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Resumo

O objetivo desta tese é estudar estruturas quase riemannianas simples sobre grupos de Lie
soliveis nao nilpotentes de dimensao trés. Para isso, comecamos descrevendo geometrica e
algebricamente o locus singular de uma estrutura quase Riemanniana simples nos grupos em
questao. E em seguida estabelecemos que tal locus singular é uma subvariedade. Além disso,
analisamos como as curvas exponenciais cruzam o locus singular. Em seguida definimos ARS’s
de rank dois e analisamos isometrias de tais ARS’s. O resultado principal mostra que, isometrias
de rank dois sdo necessariamente automorfismos do grupo. Tal resultado permite separar as
ARS dos grupos de dimensao trés estudados em classes dependendo dos autovalores da matriz

associada ao produto semi-direto.

Palavras-chave: Estrutura quase Riemanniana, locus singular, grupo de Lie, condi¢ao do posto

de Lie, isometrias.



Abstract

The aim of this Thesis is to study the simple almost-Riemannian structure on nonnilpotent,
solvable three dimensional Lie Groups. For doing that, we begin by describing geometrically
and algebraically the singular locus of a simple almost Riemannian structure in the groups
in question. Subsequently we establish that such a singular locus is a submanifold. Moreover,
we analyze how exponential curves cross the singular locus. Then we define rank two ARS’s
and analyze isometries of such ARS’s. The main result shows that rank two isometries are
necessarily group of automorphisms. This result allows us separating the ARS of the groups of
dimension three studied into classes depending on the eigenvalues of the matrix associated with

the semi-direct product.

Keywords: Almost-Riemannian structure; singular locus; Lie group; rank condition; isometries.
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Introduction

A simple almost-Riemannian structure, hencefort ARS, on a Lie group G is defined by a
linear vector field and dim(G) — 1 left-invariant vector fields. Those vectors fields form a local
orthonormal frame and satisfy the Lie bracket generating condition, they can become collinear,
and degenerate on some singular set. ARS’s are generalized Riemannian structures and are a
particular case of rank-varying Sub-Riemannian Structures, e.g [2, 9, 32]. The singular locus
is defined as the set of points where the vector fields fail to be linearly independent. It is an
analytic and in general is not a subgroup neither a submanifold as was pointed out in the
example given in [6] on the nilpotent case. The singular Locus presents a particular behavior
related with another important geometric quantities or elements like the metric, the Riemannian
area, the curvature. For instance, through the study of the properties of the Laplace-Beltrami
operator. The authors in [18] concluded that a quantum particle cannot cross the singular set of
an associated ARS and heat cannot flow through the singularity.

We can also relate the singular locus with the singularities of metrics for example, in the Grushin
case, when we approach the singular set all Riemannian quantities explode, but geodesics are
still well defined and can cross the singular set without singularities [18].

In dimension two, ARS’s have been studied in [4, 13, 17, 19]. 2-ARS were introduced in the
context of hypoelliptic operator, [22, 23], and they are generalizations of the Grushin plane.
Recently many authors are interested in the study of quantum confinement [10].

For 2-dimensional ARS, it was proved in [1] that generically the singular set Z is an embedded
submanifold of dimension 1. For other references of ARS see [3, 14]. This theory also is related
with the geometric control theory, [5, 30, 35, 36, 2].

In this work, we investigate the algebraic and geometric stucture of the Singular locus of ARS’s
on three-dimensional solvable nonnilpotent Lie groups. For these groups we show that the
singular locus is a submanifold. In this way we investigate how the exponential flow crosses the
the Singular locus. We exhibit a explicit form of the singular locus for each class.

The definition of linear vector field of rank two is given, with this, we define the ARS’s of rank
two. Moreover, Isometries of ARS’s are studied. In this way, the main result of this thesis is
stated, that is, we prove that isometries between rank two ARS’s are automorphisms. We also
extended the results to the connected case.

In this study, we use the classification of the solvable nonilpotent three dimensional Lie groups,
for do that, we use the classification of three dimensional Lie algebras. This is because generically
a Lie group can be recover from the Lie algebra. In such classification we have five classes of Lie
algbras [34].
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Chapter I

In this chapter we will explain some general concepts necessary for the understanding of this
thesis. We start by defining Linear vector fields on Lie groups and stating their main properties.
Next, we define general ARS’s on manifolds and subsequently simple ARS on Lie groups. The
definition of singular locus is given. We also present the definition of isometries together with
the principal results provided in the literature. Finally, we present two main examples of ARS,
the first one is a general example, the Grushin plane, and the second one is the Heisenberg Lie
group, which is an example where we contrast the difference between the nilpotent and the
solvable nonnilpotent Lie group with respect to the geometry of the singular locus.

Chapter II

In this chapter we present the classification of the solvable nonnilpotent three dimensional
Lie groups. Then we study the automorphism and derivations of these groups and algebras.
Afterwards, an equivalence form of the Lie algebra rank condition is discussed. Simple ARS
isometry-related are studied.

Chapter III

In this chapter we study some algebraic and geometric properties of the singular locus. Here, we
prove that the singular locus is a submanifold. Moreover, we analyze when the singular locus is
a connected subset. We also investigate how the exponential curve crosses the singular locus.
Chapter IV

This chapter present the main result of this work. We show that Isometries between ARS of
rank two are automorphisms. To prove such theorem, the fundamental lemma is proved, this
lemma give us a sufficient condition for an isometry between ARS to be an automorphism. Next,

we study the invariance of the nilradical. Finally, we give the proof of the theorem of isometries.
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1 Preliminaries

In this chapter we give the basic definitions needed for the development of this thesis. For more
details see [6, 8, 20, 25, 27, 31, 37, 38, 39, 40].

The layout of this chapter is as follows: In section 1.1 the definition of linear vector field is given.
In Section 1.2 the general definition of almost Riemannian structure and the simple almost
Riemannian structures are presented. Afterwards, the Lie Algebra rank condition is discussed.
The definition of simple ARS in a connected Lie group is introduced in Section 1.3. Here we also
give the definitions of singular locus and the singularities of a linear vector field. In Section 1.4
the definition of isometries of ARS is given and some theorems about the isometries of ARS’s
are also provided. Section 1.5 is concerned to the extension of the results of ARS provided
in a simply connected Lie group to the connected one. Finally, in Section 1.6 we present two
examples of ARS. The first example, called the Grushin plane, is a nontrivial two dimensional
ARS. This example presents an interesting phenomenon with respect to the singular locus and
the riemannian quantities associated to this group. The second one is on the Heisenberg group.
In this group we show an example where the singular locus is not a submanifold. As we will see

in Chapter 3 this is not the case in three nonnilpotent solvable Lie groups.

1.1 Linear vector fields

In this section the definition of linear vector fields and some of their properties are recalled.
More details can found in [8, 27, 28].

Let G be a connected Lie group and g its Lie Algebra, identified with the set of left-invariant
vector fields. A vector field X on G is said to be linear if its flow (¢;)wer is a one-parameter

group of automorphisms, i.e.,

forall teR ¢i(gh) = @i(g)pi(h)

A linear vector field is consequently complete. Indeed, by the definition of one-parameter group
of automorphism its integral curves are defined in the whole real line.

Associate to X there is a derivation D of g defined by the formula
DY = —[X,Y](e), for all Y € g,

which satisfies

(dgy)e = €P, for all t e R. (1.1)
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1.2 Almost-Riemannian structures (ARS)

Here we present the definitions of ARS and simple ARS. For all that concern general sub-

Riemannian geometry, including the almost-Riemannian case, the reader is refered to [3].

Definition 1.2.1. An almost-Riemannian structure (ARS) on a smooth n-dimensional manifold
M is a triple (E, f,{.,.)) where:
1. E is a rank n vector bundle on M;
2. f: E+~—TM is a morphism of vector bundles;
3. (E,{,.)) is an Euclidean bundle, that is (.,.), is an inner product on the fiber F, of E,
smoothly varying w.r.t. ¢;

assumed to satisfy the following properties:

(i) The set of points ¢ € M such that the restriction of f to E, is onto is a proper open and
dense subset of M;

(ii) The modulus = of vector fields of M, defined as the image by f of the modulus of smooth

sections of E satisfies the Lie algebra rank condition (see definition below).

Definition 1.2.2. Let F be a family of smooth vector fields on a smooth manifold M of

dimension n. We say that F satisfies the Lie algebra rank condition on a point pg € M if
Ty, M = Span{X(po) : X € LA(F)},

where LA (F) denotes the Lie algebra of the vector fields generated by F. We say that the
family F satisfies the Lie algebra rank condition (LARC) if it satisfies the previous of all py € M.

In other words, the LARC asks that the family of vector fields F of M spans in each point of

the manifold M a Lie algebra of the same dimension as the tangent space in that point.

Definition 1.2.3. The singular locus, denoted by Z, is the set of points of M where the rank

of f(E,) = =, is less than n. If Z is empty the structure is Riemannian.

Remark 1.2.4. The structure is trivializable if (E,{.,.)) is isomorphic to the trivial Euclidean
bundle M x R™. In that case we can choose an orthonormal basis (eq, ..., e,) on R" and define
n vector fields on M by fi(q) = f(q,e;), i =1,...,n. The set (fi,..., f,) is an orthonormal
frame on M\Z.
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1.3 Simple ARS's

Let G a connected Lie group. A simple ARS on G defined by a set of n vector fields
{X7}/17 s 7Yn71}7

where

(i) X is linear;
(i) Y1,...,Y,_ are linearly independent left-invariant vector fields;
(iii) » = dim G and the rank of X,Y7,...,Y, 4 is full on a nonempty subset of G;

(iv) the set {X,Y1,...,Y,_1} satisfies the LARC.

The metric is defined by declaring the frame {X,Y],...,Y,_1} to be ortonormal.

Remark 1.3.1. An equivalent definition of ARS on a Lie group is defined by (n—1)—dimensional
left-invariant distribution A = span{Y7,Y>...Y, 1}, a left-invariant Euclidean metric on A and
a linear vector field X which satisfies (4i7) and (iv) of the above definition, In short, we write an
ARS as ¥ = {X, A}. The metric of the ARS is defined by declaring X unitary and orthogonal a
A.

Now, Since we represent A := A(e), where e is the identity element, then we write the next

remark to establish our study in any element g € G.

Remark 1.3.2. We denote by A" the left-invariant distribution on G' which is defined as the
map A" : G — TG given by
At(g) = (dLy), A

e ™
where A < gis a (n — 1) — dimensional vector subspace. We can endow A" with a left-invariant

Euclidean metric by considering on A an inner product (-, -) and defining
VX,Y € Al(g), (X,Y), = <(dLgfl)gX, (dLy1), Y>.
Therefore, for this case the singular locus is given by
Z={geG:X(9) e A(g)}. (1.2)

We denote by Zy the set of the singular points of the linear vector field X, that is,

Zy={geG; X(g)=0}.
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In particular Zy < Z.

In [6, proposition 2] was proven that Zy is a closed subgroup with Lie algebra given by ker D.
The singular locus is an analytic subset of G. According to (ii7) it is not equal to G, and by
analiticy its interior is empty. Since X'(e) = 0 the singular locus is not an empty set. Finally
(G/Z is an open, dense and proper subset of G. The points of G/Z will be called the Riemannian

points.

To have a practical way to verify LARC. The next remark establish a necessary and sufficient
condition to the LARC.

Remark 1.3.3. Notice that if [A;A] € A and D(A) < A, then the fact that the Lie algebra
generated by X, Y1,...,Y,_1 is equal to RX @ A [6], together with X'(e) = 0 imply that ¥ does
not satisfies the LARC at the identity. Consequently the LARC implies that at least one of the

following conditions holds

(i) [A Al €A,

(i) D(A) £ A,

Reciprocally, if (i) or (i) is satisfied, then ¥ = {X' A} satisfies the LARC at identity element
which by translations implies the LARC at any point.

1.4 Isometries of ARS

In this section we define isometries of simple ARS.

Definition 1.4.1. Let X be a simple ARS on . The almost-Riemannian norm on G defined
by X is

For X e T,G, || X[, = min {4 [v? + Zu%;v)(g +u1Y1(g) + -+ up1Yno1(g) = X} . (1.3)
1

It is infinite if the point g belongs to the singular locus and X does not belong to A.

Definition 1.4.2. A diffeomorphism ¢ : G — G between two ARS’s ¥; and Y5 on a connected

Lie group G is an isometry if

Vge Give oG [[(dy)gvls, 4 = [Vls10-

We denote by Isog (X1;29) the group of isometries between the simple ARS’s 3; and Xs.

The following results can be found in [29].
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Theorem 1.4.3. Any isometry ¢ € Isog (X1;22) can be decomposed as ¢ = L, o 1y, where
g € Z5 and vy € Isog (X1; X2),. Where Z, is the singular locus of ¥, and

Isoc (X1;22), = {to € Isog (X1; X2) ;100(€) = €} .
Therefore, in order to understand the group Isog (21;%2) it is enough to analyze the singular
locus Z, of ¥y and the subgroup Isog (X1;32),.

Theorem 1.4.4. For any 9 € Isog (21; X2), it holds that

L (dy), At(g) = A5 (¥(g)).

2. Yo, = i, 01) where {goi}seR is the flow associated with &; for ¢ = 1,2.
3. Y (2) = 2.

4. Y (Zx,) = Zx,.

Remark 1.4.5. Through this work and without loss of generality we use the the positive sign

of the flow given by 2 in Theorem 1.4.4, that is, we employ the next formula
Yo, =0 (1.4)
Remark 1.4.6. Since the restriction
v G\Z1 — G\ 2,

is an isometry between Riemannian manifolds, Myers-Steenrod Theorem [33] implies that this

restriction is of class C* on the connected components of G\ 2,

1.5 Simply connected case to the connected one

In this section we show that the main results of this work can be proved only for connected
simply connected groups.

Let ¥ = {X, A} be a simple ARS on a connected Lie group G. If G is the simply connected
covering of GG, we define the lift 3 of 3 to be the simple ARS

i:{)?,&}, Vg e G,

where X and X are 7 -related, for the canonical projection 7 : G — G, that is, for

(dr)yX(g) = X(w(g)).
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We also define the Left-invariant vector field in the the left-invariant distribution A by consider
YeAand Y e Atober conjugated.

The following proposition shows that any isometry v € Isog (2; ), can be lifted to an isometry
¥ of Isog (i, i)o satisfying 1 o 7 = 7 0 1. Moreover, ¥ € Aut(G) as soon as U e Aut (é)

Proposition 1.5.1. Let G be a connected Lie group ans consider 3; and Y5 to be simple ARS
on G. For any isometry ¢ : G — G there exist a unique isometry QZ : G — G between the lifts
il and ig of 31 and X, respectively, satisfying

o QZ =1om.
In particular,

U € Aut(G) = o € Aut(G).

Proof. Existence, uniqueness and the commutation 7 o zZ = 1) o 7 follows direct from the fact
that G is simply connected and 7 a covering map [38]. Moreover, the fact that 7 is a local
diffeomorphism and ) is a difeomorphims implies that @Z is a diffeormorphism and we only have
to show that 1Z is in fact an isometry between the lifts il and §2 of 31 and X,. However,
WOJ:;/)OW - W*OJ*:w*OW*,
where the subscript notation, for example, in 7, denote the differential. Therefore, we have
Ty (J*kvl) :w*ﬂ-* <X~1>

=¢*?€17T

=Xohm

:XQTU/;

=Ty <X~2J>

and J*A?l = ‘)?2@/;7
since 7, is an isomorphism.
In order to show that @Z is an isometry, it is enough to show that (dJ) ﬁl(g) = Ay <@Z(g)>
g

and that the restriction <dzz>

: Ay(g) — A, (J(g)) is an isometry.

91A1(g)

~

For the first part, note that if X € A;(g), then

(d7) 50) (dﬁ) X(g) =d <7r o J)g X(9)
=d (¢ om), X(g)

= (d) ) (dm), X (9)-

g
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Since (dr), X(g) € Ai(m(g)) we get

The fact that (dr), is isomorphism implies (d@) X(g) € Ay (J(g))

Now, we prove that

= [X(g)ls,, forallged, XeA,.
il,tz(g)

' (di)g X(9)

First notice that, for any Y € &i, 1 = 1,2, we have that

%;,m(9)

| (dm)y Y (9)lsime) =] (dm), (dLg), Y

—|d (r o L), Y

i,m(g)

=|d (Lﬁ(g) o 7T)6 Y s, =g since 7 is homomorphism
=|d (Lw(g))e <d77)e YHEmr(g)

=| (dr). Y

s,,m(e) Since the metric is invariant by left translations
=|Y|s. . since (dm), = id
is g

=Y (9)ls, 4

Showing that (dr),, : A;(g) — Ai(g) is an isometry of the left-invariant metrics. Therefore, for
any Y e &1

= @)z, (40) V(o)

$2,9(g)

H (dﬁ)g Y(9)

S2,m($(9))

Z2,m($(9))
= (d¢)w(g) (d7T>g Y(9)

= |(dm), Y (g)

=Y (9)ls, -

2,9(m(9))
since ¢ € Isog (X1, X2),

¥1,7(9)

Showing that @Z € Isoz (il; iz) as stated.
0



Chapter 1. Preliminaries 19

Now, assume that QZ € Aut(é). Let z; € G and %; € G such that 7 (Z;) = x;, for i = 1,2. Then,

(0 (513'19152) =

showing that 1) € Aut(G) concluding the proof. O

Proposition 1.5.2. Let ¥ be an ARS on G and S its lift to the simply connected covering G
of G. If Z and Z stands for the singular locus of ¥ and i, respectively, then

s <Z~> —Z, and 7' (Z)=2Z,
where 7 : G — G stands for the canonical projection.

Proof. 1t follows from the equivalence
ge 2 = X(g) e Alg) = (dn), Xg) € (dr), A-(g) = X (n(g)) € AL (r(q)).

where in the second equivalence we use that 7 is a local diffeomorphism. O]

1.6 Examples of ARS

The purpose of this section is to give examples of ARS’s. The first one is the classical example of
the two dimensional ARS, namely the Grushin plane. The second one is on the three dimensional
nilpotent Heisenberg Lie group and it is important to show that in general the singular locus
does not need to be a subgroup or even a submanifold, note that such phenomenon which occurs
in the nilpotent case, does not in the solvable nonilpotent one, which will be approached in this

work.

Example 1.6.1. The Grushin Plane.

This example was named after Grushin, who studied in [22, 23, 24] the analytical properties of
the operator 6’326 + x265 and its generalizations. The models were introduced in the context of
hypoelliptic operators, and appeared in problems of population transfer in quantum systems

[15, 16, 21]. Moreover, it has applications to orbital transfer in space mechanics [11, 12].
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In this example the manifold is M = R?, which is an abelian Lie group. A local orthonormal

Y(z,y) = ( (1) ) =0y, X(z,y) = ( 2 > = 20, (1.5)

Since X is linear vector field and Y is left invariant one, the Grushin plane is a simple ARS.

basis is given by

The singular locus is the line {x = 0}. Indeed, let a , b real numbers, by definition the singular

locus is the set where the vector fields X and Y are linearly dependent. Therefore

aX(z,y) + bY (z,y) = ( abx ) = ( 8 ) 7 (1.6)

implies b = 0, and ax = 0. Notice that if a = 0 then the vector fields are linearly independent,
thus necessarily x = 0.
The Riemannian metric, the Riemannian area and the Gaussian curvature are given respectively

by:

1 0 1 92
g = 1 |, dw=—dedy, K=-——. (1.7)
0 — |z| z?
x

Observe that the Riemannian quantities namely, the metric, the Riemannian area, the curvature,

explode while approaching Z, [18].

Example 1.6.2. The Heisenberg group

The next example shows that Z does not need to be a subgroup or even a submanifold [6],[26].

Let G the simply connected Heisenberg Lie group of dimension three

G = sy, 2z € R

o O =
O~ 8
SR

Its Lie algebra g is generated by X, Y, Z is such that [X,Y]| = Z and [X,Z] =[Y,Z] =0. In
natural coordinates the left invariant vector fields can be written as:

0 % 0 0
x=2 v=24.L z2-2
ox’ 0y+x82’ 0z

The derivations of g are endomorphisms D whose matrix in the basis {X,Y, Z} have the form:
a b 0

D= C d 0 )

e f a+d
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and the associated linear vector field is:

0 0 1 1
X(g) = (azx + by)% + (cx + dy)a—y + <em + fy+ (a+d)z+ §cx2 + 2by2> ;z

Let us to consider the ARS, ¥ = {X, A}, where A = span{X, Y}, then
Loy 1,
Z = ex+fy+(a+d)z—§cx +§by —dry=0p.

The singular locus defined by these quadratic forms need not be subgroups, not even submanifolds.

For instance, by considering

a b
D - O —CL )
0 1
we obtain
Ly
Z = y+§by +azry=0;. (1.8)

Which is not a submanifold, since it is given by the intersection of two planes, (see figure(1)).

In particular Z is also not a Lie subgroup.

Figure 1 — singular locus (1.8), with b =2 a = 1.



22

2 Nonnilpotent, solvable three dimensional Lie

groups

In this chapter we introduce the groups we are interested, namely the solvable nonnilpotent
three dimensional Lie groups [7]. Also, several tools, which will be used in the development of
this work, are presented here.

This chapter is arranged as follows: In section 2.1 the classification of the solvable nonnilpotent
three dimensional Lie group is presented. Section 2.2 is about the automorphisms and derivations
of these groups and algebras. In section 2.3 we introduce an operator, which plays an important
role in the main results and state its main properties. By using such operator, the explicit form
of the automorphisms is established and in particular the flow of a linear vector field is exhibit.

Finally, in Section 2.4 the LARC and simple ARS isometry-related results are presented.

2.1 Classification of three-dimensional nonnilpotent solvable Lie groups

In this section we present the classification of the solvable nonnilpotent three dimensional
Lie groups and algebras. By the results in Section 1.5, such classification will only consider
connected, simply connected groups.

According to the Lie theory [25, 31, 38|, for a given Lie algebra g there exist, up to isomorphisms,
a unique simply connected, connected Lie group G which Lie algebra is g.

For the classification of the nonnilpotent solvable three dimensional Lie groups, we begin with
the classification of their respective Lie algebras [34].

We have three classes of Lie algebras, each of then can be written as the semi-direct product

g(f) = R x¢ R? where 6 is a two dimensional matrix with one of the following forms

11 10 -1
, and (yeR,|y| <1) or 7 andy € R. (2.1)
01 0 ~ 1 A

The bracket in such algebras are given by
[(a1, wr), (a2, w2)] = (0, 0(arws — agwr)), (2.2)
and is therefore determined by the relation
[(a,0),(0,w)] = (0,a0w), aeR weR. (2.3)

For each Lie algebra g(f) the associated simply connected Lie groups, are given also by the

semi-direct product G = R x,, R? with p; = €', and the product of group given by

(t1,01) (t2,v2) = (t1 + to,v1 + pyv2),  (t1,v1), (t2,v2) e R x, R?.
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2.2 Automorphism and Derivations of three dimensional Lie algebras

In this section the automorphisms and the derivations of the solvable nonnilpotent three
dimensional Lie group are presented.
We have that automorphisms and derivations of a Lie algebra g are linear maps, that is ¢ € Gl(g)

and D € gl(g), respectively, which satisfy the following relationships
VX,Y eg, o[X,Y]=[¢X,¢Y] and D[X,Y]=[DX,Y]+[X,DY].

Consider M € gl(g(f)) and suppose that MR? = R? where here R* = {0} x R%. Then M can be

written in the canonical basis, as

0
M—(E P),neR2,5eRandPeg[(2,R). (2.4)
n

In fact, let {ey,e3} a basis for R? and complete a basis to a basis {e, ez, es} of g(f), writing
j=3

M = {C’]’} then M(e;) = ZC’;ei for j = 1,2,3. Since that by assumption M(R?) < R?
i=1

necessarily we obtain C’j1 = 0 for j = 2,3. Therefore the matrix M is given by equation (2.4).

Now the fact that R? is the nilradical of g(#), implies that it is invariant by automorphisms and

derivations. Consequently, any ¢ € Aut (g) can be written in the form (2.4).

Applying such property to the relation (2.3) gives us that

#[(a,0), (0,w)] = [¢(a,0),6(0,w)], VaeR, welR? (2.5)
and hence
¢ = ( © OP > e Aut(g(f)) if and only if PO = 6 P. (2.6)
n

In fact, since [(a,0), (0,w)] = (0, abw) the left-hand side of (2.5) gives rise to
¢[(a,0), (0, w)] =¢(0, abw)
(e 0 0
n P abw
=(0, aPOw)

For the right-hand side of (2.5), we have that

e 0 a
wn=(2 0)(2) -twan

and
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Therefore

[¢(a,0), $(0, w)] =[(ae, an), (0, Pw)]
(ag,0) + (0,an), (0, Pw)]

[
[
[(ag,0), (0, Pw)] + [(0, an), (0, Pw)]
(0
(0

,aed Pw) + (0,0)
,acd Pw).

Now, by equaliting the left-hand side and the right-hand side of (2.5), we obtain for every a € R
w e R?

(0,aPOw) = (0, acl Pw), (2.7)

and then
PO = c0P.

Similarly, if D € Der(g(f)) the relation
D[(a,0), (0,w)] = [D(a,0), (0,w)] + [(a,0),DP(0,w)], YVaeR weR? (2.8)

gives us that

D:(E Sl)eDer(g(H)) e  Af— A = c0.
n

Indeed, since [(a,0), (0,w)] = (0, abw) the left-hand side of (2.8) gives rise to
D[(a,0),(0,w)] = D(0, abw) = (0, aAbw).
On the other hand, D(a,0) = (ag,an) and D(0,w) = (0, Aw). Then, we get

[D(a,0), (0, w)]

[(ag, an), (0, w)]

[(ag, 0) + (0, an), (0, w)]
[(ag,0), (0,w)] + [(0, an), (0, w)]
(

(

I

0, acbw) + (0,0)
0

, acfw)

and

[(CL, 0)7 D(O> 'LU)] :[(a> 0)7 (07 Aw)]
(0, ab Aw).

Hence, the right-hand side of the equation (2.8) turns out to be

[D(a,0), (0,w)] + [(a,0),D(0,w)] =(0, acbw) + (0, ad Aw)
(0, acbw + ab Aw).
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As a result, by equaliting the left-hand side and the right-hand side of (2.8), we get that for
every a € R, veR?

(0, aAbw) = (0, acbw + ab Aw), (2.9)

and by choosing a # 0, we obtain Af = ¢ + 6 A, or equivalently
A —0A = £0.
The previous calculations imply the following;:

Proposition 2.2.1. For the Lie algebra g(f) it holds that

Der(g(0)) = { ( 2 3 ) EeR? Aegl(2,R), with A0 = HA} ,

and

Aut(g(6)) = { ( ; 2 ) neR% PeGl(R?), with P9 — eGP} ,

where € = 1 when tr(f) # 0 or e € {—1,1} if tré = 0.
Proof. Based on our previous calculations

0
6 = ( c b ) e Aut(g(0)) if and only if PO = =0P.
n

Furthermore, since the map ¢ is invertible we get that cdet P = det ¢ # 0 showing that P is

also invertible. Consequently
P)=c0P < ef=POP". (2.10)
Assuming trf # 0 gives us that
etr(f) = tr (POP™") =tr(f) = e=1 and PO=0P.

On the other hand, tr(6) = 0 implies necessarily that

9:<1 0) . 9:<0 —1)
0 —1 1 0

and in both cases det(f) # 0. By applying the determinant function to the relation (2.10) gives
us that
e=1 and P#=60P or e=-1 and PH=—-0P.

For a derivation D € Der(g(f)) we have that

0
D= ( Z ) ) € Der(g(f)) if and only if Af —0A = <6.
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Therefore, tr @ # 0 gives us that

implying that ¢ = 0.

etrd =tr(40 —0A) =0

On the other hand, if tr @ = 0 then necessarily det # # 0 and

Af —0A =<0
—  cidge = A — A0~
— 2e=tr(A—6407") =0

showing that, in any case, ¢ = 0 and Af = 6 A, concluding the proof. n

2.3 The operator Lambda and the automorphisms of the three dimen-

sional nonnilpotent solvable Lie groups

In this section we define the operator A which will appear in the expression of a linear vector

field. We also establish the explicit form of the automorphisms. In particular the flow associated

to the linear vector field of a connected simply connected solvable nonnilpotent three dimensional

Lie groups is obtained, allowing us to obtain an expression of a linear vector field.

Let A be a 2 x 2 matrix and define

AR x R? - R?, (t,w)HAfwzzj

t

0

The operator A* is well defined and, for any ¢, s € R, it satisfies

1. AY =0,
d
2. £A? :etA,

3. AL, = A+ AL,
4. e — AN} = idge,

5. A = Alte*,

6. A = (" —idge) A7 if det A # 0,

7.A=<)\ O),)\#O — A=

0 0

e*Awds. (2.11)
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The properties of the operator (2.11) can be found in [7].

We can now prove the following result concerning the automorphisms of the groups.

Proposition 2.3.1. For the three dimensional Lie group given by the semi-direct product
G=Rx, R?, it holds that:

Awt(G) = {¢(t,v) = (et, Pv + eAln) ,n e R*, P e GL(R?), with P§ = 0P},

where e = 1if trf #0oree {—1,1} if trd = 0.

Proof. Let ¢ be in the group of automorphism Aut(G). Then we have that (d¢)0 € g(6).

Therefore, we can write

0
(d6)00) = ( c b ) . with PO=c0P and =1
n

The map (¢, v) = (et, Pv + cA%n) satifies (d)(0,0) = (d¢)0,0) and, since G is connected, if
we show that ¢ € Aut(G), the equality 1) = ¢ follows by general results in the Lie theory [38,
Chapter 7].

For any (t1,v1), (t2,v2) € G it holds that

¥ ((t1,01) (t2,02)) =0 (t1 + T2, v1 + pr,v2)
= (e(t1 +t2) , P (v1 + pryvo) + 5A§(t1+t2)77)
= (et1 + eta, Pv1 + pey, Pva + N2y + epar, A2 )
= (et1 + eta, Py + sAgtln + pety (Pvo + A% n))
= (Et1, Puv; + gAgtln) (5752, Puvy + EAthn)
=0 (t1,01) ¥ (t2, 02),

above we use that Pf = €0 P, we also used the property 3 of the operator given by the equation
(2.11). Therefore, 1 € Aut(G) and consequently ¢ = ¢ concluding the proof. ]

By definition a linear vector field &, is a complete vector field and its flow {p.},  is a 1-
parameter subgroup of Aut(G).

Since by differentiation, {(d%)(o’o)}seﬂ{ is a l-parameter subgroup of Aut(g(0)), there exists a
derivation D € Der(g(#)) such that

VseR.  (dgs)go = e’P.

0 0 1 0
D = implies P = N e
¢ A AJE €°

But nevertheless
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AAf esA

S

1 0
Indeed, Consider the curves a;(s) = e and ay(s) = ( ) . Then

o) (5)DeP = Day (),

and

0 0
as(s) = e A > by property 2 of the operator A

0 0
- § AAA§ Ao ) by property 4 of the operator A
+ . e

(00 10
g A )\ Al e

=Das(s).
That is the curves «; and ay satisfy the linear differential equation o’ = Da and have the same
10
initial condition a4 (0) = 01 ] a2(0). Hence a4(s) = ao(s) which shows that

eP = ! 0 .
AfE e

Therefore, by Proposition 2.3.1 we get that
ps(t,v) = (e v+ AIALE), £eR? Aegl(2,R), with 40 = 0A. (2.12)
Derivation at s = 0, gives us that the linear vector field X can be written as
X(t,v) = (0,Av+ AJ¢), ¢eR* Aegl(2,R), with A0 = 0A.

Remark 2.3.2. By the fact that the vector ¢ € R? and the matrix A € gl(2, R), together with
the previous properties, determine X', we will usually write X = (£, A) to denote the linear
vector field X.

Next, we give the explicitly expression for the exponential map of a three dimensional Lie group
and the differential of the left translation. These expressions will be used throughout this work.

For any (a,w) € g(6), the exponential map is given by
(0, w) if a =0,
(a, 1A2w> , ifa#0.
a
Let (t;,v;) € G,i = 1,2 and (a,w) € g(#) . Then the left translations satisfies

(dL(thvl))(tQ,vg) (a,w) = (a, pyw). (2.14)

exp(a, w) = (2.13)
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Therefore the left invariant vector field associated with Y = (a,w) € g() is given by
YL(tv U) = (a7 ptw> : (215)

The formulas given in the equations (2.13), (2.14) and (2.15) were obtained in [7].

2.4  Simple ARS isometry-related

In this section we analyze some properties of the LARC and prove a proposition where we can
construct simple ARS’s isometry-related.
First, note that the family ¥ = {X, AL}, with A = {0} x R?, does not satisfies the LARC. In

fact, in this case A is a subalgebra and

D(O,w)=<2 Z><g>=<AOw>:(o,Aw) — DA cC A,

which contradicts Remark 1.3.3.
Therefore, if ¥ = {X , AL} satisfies the LARC then the subspace A admits a basis

{(Ul,ul),(OQ,UQ)}, with 0'%4-0’% 750

Notice that A is a two dimensional space of ({0} x R?) and the intersection A n ({0} x R?) is
two or one dimensional. However, by the previous discussion we conclude that the intersection

AN ({O} X Rz) is one-dimensional. Let us denote by la the line in R? satisfying
{0} x Ia = A~ ({0} x R?) .

In the next proposition we establish an equivalent relation to A be a subalgebra and an important

consequence of the LARC.

Proposition 2.4.1. For a family ¥ = {X = (&, A), AL}, it holds that:

1. A is a subalgebra if and only if /5 is an eigenspace of 0;

2. If (1,0) € A, then X satisfies the LARC if and only if A is not a subalgebra or A is a
subalgebra and Alx ¢ [a or € ¢ A

Proof. 1. Let {(01,u1), (02,us2)} be a basis of A. Then,
A3 —0y (01,u1) + 01 (09, u2) = (0, —09u; + o1us) € {0} x R?,

is a nonzero vector, and the element (0, —oqu; + ojuz) € A n {0} x R? implying that
ZA =R <01U2 — 02U1> .
On the other hand,

A is a subalgebra <= [(01,u1), (02, u2)] € A .



Chapter 2. Nonnilpotent, solvable three dimensional Lie groups 30

However, by defnition

[(o1,u1), (02, u9)] = (0,0 (o1ug — o2u1))

implying that

A is a subalgebra <= [ is an eigenspace of 6 .

2. Let {(o1,u1), (09,u2)} be an orthonormal basis of A. If A is not a subalgebra, then
necessarily [(o1,u1), (02, u2)] ¢ A and the LARC is satisfied. On the other hand, if A
is a subalgebra, then by part 1 in Proposition 2.4.1, [ is an eigenspace of 6. Since by
hypothesis (1,0) also belongs to A we have that A = R(1,0) @ la. We have that if D is
the derivation associated with X', by Remark 1.3.3 the LARC is satisfied if and only

D({0} xIn)E A or D(1,0) ¢ A.

However, the fact that

D = ( 2 (il ) gives us that D ({0} x In) = ({0} x Ala) and D(1,0) = (0,§),

showing that DA & A if and only if Alx 4 [a or € ¢ [, concluding the proof.
O

Remark 2.4.2. It is important to notice that if 6 # idge, the fact that A0 = 0 A gives us that
QZA C ZA —— AZA @ ZA.

Consequently, in this case, if (1,0) € A the LARC holds if and only if £ ¢ [a.

The next result shows that elements in Aut(G) can be seen as isometries between ARS’s.

Proposition 2.4.3. Let X = {X = (&, A), AL} be an ARS on G and
U(t,v) = (et, Pv + eAfn) an automophism of G .

The family
Sy = { Xy = (P76 + An), PIAP) Ay = () A}

is an ARS and ) is an isometry between X, and ¥, where the left-invariant metric on Ay, is the

one that makes (dl/))(op)‘ A, A1 isometry.
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Proof. By definition, we have that

e 0 0
(@) X, 0) = n P ) ( P~ APy + AP (e€ + An) >

0
~\ APv+ PAIPY (€ + An) )

0
~\ APu + N, (e€ + An) )
0
= 0 0 5 with &2 =1
APv + eN,An + N,e%¢€

€

0
A (PU + 5A§tn) +A%e )
=X (at, Pv + eAgtn)
=X(¥(t,0)),

where in the third equality we used that

PO =cP = Pc =¢"P and by integration PA’P™! =N’

et

and in the fourth equality that A0 = 6A, showing that X, and X are v -conjugated. Since
automorphisms preserves left-invariant vector fields, it holds that X, is in fact an ARS on G.

Moreover, if we define the left invariant metric on A, that makes (di),0 an isometry, we

)’Aw
get that (di)) . carries orthonormal frames in Ai (t,v) onto orthonormal frames in A*(¢)(t,v))

implying that ) is in fact an isometry between ¥, and . O]

Remark 2.4.4. Let ¢ € Isog (X1, X2), and consider ¢ € Aut(G). By the previous proposition
there exist an ARS’s ¥ such that zﬂ € Isog <Zd3’ 21> . As a consequence, the composition 1) o 1&

is an isometry between X, and ¥y,. In particular, the maps
Yi(t,v) = (t,o— A (A7'6)),  if det Ay # 0,

and .
Po(t,v) = (t,v - Afu) , if (o,u) € Ay with o # 0,
o

are automorphisms of G and their induced ARS’s satisfies Xy, = (0,4;) and (1,0) € Ay,.

Therefore, up to automorphisms we can assume that (1,0) € Ay or & = 0 if det A; = 0.
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3 Singular Locus

The aim of this chapter is to study some geometric an algebric properties of the singular locus.
The chapter is structured as follows: In Section 3.1 we show that the singular locus of a simple
ARS on the three dimensional Lie groups under consideration is a submanifold. We also analyze
when the singular locus is a connected subset. In Section 3.2 we investigate how the exponential

curves crosses the singular locus. In Section 3.3 some examples of singular locus are presented.

3.1 The singular locus

In this section we analyze the singular locus simple ARS’s on three dimensional solvable
nonnilpotent Lie groups. By the results in Proposition 1.5.1 we can assume without loss of
generality that of the ARS’s on G =R x, R?. As showed in [6, Theorem 1], the singular locus
of a simple ARS ¥ = {X , AL} such that A is a subalgebra, is a submanifold. In this section we
show that for the class of groups in question the same holds independent of any condition on
the distribution. Such property is not true, for instance, on the Heisenberg group as showed in
the Example 1.6.2.

Let ¥ = {X = (&, A), AL} be a simple ARS on GG. We recall that by remark 1.3.2, the singular
locus Z is defined as

Z = {(t,v) e G; X(t,v) € AL(t,v)}.

Using the expression for X gives us that
X(t,0) = (0, Av + AYE) € AP (t,v) = (0, Av + A€) € AP (t,v) A ({0} x R?) = {0} x p; (Ia).-
Therefore, if u is a vector normal to [a, it holds that

Z = {(t,v) € G; <p_t (Av + Aff) ,u>]R2 = 0}.

Defining
Fu:G—-R, Fy(tv) = p_y (Av + A)E) W (3.1)

gives us that Z = F~1(0).
Proposition 3.1.1. For the function F}, it holds that

OFu(t,v) = (p_i(§ —0AV), u)p.  and 0o Fyu(t, v)w = (p_y Aw, W)p. . (3.2)
Proof. Note that, for fixed ¢, the function

v Fy(t,v) = (p_iAv, u>R2 + <I0—tAf£7 11>R2
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is the sum of the linear map with a constant. Therefore,
O Fu(t, v)w = (p_tAw, g, .
For the first derivative, notice that by the properties of A

<p—t (AU + Aff) 7u>R2 = <p—tAU7 u>R2 + <p—tA?£7 11>R2
= <p_tAU, u>R2 - <A€t§7 u>R2 :

Diferentiation in ¢ gives us that

d
1 Fu(t,v) = (<P4AU7U->R2 - <A€t€’u>R2)

=(p_4(—0Av), u)ge + (p_1&, Wge
=(p_4(§ — 0Av+), u)pe.

as stated. O

Now we can show that the singular locus of a simple ARS on three dimensional Lie groups is a

submanifold.

Theorem 3.1.2. The singular locus of any ARS on a G = R x,R? is an embedded submanifold
of G.

Proof. Let us consider an ARS ¥ = {X AL } Since the image of a submanifold by a diffeo-
morphism is also a submanifold, Proposition 2.4.3 allows us to assume w.l.o.g. that (1,0) € A.

Assume first that A = 0. By definition, in this case, the singular locus is given by
X xR?  where X ={teR; {p(A)E), uy,, =0}. (3.3)
We have two cases

(i) detd = 0. In this case

Therefore

1—et 0
A = .
P—tlyy ( 0 t)

Now, if £ = (£1,&) and u = (uq, uz) then

(p-t (AJE) Jupp, = t&us —w&i(e™ — 1) (3.4)
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By considering the right-hand side of the equation (3.4) for £ and u fixed, we associate a
real-valued function and then we obtain that X has at most two elements, that is, X is a
discrete set. Therefore, by the expression of the singular locus given in equation (3.3), we

conclude that the singular locus is a submanifold.

(ii) det® # 0. In this case
A = (p—1)07".

Thus, we get
<p—t (Afg) au>R2 == <P—t6‘_1€, 11>R2 + <9_15> 11>R2 ’ (35)

where in the equality of equation (3.5) we use the property 3 of the operator A.
Thus by using the Lemma A.1.1, we obtain that X is an enumerable subset of R with
cardinality depending on the eigenvalues of #. As a consequence, the singular locus of ¥ is

a submanifold.

Let us now consider the case where A # 0. In order to show that the singular locus of ¥ is a
submanifold, it is enough to guarantee that 0 € R is a regular value of the map F,, defined in
equation (3.1).

Notice that the map F}, is an application with values is R, and this map is a submersion if the
rank is 1, that is if its differential is onto. Consequently, we must have that at least one of its
derivatives is nonzero.

By equation (3.2) 0 € R is not a regular value of F'if there exists (¢,v) € Z such that
O Fa(t,0) = (pi(€ — 0.40), Wy = 0 (3.6)

and
Vw e R?*  0yFy(t, v)w = {p_sAw, u)g, = 0. (3.7)

From the equation (3.7) and the fact that p_;A = Ap_;, we get that
0 = 0o Fyu(t,v)prw = {p_tApiw, Wyps = (Aw, Wg,

implying that Aw €[5, VYw € R? or equivalently, that Im A < 4.

By using the previous in equation (3.6) allows us to obtain

0 ={p-t(§ — 0AV), W
i Wi — s A, W
= (P& Wpe — (Ap—_1Hv, Wy
={p_t&,u)p, since Ap_,0velmA,
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where we used that A = 0 A. Since A # 0 we have that Im A = [ implying that Alx < A and

Ola < Ia. Therefore A is a subalgebra and

<:0*t£7 u>R2 =0
— p,té S ZA

ES fept (ZA> = ZA,

By Proposition 2.4.1 ¥ cannot satisfies the LARC. Therefore, 0 is a regular value of the map Fy
showing that Z is in fact an embedded submanifold. O

The next result analyzes the connectedness of the singular locus.

Theorem 3.1.3. If ¥ = {X = (0, A), A"} is a simple ARS and A # 0, then Z is connected.

Moreover, G\ Z has two connected components given by

¢ = F;'(~0,0) and C*:= F; (0, +0),

u

where F}, is the function defined in (3.1).

Proof. Assume first that det A # 0 and consider the map
H:G—G, Htv)= (A" (pv—A)).
The map H is continuous and has continuous inverse given by
H7(t,v) = (t, p_e(Av + A%€)).
Moreover,

tv)e Z <« {p_y(Av+AJ) uy,, =0
— 3IseR;p_; (Av+ Aff) = su
= v=A"(spu—Ag)
— (t,v) = H(t,su),

showing that Z is homeomorphic to the plane R x [x © G. As a consequency Z is connected
and G\ Z has two connected components. Also,
Fu(H(t,0)) =Fy (t, A7 (pew — AJ€))
(oo (A (A7 (oo — ATE)) + AE) ),

:<U7 u>R2a
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implying that Fy,(—0,0) and F,(0, +0) are (pathwise) connected. Since
Fu (R\{0}) = G\Z,

we get that C~ and C™ are in fact the connected components of G\Z.
Let us now consider the case where dimIm A = 1 and assume w.l.o.g. that (1,0) € A. Since ker A
has also dimension one and Af = 0 A, we can easily construct an orthonormal basis {wy, wy} of
R? such that

Aw; #0, Aws =0 and 6OAw; = fAw;.

Let (¢,v) € Z and write v = (v, w1 )g> w1 + (U, Wo)p» wo. Then

0 ={p_ (Av+ AJ¢) W
= <p_t (A [(v, w1 g2 w1 + (U, Wa)pe wa] + Aff) ,u>R2
oy g (e A, Wy + (0,02 (pi At Wyga + (p_ALE, ),
= (v, w1 g2 {P_tAwr, W)ps — <A€t§, u>R2 ., since (p_ Aws, W)p, =0
implying that
U, w1 e (Pt Awr, Wps = <A9_t£, u>R2 )

Since Aw; is a nonzero eigenvector of § we have that
{p_tAwy, Wy, = e P {Awy, ups

where [ is the associated eigenvalue. In particular, if (Aw;, u)p. = 0 we get by orthogonality
that Aw; € [o, implying that [o = Im A and hence Aln < [A. Also, in this case,
Vte R,
0 = (v, Whgs € 7" (Awy, Wps
= (U, W)ps (PrAWL, Wps
= <A9—t§7 u>]R2 :

Differentiation at ¢t = 0 gives us that
EWp, =0 <= £e€la

Therefore,

(Awj,upps =0 = Alxclax and Ee€la,
which together with the assumption (1,0) € A contradicts the LARC. Therefore, (Aw;, wyp. # 0
and we obtain that )
<A—t€’ u>R2

0, w1Jps = (p—rAwr, W
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By the previous, the map
(A& w)
I:G—>G,(tv)eG—Itv)=|t /[, 4o /RE + (v, ,

( U) ( 'U) ( (<U UJ1>R2 <p,tAw1,u>R2 wq <U w2>R2 Wo

is well defined, continuous and a simple calculation shows that its inverse is the continuous map
A% )
It = | ¢ _ M + ]
( 3 U) ( ) (<Ua w1>R2 <p_tA2U1, U>R2 wq <'U7 w2>R2 w2
By the previous calculations we get that
<A9—t€7 u>R2

<p—tAw17 u>R2
showing that is the homemorphic image of R x Rw, by I. Also,

Fu(I(t> v)) =Fu (ta <<Uv w1>R2 + W) wy + <U7 w2>R2 w2>

Pt Awi, Wpo

- <p—t [A <<<v,w1>R2 + m> wy + (U, Wa)pe wz) + Aff] ,u>

0
= <p_tA (((v,w1>R2 + w> wy + (U, Wa)p» w2> + p_ A€,

P—tAwb 11>R2

(t,v) € Z = (v,wy)ps = — I '(t,v) € R x Ruy,

A% & u)p,
= (@, wl)R2 + m> {p—tAw, U>R2 + <P—tAff> 11>R2
— 5 RQ

_ (v, wl)R2 {p—tAwn, u>R2 + <A€t£7 U>R2
<p,tAw1, u>R2
= <U> w1>R2 <p,tAw1, u>R2 + <A9—t§7 u>R2 - <A9—t57 u>R2

=e Pt (v, w1 e (Awr, Wps

) <p—tAw1a u>]R2 + <p—tA?§7 u>R2

which as previously implies that C~ and C* are the connected components of G\ Z, concluding
the proof. O

3.2 Crossing the singular locus

In this section we analyze how the exponential curves crosses the singular locus. Such analysis
will be necessary in the proof of the Fundamental Lemma ahead.

Let us consider as previously ¥ = {X = (£, A), A"} be a simple ARS with A # 0, and define the
function F,,, where u is a normal vector to [ fixed. Let (¢,v) € G and consider the exponential
curve s € R — (t,v) exp s(a,w). By Theorem 4.5.1 in order to see how such curve behaves with

relation to the singular locus, it is enough to analyze the sign of the function

seR— Fy((t,v) exp s(a,w)). (3.8)
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Using the formula for the exponential in equation (2.13) we have the following cases:

(i) a = 0: In this case, exp s(0,w) = (0, sw) and (¢,v)(0, sw) = (¢t,v + prsw). Therefore

Fu((t,v) exp s(0,w)) =Fu(t,v + pisw)
={p_i (A(v + prsw) + AJ€) ),
= <p,t (Av + prAsw + Af&) ,u>]R2
= <p_tAv + sAw + p_ A%, u>R2

= <p_t (Av + Aff) ,u>]R2 + s (Aw, W)po
=Fu(t,v) + s(Aw, u)g, .

1
(ii) @ # 0: In this case, exp(s(a,w)) = ( sa, —A? w | and
a

1 1
(t,v) (sa, Agaw) = (t + sa,v + py <A§aw)). Therefore,
a a

Fal(t.0) epsto, ) =Fu (14 50,05 (S0
a

1
= <p—t—sa lA (?J + Pt <Agaw)> + A?+Sa§:| au>
a R2
1
— <p_t_sa [A (v + Py <aA§aw)> + A%¢ + ptAgag] ,u>
R2

1
= <107tfsa (AU + Aff) 7u>R2 + <ptsa <aptAgaAw + ptAgaf) ’u>
R2
= <p_t_sa (AU + A?g) ’u>R2 + <ip—saAgaAw + p—saA§a§7 u>
R2
= {p_t—sa (Av + AJE) W, + <—iA6_saAw — Ak, u>
R2

= (pitsa (Av + ALE) juyy, — i (A (Aw + af),u)y, .

Summarizing, we have that

- Fu(t,v) + s(Aw, u)pe ifa=0
u((t,v)exp s(a,w)) = <p_t—as (Av + Afg) ,u>R2 — 61L<A9as(Aw + af), u>]R2 if a # 0,
(3.9)

The following lemma states what happens with the function given in equation (3.8) when the

starting point (,v) belongs to the singular locus Z of 3.
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Lemma 3.2.1. Let (f,v) € Z and consider the function
s — Fyu((t,v) exp s(a,w)).

Then, Fy((t,v)exp s(a,w)) = 0 or there exists § > 0 such that Fy,((t,v)exp s(a,w)) # 0 for all
s € (—4,0)\{0}.

Proof. Let us first consider the case a = 0. By equation (3.9), if (t,v) € Z, F,((t,v) =0 and

Fu((t7 U) exp S<a7 U))) :Fu(t7 U) + 8<AU), u>]R2
=s(Aw, Wp2.
Therefore, if Aw €l we get that Fy,((t,v) exp s(a,w)) = 0 for all s € R and if Aw ¢ In we get

that Fy((¢,v)exp s(a,w) # 0 for all s € R\{0}
Assume now that a # 0 and fix 0 # u € [o. By equation(3.9) we have that

Fu((t,v) exp s(a,w)) = <p—t—as (Av + A?f) ,u>R2 — i(A_aS(Aw + a&), Wpo -

Since (t,v) € Z, there exists p = u(t,v) € R such that p_; (Av + Ay§) = pu. In particular,
<pftfas (AU + A?&) 7u>R2 = <p*a8 (p*t (AU + Até)) 7u>R2
=p <pfasu7 u>R2 )

and so .
Ful(t.) exp 5(0,1)) = 1 (past, Wi — + (Aau(Au + 06, Wy

Derivation at s give us that

;iFu((t, v)exp s(a, w)) = {p_qs(Aw + a& — apbu), g ,

and we have the following cases:
1. Aw + a& — apbu € Iz

In this case, there exists 7 € R such that Aw + a§ — apbu = Tu and hence

1 1
Hp—ast — 7A0—as(Aw + aé) =UP—asUh — 7A9—as(aueu + T)
a a
1 1
=pp_qst — —N° apbu — =N Tu
a a

= ((p—as - eAgas) u) - gAefasu
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where for the last equality we used property 4. of the operator A?. Hence,

1
Fu((t,v)exps(a,w)) =p{p_qstt, Wp2 — o (A_gs(Aw + a&), ug.
T
=pdu, Wygz — . <A0_a8u, u>R2

= — 2<A9_asu, u>R2 )

Therefore, if 7 = 0 or A is a subalgebra, I <A(ia8u, u>R2 = (, implying that
a
Fu((t,v)exp s(a,w)) = 0 for all s € R. Now, if 7 # 0 and A is not a subalgebra, we have that

d

%Fu((t, v) exp s(a, w)) = T{P_qst, Wpo .

In particular, since A is not a subalgebra, u is not an eigenvalue of # and hence, there exists
0 > 0 such that

CZFU((t,v)exp s(a,w)) = T{p_astt, Wpo # 0, s € (—0,9)\{0},

showing that 0 € R is an isolated critical point. In particular, Fy((¢,v)exp s(a,w)) # 0 in
s € (—9,9)\{0} as desired.
2. Aw + a& — apbu ¢ I In this case,

d 1
£Fu((t, v)exp s(a,w)) = . (p—as(Aw + a& — apbu), W)p. .
Since p )
—  Fu((t,v)exps(a,w)) = —(Aw + a& — apbu, u)ge # 0,
d8|s:0 a

we get by continuity that there exists o > 0 such that

ciFu(<t’U> exps(a,w)) #0, Vse (—0,0),

and hence Fy((t,v)exp s(a,w)) is strictly increasing or strictly decreasing the interval (=4, d).

In particular,

Fu((t,v)exps(a,w)) # 0, for all s e (=4,d)\{0},
proving the result. [l

Using the previous lemma we have the following.

Theorem 3.2.2. Let ¥ = {X = (¢, A), A"} be a simple ARS with A # 0 and (a,w) € g(0). If

(t,v) € G\Z, the exponential curve s — (t,v)exp s(a,w) satisfies:

1. s — (t,v)exp s(a,w) remains in the same component that contains (¢, v) or

2. s — (t,v) exp s(a,w) intersects Z discretely.
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Proof. Let us assume that for so € R it holds that (¢,v)exp so(a, w) € Z. Since

(t,v)exp (so + ) (a,w) = g(t, v) exp So(a, w)) exp s(a, w),

~

ez

the previous lemma implies the following:

1. For all s € R it holds that Fy ((t,v)exp (so + $) (a,w)) = 0. If this condition holds, we would
have that (¢,v)exp (so + s) (a,w) € Z,Vs € R and consequently, (t,v) € (G\Z) n Z = J which
is not possible. Therefore, s — (t,v) exp s(a, w) remains in the same component that contains
(t,v).

2. There exists § > 0 such that F, ((¢t,v)exp(so+ $) (a,w)) # 0 for all s € (—6,6)\{0}.
In this case, (t,v)exp (so+ ) (a,w) intersects Z discretely at the point (¢,v)exp so(a,w)
and (t,v)exp(sy + s)(a,w) remains in the same component if F, ((t,v)exp (so + s) (a,w))
does not changes sign for all s € (—9,9)\{0} or {(t,v)exp (so + $) (a,w), s€ (—34,0)} and
{(t,v) exp (sg + s) (a,w),s € (0,0)} belong to different connected components if the sign of

Fu ((t,v) exp (sg + ) (a,w)) changes in (—d,d)\{0}. O

For the flow of the linear vector field of ¥ we have the following:

Proposition 3.2.3. Let ¥ = {X, A"} be a simple ARS on G. For any (t,v) € G\Zy, define the
set,
J(tv) = {SER; gps(t,l])EZ}.

It holds:
1. la is an eigenspace of A and Jy ) = & or Ju ) = R.
2. I is not a eigenspace of A and J,,) is discrete.

Proof. Since

Fu (ps(t,v) <p t( (eSAv+A;4A9 )+A9 ) u>R2
= <p_t (AeSAU + (AAg1 + 1dR2) Af ) ,u>R2
= <€SA (p_t (Av + Aff)) ,u>R2 by using the property 4 of A%,

the result follows from Lemma A.1.2. O]

The previous result shows that if (¢,v) is not a fixed point of X’ then the orbit of X starting at

such point is contained in Z do not touch Z or crosses Z dicretely.
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3.3 Examples of singular locus

In this section some examples of singular locus are presented.

0 —1
Example 3.3.1. Let us consider the Lie algebra g(6) with 6 = (1 0 ) and ¥ = {X, A} to

be a simple ARS, where A = span{(1,0),(0,e;)}, e; and e, stand for the canonical basis of R?.
Notice that [(1,0),(0,e1)] = (0,e2), that is, A is not a subalgebra consequently the LARC is
satisfied.

The associated Lie group is called the Euclidean motion group.

The linear vector field is X (¢,v) = (0, Av + A%), here & = (a,b) and v = (x,y) with £, v e R?.

Since (dLt,))0,0)(1,0) = (1,0) and (dLtv))0,0)(0,€1) = (0, pre1). The left-invariant distribution

t —sint
AL is given by AL(t,v) = span{(1,0), (0, pse;)}. In this case p, = ' = (COS S ), and

sint cost
0 1
0! = ( . O> SO

P
Notice that the equality [A, 8] = 0 implies that A has the form A = ( ! )\Ml). Then
M1 1

1 —cost sint

sint cost — 1
Af = (Pt — idﬂp)&il = ( > .

X(t,v) = (0, Av + AY€) = (0, \yz — pyy + asint + b(cost — 1), iz + Ay + a(1 — cost) + bsint).
By definition of singular locus (¢,v) € Z if and only if X'(¢,v) € A¥(t,v) that is
Av + A = piey,

or equivalently
(Av + N¢, presdre = 0,

using that pses = (—sint, cost) and developing the inner product in the previous equality, allows

us to obtain that

(t,v) € Z <= (my — \x)sint + (u1x + A\y) cost + bsint + acost —a = 0.
Consequently,

Z ={(t,v): (p1y — Mz)sint + (pux + M\y) cost + bsint + acost — a = 0}.
Considering A = 0. By the previous calculations, the singular locus is given by

Z ={(t,v) : bsint + acost = a}. (3.10)
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This locus singular has infinites connected components. In fact, if v is the angle between &

ﬁ and siny = pERTE Therefore, if (t,v) € Z we have that

a a

cﬁ;—ibz cost + msint = cosycost + sinysint = cos(t — ). Therefore
(t,v) € Z if and only if cos(y) — cos(y — t).

and e; we have that cos~y =

cosy =

by using the identity

cos(x) — cos(y) = —2sin (%—Hj> sin <x ; y) )

we get that x = 27k — y or x = 2wk + y, for some k € Z. By replacing x = v and y = v — t, we
obtain that ¢ = 2(y — k) or t = 2rk, writing I' = {2(y — 7k) k € Z} U {2nk k € Z}, we see that

Z =T x R? and hence Z is a submanifold with infinites connected components

Figure 2 — Singular locus of (3.10) with , a = b = 1. t,x,y € [-10, 10].

11
Example 3.3.2. Consider the Lie algebra g(6) with 6 = 01 and ¥; = {X,A} to be a

simple ARS, where A = span{(1,0), (0,e1)}. Since [(1,0),(0,e1)] = (0,e1) we get that A is a
subalgebra. However, if we assume that £ ¢ A, Proposition 2.4.1 assures that LARC is satisfied.

AA Lote! 1 -1
A= "0 7 . op=el = cre and 07! = .
0 )\1 0 Gt 0 1

For v = (z,y) and & = (a,b), we have that

In this case

F—1 —e' +1+te
Av = ()\1:L’+)\23U>)\1?J) and A? = (e 0 ‘ t 1 ‘ ’
et —
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implying that
X(t,v) = (0,(b—a)+e'(bt —b+a) + Mz + Xy, ble" — 1) + A\y).
By straightforward calculations, we get that
Z={(t,v): iy = (1 — e")b}, (3.11)

Where b # 0 by LARC.

-10 .10

Figure 3 — Singular locus of (3.11) with A\; =2,b=5.
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4 |sometries between rank two ARS's

In this chapter we define rank two ARS on the group G' = R x, R®. Our main goal of here is to
prove that isometries between ARS’s of rank two are automorphisms. We begin in Section 4.1
by introducing the definition of linear vector field of rank two and using that we define rank two
ARS’s. Subsequently in Section 4.2 the fundamental lemma is proved. This lemma provide a
sufficient condition for an isometry between ARS to be a automorphism. In Section 4.3 we prove
that isometries between rank two ARS’s let the nilradical of g(#) invariant. In Section 4.4 the
main theorem is proved, that is, we establish that the only isometries between rank two of ARS
are automorphisms of GG. By using the previous result we are able to present a classification of
rank two ARS’s in Section 4.5.

4.1 Isometries of rank two ARS's

In this section we prove that the only isometries between rank two ARS’s are automorphisms of
the group. This result allow us to classify, up to automorphisms and reescalonation, that the
only possible rank two ARS on connected three-dimensional solvable nonnilpotent Lie groups.

We begin with the definition of linear vector field of rank two:

Definition 4.1.1. We say that a linear vector field is a rank two linear vector field if its

associated derivation has rank two.

Definition 4.1.2. A simple ARS ¥ is said to be a rank two ARS if the associated linear vector
field has rank two.

By formula (1.4) we see that isometries preserves rank two ARS’s.

Remark 4.1.3. Since the derivation associated with a linear field X = (£, A) is given by

D = 00 , we have that
& A

X has rank two < R?* =Im A + R¢ .

Moreover, the expression of D shows that the rank of D is at most two and consequently, the
set of rank two derivations is open and dense in Der (g(#)). Also, the fact that Der (g(6)) is
isomorphic to the set of linear vector fields [8] implies that rank two linear vector fields, and

consequently rank two ARS’s, are (topologically) big.
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Let 1 : G — G be an isometry between rank two ARS’s ¥; and ¥, and consider f : G — R and

g : G — R? the coordinate functions of 1. Write, on the canonical basis,

v O @0
0g g )
where for (t,v) € G, 02f(t,v) is the gradient vector of the partial map v € R* — f(t,v) € R.
If {¢%}, p is the flow associated with the linear vector fields of X;, we have by formula (1.4)

that Using the expression for the flows of X; provided by equation (2.12) and equation (1.4) we
get that

(f (t, e My + AfAflﬁ) .9 (t, ey AfAflg)) =1 (t, e My + A?Aflﬁ)
=0 (¢4(t,v))
=3 (Y(t,0))
L (f(t.v),g(tv))
= (f(t.v),e2g(t,v) + AL2AG, &) -

Therefore, we obtain

f (e + AAE) = f(tv),

(41)
g (t,e*Mv+ AMATG) = e g(t,v) + AN, )6

Remark 4.1.4. The main result of this thesis: Theorem 4.4.1 shows that isometries between
rank two ARS’s on nonnilpotent, solvable three-dimensional Lie groups are automorphisms. For

the proof of this theorem we employ the following steps.

o First we show that, if ) preserves a left-invariant vector field of the associated distribution,
then ¢ is in fact an automorphism of G. This result simplifies our problem to look for

vectors in the distribution which are preserved by the isometry.

o In the second part, we show that the differential of any rank two isometry let the nilradical
{0} x R? of g(#) invariant, or equivalently, if ) = (f, g) then d,f = 0.

e In the third and last step, we show that if ¢, let the nilradical invariant, then it preserves
any left-invariant vector field in the intersection of the nilradical with the distribution of
the ARS.

As a consequence, 1) is an automorphism by the first step.



Chapter 4.  Isometries between rank two ARS’s 47

4.2 The fundamental lemma

We use this section to prove a technical lemma which gives us a sufficient condition for an

isometry between simple ARS’s to be a group automorphism.

Lemma 4.2.1. (Fundamental Lemma) Let ¥, = {X; = (£, 4,),Al} and 3y = {X, =
(&, Ag), AL} be simple ARS’s on the Lie group G = R x, R? with A4; # 0, and consider

Y € Isog (X1;X9), - If there exists a nonzero vector X € Ay such that

V(tv) € G; o (d) X (E0) = (L) g (@) 00) X, (4.2)

then ¢ € Aut(G).

Proof. : Let us assume w.l.o.g. that (1,0) € A;. We prove the lemma in four steps:
Step 1: For all Z € A; it holds that

V(t,v) € G () 2" (t,v) = (dLy(t)) g 0 (d¥) 0.0) Z-
Let us consider Y € A; such that
{X,Y} is an orthogonal basis of Ay with |Y|s, 0,00 = | X|s1,00.0)-

By linearity, it is enough to show that the relation (4.2) holds for Y. From the left-invariance
of the metric in A we get that {X"(¢,v),Y"(¢,v)} is an orthogonal basis of A{(,v) also
satisfying

Y5, 0) |5 60) =Y [51,00)
=X, 0,0
= X" (¢, 0) |5y (t0)-

Using that 1 is an isometry, it holds that (di).,)Y"(t,v) € AY(¢(¢,v)) is orthogonal to
(d)) 4.0 X ¥ (t, v) and

[(@) Y E ) s, iy = Y0 s, i
=[Ys, .00

On the other hand, the left-invariance of the metric in AL implies that (de(t,v)) 0.0) (dY) oY €
As(1(t,v)) is orthogonal to (dL@b(tﬂ,))(O,O) (dv))(0,00X and

H (dLyw)) (o) (dw)(o,o)YHE%WW) = @)oY s, 00

= HY”EM(QO) :
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Since by hypothesis,
(d¢)(t7v)XL(t7v) - (dLiﬁ(tvv))(o,o) (dlb)(o,o)X,
the fact that dim (A (¢(t,v)) = 2 forces that

(d@/})(tw)YL(t, "U) = €(t, ’U) (de(t:U))(O,O) (d@b)(O,g)Y, where E(t, ’U) = +1. (4.3)
Moreover, by orthogonality, we obtain that

d) o YE(, ), (dLis d Y>
e(t,v) = <( V¥4 0), (Lo ))(0’0)( Yoo Zab(t)
1X51,00,0)

showing that ¢ is a continuous function on G\ Z; and hence, ¢ is constant on the connected
components of G\ Z;.

Since A; # 0, Theorem 4.5.1 implies that G\ Z; has two connected Ci" and C; . Let us consider

e i=¢ler and € = glo- .

If for some (t,v) € G\Z the curve s — (t,v) exp sY intersects Z;, then by Theorem 4.5.1 such

intersection is a discrete set. Assume w.l.o.g. that (¢,v) € C; and consider the sets
I :={seR;(t,v)expsY €Cf} and [ :={seR;(t,v)expsY €C;}.
These sets are open and their union is, by Theorem 4.5.1, dense in R. Moreover, the curves
Ve 1T = G, ye(s) =9 ((tv) expsY)
are differentiable and by equation (4.3) satisfies
d L
7572(8) =(d) ) exp sy Y7 (8, 0)) exp sY

= (*2)" (¥ ((t,v) expsY))
= (c*2)" (12.(9)),

where for simplicity Z := (dv)(,0)Y . Therefore, v4(s) coincides with the solution of the ODE
defined by the vector field e*Z% on the open set I*. By uniqueness we get that

V((t,v)expsY) = Y(t,v)expse®Z, forall sel®.

Since R\I* U I~ are the points where the curve s — (t,v)expsY intersects Z;, we have by
Theorem 3.2.2 that R\/™ u I~ is discrete. Let us assume that I~ # ¢J. In this case, there exist
sop € R\J" U I~ and § > 0 such that

(t,v)expsY € Cf s€ (0,80 +0) and (t,v)expsY €Cy se€ (so— 9,50,
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which by continuity implies

»(t,v) exp soe™ Z =1 ((t,v) exp soY)
=1(t,v) exp spe~ Z

implying exp spe™Z = exp spe~ Z. By the expression of the exponential in equation (2.13) and
the fact that sy # 0 we conclude that e™ = ¢,

On the other hand, if I~ = &, let us consider an open set (¢t,v) € U < C{" and sy € R\I". The
open set U exp soY intersects Z; at the point (£,v)exp soY and, since Z; is a two-dimensional

embedded manifold, we have that
UexpsonC; # .

In particular, there exists (£, %) € C such that (f,9)expsyY € C;. As a consequence, both of
the sets

I":={seR;({,0)expsY eC} and [ :={seR;({ 0)expsY eC;},

are nonempty. By doing the previous analysis with (£,9) instead of (¢,v) allows us to conclude
that e™ =¢™.

Now, if for all (t,v) € G\Z; and s € R we have that (¢,v) exp s(a,w) € G\ 24, then as previously
for all (t,v) € C{ we get

Y((t,v)expsY) = ¥(t,v)expse™Z, forall seRR.

Again by the fact that Z; is an embedded two-dimensional manifold, there exists v : (—=6,0) - G
satisfying
70)e 2, 4(=0,00=C; and 7(0,6) =C",

and hence, for all s € R it holds that
P(y(T)expsY) = (y(1))expse™ Z,7 € (0,8) and (y(7) exp sY) = (v(7)) expse” Z, 7 € (—4,0).
By considering the limit 7 — 0 we get by continutity that

U(7(0)) expse™Z = p(y(0) expsY) = P(7(0)) expse™ Z, VseR,

implying that e = ¢~ and concluding the proof of step 1.
Step 2: It holds that

F(tv) =at and  g(t.v) = g(0,v) + A?d19(0,0).
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Indeed. Since (dL(t,v))(O 0 (1,0) = (1,0) we have that

(OLf(t,0), Org(t, v)) =(dip) ) (1,0)
= (dLira)) ) () 0.0 (1, 0)
= (dLy(t0)) (o) (01.£(0,0), 219(0,0))
= (01.£(0,0), pyt.0)019(0,0))
implying that
O1f(t,v0) = 01.f(0,0) and  Aig(t,v) = prw@rg(0,0). (4.4)
Analogously, for (0,u) € A n {0} x R?
(CO2f (t,v), prwpe , C2g(t, v) pru) =(dv)(t) (0, pru)
(detU ) ©0.0) (dv))(0,0)(0, u)
(detv) ) ((02£(0,0), wga , G2g(0,0)u)
= (210, 0, u>R2 () 029(0, 0)u)

implying that
(O f(t,v), prwyge = (02f(0,0), wpp:  and  Gag(t,v)psut = py(s,0)029(0, 0)u (4.5)
By integration, equation (4.4) implies that
f(t,v) = at + h(v), a=272f(0,0) and h(v)= f(0,v).
Therefore, from equation (4.5) we get that for all (t,v) € G,
(Vh(©), pitygs = (Th(0), W
= (Vh(v), prt)ge = (V(V), u)p2
— (Vh(v), (pru — u) g = 0
On the other hand, f o ¢! = f implies that
h(ev + AJAME) = h(v), (4.6)
and so,
h(e0) = h(v) = Vh(e*Mv) = e Vh(v).
Hence, Yv € R?, seR,

(Vh(v),upge ={(Vh (e*"1v) U)o

= <e_SA1TVh(v), u>R2
= <Vh v ,e_”‘1u>]R2
— <Vh v), (eSAlu — u)>R2 = 0.
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Now, derivation of (4.6) first at t = 0 and then at s = 0, gives us

(Vh(v),&1)g2 = 0,

which together with the previous equations imply that {51, et

to the same line if VA(v) # 0 for some v € R?.

U — U, ph — U, t,5€ ]R} belongs

However, if {51, My —u, pu—u, t,se R} belongs to the same line we necessarily have that
u is a common eigenvalue of § and A; which gives us that A; is a subalgebra that contains
(1,0), Ayla, ©la, and & € la,, which by Proposition 2.4.1 contradicts the LARC. Therefore

Vh(v) =0 forall veR?® = h is constant.

Since f(0,0) = 0 we get that h = 0 and hence f(t,v) = at as stated.
Now, since f(t,v) = at, equation (4.4) implies that

dg(t, U) = pa:019(0,0)

which by integration gives us

t

g(t,v) —g(0,v) :fo 019(s,v)ds

t
= f pasalg(Oa O)d
0
=A0,4(0,0),

then
g(t,v) = g(0,v) + AF019(0,0),

showing the assertion for g and proving Step 2.
Step 3 : For all (¢,v) € G and s € R, it holds that

029(0,v)pi&1 = par029(0,0)¢;  and @g(O,v)pte’SAlu = patﬁgg(O,O)e’SAlu. (4.7)
Since ¢ commutes the flows of the linear vector fields of ¥; and >, it holds that

g (t, ey + AflAffl) = e*2g(t,v) + AszGtgz,

a

and by Step 2,

g (0,0 + AMAYE) + Aln = e12g(0,0) + e A n + A2ADG,

a a

where n = 01¢(0,0). Therefore,

g (0, v+ AMAYE) — e12g(0,v) = (e —idge) Al + APA%E
=A{2AG (&2 + Asm) .
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Derivation of equation (4.8) on t gives us, by the chain rule, that
029 (0, €M v + AMATE) p A& = parL? (& + Aan) .

Since the previous equations is true for any s € R and any (¢,v) € G, we can substitute v by

e s (v-— AflAfél) in order to obtain
029(0,0)pe A1 &1 = parAL? (§2 + Agn) .

Derivating now the last equation at s = 0 gives us

029(0,v)pe&1 =pat (&2 + Aan)
:pataZ.g(Ov 0)517

proving the first equality. For the second equality, let us notice that the right-hand side of

equation (4.8) does not depends on v and hence
veR? — g (0,0 + AMAYE) — e2g(0,v),
has differential zero. By the chain rule, we obtain
02g (0,10 + AMATE) e = e¥42059(0, v).
On the other hand, by Step 2.
V(t,v) e G, 0ag(t,v) = Oag(0,v) and f(t,v) = at.
Therefore, for any (¢,v) € G and and s € R we get

029(0,v) pre M =0,9(0,v)e M pyu
=e 20,9 (0, v + AT AYE) pru
=e ™42 py029(0, 0)u
=pare *20,9(0,0)u
=0at029(0, O)e’SAlu.

showing the assertion.
Step 4: 1) € Aut(G)

We have to analyze the following ones:

1. A; is not a subalgebra: In this case, u # 0 is not an eigenvalue of 6. Since, for t = s =0

the second equation in (4.7) implies that

029(07 U)ptu = a29(07 0)U,
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it holds that
Vo eR?,  059(0,v)prt = pard2g(0,0)u = par2g(0,v)u.

Since ad2g(0,v) = det(dy)) ) # 0 we have necessarily that d,g(0,v) € GI(2,R). Applying
Lemma A.1.1 to the linear maps dog(0,v) gives us that,

Vv e RQ? a2g<07 U) = 629(07 0) and a29(07 0) 0 =abo 629(07 0)7

where a = 1if trf # 0 or a € {—1,1} if trf = 0.

2. A is a subalgebra and 0 # idg: :
In this case, the fact that A0 = 0 A; implies that u is also an eigenvector of A;. Since we
are assuming (1,0) € A; the LARC implies by Proposition 2.4.1 that {£;,u} is linearly

independent. Considering t = s = 0 in equations (4.7) gives us that
029(0,v)u = 029(0,0)u  and  dag(0,v)&; = dag(0,v)Ey,
which by linearity implies that,
Yo e R?* 059(0,v) = 09(0,0) and  029(0,v) © p; = par © 2g(0, v).

By differentiation, we get that d2¢(0,0) 0 @ = af o dog(0,0) implying that a = 1 if trf # 0
orac{—1,1}if trf = 0.

3. A is a subalgebra and 0 = idg: :

In this case,

e'029(0, v)u =e'dy9(0, v)pu
=0at029(0,0)u
=¢"029(0,v)u,

implying that a = 1. If {¢,u} is linearly independent, we can conclude as in the previous
item that
Vo e R%,  g(0,v) = dag(0,0).

On the other hand, if {£;,u} is linearly dependent, the LARC implies necessarily that
u cannot be an eigenvector of A; (see Proposition 2.4.1). In particular, for some s, €
R, {u,e "y} is a basis of R* and by Step 3. the linear maps d»g(0,v) and d,g(0,0)
coincides on such basis, implying that dog(0,v) = 29(0,0) for all v € R%.
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In any case, we get that
f(t,v) =et and g(t,v) = Pv+ eAPn,
where 7 = 01¢(0,0), P = 029(0,0) and Pf = 0P withe =1iftr0 #0oree {—1,1} if tr 6 = 0.

Moreover, by definition,

t
A'n :J e**Inds
0

et
=5J e"ndy
0

:5Agt77

implying that 1) € Aut(G) and concluding the proof. O

4.3 Invariance of the nilradical

In this section we show that for an isometry v € Isog (X4, 33), between rank two ARS’s with
¥ = (f,g), the coordinate function f only depends on the first variable of G or equivalently, it
satisfies 0o f = 0. Henceforth, we denote the constants «;(t,v) that depend of (¢,v) as «;.

Let us consider {X;, Y;} = A; be orthonormal basis. Since 1, ALY = Al(v)), we can write uniquely

VXY = Xy (1) + Y5 (1),

where
o} + a3 = [y X[,
2
= x7s,
= [ X1y,
=1

Moreover, each «; can be recovered from the orthonormality of the basis as

Q= <¢*X1La XQL(w)>22 and Qg = <¢*X1L? YzLW)>22 )

showing that «; : G\Z; — R are C* functions. Moreover, the fact that {XIL Y } is an

orthonormal basis of A implies that

Y E =€ (—aaXE () + an Y (¥))

where € = +1 is constant in each connected component G\ Z;.

Let us assume w.l.o.g. that ¢ = 1 and consider a orthonormal basis of A; satisfying

X; = (0,u;) and Y; = (0;,w;), with o;w; # 0.
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of (6f)"

By writting ¢ = (f, g) and ¥, =
dig 09

>, the previous consideration, implies that

Vs (0, prur) = ay (0, pyug) + g (09, pywa)  and (01, pywr) = —az (0, prug) +ay (02, prws)

or equivalently

(4.9)

(Oaf, prur)re = 09 and Oagprur = py (Qrug + apws)
o101 f + 0o f, prwi)r> = 109 01019 + Oagprwy = py (—agug + ayws) .

Now,

bopy=gio = foyp, =
that is,

f(t et + AIALE) = f(t,v).

By differentiation,

(Oof, Ayv + A€1pg, = 0
orf = oif (gs) + (oo f (1) 7,0tA;41§1>R2 (4.10)
Oy f (api) = e_SAlTé’gf.

where the first equation in (4.10) is obtained by differentiating with relation to s and then
making s = 0.
Now, using again the equations in (4.9) we get that
03 =03 ((of (s) + 03 (1))
=030 (05) + 0305 (;)
= (0202 (1))" + (0204 (#1))°
= (0af (1) s e g + (101 (92) + (8af (1) s o )y

T 2 T T 2
= <€_SA1 Oa2f, PtU1>R2 + (01 (alf - <e_SA1 oo f, PtA?1§1>R2) + <e_SA1 oo f, th1>R2)
= <82fa e_SAlth1>;2 + (01 (51f + <52fa ptAé§€1>R2) + <52f7 e_SAlﬂtw1>Rz)2-

Where for the last equality we used that e M A% = A4

Derivation at s = 0 gives us

0=2(0f, PtU1>R2 (Oaf, _AIPtU1>R2
+2 (0101 f + {0 f, prwi)ge) - (—o1 {Oof, p&1)ge + {0 f, —A1prw1 )pe)
=20202 (02 f, —A1pur e + 20102 - (=010 f, p€1)ge + (02 f, —A1prwi)ga)
= —2(0aof, pr (10201&1 + 02 A1 (aouy + awr)) g2



Chapter 4.  Isometries between rank two ARS’s 56

showing that
Oof s orthogonal to  p; (01090481 + 0241 (uy + cqwy))  on  G\Z; .
Using the fist equation in (4.10), allow us to conclude that, on G\ Z;
Oof #0 = {Alv + A?fl, pr (010901&1 + 09 Ay (auy + alwl))} is LD. (4.11)

We show that drf = 0 by analyzing the possibilities for the eigenvalues of A; in the next

propositions.

Proposition 4.3.1. If A; has only eigenvalues with nonzero real parts, dof =0

Proof. According to Proposition 2.4.3 (see also Remark 2.4.4) we can assume without loss of
generality that (1,0) € A; Under this assumption, we have that w; = cu; and equations (4.9)

gives us that

g
<52f7 PtU1>R2 =agoy and O f = ;2 (041 - CO@)-
1

Where the second equation is obtained as follows. Since 0101 f + (O2f, prwi)g: = 02, as

o

w1 = cuy we get 0101 f + casos = a0y consequently 0 f = 22 (o1 — can).
o1

Using now equations (4.9) gives us that on G\ Z,

Qg (90;) 02 = <52f (@i) aPtU1>R2
= <€_SA1T oo f, ﬂtu1>]R

is bounded for s € R outside a discrete subset (see Proposition 3.2.3 ). However, if A; has only

2

eigenvalues with nonzero real parts, the fact that u; # 0 implies by Lemma A.1.2 that g =0
and a; = 1 showing that ¢; f is constant on G\ Z;. Using the continuity of f and the fact that

G\ Z, is an open and dense subset of G allow us to conclude that
V(t,v) e G, f(t,v) =at+ h(v), wherea =09/c; and h(v)= f(0,v).

The same analysis as in Step 2. of Lemma 4.2.1 allows us to conclude that under the LARC and
rank two assumptions it holds that h = 0 showing that do f = 0 as stated. O]

Proposition 4.3.2. If A; has a pair of pure imaginary eigenvalues, dyf = 0

Proof. By Remark 2.4.4 we can assume that & = 0. Consider the set
A= {(t,v) e G; 0af(t,v) # 0}.
The first to notice is that

of (p)) =e o f = plA)c A
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Also, the fact that A; has a pair of imaginary eigenvalues and that A;0 = #A; imply that, on

0 —
the canonical basis, A; = OM , for some p # 0.
L

The assumption that & = 0 implies
2y ={(t;spATMur) ,t,s€e R} and  Zx, = R x {0}.

Consequently, for any (t,v) € 2\ 2, there exists so € R such that ¢, (t,v) € G\ Z;. In particular
we get that
.A\le 0 = An (G\Zl) # .

Let us consider (tp,v9) € A N (G\Z;) and suppose that as (tg, vo) pro,ur + aq (to, Vo) pr,wi € Ruy.
Let’s choose vg such that, (vy, vy )g. = 0. Therefore, by using the relation (4.11) we get that

0 = {az(to, vo)prour + a(to, Vo) pryWi, Vg )ga
=02 (t07 UO) <pt0u17 U8<>R2 + o (t()v UO) <ptow17 U(T>R2

and since a] + a3 = 1 we obtain

<Pt0U1 ) Ug>]?§2

N (protin, ViDiga + {proi, Vg e

ES
and (05) (t(), ’Uo)2 = <ptw1’ Y >R2

o (to, Uo)2 = )
(protin, VDiga + {pror, Vg e

With the previous we will show that A < Zy,, by considering two cases:

1. u; and w, are not orthogonal vectors;

Let (t,v) € A\Zy,. The fact that e*41v is a circumference around the origin gives us that
{eSAl, S € ]R} N {(t,sp),seR} # F = Isg, 51 € R*;e0N = s5p,0.

In particular, if u; and w; are not orthogonal vectors, Ajw; ¢ Ru; implying that
(t,s1pywq) € G\Z; and hence

A3 9t v) = (t>eSOA1U) = (t, s1ppw1) € G\Z1.
By the previous formula we get

{prwn, (prwr)* g, = 0
= ay(t,s1pw1) =0

(4.9)
ad <62f (tv Slptwl) aptu1>R2 =0.

On the other hand, by the first equation in (4.10) we get that

(Oof (t,51p0w1) , Ar ($1p0w1) )go =0 = {Oof (t, s1p0w1) , prAr1W1 )2 = 0.
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Since Ajw; ¢ Ruy, the set {pyu1, prAjw;} is a basis of R?, which by the previous equalities
imply

0= 0o f(t, s1pawr) = Oaf (psg(t,0)) = e O f(t,0) = Oof (t,v) =0,

contradicting the fact that (¢,v) € A\Zxy,. Therefore, if u; and w; are not orthogonal
vectors we must have that A\Zy, = &.

2. uy and w; are orthogonal vectors;
Let (t,v) € A\Zx,. As previously,

Jsg,s1 € R*; A> gpio (t,v) = (t,s1pu1) € G\Z1 = a1 (t, s1pu1) = 0.

Since u; and w; orthogonal are equivalent to Ayu; € Rwy, the first equation in (4.10) gives
us that

Oof (t,s1piur) s Ay (S1p0u1))ge = 0 = (Oaf (t, s1p0w1) , prws gz = 0.
and hence,

OrLf (t, siprun) =01 f (t, s1prur) + gazf (t, s1peur) ,th1>R3

~~
=0

= (t, s1ppur) o2 = 0

Since we are assuming &; = 0, the second equation in (4.10) implies 0; f ((pi) = 01 f for all

s € R. In particular,

O f(t,v) =01 f (pg,(t,0))
=01f (t, s1psur)
=0,

which by the arbitrariness of (t,v) € A\Zy, implies that
A\Zx, < {(t,v) € G\Zx,; 01 f(t,v) = 0}.

Now, if (o, v0) € (A\A) N G\Z1, the fact that f restrict to G\Z; is C* implies that
Or1f (to,v0) =0 and 0o f (to,v0) =0

which is a contradition to the fact that ¢ is a diffeomorphism. Therefore, A N (G\2Z;) is
open and closed in G\ Z; and so, A contains any connected component of G\ Z; that it

intersects. However, by Theorem 4.5.1, G\ Z; has two connected components and, since
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A has a pair of imaginary eigenvalues, any point (¢,v) € G\ 2Z; crosses the singular locus

by the action of the flow of X;. Consequently, the invariance ¢s(A) < A implies that
AZy, #0 = An(G\Z)#J = G\Z cA
From that, we conclude that 0, f |G\21 = ( and by the continuity of f we actually get
ft,v) = f(0,v) = 0o f=0.
In particular, since det A; # 0,
oof () =e M af = f(0,0)=0,

which together with d; f = 0 is a contradiction with the fact that v is a diffeomorphism.
Therefore, in both cases, we conclude that A\Zy, = & or equivalently A < Zy,. By

considering the complementary, we get that
V(t,v) e G\Zx,, f(t,v)=at, where a=0y/01€R",

and by continuity f(t,v) = at for all (¢,v) € G implying that dof = 0 and concluding the

proof.

Proposition 4.3.3. If R? = Im 4; @ RE; then dof = 0.

Proof. Suppose that (1,0) € A;. In this case, w; = cu; and from equations (4.9) we get that
O1f = (o1 — cag) o9 = 01 f is bounded on G\ Z; .

On the other hand, by our hypothesis dim Im A; = 1 and so we have the following possibilities:

1. A; has a pair of distinct eigenvalues: Since A10 = #A; we have that, on the canonical

A1=<50) or A1=<OO> and 9=<10>.
0 0 0 g 0 A

Let us assume that the first case holds for A; since the analysis of the second case is

basis,

analogous. By our hypothesis, we can write &, = ae; + bey with b # 0 and hence

1 (e’sﬁ - 1) e; — bsees.

8

Also, from the second and third equations in (4.10) we have that

orf =ouf (en) +C0af (92) A €L
_al ( ) <a2f7ptA—s£l>R27

PtA 6 = ae'—
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and hence <62f, ptA‘:‘§§1>R2 =0 f (gpi) — 01 f is bounded for s € R outside a discrete set.

Hence

1
<a2f7 ptAé}9£1>R2 = ae'

5 (e77 = 1) (Oaf, e1)pa — bse™ (O f, €2)po

is bounded and then
allaf,e1)p: =0 and  {(Oaof,e2)p: = 0.
If a = 0 we obtain that & € ker A; = Res. In particular, Aff € ker A; and consequently
(Ozf, e2)ps =0 — <62f, Af§>R2 = 0.
Using the first equation in (4.10) we obtain that
0 = (Oaf, Ayv + AJE )y, = (Oaf, A1v)p .
Thus, we get
V(t,v) € G\ ({0} x ker Ay), {0Oaf,€1)pe =0
and in particular dyf = 0 on G\Z;. Then ¢, f = 22 on G\ Z; implying, by the continuity
of f that f(t,v) = at on G as stated. o

2. A; is nilpotent: Using that A;0 = #A; gives us that, on the canonical basis, it holds

Al:(gg) and 9=<é(15> de{0,1}
e (00) o (7).

By the rank two assumption we have that & = ae; + bes with b # 0. Thus

2
ptA‘f}sfl = ¢ <b82 —(a+ bét)s) e1 — e'bsey

or

and being 0; f bounded on G\ Z; it holds that
Vs e R, <62f, ptAf§§1>R2 is bounded.
As a consequence,
<82f, ptAf§§1>R2 = ¢t (6822 — (a+ b6t)s> (Oaf, €1)ps — €'bs{(Oaf, €2)ps
is bounded for s € R outside a discrete set and hence

e2b <62f, €1>R2 =0 and et ((a + bét) <62f, €1>R2 + b<62f, 62>R2) =0. (412)

As b # 0 the equation (4.12) is equivalenty to

<(92fa 61>R2 = <(92fa 62>R2 = Oa
which gives us that dyf = 0 on G\ 2Z; and, as a result f(¢,v) = at, concluding the proof.

]
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4.4 The theorem of isometries

Theorem 4.4.1. The only isometries between rank two ARS’s on G = R x,, R? that fixated

the identity are the automorphisms.

Proof. To prove this theorem we follow the steps given in the remark 4.1.4.
Let us consider ¢y = (f,g) an isometry between rank two ARS’s 3; and 3, then by the

invariance of the nilradical proved in Section 4.3, we have 0 f = 0. Therefore, if
X =(0,u)e Ay n ({0} xR?),  with | X|s, 00 =1,

we obtain that
81f<t, U) 0 0
d v XL t, = = 07 0 ta )
(W X ( datt) aaglte) ) \ g ) 7O
showing that
(d) 1,0 X (2, 0) € Da(t(t,0)) N ({0} x R?).
On other hand, (dv)nX € Ay(0,0) implies that

(de(tvv))(070) (d)0,0)X € Do(h(t,v)) N ({0} x R?).

Moreover, since 1) is an isometry and the metrics on A; and A, are left-invariant,

[ (@) X (2,0, 00y = X

(t,v HEl,(t,v)
=||XH21,(0,0)

=1

U

and

H (de Lo ) (0,0) (di)) (0,0 XH H(dw(&O)XHzg,(o,o)

— H (dw)(o,o)XHEQ,(O,O)
=1.

P(t,v))

Since dim (As(¥(t,v))) N ({0} x R*) = 1 it holds that

(dw)(t,v)XL(tv v) =+ (de)(t,v))(O’O) (dw)(o,O))Q

where the sign is constant on any connected component of G\Z;. Doing a similar analysis as

done in Lemma 4.2.1, specifically in the Step 1, allows us to obtain that the sign is constant on

G and then

By using the Fundamental Lemma 4.2.1 we conclude that ¢ is an automorphism. O]



Chapter 4.  Isometries between rank two ARS’s 62

The next example shows that Theorem 4.4.1 is not true if the ARS has rank less than two.

Example 4.4.2. Let us consider G = R x, R? and the simple ARS given by ¥ = {X, AL},

where
1 0 01
0 = ( 0 0 ) s X = ((070)7 ( 00 )) and a = {(170)9(0762)}

is an orthonormal basis of A.
By Proposition 2.4.1 we have that ¥ satisfies the LARC and it is direct to see that it is not a
rank two ARS. Note also that, for any (¢,v) € G, it holds

(dLt)) 00 (1:0) = (1,0) and (dLt)) 00 (0:€2) = (0,¢2).
Let us consider the diffeomorphism
VG -G, (t,v)— (—t,),
and note that, by Proposition 2.3.1 it holds that ¢ ¢ Aut(G(#)). On the other hand,

V(X (t,v)) =1(0, Av)
=(0, Av)
=X(—t,v)
=X (¥(t,v)),

¥(1,0) = (=1,0) and 1 (0,e2) = (0,e3),

and since 1, = 1, we conclude that v carries the orthonormal frame {X, (1,0), (0, e2)} onto the
orthonormal frame {X', —(1,0), (0, e2)} showing that ¢ € Isog(X; X).

4.5 On classification of simple rank two ARS

The results obtained in Chapter 4 allows obtaining the following classification theorem. In this
section, we consider the notation G(6) = R x,, R? for the connected, simply connected Lie group

with Lie algebra g(6). For any o € R* we consider the subsets of g(6) given by
ay = {(170)7(0761)}7 Qg = {(170)7((7’62)} and a3 = {(170)7(Ua61+62)}'
Define the simple ARS’s of rank two 3% , = {X,Al,} on G(6), where

1. X is a rank two linear vector field on G(0);

2. «; is an orthonormal basis of A, ,.
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Denote by & the set of all rank two simple ARS on G(6) and consider the sets
& = {E € &; Iso (X, 2;70)0 # (& for some 2}70}
that is, & is the set of rank two ARS’s on G(6) that are isometric to some of the ARS’s ¥ ,

Theorem 4.5.1. Up to a rescaling, it holds that

10 A —1
i) & =& if e , AeR G
.. . . 11 1 0
(ii) & = & UES 1f9€{<0 1),(() _1>};

(i) & — E1UE2UED if 0 e {((1) ())\),)\e (—1,1)}.

Proof. Since, by Theorem 4.4.1 the only isometries between rank two ARS are automorphisms,
we only have to show that any given ARS Y is isometric to some ARS in & for i = 1,2,3 and
that for i # j we have that £ n &) = & if 6 is in the cases (ii) or (ii).

Let us consider > = {X, AL} be a rank two ARS. By Proposition 2.4.3 and Remark 2.4.4, the
ARS ¥ is isometric to an ARS whose distribution contains (1,0). Hence, we can assume without
loss of generality that (1,0) € A. By rescaling the norm on A if necessary we can assume that
|(1,0)|5,0,0 = 1. Choose (o,u) € A such that ¢ > 0 and {(1,0), (o, u)} is an orthonormal basis
of A. Note that, in this case

(0,u) = —0(1,0) + (o,u) = Ia =Ru.

Write u = (x,y) and by considering the following cases:
1 —1
Casel: 0e 0 , A ,AER
0 1 1 A
: A -1 :
By regarding L we obtain that

PO =0P, detP=x2+y27éO and Pe; = u.

The automorphism ¢(t,v) = (¢, Pv) is an isometry between Efm’g and X.

Case 2: 0= bl
01
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By regarding

0 _
P = . if y=0 or P3= y -y if y #0,
0 x 0 Y

we obtain that Pi# = 0P;, det P, # 0 and
Pey =uify=0and P;(e; +e) =uif y # 0.

Therefore, if y = 0 the automorphism ¢;(¢,v) = (t, Pv) is an isometry between 3}, , and %,

and if y # 0 the automorphism ¢5(t,v) = (¢, P3v) is an isometry between E?\e¢3,g and X.

Case 3 : 92(1 0 )
0 —1

By regarding

0 0 0
P, = v if y=0, P= Y if =0 or P3= “ if xy # 0.
0 =z y 0 0 vy

It holds that P,# = 0F; for i = 1 or 3 and P60 = —0P,, det P, # 0 and
Pe=uify=0, Pe;=u ify=0and Py(e; +e3)=u if zy #0.

Thus, if y = 0 the automorphism ¢, (t,v) = (t, Piv) (respectively if x = 0) the automorphism
¢o(t,v) = (—t, Pyv)) is an isometry between Eﬁ%ha ( resp. E}¢270> and X, and ¢3(t,v) = (t, Psv)

is an isometry between E‘j’%ﬂ and X if zy # 0

10
Case4: 0= Ae (—1,1)
0 A

By regarding

0 0 0
P = “ if y=0, P= Y if =0 or P3= . if xy # 0.
0 z 0 vy 0 vy

Hence P,# = 0F;, det P, # 0 and
Pe=uify=0, Pey=uifz=0and Ps(e; +e)=u if zy #0.

and the automorphisms ¢;(¢,v) = (¢, Pv) are isometries between Xy, , and X, for i = 1,2, 3.
Since the cases 1,2, 3 and case 4 cover all the possibilities, we have that £ is in fact decomposed
by the classes £, as given in items (i), (ii) and (iii). The only thing that remains to show is that,
in cases (ii) and (iii) we have that & n &) = & for i # j
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Since both cases are analogous, let us show case (ii). In this case, if & N & # &, there exists
rank two linear vector fields X, X3 and positive real numbers oy, oy such that Z}M ,and E%m

are isometrics. Nevertheless, since Z}Vl,g , and 3 are, by definition, rank two ARS’s, Theorem

X3,03
4.4.1 implies that
Iso (S}, ;%5

X1,010 “X3,03

), © Aut(G(6)),

Thus, any ¢ € Iso (E}Ylm; 3

X3,03> , satisfies

0
() (0.0) = ( c ) . with PO = 0P,
n P

which implies,
(d¥)(0,0) (A1,e N {0} x R*) = Az, n {0} x R? and hence Pe; € R (1 + e3) .

However, by the hypothesis on 6, the subspace Re; is a one dimensional eigenspace of 6.
PO = 0P implies that

Pei e Rey if e =1 and Pey € Reg if € = —1,
which contradicts Pe; € R (e; + e3) . Consequently, 5(} N 893 = (J as stated. O
Remark 4.5.2. In the notation of the Theorem 4.5.1, notice that
(0,u) = —0(1,0) + (o,u) == [|(0,u)|s 00 =1+ 0>

In particular, [|(0,u)|s, 0,0 = 1 if and only if o = 0. Therefore, the metric on A is Euclidean if

and only if o = 0.
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APPENDIX A - Dynamics of 2x2 matrices

A.1 Dynamics of 2x2 matrices

Lemma A.1.1. Let T e GI(2,R) and u € R?\{(0,0)}. If u is not an eigenvalue of § and there
exists a € R*
1) Tpuw = pyTu, VteR,
then
2)Tof =aboT,

and a = 1if trf # 0 or a € {—1, 1} if tr @ = 0. Moreover, if S € GI(2,R) also satisfies 1. and 2 .
and Tu = Su then 7' = S.

Proof. 1f pyju - u* = 0 for all ¢t € R then, by derivation, fu - u* = 0 implying that fu € span{u}
and hence u is an eigenvector of #. Therefore, if u is not an eigenvalue of 6 there exist ty,t; € R
such that {u, p;,u} is linearly independent. Hence, for any w € R? there exists 71,7, € R such

that w = y1p1,u + Y201, v and so
Tpew =T pe (V1ptou + V2Pt 1)

=T priote + 72T pras,u
%lea(z#to)Tu + 72pa(t+t1)Tu
=pt (NpreTu + yopi, Tu)
2o (1T pyy + 12T 1, )
=peT (NPt + 2P, 1)
:patTwa

showing that T o p; = pg; o T'. Derivation at ¢ = 0 gives us that

Tol=aboT,

which implies the result. Now, if S also satisfies 1. and 2 . we have as previously that Sop, = pg0S.
Therefore, if Tu = Su we get that

VteR, Tpu=puTu= puSu= Spu.

Since {u, p;,u} is a basis of R? for some t, € R, linearity of S and T implies T = S. Let
a,b,c,0, A\, A1, Ay € R, with \; # 0 # A9 and consider the functions

Y1(t) = ae"™ +be'™ + ¢, yot) =eM(at +b) +c  and  x(t) =ecos(t+0) +c.  (A)
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It is straightforward to see that the following properties holds:

l.a=b=0and vy = ¢

2. ab = 0 with a® + b* # 0 then 7; is unbounded and has at most one zero;
3. ab # 0 then 7 is unbounded and has at most two zeros;

4. x has a finite number of zeros if |c| > 1

5. The zeros of x form an infinite discrete subset of R if |¢| < 1.

Lemma A.1.2. Let A e gl(2,R), 7 € R and u,v € R? nonzero vectors. For the function
7:R-R, () =% v+,

it holds:

1. The eigenvalues of A are real and

1.1. ~ is an unbouded function with at most two zeros or

1.2. y=7,u-v =0 and u is an eigenvalue of A.
2. The eigenvalues of A are complex and

2.1. v is unbounded with an enumerable discrete set of zeros if tr A # 0 or

2.2. v is bounded with an enumerable discrete set of zeros if tr A = 0.

Proof. By considering an appropriated orthonormal basis a of R? and writing [u], = (a,b) and

[v]a = (¢, d) it holds that

A O
v(t) = ace™ +bde™ + 7, if [A]l, = ! ,
0 A

Y(t) = eM(u-v +ebet) + 1 if [A]a=<;)\ i),

or
At . A —u
V() = e ullv] cos (ut + 6p) + 7, if  [A]a = L
where 6, is the angle between u and v. In particular, the assertions follows from the analysis of

the maps 71,72 and xy commented previously. O]
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