steel Polyacetal Water
Density (𝜌) 8030 kg/m3 1418 kg/m3 1000 kg/m3

Sound speed (𝑐) - - 1500 m/s
Young’s modulus (𝐸) 193 GPa 3.3 GPa -
Poisson’s ratio (𝜈) 0.27 0.35 -
Loss factor (𝜂) 0.001 0.001 -
Radius (𝑎) 0.05 m 0.05 m -
Thickness (ℎ) 0.0025 m 0.0025 m -
Unit-cell length (𝑑) 0.01 m 0.03 m -

The total displacement response for a C-C cylindrical shell PC made with 𝑁 = 20 unit-
cells as shown in Figure 4.19, and filled with water is calculated over a frequency band of
𝐷𝐶 − 10.0 kHz. The PC is excited by two opposite radial point forces of magnitude 𝐹 = 100

N at point A and the displacement response is obtained at point C.

Figure 4.19: Cylindrical shell phononic crystal including𝑁 = 20 unit-cells and water as internal
fluid, with force excitation (point A) and response (point C) positions.



89

The wavenumbers are calculated and the dispersion diagrams are obtained for the six wave
modes 𝑚 = 2, 4, 6, 8, 10, and 12. The total displacement response at point C and dispersion
diagrams are shown in Figure 4.20.

The displacement response at point C and the dispersion diagrams are presented in Figure
4.20. Dispersion diagrams (Figure 4.20b) show similar behavior as presented in Figure 3.25
(Section 3.3). In the dispersion diagrams 𝑘(𝜔), band gaps are identified as a frequency band
where the real part of the wavenumber is the Bragg limit or zero (ℜ{𝑘} = 𝜋/𝑑 = 62.83 m−1 or
ℜ{𝑘} = 0), and the imaginary part is different from zero (ℑ{𝑘} ̸= 0). Under these conditions,
the waves become evanescent (non-propagating) and a band gap is identified. Otherwise, the
wave is propagating and a pass band is obtained. Figure 3.25 (bottom) shows that at least one or
two complete band gaps can be easily identified for each wave modes in the analyzed frequency
band.
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(a)

(b)

Figure 4.20: Fluid-filled cylindrical shell phononic crystal: a) Displacement response at point
C to a force excitation at point A; b) Unit-cell dispersion diagrams for wave modes 𝑚 =2(�),
4(�), 6(�),8(�),10(�) and 12(�).

However, for the analyzed frequency band only few wave modes presents a complete
band gap, such as 𝑚 = 2 (2 band gaps) and 𝑚 = 4 (1 band gap), all other wave modes
contain only one partial band gap. By using the same procedure as in Section 3.3, the dispersion
diagrams for the six wave modes are evaluated and only one effective band gap (frequency band
including only evanescent waves for all wave modes) is found in the frequency band of 1.8-2.8
kHz (gray shaded). Out of this frequency band, propagating waves are present and a pass band
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(yellow shaded) is identified. Figure 4.20a shows the displacement response at point C, which
corroborates the dispersion diagram results since it presents significant attenuation only at the
same frequency band (grey shaded) as shown by the effective band gap. In this example the
influence of higher modes in the calculation of the effective band gaps is more evident and can
be helpful into the PC design. It can be seen in this example that for the pass band (2.8-10.0
kHz), which is the grater part of the analyzed frequency band, at least six band gaps (complete or
partial) were generated, but apparently they are unable to produce significant attenuation at the
PC displacement response. Of course, these results are biased by the number of modes analyzed
as well as the points of excitation and response calculated, but it seems to be an important point
to be raised.

Again, in order to promote the understanding, the curves are presented mode by mode
revealing the mechanism of band gaps formation shown in Figures 4.21 to 4.25. Thus the Figure
4.21 shows dispersion curve only for the 𝑚 = 2 mode, thus illustrating the appearance of band
gaps, the first from 1.8 kHz to 3.4 kHz and the second from 4.7 kHz to over 16 kHz.

Figure 4.21: Dispersion curve only formodes 𝑚 =2(�).

Figure 4.22 shows dispersion curves for 𝑚 = 2 and 𝑚 = 4. The propagating part of
𝑚 = 4 destroys the band gaps initially found, then the amount of band gaps increases to three.
The first from 1.8 kHz to 2.8 kHz, the second from 4.7 kHz to 6.3 kHz, and the third goes from
9.0 kHz to over 10 kHz.
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Figure 4.22: Dispersion curves for modes 𝑚 =2(�) and 4(�) .

In the Figure 4.23 the 𝑚 = 6 is added, this mode becomes propagating at 3.38 kHz and
quickly reaches the Bragg limit, its a propagating mode at 3.4 kHz up to 4.7 kHz. Lastly, the
𝑚 = 6 mode is propagated between the frequencies from 8.1 kHz to 10.0 kHz. Considering
only the 𝑚 = 2, 4 and 6 modes, two band gaps are formed. The first from 1.8 kHz to 2.7 kHz
and second from 4.7 kHz to 6.3 kHz. So the 𝑚 = 6 mode destroys the previously existing third
band gaps.

Figure 4.23: Dispersion curves for modes 𝑚 =2(�), 4(�) and 6(�) .

In Figure 𝑚 = 8 is added, Figure 4.24, this mode becomes propagating at 4.0 kHz and
quickly reaches the Bragg limit. It a propagation mode at 4.0 kHz up to 5.3 kHz. The first band
gaps are not affected by the mode 𝑚 = 8 while the second band gap has a range reduced from
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4.7-6.3 kHz to 5.3-6.3 kHz. After that value, neither a band gap is observed until the frequency
of 10.0 kHz.

Figure 4.24: Dispersion curves for modes 𝑚 =2(�), 4(�), 6(�) and 8(�)

Finally, 𝑚 = 10 is added, Figure 4.25, this mode becomes propagating at 4.9 kHz. It is
a propagation mode at 4.8 kHz up to 6.0 kHz. First band gaps are not affected by the mode
𝑚 = 10 while the second band gap has a range reduced from 5.3-6.3 kHz to 6.0-6.3 kHz.
After that value, neither a band gap is observed until the frequency of 10.0 kHz. Other modes
of propagation appear before 10 kHz, however they do not affect the constitution of band gaps
already enumerated.

Figure 4.25: Dispersion curves for modes 𝑚 =2(�), 4(�), 6(�),8(�) and 10(�) .

The second band gaps is completely destroyed with the addition of the 𝑚 = 12 mode, see
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Figure 4.20(b). Therefore, for the case studied there is only one band gap.
Figure 4.26 shows the ODS of the cylindrical shell phononic crystal studied at the fre-

quency of 1682 Hz. At this frequency, the structure does not experience attenuation of vibration
along its length.

Figure 4.26: ODS of the cylindrical shell phononic crystal at the frequency 1682 Hz

Figure 4.27 shows the behavior of the cylindrical shell phononic crystal at the frequency
of 1840 Hz. This frequency, the structure is found in the band gap region, but not at the deepest
point of the band gap. Therefore, there is a clear attenuation of the vibration structure as it is
observed points further away from the loading application places.

Figure 4.27: ODS of the cylindrical shell phononic crystal at the frequency 1840 Hz

Figure 4.28 shows the behavior of cylindrical shell phononic crystal at the frequency of
2400 Hz. This is close to the deepest points in the band gap. Thus, displacements are only
observed close to the excitation point of the structure.
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Figure 4.28: ODS of the cylindrical shell phononic crystal at the frequency 2400 Hz

Finally, Figure 4.29 shows the behavior of the cylindrical shell phononic crystal at 2900
Hz. At this frequency, the structure left the first band gap completely and is a frequency without
attenuation. Thus, the structure shows a uniform vibration behavior throughout the entire cyl-
indrical shell.

Figure 4.29: ODS of the cylindrical shell phononic crystal at the frequency 2900 Hz
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5 CONCLUSION

A fluid-filled cylindrical shell spectral element was formulated and presented. Both
models, in vacuo and fluid-filled closed circular cylindrical shell spectral element were
theoretically reviewed, computationally implemented, and verified by the FE method using
simulated examples. In addition, they were applied to the WSE method to evaluate a unit-cell of
a homogeneous periodic structure and a phononic crystal made with two materials distributed
in three layers, to obtain the dispersion diagrams. By connecting 20 of these unit-cells, the
forced responses were obtained using the Spectral Element (SE) method.

The results of both SE models (CSSE and FCSSE) from a theoretical modal analysis and
dispersion wave analysis of a homogeneous closed circular cylindrical shell spectral element
are in good agreement with those calculated by the FE method (ANSYS) and analytical
solution. Forced responses are also calculated by SE and present good agreement with those
obtained by FE. Simulations were made using the processor Intel Core𝑇𝑀 i7-6700 and for all
examples the CPU time for the SE method (MATLAB) was much shorter than that of the FE
method (ANSYS).

Using the spectral element, it is possible to obtain the exact solution of the behavior of
a shell at high frequencies with low computational effort. The mentioned facts are important
characteristics, and can have great influence on modern dynamic behavior prediction techniques
for these frequency ranges. Thus, CSSE and FCSSE are presented as an alternative for the
investigation of the band gap caused by phononic crystals, because the attenuating effects on
crystals are usually found at higher frequencies.

Finally, WSE is formulated for the analysis of wave propagation in a homogeneous
elastic cylindrical shell. In this method, the dynamic stiffness matrix of a small slice of the
cylindrical shell modeled by the SE method (CSSE or FCSSE) is used for the application of
periodicity conditions in the propagation of a harmonic disturbance through the structure. The
periodicity conditions result in a eigenvalue problem with a formulation that produces the
equations of the force relations - displacement of the structure. Thus, the wavenumber 𝑘 is
used to compute at cylindrical shell phononic crystal. Dispersion diagrams are calculated and
compared with those obtained by the Analytical Solution.

The WSE is applied to a unit-cell of the in vacuo and fluid-filled models of a cylindrical
shell PC to obtain the dispersion diagram and identify the frequency band gaps. The band gaps
may be identified for the wave modes analyzed , but correspondence with the attenuation at
forced response requires the inclusion of a minimum number of wave modes in the analyzed
frequency band in order to identify the effective band gaps. An effective band gap is the one
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that contains only evanescent waves in all wave modes included in the desired frequency band.
This is important because at some frequency bands there are wave modes generating evanescent
waves (band gaps), while other modes produce propagating waves, which reduce the destructive
interference effect (Bragg effect). As a consequence, the attenuation of the PC displacement
response is reduced or the band width is shortened. Of course, the results presented in the work
may be biased by the number of modes analyzed as well as the points of excitation and response
calculated, but it seems to be an important point to be raised.

5.1 Future work

In the following, topics which appear as future prospects for continuation of the research
developed in this thesis are listed.

∙ Experimentally verify the results obtained for the fluid-filled phononic crystal cylindrical
shell.

∙ Use WSE approaches to design metamaterials equipped with a local resonator periodic-
ally distributed in a fluid-filled cylindrical shell.

∙ Develop a spectral element of the curved shell.

∙ Use CSSE and FCSSE for the investigation and monitoring of damage or cracks in a
cylindrical shell.

∙ Use CSSE and FCSSE associated with the supercell technique to include line defects in
PCs for waveguides and by confining standing waves in the defects. It could also be used
to constitute resonators and filters.

∙ Extend the approaches proposed in this thesis to describe vibroacoustic system structures
with interaction with external acoustic fields.

∙ Study the variability related to the physical parameters of PCs manufactured by a 3D
printer.

∙ Formulate cylindrical shell models for structures with two-dimensional periodicities. In
this thesis, only the case of structures that are periodic along one direction has been ad-
dressed.
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