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Simple Summary: DNA damage caused by ionizing radiation in a human fibroblast cell evaluated
by the Geant4-DNA Monte Carlo toolkit is presented. A validation study using a computational
geometric human DNA model was then carried out, and the calculated DNA damage as a function
of particle type and energy is presented. The results of this work showed a significant improvement
on past work and were consistent with recent radiobiological experimental data, such as damage
yields. This work and the developed methodology could impact a broad number of research fields in
which the understanding of radiation effects is crucial, such as cancer radiotherapy, space science,
and medical physics.

Abstract: Accurately modeling the radiobiological mechanisms responsible for the induction of DNA
damage remains a major scientific challenge, particularly for understanding the effects of low doses
of ionizing radiation on living beings, such as the induction of carcinogenesis. A computational
approach based on the Monte Carlo technique to simulate track structures in a biological medium is
currently the most reliable method for calculating the early effects induced by ionizing radiation on
DNA, the primary cellular target of such effects. The Geant4-DNA Monte Carlo toolkit can simulate
not only the physical, but also the physico-chemical and chemical stages of water radiolysis. These
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stages can be combined with simplified geometric models of biological targets, such as DNA, to
assess direct and indirect early DNA damage. In this study, DNA damage induced in a human
fibroblast cell was evaluated using Geant4-DNA as a function of incident particle type (gammas,
protons, and alphas) and energy. The resulting double-strand break yields as a function of linear
energy transfer closely reproduced recent experimental data. Other quantities, such as fragment
length distribution, scavengeable damage fraction, and time evolution of damage within an analytical
repair model also supported the plausibility of predicting DNA damage using Geant4-DNA.The
complete simulation chain application “molecularDNA”, an example for users of Geant4-DNA, will
soon be distributed through Geant4.

Keywords: Monte Carlo track structure simulation; Geant4-DNA; DNA damage

1. Introduction

It is possible to epidemiologically predict the biological effects induced by ionizing
radiation in humans by following up studies on atomic bomb survivors or cancer pa-
tients treated with radiotherapy. However, a mechanistic evaluation of the subsequent
radiobiological effects is necessary to better understand radiation carcinogenesis.

DNA is considered as the most critical target for ionizing radiation, and a challenge
still lies today in bridging the gap between the irradiation of cells and how mutations or cell
death follow as a consequence of DNA damage and repair [1]. Indeed, a mechanistic un-
derstanding of radiation-induced DNA strand breaks and clustered/complex DNA lesions,
as well as the great variation and complexity of pathways involved in response to DNA
damage, are not fully understood, as recently explained by Keta et al. [2]. Nevertheless,
while keeping such limitations in mind, Monte Carlo track structure (MCTS) simulation is
considered today as a reliable mechanistic approach for radiobiological studies at the cell
scale [3].

Several MCTS codes have been developed so far, such as PARTRAC [4], KURBUC [1],
Geant4-DNA [5–8], TOPAS-nBio [9], and RITCARD [10]. These codes propose independent
geometric DNA and damage-repair models based on theoretical approaches or experimen-
tal data from the literature.

In the case of Geant4-DNA, which was the first toolkit made available for open
access to the community [8], DNA geometry seeded from fractal packing has recently
been proposed [11–13]. This model was validated by comparing it with predictions of
other MCTS codes and experimental data [14,15]. In these previous Geant4-DNA studies,
two primary limitations appeared: high computing time required for the simulation, and
difficulties tuning simulation parameters that differ between codes. First, the step-by-step
(SBS) method, which is typically used in combination with MCTS codes for the simulation
of water radiolysis, is extremely slow compared to the physics component of the simulation,
requiring several days to model proton irradiation in Geant4-DNA [16]. Moreover, most
MCTS codes have tuned their simulation parameters to reproduce experimental data,
instead of using the values or settings available in the original papers describing the
various models (physics, physico-chemistry, and chemistry) on which they are based.

In this study, we proposed the application of recent developments in Geant4-DNA,
including a more accurate electron elastic model [17], calibrated pre-chemical [18] and
chemical parameters [19], and the independent reaction time (IRT) approach [20], into the
“molecularDNA” Geant4-DNA example, which was initially developed by Lampe [11]. In
order to validate this work, DNA damage induced in a simplified human fibroblast cell
was evaluated using the proposed changes and compared with experimental data.
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2. Materials and Methods
2.1. DNA Geometry

To model the complex double helix structure of DNA geometry in Geant4-DNA,
Lampe et al. [11–13] proposed a simplified geometric DNA model based on a fractal
structure. Here, a Python script was used to generate the fractal geometry, which allowed
for some flexibility in the overall structure based on the initial curve the fractal was seeded
with. The “molecularDNA” application itself is user-friendly and allows the geometries
and test-damage parameters to be set using macro commands.

The DNA geometry is provided in two parts: first, the geometrical configuration of
the nucleotide bases and the sugar-phosphate backbone in a curved or straight chromatin
segment; and second, the overarching macrostructure of the DNA (here, a fractal Hilbert
curve [21]), as shown in Figure 1. One way to think of this is that one file is used to describe
a straight or turned DNA segment, and a second describes how they join together to fit
into a cell.

Figure 1. (a) Schematic illustration of the molecular structure of the DNA double helix. The spheres represent adenine
(C5H5N5, blue), thymine (C5H6N2O2, magenta), guanine (C5H5N5O, green), cytosine (C4H5N3O, cyan), sugar (C5H10O4,
deoxyribose, red), and phosphate (H3PO4, yellow), respectively. (b) Simplified chromatin fiber segments (straight and
turned) and a unit of Hilbert curve. (c) The modeled fibroblast cell nucleus.

First, a chromatin segment was defined in an input file containing the shape, position,
and size of the DNA molecules. In order to construct realistic inter-linked chromatin
segments, three segment models (“straight”, “turned”, and “turned-twisted” geometries)
were produced. The fractal structure of the chromosome was then generated from the
Hilbert curve, which is typically used for continuous fractal space-filling [21]. The iteration
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of the Hilbert curve resulted in a more complex but continuous chromatin fiber. To shape
the cell nucleus, a spherical or ellipsoidal mask was used, depending on the cell geometry.

2.2. DNA Damage and Scoring

We followed the classification of DNA damage proposed by Nikjoo et al. [22]. De-
pending on the source of damage, direct damage is induced by physical interactions, and
indirect damage occurs from the chemical reaction between a radical and a DNA molecule.
Regarding the complexity of the damage, DNA strand breaks are classified as not only
single-strand breaks (SSBs) and double-strand breaks (DSBs), but also as complex damage
events [22]. In this work, we present a brief description of all the parameters used and the
methodology for scoring direct and indirect damages.

First, we defined the types of energy depositions that induce direct DNA damage.
PARTRAC proposed a linear damage model in which the likelihood of damage increased
from a lower energy threshold, Elower, of 5 eV to an upper threshold, Ehigher, of 37.5 eV [23],
based on experiments and parameter adjustments [24,25]. To determine whether an energy
deposit impacts DNA, an effective target volume and radius must be defined. Geant4-DNA
assumed an effective radius, Rdirect, larger than the van der Waals radius of sugar and
phosphate (2.28 and 2.63 Å, respectively), in order to consider the energy depositions in
the hydration shells of these molecules. The Rdirect value was optimized in a previous
Geant4-DNA study [15].

The calculation of indirect damage requires simulation of water radiolysis. In brief,
the molecular species generated during the pre-chemical stage undergo not only chemical
reactions with the sugar-phosphate backbone, inducing so-called indirect strand breaks,
but are also scavenged by each other or by histone proteins. To induce indirect strand
breaks, the chemical reaction occurs between the •OH radical and the sugar-phosphate
group. In this work, the probability, POH, of this reaction to induce an SSB was set to 40.5%,
causing approximately 13% of all reactions between DNA and •OH to induce a DSB, which
was consistent with previous experimental studies and simulations [13].

To reduce the computational time for radiolysis simulation, two key chemical parameters
were identified in a previous study by Sakata et al. [15], as derived from the work of Lampe
et al. [13]. It was assumed that all molecular species generated further away than a “radical
kill distance”, dkill, from the DNA molecule would be scavenged by the medium based on
their scavenging rate and diffusion rates of radicals [26,27]. This parameter is linked to the
end time, Tchem, of the chemical stage by the time taken for an •OH radical to dkill.

A maximum time step, dtmax, was also used in this study. This idea was initially
proposed in previous Geant4-DNA works for the simulation of DNA damage induced
by ionizing radiation in E. coli [11,13,28]. The entire chemistry simulation through Tchem
was split into several time steps of maximum duration dtmax, and the reaction times are
sampled at each time step [29].

All damage parameters optimized in our previous study [15] are listed in Table 1.

Table 1. The damage parameters used for predicting direct and indirect DNA damage induction.

Damage Parameters Values [15]

Rdirect 3.5 Å
Elower 5 eV
Ehigher 37.5 eV
POH 40.5%
dkill 9 nm

Tchem 5 ns
dtmax 0.5 ns

The chemical reaction rates between the DNA molecules and radicals were those
proposed by Buxton et al. [30]. In this work, the reactions were added to the Geant4-DNA
chemistry constructor “G4EmDNAChemistry_option3” [18,20].
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Breaks, regardless of source (direct or indirect), were classified by their complexity.
A DSB represented two breaks on opposite strands that were simultaneously induced
within the distance dDSB, taken as 10 base pairs (bp). If the separation distance between
two breaks was larger than dDSB, the breaks were considered as two independent SSBs.
We also considered a fragment gap, ds, that determined the complex SSBs and DSBs. In
Geant4-DNA, a ds value of 100 bp was used [13]. The complex SSBs were denoted as SSB+
or 2SSB if the damage was located on the same or opposite strands, respectively. The
complex DSBs, DSB+, and DSB++ were more important than complex SSBs because they
determined irreparable DNA damage in our calculations. DSB+ classification required
one DSB and one more break within the dDSB. Two DSBs within the fragment gap ds were
classified as DSB++.

In addition, SSBs and DSBs could also be classified as direct damage, denoted as
SSBd and DSBd; indirect damage, denoted as SSBi and DSBi; or mixed damage (one direct
and one indirect), denoted as SSBm and DSBm, in order to evaluate the protectable DNA
damage using the radical scavenger. DSBhyb is a mixed damage classification; however, it
was only considered when indirect damage was the core damage of the DSB.

2.3. Simulation Configuration for Validation Study Using a Simplified Human Fibroblast Cell

The improvements proposed in our previous works were implemented in the sim-
ulations presented here. The physics constructor G4EmDNAPhysics_option2 with the
new ELSEPA electron elastic scattering model [17] was used. In the case of the chem-
istry constructor, the most recent version, G4EmDNAChemistry_option3 including DNA
reactions, was selected. This constructor consisted of the Meesungnoen electron ther-
malization model [31] for thermalized and auto-ionization electrons [19], pre-chemical
parameters [18], our IRT method and the corresponding chemical reaction table [20], and
other improvements such as the initial displacement of •OH radicals and the electron
attachment model [32].

The IRT method approximated the reaction time based on the reaction rate and
separation distance between a pair of molecular species independently. This approximation
assessed the diffusion of molecular species to calculate the reaction time, but not to track
their trajectories. Thus, this approach presented the advantage of much faster simulation
times compared to the SBS method. However, the simulation of chemistry kinetics without
the presence of all the reactive molecules and diffusion simulations may cause imprecision
in simulated DNA damage. This technique was recently implemented in Geant4-DNA and
validated for G-values [20].

An octree-node approach was employed to search for neighboring radicals [33]. An
octree data structure divides a node into eight smaller nodes. The octrees of this applica-
tion contained the positions of all the radicals, allowing Geant4-DNA to rapidly identify
neighboring reactants around any given DNA molecule.

According to several studies on the geometry of fibroblast cells, such cells are about
2260 µm3 in volume [34] and consist of ~6 × 109 base pairs placed in ~500 µm3 nu-
cleus [35]. Based on the literature, we considered a simplified geometry of a human
fibroblast cell [14], consisting of an ellipsoidal cell nucleus described by the equation

x2

(14.2 µm)2 +
y2

(14.2 µm)2 +
z2

(5 µm)2 = 1, and surrounded by an ellipsoidal water phantom de-

scribed by the equation x2

(28 µm)2 +
y2

(28 µm)2 +
z2

(5 µm)2 = 1 representing the cytoplasm.

The chromosomes were uniformly distributed in the nucleus based on the Hilbert
curve, and the total number of base pairs included in this nucleus was 6.4 Gbp (base
pair density of 0.012 bp/nm3), which was consistent with the reported base pair density
of a mammalian cell (approximately 0.015 bp/nm3) [36,37]. Outside the cytoplasm, a
near-vacuum was modelled using the Geant4 pre-defined material G4_Galactic.

As a source, 137Cs and 60Co photon beams, proton beams of 0.3, 0.4, 0.7, 1.0, 1.67,
2.34, 4.0, 7.0, and 50 MeV, and alpha beams with initial energies of 5, 10, and 15 MeV were
generated from a plane parallel to the cell nucleus [15].
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Rather than reconstruct the exact experimental conditions of each comparison paper
down to the petri dish, we compared our results to the LET values reported at the cell
entrance. Similarly, we did not account for any substrate. For proton and alpha simula-
tions, the source plane was located 3 µm from the cell center in order to compare with
experimental data, as shown in Figure 2a. For gamma irradiation experiments, the cells
were suspended in a flask [38], so we included a water absorber of 1 mm thickness, as
proposed in the original papers. The source plane was located 3 mm from the cell nucleus,
as shown in Figure 2b.

Figure 2. A schematic illustration of the geometrical configuration of the human cell nucleus and source term. Figures
adapted from [15].

We computed the numbers of total strand breaks, SSBs, and DSBs as a function of LET
(values based on the ICRU-90 report [39]), and the corresponding SSB/DSB ratios using
the damage parameters for damage scoring given in Table 1.

It should be noted that the measurements of DNA damage shown in this study [40–45]
used gel electrophoresis techniques such as agarose gel electrophoresis (AGE) [46], constant-
field gel electrophoresis (CFGE), and pulsed-field gel electrophoresis (PFGE) [47].

However, this approach presents difficulties in counting fragments of DNA in close
proximity to each other; for example, closer than 23 kbp [45], owing to limitations in the
detection method. Thus, the yields of distant DSBs, meaning separated by at least 10 kbp
between DSBs, were also calculated in this study.

On the other hand, an approach for measuring DNA damage has been proposed via
counting of the number of immuno-fluorescent foci such as γ-H2AX [48,49]. This approach
also has limitations, such as the non-linear correlation between foci number and DSB yields;
however, it was assumed that the ratio of the number of foci to the number of DSB is 1:1 [50].
In addition, the sensitivity was significantly improved compared to that for PFGE [51].
Petkovic et al. [52], Ristic-Fira et al. [53], and Keta et al. [2] evaluated DNA damage by
measuring γ-H2AX for gamma ray and proton beams. The details of the experimental data
presented in this study are given in Table 2, while the biochemical background is provided
elsewhere [54,55].

The calculated DSB results were compared with the experimental data listed in Table 2,
as well as the data from Geant4-DNA [14–16], PARTRAC [23], and KURBUC [56]. The
histogram of the fragment length distribution, which represented the distance between
two DSBs, was calculated with 100 Gy of 1 MeV protons, and also was compared with
the experimental data of Belli et al. [43] and Campa et al. [45]. Another experimentally
accessible quantity was the protectable damage fraction (or scavengeable fraction). This
was the fraction of the damage present at infinite dimethyl sulfoxide (DMSO radical
scavenger) concentration. Such chemicals can scavenge free molecular species, especially
•OH radicals. In the simulation, the protectable damage fraction was the ratio between
the DSBs induced by indirect damage and all DSBs. We calculated these fractions as a
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function of LET and compared them with the experimental data of Ito et al. [57] and
Hirayama et al. [58].

Table 2. The experimental data and corresponding references, cell lines, cell types, and approaches
used for measuring damage.

Reference Cell Line Description Damage
Measurement

Frankenberg et al. (1999) [40] - Human fibroblasts PFGE
Hoglund et al. (2000) [41] GM5758 Human fibroblasts PFGE

Belli et al. (2000) [42]
V79 Chinese hamster cells

CFGE
Belli et al. (2001) [43] PFGE

Leloup et al. (2005) [44] XL2-Blue MRF Plasmid DNA of
bacteria PFGE

Campa et al. (2005) [45] AG1522 Human fibroblasts PFGE
Petkovic et al. (2019) [52]

HTB177 Non-small lung
cancer cells

γ-H2AXRistic-Fira et al. (2020) [53]
Keta et al. (2021) [2]

2.4. Cell Repair Model

Our simulations could be used to predict “early” DNA damage up to 5 ns. However,
modeling radiobiological phenomena during the long-term biological stage requires com-
plex mathematical models [59]. Briefly, it has been reported that DSBs induce deletions,
translocations, and fusions of DNA when they are not correctly repaired [60]. We did not
review the existing repair models and their implementations because they are beyond the
scope of this work, and descriptions are available in [61].

However, in the context of the Geant4-DNA collaboration, a repair model based on the
advanced mathematical model of Belov et al. [62] was proposed. This model assesses the
principal “repair pathways”, known as non-homologous end-joining (NHEJ), homologous
recombination (HR), single-strand annealing (SSA), and alternative end-joining mechanism
(Alt-NHEJ). The details of these pathways are described in papers by Heyer et al. [63] and
Decottignies [64].

In this model, the total yield of DSBs, N0, as a function of time can be calculated based
on the repair pathways as follows:

dN0

dt
= α(L)

dD
dt

Nir − VNHEJ − VHR − VSSA − Vmicro−SSA − VAlt−NHEJ (1)

where D is the absorbed dose (Gy), and α(L) is the DSB induction per dose (Gy−1 per cell)
depending on LET L. Nir is the yield of irreparable DSBs, representing (with our damage
scheme) NDSB

+ + 2 × NDSB
++. VNHEJ, VHR, VSSA, Vmicro-SSA, and VAlt-NHEJ are the repair

potentials for the NHEJ, HR, SSA, micro-SSA, and Alt-NHEJ repair pathways, respectively.
The repair potentials were given via 29 differential equations and 54 parameters, including
rate constants for human fibroblasts, in a paper from Belov et al. [62]. This model enabled
the calculation of five foci yields, which referred to the response of specific proteins to
DSBs [49], such as Ku protein, DNA-PKcs, RPA, Rad51, and γ-H2AX.

In this study, this simplified repair model was employed, which was recently imple-
mented in the “molecularDNA” example by Sakata et al. [15]. The foci yield of γ-H2AX as
a function of time was calculated and compared with the experimental data performed by
Asaithamby et al. [38].

3. Results

As described previously, the computational power for simulating all DNA structures
in a human fibroblast cell nucleus and storing damage is still challenging. The “molecu-
larDNA” example with the IRT approach proposed in this study could significantly reduce
the calculation time, as shown in Table 3. However, memory consumption remained a
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burden, particularly for storing DNA damage as a function of LET (e.g., up to 160 GBs for
only 10 alpha particles of 5 MeV). Thus, we decided to split the number of particles and
run them. The memory was cleaned up for every split, and after all the simulations were
completed, the output files were merged and analyzed.

Table 3. The energies of 137Cs, 60Co, protons, alphas, and the corresponding LET in water, number of
particles, number of runs, and simulation time.

Energy (MeV)
ICRU-90 LET
in Water [39]

(keV/µm)

Total Number
of Particles Run Splitting

Simulation
Time per Run
(CPU Hours)

Gamma Rays
137Cs 0.8 (a) 25,000,000 (b) 25 47.43
60Co 0.4 (a) 5,000,000 10 56.69

Protons

0.30 54.41 3000 30 146.90
0.40 46.48 3000 30 101.76
0.70 33.14 3000 30 44.60
1.00 25.77 3600 (c) 36 27.78
1.67 18.12 3000 30 15.46
2.34 14.31 8000 20 100.63
4.00 9.33 10,000 1 435.54
7.00 6.11 10,000 1 654.87
50.00 1.24 10,000 1 25.67

Alphas

5.00 87.54 100 10 29.67
10.00 52.94 100 10 21.51
15.00 38.96 100 10 12.86

(a) From ICRP-92 report [65]. (b) Corresponding to approximately 1 Gy dose for reproducing the experimental
data of the repair model. (c) Corresponding to approximately 100 Gy dose for reproducing the experimental data
of the fragment distribution.

Figure 3 shows the number of total, indirect, and direct strand breaks for incident
protons as a function of ICRP-90 LET and in other studies. The number of indirect damages
(red dash-dot curve) was remarkably decreased compared to the results of previous studies
(Geant4-DNA 2020 [15], Geant4-DNA 2017 [16], PARTRAC [23]), unlike the number of
direct damages.

Figure 4 shows the calculated SSB and DSB yields and the SSB/DSB ratio for incident
gamma rays, protons, and alphas as a function of LET. The DSB yields in this work were
lower than those in data from Frankenberg et al. [40] by as much as 62%; however, other
experimental data from Hoglund et al. [41] and Campa et al. [45] were consistent with
the results of this work, within a 10% difference. In particular, our simulations closely
approached the recent experimental data obtained by Petkovic et al. [52] and Keta et al. [2]
(magenta diamond and crosses), even though those data were for human lung cells and
assumed that the number of foci/cell was equal to the number of DSB/nuclei.

The DSB yields for alpha particles (red triangles) also showed a strong consistency
with the already-reported data from Hoglund et al. [41] (black cross). Unlike protons, the
DSB yields for alpha particles slightly decreased as a function of LET, due to more complex
or clustered DSBs [66], since they overlapped and could not be properly counted one by
one, as shown in the experimental data [2].
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Figure 3. The number of total strand breaks as a function of LET calculated by Geant4-DNA (this
work, [15,16]) and PARTRAC [23].

Figure 4. The SSB (left upper) and DSB yields (right upper), and SSB/DSB ratio (left below) as a function of LET for the
MCTS simulations and measurements.

In addition, higher SSB/DSB ratios were calculated in this study compared with
the other simulations. This result closely mirrored the plasmid data of Leloup et al. [44],
especially at an LET of 25.5 keV/µm, even though plasmids were not cells.

The fragment distribution is shown in Figure 5 for 1 MeV proton irradiation. Small
fragments were the most frequent, and their distribution decreased as a function of frag-
ment length. The results of this study obtained for 100 Gy underestimated the number
of DSBs compared to the PARTRAC simulations and experimental data of Belli et al. [43]
(3 MeV incident proton beam and a corresponding energy at beam exit of 1.1 MeV) in
Chinese hamster cells (V79), and Campa et al. [45] in human fibroblasts.
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Figure 5. Histogram of the fragment length distribution after 100 Gy irradiation with 1 MeV protons.
Simulations (lines) and measurements (symbols) are shown.

The protectable (or scavengeable) damage fraction as a function of LET was also
calculated, as shown in Figure 6. As reported thus far, the indirect damage fraction was
dominant for low LET irradiation and decreases as a function of increasing LET [58]. In an
LET range of 1.24–54.41 keV/µm, the results of this work were lower than in a previous
study using Geant4-DNA by as much as 10% [15], because this work assessed less indirect
damage due to the changes in pre-chemical and chemical stages.

Figure 6. Protectable damage fraction, which is the ratio of protectable DSBs over the total number
of DSBs, as a function of LET. Geant4-DNA simulations and measurements are shown.

Figure 7 shows the results of the scaled γ-H2AX yield of 137Cs at a dose of 1 Gy as a
function of time up to 25 h after irradiation. The results of this work were obtained with
the calculated number of DSBs (4.04 Gbp−1) and the irreparable fraction (~0.15) using the
approach described by Belov et al. [62]. The foci yields calculated in this study were larger
than in the calculations by Belov et al. [62], Sakata et al. [15], and experimental data [38].
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Figure 7. The γ-H2AX yield as a function of repair time from irradiation by 137Cs at a dose of
1 Gy. The calculated repair model in this study was compared with the calculations of Belov et al.
(2015) [62], Sakata et al. (2020) [15], and the experimental data of Asaithamby et al. (2008) [38].

4. Discussion

Regarding the results for total strand breaks according to the damage source (Figure 3),
the amount of indirect damage decreased as a function of LET, unlike direct damage,
because the concentrated molecular species at high LET rapidly recombined with each
other, as has been previously reported [58]. Compared to other studies, our results showed
less indirect damage yields; on the other hand, the direct damage yields did not change.

These results could be explained by a combination of several factors, such as the
initial distribution of radicals determined by our new elastic scattering model, and the
revised pre-chemical and chemical parameters, such as the dissociation scheme, including
displacement and branching ratio, diffusion coefficients, and reaction rates. In particular,
we could explain the difference with Geant4-DNA 2020 [15] because the G-values of •OH
radicals (mainly responsible for indirect damage induction) with the new pre-chemical and
chemical models were smaller than those seen in Geant4-DNA 2020 [15] and 2017 [16].

All the studies showed direct SB yields induced by physical interactions independent
of LET, except Geant4-DNA 2017 [16]. All the Geant4-DNA simulations were smaller than
the PARTRAC results because of the smaller effective target volume (Rdirect in this study).
Indeed, the new elastic scattering model does not affect direct SB yields.

Quantitative comparison with experimental data remains a challenge because the
uncertainties in measurements are still large, owing to the cell cycle, measurement experi-
mental conditions, beam properties, etc. In addition, the experimental data for the SSB and
DSB yields were measured with significant variations in the experimental methodology
and cell types, as listed in Table 2. For example, in Figure 4, the data from Leloup et al. [44]
show relatively increased SSB and DSB yields compared to the other data, apparently
due to the influence of base pair density and the histone scavenging effect [15]. Note that
the base pair densities of the plasmid, human fibroblast cell, and hamster cell (V79) were
9.4 × 10−6, 0.012, and 0.015 bp/nm3, respectively [36,37,43].

Nevertheless, the main improvement in this work was the better agreement of DSB
yields with experimental data for human fibroblast cells (HSkin) compared to the other
MCTS tools such as Geant4-DNA 2017, 2020, PARTRAC, or KURBUC. This was because the
total number of indirect SBs was reduced, owing to the chemistry model used in this study.
In addition, the results for alpha particles were in close agreement with the measurements
of Hoglund et al. [41].

As underlined in several studies [13,15,22,67], one should keep in mind that the
numbers of SSBs and DSBs were very sensitive to the damage scoring parameters, such as
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the parameters given in Table 1. New and more systematic experimental data on cellular
irradiation are clearly needed to better validate the simulations.

For the results on fragment length distribution (Figure 5), we observed that the results
in this study overestimated long fragments above 50 kbp as compared to PARTRAC and
experimental results, even though the experimental range of the fragment counting method
was 23 kbp to 5.7 Mbp [45]. It could be intuitively assumed that a higher number of DSB
damages increased the number of fragments at a short fragment length and decreased
at a long fragment length if the geometry was the same. For example, the DSB yields of
Campa et al. [45] were much lower than those reported by Belli et al. [43], as shown in the
top right panel of Figure 4. On the other hand, the PFGE approach subtracted the fragment
background; that is, the DNA fragment distribution of unirradiated cells [68]. However,
this approach could lead to another systematic uncertainty due to the oversimplification
of background fragment distribution [69]. In addition, inter-particle interference could
be a reason for this disagreement. In this work, each particle was independent because
we assumed radiation-induced DNA damage in the low-dose regions. However, the
experimental data of Belli et al. [43] and Campa et al. [45] were for relatively high dose
rates of 20 and 3.5 Gy/min, respectively.

Our scavengeable damage results were between those reported by Ito et al. [57] and
the data produced by Hirayama et al. [58], as shown in Figure 6. There was no clear reason
for this inconsistency, but one hypothesis to explain the observed difference could be that
the experimental data of Hirayama et al. [58] from V79 hamster cells were also significantly
different from the data generated by Ito et al. [57] as measured in HL-60 human leukemia
cells. We speculated that the cell size or base pair density could impact the fraction of
indirect damage, as recently reported [70].

In Figure 7, it can be observed that our γ-H2AX yield as a function of time cal-
culated with the model of Belov et al. [62] decayed more slowly than in the results of
Asaithamby et al. [38]. We supposed that because the initial DSB yields in this study were
relatively lower than the previous ones obtained with Geant4-DNA, the normalized foci
yields after the peak were apparently higher. In addition, the work of Belov et al. [62] esti-
mated the irreparable fraction as 0.01, consistent with Asaithamby et al. [38]. Nevertheless,
we could simulate the biological stage based on this repair model with strong agreement
with the experimental results, within a 10% difference. However, there were still limitations
to such an analytical approach; for example, the model was optimized only for human
fibroblasts. In addition, this model requires improvement for absolute predictions, because
it requires the total number of DSBs and the irreparable fraction as inputs.

5. Conclusions

In this study, we verified the plausibility of the “molecularDNA” Geant4-DNA ex-
ample, which used the IRT approach for the simulation of radiolysis, and overcame the
subsequent computational burden. In addition, we applied the developments proposed
in our previous works, such as the electron elastic scattering model and pre-chemical and
chemical parameters, for the simulation of early DNA damage in a model of a simplified
human fibroblast cell nucleus.

We have shown that the results obtained using these improvements were in reason-
able agreement with recent experimental data on DSB yields as a function of LET, with
acceptable simulation times. To further evaluate the plausibility of our simulations, we also
presented various quantities such as SSB/DSB ratio as a function of LET, the distribution
of fragment lengths, the scavengeable fraction as a function of LET, and repair of foci as a
function of time. These findings underlined the need for more accurate experimental data
on DNA damage in irradiated cells.

There were some technical limitations, such as large memory consumption (up to
~160 GBs for only 100 high-LET particles). To overcome such issues, we split the simula-
tion runs.
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In the future, further technical optimization of the software will be undertaken to
reduce memory consumption. In addition, damage simulations with a more accurate inelas-
tic model of G4EmDNAPhysics_option4 [71,72], instead of the default physics constructor
(G4EmDNAPhysics_option2), would generate additional improvements.

The work presented in this study is a step forward in the mechanistic understanding
of radiation-induced DNA damage in the cell nucleus. There is still a long way to go
before a mechanistic approach is available for use in radiation therapy, which in particular
requires prediction of the response of a wide variety of cell lines in tissues. However, the
open-code approach described in this article may further help to address this challenge.
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53. Ristić Fira, A.; Keta, O.; Petkovic, V.D.; Cammarata, F.; Petringa, G.; Cirrone, G.A.; Cuttone, G.; Incerti, S.; Petrovic, I. DNA
damage assessment of human breast and lung carcinoma cells irradiated with protons and carbon ions. J. Radiat. Res. Appl. Sci.
2020, 13, 672–687. [CrossRef]

54. Nikitaki, Z.; Nikolov, V.; Mavragani, I.V.; Plante, I.; Emfietzoglou, D.; Iliakis, G.; Georgakilas, A.G. Non-DSB clustered DNA
lesions. Does theory colocalize with the experiment? Radiat. Phys. Chem. 2016, 128, 26–35. [CrossRef]

55. Nikitaki, Z.; Nikolov, V.; Mavragani, I.V.; Mladenov, E.; Mangelis, A.; Laskaratou, D.A.; Fragkoulis, G.I.; Hellweg, C.E.;
Martin, O.A.; Emfietzoglou, D. Measurement of complex DNA damage induction and repair in human cellular systems after
exposure to ionizing radiations of varying linear energy transfer (LET). Free Radical Res. 2016, 50, S64–S78. [CrossRef] [PubMed]

56. Nikjoo, H.; O’Neill, P.; Wilson, W.E.; Goodhead, D.T. Computational approach for determining the spectrum of DNA damage
induced by ionizing radiation. Radiat. Res. 2001, 156, 577–583. [CrossRef]

57. Ito, A.; Nakano, H.; Kusano, Y.; Hirayama, R.; Furusawa, Y.; Murayama, C.; Mori, T.; Katsumura, Y.; Shinohara, K. Contribution
of indirect action to radiation-induced mammalian cell inactivation: Dependence on photon energy and heavy-ion LET. Radiat.
Res. 2006, 165, 703–712. [CrossRef] [PubMed]

58. Hirayama, R.; Ito, A.; Tomita, M.; Tsukada, T.; Yatagai, F.; Noguchi, M.; Matsumoto, Y.; Kase, Y.; Ando, K.; Okayasu, R.; et al.
Contributions of direct and indirect actions in cell killing by high-LET radiations. Radiat. Res. 2009, 171, 212–218. [CrossRef]

59. Lea, D.E. Actions of Radiations on Living Cells, 2nd ed.; Cambridge University Press: Cambridge, UK, 1955.
60. Negritto, M.C. Reparing double-strand DNA breaks. Nat. Educ. 2010, 3, 26.

http://doi.org/10.1016/0047-6374(76)90007-5
http://doi.org/10.1016/j.cub.2003.10.012
http://www.ncbi.nlm.nih.gov/pubmed/14588256
http://doi.org/10.1109/28.658723
http://doi.org/10.1371/journal.pcbi.1006159
http://doi.org/10.1667/RR1165.1
http://doi.org/10.2307/3580030
http://doi.org/10.1080/095530000138556
http://doi.org/10.1080/09553000050111569
http://doi.org/10.1016/S0273-1177(01)00007-2
http://doi.org/10.1080/09553000400017895
http://www.ncbi.nlm.nih.gov/pubmed/15962762
http://doi.org/10.1080/09553000500530888
http://doi.org/10.1074/jbc.M307996200
http://www.ncbi.nlm.nih.gov/pubmed/14507919
http://doi.org/10.1080/09553009114550321
http://www.ncbi.nlm.nih.gov/pubmed/1671686
http://www.ncbi.nlm.nih.gov/pubmed/15603433
http://doi.org/10.1002/em.21944
http://doi.org/10.1016/j.asr.2008.10.011
http://doi.org/10.4161/cc.9.4.10764
http://doi.org/10.1080/09553002.2019.1549753
http://www.ncbi.nlm.nih.gov/pubmed/30451568
http://doi.org/10.1080/16878507.2020.1825035
http://doi.org/10.1016/j.radphyschem.2016.06.020
http://doi.org/10.1080/10715762.2016.1232484
http://www.ncbi.nlm.nih.gov/pubmed/27593437
http://doi.org/10.1667/0033-7587(2001)156[0577:CAFDTS]2.0.CO;2
http://doi.org/10.1667/RR3557.1
http://www.ncbi.nlm.nih.gov/pubmed/16802871
http://doi.org/10.1667/RR1490.1


Cancers 2021, 13, 4940 16 of 16

61. Frankenberg-Schwager, M. Review of repair kinetics for DNA damage induced in eukaryotic cells in vitro by ionizing radiation.
Radiother. Oncol. 1989, 14, 307–320. [CrossRef]

62. Belov, O.V.; Krasavin, E.A.; Lyashko, M.S.; Batmunkh, M.; Sweilam, N.H. A quantitative model of the major pathways for
radiation-induced DNA double-strand break repair. J. Theor. Biol. 2015, 366, 115–130. [CrossRef]

63. Heyer, W.D.; Ehmsen, K.T.; Liu, J. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 2010, 44, 113–139.
[CrossRef]

64. Decottignies, A. Alternative end-joining mechanisms: A historical perspective. Front. Genet. 2013, 4, 48. [CrossRef]
65. Valentin, J. Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (wR). Ann. ICRP 2016, 92,

1–121. [CrossRef]
66. Hall, E.J.; Giaccia, A.J. Radiobiology for the Radiologist, 8th ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2018.
67. Zhu, H.; McNamara, A.L.; Ramos-Mendez, J.; McMahon, S.J.; Henthorn, N.T.; Faddegon, B.; Held, K.D.; Perl, J.; Li, J.; Paganetti, H.;

et al. A parameter sensitivity study for simulating DNA damage after proton irradiation using TOPAS-nBio. Phys. Med. Biol.
2020, 65, 085015. [CrossRef]

68. Pinto, M.; Newman, H.C.; Prise, K.M.; Michael, B.D. Quantification of DNA damage by PFGE: Development of an analytical
approach to correct for the background distribution. Int. J. Radiat. Biol. 2000, 76, 741–748. [CrossRef] [PubMed]

69. Newman, H.C.; Prise, K.M.; Michael, B.D. The role of higher-order chromatin structure in the yield and distribution of DNA
double-strand breaks in cells irradiated with X-rays or alpha-particles. Int. J. Radiat. Biol. 2000, 76, 1085–1093. [CrossRef]
[PubMed]

70. Tang, N.; Bueno, M.; Meylan, S.; Perrot, Y.; Tran, H.N.; Freneau, A.; Dos Santos, M.; Vaurijoux, A.; Gruel, G.; Bernal, M.A.; et al.
Assessment of radio-induced damage in endothelial cells irradiated with 40 kVp, 220 kVp, and 4 MV X-rays by means of micro
and nanodosimetric calculations. Int. J. Mol. Sci. 2019, 20, 6204. [CrossRef]

71. Kyriakou, I.; Incerti, S.; Francis, Z. Technical Note: Improvements in Geant4 energy-loss model and the effect on low-energy
electron transport in liquid water. Med. Phys. 2015, 42, 3870–3876. [CrossRef] [PubMed]

72. Kyriakou, I.; Šefl, M.; Nourry, V.; Incerti, S. The impact of new Geant4-DNA cross section models on electron track structure
simulations in liquid water. J. Appl. Phys. 2016, 119, 194902. [CrossRef]

http://doi.org/10.1016/0167-8140(89)90143-6
http://doi.org/10.1016/j.jtbi.2014.09.024
http://doi.org/10.1146/annurev-genet-051710-150955
http://doi.org/10.3389/fgene.2013.00048
http://doi.org/10.1016/S0146-6453(03)00024-1
http://doi.org/10.1088/1361-6560/ab7a6b
http://doi.org/10.1080/09553000050028887
http://www.ncbi.nlm.nih.gov/pubmed/10902727
http://doi.org/10.1080/09553000050111550
http://www.ncbi.nlm.nih.gov/pubmed/10947121
http://doi.org/10.3390/ijms20246204
http://doi.org/10.1118/1.4921613
http://www.ncbi.nlm.nih.gov/pubmed/26133588
http://doi.org/10.1063/1.4950808

	Introduction 
	Materials and Methods 
	DNA Geometry 
	DNA Damage and Scoring 
	Simulation Configuration for Validation Study Using a Simplified Human Fibroblast Cell 
	Cell Repair Model 

	Results 
	Discussion 
	References

