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Abstract In this paper we study Lorentz-violation (LV)
effects on the thermodynamics properties of a real scalar field
theory due to the presence of a constant background tensor
field. In particular, we analyse and compute explicitly the
deviations of the internal energy, pressure, and entropy of the
system at thermal equilibrium due to the LV contributions.
For the free massless scalar field we obtain exact results,
whereas for the massive case we perform approximated cal-
culations. Finally, we consider the self interacting φ4 theory,
and perform perturbative expansions in the coupling constant
for obtaining relevant thermodynamics quantities.

1 Introduction

Nowadays, it is well-known that symmetries play a funda-
mental role for describing our modern physical theories. In
particular, besides gauge symmetries in the standard model of
fundamental particle and interactions, the Lorentz and CPT
symmetries are the main building blocks of the theory, and are
expected to be respected in any physical situation. However,
some years ago, several different theories appeared in the lit-
erature, in which apparently such assumption is not longer
satisfied [1–6], thereby attracting a great attention in the last
few decades both from the theoretical and experimental point
of view.

Recently, it has been proposed an interesting generaliza-
tion of the usual Standard Model that, besides of being con-
sistent with General Relativity and exhibiting all the conven-
tional desirable features of a fundamental physical theory,
allows for violations of Lorentz and CPT symmetry [7,8].
The main idea of this theory, known as the Standard Model
Extension (SME), is that the aforementioned symmetries can

a e-mail: alexis.roaaguirre@unifei.edu.br
b e-mail: gfloreshidalgo@unifei.edu.br
c e-mail: ranarg@cbpf.br (corresponding author)
d e-mail: edsonssouzafis@gmail.com

be manifestly broken by incorporating some small constant
vector and tensor fields in the theory, generating in this way
preferential directions in spacetime. Then, it is expected that
such anisotropies in the spacetime should appear as quite
small deviations of any physical measurement predicted by
a Lorentz-invariant (LI) theory. See Ref. [9] (and references
therein) to find updated experimental data that constraining
many Lorentz-violating (LV) coefficients in the SME.

The effects of Lorentz violation has been widely investi-
gated in several different scenarios. It is worth mentioning
recent studies on the statistical mechanics in LV background
[10–14], the Casimir effect [15–20], the Bose–Einstein con-
densation [21–25], QED sector [26–30], LV theories with
boundary conditions [31–34], Chern–Simons-like terms [35–
39], scattering processes [40–44], geometrical correspon-
dences [45,46], supersymmetric LV models [47–51], as well
as many others interesting subjects (see also [52] and refer-
ences therein for a more exhaustive list of related papers).

On the other hand, finite temperature effects in field the-
ories have been widely studied mainly in the context of cos-
mological problems [53,54], symmetry restoration in theo-
ries with spontaneously broken symmetry [55–57], and more
recently in connection with phase transitions in QCD prob-
lems related with high energy heavy ion collisions [58–62].
For more articles and textbooks on this subject, see Refs.
[63–67].

In the present work, we are interested in investigating the
finite temperature effects in a the Lorentz-violating real scalar
field theory due to the presence of a constant background
tensor contribution. The paper is outlined as follows. In next
section, the particle spectrum of the LV model is discussed.
In Sect. 3, we discuss the thermal effects in the LV free scalar
theory. The interacting case at finite temperature will be anal-
ysed in Sect. 4. In Sect. 5, some concluding remarks are pre-
sented. Finally, there are some explicit calculations can be
found in the appendices.
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2 Particle spectrum

In this section, we will discuss the spectrum of a theory with
a real scalar field in the presence of a LV background tensor
field. Let us consider the following lagrangian density for the
real scalar φ(x) [7,8],

L = 1

2
∂μφ(x)∂μφ(x) + κμν

2
∂μφ(x)∂νφ(x) − m2

2
φ2, (1)

where κμν are dimensionless constant tensor coefficients for
the Lorentz-violation that preserves CPT symmetry [68,69].
The above model can be identified with the scalar sector
of the Standard Model Extension, for which there are phe-
nomenological bounds for the LV parameters in (1), that
have been obtained recently from laser interferometry results
[70,71]. The space-space components have a superior bound
of the order 10−18 whereas the space-time components have
a bound of the order 10−12 [71]. Although from the phe-
nomenological side the LV parameters are very small, in this
work we will not restrict our calculations to a perturbative
treatment on that parameters. Since the model given by (1) is
still invariant under space-time translations, the energy and
linear momentum will be conserved. In fact, we get respec-
tively,

P0 = H = 1

2

∫
d3x

(
Δ00φ̇2(x) − Δi j∂iφ(x)∂ jφ(x)

+m2φ2(x)
)

, (2)

and

P = −
∫

d3xΔ0μ∂μφ(x)∇φ(x), (3)

where Δμν = ημν +κμν is a modification of the Minkowski
metric ημν . From Eq. (1) we get the field equation,

Δμν∂μ∂νφ(x) + m2φ(x) = 0, (4)

and the canonically conjugate momentum π(x), which is
given by

π(x) = Δ0μ∂μφ(x). (5)

In order to quantize the theory, we impose the following
equal-time commutation relations,

[φ̂(x, t), π̂(y, t)] = iδ(x − y), [φ̂(x, t), φ̂(y, t)] = 0,

[π̂(x, t), π̂(y, t)] = 0, (6)

where the field operators satisfy Eqs. (4) and (5). In this way,
to solve the field equation for φ̂(x), we expand in plane waves
as follows,

φ̂(x) =
∫

d4 p

(2π)4 Ĉ(p)e−i px . (7)

Substituting in Eq. (4), we get

∫
d4 p (−Δμν pμ pν + m2)Ĉ(p)e−i px = 0, (8)

from which we find

Ĉ(p) = δ(Δμν pμ pν − m2)â(p). (9)

Now, by using the above result in Eq. (7), we get,

φ̂(x) =
∫

d̃p
1√
Δ00

(
â(p)e−i px + â†(p)eipx

)
, (10)

where the time-component p0 is given by

p0 = Δ(p) − Δ0 j p j

Δ00 ,

Δ(p) =
√(

Δ0 j p j

Δ00

)2

+ m2 − Δi j pi p j

Δ00 , (11)

and

d̃p = d3p
(2π)32Δ(p)

. (12)

Note that we have also redefined â(p) in Eq. (10) by a scale
factor Δ00, just for convenience. By substituting Eq. (10) in
Eq. (5), we get the corresponding expansion for the conjugate
momentum,

π̂(x) = −i
∫

d̃p
√

Δ00Δ(p)
(
â(p)e−i px − â†(p)eipx

)
.

(13)

Now, solving for the operators â(p) and â†(p), we get

â(p) = i
∫

d3x√
Δ00

(π̂(x) − iΔ00Δ(p)φ̂(x))eipx ,

â†(p) = −i
∫

d3x√
Δ00

(π̂(x) + iΔ00Δ(p)φ̂(x))e−i px , (14)

which satisfy the following commutation relations,

[â(p), â†(q)] = 2Δ(q)(2π)3δ(p − q),

[â(p), â(q)] = [â†(p), â†(q)] = 0. (15)

From Eqs. (2), (3), (10) and (13), we obtain the hamilto-
nian and momentum operators in terms of annihilation and
creation operators, namely,

Ĥ =
∫

d̃p
p0

2

(
â†(p)â(p) + â(p)â†(p)

)
, (16)
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and

P̂ =
∫

d̃p
p
2

(
â†(p)â(p) + â(p)â†(p)

)
. (17)

Then, we can conclude, from the above expressions and the
commutation relations (15), that the spectrum of the the-
ory consists of scalar particles with energy and momentum
related by Eq. (11). In fact, we have for the particle energy in
terms of LV tensor coefficients κμν , the following expression

p0 =
√(

κ0 j p j

1 + κ00

)2

+ m2 + p2 − κ i j pi p j

1 + κ00 − κ0 j p j

1 + κ00 ,

(18)

from which it is possible notice that the energy is real, pos-
itive and bounded from below whenever the second term
within the square root is positive. Otherwise, the particle
energy spectrum might exhibit unboundedness or complex
values. Considering κ00 > −1, these issues can be ruled
out if the eigenvalues of the matrix κ i j are less than the
unity, i.e. |κ i j | << 1, which is naturally expected for a
realistic theory. For other values of κ i j it is possible to fix
some suitable limits in order to have a well defined parti-
cle spectrum. For instance, by considering the case in which
all diagonal terms are equal to κ11, and respectively all off-
diagonal terms are κ12, we find that the suitable conditions
are κ11−κ12 < 1, and κ11 +2κ12 < 1. On the other hand, by
considering arbitrary diagonal terms, κ11,κ22,κ33, and all the
off-diagonal terms vanishing except for κ12 = κ21, we find
a well behaved particle spectrum if κ33 < 1, κ11 + κ22 < 1
and κ11 +κ22 +(κ12)2 −κ11κ22 < 1. Also, tachyonic modes
must appear whenever the argument in square root of (18) is
negative. Therefore to avoid that modes it is sufficient that
the eigenvalues of the matrix quadratic form in pi p j be non
negative. If the Lorentz violating parameter are not so large
this will be always the case.

Thus, in order to avoid those sort of undesirable behaviours
for particle spectrum, from now on we will assume that the
magnitude of the constant tensor components κμν are not
so large, and proper conditions guaranteeing a well-defined
particle spectrum are satisfied.

3 Thermal behaviour for the free scalar field

In this section we analyze the effects and contributions of the
LV terms on the thermodynamics of the free real scalar field.
Let us start from the partition function,

Z =
∫

Dφ exp

(
−
∫ β

0
dτ

∫
d3xLE

)
, (19)

where β = T−1 is the inverse of the temperature,1 and LE

is the Euclidean density lagrangian of the theory with LV
terms, obtained from the prescription t → iτ , and given by

LE = 1

2
Δμν∂μφ(x)∂νφ(x) +U (φ), (20)

with U (φ) contains the mass and possible interaction terms,
and

Δ00 = 1 + κ00, Δ0 j = −iκ0 j , Δi j = δi j − κ i j . (21)

It is worth pointing out that the integration in Eq. (19) must be
computed over all periodic field configurations, i.e. φ(x, τ +
β) = φ(x, β). Now, the thermal Green functions, defined
as the thermal expectation values of imaginary time-ordered
products of field operators, are given by

〈φ(x1) . . . φ(xn)〉 = 1

Z

∫
Dφ φ(x1) . . . φ(xn)

× exp

(
−
∫ β

0
dτ

∫
d3xLE

)
,

= 1

Z( j)

δn Z( j)

δ j (x1) . . . δ j (xn)

∣∣∣∣
j=0

, (22)

where Z( j) denotes the thermal generating functional,

Z( j) =
∫

Dφ exp

(
−
∫ β

0
dτ

∫
d3x(LE − jφ)

)
. (23)

Firstly, we will focus on the free case, U (φ) = m2φ2/2.
In that case the associated thermal propagator D(x, y) for
the free real scalar field, which corresponds to the two-point
Green function (22), follows the equation,

�D(x, τ ) = δ(x)δ(τ ), (24)

where � = (−Δμν∂μ∂ν + m2
)
, and we have taken y = 0

without loss of generality. Now, considering periodic bound-
ary conditions in the imaginary time, we can write D(x, τ ),
as follows

D(x, τ ) = 1

β

∞∑
n=−∞

∫
d3p

(2π)3 e
−i(ωnτ−p.x) D̃(p, ωn), (25)

where ωn = 2πn/β, n = 0,±1,±2, . . . are the Matsubara
frequencies. Substituting Eq. (25) in Eq. (24), we get the
thermal propagator in the Fourier space,

D̃(p, ωn) = 1

Δ00 ω2
n − 2ωnΔ0 j p j + Δi j pi p j + m2

. (26)

1 Here we are using the usual convention in which the Boltzmann con-
stant is kB = 1, as well as c = h̄ = 1.
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Notice that this representation of the thermal propagator is
complex-valued since Δ0 j is imaginary. However, this is not
a problem since its representation in the configuration space
(25) is real, as it is expected for a real field.

Now, we will compute the partition function (19), from
which we will obtain thermodynamic quantities as the inter-
nal energy, pressure, and entropy of the system. From Eq.
(19) we find

Z0 =
∫

Dφ exp

(
−1

2

∫ β

0
dτ

∫
d3xφ(x)�φ(x)

)
, (27)

where the zero lower label stands for the free case. As usual,
taking the system inside a box of volume V , and considering
periodic boundary conditions, we can expand the field as
follows

φ(τ, x) =
√

β

V

∞∑
n=−∞

∑
p

φ̃n(p)e−i(ωnτ−p.x). (28)

Now, by using the orthogonality relations

∫ β

0
dτ

∫
d3xei(ωn−ωl )τ−i(p−q).x = βV δnl δpq, (29)

and φ̃−n(−p) = φ̃∗
n (p), we can write

Z0 = N
∫ ∏

n

∏
p

dφ̃n(p)

× exp

[
− β2

2

∞∑
n=−∞

∑
p

D̃−1(p, ωn)|φ̃n(p)|2
]
. (30)

The integrals above can be computed by writing φ̃n(p) in
polar form, and integrating in the corresponding modulus.
Doing that, we obtain

Z0 = N ′∏
np

[
β2
(
Δ00ω

2
n − 2Δ0 jωn p j

+Δi j pi p j + m2
)]−1/2

, (31)

where contributions from the phase integrals have been incor-
porated in N ′, and therefore we find

ln Z0 = ln N ′ − 1

2

∞∑
n=−∞

∑
p

ln

(
4π2n2 − 4πβ

Δ0 j

Δ00
np j

+β2 Δi j

Δ00
pi p j + β2 m2

Δ00

)
. (32)

Now, by summing over n, and noting that N ′ is indepen-
dent from the LV coefficients, we can proceed by using
a similar prescription as in the Lorentz invariant case (see
Appendix A), and then we have

ln Z0 = −V
∫

d3p
(2π)3

[
1

2
βp0 + ln

(
1 − e−βp0

)]
, (33)

where p0 given in Eq. (18) is the particle energy spectrum.
The first term in the above expression is divergent and repre-
sent the vacuum energy, which has been analyzed recently in
connection with the Casimir energy in Refs. [15–18]. Since
we are interested only in studying thermal properties, we will
disregard that term from now on. We notice also that as in the
LI case, the expression (33) scales with the volume V , which
is a consequence of translational invariance of the system.
To compute explicitly the expression (33), we will consider
separately the massless and the massive case.

3.1 The free massless case

The integral (33) can be computed exactly for the massless
case. In this case the particle energy, which we will denote
as p̃0, takes the following form,

p̃0 = √
pi Ai j p j − κ0 j p j

1 + κ00 ,

Ai j = κ0iκ0 j

(1 + κ00)2 + δi j − κ i j

1 + κ00 . (34)

Now, we introduce a matrix Mi j that diagonalizes Ai j ,
namely M−1AM = diag(a1, a2, a3), where a1, a2 and a3,
are the eigenvalues of matrix Ai j . By defining new variables

pi = 1

β
√
a j

Mi j p̄ j , (35)

and disregarding the vacuum energy contribution, we get for
(33),

ln Z0
∣∣
m=0 = − V

β3

| det M |
| det A|1/2

∫
d3p̄

(2π)3 ln
[
1 − e− p̄+b.p̄

]
,

(36)

where p̄ = |p̄|, and the components of b are

b j = κ0i Mi j√
a j (1 + κ00)

. (37)

The integral (36) can be computed straightforwardly in spher-
ical coordinates, obtaining the following final result

ln Z0
∣∣
m=0 = V

π2

90(1 − b2)2

| det M |
| det A|1/2 β−3, (38)

where b = |b|. From this result we can determine the internal
energy,

U = V
π2

30(1 − b2)2

| det M |
| det A|1/2 T

4, (39)
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and the pressure,

P = π2

90(1 − b2)2

| det M |
| det A|1/2 T

4, (40)

from which we obtain the relation,

PV = T ln Z0
∣∣
m=0 = U

3
, (41)

where the dependence on the LV parameters is hidden. This
happens because in the masless case, the LV model posseses a
particle energy spectrum (34) which is a homogeneous func-
tion of degree one in the momentum variable, as in the LI
case.

However, as we will see in the next subsection, that behav-
ior is a peculiarity of the massless case. Now, considering the
mean number of particles

N = V
∫

d3p
(2π)3

1

e p̃0β − 1
, (42)

and using (34), we obtain

N = V
1

π2(1 − b2)2

| det M |
| det A|1/2 ζ(3)T 3. (43)

And finally for the entropy, we get

S = V
2π2

45(1 − b2)2

| det M |
| det A|1/2 T

3. (44)

Since all of the above thermodynamics quantities are derived
from Eq. (38), they are all modified in relation to the Lorentz-
invariant case by a global multiplicative factor. Also, from
Eq. (43) we see that the mean number of particles is modified
by the same factor. From this behaviour, we can conclude in
general that for small violating parameters κ , the thermody-
namics quantities increase or decrease according to whether
these parameters are positive or negative. To illustrate that,
we can evaluate explicitly Eq. (38) for some specific situa-
tions consistent with the conditions discussed at the end of
Sect. 2. In the first scenario, let us consider all the κ compo-
nents as null except for κ00 and κ11. Then we obtain

ln Z0
∣∣
m=0 = V

π2

90

(
1 + κ00

)3/2

(1 − κ11)1/2 β−3. (45)

In the second scenario, we consider κ02 as the only non-null
component. So, we get,

ln Z0
∣∣
m=0 = V

π2

90

(
1 + (κ02)2

)3/2
β−3. (46)

For the last scenario, we choose κ12 as the only non-null
component. Hence,

ln Z0
∣∣
m=0 = V

π2

45

1

(1 − 3(κ12)2)1/2 β−3. (47)

In general, we notice that the global multiplicative factor,
which contain all the corrections, can in principle increase
or decrease the standard result, i.e. the one obtained in the
Lorentz-invariant case, by a linear or quadratic contribution
of the κ components, depending on whether they are diagonal
or off-diagonal terms. Of course, by considering that all the κ

components are non-null, we will obtain a more complicated
form which will contain higher powers of them. However,
those additional terms will not represent any significant con-
tributions. In fact, if we expand the multiplicative factor in
powers of these components, it will be enough to keep up to
linear order for practical purposes.

As is well known, at linear order in the LV parameters, the
coordinate transformation x ′μ = (δ

μ
ν − 1

2κ
μ
ν)xν reduces the

LV density Lagrangian (1) to the usual one up to a Jacobian
factor [72]. In this way, all the results in the LV case can
be obtained from the LI case, taking the space-time volume
multiplied by the corresponding Jacobian. At finite temper-
ature, the Euclidean space-time volume is given by βV , and
is this factor that must be multiplied by the aforementioned
Jacobian. In the case in which κ0 j = 0, the coordinate trans-
formation above does no mix space and time coordinates and
in this case the inverse temperature β and the spatial volume
V transforms independently, as

β →
(

1 − 1

2
κ0

0

)
β, V →

(
1 + 1

2
(κ11 + κ22 + κ33)

)
V .

(48)

In this way, starting from the known result for the partition
function in the massless scalar LI case, namely

ln Z0|m=0 = π2

90
Vβ−3, (49)

and using correspondences in Eq. (48), we get

ln Z0|m=0 = π2

90

[
1 + 3

2
k00 + 1

2
(κ11 + κ22 + κ33)

]
Vβ−3,

which coincides, up to linear order in the LV parameters κμν ,
with the corresponding expressions given by Eqs. (45)–(47).
The above check gives us confidence about the consistency
of our results.

3.2 The free massive case

Now, we will evaluate the partition function for the free mas-
sive case. Since we are not able to perform exactly the integral

123
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(33), we are going to consider the high temperature regime
instead, i.e. m/T 
 1 (mβ 
 1), and then we will expand
the thermodynamics quantities in terms of this parameter.
First of all, we expand p0 (18) as follows

p0 � p̃0 + δp0, (50)

with

δp0 = m2

2(1 + κ00)
√
pi Ai j p j

, (51)

where p̃0 and Ai j are given in Eq. (34). Substituting the above
approximation in the integral (33), and expanding up to first
order in δp0, we have

ln Z0 = ln Z0
∣∣
m=0 − Vβ

∫
d3p

(2π)3

δp0

eβ p̃0 − 1
+ · · · . (52)

Now, by using the redefinition (35), we obtain

ln Z0 = ln Z0
∣∣
m=0 − Vβ−1m2 | det M |

2| det A|1/2(1 + κ00)

×
∫

d3p̄
(2π)3

1

p̄(e p̄−b.p̄ − 1)
+ · · · . (53)

Now, performing the final integration, we finally get,

ln Z0 = V
π2

90(1 − b2)2

| det M |
| det A|1/2 β−3

×
(

1 − 15(1 − b2)

4π2(1 + κ00)
β2m2 + O((βm)4)

)
. (54)

As it was done for the massless case, from the above result
we can determine the internal energy and pressure, namely

U = V
π2

30(1 − b2)2

| det M |
| det A|1/2 T

4

×
(

1 − 5(1 − b2)

4π2(1 + κ00)
m2T−2 + O((m/T )4)

)
,

(55)

P = π2

90(1 − b2)2

| det M |
| det A|1/2 T

4

×
(

1 − 15(1 − b2)

4π2(1 + κ00)
m2T−2 + O((m/T )4)

)
,

(56)

which satisfy the relation

PV = T ln Z0

= U

3

(
1 − 10(1 − b2)

4π2(1 + κ00)
m2T−2 + O((m/T )4)

)
.

(57)

Also, we find that the entropy is given by

S = V
π2

90(1 − b2)2

| det M |
| det A|1/2 T

3

×
(

4 − 15(1 − b2)

2π2(1 + κ00)
m2T−2 + O((m/T )4)

)
, (58)

and the mean number of particles reads

N = V | det M |T 3

π2| det A|1/2

[
ζ(3) + m2T−2

4(1 + κ00)

+ ln sinh

(
m

2
√

(1 + κ00)T

)
+ O((m/T )4)

]
, (59)

where it has been considered only the case b = 0, for sim-
plicity (see Appendix B for more details).

Now, as it was done in the massless case, we will analyze
the effect of LV terms on the expression (54). Let us first
consider that only κ00 �= 0, and the rest of the components
are null. Up to second order in βm, we find,

ln Z0 = π2

90

V

β3

(
1 + κ00

)3/2
(

1 − 15

4π2(1 + κ00)
β2m2

)
.

(60)

If we consider that only the κ11 component is different from
zero, we obtain

ln Z0 = π2

90

V

β3

(
1 + κ11

)−1/2
(

1 − 15

4π2 β2m2
)

. (61)

We note that both results suffer an explicit global effect
from the LV parameters, but only the term κ00 appears explic-
itly in the term proportional to mass. For 0 < κ00 < 1,
the global term of pressure and energy increase, but the
term proportional to the mass decreases these quantities. For
−1 < κ00 < 0, the global and the mass terms decrease the
pressure and energy. Comparing these two cases, we can see
that for the positive κ00, the mass term decrease these ther-
modynamics quantities more than the negative κ00 case. In
the case of κ11 �= 0, the Lorentz-violation term appears only
as a global term. For negative κ11, the pressure and energy
decreases more than the positive κ11 case. On the other hand,
when considering the cross-terms κ0i and κ i j , we conclude
that they appear, at least, in quadratic order in the Eq. (54).
Regarding the state equations, we see that, unlike the mass-
less case, there is an explicit effect of the LV terms, even
when written in terms of N .
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4 The thermal behaviour for the interacting scalar field

In this section we consider the study of the thermal properties
of the real scalar interacting field, with Euclidean lagrangian
given by (20), where

U (φ) = m2

2
φ2 + λ

4!φ
4. (62)

To compute the partition function perturbatively, we decom-
pose the Euclidean action in the free and interacting part,

SE = S0 + SI , (63)

where S0 is the free Euclidean action and SI is given by the
integral of the last term in (62). In this way, expanding the
interacting part we have from (19),

ln Z = ln Z0 + ln ZI , (64)

where Z0 is the free partition function considered and eval-
uated in the last section, and ln ZI is given by,

ln ZI = ln

(
1 + 1

Z0

∞∑
n=1

(−1)n

n!
∫

Dφ e−S0(SI )
n

)

= ln

(
1 +

∞∑
n=1

(−λ)n

4nn!
∫

dx1 . . .

∫
dxn

×〈φ4(τ1, x1) . . . φ4(τn, xn)〉
)

. (65)

In above expression, we have used the shorthand notation dx
to denote dτd3x and

〈. . .〉 = 1

Z0

∫
Dφ . . . e−S0 , (66)

that we can compute using the Wick theorem with the help of
the free propagator (25) and (26). In this way it is possible to
show that (65) is given schematically by the connected vac-
uum graphs, but replacing the zero temperature propagator
by the thermal propagator, and also the vertex −iλ by −λ.
So, at first order in the coupling constant, Eq. (65) reads

ln ZI = − λ

4!
∫ β

0
dτ

∫
d3x 〈φ4(x)〉

= −λ

8

∫ β

0
dτ

∫
d3x [D(0, 0)]2. (67)

Using (25) and (26), the above expression can be written as

ln ZI = −V
λ

8β

( ∞∑
n=−∞

∫
d3p

(2π)3 D̃(p, ωn)

)2

. (68)

Now, by replacing the Matsubara frequencies in (68), and
summing in n, we get

ln ZI = −Vβ
λ

8

[∫
d3p

(2π)3

(F+(p) + F−(p)
)]2

, (69)

where

F±(p) = 1

4R coth

(
β

2Δ00

(
R ± iΔ0 j p j

))
, (70)

with

R =
√

(iΔ0 j p j )2 + Δ00(Δi j pi p j + m2). (71)

By performing the transformation p → −p, we can show
that F+ and F− within the integral (69) are equal, and then
using (21) we get

ln ZI = −Vβ
λ

32

[∫
d3p

(2π)3

coth(βp0/2)

(1 + κ00)p0 + κ0 j p j

]2

= −Vβ
λ

32

[ ∫
d3p

(2π)3

1

(1 + κ00)p0 + κ0 j p j

+ 2

[(1 + κ00)p0 + κ0 j p j ](eβp0 − 1)

]2

, (72)

where p0 is the free particle energy, given by (18). The first
term in (72), is ultraviolet divergent but linear in the inverse
temperature β. Such term gives the first-order vacuum energy
correction and has been treated recently in connection to the
radiative corrections to the Casimir energy [19]. Also, since
we are interested only in studying the thermal properties of
the system, from now on we disregard such contribution as
we did in the free case. In this way, we get for the finite
temperature dependent part,

ln ZI = −λβV

8

[∫
d3p

(2π)3

(eβp0 − 1)−1

[(1 + κ00)p0 + κ0 j p j ]
]2

. (73)

4.1 The massless case

For the massless case, the above integral can be done exactly.
In this case, by using (34) in (73), and performing the change
of variable (35), we have

ln ZI
∣∣
m=0 = −Vβ

λ

8

[
β−2| det M |

| det A|1/2(1 + κ00)

]2

×
[∫

d3p̄
(2π)3

1

p̄(e p̄−b.p̄ − 1)

]2

. (74)

Now, using polar coordinates, we obtain

ln ZI
∣∣
m=0 = −Vβ−3 λ

27 · 9

| det M |2
| det A|(1 + κ00)2(1 − b2)2 .

(75)
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Replacing Eqs. (38) and (75) in Eq. (64), we have for the
massless interacting partition function

ln Z
∣∣
m=0= V

| det M |
(1 − b2)2| det A|1/2 β−3

×
(
π2

90
− λ

27 · 9

| det M |
| det A|1/2(1 + κ00)2 + · · ·

)
,

(76)

from which the internal energy and pressure can be obtained,

U = V
| det M |

(1 − b2)2| det A|1/2 T
4

×
(

π2

30
− λ

27 · 3

| det M |
| det A|1/2(1 + κ00)2 + · · ·

)
, (77)

and

P = | det M |
(1 − b2)2| det A|1/2 T

4

×
(

π2

90
− λ

27 · 9

| det M |
| det A|1/2(1 + κ00)2 + · · ·

)
. (78)

Also, for the entropy, we get

S = V
| det M |

(1 − b2)2| det A|1/2 T
3

×
(

2π2

45
− λ

25 · 9

| det M |
| det A|1/2(1 + κ00)2 + · · ·

)
. (79)

From (77) and (78) we see that at first order in the coupling
constant PV = U/3, as in the free massless case.

We will now consider some specific cases. When only
κ00 �= 0, it can be noticed that the behaviour of the above ther-
modynamics quantities is similar to the massive case without
interaction, where λ plays the role of the mass. However, each
one of these effects has different magnitude. On the other
hand, by considering only κ11 �= 0, unlike the massive case
without interaction, the thermodynamics quantities decrease
by the interaction term λ. However, the similarity with the
massive case without interaction comes from the global term
that always decreases the pressure and the energy.

4.2 The massive case

In this situation the integrand in (73) can not be performed
exactly. As in the free massive case we expand in the param-
eter βm, and then our result will be valid for small values of
βm (see the full details of the calculation in Appendix C).
According to the free case, we only consider the first-order
correction, and then we have for the interacting massive par-
tition function,

ln Z = V
π2

90(1 − b2)2

| det M |
| det A|1/2 β−3

×
(

1 − 15(1 − b2)

4π2(1 + κ00)
β2m2 + O((βm)4)

)

−V
λ

27 · 9

| det M |2
(1 − b2)2| det A|(1 + κ00)2 β−3

×
(

1 − 3
(1 − b2)b̃

π(1 + κ00)1/2 βm + · · ·
)

, (80)

where b̃ is given by

b̃ = (1 + b)−1/2 + (1 − b)−1/2. (81)

In the second line in (80) we have disregarded quadratic terms
in βm, since being the constant coupling λ sufficiently small,
we expect that crossing terms of the typeλ(βm)2 are also very
small compared with the free contribution. Now, from (80)
we get for the internal energy, the pressure and entropy, the
following expressions

U = V
π2

30(1 − b2)2

| det M |
| det A|1/2 T

4

×
(

1 − 5(1 − b2)

4π2(1 + κ00)
m2T−2 + · · ·

)

−V
λ

27 · 3

| det M |2
(1 − b2)2| det A|(1 + κ00)2 T

4

×
(

1 − 2
(1 − b2)b̃

π(1 + κ00)1/2 mT−1 + · · ·
)

, (82)

P = π2

90(1 − b2)2

| det M |
| det A|1/2 T

4

×
(

1 − 15(1 − b2)

4π2(1 + κ00)
m2T−2 + · · ·

)

− λ

27 · 9

| det M |2
(1 − b2)2| det A|(1 + κ00)2 T

4

×
(

1 − 3
(1 − b2)b̃

π(1 + κ00)1/2 mT−1 + · · ·
)

, (83)

and

S = V
2π2

45(1 − b2)2

| det M |
| det A|1/2 T

3

×
(

1 − 15(1 − b2)

8π2(1 + κ00)
m2T−2 + · · ·

)

−V
λ

25 · 9

| det M |2
(1 − b2)2| det A|(1 + κ00)2 T

3

×
(

1 − 9

4

(1 − b2)b̃

π(1 + κ00)1/2 mT−1 + · · ·
)

. (84)

We notice from these results that when κ00 is the only
non-null coefficient, and −1 < κ00 < 0, the global factor
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decrease the thermodynamics quantities. On the contrary,
when 0 < κ00 < 1, the global factor will increases these
quantities. In its turn, the coefficient β2m2 will gives also
a decreasing contribution, whereas the term proportional to
λβm will give an increasing contribution. However, the mag-
nitude of such contributions will depend on the sign of κ00.

On the other hand, by considering that κ11 is the only
non-vanishing LV coefficient, we see that in the regime
−1 < κ11 < 0 the global factor will decrease the thermody-
namics quantities, whereas for 0 < κ11 < 1, it will give and
increasing contribution. In addition, the coefficient of propor-
tional to λ will decrease the thermal quantities, whereas an
increasing contribution will be obtained from the term pro-
portional to λβm. Both of these contributions will depend on
the sign of κ11.

We can also note that in the case of κ00 �= 0, there is no
explicit LV contribution coming from the term proportional
to λ. While in the case of κ11 �= 0, this same feature occurs
for the term proportional to β2m2.

5 Concluding remarks

In this paper, we have investigated Lorentz-violation (LV)
effects on the thermodynamics properties of a real scalar field
theory due to the presence of a constant background tensor
field.

In order to find the effects of the Lorentz symmetry break-
ing terms on our model, we firstly looked for the particle spec-
trum of the theory, given explicitly in Eq. (18), from which we
conclude that there should be specific bounds over the values
of the κμν coefficients in order to have a real positive energy
that is also bounded from below. Then, we assumed that the
magnitude of the constant tensor components are very small,
i.e. |κ| << 1, in all the analysis performed, which is quite
reasonable.

We have also studied the corresponding effects over rel-
evant thermodynamics quantities, like the internal energy,
pressure, and the entropy. First of all, we considered the
free massless scalar field, with some specific non-vanishing
coefficients for simplicity. We noticed that the effects over
the thermodynamics quantities are all enclosed in a global
multiplicative factor, which increases the thermodynamics
quantities when the LV coefficients are positive, and decrease
them when they take negative values. In particular, we found
that off-diagonal non-null coefficients yield only quadratic
contributions in the LV coefficients, and thus they have been
neglected for our analysis.

When the massive scalar field is considered, we face in
general a difficulty in order to evaluate analytically the cor-
responding partition function, and then only the high temper-
ature regime m/T << 1 was considered. In this approxima-
tion, we have computed the corresponding thermodynamics

quantities with very good accuracy. In this case, we get not
only the global factor contribution, but also a contribution
from the coefficient of m2. For instance, when 0 < κ00 < 1,
the global factor increase the thermal quantities, whereas the
square mass coefficient produces a decrease. On the other
hand, when −1 < κ00 < 0, both contributions cause the
pressure, internal energy and entropy to decrease. In addi-
tion, by considering only κ11 �= 0, we only obtain a purely
global contribution, such that when κ11 < 0, the pressure,
internal energy, and entropy decrease more rapidly than in
the case of positive κ11.

Subsequently, we analysed the case of a LV massless
scalar field in the presence of a φ4 interaction potential. Inter-
estingly, we noticed that this case is somehow similar to the
free massive case, where the coupling constant λ plays the
role of the mass m, but with LV contributions of different
magnitude. This similarity can be understood from the effect
of the global factor on the thermal quantities. However, unlike
the free massive case, the thermal quantities will decrease
because of the interaction factor when we consider κ11 �= 0.

Finally, we analysed the massive interacting scalar field
theory in the LV tensor background. In this case, we find sev-
eral possibilities of decreasing and increasing contributions
coming from the LV coefficients. We noticed that when only
κ00 �= 0, there is no such Lorentz breaking coming from the
term proportional to the coupling constant λ. While in the
case when only κ11 �= 0, this same features occur for the
term proportional to β2m2.

We believe that the extension our results to more general
LV models is an interesting issue that can be addressed in next
works. In particular, it would be interesting to analyse low
temperature behaviours, and also extensions to LV models
with boundaries. Potential applications, such as LV effects on
cosmological problems [73–77], or in perturbative quantum
field theory [78], would also be of great interest. Authors aim
to pursue these further studies in future investigations.
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AppendixA: Explicit calculation of the partition function

Let us start from the expression (31) for the partition function
for the free scalar field at finite temperature, namely

Z0 = N ′∏
np

[
β2
(
Δ00ω

2
n + 2Δ0 jωn p j

+Δi j pi p j + m2
)]−1/2

, (A.1)

from which we straightforwardly obtain,

ln Z0 =−1

2

∞∑
n=−∞

∑
p

ln

(
β2ω2

n + 2
Δ0 j

Δ00
β2ωn p j + β2ω2

Δ00

)

+ ln N ′, (A.2)

where we have disregarded the term that does not depend on
the thermodynamics variables, and

w2 = Δi j pi p j + m2, ωn = 2πn

β
. (A.3)

By using (A.3), and introducing the following notation

A = κ0 j

Δ00
βp j , θ = β2ω2

Δ00
, (A.4)

the expression can be simplified to the following form

ln Z0 = ln N ′−1

2

∞∑
n=−∞

∑
p

ln
(

4π2n2−4π i An+θ
)
. (A.5)

Now, let us derive and integrate the right-hand side of (A.5)
with respect to θ . Doing that, we note that the summation
can be expressed as follows,

∞∑
n=−∞

∑
p

∫
dθ[

4π2n2 − 4π i An + θ
]

=
∑
p

∫
dθ

∞∑
n=−∞

1[
4π2n2 − 4π i An + θ

] . (A.6)

The summation in (A.6) can be computed exactly, and the
result is given by

∞∑
n=−∞

1[
4π2n2 − 4π i An + θ

]

= 1

4
√
A2 + θ

[
coth

(
A + √

A2 + θ

2

)

− coth

(
A − √

A2 + θ

2

)]
. (A.7)

Now, by using Eq. (A.7), we can solve the integral in
Eq. (A.6),

∫
dθ

∞∑
n=−∞

1[
4π2n2 − 4π i An + θ

]

= C1 + ln

[
sinh

(
A − √

A2 + θ

2

)]

+ ln

[
sinh

(
A + √

A2 + θ

2

)]
, (A.8)

where C1 = C1(κ, β) is an integration constant that will be
used to cancel out the term ln N ′ in Eq. (A.2). Then, we find

ln Z0 = −1

2

∑
p

⎧⎪⎪⎨
⎪⎪⎩

β

√(
κ0 j

Δ00
p j

)2

+ ω2

Δ00

+ ln

⎡
⎢⎢⎣1 − e

−β

⎛
⎝
√(

κ0 j
Δ00

p j

)2

+ ω2

Δ00
− κ0 j

Δ00
p j

⎞
⎠
⎤
⎥⎥⎦

+ ln

⎡
⎢⎢⎣1 − e

−β

⎛
⎝
√(

κ0 j
Δ00

p j

)2

+ ω2

Δ00
+ κ0 j

Δ00
p j

⎞
⎠
⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

.

(A.9)

Now, we can relabel the variable p → −p in the last term
of (A.9), and then simplify the above expression as follows

ln Z0 =
∑
p

⎧⎪⎪⎨
⎪⎪⎩

− β

2

√(
κ0 j

Δ00
p j

)2

+ ω2

Δ00

− ln

⎡
⎢⎢⎣1 − e

−β

⎛
⎝
√(

κ0 j
Δ00

p j

)2

+ ω2

Δ00
− κ0 j

Δ00
p j

⎞
⎠
⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

.

(A.10)
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For the continuous case we will find

ln Z0 = −V
∫

d3 p

(2π)3

⎧⎪⎪⎨
⎪⎪⎩

β

2

√(
κ0 j

Δ00
p j

)2

+ ω2

Δ00

+ ln

⎡
⎢⎢⎣1 − e

−β

⎛
⎝
√(

κ0 j
Δ00

p j

)2

+ ω2

Δ00
− κ0 j

Δ00
p j

⎞
⎠
⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

.

(A.11)

Appendix B: Mean number of particle for the massive
case

Let us consider the mean number of particles for the massive
case, given by

N = V
∫

d3 p

(2π)3

1

eβp0 − 1
, (B.1)

where p0 is given by Eq. (18). By using Eqs. (34), (35), and
considering κ0i = 0 for simplicity, we get

N = V | det M |β−3

2π2| det A|1/2

∫
d p̄

p̄2

e
√

p̄2+a2 − 1
, (B.2)

where p̄ is defined as in (35) and

a2 = β2m2

(1 + κ00)
. (B.3)

To properly calculate the integral in (B.2), valid for small
βm, we can expand the integrand in orders of a. However, it
is not possible to use Taylor’s expansion since the integrand
is not an analytic function on a = 0, as one can see taking
the first derivative of (B.2). However, we can sort out this
problem by using the identity [55],

1

ey − 1
= −1

2
+

∞∑
n=−∞

y

y2 + 4π2n2 , (B.4)

in the integral of Eq. (B.2), we have

I (a)=
∫

d p̄
p̄2

e
√

p̄2+a2 − 1

=−
∫
d p̄

p̄2

2
+

∞∑
n=−∞

∫
d p̄

p̄2
√
p̄2 + a2

p̄2+a2+4π2n2 + δ I,

(B.5)

where δ I in (B.5) is a necessary counterterm to ensure con-
vergence of the integral I (a), since the identity (B.4) gen-

erates a fictitious divergence. Separating the massless terms,
we can write

I (a) = I (0) + δ I +
∞∑

n=−∞

[ ∫
d p̄

p̄2
√
p̄2 + a2

p̄2 + a2 + 4π2n2

−
∫

d p̄
p̄3

p̄2 + 4π2n2

]
. (B.6)

Hence, we are concerned with calculating the last two inte-
grals of Eq. (B.6), which we will denote as

J =
∫

d p̄
p̄2
√
p̄2 + a2

p̄2 + a2 + 4π2n2 , (B.7)

and

K = K̃ +
∫

d p̄
p̄3

p̄2 + 4π2n2 , (B.8)

where K̃ is a divergent mass-independent constant, whose
derivative arises from the term n = 0. Let us begin with J .
First, we approximate in the following way,

J ≈
∫ ∞

0
d p̄

p̄3

p̄2 + a2 + 4π2n2

+a2

2

∫ ∞

0
d p̄

p̄

p̄2 + a2 + 4π2n2 , (B.9)

and use dimensional regularization by inserting a parameter
δ, as follows

J ≈
∫ ∞

0
d p̄

p̄3−2δ

p̄2 + a2 + 4π2n2

+a2

2

∫ ∞

0
d p̄

p̄1−δ

p̄2 + a2 + 4π2n2

≈ −2π2n2

δ
+
(

2π2n2 + a2

4

)
ln
(
a2 + 4π2n2

)
. (B.10)

Similarly for the integral K , we obtain

K = K̃ +
∫

d p̄
p̄3−2δ

p̄2 + 4π2n2

= K̃ − 2π2n2

δ
+ 2π2n2 ln

(
4π2n2

)
. (B.11)

Replacing above expressions in (B.6) we note that the diver-
gent terms of the integrals J and K cancel each other out,
allowing us to perform the sums in (B.6), and then we find
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the following,

I (a) = I (0) + δ I − K̃ + a2

4
ln (a2)

+
∞∑
n=1

[
a2

2
ln
(
a2 + 4π2n2

)

+4π2n2 ln

(
1 + a2

4π2n2

)]
. (B.12)

The first sum above is computed using the identity

∞∏
n=1

(
1 + a2

4π2n2

)
= 2

a
sinh(a/2), (B.13)

and the last one can be calculated for small a, using Taylor
expansion, obtaining

∞∑
n=1

n2 ln

(
1 + a2

4π2n2

)

≈
∞∑
n=1

(
a2

4π2 − a4

32π4n2 + O(a6)

)
. (B.14)

In this way, we get for (B.12), using the cutoff regularization

I (a) = I (0) + a2

2
ln sinh(a/2) + O(a4) + δ I − K̃

+a2 (C̃ + ln(2πΛ) + Λ
) ∣∣

Λ→∞, (B.15)

where C̃ is a divergent constant. We expect that at the limit
I (a → 0) → I (0), and we find

δ I = K̃ − lim
a→0

[
a2 (C̃ + ln(2πΛ) + Λ

) ∣∣
Λ→∞

]
. (B.16)

However, since we assume that the I (a) function is smooth
and continuous, we can generalize Eq. (B.16) for all allowed

values of a, i.e., those that make sense in an expansion of a.
Thus, we have

I (a) = I (0) + a2

2
ln sinh(a/2) + O(a4). (B.17)

In Fig. 1, we have plotted the values of the integral both exact
numerical calculation, and approximated calculation, and the
corresponding relative error. We can notice that the relative
error will be less than 1% when compared with the numerical
value, for a � 0.3. From these numerical support, we can
ensure that the approximated value for the mean number of
particles is reliable.

Finally, by substituting our approximation in (B.2), we
can write down the mean number of particles formula for the
massive case in the following form,

N = V | det M |T 3

π2| det A|1/2

×
(
ζ(3) + m2T−2

4(1 + κ00)
ln sinh

(
m

2
√

(1 + κ00)T

)

+O((m/T )4)

)
. (B.18)

Appendix C: First correction for the massive interacting
partition function

In this appendix we compute the integral in (73) for the mas-
sive case. Using (34) and the change of variable (35), we
have∫

d3p
(2π)3

1

[(1 + κ00)p0 + κ0 j p j ](eβp0 − 1)

= | det M |β−2

8π3| det A|1/2(1 + κ00)
Ĩ (a), (C.1)

Fig. 1 On the left, we have plotted the values of the integral both exact
numerical calculation (red dashed line) and the approximation (blue
continuous line). On the right, we have plotted the relative error of

the approximated value of the integral with respect to numerical exact
value. The horizontal continuous (red) line corresponds to an error of
1%
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where

Ĩ (a) =
∫

d3p̄
1√

p̄2 + a2[exp(
√
p̄2 + a2 − b.p̄) − 1] ,

(C.2)

where b and a2 are given respectively by Eqs. (37) and (B.3).
Integral (C.2) can not be computed exactly, and then here we
will an approximated expression valid for sufficiently small
a. For this purpose, we first integrate in spherical coordinates,
taking the polar axis along the vector b. In this way we get,

Ĩ (a) = 2π

∫ π

0
dθ

∫ ∞

0
d p̄

sin(θ) p̄2( p̄2 + a2)−1/2

exp(
√
p̄2 + a2 − cos(θ)b p̄) − 1

= 2π

∫ 1

−1
dτ

∫ ∞

0
d p̄

p̄2( p̄2 + a2)−1/2

exp(
√
p̄2 + a2 − b p̄τ) − 1

,

(C.3)

where we have used the change of variable τ = cos(θ). Using
the identity (B.4) in (C.3), we get

Ĩ (a) =−2π

∫ ∞

0
d p̄

p̄2−ε√
p̄2 + a2

+ 2π

∞∑
n=−∞

∫ 1

−1
dτ

∫ ∞

0
d p̄ ( p̄2−ε)

× ( p̄ + a2)−1/2(
√
p̄2 + a2 − b p̄τ)

(
√
p̄2 + a2 − b p̄τ)2 + 4π2n2

+ δ Ĩ , (C.4)

where a regulator ( p̄)−ε is introduced to give sense to the
change of the order between the sum and the integral. This
change also introduces an ambiguity, that we denote as δ Ĩ ,
and will be fixed with the known value of Ĩ at a = 0. For
this value, we get easily from (C.3)

Ĩ (0) = 2π3

3(1 − b2)
. (C.5)

Now, for sufficiently small a, after expansion of the square
root in (C.4), we get

Ĩ (a) = I1 + I2 + I3 + δ Ĩ , (C.6)

where

I1 = −2π

∫ ∞

0
d p̄

p̄2−ε√
p̄2 + a2

, (C.7)

I2 =2π

∞∑
n=−∞

∫ 1

−1
dτ(1 − bτ)

×
∫ ∞

0
d p̄

p̄2−ε

(1 − bτ)2 p̄2 + (1 − bτ)a2 + 4π2n2 ,

(C.8)

and

I3 = πba2
∞∑

n=−∞

∫ 1

−1
dτ τ

×
∫ ∞

0
d p̄

p̄−ε

(1 − bτ)2 p̄2 + (1 − bτ)a2 + 4π2n2 .

(C.9)

The integral (C.7) can be evaluated in terms of the Beta func-
tion, namely

I1 = −2πa2−εB

(
3

2
− ε

2
,−1 + ε

2

)

= πa2

ε
− πa2

2

(
1 + 2 ln(a/2)

)
. (C.10)

The integrals (C.8) and (C.9) are evaluated using an appro-
priated change of variable and

∫ ∞

0
dx

x−α

x2 + 1
= π

2 cos(πα/2)
. (C.11)

In this way get respectively

I2 = −π2
∞∑

n=−∞

∫ 1

−1
dτ

[(1 − bτ)a2 + 4π2n2](1−ε)/2

(1 − bτ)2−ε cos(πε/2)
,

(C.12)

and

I3 = π2a2b

2

∞∑
n=−∞

∫ 1

−1
dτ

τ [(1 − bτ)a2 + 4π2n2]−(1+ε)/2

(1 − bτ)1−ε cos(πε/2)
.

(C.13)

Now, taking the limit ε → 0, separating the term n = 0, and
expanding in powers of a2, we obtain for (C.12)

I2 = −π2a
∫ 1

−1
dτ

1

(1 − bτ)3/2 − 8π3 ζ(−1)

1 − b2

−πa2

2

(
1

ε
+ γ − ln 2π

)∫ 1

−1
dτ

1

1 − bτ
+ · · · ,

(C.14)

where γ is the Euler–Mascheroni constant. In a similar way,
we get for (C.14)

I3 = π2ab

2

∫ 1

−1
dτ

τ

(1 − bτ)3/2

+πa2

2

(
1

ε
+ γ − ln 2π

)∫ 1

−1
dτ

bτ

1 − bτ
+ · · · .

(C.15)
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Replacing (C.10), (C.14) and (C.15) in (C.6), we see that the
divergent terms at ε → 0 cancel out, and we obtain

Ĩ (a) = π2a

2

∫ 1

−1
dτ

bτ − 2

(1 − bτ)3/2 − 8π3ζ(−1)

1 − b2

−πa2

2

(
1 + 2γ + 2 ln

a

4π

)
+ δ Ĩ . (C.16)

Now we can fix δ Ĩ . Taking a → 0 in expression above we
find

δ Ĩ = 8π3ζ(−1)

1 − b2 + Ĩ (0). (C.17)

Using the above result, and performing the integration in τ ,
we obtain

Ĩ (a) = 2π3

3(1 − b2)
− π2a

(
1√

1 − b
+ 1√

1 + b

)

−πa2

2

(
1 + 2γ + 2 ln

a

4π

)
+ · · · . (C.18)

Finally, by using Eqs. (C.18) and (C.1) in Eq. (73), we get
the expression (80) for the partition function.
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