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Resumo
O objetivo desta tese é estudar estruturas quase riemannianas simples sobre grupos de Lie
solúveis não nilpotentes de dimensão três. Para isso, começamos descrevendo geometrica e
algebricamente o locus singular de uma estrutura quase Riemanniana simples nos grupos em
questão. E em seguida estabelecemos que tal locus singular é uma subvariedade. Além disso,
analisamos como as curvas exponenciais cruzam o locus singular. Em seguida definimos ARS’s
de rank dois e analisamos isometrias de tais ARS’s. O resultado principal mostra que, isometrias
de rank dois são necessariamente automorfismos do grupo. Tal resultado permite separar as
ARS dos grupos de dimensão três estudados em classes dependendo dos autovalores da matriz
associada ao produto semi-direto.

Palavras-chave: Estrutura quase Riemanniana, locus singular, grupo de Lie, condição do posto
de Lie, isometrias.



Abstract
The aim of this Thesis is to study the simple almost-Riemannian structure on nonnilpotent,
solvable three dimensional Lie Groups. For doing that, we begin by describing geometrically
and algebraically the singular locus of a simple almost Riemannian structure in the groups
in question. Subsequently we establish that such a singular locus is a submanifold. Moreover,
we analyze how exponential curves cross the singular locus. Then we define rank two ARS’s
and analyze isometries of such ARS’s. The main result shows that rank two isometries are
necessarily group of automorphisms. This result allows us separating the ARS of the groups of
dimension three studied into classes depending on the eigenvalues of the matrix associated with
the semi-direct product.

Keywords: Almost-Riemannian structure; singular locus; Lie group; rank condition; isometries.
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Introduction

A simple almost-Riemannian structure, hencefort ARS, on a Lie group G is defined by a
linear vector field and dimpGq ´ 1 left-invariant vector fields. Those vectors fields form a local
orthonormal frame and satisfy the Lie bracket generating condition, they can become collinear,
and degenerate on some singular set. ARS’s are generalized Riemannian structures and are a
particular case of rank-varying Sub-Riemannian Structures, e.g [2, 9, 32]. The singular locus
is defined as the set of points where the vector fields fail to be linearly independent. It is an
analytic and in general is not a subgroup neither a submanifold as was pointed out in the
example given in [6] on the nilpotent case. The singular Locus presents a particular behavior
related with another important geometric quantities or elements like the metric, the Riemannian
area, the curvature. For instance, through the study of the properties of the Laplace-Beltrami
operator. The authors in [18] concluded that a quantum particle cannot cross the singular set of
an associated ARS and heat cannot flow through the singularity.
We can also relate the singular locus with the singularities of metrics for example, in the Grushin
case, when we approach the singular set all Riemannian quantities explode, but geodesics are
still well defined and can cross the singular set without singularities [18].
In dimension two, ARS’s have been studied in [4, 13, 17, 19]. 2-ARS were introduced in the
context of hypoelliptic operator, [22, 23], and they are generalizations of the Grushin plane.
Recently many authors are interested in the study of quantum confinement [10].
For 2-dimensional ARS, it was proved in [1] that generically the singular set Z is an embedded
submanifold of dimension 1. For other references of ARS see [3, 14]. This theory also is related
with the geometric control theory, [5, 30, 35, 36, 2].
In this work, we investigate the algebraic and geometric stucture of the Singular locus of ARS’s
on three-dimensional solvable nonnilpotent Lie groups. For these groups we show that the
singular locus is a submanifold. In this way we investigate how the exponential flow crosses the
the Singular locus. We exhibit a explicit form of the singular locus for each class.
The definition of linear vector field of rank two is given, with this, we define the ARS’s of rank
two. Moreover, Isometries of ARS’s are studied. In this way, the main result of this thesis is
stated, that is, we prove that isometries between rank two ARS’s are automorphisms. We also
extended the results to the connected case.
In this study, we use the classification of the solvable nonilpotent three dimensional Lie groups,
for do that, we use the classification of three dimensional Lie algebras. This is because generically
a Lie group can be recover from the Lie algebra. In such classification we have five classes of Lie
algbras [34].



Introduction 11

Chapter I
In this chapter we will explain some general concepts necessary for the understanding of this
thesis. We start by defining Linear vector fields on Lie groups and stating their main properties.
Next, we define general ARS’s on manifolds and subsequently simple ARS on Lie groups. The
definition of singular locus is given. We also present the definition of isometries together with
the principal results provided in the literature. Finally, we present two main examples of ARS,
the first one is a general example, the Grushin plane, and the second one is the Heisenberg Lie
group, which is an example where we contrast the difference between the nilpotent and the
solvable nonnilpotent Lie group with respect to the geometry of the singular locus.
Chapter II
In this chapter we present the classification of the solvable nonnilpotent three dimensional
Lie groups. Then we study the automorphism and derivations of these groups and algebras.
Afterwards, an equivalence form of the Lie algebra rank condition is discussed. Simple ARS
isometry-related are studied.
Chapter III
In this chapter we study some algebraic and geometric properties of the singular locus. Here, we
prove that the singular locus is a submanifold. Moreover, we analyze when the singular locus is
a connected subset. We also investigate how the exponential curve crosses the singular locus.
Chapter IV
This chapter present the main result of this work. We show that Isometries between ARS of
rank two are automorphisms. To prove such theorem, the fundamental lemma is proved, this
lemma give us a sufficient condition for an isometry between ARS to be an automorphism. Next,
we study the invariance of the nilradical. Finally, we give the proof of the theorem of isometries.
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1 Preliminaries

In this chapter we give the basic definitions needed for the development of this thesis. For more
details see [6, 8, 20, 25, 27, 31, 37, 38, 39, 40].
The layout of this chapter is as follows: In section 1.1 the definition of linear vector field is given.
In Section 1.2 the general definition of almost Riemannian structure and the simple almost
Riemannian structures are presented. Afterwards, the Lie Algebra rank condition is discussed.
The definition of simple ARS in a connected Lie group is introduced in Section 1.3. Here we also
give the definitions of singular locus and the singularities of a linear vector field. In Section 1.4
the definition of isometries of ARS is given and some theorems about the isometries of ARS’s
are also provided. Section 1.5 is concerned to the extension of the results of ARS provided
in a simply connected Lie group to the connected one. Finally, in Section 1.6 we present two
examples of ARS. The first example, called the Grushin plane, is a nontrivial two dimensional
ARS. This example presents an interesting phenomenon with respect to the singular locus and
the riemannian quantities associated to this group. The second one is on the Heisenberg group.
In this group we show an example where the singular locus is not a submanifold. As we will see
in Chapter 3 this is not the case in three nonnilpotent solvable Lie groups.

1.1 Linear vector fields
In this section the definition of linear vector fields and some of their properties are recalled.
More details can found in [8, 27, 28].
Let G be a connected Lie group and g its Lie Algebra, identified with the set of left-invariant
vector fields. A vector field X on G is said to be linear if its flow pφtqtPR is a one-parameter
group of automorphisms, i.e.,

for all t P R φtpghq “ φtpgqφtphq

A linear vector field is consequently complete. Indeed, by the definition of one-parameter group
of automorphism its integral curves are defined in the whole real line.
Associate to X there is a derivation D of g defined by the formula

DY “ ´rX , Y speq, for all Y P g,

which satisfies
pdφtqe “ etD, for all t P R. (1.1)
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1.2 Almost-Riemannian structures (ARS)
Here we present the definitions of ARS and simple ARS. For all that concern general sub-
Riemannian geometry, including the almost-Riemannian case, the reader is refered to [3].

Definition 1.2.1. An almost-Riemannian structure (ARS) on a smooth n-dimensional manifold
M is a triple pE, f, x., .yq where:

1. E is a rank n vector bundle on M ;

2. f : E ÞÝÑ TM is a morphism of vector bundles;

3. pE, x., .yq is an Euclidean bundle, that is x., .yq is an inner product on the fiber Eq of E,
smoothly varying w.r.t. q;

assumed to satisfy the following properties:

(i) The set of points q P M such that the restriction of f to Eq is onto is a proper open and
dense subset of M ;

(ii) The modulus Ξ of vector fields of M , defined as the image by f of the modulus of smooth
sections of E satisfies the Lie algebra rank condition (see definition below).

Definition 1.2.2. Let F be a family of smooth vector fields on a smooth manifold M of
dimension n. We say that F satisfies the Lie algebra rank condition on a point p0 P M if

Tp0M “ SpantXpp0q : X P LA pFqu,

where LA pFq denotes the Lie algebra of the vector fields generated by F . We say that the
family F satisfies the Lie algebra rank condition (LARC) if it satisfies the previous of all p0 P M .

In other words, the LARC asks that the family of vector fields F of M spans in each point of
the manifold M a Lie algebra of the same dimension as the tangent space in that point.

Definition 1.2.3. The singular locus, denoted by Z, is the set of points of M where the rank
of fpEqq “ Ξq is less than n. If Z is empty the structure is Riemannian.

Remark 1.2.4. The structure is trivializable if pE, x., .yq is isomorphic to the trivial Euclidean
bundle M ˆ Rn. In that case we can choose an orthonormal basis pe1, . . . , enq on Rn, and define
n vector fields on M by fipqq “ fpq, eiq, i “ 1, . . . , n. The set pf1, . . . , fnq is an orthonormal
frame on MzZ.
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1.3 Simple ARS’s
Let G a connected Lie group. A simple ARS on G defined by a set of n vector fields

tX , Y1, . . . , Yn´1u,

where

(i) X is linear;

(ii) Y1, . . . , Yn´1 are linearly independent left-invariant vector fields;

(iii) n “ dimG and the rank of X , Y1, . . . , Yn´1 is full on a nonempty subset of G;

(iv) the set tX , Y1, . . . , Yn´1u satisfies the LARC.

The metric is defined by declaring the frame tX , Y1, . . . , Yn´1u to be ortonormal.

Remark 1.3.1. An equivalent definition of ARS on a Lie group is defined by pn´1q´dimensional
left-invariant distribution ∆ “ spantY1, Y2 . . . Yn´1u, a left-invariant Euclidean metric on ∆ and
a linear vector field X which satisfies piiiq and pivq of the above definition, In short, we write an
ARS as Σ “ tX ,∆u. The metric of the ARS is defined by declaring X unitary and orthogonal a
∆.

Now, Since we represent ∆ :“ ∆peq, where e is the identity element, then we write the next
remark to establish our study in any element g P G.

Remark 1.3.2. We denote by ∆L the left-invariant distribution on G which is defined as the
map ∆L : G Ñ TG given by

∆L
pgq “ pdLgqe ∆,

where ∆ Ă g is a pn´ 1q ´ dimensional vector subspace. We can endow ∆L with a left-invariant
Euclidean metric by considering on ∆ an inner product x¨, ¨y and defining

@X, Y P ∆L
pgq, xX, Y yg :“

A

pdLg´1q
g
X, pdLg´1q

g
Y
E

.

Therefore, for this case the singular locus is given by

Z “ tg P G : X pgq P ∆L
pgqu. (1.2)

We denote by ZX the set of the singular points of the linear vector field X , that is,

ZX “ tg P G; X pgq “ 0u.
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In particular ZX Ă Z.
In [6, proposition 2] was proven that ZX is a closed subgroup with Lie algebra given by kerD.
The singular locus is an analytic subset of G. According to piiiq it is not equal to G, and by
analiticy its interior is empty. Since X peq “ 0 the singular locus is not an empty set. Finally
G{Z is an open, dense and proper subset of G. The points of G{Z will be called the Riemannian
points.

To have a practical way to verify LARC. The next remark establish a necessary and sufficient
condition to the LARC.

Remark 1.3.3. Notice that if r∆,∆s Ă ∆ and Dp∆q Ă ∆, then the fact that the Lie algebra
generated by X , Y1, . . . , Yn´1 is equal to RX ‘ ∆ [6], together with X peq “ 0 imply that Σ does
not satisfies the LARC at the identity. Consequently the LARC implies that at least one of the
following conditions holds

(i) r∆,∆s Ę ∆,

(ii) Dp∆q Ę ∆,

Reciprocally, if piq or piiq is satisfied, then Σ “ tX ,∆u satisfies the LARC at identity element
which by translations implies the LARC at any point.

1.4 Isometries of ARS
In this section we define isometries of simple ARS.

Definition 1.4.1. Let Σ be a simple ARS on G. The almost-Riemannian norm on G defined
by Σ is

For X P TgG, }X}Σ,g “ min
#d

v2 `

n
ÿ

1
u2
i ; vXg ` u1Y1pgq ` ¨ ¨ ¨ ` un´1Yn´1pgq “ X

+

. (1.3)

It is infinite if the point g belongs to the singular locus and X does not belong to ∆.

Definition 1.4.2. A diffeomorphism ψ : G Ñ G between two ARS’s Σ1 and Σ2 on a connected
Lie group G is an isometry if

@g P G, v P TgG }pdψqgv}Σ2,ϕpgq
“ }v}Σ1,g.

We denote by IsoG pΣ1; Σ2q the group of isometries between the simple ARS’s Σ1 and Σ2.
The following results can be found in [29].
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Theorem 1.4.3. Any isometry ψ P IsoG pΣ1; Σ2q can be decomposed as ψ “ Lg ˝ ψ0, where
g P Z2 and ψ0 P IsoG pΣ1; Σ2q0. Where Z2 is the singular locus of Σ2 and

IsoG pΣ1; Σ2q0 “ tψ0 P IsoG pΣ1; Σ2q ;ψ0peq “ eu .

Therefore, in order to understand the group IsoG pΣ1; Σ2q it is enough to analyze the singular
locus Z2 of Σ2 and the subgroup IsoG pΣ1; Σ2q0.

Theorem 1.4.4. For any ψ P IsoG pΣ1; Σ2q0 it holds that

1. pdψqg ∆L
1 pgq “ ∆L

2 pψpgqq.

2. ψ ˝ φ1
s “ φ2

˘s ˝ ψ where
␣

φis
(

sPR is the flow associated with Xi for i “ 1, 2.

3. ψ pZ1q “ Z2.

4. ψ pZX1q “ ZX2 .

Remark 1.4.5. Through this work and without loss of generality we use the the positive sign
of the flow given by 2 in Theorem 1.4.4, that is, we employ the next formula

ψ ˝ φ1
s “ φ2

s ˝ ψ. (1.4)

Remark 1.4.6. Since the restriction

ψ : GzZ1 Ñ GzZ2,

is an isometry between Riemannian manifolds, Myers-Steenrod Theorem [33] implies that this
restriction is of class C8 on the connected components of GzZ1

1.5 Simply connected case to the connected one
In this section we show that the main results of this work can be proved only for connected
simply connected groups.
Let Σ “ tX ,∆u be a simple ARS on a connected Lie group G. If rG is the simply connected
covering of G, we define the lift rΣ of Σ to be the simple ARS

rΣ “

!

rX , r∆
)

, @g P rG,

where X̃ and X are π -related, for the canonical projection π : rG Ñ G, that is, for

pdπqg rX pgq “ X pπpgqq.
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We also define the Left-invariant vector field in the the left-invariant distribution r∆ by consider
rY P r∆ and Y P ∆ to be π conjugated.
The following proposition shows that any isometry ψ P IsoG pΣ; Σq0 can be lifted to an isometry
rψ of Iso

rG

´

rΣ, rΣ
¯

0
satisfying rψ ˝ π “ π ˝ ψ. Moreover, ψ P AutpGq as soon as rψ P Aut

´

rG
¯

Proposition 1.5.1. Let G be a connected Lie group ans consider Σ1 and Σ2 to be simple ARS
on G. For any isometry ψ : G Ñ G there exist a unique isometry rψ : rG Ñ rG between the lifts
rΣ1 and rΣ2 of Σ1 and Σ2, respectively, satisfying

π ˝ rψ “ ψ ˝ π.

In particular,
rψ P Autp rGq ùñ ψ P AutpGq.

Proof. Existence, uniqueness and the commutation π ˝ rψ “ ψ ˝ π follows direct from the fact
that rG is simply connected and π a covering map [38]. Moreover, the fact that π is a local
diffeomorphism and ψ is a difeomorphims implies that rψ is a diffeormorphism and we only have
to show that rψ is in fact an isometry between the lifts rΣ1 and rΣ2 of Σ1 and Σ2. However,

π ˝ rψ “ ψ ˝ π ùñ π˚ ˝ rψ˚ “ ψ˚ ˝ π˚,

where the subscript notation, for example, in π˚ denote the differential. Therefore, we have

π˚

´

rψ˚
rX1

¯

“ψ˚π˚

´

rX1

¯

“ψ˚X1π

“X2ψπ

“X2πψ̃

“π˚

´

rX2 rψ
¯

ùñ rψ˚X̃1 “ rX2 rψ,

since π˚ is an isomorphism.
In order to show that rψ is an isometry, it is enough to show that

´

d rψ
¯

g

r∆1pgq “ r∆2

´

rψpgq

¯

and that the restriction
´

d rψ
¯

g

ˇ

ˇ

ˇ

ˇ

r∆1pgq

: r∆1pgq Ñ r∆2

´

rψpgq

¯

is an isometry.

For the first part, note that if X P r∆1pgq, then

pdπq
rψpgq

´

d rψ
¯

g
Xpgq “d

´

π ˝ rψ
¯

g
Xpgq

“d pψ ˝ πqgXpgq

“ pdψqπpgq
pdπqgXpgq.
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Since pdπqgXpgq P ∆1pπpgqq we get

pdψqπpgq
∆1 pπpgqq “∆2 pψ pπpgqqq

“∆2

´

π
´

rψpgq

¯¯

“ pdπq
rψpgq

∆2

´

rψpgq

¯

.

The fact that pdπqg is isomorphism implies
´

d rψ
¯

g
Xpgq P ∆2

´

rψpgq

¯

.
Now, we prove that

›

›

›

›

´

d rψ
¯

g
Xpgq

›

›

›

›

rΣ1, rψpgq

“ }Xpgq}
rΣ1,g

for all g P rG, X P r∆1.

First notice that, for any Y P r∆i, i “ 1, 2, we have that

} pdπqg Y pgq}Σi,πpgq “} pdπqg pdLgqe Y }Σi,πpgq

“}d pπ ˝ Lgqe Y }Σi,πpgq

“}d
`

Lπpgq ˝ π
˘

e
Y }Σi,πpgq since π is homomorphism

“}d
`

Lπpgq

˘

e
pdπqe Y }Σi,πpgq

“} pdπqe Y }Σi,πpeq since the metric is invariant by left translations
“}Y }Σi,e since pdπqe “ idg

“}Y pgq}
rΣi,g.

Showing that pdπqg : r∆ipgq Ñ ∆ipgq is an isometry of the left-invariant metrics. Therefore, for
any Y P r∆1

›

›

›

›

´

d rψ
¯

g
Y pgq

›

›

›

›

rΣ2, rψpgq

“

›

›

›

›

pdπq
rψpgq

´

d rψ
¯

g
Y pgq

›

›

›

›

Σ2,πp rψpgqq

“

›

›

›

›

d
´

π ˝ rψ
¯

g
Y pgq

›

›

›

›

Σ2,πp rψpgqq

“

›

›

›
d pψ ˝ πqg Y pgq

›

›

›

Σ2,πp rψpgqq

“

›

›

›
pdψqπpgq

pdπqg Y pgq

›

›

›

Σ2,ψpπpgqq

“

›

›

›
pdπqg Y pgq

›

›

›

Σ1,πpgq
since ψ P IsoG pΣ1,Σ2q0

“ }Y pgq}
rΣ1,g

.

Showing that rψ P Iso
rG

´

rΣ1; rΣ2

¯

0
as stated.
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Now, assume that rψ P Autp rGq. Let xi P G and rxi P rG such that π prxiq “ xi, for i “ 1, 2. Then,

ψ px1x2q “ψ pπ prx1q π prx2qq

“ψ pπ prx1rx2qq

“π
´

rψ prx1rx2q

¯

“π
´

rψ prx1q rψ prx2q

¯

“π
´

rψ prx1q

¯

π
´

rψ prx2q

¯

“ψ pπ prx1qqψ pπ prx2qq

“ψ px1qψ px2q

showing that ψ P AutpGq concluding the proof.

Proposition 1.5.2. Let Σ be an ARS on G and rΣ its lift to the simply connected covering rG

of G. If Z and rZ stands for the singular locus of Σ and rΣ, respectively, then

π
´

rZ
¯

“ Z, and π´1
pZq “ rZ,

where π : rG Ñ G stands for the canonical projection.

Proof. It follows from the equivalence

g P rZ ô rX pgq P r∆pgq ô pdπqg
rX pgq P pdπqg

r∆L
pgq ô X pπpgqq P ∆L

pπpgqq ,

where in the second equivalence we use that π is a local diffeomorphism.

1.6 Examples of ARS
The purpose of this section is to give examples of ARS’s. The first one is the classical example of
the two dimensional ARS, namely the Grushin plane. The second one is on the three dimensional
nilpotent Heisenberg Lie group and it is important to show that in general the singular locus
does not need to be a subgroup or even a submanifold, note that such phenomenon which occurs
in the nilpotent case, does not in the solvable nonilpotent one, which will be approached in this
work.

Example 1.6.1. The Grushin Plane.
This example was named after Grushin, who studied in [22, 23, 24] the analytical properties of
the operator B

2
x ` x2

B
2
y and its generalizations. The models were introduced in the context of

hypoelliptic operators, and appeared in problems of population transfer in quantum systems
[15, 16, 21]. Moreover, it has applications to orbital transfer in space mechanics [11, 12].
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In this example the manifold is M “ R2, which is an abelian Lie group. A local orthonormal
basis is given by

Y px, yq “

˜

1
0

¸

:“ Bx, X px, yq “

˜

0
x

¸

:“ xBy. (1.5)

Since X is linear vector field and Y is left invariant one, the Grushin plane is a simple ARS.
The singular locus is the line tx “ 0u. Indeed, let a , b real numbers, by definition the singular
locus is the set where the vector fields X and Y are linearly dependent. Therefore

aX px, yq ` bY px, yq “

˜

b

ax

¸

“

˜

0
0

¸

, (1.6)

implies b “ 0, and ax “ 0. Notice that if a “ 0 then the vector fields are linearly independent,
thus necessarily x “ 0.
The Riemannian metric, the Riemannian area and the Gaussian curvature are given respectively
by:

g “

¨

˝

1 0
0 1

x2

˛

‚, dω “
1

|x|
dx dy, K “ ´

2
x2 . (1.7)

Observe that the Riemannian quantities namely, the metric, the Riemannian area, the curvature,
explode while approaching Z, [18].

Example 1.6.2. The Heisenberg group

The next example shows that Z does not need to be a subgroup or even a submanifold [6],[26].
Let G the simply connected Heisenberg Lie group of dimension three

G “

$

’

&

’

%

¨

˚

˝

1 x z

0 1 y

0 0 1

˛

‹

‚

; x, y, z P R

,

/

.

/

-

.

Its Lie algebra g is generated by X, Y, Z is such that rX, Y s “ Z and rX,Zs “ rY, Zs “ 0. In
natural coordinates the left invariant vector fields can be written as:

X “
B

Bx
, Y “

B

By
` x

B

Bz
, Z “

B

Bz
.

The derivations of g are endomorphisms D whose matrix in the basis tX, Y, Zu have the form:

D “

¨

˚

˝

a b 0
c d 0
e f a ` d

˛

‹

‚

,
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and the associated linear vector field is:

X pgq “ pax ` byq
B

Bx
` pcx ` dyq

B

By
`

ˆ

ex ` fy ` pa ` dqz `
1
2cx

2
`

1
2by

2
˙

B

Bz
.

Let us to consider the ARS, Σ “ tX ,∆u, where ∆ “ spantX, Y u, then

Z “

"

ex ` fy ` pa ` dqz ´
1
2cx

2
`

1
2by

2
´ dxy “ 0

*

.

The singular locus defined by these quadratic forms need not be subgroups, not even submanifolds.
For instance, by considering

D “

¨

˚

˝

a b 0
0 ´a 0
0 1 0

˛

‹

‚

,

we obtain
Z “

"

y `
1
2by

2
` axy “ 0

*

. (1.8)

Which is not a submanifold, since it is given by the intersection of two planes, (see figure(1)).
In particular Z is also not a Lie subgroup.

Figure 1 – singular locus (1.8), with b “ 2 a “ 1.
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2 Nonnilpotent, solvable three dimensional Lie
groups

In this chapter we introduce the groups we are interested, namely the solvable nonnilpotent
three dimensional Lie groups [7]. Also, several tools, which will be used in the development of
this work, are presented here.
This chapter is arranged as follows: In section 2.1 the classification of the solvable nonnilpotent
three dimensional Lie group is presented. Section 2.2 is about the automorphisms and derivations
of these groups and algebras. In section 2.3 we introduce an operator, which plays an important
role in the main results and state its main properties. By using such operator, the explicit form
of the automorphisms is established and in particular the flow of a linear vector field is exhibit.
Finally, in Section 2.4 the LARC and simple ARS isometry-related results are presented.

2.1 Classification of three-dimensional nonnilpotent solvable Lie groups
In this section we present the classification of the solvable nonnilpotent three dimensional
Lie groups and algebras. By the results in Section 1.5, such classification will only consider
connected, simply connected groups.
According to the Lie theory [25, 31, 38], for a given Lie algebra g there exist, up to isomorphisms,
a unique simply connected, connected Lie group rG which Lie algebra is g.
For the classification of the nonnilpotent solvable three dimensional Lie groups, we begin with
the classification of their respective Lie algebras [34].
We have three classes of Lie algebras, each of then can be written as the semi-direct product
gpθq “ R ˆθ R2, where θ is a two dimensional matrix with one of the following forms

˜

1 1
0 1

¸

,

˜

1 0
0 γ

¸

and pγ P R, |γ| ď 1q or
˜

γ ´1
1 γ

¸

and γ P R. (2.1)

The bracket in such algebras are given by

rpa1, w1q, pa2, w2qs “ p0, θpa1w2 ´ a2w1qq , (2.2)

and is therefore determined by the relation

rpa, 0q, p0, wqs “ p0, aθwq, a P R w P R2. (2.3)

For each Lie algebra gpθq the associated simply connected Lie groups, are given also by the
semi-direct product G “ R ˆρ R2 with ρt “ etθ, and the product of group given by

pt1, v1q pt2, v2q “ pt1 ` t2, v1 ` ρt1v2q , pt1, v1q , pt2, v2q P R ˆρ R2.
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2.2 Automorphism and Derivations of three dimensional Lie algebras
In this section the automorphisms and the derivations of the solvable nonnilpotent three
dimensional Lie group are presented.
We have that automorphisms and derivations of a Lie algebra g are linear maps, that is ϕ P Glpgq

and D P glpgq, respectively, which satisfy the following relationships

@X, Y P g, ϕrX, Y s “ rϕX, ϕY s and DrX, Y s “ rDX, Y s ` rX,DY s.

Consider M P glpgpθqq and suppose that MR2
Ă R2,where here R2

– t0u ˆ R2. Then M can be
written in the canonical basis, as

M “

˜

ε 0
η P

¸

, η P R2, ε P R and P P glp2,Rq. (2.4)

In fact, let te2, e3u a basis for R2 and complete a basis to a basis te1, e2, e3u of gpθq, writing

M “ tCi
ju then Mpejq “

j“3
ÿ

i“1
Ci
jei for j “ 1, 2, 3. Since that by assumption MpR2

q Ă R2

necessarily we obtain C1
j “ 0 for j “ 2, 3. Therefore the matrix M is given by equation (2.4).

Now the fact that R2 is the nilradical of gpθq, implies that it is invariant by automorphisms and
derivations. Consequently, any ϕ P Aut pgq can be written in the form (2.4).
Applying such property to the relation (2.3) gives us that

ϕrpa, 0q, p0, wqs “ rϕpa, 0q, ϕp0, wqs, @ a P R, w P R2 (2.5)

and hence

ϕ “

˜

ε 0
η P

¸

P Autpgpθqq if and only if Pθ “ εθP. (2.6)

In fact, since rpa, 0q, p0, wqs “ p0, aθwq the left-hand side of (2.5) gives rise to

ϕrpa, 0q, p0, wqs “ϕp0, aθwq

“

˜

ε 0
η P

¸˜

0
aθw

¸

“p0, aPθwq

For the right-hand side of (2.5), we have that

ϕpa, 0q “

˜

ε 0
η P

¸˜

a

0

¸

“ paε, aηq,

and

ϕp0, wq “

˜

ε 0
η P

¸˜

0
w

¸

“ p0, Pwq.
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Therefore

rϕpa, 0q, ϕp0, wqs “rpaε, aηq, p0, Pwqs

“rpaε, 0q ` p0, aηq, p0, Pwqs

“rpaε, 0q, p0, Pwqs ` rp0, aηq, p0, Pwqs

“p0, aεθPwq ` p0, 0q

“p0, aεθPwq.

Now, by equaliting the left-hand side and the right-hand side of (2.5), we obtain for every a P R
w P R2

p0, aPθwq “ p0, aεθPwq, (2.7)

and then
Pθ “ εθP.

Similarly, if D P Derpgpθqq the relation

Drpa, 0q, p0, wqs “ rDpa, 0q, p0, wqs ` rpa, 0q,Dp0, wqs, @ a P R w P R2 (2.8)

gives us that

D “

˜

ε 0
η A

¸

P Derpgpθqq ðñ Aθ ´ θA “ εθ.

Indeed, since rpa, 0q, p0, wqs “ p0, aθwq the left-hand side of (2.8) gives rise to

Drpa, 0q, p0, wqs “ Dp0, aθwq “ p0, aAθwq.

On the other hand, Dpa, 0q “ paε, aηq and Dp0, wq “ p0, Awq. Then, we get

rDpa, 0q, p0, wqs “rpaε, aηq, p0, wqs

“rpaε, 0q ` p0, aηq, p0, wqs

“rpaε, 0q, p0, wqs ` rp0, aηq, p0, wqs

“p0, aεθwq ` p0, 0q

“p0, aεθwq

and

rpa, 0q,Dp0, wqs “rpa, 0q, p0, Awqs

“p0, aθAwq.

Hence, the right-hand side of the equation (2.8) turns out to be

rDpa, 0q, p0, wqs ` rpa, 0q,Dp0, wqs “p0, aεθwq ` p0, aθAwq

“p0, aεθw ` aθAwq.



Chapter 2. Nonnilpotent, solvable three dimensional Lie groups 25

As a result, by equaliting the left-hand side and the right-hand side of (2.8), we get that for
every a P R, v P R2

p0, aAθwq “ p0, aεθw ` aθAwq, (2.9)

and by choosing a ‰ 0, we obtain Aθ “ εθ ` θA, or equivalently

Aθ ´ θA “ εθ.

The previous calculations imply the following:

Proposition 2.2.1. For the Lie algebra gpθq it holds that

Derpgpθqq “

#˜

0 0
ξ A

¸

, ξ P R2, A P glp2,Rq, with Aθ “ θA

+

,

and

Autpgpθqq “

#˜

ε 0
η P

¸

, η P R2, P P Gl
`

R2˘ , with Pθ “ εθP

+

,

where ε “ 1 when trpθq ‰ 0 or ε P t´1, 1u if tr θ “ 0.

Proof. Based on our previous calculations

ϕ “

˜

ε 0
η P

¸

P Autpgpθqq if and only if Pθ “ εθP.

Furthermore, since the map ϕ is invertible we get that ε detP “ detϕ ‰ 0 showing that P is
also invertible. Consequently

Pθ “ εθP ðñ εθ “ PθP´1 . (2.10)

Assuming tr θ ‰ 0 gives us that

ε trpθq “ tr
`

PθP´1˘
“ trpθq ùñ ε “ 1 and Pθ “ θP.

On the other hand, trpθq “ 0 implies necessarily that

θ “

˜

1 0
0 ´1

¸

or θ “

˜

0 ´1
1 0

¸

and in both cases detpθq ‰ 0. By applying the determinant function to the relation (2.10) gives
us that

ε “ 1 and Pθ “ θP or ε “ ´1 and Pθ “ ´θP.

For a derivation D P Derpgpθqq we have that

D “

˜

ε 0
ξ A

¸

P Derpgpθqq if and only if Aθ ´ θA “ εθ.



Chapter 2. Nonnilpotent, solvable three dimensional Lie groups 26

Therefore, tr θ ‰ 0 gives us that

ε tr θ “ trpAθ ´ θAq “ 0

implying that ε “ 0.
On the other hand, if tr θ “ 0 then necessarily det θ ‰ 0 and

Aθ ´ θA “ εθ

ùñ εidR2 “ A ´ θAθ´1

ùñ 2ε “ tr
`

A ´ θAθ´1˘
“ 0

showing that, in any case, ε “ 0 and Aθ “ θA, concluding the proof.

2.3 The operator Lambda and the automorphisms of the three dimen-
sional nonnilpotent solvable Lie groups

In this section we define the operator Λ which will appear in the expression of a linear vector
field. We also establish the explicit form of the automorphisms. In particular the flow associated
to the linear vector field of a connected simply connected solvable nonnilpotent three dimensional
Lie groups is obtained, allowing us to obtain an expression of a linear vector field.
Let A be a 2 ˆ 2 matrix and define

ΛA : R ˆ R2
Ñ R2, pt, wq ÞÑ ΛA

t w :“
ż t

0
esAwds. (2.11)

The operator ΛA is well defined and, for any t, s P R, it satisfies

1. ΛA
0 “ 0,

2. d

dt
ΛA
t “ etA,

3. ΛA
t`s “ ΛA

t ` etAΛA
s ,

4. etA ´ AΛA
t “ idR2 ,

5. esAΛA
t “ ΛA

t esA,

6. ΛA
t “

`

etA ´ idR2
˘

A´1 if detA ‰ 0,

7. A “

˜

λ 0
0 0

¸

, λ ‰ 0 ùñ ΛA
s “

¨

˝

1
λ

`

esλ ´ 1
˘

0
0 s

˛

‚
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The properties of the operator (2.11) can be found in [7].
We can now prove the following result concerning the automorphisms of the groups.

Proposition 2.3.1. For the three dimensional Lie group given by the semi-direct product
G “ R ˆρ R2, it holds that:

AutpGq “
␣

ϕpt, vq “
`

εt, Pv ` εΛθ
εtη

˘

, η P R2, P P Gl
`

R2˘ , with Pθ “ εθP
(

,

where ε “ 1 if tr θ ‰ 0 or ε P t´1, 1u if tr θ “ 0.

Proof. Let ϕ be in the group of automorphism AutpGq. Then we have that pdϕqp0,0q P gpθq.
Therefore, we can write

pdϕqp0,0q “

˜

ε 0
η P

¸

, with Pθ “ εθP and ε2
“ 1.

The map ψpt, vq “
`

εt, Pv ` εΛθ
εtη

˘

satifies pdψqp0,0q “ pdϕqp0,0q and, since G is connected, if
we show that ψ P AutpGq, the equality ψ “ ϕ follows by general results in the Lie theory [38,
Chapter 7].
For any pt1, v1q , pt2, v2q P G it holds that

ψ ppt1, v1q pt2, v2qq “ψ pt1 ` t2, v1 ` ρt1v2q

“
`

ε pt1 ` t2q , P pv1 ` ρt1v2q ` εΛθ
εpt1`t2qη

˘

“
`

εt1 ` εt2, Pv1 ` ρεt1Pv2 ` εΛθ
εt1η ` ερεt1Λθ

εt2η
˘

“
`

εt1 ` εt2, Pv1 ` εΛθ
ε̃t1
η ` ρεt1

`

Pv2 ` εΛθ
εt2η

˘˘

“
`

εt1, Pv1 ` εΛθ
εt1η

˘ `

εt2, Pv2 ` εΛθ
εt2η

˘

“ψ pt1, v1qψ pt2, v2q ,

above we use that Pθ “ εθP , we also used the property 3 of the operator given by the equation
(2.11). Therefore, ψ P AutpGq and consequently ψ “ ϕ concluding the proof.

By definition a linear vector field X , is a complete vector field and its flow tφsusPR is a 1-
parameter subgroup of AutpGq.
Since by differentiation,

!

pdφsqp0,0q

)

sPR
is a 1-parameter subgroup of Autpgpθqq, there exists a

derivation D P Derpgpθqq such that

@s P R. pdφsqp0,0q
“ esD.

But nevertheless

D “

˜

0 0
ξ A

¸

implies esD “

˜

1 0
ΛA
s ξ esA

¸

.
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Indeed, Consider the curves α1psq “ esD and α2psq “

˜

1 0
ΛA
s ξ esA

¸

. Then

α1
1psqDesD “ Dα1psq,

and

α1
2psq “

˜

0 0
esAξ AesA

¸

by property 2 of the operator Λ

“

˜

0 0
ξ ` AΛA

s ξ AesA

¸

by property 4 of the operator Λ

“

˜

0 0
ξ A

¸˜

1 0
ΛA
s ξ esA

¸

“Dα2psq.

That is the curves α1 and α2 satisfy the linear differential equation α1
“ Dα and have the same

initial condition α1p0q “

˜

1 0
0 1

¸

“ α2p0q. Hence α1psq “ α2psq which shows that

esD “

˜

1 0
ΛA
s ξ esA

¸

.

Therefore, by Proposition 2.3.1 we get that

φspt, vq “
`

t, esAv ` Λθ
tΛA

s ξ
˘

, ξ P R2, A P glp2,Rq, with Aθ “ θA. (2.12)

Derivation at s “ 0, gives us that the linear vector field X can be written as

X pt, vq “
`

0, Av ` Λθ
t ξ
˘

, ξ P R2, A P glp2,Rq, with Aθ “ θA.

Remark 2.3.2. By the fact that the vector ξ P R2 and the matrix A P glp2,Rq, together with
the previous properties, determine X , we will usually write X “ pξ, Aq to denote the linear
vector field X .

Next, we give the explicitly expression for the exponential map of a three dimensional Lie group
and the differential of the left translation. These expressions will be used throughout this work.
For any pa, wq P gpθq, the exponential map is given by

exppa, wq “

$

&

%

p0, wq if a “ 0,
ˆ

a,
1
a

Λθ
aw

˙

, if a ‰ 0.
(2.13)

Let pti, viq P G, i “ 1, 2 and pa, wq P gpθq . Then the left translations satisfies
`

dLpt1,v1q

˘

pt2,v2q
pa, wq “ pa, ρt1wq . (2.14)
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Therefore the left invariant vector field associated with Y “ pa, wq P gpθq is given by

Y L
pt, vq “ pa, ρtwq . (2.15)

The formulas given in the equations (2.13), (2.14) and (2.15) were obtained in [7].

2.4 Simple ARS isometry-related
In this section we analyze some properties of the LARC and prove a proposition where we can
construct simple ARS’s isometry-related.
First, note that the family Σ “

␣

X ,∆L
(

, with ∆ “ t0u ˆ R2, does not satisfies the LARC. In
fact, in this case ∆ is a subalgebra and

Dp0, wq “

˜

0 0
ξ A

¸˜

0
w

¸

“

˜

0
Aw

¸

“ p0, Awq ùñ D∆ Ă ∆,

which contradicts Remark 1.3.3.
Therefore, if Σ “

␣

X ,∆L
(

satisfies the LARC then the subspace ∆ admits a basis

tpσ1, u1q , pσ2, u2qu , with σ2
1 ` σ2

2 ‰ 0.

Notice that ∆ is a two dimensional space of
`

t0u ˆ R2˘ and the intersection ∆ X
`

t0u ˆ R2˘ is
two or one dimensional. However, by the previous discussion we conclude that the intersection
∆ X

`

t0u ˆ R2˘ is one-dimensional. Let us denote by l∆ the line in R2 satisfying

t0u ˆ l∆ “ ∆ X
`

t0u ˆ R2˘ .

In the next proposition we establish an equivalent relation to ∆ be a subalgebra and an important
consequence of the LARC.

Proposition 2.4.1. For a family Σ “
␣

X “ pξ, Aq,∆L
(

, it holds that:

1. ∆ is a subalgebra if and only if l∆ is an eigenspace of θ;

2. If p1, 0q P ∆, then Σ satisfies the LARC if and only if ∆ is not a subalgebra or ∆ is a
subalgebra and Al∆ Ć l∆ or ξ R l∆

Proof. 1. Let tpσ1, u1q , pσ2, u2qu be a basis of ∆. Then,

∆ Q ´σ2 pσ1, u1q ` σ1 pσ2, u2q “ p0,´σ2u1 ` σ1u2q P t0u ˆ R2,

is a nonzero vector, and the element p0,´σ2u1 ` σ1u2q P ∆ X t0u ˆ R2 implying that
l∆ “ R pσ1u2 ´ σ2u1q .

On the other hand,

∆ is a subalgebra ðñ rpσ1, u1q , pσ2, u2qs P ∆ .
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However, by defnition

rpσ1, u1q , pσ2, u2qs “ p0, θ pσ1u2 ´ σ2u1qq ,

implying that
∆ is a subalgebra ðñ l∆ is an eigenspace of θ .

2. Let tpσ1, u1q , pσ2, u2qu be an orthonormal basis of ∆. If ∆ is not a subalgebra, then
necessarily rpσ1, u1q , pσ2, u2qs R ∆ and the LARC is satisfied. On the other hand, if ∆
is a subalgebra, then by part 1 in Proposition 2.4.1, l∆ is an eigenspace of θ. Since by
hypothesis p1, 0q also belongs to ∆ we have that ∆ “ Rp1, 0q ‘ l∆. We have that if D is
the derivation associated with X , by Remark 1.3.3 the LARC is satisfied if and only

D pt0u ˆ l∆q Ć ∆ or Dp1, 0q R ∆.

However, the fact that

D “

˜

0 0
ξ A

¸

gives us that D pt0u ˆ l∆q “ pt0u ˆ Al∆q and Dp1, 0q “ p0, ξq,

showing that D∆ Ć ∆ if and only if Al∆ Ć l∆ or ξ R l∆, concluding the proof.

Remark 2.4.2. It is important to notice that if θ ‰ idR2 , the fact that Aθ “ θA gives us that

θl∆ Ă l∆ ùñ Al∆ Ă l∆.

Consequently, in this case, if p1, 0q P ∆ the LARC holds if and only if ξ R l∆.

The next result shows that elements in AutpGq can be seen as isometries between ARS’s.

Proposition 2.4.3. Let Σ “
␣

X “ pξ, Aq,∆L
(

be an ARS on G and

ψpt, vq “
`

εt, Pv ` εΛθ
εtη

˘

an automophism of G .

The family
Σψ “

!

Xψ “
`

P´1
pεξ ` Aηq, P´1AP

˘

,∆ψ “ pdψq
´1
p0,0q

∆
)

.

is an ARS and ψ is an isometry between Σψ and Σ, where the left-invariant metric on ∆ψ is the
one that makes pdψqp0,0q

ˇ

ˇ

∆ψ
an isometry.
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Proof. By definition, we have that

pdψqpt,vqXψpt, vq “

˜

ε 0
η P

¸˜

0
P´1APv ` Λθ

tP
´1

pεξ ` Aηq

¸

“

˜

0
APv ` PΛθ

tP
´1

pεξ ` Aηq

¸

“

˜

0
APv ` εΛθ

εtpεξ ` Aηq

¸

“

˜

0
APv ` εΛθ

εtAη ` Λθ
εtε

2ξ

¸

with ε2
“ 1

“

˜

0
A
`

Pv ` εΛθ
εtη

˘

` Λθ
εtξ

¸

“X
`

εt, Pv ` εΛθ
εtη

˘

“X pψpt, vqq,

where in the third equality we used that

Pθ “ εθP ùñ P etθ “ eεtθP and by integration PΛθ
tP

´1
“ εΛθ

εt ,

and in the fourth equality that Aθ “ θA, showing that Xψ and X are ψ -conjugated. Since
automorphisms preserves left-invariant vector fields, it holds that Σψ is in fact an ARS on G.
Moreover, if we define the left invariant metric on ∆ψ that makes pdψqp0,0q

ˇ

ˇ

∆ψ
an isometry, we

get that pdψqpt,vq carries orthonormal frames in ∆L
ψpt, vq onto orthonormal frames in ∆L

pψpt, vqq

implying that ψ is in fact an isometry between Σψ and Σ.

Remark 2.4.4. Let ψ P IsoG pΣ1,Σ2q0 and consider ψ̂ P AutpGq. By the previous proposition
there exist an ARS’s Σψ̂ such that ψ̂ P IsoG

´

Σψ̂,Σ1

¯

. As a consequence, the composition ψ ˝ ψ̂

is an isometry between Σψ̂ and Σψ2 . In particular, the maps

ψ1pt, vq “
`

t, v ´ Λθ
t

`

A´1
1 ξ1

˘˘

, if detA1 ‰ 0,

and
ψ2pt, vq “

ˆ

t, v ´
1
σ

Λθ
tu

˙

, if pσ, uq P ∆1 with σ ‰ 0,

are automorphisms of G and their induced ARS’s satisfies Xψ1 “ p0, A1q and p1, 0q P ∆ψ2 .

Therefore, up to automorphisms we can assume that p1, 0q P ∆1 or ξ1 “ 0 if detA1 “ 0.
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3 Singular Locus

The aim of this chapter is to study some geometric an algebric properties of the singular locus.
The chapter is structured as follows: In Section 3.1 we show that the singular locus of a simple
ARS on the three dimensional Lie groups under consideration is a submanifold. We also analyze
when the singular locus is a connected subset. In Section 3.2 we investigate how the exponential
curves crosses the singular locus. In Section 3.3 some examples of singular locus are presented.

3.1 The singular locus
In this section we analyze the singular locus simple ARS’s on three dimensional solvable
nonnilpotent Lie groups. By the results in Proposition 1.5.1 we can assume without loss of
generality that of the ARS’s on G “ R ˆρ R2. As showed in [6, Theorem 1], the singular locus
of a simple ARS Σ “

␣

X ,∆L
(

such that ∆ is a subalgebra, is a submanifold. In this section we
show that for the class of groups in question the same holds independent of any condition on
the distribution. Such property is not true, for instance, on the Heisenberg group as showed in
the Example 1.6.2.
Let Σ “

␣

X “ pξ, Aq,∆L
(

be a simple ARS on G. We recall that by remark 1.3.2, the singular
locus Z is defined as

Z :“ tpt, vq P G; X pt, vq P ∆L
pt, vqu.

Using the expression for X gives us that

X pt, vq “
`

0, Av ` Λθ
t ξ
˘

P ∆L
pt, vq ðñ p0, Av ` Λtξq P ∆L

pt, vq X
`

t0u ˆ R2˘
“ t0u ˆ ρt pl∆q .

Therefore, if u is a vector normal to l∆, it holds that

Z “
␣

pt, vq P G;
@

ρ´t

`

Av ` Λθ
t ξ
˘

,u
D

R2 “ 0
(

.

Defining
Fu : G Ñ R, Fupt, vq “

@

ρ´t

`

Av ` Λθ
t ξ
˘

,u
D

R2 , (3.1)

gives us that Z “ F´1
p0q.

Proposition 3.1.1. For the function Fu it holds that

B1Fupt, vq “ xρ´tpξ ´ θAvq,uyR2 and B2Fupt, vqw “ xρ´tAw,uyR2 . (3.2)

Proof. Note that, for fixed t, the function

v ÞÑ Fupt, vq “ xρ´tAv,uyR2 `
@

ρ´tΛθ
t ξ,u

D

R2
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is the sum of the linear map with a constant. Therefore,

B2Fupt, vqw “ xρ´tAw,uyR2 .

For the first derivative, notice that by the properties of Λ
@

ρ´t

`

Av ` Λθ
t ξ
˘

,u
D

R2 “ xρ´tAv,uyR2 `
@

ρ´tΛθ
t ξ,u

D

R2

“ xρ´tAv,uyR2 ´
@

Λθ
´tξ,u

D

R2 .

Diferentiation in t gives us that

B1Fupt, vq “
d

dt

`

xρ´tAv,uyR2 ´
@

Λθ
´tξ,u

D

R2

˘

“xρ´tp´θAvq,uyR2 ` xρ´tξ,uyR2

“xρ´tpξ ´ θAv`q,uyR2 .

as stated.

Now we can show that the singular locus of a simple ARS on three dimensional Lie groups is a
submanifold.

Theorem 3.1.2. The singular locus of any ARS on a G “ RˆρR2 is an embedded submanifold
of G.

Proof. Let us consider an ARS Σ “
␣

X ,∆L
(

. Since the image of a submanifold by a diffeo-
morphism is also a submanifold, Proposition 2.4.3 allows us to assume w.l.o.g. that p1, 0q P ∆.
Assume first that A ” 0. By definition, in this case, the singular locus is given by

X ˆ R2, where X “
␣

t P R;
@

ρ´t

`

Λθ
t ξ
˘

,u
D

R2 “ 0
(

. (3.3)

We have two cases

(i) det θ “ 0. In this case

Λθ
t “

˜

et ´ 1 0
0 t

¸

and ρt “

˜

et 0
0 1

¸

.

Therefore

ρ´tΛθ
t “

˜

1 ´ e´t 0
0 t

¸

.

Now, if ξ “ pξ1, ξ2q and u “ pu1, u2q then
@

ρ´t

`

Λθ
t ξ
˘

,u
D

R2 “ tξ2u2 ´ u1ξ1pe´t
´ 1q (3.4)
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By considering the right-hand side of the equation (3.4) for ξ and u fixed, we associate a
real-valued function and then we obtain that X has at most two elements, that is, X is a
discrete set. Therefore, by the expression of the singular locus given in equation (3.3), we
conclude that the singular locus is a submanifold.

(ii) det θ ‰ 0. In this case
Λθ
t “ pρt ´ 1qθ´1.

Thus, we get
@

ρ´t

`

Λθ
t ξ
˘

,u
D

R2 “ ´
@

ρ´tθ
´1ξ,u

D

R2 `
@

θ´1ξ,u
D

R2 , (3.5)

where in the equality of equation (3.5) we use the property 3 of the operator Λ.
Thus by using the Lemma A.1.1, we obtain that X is an enumerable subset of R with
cardinality depending on the eigenvalues of θ. As a consequence, the singular locus of Σ is
a submanifold.

Let us now consider the case where A ı 0. In order to show that the singular locus of Σ is a
submanifold, it is enough to guarantee that 0 P R is a regular value of the map Fu defined in
equation (3.1).
Notice that the map Fu is an application with values is R, and this map is a submersion if the
rank is 1, that is if its differential is onto. Consequently, we must have that at least one of its
derivatives is nonzero.
By equation (3.2) 0 P R is not a regular value of F if there exists pt, vq P Z such that

B1Fupt, vq “ xρ´tpξ ´ θAvq,uyR2 “ 0 (3.6)

and
@w P R2

B2Fupt, vqw “ xρ´tAw,uyR2 “ 0. (3.7)

From the equation (3.7) and the fact that ρ´tA “ Aρ´t, we get that

0 “ B2Fupt, vqρtw “ xρ´tAρtw,uyR2 “ xAw,uyR2

implying that Aw P l∆, @w P R2 or equivalently, that ImA Ă l∆.
By using the previous in equation (3.6) allows us to obtain

0 “ xρ´tpξ ´ θAvq,uyR2

“ xρ´tξ,uyR2 ´ xρ´tAθv,uyK2

“ xρ´tξ,uyR2 ´ xAρ´tθv,uyK2

“ xρ´tξ,uyR2 since Aρ´tθv P ImA,
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where we used that Aθ “ θA. Since A ı 0 we have that ImA “ l∆ implying that Al∆ Ă l∆ and
θl∆ Ă l∆. Therefore ∆ is a subalgebra and

xρ´tξ,uyR2 “ 0
ùñ ρ´tξ P l∆

ùñ ξ P ρt pl∆q “ l∆,

By Proposition 2.4.1 Σ cannot satisfies the LARC. Therefore, 0 is a regular value of the map Fu

showing that Z is in fact an embedded submanifold.

The next result analyzes the connectedness of the singular locus.

Theorem 3.1.3. If Σ “ tX “ p0, Aq,∆L
u is a simple ARS and A ‰ 0, then Z is connected.

Moreover, GzZ has two connected components given by

C´ :“ F´1
u p´8, 0q and C` :“ F´1

u p0,`8q,

where Fu is the function defined in (3.1).

Proof. Assume first that detA ‰ 0 and consider the map

H : G Ñ G, Hpt, vq “
`

t, A´1 `ρtv ´ Λθ
t ξ
˘˘

.

The map H is continuous and has continuous inverse given by

H´1
pt, vq “ pt, ρ´tpAv ` Λθ

t ξqq.

Moreover,

pt, vq P Z ðñ
@

ρ´t

`

Av ` Λθ
t ξ
˘

,u
D

R2 “ 0
ðñ Ds P R; ρ´t

`

Av ` Λθ
t ξ
˘

“ su

ðñ v “ A´1 `sρtu ´ Λθ
t ξ
˘

ðñ pt, vq “ Hpt, suq,

showing that Z is homeomorphic to the plane R ˆ l∆ Ă G. As a consequency Z is connected
and GzZ has two connected components. Also,

FupHpt, vqq “Fu
`

t, A´1 `ρtv ´ Λθ
t ξ
˘˘

“
@

ρ´t

`

A
`

A´1 `ρtv ´ Λθ
t ξ
˘˘

` Λθ
t ξ
˘

,u
D

R2

“xv,uyR2 ,
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implying that Fup´8, 0q and Fup0,`8q are (pathwise) connected. Since

Fu pRzt0uq “ GzZ,

we get that C´ and C` are in fact the connected components of GzZ.
Let us now consider the case where dim ImA “ 1 and assume w.l.o.g. that p1, 0q P ∆. Since kerA
has also dimension one and Aθ “ θA, we can easily construct an orthonormal basis tw1, w2u of
R2 such that

Aw1 ‰ 0, Aw2 “ 0 and θAw1 “ βAw1.

Let pt, vq P Z and write v “ xv, w1yR2 w1 ` xv, w2yR2 w2. Then

0 “
@

ρ´t

`

Av ` Λθ
t ξ
˘

,u
D

R2

“
@

ρ´t

`

A rxv, w1yR2 w1 ` xv, w2yR2 w2s ` Λθ
t ξ
˘

,u
D

R2

“ xv, w1yR2 xρ´tAw1,uyR2 ` xv, w2yR2 xρ´tAw2,uyR2 `
@

ρ´tΛθ
t ξ,u

D

R2

“ xv, w1yR2 xρ´tAw1,uyR2 ´
@

Λθ
´tξ,u

D

R2 , since xρ´tAw2,uyR2 “ 0

implying that
xv, w1yR2 xρ´tAw1,uyR2 “

@

Λθ
´tξ,u

D

R2 .

Since Aw1 is a nonzero eigenvector of θ we have that

xρ´tAw1,uyR2 “ e´βt
xAw1,uyR2 ,

where β is the associated eigenvalue. In particular, if xAw1,uyR2 “ 0 we get by orthogonality
that Aw1 P l∆, implying that l∆ “ ImA and hence Al∆ Ă l∆. Also, in this case,
@t P R,

0 “ xv, wyR2 e
´βt

xAw1,uyR2

“ xv, wyR2 xρtAw1,uyR2

“
@

Λθ
´tξ,u

D

R2 .

Differentiation at t “ 0 gives us that

xξ,uyR2 “ 0 ðñ ξ P l∆

Therefore,
xAw1,uyR2 “ 0 ùñ Al∆ Ă l∆ and ξ P l∆,

which together with the assumption p1, 0q P ∆ contradicts the LARC. Therefore, xAw1,uyR2 ‰ 0
and we obtain that

xv, w1yR2 “

@

Λθ
´tξ,u

D

R2

xρ´tAw1,uyR2
.
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By the previous, the map

I : G Ñ G, pt, vq P G ÞÑ Ipt, vq “

˜

t,

˜

xv, w1yR2 `

@

Λθ
´tξ,u

D

R2

xρ´tAw1,uyR2

¸

w1 ` xv, w2yR2 w2

¸

,

is well defined, continuous and a simple calculation shows that its inverse is the continuous map

I´1
pt, vq “

˜

t,

˜

xv, w1yR2 ´

@

Λθ
´tξ,u

D

R2

xρ´tAw1,uyR2

¸

w1 ` xv, w2yR2 w2

¸

.

By the previous calculations we get that

pt, vq P Z ðñ xv, w1yR2 “

@

Λθ
´tξ,u

D

R2

xρ´tAw1,uyR2
ðñ I´1

pt, vq P R ˆ Rw2,

showing that is the homemorphic image of R ˆ Rw2 by I. Also,

FupIpt, vqq “Fu

˜

t,

˜

xv, w1yR2 `

@

Λθ
´tξ,u

D

R2

xρ´tAw1,uyR2

¸

w1 ` xv, w2yR2 w2

¸

“

C

ρ´t

«

A

˜˜

xv, w1yR2 `

@

Λθ
´tξ,u

D

R2

xρ´tAw1,uyR2

¸

w1 ` xv, w2yR2 w2

¸

` Λθ
t ξ

ff

,u

G

R2

“

C

ρ´tA

˜˜

xv, w1yR2 `

@

Λθ
´tξ,u

D

R2

xρ´tAw1,uyR2

¸

w1 ` xv, w2yR2 w2

¸

` ρ´tΛθ
t ξ,u

G

R2

“

˜

xv, w1qR2 `

@

Λθ
´tξ,u

D

R2

xρ´tAw1,uyR2

¸

xρ´tAw1,uyR2 `
@

ρ´tΛθ
t ξ,u

D

R2

“

˜

xv, w1qR2 xρ´tAw1,uyR2 `
@

Λθ
´tξ,u

D

R2

xρ´tAw1,uyR2

¸

xρ´tAw1,uyR2 `
@

ρ´tΛθ
t ξ,u

D

R2

“ xv, w1yR2 xρ´tAw1,uyR2 `
@

Λθ
´tξ,u

D

R2 ´
@

Λθ
´tξ,u

D

R2

“e´βt
xv, w1yR2 xAw1,uyR2 ,

which as previously implies that C´ and C` are the connected components of GzZ, concluding
the proof.

3.2 Crossing the singular locus
In this section we analyze how the exponential curves crosses the singular locus. Such analysis
will be necessary in the proof of the Fundamental Lemma ahead.
Let us consider as previously Σ “ tX “ pξ, Aq,∆L

u be a simple ARS with A ‰ 0, and define the
function Fu, where u is a normal vector to l∆ fixed. Let pt, vq P G and consider the exponential
curve s P R ÞÑ pt, vq exp spa, wq. By Theorem 4.5.1 in order to see how such curve behaves with
relation to the singular locus, it is enough to analyze the sign of the function

s P R ÞÑ Fuppt, vq exp spa, wqq. (3.8)
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Using the formula for the exponential in equation (2.13) we have the following cases:

(i) a “ 0: In this case, exp sp0, wq “ p0, swq and pt, vqp0, swq “ pt, v ` ρtswq. Therefore

Fuppt, vq exp sp0, wqq “Fupt, v ` ρtswq

“
@

ρ´t

`

Apv ` ρtswq ` Λθ
t ξ
˘

,u
D

R2

“
@

ρ´t

`

Av ` ρtAsw ` Λθ
t ξ
˘

,u
D

R2

“
@

ρ´tAv ` sAw ` ρ´tΛθ
t ξ,u

D

R2

“
@

ρ´t

`

Av ` Λθ
t ξ
˘

,u
D

R2 ` s xAw,uyR2

“Fupt, vq ` s xAw,uyR2 .

(ii) a ‰ 0: In this case, exppspa, wqq “

ˆ

sa,
1
a

Λθ
saw

˙

and

pt, vq

ˆ

sa,
1
a

Λθ
saw

˙

“

ˆ

t ` sa, v ` ρt

ˆ

1
a

Λθ
saw

˙˙

. Therefore,

Fuppt, vq exp spa, wqq “Fu

ˆ

t ` sa, v ` ρt

ˆ

1
a

Λθ
saw

˙˙

“

B

ρ´t´sa

„

A

ˆ

v ` ρt

ˆ

1
a

Λθ
saw

˙˙

` Λθ
t`saξ

ȷ

,u
F

R2

“

B

ρ´t´sa

„

A

ˆ

v ` ρt

ˆ

1
a

Λθ
saw

˙˙

` Λθ
t ξ ` ρtΛθ

saξ

ȷ

,u
F

R2

“
@

ρ´t´sa

`

Av ` Λθ
t ξ
˘

,u
D

R2 `

B

ρ´t´sa

ˆ

1
a
ρtΛθ

saAw ` ρtΛθ
saξ

˙

,u
F

R2

“
@

ρ´t´sa

`

Av ` Λθ
t ξ
˘

,u
D

R2 `

B

1
a
ρ´saΛθ

saAw ` ρ´saΛθ
saξ,u

F

R2

“
@

ρ´t´sa

`

Av ` Λθ
t ξ
˘

,u
D

R2 `

B

´
1
a

Λθ
´saAw ´ Λθ

´saξ,u
F

R2

“
@

ρ´t´sa

`

Av ` Λθ
t ξ
˘

,u
D

R2 ´
1
a

@

Λθ
´sapAw ` aξq,u

D

R2 .

Summarizing, we have that

Fuppt, vq exp spa, wqq “

$

&

%

Fupt, vq ` sxAw,uyR2 if a “ 0
@

ρ´t´as

`

Av ` Λθ
t ξ
˘

,u
D

R2 ´
1
a

@

Λθ
´aspAw ` aξq,u

D

R2 if a ‰ 0,
(3.9)

The following lemma states what happens with the function given in equation (3.8) when the
starting point pt, vq belongs to the singular locus Z of Σ.
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Lemma 3.2.1. Let pt, vq P Z and consider the function

s ÞÑ Fuppt, vq exp spa, wqq.

Then, Fuppt, vq exp spa, wqq ” 0 or there exists δ ą 0 such that Fuppt, vq exp spa, wqq ‰ 0 for all
s P p´δ, δqzt0u.

Proof. Let us first consider the case a “ 0. By equation (3.9), if pt, vq P Z, Fuppt, vq “ 0 and

Fuppt, vq exp spa, wqq “Fupt, vq ` sxAw,uyR2

“sxAw,uyR2 .

Therefore, if Aw P l∆ we get that Fuppt, vq exp spa, wqq “ 0 for all s P R and if Aw R l∆ we get
that Fuppt, vq exp spa, wq ‰ 0 for all s P Rzt0u

Assume now that a ‰ 0 and fix 0 ‰ u P l∆. By equation(3.9) we have that

Fuppt, vq exp spa, wqq “
@

ρ´t´as

`

Av ` Λθ
t ξ
˘

,u
D

R2 ´
1
a

xΛ´aspAw ` aξq,uyR2 .

Since pt, vq P Z, there exists µ “ µpt, vq P R such that ρ´t pAv ` Λtξq “ µu. In particular,
@

ρ´t´as

`

Av ` Λθ
t ξ
˘

,u
D

R2 “ xρ´as pρ´t pAv ` Λtξqq ,uyR2

“µ xρ´asu,uyR2 ,

and so
Fuppt, vq exp spa, wqq “ µ xρ´asu,uyR2 ´

1
a

xΛ´aspAw ` aξq,uyR2 .

Derivation at s give us that

d

ds
Fuppt, vq exp spa, wqq “ xρ´aspAw ` aξ ´ aµθuq,uyR2 ,

and we have the following cases:
1. Aw ` aξ ´ aµθu P l∆

In this case, there exists τ P R such that Aw ` aξ ´ aµθu “ τu and hence

µρ´asu ´
1
a

Λθ
´aspAw ` aξq “µρ´asu ´

1
a

Λθ
´aspaµθu ` τq

“µρ´asu ´
1
a

Λθ
´asaµθu ´

1
a

Λθ
´asτu

“µ
``

ρ´as ´ θΛθ
´as

˘

u
˘

´
τ

a
Λθ

´asu

“µu ´
τ

a
Λθ

´asu,
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where for the last equality we used property 4. of the operator Λθ. Hence,

Fuppt, vq exp spa, wqq “µ xρ´asu,uyR2 ´
1
a

xΛ´aspAw ` aξq,uyR2

“µxu,uyR2 ´
τ

a

@

Λθ
´asu,u

D

R2

“ ´
τ

a

@

Λθ
´asu,u

D

R2 .

Therefore, if τ “ 0 or ∆ is a subalgebra, ´
τ

a

@

Λθ
´asu,u

D

R2 “ 0, implying that
Fuppt, vq exp spa, wqq “ 0 for all s P R. Now, if τ ‰ 0 and ∆ is not a subalgebra, we have that

d

ds
Fuppt, vq exp spa, wqq “ τ xρ´asu,uyR2 .

In particular, since ∆ is not a subalgebra, u is not an eigenvalue of θ and hence, there exists
δ ą 0 such that

d

ds
Fuppt, vq exp spa, wqq “ τ xρ´asu,uyR2 ‰ 0, s P p´δ, δqzt0u,

showing that 0 P R is an isolated critical point. In particular, Fuppt, vq exp spa, wqq ‰ 0 in
s P p´δ, δqzt0u as desired.
2. Aw ` aξ ´ aµθu R l∆ In this case,

d

ds
Fuppt, vq exp spa, wqq “

1
a

xρ´aspAw ` aξ ´ aµθuq,uyR2 .

Since
d

ds |s“0
Fuppt, vq exp spa, wqq “

1
a

xAw ` aξ ´ aµθu,uyR2 ‰ 0,

we get by continuity that there exists δ ą 0 such that

d

ds
Fuppt, vq exp spa, wqq ‰ 0, @s P p´δ, δq,

and hence Fuppt, vq exp spa, wqq is strictly increasing or strictly decreasing the interval p´δ, δq.

In particular,
Fuppt, vq exp spa, wqq ‰ 0, for all s P p´δ, δqzt0u,

proving the result.

Using the previous lemma we have the following.

Theorem 3.2.2. Let Σ “ tX “ pξ, Aq,∆L
u be a simple ARS with A ‰ 0 and pa, wq P gpθq. If

pt, vq P GzZ, the exponential curve s ÞÑ pt, vq exp spa, wq satisfies:

1. s ÞÑ pt, vq exp spa, wq remains in the same component that contains pt, vq or
2. s ÞÑ pt, vq exp spa, wq intersects Z discretely.
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Proof. Let us assume that for s0 P R it holds that pt, vq exp s0pa, wq P Z. Since

pt, vq exp ps0 ` sq pa, wq “ ppt, vq exp s0pa, wqq
loooooooooomoooooooooon

PZ

exp spa, wq,

the previous lemma implies the following:
1. For all s P R it holds that Fu ppt, vq exp ps0 ` sq pa, wqq ” 0. If this condition holds, we would
have that pt, vq exp ps0 ` sq pa, wq P Z, @s P R and consequently, pt, vq P pGzZq X Z “ H which
is not possible. Therefore, s ÞÑ pt, vq exp spa, wq remains in the same component that contains
pt, vq.
2. There exists δ ą 0 such that Fu ppt, vq exp ps0 ` sq pa, wqq ‰ 0 for all s P p´δ, δqzt0u.
In this case, pt, vq exp ps0 ` sq pa, wq intersects Z discretely at the point pt, vq exp s0pa, wq

and pt, vq expps0 ` sqpa, wq remains in the same component if Fu ppt, vq exp ps0 ` sq pa, wqq

does not changes sign for all s P p´δ, δqzt0u or tpt, vq exp ps0 ` sq pa, wq, s P p´δ, 0qu and
tpt, vq exp ps0 ` sq pa, wq, s P p0, δqu belong to different connected components if the sign of
Fu ppt, vq exp ps0 ` sq pa, wqq changes in p´δ, δqzt0u.

For the flow of the linear vector field of Σ we have the following:

Proposition 3.2.3. Let Σ “ tX ,∆L
u be a simple ARS on G. For any pt, vq P GzZX , define the

set,
Jpt,vq “ ts P R; φspt, vq P Zu.

It holds:

1. l∆ is an eigenspace of A and Jpt,vq “ H or Jpt,vq “ R.

2. l∆ is not a eigenspace of A and Jpt,vq is discrete.

Proof. Since

Fu pφspt, vqq “
@

ρ´t

`

A
`

esAv ` ΛA
s Λθ

t ξ
˘

` Λθ
t ξ
˘

,u
D

R2

“
@

ρ´t

`

AesAv `
`

AΛA
s ` idR2

˘

Λθ
t ξ
˘

,u
D

R2

“
@

esA
`

ρ´t

`

Av ` Λθ
t ξ
˘˘

,u
D

R2 by using the property 4 of ΛA,

the result follows from Lemma A.1.2.

The previous result shows that if pt, vq is not a fixed point of X then the orbit of X starting at
such point is contained in Z do not touch Z or crosses Z dicretely.
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3.3 Examples of singular locus
In this section some examples of singular locus are presented.

Example 3.3.1. Let us consider the Lie algebra gpθq with θ “

˜

0 ´1
1 0

¸

and Σ1 “ tX ,∆u to

be a simple ARS, where ∆ “ spantp1, 0q, p0, e1qu, e1 and e2 stand for the canonical basis of R2.
Notice that rp1, 0q, p0, e1qs “ p0, e2q, that is, ∆ is not a subalgebra consequently the LARC is
satisfied.
The associated Lie group is called the Euclidean motion group.
The linear vector field is X pt, vq “ p0, Av ` Λθ

t ξq, here ξ “ pa, bq and v “ px, yq with ξ, v P R2.
Since pdLpt,vqqp0,0qp1, 0q “ p1, 0q and pdLpt,vqqp0,0qp0, e1q “ p0, ρte1q. The left-invariant distribution

∆L is given by ∆L
pt, vq “ spantp1, 0q, p0, ρte1qu. In this case ρt “ etθ “

˜

cos t ´sint
sint cos t

¸

, and

θ´1
“

˜

0 1
´1 0

¸

so

Λθ
t “ pρt ´ idR2qθ´1

“

˜

sint cos t ´ 1
1 ´ cos t sint

¸

.

Notice that the equality rA, θs “ 0 implies that A has the form A “

˜

λ1 ´µ1

µ1 λ1

¸

. Then

X pt, vq “ p0, Av ` Λθ
t ξq “ p0, λ1x´ µ1y ` asint` bpcos t´ 1q, µ1x` λ1y ` ap1 ´ cos tq ` bsintq.

By definition of singular locus pt, vq P Z if and only if X pt, vq P ∆L
pt, vq that is

Av ` Λθ
t “ ρte1,

or equivalently
xAv ` Λθ

t ξ, ρte2yR2 “ 0,

using that ρte2 “ p´sint, cos tq and developing the inner product in the previous equality, allows
us to obtain that

pt, vq P Z ðñ pµ1y ´ λ1xqsint ` pµ1x ` λ1yq cos t ` bsint ` a cos t ´ a “ 0.

Consequently,

Z “ tpt, vq : pµ1y ´ λ1xqsint ` pµ1x ` λ1yq cos t ` bsint ` a cos t ´ a “ 0u.

Considering A “ 0. By the previous calculations, the singular locus is given by

Z “ tpt, vq : b sint ` a cos t “ au. (3.10)
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This locus singular has infinites connected components. In fact, if γ is the angle between ξ

and e1 we have that cos γ “
a

a2 ` b2 and sinγ “
b

a2 ` b2 . Therefore, if pt, vq P Z we have that

cos γ “
a

a2 ` b2 cos t `
b

a2 ` b2 sint “ cos γ cos t ` sinγsint “ cospt ´ γq. Therefore

pt, vq P Z if and only if cospγq ´ cospγ ´ tq.

by using the identity

cospxq ´ cospyq “ ´2sin
´x ` y

2

¯

sin
´x ´ y

2

¯

,

we get that x “ 2πk ´ y or x “ 2πk ` y, for some k P Z. By replacing x “ γ and y “ γ ´ t, we
obtain that t “ 2pγ ´ πkq or t “ 2πk, writing Γ “ t2pγ ´ πkq k P Zu Y t2πk k P Zu, we see that
Z “ Γ ˆ R2 and hence Z is a submanifold with infinites connected components

Figure 2 – Singular locus of (3.10) with , a “ b “ 1. t, x, y P r´10, 10s.

Example 3.3.2. Consider the Lie algebra gpθq with θ “

˜

1 1
0 1

¸

and Σ1 “ tX ,∆u to be a

simple ARS, where ∆ “ spantp1, 0q, p0, e1qu. Since rp1, 0q, p0, e1qs “ p0, e1q we get that ∆ is a
subalgebra. However, if we assume that ξ R ∆, Proposition 2.4.1 assures that LARC is satisfied.
In this case

A “

˜

λ1 λ2

0 λ1

¸

, ρt “ etθ “

˜

et tet

0 et

¸

and θ´1
“

˜

1 ´1
0 1

¸

.

For v “ px, yq and ξ “ pa, bq, we have that

Av “ pλ1x ` λ2y, λ1yq and Λθ
t “

˜

et ´ 1 ´et ` 1 ` tet

0 et ´ 1

¸

,
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implying that

X pt, vq “ p0, pb ´ aq ` etpbt ´ b ` aq ` λ1x ` λ2y, bpe
t

´ 1q ` λ1yq.

By straightforward calculations, we get that

Z “ tpt, vq : λ1y “ p1 ´ etqbu, (3.11)

Where b ‰ 0 by LARC.

Figure 3 – Singular locus of (3.11) with λ1 “ 2, b “ 5 .
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4 Isometries between rank two ARS’s

In this chapter we define rank two ARS on the group G “ R ˆρ R2. Our main goal of here is to
prove that isometries between ARS’s of rank two are automorphisms. We begin in Section 4.1
by introducing the definition of linear vector field of rank two and using that we define rank two
ARS’s. Subsequently in Section 4.2 the fundamental lemma is proved. This lemma provide a
sufficient condition for an isometry between ARS to be a automorphism. In Section 4.3 we prove
that isometries between rank two ARS’s let the nilradical of gpθq invariant. In Section 4.4 the
main theorem is proved, that is, we establish that the only isometries between rank two of ARS
are automorphisms of G. By using the previous result we are able to present a classification of
rank two ARS’s in Section 4.5.

4.1 Isometries of rank two ARS’s
In this section we prove that the only isometries between rank two ARS’s are automorphisms of
the group. This result allow us to classify, up to automorphisms and reescalonation, that the
only possible rank two ARS on connected three-dimensional solvable nonnilpotent Lie groups.
We begin with the definition of linear vector field of rank two:

Definition 4.1.1. We say that a linear vector field is a rank two linear vector field if its
associated derivation has rank two.

Definition 4.1.2. A simple ARS Σ is said to be a rank two ARS if the associated linear vector
field has rank two.

By formula (1.4) we see that isometries preserves rank two ARS’s.

Remark 4.1.3. Since the derivation associated with a linear field X “ pξ, Aq is given by

D “

˜

0 0
ξ A

¸

, we have that

X has rank two ðñ R2
“ ImA ` Rξ .

Moreover, the expression of D shows that the rank of D is at most two and consequently, the
set of rank two derivations is open and dense in Der pgpθqq. Also, the fact that Der pgpθqq is
isomorphic to the set of linear vector fields [8] implies that rank two linear vector fields, and
consequently rank two ARS’s, are (topologically) big.
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Let ψ : G Ñ G be an isometry between rank two ARS’s Σ1 and Σ2 and consider f : G Ñ R and
g : G Ñ R2 the coordinate functions of ψ. Write, on the canonical basis,

ψ˚ “

˜

B1f pB2fq
T

B1g B2g

¸

,

where for pt, vq P G, B2fpt, vq is the gradient vector of the partial map v P R2
ÞÑ fpt, vq P R.

If
␣

φis
(

tPR is the flow associated with the linear vector fields of Σi, we have by formula (1.4)
that Using the expression for the flows of Xi provided by equation (2.12) and equation (1.4) we
get that

`

f
`

t, esA1v ` Λθ
tΛA1

s ξ
˘

, g
`

t, esA1v ` Λθ
tΛA1

s ξ
˘˘

“ψ
`

t, esA1v ` Λθ
tΛA1

s ξ
˘

“ψ
`

φ1
spt, vq

˘

“φ2
s pψpt, vqq

“φ2
s pfpt, vq, gpt, vqq

“
`

fpt, vq, esA2gpt, vq ` ΛA2
s Λθ

fpt,vqξ2
˘

.

Therefore, we obtain

f
`

t, esA1v ` ΛA1
s Λθ

t ξ1
˘

“ fpt, vq,

g
`

t, esA1v ` ΛA1
s Λθ

t ξ1
˘

“ esA2gpt, vq ` ΛA2
s Λθ

fpt,vqξ2
(4.1)

Remark 4.1.4. The main result of this thesis: Theorem 4.4.1 shows that isometries between
rank two ARS’s on nonnilpotent, solvable three-dimensional Lie groups are automorphisms. For
the proof of this theorem we employ the following steps.

• First we show that, if ψ preserves a left-invariant vector field of the associated distribution,
then ψ is in fact an automorphism of G. This result simplifies our problem to look for
vectors in the distribution which are preserved by the isometry.

• In the second part, we show that the differential of any rank two isometry let the nilradical
t0u ˆ R2 of gpθq invariant, or equivalently, if ψ “ pf, gq then B2f ” 0.

• In the third and last step, we show that if ψ˚ let the nilradical invariant, then it preserves
any left-invariant vector field in the intersection of the nilradical with the distribution of
the ARS.

As a consequence, ψ is an automorphism by the first step.
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4.2 The fundamental lemma
We use this section to prove a technical lemma which gives us a sufficient condition for an
isometry between simple ARS’s to be a group automorphism.

Lemma 4.2.1. (Fundamental Lemma) Let Σ1 “ tX1 “ pξ1, A1q,∆L
1 u and Σ2 “ tX2 “

pξ2, A2q,∆L
2 u be simple ARS’s on the Lie group G “ R ˆρ R2 with A1 ‰ 0, and consider

ψ P IsoG pΣ1; Σ2q0 . If there exists a nonzero vector X P ∆1 such that

@pt, vq P G; pdψqpt,vqX
L

pt, vq “
`

dLψpt,vq

˘

p0,0q
pdψqp0,0qX, (4.2)

then ψ P AutpGq.

Proof. : Let us assume w.l.o.g. that p1, 0q P ∆1. We prove the lemma in four steps:
Step 1: For all Z P ∆1 it holds that

@pt, vq P G; pdψqpt,vqZ
L

pt, vq “
`

dLψpt,vq

˘

p0,0q
pdψqp0,0qZ.

Let us consider Y P ∆1 such that

tX, Y u is an orthogonal basis of ∆1 with }Y }Σ1,p0,0q “ }X}Σ1,p0,0q.

By linearity, it is enough to show that the relation (4.2) holds for Y . From the left-invariance
of the metric in ∆L

1 we get that
␣

XL
pt, vq, Y L

pt, vq
(

is an orthogonal basis of ∆L
1 pt, vq also

satisfying

}Y L
pt, vq}Σ1,pt,vq “}Y }Σ1,p0,0q

“}X}Σ1,p0,0q

“}XL
pt, vq}Σ1,pt,vq.

Using that ψ is an isometry, it holds that pdψqpt,vqY
L

pt, vq P ∆L
2 pψpt, vqq is orthogonal to

pdψqpt,vqX
L

pt, vq and
›

›pdψqpt,vqY
L

pt, vq
›

›

Σ2,ψpt,vq
“
›

›Y L
pt, vq

›

›

Σ1,pt,vq

“}Y }Σ1,p0,0q.

On the other hand, the left-invariance of the metric in ∆L
2 implies that

`

dLψpt,vq

˘

p0,0q
pdψqp0,0qY P

∆2pψpt, vqq is orthogonal to
`

dLψpt,vq

˘

p0,0q
pdψqp0,0qX and

›

›

›

`

dLψpt,vq

˘

p0,0q
pdψqp0,0qY

›

›

›

Σ2,ψpt,vq
“
›

›pdψqp0,0qY
›

›

Σ2,p0,0q

“}Y }Σ1,p0,0q.
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Since by hypothesis,
pdψqpt,vqX

L
pt, vq “

`

dLψpt,vq

˘

p0,0q
pdψqp0,0qX,

the fact that dim
`

∆L
2 pψpt, vqq “ 2 forces that

pdψqpt,vqY
L

pt, vq “ εpt, vq
`

dLψpt,vq

˘

p0,0q
pdψqp0,0qY, where εpt, vq “ ˘1. (4.3)

Moreover, by orthogonality, we obtain that

εpt, vq “

A

pdψqpt,vqY
Lpt, vq,

`

dLψpt,vq

˘

p0,0q
pdψqp0,0qY

E

Σ2,ψpt,vq

}X}Σ1,p0,0q

,

showing that ε is a continuous function on GzZ1 and hence, ε is constant on the connected
components of GzZ1.
Since A1 ‰ 0, Theorem 4.5.1 implies that GzZ1 has two connected C`

1 and C´
1 . Let us consider

ε` :“ ε|C`
1

and ε´ :“ ε|C´
1
.

If for some pt, vq P GzZ the curve s ÞÑ pt, vq exp sY intersects Z1, then by Theorem 4.5.1 such
intersection is a discrete set. Assume w.l.o.g. that pt, vq P C`

1 and consider the sets

I` :“
␣

s P R; pt, vq exp sY P C`
1
(

and I´ :“
␣

s P R; pt, vq exp sY P C´
1
(

.

These sets are open and their union is, by Theorem 4.5.1, dense in R. Moreover, the curves

γ˘ : I˘
Ñ G, γ˘psq :“ ψ ppt, vq exp sY q

are differentiable and by equation (4.3) satisfies

d

ds
γ˘psq “pdψqpt,vq exp sY Y

L
ppt, vqq exp sY

“
`

ε˘Z
˘L

pψppt, vq exp sY qq

“
`

ε˘Z
˘L

pγ˘psqq ,

where for simplicity Z :“ pdψqp0,0qY . Therefore, γ˘psq coincides with the solution of the ODE
defined by the vector field ε˘ZL on the open set I˘. By uniqueness we get that

ψppt, vq exp sY q “ ψpt, vq exp sε˘Z, for all s P I˘.

Since RzI`
Y I´ are the points where the curve s ÞÑ pt, vq exp sY intersects Z1, we have by

Theorem 3.2.2 that RzI`
Y I´ is discrete. Let us assume that I´

‰ H. In this case, there exist
s0 P RzI`

Y I´ and δ ą 0 such that

pt, vq exp sY P C`
1 s P ps0, s0 ` δq and pt, vq exp sY P C´

1 s P ps0 ´ δ, s0q,
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which by continuity implies

ψpt, vq exp s0ε
`Z “ψ ppt, vq exp s0Y q

“ψpt, vq exp s0ε
´Z

implying exp s0ε
`Z “ exp s0ε

´Z. By the expression of the exponential in equation (2.13) and
the fact that s0 ‰ 0 we conclude that ε`

“ ε´.
On the other hand, if I´

“ H, let us consider an open set pt, vq P U Ă C`
1 and s0 P RzI`. The

open set U exp s0Y intersects Z1 at the point pt, vq exp s0Y and, since Z1 is a two-dimensional
embedded manifold, we have that

U exp s0 X C´
1 ‰ H.

In particular, there exists pt̂, v̂q P C`
1 such that pt̂, v̂q exp s0Y P C´

1 . As a consequence, both of
the sets

Î` :“
␣

s P R; pt̂, v̂q exp sY P C`
1
(

and Î´ :“
␣

s P R; pt̂, v̂q exp sY P C´
1
(

,

are nonempty. By doing the previous analysis with pt̂, v̂q instead of pt, vq allows us to conclude
that ε`

“ ε´.
Now, if for all pt, vq P GzZ1 and s P R we have that pt, vq exp spa, wq P GzZ1, then as previously
for all pt, vq P C˘

1 we get

ψppt, vq exp sY q “ ψpt, vq exp sε˘Z, for all s P R.

Again by the fact that Z1 is an embedded two-dimensional manifold, there exists γ : p´δ, δq Ñ G

satisfying
γp0q P Z, γp´δ, 0q Ă C´

1 and γp0, δq Ă C`,

and hence, for all s P R it holds that

ψpγpτq exp sY q “ ψpγpτqq exp sε`Z, τ P p0, δq and ψpγpτq exp sY q “ ψpγpτqq exp sε´Z, τ P p´δ, 0q.

By considering the limit τ Ñ 0 we get by continutity that

ψpγp0qq exp sε`Z “ ψpγp0q exp sY q “ ψpγp0qq exp sε´Z, @s P R,

implying that ε`
“ ε´ and concluding the proof of step 1.

Step 2: It holds that

fpt, vq “ at and gpt, vq “ gp0, vq ` Λaθ
t B1gp0, 0q.
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Indeed. Since
`

dLpt,vq

˘

p0,0q
p1, 0q “ p1, 0q we have that

pB1fpt, vq, B1gpt, vqq “pdψqpt,vqp1, 0q

“
`

dLψpt,vq

˘

p0,0q
pdψqp0,0qp1, 0q

“
`

dLψpt,vq

˘

p0,0q
pB1fp0, 0q, B1gp0, 0qq

“
`

B1fp0, 0q, ρfpt,vqB1gp0, 0q
˘

implying that
B1fpt, vq “ B1fp0, 0q and B1gpt, vq “ ρfpt,vqB1gp0, 0q. (4.4)

Analogously, for p0, uq P ∆ X t0u ˆ R2

pxB2fpt, vq, ρtuyR2 , B2gpt, vqρtuq “pdψqpt,vq p0, ρtuq

“
`

dLψpt,vq

˘

p0,0q
pdψqp0,0qp0, uq

“
`

dLψpt,vq

˘

p0,0q
pxB2fp0, 0q, uyR2 , B2gp0, 0quq

“
`

xB2fp0, 0q, uyR2 , ρfpt,vqB2gp0, 0qu
˘

,

implying that

xB2fpt, vq, ρtuyR2 “ xB2fp0, 0q, uyR2 and B2gpt, vqρtu “ ρfpt,vqB2gp0, 0qu (4.5)

By integration, equation (4.4) implies that

fpt, vq “ at ` hpvq, a “ B1fp0, 0q and hpvq “ fp0, vq.

Therefore, from equation (4.5) we get that for all pt, vq P G,

x∇hpvq, ρtuyR2 “ x∇hp0q, uyR2

ùñ x∇hpvq, ρtuyR2 “ x∇hpvq, uyR2

ùñ x∇hpvq, pρtu ´ uqyR2 “ 0

On the other hand, f ˝ φ1
s “ f implies that

h
`

esA1v ` Λθ
tΛA1

s ξ1
˘

“ hpvq, (4.6)

and so,
h
`

esA1v
˘

“ hpvq ùñ ∇h
`

esA1v
˘

“ e´sAT1 ∇hpvq.

Hence, @v P R2, s P R,

x∇hpvq, uyR2 “
@

∇h
`

esA1v
˘

, u
D

R2

“

A

e´sAT1 ∇hpvq, u
E

R2

“
@

∇hpvq, e´sA1u
D

R2

ùñ
@

∇hpvq,
`

esA1u ´ u
˘D

R2 “ 0.
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Now, derivation of (4.6) first at t “ 0 and then at s “ 0, gives us

x∇hpvq, ξ1yR2 “ 0,

which together with the previous equations imply that
␣

ξ1, esA1u ´ u, ρtu ´ u, t, s P R
(

belongs
to the same line if ∇hpvq ‰ 0 for some v P R2.
However, if

␣

ξ1, esA1u ´ u, ρtu ´ u, t, s P R
(

belongs to the same line we necessarily have that
u is a common eigenvalue of θ and A1 which gives us that ∆1 is a subalgebra that contains
p1, 0q, A1l∆1 Ă l∆1 and ξ1 P l∆1 , which by Proposition 2.4.1 contradicts the LARC. Therefore

∇hpvq “ 0 for all v P R2
ñ h is constant.

Since fp0, 0q “ 0 we get that h “ 0 and hence fpt, vq “ at as stated.
Now, since fpt, vq “ at, equation (4.4) implies that

B1gpt, vq “ ρatB1gp0, 0q

which by integration gives us

gpt, vq ´ gp0, vq “

ż t

0
B1gps, vqds

“

ż t

0
ρasB1gp0, 0qd

“Λaθ
t B1gp0, 0q,

then
gpt, vq “ gp0, vq ` Λaθ

t B1gp0, 0q,

showing the assertion for g and proving Step 2.
Step 3 : For all pt, vq P G and s P R, it holds that

B2gp0, vqρtξ1 “ ρatB2gp0, 0qξ1 and B2gp0, vqρte´sA1u “ ρatB2gp0, 0qe´sA1u. (4.7)

Since ψ commutes the flows of the linear vector fields of Σ1 and Σ2, it holds that

g
`

t, esA1v ` ΛA1
s Λθ

t ξ1
˘

“ esA2gpt, vq ` ΛA2
s Λθ

atξ2,

and by Step 2,

g
`

0, esA1v ` ΛA1
s Λθ

t ξ1
˘

` Λθ
atη “ esA2gp0, vq ` esA2Λθ

atη ` ΛA2
s Λθ

atξ2,

where η “ B1gp0, 0q. Therefore,

g
`

0, esA1v ` ΛA1
s Λθ

t ξ1
˘

´ esA2gp0, vq “
`

esA2 ´ idR2
˘

Λθ
atη ` ΛA2

s Λθ
atξ2

“ΛA2
s Λθ

at pξ2 ` A2ηq .
(4.8)
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Derivation of equation (4.8) on t gives us, by the chain rule, that

B2g
`

0, esA1v ` ΛA1
s Λθ

t ξ1
˘

ρtΛA1
s ξ1 “ ρatΛA2

s pξ2 ` A2ηq .

Since the previous equations is true for any s P R and any pt, vq P G, we can substitute v by
e´sA1

`

v ´ ΛA1
s Λθ

t ξ1
˘

in order to obtain

B2gp0, vqρtΛA1
s ξ1 “ ρatΛA2

s pξ2 ` A2ηq .

Derivating now the last equation at s “ 0 gives us

B2gp0, vqρtξ1 “ρat pξ2 ` A2ηq

“ρatB2gp0, 0qξ1,

proving the first equality. For the second equality, let us notice that the right-hand side of
equation (4.8) does not depends on v and hence

v P R2
ÞÑ g

`

0, esA1v ` ΛA1
s Λθ

t ξ1
˘

´ esA2gp0, vq,

has differential zero. By the chain rule, we obtain

B2g
`

0, esA1v ` ΛA1
s Λθ

t ξ1
˘

esA1 “ esA2B2gp0, vq.

On the other hand, by Step 2.

@pt, vq P G, B2gpt, vq “ B2gp0, vq and fpt, vq “ at.

Therefore, for any pt, vq P G and and s P R we get

B2gp0, vqρte´sA1 “B2gp0, vqe´sA1ρtu

“e´sA2B2g
`

0, esA1v ` ΛA1
s Λθ

t ξ1
˘

ρtu

“e´sA2ρatB2gp0, 0qu

“ρate´sA2B2gp0, 0qu

“ρatB2gp0, 0qe´sA1u.

showing the assertion.
Step 4: ψ P AutpGq

We have to analyze the following ones:

1. ∆1 is not a subalgebra: In this case, u ‰ 0 is not an eigenvalue of θ. Since, for t “ s “ 0
the second equation in (4.7) implies that

B2gp0, vqρtu “ B2gp0, 0qu,
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it holds that
@v P R2, B2gp0, vqρtu “ ρatB2gp0, 0qu “ ρatB2gp0, vqu.

Since aB2gp0, vq “ detpdψqpt,vq ‰ 0 we have necessarily that B2gp0, vq P Glp2,Rq. Applying
Lemma A.1.1 to the linear maps B2gp0, vq gives us that,

@v P R2, B2gp0, vq “ B2gp0, 0q and B2gp0, 0q ˝ θ “ aθ ˝ B2gp0, 0q,

where a “ 1 if tr θ ‰ 0 or a P t´1, 1u if tr θ “ 0.

2. ∆1 is a subalgebra and θ ‰ idR2 :
In this case, the fact that A1θ “ θA1 implies that u is also an eigenvector of A1. Since we
are assuming p1, 0q P ∆1 the LARC implies by Proposition 2.4.1 that tξ1, uu is linearly
independent. Considering t “ s “ 0 in equations (4.7) gives us that

B2gp0, vqu “ B2gp0, 0qu and B2gp0, vqξ1 “ B2gp0, vqξ1,

which by linearity implies that,

@v P R2
B2gp0, vq “ B2gp0, 0q and B2gp0, vq ˝ ρt “ ρat ˝ B2gp0, vq.

By differentiation, we get that B2gp0, 0q ˝ θ “ aθ ˝ B2gp0, 0q implying that a “ 1 if tr θ ‰ 0
or a P t´1, 1u if tr θ “ 0.

3. ∆1 is a subalgebra and θ “ idR2 :
In this case,

etB2gp0, vqu “etB2gp0, vqρtu

“ρatB2gp0, 0qu

“eatB2gp0, vqu,

implying that a “ 1. If tξ, uu is linearly independent, we can conclude as in the previous
item that

@v P R2, B2gp0, vq “ B2gp0, 0q.

On the other hand, if tξ1, uu is linearly dependent, the LARC implies necessarily that
u cannot be an eigenvector of A1 (see Proposition 2.4.1). In particular, for some s0 P

R,
␣

u, e´s0A1u
(

is a basis of R2 and by Step 3. the linear maps B2gp0, vq and B2gp0, 0q

coincides on such basis, implying that B2gp0, vq “ B2gp0, 0q for all v P R2.
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In any case, we get that

fpt, vq “ εt and gpt, vq “ Pv ` εΛεθ
t η,

where η “ B1gp0, 0q, P “ B2gp0, 0q and Pθ “ εθP with ε “ 1 if tr θ ‰ 0 or ε P t´1, 1u if tr θ “ 0.
Moreover, by definition,

∆εθ
t η “

ż t

0
eεsθηds

“ε

ż εt

0
eµθηdµ

“εΛθ
εtη

implying that ψ P AutpGq and concluding the proof.

4.3 Invariance of the nilradical
In this section we show that for an isometry ψ P IsoG pΣ1,Σ2q0 between rank two ARS’s with
ψ “ pf, gq, the coordinate function f only depends on the first variable of G or equivalently, it
satisfies B2f ” 0. Henceforth, we denote the constants αipt, vq that depend of pt, vq as αi.
Let us consider tXi, Yiu Ă ∆i be orthonormal basis. Since ψ˚∆L

1 “ ∆L
2 pψq, we can write uniquely

ψ˚X
L
1 “ α1X

L
2 pψq ` α2Y

L
2 pψq,

where

α2
1 ` α2

2 “
›

›ψ˚X
L
1
›

›

2
Σ2

“
›

›XL
1
›

›

2
Σ1

“ }X1}Σ1

“1

Moreover, each αi can be recovered from the orthonormality of the basis as

α1 “
@

ψ˚X
L
1 , X

L
2 pψq

D

Σ2
and α2 “

@

ψ˚X
L
1 , Y

L
2 pψq

D

Σ2
,

showing that αi : GzZ1 Ñ R are C8 functions. Moreover, the fact that
␣

XL
1 , Y

L
1
(

is an
orthonormal basis of ∆L

1 implies that

ψ˚Y
L

1 “ ϵ
`

´α2X
L
2 pψq ` α1Y

L
2 pψq

˘

,

where ϵ “ ˘1 is constant in each connected component GzZ1.
Let us assume w.l.o.g. that ϵ “ 1 and consider a orthonormal basis of ∆1 satisfying

Xi “ p0, uiq and Yi “ pσi, wiq , with σiwi ‰ 0.
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By writting ψ “ pf, gq and ψ˚ “

˜

B1f pB2fq
T

B1g B2g

¸

, the previous consideration, implies that

ψ˚ p0, ρtu1q “ α1 p0, ρfu2q`α2 pσ2, ρfw2q and ψ˚ pσ1, ρtw1q “ ´α2 p0, ρfu2q`α1 pσ2, ρfw2q ,

or equivalently
#

xB2f, ρtu1yR2 “ α2σ2

σ1B1f ` xB2f, ρtw1yR2 “ α1σ2
and

#

B2gρtu1 “ ρf pα1u2 ` α2w2q

σ1B1g ` B2gρtw1 “ ρf p´α2u2 ` α1w2q .
(4.9)

Now,
ψ ˝ φ1

s “ φ2
s ˝ ψ ùñ f ˝ φ1

s “ f,

that is,
f
`

t, esA1v ` Λθ
tΛA

t ξ
˘

“ fpt, vq.

By differentiation,
@

B2f, A1v ` Λθ
t ξ1

D

R2 “ 0
B1f “ B1f

`

φ1
s

˘

`
@

B2f
`

φ1
s

˘

, ρtΛA1
s ξ1

D

R2

B2f
`

φ1
s

˘

“ e´sAT1 B2f.

(4.10)

where the first equation in (4.10) is obtained by differentiating with relation to s and then
making s “ 0.
Now, using again the equations in (4.9) we get that

σ2
2 “σ2

2
`

pα2
1
`

φ1
s

˘

` α2
2
`

φ1
s

˘˘

“σ2
2α

2
1
`

φ1
s

˘

` σ2
2α

2
2
`

φ1
s

˘

“
`

σ2α2
`

φ1
s

˘˘2
`
`

σ2α1
`

φ1
s

˘˘2

“
@

B2f
`

φ1
s

˘

, ρtu1
D2
R2 `

`

σ1B1f
`

φ1
s

˘

`
@

B2f
`

φ1
s

˘

, ρtw1
D

R2

˘2

“

A

e´sAT1 B2f, ρtu1

E2

R2
`

´

σ1

´

B1f ´

A

e´sAT1 B2f, ρtΛA1
s ξ1

E

R2

¯

`

A

e´sAT1 B2f, ρtw1

E

R2

¯2

“
@

B2f, e´sA1ρtu1
D2
R2 `

`

σ1
`

B1f `
@

B2f, ρtΛA1
´sξ1

D

R2

˘

`
@

B2f, e´sA1ρtw1
D

R2

˘2
.

Where for the last equality we used that e´sA1ΛA1
s “ ´ΛA1

´s

Derivation at s “ 0 gives us

0 “2 xB2f, ρtu1yR2 xB2f,´A1ρtu1yR2

`2 pσ1B1f ` xB2f, ρtw1yR2q ¨ p´σ1 xB2f, ρtξ1yR2 ` xB2f,´A1ρtw1yR2q

“2α2σ2 xB2f,´A1ρtu1yR2 ` 2α1σ2 ¨ p´σ1 xB2f, ρtξ1yR2 ` xB2f,´A1ρtw1yR2q

“ ´ 2 xB2f, ρt pσ1σ2α1ξ1 ` σ2A1 pα2u1 ` α1w1qqyR2 ,
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showing that

B2f is orthogonal to ρt pσ1σ2α1ξ1 ` σ2A1 pα2u1 ` α1w1qq on GzZ1 .

Using the fist equation in (4.10), allow us to conclude that, on GzZ1

B2f ‰ 0 ùñ
␣

A1v ` Λθ
t ξ1, ρt pσ1σ2α1ξ1 ` σ2A1 pα2u1 ` α1w1qq

(

is LD. (4.11)

We show that B2f ” 0 by analyzing the possibilities for the eigenvalues of A1 in the next
propositions.

Proposition 4.3.1. If A1 has only eigenvalues with nonzero real parts, B2f ” 0

Proof. According to Proposition 2.4.3 (see also Remark 2.4.4) we can assume without loss of
generality that p1, 0q P ∆1 Under this assumption, we have that w1 “ cu1 and equations (4.9)
gives us that

xB2f, ρtu1yR2 “ α2σ2 and B1f “
σ2

σ1
pα1 ´ cα2q .

Where the second equation is obtained as follows. Since σ1B1f ` xB2f, ρtw1yR2 “ α1σ2, as
w1 “ cu1 we get σ1B1f ` cα2σ2 “ α1σ2 consequently B1f “

σ2

σ1
pα1 ´ cα2q.

Using now equations (4.9) gives us that on GzZ1,

α2
`

φ1
s

˘

σ2 “
@

B2f
`

φ1
s

˘

, ρtu1
D

R2

“

A

e´sAT1 B2f, ρtu1

E

R2

is bounded for s P R outside a discrete subset (see Proposition 3.2.3 ). However, if A1 has only
eigenvalues with nonzero real parts, the fact that u1 ‰ 0 implies by Lemma A.1.2 that α2 ” 0
and α1 “ 1 showing that B1f is constant on GzZ1. Using the continuity of f and the fact that
GzZ1 is an open and dense subset of G allow us to conclude that

@pt, vq P G, fpt, vq “ at ` hpvq, where a “ σ2{σ1 and hpvq “ fp0, vq.

The same analysis as in Step 2. of Lemma 4.2.1 allows us to conclude that under the LARC and
rank two assumptions it holds that h ” 0 showing that B2f ” 0 as stated.

Proposition 4.3.2. If A1 has a pair of pure imaginary eigenvalues, B2f ” 0

Proof. By Remark 2.4.4 we can assume that ξ1 “ 0. Consider the set

A :“ tpt, vq P G; B2fpt, vq ‰ 0u .

The first to notice is that

B2f
`

φ1
s

˘

“ e´sAT
B2f ùñ φ1

spAq Ă A.
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Also, the fact that A1 has a pair of imaginary eigenvalues and that A1θ “ θA1 imply that, on

the canonical basis, A1 “

˜

0 ´µ

µ 0

¸

, for some µ ‰ 0.

The assumption that ξ1 “ 0 implies

Z1 “
␣`

t, sρtA
´1
1 u1

˘

, t, s P R
(

and ZX1 “ R ˆ t0u.

Consequently, for any pt, vq P Z1zZX1 there exists s0 P R such that φs0pt, vq P GzZ1. In particular
we get that

AzZX1 ‰ H ùñ A X pGzZ1q ‰ H.

Let us consider pt0, v0q P A X pGzZ1q and suppose that α2 pt0, v0q ρt0u1 ` α1 pt0, v0q ρt0w1 P Rv0.
Let’s choose v˚

0 such that, xv0, v
˚
0 yR2 “ 0. Therefore, by using the relation (4.11) we get that

0 “ xα2pt0, v0qρt0u1 ` α1pt0, v0qρt0w1, v
˚
0 yR2

“α2 pt0, v0q xρt0u1, v
˚
0 yR2 ` α1 pt0, v0q xρt0w1, v

˚
0 yR2

and since α2
1 ` α2

2 “ 1 we obtain

α1 pt0, v0q
2

“
xρt0u1, v

˚
0 y

2
R2

xρt0u1, v˚
0 y

2
R2 ` xρt0w1, v˚

0 y
2
R2

and α2 pt0, v0q
2

“
xρtw1, v

˚
0 yR2

xρt0u1, v˚
0 y

2
R2 ` xρt0w1, v˚

0 y
2
R2

.

With the previous we will show that A Ă ZX1 , by considering two cases:

1. u1 and w1 are not orthogonal vectors;
Let pt, vq P AzZX1 . The fact that esA1v is a circumference around the origin gives us that

␣

esA1 , s P R
(

X tpt, sρtvq , s P Ru ‰ H ùñ Ds0, s1 P R˚; es0A1 “ s2ρtv.

In particular, if u1 and w1 are not orthogonal vectors, A1w1 R Ru1 implying that
pt, s1ρtw1q P GzZ1 and hence

A Q φs0pt, vq “
`

t, es0A1v
˘

“ pt, s1ρtw1q P GzZ1.

By the previous formula we get
@

ρtw1, pρtw1q
˚
D

R2 “ 0
ùñ α2 pt, s1ρtw1q “ 0
(4.9)
ùñ xB2f pt, s1ρtw1q , ρtu1yR2 “ 0.

On the other hand, by the first equation in (4.10) we get that

xB2f pt, s1ρtw1q , A1 ps1ρtw1qyR2 “ 0 ùñ xB2f pt, s1ρtw1q , ρtA1w1yR2 “ 0.
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Since A1w1 R Ru1, the set tρtu1, ρtA1w1u is a basis of R2, which by the previous equalities
imply

0 “ B2fpt, s1ρtw1q “ B2fpφs0pt, vqq “ e´s0AT1 B2fpt, vq ùñ B2fpt, vq “ 0,

contradicting the fact that pt, vq P AzZX1 . Therefore, if u1 and w1 are not orthogonal
vectors we must have that AzZX1 “ H.

2. u1 and w1 are orthogonal vectors;
Let pt, vq P AzZX1 . As previously,

Ds0, s1 P R˚; A Q φ1
s0pt, vq “ pt, s1ρtu1q P GzZ1 ùñ α1 pt, s1ρtu1q “ 0.

Since u1 and w1 orthogonal are equivalent to A1u1 P Rw1, the first equation in (4.10) gives
us that

xB2f pt, s1ρtu1q , A1 ps1ρtu1qyR2 “ 0 ùñ xB2f pt, s1ρtw1q , ρtw1yR2 “ 0.

and hence,

B1f pt, s1ρtu1q “B1f pt, s1ρtu1q ` xB2f pt, s1ρtu1q , ρtw1yR2
loooooooooooooomoooooooooooooon

“0

“α1 pt, s1ρtu1qσ2 “ 0

Since we are assuming ξ1 “ 0, the second equation in (4.10) implies B1f
`

φ1
s

˘

“ B1f for all
s P R. In particular,

B1fpt, vq “B1f
`

φ1
s0pt, vq

˘

“B1f pt, s1ρtu1q

“0,

which by the arbitrariness of pt, vq P AzZX1 implies that

AzZX1 Ă tpt, vq P GzZX1 ; B1fpt, vq “ 0u .

Now, if pt0, v0q P pAzAq X GzZ1, the fact that f restrict to GzZ1 is C8 implies that

B1f pt0, v0q “ 0 and B2f pt0, v0q “ 0

which is a contradition to the fact that ψ is a diffeomorphism. Therefore, A X pGzZ1q is
open and closed in GzZ1 and so, A contains any connected component of GzZ1 that it
intersects. However, by Theorem 4.5.1, GzZ1 has two connected components and, since
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A1 has a pair of imaginary eigenvalues, any point pt, vq P GzZ1 crosses the singular locus
by the action of the flow of X1. Consequently, the invariance φspAq Ă A implies that

AzZX1 ‰ H ùñ A X pGzZ1q ‰ H ùñ GzZ1 Ă A.

From that, we conclude that B1f |GzZ1
” 0 and by the continuity of f we actually get

fpt, vq “ fp0, vq ùñ B1f ” 0.

In particular, since detA1 ‰ 0,

B2f
`

φ1
s

˘

“ e´sAT
B2f ùñ B2fp0, 0q “ 0,

which together with B1f ” 0 is a contradiction with the fact that ψ is a diffeomorphism.

Therefore, in both cases, we conclude that AzZX1 “ H or equivalently A Ă ZX1 . By
considering the complementary, we get that

@pt, vq P GzZX1 , fpt, vq “ at, where a “ σ2{σ1 P R˚,

and by continuity fpt, vq “ at for all pt, vq P G implying that B2f ” 0 and concluding the
proof.

Proposition 4.3.3. If R2
“ ImA1 ‘ Rξ1 then B2f ” 0.

Proof. Suppose that p1, 0q P ∆1. In this case, w1 “ cu1 and from equations (4.9) we get that

B1f “ pα1 ´ cα2qσ2 ùñ B1f is bounded on GzZ1 .

On the other hand, by our hypothesis dim ImA1 “ 1 and so we have the following possibilities:

1. A1 has a pair of distinct eigenvalues: Since A1θ “ θA1 we have that, on the canonical
basis,

A1 “

˜

β 0
0 0

¸

or A1 “

˜

0 0
0 β

¸

and θ “

˜

1 0
0 λ

¸

.

Let us assume that the first case holds for A1 since the analysis of the second case is
analogous. By our hypothesis, we can write ξ1 “ ae1 ` be2 with b ‰ 0 and hence

ρtΛA1
´sξ1 “ aet 1

β

`

e´sβ
´ 1

˘

e1 ´ bsetλe2.

Also, from the second and third equations in (4.10) we have that

B1f “B1f
`

φ1
s

˘

`
@

B2f
`

φ1
s

˘

, ρtΛA1
s ξ1

D

R2

“B1f
`

φ1
s

˘

´
@

B2f, ρtΛA1
´sξ1

D

R2 ,
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and hence
@

B2f, ρtΛA1
´sξ1

D

R2 “ B1f
`

φ1
s

˘

´ B1f is bounded for s P R outside a discrete set.
Hence

@

B2f, ρtΛA1
´sξ1

D

R2 “ aet 1
β

`

e´sβ
´ 1

˘

xB2f, e1yR2 ´ b setλ xB2f, e2yR2

is bounded and then

a xB2f, e1yR2 “ 0 and xB2f, e2yR2 “ 0.

If a “ 0 we obtain that ξ1 P kerA1 “ Re2. In particular, Λθ
t ξ P kerA1 and consequently

xB2f, e2yR2 “ 0 ùñ
@

B2f,Λθ
t ξ
D

R2 “ 0.

Using the first equation in (4.10) we obtain that

0 “
@

B2f, A1v ` Λθ
t ξ
D

R2 “ xB2f, A1vyR2 .

Thus, we get
@pt, vq P Gz pt0u ˆ kerA1q , xB2f, e1yR2 “ 0

and in particular B2f “ 0 on GzZ1. Then B1f “
σ2

σ1
on GzZ1 implying, by the continuity

of f that fpt, vq “ at on G as stated.

2. A1 is nilpotent: Using that A1θ “ θA1 gives us that, on the canonical basis, it holds

A1 “

˜

0 β

0 0

¸

and θ “

˜

1 δ

0 1

¸

δ P t0, 1u

or

A1 “

˜

0 0
β 0

¸

and θ “

˜

1 0
0 1

¸

.

By the rank two assumption we have that ξ1 “ ae1 ` be2 with b ‰ 0. Thus

ρtΛA1
´sξ1 “ et

ˆ

b
s2

2 ´ pa ` bδtqs

˙

e1 ´ etbse2

and being B1f bounded on GzZ1 it holds that

@s P R,
@

B2f, ρtΛA1
´sξ1

D

R2 is bounded.

As a consequence,
@

B2f, ρtΛA1
´sξ1

D

R2 “ et
ˆ

b
s2

2 ´ pa ` bδtqs

˙

xB2f, e1yR2 ´ etbs xB2f, e2yR2

is bounded for s P R outside a discrete set and hence
etb
2 xB2f, e1yR2 “ 0 and et ppa ` bδtq xB2f, e1yR2 ` b xB2f, e2yR2q “ 0. (4.12)

As b ‰ 0 the equation (4.12) is equivalenty to

xB2f, e1yR2 “ xB2f, e2yR2 “ 0,

which gives us that B2f “ 0 on GzZ1 and, as a result fpt, vq “ at, concluding the proof.
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4.4 The theorem of isometries
Theorem 4.4.1. The only isometries between rank two ARS’s on G “ R ˆρ R2 that fixated
the identity are the automorphisms.

Proof. To prove this theorem we follow the steps given in the remark 4.1.4.
Let us consider ψ “ pf, gq an isometry between rank two ARS’s Σ1 and Σ2, then by the
invariance of the nilradical proved in Section 4.3, we have B2f ” 0. Therefore, if

X “ p0, uq P ∆1 X
`

t0u ˆ R2˘ , with }X}Σ1,p0,0q “ 1,

we obtain that

pdψqpt,vqX
L

pt, vq “

˜

B1fpt, vq 0
B1gpt, vq B2gpt, vq

¸˜

0
ρtu

¸

“ p0, B2gpt, vqρtuq ,

showing that
pdψqpt,vqX

L
pt, vq P ∆2pψpt, vqq X

`

t0u ˆ R2˘ .

On other hand, pdψqp0,0qX P ∆2p0, 0q implies that
`

dLψpt,vq

˘

p0,0q
pdψqp0,0qX P ∆2pψpt, vqq X

`

t0u ˆ R2˘ .

Moreover, since ψ is an isometry and the metrics on ∆1 and ∆2 are left-invariant,
›

›pdψqpt,vqX
L

pt, vq
›

›

Σ2,pψpt,vqq
“
›

›XL
pt, vq

›

›

Σ1,pt,vq

“}X}Σ1,p0,0q

“1

and
›

›

›

`

dLψpt,vq

˘

p0,0q
pdψqp0,0qX

›

›

›

Σ2,pψpt,vqq
“
›

›pdψqp0,0qX
›

›

Σ2,p0,0q

“
›

›pdψqp0,0qX
›

›

Σ2,p0,0q

“1.

Since dim p∆2pψpt, vqqq X
`

t0u ˆ R2˘
“ 1 it holds that

pdψqpt,vqX
L

pt, vq “ ˘
`

dLψpt,vq

˘

p0,0q
pdψqp0,0qX,

where the sign is constant on any connected component of GzZ1. Doing a similar analysis as
done in Lemma 4.2.1, specifically in the Step 1, allows us to obtain that the sign is constant on
G and then

pdψqpt,vqX
L

pt, vq “
`

dLψpt,vq

˘

p0,0q
pdψqp0,0qX.

By using the Fundamental Lemma 4.2.1 we conclude that ψ is an automorphism.
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The next example shows that Theorem 4.4.1 is not true if the ARS has rank less than two.

Example 4.4.2. Let us consider G “ R ˆρ R2 and the simple ARS given by Σ “
␣

X ,∆L
(

,
where

θ “

˜

1 0
0 0

¸

, X “

˜

p0, 0q,

˜

0 1
0 0

¸¸

and α “ tp1, 0q, p0, e2qu

is an orthonormal basis of ∆.
By Proposition 2.4.1 we have that Σ satisfies the LARC and it is direct to see that it is not a
rank two ARS. Note also that, for any pt, vq P G, it holds

`

dLpt,vq

˘

p0,0q
p1, 0q “ p1, 0q and

`

dLpt,vq

˘

p0,0q
p0, e2q “ p0, e2q .

Let us consider the diffeomorphism

ψ : G Ñ G, pt, vq ÞÑ p´t, vq,

and note that, by Proposition 2.3.1 it holds that ψ R AutpGpθqq. On the other hand,

ψpX pt, vqq “ψp0, Avq

“p0, Avq

“X p´t, vq

“X pψpt, vqq,

ψp1, 0q “ p´1, 0q and ψ p0, e2q “ p0, e2q ,

and since ψ˚ “ ψ, we conclude that ψ carries the orthonormal frame tX , p1, 0q, p0, e2qu onto the
orthonormal frame tX ,´p1, 0q, p0, e2qu showing that ψ P IsoGpΣ; Σq.

4.5 On classification of simple rank two ARS
The results obtained in Chapter 4 allows obtaining the following classification theorem. In this
section, we consider the notation Gpθq “ RˆρR2 for the connected, simply connected Lie group
with Lie algebra gpθq. For any σ P R` we consider the subsets of gpθq given by

α1 “ tp1, 0q, pσ, e1qu , α2 “ tp1, 0q, pσ, e2qu and α3 “ tp1, 0q, pσ, e1 ` e2qu .

Define the simple ARS’s of rank two Σi
X ,σ “

␣

X ,∆L
i,σ

(

on Gpθq, where

1. X is a rank two linear vector field on Gpθq;

2. αi is an orthonormal basis of ∆i,σ.
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Denote by Eθ the set of all rank two simple ARS on Gpθq and consider the sets

E iθ “

!

Σ P Eθ; Iso
`

Σ,Σi
X ,σ

˘

0 ‰ H for some Σi
X ,σ

)

that is, E iθ is the set of rank two ARS’s on Gpθq that are isometric to some of the ARS’s Σi
X ,σ

Theorem 4.5.1. Up to a rescaling, it holds that

(i) Eθ “ E1
θ if θ P

#˜

1 0
0 1

¸

,

˜

λ ´1
1 λ

¸

, λ P R

+

;

(ii) Eθ “ E1
θ 9YE3

θ if θ P

#˜

1 1
0 1

¸

,

˜

1 0
0 ´1

¸+

;

(iii) Eθ “ E1
θ 9YE2

θ 9YE3
θ if θ P

#˜

1 0
0 λ

¸

, λ P p´1, 1q

+

.

Proof. Since, by Theorem 4.4.1 the only isometries between rank two ARS are automorphisms,
we only have to show that any given ARS Σ is isometric to some ARS in E iθ for i “ 1, 2, 3 and
that for i ‰ j we have that E iθ X E jθ “ H if θ is in the cases (ii) or (iii).
Let us consider Σ “

␣

X ,∆L
(

be a rank two ARS. By Proposition 2.4.3 and Remark 2.4.4, the
ARS Σ is isometric to an ARS whose distribution contains p1, 0q. Hence, we can assume without
loss of generality that p1, 0q P ∆. By rescaling the norm on ∆ if necessary we can assume that
}p1, 0q}Σ,p0,0q “ 1. Choose pσ, uq P ∆ such that σ ą 0 and tp1, 0q, pσ, uqu is an orthonormal basis
of ∆. Note that, in this case

p0, uq “ ´σp1, 0q ` pσ, uq ùñ l∆ “ Ru.

Write u “ px, yq and by considering the following cases:

Case 1 : θ P

#˜

1 0
0 1

¸

,

˜

λ ´1
1 λ

¸

, λ P R

+

By regarding
˜

λ ´1
1 λ

¸

we obtain that

Pθ “ θP, detP “ x2
` y2

‰ 0 and Pe1 “ u.

The automorphism ϕpt, vq “ pt, Pvq is an isometry between Σ1
Xϕ,σ and Σ.

Case 2 : θ “

˜

1 1
0 1

¸
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By regarding

P1 “

˜

x 0
0 x

¸

if y “ 0 or P3 “

˜

y x ´ y

0 y

¸

if y ‰ 0,

we obtain that P1θ “ θP1, detPi ‰ 0 and

P1e1 “ u if y “ 0 and P3 pe1 ` e2q “ u if y ‰ 0.

Therefore, if y “ 0 the automorphism ϕ1pt, vq “ pt, P1vq is an isometry between Σ1
X1,σ and Σ,

and if y ‰ 0 the automorphism ϕ3pt, vq “ pt, P3vq is an isometry between Σ3
Xϕ3 ,σ

and Σ.

Case 3 : θ “

˜

1 0
0 ´1

¸

By regarding

P1 “

˜

x 0
0 x

¸

if y “ 0, P2 “

˜

0 y

y 0

¸

if x “ 0 or P3 “

˜

x 0
0 y

¸

if xy ‰ 0.

It holds that Piθ “ θPi for i “ 1 or 3 and P2θ “ ´θP2, detPi ‰ 0 and

P1e1 “ u if y “ 0, P2e1 “ u if y “ 0 and P3 pe1 ` e2q “ u if xy ‰ 0.

Thus, if y “ 0 the automorphism ϕ1pt, vq “ pt, P1vq (respectively if x “ 0) the automorphism
ϕ2pt, vq “ p´t, P2vqq is an isometry between Σ1

Xϕ1,σ
p resp. Σ1

Xϕ2 ,σ

¯

and Σ, and ϕ3pt, vq “ pt, P3vq

is an isometry between Σ3
Xϕ3 ,σ

and Σ if xy ‰ 0

Case 4 : θ “

˜

1 0
0 λ

¸

λ P p´1, 1q

By regarding

P1 “

˜

x 0
0 x

¸

if y “ 0, P2 “

˜

y 0
0 y

¸

if x “ 0 or P3 “

˜

x 0
0 y

¸

if xy ‰ 0.

Hence Piθ “ θPi, detPi ‰ 0 and

P1e1 “ u if y “ 0, P2e2 “ u if x “ 0 and P3 pe1 ` e2q “ u if xy ‰ 0.

and the automorphisms ϕipt, vq “ pt, Pivq are isometries between ΣXϕ1 ,σ
and Σ, for i “ 1, 2, 3.

Since the cases 1, 2, 3 and case 4 cover all the possibilities, we have that E is in fact decomposed
by the classes E iθ as given in items (i), (ii) and (iii). The only thing that remains to show is that,
in cases (ii) and (iii) we have that E iθ X E jθ “ H for i ‰ j
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Since both cases are analogous, let us show case (ii). In this case, if E1
θ X E3

θ ‰ H, there exists
rank two linear vector fields X1,X3 and positive real numbers σ1, σ2 such that Σ1

X1,σ1 and Σ3
X3,σ3

are isometrics. Nevertheless, since Σ1
X1,σ1 and Σ3

X3,σ3 are, by definition, rank two ARS’s, Theorem
4.4.1 implies that

Iso
`

Σ1
X1,σ1 ; Σ3

X3,σ3

˘

0 Ă AutpGpθqq,

Thus, any ψ P Iso
`

Σ1
X1,σ1 ; Σ3

X3,σ3

˘

0 satisfies

pdψqp0,0q “

˜

ε 0
η P

¸

, with Pθ “ εθP,

which implies,

pdψqp0,0q

`

∆1,σ X t0u ˆ R2˘
“ ∆3,σ X t0u ˆ R2 and hence Pe1 P R pe1 ` e2q .

However, by the hypothesis on θ, the subspace Re1 is a one dimensional eigenspace of θ.
Pθ “ εθP implies that

Pe1 P Re1 if ε “ 1 and Pe1 P Re2 if ε “ ´1,

which contradicts Pe1 P R pe1 ` e2q . Consequently, E1
θ X E3

θ “ H as stated.

Remark 4.5.2. In the notation of the Theorem 4.5.1, notice that

p0, uq “ ´σp1, 0q ` pσ, uq ùñ }p0, uq}Σ,p0,0q “ 1 ` σ2.

In particular, }p0, uq}Σ,p0,0q “ 1 if and only if σ “ 0. Therefore, the metric on ∆ is Euclidean if
and only if σ “ 0.
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APPENDIX A – Dynamics of 2x2 matrices

A.1 Dynamics of 2x2 matrices
Lemma A.1.1. Let T P Glp2,Rq and u P R2

ztp0, 0qu. If u is not an eigenvalue of θ and there
exists a P R˚

1qTρtu “ ρatTu, @t P R,

then
2qT ˝ θ “ aθ ˝ T,

and a “ 1 if tr θ ‰ 0 or a P t´1, 1u if tr θ “ 0. Moreover, if S P Glp2,Rq also satisfies 1. and 2 .
and Tu “ Su then T “ S.

Proof. If ρtu ¨ u˚
“ 0 for all t P R then, by derivation, θu ¨ u˚

“ 0 implying that θu P spantuu

and hence u is an eigenvector of θ. Therefore, if u is not an eigenvalue of θ there exist t0, t1 P R
such that tu, ρt0uu is linearly independent. Hence, for any w P R2 there exists γ1, γ2 P R such
that w “ γ1ρt0u ` γ2ρt1u and so

Tρtw “Tρt pγ1ρt0u ` γ2ρt1uq

“γ1Tρt`t0u ` γ2Tρt`t1u
2
“γ1ρapt`t0qTu ` γ2ρapt`t1qTu

“ρt pγ1ρt0Tu ` γ2ρt1Tuq

2
“ρt pγ1Tρt0 ` γ2Tρt1uq

“ρtT pγ1ρt0u ` γ2ρt1uq

“ρatTw,

showing that T ˝ ρt “ ρat ˝ T . Derivation at t “ 0 gives us that

T ˝ θ “ aθ ˝ T,

which implies the result. Now, if S also satisfies 1. and 2 . we have as previously that S˝ρt “ ρat˝S.
Therefore, if Tu “ Su we get that

@t P R, Tρtu “ ρatTu “ ρatSu “ Sρtu.

Since tu, ρt0uu is a basis of R2 for some t0 P R, linearity of S and T implies T “ S. Let
a, b, c, θ, λ, λ1, λ2 P R, with λ1 ‰ 0 ‰ λ2 and consider the functions

γ1ptq “ aetλ1 ` betλ2 ` c, γ2ptq “ eλtpat ` bq ` c and χptq “ etλ cospt ` θq ` c. (A.1)
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It is straightforward to see that the following properties holds:

1. a “ b “ 0 and γi ” c;

2. ab “ 0 with a2
` b2

‰ 0 then γi is unbounded and has at most one zero;

3. ab ‰ 0 then γ is unbounded and has at most two zeros;

4. χ has a finite number of zeros if |c| ą 1

5. The zeros of χ form an infinite discrete subset of R if |c| ď 1.

Lemma A.1.2. Let A P glp2,Rq, τ P R and u, v P R2 nonzero vectors. For the function

γ : R Ñ R, γptq “ etAu ¨ v ` τ,

it holds:

1. The eigenvalues of A are real and

1.1. γ is an unbouded function with at most two zeros or

1.2. γ ” τ, u ¨ v “ 0 and u is an eigenvalue of A.

2. The eigenvalues of A are complex and

2.1. γ is unbounded with an enumerable discrete set of zeros if trA ‰ 0 or

2.2. γ is bounded with an enumerable discrete set of zeros if trA “ 0.

Proof. By considering an appropriated orthonormal basis α of R2 and writing rusα “ pa, bq and
rvsα “ pc, dq it holds that

γptq “ acetλ1 ` bdetλ2 ` τ, if rAsα “

˜

λ1 0
0 λ2

¸

,

γptq “ eλtpu ¨ v ` εbctq ` τ if rAsα “

˜

λ ε

0 λ

¸

,

or

γptq “ eλt}u}}v} cos pµt ` θ0q ` τ, if rAsα “

˜

λ ´µ

µ λ

¸

,

where θ0 is the angle between u and v. In particular, the assertions follows from the analysis of
the maps γ1, γ2 and χ commented previously.
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