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The Telescope, the Fluxions, the invention of Loga-
rithms and the frenzy of multiplication, often for its
own sake, that follow’d have for Emerson all been steps
of an unarguable approach to God, a growing clarity,—
Gravity, the Pulse of Time, the finite speed of Light
present themselves to him as aspects of God’s charac-
ter. It’s like becoming friendly with an erratic, power-
ful, potentially dangerous member of the Aristocracy.
He holds no quarrel with the Creator’s sovereignty, but
is repeatedly appall’d at the lapses in Attention, the
flaws in Design, the squand’rings of life and energy,
the failures to be reasonable, or to exercise common
sense,— first appall’d, then angry. We are taught,—
we believe,— that it is love of the Creation which drives
the Philosopher in his Studies. Emerson is driven,
rather, by a passionate Resentment.

(Thomas Pynchon — Mason & Dixon)
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Resumo

Espera-se que a comunicação quântica se torne uma tecnologia amplamente difundida, tendo como parte
de sua base os protocolos de distribuição de chaves criptográficas, codificação superdensa, e os códigos
de acesso aleatório. Embora as vantagens do uso de sistemas quânticos nesses protocolos tenham sido
demonstradas por uma série de experimentos, ainda há muito a ser entendido acerca dos seus fundamentos
teóricos. Nos cenários de preparação e medição — nosso principal tema — podemos encontrar uma base
comum para todas essas tarefas. Um dos objetivos básicos nas tarefas de comunicação quântica é o de
determinar quais sistemas quânticos podem superar a capacidade de suas contrapartidas clássicas, e quais
são as estruturas quânticas por trás desse comportamento. Acerca disso, nosso principal resultado é uma
série de condições capazes de certificar se um conjunto de preparações quânticas não apresenta vantagem
em relação ao uso de sistemas clássicos para comunicação. Utilizando um desses critérios, evidenciare-
mos a existência de um fenômeno de ativação de não-classicalidade, intimamente conectado a vantagens
quânticas em códigos de acesso aleatório. Através de um critério similar, também demonstraremos que a
incompatibilidade de medições — uma das estruturas no cerne da teoria quântica — não é suficiente para
explicar a origem dos comportamentos quânticos no cenário de preparação e medição. Apesar de diversas
conexões entre códigos de acesso aleatório e cenários de preparação e medição já terem sido exploradas na
literatura, a situação é oposta em relação à conexões com o protocolo de codificação superdensa. Em um
primeiro passo nessa direção, discutiremos como mapear um cenário de codificação superdensa para um
de preparação e medição, de modo a torná-los independentes de dispositivos. Com isso, poderemos con-
struir testemunhas de emaranhamento, critérios para autoteste de estados maximamente emaranhados,
e um método para otimizar a probabilidade de sucesso em protocolos de codificação superdensa.



Abstract

Quantum communication is expected to become a widespread technology. Dense coding, random access
coding, and quantum key distribution are some of the most outstanding communication protocols where
quantum systems provide advantage over their classical counterparts. These will arguably be building
blocks for the so-called quantum internet, and recent experiments prove they are feasible in practice. Even
so, much of their theoretical underpinnings are still poorly understood. Prepare and measure scenarios
— our main theme in what is to come — are a useful abstraction within which a common basis for
these protocols can be found. By hiding most implementation details, these semi-device independent
scenarios also yield interesting insights into quantum theory itself. An objective of primal importance
in quantum communication tasks is determining which quantum systems provide advantage over their
classical siblings, and what are the quantum structures that enable this to happen. Our main progress
in that regard consists in providing sufficient conditions to attest a given set of quantum states — the
message carriers — are not advantageous. As it turns out, one of these conditions is closely linked to
quantum random access coding, enabling us to prove a quantum advantage activation phenomenon for this
communication task. From a more fundamental perspective, a similar criterion proves that measurement
incompatibility — a promising candidate for the origin of strictly quantum behaviors — is insufficient
to explain where this quantumness arises from. While some connections between prepare and measure
scenarios and random access coding have already been explored in the literature, those of the former with
the dense coding protocol have not. As a first step towards that end, I will provide a straightforward
recipe that maps the dense coding protocol to prepare and measure scenarios, thereby turning them semi-
device independent. Ensuingly, its analysis will provide us with entanglement witnesses, the possibility
of self-testing maximally entangled states, and an optimization procedure for the dense coding protocol.
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Introduction

In the widest sense, quantum information is the study of the encoding, processing, and decoding of
information by means of quantum systems. The field came about during the ’80s and ’90s, when ground-
breaking results in quantum computing [49, 126] and, most notably, quantum cryptography [17, 46],
connected informational with foundational aspects of quantum theory. Ultimately, this paved the way
that turned quantum information into a vast and thriving research field.

Correlation scenarios are central to quantum information. In an important subset of correlation
scenarios, two or more parties locally interact with and read out information from their respective systems.
When only two parties are considered, it is usual to call them Alice and Bob and think of each as being in
their own lab, locally interacting with their own experiments. It so happens that Alice’s and Bob’s results
can be correlated, even in cases where no communication takes place during the experiment. There is
nothing surprising in observing correlations, after all, they commonly arise in all sorts of physical systems.
However, something interesting happens if we further ask to what extent correlations are present: when
the underlying systems are assumed to go by the laws of classical physics, the possible correlations obey
a certain structure that, strikingly, can sometimes be violated by quantum systems. This puts a clear
divide between the behaviors of classical, quantum, and even more exotic systems [114]. More than
that, because such violations can be determined from measurement results alone, Alice and Bob can
certify whether they are dealing with quantum systems even when they have no previous knowledge
about their experiments. It is then usual to picture the systems as being inside black-boxes that can
only be investigated by providing inputs (e.g., representing measurement choices) and collecting outputs.
This is the so-called device-independent paradigm, of which the most well-known example is that of Bell
nonlocality [25]. Nonlocal behaviors are also precisely the characteristic that allows for provably secure
quantum key distribution protocols [46], communication complexity [28], and many other informational
applications of device-independent correlation scenarios [25]. From a more foundational perspective,
stashing systems into black-boxes let us to hide implementation details, and thus examine classical,
quantum, and other theories for themselves. The question of what, exactly, is quantum in quantum
theory has puzzled scientists for more than a century, and the device-independent paradigm is closely
linked to modern investigations on this topic [14, 111, 128].

This thesis will be largely concerned with employing the device-independent paradigm to investigate
quantum communication protocols, which are clever ways of encoding, transmitting, and subsequently
decoding information using quantum systems. To be useful in practice, quantum communication must
provide some kind of advantage over the common practice of using classical systems for similar tasks.
This is exactly the case in the dense coding protocol [19]. In it, one party communicates a d-dimensional
quantum system to another and, by exploiting pre-existing entanglement, the receiving end may perfectly
recover two classical dits of information, thus doubling the capacity of a noiseless classical communication
channel. This celebrated protocol is also remarkable for its theoretical simplicity, and its applicability
paves the way towards the development of quantum technologies. However, dense coding has only been
discussed in the device-dependent case, where one has full knowledge on which states may be prepared
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and what measurements can be applied. To turn it device independent, we must look for a correlation
scenario with a causal structure that presupposes communication — the aforementioned Bell nonlocality
scenario does not. The simplest choice is the prepare and measure scenario. In chap. 5, we will see
how doing so leads to several entanglement witnesses, the possibility of self-testing maximally entangled
states, and a procedure to search for which states or measurements lead to the best probability of success
in the dense coding protocol.

The prepare and measure scenario (chap. 4) has been attracting growing attention in recent years.
Part of this interest comes from it being useful for quantum key distribution [105] and self-testing quantum
systems [130, 132], while they can also be seen as building blocks for quantum communication networks
[112, 21]. In the simplest instance of a prepare and measure scenario (fig. 3.1), a preparation device
receives an input, then prepares and communicates some system to a measurement device which, given
another input by a second observer, outputs a result. Calling our friends for help, we may picture Alice
operating the preparation device, and Bob the measurement one. Many practical tasks in this scenario
involve Alice wanting to send some message to Bob through a limited amount of communication, and
in that case, we can see the preparation as the encoding, the communicated system as the carrier,
and the measurement as the decoder of the message. Only observational data is collected by each
of the two parties, which means the devices are black-boxes. Similar to how we can tell quantum from
classical behaviors apart in Bell nonlocality scenarios, it is sometimes also possible to device independently
certify that nonclassical communication happened in a prepare and measure experiment. As nonclassical
behaviors are the ones that may lead to quantum advantages in communication, an important question
arising in this context is whether some set S of possible quantum preparations can manifest nonclassical
behaviors. Measurements play a crucial role in this regard. To necessarily and sufficiently certify the
classicality of S, one needs to test the preparations under all the infinitely many possible measurements.
This is precisely the problem we tackle in chap. 4, where we devise a general method to certify whether
an arbitrary set of preparations always behaves in a way that classical systems also could. When this is
the case, S is not useful for quantum enhancement in communication protocols. More than constructing
the method, we also use it to prove the existence of a quantum advantage activation phenomenon in
random access coding [8], another important communication protocol. In that same chapter, we turn
the question inside-out by asking whether some set M of quantum measurements is useful to reveal
nonclassical behaviors. Quantum measurements differ from their classical counterparts in that they can
be incompatible. Given that no entanglement is present in this instance of prepare and measure scenarios,
incompatibility is a good candidate for the origin of quantum behaviors. Through the method built for
this second task, we prove there are incompatible measurements that nevertheless cannot give rise to
nonclassical behaviors, thence that incompatibility is not sufficient for nonclassicality in the prepare and
measure scenario.

Part I of this thesis, where I review basic aspects of quantum theory, convexity, and mathematical
optimization, provide the theoretical foundation for later discussions. The first chapter presupposes
reasonable familiarity with quantum theory. For newcomers, pedagogical references are provided therein.
The tools presented in Part I will set up the stage for Part II, in which we will discuss general instances of
prepare and measure scenarios (chap. 3), classicality certification methods (chap. 4), and the formulation
of device-independent dense coding (chap. 5). The tourist reader may want to start from chap. 3 before
deciding whether to read the remaining chapters. Appendix A provide computational details for the
classicality results, and appendix B proves all results presented in chap. 5.
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Part I

Tools
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Chapter 1

Quantum theory

States, transformations and measurements are the basic building blocks in the description of any physical
system. In this chapter, I review the mathematical structures that quantum theory assigns to each of these
building blocks, emphasizing the aspects that most drastically differ from their classical counterparts.
Pedagogical introductions from a similar viewpoint are found in [101, 12, 6, 149, 124].

1.1 States

A structure at the core of the most unusual of quantum behaviors is entanglement — a property that
may or not be present in composite quantum systems. The unusual correlations that entanglement may
originate were pointed out as early as 1935 by Einstein, Podolsky and Rosen [45], and also discussed by
Schrödinger, who coined the term (originally, “Verschränkung”) [123]. This discussion was later rescued
by John Bell in 1964 [15], and since then been extensively tested and developed [77], ultimately becoming
a central feature of many quantum informational protocols, such as dense coding [19], quantum key
distribution [17] and teleportation [18]. Entanglement theory is a vast and endlessly interesting field of
study in itself, some aspects of which I now review with special focus on bipartite systems, and making
no attempt of comprehensiveness.

∗ ∗ ∗

A quantum state is described by a density operator, commonly denoted by ρ. Any density operator
is a linear, unit-trace and positive semidefinite (PSD) operator1 in a Hilbert space H. Any operator
satisfying these properties represents a valid quantum state. Hence,

D(Hd) = {ρ ∈ L(Hd) | trρ = 1, ρ � 0}, (1.1)

where L(Hd) is the set of linear operators in Hd, is the space of density operators in dimension d. Only
finite-dimensional Hilbert spaces will be considered.

As ρ � 0 =⇒ ρ = ρ†, we can use the spectral decomposition to write ρ =
∑
mmΠm, where each Πm

is a projector onto the eigenspace of ρ associated with eigenvalue m. Such projectors are orthogonal.
They need not be normalized, but we can always and will take them as being. Orthogonality implies that
ΠmΠn = δmnΠm and 1 ≤ rank(ρ) ≤ d, and normalization that tr (Πm) = 1. Furthermore, all m ≥ 0, and
tr (ρ) = 1 =⇒

∑
mm = 1.

1A Hermitian operator O : L(H) 7→ L(H) is said to be PSD if and only if x†Ox ≥ 0, ∀x ∈ H. Equivalently, if and only
if all its eigenvalues are real and nonnegative. In this case, we denote O � 0.
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You may recall the more usual definition that a quantum state is described by a unit vector in a
Hilbert space and, conversely, that such unit vectors describe quantum states. This is only true for a
subset of states called pure quantum states. Following along the tradition, we will denote pure quantum
states as |ψ〉, where ψ is some label that describes the state. Similar notation is used for the dual vector
(|ψ〉)† ≡ 〈ψ|, which is useful to write the inner product between any two vectors in the same space as
〈ψ|φ〉, and the outer product as |ψ〉〈φ|. An useful geometric intuition on these products is to interpret
the inner product as the overlap between |ψ〉 and |φ〉, and an outer product |ψ〉〈ψ| as a projection onto
|ψ〉. Any pure state vector |ψ〉 can equivalently be described as the density operator ρ = |ψ〉〈ψ|.

Recalling that all projectors in a decomposition of a density operator ρ are normalized, in the non-
degenerate case we may interpret the Πm ≡ |m〉〈m| as projections onto the pure states labeled by |m〉,
and the spectral decomposition ρ =

∑
mmΠm as a probability distribution, weighted by the eigenvalues

m, over those. Whenever rank(ρ) = 1, we may hence infer that ρ stands for a pure state. Equivalently,
whenever ρ is such a one-dimensional projector, the purity tr

(
ρ2
)

= 1, while in general 1/d ≤ tr
(
ρ2
)
≤ 1.

This is one of the reasons why density matrices are more general than pure states. All other density op-
erators (i.e., those of non-unit rank) are said to describe mixed quantum states. Although the spectral
decomposition of ρ suggests that a mixed state can be interpreted as a probability distribution over pure
states, the understanding of a mixed state as lack of knowledge on the exact state of the system should
not be taken literally. One of several reasons for this assertion is that there may be many pure state
ensembles generating the same density operator [78].

Given a basis {|ei〉}di=1 for Hd, any pure state |ψ〉 in Hd can be written as |ψ〉 =
∑d
i=1 ci |ei〉, where the

ci ∈ C and
∑
i |ci|

2
= 1 due to 〈ψ|ψ〉 = 1. We will frequently be interested in H2, in which it is common

to work with the orthonormal computational basis {|0〉 , |1〉}. The vector representations associated with
the computational basis elements are |0〉 ≡ (1 0)

ᵀ and |1〉 ≡ (0 1)
ᵀ. Any |ψ〉 ∈ H2 can thus be identified

with |ψ〉 = c1 |0〉 + c2 |1〉 = (c1 c2)
ᵀ. An extension to a generalized d-dimensional computational basis

{|i〉}d−1
i=0 is similarly done. Due to its analogy with two-level classical systems (bits), a |ψ〉 ∈ H2 is termed

a quantum bit (qubit) and, similarly, any |ψ〉 ∈ Hd is a qud it.
Entanglement — and its opposite concept, separability —, are properties related to composite quantum

systems. If we choose 2 for the number of subsystems, the underlying Hilbert space H of a state ρ can
be correspondingly factored as H ≡ HA ⊗HB , for choices of HA and HB respecting dimHA · dimHB =

dim H. Using the tensor product for composition is the quantum analogue of using the Cartesian product
to build composite phase spaces in classical mechanics.

Letting {|ψi〉}dAi=1 and {|ϕα〉}dBα=1 be orthonormal bases for HA and HB , respectively, we can easily
build an orthonormal basis for H as {|ψi〉 ⊗ |ϕα〉}dA,dBi=1,α=1. This means that any vector |ψ〉 ∈ H has a
decomposition

|ψ〉 =

dA∑
i=1

dB∑
α=1

ciα |ψi, ϕα〉 , (1.2)

where |ψi, ϕα〉 ≡ |ψi〉 ⊗ |ϕα〉, and ciα ∈ C, ∀i, α. Analogously, with {|ψi〉〈ψj |}dAi,j=1 as a basis for L(HA)

and {|ϕα〉〈ϕβ |}dBα,β=1 one for L(HB), any operator O ∈ L(H) may be decomposed as

O =
∑
ijαβ

Oijαβ |ψi〉〈ψj | ⊗ |ϕα〉〈ϕβ | , (1.3)

with all coefficients Oijαβ ∈ C.
Suppose A⊗1B ∈ L(HA⊗HB) is an operator acting trivially on HB . For any O ∈ L(HA⊗HB), the
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expectation value of A⊗ 1B is given by

〈A⊗ 1B〉 = tr

∑
ijαβ

Oijαβ A |ψi〉〈ψj | ⊗ |ϕα〉〈ϕβ |

 = tr

A
∑
ijα

Oijαα |ψi〉〈ψj |

 ,
which implies that tr [(A⊗ 1B)O] = tr

(
AOA

)
, where we define

OA = trB (O) =
∑
ijα

Oijαα |ψi〉〈ψj | .

OA is what we call a reduced operator, and it is related to O through the partial trace operation. This
operation is especially useful when O is a density operator. In that case, we say trB (ρ) = ρA is a reduced
state, representing the local information contained in the subsystem in HA alone. Of course, we could
trace out on HA instead, by writing ρB = trA (ρ).

Given a factorization of H, a state ρ acting on H is said to be separable if and only if it can be written
as

ρ =
∑
i

piρ
A
i ⊗ ρBi , (1.4)

where
∑
i pi = 1, pi ≥ 0, ∀i, and ρAi ∈ D (HA); correspondingly for ρBi . A state that is not separable

is entangled. For pure states, this reduces to |ψ〉AB = |ψ〉A ⊗ |ψ〉B , and when this form is not possible,
|ψ〉AB is entangled.

Asking whether a state ρ ∈ D (H) is entangled is only meaningful when the factorization structure is
specified. As a matter of fact, any bipartite pure entangled state |ψ〉 ∈ H2

A ⊗H2
B can be made separable

by a fitting choice of factorization [35]. This observation implies that entanglement is a property of a
state with respect to a choice of subsystems, and not of the state in itself. In practice, the factorization
can be imposed by the physical arrangement of the system, as is the case for spatially separated devices
in correlation scenarios. Naturally, one may also discuss entanglement in larger number of subsystems
[77], but the complexity scales significantly fast, and the discussion would be of little usefulness to our
objective.

A rationale for the definition of separability comes from a preparation procedure [147]. Consider two
separate laboratories, each equipped with a device that prepares quantum states, and sharing a source
of (classical) randomness. Given a random number i, generated by the source with probability pi, the
laboratories locally prepare states ρAi and ρBi . Now suppose the first laboratory measuresMA, and the
second MB , each on their respective preparation. For a pair of measurement effects EmA ∈ MA and
EmB ∈MB (sec. 1.3), we then have

p(mA,mB) =
∑
i

pitr
(
EmAρ

A
i

)
tr
(
EmBρ

B
i

)
= tr (EmA ⊗ EmBρ) .

In the last equality, ρ ≡
∑
i piρ

A
i ⊗ ρBi matches the definition of a separable state.

With this discussion, it is also clearer that separable states are not uncorrelated. However, they may
only exhibit correlations as strong as the ones possible in classical systems, and for this reason are said
to be classically correlated. Entangled states, conversely, manifest correlations that are not classically
reproducible, which makes it a intrinsically nonclassical property.

Properly justified, the definition of entanglement is quite amicable. It is not, however, computationally
friendly, and determining whether a given state ρ can be decomposed as in eq. (1.4) or not can be a
daunting task. Even in bipartite structures, the problem is fully solved only under special circumstances,
such as for pure states, dimensionally limited Hilbert spaces, or for some special families of quantum
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states, including Werner states and isotropic states. These will become important in due time, so we
discuss them now.

For bipartite pure states of any dimension, the problem can be fully solved through the so-called
Schmidt decomposition. The Schmidt decomposition theorem states that any |ψ〉 ∈ HA ⊗ HB can be
decomposed as

|ψ〉 =

d∑
i=1

ηi |iA〉 ⊗ |iB〉 , (1.5)

where {|iA〉}dAi=1 and {|iB〉}dBi=1 are orthonormal bases for HA and HB , respectively, ηi ≥ 0, and d =

min{dA, dB}. We call ηi Schmidt coefficients, denote by rS(ψ) the number of non-zero coefficients
(Schmidt rank), and say {ηi(ψ)}rS(ψ)

i=1 is the Schmidt spectrum.
Contrasted to eq. (1.2), this is a remarkable simplification. For one, this representation requires a

single sum, but also, d is the minimum local dimension, irrespective of how (finitely) large the other
dimension may be. It also resembles the definition of separability versus entanglement for pure states.
Actually, it can be shown that a pure bipartite state |ψ〉 is entangled if and only if its Schmidt rank rS(ψ)

is greater than one; equivalently, if the Schmidt decomposition has more than one term, or if any ηi = 1,
because

∑
i η

2
i = 1.

This observation urges us to ask: are some states more entangled than others, and can a Schmidt
“something” be used to measure this? Attempting to adequately discuss entanglement quantifiers would
be going too far. However, as some introductory basic concepts will turn useful, we discuss them with
no intention on reproducing the thoroughness that can be found in [110, 34, 77, 27].

The first important thing is that there is a whole zoo of entanglement quantifiers, such as concurrence,
negativity, entanglement of formation, etc. The second is that they do not always agree with each other
on the ordering they impose on the set of entangled states. Thus, depending on the intended use, there
may be some more adequate than others. Nevertheless, there are several desirable properties for an
entanglement measure E : D(d) 7→ R to satisfy, such as E(ρ) = 0 if ρ is separable, and that it should not
increase under local operations with classical communication (LOCC); a condition reminiscent of, but
actually weaker than the operational definition of separability given above.

Making the Schmidt rank respect the first condition is easy (just subtract 1). Using the Schmidt
spectrum to impose a partial ordering on the set of pure states requires some extra caution, but it can
be done through majorization. We first order the of some state |ψ〉 in non-increasing order, then define

ψ ≺ ϕ ⇐⇒
r∑
i=1

η2
i (ψ) ≤

r∑
i=1

η2
i (ϕ), ∀r.

If ψ ≺ ϕ, we say that ψ is majorized by ϕ, or that ϕ majorizes ψ. In relation to entanglement, ψ would
then be more entangled than |ϕ〉, in the sense that we may convert |ψ〉 to |ϕ〉 solely by means of LOCC
[100, 34]. With this in mind, states for which ηi = 1/

√
d for all i are said to be maximally entangled.

Although the Schmidt decomposition only works for pure states, the idea of the Schmidt rank can be
nicely generalized to an entanglement measure over mixed states. The so called Schmidt number [133] is
given by

rS(ρ) = min
{|ψi〉}i

{max
i

[rS(ψi)]}, (1.6)

where I reuse the notation rS from the Schmidt rank because the two notions are equivalent for pure
states. Arguably opaque, this definition is better understood through a procedure. Starting from ρ, we
find an ensemble of pure states ρ =

∑
i pi |ψi〉〈ψi| for it, list the rS(ψi) for each state of the ensemble,

and take the maximum. This corresponds to the inner maximization. However, the decomposition we
choose for ρ is not, in general, unique. So we do this procedure for all possible sets of pure states {ψi}i
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that may be used to build ρ, and take the minimum element of the resultant set, which is what the outer
minimization means. Denoting as Sk the set of density operators with Schmidt number less than or equal
to k, it will be of most importance for us that Sk−1 ⊂ Sk, that S1 is the set of separable states, that each
Sk is a convex set, and that its extremal points are pure states.

Going back to the problem of determining whether a given ρ is entangled, whenever we limit the
dimensions as H = H2⊗H2 or H = H2⊗H3, the positive partial transpose (or PPT) criterion provides a
necessary and sufficient condition [109, 76]. In all other cases, the condition is still sufficient, though not
necessary. To understand the sufficiency affirmation, we recall that the partial transpose is a transposition
operation acting only on some subsystems. Reusing the decomposition in eq. (1.3), the partial transpose
over B is defined as

OᵀB = (1A ⊗ T )O =
∑
ijαβ

Oijαβ |ψi〉〈ψj | ⊗ |ϕβ〉〈ϕα| ,

where T stands for the transposition map. Now suppose that we take a separable state ρ and trans-
pose, for instance, its second subsystem (the argument is equivalent for transposing the other). Then
ρᵀB =

∑
i piρ

A
i ⊗

(
ρBi
)ᵀ. Building on the fact that ρBi was a valid density operator, and that the trans-

pose preserves its trace and eigenvalues, it follows that
(
ρBi
)ᵀ is also a density operator. With ρAi left

unchanged, this implies that ρᵀB � 0. Consequently, all separable states have positive partial transpose,
which also implies that if the partial transpose of some ρ has negative eigenvalues, it must be entangled.

Shortly after Peres made this argument [109], Horodecki et al. showed that for dA · dB ≤ 6 the PPT
criterion is actually necessary and sufficient: no entangled states in these factorizations have positive
partial transpose [76]. For larger dimensions, though, they also prove this is not always true; except
under special circumstances. The PPT criterion is also commonly called “Peres-Horodecki” criterion.

One such special case is that of Werner states. They were central to the first proof that entanglement
and Bell nonlocality [36, 25] are not equivalent concepts [147]. More specifically, it was shown that a large
set of entangled Werner states are nevertheless local under projective measurements. Later, the bound
for locality in d = 2 was improved several times [4, 139, 72], the result was extended to POVMs [13], and
they were also made pivotal in the study of quantum steering [150, 32, 135] and as a test bed for the
capabilities of many quantum informational protocols, such as (semi)device-independent entanglement
witnesses. What makes them especially tractable is that they are highly symmetric, as Werner states are
bipartite states in Hd ⊗Hd for which (U ⊗U) ρ (U† ⊗U†) = ρ, where U are unitary operators. It can be
shown that this is a one-parameter family of states, and that they may be written as

Wd(α) =

(
d− 1 + α

d− 1

)
1

d2
−
(

α

d− 1

)
S

d
. (1.7)

Here, S =
∑d−1
i,j=0 |ij〉〈ji| is the swap operator. When written in this form, α = 0 stands for the maximally

mixed state, and α ≤ 1. Werner states are entangled if and only if α > 1
d+1 but, under projective

measurements, they are unsteerable if and only if α ≤ 1− 1
d , as shown in [150].

A second family of states that will also make an appearance in chap. 5 is the isotropic states. Bipartite
and also highly symmetric, they are defined as states inHd⊗Hd for which (U⊗U∗) ρ (U†⊗U∗†) = ρ. They
were originally constructed to aid in proofs of entanglement distillability criteria [75]. Later, together
with Werner states, they were used to show that entanglement, EPR steering and Bell nonlocality form
a strict hierarchy [150, 117], and they have likewise been useful in a multitude of benchmarks. They can
be described through a single real, linear parameter α by

χ(α) = (1− α)
1

d2
+ α

∣∣Φ+
〉〈

Φ+
∣∣ , (1.8)

with |Φ+〉 = 1√
d

∑d−1
i=0 |ii〉, a maximally entangled state. For d = 2, they are identical to Werner states
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up to local unitaries, but this is not true for larger dimensions. They are also nonseparable if and
only if α > 1

d+1 , and are unsteerable under projective measurements if and only if α ≤ Hd−1
d−1 , where

Hd =
∑d
n=1 1/n is a truncated harmonic series [150]. The range of α, for both of these families, is

determined by ρ � 0. We get valid density operators when letting α run in [− 1
d2−1 , 1]. Particularly, the

isotropic state χ(0) is the maximally mixed state, and for χ(1) we have a maximally entangled one.
Maximally entangled states are resources for many informational protocols, and the performance of

some protocols can be characterized through the singlet fraction,

ζ(ρ) = max
Φ
〈Φ|ρ|Φ〉 .

Here, the maximization is carried over all maximally entangled states. To justify the name, we notice
that it is possible to reexpress |Φ〉 starting from a singlet |Φ−〉, and observing that all other maximally
entangled states can be reached through local unitaries alone, i.e., |Φ〉 = (UA⊗UB) |Φ−〉. Local unitaries
preserve the Schmidt spectrum, which is why we can sweep the other maximally entangled states like so.

In particular, the singlet fraction of the isotropic states is

ζ [χ(α)] = α+
1− α
d2

. (1.9)

1.2 Transformations

We now know how to describe static physical systems, which is something that physical systems rarely
are. In introductory quantum theory, we learn that the evolution of closed quantum systems is governed
by the Schrödinger equation. Its solution dictates that an initial state ρ that transforms to ρ′ does so
unitarily, following ρ′ = UρU†. Here, U must be an unitary operator, which means that UU† = U†U = 1.
Given U , we can always find a Hamiltonian H and a suitable interaction time to perform the evolution.
Nonetheless, these are not the most general transformations that a quantum state can undergo.

Taking the operational approach, I will define the most general transformation as any one that takes a
density operator into another, i.e., anyN : D(H) 7→ D(H′). Then we look for what properties this implies.
First of all, N must be linear, and the reasoning for that goes as usual: if we mix ρ, σ ∈ H as wρ+(1−w)σ,
then put it throughN , we surely expect the resulting state to be equivalent to independently passing ρ and
σ throughN and then mixing. Equation-wise, this means thatN [wρ+ (1− w)σ] = wN (ρ)+(1−w)N (σ).
Additionally, it is easy to argue that N must be such that, for any ρ ∈ D(H), it is trace-preserving,
tr [N (ρ)] = 1, and positive, N (ρ) � 0.

Positivity, however, is not a strong enough condition. To see that, suppose that our state is actually
an operator on a larger Hilbert space H ⊗HB , but that our map only acts nontrivially in H, i.e., that
N ≡ NH→H′ ⊗ 1B . In some situations like this, a positive NH→H′ does not guarantee that N will
map all input states to positive operators. This is precisely the case of the transposition map previously
discussed, where the fact that the partial transposition may generate non-positive operators is used as
an entanglement criterion. If N is to be a quantum transformation, it must take states to other states,
and amending this requires the stronger condition of complete positivity (CP), whereby any CP map N
generates a valid density operator no matter what the dimension of HB is. Together, complete positivity
and trace preservation are the conditions that define a CPTP map, or quantum channel N , which is the
most general type of quantum evolution we will consider.

These requirements are easily agreeable, but they are not very practical. What we must now do is find
a computation-friendly representation for CPTP maps. This can be found in the Kraus representation
theorem [149], stating that general map N : L(H) 7→ L(H′) is CPTP (i.e., a quantum channel) if and
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only if it has a decomposition

N (O) =

D∑
i=1

KiOK
†
i ,

with O ∈ L(H), allKi : L(H) 7→ L(H′), and
∑d
i=1 = K†iKi = 1H. The limit of the sum, D, will be at least

1 (in this case we recover an unitary evolution), and will never need to be larger than dim(H) · dim(H′).
The Kraus representation is just one of several other convenient representations for CPTP maps [151],

of which we will also need the one called Choi-matrix representation. It comes from an application of
the Choi-Jamiołkowski isomorphism [79, 80]. This remarkable result states that any quantum channel
N : L(H) 7→ L(H′) can be uniquely mapped to a bipartite state

ρN = (1H ⊗N ) ρΦ+ ∈ D(H)⊗D(H′), (1.10)

where ρΦ+ =
∑dH
i,j=1 |ii〉〈jj| /

√
d is the density operator of the previously introduced maximally entangled

state. Taking a closer look, this is actually saying that the space of CPTP maps, maps to the space of
bipartite quantum states, and the way to do it is to apply the N in question to half of that maximally
entangled state, while doing nothing to the second part. Conversely, with ρN we can write N ’s action
on some state ρ ∈ D (H) as

N (ρ) = trH [ρN (ρᵀ ⊗ 1H′)] , (1.11)

showing that we can also take a bipartite state and turn it into a quantum channel. Together, eqs. (1.10)
and (1.11) consist in the so-called channel-state duality. The facts that a positive semidefinite and
unit-trace ρN implies in a CPTP N (and vice-versa) is proven in theorems 2.22 and 2.26 in [144]. This
representation of quantum channels as bipartite states will become handy when dealing with optimization
problems over channels, as it will enable us to use CPTP constraints in semidefinite programs (see secs.
2.2.2 and 5.3).

1.3 Measurements

To finish our review of quantum theory, we must remember how to measure a quantum system. While in
classical mechanics we usually gloss over the concept of measurements, taking for granted that any physical
property of a state is trivially accessible, in quantum theory we must not. On a par with entanglement,
incompatibility of measurements is a concept at the heart of the most interesting quantum phenomena,
especially those with no classical counterpart. It is unavoidably linked to some of the most intriguing
consequences of quantum theory, such as Heisenberg’s uncertainty relations. Many consequences also
arise in correlation scenarios. Decision problems on the Einstein-Podolsky-Rosen steering scenario, for
one, can be one-to-one mapped to joint measurability problems, in the sense that a measurement set is
incompatible if and only if it can be used to demonstrate steering [116, 137, 134]. In the also widely
studied Bell nonlocality scenario, generating nonlocal statistics require incompatible measurements, but
not every set of incompatible measurements is sufficient to observe nonlocality [115, 71, 16]. In this section
I review the main mathematical structures related to quantum measurements, together with some aspects
of measurement incompatibility.

∗ ∗ ∗

Any property of a quantum system ρ must be assessed by measuring it. Operationally (abstractly),
a measurement procedure takes an input (a state) and returns a classical output (probabilities). Inside
certain constraints, the choice of measurement for a given application depends on the property to be mea-
sured (e.g., the z component of a spin 1/2 particle). The number and values of the possible outcomes are
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associated to this choice of measurement (e.g., either ±~/2 for the spin 1/2 measurement). A quantum
measurement procedure is inherently probabilistic: quantum theory goes only so far as telling us how to
ascribe probabilities to each possible outcome. Continuing with the spin example, this means that the
quantum formalism will only tell us the probability of getting either the ±~/2 result. When the mea-
surement is actually performed, we may end up with any outcome predicted to have non-zero probability
of happening. Depending on this outcome (or rather, on our knowledge of it), the very state ρ that was
measured is changed in a non-reversible way. This non-reversibility implies that we cannot fully access ρ
with a single copy of the system, a fact that is at the heart of several quantum informational protocols.
Although the century-long debate on the nature of quantum measurements is certainly interesting, I will
take the pragmatic route and focus on its operational definition.

We require a quantum measurement to be described by a set M = {Em}m of PSD operators obeying
the completeness relation

∑
mEm = 1. The conditions Em � 0 and

∑
mEm can be interpreted as

enforcing that p(m) ≥ 0, ∀m and
∑
m p(m) = 1, for any possible ρ. Any such set M is called a

positive operator-valued measure (or POVM; also called unsharp measurement), and each of its elements
a measurement effect. The possible outcomes are labeled bym. Whenever a measurementM is performed
on a state ρ, we get result m with probability p(m) = tr (Emρ). When ρ = |ψ〉〈ψ|, this definition recovers
the Born rule in its usual form, p(m) = 〈ψ|Em|ψ〉.

A special case of POVMs arise when every Em = Πm, and ΠmΠn = Πmδmn, where the Πm are
projection operators. It then follows that 1 ≤ |M | ≤ d. This is the case of projective measurements
(or PVMs; commonly also called ideal, or sharp, or von Neumann measurements). Quantum mechanics
courses usually introduce projective measurements through the concept of observables, which are Hermi-
tian operators. Recalling these can be decomposed as A =

∑
mmΠm, we can see they define a PVM

where the possible outcomes are the eigenvalues m of observable A.
A further restriction on measurements is sometimes put on the rank of each effect. A rank-1 projective

measurement happens whenM is projective and |M | = d or, equivalently, when the associated observable
A has no degenerate eigenvalues.

An useful intuition on POVMs is to interpret them as noisy projective measurements.2 Consider
a sharp measurement M ′ = {|0〉〈0| , |1〉〈1|}. Performed on an arbitrary state ρ, we will get the result
associated to the i-th projection with probability p(i) = tr (|i〉〈i| ρ), where i ∈ {0, 1}. Suppose, though,
that our experimental apparatus is such that it states the wrong result with probability (1 − w). Then
p(i) = tr (w |i〉〈i|+ (1− w) |i⊕ 1〉〈i⊕ 1|), and a measurement describing this situation is M = {w |0〉〈0|+
(1−w) |1〉〈1| , w |1〉〈1|+ (1−w) |0〉〈0|}. It is easy to see that M ’s effects are not orthogonal projectors for
0 < w < 1, hence this is not a projective measurement. But it is a valid unsharp measurement.

After a measurement is performed, we may be interested in what happened to ρ. As already stated,
performing a measurement will generally incur in a mapping ρ 7→ ρ′. Lüders rule states that, for a PVM
{Πm}m returning result m,

ρ′ =
ΠmρΠm

tr (ρΠm)
. (1.12)

Two interesting facts are that knowing the updated state requires knowledge of the measurement result,
and that retaking the same measurement will produce the same outcome with definiteness. Without
access to the measurement result, but knowing that {Πi}i was performed, all we can say is that ρ′ =∑
m ΠmρΠm. On the other hand, POVMs results are not always reproducible, and the update rule has

subtleties. While we can always decompose an effect as Em = K†mKm, where theKm are Kraus operators,
this decomposition is not generally unique. If we are able to associate Km with the underlying physical

2Although this an useful perspective, not all nonprojective POVMs can be interpreted in this manner. As you will see,
the measurements we are about to describe are not extremal, but there are also examples of extremal POVMs which are
not projective [102].
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process, then it makes sense to talk of a post-measurement state, and write it as

ρ′ =
KmρK

†
m

tr (ρEm)
.

One of the most intriguing aspects of the quantum measurement formalism is that it implies the
existence of quantities that may not be simultaneously measured with arbitrary precision on a single
copy of a quantum system. Measurements behaving in this way are called incompatible measurements.
Throughout this work, we will understand “compatibility” as a synonym of “joint measurability”. A set
M = {Exm}m,x of X quantum measurements indexed by x with O(x) outcomes each is said to be jointly
measurable whenever a parent measurement J` exists. To be a parent measurement, J` must be a valid
quantum measurement from which any Exm ∈ M may be recovered. Letting ` = `1`2 . . . `X , where each
`i ∈ {1, . . . ,O(i)}, the latter condition requires that

∑
` J`δm,`x = Exm. We interpret this as saying

that the measurement statistics that the setM could generate can be reproduced by applying the single
measurement J` then coarse-graining the results. In the plenty of situations where no parent measurement
exists, M is called incompatible or non-jointly measurable. I will get back to this topic in sec. 2.2.2.1,
where we discuss an approach to quantify how incompatible a set of measurements is.

Several other notions of measurement compatibility exist. Introductory quantum mechanics courses,
for instance, usually discuss incompatibility as commutativity: two non-commuting observables A and
B can only be simultaneously determined up to a degree of certainty, and a trade-off between the stan-
dard deviations on the obtained results is given by Robertson’s uncertainty relation σAσB ≥ 1

2 |〈[A,B]〉|.
Notably, in the particular case of sharp measurements, commutativity is equivalent to joint measurabil-
ity. Regarding POVMs, though, this is not the case, as with several other nonequivalent definitions of
incompatibility, such as non-disturbance and coexistence [68].

From now on, let us call P(d, n) and P(d, n) the set of POVMs and projective measurements, respec-
tively, with n effects acting on Hd. It is clear that P(d, n) ⊂ P(d, n) for any d and n. Now suppose we
want to realize an experiment in which we must perform some M ∈ P(d, n) but we only have access to
a subsetM ⊂ P(d, n) where M /∈ M. Could we, somehow, reproduce the results we would obtain with
M by only usingM and classical processing? In many cases, the answer is yes [59, 60, 64].

As an example, in chap. 4 we will be interested in when some set of POVMs can be simulated
using only projective measurements. A good starting point is to notice that the trivial measurement
M = {1d/d}ni=1 ⊂ P(d, n) can be simulated solely by means of classical post-processing: one can simply
sample a result from the uniform distribution on {1, . . . , n}. Defining the depolarizing map as

Φt(O) 7→ tO + (1− t) tr (O)

d
1, (1.13)

and its action on a measurement as Φt(M) ≡ {Φt(Em)}m, we can see that any M ∈ P(d, n), when fully
depolarized, is simulatable with classical randomness, hence with projective measurements. The question
that now arises is whether we need to go all the way through, or if there is some t > 0 that suffices.
Astonishingly, a non-trivial, general lower bound of t = 1/d exists, and it turns the whole set P(d, n), for
any number n of effects, simulatable with projective measurements [102]. This bound can be improved
for specific cases using optimization techniques, and it is known that, for qubits, t =

√
2/3− ε, for some

small ε, suffices [59].

1.4 Gell-Mann operators and Bloch vectors

Before ending this chapter, we must discuss an interesting representation for quantum states (and some
measurement operators) in terms of vectors instead of operators. This will be central to our discussions
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in chap. 4.
In sec. 1.1, we argued that any quantum state is a linear, positive semi-definite, unit-trace d-

dimensional density operator ρ, and that any such ρ is a quantum state. Thus we defined the set of
density operators as

D(d) = {ρ ∈ L(Hd) | trρ = 1, ρ � 0},

where L(Hd) is the set of linear operators in Hd. This definition implies that ρ† = ρ and tr(ρ2) ≤ 1, with
equality only holding for pure states.

When describing a quantum state, it is often convenient to choose some basis for L(Hd) and define
ρ through a vector. A widely used choice of basis in L(H2) are the Pauli matrices {σx, σy, σz} (comple-
mented with the identity operator). The Pauli matrices are Hermitian, unitary and traceless operators
that, together with the identity, form a basis in which any 2×2 Hermitian matrix can be written. Letting
v = (vx, vy, vz) ∈ R3 and σ = (σx, σy, σz), it is easy to see that

ρ =
12

2
+ v · σ

is any unit-trace Hermitian operator. Restricting to ρ � 0 further requires that |v| ≤ 1. Thus, any
element of the ball Bl (2) = {x ∈ R3 | |x| ≤ 1} is a 2-dimensional quantum state and, conversely, any
2-dimensional quantum state can be associated to a 3-dimensional real vector v with |v| ≤ 1. Also
importantly, |v| = 1 if and only if the state is pure, as can be verified by constraining tr(ρ2) = 1. I will
call Bl (2) the Bloch ball, its surface the Bloch sphere, and any v ∈ Bl (2) a Bloch vector. This geometric
interpretation of qubit states will prove to be remarkably convenient.

Generalizing these concepts to Hd can be done in a similar fashion, but will lead us to an important
caveat. Our starting point will be picking a basis. While there are a bunch of useful choices [20], the most
adequate for our future endeavors will be the generalized Gell-Mann matrices. The (standard) Gell-Mann
matrices naturally extend the Pauli matrices from SU(2) to SU(3), and they are likewise traceless and
Hermitian. As these are the most important properties we will want to preserve in our applications, it
is sensible to choose the standard SU(d) generators when moving on to Hd. Apart from the identity
operator, we will need another d2 − 1 operators to span L(Hd). The generalized Gell-Mann matrices
match our intents, and can be conveniently written as σ = {σ(s)

jk , σ
(a)
jk , σ

(d)
l }, where superscripts s, a and

d stand for “symmetric”, “antisymmetric” and “diagonal”, and

σ
(s)
jk = |j〉〈k|+ |k〉〈j|, 1 ≤ j < k ≤ d,

σ
(a)
jk = −i|j〉〈k|+ i|k〉〈j|, 1 ≤ j < k ≤ d,

σ
(d)
l =

√
2

l(l + 1)

 l∑
j=1

|j〉〈j| − l|l + 1〉〈l + 1|

 , 1 ≤ l ≤ d− 1.

Representing an arbitrary element of L(Hd) asks for d2 coefficients. However, because we fix tr(ρ) = 1,
there is a redundancy that will leave us with only d2−1 free parameters. Preserving the previous notation
we then propose that

ρ =
1d
d

+ v · σ =
1d
d

+

d2−1∑
i=1

viσi

where with the summation we made it explicit that now v ∈ Rd2−1, and by σi we mean the elements
of σ defined above, in some given ordering. This is, again, clearly a unit-trace and Hermitian operator.
The condition tr(ρ2) ≤ 1 further imposes that rd = |v| ≤

√
d−1
2d , called the Bloch radius, and convexity

of D (H) implies convexity on the set of Bloch vectors. It is moreover possible, and useful, to normalize
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any-dimensional Bloch vectors to unity and write

ρ =
1d
d

+ r−1
d v · σ (1.14)

instead. This is the parameterization we will use throughout chap. 4.
Our next step would be to characterize Bl (d) and consequently the (generalized) Bloch vectors.

Unfortunately, finding a structure on v that guarantees that ρ � 0 is not as straightforward as in the 2-
dimensional case. Naively trying to associate vectors in a d-dimensional ball with a density operator will
not take us far, as we will soon find out that many choices lead to operators having negative eigenvalues.
Albeit the complete characterization of Bloch vectors for arbitrary dimensions has been done [81], it does
not lead to a natural parameterization such as in the 2-dimensional case. We will keep calling any Bl (d) a
Bloch “ball”, but it is important to keep in mind these sets are not actually balls, for there will in general
be regions where there are no allowed Bloch vectors.

Even being more complex than for qubits, this geometric interpretation is still fruitful. For one, its
inverse map has quite an intuitive interpretation inside of quantum theory. We have so far been interested
in defining which Bloch vectors lead to a density operator, but have not mentioned the converse problem
— the one of determining v from ρ — at all. The answer, which can be straightforwardly verified from
the orthogonality of the σi, is that vi = tr(σiρ). Hence, each component of v is the expectation value of
an observable σi that can, at least in principle, be experimentally obtained. Luckily, this is the mapping
we will usually worry about.

Another useful consequence of this geometric description is that the effect of operations on a state
can be interpreted visually. An specific example that will later become important is that of depolarizing
channels. These channels are worst-case scenario noise models describing the situation where information
on a state ρ is, with some probability p, completely lost. Thus ρ 7→ (1 − p)ρ + p1d

d , where 1d/d is the
maximally mixed state (the noise). Letting vρ be the Bloch vector associated to ρ, and observing that
v = 0 defines the maximally mixed state, we are led to the conclusion that a depolarizing channel shrinks
ρ’s Bloch vector towards the center of the Bloch sphere.

Considering that measurement operators share similarities with density matrices, we may attempt to
extend this representation. Our first observation is that not all measurement effects can be written as
in eq. 1.14, because they are not required to have unit-trace. However, as any measurement effect is
a positive-semidefinite operator, those of which do have unit-trace can also be described through Bloch
vectors. As already pointed out, projective measurements are an important class of measurements where
every effect is a projection, which is furthermore orthogonal to all the others. For any projection Π,
it is true that tr(Π) = rank(Π). Therefore, all rank-1 projective measurements can be described by a
set of Bloch vectors, each associated to one of its effects. As all projections with larger rank can be
simulated by rank-1 projections and coarse-graining, we conclude that all projective measurements can
be interpreted through Bloch vectors together with post-processing. Because, by definition, Π2 = Π,
then tr(Π2) = tr(Π) = 1, which means that a rank-1 projection operator’s Bloch vector is actually on the
Bloch sphere, analogously to pure states. Finally, as a measurement’s effects must sum to the identity,
a nice interpretation of projective measurements on qubits arises: given one of the effect’s Bloch vector,
the other must be its antipodal.

∗ ∗ ∗

Quantum information is the study of the encoding, processing and decoding of information in quantum
systems, which are done by preparing a state ρ, transforming, and measuring it. In this chapter we,
learned that quantum theory tells us we should associate these processes to density operators, CPTP
maps, and complete collections of positive-semidefinite operators, respectively. In many cases, we will be
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interested in quantities that are very nicely described by these structures, but that are nevertheless not
easily computable. Luckily, several well-known and efficient optimization techniques are well suited to
dealing with quantum theory. These techniques will be central to chap. 4 and sec. 5.3, so we now review
them.
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Chapter 2

Convexity and optimization

Catenaries, Fermat’s principle of least time and thermodynamic equilibrium are well known examples
of extremum principles applied to the description of nature. On the opposite side, multiple essential
modern technologies, such as network routing, logistics and integrated circuit design rely on finding
sufficiently good solutions to optimization problems. No matter whether you are minimizing a Gibbs free
energy under constant T and P , or searching for the best arrangement of electronic components on a
chip to reduce its footprint while satisfying heat dissipation and fabrication constraints, this is what an
optimization problem looks like

p∗ = min
{
f0(x) | fi(x) ≤ bi, ∀i ∈ {1, . . . ,m}

}
. (2.1)

Solving it means finding some x∗ ∈ Rn such that the value of the objective function f0(x∗) ≤ f0(x), ∀x ∈
F , where

F =
{
x | fi(x) ≤ bi, ∀i ∈ {1, . . . ,m}

}
is the feasible set. The objective function represents the quantity to be minimized (the free energy; the
footprint), while F imposes the constraints (constant temperature and pressure; rate of heat dissipation
and limitations of the fabrication procedure).

Finding global optima for nonlinear programs is difficult, and no robust and efficient general methods
to do so are known. That is why one usually consider subsets of eq. 2.1 where some special structure is
imposed on the fi. Our goal for this chapter is to learn how to recognize the special structures of linear
and semidefinite programs, which requires some groundwork on convexity. Furthermore, polytopes — a
special type of convex sets — are ubiquitous in the geometry of correlation scenarios, and will make an
appearance in later chapters. This will be our starting point.

2.1 Convexity

This section closely follows the expositions in [118, 58, 152, 24], where most of the alluded proofs can be
found. Unless otherwise specified, all sets are subsets of Rd.

Let x1 6= x2 be two elements in Rd. We define

αx1 + (1− α)x2, α ∈ R

as the line passing through x1 and x2. A set A containing all lines between pairs of its elements is an
affine set. The real line and the Cartesian plane are affine sets, but a sphere and a cube are not.

Finite induction on the definition shows that, for x1, . . . , xn ∈ A and
∑
i αi = 1, all points x =
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∑
i αixi ∈ A. Such a sum is an affine combination of the xi.
When Ai are affine sets, A =

⋂
iAi is also affine. Intersections can only decrease dimensionality.

Hence, if we take some (not necessarily affine) set S and intersect all possible Ai ⊇ S, we will get the
smallest affine set containing S. This is called an affine hull, and denoted aff (S). Equivalently, it can be
shown that

aff (S) =
{∑

i

αixi |
∑
i

αi = 1, xi ∈ S
}
.

The affine hull of two points in Rn is the line through them, and for three noncollinear points we end up
with a plane.

Vector spaces and affine sets are close siblings: any vector space is an affine set, but the converse
is not true, for the latter may not contain the 0 vector. Furthermore, each affine set A is parallel to a
unique vector space V . Taking any x0 ∈ A, we can translate A − x0 = V . The dimension of an affine
space A is the dimension of its parallel vector space V . In Rn, dimensions 0, 1, 2 and n− 1 corresponds
to points, lines, planes and hyperplanes.

Any hyperplane H can be represented as the set

H = {u | 〈u|b〉 = β},

where b ∈ V , β ∈ R are constants, and 〈·|·〉 is an inner product on V . Switching from equality to <,>,≤
or ≥, we get either open or closed halfspaces. Halfspaces contain halflines, so they are not affine sets.
Rather, they are convex sets.

Convex sets are somewhat similar to affine sets. But, instead of lines, a convex set C must contain
all line segments

αx1 + (1− α)x2, α ∈ [0, 1]

passing through any x1, x2 ∈ C. Any affine set is trivially convex, but a sphere and a cube also are.
Convex combinations are affine combinations with the extra condition that every αi ≥ 0. Likewise,

it can be shown that a set C is convex if and only if it contains all convex combinations of its elements.
They are also closed under intersections, and the convex hull of a (not necessarily convex) set S is the
smallest convex set containing S,

conv (S) ≡
⋂{

C ⊇ S | C is convex
}
.

Equivalently, it is also the set of all convex combinations of S’s elements,

conv (S) =
{∑

i

αixi | αi ≥ 0,
∑
i

αi = 1, xi ∈ S
}
. (2.2)

Convex sets can be further divided into extremal and nonextremal points. An x ∈ C is an extreme point
of C when it is not in the relative interior of any segment of C; respectively, when x = αy + (1− α)z ⇒
x = y = z for any y, z ∈ C and α ∈ (0, 1).

Polyhedra are intersections of finitely many closed halfspaces. Any polyhedron L ⊂ Rd can thus be
written as

L(A, b) =
{
x ∈ Rd | Ax ≤ b

}
,

where A ∈ Rd×m and b ∈ Rm specify a set of linear inequalities. A single halfspace, which is obviously
unbounded, fits the definition. If a polyhedron L is furthermore bounded (i.e., has no rays), it is a
convex polytope, denoted by P . A convex hull of finitely many points is thus a polytope. Polyhedrons
and polytopes inherit their dimensions from their affine hull’s. From the definition follows that one way
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(a) Line (b) Segment (c) Affine hull

(d) Convex hull (e) Convex (f) Nonconvex

Figure 2.1: Pictorial representation of the definitions introduced in sec. 2.1. Fig. 2.1(a) shows a line,
which is an affine combination of two points. In 2.1(b), a line segment between (or a convex combination
of) two points is shown. The affine hull of three noncollinear points is the plane (2.1(c)), while the
convex hull of a finite number of points defines a polytope (2.1(d)). Any polytope is a polyhedron, but
the converse is not true. Fig. 2.1(e) shows a convex set with an infinite number of extremal points,
therefore not a polytope. Nonconvex sets do not contain every line segment between its elements (2.1(f)).

to test if an x ∈ P (or L) is to check whether it does not violate any of the inequalities defining the
halfspaces. This is closely linked to nonclassicality witnesses, to be further discussed in chap. 3.

As much as cubes have vertices, edges and faces, polytopes have k-faces. Any face F of a polytope P
is a set

F = P ∩ {x ∈ Rd | cᵀx = b},

where c ∈ Rd is a column-vector, b ∈ R, and any x ∈ P is such that cᵀx ≤ b. Visually, a face is any
intersection of P with a closed halfspace that touches P but is not inside of it. The dimension k of the
affine hull of F goes into the name k-face. Faces of dimension 0 and 1 are vertices and edges, while
faces of dimension dim(P )− 1 are especially named facets. For a cube (R3), the facets would match the
commonly called faces.

Our previous definitions of polyhedra and polytopes are sometimes termed H-polyhedra and H-
polytopes. An alternative that will later become important is that of V-polytopes, which are defined as
the the convex hull of a finite set of points. After the convex hull is performed, they become the extremal
points of the convex set. The V-description of a unit square is V = {(0, 0), (1, 0), (0, 1), (1, 1)}, and after
taking conv (V) we get all points that, in the H-description satisfy the linear system Ax ≤ b defined by

A =


−1 0

1 0

0 −1

0 1

 , and b =


0

1

0

1

 .

H and V representations can be proven mathematically equivalent (theorem 1.1 in [152]) but, com-
putationally, the choice of description may significantly matter. As will be made explicit in chaps. 3 and
4, classicality in prepare and measure scenarios can be interpreted as the belonging of a behavior in a
polytope. Conversely, nonclassicality may be witnessed through the violation of some inequality defining
its facets. The H-description of these polytopes is thence preferable for being more ergonomic. Finding
these descriptions is important not only for prepare and measure scenarios, but are rather important in
several other correlation scenarios. In Bell nonlocality scenarios, for instance, they are the celebrated
Bell inequalities. Despite theoretical and practical importance, no general methods to directly build
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H-descriptions of these polytopes are known. On the other hand, it is conceptually easy to enumerate all
extremal points of classicality polytopes (the V-description). Casting one to the other (i.e., performing
the vertex or facet enumeration) can be done through specialized, user-friendly softwares such as PANDA,
lrs and cdd [83, 3, 1] but, unfortunately, this is a computationally expensive problem that can only be
done for the very simplest cases of interest. The conceptual significance of H-descriptions will be further
explored in chap. 3, and an example of description conversion will be discussed in chap. 4. Results
therein were obtained with PANDA, and descriptions of the algorithms and user guides can be found in
the aforementioned references.

A second important fact involving polyhedra and polytopes is that linear functions can be efficiently
optimized inside them through so-called linear programming. In the remainder of this chapter, we go
back to the problem posed in the introduction, and briefly discuss two efficiently computable instances
of optimization problems, both of which are widely used in quantum information.

2.2 Optimization

Solving an arbitrary instance of eq. (2.1) is a hard problem, and general methods only exist for special
instances of optimization programs. Convex optimization (CONV) — which happens when all the fi are
convex functions — is one of the largest classes of programs that can be efficiently solved to global
optimality. Even though LIN ⊂ SDP ⊂ CONE ⊂ CONV, specialized algorithms for subsets of convex
optimization, such as conic (CONE), semidefinite (SDP) and linear (LIN) programming, renders even larger
instances of those practical. Whilst we will not discuss them, the main reference for convex programming
is the textbook [24], and a good reference for cone programming, tuned to quantum information, is [136].

Because of their use in the industry, ready-to-use solvers for optimization problems are broadly ac-
cessible. I will mention them in due time, but algorithms will not be introduced in depth. For thorough
discussions, see, e.g., [104, 84] for linear programming, [138, 55] for SDPs and [24] for convex optimization.

2.2.1 Linear programming

Linear programming happens when all the fi are linear functions. Recalling eq. (2.1), you will see that
the feasible region F is thence an intersection of halfspaces — a polyhedron. Apart from being widely
used in the industry to optimize supply chains, workforce allocation and delivery routes, it is also useful
to search for probability distributions satisfying a set of constraints. The significance of this problem will
become clearer in chap. 4.

Being linear, the objective function f0 : Rn 7→ R can conveniently be written as cᵀx, where c =

(c1, . . . , cn) is a constant vector in Rn defining the quantity to be maximized. Minimizing cᵀx is the
same as maximizing −cᵀx, so the discussion holds both ways. For an unconstrained problem, there is
not much more to say: just follow along the direction of the gradient. In this case, though, unless f0 is
constant, the program would end up being unbounded. Things get more interesting when x is constrained
to be in a subset F ⊂ Rn. We can do that by saying 0 ≤ xi ≤ 1, ∀i, for instance, and then we would
be optimizing cᵀx over some hypercube. More generally, in linear programming we allow the constraints
to be of the form aᵀi x ≤ bi, where ai ∈ Rn and bi ∈ R. There is no need to consider equality conditions
separately, as we can just use two inequalities with inverted directions. So we do not have to write all
constraints separately, a shorthand notation is to build an m× n matrix A = [a1 . . . am]ᵀ and a vector
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b = [b1 . . . bm]ᵀ of bounds so that

given c, A, b (2.3a)

max.
x

cᵀx (2.3b)

s.t. Ax ≤ b (2.3c)

is a general form of a linear program (LP). When F = ∅, the program is unfeasible, meaning there is
no vector x that satisfies the constraints. Requiring that xi ≥ 1 and xi ≤ −1 would certainly put you
in that situation. If F is not empty, then the program may either have a solution or be unbounded. To
understand why the latter may be the case, notice that F is a polyhedron. As such, it may itself be
unbounded. Consider, for instance, x ∈ R2 with F = {0 ≤ x1 ≤ 1, x2 ≥ 0}. If c = [c1 c2], with c2 > 0,
the optimal value p∗ would go to infinity. On the other hand, c2 ≤ 0 would be alright even though F
is unbounded. When F is a (nonempty) polytope, there is always some solution p∗ to the program. A
solution is either unique (only a single x∗ leads to p∗), or there are infinitely many solutions yielding the
same p∗. To understand why this is so, consider the fundamental theorem of linear programming, which
states that every feasible, bounded linear program has an optimal solution on a vertex of F . If optimal
solutions happen at two different vertices, then any x in the line segment between them results in p∗.
Otherwise, there would either be a larger feasible value in the segment, or the feasible region would not
be convex.

Linear programs are efficiently solvable in practice. The simplex method, proposed by George Dantzig
in 1947, builds upon the fact that optimal solutions occur in vertices. Starting from any basic feasible
solution (a corner of F), it smartly hops to neighboring vertices along edges that increase f0. If you end
up at a basic feasible solution connected to no edges that increase the objective value, or if you visit an
unbounded edge, you are done. A rigorous presentation and complexity analysis of it can be found in [104],
chap. 2. Interestingly, the simplex method is not of polynomial time complexity (i.e., it is not efficient
in theory). Rather, there are families of linear programs for which it performs poorly. Nevertheless, it
is a reliable and efficient method in practice, and is widely used (in several variations) up to this day.
There are provably polynomial time algorithms in theory, of which the ellipsoid method — invented in
1970 for nonlinear programming, then adapted and proved polynomial for linear programming in 1979
—, was the first. Even so, it is not efficient in practice. The more recent interior-point methods are
provably polynomial in theory, and fast in practice. Pedagogical discussions of these methods, together
with historical remarks, are nicely presented in chap. 7 of [84].

Due to its wide applicability in the industry, there are many open source and proprietary linear
programming solvers available, such as GLPK, Gurobi, and Mosek [2, 63, 91]. Most provide user-friendly
interfaces to widely used programming languages, such as C, C++, Python and MATLAB. To further
aid in using them, there are also modeling languages that can be used to specify programs in a high-level
format, and that internally converts and dispatches the problem to specific solvers. YALMIP [82] and
CVX [57] are widely used inside MATLAB, while PICOS [119] and CVXPY [43] are common choices
when working in Python.

2.2.2 Semidefinite programming

Semidefinite programming largely generalizes linear programming, and has found numerous applications
in statistics, economics, control theory, pattern recognition and machine learning, to mention a few (see
sec. 2 of [138] and chap. 1 of [24] for a survey). It is also widely used as a tool in approximation algorithms
to graph theoretical problems [55], and polynomial and non-commutative polynomial optimization [92,
93]; the latter being widely used in quantum information.
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While linear programming is the optimization of a linear function over a polyhedron, semidefinite
programming is the optimization of a linear function over a spectrahedron. Before we further explain it,
recall that

Sm = {X ∈ Rm×m | X = Xᵀ}

is the set of m×m symmetric matrices, and

Sm+ = {X ∈ Sm | X � 0}

the one of positive m ×m semidefinite matrices. All eigenvalues of a symmetric (X = Xᵀ) matrix are
real, and the positive semidefiniteness condition (X � 0) further requires they must be nonnegative.

Building upon the general linear program (2.3), we write a semidefinite program (SDP) as

given c, F0, . . . , Fn (2.4a)

max.
x

cᵀx (2.4b)

s.t. F0 +

n∑
i=1

xiFi � 0. (2.4c)

Here, F (x) ≡ F0 +
∑n
i=1 xiFi � 0 is what we call a linear matrix inequality (LMI), and it enforces the

r.h.s. to be in Sm+ . The n + 1 matrices F0, . . . , Fn are in Sm, and we maintain x ∈ Rn. A semidefinite
program is thus the optimization of a linear function cᵀx under the constraint that F (x) is positive
semidefinite.

This may seem like a rather arbitrary definition. To debunk this impression, first notice that if
F (x) � 0 and F (y) � 0, then

F [αx+ (1− α)y] = αF (x) + (1− α)F (y) � 0

for all 0 ≤ α ≤ 1. Thus, both the objective function and the constraint are convex, and semidefinite
programming is a special case of convex optimization. More than that, Sn+ is a convex cone (i.e., it is
closed under conic combinations), meaning it is also a special case of conic optimization. Now it does
not look that much arbitrary, but rather it seems too specialized. But it is not, for if we let F0 = diag(b)

and Fi = diag(ai), we recover the form of a linear program just like eq. (2.3). Putting it all together,
LIN ⊂ SDP ⊂ CONE ⊂ CONV, as stated in the beginning of this section.

A general F (x) may have a block-diagonal section of the form diag(Ax + b), and a more general
structure elsewhere. Thus, a linear matrix inequality represents an affine section of Sn+, also called an
spectrahedron. Unlike polyhedra, they may have curved boundaries. A cylinder, for instance, can be
parameterized as an F (x) with 4× 4 matrices [141]. A last interesting link to linear programming is that
F (x) � 0 if and only if zᵀF (x)z ≥ 0 for all z ∈ Rm. An SDP is thus a linear program with infinitely
many linear constraints on x.

The usefulness of semidefinite programming in quantum information is hinted by the fact that quantum
states and measurement effects are positive semidefinite matrices. As long as the objective function is
linear, we can optimize over them, and they have proven to be useful in quantum state discrimination
[10], quantum steering [32] and hierarchies for nonlocal correlations [92, 93], among other applications.
One of them will be shown in chap. 5. A drawback in dealing with density operators or measurement
effects is that, while semidefinite programming is, as in here, usually discussed over the real field, quantum
objects make use of complex numbers. One can nevertheless embed them in real variables. This can be a
cumbersome task to do manually but, luckily, the modeling interfaces mentioned in the last section can
do this under the hood before calling the solver.
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Semidefinite programming can also be efficiently solved both in theory and in practice. Interior-point
methods are usually robust and efficient, and are implemented in some user-friendly solvers such as SDPA
[125] and Mosek [91]. Performance comparisons between these and several other SDP solver are available
at [88].

2.2.2.1 Joint measurability robustness

The concept of joint measurability was introduced in sec. 1.3. Following along the same notation,
M = {Eyb }b,y is a set of Y quantum measurements, indexed by y, each having O(y) outcomes. A
parent measurement is called J`, and only exists if

∑
` J`δb,`y = Eyb , where ` = `1`2 . . . `Y , and each

`i ∈ {1, . . . ,O(i)}. From this requirement, it follows that J` can extract all information needed to
reproduceM. Whenever such a J` does not exist,M is incompatible, or not jointly measurable.

More than determining whether anM is joint measurable, it is also interesting to ask to what extent
a measurement is incompatible. Such incompatibility robustness must be defined relative to something.
This something is what we call a noise model. Formally, a noise model N : P(d,n) 7→ S(P(d,n)) maps
from the set of Y = |n| d-dimensional POVMs, each with n = (n1, . . . , nY ) outcomes, to the set S(P(d,n))

of subsets of P(d,n). The simplest possible choice for N is the white noise model

N =

{{ 1

n1

}n1

i=1
, . . . ,

{ 1

nY

}nY
i=1

}
,

but several other common choices, such as depolarization maps or probabilistic noise also fit the definition.
In general, it may also depend onM, but we require that it contains at least one set of jointly measurable
measurements. Adequateness is a matter of application, and different choices may lead to different results.

Having the noise model fixed, we define the incompatibility robustness ofM, with respect to N, as

χ∗M = sup
χ∈ [0,1]

{Nb|y}∈N(M)

{
χ | χ{Eb|y}+ (1− χ){Nb|y} ∈ JM

}
. (2.5)

JM denotes the set of all jointly measurable measurements, and χ∗M = 1 readily implies M is jointly
measurable. Any lower value means it is not, for to become it must be mixed with noise. More than
that, if χ∗M < χ∗M′ thenM is more incompatible thanM′.

Incompatibility robustness was investigated and applied in several works involving quantum mea-
surements and more general quantum devices, such as [67, 42, 134]. Our presentation follows the very
thorough investigation in [42], where analytical and numerical results for several noise models are pre-
sented, and further references can be found. The fact that eq. (2.5) can be solved through semidefinite
programming is also known. To see why this is so, first notice that, if we take a closed noise set, the supre-
mum in (2.5) becomes a maximum. Furthermore, f0 = χ, so we are indeed optimizing a linear function.
The measurement effects, {Eb|y} and noise effects {Nb|y} are given, and J`, an optimization variable, is
a collection of PSD operators (i.e., the parent measurement’s effects). They must be constrained to sum
to the identity, and the parent’s marginals must recoverM. These are semidefinite constraints, as more
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clearly seen by writing the program

given {Eb|y}, {Nb|y} (2.6a)

max.
χ,J`

χ (2.6b)

s.t.
∑
`

J`δb,`y = χEb|y + (1− χ)Nb|y, ∀b, y (2.6c)

J` � 0 (2.6d)

χ ≤ 1. (2.6e)

Notice that the constraints η ≥ 0 and
∑
` J` = 1 are not missing, but rather are automatically enforced

by the first constraint and the fact that the noise set must have at least one jointly measurable element,
such that 0 will always be a lower bound. We will come back to this program in sec. 4.2.1, where it will
be crucial to our proof that measurement incompatibility is not sufficient for nonclassicality in prepare
and measure scenarios. Before getting to that, we must first learn what prepare and measure scenarios
actually are.
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Part II

Prepare and measure
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Chapter 3

The prepare and measure scenario

The prepare and measure (PM) scenario is one of the simplest and most fundamental examples of cor-
relation scenarios. In it, a preparation apparatus produces and then sends a physical system, over a
communication channel, to a measurement device which reads out information from the received state.
Wherefore, it is an adequate setting in which to investigate two of the most fundamental building blocks
of physical theories: states and measurements. Prepare and measure scenarios are also the simplest corre-
lation scenarios that presume communication, and, as such, should become an indispensable ingredient in
quantum networks [21, 112]. As with other correlation scenarios, quantum behaviors in the PM scenario
can be exploited to build informational protocols that show advantage over their classical counterparts
(sec. 3.2). On a more fundamental aspect, they are at the core of proposed informational principles to
quantum theory [106, 107], and of quantum ontologies [128].

Differently from the more widely studied Bell nonlocality and EPR steering scenarios, a quantum
prepare and measure experiment may behave nonclassically even in the absence of entanglement. Quan-
tum behaviors in PM scenarios must then rely on other strictly quantum features, such as measurement
incompatibility [29] and non-orthogonality of states [26], but the exact relations are still unknown. Other
than quantum communication, a second resource that also leads to drastically different behaviors is
whether the preparation and measurement devices are independent or not. There are, in general, three
possible cases; namely, full independence, shared randomness and entanglement assistance. Together
with either classical or quantum communication, this will lead to six nonequivalent prepare and measure
configurations.

In chapters 4 and 5, novel results regarding some of these settings will be presented. To build towards
that end, we now discuss these many different instances of preparation and measurement devices, and show
how this scenario can be seen as a physical implementation of two paramountly important communication
protocols.

3.1 Prepare and measure behaviors

The simplest prepare and measure setup consists of two black-boxes. One is the preparation device P,
handled by Alice, and the other the measurement device M, handled by Bob. Nothing about the inner
workings of these devices is assumed a priori, except that P prepares and communicates a physical system
to M, which extracts information from the received preparation by measuring it.

Alice is allowed to interact with her device through a classical input x ∈ X ≡ {1, . . . , X} ≡ [X].
Her choice may weight on the probability p (m | x) with which a state, labeled by m, from a set S, is
prepared. Here, S represents the set of possible preparations. Alice’s choice of x can be more intuitively
understood as the message she wants to encode and communicate to Bob, and an m ∈ S as the carrier of
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Figure 3.1: Prepare and measure scenarios. The measure-
ment box, upon receiving an input x, prepares either a clas-
sical, τx, or quantum ρx, state to the measurement device.
In turn, given a choice y of measurement, an output b is
observed. From their causal past, the devices may be inde-
pendent (∅), share classical randomness (λ), or even quantum
correlations (ρ).

that information. On his end, Bob can choose a configuration y ∈ Y ≡ [Y ] for the measurement device,
which will thence output b ∈ B ≡ [B] with probability p (b | m, y). This reflects the fact that the outcome
of the experiment may be influenced by both the received message and Bob’s choice of measurement (fig.
3.1). More intuitively, Y limits how many choices of decoding procedures can be used by Bob to try and
recover Alice’s message x.

A last, indispensable condition is that neither Alice nor Bob know what happens in each other’s labs.
In other words, she must have no knowledge of y, as this is a choice made in her causal future, and he
cannot know what was her choice x of preparation, as this trivializes communication. Taken together,
these constraints amount to saying that all exchanges of information between them are mediated by the
messagem. Given that our intention is to study how this communication influence the observed statistics,
this is clearly a natural assumption.

A round is a single run of the protocol described above. After many such rounds, Alice and Bob are
allowed to share their data with each other, and together they can build the behavior p = {p (b | x, y)}b,x,y
of their devices. This behavior characterizes the prepare and measure experiment. Naturally, each
p (b | x, y) ≥ 0 and

∑
b p (b | x, y) = 1, ∀x, y, or, equivalently, p is a collection of conditional probability

distributions, one for any fixed choice of a pair (x, y).
We now arrive at the central question of (semi)device-independent quantum information: if all we

have is the behavior p, with no (or restricted) access to the internal workings of the devices, can we still
certify some property about the states, measurements, or other quantities of interest? For instance, could
we, by only observing p, affirm that P prepares quantum — as opposed to classical —, states? Or that
M applies nonprojective measurements? In many cases, the answer, surprisingly, is yes.

3.1.1 Classical preparations

Quantum preparations may behave distinctly from classical preparations, and knowing how to tell them
apart is of the essence in developing quantum communication protocols. An important open question
regards the exact properties that allow some sets of preparations and measurements to behave non-
classically. In chapter 4, we will discuss the problem of classical simulatability of quantum behaviors
in reasonable generality, and prove that measurement incompatibility — a candidate for the origin of
nonclassicality in PM scenarios — is not sufficient. To make that discussion precise, we must begin by
defining what it is that we will call classically-simulatable behaviors or, for shortness, classical behaviors.

Starting from the paradigmatic prepare and measure scenario, let us further impose that S, the
set of possible preparations, contains only classical states (dits). Naturally, as this is a communication
scenario, the dimension |S| of the classical system used for encoding the states must be bounded, otherwise
communication becomes trivial (i.e., Alice can perfectly encode her message x, and Bob can perfectly
recover it).

Our first aim is to investigate the set of behaviors that can be achieved when communicating d-
dimensional classical systems, or rather, when S = {0, . . . , d− 1}. They will, in general, also depend on
X (the size of Alice’s input alphabet) and Y (the number of choices for Bob’s measurement). Letting
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this set of behaviors be Cd,X,Y , our previous discussion implies that

p ∈ Cd,B,X,Y ⇐⇒ p (b | x, y) =
∑
m∈S

p (m | x) p (b | m, y) ∀b, x, y. (3.1)

Essentially, then, Cd,B,X,Y contains all behaviors that may occur when (i) the devices are uncorrelated,
(ii) the preparations are classical and (iii) with dimension at most d, (iv) Alice has X preparation choices,
and (v) Bob picks one out of Y measurement settings with (vi) B outcomes each. If the parameters are
clear by the context, we simplify the notation by omitting subscripts.

Briefly detouring, it is interesting to notice that model (3.1) is much in the spirit of ontological
models [128, 65, 54]. To see that, consider S as a finite, dimension-bounded ontic state space, and x

as the preparation procedure. Then, p (m | x) models our epistemic state. Similarly, if we take y as a
choice of measurement procedure, we may interpret p (b | m, y) as the indicator function. In this way,
any theory that only produces behaviors p ∈ Cd,B,X,Y admits a dimension-bounded ontological model.

Conditions (iii)–(vi) above are natural for any communication scenario, but the case is different for
(i) and (ii). While in many situations, such as when we have some trust on our devices, (i) is justifiable,
it is not always safe to assume that the devices are uncorrelated. The worst-case scenario for classical
variables is when P and M can share an unbounded amount of pre-established classical correlations. Such
correlations must reside in the causal past of the experiment (fig. 3.2), but even so, they can be used to
achieve better performance in several communication protocols implemented in the PM scenario [140],
and lead to quite different geometrical structures [41, 37]. Without knowledge on what correlations the
devices share, the best we can do is to call it λ and say that π is some probability distribution over this
random variable. As both devices can fully access λ ∈ Λ,

p ∈ Cλd,B,X,Y ⇐⇒ p (b | x, y) =

∫
Λ

∑
m∈S

π(λ)p (m | x, λ) p (b | m, y, λ) dλ ∀b, x, y. (3.2)

Here, Cλd,B,X,Y is the set of behaviors we get from Cd,B,X,Y by allowing for classical correlations, or
shared randomness (SR). As π(λ) ≥ 0 and

∑
λ π(λ) = 1, eq. (3.2) is actually telling us that Cλd,B,X,Y =

conv (Cd,B,X,Y ) (eq. (2.2)). Because Cλd,B,X,Y ⊆ Cd,B,X,Y and Cd,B,X,Y is not convex, it holds that
Cd,B,X,Y ⊂ Cλd,B,X,Y . More than that, a slight variation on Fine’s theorem [51] (or sec. 2.3 of [120],
for a more pedagogical discussion) can show that the set Cd,B,X,Y has a finite amount of extremal points,
called deterministic strategies [52, 140]. They are the points given by eq. (3.2) when the response func-
tions are deterministic, i.e., when p (m | x) = δm,f(x,λ) and p (b | m, y) = δb,g(m,y,λ), for some functions
f : X → {0, . . . , d − 1} and g : {0, . . . , d − 1} × Y → B that are made precise in the aforementioned
references. Interpreting Cλd,B,X,Y as a convex hull of finitely many points, this proves that Cλd,B,X,Y is a
polytope. Recalling the discussion in sec. 2.1, we emphasize that Cλd,B,X,Y can thus be described by an
intersection of half-spaces, which are given by the linear inequalities defining its facets. This description
will turn out to be especially useful along chap. 4, in which we will get back to this topic and work out
an example that should clarify this discussion.

For an example of the usefulness in understanding these sets, notice that for some fixed X and Y , and
some d′ > d, we have the proper inclusion Cd ⊂ Cd′ , which implies the same for the SR case. Ultimately,
this means that larger dimensional communication can carry more information. Now suppose that Wd is
a linear functional defining some facet of Cλd which is not a facet of Cλd′ (at least one such Wd must exist,
since Cλd ⊂ Cλd′) and that, for any behavior p ∈ Cλd , we have a bound Wd · p ≤ Cd. Because Wd does not
define a facet of Cλd′ , there is some p′ ∈ Cλd′ such that Wd · p′ > Cd. Hence, if we are given preparation
and measurement boxes which are guaranteed to prepare only classical systems, and we observe some
behavior that, like p′, violates the bound on Wd, we can certify that Alice’s device is preparing classical
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Figure 3.2: Causal structure of a prepare and measure experiment.
Choice x of preparation can only directly influence the messagem, which
can be encoded in a classical or quantum system. Communicating m
effectively screens-off the choice of x, unless the measurement device
can perfectly recover it. Observable b is influenced by the received
message m and the choice y of measurement, which can be seen as a
decoding function. Bothm and b can be further classically or quantumly
correlated by some variable in the causal past of the experiment.

states of dimension at least d+ 1.
In disguise, I have exemplified what is called a (dimension) witness: any functional and bound that, (i)

for some set of behaviors is never violated, but that (ii) can be violated by at least one behavior of some
other set, is said to witness some property. In our case, we are witnessing dimension in a semi-device-
independent fashion, as we have assumed the preparations are classical. Lastly, notice that the facets
defining any Cλd polytope are, by definition, dimension witnesses. Furthermore, they are tight witnesses,
something which not all witnesses must be.

For completeness, we note it is also possible to define Cρd,B,X,Y sets, where the preparations remain
classical, but the devices can be correlated through a shared quantum state ρ [131, 112]. When ρ is
an entangled state, this can lead to interesting behaviors associated with advantages in communication
protocols [108]. Generally, Cλd,B,X,Y ⊆ C

ρ
d,B,X,Y , but the results in [108] imply that strict inclusion holds

for at least some cases.

3.1.2 Quantum preparations

Generalizing our discussion, let us also remove the assumption of classical preparations. In that case, S
will be a finite subset of D(H), and y a choice of a quantum measurement. Employing Born’s rule, the
behaviors may be rewritten as p = {tr

(
ρxEb|y

)
}b,x,y. Here, all ρx ∈ S, and {Eb|y}b is a POVM for each

y. For the dimension bound, let dim(S) = dim
∑
ρx∈S supp (ρx) be the smallest Hilbert space dimension

needed to represent all density operators in S. Then, in direct analogy to the classical behaviors sets,
for any fixed X and Y , we define Qd,B,X,Y as the set of behaviors arising from quantum communication
with uncorrelated devices.

Allowing for shared randomness introduces a slight change in the elements of the behaviors. Using
the same notation as before, they turn into

p (b | x, y) =

∫
Λ

π(λ)tr
(
ρλxE

λ
b|y

)
,

and Qλd,B,X,Y would be the sets of such behaviors. Regarding set inclusions, clearly Qd,B,X,Y ⊆ Qλd,B,X,Y ,
but results in [7] prove there are instances where Qd,B,X,Y ⊂ Qλd,B,X,Y .

Lastly, and most importantly for chap. 5, Alice and Bob may share a quantum system ρ ∈ HA ⊗
HB and exploit it as a resource to improve their quantum communication. That is what we call an
entanglement-assisted scenario. Most generally, Alice can use her share of ρ as an aid in her encoding
of x, and the way to do it is by applying a local CPTP map Λx to her share of ρ. As we must bound
the communication to d-dimensional systems, Λx : L(HA) → L(Hd), where Hd ' Cd. This system in
Hd is then transmitted to Bob, who will afterwards hold ρx = (Λx ⊗ 1B) ρ. His measurements’ effects
act on Hd ⊗ HB . Behaviors compatible with experiments implementing this procedure are in the sets
Qρd,B,X,Y , and dense coding (sec. 3.2.2) provides examples where Qλd,B,X,Y ⊂ Q

ρ
d,B,X,Y . Sometimes, it

is a reasonable assumption to make HA ' Hd (see sec. 3.2.2 and chap. 5). Bear in mind, though, that
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Figure 3.3: Pictorial representation of prepare and mea-
sure behaviors. Cλ2 , arising from 2-dimensional classical
communication with shared randomness, is a subset of
any Cλd with d > 2 (eq. 3.2). Qubit preparations, Q2, can
behave in ways that violate the facets of Cλ2 [52].

it can lead to some loss of generality: recently, Tavakoli et al. [131] considered a qubit communication
protocol where 4-dimensional entanglement shows advantage over having only a 2-dimensional entangled
resource. To the best of my knowledge, those, together with Moreno et al.’s ([90] and chap. 5), were the
first results considering this most general quantum communication scenario.

As a side note, although I have presented entanglement-assisted quantum communication scenarios
as the most general kind of PM scenario, there are still further possible generalizations if we allow Alice’s
and/or Bob’s inputs x and y to also be quantum variables [61]. These are interesting and little explored
scenarios, but dealing with them is out of our scope.

Clearly, any of the sets Q, Qλ and Qρ is contained in their respective larger-dimensional counterparts.
Thence, the same observations made before make it possible to also derive quantum dimension witnesses
[52]. Whereas witnessing dimension for classical or quantum preparations is already of practical and
fundamental interest, we ideally want to also distinguish between classical and strictly quantum behaviors.
To that end, it is useful to recognize that all behaviors from a set of d-dimensional pair-wise commuting
density operators can be reproduced by communicating classical systems of a dimension that need not
be larger than d. More precisely, if SC is a set of d-dimensional density operators such that [ρi, ρj ] =

0, ∀ρi, ρj ∈ SC , then they can be simultaneously diagonalized w.r.t. some orthonormal basis {|ei〉}di=1.
There can be at most X = d d-dimensional preparations with this property. Letting ρx =

∑
i ci,x |ei〉〈ei|,

we get that tr
(
Eb|yρx

)
=
∑
i ci,x

〈
ei
∣∣Eb|y∣∣ei〉. Operationally, this means that communicating the label x

(a classical variable with dimension d ≥ X) is enough to reproduce all possible behaviors: upon getting
x and Bob’s choice y, the measurement device samples |ei〉 with probability ci,x, measures it considering
y, and after collecting asymptotically many results the parties recover the correct p (b | x, y).

However, not all quantum states commute. For any fixed B,X, Y and d < X, then, it holds that
C ⊂ Q, and similarly for the quantum sets allowing for shared randomness and entanglement assistance.
More than that, recall that Cλ = conv (C), i.e., Cλ is the smallest convex set that contains C (sec. 2.1).
Jointly with the fact that Q is convex and C ⊂ Q, we must have that Cλ ⊆ Q. Gallego et al. have
further shown that actually Cλ ⊂ Q [52], as illustrated in fig. 3.3. Collecting the aforementioned set
relationships, we find that, for fixed B,X, Y and d < X,

C ⊂ Cλ ⊂ Q ⊆ Qλ ⊆ Qρ , and (3.3a)

C ⊂ Cλ ⊆ Cρ ⊆ Qρ . (3.3b)

Noticing that Cλ is the largest of the purely classical sets, and Q the smallest set of behaviors involving
quantum variables, the relation Cλ ⊂ Q shows we can build nonclassicality witnesses for the prepare and
measure scenario. Although I would be surprised if not all relations above are proper inclusions, affirming
that demands more careful consideration.

∗ ∗ ∗
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In recent years, a multitude of dimension and nonclassicality witnesses for prepare and measure
scenarios have been proposed [52, 26, 127, 37, 140, 23, 145] and some of them experimentally tested
[69, 5, 38]. More stringent conditions can also be used to perform self-testing of states and measurements,
which can be used to certify the use of mutually unbiased bases, nonprojective measurements, or targeted
sets of states [130, 48, 146, 87, 132, 86, 90]. All the while, known computational methods can aid in
bounding the set of finite dimensional quantum correlations in prepare and measure scenarios [96, 95]. The
prepare and measure scenario and its sequential, or prepare-transform-and-measure, variations [89, 85],
are also expected to serve as building blocks for quantum networks [21, 143]. Complementing their
versatility, they can also be seen as a physical implementation of many paradigmatic communication
protocols such as random access coding and dense coding, which I now briefly introduce.

3.2 Prepare and measure communication protocols

The preeminent practical interest in prepare and measure scenarios is due to the fact that quantum com-
munication can beat classical protocols in many tasks that can me modeled as preparing and measuring
states. These include cryptographic key distribution [105], secret sharing [121] and communication com-
plexity scenarios [28]. Simplifiedly, the latter deals with the question of how much is the least amount
of communication needed to compute or approximate some function f(x, y) when the inputs x and y are
distributed among distant parties. Prepare and measure scenarios clearly resemble this structure. To
close the gap, all we have to do is to stipulate a figure of merit that, generally depending on f , measures
how well the protocol at hand performs. If we additionally manage to show some separation between
the best performance achievable, for instance, in Cλd against Qd, we can prove quantum advantage in the
task. A special and widely studied choice of f(x, y) = xy leads us to the so-called random access coding
(RAC) protocol.

3.2.1 Random access coding

An (n, d) 7→ m random access code (RAC) is a communication task in which a party — commonly Alice
— is given a n-length ditstring x = x1x2 . . . xn, with each xi ∈ {0, . . . , d−1}, and required to encode it in
another ditstring a of length m, where m < n. Her encoded message is then sent to Bob, who is queried
with an y ∈ {1, . . . , n} representing which dit of the original message x he must guess. In each round of
a RAC, Bob’s probability of guessing the right value is given by p(b = xy | x, y), and this is the quantity
we seek to maximize. A RAC can thus be seen as a (potentially lossy) information compression protocol
where Alice and Bob must cooperate to perform as best as possible. Their performance is typically
measured through the worst-case success probability pworst, defined as the minimum guess probability
p(b = xy | x, y) occurring for their particular encoding-decoding strategy. When the best possible
strategy for an (n, d) 7→ m scenario is such that pworst ≤ 1/d, the RAC is said to not exist, as in that
case a better or equivalent performance could be achieved through independently guessing.

Such a task may be physically implemented in various ways. Among the simplest are the deterministic
strategies. In it, Alice must encode x into the m-dits message a = E(x), where E : {0, . . . , d − 1}n 7→
{0, . . . , d − 1}m is an encoder function. Given a and a y, Bob employs one out of n decoding functions
Dy : {0, . . . , d − 1}m 7→ {0, . . . , d − 1} to generate his answer. The probability of Bob answering b is
thence given by p (b | x, y) = δ [b, (Dy ◦ E)(x)]. In the simplest (2, 2) 7→ 1 RAC, deterministic strategies
lead to a pworst = 0, and probabilistic (but still uncorrelated) strategies render a pworst = 0.5 [8, 7].
Interestingly, shared randomness (SR) is known to drastically improve the performance in this task. By
sharing randomness, Alice and Bob may cooperate via predetermined classical strategies. Effectively, the
encoding and decoding functions become correlated through the shared variable λ, and we end up with
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probability distributions over deterministic strategies. In this case, it is known that an SR-RAC’s worst
case success probability is effectively lifted to the deterministic RAC average success probability psuc [7],
i.e.,

pSRworst = pavg ≡
1

ndn

∑
x,y

p (b = xy | x, y) . (3.4)

Ibidem, it is also argued that an optimal deterministic strategy in (n, 2) 7→ 1 RACs is reached through
majority encoding with identity decoding. In our (2, 2) 7→ 1 case, this translates to Alice mapping
(00, 01, 10, 11) 7→ (0, c, c, 1), where c stands for any choice, and Bob outputting exactly what he gets. As
this achieves a pavg = 0.75, it follows from eq. 3.4 that it is possible to reach pworst = 0.75 by exploiting
shared randomness.

Something else that can further improve performance is allowing for quantum communication. In
this case, we interpret the encoders E(x) = ρx ∈ D(d) as preparation procedures and the decoders Dy =

{Eb|y}b as quantum measurements. These so-called quantum random access codes (QRACs) first appeared
in [148] and were later rediscovered and linked to quantum automata in [8]. With this popularization,
multiple new results and experimental demonstrations regarding the existence and advantage of QRACs
over their classical counterparts rapidly ensued [97, 9, 66, 7, 129, 105]. QRACs can largely outperform
shared randomness strategies in the (2, 2) 7→ 1 RAC, getting up to pavg ≈ 0.853553.

Random access codes can be interpreted as specific instances of prepare and measure scenarios or,
conversely, the latter can be seen as physical implementations of RACs. Mapping QRACs to PM scenarios
with quantum communication, for instance, amounts to choosing |X | = dn preparations ρx ∈ D(d), and
|Y| = n choices of POVMs with |B| = d outcomes each [140]. The set of behaviors is then Qd,d,dn,n,
and optimizing the protocol means looking for a p ∈ Qd,d,dn,n that maximizes either pworst or pavg,
depending on which is the chosen figure of merit. In the next chapter we will make use of this mapping
to demonstrate an interesting quantum advantage activation phenomenon in QRACs.

Additionally to RACs, SR-RACs and QRACs, one could also investigate SR-QRACs [7], EA-RACs
[108] and EA-QRACs, where “EA” stands for “entanglement-assisted”. Each of these cases (which I will
herein collectively refer to as simply “RACs”) could analogously be mapped to a PM scenario, and the
optimal solutions would be searched for inside the PM behavior sets C, Cλ, Q, Qλ, Cρ andQρ, respectively,
all with subscripts d, d, dn, n.

To end this section, I note that while RACs can be cast as an instance of prepare and measure, the
inverse is not true. Investigating what different kinds of information retrieval tasks [47] arise from such
other instances could be an interesting research problem.

3.2.2 Dense coding

Holevo’s bound guarantees that n qubits can perfectly encode no more than n bits of information [74].
Calling to mind that n qubits require 2n − 1 complex coefficients to be fully described, this result comes
to be tremendously surprising. Looking more closely, the setting where this conclusion arises from is a
prepare and measure scenario with quantum communication but independent devices. Another seminal
result, named dense coding, proves that when the devices are not independent, but rather, share a
maximally entangled state as a resource, it becomes possible to communicate two bits by sending a single
qubit.

Dense coding was first proposed by Bennett and Wiesner [19] similarly to the following argument.
Let Alice and Bob share a two-qubit maximally entangled state |Φ+〉 = 1√

2

∑1
i=0 |ii〉 (the same argument

is valid for any unitary transformation of it). Her task is to communicate one out of four messages
to Bob. We label those messages with choices from the ordered set X = (0, 1, 2, 3), which could be
perfectly encoded with two bits. Alice and Bob, prior to the experiment, agree on some special set
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of transformations, hereby Λ = (1, σx, σy, σz) — where σi are the Pauli matrices —, to represent the
respective encodings. Alice’s encoding of x is a simple matter of applying Λx to her share of |Φ+〉. After
receiving her qubit, Bob will thus have the state (Λx ⊗ 1) |Φ+〉〈Φ+|. The four possibilities are mutually
orthogonal, hence can be perfectly distinguished by some suitable measurement (e.g., a standard Bell-
basis measurement). Therefore, Bob will be able to perfectly recover x even with a single qubit of
communication.

Purposefully, I have framed the protocol in the previously introduced notation for a prepare and
measure scenario with quantum communication and entanglement assistance. My intention was to suggest
that dense coding can be implemented as a special instance of prepare and measure scenarios. In chap.
5, we will see how it indeed can. More than that, several generalizations of this protocol are possible.
The most straightforward ones are to allow for higher dimensional communication and entanglement [19]
or mixed-state entanglement [11]. Recently, discussions have also been opened in regard to unbounded
entanglement [131] or even dense coding protocols with errors [98, 90]. Chapter 5 will also detailedly
discuss how we can use insights from prepare and measure scenarios to prove interesting results for the
latter case.
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Chapter 4

Classicality in the prepare and measure
scenario

A key objective in the study of quantum correlations is understanding what makes some behaviors be
surely quantum, while others may be not. Progress on this issue improves our understanding of what
is “quantum” in quantum theory, which in turn will lead to improved or even innovative technological
applications. In this chapter, I introduce novel methods for deciding whether some set of quantum
preparations or quantum measurements behaves classically. These will, in turn, provide new insights
about a nonclassicality activation phenomenon and the relation between measurement incompatibility
and quantum behaviors in prepare and measure scenarios.

These results were published in [40], and computational details are provided in appendix A.

∗ ∗ ∗

To make the problem we want to solve precise, let us first recall that the most general prepare and
measure behaviors involving strictly classical variables are those in Cλd,B,X,Y (eq. (3.2)). Contrastingly, the
Qd,B,X,Y contain the least general quantum behaviors, which are those needing only quantum prepara-
tions with independent devices (sec. 3.1.2). The relation Cλd,B,X,Y ⊂ Qd,B,X,Y reflects the fact that some
behaviors arising from quantum preparations are nevertheless in Cλd,B,X,Y , while others are definitely not.
Those which are can be simulated by classical preparations with shared randomness. Hereafter, we will
call any behavior in the Cλd,B,X,Y classically reproducible/simulatable — or just classical, for short.

It is important to keep in mind that several distinct notions of classicality exist in the literature. As
is the case of entanglement measures, some applications may call for a classicality model or another.
Our choice of Cλd,B,X,Y for the classical behaviors set is general in the sense discussed in chap. 3. It is
also in line with widely studied classicality models in different correlation scenarios, such as local hidden
variables and local hidden states models [25, 135, 32].

Suppose a behavior p arose from a set S of quantum preparations under some collection of measure-
ments, and furthermore that it is classically reproducible with d its. This means that p ∈ Cλd,B,X,Y . But
it does not mean that S always behaves classically, for it may be the case that different measurements
would reveal nonclassicalities in S. Even if we certify S is classical for all possible sets of Y measurements,
it could happen that increasing the number of measurement choices leads to nonclassicality [112]. To
better understand what makes quantum preparations behave classically of not, we must then deal with
any number of uncharacterized measurements. This is precisely the task we partially solve in sec. 4.1.

Before tackling that, it is both instructive and useful to further examine the p ∈ Cλd,B,X,Y membership
problem. As previously discussed, any Cλd,B,X,Y is a polytope, thus set membership can be certified
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through compliance with a finite set of linear inequalities representing its facets. If one is given the
facets, this is a computationally easy problem, but obtaining the facets is not. The whole complexity of
the problem then lies in characterizing the polytope for a given scenario. As first noticed in [52], this
can be done by enumerating all of Cλd,B,X,Y ’s extremal points and finding their convex hull (see sec. 2.1).
The extremal points — also called deterministic behaviors/strategies — are found from eq. (3.1) when
the response functions are deterministic, and their enumeration can be cast as the following procedure.

Let pD = (p(b | x, y))b,x,y be an ordered list representing a deterministic behavior. To simplify the
notation, let us consider b ∈ {0, 1} (the generalization is straightforward) and write pD = (vx)

X
x=1, where

vx = (p(b = 0 | x, 1), . . . , p(b = 0 | x, Y )) will be called a substring. Only the b = 0 probabilities must
be considered, as p(1 | x, y) = 1 − p(0 | x, y). A deterministic behavior is valued as 1 for one of the
outcomes and, of course, 0 for all others. Whenever d = X, there will be 2XY distinct pD vectors. In
this B = 2 case, those are exactly all possible XY -length ditstrings but, in the general case, there will be
BXY vectors corresponding to only those (B−1)XY -length ditstrings with a single 1 in each B−1-length
consecutive substring. We can think of each of these vectors as a deterministic strategy where Alice’s
choice of x is unambiguously encoded in a classical state τx, from which Bob may then perfectly recover
x through classical post-processing. The nontrivial case happens when d < X, i.e., when there are only d
distinct classical preparations. As the preparation box has more buttons than distinct classical states, at
least dX/de inputs will be mapped to the same message. Whenever τi = τj , obviously vi = vj , hence our
vector pD will have d−X repeated substrings. With this in mind, enumerating all possible deterministic
points amounts to generating every unique dY -length ditstrings, then repeating d −X substrings vx in
all possible arrangements.

The number of deterministic points scales exponentially as Nλ ∝ (B − 1)dY , which makes the change
to the hyperplane description intractable for all but the smallest parameters. One solvable case that will
be used in sec. 4.1.1 is for Cλ2,2,4,2, where the polytope is defined by the two following classes of nontrivial
inequalities [112]

S = E11 − E12 − E21 + E22 − E31 − E32 + E41 + E42 ≤ 4 (4.1a)

S′ = E11 + E12 + E21 − E22 − E41 ≤ 3 (4.1b)

where the Exy = p (b = 0 | x, y)− p (b = 1 | x, y) are the so-called correlators.
Framing it with quantum preparations, this scenario corresponds to a set S with X = 4 possible

d = 2-dimensional quantum systems (qubits) that will be prepared by Alice’s device then measured
by Bob’s. He will have Y = 2 choices of POVMs, where each POVM is composed of B = 2 effects.
An interesting fact in this scenario (as well as many others) is that some quantum preparations and
measurements, even with independent devices, can violate inequalities S or S′. When this happens, the
behavior is not classically reproducible. In many cases, nonclassicalities provide quantum advantage in
informational protocols (sec. 3.2).

4.1 Classicality of preparations

But we are interested in a much more general question than that of certifying whether or not a behavior is
classically reproducible. Namely, that of certifying if the set S of quantum preparations is itself classical.
For that to be true, there must be no measurements that upon acting on S end up in a nonclassical
behavior. Brute-forcing our way into the answer is off the table, for this would amount to testing the
behaviors of S for all (infinitely many) possible measurements.

This is a similar problem to that of finding local hidden variable models for entangled states in
Bell scenarios [4, 72], for which a general computational method guaranteeing a sufficient condition has
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Figure 4.1: Representation of the method for d = 2. Each
vertex on the Bloch sphere represents a measurement oper-
ator. To every Π0|y we associate a corresponding antipodal
Π1|y. Measurements inside the set enclosed by conv(M)
can be simulated by mixing these extremal ones. In par-
ticular, any measurement {Πη

b|u}b in a ball with radius η
inscribed in the polytope is simulatable in such manner.

recently been proposed [31, 73]. We now adapt it to the prepare and measure scenario.
Suppose that, for the quantum states in S and a finite set M = {Eb|y}b,y of Y measurements, the

classical model (3.2) exists, i.e., that

tr
(
ρxEb|y

)
=

∫
Λ

d∑
m=1

π(λ)p (m | x, λ) p (b | m, y, λ) dλ ∀b, x, y. (4.2)

By linearity, for any convex sum of effects,

tr
[
ρx
(
wEb|y + (1− w)Eb′|y′

)]
= wtr

(
ρxEb|y

)
+ (1− w)tr

(
ρxEb′|y′

)
.

Whence, S’s behaviors are classical under all measurements in conv (M), and in particular for all mea-
surements whose effects are inside the largest ball we can inscribe in conv (M) (fig. 4.1). For normalized
Bloch vectors (c.f. eq. (1.14)), 0 ≤ η ≤ 1 will be its radius. This ball is nothing but a depolarized Bloch
ball η Bl (d). This suggests that by probing the preparations with only a finite number of measurements
and (possibly) finding a classical model, we can nevertheless certify classicality for the infinitely many
measurements whose effects are in η Bl (d). They can be written as

Φη(Eb|y) = ηEb|y + (1− η)
tr
(
Eb|y

)
d

1 ≡ Eηb|y, (4.3)

but they are still not all possible measurements. As an example, unless η = 1, many rank-1 projective
measurements (those on the Bloch sphere) will be left out.

The work-around is to consider the dual map Φ†η applied to the preparations. This will result in each

ρx 7→ Φ†η(ρx) =
1

η

[
ρx − (1− η)

1

d

]
≡ Ox. (4.4)

Analyzing the behavior of the Ox under the Eηb|y tells us that

tr
(
OxE

η
b|y

)
= tr

{
1

η

[
ρx − (1− η)

1

d

] [
ηEb|y + (1− η)

tr
(
Eb|y

)
d

1

]}

= tr
(
ρxEb|y

)
−
[

1− η
d
− 1− η

dη
+

(1− η)2

dη

]
tr
(
Eb|y

)
.



Section 4.1 Classicality of preparations 46

If all effects Eb|y are rank-1 projectors, then tr
(
Eb|y

)
= 1 (sec. 1.4), making it true that

tr
(
OxE

η
b|y

)
= tr

(
ρxEb|y

)
. (4.5)

The procedure to test S for classicality follows from precisely this trace equality relation. We start
out by defining an operator Ox for each state ρx ∈ S. Ensuingly, we probe the O = {Ox}x with some
setM = {Eb|y}b,y of rank-1 projective measurements. If the model on the r.h.s. of eq. (4.2) exists for O
and M, the preceding discussion reveals it also exists for every measurement in conv (M). It will then
be true that p =

{
tr
(
OxE

η
b|y

)}
b,x,y

is a classical behavior for all measurements whose effects can be

written as Eηb|y. In turn, eq. (4.5) implies that the ρx admit a classical model for all Eb|y, which are
all rank-1 projections. Measurement results for projections of larger rank can be inferred from rank-1
projections through coarse graining (classical post-processing), hence the result is valid for all projective
measurements.

To cast this procedure as an optimization problem, recall that the deterministic strategies λ can be
enumerated as discussed in the previous section. Assuming that is done, the integral in (4.2) turns into
a finite sum. Besides, the distance from the nearest hyperplane in the convex hull ofM to the origin is
η. Further observing that the maximally mixed state 1/d is trivially classical, we write

given S,M, η, {λ} (4.6a)

max.
π(λ)

α (4.6b)

s.t. αρx + (1− α)
1

d
= ηOx + (1− η)

1

d
, ∀x (4.6c)

tr(Eb|yOx) =
∑
m,λ

π(λ)p(m|x, λ)p(b|m, y, λ), ∀b, x, y (4.6d)

0 ≤ α ≤ 1 (4.6e)

π(λ) ≥ 0 (4.6f)∑
λ

π(λ) = 1. (4.6g)

Allowing the ρx to be mixed with the identity in the l.h.s. of eq. (4.6c) guarantees the program will
always have a feasible solution. Constraints (4.6d)–(4.6g) force the local model to exist, the mixtures
to be valid density operators, and π to be a probability distribution over the deterministic strategies,
respectively. Any solution where α = 1 certifies that preparations in S admit a classical model for all
projective measurements. On the other hand, any α < 1 certifies only that the preparations αS = {αρx}x
are classical. This criterion turns from sufficient to both necessary and sufficient only when η → 1, a
regime approachable by increasing the number Y of probe measurements.

Being a linear program (sec. 2.2.1), eq. 4.6 can be efficiently solved up to numerical precision.
Regardless of linear programming complexity, an instance of program (4.6) has Nλ variables. As already
noted, Nλ ∝ (B − 1)dY thus the program size scales exponentially with the number of measurements. It
will always be of interest to maximize η, and consequently, to maximize Y . With X = 4 preparations,
a common desktop computer can usually only handle less than Y = 12 projective qubit measurements.
This limitation can be circumvented through the iterative optimization procedure described in sec. A,
which was applied in all upcoming results.

It is also possible to extend our criterion to non-projective measurements. Dichotomic projective
measurements are the extremal two-outcome POVMs. Consequently, out method actually guarantees
classicality for all B = 2-outcome measurements. For all other cases, we can extend it by simulating
POVMs with projective measurements (c.f. sec. 1.3). To see how, recall that any set of generalized
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measurementsM = {Eb|y}b,y becomes projective-simulatable after a certain amount t of depolarization.
Observing that

tr
[
Eb|yΦt(ρx)

]
= tr

[
Φt(Eb|y)ρx

]
(4.7)

leads us to conclude that testing S = {ρx}x for classicality under all POVMs is the same as certifying
that preparations

ρ′x ≡ Φ†t (ρx) =
1

t

(
ρx −

1− t
d

1

)
(4.8)

are classical for all projective measurements, where t is some amount of depolarization such that Φt(M)

are projective-simulatable.
Program (4.6) can be easily modified to this case by either adding an extra constraint or through

explicit rewriting. For the former, it reads

given S,M, η, {λ}, t (4.9a)

max.
π(λ)

α (4.9b)

s.t. ρ′x =
1

t

(
ρx −

1− t
d

1

)
, ∀x (4.9c)

αρ′x + (1− α)
1

d
= ηOx + (1− η)

1

d
, ∀x (4.9d)

tr(Eb|yOx) =
∑
m,λ

π(λ)p(m|x, λ)p(b|m, y, λ), ∀b, x, y (4.9e)

0 ≤ α ≤ 1 (4.9f)

π(λ) ≥ 0 (4.9g)∑
λ

π(λ) = 1, (4.9h)

which is also a linear program.

4.1.1 Nonclassicality activation and quantum advantage in a RAC

Nonclassicality activation phenomena have been long-known in Bell scenarios, where an entangled state
that only behaves locally may have its nonlocality activated, for instance, by local filtering, broadcasting,
or by exploring multiple copies of the state [113, 70, 53, 94, 103, 30, 22]. Very recently, two interesting,
similar phenomena were explored in PM scenarios [112] — one related to increasing the number of allowed
measurements, and the other to the number of preparations. Our method can be applied to demonstrate
a stronger form of the latter.

Let us start by defining S(α, θ) = {ρr1 , ρr2 , ρr3 , ρr4} as the preparation set illustrated in fig. 4.2(a).
They are parameterized by α — a shrinking factor from the surface of the Bloch sphere —, and the
angle θ. For the probe measurements, we will choose the ones parameterized by the Bloch vectors
q1 = (−x + z)/

√
2 and q2 = (x + z)/

√
2. Substituting back into inequality S (eq. (4.1a)), we get

that S(α, θ) = 4
√

2α sin θ. This curve is shown in fig. 4.2(b), where any violation of S ≤ 4 certifies
nonclassicality.

Our second step is to take every subset of 3 preparations from S(α, θ) at some θ. For each possibility,
we run program (4.6) and find the largest α∗ such that any collection of 3 preparations is classical. Any
α < α∗ has more of the identity state, thus preserves classicality. Sweeping θ, we obtain the dotted curve
shown in fig. 4.2(b). The shaded region then corresponds to a situation where all triads of preparations
are classical, but that taken together have their nonclassicality activated.

The significance of this results can be illustrated when considering a (2, 2) 7→ 1 RAC. Section 3.2.1)
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(a) Preparations (b) Activation

Figure 4.2: Nonclassicality activation in the prepare and measure scenario. On the left, preparations
S(α, θ) = {ρr1 , ρr2 , ρr3 , ρr4} are represented by their Bloch vectors, for α = 0.8. At θ = 0, all preparations
are at αy. For θ = π/2, S = {−αx, αx,−αz, αz}, corresponding to the largest violation of inequality
(4.1a). On the right, result of applying program 4.6 to S. To run it, 12 probe measurements were arranged
as the vertices of a rhombicuboctahedron (η ≈ 0.86). As S ∝ α, every preparation set above the S = 4
curve is non-classical. On the other hand, the classicality curve shows the maximum visibility such that
any triad of states in the preparation set are classical. The shaded region thence represents sets of four
preparations that are three-wise classical, but that that when taken together behave nonclassically. In
this sense, nonclassicality is activated by measurement inclusion.

tells us it can me mapped to a (d,B,X, Y ) = (2, 2, 4, 2) prepare and measure instance, which is exactly
the case for the class of inequalities represented by S. A class is a collection of inequalities that are
equivalent through symmetries. In correlation scenarios, these symmetries are called relabelings. Because
the labels attached to outcomes, preparations and measurements are arbitrary, inequalities obtained from
another through relabeling b, x and/or y are equivalent. In particular, s = E11 +E12 +E21−E22−E31 +

E32−E41−E42 ≤ 4 is a relabeling of S. Borrowing from [105], we note that, for the (2, 2) 7→ 1 RAC, the
average probability of success is the facet s. To see that, relabel preparations (1, 2, 3, 4) 7→ (00, 01, 10, 11)

and open up

pavgsuc =
1

8

∑
x,y

p(b = xy|x0x1, y)

=
1

8

[
p(0|00, 0) + p(0|00, 1) + p(0|01, 0) + p(1|01, 1)+

+ p(1|10, 0) + p(0|10, 1) + p(1|11, 0) + p(1|11, 1)
]

=
1

8

[
p(0|00, 0) + p(0|00, 1) + p(0|01, 0)− p(0|01, 1)+

− p(0|10, 0) + p(0|10, 1)− p(0|11, 0)− p(0|11, 1) + 4
]

Switching s to full-form and applying normalization, we get

s = 2
[
p(0|00, 0) + p(0|00, 1) + p(0|01, 0)− p(0|01, 1)+

− p(0|10, 0) + p(0|10, 1)− p(0|11, 0)− p(0|11, 1)
]
,
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and together,

pavg =
1

8

(
1

2
s+ 4

)
=
s+ 8

16
≤ 3

4
, (4.10)

where the classical bound for s was substituted in the last term. This relation means that any violation
of s in the (2, 2, 4, 2) PM scenario can be associated with a quantum advantage in the corresponding
(2, 2) 7→ 1 QRAC. We have numerically found a lower bound for the maximum quantum violation of s
to be approximately 5.65685. Substituting into eq. (4.10), pavg ≈ 0.853553, exactly matching the result
found in sec. 3.3.1. of [7]. This also suggests that our bound for s is tight. More interestingly yet,
this construction shows that the nonclassicality activation phenomenon reported above also transfers to
this case, where it can be interpreted as an activation of quantum advantage in a relevant quantum
communication protocol.

4.2 Classicality of measurements

In the absence of entanglement, one must look for other quantum features to explain nonclassical be-
haviors. Measurement incompatibility (sec. 1.3) is usually at the center of many interesting quantum
phenomena, and from a more practical perspective they may be seen as resources in informational tasks
[56]. It is then natural to wonder whether non-joint measurability is necessary, or even sufficient, for the
emergence of classically irreproducible behaviors in the prepare and measure scenario. Reframing the
question, we ask: given a set of incompatible measurements, is there always some set of preparations
that leads to nonclassicality?

The question at hand has been positively answered for quantum steering [116, 137, 134] and negatively
for Bell nonlocality [115, 71, 16], but only partial results exist for prepare and measure scenarios [29].
Interestingly, this problem is similar to what we have just dealt with, but while we were previously
interested in certifying some set of preparations is classical for all measurements, we now move on to
certify there exists no set of preparations such that a fixed set of measurements unveils nonclassicality.
We will soon see the previous method is straightforwardly adaptable. Even so, regarding the existing
literature, this is a more innovative approach. While Sec. 4.1 develops a procedure akin to known
results for different correlation scenarios [31, 73], the method we now present has not, to the best of my
knowledge, been considered elsewhere.

∗ ∗ ∗

Starting with the measurement setM = {Eb|y}b,y of our interest, we build the operators

Ob|y = ηEb|y + (1− η)
tr
(
Eb|y

)
d

1, (4.11)

where η will soon be defined. For some set S = {ρx}x of pure probe preparations, we consider the
behavior p = {tr

(
Ob|yρx

)
}. If, for all b, x and y, classicality (in the sense of eq. (3.2)) holds, then it

also does for every preparation in conv (S). In particular, this will be true for all quantum states in the
largest sphere inscribed in the convex hull of S. We write η for its radius, and ρηx for any preparation
in it. A key difference from sec. 4.1 is that the η defining the Ob|y is now the radius with respect to
conv (S), as opposed to conv (M).

Our working hypothesis is that

tr
(
Ob|yρx

)
=

∫
Λ

d∑
m=1

π(λ)p (m | x, λ) p (b | m, y, λ) dλ ∀b, x, y.
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From the discussion in the previous section, this would imply the collection of tr
(
Ob|yρ

η
x

)
is also classical

for every preparation in the η-sphere. Similarly to the trace equality (4.5), tr
(
Ob|yρ

η
x

)
= tr

(
Eb|yρx

)
holds whenever the Eb|y are rank-1 projectors, as can be seen by direct calculation. The r.h.s. of this
last equation then tells the measurements inM leads to classicality for every possible ρx. Recalling we
started with pure preparations, this procedure reveals that such a set of rank-1 projective measurements
is classical in regard to all pure states. Pure states are the extremal points in the set of quantum states,
thence, any state is a convex combination of those, and the result is valid for all states. Moreover, coarse
graining of rank-1 projective measurements simulates PVMs with all larger ranks, proving our procedure
works for all projective measurements.

A slight modification of program (4.6) implements this criterion as the linear program

given S,M, η, {λ} (4.12a)

max.
π(λ)

α (4.12b)

s.t. αEb|y + (1− α)
1d
d

= ηOb|y + (1− η)
1d
d
, ∀b, y (4.12c)

tr(Ob|yρx) =
∑
m,λ

π(λ)p(m|x, λ)p(b|m, y, λ), ∀b, x, y (4.12d)

0 ≤ α ≤ 1 (4.12e)

π(λ) ≥ 0 (4.12f)∑
λ

π(λ) = 1. (4.12g)

Running it amounts to choosing a suitable set of pure probes S = {ρx}x, finding its corresponding η,
generating the deterministic strategies {λ}, and querying for the maximum α such that the projective
measurements inM are classical. As before, α = 1 certifies they are classical, while α < 1 tells us only
that the measurementsMα = {Φα

(
Eb|y

)
}b,y are. From self-duality of the depolarizing map Φ, another

valid interpretation is thatM is classical for all preparations at least as mixed as Φα (ρx).
Once more in full analogy to the preparation classicality case, we may use concepts of projective

simulatability to extend this criterion to POVMs. Let t be a depolarization parameter that turns a
POVM set M projective-simulatable, and recall that tr

[
φt(Eb|y)ρt

]
= tr

[
Eb|yφt(ρ)

]
. Testing M for

classicality is hence equivalent to certifying Φt (M) is classical with respect to a set

St = {ρtx}x =

{
1

t

(
ρx −

1− t
d

1

)}
x

of probe preparations. Starting from a set S of pure probes, program (4.12) can be undemandingly
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modified to implement this criterion, resulting in

given S,M, η, {λ}, t (4.13a)

max.
π(λ)

α (4.13b)

s.t. αEb|y + (1− α)
1d
d

= ηOb|y + (1− η)
1d
d
, ∀b, y (4.13c)

ρ′x =
1

t

(
ρx −

1− t
d

1

)
(4.13d)

tr(Ob|yρ′x) =
∑
m,λ

π(λ)p(m|x, λ)p(b|m, y, λ), ∀b, x, y (4.13e)

0 ≤ α ≤ 1 (4.13f)

π(λ) ≥ 0 (4.13g)∑
λ

π(λ) = 1. (4.13h)

While, as discussed around program (4.12), we must start with a set S of pure probe preparations, there
is no issue in working with operators ρt ∈ St inside program (4.13), as all quantum states are more mixed
than those.

To demonstrate the usefulness of our method, we solve an important question on the relation between
measurement incompatibility and classicality in the PM scenario.

4.2.1 Measurement incompatibility is insufficient for nonclassicality

Non-joint measurability is an important concept of measurement incompatibility with a clear operational
interpretation (sec. 1.3). Withal, incompatibility robustness is an useful measure of the extent to which
a set of measurements is non-jointly measurable, and it can be efficiently computed through semidefinite
programming (sec. 2.2.2.1). Employing our measurement classicality certification procedure, we now
prove measurement incompatibility is insufficient for nonclassicality in prepare and measure scenarios.

Define the Y = 3 parametrized mirror-symmetric projective measurements as shown in fig. 4.3(a).
For each value of θ, their incompatibility robustness is given by

χ∗M = sup
χ∈ [0,1]

{Nb|y}∈N(M)

{
χ | χ{Eb|y}+ (1− χ){Nb|y} ∈ JM

}
, (4.14)

where N(M) is a choice of noise model which is generally dependant on the desired application. Unbiased
(or white) noise Nb|y = 1/|B| is a common choice when one wants to model experimental imperfections
that affect all degrees of freedom undiscriminately. Considering this choice, the lower curve in fig. 4.3(b)
stands for χ∗M(θ), and it is a tight upper bound, up to numerical precision. Consequently, any value of χ
above it defines a non-jointly measurable measurement set.

Program (4.12) was used to generate the upper curve in the same figure. Twenty-four probe prepara-
tions were disposed as the vertices of a rhombicuboctahedron, leading to η ≈ 0.86, and the deterministic
strategies were iteratively explored following the algorithm described in appendix A. For each θ, the
obtained α is a lower bound on the visibility of M such that a classical model exists for all prepara-
tions. Specifically, anything below the classicality curve defines a measurement set which cannot gener-
ate nonclassical behaviors. The non-empty region between these two curves certifies there are plenty of
incompatible measurements which are classical. Accordingly, non-joint measurability is insufficient for
nonclassicality in the prepare and measure scenario.
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(a) (b)

Figure 4.3: Incompatibility is insufficient for non-classicality in the prepare and measure scenario. On the
left, parametrized measurements used in the demonstration. The projection on z and its antipodal effect
are fixed, while the two other measurements vary with 0 ≤ θ ≤ π/2. In the upper bound, they degenerate
in an x measurement. On the right, program (4.12) was applied. For each θ (see fig. 4.3(a)), any χ
above the incompatibility robustness curve stands for an incompatible measurement set, and any α below
the measurement classicality lower bound represents measurements that certifiedly do not generate non-
classical statistics, regardless what preparations they act upon. Thenceforth, the shaded region contains
incompatible albeit classical measurements.

4.3 Open questions

Albeit the applications discussed in secs. 4.1.1 and 4.2.1 rely on the projective measurements case of
our criterion, their respective instances for generalized measurements are easily implementable. They
do, however, incur in more demanding computational requirements, as the measurement depolarization
factor t can be seen as effectively lowering the insphere radius η. It could nevertheless be interesting to
investigate applications of it, as for instance searching for a nonclassicality activation phenomenon valid
for all POVMs.

A second kind of activation phenomenon, emerging by adding more measuremens instead of prepara-
tions, has also been observed when the number of preparations is limited [112]. Similarly to sec. 4.1.1,
the measurement classicality criterion derived in sec. 4.2 could be used to attempt on finding a more
general form of this result, where all preparations are considered.

Another interesting question is whether POVMs can be used to demonstrate nonclassicality when all
PVMs fail to do so. One could approach this in the following manner. Start by selecting classical prepa-
ration sets from the results in sec. 4.1.1 — which are certifiedly classical for all projective measurements.
Then characterize the facets of a (d = 2, B > 2, X = 3, Y ) prepare and measure polytope. Finally, look
for a set of POVMs that, for some of those classical preparation sets, violates any of the obtained facets.

In view of the method itself, choosing Φ as the noise model is a natural but not required choice.
Different transformations, such as inscribing an ellipsis instead of a depolarized Bloch ball in conv (M)

(and then applying the corresponding dual map to the preparations) could lead to better computational
results, and, potentially, to new insights [50].

The relationship of prepare and measure scenarios with random access coding, which was only super-
ficially explored in sec. 3.2.1 and sec. 4.1.1, also deserves more exploration. Although the mapping of a
RAC to a PM scenario can be trivially done, this is not enough to prove a RACs psuc is always a facet
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of the corresponding PM polytope. Believing that, as in the (2, 2) 7→ 1, this was always the case, we
have further investigated this question. It turns out this is not true. In the general case, a RAC’s psuc
must then be some lower dimensional face of prepare and measure polytopes. One possible direction is
to investigate whether there are subclasses of RACs with this property, of which the (2, 2) 7→ 1 is but
one example. Another is to explore the meaning of other classes of inequalities defining PM polytopes,
and if they represent other instances of information retrieval tasks.

We believe all these suggestions are worthy of pursuit. Implementations of the programs used in this
chapter could be helpful to some of these questions, and are available at a public code repository [39].
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Chapter 5

Dense coding in the prepare and
measure scenario

Dense coding is an astonishingly straightforward use of quantum systems to improve the transmission
of classical information. In sharp contrast to Holevo’s bound [74], it allows for the lossless encoding
of two dits in one single qudit. Entanglement between the communicating parties is the price to pay
for that. In its original formulation [19], dense coding is a device dependent protocol: Alice’s encoding
operators and Bob’s measurements must be fully characterized. Already hinted in sec. 3.2.2 is the
possibility of interpreting a type of prepare and measure scenario — the one with quantum preparations,
entanglement assistance, and a single measurement — as a physical implementation of dense coding.
In return, the characterization requirements are eased, and, remarkably, interesting properties can be
inferred from imposing bounds on the amount of communication and observing the behaviors. Our task
in this chapter is to define this device-independent formulation of dense coding and derive some first
results. Among them, we will show how to build entanglement witnesses, self-test maximally entangled
states, and optimize the preparations and measurements to better perform the protocol. Stepping in the
direction of more general entanglement-assisted prepare and measure scenarios, we also provide a witness
in the case where more measurements are allowed.

These results were published in [90], and all their proofs are provided in appendix B.

5.1 Semi-device-independent dense coding

In dense coding, two parties share an entangled pair and communicate via a quantum state. Quantum
communication happens one-way, and the transmitted state is of the same local dimension (w.r.t. the
encoding device) as the entangled pair. The task is to encode a classical message x ∈ X ≡ {0, . . . , N−1},
and it is known that two d its (N = d2) can be perfectly recovered from one qudit of communication, for
some choices of a measurement with N outcomes [11].

Translating to the prepare and measure lingo, we let Alice and Bob share an entangled state ρ ∈
D (HA ⊗HB) as a resource. Their local dimensions, dim (HA) = dA and dim (HB) = dB , need not be
the same, but Alice’s preparation must be of dimension dA. To achieve quantum advantage in the dense
coding task, Alice and Bob must be able to exploit the correlations available in their entangled pair. Under
the circumstances, her most general strategy is to apply a local transformation Λx : D (HA) 7→ D (HA)

directly on her share of ρ, then send it to Bob. After that,

ρ 7→ (Λx ⊗ 1) ρ ≡ ρx
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will be in his possession. It is crucial to enforce that

trA (ρx) = trA (ρx′) ∀x, x′,

a condition remindful of no-signaling, for it subsumes the fact the Alice’s operations, being local, cannot
affect Bob’s marginal state. On his end, a good selection of a quantum measurement M = {Eb}k−1

b=0

may provide advantage (over classical encodings) in the task of recovering her choice of x. Naturally,∑
bEb = 1, and each Eb is a positive semidefinite operator acting on HA ⊗HB , which means to say he

measures on both his and her transformed share of ρ. Summing it up, dense coding behaves inQρ
dA,d2A,d

2
A,1

,
but we will also discuss some further generalizations.

Many rounds of this protocols allow Alice and Bob to collectively infer the behavior

p = {p (b | x)}b,x = {tr (ρxEb)}b,x.

From the behavior, we can assess their performance in the protocol. To that end, we assume that her
choices of x are equiprobable in X and define the figure of merit as

psuc =
1

N

N−1∑
x=0

p (b = x | x) . (5.1)

This is the very same average success probability discussed under the random access coding protocols
of sec. 3.2.1, except that we now deal with a single measurement on Bob’s side. Differently from the
usual dense coding formulation — which requires knowledge on the exact preparations and measurements
employed —, computing psuc relies solely on observational data. It is thus a device-independent figure of
merit, completing our device-independent formulation of the dense coding protocol.

5.2 Witnessing and self-testing entanglement

Understanding the relationships between some figure of merit and the underlying resources is a common-
place question in device-independent scenarios. Important ones for the prepare and measure formulation
of dense coding are which bounds the amount of entanglement in ρ or its local dimensions imply on psuc,
and whether violating them witness or even self-tests some property of ρ.

Brunner et al. [26] considered similar questions in the quantum state discrimination scenario. Similarly
to ours, their scenario allowed for a single measurement, and their figure of merit was equivalent to psuc.
However, the devices were independent, and their investigation focused on what could be inferred about
quantum versus classical preparations. In chap. 3’s terminology, they were mostly interested in analyzing
psuc in Cd<N,N,N,1 against Qd<N,N,N,1. Interestingly, they found out both classical and quantum bounds
for psuc are equal to dA/N . Therefore, while that success probability can be used as a dimension witness,
it cannot witness the type of preparations.

Our first result generalizes theirs in the following way

Result 5.1 (Schmidt number witness). Let ρ be a shared resource with Schmidt number s and local
dimension dA on Alice’s side. If she chooses one out of N preparations, and Bob performs a single
measurement with N outcomes on the joint state, then

psuc ≤ min

(
dAs

N
, 1

)
. (5.2)

When N ≥ dAs, the bound is tight.
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Separable states (s = 1) thus recover the bound psuc ≤ dA/N from [26]. For this reason, whenever the
transmitted state’s dimension is knowingly dA, a psuc > dA/N witness entanglement. Because only local
operations are used to prepare the ρx, and those cannot increase s, any psuc > dAs/N unambiguously
certifies that ρ /∈ Ss, so providing a lower bound on its Schmidt number.

A particular instance of ineq. 5.2 can also be used for self-testing maximally entangled states.

Result 5.2 (Self-testing maximally entangled states). In dense coding instances (N = d2
A) of the prepare

and measure scenario with s = dA, saturation of ineq. 5.2 certifies, up to a local unitary transformation,
that the shared state ρ is maximally entangled.

Interestingly, this has implications for quantum key distribution protocols in the prepare and measure
dense coding scenario. Suppose Alice does not actually share a maximally entangled pair with Bob, but
rather with a third, malicious party that wants to eavesdrop on their communication. Let us suitably
call her Eve. Apart from sharing a maximally entangled pair ρAE with Alice, she intercepts Alice’s
communication of her share of ρx. From result 5.2, she reads out x with psuc = 1, thus perfectly learning
Alice’s message. Because, at the end of the day, it will be Alice and Bob who share data to infer their
psuc, Eve must share a second maximally entangled pair ρEB with Bob, which she exploits to reencode
x and transmit to Bob. In this way, Alice and Bob’s psuc will saturate, tricking them into believing they
share a maximally entangled pair. As Eve succeeds in eavesdropping without being detected, the prepare
and measure dense coding protocol is not cryptographically secure.

Historically, dense coding was introduced as a perfect encoding protocol. Relaxing this condition, by
letting psuc < 1, can shine more light on the role of entanglement assistance. Sharing pure entangled
states, as the following result shows, is always advantageous over having only classical correlations (in
the form of separable states).

Result 5.3 (Pure states quantum advantage). Sharing a pure entangled state, which we write in the
Schmidt decomposition |ψ〉 =

∑s−1
i=0 ηi |i〉 ⊗ |i〉, the best probability of success in the encoding of N = d2

A

dits is lower bounded as
psuc ≥ min

(
1 + Γ

dA
, 1

)
,

where Γ ≡
∑
i 6=j ηiηj ≥ 0.

From result 5.1, N = d2
A with ρ ∈ SEP implies that psuc ≤ 1/dA, and as an entangled state is such

that Γ > 0, all pure entangled states provide quantum advantage in the dense coding protocol.
As a corollary, we have an amusing alternative proof to the possibility of perfectly encoding two dits

in a qudit: a maximally entangled state has all ηi = 1/
√
dA (c.f. sec. 1.1), by which Γ = dA − 1, thus

psuc = 1.
Apropos of mixed states, a similar relation holds. Setting dA = dB = d and making use of the singlet

fraction ζ(ρ), which, in a loose sense, measures how much of a maximally entangled state is in ρ (sec.
1.1), it is true that

Result 5.4 (Singlet fraction bound). The best probability of success achievable with a resource ρ is lower
bounded as

psuc ≥ ζ(ρ). (5.3)

Interestingly, this fact closely links our witness to faithful entangled states. These are defined to be
those states whose entanglement can be certified by a fidelity-based witness, and it was recently proven
that a state is faithful if and only if its singlet fraction is greater than 1/d [62]. Eq. 5.3 hence implies
that any psuc > 1/d certifies ρ is faithful.
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As another application of this same result, consider an isotropic state (sec. 1.1)

χ(α) = α
∣∣Φ+

〉〈
Φ+
∣∣+ (1− α)

1

d2
,

which is separable only in the range α ≤ 1
d+1 . Its singlet fraction is

ζ [χ(α)] = α+
1− α
d2

,

and monotonically decreases with decreasing α. As

ζ

[
χ

(
1

d+ 1

)]
=

1

d

is the classical bound for psuc (result 5.1), it follows that psuc ≥ ζ(ρ) can witness entanglement for all
isotropic states.

As pointed in sec. 1.1, isotropic states are a common benchmark for quantum informational protocols.
In particular, there are entanglement witnesses in the Bell nonlocality and quantum steering scenario that
can certify a χ(α) is entangled from some critical visibility αcrit upwards. Before contrasting them to
our result, it is important to justify whether the comparison is fair. In the case of Bell nonlocality, it
is not. Any prepare and measure scenario allows for communication, and all our witnesses rely on local
dimension bounds, thus being only semi-device-independent. Contrastingly, Bell nonlocality is built on a
causal structure with no direct relations between the parties, and is fully device-independent. Therefore,
we expect any witness in this scenario to perform more poorly. The answer for quantum steering is not
so clear-cut. While it also forbids communication, it does rely on local tomography for one of the parties.
This presupposes full characterization of one measurement device, and hence also knowledge on the state
dimension. Nevertheless, as made evident in fig. 5.1, it does perform rather badly in comparison to
our singlet fraction witness. The tests used were the Collins-Gisin-Linden-Massar-Popescu (CGLMP)
inequality [33] and Wiseman et al.’s truncated harmonic series relation [150] (also stated in sec. 1.1).
CGLMP is not proven optimal for isotropic states, and in fact, for specific dimensions, better ones are
known (e.g., [44]). On the other hand, the steering witness employed is only optimal for projective
measurements. The case for POVMs is not so clear, and may lead to better witnesses [99].

Taking first step towards the study of more general entanglement assisted prepare and measure sce-
narios, we extend another result from the state discrimination task studied in [26]. In it, the authors
allowed there to be Y = N(N−1)/2 dichotomic measurement choices, where N is the number of prepara-
tions. Each measurement is labeled as the pair (x, x′), where x > x′ with x, x′ ∈ {0, . . . , N − 1}, and the
behaviors now have elements p (b | x, y). Their result states that, for uncorrelated parties, the expression

VN ≡
∑
x>x′

|p (b = 1 | x, (x, x′))− p (b = 1 | x′, (x, x′))|2 ≤ N2

2

(
1− 1

min(dA, N)

)

is a quantum dimension witness for any communication dimension dA < N , and can also distinguish
between quantum and classical systems (in the sense of pair-wise mutually commuting preparations,
explained in sec. 3.1.2) for any N which is not a multiple of d. By allowing for an entangled resource of
Schmidt number s between the parties, we found the following generalization.

Result 5.5 (Multiple measurements witness). Given a shared bipartite resource with Schmidt number s,
a prepare and measure scenario with N dA-dimensional preparations labeled by x ∈ {0, . . . , N − 1}, and
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Figure 5.1: Comparison between witness 5.3 to the CGLMP Bell inequality witness [33] and Wiseman
et al.’s steering witness [150] for isotropic states (eq. (1.8)). With a dimension assumption, the prepare
and measure dense coding scenario can witness all entangled isotropic states. See the main text for a
discussion on the fairness of this comparison.

N(N − 1)/2 dichotomic measurements labeled as (x, x′) for x > x′ is such that

VN ≡
∑
x>x′

|p (b = 1 | x, (x, x′))− p (b = 1 | x′, (x, x′))|2

≤ N2

2

(
1− 1

min(dAs,N)

)
.

If s = dA, and N < d2
A or N is an integer multiple of d2

A, the inequality is tight.

For fixed N and dA, VN can witness whether ρ ∈ Ss or not.

5.3 Optimizing the dense coding probability of success

Up until now, we have focused on what can be inferred about ρ from the observable statistics. In practice,
ρ is sometimes treated as a resource to be consumed in the protocol, and it may be of interest to obtain
the preparations ρx and measurementM = {Eb} that make the best use of it to achieve the largest psuc.
More formally, we are interested in solving

given ρ (5.4a)

max.
M,Λx

1

N

N−1∑
0

tr [Ex (Λx ⊗ 1) ρ] (5.4b)

s.t. Λx ∈ CPTP, ∀x (5.4c)

Ex � 0, ∀x (5.4d)∑
Ex = 1. (5.4e)

For an arbitrary ρ, this is a daunting task to approach analytically. Even numerically, the objective
function is nonlinear, and optimizing over CPTP constraints is not directly a recognizable constraint.
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This lends little hope to the problem of efficiently finding global maxima. It is nevertheless possible
to formulate an alternated semidefinite optimization procedure (also called see-saw optimization) that
solves to local extrema.

Using channel-state duality (eqs. (1.10) and (1.11)), the CPTP map Λx can be cast as a bipartite
state, for which the constraints of positivity and unit-trace are amenable to semidefinite programming.
To see how, let Lx ∈ D (HA ⊗HA′) be the state dual to the channel Λx : D (HA) 7→ D (HA′), where the
superscript in HA′ was added for ease of reading. Using Lx, the action of Λx ⊗ 1B on the shared state ρ
is equivalent to trA [(Lx ⊗ 1B)(ρᵀA ⊗ 1A′)] ∈ D (HA′ ⊗HB), where we only partially transpose ρ because
Λx is local to Alice. Bob’s measurement effects, Ex, will then act on D (HA′ ⊗HB). Putting this into
our objective function (eq. 5.4b), dropping the partial trace in favor of the trace, and completing Ex to
1A ⊗ Ex makes program (5.4) equivalent to

given ρ (5.5a)

max.
M,Lx

1

N

N−1∑
0

tr [(Lx ⊗ 1B) (ρᵀA ⊗ 1A′) (1A ⊗ Ex)] (5.5b)

s.t. Lx � 0, ∀x (5.5c)

trA′ (Lx) = 1A, ∀x (5.5d)

Ex � 0, ∀x (5.5e)∑
Ex = 1. (5.5f)

These constraints are all linear matrix inequalities, and eqs. (5.5c) and (5.5d) are in there to guarantee
Lx is completely positive and trace-preserving. We are closer to an SDP, but the objective function is
still nonlinear. To circumvent that, we sample an initial measurementM0, fix it for the time being, and
run program 5.5 only on the Lx variables. The objective function is then clearly linear, and the last two
constraints shall be removed. With the optimal (w.r.t. M0) Lx from this first iteration, which we call
L1
x, fixed, optimizing over the measurements is also a semidefinite program. In this second step, the first

two constraints may be left out, and we call its result M1. Together, M1 and L1
x are the result of the

first iteration, and provide a lower bound on the best psuc. After N iterations, convergence can be tested
through some heuristic criterion, such as checking whether psuc

(
MN , LNx

)
− psuc

(
MN−1, LN−1

x

)
≈ 0.

Different samples of M0 can lead to distinct results, and no formal guarantee of global extremality is
provided by this procedure. Nonetheless, this is a computationally inexpensive procedure, thus running
it for several initial samples and taking the best solution may provide numerical evidence of optimality.
And, of course, one might as well start by sampling a L0

x and inverting the order of the programs.
To see it in action, consider the Werner states (sec. 1.1) parameterized as

ρW (α) =
1− αS
d2 − αd

, (5.6)

where d is the local dimension, −1 ≤ α ≤ 1, and S =
∑d−1
i,j=0 |ij〉〈ji| is the swap operator. For N = d2

preparations and a measurement with N outcomes, we optimize the dense coding probability of success
for d ∈ {2, . . . , 5} and a linear range over α. Results are shown in fig. 5.2. All values of α . (d − 1)/d

saturate the classical (i.e., s = 1) bound of 1/d from result 5.1, and every larger α violates it. In the
inset, a comparison of psuc with the classical bound 1/d, for α = 1, suggests that Werner states of larger
dimension provide smaller quantum advantages in dense coding.
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Figure 5.2: Optimal psuc’s obtained for Werner states (5.6) with the alternated optimization procedure
over program (5.5). Squares, circles, rhombuses and triangles correspond to d = 2, 3, 4 and 5, respectively.
Values are reescaled so that all classical bounds correspond to 1. The inset shows psuc for α = 1 (crosses)
against the classical bound of 1/d (dashed curve) in dimensions 2 up to 7.

5.4 Open questions

Regarding device-independent dense coding, an interesting possibility is to generalize its definition by
allowing Alice’s local dimension dA to be larger than the actual communicated qudit, i.e., to let Λx :

D (dA) 7→ D (d), with d < dA. First discussions on that situation were recently started in [98, 131].
As noted in [131], in that case a road worth taking is to investigate if there are witnesses that do not
depend on dA, but only on the communicated state dimension. Application-wise, while the see-saw
optimization procedure is reasonably efficient, it would be useful to better understand what types of
guarantees regarding global optimality are possible to provide. Secondly, one could think of a conceptual
explanation as to why higher dimensional Werner states are increasingly worse in outperforming the
classical bound on psuc, and whether this trend is also present in other classes of entangled states.

General entanglement assisted prepare and measure scenarios — and especially the one with quantum
preparations — are little explored in the literature. Most results hitherto presented are only valid for the
Y = 1 case, which is of special interest but begs for generalizations. Result 5.5 is a small step in that
direction. Simultaneously to our results, Tavakoli et al. provided important results on the same theme
[131], but much is still to be done.

Below result 5.2, we discussed how an eavesdropper could intercept Alice’s communication while still
tricking she and Bob into believing they share a maximally entangled resource. One interest in studying
Y > 1 witnesses is that they may provide cryptographically secure tests. To see how, consider a BB84-
like protocol [17] where Alice, before sending her qubit, randomly chooses whether to apply a σx gate
to it. Up to an unmeasurable global phase, (|Φ+〉 , |Φ−〉 , |Ψ+〉 , |Ψ−〉) σx7−→ (|Ψ+〉 , |Ψ−〉 , |Φ+〉 , |Φ−〉). An
eavesdropper sharing the entangled resource with Alice and measuring in the Bell basis would correctly
get x = 0 in the first situation, but wrongly guess x = 2 in the latter. She could try switching to a
σx-transformed Bell measurement, but without information on Alice’s decision, this would be unhelpful.
Worse than that, after mistaking x, she would send the wrong repreparation to Bob. During the whole
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protocol, Bob must also be blind to Alice’s choice. Let us further suppose that he can choose between
a standard Bell measurement or a σx-transformed one and that, to make ends meet, Alice sends M + δ

qubits, whereM is the intended key size. Afterwards, Alice publicly announces the choices of x and σx she
made on the extra δ messages. In all rounds when Bob made the correct decision on his measurements,
his result should be perfectly correlated with Alice’s encoding. If he observes some of them are not, he
will know Eve eavesdropped. While this example is device dependent, it is of interest to find some witness
for Y = 2 that can device-independently guarantee security in a similar protocol, or prove there is none.
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Appendix A

Computational details for chap. 4

In chapter 4 we built linear programs that can be used to certify classicality in the prepare and measure
scenario. When η — the insphere radius (see fig. 4.1) — approaches 1, this method provides a necessary
and sufficient condition for classicality. To make η → 1, it is necessary to increase the number of
probe measurements (or preparations). Decomposing the deterministic strategies λ into their extremal
points results in an exponentially large set, with Nλ ∝ BdY extremal points. Even for reasonably sized
instances, it becomes prohibitively expensive to even enumerate the strategies, let alone to solve the
problem. Consequently, regardless of the efficiency of linear programming algorithms (sec. 2.2.1), the
size of our program instance that scales exponentially. This large amount of extremal strategies is the
computational bottleneck of our approach. However, we can circumvent this issue using the approach
we now describe (a similar procedure, for an analogous method applied to other correlation scenarios, is
outlined in [50]).

Our approach is to avoid working on — and even enumerating — all Nλ extremal points at once.
Instead, we iteratively explore the deterministic strategy space. To understand how, recall that the
maximization programs discussed in chap. 4 search for the optimal weights π(λ) such that a convex com-
bination of extremal points of the local polytope describe the behavior of our system. The optimization
variable, α, controls the amount of noise we have to put into the preparations (or measurements) so that
a classical model exist. A solution will always exists, for the worst case α = 0 corresponds to maximally
mixed preparations (or measurements), which trivially have a classical model. As a result, any solved
instance returns us the optimal value α, and the weights π(λ) used to attain it.

A linear program searches for optimal solutions inside polyhedra. In our instances, the extremal
points of the feasible region are the deterministic strategies themselves, and further constraints impose
we are working on its convex hull. Carathéodory’s Theorem [118] states that at most d + 1 extremal
points are necessary to optimally describe any point of a d-dimensional convex set. This implies that,
optimally, most of the π(λ) found will be zero. We cannot know, beforehand, which points make for
an optimal description, so we start by taking N ′λ � d + 1 — but much smaller than Nλ — points, and
optimizing over them. To set up the next iteration, we take the resulting π(λ) = 0 from this first step and
replace them with previously unexplored deterministic strategies. Then we run the program with these
as input. As, at each round, we are keeping all optimal λ from the previous round, the optimal value α
will be non-decreasing between iterations. Furthermore, for so large Y that it would be prohibitive to
enumerate and keep track of all previously visited strategies, we observe that simply randomly sampling
λ’s on each run makes our procedure rapidly converge to an α∗, which then assumes a constant value for
all subsequent iterations. This result provides a lower bound on the maximum visibility imposed on the
preparations such that their behavior is classical. Naturally, this procedure works for any of the linear
programs we have constructed. More precisely, it goes like this
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input : N ′λ, S,M, η, optional: t
output: α∗

Let {α} and {λ} be empty lists and N0 ←− N ′λ
1 while ¬Stop?({α}) :
2 {λ}.append(SampleStrategies(d,B,X, Y,N0))

3 α∗, π(λ)←− FindClassicalityModel(S,M, η, {λ}, optional: t)
4 {α}.append(α∗)

5 {λ}.remove(π(λ) == 0)

6 N0 ←− N ′λ − length({α})
7 end
8 return α∗

Algorithm 1: Iterating on the deterministic strategies space

where FindClassicalityModel is one of programs (4.12), (4.9), (4.12) or (4.9), the parameters
d,B,X, Y in SampleStrategies can be extracted from the inputs, and Stop? implements some con-
vergence criterion.

To illustrate the procedure, consider the problem of certifying that the preparation set S(θ, φ) =

{ρx, ρz, ρr(θ,φ)} is classical for projective measurements (i.e., FindClassicalityModel is program (4.6)).
Here, ρv denotes a qubit state with Bloch vector v, and the unit vector r(θ, φ) is given by its spherical
polar and azimuthal angles, respectively.

(a) Icosahedron (b) Rhombicuboctahedron

Figure A.1: Application of program (4.12) to S(θ, φ) = {ρx, ρz, ρr(θ,φ)}. Levels are the maximum visibility
α such that preparation set αS(θ, φ) has a classical model. (a) For the Y = 6 icosahedron measurements,
η ≈ 0.79, and program (4.12) can be directly applied. (b) A rhombicuboctahedron corresponds to Y = 12
projective measurements and η ≈ 0.86. As the number of deterministic strategies scales exponentially,
the computation of (b) is only possible by iteratively optimizing over subsets of deterministic strategies,
as states in algorithm 1.

Arranging our measurements operators as those associated to the vertices of an icosahedron (Y = 6

with η ≈ 0.79), we get a fairly small problem that can be solved either directly or iteratively. Fig. A.1(a)
shows the result through the iterative procedure, which exactly matches the direct approach. With twice
the amount of measurements arranged as the vertices of a rhombicuboctahedron (η ≈ 0.86), it is no longer
possible to compute A.1(b) in a direct manner. As a matter of fact, even enumerating all deterministic
strategies turns costly. Employing the procedure here described allowed us to compute fig. A.1(b).
The advantage of having more measurements then becomes evident, with the rhombicuboctahedron
resulting in increased visibilities. We pay for that with more computation time: while the model for each
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preparation set in fig. A.1(a) takes less than a minute to compute in a standard desktop computer, it
takes around 7 minutes for fig. A.1(b) when using fairly robust parameters (likewise for figs. A.1(b),
4.2(b) and 4.3(b)). Implementations for these and all forthcoming applications can be found at a public
repository [39].

While our results are fully general, moving on to higher dimensions presents us with two considerable
drawbacks. Similarly to the example discussed above, qudits will naturally lead to more extremal points in
our classicality polytope, and ultimately to more computation time. Yet another considerable downside is
that generating a large depolarized Bloch ball in larger dimensions will be costlier, while also the intuition
brought by using polyhedra (with antipodal vertices) as a measurements polytope is lost. Howbeit,
picking random 3-qutrits preparations and 12 random projective measurements (average η ≈ 0.26), we
found the mean computation time to be around 37 minutes for each preparation set. Increasing the
number of measurements and preparations is also possible by paying with more waiting until convergence
is reached. In all cases, as each iteration returns a non-decreasing visibility α, one will always obtain
lower bounds even if convergence is not quickly attained. These observations lead us to argue that, with
a clever selection of probe measurements, our method could still be useful for future applications even in
larger dimensions.
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Appendix B

Proofs for chap. 5

Proofs for all results in chap. 5 are hereby provided. To aid in their understanding, we begin by reviewing
some useful results.

Mathematical tools

Generalized Gell-Mann matrices (sec. 1.4) are not the only useful choice of basis for L(Hd). Another
possibility, the Weyl operator basis [20] is composed of discrete Weyl operators which will be essential for
the upcoming proofs. They are defined as

W d
x1x2

=

d−1∑
m=0

e
2πix1m/d |m⊕d x2〉〈m| , (B.1)

where ⊕d is shorthand for a modulo d sum, and x1, x2 ∈ {0, . . . , d− 1}. The result of applying Wx1x2
to

some basis vector |j〉 can be interpreted as a displacement to level |j ⊕d x2〉 together with the inclusion
of a phase e2πix1j/d. If the specific values of x1 and x2 are unimportant, we will label W simply with x,
and we may also omit d. When x1 and x2 running on different ranges (as will be used in the proof of
result 5.1), we will call W generalized Weyl operators. But, for now, let us stick to the usual ones.

Weyl operators have been useful at least since 1993, when they were used by Bennett et al. to devise a
d-dimensional quantum state teleportation protocol [18]. Much of their worthiness come from properties
such as unitarity (WxW

†
x = W †xWx = 1, as can be verified by direct calculation) and orthonormality:

tr
(
W †xWy

)
= dδx,y. Proofs can be found in [20], appendix A.3, and in sec. 4.1.2 of [144], presented

among other interesting properties.
Every vector |ψ〉 ∈ Hd ⊗ Hd can be obtained from a maximally entangled state, such as |Φ+〉 =

1√
d

∑d−1
j=0 |j〉⊗|j〉, by means of a unique transformation L|ψ〉⊗1, acting trivially on the second subsystem.

Importantly, |ψ〉 is maximally entangled if and only if L|ψ〉 is unitary [142]. From the uniqueness of the
L|ψ〉⊗ 1, then, there are as many orthogonal maximally entangled states as the dimension of the unitary
group, i.e., d2. Having the d2 orthonormal unitaries Wx1x2

at hand, it is then true that

{
(Wx1x2 ⊗ 1)

∣∣Φ+
〉 }
≡
{
|Φx1x2〉

}
, ∀x1, x2 ∈ {0, . . . , d− 1} (B.2)

are maximally entangled and orthogonal preparations. In the prepare and measure dense coding scenario,
Alice and Bob share a resource ρ that she locally transforms to prepare ρx = (Λx⊗1)ρ. This is precisely
the structure above. Furthermore, orthogonal states are perfectly distinguishable, and we thence should
expect them to be good candidates for optimal performance in prepare and measure protocols.
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With poorly chosen measurements, good preparations are worthless. The d2-outcome measurement

MW = {|Φx1x2
〉〈Φx1x2

|}d−1
x1,x2=0 ≡ {MW

x }, (B.3)

whose effects project precisely in these maximally entangled vectors, will turn useful. To be sure it is
well-defined, notice that each of its effects are obviously PSD and, as they are normalized and form a
basis,

∑d−1
x1,x2=0 |Φx1x2〉〈Φx1x2 | = 1.

∗ ∗ ∗

We end this section with three further results.

Lemma B.1 (Outcome probability upper bound). When ρ is a density operator andM is a measurement
effect, tr(ρM) ≤ tr(M).

Proof. M is PSD, thus all its eigenvalues are nonnegative and it has a spectral decomposition. Let M =∑
imi |mi〉〈mi| be it, and order the eigenvalues as m1 ≥ . . . ≥ md. Notice, also, that ρ =

∑
i pi |pi〉〈pi|,

where the pi form a probability distribution. Now write

tr(ρM) =
∑
i

pi
∑
j

mj 〈pi|mj〉2 .

If ρ = |m1〉〈m1|, then, tr(ρM) = m1 ≤ tr(M). It is now left to prove this choice leads to a maximum of
tr(ρM). That is indeed the case because, as m1 is a largest eigenvalue, any convex combination of the
mi is at most as large as m1.

Lemma B.2. If d2 quantum states {ρx}d
2

x=1, where each ρx ∈ Hd ⊗Hd, do not overlap (i.e., tr (ρxρy) =

0, ∀x 6= y), they must be pure.

Proof. Each of the ρx has a spectral decomposition ρx =
∑d2

i=1 piΠi where each projector is normalized
(they correspond to pure states), and ΠiΠj = δij . Using it,

tr (ρxρy) =

d2∑
i,j=1

p
(x)
i p

(y)
j tr

(
Π

(x)
i Π

(y)
j

)
.

Suppose that rank(ρx) = d2. Then no p(x)
i = 0, and because {Πi}i is a basis for Hd ⊗Hd, at least some

of the traces in the r.h.s. sum will be positive. This happens even if rank(ρy) = 1. So trim it down to
rank(ρx) = d2− 1. Now we may as well find some ρy of unit-rank that do not overlap with ρx. But if we
find some other preparation ρy′ such that tr (ρxρy′) = 0, we must have that tr (ρyρy′) 6= 0, showing that
rank(ρx) < d2 − 1. Proceeding with the analysis, we will conclude that rank(ρx), ∀x, must be one.

Entanglement and its quantification are usually discussed with respect to the local operations and
classical communications (LOCC) paradigm, briefly commented in chap. 1.1. Local operations and shared
randomness (LOSR) is a subset of LOCC operations where the parties can share randomness, but have
no access to fully fledged communication. Both choices lead to the same definition of separability (but
to different understandings in other regards [122]), and are considered free operations in entanglement
theory. One example of LOSR is the twirling operation, where random, local U ⊗ U∗ operations are
applied to a bipartite shared state, resulting in

ρ 7−→
∫
dU U ⊗ U∗ρU† ⊗ U∗

†
.

In this context, the following is an important result.
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Lemma B.3 (Conversion to isotropic states through LOSR). All states ρ with maximal singlet fraction
ζ(ρ) can be converted to an isotropic state χ

[
ζ(ρ)d2−1
d2−1

]
(eq. (1.8)), with the same singlet fraction, through

LOSR.

Proof. It can be done with a twirling operation. See [75], sec. VI.

Proofs

For the following proofs, recall that

psuc =
1

N

N−1∑
x=0

tr (ρxMx)

is the device independent dense coding average success probability, as discussed around eq. (5.1).

Result 5.1 (Schmidt number witness). Let ρ be a shared resource with Schmidt number s and local
dimension dA on Alice’s side. If she chooses one out of N preparations, and Bob performs a single
measurement with N outcomes on the joint state, then

psuc ≤ min

(
dAs

N
, 1

)
. (5.2)

When N ≥ dAs, the bound is tight.

Proof. Let the preparations {ρx} ∈ Ss, where Ss is the set of density operators with Schmidt number no
larger than s. As discussed in sec. 1.1, these are convex subsets of D (HA ⊗HB). For any measurement
M = {Mx}, the average success probability psuc is a convex function in any Ss. Its maximum value
must hence occur in extremal points, which are pure states (all mixed states are convex combinations of
those). Our interest is in its maximum, thus we can limit our discussion to preparations {|ψx〉〈ψx|} ∈ Ss.
Using their Schmidt decomposition,

|ψx〉〈ψx| =
s−1∑
i,j=0

ηxi η
x
j

∣∣ψxi 〉〈ψxj ∣∣⊗ |ϕi〉〈ϕj | .
Here, each |ψxi 〉 ∈ HA and the |ϕxi 〉 ∈ HB . Only the ψ vectors carry the x index because Alice acts with
(Λx⊗1)ρ only on her share of the resource ρ ∈ HA⊗HB to prepare the ρx. In the dense coding protocol
(sec. 5.1), we consider dim(HA) = dA, but Bob’s local dimension, dB , may be different. In any case,
s ≤ min(dA, dB). Because only s vectors |ϕi〉 are needed in the Schmidt decomposition above, let us define
span

(
{|ϕi〉}s−1

i=0

)
≡ Haux. The |ψx〉 vectors thus belong to an effective Hilbert space Heff = HA ⊗Haux,

where dim (Heff) = dAs. That being the case,

psuc =
1

N

N−1∑
x=0

tr (|ψx〉〈ψx|Mx) =
1

N

N−1∑
x=0

treff (|ψx〉〈ψx|M ′x)

≤ 1

N
treff

(
N−1∑
x=0

M ′x

)
=

1

N
treff (1eff) =

dAs

N
,

where the M ′x act on Heff and lemma B.1 was used for the inequality. This proves the bound.
To further see that this is tight for N ≥ dAs, let N = dAc, with c ≥ s, and recall the shared resource

ρ ∈ Ss. Suppose Alice uses it, together with generalized Weyl operators W c
x1x2

, where x1 ∈ {0, . . . , c− 1}
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and x2 ∈ {0, . . . , dA − 1}, to prepare the N = dAc states

∣∣Φcx1x2

〉
=

1√
s

s−1∑
j=0

(W c
x1x2
⊗ 1) |j〉 ⊗ |j〉 . (B.4)

These are in the spirit of the states presented in eq. B.2 but, because s ≤ min(dA, dB), we may have to
build more than s2 preparations, which will then turn out to be nonorthogonal.

Accordingly, let us also modify the MW
x measurement effects (eq. B.3) to

M c
x1x2

=
s

c

∣∣Φcx1x2

〉〈
Φcx1x2

∣∣+
1

N

dB−1∑
j=s

1A ⊗ |j〉〈j| . (B.5)

Each of these is a conic combination of two positive semidefinite operators, hence also PSD. To see that
they are also complete, notice that summing on the first term leads to

s

c

c−1∑
x1=0

dA−1∑
x2=0

∣∣Φcx1x2

〉〈
Φcx1x2

∣∣
=
s

c

c−1∑
x1=0

dA−1∑
x2=0

W c
x1x2

∣∣Φ+
〉〈

Φ+
∣∣ (W c

x1x2

)†
=

1

c

c−1∑
x1=0

dA−1∑
x2=0

s−1∑
j,k=0

dA−1∑
l=0

e
2πix1l/ce

−2πix1l/c |l ⊕dA x2〉〈l| j〉〈k |l〉〈l ⊕dA x2| ⊗ |j〉〈k|

=

dA−1∑
x2=0

s−1∑
j=0

|j ⊕dA x2〉〈j ⊕dA x2| ⊗ |j〉〈j|

=

s−1∑
j=0

1A ⊗ |j〉〈j| ,

making it true that
c−1∑
x1=0

dA−1∑
x2=0

M c
x1x2

=

dB−1∑
j=0

1A ⊗ |j〉〈j| = 1A ⊗ 1B .

Eqs. (B.4) and (B.5) are thus a valid quantum implementation such that

psuc =
1

N

c−1∑
x1=0

dA−1∑
x2=0

tr
(
M c
x1x2

∣∣Φcx1x2

〉〈
Φcx1x2

∣∣) =
s

c
=
dAs

N

Result 5.2 (Self-testing maximally entangled states). In dense coding instances (N = d2
A) of the prepare

and measure scenario with s = dA, saturation of ineq. 5.2 certifies, up to a local unitary transformation,
that the shared state ρ is maximally entangled.

Proof. We can only saturate psuc if the ρx are perfectly distinguishable. From lemma B.2, N = d2
A

preparations are pair-wise distinguishable only if they are pure states. Consequently, there must be d2
A

orthonormal preparations of the form

|ψx〉 =

dA−1∑
i=0

ηi(Ux ⊗ 1) |iA〉 ⊗ |iB〉 ,

where U are unitaries (c.f. eq. (B.2)). Let us analyze the reduced operator from
∑
x |ψx〉〈ψx| in two ways.
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The first tells us that

trA

d2A−1∑
x=0

|ψx〉〈ψx|

 = trA
(
1d2A

)
= dA1dA ,

and the second that

trA

dA−1∑
i,j=0

ηiηj

d2A−1∑
x=0

Ux |iA〉〈jA|U†x ⊗ |iB〉〈jB |

 =

dA−1∑
i,j=0

ηiηj

d2A−1∑
x=0

tr
(
Ux |iA〉〈jA|U†x

)
⊗ |iB〉〈jB |

= d2
A

dA−1∑
i=0

η2
i |iB〉〈iB |

Together,

1dA = dA

dA−1∑
i=0

η2
i |iB〉〈iB | =⇒ ηi =

1√
dA

Result 5.3 (Pure states quantum advantage). Sharing a pure entangled state, which we write in the
Schmidt decomposition |ψ〉 =

∑s−1
i=0 ηi |i〉 ⊗ |i〉, the best probability of success in the encoding of N = d2

A

dits is lower bounded as
psuc ≥ min

(
1 + Γ

dA
, 1

)
,

where Γ ≡
∑
i 6=j ηiηj ≥ 0.

Proof. Prepare

|ψ〉 7−→ |ψx〉 =

s−1∑
i=0

ηi(W
dA
x ⊗ 1) |i〉 ⊗ |i〉

and measure

M =

{
1

dA

dA−1∑
m,n=0

W dA
x |m〉〈n| (W dA

x )† ⊗ |m〉〈n|
}d2A−1

x=0

≡ {Mx}.

For some fixed Schmidt rank s ≤ min(dA, dB), we can work on an effective space HdA ⊗ HdA . In this
case, M is a basis of d2

A orthonormal maximally entangled states (c.f. eq. (B.3)), therefore a valid
measurement.

With this prescription,

Mx |ψx〉〈ψx| =
1

dA

(
dA−1∑
m,n=0

W dA
x |m〉〈n| (W dA

x )† ⊗ |m〉〈n|

) s−1∑
i,j=0

ηiηjW
dA
x |i〉〈j| (W dA

x )† ⊗ |i〉〈j|


=

1

dA

dA−1∑
m=0

s−1∑
i,j=0

ηiηjW
dA
x |m〉〈j| (W dA

x )† ⊗ |m〉〈j| ,
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Whereby

psuc =
1

d2
A

d2A−1∑
x=0

tr (Mx |ψx〉〈ψx|)

=
1

d3
A

d2A−1∑
x=0

s−1∑
i,j=0

ηiηj

〈
j

∣∣∣∣∣W †x
(
dA−1∑
l=0

|l〉〈l|

)
Wx

∣∣∣∣∣j
〉

=
1

dA

s−1∑
i,j=0

ηiηj =
1

dA

s−1∑
i=0

η2
i +

∑
i 6=j

ηiηj

 =
1 + Γ

dA

Result 5.4 (Singlet fraction bound). The best probability of success achievable with a resource ρ is lower
bounded as

psuc ≥ ζ(ρ). (5.3)

Proof. Lemma B.3 lets us restrict the discussion to isotropic states χ(α) having a singlet fraction ζ(ρ).
Define the preparations

ρx = Wxχ(α)W †x = (1− α)
1

d2
+ αWx

∣∣Φ+
〉〈

Φ+
∣∣W †x ,

where |Φ+〉 is a maximally entangled state. Applying the Wx will take it to another maximally entangled
state, and the singlet fraction remains unchanged. Probing them with the measurement effects MW

x

defined in (B.3), we get that each

tr
(
ρxM

W
x

)
=

1− α
d2

+ α = ζ(ρx) = ζ(ρ)

=⇒ psuc =
1

N

N−1∑
x=0

ζ(ρ) = ζ(ρ)

Result 5.5 (Multiple measurements witness). Given a shared bipartite resource with Schmidt number s,
a prepare and measure scenario with N dA-dimensional preparations labeled by x ∈ {0, . . . , N − 1}, and
N(N − 1)/2 dichotomic measurements labeled as (x, x′) for x > x′ is such that

VN ≡
∑
x>x′

|p (b = 1 | x, (x, x′))− p (b = 1 | x′, (x, x′))|2

≤ N2

2

(
1− 1

min(dAs,N)

)
.

If s = dA, and N < d2
A or N is an integer multiple of d2

A, the inequality is tight.

Proof. Define the trace distance as D(ρx, ρx′) = 1
2‖ρx − ρx′‖1, where ‖·‖1 is the trace norm. A known

result says that ([101], sec. 9.2.1)

D(ρx, ρx′) = max
0≤P≤1

tr [(ρx − ρ′x)P ] .

P can thus be seen as a measurement effect. Intuitively, the trace distance measures the difference
between the probabilities of a given result occurring for ρx and ρx′ . That is why it is interpreted as a
measure of distinguishability. It is also convex in ρx − ρx′ .
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So rewrite VN =
∑
x>x′

∣∣tr [(ρx − ρx′)Mb=1|x,x′
]∣∣2 and substitute the trace distance, obtaining

VN ≤
∑
x>x′

|D(ρx, ρx′)|2.

The inequality comes from the fact that we are not imposing completeness for each (x, x′) measurement,
but rather only maximizing over independent effects. As its r.h.s. is convex, the maximal values are at
extremal points of its domain. Thus

VN ≤
∑
x>x′

|D (|ψx〉 , |ψx′〉)|2. (B.6)

Another notion of distinguishability comes from the fidelity

F (ρx, ρx′) ≡ tr
(√

ρ
1/2
x ρx′ρ

1/2
x

)
.

Importantly, the fidelity is related to the trace distance ([101], sec. 9.2.3), and for pure states

D (|ψx〉 , |ψx′〉) =
√

1− F 2(|ψx〉 , |ψx′〉) =

√
1− |〈ψx|ψx′〉|2

Substituting back into eq. (B.6),

VN ≤
∑
x>x′

|D (|ψx〉 , |ψx′〉)|2 =
∑
x>x′

1− |〈ψx|ψx′〉|2

=
N(N − 1)

2
− 1

2

∑
x,x′

|〈ψx|ψx′〉|2 −N


=
N2

2

[
1− tr

(
Ω2
)]
,

with Ω = 1
N

∑N−1
x=0 |ψx〉〈ψx|. Considering a resource with Schmidt rank s, all preparations can be written

as in

|ψx〉 =

s−1∑
i=0

ηi(Ux ⊗ 1) |iA〉 ⊗ |iB〉 ,

showing Ω acts on an effective Hilbert space of dimension dAs. Therefore, the purity tr
(
Ω2
)
is lower

bounded by 1
dAs

, and

VN ≤
N2

2

(
1− 1

min(dAs,N)

)
,

where the minimum comes from the fact that whenever N ≤ dAs, VN is saturated.
The last part of the result claims that, for s = dA, this bound can be saturated whenever N < d2

A or
N = cd2

A for c ∈ Z. To see this is true, consider preparations

|ψx〉 =
1√
dA

dA−1∑
i=0

(Ux ⊗ 1) |i〉 ⊗ |i〉 ,

Ux being unitaries. Substituting back into Ω = 1
N

∑N−1
x=0 |ψx〉〈ψx|,

Ω2 =
1

N2d2
A

N−1∑
x,x′=0

dA−1∑
i,j,k=0

Ux |i〉
〈
j
∣∣U†xUx′ ∣∣j〉 〈k|U†x′ ⊗ |i〉〈k| .
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From that,

tr
(
Ω2
)

=
1

N2d2
A

N−1∑
x,x′=0

tr
(
U†x′Ux

)
tr
(
U†xUx′

)
.

By hypothesis, s = dA, so if N were d2
A, we could build d2

A orthogonal maximally entangled prepara-
tions, for instance by substituting discrete Weyl operators Wx for the Ux, where x ∈ {0, . . . , d2

A − 1}. To
do that while accounting for N possible preparations, the trick is to distribute the set of N preparations
into d2

A collections, each associated to a Weyl operator. In that case, if |ψx〉 are |ψx′〉 are in the same
collection, then |ψx〉 = |ψx′〉. We label the collections with C, where C ∈ {0, . . . , d2

A − 1}, and each C
may be associated with several x’s.

To deal with all cases at once, define c = b N
d2A
c, so making

N = cd2
A +N mod d2

A.

Then put c + 1 states into each of N mod d2
A collections, and c states into each of the remaining d2

A −
N mod d2

A. We then have

tr
(
Ω2
)

=
1

N2d2
A

N−1∑
x,x′=0

d2
A

δC(x),C(x′)

2
=

1

N2

N mod d2A−1∑
x=0

c+ 1

+

N−1∑
x=N mod d2A

c


=

1

N2

[
(c+ 1)N mod d2

A + c(N −N mod d2
A)
]

=
1

N2
(cN +N mod d2

A).

If N < d2
A, then c = 0 and we get tr

(
Ω2
)

= 1
N . Whereas if N = cd2

A, for integer c, then N mod d2
A = 0

and we get 1
d2A

. Both situations saturate the bound on VN .
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• C. de Gois. Code for “General method for classicality certification in the prepare and measure
scenario” ([40]). https://github.com/cgois/pam_classicality, 2021
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