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Resumo

Ao utilizarmos o formalismo de Background Field Method para descrever a

QCD aparecem novos vértices de interação envolvendo campos de gauge no background. A

propriedade mais marcante destas novas funções de Green é que elas satisfazem identidades

de Ward-Takahashi do tipo Abelianas, em vez das complexas identidades de Slavnov-

Taylor obedecidas pelas funções da QCD convencional. Uma destas novas funções de

Green é o vértice de interação de quatro pontos formado por dois glúons no background,

um campo de ghost e outro de antighost. O objetivo deste trabalho é fazer um estudo

exploratório do comportamento deste vértice na região não perturbativa da QCD. Para

isso, vamos derivar a Equação de Schwinger-Dyson que este vértice satisfaz através do

formalismo funcional. Dada o alto grau de complexidade envolvido na resolução desta

equação em configurações de momentos gerais, vamos nos concentrar neste primeiro es-

tudo no limite cinemático “all-soft”, onde os momentos que entram nas quatro pernas

do vértice são zero. Derivamos utilizando a identidade de Ward-Takahashi uma relação

exata, válida em todas ordens em teoria de perturbação, onde mostramos que das 10

estruturas tensoriais na qual este vértice pode ser decomposto, somente a estrutura pro-

porcional a métrica sobrevive no limite all-soft. Mais importante, o fator de forma que

acompanha essa estrutura se reduz ao valor da função de vestimento do propagador do

ghost na origem, valor bem conhecido na literatura através de estudos feitos por Equações

de Schwinger-Dyson e simulações da QCD na rede. A derivação desta relação exata para

o fator de forma do vértice no limite all-soft é o resultado central deste trabalho e é inédito

na literatura. Por fim exploramos alguns cenários de como essa relação exata pode guiar

a construção de um esquema de truncamento a ser empregado em um futuro estudo da

Equação de Schwinger-Dyson deste vértice de quatro pontos em cinemáticas gerais.



Abstract

Using the Background Field Method formalism to describe QCD leads to new

interaction vertices involving background gauge fields. The most important property of

this new Green’s functions is that they satisfy Abelian Ward-Takahashi identities instead

of the complicated Slavnov-Taylor identities, obeyed by the conventional QCD functions.

One of these Green’s functions from the Background Field Method is the four-point inter-

acting vertex composed of two background gluons, a ghost, and an antighost field. The

main purpose of this work is to make an exploratory study of the behavior of this ver-

tex in the nonperturbative region of QCD. For that, we will derive the Schwinger-Dyson

equation which this vertex satisfies through the functional formalism. Given the intricate

nature of this equation in a general kinematic configuration, in this exploratory study,

we focus on the “all-soft” limit, where the momenta of the four legs are zero. Using the

Ward-Takahashi identity that this vertex satisfies, we derive an exact relation valid to all

orders in perturbation theory. From the ten general tensorial structures that this vertex

can be decomposed, we show that only the one proportional to the metric survives in the

all-soft limit. More specifically, the form factor accompanying the metric reduces to the

ghost dressing function at the origin, whose value is well known from previous Schwinger-

Dyson and lattice studies. The derivation of this exact relation for the form factor of

the four-point vertex in the all-soft limit is the main result of this work and represents a

novel contribution. Finally, we explore some scenarios of how this exact relation may be

used as a guideline for developing a future truncation scheme for this vertex in general

kinematics.
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Introduction

The description of the strong interaction between quarks and gluons is given by

the Quantum Chromodynamics (QCD) [1]. Understanding all QCD subtleties consists of

one of the main scientific challenges within the Standard Model of elementary particles.

QCD is a renormalizable non-Abelian gauge theory [2], based on the color symmetry

group SU(3), with quarks being the fermions and gluons the gauge bosons mediators of

the strong force [1].

The non-Abelian property of QCD is generated by the self-interacting gauge

bosons, which makes it far more complex than Quantum Electrodynamics (QED). Fur-

thermore, QCD is asymptotically free in the ultraviolet (UV) region [3, 4], meaning that

the coupling constant becomes smaller as the energy (or equivalently momenta) scale

increases.

On the other hand, in the infrared (IR) regime, the coupling is not small enough

to apply perturbation theory safely. This fact challenges us to deal with nonperturbative

approaches in order to describe this rich region, which accommodates intriguing phenom-

ena, such as confinement [5, 6], dynamical mass generation of quarks and gluons [7–15],

and the formation of bound states [8–10, 16–19].

Recently our understanding of the IR region of QCD increased considerably

due to nonperturbative formalisms that aim to compute the Green’s functions, i.e., the

propagators and vertices, which encode all the dynamical information of the theory. The

QCD Green’s functions are the building blocks of the fundamental degrees of freedom,

i.e., quarks, gluons, and ghost fields. Although it is well known that Green’s functions

are gauge and renormalization scheme dependent quantities, they may be combined in a

very precise way to give rise to physical observables, such as cross-sections, decay rates,
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and hadron masses.

One of these approaches is the lattice QCD, which discretizes the Euclidean

space, transforming the continuum space-time in a four-dimensional grid [20, 21]. In lattice

QCD, quark fields are defined at the sites of the lattice, while the gluons are the links

connecting neighboring sites, resulting in a discretized version of the QCD Lagrangian.

Moreover, lattice QCD employs Monte Carlo simulations [20], in analogy with statistical

physics.

Despite the significant progress that lattice simulations brought [22], this for-

malism has also its own limitations. For example, when we perform the discretization,

one may lose some symmetries, which may be recovered in the continuum limit, i.e., when

the lattice spacing a → 0 and the volume of the entire lattice V → ∞. Therefore, this

framework is restricted to the computational power available, since the continuum limit

requires more and more computational effort. Moreover, lattice QCD faces additional

difficulties in treating fermionic fields and dealing with significant disparities in physical

scales present in QCD, such as the contrasting quark mass scales [23–25].

In light of this, it is essential to explore other continuum approaches to deepen

our knowledge about the IR region of QCD. Among the functional methods available in

the literature [10, 26–36], the present work is focused mainly on the Schwinger-Dyson

Equations (SDE) [8–10, 37]. The SDEs are the equations of motion for the Green’s func-

tions of a given Quantum Field Theory (QFT), in analogy to the Euler-Lagrange equation

in classical mechanics. The SDEs form an infinite set of coupled integral equations, one

for each n-point Green’s function.

Evidently, an infinite system of coupled equations cannot be solved exactly.

Therefore, the need for a truncation scheme is mandatory to convert the problem into a

finite coupled system of integral equations [8, 16, 37–40]. Implementing such truncation

schemes, and at the same time preserving the fundamental symmetries of the theory, is by

no means an easy task [9, 11, 13, 38, 39, 41–48]. Nevertheless, if this challenging task is

accomplished, there is no formal way of estimating the contribution of the omitted terms

since there is no obvious expansion parameter in these equations.

Significant advances were obtained in this way in the last decades due to the

implementation of a truncation scheme based on the synthesis between the Pinch Tech-

nique (PT) formalism [7, 12, 49–52] with the Background Field Method (BFM) [53–55],
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known in the literature as PT-BFM scheme. This truncation scheme was designed to

deal with the SDE for the gluon propagator. In this context, the PT-BFM scheme fur-

nishes considerable advantages because it facilitates a systematic truncation that respects

manifestly the transversality of the gluon self-energy at every step [11, 38, 39, 46].

The basic idea of the BFM is to split the conventional gluon field, Aaµ, into a

quantum field, Qa
µ, and a classical background field, Ba

µ [55]. This separation gives rise to

a vast set of new Feynman rules, leading to an increase in the possible types of Green’s

functions that must be considered [12, 55]. In particular, three types of gluon propagators

arise: (i) the conventional gluon propagator (defined by two incoming quantum gluons,

QQ); (ii) the propagator of the background gluon (two background gluons, BB); and (iii)

the mixed background-quantum gluon propagator (one background gluon and one incom-

ing quantum gluon, QB). Moreover, in this formalism, new vertices containing background

gluon also appear: e.g., BQQ, BQQQ, Bc̄c, and BBc̄c1. A crucial property of the BFM is

that the vertices mentioned above satisfy WTIs when contracted with the momentum of

the background gluon Ba
µ, similar to those that appear in an Abelian theory, rather than

the complicated STIs, satisfied by the conventional QCD Green’s functions [12, 46, 55].

In this work, we will focus on the nonperturbative structure of the BBc̄c vertex,

to be denoted by Γ̂abmnµν (q, r, p, t). This vertex is the simplest four-point Green’s functions,

with gluon fields, which emerge in the BFM formalism, serving as a good starting point

for an exploratory study of the four-point Green’s functions.

Although the BBc̄c is one of the most basic four-point structures we have,

one should not underestimate the degree of difficulty involved in describing its complete

nonperturbative structure. The most general decomposition of this vertex is expressed in

terms of 35 form factors, which are functions of six variables, i.e., the three independent

momenta and the three angles between them.

Given the intricate nature of this vertex in general kinematic configuration, in

this work, we explore the so-called “all-soft” limit, where we set to zero the momenta in

the four legs of the vertex.

To do that, we first employ the functional formalism to derive the SDE that this

vertex satisfies. As far as we know, this is the first time that the SDE for the BBc̄c vertex

appears in the literature. With this equation at hand, we take the all-soft limit, analyzing

1Here c and c̄ denote the ghost and antighost fields, respectively.
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the contribution of each one of the 3 + (8 × 2) diagrams (here, the number 2 refers to

the possibility of diagrams that have the same topology, but with external gluons legs

crossed) entering in the SDE [see Fig. 3.3].

From the 3 + (8 × 2) contributions, we check that in this limit, only 2 × 2

survives [see Fig. 4.7]. The final expression for those 2 × 2 diagrams depends only on

(i) the gluon, and (ii) the ghost propagators, and (iii) the BQc̄c vertex in a particular

kinematic limit, i.e., Γ̃abmnµν (0,−t, 0, t). Using the WTI satisfied by the BQc̄c vertex, it is

possible to express Γ̃abmnµν (0,−t, 0, t) in terms of the well-known ghost-gluon form factor

B1. Combining the above results, it turns out, the BBc̄c vertex may be expressed in

terms of a unique form factor, which accompanies the metric tensor, in the all-soft limit.

More specifically, we establish that the form factor is nothing else than the ghost dressing

function at the origin, F (0).

It should be emphasized that the above derivation is an exact relation, valid

to all orders in perturbation theory, and it consists in the main result of this work and

represents a novel contribution in the literature. An alternative way to derive the same

relation is using the WTI that the BBc̄c vertex satisfies.

From the point of view of the SDE derivation, it is important to point out that

the derivation of exact results is rare in the literature, even considering special limits. With

this in mind, we envisage how the exact relation obtained may be used as a guideline for

developing a future truncation scheme for this vertex in general kinematics. To do that,

we propose three different truncation scenarios for the BBc̄c SDE, in the all-soft limit,

and then we check by how much they deviate from the exact value.

This thesis is organized in the following way. Chapter 1 presents a brief intro-

duction to QCD. We start with the QCD Lagrangian, revealing its Feynman rules and

discussing the property of asymptotic freedom. Then, in Chapter 2, we begin with the

general functional formalism of QFTs, and introduce the BFM and its new Green’s func-

tions and Feynman rules. In addition, we show the corresponding WTIs some of these

Green’s functions satisfy. We also present some remarkable features of the BFM. In Chap-

ter 3, we use the functional formalism to derive the so-called master SDE and then specify

to QCD. We begin with the derivation of the SDE for the ghost propagator as a warm-

up, and next, we derive the SDE for the BBc̄c vertex, which will be carefully scrutinized

throughout this work. In Chapter 4, we present our main results. More specifically, we
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perform the all-soft limit in the diagrams contributing to the BBc̄c SDE. Then, combining

the previous step with the WTI that BQc̄c satisfies, we arrive at an exact result, valid

to all orders, for the BBc̄c in all-soft limit. We close this Chapter by considering three

different truncation schemes for the BBc̄c SDE in the all-soft limit, and we check which

one has more potential to produce results which are in better agreement with the exact

result. Finally, in Chapter 5, we conclude with a brief discussion about the results of this

work.

In addition, we include four appendices. Appendix A collects all helpful re-

lations that the SU(3) totally anti-symmetric structure constant satisfies. Appendix B

contains details about the most general basis for rank-2 Minkowski and rank-4 color

tensors. In Appendix C, we summarize the transformations rules from Minkowski to Eu-

clidean space. In addition, we define the Euclidean measure in 4D spherical coordinates

and the corresponding scalar products. Finally, in Appendix D, we present the numerical

integration methods performed in this thesis.



Chapter 1
Brief introduction to QCD

In this Chapter we present a brief introduction to QCD, which is the quantum

theory that describes the strong interaction between quarks and gluons. In Section 1.1 we

introduce the fields and the QCD Lagrangian. Then, we proceed revealing the Feynman

rules and mentioning some important properties of this theory. Section 1.2 is dedicated

to review the concept of asymptotic freedom.

1.1 QCD Lagrangian and Feynman rules

QCD is a non-Abelian QFT that describes the strong force interaction, acting

in elementary particles with color charge, the quarks and gluons, composing the hadrons.

Hadrons can be barions, compound by three quarks, or mesons, formed by a quark and

an antiquark.

Quarks are the fermions of the theory, they have spin 1
2

and fractional charge.

According to the standard model of elementary particles, quarks can have six flavours: up

(u), down (d), strange (s), charm (c), bottom (b), and top (t). They can carry three color

charges: red, green, and blue (RGB). In nature, quarks (antiquarks) combine to form the

hadrons, which are colorless particles.

Gluons have spin 1 and are the gauge bosons, i.e., the interaction mediators,

of the theory. They are color charged and therefore interact with each other, giving rise

to one of the most peculiar characteristic of QCD, which is the self-interaction between

its gauge fields.

QCD is a renormalizable, non-Abelian gauge theory, invariant under the sym-
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metry gauge group SU(3) and has the following Lagrangian [56]

LQCD = LDirac + LYM + LGF + LGhost , (1.1)

with

LDirac = ψ(iγµDµ −m)ψ , (1.2)

LYM = −1

4
Ga
µνG

µν
a , (1.3)

LGF = − 1

2ξ
(∂µAaµ)2, (1.4)

LGhost = ca(−∂µDac
µ )cc , (1.5)

where LDirac is the Dirac Lagrangian, LYM is the Yang-Mills Lagrangian, LGF is the gauge

fixing Lagrangian, and LGhost is the ghost Lagrangian.

The Dirac Lagrangian describes the quarks and antiquarks, represented by the

spinors ψ and ψ̄, respectively, and generates the Feynman rules of the quark propaga-

tor, S
(0)ab
F (q), shown in Fig. 1.1, as well as the interaction between quarks and gluons

represented by the quark-gluon vertex, Γ
(0)
q,µ(q, r, p), shown in Fig. 1.2.

The term γµ in Eq. (1.2) is the Dirac matrix, while Dµ is the covariant deriva-

tive in the fundamental representation given by

Dµ = ∂µ − igAaµ
λa

2
, (1.6)

where g is the coupling constant, Aaµ is the gauge field representing the gluon, and λa is

the Gell-Mann matrix, that respects the commutation relation

[
λa

2
,
λb

2

]
= ifabc

λc

2
, (1.7)

with fabc the totally antisymmetric structure constant characterizing the group algebra1.

The Yang-Mills Lagrangian encodes the non-Abelian property of the theory

1Some of the properties of the totally antisymmetric structure constant will be presented in Ap-
pendix A.
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once the tensor Ga
µν , that is given by

Ga
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (1.8)

generates the conventional three and four-point gluon self-interaction vertices, Γ
(0)abc
αµν (q, r, p)

and Γ
(0)abcd
αβµν (q, r, p, t), respectively, shown in Fig. 1.2.

The gauge fixing term is introduced during the quantization process of the

theory. Together with the Yang-Mills term will generate the gluon propagator, ∆
(0)ab
µν (q),

shown in Fig. 1.1. The ξ appearing in Eq. (1.4) is the gauge fixing parameter.

The gauge fixing process leads to the introduction of auxiliary fields, the ghosts

and antighosts represented by the scalar fields c and c̄, respectively [57]. In QCD, the

ghosts couple to the gauge fields, and their presence are crucial to preserve the unitarity

of the theory.

The ghost Lagrangian generates the ghost propagator, D(0)mn(q), shown in

Fig. 1.1, and also the interaction between ghosts and gluons represented by the ghost-

gluon vertex, Γ
(0)mna
µ (r, p, q), shown in Fig. 1.2. The covariant derivative in Eq. (1.5) is in

the adjoint representation and it is given by

Dab
µ = δab∂µ − gfabcAcµ , (1.9)

where δab is the Kronecker delta.

Ghosts are scalar fields, i.e., they have spin 0, but obey the Fermi-Dirac statis-

tics, violating the Spin-Statistics theorem. For that reason the ghosts are strictly virtual

particles and cannot appear as asymptotic states.

The Feynman rules quoted above can only be applied in the weak coupling

limit of the theory, where the perturbative treatment is valid. However, as we will see in

the next Section, the QCD non-Abelian behaviour will induce a week coupling at high

energies, and a strong coupling at low energies.

It is important to stress here that the QCD Lagrangian, LQCD, given in

Eq. (1.1), consisting of the classical term plus the gauge-fixing and the Faddeev–Popov

ghost terms is no longer gauge invariant, but rather BRST invariant. As a consequence,

off-shell Green’s functions satisfy complicated STIs reflecting BRST invariance [12].
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Figure 1.1: Diagrammatic representations for the quark, gluon, and ghost propagators
together with their respective Feynman rules at tree-level.
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Figure 1.2: The diagrammatic representations of the QCD conventional vertices and their
respective Feynman rules at tree-level.
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1.2 Asymptotic freedom

To understand the asymptotic freedom we need to look at the behavior of the

QCD coupling constant, αs(Q
2) = g2/4π, which sets the strength of the strong interaction

as a function of the transferred momentum, Q2. In a renormalizable field theory, the

coupling constant and the masses acquire a scale dependent correction. Then, in order to

eliminate the UV-cutoff dependence, those corrections are renormalized to known values

at a given scale, µ.

The existence of asymptotic freedom in QCD can be verified by studying the

β function of the theory, defined through the Callan-Symanzik equation [58]. The β

function expresses the rate at which the renormalized coupling constant, αs(µ
2), changes

as the renormalization scale, µ, increases. The calculation of the β function of QCD was

first done simultaneously by Gross and Wilczek [3] and Politzer [4].

Then, the renormalization group equation for the QCD β function is given by

β(αs) = µ
dαs(µ

2)

dµ
. (1.10)

Expanding the β function perturbatively, one arrives that

β(αs) = µ
dαs(µ

2)

dµ
= −

[
α2
s

π
β0 +

α3
s

π2
β1 + · · ·

]
, (1.11)

with

β0 =

[
11

6
CA −

1

3
nf

]
, β1 =

[
17

12
C2

A −
1

24
nf (10CA + 6CF)

]
, (1.12)

where CA = N (CF = N2−1
2N

) is the eigenvalue of the quadratic Casimir operator from

the symmetry group SU(N) in the adjoint (fundamental) representation, and nf is the

number of fermions.

Keeping only the first term of the β function expansion (one-loop approxi-

mation) one can solve the above differential equation and determine that the coupling

constant is given by

αs(Q
2) =

2π

β0 ln (Q2/Λ2
QCD)

, (1.13)
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where the renormalization scale was removed in favor of the QCD scale, ΛQCD, defined as

ΛQCD = µ exp

[
π

αs(µ2)β0

]
. (1.14)

First notice from Eq. (1.13) that as Q2 → Λ2
QCD, the denominator has a pole

and the coupling diverges. This pole, known as the Landau pole, determines the momen-

tum scale in whose neighborhood the perturbative treatment is not anymore applicable.

Typically, the value of ΛQCD lies in the range of 300− 400 MeV, or approximately 1 fm in

distance terms (confining region).

Furthermore, one can see that the sign of β0 defines in which direction the

Landau pole is to be found, and hence in which regime the perturbative approach is

suitable or not. Therefore, it is crucial to analyze what happens with Eq. (1.13) when

the sign of β0 in Eq. (1.12) flips. If β0 is negative, the QCD displays a weak coupling in

the IR, and this coupling increases towards the UV. Conversely, a positive β0 assures a

weakly-coupled theory in the UV that becomes strongly coupled in the IR. This behavior

is called asymptotic freedom [3, 4].

Applying Eq. (1.12) for the color group SU(3), i.e., with CA = 3, one can con-

clude that, for the known number of quark flavors (or more generally up until nf ≤ 16),

we have asymptotic freedom, i.e., the coupling decreases when the momentum increases.

Such a feature results in the quarks behaving almost as free particles at short distances

(high energy limit), as experimentally checked in the deep inelastic scattering. In addi-

tion, asymptotic freedom allows us to apply perturbative methods and treat the coupling

constant as a good expansion parameter in the UV limit.

In Fig. 1.3, we present the behavior of αs(Q
2) as a function of the momentum

scale Q in GeV, extracted from the Particle Data Group latest review [59]. It is important

to point out here that the QCD coupling, αs(Q
2), is not a physical observable itself, and

therefore it cannot be measured directly in an experiment. However, its extraction can be

made indirectly, combining theoretical and experimental results. It is precisely this type

of procedure that was applied in Fig. 1.3.

Finally, notice that around the region of 1 GeV, we reach the QCD nonpertur-

bative regime. This regime accommodates the most peculiar features of the theory and

its challenges, such as color confinement, dynamical mass generation, and bound state

formation, which requires techniques beyond perturbation theory. One of these tools are
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the SDEs, which will be the main formalism employed in this work. Chapter 3 of this

thesis will be entirely dedicated to introducing them.

αs(MZ
2) = 0.1179 ± 0.0010

α
s(

Q
2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)

DIS jets (NLO)
Heavy Quarkonia (NLO)

e+e- jets/shapes (NNLO+res)
pp/p-p (jets NLO)

EW precision fit (N3LO)
pp (top, NNLO)
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Figure 1.3: Summary of measurements of αs(Q
2) as a function of the momentum scale

Q[GeV] obtained from [59]. The corresponding degree of perturbation theory used in the
extraction of αs(Q

2) is indicated in brackets (NLO: next-to-leading order; NNLO: next-
to-next-to-leading order; NNLO+res: NNLO matched to a resumed calculation; N3LO:
next-to-NNLO).



Chapter 2
The Background Field Method

In the previous Chapter, we have mentioned that in the conventional formula-

tion of QCD, the LQCD, expressed by Eq. (1.1), is not gauge invariant but rather BRST

invariant. In this Chapter, we will introduce the BFM, which allows the evaluation of the

effective action by exploiting the background gauge invariance [55]. In this formalism, the

QCD effective action is computed by expanding the gauge field, Aaµ, around a classical

“background” field, Ba
µ. After performing this expansion, a new set of Green’s functions

emerge in this formalism that automatically satisfies naive, QED-like WTIs [12, 55]. This

property is a noticeable technical advantage compared to those Green’s functions that

respect the complicated STIs.

One of the consequences of the latter property is that the BFM enormously

simplifies the perturbative calculation of the β function, since we do not need to determine

the renormalization constants related to the vertices [55].

In addition, the BFM has also been successfully applied to the study of non-

perturbative QCD [11, 12, 15]. In the particular case of the SDE for the gluon propaga-

tor, it was possible to build a systematic truncation scheme that respects manifestly the

transversality of the gluon self-energy at every step.

Here, the main focus of our project is to analyze the nonperturbative structure

of the BBc̄c vertex. To do that, we first have to derive the SDE governing its dynamics

within the framework of the BFM. Then, in order to compute the behavior of this vertex in

the all-soft limit, we will judiciously use the special properties this BFM Green’s function

obeys, in conjunction with the ones satisfied by the other BFM n-point functions nested

in its SDE. For this reason, the central motivation of this Chapter is to introduce the
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main ideas of the BFM and the special properties that this new set of Green’s functions

are endowed.

This Chapter is organized as follows. In Section 2.1, we briefly review the

functional formalism for a scalar theory. Then, in Section 2.2, we discuss the basic ideas

of the BFM, revealing the Feynman rules to the new set of Green’s functions in Section 2.3.

In Section 2.4, we present the difficulty in finding a suitable truncation scheme for the

conventional gluon SDE in which the transversality of the self-energy is preserved. In

Section 2.5, we collect the WTIs which some of the special BFM Green’s functions satisfy.

We conclude by presenting, in Section 2.6, the SDE for the gluon propagator in the BFM

formalism, which allows for symmetry preserving truncation.

2.1 Functional formalism

The aim of this Section is to introduce the functional formalism within the

concept of Feynman path integrals. The path integral formalism is originated from the

theoretical formulation of the two slits experiment [60]. The path integrals are the con-

tinuum limit of all the possible paths a system can evolve from an initial state to a final

one [40]. It is a completely different formalism from the canonical approach based on

creation and destruction operators used in the beginnings of the QFT.

This formalism is based on the fact that the Green’s functions of the theory

can be calculated with path integrals through the ratio [60]

〈Ω|T{φi(x1)...φj(xn)} |Ω〉 =

∫
D[φ]φi(x1)...φj(xn)eiS[φ]

∫
D[φ] eiS[φ]

, (2.1)

where Ω is the interacting vacuum, T is the time ordering operator, φi is a scalar field

with the index i denoting its type or degree of freedom, and S =
∫
d4xL is the action

of the theory. The symbol φ represents the collective of fields φi, so that the integral

measure is

D[φ] ≡
∏

i

D[φi] . (2.2)

An efficient way to calculate these path integrals is through the generating
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functional

Z[J ] =

∫
D[φ] exp

{
iS[φ] + i

∫
d4xJi(x)φi(x)

}
, (2.3)

where Ji(x) is the external source associated with the scalar field φi(x), and J represents

the collective of sources Ji(x).

Note that the Green’s functions appearing on the left-hand side (LHS) of

Eq. (2.1) can be obtained from Z[J ] by taking functional derivatives of Eq. (2.3) with

respects to the source, i.e.,

〈Ω|T{φi(x1)...φj(xn)} |Ω〉 = (−i)n 1

Z[0]

∂nZ

∂Ji(x1)...∂Jj(xn)

∣∣∣∣
J=0

. (2.4)

From Eq. (2.4) one can see that the propagator of the scalar field φi is given by

〈Ω|T{φi(x1)φi(x2)} |Ω〉 = − 1

Z[0]

∂2Z

∂Ji(x1)∂Ji(x2)

∣∣∣∣
J=0

. (2.5)

The complete n-point function given by Eq. (2.4) contains disconnected and

connected contributions. Diagrammatic examples of these two types of contributions are

illustrated in Fig. 2.1. We have two classes of connected contributions: (i) the improper

and (ii) the proper ones. The improper diagrams can be split into two independent

diagrams by removing a unique line. On the other hand, the improper or one-particle

irreducible (1PI) cannot be separated by removing one line.

(a) (b)

Figure 2.1: The diagram (a) is an example of a disconnected diagram while (b) is a
connected one.

Disconnected diagrams do not contribute to the final observable and introduce

infinities to the formalism. Then, to eliminate their contribution we use the generating

functional

W [J ] = −i lnZ[J ] . (2.6)
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Combining Eqs. (2.4) and (2.6) one can express the n-point Green’s function in terms of

only 1PI diagrams in the following way

〈Ω|T{φi(x1)...φj(xn)} |Ω〉 =
1

in−1

∂nW [J ]

∂Ji(x1)...∂Jj(xn)

∣∣∣∣
J=0

. (2.7)

To obtain the three-point or higher n-point Green’s functions, it is necessary

to do a Legendre transformation of W [J ], given by

Γ[φ̄] = W [J ]−
∫
d4xJi(x)φ̄i(x) , (2.8)

where Γ[φ̄] is the vertices generator, the so-called effective action, and φ̄i(x) is the vacuum

expectation value (VEV) of the field φi(x) in the presence of the source Ji(x). By taking

derivatives of Eq. (2.8), one can obtain the following relations

φ̄i =
δW [J ]

δJi(x)
=
−i
Z[J ]

δZ[J ]

δJi(x)
,

δΓ[φ̄]

δφ̄i(x)
= −Ji(x) . (2.9)

In the above expression, the external current, J(xi), acts only in the differen-

tiation and then is set to zero. When this is done, usually the VEVs of the fields go to

zero as well. The only exception will be in the case of spontaneously broken symmetry

theories.

We close this Section showing two significant results. The first one relates the

two-point connected Green’s function to the 1P1. This relation can be derived rewriting

the Dirac delta function with the help of Eq. (2.9). More specifically, we have that

δφ̄i(x)

δφ̄j(z)
= δijδ(x− z) =

∫
d4y

δφ̄i(x)

δJk(y)

δJk(y)

δφ̄j(z)

= −
∫

d4y

(
δ2W [J ]

δJk(y)δJi(x)

)(
δ2Γ[φ̄]

δφ̄j(z)δφ̄k(y)

)
, (2.10)

and thus we arrive at

δ2Γ[φ̄]

δφ̄i(x)δφ̄i(z)
= −

(
δ2W [J ]

δJi(x)δJi(z)

)−1

. (2.11)

The second result is the derivative of inverse propagators, and its derivation
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explores the identity relation of an operator, i.e.,

δ(O−1[φ]O[φ])

δφ
= 0 . (2.12)

Applying the above relation for the two-point connected Green’s function, one finds

δ

δφ̄i(x)

(
δ2Γ[φ̄]

δφ̄j(y)φ̄k(z)

)−1

=−
∫

d4ud4v

(
δ2Γ[φ̄]

δφ̄j(y)φ̄m(u)

)−1

× (2.13)

× δ3Γ[φ̄]

δφ̄m(u)δφ̄i(x)φ̄n(v)

(
δ2Γ[φ̄]

δφ̄n(v)φ̄k(z)

)−1

.

2.2 Background Field Method

The basic idea of the BFM is to split the gauge field, Aaµ, into a classical

background field, Ba
µ, and a fluctuating quantum field, Qa

µ, [61, 62] i.e.,

Aaµ → Ba
µ +Qa

µ . (2.14)

First, we will be interested in the effect of this shift at the level of the generating functional

of the quenched QCD (i.e., without quark fields).

After applying the Faddeev-Popov procedure to quantize the quenched QCD

Lagrangian [57], one obtains that its generating functional will be given by

Z[Jµ] =

∫
D[A] det[M ] exp

{
i

∫
d4x[LYM + LGF + Jaµ(x)Aaµ(x)]

}
, (2.15)

where LYM is given in Eq. (1.3), and M is the Faddeev-Popov operator, defined as

M =
δF a[A(x)]

δωb(y)
, (2.16)

with F a[A(x)] the gauge fixing condition, and wb the gauge transformation parameter

related with the gauge field by

δAaµ =
1

g
∂µω

a − fabcωbAcµ . (2.17)

First, let us analyze Eq. (2.15) in the Lorentz gauge, i.e., F a[A(x)] = ∂µAµ(x).

In this case LGF is given by Eq. (1.4) and the Faddeev-Popov operator reduces to Mab
xy
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given by

Mab
xy = ∂µxD

ab
µ,xδ(x− y) . (2.18)

The term det[M ] in Eq. (2.15) may be conveniently expressed as a path integral

over the ghost and antighosts fields. Thus, Eq. (2.15) becomes

Z[Jaµ , jc, jc] =

∫
D[A]D[c]D[c] exp

{
i

∫
d4x[LYM + LGF + LGhost + J ]

}
, (2.19)

with

J = Jaµ(x)Aaµ(x) + ca(x) jac (x) + j̄c
a
(x) ca(x) , (2.20)

and

LGhost = −
∫

y

ca(x)Mab
xyc

b(y) = ca(x)(−∂µDab
µ )cb(y) , (2.21)

where j̄c
a
(x) and jac (x) are the external currents associated with the ghost and antighost

fields, respectively.

Now that we have the expression for the generating functional written in terms

of the ghost fields, we want to see how it will be affected by the shift from Eq. (2.14).

From now on we will employ a general gauge fixing condition given by

LGF = −(F a[A])2

2ξ
. (2.22)

When performing the shift, we treat the classical field, Ba
µ, as a fixed field con-

figuration [54], and the fluctuating part, Qa
µ, as the integration variable of the functional

integral. Under these considerations we arrive that

Z[J ]→ Z̃[J,B] , F a[A]→ F̃ a[Q,B] , LYM → L′YM . (2.23)

Then, applying this change of variables into the generating functional of Eq. (2.19),
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we obtain

Z̃[J,B] =

∫
D[Q] det[M̃ ] exp

{
i

∫
d4x[L′YM + L′GF + Jaµ(x)Qa

µ(x)]

}
, (2.24)

with the Faddeev-Popov operator being

M̃ab
xy =

δF̃ a[Q(x), B(x)]

δωb(y)
, (2.25)

and ωb(y) the parameter appearing in the gauge transformation of the field Qa
µ,

δQa
µ = Dab

µ [Q+B]ωb ≡ [δab∂µ + gfacb(Q+B)cµ]ωb . (2.26)

Similarly, one can define the generating functional for connected functions,

W̃ [J,B], as

W̃ [J,B] = i ln Z̃[J,B] , (2.27)

and for the 1PI, Γ̃[Q,B], as

Γ̃[Q,B] = W̃ [J,B]−
∫
d4xJaµ(x)Qa

µ(x) , (2.28)

with Qa
µ(x) being the VEV1 of the quantum field, that is,

Qa
µ =

δW̃

δJaµ
. (2.29)

It is possible to show performing the shift Qa
µ → Aaµ −Ba

µ in Eq. (2.24) that

Z̃[J,B] is connected to Z[J ] by the relation

Z̃[J,B] = Z[J ] exp

[
−i
∫
d4xJaµ(x)Ba

µ(x)

]
, (2.30)

where Z[J ] is computed in a gauge fixing condition F a[Q] = F̃ a[A−B,B].

1Notice that we dropped the VEV notation as a bar over the field, which was introduced in the
previous Section, to avoid misunderstanding with the antighost field.
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Taking the logarithm of Eq. (2.30) we arrive that

W̃ [J,B] = i lnZ[J ]−
∫
d4xJaµ(x)Ba

µ(x) = W [J ]−
∫
d4xJaµ(x)Ba

µ(x) . (2.31)

Using Eq. (2.28) into Eq. (2.31) we get that

Γ̃[Q,B] = W [J ]−
∫
d4xJaµ(x)Aaµ(x) = Γ[A] = Γ[Q+B] . (2.32)

From the above result, particularly from Γ̃[0, B] = Γ[B], one can see that the

BFM effective action corresponds to the usual effective action when the VEV of the

quantum field is set to zero. Therefore, since the same effective action describes the BFM,

one can conclude that the BFM is physically equivalent to the conventional formalism of

the theory [63].

Moreover, a specific choice of gauge,

F̃ a[Q,B] = ∂µQ
a
µ + gfabcBb

µQ
c
µ , (2.33)

the so-called BFM gauge, it will make both Z̃[J,B] and W̃ [J,B] invariants under the

transformations [55]

δBa
µ = −fabcωbBc

µ +
1

g
∂µω

a , (2.34)

δJaµ = −fabcωbJ cµ , (2.35)

and Γ̃[Q,B] invariant under the transformation given in Eq. (2.34), and

δQa
µ = −fabcωbQc

µ . (2.36)

With Eq. (2.34) we see that Ba
µ carries the local gauge transformation, and

with Eq. (2.36) we see that Qa
µ transforms as a matter field in the adjoint representation.

When the VEV of Qa
µ is zero, then δQa

µ = 0, and Γ̃[0, B] is an explicitly gauge invariant

functional of Ba
µ.

This is a very crucial result, since will imply that the 1PI Green’s functions

generated by the derivation of Γ̃[0, B] will respect WTIs, instead of complicated STIs

satisfied by the conventional functions.
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Since the focus of this work is to analyze the nonperturbative behaviour of a

vertex that contains a ghost and an antighost leg, let us check what is the effect of the

BFM change at the level of the ghost Lagrangian. The Faddeev-Popov operator, given

by Eq. (2.25), combined with the BFM gauge of Eq. (2.33), becomes

M̃ab
xy = Dµ[B(x)]acDµ[Q(x) +B(x)]cb . (2.37)

Then, with Eq. (2.37) at hand, one can see that the ghost Lagrangian of Eq. (1.5) becomes

LGhost = −
∫
d4yca(x)M̃ab

xyc
b(y) (2.38)

= ca∂2ca + gfabdBd
µc
a∂µc

b + gfabe(∂µc
a)(Q+B)eµc

b − g2fadcf cebBd
µ(Q+B)eµc

acb .

The above Lagrangian generates more Green’s functions than the one given

by Eq. (1.5). Particularly, the last term in Eq. (2.38) generates the four-point vertices, in

particular the BBc̄c vertex, which is the main focus of this work. In the next Section, we

detail some of the Green’s functions emerging in the BFM.

2.3 BFM Green’s functions

The aim of this Section is to introduce the new BFM Green’s functions and

establish their conventions and notations. Within the BFM, we have three gluon prop-

agators: (i) the conventional one, ∆µν(q), composed by two quantum gluons external

legs (namely QQ), (ii) the mixed propagator, ∆̃µν(q), composed by one quantum gluon

and one background gluon external leg (QB), and finally (iii) the background propagator,

∆̂µν(q), composed by two background gluons external legs (BB). Note that the propagator

with one background gluon external leg is represented by a “tilde”, while the one with two

background gluons is represented by a “hat”. The diagrammatic representations of these

three gluon propagators are shown in Fig. 2.2.
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∆µν(q) =

∆̃µν(q) =

∆̂µν(q) =

Figure 2.2: Diagrammatic representations of the fully dressed conventional, mixed, and
background gluon propagators, respectively. The background gluon legs are represented
by a small black circle in its end. The blue circles represent fully dressed propagators.

These new gluon propagators are related with the conventional one through

the so-called Background-Quantum identities (BQIs) [12, 64, 65], which are expressed by

∆̃−1(q) = [1 +G(q)] ∆−1(q) , (2.39)

∆̂−1(q) = [1 +G(q)]2 ∆−1(q) , (2.40)

where the scalar function, G(q), is the form factor that multiplies the gµν component of the

Lorentz decomposition of the two-point function, Λµν(q), diagrammatically represented

in Fig. 2.3.

Λµν(q) = +µ ν µ ν

Figure 2.3: Diagrammatic representation of the two-point function, Λµν(q).

Using the above convention, let us denote the new BFM vertices with a unique

background gluon leg with a “tilde”, whereas the ones with two or more will be denoted

with a “hat”. Then, one has

ΓBaαQbµQcν (q, r, p) = gfabcΓ̃αµν(q, r, p) ,

ΓcmcnBaµ(r, p, q) = −gfmnaΓ̃µ(r, p, q) ,

ΓBaαQbβQcµQdν (q, r, p, t) = −ig2Γ̃abcdαβµν(q, r, p, t) , (2.41)

ΓBaαBbβQcµQdν (q, r, p, t) = −ig2Γ̂abcdαβµν(q, r, p, t) ,

ΓBaµQbνcmcn(q, r, p, t) = −ig2Γ̃abmnµν (q, r, p, t) ,

ΓBaµBbνcmcn(q, r, p, t) = −ig2Γ̂abmnµν (q, r, p, t) .
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The Feynman rules for these vertices at tree-level are listed in Fig. 2.4.
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Figure 2.4: The diagrammatic representations of the BFM new vertices and their respec-
tive Feynman rules at tree-level [12].
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2.4 SDE for the gluon propagator

Truncating SDEs of a non-Abelian theory leaving the symmetries unharmed is

highly nontrivial. In this Section we exemplify this issue for the conventional gluon prop-

agator in order to motivate the need of a formalism that makes this truncation possible.

The SDE for the conventional gluon propagator is diagrammatically repre-

sented in Fig. 2.5 and written as2

[∆µν(q)]
−1 = [∆(0)

µν (q)]−1 + Πµν(q) , (2.42)

where ∆µν(q) is the full propagator, and Πµν(q) is the gluon self-energy. In the general

covariant gauge, the full propagator is given by

∆µν(q) = Pµν(q)∆(q) + ξ
qµqν
q4

, (2.43)

where Pµν(q) is the transverse projector given by

Pµν(q) = gµν −
qµqν
q2

, (2.44)

and ∆(q) is the gluon scalar function which receives the all-order corrections.

For quenched QCD, Πµν(q) is given by the sum of the five diagrams, (ai)µν ,

shown in Fig. 2.5, i.e.,

Πµν(q) =
5∑

i=1

(ai)µν . (2.45)

Notice that the longitudinal part of the gluon propagator does not acquire

radiative contributions. This is a direct consequence of the STI satisfied by the gluon

propagator, given by

qµqν∆µν(q) = ξ . (2.46)

Thus, combining Eqs. (2.42) and (2.46), one concludes that the gluon self-energy is trans-

2Here we omit the color structure of the gluon propagator, given by ∆ab
µν(q) = −iδab∆µν(q).
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= + +

+ + +

( )−1 ( )−1

(a1) (a2)

(a3) (a4) (a5)

Figure 2.5: Diagrammatic representation for the gluon propagator SDE in Eq. (2.42) in
quenched QCD. The sum of diagrams (ai) furnishes the full gluon self-energy, Πµν(q).
The blue circles represent the fully dressed propagators, and the pink circles correspond
to the fully dressed vertices.

verse, i.e.,

qµΠµν(q) = 0 , (2.47)

with Πµν(q) = Pµν(q)Π(q). In particular, in the Landau gauge, where ξ = 0, the gluon

propagator is purely transverse, a fact we will use throughout this work.

As we will see in Chapter 3, the SDEs form an infinite set of coupled integral

equations, one for each n-point Green’s functions. Evidently, this system cannot be solved

exactly, and requires the implementation of a truncation scheme that preserves the fun-

damental QCD symmetries. However, enforce a scheme that fulfils such criteria is highly

nontrivial. In the particular case of the SDE for the gluon propagator, it transpires that

the process of truncation violates the gauge invariance of the theory, i.e., Eq. (2.47) will

not be satisfied.

One can see that by performing the one-loop perturbative calculations for

the diagrams (a1), (a2) and (a3) in Eq. (2.45). The contribution of the ghost loop (in

Minkowski space) is

Π(1)
µν (q)|(a1) = − λ

36
(3gµνq

2 + 6qµqν)ln

(−q2

µ2

)
, (2.48)

with

λ =
iCAg

2

16π2
. (2.49)

The above expression was renormalized using the momentum subtraction scheme (MOM),

such that Πµν(q) recovers its tree-level value at the momentum q2 = −µ2. We can see
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that Eq. (2.48) is not transverse, since it is not proportional to the transverse projector

given in Eq. (2.44).

We obtain for the UV logarithms of diagrams (a2) and (a3)

Π(1)
µν (q)|(a2) + Π(1)

µν (q)|(a3) = − λ

36
(75gµνq

2 − 84qµqν)ln

(−q2

µ2

)
, (2.50)

which is also not transverse. However, when we add the contributions from Eqs. (2.48)

and (2.50), we obtain

Π(1)
µν (q)|(a1) + Π(1)

µν (q)|(a2) + Π(1)
µν (q)|(a3) = −13λ

6
(gµνq

2 − qµqν)ln
(−q2

µ2

)
, (2.51)

which is clearly transverse.

Therefore, we see that the ghost sector cannot be separated from the gluon

sector, since diagram (a1) has to be computed together with (a2) and (a3) to guarantee

the transversality at one-loop level. Furthermore, already at two-loops, retaining only

the first three diagrams would not be sufficient. We will see in the next Sections that it

is possible to perform the separation of the self-energies of ∆̂µν(q) and ∆̃µν(q) in blocks

which are independently transverse [11, 12, 46]. The complete proof of this statement is

presented to the mixed gluon propagator in Section 2.6.

2.5 Ward-Takahashi identities

Before embarking on the analysis of the transversality of the mixed gluon self-

energy, one needs some of the WTIs that the new BFM Green’s functions obey.

In this Section, we collect the WTIs which will be crucial to prove the blockwise

transversality of the mixed gluon self-energy in Section 2.6, and to establish the all-soft

limit of the BBc̄c vertex in Chapter 4.

Here we present the WTIs for the BQQ, Bc̄c, BQQQ, BQc̄c, and BBc̄c vertices

summarized in Fig. 2.6. These identities are valid to all orders in perturbation theory.

In particular, they can be verified at tree-level, applying the Feynman rules shown in

Figs. 1.1, 1.2 and 2.4.
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BQQ WTI qα Γ̃αµν(q, r, p) = ∆−1
µν (p)−∆−1

µν (r)

Bc̄c WTI qµ Γ̃µ(r, p, q) = D−1(p)−D−1(r)

BQQQ WTI
qµΓ̃abmnαβµν (q, r, p, t) = fadbfdmnΓβµν(q + r, p, t)

+fadmfdbnΓµβν(q + p, r, t)

+fadnfdbmΓνβµ(q + t, r, p)

BQc̄c WTI
qµΓ̃abmnµν (q, r, p, t) = fnaxf bmxΓν(p, q + t, r)

+fnbxfmaxΓν(q + p, t, r)

+fnmxfabxΓν(p, t, q + r)

BBc̄c WTI
qµΓ̂abmnµν (q, r, p, t) = fmaxf bnxΓ̃ν(t, q + r, p)

+fmbxfnaxΓ̃ν(t+ q, r, p)

+fmnxfabxΓ̃ν(t, r, q + p)

Figure 2.6: The WTIs satisfied by the BQQ, Bc̄c, BQQQ, BQc̄c, and BBc̄c vertices.

2.6 Background gluon propagator

In this Section, we follow the discussion of [39, 46] to show that the mixed

gluon self-energy, Π̃µν(q), can be split into independent transverse groups, allowing for a

truncation scheme that maintains the gauge symmetry.

The SDE for the mixed gluon propagator (QB), ∆̃µν(q), is diagrammatically

represented in Fig. 2.7. The diagrams contributing to its self-energy, Π̃µν(q), are the (ai),

with i = 1, 2, · · · , 6.

In order to prove the transversality of Π̃µν(q), expressed by the condition given

by Eq. (2.47), we will contract each one of the (ai) diagrams with the background gluon

momentum, qν , to trigger one of the corresponding WTIs listed in Fig. 2.4, and thus we

check what are the combinations of diagrams which will be jointly transverse.
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∆̃−1
µν (q) =

−1
+ + +

(a3)(a2)(a1)

+

(a5)

+

(a6)

+

(a4)

Figure 2.7: Diagrammatic representation of the SDE for the mixed gluon propagator
(QB), ∆̃µν(q). The sum of the contributions given by the diagrams (ai) gives the full

gluon self-energy, Π̃µν(q).

In what follows, we refer as “one-loop dressed” diagrams those contributions

containing a unique dressed loop, i.e., diagrams (a1), (a2), (a3), and (a4); whereas those

with two loops, i.e., (a5) and (a6), we call “two-loop dressed” contributions. Moreover, we

introduce the shorthand notation

∫

k

:=
1

(2π)4

∫
d4k . (2.52)

At one-loop dressed level, the diagrams (a1) and (a2) furnish the gluonic con-

tribution. Their respective analytical expressions are given by

Π̃ab
µν(q)|(a1) =

1

2

∫

k

Γ̃bd
′c′

νρβ (−q, k + q, k) ∆cc′

αβ(k) ∆dd′

σρ (k + q)Γ(0)acd
µασ (q, k,−q − k) , (2.53)

Π̃ab
µν(q)|(a2) =

1

2

∫

k

∆cc′

αβ(k)Γ̃
(0)bacc′

νµβα (−q, q, k,−k) . (2.54)

First, we contract the above equations with the momentum qν . Then, after

the contraction, we replace into Eq. (2.54) the tree-level expression for the BQQQ vertex,

Γ̃
(0)bacc′

νµβα (−q, q, k,−k), quoted in Fig. 2.4. On the other hand, for Eq. (2.53), the qν hits

the fully dressed three gluon vertex, with one gluon in the background, and triggers the

BQQ WTI, given in Fig. 2.6. Substituting the tree-level expression for the conventional

three gluon vertex, Γ
(0)acd
µασ (q, k,−q − k), given in Fig. 1.2, we find after performing a shift

k → k − q, that

qνΠ̃ab
µν(q)|(a1) = −g2CAδ

ab

∫

k

[∆µσ(k)qσ −∆αα(k)qµ] , (2.55)

qνΠ̃ab
µν(q)|(a2) = g2CAδ

ab

∫

k

[∆µσ(k)qσ −∆αα(k)qµ] . (2.56)
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Clearly, the sum of Eqs. (2.55) and (2.55) combines to produce

qν
[
Π̃µν(q)|(a1) + Π̃µν(q)|(a2)

]
= 0 . (2.57)

At one-loop dressed level, the ghost sector is described by the diagrams (a3)

and (a4), whose closed expressions are given by

Π̃ab
µν(q)|(a3) = −

∫

k

Γ̃d
′c′b
ν (k + q,−k,−q)Dcc′(k)Ddd′(k + q)Γ(0)cda

µ (k,−k − q, q) , (2.58)

Π̃ab
µν(q)|(a4) = −

∫

k

Dcc′(k)Γ̃(0)bacc′

νµ (−q, q, k,−k) . (2.59)

Now we repeat the same procedure, i.e., contract the above expressions with the external

background momentum, qν . In Eq. (2.59), we substitute the tree-level expression for the

BQc̄c vertex, given in Fig. 2.4. As long as for the diagram (a3), when the qν hits the

fully dressed Bc̄c vertex, it triggers the Bc̄c WTI, given in Fig. 2.6, and subsequently,

substituting the tree-level expression for the conventional ghost-gluon vertex given in

Fig. 1.2, and performing the shift k → k − q one finds that,

qνΠ̃ab
µν(q)|(a3) = −g2CAδ

abqµ

∫

k

D(k) , (2.60)

qνΠ̃ab
µν(q)|(a4) = g2CAδ

abqµ

∫

k

D(k) . (2.61)

Once again, it is clear that the sum of both diagrams produces an independent transverse

result, i.e.,

qν
[
Π̃µν(q)|(a3) + Π̃µν(q)|(a4)

]
= 0 . (2.62)

Now, let us focus on the gluonic two-loops dressed contributions given by (a5)

and (a6). Their respective analytical expressions are given by

Π̃ab
µν(q)|(a5) =

1

6

∫

k

∫

`

∆cc′

αβ(k)∆dd′

σρ (q + k + `)∆ee′

λγ (`)Γ̃be
′d′c′

νγρβ (−q,−`, q + k + `,−k)×

Γ
(0)acde
µασλ (q, k,−q − k − `, `) , (2.63)

Π̃ab
µν(q)|(a6) =

1

2

∫

k

∫

`

∆cc′

αβ(k)∆dd′

σρ (q + k + `)∆ee′

λγ (`)∆gg′

χω(q + `)Γ̃be
′g′

νγω (−q,−`, q + `)×

Γ
(0)acde
µασλ (q, k,−q − k − `, `)Γc′gd′βλρ (−k,−q − `, k + q + `) . (2.64)
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Then, contracting with the external background momentum qν , and using in

Eqs. (2.63) and (2.64) the BQQQ and the BQQ WTIs shown in Fig. 2.6, we arrive at

qνΠ̃ab
µν(q)|(a5) =

g

6

∫

k

∫

`

∆αβ(k)∆σρ(q + k + `)∆λε(`)Γ
(0)acde
µασλ (q, k,−q − k − `, `)× (2.65)

[f bxeΓxdcερβ(−q − `, q + k + `,−k)+f bxdΓxecρεβ(k + `,−`,−k)+f bxcΓxedερβ(−q − k,−`, q + k + `)] ,

qνΠ̃ab
µν(q)|(a6) =

g

2
f beg

∫

k

∫

l

∆αβ(k)∆σρ(q + k + `)[∆λε(`)−∆λε(q + `)]× (2.66)

Γ
(0)acde
µασλ (q, k,−q − k − `, `)Γcgdβερ(−k,−q − `, k + q + `) .

Now, notice that terms in square brackets, appearing in the second line of

Eq. (2.65), after applying shifts in both momenta k and `, and relabelling some dummy

Lorentz and color indices can be converted to

− 3f begΓcgdβερ(−k,−q − `, k + q + `) . (2.67)

Conversely, the term proportional to the propagator ∆λε(q + `) in Eq. (2.64)

vanishes. To see that, we shift `→ `− q, turning this term in an expression independent

of q, and therefore making the free index of Lorentz, µ, impossible to saturate. Then, one

finds that the sum of the above contributions give

qν
[
Πµν(q)|(a5) + Πµν(q)|(a6)

]
= 0 . (2.68)

Combining the results of Eqs. (2.57), (2.62) and (2.68) we prove that the mixed

gluon self-energy, Π̂µν(q), has a blockwise transversality. In addition, the transversality of

the gluonic and the ghost sector emerge independently. As a result, one can truncate the

SDE for the QB propagator without violating the transversality of the gluon self-energy,

as long as we consider all diagrams within the chosen blocks.

We finish this Chapter by making two observations. Firstly, the proof of block-

wise transversality for the background gluon self-energy, Π̂µν(q), can be carried out in the

same lines as above. Second, when we mention that the full self-energy can be truncated

without compromising the transversality, this does not mean that the neglected part is

subleading.



Chapter 3
Schwinger-Dyson Equations

In this thesis, we employ the SDE formalism to study the QCD nonperturbative

properties. The SDEs were first derived in QED by Dyson [66] and Schwinger [67], and

they can be understood as the equations of motion of the theory which governs the

dynamics of the Green’s functions. They form an infinite system of nonlinear integral

equations that couples all Green’s functions, i.e., the propagators, vertices, and higher

n-point functions.

In the previous Chapter, we have seen that the BFM Green’s functions satisfy

Abelian-like WTIs, and this property is a powerful feature that should be explored to

build a self-consistent SDE truncation.

In this Chapter, we will focus on the formal derivation of the SDEs from the

generating functional, with a particular interest in the new BFM ghost sector.

We begin this Chapter with the derivation of the master SDE in Section 3.1,

which is the starting point to derive every SDE. Then, we proceed, and, in Section 3.2,

we specify our formalism to the BFM QCD, and derive the ghost propagator SDE. In

Section 3.3, we present the main result of this Chapter: the derivation of the BBc̄c vertex

SDE. This derivation is a novel result, and as far as we know, this is the first time that

the SDE for this vertex is derived in the literature.

3.1 The Schwinger-Dyson master equation

In this Section, we derive the SD master equation following the steps of [40,

68]. To derive the SD master equation, first, we perform a change of variables on the
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VEVs of the fields inside the generating functional Z[J ] given by

φ̄i(x)→ φ̄′i(x) + εfi(x) , (3.1)

where ε is an infinitesimal parameter, and fi(x) is an arbitrary function of x, independent

of the fields. Then, the generating functional reads

Z[J ] =

∫
D[φ̄] exp

{
iS[φ̄′] + iε

∫
d4x

δS[φ̄′]

δφ̄′i(x)
fi(x) + i

∫
d4x Ji(x)

[
φ̄′i(x) + εfi(x)

]}
. (3.2)

Note that we have used that the Jacobian of the transformation is unit, since fi(x) is

independent of the field, i.e., D[φ̄] = D[φ̄′].

Then, the next step is to notice that an expansion around the parameter ε

generates, at zeroth order, the original Z[J ] before the change of variables in the field,

whereas at first order in ε, we have that

0=

∫
D[φ̄] exp

[
iS[φ̄] + i

∫
d4x Ji(x)φ̄i(x)

]
×
[
iε

∫
d4x′

(
δS[φ̄]

δφ̄i(x′)
+ Ji(x

′)

)
fi(x

′)

]
. (3.3)

Since fi(x
′) is arbitrary, the integrand in x must be zero and then one finds

(
δS[φ̄]

δφ̄i(x′)
+ Ji(x

′)

)
Z[J ] = 0 . (3.4)

Eq. (3.4) is the SD master equation. Its functional differentiation generates the SDEs for

the disconnected Green’s functions. To obtain the SDEs for the 1PI functions, one only

needs to substitute in Eq. (3.4) the Z[J ] in terms of the connected generating functional

W [J ], i.e., Z[J ] = e−iW [J ] [see Eq. (2.6)]. Then, the functional differentiation of Eq. (3.4)

creates an infinite tower of nonlinear coupled integral equations relating all the n-point

Green’s functions of a given theory [37, 40, 68].

Note that the derivation of the SD master equation proceeds analogously to

the one for the Euler-Lagrange equation, where we perform an infinitesimal change in the

classical field and obtain that the variation of the action is null. Therefore, the SDEs are

considered a generalization of the Euler-Lagrange equations for the Green’s functions of

a quantum theory governing their dynamical evolution.
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3.2 The SDE for the ghost propagator

In this Section, we derive the SDE for the ghost propagator. We can proceed

in two equivalent ways to derive this equation. The first one is to use the conventional

Lagrangian, LQCD, given by Eq. (1.1), and thus define the action, SQCD; or equivalently,

one can use the BFM ghost Lagrangian, Lghost, given by Eq. (2.38), then, define the

corresponding action, S̃.

We want to highlight that both ways are possible, leading to precisely the

same result because there are no background ghosts. Here we will follow the second route

because it will be more convenient for the derivation of the SDE for the BBc̄c vertex,

which is the central result of this Chapter, to be presented in the next Section.

Then, the relevant part of the BFM action, where the (anti)ghost fields appear,

is given by

S̃[Q, c, c] =

∫
d4x[cd∂2cd − gf edgBd

αc
e∂αc

g + gfdeg(∂αc
d)(Q+B)eαc

g (3.5)

− g2f gdxfxehBd
α(Q+B)eαc

gch] .

Thus, the BFM generating functional reads

Z̃[Jα, jc, j̄c] =

∫
D[A]D[c]D[c] exp

{
iS̃[Q, c, c] +

∫
d4x(JaαQ

a
α + ca jac + j̄c

a
ca)

}
. (3.6)

Looking on the perspective of W̃ [A, c, c], and its Legendre transformation,

Γ̃[Q, c, c] = W̃ [Jα, jc, j̄c]−
∫
d4x(JaαQ

a
α + ca jac + j̄c

a
ca) , (3.7)

we obtain the following relations

δW̃

δJaα
= Qa

α ,
δW̃

δj̄c
a = −ca , δW̃

δjac
= ca ,

δΓ̃

δQa
α

= −Jaα ,
δΓ̃

δca
= j̄c

a
,

δΓ̃

δca
= −jac . (3.8)

Applying the SD master equation, given in Eq. (3.4), for the ghost field, cn,
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with Z̃[J ] = e−iW̃ [J ], we find that

e−iW̃ [Jα,jc,j̄c]

(
δS̃

δcn

[
−i δ
δJα

,−i δ
δjc

, i
δ

δj̄c

]
+ j̄c

n

)
eiW̃ [Jα,jc,j̄c] = 0 . (3.9)

Next, computing the functional derivative of S̃[Q, c, c], given in Eq. (3.5), with respect to

the ghost, cn(z), we obtain

δS̃[Q, c, c]

δcn(z)
=∂2

zc
n(z)− gfadnBd

α(z)∂αc
a(z)− gfane[∂αz ca(z)][Q(z) +B(z)]eα

+ g2fadcf cenBd
α(z)[Q(z) +B(z)]eαc

a(z) . (3.10)

Then, using Eq. (3.10) into Eq. (3.9), we arrive at

∂2
z

δW̃

δjnc (z)
+gfadnBd

α(z)∂αz
δW̃

δjac (z)
−gfane∂αz

[
δW̃

δJeα(z)

δW̃

δjac (z)

]
+igfane∂αz

[
δ2W̃

δjac (z)δJeα(z)

]
+

− gfane∂αzBe
α(z)

δW̃

δjac (z)
+g2fadcf cenBd

α(z)
δW̃

δJeα(z)

δW̃

δjac (z)
−ig2fadcf cenBd

α(z)
δ2W̃

δJeα(z)δjac (z)

+g2fadcf cenBd
α(z)Be

α(z)
δW̃

δjac (z)
+j̄c

n
(z)=0 . (3.11)

To proceed, we rewrite Eq. (3.11) as a function of the functional derivative

of the effective action, Γ̃, with respect to the fields, instead of W̃ . To do that, we use

Eqs. (2.11) and (3.8), then Eq. (3.11) becomes

∂2
zc
n(z)+gfadnBd

α(z)∂αz c
a(z)−gfane∂αzQe

α(z)ca(z)−igfane∂αz

(
δ2Γ̃

δQe
α(z)δca(z)

)−1

+

− gfane∂αzBe
α(z)ca(z)+g2fadcf cenBd

α(z)Qe
α(z)ca(z)+ig2fadcf cenBd

α(z)

(
δ2Γ̃

δQe
α(z)δca(z)

)−1

+

+ g2fadcf cenBd
α(z)Be

α(z)ca(z)− δΓ̃

δcn(z)
=0 . (3.12)

Now, taking the functional derivative of the above expression with respect to

the antighost field, cm(y), and setting the VEVs to zero, we find that

δ2Γ̃

δcm(y)δcn(z)
− δnm∂2

zδ(y − z) + igfane∂αz
δ

δcm(y)

(
δ2Γ

δQe
α(z)δca(z)

)−1

= 0 . (3.13)
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Employing the relation given by Eq. (2.13), the above equation can be rewritten as

δ2Γ̃

δcm(y)δcn(z)
− δnm∂2

zδ(y − z) (3.14)

−igfane∂αz
∫

d4u d4v

(
δ2Γ̃

δQe
α(z)δQi

β(u)

)−1
δ3Γ̃

δQi
β(u)δcm(y)δcj(v)

(
δ2Γ̃

δcj(v)δca(z)

)−1

= 0 .

As a final step, one needs to identify the quantities appearing in Eq. (3.14).

The fully dressed ghost propagator is defined in terms of the effective action as,

Dnm(z − y) = i

(
δ2Γ̃

δcm(y)δcn(z)

)−1

. (3.15)

Similarly, the full gluon propagator is given by

∆ei
αβ(z − u) = i

(
δ2Γ̃

δQe
α(z)δQi

β(u)

)−1

, (3.16)

whereas the conventional ghost-gluon vertex is defined as

Γmjiβ (y, v, u) =
δ3Γ̃

δcm(y)δcj(v)δQi
β(u)

. (3.17)

Notice that the first term, δnm∂2
zδ(y − z), is nothing else than the ghost propagator, at

tree-level, in coordinate space.

Applying the above definitions into Eq. (3.14), the SDE for the ghost propa-

gator in coordinate space reads

[Dnm(z−y)]−1 =[Dnm
(0) (z−y)]−1−igfane∂αz

∫
d4ud4v∆ei

αβ(z−u)Daj(z−v)Γmjiβ (y, v, u). (3.18)

Now, applying the Fourier transformation to convert the above equation in momenta

space, we obtain

[Dnm(q)]−1 =[Dnm
(0) (q)]−1−

∫

k

∆ei
αβ(k)Daj(k+q)Γ(0)ane

α (−k−q, q, k)Γmjiβ (−q, k+q,−k). (3.19)

Eq. (3.19) is the SDE for ghost propagator, whose diagrammatic representation is shown

in the upper panel of Fig. 3.1.

It is also important to point out that one could use the SD master equation
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q
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]
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]
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−1

Figure 3.1: The diagrammatic representations of the ghost SDE, derived from two different
perspectives. In the upper panel, we show the derivation from the perspective of the ghost
leg, while in the lower panel, we have the view from antighost leg.

for the antighost field as a starting point, instead of the one for the ghost, as we did here

[see Eq. (3.9)]. In that case, the difference would be that the bare vertex, appearing in

the resulting ghost propagator SDE, would appear attached to the antighost external leg,

instead of the ghost leg. In the lower panel of Fig. 3.1, we show the ghost SDE from this

new perspective.

3.3 The SDE for the BBc̄c vertex

Now, we are in the position to derive the main result of this Chapter, namely

the SDE for the BBc̄c vertex.

To do that, we can take advantage of the previous derivation and use Eq. (3.12)

as a starting point. Thus, the SDE for the BBc̄c can be obtained by simply taking the

functional derivative of the Eq. (3.12) with respect to the background gluon fields, Bb
ν(x),

and Ba
µ(w), respectively. After doing that, we set the VEVs to zero, and we arrive at

− δ4Γ̃

δBa
µ(w)δBb

ν(x)δcm(y)δcn(z)
+ iÎΓ

(0)abmn

µν (w, x, y, z)− igfxne∂αzQabmexµνα (w, x, y, z, z)

+ ig2fxbcf cenδ(z−x)Kamexµν (w, y, z, z)+ig2fxacf cenδ(z−w)Kbmexνµ (x, y, z, z) = 0 , (3.20)

where we define the one-particle reducible (1PR) five-point function, Qabmexµνα (w, x, y, z, z),

as

Qabmexµνα (w, x, y, z, z) =
δ

δBa
µ(w)

δ

δBb
ν(x)

δ

δcm(y)

(
δ2Γ̃

δQe
α(z)δcx(z)

)−1

, (3.21)
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Figure 3.2: The diagrammatic representation of the BBc̄c SDE. The purple ellipses rep-
resent the 1PR four- and five-points kernels. We have omitted the contribution of the
counterpart of the diagram (d2), where the two background gluon legs are crossed.

and the 1PR four-point function, Kbmexνµ (x, y, z, z), given by

Kbmexνµ (x, y, z, z) =
δ

δBb
ν(x)

δ

δcm(y)

(
δ2Γ̃

δQe
µ(z)δcx(z)

)−1

. (3.22)

Already, at the level of Eq. (3.20), one can identify the first term as the com-

plete vertex ÎΓ
abmn

µν (w, x, y, z) (our BBc̄c vertex), which in terms of the effective action is

given by

ÎΓ
abmn

µν (w, x, y, z) = i
δ4Γ̃

δBa
µ(w)δBb

ν(x)δcm(y)δcn(z)
. (3.23)

In addition, the second term appearing in Eq. (3.20), we have identified it as the tree-level

counterpart of the BBc̄c (in the coordinates space), i.e.,

iÎΓ
(0)abmn

µν (w, x, y, z) = g2(fmbcf can + fmacf cbn)gµνδ(z − x)δ(z − w)δ(z − y) , (3.24)

whose Feynman rule in the momentum space was already mentioned in Fig. 2.4.

Now, notice that the last two terms of Eq. (3.20) are equal under the simultane-

ous exchange of the Lorentz indices, µ↔ ν, color indices, a↔ b, and coordinates, w ↔ x.

Their appearance is a direct consequence of the Bose symmetry that the BBc̄c SDE obeys

with respect to the exchange of the two background gluon legs.

The five- and four-point functions of Eqs. (3.21) and (3.22) are the 1PR kernels,

whose decomposition into 1PI vertices may be obtained using the relation Eq. (2.13). The

diagrammatic representation of the SDE for the BBcc, in terms of 1PR kernels, is shown
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in Fig. 3.2. For the sake of simplicity, in this Figure, we omit the counterpart of the

diagram (d2), where the two background gluon legs are crossed.

Now, using Eq. (2.13) to decompose the connected function in Eq. (3.22) we

get that

Kbmexνµ (x, y, z, z) =− i
∫

[u]

∆ei
µα(z − u1)ĨΓ

bimj

να (x, u1, y, u2)Dxj(z − u2) (3.25)

+ i

∫

[u,v]

∆eg
µβ(z − v1)Γ̃bghνβρ(x, v1, v2)∆hi

ρα(v2 − u1)Γmjiα (y, u2, u1)Dxj(z − u2)

+ i

∫

[u,v]

∆ei
µα(z − u1)Γmjiα (y, u2, u1)Dhj(v1 − u2)Γ̃hgbν (v1, v2, x)Dxg(z − v2) ,

where we have introduced the definitions for the dressed BQQ vertex, Γ̃bghνβρ(x, v1, v2), as

Γ̃bghνβρ(x, v1, v2) =
δ3Γ̃

δBb
ν(x)δQg

β(v1)δQh
ρ(v2)

, (3.26)

for the Bc̄c vertex, Γ̃hgbν (v1, v2, x), as

Γ̃hgbν (v1, v2, x) =
δ3Γ̃

δch(v1)δcg(v2)δBb
ν(x)

, (3.27)

and for the BQc̄c vertex, ĨΓ
bimj

να (x, u1, y, u2), as

ĨΓ
bimj

να (x, u1, y, u2) = i
δ4Γ̃

δBb
ν(x)δQi

β(u1)δcm(y)δcj(u2)
. (3.28)

We also used a shorthand notation for the integrals, given by

∫

[u]

=

∫
d4u1 d

4u2 ,

∫

[u,v]

=

∫
d4u1 d

4u2 d
4v1 d

4v2 . (3.29)

Now, using Eq. (2.13) repeatedly to decompose the 1PR kernel of Eq. (3.21),
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we arrive at

Qabmexµνα (w, x, y, z, z) = (3.30)

−
∫

[u,v,t]
∆ek
αλ(z − t1)Γ̃alkµγλ(w, t2, t1)∆lg

γρ(t2 − v1)Γ̃bhgνσρ(x, v2, v1)∆hi
σβ(v2 − u1)Γjmiβ (u2, y, u1)Djx(u2 − z)

+

∫

[u,v]
∆eg
αρ(z − v1)ÎΓ

abhg

µνσρ(w, x, v2, v1)∆hi
σβ(v2 − u1)Γjmiβ (u2, y, u1)Djx(u2 − z)

−
∫

[u,v,t]
∆eg
αρ(z − v1)Γ̃bhgνσρ(x, v2, v1)∆hk

σλ(v2 − t1)Γ̃alkµγλ(w, t2, t1)∆li
γβ(t2 − u1)Γjmiβ (u2, y, u1)Djx(u2 − z)

+

∫

[u,v]
∆eg
αρ(z − v1)Γ̃bhgνσρ(x, v2, v1)∆hi

σβ(v2 − u1)ĨΓ
ajmi

µβ (w, u2, y, u1)Djx(u2 − z)

−
∫

[u,v,t]
∆eg
αρ(z − v1)Γ̃bhgνσρ(x, v2, v1)∆hi

σβ(v2 − u1)Γjmiβ (u2, y, u1)Djk(u2 − t1)Γ̃hgbµ (t2, t1, w)Dlx(t2 − z)

−
∫

[u,v,t]
∆eg
αρ(z − t1)Γ̃ahgµσρ(w, t2, t1)∆hi

σβ(t2 − u1)Γjmiβ (u2, y, u1)Djg(u2 − v1)Γ̃hgbν (v2, v1, x)Dhx(v2 − z)

+

∫

[u,v]
∆ei
αβ(z − u1)ĨΓ

aijm

µβ (w, u1, u2, y)Djg(u2 − v1)Γ̃hgbν (v2, v1, x)Dhx(v2 − z)

−
∫

[u,v,t]
∆ei
αβ(z − u1)Γjmiβ (u2, y, u1)Djk(u2 − t1)Γ̃lkaµ (t2, t1, w)Dlg(t2 − v1)Γ̃hgbν (v2, v1, x)Dhx(v2 − z)

+

∫

[u,v]
∆ei
αβ(z − u1)Γjmiβ (u2, y, u1)Djg(u2 − v1)Γ̂abhgµν (w, x, v2, v1)Dhx(v2 − z)

−
∫

[u,v,t]
∆ei
αβ(z − u1)Γjmiβ (u2, y, u1)Djg(u2 − v1)Γ̃hgbν (v2, v1, x)Dhk(v2 − t1)Γ̃lkaµ (t2, t1, w)Dlx(t2 − z)

+

∫

[u,v]
∆eg
αρ(z − v1)Γ̃ahgµσρ(w, v2, v1)∆hi

σβ(v2 − u1)ĨΓ
bijm

νβ (x, u1, u2, z)D
jx(u2 − z)

+

∫

[u]
∆ei
αβ(z − u1)ÎΓ

abijm

µνβ (w, x, u1, u2, z)D
jx(u2 − z)

+

∫

[u,v]
∆ei
αβ(z − u1)ĨΓ

bijm

νβ (x, u1, u2, z)D
jg(u2 − v1)Γ̃kgaµ (v2, v1, w)Dkx(v2 − z) .

Once more, we introduced new definitions: the vertex BBQQ, ÎΓ
abhg

µνσρ(w, x, v2, v1), as

ÎΓ
abhg

µνσρ(w, x, v2, v1) = i
δ4Γ̃

δBa
µ(w)δBb

ν(x)δQhσ(v2)δQgρ(v1)
, (3.31)

the 5-point function Γ̂abijdµνβ (w, x, u1, u2, z) as

Γ̂abijdµνβ (w, x, u1, u2, z) =
δ5Γ̃

δBa
µ(w)δBb

ν(x)δQiβ(u1)δcj(u2)δcd(z)
, (3.32)
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and the integral measure,

∫

[u,v,t]
=

∫
d4u1 d

4u2 d
4v1 d

4v2 d
4t1 d

4t2 . (3.33)

In the case where we expand the connected functions in terms of the 1PI vertices,

like we did in Eqs. (3.25) and (3.30), one gets the representation given in Fig. 3.3. Once again,

we omit the diagrams with crossed legs for the sake of simplicity.

+

(d13)

+

(d15)

+

(d14)

= + +

(d12)(d11)

(d18)

+ +

(d21)

++

(d22) (d23)

+

(d17)

+

(d16)

Figure 3.3: The diagrammatic representation of the BBc̄c SDE expanded in terms of 1PI
vertices. The diagrams with crossed legs are omitted for the sake of simplicity. Note that,
in our notation, the diagrams (d1i) with i = 1, 2, · · · , 8 are the ones coming from the
expansion of the connected function in diagram (d1) in Fig. 3.2, while (d2i) with i = 1, 2, 3
are the ones coming from (d2).



Chapter 4
All-soft limit for the BBc̄c vertex

In Chapter 2, we introduced the functional formalism, and in this scenario, in the

last Chapter we derived the SDE for the BBc̄c vertex in two formats. The first one is a compact

form, expressed in terms of “one-particle reducible” four- and five-point kernels. Then, in the

second format, we performed the skeleton expansion of the reducible kernels in terms of 1PI

contributions. In this Chapter, we will contextualize them as we present the main objective

of this work: the study of the BBc̄c vertex in the so-called all-soft configuration, wherein the

momenta of the four legs are set to zero.

We will show that, in this limit, the tensorial structure of this vertex simplifies

enormously, reducing from 35 independent tensors (Lorentz + color indices) to only two contri-

butions, the metric gµν times two different color factors.

In order to implement the all-soft limit on the SDE for the BBc̄c vertex, we will

have to apply the WTIs that the BFM vertices satisfy judiciously. In addition, as typical from

the BFM calculation, we will see that it will be crucial to fix the Landau gauge at the very end

of the calculation procedure to not distort the final result.

The Chapter is organized as follows. In Section 4.1, we shall elaborate on a few

features of the BBc̄c vertex, starting with its most general tensorial structure in general kine-

matics. At this point, it will become manifest the inherent complexity in the treatment of this

vertex. Then, we will start arguing in the direction of the all-soft configuration of this vertex. In

order to derive this limit, in Section 4.2, we set important definitions and notations for the fully

dressed vertices. In particular, we recall known results for the fully dressed BFM ghost-gluon

vertex (Bcc). Finally, in Section 4.3, we will look into the individual contributions of the 1PI

version of BBc̄c SDE, and then we perform the all-soft limit for each of these diagrams, deriving

an exact result for this vertex in the all-soft kinematic limit. We show, using the WTI that the

BQc̄c vertex satisfies, that the above relation can be written in a rather compact form, expressed
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only in terms of the ghost dressing function, F (q). Then, Section 4.4 shows an alternative way,

based entirely on the WTIs, to derive the same relation. Finally, we will close the Chapter

with our numerical analysis. In particular, we envisage a possible application for the all-soft

exact relation established here. This relation can be used as a benchmark to establish the best

truncation scheme to be adopted in a future study of the BBc̄c SDE in general kinematics. In

particular, in Section 4.5, we propose three truncation schemes for the BBc̄c SDE and check

which one is in better agreement with the exact relation.

4.1 The general tensorial structure

In this Section, we will elaborate on a few features of the BBc̄c vertex, which will

be of interest in what follows. We will start by addressing the most general tensorial structure

of the BBc̄c vertex. To do that, we present the elements of the Lorentz and the color basis. We

also discuss the restrictions that the Bose symmetry, which the background gluon legs should

respect, imposes on the form factors. After this Section, the intrinsic complexity of treating this

vertex in general kinematics will become clear.

The BBc̄c vertex, ÎΓ
abmn

µν (q, r, p, t) = −ig2Γ̂abmnµν (q, r, p, t), is a complete four-point

Green’s function composed by two background gluons, an antighost, and a ghost field, which is

diagrammatically represented in the Fig. 4.1.

˜Γabmn
µν (q, r, p, t) = ̂Γabcd

αβµν(q, r, p, t) =̂Γabmn
µν (q, r, p, t) =

(b) (c)

pt

(a)

rq q r

t p

q r

t p

µ, a ν, b

mn

µ, a ν, b

mn

α, a β, b

ν, d µ, c

Figure 4.1: The diagrammatic representation of the BBc̄c vertex, ÎΓ
abmn

µν (q, r, p, t), and its
respective adopted momenta convention.

This object has two Lorentz indices (2-rank) and effectively three momenta scales,

such that there are 10 independent tensorial structures available for the decomposition, obtained

from the combination of these momenta and metric tensors. On the other hand, its color

structure is also cumbersome, the vertex has four color indices (4-rank) and therefore, there are

8 independent tensors which are formed as combination of the Kronecker delta, δab, and the

totally antisymmetric, fabc, and symmetric, dabc, structure constants.
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In order to carry out this decomposition, we will employ a naive basis, where the

vertex can be written as

Γ̂abmnµν (q, r, p, t) =
10∑

i=1

8∑

j=1

Cij(q, r, p, t)`iµνcabmnj , (4.1)

where `iµν are the Lorentz elements of the naive basis1 given by

`1µν = gµν , `2µν = qµrν , `3µν = qµpν , `4µν = qνrµ , `5µν = qνpµ ,

`6µν = rµpν , `7µν = pµrν , `8µν = qµqν , `9µν = rµrν , `10
µν = pµpν ,

(4.2)

cabmnj are the color basis elements expressed as [69, 70]

cabmn1 = fanxfmbx , cabmn2 = fmaxf bnx , cabmn3 = δabδmn , cabmn4 = δamδnb ,

cabmn5 = δanδbm , cabmn6 = dabrfmnr , cabmn7 = damrf bnr , cabmn8 = danrf bmr ,
(4.3)

and Cij(q, r, p, t) are the form factors. Notice that at tree-level, only the tensorial component

proportional to the metric, i.e., `1µν , survives, then the only nonvanishing form factors are

C(0)
11 (q, r, p, t) = C(0)

12 (q, r, p, t) = 1 . (4.4)

Therefore, the most general decomposition of the BBc̄c vertex, given in Eq. (4.1),

depends on 80 tensors. Each one of them will be accompanied by its corresponding form factor.

The form factors are multidimensional functions depending on six variables, i.e., the three

independent momenta and the three angles between them.

Bose symmetry with respect to the two background legs requires that Γ̂abmnµν (q, r, p, t)

is invariant under the simultaneous interchange of the corresponding Lorentz index, µ↔ ν, color

index, a↔ b, and momenta q ↔ r; this, in turn, furnishes a series of relations between different

form factors, which reduce the number of independent form factors from the original 80 to only

35.

In Appendix B, we expand our discussion about the construction of the Lorentz

and color basis, given by Eqs. (4.2) and (4.3), respectively. In addition, we explain, in more

detail, how the Bose symmetry constrains the various form factors, reducing them down to 35

independent ones.

Although there is a substantial reduction in the number of the form factors due to

1In Appendix B we explain, in detail, the construction of the elements of the naive basis.
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˜Γamn
µ (r, p, q) =

˜Γabc
αµν(q, r, p) =Γamn

µ (r, p, q) =

q

rp

(b)

q

rp

(c)

q

rp

(a)

µ, a

mn

µ, a

mn

α, a

ν, c µ, b

Hµν(r, p, q) = gµν +

p

(d)

q

r

µ

ν

Figure 4.2: Diagrammatic representations of the fully dressed three-point vertices. In
particular, we show in the panels (a) the conventional ghost-gluon vertex (Qcc), (b) the
background ghost-gluon vertex (Bcc), and (c) the three-background-quantum-quantum
vertex (BQQ) with their respective momenta conventions.

the Bose symmetry, one may still appreciate the high degree of non-triviality that a complete

analysis of the structure of the BBc̄c encompasses. However, as we will show in the following,

this does not remain true as one goes from general kinematics to specific momenta configurations

- in this case, the all-soft configuration. More specifically, in the all-soft limit, the momenta of

all leg of Γ̂abmnµν (q, r, p, t) are set to zero, that is, q → 0, r → 0, p→ 0, and t→ 0.

Already at the level of the tensorial basis, given in Eq. (4.2), it is straightforward

to see that the unique tensor that will survive in this limit will be `1µν . Using the fact that the

answer, in this limit, should be Bose symmetric, the color tensors which will be available are the

combinations of (i) cabmn1 and cabmn2 , (ii) cabmn4 and cabmn5 , and (iii) cabmn3 . However, options (ii)

and (iii) violate the ghost-antighost symmetry between the ghost legs. Therefore, it is natural

to expect that in the all-soft limit the BBc̄c vertex may be written as

Γ̂abmnµν (0, 0, 0, 0) = gµν(fmaxfxbn + fmbxfxan) C11(0, 0, 0, 0) , (4.5)

where we have used Eq. (B.10) to fix C11(q, r, p, t) = C12(r, q, p, t).

4.2 Definitions of the full Green’s functions

Before embarking on the main purpose of this work, i.e., the calculation of the

BBc̄c SDE in the all-soft limit, let us first present some basic definitions and conventions neces-

sary to evaluate the Γ̂abmnµν in the kinematic configuration of interest.

4.2.1 Three-point sector

Let us start with quantities appearing in the three-point sector, shown in Fig. 4.2. In

panel (a), we display the fully dressed conventional ghost-gluon vertex, Γamnµ (r, p, q) = −gfamnΓµ(r, p, q),
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˜Γamn
µ (r, p, q) =

˜Γabc
αµν(q, r, p) =Γamn

µ (r, p, q) =

q

rp

(b)

q

rp

(c)

q

rp

(a)

µ, a

mn

µ, a

mn

α, a

ν, c µ, b

Hµν(r, p, q) = gµν +

p

(d)

q

r

µ

ν

Figure 4.3: The diagrammatic representation of the ghost-gluon scattering kernel and the
momenta convention adopted.

whose most general tensorial decomposition is given by

Γµ(r, p, q) = B1(r, p, q)rµ +B2(r, p, q)qµ , (4.6)

where B1(r, p, q) and B2(r, p, q) are the form factors. At tree-level B
(0)
1 = 1, and B

(0)
2 = 0, and

we recover the Feynman rule quoted in Fig. 1.2.

The ghost-gluon vertex respects the following STI

Γµ(r, p, q) = rνHµν(r, p, q) , (4.7)

where Hµν(r, p, q) is the ghost-gluon scattering kernel, depicted in Fig. 4.3.

A well-known result for the ghost-gluon vertex is a direct consequence of the so-

called Taylor theorem [71], which states that the ghost-gluon vertex reduces to its tree-level

value in the p → 0 limit. This configuration in the literature is referred to soft-ghost or Taylor

kinematics [10, 72, 73].

For later convenience, it is also crucial to check the soft antighost limit, i.e., when one

sets r to 0, which will be extensively employed to evaluate the BBc̄c vertex. From Eq. (4.7), one

can see that, when r → 0, the ghost-gluon vertex vanishes. Furthermore, using the decomposition

in Eq. (4.6), it is possible to see that the form factor B2 also vanishes in this kinematic limit.

The vertex appearing in the panel (b) of Fig. 4.2 is the complete background ghost-

gluon vertex (Bcc), Γ̃amnµ (r, p, q) = −gfamnΓ̃µ(r, p, q). As it was mentioned in the Chapter 2

[see Fig. 2.6], this vertex satisfies an Abelian-like WTI, which we repeat here for convenience

qµ Γ̃µ(r, p, q) = D−1(p)−D−1(r) . (4.8)

Then, employing the gauge technique procedure [74] 2, one can construct an Ansatz

2The gauge technique amounts to solving the WTI (or STI in the non-Abelian case) in favor of the
vertex involved. One of its limitations is the inaccessibility of the transverse part of the vertex.
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˜IΓ
abmn
µν (q, r, p, t) = ̂IΓ

abcd
αβµν(q, r, p, t) =̂Γabmn

µν (q, r, p, t) =

(a) (b)

pt

(a)

rq q r

t p

q r

t p

µ, a ν, b

mn

µ, a ν, b

mn

α, a β, b

ν, d µ, c

Figure 4.4: Diagrammatic representations of the fully dressed four-point vertices. In par-
ticular, we show in the panels (a) the BQc̄c and (b) BBQQ vertices with their respective
momenta conventions.

for this vertex which is given by

Γ̃µ(r, p, q) =

[
D−1(p)−D−1(r)

p2 − r2

]
(2r + q)µ . (4.9)

The full background vertex Γ̃abcαµν(q, r, p) = gfabcΓ̃abcαµν(q, r, p), appearing in the panel

(c) of Fig. 4.2, is the BQQ vertex. This vertex displays a ξ-dependence already at tree-level [see

its Feynman rule in Fig. 2.4], and this feature will persist to all-orders. Thus, one may write

that

Γ̃αµν(q, r, p) = Γ̃′αµν(q, r, p) +
1

ξ
[gαν rµ − gαµ pν ] . (4.10)

4.2.2 Four-point sector

As for the four-point sector, besides the full BBc̄c vertex already defined in Eq. (4.1),

in Fig. 4.4, we show in panel (a) the full BQc̄c vertex defined as

ĨΓ
abmn

µν (q, r, p, t) = −ig2Γ̃abmnµν (q, r, p, t) . (4.11)

Finally, in panel (b) of the same Figure, we show the complete BBQQ vertex, which

also depends on the gauge parameter. This vertex can be written as

ÎΓ
abcd

αβµν(q, r, p, t) = Γ̂abcdαβµν(q, r, p, t) +
1

ξ
facxfxbdgαµ gβν −

1

ξ
fadxfxbcgαν gβµ . (4.12)

It is important to stress here that the contributions involving the BQQ and BBQQ

vertices have to be computed in a general covariant gauge ξ, only taking the gauge parameter

to zero (to set the Landau gauge), at the very end of the calculation, when all terms containing
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Figure 4.5: The diagrammatic representation of the ghost SDE.

1/ξ terms were canceled entirely.

4.2.3 Two-point sector

Now we turn our attention to the two main functions of the two-point sector: the full

gluon propagator, ∆ab
µν(q) = −iδab∆µν(q), and the complete ghost propagator, Dab(q) = iδabD(q).

For the gluon propagator, in general covariant gauges, one has

∆µν(q) = Pµν(q)∆(q) + ξ
qµqν
q4

, Pµν(q) = gµν −
qµqν
q2

. (4.13)

As has been firmly established by a variety of large-volume simulations and continuous stud-

ies, ∆(q) saturates at a finite nonvanishing value, a feature which is widely attributed to the

emergence of a gluonic mass scale [7, 11].

The ghost propagator, D(q), is expressed in terms of its dressing function, F (q), as

D(q) =
F (q)

q2
, (4.14)

and it is know that, in the Landau gauge, F (q) saturates at a finite value in the deep infrared [11,

28, 75, 76].

The nonperturbative dynamics of F (q) is governed by the ghost SDE, given by

Eq. (3.19) and represented in Fig. 4.5. Factoring out the color terms and writing the LHS in

term of the ghost dressing function, F (q) = q2D(q), Eq. (3.19) becomes

F−1(q) = 1− ig2CA

q2

∫

k
D(k + q)qν∆µν(k)Γµ(−q, k + q,−k) . (4.15)

Next, we replace the conventional full ghost-gluon vertex, Γµ(−q, k + q,−k), by its

most general tensorial decomposition given by Eq. (4.6) and obtain that

F−1(q) = 1 + Σ(q) , (4.16)
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with Σ(q) given by

Σ(q) = ig2CA

∫

k
D(k + q)∆(k)

[
1− (k · q)2

q2k2

]
B1(−q, k + q,−k) . (4.17)

For later convenience, let us write the above expression in Euclidean space. Applying

the rules to convert from Minkowski to Euclidean space presented in the Appendix C, we arrive

at

F−1(q) = 1 + Σ(q) , (4.18)

where Σ(q) is the ghost self-energy given (in Euclidean space) by

Σ(q) = − g
2CA

(2π)3

∫ ∞

0
dk2k2∆(k)

∫ π

0
dϕ1 sin4 ϕ1D(p)B1(q2, p2, ϕ1) , (4.19)

with p = k + q, and ϕ1 the angle between −q and p.

For later convenience, now we compute the limit of the ghost self-energy when q → 0.

In this limit, the angular integration can be performed trivially, and thus one obtains that (in

Euclidean space)

Σ(0) = −3g2CA

(8π)2

∫ ∞

0
dk2F (k)∆(k)B1(k2) , (4.20)

where B1(k2) is a shorthand notation to the form factor B1 in the soft antighost limit, i.e.,

B1(0, k,−k), that will only depend on the momentum k since the angle dependence is washed

out completely.

Applying again the transformations rules, presented in the Appendix C, one can

rewrite this equation back in the Minkowski space. In doing that we find that (in Minkowski

space) the self-energy at the origin is given by

Σ(0) =
3

4
ig2CA

∫

k
∆(k)D(k)B1(0, k,−k) . (4.21)

4.2.4 Renormalization

In the next section, it will be necessary to address the renormalization of the SDE

and, subsequently, define a particular scheme for fixing the renormalization constants. Let us

then define Zg, ZA, and Zc, the renormalization constants for the coupling, the gluon, and the
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ghost fields, respectively,

g := Zg g
R , ∆(q) := ZA ∆R(q) , F (q) := Zc F

R(q) , (4.22)

where the superscript “R” denotes the renormalized quantity. As for those related to the conven-

tional ghost-gluon (Qc̄c), Z1, background ghost-gluon (Bc̄c), Z̃1, and the background four-point

functions BQc̄c, Z̃4, and BBc̄c, Ẑ4, vertices, they are defined by

Γµ(r, p, q) := Z−1
1 ΓR

µ(r, p, q) , ĨΓµν(q, r, p, t) := Z̃−1
4 ĨΓ

R

µν(q, r, p, t) ,

Γ̃µ(r, p, q) := Z̃−1
1 Γ̃R

µ(r, p, q) , ÎΓµν(q, r, p, t) := Ẑ−1
4 ÎΓ

R

µν(q, r, p, t) , (4.23)

where we have omitted the color structures for simplicity.

However, not all of these renormalization constants are independent. Indeed, one

can use the WTIs, given in Fig. 2.6, to relate them. One can see that the BBcc, Bcc, and BQcc

WTIs impose the following relations between the renormalization constants, respectively

Ẑ4 = Z̃1 , Z̃1 = Zc , Z̃4 = Z1 . (4.24)

In addition, the renormalization constants of the coupling, Zg, should satisfy the relation

Z−1
g = Z−1

1 Z
1/2
A Zc . (4.25)

The renormalization of the SDE for the ghost propagator, given by Eq. (4.16),

proceeds through the replacement of the bare quantities by the renormalized ones listed in

Eqs. (4.22) and (4.23). Then, the ghost SDE becomes

F−1
R (q) = Zc + Z1 Σ(q) . (4.26)

In what follows, the renormalization is implemented within the well-known variant

of the momentum subtraction (MOM) scheme known as “Taylor scheme” [77, 78]3, which fixes

the (finite) vertex renormalization constant at the special value Z1 = 1.

The actual closed expression of Zc is obtained from Eq. (4.26) itself, by imposing

the MOM renormalization condition, F−1
R (µ) = 1, where µ is the renormalization scale. Imple-

3In the literature this scheme is also known as minimal momentum subtraction (MiniMOM)
scheme [79], and has been employed for a recent determination of αMS from unquenched lattice sim-
ulations [80], consistent with the experimental world average.
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menting this condition at the level of Eq. (4.26) yields

Zc = 1− Σ(µ) , (4.27)

and Eq. (4.26) may be cast in the form

F−1
R (q) = 1 + Σ(q)− Σ(µ) . (4.28)

4.3 Evaluation of the all-soft limit

In Chapter 3, we have derived the SDE for the BBc̄c vertex in the compact form, as

illustrated in Fig. 3.2. In addition, we have performed the skeleton expansion of the 1PR kernels,

in terms of the 1PI vertices. Thus, in Fig. 3.3, we show the final diagrammatic representation

for the BBc̄c SDE. As one can see, the SDE contains 3+(8×2) contributions, where the number

2 contemplates the possibility of a given diagram display the same topology but with external

background gluon legs crossed. These diagrams with crossed legs were omitted in Figs. 3.2 and

3.3 for simplicity.

We are now ready to take the all-soft limit in the SDE of Fig. 3.3. We conduct this

analysis by evaluating the contribution of the 11 diagrams represented in Fig. 3.3 individually.

The other counterpart contributions (with crossed legs which were omitted in the Figure) can

be evaluated using the same line of reasoning which will be presented below.

First, notice that the diagrams in Fig. 3.3 may vanish for two reasons: either (i)

they have a gluon propagator that carries a transverse projector, for example, Pµν(k), which

contracts with the antighost momentum coming from the bare ghost-gluon vertex, kµ, or (ii)

there is a ghost-gluon vertex in the soft antighost limit, which is zero.

Case (i) happens with diagrams (d11), (d14), (d16), and (d18). Case (ii) happens

with the diagrams (d11), (d14), and (d22).

However, one has to be careful with the calculations of diagrams (d12), (d13), (d15),

(d17), and (d21), since they involve the full BQQ and BBQQ vertices, which explicitly depend

on the inverse of gauge fixing parameter 1/ξ [see Eqs. (4.10) and (4.12)]. Therefore, as we will

see soon, one must compute these contributions in a general ξ gauge, and after canceling the

1/ξ terms, we take the Landau limit, ξ → 0. Note in passing that the 5-point 1PI function in

(d18) is assumed to have no explicit dependence on the gauge parameter.

As we will see, out of these five diagrams shown in Fig. 4.6, four vanish in the all-soft

limit. We may now proceed with the explicit calculation of these contributions in this kinematic
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Figure 4.6: Diagrams of the SDE for the BBc̄c containing either the BQQ or the BBQQ
vertices. Out of these five diagrams, only (d17) furnishes a nonvanishing answer in the
all-soft limit.

configuration. Let us start with the diagram (d12), whose expression, when we set all external

momenta to zero, i.e., q = r = p = t = 0, is written as

(d12)abmnµν = g4ccndm1

∫

k

(
kρ

k2

)
ξ

[
Γ̂abcdµνσρ(0, 0,−k, k) +

1

ξ
cadbc1 gµσgνρ −

1

ξ
cacbd1 gµρgνσ

]
×

D(k)∆σλ(k)Γλ(0,−k, k) , (4.29)

where ccndm1 is defined in Eq. (4.3).

As mentioned previously, first, one has to perform the calculations in general co-

variant gauges, using for the ∆γρ(k) the expression given in Eq. (4.13). In doing that, one

can see that the terms containing 1/ξ will explicitly cancel against the ξ-dependent part of the

gluon propagator. Thus, only after this procedure one can safely set the gauge parameter to the

Landau gauge, i.e., ξ → 0. For the particular case of the above equation, after doing the above

steps, one arrives at

(d12)abmnµν =g4ccndm1

∫

k
D(k)∆σλ(k)Γλ(0,−k, k)

(
kρ

k2

)[
cadbc1 gµσgνρ − cacbd1 gµρgνσ

]
. (4.30)

Once Γλ(0,−k, k) = 0, we find that the contribution of (d12)abmnµν is null.

The next diagram to be evaluated is (d13), which can be written in the all-soft limit

as

(d13)abmnµν = g4ccdba1 cdcnm1

∫

k
D(k)Γρ(0, k,−k)

(
kγ

k2

)
ξ

[
Γ̃′µβγ(0, k,−k) +

1

ξ
(gµγkβ + gµβkγ)

]
×

(
∆ρσ(k)∆αβ(k)Γ̃′νσα(0, k,−k) + ∆ρ

ν(k)
kβ

k2
+ ∆β

ν (k)
kρ

k2

)
. (4.31)

Repeating the same procedure applied in the previous diagram, i.e., first, performing the can-

cellations of all 1/ξ terms, and only after that, fixing our calculation in the Landau gauge, we
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find that

(d13)abmnµν = g4ccdba1 cdcnm1

∫

k
D(k)Γρ(0, k,−k)

(
kγ

k2

)
[gµγkβ + gµβkγ ]× (4.32)

(
∆ρσ(k)∆αβ(k)Γ̃′νσα(0, k,−k) + ∆ρ

ν(k)
kβ

k2
+ ∆β

ν (k)
kρ

k2

)
,

which again vanishes, due to the presence of the ghost-gluon vertex in the soft antighost limit,

i.e., Γρ(0, k,−k) = 0. Therefore, we obtain that (d13)abmnµν = 0.

Now, we proceed with the analysis of the contribution of (d15). In the all-soft limit

(d15) reduces to

(d15)abmnµν = g4ccdma1 cndbc1

∫

k
∆αβ(k)D2(k)Γ̃ν(−k, k, 0)Γβ(0, k,−k)× (4.33)

(
kρ
k2

)
ξ[Γ̃′µαρ(0, k,−k) +

1

ξ
(gµρkα + gµαkρ)] .

From the above equation, one can see that the 1/ξ factor cancels against the left-over of ξ-

dependent part of the gluon propagator. Then, performing these cancellations and setting the

Landau gauge, one finds that

(d15)abmnµν = g4ccdma1 cndbc1

∫

k
∆αβ(k)D2(k)Γ̃ν(−k, k, 0)Γβ(0, k,−k)(gµρkα + gµαkρ)

kρ
k2
, (4.34)

once again, leading to a vanishing contribution due to the ghost-gluon vertex in the soft antighost

limit, i.e., Γβ(0, k,−k). Thus, we find that (d15)abmnµν = 0.

Let us now check what the diagram (d17) produces in the all-soft limit. In this

configuration, (d17) is given by

(d17)abmnµν =g4caend1

∫

k
∆αβ(k)D(k)Γ̃bdmeνα (0,−k, 0, k)× (4.35)

(
kρ
k2

)
ξ

[
Γ̃′µβρ(0, k,−k) + 2kµgβρ + gµβ

(
kρ
ξ
− kρ

)
+ gµρ

(
kβ
ξ
− kβ

)]
.

Then, one can see that the 1/ξ factors cancels also against the left-over of ξ-dependent part of

the gluon propagator. Then, performing these cancellations and setting the Landau gauge, one

finds that

(d17)abmnµν = g4caend1

∫

k
∆µα(k)D(k)Γ̃bdmeνα (0,−k, 0, k) , (4.36)

which is a nonvanishing contribution. Then, the diagram (d17)abmnµν and its crossed legs counter-

part, (d17)bamnνµ , contribute to the SDE in the all-soft limit.
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Figure 4.7: The diagrammatic representation of the SDE for the BBc̄c in the all-soft limit.

We may now proceed with the analysis of diagram (d21), whose expression in the

all-soft limit is given by

(d21)abmnµν = g4cgcmb1 ccnga1 gµβ

∫

k
D(k)Γρ(0, k,−k)

(
∆(k)P ρσ(k) + ξ

kρkσ

k4

)
× (4.37)

(
∆(k)Pαβ(k) + ξ

kαkβ

k4

)[
Γ̃′νσα(0, k,−k) +

1

ξ
(gνσkα + gναkσ)

]
.

Repeating the same steps applied in the previous calculations, we find that in the Landau gauge

the above equation reduces to

(d21)abmnµν = g4cgcmb1 ccnga1 gµβ

∫

k
D(k)Γρ(0, k,−k)

(
∆ρ
ν(k)

kβ

k2
+ ∆β

ν (k)
kρ

k2

)
, (4.38)

which again will be zero due to the presence of the ghost-gluon vertex in the soft antighost limit,

i.e., Γρ(0, k,−k), so we find that (d21)abmnµν = 0.

After scrutinizing the contributions of the five diagrams appearing in Fig. 4.6, it is

missing to evaluate one last diagram, which does not fit in any of the cases mentioned previously.

The diagram in question is (d23) of Fig. 3.3. Its expression, in the all-soft limit and Landau

gauge is given by

(d23)abmnµν = g4cedna1

∫

k
∆µα(k)D(k)Γ̃bdmeνα (0,−k, 0, k) , (4.39)

which is non-null. This diagram also has a crossed legs counterpart, (d23)bamnνµ , which should

also be taken into account.

In this way, summing the nonvanishing contributions given by Eqs. (4.36) and (4.39)

and their respective crossed legs counterparts, one arrives that the SDE of the BBcc vertex, in

the all-soft limit, is diagrammatically represented in Fig. 4.7, and it may be written as

Γ̂abmnµν (0, 0, 0, 0) = (fmaxfxbn + fmbxfxan)gµν − ig2
4∑

i=1

(ai)
abmn
µν , (4.40)
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where the diagrams (ai)
abmn
µν are given by

(a1)abmnµν = feaxfdnx
∫

k
∆µα(k)D(k)Γ̃bdmeνα (0,−k, 0, k) ,

(a2)abmnµν = febxfdnx
∫

k
∆να(k)D(k)Γ̃admeµα (0,−k, 0, k) ,

(a3)abmnµν = fenxfadx
∫

k
∆µα(k)D(k)Γ̃bdmeνα (0,−k, 0, k) ,

(a4)abmnµν = fenxf bdx
∫

k
∆να(k)D(k)Γ̃admeµα (0,−k, 0, k) . (4.41)

The (multiplicative) renormalization of Eq. (4.40) proceeds in the standard way.

Specifically, one must introduce the propagators and vertices renormalization relations given in

Eqs. (4.22) and (4.23). Then, it is possible to show that the renormalized version of Eq. 4.40

reads

Γ̂abmnµν (0, 0, 0, 0) = Zc(f
maxfxbn + fmbxfxan)gµν − ig2Z1

4∑

i=1

(ai)
abmn
µν . (4.42)

In what follows, we will invoke Taylor’s theorem [see discussion next Eq. (4.26)], in

order to finally set Z1 = 1 to all orders. Then, the renormalized version of SDE becomes

Γ̂abmnµν (0, 0, 0, 0) = Zc(f
maxfxbn + fmbxfxan)gµν − ig2

4∑

i=1

(ai)
abmn
µν , (4.43)

where the renormalized constant Zc was already fixed from the ghost SDE, given by Eq. (4.27).

As we have seen above, the expression of the SDE for the BBc̄c vertex in the all-soft

limit depends crucially on the BQc̄c vertex on a particular kinematic limit, more specifically, on

Γ̃abmnµν (0,−k, 0, k). It turns out that, for this specific limit, one can determine, without resort

to any approximation, what is the exact answer for the BQc̄c with the help of the WTI that it

satisfies.

To be clear about the procedure, let us rewrite here the WTI that the BQc̄c vertex

satisfies, which was already presented in Fig. 2.6,

qµΓ̃abmnµν (q, r, p, t)=fnaxf bmxΓν(p, q+t, r) + fnbxfmaxΓν(q+p, t, r) (4.44)

+ fnmxfabxΓν(p, t, q+r) .

Then, one can compute Γ̃abmnµν (0,−k, 0, k) by taking the background gluon, q, and the antighost,

p, momenta to zero. Setting r = −t, and by means of a Taylor expansion around q = 0, we find
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that

qµΓ̃abmnµν (0,−t, 0, t) =− fnaxf bmx qµ ∂

∂qµ

[
B1(−q, q + t,−t)qν +B2(−q, q + t,−t)tν

]∣∣∣∣
q=0

(4.45)

− fnmxfabx qµ ∂

∂qµ

[
B1(−q, t, q − t)qν +B2(−q, t, q − t)(q − t)ν

]∣∣∣∣
q=0

,

where the terms of order zero in q on the right-hand side (RHS) of the equation vanish, since

they are proportional to the Jacobi identity (see Eq. (A.5) in Appendix A). Then, using the fact

that the ghost-gluon form factor B2 is zero in the soft antighost limit, and knowing that the

momentum t is independent of q, we arrive at

Γ̃abmnµν (0,−t, 0, t) =− gµν(fnaxf bmx + fnmxfabx)B1(0, t,−t) . (4.46)

Armed with the above result, we can rewrite Eq. (4.43) in the following compact

form

Γ̂abmnµν (0, 0, 0, 0) = gµν(fmaxfxbn + fmbxfxan) [Zc + Σ(0)] , (4.47)

where Zc is given in Eq. (4.27), and we have identified the ghost self-energy at the origin, Σ(0),

given in Eq. (4.21). Replacing the renormalization constant Zc by Eq. (4.27), and keeping only

the terms of O(αs), we find that

Γ̂abmnµν (0, 0, 0, 0) = gµν(fmaxfxbn + fmbxfxan)[1 + ΣR(0)] , (4.48)

where

ΣR(0) = Σ(0)− Σ(µ) . (4.49)

Identifying the term in squared brackets in the above expression using Eq. (4.28), we find that

Γ̂abmnµν (0, 0, 0, 0) = gµν(fmaxfxbn + fmbxfxan)F−1
R (0) . (4.50)

Some remarks here are in order: First, notice that the above relation was derived

without employing any approximation. Therefore, we have established an exact relation, valid

to all-orders in the all-soft limit. As already mentioned in Eq. (4.5), the BBc̄c vertex, in the all-

soft limit, suffers a drastic simplification in its tensorial structure, depending just on the metric,

with the corresponding form factor identified as being C11(0, 0, 0, 0) = C12(0, 0, 0, 0) = F−1
R (0).
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From Eq. (4.48), one can see that the quantity ΣR(0) quantifies the nonperturbative correction

that the form factor C11(0, 0, 0, 0) acquires beyond the tree-level.

It is important to mention that the derivation of this exact relation constitutes the

main novelty of the present work.

Finally, let us point out that in the context of the SDE framework, obtaining such

exact relations is unusual, even if we restrict our analysis to a particular kinematic configuration,

as it was done here. For this reason, one may take advantage of this relation to check the validity

or the accuracy of a particular truncation scheme proposed for this vertex in general kinematics.

4.4 All-soft limit from the WTI of the BBc̄c vertex

In this Section, after establishing an exact constraint on the form factor comprising

the BBc̄c vertex in the all-soft limit (all external legs have zero momenta) directly from the SDE

satisfied by Γ̂abmnµν , we derive the same relation using only the WTI that this vertex satisfies.

Let us start by considering the WTI that relates the BBc̄c with the background

ghost-gluon vertices, which reads,

qµΓ̂abmnµν (q, r, p, t) = fmaxf bnxΓ̃ν(t, q + r, p) + fmbxfnaxΓ̃ν(t+ q, r, p) (4.51)

+ fmnxfabxΓ̃ν(t, r, q + p) .

Now, we replace the background ghost-gluon vertices by Eq. (4.9), and take the limit of r → 0

and t→ 0, and arrive at

qµΓ̂abmnµν (q, 0,−q, 0) = qν(fmaxfxbn + fmbxfxan)
D−1(q)

q2
. (4.52)

Expanding both sides of the above expression around q → 0, and writing the ghost propagator

as a function of its dressing, F (q), using Eq. (4.14), we find that

qµΓ̂abmnµν (q, 0,−q, 0)
∣∣∣
q=0

= qµgµν(fmaxfxbn + fmbxfxan)F−1(q)
∣∣∣
q=0

, (4.53)

which, cancelling the terms qµ, leads immediately to the same exact relation, given in Eq. (4.50),

but now derived entirely from the point of view of the WTI that the BBc̄c vertex satisfies.



4.5. Numerical Analysis: Beyond the all-soft configuration 70

4.5 Numerical Analysis: Beyond the all-soft configuration

In Section 4.3, we have established an exact result for the BBc̄c vertex in the all-soft

configuration, where all four momenta of this vertex vanish. In this Section, we want to explore

the possibility of using this exact result as a guideline in a future study of this vertex beyond

the all-soft kinematic limit.

To do that, we will propose three truncated versions of the BBc̄c SDE in the all-

soft limit. Then, to quantify what would be the best truncation scheme that could be applied

in future analysis which goes beyond the all-soft configuration, we will compare the numerical

results obtained with each one of the truncated versions of the BBc̄c SDE with the exact answer

derived in Section 4.3.

More specifically, we will concentrate on the differences that each new truncation

scheme will generate at the level of ΣR(0), given in Eq. (4.49), since it is precisely this quantity

that carries the information of the nonperturbative corrections of the BBc̄c vertex. In order to

quantify that, let us define the percentage error as being

%error =

∣∣ΣR(0)− Σ̄i
R(0)

∣∣
ΣR(0)

× 100%, with i = 1, 2, 3 , (4.54)

where Σ̄i
R(0) is the ghost self-energy computed in the truncated scheme called scenario “i”.

Before embarking on the numerical analysis of the three truncated versions, first, we

will briefly introduce the necessary nonperturbative ingredients to perform the above comparison.

Besides the gluon propagator and the ghost-gluon form factor, we also need the ghost dressing

function, F (q). In particular, for F (q), we solve the ghost SDE using two approximations for the

form factor B1 that enters on it. The different solutions obtained for F (q) will feed our analysis

of different truncation schemes for the BBc̄c vertex.

4.5.1 Nonperturbative inputs

First, let us summarize the necessary external inputs for solving the renormalized

ghost SDE, given in Eq. (4.28) with Σ(q) in Euclidean space given by Eq. (4.19). To evaluate

numerically Eq. (4.28), one needs two external inputs: (i) the full gluon propagator, ∆(q), and

(ii) the form factor B1.

Let us start with the gluon propagator, ∆(q), for which we employ a fit for a com-

bined set of lattice data shown in Fig. 4.8. This data set corresponds to the reanalysis of the

results obtained in the simulations performed by [81] after the continuum extrapolation, com-

bined with the data from [82] after the scale resetting procedure. The details of the procedure
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adopted in this analysis are described in [73]. This data set can be accurately fitted by following

functional form

∆−1(q) = q2

[
1 +

(
κ1 −

κ2

1 + (q2/κ2
4)2

)
ln

(
q2

µ2

)]
+R(q2)−R(µ2) , (4.55)

with

R(q2) =
σ0 + σ1q

2

1 + (q2/σ2
2) + (q2/σ2

4)2
, (4.56)

where the fitting parameters are κ1 = 0.11, κ2 = 0.03, κ2
4 = 4.93 GeV2, σ0 = −0.41 GeV2, σ1 = −0.52,

σ2
2 = 10.27 GeV2, and, σ2

4 = 4.63 GeV2.
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Figure 4.8: Lattice data for the gluon propagator, ∆(q), after performing the continuum
extrapolation of [81] to the data set of [82], together with the corresponding fit given by
Eq. (4.55). The gluon propagator is renormalized at µ = 4.3 GeV.

The adjusted curve is represented by the continuous line on Fig. 4.8, together with

the lattice data. Notice that the IR saturation of ∆(q) to a finite nonvanishing value can be

understood in terms of a dynamically generated gluon mass [7, 11].

Regarding the form factor B1 entering into the ghost SDE in Eq. (4.28), we will

solve the SDE considering two approximations for this quantity. In the first one, B1 will be

employed in general kinematics, whereas in the second one, we consider its tree-level value, i.e.,

B
(0)
1 = 1.

The data we shall use as an input for B1(q2, p2, ϕ1), in general kinematics, was

obtained in [73]. There, in the SDE for B1(q2, p2, ϕ1), an approximate form of the three-gluon

vertex is employed where only the tree-level tensorial structures are retained, and the associated

form factors are taken from the STI-based derivation of [83].
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Figure 4.9: Form factorB1(q2, p2, 2π/3) in general kinematics as a function of the antighost
momentum, q, and ghost momentum, p, for a fixed value of angle ϕ1 = 2π/3. The
red curve is the soft antighost limit of B1, where q = 0. This particular kinematic
configuration, B1(k2), contributes to Σ(0).

A representative result for B1(q2, p2, ϕ1) in general kinematic is depicted in Fig. 4.9,

where we plot B1 as a function of the antighost momentum, q, and ghost momentum, p, with a

fixed value for the angle ϕ1 = 2π/3. For latter convenience, in the same plot, we highlight by

the continuous red line, located on the plane where q = 0, the soft antighost limit, B1(k2).

With the inputs introduced above, the SDE for FR(q), given in Eq. (D.6), is solved

numerically determining the coefficients of the Chebyshev expansion through the Newton’s

method. The external momenta, q2, is distributed on a logarithmic grid, with 50 points in

the interval [5.7× 10−4, 1.8× 103] GeV2. The interpolations in three variables, needed for eval-

uating the B1, is performed with B-splines [84], and the double integrals (radial and angular)

are computed with a Gauss-Legendre method [85] [see Appendix D].

In Fig. 4.10, we show the numerical results for F (q) obtained with both B1. The

continuous blue curve represents the case where B1 is in general kinematics, whereas in the pink

curve, the form factor is at tree-level, i.e., B
(0)
1 = 1. We emphasize that the renormalization

point is fixed at µ = 4.3 GeV, which coincides with the highest value of the momentum accessible

by the lattice simulation of [82]. In particular, one can observe that when the constant coupling

assumes the value αs(µ) = 0.244, the solution obtained with B1 in general kinematics yields a

F (q) that is in outstanding agreement with the F (q) of [81], which were properly extrapolated

to the physical continuum limit.
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Figure 4.10: The numerical solution for the ghost dressing function with the ghost-gluon
vertex dressed (blue continuous line) compared with the lattice data of [81], and the
numerical solution for the ghost dressing function with the ghost-gluon vertex at tree-
level (pink continuous curve).

4.5.2 Exploring truncations schemes for the BBc̄c SDE

Back at Section 4.3, we have derived the exact relation which states that the form

factor C11 in the all-soft limit is given by [see Eq. (4.50)]

C11(0, 0, 0, 0) = 1 + ΣR(0) , (4.57)

where ΣR(0) = Σ(0)−Σ(µ) was already defined in Eq. (4.49), and the corresponding self-energies

(in Minkowski space) are given by Eqs. (4.21) and (4.17) setting q → µ in the latter one. It

is important to highlight here that the numerical determination of ΣR(0) requires B1 not only

in the soft antighost limit [see Eq. (4.21)] but also in general kinematics [see Eq. (4.17)]. In

Fig. 4.9, we have already shown a representative case of B1 for both configurations.

Now, we will propose a new truncation scheme for the BBc̄c SDE, where we approx-

imate all dressed vertices by their respective tree-level counterparts. In this case, the BBc̄c SDE

in the all-soft limit is diagrammatically represented in Fig. 4.11, and the approximated version

of the form factor C11, to be denoted by C̄11, may be expressed as

C̄11(0, 0, 0, 0) = 1 + Σ̄R(0) (4.58)

where Σ̄R(0) = Σ̄(0) − Σ̄(µ) is the renormalized ghost self-energy in this new approximation,
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Figure 4.11: Diagrammatic representation of the SDE for the BBc̄c vertex in the all-soft
limit. In this equation, we approximate all dressed vertices by their tree-level counterparts.

and the corresponding self-energies (in Minkowski space) are given by 4

Σ̄(0) =
3

4
ig2CA

∫

k
∆(k)D(k) , Σ̄(µ) = ig2CA

∫

k
D(k + µ)∆(k)

[
1− (k · µ)2

µ2k2

]
. (4.59)

We may now proceed with the determination of the percentage error, defined in

Eq. (4.54), considering the following scenarios:

• Scenario i = 1 - Propagators and coupling constant fixed: To compute the %error in this

scenario, we employ the fit for ∆(k) given by Eq. (4.55). For D(k), we use the solution of

the SDE, which perfectly recovers the lattice data (blue curve in Fig. 4.10). In addition,

we fix the value of αs(µ) = 0.244. Within this scenario we will be able to determine Σ̄1
R(0).

• Scenario i = 2 - Gluon propagator and coupling constant fixed: In this scenario, we

employ the fit for ∆(k) given by Eq. (4.55). In addition, we set αs(µ) = 0.244. As in

this truncation scheme for the BBc̄c vertex we are considering all vertices at tree-level,

when we couple the ghost SDE to this system, the ghost-gluon vertex contributing to this

equation should also be considered at tree-level. In doing that, we obtain for F (q) the

continuous pink curve shown in Fig. 4.10. It is precisely this data that will be used as

input to compute Σ̄2
R(0).

• Scenario i = 3 - Adjusting the value of coupling constant: In this scenario, the only

difference between ΣR(0) and Σ̄3
R(0) appearing in the numerator of Eq. (4.54) are the

values of the coupling constant employed in the calculation of both quantities. As we have

already mentioned, in the case of ΣR(0), we fix αs(µ) = 0.244. On the other hand, for

computing Σ̄3
R(0), the value of αs(µ) is adjusted until the solution for F (q) reproduces

the lattice data shown in Fig. 4.10. To do that, we have to increase the coupling value to

αs(µ) = 0.283.

4To obtain Σ̄(0) go to Eq. (D.5), set B1(q2, k2, ϕ1) = 1 and q → 0. In this case the angular integration
can be done easily, since

∫ π
0
dϕ1 sin4 ϕ1 = 3π/8. After that, one only needs to use the rules in Appendix C

to go back to Minkowski space.
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With the help of Eqs. (4.21), (4.17) and (4.59), we are ready to compute ΣR(0) and

Σ̄i
R(0), for the three scenarios described above. After that, we determine the percentage error,

%error, using the definition of Eq. (4.54). Table 4.1 compares the %error for three truncation

schemes applied for the SDE of the BBc̄c vertex in the all-soft configuration. The scenarios that

display the smaller value for the %error better agree with the exact relation given by Eq. (4.48).

Scenario i = 1 i = 2 i = 3

%error 12.59% 23.98% 15.98%

Table 4.1: The corresponding percentage error, %error, defined by Eq. (4.54), and com-
puted for the three truncation scenarios for the BBc̄c vertex.

From this analysis, we clearly see that scenario 2 is the most unfavorable case. One

can understand this result easily if we recall that to solve the ghost SDE, we have approximated

the full ghost-gluon vertex to its tree-level value. As a result, we obtain a F (q) (pink curve in

Fig. 4.10), which is already 40% more suppressed at the origin compared to lattice data. Thus,

when we employ this solution for F (q) in the calculation of Σ2
R(0), the error mentioned above

combines with the intrinsic error of the truncated version of the SDE for the BBc̄c vertex itself,

producing a final error of 23.98%.

Concerning scenarios 1 and 3, we can note that both display percentage errors in

the same ballpark, with slightly better results achieved by scenario 1. The reason for this small

difference in the values of %error can be easily understood. First, we recall that Σ(0) depends on

B1(k2) in the soft antighost limit. This kinematic limit corresponds to one of the configurations

which maximizes the deviation of B1 from the tree-level value5. Thus, moving away from this

region, the nonperturbative corrections that B1 acquires becomes smaller. Therefore, when

we approximate the entire momentum dependence of ghost-gluon vertex just by its tree-level

value (instead of integrating over the soft antighost configuration in the case of Σ(0), and over

all configurations for Σ(µ)), we underestimate the contribution of the ghost-gluon vertex to

the ghost SDE roughly by a value that should be smaller than 21%. Indeed, this is precisely

what happens in scenario 3, where we observe that with an adjustment of approximately 16%

to the value of αs(µ), one can compensate, at least effectively, the role played by the dressed

ghost-gluon vertex in the ghost SDE.

At the level of the ghost SDE equation, the fact that B1 provides considerable

5In particular, observe in Fig. 4.9, at p = 1.12 GeV, one has B1 = 1.21, which means an enhancement

of 21% from the tree-level value, B
(0)
1 = 1.
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support to the integral kernel of the ghost SDE was already well-known in the literature [86,

87]. It is known that without its dressed contribution, the unique way of reproducing the

lattice results for F (q) rather accurately is to increase the value of the running coupling, αs(µ),

artificially. Therefore, from the analysis presented here, one can conclude that the same pattern

emerges from the BBc̄c vertex.



Chapter 5
Conclusions

In the thesis, we have presented a preliminary study about the nonperturbative

structure of the BBc̄c vertex through its SDE. We have seen that this vertex emerges naturally

from the BFM framework, and in addition, it is endowed with desirable properties for serving

as a perfect starting point for a nonperturbative study of four-point Green’s functions. Among

these properties, we should highlight that the BBc̄c vertex has one of the simplest tensorial

structures between the four-point Green’s functions containing gauge fields and four color indices.

Furthermore, the two background gluon legs respect Bose symmetry, which imposes additional

constraints on the BBc̄c structure. Finally, the BBc̄c satisfies simple Abelian-like WTIs, instead

of the complicated STIs satisfied by the conventional vertices [12, 55].

Although simpler, the most general tensorial decomposition of the BBc̄c vertex con-

tains 80 independent tensors (combination of Lorentz and color basis). Each of these tensors will

be accompanied by the corresponding form factor depending on six variables: the three indepen-

dent momenta and the angles between them. However, the Bose symmetry of the background

gluon legs imposes constraints on these form factors, reducing the number of independent form

factors down to 351.

We have shown that a considerable simplification occurs if one imposes the all-soft

limit, where we set all four external momenta to zero. Out of the 35 form factors, only one

survives in this special kinematic limit, namely C11(0, 0, 0, 0).

In Chapter 3, we have presented the derivation of the SDE that controls the dynamics

of the BBc̄c using the functional formalism. It is the first time that this derivation has appeared

in the literature, as far as we know. The pictorial representation of this SDE is composed of

eleven Feynman diagrams and is shown in Fig. 3.3.

1The ghost and antighost symmetry will reduce even more this number of independent form factors,
but we have not explored this fact in this work.
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Part of Chapter 4 was dedicated to implementing the all-soft limit at the BBc̄c SDE

level. After a thorough analysis of each one of the eleven Feynman diagrams mentioned above,

we have demonstrated that only two of them contribute to this limit.

In order to show which diagrams contributing to the BBc̄c SDE vanish in the all-soft

limit, we turned our attention to other Green’s functions nested in those Feynman diagrams.

Particular attention was given to the conventional ghost-gluon vertex since this three-point func-

tion plays a key role in the entire analysis. More specifically, we have demonstrated throughout

Chapter 4, that the Feynman diagrams appearing in Fig. 3.3 may vanish for two reasons: either

(i) they have a gluon propagator that carries a transverse projector, for example, Pµν(k), which

contracts with the antighost momentum coming from the bare ghost-gluon vertex, kµ, or (ii)

there is a ghost-gluon vertex in the soft antighost limit, which is zero. Using either one of the

above arguments, we have shown that five Feynman diagrams of Fig. 3.3 vanish identically in

the all-soft limit.

Then, from the remaining ones, five diagrams depend on the BQQ, and BBQQ

vertices. We have shown that their calculations require a careful analysis. More specifically,

these vertices depend on the inverse of the gauge parameter, 1/ξ, [see Eqs. (4.10) and (4.12)].

Therefore, one has to perform the calculations in general covariant gauges and only take the limit

to the Landau gauge, i.e., ξ → 0, at the very end of the calculation, when all terms 1/ξ were

explicitly canceled. This analysis has shown that only one Feynman diagram is nonvanishing

out of five containing the BQQ and BBQQ vertices.

It turns out that the last Feynman diagram does not fit in any of the above cases

and furnishes a contribution to the BBc̄c SDE in the all-soft limit. Therefore, the final version

of the SDE for the BBc̄c vertex, in the all-soft limit, is composed of two Feynman diagrams and

its counterparts with crossed background gluon legs, as depicted in Fig. 4.7, and its functional

form is given by Eq. (4.40).

In the sequence, we have presented the renormalization of the SDE in the all-soft

limit. The renormalization of Eq. (4.40) proceeds in the standard way. It turns out that the

renormalized version of Eq. (4.40) depends only on the ghost renormalization constant, Zc, which

was fixed imposing the MOM condition. The final result for the renormalized BBc̄c SDE in the

all-soft limit is given in Eq. (4.43).

Furthermore, we showed that the full nonperturbative content of this SDE, in this

particular kinematic limit, depends crucially on the BQc̄c vertex on a particular kinematic limit,

where the background gluon and the antighost momenta are zero, i.e., Γ̃abmnµν (0,−k, 0, k). In this

special kinematic configuration, by virtue of the Abelian-like WTI that the BQc̄c vertex satisfies,
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one can determine without any approximation the exact value of this vertex which turns out to

be proportional to the ghost-gluon vertex form factor in the soft antighost limit, B1(0, t,−t) [see

Eq. (4.46)]. Therefore, we have seen that the form factor B1 constitutes a central ingredient of

the SDE for BBc̄c vertex when computed in the all-soft limit. Armed with the latter result, we

could re-express the BBc̄c SDE in the all-soft limit in a very compact way, given by Eq. (4.50).

This result given by Eq. (4.50) showed that the structure of the BBc̄c vertex in

the all-soft limit is proportional to the inverse of the ghost dressing function at the origin (or

equivalently, it could be expressed in terms of the renormalized ghost self-energy at the origin,

ΣR(0) [see Eq. (4.48)]. Moreover, its tensorial structure reduces only to the metric tensor times

the combination of two color structures (cabmn1 and cabmn2 ), checking the veracity of the statement

made in Eq. (4.5), which was based on symmetry grounds. Here, we would like to emphasize

that the result established in Eq. (4.50) was derived without employing any approximations,

and therefore, it consists of an exact relation, valid to all orders in perturbation theory. In

Section 4.4, we have shown that the same relation can also be derived through the WTI that

the BBc̄c satisfies, given in Eq. (4.51).

Therefore, the all-soft configuration of the BBc̄c vertex revealed itself to be a privi-

leged kinematic configuration since one can take advantage of an elegant interplay that emerges

with the ghost-gluon vertex without having to resort to any Ansätze or simplifying assumptions

for it. As it was stated in this thesis, this observation is the main contribution of our work.

As it was already pointed out in this thesis, obtaining an exact relation within the

context of the SDE framework is rare, even if the analysis is restricted to a particular kinematic

configuration, as it was done here. For this reason, as the final step of our analysis, we try to

take advantage of this relation to plan a future truncation scheme for this vertex, which goes

beyond the all-soft limit and thus quantify the accuracy of the new SDE approximated version.

Particularly, we have investigated the effect of setting all dressed vertices contribut-

ing to the BBc̄c SDE to their tree-level value. Under this approximation, the BBc̄c SDE in the

all-soft limit is depicted in Fig. 4.11 and given by Eq. (4.57). Since the Σ̄R(0) in Eq. (4.57) carries

the information of the nonperturbative corrections of the vertex, it is precisely this quantity that

we employ to compare the truncation schemes.

More specifically, to perform the analysis, we compute the percentage error, %error,

between the exact result, ΣR(0), and the approximated one, Σ̄i
R(0), given in Eq. (4.54). We

propose using the percentage error as a benchmark for deciding the best truncation among three

scenarios that differ from the inputs. In the first scenario, (i = 1), the values of αs(µ) = 0.244,

∆(q) and F (q) are fixed in order to match with the lattice results. In the case of the second
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scenario, (i = 2), αs(µ) = 0.244 and the ∆(q) is fixed in agreement with the lattice. For F (q), we

employ the ghost SDE solution with the bare ghost-gluon vertex. Finally, in scenario 3, we also

use for F (q) the solution obtained from ghost SDE with the bare ghost-gluon vertex. However,

in this case, we have adjusted the coupling value to αs(µ) = 0.283, in order to F (q) reproduce

the lattice data.

In this way, the last part of Section 4.5 was dedicated to the numerical determination

of the percentage error, %error. We have seen that to compute this quantity one needs the

following external inputs: the gluon propagator, ∆(k), the ghost propagator, D(k), and the

ghost-gluon form factor, B1. For ∆(k), we used a fit for the combined set of lattice data shown

in Fig. 4.8. As for D(k), we solved the ghost SDE using two approximations for the form

factor B1 that enters on it. Either we employed B1 in general kinematics, B1(q2, p2, ϕ1), [see a

representative case in Fig. 4.9], or we set B1 at its tree-level value, i.e., B
(0)
1 = 1. In Fig. 4.10, we

have shown the corresponding solutions for F (q) in both approximations. Moreover, to compute

the exact expression ΣR(0), we also need the form factor B1 in the soft antighost limit, B1(k2),

highlighted in red on the 3D surface of Fig. 4.9.

The results we have obtained for the %error were synthesized on Table 4.1, where

we compare the three scenarios. This procedure rendered us a rough estimate of the accuracy

for a possible new truncation scheme of the SDE for the BBcc, where all dressed vertices are

approximated at tree-level. Under these assumptions, our preliminary analysis suggests that the

best course of action is to employ nonperturbative fits for ∆(q) and F (q) and keep them fixed

instead trying to couple the two-point sector of the theory, as the first attempt of going beyond

the all-soft limit of the SDE for the BBcc.
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Appendix A
SU(N) group theoretical identities

QCD is based on the gauge group SU(3), and its representation has eight hermitian

and traceless generators that generates the closed algebra

[
λa

2
,
λb

2

]
= ifabc

λc

2
, (A.1)

with λ being the Gell-Mann matrices, and fabc the totally antisymmetric structure constant. In

this Appendix we collect some relations that the structure constant, fabc, satisfy, which will be

useful to perform the analytical calculations of the current analysis.

The combinations of different sequences of structure constants satisfy the following

relations

faexf bex = CAδ
ab , (A.2)

faxmf bmnf cnx =
CA

2
fabc , (A.3)

faxmf bmnf cnefdex − faxmf bmnfdnef cex = −CA

2
fabxf cdx , (A.4)

where CA is the Casimir eigenvalue in the adjoint representation [CA = N for SU(N)].

In addition, we have the Jacobi identity which reads

fabxfxcd + facxfxdb + fadxfxbc = 0 . (A.5)
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Appendix B
Nonperturbative structure of the BBc̄c vertex

We divide this Appendix into two sections: in the first one we discuss, in detail, the

construction of the most general tensorial structure for the BBc̄c vertex. The final result of this

discussion is the Lorentz basis, given in Eq. (4.2), and the color basis, in Eq. (4.3). Then, in

the other section, we explain how the Bose symmetry of the BBc̄c vertex dramatically reduces

the number of independent form factors. More specifically, we start with 80 form factors, and

because of the Bose symmetry, we end up with 35 independent form factors.

B.1 Color basis construction

For the construction of the Lorentz and color basis of the BBc̄c vertex, we will follow

the lines of [69, 70, 88]. To do that, let us start with the Lorentz part. This vertex has two

Lorentz free indices (µ and ν); therefore, the only rank-2 Minkowski tensors allowed in this basis

will be: (i) linear terms in the metric or (ii) quadratic terms in the momenta. Schematically,

this means that one may write the following structures

g , qr , qp , rp , (B.1)

where gµν is the metric, and q, r, and p represent the three independent momenta we have in

the BBc̄c vertex.

Permuting the two Lorentz indices (µ and ν) between the three independent mo-

menta of the vertex (q, r, and, p), it is possible to see that one obtains the following ten elements,

which form the naive Lorentz basis of the BBc̄c vertex

`1µν = gµν , `2µν = qµrν , `3µν = qµpν , `4µν = qνrµ , `5µν = qνpµ ,

`6µν = rµpν , `7µν = pµrν , `8µν = qµqν , `9µν = rµrν , `10
µν = pµpν .

(B.2)
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Concerning the color basis, the situation is considerably more complex since we have

a rank-4 tensor. The possible structures will be quadratic in f , δ and d, with f being the totally

antisymmetric structure constant, δ the Kronecker delta, and d the totally symmetric structure

constant. In principle, one has 15 allowed structures of the schematic type

ff , dd , fd , δδ . (B.3)

However, the above tensors are not really independent; they are intertwined by the

following set of identities in SU(3) [69]

fabrf cdr =
2

3

[
δacδbd − δadδbc

]
+ dacrddbr − dadrdbcr , (B.4)

fabrdcdr + facrddbr + fadrdbcr = 0 , (B.5)

δabδcd + δacδbd + δadδbc = 3[dabrdcdr + dacrdbdr + dadrdbcr] . (B.6)

Notice that Eqs. (B.4) and (B.5) have two independent permutations for each, generating seven

new relations. As a result, out of fifteen (15) starting structures, we end up with only eight (8)

independent tensors. Thus, the color basis is given by [69, 70]

cabmn1 = fanxfmbx , cabmn2 = fmaxf bnx , cabmn3 = δabδmn , cabmn4 = δamδnb ,

cabmn5 = δanδbm , cabmn6 = dabrfmnr , cabmn7 = damrf bnr , cabmn8 = danrf bmr .
(B.7)

B.2 Bose symmetry of the background gluon legs

As discussed in the previous Section, the most general decomposition of the BBc̄c vertex

in its Lorentz and color basis is expressed by Eq. (4.1), where the ten tensors defining the Lorentz

basis are given in Eq. (4.2); whereas the eight elements of the color basis, appear in Eq. (4.3).

Therefore, the BBc̄c depends on 80 form factors which are functions of six variables,

i.e., the three independent momenta: q, r, and, p and the three angles between them.

Nevertheless, to reduce the number of form factors, one can use the Bose symmetry,

which the two background gluon legs should satisfy. To do that, we impose the Bose symmetry

under the simultaneous exchange µ↔ ν, a↔ b, and q ↔ r. At the level of the elements forming

the Lorentz basis, given by Eq. (4.2), these exchanges lead to

`3µν ↔ `7µν , `5µν ↔ `6µν , `8µν ↔ `9µν . (B.8)

Meanwhile, the elements of the color basis of Eq. (4.3) under the exchange of a↔ b are related
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by

cabmn1 ↔ cabmn2 , cabmn4 ↔ cabmn5 , cabmn7 ↔ cabmn8 . (B.9)

These transformations reduce the i in Eq. (4.1) to 7 and j to 5, totalling 35 independent form

factors.

To illustrate how the form factors are related to each other, let us take a closer

look at those accompanying the gµν structure, i.e., C1j(q, r, p, t), with j = 1, 2, · · · , 8. Due to

Eq. (B.9), we find the following relations

C11(q, r, p, t) = C12(r, q, p, t) , (B.10)

C14(q, r, p, t) = C15(r, q, p, t) ,

C17(q, r, p, t) = C18(r, q, p, t) .

As explained, in the last paragraph of Section 4.1, in the all-soft limit, the decom-

position of the structure of the BBc̄c will depend only on `1µν , cabmn1 , and cabmn2 . Therefore, this

configuration is expressed in terms of the form factors C11(q, r, p, t) and C12(q, r, p, t). However,

as we have just seen, these both are related through Eq. (B.10); thus, the BBc̄c vertex depends

on only one form factor, namely C11(q, r, p, t), in the all-soft limit.
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Appendix C
Transformation rules from Minkowski to

Euclidean space

In this Appendix, we summarise the standard conversion rules to pass the expressions

from Minkowski to Euclidean space. The first step is to perform a Wick rotation, i.e., convert

the time component of any four-momentum, qµ, in a pure imaginary number,

(q0, q1, q2, q3)→ (iqE0 , q
E
1 , q

E
2 , q

E
3 ) , (C.1)

where the qEi are real, and the superscript “E” denotes the Euclidean version of a quantity.

Simultaneously, the metric is transformed to gµν → δµν .

In particular, the scalar products becomes

[q2; p2; r2; (q ·p); (q ·r); (p·r)]→ [−q2
E;−p2

E;−r2
E;−(qE ·pE);−(qE ·rE);−(pE ·rE)] . (C.2)

On the other hand, any dimensionless form factors, such as the ghost-gluon form factor, Bi(r, p, q),

appearing in Eq. (4.6), transforms as

Bj(r, p, q)→ Bj(rE, pE, qE) . (C.3)

As for the dimensionful quantities (with dimensions of [M ]−2), as the ghost, D(q), and gluon

propagators, ∆(q), they transform from Minkowski to Euclidean as

D(q)→ −DE(qE) , ∆(q)→ −∆E(qE) . (C.4)
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Additionally, the integral measure becomes

∫

k
→ i

∫

kE

, (C.5)

which in 4D spherical coordinates is given by

∫

kE

=
1

32π4

∫ ∞

0
dk2

E k
2
E

∫ π

0
dϕ1 sin2 ϕ1

∫ π

0
dϕ2 sinϕ2

∫ 2π

0
dϕ3 . (C.6)

In general, after performing the transformation from Minkowski to Euclidean space,

the subscript “E” is omitted for compactness. Thus, when expressions are written in Euclidean

space, they will be clear, either by context or by explicit assertion.

A standard choice for the orientation of the Euclidean four-momenta r, p, and the

integration momentum k is (from now on we suppress the subscript “E”)

r = |r|(1, 0, 0, 0) , (C.7)

p = |p|(cos θ, sin θ, 0, 0) , (C.8)

k = |k|(cosϕ1, sinϕ1 cosϕ2, sinϕ1 sinϕ2 cosϕ3, sinϕ1 sinϕ2 sinϕ3) . (C.9)

Evidently, r2 = |r|2, p2 = |p|2, and k2 = |k|2. In addition, the scalar products are given by

r · p = |r| |p| cos θ ,

r · k = |r| |k| cosϕ1 ,

p · k = |p| |k|(cos θ cosϕ1 + sin θ sinϕ1 cosϕ2) . (C.10)

Therefore, using the parametrization of Eqs. (C.7) and (C.8), we will express the

relevant form factors, Bj(r, p, q), in Euclidean space as a function of r2, p2, and the angle between

them θ, namely

Bj(r, p, q) ≡ Bj(r2, p2, θ) , (C.11)

where θ is given by

θ = arccos

[
r · p
|r| |p|

]
. (C.12)

Note that since the quantities entering in the integrals do not depend on the angle

ϕ3, the last integral in Eq. (C.5) furnishes simply a factor of 2π.
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Appendix D
Numerical method for solving integral

equations

The renormalized version of the ghost propagator SDE, given by Eq. (4.28), which we

want to solve numerically, was discussed in Chapter 4, and we reproduce it here for convenience

F−1(q) = 1 + Σ(q)− Σ(µ) , (D.1)

where the ghost self-energy, Σ(q), expressed as

Σ(q) = ig2CA

∫

k
D(k + q)∆(k)f(k, q)B1(−q, k + q,−k) , (D.2)

with

f(k, q) := 1− (k · q)2

q2k2
, (D.3)

was already presented by Eq. (4.17).

The first step to solve Eq. (D.1) numerically is to shift the integration momentum,

k → k − q, so that the unknown function, F (k) (or equivalently D(k)), appearing on the RHS

of Eq. (D.2) will depend only on the momentum k, and the equation for Σ(q) may be recast in

the form

Σ(q) = ig2CA

∫

k
D(k)∆(k − q)f(k − q, q)B1(−q, k, q − k) . (D.4)

To convert the above expression, which is in Minkowski space, to Euclidean space,

we apply the transformation rules of Appendix C. More specifically, employing the rules from
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Eqs. (C.2), (C.4), (C.5), (C.6), (C.10), and (C.11), we arrive at

Σ(q) = −CAαs(µ)

2π2

∫ ∞

0
dk2k2F (k)

∫ π

0
dϕ1 sin4 ϕ1

∆(k − q)
(k − q)2

B1(q2, k2, ϕ1) , (D.5)

where ϕ1 is the angle between the momenta k and q, CA = 3 for SU(3), and we set the value of

the coupling constant renormalized at µ at αs(µ) = g2/4π = 0.244 [73].

Thus, Eq. (D.1) becomes

F−1(x) = 1− CAαs(µ)

2π2

∫ ∞

0
dyyF (y)

∫ π

0
dϕ1 sin4 ϕ1

[
∆(z)B1(x, y, ϕ1)

z
− ∆(z′)B1(µ2, y, ϕ1)

z′

]
, (D.6)

where we set x = q2, y = k2, z = (k − q)2 and z′ = (k − µ)2. The scale µ is the renormalization

point introduced within the MOM scheme, i.e., by requiring that F−1(µ) = 1.

To solve the above integral equation numerically, we will apply for the angular and

radial integrations the Gauss-Legendre method. To do that, one needs to map the infinite

momentum range of the variable y ∈ [0,∞) to the finite range of Gauss-Legendre quadrature,

ȳ ∈ [−1, 1], and the finite range of the variable ϕ1 ∈ [0, π], should be rescaled to z̄ ∈ [−1, 1].

Thus, this mapping typically consists in the following change of variables

y =
2

1− ȳ − 1 , z̄ = cos(ϕ1) . (D.7)

Then, one can use that

∫ 1

−1
f(ȳ)dȳ =

n∑

i=1

wif(ȳi) , (D.8)

with ωi denoting the weight, ȳi the nodes of the Gauss-Legendre quadrature, and n the number

of sample points used.

In addition, we perform the following change of variable for the external momenta x

x =
2

1− x̄ − 1 , (D.9)

and we expand the unknown functions, F (x) and F (y), appearing in both sides of the Eq. (D.6),

in terms of the Chebyshev polynomials, i.e.,

F (x) =

N∑

n=0

fnUn(x) , (D.10)

where fn are the coefficients of the expansion that we should determine, and Un are the Cheby-
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shev polynomials of the second kind.

For computing the radial integration with the Gauss-Legendre method, we use a

quadrature with n = 50 sample points, whereas for the angular part, we employ n = 30 points.

In the sequence, we apply Newton’s method to determine the expansion coefficients fn. With

the coefficients fn at hand, we replace them in the expansion given by Eq. (D.10) to finally

obtain the solution for the unknown ghost dressing function, F (q).
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