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“The sciences, each straining in its own direction, have hitherto harmed us little; but some
day the piecing together of dissociated knowledge will open up such terrifying vistas of

reality, and of our frightful position therein, that we shall either go mad from the
revelation or flee from the light into the peace and safety of a new dark age.”

(H. P. Lovecraft - The Call of Cthulhu)



ABSTRACT
The problem of blind source separation (BSS) involves the challenge of retrieving a set
of unknown signals, called sources, given observations of mixtures of such signals, being
the mixing system also unknown. A key hypothesis explored in the literature is the
statistical independence of the sources, which forms the basis of the solid approach known
as independent component analysis (ICA).

In this work, we analyze a recent technique proposed in (BRAKEL; BENGIO, 2017) to
solve the BSS problem under the same assumptions of ICA, which is based on the notion
of adversarial learning. The method, named ANICA, employs an autoencoder, whose
main task is to codify the mixtures into meaningful latent variables at the code layer,
accompanied with a discriminator model, which is responsible for recognizing whether the
distribution of the latent vector resembles the product of the individual distributions. By
establishing an adversarial learning scheme between the autoencoder and the discriminator,
the former is encouraged to generate independent variables at the internal code, which
represent the estimates of the sources.

Motivated by the promising initial results reported in (BRAKEL; BENGIO, 2017), here
we establish the conditions for convergence of ANICA and we propose a blind criterion to
select the best training epoch. Additionally, considering the well-established JADE and
FastICA algorithms as benchmarks, we analyze the performance of ANICA in different
scenarios: by varying the number of samples and sources, the noise variance, by separating
overdetermined mixtures, or considering different types of sources. The obtained results
indicate that, albeit requiring a significantly higher number of samples, ANICA can
successfully recover the sources and, in some cases, achieve an error smaller than its
competitors, and suggest that ANICA has a significant potential of extension to more
general scenarios.

Keywords: Blind Source Separation, Independent Component Analysis, Machine Learning,
Autoencoders, Generative Adversarial Networks, ANICA.



RESUMO
O problema de Separação Cega de Fontes (BSS, do inglês blind source separation) envolve
o desafio de recuperar um conjunto de sinais desconhecidos, denominados fontes, dadas as
observações de misturas desses sinais, sendo o sistema de mistura também desconhecido.
Uma hipótese chave explorada na literatura é a independência estatística das fontes,
que define o fundamento da abordagem sólida conhecida como análise de componentes
independentes (ICA, do inglês independent component analysis).

Neste trabalho, analisamos uma técnica recente proposta em (BRAKEL; BENGIO, 2017)
para resolver o problema do BSS sob os mesmos pressupostos de ICA, que se baseia na
noção de aprendizado adversário. O método, denominado ANICA, emprega uma rede
autocodificadora (autoencoder), cuja principal tarefa é codificar as misturas em variáveis
latentes significativas na camada de código, acompanhadas de um modelo discriminador,
que é responsável por reconhecer se a distribuição do vetor latente se assemelha ao produto
das distribuições individuais. Ao estabelecer um esquema de aprendizagem adversário entre
o autoencoder e o discriminador, o primeiro é estimulado a gerar variáveis independentes
no código interno, que representam as estimativas das fontes.

Motivados pelos resultados iniciais promissores relatados em (BRAKEL; BENGIO, 2017),
aqui estabelecemos as condições para convergência do ANICA e propomos um critério
cego para selecionar a melhor época de treinamento. Adicionalmente, considerando os
renomados algoritmos JADE e FastICA bem estabelecidos como benchmarks, analisamos
o desempenho do ANICA em diferentes cenários: variando o número de amostras e fontes,
a variância do ruído, separando misturas sobredeterminadas, ou considerando diferentes
tipos de fontes. Os resultados obtidos indicam que, embora necessite de um número
significativamente maior de amostras, o método ANICA pode recuperar as fontes com
sucesso e, em alguns casos, obter um erro menor que seus concorrentes, e sugerem que o
ANICA tem um potencial significativo de extensão para cenários mais gerais.

Palavras-chaves: Separação Cega de Fontes, Análise de Componentes Independentes,
Aprendizado de Máquina, Autoencoders, Redes Adversárias Generativas, ANICA.
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1 INTRODUCTION

Suppose you are listening to a piece of music when some sequence of sounds,
produced by an unknown instrument, catches your attention. At first, you try to mentally
mute everything else and focus on that particular sound source among the mixtures of
sounds presented to you by the set of speakers. Unfortunately, everything is so intertwined
that you are initially unable to follow this sequence any longer. However, by paying
attention to the timbre of the sounds, while listening to the same piece for a number of
times, you not only recognize the sequence of interest, but all the others being played at the
moment. In this case, you may consider you have learnt to mentally separate the mixture
of sounds into an approximation of each of the sequences played by the instruments, even
though you did not know them beforehand nor how they were actually combined.

Following the example, we may assume that every sequence of sounds produced
by a different instrument shares a distinctive timbre and execution technique. These
sequences, or sources, are somehow mixed and modified within a recording studio, or
mixing system, in order to output a different mixture signal through each of the speakers,
where each mixture is a different composition of the sources.

In the field of signal processing, this scenario is formally defined and addressed
by the research area known as Blind Source Separation (BSS) which is more formally
presented in the Chapter 2. In a nutshell, BSS interprets a set of mixture signals as a
manifestation of another set of unknown source signals through an also unknown mixing
system. Then, BSS poses the problem of retrieving an approximation of such sources, which
are called estimates, only from the mixtures themselves and some a priori information
related to the sources and mixing system (as, for example, all sources must belong to
different instruments and the mixing system is noiseless). The problem is said to be blind
due to the lack of direct access to the sources and to the mixing system.

A proper solution is achieved by adopting a separation criterion, such as
considering that all sounds from the same instrument should share a distinctive timbre
and execution, from which a separation system is designed to receive the mixtures and
produce the estimates that best satisfy the chosen criterion.

Different approaches to find a proper solution for the BSS problem are based
on different restrictions and assumptions regarding the sources and how the mixtures are
generated. Due to its simplicity, a popular framework since the early days of BSS has
been Independent Component Analysis (ICA), whose main assumption is the statistical
independence of the sources. ICA is presented in Section 2.5, and exposed with more detail
in Chapter 3.
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Additionally, and also from the beginning of the discipline, the field of Machine
Learning has offered a useful repertoire of algorithms, especially those based on neural
networks, such as the autoencoder, to model adequate separation systems and their
respective cost function, which should be optimized to retrieve independent estimates
according to the selected separation criterion. More recently, adversarial training seems
to provide a good alternative approach to the BSS problem by implicitly learning the
distribution of the sources, and, in the case of ICA, imposing independence. For this reason,
we dedicate Chapter 4 to the topics of Machine Learning of greater interest to BSS.

The purpose of this work is to present and deepen the understanding of a novel
algorithm called Adversarial Non-linear Independent Component Analysis (ANICA), which
is designed for the solution of the BSS problem under the framework of ICA. ANICA was
developed by the researchers Philemon Brakel and Yoshua Bengio in (2017) and, roughly
speaking, is a generative algorithm that trains an autoencoder and a discriminator in
an adversarial scheme to generate a code of independent components. A key component
of ANICA is its resampling procedure, which simulates samples from the independent
distribution of the generated code at every training epoch and, thus, represents the target
distribution of the code. Chapter 5 is dedicated to the exposition of this adversarial
approach, along with an analysis of its convergence.

In Chapter 6, we evaluate the advantages and shortcomings of ANICA in a
number of different experiments, evaluating the performance of ANICA in comparison
to well-established algorithms such as FastICA and Joint Approximated Diagonalization
of Eigenmatrices (JADE). For this purpose, we have employed blind metrics, based on
Mutual Information, Kurtosis and Negentropy, as well as the non-blind Normalized Amari
error (NAE) to confirm the results.

Finally, Chapter 7 brings the main conclusions and points some perspectives
for future investigations.
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2 BLIND SOURCE SEPARATION

This chapter is dedicated to presenting the problem of blind source separation,
its main characteristics and requirements, as well as some of the best known approaches
to solve it, among which independent component analysis stands out as one of the most
relevant.

2.1 ON SIGNALS AND THE PROPERTY OF STATIONARITY
Signals are modelled as random processes due to the inherent uncertainty

about their temporal evolution as well as the values they may have at each time instant.
Generally, some conditions regarding their random behaviour are assumed in order to
establish a tractable scenario.

Strict Sense Stationarity (SSS) imposes a fixed structure for the joint Probability
Density Function (PDF) across different instants, or time-states, of a random process.
Based on this property, it can be argued that it is not important when a signal is observed,
due to its statistical properties being invariant to any time shift (PAPOULIS; PILLAI,
2002), but rather the frequency of these observations. Thus, stationarity can be defined as:

Definition 2.1.1 (Strict Sense Stationarity). For any finite sequence of 𝑘 time-states of
a random process 𝑣(𝑡), stationarity implies that the joint PDF of these states must be
invariant to any time shift 𝑡𝑠. Thus, for 𝑘 different time-states:

p𝑣(𝑡1), 𝑣(𝑡2), ··· , 𝑣(𝑡𝑘)(·) = p𝑣(𝑡1+𝑡𝑠), 𝑣(𝑡2+𝑡𝑠), ··· , 𝑣(𝑡𝑘+𝑡𝑠)(·), (2.1)

where the left-hand side of (2.1) refers to the joint PDF of the sequence 𝑣(𝑡1) to 𝑣(𝑡𝑘),
while the right-hand side is the joint PDF after a time-shift 𝑡𝑠 is applied to all of its states.
�

If we consider 𝑘 = 1 in Definition 2.1.1, it follows that stationarity implies that
all the marginal densities of the time-states are equal to the same PDF:

p𝑣(𝑡1)(·) = p𝑣(𝑡1+𝑡𝑠)(·) = p(·), (2.2)

where p(·) is the common marginal PDF for any time-state.

Additionally, for any two time-states, denoted as 𝑡1 and 𝑡2, their joint PDF
depends only on the time difference 𝜏 = 𝑡2 − 𝑡1:

p𝑣(𝑡1), 𝑣(𝑡2)(·) = p𝑣(𝑡1+𝑡𝑠), 𝑣(𝑡1+𝑡𝑠+𝜏)(·) = p𝜏 (·), (2.3)
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where p𝜏 (·) is the common joint PDF for any two time-states separated by 𝜏 .

As a consequence, SSS guarantees that the mean 𝑚𝑣(𝑡) will remain constant
for all states, while the autocorrelation R𝑣(·) and autocovariance C𝑣(·) functions, defined
in (2.5) and (2.7) for real-valued processes, will depend only on the time difference 𝜏 :

𝑚𝑣(𝑡) = 𝑚𝑣 (2.4)
R𝑣(𝑡, 𝜏) = E[𝑣(𝑡)𝑣(𝑡 + 𝜏)] (2.5)

= R𝑣(𝜏) (2.6)
C𝑣(𝑡, 𝜏) = R𝑣(𝑡, 𝜏)−𝑚𝑣(𝑡)𝑚𝑣(𝑡 + 𝜏) (2.7)

= R𝑣(𝜏)−𝑚2
𝑣 = C𝑣(𝜏), (2.8)

where 𝑚𝑣 is constant, while R𝑣(𝜏), C𝑣(𝜏) are only functions of 𝜏 considering SSS.

SSS is a stringent condition for random processes, whereas Wide Sense Station-
arity (WSS) requires only the compliance of (2.4), (2.6) and (2.8), thus encompassing a
broader set of random phenomena. Additionally, all independent and identically distributed
random processes satisfy Definition 2.1.1, so they are a subset within SSS processes (KAY,
2006).

Similarly, when dealing with two stationary processes 𝑣(𝑡) and 𝑢(𝑡), they are
said to be jointly wide-sense stationary if their cross-correlation and cross-covariance
functions, defined in (2.9) and (2.11) for real-valued processes, are only affected by the
time difference 𝜏 :

R𝑣𝑢(𝑡, 𝜏) = E[𝑣(𝑡)𝑢(𝑡 + 𝜏)] (2.9)
= R𝑣𝑢(𝜏) (2.10)

C𝑣𝑢(𝑡, 𝜏) = R𝑣𝑢(𝑡, 𝜏)−𝑚𝑣(𝑡)𝑚𝑢(𝑡 + 𝜏) (2.11)
= R𝑣𝑢(𝜏)−𝑚𝑣𝑚𝑢 = C𝑣𝑢(𝜏), (2.12)

where 𝑚𝑣, 𝑚𝑢 are constants, while R𝑣𝑢(𝜏), C𝑣𝑢(𝜏) are only functions of 𝜏 considering
jointly stationarity.

In order to estimate these statistical entities, a useful property of some SSS
(or WSS) random processes is called ergodicity. An ergodic process allows obtaining its
statistical measures based only on the knowledge of a single realization, having access to
a sufficiently large number of time samples, instead of requiring its complete ensemble
(PAPOULIS; PILLAI, 2002). However, stationarity does not guarantee ergodicity.

In the context of BSS, considering stationary signals simplifies the statistical
analysis of the algorithms developed for its solution. Furthermore, when there is no time
lag among signals, i.e., 𝜏 = 0, the resulting cross-correlation and cross-covariance are no
different to a simple correlation and covariance defined for two random variables, thus
allowing the use of well-known decorrelation techniques.
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Therefore, unless stated otherwise, all signals will be considered to be ergodic
and stationary real-valued random processes, while the retrieved or observed values would
be the realizations of such signals in a number of samples.

2.2 BSS LATENT MODEL AND PROBLEM
As previously mentioned in Chapter 1, BSS proposes a latent model to explain

the generation of the mixture signals. To present this model, consider 𝑀 different sources
𝑠𝑖(𝑡) collected in s(𝑡) = (𝑠1(𝑡), 𝑠2(𝑡), · · · , 𝑠𝑀(𝑡))𝑇 , interacting with each other and with
the environment where they exist, thus producing another set of 𝑁 mixtures 𝑥𝑗(𝑡), collected
in x(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), · · · , 𝑥𝑁(𝑡))𝑇 .

The environment, or the mixing system 𝒜, is the responsible for generating
mixtures of the hidden sources. Typically, the exact composition of each mixture is
unknown, so that the mixture vector x(𝑡) is modelled as:

x(𝑡) = 𝒜(s(𝑡)), (2.13)

where x(𝑡) ∈ ℜ𝑁 , s(𝑡) ∈ ℜ𝑀 are random vectors, while 𝒜 : ℜ𝑀 ↦→ ℜ𝑁 is the unknown
mapping describing the mixing system.

BSS is not only interested in explaining the generation of the mixtures, but,
more importantly, the main challenge consists in retrieving an approximation of all the
underlying sources. So, to find these approximations or estimates 𝑦𝑘(𝑡), collected in
y(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), · · · , 𝑦𝑀(𝑡))𝑇 , a second transformation is needed in order to invert
the effects of the mixing system. This second transformation constitutes the separation
system 𝒲 , whose action is expressed as follows:

y(𝑡) =𝒲(x(𝑡)) =𝒲(𝒜(s(𝑡))), (2.14)

where y(𝑡) ∈ ℜ𝑀 is a random vector, while 𝒲 : ℜ𝑁 ↦→ ℜ𝑀 denotes the mapping produced
by the separation system.

Figure 2.1 shows the main elements involved in the BSS problem, where
everything behind the mixtures, including the number 𝑀 of sources, is unknown.

For the solution of the BSS problem, it is not relevant to capture the specific
order and magnitude of the original sources in s(𝑡). In other words, it is acceptable that the
estimate vector y(𝑡) be a permuted an scaled version of the source vector. Mathematically,
this means that:

y(𝑡) = ΛPs(𝑡), (2.15)

where Λ, P ∈ ℜ𝑀×𝑀 correspond to a permutation matrix and a diagonal matrix that
specifies the scales applied to the sources.
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Figure 2.1 – Blind Source Separation as a generative model and a problem.

Unfortunately, there is not enough information to design a separation system
capable of retrieving proper estimates of the sources from the mixtures given by the general
model of (2.13), nor a universal criterion to evaluate the quality of these estimates. In this
sense, the BSS problem is ill-posed in its most general formulation.

Hence, it becomes necessary to restrict the general mixing system according
some properties. Additionally, some conditions regarding the character of the sources are
also necessary to check whether the estimates capture a useful representation of them.

2.3 MODELLING THE PROBLEM
Although it is not possible to “open” the mixing system and see its internal

mechanisms, it is possible to presume that it presents a few characteristics, such as memory
and linearity, in order to attain a simpler, yet general, model with a practical appeal and
a feasible solution.

MEMORY

A mixing system is said to present memory when source samples from past and
present time-states are mixed together in order to produce the current mixtures, as occurs,
for example, when audio signals are recorded in an environment with reverberation. A
particularly relevant scenario involving memory is related to convolutive mixtures. In this
case, each mixture can be seen as the result of a linear combination involving present and
past samples of the available sources. In (CASTELLA; CHEVREUIL; PESQUET, 2010) a
more detailed account on convolutive mixing models is offered.

On the other hand, a mixing system is instantaneous, or memoryless, when the
observation of each mixture at instant 𝑡 depends solely on the source samples at the same
instant.
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LINEARITY

A mixing system is said to be linear only if its mapping satisfies the superposition
principle. Otherwise, it is a non-linear system. For example, considering the signals v(𝑡)
and w(𝑡), the mapping ℱ(·) is linear if and only if:

ℱ(𝛼v(𝑡) + 𝛽w(𝑡)) = 𝛼ℱ(v(𝑡)) + 𝛽ℱ(w(𝑡)), (2.16)

where 𝛼 and 𝛽 are scalar constant values.

NUMBER OF SOURCES AND MIXTURES

Another important aspect that leads to specific scenarios of the BSS problem
refers to the relation between the number of mixtures 𝑁 and the number of sources 𝑀 .
This relation defines whether the problem is well-determined (𝑁 = 𝑀), overdetermined
(𝑁 > 𝑀), or underdetermined (𝑁 < 𝑀). The last case is especially complicated since it
generally involves two separate steps: first, the identification of the mixing system and,
second, the approximation of the sources, which are both harder compared to the other
scenarios.

2.3.1 (NOISELESS) LINEAR AND INSTANTANEOUS MODEL

The classical model explored in BSS arises when considering linear and instan-
taneous mixing and separation systems. From these characteristics, and assuming there
is no significant noise, both systems are modelled as matrices and the time indices are
dropped. Then, the model is presented as follows:

x = As

y = Wx = (WA)s,
(2.17)

where A ∈ ℜ𝑁×𝑀 , W ∈ ℜ𝑀×𝑁 are the mixing and separation matrix, respectively.

THE PROBLEM WITH THE UNDERDETERMINED CASE

From this model, an initial argument against the underdetermined case can be
offered due to the model being fully solvable when W takes either one of the forms:

W = ΛPA−1 (2.18)
W = ΛPA+, (2.19)

where A+ ∈ ℜ𝑀×𝑁 is the left pseudoinverse of A, i.e., A+A = I.

For (2.18) or (2.19) to be possible, A must necessary be full rank, i.e., rank(A) =
min(𝑁, 𝑀) and either be square and invertible, i.e., rank(A) = 𝑁 = 𝑀 , or rectangular
such that rank(A) = 𝑀 < 𝑁 , respectively. None of these direct solutions can be formulated
for the underdetermined case (𝑀 > 𝑁).



CHAPTER 2. BLIND SOURCE SEPARATION 23

Example 2.3.1. This point is exemplified in Figure 2.2, where two different mixing
matrices, A and Ã, are applied over two statistically independent sources (more on
statistical independence on Section 2.5). The corresponding mixing matrices are:

A =
⎡⎣0.5 1

2 1

⎤⎦ Ã =
⎡⎣0.5 0.25

2 1

⎤⎦ , (2.20)

where only A is full rank.

(a) Uniform Sources s. (b) Mixtures x produced by A.

(c) Mixtures x produced by Ã.

Figure 2.2 – Rank of the mixing system and the underdetermined case.

Figure 2.2a shows two independent zero-mean, unit-variance sources, both with
uniform distributions. Then, in Figure 2.2b, these sources are mixed by A, such that
the mixtures are in a space defined by its two linearly independent columns (a1 and a2).
However, in Figure 2.2c, a rank-deficient matrix Ã is not capable of providing enough
information, as one dimension is lost, in order to build an adequate separation matrix
from the mixtures. Proportional and parallel columns are displayed for convenience in the
last two figures. �

Furthermore, as pointed out in (KIM; YOO, 2004; KIM; YOO, 2009) for the
underdetermined case, after identifying (or even knowing) the mixing matrix, there would
be an infinity of possible solutions for the estimates of the sources unless some assumptions,
such as the sources being sparse or discrete, are considered (JUTTEN; COMON, 2010).
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Additionally, this result also emphasizes the need for having distinct mixtures spanned
in different directions in order to deal with a full rank matrix A and, thus, avoiding the
underdetermined case.

2.4 PRINCIPAL COMPONENT ANALYSIS AND WHITENING
Although Principal Component Analysis (PCA) is not considered to be a

technique within the approaches used to solve the BSS problem, it still discovers something
meaningful about the multivariate data at hand in the form of its principal components,
which are mutually uncorrelated, but not necessarily independent. The notion of whitening
is closely related to PCA and also involves finding a linear transformation that yields
uncorrelated components, but with normalized variance and without reducing the dimen-
sionality of the data. Both topics are important in the context of BSS, as will be seen in
Section 2.5.1, and, thus, are described in the sequence.

2.4.1 ON UNCORRELATEDNESS

Two random variables, 𝑣1 and 𝑣2, are linearly dependent, or correlated, when
there is some kind of joint variation between them, either both increasing (or decreasing)
their values together, or, while one increases, the other one decreases. Conversely, they
are said to be uncorrelated when there is no direct way to predict the growth of one from
the other, which can be expressed in terms of a null joint covariance, or cov(𝑣1, 𝑣2) = 0.
This idea can be extended to a random vector v and expressed in terms of the covariance
matrix Cv:

Cv = E[(v− 𝜇v)(v− 𝜇v)𝑇 ], (2.21)

where 𝜇v is the mean vector.

Then, the components in v are said to be uncorrelated when the covariance
matrix Cv is diagonal.

Similarly, two random processes are said to be uncorrelated when their cross-
covariance function C𝑣𝑢(𝑡, 𝜏), defined in (2.11), is always null for any time-state 𝑡 and
time lag 𝜏 (PAPOULIS; PILLAI, 2002). Then, for a vector v(𝑡) of jointly stationary
components, a cross-covariance function matrix Kv(𝜏) may be defined analogous to (2.21):

Kv(𝜏) = E[(v(𝑡)− 𝜇v)(v(𝑡 + 𝜏)− 𝜇v)𝑇 ], (2.22)

where Kv(𝜏) depends only on 𝜏 .

If v(𝑡) is uncorrelated, Kv(𝜏) must be diagonal for all 𝜏 . Additionally, when
there is no lag among components, i.e., 𝜏 = 0, (2.21) and (2.22) amount to the same.
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2.4.2 PRINCIPAL COMPONENT ANALYSIS

As explained in (SHLENS, 2014), the idea behind PCA is that a random vector,
expressing a multivariate data set, may contain some redundant components, i.e. correlated,
and others offering little or nothing of interest by remaining almost constant sample by
sample. Some noise with little variance may be present, too. Then, PCA attempts to
simplify this description by finding a new orthonormal basis onto which to project the
data, so that it may be expressed with fewer and uncorrelated new components, such that
each subsequent new component corresponds to the next direction of the basis maximizing
the variance of the projection, thus filtering the noise. The components found in this
orderly manner, prioritizing the variance in order to lose as little information as possible,
are called the principal components of the data set.

By considering a previously centered, i.e., with zero mean, 𝐿-component random
vector v, and calculating its covariance matrix Cv, a solution for such orthonormal basis is
found in the eigenvector matrix U of the covariance matrix Cv, which is usually obtained
through Singular Value Decomposition (SVD), when the corresponding eigenvalue matrix
Σ, holding eigenvalues 𝜎𝑖, is decreasingly ordered, or:

Cv = E[vv𝑇 ] (2.23)
= UΣU𝑇 , (2.24)

where Σ ∈ ℜ𝐿×𝐿 is diagonal with 𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑅 ≥ · · · ≥ 𝜎𝐿, while U ∈ ℜ𝐿×𝐿 is the
orthogonal matrix of corresponding eigenvectors u1, u2, · · · , u𝑅, · · · , u𝑁 .

Thus, the 𝑅 first principal components, such that 𝑅 ≤ 𝐿 and collected in the
random vector r, are computed by the linear transformation:

r = U𝑇
𝑅v, (2.25)

where U𝑅 ∈ ℜ𝐿×𝑅 holds the 𝑅 first eigenvectors, from u1 to u𝑅.

These components are mutually uncorrelated and with maximum variance, as
can be inferred from the covariance matrix Cr:

Cr = U𝑇
𝑅CvU𝑅

= U𝑇
𝑅(UΣU𝑇 )U𝑅

= Σ𝑅, (2.26)

where Σ𝑅 ∈ ℜ𝑅×𝑅 holds the 𝑅 largest eigenvalues, or 𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑅.

Furthermore, it can be proven that, after preserving most of the variance in the
new orthonormal basis, PCA minimizes the Mean Squared Error (MSE) of reconstructing
v from r (HYVäRINEN; KARHUNEN; OJA, 2001). Such reconstruction is accomplished
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by “going back” from the new basis, or:

̃︀v = U𝑅r = U𝑅U𝑇
𝑅v, (2.27)

where ̃︀v ∈ ℜ𝐿 is the reconstruction of v.

Thus, the MSE between v and ̃︀v is dependent on the basis and can be measured
by a function JPCA(·) expressed as:

JPCA(U𝑅) = E[‖v− ̃︀v‖2], (2.28)

where ‖·‖ is the euclidean norm.

Furthermore, the MSE function defined in (2.28), even for different orthonormal
basis, can be equivalently expressed as:

JPCA(U𝑅) = E[v𝑇 v]− E[(U𝑇
𝑅v)𝑇 (U𝑇

𝑅v)] = E[v𝑇 v]− E[r𝑇 r]
= tr(Cv)− tr(Cr)

=
𝐿∑︁

𝑖=1
𝜎𝑖 − tr(Cr), (2.29)

where tr(·) is the trace of a matrix.

From (2.29), the MSE reconstruction function JPCA(·) is minimum when Cr

holds the 𝑅 largest eigenvalues of Cr, what has already been established in (2.26). Hence:

min
V
{JPCA(V)} = JPCA(U𝑅) =

𝐿∑︁
𝑖=𝑅+1

𝜎𝑖, (2.30)

where V is any orthonormal basis.

2.4.3 WHITENING

Whitening (or sphering) goes a step further than PCA by transforming v into a
new random vector z, such that the energy (or variance) is equally shared among its com-
ponents. Furthermore, unlike PCA, whitening is not interested in dimensionality reduction
nor retrieving latent variables from the data. Therefore, a whitening transformation B,
producing an identity covariance matrix, is:

B = Σ−1/2U𝑇 (2.31)
z = Bv (2.32)

Cz = BCvB𝑇 = I, (2.33)

where B ∈ ℜ𝐿×𝐿, while Σ ∈ ℜ𝐿×𝐿 must be invertible.

Interestingly, whitening is not affected by orthogonal transformations, i.e., z
could be rotated by any orthogonal matrix Q, and its resulting covariance matrix would
persist being an identity (QCzQ𝑇 = I), so any matrix of the form QB would also be a
valid whitening transformation.
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2.5 INDEPENDENT COMPONENT ANALYSIS
With respect to the nature of the sources, an assumption considered since

the beginnings of BSS in the early 80’s, as is presented in (JUTTEN; TALEB, 2000),
is the statistical independence of the sources, which gives rise to the general concept of
Independent Component Analysis (ICA), initially presented by Christian Jutten in (1987).

According to this hypothesis, the information contained in any subset of the
sources does not bring forward anything significant to predict the behaviour of any other
remaining subset in the vector. In mathematical terms, the independence of the 𝑀 sources
contained in s(𝑡) implies that:

ps(𝑡)(·) =
𝑀∏︁
𝑖

p𝑠𝑖(𝑡)(·), (2.34)

where the left-hand term refers to the joint PDF of the source vector s(𝑡), while the
right-hand term indicates the product of the marginal PDFs of the sources.

In a more strict sense, for two random processes to be independent, the joint
PDF of any two sets of 𝐿 time-states, one set for each process, should equal the product
of the joint PDF of each process (PAPOULIS; PILLAI, 2002). However, this more general
definition can be overlooked in the instantaneous ICA case, where the independent sources
do not interact with each other at different time-states, hence 𝐿 = 1 and (2.34) holds.

Independence is a much stronger condition than just uncorrelatedness, where
other non-linear dependencies still subsist. Therefore, ICA may be understood as a
generalization of PCA (JUTTEN; HERAUT, 1988), seeking for latent components that
not only are uncorrelated, but also independent. However, decorrelating the mixtures is
still useful as an initial step before attempting to solve the problem. This connection to
PCA and whitening is explored in subsection 2.5.1.

Pierre Comon (1992; 1994) formalized the concept of ICA for the linear and
instantaneous case, and proved that, in order to blindly capture a single source in each
estimate, the independent source vector must have, at most, only one source with a
Gaussian density function. This necessary second assumption about the Gaussianity of
the sources is a direct result of the Darmois-Skitovich theorem, which will be presented
and discussed in Section 2.5.2. Then, a simplified formulation of the definition presented
by Comon, for linear instantaneous ICA, may be expressed as:

Definition 2.5.1 (Linear instantaneous ICA). For an 𝑁 -component random vector x, ICA
consists in finding a linear transformation W that produces a vector y, whose components
are as statistically independent as possible according to the optimization of a contrast
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function 𝑓(·), or:

y = Wx

subject to optimize 𝑓(y),
(2.35)

where y ∈ ℜ𝑀 , W ∈ ℜ𝑀×𝑁 , while 𝑓(·) establishes the criterion that direct or indirectly
expresses the notion of independence. �

To sum up, ICA is based on a first and main assumption of the statistical
independence of the sources, and a second necessary assumption limiting the number of
Gaussian sources to a maximum of one. Additionally, for linear instantaneous ICA, the
mixing matrix must be full rank. These conditions encapsulate the separability theorem
presented in (SUYAMA, 2007), based on the works of Comon (1992; 1994).

2.5.1 PCA AND WHITENING AS PREPROCESSING FOR ICA

Independent random variables (and processes) are also uncorrelated, although
the reverse is not generally true. It is only for Gaussian distributions that uncorrelatedness
implies independence (PAPOULIS; PILLAI, 2002). Nonetheless, applying some decorrela-
tion method on the mixtures can be seen as a step closer towards independence and ends
up simplifying the task of the ICA technique.

Due to stationarity, this may be accomplished by applying PCA or whitening,
as exposed in Section 2.4, before using any ICA algorithm. So, considering the linear
instantaneous ICA model and the 𝑁 -component mixture vector x = As, the initial
covariance matrix would be:

Cx = ACsA𝑇 (2.36)
= AA𝑇 (2.37)
= UΣU𝑇 , (2.38)

where A ∈ ℜ𝑁×𝑀 , Cs ∈ ℜ𝑀×𝑀 , while U, Σ ∈ ℜ𝑁×𝑁 correspond to the SVD of Cx.

In (2.36), the source covariance matrix Cs is diagonal as a consequence of
independence, and, without loss of generality, it can be considered as the identity matrix,
since the individual source variances are not relevant for ICA and BSS in general.

Thus, the resulting decorrelated mixtures by PCA and whitening, and their
corresponding covariance matrices, are:

r = U𝑇 x Cr = Σ (2.39)
z = Σ−1/2U𝑇 x Cz = I, (2.40)

where x, r, z ∈ ℜ𝑁 , and Cr, Cz ∈ ℜ𝑁×𝑁 .
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From (2.40), we recognize that whitening is only feasible when the eigenvalue
matrix Σ is invertible, which translates to Cx being full rank, i.e., rank(Cx) = 𝑁 , either
in the well-determined (𝑁 = 𝑀) or underdetermined (𝑁 < 𝑀) scenarios.

Furthermore, by exploring the rank of matrix Cx in (2.36), it is possible to shed
some light on the structure of the full rank mixing matrix A (separability) as they must
be equal, i.e., rank(Cx) = rank(A). Thus, the following can be said about the unknown
number of sources 𝑀 and the “determinedness” of the problem:

rank(Cx) = 𝑁 ↔ Well-determined, or underdetermined. (2.41)
rank(Cx) < 𝑁 ↔ Overdetermined (𝑁 > 𝑀), and 𝑀 = rank(Cx). (2.42)

Following (2.42), a valid strategy for the overdetermined problem could be
reducing the number of components to 𝑀 , by PCA, in order to deal with a well-determined
setting. Additionally, considering 𝑀 is already known, this strategy is also valid with noisy
mixtures (JOHO; MATHIS; LAMBERT, 2000).

An interesting consequence of whitening is the orthogonalization of the mixing
matrix A, when such matrix is square. According to the results presented in (2.40), a “new”
whitened mixing matrix could be Az = Σ−1/2U𝑇 A, for which orthogonality is satisfied
(AzA𝑇

z = I). Then, in the well-determined scenario, the whitened mixtures are just a
rotated version of the sources.

Therefore, after whitening and considering 𝑁 = 𝑀 , we can restrict the search
space related to the separation matrix W to the set of orthogonal matrices, according
to y = Wz. In this sense, whitening would be only a rotation away from attaining
independence.

Example 2.5.1. Following Example 2.3.1, and considering only the mixtures produced
by the full rank mixing matrix A, the resulting new basis U = [u1, u2] and whitening
transformation B are:

U =
⎡⎣ −0.4 −0.92
−0.92 0.4

⎤⎦ Σ =
⎡⎣5.87 0

0 0.38

⎤⎦ B =
⎡⎣−0.16 −0.38
−1.48 0.64

⎤⎦ , (2.43)

where all matrices are rounded up to two decimals.

Figure 2.3 shows the subsequent uncorrelated mixtures. In Figure 2.3c, the
mixtures have been projected onto the eigenvectors 𝑢1 and 𝑢2, shown unmodified in Figure
2.3b, whereas in Figure 2.3d the distribution of the whitened mixtures resemble a rotated
version of the distribution of the sources, depicted in Figure 2.3a. �

2.5.2 ON NON-GAUSSIANITY

As already mentioned, uncorrelatedness and independence are equivalent for
random variables with Gaussian distributions. Then, in order to avoid retrieving inde-
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(a) Uniform sources s. (b) Original mixtures x.

(c) Decorrelated mixtures r by PCA. (d) Whitened mixtures z.

Figure 2.3 – Preprocessing the data: Whitening is a rotation away from independence.

pendent estimates capturing uncorrelated mixtures of Gaussian sources, a restriction on
their gaussianity must be considered. This restriction is based on the Darmois-Skitovich
theorem (KAGAN; LINNIK; RAO, 1973):

Theorem 2.5.2 (Darmois-Skitovich). Consider 𝐿 zero-mean and independent random
variables 𝑣1, 𝑣2, · · · , 𝑣𝐿, and their linear combinations 𝑢1 and 𝑢2, expressed as follows:

𝑢1 =
𝐿∑︁

𝑖=1
𝑎𝑖𝑣𝑖

𝑢2 =
𝐿∑︁

𝑖=1
𝑏𝑖𝑣𝑖,

(2.44)

where all 𝑎𝑖 and 𝑏𝑖 are constant scalars.

If 𝑢1, 𝑢2 are independent, then, for any 𝑎𝑖𝑏𝑖 ̸= 0, 𝑣𝑖 must be Gaussian. �

Following the premise of the theorem, there is no limitation to how many
independent random variables 𝑣 are simultaneously present in the also independent pair 𝑢1

and 𝑢2, the only requirement being that the shared variables 𝑣 must be Gaussian. Then,
by applying this to the linear instantaneous ICA problem, while considering no limit to
the Gaussianity of the sources, it could not be possible to always capture a single source 𝑠𝑖

in each estimate 𝑦𝑖 with just the assumption of independence, so the number of Gaussian
sources should be limited to one to avoid retrieving such independent mixtures.
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Example 2.5.3. Consider the Gaussian and independent source vector s = (𝑠1, 𝑠2)𝑇 ,
mixed by some matrix A, and a candidate 2-component estimate vector y = (WA)s:

𝑦1 = 𝑤𝑎1,1𝑠1 + 𝑤𝑎1,2𝑠2

𝑦2 = 𝑤𝑎2,1𝑠1 + 𝑤𝑎2,2𝑠2,
(2.45)

where each 𝑤𝑎𝑖,𝑗 is a coefficient of matrix WA at a row 𝑖 and column 𝑗, while 𝑦1, 𝑦2, and
𝑠1, 𝑠2 are Gaussian.

In (2.45), 𝑦1 and 𝑦2 are Gaussian due to being linear combinations of 𝑠1 and
𝑠2. So, their uncorrelatedness implies independence.

One of the infinite solutions for a “separation” matrix W, such that it ensures
independence, and considering the mixing matrix A used in Example 2.5.1, corresponds to
the whitening transformation B from the same example, both repeated here for convenience:

B =
⎡⎣−0.16 −0.38
−1.48 +0.64

⎤⎦ A =
⎡⎣0.5 1

2 1

⎤⎦ WA =
⎡⎣−0.84 −0.54

+0.54 −0.84

⎤⎦ , (2.46)

where B becomes a false separation matrix, B = W.

Thus, a perfectly possible solution according to Theorem 2.5.2 would be:

𝑦1 = −0.84𝑠1 − 0.54𝑠2

𝑦2 = +0.54𝑠1 − 0.84𝑠2,
(2.47)

where 𝑦1 and 𝑦2 are independent whitened mixtures.

Figure 2.4 depicts this false solution, where Figure 2.4d corresponds to the
independent estimates, 𝑦1 and 𝑦2, retrieved by whitening the initially correlated available
mixtures in Figure 2.4b. These estimates, although being independent, are still mixtures
of the original standard Gaussian sources, 𝑠1 and 𝑠2, shown in Figure 2.4a. The mixtures
after PCA are shown in Figure 2.4c only for completion. Unlike Figure 2.3 in Example
2.5.1, it is not possible to blindly determine an adequate additional rotation needed to
actually separate the sources based only on their independence.

On the other hand, if only one source was Gaussian, for example 𝑠1, then 𝑠2

could not be shared among independent estimates, and 𝑠1 could only be in the remaining
estimate to guarantee the independence of the pair. Thus, as a consequence of limiting
gaussianity, each estimate would capture only one source with no repetition. �

2.6 OTHER APPROACHES

2.6.1 SECOND ORDER STATISTICS

Second Order Statistic (SOS) algorithms are based on the weaker assumption
of uncorrelatedness of the sources, and do not require their non-gaussianity. Furthermore,
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(a) Gaussian sources s. (b) Original mixtures x.

(c) Decorrelated mixtures r by PCA. (d) Whitened mixtures z.

Figure 2.4 – The problem of gaussianity.

regarding the stationarity of the signals, SOS algorithms may be divided between those
based on WSS, as explained in Section 2.1, and those based on nonstationarity. An example
of the first group is the Algorithm for Multiple Unknown Signals Extraction (AMUSE)
(TONG et al., 1990).

AMUSE relies on finding some time delay 𝜏 such that the corresponding
cross-covariance function matrix Ks(𝜏) of the source vector is not only diagonal, due
to uncorrelatedness, but its components must be different after some orthogonalization
procedure of the mixing matrix, due to the sources having different correlation structures.

E[𝑠𝑖(𝑡)𝑠𝑖(𝑡 + 𝜏)] ̸= E[𝑠𝑗(𝑡)𝑠𝑗(𝑡 + 𝜏)], (2.48)

where each 𝑠𝑖 has been centered and is unit-variance, 𝑖 ̸= 𝑗, and 𝜏 is a delay to be found.

After whitening, as indicated in Section 2.5.1 for 𝜏 = 0, the mixing matrix Az

can be considered to be orthogonal and the sources normalized, as their variances have
been “absorbed”. Then, considering z = Azs, it follows that the cross-covariance matrix of
the whitened mixtures Kz(𝜏) is diagonalized by the orthogonal Az:

Kz(𝜏) = AzKs(𝜏)A𝑇
z = AzKs(𝜏)A−1

z , (2.49)

where Az ∈ ℜ𝑁×𝑁 is orthogonal, thus A𝑇
z = A−1

z .
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After computing the eigendecomposition of Kz(𝜏), expressed in (2.50), the
mixing matrix Az may be identified as the resulting orthogonal eigenvector matrix U𝜏 , but
only when all the corresponding eigenvalues are different, which is equivalent to condition
(2.48) for all sources, as Ks(𝜏) = Σ𝜏 . Otherwise, the repeated eigenvalues would not be
able to define a unique direction for their eigenvectors. Therefore, a separation matrix W
is set to be equal to U𝑇

𝜏 and, thus, the problem is solved:

Kz(𝜏) = U𝜏 Σ𝜏 U−1
𝜏 (2.50)

y = U𝑇
𝜏 z, (2.51)

where U𝜏 , Σ𝜏 ∈ ℜ𝑁×𝑁 and Σ𝜏 has mutually distinct diagonal components.

Although AMUSE is advantageous in its conceptual simplicity, unfortunately,
due to estimation errors and not always counting with distinct enough eigenvalues (YERE-
DOR, 2010; ROMANO et al., 2011), the results delivered by a single time-delay are not
always an accurate representation of the actual sources. Moreover, in the original paper
there is no criterion for a proper selection of 𝜏 .

Other algorithms, such as Second Order Blind Indentification (SOBI) (BE-
LOUCHRANI et al., 1997) and Temporal Decorrelation Source Separation (TDSEP)
(ZIEHE; MULLER, 1998), consider a number of different delays in order to compute a
joint diagonalizer U𝑗𝑑 of the corresponding set of cross-covariance matrices Kz(𝜏), such
that it minimizes a diagonalization error, therefore producing a more robust separation
matrix, W = U𝑇

𝑗𝑑, able to deliver more accurate results.

2.6.2 SPARSE COMPONENT ANALYSIS

Sparse Component Analysis (SCA) is based on the assumption that jointly
sparse mixtures are the manifestation of sparse sources with disjoint supports in some
domain, i.e., when one sparse source presents values different from zero, the rest should
be approximately inactive, even if the support is only instantaneous. As a consequence,
considering a linear instantaneous setting, the direction of every column of the mixing
matrix is revealed through the geometry of the observable mixtures. Thus, the mixing matrix
can be estimated from scatter plots, which is particularly useful in the underdetermined
case.

Example 2.6.1. This interesting geometrical result can be exemplified considering three
audio signals 𝑠1, 𝑠2 and 𝑠3, shown in Figure 2.5a, which are not only sparse, but mostly
active one at a time (approximately disjoint support), and an underdetermined mixing
matrix A:

A = [a1, a2, a3] =
⎡⎣ 0.75 2 1
−0.75 0.25 0.5

⎤⎦ , (2.52)
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Figure 2.5b suggests that the available mixtures, 𝑥1 and 𝑥2, are the product of sparse
sources with disjoint support. Additionally, the scatter plot in Figure 2.5c shows their
joint sparsity and also reveals the structure of the mixing matrix by making visible the
direction of each column, and, thus, the number of sources when such columns are not
co-linear. This result, considering x = ∑︀3

𝑖 𝑎𝑖𝑠𝑖, may be expressed in terms of the disjoint
supports of the sources:

x(𝑡1) ≈ a1𝑠1(𝑡1) (2.53)
x(𝑡2) ≈ a2𝑠2(𝑡2) (2.54)
x(𝑡3) ≈ a3𝑠3(𝑡3), (2.55)

where 𝑡1 ∈ [1900, 4000]∪ [5900, 8000], 𝑡2 ∈ [0, 2100]∪ [4000, 6100], and 𝑡3 ∈ [7900, 10000]
are time-samples from the (approximately) disjoint supports of sources. �

(a) Sources s with disjoint time-supports. (b) Sparse mixtures x w.r.t. time.

(c) Scatter plot of the mixtures x.

Figure 2.5 – Geometry of sparsity in the time domain.

Although it may seem plausible to determine the directions of the mixing
matrix by simple inspection, as in the example, it is actually a task better suited for
clustering algorithms, such as those studied in (ARBERET; GRIBONVAL; BIMBOT,
2006; MOVAHEDI et al., 2008; HE et al., 2009; YI et al., 2019), which estimate the mixing
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matrix in more complicated scenarios. Then, once the mixing matrix is estimated, the
source estimates can be computed.

Furthermore, the example also emphasizes the importance of having completely
disjoint sources, as a little overlap in their supports will difficult the correct identification
of the clusters from the scatter plot. Therefore, it is usually convenient to transform the
mixtures into a different domain, e.g. frequency or time-frequency (PRINCEN; BRADLEY,
1986; SANEI et al., 2005; O’GRADY; PEARLMUTTER; RICKARD, 2005), in order to
ensure truly disjoint sources.

To summarize, the SCA problem may be divided into four steps, as explained
in (GRIBONVAL; ZIBULEVSKY, 2010):

1. Transformation into a domain where the sources have supports as disjoint as possible.

2. Estimation of the mixing matrix from the clusters obtained in the scatter plots.

3. Retrieval of the estimates corresponding to the new domain.

4. Inversion of the transformation to reconstruct the sources in the original domain.

2.6.3 BAYESIAN APPROACH

Unlike previous methodologies, the Bayesian approach, as explained in (KNUTH,
1999; MOHAMMAD-DJAFARI, 2001), does not depend on an specific set of characteristics
about the sources, such as their statistical independence, in order to define a procedure to
find adequate estimates. Instead, by applying Bayes’ theorem (PAPOULIS; PILLAI, 2002)
to the BSS problem, it predicts the parameters of the model, i.e., the values it may take,
based on the observed signals, and on any available prior knowledge of the mixing matrix
and sources, thus enriching the predicted model.

In order to predict these parameters, Bayes’ theorem establishes a probabilistic
relation between the posterior PDF of the model, or pA,s|x(·), the likelihood px|A,s(·), and
the priors pA(·) and ps(·). This relation is expressed as:

pA,s|x(·) = px|A,s(·)pA(·)ps(·)
px(·) , (2.56)

where pA(·) only expresses a belief on the values the constant matrix could take, while
px(·) does not depend on the model (unlike the likelihood), and x is already known.

According to the Maximum A Posteriori (MAP) principle, the optimal estimateŝ︀A and ̂︀s are those which maximize the posterior PDF in (2.56) (MOHAMMAD-DJAFARI;
KNUTH, 2010). Then, by using the logarithmic function, it is possible to find the afore-
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mentioned parameters following different estimation approaches:

̂︀A, ̂︀s = arg max
A, s

{log(px|A,s(x | A, s)) + log(pA(A)) + log(ps(s))} (2.57)

̂︀A = arg max
A
{log(px|A(x | A)) + log(pA(A))} (2.58)

̂︀s = arg max
s
{log(px|s(x | s)) + log(ps(s))}, (2.59)

where (2.57) is a joint estimation of the parameters, while (2.58) is the marginal estimation
of only the mixing matrix, and (2.59) is the marginal estimation of the sources.

Example 2.6.2. Prior knowledge about the model is easily incorporated in any approach.
For example, assuming that the coefficients of A come from the standard Gaussian
distribution, while the 𝑀 sources are not only statistically independent, as in ICA, but all
share the same uniform distribution, then their priors can be expressed as:

ln(pA(A)) = 𝑁𝑀 ln
(︃

1√
2𝜋

)︃
−

𝑀∑︁
𝑗=1

𝑁∑︁
𝑖=1

𝑎2
𝑖,𝑗

2 (2.60)

ln(ps(s)) = −𝑀 ln(𝑠max − 𝑠min), (2.61)

where each 𝑎𝑖,𝑗 corresponds to a coefficient of A at a row 𝑖 and column 𝑗.

Additionally, considering only the marginal estimation of the mixing matrix,
and 𝑁 = 𝑀 , the likelihood and log-likelihood can be expressed by means of the PDF
transformation (HYVäRINEN; KARHUNEN; OJA, 2001) as:

px|A(x | A) = 1
|det (A)|ps(A−1x) (2.62)

log(px|A(x | A)) = − ln(|det (A)|)−𝑁 ln(𝑠max − 𝑠min), (2.63)

where A−1 exists, s = A−1x, and det (·) is the determinant function.

Thus, the assumptions of the model are made explicit, leaving the non-trivial
task of maximizing the priors together with the likelihood in order to estimate the
parameters of the model. �

2.7 PRACTICAL APPLICATIONS
Due to is broad formulation, BSS may be applied to a wide variety of problems

in many different fields, whenever there is only indirect access to the hidden signals of
interest. A few examples in popular fields of application are:

BIOMEDICINE

A classical application of BSS in the field of biomedicine is fetal electrocardiog-
raphy. In such application, the objective is to capture, in a non-invasive procedure, the
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electrical signals produced by the heart of the fetus from mixtures of many electrical signals,
all received by well-located electrodes on the skin of the mother. To solve this challenging
problem, different methods based on linear instantaneous ICA (LATHAUWER; MOOR;
VANDEWALLE, 2000), higher-order statistics BSS (ZARZOSO; NANDI, 2001), and BSS
in the wavelet domain (JAFARI; CHAMBERS, 2005) have been proposed. Similarly, other
tasks involving electroencephalography and magnetoencephalography signals can also be
interpreted as BSS problems.

AUDIO PROCESSING

The cocktail party problem (CHERRY, 1953; HAYKIN; CHEN, 2005) is a
well-known example of how BSS occurs naturally when, in a noisy environment with
multiple conversations happening simultaneously, it is necessary to focus on an audio
source from an specific person, thus separating this particular source from the mixtures.

Other examples of BSS in audio processing involve automatic music transcrip-
tion (PLUMBLEY et al., 2002), detection of underwater elements by sonar systems (FAN;
ZHANG; JIANG, 2010), and speech enhancement for voice command of vehicles (LEI;
CHEN; WANG, 2019).

TELECOMMUNICATIONS

As presented in (LUO; LI; ZHU, 2018), the appeal of BSS in telecommunications
is due to its capacity to recover incoming signals, mixed in a wireless receiver, based only on
the knowledge of some of their features. This is especially advantageous when considering
the increasing number of signals crowding the frequency spectrum, thus lowering its
efficiency, hindering the proper detection of the signals and increasing any interference.

Applications of BSS in this field are found in Radio Frequency Identification,
or RFID, systems to avoid overlapping signals (MINDIKOGLU; VEEN, 2008), encryption
methods for secure military communications (DOUKAS; KARADIMAS, 2008), among
others.

FINANCE

Although financial time-series are usually non-stationary and noisy, BSS may
be useful in finding some underlying structure, in the form of sources and a mixing system,
able to explain, and maybe predict, their evolution.

In (BACK; WEIGEND, 1997), it is shown that the daily stock price variation
in the Japanese stock market may depend on two groups of independent components: a
first group of large, but infrequent, shocks in price, and a second group explaining slight
frequent variations. In (KIVILUOTO; OJA, 1998), the matter of interest is explaining
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weekly cashflow variations. A different approach is offered in (LU; LEE; CHIU, 2009),
where ICA is used in a first step, and, in a second step, support vector regression forecast
the time-series from the resulting independent components.

2.8 SUMMARY
In this chapter, we have attempted to describe the fundamentals necessary to

formally define the BSS problem: from the requirements the signals must comply, the
characteristics to be considered for an appropriate modelling, up to the estimates we
should obtain according to the assumptions made about the nature of sources. Some
practical applications have also been considered to illustrate the versatility of BSS as a
general framework to find meaningful and hidden signals in various scenarios.

Regarding the solution to the problem, we have presented some of the most
important approaches, such as ICA, SCA and the Bayesian approach, to try to understand
how different sets of assumptions about the sources define different methodologies to
retrieving corresponding estimates. Additionally, we included PCA as a sort of precursor
to BSS, especially ICA, which simplified the final solution.

As already mentioned, we consider ICA to be the most important of the
approaches to BSS due to its simple formulation and realistic, though stringent, assumptions
about the sources. In the following chapter, we aim at explaining some of the existing
quantities to measure independence, as well as some relevant algorithms for the development
of our research.



39

3 ICA: CRITERIA AND ALGORITHMS

As discussed in Section 2.5, after the preprocessing step is complete and the
mixtures are whitened, there remains the task of searching for the right rotation that will
separate the signals into independent components. In order to find a separation matrix
that yields this rotation, up to a subsequent permutation and scaling, it is necessary to
first define a functional, or criterion, such that its optimization leads to independence.

In this chapter, we expose some of the main criteria adopted in ICA, as well as
briefly present the ideas of two classical algorithms: FastICA (HYVäRINEN; OJA, 1997;
HYVäRINEN, 1999) and JADE (CARDOSO; SOULOUMIAC, 1993).

3.1 MUTUAL INFORMATION
For an 𝐿-component random vector v, Mutual Information MI(·) can be defined

as the non-negative quantity measuring how different the joint PDF is from the product
of the corresponding marginal densities (i.e. the independent PDF), being null if and only
if both PDFs are equal at almost every point in their domain (COVER; THOMAS, 2006),
i.e., when the random vector is composed of statistically independent components. Mutual
information can be equivalently expressed as either of the following expressions:

MI(v) = DKL

(︃
pv ‖

𝐿∏︁
𝑖=1

p𝑣𝑖

)︃
(3.1)

MI(v) =
(︃

𝐿∑︁
𝑖=1

H(p𝑣𝑖
)
)︃
− H(pv), (3.2)

where v ∈ ℜ𝐿, DKL(·) is the Kullback-Leibler divergence between two PDFs, and H(·) is
the differential entropy of a PDF, both defined in (COVER; THOMAS, 2006).

In a well-determined scenario, by minimizing the mutual information of the
estimate vector y = Wz with respect to the separation matrix W, the recovered estimates
𝑦𝑖 tend to become as independent as possible, which meets the objective of ICA. In
such case, by exploring properties of the differential entropy, MI(·) can be written as
(HYVäRINEN; KARHUNEN; OJA, 2001):

min
W
{MI(y = Wz)} = min

W

{︃(︃
𝑁∑︁

𝑖=1
H(p𝑦𝑖

)
)︃
− H(pz)− log(|det (W)|)

}︃
, (3.3)

where z ∈ ℜ𝑁 corresponds to the whitened mixtures and H(pz) does not depend on the
separation matrix W.

As implied by (3.1) and (3.2), in order to compute MI(v), it is necessary to
estimate the involved densities, which corresponds to a non-parametric task. Therefore,
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other quantities, such as those based on non-gaussianity, are also used to indirectly measure
independence.

3.1.1 THE INFORMATION MAXIMIZATION PRINCIPLE

Introduced in (BELL; SEJNOWSKI, 1995), the Information maximization
principle, or simply Infomax, exploits the architecture and flexibility of artificial neural
networks to model a separation system analogous to a single layer perceptron (Section
4.1), such that the set of samples of the mixture vector x should be mapped to an output
y with a maximum transference of information between input and output.

The assumed architecture comprises a matrix W of adaptable parameters and
a subsequent array g(·) of non-linear and invertible transformations gi(·), such that the
final output is y = g(Wx), which is more general than linear ICA. Thus, the gist of the
Infomax principle is to find a separation matrix W that maximizes the mutual information
MI(·) between x and y, which, from (3.2), can be expressed as:

MI(x, y) = H(px) + H(py)− H(px, y)
= H(py)− H(py|x), (3.4)

where H(py|x) indicates the conditional differential entropy of y given x.

Due to the deterministic nature of the mapping between x and y (assuming
there is no noise and no source of stochasticity other than x), the conditional differential
entropy H(py|x) is invariant to W and diverges to minus infinity, as there is no uncertainty
about y once x is known.

Thus, the maximization of MI(x, y) with respect to W is equivalent to the
maximization of the differential entropy H(py), which is maximum only when MI(y) ≥ 0
is minimum and, therefore, y is composed of statistically independent components:

arg max
W

{MI(x, y)} = arg max
W

{H(py) =
∑︁

H(pyi)−MI(y)} (3.5)

= arg min
W
{MI(y)} (3.6)

Furthermore, in (CARDOSO, 1998), it is demonstrated that the maximization
objective of the Infomax principle is equivalent to the maximization of the likelihood of x
given A and s (Section 2.6.3). Hence, both principles yield similar results.

3.2 NON-GAUSSIANITY
Based on the Central Limit Theorem (CLT) (PAPOULIS; PILLAI, 2002), it is

possible to state that each nontrivial mixture tends to be “more Gaussian” as more sources
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equally contribute to its generation. Therefore, to seek a transformation that maximizes
non-Gaussianity for all mixtures may lead to source separation, as only one dominant
source may be present in each one. Two classic measures to evaluate non-Gaussianity are
kurtosis and negentropy (ROMANO et al., 2011).

Example 3.2.1. Considering the same whitened mixture vector z as in Example 2.5.1, as
well as the same mixing matrix A and source vector s, Figure 3.1 illustrates the connection
between non-Gaussianity and independence.

In Figure 3.1a, a 25° counterclockwise rotation (in red) closer to independence
leads to less Gaussian components, as can be seen in Figure 3.1b and Figure 3.1c, where
the red histograms resemble more those of the uniform sources, while those of the original
whitened mixtures (in blue) are more similar to a standard Gaussian PDF 𝒩 (0, 1).

(a) Whitened mixtures z.

(b) Histogram of 𝑧1. (c) Histogram of 𝑧2.

Figure 3.1 – Non-gaussianity maximization leads to independence.

�

3.2.1 KURTOSIS

A possible way to quantify the Gaussianity of a signal is by estimating a
quantity known as (excess) Kurtosis.

Considering a zero-mean signal 𝑣 for convenience, its kurtosis may be defined
as the fourth-order cumulant of 𝑣 (HYVäRINEN; KARHUNEN; OJA, 2001) (more on
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cumulants in Section 3.3), which is expressed in terms of the fourth and second-order
moments as:

Kurt(𝑣) = E[𝑣4]− 3E[𝑣2]2, (3.7)

where Kurt(·) refers to the kurtosis.

Interestingly, considering unit-variance signals, a simple classification of the
PDFs can be attained according to the value of the kurtosis, which ranges from −2 to
infinity in this case. A PDF with negative kurtosis is called subgaussian, whereas those
with positive kurtosis are considered as supergaussian. Common examples belonging to
these two groups of PDFs are the uniform and the Laplacian distributions, respectively.

Therefore, the idea of maximizing the non-Gaussianity of the estimated sources,
which was suggested in Section 2.5.2, can be translated into the task of maximizing the
absolute value of the normalized kurtosis, which simply is the kurtosis in (3.7) but divided
by the squared variance, and it is expressed as follows:

max
W
{|kurt(𝑦𝑖)|} = max

W

{︃⃒⃒⃒⃒
⃒ E[𝑦4

𝑖 ]
var(𝑦𝑖)2 − 3

⃒⃒⃒⃒
⃒
}︃

, (3.8)

where kurt(·) refers to the normalized kurtosis.

It is pertinent to remark that the Gaussian distribution is not the only PDF
with kurtosis equal to zero. Fortunately, the other PDFs with this characteristic are quite
atypical and most likely do not model any signal of practical interest. Additionally, the
kurtosis is sensitive to the presence of outliers, which can be an obstacle to the precise
estimation of its value.

3.2.2 NEGENTROPY

Considering all random vectors with complete support on the real space ℜ𝐿,
maximum entropy is achieved by the Gaussian distribution, among all possible distributions
with the same mean vector and a constant covariance matrix (COVER; THOMAS, 2006).

Then, it is possible to establish a non-negative measure of non-Gaussianity in
terms of the difference between the maximum entropy and that of a vector v, both with
the same covariance matrix Cv. This quantity is called Negentropy, denoted by J(·), and
is defined as follows:

J(v) = H(𝒩 (0, Cv))− H(pv) (3.9)

= 1
2 ln(|det(Cv)|) + 𝐿

2 (1 + ln(2𝜋))− H(pv),

where v ∈ ℜ𝐿, Cv ∈ ℜ𝐿×𝐿, while 𝒩 (·) is the Gaussian distribution.

Negentropy is zero exclusively for the Gaussian distribution, with no exceptions,
and its value always increases the less Gaussian the PDF of the random vector v is.



CHAPTER 3. ICA: CRITERIA AND ALGORITHMS 43

Due to negentropy being invariant to invertible linear transformations, expres-
sion (3.9) is more useful for the individual components after any transformation. Thus, a
matrix W should yield candidate components 𝑦𝑖 such that their marginal negentropy is
maximum, which is expressed as:

max
W
{J(𝑦𝑖)} = max

W

{︂1
2 ln(var(𝑦𝑖)) + 1

2(1 + ln(2𝜋))− H(p𝑦𝑖
)
}︂

, (3.10)

Similarly to the mutual information, negentropy also requires the knowledge or
an approximation of the involved PDFs for its computation.

3.2.3 FASTICA

FastICA is a fixed-point algorithm, proposed in (HYVäRINEN; OJA, 1997;
HYVäRINEN, 1999), which aims at maximizing the non-Gaussianity of the individual
mixtures after whitening, either measured by negentropy or by the absolute value of the
kurtosis, thus finding adequate approximations of the independent sources. In this work,
we shall consider the negentropy-based version of FastICA.

To accomplish this, a fixed-point iteration is employed to converge from a
random initialization to a single unit norm separation vector w, of an orthogonal sepa-
ration matrix W = [w1, w2, · · · , w𝑀 ], such that it adopts the direction of growth of
the negentropy in each iteration. Conveniently for this purpose, it is not necessary to
precisely approximate the negentropy, being a proportional value enough (HYVäRINEN;
KARHUNEN; OJA, 2001):

J(𝑦) ∝ (E[G(𝑦)]− E[G(𝑛)])2, (3.11)

where G(·) is a non-quadratic function, while 𝑦 = w𝑇 z is a single unit-variance candidate
estimate, and 𝑛 is a unit-variance random variable with Gaussian distribution.

Then, after some simplifications and modifications to improve convergence,
the fixed-point iteration of the gradients of J(𝑦) with respect to w to a subsequent w is
computed as:

w← E[zg(w𝑇 z)]− E[g′(w𝑇 z)w], (3.12)

where g(·) and g′(·) are the first and second derivatives of G(·), respectively. The separation
vector w must be later normalized so it is always unit-norm.

In (HYVäRINEN; KARHUNEN; OJA, 2001), three possible choices for func-
tions g(·) and g′(·) are presented and reproduced below:

g(𝑦) = tanh (𝑎𝑦) g′(𝑦) = 𝑎(1− tanh (𝑎𝑦)2) (3.13)
g(𝑦) = 𝑦 exp (−𝑦2/2) g′(𝑦) = (1− 𝑦2) exp(−𝑦2/2) (3.14)
g(𝑦) = 𝑦3 g′(𝑦) = 3𝑦2, (3.15)
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where 𝑎 is a constant scalar to be selected between 1 and 2. Curiously, the last choice in
(3.15) leads to gradients close to those related to the kurtosis criterion.

In order to estimate the complete separation matrix W, and thus retrieve all
remaining sources, FastICA relies on the invariance of whitening for orthogonal transfor-
mations to ensure, at least, the uncorrelatedness of the estimates at each iteration. Then,
for this purpose, FastICA employs two different methods: deflation-based and symmetric
orthogonalization.

Deflation-based FastICA uses the Gram-Schmidt method to sequentially or-
thogonalize each separation vector w with respect to all the previously estimated vectors
at each iteration step, thus constructing an orthogonal separation matrix W. The problem
with this approach is the error accumulation and the greater relevance it confers to the
first estimated vectors.

On the other hand, symmetric FastICA simultaneously initializes the set of
separation vectors and, then, orthogonalizes the set with symmetric orthogonalization at
each iteration step, such that no vector w is more important than the rest for the construc-
tion of the orthogonal separation matrix. Symmetric orthogonalization is accomplished
through the following operation:

W← (WW𝑇 )−1/2W (3.16)

Finally, the symmetric FastICA algorithm may be expressed as:

Algorithm 1: Symmetric FastIca algorithm.
Result: Orthogonal separation matrix W.
Center and whiten the mixtures.
Indicate a number of 𝑀 sources to estimate.
Initialize an 𝑀 dimensional orthogonal separation matrix W.
while Not converged do

Update the separation vectors in W according to (3.12).
Orthogonalize W according to (3.16).

end

3.3 HIGHER-ORDER STATISTICS: CUMULANTS
Due to SOS alone not providing information beyond uncorrelatedness (Section

2.4.1), it becomes necessary to delve into Higher-Order Statistics (HOS) to find something
more substantial about the independence of the involved signals. Particularly, cumulants
offer helpful properties to evaluate non-Gaussianity and independence.

Cumulants are defined as the derivatives of the natural logarithmic of the
moment generating function (also known as characteristic function) (PAPOULIS; PILLAI,
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2002). Perhaps, most important of all for the context of BSS are the fourth-order cumulants,
which are expressed as follows for a zero-mean 𝐿-component random vector v:

cum(𝑣𝑖, 𝑣𝑗, 𝑣𝑘, 𝑣𝑙) = E[𝑣𝑖𝑣𝑗𝑣𝑘𝑣𝑙]− E[𝑣𝑖𝑣𝑗]E[𝑣𝑘𝑣𝑙]− E[𝑣𝑖𝑣𝑘]E[𝑣𝑗𝑣𝑙]− E[𝑣𝑖𝑣𝑙]E[𝑣𝑗𝑣𝑘], (3.17)

where the four indices 𝑖, 𝑗, 𝑘, 𝑙 may assume any value from 1 to 𝐿.

A cumulant of a single repeated component, i.e., when all indices are equal,
is referred to as an auto-cumulant. For example, the kurtosis expressed in (3.7) is a
fourth-order auto-cumulant. Otherwise, it is a cross-cumulant, which is invariant to the
order of its components and is always null when the involved components are independent.
Therefore, considering a linear instantaneous ICA model, a separation matrix W should
maximize the auto-cumulants and minimize the cross-cumulants.

CUMULANT TENSOR

Furthermore, the set of all 𝐿4 fourth-order cumulants can be grouped into a
4-dimensional tensor Tv ∈ ℜ𝐿×𝐿×𝐿×𝐿, such that each position in Tv is assigned according
to (3.17), i.e., Tv(𝑖, 𝑗, 𝑘, 𝑙) = cum(𝑣𝑖, 𝑣𝑗, 𝑣𝑘, 𝑣𝑙). Then, the kurtosis of each component
is placed in the diagonal, while the cross-cumulants are symmetrically placed outside of it.

It is possible to define a linear operation between a tensor and a matrix (similar
to the multiplication between a matrix and a vector). As a consequence, an eigenmatrix
can be defined as the matrix that cannot be linearly transformed by a tensor, only scaled
by an eigenvalue (HYVäRINEN; KARHUNEN; OJA, 2001):

Tv(V) = 𝜆V, (3.18)

where V ∈ ℜ𝐿×𝐿 is a matrix linearly transformed by tensor Tv into a scaled version of
itself, or an eigenmatrix, while 𝜆 is the corresponding eigenvalue.

3.3.1 JOINT APPROXIMATED DIAGONALIZATION OF EIGENMATRICES

The Joint Approximated Diagonalization of Eigenmatrices (JADE) algorithm
was proposed in (CARDOSO; SOULOUMIAC, 1993) with the purpose of finding a
separation matrix W able to, simultaneously and indirectly, minimize the fourth-order
cross-cumulants of the 𝑁 -component estimate vector y = Wz, and maximize the kurtosis
of each component, therefore steering towards independent estimates.

To accomplish this for the well-determined linear instantaneous ICA problem,
JADE exploits the fact that the whitened mixing matrix Az (Section 2.5.1) diagonalizes
every transformation of tensor Tz on any matrix (CARDOSO; SOULOUMIAC, 1993).

JADE initially computes the 𝑁 significant eigenmatrices V of tensor Tz, i.e.,
those with non-zero eigenvalues 𝜆, which, interestingly, are also equal to the kurtosis. Then,
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it aims at finding the orthogonal matrix that jointly diagonalizes all Tz(V) through the
maximization of the cost function JJADE(·):

JJADE(W) =
𝑁∑︁

𝑖=1

⃦⃦⃦
diag(W(Tz(V𝑖))W𝑇 )

⃦⃦⃦2
, (3.19)

where ‖diag(·)‖2 refers to the squared euclidean norm of the diagonal.

Such a cost function is maximum when W = A𝑇
z , up to a permutation and sign

variation of its rows, thus leading to source separation.

Furthermore, for any orthogonal W, the value of (3.19) is equal to the sum of the
squared fourth-order cumulants of y, with at least repeated first and second components:

JJADE(W) =
∑︁

∀𝑖,𝑘,𝑙

cum(𝑦𝑖, 𝑦𝑖, 𝑦𝑘, 𝑦𝑙)2 (3.20)

Therefore, considering the invariance of the sum of all the squared fourth-order
cumulants for any orthogonal transformation on z (COMON; CARDOSO, 1990) (which
equals the sum of all the squared kurtosis of the sources), the maximization of (3.20)
indirectly maximizes the kurtosis of each component of y and minimizes the fourth-order
cross-cumulants with no repeated components.

Considering an over-determined case, the JADE algorithm requires the knowl-
edge of the number of sources 𝑀 in order to previously reduce the dimensionality into a
well-determined problem. JADE offers no solution to the underdetermined case.

Due to the complexity of the cost function, JADE requires a large number of
samples to precisely estimate the cumulants and deliver satisfactory results. Additionally,
as pointed out in (HYVäRINEN; KARHUNEN; OJA, 2001), it does not perform well
when dealing with high-dimensional vectors.

For the maximization of the joint diagonalizer (3.19), a generalization of the
Jacobi technique to matrix diagonalization together with Givens rotations is used in the
original implementation made publicly available by the authors.

To summarize, the JADE algorithm may be very succinctly described as shown
in Algorithm 2:

Algorithm 2: Joint Approximated Diagonalization of Eigenmatrices algorithm.
Result: Orthogonal separation matrix W.
Center and whiten the mixtures.
Compute the cumulants of z and form the cumulant tensor.
Compute the 𝑁 most significant eigenmatrices.
maximize the cost function JJADE(·) in (3.19) to find the separation matrix W.

http://www2.iap.fr/users/cardoso/code/Jade/jadeR.m
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3.4 SUMMARY
As already mentioned in Chapter 2, in order to solve the BSS problem it is

necessary the definition of a criterion capturing the hypothesis made about the sources,
such that its optimization yields representative estimates.

In this chapter, we have focused on some of the main criteria for the retrieval
of independent estimates under ICA. First, the minimization of the mutual information to
guarantee statistical independence among the estimates, which is followed by the Infomax
principle. Then, the maximization of the non-Gaussianity as indicative of source separation
and independence, either in the form of the kurtosis or negentropy, and finally, regarding
fourth-order cumulants, the maximization of the auto-cumulants (or kurtosis), and the
minimization of cross-cumulants, which indicate non-linear correlation when only two
different components are present, though repeated, and independence once they are all
null. Due to the well-known performance of the FastICA and JADE algorithms, we have
selected them to illustrate the two later approaches to independence.

In the following chapter, we cover the key concepts of artificial neural networks
and adversarial learning, which form the basis for ANICA.
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4 AUTOENCODERS AND ADVERSARIAL
NETWORKS

In the previous chapters, we have discussed the fundamentals of the BSS
problem and of ICA, one of the most relevant approaches to solve it. Moreover, some of
the quantities and strategies used to measure and attain independence, which is the key
hypothesis behind ICA, have been outlined, as well as two well-known algorithms based
on non-gaussianity and higher-order cumulants, viz., FastICA and JADE.

Now, in this chapter, we shift the focus of the exposition to the field of machine
learning, especially to the topics of Autoencoders (AEs) and Generative Adversarial
Networks (GANs) (GOODFELLOW et al., 2014), which together form the basis of
the Adversarial Autoencoder (AAE) (MAKHZANI et al., 2016). These subjects are of
great importance, as they establish the main ideas that support the proposal of ANICA
(BRAKEL; BENGIO, 2017), which will be detailed in the next chapter. In order to better
explain these concepts, a brief discussion on artificial neural networks is provided in the
sequence.

4.1 ARTIFICIAL NEURAL NETWORKS
According to its initial conception, an Artificial Neural Network (ANN) is a

computational structure loosely based on an idealization of how the neurons in the brain
communicate and adapt in order to improve their performance on some specific task
(ALPAYDIN, 2010; GéRON, 2019).

In a more practical sense, an ANN may be considered as an adaptable model
that creates a mapping between input data and an output. It is composed of a fixed
number of processing units, named artificial neurons, each defined by a parametric function,
which are sequentially connected in layers according to some architecture (BISHOP, 2006;
GOODFELLOW; BENGIO; COURVILLE, 2016). These parameters of the network must
be adjusted by some training mechanism, typically a supervised framework in which the
energy of the error is minimized. This adaptation process is carried out with the aid of
iterative optimization algorithms.

Among the existing ANN architectures, perhaps the most classic and widely
used option is the Multi-Layer Perceptron (MLP), due to its standardized architecture
and its capacity for addressing different tasks, such as pattern classification, prediction
and retrieval of latent variables, to cite a few. Nonetheless, other successful architectures
such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
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are employed for different purposes in more challenging contexts, like natural language
processing and computer vision (GOODFELLOW; BENGIO; COURVILLE, 2016; GéRON,
2019).

With respect to training, in brief, the parameters of an MLP are usually updated
by methods based on the notion of gradient descent, such that the parameters are updated
by following the opposite direction of that defined by the gradients of the cost function.
The computation of such gradients is carried out with the aid of the backpropagation
algorithm (RUMELHART; HINTON; WILLIAMS, 1986; WERBOS, 1982), which allows
determining the derivatives of the cost function (whose definition directly involves the
network output) with respect to the parameters of the inner layers. This brief explanation
is also valid for the training process of CNNs and RNNs, though with some non-trivial
adaptations, as explained in (GOODFELLOW; BENGIO; COURVILLE, 2016).

4.1.1 MULTI-LAYER PERCEPTRONS

An MLP is an architecture that organizes its computational units, also known
as neurons or perceptrons, in a number of hidden layers and an output layer. In an MLP,
all 𝑛𝑙 neurons in a layer 𝑙 typically share a common activation function f 𝑙

𝑎(·), and the set
of signals they generate a𝑙 is transmitted as input to the next layer 𝑙 + 1. This results in a
mapping mlp(·) between the input set of signals v and the output projected in the last
layer.

Typically, MLPs are fully-connected, which means that each layer 𝑙 can be
modelled by a 𝑛𝑙 × 𝑛𝑙−1 weight matrix Θ𝑙 and a 𝑛𝑙-component bias vector 𝑏𝑙, where 𝑛𝑙−1

is the number of neurons the previous layer holds. Therefore, in such MLPs, the output of
a single layer can be computed as:

a𝑙 = f 𝑙
𝑎(Θ𝑙a𝑙−1 + 𝑏𝑙) (4.1)

Example 4.1.1. Considering two hidden layers and an output layer with arbitrary
activation functions, the final mapping between an input v and output a3, defined by a
fully-connected MLP, may be computed by:

a1 = f1
𝑎(Θ1v + 𝑏1)

a2 = f2
𝑎(Θ2a1 + 𝑏2)

a3 = f3
𝑎(Θ3a2 + 𝑏3)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ a3 = mlp(v, Θ), (4.2)

where all Θ𝑙 and 𝑏𝑙 are trainable parameters, while mlp(·) is the overall MLP mapping.

Figure 4.1 depicts the MLP defined in (4.2) and how the signals are transmitted
from a three-component input to a two-component output. �
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Hidden Layer Hidden Layer Output Layer
MLP

Figure 4.1 – Structure of a MLP with 3 inputs, 2 hidden layers and a two-component
output layer.

CLASSIFICATION BY DISCRIMINATORS

As already mentioned, a common application of MLPs is in pattern classification.
The samples of an input set of signals v may be divided into mutually exclusive groups,
or classes 𝑐, according to some characteristics of interest they present, so each sample
belongs to one class only. Then, classification is the task of learning to recognize these
characteristics and, therefore, generate a class-prediction for unseen data (DUDA R.
O. HART; STORK, 2000). For brevity of exposition, only two classes may be considered:
a True and a False class, denoted by labels 𝑐 = 1 and 𝑐 = 0, respectively. In this case, a
single output neuron is needed for the task, though additional output neurons could be
added for a multi-class problem.

An MLP designed for classification is called a Discriminator and it is designated
by the mapping d(·). A discriminator must learn to map each, or most, of the input data
samples into a conditional posterior probability of belonging to the True class, denoted by
PTrue|v(·). In other words, for every pair of samples (v𝑖, 𝑐𝑖), a discriminator should output
d(v𝑖) = PTrue|v(𝑐𝑖 = 1 | v𝑖) indicating the probability of True class membership, i.e., for
a single sample v𝑖 with label 𝑐𝑖 = 1, the corresponding output sample d(v𝑖) should be
close to one, whereas, when the class of the input sample is 𝑐𝑖 = 0, the output should be
almost zero. In such a case, considering the output approximates the actual class labels,
the discriminator has learnt to correctly classify the input samples.

In order to properly train a discriminator, a cost function is designed in terms of
the mean (across all samples) of the cross-entropy between the Probability Mass Function
(PMF) defined by the network mapping Pmap(·) and the PMF defined by the labels Pclass(·),
which is denoted by H(Pclass, Pmap) and thus measures the dissimilarity between the class
prediction and the actual class membership. Therefore, such a cost function JD(·), to be
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minimized during training, is expressed as:

JD(D) = E[H(Pclass, Pmap)]

= 1
𝑁𝑠

∑︁
∀𝑖

−𝑐𝑖 log(d(v𝑖))− (1− 𝑐𝑖) log(1− d(v𝑖)), (4.3)

where D refers to all weight matrices and bias vectors, and 𝑁𝑠 is the number of samples.

Under this interpretation, every input sample v𝑖 is associated to the two
aforementioned PMFs, Pmap(·) and Pclass(·), which indicate the probability of any sample
to belong to the True or False class and are expressed as follows:

Pmap(True) = d(v𝑖) Pmap(False) = 1− d(v𝑖) (4.4)
Pclass(True) = 𝑐𝑖 Pclass(False) = 1− 𝑐𝑖, (4.5)

where Pclass(·) is fixed and deterministic as 𝑐𝑖 can only be equal to 1 or 0.

Thus, if the discriminator learns a mapping PMF consistently similar to the
class PMF, i.e., Pmap(·)→ Pclass(·), the aforementioned cost function (4.3) is consequently
minimized to zero as most of the individual cross-entropies are reduced to their corre-
sponding class entropy, i.e., H(Pclass, Pmap) = H(Pclass) + DKL (Pclass ‖ Pmap)→ H(Pclass),
whose value is equal to zero due to the deterministic nature of the class PMF.

4.2 AUTOENCODERS
The model known as an Autoencoder (AE) corresponds to an ANN trained

to reconstruct the input data v at the output layer v̂ (GOODFELLOW; BENGIO;
COURVILLE, 2016; GéRON, 2019). Although this may seem to be a trivial task, by doing
so, an AE is able to capture a meaningful and latent representation of the data in the form
of the output of one of its hidden layers. The retrieval of this latent representation, which
is called a code h, is the real aim of AEs, as this code should contain enough information
to allow the following layers to reconstruct the input data into the final output layer.

The structure of an AE can be summarized as two functions in a sequence: (1)
an encoder function fen(·), and (2) a decoder function fde(·), where the encoder creates the
code h = fen(v) and the decoder outputs the reconstructed data v̂ = fde(h). Figure 4.2
depicts the general architecture of an AE, where the encoder projects an 𝑀 -component
code h, while the decoder attempts to output an 𝑁 -component reconstruction of the
input v. The encoder and decoder functions can be implemented by stacking an arbitrary
number of hidden layers.

An AE may be interpreted as a latent variable model: the code h is a representa-
tion of the latent variables underlying the input data, whose usefulness can be confirmed by
the data reconstruction it allows. In this context, we can recognize a conceptual connection
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Figure 4.2 – General structure of an Autoencoder and its most important components.

between AEs and the BSS problem. The encoder must learn to act as a separation system
𝒲 , retrieving the latent variables that indeed generated the observed data. On the other
hand, the decoder plays the role of a mixing system 𝒜, since it must combine the latent
variables in order to recover the original data.

This connection suggests that, given a set of observations of the mixtures, it
may be possible for an AE to retrieve estimates of the sources at its internal code, since
the decoder should be able to reconstruct the mixtures. Evidently, the assumptions of ICA
(Section 2.5) should be satisfied by AEs as well.

AEs require the minimization of a cost function JAE(·) that expresses the
quality of the reconstruction. A common, but far from unique, choice for such a function
is the Mean Squared Error (MSE), which is expressed as:

JAE(Fen, Fde) = E[‖v− v̂‖2]

= 1
𝑁𝑠

∑︁
∀𝑖

⃦⃦⃦
v𝑖 − fde(fen(v𝑖))

⃦⃦⃦2
, (4.6)

where Fen and Fde encompass all weight matrices and bias vectors of the encoder and
decoder, respectively, 𝑁𝑠 is the number of samples, and ‖·‖ is the Euclidean norm.

Unfortunately, given enough capacity, the AE could simply learn a decoder
function that inverts the previous encoder, or fde(·) = f−1

en (·), rendering the generated code
h irrelevant and uninformative about the data. However, it is possible to avoid these trivial
results by considering some structural constraints or by introducing some form of regular-
ization in order to prevent a perfect but useless reconstruction, for example, by limiting
the number components of the code or by adding noise to the data (GOODFELLOW;
BENGIO; COURVILLE, 2016).

Interestingly, even though AEs are trained in a supervised fashion with the
purpose of minimizing an error measure between the input data and the reconstruted
output, they learn to create the internal representation in an unsupervised manner, since
there is no target information for the code. Therefore, AEs do represent a blind scheme
for obtaining latent variables, which is in accordance with the spirit of the BSS problem.
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4.2.1 LINEAR AUTOENCODERS AND PCA

An AE is said to be linear when both the encoder and decoder consists of a
single hidden layer with a linear activation function. Thus, a Linear Autoencoder (LAE)
can be modelled as:

h = fen(v) = Θenv + 𝑏en

v̂ = fde(h) = Θdeh + 𝑏de

⎫⎬⎭ v̂ = ΘdeΘenv + Θde𝑏en + 𝑏de (4.7)

From (4.7), it is evident that adding more linear layers to LAEs has no impact
on improving reconstruction nor code retrieval, as this would be equivalent to replacing a
number of weight matrices (or bias vectors) for a single one.

A common structural limitation imposed on AEs is to produce a code with
fewer components than the input, i.e., 𝑀 < 𝑁 as described in Figure 4.2, thus forcing the
encoder to learn a dense and compact representation of the data. Such an AE is said to
be undercomplete, and it may also be used for dimensionality reduction and visualization.

A well studied connection between AEs and PCA (Section 2.4.2) indicates that
an undercomplete LAE, trained to minimize the MSE cost function (4.6), projects a code
within the subspace spanned by PCA (GOODFELLOW; BENGIO; COURVILLE, 2016).
This connection is grounded on the fact that PCA is able to reconstruct, by means of
(2.27), its original input from the principal components it retrieves, which are computed
under the restrictions of uncorrelatedness and an orthonormal basis, while minimizing the
same MSE defined in (2.28) and attaining the same result (2.30). In other words, such a
LAE and PCA have the same MSE minimization objective, based on the reconstruction of
an original input from a representation with possibly fewer components. However, both
differ in their results due to the flexibility of undercomplete LAEs, which are not necessarily
under the same restrictions as PCA.

Example 4.2.1. In an attempt to better understand the connection between AEs and
PCA, the Iris data set (DUA; GRAFF, 2017), which is composed of 150 observations of four
geometrical characteristics (length and width of the sepal and petal) from three different
species of irises (setosa, virginica and versicolor), was used to separately compute the two
first principal components and the subsequent reconstruction through PCA, and to train
an undercomplete LAE in order to retrieve a 2-component code from the aforementioned
4-component input.

After PCA and training the LAE to minimize the MSE cost function (4.6), the
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resulting orthonormal basis U𝑅 and weight matrices Θen and Θde are:

U𝑅 =

⎡⎢⎢⎢⎢⎢⎢⎣
−0.36 −0.66
+0.08 −0.73
−0.86 +0.17
−0.36 +0.08

⎤⎥⎥⎥⎥⎥⎥⎦

Θen =
⎡⎣−0.73 −0.47 −0.46 −0.19

+0.19 +0.56 −0.74 −0.31

⎤⎦ Θde =

⎡⎢⎢⎢⎢⎢⎢⎣
−0.73 +0.19
−0.47 +0.56
−0.46 −0.74
−0.19 −0.31

⎤⎥⎥⎥⎥⎥⎥⎦ ,

(4.8)

where all matrices are rounded up to two decimals. No bias vectors were considered.

From (4.8), it is noticeable that the encoder and decoder share the same
parameters. This is accomplished by a technique called Tying weights (GéRON, 2019),
which basically forces the parameters of the decoder to be the transpose of the parameters
of the encoder, i.e., Θde = Θ𝑇

en, which leads towards learning an encoder with parameters
closer to an orthonormal basis, i.e., ΘenΘ𝑇

en → I, due to the reconstruction objective.
Furthermore, since every rotation Q of the orthonormal basis U𝑅 (considering eigenvectors
with possibly different signs) yields the same minimum reconstruction error as PCA
(DIAMANTARAS; KUNG, 1996), then, the rows of the encoder lie almost perfectly within
the subspace defined by PCA, i.e., Θen ≈ QU𝑇

𝑅, thus proving that the code is within the
same subspace.

Figure 4.3 shows that the code produced by the LAE (in red) coincides with
the two first principal components (in blue) after a vertical reflection, i.e., with respect to
u2, and an approximately 46.57° counterclockwise rotation. Moreover, the components of
the code are clearly not uncorrelated, as it was not explicitly considered during training
nor the design of the LAE. �

Figure 4.3 – Connection between undercomplete LAEs and PCA.

Aditionally, as also indicated in (GOODFELLOW; BENGIO; COURVILLE,
2016), undercomplete non-linear AEs, i.e., when the encoder and decoder do not correspond
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to linear functions, also trained to minimize the MSE cost function, may learn a code within
the subspace defined by a non-linear generalization of PCA. Perhaps most importantly of
all, AEs in general have the capability to go beyond PCA given the right restrictions and
training.

Other than limiting the number of components in the code layer, as in under-
complete AEs, it is possible to avoid trivial solutions by means of regularization, i.e., by
guiding the AE training towards a desired relevant code, as in the following cases.

4.2.2 DENOISING AUTOENCODERS

Originally proposed in (VINCENT et al., 2008; VINCENT et al., 2010), De-
noising Autoencoders (DAEs) try to reconstruct an original data set after it has been
corrupted (or partially destroyed) by some random process, thus capturing a code more
robust to small perturbations in the data.

The original data v is corrupted by either adding some random noise, which
is usually Gaussian, or by randomly selecting some of its components to be replaced
with zeros, instead of eliminating them, to preserve the same dimensionality. Thus, the
newly corrupted vector ṽ becomes the input of the DAE, while the original vector v
remains as the reconstruction target. Hence, the decoder cannot learn a trivial mapping,
i.e., fde(·) ̸= f−1

en (·), as v ̸= ṽ, and, thus, the code h = fen(ṽ) is forced to learn the most
relevant information contained in ṽ to recover the partially unseen original data onto the
output layer, i.e., v̂ = fde(fen(ṽ)). Importantly, the random corruption process by which v
turns into ṽ is only useful during training.

4.2.3 SPARSE AUTOENCODERS

A different approach towards finding a meaningful code consists in imposing
an sparse distribution on the code layer, by means of adding an explicit regularization cost
to the original recunstruction cost function, thus allowing only a few active code neurons
at each time (due to sparsity), forcing them to only pick up relevant information. These
Sparse Autoencoders (SAEs) may also be useful for feature extraction, as the trained
sparse code may be later used for classification tasks.

Typically, the sparsity regularization cost to be minimized is based on the 𝑙1

norm of the samples of the code. Furthermore, according to (GOODFELLOW; BENGIO;
COURVILLE, 2016), the minimization of such cost guides the code towards a Laplacian
distribution (with known parameters), which, subsequently, turns the SAE into a generative
model, as it would be possible to randomly generate new code samples from the known
distribution.

Additionally, (GéRON, 2019) indicates that sparsity may also be attainable
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by selecting adequate activation functions in the code layer, such as the sigmoid function
that restricts the values of the code layer to a limited range.

4.2.4 VARIATIONAL AUTOENCODERS

In a nutshell, Variational Autoencoders (VAEs) (KINGMA; WELLING, 2014)
reconstruct their inputs v from a random code h. This code is typically sampled from a
Gaussian distribution, although other distributions may be employed, whose parameters
are the actual outputs the encoder must learn. Finally, a conventional decoder attempts to
yield a reconstruction v̂ from such randomly sampled codes. Figure 4.4 depicts the main
components of a VAE, while the sophisticated mechanism it follows is expressed as:

(𝜇, 𝜎) = fen(v)
h𝑖 ∼ 𝒩 (𝜇𝑖, 𝜎𝑖)
v̂ = fde(h),

(4.9)

where 𝜇𝑖, 𝜎𝑖, h𝑖 ∈ ℜ𝑀 correspond to the sample mean, standard deviation and code
vectors, respectively.

Encoder

MLP

Variational Autoencoder

Decoder 

Figure 4.4 – Structure and components of a Variational Autoencoder.

From (4.9), it is clear that the vector samples (𝜇𝑖, 𝜎𝑖) of (𝜇, 𝜎) are initially
different, as the 𝑁𝑠 samples of the input v are different as well, and, thus, such initial
parameters do not define a common PDF to the code space, although a distribution is
chosen from the beginning.

Therefore, the VAE cost function to be minimized must include an additional
latent cost, which is the responsible for pushing the codes towards a common and pre-
specified PDF. Such latent cost is based on the Kullback-Leibler divergence between a
Gaussian PDF with desired parameters and the PDF defined by the parameters computed
by the encoder for an input sample. Fortunately, as indicated in (KINGMA; WELLING,
2014) for a pre-specified 𝒩 (0, I) PDF, the latent loss ℒL

VAE of a single sample may be
easily expressed as:

ℒL
VAE = −1

2
∑︁
∀𝑗

1 + log(𝜎2
𝑗 )− 𝜎2

𝑗 − 𝜇2
𝑗 , (4.10)

where 𝑗 refers to any of the 𝑀 components.
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As indicated in (GéRON, 2019), VAEs are probabilistic models due to the
inherit uncertainty in the code, so that a single input may have many slightly different
reconstructions. Furthermore and most importantly, VAEs are generative models: once
the encoder learns the necessary parameters, it is possible to sample a new code from the
known Gaussian (or any other selected) distribution and, through the decoder, generate a
new data sample.

4.3 GENERATIVE ADVERSARIAL NETWORKS
Similarly to VAEs, GANs are also generative models that produce new data

from the inherit randomness within their mechanism. However, GANs originate from a
substantially different adversarial training approach which provides a far superior “realness”
to their results.

Based on the simple idea of a min-max two-player game played between a
team of counterfeiters and the police, where the former are attempting to produce some
undetectable fake currency while the latter is trying to improve their ability to recognize
which currency is real and which is fake, Ian Goodfellow et al. proposed in (2014) a
groundbreaking adversarial framework able to train two competing networks in such a
fashion that the whole system produces some fake output data virtually indistinguishable
from the real input data. This final system is called a Generative Adversarial Network
(GAN) and it is composed of a Generator network, mimicking the counterfeiters, and a
Discriminator, acting as the police.

The Generator is an ANN whose purpose is to produce output samples that
could belong within the real data of interest. To achieve this, the generator transforms an
input random vector n ∼ pn, drawn from a given distribution (usually Gaussian), into an
output g(n), through a mapping g(·) that implicitly imposes an unknown distribution pg,
such that the output samples should resemble those of the data of interest. Hence, it is a
generative model.

Furthermore, the samples of g(n) ∼ pg are not meant to imitate the samples of
the real data vector r ∼ pr, which is the input of the GAN, as this would not lead towards
the generation of new “real” samples. Instead, the generated distribution pg must converge
towards the, presumably also unknown, real distribution pr. Thus, both generated and
real samples become indistinguishable and, yet, different from each other.

On the other hand, the discriminator is meant to classify among the generated
and real samples that compose its input vector u, thus deciding whether the generator
outputs plausible samples or not. In order to clarify how these components are connected,
Figure 4.5 shows the general structure of a GAN, where the generated samples of g(n)
correspond to the desired output once the GAN is successfully trained.
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Discriminator Generator 

Generative Adversarial Network

Figure 4.5 – Structure and components of a Generative Adversarial Network.

As originally devised, the GAN cost function JGAN(·) should be optimized with
respect to the mappings of both components (GOODFELLOW et al., 2014). Nonetheless,
such optimization can be performed on the parameters G and D of the generator and
discriminator, respectively. Thus, the training process can be formulated as follows:

min
G

max
D

JGAN(D, G) = E[log(d(r))] + E[log(1− d(g(n)))]

= 1
𝑁𝑠

∑︁
∀𝑖

log (d(r𝑖)) + log (1− d(g(n𝑖))), (4.11)

where 𝑁𝑠 refers to the number of real or generated samples, as they are originally equal.

An iterative procedure based on two consecutive steps is explored to solve
(4.11): First, the discriminator must minimize its cross-entropy cost function (4.3), which
is equivalent to the maximization objective in (4.11). Second, the generator must adapt
its own parameters to generate outputs such that the discriminator misclassify them by
considering they are from the True class.

During the first step, the samples from the real data vector r are marked as
belonging to the True class (label 1), whereas the samples from the generator are considered
to be from the False class (label 0). However, a crucial difference occurs in the second
step, where the membership of the generated samples is changed to the True class (labels
changing accordingly) and they are the only input data presented to the discriminator, as
the generator cannot modify the first summation in (4.11). During this second training
step, the parameters of the discriminator must remain fixed and the gradients of JGAN(·)
are backpropagated into the generator. Algorithm 3 summarizes this iterative procedure.

Example 4.3.1. As implemented in (GéRON, 2019) considering the aforementioned
algorithm, a Deep Convolutional GAN (DCGAN) (RADFORD; METZ; CHINTALA,
2016) has been trained on the MNIST (LECUN; CORTES; BURGES, 2010) dataset.

Figure 4.6 shows the results after only 50 training epochs. Figure 4.6b demon-
strates that the DCGAN is quite able to generate new images with, though not completely,
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Algorithm 3: Generative Adversarial Networks algorithm.
Result: Generated samples indistinguishable from the real data.
Initialize all the parameters of the generator and discriminator networks.
for all training epochs do

Draw 𝐾 minibatches r𝑘 of 𝐿 samples from the real dataset.
for each minibatch r𝑘 do

Step 1: Train the discriminator.
Draw 𝐿 samples 𝑛𝑙 ∼ pn and produce a minibatch g𝑘 of generated samples.
Assemble a minibatch u𝑘, such that: u𝑘 ← {r𝑘(label 1), g𝑘(label 0)}.
Update D to decrease the cross-entropy cost of d(u𝑘).
Step 2: Train the generator.
Draw new 𝐿 samples 𝑛𝑙 ∼ pn and produce a new generated minibatch g𝑘.
Assemble a new minibatch u𝑘, such that: u𝑘 ← {g𝑘(label 1)}.
Update G to decrease the cross-entropy cost of d(u𝑘).

end
end

convincing hand-written digits that are not mere copies of the original set, which is shown
in Figure 4.6a, but that such generated images capture the style of the original set and
present some odd details that could well belong to an actual person. �

(a) Original MNIST samples. (b) Generated MNIST samples.

Figure 4.6 – DCGAN on MNIST.

Training is complete once the training objective (4.11) has converged. An
analysis of convergence is also offered in (GOODFELLOW et al., 2014), where the authors
show that convergence is attained if and only if the generator learns the actual distribution
of the data, i.e., pg(·) = pr(·), thus producing “new” real samples. In this context, the cost
function remains stable around the constant value of log(4), i.e., JGAN(D, G) ≈ log(4),
and the discriminator, albeit being very competent, can no longer distinguish between
real and fake samples, yielding an output closer to 0.5 for each one, i.e., d(u) ≈ 0.5.

Nonetheless, in (GOODFELLOW, 2017), it is alerted that the aforementioned
convergence analysis is only valid when (4.11) is optimized in the “function space”, rather
than in the “parameter space”, as it is usually the case. Additionally, it also indicates that
convergence implies the Nash equilibrium of the GAN game, i.e., neither generator nor
discriminator benefit from changing their strategies.
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Unfortunately, in practice, such equilibrium is not always attainable, as the
cost function may end up indefinitely oscillating with no stable value. One phenomenon
related to non-convergence of GANs is called mode collapse, which corresponds to the
situation where the generator only outputs samples too similar to each other or from a
single subset (class) of patterns with common characteristics.

Once the GAN is successfully trained, its generator resembles a latent model,
whose input noise n may be seen as a code for the generated “real” data. Then, the
generator and the decoder of an AE share a common behaviour (GéRON, 2019), which
will be relevant for the next chapter.

4.4 ADVERSARIAL AUTOENCODERS
Having in view the structure of VAEs, with the idea of attaining a pre-specified

PDF at the code layer, and the adversarial training mechanism of GANs, Alireza Makhzani
et al. proposed in (2016) an innovative, simple architecture for generative AEs, which they
called Adversarial Autoencoders (AAEs).

Similarly to VAEs, AAEs aim at driving the code space towards a chosen target
distribution pt(·), such that a new code sample h𝑛 could be drawn from such distribution,
i.e., h𝑛 ∼ pt, thus generating, through the decoder, a new “reconstructed” data sample
v̂𝑛 = fde(h𝑛). However, the code space is not “pushed” towards the target distribution by
the minimization of a regularization latent cost added to the reconstruction cost function,
as the Kullback-Leibler divergence latent loss in (4.10), but, it is guided by a discriminator
in an adversarial scheme.

Analogously to GANs, AAEs set a competition between the codes h produced
by the encoder, which acts as the generator network and, also implicitly, imposes an overall
distribution ph(·) on the codes, i.e., h ∼ ph, and the samples, collected in r, drawn by
the chosen target distribution pt, which behaves similarly to the real data input. Then, a
discriminator must judge whether the samples come from the target distribution (True
class) or the encoder (False class). Following this analogy, once the discriminator can no
longer recognize the membership of the samples, the encoder has learnt to match the
distribution of the codes to the target distribution (ph(·) = pt(·)).

Figure shows 4.7 the basic architecture proposed by AAEs with a bivariate
Gaussian PDF 𝒩 (0, I) as the chosen target PDF pt(·).

Although no specific cost function is originally proposed in (MAKHZANI et al.,
2016), a general training scheme, involving two phases, is outlined: first, a reconstruction
phase, during which a previously defined reconstruction cost function, e.g., the MSE
cost function (4.6), is minimized with respect to the parameters of the encoder Fen and
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Discriminator Encoder 
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Figure 4.7 – Structure and components of an Adversarial Autoencoder.

decoder Fde. Second, a regularization phase, which resembles the two-step training of
GANs detailed in the previous section, such that the discriminator first learns to correctly
classify among samples and, then, only the encoder updates its parameters in order to
fool the discriminator. Algorithm 4 attempts to summarize the aforementioned training
phases.

Algorithm 4: Adversarial Autoencoders algorithm.
Result: Code space shaped by the target distribution.
Initialize all the parameters of the encoder, decoder and discriminator networks.
for all training epochs do

Draw 𝐾 minibatches v𝑘 of 𝐿 samples from the input dataset.
for each minibatch v𝑘 do

Phase 1: Train the autoencoder.
Update Fen and Fde to decrease a reconstruction cost.
Phase 2 - Step 1: Train the discriminator.
Compute a minibatch h𝑘 of 𝐿 code samples.
Draw 𝐿 samples 𝑟𝑙 ∼ pt and compose a minibatch r𝑘.
Assemble a minibatch u𝑘, such that: u𝑘 ← {r𝑘(label 1), h𝑘(label 0)}.
Update D to decrease the cross-entropy cost of d(u𝑘).
Phase 2 - Step 2: Train the encoder.
Assemble a new minibatch u𝑘, such that: u𝑘 ← {h𝑘(label 1)}.
Update Fen to decrease the cross-entropy cost of d(u𝑘).

end
end

As reported in (MAKHZANI et al., 2016), AAEs are a powerful and versatile
framework that yield astounding results for different tasks, with minor architectural
modifications, such as: disentangling style and content of images (in both a supervised
and semisupervised fashion), unsupervised clustering and dimensionality reduction.

Example 4.4.1. In order to show that AAEs successfully impose a target PDF to the
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latent space of the codes, an stochastic AAE has been implemented (similarly to the VAE
implemented in (GéRON, 2019)), such that its 2-component code space is visible.

Figure 4.8 shows the results after only 100 training epochs on the MNIST
dataset. In Figure 4.8b it is clear that the latent code space tends towards a pre-defined
target Gaussian 𝒩 (0, 5I). However, such space is not well partitioned with respect to the
classes, as many code samples from different classes overlap, as occurs, for example with
classes 4 (in purple) and 9 (in cyan). A reason for this can be found in Figure 4.8a, where
the overlapping classes correspond to digits that the AE cannot reconstruct differently
enough. Consequently, the same overlapping is seen in Figure 4.8c, for which new noise
samples have been drawn from the target PDF to, subsequently, “reconstruct” new digits.

(a) Reconstructed MNIST samples. (b) Latent code space.

(c) “Reconstructions” from noise samples.

Figure 4.8 – AAE on the MNIST dataset.

Importantly, an extensive search of hyperparameters, as well as more training
epochs, could well deliver results closer to those reported in (MAKHZANI et al., 2016). �

Interestingly, from a structural standpoint, AAEs are closely related to ANICA
– which is the main focus of this study –, as both are AEs which attempt to retrieve
relevant codes by resorting to an adversarial training scheme. However, an important
distinction arises when we consider the target distribution: in the context of BSS we are
not interested in matching any arbitrary distribution in the code layer, but we explicitly
seek to attain the statistical independence between the latent variables, as they are meant
to be estimates of the independent sources underlying the available mixtures.



CHAPTER 4. AUTOENCODERS AND ADVERSARIAL NETWORKS 63

4.5 SUMMARY
This chapter has been dedicated to outline the most relevant topics of machine

learning with respect to latent variable retrieval. More specifically, we described how
AEs represent non-linear generalizations of PCA and, thus, may go beyond obtaining
uncorrelated variables, albeit regularization techniques may be required to guide the
internal code towards statistical independence.

In this sense, the adversarial training scheme of GANs proved to be a powerful
regularization technique for training AAEs in order to match a previously specified PDF.
Hence, it seems plausible to speculate that such training scheme may also be useful to
finally allow the retrieval of independent components.

In the following chapter, we will present ANICA, which, similarly to AAEs,
includes an adversarial training scheme to shape the distribution of the codes. However,
ANICA does not employ a pre-specified distribution for this purpose, but a resampling
procedure that simulates samples from the independent distribution of the codes, thus
guiding them towards independence.
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5 AN ADVERSARIAL APPROACH
TOWARDS ICA

In this chapter, we present the adversarial training approach, proposed by Brakel
and Bengio, called Adversarial Non-linear Independent Component Analysis (ANICA) to
retrieve statistically independent variables within the internal code generated by an AE.

First, we present the general mechanism behind ANICA and, with more detail,
the component that differentiates it from regular AAEs: the resampling procedure. Then,
we explain its adversarial algorithm and the conditions for convergence. Finally, we briefly
discuss the kind of ICA problems it attempts to solve.

5.1 ANICA: ADVERSARIAL NON-LINEAR ICA
In (2017), Philemon Brakel and Yoshua Bengio proposed an adversarial algo-

rithm, which they called ANICA, with the purpose of “teaching” an AE to retrieve, in its
code layer, the statistically independent estimates expected by ICA from the available
mixture samples the encoder receives. Hence, ANICA offers an alternative solution to the
BSS problem for some specific contexts, under a framework similar to AAEs (MAKHZANI
et al., 2016), but with some relevant differences.

Figure 5.1 depicts the general structure of ANICA and its most important
components. A whitened mixture vector z is the input, while the encoder must create a
code h such that its PDF tends to be equal to the product of the marginals.

Discriminator Encoder 

Adversarial Non-linear ICA

Resampling
Procedure

Decoder 

Figure 5.1 – Structure and components of ANICA.

Similarly to AAEs, ANICA consists of an AE whose encoder is in an adversarial
game with a discriminator, which must decide whether the samples it receives come from
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the encoder or from a target distribution. However, unlike AAEs, whose target distribution
is known and fixed from the beginning, or GANs (GOODFELLOW et al., 2014), where
the set of real samples does not vary, in ANICA the aforementioned distribution amounts
to the joint distribution of the code variables when they are statistically independent,
which is equivalent to the product of the marginal distributions. So, the idea of ANICA
is to guide the encoder towards creating samples whose joint distribution progressively
becomes more similar to the corresponding independent distribution.

The simulation of samples from the unknown independent distribution is at
the core of ANICA, as they are completely necessary for its adversarial approach and the
subsequent retrieval of independent codes. Unfortunately, in the BSS problem, none of
the distributions is known and we do not have access to source samples that could be
compared to the codes. Nevertheless, a relatively simple resampling procedure is able to
perform such simulation.

5.1.1 RESAMPLING PROCEDURE

As presented in (BRAKEL; BENGIO, 2017), the resampling procedure attempts
to simulate samples from the independent PDF, denoted by prp(·), corresponding to the
product of the unknown marginal PDFs of an 𝑀 -component random code vector h ∼ ph,
without trying to estimate any of the individual PDFs.

In order to do so, the resampling procedure simply reshuffles the set of samples
of each random component ℎ𝑖 ∼ pℎ𝑖

of h, but separately and randomly, in an attempt
to break any existing statistical dependence among individual samples across different
components, while preserving each marginal PDF pℎ𝑖

(·). Thus, the resulting joint samples,
which are collected in the 𝑀 -component random vector hrp ∼ prp, simulate those that
could be drawn from the product of the marginals, i.e., prp(·) = ∏︀𝑀

𝑖 pℎ𝑖
(·).

Importantly, the resampling procedure is performed at each training iteration,
after the encoder has projected a corresponding new set of codes. Hence, the independent
PDF prp(·) changes according to the new marginals, instead of being a fixed imposition
on them.

Example 5.1.1. For illustrative purposes only, Figure 5.2 shows the effects of the resam-
pling procedure on a 2-component vector h produced by a mixture of samples drawn from
two independent random uniform distributions. Figure 5.2a indicates that the samples of
such vector are correlated, whereas Figure 5.2c shows the resulting set of joint samples
from vector hrp, after the resampling procedure. By comparing the histograms along each
component, in Figure 5.2b, to the joint histogram of hrp, in Figure 5.2d, it is possible to
verify that the joint density tends to the product of the marginals. �

Another strategy is proposed in (BRAKEL; BENGIO, 2017). In simple terms,
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(a) 2-component code. (b) Histogram of each component.

(c) Resampled code. (d) Joint histogram after resampling.

Figure 5.2 – Resampling procedure and its effect on statistical dependence.

it consists of an array of 𝑀 separate one-to-one generator networks gi(·), such that each
receives a different one-component input signal vi, from a selected random distribution,
thus, producing an array of 𝑀 one-component outputs gi(vi), which should be mutually
statistically independent. However, such alternative is not explored in this dissertation,
as it involves a higher computational cost and the reported results are not consistently
better than those achieved by the resampling procedure. Still, as the authors indicate, it
could be of interest when dealing with temporal structures in the mixtures or to attempt
to turn ANICA into a generative model.

5.2 GENERAL ALGORITHM AND CONVERGENCE ANALYSIS
Despite the differences presented in the previous section, the adversarial training

algorithm followed by ANICA remains similar to that of AAEs. However, in ANICA,
the discriminator is initially trained to predict a True class membership for the samples
from the resampling procedure and a False one for those from the encoder. Then, the AE
is trained to minimize a cost function JAE(·), which comprises a reconstruction and an
adversarial regularization term. Such cost function, as implemented by the authors, may

https://github.com/pbrakel/anica
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be expressed as:

JAE(Fen, Fde) = E[|z− ẑ|] + 𝜆E[− log(d(h))]

= 1
𝑁𝑠

∑︁
∀𝑖

⃒⃒⃒
𝑧𝑖 − fde(fen(𝑧𝑖))

⃒⃒⃒
− 𝜆 log(d(fen(𝑧𝑖))), (5.1)

where |·| is the 𝑙1 norm function, 𝜆 is a constant whose default value is equal to 0.1, and
𝑁𝑠 refers to the number of samples.

In (5.1), the adversarial regularization term, i.e., Jadv
AE (Fen) = E[− log(d(h))], is

only dependent on the encoder and clearly represents its attempt to fool the discriminator,
as it simply is the cross-entropy cost computed considering that the code samples belong to
the True class (label 1). On a side note, the reconstruction cost Jrec

AE(Fen, Fde) = E[|z− ẑ|]
was initially tested considering an Euclidean norm, but it did not show any experimental
improvement relative to the 𝑙1 norm selected by the authors.

It is important to mention that in ANICA the set of retrieved code samples
should be normalized immediately in order to produce a normalized set after the resampling
procedure, which helps the training process of the discriminator. In (BRAKEL; BENGIO,
2017), the authors also indicate the necessity of a form of Batch Normalization (IOFFE;
SZEGEDY, 2015) on the codes, before reconstruction, to avoid trivial solutions. However,
such technique showed no impact after convergence.

Algorithm 5 summarizes the main steps required to train ANICA, where a
whitening transformation, when possible, is considered to speed up the process. In the
overdetermined ICA case, it could be replaced by a simple PCA (Section 2.5.1).

Algorithm 5: Adversarial Non-linear ICA algorithm.
Result: Code space of statistically independent components
Apply a preprocessing procedure to the mixtures, if possible whitening: z = Bx.
Initialize all the parameters of the encoder, decoder and discriminator networks.
for all training epochs do

Draw 𝐾 minibatches z𝑘 of 𝐿 samples from the whitened dataset.
for each minibatch z𝑘 do

Compute a minibatch of h𝑘 of 𝐿 code samples and normalize.
Draw a minibatch h𝑘

rp of 𝐿 samples from the resampling procedure.
Assemble a minibatch u𝑘, such that: u𝑘 ← {h𝑘

rp(label 1), h𝑘(label 0)}.
Update D to decrease the cross-entropy cost of d(u𝑘).
Assemble a different minibatch u𝑘, such that: u𝑘 ← {h𝑘(label 1)}.
Update Fen and Fde to decrease the cost function JAE(Fen, Fde).

end
end
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5.2.1 CONVERGENCE ANALYSIS

Directly based on the theorems and lemmas formulated in (GOODFELLOW
et al., 2014) to prove the global convergence of GANs, in a similar manner it follows
that the cost functions minimized by ANICA, i.e., (4.3) and (5.1), converge to a common
stable value of log 2 if, and only if, the encoder learns to retrieve a code h ∼ ph whose
distribution is equal to the distribution after the resampling procedure, i.e., a code with
statistically independent components. This conclusion is demonstrated in Theorem 5.2.1.

Theorem 5.2.1. Convergence of ANICA is achieved if, and only if, ph(·) = prp(·),
which occurs only when the cross-entropy cost of the discriminator and the adversarial
regularization term of the AE converge to log 2. In this case, the discriminator can no
longer distinguish among classes, so that d(u) = 0.5 for all input sample.

Proof. As proved in (GOODFELLOW et al., 2014), for a fixed AE and assuming there is
access to the PDFs, the optimal mapping the discriminator may learn corresponds to:

dopt(u) = prp(u)
prp(u) + ph(u) (5.2)

Then, by maintaining such optimal discriminator unchanged, the adversarial term in (5.1)
may be expressed as:

Jadv
AE (Fen) = E[− log(dopt(h))]

=
∫︁

ph(h) log
(︃

prp(h) + ph(h)
prp(h)

)︃
dh (5.3)

It is possible to more conveniently rewrite (5.3) in terms of Kullback-Leibler divergences
DKL(·), by some algebraic manipulations, as follows:

Jadv
AE (Fen) =

∫︁
ph(h) log

(︃
2 · 12 ·

prp(h) + ph(h)
prp(h)

)︃
dh

=
∫︁

ph(h) log(2)dh +
∫︁

ph(h) log
(︃

prp(h) + ph(h)
2prp(h)

)︃
dh

= log 2 +
∫︁ [︃

2 · ph(h) + prp(h)
2 − prp(h)

]︃
log

(︃
prp(h) + ph(h)

2prp(h)

)︃
dh

= log 2 + 2
∫︁ ph(h) + prp(h)

2 log
(︃

ph(h) + prp(h)
2 · 1

prp(h)

)︃
dh + · · ·

· · ·+
∫︁

prp(h) log
(︃

prp(h) · 2
ph(h) + prp(h)

)︃
dh (5.4)

From (5.4), the two last terms may be identified as Kullback-Leibler divergencies among a
pair of PDFs in opposite orders. Finally, the adversarial term is conveniently expressed as:

Jadv
AE (Fen) = log 2 + 2DKL

(︂ph + prp

2 ‖ prp

)︂
+ DKL

(︂
prp ‖

ph + prp

2

)︂
(5.5)
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Since DKL(·) is always non-negative, the minimum value of Jadv
AE (·) may attain

is log 2, which occurs, if and only if, both divergences are null or, equivalently, when
ph(·) = prp(·). As a consequence, dopt(u) = 0.5 and, finally, (5.2) becomes equal to log 2,
as well, thus concluding the proof.

Once that ANICA has converged and ph(·) = prp(·), it follows that the
components ℎ𝑖 ∼ pℎ𝑖

of the random code vector h ∼ ph are statistically independent due
to the statistical independence of the resampling procedure, thus ph(·) = ∏︀

∀𝑖 pℎ𝑖
(·).

5.3 ANICA AND ITS LIMITS FOR ICA
As already explained in Section 2.17 and Section 2.5, the linear and instan-

taneous ICA case only requires the statistical independence of the retrieved estimates y
in order to guarantee that they capture an scaled and permuted representation of the
independent sources s, which may only contain one Gaussian source at maximum. Hence,
it directly follows that such ICA case can be solved by ANICA, once it has attained
convergence and, thus, the encoder has learnt to project a code of statistically independent
estimates from the (pre processed or not) mixtures x it receives.

ANICA would simply need to be modelled with a LAE (Section 4.2.1), such
that the trained linear encoder would fulfill the role of the separation matrix W, while the
linear decoder would resemble the mixing matrix A. Considering a centered input mixture
vector x, thus all vectors would also be centered, no bias term would be necessary, and
the trained linear model could be expressed as:

y = Θenx = WAs
x̂ = Θdey = As

⎫⎬⎭ x̂ = ΘdeΘenx, (5.6)

where Θen = W ∈ ℜ𝑀×𝑁 and Θde = A ∈ ℜ𝑁×𝑀 .

5.3.1 UNDERDETERMINEDNESS AND ANICA

Unfortunately, the aforementioned linear model, by itself, does not have the
capacity to deal with the underdetermined ICA case (𝑁 < 𝑀), even when the number of
sources 𝑀 is known, due to the inherit column-rank-deficiency of the matrix product WA,
for any linear encoder with a weight matrix Θen, which limits the number of sources to
possibly be recovered to a maximum of 𝑁 − 1 independent components.

This only happens in the rare and exceptional case when the 𝑀 −𝑁 linearly
dependent columns of the mixing matrix 𝐴 are all multiples of a single one of those
𝑁 linearly independent, then, the respective 𝑀 − 𝑁 + 1 sources would be mixed into
a different “source” statistically independent from the rest and, thus, they would be
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inseparable. Nevertheless, such case is highly unlikely, then it could not be possible for
ANICA to retrieve any independent estimates in a more typical underdetermined setting.

5.3.2 POST-NONLINEAR ICA

In addition to linear instantaneous ICA, ANICA is also well fit for Post-
Nonlinear (PNL) ICA (TALEB; JUTTEN, 1997; TALEB; JUTTEN, 1999). Very briefly,
the PNL model considers that the linear instantaneous mixtures are each followed by a
non-linear invertible mapping f𝑖(·). Then, a separation system attempts to invert each of
them by a corresponding mapping g𝑖(·), such that a final separation matrix W should
yield uncorrupted independent estimates. The PNL model may be expressed as:

x = f(As)
y = Wg(x),

(5.7)

where f(·) and g(·) are arrays containing all the f𝑖(·) and g𝑖(·) functions, respectively.

As explained in (JUTTEN; BABAIE-ZADEH; KARHUNEN, 2010), unlike
other non-linear ICA models, PNL mainly requires the statistical independence of the
retrieved estimates to guarantee they represent the sources, with no more than one Gaussian
PDF, which is the same idea on which ANICA is based. There is a caveat nonetheless: the
mixing system must be invertible, which raises some particularities that must be carefully
taken into account.

A very interesting approach to solve the PNL problem is proposed in (DUARTE
et al., 2006), where the authors employ concepts drawn from the field of evolutionary
computation, specifically artificial immune systems (CASTRO; ZUBEN, 2002), to locate
the global optimal of a cost function based on the minimization of the mutual information.

5.4 SUMMARY
In this chapter, we presented the main ideas of ANICA, exploring the previously

discussed concepts of AAEs and GANs, and addressing convergence and the effective-
ness of the obtained solutions. Additionally, we have also discussed its applicability to
underdetermined and nonlinear scenarios.

In order to test our theoretical analysis, in the following chapter we present a
series of experiments designed to prove the behaviour of ANICA under different scenarios
and to see how it performs when compared with FastICA and JADE (Section 2.5.2).
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6 EXPERIMENTS

In this chapter, we will analyze the behavior, the limitations and the potential
advantages of ANICA applied to the linear and instantaneous BSS problem. We designed a
set of scenarios to cover different aspects of the task, as well as to pose different challenges
for the studied method. Additionally, we established a comparison between ANICA and
two well-known algorithms: FastICA (Section 3.2.3) and JADE (Section 3.3.1), considering
the Normalized Amari error (NAE) (AMARI; CICHOCKI; YANG, 1996) as the main
performance measure.

We also propose a set of metrics, based on the criteria for ICA already presented
in Chapter 3, for the blind selection of the training epoch that produces the best code,
which are presented in the sequence.

6.1 METRICS AND METHODOLOGY
In (BRAKEL; BENGIO, 2017), the performance of ANICA was evaluated

by the computation of all the Pearson correlation coefficients, for every training epoch,
between each code ℎ𝑖 and every source 𝑠𝑖, such that the absolute value of the maximum
coefficient should tend towards one to indicate that the given code was representative of
a unique source. Although this choice was useful for demonstrating the effectiveness of
the proposed method, from a practical standpoint it suffers from a major drawback, as it
requires the knowledge of the individual sources.

Here, having as inspiration the criteria explained in Chapter 3, we propose a
set of unsupervised metrics, i.e., which do not use any information regarding the sources,
to monitor the evolution of the codes ℎ𝑖 during the training process in order to identify
the most adequate epoch to retrieve the source estimates. In particular, we resorted to the
notions of mutual information (see Equation (3.3)) and non-gaussianity, either measured
by the negentropy and the normalized kurtosis (see Equations (3.10) and (3.8)), and
defined the following blind metrics:

SMI(h) = MI(h) + H(pz)

=
(︃∑︁

∀𝑖

H(pℎ𝑖
)
)︃
− log(|det(Θen)|) (6.1)

MNK(h) = 2

√︃∑︁
∀𝑖

kurt(ℎ𝑖)2 (6.2)

MN(h) = 2

√︃∑︁
∀𝑖

J(ℎ𝑖)2 (6.3)
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Equation (6.1) considers a shifted mutual information (SMI) due to the joint
entropy of the whitened mixtures H(pz) being constant through out the training iterations
of ANICA, thus, its calculation is not necessary, while expressions (6.2) and (6.3) are only
the modules (Euclidean norms) of the normalized kurtosis (MNK) and the negentropy
(MN), respectively.

Additionally, and only for corroboration purposes, we also employ the Normal-
ized Amari error (NAE) (AMARI; CICHOCKI; YANG, 1996), which is basically a metric
that measures the capability of a separation matrix W to “invert” the mixing matrix A,
such that its value grows from 0 to 1 as the separation becomes worse:

NAE(W, A) = 1
2𝑀(𝑀 − 1)

⎛⎝ 𝑀∑︁
𝑖=1

(︃∑︀𝑀
𝑗=1 |𝑤𝑎𝑖,𝑗|

max𝑗 |𝑤𝑎𝑖,𝑗|
− 1

)︃
+

𝑀∑︁
𝑗=1

(︃∑︀𝑀
𝑖=1 |𝑤𝑎𝑖,𝑗|

max𝑖 |𝑤𝑎𝑖,𝑗|
− 1

)︃⎞⎠ , (6.4)

where each 𝑤𝑎𝑖,𝑗 represents the coefficient of matrix WA at a row 𝑖 and column 𝑗, and 𝑀

is the number of sources.

As already mentioned, the focus of this dissertation lies on the linear and
instantaneous ICA case. Hence, a linear model of ANICA has been implemented to
deal with such problem. Similarly to (BRAKEL; BENGIO, 2017), the discriminator was
implemented with a single hidden layer of 64 ReLu activated neurons. The model was
initialized with Xavier initialization (GLOROT; BENGIO, 2010) for the discriminator, and
random orthogonal matrices for the LAE. Then, we trained ANICA using the RMSProp
algorithm (TIELEMAN; HINTON, 2012), with default parameters, for only 4000 epochs
and minibatches of 1024 samples, in contrast to the 500000 epochs and minibatches of 64
samples originally considered by (BRAKEL; BENGIO, 2017).

After training, we selected the training epochs that optimized the aforemen-
tioned blind metrics and, then, we calculated the NAE by using the encoder weight matrix
for such epochs as the separation matrix W. The computed NAE, i.e. NAE(Θen, A), is
used to compare the quality of the separation achieved by ANICA to that of FastICA
and JADE. In most experiments, we have repeated training 10 times, in an attempt to
compensate for the effects of initialization and offer more robust results. Thus, the reported
NAEs are an average across such repetitions.

Unless stated otherwise, for each experiment a synthetic dataset of mixtures
was created from zero-mean, unit-variance sources and mixing matrices, each drawn from
uniform and Gaussian PDFs, respectively. As already indicated, the mixtures were whitened
before training.

6.2 INITIAL EXPERIMENT: METRICS AND CONVERGENCE
A warm-up experiment is designed for a dataset of 214 samples and two sources

in order to show how the blind metrics indeed capture the same information as the NAE,
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as well as to illustrate the results yielded by ANICA and the training process in general.
For this example, we have considered no repetitions.

Figure 6.1 shows the training curves along the 4000 epochs. In Figure 6.1a it
is noticeable that the LAE learns very rapidly to reconstruct the mixtures at the output
layer, while Figure 6.1b confirms the theoretical results obtained in Section 5.2.1 regarding
convergence around the value of log 2 for the adversarial costs, i.e., the cross-entropy of
the discriminator JD(·) and the adversarial term Jadv

AE (·).

(a) Reconstruction cost of the AE. (b) Adversarial convergence to log 2.

Figure 6.1 – Training curves and convergence of ANICA.

For each training epoch, we also computed all the metrics – NAE, SMI, MNK
and MN – considering the encoder and/or the code components at that moment. The
corresponding curves are exhibited in Figure 6.2.

We can clearly notice in Figure 6.2 that they all behave similarly, almost
capturing every value fluctuation and, most importantly, they are optimal around the
same epoch. Figure 6.2a depicts the NAE, which will be our reference for the following
experiments, while Figure 6.2b is the SMI, which basically behaves as an scaled version of
the previous metric. Figures 6.2c and 6.2d correspond to the MNK and MN, respectively,
and, due to their maximization objective, capture a vertical reflection of the NAE.

Finally, the data on which ANICA has been trained and the results are shown
in Figure 6.3. Figure 6.3a contains the unknown sources, and Figure 6.3b the input data
samples. After training, we can see that the encoder has learnt to capture a meaningful
code that actually resembles the sources, as portrayed in Figures 6.3c, while the complete
AE has succeeded in its “original” task of reconstruction, which is shown in Figure 6.3d.

Additionally, Figure 6.4 shows the PDFs involved in the training of ANICA.
Figures 6.4a and 6.4c reveal the independence of the uniform PDF of the sources and the
correct matching on the code vector, respectively, while Figures 6.4b and 6.4d show that
the decoder reconstructs the input similarly to a whitened mixing matrix Az.
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(a) Normalized Amari Error. (b) Shifted Mutual Information.

(c) Module of the Normalized Kurtosis. (d) Module of the Negentropy.

Figure 6.2 – Proposed blind metrics to evaluate independence.

(a) Uniform sources s. (b) Whitened mixtures z.

(c) Independent codes h. (d) Reconstructions ẑ.

Figure 6.3 – Retrieval of independent estimates from whitened mixtures by ANICA.
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(a) Histogram of s. (b) Histogram of z.

(c) Histogram of h. (d) Histogram of ẑ.

Figure 6.4 – Matching of the PDFs of the data performed by ANICA.

6.3 EXPERIMENT 1: NUMBER OF SAMPLES
The first relevant scenario to analyze refers to the impact of the size of the

training dataset. For this experiment, the number of whitened mixtures is fixed to 𝑀 = 9
components, while the size of the dataset increases by a factor of 2 during the experiment,
such that the number of samples ranges from 211 to 216 samples. The mixture matrix A is
fixed and the samples of the sources are not replaced, but only extended.

Figure 6.5 shows the progression of the NAE, obtained by each of the studied
algorithms with respect to the number of samples, such that Figures 6.5a, 6.5b and 6.5c
consider the epochs selected with respect to the SMI, MNK and MN, respectively. As we
can observe, increasing the size of the dataset reduces both the average NAE (represented
by dots connected in a continuous line), improving the performance, and the dashed region
between the minimum and maximum NAE across all repetitions, making the model more
robust. Nonetheless, even in Figure 6.5d, where the aforementioned dashed region thins,
the NAE values associated with ANICA are always above those attained by FastICA and
JADE.

The effect on convergence is shown in Figure 6.6. Initially, for the smallest
training set of 211 samples, ANICA does not effectively converge, as can be seen in Figure
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(a) NAE on the epochs with optimal SMI. (b) NAE on the epochs with optimal MNK.

(c) NAE on the epochs with optimal MN. (d) Section of interest.

Figure 6.5 – Experiment 1: Impact of the number of samples on the attained independence.

6.6a considering the best and the worst training repetition. In both cases, more training
epochs would be necessary for a complete convergence. Nonetheless, the adversarial costs
do start to converge for 213 samples, as indicated in Figure 6.6b, which helps to explain
why the dashed regions in Figure 6.5 start to thin when the dataset is larger. Figures
6.6c and 6.6d confirm the critical impact of the number of samples on convergence and,
thus, on the independence attained by ANICA. Based on these results, all the subsequent
experiments shall consider 214 = 16384 samples.

6.4 EXPERIMENT 2: NUMBER OF COMPONENTS
Secondly, we analyzed how ANICA is influenced by the number of components

of the input whitened mixture vector z. In this experiment, we initially created a 9-
component source vector with a corresponding mixture matrix A ∈ ℜ9×9, with the
intention of producing mixtures by the subsequent multiplication between a submatrix of
A and the source vector, such that both increase their dimensionality from 2 to finally 9.
In this fashion, we try to uniquely modify the number of components and avoid to train
on completely new samples.

Figure 6.7 shows the average NAE as a function of the number of components.
In general, according to all metrics, the performance deteriorates as the number of sources
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(a) Convergence for 211 samples. (b) Convergence for 213 samples.

(c) Convergence for 214 samples. (d) Convergence for 215 samples.

Figure 6.6 – Experiment 1: Impact of the number of samples on convergence.

increases, as can be seen in Figures 6.7a, 6.7b and 6.7c. Nonetheless, we can see that
ANICA performs surprisingly better than FastICA and JADE in the cases up to 𝑀 = 6
sources, as Figure 6.7d demonstrates.

It is worth mentioning that it was necessary to repeat training once for the
3-component dataset in order to have 10 instances of convergence between the adversarial
costs and to compute the average NAE.

6.5 EXPERIMENT 3: ANICA WITHOUT THE DECODER
Following the same methodology employed in Section 6.4 for an increasing

number of components, in this experiment we have decided to test how well the adversarial
elements in ANICA behave without the decoder, i.e., how successful would the encoder be
in fooling the discriminator when there is no reconstruction task for which to adapt its
parameters.

Figure 6.8 shows the average NAE with respect to the number of components
for the ANICA model without the decoder. In comparison to the previous analogous
experiment, the results shown in Figures 6.8a, 6.8b and 6.8c indicate that ANICA does
not reach the same level of independence at the code layer, though the NAE values are
sufficiently small to consider that it was able to separate the sources. Similarly, this reduced
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(a) NAE on the epochs with optimal SMI. (b) NAE on the epochs with optimal MNK.

(c) NAE on the epochs with optimal MN. (d) Section of interest.

Figure 6.7 – Experiment 2: Impact of the number of components on the attained indepen-
dence.

ANICA model performs slightly better than FastICA and JADE only when 𝑀 = 2 or
𝑀 = 3 sources are considered, as Figure 6.8d demonstrates.

These results suggest that the presence of the decoder within ANICA, whose
structure mimics that of the actual mixing system, encourages the encoder towards a
refined separation matrix, as the entire model also is trained to minimize the reconstruction
error of the mixtures.

6.6 EXPERIMENT 4: SIGNAL-TO-NOISE RATIO
In this experiment, we assessed how ANICA behaves when the original mixture

vector x is corrupted by a random noise signal n. For this purpose, we generated White
Gaussian Noise (WGN) samples with variance 𝜎2

n, an added them to the 9-component x
to produce a corrupted mixture vector x̃ = x + n. Then, whitening and ANICA follow
as usual for different noise variances, measured by the Signal-To-Noise Ratio (SNR) in
decibels, which is expressed as:

SNRdB = 10 log
(︃

𝜎2
s

𝜎2
n

)︃
, (6.5)

where 𝜎2
𝑠 indicates the common variance of the sources, which is assumed to be unitary.
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(a) NAE on the epochs with optimal SMI. (b) NAE on the epochs with optimal MNK.

(c) NAE on the epochs with optimal MN. (d) Section of interest.

Figure 6.8 – Experiment 3: Impact of the lack of decoder on the attained independence.

The obtained NAE values are presented in Figure 6.9 with respect to the
SNRdB, where we can observe that ANICA is more susceptible to initialization when
the noise variance is large, as Figures 6.9a, 6.9b and 6.9c indicate for the blind metrics.
For example, for SNR𝑑𝐵 = 0, i.e., 𝜎2

n = 𝜎2
s = 1, there is wide dashed region which only

becomes sufficiently thin after SNR𝑑𝐵 = 7.5, i.e., 𝜎2
n = 0.1778. Conversely, initialization is

less important once such noise variance becomes less dominant, as can be seen in Figure
6.9d, which means that the independent executions of ANICA (starting from different
initial parameters) led to NAE values closer to those attained by JADE and FastICA.

Figure 6.10 complements the previous explanation regarding the wide variations
observed in the dashed regions. In Figure 6.10a, we can see that even the best training
instance delivers parallel adversarial costs that may not be able to achieve the ideal value
of log 2, which confirms that retrieving independent estimates of the sources is more
difficult for noisy datasets. Once the SNRdB increases to 15 (𝜎2

n = 0.0316), as in Figure
6.10b, all repetitions converge, albeit with some delay, so better results could be obtained.
However, convergence is not guaranteed, as Figure 6.10c with 𝜎2

n = 0.01 indicates, where
one training instance that does not fully converge, thus widening its respective dashed
region. Finally, for SNRdB = 40 and 𝜎2

n = 0.0001, as shown in Figure 6.10d, the effect of
noise on convergence is still important, but no longer critical.
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(a) NAE on the epochs with optimal SMI. (b) NAE on the epochs with optimal MNK.

(c) NAE on the epochs with optimal MN. (d) Section of interest.

Figure 6.9 – Experiment 4: Impact of the SNRdB on the attained independence.

(a) Convergence for SNRdB = 0. (b) Convergence for SNRdB = 15.

(c) Convergence for SNRdB = 20. (d) Convergence for SNRdB = 40.

Figure 6.10 – Experiment 4: Impact of the SNRdB on convergence
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6.7 EXPERIMENT 5: OVERDETERMINED CASE
In order to evaluate ANICA in the overdetermined case, we designed this

experiment such that the number of sources was kept fixed at 𝑀 = 2, while the number of
available mixtures grew from 𝑁 = 3 to 𝑁 = 9. Unlike previous experiments, the dataset
was reduced to 213 = 8192 samples and, thus, it was necessary to train the model for 10000
epochs.

For the overdetermined ICA case we have considered two approaches to retrieve
estimates with ANICA: (i) the reduction of dimensionality to remain in the well-determined
setting; and (ii) the use of an underdetermined LAE to automatically attain a code with
only 𝑀 = 2 components.

6.7.1 EXPERIMENT 5.1: DIMENSIONALITY REDUCTION BY PCA

In the first approach, similarly to (JOHO; MATHIS; LAMBERT, 2000) (Section
2.5.1), we identified the number of sources by calculating the rank of the covariance matrix
of the mixtures, as the rank and the number of sources must coincide, and then reduced
the dimensionality with PCA to deal with a well-determined problem.

Unfortunately, the model did not always converge, thus, we were forced to
select only the 7 best training curves for each value of 𝑁 with respect to the lowest SMI.
Figure 6.11 depicts all the convergence curves for the most problematic instances: when 𝑁

was equal to 3, in Figure 6.11a, and when 𝑁 = 6, in Figure 6.11b, such that the selected
curves are in blue.

(a) Training curves for 𝑁 = 3. (b) Training curves for 𝑁 = 6.

Figure 6.11 – Experiment 5.1: All convergence curves.

The attained results, measured by the average NAE, as usual, are displayed
in Figure 6.12. Initially, in Figure 6.12a, we observe that, depending on the number of
mixtures and on the repetition of ANICA, a poor NAE value can be obtained. For instance,
the worst execution of ANICA for 𝑁 = 6 led to a NAE slightly above 0.8, which means
that the sources were not separated. However, if we remove the trials in which ANICA did
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not converge, the results are outstanding and much better than those attained by FastICA
and JADE, as Figures 6.12b, 6.12c and 6.12d prove.

(a) All training curves. (b) NAE on the epochs with optimal SMI.

(c) NAE on the epochs with optimal MNK. (d) NAE on the epochs with optimal MN.

Figure 6.12 – Experiment 5.1: Impact of the number of mixtures on the attained indepen-
dence considering the overdetermined scenario.

6.7.2 EXPERIMENT 5.2: UNDERCOMPLETE AUTOENCODER

In the second approach, we also considered the rank to identify the number of
sources 𝑀 and, then, we simply define an undercomplete LAE to produce a code of 𝑀

components, having as input the set of 𝑁 mixtures. Importantly, due to the rectangular
shape of the encoder matrix Θen, it was not possible to calculate the SMI.

Interestingly, unlike the previous approach, ANICA adequately converged in all
trials when its AE is undercomplete. Figure 6.13 shows that, although the MNK in Figure
6.13a may not be the right metric for this approach, the results are still encouraging, as
reported in Figure 6.13b, where for all training curves the average NAE is still lower than
those associated with both FastICA and JADE.

6.8 EXPERIMENT 6: GAUSSIANITY
Now that we have analyzed the behaviour of ANICA in different scenarios, there

only remains the task of testing the quality of the independent code to capture Gaussian
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(a) NAE on the epochs with optimal MNK. (b) NAE on the epochs with optimal MN.

Figure 6.13 – Experiment 5.2: Impact of the undercomplete autoencoder on the attained
independence.

and super-Gaussian sources. In this experiment, we simply produce three mixtures from a
Gaussian, Laplacian (super-Gaussian) and uniform (sub-Gaussian) distributions and, then,
we compare the results attained by ANICA and perform the aforementioned comparison
to FastICA and JADE by means of the NAE. Since we already studied the performance of
ANICA with respect to the number of sources and samples, and in the presence of noise,
in this experiment we do not increase the challenge and no training repetition was deemed
necessary.

Figure 6.14 shows the final results attained by ANICA in the code layer after
4000 epochs, as usual. Figures 6.14a, 6.14c and 6.14e depict the unknown original sources,
while Figures 6.14b, 6.14d and 6.14f hold the captured codes. As we can notice, there is a
clear correspondence between sources and codes of the same colour, which is made evident
in Figure 6.15 due to the almost perfect correlation between source and estimate, such
that the absolute value of the Pearson coefficient in each case is approximately equal to 1.

The best possible NAE directly measured on the training epochs was equal to
NAE = 0.004, which indicates that ANICA may outperform FastICA (NAE = 0.0089)
and JADE (NAE = 0.0138) in this scenario.

6.9 EXPERIMENT 7: REAL AUDIO SIGNALS
Finally, we considered the application of ANICA in the context of real signals.

In particular, we created four mixture signals given an equal number of audio sources
selected from the audio database reported in (KABAL, 2002).

For this case, we have only considered 2000 epochs with no training repetitions.
Figure 6.16 shows every audio source signal and all the codes retrieved by ANICA, such
that there is a clear correspondence figures of the same colour. The success of ANICA
is also confirmed by the NAE, which was equal to NAE = 0.0007, being considerably



CHAPTER 6. EXPERIMENTS 84

(a) Gaussian source. (b) Laplacian estimate.

(c) Laplacian source. (d) Uniform estimate.

(e) Uniform source. (f) Gaussian estimate.

Figure 6.14 – Experiment 6: Impact of the Gaussianity of the sources on ANICA.

smaller than those attained by FastICA and JADE, which were equal to NAE = 0.0099
and NAE = 0.0164, respectively.

Similarly to the previous experiment, we have included Figure 6.17 to indicate
the almost perfect correlation (with an absolute Pearson correlation approximately equal
to 1) between sources and their corresponding estimates in the code layer.

6.10 SUMMARY
As already mentioned, the presented experiments were designed and executed

in order to allow a better understanding of the potential and the limitations of ANICA in
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(a) Gaussian source and code. (b) Laplacian source and estimate.

(c) Uniform source and estimate.

Figure 6.15 – Experiment 6: Best correspondence among signals.

different scenarios. Having in view the obtained results, we consider that ANICA yields
quite interesting results, overcoming in certain cases the classical algorithms FastICA and
JADE, albeit it usually requires a significantly higher number of samples to converge.

Interestingly, the main ideas of ANICA seem to be directly applicable to other
BSS environments. By properly modifying the architecture of the AE, ANICA may be
adapted to address different scenarios of the BSS problem, such as those involving non-
linear mixtures and convolutive mixtures. In addition, other properties regarding the code
variables could be encouraged, instead of the statistical independence, which could lead to
different adversarial networks for similar tasks, such as sparse component analysis (SCA).
So, we believe to still be far from the exhaustion of all the advantages ANICA has to offer.
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(a) Source signal. (b) Code.

(c) Source signal. (d) Code.

(e) Source signal. (f) Code.

(g) Source signal. (h) Code.

Figure 6.16 – Experiment 7: Audio signals separation with ANICA.
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(a) Source and corresponding code. (b) Source and corresponding code.

(c) Source and corresponding code. (d) Source and corresponding code.

Figure 6.17 – Experiment 7: Best correspondence among audio signals.
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7 CONCLUSIONS

As the results of our experiments demonstrate, ANICA has proven to be an
effective ICA algorithm for challenging scenarios. In the cases of many sources, (Section
6.4), and a noisy dataset (Section 6.6), its performance is comparable to that of well-
established algorithms, such as FastICA and JADE, once there is a large enough dataset
onto which to train the model, as Section 6.3 makes explicit in its results.

The access to a large number of samples is crucial for ANICA in order to help
the adversarial costs converge faster, and in a more stable manner, towards the ideal
value of log 2, as proven in Section 5.2.1. Also, it helps to mitigate difficulties related
to initialization and the selection of hyperparameters. Nonetheless, convergence is never
guaranteed due to the effects of the random initialization of the parameters of ANICA.
As has been pointed out in most experiments, there is a wide variation among the lowest
and highest NAE values, which is not the case for FastICA and JADE, which offer more
consistent results. Notwithstanding, even when the dataset is relatively small, training for
more epochs and reducing the size of the minibatch may lead to an adequate separation
matrix in the encoder.

With no intention of minimizing the problem of non-convergence, it is valid to
train ANICA multiple times, on the same set of mixtures, and yet retrieve very interesting
results with the aid of the proposed blind metrics. As was performed in Section 6.7, for
the overdetermined case, we simply removed the worst training instances based on the
SMI they attained, for each number of additional components. Thus, in a completely blind
manner, we discarded the training instances that did not attain favourable results and, as
a consequence, there only remained the most robust instances.

The importance of the decoder was undoubtedly demonstrated in Section 6.5.
There, we simply eliminated the decoder, such that the encoder and discriminator were
connected in an architecture almost identical to GANs. However, the dynamic between
such components is not exactly the same, due to the “inverse” mapping the encoder
tries to learn, i.e., the encoder creates a latent code from existing observable mixtures,
while the generator in a GAN attempts to create new “real” samples from a latent noise.
Additionally, although it seemed to be that the reconstruction task of the decoder did not
help the whole system to retrieve independent components, the results indicate otherwise.
Once the decoder is removed, the performance of ANICA worsens more quickly the more
components it has to retrieve in comparison to its original behavior reported in Section 6.4.
Our hypothesis is that the joint training of the encoder and decoder maintains the code
within the space defined by PCA, and similarly to AAEs, they are both equally important
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to shape the distribution of the latent code space.

The adoption of the SMI, MNK and NM did not only proved to be useful as
criteria for blindly selecting an epoch with a corresponding low NAE, but it also confirms
the success of the AE to generate a code of independent components, rather than just
learning a trivial solution for reconstruction.

Finally, it is important to highlight that ANICA offers a flexible architecture
that can be straightforwardly modified to deal with other BSS scenarios, as well as those
involving convolutive mixtures and nonlinear models, besides PNL. It is our belief that
these cases will benefit, to a more significant extent, from the generality of the discussed
approach. It even seems attainable a solution for the underdetermined case (𝑁 < 𝑀),
under its adversarial framework. These are key topics for future investigations.

Although ANICA has proven to be an effective algorithm for ICA, it is also
computationally expensive, requiring many hours for the completion of every experiment
(including the 10 repetitions and varying samples, sources or noise). We initially speculated
that forcing the parameters of the encoder and decoder to be always close to orthogonal
matrices would reduce the required number of training epochs due to the reduction
on the search space to yield independent components. As already explained in Section
2.4.3, whitening is invariant to orthogonal transformations. Thus, for an input set of
whitened mixtures, a proper separation matrix could be found within the orthogonal space.
Unfortunately, the orthogonalization steps implemented over the course of this dissertation
did not offer any significant improvement, quite the opposite. Forcing an orthogonalization
step on the parameters, which are continuously adapted by gradient descent to optimize a
cost function, only delayed convergence or made it impossible to be attained because each
orthogonalization step was, in a certain sense, equivalent to forgetting the information just
learnt. A hope for a more natural orthogonalization process, such that it does not changes
abruptly the encoder matrix, resides on a technique called Tying weights, as explained in
Example 4.8, which we did not were able to implement until the writing process of this
dissertation.
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